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ABSTRACT

Some aspects of the noise generated internally by a turbojet
engine are considered analytically and experimentally. The emphasis
is placed on the interaction of pressure fluctuations and entropy fluc-
tuations, produced by the combustion process in the engine, with
gradients in the mean flow through the turbine blades or the exhaust
nozzle,

The one-dimensional interaction of pressure fluctuations and
entropy fluctuations with a subsonic nozzle is solved analytically. The
acoustic waves produced by each of three independent disturbances
are investigated. It is seen that results for a large number of physi-
cally interesting nozzles may be presented in a concise manner.

Some of the second-order effects which result from the area
variations in a nozzle are investigated analytically. The interaction
of an entropy wave with a small area variation is investigated and the
two-dimensional duct modes, which propagate away from the nozzle,
are calculated.

An experiment is described in which one-dimensional acoustic
waves and entropy waves are made to interact with a subsonic nozzle.
The response of the nozzle to these disturbances is measured and
compared with the response as calculated by the analytical model.

The interaction of two-dimensional entropy waves with a sub-
sonic nozzle and with a supersonic nozzle is investigated experimen-
tally. The results are explained in terms of an analysis of the acous-
tic waves and entropy waves produced by a region of arbitrary heat

addition in a duct with flow.
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1. INTRODUCTION TO THE JET NOISE PROBLEM

Well before the first commercial turbojet-powered flight in
1958, the problem of noise from aircraft was recognized. Stevens .
surveyed the noise in communities near major airports in several
cities in 1954. During the same period the popularity of jet-powered
military aircraft was rising steadily; in 1953 Boeing delivered its
last propeller-powered bomber to the Air Force. Residential areas
near military bases were the first to be subjected to noise from jet-
powered aircraft, é.nd workz’ 3 similar to the Stevens survey investi-
gated aircraft (primarily jet-powered) noise near several Air Force
bases.

"I‘yler4 has reported on some noise measurements of turbojet-
powered airplanes made near Kennedy International Airport in New
York. It is interesting to compare the results of the Stevens survey
with those of Tyler. The Stevens survey included such aircraft as the
DC-3, DC-6, and the Super Constellation; the latter two were typical
of the large commercial transports of that time. Peak sound pres-
sure level was recorded in various frequency bands for positions be-
low the takeoff path. The Tyler survey was a similar measurement
for the Boeing 707 turbojet, the first commercial jet-powered air-
plane used in this country. For a position three miles from the air-
port, the turbojet gave a noise level of 115 PNdb. The units are
pierceived noise in decibels and take into account the variation in sen-
sitivity of the ear to sounds of different frequency. The perceived
 noise level for the propeller-powered airplanes may be calculated

from the S. P. L. spectra given by Stevens. At a point below the
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takeoff path and three miles away (using the peak sound pressure level
in each 1/3 octave band) the results for 90 per cent of the aircraft ob-
served give a noise level of 88 PNdb.

It is reasonable to say that the Boeing 707 was the turbojet re-
placement for the DC-6 and similar large propeller-driven commer -
cial aircraft. Then we see that the change to jet airplanes in the early
1960's brought an order-of-magnitude increase in the noise near air-
ports. Aircraft noise became more than an interesting technical
problem; it became a social problem.

For the turbojet (no bypass), the majority of the noise origi-
nates from two sources. Towards the rear portion of the engine the
noise from the jet exhaust mixing with the atmosphere predominates.
The second source of noise is primarily from the compressor. which
radiates in a broad angle towards the front qf the engine. We will
next discuss these two sources of noise and describe some of the re-
lated work.

The largest contribution to the understanding of the jet mixing
noise came with Lighthi11'55 work on the aerodynamic generation of
sound. He found that the acoustic power output of a subsonic mixing
region was proportional to the eighth power of the relative velocities.
The validity of this result has been verified experimentally. Ger-
rar(‘l6 used a one-inéh diameter air pipe with Mach numbers at the
exit ranging from 0.3 to 1.0. In addition to verifying the eighth pow-
er variation, he showed that the frequency content of the noise was

essentially uniform, implying a random noise source.
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‘Simiklar experiments were performed by L.ush7 in which the
directivity c.)f the noise emission was measufed and was seen to com-
iJare well with a theory based on Lighthill's work. For the high jet
velocities, Lush foux;d a weak peak in the intensity at an angle of
about 30° to the jet axis.

The effect of nozzle shape was shown to be small (up to sonic
jet velocities) by Calla.ghanS. Cole::e;9 compared noise generated by
air jets and turbojet engines by making a sound survey in a horizontal
plane up to 120‘0 from the jet exit. The engine produced a more pro-
nounced peak in sound pressure level at angles between 30° and 40°
from the jet exit. The sound power for both the air jet and the engine
compared well with Lighthill's theory for jet velocities up to slightly
supersonic. The conclusion was that the principal noise-producing
mechanism in the turbojet engine (in the rear portion) was the jet
mixing.

For flows above sonic velocity the general observation is a
distinct increase in sound output with increasing jet velocity, and is
attributed to the formation of shock waves. To verify this, Callaghan8
compared a convergent nozzle with a convergent-divergent plug nozzle
designed for shock-free flow at given design pressure ratio . As-
the pressure ratio was increased from a low subsonic flow, both
nozzles gave similar sound power output, which was proportional to
the eighth power of the jet velocity, until choking was reached. Be-
yond this point, both nozzles gave more sound power than would be
expected from the eight-power variation, and behaved similarly until

the plug nozzle approached the design pressure ratio. At this point
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thé plug nozzle emitted about one third the sound power of the con-
vergent nozzle (for the same exit velocity) but about twice that pre-
dicted by the eighth-power variation.

In a study specifically on supersohic nozzles Louis, et al. h
also found that the presence of shock waves in the jet was an impor-
tant factor in the noise emitted from the jet. An additional source of
noise was found to be Mach waves apparently emitted from the shear
layer near the nozzle exit, Taxn11 considers shear layer instability
to be the source of these waves. Ribnerlz models the shear layer as
va layer of eddies convecting at some velocity intermediate to the jet
and ambient velocity which give rise to the Mach waves by causing
pressure perturbations é.long the shear layer.

It is interesting to note that the pressure fluctuations emitted
from a jet engine can cause problems not usually associated with
noise. Howes and Mu.ll13 measured pressure fluctuations in the near
field of an exhaust of a turbojet engine with thrust of about 10, 000
pounds and exit velocity of 1900 feet per second. Typical values
were judged large enough (160 db) to cause structural damage to
nearby surfaces.

The compressor noise spectrum is composed of two distinct
parts. The first part is a broad-band white noise and may be attrib-

uted14’ 15

to the random shedding of vorticity at the trailing edge of
the compressor blades and to random fluctuations in the turbulent
flow approaching the blades. The second part is discrete frequency

components corresponding to blade passage frequency and harmonics.

This is caused by periodic disturbances in a blade flow field as it
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A passes through the wake of an upstream blade.

5,16

Both components are usually seenl to vary as the sixth
power of the relative flow velocity over the blade. This corresponds
to noise radiation from a fluctuating force (dipole) field imposed on
the gas by solid boundaries.

| Sharland17 has shown, using experiments with a flat plate im-
mersed in an air jet, that upstream turbulence can produce much
larger sound intensities than random vortex shedding. The air jet
velocities covered a range of velocities from 200 to 700 feet per sec-
ond. The vortex shedding noise was studied by placing the plate in
the potential core of the jet. By moving the plate into the mixing re-
gion of the jet, the flow over the plate became more turbulent. For
the same values of flow velocity at the center of the plate the radi-
ated noise (on a line 90° to jet axis and about 30 jet diameters away)
was seen to increase 15 db for the turbulent flow.

Thus, the main source of compressor noise is upstream tur-
bulence giving broad band noise and wake/blade interactions giving
discrete frequency noise. Typical sound pressure level speci:raléj:ﬂl7
show the discrete components protruding about 15 db above the broad
baﬁd noise.

The relative importance of the compressor and jet noise de-
pends strongly upon the operating condition of the engine. During
high thrust operation, such as takeoff, the jet noise dominates and
may actually "'spill over' to the front portion of the engine and mask

out the compressor noise. This is to be expected from the strong

dependence of the jet noise p_ower on the jet velocity (high thrust
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corresponds to high jet velocity). In low thrust situations, such as
landing, the jet noise is likely to become small compared to compres-
sor noise. The turbine noise, which is usually masked out by the jet
noise, may become more evident in the rear of the engine under these
circumstances.

One of the earlier noise suppression techniques was the multi-
tube exhaust nozzle. Keeping inmind the eighth-power variation again,
these devices were intended to reduce the total shear of the jet as it
enters the atmosphere, effectively reducing the jet velocity and hence
the noise power output. Additionally, interference between the noise
field of each tube tended to reduce some of the strong directional char-
acteristics associated with jet noise.

As is easily imagined, such devices also cause a loss of per-
formance of the engine. The bypass engine gives the same thrust
from a higher mass flow, but lower jet velocity. Hence, jet noise is
reduced, but additionally, specific fuel consumption is decreased.

The penalty paid is that fan noise increases with increasing bypass
ratios because increasing fan tip speed is usually the method for in-
creasing bypass ratio. Also, the flow which is bypassed around the
engine convects fan noise into the rear of the engine.

The trend towards higher bypass ratio has reduced significant-
ly the jet mixing noise and has focussed most attention to compressor
and fan noise. Some of the techniques considered’® for compressor
and fan noise reduction (principally the discrete component noise)
include using resonators and acoustical lining in the fan inlet and

exit ducts, choking the engine inlet and adjusting the number and



axial spacing of fan blades.

The method which is most economically feasible for existing
engines is the acoustical lining of fan inlet and exit ducts. Mangia-
rottyl9 gives the results of such treatments in an actual engine.

For landing approach conditions for a Boeing 707 powered by a Pratt
‘and Whitney JT3D engine, a reduction of 16 PNdb was achieved. We
should note that the sound pressure level of the first harmonic of the
discrete fan noise was reduced by 25 db. This is significant because
the discrete tones, especially those of the first harmonic, occur in a
frequency band (~ 3k Hz) to which our hearing is most sensitive and

hence are most irritating.

1 indicate that for low

s

Measurements on actual enginesz
primary jet velocities (< 1000 feet per second) more sound power (in
low-frequency bands) is emitted than would be predicted by an eighth-
power variation with velocity. The experiments were designed to
minimize the influence of rearward-propagated fan noise. The in-
creased noise is usually called excess or core noise since it must
come from the core of the engine upstream of the nozzle exit. With
the trend toward lower jet velocities this core noise is expected to
control the lower limit of sound power generated by turbojet engines.
The low-frequency noise is difficult to treat with techniques such as
resonators or acoustical lining since the long wavelengths would re-
quire physically large treatments. Hence, an understanding of the
source of core noise will be a necessity.

The core noise has been attributed to a wide variety of

sources such as combustion, flow incidence upon supporting struc-



i
tures in the engine, turbulent flow in the turbine and nozzle, and oth-
ers. With the majority of the recent work being done on fan/com-
pressor noise, Vlvery little has been done to determine the relative
importance of these sources. Itis generaliy agreed, however, that
the role of combustion in producing core noise is a major one.

It is clear that neither the flow through the combustor nor the
combustion process will be steady. Even with no combustion the
presence of the combustor in the flow will create turbulence which
will reach the turbine. This situation is somewhat similar to the ef-
fect of upstream turbulence on compressor blades discussed previ-
ously. The level of turbulence will probably increase significantly
when combustion occurs, but two additional effects will be seen. The
(unsteady) process of adding heat to the flow causes acoustic (isen-
tropic) disturbances and entropy disturbances to be generated. The
acoustic disturbances represent noise in themselves in that a micro-
phone situated downstream of the combustor could detect their pres-
ence. The entropy disturbances are unique in that they do not, in
themselves, represent noise. They represent '""hot spots'’ or the tem-
perature disturbances which are not associated with the isentropic
acoustic disturbances. The convection of these entropy disturbances
through mean velocity gradients (such as in turbine flow passages and
the primary exhaust nozzle) produces isentropic acoustic waves which
are perceivable as noise (see Chapter II).

This thesis will be concerned with the acoustic and entropy
disturbance aspect of core engine noise. The acoustic disturbances

will be modified in the flow passages, and the noise from the entropy
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disturbance relies wholly upon mean velocity gradients in such pas-
sages. Hence, the emphasis will be on the interaction of these dis-
turbances with such flow fields as may be found downstream of the
combustor.

In Chapter II we develop an analytical model for the interaction
of one-dimensional pressure and entropy; waves with a one-dimension-
al subsonic flow with strong mean gradients. This model will be used
to explain and to complement the results for the experiments pre-
sented in Chapter IV. The analysis will be extended in such a way
that results for a wide range of parameters may be presented con-
cisely. In Chapter III we present an analytical investigation of some
of the two-dimensional effects neglected by the analysis in Chapter IIL.
In Chapter V we present some experimental results performed with

two-dimensional entropy disturbances.
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II. THE INTERACTION OF ACOUSTIC WAVES AND
ENTROPY WAVES WITH A SUBSONIC NOZZLE --
THE ONE-DIMENSIONAL MODEL

2.1 Introduction

In this chapter we investigate the effect of acoustic waves and
entropy waves propagating through a nozzle with a subsonic meaﬁ
flow. The problem of pressure disturbances in ducts with mean flow
and area change has been studied by many, ref. 1-5 for example, but
the effects caused by entropy disturbances have not been as widely
studied.

Ca.mdel6 splved the problem of acoustic and entropy waves con-
vected into a choked nozzle. He used a formulation which was origi-
nally developed by 'I‘sien? to study the oscillations in a rocket engine.
This formulation is the basis of the model developed in this chapter.
Auerbach8 and Zukoskig showed the validity of the Candel model ex-
perimentally. The (choked) mean flow in a rectangular (cross-section)
blowdown tunnel was perturbed with entropy waves. The entropy
waves were created by electrically pulsing a resistance heater located
upstream of the nozzle, and then, using a periodic mass bleed system
(also upstream of the nozzle), the pressure wave component of the dis-
turbance was cancelled. The production of acoustic waves by the en-
tropy disturbance was then verified by the detection of pressure dis-
turbances throughout the nozzle.

The solution for low-frequency disturbances was investigated
by Ma.rblelo. For disturbances with wavelengths which are long com-

pared to the nozzle length, the resulting solution will give disturb-
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ances with cdnstant phase throughout the nozzle., This solution is
called the compé.ct or quasi-steady solution, and may be solved by
considering only matching conditions at the nozzle inlet and exit. The
details of the mean flow in the nozzle may be neglected.

Cumpsty and Marblell have investigated the interaction of
p.fessure and entropy disturbances with one or more turbine blade
rows. Large deflections and accelerations iﬁ the mean flow were
considered; however, the disturbances were assumed to be quasi-
steady so that precise details of the mean flow in the blade passages
could be neglected.

Our aim here is to examine these effects of mean flow varia-
tions that occur in the flow through such blade passages and, equiva-
lently, exhaust nozzles. We consider only one-dimensional, sub-
sonic flow with small disturbances. In the choked nozzle, the throat
essentially decouples the supersonic portion from the rest of the
nozzle. Two independent solutions result. The first solution repre-
sents the effects of an entropy wave convected into the nozzle, when
no acoustic wave is incident upon the nozzle entrance. The second
solution represents the results of an acoustic wave incident upon the
nozzle entrance when no entropy wave convects into the nozzle.

In the subsonic nozzle, every portion of the nozzle can com-
municate with every other portion. The result is that we must admit
a third independent solution which represents the effects of an acous-
tic wave propagating upstream and impinging upon the nozzle exit.

In the following sections we develop the equations which will

serve as the analytical model. Next, we discuss a method of nu-
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merical solution. The emphasis here will be on choosing the appro-
priate boundary conditions to give the three independent solutions.
The solution for high-frequency disturbances is then discussed. The
results of this solution are then used to normalize some numerical
calcﬁlatiOns so that a concise presentation of the results may be
made. Finally, the results are discussed and several examples of

the use of these results are presented. (See Appendix G for notation. )

2.2 Development of the Analytical Model

We are given a duct of constant cross-sectional area with a
mean flow of Mach number I\/L1 . The cross-sectional area then
changes in such a way that after an axial distance /4, the Mach num-
ber is M, . The flow then continues through a constant cross-section-
al area duct. If we let the cross-sectional area (of the axial region

in which the mean flow is changing) be called A(x), we have the fol-

lowing diagram describing the duct.

e

—— M=z=M, l} M:Mz

X=0 x=4

Diagram for the Analytical Model

We assume that the gas flowing in the duct is ideal and inviscid, and

that the mean flow is isentropic and wholly subsonic. We will neglect
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two-dimensional effects, and simply use the area variations to give
mean flow variations. These assumptions allow us to describe the
flow with the quati‘ons of momentum, continuity, entropy conserva-

tion, and the equation of state as follows:

ou du 1 oP _

ot T43x Trax = © 21}
oL 1 dpuA)

)t + A dx = D (2.2)
95 -i—ung)-‘-S* = (2.3)

5 = Cv,@n(%) (2. 4)

We will linearize these equations by assuming that a solution
exists which is the sum of a known function of axial position only, plus
a small periodic function which also varies with axial position. For

example, the velocity will be expressed as

WX, t) = ) + U'ex) e'“”?f

where QJ is the radial frequency. The primed quantity is, in gener-
al, complex, but we let
i —
U << a
We assume a similar form for the remaining dependent quantities in

(2.1) - (2.4) and define the following dimensionless quantities:

’ v

Z,(%x) = % 2Z,(%) = 5% zj(x)g gp (2.52a)
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i B a - wt
U = = = M =% 8 = s (2. 5b)
where M =Mi) = mean local Mach number
- Cr
g Cv
Q. = local mean sound speed
a* = speed of sound at a throat (if mean flow were

isentropically choked)

Note that the reduced frequency (3 relates the wavelength of the

disturbance to the nozzle length. For a disturbance with wavelength

approximately one nozzle length, the reduced frequency is about 6.

We normalize the axial distance by nozzle length { After

inserting the assumed form of the solution, we retain only terms

linear in the perturbation quantities. This process leads to:

j—f‘g . —Li]é Z3 (2.6)
T r
and

dz, _ —ip(M*Z, - Zz)‘f‘Msz(ZZ ~(¥-D2Z,-Z,) _ (2. 8)
dx U(1-M?)

= O , the entropy

We note that for a constant area channel,d =

component Zg3 does not contribute to the interaction, and thus we

may write down the well-known solution:
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Z,(x)= pta“X 4 pe'sr

(2.9)
I . | o ¢
z,(0)= (e - pecXt)/M
where C.,.J C- are the dimensionless wave numbers of the waves
propagating downstream and upstream, respectively:
o B gud o BOL (2. 10)
*= 0% um=1) -
Here, M\, U are to be evaluated in the constant-area section in

question and P* and P~ are the complex magnitudes of the wave
propagating downstream and upstream, respectively, in that constant-
area section.

If the pressure and velocity disturbances are specified at the
nozzle inlet, X=0 , and the nozzle exit, X=/| , it is clear
that we can calculate the complex magnitude of the waves entering and
leaving the nozzle. Using subscripts 1 and 2 to denote conditions up-
stream or downstream of the nozzle, respectively, we see from (2. 9)
that:

P* =4 [2.00) +M Z.(o)|
(2. 11)
Pl =3 [z ——/\’],Z,(o):)

for the waves propagating in the upstream constant-area duct, and

pY= 4~ i [Za()+ M2, (1)

1l

(2.12)

N [2.()=M:2,00]

Y
I
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for the waves propagating in the downstream constant-area duct.

Consider for a moment that the upstream constant-area duct
extends to minus infinity and the downstream constant-area duct ex-
tends to plus infinity in the axial dimension. A disturbance upstream
(or downstream) of the nozzle will propagate to the nozzle and interact
with it. The interaction will cause a pressure wave [, (or Pa+ ) to
be created, which will propagate upstream (or downstream) from the
nozzle to infinity. Also, a wave P; (or P, ) will be created which
will propagate downstream (or upstream) from the nozzle to infinity.
Since an entropy wave convects with the mean flow, it cannot disturb
the nozzle if created downstream of it. Hence, we have just described
the three independent disturbances to which the nozzle can be subjected.
These are: an entropy wave convecting into the nozzle from upstream,
a pressure wave propagating into the nozzle from upstream, or from
downstream. In a practical situation, the downstream constant-area
duct may be terminated. Some impedance condition will exist there
such that a F’z1L wave reflects from the termination and creates a P_g~
wave. This point is discussed further in an example at the end of this
chaéter. We consider the three effects to be independent; since the
problem is linear, the independent solutions will allow any general so-
lution to be constructed.

In the diécus sions which follow we will call the first independ-
ent solution (in which the entropy wave is convecting into the nozzle)
the "entropy solution' and will use a subscript '""e " to signify it. The
solution corresponding to a pressure disturbance upstream of the noz-

zle will be called the "'plus solution'' and will be signified by a '"p "



w18z
subscript. The solution corresponding to the pressure disturbance

downstream of the nozzle will be called the '"minus solution' and will

be denoted by the subscript '"m '". The following summarizes the
notation:
Disturbance Name/Subscript Result
= 5 .
=+ X0 entropy/ e Zie(X), Zze (X)), Z3e (X)), Prejpzta
= 1us/ - +
P p P Zip (X)/ ZZP(X), ) P,,ajpzp
" E = +
= minus /M Zim (x), Zzm (X)), , Pim ,Pem

2.3 Numerical Solution

Given M(x) and the reduced frequency 8 , we would like
to solve the system of equations (2. 6) - (2. 8) for each of the three in-
dependent solutions. The '"plus'' and '"minus'' solutions have no entro-
py disturbance; hence, the system reduces to a pair of homogeneous,
linear, simultaneous differential equations. We need only to specify
the boundary conditions, and use a suitable numerical technique to in-
tegrate (2.7) and (2. 8). The entropy solution requires that Z,(x);.—éo :
We must specify 0 (the entropy disturbance at the inlet), but we see
that having done so, (2.6) may be integrated immediately. We are
left with a pair of inhomogeneous, linear, simultaneous differential
equations. The inhomogeneous term is simply Z,(X) . We now
discuss the boundary conditions, used in the numerical integration,
for each solution.

