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.AB3TRACT 

I. The crystal and molecular structure of bis -indenylruthenium 

was determined by X -ray crystallographic methods . Crystals o£ 

bis - indenylruthenium are monoclinic with four m olecules per unit 

cell in space grou;.) P Zl/a· The indenyl groups are in the eclipsed 

configuration, and the ruthenium atom is midway between the two 

five-membered rings. Within experimental error, the molecule has 

mm symmetry , and the planar indenyl groups arc parallel. The 

• average Ru - C bond distance is z. 193 A, but the ruthenium atom is 

slightly displaced toward the carbon atoms i n position z. 

n and W. The procedures as well as the result3 o£ the investiga tion 

of the crystal structures of 11 Ni!> Cd
2 1

" and "Ni
5
zn

2
t" are described. 

These compounds have been believed to have crystal atructures very 

closely related to that o£ v brass. This investigation has shown that 

the actual atomic arrangements in these compounds are considerably 

more complicated than was generally assumed. The structures were 

found to differ drastically from that of y brass. 
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I NTRODUCTION 

f- rofes~:tor J . H. R ichards and his research group have 

conducted a series of i nvestigationa on the chemistry of sandwich 

compounds ( 1-5), and, in one of these , Hall ( 5) prepared and isola ted 

bis - indenylruthenium, Ru(c
9

H
7

)
2

. There was speculation as to 

whether the six - membered r ings are ci$ (I), trans {II), or gauche (III) 

in the )referred orientation; Trotter {t) had found the s ix - membered 

I II Ill 

rings h bis - indenyliron to be gauche . To discover the general 

features of the molecular geometry and to accurately define the 

geometry o[ the carbon framework were the primary objec tive s in 

investigating the crystal structure of bis - indenylruthenium. We were 

especially interested in the bond d istances in the six - membered ring 

because Trotter had re•jorted that the c
5
-c

6 
bonds in bis-indenyliron 

are eqsentially double bonds . 



Experimental 

i ) Finding crystals and collecting intensity data. 

A sample of bis - indenylruthenium was supplied by M r. David 

Hall of this Institute, and the investigation was started with a crystal 

selected directly from the sample bottle while a portion was being 

recrystallized from ~-hexane. A study of Weissenberg photographs 

taken about the c axis indicated the space group to be P2/a; from 

rotation and 'Nei~senberg photographs the appro:dmate lattice constants 

0 0 • 

were determined to be a= 11.1 A, b = 9.3 A, c = 6 .2 A. and 13 'i: 90•. 

The photographs had a rather disconcerting feature, some of the spots 

being accompanied by diffuse satellite spots. To us , this indicated 

dborder in the crystal, but we will discua:3 thio later. 

The recryatallization from ~-hexane yielded crystals of the 

aame space group as before, but with a unit cell twice as large; the 

lattice constants were app1·oxirnately a = 14. 5 A, b = 14. 0 A c = 6 . 2 A, 

am! a = 94. 3 ° . The cr}'-stab were long and ro..l - like with a truncated-

rectangular eros 3 ;:;ectio~ . One large crystal was selected and cut 

into pieces varying in length from about 0. 1 mm to about 4 mm. Two 

pieces were then used in collecting all of the X - ray data used in this 

investigation. One piece was mounted with the needle a:ds. arbitrarily 

de::;ignated .S• parallel t ::> the rotation axis. The second fragment was 

mounted with the b axis parallel to the rotation axis. The dimensions 
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of both cry s tals were approximately 0. 1 mm along ~ by 0. 07 mm 

along ~· The third dimengion of the crystal mounted for oscillation 

around b was ap;Jroximately 0. 14 mm, and the length along _s for 

the other crystal was 3 or 4 mm. For collecting intensities from this 

long crystal, only the tip was placed in the X -ray beam. 

Multiple-film equi-inclination Weissenberg photographs were 

taken with CuKa radiation for layer lines 0 through 7 about c and for 

layer linea 0 through 12 about b. The intensities were estimated 

visually by comparison with intensity strips prepared from the same 

two crystah. Empirical film factor s were obtained for each pair of 

adjacent films in all sets and were corrected to normal incidence of 

the X-ray beam. The wei ghted average of these factors gave a film 

factor for normal incidence of 3. 75 (Eastman Kodak Medical X -ray 

Film, No Screen). This factor, approp-r-iately modified for the angle 

of incidence of any layer line set , was then used to relate the intensitie 3 

on all films within the set to the f'ir ;;;t film of the set. 

The intensities were corrected for Lorentz and polarization 

effects and compared with values obtained about the other axis 

to obtain correlation iac;tor:J for the various exposures. F inally, F
2 

values -..ere obtained on an arbitrary scale by taking subjectively­

weighted averages of the values observed about the two axes. Alto ­

gether , about ?.710 reflections were covered, of which about 670 were 

too weak to be observed. The observed extinctions, hOl when his odd 
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and OkO when k is odd, indicate the space group P Z/a· 

The crystal used in collecting the data about the c axis was 

slightly twinned, giving rise to a large number of weak satellite 

reflection s . On the first and second layers the satellite reflections 

appeared at p o::Jitions corresponding to indi cea h+..:, ,k, l and hi1- , k, Z, 

and,consequently,did not affect the i ntensities of the primary reflec -

tions; on the third layer, however , the satellite reflections were 

exactly superimposed on the primary reflections . A study of these 

weak reflectiona showed that the twinning occurs in the ( 100) plane, 

as illustrated in figure 1, and that the reciprocal lattice points of the 

two lattices coincide every third layer in t . This coincidence does 

not affect intensities on the zero layer since hkO and hkO are space -

group equivalent; however , the observed intensities (I ) on the third 
0 

layer were not the desired primary intensities (I ). An examination 
p 

of the h03 reflections, which must have zero intensity for the primary 

reflections when h is odd becau se of 3pace - group extinction, indicated 

the twin to be approxi~tely one - twentieth as large as the primary 

crystal, and the following equations were used to deduce the values of 

1 for the hld data: 
p 

1 (hk3) = 1 (hk3) 
0 ]:-· 

I (h+ lk3) = 1 (h+i'k3) 
0 p 

+ . 05 I (h+i'k3) 
p 

+ . OS I (hk3) 
p 
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il) Lattice constants and density. 

A Straumanis -type Weissenberg camera, which has a radius of 

180/n mm and a film travel of a pproximately 23 mm per tao• of 

rotation. was used to collect date.. (X = 1. 54051 A) for a precise deter -

mination of the lattice constants. Two different photographs were taken 

about the b axis to yield measurement of the diffraction angle of hOl 

reflections, from one, and of hOl reflections from the other , and one 

photograph was taken about the c axis for hkO reflections . The 

radiation was Cu Ka 
1

. The lattice parameters were determined by 

a least-squares fit to 

which can be written 

2 2 
a sin e 

2 hl cose 
• 2Q 

ac s1n I ' 

z ( 1 1 ) 4 • zl'\ + E sin ZG O + - :: - s1n " 
sin n X 2 

where the absorption correction e is taken from Nelson and Riley ( 7) . 

We a~sumed that any error due to eccentricity was negligible. The 

observational equations were weighted with w = 1/ s i n l" , and no 

reflections at less than 30° in 0 were ,include<l ,in accord with the 

:.uggestion of Nelson and Riley. 

The results of this least-squares determination of the lattice 

constants are summarh.ed in table 1; the estimated standard deviation::J 

are those given by the least- squares treatment. The averages were 

obtained by weighting the individual results inversely as the square of 

the standard deviations . 
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Table 1. · Lattice constants. 

Data hOl hOI hkO Average 

N• 12 12 8 

a 14. 519 6 14.5147 14.5094 • 14.514A 

<1 • 0012 • 0005 . 0009 • • 005 A 
a 

b 14.0522 14. os2 .A 
• 

CJb . 0001 . 005 A 

• c 6.2293 6 . 2256 6. 229 A 

CJ . 0003 . 0008 • . 004 A 
c 

• a 94. 113 94.098 94 . 10 A 

ere . 203 .07 8 . 2 • 

E (x 10
5

) 13. 9 13. 0 -0. 4 
5 aJ.x 10 . ) 4 .0 3. 1 2.0 

• N is the number of reflections in the least-squares determination. 

The standard deviations given for the average values are subjective 
estimates. 
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• z The twin condition , mentioned above , demands that a /D 

equal the integer 3 becauJe the Mlk3 reflection from the twin and the 

hk3 reflection f r om the parent appear to be exactly superimposed. 

From the lattice parameters in table 1 we calculate 

• z a 
D = 

•z 
- a 

• • 1.a c cos a 
• - a - c = = • Zc cos 6 Za cos S 

= 3. 001 ' 

which is, within experimental error, equal to the integer 3 . 

The density of the cry3tal which was mounted about the c axis 

was measured by the flotation method. The crystal was broken off the 

mounting well above the adhesive and placed in a zinc chloride solution 

whose density was greater than that of the crystal. The solution was 

gradually diluted until the crystal ramained suspended after 3tirring; 

twelve hours later the crystal was !'IUspended about halfway between 

the surface and the bottom of the beaker ( 125 ml, 3/4 full). 

The volume of a 2 ml pycnometer was calibrated by filling with 

diatilled water and weighing; the pycnometer was rinsed twice with 

the zinc chloride solution in which the crystal was suspended, filled 

with that same solution, and then weighed. The density thus obtained 

is 1. 723 g/cc; the density based on the unit cell dimensions and four 

molecules per unit cell is l. 737 r:,/cc. The difference may be due to 

small air pockets on the surface of the crystal. Before the density was 

measu red, the crydtal was examined under the microscope , and i ts 

laces anpeared to be 3lightly etched. 
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Determination and Refinement of the Structure 

i ) Derivation of the tri al structure. 

The positions of the ruthenium atoms in the unit cell were 

readily determined from (001) and ( 010) P atterson projections. The 

observed hkO and hOl structure factors were then given the signs of 

the corresponding ruthenium contributions and used in the preparation 

of electron density pr ojections onto (001) and ( 010), but the carbon 

pos itions could not be deduced. Accordingly , a three - dimensional 

Fourier synthesis was calculated, again with signs assigned to the 

structure factors on the basis of the ruthenium position. The carbon 

positions were now immediately apparent; the compound was indeed a 

sandwich molecule with the ruthenium atom bonded to the five ­

membered rings . 

ii) Refinement. 

The atomic positional parameters as determined from the 

three - dimensional electron- density map were refined through several 

structure - factor least- squares cycles on the Burroughs 220 computer; 

the complete set of data was used. In all structure - factor calculations, 

theatomic scattering curve for carbon was taken as an average of the 

curves given by Berghuis~- ( 8) and Hoerni -lbers ( 9) . The atomi c 

scattering curve for ruthenium was taken from Thomas and Umeda (10); 
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the 6 f' correction for dispersion {Dauben and Templeton, 11 ) was 

included after a few least- squares cycles. Hydrogen atoms were ignored 

in the early stages of refinement , but when they were included in the 

later calculations , the scattering curve of McWeeny {12) was used. 

Estimated isotropic temperature factors of the ruthenium and 

carbon atoms were included in the first set of calculated 9tructure 

factors, which led to an R factor of 0. 185. {The R factor is given 

by R = L n Fo ! - 1 F e II . the sums being over the observed reflections; 
!: lFo I 

the quantity minimized in the least-squares calculations is 

2 2 2 
!: w {Fo - Fe ) . ) After the first cycle the weighting function was 

changed from function I to function U, table 1.. . Refinement waa con-

tinued through the fourth cycle with the a greement between the Fo's 

and Fe ' s improving with each cycle. 

F or the fifth cycle two changes were made: anisotropic tern -

perature factors were assigned to the ruthenium atoms, and the form 

factor curve for ruthenium wa;; partially corrected for dispersion { 11) 

by s..1btracting 0. S electrons but ignoring the 6 f" correction. By 

the end o£ the seventh cycle, the R factor was down to 0 . 094; at this 

point we converted isotropic temperature factors of the carbon atoms 

to anisotropic ones and proceeded with the refinement. The resulting 

shifts led to negative temperature factors (or some of the carbon atoms. 

and at the eleventh cycle the refinement was diverging rather than 

converging . 
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Table z. Wei ghting functions for lea s t-squares . 

( The quantity minimized is 5 z z z 
ru ( F o - F c ) • ) 

hkJ 

(J.I :: W W , 
e 1 

w is a subjective external weight based on the quality of an observa­
ti&n. The usual w ia 1. 00. I f there was only one observation, ./m 
was taken as 0 . 7. !£ there were two observations , / 'll ranged £rome 

e 
0 . 5 , for poor agreement between the two , to 1. 1, for ve ry good agreement, 
unless there was reason for thinking the observation should not be 
included at all--in which case, m = 0. 

1 II) • = 
1 

e 

W. Cochran ( 13) has shown that the weighting fu..nctio~ w = 1/f will 
make the least-squares minimization of L:m ( Fo - Fe) to determine 
atomic coordinate~J equivalent to determination by Fourier synthe~h . 

The weakness i n this function, just as in Fourier aynthesis , is that 
there is no d e pendence on the quality of observation of Fo . 

n II) : 

i 
1 

z 
P + C: ro + R Fo 

This expre;;:don can be used to construct a function which reflects 
the experimentally observed pattern of reliability of Fo ( 14). In this 
_work R was set eq..tal to 0, and the function was used to vary the 
dep~ndence on Fo. As refinement proceeded, more dependence was 
placed 'on Fo by increasing the ratio of Q to .F . 

m 1 
m i = Fo Z for Fo > 4'5' i . 

m rumum 

(J) • = 
1 

1 
-----;or 
4Fo ~ 

min 

Fo < 4"' .. minimum 

This is the square root of weighting function I V. This, of course, 
gives more weight to large Fo 's than IV. This very closely appfox­
imates the Hughes ( 15) scheme for minimization of E w (Fo - Fe) . 
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Table z. (continued) 

IV w. = 
l 

for Fo > 4F . 
nun 

1 
\l.l = 

i 16Fo2 F . 2 
m1n 

for Fo < 4F . 
mln 

Hughea ( 15) used a weighting function based on a ( F o) = Fo for 
;.-~ > 4F i , where F i i:J the smallest Fo which can be estim-

IPn ( rnn ated, ana ~ Fo) = 4F i for Fo <
2
4F i in IT'..inimizing 

'll (Fo- Fc) • To mi~rJlze E m( Fo - f?c~~l · our uncertainties 
should be based on Fo , and we have a (Fo ) = 2 Fo a (Fe) 
Ther~t:ore , ~e converted Hughes weighting

2
scheme h based on 

a {Fo ) = 2Fo for Fo > 4F . and a (Fo ) = 8Fo F . . We 
m1n m1n 

remove the factor of 2 and get the weighting function as listed. 



13 

To halt this divergence , we restored the isotropic temperature 

factors for the carbon atoms as given by the seventh cycle and took 

the atomic coor dinate 9 as given by the tenth cycle . Refinerr:u~nt was 

continued,and after two cycles the compl ete list of observed and calcu-

lated atructure factors was examined for serious discrepancies. I n 

the course of examining 2710 reflections, 37 were found to be weighted 

improperly; all these were reflections which were coV'ered on only one 

set of films and which .:~hould have been weighted as being less than 

!:lome estimabl e minimum. in which case they enter the least- squares 

Jrocess only if Fe> Fo. Their effect on the refinement must have been 

small because the agreement was generally good and because they 

entereu the refinement with Jw = 0. 7 . There were two errors due 
c 

tCi scaling the intensities to the wrong film in a set, and, hence, the 

Fo's were small by a factor of approximately 2 . The two worst err ors 

were in the reflections ( 9 10 1) , Fo/Fc = 16/SZ, and ('i3 11 2), 

'fP o/Fc = 54/ 13 . Errors in transcription were found, and the Fo ' s 

were corr ected to 54 and zo. 

?urther refinement led to convergence at the sixteenth cycle 

with the result depicted by part A of figure Z; the R factor was 0. 085. 

The weighting function was changed to function W . table 2; after three 

least- squares cycles the structure had converged to that illustrated 

in par t B of figure z. with R = 0 . 087. 
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Figure z. The molecular structure at four stages in the refinement 
{see text) . 
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We were not, however, satisfied with the carbon framework 

given by either refinement and decided to calculate a difference ­

Fourier synthesis with coefficients Fo - F Ru in hope of getting a more 

satisfactory structure. The result of the difference-Fourier synthesis 

is given in figure 3. The p oints of maximum electron density were 

determined by least- squares, assuming the dhtribution of density 

i n the neighborhood of the maxim um is given by ( 16) 

log(p) = p + ax
2 + by

2 + cz.
2 + dx + ey + fz + gxy + hyz + ixz 

T h e lea s t-squares fit for each point was to a 3 x 3 x 3 grid centered 

a s closely as pOS$ible to the p ·:>int of apparent m aximum density. The 

resulting structure ia given in part C of fi gure 2 . In the three­

dimensional plot of the electron d e n sity the carbon atoms were clearly 

defined even in the p resence of the heavy atom. T he definition of the 

carbon atoms suggested that the hydrogen atoms might be resolvable 

and that their contributions might be significant in the structure-factor 

calculations . No attempt was mad e to locate the h ydrogen atoms by a 

difference - Fourier synthesis, but we did calculate their positions and 

included their contributions in the ens uing structure -factor calculations 

but not in the least- squares refinement. A hydrog en atom was placed 

1. 06 J... from each carbon atom , excent c
8 

and c
9

, on line with that 

atom and the center of the ring. The temperature factor of a hydrogen 
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atom was taken as one unit greater than that of its attached carbon 

atom . Both the temperature factors and the coordinates of the hydrogen 

atoms were duly changed in parallel with the carbon atoms as the 

refinement proceeded. 

Least- squares refinement was continued, starting with the 

atomic coordinates given by the difference - Fourier synthesis , with the 

temperature factors as given by the last least- squares cycle, and with 

weighting function I of table 2; however, some of the shifts seemed to 

be in the wrong direction. (At this point we felt that we knew approxi • 

mately how the structure should change , for although we did not know 

what the bond distances should be, we felt that the molecule should 

have mm symmetry .) We also discovered and corrected a serious 

error, the 'Fo of reflection (9 1 2) being changed from 13. 9 to 81.9 

(Fe = 64. 3) . This error, which had been made in converting intensities 

to struc ture factors, was 9imply overlooked in the previ ous checks . 

We changed tc weighting function Ill of table 2 and again started 

the refi nement with the coordinates from the difference - Fourier syn ­

thesis . The R factor of the first cycle was 0 . 071 --a significant 

improvement from 0. 085. the R factor before the difference- Fourier . 

After four more cycles (number 3 21-24) , the refinement had converged 

(R = 0 . 064) to structureD, figure 2 . This structure , however , did not 

a pproach mm symmetry as closely as that given by the difference -
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Fourier synthesis; for that reason we changed to weighting function IV 

of table 2 and continued refinement. 

After five more least-squares cycles all shifh were below about 

lOo/o of the standard deviations, and we stopped refinement with 

R = 0. 0596. The final atomic coordinates and temperature factors 

and their .;ttandard deviations are given in the last two columns of 

table 3, which is a summary of the course of refinement. The bond 

distances and bond angles calculated from these atomic coordinates 

are shown in figure 4. 

It seems that there are four places where we could have stopped 

refinement; each possible stopping point is represented by a structure 

in figure 2. We felt at each of the first three stages, however, that 

the actual structure was slightly different from the one at hand, and 

we acted accordingly. 

iii) Behavior of unobser ved reflections 

Of about 670 reflections which were too weak to be observed, 

74 calculated larger than the observable minimum, F min. All the 

unobserved reflections are i ncluded i n the list of observed and calcu­

lated structure factors in table 4 . The largest observed structure 

factor is for the ( 111) reflection, 196 electrons out of 663 in the unit 

cell; the average value of F min is 7. 24 electrons with a maximum of 

11. 30 and a minimum of 3. 07. The average ~ F for these 74 reflec­

tions is 1. 11 electrons, and the largest fl F is 3. 82 electrons. The 

average ~ F /Fo ratio is 0. 18, and the large~t is 0. 80 (2. 95/3. 69). 
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Table 3 . 3ummary o~ refinement. 

Cycle 1 Fo !: Fe R 

6 t9778 ()8777 . 094 2341 2362 

12 66788 67446 • 090 H6 1 2242 

16 68678 67 135 . 08S 2217 l214 

19 68821 66995 . 087 2941 290Z 

24 68453 67 344 . 064 290 . 

29 66385 t5926 • 0{.0 1320 1324 

N ** 

. 056 2185 

. 065 2174 

. 039 2136 

. 049 2132 

2122 

• Ol5 2111 

**** (w /w) '" 
e 

l. 0+. 05 Fo 

1. 8+. 05 Fo 

1. 8+. 05 Fo 

Fo 

Fo 

*~wFo 4 
and ":wFc 

4 
are on the :1ame arbitrary scale for cycles 6, 

12, and 16 , on the absolute scale for times 103 for 19 and 24, and 
">n the absolute scale for t..l-te final cycle ( 29). 

** The number of reflections in the leaat- squares refinement. 

***The weighti"lg function remained con.atant between the desi gnated 
cycle :1 . 

2 2 
2 

4 
R ' = .... w (Fo - Fe ) I ~wro 

In the remainder oi the table the parameters given are those produced 
by the designated cycle. The decimal noints in the frac tional co­
ordinates are omitted except in the final coordinates and the standard 
deviations . The coordinates in the cycle column labelled S were 
obtained from the iir st three - dimensional Fourier synthesis, and in 
the column labelled DF, from the difference - Fourier synthe,;i s . The 
i sotro')ic temperature factor3 , B, are i n A - l units , and the aniso ­
tr opic temperature factor d , i::1 the form 

T = exp - fNhl + Sk 2 +yl 2 + 6hlc + ehl + 11k1] , 

of the ruthenium atom are dimensionle ss and m ultiplied by 10
5

. Atoms 
which would be equivalent if the molecule has mm symmetry are 
grouped together . 

The primed positions are in ri"!:;! II, the unpri!ned in ring I. 
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Table 3 {continued - 2.) 

s 6 12. 16 19 DF 24 Final C1 

Ru 
X 166 1651 1651 1652. 1652 1652. . 16520 . 00003 

y 036 0348 0346 0346 0346 same 0346 . 03459 . 00003 

z 252 2638 2636 2637 2637 as 2636 . 26366 . 00008 

(')' 231 258 2.56 .261 19 236 242. 7 2. 7 

I' 275 269 264 255 271 279.0 3.2 

y 1420 1550 1590 1634 1667 1796. 2 16 . 7 

6 9 . 4 14. 2 7. 5 4 . 7 8. 5 10.0 4. 1 

8 116 109 129 147 60 55 . 9 8 . 2 

11 0.7 -35 -27 - 20 -16 - 9 . 0 9.3 

C ( 2) 

X 084 0854 0854 0850 0861 0905 0882 . 09037 .00060 

y 148 1511 15.14 1524 1529 1541 1541 . 15444 .00061 

z 421 3863 3838 3830 3824 3840 3840 .38416 . 00135 

B 3.00 3 . 08 3.24 3 . 71 3.59 3.59 4. 12 3 . 677 . 222 

C ( 2)' 

X 078 0807 0799 0818 0861 0834 0797 . 08117 . 00064 

y - 094 - 0944 - 0941 - 0936 - 0940 - 0925 - 0918 - .09186 . 00071 

z 248 2128 2063 2058 2110 2060 2000 . 20492 . 00146 

B 3.00 3. 16 3.68 4. 71 4 . 86 4 . 86 4.22 4.232. • 251 
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Table 3 (continued - 3) 

s 6 12 16 19 DF 24 F inal 

C( 1) 

X 127 1Z:l 6 1217 1221 1237 1277 1246 . 126 19 . 00062 

y 175 18 13 1817 1811 1808 1809 1815 . 18084 . 00066 

z 209 1873 1871 1874 1876 1896 1885 . 188 17 .00142 

B 3.00 3. 17 3.55 3.81 3. 72. 3. 7 2 4.04 4 .006 . 236 

C ( 1)' 

X 121 1210 1189 1178 1204 1192 11 59 . 11735 • 00063 

y -067 - 0649 -0645 -0641 - 0641 -0645 -0646 -. 06414 • 00064 

z 035 0130 0105 0083 0124 0087 0067 . 00952 . 001 44 

B 3.00 3.07 3.40 4. 15 4 . 53 4.53 3.59 3.899 • 245 

C( 3) 

X 163 1617 1613 1609 1614 1640 1628 . 16338 .00055 

y 130 1314 1314 1315 1309 1312 1316 • 13054 . 0005 5 

z 529 5354 5382 5384 5382 5362 5386 . 53986 .00126 

B 3.00 2. 93 2. 73 2. 56 2. 61 2. 6 1 3.09 3 . 282 . 203 

C(3) I 

X 157 1595 1590 1605 1621 1572 1553 . 15601 .00052 

y -11 2 - 1170 -11 7') - 1163 - 1158 -11 40 -1148 - . 11442 . 00057 

z 355 3703 3729 3734 375 1 3643 3616 . 36053 .00124 

B 3.00 2.89 2. 62 2. 46 2. 61 t. . 61 2. 47 3 . 2 13 . 202 
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Table 3 (continued - 4) 

s 6 12 16 19 DF 24 Final (J 

C(S) 

X 232 2254 2236 2233 2235 2237 22 16 • 223 17 .00052 

y 170 1770 1791 1782 1776 1768 1783 . 17820 .00056 

z 211 2175 2195 2193 2199 2208 2190 . 21882 . 00119 

3 3 . 00 2.94 2.69 2. 13 2. 19 z. 19 2.49 3 . 091 . 192 

C(8)' 

X 226 2133 2138 2125 2120 2138 2139 .21512 . 00054 

y -072 - 0734 - 0732 - 0727 - 0724 - 0709 - 0713 -. 07173 .00056 

z 037 0313 0331 0309 0305 0377 0336 . 03456 . 00124 

B 3.00 2.93 2.77 1. 95 1. 87 1. 87 2. 12 3 . 155 . 206 

C (9) 

X 253 2535 2525 2517 ~524 l483 2485 . 24844 . 00049 

y 143 1477 1481 1470 1468 1460 1460 . 14645 .00049 

z 437 44-16 4449 4434 4435 4353 4366 . 43607 .00108 

B 3 . 00 3.05 3 . 10 z . 61 2 . 51 z.s1 2.42 2 . 589 . 181 

C (9) I 

X 247 2333 2351 2367 2368 2387 2413 . 24044 .00049 

y - 098 -103Z-1018 - 1018-1021-1017-1024 -. 10267 .00054 

::!: l63 2511 2478 2490 2479 2523 2536 . 25117 . 00113 

B 3.00 2.81 1. 96 l. 12 1. 4 1 1. 41 1. 67 2.846 • 182 
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Table 3 {continued - 5) 

3 6 12 16 19 DF 24 Final 

C( 7) 

X 302 2936 2931 2931 2925 2951 2957 . 29553 . 00058 

y 197 1989 1989 1994 1990 1954 1984 . 19810 . 00057 

z 059 0686 0685 068 1 0683 0760 0749 . 07593 . 00134 

B 3. 00 3 . 00 3.00 3.01 3. 24 3.24 3.45 3 . 688 . 2l8 

C(7)' 

X 296 2\}35 2933 l928 l928 2885 2883 . 287 15 . 00052 

y - 045 - 0542 - OS43 - 054-l - 0539 - 0533 - 0541 - .05290 . 00056 

z - 115 - 1039 - 104l -1060 - 1040 -1038 - 1088 -. 10734 • 00119 

B 3. 00 2. 93 2.6l 2.07 2. 19 2. 19 2.81 3.472 • 192 

C(4) 

X 337 3497 3493 3493 3508 3434 3437 .34365 . 00056 

y 132 1346 1349 134.S 1346 1354 1349 . 13469 . 00057 

z 518 5178 5157 5140 5168 5061 5065 . 50834 .00129 

B 3 . 00 3. i 7 3.58 4 . 19 4..\"o 30 4. 30 3. 37 3.343 . 206 

C(4)' 

X 331 3299 3302 3314 3307 3320 3349 . 33426 • 00059 

y - 110 - 1165 - 1162 -1167 - 1165 - 1157 - 1165 -. 1160<! .00061 

z 344 3206 3193 3227 321.~ 3221 3256 .32438 . 00140 

B 3. 00 3.00 2.95 .!..79 2. 95 2.95 3.24 3.745 .226 
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Table 3 (continued - 6) 

3 6 12 16 19 DF 24 Final 

C (6) 

X 3 85 3831 3845 3849 3834 3845 3863 . 38546 • 00065 

y 179 1857 1856 1858 1852 1845 1855 . 18388 . 00070 

z 143 144 1 1443 1449 1436 1479 1497 • 14991 . 00151 

B 3.00 3 . 14 3.63 4 . 73 4 . 77 4 .77 4 . 95 4 .381 • 254 

C (6)' 

X 379 3826 3831 3830 3834 3771 3770 .376 15 .00069 

y -063 -0677 -0668 - 0666 - 0662 - 0653 - 0662 -. 06477 .00068 

z -029 -01 65 -0177 -0212 -02.04 -0282 -0292 -. 02994 . 00154 

B 3.00 3.05 3.06 3 . 29 3.39 3.28 3.84 4 .323 .268 

C( 5) 

X 4 11 4 11 8 4125 4137 4131 4087 4102 . 40774 .00061 

y 147 1518 1525 1531 1527 1515 1533 . 15253 . 00067 

z 362 3656 3640 3648 3656 3647 3643 . 36423 . 00141 

B 3.00 3 . 15 3.65 4 . 32 4.03 4.03 4 . 48 3.921 . 235 

C ( 5)' 

X 405 407 1 4046 4024: 4001 4003 4002 .39957 .00065 

y -095 -0956 -0956 -0948 - 0954 -0965 - 0941 -.09459 .00070 

z 188 1894 1834 1814 1904 1826 1789 • 18158 .00151 

B 3.00 3.21 3.89 5 . 22 5.50 5.50 4. 18 3.937 • 254 
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Figure 4. Final bond distances and angles. 

