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ABSTRACT

Sufficient conditions for the existence and unigueness, and estimates,

of a continuous vector solution y = y(t) to the integral equation

t, t
y(t) = u(t) + eL(t) f M(s) f(s,y(s)) ds + ef K(t,s) f(s,y(s)) ds,
L

t
o 0

are derived. A successive approximation technique involving a double
sequence is used in the proof.
This integral equation result is applied to the second order singular

perturbation problem with differential equation
ex" + p(t,e) x' + q(t,e) x + r(t,e) + en(t,x,x',€e) = 0, O<EL1,

and boundary conditions

bl(e) x(o0,€) + bg(e) x'(o,€) Eo(e),

c1(e) x(1,e) + CE(E) x'(1,€) 21(6).

Conditions are established under which a certain sequence generated from
this system is the basis for asymptotic expansions of a solution.

The singular perturbation problem with differential equation
ex" + F{t,x,x',e) =0

is also studied. Under the assumptions that there exist functions E = e(e)
and w = w(t,e) and positive constants A and B such that

Iew" + F(t,w,w',E)I <At <Be, 0<t<1, 0<e< € s

and certain relationships including w and w' evaluated at the boundaries
hold as € —> 0+ , we obtain an asymptotic expansion with leading term

w(t,e) for a solution to this problem.



1. We are concerned with proving the existence and unigueness of
solutions for certain classes of ordinary differential equations which
depend in a singular manner on a small positive parameter €. We are
further concerned with describing these solutions by obtaining for them
asymptotic expansions uniformly wvalid in the whole interwval as € —> 0+ .
More precisely, let p = p(e) be a positive function of € with the
property that p(e) >0 as e —> 0+, and let t belong to the interval

o0

I. The formal sum X xi(t,e) is said to be a uniform asymptotic expansion
i=1

with scale p(e) for =x(t,e) if there exists a function A = A (t,€)

such that for € >0+ and m = 1,2,...,

m
x(t,e) - = x(t,e) = o(2™) uniformly for t in I. (1.1)
i=1
It is the nature of most perturbation problems, where the small
parameter multiplies the highest derivative in the differential equation,
to exhibit non-uniform convergence, as € —> 0+, in the neighborhood of
some point or points in the interval. Such problems are usually called

singular perturbation problems. Most of the literature on singular

perturbation problems has been concerned with the case when the non-uniformity
occurs at one of the end points of the interval. It is the custom in this

case to call the region near this end point a boundary layer in analogy

with certain hydrodynamic phenomena. Most singular perturbation problems
with linear differential equations exhibit boundary layers, and in this case
theoretical means exist for determining vhen a particular end point is part
of a boundary layer (see Wasow [1]). Usually, different analytic expressions

are developed for the boundary layers and the rest of the interval (see,

e.g., Levin and Levinson [2]).



In section 2 some results for integral equations are proven. These
are developed in greater generality than needed for the specific applications
in the following sections. This is done in the expectation that these
results will be found useful in connection with other perturbation problems.

Of fundamental concern in developing the theory for integral equations,
which have the same solution as a given boundary value problem involving an
ordinary differential equation, is the solution of Volterra integral
equations. For such integral equations the convergence technigue has been
examined in considerable detail for the linear case by Erdelyi [3], [4],
and [5], and in some detail for the nonlinear case by Erdelyi [6]. Theorem
2.1 in this thesis is a result for nonlinear Volterra integral equations
similar to Erdelyi's result in [6], but differing enough to warrant a
separate proof.

Theorem 2.1 is used to get our main integral equation result Theorem 2.2,

which states conditions under which a Fredholm equation of the form

s(8) = () + ¢ [ Ke,) tle,vle)s, te, (1.2)
I

(more precisely, of the form 2.3) has a unique vector solution y(t) on I.
K(t,s) is allowed a discontinuity along t = s, and f(s,y(s)) is assumed
to satisfy a lipschitz condition with respect to y(s).

The nature of the domain & in which the lipschitz condition on f
holds is very important in singular perturbation problems, because it is
necessary for & to include functions y(t) = y(t,e) with non-uniformities.
At the same time one desires to keep & compact. In the statement of

Theorem 2.2 the form of & 1is not specified to any great degree. Later,



when Theorem 2.2 is applied to singular perturbation problems expected
to have a boundary layer at the left endpoint of the interval, & is
specialized to take this into account.

The possibility exists that Theorem 2.2 might be applied to problems
having solutions with non-uniformities in the interior of the interval,
by choosing the domain & in an appropriate manner. Little work seems
to have been done on such problems. Lagerstrom [7] and his associates
are presently engaged in research to produce examples of this nature.

The literature on singular perturbation problems which exhibit boundary
layers is quite extensive. Wasow [8] proves the existence of a solution
and develops a single uniform asymptotic expansion for that solution in

the case of a second order differential equation of the form

ex" + F(t,x,x',¢€) = 0, t, St <t (1.3)

with

Flt,%,%0:c) = F1(t,x,e) + x! Fe(t,x,e), (1.4)
and a set of boundary conditions of the form

x(to,e) =4, x(t1,e) =4, . (1.5)

Wasow's theory applies only to problems that have solutions with at worst
non-uniformities on the boundary of the interval. Erdelyi [9] proves the
existence of a unique solution for a more general problem than 1.3, 1.5, and
he shows to some extent the behavior of this solution, as € —> 0+. Using

integral equation techniques, Erdelyi is able to replace condition 1.k Dby

the assumption that e 32§ is bounded. The boundary conditions for
ox!



the problem considered by Erdelyi are of the form 1.5, but with Eo and
21 allowed to depend on €.

A result of Wasow [1] is that most regular second order linear
singular perturbation problems with solutions have a single boundary layer.
Hence, it is only natural to expect problems involving an equation of the

form

ex" + p(t,e)x' + q(t,e)x + r(t,e) + en(t,x,x',e) = O, (1.6)

which is only "weakly nonlinear", to have under very general conditions a
solution with a boundary layer at the same point as the solution of the

linear equation
ex" + p(t,e)x' + q(t,e)x + r(t,e) =0 . (1.7)

In section 5 we treat the problem composed of equation 1.6 and

boundary conditions
b1(e)x(0,e) + bz(e)x'(o,e) = ﬁo(e), c1(€)x(1,e) + ce(e)x'(l,e) = £1(e).
(1.8)

Sufficient conditions to guarantee the existence of a unique solution
x = x(t,e) are stated, and uniform asymptotic expansions exhibiting a
boundary layer are given for x and x'. It is characteristic of these
asymptotic expansions to consist of parts that may be computed by using
only ordinary perturbation methods on problems having non-homogeneous first
order linear differential equations and one boundary condition.

We consider in section 6 the problem of the "strictly nonlinear"

equation 1.3 with boundary conditions 1.8. Instead of considering this



problem as merely a "boundary layer problem", as Wasow does in [8] and
Erdelyi does in [9], we find conditions sufficient to guarantee the

existence of a solution of the form
X = W+ €3, (1.9)

where w = w(t,e) is given so that 2z can be determined as a solution
of a weakly nonlinear problem by the theory developed for such problems

in section 5. For a very general class of functions F, e.g., F(t,x,x',€)

i BEF =0
Bx'2 o

uniformly (see assumption 6ii for a precise statement of the conditions

of class c' in t and of class C2 in x and x', and €

on F), we find it sufficient that w(t,e) satisfy
ew(t,e) + F(t,w(t,e), w'(t,e),e) = 0(e) uniformly (1.10)

and a similar weakened version of the boundary conditions. Nothing is
said about the non-uniformities of w(t,€), nor is w(t,e) determined any
further than 1.10 and the other general conditions assumed for it.

One can show that Wasow [8] and Erdelyi [9] have taken

w(t,e) = wo(t) - uw1(t,e), (1.11)
where W = wo(t) is assumed to satisfy
F(t, LR 0) =0 (1.12)
and
w(1) = £,0),
and where

p.z[zo - wO(O)l. (1.13)



(o)

For p sufficiently small, they show the existence of a function
w1(t,€) so that 1.11 determines w satisfactorily. wl(t,e), s0
determined, can have only a boundary layer type of non-uniformity. Also,
the magnitude of M4 1is limited enough to greatly restrict the generality
of the final result for w(t,e).

It seems certain that the integral equation technique developed in
this thesis could be extended to obtain w(t,e) of the same nature as
Wasow's and Erdelyi's result, only for our more general problem. For

boundary conditions of the form 1.8, one would choose
> - - 1
w>{2, - b, w (0) - b, w (0)]

and then would consider the weakly nonlinear differential equation, where
"weakly" now means with respect to the new parameter , obtained by
substituting 1.11 into 1.10.

The uniform asymptotic expansion we obtain for the general problem
defined by 1.6 and 1.8 gives, when h = 0, a uniform asymptotic expansion
for the general second order linear equation with boundary wvalues of the
form 1.8. In this case the expansion is obtained under the assumption

that p(t,e) is from the class ¢! and a(t,e) is from the class C.



2. In what follows, t and s denote real variables confined to
an interval I, which has t, as left endpoint and t1 as right end-
point. If to = -, then to is not included in I, and if t1 = +oo,
then t1 is not included in I. Otherwise, to and t1 may or may not
belong to I. & 1is the set {(2,8) s £ I, t <s< t} ; € is a smll
positive parameter always assumed to be in the interval 0 < e < Go 2 T

An n-dimensional vector will be thought of as an n X 1 matrix, and
by x? will be meant the transpose of the n X 1 matrix x. Whenever we
speak of matrices in general, we will mean scalars, column and row vectors,
and square matrices compatible with these wvectors. All matrices will have

real numerical functions for elements. As the norm of the matrix

= [aij(t)] we take

1Al = g2, lag (0]

If all the a; (t) are integrable functions of +t, by J,A(t)dt is
meant the matrix [ Ia (t)at]. The derivative A'(t) is defined in a
like manner. A partial ordering between matrices is defined component-
wise by

A<B if aij(t)Sbij (t) for a11 i, j, and t.

For later applications we shall need that our results in this section
be stated with more precision than the estimates afforded by the norm
defined above. Hence, for any matrix A define |A| to be the column

vector whose izh component is Z ]aij(t)|. For scalars this is the
J

usual absolute value, and for a column vector x = [xi], |x| is the column

vector whose iEE component is [xil and |xf | is the scalar Z |xi|.
i



For any matrices A and B,
|aB| < |a] [IB]| ana [|al] = [[C]2])]].