For the plus solution, we begin the integration at the exit such

that Pep=0 . For example,



B
MzZip (N = | Zop(1) = | Z,(X) = O

We integrate to the inlet, Xx= 0O , where we may calculate

b= 3 [2p @)+ M Z0(0)]
Pl; & %[Zap (O)”'M.E,P(O)]

Pz: —= é e—{CZ‘F[ZzP(’) +MZZ:p(')J

+
We will normalize the solution with Pl

, i.e.,
P2$ S— 1 = s 1"
— ="T, transmitted wave, plus solution
Pre
(2.13)
E’.‘E = Ra ""reflected wave, plus solution''
B
: -
For the minus solution, we ensure that Pm=0. Let
M Zim(0)=-1 Zawlo) = 1 Zoa(X)a= O
and we integrate to the exit, where
+ __ -(C
P =23 & [Zem(N+M2Z,,.(1)]
= | "-('Cz-
Pm=7z€ = |[Zem(?-M2Zm (1)
~ !
P.'m — Z [ZZM(OJ"M:ZIMCOJ_]
Now define
FPim — Tm ""transmitted wave, minus solution"
Pzm
(2. 14)
+
Pzm

Rm

I

— "reflected wave, minus solution"
Pam
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For the’entr0py solution, we begin the integration at the inlet

with )
Z e {el=1g Zze(0) =0 Zze(0)=0a

,
This ensures that FPie=0 , but upon reaching the exit we can see that
G ~(Ca-
Pze -_ZLe - [Eze(’)"MZZIQC")J # O

in general. This is easily corrected by simply subtracting from this

entropy solution '"enough' of the previously calculated minus solution

(a2 homogeneous sol_ution) to cancel the Pz_e . Let
" B
Ele (X) = Z:e(x)'-—z.m(X) F'S:"
2m
and
- P-
Zro(X) = Zoe(X)— Z zm(x) —=
Pa2m

Now we will have

/E.'é i’[%ze(o)"'mrgfe (0)] = O

}525 =a é—e—(CZ‘[é—ze('}“Mzzfc(’) = O

Now define

“*[CZ—# pe s
as the "transmitted wave - entropy solution' and
I [ 2
Re = 55 [ Z20(0) ~MZ ¢ (0) ] (2. 15b)
as the '"reflected wave - entropy solution.'" The actual numerical

'scheme used in solving these equations was a fourth-order Runge-
Kutta method with automatic error control.
Now, any general solution may be calculated from these nor-

malized solutions. For example, if we specify the disturbances P,
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P, , and 0 , then the resultant waves will be

Br= PrRs+ BE T + 0 Re

+ - +~ (2- 16)
Pz pam paRm+ P/ Tp+G‘Te

We would like to investigate the behavior of the six solutions for vari-
ous Mach number distributions and reduced frequencies. The only
restriction on the Mach number distribution is that it be wholly sub-
sonic. We will be interested here in Mach number distributions one
might find in the passage through turbine blades or in an unchoked ex-
haust nozzle. The numerical solution only requires that a mean
Mach number distribution and reduced frequency be specified; then
the independent solutions may be calculated. Even if we restrict the
calculations to physically interesting cases, it is clear that some
systematic way of presenting the results must be employed. In
order to present a large number of results in a concise manner, the
calculations have been normalized by using the compact solution as
discussed previously and the solution for high-frequency disturbances.
In the following section we consider first the high-frequency solution

and then discuss the normalization procedure.

2.4 High-Frequency Asymptotic Solution and Normalization

We will assume a linear mean velocity profile for this asymp-
totic analysis (and for the remainder of this chapter). This allows
us to integrate eq. (2. 6) immediately, and is a reasonable approxima-
tion to the profile one might find in a physical application.

We move the inlet of the nozzle from the origin of our coordi-

‘nate system so that we may write for the dimensionless axial
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distance

X = g_.* Xi£X%Xe
In all the discussions that follow we use the length scale {a"/(.'.?z~ﬁ,)

for normalization purposes. The reduced frequency is now

_w da”

a* U,-d,

which relates the wavelength of the disturbance to the mean dimen-
sionless velocity gradient. In addition, the dimensionless wave num-

bers involve this new length scale:

T TUza U0, T M21)
Now define
+/ 2
M 2
= XZ = % = Xi =X
3 |+ Gim? o e =
Equation (2. 6) becomes
dz — (B d3
Z5 2 3
which gives .‘2‘2
3 -
2,00 = Z5:( %) Zy = 7(30)

We will specify Zj

The two simultaneous, linear, inhomogeneous, first-order
equations for pressure and velocity perturbation may be combined to
give one second-order, linear equation for the pressure perturbation.
To distinguish the high-frequency solution from the numerical analy-

sis, we will use



PI
(3= —=

3) - )
Then we find:
PE

d°P
3‘("“‘3)5?

We may get the velocity from

%
(a~vz)u=j"§ (r+IX3-1)+ PC-1=77) + ;_(.g_)

_2_({— 7 )g_i? _,_1? ‘f':,'ﬂ

L

i/
~20rt)

=
I
™

zﬁ( - )

m
2

(2.17)

(2.18)

The equation (2. 17) is a hypergeometric equation with no singularities

in our region of interest:

04365;5;‘34/

For the inhomogeneous solution, we try

P(3) = Acg)| %;)%

where P(g) is an expansion in inverse powers of % :

P(3) ._Z P37

By isolating powers of ’)2 , we get equations in Prz (3)

This yields eventually
P(3)= éz_ﬁmz[%)% + (7

tHg) = @/(‘é‘a)

Upon calculating

pr—d [p(3(-)+m.u(§e)] = = &gt "%‘z + a(;z’—z)

(Cz (Xe

- _é ’ [P(ge)~Mz U(Z\PZ‘ :_é_enc'czu(xe-xa)zﬁ %?2—(;—?)7/2

(2,19)

(2.20)
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we realize that we have a situation similar to the numerical entropy
solution. We must use the homogeneous solution to eliminate the inci-
dent waves if we are to find the three solutions independently.

To solve the homogeneous equation:

: 2
3(’*3)%2—2(/~%)2<%3+§24P:0 (2.21)

We try an expansion of the form

~n
P(3)~ expi ) Ka(3)7 } (2.22)
n=0
We will have two independent solutions, so we let

P(3) = Aexp[Km@)"? *Kin(3) +} +B€7cp{f<o-(;)?z+ﬁ<f-(3) +} (2.23)

where A and B are constants to be determined from boundary con-
ditions; hence, we may let

Kne(3i)=0 n=g,1,
The procedure for finding Kn_,A,B is straightforward. Substituting
of (2.23) into (2.21) and isolating powers of 7 we get differential

equations for Kn [5) of the form

dK =
"—*‘—’fn(;,Kmr(i)) n=g,l,
d3
where fn is a known function, and K- is a constant. In order to

solve for the Kn(g) we expand )[,, (j) Kot (j)) in a power series
about the origin: 3 =0 . If we calculate Ko(3) and K, (j.) we will
have the magnitude to @’(-7"2) and the phase to O((%‘] . This power

series solution gives

Ka:(é):??lT'a" /i:f;% * Z.(3) (2.24)
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(2:25)

(2.26)

(2:27)
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To find A , B we use the same procedure as we used in

the numerical solution. For the plus solution we specify that
P(3:)+MU(3)=2P' # 0O
P(3e)-MoU(Je) = 0

Inserting (2.23) into these relations we can solve for A 5 B in

terms of Z(3e) and Zo(3e) which we will call Zie and Zoe for

short;

Loe= Zo(ge) Le = £ (Je)

In solving for A , B we retain only terms to d(?f‘) .

For the minus solution we specify

P(3)+M UGB =0
P(3e)-MoU(3e) =2P; @ =X o,

The calculation of A , B for both solutions now allows us to

calculate Tp JTrﬁ )Rp) R Since this is the high-frequency solu-

tion, we use the subscript:

nm =Te |s+a>
Tmm ET’" |B*C°
RP(D = RP|Q-M:3

Rl g

1l

Rmm

where Tp,Tm,Ra,Rm are defined in (2.13), (2.14). We find

nmzexp[~z'lxn ’,:n,\z: Y Z;e)z (2.28)

@7_/3[:(6 i1 I £ ‘;c Zoe™ %(XG'X‘)}] +3(é‘)
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Tnw =EXPFdn Gt 228 Y }

cxr[ 0t zur g e+l

We mentioned previously that the compact solutions discussed by
Marblezzl0 would be used to help us find a concise representation of

the results. We list these solutions here for convenience,

2M;  1+M, |+ M2
Tro

= [¥M, MR, I~ M, (2.30)
- 2
2M 1=Mg 1+ 5EM,
Tmo =
L M +Mp  [-M, [+,!2;’M.Mz (2.31)
= = —MM
RPO — MZ Ml ’+Ml { : 2 (2. 32)
[~M, M2+M| l+%M.M2
Rmo _ Ma-M, Mz'( ‘—%M'MZ o
[+Mz M+M, /+12'_er/\/\2 ‘
Teo = MaM, MZ/Z, , (2.34)
I+Mz |+ 5Imm,
Y Ma Z
ar / (2. 35}

REO = /

where the additional subscript (o) refers to the compact ( B=0 )so-

lution.
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We define

+ N
A %(Xe‘Xt):M:?ZI l "(‘%‘Jé]
This is simply the phase shift in a downstream (+) or upstream (-)
propagating wave caused by using X=X{ as the reference from which
all phase anpgles are measured.
Examining (2.28) and (2. 29) in the light of (2. 30) and (2. 31),
we find that

:(T_"")yzew( 2

mo

| Too

{(2.36)

o] {Zexe( 22

=] 2 © (24 37)
AF%T"‘“’ = 17 In ;_ij + Zoet AD.
These are functions only of inlet and exit Mach number. For con-
venience these have been plotted in Figures 2-1 and 2-2 for a wide
range of inlet and exit Mach numbers. Note that using eq. (2.36) and
Figure 2-2 we may easily calculate Z_oe or Ziwe .

Normalizing the magnitude of the transmitted waves by their

compact value we see that

lTPcol _— exXP(-Ze) ITmco,

T;O (7_#!0 Tpo)'/z Trmo
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which tells us that if we normalize our transmitted waves (for any
frequency B )by the compact solution, the magnitude tends to the
same value (as - ®@ ) whether the transmitted wave was created by
x Pr distufbanée or a P2 disturbance. Since this is obviously
true for =0 , we might expect it for all frequencies. All numeri-
cal calculations performed verified this was the case. In addition, it
was found that the phase, for any frequency, could be calculated with

very good accuracy from the high-frequency solution. That is,

Arng’:-B{'ﬁm

I-3e
] =30 +Zae"‘A¢+}

— ~ I-3e
Arﬂ Tm~6 mjfn "_—jl' +ZOQ+A¢-}

The numerical calculations showed that the errors were small and
were equal for plus or minus solutions. Hence, the asymptotic solu-
tion tells .us that normalization with the compact solution will allow
the two isentropic transmitted waves to be considered the same func-
tion of B .

We now consider the reflected waves for plus and minus solu-
tion. It is well known that the reflected waves will be inversely pro-
portional to the frequency, for high frequency, but we can extract
some useful information by calculating the (9’(@") terms. Following

the usual procedure to find the A and B  ineq. (2.23), we get:

ZL B RPoo =
(2.38)

ZM; 2 [+My 2

2 2|Z e~LBZoe _ ¥zla? '
(- g o 2 o)
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2(BRme = (- M)[(“ HwE) e 2Z e et'(i[chJ--AcM

2 ¥-1 2 ; 2 ¢
(1-M;) M, -5 M 27 24 P Z v g (2.39)
( . M?l-z L - C’ +®{5 )

£
(l“'M:)Z Mz |- B%I

It is instructive to imagine the functions in braces plotted in the phase
plane as B-=co . We see that if the terms inside the braces in eq.
(2.38) or (2.39) are the same order of magnitude, the high-frequency
solutions will be very sensitive to M. . Mz , and normalization will
not be possible. However, under the conditions

M, 0 M |

the first terms inside the braces in (2. 38) and (2. 39) are negligible.

In this case,
o (HM.)Z T
Roco| = 2B 2M, (1- E m:) (2. 40)
AY‘%RPOO=%
[ 1=MZ =M 3|
'R"‘wlzz'é' 2 M, |+M:( 7 ) {2, 41)

Arfj Rmao= g + 3 [A Ci)- "Ad)+ +2209]

Using (2.32) and (2. 33) with the above restrictions on the Mach num-

ber we can show

Rmeo
Rmo

- Rpes
Rpeo
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Then we might expect that normalization of the magnitude of the re-
flected waves by the compact solution would be advantageous just as
in the case of- the transmitted waves. Numerical calculations veri-
fied that the reflected waves, when normalized by the compact solu-
tion, respond to frequency in the same manner whether created by
Pi+ disturbance or Pz- disturbance. This was true even when the

restrictions on the Mach number were not strictly met.

Using the results for the phase of the reflected waves, we
plot Af‘a Rs directly, and we normalize A\v"j Rm by plotting

Arg Rm = B[AG.~AQ+2Z0]
We expect both of the functions to tend toward TF/Z for high fre-
quency.

Finally, we consider the entropy solution. Using the inhomo-
geneous solution (2. 19), we saw that it included some extraneous
pressure waves, eq. (2.20). We may now use (2.36), (2.37) to re-
move these solutions and produce the independent entropy solution for

high frequency to @'(é—) . The results are
2(BTen= e“‘m\d)“{/\f\zZ exp[%@—ﬁm %—f]

-Mfexp[(ﬁ( Il z..)-4 %{M" ) ’GJ +0F) @)

M, -3

and

Z(BREmz

~3 M, -3
M2 @ exp[”w" Qe}exp[(ﬁ(wﬂmpf Zoe)+2 Mz:—'ﬁ—Z’GJ (2. 43)

+O(#)
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If we use the same assumptions on M, 5 M,  as we used when dis-

cussing the isentropic reflected waves, it is possible to show that

T, — | _-iBAD. .. (B 3e 2.44)
€ 2ip E M; GXPT%’L:‘,‘—‘ | (
Note that this solution is not related to the compact solution, Teo
Since this solution tends to zero for high frequency, we will

normalize the magnitude of Te by its compact solution. In addi-

tion, we might expect

~(Arg Te + 800 - £-4m 55} i
We will plot this function as the normalized phase. For the same re-
strictions on M, . and Mz itis possible to show that the two terms
in (2. 43) are of comparable magnitude. Hence, Rem will be very
sensitive to M, and Mz and normalization of the phase will not be

possible. To be consistent, we will normalize the magnitude of

by the compact value, Reo

2.5 Numerical Results

The numericval calculations were normalized using the previ-
ously discussed methods. These are presented in Figures 2-3
through 2-9. The inlet Mach numbers 0.2, 0.3, and 0.4 with exit
Mach number 0.9 were chosen to represent the flow in an exhaust
nozzle. The inlet Mach numbers 0.5 and 0. 6 with exit Mach number
0.9 were chosen to represent the flow through turbine blades. The
remaining case M. = 0.3, and Mz = 0.4, was chosen to show the
effect of large M, and small M, on the normalization. In all the

plots, it is clear that this last case does not normalize with the
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other cases,
The magnitude of the transmitted wave (plus and minus solu-
tion) is piotted in Figure 2-3. These functions do not tend to zero for
high frequency. The asymptotic values, which may be taken from

Figures 2-1 and 2-2, are also used in the normalization. We have

plotted
ark
|G/ Talm ]
where we recall that To is the compact solution and Te is the

high-frequency solution. Normalizing in this manner, however,
causes the differences (for a given frequency) in results for eachMach
number to be greatly exaggerated. We could use one curve to repre-
sent these results with very good accuracy. The insensitivity to Mach
numbers is to be expected, since the asymptotic solution is so closely
related to the compact solution, and since both values were used to
normalize the numerical results. From the plot we see that for re-
duced frequencies above 5, the results are within 10 per cent of the
high-frequency limit. For reduced frequencies below one, the results
are within 10 per cent of the compact solution.

In Figure 2-4 we have the phase of the transmitted wave (plus
and minus solution). Recall that this value was closely related to the

high-frequency solution. We have plotted

Tm
—Ak‘a Tm "‘(-”(rjm :_gf + Zoe "A(Df} - —Ab’g Tm % GI:’A_V%—

[B+c0

and

g o ] = g

B+
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We may U-.SG Figures 2-1, 2-2, and 2-4 to calculate AF‘? T . Doing
so, we see that the corrections given by Figure 2-4 are small com-
pared to the actual values, Arg T ', and could be neglected. To good
accuracy, then, we could simply use the high-frequency solution for
all values of reduced frequency. By definition, the asymptotic solu-
tion must predict that the phase will be proportional to the frequency.
This graph tell us that the constant of proportionality
Arg T

(3 By
holds quite accurately for all frequencies. The constant of propor-

tionality may be taken from Figures 2-1 and 2-2.

In Figure 2-5 we have the magnitude of the reflected waves
(plus and minus solution) plotted. We see that the normalization is
somewhat less satisfactory. Recall that we restricted the exit Mach
number to a value close to unity and the entrance Mach number to
small values. This graph verifies that as the inlet Mach number in-
creases, the normalization becomes less effective. We could, with
reasonably good accuracy, represent these data with one curve.

The phase of the reflected wave, plus solution, is plotted di-
rectly in Figure 2-6. The phase of the reflected waves, minus solu-
tion, was normalized. We have plotted

Arqg Re
and

Arg Ron - B[2Ze +09-~A0.]

Both of these functions tend to 90°, as expected, and the same diffi-

culties occur for large entrance Mach numbers as occurred in the



-36-
magnitude (Figure 2-5). We could represent these data with one
curve for the plus solution andone curve for the minus solution quite
accurately. Considering Figures 2-5 and 2-6, we essentially have
the compact solutions for reduced frequency below 1/2, and the high-
frequency solution for reduced frequency above 10. The normaliza-
tion factor used when plotting Artj R may easily be calculated using
eq. (2.36) and Figure 2-2.

In Figures 2-7 and 2-8 we have the magnitude and phase, re-
spectively, of the transmitted wave, entropy solution. The normali-
zation ié clearly unsatisfactory, as could be expected from eq. (2. 44).
The high-frequenéy solution is not related to the compact solution,
even with the restrictions we made on M and Mz. . It is clear,
however, that the compact solution may be used quite satisfactorily
for reduced frequencies below one.

The magnitude of the reflected wave, entropy solution, is plot-
ted in Figure 2-9. The normalization is equally ineffective in this
case. The high-frequency value (zero) is effectively attained for re-
duced frequency greater than 10.

The reéults given in Figures 2-3 through 2-9 were intended
primarily to represent inlet and exit Mach numbers characteristic of
turbine blade rows and exhaust nozzles. For other applications the
exit Mach number might be lower. Calculations were performed for
exit Mach numbers 0.8 and 0.7 also. The normalization described
previously was used on these results and are given in Figures 2-10

through 2-23.
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Comparing Figures 2-3, 2-10, and 2-17 for the magnitude of
the isentropic transmitted waves, we see that the normalization be-
comes less effective as the exit Mach number becomes small. From
Figures 2-4, 2-11, and 2-19 it seems that the phase of the isentropic
transmitted wave is more accurately represented by the high-frequen-
cy solution as the nozzle exit Mach number decreases. However,
from Figures 2-1, 2-2 we see that the actual phase also decreases.

The normalization for the magnitude of the isentropic reflected
waves becomes less effective as exit Mach number decreases (see
Figurés 2-5, 2-14, and 2-19). The same is seen to be true for the
phase of these waves by comparing Figures 2-6, 2-15, and 2-20.

It is reasonable to expect that for exit Mach numbers approach-
ing unity the normalization will improve (although for values very
close to unity special care will be needed in the numerical integra-
tion). In conclusion then, it seems that while the normalization
scheme is limited, it appears to be quite useful for practical Mach

number nozzles.

2.6 Examples of the One-Dimensional Model

Example 1. We would like to use these solutions to solve a
practical problem and to see how the graphs are implemented. Sup-
pose we are given a nozzle which accelerates a flow from M. toM,
in a length X, . The flow continues through a constant-area duct
and after a length Xe-~X, is terminated with a known impedance Se

The impedance is defined as

— P &
j,_ w' Y

o
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Given that a Pr disturbance exists, and also that an entropy
wave T =5'/Cp is convected into the nozzle, we would like to be able
to calculate the resulting waves in the downstream duct (see accompa-

nying diagram).

Pl—_>

+
Fﬁ-——"

X=Xe
X=0 X=Xy €= Se

Consistent with our analysis, we use the length scale x,a’/(&z-ﬂ'.)im”

to make the problem dimensionless. We may write

z.(F) = P;e T B &

. . § &K,
Mz (5) = Pl - preit

where

F

Il

~ |x

— 51 = EE
=t £.=}

The impedance may be written as

Zo( %)
MZZ'(Ec)

e =
and from eq. (2. 16)
P, = P'Tep +Py R +T Te

By using ffe , we may eliminate :DZ_

P, =P, 3{9:: Sii(ferz-)
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&
and solve for Pp explicitly

P'Tp +aTe

Hy = )
i 2 Rm _E el re(czu C?-—)
Tu+l

It only remains that TP 3 Te 5 Rm be calculated. Let

M= 03 = 3:=0.106 Mz= 0.9 =D 3¢ =0.831

and suppose |

This gives

V% i
Acb_:/v\ﬂ;.‘p- g.;)} = 2EE
The compact solutions (2.30), (2.33), (2.34) give
Tpo = 1132
Rmo=~0.024
Teo = 0.135

Then Figure 2-2 gives

Tpmz [.265 M “f'A(,b.p.zZO.B .
& lowe
Figure 2-3 gives
L=
2 = o020 =P |TH=1160
T




Figure 2-4 gives

Figure 2-5
lg, =090 = |Rm|=o0.02]

o]

Figure 2-6 gives

Arg Rm = 142°+ B[z&u&da:&dﬂ

To get ZAye ~we need eq. (2.36) and Figure 2-2, which give

[ [-3e € =
00+ -203 > 7m0

Hence,

Arg Rm=-859" ." Rm=o0.021 [-86°
Figure 2-7 gives

=092 =D |T|=.124

=5
Teo
Figure 2-8 gives

-—Arq Te + gﬂﬂ %—? *BA¢+:7° = Arg Te= 35"

. Te = 0424 @"
which completes the solution.
As an example, suppose the nozzle continues to infinity (i.e.,
the end impedance is somehow matched). Let us perturb only the
entropy upstream of the nozzle. A typical static temperature fluctua-

tion one might find downstream of a turbojet burner is
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|T/T| = -05
Since there is no pressure disturbance, this gives
{
IS/CPI = .05
and our analysis gives an acoustic wave propagating downstream of

the contraction

| P/ ¥P| = (os5)124) =.0062
or

|P| = 150db re .ocoo2 dyne/cm?
if the mean pressure in the exit section is 1 atmosphere.