7 I 4 7 IT 

6 /-42/ 5 

37·8 

118· 7 118 3 116·9 
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iv) Possible sources of error: 

a ) Absorption and extinction . 

We have made no correction for absorption or extinction. 

Either absorption effects must be very small or compensation for 

absorption has been made by the temperature factors; we observe 

no 3ystematic trends in the discrepancies between the Fo 1 s and Fe 1 s . 

Extinction is evident in two reflection e , which are characterized as 

follows: 

reflection Fo 

200 151.4 

020 118. 8 

Fe F/~""'o 

- 187.7 . l3 '~ 

154. 7 • 294 

w 
e 

1.0 

0. 6 

Because of the weighting function employed in the last stages of refine -

4 
ment, w oe 1/ Fo • these reflections had a low weight compared to the 

average reflection (average Fo = 32. 6), and their influence on the 

structure should be very small . 

b ) Scattering curve of ruthenium. 

We compared the scattering curve of ruthenium used in our cal -

culations ( Thomas - Umeda , 10) with an empirical scattering curve which 

would fit our data. We did this by obtaining I F I and 1 I Foi - l Fc - F 11 
Ru Ru 

for each reflection and collecting sums of both quantities as a function of 

sin~e, where F h the ruthenium contribution to l"c and Fe -F is the 
Ru Ru 

sum of the carbon and hydrogen contribution to Fe. The two absolute 

quantitie3 should be approximately equal and differences in their sums 
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should reflect systematic errors in the Fo 's or errors in the theoretical 

scattering curve, or both. We compiled table 5 during the last least­

squares cycle and ;>lotted the results in figure 5. We used the Thomas­

Umeda scattering curve as a base and employed the corrections 

indicated by table 5 and figure 5 to derive an empirical scattering 

curve and plotted the curve i n figure 6. The 'curve looks unreasonable 

in the region from 0. 60 to 0. 75 in ain2 ~"; in this region the scattering 

power increases as sin2~ increases. This may be experimental error 

since this is the region of sin2
A where reflections began to be resolved 

into the ry 
1 

and ry 
2 

components. 

Discussion of Results 

i) Molecular structure: 

a) Bond distances and angles. 

The final bond distances and bond angles have been given in 

figure 4 . Tables 6 and 7 list the distances and angles along with their 

averages for a molecule of mm symmetry; other information to be 

discussed below is also given in table 6. Much more will be said 

about the bond distances in the discussions that follow . These tables 

are p resented at this time primarily for reference. 

Two features of the molecular structure should be emphasized. 

First, the ruthenium atom is not on the axis joining the center 8 of the 

two five-membered rings but is displaced by a small but significant 
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Table 5 . Data for empirical scattering curve. 

2 
r; IF R I ED ElF 1/'f.D sin ecu N 
N u N N Ru N 

0 -0 . 1 89 5718. 4 5825.5 1. 020• 

0. 1- 0 . 2 160 8011.8 7955. 3 . 993 

0. 2 -0. 3 178 7405 . 7 7405 . 1 1. 000 

0. 3 - 0.4 215 7750. 4 7844 . 1 1. 012 

0. 4 -0. 5 220 6970. 1 7109 .0 1. 020 

0. 5-0 . 6 247 6685 . 1 6784.4 1. 015 

0. 6 - 0 . 7 228 6001. 3 5902. 7 . 983 

0. 7 -0.8 252 5969 . 3 5585 . 5 . 936 

0.8-0.9 268 5344 . 0 5040. 9 . 943 

0. 9-1.0 181 3148. 0 3260.3 1.035 

N is the number of observed reflections in that region of sin2
A . 

I: D = 'E I l Fo I - I F e - F I I Ru · 
N N 

*If the ( 200) and ( 020) reflection.! are omitted, the ratio is 1. 006 
( see text). 
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Figure 5. A plot of the ratio of the t "'1.eoretical to empirical s catter-

. f . f . l" 1ng cur ,•es a s a unction o 'i l c-. 
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Table 6 . Bond distances and bond numbers. 

Distanc es (A) 
Bond 

Numbers 
Observed Predicted 

c-c I II Mean Obs . Fred. 

1-2 1. 41-! l. 410 
1. 422 + . 011 1.441 1. 34 1. 24 

2 -3 1.438 1. 42.4 

8 -1 1. 421 1. 407 
1. 433 + • 018 1. 457 1. 28 1. 18 

3 - 9 1. 453 1. 451 

8 - 9 1. 440 1. 447 l. t44 + . 004 1. 461 1. 23 1. 16 

9 - 4 1. 417 1. 432 
1. 436 + . 013 1. 441 1. 27 1. 24 

7 - 8 1. 441 1. 452. 

4 - 5 l. 379 1. 361 
1. 366 + • 009 1.365 1. 71 1. 71 

6 - 7 1. 356 1.367 

5 - 6 1. 401 1. 421 1.411 +. 010 1. 441 1. 40 1. 24 

Ru - e 

c> ... 2.. 17 1 l. 167 2 .1 69 + .002 2. 197 . 51 .46 

c1 2.. 180 2. . 17~ 
2 . 182 + . 005 2. . 159 . 48 • 53 

c3 2. 186 z. 187 

ca 2.2l3 2.212. 
2 . 217 +.005 z. 245 .42 . ·38 

c9 2.2.2.1 2.213 

The ..;tandard deviations given reflect only the internal consistency 
among chemically equivalent distances; they are calculated by 

n l * ( Y' ( m -x. ) /n)'. From the least-squares s tandard deviations of atomic 
i 1 

coordinate3, the standard deviation of a c-c d i stance 
is+ .01 2 A and of a Ru-C distance, + . ooa X. 



Table 7. Bond angles. 

C-C-C 

1-2. -3 

2 -3-9 
2 -1-8 

3-9-8 
1-8-9 

3 - 9 - 4 
1-8-7 

8 - 9-4 
7 - 8 - 9 

9 - 4 - 5 
6 -7-8 

4 - 5 - 6 
5 - 6 - 7 

C -Ru-C 

1-R-2 
2 - R -3 

3-R-9 
1-R-8 

8-R-9 

I 

109.4 

106.3 
108.3 

107. 8 
108.2 

131. 1 
133. 0 

121. 1 
118.8 

116.') 
118. 3 

122.7 
12.2. 1 

3 7 . 9 
38. 5 

38. 5 
37.6 

37.8 
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II Mean 

110. 4 109. 5 + 0. 5 

106.0 107. 1 + 0. 9 
107.6 

107.3 108. 0 + o. s 
108.6 

132.4 132. 2 + 0. 7 
132. 3 

120.3 119.8 + 0.~ 
119. 1 

117. 5 117.9+0.7 
118.7 

123.8 122.. 3 + l. 2 
120.6 

37.9 38. 1 + 0. 2 
38.2. 

38.5 38. 0 + 0. 5 
37.4 

38.2 38. 0 + 0. 2 

h d d d f 1 ( !1 ( m ->q: 2 ) ·\ . T e stan ar eviations o the mean are taken equa to . J. 
i n 

The least-square :3 standard deviations of atomic 
coordinate3 give a standard deviation of+ 0. 7° for a C-C-C angle 
and of + 0. s• for a C - Ru-e angle. -
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amount (approximately • 03 A ) toward positions 2 {see figure 4) . 

The agreement between the halves of the molecule and the estimated 

stanuard deviation.:~, obtained as a by - product of the least- squares 

calculations and confirmed by the general agreement between structur ­

ally equivalent bond distances, make the differencea in Ra-G bond 

lengths significant. The second feature i s the shortness of the c 6 -c 7 

and C 
4 
-c 

5 
bond!J ( 8ee figure 4 and table 8). Trotter found the iron 

atom in bi s -indenyliron to be displaced toward positions 2, but he 

found the short bone to be c
5
-c

6
. Because Trotter worked with a 

disordered crystal, we feel our values of the molecular dimensions 

are more reliable . {He reports only the mean bond d i stances and 

a ive s no standard de..r iatione1.) In saying this , we imply that there is 

no reason for the indenyl g roups to be di Herent in the two compcunds . 

b ) General features. 

Withi n experi mental error , the carbon atoms constituting an 

i ndenyl group are coplanar , and the planar indenyl g roups are parallel. 

The i ndenyl groups are in the eclipsed configuration, and, withi n 

exnerimenta1 error , the molecule has mm symmetry as in rutheno ­

cene (1 7). In bis -indenyliron and ferrocene (1 8), however , the carbon 

atoms i n the five - membered rings are ::.;taggered. If one considers 

only local symmetry in molecules of this type , one can say that an 

iron atom prefers to occupy a center of symmetry while a ruthenium 

atom prefers to lie in a mirror plane. 
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The least-squares plane of each i ndenyl group was calculated 

by the method of B low ( 19) using a program written for the Bu.rroughs 

22.0 by Mr. Noel D . Jonea. Tho out-of - plane distance of each atom 

and the direction cosines of a normal vector to each plane are given 

in table 8; the angle between the two normals i s about 0. f!' . 

To determine L there is any departure from the eclipsed 

configuration of the indenyl group s we cal culated an average vector 

from the carbon atoms in one plane to the corresponding atoms in 

the other ; d irection cosines of this average i nter - ring vector are given 

in table 8 . The direction cosines of the two normal vectors were also 

averaged and normalized to define an avera~e -normal vector; the 

angle between this average-normal vector and the average inter - ring 

vector i a 0. z• , which means that the indenyl groups are eclipsed, 

certainly within 'experimental error. 

In calculating an average inter - ring vector , we also calculated 

each individual distance and averaged these for an average inter - ring 

::teparation ( aee table 8). The average ,;eparation i:; 3 . 665 A compared 

• to 3. 68 A .or ruthenocene. The average separations in bis-indenyliron 

anti ferrocene are 3 . 43 and 3 . 32 A . 

c) P rediction of bond distance3. 

Let us employ a method used by Pauling ( 20a) to di scuss the 

molecules of ruthenocene and fcrrocene to !"lredict a molecular structure 



39 

Table B. Out -of - pla ne distances , inter-ring separation and direction 
cosines of a normal vector to each ring. 

Out-of -plane distance 
c Ring I Ring II Separation 

z -. 001 .ooz 3.636 
1 -. ozo -.010 3.617 
3 -.010 -.01 5 3.618 
3 . 018 . 013 3.694 
9 .016 . 009 3. 684 
7 . 019 . 008 3.706 
4 . 012 . 0 19 3.704 
6 -. 015 -.008 3.669 
5 -. 018 -. 018 3.653 

Origin 2.817 0.81Z 3. 665 (average) 

All distances are in Angstrom units. The distance to the 
origin is the absolute di stance . The out-of-plane distance is taken 
as negative if it is toward the ruthenium atom and as positi ve if i t 
is out- of - plane away from the ruthenium atom , toward the outside 
of the mol ecule. 

D i rection Cosines* 

Normalized Average I nter -
Ring I Ring 11 Average ring (C -C) 

COS X .0101Z . oz 175 . 015935 .011653 

CO_., y .95040 . 95156 . 951004 . 951023 

COB Z .31085 . 30667 .303768 . 30890 2 

*In orthogonal 9ystems whose axes are parallel to a, b, and 
c * of the monoclinic cell. -
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for bi3 - indenyliron and bis - indenylruthenium. In doing so we will 

assume that the iron and ruthenium atoms u>Je all nine of their valence 

orbitals for bond formation or for occupancy by unshared electrons or 

electron paira. Hence, we expect corresponding bonds in the two 

compounds to have identical bond numbers , and the only difference in 

the two molecules will be in the metal - to-carbon bond distances , 

reflecting different sizes of the metal atoms. After Pauling, we 

consider the 1287 structures represented in figure 7. The horizontal 

bars represent double bonds that are basically part of the five ­

membered ring . and the vertical bars represent Ru- C bonds. The 

number below each diagram is the number of structures of that type . 

We can count the number of appearances of each cartonical form , 

assuming equal weight; the counting is summarized in table 9. 

In every canonical form each carbon- to - carbon bond is a single 

or a double bond. Therefore, to count the bond number we only have 

to count the number of times it appears as a double bond; we can also 

predict the Ru- G bond number by counting bonds. Both countings are 

summarized in table 10 , and the comparison between predicted and 

observed C - C bond distances is also made there. 

We see immediately that there is good agreement between the 

observed and predicted bond leng ths for bis - indenylruthenium and that 

Pauling's treatment does indeed predict the shortness of the c
6 
-c

7 
and 
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Figure 7. A representation of resonating-bond structures. 
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Table 9. Counting canonical forms. 

-, -,II -,,+ + 
3ymbol IIIII I II I 
Ru -C bonds 1 3 5 2 4 

Number of 7 6 1 30 9 
forms 

Number of 
times each 
appears in 

A 14 
B 12 
c 12 14 
D 2 14 
E 2 12 
F 60 14 
G 60 12 
H 60 2 
I 18 14 
J 18 12 
K 18 2 

Totals 

Subtotals 106 106 104 28 28 372 

Number of 742 636 104 840 252 2574 
forms 

Ru -C bonds 742 1908 520 1680 1008 5858 

D0uble 2968 1908 208 2520 504 8108 
bonds 
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Table 10. Prediction of carbon to carbon bond distances and ruthenium 
to carbon bond numbers . 

c7 -ca 

c3 - c9 c 2 - cJ. c6 -c7 c9 -c4 

D oub1e bonds in es- c 1 cl - cz c9 - c8 C4 - C5 C5 - C6 

Typ e* Weight* 

1 106 l 3 2 5 2 
3 106 1 1 1 5 1 
5 104 1 
2 28 5 7 3 18 9 
4 28 6 2 

Weighted totals 458 620 402 1836 626 

Double bond . 17 8 • 241 . 156 . 713 . 243 
character** 

::- redicted bond 1. 457 1. 44 1 1 . 461 1. 365 1. 441 
distances*** 
(A ) 

Observed: 

bis - indenyl - 1. 433 1. 422 1.444 1. 366 1. 428 
rutheni um 

bi s -indenyl- 1. 41 1. 47 1. 39 1. 45 1. 4 0 
iron 

(c5 - c6. 

1 . 30) 
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Table 10 (continued) 

Ru-C bonds in c9 c 8 c1 c3 c2 

Type* .Veight* 

1 106 1 1 2 2 1 
3 106 3 3 4 4 4 
5 104 l 1 1 1 1 
c. 28 10 10 14 14 1Z 
4 28 6 6 8 8 8 

;·.; cighted total..> 976 9 76 1356 1356 1194 

(5 858 total) 

Bond number .379 . 3 79 • 527 • 5Z7 . 464 

* See table 9~ Type i s the number of Ru-C bonds. 

**Fraction o f total forms ( 2574) in which it appear.:> a s a double bond. 

***See P auling ( 20), table a 7-9 . 
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c
4
-c

5 
bonds . That the c

6
-c

7 
and c

4
- e

5 
bonds are nearly double 

bonds ( 75%) is supported by Seua ( 2 1) who was abl e to hydrogenate 

bis - indenylruthenium to ?reduce b i s - 4 , 5, 6 , 7 - tetrahydroindenyl-

ruthenium. If, on the other hand, the double bond were in the e 5 -c 6 

position, as i ndicated by T rotter' s work , one would expect hydrogen -

ation to yield bia - S, 6 - dihydroindenylruthenium . 

To predi ct the Ru- e bond distances in the same way that 

P auling treated ferrocene and ruthenocene , we must first calculate 

the d character of the ruthenium bond orbi tals . If we assume that 

the unshared pairs occupy 4~ orbitals and that the bonding electrons 

3 
are distributed equally among the Ss , Sp and unoccupied 4d orbitals , 

then we calculate that the d character i s 4 1. 6%. We get the same d 

c haracter for the iron atom in bi s - indenyliron, except that we are 

referring t o 3~ orbital s . This amount of d character leads to the 

single · bond r a dii for ruthenium and i ron of 1. 313 and 1. 137 A ( 20b). 

An alternative is to u s e the single bond radii as given in P auling ' s 

tab le of metallic radii ( 2 0c) ; from thi3 table we get single bond radii 

oi 1. 264 and 1. 165 A for ruthenium and iron. U :3ing a s i ngle bond 

0 

radius of 0. 770 A for carbon and correcting for electronegativity d i£ -

ference (-0. 056 A for l?'e -C and - 0.024 [or Ru -e ) , we calculate the 

following metal - to - carbon bond lengths (in A ) : 



ferrocene 

ruthenocene 

bi s · indeny lr utheni urn 

bis · indenyliron 
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single bond radius used 

(2. character) ( metallic) 

2. 045 2. 075 

2 . 246 2. 188 

2 . 268 2.201 

l.060 2.088 

observed 
distance 

2. 05 

2.21 

2 . 19 

2. 10 

There is better agreement between the observed and calculated bond 

len3thd if one chooses the metallic radii; hence, the single bond radii 

of iron and ruthenium will be t:al<en as 1. 165 and 1. 246 1.. {the metallic 

radii) in all discussions that follow as well aJ in all tables and figures 

where it is necesaary to uge auch radii. 

In table 6 we have summarized the i.nZormation on bond dis -

tances and bond nurnber:i; we have assumed 1nm syrnmetry . Figure 

8 shows the avera~e bis - indenylrutheni um and bis · indenyliron molecules 

a 3 observed and also the predicted molecules to facilitate C'Jmpari son. 

We should ooint out that the predicted and observed structures 

aeree well e:..ccept for the metal - to - carbon bonds . We have predicted 

correctly that the longest metal - to - carbon bond is that to c
8 

or c
9

, 

but the relative lengths of the other bonds are not predicted correctly. 

The average metal - to - carbon bond distance , however, agrees well 

with the average of the observed distances . 

From table 6 we can calculate the number of observed and pre · 

dieted covalent bonds for each carbon atom , assuming the C -H bond 

number to be l. 000; the covalent bonds are listed; 
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Observed 

P redicted 

cz 
4. 178 

3.946 

c 1. 3 

4 .097 

3.946 

ca. 9 

4. 194 

3.956 

c4, 1 

3.973 

3 . 956 

cs. 6 

4.106 

3.956 

We judge that we have observed more electrons than are available 

for bond.i. ( This was apparent earlier in table 6 , where the expected 

bond numbers are leas than those observed, which of course is a 

result of the observed d i stances being less than those predicted.) It 

may well be that some of our observed distances are shorter than 

those in the true structure because we have not attempted to correct 

for thermal motion of the atoms. But in our prediction of the bond 

numbers we have neglected any purely ionic molecules in which a 

negative charge would reside on the indenyl group or groups; this 

would increase the predicted bond numbers. 

We can find no support for longer bond distances in the 

results of the three-dimensional difference - Fourier ( see figure 2C 

and figure 3) or in an electron - densi ty map drawn in the least-squares 

plane of each indenyl group (figure 9). If anything , these results 

indicate even shorter bond lengths than given by the least-squares 

refinement. We feel, however, that figure 9 may be a little misleading 

because the ruthenium may contribute to the electron density in the 

five-membered rings and by doing so displace the maxima toward 

the center of the ring; the ruthenium contribution has been removed in 

figure 3. 
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d) Temperature factors. 

We have said earlier that the final result as we present it is 

the " best" result that the investigation has yielded- - because the 

agreement between the observed and calculated structure fac tors is 

the beat and because this final molecule approaches mm symmetry 

more closely than any other . There is yet another reason for our 

feeling that the final result is the "best''; this reason is the pattern 

and agreement of temperature factors in the indenyl groupe. 

One can examine table 3 and see that in our final result the 

temperature factors of corresp onding carbon atoms agree well and 

fit into the expected pattern of thermal motion better than in any other 

stage o£ refinement. Moreover. the range of temperature factors is 

smaller than at any other stage. The final temperature factors are. 

given again in table 11; as expected, the thermal motions of the atoms 

on the ends of the indenyl g roups are the largest while the smallest 

motions are by the atoms c ommon to the two rings . 

The anisotropic motion oi the ruthenium atom is described 

by its vibrational ellipsoid, which is defined in table 12. The motion 

is essentially isotropic . 

ii) 1-'acking of the molecule~ in the unit cell . 

The packing of the molecules in the unit cell is illustrated in 

figures 10 and 11. There are only six non - bonded <.listances which are 

short enough to mention. 
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Table 11. Isotropic temperature factors (B). 

I u Mean 

c2 3.677 4 . 232 3.955 

cl 4 . 006 3 . 899 
3.601 

c3 3. 284 3.213 

c8 3.091 3. 155 
2.920 

c9 2. 589 2. 846 

c7 3.688 3.472 
3.562 

c4 3.343 3.745 

c6 4.381 4 .322 
4 . 140 

cs 3.921 3.937 

The standard deviations as given by the least- squares . treat-
ment are about+ 0. 22 A -z. ranging from+ 0. 18 to + 0 . 27 A - l 
( see table 3). - - -
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Table 12. Vibration ellipsoid of the ruthenium atom. 

Direc tion cosines 

axis l Bi COS X cosy cos z 

1 2 .787 -. 1327 -.0363 . 9905 

2 2..212. . 2075 . 9762. • 0636 

3 2.023 .9692 -. 2.139 .12.20 

The direction cosines are relative to a Cartesian coordinate 
system which has two axes identical to a and b of the monoclinic 
cell of bls - indenylruthenium; the third a;;is is ~rallel to =.· • 
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Figure 10. The structure viewed down c . 
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Figure 11. A representation of the structure viewed down a . 
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The ruthenium atom is approached by thr ee hydrogen atoms . 

The ruthenium atom of molecule A, figure 11 , ie 3 . 3 A from the 

hydrogen atom one(? )' of m ol e cule B, 3. 6 A from the hydrogen on 

C ( 1) of molecule D , and 3 . 6 J.. from the hydrogen on C ( 3) of the 

molecule eli 3placed minus one unit along z ( This molecule is not pic-

tured; the relationship is the ~arne as that between R~ and the hydrogen 

on e {3) A. I n thi9 discussion, the primed poditions a r e for that indenyl 

group (U) having the less fOSitive y_ coordinates .). This packing 

effect with the hydrogen atoms a J?proaching t he ruthenium atom is also 

observed in ruthenocene { 17). The distances from e {7) of molecule B 

to e ( S) 1 and e ( 9) 1 of molecule e are 3 . 48 and 3. 31 A . The distance 

from the hydrogen atom on e {7) of molecule B to e ( S) 1 of molecule 

C 
. • 
u 2. 7 A . 

A little more will be said about the packing in discussing a 

dhordered cry3tal. We feel that the packing id adequately described 

in figure s 10 and 11 and that words would not enlighten the reader. 

iii) Accuracy of the molecular geometry . 

The standard deviations in individual atomic coordinates ob -

tained by inversion of the normal equation matrices lead to mean 

standard deviation a of . 008 A for 'Ru- e bond lengths and of • 012 A 

for C · C bonds. The root- mean- square (rms) deviations of chemically 

equivalent bonds agree with theae expected uncertainties . All three 

groups of chemically equivalent Ru- e bonds have a rms deviation of 
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• less than . 006 A. All 3ix sets of C -C bonds ha ve a rms deviation 

of less than . 019 A, a.nd only two sets have a rms deviation larger 

than the expected .OlZA. There is no doubt that the Ru- c
8 

and 

R.u- c
9 

bond'3 are significantly longer ( . 03 }{ ) than the other Ru- C 

bonds and that the c
6
-c

7 
and c

4
-c

5 
bonds are significantly longer 

than any other C -C bonds. Bond distances and rms deviations are 

listed in table 6. 

In a recent inve~tigation of the crystal structure of the dimer 

()£rhodium chloride l, 5 - cyclooctadiene, Ibers and Snyder (22) 

attempted "to answer the question: How well can carbon ring geometry 

be defined in the presence o£ second- row transition metals, if 

intensity data collected at room temperature and estimated visually 

are used?" In that investigation they expressly took into account 

anisotropic thermal motions of the heavy atoms. 

The molecular structure of the dimer of rhodium chloride 

1, 5 - cyclooctadiene and of bia - indenylruthenium are suitable for com -

parison. Rhodium and ruthenium are adjacent, second- row transition 

eloments, and the rhodium atoms are bonded to four carbon atoms and 

to two chlorine atoms while the ruthenium atom is bonded to ten carbon 

atoms . Furthermore, mm symmetry can be logically assumed !or 

both molecules , though this symmetry is not crystallographic. 
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0 

l ber s and Snyder reoort . 03 A f Jr the standard deviation of 

• a Rh · C bond and . 08 A for the standard deviation of a C · C bond. I n 

particular, let us compare the c5.c6 and cl -c2 bonds , the douhle 

bonds , of rhodium chloride 1, 5 - c:yclooctadiene with the C 1 -c 8 and 

c
3 
-c

9 
bonds (which ia the most inconsistent set of four bonds within 

the molecule) of bis · indeny1ruthenium. - The four bonds, which should 

be equal within each molecule, are ( in J.. ): 

rhodium chloride 1, 5 - cyclooctadiene bis ·indenylruthenium 

c-c c -c 

1-2 1. sz 8 - 10 1. 42 

5 · 6 1. 42 3 - 9 1. 45 

1'-2' 1. 36 8' - 10' 1. 41 

5' - 6 ' 1. 44 3' - 9' l. 45 

Mean 1. 44 1. 43 

(1 . 06 .02 

From the results of their investigation, l bers and Snyder 

conclude "that the ring geometry is difficult to define even when 

anisotropic thermal motions of the heavy atoms are incorporated into 

the theoretical model." However , we feel that the ring geometry can 

be well defined, certainly to within . 02 A in the bonds within the r i ng . 
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Di a ordered B is 4..ndenylrutheni urn 

As stated in the experimental part, the first crystal of bis ­

indenylruthenium gave photographa indicating a unit cell only half as 

large as the one who:ose structure we determined and also suggesting 

disorder . The size of the unit cell indicates that there are only two 

m olecules per unit cell and therefore,that the ruthenium atoms must 

occupy _special ;>ositions {000) and (f!! 0) --that is , at the center s of 

symmetry of the molecule, indicating that the six- membered rings 

are trans . 

Intensity data for the hkO reflections were collected and cor­

rected for Lorentz-polarization effects and then were used in generating 

the {001) P atter son p rojection . The P atterson map, however , did not 

show the ruthenium atoms to be in special positions; seemingly, there 

were four half rutheniu m atoms in the unit cell . Trotter (6) encountered 

a similar problem in his investigation of the s tructure of bis -lndenyl -

iron . 

In the same way that Trotter proposed a structure for disordered 

bis - indenyliron, we propose a disordered structure of bis - indenyl­

ruthenium. Around a special position there can be two orientations , 

equally probable, related by a center of symmetry so that the structure 

appears to have a center. This packing and unit cell of the di s ordered 

s tructure are shown in relation to the packing and unit cell of the 

ordered structure i n figure 12. One can mentally construct the average 



Figure 12. Comparison of packing in the ord ered a n d disordered 
structures. The ord ered unit cell is given by the solid 
li·nes and the di sordered by the clashed. Compare t o 
figure 10. 
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dbordered structure by putting half ruthenium atoms at (xyz,~) and 

half carbon atome, to cor.:1pletc the half-molecules, in two planes with 

the five- and six- membered rings of one half - molecule occupying the 

general region of the six - and five -member~d rings of the other half -

molecule, the two half - molecules being related by a center of symmetry. 

The position s of the ruthenium atom , obtained from the P atterson 

map, were used to assign signs to the Fo 'a and an electron density 

projection onto (001) showed that the planar indenyl groupa are almost 

pcrr·endicular to the "-'Y plane . The ~ and y_ coordinates of the 

carbon atoms were gue:3sed on the basis of the ordered structure, and 

the hkO structure factors were calculated. The signs of these Fe ' s 

were then used to get an electron den:Jity ;:-;rojection onto (00 1): this 

electron density map i s ::1hown in figure 13. 

Lattice constants calculated from Weissenberg photographs 

indicate that the pac king of the ordered crystal is more efficient than 

the disordered; the ratio of ordered to disordered density is calculated 

to be 1. 02. The c axes of these two forms are essentially the same, 

and the a a:Kis and the b axis of the disordered crystal are such that 

the diagonal i n the xy plane is essentially the same length as the a 

axis of the ordered crystal ~ = -v 123 + 87 :: 14.5 A, 

a = 14.5 A), see figure 12. 
0 

In view of the disorder, no accurate structure determination 

seems possible and the work on thi s modification was abandoned. 
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( 001) of the disordered . cti· on onto · ty proJe i . 13. Electron ~enslf bis-indenylruthen um. Flgure dification o 
mo . 

,( . ·. 
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PART II 

"Ni Cd II 
5 21 
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INTRODUCTION 

In his examination of the nickel -cadmium system Voss (1) 

observed a binary inter metallic compound which he called NiCd
4

• 

Twenty - three years later (in 1931) Ekman ( 2) observed the same 

pha::Je but reported the composition to be Ni
5
Cd

23
_ 

6
. His powder 

photographs indicateu a cubic .:~tructure with the edge of the unit cell 

equal to a 0 = 9. 761 k x ( 9. 781 A). Since the diffraction pattern was 

very similar to that of y brass , he concluded that the structure waa 

i sotypic with that of this latter phase . 

