
An Ultra-Low-Energy, Variation-Tolerant FPGA

Architecture Using Component-Specific Mapping

Thesis by

Nikil Mehta

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2013

(Defended August 31, 2012)

ii

c© 2013

Nikil Mehta

All Rights Reserved

iii

Abstract

As feature sizes scale toward atomic limits, parameter variation continues to increase, leading to

increased margins in both delay and energy. Parameter variation both slows down devices and causes

devices to fail. For applications that require high performance, the possibility of very slow devices

on critical paths forces designers to reduce clock speed in order to meet timing. For an important

and emerging class of applications that target energy-minimal operation at the cost of delay, the

impact of variation-induced defects at very low voltages mandates the sizing up of transistors and

operation at higher voltages to maintain functionality.

With post-fabrication configurability, FPGAs have the opportunity to self-measure the impact of

variation, determining the speed and functionality of each individual resource. Given that informa-

tion, a delay-aware router can use slow devices on non-critical paths, fast devices on critical paths,

and avoid known defects. By mapping each component individually and customizing designs to a

component’s unique physical characteristics, we demonstrate that we can eliminate delay margins

and reduce energy margins caused by variation.

To quantify the potential benefit we might gain from component-specific mapping, we first mea-

sure the margins associated with parameter variation, and then focus primarily on the energy benefits

of FPGA delay-aware routing over a wide range of predictive technologies (45 nm–12 nm) for the

Toronto20 benchmark set. We show that relative to delay-oblivious routing, delay-aware routing

without any significant optimizations can reduce minimum energy/operation by 1.72× at 22 nm.

We demonstrate how to construct an FPGA architecture specifically tailored to further increase the

minimum energy savings of component-specific mapping by using the following techniques: power

gating, gate sizing, interconnect sparing, and LUT remapping. With all optimizations considered

we show a minimum energy/operation savings of 2.66× at 22 nm, or 1.68–2.95× when considered

across 45–12 nm. As there are many challenges to measuring resource delays and mapping per chip,

we discuss methods that may make component-specific mapping more practical. We demonstrate

that a simpler, defect-aware routing achieves 70% of the energy savings of delay-aware routing.

Finally, we show that without variation tolerance, scaling from 16 nm to 12 nm results in a net in-

crease in minimum energy/operation; component-specific mapping, however, can extend minimum

energy/operation scaling to 12 nm and possibly beyond.

iv

Acknowledgements

First, and most importantly, I would like to thank my advisor André DeHon for his guidance on

this work. He is a vast resource of insight and technical expertise, and his tireless support made this

work possible. It has been a privilege to work with him over the years.

I would also like to thank Alain Martin for his mentorship and for making me a part of his

research group, which helped make my last few years at Caltech enjoyable. I would also like to

thank the other members of my committee for their support and feedback: Ben Calhoun, Azita

Emami, and Ali Hajimiri.

Each student in the IC Lab has helped support this work, but two people deserve special mention.

First is Rafi Rubin, for the incredible amount of insight and code he contributed to this project.

Second is Ben Gojman, for his ideas and assistance in making this work come together. This thesis

represents only the broad strokes of the much larger, more interesting picture of component-specific

mapping. Ben and Rafi’s dissertations will solve the hard problems that will complete this picture;

I am confident that their work will far surpass what I have put forth here.

I would like to specially thank Kevin Cao and Sani Nassif for their collaboration in developing

circuit failure models that contributed to this work. I specifically owe Kevin thanks for his support in

answering my many questions about the predictive technology models. I also need to thank several

people from academia and industry who provided invaluable suggestions: Guy Lemiuex, Tim Tuan,

Sinan Kaptanoglu, Sean Keller, Peter Grossman, Peter Jamieson, Jonathan Rose, and Peter Cheung

and each of his outstanding students.

I need to thank my family for their support over the many years it took for me to complete this

project. I owe both of my parents and my sister so much for their love and support that helped get

me through this process.

Finally, I would like to thank my wife Katie Shilton for her constant love, patience, encourage-

ment, and belief in me. She has been a joy to be with even during the parts of this process that

transformed me into a fixated, isolated monk. The key for me to finish has been her boundless

support and love.

v

Contents

Abstract iii

Acknowledgements iv

List of Tables viii

List of Figures xi

1 Introduction 1

1.1 Thesis . 1

1.2 Motivation . 1

1.3 Component-Specific Mapping . 2

1.4 Scope . 6

1.5 Contributions . 6

2 Background 9

2.1 FPGA Architecture . 9

2.2 Energy . 13

2.3 Process Variation . 16

2.4 Prior Work . 19

2.4.1 Low-Power Techniques for FPGAs . 19

2.4.1.1 CAD . 19

2.4.1.2 Architecture . 21

2.4.2 Variation Tolerance in FPGAs . 25

2.4.3 Component-Specific Mapping . 27

3 Modeling 32

3.1 Devices and Circuits . 32

3.1.1 Motivation . 32

3.1.2 Parameter Extraction . 33

vi

3.1.3 Inverter Circuit . 35

3.1.4 Switch Circuit . 38

3.1.5 LUT Circuit . 38

3.1.6 SRAM Circuit . 40

3.1.7 Defect Rates . 42

3.2 CAD . 44

3.2.1 VPR: Variation and Energy . 44

3.2.2 Timing-Target Routing . 45

4 Delay-aware Routing 48

4.1 Experimental Setup . 48

4.2 Delay . 51

4.3 Energy . 52

4.4 Energy at Target Delay . 53

5 Optimizations 55

5.1 Power Gating . 55

5.2 Interconnect Sizing . 61

5.2.1 Uniform Sizing . 62

5.2.2 Selective Sizing . 65

5.3 Interconnect Sparing . 70

5.3.1 Extra Channels . 70

5.3.2 Extra I/O Pins . 71

5.4 LUT Remapping . 73

5.5 Summary . 79

6 Practicality 81

6.1 Component-Specific Measurement: Timing Extraction 81

6.2 Component-Specific Mapping: CYA Routing . 85

6.3 Impact of Delay Precision . 87

6.3.1 Limited Measurement Precision Mapping . 88

6.3.2 Limited Storage Precision Mapping . 90

7 Sensitivity 93

7.1 Pipeline Depth . 93

7.2 Circuit Size . 99

7.3 Vth Variation . 100

7.4 Feature Size . 102

vii

8 Future Work 105

9 Conclusions 109

Bibliography 111

viii

List of Tables

1.1 Component-specific mapping energy savings per optimization 8

2.1 Roundup of low-power FPGA techniques . 24

2.2 Roundup of FPGA techniques for variation tolerance 27

3.1 Predictive technology model parameters . 35

4.1 Toronto20 benchmark characteristics . 50

7.1 Multiplier benchmark characteristics . 99

7.2 ITRS predicted Vth variation (Tables PIDS2 and DESN9 in [3]) 102

7.3 Minimum energy/operation variation-induced margins and component-specific map-

ping benefits . 104

8.1 FPGA/ASIC gap [59] . 107

ix

List of Figures

1.1 Component-specific mapping example . 4

1.2 Delay as a function of Vdd and σVth
for a 22 nm FPGA switch driver 4

1.3 Defect-aware routing example . 5

2.1 FPGA architecture . 10

2.2 FPGA CLB and LUT circuits . 11

2.3 FPGA switchbox and switch circuits . 12

2.4 Measured power breakdown for 90 nm Xilinx Spartan-3 [115] 13

2.5 Minimum energy/operation for a 16-bit FPGA multiplier (22 nm HP) 16

2.6 Transistor layout . 17

2.7 Decreasing dopants and increasing Vth variation from ITRS 2010 [3] 18

2.8 Power gating circuit . 23

2.9 Full knowledge placement for region-based variation 30

3.1 Drain capacitance extraction circuit . 34

3.2 CMOS inverter . 35

3.3 Inverter delay distribution (22 nm LP, 10,000 samples) 37

3.4 Inverter leakage distribution (22 nm LP, Vdd = 0.8V , 10,000 samples) 37

3.5 NMOS pass gate delay distribution (22 nm LP, 10,000 samples) 39

3.6 2-to-1 multiplexer . 39

3.7 2-input LUT with buffering . 40

3.8 2-to-1 mux delay distribution (22 nm LP, 10,000 samples) 41

3.9 6T SRAM cell . 41

3.10 SRAM leakage distribution (22 nm LP, 10,000 samples) 42

3.11 Primitive circuit failure rates (22 nm LP, 10,000 samples) 44

3.12 Standard FPGA mapping CAD flow . 45

3.13 Percent delay improvement for faster-wire architecture over uniform architecture for

the Toronto20 benchmarks [99] . 46

4.1 Experimental CAD flow . 49

x

4.2 Delay vs Vdd (alu4, 22 nm LP) . 51

4.3 Energy/operation vs Vdd (alu4, 22 nm LP) . 53

4.4 Energy/operation vs delay target (alu4, 22 nm LP) 54

5.1 Energy/operation vs Vdd without power gating (des, 22 nm LP, minimum sizes, no

variation) . 56

5.2 Power gated 3-input switch . 57

5.3 Sleep transistor delay as a function of size (22 nm LP, 16-input switch circuit) 58

5.4 Energy/operation vs Vdd with power gating (des, 22 nm LP, minimum sizes, no variation) 59

5.5 Energy/operation vs Vdd without power gating (des, 22 nm LP, minimum sizes) . . . 60

5.6 Energy/operation vs Vdd with power gating (des, 22 nm LP, minimum sizes) 60

5.7 Defect rates vs Vdd for uniform sizing (des, 22 nm LP) 62

5.8 Functional yield vs Vdd for uniform sizing (des, 22 nm LP) 63

5.9 Delay vs Vdd for uniform sizing (des, 22 nm LP) . 64

5.10 Energy/operation vs Vdd for uniform sizing (des, 22 nm LP) 66

5.11 Defect rates vs Vdd for selective sizing (des, 22 nm LP) 68

5.12 Delay-oblivious functional yield vs Vdd for selective sizing (des, 22 nm LP) 68

5.13 Delay-aware functional yield vs Vdd for selective sizing (des, 22 nm LP) 69

5.14 Energy/operation vs Vdd for energy-optimal selective sizing (1-2-2) (des, 22 nm LP) . 69

5.15 Delay-aware functional yield vs Vdd for extra channels (des, 22 nm LP) 71

5.16 Delay-aware functional yield vs Vdd for extra pins (des, 22 nm LP) 72

5.17 Energy/operation vs Vdd for energy-optimal sizing (2-2-2) and 4 extra pins (des, 22

nm LP) . 73

5.18 Energy ratio of sized LUT to minimum as a function of LUT size 74

5.19 Defect rates vs Vdd for LUT sizes (des, 22 nm LP) . 75

5.20 Functional yield vs Vdd for LUT sizes (des, 22 nm LP) 75

5.21 Energy/operation vs Vdd for LUT sizes (des, 22 nm LP) 76

5.22 Defective LUT configuration under variation . 77

5.23 Valid, remapped LUT configuration under variation 77

5.24 Energy/operation vs Vdd for LUT sizes (des, 22 nm LP) 78

5.25 Energy/operation vs Vdd for each optimization technique (des, 22 nm LP) 79

6.1 Ring oscillator . 82

6.2 Measurement array of ring oscillators [104] . 83

6.3 Path delay measurement circuit [124] . 83

6.4 CLB with 4-LUT, register, and local interconnect . 84

6.5 Graph of logical components (LCs) for CLB . 85

xi

6.6 CYA example . 86

6.7 Delay vs Vdd of delay-aware router for different measurement precisions (des, 22 nm LP) 88

6.8 Delay ratio of defect-only to full precision to routing vs Vdd (des, 22 nm LP) 89

6.9 Energy/operation vs Vdd of delay-aware router for different measurement precisions

(des, 22 nm LP) . 89

6.10 Delay vs Vdd of delay-aware router for different storage precisions (des, 22 nm LP) . . 91

6.11 Energy/operation vs Vdd of delay-aware router for different storage precisions (des, 22

nm LP) . 92

7.1 Fully pipelined 4× FPGA multiplier . 94

7.2 Delay vs pipeline stage length (mult16, 22 nm LP, Vdd = 600mV) 95

7.3 Delay ratio to nominal vs pipeline stage length (mult16, 22 nm LP, Vdd = 600mV) . . 95

7.4 Delay ratio of delay-oblivious/delay-aware routing vs pipeline stage length (mult16, 22

nm LP, Vdd = 600mV) . 96

7.5 Minimum energy/operation vs pipeline stage length (mult16, 22 nm LP) 97

7.6 Minimum energy/operation ratio to nominal vs pipeline stage length (mult16, 22 nm

LP) . 97

7.7 Minimum energy/operation ratio of energy-oblivious/energy-aware routing vs pipeline

stage length (mult16, 22 nm LP) . 98

7.8 Delay vs multiplier size (22 nm LP, Vdd = 600mV) . 99

7.9 Delay ratio of delay-oblivious/delay-aware routing vs multiplier size (22 nm LP, Vdd =

600mV) . 100

7.10 Minimum energy/operation vs multiplier size (22 nm LP) 101

7.11 Minimum energy/operation ratio of energy-oblivious/energy-aware routing vs multi-

plier size (22 nm LP) . 101

7.12 Minimum energy/operation ratio to nominal vs Vth sigma (des, 22 nm LP) 103

7.13 Minimum energy/operation vs feature size (des) . 103

1

Chapter 1

Introduction

1.1 Thesis

An FPGA using post-fabrication component-specific mapping and an optimized architecture can re-

duce minimum energy/operation in future technology nodes by 1.68–2.95×, and can extend minimum-

energy scaling by at least one additional technology generation.

1.2 Motivation

The scaling down of transistor feature sizes during the last several decades has led to unparalleled

growth in the computational capability of integrated circuits. As individual transistors get smaller

they get faster, and more transistors can fit in a fixed area. Historically, designers have considered

performance and density to be the most important metrics driving the design of integrated circuits.

Early circuits were so limited in density and performance that almost every design choice revolved

around utilizing the large, slow transistors as efficiently as possible. For example, the Intel 4004 (the

first widely available commercial microprocessor) contained a mere 2,300 transistors operating at

740 kHz. Forty years of scaling has led to processors with billions of transistors operating at clock

frequencies of several GHz, enabling designers to have much more freedom in allocating transistors.

While density and performance are still important in modern integrated circuits, in the last

decade two new metrics have emerged as primary design constraints: energy and reliability. In a

keynote speech in 2005, Intel Fellow Shekhar Borkar described how energy/power and reliability will

be the two biggest challenges facing the integrated circuit industry [21].

Energy and power have already become primary design constraints of current circuits: no longer

is it possible to deliver performance at any cost, as designs must fall within a power density or

energy budget [40]. Smaller feature sizes mean more transistors in a fixed area, but because voltages

have largely remained constant [3], this increased density translates to more power dissipated per

unit area. Increased power density leads to substantial heat generation, which may be too high to

2

cool easily. The absence of voltage scaling has also limited the scaling down of energy/operation,

which limits the amount of time (i.e., number of operations) that a circuit can compute using a fixed

supply of battery energy. An emerging and important class of applications such as micro-sensor

networks [92] and biomedical sensors [103] have extreme battery and cost limitations; for these

applications, minimal energy/operation is absolutely essential.

Reliability is starting to become a primary design constraint, and will likely become the dominant

constraint for future technologies: Borkar estimated that 100 billion transistor designs in 2016 will

be subject to substantially higher failure rates due to 20% fabrication-time defects [22]. With

transistors currently sized at ≈ 50 silicon atoms long (22 nm), it becomes impossible to perfectly

control their physical structure and atomic composition, leading to defects or variations in how an

individual transistor will operate. Designing a functioning integrated circuit with billions of unique

transistors with shapes and sizes that cannot be known a priori because of these process variations

is an enormous challenge, and can lead to a significant percentage of non-functioning chips. With

every new generation of yet smaller transistors, these reliability problems will only get worse.

Unfortunately, reliable operation and low-energy computation are largely competing goals. Most

techniques that attempt to increase system reliability also increase energy (e.g., gate sizing, voltage

margining, redundancy). Consequently, current techniques and methodologies that simultaneously

lower energy/power and increase reliability are extremely scarce. Because reliable operation is of

paramount importance, designers are more often than not willing to accept higher-energy operation

in exchange for functional devices.

The motivation behind this report is to demonstrate one core technique, component-specific

mapping (and its many possible optimizations), that will enable a device to both operate at very

low energy and maintain reliable operation in future technologies. In the next section we will

illustrate the idea behind component-specific mapping with a simple example, and then describe the

scope and contributions of this report.

1.3 Component-Specific Mapping

The core of the reliability challenge in dealing with fabricating small transistors is that their exact

electrical characteristics cannot be known prior to fabrication. Fabricated circuits may contain

transistors that are either defective or too slow; additionally, a transistor that may be acceptable at

nominal voltage may slow down or fail at a low voltage. The key idea behind component-specific

mapping is to somehow measure the electrical characteristics of every transistor after a chip is

fabricated, and to use that knowledge to customize the circuit in a way that avoids bad transistors

and utilizes good ones at low voltages.

In order to do this, we require an integrated circuit that can be customized at the hardware

3

level after fabrication. The majority of chips today are fabricated as application-specific integrated

circuits (ASICs), meaning that they are designed for a single fixed use; transistors and wires cannot

be chosen or avoided after manufacturing. However, field-programmable gate arrays (FPGAs) are

reconfigurable devices that can be programmed after fabrication to implement any digital logic

(Section 2.1). In FPGAs blocks of configurable logic are connected via programmable interconnect,

which are simply switches controlled by memory cells. By assigning appropriate values to those

memory cells (i.e., the device configuration), any set of logical functions and connectivity between

those functions can be mapped or re-mapped to the component.

The flexibility of making connections configurable (e.g., replacing a directly connected wire with

a switch and memory cell) typically comes at a cost in performance, area, and energy. However,

configurability means that instead of relying on external testers, one can configure in situ circuits

to self-test and measure transistor characteristics in a device post-fabrication. Then, using that

information, designs can be mapped to each fabricated FPGA in a component-specific manner.

These per chip customized designs attempt to exploit the fact that every transistor is unique, and

specifically target low energy, reliable operation.

The first step in component-specific mapping is to perform a series of measurements per chip

to extract delays for every resource. Once that information is obtained, it can be used by FPGA

mapping algorithms to minimize energy under variation. To illustrate the basic idea and potential

energy and delay benefits of post-fabrication component-specific mapping, we start with a simple,

illustrative example. The goal will be to reduce the overall energy consumed by carefully selecting

the assignment of FPGA routes to resources based on the component characteristics.

