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AB3TRACT

I. The crystal and molecular structure of bis-indenylruthenium
was determined by X -ray crystallographic methods. Crystals of
biseindenylruthenium are monoclinic with four rmolecules per unit
cell in space group Pz.”a. The indenyl groups are in the eclipsed
configuration, and the ruthenium atom is midway between the two
fivee.membered rings. Within experimental error, the molecule has
mm symmetry, and the planar indenyl groups are parallel. The
average Ru-C bond distance is 2. 193 A, but the ruthenium atom is

slightly displaced toward the carbon atoms in position 2.

II and III. The procedures as well as the results of the investigation

of the crystal structures of '""Ni ‘Cdz ' and ”NiBZn " are described.

5 2l

These compounds have been believed to have crystal structures very

1

closely related to that of y brass. This investigation has shown that
the actual atomic arrangements in these compounds are considerably
more complicated than was generally assumed. The structures were

found to differ drastically from that of y brass.
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INTRODUCTICN

Frofessor J. H. Richards and his research group have
conducted a series of investigations on the chemistry of sandwich
compounds (1-5), and, in one of these, Hall (5) prepared and isolated
bis-indenylruthenium, Ru(C9H7)2. There was speculation as to

whether the six-membered rings are cis(I), trans(II), or gauche (1)

in the preferred orientation; Trotter (€) had found the six-membered

- PN
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rings in bis-indenyliron to be gauche. To discover the general
features of the molecular geometry and to accurately define the
geometry of the carbon framework were the primary objectives in
investigating the crystal structure of bis-indenylruthenium. We were
especially interested in the bond distances in the six-membered ring

because Trotter had renorted that the CS-C bonds in bis-indenyliron

6

are essentially double bonds.



Experimental

i) Finding crystals and collecting intensity data.

A sample of bis-indenylruthenium was supplied by Mr. David
Hall of this Institute, and the investigation was started with a crystal
selected directly from the sample bottle while a portion was being
recrystallized from n-hexane. A study of Weissenberg photographs
taken about the ¢ axis indicated the space group to be Plea; from
rotation and Weissenberg photographs the approximate lattice constants
were determined tobe a=11.14, b=9.34, c=6.24, and B T 90°.
The photographs had a rather disconcerting feature, some cof the spots
being accompanied by diffuse satellite spots. To us, this indicated
disorder in the crystal, but we will discuss this later.

The recrystallization from n-hexane yielded crystals of the
same space group as before, but with a unit cell twice as large; the
lattice constants were approximately a = 14.5 A, b=14.0A c=6.24A,
and B = 94.3°. The crystals were long and rod-like with a truncated-
rectangular cross section. One large crystal was selected and cut
into pleces varying in length from about 0.1 ram to about 4 mm. Two
pieces were then used in collecting all of the X-ray data used in this
investigation. One piece was mounted with the needle axis, arbitrarily
designated ¢, parallel to the rotation axis. The second fragment was

mounted with the b axis parallel to the rotation axis. The dimensions



of both crystals were approximately 0.1 mm along a by 0.07 mm
along b. The third dimension of the crystal mounted for oscillation
around b was approximately 0. 14 mm, and the length along ¢ for
the other crystal was 3 or 4 mm. For collecting intensities from this
long crystal, only the tip was placed in the X -ray beam.

Multiple -film equi-inclination Weissenberg photographs were
taken with CuKx radiation for layer lines 0 through 7 about ¢ and for
layer lines O through 12 about b. The intensities were estimated
visually by comparison with intensity strips prepared from the same
two crystals. Empirical {ilm {actors were obtained for each pair of
adjacent films in all sets and were corrected to normal incidence of
the X-ray beam. The weighted average of these factors gave a film
factor for normal incidence of 3.75 (Eastman Kodak Medical X -ray
Film, No Screen). This factor, appropriately modified for the angle
of incidence of any layer line set, was then used to relate the intensities
cn all films within the set to the first film of the set.

The intensities were corrected for Lorentz and polarization
effects and compared with values obtained about the other axis
to obtain correlation factors for the various exposures. Finally, F?'
values were obtained on an arbitrary scale by taking subjectively-
weighted averages of the values observed about the two axes. Alto-
gether, about 2710 reflections were covered, of which about 670 were

too weak to be observed. The observed extinctions, hOf# when h is odd



and 0k0 when k is odd, indicate the space group le/a.

The crystal used in collecting the data about the ¢ axis was
slightly twinned, giving rise to a2 large number of weak satellite
reflections. On the first and second layers the satellite reflections
appeared at positions corresponding to indices h+.,k,1 and h+%,k, 2,
and,consequently,did not affect the intensities of the primary reflec-
tions; on the third layer, however, the satellite reflections were
exactly superimposed on the priméry reflections. A study of these
weak reflectiona showed that the twinning occurs in the (100) plane,
as illustrated in figure 1, and that the reciprocal lattice points of the
two lattices coincide every third layer in £. This coincidence does
not affect intensities on the zero layer since hk0 and hk0 are space-
group equivalent; however, the observed intensities (Io) on the third
layer were not the desired primary intensities (lp). An examination
of the h03 reflections, which must have zero intensity for the primary
reflections when h is odd because of space=-group extinction, indicated
the twin to be approxin;ataly one-twentieth as large as the primary
crystal, and the following equations were used to deduce the values of

I for the hk3 data:

&)

Io(hkS) = Itl(hk;’p) + .05 Im(h+1k3)

Io(h+lk3) s Ip(h+lk3) + .05 Ip(hk3)



Figure 1. [llustration of twinninge.
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ii) Lattice constants and density.

A Straumanis-type Weissenberg camera, which has a radius of
180/m mm and a film travel of approximately 23 mm per 180° of
rotation, was used to collect data (A=1.54051 ji) for a precise deter=-
mination of the lattice constants. Two different photographs were taken
about the b axis to yield measurement of the diffraction angle of hO1l
reflections, from one, and of h0l reflections from the other, and one
photograph was taken about the ¢ axis for hkO reflections. The
radiation was Cu Ko 1’ The lattice parameters were determined by

a least-squares fit to

e2 2 2
a

*2 »
hZ b k% 4 c 242 4 Oht + Ec¢ = 4/22 sine

which can be written

Z 2 2 :
1 4
Zh -2—+-1-(—2—+ 2‘ 2 25t gost +Esin?'2-’5(ql+ 1“ﬁ’)a-—z-si»nz@,
a“sin“p b c“sin”B ac sin B ‘ A

where the absorption correction ¢ is taken from Nelson and Riley (7).
We assumed that any error due to eccentricity was negligible. The
observational equations were weighted with w=1/sin2? , and no
reflections at less than 30° in © were included,in accord with the
suggestion of Nelson and Riley.

The results of this least-squares determination of the lattice
constants are summarized in table 1; the estimated standard deviations
are those given by the least-squares treatment. The averages were

obtained by weighting the individual results inversely as the square of

the standard deviations.



Table 1. Lattice constants.

Data hOg hot hkO Average
N# 12 12 8
a 14. 5194 14,5147 14. 5094 14.514 A
o .0012 . 0005 . 0009 .005 A
b - = 14. 0522 14.052 A
o, " - . 0001 ., 005 A
o, . 0003 . 0008 - .004 A
8 94. 113 94. 098 - 94.10 A
og .203 .078 - .2°

5
E (x 107) 13.9 13. 0 -0.4
o (x 10%) 4.0 3.1 2.0

#* N is the number of reflections in the least-squares determination.

The standard deviations given for the average values are subjective
estimates.



*
The twin condition, mentioned above, demands that a 2/D

equal the integer 3 because the h+lk3 reflection from the twin and the
hk3 reflection from the parent appear to be exactly superimposed.

From the lattice parameters in table 1 we calculate

a*z a.z a‘ <
= = = = = = 3. 001 s

[ »
2a ¢ cosB 2¢c cos 8 2a cos B

which is, within experimental error, equal to the integer 3.

The density of the crystal which was mounted about the ¢ axis
was measured by the flotation method. The crystal was broken off the
mounting well above the adhesive and placed in a zinc chloride solution
whose density was greater than that of the crystal. The solution was
gradually diluted until the crysial remained suspended after stirring;
twelve hours later the crystal was suspended about haliway between
the surface and the bottom of the beaker (125 ml, 3/4 full).

The volume of a 2 ml pycnometer was calibrated by filling with
distilled water and weighing; the pycnometer was rinsed twice with
the zinc chloride solution in which the crystal was suspended, filled -
with that same sclution, and then weighed. The density thus obtained
is 1.723 g/cc; the density based on the unit cell dimensions and four
molecules per unit cell is 1.737 g/cc. The difference may be due to
small air pockets on the surface of the crystal. Beforethe density was
measured, the crystai was examiﬁed under the microscope, and its

faces appeared to be slightly etched.



Determination and Refinement of the Structure

i) Derivation of the trial structure.

The positions of the ruthenium atoms in the unit cell were
readily determined from (001) and (010) Patterson projections. The
observed hk0 and hOf structure factors were then given the signs of
the corresponding ruthenium contributions and used in the preparation
of electron density projections onto (001) and (010), but the carbon
positions could not be deduced. Accordingly, a three-dimensional
Fourier synthesis was calculated, again with signs assigned to the
structure factors on the basis of the rutheniurmn position. The carbon
positions were now immediately apparent; the compound was indeed a
sandwich molecule with the ruthenium atom bonded to the five=-

membered rings.

ii) Refinement.

The atomic positional parameters as determined from the
three-dimensional electron-density map were refined through several
structure-factor least-squares cycles on the Burroughs 220 computer;
the complete set of data was used. In all structure-factor calculations,
the atomic scattering curve for carbon was taken as an average of the
curves given by Berghuis et al. (8) and Hoerni-Ibers (9). The atomic

scattering curve for ruthenium was taken from Thornas and Umeda (10);
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the Af' correction for dispersion (Dauben and Templeton, 11 ) was
included after a few least-squares cycles. Hydrogen atoms were ignored
in the early stages of refinement, but when they were included in the
later calculations, the scattering curve of McWeeny (12) was used.
Estimated isotropic temperature factors of the ruthenium and
carbon atoms were included in the first set of calculated astructure

factors, which led to an R factor of 0.185. (The R factor is given

by R = EﬂFol-'Fc“
T lro !

» the sums being over the observed reflections;

the quantity minimized in the least-squares calculations is

Tw (Foz - Fcz)z.) After the first cycle the weighting function was
changed frorn function I to function 11, table 2. Refinement was con-
tinued through the fourth cycle with the agreement between the Fo's
and Fc's improving with each cycle.

For the fifth cycle two changes were made: anisotropic tem=-
perature factors were assigned to the ruthenium atoms, and the form
factor curve for ruthenium was partially corrected for dispersion (11)
by ;ubtracting 0.5 electrons but ignoring the b’f” correction. By
the end of the seventh cycle, the R factor was down to 0.094; at this
ooint we converted isotropic temperature factors of the carbon atoms
to anisotropic ones and proceeded with the refinement. The resulting
shifts led to negative temperature factors for some of the carbon atoms,

and at the eleventh cycle the refinement was diverging rather than

converging.
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Table 2. Weighting functions for least-squares.

(The quantity minimized is S ) (Fc:)2 - Fcz) .)
hkd

u\:w w
e i

® is a subjective external weight based on the quality of an observa-

ti8n. The usual ® i3 1.00. If there was only one observation, Jw

was taken as 0.7. If there were two observations, /w _ ranged from

0.5, for poor agreement between the two, to 1.1, for very good agreement,
unless there was reason for thinking the observation should not be
included at all--in which case, - 0.

2
1 , * 1/£
W. Cochran (13) has shown that the weighting fum:tion2 w = 1/f will
make the least-squares minimization of Zo(Fo = Fc)~ to determine
atormnic coordinates equivalent to determination by Fourier synthesis.
The weakness in this function, just as in Fourier synthesis, is that
there is no dependence on the guality of observation of Fo.

1

i P+C§F0+RF02

i 0

This expression can be used to construct a function which reflects
the experimentally observed pattern of reliability of Fo (14). In this
work R was set equal to 0, and the function was used to vary the
dependence on Fo. As refinement proceeded, more dependence was
placed ‘on Fo by increasing the ratioof Q to F.

1

m - m———— =
mi 2 for Fo> 4% minimum
Fo
® = —for Fo < 4F
i AT o ¥ minimum
min

This is the square root of weighting function IV. This, of course,
gives more weight to large Fo's than IV. This very closely approx-
imates the Hughes (15) scheme for minimization of I w(Fo -Fc)”.
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Table 2. (continued)

v w, = _LZ for Fo > 4F
Fo B
W, = : for Fo < 4F
i 16 F02 ro 2 min
min

Hughes (15) used a weighting function based on ¢(Fo) = Fo for

Fo > 4F in’ where F " is the smallest Fo which can be estime
ated, and @(Fo) = 4F "™ for Fo <_4F in minimizing

T o(FoeFc)“. To mi r;"ﬁze z m(FoZ - f.néﬁ Z’ our uncertainties
should be based on Fo“, and we have o(Fo°) = 2 Fo ¢(Fc)
Thergfore, t}ée converted Hughes weighting _scheme is based on
o{Fo") = 2Fo” for Fo> 4F_, and o(Fo ) =8FoF . We
remove the factor of 2 and E‘ég the weighting function a3 listed.
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To halt this divergence, we restored the isotropic temperature
factors for the carbon atoms as given by the seventh cycle and took
the atomic coordinates as given by the tenth cycle. Refinement was
continued,and after two cycles the complete list of observed and calcu-
lated structure factors was examined for serious discrepancies. In
the course of examining 2710 reflections, 37 werc found to be weighted
improperly; all these were reflections which were covered on only one
set of films and which should have been weighted as being less than
some estimable minimum, in which case they enter the least-squares
process only if Fe > Fo. Their effecton the refinement must have been
small because the agreement was generally good and because they
entered the refinement with fwe = 0.7 . There were two errors due
to scaling the intensites f.o the wrong {ilm in a set, and, hence, the
Fo's were small by a factor of apnroximately 2. The two worst errors
were in the reflections (9 10 1), Fo/Fec = 16/52, and (13 11 2),
Fo/Fc = 54/13. Errors in transcription were found, and the Fo's
were corrected to 54 and 20.

?urther refinement led to convergence at the sixteenth cycle
with the result depicted by part A of figure 2; the R factor was 0:085.
The weighﬂﬁg function was changed to function III, table 2; after three
least-3quares cycles the atruc@e had converged to that illustrated

in partB of figure 2, with R = 0. 087.
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Figure 2. The molecular structure at four stages in the refinement
(see text).
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We were not, however, aaﬁ..sfiad with the carbon framework
given by either refinement and decided to calculate a difference-
Fourier synthesis with coefficients Fo-FRu in hope of getting a more
satisfactory structure. The result of the difference-Fourier synthesis
is given in figure 3. The points of maximum electron density were
determined by least-squares, assuming the distribution of density
in the neighborhood of the maximum is given by (16)

log(p)zp+ax2'+by2+cza+dx+ey+fz+gxy+hyz+ixz

The least-squares fit for each point was toa 3 x 3 x 3 grid centered
as closely as possible to the point of apparent maximurn density. The
resulting structure is given in part C of figure 2. In the three-
dimensional plot of the electron density the carbon atoms were clearly
defined even in the presence of the heavy atom. The definition of the
carbon atoms suggested that the hydrogen atoms might be resolvable
and that their contributions might be significant in the structure-factor
calculations. No attempt was made to locate the hydrogen atoms by a
difference-Fourier synthesis, but we did calculate their positions and
included their contributions in the ensuing structure-factor calculations
but not in the lea st-squares refinement. A hydrogen atom was placed
and C,, on line with that

8 9

atom and the center of the ring. The temperature factor of a hydrogen

1.06 £ from each carbon atom, except C
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atom was taken as one unit greater than that of its attached carbon
atom. Both the temperature factors and the coordinates of the hydrogen
atomns were duly changed in parallel with the carbon atoms as the
refinement proceeded.

Least-squares refinement was continued, starting with the
atomic coordinates given by the difference-Fourier synthesis, with the
temperature factors as given by the last leaste-squares cycle, and with
weighting function I of table 2; however, some of the shifts seemed to
be in the wrong direction. (At this point we felt that we knew .approxi-
mately how the structure should change, for 2lthough we did not know
what the bond distances should be, we felt that the molecule should
have mm symmetry.) We also discovered and corrected a serious
error, the'Fo of reflection (9 1 2) being changed from 13.9 to 81.9
(Fc = 64.3). This error, which had been made in converting intensities
to structure factors, was simply overlooked in the previous checks.

We changed toc weighting function IIl of table 2 and again started
the refinement with the coordinates from the difference-Fourier syn-
thesis. The R factor of the first cycle was 0.071--a significant
improvement from 0. 085, the R factor before the difference-Fourier.
After four more cycles (numbers 21-24), the refinement had converged
(R = 0.0¢4) to structure D, figure 2. This structure, however, did not

approach mm symmetry as closely as that given by the difference-
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Fourier synthesis; for that reason we changed to weighting function IV
of table 2 and continued refinement.

After five more least-squares cycles all shifts were below about
10% of the standard deviations, and we stopped refinement with
R = 0.0596. The final atomic coordinates and temperature factors
and their standard deviations are given in the last two columns of
table 3, which is a summary of the course of refinement. The bond
distances and bond angles calculated from these atomic coordinates
are shown in figure 4.

It seems that there are four places where we could have stopped
refinement; each possible stopping point is represented by a structure
in figure 2. We felt at each of the first three stages, however, that
the actual structure was slightly different from the one at hand, and
we acted accordingly.

iii) Behavior of unobserved reflections

Of about 670 reflections which were too weak to be observed,
74 calculated larger than the observable minimum, F min., All the
unobserved reflections are included in the list of observed and calcu-
lated structure factors in table 4. The largest observed structure
factor is for the (111) reflection, 196 electrons out of 663 in the unit
cell; the average value of F min is 7. 24 electrons with a maximum of
11.30 and a2 minimum of 3.07. The average AF for these 74 reflec-
tions is 1. 11 electrons, and the largest AF is 3.82 electrons. The

average AF/Fo ratiois 0.18, and the largest is 0.80 (2.95/3.69).
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Table 3. Summary of refinement.

& * 3 ¥k
Cycle ¥Fo IFec R Fw?*:& W E‘c4 R' N*# (we/w):'

6 €9778 68777 .094 2341 2362 . 056 2185 2.0+.05 Fo
12 66788 67446 .090 196t 2242 . 065 2174 1.8+.05 Fo

16 68678 67135 .085 2217 2214 .039 2136 1.8+.05 Fo

19 68821 66995 .087 2941 2902 .049 2132 Fo
24 68453 067344 .064 290: 2894 .020 2122 Fo
2

29 66385 €5926 .0060 1320 1324 .025 2111 Fo

*"wE‘o4 and Tw?c4 are on the same arbitrary scale for cycles &,
12, and 16, on the absolute scale for times 103 for 19 and 24, and
on the absolute scale for the final cycle (29).

**The number of reflections in the least-squares refinement.

**%The weighting function remained constant between the designated
cycles.
2

2 2 4
R'=“w(Fo =-Fc ) / “wFo

In the remainder of the table the parameters given are those produced
by the designated cycle. The decimal points in the iractional co-
ordinates are omitted except in the final coordinates and the standard
deviations. The coordinates in the cycle column labelled S were
obtained from the first three-dimensional Fourier synthesis, and in
the column labelled DT, from the difference-Fourier synthesis. The
isotronic temperature factors, B, are in A-2 units, and the aniso-
tropic temperature factors, in the form

T = exp = r-'yhz+5ka+ylz+bhk+c}d + ki ],

of the ruthenium atorn are dimensionless and multiplied by 10°. Atoms
which would be equivalent if the molecule has mm symmetry are
grouped together.

The primed positions are in ring II, the unprimed in ringI.



Table 3 (continued - 2)

5 6
Ru
x 166 1651
y 036 0348
z 252 2638
o 231
g 275
v 1420
) 9.4
e 116
n 0.7
c(2)
x 084 0854
y 148 1511
z 421 3863
B 3.00 3.08
c(z)'
x 078 0807
y =094 -0944
z 248 2128
B 3.00 3.16

12 16

1651 1652
0346 0346
2636 2637
258 256
269 264
1550 1590
14.2 7.5
109 129
-35 -27

0854 0850
1514 1524
3835 3830
3.24 3.71

0799 0818

2063 2058

20

19

1652
0346
2637
261
255
1634
4.7
147
-20

0861
1529
3824
3..59

0861

-0941 -0936 -0940

2110

DF . 24

1652
0346
2636
13 236
271
1667

same

as

(v ]
i

60
-16

0905
1541
35640
3:.59

0882
1541
3840
4.12

0834 0797

-0925 -0918

2060 2000

3.68 4.71 4.86 4.86 4.22

Final

. 16520
. 03459
. 26366
242.7
279.0
179¢. 2
10. 0
55.9
-9.0

. 09037
. 15444
.38416
3.677

. 08117
-.02186
. 20492
4.232

. 00003
. 00003
. 00008
2.7
3.2
16.7
4.1
8.2
9.3

. 00060
. 00061
.00135
222

. 00064
. 00071
.00146
.251



Table 3 (continued - 3)

3 6
c(1)
x 127
y 175 1813
z 209

12

1817

16

1216 1217 1221

1811

1873 1871 1874

B 3.00 3.17 3.55 3.81

c(1)
x 121
y =067
035

8]

B 3.00 3.07 3.40 4.15

C(3)
x 163
y 130
z 529

1617

1613

1609

1314 1314 1315
5354 5382 5384

B 3.00 2.93 2.73 2.56

21

19 DF 24

1237 1277 1246
1808 18069 1815
1876 1896 1885
3.72 3.72 4.02

1210 1189 1178 1204 1192 1159
-0649 -0645 -0641 -0641 -0645 -0646
0130 0105 0083 0124 0087 0067

4.53 4.53 3.59

1614 1640 1628
1309 1312 1316
5382 5362 5386
2.61 2.61 3.09

c(3)'
x 157 1595 1590 1605 1621 1572 1553
y =112 -1170-1179 -1163 ~-1158 -1140-1143
z 355 3703 3729 3734 3751 3643 3616

B 3.00 2.89 2.62 2.46 2.61

2.61 2.47

Final

. 12619
. 18084
. 18817
4.006

. 11735
-. 06414
. 00952
3.899

. 16338
. 13054
. 53986
3.282

. 15601

-. 11442
. 36053
3.213

g

. 00062
. 00066

. 00142
0236

. 00063
. 00064
.00144
« 245

. 00055
. 00055
.00126
. 203

. 00052
. 00057
.00124
. 202
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Table 3 (continued - 4)

S 6

x 232
170
211

2254

c(s)'
x 226 2133
y =072

z 037

c(9)
x 253
y 143
z 437
B 3.00 3.05

c(9)'
x 247
y =098
z 263
B 3.00 2.81

12 16 19

2236 2233 2235

1770 1791 1782 1776 1768

2138 z125 2120

3-10 2.61 2.51

1.96 1.1z 1.41

DF 24

2237 2216
1783

¥
z 2175 2195 2193 2199 2208 2190
B 3.00 2.94 2.69 2.13 2.19 2.19 2.49

2138 2139

-0734 -0732 -0727 -0724 -0709 -0713
0313 0331 0309 0305 0377 0336
B 3.00 2.93 2.77 1.95 1.87 1.87

2. 12

2535 2525 2517 2524 2483 2485
1477 1481 1470 1468 1460 1460
4446 4449 4434 4435 4353 4366

2.51 2.42

2333 2351 2367 2368 2387 2413
-1032 -1018-1018 -1021-1017 -1024
2511 2478 2490 2479 2523 2536

l.41 1.67

Final

. 22317
. 17820
.21882
3.091

«ad1bld
-.07173
. 03456
3. 155

. 24844
. 14645
. 43607
2. 589

. 24044
-. 10267
.25117
2.846

. 00052
. 00056
.00119
« 192

. 00054
. 00056
.00124
. 206

. 00049
. 00049
.00108
. 181

. 00049
. 00054
.00113
« 182



Table 3 (continued - 5)

-

c(7)
x 302
y 197
z 059
B 3.00

c(7)
x 296
y =045
z <115
B 3.00

Cc(4)
x 337
y 132
z 518
B 3.00

x 331
y =110
z 344
B 3.00

6 12 16

2936 2931 2931
1989 1989 1994
0686 0685 0681
3.00 3.00 3.01

2935 2933 2928

2.93 2.62 2.07

3497 3493 3493
1346 1349 1345
5178 5157 5140
3.17 3.58 4.19

3299 3302 3314

3206 3193 3227
3.00 2.95 2.79

23

19 DF 24

2925 2951 2957
1990 1954 1984
0683 0760 0749
3.24 3.24 3.45

2928 2885 2883

-0542 -0543 -0544 -0539 -0533 -0541
-1039 -1042 -1060 -1040 -1038 -1088

2. 19 2.19 2.81

3508 3434 3437
1346 1354 1349
5168 5061 5065
4,30 4.30 3.37

3307 3320 3349

-1165-1162 -1167 -1165 -1157 -1165

3212
2.95

3221 3256
2.95 3.24

Final

- 29553
. 19810
. 07593
3.688

.28715
-. 05290
-. 10734

3.472

. 34365
. 13469
. 50834
3.343

.33426
-. 11604
. 32438
3.745

o]

. 00058
. 00057
.00134
.228

. 00052
. 00056
.00119
. 192

. 00056
. 00057
.00129
. 206

. 00059
. 00061
.00140
. 226
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Table 3 (continued - 6)

5 6 12 1 19 DF 24

c(é)
x 385 3831 3845 3849 3834 3845 3863
y 179 1857 1856 1858 1852 1845 1855
z 143 1441 1443 1449 1436 1479 1497
B 3.00 3.14 3.63 4.73 4.77 4.77 4.95

c(6)"
x 379 3826 3831 3830 3834 3771 3770
y =063 -0677 -0668 0666 -0662 -0653 -0662
z =029 -0165-0177 -0212 -0204 -0282 -0292
B 3.00 3.05 3.06 3.29 3.39 3.28 3.84

c(5)
x 411 4118 4125 4137 4131 4087 4102
y 147 1518 1525 1531 1527 1515 1533
z 362 3656 3640 3648 3656 3647 3643
B 3.00 3.15 3.65 4.32 4.03 4.03 4.48

c(5)"
x 405 4071 4046 4024 4001 4003 4002
y -095 -0956 -0956 -0948 -0954 -0965 -0941
z 188 1894 1834 1814 1904 1826 1789
B 3.00 3.21 3.89 5.22 5.50 5.50 4.18

Final

. 38546
. 18388
. 14991
4.381

.37615
-. 06477
-. 02994

4.323

. 40774
. 15253
. 36423
3.921

- 39957

-. 09459
. 18158
3.937

o

. 00065
. 00070
. 00151
» 254

. 00069
. 00068
.00154
.268

. 00061
. 00067
.00141
. 235

. 00065
. 00070
.00151
. 254
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Figure 4. Final bond distances and angles.
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iv) Fossible sources of error:

a) Absorption and extinction.