:- rior to this work Ekman had discovered that the ratio between 

the number of valence electrona and the number of atoms, the so­

called electron-to -atom ratio, in the two isostructural compounds 

Cu5 zn8 and Cu
9

Al
4

• is 2 1/13, if copper is assigned the valence one, 

zinc the valence two, and aluminum the valence three. The same 

electron- to - atom ratio, he sai d . could be obtained for the nickel ­

cadmium phase if it were assigned the composition Ni
5
Cd

21 
and if 

nickel were assumed to have zero valence . 

In 1934 Swartz and P hillips ( 3) reported that in the nic kel­

cadmium system the compound of highest cadmium content had the 

composition NiCd
7

• 
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The most recent report on nickel - cadrnium alloys , which 

appeared in 1955. is that of Lihl and Buhl (4) . These authors found 

the y phase to exi9t at about 18 . 5 at. o/o Ni , which corresponds to 

Ni
5
Cdzz ' but stated that their powder photographs could be indexed 

• only on the basis of a face - centered cubic cell of edge a 0 = 19.545 A, 

which is twice the value reported by Ekman ( loc . cit.). They believed 

that the structure of this phase is very clo9ely related to that of y 

brass, and again, referring to the electron- to - atom ratio Zl/13, 

they assigned the "ideal" composition Ni
5
Cd

21 
to this phaac. 

The name "Ni
5
Cd

21
" shall be retained provisionally until the 

actual composition is more firmly established. 

The object o( the present investigation is to find an explanation 

for the doubling of the cube edge and, furthermore , to test the validity 

of the assumption made by previous investigators. Another reason for 

our interest in this structure ia that it may provide a basis for tho 

for m ulation of 3tructures of intermetallic compounds of very high 

complexity. 3uch structures have many interatomic distances which 

are functionally independent from one another , and, therefore , provide 

con5iderable information about interatomic distances. 
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Experimental 

i) ?reparation of single crystals. 

An alloy of composition 17. 8 at. % Ni and 82. . 2. at. o/o Cd was 

pre pared from Baker Analyzed reagent nickel of 99. 5% purity and 

Mallinckrodt analytical reagent grade cadmium sticks of 99 . 94o/o 

purity. Nickel shot and pieces of cadmium were melted together in 

an alundum crucible by induction heating in argon gas at atmospheric 

pressure; the melt was allowed to solidify slowly. The ingot was 

found to contain a very large number of crystals, mos t of which 

seemed to be fragments of cubes and square prisms . Since the cubes 

were too large to yield intensity data unaffected by absorption, a 

small fragment with an approximately rectangular cross section was 

selected to be used for X -ray photography. 

' 
Laue photographs indicated Oh Laue symmetry. Rotation 

and Weissenberg photographs indicated a cubic face-centered lattice 

with a 0 = 19.6 A, in accord with the results of Lihl and Buhl (4). Each 

one of the observable reflections on the Wei ssenberg photographs had 

either all indice s even or all indices odd with no systematic absences; 

3 2. 5 
the probable space groups are, accordingly, 0 , T d , and Oh • 
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ii) Intensity data. 

An almost complete three - dimensional set of intensity data 

was obtained from equi - inclination Weissenberg photographs taken 

with Mo K radiation. The (1101 direction of the cube was chosen as 
Ci 

rotation axis . Since the identity period along this direction is only 

a
0

//?.. , where a
0 

is the edge of the cubic unit cell, the complete 

sphere of reflection can be recorded with considerably fewer photo-

graphs than with a crystal rotated about (1001 . This method, further -

more. yields cross correlations between even and odd layers, which 

is not possible with the latter method for cubic face - centered crystah . 

The intensities were esti:r.:'lated visually by comparing the dif -

fraction spots with those on a calibrated scale. The multiple - film 

technique was used, and the films were interleaved with nickel foil 

.001 inches thick. Corrections were made for Lorentz and polariza -

tion effects but not for absorption or extinction. Absorption corrections 

were not necessary because of the very small size of the crystal, 

3 which was . 060 x . 023 x • 017 mm . The maximum ~R was of the 

order 0. 8. 

For thi:. investigation 623 symmetry independent reflections 

were used, 340 of which were either too weak to be observed or too 

weak to be estimated with reasonable accuracy. These 340 reflections 

were treated as being weaker than an estimated maximum value. 
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Dab were obtained from the equator and f r om layer lines two through 

six, the rotation axis being the [ 110 ] ; the first layer was omitted 

by accident. Because of this omission, 13 reflections were not 

covered. The observed structure factors are listed in table 5 at 

the end of this part. 

The Derivation of the Structure 

i) General con5iderations . 

The smallest unit cube is of edge a
0 

= 19. 6 A and contains 

ap~"~roY..imately 400 atoms, of which roughly one - fifth are nickel and 

four - fift.l>s are cadmium . 

5 
and oh . 

3 2 
The n•obable space groups are 0 , T d 

Since the total number of distance vector s in the unit of struc -

ture is approximately )ro-)ortional to the s quare of th.e number of 

atoms, the a ,plication of P atterson rnaps to the solution of the struc -

ture s eemed ho;;eless . The z tochastic method. as defined by I'aulinfil 

(5) seemed to be the only one that offered iJromi se for a successful 

attack. 

Of the thr e e probable £J pace group'-' given above, Td 
2 

is the 

only one that ha .> the symmetry eler."len ts necesaary to describe an 

atomic arrangement similar to that of y brass . This space group, 

therefore, was the one that had to be considered i n the iirst place, at 
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least to test the correctness of the assumptions made by Ekman ( l ) 

and independently by Lihl and Buhl (4 ) . 

The procedure develor.~ed by 3amson ( 6) wa3 used to explore 

this space group. A fairly detailed description of his method is g iven 

below. 

ii) Samson ' a method to derive trial structurea of complex cubic 

intermetallic compound.'i. 

Practically all of this section is quoted from an early draft of 

a ,.aper to be submitted for publication by Dr . Samson. The figures 

included here were prepared for that paper ; I have supplied the legends 

for thern . These will be referred to in later discussions. 

Introduct ion 

Cubic crystals o£ metals and intermetallic compounds have 

always been observed to incorporate atomo in special positions . This 

feature probably ari.itea from the. difficulty or perhaps impossibility 

to achieve a cubic space - filling structure by utilizing general positions 

alone. One may profitably begin with the hypothesis that a special 

position is alarays needed to define the center of a coordination shell 

<.let:tcribed solely or partially by a general position. Hence, if in a 

cubic crystal the confieurati.on of atoms is known around each point 

that can be defined by a special position, the atomic arrangement o£ 

the crystal is completely determined. 
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In the subsequent discussion it is understood that 
the origin of coordinates of the cube is placed in 
accordance with the Space Group Table s given in 
the lnterna tional Tables ( 7). The ( 1 00) plane and 
the ( 110) p lane referred to below are always those 
passing through the origin of the cube. 

l 4 4 6 3 2 
In each one of the space groups T , T , Th , Th • 0 • Td • 

and T dS . every special position place a at least one point on the (110) 

plane. To determine a structure having one of these apace groups it 

is necessary only to determine the coordination shell around each 

single atom or available site that is located on the ( 110) plane. 

A similar rule applies to structures of the space groups 0 
4

• 

6 7 7 o.o 0 • h • 

1 1 a· x. 4!.x, 

8 
Oh except that the special positions of the kind 

etc. , eventually may have to receive special treatment. 

These positions are of such a nature, however, that they most likely 

will repre3ent vertices of coordination shells around single atoms or 

available sites on the (110) plane, as will be seen in the following 

chapter. 

8'or most of the remaining cubic space groups it will be nee· 

easary to determine the coordination shells around single atoms on 

both the (100) plane and the (110) plane. In some rare cases it may be 

necessary to investigate one specially chosen additional plane. 

The 3ymmetry chart 
~----.. ........... ~ 

A means of recognizing the poasible configurations of atoms 

around single atoms on a plane is the symmetry chart, an example of 
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which is shown in figure 1. This chart has been drawn for the ( 110) 

plane of a crystal of s pace group Oh 
7 

and cube edge a
0 

= 30. 6 J... 

scale 1 A = 1 em. The ?Oints a and b are defined by the two 8-fold 

? ositions, 000 etc., and OOi. etc., respectively; c and d are points 

1 1 1 1 1 5 
of the two 16-fold poaitions 8 8 8, etc., and 8 8 8. etc., respec-

tively, which arc centers of symmetry. The letters correspond to the 

notations used for this space group in the International Table3 (7), page 

340. The same notations are referred to below. 

If each point were replaced by a rigid sphere of a radius 

r = 1. 40 J.. equal to one-half the average interatomic distance assumed 

in the crystal, then the centers of such spheres on the (110) plane are 

confined as indicated in figure 1. The lines e and f are the loci of 

points of one degree of freedom, XXX etc. and OOX etc •• positions e 

and f. The points with two degrees o£ freedom, XXZ etc., position g , 

are confined within the areas limited by solid lines. The indentation t 

is a result of the center of symmetry at c. If a point XXZ is at G. 

its surrounding sphere of radius r = 1. 40 em is then in contact with 

two other equivalent contiguous spheres , one above ( ZXX) and one below 

(XZX) the point _:!:G. since e is a 3-fold axis of symmetry. The point 

G is accordingly at a distance 
1 . 

- r and the p01nt + G at a dhtance 
~ -

!. r from the line e. 1-'oints of the kind _:!: G, representing the 
2/3 
projection of the centers of two s pheres, one above and one below the 
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Symmetry chart of the (110) plane, 
see text. 
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(110} plane are referred to as "plus-minus" points . The broken and 

dotted lines are accordingly loci of "plus - minusn points of contiguous 

spheres and are referred to as 11 plus - m i nus" lines. 

The areas limited by the dotted lines i and i 1 and the solid 

line g are "plus-minus" fields for the general position 192.i. The 

isosceles triangle of the sides i 1 is forbidden for this position as a 

result of the center of symmetry at point c. 

P osition 96h (~, X,~ - X , etc.) describes plus - minus points 

located on the broken lines h. These points are at the vertices of a 

hexagon around c, the size of which is determined by X. 

Figure 2. represents a symmetry chart of the ( 110) plane of a 

cube of edge a
0 

= 25 . 8 .K, apace group T d 
2

, r = 1. 2.5 J.. {smallest 

assumed distance). Figure 3a shows the (110) plane and figure 3b the 

5 
( 100) plane of the same cube but for space group Oh • 

The representation of coordination polyhedra 

A few examples of how coordination polyhedra may be repre-

sented for their immediate recognition on the symmetry chart are 

given below. 

A very frequently observed coordination polyhedron is the 

truncated tetrahedron bounded by four hexagons and four triangles , 

figure 4a . A section through the {110) plane h shown in figure 4b and c. 

The packing of atoms around such a polyhedron is explored by describing 
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Figure 3. • Symmetr! charts for a cub.e of edge a • ZS. 8 A. space 
group Oh , with a smallest assumed Jlstance of 1. ZS A. 
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Figures 4 , 5 and 6 . For explan.a1ion, consult text. 
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around each vertex a s phere of a radius equal to the distance d 

between the vertex and the center o£ its assumed nearest neighbor 

outside the polyhedron. A ( 110) section through such an arrangement 

of spheres i e shown in figure 4d. The center o£ any circle of r = d 

is allowed to lie upon th~ circumference of any other circle but not 

inside it, while the center of any "plus - minus" circle representing 

two " contiguous" atoms is allowed to be as close as r = ~d/3 to the 

center of a circle of r = d . 

Figure 5 shows a cuba - octahedron which is represented accord­

ing to the same principle s . Figure 6 demonstrates how the icosa ­

hedron can be derived through deformation of a cubo · octahedron. 

The three mutually perpendicular squares in figure Sb have been 

substituted by rectangles , figure 6b, the sides of which are a and 

b = 1. 62a. where b is also the diameter of a pentagon of side a. 

This representation of the icosahedron was found to be the most 

perspicuous one with regard to symmetry charta s o far explored. An 

example of the usefulness of thie representation can also be found in 

an earlier paper ( 3amson, 8) which, however, does not show the 

symm etry chart. 

It is seen that the circles around the vertices of the polyhedron 

shown in figure 4d leave a free area around the center, while in figure 

5d the circles intersect at the center and in figure 6d overlap at the 
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center. This feature demonstrates the metrical neture of these poly-

hedra. With twelve contiguous spheres of equal size at the· vertices 

of the truncated tetrahedron, it is possible to accommodate a sphere 

. r cent /11 
34. So/o larger in radius at the center, s1nce = - - 1 = l. 345. 

rvert ./2 
figure 4d, while for the icosahedron the central sphere is nearly 10% 

smaller . 

Packing of coordination polyhedra 
~-~~~~~~~-~-----"'-' --...~ 

Figure 7 represents the same symmetry chart as figure 2. 

Transparent templates of polyhedra such as are shown in figures 4 

and 5 are held in position with pins. 

The discs around e
1 

and .:!. e
1

, figure 7, represent a positive 

tetrahedron, which is surrounded by a negative tetrahedron (e
2 

and 

+ e ). The disc at f
1 

is at the vertex of an octahedron. 1f more atoms 
- 2 

are added at the points h
1

, .!_ h
2 

and.!_ h
3 

, as is indicated with arrows, 

the arrangement of points around f 
1 

is similar to that shown in figure 

6d, i.e., f 
1 

is at the center of an icosahedron. 

lt is obvious that transparent templates of sections through 

large atom complexes commonly observed in complex metal structures 

may appreciably facilitate the search for a reasonable structural motif. 

Such a template, which represents an atom complex characteristic for 

'(-brass type s tructure s is placed at point d , figure 7. 
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Figure 7. An illustration of the use of templates for representing 
polyhedra and atom complexes . 
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A symmetry chart that has been filled with circles representing 

sections through spheres to show the packing of atoms , as well as the 

structural motif , shall hereafter be referred to as a packing chart. 

iii) Definitions 

a ) Centers 

.. Z . ' Th d Space group T d 1 s non• C't:ntrosymrnetr1c . e wor center 

shall be used to refer to the points a , c , band din figure 2 . These 

points are defined by the 9pecial positions 4a. , 4c , 4b, and 4d, respec -

tively, in accord with the space g roup tables given in the I nternational 

Tables , Vol. 1 (7); they correspond accordingly to 000, etc •• t t;. , 
tc l._ l.l.. t ·~tl~ e • , ~ ~ ~ , e c . , ana .. r ·.;, 4 , etc . The 1:3ymmetry elements around 

each such point are 4 3m. 

There are consequently £our independent centers , eaeh one of 

which may be chosen as the origin of the cube, the translations being 

~A~ ~ ~ ~ Aa~ ti 1 -t 1 7. , ~ Tl .1':! , or 4 4 4 , respec ve y . Such translations do not alter 

the magnitude of calculated structure factors , I? :: A 2 + B 
2 

, 
c 

but they affect the values of A and B for certain classes of reflec-

tions and cot1sequently also the phase angles . 

b) Polyhedra , positio!ls, and complexes. 

The structure is conveniently described and discussed in terms 

of four polyhedra: the octahedron, the tetrahedron, the cubo-octahedron, 

and the icosahedron. The position of XOO etc ., describes a regular 
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octahedron. The points defined by position e. XXX. etc • • are at 

the vertices of a regular tetrahedron. The cuba- octahedron just 

referred to is bounded by two sets of four equilateral triangles each 

and six 4 - sided faces . This polyhedron is described by position h . 

XXZ . etc. lf the parameter Z is chosen to be exactly 0, t. ~ . or 

-~ . the cuba- octahedron will be bounded by eight equilateral triangles 

of equal size and six squares. such as is shown in figure 5. In this 

structure, however, the cuba- octahedron has a shape such as is 

shown in figure 10. A regular icosahedron is shown in figure 6. In 

z 
s pace g'l'oup T d this polyhedron has to be described with the use of 

several point positions. The four polyhedra are also shown in part 

in figure 7. 

Mor~ complicated arrangements of atoms will be referred to 

as complexes. The arrangement of atoms shown in figure 7 shall be 

called the y-complex, because it is observed in all they-brass type 

structures that so far have been established. It consists of two tetra -

hedra, one of which is negative with re3pect to the other, one octa-

hedron, and one cuba- octahedron. Each atom complex arranged about 

a point a, b, c or d shall be called according to this point- - for instance , 

a-complex, b-complex, etc. The outermost shell of any such complex 

h always a cuba- octahedron of T . symmetry, i.e., it has two sets 
a 

of four equilateral triangles. 
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iv) Least-squares calculations. 

2 2 l 
In the least•iiquare ~ refinement. the quantity E w ( Fo -Fe ) 

was minimized. The shifts in atomic positional parameters were 

calculated from the diagonal matrix elements of the normal equations. 

Refinement of the temperature factors and the scale factor was based 

on a set of complete normal equations which took into account the 

coupling between each )o ssiblc pair of temperature factors, and 

between each temperature factor and the scale factor. 

The scattering curves for nickel and cadmium were used as 

given by Thomas and Umeda (9) in all of the structure -factor calcu-

lations. 

v ) They-brass type trial structure. 

The overall diffraction pattern of Ni
5
Cd

21 
has great similarity 

with that observed for Ag
5
zn

8
• which has a y -brass type structure (10); 

therefore , it seemed likely that the atomic arrangement is similar to 

that in y brass, cu
5
zn

8 
(11). Accordingly, a symmetry chart 

repre3enting the ( 110) plane passing through the origin of the cube was 

exiJlored with tht:5 aid of templates representing atom complexes such 

as observed in y brass (see fig. 7). It was quickly recognized that 

eight subcelh of a y-brass type structure could be accommodated in 

the unit cell, and the approximate atomic coordinates could be obtained 

from the packing chart. The initial assumption was made that the 
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doubling of the cube edge was due to variations in the occupancy of 

the subcella. This assumption arose from the obgervation that the 

diffraction pattern indicates pJeudo-body - centering. The reflections 

hl~l with h + k +I. = Zn + 1 were, in general, much weaker than the 

reflection s with h + k + I. :: Zn . 

The structure-factor least-squares calculations based on several 

variations o! this atomic arrangement indicated that doubling is due to 

a more complicated phenomenon than a change in population. We 

were gradually forced to assume that the arrangements of atoms around 

some of the centers were not v-complexes. 

vi) Other trial structures. 

With the use of the symmetry chart we explored several other 

s tructural motifs. Our second idea was to investigate the possibility 

of combining two y - complexes, one at 000 and the other at it! , 

with another kind of complex at the remaining two centers. A reason­

able arrangement of, atoms was obtained by placing Friauf 

polyhedra at i t-! and~ t ~ ; .a Friauf polyhedron is a 17-atom 

complex consisting of an atom, i n this case at ·t ~; and at i t ! , 

surrounded by 4 atoms at the vertices of a tetrahedron and by 12 atoms 

at the vertices of a truncated tetrahedron. The regular tetrahedra 

which form an integral part of the Friauf polyhedron are related 

to the tetrahedra around a and b by translations oft t t . In carrying 

out calculations on this trial structure, we obtained our second clue to 
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the structure , the fi:> 3t being they-brass type arrangement. The 

very high val ues of s ome of the temperature factors resulting from 

the l east- squares shifts suggested that the truncated tetrahedra of 

the Friauf polyhedra had to be omi tted. The temperature factors 

for the atoms of the regular tetrahedra were normal , thus indicating 

that these were actually part of the structure. 

Another idea was to fit y - complexes together wi th close -

packed arrangements. These can be obtained by placing atoms at the 

vertices of a regular octahedron. The equilateral triangles form the 

first two layers A and B . The third layer • C , is then provided 

by a cube-octahedron as the next outer shell. This idea led to the 

third clue to the structure: one octahedron in the structure is a small 

one . 

I cannot give full detail!3 of this investigation. Many 8tructures 

were designed on paper with the aid of the symmetry chart. A few 

of the :~e included the 96 - fold position. Several were combinations of 

y-complexes , Friauf polyhedra , and other more or less regular 

coordination shells. 
5 

The space group. Oh was also explored. When 

this search led to a well - packed atomic arrangement with pseudo-body -

centering, structure - factor and least- squares calculations were used 

to test the trial structure. 
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vii) A working model. 

The attempt to deri ve a struc ture which seemed to demand 

one small octahedron , tetrahedra , and v - compl exes led to a tr i al 

structure based on three v - complexes and one Zii-atom complex whi ch 

we call an a - complex. This latter one consi sts of si x atoms at the 

vertices of an octahedron, which is surrounded by four atoms at the 

vertice3 of a tetrahedron , the next outer shell being a cube - octahedron . 

This trial structure we call o v 'V v . 

A aeries of least- squares cycles led us to believe that the 

structure i s of the type ov oy , with o - compl exea at the points a and 

b and with v - complexes at the points c and d . The proposed o y o y 

structure is described by 14 crystallographically different positions . 

The overall agreen•ent between observed and calculated structure 

factors was reasonably :}OOd. After a few least - squares cycles , the 

agreement index dropped from R = 0 . 40 toR = 0 . 26 for 157 reflecti ons 

with s i n 9 less than 0 . 33. An electron - densi ty map of the ( 110) plane 

calculated on the basis of these reflections suggested that an atom had 

to be placed at ~ t ! inside the tetrahedra of a y - complex and, further ­

more , that some of the sites were occupi ed by a different kind of metal 

atom than we initially assumed. Some minor changes o£ the atomic 

coordi nate3 also had to be made. Subsequent to these changes , four 

additional refinement cycles were carried out. These i mproved the 
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agreement toR c: 0. 16. A few changes based on another electron density 

map and a few more least- squares cycles reduced the agreement index 

toR ~ 0 . 13. 

The structure had by then changed considerably from our initial 

postulate. The first electron- density map had indicated an atom at 

%-! ~ inside a y - complex; the positive and negative tetrahedra of this 

v - complex had become almost equal in size to form a distorted cube. 

The atomic arrangement around ~ i i had gradually come to resemble 

a body - centered cube. After examining the structure by means of the 

symmetry chart, Dr. Samson had suggested that an atom be placed 

at point b , since the octahedron around that point had become large 

enough to accommodate an atom. Moreover, the second electron -

density map had indicated that the position c is occupied 30 percent 

of the time and that for the other 70 percent of the time point c is 

surrounded by a tetrahedron. Refinement calculati ons based on such 

a disordered structure led to no improvement in the agreement index; 

only the reflections with sin e less than 0 . 36 were used i n these 

calculations. 

At this point we decided to use the full set of three - dimensional 

data . We started refinement using the weighting function 

where Fo is based on one-fourth of the unit 

1000 + 0 . 1 Fo2 

cell , the asymmetric unit. The minimum observable Fo, F . , is 
m1n 
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t:;;UCh that the weighting function is approximately that of Hughes ( lZ.) 

{refer to table Z. in part I). ? rom time to time we changed the weighting 

function to /CJJ a /ru 
e 

100 + Fo 

, but used the one above for most 

of the refinement. Changes of the weighting function seemed to have 

very little effect on the results. 

The first refinement cycle based on the full aet of data was 

disappointing . The agreement index at the beginning was R = 0. z.z.. 

A few cycles reduced it to R = 0. 195. 

A difference map of the ( 110) plane was calculated; it is shown 

in figure 8. This map ind icates disorder around all four centers. The 

appear to be partially occupied. I n order to fully describe this kind 

of disorder, ll crystallographic positiona are needed. Subsequent 

least-squares refinement cycles of this structure yielded R = 0. 155; 

the atomic parameters at this stage of the refinement are listed in 

tables 1 and z.. The refinement was still converging, and the shifts 

in temperature and population factors i ndicated that the occupancy 

of some of the sites was far from being determined. 

Refinement of this di3ordered structure was interrupted be -

cause of insufficient information regarding the magnitude of the off· 

diagonal matrix elements. It seems possible that in a situation like 

thi s the omission of the off-diag onal matrix elements may keep the 
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Figure 8 . Difference Fourier of the ( 110) plane. Solid contours at 
4, 8, lZ and 16 e. A -3 • Dashed lines • -4 I . A-~ , 
dotted line • -8 e. A -3. 
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Table 1 

Comparison of trial structures for "Ni
5
Cd 

1
.•• Atomic parameters 

and standard deviations. If a POHition 1s p~rtially occupied, the 
percent occupancy is given beside the atomic symbol. Pairs of 
poaitions such as e

6 
and e

6
1 arc used to deocri be disorder. 

.... osition Ordered Disordered 
16 Eositions 17 Eositions 21 eositione 

e1 X -. 0908 + • 0011 -. 0897 + . 0019 -.0910+.0011 
B 0.04 + 0.4 0.96 + 0.8 o. 86 +-0.4 

Ni Ni Ni 

e2 X . 1658 + • 0013 • 1659 + • 0012 . 1646 + • 0014 
B 0.84 + 0 . 4 3.90 + o. 4 1. 23 + o. 4 

Ni Cd Ni 

e3 X • 4063 + • 0016 • 407 1 + . 0017 . 4065 + .0015 
B 2. . 21 + 0. 6 1. 73 +o. 6 2.45 + o. 5 

Ni Ni Ni 

e4 X • 6706 + . 0008 • 6704 + . 0009 • 6704 + • 0008 
B 1. 41 + 0. 3 0.96 + 0. 2 2.09 +o. 3 

Cd Cd Cd 

e5 X .311 5 + . 0022 . 3129 + • 002.4 • 3100 + . 0021 - 1. 96 +o. 8 B 3.85 + 0. 9 1. 32. + 0. 9 
Ni Ni Ni, f"Oo/o 

e6 X . 82.60 + • 0012 . 8260 + • 0012 • 8267 + . 0010 - - -B 3.30 + 0.4 3.08 + 0. 4 2.44 + 0.3 
Cd Cd cd. 9o<y. 

e6 
I 

X • 805o•• + • 0156 
B z.oo• + 5. 3 

Ni, 10% 

f X • 1138 + . 0007 . 1116 + . 0008 . 1135 + . 0007 
1 

B 2.03 + o.z 1. 'H + o. 3 1. 70 + 0. 2 
Cd Cd Cd, S8o/o 

f1 
I 

X • 1672 + . 0051 
2 . oo• + 1.1 

Ccl, l2o/e 

£.> X • 4206 + . 0010 • 42.10 + . 0011 . 4210 + 0. 0009 ... 
B 4.37 + 0. 4 4 .43 + 0. 4 4.46 + 0. 3 

Cd Cd Cd 
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Table 1 (continued) 

.I? osition Ordered Disordered 
16 ~ositions 17 positions 21 eositiona 

£3 X • 6479 + • 0016 . 6495 + • 0017 .6513 + .0014 
B z.88 +o.6 2.60 +o.6 1.86 +o. 5 

Ni Ni Ni, 90% 

£3 
1 

X • 6244 + . 0065 -B 2. 00* + 2. 2 
Cd, lOo/o 

i4 X • 9347 + . 0010 • 9343 + . 0011 • 9339 + • 0009 - +o. 4 4.56 B 4.32 + o. 3 4 . 15 + o. 3 
Cd Cd Cd 

hl X • 1475 + • 0006 . 14 7 l + • 0006 • 1475 + • 0006 
z • 0264 + • 0006 .0261+ .0006 • 0261 + • 0005 
B 2.74 -+ 0.2 2.36 +o.z 2.85 +o. 2 

Cd Cd Cd 

h 2 X • 4059 + • 0006 • 4058 + . 0007 • 4059 + • 0005 - • 2732 + . 0006 z . 2731 + . 0007 • 2734 + • 0007 
B 4.69 +o. 3 4.00 +o. 3 4.45 +o. 3 

Cd Cd Cd 

h3 X • 6487 + • 0005 • 6482 + • 0005 • 6483 + • 0005 
z • 5230 + • 0005 .5235 + .0005 • 5233 + • 0004 
B 2.05 + o.z 1. 73 +o.z 2. 14 +o.1 

Cd Cd Cd 

h 4 X • 9252 + • 0005 • 9254 + . 0005 • 9251 + • 0004 
z • 7696 + . 0005 • 7693 + . 0006 • 7693 +. 0005 - -B 2.94 + O.l 2.76 + 0. 2 l.84 + 0. 2 

Cd Cd Cd 

a o. o. 0 
13. 3 + 18. 0 

Ni, 6% 
c l. \ l 

~ . . , ~ !- .1- . t 
1. 77 + 2. 9 2. 38 + 2. 0 
Ni. .30, es Cd, -30% 

b ~.t.t ~.;.~ ~.i.~ 
10.9 + 3. 8 8. 92 + 3. 8 3.97 + 1.8 
Ni Ni Ni, SOo/o 



Table 1 (continued) 

P osition 

d 

Jl tomic o/o Ni 

>::I Fo I 
'!I Fe I 

N 

R 4 
I: u• Fo4••• 
1.111 Fe ••• 

R' 

Ordered 
16 positions 

:l .>l ~ 
, 4 , 4 

4. 65 + 2. . 1 
Ni 

l4. 5 

50045 
49766 

3231' 
.164 

145 
178 

. 13 

89 

Disordered 
17 positions 21 positions 

~ ~ ~ .>l ~ ~ 
t- t . 'c1 "' 4• 4 
4. 14 + 2. . 0 2. 99 + 1. 6 

Ni Ni , 9o% 
19 . 7 23. 1 

53033 49 134 
53196 47933 

332 324 
• 176 • 155 

153 142 
198 159 

• 17 . 10 

N is the number of reflections, of 623 total , in the sums and in 
least- squares cycle . 

R I = E 11{ E' 0 
2 - F' c 2) z I ~ .. 5"' 0 

4 

• Shifts ·led to negative B . 
0 

•• Shifts made bond <listanced withi n tetrahedron less than 2 . 2 A. 

••* On an arbitrary 3Cale. 

t Does not include 18 reflections which have an index greater than 
25. 
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Table 2. Comparison of trial structures and of similar positions. 

