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ABSTRACT 

Some aspects of the noise generated internally by a turbojet 

engine are considered analyti cally and experimentally. The emphasis 

is placed on the interaction of pr e ssur e flu ctLlations and entropy flLl C­

tuations, produced by the combustion process in the engine , with 

g radients in the m e an flow through the turbine blades or the exhaus t 

nozzle. 

The one-dilnensional i nte raction of press u r e fluctuations a n d 

entropy fluctuations with a subsonic nozzl e is solved analytically. The 

acoustic waves produced by each of three independent disturbanc es 

are investigated. It is seen that results for a large number of physi­

cally interesting n ozzl e s may be presented in a concis e manner. 

Some of the second-order effects which result from t he ar e a 

variations in a nozzle are investi gat e d analytically. The interaction 

of an entropy wave with a small area variation is inves tigated and the 

two-dimensional duct modes, which propagate away from the nozzle, 

ar e calc ulated. 

An experiment 1s described in which one-dimensional acoustic 

waves and entropy waves are made to interac t with a subsonic nozzle. 

The response of the nozzle to these disturbances is meas ured and 

compared with the response as cal culated by the analy tical model. 

The interac tion of two-dimensional entropy waves with a sub­

sonic nozzle and with a supersonic nozzle is investigated experimen ­

tally . The results are explained in terms of an analysis of the acous­

tic waves and entropy waves produced by a re gion of arbitrary h eat 

addition in a duct with flow. 
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I. INTRODUCTION TO THE JET NOISE PROBLEM 

Well before the first commercial turbojet-powered flight in 

1958, the problem of noise from aircraft was recognized. 
1 

Stevens 

surveyed the noise in communities near major airports in several 

cities in 1954. During the same period the popularity of jet-powered 

military aircraft was rising steadily; in 1953 Boeing delivered its 

last propeller -powered bomber to the Air Force. Residential areas 

near military bases were the first to be subjected to noise from jet­

powered aircraft, ~nd work
2

' 
3 

similar to the Stevens survey investi-

gated aircraft (primarily jet-powered) noise near several Air Force 

bases. 

4 
Tyler has reported on some noise measurements of turbojet-

powered airplanes made near Kennedy International Airport in New 

York. It is interesting to compare the results of the Stevens survey 

with those of Tyler. The Stevens survey included such aircraft as the 

DC-3, DC-6, and the Super Constellation; the latter two were typical 

of the large commercial transports of that time. Peak sound pres-

sure level was recorded in various frequency bands for positions be-

low the takeoff path. The Tyler survey was a similar measurement 

for the Boeing 707 turbojet, the first commercial jet-powered air-

plane used in this country. For a position three miles from the air-

port, the turbojet gave a noise level of 115 PNdb. The units are 

perceived noise in decibels and take into account the variation in sen-

sitivity of the ear to sounds of different frequency. The perceived 

noise level for the propeller -powered airplanes may be calculated 

from the S. P. L. spectra given by Stevens. At a point below the 



takeoff path and three miles away (using the peak sound pressure level 

in each 1/3 octave band) the results for 90 per cent of the aircraft ob-

served give a noise level of 88 PNdb. 

It is reasonable to say that the Boeing 707 was the turbojet re-

placement for the DC-6 and similar large propeller-driven commer-

cial aircraft. Then we see that the change to jet airplanes in the early 

1960's brought an order-of-magnitude increase in the noise near air-

ports. Aircraft noise became more than an interesting technical 

problem; it became a social problem. 

For the turbojet (no bypass), the majority of the noise origi-

nates from two sources. Towards the rear portion of the engine the 

noise from the jet exhaust mixing with the atmosphere predominates. 

The second source of noise is primarily from the compressor . which 

radiates in a broad angle tow ards the front of the engine. We will 

next discuss these two sources of noise and des cribe some of the re-

lated work. 

The largest contribution to the understanding of the jet mixing 

noise came with Lighthill's
5 

work on the aerodynamic g eneration of 

sound. He found that the acoustic powe r output of a subsonic mixing 

region was proportional to the eighth power of the relative velocities. 

The validity of this result has bee n verified experimentally. Ger­

rard6 used a one-inch diameter air pipe with Mach numbers at the 

exit ranging from 0. 3 to 1. 0. In addition to verifying the eighth pow-

er variation, he showed that the frequency content of the noise was 

essentially uniforn1., i mplying a random n oise source . 
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Similar experiments were performed by Lush 7 in which the 

directivity of the noise emission was measured and was seen to com-

pare well with a theory based on Lighthill 1 s work. For the high jet 

velocities, Lush found a weak peak in the intensity at an angle of 

about 30° to the jet axis. 

The effect of nozzle shape was shown to be small (up to sonic 

jet velo·cities) by Callaghan8 Coles 9 compared noise generated by 

air jets and turbojet engines by making a sound survey_ in a horizontal 

plane up to 120~ from the jet exit. The engine produced a more pro­

nounced peak in sound pressure level at angles between 30° and 40° 

from the jet exit. The sound power for both the air jet and the engine 

compared well with Lighthill 1 s theory for jet velocities up to slightly 

supersonic. The conclusion was that the principal noise-producing 

mechanism in the turbojet engine (in the rear portion) was the jet 

mixing. 

For flows above sonic velocity the general observation is a 

distinct increase in sound output with increasing' jet velocity, and is 

attributed to the formation of shock waves. To verify this, Callaghan 
8 

compared a convergent nozzle with a convergent-divergent plug nozzle 

designed for shock-free flow at given design pressure ratio. As 

the pressure ratio was increased from a low subsonic flow, both 

nozzles gave similar sound power output, which was proportional to 

the eighth power of the jet velocity, until choking was reached. Be­

yond this point, both nozzles gave more sound power than would be 

expected from the eight-power variation, and behaved similarly until 

the plug nozzle approached the design pressure ratio. At this point 
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the plug nozzle emitted- about one third the sound power of the con­

vergent nozzle (for the same exit velocity) but about twice that pre­

dicted by the eighth-power variation. 

In a study specifically on supersonic nozzles Louis, et al. 
10 

also found that the presence of shock waves in the jet was an impor-­

tant factor in the noise emitted from the jet. An additional source of 

noise was found to be Mach waves apparently emitted from the shear 

layer near the nozzle exit. Tam 
11 

considers shear layer instability 

to be the source of these waves. Ribner 
12 

models the shear layer as 

a layer of eddies convecting at some velocity intermediate to the jet 

and ambient velocity which give rise to the Mach waves by causing 

pressure perturbations along the shear layer. 

It is interesting to note that the pres sure fluctuations emitted 

from a jet engine can cause problems not usually associated with 

noise. Howes and Mu11
13 

measured pressure fluctuations in the near 

field of an exhaust of a turbojet engine with thrust of about 10, 000 

pounds and exit velocity of 1900 feet per second. Typical values 

were judged large enough (160 db) to cause structural damage to 

nearby surfaces. 

The compressor noise spectrum is composed of two distinct 

parts. The first part is a broad-band white noise and may be attrib­

uted 14• 15 to the random shedding of vorticity at the trailing edge of 

the compressor blades and to random fluctuations iii the turbulent 

flow approaching the blades. The second part is discrete frequency 

components corresponding to blade passage frequency and harmonics. 

This is caused by periodic disturbances in a blade flow field as it 
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passes through the wake of an upstream blade. 

15 16 
Both components are usually seen ' to vary as the sixth 

power of the relative flow velocity over the blade. This corresponds 

to noise radiation from a fluctuating force (dipole) field imposed on 

the gas by solid boundaries. 

17 
Sharland has shown, using experiments with a flat plate im-

mersed in an air jet, that upstream turbulence can produce much 

larger sound intensities than random vortex shedding. The air jet 

velocities covered a range of velocities from 200 to 700 feet per sec-

ond. The vortex shedding noise was studied by placing the plate m 

the potential core of the jet. By moving the plate into the mixing re-

gion of the jet, the flow over the plate became more turbulent. For 

the same values of flow velocity at the center of the plate the radi­

ated noise (on a line 90° to jet axis and about 30 jet diameters away) 

was seen to increase 15 db for the turbulent flow. 

Thus, the main source of compressor noise is upstream tur-

bulence giving broad band noise and wake/blade interactions giving 

14-17 discrete frequency noise. Typical sound pressure level spectra 

show the discrete components protruding about 15 db above the broad 

band noise. 

The relative importance of the compressor and jet noise de-

pends strongly upon the operating condition of the engine. During 

high thrust operation, such as takeoff, the jet noise dominates and 

may actually "spill over" to the front portion of the engine and mask 

out the compressor noise. This is to be expected from the strong 

dependence of the jet noise power on the jet velocity (high thrust 
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corresponds to high jet velocity). In low thrust situations, such as 

landing, the jet noise is likely t o become small c ompared to compres-

sor noise. The turbine noise, which is usually masked out by the j et 

noise, may become more evident in the rear of the e ngine unde r thes e 

circumstances. 

One of the earlier n oise suppression techniques was the multi-

tube exhaust nozzle . Keeping in mind the eighth -power variation ag a in, 

these devices were intended to reduce the total shear of the jet' as it 

enters the atmosphere, effectively reducin g the jet velocity and hence 

the noise power output. Additionally, interference between the noise 

field of each tube tended to reduce some of the strong directional char -

acteristics associated with jet noise. 

As is easily imagined, such devices also cause a loss of per-

formance of the engine. The bypass engine gives the same thrust 

from a higher mass flow, but lower jet velocity. Hence, jet noise is 

reduced, but additionally, specific fuel consumption is decreased. 

The penalty paid is that fan noise increases with increasing bypass 

ratios because increasing fan tip speed is usually the method for in -

creasing bypass ratio. Also, the flow which is bypassed around the 

engine convects fan noise into the rear of the engine. 

The trend towards higher bypass ratio has reduced significant -

ly the jet mixing noise and has focussed most attention to compress or 

S f h h . . d dl8 f and fan noise. ome o t e tee n1q ues cons1 ere o r compress or 

and fan nois e reduction (principally the discrete component noise) 

include using resonators and a coustic al lining in the fan inlet and 

exit duc ts, choking the engine inlet and adjusting the number and 
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axial spacing of fan blades. 

The method which is most economically feasible for existing 

engines is the acoustical lining of fan inlet and exit ducts. Mangia­

rotty19 gives the results of such treatments in an actual engine. 

For landing approach conditions for a Bo e ing 707 powered by a Pratt 

and Whitney JT3D engine, a reduc tion of 16 PNdb was achieved. We 

should note that the sound pressure level of the first harmonic of the 

discrete fan noise was reduced by 25 db. This is significant because 

the discrete tones, especially those of the first harmonic, occur in a 

frequency ·band ("'-'3kHz) to which our hearing is m o st sensitive and 

hence are most irritating . 

M t t 1 . 20, 21 . d. h f 1 easuremen s on ac ua engines 1n 1cate t at or ow 

primary jet velocities ( < 1000 feet per sec ond) more sound power (in 

low-frequency bands) is emitted than would be predicted by an eighth-

power variation with velocity. The experiments were designed to 

minimize the influence of rearward-propagated fan noise. The in-

creased noise is usually called excess or core noise since it must 

come from the core of the engine upstream of the nozzle e x it. With 

the trend toward lower jet velocities this core noise is expected to 

control the lower limit of sound power generated by turbojet engines . 

The low-frequency noise is difficult to treat with techniques such as 

resonators or acoustical lining since the long wavelengths would re-

quire physically large treatments. Hence, an understanding of the 

source of core noise will be a necessity. 

The core noise has been attributed to a wide variety of 

sources such as combustion, fl ow incidence upon supporting struc-
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tures in the engine, turbulent flow in the turbine and nozzle, and oth­

ers. With the majority of the recent work being done on fan/ com­

pressor noise, very little has been done to determine the relative 

importance of these sources. It is generally agreed, however, that 

the role of combustion in producing core noise is a major one. 

It is clear that neither the flow through the combustor nor the 

combustion process will be steady. Even with no combustion the 

presence of the combustor in the flow will create turbulence which 

will reach the turbine. This situation is somewhat similar to the ef­

fect of upstream turbulence on compressor blades discussed previ­

ously. The level of turbulence will probably increase significantly 

when combustion occurs, but two additional effects will be seen. The 

(unsteady) process of adding heat to the flow causes acoustic (isen­

tropic) disturbances and entropy disturbances to be generated. The 

acoustic disturbances represent noise in themselves in that a micro­

phone situated downstream of the combustor could detect their pres­

ence. The entropy disturbances are unique in that they do not, in 

themselves, represent noise. They represent "hot spots" or the tem­

perature disturbances which are not associated with the isentropic 

acoustic disturbances. The convection of these entropy disturbances 

through mean velocity gradients (such as in turbine flow pass ages and 

the primary exhaust nozzle) produces isentropic acoustic waves which 

are perceivable as noise (see Chapter II). 

This thesis will be concerned with the acoustic and entropy 

disturbance aspect of core engine noise. The acoustic disturbances 

will be modified in the flow passages, and the noise from the entropy 
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disturbance relies wholly upon mean velocity gradients in such pas­

sages. Hence, 'the emphasis will be on the interaction of these dis­

turbances with suc h flow fields as may be found downstream of the 

combustor. 

In Chapter II we deve l op an analytical model for the interaction 

of one-dimensional pressure and entropy waves with a one-dimension­

al subsonic flow with strong mean g radients. This model will be used 

to explain and to complement the results for the experiments pre­

sented in Chapter IV. The analysis will be extended in such a way 

that results for a wide range of parame ters may be presented con­

cisely. In Chapter III we present an analytical in'\L'estigation of some 

of the two-dimensional effects neglected by the analysis i n Chapter II. 

In Chapter V we present some experimental results performed with 

two-dimensional entropy d is turbances. 
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II. THE INTERACTION OF ACOUSTIC WAVES AND 

ENTROPY WAVES WITH A SUBSONIC NOZZLE 

THE ONE-DIMENSIONAL MODEL 

2. 1 Introduction 

In this chapter we investigate the effect of acoustic waves and 

entropy waves propagating through a nozzle with a subsonic mean 

flow. The problem of pressure disturbances in ducts with mean flow 

and area change has been studied by many, ref. 1-5 for example, but 

the effects caused by entropy disturbances have not been as widely 

studied. 

Cande16 solved the problem of acoustic and entropy waves con-

vected into a choked nozzle. He used a formulation which was origi ­

nally developed by Tsien 
7 

to study the oscillations in a rocket engine. 

This formulation is the basis of the model developed in this chapter. 

Auerbach
8 

and Zuko ski 9 showed the validity of the Candel model e x -

perimentally. The (choked) mean flow in a rectangular (cross-section) 

blowdown tunnel was perturbed with entropy waves . The entropy 

waves were c reated by electrically pulsing a resistance heater located 

upstream of the nozzle, and then, using a periodic mass bleed system 

(also upstream of the nozzle), the pressure w ave component of the dis-

turbance was cancelled. The production of a coustic waves by the en-

tropy disturbance was then verified by the detection of pressure dis-

t .urbances throughout the nozzle. 

The solution for low-freq uency disturbanc es was investigate d 

10 
by Marble For disturbances with wavelengths w hic h are l ong com-

pared to the nozzle length, the r es ulting solution w ill g ive disturb-
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ances with constant phase throughout the nozzle. This solution is 

called the compact or quasi-steady solution, and may be solved by 

considering only matching conditions at the nozzle inlet and exit. The 

details of the mean flow in the nozzle may be neglected. 

. 1 1 
Cumpsty and Marble have investigated the interaction of 

pressure and entropy disturbances with one or more turbine blade 

rows. Large deflections and accelerations in the mean flow were 

considered; however, the disturbances were assumed to be quasi-

steady so that precise details of the mean flow in the blade passages 

could be neglected. 

Our aim here is to examine these effects of mean flow varia-

tions that occur in the flow through such blade passages and, equiva-

lently, exhaust nozzles. We consider onl y one -dimensional, sub-

sonic flow with small disturbances. In the choked nozzle, the throat 

essentially de couples the supersonic portion from the rest of the 

nozzle. Two independent solutions result. The first solution repre-

sents the effects of an entropy wave convected into the nozzle, when 

no acoustic wave is incident upon the nozzle entrance. The second 

solution represents the results of an acoustic wave incident upon the 

nozzle entrance when no entropy wave convects into the nozzle. 

In the subsonic nozzle, every portion of the nozzle can com-

municate with every other portion. The result is that we must admit 

a third ind.ependent solution which represents the effects of an acous-

tic wave propagating upstream and impinging upon the nozzle exit. 

In the following sections we develo p the equations whic h will 

serve as the analytical model. Next, we dis c uss a method of nu-
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merical solution. The emphasis here will be on c hoos ing the appro­

priate boundary conditions to g ive the three independent solutions . 

The solution for high-freque ncy disturbances is then discussed. The 

r esults of this s olution are then used t o normalize some numerical 

cal culations so that a concise presentation of the results may b e 

made . Finally, t he results are discussed and several examples of 

the us e of these r e sults are presented. (See Appendix G for notation.) 

2. 2 Develo pment of the Analytical Model 

We are given a duct o f constant c ross - sectional area with a 

mean flow of Mach number M
1

• The cross - se c tional area then 

changes in such a way that after an axial distance .f. , the Mach num­

ber i s M 2 . The flow then continues through a constant cross -s ection ­

al area duc t . If we l et the cros s -s ectional area (of the axial reg i on 

in which the m ean flow is changing) be call e d A (x), we have the fol­

l owing diagram d e s c ribing the duct. 

At) 
M-=-M, - M::::M'J. -~x 

X::O 

Diagram for the Analytical M odel 

W e assume that the gas flowing in the duct is ideal and inviscid, and 

that the mean flow is isentropic and wholly subsonic . We will neglect 
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two-dimensionai effects, and simply use the area variations to give 

mean flow variations. These assumptions allow us to describe the 

flow with the equations of momentum, continuity, entropy conserva-

tion, and the equation of state as follows: 

du + u du.. at JX +-' oP 
p ox 

(Jp 
Jt + _I d(puA) 

A dx 

cLs + u.. ds 
dt ox 0 

0 

0 

(2. 1) 

(2. 2) 

(2. 3) 

(2. 4) 

We will linearize these equations by assuming that a solution 

exists which is the sum of a known function of axial position only, plus 

a small periodic function which also varies with axial position. For 

example, the velocity will be expressed as 

where W is the radial frequency. The primed quantity is , in gener -

al, complex, but we let 

lu'j << 
-u 

We assume a similar form for the remaining dependent quantities in 

(2.1)- (2.4) and define the following dimensionless quantities: 

Z,(x) .z2. (x) 
_E_ 

JP 
(2. 5a) 



U(X) 

where 

- a 
a.~ 

a 
MO..* 
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M = M(x) = mean local Mach number 

= Cp 
Cv 

Q = local mean sound speed 

(2. 5b) 

a* = speed of sound at a throat (if mean flow were 

isentropically choked) 

Note that the reduced frequency (3 relates the wavelength of the 

disturbance to the nozzle length. For a disturbance with wavelength 

approximately one nozzle length, the reduced frequency is about 6. 
I 

We normali~e the axial distance by nozzle length .f After 

inserting the assumed form of the solution, we retain only terms 

linear in the perturbation quantities. This process leads to: 

dr.3 
dX 

and 

dr:, 
dx 

- iS(M2 i!., -Z.z) + M 2j¥ (Zl:., -(t-I)Zz -Z3) 
U(l- M 2

) 

We note that for a constant area c hannel,ddU = 0 X -

(2 . 6) 

(2. 7) 

(2. 8) 

, the entropy 

component 1!.3 
does not contribute to the interaction, and thus we 

may write down the well-known solution: 
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l_z. (X) 

(2. 9 ) 

where c~) C- are the dimensionless wave nun1.bers of the waves 

propagating downstream and upstream, respectively: 

(3/V\ 
(2. 10) 

Here, MJ U are to be evaluated in the constant-area section in 

P+ p question and and are the complex magnitudes of the wave 

propagating downstream and upstream, respectively, in that constant-

area section. 

If the pressure and velocity disturbances are specified at the 

nozzle inlet, X= 0 , and the nozzle exit, X= I , it is c l ear 

that we can calculate the complex magnitude of the waves ente ring and 

leaving the nozzle. Using subscripts 1 and 2 to denote c onditions up-

stream or downstream of the nozzle, respective ly, we see from (2. 9) 

that: 

(2 . 11) 

for the waves propagating in the upstream constant-area duct, and 

(2. 12) 
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for the waves propagating in the downstream constant-area duct. 

Consider for a moment that the upstream constant-area duct 

extends to minus infinity and the downstream constant-area duct ex­

tends to plus infinity in the axial dimension. A disturbance upstream 

(or downstream) of the nozzle will propagate to the nozzle and interact 

with it. The interaction will cause a pressure wave p,- (or tJz.-r- ) to 

be created, which will propagate upstream (or downstream) from the 

nozzle to infinity. Also, a wave P·/ (or p,- ) will be created which 

will propagate downstream (or upstream) from the nozzle to infinity. 

Since an entropy wave convects with the mean flow, it cannot disturb 

the nozzle if created downstream of it. Hence, we have just described 

the three independent disturbances to which the nozzle can be subjected. 

These are: an entropy wave convecting into the nozzle from upstream, 

a pressure wave propagating into the nozzle from upstream, or from 

downstream. In a practical situation, the downstream constant-area 

duct may be terminated. Some impedance condition will exist there 

such that a p/ wave reflects from the termination and creates a Pz­

wave. This point is discussed further in an example at the end of this 

chapter. We consider the three effects to be independent; since the 

problem is linear, the independent solutions will allow any general so­

lution to be cons tructed. 

In the discussions which follow we will call the first independ­

ent solution (in which the entropy wave is convecting into the nozzle) 

the "entropy solution" and will use a subscript "e 11 to signify it. The 

solution corresponding to a pressure disturbance upstream of the noz­

zle will be called the "plus solution" and will be signified by a "p " 
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subscript. The solution corresponding to the pressure disturbance 

downstream of the nozzle will be called the "minus solution11 and will 

be denoted by the subscript 11 m '' 

notation: 

Disturbance Name/Subscript 

entropy/ e 

p,T plus I p 

minus/m 

2. 3 Numerical Solution 

The following summarizes the 

C:,m (x) lzrt1 (x) 
/ / 

Result 

- + 
I p,p ./ Pzp 

' p,~ 'Pz:., 

Given MCf..) and the reduced frequency ~ , we would like 

to solve the system of equations (2. 6) - (2. 8) for each of the three in-

dependent solutions. The 11plus'' and 11minus 11 solutions have no entro-

py disturbance; hence, the system reduces to a pair of homogeneous, 

linear, simultaneous differential equations . We need only to specify 

the boundary conditions, and use a suitable numerical technique to in-

tegrate (2. 7) and (2. 8). The entropy solution requires that ,Z!:l(X)¢: 0 . 

We must specify (J (the entropy disturbance at the inlet), but we see 

that having done so, (2. 6) may be integrated immediately. We are 

left with a pair of inhomogeneous, linear, simultaneous differential 

equations. The inhomogeneous term is simply l 3 (X) We now 

discuss the boundary conditions, used in the numerical integration, 

for each solution. 

For the plus solution, we begin the integration at the exit suc h 

that P2.p = 0 For example, 
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Mz~•p(l)= ~z.p(') = I ~3,.(X') = 0 

We integrate to the inlet, X= 0 , w here we may calculate 

We will normalize the solution with P,~ ' i.e.' 

+ 
P2P - Tp ;:::-+ 
PtP 

"transmitted wave, plus solution'' 

(2. 13) 

p,; Rp 
~ 
PtP 

"reflected wave, plus solution" 

... 
For the minus solution, we ensure that P,m=O. L et 

M,lm,(o)=-1 

and we integrate to the exit, where 

o + - .J.. -iCz+ [ ) J] IZ!r')- 2. e Zzm(l +M,Z,,(t 

- 1 -iCz- [ J P2.m = c: e lzmC,J-f'llz.l.,,.,(1) 

P,~ = z ~2m(o)-M,~,,..,(oJj 
Now define 

"transmitted wave, minus solution" 

(2. 14) 

"reflected wave, minus solution" 
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For the entropy s elution, we begin the integration at the inlet 

with 
2 (o)= o · z::. te 

+ 
This ensures that Pte= 0 , but upon reaching the exit we can see that 

in general. This is easily corrected by simply subtracting from this 

entropy solution "enough" of the previously calculated minus solution 

(a homogeneous solution) to cancel the Pz-e Let 

""' 
~~e (X) 

and 

Now we will have 

Now define 

I -iCz.-+ [7 ~ ( )] Te = z.o- e Z:..ze (I) + Mz. Z.,e I (2. 15a) 

as the "transmitted wave - entropy solution" and 

(2. 15b) 

as the "reflected wave- entropy solution. 11 The actual numerical 

lscheme used in solving these equations was a fourth- o rder Runge-

Kutta method with automatic e rror control. 

Now, any general solution may be calculated from these nor­

malized solutions. For example, if we specify the disturbances P/ , 
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P2- , and CT then the resultant waves will be 

(2. 16) 

We would like to investigate the behavior of the six solutions for vari-

ous Mach number distributions and reduced frequencies. The only 

restriction on the Mach number distribution is that it be wholly sub-

sonic. We will be interested here in Mach number distributions one 

might find in the passag~ through turbine blades or in an unchoked ex-

haust nozzle. The numerical solution only requires that a mean 

Mach number distribution and reduced frequency be specified; · then 

the independent solutions may be calculated. Even if we restrict the 

calculations to physically interesting cases, it is clear that some 

systematic way of presenting the results must be employed. In 

order to present a large number of results in a concise manner, the 

calculations have been normalized by using the compact solution as 

discussed previously and the solution for high-frequency disturbances. 

In the following section we consider first the high-frequency solution 

and then discuss the normalization procedure. 