Example 2. b As a final example we would like to discuss a
rather unusual application of the quasi-steady analysis. g We con-
sider the inlet of a duct with a mean flow Mach number M < 1. Sup-
pose that somewhere downstream of the inlet we create an acoustic
disturbance, P~ Which will propagate upstream. The wave, upon
reaching the inlet, will reflect , and a wave RP- will be created

which will propagate downstream of the inlet. The quantity R is

F/////// P I
-p~

M—

h\\\\\\ N NN X

Reflection of an Acoustic Wave P~ at a Duct Inlet.

complex in general and is known as the reflection coefficient of the

inlet. The problem is to determine the value of R given the duct
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Mach number M\ | i.e., R(M)

We model the.inlet of the duct als a region of zero axial length
over which the mean flow is accelerated from rest ( M=0 ) to the duct
Mach number M . A disturbance of finite wave length will appear as
quasi-steady, and hence this region appears as a compact nozzle with
inlet Mach number zero and exit Mach number M . For a disturb-

ance downstream of this '"'nozzle'' equation (2. 33) reduces to

M-
Rmo= A
where the inlet reflection coefficient R = Rmo . Hence,
M-I
R(M) = (2. 46)
= M+

Some recent measurements by Ingard and Singhal1 of this reflection

coefficient R(M) were seen to be accurately represented by

Rl=95(i) .47

These experiments were performed in a duct 3/4'"" X 3/4" in cross
section for disturbances of frequency ~ 1 kHz and Mach number
from zero to 0.4. The following graph shows the magnitude of R
from eq. (2.46) (dashed line) and that from eq. (2.47) (solid line).
The similarity is obvious, but the experimental results (solid
line) are consistently low. This discrepancy is discussed in ref. 13
in terms of three-dimensional losses at the inlet (which our simple
model cannot consider) and in terms of some possible problems with
the methods used to measure the values of R (and M ) leading to
(2.47). It seems clear, however, that the reflection coefficient R is

most strongly influenced by the acceleration of mean flow from ambi-
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ent conditions to the duct Mach number M\  in the inlet region.

Acoustic Reflection Coefficient at a Duct Inlet Versus Duct Mach
Number. Solid Line Represents Eq. (2.47). Dashed Line Represents
Magnitude of Eq. (2. 46).
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Fig. 2-13
Phase of Reflected Waves

(Plus or Minus Solution)
Versus Reduced Frequency
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III. SECOND-ORDER DUCT ACOUSTICS

3.1 Introduction

‘In the previous chapter we found that a mean floww ith strong
gradients could interact with first-order pressure and entropy waves
and give resulting pressure waves of the same order. In that case
we wrote the governing equations (2.1) - (2. 4) by considering an
average of the flow variables over a cross section of the duct in the
same spirit as the equations of one-dimensional gas dynamics for
variable-area channel flow are derived. To consider the variation of
the flow variables across the duct we would need to calculate the full
two-dimensional solution. This calculation is difficult because the
two-dimensional disturbance and the resulting two-dimensional
waves are of the same order.

Much of the recent work et on such two-dimensional effects
has been qoncerned with the effect of a sheared mean flow on the duct
modes; area variations were not considered. Small area variations,
as well as mean velocity shear, mean temperature shear, and acous-
tical duct linings were considered simultaneously by Nayfeh and
Kaiser4.

If the variations in area of the duct are small (such that the
steady disturbance to the mean flow is small), then first-order peri-
odicv disturbances give resulting two-dimensional waves which may be
calculated by a second-order expansion. In general, we may consid-
er three kinds of disturbances: entropy waves, acoustic waves, and
vorticity waves. In this chapter we will seek the second-order solu-

tion which results from the interaction of a two-dimensional entropy
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wave and the small area variation.

The solution will be found in the following manner. The equa-
tions of motion (two-dimensional) are expanded to second order. The
zero-order solution is just the constant-area channel flow. The
first-order solution has a steady part which corresponds to the dis -
turbance to the steady channel flow imposed by the area contraction.
The non-steady portion of the. first-order solution corresponds to the
periodic disturbances due to the entropy wave.

Having solved for the first-order solutions, we may write the
second-order equations with inhomogeneous terms involving products
of first-order terms. We will retain only the periodic inhomogeneous
terms of interest, i.e., those involving the interaction of the entropy
disturbance and the steady flow disturbance caused by the wall de-
flection. We solve for an inhomogeneous solution with homogeneous
boundary conditions (no wall deflection) via the Green's function
method. A homogeneous solution satisfying the boundary condition
(wall deflection) expanded to second order is found via the Fourier
transform method. The final solution is expressed in terms of com-
plex amplitudes of propagating duct modes (the waves which propagate
far upstream and far downstream of the contraction). |

We will express the solution in terms of a general entropy
wave disturbance and show how this leads to some simplifications of
the calculations of the acoustic mode amplitudes. Some general ob-
servations will be made about the behavior of the duct modes and

some calculations for particular examples will be presented and dis-

cussed.



P

3.2 The Expansion to Second Order

We have a duct of height 2 b , with a (subsonic) axial mean
flow velocity U . Over a portion of the axial distance X (-a<x<a),
the area 6f the channel varies slightly. The area variation is ex-
pressed as a small deflection in the wall, £(x) , away from (j:O

or (;{-'-2b , see accompanying diagram.

g5 S K

1 1
X=-a X=a

:{:o ___r,,__
£(x)

The equations of continuity, axial momentum, vertical mo-

mentum, and entropy conservation are
9 4+yd vo_ du L dv) -
(c)‘t U5z + g P+ P + O (3.1)

= == (3.2)

aP (3.3)



= L

9 9 9_
(c)t+uc)x +Udt4

Assuming a second-order expansion for the solution:

P+ p®e p®

L e o
.Um* U(:)

p 5 p(” + p(Z)‘
5(') n \5(2)

(3.5)

The zero-order quantities are constants; the first- and second-order
quantities depend on X,‘j,t in general. Inserting (3.5) into (3. 1) -

(3.4), we get the first-order equations

%*U%)gn + S i‘% . 5. 6)
P(-S;(#—Uj-){)u“# Qi;m = O (3.7)
ﬁg—t +uéi;)u("+<£" = 0 (3. 8)
CRNEREI N B S

and the corresponding second-order equations:

P J (2) - é—“p(') (”d_.Dm au(?.) aUm
(CT{‘LUH)P + U O + U g +- d_x+:9§)

+pm{d_gm+éy_-m = (3.10)
Ax Y



i 5
UG )V PG gV

md_ N m d_ﬁ’m: (3.11)
+p(u dx+U( dg)u * oY ©

A5+ ugs) V" + o G UV

5 ; ; (2)
+ 0 u”g—x +U”5—)U”+ P o (3.12)

Yiat T “oxAP  zlP at 7 dx

(1)
Af Mo LM d )_Em__ og 8 VP . (3. 13)
*a“m*” C’&} 5 u dx+ dg B @)

3.3 First-Order Solutions

Non-Steady Solution. The non-steady, first-order disturb-

ances that may exist are, in general, entropy waves, vorticity waves,
and acoustic waves. We will be interested here in the entropy waves
(for which there are no associated pressure fluctuations) and hence

(3.9) becomes

{5z wd):’ (dt+ugx) =5

Suppose we consider entropy waves with lines of constant phase with
normal at angle 7)5 to the channel axis, radial frequency Wy , and

convecting through the channel with the mean flow. In this case we get
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3 _
% =U‘G‘u%t@XD[“U%S(XCOO)Jgi-g&ij)R -
PS{”E 0
us'= o
Vs =0
and s = s /(U coovs)
0" = (first order) complex amplitude = ‘*Sm/Cp
S = subscript referring to quantities associated with the en-

tropy wave

Steady Solution. Here, we seek the first-order, steady per-

turbation to the channel flow, U , 0, and P caused by the contrac-

tion in the channel. Recall that the height is given by f(x) (see dia-

gram).

3:13
¥

=0
X=-a F?x) X=a J

For the sake of simplicity, we assume the same deflection for

the top of the duct, £4=Zb The duct is symmetric about ,;/:—_b

The equations (3. 6) - (3. 9) give

.d._ __e"” d_%m a_lf(”_
dep+dx+d«j'o (3.15)

J 3% (3.16)
X
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(1) () .
e L 28" 3.17
@) )
L _ P (3.18)
5= yp

Equations (3. 16) and (3. 17) may be used to show that a potential-type

solution is appropriate:

u'L 0¥ (3. 19)
o X
(n_ d'f’ (3.20)
P
Then we find
M_ a¥
P = de (3.21)
Using (3.21) and (3. 18) in (3. 15) we get
(1-M2) Pyq + Llagg =0 (3.22)

where MZ= Ua_p/Z’p-TUz/Cz, mean Mach number. We define the

Fourier transform é of 50

Assuming this integral converges, this gives for (3.22)

éw"?ﬂ“/\’\z)@=0 (3.23)

To insure rapid convergence of ’-P(X,(:’() we pick the area change to be:

=€ X X
£0x) 8(3+4c007Ta+ cooana) IXl¢ a o)

£(x)= 0 IXp>a
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Then ‘F(X) has first, second, and third derivatives which are con-
tinuous.
The boundary condition on AR (velocity is tangent to the

wall) gives

¢ _(© yb
°4 v y=0

38 1y oy = 1 (70 1 pyeint
325,00 = G| 58 (mole Mdx -
22(1,b) =0

The solution for @(;,‘d) takes the form

&(ky) = alt) @ L)Y

(3.26)

where a[g) and b(;) will be determined upon applying (3.25). The

potential ¥ is then found by the Fourier inversion of @ :

o]
5 o CEX
PO0)= i, | 36 e dE (3.27)
' -0o
Some of the details of the calculation may be found in Appendix A. We
present here only the results for the steady pressure disturbance.
(1) 2 2
IX' >a P = M TT°€
JP (I-M3)ba?

(-]

) P, sumh %ﬁ]wo(nﬁ%)@xp[ﬁ%ﬁ]

n=i



.
pm _ —MZTTE
K<a  yp 4.07(1-M2) "

2
[ 2

P cosfrr &)cosh[F (- INEC ':I)] cogend cosh[@(l -m)%(b-y)]
sjnh[]‘[ b(i- Mz)éJ Zsmh[ZTT ! Ca_,“a)/i

+(§Ml?)72_b Z 5 COS%{%}COS N2 eXP[C,nZ?yzb] }

(3.28)

f
(a '{~M’) ) (%‘[)27/(7%5)2

3.4 Second-Order Solutions

Inhomogeneous Equation, Homogeneous Boundary Conditions.

The second-order equations (3. 10) - (3. 13) may be rearranged to give

(dt g_x) p‘?’ C‘(axz d; )(p@’)

{50 S 5 s

2lot " “ox/ (1P ax\. o dg)
Ie) « m A a4 ! P(:)
+9 (2 "2 YW= o o |E

dgt( x Y dg) pC {dxz +dg?— HP}

-5 [35)+ B F %5 )
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The inhomogeneous term simplifies because we are only con-
sidering a first-order entropy wave interacting with the first-order
steady disturbance. In this case, the unsteady second-order terms

which remain are:

- HE) 4E 56

0
where P ‘/U'D is the steady pressure field due to the wall deflec-
tion and Ps/P is due to the entropy disturbance. Then write eq.

(3.29) as:

: (wt p
Cz(dt'f'uax LF (ijz (4 )Lf = F(X,‘j)e J ‘1’337‘-5 (3. 30)

We will have the boundary conditions

%(x 0] = CW(X 2b) = (3.31)

In addition, we Speclfy‘ that no waves propagate towards the contrac-
tion for |X|=> @ . This is the radiation condition.

We will express the solution as:

o 2b
e(x 41 =[ [ G0oyis,FCEMdnd¥ 5. 52)

sa ©
where G(X,‘;{jf,"]) is the Green's function. The details of the

calculation of the Green's function will be found in Appendix B. We

present the results here:



=79

iwt c Lw/c
- {4—5— XP{ J

+§—‘ COS{mnE_E)COS[mﬂ&) C'XP[ I\//\\f\a \{I IMZ)‘ r;guf)tlmz) - )J
= (o)

2 1w
_ i 2¢!b (?gs)fn?:\il }Oé(m;iy)z e P[i ,iI\Ma‘.,{, fm-’-"(r;gﬂ n_’Me) - E)J
mzN+i - = L

4 i—"' cosmmzs) cos(mﬁﬁ) [ MZC()( E}Jmnc Wy ) ﬂ}

(,J I-pM2 (I~MFC
m=N+l2b ( )( M)~ ( )) 2b -mM2 (-

(3.33)

x>%  6(Y,5,m =

wl ¢ -lw/c
ew{z;um exp[ +M XJ

+ % 1 COS&nﬂgg co{mﬁab) [ FM’)Z mTTC 2 )1 u( E):l

m|2b([c (mﬂ'( 2)) wa IM2

) mTrC 5 X~%)
+ Z | cosmTTabC05m7T'z% C:XP[( —(X E)) 2bw ]Ma (N\)2 C(

?b((r;g) (-4 -(2F)

\"——v—-—.-—'

(3.34)
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where we define

N largest integer such that Nc e _L_%
2hea  ([-m3"2

largest integer such that %‘—577:@ < , e, NN
(D

1

N

il

1

n (3.33) the first and second summations represent waves propagat-
ing upstream. Note that these represent two unique waves which may
exist. The third summation represents waves which propagate up-
stream but are attenuated as they do so. In (3.34) the first summa-
tion represents waves propagating downstream and the second sum-
mation represents waves which propagate upstream but attenuate as
they do so.

To calculate the forcing function for eq. (3.32) we recall

m— iDm g)_ p_sm C‘)__ ’Ci/i)
Fg)= -5 B ax(sz))+ dg(ﬁ d;/(w) L

¢

where }-'5 is given by eq. (3.28) and JE-: is given by eq. (3. 14).
The results of the calculation of F()i;/) are given in Appendix C. We

now define

<
4-(bw

1}

|
(2P re)) % O
[
A )-(2)%) %

Am

N<m
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= e————— e e e——

Then we may write the Green's function

X<¥ G(KY,%5,7m) =

o
2 Ancostr Bcagmn lexp [ 26 )( 5 00)|

_ Z Am cos{ml‘fﬁJCOﬂ/m” 5)€XP ‘““(X'E)[ )]
Nt

+ Z Am CO:{m’T %)cos(m exp[ w(x }-) _.(_Qm)] (3.36)
N+

Xx>¥ G(XY,57)=

& oa n o M
> AncosfrmcogmmIexp i £l )=
m=o

+§ Amcos(mﬁéib)coqu )exp[ £ e ;)/.___ i )] (3.37)
A1

We must calculate

@D 2b

{(xY) =] GOy, 51) F(5M)d7d¥

If we let
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C.(XY,51) = G(XY,§M) X>¥

G:(XYiEM) = cxY;5m) X< §
F-(5,1) = F(5m) §<-a
| (3.38)
Fo(57m) = F(5,m) -a<¥<a
F+(f,7l) = F(?;'TU fra
We may now break up (3. 32)
, 2b X 2
<o P(xy) = / 6.Fdf +[G.F.df
Lot
+[a_6+/——ed‘§ +/6+F+df }O/'V[ . (3.39)

2b( X
Ixl<a ‘r”(X,y):/a [ G—F—d?*f G.Rd¥
@ a .
+/)(a6+ Fod}a +/C:OG+F,C/?} d’)? (3.40)

Xsa AKY) 2426[[:6- Fd¥ +IQG.F;0"§’
+LXG_F+df + lmaff—;d}’fc/ﬂ (3.41)

and the solution may be found.

. Suppose we are interested in waves which propagate far away
from the contraction, i.e., as a result of the second order interac-
tion, what disturbances exist for X—=>ZCo.

Consider first X—»+a@ ; we use (3.41) and neglect the fourth
integral since it must converge to zero. In the first through third in-

tegrals we use (3,37) for G-, and we neglect the second summation
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as being exponentially small (we neglect the attenuated waves). Then

the Green's function for these three integrals becomes

A
G- (%4,57) = 3 Amcos{mir )cospipex P[l Yx-5) ,%,,-—ﬂm}}

and F may be had from (C2), (C3), or (C4) according to (3. 38).
Since this calculation will give the (inhomogeneous) solution for the

pressure wave at X—>+a  we call it
= (X | 3.42
7 (X,Y) . (3. 42)

Next, we consider X»~® ., We use (3.39), neglect the first inte-
gral, and in (G, in the last three integrals (use eq. (3.36)), we
neglect the third summation (attenuated waves). The Green's func-

tion simplifies to

Ge (X Y,;%57) = ZA,,.cos(m cos(m )exp[ = E)( ]

_ ZAmco.s(m )(_os(mrrzb)exp[ =(-¥ I%Z*Hm)}

Nt .
and F may be had from (C2), (C3), or (C4)according to (3. 38).

We call this solution

P: = Wx,gi)| P (3. 43)

Homopgeneous Equation with Boundary Condition, To complete

the solution we must solve the following problem:

2

(§?Z+U5X)(f C( 2 C%gz)"f, = 0 (3. 44a)
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of| _ G(X)e"“‘t (3.44b)
0Y | 4o
_@g, s F’(x)e"""t | (3. 44c)
ag g:Zb

(17
where '-P(X,g,{')— (K‘;()e o and the functions F , G will be

determined from a second_order expansion of the boundary condition
on the channel walls. The sum of this solution and the inhomogeneous

solution from the last section will give the complete solution. Let

@(XI g) = a%z’{x’%) for brevity; then we get
2 : J 2 9 c) »
(UJ +2LwUd + U dxz)é_c dx %L )QE O (3.45)
Let
o
e ~iX¥
_@(x’g‘)_(z,n,)v/z/ ‘]V(?/gl)e df : (3.46)
-0
assuming the integral converges, this gives for (3.45)
2
Y. - (}‘))7":0 (3.47)
J
where

L

g(¥)= + (-‘é-’(g eM -+ (;-Mz)}’?‘)z
which gives
¢, = ane¥™t by V4 .48)

Transforming the boundary conditions, we define

Ci¥) =l 0) = / oo et Tdx (3. 492)

()’
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Fi¥) = #,(52b) = [ch—*‘f"dx

(= 77)/
We now solve for a[y). and b(f) in (3. 48), to find
Y, = F(HACT) +6(5) T(5)

where

~re) = sinh[ya(s) =~ oy _ sinh[g(neby)]
H(f) 5mh[2b3(§)] J(F) B smf?[Zbg(}‘)]

Using the convolution theorem we may solve:

Q_S#(x,g) = (-2%,)—4 FCHH(x-3)d§+ /c(r)J(x—r)d? }

We must find

(3.49b)

(3.50)

(3.51)

H/X)z('j;)_yefﬁfs‘)éi—{rxdf J () =(2’,T),,2/f(F)éir)c(f}’ (3.53)

The details of these calculations may be found in Appendix D,

We present the results here.
X$o H(x)=

(8] (g)ere [ ]

z(( o 5'"(””%)), sinf el 0w ;:))/]

2busy2 2
mc —(1-M?)
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5162, g

HTTC

esp [ g 2oy

(3.54)

Xso J(X) =
£(5)5) expix foe]

Z( zbjmn;fe))é sn[i-‘-— ey~ - ))%J

n TTC

') > e

Nt ( (-] _(%%_%)2} -

EXP[/ Mz( M r((r ) n”) (C)) )J

(3.55)

where again N is the largest integer such that
2 NTT) 2
w 2) N1
(8)">(m za)
We now calculate G(X), F(X) from (3. 44). The boundary condition on

g=O is
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U+ 04 (L2 ;;
y=f60)

(3.56)

which insures tangency of velocity at the wall. Expand the velocity

terms in a Taylor series about y = O:

(2] ' )
U(xFe) = Uxo)+ S4L fLo -

=0

£x) +-

O

v f0) = v (xo)+ o’

We insert this expression into (3. 56), and retaining second-order

terms

()

(2] /" )
g— fx0) = %J(X,O) % (x,0) —QH (x, o) (3.5%)

U

A similar procedure at g= 2b gives

(X 2b) = U (x.20) “(x2b) (be)fm e S0

Using (3. 12) we may write

e

|
(amd U aﬂ)?f ] ) (3.59)

which we evaluate at gzo or %'-: 2b ) and insert (3. 58).
Consistent with our previous work we retain only the cross

terms of interest, which simplifies (3.59):

(r) 'd;
o - _1 Iy v : (3. 60)

&(j_ ct P oX
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(n

where "ps— may be had from (3, 14) and U frem
@) IXl>a
‘;’; Ixka
= 4 T Y= 2b

Combining (3. 14) and (3. 61) into (3. 60) and setting W= W

G(x)
= LMo E(g)a - P(—(I?chosl)s)( codr 2)+ coden ai)) IXk @

=8 IX|>
Fe )
=g Mao‘é(g) CXp(itsxcosy,-i2bkssmvs)
(co S(Tr?’,‘_)+ cos(eré)) I Xka
s | | I XP @
(3.62)

We are now in a position to perform the integration (3. 52) using
(3.54), (3.55), and (3.62). We substitute § for X in (3.62) and

X-¥ for X in (3.54) and (3.55). The integration (3.52) may be

written

(2m)* B, (xg) = [ FOIHO-F)IY + [ G(F)T(x-F)d¥ (3. 63)
- -a

If we are interested in X< -@ (or X>a. ) we have £>X (or¥<X)

in these expressions, so we use the appropriate form of H(x‘ﬂ and
J‘(X‘\g) for X-§$<Q (or X-$>0 , see (3.54)). We also must insure
that the radiation condition is satisfied. We want no waves propagat-

ing upstream for X>>d and no waves propagating downstream for
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TR This condition is satisfied by limiting the indices on

eqs. (3.54), (3.55). If we are interested in |X|>> & we may neglect

the attentuated waves, i.e., N >N in any summation.