Position Ordered Disordered 
16 fOSitions 17 positions 21 positions 

e1 X -.0908 -.0897 -.0910 
B 0.04 0.96 0.86 

Ni Ni Ni 

e2. x-t -.0842 -. 0841 -.0854 
B 0.84 3.90 1. 2.3 

Ni Cd Ni 

e ... x-i -.0937 -.0929 -.0935 
.;, 

B 2. 21 1. 73 2.45 
Ni Ni Ni 

e4 x-~ -.0794 -.0796 -.0796 
B 1. 41 0.96 2.09 

Cd Cd Cd 

e5 x-;. . 0615 .0629 • 0600 
B 3.85 l. 32. 1. 96 

Ni Ni , 70% Ni, 70o/o 

e6 x-i • 0760 • 0760 • 0767 
B 3.30 3.08 2.44 

Cd Cd Cd, 90% 

e6 ' x-~ • 055o•• 
B .2 .00* 

Ni, 10% 

fl >: • 1138 . 1116 .1135 
B 2..03 1. 93 1. 70 

C d Cd Cd, 88% 

£1 ' X • 167 2. 
B 2.oo• 

Cd, 12.% 

£2. x-t .1706 . 1710 • 1710 
B 4 . 37 4 . 43 4 . 46 

Cd Cd Cd 

f., x-t . 1479 . 1495 . 1513 :.; 
B 2. 88 2 . 60 1. 86 

Ni Ni Ni, 90o/o 

f I x -~ . 1244 
3 

B 2.oo• 
Cd, 10o/o 



91 

Table 2 {con tinued) 

Position Ordered Disordered 
16 positions 17 positions 2 1 positions 

£4 x-~ . 1847 • 1843 .1839 
B 4 .32 4. 15 4 .56 

Cd Cd Cd 

hl X .1475 . 1472 .1475 
z .0264 • 02.61 .OZ.6 1 
B 2..74 2 .36 2 .85 

Cd Cd C d 

h2 x-t . 1559 • 1558 • 1559 
z-t • 023 1 . 02.34 • 0232 
B 4 . 69 4.00 4 . 45 

Cd Cd Cd 

h3 x-t • 1487 • 1482 • 1483 

z-t . 0230 • 0235 .0233 
B 2.05 1. 73 2. 14 

Cd Cd Cd 

h4 
'3 • 1752 . 1754 • 1751 x -

z .3 • 019 6 . 0193 • 0193 -. 
B l .94 2 . 76 2 .84 

C d Cd Cd 

* Shifts l ed to negative B . 

** Shifts made bond distances in tetrahedron less than 2 . 2 A. 
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refinement calculations from conver ging. With our present computer 

program we do not have the means of estimating the magnitudes of the 

off-diagonal terms. Further refinement, therefore, has been postponed 

to await an adequate program for the IBM 7090 computer which will 

allow us to carry out full-matrix calculations. Furthermore, we feel 

that we should be very cautious in interpreting the difference-Fourier 

map . The small isolated peaks may be due to disorder, but we are 

rather hesitant in assigning significance to them and will discuss our 

real:lons for this in another section after we have presented pertinent 

information. 

Several attempts were made to escape the acceptance of a dis­

ordered o;;tructure through systematic consideration of various kinds of 

ordered arrangement3. The only reasonable trial structures other 

than those that correspond very closely to the y-braas typ e structurea 

were the ones discussed below. 

viii) Ordered structures. 

The initial structure may be de~cribed in terms of the atom 

complexes arranged about the four independent centers a, c, b, and d. 

At center a is a complex of 22 atoms which we have called a a­

complex; around center c i s a complex of 26 atoms which we have 

called a v-complex. The arrangement around b is very much like that 

around a except that the octahedron is large enough to accommodate 
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an atom at b such as to produce a complex of 23 atoms. The arrange• 

•nent around d resembles a body-centered cube and is a 27 atom 

complex. These four complexes with the cuba-octahedra omitted are 

shown in figures 11, 12, 13 , and 15 . A cube-octahedron is shown in 

figure 10. 

A series of refinement cycles led to convergence with R :! 0. 175 

and to a structure defined by the parameters listed in tables 1 and 2. 

The electron-density map calculated on the basis of these parameters 

is shown in figure 9. This electron·density map and the temperature 

factor"' of the nickel atoms at positions e 
1 

and e
2 

indicate that the 

3Cattering power is the same as for most of the positions to which we 

have aGsigned cadmium atoms. The electron-density map also indicates 

scattering matter at point c and near position { 
1

, and rather broad 

regions of scattering at positions f
2 

and £
3

• 

We assumed that the occupancy at position e l is cadmium 

rather than nickel. In view of the relatively short nearest-neighbor 

distances around position e 
1

, it seemed likely that this position was 

occupied by nickel atoms, which have a metallic radius about 17 

percent smaller than cadmium atoms. This assumption is not in accord 

with the electron- density map but, on the other hand, the structure ie 

not sufficiently well refined to permit the actual scattering power to be 

truly represented on the electron-density map. In order to test if the 
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Figure 9 • Electr . on-den i 
1nter 

8 
ty ma vals of ZO •! of the (110) e • A 3, be . plane . pnning with ().. C<!ntours at 

I e. A -3 

~- ' . 

3A 

) ' . --
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- o .~ -----o ----------

Figure 10. A representation of atoms arranged about the vertices 
of a diatorted cubo-octahedron. The atom complexes 
shown in figures 11, 12, 13, and 15 fit inside this 
polyhedron. 

--



Figure 11. The atomic 
arrangement around 
the points 000, etc., 
defined by position 4a. 
This 10-atom complex 
consists of a tetrahed­
ron and an octahedron. 

96 

~0 

-----
0 0 0 
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Figure 12. Atom complexes 
around the points : -t i, 
etc., defined by position 
•c. Thie arrangement of 
atoms· at the vertices of 
two tetrahedra and one 
octabedren is also ob­
served in the 
of y brass. 

0 

--

0 

c 



Figure 13 . Arrangement of 
atoms around the 
points iii, etc., 
defined by position 
4b. Atoms at the 
ve-rtices of a. tetra­
hedron and an octa­
hedron surround the 
atom at point b . 
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Figure 14. The packing around t t t in more detail. 
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Figul"e 15. The a.rl"angement of 
atoms al."ound ! i i, etc. • 
resmnbling a body .. 
eentered cube . 

• 
. . 

' 
' 

-----
0 

d 
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disorder between positions c and e
5 

is real , we assumed a fraction x 

of a nickel atom at point c and a fraction 1-x at po3ition e
5

. Refine ­

ment calculations ba~ed on this assumption c.lid not lead to improved 

agreement. The parametera obtained are given in tables 1 and 2. 

The atom complexes around the four independent centers are 

similar to one another. The positions of the atoms of each complex 

relative to its center can be compared with the aid of table 2. 

There may be intimate coupling between the paratneter s for 

positions related to each other by translations of approximately t t t, 

* !! t or ~ ~ ~ . It is pos i3ible that our neglect of an eventual coupling 

may have prevented a proper refinement. The phaiie angles may 

accordingly be incorrect by amounts large enough to caulie false maxima 

on the Fourier map·'). The peak near position £ ... in figure 9 gives 
i 

the impre-Jsion that the positions f.::.· £
3 

and £
4 

have been superimposed 

on po3ition f 
1

• 

Discu33ion of the Structure 

Because of the as yet questionable validity of the maxima that 

indicate disorder, the structure will provisionally be discua3ed as if 

it were ordered . A more detailed discussion will have to await the 

results of very exten.sive calculation3 based on complete matrices . 

The assumed ordered :3tructure h described by the oixteen 

crystallographically different positions U3ted in table 1. The positional 
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parameters are also included in this table. The interatomic distances 

calculated on the basis of these parameters are listed in table 3. The 

distribution of the nickel and cadmium atoms over the occupied posi -

tion3 , ae given in table 3, was provisionally assumed on the basis o£ 

nearest- neighbor distances . Although the scattering power of the atoms 

in positions £
3 

and b as indicated by the Fourier map and by the 

lea t:Jt - squares calculations corresponds at present to nickel, the nearest-

neighbor distances correspond to cadmium atoms, which have a metallic 

radius about 20o/o larger than that of nickel. The short neare 9t-

neighbor distances around position e 
1 

i ndicate nickel atoms at that 

po3ition, whereas the electron - density maps indicate cadmium atoms. 

The assignment of cadmium atoms to position e
2 

is compatible with 

the electron - density maps . Nearest-neighbor distances indicate the 

same occupancy for each of the other positions as indicated by the 

electron- density maps and by the least- aquares refinement. The 

nearest - neighbor distances may not be reliable indicators of the 

occupancy reported in metal structures since extremely short bonds , 

as well as vacancies, have been reported in n1etal structures . Further -

more , the uncertainty in the distances is of the order 0. 1 or 0. 2 A. 

The composition of this idealized crystal s tructure corresponds 

to Ni
13

cd
85 

or, roughly, NiCd
6

. 
5

• and the idealized unit cell contains 

392 atoms. The calculated d ensity is 9 . 12 g/crtl
3; the density of nickel 
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Tabl e 3 . Approxima te in terato m i c d i s tanc es for the assumed • ord ered struc ture. Cub e edge = 19 . 6 A . F o r liganc y 12 
the e x p ected distanc es a r e 2 . 49 A for Ni -Ni , 2 . 75 A for 
C d - Ni, a nd 3 . 02 A for Cd-Cd ( 13). 

Position Kind of L i ganc y Distance Posi tion Ki nd of L i gancy Distance 
• • ato m A atom A 

e 1 N i 3 Cd(h~ 2 . 77 h Cd 1 N i(e
5

) 2 . 7l. 

3 Cd(f l . 56 
l. 

1 Cd(e 5 2 . 89 

3 Cd(h\) 2 . 78 2 Cd(f 3 . 10 

~ Cd( e
6

) 2.82 2 Cd(h~~ 2 . 99 
1 N i(e 2 . 61 

10 1 Cd(f~) 3 . 03 
J: Cd 4 Cd(h~ 3.0 1 2 Cd{n

3
) 3 . 43 

t. l 
2 Ni(e t:-.56 ~ Cd(h 4) 3. 44 

2 Cd(h~ 3.09 12 
__:! Cd(f 

1 
3 . 15 

Ni 3 Cd(h ) 2 . 6 1 
12 e3 

1 Ni(e~ 3 . 22 

hl Cd 1 Ni(e 
1
) .:.. . 78 3 Cd{£

3
) 2 . 81 

2 Cd(£ 
1
) 3 . 0 1 3 Cd(n f) z. . 75 

l Cd(e ) 2 . 78 _!. Cd(b 3 . 18 

1 Cd(f 5 3 . 02 11 
l Cd(f!) 3 . 36 
2 Cd(h

4
) 2 . 93 f Cd 2 Ni(e

3
) 2 . 8 1 

2 Cd(h} 2 . 99 
3 2 Cd(n ) 3 . 03 

_1. Cd(h
1
) 3.36 4 Cd(h~) 2 . 95 

2 Cd(hf) 3 . 16 
12 ~ Cd(b l . 90 

ez Cd 3 Ni{e _) 2.93 11 
3 Cd{£

5
) 2 . 88 

3 Cd(h~ ) Z..78 h3 Cd 2 Cd{£
3

) 2 . 95 
3 Cd(h ) 2 . 89 1 Ni{e

3
) 2 . 75 

- 2 1 Cd{e~ 2 . 96 
12 1 Cd(f 2 . 93 

es Ni 3 Cd(e~ 2 . 93 2 Cd(h!) l . 96 
3 Cd{f_ 2.79 2 Cd{h ) 3 . 43 

3 Cd(h~) L. . 72 . 2 Cd(h~ 3 . 48 

1 Ni{e J 3 . l2 1 Cd{f 3 . 5 1 
- 3 - 2 
10 12 

f Cd 2 Ni{e
5

) z. 7·9 b Cd 4 Ni{e
3

) 3 . 18 
2 

2 Cd{e
2

) z. ss _! Cd{£
3

) ;.. . 90 

2 Cd(h
1

) 3 . 02. 10 
4 Cd(h ) 3 . 10 
1 Cd(f J 2. . 84 

2 Cd{h
3

) 3 . 51 

13 
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Table 3 (continued) 

P osition Kind of Ligancy Di stance f· osition Kind of Ligancy Distance 
atom (A) atom (~) 

e4 Cd 3 Cd(h~ 2 . 96 
3 Cd(£

4 
3.02 

3 Cd(e
6

) 3 . 05 
3 Cd(h

4
) 3.29 

__! Cd(N1) 2 . 70 

13 

e6 Cd 3 Cd(e~ 3.05 
3 Cd(f 3 . 00 

3 Cd(h~ 2. 96 

1 Ni(e f 2.82 
__! Ni(d 2 . 57 

11 

f4 Cd 2 Cd(e
4

) 3.02 
2 Cd(e

6
) 3 .00 

2 Cd(h~ 2.93 
1 Cd(f 2 . 84 
2 Cd(h~) 3 . 36 
4 C d{h ) 3 . 46 

- 4 
13 

h4 Gel 1 Cd( e 
4

) 3 . 29 

1 Cd(e~ 2 . 96 
1 Cd(f 3.09 
1 Cd(f!) 3 . 16 
1 Cd(e

1
) z. . 7 l 

Z Cd(h
3

) 2. 96 
2 Cd(h

1
) 2. 93 

2 Cd(h ) 3 . 44 
_1. Cd(f~ 3.46 

13 

c1 Ni 4 Cd(e
4

) 2 . 70 
4 Cd(e ) 2. 57 

j2 Cd(f~ 3. 6 1) 

8 
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is 8.90 g/cm
3 

and of cadmium, 8.65 g/cm
3

. Figure 16 is a packing 

chart drawn for the ordered structure accordinz to table 1. Figure 

17 represents the 3tructure and may be easier to follow than £igure 16. 

The atoms in the four positions £
2

, e
4

, f
4

, and h
4 

have ligancy 

13~ the type of coordination shell around these four positions is illus­

trated in figure 18a. The atoms in the five poaitions fl. hl, ez, hz' 

and h
3 

have ligancy lZ; the coordination polyhedra around these 

? 0:3itions are irregular. However, the atoms at position e
2 

are sur­

rounded by atoms at the vertices of a nearly regular icosahedron . 

The atoms in the three positions £
3

, e
3

, and e
6 

have ligancy 11, and 

their coordination shells are illustrated in figures 18b and 18c. Around 

the three positions e 
1

, e
5

, and b are 10 ligands, and around point d 

are 8 ligands. 

Future Experimental Work 

The determination of an accurate value of the cube eclge was 

postponed until all the intensity data had been measured. In the mean­

time, the crystal deteriorated either due to corrosion or due to a phase 

transformation. A number of other crystals which had been mounted 

earlier had undergone the same deterioration. 

Supplementary investigations to determine the homogeneity 

range of this phase and to determine how the cube edge and density 

vary with composition will soon be atarted. At the time the above 
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Figure 16. Packing chart of the ( 110) plane defining all 16 po-sitions. 
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Figure 17 . A schematic representation of the atom complexes 
and of the packing in the asymmetric unit. A circle 
represents an atom on the ( 110) plane . The end 
of a straight line or the inter aection of two lines 
not encircled represents two atorns. one above 
and one below the ( 110) plane . A tetrahedron is 
outlined by a triangle. an octahedron by a 
rhombus, and a cube - octahedron by straight lines . 
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Fieure 18 . Some i ll ·~->trati ons of irregula r c o o r dinatio n polyhedra. 

18a) For liganc v 13 . 
The coordination ,hell 
aronarlf, £

4
, e, and 

h . I dea;h, on~ atorn 4 . 
sprea ds a par t two a to m s 
of a n i c o ; a h e d ron 1 • 

b ee orne b onded t o the 
c e ntr al atom. 

18h) For li ga n c ; 11. 
The c o orc.lination .bell 
around £

3
. I deally, o n e 

atom h as replacec1 two 
ato m s o [ a n ic o "'a l'ctt ron. 

18c ) For li <?ancy 11. 
T h e coon:.inatio-r'! ;hell 
arouP<l e

3 
a uci e tl . 

L~: 
LLJ 
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investigations were done, facilities to carry out this kind of work 

were not available. A laboratory has now been set up which will 

enable us to conduct adequate experimental work. 

F uture Least-Squares Refinements 

Refinement o£ the structure was postponed because of inadequate 

computing facilities. An adequate program has to allow a solution of 

the complete set of normal equations. Such a program is being written 

for the IBM 7090 computer and is expected to be available in a few 

month a . 

During the present work we have solved for the temperature ­

and population-factor shifts in three different ways . The first method 

took into account the coupling of each temperature factor with the scale 

factor and with all the other temperature factors, and treated the 

po pulation factors a s being completely independent. The 5econd method 

took into account coupling between the temperature factor and the 

population factor of the same atom only ; the shifts were based on a 

Z x Z matrix. The third method was like the second one with the scale 

factor added to couple with all temperature factors but not with any 

population factors. Usually the first and second methods gave popula­

tion- factor shifts in the same direction , but the temperature - factor 

shifts were often in opp osite directions. At times , both shifts from 

the third method had signs opposite to those of the shifts from one of 

the other two method s . 
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From this we can infer that aome of the off - diagonal terms 

re ·re 3enting coupling between atomic coordinates may be large. All 

along we have been especially concerned about coupling between atoms 

separated by translations of~ ?£ t or ; ; t or i i ~ . In table 4 we 

have given the geometrical part of the structure expressions for an 

atom with coordinates x.oo and for atoms related by translations of 
1 oA. 

*" i t . ; ~ ~ . and t ~ ~ ; in this table we have also indicated ~ ox. 
1 

The derivative with respect to the temperature factor is the structure­
. 2 .... -stn '=' 

factor expresaion multiplied by 
}..2 

From table 4 we can see that for the reflections with 

h +It+ 1 = 4n it makes no difference if an atom ls at xOO or if it has 

been translated. Likewise , in a Fourier synthesis the structure would appear 

as a composite of the structures around the origin and around all the 

other centers. Reflections of the type h + k + 1. = 4n + 2 can differ· 

entiate atoms that are ae ,arated by a translation of ! 1 t 

but not by 'it . Both types of reflections h + k + l = 4n + 1 and 

h + k + l = 4n + 3 are sensitive to all of the translations, but taken 

together as the type h + k + l. = 2n + 1, they can differentiate atoms that 

are .3eparated by a translation of , ~ -f . The off-diagonal terms 

representing coupling between atomic coordinatea have the same form 

as the off-diagonal terms that are important in the refinement of the 

temperature factors; therefore. they have to be important for the 

refinement of atomic coordinates. On a purely statistical basis, 
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Table 4. Geometrical structure factors and derivatives with 
resp ect to x for atoms at xOO + {000, t t t , t t t, 
a~ ·~ ) 

I •~ 4 e 

C la .,s of 
reflections 

h+k +l 

4n 
4n + 1 
4n + 2 
4n + 3 

h +k+l 

4n 
4n + 1 
4n + 2 
4n + 3 

Let C = 8(cos 2nhx. + cos 2TTloc + cos 21"T.fx), 
S = 8( sin 21"Thx + sin 21ikx + sin 2n.lx ), 
S 1 = 16n{h sin 2nhx + k sin 2TTkx + I. sin 2TT.f x), 

andC'= 16n(hcos 2nhx + kcos 2n kx+l cos 2nlx). 

Geometrical structure factors. 

:xOO + 
000 :\. \. l. tt~ ~ 8 ~. .. 1 . .. ':. 4. 

c c c c 
c s -C -s 
c -c c -c 
c -s -c s 

Derivatives with respect to x. 

xOO + 
000 t ~t t~~ 3 

"1; 
.~ ~ 
\ ... 

-s ' -s ' -s• -s ' 
-s • C' S' - C ' 
-s ' S ' -s ' s • 
- S ' -c' S ' C' 
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however, the terrns correlating the different atoms are expected to 

be zero; there should be no coupling. We anticipate that the awaited 

program which will calculate off - diagonal matrix elements will enable 

us to analyze the interactions between parameters in more critical 

detail. 

If one class of reflections happens to include systematic errors 

or if it is assigned a higher weight in the least- squares refinement 

than another clas~. then one may expect false peale.:~ to occur in the 

electron- densi ty mapa . We are, therefore , very hesitant to accept 

disorder . 

During the refinement of the as :;umed ordered structure we 

collected E I Fo I , ~ 1 Fcl • and ~ I ll F I as a function of sin ::_\. I n 

general, we found that the be3t agreement was within the range of 

sin ~ :: 0. 2 to 0. 3. The ratio ~1 Fo l I 1 Fe 1 as well a s the 

aareement indices , gradually increased with sin r-o . This seemed to 

indicate that the temperature factors and the scale factor were too 

large , but the least- squares proceas tended to increase them still 

more . Invoki ng disorder by splitting a position to give two positions 

approximately 0. 5 A apart should improve the agreement of the 

high order reflections without significantly affecting the low order 

region. To split the positions should reduce the temperature factor a 

which will be reflected in larger Fe ' s of the high order reflections and 

should also enable the least- squares process to adjust these positions 

to give even higher Fe ' s . 
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Summary 

He have found that the crystal structure of 11Ni
5
Cdz

1
•• is 

very complex. The structure is certainly not of the y-bras s type 

as re:Jorted by other investigators. 

The investigation is far from complete, but the general atomic 

arrangement seems to be essentially correct. 
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Table 5 . Obse rved structure factors. The co lumn headings are 

k , I, and ~ ; ~ is scaled for approximate ly one -

fourth of the unit ce II. Aster isks i nd icate 

less - than r eflect ions. 
J:;; 24 0122 II 21 0070>t 10 20 0200 II 17 0092* 
14 14 0137 II 2.3 0074* 10 22 0127 II 19 0080* 

H 00 14 18 0085 1.3 13 0057* 10 24 0075* II 21 - 0072* 
00 04 0105 14 20 0072* 1.3 15 0075>t 12 12 0.327 II 23 0075* 
00 06 0044* 14 24 0094* 13 17 003:;;* 12 14 0057* 1.3 1.3 0097 
00 08 0494 14 26 0165 13 19 0097 12 IS 0079* 13 15 0062* 
00 10 0242 16 15 0429 13 21 0102* 12 18 0067* 13 17 0067>1' 
00 12 0840 16 22 0078* 13 2.3 0077* 12 20 0070* 13 19 0100* 
00 14 0195 18 IS 0.358 1.3 25 0080* 12 22 0092* !.3 23 007!!* 
00 16 0225 18 24 0169 15 15 0122 12 24 OliO* 13 25 0080+ 
00 18 Oil 7 20 20 0119 15 21 0077* 14 14 OOS2* 15 15 006~* 
00 20 0117 22 22 0114 17 17 0082 I 4 16 0112 15 17 0067* 
00 22 0062* 24 24 0180 19 19 0072* 14 I 8 0099 15 19 0072* 
00 24 0067* H 01 21 21 0087* 14 20 0125 15 21 0075* 
00 26 0087* 01 07 0258 H 02 14 22 0075* 15 2.3 0079* 
00 28 0118* 01 0~ 0062* 02 04 0055 14 24 0120 I 7 17 0095 
02 05 0192 OJ II 0194 02 05 0217 16 16 0137 19 19 0072* 
02 08 0500 01 13 C044* 02 08 0709 16 22 0078* 21 21 0079* 
02 10 ' 0062* 01 15 0049* C2 10 0214 18 18 OliO H 04 
02 12 0112 01 I 7 0084 02 12 0179 20 20 0075* 04 04 0337 
02 14 0297 01 19 0165 C2 14 0120 22 22 0080* 04 06 0257 
04 04 0.312 Cl 21 0050* 02 16 0173 H 03 04 08 02'37 
04 06 0.337 OJ 23 0065* 02 18 0182 03 0.3 0052* 04 10 0180 
04 08 0044* OJ 25 0069* 02 20 0169 03 05 0087 04 12 0332 
04 10 0090 OJ 27 0072* 02 22 0055* 0.3 07 0140 04 14 0355 
04 12 0072 0.3 07 0054 02 24 0085 03 09 0087 04 16 OliO 
04 14 01.39 03 09 0185 02 26 0072* 0.3 II 01.39 04 I q 0062* 
04 15 0.342 0.3 II 0042* 02 28 0075* 0.3 1.3 0157 04 20 0365 
04 18 0060* 0.3 13 0047* 04 04 0077 03 15 C093 04 22 0182 
04 20 01.37 03 15 0052* 04 05 0.340 03 17 0137 04 24 0075* 
04 22 0097 0.3 17 0070 04 08 0125 03 19 0099 04 2 6 0115 
04 24 0074 03 19 0052* 04 10 0222 03 21 0062 04 29 0149 
06 06 1.390 03 21 0067* C4 12 0052* 0.3 23 0095 05 06 C267 
06 08 0079 05 05 02.32 04 14 0442 03 25 0075+ 06 08 0105 
06 10 0158 05 07 0122 04 16 0145 03 27 0073* (·6 10 0080 
06 12 0170 05 09 0047 04 18 0073* C5 05 0034 OS 12 0.350 
06 14 0072* 05 II 0105 04 20 0163 05 07 0070 0'5 14 0085 
06 IS 0112 05 1.3 01'>9 04 22 0152. 05 09 0044* 06 15 013~ 
06 18 0165 05 15 0054* 04 24 0 102* 05 II 0042* 06 I 8 0085 
06 20 0065* 05 17 0068* 04 26 0122* 05 13 0077 06 20 OOS5* 
06 22 0097* 05 19 0062.• 06 06 0330 05 15 0072 OS 22 0070* 
06 24 0073* 05 21 0094* 06 08 0112 05 17 0062* 06 24 0167 
08 08 0432 05 23 007(~ 06 10 0083 05 19 0074* (.'3 oe 0.347 
08 10 0070 07 07 0079 OS 12 0180 05 21 0078* 0 8 10 0050* 
08 12 006C' 07 09 0 0 52.* 06 14 0157 05 2.3 0083* 08 I~ 0145 
0'3 14 0202 07 II OOD 06 16 0089* 0'5 25 0089* C6 14 008.3~ 
08 IS 0068* 07 13 0257 06 18 0140 07 07 0072 ce 16 0060* 
08 18 0070* 07 15 0085* 06 20 0125 07 09 0045* 08 19 Cl30 
C3 20 0205 07 I 7 0090 06 22 0113 07 II 005 7>1' C'3 20 0 II e 
08 22 0082* 07 19 0082* 06 24 0075 07 1.3 0093 C8 22 0070* 
08 24 0087* C7 21 oon• 06 26 0 102• 07 1'5 006';* 0 8 24 0075* 
08 26 0092* 07 23 0084* 06 28 0055 07 17 0060* 10 10 CJ95 
08 28 0154 07 25 0090* 08 OS 0107 C7 19 006 9* 10 12 0130 
10 10 0582 C9 09 0047* 08 10 0137 07 21 0072* 10 14 0 2 82 
10 12 COS?* 09 II 0129 08 12 0215 C7 23 0075* 10 I S 0 177 
10 14 0057* 09 13 0053* 08 14 0427 09 09 0088 10 18 0103* 
10 16 0060* 09 15 0137 08 16 0157 09 II 0085 10 20 0 150 
10 18 0304 09 17 0062* 08 18 011~ 09 13 0072* 10 22 0130 
10 20 0102 09 19 0069* 08 20 010.3 C9 15 0079* 12 12 0232. 
10 22 0247 C9 21 0075• 08 22 0112 09 17 0073* 12 14 co 52* 
12 12 0470 09 23 0075* 08 24 0112 09 19 0100 12 IS 0069* 
12 14 0107• II II 0105 10 10 0232 09 21 007C* 12 IS GIE9 
12 16 0062* II 1.3 0100 10 12 0152 09 23 C072* 12 2C COl3 3• 
12 18 0119 II 15 0069* 10 14 0117 II II 005.2 12 22 0125 
12 20 G09 7 II 17 0052* 10 16 0082 II 13 cos:;;* 12 2 4 OliO* 
12 22 0074* II I~ 01 17 10 18 Oil R 11 I'> 00.59* I 4 14 c 19C: 
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Table 5. (2) 