Let ) be the set of all vectors x(t) which are continuous on I
and satisfy the vector inequality |x(t)| < d(t) for some fixed positive

vector d(t). £ -
1

We say that A(t) is integrable over I if f A(t)dt exists (is

t +
o}

finite); A(t) is locally integrable over I if for each s belonging to

I, A(t) is integrable over (to,s) ; A(t,s) is locally integrable over
# if for each t belonging to I, A(t,s) is integrable over the interval

(to,t) as a function of s; and A(t,s) is integrable over ﬁz T

A(t,s) 1is loecally integrable over ® and

t,- t
f A(t1-,s)ds = 1lim f A(t,s)ds (2.1)
t >t - 9t

exists.

A function x = x(t) = x(t,e) is a member of the class Ck(I) i
for each €, 0 <€ < €, the first k derivatives of x(t,e) with respect
to t exist on I and these k derivatives and x(t,e) are continuous
on I. This will be denoted in the usual way by x € Ck(I), x(t) € Ck(I),
or x(t,e) € Ck(I).

For functions p(e) and 1t(€) we say that o(e) = 0(7(e)) if there
exist positive constants o and e* so that |p(e)| <a |v(e)| whenever
0 <e<e¥ and that p(e) = o(7(e)) if for any positive number « there
exists another positive number e*(a) so that |e(e)| <o |t(e)| whenever
0o <e < e*¥(a). For vectors x(t,e) and y(t,e) defined over I, we say

that x(t, €) = 0(y(t, €)) uniformly over I



(or just "uniformly") if there exists positive constants @ and e*

so that |x(t,e)| <aly(t,e)| forall t in I and 0 <e <e* ;

and that x(t,e) = o(y(t,€)) uniformly over I (or just "uniformly")

if for any positive number & there exists another positive number

e*(a) so that |x(t,e)| <aly(t,e)| forall t in I and 0 <e < e*(a).
That these last definitions make sense for matrices follows from our
previous definition of the absolute value and ordering of matrices.

We will use the following well known result (see [10], p. 37):

Lemma 2.1. Let f£(t), g(t), n(t), and k(t) be numerical functions
defined over I and such that k(t)f(t), k(t)g(t), and k(t)h(t) are

locally integrable over I. If

+

£(t) < g(t) + n(s) f k(s)f(s)ds ,
t
0]

n(t) >0, and k(t) >0

for all t in I, then

t t
#(t) < g(t) « n(t) exo( [ m(s)n(s)as) [ k(s)e(s)as
t t

o o]

for all t in I.

Our first considerations will be for the unknown vector function

y(t) in the nonlinear Volterra integral equation

g
7(8) = u(t) + ¢ L K(t,5)2(s,y(s))ds . (2.2)

o}
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Sufficient conditions for the existence and uniqueness of a solution
y(t) will be stated, and a bound on y(t) - u(t) will be obtained.
The result for equation 2.2 will then be used to find sufficient
conditions to guarantee the existence of a unique solution y(t) to
the nonlinear integral equation
t1-
y(t) = u(t) + eL(t) Jl M(tl-,s)f(s,y(s))ds +

o]

% (2.3)
€ f K(t,s) £(s,y(s))ds.
%

K in equations 2.2 and 2.3 and IM in equation 2.3 are matrices
compatible with the wvectors y, u, and f. The first integral in

equation 2.3 is defined in the manner of 2.1.

Assumption 2i. u(t) e C(I); K(t,s) € C(R); and f(t,y) is defined

on IX L .

Assumption 2ii. There exist nonnegative vector functions m(t) and

j(t) and a positive scalar function «(t) all continuous on I such
that | |£(t,x) - £(t,y)]| <m' () |x - y| vhenever (t,x), (t,y) e IX&

and |K(t,s)| < j(t) «(s).

The lipschitz condition satisfied by f and the continuity of m(t)

imply that f£(t,y) as a function of y is continuous on &

Assumption 2iii. There exist locally integrable functions 6é(t)

and 6;(t) over I such that Eé(t) > k(t) ||e(t,u(t))]| and

+

a;(t) >ek(t) m'(t) j(t) for all t in I.
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With

5 t
6o(t) = J; Bé(s)ds and 51(1-,) =IG 6{(8)(15 3
o o
let
a,(t) = [u(e)] + 3(t) e 5 (t) exp(s,(t)) . (2.1)

Assumption 2iv. Ao(t) < a{E), € € L,

Suppose y(t) ¢ £ and K(t,s)f(s,y(s)) is locally integrable

over R ; let T be the mapping defined by

t
Ty(t) = u(t) + € [ K(t,8)2(s,5(s))as . (2.5)
to
A fixed point for T Dbelonging to & will be constructed by the

classical method of successive approximations, setting

Vo(t) = u(t) and y (t) = Ty, (%), k2>1. (2.6)

Although Erdelyi [6] works out for considerable generality the technique
of taking successive approximations with the operator T, the case covered
by our assumptions is not included. We will prove here that the yk(t)
converge to a function y*(t) satisfying 2.2, and we will determine a

bound for y,(t) - u(t).

Theorem 2.1. Under assumptions 2i to 2iv, yk(t) as defined by 2.6
exists for all walues of k, T as defined by 2.5 has one and only one
fixed point y,(t) for which y,(t) e & and k(t) m' (1) |y (¢)]

is locally integrable over I, and
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(
ya(t) - () < 3(8) e 5 (8) = L. (2.7)

i=k
Proof. The main part of the proof will be to show by induction

that for k=1, 2, ..., yk(t) exists and belongs to 8 , and

[e, ()15
lye(8) = 3 (W] < 3(8) e 8 (%) —y— - (2.8)

u(t) ¢ & by assumptions 2i and 2iv; hence, K(t,s)f(s,u(s)) is
defined in K . K(t,s)f(s,u(s)) is locally integrable over ®
if |K(t,s)f(s,u(s))| is locally integrable over ® , and if
K(t,s)f(s,u(s)) for each t € I 1is integrable over all intervals
t* < s <t where t, < t* <t (see [11], p. 437). Since all functions
involved are continuous on I by assumption and since any interval of
the form (t*,t) where both t* and t are in I is bounded, the
latter requirement is certainly met. |K(t,s)f(s,u(s))| is locally

integrable over ® , because
[k(t,s)2(s,uls))] < 3()e(s) | [2(s,u(s)) || < 3(¢)e(s) (2.9)

by assumptions 2ii and 2iii, and j(t) aé(s) is integrable over ®

also by assumption. We conclude that y1(t) exists, and that

v, (t) - v (£)] < 3(t) e B (t) (2.10)

by equation 2.6, inequality 2.9, and the definition of ao(t). Applying

the triangle inequality to inequality 2.10, we obtain

ly, ()] < Tu(e)] + 3(¢) e B (¢).
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Hence, y1(t) e & by assumption 2iv and the continuity of u(t).
The induction statement has been verified for k = 1.

Next, suppose that the induction statement holds for k < n where
n > 1. From this hypothesis, assumptions 2ii and 2iii, and the

definitions of % and &, we obtain

[k(t,8)2(s,y,(s))| < [K(t,8)| |l2(s,y (s))]] <

Ks) [ 1lets,u(e)]] + = |12(s,7,(s)) = 2o,y (D] <

j=1

s)s) [ 11ets,ule)]] + :E] mt ()ly,(e) - v_ ()]

n [® (S)]J 3
)(s) [ 1ets,ue))|] + en” (s)(s) 8, (s) I T ]

< 3(6) & [oy(s)expl, ()] = 3(£)5 (s)exp(s, (s))]". (2.11)

Inequality 2.11 implies that |K(t,s)f(s,yn(s))| is locally integrable
over ® , and it follows as before that K(t,s)f(s,yn(s)) is locally
integrable over R . We conclude that yn+1(t) exists. Hence, by

equation 2.6, assumptions 2ii and 2iii, and inequality 2.8 for k =

.
Iy, (8) - v (8)] < e'j; Ik(t,s)| |12(s,v_(s)) = £(s,5__(s))]las

e}
(s)]n-
<3 e [ e s T (e)als) 5,(s) ‘Tn‘f)— s
t
o]

[5, (£)1°
sj(t)ea(t)*——————— )

n.
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which is inequality (2.8) for k =n + 1. Hence,

+1
g (9] 5 (0] + 2 I (8) = 3y ()] <

lu(t)] + 3(t) e B (t) exp(s,(t)) = A (t) .

By assumption 2iv, |yn*1(t)| < d(t), and so yn+1(t) e & . This
completely proves the induction statement for k = n + 1 given its
validity for k = n. We conclude that the induction statement holds for
all values of k=1, 2, ... &
Inequality 2.8 implies that
+o0

| In(8)y ()] < e (o) ] 8, (t)exn(s, (%)),
k=1

and since j(t), 6o(t), and 81(t) are all continuous functions on I,

+o0

the telescoping infinite series wu(t) + = [yk(t) - yk_1(t)} converges
k=1

absolutely and uniformly on every compact subinterval of I +to a continuous
+00

function y,(t). Since y,(t) - yk(t) = iik [yi+1(t) = Yi(t)]; 2.8

implies that

4

0[5 (t)]
< j(t) € 80(1;) z —sppeess 4 (2.12)
J=k '

Putting k = O in 2.12 produces

[y (8) | < Iy (8)] + ej(t) & (t)exp(s (£)) = A (t)
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upon an application of the triangle inequality. It follows by
assumption 2iv that |y, (t)| < d(t), and hence y,(t) ¢ & .
We will show next that y*(t) is a fixed point for T. Since

f(t,y) 1is a continuous function of y, we have

£(t,y,(t)) = 1im £(%,y, (¢)). (2.13)
k=20

In a manner similar to the derivation of 2.11, we get

k(s) | |£(s,5, (s)) || < o (s)exn(s,(s))] (2.14)

for all k. The prime in 2.14 denotes a derivative with respect to s.