Figure 1.1 shows a cartoon version of simplified, 1D FPGA organization with three logic blocks

(blue) computing functions A B C, connection boxes (orange) connecting wire segments to the inputs

of the logic blocks, and switch boxes (green) connecting wire segments to each other and the output

of the logic blocks. Programmable circular switches can be configured to connect wires and blocks

together. The wires are driven by buffers at the start of the segment; each driver has a threshold

voltage Vth which can be used to calculate the delay of the driver. The expected nominal threshold

voltage is 400 mV. However, due to process variation, only one out of the four segments has its

nominal value.

Assume our goal is to compute C = A+B within 20 ns. The outputs of function blocks A and

B must be connected to the input of function block C; there are two such possible configurations

(Figures 1.1a and 1.1b). Ignoring logic delays, to meet our timing target the maximum delay of

either path A → C or B → C through the interconnect must take at most 20 ns. Figure 1.2 shows

the delay of a wire segment as a function of supply voltage Vdd and threshold voltage variation

σVth
. We see that raising Vth makes the segment slower, while raising Vdd makes the segment faster.

Because Vth is fixed at fabrication time, in order to tune segment delays we must change Vdd.

4

A
Vth:500mV

Vth:350mV

B C
Vth:400mV

Vth:300mV

Delay:15ns

Delay:3ns

Delay:5ns

Delay:2ns
(a) Delay-oblivious route, Vdd = 550mV

A
Vth:500mV

Vth:350mV

B C
Vth:400mV

Vth:300mV

Delay:150ns Delay:20ns

Delay:7nsDelay:13ns
(b) Delay-aware route, Vdd = 400mV

Figure 1.1: Component-specific mapping example

Vdd (V)

S
e
g
m

e
n
t
D

e
la

y
 (

s
)

1e−09

1e−08

1e−07

1e−06

1e−05

1e−04

0.2 0.4 0.6 0.8 1.0 1.2

l

l

l

l

l

l

l

l
l

l l l l l l l l l l l l l l l

l

l

l

l

l

l

l

l

l
l

l l l l l l l l l l l l l l

l

l

l

l

l

l

l

l

l

l
l

l l l l l l l l l l l l l

l

l

l

l

l

l

l

l

l

l

l
l

l l l l l l l l l l l l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l l l l l l l l l l

Vth sigma=−100mV
Vth sigma=−50mV
Nominal

Vth sigma=50mV
Vth sigma=100mV

Figure 1.2: Delay as a function of Vdd and σVth
for a 22 nm FPGA switch driver

5

A B C
Defect

Figure 1.3: Defect-aware routing example

For a router that is oblivious to the variation present in the FPGA, all segments have drivers

with Vth = 400mV, and both possible configurations are identical. Thus, the router may produce

the results shown in Figure 1.1a, which use the two slowest, highest Vth drivers on the critical

path A → C. Using Figure 1.2 to determine delays, we see that to meet our interconnect timing

requirement of 20 ns for this particular route configuration, we must set our supply voltage to at

least Vdd = 550mV. This yields a path delay A → C = 20ns (with the parallel path B → C = 2ns).

If we instead give a delay-aware router the delays of each segment as a function of Vdd, it can

find the route shown in Figure 1.1b. Here, path A → C is still the slowest path, but using the

full knowledge of component characteristics, the router assigns this long connection to fast, low Vth

segments, avoiding the slowest driver with Vth = 500mV . Since the parallel path B → C is less

delay critical, the router can afford to assign it to a higher Vth, slower segment while still meeting

timing. At Vdd = 400mV , both paths A → C and B → C have a delay of 20 ns. In this example,

using knowledge of the underlying characteristics of the FPGA can reduce the voltage and active

energy consumption by a factor of
(

550

400

)2
= 1.9 compared to the delay-oblivious route. Delay-aware

routing can be tuned to either improve delay at a fixed Vdd, or achieve identical delay but at a lower

Vdd.

Delay-aware routing can also avoid defects, as defects can be easily detected in the delay mea-

surement process. We will see that defects are not uncommon at very low Vdd and large amounts

of Vth variation. Figure 1.3 shows the same example where the high Vth driver is actually defective

at low enough Vdd; delay-aware routing can detect this defect and route around it. Avoiding these

variation induced defects is critical to being able to safely lower Vdd to minimize energy.

While these simplified cases illustrate the use of routing to navigate interconnect resources and re-

duce energy consumption, it should be clear that the general idea can be applied much more broadly.

Instead of just customizing configurations for interconnect, we can perform similar substitution or

assignment for all resources (e.g., logic, memory). Furthermore, mapping based on post-fabrication

resource knowledge can be exploited in not just routing, but in placement, memory assignment,

clustering, and function binding.

6

1.4 Scope

Component-specific mapping is a large, challenging problem with many pieces and possible opti-

mizations. This report does not represent a complete solution, as the scope and effort required for

a working solution is worthy of several dissertations.

The most significant portion of component-specific mapping that is not addressed in depth is

the problem of measurement. While Chapter 6 does illustrate the basic strategy for performing

measurements, this work assumes that component-specific delay measurements are attainable and

available for use in mapping.

The second major problem not addressed in this work is the cost of actually mapping every

chip individually. This breaks the typical FPGA model of one-mapping-fits-all, and requires a CAD

algorithm to be run for every chip. Chapter 6 also describes this problem in more detail with

some existing, partial solutions that allow one CAD run to be customized per chip. However, these

techniques are not explored in depth here.

Additionally, this work does not attempt to address all possible sources of unreliability. Effects

such as transient errors (e.g., soft errors, shot noise, thermal noise), environmental effects (e.g.,

temperature variation, Vdd fluctuation), and lifetime failures (e.g., NBTI, HCI, TDDB, electromi-

gration) are left for future work. Instead, we focus on the phenomena that is predicted to have

one of the most important impacts on transistor reliability in near future technologies: random Vth

variation [16,47].

Finally, the scope of this work is to focus specifically on the metrics of minimum energy/operation

and fabrication-time parametric yield. Minimum energy/operation is the critical metric for several

important applications [92,103], and also represents an important, fundamental limit on the energy

efficiency of technologies. We will quantify aspects of performance and area; however, they will

primarily be optimized in so far as they can help reduce energy. Additionally, this work will not

focus on reducing power density, although low energy operation typically goes hand-in-hand with

low-power operation.

1.5 Contributions

In the following chapters, we will explore the answers to the following questions involving component-

specific mapping and make the following contributions:

• Modeling: How can we efficiently and accurately model key characteristics (performance,

energy) of FPGAs in future technologies? Chapter 3 illustrates our techniques for performing

HSPICE simulations and curve fitting to build an accurate model for FPGA circuit delay and

energy. We also document our modifications to the academic CAD mapping tool VPR [95]

7

which allows us to explore a wide range of FPGA architectures.

Contributions:

– Construction of an HSPICE based device model for computing delay and energy, accu-

rate to within 10% across a wide range of technologies, circuits, voltages and parameter

variation.

– Enhancements to VPR which stabilize routing results under variation and allow for the

exploration of more detailed architectures.

• Benefits: What are the benefits of component-specific mapping? Chapter 4 details our ex-

perimental methodology and builds an intuition for the expected benefits using experimental

results without extensive optimizations.

Contributions:

– Quantification of delay and energy margins of delay-oblivious routing due to random Vth

variation in interconnect.

– Demonstration of the potential energy savings of component-specific routing.

• Optimizations: What optimizations can we perform to increase those benefits? Chapter 5

explores the energy and reliability tradeoff between adjusting gate sizes and the number of

spare resources. We show that delay-aware routing is able to use smaller, less reliable gates

to save energy, and that adding extra resources for more mapping flexibility results in even

more energy savings. We also show that fine-grained power gating is necessary to achieve

these benefits. Finally, we demonstrate techniques for LUT remapping to deal with variation

in LUTs, further saving energy.

Contributions:

– Quantification of the impact of switch-level power gating on energy.

– Quantification of the impact of interconnect buffer sizing on energy.

– Quantification of the impact of interconnect sparing (extra channels, extra pins) on energy.

– Quantification of the impact of LUT variation and subsequent LUT sizing and remapping

on energy.

– Design space exploration across all sizing and sparing variables.

– Summary of energy savings of all optimizations combined.

• Practicality: Given the large cost in measuring every transistor in every chip and performing

component-specific customization, what are the benefits of component-specific mapping with-

out perfect measurement? Chapter 6 demonstrates that with imprecise delay information (100

8

Table 1.1: Component-specific mapping energy savings per optimization

Technique Energy Savings

Component-Specific Mapping (Baseline, 22 nm) 1.72×
Power Gating +5%
Uniform Interconnect Buffer Sizing +6%
Selective Interconnect Buffer Sizing +8%
Interconnect Channel Sparing +0%
CLB I/O Sparing +12%
LUT Remapping +17%

Overall (22 nm) 2.66×
Overall (45 nm–12 nm) 1.68–2.95×

ps measurement precision or 8-bit storage precision) we can obtain the same energy savings

achieved with full precision delay information. In fact, using only defect maps instead of full

delay measurements, we can achieve 70% of the energy savings obtained by full delay-aware

mapping.

Contributions:

– Quantification of energy savings of only defect-aware mapping.

– Exploration of the impact of delay measurement precision on component-specific mapping.

– Exploration of the impact of delay measurement storage on component-specific mapping.

• Sensitivity: How sensitive are these results to changes in technological or design assumptions?

Chapter 7 shows that as we increase the pipelining of benchmark circuits, the size of circuits,

and the magnitude of variation, the energy savings of component-specific mapping increase.

We also show how our results scale from 45 nm to 12 nm feature sizes and demonstrate that

energy savings increase with scaling. We further show that delay-oblivious mapping results in

a minimum energy/operation increase at 12 nm due to variation, while delay-aware routing is

able to extend minimum energy scaling.

Contributions:

– Sensitivity analysis of component-specific mapping to pipeline depth of the mapped cir-

cuit.

– Sensitivity analysis of component-specific mapping to size of the mapped circuit.

– Sensitivity analysis of component-specific mapping to magnitude of Vth variation.

– Quantification of energy savings of component-specific mapping for 45 nm, 32 nm, 22 nm,

16 nm, and 12 nm technology nodes.

Table 1.1 quantifies the energy savings achievable by each of the optimizations and situations

examined in this work. In the next several chapters we will examine these in depth.

9

Chapter 2

Background

To provide a baseline for understanding the optimizations performed in this work, in this chapter we

will summarize important, basic concepts in FPGAs, energy, and variation. We will also describe

prior work in low-power techniques for FPGAs, variation tolerance techniques for FPGAs, and

component-specific mapping in order to ground our contributions.

2.1 FPGA Architecture

To understand delay-aware routing and its potential energy benefits, it first helps to understand the

architecture of an FPGA. A conventional, island-style FPGA can be viewed as an array of config-

urable logic blocks (CLBs) connected by programmable interconnect (switchboxes and connection

boxes, or SBoxes and CBoxes for short, respectively) (Figure 2.1). Inside the CLB (Figure 2.2a),

N programmable lookup tables (LUTs) are connected together using internal interconnect. The

LUT is simply a circuit that selects the output of an SRAM cell based on the LUT’s k inputs: by

programming appropriate values in the SRAM cells the LUT can implement any k-input function

(Figure 2.2b).

All programmable interconnect is implemented using the simple, unidirectional switch that takes

several inputs and selects one output (Figure 2.3b). The circuit consists of input stub buffers for

each input that serve to isolate the switch, a multiplexer, and an output buffer that drives a long

wire segment. Each of the input and output buffers can be built using a single or multiple staged

inverters. Figure 2.3a shows how to assemble these switches into a switchbox.

With an FPGA any circuit can be realized; however, to support this programmability the FPGA

must provision significantly more resources (buffers, wires, memory cells) than those required by a

custom designed and fabricated implementation. This resource overhead costs area, performance,

and energy (typical overheads are described later in Table 8.1).

The main sources of energy utilization in an FPGA are the logic, interconnect, clock network,

and configuration memory. Modern FPGAs also consume non-negligible energy in embedded blocks

10

CLB

SBox

CBoxI/O

Figure 2.1: FPGA architecture

11

Cluster Inputs

Cluster Outputs

Cluster

LUT

LUT

LUT

LUT

LUT

(a) CLB with 5 LUTs

SRAM
00

SRAM
01

SRAM
02

SRAM
03

SRAM
04

SRAM
05

SRAM
06

SRAM
07

Input 0 Input 1 Input 2

Output

(b) 3-input LUT

Figure 2.2: FPGA CLB and LUT circuits

(memories, multipliers, etc.) and in I/O drivers. Several studies have estimated the power dissipated

in each of these elements to provide a breakdown of both static and dynamic power dissipation [60,

106,115]. Each study arrives at similar breakdowns for power dissipation; Figure 2.4 shows the most

recently published results for a 90 nm Xilinx Spartan-3 [115]. Dynamic and static power charts are

shown; in this particular device dynamic power is typically an order of magnitude larger than static

power. In Figure 2.4a we see that interconnect dominates dynamic power, contributing 62%. Clock

and logic power are the next two largest contributors and are roughly equivalent at 19%. For static

power (Figure 2.4b) configuration bits contribute the largest amount of leakage at 44%, as every

n-input switch requires n configuration bits and every k-input LUT requires 2k configuration bits.

Routing and logic transistors also leak significantly. If we assign the static power of configuration

bits to their sources (either interconnect or logic), interconnect static power will dominate. Hence,

interconnect is the primary source of both dynamic and static energy dissipation.

In order to configure a design onto an FPGA, several CAD operations are performed. A user

typically starts with a design specified in a hardware description language (HDL), such as Verilog or

VHDL. The design is then synthesized into gates and mapped into a netlist of LUTs via technology

mapping. The LUTs are then grouped into clusters using a clustering algorithm, and then those

clusters are assigned to physical CLBs via a placement algorithm. Finally, the routing algorithm

specifies all the necessary routing tracks and configurations of switches needed to connect all the

12

North In North Out

East Out

East In
West Out

West In

South Out South In
(a) Unidirectional switchbox

Wire Segment

SRAM

Input 1

Input 2

Input 3

SRAM

SRAM

(b) 3-input switch

Figure 2.3: FPGA switchbox and switch circuits

13

Clock
19%

Logic

19%

Routing

62%

(a) Dynamic Power

Config SRAM

44%

Logic 20%

Routing

36%

(b) Static Power

Figure 2.4: Measured power breakdown for 90 nm Xilinx Spartan-3 [115]

CLBs together.

Because interconnect is the dominant source of energy and delay in FPGAs, the assignment of

nets to routing resources is critical. Further, as future technologies will be dominated by random Vth

variation which operates at the scale of individual transistors, any successful variation mitigation

scheme must have fine-grained control over which transistors to select. For example, placement only

serves to relocate CLBs in the FPGA fabric, which will only have a very coarse-grained impact

on which routing transistors are selected for configured paths. Routing, however, allows for fine-

grained selection of routing transistors, and is the best opportunity for mitigating the delay and

energy margins induced by variation.

Hence, in this work we focus largely on delay-aware routing as our primary variation mitigation

technique. However, as LUTs still experience variation and can have an impact on total energy if ig-

nored, we perform a level of component-specific LUT mapping using delay information (Section 5.4).

2.2 Energy

Power is a significant design challenge in modern integrated circuits, particularly in microprocessors.

Using conventional air cooling technology (i.e., thermal paste, heatsinks and fans), the practical limit

of power density that can be cooled is approximately 100 watts/cm2 [101]. Total chip power can be

14

expressed as:

Pdynamic = α× C × V 2

dd × f (2.1)

Pstatic = Ileak × Vdd (2.2)

Ptransistor = Pdynamic + Pstatic (2.3)

Pchip =

Ntransistor
∑

i=0

Ptransistor. (2.4)

We see that the power of a single transistor can be expressed as the sum of dynamic and static

power. Dynamic power depends on the switching probability α (0–1), the switched capacitance C,

the supply voltage Vdd, and the clock frequency f . Pstatic is typically several orders of magnitude

lower than the 100 watts/cm2 limit, so Pdynamic is usually the dominant factor. We can immediately

see that one simple way to reduce power, and hence power density, is to just reduce the clock

frequency f . By accepting lower performance, a given chip can always operate within a power

envelope of 100 watts/cm2. For many modern systems that are cooling limited, this is an acceptable

tradeoff.

A more fundamental challenge is reducing energy/operation. Energy/operation is the primary

design constraint for many low-power, embedded systems. While power is the key metric for de-

scribing how efficiently an integrated circuit can be cooled, energy is the key metric for circuits that

operate using batteries. To perform each operation, a circuit must draw some number of joules from

its battery; hence the joules/operation of a circuit expresses how many operations it can perform

and thus how long it can operate with a given battery capacity. Energy/operation can be derived

by the fact that power is simply energy per unit time:

Edynamic = α× C × V 2

dd (2.5)

Estatic = Ileak × Vdd ×
1

f
(2.6)

Etransistor = Edynamic + Estatic (2.7)

Echip =

Ntransistor
∑

i=0

Etransistor. (2.8)

Unlike power, reducing energy/operation is not simply a function of accepting slower operation

by reducing clock frequency, which almost any design could accomplish. Here, we must reduce

physical parameters such as capacitance and supply voltage.

Both C and Vdd can be reduced by accepting reduced transistor performance. The current and

15

delay of a transistor can be expressed as [119]:

Isat = W × vsat × Cox ×
(

Vgs − Vth − Vd,sat

2

)γ

(2.9)

Isub =
W

L
× µCox × (n− 1)× (vT)

2
e

Vgs − Vth

n× vT ×






1− e

−Vds

vT






(2.10)

Ion =







Isat for Vds = Vdd ≥ Vth

Isub for Vds = Vdd < Vth

(2.11)

τp =
CVdd

Ion
(2.12)

where W and L are the channel width and length, Cox is the oxide capacitance, µ is mobility, vsat

is saturation velocity, n is the subthreshold slope, vT is the thermal voltage, and Vgs, Vds, Vth are

the gate-source, drain-source, and threshold voltages respectively. The constant γ is between 1–2

and depends on the degree of velocity saturation.

Because C ∝ WL, we can reduce dynamic energy linearly by sizing down transistors (until

the fundamental technology limit of W = L = 1), at the cost of reducing drive strength Ion and

thus increasing delay τp. Alternatively, we can drop Vdd, which will reduce Edynamic quadratically,

again with a delay cost. Voltage scaling is a preferred technique for achieving low energy/operation

because of its quadratic effect.

Many circuits may need to simply minimize energy/operation at the cost of delay. For these

circuits, reducing Vdd to near zero may appear to be the optimal energy point; however, there exists

a Vdd > 0 where energy/operation is minimized [24]. With Vdd > Vth the delay of a transistor

depends on Isat and is super linear; however, when Vdd < Vth delay depends on Isub making it

exponential in both Vdd and Vth. The exponential dependence in Vdd means that operations become

significantly longer at lower voltages. As static energy/operation is expressed as leakage power

times the length of an operation (Eq. 2.6), at low Vdd static energy will increase dramatically and

eventually become the dominant source of energy dissipation.