14 16 0082* 06 06 0255 11 15 0075* 11 15 0082* 12 16 0090 
14 18 0087* cs 08 0114 11 17 0067* 1 1 17 0069* 12 18 0072* 
14 20 0090* 06 10 0242 11 19 0068* 11 19 0072* 12 20 0087* 
14 24 0082>t OS 12 0562 11 21 0075* 11 21 0075* 12 22 0090 
16 16 c 105 OS 14 00!37 11 2~ 0075* II 2~ 0011* 14 14 0080 
15 18 0072* 06 IS 0200 13 I~ 0205 I~ 13 0085 14 16 007.3* 
IS 20 0075* 06 18 0062* I~ 15 0105 1~ 15 0067* 14 18 0075* 
IS 22 0079* 06 20 0092 13 17 0070* I~ 17 00!33* 14 20 0078* 
16 24 00~2* 05 22 0107 13 19 0072* 1~ 19 0074* 14 22 008.3* 
IB 18 0087* OS 24 0010* 13 23 0080* 13 21 0075* 16 16 0093 
20 20 0107 06 ·26 007.3* 13 25 0082* 13 2~ 0082* 16 18 0011* 
22 22 0082* 06 28 0011* 15 15 0069* 15 15 0072* 18 18 0135 
H 05 C8 .0S 0357 15 17 0072* 15 17 0075* 18 20 0083* 
05 05 0285 08 10 014~ 15 19 0073* 15 19 0011* H 13 
05 07 0050* 08 12 . 0167 15 21 0011* 15 21 0078* 13 1 ~ 0090 
05 09 0047* 08 14 0152 17 17 0075* 17 17 0069* 13 15 0082* 
05 11 0158 08 16 0072* 17 19 0011* 17 19 0080* 13 17 0085* 
05 13 0157 08 18 0063* 19 19 0011* 17 21 0080* 13 19 0082 
05 15 0175 08 20 0067* H 08 19 19 0075* 13 21 0105 
05 17 0098 10 10 0069 08 C.8 0772 H 10 15 15 0084* 
05 19 0115 10 12 0062* 08 10 0210 10 10 0165 15 19 0079* 
05 21 0065* 10 14 0064* OS 12 0140 10 12 0057* 17 19 0082* 
05 23 0069* 10 16 0302 08 14 0051* 10 14 0062* 19 19 0085* 
05 25 0070* 10 18 0082* 08 16 01S4 10 16 OHiS H 14 
07 07 01S5 10 20 0070* OS 18 0193 10 18 006~* 14 14 0117 
07 09 0058* 10 22 0094* 08 20 0075 10 20 0090* 14 16 0085* 
07 11 0114 12 12 0132 OS 22 0097 10 22 0092* 14 18 0089* 
07 13 0087 12 14 01~5 OS 24 0114 12 12 0148 14 20 0247 
07 15 0105* 12 16 0092 OS 26 0120 12 14 0127 16 16 0072* 
07 17 0060* 12 18 0245 08 2S 0079* 12 16 0095 18 1 s 0011* 
07 19 011~ 12 20 0 114* 10 10 0130 12 18 0087* H 15 
07 21 0067* 12 22 0187 10 12 0092 12 20 0075+ 15 15 OOS5* 
07 23 0072* 12 24 0079* 10 14 0062* 12 22 0115* 15 17 0085* 
09 09 0162 ~ 14 0055* 10 16 0142 14 14 0069* 15 19 0085* 
09 11 0075 14 16 0097* 10 18 0180 14 16 0087* f5 21 0085* 
09 13 0062* ~us 0115 10 20 0070* 14 18 0094* 17 17 0085* 
09 15 0093 14 20 0090* 10 22 0 117* 14 20 0115 17 19 OOS5* 
09 17 0065• 14 24 0083* 12 12 0065* 14 22 0080* H 16 
09 19 0070* 16 15 0011* 12 14 0105 15 16 0075* 16 16 0128* 
09 21 0072* 16 18 0110 12 16 0112 16 1 s 0077* IS 18 0077* 
09 2~ 0077* 16 20 0011* 12 18 0107 16 20 0079* 16 20 0079* 
11 11 0135 16 22 0140 12 20 0072* IS 22 0115+ IS 22 0082* 
11 13 0092 IS IS 0140 12 22 0095* 18 18 0090* 15 24 0118* 
11 15 0065* 18 20 0112* 12 24 0125* 20 20 0079* 18 18 0099* 
11 17 0064* 18 22 0082* 14 14 0322 H 11 20 20 OOS2* 
11 19 0084>1< 18 24 0147 14 16 0075* 11 11 0098 H 20 
11 21 0090 20 20 0075* 14 I 8 0097 11 13 0060* 20 20 0202 
11 23 0075* H 07 14 20 0075* 11 1 5 0075 
13 13 0165+ 07 07 0~57 14 22 0112* 11 17 0067* 
13 15 0010* 07 09 0045* 14 24 0083• f 1 19 0095 
13 17 0070* 07 11 0107 16 16 0164 u 21 0075• 
13 19 0075• 07 13 0052* 16 18 0107 11 23 0011* 
13 23 0080* 01 15 0057* 16 20 0109* 13 13 0062 
13 25 0082* 07 17 0080 18 18 0112 13 17 0075* 
15 15 0065* 07 19 0127 18 20 0115 1~ 19 0075* 
15 17 0075* 07 21 0080 20 20 0150 13 21 0080* 
15 19 0090* CJ1 23 0069* H 09 13 23 0082* 
15 21 0011* 09 09 0203 09 09 0094* 15 15 0069* 
17 I 7 0059* 09 11 0055* 09 11 0057* 15 17 0082* 
17 19 0075+ 09 13 0057* 09 13 0063* 15 19 0099* 
17 21 0079* 09 15 0087• 09 15 0075+ 15 21 0087* 
17 23 0082* 09 17 009S 09 17 0075* 17 17 0075+ 
17 25 00!,1:5* 09 19 0067* 09 19 0070* 19 19 0075* 
19 19 0075* 09 21 0010* 09 21 0072* H 12 
21 21 0078* 11 11 0060* 11 11 0067 12 12 0404 
H 06 11 1~ 0095 11 13 0062* 1:6 1 A 0 l(l(l 
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Introd uction 

Mn
3
zn

10
. commonly referred to as the r nhases , are reported i n 

the literature to be cubic w i th a cell edge of approximately a
0 

= 8 . 8 A 
9 

and 3pace group Oh . The structure propo;;ed by Csawa and Ogawa (1) 

has been generally accepted and is de'3c ribed in handbooks such as 

F-earson, Handbook o£ Lattice Spacings and 3tructure3 of Metals ( 2); 

it has been assigned the type number 108
1

. Eume - Rothery ( 3 ) and 

Ekman ( 4 ) assumed that these compounds represented so - called 

e l ectron -concentration ...,hases with an electron - to - atom ratio of 

2 1/13 and that, accordingly, the actual compo,;itions were Fe
5
zn.H , 

Ni
5
Znll ' and Mn5Zn~ 1 • the transi tion metal;!j being a~signed the 

valenc~ zero . Although the correctne3>l of these assumptions 

has not been e ;tabli ;hed through accurate experiment3, the names 

Dr. 3amson felt that the structure proposed by Csawa and 

Ogawa ( 1) was not in accord with the fundamental :Jtructural principle s 

that should ar,ply in these three compounds. He , therefore , started a 

reinve ;oti gation. 

It proved to be extremely diificult to prepare iron-zinc and 

manganese - zi nc compounds , whereas nickel - zinc phases were ea!'Sy 

to obtain. The fir ~t compound to be investigated was , therefore , 
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Dr. Sam~on and his a3sistant, Dr. K. Lautsch, obtai ned a 

complete three - dimen3ional set of intensity data from an almost 

spherical :3ingle -c rystal fragment o£ about 10 microns i n diameter. 

Because o£ the very small si ze, copper radiation was used . Absorp ­

tion correction wa.J not necessary. The c ube edge as determined from 

the diffraction maxima of this crystal was a
0 

= 8. 897 A . These 

maxima had been recorded on a film placed in the asymmetric position 

in a !-'reci s ion ,Vcissenberg camera of 10 em diameter . 

.;ince I was very m uch interested i n thia compound, Dr . Samson 

leit to me the further prosecution of this work. 
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Experimental Work 

The intenaity data as supplied by Dr . 3amson and Dr. I< . 

Lautsch were processed by me . Lorentz and polarization corrections 

were a;.>plied. and the data obtained from various sets of Weissenberg 

films were correlated with one another. The data for those reilection<J 

that had been recorded on n layers were given an external weight o{ 

'1'
1 = 1. 0 + 0 . 5 {n - 1) . However, depending on a· subjective evaluation 
e 

of the quality oi the data, ,,, • was modified to give an overall external 
e 

weight fJ) • 
e 

The evaluation was baaed mainly on the resolution of the 

ex 
1

, rv 
2 

doublet and on the agreement between diiferent observations 

of the same reflection. The weights used in the least - square3 refine­
<Jl 

e 
rnents were .,. a: --

40 + Fo 

The Trial Structure 

i ) S'?ace group. 

The single -crystal X -ray diffraction patterns obtained from 

Ni
5
Znll were very similar to those of Ag

5
zn

8
, the structure of which 

was found to be the same as that of y brass . which is body-centered 

3 
cubic, space group Td The structure of Ag

5
zn

8 
was refined by 

Dr . Marsh in 1954 {S). He very kindly made his photographs available 

to me for comparison . 
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The Weisc;enberg photographs of Ni
5

Zn
21 

showed , however , 

in addition to the reflections of the kind h + k + l = 2n , three diffuse 

spots corres :Jonding to the reflections 0 14 , 12Z, and 1 13 . The nature 

of these reflections,which correspond to a pri mitive lattice , has not 

been established. These reflections appear to have their origin i n 

very small domain3 of primi tive unit cells in the crystal. 

If the diffuse reflections are ignored, the space ~rouns which 

most likely a oply to Ni
5
zn

21 
are Td

3 
and oh

9
. 

ii) The derivation of the structure. 

The atomic arrangement proposed by Osawa and Ogawa ( 1) 

was, as expected, quickly disproved by structure - factor and least-

squares calculations. Symmetry charts of the ( 110) plane for the space 

groups Oh 
9 

and T d 
3 

were then extensively explored. No reasonable 

atructural motif could be found by assumi ng space group Oh 
9 

The next step was to start out with an atomic arrangement 

3 
that corres j?onded closely to that of. y brass {space group Td ). 

A few least - squares refinement cyc les based on such an 

arrangement led to convergence with an agreement index of R = 0 . 28. 

An electron - density map of the { 1 10) plane, calculated on the basis of 

the structure given by the least- squares process, indi cated that the 

vertices of the small tetrahedron, position e !. ' around the ori gin of 

the cube , were occupied only about 60 percent of the time and that 
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there was an atom at the origin, position a , the r emaining 40 percent 

of the time ( see figure 1). :5tructure-factor and least-squares cal-

culations carried out for such a disordered atomic arrangement 

resulted in a drastic i mprovement of the agreement index which dropped 

to R = 0 . 13 6 ; the atomic parameters at thi 3 stage of the refinement 

are gi ven in table 1. The complete list o f observed and calculated 

structure factors i s g iven i n table 2. 

Additional refinement cycle s were carri ed out w ith the application 

of variou s types of wei ghting functions , but did not l ea<i to any si g -

nificant shifts i n the parameters nor to an improved agreement. I n 

all of these calculations the sum of the fractional occupancies of the 

two positions, a a nd e
2

, was kept equal to unity. Electron - density 

maps calculated i n the course of these refinements ttiffered only 

i nsi gnifican tly from one another. However , they always i ndicated 

that the sum of the fractional occupancies of the positions a and e
2 

was 

l arger than unity. 

Discussion of the 3 tructure 

The b.-:md distances ar e ~iven in table 3 . The bond numbers 

were calcula ted with the use of the equation (6 ) 

D = D - 0. (, loq n n 1 , 

where D 
1 

ha s been taken a o 2. 31 A for a Ni-Ni bond, 2 . 37 A for a 

Ni - Zn bond, and 2 . 43 A for a Zn - Zn bond ( £). 
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Table 1 

Refined atomic coordinates, temperature factors, and population 
£actor3 

Kind of Occu- Temperature 
atom Position pancy Coordinates factor 

Zn 2a . OOO,~t~ 4 3 % o. 07+1. 09 

Ni 8e 
2

• XXX • etc. 57% X = . 1021+.0035 0.5 l+O. 44 
e2 

Ni Se 
1

• XXX . etc. 100% X = .3332+.0028 3.27+0.50 
e1 

Zn 12f 
1

• X 00, etc . 1 OOo/o X : 

fl 
.3462+.0017 2.. 98+0o30 

Zn 24h
1

, XX z . etc. 100% "h= .3035+.0010 2.40+0.17 
1 

z = 
h1 

• 0471+. 0010 
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Table z 

Observed and calculated structure factors. The column headings 
are k , l, Fo and ~c. 

h =O h=l 

0 0 1362 l z 30 43 
0 4 91 99 1 4 274 331 
0 6 213 249 1 6 57 44 
0 8 91 101 1 8 35 24 
0 10 87 91 1 10 72 50 
1 1 28 12 l 3 62 79 
1 3 72. 92 2 5 59 53 
1 5 75 75 2 7 151 152 
1 7 59 49 l 9 40 45 
1 9 6l 59 2 11 4 1 36 
l 11 52 41 3 4 so 50 
2 2 19 29 3 6 121 129 
2 4 27 19 3 8 37 l9 
2 6 63 50 3 10 z8 30 
2 8 106 82 4 5 43 40 
l 10 59 52 4 7 140 131 
3 3 334 586 4 9 56 40 
3 5 60 60 5 6 67 67 
3 7 80 74 5 8 42 39 
3 9 73 40 5 10 60 79 
3 11 28 29 6 7 < 32 31 
4 4 78 76 6 9 32 31 
4 6 77 74 7 8 43 53 
4 8 38 24 
4 10 19 9 h=2 
5 5 174 172 

186 5 7 32 20 2 l 149 

5 9 35 35 2 4 102 113 

6 6 157 150 2 6 61 65 

6 8 < 32 0 l 8 69 73 

7 7 16 5 2 10 97 93 

1 9 < 10 16 3 3 121 151 

8 8 79 98 3 5 61 51 
3 7 80 75 
3 9 59 52 
4 4 123 124 
4 6 63 64 
4 8 < 37 22 
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Table 2 (continued) 

h=2 (continued) h=5 

4 10 50 31 5 6 < 27 15 
5 5 71 78 5 8 17 17 
s 9 38 30 6 7 40 33 
6 6 114 118 
6 8 33 21 h=6 
7 7 37 12 

6 6 108 102 8 8 < 9 5 

h=3 

3 4 87 85 
3 6 194 193 
3 8 69 54 
3 10 <44 28 
4 5 65 50 
4 7 48 40 
4 9 31 31 
5 6 58 46 
5 8 106 88 
6 7 < 32 7 
6 9 69 77 
7 8 < 19 17 

h=4 

4 4 323 291 
4 6 65 56 
4 8 51 43 
4 10 < 9 29 
5 5 55 41 
5 7 56 45 
5 9 45 50 
6 6 41 40 
6 8 26 21 
7 7 103 97 
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Table 3 

Bond d i stance'3 and bond numbers in Ni
5 

zn
21 

. 

P osition Ligand 
Bond T otal bond 
distance{.A.) number'3 

Z~) 4Ni-te 
1
) 2.57 1. 87 

6Zn-ff 1) 3.08 • 50 

10 2.37 

Nife
2

) 3Ni-fe
2

) 2.57 1.11 
3Nife 

1
) 2.53 1. 29 

3Zn-f£ ) 2.52 1. 69 

_E:nfh~) 2.58 1. 34 

12 5.43 

Ni-fe 1) ( l Z~) 2.57 . 46 
i or 3Nife l..) 2.53 l. l~ 

3Znf-!
1
) 2 . 57 1. 38 

3Zrr-fn
1
) 2.57 1. 38 

_gn-fhl) 2.57 1. 38 

10 or 13 4 . 60 or 5. 43 

Zn~1) ( lZn-fa) 3.08 .08 i 
l. or 2Nife 2) 2.52 1. 12 

2Nife ) 2 .57 . 92 
4Zn-fh

1
) 2.76 1. 13 

2Z~ 1) 3.05 . 18 
2Zn-fh

1
) 2.65 . 86 

_gn-f£11 z. 74 .30 

12 or 13 3 . 47 or 4 . 51 

Zt'1-fh
1

) ( nothing 
.; 

. or lNife ) ~ .58 . 45 
lNlfci) l.51 . 46 
lNi.fe 

1
) 2.57 . 46 

2Zn-fi 1) 2 .76 . 56 
l Z n-fi ) z.<-s • 43 
l Z nf£ !> 3 .05 • 09 

_!Zn-fh
1

) 2.72 1. OS 

11 3 . OS or 3. 50 
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One may de3cribe this disorder as i£ it were actually due to 

the presence of three kinds of unit cells in the cry::>tal. One kind of 

cell may contain an atomic arrangement identical to that o£ y brass. 

A second kind may be described a3 a modified y brass structure in 

which the small tetrahedra aroWld 000 and ~tr have been replaced 

by an atom at 000 and ~ ~ i. The third kind may also be de scribed as 

a modified y brass structure in which the small tetrahedron around 

t!i has been replaced by an atom at !t~. The first two ldnds of 

unit cells are body centered, and we call these y,y and 0, 0. The 

third kind of unit cell is primitive and is called 0, y. 

We cannot describe the actual distribution of these three kinds 

of unit cells within our crystal. However, the diffuse spots referred 

to earlier and corresponding to reflections from a primitive cell 

may be due to small domains of adjacent primitive cells just described. 

The diffuseness indicates that these domainl5 are less than 100 unit­

cube edges in length. A quantitative evaluation of this phenomenon 

may be made later. 

The Diffuse Reflections 

· We calculated, but only very roughly, which reflections should 

be observed from the domains of. primitive cell.i. We assumed that 

the primitive cell is body centered with the exception of 4 atoms at 

the verticeo of the amall tetrahedron around 000 and an atom at ,!!; . 



3 tructure factors were calculated on this basi.11 for reflections of 

the type h + k + l. = 2.n + l. We only ~oint out that the three observed 

diffuse reflections are among the nine reflections having the largest 

calculated structure factor d ( see table 4) . 

Structure - factor calculations for the disordered structure 

For the ~ake of simplicity , let po!ii tions a and e
2 

each have 

SO percent occupancy . Furthermore, let the crystal be a twin of two 

cry stala of equal size and shape having exactly the same orientation. 

Let one of the twins be a y,y type and the other an 0 , 0 type, which 

we have defined above. 

The structure factor expression which we have used for our 

ilisordered, or composite , crystal is 

F ¥ A +A +A )
2 + (B + B )

2 
c s e

2 
a s e

2 

where A
9 

and B
9 

signify the contributions of positions e
1

, £
1 

and h
1

. 

cases: 

Let A , B , 
s 5 

1) A =A 
a e2. 

and B be equal to zero. 
e2 

We consider two 

and 2) A = - A • 
a e

2 

I n the first case we would calculate for a composite crystal 

2A 
a 

and for the twi n crystal , where position a is fully occupied in one 

half of the crystal and position e
2 

in the other half'. 
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Table 4 

Diffuse reflections. The nin~ reflections most likely to be observed 
and their structure factors calculated on the basis of a greatly 
simplified model. 

hld 

005 

014 

223 

115 

001 

003 

122 

113 

016 

next largest 

227 

Fe 

75 

64 

61 

53 

49 

49 

46 

45 

44 

37 

Fo 

23 

9 

15 
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The two results are the same. However , for the second ca~e where 

A 
a 

= - A , we would calculate for a composite crystal 
ez 

F c = -v(A + A ) z -v(Aa 
2 

= - A ) = 0 
a ez ez 

but for the twin crystal , 

Fe = -v t ( 2Aa)
2 

+ H - t.A a )
2 = ZA a 

I f our crystal contains small crystallites or domains of a 

'3i gnificant size, it i9 obvious that our agreement is bound to be poor 

and that we cannot expect our electron- density maps to be correct. 
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I. I ;..ropose that the inherent symmetry of the bond orbitals 

of the metal atom in a sandwich compound i s a significant factor in 

determining the symmetry of the sandwich compound and that the 

rnetal -ring bonding itself i s more important than van der Waals ' 

forces between the rings in imposing stereospecifity on the rotational 

configuration. 

Authors of review articles ( 1, 2) have not considered the syrn -

metry of the metal orbitals as playing any role in determining the 

molecular symmetry of sandwich compound:l . I quote P . L . .I-auaon 

( la): 

Ferrocene crystallizes in the monoclinic space ­
group I-ll/c with two molecule.~ in the unit cell. 
Hence the metal atotn liet:~ at a center of sym ­
metry both within the unit cell and within the 
molecule . The chromium atom in the cubic crys­
tals of bis -benzenechromium must also constitute 
a molecular center of symmetry. This leads to 
the op.Posecl conformation of the rings in the latter 
and to the staggered conformation in ferrocene, 
but the analogous dicyclopentadienylruthenium and 
dicyclopentadienyl -:>smium ha .-e the opposed con ­
formation in their orthorhombic crystals. One 
reason for this difference from ferrocene may be 
the larger s ize of ruthenium and osmium which reduces 
the repulsion between hydrogen atoms attached to 
different rings. 

And I quote Cotton and Nilki nson ( l.a): 

It is interesting to note that in contrast to ferrocene , 
which has the staggered conformation in the cry s ­
tal , ruthenocene i:3 eclip3ed . This difference i s 
due to d ifferences in the lattice forces and/ or to 



137 

smaller van der Waals' forces when the rings are 
farther apart. It may be noted that in di( n-indenyl)iron, 
the benzene rings are in the gauche positi'7>n , this form 
again being stabilized in the crystal by crystal forces 
or by weak van der Waals' forces between the atoms 
of the six- membered rings (3. 43 J. apart). As with 
the other n-cyclopentadienyl comi:JOUnds, in solution 
or in the ;-apor , the rings are probably freely rotating 
in the indenyl compounds, or nearly so. 

And further on ( 2b): 

It is therefore significant that ruthenocene has recently 
been found to exist in the eclipsed (D

5
h ) configuration; 

dibenzenechromiurn also exists in an eclipsed con­
liguration in the crystal. This seems to indicate (1) 
that the configuration is determined mainly by lattice 
forces or ( 2) that the configuration in {::-C

5
H

5
) Fe 

is determined by small van der Waals' forces ~hich 
become insignificant when the rings are further apart 
as they are in {:-c

5
H )

2
Ru or (3) a combination of 

these factors. Khat fueae results would appear to 
contradict clearly is the idea that the metal-ring 
bonding itself, presumably the same in essential 
features in both compounds, imposes any stereo­
specif'\city on the rotational c onfiguration. 

My pro posal is in direct c onflict with the last sentence quoted. 

The data pertinent to the discussion that follows are presented 

in table l. I shall use Pauson 'e nomenclature . 

In both reviews the authors have implied that ferrocene is stag-

gered because of repulsion be tween the atoms in different rings. I 

assert that thi s repulsion is secondary to some other phenomenon; 

my assertion rests on the observation that bis-benzenechromium 

exists in the eclipsed configuration. In both reviews , the eclipsed 

configuration of bis-benzenechromium is merely noted. 
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Table 1 

Comparison of bond distances and ring-to-ring distances in some 
sandwich compounds 

Mean distances in Angstrom s 

~ipsed configurari_o_n ________ ~~~----------~~------------~~----~ M -C c-c rins-to-ring 

2. 135+. 010 l. 439+. 014 3.22.6+.014 
2 . 132+. 010 l. 353"+. 014 

bi a -benzenechromium (3) 

ruthenocene ( 4-) 2 .21 +.02 l. 43 +.02 3.68 +.02 

bis -indeny1ruthenium ( 5) 2. 19 l. 43 3.67 

osmocene ( 6) 2.22 3. 71 

S taggered con!iguration 

ferrocene (7) G.OS +.03 1. 4 1 +.03 3.32• 
ferrocene ( 8) 2..064'+.013 1. 440+. 029 3.32 +.06 

bi:3 -indenyliron (9) l, . 10 l . ·B 3. 43 

nickelocene ( 10) 2.20 +.OZ. l. 44 +.02 3.66• 
nickelocene ( 11) 2 . 18 l. 43 3.6z.• 

•calculated from mean M - C and C -G distances . 
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Even though the six- membered rings of bis - benzenechromium 

are closer to each other than the five - membered rings of ferrocene , 

bis - benzenechromium is eclipsed and ferrocene is s taggered. The 

ring separation i s 3. 23 A in bis - benzenechrornium ( 3 ) and 3 . 32 A 

i n ferrocene {7, 8) . If r epul sion between a tom s of different ring s were 

the cause of the staggered config uration of ferrocene , his - benzene ­

chromium would also be staggerec1 . Note that dicyclopentadi enyl 

chromium is staggered ( 2). 

Cotton and Wilkin~on ' s argument that the configuration is 

determined mai nly by lattice force s is harder to refute since "lattice 

forces" is not defined and its implic ations are rather vague . I will 

assume that lattice forces are sensitive to , or are a function of , the 

overall shape and size of a molecule and the way in which the molecules 

pack together . I believe there are two observations whic h indicate that 

lattice forces, whatever they may be , are not responsible for the 

molecular symmetry of ferrocene and ruthenocene in the crystalli ne 

state. 

First, bis - indenyliron has the staggered configuration ( 9) , 

just as ferrocene , and bis-indenylruthenium has the eclipsed configura ­

tion {5), just as ruthenocene. The differences in lattice forces that 

would make ferrocene and ruthenoccne have different symmetries 

should be smaller between bi s - indenyliron and bis - indenylruthenium . 
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The lattice forces making bis -indenylruthenium eclipsed (cis) will also 

tend to make bis -indenyliron eclipsed rather than staggered (gauche, 

in this case) . The probability that the same symmetrical derivatives 

of ferroc ene and ruthenocene will have the same configuration w i ll 

i ncrease as the si ze of the molecule increases . Obviously , the change 

from cyclopentadienyl groups to indenyl groups i s not enough . F'urther -

more , both b i s - indenyliron and bis - indenylruthenium crystallize in 

disordered modifications i n which , seemingly at random , molecules 

throughout the crystal a r e rotated lSO• about an axis which is per -

pendi cular to the indenyl groups and which passes through the geomet -

rical center of the molecule. This i ndicates that the lattice forces 

are not very selective . 

Second, the molecules of nickelocene and ruthenocenc are 

essentially the same size, yet nickelocene is staggered and rutheno -

cene i s eclipsed. (Please refer to table 1.) 

M - C c -c ring - ring 

Nickelocene • 2 . 20 A • 1. 44 A 3 . 6 1 A 

Ruthenocene 2 . 21 A. 1. 43 A. 3. 68 A. 

From this I i nfer that the different symmetri es of nickelocene and 

ruthenocene are not due to lattice forces. Here are two sandwich 

compounds whic h differ only i n the k i nd of metal atom inside the 

sandwich --and i n thei r rotational confi guration. 



From these examples 1 deduce that ferrocene and ruthenocene 

have different rotational configurations because of different metal 

atoms and not because of van der Waals' forces between rings or 

because of lattice forces. I propose that the bond orbitals of the iron 

and ruthenium atoms have inherently different symmetries in these 

dicyclopentadienyl compounds and in their derivatives . The difference 

in symmetries may be linked to the availability of.!- orbitals to the 

ruthenium atom for the formation of hybrid bond orbitals . 1 propos e 

that molecules of ferrocene pacl~ together in the crystalline state 

in such a way as to preserve the preferred symmetry of the iron- ring 

bonding. The symmetry determines the packing, not the packing the 

symmetry. 

From ferrocene, bis -indenyliron, ruthenocene , and bis ­

indenylruthenium we can see thD.t the iron atom occupies a center of 

aymmetry (with respect to the Fe - C bonds) and that the ruthenium 

atom lies in a mirror plane. These two symmetries are also observed 

in the elemental structures where every iron atom is at a center of 

symmetry in its cubic closest packed form and where every ruthenium 

atom lies i n a mirror plane, ruthenium being hexagonal closest 

packed. Likewise , osmocene is t:lclipsed (6) and osmium is hexagonal 

closest packed. The dicyclopentadienyl compounds of nickel , cobalt, 

chromium, and vanadium are staggered ( 2); nickel is cubic closest 

packed, cobalt has both hexagonal and cubic closest packed modifica ­

tions , and chromium and vanadium are body centered cubic . 
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I£ lattice forces are in any case important in determining the 

rctational configuration in symmetrical metal - ring compounds, they 

should be most important when the attached groups a;r:e very large. 

For example , in a crystal of 1, 1 '-didodecylferrocene the five-membered 

rings might be eclipsed or suggered, depending on the way the long 

chains wanted to pack. And van der Waals' forces could come into 

play enough to alter symmetry . For example, bis - hexamethyl benzene 

chromium may well be staggered. rather than eclipsed; if it is eclipsed 

it will illustrate that the symmetry of the metal - ring bonding is much 

more important than anyone has so far suspected. 

However , in the fairly simple sandwich compounds that have 

been studied so far, it seems that the nature of the metal-ring bonding 

determines the symmetry. 
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U . I propO$e that the arsenic atom i n the ar senic(V ) - catechol 

complex, A sC(OC 
6

H
4
0H)

3
, is .five - coordinated and that the five oxygen 

ligands are ar~anged at the vertices of a nearly regular trigonal hi ­

pyrami d . It is commonly believed ( 1 , 2) that an oct;ahedral complex 

is formed by the reaction of aqueous solutions of cnt~chol and arsenic 

acid. 

The free acid of the arsenic( V) -catechol complex was first 

prepared by Weinland and Heinzler (3) by the addition of catechol to 

a boiling aqueous solution of ar:~enic acid. Upon cooling , colorless 

crystals separated which had a composition corresponding to 

HA s(C
6

H
4
o

2
)j 5H

2
0 , to which they assigned the "structure" 

H
3
(0•As -(OC

6
H

4
o )

3
1· 4H

2
0. Simple salta of this acid were prepared, 

and the compound behaved as a monobasic acid in all ca.:;es . 

.Jubaequently , other investigators (4, 5, 6) have found: 

1) The parent acid behaves as a monobasic acid with a 

val1.1e of 2 . 75 for the pKa (4) . 

2) The anion exists in optically active forms ( 4 , 5) . 

3) Dehydration can remove only four molecules of 

water from the pentahydrate ( 11, 5, 6) ; this extra water 

of hydration is coordinated to the arsenic atom ( 4 , 6 ) . 

Two different structu1·ee for the complex have been proposed; 

they are illustrated in figure 1. Structure II , which was proposed by 



Roa~nheim and f luto ( 5), is inaclequat~ in that it cannot accol.lnt for 

thu observ(.;)d acidity m· for the :Jn.t~::;r of hy ... Iration. ;truc:turc I, 

which was _yropo.::ed by Cracldod,, and Jones ( i1) , can account ior all o£ 

the propertie3 Hated above . However, 1 feel that ..ho otructure pt·e -

sented below can ex1,lain the properties oi the cowpl~x in a more 

clear -cut fashion anG that ii; is more con d ~tent with tho knovJn chem -

is try of arsonic and of the group V A elementEl in general. 