Letting k —> « in 2.14, we get by 2.13 that

k(s)|[£(s,5,(s)) || < [B,(s)exp(s,(s))]". (2.15)

Inequality 2.15 implies that IK(t,s)f(s,y*(s))I is locally integrable
over R , and it follows as before that k(t,s)f(s,y,(s)) is locally

integrable over & . Because of 2.1k,

+ t
lim j K(t,s)f(s,yk(s))ds = J' K(t,s)f(s,y.(s))as (2.16)
k> O t

by the Lebesgue dominated convergence theorem. We conclude that

¥x(t) = lim Ty, (t) = Ty,(t).
k—>e0

Let x(t) be any fixed point of T in & for which k(t) m'(t)]x(t)

is locally integrable over I. We need this last condition in order to



conclude from the assumptions that

t
0 <m'(t)]y,(t) = x(t)] < en’(t) f |k(t,s)[£(s,y.(s)) - £(s,x(s))]]as

t
o

t
= em (t) j(t) { K(s) mf(s)ly*(s) - x(s)|ds < += . (2.17)

o}

Lemma 2.1 may be applied to 2.17 for the special case g(t) = 0 in order

to conclude that

mT(t)ly*(t) - x(t)| =0, tel. (2.18)

Since nothing has been assumed to prevent m'(t) from being zero, we

need to make one more computation with the true norms, i.e.,

t
ly (t) - x(t)] < e ft [K(t,5)| ||2(s,7,(s)) - £(s,x(s))]|ds

(o]

% T
<e Jl |K(t,s) | m"(s) [ye(s) - x(s)]ds <0, t € I,

by 2.18. Thus, y,(t) = x(t) for all t in I. The proof of Theorem 2.1
is now complete.

Equation 2.3 will be considered next. In order to understand the
basis for the considerations that follow, let £3o be the set of
vectors x(t) such that x(t) is defined over I, M(t,s)f(s,x(s)) is

integrable over 6% , and
t1-
u*(t) = u(t) + Ux = u(t) + €L(t) Jl M(t1-,s)f(s,x(s))ds (2.19)
t

(o}



T

satisfies the assumptions of Theorem 2.1 for u(t). Let £)1 be the
subset of vectors y(t) of & for which k(t)m'(t)|y(t)] is locally
integrable over I. We consider the mapping S of f?o into &?

1
given by

Sx = z, (2.20)

where 2z = Tz + Ux. Thearem 2.1 implies that S 1is single-valued and
maps all of dE,o into KBH. We will determine sufficient conditions

to imply that S has precisely one fixed point in the intersection of

K} and xz.

o

The proof will be again by successive approximations, setting

k k=1

yo(t) = u(t), yo(t) = u(t) + Uy~ (£), k=1,2, - (2.21)

k k=1 k

¥(t) = U .~ (1) + Ty,(¢), k=0; 1, *»+ ; (2.22)
and putting

.
a;:(t)zft Ks) |le(s,y5e)) las . (2.23)

o

Assumption 2v. M(t,s) € C(R)), and as t —> t,=, M(t,s)/x(s)
converges uniformly for s in I +to a function of s which is bounded
in some non-degenerate subinterval of I with left endpoint to and in

some non-degenerate subinterval of I with right endpoint t1.

Lemma 2.2. If assumption 2v holds and v(s) is a vector function

such that ||v(s) is integrable over I, then M(t,s) v(s) is integrable
e k(s

over R .
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M(t,s)

- g v(s) 1is integrable over ® ,

Proof. In order to show that

we must show the existence of the double limit

t
lim _lim Jl E(—:;-t%g-v(s)cits. (2.2k)

t—>t1- t—>to+ t

This will follow from the special boundness condition found in assumption
2v and the uniform convergence of M(t,s)/K(s), also part of assumption
2v. For the sake of brevity let the capital letter I with a subscript
zero and any superscript denote a non-degenerate subinterval of I with
left endpoint to, and let I with a subscript one and any superscript
denote a non-degenerate subinterval of I with right endpoint t1.

We will prove the existence of the limits in 2.24 by showing that for

o}

any positive number «, there exist intervals IO and I? such that

) M(sh,s) =3 M(SS’S)
i 5, k(5] viajds - S, —k(s) v(s)as|| < e, Waa)

when 8, and s, are in Ig' and s3 and s), are in I? . Suppose
that 8, < S5 < 53 < 8), . Then, the left member of inequality 2.25 is
bounded by
s s
Eﬁj—”’“?gs)” [Iv(e) fas + [ ——7—,—”“(?;5”' [1v(s)]las +
s, 53
3 | sy ) - Msg,0) |
f " F3) | |v(s)|]as . (2.26)

s
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Assumption 2v implies that there exists intervals I; and I: and

a constant co such that

J.L_(z.)_UlM'(ctss <e, (2.27)

when (t,s) is in I: X I; or Ii X I:. Since ||v(s)|| is integrable
over I, there exist intervals I. and I, included in I and I,

respectively, such that

t
f [v(s)|las < /3¢, (2.28)

when s, t are both in Ig or I?. Substitution of inequalities 2.27
and 2.28 into expression 2.26 gives that the sum of the first two integrals
is bounded by % & when 5, and s, are in Ig and s
in I? . Suppose that

and sh are

3

t

1
j’ [lv(s)|las < e - (2.29)

t
Q

Because EK%?E% converges uniformly at t —> t1-, there exists an

interval I° included in If such that

HM(su;S) - M(s ,s)ll
3 a
<(s) S 3 i3

when (sh,s), (SS’S) € I? X I. It follows that the third integral in

2.26 is bounded by «/3 when s, end sy are in I?. We conclude

that intervals Ig and I? exist so that 2.25 holds, and hence, so

that !£%§§l v(s) is integrable over M .



20

Assumption 2vi. L(t) € C(I), and there exists a locally integrable

function 8)(t) over I such that B8(t) > K(t) m'(t) |L(t)]| for all
€ 38 IT.

We define

t
55() = [ ol(e)as. (2.31)

t
o

Assumption (2vii). The limits as t —> t,- of ao(t), 61(t), and

Be(t) all exist.

Assumption (2vii) implies directly that [62(t)exp(61(t))]' and
(e (tlexp(s,(t))]" are integrable over I. Hence, we obtain from
assumption 2v and Lemma 2.2 the existence of two bounded, continuous

functions 80(t) and 62(t) on I such that

t
s;az,agmﬁﬁ%i[%uk@mﬂwn'u,(ap)
= B M(t,s '
%uuzﬁ5lL7gPlt%wk@w45n ds. (2.33)

8. 4t.) .
a,(8) = [IL(e)| + 3(£) € By(t)exm(s,(£))] ——— . (2.34)

1—652(t1)

Assumption (2viii). e 52(t1) <1 and Ab(t) + € A1(t) < d(t)

for all t in 1I.
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Theorem 2.2. Under assumptions 21 to 2viii, y.(t) and va(t)
as defined by eguations 2.21 and 2.22 exist for all values of k, S
as defined by 2.20 has one and only one fixed point y(t) for which

y(t) € & ana k(t)mt (t) |y(t)| is integrable over I,

k - k
ly(t) - v(2)] < e B,(£))]F € (%), (2.35)
and
ly(t) - u(e)| < [a () - u(e)] + e A (2). (2.36)
Proof. Once again the main part of the proof will be by induction
on k=1,2, *++ . The induction statement is: solutions yi(t) and

yg(t) exist for equations 2.22 and 2.21, y]:(‘t.) e &, x(t)m*(t)ly};(t)t

is locally integrable over I,

lv5(e) - v )] < Le By(e )17 B (%) € [L(e)], (2.37)
5.(%,)
WA < fuale)] + —2—— Jie)], (2.38)
§ - 62(t1)

and there exists 6§(t) satisfying inequality 2.23 and

€ 50(t1)

1 = € 62(t1)

61;(1:) < (t) + 8,(t). (2.39)

(2.38) and (2.39) imply that
lyg(8)] + eailt)exn(e, (£)) 3(t) <A (t) + ea (t) < alt)

bby assumption 2viii. This means that assumption 2iv of Theorem 2.1 is

satisfied by the integral equation 2.22. It follows from Theorem 2.1
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that equation 2.22 will have a unique solution yﬁ(t). Thus, if
inequalities 2.38 and 2.39 hold for a particular k, then there exists
a unique solution yl_:(t) to equation 2.22, yﬁf(t) e &, k(t) m(t) |yi(s)]
is locally integrable over I, and in general y_,}:(t) satisfies all the
conclusions of Theorem 2.1.

Consider the induction statement for k= 1. yg(t) exists and is
in S by Theorem 2.1. Hence, y;(t) will exist if M(t,s)f(s,y:(s))
is integrable over (X, . Inequality 2.15 implies that K(s)]]f(s,yﬁ s)) ||
is integrable over I, because [50(3) exp(al(s))]' is integrable over
I by assumption 2vii. Lemma 2.2 implies then that M(t,s)f(s,yg(s))

= E%%é?l K(s)f(s,y:(s)) is integrable over @ . We obtain from 2.15

the inequality

t1- t1- IIM(tl"JS)H

[ 1ol lsestontlas s [ g5 to (odensto, (o201 'as

t
o o]

It follows f rom the definition of 50(1:) given in (2.32) that

t,-
f HM(t]-,s)H ||f(s,y_,°(_(s))Hds§ _50(’%). (2.40)
t

o

Hence,
lrg(8) = 32(8)| < e B(t) [(e)l, (2.41)

which is 2.37 for k = 1. Inequality 2.38 for k = 1 follows directly
from 2.41 by the triangle inequality. Finally, 5;(t) may be chosen so

that 2.23 and 2.39 hold, because
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t 1 t
|7 ezl ontlas < [ re) Tete,u(e))|las +

t t
o] o]

t
ft x(s)llf(S,y;(S)) - (s, 2(5))|!d5 =

t
5,(t) +‘/; K(s)n'(s) |yl(s) - y2(s)] as ,
o}

and

£
f; k(s)m'(s) ly;(S) - yo(s)| as < €5 (t,) 8,(t)

by 2.41 and the definition of Be(t). By a previous discussion we can
now conclude that y;(t) exists, y;(t) e &, and K(t)mf(t)|y;(t)| is
locally integrable over I. This completes the proof of the induction
statement for k = 1.