2. 4 High-Frequency Asymptotic Solution and Normalization 

We will assume a linear mean velocity profile for this asymp-

totic analysis (and for the remainder of this chapter). This allows 

us to integrate eq. (2. 6) immediately, and is a reasonable approxima-

tion to the profile one might find in a physical application. 

We move the inlet of the nozzle from the origin of our coordi-

· nate system so that we may write for the dimensionless axial 
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X= u. 
a* 

-23-

In all the discussions that follow we use the length scale .fa "f/(fk-[1,) 

for normalization purposes. The reduced frequency is now 

(3 = UJ 

a* 
-la * 

Uz.-U, 

which relates the wavelength of the disturbance to the mean dimen-

sionless velocity gradient. In addition, the dimensionless wave num-

hers involve this new length scale: 

Now define 

Equation (2. 6) becomes 

which gives i(j 

z=_J (X) = i:Ji (; () z 

We will specify C.3i 

f3M 
?J..,(M:!I) 
a 

z 
Ji=X; 

2. 
je = X'e 

The two simultaneous, linear, inhomogeneous, first-order 

equations for pressure and velocity perturbation may be combined to 

give one second-order, linear equation for the pressure perturbation. 

To distinguish the high-fre quenc y solution from the numerical analy-

sis, we will use 
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p' 

P(J.)=--=­oP 
u 

U(J)=-=-u_ 

Then we find: 

We may get the velocity from 

1 

(2. 17) 

(2. 18) 

The equation (2. 17) is ' a hyper geometric equation with no singularities 

in our region of i nterest: 

For the inhomogeneous solution, we try 

P(;J) = PCJ)(;J'I/z 
where P{'lJ..) is an expansion in inverse powers of 1{ 

n=o 
By isolating powers of T?._ , we get equations in 

This yields eventually 

..:z. . zy~ )"1/z. 
P(J)= ~'M ;; 

(2. 19) 

U('j) = 

Upon calculating 
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we realize that we have a situation similar to the numerical entropy 

solution. We must use the homogeneous solution to e liminate the inci-

dent waves if we are to find the three solutions independently. 

To solve the homogeneous equation: 

0 (2.21) 

We try an expansion o f the form 

(2. 22) 

We will have two independent solutions, so we l et 

(2.23) 

where A and B are constants to be determined f r om boundary con-

ditions; hence, we may l et 

n =OJ 1
1 

· · · · Knt (;}() =o 

The procedure for finding KnJA,B is straightfo r ward. Substituting 

of (2. 23) into (2. 21) and isolating powers of "7 we get differential 

equations for Kn. ( J) of the form 

~ ;n = f, ( J J l<n·1 (J_)) n= 0
1 

1, ·· · 

w here fn. is a known function, and K-, is a constant. In order to 

solve for the Kn(~) we expand fn (;), Kn-t (;))) in a p ower se ries 

about the origin: J.= 0 If we calculate Ko(J.) and K,(j..) we will 

have the magnitude to CY(1z) and the phase to d(1_) This power 

series solution gives 

l.o( J.} (2. 24) 
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. . I Jm(M• J-J.-) - ) 
f<t± (J) .= ~ M 1-Ji + l.., (J. (2.25) 

where 

( )-=Al[k (1 + 'J_Yz 
lo ;} Vz(t•i)ll (I_ )Yz 

-2.(;l--J{') [ 

-, - ~(i~-:/f) [ 

} (2. 26) 

UJ)-~~{[;mwi: ::~~~.)][ + ;_ :;: +~g:8>J 
-2(l'--);Yz) [ 2 J I '¥-/ 3 (1-1) 

z J-+1 + a c~+oz+· · · 

J (2. 27) 
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To fi:n_d A , 8 we use the same procedure as we used in 

the nUnierical solution. For the plus solution we specify that 

P(J;_)+M,U(;}i.)= Z P,-t :t- o 

P(Je)-Mz.U(J~) = 0 

Inserting (2. 23) into these relations we can solve for A , B in 

terms of ~~ (Je) and ro (J~) which we will call ~re and ~oe for 

short: 
l.oe = l.o ( J.e) 

In solving for A B we retain only terms to CJ{~) . 
For the minus solution we specify 

P(;JL)+M,U(3d = o 

P(Je)-M2.U(J~) = 2P; e'.Cz-(X~-Xi) "1:- 0 

The c alculation of A , 8 for both solutions now allows us to 

calculate Tp 1Tm J RP 1 Rm . Since this is the high-frequenc y solu-

tion, we use the subscript: 

TP aJ = T p I e..,.ro 

Tma> = T,., I a-.ro 

Rpcn = Rp I (3-.cD 

Rma> = R~ B ... a> 

w here Tp)T,
1

Rp
1
Rm are defined in(2 .1 3 ), (2.14). Wefind 

(2. 28) 
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-r ,{:1 A _ JVI, 1- J..e } 
•m(%) =ex P(z: .un 1"1z 1_;, i. - r.. te 

exp[i{?J{..=.!__. };n I-J.e + 7 + Cz- ()(e-X. J]ll + e1L!...) 
¥+1 1-J~ Z::.oe {3 l U l/3 (2.29) 

We mentioned previously that the compact solutions discussed by 

10 
Marble would be used to help us find a concise representation of 

the results. We list these solutions here for convenience. 

Tpo 
2. f'llz. I+M, I+ 1_iiMz2 

- /+Mz. Mz.~M. I+ ~M.Mz 
(2. 3 0) 

Tmo 
2Mr 1-Mt I+~M,z 

(111,4-Mz. 1-f'l\1 I+ "¥i.' M,Mz. 
(2.31) 

Mz-M, '1-1 M 
Rpo I+M, 1- z-M. z 

I-M, M2~M, /+~M,Mz 
(2.32) 

M 2 -M, M~-1 r-• M M 
Rmo = 1- T , z. 

/-4-Mz. Mz+M, I+ ~I M.Mz. 
(2. 33) 

Teo - McM, Mz/2. 
I+Mz. I + "i!-M,Mz. 

(2. 34) 

Reo 
M.,-Mz M,jz. 

-
I-M, I+ '2.1 M,Mz 

(2.35) 

where th~ additional subscript (o) refers to the compact ( (3 = 0 ) so-

lution. 
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We define 

This is simply the phase shift in a downstream (+)or upstream ( -) 

propagating wave caused by using X= Xi. as the reference from which 

aJ.l phase angles are measur ed. 

Examining (2. 28) and (2. 29) in the l ight of (2. 30) and (2 . 31 ), 

we find that 

_I ifll 
a-l-l 

(2. 36) 

1- a.e cp 
+ Loe- f:1 + 

1- Jt 

(2 . 3 7) 

These are functions only of inlet and exit Mach number. For con-

venience these have been plotted in Figures 2 -l and 2-2 for a wide 

range of inlet and exit Mach numbers. Note that using eq. (2. 36) and 

Figure 2-2 we may easily calculate l. 06 or Z:.,E' . 

Normalizing the magnitude of the transmitted waves by their 

compact value we see that 

ITPcol_ exp(-l,e) 
T;,o - ( Tmo Tpo) Yz. 

IT me» I 
Tmo 
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which tells us that if we normalize our transmitted waves (for any 

frequency {3 ) by the compact solution, the magnitude tends to the 

same value (as (3 ~CD ) whether the transmitted wave was c reated by 

a Pt distu~bance or a Pi disturbance. Since this is obviously 

true for (3 = 0 , we might expect it for all frequencies. All numeri-

cal calculations performed verifie d this was the cas e. In addition, it 

was found that the phase, for any frequency, could be calculated with 

very good accuracy from the high-frequency solution. That is, 

A~3 Tp ~ sf~~~ 1m :~~: + loe- LlC/> f} 

Ar~ Tm~ (3{~ 1 Jm :=~; + ~oe + tlcP-} 

The numerical calculations showed that the errors were small and 

were equal for plus or minus solutions. H ence, the asymptotic solu-

tion tells us that normalization with the compact solution will allow 

the two isentropic transmitted waves to be considered the same func-

tion of (3 

We now consider the reflected waves for plus and minus solu-

tion. It is well known that the r e flected waves will be invers e ly pr o -

portional to the frequency, for high fr e quency, but we can extract 

some useful information by calculating the cr(t) terms. F ollowing 

the usual procedure to find the A and 8 in eq. (2. 23), we get: 

(2.38) 
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2. 
([1-M2 ) M. 

l(I-M,) 2 Mz 

(2. 39 ) 

It is instructive to imagine the fw1.ctions in braces plotted in the phase 

plane as (3 ~CO • We see that if the terms inside the braces in eg. 

(2. 38) or (2. 39 ) are the same order of magnitude , the high-frequency 

solutions will be very sensitive to M, , Mz. , and normalization will 

not be possible . However, under the conditions 

M,~o 

the first terms inside the braces in (2. 38) and (2. 39) are ne gligible . 

In this case, 

l 

IR I = _I (I + M,) (1- t:J M z. ) 
POO .2(3 2M, ~~ 2 I 

(2. 4 0) 

I R 1- _1 1-M ,
2 

1-M2. (I _ !:.! M z. ) 
moo-ze 2M, I+Mz 2.. I (2. 41) 

Using (2. 32 ) and (2. 33 ) with the above restrictions on the Mach n um -

ber we can show 

Rmco Rpoo 

Rmo RP0 



-32-

Then we might expect that normalization of the magnitude of the re-

fleeted waves by the compact solution would be advantageous just as 

in the case of the transmitted waves. Numerical calculations veri-

fied that the reflected waves, when norm.alized by the compact solu-

tion, respond to frequency in the same manner whether c reated by 

Pt+ disturbance or Pz.- disturbance. This was true even when the 

restrictions on the Mach number were not strictly met. 

Using the results for the phase of the reflected waves, we 

plot Ar~ RP directly, and we normalize Arj Rm by plotting 

We expect both of the functions to tend toward Tr/2. for high fre-

quency. 

Finally, we consider the entropy solution. Using the inhomo-

geneous solution (2. 19 ), we saw that it included some extraneous 

pressure waves, eq. (2. 20). We may now use (2. 36), (2. 3 7) tore-

move these solutions and pr o duce the independent entropy solution for 

high frequency to c:J(-~) The results are 

Zi (.lTe.,= e -i(.lllc/J.{M: op[ if Jm. ;n 
. z [ ·a(l IL 1-;}e ) I I~(M, 1- Je) lJ /Orf.L) 

~M, er_p (1--J~T+TMII-Ji. +loe - z»T'!Mz 
1
_ 1< -l,e_j +v\(3 (2. 42) 

and 

2 2. [i(3 n __ Je J [ ·f:J.(-1 Pm I-Je ) I DmfM, 1-J~ l 
M, -t'\2 ex.p 2.f!TlJT exp (I-'\.~+ I 1 - 3~ tloe + z-.v'fMZ t-Ji(l'tj (2.43) 

+B{d) 
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If we use the Saine assumptions on M, , Mz. as we used when dis-

cussing the isentropic reflected waves, it is possible to show that 

(2. 44) 

Note that this solution is not related to the compact solution, Teo 

Since this solution tends to zero for high frequency, we will 

normalize the magnitude of Te by its compact solution. In addi-

tion, we might expect 

We will plot this function as the normalized phase. For the saine re­

strictions on M, and Mz it is possible to show that the two terms 

in (2. 43) are of comparable magnitude. Hence, Reoo will be very 

sensitive to M, and Mz. and normalization of the phase will not be 

possible. To be consistent, we will normalize the magnitude of 

by the compact value, Reo 

2. 5 Numerical Results 

The numerical calculations were normalized using the previ-

ously discussed methods. These are presented in Figures 2-3 

through 2-9. The inlet Mach numbers 0. 2, 0. 3, and 0. 4 with exit 

Mach number 0. 9 were chosen to represent the flow in an exhaust 

nozzle. The inlet Mach numbers 0. 5 and 0. 6 with exit Mach number 

0. 9 we r e chosen to represent the flow through turbine blades. The 

remaining case M, = 0. 3 , and Mz. = 0.4, was chosen to show the 

effect of large M, and small Mz. on the normalization. In all the 

plots, it is clear that this last case does not normalize with the 
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other cases. 

The magnitude of the transmitted wave (plus and minus solu-

tion) is plotted in Figure 2-3. These functions do not tend to zero for 

high frequency. The asymptotic values, which may be taken from 

Figures 2-1 and 2-2, are also used in the normalization. We have 

plotted 
IT/TJ- I 

l"t /Tol-l 
where we recall that To is the compact solution and T co is the 

high-frequency solution. Normalizing in this manner, however, 

causes the differences (for a given frequency) in results for eachMach 

number to be greatly exaggerated. We could use one curve to repre-

sent these results with very good accuracy. The insensitivity to Mach 

numbers is to be expected, since the asymptotic solution is so closely 

related to the compact solution, and since both values were used to 

normalize the numerical results. From the plot we see that for re-

duced frequencies above 5, the results are within 10 per cent of the 

hig h -frequen cy limit. For reduced f r equencies below one, the results 

are within 10 per cent of the compact solution. 

In Figure 2-4 we have the phase of the transmitted wave (plus 

anq minus solution). Recall that this value was closely related to the 

high-frequenc y solution. We have plotted 

and 
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We may use Figures 2-l, 2-2, and 2-4 to calculate /ir9 T . Doing 

so, we see that the corrections given by Figure 2-4 are small com-

pared to the actual values, Ar~ T , and could be neglected. To good 

accuracy, then, we could simply use the high-frequency solution for 

all values of reduced frequency. By definition, the asymptotic solu-

tion must predict that the phase will be proportional to the frequency. 

This graph tell us that the constant of proportionality 

Ar<3 T \ 
(3 (3-')Q, 

holds quite accurately for all frequencies. The constant of propor-

tionality may be taken from Figures 2-l and 2-2. 

In Figure .2-5 we have the magnitude of the reflected waves 

(plus and minus solution) plotted. We see that the normalization is 

somewhat less satisfactory. Recall that we restricted the exit Mach 

number to a value close to unity and the entrance Mach 7;1umber to 

small values. This graph verifies that as the inlet Mach number in-

creases, the normalization becomes less effective. We could, with 

reasonably good accuracy, represent these data with one curve. 

The phase of the r e flected w ave, plus solution, is plotted di-

rectly in Figure 2-6. The phase of the reflected waves, minus solu-

tion, was normalized. We have plotted 

Ar'3 R P 

and 

0 
Both of thes e functions t e nd to 90 , as expected, and the same diffi-

culties occur for large entrance Mac h numbers as occurred in the 
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magnitude (Figure 2-5 ). We could represent these data with one 

curve for the plus solution andone curve for the minus solution quite 

accurately. Considering Figures 2-5 and 2-6, we essentially have 

the compact solutions for reduced frequency below 1/2, and the high­

frequency solution for reduced frequency above 10. The normaliza­

tion factor used when plotting Ar~ R may easily be calculated using 

eq. (2. 36) and Figure 2-2 . 

In Figures 2-7 and 2-8 we have the magnitude and phase, re­

spectively, of the transmitted wave, entropy solution. The normali­

zation is clearly unsatisfactory, as could b e expected from eq . (2 . 44) . 

The high-frequency solution is not related to the compact solution, 

even with the restrictions we made on M, and Mz. It is clear, 

however, that the compact solution may be used quite satisfactorily 

for reduced frequencies below one. 

The magnitude of the reflec ted wave, entropy solution, is plot­

ted in Figure 2 -9. The normalization is equally ineffective in this 

case. The high-frequency value (zero) is effectivel y attained for re­

duced frequency greater than 10. 

The r e sults given in Figures 2-3 through 2-9 were intended 

primarily to represent inlet and exit Mach numbers characteristic of 

turbine blade rows and exhaust nozzles . For other applications the 

exit Mac h number might be lower. Calculations were perfo rme d for 

exit Mach numbers 0. 8 and 0. 7 also. The normalization described 

previous ly was used on thes e results and are given in Figures 2-10 

through 2-23 . 
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Comparing Figures 2-3, 2-10, and 2-17 for the magnitude of 

the isentropic transmitted waves, we see that. the normalization be-

comes less effective as the exit Mach number becomes small. From 

Figures 2-4, 2-ll, and 2-19 it seems that the phase of the isentropic 

transmitted wave is more accurately represented by the high-freguen-

cy solution as the nozzle exit Mach number decreases. However, 

from Figures 2-l, 2-2 we see that the actual phase also decreases. 

The normalization for the magnitude of the is en tropic reflected 

waves becomes less effective as exit Mach number decreases (see 

Figures 2-5, 2-14, and 2-19). The same is seen to be true for the 

phase of these waves by comparing FigureB 2-6, 2-15, and 2-20. 

It is reasonable to expect that for exit Mach numbers approach-

ing unity the normalization will improve (although for values very 

close to unity special care will be needed in the numerical integra-

tion). In conclusion then, it seems that while the normalization 

scheme is limited, it appears to be quite useful for practical Mach 

number nozzles. 

2. 6 Examples of the One-Dimensional Model 

Example l. We would like to use these solutions to solve a 

practical problem and to see how the graphs are implemented. Sup-

pose we are given a nozzle which accelerates a flow from M, to Mz. 

in a length X, The flow continues through a constant-area duct 

and after a length Xe- X, is terminated with a known impedance ~ e 

The impedance is defined as 
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+ 
Given that a P, disturbance exists, and also that an entropy 

wave CT = s'/Cp is convected into the nozzle, we would like to be able 

to calculate the resulting waves in the downstream duct (see accompa-

nying diagram). 

p,+-

M, cr-

)(:0 

P/­
-F{ 

Consistent with our analysis, we use the length scale x.o.. ... /{u2 -il.):.! 

to make the problem dimensionless. We may write 

P
+ i..Cz.+'f p- i.Cz-~ 

2. e + 2 ~ 

Mi:, (~) P ~ t"cz/r P-ei.c2.r 
z e - 2 

w here 

The impedance may be written as 

and from eq. (2. 16) 

fe == ~z{'fe) 
Mzl.,(s<!) 

By using fe , we may eliminate P2 
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f 

and solve for Pz explicitly 

= 

R 
.fe-1 i 'fe(C-z_,.-C-z_) 

/-m-e 
fe.+l 

It only remains that Tp , Te , Rm be calculated. Let 

M, = o.3 =f> J< = o.1o6 Mz= 0.9 ~ Je =0-837 

and suppose . 

This gives 

17.5 
0 

T he compact solutions (2. 30), (2. 33 ), (2. 34) give 

Tpo = /.132. 

Rmo == -0.024-

Teo= o . t35 

Then Figure 2 -2 gives 

Figure 2-3 gives 

If. I- I 

1~1-/ 

Arq TP -ri:l~+ =20.3 0 

(,3 {3-.oo 

= 0.210 
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Figure 2-4 gives 

0 

3 

Fig ure 2-5 

I ~J =0.90 =f> IR~I= 0.021 

Figur e 2-6 gives 

To get l.oe we nee d eq. (2. 36 ) and Figur e 2- 2 , which give 

I n _ 1- ~e l.. _ a _ a m .vn 1-;)i. + oe -20.3 :=:p. .:C..oe- 60.8 

Henc e, 

Figure 2-7 gives 

l!el =0.92. ~ ITel-= .12.4 
1 eo 

Figure 2-8 gives 

T (3 0 _ ~e ,.4- o T o 
-Arg 1e + z.-PYl Jl -(36o...p-t=7 =t>Arg te = 35 

.". Te = 0./2.4 /35° 
which compl etes the solution. 

As an example, suppos e the nozzle continues t o infinity (i . e., 

the end impedance is somehow mat c hed). L et u.s perturb only the 

entropy upstream of the nozzle. A typical static t emper atur e fluctua-

tion one might find downstream of a turbojet burne r is 
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Since there is no pressure disturbanc e, this gives 

I s;; cpl = .os 
and our analysis gives an acoustic wave propagating downstream of 

the contraction 

I P/ ~iS I= (.os)(.rz4-) =.oo~z 

or 
ISOdb re .oooz dyne/cm2. 

if the mean pressure in the exit section is 1 atmosphere. 

13 
Example 2. As a final ex ample we would like to discuss a 

rather unusual application of the quasi-steady analysis. 
10 

We con-

sider the inlet of a duct with a mean flow Mac h number M < 1. Sup-

pose that somewhere downstream of the inlet we create an acoustic 

disturbance, p- , which will propagate upstream. The wave, upon 

reaching the inlet, will reflect , and a wave R p- will be c reated 

which will propagate downstream of the inlet. The quantity R is 

~//(/(/ //(/ / 
~ p-

M~ 
RP~ 

~\ \ \ \ \ \ \ \ \ \ 

Reflection of an Acoustic Wave P- at a Duct Inlet. 

complex in g eneral and is known as the reflec tion coefficient of the 

inlet. The problem is to determine the value of R given the duct 



-42-

Mach number M , i.e., R (M) 

We model the inlet of the duct as a region of zero axial length 

over which the mean flo..;; is accelerated from rest ( M=O ) to the duct 

Mach number M . A disturbance of finite wave length will appear as 

quasi-steady, and hence this region appears as a compact nozzle with 

inlet Mach number zero and exit Mach number M For a disturb-

ance downstream of this "nozzle 11 equation (2. 33) reduces to 

M-1 
Rrno= M+-! 

where the inlet reflection coefficient R = Rmo 

R.(M) = M-1 
M-4-l 

Hence, 

(2. 46) 

Some recent measurements by Ingard and Singhal
1 

of this reflection 

coefficient R[M) were seen to be accurately represented by 

I I= {1-M) t.'33 
R .95 /+M (2.47) 

These experiments were performed in a duct 3/411 X 3/411 in cross 

section for disturbances of frequency ~ l kHz and Mach number 

from zero to 0. 4. The following graph shows the magnitude of R 

from eq. (2. 46) (dashed line) and that from eq. (2. 47) (solid line). 

The similarity is obvious, but the experimental results (solid 

line) are consistently low. This discrepancy is discussed in ref. 13 

in terms of three-dimensional losses at the inlet (which our simple 

model cannot consider) and in terms of some possible problems with 

the methods used to measure the values of R (and M ) leading to 

(2.47). It seems clear, however, that the reflection coefficient A. is 

most strongly influenced by the acceleration of mean flow from ambi-
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ent conditions to the duct Mach number M in the inlet region. 

1.0 

" " .8 " " " ...... 

IRI .6 
...... 

" " ' ...... 
. 4 

...... 

.2 
.I .2 .3 .4 

M 

Acousti c Reflection Coefficient at a Duct Inlet Versus Duct Mach 
Number. Solid L ine Represents Eq. (2. 47 ). Dashed Line Represents 
Magnitude of Eq. (2. 46). 
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III. SECOND-ORDER DUCT ACOUSTICS 

3. 1 Introduction 

· In the previous chapter we found that a mean floww ith strong 

gradients could interact with first-order pressure and entropy waves 

and give resulting pressure waves of the same order . In that case 

we wrote the governing equations (2. 1) - (2. 4) by considering an 

average of the flow variables over a cross section of the duct in the 

same spirit as the equations of one-dimensional gas dynamics for 

variable -area channel flow are derived. To consider the variation of 

the flow variables across the duct we would need to calculate the full 

two-dimensional solution. This calculation is difficult because the 

two-dimensional disturbance and the resulting two -dimensional 

waves are of the same order. 

h h 
1-3 

Muc oft e recent work on such two-dimensional effects 

has been concerned with the effect of a sheared mean flow on the duct 

modes; area variations were not considered. Small area variations, 

as well as mean vel ocity shear, mean temperature shear, and acous-

tical duc t linings were considered simultaneousl y by Nayfeh and 

K . 4 
a1ser . 

If the variations in area of the duct are small (such that the 

steady disturbance to the mean flow is small), then first-order peri-

odic disturbances give resulting two-dimensional waves which may be 

calculated by a second - order expansion. In general, we may consid-

er three kinds of disturbances: entropy waves, a co ustic waves, and 

vorticity waves . In this c hapter we will seek the second-order so1u-

tion which r es ults f r om the interaction of a two-dimensional e ntropy 
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wave and the small area variation. 

The solution will be found in the following manner. The equa­

tions of motion (two -dimensional) are expanded to second order. The 

zero-order solution is just the constant-area channel flow. The 

first-order solution has a steady part which corresponds to the dis­

turbance to the steady channel flow imposed by the area contraction. 

The non-steady portion of the first-order solution corresponds to the 

periodic disturbances due to the entropy wave . 

Having solved for the fi rst- order solutions, we may write the 

second-order equations with inhomogeneous terms involving products 

of first-order terms. We will retain only the periodic inhomogeneous 

term.s of interest, i.e., those involving the interaction of the entropy 

disturbance and the steady flow disturbance caused by the wall de­

flection. We solve for an inhomogeneous solution with homogeneous 

boundary conditions (no wall deflection) via the Green's function 

method. A homogeneous solution satisfying the boundary condition 

(wall deflection) expanded to second order is found via the Fourier 

transform method. The final solution is expressed in terms of com­

plex amplitudes of propagating duct modes (the waves which propagate 

far upstream and far downstream of the contraction). 