We have made no correction for absorption or extinction.
Either absorption efiects must be very small or compensation for
absorption has been made by the temperature factors; we observe
no systematic trends in the discrepancies between the Fo's and Fc's.

Extinction i3 evident in two reflections, which are characterized as

follows:
reflection Fo Fe F/Fo W
z00 151. 4 -187.7 . 239 1.0
020 118.8 154.7 .294 0.6

Because of the weighting function employed in the last stages of refine-
ment, w = 1/5‘04. these reflections had a low weight compared to the
average reflection (average Fo = 32.6), and their influence on the
structure should be very small.

b) Scattering curve of ruthenium.

We compared the scattering curve of ruthenium used in our cal-
culations (Thomas-Umeda, 10) with an empirical scattering curve which
would fit our data. We did this by obtaining! S‘RJ and'! Fol-1 Fc -FRu! !
for each reflection and collecting sums of both quantities as a function of
singe. where F.Ru is the ruthenium contribution to Fc and F‘c-F‘Ru is the
sum of the carbon and hydrogen contribution to Fc. The twe absolute

quantities should be approximately equal and differences in their sums
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should reflect systematic errors in the Fo's or errors in the theoretical
scattering curve, or both. We compiled table 5 during the last least-
squares cycle and plotted the results in figure 5. We used the Thomas~
Umeda scattering curve as a base and employed the corrections
indicated by table 5 and figure 5 to derive an empirical scattering

curve and plotted the curve in figure 6. The curve looks unreasonable
in the region from 0.60 to 0.75 in sinzf‘; in this region the scattering
power increases as sinz‘? increases. This may be experimental error
since this is the region of sinzg where reflections began to be resolved

into the o) and orz components.

Discussion of Results

i) Molecular structure:

a) Bond distances and angles.

The final bond distances and bond angles have been given in
figure 4. Tables 6 and 7 list the distances and angles along with their
averages for a molecule of mm symmeiry; other information to be
discussed below is also given in table 6. Much more will be said
about the bond distances in the discussions that follow. These tables
are presented at this time primarily for reference.

Two features of the molecular structure should be emphasized.
First, the ruthenium atom is not on the axis joining the centers of the

two five-mermbered rings but is displaced by a small but significant



Table 5.

sinzecu

0-0.1
0.1-0.2
0.2-0.3
0.3-0.4
0.4-0.5
0.5-0.6
0.6-0.7
0.7-0.8
0.8-0.9
0.9-1.0

N

89
160
178
215
220
247
228
252
268
181

32

ﬁ,“?au’
5718.4
8011.8
7405.7
7750, 4
6970. 1
6685. 1
€001.3
5969.3
5344.0
3148.0

Data for empirical scattering curve.

D

N
5825.5
7955.3
7405.1
7844.1
7109.0
6784.4
5902.7
5585.5
5040.9
3260.3

iipkullin
1.020%
.993
1. 000
1.012
1.020
1.015
.983
.936
.943
1. 035

2
N is the number of observed reflections in that region of sin™?,

N

tD=2! |lFol-]|Fec-F_ ||
N Ru

#f the (200) and (020) reflections are omitted, the ratio is 1.006

(see text).



Figure 5.

A plot of the ratio of the theoretical to empirical scatter-
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ing curves as a function of sin“8,
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Table 6. Bond distances and bond numbers.

d
Distances (A) Nﬁr(::)er~
Observed Fredicted -
Cc-C I 11 Mean Cbs. FPred.
1-2 1.414 1.410
1.422:0_- .011 1. 441 1.34 1.24
2=3 1.438 1,424
8-1 1.421 1.407
1.433 +. 018 1. 457 1.28 1. 18
3-9 1.453 1.451
8-9 1.440 1.447 1.4%41.004 1.461 1.23 1. 16
V=4 1.417 1.432
1.4361.013 1.441 1.27 1. 24
T=8 1.4421 1.452
4«5 1.379 1.361
1.3661.009 1.365 .71 1.71
6=7 1. 356 1. 367
56 1.401 1.421 1.4111 .010 1. 441 1.40 1. 24
Ru-C
C, 2. 171 24 16T 2.1691.002 2. 197 « 51 .46
C1 Z. 180 2. 174
2. 182 +. 005 2.159 .48 .53
C3 2. 186 2.187
CB 2. 223 2:212
2. 27 1 . 005 2. 245 .42 .38
Cg 2:221 2.213

The standard deviations given reflect only the internal consistency
among chemically equivalent distances; they are calculated by
n
%
(T (m-xi)z/n)'. From the least-squares standard deviations of atomic
. coordinates, the standard deviation of a C-C distance

is + .012 A and of a Ru-C distance, +.008 X.
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Table 7. Bond angles.

CcC-C-C I II Mean

la2-3 109. 4 110. 4 109.5 + 0.5
2«3-9 106, 3 106.0 107.1 + 0.9
2=1-8 108.3 107. 6

3-9-8 107. 8 107.3 108.010.5
1-8-9 108. 2 108.6

3=9=-4 131,.1 132. 4 132.2 # 0.7
1-8-7 133.0 132.3

8=-9-4 121.. 1 120.3 119.81 0.9
7=-8=9 118.8 119.1

9-4-5 116.9 1. 5 117.910.7
6H-7-8 118.3 118.7

4=5-6 122, %7 123.8 122.3_-_0-_ 1.2
S=b=7 122.1 120.6

C=-Ru=-C

1-R =2 37.9 37.9 38.!-_!-_0.2
=R -3 38.5 38.2

3-R-9 38.5 38.5 38.010.5
1-R -8 37.6 37.4

8-R =9 37.8 38.2 38.010.2

n ez 2
The standard deviations of the mean are taken equal to (° ( o x‘!z) ;
i n

The least-squares standard deviations of atomic
coordinates give a standard deviation of + 0.7° for a C-C-C angle
and of + 0.5° for a C-Ru-C angle.
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amount (approximately .03 A ) toward positions 2 (see figure 4).

The agreement between the halves of the molecule and the estimated
standard deviations, obtained as a by-product of the least-squares
calculations and confirmed by the general agreement between.atructur-
ally equivalent bond distances, make the differences in Ru-C bond
lengths significant. The second feature is the shortness of the Cb-C_‘,
and C4-CS bonds (see figure 4 and table 8). Trotter found the iron
atom in bis-indenyliron to be displaced toward positions 2, but he
found the short bond to be CS-Cé. Because Trotter worked with a
disordered crystal, we feel our values of the molecular dimensions
are more reliable. (He reports only the mean bond distances and
gives no standard deviations.) In saying this, we imply that there is
nc reason for the indenyl groups to be diilerent in the two compcunds.

b) General features.

Within experimentzal error, the carbon atoms constituting an
indenyl group are coplanar, and the planar indenyl groups are parallel.
The indenyl groups are in the eclipsed configuration, and, within
experimental error, the molecule has mm symmetry as in rutheno-
cene (17). In bis-indenyliron and ferrocene (18), however, the carbon
atoms in the five-membered rings are staggered. If one considers
only local symmetry in molecules of this type, one can say that an

iron atom prefers to occupy a center of symmetry while a ruthenium

atom prefers to lie in a mirror plane.
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The least-squares plane of each indenyl group was calculated
by the method of Elow (19) using a program written for the Burroughs
220 by Mr. Noel I'. Jones. The out-oi-plane distance of each atom
and the direction cosines of a normal vector to each plane are given
in table 8; the angle between the two normals is about 0. 8.

To determine i. there is any departure from the eclipsed
configuration of the indenyl groups we calculated an average vector
from the carbon atoz;'xs in one plane to the corresponding atoms in
the other; direction cosines of this average inter-ring vector are given
in table 8. The direction cosines of the two normal vectors were also
averaged and normalized to define an average-normal vector; the
angle between this average-normal vector and the average inter-ring
vector is 0. 2°, whic}; means that the indenyl groups are eclipsed,
certainly within experimental error.

In calculatir{g an average inter-ring vector, we also calculated
each individual distance and averaged these for an average inter-ring
separation (see. table 8). The average separation is 3. 665 A compared
to 3.68 A _or ruthenlocene. The average separations in bis-indenyliron
and ferrocene are 3.43 and 3.32 & .

c¢) Prediction of bond distances.

Let us employ a2 method used by Fauling (20a) to discuss the

molecules of ruthenocene and ferrocene to predict a molecular structure
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Table 8. Out-of-plane distances, inter-ring separation and direction
cosines of a normal vector to each ring.

Qut-of -plane distance

Ring I

-.001
-.020
-.010
.018
.016
. 019
.012
-. 015
-.018

Crigin 2.817

MO Nwowen 0

All distances are in Angstrom units.
origin is the absolute distance.

Ring

. 002
-.010
-.015

.013

. 009

. 008

.019
-.008
-.018

0.812

I

Separation

3.636
3.617
3.618
3.694
3.684
3.706
3.704
3.669

3.653

3. 665 (average)

The distance to the
The out-of-plane distance is taken

a3 negative if it is toward the ruthenium atom and as positive if it
is out-of-plane away {rom the ruthenium atom, toward the outside

ol the molecule.

Direction Cosines®

R Ring 1
cos x .01012
cos y -.95040
CO8 Z .31085

Ring II
02175
.95156
. 30667

Normalized
Average

. 015935
. 951004
. 308768

Average Inter=-
ring (C-C)

.011653
. 951023
.308902

*In orthogonal systems whose axes are parallel to a, b, and

i:_"' of the monoclinic cell.
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for bis-indenyliron and bis-indenylruthenium. In doing so we will
assume that the iron and ruthenium atoms use all nine of their valence
orbitals for bond formation or for occupancy by unshared electrons or
electron pairs. Hence, we expect corresponding bonds in the two
compounds to have identical bond numbers, and the only difference in
the two molecules will be in the metal-to-carbon bond distances,
reflecting different sizes of the metal atoms. After Pauling, we
consider the 1287 structures represented in ﬁ_gure 7. The horizontal
bars represent double bonds that are basically part of the five-
membered ring, and the vertical bars represent Ru-C bonds. The
number below each diagram is the number of structures of that type.
We can count the number of appearances of each canonical form,
assuming equal weight; the counting is summarized in table 9.

In every canonical form each carbon-to-carbon bond is a single
or a double bond. Therefore, to count the bond number we only have
to count the number of times it appears as 2 double bond; we can also
predict the Ru-C bond number by counting bonds. Both countings are
summarized in table 10, and the comparison between predicted and
observed C-C bond distances is also made there.

We see irnmediately that there is good agreement between the
observed and predicted bond lengths for bis-indenylruthenium and that

-C. and

Pauling's treatment does indeed predict the shortness of the C6 7
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Figure 7. A representation of resonating-bond structures.
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Table 9. Counting canonical forms.

: e — s +
symibol [T AT
Ru-C bonds 1 3 5 2 4
Number oi T é 1 30 9
forms
Number of
times each
appears in
A 14 )
B 2
C 12 14
D 2 14
E 2 12
F 60 14
G 60 12
H 60 2
I 18 14
J 18 12
K i8 p.A
Totals
Subtotals 106 106 104 28 28 372
Number of 742 636 104 840 252 2574
forms
Ru-C bonds 742 1308 520 1680 1008 5858
Double 2968 1908 208 2520 504 8108

bonds



Table 10.
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to carbon bond numbers.

Double bonds in

Type* Weight*

106
106
104
28
28

v W o

Weighted totals

Double bond
character*s

“redicted bond
distance g¥#k

(A)
Observed:

bis-indenyl-
ruthenium

bis-indenyl -
iron

Prediction of carbon to carbon bond distances and ruthenium

C,-Cq
C3-C9 CZ--C3 Cé.CT C9-C4
CS-CI Gl-(;2 Cg-C C4-C5 CS-Cb
2 3 Z 5 2
1 1 1 5 1
1
5  § 3 18 9
6 2
458 620 402 1836 626
.178 . 241 . 1506 « 713 . 243
1,457 i.441 1.461 1.365 1.441
1.433 1.422 1.444 1.366 1.428
1.41 1.47 1.39 1.45 1.40
(CS-C6F

1.30)



Table 10 (continued)

Ru-C bonds in C C G C C

Type* Weight*

1 106 1 1 2 2 1
3 106 3 3 4 4 4
5 104 1 1 1 1 1
7 28 10 i0 I4 14 12
4 28 6 6 8 8 8
Weighted totals 976 976 1356 1356 1194
(5858 total)
Bond number -379 .379 527 .527 . 464

* See table 9. Type is the number of Ru-C bonds.
##i"raction of total forms (2574) in which it appears as a double bond.
#*#3ee Fauling (20), tables 7-9.
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(34-C5 bonds. That the C()-C7 and C4-C

bonds (75%) is supported by Seus (21) who was able to hydrogenate

5 bonds are nearly double
bis-indenylruthenium to produce bis-4, 5, 6, 7-tetrahydroindenyl-
ruthenium. If, on the other hand, the double bond were in the CS-C6
position, as indicated by Trotter's work, one would expect hydrogen-
ation to yield bis-5, 6 -dihydroindenylruthenium.

To predict the Ru-C bond distances in ‘the same way that
Fauling treated ferrocene and ruthenocene, we must first calculate
the d chara_cter of the ruthenium bond orbitals. If we assume that
the unshared pairs occupy 4d orbitals and that the bonding electrons
are distributed equally among the 5s, 5p3 and unoccupied 4d orbitals,
then we calculate that the d character is 41.6%. We get the same d
character for the iron atom in bis-indenyliron, except that we are
referring to 3d orbitals. This amount of d character leads to the
single -bond radii for ruthenium and iron of 1.313 and 1. 137 £ (20b).
An alternative is to use the single bond radii as given in Pauling's
table of metallic radii (20c); from this table we get single bond radii
of 1.264 and 1. 165 A for ruthenium and iron. Using a single bond
radius of 0.770 A for carbon and correcting for electronegativity dif-
ference (-0.056 A ic;r Te-C and =-0.024 {or Ru-C), we calculate the

following metal-to-carbon bond lengths (in A )
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sing}j bond radius used

observed
(¢ character) (metallic) distance
ferrocene 2.045 2.075 2.05
ruthenocene 2.246 2.188 2.21
bise-indenylruthenium 2. 268 2.201 2. 19
bis~indenyliron 2. 060 2.088 2.10

There is better agreement between the observed and calculated bond
lengths if one chooses the metallic radii; hence, the single bond radii
of iron and ruthenium will be taken as 1.165 and 1.246 £ (the metallic
radii) in all discussions that {cllow as well as in all tables and figures
where it is necessary to use such radii.

In table 6 we have summarized the information on bond dis~
tances and bond numbers; we have assumed mm symmetry. Figure
8 shows the average bis-indenylruthenium and bis-indenyliron molecules
as observed and also the predicted molecules to facilitate comparison.

We should point cut that the predicted and observed structures
agree well except for the metal-to-carbon bonds. We have predicted
correctly that the longest metal-to-carbon bond is that to CB or Cg.
but the relative lengths of the other bonds are not predicted correctly.
The average metal-to-carbon bond distance, however, agrees well
with the average of the observed distances.

From table 6 we can calculate the number of observed and pre=
dicted covalent bonds for each carbon atom, assuming the C-H bond

number to be 1.000; the covalent bonds are listed:
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CZ Cl.3 C8,9 C4.7 C5.6
Observed 4.178 4,097 4.194 3.973 4. 106
Predicted 3.94¢ 3.946 3.956 3.956 3.956

‘We judge that we have observed more electrons than are available
for bonds. (This was apparent earlier in table 6, where the expected
bond numbers are less than those observed, which of course is a
result of the observed distances being less than those predicted.) It
may well be that some of our observed distances are shorter than
those in the true structure because we have not attempted to correct
for thermal motion of the atoms. But in our prediction of the bond
numbers we have neglected any purely ionic molecules in which a
negative charge would reside on the indenyl group or groups; this
would increase the predicted bond numbers.

We can find no support for longer bond distances in the
results of the three-dimensional difference-Fourier (see figure 2C
and figure 3) or in an electron-density map drawn in the least-squares
plane of each indenyl group (figure 9). If anything, these results
indicate even shorter bond lengths than given by the least-squares
refinement. We feel, however, that figure 9 may be a little misleading
because the ruthenium may contribute to the electron density in the
five-membered rings and by doing so displace the maxima toward
the center of the ring; the ruthenium contribution has been removed in

figure 3.



Figure 9.
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The electron density in the planes of the indenyl groups.
Contours are drawn at intervals of 1 e. A-3

with the dashed line at 1 e. A-3,
are marked with an x.

starting
The final positions
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d) Temperature {actors.

We have said earlier that the final result as we present it is
the ""best'' result that the investigation has yielded--because the
agreement between the observed and calculated structure factors is
the best and because this final molecule approaches mm symmetry
more closely than any other. There is yet another reason for our
feeling that the final result is the '"best''; this reason is the pattern
and agreement of temperature factors in the indenyl groups.

One can examine table 3 and see that in our final result the
temperature factors of corresponding carbon atoms agree well and
fit into the expected pattern of thermal motion better than in any other
stage of refinement. Moreover, the range of temperature factors is
smaller than at any other stage. The final temperature factors are,
given again in table 11; as expected, the thermal motions of the atoms
on the ends of the indenyl groups are the largest while the smallest
motions a;re by the atoms common to the two rings.

The anisotropic motion of the ruthenium atorn is described
by its vibrational ellipsoid, which is defined in table 12. The motion

is essentially isotropic.

i) Packing of the molecules in the unit cell.
The packing of the molecules in the unit cell is illustrated in

figures 10 and 11. There are only six non-bonded distances which are

short enocugh to mention.
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Table 11. Isotropic temperature factors (B) .

I I Mean
cZ 3.677 4.232 3.955
Cx 4,006 3.899
3. 601
C3 3.284 3.213
C8 3.091 3. 155
2.920
c9 ' 2.589 2. 846
07 3.688 3.472
3.562
c, 3.343 3,745
06 4,381 4.322
4,140
Cs 3.921 3.937

The standard deviations as given by the least-squares treat-
ment are about + 0.22 A=2, ranging from + 0. 18 to + 0. 27 A-2
(see table 3).
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Table 12. Vibration ellipsoid of the ruthenium atom.

Direction cosines

axis i Bi cos x cos y cos z
1 2.787 -. 1327 -.0363 -9905
2 . 2.212 .2075 . 9762 . 0636
3 2.023 . 9692 -.2139 . 1220

The direction cosines are relative to a Cartesian coordinate
system which has two axes identical to a and b of the monoclinic
cell of bis-indenylruthenium; the third axis is parallel to c.*
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Figure 10. The structure viewed down c.
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Figure 11. A representation of the structure viewed down a.
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The ruthenium atom is approached by three hydrogen atoms.
The rutheniumn atom of molecule A, figure 11, is 3.3 A from the
hydrogen atom on C(7)' of molecule B, 3.6 A from the hydrogen 01;1
C(1) of molecule D, and 3.6 £ from the hydrogen on C(3) of the
molecule displaced minus one unit along z (This molecule is not pic-
tured; the relationship is the same as that between RuB and the hydrogen
on C(3)A. In this discussion, the primed positions are for that indenyl
group (II) having the less positive y coordinates.). This packing
cifect with the hydrogen atoms approaching the ruthenium atom is also
observed in ruthenocene (17). The distances from C(7) of molecule B
to C(8)' and C(9)' of molecule C are 3.48 and 3.31 £ . The distance
from the hydrogen atom on C(7) of molecule B to C(8)' of molecule
Cis 2.7 4.

A little more will be said about the packing in discussing a
disordered crystal. We feel that the packing is adequately described

in figures 10 and 11 and that words would not enlighten the reader.

iii) Accuracy of the molecular geometry.

The standard deviations in individual atomic coordinates ob-
tained by inversion of the normal equation matrices lead to mean
standard deviations of . 008 A for Ru-C bond lengths and of . 012 A
for C=C bonds. The root-mean-square (rms) deviations of chemically
equivalent bonds agree with these expected uncertainties. All three

groups of chemically equivalent Ru-C bonds have 2 rms deviation of
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less than .006 A. All six sets of C-C bonds ha e a rms deviation
of less than .019 A, and only two sets have a rms deviation larger
than the expected .012 KA. There is no doubt that the Ru.-c:8 and

Ru-C_, bonds are significantly longer (.03 £ ) than the othér Ru-C

9

bonds and that the C -C7 and C ,-C_ bonds are significantly longer

6 4 5

than any other C-C bonds. Bond distances and rins deviations are
listed in table 6.

In a recent investigation of the crystal structure of the dimer
of rhodium chloride 1, 5-cyclooctadiene, Ibers and Snyder (22)
atternpted ''to answer the question: How well can carbon ring geometry
be defined in the presence of second-row transition metals, if
intensity data collected at room temperature and estimated visually
are used?' In that investigation they expressly took into account
anisotropic thermal motions of the heavy atoms.

The molecular structure of the dimer of rhcdium chloride
i, 5-cyclooctadiene and of bis-indenylruthenium are suitable for com-
parison. Rhodium and ruthenium are adjacent, second-row transition
elements, and the rhodium atoms are bonded to four carbon atoms and
to two chlorine atoms while the ruthenium atom is bonded to ten carbon
atoms. Furthermore, mm symmetry can be logically assumed for

both molecules, though this symmetry is not crystallographic.
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Ibers and Snyder report . 03 J;x for the standard deviation of
a Rh~C bond and .08 A for the standard deviation of a C=-C bond. In
particular, let us compare the C5'C'6 and Cl--C.‘.‘2 bonds, the doutle

bonds, of rhodium chloride 1, S5-cyclooctadiene with the CI-CS and

C3-C bonds (which is the most inconsistent set of four bonds within

9
the molecule) of bis-indenylruthenium. The four bonds, which should

be equal within each molecule, are (in £ ):

rhodium chloride 1, 5-cyclooctadiene bis-indenylruthenium
C-C Cc-C
-2 1.52 8-10 1.42
5«6 1.42 39 1.45
1'.2" 1.36 8'-10" 1.41
5'-6' 1.44 3'=9' 1.45
Mean 1.44 | 1.43
g . 06 .02

From the results of their investigation, Ibers and Snyder
conclude ''that the ring geometry is difficult to define even when
anisotropic thermal motions of the heavy atoms are incorporated into
the theoretical model.'" However, we feel that the ring geometry can

be well defined, certainly to within .02 A in the bonds within the ring.
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Disordered Bis<dndenylruthenium

A s stated in the experimental part, the first crystal of bis-
indenylruthenium gave photographs indicating a unit cell only half as
large as the one whose structure we deterrmined and also suggesting
disorder. The size of the unit cell indicates that there are only two
molecules per unit cell and therefore,that the ruthenium atoms must
occupy special positions (000) and (% £ 0) --that is, at the centers of
symmetry of the molecule, indicaﬁng that the six-membered rings
are trans.

Intensity data for the hkO reflections were collected and cor-
rected for Lorentz-polarization effects and then were used in generating
the (001) Patterson projection. The Patterson map, however, did not
show the ruthenium atoms to be in apecial positions; seemingly, there
were four half ruthenium atoms in the unit cell. Trotter (6) encountered
a similar problem in his investigation of the structure of bis-indenyl-
iron.

In the same way that Trotter proposed a structure for disordered
bise-indenyliron, we propose a disordered structure of bis-indeng-rl-
ruthenium. Around a special position there can be two orientations,
equally probable, related by a center of symmetry so that the structure
appears to have a center. This packing and unit cell of the disordered
structure are shown in relation to the packing and unit cell of the

ordered structure in iigufe 12. One can mentally construct the average



Figure 12. Comparison of packing in the ordered and disordered
structures. The ordered unit cell is given by the solid
lines and the disordered by the dashed. Compare to

figure 10.
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disordered structure by putting half ruthenium atoms at (xyz.;;.) and
half carbon atoms, to complete the half-molecules, in two planes with
the five- and six-membered rings of one half -molecule occupying the
general region of the six- and five-membered rings of the other half-
molecule, the two halfemolecules being related by a center of symmetry.