Figure 2.5 shows the energy/operation of a 16-bit multiplier mapped to a 22 nm FPGA. We

see that there exists a Vdd at which energy is minimized. This gives a well-defined target point of

operation—we should operate at the energy-optimal Vdd when minimizing energy/operation. Fur-

thermore, note that the minimum-energy point occurs below the threshold voltage in this example

(Vth = 300 mV), as it does for most designs. These types of circuits where Vdd < Vth are termed

subthreshold circuits.

Minimal energy/operation is an important target for many designs, and represents fundamental

limits on energy efficiency for CMOS technologies. As we scale to future technologies, we want the

minimum-energy point to continue to reduce. However, parameter variation has a significant impact

16

Vdd (V)

E
n

e
rg

y
/O

p
e

ra
ti
o

n
 (

p
J
)

0.001

0.01

0.1 0.2 0.3 0.4 0.5

Total
Dynamic
Static

Figure 2.5: Minimum energy/operation for a 16-bit FPGA multiplier (22 nm HP)

on this minimum-energy point, and unmitigated it can increase energy/operation significantly; even

to the point where it is no longer beneficial to scale to a new technology [20]. One of the goals of

our work is to extend this range of beneficial, minimum-energy scaling through component-specific

mapping.

2.3 Process Variation

While there are numerous, varied effects that can reduce the reliability of a device over its lifetime

(NBTI, HCI, TDDB, electromigration [7, 8, 97, 111]), during operation (temperature variation, Vdd

fluctuation [23]), or instantaneously (soft-errors, shot noise, thermal noise [15, 102]), a substantial

source of unreliability in modern technologies is process variation. Traditionally, circuits have been

designed using the assumption that all transistors have identical electrical characteristics. However,

because fabrication is an imperfect process, it is impossible to have the physical control necessary

to ensure uniform transistors. Process variations describe deviations of transistor electrical charac-

teristics at fabrication time.

Slight process variations have always been present since the birth of CMOS processing; however,

it is only recently with submicron-sized device that they have begun to significantly alter the char-

acteristics of designs. Because of law of large numbers effects [33], variations on the scale of 10–100s

of atoms (2–22 nm) in a transistor were not readily apparent for micron sized devices; however, for

sub-100 nm-sized devices these variations are significant.

17

������ ���	AB�C�

D�AECF

��	����F	��A��� ���

�

��	�CF

Figure 2.6: Transistor layout

Process variations can be classified based on the scale in which the variability of parameters

manifest: lot-to-lot, wafer-to-wafer, die-to-die and within die (WID) variations. Historically, large

scale variations such as wafer-to-water and die-to-die variations dominated smaller scale variations.

However, with submicron processes die-to-die variations have become more significant, and with

nanometer designs WID variations contribute the most to parameter variability [88].

Each type of variation can be further categorized based on predictability into systematic and

stochastic. Systematic variations are changes in transistor characteristics that are typically layout

dependent, and given enough pre-processing effort, can generally be predicted and corrected for [48].

Sources include mask errors, chemical mechanical polishing (CMP), optical proximity effects (OPE)

and other tool optics [48, 127]. Variations that are either too difficult to predict based on layout

or inherently unpredictable are classified as stochastic variations. Stochastic variations that can be

modeled as distance dependent or regional (e.g., lens aberrations, oxide thickness variation [12]) are

termed spatially correlated; variations that are at the scale of individual transistors are characterized

as random.

Random WID Vth variation is caused by effects like random dopant fluctuation (RDF), channel

length variance, and line-edge roughness [11,13]. RDF is the dominant source of random variation [3,

16], and arises from the injection of dopant atoms into a transistors channel (Figure 2.6). Because

the injection process is not perfectly precise, the exact number and placement of dopant atoms

will vary from transistor to transistor. This variation in dopant atoms results in threshold voltage

variation, where Vth can be accurately modeled as a Gaussian random variable. Random variation,

due to its inherently stochastic nature, cannot be predicted prior to fabrication unlike systematic or

18

10
1

10
2

10
3

10
4

 10 100 1000
 0

 10

 20

 30

 40

D
o

p
a

n
ts

σ
V

th

Feature Size (nm)

Variation
Dopants

Figure 2.7: Decreasing dopants and increasing Vth variation from ITRS 2010 [3]

spatially correlated variation.

Further, as transistor volumes shrink with scaling, the magnitude of this variation will increase,

as the standard deviation of Vth is inversely proportional to the transistor’s cross-sectional area

(assuming constant height):

σVth
∝ 1√

WL
(2.13)

Random variation is expected to dominate future sources of variation [3, 16]. Figure 2.7 shows

how Vth variation increases due to decreases in dopant count as a function of feature size. The

impact of this random variation is three-fold:

Increased Delay: The first impact of Vth variation is that gates will exhibit a large spread in

delays, reducing the speed of designs as the delay of a circuit is set by its slowest path. From

Equation 2.12, we see that the delay τp is dependent on Vth; larger Vth reduces drive strength and

increases gate delay.

Increased Energy: The second impact of Vth variation is that it raises energy per operation. For

a circuit operating at a target delay, to compensate for slower gates, designers are often forced to

raise Vdd to increase transistor drive strength (Isat, Eq. 2.9), increasing energy/operation.

Increased Failures: The third impact of parameter variations is the increase in functional failures

due to Vth mismatch [89]. SRAMs are commonly the first circuits to fail due to Vth variation which

causes read upsets, write upsets, hold failures, and access time failures. Static logic, however, can

also fail due to Vth variation. We can define a CMOS inverter to be defective due to variation when

19

leakage current overpowers on current:

IPMOS,off > INMOS,on or IPMOS,on < INMOS,off (2.14)

Under these conditions the inverter can never switch; this can only happen when Vth variation

is large enough such that a very high Vth device is paired with a very low Vth device. Furthermore,

as Vdd decreases, the probability of a defect increases as Ion degrades for both PMOS and NMOS

transistors (Eq. 2.9) [61]. Consequently, this effect is particularly acute for subthreshold operation,

preventing operation near the minimum-energy point [26].

In general, to avoid the negative effects of random Vth variation, designers typically opt to either

increase Vdd or increase the size of transistors, both of which cost energy. Here, we can see how

energy and reliability are competing goals. Conventional design techniques create energy margins,

potentially wasting energy; this underscores the need for other techniques such as component-specific

mapping to improve reliability without inducing significant energy margins.

2.4 Prior Work

In this section we summarize prior work in reducing FPGA power dissipation and improving FPGA

variation tolerance. A large design space of CAD, architecture, and circuit optimizations have been

previously explored. We will see that a some of these techniques are complimentary to component-

specific mapping, while others are necessary to maximizing its benefit. Those techniques that are

necessary (e.g., power gating, dual Vth design) will be explored in more depth in future sections.

Finally, we will summarize the energy savings achieved by each technique. We will see that this

work attempts to dramatically reduce energy under variation by integer factors, in comparison to

most prior work which achieves typically modest energy savings.

2.4.1 Low-Power Techniques for FPGAs

Optimizations for low-power operation in FPGAs have been explored at all levels of design: CAD,

architecture, and circuits. CAD level optimizations typically operate by adapting the core CAD

algorithm’s cost function to target low-power operation. Architectural optimizations examine how

FPGA power scales as a function of standard architectural parameters (e.g., number of LUTs per

CLB, segment length).

2.4.1.1 CAD

Technology Mapping: The goal of low-power technology mapping is to reduce dynamic power

(Equation 2.5) by either minimizing the switching activity of connections between LUTs (α) or by

20

reducing the total number of these connections and therefore the overall capacitance (C). Previous

work has reduced interconnect switching activity by identifying the highest activity connections

between gates and mapping in such a way that these nodes are internal to a LUT [39,62,71]. Other

work has reduced the total number of interconnect segments by limiting duplication [9], a common

technique used in technology mapping. In general, low-power technology mapping has been shown

to yield approximately 7.6–17% power savings using both switching activity reduction and limited

duplication [62,71].

Clustering: Low-power clustering operates on a similar principle as low-power technology map-

ping. Instead of covering high activity gate to gate connections within the same LUT, in low-power

clustering, the goal is to place high activity LUT to LUT connections within the same CLB, utilizing

the more energy efficient local interconnect. Lamoureux et al. demonstrated that for a cluster size

of 4, an average energy reduction of 12.6% is achievable. [62] Alternatively, depopulation (removing

LUTs from fully occupied CLBs and placing them elsewhere) has been shown to reduce routing

resource demand, decreasing both average wirelength and switch utilization [32]. Approximately

13% total power can be saved through depopulation-based clustering [107].

Placement: Low-power placement algorithms attempt to place CLBs with high activity connec-

tions between them close together. Several works have implemented simulated annealing [55] placers

with cost functions modified to reflect switching activity [46,62,116]. Each of these placers calculate

the cost of a swap by adding a power term to the existing wirelength and delay terms; which in-

cludes the switching activity of the nets involved in the swap along with their capacitance. However,

because net capacitance is not known prior to routing it must be estimated. On average, placers

without accurate capacitance estimation reduce total power by 3.0% with 4% delay cost; placers with

accurate capacitance estimation can achieve reductions of 8.6–13% with delay cost of 1–3% [46,116].

Routing: PathFinder [81], the standard FPGA routing algorithm, can be modified for low-power

routing by adjusting the cost function to account for net activity and capacitance [46,62]. The cost

of a resource is modified to include the activity of the net being routed and the capacitance of the

candidate routing resource. In modern FPGA architectures, routing resources are not identical and

have differing capacitances; hence, lower capacitance paths can be selected. Ideally, high activity

nets should be mapped to low capacitance routes. However, as in placement, power-aware routers

must be careful to balance delay and power minimization; low activity routes may end up being

critical. In fact, power-aware routers have been shown to reduce total power by 2.6% but with a

delay increase of 3.8%.

21

Glitch Reduction: A glitch is a switching event in a combinational circuit that does not con-

tribute to the computation of that circuit’s final value. Glitches occur when inputs to a gate arrive

at different times, causing the gate to switch multiple times prematurely. Wilton et al. proposed

pipelining circuits to reduces glitches [120]. A highly pipelined design has fewer glitches because

it limits the number of logic levels between registers. Pipelining can reduce energy per operation

substantially (40–90%) for circuits with significant glitching at a cost of latency. Glitches can also

be minimized during CAD steps in either technology mapping [28] or routing [36]; glitch-aware CAD

has been shown to reduce dynamic power by 11–18.7%.

Summary: We see that CAD optimizations to reduce FPGA power typically attempt to reduce

switched capacitance and switching activity. Each of these techniques yields savings that would

benefit both delay-aware mapping and delay-oblivious mapping under variation, and would not

significantly change our results.

2.4.1.2 Architecture

Logic Block Architecture: Several researchers have attempted to determine energy favorable

values of k (number of LUT inputs) and N (number of LUTs per CLB) when designing an FPGA

logic block [67, 72, 91]. Changing k can have the following tradeoffs in terms of power: first, if k is

increased, CLBs require more local routing to connect all LUT input pins (Figure 2.2a), increasing

the dynamic energy of the interconnect local to the CLB. However, larger LUTs can implement more

complex functions, reducing the total number of LUTs and CLBs. Fewer CLBs mean less demand for

global routing resources, saving dynamic interconnect energy. The tradeoff in selecting N is similar:

large values of N increase CLB capacity and functionality, which increases local interconnect energy

but reduces global interconnect energy. k and N impact leakage energy solely by changing the total

area of a design—larger area mean more devices leaking. It has been shown that k = 4 minimizes

area [6] and therefore leakage energy [72]. Lin et al. examined total FPGA energy as a function of

k and N [72], finding that a LUT input size of k = 4 and smaller cluster sizes (N = 6–10) typically

use the least energy.

For this work we re-examined these results and found very similar architectural parameters that

we used for this study (k = 4, N = 4) (Section 4.1).

Interconnect Architecture: Poon et al. [91] studied the impact of segment length Lseg and

switchbox configurations on FPGA energy. A longer wire segment connects to more switches, in-

creasing its capacitance; however, longer segments should lead to fewer total switches. They found

the shortest segments Lseg = 1 are the most energy efficient.

Jamieson et al. [51] studied the effect of directional versus bi-directional switches on interconnect

22

energy. In the past, FPGAs were manufactured with bi-directional switches. These switches suffer

from the inefficiency that, once configured, an FPGA only uses a switch in one direction; hence,

only 50% of drivers are ever utilized. Directional switches drive segments in a single direction,

ensuring that all drivers could be utilized. While directional drivers would seem to require more

wiring because wires can only be utilized in one direction, in practice they use the same number of

wires as the bi-directional case, saving area and improving delay [65] and energy [51].

For this work we also found directional drivers with Lseg = 1 to be energy optimal (Section 4.1).

Dynamic Voltage Scaling: Dynamic voltage scaling (DVS) reduces Vdd, saving both dynamic

and static energy, but at the expense of increasing delay. DVS is useful in scenarios where a design

needs to operate at a target frequency. In these cases, Vdd can be lowered to the point where the

target is still achieved, minimizing the energy wasted on margins. The exact value of Vdd can be

different between chips due to variation and can change over time due to environmental variation;

hence, an on-chip control circuit with delay feedback is typically used to adjust Vdd. DVS in FPGAs

was examined by [30]. They use a design-specific measurement circuit that tracks the delay of a

design’s critical path to provide feedback to the voltage controller. Through this technique energy

savings of 4–54% can be observed.

DVS is one of the most effective ways to reduce energy/operation because of its quadratic ef-

fect. For this work, our main goal is to reduce Vdd but to tolerate variation. Our delay-oblivious

router effectively represents a DVS case where the minimum Vdd is found given a set of yield and

delay constraints. The delay-aware router attempts to further scale Vdd through component-specific

mapping.

Power Gating: Leakage power is a significant source of FPGA power dissipation, and is expected

to increase as technology scales [114]. FPGAs have significant area overhead due to programmability—

hence, large portions of an FPGA are often unused. Instead of leaving these unused portions to sit

idle and leak, it is possible to use power gating (Figure 2.8). In power gating a large, high Vth

sleep transistor is inserted between the power supply and the block to be gated. The high threshold

ensures that leakage through the sleep transistor will be negligible. The gate of the sleep transistor

is tied to a control bit that can either be set at configuration time (i.e., static power gating) or

during runtime (i.e., dynamic power gating).

Many researchers have explored different points in the design space for power gating granularity

in FPGAs. Calhoun et al. [25] perform power gating at the gate level; Gayasen et al. [42] use larger

power gating blocks, choosing to gate off regions of 4 CLBs at a time. They show 20% leakage power

savings and that coarse-grained power gating with improved placement achieves the same results as

fine-grained power gating. Rahman et al. [93] suggest that a combination of fine and coarse-grained

23

Vdd

SRAM

Logic
Block

Sleep
Transistor

Figure 2.8: Power gating circuit

power gating provides the best results.

In this work we found power gating to be essential to minimizing energy/operation. We used a

simple, fined-grained, switch-level power gating scheme to reduce energy (Section 5.1).

Dual Vdd: Instead of simply using sleep transistors to disable or enable blocks of logic, they can

be used to select from different supply voltages (Vdd) to power the block. Because not all paths in

a circuit are critical, only elements on critical paths need to be placed in high Vdd regions to ensure

fast operation; all other block can be on a low Vdd region to save power. Dual Vdd design has been

studied extensively in the FPGA literature [10, 41, 50, 68, 69, 73], typically achieving ≈ 50% leakage

power savings.

Dual Vth and Body Biasing: Dual Vth FPGAs define low and high Vth regions at fabrication

time. High Vth regions reduce leakage at the cost of increased delay. Body biased FPGAs are very

similar, using embedded circuitry to change the body the source voltage for regions at configuration

time, which effectively changes Vth.

Much work has also been done in dual Vth design for FPGAs [49, 54, 70, 115] with body biasing

being integrated into commercial FPGAs [66]. Similar tradeoffs exist when mapping circuits to

either dual Vth/body biased architectures or dual Vdd architectures. Critical paths must be placed

on low Vth blocks to ensure minimal delay reduction, and timing slack must be available to save

leakage energy on non-critical paths. Block granularity is important [49] and selection of appropriate

body bias voltages is important [54].

While the previous discussion of Vth and Vdd selection applies at the level of the mapped design,

it is also profitable to use different Vth devices for circuits that play different roles in the FPGA

24

Technique Level Reduces Benefit Type Benefit

Technology Mapping CAD C, α Ptotal 7.6–17%
Clustering CAD C, α Ptotal 13%
LUT Input Transformation CAD Ileak Pstatic 50%
Placement CAD C, α Ptotal 3.0–13%
Routing CAD C, α Ptotal 3%
Glitch Routing/Placement CAD α Pdynamic 11–19%
Logic Block Architecture Architecture C Ptotal 48%
Interconnect Architecture Architecture C Ptotal 12%
Dynamic Voltage Scaling Architecture Vdd Ptotal 4–54%
Power Gating Architecture Ileak Pstatic 20%
Dual Vdd Architecture Vdd Ptotal 50%
Dual Vth/Body Biasing Architecture Ileak Pstatic 43%
Low Swing Interconnect Architecture Vdd Ptotal 50%
Subthreshold Operation Architecture Vdd Ptotal 22×

Table 2.1: Roundup of low-power FPGA techniques

architecture. Notably, high Vth devices can significantly reduce the configuration SRAM bit leakage

reduced without impacting area or delay [115]. Configuration bits are a prime candidate for high

Vth transistors because they constitute a significant fraction of FPGA area and are always on and

leaking. Fortunately, configuration bits are set only at configuration time and do not contribute any

delay or switching energy to mapped circuits. Increasing configuration SRAM Vth has been shown

to reduce leakage energy by 43% for a particular implementation [115]. Today’s commercial FPGAs

are fabricated with three different effective threshold voltages to reduce leakage [56].

In this work we found multiple Vth voltages to be very beneficial in controlling SRAM energy. We

utilize high Vth transistors for SRAM cells to substantially reduce their leakage energy (Section 3.1.6).

Low Swing Interconnect: A low swing interconnect segment consists of a driver and receiver

operating at nominal voltages, with the wire between them operating at reduced voltage. The

driver converts a full swing input into a low swing interconnect signal and the receiver converts it

back. With this technique the amount of dynamic energy dissipated in interconnect segments can

be reduced significantly; for an FPGA, interconnect energy can be reduced by a factor of 2 [43].

Subthreshold Design: We have seen that minimal energy/operation is achieved when Vdd is set

below the threshold voltage (Section 2.2). Ryan et al. fabricated an FPGA designed for subthreshold

operation, demonstrating a very significant 22× energy reduction relative to a conventional FPGA at

full Vdd [100]. The design used dual Vdd, low swing interconnect to reduce energy and improve delay.