We will express the solution in terms of a general entropy 

wave disturbance and show how this l eads to some simplifi cations of 

the calculations of the acoustic mode amplitudes. Some general ob ­

servations will be made about the behavior of the duct modes and 

some calculations for partic ular e x amples will be presented and dis­

cussed. 
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3. 2 T.he Expansion to Second Order 

We have a duct of height 2. b , with a (subsonic) axial mean 

flow velocity U . Over a portion of the axial distance X. ( -o..<. X <a), 
·, 

the q.rea of the channel varies slightly. The area variation is ex-

pressed as a small deflection in the wall, fcx) , away from ~=0 

or ~=-2b, see accompanying diagram. 

tj=Zb -----------------­

q=b------------~-- ---+----------~~X 
(j ){:-a. 

f 
f()() 

x=a 

The equations of continuity, axial momentum, vertical mo-

mentum, and entropy conservation are 

(Q_ +U. d + 11_Q_ )P + p/du. +chr) _ 0 lo-t dx d7J \dx d<J 

( Q_ + uQ_ + vsL )u + -1 dP 
dt ox o~ P dX 

(Q_.+UQ_ +ifd_ )1!+ _I dP 
l dt ax a;; P d lj_ 

0 

0 

( 3. l) 

( 3. 2) 

(3. 3) 
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(Q_ + u. Q_ +lJ£_ )5 = 0 ot ax a LJ-
Assuming a second-order e x pansion f o r the s olution : 

.P + p(l) + .P(2) 

u + u(') + u.(2> 

?/'' 1- V' (1) 

p .f p ( l) + p (21 ' 

s''' ~ s<-2) 

( 3 . 4) 

(3 . 5) 

The zero-order quantities ar e c onstant s; the first- and s e cond-order 

quantities depend on X,~ 1 t i n general. Inserting (3 . 5 ) into (3. l) ­

(3 . 4), we get the first-orde r e quations 

(
c) c) ) p<" ou (I} ch./'' 
- +U- - + - +- - o at: dx .P dx d~j 

(3 . 6 ) 

d Q_ -t- U E_) U (I) + 0 p(•> 
Jlot ox a>< 0 ( 3 . 7 ) 

0 ( 3 . 8 ) 

(:
d_ + u Q_) £ ')::::: (;Q_ + u g_ )( p(l) - _p<'J) = 
at ox cp at ax )(~P .P 0 (3 . 9 ) 

and the cor res p onding second -o r der e q uations : 

-+ u- .r + u - + 1J - + - + -(a d ) nrz> MJ.PM <'Jo;:/n !{;du<21 dv~') 
dt d x d x d'J_ o x d'J 

(l)(d d'' d lf01 
) -+P - +- - o 

d x dtj. 

( 3 . 10 ) 
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P(;Q_ + u .d_)vw (I)! Q_ u _a_)7i(') 
dt dx +pldt+ ax 

+ pfu'') cL + ll'' _a_)v(•J + a pf2) = o 
~- ox d!J d:J 

( 3 . l l) 

0 ( 3.12) 

_!_(Q_ Q_ xp2> _ _!_(Pr'
1)z)_(d__ Q_)(jJ<zJ _ _!_(Pt'>)2) 

({ dt + U o X P 2 P ( d t -T- U 0 X tP 2( P 

I 0 (llo vr'' o ) pr'' (t r•J o ') /'' o )p(''_ +-U-+ - --U -+v- --0 
~ ox d~J- P dX O'cJ P 

(3. 1 3 ) 

3 . 3 First-Order Solutions 

Non-Steady Solution. The non-steady, first - order disturb -

ances that may exist are, in general, entropy waves, vorticity waves, 

and a c oustic waves. We will be inter e sted h ere in the e ntropy waves 

(for which there are no ass ociated pressure fluctuations) and hence 

(3. 9 ) becomes 

Suppose we c ons ider entropy waves with lines of constant p hase with 

normal at angl e Vs to the c hanne l axis , radial f requency W 5 , and 

convecting through the c hannel with the m ean fl ow. In t his case we g e t 
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( 3. 14 ) 

P
(tl-
s = 0 

uf'=o 
(I J 

lis =o 
and · f<s = Ws/CU GO"j Vs) 

() = (first order) complex amplitude = -s<'/cP 
5 = subscript r e f erring to quantities assoc iate d wi th the en­

tropy wave 

Steady Solution. Here, we seek the first-orde r, steady per -

turbation to the channel flow, U , _p, and P cau sed by the contrac ­

tion in the c hannel. Recall that the height is given by {( )( ) (s ee dia-

gram ). 

----- ------ lj=b 

---------------~t------------------4=0 
x=-a. -rc )() x=a d 

For the sake of simplicity, we assume the same deflec tion for 

the top of the duct, LJ=2b . The duc t i s symmetric about ;;=b 
The e quations (3. 6 ) - ( 3 . 9) give 

d p(ll ou'" d ?/''-
U ox p + ox + d <J - 0 (3. 1 5 ) 

( 3 . 1 6 ) 
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d l/'1 c) p(t) 

pUdX + d!J 0 (3.17) 

(1) (tJ 

_p - p 
p . 4'P 

(3. 18) 

Equations (3. 16) and (3. 17) may be used to show that a potential-type 

solution is appropriate: 

u(l)_ oi.P 
ox 

y'''- d 'f 
d~j. 

Then we find 

Using (3.21) and (3. 18) in (3.15)we get 

(3.19) 

(3. 20) 

(3.21) 

where Mz.= U2. .P/?1 P =UfC2
, mean Mach number. We define the 

Fourier transform iP of <p : 
a> 

ip (L ~) = 12~J'" f 'f(x, ;tl e-<xf dx 
-a> 

Assuming this integral converges, this gives for (3. 22) 

(3. 23) 

To insure rapid convergence of Cf(X,~) we pic k the area c hange to be: 

{(X)= ~ ( 3 +4aJ.)IT J: + CC02TT ~) 
(3. 24) 

-{(x)= o lXI> a. 
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Then +{X) has first, second, and third derivatives which are con-

tinuous. 

"'' r {I) The boundary condition on v 

wall) gives 

olf>_(o · 
o~ udF 

dx 
and therefore 

';j.=b 

~=o 

. co 
c3lf? ) _ I f olf ) -i.x~d 
d~J (Lo - (2rr)~ -CD or; (x,o e >< 

o~c~ b) = 0 dtj.. 5J . 

The solution for ~(~ Jl.J.) takes the form 

(velocity is tangent to the 

(3. 25) 

(3. 2 6) 

where a{i) and b(r) will be determined upon applying (3. 25). The 

potential tf is then found by the Fourier inversion of p 
(X) 

lf(X,lj_)= (c~P'z f p(r ) ~)ei rx.d f (3. 27) 

-():) 

Some of the details of the cal culation may be found in Appendix A. We 

present here only the results for the steady pressur-e disturbance. 

IXI>a 
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\.XI< a. 
Ell - -Ml.if£. 
O'P 4a-z(1-M2) Va 

(3. 28) 

3. 4 Second-Order Solutions 

Inhomogeneous Equation, Homogeneous Boundary Conditions. 

The second-order equations (3. 10) - (3. 13) may be rear ranged to give 

(3 .. 29) 
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The inhomogeneous term simplifies because we are only con-

sidering a first-order entropy wave interacting with the first-order 

steady disturbance. In this case, the unsteady second-order terms 

which remain are: 

Q_( pm)) 5l (~l f2_ (P.:))Il 
ox ~P + dlj.P O<j ~P J 

P (•1 lvp 
where I o is the steady pressure field due to the wall defl.ec-

t•l 1 
tion and .Ps /P is due to the entropy disturbance. 

W e will have the boundary conditions 

dlf (x 0) = o<f' (X 2b) = 0 
OI.J I OlJ I 

Then write eq . 

(3. 3 0) 

(3. 3 1) 

In addi tion, we specify that no waves propagate towards the contrac-

tion for I XI~ CD This is the radiation condition. 

We will express the solution as: 

CXJ 2b 

lf(X,~) = f f G(X,'ji$;"2)F('L r;)d"l_d5 (3 . 32 ) 

-a:~ 0 

is the Green 1 s func tion. The details of the 

cal culation of the Green's function will be found in Appendix B . We 

present the results here: 



ei.wt{ c ex.p[i.w/c xJ 
4l.bw 1-M 

CXl 

+\~ 
L 2b 

m=N+f 

i.wtj_ C [-iW/C J e l4l.bw ex.p I+M X 
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+ ~ -'. co_s€nrr;t)co{mrr!E) exp~· {M z.- _t_
2 2

_(mrrc)2-'-2.) ~(x- 5~ 
~ Ztba(w)z. (mrr)z." Z)) ~ (1-M (r-M > zbw 1-M c 
m-1 - -- ~/-M 

c 2b 

CX) J 1 cosmrritcosm1Ttt · M w mrrc 2 1 1 w + I 2b l 2) ~ exlt{i -M' c\'1.-<l)- r 2 bJ 1-Mq-M')' cO<-rj 
"'"N+I ((~~)(1-M')-(~) z L 

(3 . 34 ) 
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where we define 

N = largest integer suc h that 
Nrrc 

< 
2bw (1-MZ}'Iz 

N, = largest integer suc h that ty.TrC < I 
2bw 

1. e. ' 

In (3. 33) the first and second summations represent waves propagat-

ing upstream. Note that these represent two unique waves which may 

exist. The third summation repr e s e nts waves which propagate up-

stream but are atte nuated as they do so. In (3. 34) the first summa-

tion represents waves propagating downstream and the second sum-

mation represents wave s which propagate u pstream but attenuate as 

they do so. 

To calculate the for c ing fun c tion for eg . (3 . 32 ) we r ecall 

;:Jj!'' ;l::)}j ( 3. 3 5) 

where 
P}'' 

is given by eg. (3. 28) and _p i s given by eg . (3. 14). 

The results o f the c alculatio n of f:(X,j) ar e g iven in Appendix C . We 

now define 

c m=o 
4-ibw 

2 it{(~ l-(;~ r(i-M2
)) 

~ o..:::.m:;.!v' 

Am -

I 

2b((-r;Z)f!-M 2
) -(~)z) Yz N.c::m 
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Then we may write the Green 1 s function 

X< r G(X} !j.; 'f,??) = 

f Am cos{mrr }~Jco.{mrr2;,)exp [i ;:: (x- rJfi~, +fl..,)] 
m=o 

- £ Am co~mrrfi)co{mrr 2:)exp [i ~(X-q'i ~.-nm)] 
N,+l 

+I Amco~mrrft)coimrr;'j)exp[t" ~(X-r)(;~z-{12m)] (3 . 
3

6) 

N+l 

>< >''f G ( x, ~J, r, '?.) = 

1 A., co.s(mrr 1i,)cos(m11 ;b)exp [i ~(x- r){;~. -fl..,)] 

+I Am cos{mrr f~co:{mrr2:)exp[· ~ (x-r){;'! l +{fl."'). J 
N"~l I M 

We must calculate 

co 2b 

'( ( x, 'j) == j [ c;(x, )ji f, 7) F Cf, "J)(hd f 
-a:J 0 

If we let 

(3. 37) 
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G_ ( x, tJ.; ~ 1 J = G r xi fJ.; r_ >J ) x? r 

G+ (X,CJ.j J', ~) = G(X,CJ-;~"7) X< 5 

F_(f/i) - F(f ?7.) 5 < -a., 

Fo (s, '"'!) F{'f/Y?) -a< r <a.. 

F+({7l.) F(f, 'Yf.) s>a. 

We may now break up (3. 32) 

X<-a 

/XI .c. a 

x~a.. 

zb( X -a 
'f(X,<J)=j JG_r_dr +jG_,.F_df 

0 -cv X 

+ (c,.,F"dr +L~+F,dr }d"' 
zbr~-a. J X 

'f{X);j) = jo ( J _<D GJ-df + -a. G:F,_d'S 

+ fc,+ Fo df + rG+F.df} d"/ 

'f'(X,'j) = t {l:c;J_df +ja."c._F.d~ 
+ f.xG_ F~ di + jG+~dr]d?Z 

a. X 
and the solution may be found. 

(3. 38) 

(3. 39) 

(3 . 40) 

(3.41) 

Suppose we are interested in waves which propagate far away 

from the contraction, i.e., as a result o f the second order interac -

tion, what disturbances exist for x-1:00 . 

Consider first X-+a::> ; we use (3.4 1) and neglect the fo urth 

integral since it must converge to zero. In the first through third in-

tegrals we use (3. 37) fo r G- , and we neglect the second summation 
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as being exponentially small (we neglect the attenuated waves). Then 

the Gr:een 1 s function for these three integrals becomes 

and F may be had from (C2 ), (C3 ), or (C4) according to (3. 38 ). 

Since this calculation will give the (inhomogeneous) solution for the 

pressure wave at x-+cv we call it 

(3. 42) 

Next, we consider x~-oo We use (3. 39 ), neglect the first inte-

gral, and in G+ in the last three integrals (use eq. (3. 36)), we 

neglect the third summation (attenuated waves). The Green 1 s func-

tion simplifies to 

and F may be had from ( C2), (C3), or (C4) according to (3. 38). 

We call this solution 

Homogeneous Equation with Boundary Condition. To complete 

the solution we must solve the following problem: 

0 (3. 44a) 
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(3 . 44b) 

(3.44c) 

and the fun c tions F , G will be 

determined from a second-order expansion of the boundary condition 

on the channel walls . The sum of this solution and the inhomogeneous 

solution from the last sec tion will g ive the c omplete solution. 

pC21 
ffi(~ Cj..) = 'I P (X,lj..) for brevity; then w e get 

Let 

assuming the integ ral c onver ges, this g ives f o r (3 . 45) 

2 

lf'dd -(~ ( rJ) r = 0 

which gives 

Transforming the boundary conditions, we define 

"' · t Joo i rx G('~) ='+''i{'f/ 0) = (
2

1T)'Iz G(x)E dx 
-oo 

Let 

( 3 . 4 5) 

(3 . 46) 

(3 .47) 

(3 .48 ) 

(3 . 4 9 a) 
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co 

F(·n = '-f'J("f)Zb) = 1 [ F('/)Ei'fxJx 
(21T) Yz 

-c::t> 

We now solve for a('f) and b(]) in (3. 48), to find 

where 

H(s)== smh[~9.(!~ 
.s 1nh[Zb~( J)j 

_ smh[ 9(f){2b-:;i} 
s 1 n h {_Zbc;J(J')] 

Using the convolution theorem we may solve: 

We must find 

<X1 00 

H( ) _ t ~-( -t"rx..J 
x- (zrrJ*)H rJe us J M = clrrJv.[ ime-mifr 

-a> -~ 

(3.49b) 

(3.50) 

(3. 51) 

(3. 52) 

(3. 53) 

The details of these calculations may be found in Appendix D. 

We present the results here. 

x~o H(><) = 

- (;r)lefl ) ~- w M 1 + 2 ( b exp l (X c t-M2 



-86-

_ (11) ~o/'_1_} ~ (-t sm0 rr lb) 
. 2 ( b L f(l-fw12) -(:2bW )2) ~ 

N+l (' nrrc 

(3. 54) 

X§O :J(X)-

~ stn{n1Ttl6 . r..Lfl(w)2 0- 2{n1TJ 2)~] 
·f;; (~~~Y--O-M'})~ smU-M'!IC -I M ~ib 

+(:f) '12 (bt ) ~ 51 n (nrr/5) 
J;_ r L ((t-M2J-f__zbw)2)~ 

N+l rn1TC 

(3 .55) 

w h er e again N is the largest integer suc h that 

(~)2 >(1-Mzj~;)?. 

We now cal culate G(x), F(X) from ( 3 . 44 ). The boundary condition on 

'j. = 0 is 
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v<'>+v('l.J elf 
U"~-UM+U(2 > dx 

(3 • .56) 

~ :{(lt} 

which insures tangency of velocity at the wall. Expand the velocity 

terms in a Taylor series about y = 0 : 

We insert this expression into (3. 56), and retaining second-order 

terms 

(ll 

1J (x,o) 
u 

v'' (t} a ('' Ft 
- (X,O) U (X 0) - _]!_ (X o) (X) u u / . Oij I u 

A similar procedure at . ca.= 26 gives 

1J w(X 2.b) = 1f l•J(X 2b) U.m(X 2.b)-Jv<'(' x Zb) f (X) 
u 1 u I u I O';j I u 

Using (3. 12) we may write 

olf = -~f£. +U q_)urzJ + .P(I(Q_ + u d._) v(l' 
d'<f c1\ot dx .P at ox 

+(U(t)_Q_ + 1J(t7 Q__) 1!(1)] 
l'" ox d<J 

which we evaluate at ~=0 (or tj. = 2b ) and insert (3 . 58). 

(3 . 57) 

(3 . 58) 

(3 .59) 

Consistent with our previous work we r e tain only the cross 

terms of interest, w hich simplifies (3. 5 9): 

( 3 .60) 
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.Ps''' 

.P 
.., r(t/ 

may be had from (3. 14) and u 

f ~=: l _ U dF 
dx 

lXI> a 

I xl<a.. 
'a=o 

lJ = 2b 

from 

Combining (3. 14) and (3. 61) into (3. 60) and setting Ws= W 

G(X) 

(3. 61) 

= ~ M2 CJ E{[)
2 
exp(-d<sxcoslJs)(co{1T ~)+ co:{2rr ~)) lXI< a 

= 0 IXI>GL 

{: (X) 

=-i_ M2crG.(~J'etp{-if<5XCOS'JJs-i2b/(ssmYs) 
(cos(rr ci_)+ cos{2rr§:}) 

=o 
1 xl<a 
I Xl>a. 

(3.62) 

We are now in a position to perform the integration (3. 52) using 

(3. 54), (3. 55), and (3. 62). We substitute r for X in (3. 62) and 

X- 1' for X in (3. 54) and (3. 55). The integration (3. 52) may be 

written 

eo. " 
(2fT)~ p (X,~j) = j F{f) H{x- 'f)d f +j G(f)J(x- f)d'f 

~ ~ -a. 

(3. 63) 

If we are interested in X< -a. (or X >a. ) we have t>X (or! <X) 

in these expressions, so we use the appropriate form of H(x-}) and 

j(X-3) for X-'f<C (or X-3.:>0 , see (3. 54)). We also must insure 

that the radiation condition is satisfied. We want no waves propagat-

ing upstream for X>) a. and no waves propagating downstream for 
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X<<:-a. This condition is satisfied by limiting the indices on 

eqs. (3. 54}, (3. 55}. If we are interested in lXI>? 0.. we may neglect 

the attentuated waves, i.e., n > .N in any summation. 

For \XI< a we must integrate in the following manner: 

x a 
(2rr)'12 if}'J(X,~j) = j F(f)I-/~(X-f)d'f + 1 F('!)H,.(x-ndr 

-a x 

)( a. 
+ j G(i)J_, (t- f)dr + j G('f)Jr(x- r)dr 

-oo X 

(3. 64} 

where the subscript -t (or r } refers to the appropriate form of 

H (x-'1) or :T(X- 5) for X- r ;:>O (or x- ~ <. 0 ). In this man-

Since this is the homogeneous solution, we define 

(3. 65) 

(3.66) 

which will give the waves propagating at large distances from the 

contraction and correspond to (3. 42) and (3. 43) for the inhomogeneous 

solutions. 
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3. 5 Calculation of the Duct Modes 

The acoustic waves which propagate in a (constant-area) chan-

nel must satisfy the homogeneous wave equation: 

(3. 67) 

where '-f (X) 7J-/:) is the velocity potential associated with the wave. 

The solutions to (3 . 67) will be of the form 

(3. 68) 

which are waves with constant phase lines with normal at angle 1) to 

X direction. Substitution of (3. 68) into (3. 67) gives the dispersion 

relation 

/( = w/c 
Mcosv ~~ 

(3. 69) 

Since the vertical velocity must vanish at the channel top and bottom, 

say ~ =-0,2b , we have 

dlf = 0 
O'J- fJ =Zb 'i-=o 

and so the vertical velocity will be of the form 

The pressure may be written in the form 

p(v) co~mrr2~ )e:t-p[i(wt-~x cos v)] (3.70) 

where P{V) is the a.Inplitude of the mode with wave front angle )} 

and is complex in general. We would like to express our solutions, 

P/, p;, P: >PH- (3.42), (3.43), (3.65), (3.66)inthis 

form. Then, given the mode number m we should be able to give 

the angle of the wavefront V , the amplitude, and the phase of the 
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mode, First, we define the following dimensionless variables: 

(3 =. wa. the reduced frequency, which relates the acoustic wave­. c 
length to the contraction l ength 

S = ~ dimensionless axial length 

1_ = . ~ dimensionless vertical length 
2b 

S = b/a height-to -length ratio of contraction 

(/ 2 {_mrr)z)~ Rm = l/-(1-Ml2~~ m5N (i.e., R m is real and positive) 

For the homogeneous transmitted wave ( P1-t ) we have wavefront 

angle: 

COS Ym 

and amplitude 

M-Rm 
MR,.,-1 

3i cfTM?TT3 
2a. 

and phase ¢11~ 

s 1 n (2(3 ~ tanYs +IY1ff) 
I+ cos {2(3 S ta/l.Vs 1-mrr) 

l~m~ N, 

(3.71) 

(3. 72a) 

(3. 72b) 

Just as in the inhomogeneous solution, two unique waves may propa-

gate upstream. For the homogeneous reflected wave P;; we have 

wavefront angles Vtm / Vzm 



cos )),,.,. _ fv1 +Rm 

and amplitude 

I +fV\ Rm 

M-Rm 
1-MRm 
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(~m:::.N 

N,<m~N 

\1 't2. [2. (t + cos(2(3otanYs+m1T)~ 

N, ..::m!f N 

and phase </> H~m , ¢ 14;, 

N,..c.rn~N 

(3.73) 

(3. 74) 

(3.76a) 

(3 .76b) 

1-
For the inhomogeneous transmitted wave Pxm we have wavefront 

angle )1, , 

o~m!i:N, (3 .77) 

The amplitude is best left complex: 



f+) { Prtn 
-93-
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}= ~u-~ t.A -b z..1T rn 
1-N. 

O.!m!!N, (3. 78) 
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For the inhomogeneous reflected wave ( p; ) we have wave-

front angles v,,, V2m 

COS Vrm = M+R,..,. 
0 ~ !'Yl 6:N (3. 79) 

l +MR'"" 

CO.S V2m 
M-R.,..., N, .c:. m S:N 

(3. 80) ' I-MR ..... 

and complex amplitudes 
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(-) f Pzun :::: 
€.r · l'ft l b -;::Mi., A, 

-~--

_ f_ ex.,..[- nTT J(rdn"')~)'nrr) O'n] 
n=l rL5(r-M~lf a. r a. \' 1--r;t 

- ~ er..n{-n1T 1 ~(~)f~f'nrrl ~ L I, i(I-M 9 a. bz 
n=1 a.. 



Itm 

) 

P
(-) 

(-l - - p L-t) 
Pr2rr1 - z, 
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osm~N (3.81) 

(3.82) 
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The quantity Am has been defined before. In terms of the 

dimens~onless quantities 

m o 

o<m~N (3. 82a) 

also 

(3.82b) 

The remaining quantities to be defined are: 

I. ~m.i.~ I-~t,) .~ Ir,.,., 
1 

I.:J.....,., 

We recall that N 

that 

Ntr 
2(3 & 

and may be found in Appendix E. 

and N, are the largest integers such 

N, rr I 
2(3$ < 

(3. 82 c) 

The procedure for calculating the final solution is straightforward. 

The dimensionless parameters at our disposal are M , 6 , (3 , and 

Y5 , the entropy wavefront angle. We may then calculate the com-

plex amplitude of each mode by adding the homogeneous solution 

(eqs. (3. 72a), (3. 72b) or (3. 75), (3. 76a), (3. 76b)) and the inhomoge-

neous solution (eq. (3. 78) or (3. 81), (3. 82)). 

If we specify M , b we can calculate N , the num-

her of modes which will propagate in the duct,from 

N largest integer < (3.8 3 ) 

so a higher frequency disturbance gives more propagating modes. 
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3. 6 Response to a General Two-Dimensional Entropy Wave 

We have an entropy wave of general vertical dependence con-

vecting with the mean flow. Then taking the place of (3. 14) we as-

sume 

p <'1 i( wt- 'i/) _:_ = o-(x,tj,tJ = e {(i.j) p · ( 3. 84) 

Expand f as a Fourier series in ( 0, 2b ): 

(3.85) 

the coefficients of the expansion may be calculated from 

(3.86) 

Hence, 

(3.87) 

Since our previous work requires the entropy wavefront angle 

for calculation of the acoustic mode, we would like to express (3. 87) 

in the form 

iwt -iRs{XCOSVs +~StnYs) 
cr)Je e Rs = w/ucosVs (3. 88) 
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We the refore re-write (3. 87 ): 

~~ -if(s(xcos'V_;· +~Sm>'j) ,., -iRs(XCoSVj+!f.Stn'ij)l} (3• 89 ) 
+ Lfj e +OJ e · J 

j= I 

with 

Oo = ao 
2 

and for the j th 

a · bJ 
UJ = 2.J +- 27 

Vo = 0 

entropy mode: 

_, /YM 
J) · =tan J·-

'J (3G 

Y · j - -Y.J 

(3. 90a) 

J>O 

(3. 90b ) 

J>O 

W e have seen, eq. (3. 70), that in the m th acoustic mode resulting 

from a disturbance of the type (3. 88) propagating at infinity may b e 

written 

p(21 dJ ~ i.(wt-~cosvmX) 
't(: (X,~~ t) =K PmC'Ys)CTv co~_mrr 2b)e (3. 91) 

Here, K is a constant depending on M and e/ b , o-v is the am-

plitude of the entropy wave w ith w avefront angle Vs , and Pm (Ys) 

is the amplitude of the mode. Given the entropy wave .((';jJ we can 

use (3. 89 ) to give the gen e ral r esult for the amplitude of the mode 
....... 

m , Pm 

Pm = CTo Pm {Y=o) + I@G PM());) +OJ Pm(-VJJ] (3 .92.) 