For |X1< A we must integrate in the following manner:

X a
(2m)*% §, (ny) = / FOS)Hy(X-3)d¥ + / FOE)Hr (x-3)d¥

+ /XG(}’)J} (x-¥)d¥ +/6(?)Jr(X-FJd'§’ (3. 64)
oo X

where the subscript < (or I ) refers to the appropriate form of

H(X"‘f) or J—(X'?) for X-¥ >0

ner we may find

(or X~¥< O ). In this man-

_ iwf: E_fz) wT
¢(x,y:t) = (xy)e 5 (e

Since this is the homogeneous solution, we define

?(x4t)]

2
I

(3.65)
X—>+co

Pi = LOYY)

(3.66)

which will give the waves propagating at large distances from the

contraction and correspond to (3.42) and (3. 43) for the inhomogeneous

solutions.
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3.5 Calculation of the Duct Modes

The acoustic waves which propagate in a (constant-area) chan-

nel must satisfy the homogeneous wave equation:

{(37+U%)2_C23§“:+§;72)}9” =0 o G.eT)

where ‘-(’()(J g,f‘) is the velocity potential associated with the wave.

The solutions to (3. 67) will be of the form

Yixy,t) ~ explwt- Rxcosv *‘J“””ﬂ (3. 68)
which are waves with constant phase lines with normal at angle 2/ to

X direction. Substitution of (3. 68) into (3. 67) gives the dispersion

relation
h = wlc (3.69)
Mcosv ¥} ‘

Since the vertical velocity must vanish at the channel top and bottom,
say ‘Lr[=O,2b , we have

éj.p = @io = 0

Y ly=o 94 |g=2b

and so the vertical velocity will be of the form

S/n(nﬁz%) exp[i(wt - Rx cosv)J m=o,, -

The pressure may be written in the form

P(v) Cos(mﬁ%)expff(w-t—ﬁXCOSU)] (3.70)

where P(V) is the amplitude of the mode with wave front angle V ,
and is complex in general. We would like to express our solutions,
+ - + - : ; ’
Pr | Pr , Py 5 Py (3.42), (3.43), (3.65), (3.66) in this

form. Then, given the mode number MM we should be able to give

the angle of the wavefront 3 , the amplitude, and the phase of the
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mode. First, we define the following dimensionless variables:

B= ("-Z':,—q' the reduced frequency, which relates the acoustic wave-

length to the contraction length

€ = -g-_— dimensionless axial length
M = _‘4‘_ dimensionless vertical length
2b

= b/a height-to-length ratio of contraction

2\ .
= (I"“(I'Ma %E) ) . minN (. e., Rm is real and positive)

For the homogeneous transmitted wave ( P{-?b ) we have wavefront

angle:
M=~Rm
&)
COS Vnm P (3.71)
d amplitude Py @ __Pam  _ 2
and amplitude Hm e = [E[HCOS(ZﬁﬁbfWS*mTr))]

2 a

I~ ME(M Rm)s”‘ {;ﬁ\, ——Rm)] .
m((zas) (1- /V\z)) [2_6_(’;42) ,\’—q-Rm)J[ZN)( ){1 )ZJ (3.72a)

+
and phase ¢Hm

fou ¢ — SJH(ZBSf'anVs+mTT) (3.72D)
Hm [ +CoS (238 tanys +mTT)

[sm= N,

Just as in the inhomogeneous solution, two unique waves may propa-
gate upstream. For the homogeneous reflected wave Py we have

wavefront angles V/m, Vzm



- _ MH+R
COS Vim = l_;M—F‘\r.’Y:rn [sm=N (3.73)
COS‘))gm = /;/-";V\R;m N.<msN (3.74)

and amplitude PHf‘m 3 Przpm

Puim
3L €0 3
> a METT

= [2(1+ cos(zﬁsfanvs+m77)):j 2

’MZ(Mme) 51N ﬁ (M+R"‘)}

(e -l o ]

[£m=N

- +
Puzm = - Pum (3.76a)
N, <m=£ N

and phase ¢H-i-m 3 ¢H;ﬂ‘

= : +

tan Quzm = Tan B um Ny <P

For the inhomogeneous transmitted wave Pzm we have wavefront
angle Vm ,

M=-Rm
MRm-1

The amplitude is best left complex:

COS Vm = O £ msN, ' (3.77)
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Prm

EU"M 2
b /M‘," Am

55—""—}. {Iaam Iem' (EEZFM’ZZ )

Smi(nf{.'—ﬂl‘}l) .Smh[.?rrJ( -~mY%)

ns|

5 o] N % |

_STr( ) /(Ibfm )(Iem)+2 (Fiemyrems) )

SInh(TS(1-mY%) Jmhé’/fiﬁ’”')/)
Z C’XP[S(/ M‘}JFdMJ I.;mﬂ%ﬂ_ﬁ_)%

i8S tanys | (-my) (Bam)em) (I o
M F2 .ﬂnhﬁTS(/—Mf)“) J/ﬂh(??fé"(/ MY*%)

B ie"/’[f(m«) '4](12'")(—35'3 h) %
n=(

+ SOt E((I""“)( cu PPN e )

Snh(T8 (- M’J") 5/nh (218 (1-m¥Y*%)

- S o7 e L e
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'*‘Z( )Smhsr(?r ]

':{LOXP[S(: MM E’XPI:(B M(i-+Y dtm) (;nﬂj; z/ ("“)/L)] j

s(1-m")'* B(M([M) ((rm) 7835 , )Vz)

([ e i - prem iy

{ evp[ 5754 | ex [ (st~ (o~ ) )t | }

b —{ﬁ [ A _‘mTT)Z/ '/z)
s(-my*% mi-mt) \(-M?)* \235 ) T-m

(i) )

)
- _f..g-.ﬂ—l ‘ﬂ't m
b 1-m* A

oxmsN, (3.78)



For the inhomogeneous reflected wave ( Pz

front angles Vim, Vzm

cos v'm = M
| +MRm

= M‘F\)m

COS Vo = —m—
em [=MRm

and complex amplitudes :

-95.

) we have wave-

(3.79)

(3. 80)
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(-)
PIIM

e‘a—m
IMl

-t /j S/ (/ M3 ( ( I"'m)( Ic- (Ia,,,%/l'c'nz) )

SINA(TS(1-Mm ){ ) JIﬂh(?ITS(I “MY"%)

2 =N Tenm ¢mn)(n7r
* 2 OrP| - sza]( Ve

n=1

= Lnf1-m) g:.{..l&w) le) (I—em) )

smhirs(rmn)) " siies (-7

¢ 3 explirny e i ) 2

& \sinh(ms( M%) sinh(2ns (1-m3*4)

__M[J(( )

-5 exfzs aj(ﬁm)(-fi-:")m%]

+50-m) g &M)Fm) o)) )

2\ sinh(rs(-myR) T 5mh(2ﬂ5( -MY*%)

Z C’XP[ ) E]( Lm)(im}(m)z Pa
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»+ nZ’(s ?)sin s('-M*)’]
r_—'.
{cxp 5(/ M,),,_]cxp[lﬁ M- " (/m‘) (zps)/-M’ 4)]
§(1-m*)'4 BM(IM) ((I'M’)‘ [ng?)Z’ ,’“’ )%)

{[(,_Mz)uz [(,_Mz)/ *‘%g) +(n7) ](l?mﬂ) _ (nT3s f&ml/(:fiﬂ".

s(1-mY"% —(ﬁ(m(f MY ((, e Lo ) T )Z

C’)‘P[g UL ]ﬁ(PL(ﬁ m(-mY (a_,v,]z 2FE 2/~:'42 ’é]
N nir
]

nr__ _Bs Zomn) , inriBs o

Zr (/-M‘)’z (-mY)* 7"’!—) {nmj‘ “ ) T e
P.Tlm

i} osm<N (3.8/

} 5‘:” IT‘]"W Am /

-) «)

Prim = -Pzrm NEmM SN (3'82)
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The quantity Am has been defined before. In terms of the

dimensionless quantities

{

408
Am 2 -7%
fosr- () E osmen oo

also

Bn — 38°/mr? ' (3. 82b)
b* (5 //\/\2)((25)‘2 !MZ)

The remaining quantities to be defined are:

Ialm ;IG—"'“)Ibe, Ib;m (4[:/:2)1 Lenm ,Icn,m ) Idnm )Idr:m.
IemJ’/ Iﬁ,,.j)Ipm,..lIJmn and may be found in Appendix E.
We recall that N and N, are the largest integers such
that

Nt | N,TT
288  (1-M3)"% 23

& | (3.82c)

The procedure for calculating the final solution is straightforward.
The dimensionless parameters at our disposal are M ” é ’ (3 , and
Vs , the entropy wavefront angle. We may then calculate the com-
plex amplitude of each mode by adding the homogeneous solution
(egs. (3.72a), (3.72b) or (3.75), (3.76a), (3.76b)) and the inhomoge-
neous solution (eq. (3.78) or (3.81), (3.82)). 7
If we specify M, 8 , B we can calculate N , the num-

ber of modes which will propagate in the duct,from

28%

T (3.83)

N = largest integer <

so a higher frequency disturbance gives more propagating modes.
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3.6 Response to a General Two-Dimensional Entropy Wave

We have an entropy wave of general vertical dependence con-
vecting with the mean flow. Then taking the place of (3. 14) we as-

sume

psﬂ}

(- 2

;
=gxy.t) =¢e Fey) (3.84)

Expand £ as a Fourier series in (0,2b ):
ao
Feg) = 22 + Z‘[cycos_(jﬁ%)-ﬁlysm(jﬁg)) (3. 85)
J:

the coefficients of the expansion may be calculated from

5
a; = bL/: Fryrcos(jmi) dy

25 | © (3.86)
. s o ~ Y
bJ—E/o F(g)S/n(JTT—b—)C/g
Hence,
ot i L .
cixyt) =e“ e ” [%
@ _ iy —zjﬂ’—ﬁ-" b: [ mé -T2
+ 3 (o[ ) 2TE- S]]
(3.87)

J=

Since our previous work requires the entropy wavefront angle

for calculation of the acoustic mode, we would like to express (3.87)

in the form

wt —iks(XCOSYs+YSINVs)
vy e“re s b = w/Ucoss -
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We therefore re-write (3. 87):

‘Wl ~i#s Yy +YSinve)
O'(X,‘;,f,'t) = e {O: e (#s (XxcosVstYy

& P (XCOSV; +YSINY;) -tﬁs()(cosyj*ng/ﬂfj)J
+Z[g;ets( Jg J+U-'e ‘ (3. 89)

J

J=
with
g, = % Y =0  (3.90a)
and for the J Th  entropy mode:

(= aJ‘ b“’ = —’.M
e g DBy _ (3.90b)
= gl 5= Y=Y J>o

W e have seen, eq. (3.70), that in the mfh acoustic mode resulting
from a disturbance of the type (3. 88) propagating at infinity may be
written
(2) : - A k)
({(wt-RCOSVUnm
—Pﬂ(x,‘j,f):KPm(Vs)O: COS("”W-&)C-’ (3.91)
yP 2b
Here, K is a constant depending on M and /b ,J v is the am-
plitude of the entropy wave with wavefront angle Vs , and 5, (Vs)
is the arhplitude of the mode. Given the entropy wave ﬁg,) we can
use (3.89) to give the general result for the amplitude of the mode

m,pm

Prn = T P (v20) +§@3 P (V) +T; Pm(-){;)] BT

I
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We would like to relate )Dm (VJ) to Prn ("V/) . Since an
entropy wave of the form of (3. 88) gives a resulting mode of the form

f (3.91), we consider an entropy wave of the form
: _ (Wt —( R (XCOS(Vs) +Y SIrK-Vs))
axytl =0, & (3.93)
which is identical with (3. 88) except we use the negative of the en-
tropy wavefront angle. For non-zero wavefront angles of interest

(i. e., '!'am)s JTTM ), (3.93) may be written as

‘ 't 7 b ‘fr#
O"(X,g,f) = g, et e (P xcosv,eg £

e, eiwte-[ﬂsxcosv, e—zjgfzt;-g) (3.94)
ﬁ COSVs = (A)/U
If we now let %= Zb—fac ' Q-_‘-ﬂzszb we get
o Sk s wfT
U’(X,“],l‘)=0'vc—?m e ( s XCOS seub”z —_—

but from (3. 91) we must get an acoustic mode of the form

{2)()( nt) = KPn(Vj)Ty cO ¥mﬁ£)€i(wt~ﬁXcos Ym)

where

V= T’an‘(jﬁb%)
If we now express the mode in terms of g again (we are essentially
turning the duct "upside down'' from the viewpoint of any pressure
measurement but not from the point of view of the entropy wave), we
get

}Pﬂ(;:Kdﬁv B (v)) COSCW)TT(/_ __)) ((wt-RXCOSVm)

=(—)" KTy P (V) Cos(m ) Ywt- ~RXCOS ) (3.96)
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which is identical to (3.-91) except for the factor (=)™
We now have the mode amplitude resulting from a negative en-

tropy wavefront angle. Comparing (3. 96) with (3. 91) we may write

Pulvs) = (27 P (V) (3.97)

if > W '/‘an“'ﬁ gglf) J=ha

We may now write (3.92) as

Pz G An(v-0) + D Am() [0+ 55 ] (3.98)
J=1

We see that given the Fourier coefficients (3. 90) of the cross-
sectional dependence of the entropy wave we can calculate the ampli-
tude of mode M by considering only non-negative entropy wave-
fronts. Each wavefront 1V, corresponds to a mode of the Fourier
expansion (3. 89).

Expressing the wavefront angles as
- - T
V; = tan (j Bs 5= 220

we notice from Appendix E, eq. (E7) and eq. (E8), that the integrals
T rmn and Ijmn must be calculated differently if
2n=2(mz2j) (3.100)
Otherwise, we may use eq. (E7) or eq. (E8) directly.

In Section 3.3 we solved for the steady pressure disturbance
resulting from the wall deflection. The solution (3.28) may be con-

sidered a cosine series expansion, QQna COS(HZ”T”'))’(”] = },(/Zb) where
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the @An are functions of X . By writing a general entropy wave
in terms of a Fourier serieé (3.85), (3.86), we found that only cer-
tain wavefront angles need be considered, (3.99). Now the first term
in the integral for I pHin , l.e., <cos /ﬁ‘ﬁ"’? , is the vertical de-
pendence of the duct mode. The second term ( CO.SHZTT?? ) is from the
cosine series expansion (3.28) of the steady wall pressure. The third

—i2 %'f(fanvsm

term ( & ) is the vertical dependence of the entropy

-2; B¥tan,
wave. The term (CO.SI’?E'TT’WX@Z[ Mﬁ_an 57 )

may be considered
to be the vertical dependence of the interaction of the entropy wave
and the steady pressure disturbances from the wall deflections. Then

the integral Lymn  is just a calculation of the mTh cosine coefficient

of an expansion (from 0= 77 =/ ) of this interaction.

3.7 Response to High-Frequency Disturbances

We would like to investigate the behavior of the mode ampli-

tude for a given entropy mode (J. = constant) as the reduced frequen-
cy becomes large. Since J. = constant, (3.99) gives
§
% fan vV, = constant (3.101)

Consider first the homogeneous solution (3.72), (3.75), and (3. 76).

It is clear that
‘ 4 ~if

Pum ~ ﬁ B - @

Now consider the inhomogeneous transmitted wave (3.78). By looking

at the values of the integrals defined in Appendix E, and keeping in

mind (3. 101), we find for (>0
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Ib#m, Ib-fmlIcnmJICnm,Idnm,Idnm = 3 (3.102)

o
Lemt, Lhmd, Lemn, Lgmn ™ &}
From the definition of (3. 82b)

=1

Am"’ﬁ

By considering (3.78), we see that the dominant terms seem to be the

first and the last summations. Considering the factor Am leading

the equation, we see that

:DI:n K -
... BN W (S B+ oo
il E

The coefficient K may be easily calculated by expanding
Tenm”™ for high frequency and by expanding the coefficient in the fifth

summation similarly.

K

Doing so, however, we will find that to &(B)

is zero, which implies that the first and fifth summations do not

dominate.

The inhomogeneous solution for the mode amplitude tends to
-n
zero for high frequency like 3 where N is at least 2.

Rather than carry out the expansion to (8% , the full cal-

culation was carried out for several large values of 3 . The results,

as well as the other parameters, are given below:

S=E.] (contraction aspect ratio, b/a )
M=.3

m=2Z (second acoustic mode)

JT=1 (first entropy mode)
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The above amplitudes have been normalized as follows

(3.103)

i |__P’
Pl = _1¥pP1
e m? T2

b7 I-m

The subscripts H and I refer to the homogeneous and inhomoge-

neous solutions, respectively. The superscripts refer to the down-
stream wave and the upstream wave.

We noted that the homogeneous solution behaved like 3 # for
large B and that the inhomogeneous solution behaved like 3" for
large (3 where N is larger than 1. We have normalized both so-
lutions in the preceding table by 8-4 , which shows that both solutions
behave like B‘q . It is not unexpected that the inhomogeneous solu-
tion should behave as the homogeneous solution.

This behavior is closely related to the wall deflection function
-,[()() , (3.24). Recall that we chose ‘F(X) to have continuous first,
second, and third derivatives. This was to facilitate convergence of
the series representation of the steady pressure disturbance due to
the wall deflection. Equation (3.28) verifies that the convergence is
like n* , where 1 is the index of the series expansion. If one
follows through the details leading to the homogeneous solution, it is

-4
possible to see that the ] high-frequency behavior is a result of
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the ﬂ-4 convergence of the expansion for the steady pressure.

3.8 Calculations and Discussion

For low-frequency entropy disturbances, the duct responds
only with plane waves ("M=0 mode) propagating far away. For high-
frequency entropy disturbances, we have shown that the duct response
drops off rapidly. If we are to examine the two-dimensional response
of the duct, we should calculate for a reduced frequency high enough to
give a few propagating modes, but not for such a high frequency that
the response is negligible.

For the calculations to be discussed here, we have chosen

M = .3 , the contraction aspect ratio (height-to-length ratio, b/a )
$ = | , and reduced frequency (B= wa/c =5.0 . These |
values represent an entropy wavelength about one third the contraction
length, and according to (3. 82b) will give four propagating modes (in-

cluding the plane mode) far away from the contraction. Our high-

frequency analysis tells us to expect mode amplitudes of about 5—4 ]

1073 (if @3 = 5.0 is indeed a ""high frequency).

The Fourier decomposition of the vertical dependence of the
entropy wave (3. 85) will, in general, give an infinite number of terms
(entropy wavefront angles) for which we must calculate the duct modes.
For a "reasonably smooth'' function 1[(%) we expect the Fourier co-
efficients (3. 86) to decrease at least as fast as J" where J is the
entropy mode under consideration. Hence, we will calculate for only
the first ten entropy modes, including the plane mode. These results

are presented in Figure 3-1.
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The amplitudes have been normalized by 0"%'”'2 [9%,\'2 and
are generally ~ 10-3 as per the high-frequency analysis. Each curve
is labeled with Prf where the superscript indicates transmitted or
reflected wave (+, - respectively),and the subscript M indicates the
acoustic mode. The phase is also given for each curve, since the
amplitudes are complex, in general. The émplitudes of the modes
are not strongly dependent upon the entropy disturbance.

The odd acoustic modes give no contribution for the j=0O
entropy mode. Then we expect nb asymmetric acoustic modes to re-’
sult from that symmetric entropy disturbance (the symmetry is re-
ferred to the duct axis L b ). Suppose a general entropy wave

exists which has no mean component. Then (3. 86) and (3. 90) give

0-,=0 to be used in (3. 98), which then simplifies to

| Z\iAm(\)J-) a; m even
P = 147!
> Am (VDb m odd
J'=I

If our general entropy wave is symmetric, bJ"—‘O , then no
asymmetric acoustic modes ISrn exist., If the entropy is asymmet-
ric,; CIJ‘:O , then no symmetric acoustic modes /Sim exist. This
behavior is not related to the symmetry of the duct deflection. The

Am(VJ) may be taken from Figure 3-1, for our particular example,
for | <9

In the introduction to this chapter we noted that a one-dimen-

sional analysis, such as used in Chapter II, may be interpreted as

an average of the perturbation quantities over the duct cross section.
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Since all the acoustic modes have a cross-sectional dependence

~ COS(I’T)TTE%) (far from the contraction), it is clear that only the
plane mode can contribute to the average. For an asymmetric en-
tropy disturbance, the plane acoustic mode will not be excited, and
hence the average of the pressure disturbance across the duct will be
zZero.

Note that on the duct axis lat:b , the odd modes give no con-
tribution, while all the even modes do contribute. Hence, any pres-
sure measurement we make on the duct axis will respond to the (com-
plex)sum of the even modes. For example, the results of Figure 3-1
show that the second acoustic mode gives about five times the con-
tribution of the plane acoustic mode.