Our work builds on this idea, similarly constructing an FPGA architecture targeted for minimum

energy, subthreshold operation. We explore the impact of variation on a subthreshold FPGA, and

demonstrate the benefits of component-specific mapping and architectural design space exploration.

25

Summary: Table 2.1 summarizes low-power FPGA techniques, the level at which they operate,

the terms in the power equations they attempt to reduce, the type of power reduction, and the

demonstrated benefit. It is important to note that the experimental parameters for each technique

explored in prior work is very different, so the savings achieved per technique may not be directly

comparable.

This work uses many low-power concepts explored in prior work. Most importantly, we build

upon the idea of operating an FPGA in subthreshold, which yields tremendous energy savings. In

terms of CAD we focus primarily on routing for variation tolerance; we do not alter the routing cost

function to target low power. Similar to prior work, we found the energy savings to be negligible

considering the delay cost.

We leverage the work done in architectural exploration, selecting our minimum-energy architec-

tural parameters (k, N , Lseg) according to those found in prior work. Additionally, we examine the

energy impact of several architectural optimizations not explored before: CLB I/O sparing, extra

channels, and buffer sizing. We also re-examine the impact of power gating at different granularities

in detail in Chapter 5 for the purposes of on component-specific routing.

Finally, we demonstrate energy savings of 1.68–2.95×, larger than the savings shown by most

prior work in FPGA power reduction.

2.4.2 Variation Tolerance in FPGAs

To tolerate FPGA parameter variation, researchers have employed many of the same techniques

used for ASICs and CPUs. Typically these optimizations fall under statistical CAD techniques or

architectural parameter selection. To describe the impact of variation and the benefits of variation

tolerance on FPGA designs, metrics like timing yield and power yield are often used.

SSTA: A heavily researched method for dealing with variation during the technology mapping,

place and route stages of an ASIC design is the use of statistical static timing analysis (SSTA). SSTA

attempts to model variability directly in CAD algorithms to help produce circuits that inherently

account for variation. Traditional CAD algorithms do not aggressively minimize near-critical paths

since their reduction would not reduce the delay of the circuit. However, near critical paths are

important under variation because there is a probability that they will become critical. SSTA is

a methodology that identifies statistically critical paths and enables CAD algorithms to optimize

those paths. Integrating SSTA into clustering, placement and routing algorithms of the FPGA CAD

flow simply involves replacing the nominal STA routine with an SSTA routine.

FPGA CAD algorithms modified for SSTA have been studied for placement [78] and rout-

ing [58, 109]. Lin et al. studied a full SSTA CAD flow with clustering, placement, and routing

and characterized the interaction between each stage [75]. For a 65 nm predictive technology with

26

3σLeff
/µLeff

and 3σVth
/µVth

of 10%, 10%, and 6% for D2D, WID spatially correlated, and WID

random variation, they observed that SSTA based clustering alone can improve µτ and στ by 5.0%

and 6.4% respectively, and improve timing yield by 9.9%. Placement improves µτ , στ and timing

yield by 4.0%, 6.1%, and 8.0%; routing achieves 1.4%, 0.7%, and 2.2% improvement. All three SSTA

algorithms combined yield 6.2%, 7.5%, and 12.6% improvement.

A critical distinction between this work and SSTA is that SSTA is used for one-sized-fits-all

mapping, not component-specific mapping. SSTA attempts to make predictions for a single mapping

that will be statistically beneficial for many different mappings. The advantage of component-specific

mapping is that it is able to customize mappings per chip, rather than estimating optimized mappings

prior to fabrication.

Architecture Optimization: Similar to finding architectural values of N and k that reduce

energy, one can attempt to find the values of architectural parameters that improve timing and

leakage yield.

In terms of logic, larger values of N and k increase the area, delay and leakage of individual

CLBs, which will hurt leakage and timing yield. However, the total number of CLBs and required

routing resources may decrease, which would improve leakage yield. Additionally, the number of

CLBs and switches on near-critical paths may decrease with larger k and N , improving timing yield.

Wong et al. studied the impact of N and k on timing and leakage yield [123]. They observe that

while N has little impact on yield, k = 7 maximizes timing yield, k = 4 maximizes leakage yield,

and k = 5 maximizes combined yield. These results are not surprising since leakage roughly scales

with area and timing yield is directly related to delay; these results largely match the k values that

optimize delay, area, and area-delay product, respectively.

Wire segmentation can have an impact on timing yield for similar reasons as N and k. For a fixed

distance net, smaller values of Lseg increase the number of buffers on the path, increasing mean delay

but decreasing variance due to delay averaging. Kumar et al. found that compared to an FPGA

with 50% Lseg = 8 and 50% Lseg = 4 segments in a 45 nm predictive technology with 3σ/µ = 20%

variation, using a mix of shorter segments can reduce both mean delay and variance [58]. They find

that architectures with between 20–40% Lseg = 2 segments can improve µτ by 7.2–8.8% and στ by

8.7–9.3%. This is in contrast to the minimum-energy segmentation of Lseg = 1.

Asynchronous Design: Choosing the right timing target to achieve high performance and ac-

ceptable timing yield is a significant concern with synchronous designs under process variation. If

a timing target is chosen too pessimistically, performance of manufactured designs will suffer; if it

is chosen too aggressively, many devices may fail. While DVFS can help mitigate this problem,

another possible technique is to design circuits that are not clocked and do not run at a uniform

27

Technique 3σ/µ Vth Variation Timing Improvement Yield Improvement
Regional Random µ σ Timing Leakage

SSTA Clustering 10% 6% 5.0% 6.4% 9.9% -
SSTA Placement 10% 6% 4.0% 6.1% 8.0% -
SSTA Routing 10% 6% 1.4% 0.7% 2.2% -
Logic Block Architecture ? ? - - 9% 73%
Interconnect Architecture - 20% 7.2–8.8% 8.7–9.3% - -

Table 2.2: Roundup of FPGA techniques for variation tolerance

frequency. Instead of using a global clock for synchronization, sequencing can be performed by

using handshaking circuitry between individual gates. These self-timed, or asynchronous circuits

have been studied in depth by ASIC designers and have been explored by FPGA designers as well.

Asynchronous FPGAs have been demonstrated in [79,122] and have even begun to be commercially

manufactured [4].

If one adopts a fully asynchronous system model, the system will always work regardless of the

variability, which reduces the design burden of achieving timing closure in synchronous circuits. The

asynchronous design decouples the delay of unrelated blocks allowing each to run at their natural

speed. Nonetheless, the throughput and cycle-time of asynchronous circuits is impacted by variation,

and high-variation can prevent the asynchronous circuit from meeting a performance yield target as

well. The main drawback of asynchronous circuits is that they require some area and energy overhead

for handshaking circuitry, although energy is simultaneous reduced by eliminating the clock network

and through implicit clock gating (as only circuit elements that are performing computation are

switching). There has been no published work quantifying the advantages of asynchronous FPGAs

under variation, which may be a very promising area for future work.

Summary: Table 2.2 summarizes techniques for variation tolerance and their demonstrated ben-

efit. These techniques show that FPGAs can begin to tolerate variation by using very similar

techniques as those used by ASICs. However, none of these techniques use the most powerful tool at

the disposal of an FPGA: reconfiguration. By relying on static, pre-fabrication optimizations (e.g.,

architectural explorations) or pre-fabrication variation estimates (e.g., SSTA), these techniques can-

not fully compensate for the fact that every transistor has a unique, random Vth that significantly

impacts both delay and energy. Hence Table 2.2 shows relatively meager benefits for prior work in

FPGA variation tolerance.

2.4.3 Component-Specific Mapping

Our goal is to surpass the energy and reliability benefits quantified by prior work by using component-

specific mapping. Component-specific mapping is not, however, a new idea— several prior works

have investigated customized mapping for defect tolerance and even parameter variation.

28

Defect-Tolerance: Initial work in component-specific mapping focused on defect tolerance, with

HP’s TERAMAC demonstrating the ability to locate and map around defective elements and tolerate

defect rates of 3–10% [31]. A modern day instance of using component-specific defect mapping is

Xilinx’s EasyPath program, where Xilinx tolerates defects in fabricated FPGA by matching the

resource needs of a particular design to individual fabricated components [57, 76]. Since no design

uses all of the features and resources in an FPGA, defects in the unused resources are tolerable.

Given a customer design, Xilinx simply needs to make sure that they identify particular FPGAs

where the defects do not interfere with the user’s logic. This avoids additional work to map the

design individually for each component; using design-specific testing [118] can also avoid the need

to create a map of the defects on the FPGA.

Multiple Configurations: Generation of multiple bitstreams is another way to perform defect

avoidance per component. Many possible valid mappings exist for a design when mapping to an

FPGA. To avoid unwanted FPGA resources, at a coarse granularity one could simply place and route

a design several times to produce multiple bitstreams and then test the bitstreams on the component.

If any of the bitstreams avoids all the defective devices, we have a successful mapping [80,105,113].

With care, one can generate a set of complementary mappings that deliberately use distinct resources.

This technique also avoids the need for per-component mapping and the need to generate a defect

map at the cost of performing design-specific testing. However, this scheme is most viable when

there are just a few defective resources in an FPGA; it does not scale well to high defect rates

and high variation as generation of sufficient numbers of mutually exclusive configurations becomes

intractable.

Dual Vdd and Body Biasing: Dual Vdd and body biasing can be performed on a component-

specific basis to improve both timing yield and leakage yield. In both techniques blocks that contain

critical paths are assigned either a high Vdd or low Vth to maintain performance. Because the primary

impact of variation is that some devices become fast and leaky while others become slow and less

leaky, these same techniques can be used to improve both timing yield and leakage yield.

Nabaa et al. examined body biasing for an FPGA to improve timing yield [85]. In their scheme

each CLB and switchbox is assigned a body bias circuit. They find that for a 130 nm technology

(with unspecified variation) body biasing can reduce timing variation by 3.3× and leakage variation

by 18×. Bijansky et al. studied the impact of tuning dual Vdd FPGA architectures to compensate for

variation [18]. In their architecture each CLB can choose from two voltages, with voltage assignment

taking place post-fabrication on a component-specific basis. For a 65 nm predictive technology with

3σVth
/µVth

= 20% random variation, they report an average timing yield improvements of 15%.

The primary drawback of these techniques is that they have limited granularity: they can only

29

impact the Vdd or Vth of block, not of individual transistors. While they are ideal for region-based

variation, these techniques do not scale well with high random variation; supporting individual Vdd

connections or bias circuitry on a per transistor basis would add excessive area overhead, defeating

the benefits offered by this tuning mechanism.

Post-Silicon Clock Tuning: Component-specific mapping concepts have also been incorporated

into ASIC designs, such as the Itanium 2 processor [112]. The Itanium 2 includes programmable delay

buffers in the clock distribution network that can be configured after manufacturing to compensate

for clock skew variations. Critical path delay can also be improved—by slowing down/speeding up

clock signals to the input/output registers of a critical path, time can be borrowed from adjacent

paths (if those paths are not also critical). Algorithms for automatically tuning delay buffers such

as these on a per-chip basis is a subject of active research (e.g., [86]).

Post-e.g.silicon tuning has also been demonstrated for FPGA clock networks [109] at a fully

component-specific level. Programmable delay buffers are inserted at the leaf of the clock tree at

every flip-flop clock input. Delays are assigned by measuring certain designated paths (as opposed

to having full delay knowledge) using techniques from [104]; these measurements are then used to

predict actual critical path delays through statistical analysis. This technique improves timing yield

by 12% on average

Component-Specific Placement: Some existing work has explored modifying the FPGA CAD

flow to incorporate component-specific mapping using full delay knowledge [29, 53]. These schemes

use delay knowledge during placement to place critical paths in fast chip regions and non-critical

paths in slow regions (Figure 2.9). Every chip receives a unique placement and is then routed without

delay knowledge.

To perform chipwise placement, a variation map must be generated on a per-chip basis. A critical

assumption of this technique is that an FPGA can be divided into regions (typically sized as a CLB

plus surrounding routing resources) where each region has similar performance characteristics. Once

a regional variation map is obtained, placement proceeds precisely as in the knowledge-free case,

except instead of assigning all resources the same delay in the placement algorithm, resources within

a region are assigned a delay from the variation map.

Katsuki et al. custom fabricated 31 90 nm FPGA test chips and constructed a delay map of

each chip [53]. Under an unspecified amount of variation, they demonstrated a delay improvement

of 4.1%. Cheng et al. performed a similar knowledge placement experiment under simulation [29].

For 3σ/µ = 10% variation in both Leff and Vth, they report on average between 6.91–12.10%

performance improvement.

An important limitation of component-specific placement is the assumption that variation is

30

Region Delay

Slow Fast

Statistically
Critical Paths=

No Knowledge Knowledge

Figure 2.9: Full knowledge placement for region-based variation

primarily due to the spatially correlated component (regional) rather than the uncorrelated, random

component. Variation in future technologies is expected to be dominated by random effects; hence,

there will a stronger effect from fast or slow individual resources rather than fast or slow regions.

Component-Specific Routing: Gojman et al. [45] perform fine-grained, component-specific

routing on an reconfigurable NanoPLA [35] using an algorithm termed VMATCH. The NanoPLA is

a nanowire based architecture that uses crossed 5 nm diameter silicon nanowires to form a PLA like

structure, with each wire crossing representing either a programmable diode performing a wired-

OR, or a FET-like device performing negation. When these two planes of devices are combined

they form the OR-INVERT function, which is logically equivalent to NAND. The NanoPLA shares

some similarities to a conventional FPGA in that both use Manhattan routing to connect discrete

clusters of logic. However, routing in the NanoPLA is done through the blocks rather than using

an independent switching network. In order to allow signal routing, the output of the OR-plane of

every block connects to itself and neighboring blocks.

The goal of VMATCH is to mitigate the dramatic amount of Vth variation present in 5 nm

nanowires. One property of circuits mapped to the NanoPLA is the large amount of fanout variation

present in the nets. VMATCH attempts to match net fanouts to physical threshold voltages, where

larger, slower fanout nets are matched to faster devices. By adding a modest amount of extra

resources they are able to restore 100% yield in a 5 nm technology with σVth
/µVth

= 38%.

While this work shares the core idea of component-specific routing with VMATCH, conventional

31

FPGA architectures cannot take advantage of the same fanout matching properties of VMATCH.

Further, it is useful to determine the benefits of component-specific mapping on a more standard

reconfigurable architecture such as an FPGA. In addition to yield enhancement, we demonstrate

results showing delay, energy, and energy at a fixed delay improvements.

Summary: While component-specific mapping is not a new idea, this work attempts to quantify

the benefits of per-chip customization using modern FPGA architectures, predictive technology

models, and accurate models of Vth variation. Unlike prior work other than VMATCH, we focus our

efforts on routing because of the significant impact of interconnect on both the delay and energy of

mapped circuits.

32

Chapter 3

Modeling

To quantify the energy savings of component-specific mapping under variation, we need to model the

area, delay, and energy of designs mapped to an FPGA architecture. The device and circuit models

must accurately calculate delay and energy over a wide range of Vdd and Vth, while the CAD software

must perform efficient, consistent mappings that can be modified such that knowledge of delays and

defects can be integrated into the mapping algorithms. This chapter describes the process used to

construct accurate device and circuit models using HSPICE E-2010.12-SP1 [2], and the necessary

modifications to add variation models, energy models, and router stability to VPR 5.0.2 [95], the

standard academic FPGA CAD mapping tool.

3.1 Devices and Circuits

3.1.1 Motivation

To model the delay and energy of a mapped FPGA design, one first needs to determine the delay

and energy of the basic FPGA circuit elements: the LUT (Figure 2.2b) and the switch (Figure 2.3b).

CAD mapping software can then take these delay and energy values and use them to perform steps

like technology mapping, placement, routing, timing analysis, and energy analysis to determine the

final mapped delay and energy of a design.

Typically, to calculate delay and energy of both LUTs and switches, a static set of SPICE

simulations are performed under worst-case process corner conditions. The CAD software then

maps assuming this uniform, worst-case delay and energy for every LUT and switch. Using worst-

case corners results in a design that performs slower and dissipates more energy than may be needed

for a particular chip and its unique Vth map.

Component-specific mappings allows for per-chip customization, but the CAD tools must know

the precise delay of each circuit element and must be able to accurately calculate energy under a

wide range of Vdd and Vth. As this work relies on simulating component-specific mapping (rather

33

than using actual physical measurements from a real chip), we must develop a technique to calculate

delay and energy of FPGA circuits as a function of Vdd and Vth.

Performing SPICE simulations at CAD runtime for each of the hundreds of thousands of circuit

elements in an FPGA, with their own unique Vth values, at a particular Vdd, and for hundreds of

unique chips, is intractable. Therefore, most prior work in modeling FPGAs under variation have

taken a simple, computationally efficient approach in calculating delay and energy under variation

by using first-order device equations [74,78]. Equation 2.12 shows how to calculate the propagation

delay τp of a gate given Vdd, Vth, and a host of device parameters.

This method, while simple and fast, can result in highly inaccurate delays at low voltages [94].

There are numerous possible sources of error: inaccurate device constants, second and third order

device effects (e.g., drain-induced barrier lowering, Vth roll off), and inaccuracies in modeling the

near-threshold region of operation. Our simulations confirmed the inaccuracy of modeling low Vdd

circuits under variation with first order equations.

Instead of trying to simulate the delay and energy of each LUT and switch for their exact,

unique values of Vdd and Vth, we instead simulate these circuits across a regular, closely spaced

range of values and store the calculated delay and energy in a lookup table. To evaluate a particular

gate, we perform interpolation between simulated points. The interpolation can be either linear or

cubic, depending on which technique yields the most accurate result (typically linear interpolation is

better given the fact that interpolated cubic curves tend to oscillate on outlier points and boundary

conditions). This is a fairly standard technique for modeling gates under variation [19], but has not

yet been developed for the academic FPGA CAD flow [91]. We observe that our models have a

delay and energy prediction error of less than 10%.

The following sections will provide more details on how we simulate each of the primitive FPGA

circuits and how variation impacts delay, energy, and defects.

3.1.2 Parameter Extraction

For this work we use SPICE models from the Predictive Technology Models (PTM) [128]. Level

54 Models are provided for the 45 nm, 32 nm, 22 nm, 16 nm and 12 nm nodes, both for high

performance (HP) and low-power (LP) technologies.

The PTM models come with assigned values of nominal Vdd and predicted σVth
; however, some

key technology parameters that are unavailable from simply examining the SPICE model, and

must be extracted to accurately model both delay and energy. Table 3.1 compiles all the relevant

parameters for each technology node.