J =l 
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Wewouldliketo relate Pm(Vj) to Prn{-'V_;) . Sincean 

entropy wave of the form of (3. 88) gives a resulting mode of the form 

of (3. 91 ), w e consider an entropy wave of the form 

(3 . 93) 

which is identical with (3 . 88) except we use the negative of the en-

tropy wavefront angle. For non-zero wavefront angles of interest 

(i.e., fanY5-=jfr
13
'i ), (3. 93) may be written as 

) 
n- ~l·wt -i f?s XCOS ))s iJf'r .'[-

(J(X,Cj.,t = VvL. e e 
i.wt -i~s'f:COSVs -l) '; {2.b-'J) 

=o-v e e e 
(3. 94) 

~s cos Ys = w/u 
If we now let "?. = 2b -71 0,~"7. ~ 2b we get 

(3 . 95 ) 

but from (3. 91) we must get an acoustic mode of the form 

pl2> ) d.. ,-yz.) i.{wt-lexcosv,.J 
-{X/'/, f) = t< Pm(Vj ()v co~mrrc.b ~ 
~p 

where 

If we n ow e xp ress the mode in terms of ~ again (we are essentially 

turning the duct "upside down" from the viewpoint of any pres sure 

measurement but not from the point of view of the entropy wave), we 

(3.96 ) 
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which is identical to (3. 91) e xcept for the factor (-{'' 

We now have the mode amplitude resulting from a negative en-

tropy wavefront angle. Comparing (3. 96) with (3. 91) we may write 

if Vs = fan -r~ :JJ 
We may now write (3. 92) as 

co 

P:..= CFoAm(v=o) +LAm(~·) [<JJ +(-)mOS"] (3 . 98 ) 

J :=I 

We see that given the Fourier coefficients (3. 90) of the c ross-

sectional dependence of the entropy wave we can c alculate the ampli-

tude of mode m by considering only non-negative entropy wave -

fronts. Each wavefront Vj corresponds to a mode of the F ourier 

expansion (3. 89 ). 

Expressing the wavefront angles as 

(3. 99) 

we notice from Appendix E, eq. (E7) and eq. (E8), that the integrals 

and I,,....n must be cal culated differently if 

2n = :±(m = Zj) (3 . 100) 

Otherwise, we may use eq . (E7) or eq. (E8) direc tly. 

In Section 3. 3 we solved for the steady pressur e disturbance 

resulting from the wall deflection. The solution (3. 28) may be con-

side red a cos ine series expansion, a,.. cos{n21T"7) /t = ~/2b J where 
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the Q,... are functions of X By writing a general entropy wave 

in terms of a Fourier series (3. 85), (3. 86), we folUld that only cer-

tain wavefront angles need be considered, (3. 99). Now the first term 

in the integral for I rmn. , i. e. , cos fnir'7 , is the vertical de-

pendence of the duct mode. The s ecdnd term ( cosnZrr77. . ) is from the 

cosine 

term ( 

series expansion (3. 28) of the steady wall pressure. The third 

-i2 ~(tanvs)77 e M ) is the vertical dependence of the entropy 

wave. ( v -21 (3'i(-tan"Ys)?J ) 
The term cos n 2111J /( e M may be considered 

to be the vertical dependence of the interaction of the entropy wave 

and the steady pressure disturbances from the wall deflections. Then 

the integral I{mn. is just a calculation of the mtft cosine coefficient 

of an expansion (from Q!E: 77, ~ I ) of this interaction. 

3. 7 Response to High-Frequency Disturbances 

We would like to investigate the behavior of the mode ampli-

tude for a given entropy mode (j = constant) as the reduced frequen-

cy becomes large. Since J = constant, (3. 99) gives 

= constant (3. 101) 

Consider first the homogeneous solution (3. 72), (3. 75), and (3 . 76). 

It is clear that 

Now consider the inhomogeneous transmitted wave (3. 78). By looking 

at the values of the integrals defined in Appendix E, and keeping in 

mind (3. lO 1 ), we find for (3 ~co 



I 

I a-tm , I a.R,.., 

I 't!m..t J I~o,..,J, I+mn, IJ'"" ~ (3o 

From the definition of (3. 82b) 
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-I 

(3 (3 . 102) 

By considering (3. 78), we see that the dominant terms seem to be the 

first and the last summations. Considering the factor Am leading 

the eq uation, we see that 

+ 
Pzm 

ccr~rr 
b J-M"-

The coefficient K may be easily calcul ated by expanding 

Icnm · for high frequency and by expanding the coefficient in the fifth 

summation similarly. Doing so, h owever, we will find that to CJ(p-') 

K is zero, which implies that the first and fifth summations do not 

dominate. 

The inhomogeneous solution for the mode amplitude tends to 

D-n 
zero for high frequency like 1;;;) where n is at least 2. 

Rather than carry out the expansion to C7(r.rz) 

culation was carried out for several large values of (3 

as well as the other para1neters, are given below: 

s = 1 (contraction aspect ratio, b/a 

M=.J 

tn=Z. (second acoustic mode) 

j =I (first entropy mode) 

the full cal-

The results, 
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i34 IP: I i34IPJ-i I i34\Ptl i34\PI-j 

30 . 80 . 12 2. 12 . 16 

100 . 7 3 . 12 l. 96 . 17 

500 . 23 . 05 3.02 • 05 

The above amplitudes have been normalized as follows 

IPI (3. 103) 

The subscripts H and I refer to the homogeneous and inhomoge-

neous solutions, respectivel y. The superscripts refer to the down-

stream wave and the upstr e am wave. 

We noted that the homogeneous solution behaved like f3 -4- for 

lar ge t3 and that the inhomo gen e ous solution behaved like (J - n for 

large (3 where Y1 is larger than 1 . We have normalized both so-

lutions in the preceding tabl e by f3 -4 
, w hic h shows that both solutions 

n - <~ 
behave like t-' • It is not unex pecte d that the inhomogeneous solu-

tion should behave as the homogeneous solution. 

This behavior is closely rel ated to the wall deflection function 

{ (X ) , (3 . 24). R ecall that we chose ffx) to have continuous first, 

second, and third derivatives. This was to facilitate convergence of 

the series representation of the steady pressure disturbance due to 

the wall deflection. Equation (3. 2 8) verifies that the convergence is 

-1./ 
like n , where n is the index of the series expansion. If one 

follows thr ough the details l eading to the homogeneous solution, it i s 

pos.sible to see that the (3- 'f high-frequency b eh a vior is a r esult of 
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the 
-4-

Yl convergence of the expansion for the steady pressure. 

3. 8 Calculations and Discussion 

For low-frequency entropy disturbances, the duc t responds 

only with plane waves ( m=o mode) propagating far away. For high-

frequency entropy disturbances , we have shown that the duct respons e 

drops off rapidly. If we are to examine the two-dimensional response 

of the duct, we should calculate for a reduced frequency high enough to 

give a few propagating modes, but not for such a hig h frequency that 

the response is negligible. 

For the calculations to be discussed here, we have c hosen 

M = . 3 , the contraction aspec t ratio (height-to -length ratio, b/a. 

& = I , and reduced frequency (-3 = (J..Ja/c = 5.0 These 

values represent an entropy wavelength about one third the contraction 

length, and according to (3. 82b) will give four propagating modes (in-

eluding the plane mode) far away from the contraction. Our high­

-4 
frequen c y analysis tells us to expect mode amplitudes of about 5 R:; 

10-3 (if (3 = 5.0 is indee d a "high frequency). 

The Fourier decomposition of the vertical dependence of the 

entropy wave (3. 85) will, in general, give an infinite number of terms 

(entropy wavefront angles) for which we must calculate the duct modes. 

For a "reasonably smooth" function f{ L;J) we expect the Fourier co-

-I 

efficients (3. 86) to decrease at least as fast as J where j is the 

entropy mode under consideration. Hence, we will calculate for only 

the first ten entropy modes, including the plane mode. These results 

are pres en ted in Figure 3-1. 
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2 

The amplitudes have been normalized by a-~ Tr 
2 

..LYL2 b 1-M and 

are generally~ 10-
3 

as p e r the high- frequ ency analysis. Each curve 

is labeled with p,: where the superscript indicates transmitted or 

reflected wave (+,- respectively),and the subscript m indicates the 

acoustic mode. The phase is also given fo r each c urve, since the 

amplitudes are complex, in general. The amplitudes of the modes 

are not strongly dependent upon the entropy disturbanc e . 

The odd acoustic modes give no contribution for the J = 0 

entropy mode. Then we expect no asymme tric a cousti c modes to re-

sult from that symmetric entropy disturbance (the symmetry is re-

ferred to the duct axis l;j = b ). Suppos e a general entropy wave 

exists w hi ch has no mean component. Then (3. 86) and (3. 90) give 

CTo=O to be us ed in (3 . 98 ), which then simplifies to 

00 

I Am('Vj) aj m even ,.., 
P,...., J=l 

00 

I Arn (Yj) bj m odd 
J-:!1 

If our general entropy wave is symmetric, bj= 0 , then n o 
,._ 

asymmetric acoustic modes P,.., exis t. If the e ntropy is asymmet-

, then no symmetric acoustic modes Pm exist. This 

behavior is not related to the symmetry of the duc t deflec tion. The 

A,(Vj) may be taken from Figure 3- 1, for our partic ular example, 

for J ~ 9 

In the intro duction to this chapter we noted that a one- dim en-

sional analysis, such as used in Chapter II, may be inte rpreted as 

an average of the p erturbation quantities over the duct c ros s section. 
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Since all the acoustic modes have a cross -sectional dependence 

"-' co~mrr~) (far from the contraction), it is clear that only the 

plane mode can contribute to the average. For an asymmetric en­

tropy disturbance, the plane acoustic mode will not be excited, and 

hence the average of the pressure disturbance a c ross the duc t will be 

zero. 

Note that on the duct axis ~=b , the odd modes give no con-

tribution, while all the even modes do contribute. Hence, any pres-

sure measurement we make on the duct axis will respond to the (com-

plex)sum oftheeven modes. For example, the results of Figure 3-l 

show that the second acoustic mode gives about five times the con-

tribution of the plane acoustic mode. 

In conclusion then, the duct responds to symmetric entropy 

disturbances by producing symmetric acoustic mode s,and to asym-

metric entropy disturbances by producing asymmetric acoustic modes. 

The high-frequency response of the duct is governed by the smooth-

ness of the wall deflection. A smooth wall deflection will tend to 

respond less strongly than a "rough" wall will to high frequencies. 

The calculations also indicate that the amplitude of the acoustic modes 

is not overly sensitive to which entropy mode is disturbing the flow. 
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0 2 3 4 5 6 7 8 
• 

ENTROPY MODE, J 
Fig. 3-1 Response for first ten entropy mod es. Phase 

of mode (P+ d ownstream propagati ng, p- up­
s tre c:;rn p ropagating wave} g iven on each curve. 
M = 0. 3 , (3 = wa I c = s . 0, 6 = L I;;. = 1 . 0 . 

9 
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IV. EXPERIMENTS CONCERNING THE RESPONSE OF A 

SUBSONIC NOZZLE TO ONE -DIMENSIONAL PRESSURE 

AND ENTROPY DISTURBANCES 

4. 1 Introduction 

In this chapter we describe an experiment which was intended 

to test the analysis of Chapter II. In that chapter we found that a one­

dimensional nozz l e c ould be subjected to three independent disturb­

ances: an entropy wave convected into the nozzle inlet, a pressure 

wave impinging upon the nozzle inlet, and a pressure wave impinging 

upon the nozzle exit. If the distribution of m ean properties (Mach 

number) in the nozzle were k nown, the response of the nozzle c ould 

be c alculated for each disturbance of a given frequency . Linearity 

then allows superposition of the independent solutions to give a general 

solution. 

The results of the calculation give the pressure perturbation 

field through the nozzle and also the pressure waves which are c aused, 

by the interaction, to be propagated away from the nozzle. 

The experiments were carr i ed out in a blow down tunnel (inlet 

cross section l inch by 3 inches) which accelerates a mean flow of 

nitr ogen from M ~ . 27 toM ~ . 87. The m e an flow is perturbed by 

periodic heating of a grid of nichrome wir es which are located up­

stream of the nozzle. By elec trically pulsing the wire g rid, the 

stream of nitrogen received a periodic fluctuation in total tempera ­

ture. This causes an entropy wave and a pressure wave to pr o pagate 

into the nozzle inle t. The downstream end of the n ozzle was open to 
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the atmosphere, and hence any pressure wave which impinges upon 

the exit creates a wave (by reflection) which propagates upstream to­

wards the nozzle. Thus, the three disturbances are created. By mak­

ing measurements of the fluctuating pressure and other quantities, the 

three disturbances can be determined (the complex magnitude of the 

quantity is measured). After measuring the mean Mach number d i s­

tribution through the nozzle, one may use the analysis of Chapter II to 

calculate the pressure perturbation field in the nozzle on the basis of 

the measured disturbances. The measured and calculated pressure 

perturbation field may then be -compared. The measurements and cal­

culation both give the resulting waves which propagate away from the 

nozzle, and these may also be compared. 

The description of the experiment includes a brief discussion 

of the calibration (measurement and adjustment) of the mean flow in 

the blowdown tunnel. The pulse heater (nichrome wire grid) will be 

described, as well as the electrical circuitry required to produce the 

electrical pulse for the heater. We then describe how the three dis­

turbances are measured and include here a discussion of data acquisi­

tion and processing. Results of some experiments are then presented 

so that the data may be compared with the analysis. 

4. 2 Description of the Experiment: The Blowdown Tnnnel and Pulse 

Heater 

The Blowdown Tunnel. A schematic representation of the 

blowdown tunnel is shown in Figure 4-1. The gas (nitrogen) is sup­

plied from a bank of 20 high-pressure gas cylinders, passes through a 
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pressure regulation system, a plenum chamber (designed to reduce 

turbulence levels in the gas flow), and finally enters the blowdown 

tunnel just to the left of the pulse heater in the diagram. This blow­

down system was designed and constructed by Dr. J. Auerbach (see 

ref. 8, Chapter II) in conjunction w ith experimental studies with a 

supersonic nozzle. The blowdown tunnel was re-designed to give _the 

subsonic Mac h number distribution required for the present experi-

ments. 

At the pulse heater, the tunnel is 3 inches in height and l inch 

in depth. The depth is fixed throughout the tunnel; the c ross -section­

al area is varied by changes in the height. From x = -8 11 to x = -1'' 

(see Figure 4-l), the tunnel height increases slightly. This is to 

compensate for boundary layer growth so as to provide a region of es­

s entially constant Mac h number fl ow. This will be discussed in more 

detail shortly. In this portion of the tunnel, the Mach number was 

nominally . 27. The tunnel height then decreased to approximately 

l. 5 inches in an axial distance of 6 i inches. This accelerated the 

flow to about Mach . 8 7 . The tunnel height was again inc reased slight­

ly from this point (x = 6 ! 11
) to the tunnel exit (x = 14") to provide 

another constant Mach number flow region. 

In order to distinguish the three portions of the blowdown tun-

nel in this chapter, we use "tunnel" to refer to the entire blowdown 

tunnel. The region over which the flow is accelerated will be called 

the "nozzle." The two constant-area regions (one upstream of the 

nozzle and one downstream) will be c alled the "upstream duct" or 

''downstream duct.'' 
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The upstream and downstream ducts were each about 7 inches 

in length and their purpose will be dis c uss ed next. 

Rec all from Chapter II that in regions of constant mean flow 

the equations (2. 1) - (2. 4) simplified such that the s ol u tion (2. 9) 

could be w ritten down: 

p'(x) 

~p 
= ( 4. 1) 

The dimensionless wave numbers C:! were defined by (2. 10 ). Re-
+ -

c all that P , P are the complex magnitude of the downstream and 

upstream w aves pro pagating in the cons tant-area section. If one 

were to measure Z:2 at two positions, say X, and Xz in the con-

P
+ 

stant-area duct, and p- could be calc ulated from (4. 1 ): 

p+ = ( l.2(x,) eicx~_- lz.(x2)eic_x,)/o 

p- = ( rz. {X2)eic .. x.- Z?_(X,) e i C.Xe )/o (4. 2) 

By applying (4. 2) to measurements made at t wo locations X, 

and Xz in our 11 constant area11 ducts , we can determine the waves 

leaving and e ntering the n ozzle. In each of these ducts we see in Fig-

ure 4-1 there are four dynamic pres sure transducer ports, on the duct 

axis.· The length of the duc ts and separation of the ports were c hosen 

to allow adequate resolution in the pressure measurements. Notice 

that the system (4. 2) becomes singular if X,=Xz If, in the presence 

of flow noise, the t wo points X, and are not separated 

11 enough, 11 large er rors will result in the cal culation of p+ and P 

because the resolution between the two measurements will be poor. 
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In other words, the two transducers should be far enough 

apart so that differences in their signals will be much larger than any 

flow noise. The effects of flow noise will be discussed in more de­

tail in the section on data acquisition and processing, §4. 3 . 

It is necessary to not only determine the distribution of Mach 

number through the nozzle, but also to determine if the Mach number 

is constant in the upstream and downstream duct. The total pressure 

was determined by inserting a pitot probe just downstream of the 

pulse heater. The static pressure was then measured ~t four posi­

tions in each of the ducts and in seven positions in the nozzle. In this 

manner, assuming the flow (exclusive of the boundary layers) was 

isentropic, the Mach number could be determined at each position. 

The adjustments to give constant Mach number in the two ducts 

were essentially a trial and error process. The first estimate (as to 

the slope of the walls) was made by assuming that the boundary layer 

was turbulent and incompressible. Schlichting 1 gives a relationship 

between boundary layer thickness and rate of growth of boundary lay­

er thickness under these conditions. By assuming various initial 

boundary layer thicknesses (thought to be at leas t within an order of 

magnitude correct), a mean rate of boundary layer thickness growth 

over the duct could be estimated. This mean rate was used as the 

first guess in determining the wall s l ope. By alternately adjusting 

the wall slope and measuring the static pressure distribution through 

the duct, the best value of wall slope was eventually d etermined. 

After the final adjustment, measurements showed that the change 1n 

the Mach number in the upstream duc t was less than 2 per cent over 
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its length and less than 1 per cent over the length of the downstream 

duct. These figures represent approximately the r esolution of the 

static pressure measurement system used. 

After having satisfactorily adjusted for boundary layer g rowth 

in the upstream and downstream ducts, the Mach number w as meas­

ured at the seven positions in the nozzle contraction. The numerical 

solution, as described in S ection 2. 3, requires the Mach number at 

any point within the nozzle; hence , it was necessary to interpolate be­

tween the seven measured values. A c ubic splines method was used 

to do this interpolation. This method guarantees a continuous first 

and second derivative throughout the region of interpolation, but d oes 

not allow one to specify, f o r example, the beginning o r ending first 

derivative. Thus, the smoothed Mac h number distributio n which re­

sults from this calculation w ill not necessarily have a zero first de­

rivative at the inlet and exit of the nozzle as we know must exist. 

To allow a zero first derivative to b e specified at the inlet of the noz ­

zle, the cubic splines c urve was not used b etween the inlet and the 

first static pressure measurement l ocation ( x ~ 1 11 ). In its place, a 

third-order polynomial was us ed. The four conditions specified for 

the polynomial were the Mach number at both ends and the first de­

rivative at both ends. This allows one to specify zero first deriva­

tive at the inlet. Also, continuity of first derivative is preserved, but 

continuity of second derivative is not. 

A similar method was used at the nozzle exit, but it was 

found that a slight oversh oot in the Mach number r esulted just up ­

stream of the nozzl e exit. This overshoot was minimiz e d by slightly 
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moving the point, at which the cubic splines curve and the polynomial 

were joined, upstream or downstream. 

A typical graph of the Mach number and dimensionless velocity 

gradi~nt, d(u/a""J/d(X/.f) [see (2.5 )] as calculated by this method is 

shown in Figure 4-2. The upstream point (x ~ 1 11 ) where the two 

curves (cubic splines and polynomial) were joined is clearly evident 

in the velocity gradient. This discontinuity in the second derivative 

should cause no problems as far as accuracy of representation of the 

mean flow. Recall from (2. 8) that the gradient only enters as M
2 du/dx 

and hence, the contribution is small in the inlet region of the nozzle 

where the discontinuity occurs. 

It was not possible to control the total pressure exactly for 

each experiment. Since the nozzle is not choked this means that the 

Mach number distribution could vary from one experiment to another. 

It was assumed that for these small unavoidable changes in the total 

pressure the boundary laye r thickness, and hence effective flow area, 

would not change appreciably. Thus, this smoothed Mach distribution 

was used to generate a normalized area ratio distribution through the 

nozzle, which w as assumed to be independent of nozzle total pressure. 

The inlet static pressure record ed for a given experiment could be 

used in conjunction with the area ratio function to calculate a Mach 

number distribution for that experiment. 

The Pulse Heater. We show a more detailed diagram of the 

pulse h e ater in Figure 4-3. The heater actually consists of three 

smaller heaters, each occupying about 1/ 3 of the upstream duct 

e ros s -sectional area. The three heaters could be operated independ-
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ently to produce a two-dimensional heat pulse. Experiments con­

cerned with this mode of operation will be discussed in Chapter V. 

By connecting the heaters together (external to the tunnel) the entire 

cross section of flow could be heated uniformly, thus creating one­

dimensional disturbances. We will be concerned with this mode of 

operation in this chapter, and we will consider the heater to be simply 

a grid of wires strung uniformly across the entire cross section of 

the duct. To produce a p eriodic disturbance a square wave of voltage 

was applied across the heater. The square wave was produced by an 

SCR commutation circuit which is described in more detail in Appen­

dix F. The re'Sistance of the heater was 5. 4 ohms and the peak voltage 

was about 300 . Hence, the peak power input to the heater was about 

16 kilowatts and this produced a temperature fluctuation in the gas of 

approximately 0. 3°C. This fluctuation is small because of the high 

frequency (400Hz) of the pulsing and the finite length of the heater. A 

higher frequency pulse produces a smaller temperature fluctuation 

due to the thermal lag of the heater wires. The thermal time constant 

of the nichrome wires in this flow corresponds to about 4 Hz. 

A longer heater will allow more heat to be transferred to a 

fluid element, but since the heat transfer decreases as the fluid e l e­

menttemperature rises, this benefit has its limit. Also, an element 

of fluid will lose heat if it must pass through wires which are not con­

ducting current. The present heater represents a compromise be­

tween wire diameter and melting temperature, gas flow rate, electri­

cal power available, and frequency of pulses required. 
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4. 3 Data Acquisition and Processing 

Dynamic Transducers and Measurement of the Entropy Wave. 

The temperature fluctuation was measured at the position x = -0 . 5'' 

shown on Figure 4-1 withal. 28 1-Lm platinum/rhodium cold-wire re-

sistance thermometer/amplifier system. The wire carries a constant 

current of a low value (0. 2 ma) so that the velocity fluctuations do not 

affect the wire temperature. Gas temperature fluctuations are sensed 

by the wire as resistance fluctuations; the constant cur rent then gives 

a fluctuating voltage cross the wire proportional to the gas tempera-

ture fluctuations. The signal is then amplified. 

Pressure fluctuations were detected with piezoelectric trans-

ducers and associated charge amplifiers. The transducers were cali-

brated by inserting a (calibrated) microphone nearly in the tunnel. A 

loudspeaker was operated near the tunnel exit such that typical signal 

strengths were detected by the microphone as would be expected in the 

actual experiments; there was no gas flowing in the blowdown tunnel. 

Care was taken to insure that the transducers were inserted to the 

same depth in the tunnel and inserted with the same torque for each 

experiment, as for the calibration . 

. By measuring the temperature fluctuation, T' , and the pres-

P I 

sure fluctuation, , the complex magnitude of the entropy wave 

being convected into the nozzle can be cal culated. The equation of 

state (2. 4) and the ideal gas law, P =..PRT , may be linearized to 

give: 

I '(-{ p 
Tp (4. 3) 



-120-

Effect of Flow Noise on the Measurements. Since our analysis 

of Chapter II was a harmonic analysis, we must deal with signals of 

only a single frequency. If we pulse the heater at a fundamental fre-

quency, say F 0 , we expect to find temperature and pressure flue-

tuations at that frequency and all harmonics. We expect the funda-

mental component of the signal to be the largest, and hence we will 

attempt to measure the phas e and magnitude of that component. 

The determination of phase and magnitude of the fundamental 

component, by any method, will be affecte d by the presence of nois e . 

Consider, for example, a signal at the fundamental frequency of mag-

0 
nitude 1. 0 and phase 0 . Suppose we also have present at this fre-

quency another signal of magnitude S and phase cf:>s where 

The sum of these two signals can be represented by 

the vector sum in the phase plane: 

The horizontal axis here represents the real (cosine) component of 

the signal and the vertical a x is represents the imaginary (sine) com -

ponent. Then the net signal at the fundamental fr eq uency will be r ep-

resnted as the locus of points given by the cir c le in the above diagram. 

We c an write t h e magnitude of the net s igna l as 
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and the phase will be 

tan-' { s stnc/Js ) 
I+SCOS</Js 

The presence of the secondary signal will cause a maximum 

"error" 5 in the determination of the magnitude and a maximum 

phase error = Sin-' 5 If we consider the secondary signal to be 

noise, then we may call t/S the signal-to-noise ratio since it is the 

ratio of the amplitude of the signal to that of the noise. 

As an example, consider a signal-to-noise ratio of 10. We 

would expect to determine the magnitude of the signal to ± 10 per cent 

_,{ ) 0 
and the phase to :t Stn ./ = ~5.7 . 

Since the temperature fluctuation m this experiment is small, 

one would expect that the pressure signals would be small (in fact, we 

expect P'/P = CJ (T/T) = 10-3 , see Section 5. 3). In this case, 

the flow noise will be expected to be significant compared to these 

signals. Reference 2 reports on the pressure fluctuation due (pri-

marily) to turbulence in a subsonic boundary layer. The power spec-

i 
trum of this fluctuating pressure was found to be quite flat for fre-

guencies which cover our range of interest. The reported magnitude 

of pressure fluctuation was 

JEj_ 
Patm 

-'f 
3·10 

This does not include any noise such as we may have from the 

mean flow region, from the plenum chamber, or from the flow pass-

ing across the pulse heater wires. It is clear,then, that the flow 

noise we will encounter will be roughly the same magnitude as the 

signals we seek to measure. Our previous statements imply that the 
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res.ulting errors 1n any calculation of phase and magnitude will be un-

acceptable. 