In conclusion then, the duct responds to symmetric entropy
disturbances by producing symmetric acoustic modes,and to asym-
metric entropy disturbances by producing asymmetric acoustic modes.
The high-frequency response of the duct is governed by the smooth-
ness of the wall deflection. A smooth wall deflection will tend to
respond less strongly than a '""rough' wall will to high frequencies.
The calculations also indicate that the amplitude of the acoustic modes

is not overly sensitive to which entropy mode is disturbing the flow.
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IV, EXPERIMENTS CONCERNING THE RESPONSE OF A
SUBSONIC NOZZLE TO ONE-DIMENSIONAL PRESSURE
AND ENTROPY DISTURBANCES

4.1 Introduction

In this chapter we describe an experiment which was intended
to test the analysis of Chapter II. In that chapter we found that a one-
dimensional nozzle could be subjected to three independent disturb-
ances: an entropy wave convected into the nozzle inlet, a pressure
wave impinging upon the nozzle inlet, and a pressure wave impinging
upon the nozzle exit. If the distribution of mean properties (Mach
number) in the nozzle were known, the response of the nozzle could
be calculated for each disturbance of a given frequency. Linearity
then allows superposition of the independent solutions to give a general
solution.

The results of the calculation give the pressure perturbation
field through the nozzle and also the pressure waves which are caused,
by the interaction, to be propagated away from the nozzle.

The experiments were carried out in a blowdown tunnel (inlet
cross section 1 inch by 3 inches) which accelerates a mean flow of
nitrogen from M~ .27 to M a .87. The mean flow is perturbed by
periodic heating of a grid of nichrome wires which are located up-
stream of the nozzle. By electrically pulsing the wire grid, the
stream of nitrogen received a periodic fluctuation in total tempera-
ture. This causes an entropy wave and a pressure wave to propagate

into the nozzle inlet. The downstream end of the nozzle was open to
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the atmosphere, and hence any pressure wave which impinges upon
the exit creates a wave (by reflection) which propagates upstream to-
wards the nozzle. Thus, the three disturbances are created. By mak-
ing measurements of the fluctuating pressure and other quantities, the
three disturbances can be determined (the complex magnitude of the
quantity is measured). After measuring the mean Mach number dis -
tribution through the nozzle, one may use the analysis of Chapter II to
calculate the pressure perturbation field in the nozzle on the basis of
the measured disturbances. The measured .and calculated pressure
perturbation field may then be compared. The measurements and cal-
culation both give the resulting waves which propagate away from the
nozzle, and these may also be compared.

The description of the experiment includes a brief discussion
of the calibration (measurement and adjustment) of the mean flow in
the blowdown tunnel. The pulse heater (nichrome wire grid) will be
described, as well as the electrical circuitry required to produce the
electrical pulse for the heater. We then describe how the three dis-
turbances are measured and include here a discussion of data acquisi-
tion and processing. Results of some experiments are then presented

so that the data may be compared with the analysis.

4.2 Description of the Experiment: The Blowdown Tunnel and Pulse

Heater

The Blowdown Tunnel. A schematic representation of the

blowdown tunnel is shown in Figure 4-1. The gas (nitrogen) is sup-

plied from a bank of 20 high-pressure gas cylinders, passes through a
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pressure regulation system, a plenum chamber (designed'to reduce
turbulence levels in the gas flow), and finally enters the blowdown
tunnel just to the left of the pulse heater in the diagram. This blow-
down system was designed and constructed by Dr. J. Auerbéch (see
ref. 8, Chapter II) in conjunction with experimental studies with a
supersonic nozzle. The blowdown tunnel was re-designed to give the
subsonic Mach number distribution required for the present experi-
ments.

At the pulse heater, the tunnel is 3 inches in height and 1 inch
in depth. The depth is fixed throughout the tunnel; the cross-section-
al area is varied by changes in the height. From x = -8" to x = -1"
(see Figure 4-1), the tunnel height increases slightly. This is to
compensate for boundary layer growth so as to provide a region of es-
sentially constant Mach number flow. This will be discussed in more
detail shortly. In this portion of the tunnel, the Mach number was
nominally .27. The tunnel height then decreased to approximately
1.5 inches in an axial distance of 6% inches. This accelerated the
flow to about Mach . 87 . The tunnel height was again increased slight-

ly from this point (x = 6 %

") to the tunnel exit (x = 14"") to provide
another constant Mach number flow region.

In order to distinguish the three portions of the blowdown tun-
nel in this chapter, we use '"tunnel" to refer to the entire blowdown
tunnel. The region over which the flow is accelerated will be called
the '"nozzle.'" The two constant-area regions (one upstream of the

nozzle and one downstream) will be called the "'upstream duct'' or

""downstream duct. "
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The upstream and downstream ducts were each about 7 inches
in length and their purpose will be discussed next.

Recall from Chapter II that in regions 0f constant mean flow
the equations (2. 1) - (2. 4) simplified such that the solution (2.9)
could be written down:

Z,(X) = i P+eic*x + P et (4.1)
¥ P

The dimensionless wave numbers C* were defined by (2.10). Re-
call that D+’ P~ are the complex magnitude of the downstream and
upstream waves propagating in the constant-area section. If one
were to measure Zz at two positions, say X, and X, in the con-
stant-area duct, = and P could be calculated from (4. 1):

p+ — (Za(xr)efc-xz_ EZ(Xg)eiC_X,) D

P

{ el ™ . 2 1) e )/D (4.2)

(Cs+ X, £C~¥a (.C-:-Xz CC-X,

0 =g o Sk =
By applying (4.2) to measurements made at two locations X,

and X; in our "

constant area'' ducts, we can determine the waves
leaving and entering the nozzle. In each of these ducts we see in Fig-
ure 4-1 there are four dynamic pressure transducer ports, on the duct
axis. The length of the ducts and separation of the ports were chosen
to allow adequate resolution in the pressure measurements. Notice
that the system (4.2) becomes singular if X,=X; . If, in the presence
of flow noise, the two points X, and X, are not separated

5 =
""enough, ' large errors will result in the calculation of P" anda P ;

because the resolution between the two measurements will be poor.
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In other words, the two transducers should be far enough
apart so that differences in their signals will be much larger than any
flow noise. The effects of flow noise will be discussed in more de-
tail in the section on data acquisition and processing, §4. 3.

It is necessary to not only determine the distribution of Mach
number through the nozzle, but also to determine if the Mach number
is constant in the upstream and downstream duct. The total pressure
was determined by inserting a pitot probe just downstream of the
pulse heater. The static pressure was then measured at four posi-
tions in each of the ducts and in seven positions in the nozzle. In this
manner, assuming the flow (exclusive of the boundary layers) was
isentropic, the Mach number could be determined at each position.

The adjustments to give constant Mach number in the two ducts
were essentially a trial and error process. The first estimate (as to
the slope of the walls) was made by assuming that the boundary layer
was turbulent and incompressible. Schlichtingl gives a relationship
between boundary layer thickness and rate of growth of boundary lay-
er thickness under these conditions. By assuming various initial
boundary layer thicknesses (thought to be at least within an order of
magnitude correct), a mean rate of boundary layer thickness growth
over the duct could be estimated. This mean rate was used as the
first guess in determining the wall slope. By alternately adjusting
the wall slope and measuring the static pressure distribution through
the duct, the best value of wall slope was eventually determined.
After the final adjustment, measurements showed that the change in

the Mach number in the upstream duct was less than 2 per cent over
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its length and less than 1 per cent over the length of the downstream
duct. These figures represent approximately the resolution of the
static pressure measurement system used.

After having satisfactorily adjusted for boundary layer growth
in the upstream and downstream ducts, the Mach number was meas -
ured at the seven positions in the nozzle contraction. The numerical
solution, as described in Section 2.3, requires the Mach number at
any point within the nozzle; hence, it was necessary to interpolate be-
tween the seven measured values. A cubic splines method was used
to do this interpolation. This method guarantees a continuous first
and second derivative thrqughout the region of interpolation, but does
not allow one to specify, for example, the beginning or ending first
derivative. Thus, the srmoothed Mach number distribution which re-
sults from this calculation will not necessarily have a zero first de-
rivative at the inlet and exit of the nozzle as we know must exist.

To allow a zero first derivative to be specified at the inlet of the noz-
zle, the cubic splines curve was not used between the inlet and the
first static pressure measurement location (x ~ 1' ). In its place, a
third-order polynomial was used. The four conditions specified for
the polynomial were the Mach number at both ends and the first de-
rivative at both ends. This allows one to specify zero first deriva-
tive at the inlet. Also, continuity of first derivative is preserved, but
continuity of seconci derivative is not.

A similar method was used at the nozzle exit, but it was
found that a slight overshoot in the Mach number resulted just up-

stream of the nozzle exit. This overshoot was minimized by slightly
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moving the point, at which the cubic splines curve and the polynomial
were joined,upstream or downstream.

A typical graph of the Mach number and dimensionless velocity
gradiént, d(&/a*‘)/d(xN) [see (2.5)] as calculated by this method is
shown in Figure 4-2. The upstream point (x ~ 1'') where the two
curvesr (cubic splines and pol‘ynornial) were joined is clearly evident
in the velocity gradient. This discontinuity in the second derivative
should cause no problems as far as accuracy of representation of the
mean flow. Recall from (2. 8) that the gradient only enters as Mz dU/dX
and hence, the contribution is small in the inlet region of the nozzle
where the discontinuity occurs.

It was not possible to control the total pressure exactly for
each experiment. Since the nozzle is not choked this means that the
Mach number distribution could vary from one experiment to another.
It was assumed that for these small unavoidable changes in the total
pressure the boundary layer thickness, and hence effective flow area,
would not change appreciably. Thus, this smoothed Mach distribution
was used to generate a normalized area ratio distribution through the
nozzle, which was assumed to be independent of nozzle total pressure.
The inlet static pressure recorded for a given experiment could be
used in conjunction with the area ratio function to calculate a Mach
number distribution for that experiment.

The Pulse Heater. We show a more detailed diagram of the

pulse heater in Figure 4-3. The heater actually consists of three
smaller heaters, each occupying about 1/3 of the upstream duct

cross-sectional area. The three heaters could be operated independ-
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ently to produce a two-dimensional heat pulse. Experiments con-
cerned with this mode of operation will be discussed in Chapter V.

By connecting the heaters together (external to the tunnel) the entire
cross section of flow could be heated uniformly, thus creating one-
dimensional disturbances. We will be concerned with this mode of
operation in this chapter, and we will consider the heater to be simply
a grid of wires strung uniformly across the entire cross section of
the duct. To produce a periodic disturbance a square wave of voltage
was applied across the heater. The square wave was produced by an
SCR commutation circuit which is described in more detail in Appen-
dix F. The resistance of the heater was 5.4 ohms and the peak voltage
was about 300. Hence, the peak power input to the heater was about
16 kilowatts and this produced a temperature fluctuation in the gas of
approximately 0. 3°C. This fluctuation is small because of the high
frequency (400 Hz) of the pulsing and the finite length of the heater. A
higher frequency pulse produces a smaller temperature fluctuation
due to the thermal lag of the heater wires. The thermal time constant
of the nichrome wires in this flow corresponds to about 4 Hz.

A longer heater will allow more heat to be transferred to a
fluid element, but since the heat transfer decreases as the fluid ele-
ment temperature rises, this benefit has its limit. Also, an element
of fluid will lose heat if it must pass through wires which are not con-
ducting current. The present heater represents a compromise be-
tween wire diameter and melting temperature, gas flow rate, electri-

cal power available, and frequency of pulses required.
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4.3 Data Acquisition and Processing

Dynamic Transducers and Measurement of the Entropy Wave.

The temperature fluctuation was measured at the position x = -0.5"
shown on Figure 4-1 with a 1.28 um platinum/rhodium cold-wire re-
sistance thermometer/amplifier system. The wire carries a constant
current of a low value (0.2 ma) so that the velocity fluctuations do not
affect the wire temperature. Gas temperature fluctuations are sensed
by the wire as resistance fluctuations; the constant current then gives
a fluctuating voltage cross the wire proportional to the gas tempera-
ture fluctuations. The signal is then amplified.

Pressure fluctuations were detected with piezoelectric trans-
ducers and associated charge amplifiers. The transducers were cali-
brated by inserting a (calibrated) microphone nearly in the tunnel. A
loudspeaker was operated near the tunnel exit such that typical signal
strengths were detected by the microphone as would be expected in the
actuai experiments; there was no gas flowing in the blowdown tunnel.
Care was taken to insure that the transducers were inserted to the
same depth in the tunnel and inserted with the same torque for each
experiment, as for the calibration.

By measuring the temperature fluctuation, T’ , and the pres-
sure fluctuation, P’ , the complex magnitude of the entropy wave

being convected into the nozzle can be calculated. The equation of

state (2. 4) and the ideal gas law, P=0R7T |, may be linearized to
give:

’ ’
- g . 9 ) (4.3)
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Effect of Flow Noise on the Measurements. Since our analysis

of Chapter II was a harmonic analysis, we must deal with signals of
only a single frequency. If we pulse the heater at a fundamental fre-
quency, say Fo , we expect to find temperature and pressure fluc-
tuations at that frequency and all harmonics. We expect the funda-
mental component of the signal to be the largest, and hence we will
attempt to measure the phase and magnitude of that component.

The determination of phase and magnitude of the fundamental
oomppnent, by any method, will be affected by the presence of noise.
Consider, for example, a signal at the fundamental frequency of mag-
nitude 1.0 and phasé 0°. Suppose we also have present at this fre-
quency another signal of magnitude S and phase qJS where
- £¢s €17 | The sum of these two signals can be represented by

the vector sum in the phase plane:

The horizontal axis here represents the real (cosine) component of

the signal and the vertical axis represents the imaginary (sine) com-
ponent. Then the net signal at the fundamental frequency will be rep-
resnted as the locus of points given by the circle in the above diagram.

We can write the magnitude of the net signal as

((1+scosds) +(5 sinds)?)% = (I-»‘ESC<3'5<.7.')5+52)y;i
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and the phase will be

-t [ 5 sings
tan (Hscoscﬁs)

The presence of the secondary signal will cause a maximum
"error' § in the determination of the magnitude and a maximum
phase error = smn™'s . If we consider the secondary signal to be
noise, then we may call /S the signal-to-noise ratio since it is the
ratio of the amplitude of the signal to that of the noise.

As an example, consider a signal-to-noise ratio of 10. We
would expect to determine the mapgnitude of the signal‘ to £10 per cent
and the phase to £ Sm"(-l) gt

Since the temperature fluctuation in this experiment is small,
one would expect that the pressure signals would be small (in fact, we
expect P'/»B:(y(T/"T')HZ 1073 , see Section 5. 3). In this case,
the flow noise will be expected to be significant compared to these
signals. Reference 2 reports on the pressure fluctuation due (pri-
marily) to turbulence in a subsonic boundary layer. The power spec-
trum of fhis fluctuating pressure was found to be quite flat for fre-

quencies which cover our range of interest. The reported magnitude

of pressure fluctuation was

LB

Patm
This does not include any noise such as we may have from the

300"

mean flow region, from the plenum chamber, or from the flow pass-
ing across the pulse heater wires. It is clear,then, that the flow
noise we will encounter will be roughly the same magnitude as the

signals we seek to measure. Our previous statements imply that the
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resulting errors in any calculation of phase and magnitude will be un-
accebtable.

The method used to increase the signal-to-noise ratio here
will be called ensemble averaging. The method is very straightfor-
ward and consists of averaging ensembleé of data which, except for
the noise, are identical. Suppose that we begin recording the output
of one of the pressure transducers, for example, at time T, after
the pulse heater is turned on at time o . If we stop recording l
data at some later time tz , we call the record of data an ensemble
of length T;~%, . The next time the heater is turned oﬁ, we again
wait a period t,-te and record the output of the same transducer
for length of time %2-T, . We now have two ensembles of the same
length. Since they represent data recorded with the same relative
phase with respect to a periodic disturbance, they should be identical
excépt for any contribution not associated with the periodic disturb-
ance.

Suppose we have several such ensembles which were digitally
sampled (each ensemble consists of a given number of discrete val-
ues). _ If we look at the same respective value in each ensemble (i.e.,
the jth value in each ensemble), then this value represents the sig-
nal recorded at exactly the same phase (time delay) with respect to
the heat pulse. If the noise were small, all the values would be about
the same, with some small scatter. Our inclination would be to sim-
ply take the mean of these values to get some average representation
of the signal (without the noise) which occurred at that time. The en-

semble average technique simply performs this averaging for all the
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respective points in the ensembles. The resulting averaged ensemble
would be expected to represent the signal more closely. We a?.so ex-
pect that if the noise is large we will need to average more ensembles
to get a close representation of the signal. It is possible to show

(see ref. 3) that if the noise has a Gaussian distribution, then aver-
aging. in this manner will tend to decrease the noise relative to the
signal like n'/Z where NN is the number of ensembles averaged.

We have shown that the unprocessed signal should have about
equal amounts of noise, hence if we average 100 ensembles we should
get a final signal-to-noise ratio of about 10.

The circuit required to allow data acquisition in synchroniza-
tion with the heat pulses is described schematically in Figure 4-4.

A detailed description of each circuit may be found in Appendix F.
We describe briefly the operation of the system here. The frequency
refefence consists of a crystal oscillator and provides a fixed (fre-
quency) digital signal to act as a time base for the entire experiment.
The pulse generator logic (digitally) divides the reference signal to
give five signals, three of which are shown on Figure 4-4 leaving the
pulse generator logic and passing through a ground isolation system.
These three signals are amplified and ultimately produce the high
power pulses required to operate the pulse heaters. When we are
producing a one-dimensional heat pulse, all three heaters (Figure
4.3) operate as a single heater. In this case, only two of the three
signals leaving the pulse generator are used. The reason that two
are required is explained in Appendix F (in the discussion of the SCR

commutation circuit}., The third signal is required when it is neces -
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sary to operate the pulse heaters independently. This mode of opera-
tion will be described in more detail in Chapter V.

The production of the high power heat pulses causes a large
amount of electrical noise which must not be allowed to interfere with
the operation of the logic circuits. The ground isolation circuit al-
lows the logic circuit ground and the high power circuit ground to be
independent of each other. Besides the electrical noise in the ground
of the high power circuit, a large amount of noise was radiated be-
cause the SCR commutation circuit generally switched on 60 amps
in about 1 microsecond. This noise is in phase with the temperature
and pressure fluctuations to be measured, and thus is not affected by
the ensemble averaging process. Hence, it can strongly influence the
calculation of the phase and amplitude of the fundamental component of
those quantities unless isolated from the instrumentation (resistance
wire amplifier and charge amplifiers).

In order to prevent the radiated electrical noise from reaching
the instrumentation, all wires carrying a high current with fast tran-
sients were heavily shielded. We were able to demonstrate that the
electrical noise was not affecting the instrumentation; a typical exper-
iment was performed with two modifications. First, a pressure
transducer was isolated from acoustic disturbances in such a way that
its sensitivity to electrical noise was not altered. Second, the con-
stant current required to operate the cold-wire resistance thermome-
ter was turned off. The cold wire remained as input to its amplifier,
but in this way it would not be sensitive to temperature fluctuations.

Any electrical interference could still affect the wire. After the data
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were processed, it was seen that the remaining signals (from these
two transducers) at the fundamental frequency (which could only be
caused by electrical interference) were negligible compared to the
pressure and temperature signals recorded during a normal experi-
ment.

Data Acquisition System. In order to allow the acquisition of

data ensembles in synchronization with the heat pulses, the pulse
generator produces two other signals. These signals ultimately reach
a computer/data acquisition system which consists of a computer
(Hewlett-Packard model 2100, with 32K integer words of memory)
and a l6-channel analog/digital (A/D) conversion system. The "in-
strumentation'' referred to in Figure 4-4 consists of seven (analog)
signals from the pressure transducer/charge amplifiers, one (analog)
signal from the cold-wire resistance thermometer/amplifier, and two
reference signals. One of these reference signals is a constant 1. 000
volt d. c. signal which acts as a calibration check on the A/D convert-
er., The second reference signal isa TTL square wave at the funda-
mental frequency and allows one to easily check whether or not the
ensembie averaging was performed correctly. (After any number of
ensembles have been averaged, the square wave should be unaltered. )
These ten signals are input to the A/D converter.

The '""clock' signal, which comes from the pulse generator, is
a TTL square wave of a frequency which is some multiple of the fun-
damental frequency. The frequency of this signal will be discussed
shortly. The '"beta' signal is also a TTL square wave. If the beta

signal is logical true, then the A/D converter samples the analog
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channels in order, digitizes the voltage from each channel, and makes
the digital number (representing the voltage for that channel) avail-
able to the computer. The frequency that the A/D converter samples
from one channel to the next is that of the "clock! signal. The data
controller (see Figure 4-4) causes the '"beta' signal to be logical
true for a pre-set number of cycles (of the fundamental frequency)
and then become logical false for a pre-set number of cycles. The
number of cycles that '"beta'' is true determines the length of the en-
semble. The length of time required by the computer to process the
ensemble determines the number of cycles that ""beta'' is false (which
inhibits data acquisition).

The processing of the ensemble was done in one of two ways.
For short ensembles (up to about 2 cycles in length), the ensemble
averaging could be carried out in (computer) core. The A/D con-
verts the data making up the ensemble to digital form and the com-
puter stores the ensemble in memory. After the next ensemble is
sampled, the values are added to the respective values of the previous
ensemble which was already in core. For longer ensembles, this
adding process requires too much time, and it is more efficient to
write each ensemble on the magnetic disk memory. After the ex-
periment is complete, the ensembles are read off the disk and
averaged by the computer.

Since the static temperature of the gas falls during the experi-
ment, and since the cost of the gas is appreciable, it is best to waste
the least amount of time during the experiment. At least part of the

time the ensembles are being processed (either averaged in core or
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being written on the disk), no data are being recorded. These two
methods of processing the ensemble were used in order to minimize
the time during which no data were being recorded.

Calculation of the Fourier Spectrum. After the experiment is

compl.ete, the averapged data are written on magnetic tape for further
processing. The data in this form are a record (for each channel)
consi-s.ting of a set number of cycles of a signal with about 10 per cent
noise content. We are now ready to determine the phase and magni-
tude of the fundamental component of each signal recorded.

We denote the values in each record as Vj , =0,/ ...N-/ ,
where we have N equally spaced samples. Each sample Vj rep-.
resents the voltage (on the particular channel) at a particular time

J.Af where AT is the sampling period for each channel. The
sampling period is just the period of the !'clock'' signal multiplied
by the number of channels scanned by the A/D converter.