Capacitance: To calculate energy and delay we need to extract values of drain, source, and gate

capacitance for both NMOS and PMOS devices. Figure 3.1 shows the circuit used for extraction,

34

1x 4x

8x

8x

Cdrain

Figure 3.1: Drain capacitance extraction circuit

specifically for Cdrain [119]. An input signal is conditioned through 2 inverters and then split to

inverters that drive a static capacitor and the drain of the NMOS device. The HSPICE optimization

feature is used to tune the static capacitance until the delay through the inverters driving the

capacitor and the NMOS terminal are the same. A similar procedure is used to find Csource and

Cgate. For Cgate the diffusion area and perimeter are set to zero to extract the correct value.

Threshold Voltage: To extract the nominal threshold voltage, we use the constant current

method that defines the threshold voltage as Vgs where Ids = 0.1µA × W/L. This is not the

most accurate method for determining Vth as the choice of critical current is somewhat arbitrary;

however, the exact definition of Vth is inherently arbitrary, so it is most beneficial to use a com-

monly agreed upon technique for consistency [129]. Further, we effectively only use extracted Vth to

estimate variation as a percentage for Table 3.1.

Threshold Voltage Variation: There are two primary ways to calculate σVth
. The first is to

calculate Vth and then calculate σVth
using a fixed percentage obtained from the ITRS [3]:

σVth
= µVth

× Vth Percent Variation (3.1)

The second, more widely accepted technique is to calculate a technology specific constantAvt [117]:

Avt =

√

qTox (Vth − Vfb − 2φb)

3ǫox
(3.2)

σVth
=

Avt√
WL

(3.3)

The correct values of Avt are provided with the PTM models.

Supply Voltage: The nominal values of Vdd are also supplied with the PTM models.

35

Table 3.1: Predictive technology model parameters

Parameter High Performance Low Power
45 32 22 16 12 45 32 22 16 12

Vdd,NOMINAL (V) 1.10 1.00 0.95 0.90 0.85 1.00 0.90 0.80 0.70 0.65
Vth,NMOS (mV) 220 243 285 332 399 356 373 385 417 456
−Vth,PMOS (mV) 242 266 301 372 412 352 379 412 460 467
1σVth,NMOS

(mV) 17.5 24.0 32.3 37.2 43.7 23.1 31.1 45.5 57.7 77.7
1σVth,PMOS

(mV) 21.9 29.2 36.4 42.7 48.4 24.2 32.6 47.2 64.2 77.7
3σVth,NMOS

µVth,NMOS

(%) 23.9 29.6 34.0 33.6 32.9 19.5 25.0 35.5 41.5 51.1

3σVth,PMOS

µVth,PMOS

(%) 27.1 32.9 36.3 34.4 35.2 20.6 25.8 34.4 41.9 49.9

Cdrain,NMOS (fF/µm) 1.46 1.43 1.41 1.40 1.38 1.45 1.41 1.38 1.00 1.34
Csource,NMOS(fF/µm) 1.29 1.25 1.23 1.22 1.20 1.27 1.23 1.00 1.18 1.34
Cgate,NMOS (fF/µm) 1.08 0.97 0.88 0.82 0.77 1.18 1.07 0.92 0.85 0.80
Cdrain,PMOS (fF/µm) 1.46 1.44 1.42 1.42 1.41 1.44 1.42 1.39 1.38 1.37
Csource,PMOS(fF/µm) 1.29 1.26 1.24 1.23 1.22 1.27 1.24 1.21 1.20 1.19
Cgate,PMOS (fF/µm) 1.06 0.95 0.86 0.80 0.76 1.20 1.06 0.91 0.84 0.80

Input Output

Figure 3.2: CMOS inverter

3.1.3 Inverter Circuit

The inverter (Figure 3.2) is the most frequently occurring logic circuit in the FPGA. Several inverters

are used in each switch (Figure 2.3b), and inverters are also used to buffer the input and output to

LUTs.

Our general simulation methodology is to determine the critical input parameters for each cir-

cuit, determine the range and interval for the values of those parameters, and then simulate all

combinations of these values. Then, using the generated lookup table we perform n-dimensional

interpolation to calculate delay and energy for arbitrary values of the input parameters.

The standard possible input parameters for simulating an inverter are as follows:

• Vdd: We simulate inverters from Vdd = 0.1–1.0V at 10 mV intervals.

• Vth,NMOS & Vth,PMOS: We simulate using Vth,NMOS and Vth,PMOS offsets from −0.4–0.4V

at 10 mV intervals.

36

• WPMOS & WNMOS: For the PTM models WPMOS ≈ WNMOS across all technologies to

obtain equal rise and fall times [128]. For our simulations we simulate a minimum sized

inverter and scale energy and delay up for larger sizes.

• LPMOS & LNMOS: We use all minimum length transistors.

• Input slew rate: The rise and fall time of the input to the inverter can have an impact on

the output propagation delay. However, this has a second-order impact on delay, and requires

timing analysis that uses the rise and fall times of prior gates to calculate the propagation

delay of a given gate. Modeling slew would significantly multiply the number of HSPICE

simulations needed to build our circuit models. While slew rate can have an important effect

on calculating the delay of subthreshold circuits (between 10–20%) [77], we leave this modeling

to future work, and instead using a simple derating constant to account for slew rate.

Our final inverter model is then interpolated over our values of Vdd, Vthn, and Vthp, which

constitute approximately 500K datapoints.

Output parameters of interest include:

• Propagation delay (τp): We simulate propagation delay as the delay between the input

rising to 50% and the output falling to 50%.

• Rise and fall time (τr and τf): Rise and fall times of the output are measured between the

80% and 20% points.

• Equivalent resistance (Req): We simulate the inverter driving a fixed capacitance that is

approximately 100× the intrinsic output capacitance, and calculate Req = τp/C. Equivalent

resistance is used for Elmore delay calculations in VPR [95].

• Dynamic energy: Instead of simulating dynamic energy dissipation, we simply calculate it

from CV 2 which is highly accurate.

• Subthreshold leakage current (Isub): This is measured by the current drawn through the

power supply.

• Short-circuit current: We capture the short-circuit current dissipated by the inverter, but

it is small enough that it can be ignored.

• Gate leakage current: For the PTM models, gate leakage current is negligible compared to

subthreshold leakage current due to high-κ metal gates.

Figure 3.3 plots the delay distribution of a minimum sized FO4 inverter at 22 nm under variation

for nominal and subthreshold Vdd’s using an HSPICE Monte Carlo simulation with 10,000 samples

37

Delay (s)

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

0.0

0.5

1.0

1e−10 1e−09 1e−08 1e−07 1e−06

(a) Vdd = 0.3V

Delay (s)

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

0e+00

1e+11

2e+11

3e+11

5.0e−12 1.0e−11 1.5e−11 2.0e−11

(b) Vdd = 0.8V

Figure 3.3: Inverter delay distribution (22 nm LP, 10,000 samples)

Leakage Current (A)

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

0.0

0.2

0.4

0.6

1e−10 1e−09 1e−08 1e−07 1e−06

Figure 3.4: Inverter leakage distribution (22 nm LP, Vdd = 0.8V , 10,000 samples)

38

(approximately 4σ). We see that the delay spread is significant (several orders of magnitude) at low

voltages. Figure 3.4 plots the subthreshold leakage current distribution, which also spans several

orders of magnitude.

3.1.4 Switch Circuit

Figure 2.3b shows the design of a unidirectional, 3-input FPGA switch. The switch consists of an

inverter for each input (generally referred to as stub inverters, as they serve to isolate the capacitance

of the switch from upstream drivers), a flat NMOS pass transistor multiplexer, and a inverter at the

output that drives a long wire segment that may span multiple CLBs.

To calculate the delay of this circuit, we can simply use our inverter model combined with an

NMOS pass transistor model (simulated at the same values of Vdd and Vth as the inverter). It is

important to note that only one pass transistor of the multiplexer is turned on; therefore, we can

calculate the delay of this circuit as follows, where N is the number of inputs to the multiplexer:

τp = Req,INV ERTER × (Cdrain,PMOS + 2Cdrain,NMOS)

+ (Req,INV ERTER +Req,NMOS)× (NCsource,PMOS)

+Req,INV ERTER ∗ (Cdrain,PMOS + Cdrain,NMOS + Cwire + Cdownstream)

(3.4)

Figures 3.5a and 3.5b plot the delay distribution of a minimum sized NMOS passgate at 22 nm

under variation for different Vdd’s using an HSPICE Monte Carlo simulation with 10,000 samples

(approximately 4σ). We see that the delay spread is significant. However, it is possible to sub-

stantially improve both the nominal delay and the delay spread of the passgate by overdriving the

gate voltage. The gate of the pass transistors in the switch multiplexer are driven by configuration

SRAM bits (Figure 2.3b), which can be engineered to output a higher voltage. Figures 3.5c and 3.5d

show the same NMOS pass gate delay distribution with the gate overdriven by 50%. We see a much

smaller delay spread, and therefore the multiplexer delay becomes less significant than the delay of

the inverter driving a wire segment under variation.

3.1.5 LUT Circuit

Figure 2.2b shows the design of a 3-input LUT. The circuit consists of 2-to-1 pass transistor mul-

tiplexers connected in a tree. To calculate the delay of this circuit, we create a delay model for

the primitive 2-to-1 pass transistor multiplexer shown in Figure 3.6. We characterize the delay of

this circuit as a function of Vdd, Vth,NMOS1, and Vth,NMOS2 (with the same values as our inverter

model). As the inputs to the pass transistor gates are driven by signals and not SRAMs, they cannot

be overdriven like in the FPGA switch case.

Calculating the delay of the full pass transistor tree can be difficult due to Vth variation inducing

39

Delay (s)

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1e−10 1e−09 1e−08 1e−07 1e−06 1e−05

(a) Vdd = 0.3, Nominal gate input

Delay (s)

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

0.0

0.2

0.4

0.6

0.8

1e−11 1e−10 1e−09 1e−08

(b) Vdd = 0.8, Nominal gate input

Delay (s)

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

0.0

0.5

1.0

1e−11 1e−10 1e−09 1e−08 1e−07

(c) Vdd = 0.3, Overdriven gate input

Delay (s)

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

0.0e+00

2.0e+11

4.0e+11

6.0e+11

8.0e+11

1.0e+12

2e−12 4e−12 6e−12 8e−12

(d) Vdd = 0.8, Overdriven gate input

Figure 3.5: NMOS pass gate delay distribution (22 nm LP, 10,000 samples)

Input 0

Input 1

Output

Switch

!Switch

Figure 3.6: 2-to-1 multiplexer

40

Input 0 Input 1

Output

SRAM
00

SRAM
01

SRAM
02

SRAM
03

Figure 3.7: 2-input LUT with buffering

different voltage drops across each of the pass transistors. Further, the delay of the LUT can suffer

significantly if the signals internal to the tree are not re-buffered. Increased failures can also occur

without this re-buffering. To both improve the reliability of the LUT and increase the accuracy of

our circuit model, we re-buffer after every 2-to-1 mux primitive in the LUT tree (Figure 3.7).

Figure 3.8 show the delay distribution of the 2-to-1 mux (without buffer) at 22 nm under variation

for different Vdd’s using an HSPICE Monte Carlo simulation with 10,000 samples (approximately

4σ).

3.1.6 SRAM Circuit

SRAMs are key circuits in FPGAs as every configurable logic and interconnect element is controlled

by an SRAM bit. Figure 3.9 shows the design of a 6T SRAM cell.

The energy and reliability impact of SRAMs can be significant in FPGAs. If we examine a

3-input FPGA switch (Figure 2.3b), we see that while the switch logic has 4 inverters (3 stubs and

one driver), there are 3 SRAM bits with 2 cross coupled inverters each, for a total of 6 inverters.

Therefore, there are more inverters leaking in SRAM configuration bits than there are in inverters

used for logic. Further, if an SRAM fails, one can lose the ability to configure a given switch for a

particular input.

However, the way that SRAMs are utilized in FPGAs differs significantly to their typical use in

large, dense, random access memory arrays, which affords different techniques to alleviate energy and

reliability problems. Configuration SRAMs in FPGAs are only written once, at configuration time.

Further, they are never read like a normal SRAM—there is no charging of bitlines and activation

41

Delay (s)

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1e−10 1e−09 1e−08 1e−07 1e−06 1e−05 1e−04 0.001

(a) Vdd = 0.3V

Delay (s)

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

0.0

0.5

1.0

1.5

2.0

1e−11 1e−10 1e−09 1e−08

(b) Vdd = 0.8V

Figure 3.8: 2-to-1 mux delay distribution (22 nm LP, 10,000 samples)

BL !BL

WL

!QQ

Figure 3.9: 6T SRAM cell

42

Leakage Current (A)

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1e−11 1e−10 1e−09 1e−08 1e−07 1e−06

(a) Nominal Vth

Leakage Current (A)

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

0

1

2

3

1e−11 1e−10 1e−09

(b) 75% Higher Vth

Figure 3.10: SRAM leakage distribution (22 nm LP, 10,000 samples)

of word lines. Instead, the internal value of the SRAM can just be directly connected to either the

gate in the pass transistor mux of a switch, or to the drain of a pass transistor mux in a LUT.

There are several implications to this mode of operation. First, FPGA SRAMs do not necessarily

need both access transistors, and instead can have a 5T cell with a single sided write. Second, one

can engineer both the Vth and Vdd of the SRAM without regard to read or write speed, as the cell is

never effectively read and only written once. Using a higher Vth can dramatically reduce the leakage

energy due to SRAMs [115], while using a higher Vdd will allow our NMOS pass transistors in the

switch circuit to be overdriven. Third, the failure modes of the SRAM are greatly reduced (as will

be described in the next section), which will increase the reliability of FPGA SRAMs.

Figure 3.10 plots the leakage distribution of a minimum sized SRAM 22 nm under variation for

nominal Vth and for a Vth boosted by 75%, using an HSPICE Monte Carlo simulation with 10,000

samples (approximately 4σ). For the increased nominal Vth case we increase σVth
proportional to

the trends in Table 3.1. We see that increasing Vth dramatically reduces the magnitude of SRAM

leakage. This multi-Vth technique is the same one that is used in commercial FPGAs [56].

3.1.7 Defect Rates

While we have shown how to accurately model both the delay and energy of switch and LUT

circuits, Section 2.3 described another important effect of variation that must be modeled: defects.

For example, given enough Vth variation, an inverter can fail to switch if the off-current of one

transistor is greater than the on-current of the other transistor (Equation 2.14). This type of defect

is even more likely at low Vdd and for scaled technologies with high variation [26].

However, this failure condition for an inverter is actually conservative. The inverter can also

43

practically be considered defective if it is no longer restoring; i.e., it has a gain < 1, or it has zero

static noise margins. To model this effect, we simulate the voltage transfer characteristic (VTC) for

inverters across the same parameters as our delay simulation. We then differentiate the VTC curve

and determine if the inverter has no gain or if noise margins are violated (similar to the technique

in [61]). This provides a more accurate measure of failure.

Each of our other circuit primitives (NMOS pass transistor, 2-to-1 multiplexer, SRAM bit) is

subject to failure; however, these failures can be mitigated through a variety of techniques.

The NMOS pass transistor can fail if the threshold voltage varies enough that the transistor

can no longer be turned on properly. However, we saw that the pass transistor can have its gate

overdriven, which will reduce this failure rate as a higher gate voltage will turn on a transistor with

a higher Vth due to variation.

The 2-to-1 multiplexer can fail just like the NMOS pass transistor, but here we cannot overdrive

the gate terminals. Therefore, when switching the select bit of the mux, one or both of the NMOS

pass transistors might fail to switch the output to its correct value. However, we can observe that

the inputs to the multiplexer can only have four states: 00, 01, 10, and 11. In the 00 state, the

multiplexer cannot fail—there is no voltage will flip the output to 1. In the 11 state, the multiplexer

is highly unlikely to fail, as Vdd must be low enough and Vth high enough that the threshold drop

across the transistor will lower the output voltage enough to violate noise margins. In the 01 or

10 states the multiplexer is most likely to fail, as either transistor failing to switch will make the

gate defective. We will see in Chapter 5 that this asymmetry in failure modes enables us to perform

optimizations that will actively seek configurations of the 00 or 11 states to reduce failure rates.

When considering the failure rate of SRAMs, traditionally SRAMs have been known to have four

major modes of failure:

1. Read failure: Flipping the stored value while reading.

2. Write failure: Inability to write the cell.

3. Access time failure: Reading the cell too slowly, violating timing.

4. Hold failure: Losing the value of the cell during operation.

The most likely SRAM failure modes under variation are read and access time failures [84];

however, because FPGA SRAMs are never read, they cannot have read related failures. Write

failures can be avoided by overdriving or underdriving the input to the cell, which can be afforded

since this operation is only done once without significant time constraints. Hold failures are the

least likely of the four failure modes; however, they may still occur in FPGA SRAMs if the Vth map

on the cell is such that the cell cannot hold a proper value (one or both inverters fail).

44

Vdd (V)

F
a
ilu

re
 P

ro
b
a
b
ili

ty
 (

%
)

0.01

0.1

1

10

100

0.1 0.2 0.3 0.4 0.5 0.6

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

Inverter
Inverter (Noise Margin)
LUT (0,1 or 1,0 State)

SRAM
NMOS Pass

Figure 3.11: Primitive circuit failure rates (22 nm LP, 10,000 samples)

Figure 3.11 plots the failure rates for each of our primitive circuits as a function of voltage at 22

nm using using an HSPICE monte carlo simulation with 10,000 samples (approximately 4σ). For

the inverter we plot both the conservative and noise margin related failure estimates. For the NMOS

pass transistor we plot the failure rates without overdriving the gate; with overdriving we observe no

failures. For the 2-to-1 multiplexer we plot the failure rates 01/10 states, as we observe no failures

in the 00 or 11 states. We see that through careful design we can significantly reduce the failure

rates of all of our primitives except the inverter. We also see that SRAM failure rates are negligible,

meaning that we can ignore SRAM failures during mapping.

3.2 CAD

3.2.1 VPR: Variation and Energy

Figure 3.12 shows the standard academic FPGA mapping flow using VPR 5.0.2 [95]. Technology

mapping is performed using ABC [83], followed by clustering with T-VPack [95], and placement and

routing both using VPR.

We modify VPR to integrate our HSPICE device and circuit models to calculate both delay and

energy as a function of Vdd and Vth variation. Prior work has integrated both variation [74] and

energy [91] models into VPR. However, the variation models used simple device equations that are

inaccurate for large amounts of Vth variation and low Vdd , and at the time of this work the energy

45

Technology Mapping
(ABC)

Clustering
(T-VPack)

Placement
(VPR)

Routing
(VPR)

Toronto20 Netlists

Figure 3.12: Standard FPGA mapping CAD flow

models only existed for VPR 4.0, which utilized older, bi-directional interconnect. However, we

leverage some prior work in computing FPGA dynamic energy by calculating switching activity (α in

Eq. 2.5) using the ACE 2.0 switching activity estimator [63] with random (50%) input probabilities.