The method used to increase the signal-to-noise ratio here 

will be called ensemble averaging. The method is very straightfor-

ward and consists of averaging ensembles of data which, except for 

the noise, are identical. Suppose that we begin recording the output 

of one of the pressure transducers, for example, at time t, after 

the pulse heater is turned on at time to If we stop recording 

data at some later time tz. , we call the record of data an ensembl e 

of length tz.- t, The next time the heater is turned on, we again 

wait a period f,- to and record the output of the same transducer 

for length of time tz.-t, We now have two ensembles of the sarne 

l ength . Since they represent data recorded with the same relative 

phase with respect to a periodic disturbance, they should be identical 

except for any contribution not ass ociated with the periodic disturb-

ance. 

Suppose we have several such ensembles which were digitally 

sampled (each ensemble consis ts of a given number of discrete val-

ues). If we look at the same respective value in each ensemble (i.e., 

the /h value in each ensemble), then this value represents the sig­

nal recorded at exactly the same phase (time delay) with respect to 

the heat pulse. If the noise were small, all the values would be about 

the same, with some small scatter . Our inclination would be to sim-

ply take the mean of these values to get some average representation 

of the signal (without the noise ) which occur red at that time. The en­

semble average technique simply performs this averaging for all the 

' 
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respectiye points in the ensembles. The resulting averaged ensemble 

would be expected to represent the signal more closely . We also ex-

pect that if the noise is large we will need to average more ensembles 

to get a close representation of the signal. It is possible to show 

(see ref. 3) that if the noise has a Gaussian distribution, then aver-

aging in this manner will tend to decrease the noise relative to the 

signal like n iz where n is the number of ensembles averaged. 

We have shown that the unprocessed signal should have about 

equal amounts of noise, hence if we average 100 ensembles we should 

get a final signal-to-noise ratio of about 10. 

The circuit required to allow data acquisition in synchroniza -

tion with the heat pulses is described schematically in Figur e 4-4. 

A detailed description of each circuit may be found in Appendix F. 

We describe briefly the operation of the system here. The frequency 

reference consists of a crystal oscillator and provides a fixed (fre­

quency) digital signal to act as a time base for the entire experiment. 

The pulse generator logic (digitally) divides the reference signal t o 

give five signals, three of which are shown on Figure 4-4 leaving the 

pulse generator logic and passing through a ground isolation system. 

These three signals are amplified and ultimately produce the high 

power pulses required to operate the pulse heaters. When we are 

producing a one-dimensional heat pulse, all three heaters (Fig ure 

4-3) operate as a single heater. In this case, only two of the three 

signals leaving the pulse generator are used. The reason that two 

a r e required is e x plained in Appendix F (in the discussion of the SCR 

commutation circuit). The third signal is required when it is neces-
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sary to operate the pulse heaters independently. This mode of opera­

tion will be described in more detail in Chapter V. 

The production of the high power heat pulses causes a large 

amount of electrical noise which must not be allowed to interfere with 

the operation of the logic circuits . The ground isolation circuit al­

lows the logic circuit ground and the high power circuit g round to be 

independent of each other. Besides the electrical noise in the ground 

of the high power circuit, a large amount of noise was radiated be ­

cause the SCR commutation circuit generally switched on 60 amps 

in about 1 microsecond. This noise is in phase with the temperature 

and pressure fluctuations to be measured, and thus is not affected by 

the ensemble averaging process. Hence, it can strongly influence the 

calculation of the phase and amplitude of the fundamental component of 

those quantities unless isolated from the instrumentation (resistance 

wire amplifier and charge amplifiers). 

In order to prevent the radiated electrical noise from reaching 

the instrumentation, all wires c arrying a high current with fast tran­

sients were heavily shielded. We were able to demonstrate that the 

electrical noise was not affecting the instrumentation; a typical exper­

iment was performed with two _modifications. First, a pressure 

transducer was isolated from a cous tic disturbances in such a way that 

its sensitivity to electrical noise was not altered. Second, the con­

stant current required to operate the cold-wire resistance thermome-

ter was turned off. The cold wire remained as input to its amplifier, 

but in this way it would not be sensitive to temperature fluc tuations. 

Any electric al interference could still affect the wire . After the data 
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were processed, it was seen that the remaining signals (from thes e 

two transducers) at the f undamental frequency (which could only be 

c aused by electrical interference) were negligible compared to the 

pressure and tempe rature signals recorded during a normal experi­

ment. 

Data Acquisition System. In order to allow the acquisition of 

data ensembles in synchronization with the heat puls es , the pulse 

generator produces two other signals. These signals ultimately reach 

a computer/data acquisition system which consists of a computer 

(Hewlett-Packard model 2100, with 32K integer words of memory) 

and a 16-channel analog/digital (A/D) conversion system. The ''in­

strumentation" refe rred to in Figure 4-4 consists of seven (analog) 

signals from the pressure transducer/charge amplifiers, one (analog) 

signal from the cold-wire resistance thermometer I amplifier, and two 

reference signals. One of these reference signals is a constant 1. 000 

volt d. c. signal which acts as a calibration check on the A/D convert ­

er. The second reference signal is a TTL square wave at the funda­

m ental frequency and allows one to easily check whether or not the 

ensemble averaging was performed correctly. (After any number of 

ensembles have bee n averaged, the square wave should be unaltered. 

These ten signals are input to the A/D converter. 

The 11 clock11 signal, which comes from the pulse generator , is 

a TTL square w ave of a frequency which is some multiple of the fun ­

d amental frequency. The frequency of this signal will be discussed 

shortly. The "be t a" signal is also a TTL square wave. If the beta 

signal is logical true, then the A/ D converter samples the analog 
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channels in order, digitizes the voltage from each c h a nnel, and make s 

the digital number (repres enting the voltage fo r that c hanne l) avail -­

able to the computer. The f requenc y that the A / D converte r sampl e s 

from one channel to the n ext is that o f the "clock" signal. The data 

controller (see Figure 4-4) causes the " beta" signal to be l ogical 

true for a pre-set number of cycl e s (of the f undamental frequen c y) 

and then b ecome logical false for a pre-set number of cycles. The 

number of c ycles that "beta" is true determines the l e ngth of the en­

semble. The length of time required by the computer t o process the 

ensemble determines the number of cycles that "beta" i s fals e (which 

inhibits data acquisition). 

The processing of the ensembl e was done in one of two w ays . 

For short ensembles (up to about 2 c ycle s in length), the ensemble 

averaging could b e carried out in (computer) c ore. The A / D c on­

verts the data making up the ensemble to digital form and the com­

puter stores the ensemble in memory. After the next ensemble is 

sampled, the values are added to the respective values of the previous 

ensemble which was already in core. For longer ensembles, this 

adding process r e quires too muc h time, and it is more efficient to 

write each ensemble on the magnetic disk memory. After the ex­

periment is complete, the e nsembles are read off the disk and 

averaged by the computer . 

Since the static temperature o f the gas falls during the experi­

ment, and since the c ost of the gas is appreciable, it is best to waste 

the least amount of time during the experiment. At least part of the 

time the ensembles a r e being processed (eit her averaged in core or 
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being written on the disk), no data are being recorded. These two 

methods of processing the ensemble were used in order to minimize 

the time during which no data were being recorded. 

Calculation of the Fourier Spectrum. After the experiment is 

complete, the averaged data are written on magnetic tape for further 

processing. The data in this form are a record (for each channel) 

consisting of a set number of cycles of a signal with about 10 per cent 

noise content. We are now ready to determine the phase and magni-

tude of the fundamental component of each signal recorded. 

We denote the values in each record as 1.IJ , j = 0
1
0 .. . N- I 

where we have N equally spaced samples. Each sample Vj rep-

resents the voltage (on the particular channel) at a particular time 

jCJ.t where tJ.t is the sampling period for each channel. The 

sampling period is just the period of the "clock11 signal multiplied 

by the number of channels scanned by the A/ D converter. 

We would like to calculate the Fourier Series representation 

of the data record. If the record were a continuous function of time 

V(-t), QGt.~T=N!!Ji , we wou.ld represent V(t) as 

CXl 

V(t) = ~ Cn exp ( -2-rrint/T) (4. 4) 
n:-01) 

with 

T 

Cn = ~ J u(t)ex._p(2rrint/T)dt 
0 

(4. 5) 

Since we have sampled V'(f} at the discrete times O;Clt,Z!!Jt ·· ·· Nl1t 
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we approximate the coefficients by 

N·l 

Cn:.:::. ~ L 7J(jtj-f:.) ex.p(ZrrinJ/N) 
j=-o 

(4. 6) 

which may be considered as the application of the trapezoidal integra­

tion rule to eq. (4. 5). Note that since U(t) is real, 

T 

Cn = ~ j 7J(t) cos(Zrrnt!T) dt 
0 

T 
+ i .!_ ( V'{t) stn{Zrrnt/T)dt 

. T )~ 
0 

(4. 7) 

Consequently, the real part of Cn ( n >Q ) is just half the cosine CO-

efficient of V{t) ' and the imaginary part of Cn ( n > 0 ) is just 

half the sine coefficient of V(t) . This may be verified by changing 

the variable of summation in the negative portion of the summation in 

(4. 4) and by using (4. 7 ), write that portion as a summation over posi-

tive n This gives 

00 

l!(t) = I[.J. Re(Cn) cos(2rrnt/T) +2Im(C.h) S!n(2rrnt/T~+ Co 
n=-t 

The question remains as to how accurate a representation of eq. (4. 5) 

is eq. (4. 6). 
4 

Cooley, et al. have shown that for 

N-1 

Cph = ~ I_ lf()!:lt) ex.p (C.rrinj /N) 
J"'O 

we will find 

(%) 

Cpn = L C (n-t-N..f) 

...f=-00 

(4. 8) 

(4. 9) 
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The equation (4~ 9) is an expression of the so-called aliasing effect. 

Thi~ says that if we want the Cpn to accurately represent the 

Fou.rier coefficients C,., , then N must be ' 'large enough'' so that 

the approximation (4. 6) is acceptable. Since N= T/td , large N im­

plies that we must sample v(f:.) at a ''high'' frequency. If the sam­

pling frequency is F =1/l:d , then we would like F to be large 

enou~h so that C, ~ 0 for frequency -F , l.f I>~ F {n/T=F ) 

We will then have 

n =o, 1~2. · ·· N/2 

n =I~ 2. · · · N/2. 

In the present work, high-frequency signals were associated 

with noise, and the largest signals of this type were expected from 

the pressure transducers. The resistance thermometer had low 

sensitivity to velocity fluctuations and a signal with high frequency 

content was not expected. A nominal value for the fundamental fre­

quency was 250 Hz and the data were sampled at 32 times this fre­

quency per channel. The frequency F(Z (called the Nyquist fre­

quency) is then 4 kHz. To insure that the frequency content of the 

pressure signals was very small for frequencies greater than 4kHz, 

a low-pass analog filter was inserted between the charge amplifiers 

and the A I D converter. The filter had -3 db point at 2 kHz with a 

roll-off of 42 db/ octave. Hence, any signal of 4kHz or greater 

would be attenuated by about 42 db (reduced to less than 1 per cent). 

The coefficients of the expansion Cpn may be calculated di­

rectly from eq. (4. 8) in CJ(N 2
} operations. This constitutes the 

classical "discrete Fourier transform method, 11 and is suitable if 



-130-

only. a very few of the frequency components are required. In order 

to make some estimate of the quality of the signal (i.e., signal-to-

noise ratio) and to be able to easily determine if a large amount of 

electrical interference had occurred, it was desirable to calculate 

all the coefficients Cpn , n=o) I) 2 ... N /2 In order to perform 

this calculation in a reasonable amount of time, the Fast Fourier 

Transform (FFT) method was used. This method is discussed at 

length in ref. 5. For our purposes, we need only note that the meth-

od requires that N 
ITI 

be highly composite such as N=J,< J K_, m are 

integers. The computer program we used was given in ref. 5 and 

. requires that K=2. In this case, the calculation of the coefficients 

Cp;, may be performed in CY(N.la;j
2

N) operations. Nominal 

values used for the data acquisition were such that 16 cycles of data, 

32 points per cycle, comprised a record for each channel. Thus, 

approximately one per cent{[~z.N]/N ) of the operations were re­

quired by using the FFT method. An additional savings of a factor of 

2 was realized by using the fact that the data Y(Jfli) were real. The 

procedure for utilizing this savings is covered in ref. 8. 

As previously mentioned, there are two sources of noise 

which may be present in our signal. The first is random (generally 

considered Gaussian-white noise) which was caused by flow noise. 

Our previous discussion showed that a nominal value for this flow 

noise will be about 10 per cent of the signal. It is clear that the 

pressure fluctuation field will vary through the duct and indeed, 

(spatially) local minima, or nodes, in the amplitude may occur. 

The flow noise may strongly influence the calculation of the 
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amplitude and phase of the frequency component "seen'' by the trans-

ducer located at these nodes (see Effect of Flow Noise on the Measure -

ments, pagel20). It is clear, then, that any calculation of the ampli-

tude and phase of a component must be ac companied by a statement 

giving some indication of how meaningful the calculated amplitude and 

phase are. The measurement at a "node" may be 50 per cent noise, 

in which case the amplitude calculation would be in error by as muc h 

as ±50 per cent and the phase calculation would be in error as much 

0 . 
as 30 . 

It was assumed h ere that the flow noise was at least " locally 

white, 11 meaning that the amplitude spectrum, near but excluding the 

fundamental frequency of interest, was constant. In this way the am-

plitude of the noise component (at the fundamental frequency) could be 

estimated as the mean of the noise components near the fundamental 

component. As an example, consider an e x periment performed at 

250Hz with a 16 cycle record. This gives a resolution (in the fre ­

quency domain) 4f ~ 16Hz. The calculated amplitudes for the f re-

quency components fn= 2SO! n C!..f , n=l} 2 · · · 10 were av-

eraged to give the noise component at 250 Hz. In this way, an esti­

mate of the signal-to-noise ratio (as used above) could be made . 

T he second type of noise is due to electrical interference ere-

ated by the rapid s w itching of high currents in the SCR commutation 

system. This noise generall y appeared as sharp transients in the 

voltage waveform, and since thi s noise is in phase with the heat pulse, 

it was not reduced by the ens emble averaging tec hnique. Small 

amounts of e lectrical noise were always present in the cold-wire out-
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put, probably because the wire acts like a small antenna (located g uite 

close to the pulse heater). Also, the shielding of the high power 

cables is not perfectly effective. Large amounts of electrical noise 

were indicative of a shielding problem and could easily be seen from 

the waveform or the amplitude spectrum. Since this noise appears as 

very sharp transients in the waveform, the spectrum reveals nearly 

equal amplitude, evenly spaced components. To check for objection­

able amounts of electrical interference, the fundamental component 

was compared with the harmonic component with largest amplitude. 

A harmonic of comparable amplitude to the fundamental is indicative 

of a large contribution by electrical noise to the fundamental com­

ponent. 

The estimation of the two types of noise made possible the 

elimination of: 

(i) entire experiment if excessive electrical interference oc-

curred, indicating a broken wire shield ; 

(ii) one data point (pressure fluctuation measurement) if the 

flow noise were comparable to the amplitude at that point. 

Note that in the case of (ii) we will still be able to say that the point 

was a node, but we must be aware that the values of the phase and 

magnitude are not reliable. 

Typical waveforms and respective amplitude spectra from an 

experiment with fundamental freguehcy ~ 250 Hz are shown in F igures 

4-5 through 4-10. For this experiment, 100 ensembles were aver­

aged; _ each ensemble was 16 cycles in length, 32 data points were re­

corded per cycle. In Figures 4-5 and 4-6 we have the output of the 
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pressure transduGer/charge amplifier located at x = 11. 5'' (see Fig­

ure 4-1). In Figures 4-7 and 4-8 we have the output of the pressure 

transducer/charge amplifier located at x = 1 ~ . 5". In Figures 4-9, 

4-10, . _we have the output of the cold-wire resistance thermomet'er/ am­

plifier which was located just upstream of the nozzle inlet (x = -i"). 

The pressure fluctuation recorded from the position x = 11i" 

(Figures 4-5, 4-6) is a large signal in the sense that the amplitude 

components other than the fundamental are negligible. The wave form 

(Figure 4-5) clearly exhibits the 16 cycles of the fundamental frequen­

cy. Our scheme for calculating the signal-to-noise ratio gives 32 db 

for this signal, and the largest harmonic is 19 db below the funda­

mental. The pressure fluctuation recorded from the position x = 13i '' 

has about one half the amplitude at the fundamental frequency, as does 

the signal recorded at x = 11. 5". Most of the noise seems concen­

trated around 800 - 1600 Hz, and we expect that the amplitude compo­

nent of noise at the fundamental will be small. For this signal-to­

noise ratio we get 30 db, and the largest harmonic is 8 db b e low the 

fundamental. 

The figures 4-9, 4-10 demonstrate the electrical interference 

noise discussed earlier. It was mentioned that the resistance ther­

mometer was more susceptible to this noise and this is evident in 

these figures. There is obviously very little random (flow) noise re­

maining. The signal-to-noise ratio here is 48 db; the largest har­

monic is 21 db below the fundamental. 

The sharp, periodic transients seen in the waveform are due 

to electrical interference and cause the evenly spaced smaller p eaks 
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in the amplitude spectrum. The effect of the analog filter is clearly 

evident in Figures 4-6 and 4-8 from the sharp roll-of£ in response for 

frequencies above 2 kHz. The filter used for the resistance ther-

mometer had a -3 db point at 5 kHz and a roll-off of 18 db/ octave. 

The electrical interfer ence was evidently not reduced by the filter. 

It is also possible that the interference actually occurred in the long 

cables from the thermometer I amplifier output to the computer . In 

either case, this high-frequency content is not enough to cause sig-

nificant problems either with aliasing or with determination of phase 

and amplitude of the fundamental component of the temperature flue-

tuation. 

Finally, it should be noted that the digital sampling causes a 

phase shift due to the finite sampling frequency. The last channel 

sampled will be shifted the mast (in the time domain) relative to the 

first channel. This phase shift has been compensated for in reporting 

the phase of the fundamental component of any signal. 

4. 4 Results and Discussion 

In this section we first discuss the calculations leading to 
.,. 

p,- ' from the experimental data for one experiment. This 

n ,-+ will lead to a value of ~. and A. used in the numerical calcula-

tion. Numerical results will be presented for two experiments per-

formed at different fundamental frequencies. 

An experiment was performed with fundamental frequency 

250 Hz. One hundred ensembles we re averaged, each con -

sisting of 16 cycles, 32 points per cycle of data from a given trans-
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ducer . An attempt was made to measure the pressure perturbation 

in the two constant-area duc ts from this one experiment. The pres-

sure perturbations for the remaining positions (i n the nozzle) were 

then measur e d in anoth er experirYlent. Due to the difficulty in pre-

cisely controlling the mean conditions (total pressure and total tem-

p erature) it was felt that this method would be the most self-con-

sis tent. 

In orde r to determine the upstream and downstream propa­

gating waves in the upstream duct ( P~ and P,+ respectively), pres-

sure measurements were made at x = - 6. 75", -2. 75" and -0 . 75 " 

(see Figure 4 - 1 ). This allows thr ee indepen dent calculations of each 

quantity P, p ,+- The waves in the downstream duct ( P2- and 

P: "' ) were determined from press ur e m eas urements at x == 6 . 75", 

9. 25' ' , 11. 25", and 13. 25". This allows six independent calc ulations 

of each quantity. The temperatur e fluctuation was measured at x = 

-0. 75". The following table summarizes the val u es recorded. 

Parameter Distance from Magnitude Phas e 
Nozzle Inlet 

T '/ T -0.75" l. 39 X10 - 3 
43° 

P'/P -6 . 75" . 64X 10- 4 
168° 

P'/P -2. 75" 1. 23X 10 
-4 

-99° 

P'/P -0.75" 1. 90X l0- 4 
-94° 

P'/P 6.75" 1. 8 0Xl0- 4 -126° 

P'/P 9 .25" 3.59Xl0-4 - 144° 

P'/P 11.25 " 2..68X10-4 + 17 8° 

P'/P 13 .2.5" 1.08Xl0-4 
+ 149° 

wher e T is the mean total temperature measured upstream of the 

pulse heate r (compensation was late r made for the increase in this 
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quantity across the pulse heater). The mean pressure P is the 

static pressure recorded at the position x =-. 75 11 (Figure 4-1). 

+ 
The results of calculating p- (eq. (4. 2 )) were plotted in the 

PI
+ 

phase plane. For example, a vector was drawn for the value of 

The length represented the magnitude of the quantity, ((ReP/ )
2 

+ 

2)~ (Im Pt) '2, the counter-clockwise angle from the right horizontal 

axis represented the phase= Tan·' (ImP//Re A~. Figure 4-11 is such a 

display of P,+ and P, based on the values of P/oF,:,cc,1 recorded in 

' the upstream duct and listed in the preceding table. The vectors 

terminated with" M 
11 

represent the three calculations of P, and 

If •I P,T 
those terminated with P represent the three calculations of 

The vector terminated with 11
-

11 represents the vector average of the 

three values of P,- The vector terminated with 11+11 represents 

the vector average of the three values of 
p.,. 

I We should note that 

Ill\/\ II the ,., vectors were not necessarily drawn to the same scale as 
II II 

the P vectors. 

There seems to be no particular problem with these results; 

the scatter is quite small. We use the vector-averaged values: 

(4.29) 

(4.30) 

Pl
.,. 

The first quantity will be required in the numerical computation, 

while the sec ond will be compared with the results of that computation. 

The results for the downstream duc t 
T 

P2- ) are pres en t e d in 
11 II 

Fig ure 4-12; the notation M 
,, U II II II II 

p + 
I 

is unchanged from Fig -
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ure .4 -11. Only five vectors are shown; the calculation based on the 

first and last positions in the duct (6.75 11 and 13. 25 11
) was not plotted. 

' These two positions are very nearly one (upstream propagating) wave-

length apart: 

,A - 2rr 1 z ,.7" 
- c?-

Since the downstream propagating wavelength A~ 96 is so large, the 

variation of the pressure perturbation field (in the downstream duct) 

is primarily due to the short wave ). _ . Hence, the result of using 

positions 6. 75" and 13.25 11 gives very large errors (because the sys-

tem (4. 2.) is 11near 11 singular). There is apparently a large amount of 

scatter in the measurements presented in Figure 4-12. 

The vectors are labeled with two digits which give, from the 

table on Figure 4-12, the position of the two points used to calculate 

that vector. For example, the Pz.+ vector in the fourth quadrant 

with indices (1, 2) was cal culated from positions 6. 75 and 9 . 25 inches 

from the nozzle inlet. 

From these indices it is possible to see that the vectors have 

a monotonically increasing phase (decreasing for the P/' wave) as 

the measurement position moves downstream in the tunnel. Note that 
-l-

in using (4. 2) to calculate p- the wave number C_ =BM/{u{t-/'11)) 

is very sensitive to Mach numbers near unity; for our experiment, a 

1 per cent error in the Mach number gave a 6 per cent error in the 

wave number C2 _ Such an error in the Mach number could easily 

result from the manner in which we measured it. Additionally, a 

weak Mach number gradient can e x ist in the duct, making an accurate 
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determination of the Mach number difficult. However, it will be seen 

shortly that since the flow is nearly sonic in the downstream duct 

the wave P, has very little influence on the remainder of the duct. 

Hence, difficulties in accurately determining P; are offset by the 

relative unimpo!tance of the wave . 

If these phase errors had been random in nature, a more fun-

damental difficulty with the experiment would have been indicated. 

However, since the consistent increase in phase angle seems to be 

closely related to the difficulties in determining the duct Mach num-

pz.± 
ber, we will use for those values most nearly representative of 

the duct. Since the most representative value of the Mach number 

would be the one near the center of the duct we will use the vectors 

with indices (2, 3). Note that those values are quite nearly the 

average values 'indicated by "+ " or 11
-", further indicating that the 

data are scattered in an ordered manner about the middle, (2, 3 ), 

points. The value we use is then 

Pt = 2.50 /rr;S .. (4. 31) 

(4. 32) 

The value calculated for the entropy using eq. (4. 3) and the values 

given in the table on page 135 is 

o-= s' 

Cp x = -."'s'' 

-4- ~5 r" 13.52·{0 ~ (4.33) 

The measured static pressure for the experiment was used, 

as previously described, to calculate the distribution of mean Mach 

number in the nozzle such as in Figure 4-2. Having specified the 
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fundamental frequency of the disturbance, a numerical integration 

such as described in Section 2. 3 was performed. The results of this 

numerical calculation are: 

Tm 
Rm 

transmitted wave,plus solution 

reflected wave, plus solution 

normalized pressure perturbation through the nozzle, 

plus solution 

transmitted wave, minus solution 

reflected wave, minus solution 

normalized pressure perturbation thr ough the nozzle, 

minus solution 

transmitted wave, entropy solution 

reflected wave, entropy solution 

normalized pressure perturbation through the nozzle, 

entropy solution 

The results are presented in two ways. First, the calculation 

(2. 16) is carried out graphically. Using the experimental values of 

p,"~" 1 Pz.- J CT [eqs. (4. 29), (4. 32), and (4. 33), respectively] and 

the values of Tp J Rp 1 T,., 
1 

R m , ~ and Re from the numerical 

solution we calculate 

p,: P;'" RP -r P; T,.., -rCTRe 

P/* = P,-rTp +- Pz-Rm -ro-JE 

The >:< subscript indicates the wave was calculated, not measured. 

These four vectors, the three components and the resultant, are 

drawn (in the usual convention) in Figure 4-13 as solid lines. The 
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dashed vectors are experimentally determined vectors P1 t or 

P/ [eq . (4. 29), (4. 30), (4 . 31), or (4. 32)] . The reSL1ltant waves 

are to be compar e d as well as Pz and Pz.-~ . 

The scales are shown for the upstream duct (coordinate system on 

left of diagram) and for the downstream duct (c oordinate system on 

right of diagram). 