I propose that there are only .ive As-v bond.:; and that the 

orygen a tOli.'lO are arranged at the verticefi of a ne;1.rly regular trigonal 

bipyr.:lmict; one i ~om0r . one of an enantiomeric pair , ba.aed on auch 

a._, ~n·angement is illustra~ed in figur~ .:::;(a ). A. dvc - frJld cvordination 

c.f the ar Jenic atom may al::Jo give rise to a number of enantiomor·ic 

pair :s of molecules -..;hich o·vve their asynn·netry to stcric hindranc~.: . 

I£ v1c aoaume n nearly rcgulc1r tri_Jonal bipyrun:.id , an P. "' -<.. 

bond clistance of 1. il A (in ~rsoni.l'i:I!S the A8 - C bond disbnce i a about 

0 

1. 7 S A ( l )) , and an A r;; -c - C :lnele o: ll 5• , we can gel: an idea of 

non - bonded diGt.:"lnces ·~vith a (ew simple cCJ.lcul&tior.e; . ~·igure :!{b ) 

shows the short oxygen t,.) hydrogen cli&tance that would result from 

rotation o: one oi the e~u.J..torinlly bonded catechol qroups about the 

A a - C bond. Figure 2.(c ) ehow~ th~ dbtances to b~ expected ii the 

catecho! groups lie in the equatorial plane; the drawing ia i n the 

equatorial plane , viewed down A~:.~ -0 bond. The ~hort non - bond.cd 
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Figure. 1. Stt·.1ctu1·e~ that hav(... be-. .- p r .... p o :;'- ,1 f o;. th<.. arser.ic(V)­

cat0chol c ompL: "·· 

I n 

=-

(c) 

0 

0-b 
(a ) 

+ 
H 0 

3 

"f 
~1.1A 

··a);:·· 
'/As 
0 

(d) 

I .,fm.~mation on structu•"c i" 11hich the ar scnic 2 t om i s 
fi vu -cool" ( i .a\:e ~,..;. (s rcl. .~... ... t ) . 

j 
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distances can be relieved by expanding the As - 0-C angles or by 

twisting the catechol groups out of the plane. Figure Z(d ) gives the 

expected geometry of the chelating catechol group . lt seems that the 

0 -As- 0 angle of 103• will result in a distorted trigonal bipyramid 

in which one of the oxygen atoms of the chelating group is at an apex 

and the other is at the equator. Expansion of the angle to 1zo• would 

demand As - 0 bond distances of 1. 63 A . 

At this point I must object to the statement by Wells ( la): 

" An exceptional compound , in which As exhibits a covalency of 6, is 

the c a techol derivative, the resolution of which into its optical antimere 

coniirms the octahedral configuration of the oix arsenic bonds." The 

resolution into optical antimers confirms that octahedral coordination 

is a possibility and no more p r ove s an octahedral configuration than 

failure to resolve would disprove it. Furthermore, one can explain 

the optical activity on the basis of a tetrahedrally coordinated arsenic 

atom with the catechol groups arranged like a propellor; but such a 

structure cannot account for the acidity . 

The observed acidity of this complex and the "coordinated water" 

are readily underatood on the basis of the molecular structure as 

proposed here, which we can write as 
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First, the "coordinated water" i::~ not; the extra oxygen atom 

belongs to a hydroxyl group and is covalently bonded to the arsenic 

atom. The measured value of the pKa for the free acid is 2. 75 (4), 

which is very close to 2 . 2l . the value of the pKa of arsenic acid ( 7) ; 

this is expected since the acid hydrogen comes from As - OH groups 

in both. To me, this is a better explanation for the acidity than the 

remark by Craddock and Jones (4 ) , " .• .• a value of 2 . 75 was found for 

the pKa . This is somewhat greater than would be expected for a species 

containing an already formed H
3

0 + ion but is not inconsistent with the 

ionization of a hydrogen from a molecule of water which is coordinated 

to the arsenic.'' Admi ttedly . one can explain any value of the pKa by 

invoking the requisite degree of coordination; very tightly coordinated 

water molecules would be expected to be very acidic, and so on. 

A complex having a trigonal bipyramidal structure is consistent 

with known structures of PC1
5 

and SbC1
5 

( 1); although the structure hatt 

not been determined, AsF 
5 

is known and probably is based on a trigonal 

bipyramidal arrangement. Moreover , BertH ( 8) was able to make 

HOAs (C H
4
o ) but could not isolate a pure compound with three glycol z 2 z 
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groups. Presumably. in H0As(C
2

H
4
o

2
)
2 

the arsenic atom is five-

coordinated. 

1 have grown crystals of the arsenic(V)-catechol complex and 

have collected enough X -ray data to state that the complex crystallizes 

in space group P b with 24 molecules per unit cell. All three axes 
ca 

are essentially the same length, 23.5 A + 0.2 A. 



150 

References 

1. A . F. Wells, S tructu ral Inor ganic Chemistry , ( 1962) , 3rd ed. 

Oxford: The Clarendon P r ess . 

a ) p . 664 . 

2 . F . Basolo and R . G . Pearson, Mechanisms of I norganic 

Reac tions, ( 1958). New York: John Wiley and Sons , Inc. 

3 . R . F . Weinland and J . Heinzl er , Ber ., 52, 13 16 - 13 29 ( 1919). --
4 . J . H . CraddockandM . M . Jones , J . Am . Chern. Soc ., 83. -

2839 - 2843 ( 196 1). 

5 . A . Rosenheim and w. Plato,~ ·, 58, Z000 - 2011 ( 1925). 

6. H. Reihlen, A . Sapper and G . A . Kall, z . anorg . Chern., .!..!!.• 

218 - 226 ( 1925). 

7 . W. J. Blaedel and V . W . Meloche , E l ementary Quantita tive 

Analysi s , ( 1957). Evanston: Row , Peterson and Company . 

8 . E . J . Bertil , J . prakt . Chern ., 120, 179-184 (1 928). 



151 

m . I propose that the following manuscripts entitled "Structure ­

factor and Least-Squares Calculation for Tetragonal, Trigonal . and 

Hexagonal Systems withAni sotropic Vibrations" and "Structure - factor 

and Least- Squares Calculation for Cubic Systems with Isotropic 

Vibrations" be submitted to Acta Crystallographlca for publication. 

Development of high - speed digital computers has relieved the 

crystallogapber of laborious calculations by hand and ha s enabled him 

to tackle complex problems with hopes of solution in a reasonable time. 

However , this development ha s brought with it the problem of pro ­

gramming computers and of the crystallograrJher's desire to make use 

of the speed at his disposal to determine accurately the atomic param ­

eters by including,among o ther factors , anisotropic thermal vibrations 

of the atoms in his analysis. These two problems together require a 

formulation of the structure - factor expressions that is readily adapted 

to computer coding; such a formulation exi sta for the monoclinic space 

groups (Rollett and Davis, 1955) and for the orthorhombic space groups 

{Hybl and Marsh, 1961) . Moreover , the rapid changes in computers 

are forcing the crystallographer to spend much of his time learning 

and programming new computers. He can be relieved of this task 

if he can present his problem to a professional programmer in such 

a form that it is a coding problem rather than a crystallographic one. 

The formulations below and those of Rollett and Davis and of Hybl and 

Marsh are certainly a step toward the coding problem. 
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It is now practical, almost demanding , to program computers 

to carry out structure - factor least- squares calculati.ono for any space 

groups designated by the program user . To program in this way 

req uires a common form of the structure factor expressions , at least 

within a system. With the formulations presented below, which cover 

156 space groups , the trigonometric part of any structure factor in 

2.15 of the 230 Si)ace groups {all but triclinic and monoclinic ) is now 

in the form of triple products of s ines and cosines , e . g . 

[ cos( Znhx) si n ( lnl;y) cos{Zn.t z ) ) . 

The International Tables {1 95Z) gives all of the structure - factor 

expressione, but in several different forms, and, as far as I know, 

no one has attempted to explicitly formulate structure - factor expres ­

sions wi th anisotropic scattering factors for the tetragonal , trigonal , 

and hexagonal space groups. 

(The formulations presented in the proposed paper on the 

cubic system are one result of writing a s tructure - factor least- squares 

program for the Burroughs 220 .) 
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Structure ·Factor and Least-squares Calculation for 

Tetragonal, Trigonal , and Hexagonal Systems with 

Anisotropic Vibrations 

Rollett and Davis {1955) and Hybl and Marsh ( 1961), hereafter 

HM. have derived sets of expressions that can be used to calculate 

structure factors and least-squares coefficients for any monoclinic 

space group and for any orthorhombic space group. In like manner, 

we present sets of analogous expressions for tetragonal , trigonal , and 

hexagonal symmetries. In developing these expressions we make 

use of the formulations of Trueblood ( 1956) and the International 

Tables (1952). 

To simplify all discussion we present the ease of one crystal -

lographic atom in a general position. For a number of atoms , one 

must sum over all the atoms for the complete structure factor and 

take into account the lower multiplicity of atoms in special positions 

in the usual way. 

J'etragonal syste!D 

We start with the expression for the scattering factor for a 

vibrating atom: 
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where fo is the scattering factor for an atom at rest. The tetragonal 

symmetry gives rise. in general . to seven additional orientations of 

the vibrational ellipsoid; applying the transformations given by True-

blood. we write the corresponding scattering factorst 

2 2 z 
£

2 
c fo exp -(B 11h + a

22
k + a

33
J + B 12hk - B 13hJ • B 23kl ) 

2 2 2 
:£
3

:: fo exp-(B
11

b + a
22

k + a
33

.1 - B 12hk + B 13hJ - B
23

k.f ) 

2 2 2 
£
4 

= fo exp-(B
11

h + a
22

k + s
33

.1 - B 1zhk - B
13

h.t + B
23

kl ) 

2 2 2 
f S :: fo exp-(B llk + a

22
h + B 33.t - B 12hk + B 13kJ ... B 23hJ ) 

2 2 z 
£
6 

= fo exp-(B
11

k + B
22

h + a
33

1 - B
12

hk • B 13kl + B
23

hl ) 

z l z 
£7 = fo exp -(B 11k + BZ2.h + a

33
.l + a 1zhk - B 13kl - B 23hJ ) 

2 2 2 
fS = fo exp -(B 

11
k + a

22
h + a

33
i + B 

12
hk + B 

13
kJ + B 

23
h.t ) 

In table 1 (all tables arc given at the end of the discussion). 

we define the 16 triple products of sines and cosinee which are auf -

ficient for expressing the trig onometric part of any structur e factor · 

in the tetragonal system; the 8 products in terms of hx. ky . and l z 

are the T. 1 s defined by HM. We have chosen to express the structure 
l 

factors and their derivatives in a minimum nurnber of simple . common 

terms in order to facilitate bookkeeping and to reduce computational 

time. The 16 expressions which we have chosen are presented in 

table 2; only the first 8 are needed for the space groups of Laue 
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symmetry 4/ m . The derivatives of these basi c expressions are 

given in table 3. 

The real and i maginary parts of the structure factor , A and 

2 z 2 2 
B ( Fe = pc (A + B ), for any c lass of reflection in the tetragonal 

system are listed in table 4 in terms which are defined in table Z; 

the space - group multiplicity is reflected in p • For acentric primitive 
c 

space groups , p ie one; a center of symmetry contributes a factor 
c 

of two , as does a body - centeJ'ed lattice . 

An example is presented to i llustrate the use of the tables . 

We assume space group 14
1
/a and a reflection characteri zed by 

h + k + I. = 4n + Z, h = Zn and k = 2n. 

Fc/4 = Ac/4 = ( 1 - 5) , ( B = 0) 

where the factor of 4 is from p and 1 and 5 are expressions 
c 

defined in table 2 . We refer to table 2 a n d write 

where f 
1

• £
2

, £
5 

and· £
6 

are scatteri ng factors defined in the text 

and c
1

, e
1

, i
1

, g
1

• d
1

, £
1

' . j
1

, and h
1 

are triple p r oducts defined 

in table 1. 

i' Fe 
~X 

From table 3 , we see that some derivatives of Fe are: 

( 

= 4 L-z-n [ (£
1 

+ £
2

)(m
1 

+ o
1

) + (f
1

- f
2

)(q
1

- k
1
) 1 

"' - Zttk ( (£5+i6)(n l-p1) - (fS - f6)(r 1 + 1 1)1 f 
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o Fe = 4 ( 2rtl ( -3) + 21'Tl (7) ] -~z 
( 

~ =4(-h2 (1)+k2 (s)J 
~ Bll 

~ ~c = 4 thJ (2) + kl (6) ) . 
13 

ln our formulation there is no single term which gives the 

structure factor expression for an isotropic atom a s does expression 

£ 1 = £
1 

+ £
2 

+ £
3 

+ £
4 

formulated by HM. Such a formulation for the 

tetragonal system is impractical as it would require splitting 

the system into the two Laue g roups 4/m and 4 / m rom, and even then, 

a lar'ger number of more cumbersome expressions would have to be 

defined. 

To illustrate this, consider space group P4
2 

where the com­

binations (1-5) and 1+5) are given for A for the two parity conditions. 

Expressed in the form of H M , ( 1-5) becomes 

t ( (£1 + £2 + £5 + £6)(cl- el • dl- £1') + (£1 + iz • £5- f6)(cl-el +dl +fl') 

-(fl -£2+£5 -f6)(il +gl +jl-hl)- (fl -£2 -f5+f6)(il +gl -jl +hl)] 

{theE's and T's not related to those defined by HM) and (1+5) becomes 
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To formulate in these terms requires 8 products between 8 terms; 

in our formulation, 4 products between 8 simpler terms are required. 

Further more , the derivatives become quite complicated; take E 1 T 1 

in the case just discussed, 

= 

If we did formulate our expressions in this way, we would be forced 

to handle the derivatives by the s impler expressions presented in 

table z. Thus we would add to our computational time and our book-

keeping headaches by formulating the structure factors in terms like 

(£
1 

+ f . + fk + f ) as HM did for the orthorhombic system, where 
- J - - 1 

such a formulation is convenient and efficient. 

The isotropic case will have to be handled in a special way . 

As the terms are written in table 2. the right hand side of each 

expression, which contains ( f
1 

- f}, is zero for an isotropic atom . 

It should be s imple to program in such a way that within the computer 

the 16 expressions are split into 32 expressions; the (f
1 

• fj) terms 

coUld then be disregarded for an isotropic atom. ( Expressions 9 through 

16 should be disregarded for space groups of Laue symmetry 4/ m.) 

For the general case, for an isotropic atom 
. 2,.,. 

equal to fo exp( -B' ~"1 ) and 
). 2 

Z ~ A i "'B i o Fe = 2 A + 2.B _ 
~ B 1 ~ B'. '::\B ' 

i 1 i 

= -

i all the £' s are 
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Table 1. Definition of triple productg. C = cosZn, S = sin2.TT. 

hx ky .lz by kx .tz 

c e Chx · 
1 

Cky C.lz d
1 

-: Chy Ckx · C.lz 

e = Shx · 
1 

Sky · CJ z f I 

1 
"'Shy • Skx C.lz 

g = Chx · 
l 

Sky • S.l z h
1 

:z Chy Skx S.tz 

i i! Shx · 
l 

Cky S.l z j l a Shy Ckx · S.l z 

k =shx · 1 - Sky · SJz .t
1 

B Shy Skx · SJ z 

m -= :ihx · Cky 1 
CJz n

1 
?.! Shy Ckx • C.l z 

01 a Chx • Sky CJz p l .;~ Chy · Skx • CJz 

q 1 ".! c hx • c ky . SJz r 1 ""' Chy· Ckx · 5.tz 
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Table 2. Definitions of combinations of triple products and 
scattering factors for the tetragonal system. 

(fl + £2)(cl- el)- (fl - f2)(il + g l)!! 1 

(fl + f2)(il + gl)- ( f l- f2)(cl- el ) '""2 

(fl + rz)(ql - kl) + ( fl - f2)(ml + ol ) = 3 

(fl + f2}{ml + ol) + {fl- £2)(ql- kl): 4 

(rs + i6)(al + £1') + ( rs - f6)(jl - hl) = 5 

(£5 + £6)(Jl - hl) + ( £5 - f6){dl + fl' ) i! 6 

( i5 + £6)(r 1 + 1 1) - (£5 - f6)(nl - p l) = 7 

(fs + £6)(nl - pl ) - ( £5 - £6)(rl + 1 1) =; 8 

( £3 + f4)(cl + el)- (f3 - £4) 11 - g l) '";' .9 

(£3 + r4)(il- gl)- ( ~3 - f4)(cl + e l) 5 10 

(£3 + r4)(ql + kl ) + ( ~3- f4)(ml - 0 1):: 11 

(£3 + f4)(ml- 0 1) + (£3 - £4)(ql + kl ) 3 12 

( .:7 + £8)(dl - fl' ) + (£7 - £8)(jl + hl) Ei 13 

(£7 + rs)(jl + hl) + (£7 - is)(dl - £1') = 14 

(f7 + f8)(rl -Jl) - (£7 - f8)(nl + pl) ' 15 

(£7 + f8)(nl + 1 1)- (f7- £8){rl ·ll) "' 16 
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Table 3. Deri vatives of the expressions defined i n Table 2 for 
the tetragonal system. 

~ ~ ~ -~ -~ -~ -~ -~ - ~ - and-
Tau .'Mlzz :aa33 .M3lz 

- and -
Expre ssion 2TT~x 2n~y 2n.l oz ~B1 3 ~B23 

Mult. Mult. c onstant Exp. 
M ult. 

c on st. Exp . B ll B22B33B l2 Constant Exp. 
X y B 13 B23 

1 - h - k 4 - 3 h2 k2 _. ?.. +hk 1 -hl - kl ?.. 

2 h k 3 4 h 2 k2 I. 2 
+hk 2 -hi. - k.l 1 

3 - h - k 2 1 h2 k2 ,z +hk 3 +hl +k.l 4 

4 h k 1 - 2 h2 k2 , 2 +hk 4 +hl +kl 3 

5 1< - h 8 - 7 k2 h2 , 2 - hk 5 +k.l -hl 6 

6 - k h 7 8 k2 h?.. _. 2 - hk 6 +k.l -hl 5 

7 k - h 6 5 k2 h 
2 

1
2 

- hk 7 - k.l +hi 8 

8 - k h 5 - 6 1<2 h2 1
2 

- hk 8 -kl +hi 7 

9 - h k 12 -11 h 
2 

k 
?.. 

1 2 
- hk 9 -hl +kl 10 

h2 k2 ? 
10 h - k 11 12 , .. - hk 10 -hi. +kl 9 

11 - h k 10 9 h2 k2 _. z - hk 11 +hl - kl 12 

12 h - k 9 -10 h2 k2 1 2 - hk 12 +hl -kl 11 

13 - k -h 16 - 15 k2 h?.. J
2 

+hk 13 -kl -hl 14 

14 k h 15 16 k2 h2 1
2 

+hk 14 - k.l -hl 13 

15 - k -h 14 13 k2 h 2 ,z +hk 15 +k.l +hl 16 

16 k h 13 -14 k2 h2 ,z +hk 16 +kl +hl 15 
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Table 4 . A tabulation of the tetragonal space groups according to 
index parities. 

Space Group 

75 - P4 

79 -14 

80-141 

81 - P4 

82 -14 

83 -P4/m 

84-P4 2/m 

85-P4/n 

PC 

1 

1 

1 

1 

2 

P lanes 

Ap plane s 

I = 4n 
l. = 4n + 1 
l. = 4n + 2 
l. = 4n + 3 

l. = 2n 
l. = 2n + 1 

l. = 4n 
l. = 4n + 1 
J = 4n + 2 
J = 4n + 3 

h + k + J = Zn 

2 h + k + 1 = 2n 2k + J = 4n 

1 

2 

2 

2 

2 

2k + l = 4n + 1 
2k + l = 4n + Z 
2k + l = 4n + 2 

All plane s 

h + k + l = 2n 

All p lane s 

h 
Zn 
2n 
2n + 1 
2n + 1 

l = 2n 
l. = 2n + 1 

k 
Zn 
2n + 1 
2n 
2n + 1 

A 

1 + 5 

1 + 5 
- Z + 8 

1 - 5 
- 2 - 8 

1 + 5 
1 - 5 

1 + s 
-z - a 

1 - 5 
-z + 8 

1 + 5 

1 + s 
1 - 7 
1 - 5 
1 + 7 

1 + 5 

1 + 5 

1 + 5 

1 + 5 
1 - 5 

1 + 5 
-2 + 6 
-2 - 6 

1 - 5 

B 

3 + 7 

3 + 7 
4 + 6 
3 - 7 
4 - 6 

3 + 7 

3 - 7 

3 + 7 
4 - 6 
3 - 7 
4 + 6 

3 + 7 

3 + 7 
3 + 5 
3 - 7 
3 - 5 

3 - 7 

3 - 7 
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Table 4. (continued) ( Z) 

Space Group pc Planes A B 

86 -P4 2./n 2. h+k k +l 1 + 5 -l.n 2.n 1 + 5 
l.n Zn + 1 1 - 5 
2.n + 1 2n -z + 6 
2.n + 1 ln + 1 - 2. t 6 

87 -1 4/m 4 h + k+.t = Zn 1 + 5 

88-I 41/a 4 h+k+l h k 
4n Zn 2.n 1 + 5 
4n Zn Zn + 1 -z + 5 
4n Zn + 1 2n 1 - 6 
4n Zn + 1 2n + 1 -z- 6 
4n + 2 2n 2n 1 - 5 
4n + 2 2.n 2n + 1 -z - 5 
4n + Z Zn + 1 2n 1 + 6 
4n + 2 Zn + 1 Zn + 1 - 2 + 6 

89 - P4ZZ 1 All plane s 1+5+9+13 3+7-11-15 

90 -P4z
1
z 1 h + k = Zn 1+5+9+13 3+7 -11-1 5 

h + k = Zn + 1 1-5-9+13 3 - 7+11-15 

91-P4
1
zz 1 J = 4n 1+5+9+13 3+7 ·11-15 

1 = 4n + 1 -z+8-10+lb 4+6-1 z-14 
1 :: 4n + 2 l-5+9-13 3 - 7-11+15 
1 = 4n + 3 -z-B-10-16 4-6 -1 2+ 14 

9Z-P 4
1
z

1
z 1 Zh + 2k + I. = 4n 1+5+9+13 3+7-11 -1 5 

It = 4n + l - 2.+8+12+ 14 4+6-10+16 
II = 4n + 2. 1-5-9+13 3 - 7+11 -1 5 
II = 4n + 3 - 2. - 8 -1 2.+14 4-6+10+1~ 

93 -P4
2
zz 1 1 = Zn 1+5+9+13 3+'1-11-15 

1 :: Zn + 1 1-5+9-13 3-7-11+15 

94 -P4
2
z1 Z l h+k+l = Zn 1+5+9+1 3 3+7 -11-1 5 

h+k+l = l.n + l 1 - 5 - 9+13 3 - 7+11-15 
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Table 4. (continued) (3) 

S;.)ace Group a P lanes A B 
c 

95-P 4
3

22 1 l = 4n 1+5+9+13 3+7-11-15 
l = 4n + 1 -2-8-10-16 4 -6-12-14 
l = 4n + 2 1-5+9-13 3-7-11+15 
l = 4n + 3 -2+8-10+16 4+6-12-14 

96-P4
3
z

1
z 1 Zh + 2.k + l = 4n 1+5+9+13 3+7-11-15 

= 4n + 1 -2.-8-12.+14 4-6+10+16 
= 4n +- 2 1-5-9+13 3-7+11-15 
= 4n + 3 -2+8+12.+14 4+6-10+16 

97-1422 2. h +k+J = 2n 1+5+9+13 3+7-11-15 

98 -14 122. 2 2.k + l = 4n 1+5+9+13 3+7-11-15 
2k + l = 4n + 1 1-7+11+13 3+5+9-15 
2.k + 1 = 4n + l 1-5-9+13 3-7+11-15 
Zk + l = 4n + 3 1+7-11+13 3-5-9-15 

99-P4mm 1 All planes 1+5+9+13 3+7+11+15 

100-F4b:.n 1 h + k = 2.n 1+5+9+13 3+7+11+15 
h + k = 2.n + 1 1+5 -9-13 3+7-11-15 

101-P4
2
cm 1 

1 = 2n 1+5+9+13 3+7+11+15 
I. = 2n + 1 1-5-9+13 3-7-11+15 

102-P4
2
nm 1 h+k+1 = 2n 1+5+9+13 3+7+11+15 

h+k+1 = 2n + 1 1-5-9+13 3-7-11+15 

103-P4cc 1 I. = 2n 1+5+9+13 3+7+11+15 
l = 2.n + 1 1+5-9-13 3+7-11-15 

104-P4nc 1 h+k+l = 2n 1+5+9+13 3+7+11+15 
h+k+l = 2n + 1 1+5-9-13 3+7 -11-15 

105-P4
2

mc 1 l = 2n 1+5+9+13 3+7+11+15 
1 = 2n + 1 1-5+9-13 3-7+11-15 
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Table 4 . (continued) (4) 

Space Group a Planes A B 
c 

106~P4 be 1 h + k l 
2 

2n 2n 1+5+9+13 3+7+11+15 
2n 2n + 1 1~5+9-13 3~7+11-15 

2n +· 1 2n 1+5-9~13 3+7-11-15 
2n + 1 2n + 1 1-5~9+13 3 ~7 -11+1 5 

107 ~I41 .1m 2 h+k+l = 2n 1+5+9+13 3+7+11+1 5 

108~I4cm 2 J = 2n 1+5+9+13 3+7+11+ 15 
l = 2n + 1 1+5-9-13 3+7 ~11-1 5 

109 ~14 1 md 2 2k + 1 = 4n 1+5+9+13 3+7+11+1 5 
2k + l = 4n + 1 1~7+9-15 3+5+11+13 
2k + J = 4n + 2 1-5+9-13 3 - 7+11 -15 
2k + J = 4n + 3 1+7+9+15 3-5+11-13 

110-I4
1

c d 2 2k + 1 = 4n 1+5+9+13 3+7+11+15 
·zk + 1 = 4n + 1 1~7-9+15 3+5-11-13 
2k + 1 = 4n + 2 1- 5+9 -13 3-7+11~15 

2k + 1 = 4n + 3 1+7-9-15 3-5-11+ 13 

111 -P42m 1 All p lanes 1+5+9+13 3-7-11+15 

112- P42.c 1 ' = 2n 1+5+9+13 3 - 7 -11+1 5 
1 = 2n + 1 1+5-9~13 3 - 7+11-1 5 

113-P42
1

m 1 h + k = 2n 1+5+9+13 3-7~11+15 

h + k = Zn + 1 1+5 - 9 -1 3 3 - 7 + 11-15 

114-P4z
1

c 1 h + k+1 = 2.n 1+5+9+13 3-7-11+15 
h + k +l = 2.n + 1 1+5-9-13 3 -7+ 11 -1 5 

115-P4m2 1 All planes 1+5+9+13 3 -7+11-1 5 

116-P4c2 1 1 = ln 1+5+9+13 3-7+11-15 
1 = Zn + 1 1+5-9-13 3-7 -11+1 5 

117 - P4b2 1 h + k = Zn 1+5+9+13 3-7+11-15 
h + k = 2.n + 1 1+5-9-13 3-7-11+15 
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Table 4 . (continued) (S) 

Space Oroup PC Planes A B 

118 .. F4n
2 

1 h + k +l = 2n 1+5+9+13 3-7+11·15 
h+k+l = 2n + 1 1+5-9-13 3-7·11+15 

ll9-I4m2 2 h +k+.t ::: Zn 1+5+9+13 3-7+11-15 

120-I4c2 2 h ... k + l = 2n I = Zn 1+5+9+13 3-7+11-15 
II I. = 2n + 1 1+5 - 9 -13 3-7-11+15 

121 -I4Zm 2 h+k+l = 2n 1+5+9+13 3-7-11+15 

1ZZ-I4Zd 2 Zk + l c: 4n 1+5+9+13 3-7 -11+15 
2.k + J = 4n + 1 1+5+11-15 3-7+9+13 
Zk + l = 4n + 2 1+5-9·13 3 - 7+11-15 
2k +I. = 4n + 3 1+5-11+15 3-7-9-13 

l2.3-P4/m mm 2. All planes 1+5+9+13 

1Z4- P4/m cc 2 1 = Zn 1+5+9+13 
I. = Zn + 1 1+5-9-13 

l25-P4/n bm 2 h k 
Zn Zn 1+5+9+13 
Zn 2n + 1 - 2+ 6 -10+14 
Zn + 1 Zn - z - 6+10+14 
Zn + 1 Zn + 1 1·5-9+13 

1Z6-P4/n nc 2 h+k k+l. 1. 
2n Zn Zn 1+5+9+13 
Zn Zn + 1 2n 1-5-9+13 
Zn + 1 Zn Zn · 2. - 6+10+14 
Zn + 1 Zn + 1 2n - 2+6 -10+14 
2n 2n 2n + 1 1-5+9 ·13 
2n Zn + 1 Zn + 1 1+5-9- 13 
Zn + 1 Zn 2n + 1 - 2.+6+10-14 
2n + 1 Zn + 1 Zn + 1 - z - 6 -10-14 

127-P4/m bm 2 h + k = Zn 1+5+9+1 3 
h + k z: 2n + 1 1+5-9-13 
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Table 4. (continued) (6) 

Space Group pc Planes A 

128-P4/m nc 2 h+k+l = 2n 1+5+9+13 
h+k+l = 2n + 1 1+5-9-13 

129-P4/n mm 2 h k -2n 2n 1+5+9+13 
2n 2n + 1 -2+6+10-14 
2n + 1 2n -2-6-10-14 
2n + 1 2n + 1 1-5-9+13 

130-P4/n ee 2 h+k k+l l - -2n 2n 2n 1+5+9+13 
2n 2n + 1 Zn 1-5-9+13 
2n + 1 2n 2n -2-6-10-14 
2n + 1 Zn + 1 Zn -2+6+10-14 
2n 2n Zn + 1 1-5+9-13 
2n Zn + 1 2n + 1 1+5-9-13 
2n + 1 Zn 2n + 1 -2+6-10+14 
Zn + 1 2n + 1 2n + 1 -2-6+10+14 

131-P 4 2/ m me 2 l = 2n 1+5+9+13 
l = 2n + 1 1-5+9-13 

132-P4 2/ m em 2 l = 2n 1+5+9+13 
J = 2n + 1 1-5-9+13 

133-P42/n be 2 h k l -Zn 2n 2n 1+5+9+13 
Zn 2n + 1 2n -2+6-10+14 
2n + 1 Zn 2n -2-6+10+14 
2n + 1 2n + 1 2n 1-5-9+13 
2n 2n 2n + 1 1-5+9-13 
2n 2n + 1 2n + 1 - 2-6-10-14 
2n + 1 2n 2n + 1 -2+6+10-14 
2n + 1 2n + 1 2.n + 1 1+5-9-13 

l34-P4 2/n nm 2 h+k k+l - -2n 2n 1+5+9+13 
2n 2n + 1 1-5-9+13 
2n + 1 Zn - 2- 6+ 10+14 
2n + 1 2n + 1 -2+6-10+14 
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Table 4. (continued) (7) 

Space Group PC Planes A 

135·P4 2./ m be 2 h+k l -Zn Zn 1+5+9+13 
Z.n 2n + 1 1-5+9-13 
2n + 1 Z.n 1+5-9-13 
Z.n + 1 Z.n + 1 1-5-9+13 

136-P42./mnm 2. h + k + l :: Z.n 1+5+9+13 
h + k + l : Z.n + 1 1-5-9+13 

137 -P4 2/n me 2. h k l -Zn 2n Z.n 1+5+9+13 
Zn Z.n + 1 2n -2+6+10-14 
2n + 1 2n 2n -2-6-10-14 
2n + 1 2n + 1 Zn 1-5-9+13 
Z.n 2n Zn + 1 1-5+9-13 
2n 2n + 1 Z.n + 1 -2-6+10+14 
Z.n + 1 2n 2n + 1 -2+6-10+14 
2n + 1 2n + 1 2n + 1 1+5-9-13 

138-P4 2/n em 2 h + l k+l -2n 2n 1+5+9+13 
2n 2n + 1 -2+6+10-14 
2n + 1 2n - 2-6-10-14 
Zn+ 1 2n + 1 1-5-9+13 

139-14/m mm 4 h+k+l = 2n 1+5+9+13 

140-14/m em 4 h+k+l = 2n,J ==2n 1+5+9+13 
" l =2n+l 1+5-9-13 
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Table 4. (continued) (8) 

Space Group PC P lanes A 

141-14 1/a md 4 h+k+.f h k -4n 2n Zn 1+5+9+13 
4n Zn Zn + 1 -2·5+10-13 

• 4n 2n + 1 2n 1+6+9+14 
4n 2n + 1 2n + 1 -2-6+10-14 
4n + 2 2n 2n 1-5+9-13 
4n + 2 2n 2n + 1 -2+5+10+13 
4n + 2 2n + 1 2n 1-6+9-14 
4n + 2 2n + 1 2n + 1 -2+6+10+14 

142-14 1/a cd 4 h+k+l h k 
4n 2n 2n 1+5+9+13 
4n 2n 2n + 1 -2-5-10+13 
4n 2n + 1 2n 1+6-9-14 
4n 2n + 1 2n + 1 -2-6+10-14 
4n + 2 2n 2n 1-5+9-13 
4n + 2 2n 2n + 1 -2+5-10-13 
4n + 2 2n + 1 2n 1-6-9+14 
4n + 2 2n + 1 2n + 1 -2+6+10+14 
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:,rrigonal and hexagonal syste~s 

We choose to tabulate our (ormulations for the two systems 

separately , but we will discuss them at the same time since they are 

directly related, yet sufficiently different to warrant a separation of 

tables. For both systems the formulations are based on the hexagonal 

coordinates and we have substituted i = -(h + lt) throughout. 