With variation enabled, every transistor is assigned a randomly generated Vth sampled from a

Gaussian distribution. Routing can either be performed using full knowledge of actual circuit delays

or no knowledge. The no knowledge, delay-oblivious case can then be evaluated post-route based on

the actual delays. While we modify VPR to measure energy, we do not change VPR’s cost function

to target energy minimization—we simply provide the router with delay information.

3.2.2 Timing-Target Routing

The routing algorithm used in VPR 5.0.2 (and in all modern FPGA CAD software) is PathFinder [99].

PathFinder is known to introduce experimental noise by producing inconsistent results in routing.

Rubin et al. [99] showed that innocuous perturbations of initial conditions can cause critical path

delays to vary over ranges of 17–110%, and that it is not uncommon for VPR/PathFinder to settle

for solutions that are >33% slower than necessary. This is for a standard architecture at nominal

Vdd and no Vth variation.

Figure 3.13 demonstrates this effect, plotting the ratio of the routed delay of two architectures

46

b
ig

k
e
y

s
2
9
8

s
p
la

a
lu

4

p
d
c

m
is

e
x
3

e
x
5
p

fr
is

c

e
x
1
0
1
0

d
e
s

ts
e
n
g

d
s
ip

s
e
q

s
3
8
4
1
7

s
3
8
5
8
4
.1

e
lli

p
ti
c

c
lm

a

a
p
e
x
2

a
p
e
x
4

d
if
fe

q

-45
-30
-15
 0
 15
 30

∆
 D

e
la

y
 (

%
)

Figure 3.13: Percent delay improvement for faster-wire architecture over uniform architecture for
the Toronto20 benchmarks [99]

across a series of benchmarks. The first architecture is the standard 4 × 4 cluster architecture

distributed with VPR. The second architecture is identical to the first except half of the wires are

faster by a trivial amount, which should only result in mapped designs being 0.5% faster. However,

we see a range of delay changes from −34% to +15%.

This effect is greatly magnified when mapping to resources that each have different delays;

moreover, with high variation and low Vdd these delays can vary by several orders of magnitude.

Algorithm 1: Delay Target Search [99]

Tcurrent=CongestionObliviousRoute;
max = min = Tcurrent ; /* Initial lower bound */

repeat /* Find initial upper bound */
max *= 2;

until try route(max);
stage=0;
repeat /* Refine */

retry = 0;
stage++;
success=false;
repeat

Ttarget = (max+min)/2;
if ((Tcurrent = try route(Ttarget))!=FAIL) then

Ttarget+ = (max− Ttarget)/1000;
success=true;

until retry++ ¿= retries or success ;
if success then

max = Tcurrent

else
min = Ttarget

until max <= min ∗ (1 + target precision)
or stage >= max stages;

To minimize router noise we use the timing-targeted router modification to PathFinder proposed

by Rubin et al. The conventional PathFinder algorithm attempts to resolve congestion while mini-

mizing delay by cyclically routing nets and ripping up prior routes, with each route being performed

47

by a least-cost routing function. The cost of a resource n is:

αij × dn + (1− αij)× (bn + hn,t)× pn (3.5)

Where αij is criticality of net i → j, dn is the delay of the resource, bn is the base cost of the

resource, hn,t is the congestion history of the resource, and pn is the pressure factor. To succeed,

PathFinder must balance the congestion cost bn+hn,t with the delay cost dn by using the criticality

factor αij , which can prove to be difficult, resulting in routes with unnecessarily high delays.

Instead of simultaneously trying to minimize congestion and delay, the timing-target algorithm

simply changes the heuristic in PathFinder from an optimization problem to a decision problem.

Algorithm 1 shows the timing-target algorithm. Here, each routing step attempts resolve congestion

at a target delay—if a valid route is not found, a slower delay is attempted. The outer loop of the

algorithm performs a binary search on the target delay in order to minimize the final routed delay.

We cannot overstate the importance of making this change to VPR when routing with Vth

variation at low Vdd.

48

Chapter 4

Delay-aware Routing

In this chapter we will provide baseline results that demonstrate the delay and energy benefits

of component-specific mapping. Specifically, we will focus on delay-aware versus delay-oblivious

routing. We will quantify the delay and energy margins induced by variation and routing oblivious

to delays, and quantify by how much those margins can be reduced through delay-aware routing. In

the following chapters we will build our extensive optimizations upon this baseline comparison.

One important note is that this chapter and most of the following sections will only focus on the

impact of variation in interconnect. As interconnect is the dominant source of area, delay, and energy

in an FPGA, random Vth variation most impacts switches and routing. Hence, we primarily explore

using delay-aware routing to intelligently assign interconnect resources. Section 5.4 will separately

quantify the impact of LUT variation and specialized techniques for LUT variation tolerance.

The results outlined here a very similar to those initially presented in [82]. However, several

changes have been made to our models and methodology and our results have been updated.

• Improved device modeling (higher resolution models, Avt variation methodology, inverter noise

margin failure modeling).

• Improved interconnect modeling that accurately scales wire length according to area.

• Targeted architecture parameters for low energy instead of high performance.

4.1 Experimental Setup

As previously described (Chapter 3), we will use HSPICE device and circuit models to determine

the delay and energy of primitive FPGA circuits. As this work primarily focuses on reducing energy

dissipation, we will use the low-power (LP) PTM models.

VPR provides a parametric FPGA architecture where architectural features can be tuned, and a

full CAD flow where the area and delay of fully mapped benchmarks can be measured. Section 2.4.2

49

1

50

2. Generate Monte Carlo Chips
(random Vth per transistor)

1. Single VPR Placement

1

50

1

50

1

1 50

3. Delay-Aware:
Route each chip

3. Oblivious:
Route Once

4. Evaluate delay &
energy for each chip

4. Evaluate delay &
energy for each chip

Figure 4.1: Experimental CAD flow

described prior work in determining energy-optimal values for several key architectural parame-

ters [58, 123]; we found similar values through our own internal simulations. The most important

architectural parameters of VPR used in this work include the following:

• Cluster Size (N): The number of LUTs per CLB = 4.

• LUT Size (k): The number of inputs per LUT = 4.

• Cluster Pins: The number of input and output pins attached to the CLB = 10 and 4,

respectively.

• Interconnect directionality: Unidirectional.

• Segment Length (Lseg): The number of CLBs that a wire segment spans = 1.

• CBox input connectivity (Fcin): The fraction of channel segments that can connect to the

CLB input pins = 0.25.

• CBox output connectivity (Fcout): The fraction of channel segments that can connect to

the CLB output pins = 0.25.

50

Table 4.1: Toronto20 benchmark characteristics

Benchmark CLBs LUTs Min Chan Nets Crit Path Registered
Width Segments

alu4 18× 18 1296 46 866 24 No
apex2 19× 19 1444 52 1041 26 No
apex4 17× 17 1156 56 878 30 No
bigkey 27× 27 2916 26 923 21 Yes
clma 34× 34 4624 62 3486 58 Yes
des 32× 32 4096 32 1225 29 No
diffeq 16× 16 1024 32 695 16 Yes
dsip 27× 27 2916 26 704 23 Yes
elliptic 24× 24 2304 44 1615 30 Yes
ex1010 31× 31 3844 84 2979 53 No
ex5p 15× 15 900 48 669 25 No
frisc 25× 25 2500 52 1603 42 Yes
misex3 17× 17 1156 48 855 23 No
pdc 29× 29 3364 68 2378 47 No
s298 16× 16 1024 44 643 33 Yes
s38417 30× 30 3600 34 2420 22 Yes
s38584.1 31× 31 3844 36 2920 26 Yes
seq 18× 18 1296 52 994 23 No
spla 27× 27 2916 62 1975 41 No
tseng 14× 14 784 32 603 14 Yes

We compare delay-aware routing to delay-oblivious routing under variation for the Toronto 20

benchmark set [17]. Table 4.1 show characteristics of each of the benchmarks when mapped to our

architecture. The mapping flow for each benchmark is the same as in Figure 3.12. We perform

technology mapping with ABC, clustering with T-VPack, and placement in VPR.

Figure 4.1 shows the experimental CAD flow after placement for comparing delay-aware and

delay-oblivious routing. A single placement per benchmark is created for all routing experiments.

Each data point is obtained by running both routers on a set of 50 Monte Carlo generated chips

with Vth variation. The 50 chips are routed individually by the delay-aware router, while the delay-

oblivious router performs a single, nominal route and evaluates that route across all chips. We report

all delay and energy data at the 90% parametric yield point (i.e., we discard the 5 slowest/highest

energy chips and report the max delay and energy). With 50 Bernoulli trials the 90% confidence

interval for the results reported as 90% yield is 85–95%.

We configure VPR to use timing-targeted routing, and route using 200 iterations and a -max crit

value of 0.9999.

For this chapter, to establish an intuitive baseline for comparing delay-aware to delay-oblivious

routing, we use a few key optimizations that will be explored in more depth in Chapter 5.

• Sizing: All switches use energy optimized sizing for a given Vdd. This means that data at

different Vdd’s may use different switch sizes to obtain minimal energy. For example, at a low

51

Vdd (V)

P
a
ra

m
e
tr

ic
 D

e
la

y
 (

n
s
)

1

10

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Nominal
Delay−oblivious

Delay−aware

Figure 4.2: Delay vs Vdd (alu4, 22 nm LP)

Vdd variation induced defects may cause a design with minimum sized gates to fail to achieve

90% yield. Therefore, larger gates may be required, but at a cost in energy.

• Channel Sparing: All routes are performed at 20% above the minimum channel width

required for a congestion-free route. This is a common, low stress routing condition used when

not attempting to minimize the number of channels used [110].

• I/O Sparing: All routes are performed with 4 extra CLB I/O pins. We will see in Chapter 5

that I/O pins are highly vulnerable to unavoidable defects at low Vdd; adding spares alleviates

this bottleneck.

4.2 Delay

Our first goal is to characterize the delay margins induced by routing without delay knowledge under

variation, and the corresponding delay improvement obtainable by delay-aware routing. Figure 4.2

plots parametric delay as a function of Vdd, for nominal, delay-oblivious, and delay-aware routes

for the alu4 benchmark at 22 nm. For the nominal, no variation case, we see that delay increases

as Vdd is reduced. As delay drops below threshold (Vth ≈ 400 mV), we see that delay increases

exponentially, in accordance with Equation 2.12.

As we reduce Vdd in the delay-oblivious case, we begin to see functional failures as described in

Sec. 2.3 and shown in Figure 3.11. The delay curves end at voltages where the defect rate becomes

52

too high to achieve 90% yield. At 22 nm there is sufficient variation that enough circuit elements at

low Vdd fail to switch, which the delay-oblivious router cannot avoid. Further, we see even where the

delay-oblivious case is able to achieve 90% yield, it performs slower than the nominal case. We can

see the delay margins induced by variation as a function of Vdd by comparing the nominal and delay-

oblivious curves. At high Vdd these margins are typically negligible, less than 2%. From Table 4.1

we see that alu4 is a fully combinational circuit with a critical path length of 24 segments—hence,

delay variation at high Vdd is largely eliminated due to path length averaging. However, as we drop

the supply voltage these margins increase, up to around 1.5× the nominal delay at 350 mV. Because

the delay-oblivious router has no knowledge of real delays it may choose suboptimal, slower resources

for the critical path.

We see similar effects for the delay-aware router, where functional failures occur for small switches

at low voltages. However, the delay-aware router is able to remain functional for lower voltages

through defect avoidance. We will see in the next section that the ability for the delay-aware router

to operate at less than half the Vdd of the delay-oblivious router yields significant energy savings.

Additionally, delay-aware routing produces faster routes through delay knowledge, performing

nearly as well the nominal, no variation case. In this particular case, delay-aware routing can almost

completely eliminate delay margins induced by variation.

4.3 Energy

To quantify the energy margins from variation and the savings from delay-aware routing, Figure 4.3

plots parametric energy versus Vdd. In the no variation case we observe minimal energy/operation at

150 mV. At high voltages dynamic energy dominates and is reduced quadratically by scaling down

Vdd; however, at low voltages static energy begin to increase, raising the total energy/operation. As

delay increases we spend more time leaking in a single operation.

The delay-oblivious curve shows the same functional yield issues as in Figure 4.2: as Vdd is re-

duced, the delay-oblivious router fails to provide 90% functional yield. Additionally, we see that as

Vdd is reduced, the energy gap between delay-oblivious routing and the nominal case increases. This

is for two reasons: first, the delay-oblivious case must use larger gates to obtain 90% yield, which

increases energy. Second, the delay-oblivious route is slower, which increases leakage energy/opera-

tion. In the worst case we observe an energy overhead of almost 2× at Vdd = 350mV. If we compare

the energy-minimal nominal point to the energy-minimal delay-oblivious point, we see a difference

of approximately 6×.

For the delay-aware case we also see functional failures; however, delay-aware routing extends the

range over which smaller gates can function through defect avoidance. As in the nominal case, we see

energy/operation minimize, albeit at a higher voltage of 250 mV. When comparing delay-oblivious

53

Vdd (V)

P
a
ra

m
e
tr

ic
 E

n
e
rg

y
/O

p
e
ra

ti
o
n
 (

p
J
)

1

10

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Nominal
Delay−oblivious

Delay−aware

Figure 4.3: Energy/operation vs Vdd (alu4, 22 nm LP)

to delay-aware, we see that delay-aware routing is able to cut the energy margin nearly in half at

350 mV, but is not able to complete eliminate it. Delay-aware routing is further able to prolong

the range over which we can scale down Vdd and still reduce energy from 350 mV to 250 mV. We

see that the ratio of minimum energy/operation of the delay-aware and nominal cases is ≈ 3×, a

reduction of 2× over delay-oblivious routing.

4.4 Energy at Target Delay

Minimal energy/operation is critical in many applications; however, the goal of most applications is

to minimize energy for a particular performance target. Figure 4.4 demonstrates the energy benefits

of delay-aware routing when targeting minimal energy operation under a performance constraint (as

opposed to minimal energy ignoring delay). For very high performance requirements (> 2GHz) we

see that there is little difference between delay-aware, delay-oblivious, and nominal routing. Low

delay routes require high Vdd, and at high Vdd the impact of variation is minimal. However, as we

begin to target slower performance constraints, we begin to see differences in energy dissipation. For

slower delay targets delay-aware routing achieves the required cycle times at a lower Vdd and hence

lower energy/operation than delay-oblivious routing. At 100 MHz we see an energy savings of ≈ 3×.

In summary, we see that delay-aware routing is able to achieve the following:

• Nearly eliminate delay margins.

54

Target Delay (ns)

P
a
ra

m
e
tr

ic
 E

n
e
rg

y
/O

p
e
ra

ti
o
n
 (

p
J
)

1

10

1 10 100

Nominal
Delay−oblivious

Delay−aware

Figure 4.4: Energy/operation vs delay target (alu4, 22 nm LP)

• Scale to lower Vdd than delay-oblivious routing by avoiding defects.

• Reduce energy/operation by avoiding defects and using smaller gates.

• Reduce energy/operation given a performance constraint.

• Cut energy margins induced by variation in half.

In the next chapter we will explore how to improve these results even further.

55

Chapter 5

Optimizations

The previous chapter briefly examined some of the energy and delay benefits of component-specific

mapping under parameter variation using delay-aware routing. This chapter will focus on techniques

that improve those benefits; specifically, we will focus on reducing energy/operation. By scaling down

Vdd we expect a significant reduction in energy; however, at low Vdd parameter variation will induce

defects and increase leakage energy. Component-specific mapping can help mitigate these effects,

but without the proper optimizations, defect rates may be too high to tolerate, and leakage energy

may be large enough to prevent beneficial voltage scaling. We will see that by power gating, carefully

sizing gates, adding spares, and remapping LUTs, component-specific mapping can perform even

better than our baseline case, for a total of 2.66× energy savings.

As in the previous chapter, the first several sections here will focus on interconnect, the dominant

source of energy in FPGAs, by only modeling interconnect variation. In the final section of this

chapter we will demonstrate the impact of LUT variation and how to combat failure by using LUT

remapping.

5.1 Power Gating

Section 2.4.1 described several techniques developed in prior work to reduce energy dissipation in

FPGAs. One standard technique is power gating. Figure 2.8 shows how a single large, high Vth

sleep transistor can be inserted between the power supply and desired block to be gated. This

substantially reduces the leakage energy dissipated in the gated block by taking advantage of the

stack effect that reduces the leakage current through transistors in series [87].

Reducing leakage energy is particularly important in low voltage circuits where leakage energy

can become the dominant source of total energy. Energy/operation can be expressed as the sum

of dynamic and static energy (Equations 2.5 and 2.6). At high voltages dynamic energy/opera-

tion dominates. However, as Vdd is reduced, the delay of gates and the length of an operation

increases (Equation 2.11), causing gates to leak more during an operation, and eventually static

56

Vdd (V)

P
a
ra

m
e
tr

ic
 E

n
e
rg

y
/O

p
e
ra

ti
o
n
 (

J
)

1e−13

1e−12

0.1 0.2 0.3 0.4 0.5

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

Total
Dynamic

Static

Figure 5.1: Energy/operation vs Vdd without power gating (des, 22 nm LP, minimum sizes, no
variation)

energy increases to point at which it is larger than dynamic energy.

Figure 5.1 shows the energy/operation as a function of Vdd for a minimum sized des at 22 nm for

the nominal, no variation case. We see that as Vdd decreases, dynamic energy decreases while static

energy increases. An energy minimum is reached around 350 mV which is just below the threshold

voltage; below 350 mV there are no energy savings from scaling down Vdd.

Ideally, we would like to continue to reduce energy as we scale Vdd. Most of the leakage energy

in an FGPA is dissipated in the interconnect and SRAM (Figure 2.4b). We showed in Section 3.1.6

because of the unique write once, static read usage mode of FPGA configuration bits, we can reduce

SRAM leakage energy by orders of magnitude by using appropriately high Vth transistors. This

leaves the majority of leakage energy dissipated in the interconnect switches. Fortunately, FPGAs

significantly over-provision interconnect to enable maximum routability [32]—in our architecture

and for our benchmarks we typically see segment utilization of less than 10%. This means that over

90% of interconnect leakage energy could possibly be eliminated by power gating.

Power gating on interconnect can be implemented at several granularities in FPGAs: at the gate

level, at the switch level, and at the tile level [25,42,93]. Tile level power gating is a coarse-grained

technique that turns off an entire tile (CLB and surrounding SBox and CBoxes) at once. While

our segment utilization is typically very low, our tile utilization is high (> 90% on average) because

VPR allocates the minimum square grid of CLBs needed to map a given benchmark. Therefore,

power gating on an architecture that is sized to each benchmark would yield minimal savings.