The comparison of p,- and p,-:_, shows that the magnitude of 

the experimentally determined wave , P, , is about 30 per cent less 

than the cal c ulated value. The phase of t he two vectors is in good 

agreeme nt. The magnitude of the calculated resultant wave P2 : is 

about 18 per cent less than the experimentally determ.ined value. The 

phase differ e nce is about 14°. 

That the error in the upstream duct is quite large is believed 

to b e related, at l east partly, to inaccuracies in the r epresentation of 

the mean Mach number distribution. By making slight systematic 

adjustments to the Mach number distributions (used in the numerical 

calculations), it was observed that the normalized reflected waves 

RP ,Re were about 4 to 8 times more strongly affected than the 

transmitted waves Tp and Te In the upstream duct, Rp , Re are 

seen t o have the strongest influence; while in the downstream duct, 

Tp and Tr- have the s trongest influence. We s hould note, how­

ever, that these slight adjustments in the Mach number distribution 

did not affect these reflec t ed waves strongl y enough so that the dis­

crepancy (between P,- and P,-'«) co uld be entirely related to this 

problem. 

By presenting the results in a manner such as Figure 4-13, 
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the contributions of each disturbance in each duct can easily be see n . 

As mentioned before, the Pz- wave does not contribut e significantly, 

and this is clear from the diagram . Recall tha t this is because of the 

high exit Mach nun~ber . The entropy and the ph1s ( p;•·) wave contrib-

ute about equally and, due to their phase r e lationships , t e nd to slightly 

comple ment each o t her , producing a somewhat large r r es t1ltant, P,-* 
r 

or Pz t- . 

The second manne r of presenting the data is to calculate the 

pressure perturbation field using the experimentally measured values 

of P,+-J P2- and CJ (as before) with the normalized pr essur e pertur-

bation functions which we foLmd from the numer i c al c al culation. The 

general solution may b e cal culated: 

f 

P_ (X) = C.z.(x) = p,+ Lu (x) + B- Z:zm(x) + cr L 2e ('I) 
d'P 

(4.34) 

w h e r e P = local mean static pressure . The magnitude of this 

function l.z=zrx-) I is plotted i n Figur e 4 -1 4 and the phase is plotted in 

Figure 4 -15, both as solid c urves . The exp erimentally rnea s ured 

values are designated on the graphs also and seem to ag r ee quite well 

with the computed c urves. 

The phas e er r ors are seen to i n c r ease as th e magnitude be-

comes small because the signal-to-noise r atio for these d ata points 

w a s small. The measur e d phase near the exit has a l arge er r o r. 

This seem e d to b e consistent with all experiments performed, a nd is 

probably due to three -dimensional effects n ear the duct o pening (x = 
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The behavior of the pressure perturbation is easily under-

stood. In the upstream duct the waves propagating upstream and 

downstream have wavelength 

which are both seve ral nozzle l e ngths. Henc e , the pres sure pertur-

bation c hanges slowly in the upstream duct which is about one nozzle 

length. 

In the dow nstream duct the situation is different. The down-

stream propagating wave has a very long wavelength (many nozzle 

lengths) and the upstream propagating wave has a wavelength roughly 

one nozzle length. The resulting pressure perturbation fi e ld is the 

P?+ p? vector resulting fr o m the sum of '- and "- in the right portion 

+ 
of Figure 4-13. Moving through the downstr eam duct the Pe vector 

may b e considered to rotate very slowly. The Pz. vector rotates 

-r 
approximately one revolution as we pass down the duct. Since P2 

and Pz- are roughly the same magnitude, the rapid c hanges in the 

magnitude of the pressure perturbation result. The I P/ I value 

gives a mean value about which the rotation of t h e P2 vector gives 

the oscillation seen in Figure 4- 14. The peak and two nodes result 

as rotates, in phase or out of phase,respectively, with the 

vector . 

A similar experiment was performed with a fundamental fre-

quency ~400Hz. The resulting waves are drawn in Figure 4-16. 

The diffe r ences b etween cal c ulated and measured resultant wave s 
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P,; and P, 
+ 

or Pz-~t 
T 

and Pz ) are similar to the previous experi-

ment. We see that in both ducts the pressure wave disturbance 

gives the largest contribution. The magnitude of the pressure per-

turbation field is shown in Figure 4-17, while the phase is shown in 

Figure 4-18. The agreement between the calculated curve (solid line) 

and measured data points (as indicated) is quite good. The problem 

with measuring the phase at the position near the end of the duct is 

obvious in this experiment also. The same rapid oscillation appears 

in the downstream duct with the slower changes again appearing in the 

upstream duct. 

4. 5 Conclusion 

The measurement of the incident pressure wave P,-t- poses no 

special difficulty. The measurement of the incident pressur e wave 

Pz- is very (phase) sensitive, apparently because the Mach number 

is near unity. The normalized solutions show, however, that this 

wave, , does not strongly influence any other portion of the noz-

z le under these conditions . The calculation of the entropy wave, a-

is straightforward. 

The normalized solutions can be used with the measured dis­

turbances Pt, P; and a- , to construct the resultant waves A: P2: 

or the complete pressure perturbation field through the nozzle. 

These constructed quantities show good agreement through the nozzle 

and in the downstream duct. The agreement in the upstream duct is 

not quite as good, and this seems to be at least partly due to difficulty 

in a cc urately representing the mean Mach number distribution through 
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the nozzle. 

The experiments verify that the analytical model proposed in 

Chapter II can be used to adequately describe the interaction of pres­

sure and entropy waves with a one-dimensional subsonic nozzle flow. 

Although the experiments described here tested only two frequencies 

and one Mach number distribution, there is no reason to expect anom­

alous behavior at other frequencies or Mach distributions. 



r-
X

 
(I

N
C

H
E

S
) 

-1
2

 
-J

O
 

-8
 

-6
 

-4
 

-2
 

0 
2 

4 
6 

8 
10

 
12

 
14

 

(f
) p 

0 
0 

0 
®

0
0

0
0

0
 

(f
) 

P
U

L
S

E
 

H
E

A
T

E
R

 

0 
0 

0 

F
ig

. 
4

-1
 

S
L

O
W

D
O

W
N

 
T

U
N

N
E

L
 

0 
=

 D
Y

N
A

M
IC

 
P

R
E

S
S

U
R

E
 

T
R

A
N

S
D

U
C

E
R

 
P

O
R

T
 

T
 
=

 DY
N

A
M

IC
 

T
E

M
P

E
R

A
T

U
R

E
 

T
R

A
N

S
D

U
C

E
R

 
P

O
R

T
 

P 
=

 S
T

A
T

IC
 

P
R

E
S

S
U

R
E

 
P

O
R

T
 

I ,__
. 

.1>
­

U
"l I 



0 
0 

0 
0 

0 
0 

d
U

 
. 

. 
_

.I
 

=>
I 

M
 (x

), 
d

 X
 {

x)
 

vs
. 

X
 

!L 
0 0 0 
. 

(Y
) 

M
 

0 

~-
1 

x~
l 

d
U

 

l 
~
~
 

0 
"
-
.
.
 

/ 
/\

d
X

 
2 

~
 

!~ 
0 0 0 .....

. 

~I 
0 
. 

~
I
 

0 

-4
.0

0
0

 
-2

.0
0

0
 

0
.0

 
2

.0
0

0
 

4
.0

0
0

 
6

.0
0

0
 

6
.0

0
0

 
X

 
IN

CH
-E

S 
f.

AC
JM

 
EN

TA
RN

CE
 

F
ig

. 
4

-2
 

M
a
c
h

 n
u

m
b

e
r 

a
n

d
 m

e
a
n

 v
e
lo

c
it

y
 g

ra
d

ie
n

t 
a
s 

u
se

d
 i

n
 n

u
m

e
ri

c
a
l 

c
a
lc

u
la

ti
o

n
s.

 
T

h
e
 c

u
rv

e
s 

re
p

re
s
e
n

t 
in

te
rp

o
la

ti
o

n
 b

e
tw

e
e
n

 
v

a
lu

e
s 

b
a

se
d

 o
n

 s
ta

ti
c
 p

re
s
s
u

re
 m

e
a
s
u

re
m

e
n

ts
 o

f 
s
e
v

e
ra

l 
p

o
si

ti
o

n
s 

in
 t

h
e
 n

o
z
z
le

. 

,_.
 
~
 

0
' 

I 

1
0

.0
0

0
 



i~
 

-
-

~
 

-
-
-·

 
];:

:::
:::

 
~
 

-

t I , 
-
-

1:
 

L:W
J 

L
d

 .0
0

4
" 

D
IA

. 
N

IC
H

R
O

M
E

 
W

IR
E

 u~
Jw

~ 

J~il
l 

U")
.l~

-" 

~
 

~'
vu

~~
G 

Q
'' 

-T
E

R
M

IN
A

L
 

( 6
 

E
A

C
H

) 

J
U

M
P

E
R

 

-P
H

E
N

O
L

IC
 

F
ig

. 
4

-3
 

P
U

L
S

E
 

H
E

A
T

E
R

 
B

R
A

S
S

 

I .....
. 

,.p
.. 

-.
] 

I 



1.
0 

M
H

z.
 

F
R

E
Q

U
E

N
C

Y
 

R
E

F
E

R
E

N
C

E
 

P
U

L
S

E
 

G
E

N
E

R
A

T
O

R
 

L
O

G
IC

 

G
R

O
U

N
D

 
IS

O
L

A
T

IO
N

 

P
U

L
S

E
 

A
M

P
L

IF
IE

R
S

 

3
0

0
 V

. 
IO

O
A

. 
D

. C
. 

P
O

W
E

R
 

S
U

P
P

L
Y

 

S
C

R
 

"=>
 

I 
..,

1 
C

O
M

M
U

T
A

T
IO

N
 

C
IR

C
U

IT
 

T
O

 
P

U
L

S
E

 
H

E
A

T
E

R
S

 

,-I
 

I 
I .....

. 
F

U
N

D
A

M
E

N
T

A
L

 
F

R
E

Q
U

E
N

C
Y

 
R

E
F

E
R

E
N

C
E

 

D
A

T
A

 
C

O
N

T
R

O
L

L
E

R
 

L
-
-
-
-
-
-
-

"c
L

O
C

K
" 

..-
! 

C
O

M
P

U
T

E
R

 
D

A
T

A
 

A
C

Q
U

IS
IT

IO
N

 
1

-
-
-
-
-
-
-
-
-
-
-
"
B

E
T

A
11

 
..

..
 1 

S
Y

S
T

E
M

 
(D

A
T

A
 

H
O

L
D

O
F

F
) 

F
ig

. 
4

-4
 

G
E

N
E

R
A

L
 

S
C

H
E

M
A

T
IC

 

IN
S

T
R

U
M

E
N

T
A

T
IO

N
 

*""
 

0
0

 
I 



0 c - c eJ
;) . D
 

0 
lU

U
l 

c.!
l_;

 
C

l: .....
 

__.
 

0 >
c
 

~
 

D
 c 

EX
FE

R
lN

EN
T 

13
6 

CH
AN

NE
L 

a 

~~
--

--
--

--
-r

--
--

--
--

~~
--

--
--

--
~-

--
--

--
-~

--
--

--
--

-,
--

--
--

--
--

r-
--

--
--

--
, 

9L
6D

 
lD

.O
D

 
2D

.O
D

 
36

.0
D

 
-!

0.
00

 
sa

.o
a 

'6
D

.6
0 

li
N

E
N

S
.<

 

F
ig

. 
4

-5
. 

E
n

se
m

b
le

 a
v

e
ra

g
e
d

 w
a
v

e
fo

rm
 f

o
r 

ty
p

ic
a
l 

p
re

s
 s

u
re

 f
lu

c
tu

at
io

n 
re

c
o

rd
e
d

 f
ro

m
 p

o
si

ti
o

n
 x

 =
 1

1
. 

5"
 

(S
ee

 F
ig

. 
4

-1
 ).

 
F

u
n

d
a
m

e
n

ta
l 

fr
e
q

u
e
n

c
y

 i
s
 2

5
0

 H
z.

 

?
IL

D
D

 

.....
. 

.p
. "' I 



c N
 . 

(!
J

 

lt
)
 

.....
 

0 0 
w

-
e.

!)
~ 

0
: 

t
-

...
.J 

0 >
tn

 
c . 0 c 

A
N

FL
IT

U
D

E 
SP

EC
TR

U
N

 
EX

FE
R

IN
EN

T 
13

6 
CH

AN
NE

L 
8 

e
:
~
v
·
~
 .. ,

~
,
.
.
,
.
,
,
y
·
~
·
~
r
r
n
'
;
 

1 
I 

I 
1 

9J
. 0

0 
ao

.o
o 

1
6

0
.0

0
 

2
~
0
.
0
0
 

3
2

0
.0

0
 

FR
EQ

UE
NC

Y 
1!

10
1 

tO
D

.O
O

 
~
a
o
.
o
o
 

F
ig

. 
4

-6
 

T
h

e
 s

p
e
c
tr

u
m

 o
f 

th
e
 w

a
v

e
fo

rm
 g

iv
e
n

 i
n

 F
ig

. 
4

-5
. 

T
h

e
 p

e
a
k

 
(a

t 
2

5
0

H
z
) 

re
p

re
se

n
ts

 a
 p

re
s
s
u

re
 f

lu
c
tu

a
ti

o
n

 o
f 

1
2

3
 d

b
. 

5
6

0
.0

0
 

I ....
... 

lT
1 

0 I 



D
 

eJ
 . - 0 p

 . D
 

D
 

W
(Q

 
(.!

).;
 

a:
 

1-
-

_
J
 

0 >
o

 
~
 . D

 

EX
rE

R
IN

EN
T 

L
36

 
CH

AN
NE

L 
9 

eJ
 

~
 • -
r
-
--
-
-
-
-
-
-
-
-
-
-
r
-
-
-
-
-
-
-
-
-
-
-
-
-
,
-
-
-
-
-
-
-
-
-
-
-
-
~
r
-
-
-
-
-
-
-
-
-
-
-
~
r
-
-
-
-
-
-
-
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
-
-
-
-
,
-
-
-
-
-
-
-
-
-
-
-
-
-
~
 

93
 .o

o 
LO

.D
O

 
2(

).
()

0 
3

0
.0

0
 

~
D
.
D
D
 

so
.o

o 
~
(
)
.
0
0
 

'?
O

.O
D

 

T
IN

E
 

N
S.

 

F
ig

. 
4

-
7 

E
n

se
m

b
le

 
a
v

e
ra

g
e
d

 w
a
v

e
fo

rm
 f

o
r 

ty
p

ic
a

l 
p

r
e
s 

su
re

 f
lu

c
tu

a
ti

o
n

 r
e
c
o

rd
e
d

 
fr

o
m

 p
o

si
ti

o
n

 x
 
=

 13
.5

11
 

(S
ee

 F
ig

. 
4

-
1)

. 
F

u
n

d
a
m

e
n

ta
l 

fr
e
q

u
e
n

c
y

 i
s 

2
5

0
H

z
. 

I .....
. 

U
l 

.....
. 

I 



0 .... IC
 

00
 

C!
J . 

IC
 

tn
 

W
D

 
~
·
 

e;
J 

cr:
 

1
- -
' a >
N

 
C!

J . 
IC

 

0 

A
N

FL
IT

U
D

E 
SF

EC
TR

UN
 

EX
FE

R
IN

EN
T 

13
6 

CH
AN

NE
L 

9 

I 
. 

D
 

-r
t"

V
'l'

" 
-· 

··
 

•• 
1 

• 
v
u
·
v
~
 

• 
I 

I 
I 

I 
I 

I 
I 

93
. O

D 
8D

.D
D

 
16

D
.O

D
 

2
~
D
.
O
D
 

32
D

.O
D

 
iO

D
.D

D
 

~
a
c
.
o
c
 

56
C

.D
D

 
FR

EQ
U

EN
C

Y 
1!

10
1 

F
ig

. 
4

-
8 

T
h

e
 s

p
e
c
tr

u
m

 o
f 

th
e
 w

a
v

e
fo

rm
 g

iv
e
n

 i
n

 F
ig

. 
4

-7
 •

. 
T

h
e
 p

e
a
k

 (
a
t 

2
5

0
 H

z)
 

re
p

re
se

n
ts

 a
 p

re
s 

su
re

 f
lu

c
tu

a
ti

o
n

 o
f 

1
1

5
 d

b
. 

I .....
. 

(J
I 

N
 

I 



D
 

tl
) we
 

tl
) 

Q
J . g D
 

w
~
 

c!
)I

J
 

cr
. ._..
 

..J
 

o
tn

 
>

Q
J
 . D

 l 

EX
PE

RI
M

EN
T 

1"
36

 
CH

AN
NE

L 
2 

J 
C

!l 
1 

1 
1 

I 
I 

I 
I 

I 

IJ
 

tl
) . 

2D
.B

D
 

36
.6

D
 

~
6
.
6
0
 

5
6

.0
0

 
ijQ

.D
D

 
1

6
.6

0
 

'a
. D

C 
lC

.D
D

 
11

M
E

 
M

S
. 

F
ig

. 
4

-
9 

E
n

se
m

b
le

 a
v

e
r

a
g

e
d 

w
av

ef
o

r
m

 f
o

r 
ty

p
ic

al
 t

e
m

p
e
ra

tu
r

e 
fl

u
c
tu

a
ti

o
n

 
si

g
n

al
. 

F
u

n
d

a
m

e
n

ta
l 

fr
eq

u
e
n

c
y

 i
s 

2
50

 H
z

. 

I .....
. 

IJ
l 

V
J
 

I 



0 '1:
2"

 . 
0 0 C'

1 . 
0 C

l 
w
~
 

(
!
)
~
 

0:
:: 
~
 

~
 

0 >
c
 ... 0 0 

AM
PL

IT
UD

E 
SF

EC
TR

UM
 

EX
PE

RI
M

EN
T 

13
6 

CH
AN

NE
L 

2 

e:
J 

\,
 

J
h

 
f
L

 
(
b

 
.
.
.
 , 

e 
t 

t
!
h

 
a 

f 
J

L
 

I
I
 

IL
 

a 

• 
, 

I 
I 

I 
I 

~
L
D
O
 

ao
.o

o 
16

0.
()

0 
2
~
0
.
(
)
0
 

3
2

0
.0

0
 

.fO
O

.O
O

 
~
a
o
.
o
o
 

FR
EQ

U
EN

C
Y 

•1
0

1 

F
ig

. 
4

-1
0

 T
h

e 
sp

e
c
tr

u
m

 o
f 

th
e 

w
a
v

e
fo

rm
 g

iv
e
n

 i
n

 F
ig

. 
4

-9
. 

T
h

e
 p

e
a
k

 
(a

t 
2

5
0

 H
z)

 r
e
p

re
se

n
ts

 a
 t

e
m

p
e
ra

tu
re

 f
lu

c
tu

a
ti

o
n

 o
f 

• 
4

0
°C

. 

5
6

0
.0

0
 

I .....
. 

\..T
1 

.1>
-

1 



B
E

T
A

 =
 .8

5
 

1?
 

?> 

+
 

-
F

ig
. 

4
-1

1
 

P
h

a
se

 p
la

n
e
 r

e
p

re
se

n
ta

ti
o

n
 o

f 
P

1 
(d

e
n

o
te

d
 "

P
"

) 
an

d
 P

1
 

(d
e
n

o
te

d
 "

M
"

) 
a
c
o

u
st

ic
 w

a
v

e
s 

fr
o

m
 s

e
v

e
ra

l 
p

re
s
s
u

re
 m

e
a
su

re
m

e
n

ts
 i

n
 t

h
e
 u

p
st

re
a
m

 
d

u
c
t.

 
T

h
e
 r

e
sp

e
c
ti

v
e
 v

e
c
to

r 
a
v

e
ra

g
e
s 

a
re

 d
e
n

o
te

d
 "

+'
' 

an
d

 "
-"

. 
P

h
a
se

 
a
n

g
le

s 
a
re

 m
e
a
su

re
d

 (
p

o
si

ti
v

e
) 

c
o

u
n

te
r-

c
lo

c
k

w
is

e
 f

ro
m

 r
ig

h
t 

h
o

ri
z
o

n
ta

l 
a
x

is
. 

M
ag

n
it

u
d

e 
sc

a
le

 i
s
 a

rb
it

ra
ry

, 
b

u
t 

c
o

n
si

st
e
n

t 
fo

r 
th

e
 s

a
m

e
 t

y
p

e
 

o
f 

w
a
v

e
. 

.....
.. 

(J
1

 
(J

1
 

I 



t:
'I 

d 

2'
1 

d 
-
-
-
-
-
-
-
-
-
=
=
=
~
~
1
E
E
=
-
-

B
E

T
A

=
 .

8
5

 

t><
 

'?
" 

'l-
" ~
 

fv
! 

I,
 3

 

IN
D

E
X

 
P

O
S

IT
IO

N
 

I 
6

.7
5

" 
2 

9
. 2

5
11

 

3 
I 1

.2
5

" 
4 

13
.2

5"
 

F
ig

. 
4

-1
2

 
P

h
a
se

 p
la

n
e
 r

e
p

re
se

n
ta

ti
o

n
 o

f 
P

;
 a

n
d

 P
z
 a

s 
c
a
lc

u
la

te
d

 f
ro

m
 s

e
v

e
ra

l 
p

o
si

ti
o

n
s 

in
 d

o
w

n
st

re
a
m

 d
u

c
t.

 
N

o
ta

ti
o

n
 a

n
d

 c
o

n
v

e
n

ti
o

n
 f

o
ll

o
w

s 
F

ig
. 

4
-1

1
. 

In
d

ic
e
s 

n
e
a
r 

en
d

 o
f 

v
e
c
to

r 
c
a
n

 b
e
 u

se
d

 w
it

h
 t

h
e
 t

a
b

le
 t

o
 d

e
te

rm
in

e
 l

o
c
a
ti

o
n

 o
f 

2 
p

o
in

ts
 i

n
 t

h
e
 

d
u

c
t 

a
t 

w
h

ic
h 

th
e
 p

re
s
s
u

re
 m

e
a
su

re
m

e
n

ts
 w

e
re

 m
a
d

e
 w

h
ic

h
 d

e
te

rm
in

e
d

 t
h

a
t 

v
e
c
to

r.
 

.....
. 

V
l 

0
' 

I 



B
E

T
A

 =
 .8

5
 +
 

f
2
~
 

--
p

 2 

/ 
/ 

I 
/ 

Jt p
+

 
I 

/ 

P;
?T
~ 

·t"
O~R

e 

/ 

/ 
/ 

/ 

~~
 

P.
+R

 
I 

p 

F
ig

. 
4-

:-
13

a 
+

 
P

h
a
se

 p
la

n
e
 r

e
p

re
se

n
ta

ti
o

n
 o

f 
th

re
e
 (

P
 1 

R
 

• 
a 

R
 

• 
P~

-
T

rn
) 

c
o

m
p

o
n

e
n

ts
 m

a
k

in
g

 u
p

 c
o

m
p

u
te

d
 P
ve

ct
o~

 
P

1
ioc

"".
 

T
h

e 
m

e
a
su

re
d

 v
a
lu

e
s,

 
Pt

 an
d

 P
1-

a
re

 s
h

o
w

n
 

d
a
sh

e
d

 a
n

d
 w

e
re

 t
a
k

e
n

 f
ro

m
 F

ig
. 

4
-1

1
. 

..,.
 

- - -
----

-- -
-- -

-
~
 

-
R

+ 
~
-

I0
-4 

2
*

 
P

--
R

m
 

2 

+
 

~
 T

p 
.....

. 
U

l 
-
J
 

F
ig

. 
4

-1
3

b
 

+
 

P
h

a
se

 p
la

n
e
 r

e
p

re
se

n
ta

ti
o

n
 o

f 
th

re
e
 (

P
1

 T
p

• 
a

T
e
, 

P
2-

R
m

) 
c
o

m
p

o
n

e
n

ts
 m

a
k

in
g

 u
p

 c
o

m
p

u
te

d
 

v
e
c
to

r 
P
2~.

 
T

h
e
 m

e
a
su

re
d

 v
a
lu

e
s 

P
z+

 a
n

d
 P

2-
a
re

 s
h

o
w

n
 d

a
sh

e
d

 a
n

d
 w

e
re

 t
a
k

e
n

 f
ro

m
 F

ig
. 

4
-1

2
 (

se
e
 v

e
c
to

rs
 l

a
b

e
le

d
 11

+
11

 
an

d
 11

-
11

)
.
 



....
.--

.. 
X

 -- O
.jt

n.
 

0 0 0 
I 

. 
P

 (
x)

 I 
co

l 
vs

. 
X

 
p 

l
=r 

' 
I 

BE
TR

= 
0.

85
 

0 
0 

0 
.....

. 
0 

II 
(.

!J
 

a::
 

E
:)

 
1

-
• 

u 
• 

I 
a:

 
LL

... 

0 
U

J
 

0 
_

J
 

0 
a:

 
. 

u 
=

r 
(
f
)
 

• 

I 

g
j ~~
 

• 

I 
/ 

-
,
.
 

~ I
 

~
. 

. 
/ 

-
SC

AL
E 

FF
IC

TO
A 

=~ 1
0 

1 

o
l 

I 
~
I
 

I 
I 

I 
I 

I 
-1

.2
0

0
 

-O
.B

O
O

 
-0

.4
0

0
 

0
.0

 
0
.
~
0
0
 

O
.B

O
O

 
1

.2
0

0
 

1
.6

0
0

 

I 
X

 I
NC

HE
S 

FR
DM

 
EN

TR
AN

CE
 

F
ig

. 
4

7
1

4
 
M
a
g
\
~
d
e
 o

f 
p

re
s
s
u

re
 p

e
rt

u
rb

a
ti

o
n

 f
ie

ld
 i

n
 t

h
e
 t

u
n

n
e
l 

a
s 

c
a
lc

u
la

te
d

 
b

y
 e

q
u

a
ti

o
n

 
4

. 
3

4
. 