Suppose next that the induction statement holds for k = 1,2,--+,n
and n > 1. Then for k = n, 2.38 and 2.39 imply the existence of a
solution y’:(t) for equation 2.22 when k = n. At the same time, the
induction hypothesis assumes the existence of a solution yy(t). Both
these solutions are members of &3 and satisfy the integrability
condition of Theorem 2.1, which implies uniqueness of solution. Hence,
they must be the same function yﬂ(t).

Since the existence of _yg(t) satisfying 2.22 can be considered
a direct result of Theorem 2.1, the inequalities included in the proof
of Theorem 2.1 may be used here for y:(t). For example, inequality

2.15 becomes
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k(s) | 12(s,55(s) || < [80(s)exn(s, (s))], (2.42)

where the prime denotes a derivative with respect to s. It follows
from assumption 2vij and inequality 2.39, which holds for k = n by
hypothesis, that [6g(s)exp(51(s))]' is integrable over I. Hence
k(s)||£(s,yy(s))|| is integrable over I, and by Lemma 2.2,
M(t,s)f(s,yﬁ(s)) and | |M(t,s)]|]| ||f(s,y2(s))|| are integrable over
® , which proves y2+1(t) as defined by equation 2.21 exists. Further-
more, for a proper choice of an(s), inequalities 2.39 and 2.42 imply
that

e (t,)

©1— 5,(s)exn(s, (s)]" .

Juig 52(t1)

k(s) | |£(s,7(s)) || <[5 (s)exn(s,(s) +
(2.43)

We obtain now from equations 2.21 and 2.22

n+1 n t1- 1 n n=1
2 1(8) - y2(8)] < eln(e)] ,[6 | (e,-,8) | Im" () |¥5(s)-v5 ™ (o) as
o]

(2.44)

and

m'(s) |y}(s) - ¥5 7 (s)| < m¥(s)|y2(s) - y27N(s)| +
S
at(s)a(s) [ armt () [R() - () far (2.45)
tO
by assumption 2ii. The integrals in inequalities 2.4l and 2.45 exist

because of the part of the induction hypothesis which says K(t)mf(t)lyf(s)]

is locally integrable over I for k <n.
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Lemma 2.1 may be applied to 2 L5 t» give
n -1 -1
m'(s)|ye(s) - 357 (8) <m™(s)1y5(s) - v ' (s)| +

e w'(s)a(s) exn(s,(s) [ rm()lyXr) - 307 (x) far.
t
o}

It follows from inequality 2.37 for k = n that
K(s)mt(s) 1y2(s) - 27 (s)] <

lexp(®,(s)) [ /0" I50) - 957 el

e T (t,) [B,(+,)17 [8,(s)exn(s,(s))]". (2.46)
Hence,
t1-
f (e, -,8) 1 |m*(s) Iy5(s)-y3 " (s) 1as < 5 (¢, ) (£, )17, (2.47)
t

0

Inequality 2.37 for k =n + 1 now follows from inequalities 2.4k and
2.47. Because eEE(t1) < 1, one can prove the validity of inequality

2.38 for k = n+ 1 from the identity

n+1
ot = u(e) + = [y5(%) - v5'(%)]
=1

and the validity of 2.37 for k <n + 1.

Next,

x(s)112(s, 5" ()1 < K(s)||£(s,u(s)) +
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+1
M) = 12(s,55(8)) - 2,75 (0] < 81(s) +

k=1
n+1 & -
K(s) Z m?(S)lyo(S) -y, (s)] < 8l(s) +
k=1
3 (t.)
Fo'h? = ! 8y(s) . (2.48)
1-652(t1)

Inequality 2.48 implies that there exists a choice for 6§+1(t) so that
both inequalities 2.23 and 2.39 are satisfied. As a matter of fact, in

all our considerations we could Jjust as well choose

8 (t;)

ag(t) = 5 (t) + 8,(t) for all n.

1-662(t1)

This implies, as we have just shown by induction, that inequality 2.23
holds for all values of k. Inequalities 2.39 and 2.43 hold trivially
for such a choice of 5§(t).

By an earlier discussion in this proof, we conclude that y:+1(t)
exists satisfying equation 2.22 and the conclusions of Theorem 2.1 hold

for y2+1(t). This completes the proof of the induction statement.
For k=1, 2, «s0o ,

K(s)n'(s) |yx(s) - v ' (8)] < € B ()5, (6, )1  [o,(s)exn(s, (s))]"

(2.49)

follows in exactly the same way 2.46 was established for the particular

case k = n. Since a solution yﬁ(t) to equation 2.22 exists for
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k =0,1,..., we may use 2.22 and assumption 2ii to obtain

t
75) - 57T < IR 5T )]+ eale) ft (eI’ () [35(5) 55" (s) |as.
(o]

Hence, inequalities 2.49 and 2.37 imply that
lyi(e) = ¥ (0] < € B (8;)e B80T [|L(t) [+e 5,(t)exn(s, (£))3(+)]
for L& VB aien (2.50)

Since €Sé(t1) < 1 by assumption (2viii) and since in general

=l = [1(1xD) ], it follows that
T 1 Rt €5,(t;)
Z [ lyx()=y" (8) || £ ——=———= U[L(e) || + eq (t)exn(p, (£))|[s()]|] .
k=1 1=€ 2(t1
(2.51)
) = k k=1
The right side of 2.51 is continuous on I, so I ||y*(t)-y* ()]

k=1

is bounded on each compact subinterval of I. Thus, the telescoping
4

series yg(t) + I [yz(t) - y§-1(t)] converges absolutely on I to
k=1

a continuous function y(t).

Inequality 2.50 gives further that

+o0 3 5
ly(e)-yi(e)| < = |y (e) - ()] <

I
3=k

[e 5,(t,)1% € B _(¢,)

e =[€8, (¢, ) 1% (¢),
Yy ()| + es(t)ay(t)exnle, (£))1=(eB,(t,) TFen, (¢)
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which is precisely inequality 2.35 in the conclusions. Putting

k = 0 in 2.35 and applying the triangle inequality, we get

ly(£)] < lye) ] + ea (2),

or

l7(£)| <& (t) + ea (t)

by inequality 2.7 of Theorem 2.1. Assumption (viii) gives now that
y(t) € £ . since |y(t) - u(t)| < |y(t)=yg(t) [+]y(t)=ult)| vy
the triangle inequality, inequality 2.36 of the conclusions follows from
2.7 and 2.35.

We will prove next that y(t) is a fixed point for the mapping S
defined by equation 2.20, or what is the same, that y(t) is a solution
to integral equation 2.3. In order to do this, let k —> += in equation

2.22, We will show that

i k . k
lim f M(t1-,s)f(s,y*(s))ds= lim  lim f M(t,s)f(s,y,(s))ds
-

k=>+0 L t—>t, - k=>4
o 1
t, -
= f M(t1-,s)f(s,y(s))ds p (2.52)
tO
and that
- i t
1im f K(t,s)f(s,y,(s))ds = f x(t,s)f(s,y(s))ds. (2.53)
k=t It %

(o]

Since y;l(t) for n=0,1,... is a unique solution by Theorem 2.1,

inequality 2.15 found in the proof of Theorem 2.1 will be given as
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inequality 2.43 when n=0, 1, ... . Letting n —> o in 2.43, one
obtains

ed,(t, 2
k(s) |l£(s,y(s))|| < (5 (s)exp(s,(s)) + ——— &, (s)exp(5,(s))],
1-662(t1)

(2.54)

because f 1is a continuous function of y and 1lim yi(s) = y(s).
n—>xo

The right side of inequality 2.54 is integrable over I by assumption

2vii. Hence, K(t,s)f(s,y(s)) is locally integrable over R . Further-
more, the interchange of limit and integral in 2.53 is valid by the
Lebesgue dominated convergence theorem.

Writing

| M(t,)2(s,5%(s)) || < Uﬁ:—()—)u K(s) | 12(s, (N1
K\ S

we see by inequality 2.43 and the definitions 2.32 and 2.33 of EQ

and B, that | [M(t,s)(s,y5(s))|] is bounded for all n by an
integrable function over R . Hence, the interchange of limits necessary
to get the second equality in 2.52 is valid by the Lebesgue dominated
convergence theorem.

The only dependence of the first integral in 2.52 on k 1is through
f(s,yﬁ(s)). In the convergence of the integral as t —> tl-,K(s)IIf(s,yi(snl
is uniformly bounded with respect to k by a function integrable over

I. This implies that 1lim is uniform with respect to k. The proof
>t -
1

would proceed in a manner similar to the proof of Lemma 2.2. It follows
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that 1im and 1lim may be interchanged to produce the first

equality of 2.52. The validity of 2.52 and 2.53 implies that y(t)
is a solution of equation 2.3.

In the proof of Theorem 2.2 there remains only to prove the unique-
ness part of the conclusions. Suppose that z(t) is any solution of
equation 2.3, or, in other words, that z(t) is any fixed point of the

mapping S, such that k{s)m'(s) |z(s)| is integrable over I. Then,

&
.
m' () |y(t)-z(¢)] < em(t)|L(t)| Jr ||M(t1-,s)|| ||2(s,y(s))-£(s,2(s)) | |ds
t
o

t
rent(s) [ IKs,8)| le(s,5(s)) - 2(s,2(s)) ]as <

t
0

t1~
e m (t)|L(t)| j: ||M(t1-,s)||mf(s)]y(s)-z(s)|ds 3

o}

t
e mt(4);(t) f o O L 0% I B R 1 1 (2.55)

t
o]

The integral in 2.55 exist by Lemma 2.2 and the integrability of
k(s)m'(s) |y(s)| and k(s)m'(s) |z(s)| . Applying Lemma 2.1 to inequality

2,55, we obtain

o' (+) [y(£)-2(t) | < [en"(£)|L(8)| + Sn'(£)3(t) By(t)exn(s,(£))]

A
J: 1 IIM(t1-;S)]Imf(s)ly(s)-z(s)lds "

o}

which yields with another application of Lemms 2.1

n'(t)|y(t)-2(t)] =0 . (2.56)



31

Inequality 2.55 is valid as a vector inequaltiy without the factor
m'(t). Hence, it follows from 2.56 that y(t) = z(t) for all t in I.
For the applications of Theorem 2.2 to boundary value problems with
second order ordinary differential equations, it will be sufficient to
use a two-dimensional form of equation 2.3. We need to further specify

the "lipschitz function" m(t) and tle domain &) by specifying a(t).