The positions of the ruthenium atom, obtained from the Fatterson
rap, were used to assign signs to the Fo's and an electron density
projection onto (001) showed that the planar indenyl groups are almost
perpendicular to the xy plane. The x and y coordinates of the
carbon atoms were guessed on the basis of the ordered structure, and
the hk0 structure factors were calculated. The signs of these Fc's
were then used to get an electron density projection onto (001); this
electron density map is shown in figure 13.

Lattice constants calculated from Weissenberg photographs
indicate that the packing of the ordered cryatal is more efficient than
the disordered; the ratio of ordered to disordered density is calculated
to be 1.02. The c axes of these two forms are essentially the same,
and the a axis and the b axis of the disordered crystal are such that
the diagonal in the xy plane is essentially the same length as the a
axis of the ordered crystal adz + bd2 = V 123 + 87 = 14.5 A,
a_= 14.5 8 ), see figure 12.

In view of the disorder, no accurate structure determination

seems possible and the work on this modification was abandoned.
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Electron density projection onto (001) of the disordered

modification of bis-indenylruthenium.

Figure 13.
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INTRCDUCTION

In his examination of the nickel-cadmium system Voss (1)
observed a binary interrmetallic compound which he called NiCd4.
Twenty=three years later (in 1931) Ekman (2) observed the same

phase but reported the composition to be Niscd His powder

23.6°

photographs indicated a cubic structure with the edge of the unit cell

equal toa, = 9.761 k x (9.781 }i) Since the diffraction pattern was

0
very sirnilar to that of y brass, he concluded that the structure was
isotypic with that of this latter phase.

Prior to this work Ekman had discovered that the ratio between
the number of valence electrons and the number of atoms, the so-
called electron-to-atom ratic, in the two isostructural compounds

CuSZn and Cu A14. is 21/13, if copper is assigned the valence one,

8 9

zinc the valence two, and aluminum the valence three. The same
electron-to-atom ratio, he said, could be obtained for the nickel-

Cd and if

cadmium phase if it were assigned the composition Ni 21

5

nickel were assumed to have zero valence.
In 1934 Swartz and Phillips (3) reported that in the nickel-
cadmium system the compound of highest cadmium content had the

composition NiCd7.
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The most recent report on nickel=cadmiurm alloys, which
appeared in 1955, is that of Lihl and Buhl (4). These authors found
the y phase to exist at about 18.5 at. % Ni, which corresponds to
NiSCdzz' but stated that their powder photographs could be indexed

only on the basis of a face-centered cubic cell of edge a, = 19. 545 A,

0
which is twice the value reported by Ekman (loc. cit.). They believed
that the structure of this phase is very closely related to that of vy
brass, and again, referring to the electron-to-atom ratio 21/13,
they assigned the ""ideal'' composition NiSCdzl to this phase.

The name '""Ni_Cd_." shall be retained provisionally until the

5° 21
actual composition is more firmly established.

The object of the present investigation is to find an explanation
for the doubling of the cube edge a.x;;d. furthermore, to test the validity
of the assumption made by previous investigators. Another reason for
our interest in this structure is that it may provide a basis for the
formulation of structures of intermetallic compounds of very high
complexity. Such structures have many interatomic distances which

are functionally independent from one another, and, therefore, provide

considerable information about interatomic distances.
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Experimental

i) Freparation of single crystals.

An alloy of composition 17.8 at. % Ni and 82.2 at. % Cd was
prepared from Baker Analyzed reagent nickel of 99. 5% purity and
Mallinckrodt analytical reagent grade cadmium sticks of 99.94%
purity. Nickel shot and pieces of cadmium were melted together in
an alundum crucible by induction heating in argon gas at atmospheric
pressure; the melt was allowed to solidify slowly. The ingot was
found to contain a very large number of crystals, most of which
secmed to be fragments of cubes and square prisms. Since the cubes
were too large to yield intensity data unaifected by absorption, a
small fragment with an approximately rectangular cross section was
selected to be used for X -ray photography.

Laue photoi;rapha indicated Oh Laue symmetry. Rotation
and Weissenberg photographs indicated a cubic face-centered lattice
with a, = 19.6 &, in accord with the results of Lihl and Buhl (4). Each
one of the observable reflections on the Weissenberg photographs had
either all indices even or all indices odd with no systematic absences;

3 2 5

the probable space groups are, accordingly, O7, Td , and Oh .
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ii) Intensity data.

An almost complete three-dimensional set of intensity data
was obtained from equi-inclination Weissenberg photographs taken
with Mo Ka radiation. The 1107 direction of the cube was chosen as
rotation axis. Since the identity period along this direction is only

aolu’z , where a_. is the edge of the cubic unit cell, the complete

0
sphere of reflection can be recorded with considerably fewer photo=-
graphs than with a crystal rotated about (1007 . This method, further-
more, yields cross correlations between even and odd layers, which
is not possible with the latter method for cubic face-centered crystals.
The intensities were estimated visually by comparing the dif-
firaction spots with those on a calibrated scale. The multiple-film
technique was used, and the films were interleaved with nickel foil
. 001 inches thick. Corrections were made for Lorentz and polariza=-
tion effects but not for absorption or extinction. Absorption corrections
were not néces sary because of the very srnall size of the crystal,
which was . 060 x .023 x .017 mm3. The. maximum uR was of the
order 0. 8.
For this investigation 623 symmetry independent reflections
were used, 340 of which were ecither too weak to be observed or too

weak to be estimated with reasonable accuracy. These 340 reflections

were treated as being weaker than an estimated maximum value.
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Data were obtained from the equator and from layer lines two through
six, the rotation axis being the [110] ; the first layer was omitted
by accident. Because of this omission, 13 reflections were not
covered. The observed structure factors are listed in table 5 at

the end of this part.

The Derivation of the Structure

i) General considerations.

The smallest unit cube is of edge ag, = 19.6 & and contains
aporoximately 400 atoms, of which roughly one-fifth are nickel and
fourfifths are cadmiurn. The orobable space groups are 03. sz
and Ohs.

Since the total number of distance vectors in the unit of struc-
ture is approximately pronortional to the square of the number of
atomas, the application of FPaiterson maps to the solution of the struc-
ture seemed hopeless. The stochastic method as defined by Pauling
(5) seemed to be the only one that offered promise for a successful
attack.

Of the three probable space groups given above, sz is the
only one that has the symrmetry elements necessary to describe an

atomic arrangement similar to that of y brass. This space group,

therefore, was the one that had to be considered in the first place, at
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least to test the correctness of the assumptions made by Ekman (2)
and independently by Lihl and Buhl (4).

The procedure developed by Samson (6) was used to explore
this space group. A fairly detailed description of his method is given

below.

ii) Samson's method to derive trial structures of complex cubic
intermetallic compounds.
Practically all of this section is quoted from an early draft of
a paper to be submitted for publication by Dr. Samson. The figures
included here were prepared for that paper; 1 have supplied the legends

for thern. These will be rceferred to in later discussions.

Introduction
PNINI NSNS NI NI NI NSNS

Cubic crystals of metals and intermetallic compounds have
always been observed to incorporate atoms in special positions. This
feature probably arises from the difficulty or perhaps impossibility
to achieve a cubic space-filling structure by utilizing general positions
alone. One may profitably begin with the hypothesis that a special
position is always needed to define the center of a coordination shell
described solely or partally by & general position. Hence, if in a
cubic crystal the configuration of atoms is known around each point
that can be defined by a special position, the atomic arrangement of

the crystal is completely determined.
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In the subsequent discussion it is understood that
the origin of coordinates of the cube is placed in
accordance with the Space Group Tables given in
the International Tables (7). The (100) plane and
the (110) plane referred to below are always those
passing through the origin of the cube.

In each one of the space groups Ta. T4, Th4. Thb. 03. sz.

and Tds, every special position places at least one point on the (110)
plane. To determine a structure having one of these space groups it
is necessary only to determine the coordination shell around each
single atom or available site that is located on the (110) plane.

A similar rule applies to structures of the space groups 04.
6 7 7 8
c, 0, Oh . Oh
1

3 28 -‘lz_i-_x, etc., eventually may have to receive special treatment.

except that the special positions of the kind

These positions are of such a mturé, however, that they most likely
will represent vertices of coordination shells around single atoms or
available sites on the (110) plane, as will be seen in the following
chapter.

For most of the remaining cubic space groups it will be nec-
easary to determine the coordination shells around single atoms on
both the (100) plane and the (110) plane. In some rare cases it may be

necessary to investigate one specially chosen additional plane.

The symmetry chart
D e

A means of recognizing the posaible configurations of atoms

around single atorms on a plane is the syminetry chart, an example of
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which is shown in figure 1. This chart has been drawn for the (110)

plane of a crystal of space group O and cube edge a_ = 30.6 A,

h 0

scale 1 A = 1 cm. The points a and b are defined by the two 8-fold

positions, 000 etc., and 00%, etc., respectively; ¢ and d are points

1 11 1 15
of the two 16-fold positions 58 8’ etc., and 5353’ etc., respec=

tively, which are centers of symmetry. The letters correspond to the
notations used for this space group in the International Tables (7), page
340. The same notations are referred to below.

I{ each point were replaced by a rigid sphere of a radius
r = 1.40 A equal to one-half the average interatomic distance assumed
in the crystal, then the centers of such spheres on the (110) plane are
confined as indicated in figure 1. The lines e and f are the loci of
points of one degree of freedom, XXX etc. and 00X etc., positions e
and f. The points with two degrees of freedom, XXZ etc., position g,
are confined within the areas limited by solid lines. The indentation t
is a result of the center of symmetry at c. If a point XXZ is at G,
its surrounding sphere of radius r = 1.40 cm is then in contact with
two other equivalent contiguous spheres, one above (ZXX) and one below
(XZX) the point + G, since e is a 3-fold axis of symmetry. The point

: . 1
G is accordingly at a distance =1 and the point + G at a distance

/3

l r from the line e. i~oints of the kind *G, representing the
2/3
projection of the centers of two spheres, one above and one below the
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Figure 2. Symmetry chart of the (110) plane, space group T z.
see text. .

Figure 1. Symmetry chart of the (110) plane, space group O 7.
see text. . ) . h
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(110) plane are referred to as ''plus-minus’ points. The broken and
dotted lines are accordingly loci of ''plus-minus'’ points of contiguous
spheres and are referred to as '"plus-minus' lines.

The areas limited by the dotted lines i and i' and the solid
line g are ''plus-minus' fields for the general position 192i. The
isosceles triangle of the sides i' is forbidden for this position as a

result of the center of symmetry at point c.
k]
4

located on the broken lines h. These points are at the vertices of a

Position 96h ( % s K, - X, etc.) describes plus-minus points

hexagon around c¢, the size of which is determined by X.
Figure 2 represents a symmetry chart of the (110) plane of a

cube of edge a r=1.254 (smallest

d ’
agsumed distance). Figure 3a shows the (110) plane and figure 3b the

o~ 25.8 A, space group T .

(100) plane of the same cube but for space group Ohs.

The representation of ccordination polyhedra

A few examples of how coordination polyhedra may be repre-
sented for their immediate recognition on the symmetry chart are
given below.

A very frequently observed coordination polyhedron is the
truncated tetrahedron bounded by four hexagons and four triangles,
figure 4a. A section through the (110) plane is shown in figure 4b and c.

The packing of atoms around such a polyhedron is explored by describing
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Symmetry charts for a cube of edge a_ = 25.8 A, space

group Oh , with a smallest assumed distance of 1.25 £.

3a) (110) plane
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Figures 4, 5 and 6. For explanation, consult text.
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around each vertex a sphere of a radius equal to the distance d
between the vertex and the center of its assumed nearest neighbor
outside the polyhedron. A (110) section through such an arrangement
of spheres is shown in figure 4d. The center of any circle of r = d
is allowed to lie upon the circumference of any other circle but not
inside it, while the center of any '"plus-minus' circle representing
two ""contiguous'' atoms is allowed to be as closeas r = 3d/3 to the
center of a circle of r = d.

Figure 5 shows a cubo-octahedron which is represented accord-
ing to the same principles. Figure 6 demonstrates how the icosa-
hedron can be derived through deformation of a cubo-octahedron.

The three mutually perpendicular squares in figure 5b have been
substituted by rectangles, figure 6b, the sides of which are a and

b = 1.62a, where b is also the diameter of a pentagon of side a.
This representation of the icosahedron was found to be the most
perspicuous one with regard to symmetry charts so far explored. An
example of the usefulness of this representation can also be found in
an earlier paper (Samson, 8) which, however, does not show the
symmetry chart.

It is seen that the circles around the vertices of the polyhedron
shown in figure 4d leave a free area around the center, while in figure

5d the circles intersect at the center and in figure 6d overlap at the



76

center. This feature demonstrates the metrical nature of these poly-
hedra. With twelve contiguous spheres of equal size at the vertices

of the truncated tetrahedron, it is possible to accommodate a sphere
;)
34.5% larger in radius at the center, since rcent = Ju -1=1,345,
vert /2
figure 4d, while for the icosahedron the central sphere is nearly 10%

smaller.

Packing of coordination polyhedra

Figure 7 represents the same symmetry chart as figure 2.
Transparent templates of polyhedra such as are shown in figures 4
and 5 are held in position with pins.

The discs around e, and te

1 , figure 7, represent a positive

1

tetrahedron, which is surrounded by a negative tetrahedron (e‘3 and

* e7). The disc at il is at the vertex of an octahedron. If more atoms

are added at the points h,, 1h2 and + h, , as is indicated with arrows,

1 3

the arrangement of points around fl is similar to that shown in figure
6d, i.e., fl is at the center of an icosahedron.

It is obvious that transparent templates of sections through
large atom complexes commonly observed in complex metal structures
may appreciably facilitate the search for a reasonable structural motif.

Such a template, which represents an atom cormplex characteristic for

y-brass type structures is placed at point d, figure 7.
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Figure 7. An illustration of the use of templates for representing
polyhedra and atom complexes.
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A symmetry chart that has been filled with circles representing
sections through spheres to show the packing of atoms, as well as the

structural motif, shall hereafter be referred to as a packing chart.

iii) Definitions
a) Centers

Space group T is non-centrosymmetric,. The word center

d
shall be used to refer to the points a, ¢, b and d in figure 2. These
points are defined by the special positions 4a, 4c, 4b, and 4d, respec-
tively, in accord with the space group tables given in the International
Tables, Vol. I (7); they correspond accordingly to 000, etc., * 3 %,
etc., x4 %, etc., and # 2 £, etc. The symmetry elements around
each such point are 4 3m.

There are consequently four independent centers, each one of
which may be chosen as the origin of the cube, the translations being
2%3%,%8% , or 322, respectively. Such translations do not alter
the magnitude of calculated structure factors, F‘c = A2 + B"2 i

but they affect the values of A and B f{or certain classes of reflec-

tions and consequently also the phase angles.

b) Polyhedra, positions, and complexes.
The structure is conveniently described and discussed in terms
of four polyhedra: the octahedron, the tetrahedron, the cubo-cctahedron,

and the icosahedron. The position of X00 ete., describes a regular
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octahedron. The points defined by position e, XXX, etc., are at
the vertices of a regular tetrahedron. The cubo~octahedron just
referred to is bounded by two sets of four equilateral triangles each
and six 4-sided faces. This polyhedron is described by position h,
XXZ, etc. 1If the parameter Z is chosen to be exactly 0, %, &, or
%, the cubo-octahedron will be bounded by eight equilateral triangles
of equal size and six squares, such as is shown in figure 5. In this
structure, however, the cubo-octahedron has a shape such as is
shown in figure 10. A regular icosahedron is shown in figure 6. In
apace group sz this polyhedron has to be described with the use of
several point positions, The four polyhedra are also shown in part
in figure 7.

More complicated arrangements of atoms will be referred to
as complexes. The arrangement of atorns shown in figure 7 shall be
called the y-complex, because it is observed in all the y-brass type
structures that so far have been established. It consists of two tetra=-
hedra, one of which is negative with respect to the other, one octa-
hedron, and one cubo-octahedron. Each atom complex arranged about
a point a, b, ¢ or d shall be called according to this point--for instance,
a-complex, be-complex, etc. The outermost shell of any such complex
is always a cubo-octahedron of Td symmetry, i.e., it has two sets

of four equilateral triangles.
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iv) Leaste-squares calculations.

In the least-3squares refinement, the quantity Z (‘E‘r:oz'-}?cz)z
was minimized. The shifts in atomic positional parameters were
calculated from the diagonal matrix elements of the normal equations.
Refinement of the temperature factors and the scale factor was based
on a set of complete normal equations which tock intc account the
coupling between each possible pair of temperature factors, and
between each temperature factor and the scale factor.

The scattering curves for nickel and cadmium were used as
given by Thomas and Umeda (9) in all of the structure-~factor calcu-

lations.

v) The y-brass type trial structure.

The overall diffraction pattern of 'NiSCd has great similarity

2l

with that observed for AgSZn , which has a y-brass type structure (10);

8
therefore, it seemed likely that the atomic arrangement is similar to
that in vy brass, CuSZn8 (11). Accordingly, a symmetry chart
representing the (110) plane passing through the origin of |';he cube was
explored with the aid of templates representing atom complexes such
as observed in v brass (see fig. 7). It was quickly recognized that
eight subcells of a y-brass type structure could be accommodated in

the unit cell, and the approximate atomic coordinates could be obtained

from the packing chart. The initial assumption was made that the
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doubling of the cube edge was due to variations in the occupancy of
the subcells. This assumption arose from the cbservation that the
diffracton pattern indicates pseudo-body-centering. The reflections
hke withh+k+2 = 2n + 1 were, in general, much weaker than the
reflections with h + k + £ = 2n.

The structure-factor least-squares calculations based on several
variations of this atornic arrangernent indicated that doubling is due to
a more complicated phenomenon than a change in population. We
were gradually forced to assume that the arrangements of atomns around

some of the centers were not y-complexes.

vi) Other trial structures.

With the use of the symmetry chart we explored several other
structural motifs. Qur second idea was to investigate the possibility
of combining two y-complexes, one at 000 and the other at 3 & & ,
with another kind of complex at the remaining two centers. A reason=-
able arrangement of atoms was obtained by placing Friauf
polyhedra at+ 3% and2 % 2; a Friauf | polyhedron is a2 17-atom
complex consisting of an atom, in this caseat+ >3 andat% ® 2,
surrounded by 4 atoms at the vertices of a tetrahedron and by 12 atoms
at the vertices of a truncated tetrahedron. The regular tetrahedra
which form an integral part of the Friauf polyhedron are related

to the tetrahedra around a and b by translations of 2 3 2 . In carrying

out calculations on this trial structure, we obtained our second clue to
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the structure, the first being the y-brass type arrangement. The
very high values of some of the temperature factors resulting from
the least-squares shifts suggested that the truncated tetrahedra of

the Friauf polyhedra had to be omitted. The temperature factors
for the atoms of the regular tetrahedra were normal, thus indicating
that these were actually part of the structure.

Another idea was to fit y-complexes together with close-
packed arrangements. These can be obtained by placing atoms at the
vertices of a regular octahedron. The equilateral triangles form the
first two layers A and B. The third layer , C, is then provided
by a cubo-octahedron as the next outer shell. This idea led to the
third clue to the structure: one octahedron in the structure is a small
one.

I cannot give full details of this investigation. Many structures
were designed on paper with the aid of the symmetry chart. A few
of the se included the 96-fold poaidon. Several were combinations of
y~-complexes, Friauf polyhedra, and other more or less regular
coordination shells., The space group. Ohs was also explored. When
this search led to a well-packed atomic arrangement with pseudo-body-
centering, structure-factor and least-squares calculations were used

to test the trial structure.
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vii) A working model.

The attempt to derive a structure which seemed to demand
one amall octahedron, tetrahedra, and y-complexes led to a trial
structure based on three y-complexes and one 238-atom complex which
we call an o-complex. This latter one consists of six atomasa at the
vertices of an octahedron, which is surrounded by four atomas at the
vertices of a tetrahedron, the next outer shell being a cubo~octahedron.
This trial structure we call oy vy .

A series of least-squares cycles led us to believe that the
structure is of the type oyoy , with o-complexes at the peoints a and
b and with y-complexes at the points ¢ and d. The proposed oyoy
structure is described by 14 cryst;allographically diffgrent positions.
The overall agreement between observed and calculated structure
factors was reasonably good. After a few least-squares cycles, the
agreement index dropped from R= 0.40 to R = 0. 26 for 157 reflections
with sin © less than 0.33. An electron-density map of the (110) plane
calculated on the basis of these reflections suggested that an atom had
to be placed at # # 2 inside the tetrahedra of a y-complex and, further-
more, that some of the sites were occupied by a different kind of metal
atom than we initially assumed. Some minor changes of the atomic
coordinates also had to be made. Subsequent to these changes, four

additional refinement cycles were carried out. These improved the
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agreement to R = 0. 16. A few changes based on another electron density
map and a few more least-squares cycles reduced the agreement index
toR ¥ 0.13.

The structure had by then changed considerably from our initial
postulate. The first electron~density map had indicated an atom at
£ 2 2 inside a y-complex; the positive and negative tetrahedra of this
y=-complex had become almost equal in size to form a distorted cube.
The atomic arrangement around % $ § had gradually come to resemble
a body-centered cube. After examining the structure by means of the
symmetry chart, Dr. Samson had suggested that an atom be placed
at point b, since the octahedron around that point had become large
enough to accommodate an atom. Moreover, the second electron-
density rnap had indicated that the position c is occupied 30 percent
of the time and that for the other 70 percent of the time point ¢ is
surrounded by a tetrahedron. Refinement calculations based on such
a disordered structure led to no improvement in the agreement index;
only the reflections with sin @ less than 0.36 were used in these
calculations.

At this point we decided to use the {ull set of three-dimensional
data. We started refinement using the weighting function

Jon o /me where Fo is based on one-fourth of the unit

2

1000 + 0.1 Fo

cell, the asymmetric unit. The minirmmum observable Fo, F , is

min
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such that the weighting function is approximately that of Hughes (12)
(refer to table 2 in partl). Trom time to time we changed the weighting

function to /v o /me , but used the one above for rnost

100 + Fo
of the refinement. Changes of the weighting function seemed to have

very little effect on the results.

The first refinement cycle based on the full set of data was
disappointing. The agreement index at the beginning was R = 0. 22.
A few cycles reduced it to R = 0. 195.

A difference map of the (110) plane was calculated; it is shown
in figure 8. This map indicates disorder arocund all four centers. The

positions a, fl" fz‘, eb', fl, fa, and ey in addition to eg and c,
appear to be partially occupied. In order to fully describe this kind
of disorder, 21 crystallogra;phic positions are needed. Subsequent
least-squares refinement cycles of this structure yielded R = 0. 155;
the atomic parameters at this stage of the refinement are listed in
tables 1 and 2. The refinement was still converging, and the shifts
in temperature and population factors indicated that the occupancy
of some of the sites was far from being determined.

Refinerment of this disordered structure was interrupted be-
cause of insufficient information regarding the magnitﬁde of the off-

diagonal matrix elements. It seems possible that in a situation like

this the omission of the off -diagonal matrix elements may keep the
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Figure 8. Difference Fourier of the (110) plane. Solid contours at

4, B, 12 and 16 e. 3‘3. Dashed lines = -4 8., l’s"3.
dotted line = -8 e. A"3.
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Table 1

Comparison of trial structures for "Ni _Cd__ .'" Atomnic parameters
and standard deviations. If a position is partially occupied, the
percent occupancy is given beside the atomic symbol. FPairs of

positions such as e, and e6' are used to describe disorder.