We would like to calculate the Fourier Series representation
of the data record. If the record were a continuous function of time

Vt), O £t<£T =NaAt , we would represent V{t) as

[e¢]
vi(t) =Z Cn €xp(-2mint/T) (4. 4)

n=-o

with

y
Cn= f vt exp@mint/T)dt (4.5)

(@]

vl
=

Since we have sampled V(t) at the discrete times o,at,2at .- nat
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we approximate the coefficients by

Z

Cn% 4 > v(jsb) exp(2minj/N) (4.6)

J:O
which may be considered as the application of the trapezoidal integra-

tion rule to eq. (4.5). Note that since U[{’) is real,

Cn™ —% [U(t)cos(Zﬂrnt/T)dt

i Tut) sinfzmnt/rdt 4.7)
(o]

Gonséquently, the real part of Ch (N>0 )is just half the cosine co-
efficient of U(?) , and the imaginary part of Cpn ( N>0 )is just
half the sine coefficient of U(t) . This may be verified by changing
the variable of summation in the negative portion of the summation in
(4. 4) and by using (4. 7), write that portion as a summation over posi-

tive N1 . This gives

v(t) = i [2 Re(Cn) COS@RTNT/T) + 2Im(Cn) sin@mnt/T)]+ Cq

nh=1

The question remains as to how accurate a representation of eq. (4.5)
is eq. (4.6). Cooley, et al. c have shown that for
N-
Cpn = 7\!," ZU(jAf)exp (érrdnj/N) (4. 8)
"

we will find

@
CPI’I = Z C(VH'N-?) (4.9)

=-ag
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The equation (4.9) is an expression of the so-called aliasing effect.
This says that if we want the Cpn to accurately represent the
Fourier coefficients Cn , then N must be ''large enough' so that
the approximation (4. 6) is acceptable. Since N=T/AT | large N im-
plies that we must sample vit) ata "high'' frequency. If the sam-
pling frequency is F=1/at , then we would like F  to be large
enough so that Ch ¥ O for frequency £ I'F|>2"-F (T=f)

We will then have

Conn = C-n n=12 --Nj2

In the present work, high-frequency signals were associated
with noise, and the largest signals of this type were expected from
the pressure transducers. The resistance thermometer had low
sensitivity to velocity fluctuations and a signal with high frequency
contént was not expected. A nominal value for the fundamental fre-
quenéy was 250 Hz and the data were sampled at 32 times this fre-
quency.per channel. The frequency F/2 (called the Nyquist fre-
quency) is then 4 kHz. To insure that the frequency content of the
pressure signals was very small for frequencies greater than 4 kHz,
a low-pass analog filter was inserted between the charge amplifiers
and the A/D converter. The filter had -3 db point at 2 kHz with a
roll-off of 42 db/octave. Hence, any signal of 4kHz or greater
would be attenuated by about 42 db (reduced to less than 1 per cent).

The coefficients of the expansion Cpn may be calculated di-
rectly from eq. (4. 8)in (F(N?) operations. This constitutes the

classical '"discrete Fourier transform method, " and is suitable if
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only a very few of the frequency components are required. In order
to make some estimate of the quality of the signal (i.e., signal-to-
noise ratio) and to be able to easily determine if a large amount of
electrical interference had occurred, it was desirable to calculate
all the coefficients {pn , N=0,1,2--*N/2 . In order to perform
this calculation in a reasonable amount of time, the Fast Fourier
Transform (FFT) method was used. This method is discussed at
length in ref. 5. For our purposes, we need only note that the meth-
od requires that N be highly composite such as N’—"Km) KM are
integers. The computer program we used was given in ref. 5 and
requ/ires that K=2 . In this case, the calculation of the coefficients

Cpn may be performed in @"(/\/fogzN) operations. Nominal
values used for the data acquisition were such that 16 cycles of data,
32 points per cycle, comprised a record for each channel. Thus,
approximately one per cent([«zogaNJ/N ) of the operations were re-
quired by using the FFT method. An additional savings of a factor of
2 was realized by using the fact that the data U(Jﬂf) were real. The
procedure for utilizing this savings is covered in ref. 8.

As previously mentioned, there are two sources of noise
which may be present in our signal. The first is random (generally
considered Gaussian-white noise) which was caused by flow noise.
Our previous discussion showed that a nominal value for this flow
noise will be about 10 per cent of the signal. It is clear that the
pressure fluctuation field will vary through the duct and indeed,
(spatially) local minima, or nodes, in the amplitude may occur.

The flow noise may strongly influence the calculation of the
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amplitude and phase of the frequency component "'seen'’ by the trans-

ducer located at these nodes (see Effect of Flow Noise on the Measure -

ments, pagel20). It is clear, then, that any calculation of the ampli-
tude and phase of a component must be accompanied by a statement
giving some indication of how meaningful the calculated amplitude and
phase are. The measurement at a ''node' may be 50 per cent noise,
in which case the amplitude calculation would be in error by as much
as * 50 per cent and the phase calculation would be in error as much
as 30°.

It was assumed here that the flow noise was at least ''locally
white, "' meaning that the amplitude spectrum, near but excluding the
fundamental frequency of interest, was constant. In this way the am-
plitude of the noise component (at the fundamental frequency) could be
estimated as the mean of the noise components near the fundamental
component. As an example, consider an experiment performed at
250 Hz with a 16 cycle record. This gives a resolution (in the fre-
quency domain) Af = 16 Hz. The calculated amplitudes for the fre-
quency components fiy= 250 +naf =G24 10 were av-
eraged to give the noise component at 250 Hz. In this way, an esti-
mate of the signal-to-noise ratio (as used above) could be made.

The second type of noise is due to electrical interference cre-
ated by the rapid switching of high currents in the SCR commutation
system. This noise generally appeared as sharp transients in the
voltage waveform,and since thisnoise is in phase with the heat pulse,
it was not reduced by the ensemble averaging technique. Small

amounts of electrical noise were always present in the cold-wire out-
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put, probably because the wire acts like a small antenna (located quite
closé to the pulse heater). Also, the shielding of the high power
cables‘is not perfectly effective. Large amounts of electrical noise
were indicative of a shielding problem and could easily be seen from
the waveform or the amplitude spectrum. Since this noise appears as
very sharp transients in the waveform, the spectrum reveals nearly
equal amplitude, evenly spaced components. To check for objection-
able amounts of electrical interference, the fundamental component
was compared with the harmonic component with largest amplitude.
A harmonic of comparable amplitude to the fundamental is indicative
of a large contribution by electrical noise to the fundamental com-
ponent.

The éstimation of the two types of noise made possible the
elimination of:

(1) entire experiment if excessive electrical interference oc-

curred, indicating a broken wire shield ;
(ii) one data point (pressure fluctuation measurement) if the
flow noise were comparable to the amplitude at that point.

Note that in the case of (ii) we will still be able to say that the point
was a node, but we must be aware that the values of the phase and

magnitude are not reliable.

Typical waveforms and respective amplitude spectra from an

experiment with fundamental frequency ~ 250 Hz are shown in Figures
4-5 through 4-10. For this experiment, 100 ensembles were aver -
aged; each ensemble was 16 cycles in length, 32 data points were re-

corded per cycle. In Figures 4-5 and 4-6 we have the output of the
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pressure transducer/charge amplifier located at x = 11.5" (see Fig-
ure 4-1). In Figures 4-7 and 4-8 we have the (;utput of the pressure
transducer/charge amplifier located at x = 13.5', In Figures 4-9,
4_10, we have the output of the cold-wire resistance thermometer/am-
plifier which was located just upstream of the nozzle inlet (x = -3'').

The pressure fluctuation recorded from the position x = 113"
(Figures 4-5, 4-6) is a large signal in the sense that the amplitude
- components other than the fundamental are negligible. The wave form
(Figure 4-5) clearly exhibits the 16 cycles of the fundamental frequen-
cy. Our scheme for calculating the signal-to-noise ratio gives 32 db
for this signal, and the largest harmonic is 19 db below the funda-
mental. The pressure fluctuation recorded from the position x = 133"
has about one half the amplitude at the fundamental frequency, as does
the signal recorded at x = 11.5'". Most of the noise seems concen-
trated around 800 - 1600 Hz, and we expect that the amplitude compo-
nent of noise at the fundamental will be small. For this signal-to-
noise ratio we get 30 db, and the largest harmonic is 8 db below the
fundamental.

The figures 4-9, 4-10 demonstrate the electrical interference
noise discussed earlier. It was mentioned that the resistance ther-
mometer was more susceptible to this noise and this is evident in
these figures. There is obviously very little random (flow) noise re-
maining. The signal-to-noise ratio here Vis 48 db; the largest har-
monic is 21 db below the fundamental.

The sharp, periodic transients seen in the waveform are due

to electrical interference and cause the evenly spaced smaller peaks
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in the amplitude spectrum. The effect of the analog filter is clearly
evident in Figures 4-6 and 4-8 from the sharp roll-off in response for
frequencies above 2 kHz. The filter used for the resistance ther-
mometer had a -3 db point at 5 k Hz and a roll-off of 18 db/octave.
The electrical interference was evidently not reduced by the filter.
It is also possible that the interference actually occurred in the long
cables from the thermometer/amplifier output to the computer. In
either case, this high-frequency content is not enough to cause sig-
nificant problems either with aliasing or with determination of phase
and amplitude of the fundamental component of the temperature fluc-
tuation.

Finally, it should be noted that the digital sampling causes a
phase shift due to the finite sampling frequency. The last channel
sampled will be shifted the most (in the time domain) relative to the
first channel. This phase shift has been compensated for in reporting

the phase of the fundamental component of any signal.

4,4 Results and Discussion

In this section we first discuss the calculations leading to
Pf , P.  from the experimental data for one experiment. This
x # B ) :
will lead to a value of /~~ and /2 used in the numerical calcula-
tion. Numerical results will be presented for two experiments per-
formed at different fundamental frequencies.
An experiment was performed with fundamental frequency
Fo® 250 Hz. One hundred ensembles were averaged, each con-

sisting of 16 cycles, 32 points per cycle of data from a given trans-
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ducer. An attempt was made to measure the pressure perturbation
in the two constant-area ducts from this one experiment. The pres-
sure perturbations for the remaining positions (in the nozzle) were
then measured in another experiment. Due to the difficulty in pre-
cisely controlling the mean conditions (total pressure and total tem-
perature) it was felt that this method would be the most self-con-
sistent.

In order to determine the upstream and downstream propa-
gating waves in the upstream duct ( nD,‘ and P,+ respectively), pres-
sure measurements were made at x = - 6. 75", -2.75" and -0.75"
(see Figure 4-1). This allows three independent calculations of each
quantity P~ , P/ . The waves in the downstream duct ( Pe- and
P; ) were determined from pressure measurements at x = 6. 75",
9.25', 11,25", and 13.25". This allows six independent calculations
of each quantity. The temperature fluctuation was measured at x =

~-0.75". The following table summarizes the values recorded.

Parameter Distance from Magnitude Phase
Nozzle Inlet
T'/T 0. 75" 1.39x10°° 45
P'/P 6.75" . 6ax10” % 168°
P'/P _2.75" 1.23x10°% _99°
P'/P _0.75" 1.90x10" % -94°
P'/P 6.75" 1.80x10~% ~128P
P'/P 9,25 3.59x10~ % _144°
P'/P 11.25" 2. 68x10"* +178°
P'/P 13.25" 1. 08x10" % +149°

where T is the mean total temperature measured upstream of the

pulse heater (compensation was later made for the increase in this
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quantity across the pulse heater). The mean pressure [~ is the
static pressure recorded at the position x =-. 75" (Figur’e 4-1).

The results of calculating P! (eq. (4.2)) were plotted in the
phase plane. For example, a vector was drawn for the value of P,+
The length represented the magnitude of the quantity, ((Re p/+)2 #*

(L m p'4)2)f/2. , the counter-clockwise angle from the right horizontal
axis represented the phase=7'"al’)‘,gmpr+/R€ R, Figure 4-11 is such a
display of D-+ and P.- based on the values of F’/B'/f“, recorded in
the upstream duct and listed in the preceding table. The vectors
terminated with "'M" represent the three calculations of P.  and
those terminated with P represent the three calculations of Py 2
The vector terminated with ''-'"" represents the vector average of the
three values of P, . The vector terminated with "'+ represents
the vector average of the three values of P;* . We should note that

i "
the M vectors were not necessarily drawn to the same scale as

i "

the P vectors.
There seems to be no particular problem with these results;
the scatter is quite small. We use the vector-averaged values:

+

P, 1.29-10°% A31° (4.29)

-

P = 093.10% /f3¢° (4.30)

The first quantity P will be required in the numerical computation,
while the second will be compared with the results of that computation.
*
The results for the downstream duct ( pz ) are presented in

I [ TR T "

u n
Figure 4-12; the notation M s P} T is unchanged from Fig-
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ure 4-11. Only five vectors are shown; the calculation based on the
first and last positions in the duct (6.75" and 13.25'") was not plotted.
" These two positions are very nearly one (upstream propagating) wave-

length apart:

A= £ 4 = ¢7"
-=

Since the downstream propagating wavelength Ax9 " is so large, the
variation of the pressure perturbation field (in the downstream duct)
is primarily due to the short wave A_ . Hence, the result of using
positions 6.75" and 13.25'" gives very large errors (because the sys-
tem (4.2) is ""near' singular). There is apparently a large amount of
scatter in the measurements presented in Figure 4-12,

The vectors are labeled with two digits which give, from the
table on Figure 4-12, the position of the two points used to calculate
that vector. For example, the P; vector in the fourth quadrant
with indices (1,2) was calculated from positions 6.75 and 9.25 inches
from the nozzle inlet.

From these indices it is possible to see that the vectors have
a monotonically increasing phase (decreasing for the Py wave) as
the measurement position moves downstream in the tunnel. Note that
in using (4.2) to calculate Pi the wave number (_ :@M/(U[/-M])
is very sensitive to Mach numbers near unity; for our experiment, a
1 per cent error in the Mach number gave a 6 per cent error in the
wave number CZ— . Such an error in the Mach number could easily
result from the manner in which we measured it. Additionally, a

weak Mach number gradient can exist in the duct, making an accurate



-138-

determination of the Mach number difficult. However, it will be seen
shortly that since the flow is nearly sonic in the downstream duct

the wave Pz.‘ has very little influence on the remainder of the duct.
Hence, difficulties in accurately determining P2 are offset by the
relative unimportance of the wave .

If these phase errors had been random in nature, a more fun-
damental difficulty with the experiment would have been indicated.
Howlever, since the conéistent increase in phase angle seems to be
closely related to the difficulties in determining the duct Mach num-
ber, we will use for Pzt those values most nearly repres entative of
the duct. Since the most representative value of the Mach number
would be the one near the center of the duct we will use the vectors
with indices (2, 3). Note that those values are quite nearly the
average values indicated by '"+'" or """, further indicating that the

3

data are scattered in an ordered manner about the middle, (2, 3),

points. The value we use is then

p, = 250 Ae5° (4.31)
P = 153 /= (4.32)

The value calculated for the entropy using eq. (4.3) and the values

given in the table on page 135 is

- .g—’ = 3.52-10% /45" (4.33)
P

X = -.ns§"
The measured static pressure for the experiment was used,

as previously described, to calculate the distribution of mean Mach

number in the nozzle such as in Figure 4-2. Having specified the
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fundamental frequency of the disturbance, a numerical integration
such as described in Section 2. 3 was performed. The results of this

numerical calculation are:

Tp transmitted wave,plus solution
Re reflected wave, plus solution
Zzpf)f) normalized pressure perturbation through the nozzle,

plus solution

Tm . transmitted wave, minus solution
Rm reflected wave, minus solution
Fam (X) normalized pressure perturbation through the nozzle,

minus solution

Te transmitted wave, entropy solution
Re reflected wave, entropy solution
Zoe(X) normalized pressure perturbation through the nozzle,

entropy solution

The results are presented in two ways. First, the calculation
(2.16) is carried out graphically. Using the experimental values of
P, P, T [egs. (4.29), (4.32), and (4.33), respectively] and
the values of Tp ) RP; Tm/ Rm,Te and Re from the numerical

solution we calculate
ID/; = Pr+/:\)p* Pz- T *URe
Pex = PUTo+ Py Rox #T T
The * subscript indicates the wave was calculated, not measured.

These four vectors, the three components and the resultant, are

drawn (in the usual convention) in Figure 4-13 as solid lines. The
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+
dashed vectors are experimentally determined vectors P or

Pt [eq. (4.29), (4.30), (4.31), or (4.32)]

The resultant waves
P/ and P x are to be compared as well as PZA and Pz:s

The scales are shown for the upstream duct (coordinate system on

left of diagram) and for the downstream duct (coordinate system on

right of diagram).

The comparison of P, and Pis shows that the magnitude of
the experimentally determined wave, P, , is about 30 per cent less
than the calculated value. The phase of the two vectors is in good
agreement. The mapgnitude of the calculated resultant wave PZI is
about 18 per cent less than the experimentally determined value. The
phase difference is about 14°.

That the error in the upstream duct is quite large is believed
to be related, at least partly, to inaccuracies in the representation of
the mean Mach number distribution. By making slight systematic
adjustments to the Mach number distributions (used in the numerical
calculations), it was observed that the normalized reflected waves

Rp Re were about 4 to 8 times more strongly affected than the
transmitted waves /P and /e . In the upstream duct, R, Re are
seen to have the strongest influence; while in the downstream duct,

Te and Te  have the strongest influence. We should note, how-
ever, that these slight adjustments in the Mach number distribution
did not affect these reflected waves strongly enough so that the dis-
crepancy (between P and pf-x) could be entirely related to this
problem.

By presenting the results in a manner such as Figure 4-13,
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the contributions of each disturbance in each duct can easily be seen.
As mentioned before, the P&— wave does not contribute significantly,
and this is clear from the diagram. Recall that this is because of the
high exit Mach number. The entropy and the plus ( P’ ) wave contrib-
ute about equally and, due to their phase relationships, tend to slightly
complement eacjh other, producing a somewhat larger resultant, P
or Pax
The second manner of presenting the data is to calculate the

pressure perturbation field using the experimentally measured values
of P;*) Pz— and O (as before) with the normalized pressure pertur-
bation functions which we found from the numerical calculation. The

general solution may be calculated:

4

P e i 3
F(X) = Z %)= P, FEsp(¥) + B Lopy(3) +0° Z 30 (%) (4.34)
where P = local mean static pressure. The mapgnitude of this

function IZz (x) l is plotted in Figure 4-14 and the phase is plotted in
Figure 4-15, both as solid curves. The experimentally measured
values are designated on the graphs also and seem to agree quite well
with the computed curves.

The phase errors are seen to increase as the magnitude be-
comes small because the signal-to-noise ratio for these data points
was small. The measured phase near the exit has a large error.
This seemed to be consistent with all experiments performed, and is
probably due to three-dimensional effects near the duct opening (x =

14).
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The behavior of the pressure perturbation is easily under-
stood. In the upstream duct the waves propagating upstream and
downstream have wavelength

_ UMz

which are both several nozzle lengths. Hence, the pressure pertur-
bation changes slowly in the upstream duct which is about one nozzle
length.

In the downstream duct the situation is different. The down-
stream propagating wave has a very long wavelength (many nozzle
lengths) and the upstream propagating wave has a wavelength roughly
one nozzle length. The resulting pressure perturbation field is the
vector resulting from the sum of /Dz* and Pe_ in the right portion
of Figure 4-13. Moving through the downstream duct the P; vector
may be considered to rotate very slowly. The Pz_ vector rotates
approximately one revolution as we pass down the duct. Since P2+
and /:?2— are roughly the same magnitude, the rapid changes in the
P

magnitude of the pressure perturbation result. The value

gives a mean value about which the rotation of the P vector gives
the oscillation seen in Figure 4-14. The peak and two nodes result
as Pz— rotates, in phase or out of phase,respectively, with the
vector.

A similar experiment was performed with a fundamental fre-
quency »~ 400 Hz. The resulting waves are drawn in Figure 4-16.

The differences between calculated and measured resultant waves
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= + +
( Px and R _or Fox  and ) are similar to the previous experi-
ment. We see that in both ducts the pressure wave disturbance
gives the largest contribution. The magnitude of the pressure per-
turbation field is shown in Figure 4-17, while the phase is shown in
Figure 4-18. The agreement between the calculated curve (solid line)
and measured data points (as indicated) is quite good. The problem
with measuring the phase at the position near the end of the duct is
obvious in this experiment also. The same rapid oscillation appears
in the downstream duct with the slower changes again appearing in the

upstream duct.

4.5 Conclusion

The measurement of the incident pressure wave P,+ poses no

special difficulty. The measurement of the incident pressure wave

P,z— is very (phase) sensitive, apparently because the Mach number
is near unity. The normalized solutions show, however, that this
wave, Pzi , does not strongly influence any other portion of the noz-
zle under these conditions. The calculation of the entropy wave, @ ,
is straightforward.

The normalized solutions can be used with the measured dis -
turbances Pl+, Pa- and 0 |, to construct the resultant waves ’Dl: Pz: i
or the complete pressure perturbation field through the nozzle.

These constructed quantities show good agreement through the nozzle
and in the downstream duct. The agreement in the upstream duct is

not quite as good, and this seems to be at least partly due to difficulty

in accurately representing the mean Mach number distribution through
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the nozzle.

The experiments verify that the analytical model proposed in
Chapter II can be used to adequately describe the interaction of pres-
sure and entropy waves with a one-dimensional subsonic nozzle flow.
Although the experiments described here tested only two frequencies
and one Mach number distribution, there is no reason to expect anom-

alous behavior at other frequencies or Mach distributions.
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V. EXPERIMENTS CONCERNING THE RESPONSE OF
NOZZLE FLOWS TO TWO-DIMENSIONAL DISTURBANCES

5.1 Introduction

The analysis of Chapter II and the experiment presented in
Chapter IV treat the one-dimensional interaction of pressure and
entropy waves for subsonic nozzles. A similar treatment of super-
sonic nozzles was covered in references 6 and 8 of Chapter II. An
obvious question arises, especially after considering the physical ap-
plication. The pressure and entropy disturbances produced by the
combustion process in the turbojet engine do not necessarily appear
as one-dimensional waves interacting with the mean flow. This is
especially true for the entropy disturbances, since they convect with
the mean flow and may retain their general shape while passing
through the engine. It is easy to imagine entropy spots, convecting
from the burner through the turbine or nozzle, of small enough size
to appear as three-dimensional disturbances. On the other hand,
pressure waves of low enough frequency will tend to equilibrate (only
plane modes propagate) so as to appear more "one-dimensional'' to
the mean flow.