We will again write the trigonometric part of the structure 

factor in the form of triple products of sines and cosines. In addition 

to the triple products defined in table 1 for the tetragonal system, 

we will need those defined in table 5 . 

Twelve orientations of the vibrational ellipsoid are found in 

the hexagonal system; the corresponding scattering factors are listed 

in table 6. Only nine of these scattering factors are needed in the 

trigonal system; the three that appear in the hexagonal system but not 

in the trigonal are £
2

• £
6 

and £
4

• and correspond to rotations of the 

reference vibrational ellipsoid of 6o•. lao•. and 300• about the 6-

folcl axis. The first six of the f's are related to each other by the 

6 -fold rotation axis: the second six are related to the first six by a 

Z-fold axis parallel to !. in the ( 00 1) plane. 

Just as i n the tetragonal system. consideration of bookkeeping 

and computational time has led us to use simple terms for expressing 

the structure factors. The 18 expressions chosen for the trigonal 

system are defined in table 7 and their derivatives are given in table 8. 
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The 24 expressions for the hexagonal system are defined in table 10; 

these hexagonal expressions are direcUy related to identically numbered 

trigonal expressions in table 7. The derivatives of the hexagonal 

expressions are listed in table 11. 

Tablea 9 and 12, in conjunction with the tables of definition, 

allow us to write the appropriate structure factor expression for any 

claas of reflections in any trigonal or hexagonal space group. 

We give three examples to illustrate the use of these tables. 

Consider the reflections with l = 3n.+ 1 in space groups F 3
2

12. In 

table 9, where the trigonal space groups are tabulated, we find 

A = ( 1 + 13) • t( 5 + 9 + 17 + 21) + ./3/2 ( 7 • 11 - 19 + 23) 

and B = ( 3 - 15) - t( 7 + 11 - 1 9 - 23) - /3/ 2 ( 5 - 9 + 1 7 - 21) 

where ~ and ./"J/ 2 have their usual meanings and the numbers in 

parentheses represent expres~ions defined in table 7. Consider 

any reflection in space group R3 . From table 9 and table 7 , we write 

Fe= A= 6{ £
1
f(c 1-e

1
)- (i

1
+g

1
)1 + £

3
((d

3
-£

3
') .. (j

3
+h

3
)] 

+ 1s ( (dz .. £z')- ( jz-hz>J} 

where f 
1

, £
3 

and £
5 

are scatterin3 factors defined in table 6, c 
1

, e 
1

, 

i 1 and g 
1 

are triple products defined in table 1, and d
3

, £
3 

', j
3

, h
3

, 

d 2 , £
2 

'• j 2 and h
2 

are triple products defined in table 5. To avoid 

confusion with the numbers that define expressions, we transfer the 
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factor of 6 to the left side of the equation and write some of the 

derivativea of F c /6 by consulting table 8. 

1 ::'\ F e . 1 .,- - = 2.TT ( - h{3) • k{7) •1{ 11) 
0 ~X 

Consi der the reflections I. = Zn + 1 in space group P 6
31 

m. 

Consulting tabl e 12 and table 10. we write 

Fe -2 
A = 2' = ( 2. + 6 + 10) = -(f

1
+£

2
)(i

1
+g 1) + (£1- £

2
)(c 1 - e 1) 

-(f3 +f4){j3 +h3) + (£3 -£4){d3 - £3 ') 

-(£5 +f6)(jz +hz.) + (£5 -£6)(dz - fz ') 

Referri ng to table 11 , we write some of the derivatives 

" ~ :c = ( -k(3) + (h+k){7) - h( 11) 1 zn 

1. _<~Fe = ( 
1!" ~ z -2.TT.f 4 + 8 + 12) 

i ~ = -hl ( 1) - kt{S) + {hl + kl. )(9) 
~ B l 3 

For an isotropic atom in the trigonal system , the calculation 

is straightforward . All the scatteri ng factors become equal to 
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2 
fo exp( - B' ~ ) , and the necessary products of table 7 are formed 

).2 

without special considerations. For the hexagonal system. the iso-

tropic case is worth special consideration when setting up a computer 

program; the right hand side of each expression in table 10 is zero. 

(£
1 

- fj ) = 0 for an isotropic atom . 

1 thank Dr. Richard E . Marsh for helpful discussions and 

acknowledge the tenure of a United States Rubber Company fellowship. 
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Table 5. Definition of additional triple products needed Cor trigonal 
and hexag onal s y s tems. C = cosZrr, S = sin21'T, i = -h-k. 

hx iy l.z by ix l.z 

c ., Chx · Ciy Cl.z dz - Chy · Cbt • Cl.z 
2 

e B Shx · Siy · C.tz c I - Shy • Six • C.t z 
2 z 

g "-' Chx • Siy • Sl.z hz - Chy · Six • Sl.z 
2 

i ;s Shx · 
2 

Ciy Sl.z jz - Shy Cix · SJz 

k !! Shx · 5iy • Slz 'z - Shy Six • S.t z 
2 

m s Shx · Ciy · Clz n - Shy • Cix · Clz 
2 2 

o -=- Chx · Siy C.lz P2 - Ghy • Six · C.lz 
2 

q -= Chx · Ciy · Sl.z r2 - Chy • Cix · S.tz 
2 

ix ky .tz iy kx .lz 

c3 :: Cix · Cky Cl.z d3 - Ciy • Ckx· Cl.z 

e3 -Six • Sky · Cl.z £3 
I - Siy • Skx · C.tz 

g = Cix • Sky Slz h3 - Ciy · Skx. • S.t z 
3 

i = Six • Cky S.tz j3 - Siy • Ckx • S.lz 
3 

k = Six • Sky· S.lz 
'3 - Siy • Skx · S.lz 

3 
m =Six· Cky · C.tz n3 - Siy • Ckx • Clz 

3 
o ;: Cix · Sky C.t z p3 - Ciy · Skx · C.lz 

3 

q3 - Cix · Cky · S.t z r3 :! Ciy • Ckx · Sl.z 
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Table 6. Definition of scattering factors for trigonal and hexagonal 
systems (£

2
. £

4 
and £

6 
do not occur in trigonal) 

2 2 2 
£1 = £

0 
exp- (B 11h + B

22
k + B

33
J + B

12
hk + B

13
hJ + B

23
kl) 

2 2 2 £
2 

c £
0 

exp- (B 
11

h + B
22

k + B
33

J + B
12

hk- B
13

hJ - B
23

kJ] 

2 2. 2 2 2 
£
3 

= f
0 

exp - (B 
11

k + B
22

(h + k + 2hk) + a
33

1 - B 
12

(k + hk) 

+ B 13kl - B23(hJ + kl)] 

£
4 

c £
0 

exp - rB
11

k
2 

+ B
22

(h2 + k
2 

+ 2hk) + B
33

1 2
- B

12
(k

2 
+ hk) 

-B13kl +B23(hl +k1)) 

2 2 2 2 2 
£
5 

= £
0 

exp - (B 
11

(h + k + 2hk) + B
22

h + B
33

J - B 
12

(h + hk) 

-B 
13

(hl + kl) + B
23

hl ] 

£6 = fo exp- (Bll(h2 + k2 + 2hk) + B2lh2 + B33i2- Bl2(h2 + hk) 

+ B 
13

(hl + kl) - B
23

hl ] 

2 2 2. 
£7 c fo exp - (B llk + B22h + B33l + B 12hl< + B 13k.C + B23hl) 

2 · 2 2 
£8 = £

0 
exp - ra 11k + B

2
lh + B

33
J + B 

12
hk - B 

13
kl - B

23
hl) 

. 2 2 2 l 2 £
9

=r
0

exp-[B
11

(h +k +2hk)+B
22

k +B
33

J -B
12

(k +hk) 

- B 13(hl + kl) + B23k.C ) 

2 2 2 2. 2 
£
10

=£
0

exp-[B
11

(h +k +2hk)+B
22

k +B
33

J -B
12

(k +hk) 

+ B 13(hl + kl) - B23kJ ) 

£11 = f
0 

exp - (B 
11

h
2 

+ B
22

(h
2 

+ k 2 
+ Zhk) + a

33
1 2. - B 

12
(h

2 
+ hk) 

+ B
13

hl - B
23

(hl + kl)) 

£12 = fo exp- (Bllh2 + BZ2(h2. + k2 + 2hk) + B33l2- B 12(h2 + hk) 

-B 
13

hl + B 
23

(hl + kl)) 
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Table 7. Definition of combinations of triple-products and 
~tcattering factors for the trigonal system ( see 
Table s 1, 5 and 6 .). 

r
1

r (c
1 

.. e
1
)- (i

1 
+ g

1
)1• 1 

fl[ (ql- kl) + ( rnl + o l)] ~ 3 

f3( (d3 - £3') - (j3 + h3)1;;!! 5 

f3( (r3 -1 3) + (n3 + p3)] !II 7 

fs( (d2 - f2 ') - ( j2 + hz)J • 9 

f
5

[ (r
2 

-1
2

) + ( n
2 

+ n
2
)] a 11 

f7( (dl - i.J. ') - (jl + h 1)]. 13 

- rsrj l + hl ) + (d1 - £1')] a 14 

f/ (r
1 

-1
1
)+(n

1
- p

1
)1•15 

z
8

r(n
1 

+ o1)- (r
1 

- t
1
)1• 16 

£
9

[ (c
3 

- e
3

) - (i
3 

+ g
3
)1 • 17 

- f 10( (i3 + g3) + (c3 - e3)] !II 18 

f9( (q3 - k3) + (m3 + o3)] e 19 

f·lo(rn3 + o3) - (q3 - k3)J • 20 

f 11 [ ( c 2 - e 
2

) - ( i 
2 

+ g 
2
)] • 21 

- 12[(i2 + g2) + (c 2 - e2)1 • 22 

£11 [(q2 - k2) + ( m2 + 02)1!! 23 

f 12[(m2 + o2) - (q2 - k2)1• 24 
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Table 8 . Derivatives of the expres$ions defined in Table 7 for 
the trigonal c.;ystem. 

0 0 0 - o -o -o -o -o -o 
211' 0 X ' ' -- • ' ' - ' • ' 2.11' 0 y zno z oB 11 oB

22 oB33 oB 12 oB l 3 oB 
23 

Multiplicative. 
constant Exp . Multiplicative constant x 1st column 

X y z Bll B22 B33 B12 Bl3 B23 

hz kz ) 

1 - h - k -I. 3 ~.- hk h.t kl 

3 h k I. 1 h2 k2 l l hk hl kl 

5 - k -i -I. 7 kz s 2 
kl I. -t -v 

7 k i I. 5 kz 5 ' 2 - t k.l -v 

9 -i -h -I. 11 s h2 1. 2 -t - v hl 

11 i h I. 9 s h2 1. 2 -t - v hi. 

13 -k -h -I. 15 k2 h2 l 2 hk kl hl 

14 k h -l 16 k2 hz l 
2 hk -kl -hi. 

15 k h I. 13 kz h2 1 2. hk kl. hi. 

16 - lt -h I. 14 k2 hz 1 2 hk -kl -h.f 

17 -i -k -I 19 
,, 
~ 

kz 1. 2. -t -v k.t 

18 i k _, 
20 s kz 1.2 -t v -kl. 

19 i k I 17 s kz 12'. -t -v kl 

l.O -i -k I 18 .3 kz 1 2. - t v -kl 

2.1 - h -i -1 23 h2. s 1l -t hl -v 

2.2 h i -1 24 h-2 s 1.1.. - t -hl v 

2.3 h i I Zl 
2. s 1.2 -t hl h - v 

24 -h -i I 22 2 s 2. 
-hl h I -t v 

i = - h - k h 
2 + k 2. + 2hk = 5 • k 

2 + hk = t, 
2 

h + hk. = u, hl + kt = v 
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Table 9 . A tabulation of the trigonal space groups according to 
index paritie~. 

Space Group 

143-P3 

146- R3 

147 -Pj 

148- Rl 

149-P 312 

150- P321 

151-P 3
1

12 

155-R32 

P lanes 

1 A ll plane s 

1 l = 3n 
l = 3n + 1 

1 l = 3n 
l a 3n + 1 

A 

1+5+9 

1+5+9 
1- ~ (5+9) =f 

/3/2( 7 - 11) 

1+5+9 
1- t ( 5+9) + 

/'3/2{7-1 n 

B 

3+7+11 

3+7+ 11 
3 - t ( 7+11) + 

/'3/Z ( S-9)-

3+7+11 
3 - ~ (7+ 11) :,: 

/3/2 ( 5 - 9) 

3 -h + k + l = 3n 1+5+9 3+7+ 11 

2 All planes 

6 All planes 

1 All planes 

1 All p lanes 

1 l = 3n 
l = 3n + 1 

1 l = 3n 
l = 3n + 1 

1 l = 3n 

l = 3n + 1 

1 l = 3n 

l = 3n + 1 

1+5+9 

1+5+9 

1+5+9+13+17+21 3+7+11-1 5 -1 9 - 23 

1+5+9-14-18-22 3+7+11+16+20+24 

1+5+9+13+17+21 3+7+11 -1 5-19 - 23 
1 + 13 -t ( 5+9+17 +21) 3-15 -~ 7+11-19 - 23) 

T./3/2(7 -11-19+23) !_./3/2(5-9+17 - 21) 

1+5+9-14 -18 - 22 3+7+11+16+20+24 
1 -14 -~5+9 -18 -22) 3+16-~7+11+20+24) 

!f../'3/ 2{7 -11+20- 24) !!'J/2( 5 - 9 - 18+22) 

same , as l = 3n, 
P3 12 

sameasf=3n:;: 1, 
P3

1 
12 

same as l = 3n, 
P3 21 

same asl= 3n=f 1 , 
P3

1
21 

3 -h + k + l = 3n 1+5+9-14 - 18- 22 3+7+ll+l6+20+24 
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T able 9. (continued) ( 2) 

Space Group PC Planes A B 

156-P3ml 1 All plane s 1+5+9-14-18-22 3+7+11-16 -20-24 

157-P 31 m 1 All planes 1+5+9+13+17+21 3+7+11+15+19+23 

158-P 3cl 1 I. = 2n 1+5+9-14-18-22 3+7+11-16 - 20 - 24 
l = 2n + 1 1+5+9+14+18+22 3+7+11+16+20+24 

159 - P 31c 1 l = 2n 1+5+9+13+17+21 3+7+11+15+19+23 
l = 2n + 1 1+5+9-13 ... 17 · 21 3+7+11-15 - 19 - 23 

160-R3m 3 -h + k + l = 3n 1+5+9-14-18- 22 3+7+11 -16 - 20- 24 

161-R3c 3 -h + k + l = 3n; 1+ 5+9 -14-18- 22 3+7+11 -16 - Z0-24 
l = 2n 
l = Zn + 1 1 + 5+ 9+ 14+18+ 2 2 3+7+11+16+20+24 

162·P 3lm 2 All planes 1+5+9+13+17+21 

163- P 31c 2 l = Zn 1+5+9+13+17+2 1 
l = 2n + 1 1+5+9 -13-17 - 21 

164 · P lml 2 All planes 1+5+9-14-18- 22 

165 · P 3cl z l = 2n 1+5+9·14-18-ZZ 
l = Zn + 1 1+5+9+14+18+22 

166-R§m 6 All planes 1+5+9-14-18-22 

167 - RJc 6 -h + k + l = 3n, 1+5+9 -14 · 18- 22 
l = Zn 
l = 2n + 1 1+5+9+14+18+22 
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Table 10. Definition of combinations o f triple products and s cattering 
factors for the hexagonal system (see Tables 1, Sand 6). 

( ~ 1 + f 2)( c 1 - e 1) - ( f - f )(i + g ) • 
1 2 1 1 

1 

-(£ 1 + £2)(i 1 + g 1> + (f - [ )(c - e ) s 1 2 1 1 
2 

(£1 + £2)(q1 - k 1) + ( f1 - f2)(m 1 + 0 1) 5 3 

(£1 +f2)(m1 + o 1) + ( f 1 - f 2 )( q 1 - k 1) • 4 

(£3 + £ 4)(d3 -r;> - ( f3 - f4)(j3 + h3) I! 5 

-(f3 + £4)(j3 + h3) + ( f • f )( d • f I ) 8 
3 4 3 3 

6 

(£3 + f4)(r3- .t3) + (£3 • f4)(n3 + p3) a 7 

(f3 + f 4)(n3 + p3) + (f - f )(r - .t ) a 
3 4 3 3 

8 

(£5 + £6)(d2 .. f~) - (£5 - f6)( j2 + h2) 5 9 

-(£5 + r6)(j2 + h2) + (£5 - f6)(d2 .. £~) s 10 

(£5 + £6)(r 2 - 1 2) + (fs - £6)(n2 + p2) a 11 

( fs + £6)(n2 + p2) + (£ - f )( r - J ) • 
5 6 2 2 

12 

(c., + f s>< d 1 - c 1 > - (£7 - fs)( jl + h1) 9 13 

-(£7 + f8)(j 1 + h 1) + (£7 - f8)(d 1 - f i) • 14 

(£7 + f8)( r1 ·l1) + (£7 - £s)(n1 + p l) • 15 

(£7 + f8)(n1 + p1) + (£7 - £8)(r 1 • 1 1) !!! 16 

(f9 + f 10)(c3 - e3) - ( f9 - f 10)(i3 + g3) • 17 

-(f9 + £10){i3 + g3) + (£9 - f lO)(c3 - e3) :z 18 

{f9 + f 10)(q3 - k3) + {£9 - f 10)(m3 + 0 3) 111 19 

(£9 + f 10){rn3 + o3) + ( i9 - f 10)(q3 - k3) s 20 

(£11 + f 12){c2- ez) - (1_1 - £12)(i 2+ gz) ';!!! 21 

-{fll + f 12)(i z+ g2) + ( fu - f12)(c2 - e2) • 22 

(€11 + f td(qq -kz) + (fll- f12)(m 2 + o2) = 23 

( f 11 + f12Hm 2+ 0 2 ) + (fn-fl2)(q 2-k z) = 24 
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Table 11. Derivatives of the expressions defined in Table 9 for the 
hexagonal system. 

~ a . ~ Ma Ma Ma Ma Ma Ma 
-and- ------,- _...._, ...,__. -and-
Zn~x Znay Znl~z aB11 ~Bzz' aB33 ~B1Z ~B 13 ~BZ3 
Mult. Mult. constant Mult. 
con st. Term 8 11 BZZB33B12 Term Constant Term 
X y B13 BZ3 

1 -h - k 4 M3 hz kz 12 hk 1 h1 kl 2 

2 -h Mk 3 -4 hz kz ,z hk 2 h1 kl 1 

3 h k z 1 hz k2 12 hk 3 h.f kl 4 

4 h k 1 2 hz kz ,z hk 4 h1 kl 3 

5 -k -i 8 - 7 kz s ,z -t 5 kl - v 6 

6 -k -i 7 - 8 kz s ,z - t 6 kl -v 5 

7 k i 6 5 kz. s ,z -t 7 kl -v 8 

8 k i 5 6 kz s .fz -t 8 kl -v 7 

9 -i -h 12. -11 '5 hz 12 - u 9 -v h1 10 

10 -i -h 11 - 12. s hz ,z - u 10 -v h.f 9 

11 i h 10 9 s hz 12. -u 11 -v h.f 12. 

12 i h 9 10 s hz '2 -u 12. •V h1 11 

13 -k -h 16 -1 5 kz. hz. ,z. hk 13 kl hl 14 

14 -k -h 15 -16 kz hz. ,z hk 14 kl hl 13 

15 k h 14 13 kz. h2 ,z. hk 15 kl h1 16 

16 k h 13 14 kz. hz. .12 hk 16 k1 hl 15 

17 -i - k 2.0 -19 s kz J2 -t 17 -v k.l 18 

18 -i - k 19 -zo s lt2 ,z. - t 18 - v k1 17 

19 i k 18 17 s kz ,z - t 19 -v k.l 2.0 

2.0 i k 17 18 s kz. '2 -t 20 -v kl 19 

21 -h -i 24 - 2.3 h2 s '2 - u Zl hl -v 2.2 

zz -h -i 23 - 24 h2 s '2 -u 22 h1 -v 21 
23 h i 22 21 hz s ,z. - u 23 hl -v 24 
24 h i 21 22 h2 s ,z -u 24 h1 -v 23 

i = -h-k 2. 2 2 2 h + k + Zhk = S , k + hk = t, h + hk s u, h1 + k1 = v 



181 

Table 12. A tabulation o£ the hexag onal space groups according to 
index parities. 

Space Group PC Planes A B 

16S-P 6 1 All planes 1+5+9 3+7+11 

169-P6
1 

1 f = 6n 1+5+9 3+7+11 
l = 6n + 1 2 -;{+6+10) 4 -t(8+1Z) 

~/2{8-12) +~/2{6-10) 
f = 6n + 2 l-t{5+9) 3~7+11) 

+..S/ 2{7 -11) -.13/ 2 (5-9) 
I. = 6n + 3 2+6+10 4+8+12 
I. = 6n + 4 1-t{5+9) 3--1{7 -11) 

-~/ 2 {7 -11) +/3/2 ( 5 -9) 

' c 6n + 5 z -t{6+10) 4-~(8+ 12) 
+..iJ/2 (8 -lZ) -/3/z (6-10) 

170-P 6
5 

1 l = 6n as for l = 6n 
in P6

1 
I. = 6n + 1 as for l = 6n + 5 

I. = 6n + Z 
in P6

1 
as for I. = 6n + 4 

I. = 6n + 3 
in P 6

1 
as for l c 6n + 3 

' = 6n + 4 
in P6

1 
as for I. = 6n + 2 

in P 6 

' = 6n + 5 as for f c 6n + 1 
in P6

1 

171-P6
2 

1 ' = 3n 1+5+9 3+7+11 
I. = 3n + 1 1-t {5+9) 3 -t {7+11) 

!. Ill z {7 -11) =t= /)/Z(S-9) 

172·P6
4 

1 ' = 3n as for I. c 3n in P6
2 

' & 3n + 1 a s for l = 3n =f 1 in P 6 
2 

173-P 6
3 1 l = Zn 1+5+9 3+7+11 

I. = ln + 1 Z+6+10 4+8+1Z 

174-P~ 1 All plane s 1+5+9 4+8+12 

175-P6/m z All planes 1+5+9 



182 

Table 12. {continued) {2) 

Space Group PC Planes A B 

176-P63Im 2 t = 2n 1+5+9 
J = 2n + 1 2+6+10 

177 - P 622 1 All planes 1+5+9+13+17+21 3+7+U-15 -19 ·23 

178 -P6
1

22 1 t = 6n 1+5+9+13+17+2 1 3+7+11-15 -19-23 
t c: 6n + 1 2 ·22 -i {6+10-14 -18) 4+24-t{8+12+16+ZOJ 

-lli2{8-1Z+l6-20) +Ill 2{6 -10-14 +18) 

t = 6n + 2 1+21-i(5+9+13+17) 3 - 23 -~{7+11-15 -19) 
.. /3/2(7 - 11-15-19) · Ill 2( 5 - 9+13-17) 

t = 6n + 3 2+6+ 10-14 -18 · 22 4+8+12+16+20+24 

l = 6n + 4 1+21-j-(5+9+13+17) 3 - 23 -t{7+11-15 -19) 
-/31 2( 7 -ll-15+19) +./'3 / 2(5-9+13-17) 

l = 6n + 5 2 - 22 -i( 6+10-14 -18) 4+24-t( 8+12+16+20} 
+Il l 2( 8·12+16-ZO) -Ill 2( 6 -10-14+18) 

179-P6r.:22 1 l = 6n as for l = 6n, P6
1

22 
:> 

l = 6n + 1 as for l = 6n + 5, P6
1
22 

l = 6n + 2 as for l = 6n + 4 , P6
1

22 
l c 6n + 3 as for I. c: 6n + 3, P6 122 
t = 6n + 4 as for J = 6n + 2 , P6

1
22 

I. = 6n + 5 as fort c 6n + 1, P6
1

22 

180-P6 2.2 1 t = 3n 1+5+9+13+17+21 3+7+11-15 -19 - 23 
2 

l = 3n + 1 1+21-~5+9+13+17) 3 - 23 - -i(?+ll-15 - 19) 
!_./312(7 - U -15+19) ':f./'3/ 2( 5 - 9+13-17) 

181-P 6
4

22 1 t = 3n as for l = 3n, P 6 22 
t = 3n + 1 

z as for t c: 3n =F 1, P 6
2
zz 

182.-P 6
3
zz 1 t = Zn 1+5+9+13+17+21 3+7+11-15-19-2.3 

t = Zn + 1 2+6+10 -14 -18 - 22 4+8+12+16+2.0+2.4 

183-P 6mm 1 A ll planes 1+5+9+13+17+21 3+7+11+15+19+23 

184- P 6cc 1 l c 2.n 1+5+9+13+17+21 3+7+11+15+19 +23 
t = Zn + 1 1+5+9-13-17 -21 3+7 +11-15 -19 · 23 
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Table 12. (continued) (3) 

Space Group PC Planes A B 

185-P6
3
cm 1 I. = 2n 1 + 5+9+13+17 + 21 3+7+11+15+19+23 

I. = 2n + 1 2+6+10+14+18+22 4+8+12.+16+2.0+2.4 

186- P6.,mc 1 I. = 2n 1+5+9+13+17+2.1 3+7+ll+l5+l9+2.3 
:J 

I. = 2n + 1 2+6+10 -14-18 · 2.2. 4+8+12. -16- 20 -2.4 

187-P6 mZ 1 All planes 1+5+9+13+17+2.1 4+8+12-16-2.0·2.4 

188-P~cz 1 l = Zn 1 +5+9+13+17+2.1 4+8+12.-16-Z0-2.4 
I. = Zn + 1 2.+6+10+14+18+2.2. 3+7+11-15-19-23 

189-P 62m 1 All planes 1+5+9+13+17+21 4+8+12+16+20+2.4 

190-P 62c 1 I. = Zn 1+5+9+13+17+21 4+8+12+16+20+2.4 
I. c Zn + 1 2.+6+10 -14-18-2.2 3+7+11-15-19 -2.3 

191-P6/m mm 2 All planes 1+5+9+13+17+2.1 

192- P 6/m cc 2. I. = 2n 1+5+9+13+17+2.2. 
l = 2n + 1 1+5+9-13-17-21 

193-P 6 3/m em 2 l = 2n 1+5+9+13+17+21 
I. = 2n + 1 2+6+10+14+18+22. 