Fositdon Ordered Disordered
16 positdons 17 positions 21 positions
e, x -.0908 + . 0011 -. 0897 + .0019 -.0910_‘&_.0011
B 0.04 i0.4 0. 96 10.8 0.86:—_ 0.4
Ni Ni Ni
ez x . 1658: .0013 . 1659 : . 0012 » 16461 .0014
B 0.84 10.4 3.90 10.4 1.23 :_0.4
Ni cd Ni
e3 x .4063_"_‘ . 0016 .4071 _t .0017 ' .40651 .0018
B 2.21 ¥0.6 1.73 ¥ 0.6 2.45 +0.5
Ni Ni Ni
o, X . 6706 + . 0008 . 6704 + . 0009 .6704 + ,0008
B 1.41 ¥0.3 0.96 ¥0.2 2.09 ¥0.3
Ccd Cd Cd
e x .3115 + . 0022 .3129 + . 0024 .3100 + .0021
B 3.85 +0.9 1.32 +0.9 1.96 _-_0-_0.8
Ni Ni Ni, 70%
€ x . 8260 +.0012 .8260: . 0012 . 8267 + .0010
B 3.30 ¥0.4 3.08 ¥0.4 2.44 ¥0.3
Cd Cd Cd, 90%
e6‘ x .8050%* + . 0156
B 2.00% + 5.3
Ni, 10%
fl x .11381.0007 .!116:.0008 .l1351.0007
B 2.03 ¥0.2 1.93 +0.3 1.70 ¥0.2
Cd Ccd Ccd, 88%
fl' % . 1672 + . 0051
2.00% + 1.7
ca, 12%
f,) x . 4206 +. 0010 .4210 1 .0011 .4210 1 0. 0009
- B 4.37 +0.4 4.43 + 0.4 4.46 +0.3

Cd Cd Cd



Table 1 (continued)

Position Ordered Disordered
16 positions 17 positions 21 positions
£3 x . 6479 + . 0016 . 6495 + . 0017 .6513 + .0014
B 2.88 + 0.6 2.60 +0.6 1.86 +0.5
Ni Ni Ni, 90%
[3‘ x .6244 + . 0065
B 2.00% ¥ 2.2
Cd, 10%
i4 x -9347 + .0010 -9343 + .0011 -9339 + . 0009
B 4.32 +0.3 4.15 + 0.4 4.56 +0.3
Cd Cd Cd
hl x . 1475 + ., 0006 . 1472 + . 0006 . 1475 + . 0006
z . 0264 + . 0006 . 0261 + . 0006 - 0261 + . 0005
B 2.74 ¥ 0.2 2.36 ¥0.2 2.85 ¥0.2
Cd Cd Cd
h‘2 x - 4059 + . 0006 . 4058 + . 0007 . 4059 + .0005
z -2731 + .0007 .2734 + . 0007 .2732 + . 0006
B 4.69 +0.3 4.00 +0.3 4.45 +0.3
Cd Cd Cd
b, % . 6487 + . 0005 . 6482 + . 0005 . 6483 + . 0005
z .5230 ¥ . 0005 .5235 ¥ . 0005 .5233 ¥ . 0004
B 2.05 +0.2 1.73 + 0.2 2.14 +0.1
Cd Cd Ccd
h4 x .9252 + . 0005 .9254 + . 0005 .9251 + . 0004
z .7696 + . 0005 . 7693 + . 0006 . 7693 + . 0005
Cd Cd Cd
a 0,0,0
13.3 + 18.0
Ni, 6%
¢ 31,3 33,3
1.77 + 2.9 2.38+42.0
Ni, .30, e, Cd, 30%
b L% % &34 3.8
10.9 + 3.8 8.92 +3.8 3.97+ 1.8
Ni Ni Ni, 80%
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Table 1 (continued)

Position Ordered Disordered
16 positions 17 positions 21 positions
d 2.4.2 2,43 2.4.%
4.65 + 2.1 4.14 ¢ 2.0 2.99+ 1.6
Ni Ni Ni, 90%
Atomic % Ni 24.5 19.7 23.1
Z| Fol 50045 - 53033 49134
Tl Fe! 49766 53196 47933
N 323% 332 324
R 4 . 164 . 176 . 155
Lw Fo ®%% 145 153 142
S e Wik 178 198 159
R' .13 P b .10

N is the number of reflections, of 623 total, in the sums and in
least-squares cycle.

R'= Zu‘(}?oz - FCZ)Z / €wFo
# Shifts led to negative B.
#% 3hifts made bond distances within tetrahedron less than 2.2 A.

&

#%% On an arbitrary scale.

* Does not include 18 reflections which have an index greater than
25.
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Table 2. Comparison of trial structures and of similar positions.

Posgition Ordered Disordered
16 positions 17 positions 21 positions
e *® -. 0908 -. 0897 -.0910
B 0.04 0.96 0. 86
Ni Ni Ni
e, S -. 0842 -. 0841 -.0854
B 0. 84 3.90 1.23
Ni cd Ni
e. x-% -. 0937 -.0929 -. 0935
“ B 2.21 1,73 2. 45
Ni Ni Ni
e, x-3 -, 0794 -. 0796 -.0796
B 1.41 0.96 2.09
Cd cd cad
e, xe¥ .0615 . 0629 . 0600
B 3.85 1.32 1.96
Ni Ni, 70% Ni, 70%
e, x-% . 0760 . 0760 . 0767
B 3,30 3.08 2.44
cd Cd Ccd, 90%
ey xad . 0550%%
B 2.00%
Ni, 10%
fl * .1138 L1116 .1135
B 2.03 1.93 1.70
cd cd Cd, 88%
fl' x L1672
B 2.00%
cd, 12%
f2 x-t . 1706 .1710 .1710
B 4.37 4,43 4, 46
cd Cd Ccd
£3 x=% . 1479 . 1495 . 1513
B 2.88 2.60 1. 86
Ni Ni Ni, 90%
' x-# . 1244
B 2.00%

Cdl 1070
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FPositien Ordered Disordered
16 positions 17 positions 21 positions
£4 x-2 . 1847 . 1843 . 1839
B 4.32 4,15 4.56
Cd cd cd
h, x . 1475 . 1472 . 1475
z .0264 .0261 . 0261
B 2.74 2.36 2.85
cd cd cd
hz xad . 1559 . 1558 . 1559
z -t .0231 . 0234 .0232
B 4.69 4.00 4. 45
Cd cd Ccd
h. x-8 . 1487 . 1482 . 1483
7 z-d . 0230 .0235 .0233
B 2.05 1.73 2.14
cd cd Cd
h4 Ko .1752 . 1754 . 1751
z~3 .0196 .0193 .0193
B ‘z. 94 . 2. 76 2. 84
Cd cd cd

* Shifts led to negative B.

** Shifts made bond distances in tetrahedron less than 2.2 A.
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refinement calculations from converging. With our present computer
program we do not have the rmeans of estimating the magnitudes of the
off-diagonal terms. Further refinement, therefore, has been postponed
to await an adequate program for the IBM 7090 computer which will
allow us to carry out fullematrix calculations. Furthermcre, we feel
that we should be very cautious in interpreting the difference~Fourier
map . The small isolated peaks may be due to disorder, but we are
rather hesitant in assigning significance to them and will discuss our
reasons for this in another section after we have presented pertinent
information.

Several atternpts were made to escape the acceptance of a dis-
ordered structure through systematic consideration of various kinds of
ordered arrangements. The only reasonable trial structures other
than those that correspond very closely to the y-brass type structures

were the ones discussed below.

viii) Ordered structures.

The initial structure may be described in terms of the atom
complexes arranged about the four independent centers a, c, b, and d.
At center a is a comnplex of 22 atorns which we have called a o-
complex; around center ¢ is a complex of 26 atoms which we have
called a y-complex. The arrangement around b is very much like that

around a except that the octahedron is large enocugh to accommodate
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an atom at b such é.s to produce a complex of 23 atoms. The arrange-
ment around d resembles a body-centered cube and is a 27 atom
complex. These four cornplexes with the cubo-octahedra omitted are
shown in figures 11, 12, 13, and 15. A cubo-octahedron is shown in
figure 10.

A series of refinement cycles led to convergence with R ¥ 0. 175
and to a structure defined by the parameters listed in tables 1 and 2.
The electron-density map calculated on the basis of these parameters
is shown in figure 9. This electron-density map and the temperature

factors of the nickel atoms at positions e, and e, indicate that the

1
scattering power is the same as for most of the positions to which we
have assigned cadmium atoms. The electron-density map also indicates
scattering matter at point ¢ and near position fl' and rather broad
regions of scattering at positions fa and £3.
We assumed that the occupancy at position e, is cadmium
rather than nickel. In view of the relatively short nearest-neighbor
distances around position e, it seemed likely that this position was
occupied by nickel atoms, which have a metallic radius about 17
percent smaller than cadmium atorns. This assumption is not in accord
with the electron-density map but, on the other hand, the structure is

not sufficiently well refined to permit the actual scattering power to be

truly represented on the electron-density map. In order to test if the
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Figure 9. Electron-density map of the (110) plane. Contours at
intervals of 20 e. A~3 , beginning with 0 e. A-3,

@»@D<
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Figure 10. A representation of atoms arranged about the vertices
of a distorted cubo-octahedron. The atom complexes
shown in figures 11, 12, 13, and 15 fit inside this
polyhedron.
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Figure 11. The atomic i
arrangement around |
the points 000, etc., I
defined by position 4a. |
This 10-atom complex |
consists of a tetrahed- |
ron and an octahedron. |

|

|

|

O
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Figure 12. Atom complexes

around the points 3 + %,
etc., defined by position
4c. This arrangement of
atoms at the vertices of
two tetrahedra and one
octahedren is also ob-
served in the structure
of y brass.

|
|
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Figure 13. Arrangement of
atoms around the
points % i i » otc.,
defined by position
4b. Atoms at the
vertices of a tetra-
hedron and an octa-~
hedron surround the
atom at point b.

cO
O eCcO

|
|
|
|
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Figure 15. The arrangement of
atoms around £  , etc., !
resembling a body- ‘
centered cube.




101

disorder between positions ¢ and e. is real, we assumed a fraction x

5

of a nickel atom at point ¢ and a fraction l-x at position e Refine-

5°
ment calculations based on this assumption did not lead to improved
agreement. The parameters obtained are given in tables 1 and 2.

The atom complexes around the four independent centers are
similar to one another. The positions of the atoms of each complex
relative to its center can be compared with the aid of table 2.

There may be intimate coupling between the parameters for
positions related to each other by translations of approximately % £ %,
2% % or 222, Itis possible that our neglect of an eventual coupling
may have prevented a prover refinement. The phase angles may
accordingly be incorrect by amounts large enough to cause false maxima
on the Fourier maps. The peak near position f_ in figure 9 gives

i

the impression that the positions fa, £  and 54 have been superimposed

3

on position fl'

Discussion of the Structure

Because of the as yet questionable v.alid.ity of the maxima that
indicate disorder, the structure will provisionally be discussed as if
it were ordered. A more detailed discussion will have to await the
results of very extensive calculations based on complete matrices.

The assumed ordered structure is described by the sixteen

crystallographically diffcrent positions listed in table L The positional
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parameters are also included in this table. The interatomic distances
calculated on the basis of these parameters are listed in table 3. The
distribution of the nickel and cadmium atoms over the occupied posi-
tions, as given in table 3, was provisionally assumed on the basis of
nearest-neighbor distances. Although the scattering power of the atoms

in positions f, and b as indicated by the Fourier map and by the

3
least=squares calculations corresponds at present to nickel, the nearest-
neighbor distances correspond to cadmium atoms, which have a metallic
radius about 20% larger than that of nickel. The short nearest-

neighbor distances around position e, indicate nickel atoms at that

position, whereas the electron-density maps indicate cadmium atomas.

The assignment of cadmium atoms to position e, is compatible with

2
the electron-density maps. Nearest-neighbor distances indicate the
same occupancy for each of the other positions as indicated by the
electron-density maps and by the least-squares refinement. The
nearest-neighbor distances may not be reliable indicators of the
occupancy reported in metal structures since extremely short bonds,
as well as vacancies, have been reported in metal structures. Further=
more, the uncertainty in the distances is of the order 0.1 or 0.2 L.
The composition of this idealized crystal structure corresponds

to Ni ,Cd__ or, roughly, NiCd » and the idealized unit cell contains

137 85 6.5

392 atoms. The calculated density is 9. 12 g/crn3; the density of nickel
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Table 3. Approximate interatomic distances for the assumed
ordered structure. Cube edge = 19.6 A. For ligancy 12
the expected distances are 2. 49 A for Ni-Ni, 2.75 A for
Cd-Ni, and 3.02 & for Cd-Cd (13).
Position Kind of Ligancy Distance Fosition Kindo{ Ligancy Distance
atom (&) atom (£)
e Ni 3Cd(h,) 2.77 h cd 1 Nife,) 2.72
} 3 Cd(ff) 2.56 . 1 Cd(es) 2.89
3cd(h)) 2.78 zca(fzz) 3.10
1Cd(e,) 2.82 2ca(h) 2.99
- 1 Ni(e;) 2.61
19 1ca(f;) 3.03
£ cd 4 cd(h,) 3.01 2 Cd(h,) 3.43
2 Ni(e;) 2.56 _2Cd(hy) 3.44
2Cd(h)) 3.09 12
scalf) 3.1
- e Ni 3Cd(h) 2.61
12 . 1 Ni(esz) 3.22
R, cd 1 Ni(e )  2.78 3cq(f)) 2.81
2Cde,)  3.01 3 cd(n,) 2.75
1cd(e’) 2.78 _1cd(ef 3.18
1cd(t) 3.0z 5
1 Cd(fz) 3. 36
2 cd(h4) 2.93 f3 Ccd 2 Ni(es) z.81
2ca(h) 2.99 2 Cd(hz) 3.03
2 ca(h?)  3.36 4Cd(nd) 2.95
o g 2 cd(h’) 3.16
12 _1cdlf  2.90
e cd 3 Ni(e ) 2.93
- 3 ca(s’) 2.88 5
3Cd(H)  2.78 h, cd  2cd(f) 2.95
3cd(h)) 2.89 1 Ni(e)) 2.75
i Z 1Cd(e,) 2.96
12 1 Cd(f:) 2.93
e, Ni 3 Cd(e.) 2.93 2 Cd(h4) 2. 96
3caltd 2.79 2Cd(h)) 3.43
3ca(kl)  z.72 2 cd(h?) 3.48
ANife) .22 _lcdt) 3.51
10 12
fz Cd 2 Nife,) 2.79 b cd 4 Ni(ea) 3.18
2 Cd(e:,_) 2. 88 6 Cd(f3) 2.90
2Cd(h])  3.02 10
4cd(h)) 3.10
1cd(f,)  2.84
2 Cd(h3) 3.51
13
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Table 3 (continued)

Position Kind of Ligancy Distance Cosition Kind of Ligancy Distance

atom (£) atormn ()

e cd 3cd(h)) 2.96
3ca(r) 3.02
3 Cd(e,) 3.05
3Cd(h;) 3.29

_1ca(nd) 2.70

13

e cd 3Cd(e,) 3.05

3 Cd(t':) 3.00
3Ccd(h)) 2.96
1 Ni(eq) 2.82

___l_Ni(df 2. 57
11

f cd 2 Cd(e4) 3.02
2 ca(eG) 3.00
2cCd(h.) 2.93
1 Cd(fz 2.84
2 Cd(hl) 3.36

2 Cd(h4) 3.46
13

h cad 1 Cd(e4) 3.29
1 Cd(e,) 2.96

1 Cd(fﬁ 3.09

1 ca(£3) 3. 16

1 Cd(el) 2.77
2 Cd(h3) 2.96
2 Cd(hl) 2:93
2 Cd(h)) 3.44
2 Cd(tf:) 3.46

13

d Ni 4 Cdle,) 2.70
4 cd(e,) 2.57
(6 Cd(f;) 3.61)

8
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is 8.90 g/cm3 and of cadmium, 8.65 g/cms. Figure 16 is a packing
chart drawn for the ordered structure according to table 1. Figure
17 represents the structure and may be easier to follow than figure 16.

The atoms in the four positions fz, e, £4. and h4 have ligancy

13; the type of coordination shell around these four positions is illus-

trated in figure 18a. The atoms in the five positions fl. hl' e, hz.

and 113 have ligancy 12; the coordination polyhedra around these

positions are irregular. However, the atoms at position e, are sure-
rounded by atoms at the vertices of a nearly regular icosahedron.

The atoms in the three positions f_, e_, and e

3" €3 6 have ligancy 11, and

their coordination shells are illustrated in figures 18b and 18c. Around

the three positions e., e_, and b are 10 ligands, and around point d

1" 5

are 8 ligands.

Future Experimental Work

The determination of an accurate value of the cube edge was
postponed until all the intensity data had been measured. In the mean=
time, the crystal deteriorated either due to corrosion or due to a phase
transformation. A number of other crystals which had been mounted
earlier had undergone the same deterioration.

Supplementary investigations to determine the homogeneity
range of this phase and to determine how the cube edge and density

vary with composition will soon be started. At the tirne the above
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Figure 17. A schematic representation of the atom complexes
and of the packing in the asymmetric unit. A circle
representa an atom on the (110) plane. The end
of a straight line or the intersection of two lines
not encircled represents two atorns, one above
and one below the (110) plane. A tetrahedrom is
outlined by a triangle, an octahedron by a
rhombus, and a cubo-octahedron by straight lines.
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Figure 18, Some illustrations of irregular coordination polyhedra.

18a) For ligancy 13.
The coordination shell

around £ _, £ , e , and
2 4 4
114. Ideally, one atorn R

spreads apart two atoms .

of an icosahedron to / L

become bonded to the / o . 7.

central atom. — =
‘ [ ]

18b) For ligancy 11. \
The coordination shell
around f_. Ideallv, one
2 -1
atom has replaced two

atoms of an icosahedron.
: o
]

~

18c) For ligancy 11.
The coordination shell

around e_ and e, . \.\
3 O
\ />
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investigations were done, facilities to carry out this kind of work
were not available. A laboratory has now been set up which will

enable us to conduct adequate experimental work.

Future Least-5quares Refinements

Refinement of the structure was postponed because of inadequate
computing facilities. An adequate program has to allow a solution of
the complete set of normal equations. Such a program is being written
for the IBM 7090 computer and is expected to be available in a few
months.

During the present work we have solved for the temperature=-
and population-factor shifts in three different ways. The first method
took into account the coupling of each temperature factor with the scale
factor and with all the other temperature factors, and treated the
population factors as being completely independent. The second method
took into account coupling between the temperature factor and the
population factor of the same atomn only; the shifts were based on a
2 x 2 matrix. The third method was like the second one with the scale
factor added to couple with all temperature factors but not with any
population factors. Usually the first and second methods gave popula=
tion-factor shifts in the same direction, but the temperature-factor
shifts were often in opposite directions. At times, both shifts from
the third method had signs opposite to those of the shifts from one of

the other two methods.
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From this we can infer that some of the off-diagonal terms
re resenting coupling between atomic coordinates may be large. All
along we have been especially concerned about coupling between atoms
separated by translations of 2 2% or %% or 2% 4. In table 4 we
have given the geometrical part of the structure expressions for an

atom with coordinates *, 00 and for atoms related by translations of

dA,

2%2%2,%%%, and £ 2 7; in this table we have also indicated -a-;f !
i
The derivative with respect to the temperature factor is the structure-
2
-3in"®
factor expression multiplied by —2129—- .
A

From table 4 we can see that for the reflections with
h+k+2 = 4n it makes no difference if an atom is at x00 or if it has
been translated. Likewise, in a Fourier synthesis the structure would appear
as a composite of the structures around the origin and around all the
other centers. Reflections of the type h+ k + £ = 4n + 2 can differ-
entiate atomns that are sepjarated by a translationof $4+ 3 or £ 2 2,
but not by # # 2 . Both types of reflections h+ k+ £ = 4n + 1 and
h+k+4 =4n + 3 are sensitive to all of the translations, but taken
together as the type h+ k + £ = 2n + 1, they can differentiate atoms that
are separated by a translation of # § 4 . The off-diagonal terms
representing coupling between atomic coordinates have the same form
as the off-diagonal terms that are important in the refinement of the
temperature factors; therefore, they have to be important for the

refinement of atomic coordinates. On a purely statistical basis,
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Table 4. Geometrical structure factors and derivatives with

respect to x for atoms at x00 + (000, ¥+ %, $ % %,
332 §)
+ 4 & Je

Let C = 8(cos 2rnhx + cos 2nkx + cos 2mex),

S = 8(sin 2rhx + sin 2mkx + sin 2mfx),

S'= 16m(h sin 2rhx 4+ k sin 2nkx + £ sin 2nix),
andC'= 167(h cos 2nhx + k cos 2vkx + £ cos 2mex).

Geornetrical structure factors.

Class of
reflections 00 +
h4k+2 000 112 33 t31
4n C C C C
in + 1 ] 5 -C -5
4n + 2 C -C C -C
4n + 3 C -3 -C S
Derivatives with respect to x.

x00 +
h+k+1 000 i3 2x3 222
4n -3 0 -S! -5
4n + 1 =31 ct gt -C!
4n + 2 -3 S! -3 g

4n + 3 =3' -C' 5" C!
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however, the terms correlating the different atoms.are expected to
be zero; there should be no coupling. We anticipate that the awaited
prograrn which will calculate off-diagonal matrix elements will enable
us to analyze the interactions between parameters in more critical
detail.

If one class of reflections happens to include systematic errors
or if itis assigned a higher welight in the least-squares refinement
than another class, then one may expect false peaks to occur in the
electron-density maps. We are, therefore, very hesitant to accept
disorder.

During the refinement of the assumed ordered structure we
collected T! Fo!, ! Fel, and ¥ AF! as a function of sin 2. In
general, we found that the best agreement was within the range of
sin 6 = 0.2 to 0.3. The ratio 7! Fo! /=' Fec! as well as the
agreement indices, gradually increased with sin ?, This seemed to
indicate that the temperature factors and the scale factor were too
large, but the least-squares process tended to increase them still
more. Invoking disorder by splitting a position to give two positions
approximately 0.5 & apart should improve the agreement of the
high order reflections without significantly affecting the low order
region. To split the positions should reduce the temperature factors
which will be reflected in larger Fc's of the high order reflections and
should also enable the least-squares process to adjust these positions

to give even higher Fc's.
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sumrary

We have found that the crystal structure of ”NiSCdzl” is
very complex. The structure is certainly nct of the y-brass type
as reported by other investigators.

The investigation is far from complete, but the general atornic

arrangement seems to be essentially correct.
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Table 5. Observed structure factors. The column headings are

fourth of the unit cell. Asterisks

k,I, and F
less-than

12 24

14 14

14 18

0105 14 20
0044+ 14 24
0494 14 26
0242 16 1§
0840 16 22
0195 18 18
0225 18 24
0117 20 20
0117 22 22
00sex 24 24
006 7% H 01
008 7* 01 07
0118% o1 0%
0192 ol 11
0500 o1 13
0052% 01 15
ollz cl1 17
0297 o1 19
0312 cl 21
0337 o1 23
00 44%* 01 25
00S0 01 27
0072 03 07
0139 c3 09
0342 03 11
C0&0%* 03 13
0137 03 15
0097 03 17
0074 03 19
1350 03 21
0079 05 05
C158 c5 07
cl17C 05 0%
0072* 05 11
o112 05 13
0185 05 15
006&5% .05 17
009 7* 05 19
0073%* g5 21
0432 05 23
0070 C7 07
008C> 07 G9
0202 07 11
0058+ o7 13
0070* 07 15
0205 07 17
oeBex* c7 19
008 7* 7 21
0092* 07 23
0154 07 25
0582 C® CS
COS7* 9 11
0057 09 13
0060%* 09 15
C304 c9 17
o102 09 19
0247 co 21
c470 09 23
0107* o
0085 2* I 13
0119 O
coS7 'y 19
007 4% 1119

B

reflections.

clzz
0137
0085
0072%
003 4*
C165
0429
00 78%*
0358
0163
0119
0114
0180

0258
0062*
0194
C044*
0045+
0084
0165
00 S0*
006 5%
0069*
0072%
0054
0185
00 42*
004 T*
0052*
0070
0052*
006 7+
0232
0122
0047
0105
0159
005 4%
0068
0062»
00 94%
co7cH
Cco79
00S5e*
c075
0257
0085%
00sC
COEB2*
0072+
0084%
0090%
00 47*
0129
005 3%
0137
0082%
008 5*
0075+
007 5%
0105
01C0
00 69%
Ccos2*
0117

21
23
13
15
17
19
21
23
25
15
21
17
19
21
oz
04
0s
o8
10
12
14
16
18
20
2z
24
26
28
04
Gs
o8
10
12
14
18
18
20
22
24
26
06
o8
10
12
14
16
18
20
22
24
26
28
08
1C
12
14
1s
18
20
22
24
10
12
14
15
18

0070x*
00 74*
C05 7*
0075»
003 z*
0057
0l102%
00 77*
00B0x*
clz2
007 T
ocs2
0072%
008 7%

0055
0217
0709
0z2l4
0179
0120
0173
o182
0169
008 5%
0085
0072%
00 75%
0077
0340
cles
cz222
00s2*
C442
0145
COT73*
Cl163
0152
0102+
C122%
0330
ollz
o083
0180
0187
00 BS*
014G
0125
0113
0075
0102%
0055
c107
0137
0215
0427
0187
ol1z
0103
o112
ollz
0232
0152
o117
0082
0118

indicate

10 20 0200

10 22 0127

10 24 0075%
12 12 0327

12 14 0057
12 15 0079%
12 18 0067
12 20 0O070%
12 22 0092%
12 24 .0110%
14 14 0082%
14 16 0112

14 18 005%

14 20 0125

14 22 0075
14 24 Cl20

16 16§ 0137

16§ 22 0078%
18 18 011C

20 20 0075%
22 22 0080%
H 03

€3 03 0052%
03 05 0087

03 07 0140

03 09 0087

03 11 0139

03 13 0157

03 15 €093

03 17 0137

03 19 0099

03 21 Co06&z

c3 23 0085

C3I 25 COT75%
03 27 0072%
C5 05 0034

05 C7 0070

05 09 0C44x*
C5 11 0042*
05 13 0C77

05 15 0072

05 17 00&82%
05 19 0074
05 21 CO78x%
05 23 (0083
05 25 0089%
g7 07 0072

07 09 C045%
07 11 005 7+
07 13 0C93

07 15 0065
C7T 17 0O0&0*
C7 19 CO8S*
c7 21 co72*
C7T 23 0075*
09 C9 (088

G99 11 0085

03 13 0072*
C9 15 0075%
09 17 O0073%
09 19 0100

09 21 CO7Cx*
09 23 CO7&*
11 11 06s2

11 12 COse*
11 15 0O0S89%

is scaled for approximately one -
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008 2*
0080%*