Assumption 2ix. u'(t) = u'(t,e) = (u,(t,€),u,(t,e)) = o0(1)

uniformly.

Assumption 2ix is essentially a restriction on the transformations
between the boundary value problem and its equivalent integral equation
formilations. Only transformationsyielding uniformly bounded u(t,e)

can be used.

Assumption 2x. o(t,e) is a nonnegative numerical function defined

for t in I and o <e <€  such that o(t,e) e ¢(I), o(t,e) = 0(1)

uniformly, and o(t,e) > |u2(t,e)|.

For two new positive parameters ¢ and v independent of 1,

define
.’-
a' (t) = (u,v + o(t,€)). (2.57)
u and Vv can be considered measures of the size of the domain &3 i
The presence of o(t,e) permits non-uniformities to occur in the

second components of wvectors in &F s

We define next

mf(t) = (v + o(t,e), 1) el o . (2.58)



where ® = w(p) is a nondecreasing numerical function of K. With

A, and A, defined in 2.k and 2.34 respectively, let
-1
A=c¢e (a- [u]) + A (2.59)

For m given by 2.58, we actually have that A = A(t,€; u,v) and

8, = '52(1;,6; H,v) are functions also of K and V.

Assumption 2xi. There exist positive constants u¥, v¥, and eg

such that 62(t1,e;u*,v*) and A(t,e;p¥*,v¥) exist for o <e < gk
and t in I,

ege(tve;u*,v*) = 0(1), (2.60)
and

A(t,e;p%,v%) = 0(1) uniformly. (2.61)

Assumptions 2ix to 2xi are sufficient to imply that Ao+eA15d,
when W 1is sufficiently large, v = en, and € 1is sufficiently small.

More specifically, let

LW >U = sup limsup max (|u1(t,e)|,o(t,e)). (2.62)
tel e—>0+

Then, for p so-chosen, let

x > sup limsup ||A(t,e;m,v*)|] . (2.63)
tel €0+

With ¢ and n fixed and satisfying 2.62 and 2.63, we require that

€ be sufficiently small so that

V% ugl
0<e <min (— , —, e‘g), (2.64)
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€ -52(’01,6; H,Vv*) < constant <1 and (2.65)
[la(t,esu,v*) || <% for o <e<e,. (2.66)

From the nature of Ao and A1, one can show that A exists for
all 4 and Vv provided it is assumed that it exists for one set of
values u¥*, v¥, This, of course, depends on € being sufficiently small
to make ege(tve; M,v) < 1, which is the reason for 2.65. The other
property of A important here is that A(t,e;u,v) is nonincreasing as
v decreases, given that t, €, and B are fixed. For o <e< €, we
bave from 2.64 that v = en < v¥, and hence, A(t,e;p,v) <A(t,e;u,v¥).
It follows from requirement 2.66 that = > ||A(t,e0,v)|| for o <e < €,

Hence,

.f
o+ e < lul v eas(lyl+v, lyl+nt.

2.64 implies that |u]] +v < |u1l + Wel , and from our choice of u
in 2.62, it follows that |u1| + v <u. Since 0 > luel , we have

lu,| + v <o+ v, and so
+
A, + €A < (u,0 +v) = d. (2.67)

Corollary. If assumptions 2iv and 2viii are replaced by assumptions
2ix to 2xi and 1 satisfies inequality 2.62, then Theorem 2.2 is true
for d and m given by 2.57 and 2.58 respectively and € sufficiently
small.

The restriction on u is due to the way the assumptions have been
formulated and is not an important requirement. The domain in which the
lipschitz condition on f holds has been constructed about the zero

vector rather than the wvector u.
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3. In this section we will be concerned with relating the second
order boundary value problem given by
eyt + A(t,€)y + eg(t,e) + E£(t,y,€) = 0, (3.1)
+
b (e)y(0,€) = £X(e), < (e)y(1,¢) = £*(e), (3.2)

to an integral equation problem included in the theory of the previous

section. All vectors, such as y, g, and f are two-dimensional, and

ea1(t,e) aE(t,e)

A= s (3.3)
€a3(t,€) ah(t,E)

The interval I is taken to be the closed interval O <t<1,

. , B )
Assumption 3i. a,, &, €C (1); 8y, 85 € c(1); 815 8y 8, B3, 8y, 8]

are 0(1) uniformly; and |8.2(t,€)|, ah(t,e) are positive and bounded

away from zero for t in I and 0 <e < €

(1f a), is negative, the substitution t*¥ = 1 - t will change the
problem to one of the type that we are considering.)

The form of equation 3.1 is not unique, i.e., higher order terms in
€ that are linear in y may be considered part of Ay or part of eef.
Under assumption 31 and the assumption that f satisfies a lipschitz
condition of the type described in assumption 2ii with m given by 2.58,

one can always determine A¥(t,e) and f*(t,y,e) so that

2

Ay + e f = A¥y + €2f* §
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A*¥ and f¥* satisfy conditions of the same formas A and T
respectively, and €y' + A¥y = 0 has a special kind of fundamental
solution. We will assume that equation 3.1 is already written in the

desired form.

Assumption 3ii. Let

ey' + A(t,e)y =0

have the fundamental solution

exp YLELEl exp &(t,¢€)
H(t,e) = p)
B¢, e)exptli28)  oft,e)exn ((t,¢)
where
B =2y/a
¥ o= -aEB - €a, = -3 - €a, ,

-1 7 it -1 t
= - a,\s, e » dr - : ] dr) d 2
o € J; 3( e) exp( J: al(r €) € JF ah(r €)dr) ds

S

Er = -8, - &, .

By assumption, &, is positive and bounded away from zero and a
2 Th 1

is uniformly bounded, so,
Vvi(t,e) <o, telI, o<e< €, s

if €, is chosen sufficiently small. For brevity we write

Wt,s,e) = exp W(t;6)2¢(s,e)




Then,

#(1,0,€) = 0(Ek) for all k. (3.4)

Assumption 3iii. g(t,e) € C(I) and

[e(t,e)]] < Be) [1+ € #(t,0,e)] .

The problem defined by differential equation 3.1 and boundary
conditions 3.2 is equivalent to the problem of solving an integral

equation of the type 2.3, where

c'H(1,¢€) = £y
L(t,e) = -H(t,€) ol » (3.5)
b H(o,€)
K(t,s,€) = H(t,e)E ' (s,€), (3.6)
M(t,s,e) = ch(t:S:G), (3-7)
14 1
u(t,e) = H(t,e)(c e 13- I M(1,s,¢)e(s,e)as
b'H(o,€) 2% ¥
t
+ f K(t,s,e)g(s,e)ds. (3.8)
o]
Suppose that
r(e) = |b, + 1, Blo,e)| (3.9)
and
T, () = e, + ecg a(1,e)]”" . (3.10)
If
T T, ¥(1,0,€) = o(1), (3.11)
then

(c H(1,€) :
det =pexp (€= ¥(o,e) - &(o,€)), (3.12)
b H(o,€)
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where

8”1 = 0(T0T1). (3.13)

3.11 is hardly a restriction in the light of equation 3.k.
It follows from equations 3.5, 3.12, and 3.13 and ofo,e) = 0
that

L(t,€) = u(t,e) olz,(1+]v, | T_)] uniformy, (3.14)

Ut,e) = (1 ) : (3.15)
€ + ¥(t,0,€)

We obtain by using |K(t,s,e)| = O(;(t,e)) uniformly and assumption

where

3iii that

t t

f IK(t,s,e)g(s,e)ldssf |k(t,s,¢€)| |la(s,e)||as
o (o}
= 0(zu) uniformly (3.16)

and

1 t ! =
f M(1,s,€)a(s,¢€) |ds < |e f %(1,5,€)e(s,e) |ds = o(z,8) ,

o 0

where

T, = T(e) = e,| +e e, - - (3.17)

In order to simplify the estimate for |u(t,e)|, we assume that

.1, e +c B(1,€)| #(1,0,€) = o(e¥) for all k, (3.18)

and

el T;1 =0(1) for some n. (3.19)
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Then,

lu(t,e)| = [jL(s,e) (2] +gn,) + 2]z (t,0,€)

4
o ?

a(t,e)] 0(1) < mu(t,e)  uniformly, (3.20)
where T = ™€) is a constant multiple of
* * P
| 2| T1(1+To|b1|) + |4a0|fro + g [1+T1T2(1+T0|h1|). (3.21)

It becomes clear now how to choose M and o(t,€) in 2.57 and
2.58 so that p >o(t,e) > |u2(t,e)| and p > |u1(t,€)| for all t

in I and O<e<eo_§1. Let

o(t,e) = [e + ¥t,0,¢€)] a, (3.22)
and
k>0 > limsup T(e). (3.23)
€ —> o+

Assumption 3iv. There exists positive constants K,v, and 0,

such that for 4 and m defined by equations 2.57 and 2.58 with o
given by 3.22 and K and 0  satisfying 3.23, £(t,y(t,¢€),¢e) e C(I)
when y(t,e)e £, £(t,0,e) = 0, and ||£(t,y,e)-£(t,z,¢)]|< m' () |y-z]|

wvhen (t,y) and (t,z) are in I x & and 0<e< €, -

Theorem 3.1. Let assumptions 3i to 3iv and relations 3.11, 3.18,

and 3.19 hold. If

RES L AGEE 3 |‘o1| Ylr = 0o(1) (3.24)
and

e T0.(1 42 |b1|) = 0(1), (3.25)
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then for sufficiently small € there exists a unique solution

y = y(t,e) to 3.1, 3.2 such that

ly(t,e)| = o(u ) uniformly (3.26)
and

|y(t,€)-u(t,e)| = er 0[(1,1)Jr +u B (3 T0|b1|)]. (3.27)

Proof. In the notation of section 2, we may choose k, 6{, and
J to all be constants for the present problem. Since f(t,o0,€) = o,

the lipschitz condition satisfied by f gives

||f(t,u,e)|| < mf(t:e) Iul P)

and hence,

1

||£(t,u,e) || = o(e™ Tﬁe) = 81(t,€) .

3.14 implies that we may choose aé(t,e) to be a constant multiple of

™! (141 [b, |) B (,€).

It follows that

o(T) uniformly,

1!