194-P 6 3/ m me 2. I. = 2n 1+5+9+13+17+2.1 
l = 2n + 1 2+6+10 -14-18 - 22. 
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Structure-Factor and Least- Squares Calculation 

for Cubic Systems with Isotropic Vibrations 

A set of expreeslons is presented for calculating structure 

factors and least- squares coefficients for cubic structures with ho-

tropic temperature factors. The expressions will complement those 

presented by Hybl and Marah ( 1961) for the orthorhombic system; 

however , we wUl not now carry their treatment of anisotropic temper -

ature factors into the cubic system. Based on these expressions, the 

Burroughs 220 computer has been programmed to perform structure -

factor least- squares calculations for any cubic space group; to direct 

the course of calculations for a particular space group, the computer 

must }{now only the space group number. 

All of the geometrical structure factors for the cubic system 

have been reduced to sums of triple products of sines and cosines . 

A total of 48 different triple products are utilized; these triple products 

and the 16 sums of 3 triple products are defined in table 1. The 

triple products are divid ed into two groups , 1 and II. Space groups 

of symmetry T or Tb require expressions in group I only; further­

more , the derivatives with respect to the parameters x , y , and z {and, 

of course , B ) of any triple product in group 1 {or II) are other triple 

products In group I( or ll) multiplied by,! Zn (~) , 
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The sums in group 1 are directly relat ed t o sums in group U: 

C transforms to D , E to F . 0 to H . 1 to J •••• etc •• simply by inter -

changing hand k ( see table 1). The derivatives of a sum can be 

written down immediately by inspection of table 2 when the derivatives 

of each triple product are listed. For example , the derivative of C 

The geometrical structure factors for each set of conditions 

on the indices for every cubic space group are presented in table 3 

in terms of the sums of t riple products defined in table l. The pre -

aentation follows that of the International Tables ( 1952); in cases where 

the International Tables give a choice of origins, the origin is taken 

at a center . Corrections in 0 
7 

and Oh 
7 

have been made as directed 

by the errata sheet. 

For our program we have utilized the similarities in the struc -

ture factor expressions for different space groups . For example , the 

1 z 3 
structure factor expressions for T • T and T are the same except 

for a different multiplicity factor; the :o.same applies for space groups 

T 
3 5 1 3 5 1 2. 3 1 

h and T h , 0 • 0 and 0 • T d , T d and T d , and Oh • 

9 
and Oh • Some pairs of space groups whose similarities have 

4 5 
been utilized are T and T • 

4 7 6 7 
Th and Oh , 0 and 0 • 

8 6 
0 and T d , 

6 10 
Td and Oh , 

7 8 
and Oh and Oh . There 

are other similarities which we have utilized, and we are sure there 

are some which were not exploited. We give one example to illustrate 



187 

the use of the tables. Consider reflectiona h + k: Zn + 1. k +I. = Zn+l 

in space group Tb 2 (for one atom in a general position): 

= -8(2n) (h cos(Zn hx) cos(Zn ky) sin(Zrrl z) 

+ l sin( Zn hy) cos(Znkz) cos(Znlx) 

- k sin(Znhz) sin(Znkx) sin(Znly) 1 

We get Fe from table 3. I from table 1, and the derivatives from 

table 2. 

I thank Drs. Richard E . Marsh and 3ten Samson for helpful 

discussions and encouragement. 
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Table 1. Definition of tripl e products and sums of triple products. 

C = cos2n S z sin2n 

Group I hx ky 1 z hy kz 1x hz kx £ y 

C- Chx · Cky · C1z + Chy · Ckz · C1x + Chz · Ckx· C1y - c
1 

+ c
2 

+ c
3 

E- Shx·Sky · C.fz + Shy• Skz · C1x + Shz · Skx· C1y 

G - Chx· Sky· S1 z + Chy·Skz·S1x + Chz·Skx· S1y 

I ~ Shx· Cky · S1 z + Shy · Ckz · S1x + Shz·Ckx· S1y 

K::: Shx· Sky · S1z + Shy · Skz·S1x + Shz · Skx · S1y kl+k +k 
2 3 

M= Shx·Cky · C1z +Shy · Ckz·C1x +Shz · Ckx· C1y - m
1

+m
2

+m
3 

0- Chx·Sky · C1z + Chy·Skz · C1x + Chz · Skx · C1y - o
1 

+ o
2 

+ o
3 

Q- Chx·Cky· S1z + Chy · Ckz·S1x + Chz · Ckx·S1y - q
1 

+ q
2 

+ q
3 

Group II hy kx 1 z hz ky 1x hx kz 1 y 

D- Chy·Ckx·C1z + Chz · Cky-C1x + Chx · Ckz · C1y - d
1 

+ d
2 

+ d
3 

F - Shy · Skx · C1z 

H - Chy · Skx· S£ z 

J - Shy· Ckx· S£ z 

L Shy·Skx·S1z 

+ Shz • ;>ky·C1x 

+ Chz · Sky · S1 x 

+ Shz · Cky · S1 x 

+ Shz · Sky·S£x 

+ Shx· Skz · C1 y 

+ Chx· Skz · S1 y 

+ Shx· Ckz · S1 y 

+ Shx· Skz · S£y 

fl+fz+f3 

h 1 + h2 + h3 

j 1 + j2 + j3 

11+12+13 

N Shy·Ckx·C1z + Shz · Cky · C1x + Shx·Ckz·C1y - n
1 

+ n
2 

+ n
3 

P "' Chy·Skx·C1z + Chz · Sky · C1x + Chx · Skz·C1y - p
1 

+ p
2 

+ P
3 

R = Chy·Ckx· S1z + Chz·Cky·S1x + Chx·Ckz·S1y - r
1 

+ r
2 

+ r
3 



Table 2. Derivatives of triple products. All derivatives to be multi­
plied by 2n. For example, read hml = 2TT hml. 

~rOUf 1 
X y z 

Groue 11 X y z 

c 1 -hml -kol -.f ql dl -kpl -hnl -fr 1 
e.z -lq2 -hm2 -ko2 dZ •fr2 -kp2 -hr2 
c3 -ko3 -Jq3 •hm3 d3 ·hn3 •Jr3 -kp3 

el hol kml -lkl £1 +knl hpl -ill 
e2 -lk2 ho2 kmZ £2 ·li Z knZ hp2 
e3 +km3 -lk3 ho3 £3 hp3 -113 kn3 

gl -hkl kql lol hl krl -h.ll fpl 
g2 loZ. -hkZ -kqz h2 .fp2 kr2 -h.t 2 
g3 kq3 lo3 -hk3 h3 -hl3 lp3 kr3 

il hql -kkl lml jl -kJ 1 hrl lnl 
i2 lm2 hq2 -kkZ j2 .fn2 -kl2 hr2 
13 -kk3 1m3 hq3 j3 hr3 fn3 -kl3 

kl hgl kil J el fl kjl hh1 ffl 
kZ le2 hg2 ki2 12. l£2. kj2 hhZ 
k3 ki3 ·te3 hg3 13 hh3 l£3 kj3 

m l bel -kel -.Hl nl -kfl hdl -1j 1 
m2 -.liZ hcZ - ke2 nZ -.t jZ -k£2 hd2 
m3 -ke3 -li3 hc3 n3 hd3 -lj3 -k£3 

ol -hel kcl -l gl p l kdl -h£1 -lh1 
oZ. -Jg2 -he2 kc2 P2 -Jh2 kd2 -h£2 
o3 kc3 -f g3 - he3 p3 -h£3 -Jh3 kd3 

ql -hil -kgl lcl rl -khl -hjl +ldl 
q2 feZ -hiZ -kg2 rZ ldZ -khZ -hj2 
q3 -kg3 fc3 -hi3 r3 - hj3 fd3 -kh3 

Note the cyclic relationship . 
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Table 3. A tabulation o f the cubic space groups according to index 
parities . 

Space Group 
.,. 

PC Planes A B 

T
1
-P23 4 All planes c -K 

T
2

-F23 16 h, k, l all even or all odd c -K 

T
3 

-123 8 h+k+l = Zn c -K 

T
4

•P 2
1

3 4 b+k k + l -Zn Zn c -K 
Zn Zn + 1 -G M 
2n + 1 2n -I 0 
Zn + 1 Zn + 1 ·E Q 

T
5 

-12
1

3 8 h+k+l = h k 
Zn, Zn Zn c -K 

2n 2n + 1 -I 0 
Zn + 1 Zn -E Q 

Zn + 1 Zn + 1 -G M 

A 

Th 
1 

- P m3 8' All planes c 
2 

8 h+k Th • P n3 k + l 
Zn Zn c 
Zn Zn + 1 -E 
Zn + 1 Zn -G 
Zn + 1 Zn + 1 -1 

3 
Th -Fm3 32 h, k, l all even or all odd c 
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Table 3. (continued) (2.) 

Space Group pc Planes A 

Th 
4 

-Fd3 16 h+k k+l l + h - ~ 4n 4n 2.C 
4n 4n + 2. 4n + 2. -2.E 
4n + 2 4n 4n + 2. -2G 
4n + 2 4n + 2. 4n -21 
4n 4n 4n + 2 C·E-G+I 
4n 4n + 2 4n C-E+G-1 
4n + 2 4n 4n C+E-G-1 
4n + 2 4n + 2 4n + 2 -C-E-G-1 

5 
Th -1m3 16 h+k+.f = 2n c 

6 
8 h+k k + l Th - Pa3 -Zn Zn c 

Zn Zn + 1 -G 
2n + 1 2n -I 
Zn + 1 2n + 1 -E 

7 
16 Th -Ia3 h +k +l = h k 

2.n 2n 2n c 
2n 2n + 1 -1 
Zn + 1 Zn -E 
Zn + 1 2n + 1 -G 

A B 

o 1
-P432 4 All planes C+D -K+L 

0
2

-P4
2
3z 4 h+k+.f = 2n C+D -K+L 

h+k+.f = 2n + 1 C-D -K-L 

o 3 
- F432 16 h, k. l all even or all odd C+D -K+L 

o4
- F4

1
3z 16 h. k, l h+k+l 

all e ·en 4n C+D -K+L 
all odd 4n + 1 C-L -K+D 
all even 4n + 2 C-D -K-L 
all odd 4n + 3 C+L -K-D 
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Table 3. (continued) (3) 

Space Group PC Planes A B 

0
5

-1432 8 h + k + J = 2n C+D · K+L 

o 6 
· P4

3
32 4 h k l h+k+l 

( 1) - -2n 2n 2n 4n C +D - K+L 
( 2) 2n+l 2n+l 2n+ l 4n+l C-L - K+D 
(3) 2n 2n Zn 4n+2 C-D - K -L 
(4) l.n+ 1 2n+l 2n+l 4n+3 C+L - K -D 
(5) 2n+l z~+1 2n 4n -G-J M · P 
(6) 2n 2n 2n+1 4n+1 -G+P M -J 
(7) 2n+l 2n+l 2n 4n+2 -G+J M+P 
( 8) 2n . 2n 2n+l 4n+3 -G-P M+J 
(9) 2n 2n+l 2n+l 4n -1-F 0 -R 

( 10) 2n+l Zn 2n 4n+l ·I+R 0-F 
( 11) 2n 2n+l 2n+l 4n+2 -I+F O +R 
( 12) 2n+l 2n 2n 4n+3 -1-R O+F 
( 13) 2n+l 2n 2n+l 4n -E-H Q - N 
( 14) 2n 2n+ l 2n 4n+l - E +N Q -H 
( 15) 2n+l 2n 2n+l 4n+2 - E +H Q+N 
( 16) 2n 2n+1 2n 4n+3 - E -N Q+H 

0
7 

-P4132 4 ~ 06 parity condition ,:,ee • 

( 1) C+D - K+L 
( 2) C+L -K-D 
(3) C-D - K -L 
( 4) C-L - K+D 
( 5) -G·J M · P 
( 6) - G -P M+J 
(7) -G+J M +P 
( 8) -G+P M ·J 
( 9) -1-F 0 -R 

( 10) -1-R O+F 
( 11) -I+F O+R 
( 12) -I+R O-F 
( 13) · E -H Q - N 
( 14) - E -N Q+H 
( 15) -E+H Q+N 
( 16) - E +N Q -H 
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Table 3. (continued) (4) 

Space Group PC Planes A B 

o 8 
-14 132 8 h k 1 b+k+l -Zn 2n Zn 4n C+D - K+L 

Zn Zn+l Zn+l 4n ·I-F 0 -R 
Zn+l Zn Zn+l 4n -E-H Q-N 
Zn+l 2n+l Zn 4n -G-J M - P 
2n Zn Zn 4n+2 C -D -K -L 
2n Zn+l Zn+l 4n+2 ·I+F O+R 
Zn+l Zn Zn+l 4n+2 - E +H Q+N 
Zn+l 2n+l Zn 4n+2 -G+J M +P 

1 -
Td - P43m 4 All planes C+D - K-L 

2 -
Td- F43m 16 h . k, 1 all even or all odd C+O -K - L 

3 -
Td- I 43m 8 h + k +t = Zn C+D - K -L 

4 - 4 h+k +l Td- P 43n = 2n C+D - K -L 
h+k +l = ln + 1 C -D -K+L 

5 - 16 Td - F43c h, k, 1 all even C +D - K-L 
h, k, I. all odd C-D - K+L 

T~ -I 43d 8 h k l h +k+l 
2n Zn 2n 4n C+D - K -L 
Zn Zn+ l Zn+l 4n -1-F O +R 
Zn+l Zn Zn+l 4n - E -H Q+N 
Zn+l 2n+l Zn 4n - G-J M +P 
Zn 2n Zn 4n+Z C-D - K+L 
Zn Zn+l Zn+l 4n+Z -I+F 0 -R 
Zn+l Zn Zn+l 4n+2 - E+H Q - N 
Zn+l Zn+l Zn 4n+2 - G+J M-P 

A 

Oh' -P m3m 8 All planes C+D 
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Table 3. (continued) (5) 

$ ':>ace Group PC P lanes A 

2 8 h k .f Oh - Pn3n -2n 2n Zn C+D 
Zn 2n+ l Zn+ l - G -H 
Zn+ l Zn+l Zn - E - F 
Zn+ l Zn Zn+l -I-J 
Zn+ l Zn+l Zn+ l C-D 
Zn+l Zn 2n -G+H 
Zn Zn Zn+l - E +F 
Zn Zn+ l Zn -t+J 

3 
8 h + k + l = 2n C +D oh - I--m3n 

h +k + .f = 2n + 1 C -D 

4 -
8 Oh -Pn3 m h +l-. k +f 

Zn Zn C+D 
Z.n 2n+l - E - F 
Zn+l Zn - G -H 
2n+l Zn+ l -1-J 

5 
Oh - Fm3m 32. h , k, l all even or all odd C+D 

6 
.f a ll even 0 - Fm3c 32 h , k, C +D 

h 
h , k, l a ll odd C - D 

7 
16 Oh - Fd3m h+k k +.f l+h - 2(C+D) 4n 4n 4n 

4n 4n+ 2 4o+2 - 2(E +F ) 
4n+2 4n 4n+ 2 - Z(G+H ) 
4n+2 4n+2 4n - Z(I+J) 
4n 4n 4n+2 (C-E -G+I 

+D - F -H +J ) 
4n 4n+ 2 4n (C-E +G-1 

+D - F +H - J ) 
4n+2 4n 4n (C+E -G-1 

+D +F -H -J) 
4n+2 4n+ 2 4n+Z -(C+E +G+l 

+D +F +H +J) 
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Table 3. (continued) (6) 

Space Group pc Planes A 

0 8 -Fd3c 16 h+k k+l l+h 
h - 2(C+D) 4n 4n 4n 

4n 4n+2 4n+2 -2(E+F) 
4n+2 4n 4n+2 -2(G+H) 
4n+2 4n+2 4n -2(I+J) 
4n 4n 4n+2 -(C -E+G-I 

·D+F -H+J) 
4n 4n+2 4n -(C+E-G-1 

-D- F +H+J) 
4n+2 4n 4n -(C -E-G+I 

':o'+F +H-J) 
4n+2 4n+2 4n+2 -(C+E+G+I 

·D-F -H-J) 

9 
Oh -Im3m 16 h +k+l = 2n C+D 

0 
10 

-Ia3d 16 h k l h+k+.f 
h - C+D 2n 2n 2n 4n 

2n 2n+l 2n+l 4n -~- ~--
2n+l 2n 2n+l 4n -E-H 
2n+l 2n+l 2n 4n -G-J 
2n 2n 2n 4n+2 C-D 
2n 2n+l 2n+l 4n+2 -1+!? 
2n+l 2n 2n+l 4n+2 -E+H 
2n+l 2n+l 2n 4n+2 -G+J 

' p is the factor by which A and B must be multiplied to give 
c~ntribution of entire unit cell. 
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IV. I propose that the trial structure defined below be used as a 

etarting point in a refinement of the crystal structure of the v 
1
-phase 

compound of the nickel-cadmium system. 

Space group Td 
1 - P4 3m 

Atomic parameters 

4 Ni in 4{e) a , a, a ; with a = 0 . 1~6 

4 Cd in 4{e) b , b , b; with b =-0. 169 

6 Cd in 6(£) c, o, o; with c = 0. 342. 

lL. Cd in 1 L.(h ) d , d, e; with d = 0 . 312. 

e = 0. 047 

1 Cd in l ( b ) .?.,1:~ 

4 Ni in 4(e) f, f. £; with f = o. 314 

(_• Ni in 6(f) g.,~ ; .... with g = 0 . 799 

lG Cd in 1G(h) h,h ,i; .... with h = 0.796 

i = 0 . 547 

14 Ni and 35 Cd (~8. 6 at. % Ni) 

Lihl and Buhl (1) reported the v 
1 

phase of the nickel-cadmium 

system to be homogeneous between about i.9 and 2.9. 5 at. % Ni with a 

y-brass type structure . I propose that the structure is essentially 

defined by the trial structure given above; the trial structure is not 

a v -brass type. 
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In an ingot whose overall composition was approximately 

55 at. % Ni. 1 found a cubic crystal with a cell edge o! a
0 
~ 9. 7 .A. 

which corresponds very closely to the value for a
0 

of 9. 675 A reported 

by Lihl and Buhl for the y 
1 

phase. I have obtained an almost complete 

three-dimensional set of intensity data from equi-inclination Weissen­

berg photographs. The intensities were estimated with great haste. 

corrected for Lorentz and polarization effects. and correlated to obtain 

a list of structure factors on the same scale. 

The first structure-factor l eaat-squares refinement cycle on 

the basis of the proposed trial structure gave an agreement index of 

R = 0. 29; and a second cycle reduced this to R = 0. Z6. An electron­

density map of the ( 110) plane was then calculated, and the map 

indicated no serious error in the trial structure. A t a corretJponding 

stage (R = 0. 28) in tho refinement 'of "Ni
5

z n
21

" (2). an electron­

density map was calculated which immediately indicated the error 

in the trial structure. 

I must admit that the obs erved structure factors used in these 

calculations are p robably of poor quality because of the haste in which 

they were obtained. Furthermore, the trial structure that I have 

proposed may be based on an incorrect composition. The occupancy 

of possible _p ositions was a s signed to g ive an o verall composition of 

approximately 29~ as reported by Lihl and Buhl. A n expe'rimental 
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composition has not been obtained by me; however, these preliminary 

calculations indicate no change in the assigned occupancies. 

In spite or this, 1 assert that the geometrical structure is 

essentially correct. As indicated above, the electron- density map 

contained no spurious peaks; furthermore , there was a negative peak 

at the position where one would expect a peak if the structure were a 

y-brass structure as reported by Lihl and Buhl. A y-brass type trial 

structure was constructed after the above calculations were carried 

out; a few least squares cycles have brought the agreement index only 

toR c 0. 40. 

References 
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V. I propose that the crystal structure of ''Cu
9
Al

4
" be carefully 

investigated to determine its structure and to determine its ideal 

composition. 

The crystal structure and composition o£ "Cu
9

A1 4u are very 

important since "Cu
9
Al

4
11 and Cu

5
zn

8
• y brass, seem to have given 

rhe to the class of electron compounds known as they-brass type 

compounds. Ekman (1), using the powder method, found several alloys 

to be isotypic withy brass. He assigned them ideal compositions wl-Jich 

give the ratio of valence electrons to atoms a value of Zl/13. He felt 

that this ratio of electrons to atoms was instrumental in determining 

a y-brass type structure, since the only two y-brasa structures known 

at that time were "Cu
9
Al

4
" and Cu

5
zn

8
, which both exhibit an electron: 

atom ratio of Zl: 13 if copper is assumed to be univalent, zinc divalent, 

and aluminum trivalent. Since that time, many alloys have been 

reported as y -bra. sa types, and all have ideal compositions , which 

give electron: atom ratios of Zl: 13. Hume-Rothery and Raynor (2) 

state: "Thus. the so-called 'y - brass ' structure occurs at an electron; 

atom ratio of Zl: 13. 11 This sort of statement is commonly called a 

Hume-Rothery rule. They list 26 alloys with a y-braas type structure. 

Because of the work reported in parts U and IU of this thesis. "Ni
5
Cdzt" 

and "Nt
5
zn4 '' can be removed from that list. I have examined the 

literature, drawing analogies to "Ni
5
Cd

21
" and "Ni

5
zn

21
11 where it 
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seemed appropriate, and 1 have concluded that there is sufficient evi• 

dence to remove 14 other alloys from that list, reducing the number 

from Z6 to 10. 1 am willing to admit that five of these can occur with 

y-brass type structures at electron:atom ratios of 21:13. It seems 

that the classification of y .. brass compounds will break down under 

careful scrutiny. 

I assert that "Cu
9

A l
4

" became such and has persisted as such 

on the basis of fallacious reasoning and in contradiction to known 

experimental facts. ln doing so, I necessarily assert that they-brass 

classification was based on unsound logic from the very beginning. 

My reasons are pointed out in the following analysis of Bradley's 

determination (3) oi the crystal structure of "Cu
9
Al

4
" . All of the 

quotes are from his paper. At the time Bradley wrote this, the 

copper-aluminum phase with which he worked was called the 6 ·phase. 

Bradley derived the crystal structure of "Cu
9

A l
4

" in the 

following manner. Powder photographs of the 6- Cu-Al phase were 

similar to those of Cu
5 

·Zn
8

. However, the differences in the photo­

graphs were sufficiently marked to indicate that "the structures are 

n_ot quite the same in every respect." The relative intensities of the 

Cu
5 

Zn
8 

photographs were not in every sense the same as those of 

corresponding lines of the 6 - Cu-Al photographs . There were, more• 

over, additional lines on the 6- Cu-Al photographs corresponding to 

reflections with h + k + J = Zn + 1, indicating that the unit cube h 
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primitive and not body centered. He states, with his emphases, 

"intenaity changes cannot be accounted for by supposing that the 

positions of the atoms have suffered a slight displacement, the effect 

cl. which would be to produce a slight change in the least deviated 

reflections and a much larger change in the most deviated reflections. 

This is just the reverse of what one observes. It is therefore safe to 

conclude that the atoms, as a whole, occupy almost identical positiontt 

in the two alloys. 11 I don't follow his reasoning in the first sentence, 

but I want to emphasize "slight' ' instead of "displacement." Here he 

makes hie first fallacious assumption, that any displacement is a slight 

one; he does not consider that there may be major changes ln a few 

of the positions. 

He reasons further that the primitive cell can be based on 8 

independent sets of atoms, constituting 52 atoms in the unit cube as 

in Cu
5
zn

8
. 

The 8 sets and their coordinates are: 

4e 1 at a, a, a; etc., and 4e 1 ' at!+ a,f +a,t +a; etc., a= 0. 10
3 

4ez at b,b,b; etc., and 4e
2

• at t + b,; + b,! + b;ete., b = 0.16
7 

6f at c,o,o; etc., and 6f' at t + c,i',t; etc., c c 0.35
8 

lZh at d,d,e; etc., and lZh' at i + d,t + d,t + e• etc., d = 0. 30
5 

A s one can see, he has preserved the body-centering translation, as 

far as the geometry is concerned; we will soon see that he makes this 
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a primitive structure by assigning the aluminum atoms to two sets 

which are not related by the body-centering translation of ~tt. 

However. this is where he makes a second fallacious assumption. and 

a serious one. Any change in occupancy from a perfect body-centered 

cell will destroy the geometrical translation o£ ~tt. Yet this highly 

ideaUzed model h recorded as structure type oa
3 

and several alloys 

have been assigned the same structure {4). He is justified in making 

crude calculations on such a proposal. but be is not justified in dis­

tinguhhing between small differences, which he does immediately. 

Bradley next turns to the problem of fitting the aluminum atoms 

into the eight possible sets of atoms. Thh ia the crucial part, £or 

this is where the ideal compoaltion h fixed and where, hence, the 

electr~atom ratio of 2.1: 13 may have been conceived. though another 

investigator had to dellver it. 

Because the composition of the alloys with which he worked 

varied from approximately 31-35.3 at. · o/o Al {he later fixed the homo­

geneity range as 31.3-35.3 at. %Al {5) ), he assumed the ideal com­

position to correspond either to Cu
9
Al

4 
{30. 8 at. o/e Al) or to Cu

17
Al

9 

(34. 6 at. % Al). He Usts the possible ways of building up the structure, 

using the 8 sets of atoms given above: 
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a) for cu
9

Al
4

, Cu
36

Al
16 

( 1) 4e
1

, 4el I, 4e
2

, 4e 1 
2 

(2) 12h, 4e
1 

(3) 12h, 4e 1 
1 

(4) 12h, 4e
2 

(5) 12h, 4e 1 

2 

(6) 6f, 6£', 4e
1 

(7) 6£, 6£'. 4e
2 

b) for Cu
17

Al
9

, Cu
34

Al
18 

(8) 12h, 6f 

(9) 12h. 6£1 

For Cu
34

A1
18

, he has not considered the possibilities, 

( 10) 6£, 4e
1

, 4e 1 '• 4e
2 

(11) 6£, 4e 
1

, 4e 
1

1
, 4e 1 

2 

( 12) 6f, 4e 
1

, 4e
2

, 4e
2

• 

( 13) 6£, 4e 
1 

1 
, 4e 

2
, 4e 

2 
1 

• 

This oversight marks his third fallacious assumption; he 

considers only 9 of the 13 poasible arrangements. 

He then eliminates aU but (3) and (4) a9 possible solutions. He 

does this by calculating quantities proportional to the intensities for the 
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powder Unes representing reflections from planes with h + k + l : Zn + 1; 

he does this so that he has to consider only the differences in scattering 

between copper and aluminum. The bash for his rejection of (8) as 

a possible atomic arrangement is worth considering. I lht the 

observed intensities for the 13 powder lines which he considered and 

the quantities proportional to the intensities, calculated on the basis of 

structures (3) and (8). 

~hz Observed Cu~Al4 Cuj-(,19 Intensity ( ) 

3 2 8 

5 m . 10 5 

9 m . Z3 39 

11 3 

13 0 1 

17 1 

19 4 4 

Z1 1 8 

zs 1 

27 w. 7 8 

Z9 v.w. 4 1 

33 v. w. 10 12 

35 2 2 

(1 assume that m. la for medium , w. is for weak, v. w. is for 

very weak, and the dash(-) is for unobserved.) 

1 cannot see how one could reject (8) a a a possibility , con-

sidering all the assumptions that were involved. Yet, on this very 
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calculation rests the determination of the second y - brass type com -

pound, "Cu
9
Al

4
." Furthermore, the homogeneity range was very 

carefully determined as extending from 31. 3 to 35. 3 at. o/o Al ( 5). 

The c o mposi tion corresponding to cu
9
Al

4 
is 30. 8 at. %Aland lies 

outside the homogeneity range , and the composition corresponding to 

Cu
17

Al
9 

is 34. 6 at. o/o Al and lies within the range. Yet as late as 

1951 , Bradley persisted in referring to the y -brass type compound 

"Cu
9
Al

4
" (6). 

On the basis of the method that was used to derive the ideal 

formula cu
9
Al

4 
and on the basis of the experimentally determined 

composition,! demand that "Cu
9
Al

4
" be stricken from the lists of 21: 13 

compounds and propose that a very careful determination of its structure 

and composition be undertaken. 

Bradley assumes that the differences in the atomic arrange ­

ments between Cu
5
zn

8 
and "Cu

9
At

4
" are very small and proposes a 

highly idealized structure for "Cu
9
Al

4
. " He calculates intensities 

for a few powder lines for most of the possible atomic arrangements 

for this idealized structure and on the basis of the resulting small 

differenc es decides in favor of a composition which is not in the range 

of homogeneity. To coin a phrase from Hybl and Marsh {7 ), "this 

cascade of errors culminates" in another Hume - Rothery rule. 
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