M
e
a
su

re
d

 d
a
ta

 p
o

in
ts

 a
re

 i
n

d
ic

a
te

d 
w

it
h 

th
e
 

sy
m

b
o

l,
 

(T
h

e 
re

d
u

c
e
d

 f
re

q
u

e
n

c
y

 B
E

T
A

=
 w

i.,
/a

':'
) 

,_..
 

(J
1

 

0
0

 
I 



- (/) w
 

w
 

0:
 

l?
 

w
 

0 ....
__

 

w
 

(/
) 

<
( I 0.
 

C
) 

C
) 

C
)
 . 

C
\1

 

C
) 

C
) 

0 
. 

__
. 

C
)
 . 

C
)
 

I gl • 
I 

__
. I 

C
) 

C
) 

C
)
 

0 .....
. II cr:
 

E:
> 

1
- u a:
 

I.L
. 

L1
J 

_
I 

a:
 

u (/
')

 

P
H

A
S

E
 (

 :
• 
(x

)) 
V

S
. 

X
 

.. BE
TR

= 
0.

85
 

I 
I 

I 
I 

" • 
(
~
 

• 

~~-
---

--l
_--

---
--~~

~--
~~-

---
-;-

w~L
--c

~~-
---

~1~
.2~

0~0
~~1

.60
0 

-1
.2

0
0

 
-0

.6
0

0
 

-
0
.
~
0
0
 

0
.0

 
0

.4
0

0
 

0
.6

0
0

 
X

 IN
CH

ES
 

FR
OM

 
EN

TR
RN

CE
 

F
ig

. 
4

-1
5

 
P

h
a
se

 o
f 

p
re

s
s
u

re
 p

e
rt

u
rb

a
ti

o
n

(c
o

rr
e
sp

o
n

d
in

g 
m

a
g

n
it

u
d

e 
is

 F
ig

. 
4

-1
4

) 
fi

e
ld

 i
n

 t
h

e
 t

u
n

n
e
l 

a
s 

c
a
lc

u
la

te
d

 b
y

 e
q

u
a
ti

o
n

 4
. 
3

4
. 

M
e
a
sl

!r
e
d

 d
a
ta

 
p

o
in

ts
 a

re
 i

n
d

ic
a
te

d
 w

it
h

 t
h

e
 s

y
m

b
o

l.
 

.....
. 

1.
}1

 "' I 



O
'R

e 
I 

I I I I I I 'f 
p

+
 

I 

I I I 

I I 

I I 

B
E

T
A

 
=

 1.
2

7
 

~
T
m
 

I0
-4 

F
tR

P
 

' ~
 

- ~ 

P
2R

m
J 

1
o

- 4
 

.. \ 1
\ \ 

\ 
~ O

'T
e 

\ 
1/ 

\ 

I 
"t 

... p2
 

I I I I I 
+

 .
, 

+
 

F2
. 

F2 

F
ig

. 
4

-1
6

 
P

h
a
se

 p
la

n
e
 r

e
p

re
se

n
ta

ti
o

n
 o

f 
p

re
s
s
u

re
 p

e
rt

u
rb

a
ti

o
n

 i
n

 
c
o

n
st

a
n

t 
a
re

a
 d

u
c
ts

, 
fo

r 
e
x

p
e
ri

m
e
n

t 
w

it
h

 h
ig

h
e
r 

fu
n

d
a
­

m
e
n

ta
l 

fr
e
q

u
e
n

c
y

. 
(S

ee
 F

ig
. 

4
-1

3
 f

o
r 

e
x

p
la

n
a
ti

o
n

 o
f 

sy
m

b
o

ls
).

 

I .....
. 

0
' 

0 I 



0 0 0 

I p
' (

x)
 I 

. 
V

S
. 

X
 

C
D

r
-

.
P

 
=

r I 

BE
TA

= 
1.

27
 

0 
0 

0 
-

0 
II 

. 
c.

D
 

a:
 

0 

--
1

-
X

 
u 

...
.._

 
a:

 
O.

.lta
.. 

0 
ll.

.. w
 

0 
_

I 
0 

a:
 

. 
u 

=
:!

' 
c.n

 

/ 
-

\ 
I 

\ 
I 

• 

gl
 

0 
/ 

. \
 I

 
\ :

/ 
. 

C
\1

 

I 
~
 • 

• 
• 

~L
 

• 
SC

~L
E 

F~
CT
OF
I 

=
 

10
 1 

I 
I 

-1
 .2

00
 

-0
.8

0
0

 
-O

.L
!O

O 
0

.0
 

O.
L!

OO
 

0
.8

0
0

 
1

.2
00

 
X

 I
NC

HE
S 

F
R
~
M
 

EN
TR

AN
CE

 
F

ig
. 

4
-1

7
 

M
ag

n
it

u
d

e 
o

f 
p

re
s
s
u

re
 p

e
rt

u
rb

a
ti

o
n

 f
ie

ld
 i

n
 t

h
e
 t

u
n

n
e
l 

fo
r 

th
e
 

"
h

ig
h

e
r"

 f
re

q
u

e
n

c
y

 e
x

p
e
ri

m
e
n

t.
 

I .....
. "' .....
. 

I 

1.
60

0 



-(f) w
 

w
 

a: <..9
 w
 

0 -- w
 

(f
) <l:
 

I Q
. 

0 0 C
l . 

N
 

C
l . 

0 0 C
l 

C
l . 

N
 1 0 0 C
l 

:::
1'

 
1 C
J 

C
J 

C
) 

U
J 

"' 0 .....
. II a:
 

0 ...._
 

u a:
 

lL
. 

w
 

...
.J a:
 

u en
 

P
H

A
S

E
 

( 
~ (

x)
) 

V
S

. 
X

 

BE
TA

= 
1 .

27
 

• 
I 

I 
• 

I 

I 

SC
FI

LE
 F

A
CT

O
R 

=
 

10
 1 

1 
~
~
-
-
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
-
-
~
 

-1
.2

0
0

 
-0

.6
0

0
 

-
0
.
~
0
0
 

0
.0

 
0
.
~
0
0
 

0
.6

0
0

 
X

 I
NC

HE
S 

F
R
~
M
 

EN
TA

RN
CE

 
F

ig
. 

4
-1

8
 

P
h

a
se

 o
f 

p
re

s
s
u

re
 p

e
rt

u
rb

a
ti

o
n

 f
ie

ld
 i

n
 t

h
e
 t

u
n

n
e
l 

fo
r 

th
e
 "

h
ig

h
e
r"

 f
re

q
u

e
n

c
y

 e
x

p
e
ri

m
e
n

t.
 

1.
20

0 
1.

60
0 

I ,_.
 

0
' 

N
 

I 



-163-

REFERENCES FOR CHAPTER IV 

1. Schlichting, H. Boundary Layer Theory, McGraw-Hill Book 
Co. , New York ( 1 9 6 8 ) , p. 59 9. 

2. Bull, M. "Wall Pressure Fluctuations Associated with Sub­
sonic Turbulent Boundary Layer Flow," J. Fluid Mech., V. 28, 
_i_ (1967), 719-754. 

3 . Schwartz, M. Information Transmission Modulation and Noise, 
McGraw-Hill Book Co., New York ( 1959 ). 

4. Cooley, J., Lewis, P. and Welch, P. "Application of the 
Fast Fourier Transform to Computation of Fourier Integrals, 
Fourier Series and Convolution Integrals," IEEE Trans. on 
Audio and Electroacoustics, V. AU-15, 2 (June 1967). 

5. Cooley, J., Lewis, P. and Welch, P. "The Fast Fourier 
Transform and Its Applications, 11 IEEE Trans. on Education, 
V. 12, ..!_(March 1969). 

6. Pridmore -Brown, D. "Sound Propagation in Fluid Flowing 
through an Attenuating Duct, 11 J. Fluid Mech., V. 4, _±._ (1958), 
393-406. 

7. Hersh, A. and Catton, I. "Effect of Shear Flow on Sound 
Propagation in Rectangular Ducts ," J. Acoust. Soc. Am., 
V. 55, 1 (1971), 992-1003. 

8 . Cooley, J., Lewis, P. and Welch, P. "The Fast Fourier 
Transform Algorithm: Programming Considerations in the 
Calculation of Sine, Cosine and Laplace Transforms," J. 
Sound Vib., V. 12, 3 (1970), 315-337. -



-164-

v. EXPERIMENTS CONCERNING THE RESPONSE OF 

NOZZLE FLOWS TO TWO-DIMENSIONAL DISTURBANCES 

5. l Introduction 

The analysis of Chapter II and the experiment presented in 

Chapter IV treat the one-dimensional interaction of pressure and 

entropy waves for subsonic nozzles. A similar treatment of super­

sonic nozzles was covered in references 6 and 8 of Chapter II. An 

obvious question arises, especially after considering the physical ap­

plication. The pressure and entropy d is turbances produced by the 

combustion process in the turbojet engine do not necessarily appear 

as one-dimensional waves interacting with the mean fl ow. This is 

especially true for the entropy disturbances, since they convect with 

the mean flow and may retain their general shape while passing 

through the engine. It is easy to imagine e ntr opy spots, convecting 

from the burner through the turbine or nozzle, of small enough size 

to appear as three-dimensional disturbances. On the other hand, 

pressure waves of low enough frequency will tend to equilibrate (only 

plane modes propagate) so as to appear more "one-dimensional" to 

the mean flow. 

It is our aim in this chapter to investigate the response of noz­

zles to disturbances which are not one-dimensional in nature . The 

nozzles to be investigated are the ones used in the experiment de­

scribed in Chapter IV and a blowdown tunnel (which is choked) used in 

the experiments describe d by reference 8 of Chapter II. The pulse 

heater, as described in Chapter IV, will be used in the "dual" mode, 
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whereby the heat addition can be varied across the duct c ross section. 

This cross -sectional variation is created by adding heat to the top 

third or to the bottom third of the flow eros s section 180° out of 

phase. 

An analysis (of periodic heat addition in a duct) will be de­

scribed whereby the output of the pulse heater, in terms of entropy 

and pressure disturbances, can be found. The experiments consist 

of several frequencies (of pulse heater operation) for the two nozzles. 

Pressure perturbations are measured (prirrlarily on the nozzle axis) 

and the results explained in terms of the output of the pulse heater as 

described by the analysis. 

5. 2 Experimental Apparatus: The Two-Dimensional Pulse Heater 

The experiments performed on the subsonic nozzle differ from 

those described in Chapter IV only by the manner in w hich the pulse 

h e ater is operated. The supersonic nozzle was quite similar t o the 

subsonic nozzle except that the nitrogen flow was accelerated from 

M = . 20 to M = 1. 38 in an axial distance of about 11 11
• The throat 

position w as 7. 5" from the inlet and the Mach number distribution 

was very nearly linear through the nozzle. The nozzle ~s des cribed in 

some detail in reference 8 of Chapter II. The reduced frequency 

for this nozzle uses the throat length, -{ = 7. 50" as the length s cale . 

Re c all that the pulse heater, whi ch occupies about 2" of axial 

distance, is located about 8 " upstream of the nozzle inlet position, 

X= 0 , see Figures 4-1 and 4-3. The h eater is actually composed 

of three identical independent heaters, each of which occupies a third 
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of the duct cross section (one inch w ide, three inches high). For the 

experiments to be described here, the center heater is not used. 

The remaining heaters, one occupying the top third of the duct eros s 

section, and the o ther occupying the bottom third of the duct cross 

0 
section, are pulsed 180 out of phase. This means that a voltage is 

applied to the top heater for l /2 cycle (of the fundamental frequency) 

and then the bottom heater is pulsed for the remaining 1/2 cycle. 

The heaters were operated from independent SCR' s (see Ap -

pendix F). By passing the current from one SCR through a bank of 

power resistors (external to the blowdown tunnel) in series with the 

pulse heater, some of the power could be dissipated external to the 

pulse heater. In this manner the top heater was allowed to dissipate 

some fraction, 0( , of the power dissipated by the bottom heater . 

That fraction usually took on the values o<. = 0, 1/4, 1/2, l. The 

power dissipated by the bottom heater was approximately one -third 

the power dissipated by the entire heater when operated in the one-

dimensional mode as in the experiments described in Chapter IV. 

Since each heater is one-third the resistance of the whole (5. 4/3 = 

l. 8 ohms), 100 volts was the pulsing voltage for the bottom heater 

as opposed to 300 volts for the one -dimensional mode. 

The data acquisition technique is similar to that explained in 

Chapter IV, except that more ensemble averaging was used. Note 

that the pressure disturbances we create in this experiment will be 

small compared to those of the one-dimensional heater. For the 

case o<. = 0 one might expect pressure disturbances about one-third 

those of the one-dimensional experiments. In this case, it would b e 
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necessary to average 900 ensembles to achieve a final signal-to-noise 

ratio similar to the value achieved with 100 averaged ensembles for 

the one-dimensional experiments. With the present facilities this is 

an impractical amount of data to be recorded. Instead, 400 ensembles 

were averaged; each ensemble was 2 cycles in length. The results 

pres en ted here represent final signal-to -noise ratio about (4/9} ~ = 2./3 

that for the results of the one-dimensional expe riments. 

5. 3 Fluctuating Heat Addition in a Two-Dimensional Duct 

In order to understand the results of the experiment it w ill be 

necessary to know what disturbances the pulse heater creates, which 

are to interact with the nozzle. To that end, we present an analysis 

of a time-varying heat addition in a c onstant-area two-dimensional 

duct. We assume a duct of infinite axial dimension, height zb and 

we allow an arbitrary heat addition over the re gion o ~X S: -f We 

/ // / ' ./ 
,/ / /. / / 

lJ=Zb 

/ / / 

- ----------+-..£./_"__..,.-"-/ _ .. ·:_·· -~,..t./:__f------------ X 
./ /:",./ / 

/ .' / / ! / '' / 

--------------+~- -· · ·~/,· f~/-,· --~----------------~=0 

""" i x~-e 
Q{X,~f,t) 

Diagram for the Analysis of Arbitrary Heat Addition 
in a Two -Dimensional Duct 

neglect v is c osity, thermal conductivity, and assume an ideal gas flows 

in the duc t. The appropriate equations of c ontinuity, a x ial m omentum , 

v ertical momentum, energy, and state are: 
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of+ !Lpu. + Lpu- = 0 ot ox o <J-
( 5. 1) 

_pfd + u q_ + 7J q_ )u + JP · o 
(dt cJx; Ofj- d x ( 5. 2) 

p/J + u fL +u Q_)u+ oP =o 
(at Jx d~ o~ 

(5. 3 ) 

pcvf9 +U ~ + u d._) T + p/du + d7.f) 
(dt dx dy (ox oy. (5. 4) 

P=PRT 
(5 . 5) 

The heat addition, Q (x,y,t) , is per unit volume. If the heat addi-

tion is small (compared to the flux of total enthalpy, for example), 

then we assume a solution whic h consists of the mean duct flow (con-

stant) plus a small perturbation: 

U.(X
1
'j 1 t) = Ua_+ u'(X, lj-/:) 

.P(0fj/f) =Po r .JJ ' (X,'j/t) 

7J (X, 'j / t) = 7J I {X, tj I t) 
p (><, fj/t) = p=> o~- P' (X,CJJ) 

T (X, lj 1 t) = To + T 
1 

(X, lj 1 i) 

(5. 6) 

Inserting (5. 6) into (5. 1) - (5. 5) and r e taining terms linear in the 

perturbation quantities we find 

(5. 7) 

(5. 8 ) 
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(5. 9) 

(5. 10) 

which may be manipulated to find an expression for the pressure per-

turbation: 

where we define 

C 2. = ~?,/Po 
M = a,/c 

~ F(X,tj,t) = (jt + Uo Jx )q,cxj~}t) 

(5. 11) 

Since the surfac es 'j=01 2b are flat, we must have -v'(X,01 t) = 

Equation (5. 9) then gives the boundary con -

clition on the pressure 

tj=O,Zb (5. 12) 

We also assume the radiation condition. 

For periodic heat addition we let 

{(X,tj ,t) = FCX.ij)e"wt: 

therefore 

- iwt 
&C{lj ,tJ = fP{x}'fJe 

and equation (5. 11) becomes 
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If we solve the problem via the Green 1 s function, 

(X) 2b 

fP{X,LJ) = J f G{x, CJ,· r, '1) F ( J, r;) d17d :r 
-Q;J 0 

J 2h 

== j i G (X,~-· ~ '1) F ( ~ 'l/) d '1 d r 
0 0 

(5. 13) 

(5. 14) 

(since F(X, CJ) = 0 , ..P~ X< o ), we see that this is identical to the 

problem which was solved in Section 3. 4. Hence, the Green 1 s func-

tion may be taken directly from (3. 36), (3. 37 ). 

For the waves which propagate to + a:> , the attenuated 

waves are neglected and the Green 1 s function simplifies: 

Equation (5. 14) gives for the pressure mode n 

(5. 15) 

o =::n ~N, 

For the waves which propagate to -co the Green 1 s function 

simplifies to: 
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The duct modes may be calculated from (5. 14): 

1 zb 

~ fo cos(nrr2~)ex_p{-i~t({~Me! 12n)} f(J','Yf)dYJ.df 
o6nsN 
N • .::. n!:N 

If the frequency is low enough suc h that 

(5. 16) 

(5.17) 

then only the plane m o des ( n=O ) will propagat e, i.e., N=O 

(The c utoff frequency, fc = Wc./2.tr , for our duct is 2100 Hz. ) 

In this case, the wave propag ating to + oc becomes 

( 5 . 19) 

+ 
W e wo uld like to c alculate tPo for the h e at input we expect 

from the pulse heater. 

s t ant for o ~ X ~ .R 

. t 
The h eat addition Q(J(~) e'w will be con-

and using the" ex: 1 1 n otation to denote the 
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fraction of power dissipated by the top heater compared to the bottom 

heater, we get 

o ~ !:/- =zb/J 

zb/3.::: if-~ f.b/.3 

1-nh ~fJ. ~ 2.b 

(5. 20) 

Here, Cf.w is the net heat addition component at frequency w and 

the tunnel depth is W The minus sign emphasizes that the heat ad-

dition to the lower third of the flow is 180° out of phase with the heat 

addition to the upper third of the flow. Then 

0 

-iaw/2 bW-f CZw 
c2 c,o -r;, .Po 

Q cx,CJ) e l;..;-t 
Cploflo 

Inserting this value of F into (5. 19) we find 

(5.21) 

(5. 23) 

For the purely one-dimensional heat pulse, (5. 20) would be 

replaced by 

2b/WQ(X,'j) == 'fw (5. 24) 
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where the value of Cf,w is unchanged. The res.ult then is identical 

to (5. 23) except the leading factor (J-o<)/3 is replaced by 1. 0. It is 

clear that Po- - must behave in a similar manner. 

For the region X>l we may re-write (5.10) in the form 

(5. 25) 

Hence the entropy wave retains its shape as it convects towards the 

nozzle. 

We summarize the above results for the experimental condi-

tions of interest: 

(i) The entropy wave produced by the pulse heater retains its 

shape as it convects towards the nozzle. This will, in 

general, be two-dimensional. 

(ii) The plane waves produced by the pulse heater scale like 

(F-oO I 3 (where c< is the ratio of power dissipated 

by the lower heater to that of the upper heater) of the 

plane waves produced by operating the heater in the one-

dimensional mode . 

. 5. 4 Results of the Experiment and Discussion 

Since the acoustic disturbances produced by the two-dimen-

sional heater are only plane waves which scale like (1-o<)/ 3 com-

pared to those produced by the one-dimensional heater, the pressure 

perturbation field through the complete tunnel resulting from these 

waves should scale like (t-o<) /3 We know how to treat the one-

dimensional acoustic waves (see Chapters II and IV). 
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It only remains that we determine the response of the nozzle 

to the two-dimensional entropy waves. In the following experiments 

the heater was operated at a given frequency for values of CX = 0, 

1/4, 1/2 and 1. The pressure perturbation (at the fundamental fre-

quency) was meas.ured at several positions on the duct axis as well 

as one position approximately 1 11 above the axis at the position just 

upstream of the nozzle entrance (see Figure 4-1 for the subsonic 

nozzle). The purpose of this latter measurement was simply to detect 

any two-dimensional activity at that point, since the pressure record-

ed there should be identical to the pressure recorded on the duct axis 

(at the entrance location) for purely one -dimensional wave motion. 

As a comparison, the results for the one-dimensional heat 

pulse experiment are also plotted. These data have been scaled such 

that the pressure on the (axis) inlet position is the same as the pres-

sure at that position for the o<.=O experiment. Note that in the ab-

sence of entropy waves, this scaling value should be 1/3. Due to dif­

ficulties in precisely controlling the amplitude of the voltage supplied 

to the pulse heaters,and due to the effect of the two-dimensional en-

tropy wave, this value varied by ± 10 per cent. 

The results for the supersonic nozzle are plotted in Figures 

5-l, 5-2. The off-axis measurement (near the inlet) is shown as the 

un~ttached point in all the graphs. For the case 0( = / we should 

P(+ 
have no pressure wave impinging upon the nozzle according to 

the analysis of Section 5. 2. The results show very low values re­

corded for the pressure on the duct axis. (These values are actually 

the magnitude of the residual flow noise.) The off-axis measure-
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ment, however, c learly shows a pressure disturbance. The entropy 

wave is completely asymmetric about the duct axis. This results in 

a pressure perturbation field which is completely asymmetric about 

the duc t axis. 

This implies a pressure node on the axis in the same sens e 

that in a constant area duct, the odd (asymmetric) modes have a node 

on the duct axis. The value recorded off-axis confirms that there is 

a pressure disturbance in the duct. The higher frequency case (Fig-

ure 5-1) shows consistently increasing axial pressure perturbation as 

o<. decreases, indicating two things. The first is that a plane pres-

PI+ / I sure wave, , of scale t/-o() 3 impinges upon the nozzle and 

increases in magnitude with decreasing o( The second is that the 

"increasing symmetry11 of the entropy wave produces more symmetri-

cal pres sure perturbation fields and hence larger axial pressure meas-

urements. 

The results for the experiment performed at the lower frequen-

cy ( w.l l a-- = .97 ), show n in Figure 5-2, are similar; however, 

the two-dimensional effects are smaller. Note that with decreasing 

o< , the data converge to the (scaled) one-dimensional results. In 

addition, the difference between the off-axis pressure and the on-axis 

pressure (at the inlet) is smaller for this experiment. These results 

imply that for a sufficiently long entropy spot (low frequency), the 

two-dimensionality of the spot may be neglected. The resulting pres-

sure perturbation field will scale like the effective e ros s -s ectional 

area of the duct that the entropy spot occupies. Note that in Figur e 

5-2 the pressure perturbation fields (for a given value of CX ) scale 
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like 1-<X in a crude way . It is expected that for de creasing f re -

quency, this scaling will improve. 

The results for the experiments performed 1n the subs onic 

nozzle are presented in Figures 5-3, 5-4, 5-5 . It is to be expected 

that, for low enough fr e quency, the press ur e perturbation fields (fo r 

each o<. ) should again scale like f-d. The dimensional freque ncy 

W used in Figure 5-3 corresponds to that used in Figure 5 -l. The 

dimensional frequency W used in Figure 5-4 c or responds t o that 

used in Figure 5-2. It was expected, since the s caling was effective 

in Figure 5-2, that it would be effective in Figure 5-4. It can be 

seen that this is not the case. The two-dim ensional effects are a s a p-

parent in Figure 5-3 and in 5-4. This is es p ecially obvious in the 

downstream c onstant-area duct, x > 6. 75", since only plane waves 

should propagate here. We knew that the plane waves due to the 
+ 

pressure disturbance, p, , created by the heater should scale 

properly. We do not know how the plane waves, created by the two-

dimensional entropy wave, should scale. It is cle ar fr om the results 

in the downstream duct (Figures 5-3, 5-4) that these plane waves do 

not scale like /-d.. 

The experiment was performed at a lower frequency (f :;::::: 

200Hz) to verify that scaling would occur. Thes e results are pre-

sen ted in Figure 5-5. The case o<= 0 

I 
one-dimensional results and the case o<:=-z 

f-o( = Y2. of the one-dimensional results. 

scales very closely to the 

scales very c losely to 

The results for the one-dimensional exp eriment (for the low-

est frequency) are quite interesting, in themselves. In the down-
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stream duct, the ~+- TP and the a-Te (see eq. (2. 16)) components of 

P2.
T 

apparently cancel, leaving near "silence." 

two-dimensional experiments must scale like f-o( 

It is clear that the 

(for both pres-

sure and entropy disturbance); otherwise, these experiments would 

not exhibit the cancellation in the downstream duct. 

The conclusion remains the same as for the choked nozzle. 

For a sufficiently low frequency d is turbance the two-dimensionality 

of the entropy spot may be neglected and the resultant pressure field 

will scale with the cross-sectional area occupied by the spot. It may 

be possible to analyze the problem by performing an expansion (in 

terms of frequency) for low frequency of the equations of motion. 

In this manner it may be possible to determine how small the frequen­

cy must be (and how the Mach nUITlber distribution affects that fre­

quency limit) in order to neglect two-dimensional effects in the nozzle. 
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APPENDIX A 

Starting with eqs. (3. 24) and (3. 25) we calculate 

~! (r,o) . = -~:£ r2~JY,£[zsmtr& +sm2TT~eir¥dx 
which may be integrated and simplified to 

(Al) 

solving for a.('f) andb(1) in eq. (3.26) and inserting into (3.27) we find 

that the solution for the velocity may be conveniently expressed as: 

(/-M t) ~ ur''- i liM = U rr €!«> /_ I I J 
2 a.2-oo ~g-)2- j'" - {2:l- rz 

(A2) 

If lXI >a. it is convenient to consider the integral 

where Ref= f' and f1 is a contour along the 'f axis, closing with a 

semicircle. Denoting the principal value of the integral as PV 

we will have 

(A3) 

The poles at "$=0 1 -J:.fT~/a. do not contribute. If X<-a. we close the 

contour with a semicircle in the lower half plane ( Im CT<.O ), as is 

clear from the exponential term in the integral. In this case 
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(A4) 

where Res are the residues from poles falling inside the contour. 