8,(t,€)
62(1:,6) = O[T1(1+’I‘O[b1 )] uniformly,

go(tT,e) = o(r1,),

8,(t,,€) 0[T1T2(1+'1‘0|b1|)].

Hence,
|1(a(t,€)=lu(t,e) ) || = o(er) = 0(e) uniformly

and
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A (t,€) = oluwrr, T, (147 |, [)] = 0(1) uniformly.

We get that u(t,e) = 0(1) wuniformly from 3.20 and T = 0(1). 3.24
gives that e Eé(t1,€) = 0o(1). We conclude that the corollary to

Theorem 2.2 applies in the present case. Relations 3.26 and 3.27 follow

from 2.36.
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L, In this section we will consider the second order scalar
differential equation given by
Tx = ex" + x' + q(t,€)x + r(t,¢e) + en(t,x,x',€) = 0, (4.1)

along with boundary conditions of the form

I
S5

B[x] (4.2)

b](e)x(o,e)+€b2(e)x'(o,e) =

clx]

|
=

n

c1(e)x(1,e)+ec2(e)x'(1,e) = e (4.3)

The notation in 4.2 and 4.3 is not meant to imply that ebe(e) and

ecg(e) will later be assumed to be O(e). It is only a convenience

to allow us to identify vectors b = (b1,b2) and ¢ = (c1,c2),

which will be used in applying the results of section 3. Equation 4.1

is not a specialization of equation 1.6 but is the result of an elementary
change of independent variable.

We will show how the existence of a solution to the complete system
4.1, 4.2, 4.3 depends on the existence of certain "approximate solutions"
to systems that have a differential equation similar to 4.1 and only one
boundary condition.

Associated with the equation Tx = o 1is another equation of a
similar type which we propose to call an "adjoint equation™ of 4.1. In
order to define this adjoint equation of 4.1, let Tx = Px + @x where
Px is linear in x and its derivatives and Qx contains no derivatives
of x higher than the first order. Furthermore, suppose that for the
vector (x, ex')f in &, aox=r(t,e) + O(e+e'§/e) uniformly, where
r(t,e) is the function occurring in equation 4.1. It follows by the

linearity of P that



Lo

vMx+w)=v(Px+Pw)+valx+w)=

v (Px+0Qx)+viw+v[Qx+w)-ax] =v(Px+Qx)+
1 *

[B(v,w)] +wPv+v[alx+w) - ox],

*
where B(v,w) is the bilinear concomitant of v and w and P is
the formal adjoint to P. We set

B(v,w) = 0 (k.1

and assume that w can be determined as a function w(t,v) of t and
v. The differential equation adjoint to Tx = O with respect to P is

defined to be the equation in v given by

Tv=wPv+v[ax+w)-axl=0, (4.5)
where w = w(t,v) and Tx = Tx(t,e) = 0.
For the considerations that follow, we choose
Px = ex" + x' + q (t,€) x.

It follows that

w(t,v) = ve.t/€

up to an arbitrary constant factor, which we have taken equal to unity.
The eguation Tzv = 0 1is now determined uniquely by 4.5. Except for
the arbitrary constant factor in w, it can be shown that T;v =0 in
general depends only upon the coefficient of x' in Px = 0.

The significance of the operator T: is indicated in the following

equation:
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-t/e

Hxw] = Blave™ 7Y = Pere v (4.6)

Assumption 4i. q(t,e), r(t,e) € C(I) and q(t,e), r(t,e) = 0(1)

uniformly.
Define
v =1(e)= |b, -b,] "
o o 1 2 e
L S=1 -1
T = T1(e) = !c}-cg J; als,e) exp —-€——) ds | "
(4.7)
T, = Té(e) = ]c1| + € [c2] s
T3 = T3(€) =1 + T1Té (1 + Tb ‘b1|):
and

W(te) = (§(te), B(t,0)) = (1,ee™€). (1.8)

Assumption 4ii. There exist functions x = x(t,e) and v = w(t,e)

both in C°(I) such that for a given positive bounded function v(e),

which satisfies

7 o ofea®) (%.9)

we have
Tx = 0(y) uniformly, (4.10)
T* 3 = 0[6'11 Eg(t,e)] uniformly, (k.o11)

8, - C[X] = olyryry' (1+z [, )71, (4.12)



and
6, - Bl% + V1 + b, ¥ (0,€) = O(rryr!). (4.13)
Suppose that
a e e -t/e ~
z = z(t,e) = x(t,e) + e v(t,€) (Lo1k)

and the vector d(t,e) is defined as in 2.57. However, assume that
the domain & is now defined to be all the vectors x(t,e) in C(I)
vhich satisfy |x,(t,e)-z(t,e)| < a,(t,¢€) and |x,(6,€)-€z1 (¢,€)| <

d2(t,e) for a1 t in I and o<e<e . Choose
o(t,e) = (e + e-t/e) O, » (%.15)
where Uo is a positive constant, and suppose that

w>o . (%.16)

o

For the vector yt = (y1,y2), define a scalar function f by

-1
£(t,y,€) = nlt,y,,€" vy, €).

Assumption 4iii. £(t,y,€) satisfies Assumption 3iv only with

& ,0, and u as just defined.
It is not necessary to assume f(t,0,€) = h(t,0,0,€) = 0, which
is part of assumption 3iv. However, this is not an important point.

If we now substitute

X=wW+ 2 (ko17)

into Tx = O, we get the new equation
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Tx = Pw + Tz + Q(wiz) - Qz = O (%.18)

in the unknown w. Similarly, we may obtain two boundary conditions
for w from the boundary conditions 4.2 and 4.3. Theorem 3.1 will
be used to prove that this new problem in the unknown w has a solution,

which has a bound prorertional to 7y(e).

Theorem 4.1. Suppose that assumptions 4i +to U4iii hold. If

5. e LN o(1), (4.19)

€ 2o {1+ Tolb1|) = o(1), (4.20)

s qS‘ = 0(1), for some k, (4.21)

21 ley-cy] e™V/€ = o(1), (4.22)

1§ r = 0(1), (4.23)
and

T3 = o(1), (k.24)

then for € sufficiently small the problem 4.1, 4.2, 4.3 has a

unique solution x and

~

T = 0 trle)mye) §(x,0)] untrormy, (.25)

~

ex'-€z!
where z, T3, and u are defined in 4.13, 4.7, and 4.8 respectively.

Proof. 1In the application of Theorem 3.1, let

y = (EZ,) ; (1.26)
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A(t,e) = . (4.27)
eat,e) 1
0
g(t,e) = - (4.28)
Tz(t,€) ’
0
f(t,yye) = ~ o - L I p) (}4"29)
h(t,y1+z,e y2+z',€)-h(t,z,z',€)
£%(e) = 2 -Blz], (%.30)
#(e) = 1, - clzl. (%.31)

In the notation of section 3, we get here that

vr(t,e) = B(t,e) = -1
and

t
Cr(t,€) = altye) = -7 [ a(s,)exn(2as
o

Thus, T; (i = 0,1,2) and u(t,e) defined in 4.7 and 4.8 are identified
with T&(i =0, 1, 2) and u(t,e) of section 3. It follows that relations
4.19 through 4.22 correspond to relations 3.11, 3.25, 3.19, and 3.18
respectively.

We will show next that 4.23 corresponds to 3.24 by proving

P = 0(T3T). From 4.31, 4.12, and 4.9, we obtain
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T#H%WJM?SMW?+I&¢%%U&)-

cep W(1,€) &7V/E 2 (14z b, 1) = o(rry) +

0[6_18-1/€ T. T, (1+Tblb1| )] = O(TT3) .
4.30 and 4.13 imply
T, £ = O(YT3) 5

For g(t,e) as defined in 4.28, we get

~ ~r = * o~
|leCs, )11 < 193] < |55] + 7¥/€ 157 |,
and hence, from 4.10 and 4.11
lett,e)[| = (e e2%€) o(r).

It follows that a constant multiple of y(e) may be taken for g(e)
in assumption 3iii. From the definition of T given by 3.21, we see
that T = o(m3r).

There remains to show that f as defined by 4.29 satisfies
assumption 3iv. One obtains f(t, o, €) = 0 immediately. Assumption

4iii implies that

|2(t,y,€) - £(t,2,€) || < €' @ [(ev+a) |y, -z, | + |y,-2,]],
175 2"%

when y and 2z are in Jﬁ as defined in this section. Since
™e) = O(TT3) and  TT; = o(1) by 4.24, we have T(€) = o(1), and

hence, for sufficiently small ¢,

b > o(t,e) > me) .



The assumptions of Theorem 3.1 hold for the present problem,

and we conclude that there exists a unique vector

~

w X » 4

~
ew' €EX'-€2!

where x is a solution to the problem 4.1, 4.2, L4.3. Relation L4.25

follows from 3.26 of Theorem 3.1 and T = 0(7"]’.‘3).
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5. Theorem 4.1 reduces the problem of existence and asymptotic
expansion of a solution of the second order equation Tx = 0 with two
boundary conditions to a problem of finding asymptotic expansions ;
and ; of certain solutions of the second order equations Tx = O
and TX¥ v = O each with one boundary condition. We will determine
analyt?c expressions that have the properties of ‘; and :' by a
method involving only regular perturbation procedures for weakly non-
linear first order equations with one boundary condition.

Because there exists only one boundary condition to satisfy, one
is at first tempted to treat the higher order terms €x" and e€v"' as
part of the perturbations in the successive approximation schemes.

This will require that the weakly nonlinear term, which will also occur
in the perturbation term, be analytic in all its variables. Furthermore,
all the derivatives need to be bounded uniformly for o < e < € Such
cannot be the case for very general circumstances for the weakly non-
linear term in the equation T*¥ v = 0, because of the presence of the

£ -t/ -

actor e .

Hence, we shall proceed in a different manner. Multiply Tx = O
by an integrating factor for ex" + x' and then integrate between zero

and t, setting x'(o,e) = 0. This gives

t

eet/€ X' + trt eS/e a(s,e)x(s,e)ds + Jr es/e r(s,e)ds +

o] o]

i ¢
c f T wlu ats eY,xt(n, 0} el = 0. (5.1)
(o]
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Integration by parts of the second term in equation 5.1 and subsequent
multiplication of the equation by e_] e-t/E produces the integro-

differential equation

t
x'+p(t,e):xcﬂ-e-‘l 11 r(s,e)exp(ééz) ds +
o

t
[ in(e,x(s,€),10(5,6),€) - Bls, )t (s, ) lexp(ZHas = 0, (5.2)

where

t
p(t,€) = €' f a(s,€)exp(ZH)as . (5.3)
o]

Equation 5.2 will be called the perturbation equation for Tx = O.