- 0072%

00 75%
0087
0062*
008 7*
01GC*
0078
0C8C*
008*
06 T*
cCc72*
0075%
COo79*
CCS5
co72*
0079%

€337
02587
0227
018C
0332
0355
0110
Co62%
€385
o182
0075%
0115
0149
ca261
0105
0020
035C
00g5
0133
G085
00 55*
CCT0*
0167
0347
0050%
0145
Co83*
COS 0
C130
o118
00 70%*
CcCo75*
C195
013C
0282
C177
C1083x%
0150
013C
c222
COsS2»
COS5*
G189
008 3%
o125
O11Cx*
c19<
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Table 5. (2)
C082% 06 06§
008 7% Cs o8
0050% 08 10
0082* 0s 12
Gl05 05 14
00 72% 08§ 15
0075 0s 18
00 75* 06 20
o0%2% 0s 22
008 7% 0§ 24
0107 0626
0082% 0s 28
Cc8 .08
0285 08 10
0050%* 08 12
0047* 08 14
0158 08 16
0157 08 18
0175 c8 20
0os8 10 10
0115 10 12
006 5% 10 14
00589 10 16
0070%* 10 18
c185 10 20
0058% 10 22
0114 12 12
0087 12 14
0105 12 1§
0060* 12 18
0113 12 20
006 7* 12 22
0072% 12 24
o162 14 14
0075 14 16
0062% 14 18
0093 14 20
00&5%* 14 24
0070* 16 16
0072% 16 18
007 7* 1§ 20
0135 16 22
0092 18 18
0065% 18 20
006 4% 18 22
008 4% 18 22
0050 20 20
0075% H 07
0165% 07 07
0070% 07 09
0070% 07 11
0C 75% 07 13
0080* 07 15
0082 07 17
006 5% 07 19
00 75% 07 21
0090 c7 23
0077* 0S 0%
00S9* 09 11
0075* 09 13
007 9% 09 15
0082% 0S 17
COR 5% 0s 195
0075% 09 21
0078%* 11 114

0255
0114
0242
0562
0087
ozocC
0062%
0092
cl07
CO70*
007 3*
0077*
0357
0143
0187
0152
C072%
0063%
006 7%
0069
0062*
0064%
0302
0082%*
0070*
0094%*
0132
0135
00s2
0245
Ol114*
0187
007S*
0055*
009 7%
0115
0090*
0083*
0077*
Cl10
007 7*
0140
0140
0112%
0082+*
0147
0075%

0357
00 45%
0107
CC52*
005 7*
0080
0127
0080
0069
0203
0055%
0057*
008 7*
0098
CO6 T
00 70*
0060%
no9s

s

0075%
0067*
006 8%
0075%
0075%
0205
0105
00 70%*
0072%
0080*
0082%
0089%
0072%
0073%
007 7*
00 75%
007 7*
0077

0772
0210
0140
005 7*
0184
0193
0075
0097
0114
0120
0079%
0130
0092
0062*
0142
0180
00 70%*
Ol17*
0065%
0105
o112
0107
00 72%
009 5%
0125%
0322
CO75%
0097
00 75%
Oll12%
0083*
0164
0107
0105
o112
C115
0150

009 4%
005 7*
0063%
0075
00 75%
0070
0072*
0087
0062*
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008 2%
0065
0072*
0075*
CO77*
0085
006 7*
0083*
0074
0075%
0082+
0072%
0075*
0077*
0078*
0069%*
0080
0080%
0075%

0165
005 7*
0062*
0168
0069%
0090*
0092*
0148
0127
0095
008 7*
0075+
0115%
006 5%
COBT*
009 4%
o115
0080*
0075%
007 7*
C079*
0115
00 90%*
0075

0098
00680*
0075
008 7*
C095
00 75%
007 7*
0062
CO75%
00 75%
008 0%
0082%*
0CE Sk
0082*
C09S*
008 7*
0075%
00 75%

0404
o100

0090
0072*
008 7*
0050
Cco80
0073*
0075%
0078*
0083%
C0S3
0077*
0135

-0083*

00S0
008 2%
C085%
oos2
0105
008 4%
00 75*
0082*
0085%

0117
008 5%
0089*
0247
0072%
0077

0085*
0085%
0085
0085%
008 5%
0085%

0128%
007 7*
00 79%*
0082x%
0118%
009 5%
0082%

0202
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Introduction

b i 3 Fe Z » Z ’
The intermetallic compounds L.-;.3 "o Ni3 %o and

MnSZHIO' commonly referred to as the ' phases, are reported in
the literature to be cubic with a cell edge of approximately a, = 8.8 A
and space group th. The structure proposed by Csawa and QCgawa (1)

has been generally accepted and is described in handbooks such as

Fearson, Handbook of Lattice Spacings and 3tructures of Metals (2);

it has been assigned the type number 108 Hume-Rothery (3) and

1
Ekman (4) assumed that these compounds represented so-called

electron-concentration shases with an electron-to-atom ratio of

21/13 and that, accordingly, the actual compositions were E‘eSanl.

Ni Zn_., and Mn Zn,

54059 5 1’ the transition metals being assigned the

valency zero. Aithough the correctness of these assumptions
has not been established through accurate experiments, the names
5 5

» and Mn_Zn_, shall be provisionally retained.

21 21 5 21

Dr. 3amson felt that the structure proposed by Osawa and
Ogawa (1) was not in accord with the fundamental structural principles
that should apply in these three compounds. He, therefore, started a
reinvestigation.

It proved to be extremely difficult to prepare iron=-zinc and
manganese-zinc compounds, whereas nickel-zinc phases were casy
to obtain. The fir st compound to be investigated was, therefore,

NlSZnZl.
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Dr. Samson and his assistant, Dr. K. Lautsch, obtained a
complete three-dimensional set of intensity data from an almost
spherical single-crystal fragment of about 10 microns in diameter.
Because of the very small size, copper radiation was used. Absorp-
tion correction was not necessary. The cube edge as determined from
the diffraction maxima of this crystal was ag = 8.897 A . These
maxima had been recorded on a film placed in the asymmetric position
in a precision Weissenberg camera of 10 ¢cm diameter.

Since I was very much interested in this compound, Dr. Samson

leit to me the {urther prosecution of this work.
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Experimental Work

The intensity data as supplied by Dr. 3amson and Dr. K.
Lautsch were processed by me. Lorentz and polarization corrections
were applied and the data obtained from various sets of Weissenberg
filins were correlated with one another. The data for those reflections
that hd been recorded on n layers were given an external weight of
mé = 1.0 + 0.5 (n-1). However, depending on 2 subjective evaluation
of the quality of the data, vu; was modified to give an overall external
weight ® . The evaluation was based mainly on the resolution of the
Oye ¥, doublet and on the agreement between diiferent observations
of the same reflection. The weights used in the least-squares refine-

w

e
rments were 1 € m—
: 404 Fo

The Trial Structure

i) Snace group.
The single-crystal X -ray diffraction patterns obtained from

NiSanl were very similar to those of AgSZn the structure of which

8'
was found to be the same as that of y brass, which is body-centered

cubic, space group Tda. The structure of AgSZnS was refined by

Dr. Marsh in 1954 (5). He very kindly made his photographs available

to me for comparison.
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The Weissenberg photographs of NiSZn showed, however,

2l
in addition to the reflections of the kind h + k + £ = 2n, three diffuse
spots corresponding to the reflections 014, 122, and 113. The nature
of these reflections,which correspond to a primitive lattice, has not
been established. These reflections appear to have their origin in
very small domains of primitive unit cells in the crystal.

If the diffuse reflections are ignored, the space groups which
9

are Td3 and O, .

most likely aonply to Nis}_’.n h

21

ii) The derivation of the structure.

The atomic arrangement proposed by Osawa and Ogawa (1)
was, as expected, quickly disproved by structure-factor and least-
sguares calculf\.tiona. Symmetry charts of the (110) plane for the space
groups O : and T ? were then extensively explored. No reasonable

h d

structural motifl could be found by assuming space group Ohg.

The next step was to start out with an atomic arrangement
that corresponded closely to that of y brass (space group Td3).

A few least-squares refinement cycles based on such an
arrangement led to convergence with an agreement index of R = 0.28.
An electron-density map of the (110) plane, calculated on the basis of
the structure given by the least-squares process, indicated that the

vertices of the small tetrahedron, position e,, around the origin of

2

the cube, were occupied only about 60 percent of the time and that
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there was an atom at the origin, position a2, the remaining 40 percent

of the time (see figure 1). Structure-factor and least-squares cal-
culations carried out for such a disordered atormnic arrangement
resulted in a drastic improvement of the agreement index which dropped
to R = 0. 136; the atornic parameters at this stage of the refinement

are given in table 1. The complete list of observed and calculated
structure factors is given in table 2.

Additional refinement cycles were carried out with the application
of various types of weighting functions, but did not lead to any sig=-
nificant shifts in the parameters nor to an improved agreement. In
all of these calculations the sum of the fractional occupancies of the
two positions, a and e, was kept equal to unity. Electron-density
maps calculated in the course of these refinements differed only
insignificantly from one another. However, they always indicated

that the sum of the fractional occupancies of the positions a and e was

Z

larger than unity.

Discussion of the Structure

The bond distances are given in table 3. The bond numbers
were calculated with the use of the equation (6)

D =D, =0.6logn
n

1
where Dl has been taken as 2.31 £ for a Ni-Ni bond, 2.37 A for a

Ni-Zn bond, and 2.43 A for a Zn-Zn bond (€).
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Table

1

Refined atomic coordinates, temperature factors, and population

factors
Kind of Cccu- Temperature
atom Fosition pancy Coordinates factor
Zn 22,000,%%%  43% --- 0.07+1.09
Ni Sea.XXX. etc. 57% X, = 1021+.0035 0.5 740. 44
2
Ni Sel.X}(X.etc. 100% x, = .3332+.0028 3.2740.50
1
Zn lzil.XOO.etc. 100% x = -3462+.0017 2.98+0.30
1
Zn 24h ,XXZ,etc. 100% X = 3035+.0010 2.4040.17

1

1

by

z, = .047 li. 0010



Observed and calculated structure factors.
are k, 2, Fo and Fc.
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91
&7
28
T2
5
59
62
52
19
27
63
106
59
334
60
80
73
28
78
¥
38
19
174
32
35
157
<32
16
<10
79

1362
99
249
101
91
12
92
75
49
59
41
29
19
50
82
52
586
60
74
40
29
76
74
24

172
20
35

150

0

16
28
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Table 2
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30
274
57
35
12
62
69
151
40
41
50
121
37
28
43
140
56
67
42
60
<32
32
43

149
102
61
69
97
121
61
80
59
123
63
<37

43
331
44
24
50
19
53
152
45
36
50
129
29
30
40
131
40
67
39
79
31
31
53

186
113
65
73
93
151
51
75
52
124
64
22
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Table 2 (continued)

h=2 (continued) h=5

4 1¢ 50 31 5 6 <27 15
5 5 71 78 5 8 17 17
5 9 38 30 6 7 40 33
6 6 114 118

6 8 33 21 h=6 |

7 (4 37 12 )
3 8 < 9 5 6 6 108 10z
h=3

3 4 87 85

3 3] 194 193

3 8 69 54

3 10 <44 28

= 5 65 50

4 7 48 40

4 9 31 31

5 6 58 46

5 8 106 88

6 i § <32 7

6 9 69 77

7 8 <19 17

h=4

4 4 323 291

& 6 65 56

4 8 51 43

4 10 < 9 29

5 5 55 41

5 7 56 45

5 9 45 50

6 6 41 40

6 8 26 21

7 7 103 97
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Table 3
Bond distances and bond numbers in N1 21
- . Bond Total bond
Fasns Ligand distance(X) number s
7 n4a) 4Ni-(-el) 2.57 1.87
(aZn-(-fl) 3.08 .50
10 2. 37
Ni-(-ez) 3Ni<e ) 2. 57 1. 11
3Ni-(-e1) 2.53 1.29
3Zn-(-f ) 2.52 1.69
3Zn-(-h ) 2.58 1.34
12 5.43
Ni-(»el) { 17n4a) 2.57 .46
Tor 3Ni<fe. ) 2.53 1.2
37.ofL ) 2.57 1.38
3Zn-(-h ) 2.57 1.38
37n-(-h 2.57 1.38
10 or 13 4.60 or 5.43
Zn-(fl) I 1Zn4a) 3.08 .08
Lor 2Nife ) 2.52 1.12
zm-(-e ) 2.57 92
’/n-(-h 2.76 1. 13
ZLn-(-h 3.05 .18
2Znh ) 2.65 .86
IZn-(-f 5 2.74 .30
12 or 13 3.47 or 4.51
Zn-(»hl) I nothing
Lor INi<fe ) z.58 . 45
lNi-(-e ) 2. 57 .46
INi4e ) 2. 97 .46
ZZn-(-i ) 2. 76 « 56
1Znd ) 2.65 .43
1Z 04t ) 3.05 .09
4Zn-(-h ) 2.72 1.05

11 3.05 or 3.50
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One may describe this disorder as if it were actually due to
the presence of three kinds of unit cells in the crystal. One kind of
cell may contain an atomic arrangement identical to that of y brass.
A second kind may be described as a modified y brass structure in
which the small tetrahedra around 000 and 2%% have been replaced
by an atom at 000 and $%%. The third kind may also be described as
a modified y brass structure in which the small tetrahedron around
%% has been replaced by an atom at $%3%. The first two kinds of
unit cells are body centered, and we call these v,y and 0,0. The
third kind of unit cell is primitive and is called 0,v.

We cannot describe the actual distribution of these three kinds
of unit cells within our crystal. However, the diffuse spots referred
to earlier and corresponding to reflections from a primitive cell
may be due to small domains of adjacent primitive cells just deacribed.
The diffuseness indicates that these domains are less than 100 unit-
cube edges in length. A gquantitative evaluation of this phenomenon

may be made later.

The Diffuse Reflections

We calculated, but only very roughly, which reflections should
be observed from the domains of primitive cells. We assumed that
the primitive cell is body centered with the exception of 4 atoms at

the vertices of the small tetrahedron around 000 and an atom at &% %.
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Structure factors were calculated on this basis for reflections of
thetype h+k +2 =2n+ 1. We only point out that the three observed
diffuse reflections are among the nine reflections having the largest

calculated structure factors (sece table 4).

Structure-factor calculations for the disordered structure

For the sake of simplicity, let positions a and e, each have
50 percent occupancy. Furthermore, let the crystal be a twin of two
crystals of equal size and shape ﬁaving exactly the same orientation.
Let one of the twins be a v,y type and the other an 0,0 type, which
we have defined above.

The structure factor expression which we have used for our

disordered, or composite, crystal is

F 5\/(A + A +A)2+(B x B Y*
C 8 Qz a S Ea

where As and Bs sipnify the contributions of positions ey fl and hl'

Let As, Bs' and Be be equal to zero. We consider two
2
cases;: 1) A =A and 2) A =-A .
a e, a e,

In the {irst case we would calculate for a composite crystal

VST AN ox

and for the twin crystal, where position a is fully occupied in one

half of the crystal and position e, in the other half,
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Table 4

Diffuse reflections. The nine reflections most likely tc be obaerved
and their structure factors calculated on the basis of a greatly
simplified model.

005 75 —
014 64 23
223 61 i
115 53 -
001 49 -
003 49 -
122 46 9
113 45 15
0l¢ 14 =

next largest

227 37
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Fe =V§7‘E‘g,o + QE‘:,Y = '\/;(zAa)z + H;Aea)a = 2A

The two results are the same. However, for the second case where

Aa = -Ae » we would calculate for a composite crystal
2

Fc =\/(Aa A )2 = '\/(Aa -A, )2 0

2 2

but for the twin crystal,

Fe =\/;(3Aa)z + H-Z’.Aa)z = 2A_ .

If our crystal contains small crystallites or domains of a
significant size, it is obvious that our agreement is bound to be poor

and that we cannot expect our electron-density maps to be correct.
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I. I propose that the inherent symmetry of the bond orbitals
of the metal atom in a sandwich compound is a significant factor in
determining the symmetry of the sandwich compound and that the
metal-ring bonding itself is more important than van der Waals'

forces between the rings in imposing stereospecifity on the rotational

configuration.

Authors of review articles (1, 2) have not considered the symn=-
metry of the metal orbitals as playing any role in determining the

molecular symmetry of sandwich compounds. I quote F. L. Fauson
(1a):

Ferrocene crystallizes in the monoclinic space-
group PZ”C with two molecules in the unit cell.
Hence the metal atomn lies at a center of sym-=
metry both within the unit cell and within the
molecule. The chromiurmn atorn in the cubic crys-
tals of bis-benzenechromium must also constitute
a molecular center of symmetry. This leads to
the opposed conformation of the rings in the latter
and to the staggered conformation in ferrocene,
but the analogous dicyclopentadienylruthenium and
dicyclopentadienylosmium have the opposed con-
formation in their orthorhombic crystala. One
reason for this difference from ferrocene may be
the larger size of ruthenium and osmium which reduces
the repulsion between hydrogen atorns attached to
different rings.

And I quote Cotton and Wilkinson (2a):

It is interesting to note that in contrast to ferrocene,
which has the staggered conformation in the crys-
tal, ruthenocene iz eclipsed. This difierence is

due to differences in the lattice forces and/or to
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smaller van der Waals' forces when the rings are
farther apart. It rmnay be noted that in di(n-indenyl)iron,
the benzene rings are in the gauche position, this form
again being stabilized in the crystal by crystal forces
or by weak van der Waals' forces between the atoms

of the six=-membered rings (3.43 £ apart). As with
the other n-cyclopentadienyl compounds, in solution

or in the \.r—apor. the rings are probably freely rotating
in the indenyl compounds, or nearly so.

And further on (2b):

It is therefore significant that ruthenocene has recently
been found to exist in the eclipsed (D _ ) configuration;
dibenzenechromiumn also exists in an"eclipsed con-
figuration in the crystal. This seemns to indicate (1)
that the configuration is determined mainly by lattice
forces or (2) that the configuration in ("-C_H_) Fe

is determined by small van der Waals' forces Which
become insignificant when the rings are further apart
as they are in (+-C_H_) Ru or (3) a combination of
these factors. W~hat %se results would appear to
contradict clearly is the idea that the metal-ring
bonding itseli, presumably the same in essential
features in both compounds, imposes any stereo-
specificity on the rotational configuration.

My proposal is in direct conflict with the last sentence quoted.

The data pertinent to the discussion that follows are presented
in table 1. I shall use Pauson's nomenclature.

In both reviews the authors have implied that ferrocene is stag-
gered because of repulsion between the atoms in diiferent rings. I
assert that this repulsion is secondary to some other phenomenon;
my assertion rests on the observation that bis-benzenechromium

exists in the eclipsed configuration. In both reviews, the eclipsed

configuration of bis-benzenechromium is merely noted.
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Table 1

Comparison of bond distances and ring-to-ring distances in some
sandwich compounds

Eclipsed configuration

Mean distances in Angstroms

M=C

C-C

rinﬂg-to-rigg

bis-benzenechromium (3)

rathenocene (1)
bis-indenylruthenium (5)

osmocene (6)

Staggered ccmfiguration

ferrocene (7)
ferrocene (8)

bis-indenyliron (9)

nickelocene (10)
nickelocene (11)

2.135+.010
2.132+4.010

2.21 +.02
2. 19

2.22

2.05 +.03
2.064+.013

2.10

2.20 +.02
2.18

1.439+.014
1.353%.014
1.43 +.02

—

1.43

1.41 +.03
1.440:.029

i.43

1.44 +.02
1.43

#*Calculated from mean M-C and C -C distances.

3. 236:_.014

3.68 *.02

3.67

3.71

3.43

3. 66
3.62%
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Even though the six-membered rings of bis-benzenechromium
are closer to each other than the five-membered rings of ferrocene,
bis-benzenechromium is eclipsed and ferrocene is staggered. The
ring separation is 3. 23 A in bis-benzenechromium (3) and 3.32 4
in ferrocene (7,8). If repulsion between atorns of different rings were
the cause of the staggered configuration of ferrocene, bis-benzene-
chromium would also be staggered. Note that dicyclopentadienyl
chromium is staggered (2).

Cotton and Wilkinson's argument that the configuration is
determined mainly by lattice forces is harder to refute since ''lattice
forces' is not defined and its implications are rather vague. I will
assume that lattice forces are sensitive to, or are a function of, the
overall shape and size of 2 molecule and the way in which the molecules
pack together. 1 believe there are two observations which indicate that
lattice forces, whatever they may be, are not responsible for the
molecular symmetry of ferrocene and ruthenocene in the crystalline
state,

First, bis-indenyliron has the staggered configuration (9),
just as ferrocene, and bis-indenylruthenium has the eclipsed configura=-
tion (5), just as ruthenocene. The differences in lattice forces that
would make ferrocene and ruthenocene have different symmetries

should be smaller between bis-indenyliron and bis-indenylruthenium.



140

The lattice forces making bis-indenylruthenium eclipsed (Si_s) will also
tend to make bis-indenyliron eclipsed rather than staggered (gauche.
in this case). The probability that the same symmetrical derivatives
of ferrocene and ruthenocene will have the same configuration wiil
increase as the size of the molecule increases. Cbvicusly, the change
from cyclopentadienyl groups to indenyl groups is not enough. Further-
more, both bis-indenyliron and bis-indenylruthenium crystallize in
disordered modifications in which, scemingly at random, molecules
throughout the crystal are rotated 180° about an axis which is per=-
pendicular to the indenyl groups and which passes through the geomet-
rical center of the molecule. This indicates that the lattice forces
are not very selective.

Second, the molecules of nickelocene and ruthenocene are
essentially the same size, yet nickelocene is staggered and rutheno-

cene is eclipsed. (Flease refer to table 1.)

M-C C=-C ring-ring
Nickelocene 2.20 A 1.44 A 3,61 4
Ruthenocene 2.21 4 1,23 & 3.68 A

From this I infer that the different symmetries of nickelocene and
ruthenocene are not due to lattice forces. Here are two sandwich
compounds which differ only in the kind of metal atom inside the

sandwich~--and in their rotatonal configuration.
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From these examples I deduce that ferrocene and ruthenocene
have different rotational configurations because of different metal
atoms and not because of van der Waala' forces between rings or
because of lattice forces. I propose that the bond orbitals of the iron
and ruthenium atoms have inherently different symmetries in these
dicyclopentadienyl compounds and in their derivatives. The difference
in symmetries may be linkeé to the availability of f-orbitals to the
ruthenium atcm for the formation of hybrid bond orbitals. I propose
that molecules of ferrocene pack together in the crystalline state
in such a way as to preserve the preferred symmetry of the iron-ring
bonding. The symmetry determines the packing, not the packing the
symmetry.

E‘rom ferrocene, bis-indenyliron, ruthenccene, and bis-
indenylruthenium we can see that the iron atorn cccupies a center of
symmetry (with respect to the Fe-C bonds) and that the ruthenium
atom lies in a mirror plane. These two symrmnetries are also observed
in the elemental structures where every iron atom is at a center of
symmetry in its cubic closest packed form and where every ruthenium
atom lies in a mirror plane, ruthenium being hexagonal closest
packed, Likewise, osmocene is eclipsed (6) and osmium is hexagonal
closest packed. The dicyclopentadienyl compounds of nickel, cobalt,
chromiurn, and vanadium are staggered (2); nickel is cubic closest
packed, cobalt has both hexagonal and cubic closest packed modifica-

tions, and chromium and vanadium are body centered cubic.
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If lattice forces are in any case impoftant in determining the
rctational configuration in syrnmetrical metal-ring compounds, they
should be most important when the attached groups are very large.
For example, in a crystal of 1, 1'-didodecylferrocene the five-membered
rings might be eclipsed or staggered, depending on the way the long
chains wanted to pack. And van der Waals' forces could come into
play enough to alter symmetry. For example,bis-hexamethyl benzene
chromium may well be staggered rather than eclipsed; if it is eclipsed
it will illustrate that the symmetry of the metal-ring bonding is much
more important than anyone has so far suspected.

However, in the fairly simple sandwich compounds that have
been studied so far, it seems that the nature of the metal-ring bonding

determines the symmetry.
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11 I propose that the arsenic atom in the arsenic(V)-catechol

complex, AsC((}C6H 08)3. is five-coordinated and that the five oxygen

4
ligands are arranged at the vertices of a nearly regular trigonal bi-
pyramid. It is commonly believed (1, 2) that an octahedral complex
is formed by the reaction of agueous solutions of catechel and arsenic
acid.

The free acid of the arsenic(V)-catechol complex was first
prepared by Weinland and Heinzler (3) by the addition of catechol to
a boiling aqueous solution of arsenic acid. Upon cooling, colorless
crystals separated which had a composition correaponding to
HA s(C 6H40.2)3' ;Hz(}, to which they assigned the "structure’
H3fO-As-(OcﬁH40)3]' 41{20. Simple salts of this acid were prepared,
and the compound behaved as a monobasic acid in all cases.

Subsequently, other investigators (4, 5, 6) have found:

1) The parent acid behaves as 2 moncbasic acid with a

value of 2.75 for the pKa (4).
2) The anion exists in optically active forms (4, 5).
3) Dehydration can remove only four molecules of

water fromn the pentahydrate (4,5, 6); this extra water

of hydration is coordinated to the arsenic atom (4, €).