In this case (X< -a. ) we must calculate residues of 

at 

exp [ i "f( x + t (1-MzJ'11 (~J-b))] 
5 I nh((1-M2) '12 b f) 

n = 1.,2. · · · 

For each value of n this residue is 

(A5) 

Applying (A3) and (3. 21) and separating real and imaginary parts we 

find 

p(•J 

~p 

X<-a... 

2 u('' 
-M­u 
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If X >a we close the contour with a semicircle in the upper half 

plane. We will evaluate the residues of eq. (A5) at 

:f i.nrr 
- {I-M2)'1zb 

applying eq. (A3) where the principal value is calculated from 

For each value of n the residue will be 

Applying (A3) and (3. 21) and separating real and imaginary parts 

we find 

''}= -urr E. 1 nrra n1 .J.. -n1Tx 
l CJ) ~ J ] 1J (1-M') '~~bo! ~ 6J, S nh (1-M')Yzb 5 lfl{t 1T b) exp[(I-M' )'lzb 

P(ll z u(ll 
-= -M­oP u 

x>a 

If -a.< X< a. we write 

(A 7) 
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where the solution will be given by 

Now, we can let I..f = z1
i{I.* -IJ where 

aJ -ia'f 

I •• L rvif- r· 
exp[i 'f(X- i(J-Me_;'k(b~CJ>)] d f 

smh(O-Mt)'lzb 'f) 

(A8) 

(A9) 

We consider I~'fr in the j plane (R~1=F again). We will close the 

contour in the lower half plane since X-a < 0 • We must consider 

poles at f = ztr-l/a. 0 and -in7T all of which will contribute. 
' ' {t-M6)V~t> 

The contribution to the principal value of the poles on the real axis 

may be calculated by indenting the contour around the poles below 

the real axis. In this manner the contribution from the pole at 

is 

-£a 
21. 

ex.P[ - i 1flrcx~a) -( u~Mz.>'tz(b~!J>)] 
smh(rrJ (1-M2

)'
12b) 

and from f=rrJ/a. 

-to.. exp [i !fl«x ~a)}- i. (r~M2)Y2' (b~~))] 
2.i. smh(rr £ (f-M2) '~2 b) 

and from f =0 
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Now, calculating the residues from the poles at 

we find for each n 

for the residue. The principal value may be calculated by summing 

over n, multiplying by -2rri and subtracting the contributions from 

the poles on the real axis. 

In calculating I~ we close the contour in the upper half f plane 

since X+a > o . The contour will be indented above the poles on the 

real axis and in this way the contribution from the pole at f= -rr-f/a 

may be shown to be 

and from f=rr.f/CL 

and from "f= 0 

exp[-i rr .J.rcx-a)-t(t-Mt)'l2(b-st>>] 

smh [(I·Mtbrr.f] 

etp[irrd { (x-a.J -i (t-M2)(b-~) )] 

smh[(i·M'?;brr-f] 

The residue of the poles j=(I-~;Jr,b will be 
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The principal value may be calculated by summing over n, multi­

plying by 21YL and subtracting the contributions from the poles on 

the real axis. 

Thecalculationo£I~ .I~• thengives I.t(X/j-). Eq. (A8) 

will then give 

u(l) = urre. 
4a.Ht-M:~)'/z { 

3n fa) 2 

2 {1-M2) '12 b rrr 

+2a [ cos(rr!)co5h([{t-Mt)'lz(b-tJ)) + co~rr~cost(?[(i-M2)12(6-!J))J 
stnh{~U-M2)b) 2. smr(2J{(t-M2)'~2b) 

+(I ~;,,)'4 b ~ l?. co shb:;~,.b] co ~nrr f) ex p~~~~~ b J . } 

lJM .::. -U1TE { 
4az 

2a [sln(rr8:)smh([a-Ml)'l2(b~CJ.)) + s,rfrr&)smr{2&0-M7.) 12{b-~))] 
smh(9_"Ct-M2)b) 2. smh(Z10-M2)Y2b) 

4rr n1TX n <J. -nrra 
eX) w J ) [ J + (t-M')*b ~ 6l, smh 0-M'f<b sm(' 1Tb erp O-M')* } 

-a<x.<a.. (Al 0) 

The complete solution is eqs. (A6}, (A 7}, (AIO} . 
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APPENDIX B 

Calculation of the Green 1 s Function for the Second Order Inhomog-

enous Solution 

We seek a solution of (3. 30), (3. 31) of the form of eq. (3. 32). 

Since we expect a periodic solution, we write (3. 30) 

{ 
w 2 . M ·a 2 t/ ol. 2/ l -(z) +2Lc:Wo>(+M ox2- oxz- c)~2 l.f= Ffx,~) (B1) 

or f. { lf] = F (X., if.) where f.. is the differential operator. 

Now define G~(X,IJ.;'f,"?) such that 

(B2) 

where t E is a function which is zero outside the small square 

S~ : 'f-€ <X~ r+t; t]-E <lJ < "7_+€ and j j f; J.~.J~ =I . 

or considering s~·: X-£<'!<X-#-5 I «J-6<71 s~ "?<~J.+f. j j{~d'fd1=1. 
S€' 

Now define 
O'J 2b 

'fE (X,~)=! j GE(X,'Jj S, 77) F{f,'T])djd~ 
-roo 

then 

/['f.} =/[~FCf,rz)dfd"/ ~ T r~.F([,11)d!d~ 
-a> o t=x-e "l=tJ·E 

If the forcing function in (B 1) is continuous 

and· as ~- o we expect t.ft to be the solution we seek u Gf. 
satisfies the boundary condition (3. 31 ), and the radiation condition. 
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Outside the 5£ eq. (B2) gives 

{-tf....l) 2
+2i Mw ~ ·1M2-I) L - L l G{X u · f 1?) = o tc c ox -rt' axz o~z f ''} , .< 

(B3) 

where oG (~J=O) = dG ('#.=2b) = 0 . Also G must satisfy the radiation 
o ~ O'J 

condition. Solutions of (B3) which satisfy the boundary conditions 

on the duct top and bottom are like 

(B4) 

For shorthand we will write 
·~ 

I 1 (nrrc) 2 
I j ~ 

.fl."'= (1-M a) 'l. - ~ 2bw I -M 2 (B5) 

We note that if 

nrrc < O-M2r ~ (B6) 
2bw 

the radical in (B4) is just fln. If the inequality is reversed then 

the radical is i...lln . We define N to be the largest integer n 

satisfying (B6 ). We also define N 
1 

to be the largest int·eger such that 

N,rrc < 1 
2bw 

Since M < I I N. ~ N and for n ~ N, 
_l::!l_ /) 
I- M2 < ....ll.n 

and N,<n ~N 
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Choosing the (+)for the radical in (B4) we get waves propagating 

upstream if n !E-N • Choosing the (-)for the radical w e get waves 

propagating downstream if n ~ N, • and upstream if N, < n ~ N 

For n > N the waves attenuate if the proper sign on the radical is 

chosen. These allow us to write down the general homogeneous 

solution: 

x<r N 

G(X,y;!,'Y}) = L Ancosnrrf6 ex.p[L(1~t +12n)~cx-l)] 
t"'=o 

N 

2_ Bncosnrrlb exp[t(i~Mz -ll")~cx-t)) 
N,+l 

+ f Ah cosnrr Jbexp[i 1~2 ~(x-r)Je(P[an E'cx-J)] 
N+t 

(B7) 

x>s ():) 
G (XJ~i 5, "1) = L ch cosrm ~ e~p[i. 1~z. ~ (x-1~exp[ -.n" <cYx-r>] 

N+J 

+ $ Cn cos1111 2't exp[t(;~. -fln) ~ (x-nJ (B8) 

Continuity of lf'(X,';f) implies from (3. 32) 

from which we conclude 

N+l ~n <.ex:> C, = A"' 

Cn=A., 

N,<n!:N (B9) 

which will allow the elimination of B • C (in (B7), (B8)) in favor of 
n n 

A. 
n 
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From (B2) 

/

!+E f '7+e 

L1m I{ G€(X,lj.jf,7J)dxd:J I (Bio) 
G~O 

)(: f-E j=i-~ 

"/+E f+t 

or Ltm j f(-(wt+2iMwrt_+{M2-I)L_L7Gdxd~= 1 
G-..0 c C OX OXz d~~J . 

~'7-£ X= f-t 
Since G is continuous for f-€ <X< 'f+! we get 

"'l+e !+€ 

. L1m J { JG } d;j- - ~~~t (Bll) 
e-+0 oX 

!1=1-E x='!--€ 
Therefore oG/ox is not continuous across X='f , since if it were 

(BIO) could not be satisfied as €-+- 0 • Inserting (B7), (B8), (B9) 

into (Bll) we find 

'11'€ 

~~~ J L~ Ani ~ n. cos(nrrf-J+ j; An~ n. cosfrr{~dy = 

?t-( 
This equation implies that 

f. Art i ~ fl, cos(nrr 2.~) + I Ar~ ~ fln cosrrr !b)= ~~!2 S('tj-YJ) 
n::-o Ntl 

(B 12) 

else the equality could not be met as €-.. 0 

Expanding the delta function in a cosine series: 

00 7'/_ 

f>{Cf.,-'7) = _l_b + ~ L cosfrrfi) cos(nrr 2b) 
2 n=l 

we may equate coefficients in (Bl2) and find 



A - c I 
0 - wb 4L 
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12 
A = £. -1. (t - {nrrc)2

{if-M2
)) coslnrr ;rz) 

n Wb 2L 2bw (' 2b 

2. )Y2 A = ~ l. ((.flfrC) (1-M2) -I cocfnrr "Yl..) 
" wb 2. ( t 2.bw 1' 2.b 

n :>N 

which completes the calculation of the Green's function. 

(Bl3) 
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APPENDIX C 

The calculation of the forcing function to be used in (3. 32) is 

described by (3. 35). 

then: 

-F(!, ?'/) = 
a-m 

We give the results here. Let 

f 6'" smht;1 ex.p(n:p}ex:p[-i~.(fcosv,.-"1 smv.n 
n=l 

-F(s,rz) _ 
a-m 

-a<f<o. 

(Cl) 
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+ !/'" ex ptm;;.a) r;,~ smh(n~}") cos(nrr ~} J 
_ b~Tr (cos(rr J}coshg £{b-r;) +Z c.o:{zrrJ}cosh Z£"{(b-Yj)) 

Za. stnh{1Tb.t/a) S!nh{2rrb"*/o.) 

- ~ 6'n er-p {-m,;.a) cosh (nr;.J) ~17' smr(nrr J;) J 
+ _Q (I-M2lh11 (cos(!r !kos~ ~~Cb-??))+2 cos(zrr~)cosrfci ~(b-17))) 

2a Slnhrrb"'::a. smh(zrrtf/a) 

We recall that ll5 is the angle between the axial direction and the 

normal to the entropy wavefront, and the 6>n. were defined by (3 . 2 8 ). 
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APPENDIX D 

Second Order Homogeneous Solution 

We give here the details of the inversion (3. 53) leading to 

(3. 54) and (3. 55). We n eed 

00 

H (X)= (drr)Yz f 
-oo 

~ 

G(x)=(2~)'lz j 
-co 

smh(IJ<JC!>) e-irxdf 
s Jnh(2b'f( 1)) 

Consider the contour integral in complex cr=1+t '~ space: 

I=j 

(Dl) 

(D2) 

The function in the contour integral will have poles at O"""n. where 

ra(o-n)= i;: n ~ 1_,t 2. · · · 

~2(CTn) = -(~~)
2 

= ~(2o-;,M- ~) +(/-M2)rr~ 
from (3. 47). 

Solving for 

(Jn= w M --C 1-MZ. 
+ _1 !J(w)2-0-M ~J(nrr)z) 1z. 

1-M2 \( C 2.b 
(D3) 

The following diagram shows the position of poles 
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Location of poles as per equation (D3) 

In this diagram the x represents a pole. For W below a 

certain minimum value, all poles will lie off the 'f axis. As W 

increases all the poles will move towards the 'S axis until the pair 

closest to the ! axis meet on it and with increasing w , move 

outwards along the 'f axis. The small circles represent poles 

which have moved, as shown by the arrows, to a position on the 5 

axis. The poles on -f=w/ll\f(C(I-M2)} represent attenuating (or 

growing) waves, those on the ! axis represent propagating waves. 

We choose a contour (for (D2)J on the entire J axis and 

close with a semicircle either above or below the S axis. The 
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contour will be indented around the poles on the ! axis. Due to 

the exponential term in (DZ) we take the lower contour (and indent 

below the real poles) if x is positive. If x is negative we take the 
{ 

upper contour and indent above the real poles. The contribution 

to the principal value of the integral from the portion of the contour 

indented around the real poles may be calculated. The contribution 

from the poles lying off of the S axis will be 2TTi x sum of residues 

of these poles if they lie above S axis and the negative of this if 

they lie below the '\" axis. From (D3), the poles will lie on the 

! axis if n ~ N where N is the largest integer such that 

(w) 2 2 rf'irr)2 z > (1-M \2b 
The summation in (3. 54) and (3. 55) from I~ n ~ N repre-

sents the contribution from the real poles. The summation from 

N < n represents the contribution from the poles lying off the 'f 
axis. 
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APPENDIX E 

Integrals Represented as Ia.lm , Etc. 

We have represented in (3. 78), (3. 8I) and (3. 82) a number 

of integrals which resulted from calculation of (3. 32). The first 

index is used to identify the integral. The index m indicates the 

acoustic mode number and the limits are specified by the equation 

it is used in, (3. 78) for example. The index n results from the 

series representation of the wall deflection and has limits from 

I to oo. The index .I is an integer, either I or 2. 

~ -
We define the quantity rrJ, or mm 

+ 
We assume that (3m,;;'; rr-f 

the quantities. 

!=tl. ) . and proceed to define 



(I::~') 

(I~1~) 
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/(-J"J Slf/ [ fJ m,:-.J ?TT _f 

(7T ;f·- (13m;:,) z 

-2(-rR stn[ (3m~ (B m;:,) 
(77.1)2.- (13m;:,) 2 

2 ,fmh [f ;';'J~ cos [ Bm~j(/3 m:,) 

_ &;,~'}'i costfi~-;'J~ sm[ f3m~J} 

(I::m) _ z{6;;1 vJsmh(i-r';J:')~co5 [em~] 
(If'") + (om~)cosh[fr~9Jsm{am.l]} 

(EJ} 

(£2.) 

(£3) 

{Et) 
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[e:xp(-li J#. 1MYs) r(-<J [ rri(J-M')f f/4tomYs)'+ n-~{i-M') 

+mer ) 1 J -:--1 (~ tOtrJ lis/+ z ~ t{}dl v/ [ (1fil(l--M') -rz:JJ 

+U7TJ/(, -M·) +c-;rrr } (£5) 
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+ z.(~ ta.t'lJ/slL (iTJf(,- M ~ -rr;; r}[c7TJJ'(,-M~+(~rlt J 
(EC,) 

i[ H-r' ey.p(-Zif.lt fatf)Y, )}[~'~+am Ys] [rl( n'• ('f)') 

-(~8 f-amYs)z] 

--:- { [ (rr(n+tm))'-(~ t~H'{][C rr(n- p )J'-('::t=Y~} 

n=F :r(t;:!: ~%1anVs) 
(£7) 

I -{[;;f.~ tOJrJ Vs ~) 
2. ~ l cos(tnTT7l}Sin{fl177Tr)e df = 

{nrr a) [H-f' er-p{-l i(J ~ t an?Y s) ][rr '( n '-(7 )'} -{~ tOIYJv~'] 

-;--[ [c rr{ n+t m) /-( ~ t01r1 Vs} j[( rr( n-P)) '- (~lj fam lis )j J 

(£8) 
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APPENDIX F 

Description of Electrical Circuits 

This section discusses the function of all electrical equipmen t 

associated with creating the heater pulses and controlling data acqui­

sition which are represented 1n Fig. 4-4. The main de powe r supply 

has been discussed in Ref. 8 of Chapter 2 and will simply b e described 

here as a source of de power. This source could supply up to 100 

amps at up to 300 volts. 

(i) The SCR (Silicon Controlled Rectifier) Commutation Circuit 

The SCR commutation circuit is shown in Fig . F-l. Thi s 

circuit was designed to commutate either betwe en a dummy load and 

a main load (one-dimensional heat pulse 11 single mode11
) or a dummy 

load and two main loads (to produce a heat pulse which was not uni ­

form over the cross section--see Chapter 5). The dummy load, 

RD was typically 65 0. This would be varied slightly with operating 

frequency in order to give proper commutation and duty cycle . The 

sole purpose of this dummy load/SCR is to cause commutation, i . e., 

turn off the main SCR. In the single mode of operation SW2 is left 

open. S Wl is closed and pulses are supplied to the gate of SCR-1 

and SCR-D as shown below. 

SCR-1 

SCR-D 

These pulses arrive at the gate at the chosen fundamental 

frequency, i.e. ,200, 250, 300, 400Hz. Note that the pulses are 

spaced evenly. This allows the dummy SCR to turn off the main 

SCR after one-half cycle. 
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In the dual mode all three SCR1 s are operational. SWI and 

SW2 are closed and pulses are supplied to the gates as shown below 

SCR-1 I 
SCR-D I I I 

SCR-2 I I 
Pulses arrive at gate of SCR-1 and SCR-2 at the chosen fundamental 

-
frequency and are out of phase. Note that pulses arrive at the gate 

of the dummy SCR at twice the fundamental frequency and slightly 

before a pulse arrives at one of the main SCR1 s. This allows the 

main SCR (supposed to be conducting) to be turned off just before the 

other main SCR received its . gate pulse. The dummy SCR was normally 

needed only to start commutation, after that pulses were not sent to 

its gate. This allowed an extremely sharp square wave to be pulsed 

across the heaters . 

The voltage from across the anodes of the main SCR1 s was 

usually monitored during experiments (for single mode the voltage 

from anode to ground was observed) and is shown below 

Typical SCR Output Waveform 
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The SCR' s are General Electric type 154D. The RC circuit shown 

across the two main SCR' s is called a snubber circuit and limits 

the rate of rise of voltage across the SCR to a value such that the 

SCR will not turn on spuriously. 

(ii) Pulse Amplifier 

Each SCR gate is supplied 20 volt, 1 amp pulses from one of 

three pulse amplifiers. The circuit is shown in Fig. F-2. The am­

plifier receives a pulse from the logic section through an optical 

isolator. The purpose of this is to isolate the clock, logic and data 

controller ground from the SCR commutation circuit. The commu-

tation of the SCR' s causes a large amount of electrical ground noise 

which must not reach the logic. 

The pulse then triggers a UJT which is followed by a four 

transistor amplifier which gives the necessary current drive. The 

UJT is used because it allows an extremely fast pulse to be supplied 

to the SCR gate.. This allows commutation at current levels near the 

rated capacity of the SCR ("'-IOOo..). Typical (unloaded) rise times for 

this amplifier were approximately 20 ns. 

(iii) Pulse generator logic 

The function of the logic is to deliver to the pulse amplifiers 

(through the ground isolators) pulses of the proper frequency and 

phase so as to give desired heater operation. The logic receives 

a TTL square wave (from the time clock) of the fundamental fre­

quency for single mode operation and at twice the fundamental fre­

quency for dual mode operation from the clock circuit (frequency 

reference). The circuit diagram is Fig. F-3. 



-206-

The operation in the single mode is straightforward. The 

timer (NE555) effectively lrshortens1r the TTL pulse width from the 

clock. The falling edge of this pulse triggers the one shot (SN74121), 

which in turn sends a pulse to the dummy load pulse amplifier. The 

rising edge (after Inversion) triggers another one shot which provides 

a pulse to the main pulse amplifier. The ''delay" control on the timer 

may be adjusted to determine the relative phase of these two signals. 

In the dual mode the dummy signal is the same, except that 

its frequency is twice the fundamental frequency. The rising edge 

of the timer operating at twice the fundamental frequency drives a 

flip flop (SN7470) the output of which is now at the fundamental fre­

quency. This output and its complement drive one shots which in 

turn drive the main pulse amplifiers out of phase of the fundamental 

frequency. The delay control now determines the time lapse after 

the dummy SCR is pulsed until the main SCR is pulsed (turns on). 

The delay may be adjusted (during operation) to a minimum or may 

be set at a large value ( ""- "Ops ) and the dummy SCR simply shut off 

after commutation begins. 

(iv) The Frequency Reference and Clock (Fig. F-4) 

A 1. 0 MHz crystal oscillator provides a time base for the 

entire experiment. The clock allows the choice of four fundamental 

frequencies and are given below with approximate values us e d as 

aliases: 
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True Frequency Alias 

195. 3125 Hz 11 200 11 

260. 4166 H z "250" 

312.500 H z "300'l 

39 0.625 Hz 11 40011" 

The clock generates two TTL signals. The first operates 

the A/D clock and is of such a frequency that the A/D multiplexes 

each channel at 32 (or 16 if desired) times the fundamental fr e quency. 

The second signal is sent to the pulse generator and will be of the 

fundamental frequency (for single mode) or twice that (for dual mode). 

(v) D a ta Controller 

The data controller, Fig. F-5 , was designed to determine 

when the A/D converter should accept data and when it should not. 

The length of time during which data acquisition is enabled determines 

the ensemble length. This ensemble of data would be the correct 

M 
length in time to allow exactly 2 (M = 0, 1 ,2, 3, or 4) cycles of the 

fundamental frequency to pass. After one ensemble has been acquired 

the controller disables the A/D conve rter. During this period 

(called delay) the data, which has geen digitized, is added to the 

previous ensemble of data or it is written on the disk, whichever is 

preferred. The delay was calibrated (in a manner to be described) 

so that as soon as the adding process was complete or as soon as the 

program began writing data on the disk the A/D converter could 

resume data acquisition in phase with the main heater pulse. 
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The actual logic is a synchronous sequential circuit. It is 

synchronous with the fundamental frequency. The term sequential 

refers to the fact that the logic passes sequentially through several 

states as shown below with a description of each state. 

I 0 I 
G 0 

I I I 
CT R 

I 3 I 
BO RROW 

I 5 I I 

State 0: Set binary counter to zero, load count down scalers. 

Wait for GO signal. 

State 1: Set data enable true (allow data acquisition) . 

Count cycles of fundamental frequency on binary counters. 

Set CTR true when correct number of cycles have been 

acquired. 

State 3: Set data enable false (discontinue data acquisition). 

Start count down scalers. 

Set BORROW true when scalers set to zero. 

State 5: Clear binary counters. 

Reload countdown scalers. 

(go to State 1). 
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The J-K flip-flops (see Fig. F-5) determine the state of the 

controller. The 4 line to 10 line decoder converts the state code 

to decimal for display purposes . When the decoder goes into State l 

the binary counters are enabled and count the pulses arrivi ng on the 

input (fundamental frequency supplied by pulse generator logic) unti l 

the proper number of cycles has been counted. The controller then 

goes into State 3 when the count down scalers are enabled. They 

also count input pulses, but start at a pres e t value (set before be­

ginning an e xperiment) and count down to zero. When the scalers 

read zero (indicating that the desired time delay has occurred), the 

counters are cleared, the scalers are reloaded and we r e turn to 

State 1 to take in more data. 

Note that if the delay were set too short, then as soon as the 

computer finished averaging the latest ensemble, we would resume 

data acquisition without regard to heater pulse phase. Since the 

data enable signal is synchronous, the time at which we resume data 

acquisition will occur (at least) in the middle of the next data enable 

state (State 1 ). When we go into State 3 the computer will not have 

received enough data (it expects exactly 1 ensemble) and will wait 

until the next State 1. Hence, 2 ensembles have passed, while the 

computer has only been satisfied once. This fact was used to calibrate 

the delay. The delay was decreased until more ensembles had been 

passed than expected. This meant that the delay was too short. 

The delay was increased slightly until the expected number of en­

sembles had passed. Hence, the minimum amount of time (when 

the data was not being acquired} was wasted in an experiment. 
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APPENDIX G 

Notation fo r Chapter II 

X 

R 
p 

T 
m 

R 
m 

T e 

R e 

(J 

dimensionless axial position 1n duct 

nozzle length 

inlet Mach number 

exit Mach number 

velocity perturbation normalized by local mean vel ocity 

pressure perturbation normalized by l ocal mean pressure 
X-y 

entropy perturbation normalized by C 
p 

,,, 

local mean velocity normalized by a ''' 

reduced frequency = Wt/a':' for Sections 2. 2, 2. 3 

= Wt/ ( u 2 - u
1

) elsewhere 

dimensionless wave numbers in upstream duct 

dimensionless wave numbers 1n downstream duct 

acoustic wave upstream of nozzle propagating d ownstream 

acoustic wave upstream of nozzle propagating upstream 

acoustic wave downstream of nozzle propagating down­
stream 

acoustic wave downstream of nozzle propagating upstr eam 

p+;p + 
2 1 

p 1- / P t 
p 1- /Pz 

+; -
P2 P2 

+ P 2 /a 

Pl-;a 

value of r. 3 at nozzle inlet 



p 

u 

T 

R 

Subscripts 

e 

p 

m 

co 

0 
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independent variable used in high-frequency analysis 
(and the value at inlet and exit) denoting axial p os ition 

r..
2 

as used in high-frequency analysis 

B 
1 

as used in high-frequency analysis 

i{) 

indicates T or T 
p m 

indicates R or R 
p m 

indicates entropy disturbance 

indicates P + disturbance 
1 

indicates P
2
- disturbance 

high-frequency value 

low-frequency (quasi-steady) value 