57

Wire Segment

SRAM

Input 1

Input 2

Input 3

SRAM

SRAM

SRAM

Vdd

Virtual Vdd

Sleep Transistor

Figure 5.2: Power gated 3-input switch

58

Size

R
a
ti
o
 D

e
la

y
 I
n
c
re

a
s
e

1.0

1.5

2.0

2.5

3.0

3.5

5 10 15 20 25 30

Figure 5.3: Sleep transistor delay as a function of size (22 nm LP, 16-input switch circuit)

Figure 5.2 shows our scheme for power gating, where we gate at the level of an individual

switch circuit. Because gate leakage current is negligible in our technology, we can ignore gating

the passgate multiplexer, as only the subthreshold leakage in the inverters contribute significantly

to leakage energy/operation. For every switch (input stub inverters, multiplexer, output driver)

we insert a large PMOS header controlled by an SRAM between the power supply and the switch,

creating a virtual Vdd for the switch. A similar power gating scheme might insert individual headers

at each inverter. In this case the SRAM control bit for the header could be shared with the SRAM

control bit in the multiplexer, as the inverter can be turned off if it is not selected by the multiplexer.

However, sharing the sleep transistor across multiple inverters is more area efficient.

The key design decision in implementing this scheme is the sizing of the sleep transistor. Larger

sleep transistors have a smaller impact on the switch delay, as they are able to provide more current

to active inverters. However, large sleep devices require more area, which may increase energy/op-

eration by increasing the length of wires.

Figure 5.3 plots the delay overhead of the sleep device as a function of size (relative to minimum

sized switch inverters) for a 16-input switch, obtained using HSPICE simulations. Like the pass

gates in our switch multiplexer, the output of the SRAM is overvoltaged to provide additional drive

strength to the sleep transistor when turned on. We see that a sleep transistor sized to 20× yields

only a 10% increase in delay. The area impact of this device can be calculated as follows. A 16-input

switch uses 34 transistors for inverters, 16 for the mux, and 96 for the 16 SRAM configuration bits,

59

Vdd (V)

P
a
ra

m
e
tr

ic
 E

n
e
rg

y
/O

p
e
ra

ti
o
n
 (

J
)

1e−13

1e−12

0.1 0.2 0.3 0.4 0.5

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

Total
Dynamic

Static

Figure 5.4: Energy/operation vs Vdd with power gating (des, 22 nm LP, minimum sizes, no variation)

for a total of 146 transistors. A single 20× sleep transistor (and the extra 6 transistors for the

independent SRAM configuration bit) is therefore only a 16% increase in switch area, which will

have a negligible impact on segment delays.

Figure 5.4 shows the energy/operation as a function of Vdd for des, again for the no variation

case, but with power gating. We see that leakage energy can be reduced by approximately an order

of magnitude, increasing the range over which Vdd can be scaled down and still reduce energy. Here,

the minimum-energy Vdd is 200 mV instead of 350 mV, and the minimum energy/operation is 2.2×

lower.

To explore the impact of power gating on delay-oblivious versus delay-aware routing, Figures 5.5

and 5.6 plot energy/operation as a function of Vdd for each router using minimum sized switches.

Without power gating, we see that delay-aware routing reaches its energy minimum at 450 mV,

while delay-oblivious routing minimizes at 600 mV. By scaling to lower Vdd, tolerating defects, and

routing faster to reduce leakage energy/operation, delay-aware routing is able to reduce minimum

energy/operation by 1.72× (45%). Because at 450 mV we encounter the energy minimum, any

techniques that might scale below 450 mV would not achieve any energy savings.

However, with the addition of power gating in Figure 5.6, we can dramatically reduce leakage

and continue scaling to lower Vdd to save energy. Here delay-aware routing can scale Vdd down to

400 mV instead of 450 mV. While oblivious still cannot scale down beyond 600 mV, the reduction

in leakage has moved its energy minimum to 550 mV. When comparing the minimum energy of

60

Vdd (V)

P
a
ra

m
e
tr

ic
 E

n
e
rg

y
/O

p
e
ra

ti
o
n
 (

J
)

1e−12

0.2 0.4 0.6 0.8

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

Nominal
Delay−oblivious

Delay−aware

Figure 5.5: Energy/operation vs Vdd without power gating (des, 22 nm LP, minimum sizes)

Vdd (V)

P
a
ra

m
e
tr

ic
 E

n
e
rg

y
/O

p
e
ra

ti
o
n
 (

J
)

1e−12

0.2 0.4 0.6 0.8

l

l l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

Nominal
Delay−oblivious

Delay−aware

Figure 5.6: Energy/operation vs Vdd with power gating (des, 22 nm LP, minimum sizes)

61

delay-oblivious and delay-aware routing, we see that power gating yields an energy reduction of

1.81×, which equates to 5% additional energy savings, since both routers benefit. However, we will

later see how to increase the defect tolerance of delay-aware routing, allowing further voltage scaling

beyond 400 mV.

One hypothesis of using delay-aware routing to reduce energy/operation is the possibility to

route faster at a lower Vdd where leakage energy dominates; by reducing the length of an operation,

delay-aware routing can reduce the total energy and extend minimum voltage scaling to even lower

Vdd. However, we see that power gating provides enough benefit that leakage energy/operation

does not dominate total energy/operation until very low (< 250mV) voltages. Instead of reducing

leakage energy/operation, we will see that the primary benefit of delay-aware routing will be defect

avoidance at very low Vdd.

The remaining results in this chapter will explore the defect tolerance capabilities of delay-aware

mapping, and all future energy/operation values will assume our power gating scheme. Because the

size of the sleep transistor is significant, from Equation 2.13 we can safely ignore the impact of Vth

variation on the sleep transistor.

5.2 Interconnect Sizing

One of the most important decisions in designing circuits is the assignment of gate sizes. Larger

gates can switch faster due to increased drive strength (Equation 2.12), are more resilient to variation

because they reduce the magnitude of variation (Equation 2.13), but dissipate more dynamic energy

due to larger gate and diffusion capacitances (Equations 2.5).

From Figure 3.11 we see that failures due to variation at low voltage can be significant. SRAM

and NMOS pass gate defect rates are low enough that they can be safely avoided. Because the SRAM

bits connected to the gates of the NMOS pass gates in the switch multiplexer output an overdriven

voltage, we can minimum size NMOS pass gates without encountering failures. However, LUT

and inverter failure rates are non-negligible at subthreshold and near-threshold voltages. Therefore,

sizing of inverters and LUTs can have a significant impact on their failure rates and functional yield.

We expect that larger gates will have higher yield and allow scaling down to very low voltages

without failure. Smaller gates will not be functional down to the lowest voltages. However, larger

gates are both more capacitive and require more area. Because we model the length of wires based

on total area, increased area means increased wire length, which even further increases dynamic

energy dissipation. Hence, very large gate sizes come at significant energy cost. The energy-optimal

gate size will balance yield and energy dissipation. Additionally, since delay-aware routing provides

defect tolerance, we expect it to be able to utilize smaller gates at lower voltages.

To explore the impact of sizing, we examine at two cases. First, the case where all interconnect

62

Vdd (V)

D
e
fe

c
t
R

a
te

 (
%

)

1e−04

0.001

0.01

0.1

1

10

100

0.2 0.4 0.6 0.8

l

l

l l

l l

l l

l

l

l l

l

l

l l

l l

l l

l

l

l l

l l

l

l

l l

Switch Size

1
2

4
8

Figure 5.7: Defect rates vs Vdd for uniform sizing (des, 22 nm LP)

inverters are sized equally. Second, the case where inverters in the SBoxes and CBoxes (both input

and output) are each sized differently.

5.2.1 Uniform Sizing

We first examine the uniform sizing of the switch circuit in Figure 5.2, which is the switch primitive

for all interconnect switches: CBox inputs, CBox outputs, and SBoxes (Figure 2.1). We will see that

the impact of sizing largely depends on the defect rates induced by variation as a function of gate

sizes; Figure 5.7 plots measured average defect rates as a function of Vdd for a variety of switch sizes

under variation for the des benchmark at 22 nm. We see that as we scale down Vdd below threshold,

defect rates increase. Below 100 mV, 100% of gates are non-functional due to Vdd approaching the

subthreshold slope. We observe that minimum sized inverters have the highest defect rate.

Figure 5.8 plots yield as a function of Vdd for various switch sizes for both the delay-oblivious

and delay-aware routers. Here, we see that to obtain our yield target of 90%, larger gates or higher

voltages are required. Delay-aware routing can obtain 90% yield with minimum sized transistors at

400 mV, while delay-oblivious routing requires 550 mV. By examining Figure 5.8 in conjunction with

Figure 5.7 we can determine the maximum tolerable defect rate for both delay-oblivious and delay-

aware routing. In general we see that delay-aware routing can tolerate defects at a rate of 1%, while

delay-oblivious can only tolerate defects below 0.001%, a difference of three order of magnitude.

To examine the impact of sizing on delay, Figure 5.9a plots parametric delay as a function of

63

Vdd (V)

F
u

n
c
ti
o

n
a

l
Y

ie
ld

 (
%

)

0

20

40

60

80

100

0.2 0.4 0.6 0.8

l l l l l l l l l

l

l l l l l

l l l l l l l l

l l l l l l l

l l l l

l l

l l l l l l l l l

l l l l

l l l l l l l l l l l

=Delay−oblivious

0.2 0.4 0.6 0.8

l l l l l l

l l l l l l l l l

l l l l

l l l l l l l l l l l

l l

l l

l l l l l l l l l l l

l l

l l l l l l l l l l l l l

=Delay−aware

Switch Size

1
2

4
8

Figure 5.8: Functional yield vs Vdd for uniform sizing (des, 22 nm LP)

Vdd across a series of switch sizes, for nominal, delay-oblivious, and delay-aware routes for des at

22 nm. For the nominal, no variation case, we see that, at higher voltages, size 8 switches generally

provide a good tradeoff between drive strength and capacitive load, which corroborates prior work

in determining delay-optimal switch sizes [65]. The same basic delay-optimal sizing trends hold for

delay-oblivious and delay-aware routing.

As we drop Vdd in the delay-oblivious case, we see functional failures as shown in Figure 5.8,

represented by delay curves ending at voltages where the defect rate becomes too high to achieve

90% yield. As we increase switch size and hence decrease the magnitude of variation, we are able to

scale down Vdd and remain operational, down to 300 mV for 8× sized gates.

The delay-aware router also encounters functional failures, but is able to avoid defects at lower

voltages and smaller switch sizes. We see that the delay-aware router can retain 90% yield for 8×

sized gates at a Vdd that is 100 mV lower than the delay-oblivious case (300 mV vs 200 mV).

Figure 5.9b plots parametric delay for delay-optimal sizes across all Vdd’s (i.e., the composite

minimum curve of Figure 5.9a). Again, we see that the delay margins induced by variation (the

delay gap between delay-oblivious and nominal routing) at high Vdd is typically very small because

of excessive path length averaging. However, as we drop the supply voltage these delay margins

increase, up to around 1.2× the nominal delay at 300 mV. We see that delay-aware routing is able

to completely eliminate variation induced delay margins at 300 mV. In fact, delay-aware routing is

64

Vdd (V)

P
a

ra
m

e
tr

ic
 D

e
la

y
 (

s
)

1e−09

1e−08

1e−07

1e−06

1e−05

0.2 0.4 0.6 0.8

l

l

l

l

l

l

l

l

l
l

l
l l l

l

l

l

l

l

l

l

l

l
l

l
l l l

l

l

l

l

l

l

l

l

l
l

l
l l l

l

l

l

l

l

l

l

l

l

l
l

l l l

=Nominal

0.2 0.4 0.6 0.8

l

l

l
l

l l

l

l

l
l

l
l l

l

l

l

l

l
l

l l l

l

l

l

l

l

l

l
l

l l l

=Delay−oblivious

0.2 0.4 0.6 0.8

l

l

l

l
l

l
l l l

l

l

l

l

l

l
l

l
l l l

l

l

l

l

l

l
l

l
l l l

l

l

l

l

l

l

l

l
l

l
l l l

=Delay−aware

Switch Size

1
2

4
8

(a) Uniform switch sizes

Vdd (V)

P
a
ra

m
e
tr

ic
 D

e
la

y
 (

s
)

1e−09

1e−08

1e−07

1e−06

0.2 0.4 0.6 0.8

l

l

l

l

l

l

l

l

l

l
l

l
l l

l

l

l

l

l

l

l
l

l
l l

l

l

l

l

l

l

l

l

l
l

l
l l

Nominal
Delay−oblivious

Delay−aware

(b) Delay-optimal optimal uniform switch sizes

Vdd (V)

D
e
la

y
 R

a
ti
o

1.0

1.1

1.2

1.3

1.4

1.5

0.2 0.4 0.6 0.8

ll

ll

ll

ll

ll

ll

ll
ll

ll ll ll

(c) Delay ratio of delay-oblivious/delay-aware routing for op-
timal uniform switch sizes

Figure 5.9: Delay vs Vdd for uniform sizing (des, 22 nm LP)

65

able to perform faster than the nominal case, by utilizing low Vth transistors that are sped up by

variation on the critical path. Figure 5.9c plots the delay ratio of delay-oblivious to delay-aware

routing; we see that delay-aware routing improves delay by 1.53×, in the best case.

To demonstrate the energy trends of uniform sizing, Figure 5.10a plots parametric energy as a

function of Vdd and switch sizes. For the nominal case we see a characteristic minimum energy at

200 mV. We also see that minimum sized gates always provide energy-minimal operation, which is

a well known result in subthreshold circuit design [27]. Without variation, larger gates significantly

dynamic energy and wire capacitance and are not energy minimal.

For the delay-oblivious router, we see that in order to achieve lower Vdd and reduced energy, we

must actually increase gate sizes in order to avoid defects. We see that 4× sized switches provide

the minimal energy per operation at 400 mV. Here, larger, more reliable gates are actually more

energy efficient.

Because of its ability to avoid defects, delay-aware routing can use utilize the smaller, less reliable,

lower energy gates at low Vdd without failing. However, we still see that minimum energy/operation

is not achieved with minimum sized gates— here the energy minimum is achieved with 2× uni-

formly sized gates at 300 mV. Because delay-aware routing cannot tolerate more than 1% defects

(Figure 5.7), we cannot scale below 300 mV with 2× or 4× gates, nor can we utilize 1× gates be-

low 400 mV. Nevertheless, the energy benefit of using smaller gates at lower voltages is apparent:

compared to the delay-oblivious case, delay-aware routing uses 2× smaller gates and can scale Vdd

down by 100 mV (from 400 mV to 300 mV).

Figure 5.10b plots total energy/operation for energy-optimal sizes, again the composite minimum

of the previous figure. Here we can clearly see the energy advantage from delay-aware routing, which

is able to scale Vdd down by 100 mV more than delay-oblivious routing. The energy ratio of delay-

oblivious and delay-aware routing is plotted in Figure 5.10c. At 300 mV we see a difference of

more than 2.7× between delay-oblivious and delay-aware routing; however, this voltage is not the

minimum energy/operation. If we examine the minimum energy/operation for both routers we

observe that delay-aware routing yields a benefit of 1.91×, which is a 6% improvement over the

uniform minimum size case.

In summary, we see that energy-optimal, uniform sizing yields sizes of 4× for delay-oblivious and

2× for delay-aware routing. This smaller gate size combined with lower voltage operation provides

delay-aware routing with 1.91× energy savings.

5.2.2 Selective Sizing

Uniform sizing across all switch types (SBox, CBox input, CBox output) may not be the most

energy-optimal solution. The advantage of delay-aware routing is the ability to utilize smaller gates

through defect avoidance; however, defect avoidance rates may differ between switch types. For

66

Vdd (V)

P
a

ra
m

e
tr

ic
 E

n
e

rg
y
/O

p
e

ra
ti
o

n
 (

J
)

1e−12

1e−11

0.2 0.4 0.6 0.8

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

=Nominal

0.2 0.4 0.6 0.8

l l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

=Delay−oblivious

0.2 0.4 0.6 0.8

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

=Delay−aware

Switch Size

1
2

4
8

(a) Uniform switch sizes

Vdd (V)

P
a
ra

m
e
tr

ic
 E

n
e
rg

y
/O

p
e
ra

ti
o
n
 (

J
)

1e−12

0.2 0.4 0.6 0.8

l

l l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

Nominal
Delay−oblivious

Delay−aware

(b) Energy-optimal uniform switch sizes

Vdd (V)

E
n
e
rg

y
 R

a
ti
o

1.0

1.5

2.0

2.5

0.2 0.4 0.6 0.8

ll

ll

ll
ll

ll

ll

ll ll ll ll ll

(c) Energy ratio of delay-oblivious/delay-aware routing for
optimal uniform switch sizes

Figure 5.10: Energy/operation vs Vdd for uniform sizing (des, 22 nm LP)

67

example, we observed that the delay-aware router can generally tolerate up to 1% uniform defect

rates across all switch types. However, if the router can actually tolerate higher SBox defect rates,

we can size SBox switches down to save energy. This means that it may be more energy efficient

to size up switch types where delay-aware routing has trouble avoiding defects, and to size down

switch types that can easily be avoided.

Defect avoidance in FPGAs is afforded by the configurable, over-provisioned interconnect in

FPGAs, which enables the delay-aware router to choose between multiple possible paths from source

to sink when routing a net. The distribution and connectivity to those spare paths is not uniform

in an FPGA. For example, there are many, many possible channel segments that can be selected

for a route when routing a net from one CLB to another. There are several channels and possible

directions a route can utilize; nets even have the option of taking non-optimal, non-shortest path

routes. However, there are only a limited number of input pins that a net can use to enter a CLB. In

our 4× 4 architecture there are 10 possible input pins that can connect to 16 possible LUT inputs.

Because of clustering, these inputs are often shared, so the utilization of input pins is most often

under 100%. The number of output pins that a net can use to exit a CLB is also limited; this is

customarily set to the number of LUTs in the CLB. If the CLB is fully populated, no output pins

can be spared. The next section will more thoroughly explore impact of the number of channels and

CLB pins on defect avoidance.

First, we can observe that it may be more energy-optimal to selectively size down resources

that have more connectivity and spares, while sizing up the more important, limited connectivity

resources. To compare the impact of selectively sizing SBox switches, CBox inputs, and CBox

outputs switches on defect avoidance, we compare three cases, each where one resource is sized

up 8× while the other two resources are minimum sized. By measuring the yield in each of these

selectively sized cases, we can determine which resource has the largest quantitative impact on defect

avoidance.