It is our aim in this chapter to investigate the response of nox-
zles to disturbances which are not one-dimensional in nature. The
nozzles to be investigated are the ones used in the experiment de-
scribed in Chapter IV and a blowdown tunnel (which is choked) used in
the experiments described by reference 8 of Chapter II. The pulse

heater, as described in Chapter IV, will be used in the "dual' mode,
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whereby the heat addition can be varied across the duct cross section.
This cross-sectional variation is created by adding heat to the top
third or to the bottom third of the flow cross section 180° out of
phase.

An analysis (of periodic heat addition in a duct) will be de-
scribed whereby the output of the pulse heater, in terms of entropy
and pressure disturbances, can be found. The experiments consist
of several frequenlcies (of pulse heater operation) for the two nozzles.
Pressure perturbations are measured (primarily on the nozzle axis)
and the results explained in terms of the output of the pulse heater as

described by the analysis.

5.2 Experimental Apparatus: The Two-Dimensional Pulse Heater

The experiments performed on the subsonic nozzle differ from
those described in Chapter IV only by the manner in which the pulse
heater is operated. The supersonic nozzle was quite similar to the
subsonic nozzle except that the nitrogen flow was accelerated from
M =.20 to M = 1.38 in an axial distance of about 11'. The throat
position was 7.5" from the inlet and the Mach number distribution
was very nearly linear through the nozzle. The nozzle is described in
some detail in reference 8 of Chapter II. The reduced freqﬁency
for this nozzle uses the throat length, ‘{ = 7.50" as the length scale.

Recall that the pulse heater, which occupies about 2' of axial
distance, is located about 8'' upstream of the nozzle inlet position,

X=0 , see Figures 4-1 and 4-3. The heater is actually composed

of three identical independent heaters, each of which occupies a third
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of the duct cross section (one inch wide, three inches high). For the
experiments to be described here, the center heater is not used.
The remaining heaters, one occupying the top third of the duct cross
section, and the other occupying the bottom third of the duct cross
section, are pulsed 180° out of phase. This means that a voltage is
applied to the top heater for 1/2 cycle (of the fundamental frequency)
and then the bottom heater is pulsed for the remaining 1/2 cycle.

The heaters were operated from independent SCR's (see Ap-
pendix F). By passing the current from one SCR through a bank of
power resistors (external to the blowdown tunnel) in series with the
pulse heater, some of the power could be dissipated external to the
pulse heater. In this manner the top heater was allowed to dissipate
some fraction, &« , of the power dissipated by the bottom heater.
That fraction usually took on the values o =0, 1/4, 1/2, 1. The
power dissipated by the bottom heater was approximately one +third
the power dissipated by the entire heater when operated in the one-
dimensional mode as in the experiments described in Chapter IV.
Since each heater is one-third the resistance of the whole (5.4/3 =
1. 8 ochms), 100 volts was the pulsing voltage for the bottom heater
as opposed to 300 volts for the one-dimensional mode,

The data acquisition technique is similar to that explained in
Chapter IV, except that more ensemble averaging was used. Note
that the pressure disturbances we create in this experiment will be
small compared to those of the one-dimensional heater. For the
case ol = O one might expect pressure disturbances about one-third

those of the one-dimensional experiments. In this case, it would be
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necessary to average 900 ensembles to achieve a final signal-to-noise
ratio similar to the value achieved with 100 averaged ensembles for
the one-dimensional experiments. With the present facilities this is
an impractical amount of data to be recorded. Instead, 400 ensembles
were averaged; each ensemble was 2 cycles in length., The results
presented here represent final signal-to-noise ratio about @/9) %= 2/3

that for the results of the one-dimensional experiments.

5.3 Fluctuating Heat Addition in a Two-Dimensional Duct

In order to understand the results of the experiment it will be
necessary to know what disturbances the pulse heater creates, which
are to interact with the nozzle. To that end, we present an analysis
of a time-varying heat addition in a constant-area two-dimensional

duct. We assume a duct of infinite axial dimension, height 2b and

we allow an arbitrary heat addition over the region 04X = € . We
v (6(=Zb
// // ‘v,/ 4
P /// "’/ /
LAy - X
Ll
e ,-"-l ,"’ <
T
& /’(' yzo

QY1)

Diagram for the Analysis of Arbitrary Heat Addition
in a Two-Dimensional Duct

neglect viscosity, thermal conductivity, and assume an ideal gas flows
in the duct. The appropriate equatibns of continuity, axial momentum,

vertical momentum, energy, and state are:
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g—f o pu + j—g_pv =0 (5. 1)
p 5— Uﬁ—g_)u, 37=o (5.2)
pd §_+U§g)u+ -35=o (5.3)
pCAS U S+ 5’ )ﬁpd“ ;t) Q%Y%) (5.4)
P=pRT (5.5)

The heat addition, @ (Xg,'f) , is per unit volume. If the heat addi-
tion is small (compared to the flux of total enthalpy, for example),

then we assume a solution which consists of the mean duct flow (con-

stant) plus a small perturbation:

ucxy,t) = o+ U'(xy,t)

LY t) = po+p(x,y,t)

Vixyt) Uv'(Xy.t)

B x4t =P« PExyL) (5. 6)
T(xyt)=To+ T'(XYt)

Inserting (5. 6) into (5.1) - (5.5) and retaining terms linear in the

perturbation quantities we find

J d VP L du, v _
It u°c)_x)_ ox “ag _ ° we

z a L ¥R 9o P _ (5. 8)
(dt+u°ax) D ox 1P &
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9 ) ) o d P
(& o, )42 & P =
(dt ox Pe Oy ¥F, O (5.9)
Pl pl
o —Aleond R Ly t)
(dt (X}Do ﬁo) CPTPO q{ !j (5.10)
which may be manipulated to find an expression for the pressure per-
turbation:
- 3 —~—
AL +u° —) - 2 d ) e b’_-% /: X e 5.11
( ox*? c)g =% 4.¢) e 4.1}

; where we define

4

Plxgt) =
* = YRIe
M = U./C

2 Froyt) = (2 ud)
F( y,t) dt+ua CZ(X‘(/H
Since the surfaces % o0,2b are flat, we must have 'U’(X,O,t) =
U‘(X,Zb,f) = 0 . Equation (5.9) then gives the boundary con-

dition on the pressure

#GJ @) g:o,zb ' (5. 12}

We also assume the radiation condition.

For periodic heat addition we let
- ‘wt
Fixyt) = Fixy)e™
~ therefore
. (W
Pxy t)=rPxy)e

and equation (5. 11) becomes
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Lo Lyl \p R Lo
oz (w +2{wd d)(—fU e )57 dx2+ 9 )(}9 F{th.//) (5.13)

If we solve the problem via the Green's function,

Mx,g,f):[m/ Gy 5m)F(En)dnd¥

p 2b
=" [ 6xy s F(smydnds 518

(since F[X,g,) =0, d=x< o ), we see that this is identical to the
problem which was solved in Section 3.4. Hence, the Green's func-

tion may be taken directly from (3. 36), (3.37).

For the waves which propagate to + o , the attenuated

waves are neglected and the Green's function simplifies:

GO £ ) ZA,,COS( 0) cos( L) expfegor )10

Equation (5. 14) gives for the pressure mode N

B B cos(niT G')CP[ —x( )}

Fnlx.y) = Fu(xY)

X=>too
4
/ COS('W— C*XP{ "—Qn)} F(Em d“?df (5. 15)
o
0 £n =N,
For the waves which propagate to — @ the Green's function

simplifies to:
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G (XY;5m)
ZA” cos(nﬁi)cosnrrab exp[ 2 0-5) (B + 12 )}

_ Z An cos(nﬁZb)CosmTZb G’XP[ Lo g,r/ }} (5. 16)

WALl

The duct modes may be calculated from (5. 14):

Calxy) = B (xY)

. Ahcosév“ré* exp[ Lx- f)[ - Tha )Z

X-a0
y; 2bh
/o /,,COS(”ﬂzb)C’XP“ﬁz-:F[M Z ,,}}F(E’Z)dqdf (5. 17)
0 =£nsN
No<n<n

If the frequency is low enough such that

80 % G = TTC(/ M*) (5. 18)

then only the plane modes ( N=O ) will propagate, i.e., N=0
(The cutoff frequency, Fc = (AJC/27T , for our duct is 2100 Hz. )

In this case, the wave propagating to +00  becomes

ODJ(X#):J;Cb—w E?XP(-zgﬂﬁ-‘ﬂ)f[éxp( = HM)F(}"W)J?]G’? (5. 19)

+
We would like to calculate (P for the heat input we expect

‘wl
from the pulse heater. The heat addition Q('X,g)e‘“’ will be con-

stant for o< x= 4 and using the '', '' notation to denote the
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fraction of power dissipated by the top heater compared to the bottom

heater, we get

Qw oy 2253
2bwlQixy) ={ o 2b/32y < #b/3 (5. 20)
~o(Q@us 4b/3y< 2D

Here, ‘?u is the net heat addition component at frequency (w and
the tunnel depth is W . The minus sign emphasizes that the heat ad-
dition to the lower third of the flow is 180° out of phase with the heat

addition to the upper third of the flow. Then

wt /0 Y QoY) it
& /-‘(x,g) C_Z(a?+u°a_x) & (X ¢ &)

CpT= foa
Cwfzbowdl
oo ducoii- 5 SO O < y<2hb/3
Chtate = ¢ /
(5.21)
= o 26/3 < y< 45/3
C2GoTo o

Inserting this value of F  into (5.19) we find

PR g jw L iy ’%\
_— w _ C /+m VY. G
Uioes 3_)(2—)(@7;,0.25\,#&)}// = l/é & ) (5.23)

For the purely one-dimensional heat pulse, (5.20) would be

replaced by

260 WA(XY) = Gu 0=y £2b (5.24)
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where the value of CZ"‘J is unchanged. The result then is identical
to (5.23) except the leading factor (I-®)/3  is replaced by 1.0. It is
clear that Fo must behave in a similar manner.

For the region x>d  we may re-write (5. 10) in the form

g'-é+u°§)?) 5'()(,(4/{):0 (5.25)

Hence the entropy wave retaiﬁs its shape as it convects towards the
nozzle.

We summarize the above results for the experimental condi-

tions of interest:

(i) The entropy wave produced by the pulse heater retains its
shape as it convects towards the nozzle. This will, in
general, be two-dimensional.

(ii) The plane waves produced by the pulse heater scale like
(-2 /' 3 (where &« is the ratio of power dissipated
by the lower heater to that of the upper heater) of the
plane waves produced by operating the heater in the one-

dimensional mode.

5.4 Results of the Experiment and Discussion

Since the acoustic disturbances produced by the two-dimen-
sioﬁal heater are only plane waves which scale like (/-%)/3 | com -
pared to those produced by the one-dimensional heater, the pressure
perturbation field through the complete tunnel resulting from these
waves should scale like ((-¢)/3 . We know how to treat the one-

dimensional acoustic waves (see Chapters II and IV).
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It only remains that we determine the response of the nozzle
to the two-dimensional entropy waves. In the following experiments
the heater was operated at a given frequency for values of X = 0,
1/4, 1/2 and 1. The pressure perturbation (at the fundamental fre-
gquency) was measured at several positions on the duct axis as well
as one position approximately 1'' above the axis at the position just
upstream of the nozzle entrance (see Figure 4-1 for the subsonic
nozzle). The purpose of this latter measurement was simply to detect
any two-dimensional activity at that point, since the pressure record-
ed there should be identical to the pressure recorded on the duct axis
(at the entra.nrce location) for purely one-dimensional wave motion.

As a comparison, the results for the one-dimensional heat
pulse experiment are also plotted. These data have been scaled such
that the pressure on the (axis) inlet position is the same as the pres-
sure at that position for the A=0O experiment. Note that in the ab-
sence of entropy waves, this scaling value should be 1/3. Due to dif-
ficulties in precisely controlling the amplitude of the voltage supplied
to the pulse heaters,and due to the effect of the two-dimensional en-
tropy wave, this value varied by %+ 10 per cent.

The results for the supersonic nozzle are plotted in Figures
5-1, 5-2. The off-axis measurement (near the inlet) is shown as the
unattached point in all the graphs. For the case X =/ we should
have no pressure wave = impinging upon the nozzle according to
the analysis of Section 5.2, The results show very low values re-
corded for the pressure on the duct axis. (These values are actually

the magnitude of the residual flow noise. ) The off-axis measure-
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ment, however, clearly shows a pressure disturbance. The entropy
wave is completely asymmetric about the duct axis. This results in
a pressure perturbation field which is completely asymmetric about
the duct axis.

This implies a pressure node on the axis in the same sense
that in a constant area duct, the odd (asymmetric) modes have a node
on the duct axis. The value recorded off-axis confirms that there is
a pressure disturbance in the duct. The higher frequency case (Fig-
ure 5-1) shows consistently increasing axial pressure perturbation as

X decreases, indicating two things. The first is that a plane pres-
sure wave, Pn+ , of scale (I-o) /3 impinges upon the nozzle and
increases in magnitude with decreasing &« . The second is that the
"increasing symmetry'' of the entropy wave produces more symmetri-
cal pressure perturbation fields and hence larger axial pressure meas-
urements.

The results for the experiment performed at the lower frequen-
cy ( wlt/a* =97 ), shown in Figure 5-2, are similar; however,
the two-dimensional effects are smaller. Note that with decreasing’

« , the data converge to the (scaled) one-dimensional results. In
addition, the difference between the off-axis pressure and the on-axis
pressure (at the inlet) is smaller for this experiment. These results
imply that for a sufficiently long entropy spot (low frequency), the
two-dimensionality of the spot may be neglected. The resulting pres-
sure perturbation field will scale like the effective cross-sectional
area of the duct that the entropy spot occupies. Note that in Figure

5.2 the pressure perturbation fields (for a given value of X ) scale
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like [~ , in a crude way. It is expected that for decreasing fre-
quency, this scaling will improve.

The results for the experiments performed in the subsonic
nozzle are presented in Figures 5-3, 5-4, 5-5. It is to be expected
that, for low enough frequency, the pressure perturbation fields (for
each « ) should again scale like [-& . The dimensional frequency

(M used in Figure 5-3 corresponds to that used in Figure 5-1. The
dimensional frequency ) used in Figure 5-4 corresponds to that
used in Figure 5-2. It was expected, since the scaling was effective
in Figure 5-2, that it would be effective in Figure 5-4. It can be
seen that this is not the case. The two-dimensional effects are as ap-
parent in Figure 5-3 and in 5-4. This is especially obvious in the
downstream constant-area duct, x > 6. 75", since only plane waves
should propagate here. We knew that the plane waves due to the
pressure disturbance, P'+ , created by the heater should scale
properly. We do not know how the plane waves, created by the two-
dimensional entropy wave, should scale. It is clear from the results
in the downstream duct (Figures 5-3, 5-4) that these plane waves do
not scale like /=&

The experiment was performed at a lower frequency (f ~
200 Hz) to verify that scaling would occur. These results are pre-
sented in Figure 5-5. The case =0 scales very closely to the
one-dimensional results and the case O<=é scales very closely to
[~ = '/2 of the one-dimensional results.

The results for the one-dimensional experiment (for the low-

est frequency) are quite interesting, in themselves. In the down-
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stream duct, the R+Tp and the 0 Te (see eq. (2.16)) components of

Paf apparently cancel, leaving near ''silence.'" It is clear that the
two-dimensional experiments must scale like /[~ (for both pres-
sure and entropy disturbance); otherwise, these experiments would
not exhibit the cancellation in the downstream duct.

The conclusion remains the same as for the choked nozzle.

For a sufficiently low frequency disturbance the two-dimensionality
of the entropy spot may be neglected and the resultant pressure field
will scale with the cross-sectional area occupied by the spot. It may
be possible to analyze the problem by performing an expansion (in
terms of frequency) for low frequency of the equations of motion.
In this manner it may be possible to determine how small the frequen-
cy must be (and how the Mach number distribution affects that fre-

quency limit) in order to neglect two-dimensional effects in the nozzle.
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APPENDIX A

First order steady solution

Starting with eqs. (3.24) and (3.25) we calculate

0% _ -Urre g
a-g_—(f,o) = = (Zﬂ),/zf[éﬁlﬂﬁx+5ln27'f ]@‘ dx

which may be integrated and simplified to

(fo Ume: 1_r) sinag

(Al)

/
17 g 2 w2
(2 ) 5° GRS
solving for a(f) and b(f) in eq. (3.26) and inserting into (3.27) we find

that the solution for the ve10city may be conveniently expressed as:
9 2 "é uht— [ U(” = UfTE
(’ M) 2a2 rr)a 2 (avr) ?2

5:nh?(;’-r;naz){tbr) E’XP[" F(X-i("/"")yl(b“a‘))] dt

(A2)

If |X|>Q it is convenient to consider the integral

_ sinas  exp[l $(x~i(1-M2)"2(b-y))
I_t(x;g) —f[ﬂ)EQJ;Z x [ Sﬂﬂ"{(l-/"\z}?’?b(‘ﬂ 4 ]d}’ f"’;Z
a

where Re$ =% and " is a contour along the § axis, closing with a
semicircle, Denoting the principal value of the integral as PV

we will have

(I“Mz)%um‘"[ym - UTTE {PV{I (xg)) PWIé(X 3 )} (A3)

The poles at $=0,*m{/a do not contribute. If X<-a we close the
contour with a semicircle in the lower half plane ( Im 0 <0), as is

clear from the exponential term in the integral. 1In this case
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PV (T,xy)) = -21ri Z Res (A4)
where Res are the residues from poles falling inside the contour

In this case ( X<-A ) we must calculate residues of

sina$  exp[iF(x+((1-m?)"%(y-b))] (A5)
[%_e)z_ya sinh({(i-m3)"2p ¢)

at _ ~tnmT
f =

(I-3%b il

For each value of n this residue is

i sinhl2% | € xp((ﬂ%@ (x+{(-M?)*(y-B) ))
(~)(1-M2) 72 b[(ﬂg)z A M?),/rb )2]

Applying (A3) and (3.21) and separating real and imaginary parts we
find

w_ -Ure nma nirx
' s Z(P smh[ E),Zb]cmﬁ’m €XP[0 Mz)yzb]

a_ _ufrr’e nma NniTx :
(I- Mz)Vzbaa ZOD sin [ ?),/b],sm( 77% cx ] (A6)

(-M2)%b
a) 1y
P o oY
YP U
X< ~a

]

[
£ (&f+ (a-r/:«c)r"b)e | %)2’((/-%?)%)2
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If X>A we close the contour with a semicircle in the upper half

plane. We will evaluate the residues of eq. (A5) at

¥ chrr
(I—Ma)‘/"b
applying eq. (A3) where the principal value is calculated from

PV(Isty) = 2ri 3 Res
For each value of n the residue will be
( sinh| o] exp| e (x+ L(-M*Xy-b)]
() {l Mz)/gb[(ﬂ’! { /V\Z)Zb)zl

Applying (A3) and (3.21) and separating real and imaginary parts

we find

_ -Um?e nfra nirx
BOMIE Z O smh[ﬂ Ma),,zb]cosﬁo Mo /CEP, [(/ -M?”b ]

_ -Um'e nira Y -NTrX
(i-mf)""b 2 Z 63”5'"h ‘)*B]S'n(n & D) s [ (/—MEJ'/Zb]

—_—
JP i v
Xx>a
(A7)
If —a<X<a we write
- _/ smnaf eypﬁf(x-[(l-M‘)(b-g))jd "
LD ™) (mefgr T sph-mIb) “’
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where the solution will be given by

2)% @ _ UMe
(1-M8) % u - Fr (x,gﬁ (A8)

_
Now, we can let L% _.27(1*—1“) where

=/m g exp[zf’(X-t(/Mz)’/*(bg)Jd
(ZF-1 sinh((1-m?3"b¥)

-ia¥ -M2)%2
I - exp[S(x-Lr-MYEb-y))] e
joo a-: )~ ¥ SINN((-MD%HE)

(A9)

We consider Ixs in the ¥ plane (Ref=f again). We will close the
contour in the lower half plane since X-@a <0 . We must consider

o -(nir
poles at $=zmL/a , 0, and %D

The contribution to the principal value of the poles on the real axis

all of which will contribute.

may be calculated by indenting the contour around the poles below
the real axis., In this manner the contribution from the pole at
g = "11! is
* /
—ia  exp[-{ Zx-a)-i(rm)e(b-y)]
24 smh(r2 (-m2)%p)
and from j’=ﬂ'-0/d.

ia exp i B (k-a))-i(-m)"0-9)]
Y SINh(T & (1-m2)"% b)

and from ¥ =0

(l- M?)"l 1TJ
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Now, calculating the residues from the poles at f = =N
(1-M2)"% b

we find for each n

erp [ 225 ] exp [(—',%wa (- (G- )

(I"(1-m)"e b[(ﬁj) (( -m)%b ) 2)

for the residue, The principal value may be calculated by summing

over n, multiplying by -2r( and subtracting the contributions from
the poles on the real axis.

In calculating Ix we close the contour in the upper half ¥ plane
since X+a >0 . The contour will be indented above the poles on the
real axis and in this way the contribution from the pole at f= -md/a

may be shown to be
ai exp[-(md(-a-i-+)%(b-y))]
o sinh [(/ ) bt ]
A
and from f= TT-(/O,
o gzp[éﬁéf[(x—a.)-((/-M?)(b-g))]
24 \Smh[[f-Mzz'ébﬂ'{{
a

and from =0
k| (_
(1-m¥b (T4

The residue of the poles f={l:!'/-%;"%5 will be

exp [—(7“%%) ((x+a) —[(/-M‘)(b-g))}

=)"(-m)%b [(F' (- M?)‘feb)z]
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The principal value may be calculated by summing over n, multi-
plying by 2T and subtracting the contributions from the poles on

the real axis.