Two different structures for the complex have been proposed;

they are illustrated in figure 1. Structure II, which was proposed by

]
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Rosenheim and FPlate (8), is inadequate in that it cannot account {or
thoe observed acidity cr for the water of hydration. Structurel,
which was proposed by Craddock and Jones (4), can account for all of
the progperties listed above. However, 1 feel that the structure pre-
sented below can explain the properties of the coianplex in a more
clear~cut fashion and that it is more conslstent with the known chem-
istry of arsenic and of the group V A elemente in general.

I propose that there are only live As-U bonds and that the
oxygen atoms are arranged at the vertices of a nearly regular trigonal
bipyramid; one isomer, one of an enantiomeric pair, based on such
an arrangerment i3 illustraged in figure 2(a). A {ive-fold coordination
of the arsenic atom may also give rise to a nwnber of enanticraeric
pairs of molecules which owe their asymmetry to steric hindrance.

1f we assume a nearly regular trigonal bipyramnid, an 2 3-0

bond distance of 1.8 & (in arsenates the As-C bond distance is about

(w8

41

{5\]

.75 A (1)), an As-C-C angle of 113®*, we can get an idea of
non-bonded distances with 2 few simple calculations. Figure 2(b)
shows the short oxygen to hydrogen distance that would result from
rotation ol cne of the eguatorially bonded catechol groups about the
As=C bond. Figure 2(c) shows the distances to be expected if the

catechol groups lie in the equatorial plane; the drawing is in the

equatorial plane, viewed down As-C bond. The short non-bonded
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Figure 1. Structures that have becn proposed for the arsenic(V)-
catechol complox.

(@) (d)

Fisverc 2. Inoformation om structuvc in which the ar senic atom is
five-coorcinated (sec iext).
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distances can be relieved by expanding the As-O-C angles or by
twisting the catechol groups out of the plane. Figure 2(d) gives the
expected geometry of the chelating catechol group. It seems that the
O-Ae=0 angle of 103° will result in 2 distorted trigonal bipyramid
in which one of the oxygen atoms of the chelating group is at an apex
and the other is at the equator. Expansion of the angle to 120* would
demand As-C bond distances of 1,63 A.

At this point I must object to the statement by Wells (la):
""An exceptional compound, in which As exhibits a covalency of 6, is
the catechol derivative, the resolution of which into its optical antimers
confirms the octahedral coniiguration of the six arsenic bonds." The
resolution into optical antimers confirmns that octahedral coordination
is a possibility and no more proves an octahedral configuration than
failure to resolve would disprove it. Furthermore, one can explain
the optical activity on the basis of a tetrahedrally coordinated arsenic
atom with the catechol groups arranged like a propellor; but such a
structure cannot account for the acidity.

The observed acidity of this complex and the '"coordinated water"
are readily understood on the basis of the rolecular structure as

proposed here, which we can write as
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O-H
/ __-oc

As
W T~cc

6H4OH

6H4OH

First, the '""coordinated water' is not; the extra oxygen atom
belongs to a hydroxyl group and is covalently bonded to the arsenic
atom. The measured value of the pKa for the free acid is 2.75 (4),
which is very close to 2.22, the value of the pKa of arsenic acid (7);
this is expected since the acid hydrogen comes from As-OH groups
in both. To me, this is a better explanation for the acidity than the
remark by Craddock and Jones (4), "....a value of 2.75 was found for
the pKa. This is somewhat greater than would be expected for a species
containing an already formed }!30+ ion but is not inconsistent with the
ionization of a hydrogen from a molecule of water which is coordinated
to the arsenic.'’ Admittedly, one can explain any value of the pKa by
invoking the requisite degree of coordination; very tightly coordinated
water molecules would be expected to be very acidic, and so on.

A complex ha..ving a trigonal bipyramidal structure is consistent

with known structures of PCl_ and SbC15 (1); although the structure has

5

not been determined, AsE‘S is known and probably is based on a trigonal

bipyramidal arrangement. Moreover, Bertil (8) was able to make

HC’As(CaH‘&O‘Z)2 but could not isolate 2 pure compound with three glycol
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groups. Presumably, in HOAs (CZH‘iOZ)Z the arsenic atom is five-

coordinated.

I have grown crystals of the arsenic(V)-catechol complex and
have collected enough X -ray data to state that the complex crystallizes

in space group P with 24 molecules per unit cell. All three axes

bca
are essentially the same length, 23.5 £ + 0.2 A.
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III. 1 propose that the following manuscripts entitled '"Structure-
factor and Least-Squares Calculation for Tetragonal, Trigonal, and
Hexagonal Systemswith Anisotropic Vibrations' and ''Structure-factor
and Least-Squares Calculation fc;r Cubic Systermns with Isotiropic

Vibrations' be submitted to Acta Crystallographica for publication.

Development of high-speed digital computers has relieved the
crystallogapher of laborious calculations by hand and has enabled him
to tackle complex problems with hopes of solution in a reasonable time.
However, this developrnent has brought with it the problem of pro-
gramming computers and of the crystallogranher's desire to make use
of the speed at his disposal to determine accurately the atomic param-
eters by including,among other factors, anisotropic thermal vibrations
of the atoms in his analysis. These two problems together require a
formulation of the structure-factor expressions that is readily adapted
to computer coding; such a forrmulation exists for the monoclinic space
groups (Rollett and Davis, 1955) and for the orthorhombic space groups
(Hybl and Marsh, 1961). Moreover, the rapid changes in computers
are forcing the crystallographer to spend much of his time learning
and programming new computers. He can be relieved of this task
if he can present his problem to a professional programrmer in such
a form that it is a coding problem rather than a crystallographic one.
The formulations below and those of Rollett and Davis and of Hybl and

Marsh are certainly a step toward the coding problem.
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It is now practical, almost demanding, to program computers
to carry out structure-factor least-squares calculations for any space
groups designated by the program user. To program in this way
requires a commeon form of the structure factor expressions, at least
within a system. With the formulations presented below, which cover
156 space groups, the trigonometric part of any structure factor in
215 of the 230 space groups (all but triclinic and monoclinic) is now

in the form of triple products of sines and cosines, e.g.
[cos(2mhx) sin(2nky) cos(2mez)].

The International Tables (1952) gives all of the structure-factor
expressions, but in several different forms, and, as far as I know,
no one has attempted to explicitly formulate structure-factor expres-
sions with anisotropic scattering factors for the tetragonal, trigonal,
and hexagonal space groups.

(The formulations presented in the proposed paper on the
cubic system are one result of writing a structure-factor least-squares

program for the Burroughs 220.)
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Structure-Factor and Least-Squares Calculation for
Tetragonal, Trigonal, and Hexagonal Systems with

Anisotropic Vibrations

Rollett and Davis (1955) and Hybl and Marsh (1961), hereafter
HM, have derived sets of expressions that can be used to calculate
structure factors and least-squares coefficients for any monoclinic
space group and for any orthorhombic space group. In like manner,
we present sets of analogous expressions for tetragonal, trigonal, and
hexagonal symmetries. In developing these expressions we make
use of the formulations of Trueblood (1956) and the International
Tables (1952).

To simplify all discussion we present the case of one crystal-
lographic atom in a general position. For a number of atoms, one |
must sum over all the atoms for the complete structure factor and
take into account the lower multiplicity of atoms in special positions

in the usual way.

Tetragonal systern

We start with the expression for the scattering factor for a

vibrating atom:

= 2 2 2
f -foexp-(Bllh +B 2k +33! +B 2hk'O-B

i 2 3 1 ht + B, k)

13
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where fo is the scattering factor for an atom at rest. The tetragonal
symmetry gives rise, in general, to seven additional orientations of
the vibrational ellipsoid; applying the transformations given by True-
blood, we write the corresponding scattering factors:

2 2 2
= - + + +
f fo exp (Bllh B__k 533l B

2 2 hk - B, bt - B, k)

12

2 2 2
f, = fo exp-(B“h +BZZk +B33l -B

3 h.k'!'Bl

ht - B_,kt)

12 3

2 2 2
- - - +
f,=foexp-(B, | h“+B k" +B,.0° -B hk-B W +B )

2 3 12 13

) 2 2 2 _
i =io exp-(B“k +Bzzh +B33.l -B hk+13131~l sth.!)

12

f =foexp-(Bllka+B h2+B 312-B

- 3 th-Blskl +B?.3h“

1

f. =fo exp~(B ¥+ B h‘+B312+B

1 22 3 h.k-Blk.!-Bsh!)

12 3 2

2

2 2 )
f =fo exp-(B“k +Bzzh +B 31 +B 2hk+BlM+BZ3ht)

1 3

3

In table 1 (all tables are given at the end of the discussion),
we define the 16 triple products of sines and cosines which are suf-
ficient for expressing the trigonometric part of any structure factor
in the tetragonal system; the 8 products in terms of hx, ky, and 2
are the 'I‘i's defined by HM. We have chosen to express the structure
factors and their derivatives in a minimum number of simple, common
terms in order to facilitate bookkeeping and to reduce computational
time. The 16 expressions which we have chosen are presented in

table 2; only the first 8 are needed for the space groups of Laue
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symmetry 4/m. The derivatives of these basic expressions are
given in table 3.

The real and imaginary parts of the structure factor, A and
B ('x?‘c2 = ch (Az + BZ), for any class of reflection in the tetragonal
systern are listed in table 4 in terms which are defined in table 2;
the space-group multiplicity is reflected in Per For acentric primitive
space groups, P is one; 2 center of symmmetry contributes a factor
of two, as does a body-centered lattice.

An example is presented to illustrate the use of the tables.
We assume space group 141/3. and a reflection characterized by
h+k+20=4n4+2, h=2n andk; 2n.

Fc/4 = Ac/4=(1-5), (B =0)
where the factor of 4 is from pc and 1 and 5 are expressions

defined in table 2. We refer to table 2 and write
= - - i * & L} T % it
Fe = 40(f) 4 )c -e ) - (f, £ g,) - (£ -0 )d 4,7 - (£, )5, -h )]

where fl' fz. £ and‘f6 are scattering factors defined in the text

5

are triple products defined

%
and Cyr € il' gy dl. il v e and h

|

in table 1. From table 3, we see that some derivatives of Fc are:

A Fc
Ax

=4l -2n [(€, + €, )0m, +0,) + (£, -6 )a, -k,)"

-2k [ (£+E Mn ~p,) - (€ ) r, +2 )]}
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.2..,5.'&. =4l 2m (-3) +2m (7))

{
3 Fc
3 B11
A Fc

3313

= 4 (-8 (1) + k% (5) )

=4 [he (2) + k2 (6) ]

In our formulation there is no single term which gives the
structure factor expression for an isotropic atom as does expression

B, = £, + iz + 1+ £4 formulated by HM. Such a formulation for the

i 3

tetragonal system is impractical as it would require splitting
the system into the two Laue groups 4/m and 4/m mm, and even then,
a larger number of more cumbersome expressions would have to be
defined.

To illustrate this, consider space group P42 where the com-
binations (1-5) and 1+5) are given for A for the two parity conditions.
Expressed in the form of HM, (1-5) becomes
£ 0 (fl + iz + f5 + fb)(cl e dl - fl') + (f1 + fz - £5 - fb)(cl -el+d

L}
1“1)

-(fl -fz+f5-16)(il+gl+j1 -hl) - (fl -f2 -f5+f6)(il+g1 -Jl‘i‘hl) 1

= itr,El'I‘ +E,T, ~E, T, -E 'r4]

1 3°3 E
(the E's and T's not related to those defined by HM) and (1+5) becomes

r - 3 .
% E1T2+E2T1 E,T, E4T3]
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To formulate in these terms requires 8 products between 8 terms;
in our formulation, 4 products between 8 simpler terms are required.
Furthermore, the derivatives becorne gquite complicated; take ElTl

in the case just discussed,

DE,T, 3f M HH) T,

3B - 3B
By

= r-h + - k + I

1f we did formulate our expressions in this way, we would be forced
to handle the derivatives by the simpler expressions presented in
table 2. Thus we would add to our cornputational time and our book-
keeping headaches by formulating the structure factors in terms like
(fi iij i f.! ) as HM did for the orthorhombic system, where
such a formulation is convenient and efficient.

The isotropic case will have to be handled in a special way.
As the terms are written in table 2, the right hand side of each
expression, which contains (fi - fj) s+ is zero for an isotropic atom.
It should be simple to program in such a way that within the computer
the 16 expressions are split into 32 expressions; the (fi - fj) terms
colld then be disregarded for an isotropic atom. (Expressions 9 through
16 should be disregarded for space groups of Laue symmetry 4/m.)

For the general case, for an isotropic atom i all the f's are

p
equal to fo exp(-B' smz p*) and
A
2
. A
aFel=2a 20 4 28 °f = - 22D rzaa +2BB,)
?‘BI aBp! AR xz i

i i i
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Table 1. Definition of triple products. C = cos2n, S = sin2w.

hx ky 1z hy kx 1z
clIChx'Cky'Ctz dl'EChy-Ckx-Clz
eli!th + Sky « Ctz £1' = Shy - Skx - Clz
g, = Chx - Sky - Stz ’hlschy-Skx-snz
ili!th-Cky'Slz jlashy Ckx - Slz
kIEth Sky - Stz llﬂbhy Skx - Sz
m,= S5hx - Cky - Clz n, = Shy * Ckx «- Clz2
015ChX' Sky - Clz pl%iChy- Skx - Clz
ql‘!Chx-Cky- S8z rl“-Chy' Ckx - 38z
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Table 2. Definitions of combinations of triple products and
scattering {actors for the tetragonal system.

(£, + E)e, - e)) - (£, - €)1, +g,) =1
(£, + M8, +8) - (6, -~ )e) -e))=2
(f1 + {2)(q1 - k) + (i - xfz)(m1 +o0,)=3
(£, + £,0m; +0)) +(f; -, Na; -Kk)) = ¢
(£, + €M, + £+ (6, - £ )], -h)=5
(f, +£ )G, ~b)) + (6, -£)(d, +£,") 26
(g +E e +2) - (g - EMny = p)) =7

(fs + fé)(nl -py) - (f5 - fb)(r1 +1,)=8

(,+E)e, +e) - (5, -£)1, -g,) =9
(£3 + f4)(i1 - gl) - (:3 = f)c; te)) =10
(53 + 54)(q1 +k)+ (:3 - :'4)(m1 -0;) =11
(£3 + £4)(ml - ol) + (i3 - £4)(q1 +k)) =12
(i + £g)dy = ;) + (£, = L)(j; + b)) = 13
(€, + €005, +h)) + (£, - )d, -£,')= 14
(i, + £)(r - 2,) - (£, = £)(n, +p)) = 15

(£, + £)n, + 5,) = (£, = f)r, -2)) = 16
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Table 3. Derivatives of the expressions defined in Table 2 for
the tetragonal system.

2 a2 23 2 2 22 o
Expression 2mdx 2mdy | 2redz 3311,3522.3333.3512 3313 3323
i‘:ml':t Exp. giultl;: cogsm;t Exp. éd:::tant Exp.
S 1122243 P 5B,
1 h <k 4 3 |n® k% 2%4mk 1 |-mt - 2
2 h k3 4 |n® ¥® 4%k 2 |-m - 1
3 b k2 K2 k% 2%4mk 3 | +he Ha 4
4 h k1 2 |n? 1% 2%emx 4 |+nt 42 3
5 kK -h 8 | -7 |k % 2% ek 5 |4kt -m2 6
6 % B 7 8 |k n® 1%nk 6 |4kt -me 5
7 kK <h 6 k2 8w 4% mk 7 |-kt eme 8
8 k b 5 | -6 |k* B® g% mk 8 |-kt 4t 7
9 st 0k 12 [-11 |n® x* 22k 9 |-he +x 10
10 ho -k 11 | 1z |n® k% 2% -hk 10 |-me 4 9
11 h k 10 9 |n% k% 2% omk 11 [+he ke 12
12 h -k 9 |-10 |h® k% 2% .nk 12 |+he -kt 11
13 sk -h 16 |-15 |k h® 2% enk 13 |-ka -ma 14
14 k h 15 | 16 |k° n® 2%+pk 14 |-k# -mt 13
15 k <h 14 | 13 [k® n® 2% 4nk 15 |4k +me 16
16 k h 13 |-14 |k% B® %4nk 16 |+ +me 15
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Table 4. A tabulation of the tetragonal space groups according to
index parities.

Space Group Pe Planes A
715.F4 1 All planes 1+5 3+ 7
76-?41 1 2 = 4n 1+5 347
£ =4n + 1 -2+ 8 14+6
2 = 4n + 2 l1-5 3 -7
2 =4n + 3 -2 -8 4 -6
‘?':’-P4Z 1 £ = 2n 1+5 3+7
2 =2n+1 1 -5 3 -7
78-P43 1 2 = 4n 1+5 3 +7
£ =4n + 1 -2 -8 4 - 6
2 =4n + 2 1 -5 3 -7
2 =24n + 3 -2+ 8 4+ 6
7914 2 h+k+1 =2n 1+5 347
80-!4l 2 h+k+4=2n 2k + 2 = 4n 1+5 347
2k +2 =4n + 1 L« 3+5
2k +2 =4n + 2 1 -5 3-7
Zk + 8 =4n + 2 1 4+7 3-5
81-r1 1 All planes 1+5 3-17
82-13 2 h+k+2 =2n 1+5 3.7
83-F4/m 2 All planes 1+5
84-F42/m 2 £ =2n 1+5
£ =2n+1 1-5
85-F4/n 2 h k
2n 2n 1+5
2n 2n + 1 -2+ 6
2n+1 2n -2 -6
Zn + 1 2n + 1 1 -5
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Space Group e Flanes A B
86~¥42/n 2 h+k k+2 1+5
Zn = 21 1+5
2n 2n + 1 1-5
2n + 1 2n -2+ 6
2n + 1} 2n + 1 -2+ 6
87-1 4/m 4 h+k+£ =2n 1+5
88-1 41/a 4 h+k+12 _13 _13
4n 2n 2n 1+5
4n 2n 2n + 1 -2+ 5
4n n+ 1 Zn 1 -6
4n 2n+ 1 Zn + 1 -2 -6
4n + 2 2n 2n 1 -5
4n + 2 2n 2n+ 1 -2 -5
4n + 2 2n + 1 2n l+606
4n + 2 2n + 1 2n + 1 -2+ 6
89-r422 1 All planes 14549+13 347-11-18
90-P4212 1 h+k=2n 14549413 347=11-15
h+k=2n+1 1-5-9+13 3-7+11-15
91-P4122 1 £ = 4n 1+549+13 3+7-11-15
£ =4n+1 <2+8-10+16 4+6-12-14
4 =4n+ 2 1-5+9-13 3-7=11+15
2 =4n+3 -2-8-10-16 4-6-12+14
92-P412‘.12 1 2h 4+ 2k + £ = 4n 14549413 3+47-11-15
) =d4n + 1 -248+12+14 446-10+16¢
" = 4n 4 2 1-5-9+13 3-T+11-15
£ =4n 43 -2-8-12+14 4-64+10+1¢€
93-?4222 1 2 = 2n 1+549+13 3+7-11-15
£ =in+l 1-549-13 3-7-11+1%
94-?42212 1 h+k+g =2n 1+5+9+13 347=11=-158
h+k+g=2n+1l 1.5-9+13 3-7T+11-15
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5nace Group oc Flanes A B
95-P432.Z 1 2 = 4n 1454+9+13 347-11-15
f =4n+1 -2-8-10-16 4-6-12-14
1 =4n + 2 1-549-13 3-7-11+415
£ =4n+ 3 -2+8-10+16 446-12-14
96-P432.12 1 2h + 2k 4+ 4 = 4n 14549413 3+7-11-15
=4n+1 -2-8-12+14 4-6+10+16
=4n + 2 1-5-9+13 3-7+11-15
=4n + 3 -2+8+12+14 4+6-10+16
97 <1422 2 h+k+41 =2n 14549413 3+7-11-15
98-14122 2 2k + 4 = 4n 14549413 347=-11=-15
2k + 2 =4n + 1 1-7+11+13 3+54+9-15
2k + 8 =4n + 2 1-5-9+13 3-7+11-15
2k + 4 =4n + 3 1+7-11+413 3-5-9-15
99-F4mm 1 All planes 14549413 3+7+411+15
100-F4bin 1 h+k=2n 14549413 3+7+11+415
h+k=2n+1 145-9-13 3+47=-11-15
101-P4Zcm 1
2 =2n 14549413 347+11+415
2 =2n+1 1-5-9+13 3-7-11415
102-P42nm 1 h+k+£2 =2n 145+9+13 3+47+11+415
h+k+2=2n+1 1-5-9+13 3-7=11415
103-P4cc 1 1 =2n 14549413 347411415
2 =2n+1 1+5-9-13 347-11-15
104-F4nc 1 h+4k+£ =2n 1+54+9+13 347411415
h+k+2 =2n+1 145-9-13 347-11-15
105-P42mc 1 £ =2n 1+54+9+13 3+7+11+15
2 =2n+1 1-549-13 3-7+11-15
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Space Group o Flanes A B
106-F4 bc 1 h+k £

Zn 2n 14549413 347411415
2n 2n + 1 1-549-13 3-7+11-15
2n +-1 2n 145-9-13 347-11-15
2n + 1 2n + 1 1-5-9413 3-7-11415
107 <14:m 2 h+k+£2 =2n 1+54+9+13 3+47+11+15
108-I4cm 2 £ =2n 145+9+13 347411415
£ =2n+1 145-9-13 347-11-15
109-14, md 2 2k + £ = 4n 14549413 347411415
2k + 2 =4n+1  1-749-15 345411413
2k +2 =4n+2 1-549-13 3-7+11-15
2k + 8 =4n+ 3 14749415 3-5+11-13
110-14 cd 2 2k + £ = 4n 14549413 347411415
2k+2 =4n+ 1  1-7-9+415 345-11-13
2k +4 =4n+2 1-549-13 3-7+411-15
2k+2 =4n+3  147-9-15 3-5-11413
111.P42m 1 All planes 14549413 3-7-11415
112-.F42c 1 £ =2n 145+9+413 3.7=11415
£=2n+1 145-9-13 3-7+11-15
113-p<‘£21m 1 h+k=2n 14549413 3-7-11415
h+k=2n+1 145-9-13 3741118
114-P:1'21c 1 h+k+4 =2n 14549413 3-7-11+15
h+k+4£€=2n+1 145-9-13 3-7+411-15
115-Fim2 1 All planes 145+9+13 3-7+11-15
116-FPdc2 1 4 =2n 145+49+13 3-7+11-15
£=2n+1 145-9-13 3-7-11415
117-p4b2 1 h+k=2n 14549+13 3-7+11-15
h+k=2n+1 145-9-13 3-7-11415



Table 4. (continued) (5)

165

Space Group Planes A B
ue.pina h+k+4=2n 14549413 3-7+411-15
h+k+2=2n+1 145-9-13 3.7-11415
119-I14m2 h+k+4=2n 14549413 3-7+11-15
120-14¢2 h+k+f=2n £ =2n 14549413 3-7+11-15
£ =2n+1 145-9-13 3-7-11415
121-142m Bl dd = dn 145+49+13 3-7-11415
122-142d 2k + 4 = 4n 14549413 3.7-11415
2k+8 =4n+ 1 145411-15  3-749+13
2k +2 =4n + 2  145-9-13 3-T+i1+18
2k+ 0 =4n+3 1+45-11415 3-7-9-13
123-P4/m mm A1l planes 14+5+9+13
124-F4/m cc 2 =2n 1+5+9+13
£=2n+1 145-9-13
125-FP4/n bm h k
2n 2n 1+549+13
2n 2n+ 1 <246-10+14
2n + 1 2n 2-6+10+14
2n + 1 2n 4+ 1 1-5-9+13
126-F4/n nc h+k k+1¢ 1
2n 2n 2n 145+49+13
n 2n + 1 2n 1=-5-9+13
2n + 1 2n 2n -2«6410+14
2n + 1 2n 4+ 1 2n «-246-10+14
2n 2n 2n + 1 1-549-13
2n 2n + 1 2n+ 1 145-9-13
2n + 1 2n 2n + 1 -24+6+410-14
2n + 1 2n + 1 2n + 1 -2=6=-10-14
127-P4/m bm h+k=2n 14549413
h+4k=2n+1l 145-9-13
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Table 4. (continued) (6)

Space Group Pe Planes A
128-F4/ m nc 2 h+k+2 =2n 1+5+9+13
h+k+4=2n+1l 145-9-13
129-FP4/n mm 2 h k
Zn Zn 14549413
2n 2n + 1 -2+6+10-14
Z2n + 1 an -2-6=10-14
2n + 1 2n + 1 1-5-9+13
130-FP4/n cc 2 h+k k+1 ]
2n 2n Zn 14549413
2n 2n + 1 2n 1-5-9+13
2n + 1 2n 2n -2=6=10-14
2n + 1 2n + 1 2n -246+10-14
2n 2n 2n + 1 1-5+9-13
2n z2n + 1 2n + 1 145-9-13
2n + 1 2n 2n + 1 -246-10+14
2n + 1 2n + 1 2n + 1 -2=6+10+14
131-F42/mmec 2 2 =2n 1+5+49+13
2 =2n+1 1-5+9-13
132-P42/mcm 2 £ =2n 14549+13
£ =2n+1l 1-5-94+13
133-P42/n be 2 h k 1
2n 2n 2n 14549+13
2n 2n + 1 2n -2+6=-10+14
2n + 1 2n 2n «2-6+10+14
2n + 1 2n + 1 2n 1-5-9+13
2n 2n 2n + 1 1-549-13
2n 2n+ 1 2n + 1 «2-6=10-14
2n +1 2n 2n + 1 -246+10-14
2n + 1 2n + 1 z2n + 1 145-9-13
134-FP42/nnm 2 h +k k+ £
2n 2n 1+549+13
2n 2n + 1 1-5-9+13
2n + 1 2n -2=-6+10+14

2n + 1 2n + 1 -2+6-10+14



Table 4. (continued) (7)

Space Group
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135-.r4 2/ be

136-P42/mnm

137-P42/n mc

138-P42/n ecm

139<14/m mm

140-I14/m cm

2

4

4

2n
2n
2n
2n
2n
2n
2n
2n

+ +

+ +
[eere—

b

Planes A
h+k 2
2n 2n 145+49+13
2n 2n + 1 1-549-13
2n + 1 2n 145-9-13
2n + 1 2n + 1 1-5-9413

h+k+2f =2n 14549413
h+k+2=2n+1 1-5-9413

k y

Zn 2n 1+54+9+13
2n + 1 2n -2+6+10-14
2n 2n «2=(el0-14
2n + 1 2n 1-.5-9+13
2n Z2n + 1 1-549-13
2n + 1 2n + 1 -2=6+10+14
2n 2n + 1 «2+6-10+14
2n + 1 2n + 1 1+5-9-13
h+12 k+1

2n 2n 14+549+13
2n 2n + 1 -246+10-14
2n+ 1 2n -2=6=10-14
2n + 1 2n + 1 1-5-9+13
h+k+£2=2n 14549413

h+k+£f =2n,8=2n 14549413
2 £=2n+l 145-9-13



Table 4. (continued) (8)
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Space Group Pe Planes A

141-I141/amd 4 h+k+4{ h k
4n Zn 2n 14549+13
4n 2n 2n =2«5+10-13
4n 2n + 1 2n 1+6+9+14
4n 2n+ 1 2n «2«6+10-14
4n + 2 2n 2n 1-549-13
4n + 2 2n 2n -2%5+10+13
4n + 2 Z2n+ 1 2n 1-6+9-14
4n + 2 2n + 1 2n 246410414

142-I141/acd 4 h+k+1¢ h k
4n 2Zn 2Zn 1+5+9+13
4n 2n 2n «2«5=-10+13
4n 2n + 1 2n 1+6-9-14
4n 2n + 1 Zn -2-6+10-14
4n + 2 2n 2n 1-549-13
4n + 2 Zn 2n -245-10-13
4n + 2 Zn + 1 2n l-6-9+14
4n + 2 Zn + 1 2n «-246+10+14



169

Trigonal and hexagonal systems

We choose to tabulate our formulations for the two systems
separately, but we will discuss them at the same time since they are
directly related, yet sufficiently different to warrant a separation of
tables. For both systems the formulations are based on the hexagonal
coordinates and we have substituted i = -(h + k) throughout.