We formally substitute

=}
x=Xte) = I &% (t,€)
k=0

into the perturbation equation 5.2, and set successively

t
xi + P(t,e)xk + 5-1 Jp Qk_l(s,e)exp(ﬁéﬁ) ds = 0,

ke B Vg xes 3 (5.4)
where
Q_1(s:€) = r(sye):
0 (s,€) = e [h(s,;k,;i, €) - h(s,;k_1,;i_1,e)] - p(s,e)x! ,
¥ w D, Ty wes g (5.5)
and
~ k 1
x. = = et X - (5.6)

i=o
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The constants of integration appearing in the general solutions
of the equations comprising 5.4 represent exactly one degree of freedom
for x. We will use this freedom to determine x(t,e) at t =1 so
that
C[xb] = 4

, and C[xk] =0y k=1 B sve « (5:7)

The solutions, if they exist, to the eguations in 5.4 subject to

the boundary conditions 5.7 are given by

1
5 (6,6) = & el [ o(s,e)18) +

-1 1 s s o
( (r,e)ar) Q__.(r,e)exp(=—)ar das,
€ Jlexpftpre f; e (T5€)exn(=2 s

k=0, 1, eos , (5.8)

- [xte, dexpiZ=pas (1,€)17" (
A = [£1+c2 i r(s,e)exp L ds] c,-ec,p(1,€ 5 5.9)

1
= fepmeepne)l™ ey [ o (s, edem(®has,

w

K=1,2, vau . (5.10)

Also,

% (be) = & g lbe), n=0; V5 e s (5.11)

Suppose that n is specified and that §h(t’é) exists. Then,
a formal expansion

" 2ok
Vn(t,E) = Z €

v_ (t,e)
k=0 Bk
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for v in equation Ty v =0 and boundary condition 4,2 may be
n

constructed in the same way as §n was devised. For brevity, we

will write
vk(t,e) = vnk(t,e).
If
X, = lim X, s
n—>c0

exists, then

s n
Vo= lim I v (t,€)
n—> k=0

will represent an asymptotic expansion. We will state conditions under
which X and v exist for all n and assume the role of X and
v for Y = €n+1 in section 4. These same conditions will imply
that ;& and ;g exist.
Suppose that JJ' is the set of continuous vectors y(t,e) =

(y1,yé)T on I such that

IY-l(t:e) - xo(t,e)l < B,

-1
|y2(t,€) - x{;(t,e)l <n+ e o(tye) =
-1~
x+ 0 € u, (t,e) (5.12)

for given constants ¢, =, and 0,9 which satisfy

no> o, >0 and = >0, (5.13)

Assumption 5i. For 0 <e <€, h(t,x,x*,e) is of class c?

+
in x and x' and of class C in t, when (x,x') e ' and t e I;



53

oh

h(t,xo(t,e),xg(t,e),e) = 0(1) uniformly; and 5 = 0(1)+O(x'-xb),
2 2
.f
g—?('? =0(1), 'd—?cyi; = 0(1), and ai.;l = 0(e) uniformly when (x,x') ¢ &'
and t e I.

Let @, be a fixed positive constant not larger than min(p,n+oo).

1
Two applications of the mean value theorem and use of assumption 5i

give
|n(t,x,x?,e) - b(t,z,27,¢€)| Su:1(|x-z| + |xt-z1|), (5.14)

when lx-xol + |x' - xél and lz-zol + |z'-z$| are not greater than

[

1 Y is a constant whose value depends in general on Boe

Lemma 5.1 Let assumptions 4i and 5i hold. If

T, (+ele, [)([2, ] + € |ey]) = 0(1), (5.15)

then for sufficiently small € and n=o0, 1, ..., ;n(t,e) exists

on I, §n(t,€) = kgoek xk(t,e) where xk(t,e) is defined by equation
5.8, a function ?c(t:e) in CE(I) exists so that 1lim ?{n(t,e)= ';c(t,e)
and lim X! (t,€) = x'(t,€) uniformly for all t in I,
n—>0
I;h(t,e)-xo(t,e)|+I;A(t,e)-xé(t,€)|_5 B (5.16)
|§(t,e)-xo(t,e)|+|§'(t,e)-x5(t,e)| <, (5.17)
T (t,€) = 0(¢™') wniformly for & in I, (5.18)
and
Tx(t,e) = O. (5.19)

Proof. For any function Q(t,e) define & by
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3 = sup |]a(t,e)]]. (5.20)
tel

From equation 5.8 and 5.9 we obtain

lxb(t,e)] < (|£1|+[602]) RT, (5.21)
for some constant R. Hence,

|x:(t,€)| < (12, |+|ec DR, B + ¥

follows from equation 5.4, and so

8, <p x! + b(t,x ,x!,e) = 0(1) (5.22)

by equation 5.15 and h(t,xb,xg,e) = 0(1) uniformly.
Define

0= ale) = 1+ (14B)(1+m; Jecy|) sup  expl f p(r,e)ar).  (5.23)
o<t<s<1

We will show by induction that for € sufficiently small and n = 0,7,...
n =\n
Qn % Q,(m]+p) Qb, (5.24)

and that equation 5.15 holds.
Suppose that equations 5.16 and 5.24 hold for n <k and k > 0.

Then,

|+]x:, .| < QQ < @D . ) g Q i=0, ** ,k, (5.25)

lxi+1 i+1

and

k+1 |
el + Pl = 2 M= i <

b, Q [1-e(o; + el < Moo
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5 i eo is fixed small enough to make
- -1
2eQ max (m]+p, K Qb) <1,0<ec<e, .

€, can be so chosen because €Q and eQQo are O(e€) by equation 5.15

and h(t,xo,xc'),e) = 0(1) uniformly. We conclude that Qkﬂ(t,e) is

defined, and
le+1| = (m]+|p|)(|xk+1| N Ixﬁ+1|)'

Equation 5.2% for n =k + 1 follows now from equation 5.14%. This

completes the induction proof.

T Zn = 0(en+1) uniformly for t in I follows from

equation 5.11 and Q= 0(1) uniformly. We obtain

~e ~ ~ ~
x| + |x.. - x| <e

e - i+1(|
%541 i 141 i

| + fudh 3 &

xi+1 +1

(w,+9)" ()™ 3

from equation 5.25. Because 2 € Q(Gﬁ+p) <1 for o<e<eg, the

+00
. . = ; o ;
infinite series .Z (|xi+1 xi|+|xi+1 in) converges uniformly for

i=o
tT in I and o<e < eo to a sum - less than By It follows that

there exists a function x(t,e) in C'(I) such that

lim x (t,€) = x(t,€) and 1lim x'(t,e) = x'(t,€) uniformly.
n n
n—>o n——>co

From equation 5.11, we see that E;h is a linear combination of

n+1 Q

~' ~ n.|.1 . _
Xy Xps and € Qn. Because 1lim € A O uniformly for o <e€ < €52

n n—0

we conclude that ex; converges uniformly for t in I and o <e < €

to a function which must be ;“(t,e). Hence,
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lim Tx (t €) =T 1lim x (t €) = Tx(t,e) = O.
n—> = n—> o«

The proof of the lemma is now complete.

For n fixed, n

0, 14 «v. , ©, we will consider next
;h(t,E). The convention ;&(t,e) = z(t,e) is used in what follows.

We write Tf in the form

X
n

ev" - v' + g*(t,e)v + en*(t,v,v',¢€),

where
oh .
g*(t,e) = q(t,e) - = (t,xb(t,e), xb(t,e),e),
h*(t,V,V',E) = e't/E [h(t,';:n+ve_t/€,;x[l *
v’e_t/e-e-]ve-t/e,e) - h(t,;h,zﬁ,e)] +
-1_ 0O
ey ??c"' (t,% ,%!,€). (5.26)
Set
vi'(--p*(t,c—:)vk - Jﬁ Q; (s,€) exp( %) ds = 0,
k=0, 1’ eve 9 n, (5027)
and

B[v I = DAA (0,€) = 2 -B[x | B[v ]-b e (0,€) =

k=75 son 5 Ny (5.28)

where
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1
=1 t-s
p*(t,€) = ¢ f a*(s,e)exp(=—) ds,
t

Q‘f1(t;e) =0,

@(t,€) = p*(t,€) wilt,e)re (8,5, 7€)

-*~~ _
h (t’vn,k-1’vh,k-1’€)]’ k=0,1, ... , n.
Here
~ £ 4 ¥ g ~
Vi ™ Le Vi ™ L € Vi, ko= O; «ss 5 B3 and L 0.
i=o i=o .
This will produce
s n+l ¥
T* v, =€ Q - (5.29)
x
n

The solution of the system of differential equations 5.27 subject

to the boundary conditions 5.28 is given by

t
v, (t,€)=B, exp(f p*(s,€)ds) +
o

t 1
[ *(r,e)dr) ] (r,e)exp(3F)ar ds ,
exP(‘J; D € JZ o _; (r,e)exp(= s

k=0, 1, ... 4 n, (5.30)

o
I

-l ~
[bl-b2+eb2p*(o,e)] [Eo-b1xh(o,e)],

jos]
]

1
s [b1—b2+eb2p*(o,e)T4 JZ Q§_1(s,€)e—s/€ ds,

k=1, ... , 0. (5.31)

Because of assumption 51 we obtain upon two applications of the

mean value theorem the existence of a constant ¢b so that
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[h*(t,v,v',e)-n*(t,w,w,e)| < ab[lv'-w'l
+v-wle™ B (t,€)], (5.32)

when v, w € c'(I) and v, w satisfy

I;n-xo+xe-t/€| < K, |;ﬁ-x6 +

(ex'-x)e'Ie't/e

| <+ € o B(t,e) (5.33)

for x. |§n-xo| and |§a-xé| may be made arbitrarily small uniformly

in n by choosing K. of Lemma 5.1 small. Hence, the inequalities

1

5.33 hold for all € and W sufficiently small, when v and w are

,
c'(1) and satisfy for X,

-t/el < s and Iex'-xl e"e't/e = T F e”

|xe :

o uy. (5.34)

Assumption 5ii. Let vo(t,e) be defined by equation 5.30. For

any positive number «, there exists a number eo(a) such that

t/e

|v6(t,e)l + ae < min [(u-u1)e s oo},
vhen t eI and o<e<e, ().
Define
1, = T,(e) = b -b, + v, v¥(0,€)|7 . (5.35)

Lemma 5.2. Suppose that assumptions 4i, 5i, and 5ii and equation

5:15 heold. If

(1+|£o| + |b1|) T, = o(1), (5.36)
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then for sufficiently small e, ?n(t,e) exists on I, "-\-?n(t,e)

n
= E ekvk(t,e) where vk(t,e) depends upon n and is given by 5.30,
k=0

and

T v (t,¢) = 0[e",(t,€)] uniformly. (5.37)
X

Proof. One can show from the definition of h¥*¥ and from equations
5.15 and 5.36, which imply that vo(t.,e) and vc')(t,e) are 0(1)

uniformly, that

h*(t,vo(t,e), vé(t,e),e) = 0[6-1;2(t,€)] uniformly,

by using the mean value theorem twice and assumption 5i. It follows from
the definition of Q¥ that QX <G e 4, uniformly, vhere J is a
constant independent of € and n.
Define
t
¥ = sup exp f p*(r,e)dr

0<s<t<1 s

and

a* = *(e) = (1+p*)(2m,+3)9* .