The calculation of Is , I« then gives IJ(X,#) . Eqg. (A8)

will then give

B Uurmre 377 (_C_l)z
4a3(1-m?)%2 2(1-M2)%p (T

a cos(r &) cosh(G(-m*)%(b-y) ) cosm)coshE-m¥(by))
51nh(g(/-M2)b) 25.'nh(2'””(z Ma)/zb)

4
s § oot cofmenf2ie] |

Um - -UrTre
4qt

5 [Si0tT &) snh(E-m)%b-y)) - sinfm 3 )sinbie aﬁ("M’)Vz(b'é‘))]
ST (-m?)b) 2 sinh2Za-»Y%b)

" o Z O 5”’[ nf[z)ib] (m3)exe [ﬁ%’J }

P

U
P ~A<xr<A Al0

The complete solution is eqs. (A6), (A7), (Al0).
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APPENDIX B

Calculation of the Green's Function for the Second Order Inhomog-

enous Solution

We seek a solution of (3.30), (3.31) of the form of eq. (3. 32).
Since we expect a periodic solution, we write (3.30)

2 .
{—(%) +2L— —+M gx ‘;35‘,?‘_ ¥ = Fxy) (B1)

or I { "lp} = F(xt#) where of is the differential operator.
Now define GE(X,li;Y"") such that

Z{Ce x4 5} = A (xyi5m) (B2)

where Fe is a function which is zero outside the small square
S0 §-€ <X<¥+€ M€ <y<mye and fffsa’xdg(zl _
Se g
or considering Se: X-€<¥<X+¥ , Y-€<7 N<Y+E /[{c a/?c[7=[
Se’

Now define
® 2b

b, )= [ Geliy; §MFENITN

~then
Xt€

A [ £ F(sm)d3dy - | f F RSty

F-x-€ 7M=y-€

If the forcing functlon in (B1) is contlnuous

Lfte} = Foug)

and as £+ 0 we expect Lﬂe to be the solution we seek if Ge

satisfies the boundary condition (3.31), and the radiation condition.
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Outside the Sg eq. (B2) gives
* _d _
{_('5‘) +z¢ +{M I)ax ag }G(Xgl,f )=0 (B3)

where a—-(i(gpo) =é£(g=2b) =0 . Also G must satisfy the radiation
oY o
condition. Solutions of (B3) which satisfy the boundary conditions

on the duct top and bottom are like

g : nrc ¥ 1 /Z)b.)_" *
cosfnmr %) exp [‘ T X (- Ebw) M) c] =

For shorthand we will write

_| ne\?_| | %
L2n7 | Gy ~ 2bw) I-M? (B
We note that if
e o g-me) " (B6)

2bw

the radical in (B4) is just fln. If the inequality is reversed then
the radical is (fln . We define N to be the largest integer n

satisfying (B6). We also define N1 to be the largest integer such that

N.TTC < |
2bw
since M<l | N, €N and for N<N,

'_N\Ma <—Qh

and N<n#£N
e >
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Choosing the (+) for the radical in (B4) we get waves propagating
upstream if N <N . Choosing the (-) for the radical we get waves
propagating downstream if N4N, | and upstream if N,<N &N
For n > N the waves attenuate if the proper sign on the radical is
chosen. These allow us to write down the general homogeneous

solution:

X<¥
6(X43,M) ZAncosnfT% exp[i(fag + o) 20x-1)]

- Z B CosnTr & exp [L(,%"M, —ﬂn)—‘g(x-‘s’)]

Nitl
+ i An COSHTT exp[ A Mz C(X—f)]expgfzn =(X~- g] (B7)
N+t
X>%¥
G(X¢;5M) ZCh cosntl 3 exp{ ( S g&-ﬂ]exp[—ﬂ,,%(x-f)]
-+ ZCn COS"TT exp[ (—N\F “-Qh)%(x-f)} (B8)

Continuity of ‘P(Xy4) implies from (3.32)

GOy =6eyiEn] .

from which we conclude

N+l sh< o Ch = An
Os«sn =N, Cn= An
<HSN Bh:Ah (Bg)

which will allow the elimination of Bn’ Cn (in (B7), (B8)) in favor of

-
n
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From (B2)
fre T
Lim / [ I[G x 4,5 ﬂ)dxdy (B10)
&0 X-§-e j 7_
qre Jt€ z
or W —_ d =
éL_:g f [[ (&) 2 wdx(m 1) ge}dedg [
F1E X=F-€
Since G is continuous for §-€ <x< ¥+€ we get
'1[+C' ;4‘6
26 = =
Lim = d o (B11)
€0 f {dx } ¢ I-ME
- X=¥-€

Therefore &G/JX is not continuous across x=f , since if it were
(B10) could not be satisfied as €+0 , Inserting (B7), (B8), (B9)

into (Bl 1) we find

Lim j[ZAn' (=L, Cosﬁnﬂab) ZAncflncoséﬂﬂab)}dg _‘/2

E+0

This equatzon implies that

|-M2

iAni ‘é-’_(Zn c:os(nﬁa%) “’!1 cosfﬂ’—) 4 CRY)] (B12)
n=<o

else the equality could not be met as €+ 0

Expanding the delta function in a cosine series:

5(‘;/,“77)= 2—'5 ¥ é gCOS@”Z%)COSG’?TTZILB) oty =2b

we may equate coefficients in (B12) and find
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- C [
Ao = 3 at
%
An = £— a'—( % (1- 2)) cosnTTZb) 0<n &N
a l
An= % —a'—( (' M?) —t) cos(nﬂZb) no>N

(B13)

which completes the calculation of the Green's function.
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APPENDIX C

Forcing Function

The calculation of the forcing function to be used in (3. 32) is

described by (3.35). We give the results here. Let

2,2
. , M TTE
b* = (1-m3%b = s C1
h ( ) (I-M?) baz? N
then:
- -F(sm) _
ek am

Z(P Slﬂh(mm) exp(”rrf)exp[ (Ry(Fcosvs+m smvs)]

n=|
[’LTI AT _f scosv)cosﬁm b) M{ 'TCOS(C'"ﬁ“’-' sS"’”f“’%”E?)J (C2)

-F(%7
Pra g

- Zaon smh( )exp( AT )exP[ (RS cosn+nsinvs)|
[‘ TT( 1 T+ ikcosn) Jcosim ) ””("”cos{n‘r -iA siny, s g ))} (C3)

b* b

-~a<f<a 5’%‘5@ = GX,D[—Lﬁ,(}'COSVs”ZS'”VSU{

- (#,cosV; [:(-b ") (smﬂ 3 coshZ g(rb-ry)) | sin2r Cfi' - Sh(é_t” g b-7)
i sinh(rb/a) sinhembia)
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I Z{p exp( mra nTT - ”ﬁf)co_sﬁqﬂ' ):{

BT (cos(ng)coshg biom, , coserr eosh L4 7;))
28, sinhfrb/a) sinh2mb¥/a)

+Z P c-?x,o( ”m)(g) cosﬁ(aérf)COSﬁ”” 5)

b
7 by o cofmd) smh(g b(b ’7) co:(Zﬂ’a,)Smh(zﬂ (bﬂ))
(L"ks SInVS)[ ;_ﬂ M)( SlnHTTb“/o‘) 5mh(2ﬂb/a)

- Z(;) exp(mm (mr?) anrS'”%W/g)]
b(’ (cos(rr ls’)cosh(-/’:-{b Cb-n) cos(ZTr )cos (b 17)))
sinhtrb¥a 5:nh(21Tb/0~)
— S @, exp 12 cosh h1rs) mir)° cosp (ca)
> On exp (T2 cosh BT

We recall that '1/5 is the angle between the axial direction and the

normal to the entropy wavefront, and the GDn were defined by (3.28).
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APPENDIX D

Second Order Homogeneous Solution

We give here the details of the inversion (3. 53) leading to

(3.54) and (3.55). We need

_ | " sinh(yg(¥)) _-i¥x
H(x)—(ZTT)‘/ZI sInh@bg () e drx

6 ()= ! ] sinhleb-y)g( %)) e—c’fxd}.

Auk sinh(2bg(¥))

-ao

Consider the contour integral in complex 0"='f+i7l space:

_ sinh(4g(@)) _-icX
= és;nhfabg(a-))e de

The function in the contour integral will have poles at T n

glew = gy nEpa

(R 3

o = () = 8oom-2) -0

from (3.47).

Solving for

¥
i
]
0O|1E
=<
1+

(&) -0y 3)) "

The following diagram shows the position of poles

(D1)

(D2)

where

(D3)
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in

T o-=F-M

C(1-m#)

Location of poles as per equation (D3)

In this diagram the x represents a pole. For W below a
certain minimum value, all poles will lie off the § axis, As w
increases all the poles will move towards the § axis until the pair

closest to the § axis meet on it and with increasing w move

outwards along the § axis. The small circles represent poles
which have moved, as shown by the arrows, to a position on the 5
axis. The poles on -£ =oM/(C(1-M3)) represent attenuating (or
growing) waves, those on the ¥ axis represent propagating waves.

We choose a contour (for (D2)) on the entire § axis and

close with a semicircle either above or below the § axis. The
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contour will be indented around the poles on the ? axis, Due to

the exponential term in (D2) we take the lower contour (and indent

below the real poles) if x is positive. If x is negative we take the
i

upper contour and indent above the real poles. The contribution

to the principal value of the integral from the portion of the contour

indented around the real poles may be calculated. The contribution

from the poles lying off of the § axis will be 2mi x sum of residues

of these poles if they lie above f axis and the negative of this if

they lie below the § axis. From (D3), the poles will lie on the

¥ axis if N4N where is the largest integer such that
2
(_C_‘) > (I- M)(N
The summation in (3.54) and (3.55) from [<h & N repre-

sents the contribution from the real poles., The summation from
N < n represents the contribution from the poles lying off the §

axis.
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APPENDIX E

Integrals Represented as Lalm , Etc.

We have represented in (3. 78), (3.81) and (3. 82) a number
of integrals which resulted from calculation of (3.32). The first
index is used to identify the integral. The index m indicates the
acoustic mode number and the limits are specified by the equation
it is used in, (3. 78) for example. The index n results from the
series representation of the wall deflection and has limits from
1 to w. The index 4 isan integer, either 1 or 2,

-+ &
We define the quantity 777,,, or mm

x
M

M-M3) = {(1-m3)? 2/35) I-M? Sl

*
We assume that (377, # < [=l)2 .and proceed to define

the quantities.
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(Ig_"’") _ ('(—)15 n [ BNy J emd

p——

[ ( -
I;!"') (md)* - @ms)° !
L 6dm

( ) _ 2" sm[emi] (BMZ) (e2)

g = ) )P -EmE)?
a

( %ﬂn) _ 2%-,,,/, [;—}’/—7—,—7;-,7,,](05 anf](ﬁ m,,f
(Icnm) 5(/-/4) % (-—M} 5‘(/’)[6777 ]}

/,[5(//4) (ﬁmn:)} (£3)
(Idm [(5(/‘4} 177 A1 . (M) COS[Gmn?]

(;""") + (BM3 )cosh[Z 5(_”) m[bmm]}

N [r/:?(/ m)" (5777’" e
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(Fent) =

=" [ %4@ Tam@s)cosh( A8 (1-19%) [exp(—zz ﬁ;‘ tam v;)%—y"']
[(2 tams)* + ud) (- )(ZE) " | e smbfet s -9t
[ex/.;( 20 5 Tans) +(-)"’J [ﬂ!(/-mz)f (i tanvs) 70 i-rr)
{zm)? )]} - { (o tam ) "+ 2 (Btams) | () (1) 7
e[ntyoom) G } (e5)
(Zimt ) " cosh(irts-m¥feve(zc % famg -]
[ret G- (&) rt) (1) {27 )) |

+ (Sfam( ) sinh(ir48 (-1 ')"l)[exp (-2¢8 % tamvs) +(—)’"]

Y
[(,%famvs)z + (78] (1) - (2L Z] %!(%Twm/;)
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+ o R tans)"| (eaP ()% }] (CACAEN }

(EG)
(_1;6’1") = 2 5/;05@7777[k05‘(@n7777)e_é&%£rwn% ?7)0’7 =
i[/ (—) L’X,D(Z(ﬂM fwny;)][szﬁ f'wnY][ 7(n +(’")

-3 an)’]
[ (rentm)y=(5% ton) ][ (n(-2) z—(%STM*ﬂ}

~—m )
(E7)

ﬁQTTTa””VJ "Z) B
(IJ’" ) = 2 S/COS(MTT?z}éfn(&nrr7)€ 7_

(nﬂé)[/ -~ exp(-2ip 5 Tamy )J[ (% (ﬁgf"’"”)]
 (rtmim 0 [t 2)) G o]

+ (2 + B2 45y
n# —(z MTT 5) o
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APPENDIX F

Description of Electrical Circuits

This section discusses the function of all electrical equipment
associated with creating the heater pulses and controlling data acqui-
sition which are represented in Fig. 4-4. The main dc power supply
has been discussed in Ref, 8 of Chapter 2 and will simply be described
here as a source of dc power. This source could supply up to 100
amps at up to 300 volts.

(i) The SCR (Silicon Controlled Rectifier) Commutation Circuit

The SCR commutation circuit is shown in Fig. F-1. This
circuit was designed to commutate either between a dummy load and
a main load (one-dimensional heat pulse''single mode'') or a dummy
load and two main loads (to produce a heat pulse which was not uni-
form over the cross section-~see Chapter 5). The dummy load,

RD was typically 65 (.. This would be varied slightly with operating
frequency in order to give proper commutation and duty cycle. The
sole purpose of this dummy load/SCR is to cause commutation, i.e.,
turn off the main SCR. In the single mode of operation SW2 is left
open., SWI1 is closed and pulses are supplied to the gate of SCR-~1
and SCR-D as shown below.

SCR-1 [

scR-D _ | | | | | |

Lt

These pulses arrive at the gate at the chosen fundamental
frequency, i.e.,200, 250, 300, 400Hz. Note that the pulses are
spaced evenly. This allows the dummy SCR to turn off the main

SCR after one-half cycle.
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In the dual mode all three SCR's are operational, SWI1 and

SW2 are closed and pulses are supplied to the gates as shown below

SCR~1 I I NN B

SCR-D RN
SCR-2 [ N I I

Pulses arrive at gate of SCR-1 and SCR-2 at the chosen fundamental

frequency and are out of phase. Note that pulses arrive at the gate
of the dummy SCR at twice the fundamental frequency and slightly
before a pulse arrives at one of the main SCR's. This allows the
main SCR (supposed to be conducting) to be turned off just before the
other main SCR receivedits gate pulse., The dummy SCR was normally
needed only to start commutation, after that pulses were not sent to
its gate. This allowed an extremely sharp square wave to be pulsed
across the heaters.

The voltage from across the anodes of the main SCR's was
usually monitored during experiments (for single mode the voltage
from anode to ground was observed) and is shown below

SCR'2 ON —loov

Vi-Vz
——

>t

dual mode

(e

SCR-l of

single mods *|sza [ ] [ | [ / -

Typical SCR Output Waveform
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The SCR's are General Electric type154D. The RC circuit shown
across the two main SCR's is called a snubber circuit and limits
the rate of rise of voltage across the SCR to a value such that the
SCR will not turn on spuriously,

(ii) Pulse Amplifier

Each SCR gate is supplied 20 volt, 1 amp pulses from one of
three pulse amplifiers. The circuit is shown in Fig, F-2. The am-
plifier receives a pulse from the logic section through an optical
isolator. The purpose of this is to isolate the clock, logic and data
controller ground from the SCR commutation circuit. The commu-
tation of the SCR's causes a large amount of electrical ground noise
which must not reach the logic.

The pulse then triggers a UJT which is followed by a four
transistor amplifier which gives the necessary current drive. The
UJT is used because it allows an extremely fast pulse to be supplied
to the SCR gate.. This allows commutation at current levels near the
rated capacity of the SCR (~/00a.). Typical (unloaded) rise times for
this amplifier were approximately 20 ns.

(iii) Pulse generator logic

The function of the logic is to deliver to the pulse amplifiers
(through the ground isolators) pulses of the proper frequency and
phase so as to give desired heater operation. The logic receives
a TTL square wave (from the time clock) of the fundamental fre-
quency for single mode operation and at twice the fundamental fre-
quency for dual mode operation from the clock circuit (frequency

reference). The circuit diagram is Fig. F-3.
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The operation in the single mode is straightforward. The
timer (NE555) effectively '"shortens'" the TTL pulse width from the
clock. The falling edge of this pulse triggers the one shot (SN74121),
which in turn sends a pulse to the dummy load pulse amplifier. The
rising edge (after inversion) triggers another one shot which provides
a pulse to the main pulse amplifier. The '"delay' control on the timer
may be adjusted to determine the relative phase of these two signals,

In the dual mode the dummy signal is the same, except that
its frequency is twice the fundamental frequency. The rising edge
of the timer operating at twice the fundamental frequency drives a
flip flop (SN7470) the output of which is now at the fundamental fre-
quency. This output and its complement &rive one shots which in
turn drive the main pulse amplifiers out of phase of the fundamental
frequency. The delay control now determines the time lapse after
the dummy SCR is pulsed until the main SCR is pulsed (turns on).
The delay may be adjusted (during operation) to a minimum or may
be set at a largevalue ( ~ GOus ) and the dummy SCR simply shut off
after commutation begins.

(iv) The Frequency Reference and Clock (Fig. F-4)

A 1.0 MHz crystal oscillator provides a time base for the
entire experiment. The clock allows the choice of four fundamental
frequencies and are given below with approximate values used as

aliases:
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True Frequency Alias
195.3125 Hz 200"
260. 4166 Hz 250"
312.500 Hz H300H
390,625 Hz 400"

The clock generates two TTL signals., The first operates
the A/D clock and is of such a frequency that the A/D multiplexes
each channel at 32 (or 16 if desired) times the fundamental frequency.
The second signal is sent to the pulse generator and will I;e of the
fundamental frequency (for single mode) or twice that (for dual mode).
(v) Data Controller

The data controller, Fig. F-5 , was designed to determine
when the A/D converter should accept data and when it should not.
The length of time during which data acquisition is enabled determines
the ensemble length. This ensemble of data would be the correct
length in time to allow exactly M (M =0,1,2,3, or 4) cycles of the
fundamental frequency to pass. After one ensemble has been acquired
the controller disables the A/D converter. During this period
(called delay) the data, which has geen digitized, is added to the
previous ensemble of data or it is written on the disk, whichever is
preferred. The delay was calibrated (in a manner to be described)
so that as soon as the adding process was complete or as soon as the
program began writing data on the disk the A/D converter could

resume data acquisition in phase with the main heater pulse.
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The actual logic is a synchronous sequential circuit. It is
synchronous with the fundamental frequency. The term sequential
refers to the fact that the logic passes sequentially through several

states as shown below with a description of each state.

BORROW

State O: Set binary counter to zero, load count down scalers,
Wait for GO signal.

State 1: Set data enable true (allow data acquisition).
Count cycles of fundamental frequency on binary counters,
Set CTR true when correct number of cycles have been
acquired,

State 3: Set data enable false (discontinue data acquisition).
Start count down scalers.
Set BORROW true when scalers set to zero.

State 5: Clear binary counters.
Reload countdown scalers,

(go to State 1).
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The J-K flip-ﬂops (see Fig., F-5) determine the state of the

controller., The 4 line to 10 line decoder converts the state code

to decimal for display purposes. When the decoder goes into State 1
the binary counters are enabled and count the pulses arriving on the
input (fundamental frequency supplied by pulse generator logic) until
the proper number of cycles has been counted. The controller then
goes into State 3 when the count down scalers are enabled. They
also count input pulses, but start at a preset value (set before be-
ginning an experiment) and count down to zero, When the scalers
read zero (indicating that the desired time delay has occurred), the
counters are cleared, the scalers are reloaded and we return to
State 1 to take in more data.

Note that if the delay were set too short, then as soon as the
computer finished averaging the latest ensemble, we would resume
data acquisition without regard tb heater pulse phase. Since the
data enable signal is synchronous, the time at which we resume data
acquisition will occui' (at least) in the middle of the next data enable
state (State 1). When we go into State 3 the computer will not have
received enough data (it expects exactly 1 ensemble) and will wait
until the next State 1. Hence, 2 ensembles have passed, while the
computer has only been satisfied once. This fact was used to calibrate
the delay. The delay was decreased until more ensembles had been
passed than expected. This meant that the delay was too short.

The delay was increased slightly until the expected number of en-
sembles had passed. Hence, the minimum amount of time (when

the data was not being acquired) was wasted in an experiment,
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APPENDIX G

Notation for Chapter 1I

dimensionless axial position in duct

nozzle length

inlet Mach number

exit Mach number

velocity perturbation normalized by local mean velocity

pressure perturbation normalized by local mean pressure
R

entropy perturbation normalized by C
local mean velocity normalized by a

reduced frequency = w&/a* for Sections 2.2, 2.3

w{,/(ﬁz —El) elsewhere

dimensionless wave numbers in upstream duct
dimensionless wave numbers in downstream duct

acoustic wave upstream of nozzle propagating downstream
acoustic wave upstream of nozzle propagating upstream

acoustic wave downstream of nozzle propagating down-
stream

acoustic wave downstream of nozzle propagating upstream
P /P

P /P

Pi/P;

P /P,

P;/o

P /o

value of Z3 at nozzle inlet
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independent variable used in high-frequency analysis
(and the value at inlet and exit) denoting axial position

P Zz as used in high-frequency analysis
U Zl as used in high-frequency analysis
n i
Zoe’ Zle’ Ad:i functions of Ml’ MZ
12 indicates T _ or T
p m
R indicates R_ or R
p m
Subscripts
e indicates entropy disturbance
p indicates Pf disturbance
m indicates PZ— disturbance
o high-frequency value
o low-frequency (quasi-steady) value