We will again write the trigonometric part of the structure
factor in the form of triple products of sines and cosines. In addition
to the triple products defined in table 1 for the tetragonal system,
we will need those defined in table 5.

Twelve orientations of the vibrational ellipsoid are found in
the hexagonal system; the corresponding scattering factors are listed
in table €. Only nine of these scattering factors are needed in the
trigonal system; the three that appear in the hexagonal system but not
in the trigonal are fz. £6 and f4. and correspond to rotations of the
reference vibrational ellipsoid of 60°, 180°, and 300°® about the 6-
fold axis. The first six of the ,f's are related to each other by the
6-fold rotation axis; the second six are related to the first six by a
2-fold axis parallel to a in the (001) plane.

Just as in the tetragonal system, consideration of bookkeeping
and computational time has led us to use simple terms for expressing

the structure factors. The 18 expressions chosen for the trigonal

system are defined in table 7 and their derivatives are given in table 8.
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The 24 expressions for the hexagonal system are defined in table 10;
these hexagonal expressions are directly related to identically numbered
trigonal expressions in table 7. The derivatives of the hexagonal
expressions are listed in table 11.

Tables 9 and 12, in conjunction with the tables of definition,
allow us to write the appropriate structure factor expression for any
class of reflections in any trigonal or hexagonal space group.

We give three examples to illustrate the use of these tables.
Consider the reflections with4 = 3n + 1 in space groups P3212- In
table 9, where the trigonal space groups are tabulated, we find

A=(1+13)-8549+17+21)+ /3/2(7 - 11 =19 + 23)

and B =(3-15)-%74+11-19-23)-/3/2(5-9+17 - 21)

where # and /3/2 have their usual meanings and the numbers in
parentheses represent expressions defined in table 7. Consider

any reflection in space group R3. From table 9 and table 7, we write

Fce=A= 6{f1r(cl-e1) - (1,4g))] + £,0(a,-£,") = (i,+b,)]

+£.1(d,1,") - (i,-b) 7]

e Ty

]
ifsajsyh

where fl' f3 and fs are scattering factors defined in table 6, ¢

i1 and g, are triple products defined in table 1, and d3

are triple products defined in table 5. To avoid

3'
§F oz
dzc fz » Jz and hz

confusion with the numbers that define expressions, we transfer the
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factor of 6 to the left side of the equation and write some of the

derivatives of Fc/6 by consulting table 8.

5

2 T2 = 2n [-n(3) - K(7) -i(11) ]

- r - - -
= 2nhf, fq, -k JH{(m +0,)] - 2mif  [(r 2, )+(n +p,)]

+ 2n(htk) £, T(r -2 ) +(n, +p,))

¥

1 Fc
3 ’B,

= -h%(1) - k¥(5) - (h% + k% + 2 1K) (9)
1

Consider the reflections £ = 2n + 1 in space group P 63/ "

Consulting table 12 and table 10, we write

Fc A
== = (2+6+10)= -(£l+f2)(il+gl) + (fl-fa)(cl-el)

-(f3+f4)(j3+h3) + (f3 -fé)(d3 -f3 )

-(£5+f6)(j2+h2) + (fs-fb)(dz-fa')

Referring to table 11, we write some of the derivatives

" [-k(3) + (h+k}7) - h(11) ] 2n

i:zc = -2mg(4+ 8+ 12)
PSS = -he(1) - 14(5) + (he + a)(9)
13

For an isotropic atom in the trigonal system, the calculation

is straightforward. All the scattering factors become equal to
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fo éxp(-B' sin’8 ), and the necessary products of table 7 are formed

XZ

without special considerations. For the hexagonal system, the iso-
tropic case is worth special consideration when setting up a computer
program; the right hand side of each expression in table 10 is zero,
(ii -ij) = 0 for an isotropic atom.

I thank Dr. Richard E. Marsh for helpful discussions and

acknowledge the tenure of a United States Rubber Company fellowship.
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Table 5. Definition of additional triple products needed for trigonal
and hexagonal systems. C = cos2m, S = sin2n, i = -h-k.

hx iy 1z hy ix 1z
<, = Chx - Ciy * Cl= de = Chy « Cix * Clz
eZ!!th - Siy - Ct= fz' = Shy - Six - Cfz
8, ~ Chx -« Siy - Siz hz = Chy - 3ix - Stz
iZEth'Ciy-S!z jZEShy-Cix-Slz
kZ!th-Siy- Stz ‘2. = Shy « Six - Sfz
mZE'th-Ci)r'CIz n, = Shy « Cix - Clz
o, = Chx - Siy - Ct= P, = Chy - Six » Cis=
q, = Chx - Ciy - Stz r, = Chy * Cix * S8z

ix ky 1z iy kx £z
g = Cix - Cky - Clt=z d3 = Ciy » Ckx - Clz
e3-'5ix- Sky - Cfz f3' = Siy - Skx - Clz
B = Cix * Sky * Stz h, = Ciy - Skx - 51z
i3=~=51x'Cky'Slz j, = Siy * Ckx - S5f=z
k3 = 3ix - Sky * Stz 2., = 5iy * Skx - Stz

1]

o]
W W w W W w

Siy + Ckx + Clz
= Ciy * Skx - Clz
= Ciy - Ckx * Stz

msﬁs Six - Cky - Clz
3 = Cix - Sky - Cilz
q3 “ Cix - Cky * 54z

o

"
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Table 6. Definition of scattering factors for trigonal and hexagonal
systems (fz. f, and £6 do not occur in trigonal)

4
f.=f exp-[B, .h°+B_k°+B_2°+B,  hk+B _h +B__kt]
Rl 11 22 33 12 13 23
2 2 2
£, =1 exp - [B, h +B_ k" +B 4" +B hk - B ht -BzSM]
. 2 2. .2 2 2
£3-f0 exp—[Bllk +Bzz(h +k +2hk)+B33! Blz(k + hk)
+Bl3k1 -323(M + k)]
£ =f exp - TB. k% +B_ (h% +k% + 2bk) +B_ .22 - B, _(k° + b))
a™ R 11 22 33 12
-B Kt + B, (at +kt))
. g, 2 2 2 2
f5-f° exp-[Bll(h +k +th)+Bzzh +B33I Blz(h + hk)

'Bls(h‘ + ke) + B, ,ht ]

2 2

2 2 2
£, =f exp-[B“(h +k +2hk)+Bzzh +B__¢ 'Blz(h + hk)

33
+Bl3(h.l + ki) -sthl ]

2 2 2
+B?_2h +B3t + B th +Bl3k1 +523M]

3 1
f =f exp-TB, k° +B_h’+B_4°+B, hk -B, ki -B_ht)
1 22 33 12 13 23

: 2.2 2 2 2
= - [ -
f,=f exp _Bu(h +k +2hk)+BZZk +3331 Blz(k + hk)

- =f exp - CB“k

-313(}\1 + ki) +B23k1 ]

_ 2 2 2 2 2
f10 = £, e%p = (B (h° 4 k% + 2hk) + B__k" + B 4% - B (k" + hi)
+313(h1 + ke) -Bz3k1 ]
2 2 2 2 2
= -r -
f11 fooxp ‘Bllh +BZZ(h + k +th)+3331 Blz(h + hk)

+B,,ht -st(m +ke)]

3
2 2 ;. 2 2
foexp-[B“h +Bzz(h + k +2hk)+B33t -Blz(h + hk)

]
"

12
'Bl3h‘ = Bas(h‘ + ke)]
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Table 7. Definition of combinations of triple-products and
scattering factors for the trigonal system (see
Tables 1, 5 and 6.).

flr(cl o (i.1 +g)l=1

fl[(ql - k) + (ml + ol)] s 3

£,00d, -, - (G; +b)1= 5

:'3[(r3 - 13) + (n3 + p3)] s 7

tld, -1, - (i, +h )] =9

fs[(rz - 12) + (nz + pz)] = 11

f,?[(dl - :‘l') - (jl + hl)] = 13

-£8l'jl + hl) + (d1 - f1|” s 14

1'7"(1'1 - ll) + (n1 - pl)] a 15

ESI'(nl + nl) - (rl -11)] = 16

falley = o) - (i +g,)1® 17

.'iw[(i3 + g3) + (c3 - e3)'_| s 18

£9[(q3 - k) +(m, +0))= 19

f‘m[m3 + 03) - (q3 - k3)] = 20

211[(c2 -#,) - (i.a tgy)l=z2l
"lzt(iz + gz) + (c2 - ez)]‘l 22

f“[(qz - kz) + (mz + ozﬂ =2 23

fl_,_[(m2 +0,) - (q’3 - kz)'li 24
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Table 8. Derivatives of the expressions defined in Table 7 ior
the trigonal system.

3 3 3 -3 -3 -3 -2 -3 2
- r ’ L » 3 ’ ’ . s
Zn3x ' 2ndy’ Zmez|3B,, 3B, ' 3B, ‘3B ‘3B 3B,
Multiplicative
constant Exp. Multiplicative constant x 18t column
» Y = B, B,, By B, By; B,
1 -h -k -t 3 e ¢ 1% vk wE ki
3 h k8 1 Ok 1% ok m
5 k- -f 7 k° 5 PG S ¥ S
2
7 ki 1 5 2 5 4§ 4 K
9 d <k =t 1 3 W 2% a4 sy W
11 i h g 9| s n 22 4 v m
13 A S 15 ¥ n¥ 4% hk W W
14 h -t 16 kKX w12 bk -k -ne
15 h o2 13| K n¥ 2% mk ok
16 A b 2 12|l ¥ OB* 4% pk <k M
17 4 -k -2 19 5 ¥ 12 a4 o W
18 i X -2 20 s S R v -kt
19 i 1 17 s kK 2% 4 v
20 4 -k g 18 3 B LS v il
21 ch i -2 23 | n® s 22 4 m ev
22 h i -1 24 e s 24 -t -nme v
23 i t 21 h 5 1% <t nt -v
24 k. 2z K¢ 8 £ -t -nt ¢
i = ah=k h2+k"‘+2hk=s, k2+hk= ty

h"+hk=u, hf + k8 = v

2
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Table 9. A tabulation of the trigonal space groups according to
index parities.

Space Group Pe Flanes A B
143-F3 1 All planes 145+9 3+7+11
144-P3, 1 2=3n 14549 347+11
£=3n+1 1- 3 (549) = 3- & (7+411) +
/3/2(7-11) /3/2(5-9)
145-P3, 1 £ =3n 14549 3+7+11
£ =3n+1 1- % (549) + 3- E(7+11) ®
/3/2(7-11) /3/2(5-9)
146-R3 3 «h+k+§ =3n 14549 3+7+11
147-P3 2 All planes 14549 S
148-R3 6 All planes 14549 s
149-F312 1 All planes 14549+13417421  3+47411-15-19.23
150-,321 1 All planes 14549-14-18-22  3+47+11+16+20424
151-r3 12 1 2=3n 14549413417421  347+11-15-19-23
£=3n+1 1413-3(549417+421) 3-15-8(7+11-19-23)
F/3/2(7-11-19+¢23) +/3/2(5-9+17-21)
152-p3,21 1 2=3n 145+9-14-18-22 3+7411+16420+24
£=3n%1 1-14-#(549-18-22) 3+16-¥7+11420+24)
¥/3/2(7-11420-24) +/3/2(5-9-18+22)
lSS-PSZlZ 1 £ = 3n same: as £ =3n,
P3 12
£ =3n+1 sameasll=-3n=F 1,
P3 12
1
154-P3221 1 2 =3n same as £ = 3n,
P3. 21
2 =3n+1 samaasll=3n¥1.
P3_21
1
155-R32 3 -h+k4+2 =3n 14549-14-18-22  3+7+11416+20424
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Table 9. (continued) (2)
Space Group pc Planes A B
156-F3ml 1 All p]_anes 1+5+9-14-18-22 3+7+11-16-20-24
157-P31lm 1  All planes 14549+13417+421 3+7+11+15+419+423
158-F3cl 1 2 =2n 14549-14-18-22 3+7+411-16-20-24
£=2n+1 145+9+14+18+422 3+7411416420+24
159-F31c 1 2 =2n 14549+13417+21 3+7+11415419+23
£ =2n+1 1+549<13:17-21 347+411-15-19=-23
160-R3m 3 -h+4k+f=3n 14549-14-18-22 3+7+11-16-20-24
161-R3c 3 -h+k+£=3n 1+5+9-14-18-22 3+7+11-16-20-24
£ = 2n
£ =2n+1 14549+14+18+422 347411416420+24
162-P31m 2 All planes 14549+13417421 .e-
163-P31c 2 f=2n 14549+413417421 ——
2 =2n+1 14549-13-17-21 -
164-P3ml 2 All planes 14549-14-18-22 ---
165-P3cl 2 2=2n 14549-14-18-22 c—-
» £=2n+1 145+9+14+18+22 .ee
166-R3m 6 All planes 1+5+9-14-18-22 ---
167-R3c 6 -h+k+2 =3n, 14549-14-18-22 .-

i =2n
£ =2n+1

14549414+18+22
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Table 10. Definition of combinations of triple products and scattering
factors for the hexagonal system (see Tables 1, 5 and 6).

]

-(fl + fz)(il tg) + (fl - :Z)(c1 “e)) =

w

(fl + fz)(q1 - kl) + (fl - i‘z)(ml + Ol) =
(f1 + fz)(m1 + ol) + (fl - fz)(q1 - kl) s 4
(£5 + £, 0a,-03) - (£, - ,)(i; +B,) = 5

~(f, + £4)(.i3 +hy) + (t, - 1'4)(d3 -f)) = 6

(f3 + f4)(r3 - .!3) + (£3 - f4)(n3 + p3) = 7
(53+f4)(n3+p3) + (fs -f4)(r3 -13) = 8
9

(i5 + f())(d2 - f}) - (i5 - £6)(j2 + ha) s
(5 + €0, +b) + (6, - £)(d, -£) = 10
“5*56)(1’2 -12) + (fs —f6)(na+p2) = 11
(f5 + 56)("2 + pz) + (f5 - fé)(rz - 12) s 12
(€, + fs)(dl “B) - (f,’ - fa)(jl +h) = 13
-(f7 + fa)(jl + hl) + (f7 - £8)(dl B f'l) = 14
(£, +E)r; -2)) + (f, - i n, +p)) = 15
(, + £ )n, +p,)) + (€, - fe)(rl -2)) = 16
(£9+f10)(c3 -e3) - (f9 -flo)(i3+g3)l 17
-(£9 + fw)(i3 +gy) + (t!9 - fm)(cav - és) = 18
(f9 ey fm)(q3 - k3) + (f9 - fm)(m3 + 03) =19
(ig + f1g)(my + 03) +(i, - flo)(q3 - k)= 20

(£ + 0oy ep) - (G - fpMi 4 g,) = 21

-(fll + flz)(i2+ gz) + (fu- EIZ)(CZ - ez) = 22
i - -f ) =
(fu - flz)(qq k,) + (f11 12)(m ,t0,) 23
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Table 11. Derivatives of the expressions defined in Table 9 for the
hexagonal system.

2 a2 2 ]2 -2 -2 -2 N
2ndx 2mdy |2nl3z| 3B, "3B ' 3B, " 3B, a—ﬁ’l'; 3B,
Mult. Mult. constant Mult.
const. Term| B“ BZZ B33 BIZ Term| Constant | Term
& 9 Bis By
1 b <k 4 -3 hi _ki 1‘; Kk 1 |m ke 2
2 <h -k 3 | <4 |n® ¥® 4% hk 2 |m k1
3 h k2 1 | 8% %% 22 nk 3 |m w4
4 h k1 2 |n% K* 2% nk 4 |m W 3
5 ok i 8 | 7 |K2 5 2% &« 5 |m v 6
6 <k 4 7 | -8 |k* 5 1% 4t 6 |k v 5
7 kK i 6 5 |k s 22 t 71 |k v 8
8 kK i 8 6 |k* s 2% «t 8 |k v 7
9 4 b 12 |-11 |5 n® g2 w 9 |ov m 10
10 <& -h 11 |-12 |S h%® 2% u 10 |-v nm 9
11 i b 10 |-9 |s n* 2% a1 v h 12
12 i b 9 10 |S 1w° 2% w12 | wm 1
13 <k n 16 |15 | %% w* 2t 13 | he 14
14 <k < 5 <36 |%* ®F 2% 14 | ne 13
15 kK h 14 13 | k* n® 42 15 |k ne 16
16 kK h 13 14 | x* »® 2% 16 |k ne 15
17 -4 -k 20 |-19 |s k% 1% ¢ 17 |-¢ e 18
18 -4 <k 19 |-20 |s k* 2% -t 18 | v W 17
19 i x 18 | 17 |s x® 2% -t 19 |- w 20
20 i k17 18 |5 k% 2% -t 20 v Kkt 19
21  <h i 24 |-23 |n® s 2% - 21 |m v 22
22 h ot 23 [-2¢4 |0n2 5 1% w22 |m v 21
23 h i 22 21 |n® s 1% u 23 M -v 24
24 h i 21 | 22 [ s 4% u 24 |m  -v 23
§ = <hek h2+ k%4 2hkeS, k®+ hk=t, h> +hkweu, ht + ki = v
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Table 12. A tabulation of the hexagonal space groups according to
index parities.

Space Group Pe Planes A B
168-P6 1 All planes 14549 3+47+11
169-P61 1 £ =6n 14549 3+7+11
2 =6n+1 2-3(+6+10) 4-3(8+12)
-/3/2(8~12) +/3/2(6-10)
£ =6n+2 1-8(5+9) 3-%(7411)
+A/2(7-11) -/3/2(5-9)
£ =6n+3 2+6+10 448+12
£ =6n+4 1-#(5+9) 3-3(7-11)
-/3/2 (7-11) +/3/2(5-9)
£=6bn+5 2-%(6+10) 4-%(8+12)
+/3/2 (8-12) -/3/2 (6-10)
170-P65 1 £ =6n as for g = 6én
in P6
£ =6n+l asforgd =6n+5
in P6
2 =6n+2 as for 4 = 6n + 4
in Fé
£ =6n+3 as for 8 = én + 3
in P6
2 =6tn+4 as for ' = 6n + 2
in 76
£ 26n+5 as for £ & 6n + 1
in P6
1
l'?l-P(>2 1 4 =3n 14549 3+7+11
£=304+1 1-8(549) 3-§(7+11)
+/3/2(7-11) ¥ /3/2(5-9)
172-P64 1 £ =3n as for £ = 3n in P6
!=3n_+_-1 asforl=3n$11nP62
173-P63 1 2 =2n 14549 3+7+11
2=2n+1 2+6+10 4+8+12
174-p8 1  All planes 14549 448412
175-FP6/m 2 All planes 1+5+9
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Table 12. (continued) (2)

Space Group P. Planes A B
176-P63/m 2 &=2n 14549 ---
£=2n+1 2+6+10 -
177-2622 1 All planes 145+9413+17+21 347+411-15-19 -23
178-P6 22 1 2 =6n 14549+413417421 347+11-15-19-23
£=6n+1 2-22-% (6+10-14-18) 4+24-§(8+12+16+20)
~/3/2(8-12416-20) +/3/2(6-10-14+18)
£ =6n+2 1421-8(549+413417) 3-23-%(7411-15-19)
+/3/2(7-11-15-19) «/3/2(5-9+13-17)
£ =06n+3 246+410-14-18-22  4+8+12416+20+424
£ =6un+4 1421-3(549+13+417) 3-23-#(7+11-15-19)
-/3/2(7-11-15419) +/3/2(5-9+413-17)
£=6n+5 2-22-4(6+10-14-18) 4+24-3(8+12+16+20)
+/3/2(8-12416-20) -/3/2(6-10-14+18)
179-P6522 1 2 = 6n as for § = 6n, Pbl?.?.
£ =2=6n+1 aafor!=6n+5.P6l22
2 =6bn+2 asfor1'6n+4.P6122
g =6n+3 asfor1=6n+3.P6122
g =6n+4 asfor!=6n+2.P6122
2 =6n+5 asfor!=6n+l.P6122
180-76,22 1 2 =3n 14549413417421 347411-15-19-23
£=3n%+1 1421-#(549413417) 3-23-#(7+411-15-19)
+/3/2(7-11-15419) ¥./3/2(5-9+13-17)
181-p6, 22 1 2 =3n as for £ = 3n, P6_22
£=3n+1 as for § =3n ¥ 1.“P6222
182-?6322 1 2=2n 14549413+417421 347+411-15-19-23
2=2n+1 246+410-14-18-22  448+412416420+24
183-Pémm 1 All planes 1454 9+13+417421 3+7+11+15+19+423
184-Fébcc 1 g=2n 145+9+13417+21 3+7+11415+419423

2 =2n+1 14549-13-17-21 347411-15-19-23
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Table 12. (continued) (3)

Space Group Pe Planes A B
185-P63cm 1 #=2n 145+9+413417421 3+7+11415419423
£ =2n+1 246+10414418422  4+8+412+416420+424
186-P6,.,rnc 1 2 = 2n 14549+13417+21 347+11+15+194+23
7 £=2n+1 246+410-14-18+22  448412-16-20-24
187-P8 m2 1  All planes 145+9+13+417+21 4+B+12-16-20-24
188-r8c2 1 2 =2n 145+49+413417421 448+412-16-20-24
£ =2n+1 246+10414+18422  347+411-15-19-23
189-r82m 1 All planes 1+5+9+413417+421 448+12416+20+24
190-r&2c 1 £ =2n 14549413417421 448412416+20+24
£ =2n+1 246410-14-18-22  347411-15-19-23
191-P6/m mm 2  All planes 1+5+9+13417421 ---
192-P6/m ce 2 £ =2n 14549+413417422 -——
£ =2n+1 14549-13-17=-21 -
193-P63/mem 2 £ =2n 14549+13417+21 cew
£ =2n+1 246410+14+418+22 ——-
194763/ m mc 2 £ =2n 1+549+134174+21 -

2n + 1

Y
i

2+6+10-14-18-22
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Structure-Factor and Least-5quares Calculation

for Cubic Systems with lsotropic Vibrations

A set of expressions is presented for calculating structure
factors and least-squares coefficients for cubic structures with iso-
tropic temperature factors. The expressions will complement those
presented by Hybl and Marsh (1961) for the orthorhombic system;
however, we will not now carry their treatment of anisotropic temper-
ature factors into the cubic system. Based on these expressions, the
Burroughs 220 computer has been programmed to perform structure-
factor least-squares calculations for any cubic space group; to direct
the course of calculations for a particular space group, the computer
must know only the space group number.