The bar in pP* and in what follows has the meaning attached to it in
equation 5.20. Q¥ = 0(1), because T), = 0(1) by assumption.

We will sketch the induction proof that for € sufficiently small
and k=0, ... , n

-t/e

|;nk(t’€)e I S M- “'1; |€:;;,k(t:€) =

~ =t /e ~
th(t’e)le / < (n-u1)e + 0, ue(t,e), and

1 ~

ox(t,€) | < (a+3*)" @ § e T (t,¢). (5.38)
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~

The existence of ;h = vnn follows from equation 5.38. Furthermore,
@ (t,e) =o(@” § 7' ) = o(e"‘ﬁg) wniformly for t in I and
equation 5.29 imply equation 5.37 of the lemma.

The first step in getting from i<k to i<k + 1 (k >0) in
the induction consists of using equation 5.30 and the induction hypothesis
to obtain

1 £
v, | < w* o | (s,e)le-s/€ ds + 9% sup |@*(u,e)| as
i+1 L J: 4 J; o) i

<(em, +2)x T @' (a9, 1=0, ..., K (5.39)

Thus, by assumption 5ii

i+1'v

k
| <iv, ]+ = e vl % bl +

|v
n,k+1
i=o

2(m) 9 § e D-e@¥(a+p®)]™ < v, +

o(e) < e/ (upy) (5.40)

for sufficiently small € independent of k and n. The bound obtained

in equation 5.39 for Ve and the first order differential equation

1

sgtisfied by v,

i+1 B&*VE

lvi | <p*|v,. .| + sup |a*(s,e)| <
Y = i+1 <5< - B -

(ag+5)* @xt T [e7'5 (¢, e)2(1em ) 5% ],

i=0, 1, ... , k. (5.41)



It follows by assumption 5ii that

~ ~

k1 T vn,k+1| i vn,k+1|

|ev: <

| &v; |
n n,k+1 =

Ivol +0(e) < o,

for sufficiently small € independent of n and k. Hence, Q§+1(t,e)

exists, and

1
198,150 < apB)(5) o (7 [ (s, exl(52) as

1
4 g ;é(t,e)(Thdﬁ; |Q§(s,e)| e'S/e ds +
t

[ sw lax(r,e)las)] < (a#)(4
o s<r<i

%) wlsup |a*(s,e)] + €7 T (t,e)(T, € &% +
t<s<1 % 2 4 Qﬁ

35
f sup |a(s,e)[e™/€ as)] .
o]

s<r<1
The complete induction statement for k + 1 follows.

The lemma is essentially proven if n is finite. For n = = the
additional problem of considering the convergence of ;m (t,e) gives no

difficulty, because equations 5.40 and 5.41 are then valid for i = 0,1,...

+eo 00 s
Both Z ei vi(t,e) and I e v__!L(t,e) are uniformly convergent in I.
i=o i=o

Hence, equation 5.29 gives that € ?r;k(t,e) converges uniformly in I
as k —> ®, The end result is that there exists a function v(t,e)
=3 (t,e) in C°(I) such that

~
v=0 4
e}

P



Theorem 5.1. Suppose that assumptions 4i, 5i, 5ii and equations
L.19 to 4.22, 5.15, 5.36 hold. Let n be specified, n =0, 1,...,+,
and §h(t,e) and ;h(t,e) be given by Lemmas 5.1 and 5.2 respectively.

1 40 & ig fintte and yle) = e V€ i o is

Choose y(e) = €7
infinite. IT

(1+1, Ib1|)(|c1|+ e |‘b1|) '1‘? T, ¥ = 0(1), (5.42)

then for € sufficiently small a unique solution x = x(t,e) exists

for equation 4.1 and boundary conditions 4.2 and 4.3, and

x(t,e) = % (t,6)+ eV T (t,e) + O(yrs)

uniformly for t in I, (5.43)
o~ -t/e ~ -1 _-t/e ~
x'(t,¢e) = xh(t,e) + e vﬁ(t,e) - vh(t,e)
+ ofe™! YTy Uy(t,€)] uniformly for ¢ in I. (5.44)

Proof. This theorem is an immediate consequence of Lemmas 5.1 and
5.2 and Theorem 4.1. The choice for y(e) satisfies equation 4.9 and
makes equation 4.2l a consequence of equation 4.20. Using equations 4.20

and 5.15 and the definition of 1T.,, we get that equation 5.42 implies

2)
the validity of equation %4.23 in the present case. Assumption 4ii holds
here because of the conclusions of Lemmas 5.1 and 5.2 and the choice

for Y. Assumption 4iii holds because of assumption 5i. This is shown

by equations 5.32 and 5.34.



6. The results of the previous section will be reformulated in terms

of the singular perturbation problem with differential equation

ey" + F(t,Y:y':E) =0 (6.1)
and boundary conditions
Blyl =%, clyl=7, . (6.2)

(o}

We will state sufficient conditions to guarantee the existence of a

solution y of the form
y = w + x t(e)

where the existence of x is given by the theory of section 5, and

t = t(e) is a positive function of € such that
£ = 0(e). (6.3)
In what follows let the full argument (t,y(t,€),y'(t,e),e) of F
and its derivatives be denoted by [y] = [y(t,€)].

Assumption 6i. There exists a function w = w(t,e) of t and €

such that w(t,e) € CE(I) and ew" + F[w] = 0(¢) uniformly.
2

Assumption 6ii. F is of class C° in y and y' when |y-w(t,e)| +
|Y' - W’(t,€)| < p for some constant B ; % e &T’a Fy , and €’1 :y F:‘E
¥

= 0(et™") uniformly for |y-w(t,e)|+|y'-w(t,e)| < ¥ and t in I;
g—§ [w] € ¢(I) and %Fy—; [w] € C1(I); % (w], %Fi [w], and (%— [w])

= 0(1) uniformly; and g[wlgnx) when t eI and o<e<e,

for some constant 7.
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The functions in equations 4.1, 4.2, and 4.3 become in the notation

of the present problem the following:
a(t,e) = (-a?; [w])™2 %E [wl,
r(t,e) = (52 VD)2 (ew’ + Flv]) &7
n(t,xx,6) = (€2 62 1) ? {(F D) et o
Flwtx] - Flul - 55 [v] & - & [w] gx} ;

4
o

(7, - Blwl) ¢

.

(7, - clw]) g1 (6.4)

In the context of the present problem, functions g¥*, p¥, Xyr Vs and
N (1 =0, ... , 4) can be defined from the equationsof 6.4 in the same

way as found in sections 4 and 5.

Assumption 6iii. For £, and £, defined in 6.4 and depending on

W, equations 5.15 and 5.36 hold. Also, equations 4.19 to 4.22 hold.

Assumption 6iv. There exists a constant o, such that 1vb(t,e)| #E

9 < K € g'l when t €I and o<e < €,-

Assumption 6iv is a requirement that § is not too small. From this
condition we get for any positive number & another number € () such
that

Ivb(t,e)| +ae < o (6.5)

and

o, < (h-at) e £~ et/e, (6.6)
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when t eI and o<e<€o(a).

Equation 6.5 is part of assumption 5ii, which must be verified to hold
for the present problem. Assumption 5i holds for h defined in 6.4,
if

x| + |x| < Re™' .

Thus, assumption 5i holds for

|x—xo| < p and [x'-x(;[ < 7w+ e lo 3

if y, n, and o, are determined so that
T [xo] +a+ el + ]x(;{ <y g~ (6.7)

when t eI and o<e<e . Let o be determined by assumption 6iv,
and then fix u > s and 7 > 0. Inequality 6.7 will result from inequality
6.6 when o >y + [x | + n+ 0+ ]x'l, becafse x and x' are bounded
- o] o o o o]

for t+ in I and o <e < €, This follows from equation 5.15, which is
assumed to hold for the present problem. Assumptions 5i and 5ii have been
shown to be wvalid.

We conclude that all the assumptions of Theorem 5.1 are true here.

Hence, the following theorem has been proven.

Theorem 6.1. Suppose that assumptions 6i to 6iv hold, and let n

be given (n =0, 1, ... , ®). If n is finite, define 1 = €* ', and if

i ds inPinite, define T =& W, Tek z (€)= }'n(t,e)+e‘t/E v (t,¢)

be given by Theorem 5.1 where the functions of the equations 4.1, 4.2, 4.3
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are given in 6.4. Then, if (1 + T, |b1|)(|c1| + TOT2|b1|) T? T, ¥ = o(1),
the problem consisting of equation 6.1 and boundary conditions 6.2 has

a solution y(t,e) for t in I and € sufficiently small, and
y(t,€) = wl(t,e) + t(e) z (t,€) + O(& ¥ T;) uniformly,

y'(t,€) = wi(t,e) + () Zr(t,¢€) + 0{6'1“'1‘3 Uy (t,€)] uniformy.
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