All of the geometrical structure factors for the cubic system
have been reduced to sums of triple products of sines and cosines.

A total of 48 different triple products are utilized; these triple products
and the 16 sums of 3 triple products are defined in table 1. The
triple products are divided into two groups, I and II. Space groups
of symmetry T or Th require expressions in group I only; further-
more, the derivatives with respect to the parameters x, y, and z (and,
of course, B) of any triple product ir; group I (or II) are other triple

h

products in group I(or II) multiplied by + 2n | k| .
£
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The sums in group I are directly related to sums in group II:
C transforms toD, Eto F, GtoH, I1toJ, ...etc., simply by inter-
changing h and k (see table 1). The derivatives of a sum can be
written down immediately by inspection of table 2 when the derivatives
of each triple product are listed. For example, the derivative of C

(C = c te, c3) with respect to x is equal to 2n{~-hm l-lqz-ko3).

The geometrical structure factors for each set of conditions
on the indices for every cubic space group are presented in table 3
in terms of the sums of triple products defined in table 1. The pre-
sentation follows that of the International Tables (1952); in cases where
the International Tables give a choice of origins, the origin is taken

at a center. Corrections in 07 and 0h7 have been made as directed

by the errata sheet.
For our program we have utilized the similarities in the struc~

ture factor expressions for different space groups. For example, the

1
structure factor expressions for T , T2 and T3 are the same except

for a different multiplicity factor; the same applies for space groups

1 3 5 1 3 5 1 2 3 |
Th .Th andTh , O, O and O, Td’Td ande.andOh i

5
Oh » and Ohg. Some pairs of space groups whose similarities have

been utilized are ’I‘4 and T5. i 2 and ’I‘h4. i 4 and ©C ‘. 06 and C ,

h h h
8 6 6 10 2 4 7 _ 8
O and Td ” ’I‘01 and Oh . Oh and Oh , and Oh and Oh . There

are other similarities which we have utilized, and we are sure there

-

are some which were not exploited. We give one example to illustrate
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the use of the tables. Consider reflections h+ k=2n+ 1, k+ 4 = 2n+l
in space group Thz (for one atom in a general position):

Fc = -8 = -8(i1+12+5.3)

== = -8(2) (hq, +4m, - KKk,)
= -8(2m) [h cos(2mhx) cos(zmky) sin(2md z)

+ £ sin(2mhy) cos(2nkz) cos(2nfx)

- k sin(2nhz) sin(27kx) sin(2ny) ]

We get Fc from table 3, 1 from table 1, and the derivatives from

table 2.

I thank Drs. Richard E. Marsh and Sten Samson for helpful

discussions and encouragement.
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Definition of triple products and sums of triple products.

S =

hx ky 1z

cos2n

hy kz {Ix

S = sin2m

hz kx

Ly

Chx*Cky-Clz + Chy*Ckz+Céx + Chz+Ckx*Cly

Shx*Sky-Cfz
Chx-Sky- Stz
Shx-Cky-Sfz
Shx*Sky-St =z

Shx-Cky-Cfz
Chx-Sky-Clz

Chx-Cky- Stz

+ Shy*Skz-Cix
+ Chy*Skz-Sx
+ Shy+*Ckz-S£x
+ Shy-*Skz-Sfx
+ Shy-Ckz-Cix
+ Chy-+Skz-Cex

+ Chy+Ckz-SIx

+ Shz*Skx+Cly
+ Chz-Skx-Sfy
+ Shz-Ckx-Sfy
+ Shz-Skx-Sly
+ Shz-Ckx-Cly
+ Chz+Skx- Cly

+ Chz+Ckx-Sfy

lil

i

il

1l

Group II

hy kx 1z

Chy-Ckx-Cilz
Shy-«Skx-Clz
Chy-Skx-Sfz
Shy-Ckx-Sfz
Shy-* Skx-S{z
Shy - Ck%~Clz
Chy+*Skx-Clz

Chy-Ckx*Sfz

hz ky £x

+ Chz-Cky-Cix
+ Shz" Sky- Clx
+ Chz-Sky-S5£€x
+ Shz.Cky-S¢x
+ Shz-Sky-Sfx
+ Shz-Cky-Céx
+ Chz-Sky-Cfx

+ Chz-Cky-Stx

hx kz

Ly
+ Chx*Ckz*Cly

+ Shx-Skz-Cly
+ Chx-Skz+*S8ly
+ Shx+Ckz+S{ly
+ Shx-Skz-Sfy
+ Shx-Ckz-Cly
+ Chx-Skz-Cly

+ Chx-Ckz- Sy

n

1]
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Table 2. Derivatives of triple products. All derivatives to be multi-
plied by 2m. For example, read hml = 2m hml.

x y z

Group 1 Group II x y z
cl ~hml -kol -fgl dl -kpl -hnl -frl
c2 -£q2 -hm?2 ko2 d2 -fr2 -kp2 -hr2
c3d -ko3 -£33 <hm3 d3 -hn3 -4r3 -kp3
el hol kml -kl fl +knl hpl -£21
el -2k2 ho2 km2 £2 -£L2 kn2 hp2
e3 +km3 -4 k3 ho3 f3 hp3 -223 kn3
gl  -hkl kql fol hl krl -ht 1 2ol
ga £02 ~hk2 ~kq2 h2 ip2 kr2 -ht 2
g3 kg3 £03 ~hk3 h3 -ht 3 £p3 kr3
il hql -kkl tml jl ~kf 1 hrl Inl
{2 2m2 hg2 -kk2 j2 n2 -kg 2 hr2
i3 ~kk3 2m3 hqg3 i3 hr3 In3 -k£3
kl hgl kil fel 21 kjl hhl ££1
k2 de2 hg2 ki2 22 212 kj2 hh2
k3 ki3 ‘ge3 hg3 13 hh3 213 kj3
ml hecl -kel -£il nl -kfl hdl -£jl
m2 -£i2 hc2 -ke?2 n2 =£j2 «kf2 hd2
m3 -ke3 -2i3 he3 n3 hd3 -£33 -kf3
ol -hel kel -1 1 kdl -hil -f£hl
o2 ~dg2 <he2 ke2 pd -gh2 kd2 =hf2
o3 ke3 -£g3 ~-he3 p3 ~-hf3 -fh3 kd3
ql ~hil -kgl fcl rl ~khl ~hjl +2d1
q2 2c2 -hiz kg2 T2 242 =kh2 =hj2
g3 ~kg3 2c3 <hi3 r3 ~hj3 243 =kh3

Note the cyclic relationship.
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Table 3. A tabulation of the cubic space groups according to index

parities.
*
Space Group Pe Flanes A B
Tl-PZ3 4 All planes C -K
TZ-FZB 16 h, k, £ all even or all odd C -K
13123 B hakein2n c K
T4-P213 4 h+k k+2
n 2n C -K
2n 2n + 1 -G M
2n + 1 2n -1 O
2n + 1 2n + 1 -E @]
72,3 8 htk+f=h k
2n, 2n 2n C =K
2n 2n + 1 -1 (8]
2n + 1 2n -5 Q
2n + 1 2n + 1 -G M
A
1
Th -Pm3 8* All planes C
Thz-Pn3 8 h+k k+42
2n 2n G
2n 2n + 1 -E
Z2n + 1 2n -G
2n + 1 2n + 1 -]
T 3-Fm3 32 h, k, £ all even or all odd C
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Table 3. (continued) (2)

Space Group Pe Planes A
Th4—Fd3 16 h+k k+2 2 +h
4n 4n 4n 2C
4n 4n + 2 4n + 2 -2E
4n + 2 4n 4n + 2 -2G
4n + 2 4n + 2 4n =21
4n 4n 4n + 2 C-E-G+I
4n 4n + 2 4n C=-E+G-I
4n + 2 4n 4n C+E-G-1
4n + 2 4n + 2 4n + 2 ~C-E-G-I
Th5-1m3 16 h+k+2 =2n C
Thb-Pa3 8 h+k k+12
2n 2n C
2n z2n + 1 -G
2n + 1 Z2n -1
2n + 1 2n + 1 -E
Th7-la3 16 h+k+t= h k
2n 2n 2n C
Z2n 2n 4+ 1 -1
2n + 1 2n -E
2n + 1 2n + 1 -G
A B
1
O -F432 4 All planes C+D -K+L
OZ-P4Z3Z 4 h+k+4 =2n C+D -K+L
h+k+2 =2n+1 C-D -K-L
03-5‘432 16 h, k, 2 all even or all odd C+D -K+L
04-5'4132 16  h, ko h+k+t
all e en 4n C+D -K+L
all odd 4n + 1 C-L -K+D
all even 4n + 2 C-D -K-L
all odd 4n + 3 C+L -K=D
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Space Group pc Planes A B
0’1432 8 h+k+{8 =2n C+D -K+L
06-1:-4332 4 h k £ hik+s
(1) zn 2n 2n 4n C+D -K+L
(2) 2n+l1 2n+4l 2n+l 4n+l C-L -K+D
(3) 2n 2n 2n 4n+2 C-D -K-L
(4) 2n+l1 2n+l 2n+l 4n43 C+L -K-D
(5) 2n+1 2n+1 2n 4n -G-J M-P
(6) 2n 2n 2n+l  4n+l -G+P M-J
(7) 2n+l1 2n+l 2n 4n+42 -GH4J M+P
(8) 2n . 2n 2n+l  4n+3 -G-P M+J
(9) 2n 2n+l 2n+l 4n =1-F O-R
(10) 2n+l 2n 2n 4n+l <I4R O-F
(11) 2n 2n+l 2n+l  4n+2 -I+F O+R
(12) 2n+l 2n 2n 4n+3 -I-R O+F
(13) 2n+l 2n 2n+l  4n -E-H O=N
(14) 2n 2n+l  2n 4n+l -E+N Q-H
(15) 2n+l 2n 2n+l  4n+2 -E+H Q+N
(16) 2n Z2n+l  2n 4n+3 -E-N Q+H
07-P4132 4 See 06. parity condition
(1) C+D -K+L
%z) C+L -K-D
3) C-D -K-L
(4) C-L -K+D
(5) -G-J M-FP
(6) ~G-P M+J
(7) -G+J M+F
(8) -G+FP M-J
(9) -1-F O-R
(10) -I-R O+F
(11) -I+F O+R
(12) -I+R O-F
(13) -E-H Q-N
(14) -E-N Q+H
(15) -E+H Q+N
(16) -E+N Q-H
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Space Group pc Planes A B
8
O -14,32 8 h k 3 htk+g
2n 2n 2n 4n C+D -K+L
Zn 2n+l 2n+1l 4n -]=-F O=R
2n+1l 2n 2n+l 4n -E-H Q-N
2n+l 2n4+1l 2n 4n -G-J M-P
2n 2n - 2n 4n+2 C-D -K-L
2n 2n+1 2n+1l 4n+2 I+ O+R
2n+l 2n 2n+l  4n+42 -E+H Q+N
2n+l 2n+l 2n 4n+2 -G+J M+P
T; - P43m 4 All planes C+D -K-L
T(zi - F43m 16 h, k, £ 2all even or all odd C+C -K-L
T2-143m 8 h+k+2 =2n C+D -K-L
Tj - P43n 4 h+k+2=2n C+D T
h+k+2 =2n+1 C-D -K+L
TZ - Fid3c 16 h, k, £ all even C+4D <K=L
h, k, £ all odd Cc-D -K+L
Tg - 1434 8 h k 3 htk+f
2n 2n 2n 4n C+D -K-L
2n Zn+l 2n+l 4n l=F O+R
Z2n+l 2n 2n+1l 4n -E-H O+N
2n+l Zn+l 2n 4n -G=J M+P
2n 2n 2n 4n+2 C-D -K+L
2n 2n+l Znt+l 4n+2 =I+F O-R
2n+l 2n Zn+l 4n+2 -E+H Q=N
2n+1l 2n+l 2n 4n+2 -G+J M-F
A
O, '=FPm3m 8 All planes C+D
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Table 3. (continued) (5)

Space Group pc Planes A
o 2 5
h -FPn3n 8 h k 1
2n 2n 2n C+D
2n 2n+1 2n+l -G-H
2n+l Z2n+l 2n ~E-F
2n+l 2n 2n+l ~1-J
2n+1l zn+l 2n+l CcC-D
2n+l 2n 2n -G+H
2n 2n 2n+l -E+F
2n 2n+l 2n -I4+J
0h3-Pm3n 8 h+k+4 =2n C+D
h+k +2 =2n+1 C-D
Oh4-Pn3m 8 _lih m
2n 2n C+D
2n 2n+l -E-F
2n+1l 2n -G-H
2n+1l 2n+1l -[=J
OhS-FmSm 32 h, k, £ all even or all odd C+D
Ohb-FmSC 32 h, k, £ all even C+D
h, k, £ all odd C-D
Oh7 «Fd3m 16 h+k k+t 2+h
4n 4n 4n 2(C+D)
4n 4n+2  4n+42 -2(E+F)
4n+2 4n 4n+2 -2(G+H)
4n+42 4n+2  4n -2(1+J3)
4n 4n 4n+2 (C-E-GH
+D -F -H+J)
4n 4n+2 4n (C-E+G-1
+D -F+H -J)
in+2 4n 4n (C+E-G-1
+D+F -H=J)
4n+2  4n+2  4n+2 ~(C+E+G+]

+D+F+H+J)
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Table 3. (continued) (6)

Space Group Pe FPlanes A
Oh8 -Fd3c 16 htk k+g £+h
4n 4n 4n 2(Cc+p)
4n 4n+2 4n+2 -2(E+F)
4n+2  4n 4n+2 -2(G+H)
4n+2 4n+2 4n -2(1+3)
4n 4n 4n+2 ~(C-E+G-1
-D+F -H+J)
4n 4n+2 4n -(C+E-G-I
D -F+H+J)
4n42 4n 4n -(C-E-G+I
“DFF+H-J)
4n+2 4n+2  4n+2 -(C+E+G+H
-D-F-H-J)
Ohg =Ira3m 16 h+k+2 =2n C+D
10
Oh -Ja3d 16 ) k 4 h+k+4
2n 2n 2n 4n C+D
2n 2n+l 2n+l 4n I=1
2n+1l 2n 2n+l 4n -E-H
2n+l 2n+l 2n 4n -G-J
2n 2n 2n 4n+2 C-D
2n 2n+l 2n+1l 4n+2 -1+
2n+! 2n 2n+1l 4dn+2 -E+H
Z2n+1 Zn+1l 2n 4n+2 -G+J

t p_ is the factor by which A and B must be multiplied to give
contribution of entire unit cell.
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IVv. I propose that the trial structure defined below be used as a
starting point in a refinement of the crystal structure of the yl-pha.se

compound of the nickel-cadmium system.

Space group T, - P43m
Atomic parameters

4 Ni in 4e) a,a,a; .... witha =0.1¢6

4 Cd in 4{e) b,b,b; .... withb =-0,169

& Cdin &(f) c,0,0; .... withec =0.342

12 Cd in 14(h) d,d,e; .... withd =0,312
e = 0,047

1 Cdin I(b) %32

4 Ni in 4e) f£,f,f; .... withf =0.314

¢ Ni in 6(f) g,%%;.... withg=0.799

1< Cd in 14(h) h,h,i; .... withh =0.796

i =0.547

14 Ni and 35 Cd (28.¢ at. % Ni)

Lihl and Buhl (1) reported the Y, phase of the nickel-cadmium
system to be homogeneous between about 49 and 49.5 at. % Ni with a
y-brass type structure. I propose that the structure is essentially
defined by the trial structure given above; the trial structure is not

a y-brass type.
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In an ingot whose overall composition was approximately
55 at. % Ni, I found a cubic crystal with a cell edge of 2, ¥ 9.74&,

which corresponds very closely to the value for a_ of 9.675 A reported

0
by Lihl and Buhl for the Y, phase. 1 have obtained an almost complete
three-dimensional set of intensity data from equi-inclination Weissen-
berg photographs. The intensities were estimated with great haste,
corrected for Lorentz and polarization efiects, and correlated to obtain
a list of structure factors on the same scale.

The first structure-factor lecast-squares refinement cycle on
the basis of the proposed trial structure gave an agreement index of
R = 0.29; and a second cycle reduced this to R = 0.26. An electron=
density map of the (110) plane was then calculated, and the map
indicated no serious error in the trial structure. At a corresponding

stage (R = 0.28) in the refinement of "NiSZn " (2), an electron-

2i
density map was calculated which immediately indicated the error
in the trial structure.

I must admit that the observed structure factors used in these
calculations are probably of poor gquality because of the haste in which
they were obtained. Furthermore, the trial structure that I have
proposed may be based on an incorrect composition. The occupancy

of possible positions was assigned to give an overall composition of

approximately 29% as reported by Lihl and Buhl. An experimental
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composition has not been obtained by me; however, these preliminary
calculations indicate no change in the assigned occupancies.

In spite of this, I assert that the geometrical structure is
essentially correct. As indicated above, the electron-density map
contained no spurious peaks; furthermore, there was a negative peak
at the position where one would expect a peak if the structure were a
y-brass structure as reported by Lihl and Buhl. A y-brass type trial
structure was constructed after the above calculations were carried

out; a few least squares cycles have brought the agreement index only

to R = 0. 40.
References
k. F. Lihl and E. Buhl, Z. Metallkunde, 46, 787-791 (1955).

P This thesis, Part III.
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V. 1 propose that the crystal structure of "Cu9A14" be carefully
investigated to determine its structure and to determine its ideal
composition.

The crystal structure and composition of ”Cu9A14" are very
important since "Cu9A14“ and CuSZnB, y brass, seem to have given
rise to the class of electron compounds known as the y-brass type
compounds. Ekman (1), using the powder method, found several alloys
to be isotypic with y brass. He assigned them ideal compositions which
give the ratio of valence electrons to atoms a value of 21/13. He felt
that this ratio of electrons to atorns was instrumental in determining

a y-brass type structure, since the only two y-brass structures known

at that ime were "CugAIA“ and CuSZn , which both exhibit an electron:

8

atom ratio of 21: 13 if copper is assumed to be univalent, zinc divalent,
and aluminum trivalent. Since that time, many alloys have been
reported as y-brass types, and all have ideal compositions. which

give electron:atorn ratios of 21:13. Hume-Rothery and Raynor (2)
state: ''Thus, the so-called 'y-brass' structure occurs at an electrom:
atom ratio of 21:13." This sort of statement is commonly called a
Hume-Rothery rule. They list 26 alloys with a y-brass type structure.

Because of the work reported in parts II and III of this thesis, ”NiSCdzl“

and "NiSZn4" can be removed from that list. I have examined the

"and "Ni_Zn__ " where it

literature, drawing analogies to ''Ni 1 52751

592
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seemed appropriate, and I have concluded that there is sufficient evi-
dence to remove 14 other alloys from that list, reducing the number
from 26 to 10. I am willing to admit that five of these can occur with
y-brass type structures at electron:atom ratios of 21:13. It seems
that the classification of y-brass compounds will break down under
careful scrutiny.

I assert that.“CugAl‘*” becarne such and has persisted as such
on the basis of fallacious reasoning and in contradiction to known
experimental facts. In doing so, 1 necessarily assert that the y-brass
clasgsification was based on unsound logic from the very beginning.
My reasons are pointed out in the following analysis of Bradley's
determination (3) of the crystal structure of "Cu9A14“ . All of the
quotfas are from his paper. At the time Bradley wrote this, the
copper-alu@num phase with which he worked was called the 8§ -phase.

Bradley derived the crystal structure of "Cu9A14" in the
following manner. Powder photographs of the 6 - Cu-Al phase were
sirmnilar to those of CuS—Zna. However, the differences in the photoe
graphes were sufficiently marked to indicate that ''the structures are
not quite the same in every respect.' The relative intensities of the
Cu52n8 photographs were not in every sense the same as those of
corresponding lines of the § - Cu~Al pliotographs. There were, mores=

over, additional lines on the 8§ - Cu-Al photographs corresponding to

reflections with h + k + £ = 2n + 1, indicating that the unit cube is
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primitive and not body centered. He states, with his emphases,
"intensity changes cannot be accounted for by supposing that the

positions of the atoms have suffered a slight displacement, the effect

of which would be to produce a slight change in the least deviated
reflections and a much larger change in the most deviated reflections.
This is just the reverse of what one observes. Itis therefore safe to
conclude that the atoms, as a whole, occupy almost identical positions
in the two alloys.'' I don't follow his reasoning in t.hg first sentence,
but I want to emphasize ''slight" instead of '"displacement.' Here he
makes his {irst fallacious assumption, that any displacement is a slight
one; he does not consider that there may be major changes in a few
of the positions.

He reasons further that the primitive cell can be based on 8

independent sets of atoms, constituting 52 atoms in the unit cube as

in CuSZnB.

The 8 sets and their coordinates are:

‘at® +a,¥ +a,% +a; etc., a = 0.10

4el ata,a,a; etc., and 431 3

492 at b,b,b; etc., and 4e2' at # + b, % + b,% + bjetc., b=0, 167

6f at c,0,0; etc., and 6f' at & + c,#,%; etc., c= 0.358

12h at d,d, e; etc., and 12h' a.t'b +d,2+d, 2 +e;etc., d= 0.305

As one can see, he has preserved the body-centering translation, as

far as the geometry is concerned; we will soon see that he makes this
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a primitive structure by assigning the aluminum atoms to two sets
which are not related by the body-centering translation of #%%.
However, this is where he makes a second fallacious assumption, and
a serious one. Any change in occupancy from a perfect body -centered
cell will destroy the geometrical translation of #3#%. Yet this highly

idealized model is recorded as structure type D8_ and several alloys

3
have been assigned the same structure (4). He is justified in making
crude calculations on such a proposal, but he is not justified in dis-
tinguishing between small differences, which he does immediately.
Bradley next turns to the problem of fitting the aluminum atoms
into the eight possible sets of atoms. This is the crucial part, for
this is where the ideal composition is fixed and where, hence, the
electrontatom ratio of 21:13 may h;ave been conceived, though another
investigator had to deliver it.
Because the composition of the alloys with which he worked
varied from approximately 31-35.3 at. % Al (he later fixed the homo-
geneity range as 31.3-35.3 at. % Al (5) ), he assumed the ideal com-

position to correspond either to Cu (30.8 at. % Al) or to Cu

o™la 17
(34.6 at. % Al). He lists the possible ways of building up the structure,

using the 8 sets of atoms given above:



203

a) for Cu9A14, Cu36A116

1) 1
(1) 461; 401 » 4’02: 4ez

(2) 12h, 4e,

(3) 12h, e’

(4) 12h, 4e,

(5) 12h, 4e,’

(6) 6f, 6f', e

(7) 6f, 6f', 4e

2
b) for Cu17A19. Cu34AllB
(8) 12h, 6f
(9) 12h, 6f'

For Cu34A118. he has not considered the possibilities,

) ]
(10) ef, 4e1. 431 . 4e2

1] 1
(11) 6£n 4010 4el » 432

L}
(12) eof, 43‘. 462. 462

] 1]
(13) 6f, 43: . 4020 432 -

This oversight marks his third fallacious assumption; he
considers only 9 of the 13 possible arrangements.
He then eliminates all but (3) and (4) as possible solutions. He

does this by calculating quantities proportional to the in-tensities for the
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powder lines representing reflections from planes with h+ k + £ =2n+];
he does this so that he has to consider only the differences in scattering
between copper and aluminum. The basis for his rejection of (8) as

a possible atomic arrangement is worth considering. 1 list the
observed intensities for the 13 powder lines which he considered and

the quantities proportional to the intensities, calculated on the basis of

structures (3) and (8).

i gt Ol oy
3 - 2 8
m. 10 5
9 m. 23 39
11 - - 3
13 - 0 1
17 - 1 -
19 - 4 4
21 - 1 8
25 - = 1
27 W . 8
29 V.w. 4 1
33 V.W. 10 12
35 - 2 2

(I assume that m. is for medium, w. is for weak, v. w. is for
very weak, and the dash (-) is for unobserved.)
I cannot see how one could reject (8) as a possibility, con=

sidering all the assumptions that were involved. Yet, on this very
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calculation rests the determination of the second y-brass type com-=-

pound, "Cu9A14." Furthermore, the homogeneity range was very

carefully determined as extending from 31.3 to 35.3 at. % Al (5).

The composition corresponding to Cu9A14 is 30.8 at. % Al and lies

cutside the homogeneity range, and the composition corresponding to
Cn”AI9 is 34.6 at. % Al and lies within the range. Yet as late as
1951, Bradley persisted in referring to the y-brass type compound
"Cu9A14” (6).

On the basis of the method that was used to derive the ideal
formaula Cu9A1 4 and on the basis of the experimentally determined

composition,] demand that "Cu9A14" be stricken from the lists of 21:13
compounds and propose that a very careful determination of its structure

and composition be undertaken.
Bradley assumes that the differences in the atomic arrange-
ments between CuSZns and "Cu9A14” are very small and proposes a

highly idealized structure for '"Cu,Al

9 4." He calculates intensities

for a few powder lines for most of the possible atomic arrangements
for this idealized structure and on the basis of the resulting small
differences decides in favor of a composition which is not in the range
of homogeneity. To coin a phrase from Hybl and Marsh (7), ''this

cascade of errors culminates' in another Hume~Rothery rule.
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