Figure 5.11 plots average defect rates for CBox and SBox switches as a function of Vdd for each

of our three cases. Each case is denoted by a tuple which refers to the size of SBox, CBox input,

and CBox output respectively. For example, 1-1-8 refers to the case where only the CBox outputs

are sized up 8×. Very similar to Figure 5.9a, we see that the minimum sized gates have significantly

higher defect rates as Vdd decreases.

Because the delay-oblivious router has no knowledge of defects, we expect that changing defect

rates of individual types will be of no benefit. Figure 5.12 plots yield as a function of Vdd for the

delay-oblivious router for each sizing case. We see that each of the three cases is nearly identical for

delay-oblivious router—90% yield cannot be achieved below 550 mV. These cases are the same as

the uniform 1-1-1 sizing case explored in the previous section. Delay-oblivious routing cannot take

advantage of differential defect rates without knowledge of defects.

68

Vdd (V)

D
e

fe
c
t
R

a
te

 (
%

)

0.001

0.01

0.1

1

10

100

0.2 0.4 0.6 0.8

l

l

l
l

l

l

l l

l
l

l
l

l

l

l

l

l
l

l l

l
l

l

l

=Size (SBox−CBoxIn−CBoxOut) 8−1−1

0.2 0.4 0.6 0.8

l l

l l

l
l

l l

l

l

l

l
l

l

l

l
l

l l

l
l

l

l

=Size (SBox−CBoxIn−CBoxOut) 1−8−1

0.2 0.4 0.6 0.8

l l

l l

l
l

l l

l

l

l

l l

l
l

l
l

l

l

l

l

l
l

=Size (SBox−CBoxIn−CBoxOut) 1−1−8

SBox
CBox Input

CBox Output

Figure 5.11: Defect rates vs Vdd for selective sizing (des, 22 nm LP)

Vdd (V)

F
u
n
c
ti
o
n
a
l
Y

ie
ld

 (
%

)

0

20

40

60

80

100

0.2 0.4 0.6 0.8

l l l l l l l l

l

l l l l l l

l l l l l l l l

l

l l l l l l

l l l l l l l l

l

l l l l l l

Switch Size (SBox−CBoxIn−CBoxOut)

8−1−1
1−8−1

1−1−8

Figure 5.12: Delay-oblivious functional yield vs Vdd for selective sizing (des, 22 nm LP)

69

Vdd (V)

F
u
n
c
ti
o
n
a
l
Y

ie
ld

 (
%

)

0

20

40

60

80

100

0.2 0.4 0.6 0.8

l l l l l l

l l l l l l l l l

l l l l

l

l

l l l l l l l l l

l l l

l

l

l l l l l l l l l l

l l l

l

l l l l l l l l l l l

Switch Size (SBox−CBoxIn−CBoxOut)

1−1−1
8−1−1

1−8−1
1−1−8

Figure 5.13: Delay-aware functional yield vs Vdd for selective sizing (des, 22 nm LP)

Vdd (V)

P
a
ra

m
e
tr

ic
 E

n
e
rg

y
/O

p
e
ra

ti
o
n
 (

J
)

1e−12

0.2 0.4 0.6 0.8

l

l l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

Nominal
Delay−oblivious

Delay−aware

Figure 5.14: Energy/operation vs Vdd for energy-optimal selective sizing (1-2-2) (des, 22 nm LP)

70

Figure 5.13 plots yield as a function of Vdd for the delay-aware router for each sizing case. As

previously discussed, we expect higher defect rates in channel segments (SBoxes) to be more easily

avoided than CBox defects due to the larger number of spares and increased connectivity in SBox

switches. Indeed, we see that the 8-1-1 has very similar yield as the uniform 1-1-1 sizing case in the

previous section (90% yield at 400 mV). Sizing up SBox switches to 8× does not provide additional

defect avoidance because of the already exiting flexibility in the FPGA interconnect. However, we

see that the 1-8-1 case and the 1-1-8 case have slightly improved yield, achieving 90% yield at 350

mV and 300 mV respectively. Sizing up the more critical resources improves overall defect avoidance;

we see that CBox outputs are the most important resource. Sizing to 1-1-8 is provides roughly the

same yield as the previous uniform 2-2-2 case.

In general, we find that the energy-optimal selective sizing for the delay-aware router is 1-2-2

(assuming integer, power of 2 sizes). Figure 5.14 plots energy/operation as a function of Vdd for the

1-2-2 delay-aware router and the uniform sized delay-oblivious router. We see that the delay-aware

router is able to scale down to 300 mV instead of 400 mV in the uniform 2-2-2 case from the previous

section. What this means in terms of defect tolerance at 300 mV is that the delay-aware router can

actually tolerate defect rates of 10% in the SBoxes and 1% in the CBoxes (Figure 5.7)

We see that the delay-aware router sized at 1-2-2 instead of 2-2-2 is able to reduce energy by an

additional 8% when compared to the uniform sizing case. This slight increase is achieved by only

sizing up CLB I/Os.

5.3 Interconnect Sparing

Selective sizing demonstrated that certain FPGA interconnect resources (CBox inputs and outputs)

are more critical than others (SBoxes) when considering defect avoidance for delay-aware routing.

While sizing up those resources to directly reduce the magnitude of defect rates is one approach to

reliability, another approach is to make more spare resources available to the delay-aware router. In

this section we will briefly explore the impact of adding extra channels and extra CLB I/O pins on

the defect avoidance of delay-aware routing, and the possible energy benefits. The delay-oblivious

router, as expected, achieves absolutely no benefit by adding spare resources, hence those results

are omitted.

5.3.1 Extra Channels

We saw that sizing switches to 1-2-2 yielded the best energy/operation, which utilizes minimum

sized SBox switches. Sizing up only SBox switches yielded no benefit for the delay-aware router;

defect tolerance and energy benefits were only achieved by sizing up CBox inputs and outputs to

2×. This correlates to tolerable defects rates of 10% in SBoxes and 1% in CBox inputs and outputs,

71

Vdd (V)

F
u
n
c
ti
o
n
a
l
Y

ie
ld

 (
%

)

0

20

40

60

80

100

0.2 0.4 0.6 0.8

l l l

l

l l l l l l l l l l l

l l l

l

l l l l l l l l l l l

l l l

l

l l l l l l l l l l l

l l l

l

l l l l l l l l l l l

Extra Channels

1x
2x

4x
8x

Figure 5.15: Delay-aware functional yield vs Vdd for extra channels (des, 22 nm LP)

which limited Vdd scaling to 300 mV.

Below 300 mV, minimum sized SBox switches will encounter defect rates >30%. To see if adding

more SBox spares may aid in tolerating these increased rates, Figure 5.15 plots the yield of the

delay-aware router for the 1-2-2 sizing using several values of extra channels. Unfortunately, we see

that more than 8× the minimum number of channels still does not tolerate > 30% defects, preventing

of scaling of minimum sized SBox switches below 300 mV. In general we observe that the benefit of

adding extra channels is negligible.

5.3.2 Extra I/O Pins

We have seen thus far the CBox input and CBox output switches are the critical resources with

regards to defect tolerance: selectively sizing up these switches to 2× to reduce defect rates improved

yield far more than sizing up SBox switches. Hence, we saw that adding spare SBox resources (extra

channels) did not appreciably improve defect avoidance. Instead, it may be more useful to add extra

CLB I/O pins.

The ability to tolerate only defects rates of 10% in SBox switches and 1% in CBox switches limits

voltage scaling to 300 mV. While adding spares to CLB I/O will increase the tolerated defect rate

for CBoxes, scaling below 300 mV with minimum sized switches will yield > 30% defect rates which

we have shown we cannot tolerate.

Therefore, it may actually be beneficial to re-examine the 2-2-2 sizing case, where the raw SBox

72

Vdd (V)

F
u
n
c
ti
o
n
a
l
Y

ie
ld

 (
%

)

0

20

40

60

80

100

0.2 0.4 0.6 0.8

l l l l

l l l l l l l l l l l

l l

l

l l l l l l l l l l l l

l l

l l l l l l l l l l l l l

Extra Pins

1
2

4

Figure 5.16: Delay-aware functional yield vs Vdd for extra pins (des, 22 nm LP)

defect rate will be reduced at lower Vdd, enabling voltage scaling below 300 mV. Scaling below 300

mV will increase the CBox defect rate to 1–10%. Without CBox sparing we saw that we can tolerate

only up to 1% defects; here we will attempt to tolerate 1–10% through extra I/O pins.

Figure 6.4 shows the block diagram for a CLB including local interconnect and pins. We see that

adding spare pins on the input or output comes at a cost of increasing the size of the internal CLB

crossbar that connects the external CLB pins to the internal LUT pins. However, we observe that,

for our architecture, the majority of interconnect energy (>75%) is the global interconnect fabric.

This is due to the use of a smaller cluster size (4 × 4) and to the fact that more than 60% of all

energy is dissipated in long wires, which are only used in global interconnect segments.

For simplicity, we model the impact of adding equal numbers of pins to both the CLB input

and output. To see if we can tolerate the 1–10% CBox defects induced by a sizing of 2-2-2 and

scaling Vdd below 300 mV, Figure 5.16 plots yield as function of Vdd for the delay-aware router for

different values of extra pins. We see that adding extra pins enables scaling down to 200 mV where

we encounter 1–10% defect rates across all switch types. Effectively, we observe that the natural

FPGA interconnect can tolerate 10% SBox rates, while 4 extra pins are required for the same level

of tolerance in the CBox pins. By adding these CLB I/O spares, we increases the overall defect

avoidance of delay-aware routing, saving energy.

To see how much energy savings can be achieved by sizing at 2-2-2, using 4 extra pins, and

scaling Vdd down to 200 mV, Figure 5.17 plots parametric energy as a function of Vdd for the 2-2-2

73

Vdd (V)

P
a
ra

m
e
tr

ic
 E

n
e
rg

y
/O

p
e
ra

ti
o
n
 (

J
)

1e−12

0.2 0.4 0.6 0.8

l

l l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

Nominal
Delay−oblivious

Delay−aware

Figure 5.17: Energy/operation vs Vdd for energy-optimal sizing (2-2-2) and 4 extra pins (des, 22 nm
LP)

delay-aware router with extra pins and the uniform sized delay-oblivious router. We see that the

delay-aware router is able to reduce energy by an additional 15% by using extra pins, compared to

the 1-2-2 selectively sized case. As it turns out, lowering Vdd to 200 mV is not energy-optimal as the

minimum-energy point occurs at 250 mV. In total, we see that fully optimized delay-aware routing

reduces the minimum energy with respect to delay-oblivious routing by 2.28×, an improvement of

12%.

5.4 LUT Remapping

Thus far we have only considered Vth variation in interconnect. We have shown that delay-aware

routing is very effective at reducing delay margins and avoiding variation induced defects in inter-

connect switches at low Vdd. However, LUTs are also subject to variation, and the configuration

of LUTs are fixed during routing. Because LUT delays are a very small fraction (less than 10%)

of total delay, the delay impact from Vth variation in LUTs is minimal. LUTs however are still

subject to the same variation induced defects as interconnect switches, and require some form of

defect avoidance at low voltages to maintain high yield.

Our results so far have assumed minimum sizes for all transistors in the LUT (i.e., pass transistors,

inverters). The simplest way to avoid defects at low Vdd in the LUT is to size up these devices. As

around 80% of both static and dynamic energy are dissipated in interconnect switches and wires,

74

LUT Size

R
a
ti
o
 E

n
e
rg

y
 t
o
 M

in
im

u
m

 S
iz

e

1.00

1.05

1.10

1.15

1.20

1.25

1 2 4 8

l

l

l

l

Figure 5.18: Energy ratio of sized LUT to minimum as a function of LUT size

sizing up LUT transistors will not substantially directly increase energy. However, sizing up LUT

transistors can indirectly increase energy, by increasing area and lengthening wires. Figure 5.18

shows the impact of LUT size on the total dynamic energy for a mapped des circuit. We see that

8× sized LUTs increase total energy by 27%.

Unfortunately, we must size LUTs up to 8× in order to yield at low voltages. Figures 5.19

and 5.20 plot both defect rates and functional yield for LUTs at different sizes. We note that

delay-aware routing has no way of mapping around defects in LUTs—any failure in the inverters or

pass transistor multiplexers in the LUT will result in a failed chip. These results are identical for

delay-oblivious routing. We see that as soon as defects begin to emerge, yield drops. Thus, without

any techniques to avoid defects, we must either raise Vdd with small LUT sizes (i.e., >550 mV with

1×) or use large sizes for low Vdd (i.e., 8× for <250 mV).

Figure 5.21 plots energy as a function of Vdd for our optimized delay-aware routing results, but

with LUT variation and 8× sized LUTs. We see that dynamic energy increases by ≈ 25% due

to longer wires, increasing the gap between both delay-oblivious and delay-aware with respect to

nominal. Interestingly, we note that while delay-oblivious total energy increases by 25% because of

the increase in dynamic energy, delay-aware energy only increases by 5% because at 250 mV static

energy dominates dynamic energy. Hence, the ratio of delay-oblivious to delay-aware minimum

energy increases to 2.6×.

In order to reduce the size of the LUT, we would like to have an analog of component-specific rout-

75

Vdd (V)

D
e
fe

c
t
R

a
te

 (
%

)

1e−04

0.001

0.01

0.1

1

10

100

0.2 0.4 0.6 0.8

l

l

l l

l l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

LUT Size

1
2

4
8

Figure 5.19: Defect rates vs Vdd for LUT sizes (des, 22 nm LP)

Vdd (V)

F
u
n
c
ti
o
n
a
l
Y

ie
ld

 (
%

)

0

20

40

60

80

100

0.2 0.4 0.6 0.8

l l l l l l l l

l

l l l l l l

l l l l l l l

l l l l l l l l

l l l l

l

l l l l l l l l l l

l l l

l l l l l l l l l l l l

LUT Size

1
2

4
8

Figure 5.20: Functional yield vs Vdd for LUT sizes (des, 22 nm LP)

76

Vdd (V)

P
a
ra

m
e
tr

ic
 E

n
e
rg

y
/O

p
e
ra

ti
o
n
 (

J
)

1e−12

0.2 0.4 0.6 0.8

l

l l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

Nominal
Delay−oblivious

Delay−aware

Figure 5.21: Energy/operation vs Vdd for LUT sizes (des, 22 nm LP)

ing for LUT mapping to tolerate failures at low Vdd. Recall in Section 3.1.7 we saw that for the 1-bit

LUT primitive circuit, the failure probability is dependent on the precise configuration of the LUT.

We observed that configurations of 00 and 11 do not fail at any appreciable rate. Configurations

of 01 or 10, however, fail at rates very similar to those of inverters. This configuration dependent

failure probability may provide us with some leverage to avoid LUT defects post-fabrication, at

configuration time.

Figure 5.22 shows the circuit schematic of a simple 2-input LUT under variation with a con-

figuration of 0100. As noted previously (Section 3.1.5), we re-buffer after every mux primitive to

isolate each of the mux stages. In this example each of the transistors have nominal Vth except for

the two transistors in the first mux primitive, which have both a low and high Vth transistor due to

variation. With the given configuration (01 in the first two SRAM bits), we see that with enough

variation the first mux primitive will be subject to failure. The Ioff of the low Vth transistor will

be large, while Ion of the high Vth transistor will be small; if these currents are comparable the mux

will fail to switch the output to a high enough value.

However, if we have a defect map of the LUT prior to mapping, we can potentially avoid the

defective mux primitive. Figure 5.22 shows the same circuit, but with the configuration bits re-

ordered. Instead of a LUT configuration of 0100, we use a configuration of 0001. To perform this

remapping, we simply invert Input1 (the input to the second stage of the LUT), which results in a

functionally equivalent LUT but with a different LUT configuration. Now, the faulty mux primitive

77

�

������� �������

	�����

�

�

�

Figure 5.22: Defective LUT configuration under variation

�

������� �������	

A�����

�

�

	

Figure 5.23: Valid, remapped LUT configuration under variation

78

Vdd (V)

P
a
ra

m
e
tr

ic
 E

n
e
rg

y
/O

p
e
ra

ti
o
n
 (

J
)

1e−12

0.2 0.4 0.6 0.8

l

l l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

Nominal
Delay−oblivious

Delay−aware

Figure 5.24: Energy/operation vs Vdd for LUT sizes (des, 22 nm LP)

is assigned a 00 configuration, which we know will not be subject to failure. The 01 configuration

pair is assigned to mux with nominal Vth, and the LUT is now functional.

This remapping of configuration bits can enable us to size down transistors in the LUT as we

can now avoid defects. To perform our defect-tolerant mapping, we first determine the nominal

configuration of the logical LUTs at routing time via the benchmark netlist. Then we count the

number of 00 and 11 pairs in each logical LUT to determine how many defects that LUT can avoid.

We then match logical LUTs to physical LUTs, using a greedy matching strategy to assign the

most defect-tolerant logical LUTs to the most defective physical LUTs [34]. Finally, we explore all

possible input permutations for each physical LUT to determine the proper defect-free assignment.

If the assignment succeeds without encountering 01/10 mapped to a defective mux, the chip passes.

Avoiding defective mux primitives attached to the configuration bits will allow us to size down

the first stage of the LUT; however, later stages may not be able to be reduced in size. For example,

to size down a potentially defective mux in the second stage of the LUT, the configuration bit subtree

but be entirely 0000 or 1111 for the mux to yield. As we progress up the tree to the output of the

LUT, it becomes much less probable to find a subtree of all 0’s or 1’s. We have found that we cannot

maintain yield while sizing down gates past the first two stages of the LUT.

To examine the benefits of LUT remapping, we examine an architecture using our interconnect

optimizations and where the first 2 stages of the LUT are sized down to 2× while the rest of the LUT

is sized to 8×. Figure 5.24 plots energy/operation vs Vdd for our architecture relative to the oblivious

79

Vdd (V)

P
a

ra
m

e
tr

ic
 E

n
e

rg
y
/O

p
e

ra
ti
o

n
 (

J
)

1e−12

0.2 0.4 0.6 0.8

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

=Delay−aware

0.2 0.4 0.6 0.8

l l

l

l

l
l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l l

l

l

l

=Delay−oblivious

LUT Remapping
Extra Pins
Selective Sizing

Uniform Sizing
Power Gating
Baseline

Figure 5.25: Energy/operation vs Vdd for each optimization technique (des, 22 nm LP)

case where LUTs are uniformly sized to 8×. We see approximately a 8% reduction in dynamic energy,

and we see that delay-aware routing reduces energy by 2.66× compared to delay-oblivious. This is

an improvement of 17% over the case that did not consider LUT variation.

5.5 Summary

In this chapter we have explored several optimizations to enhance the benefits of component-specific

mapping. These optimizations have primarily been targeted at reducing leakage energy and increas-

ing the defect tolerance of delay-aware routing. Additionally, we developed a technique to increase

the resilience of LUTs by performing defect-aware mapping.

Figure 5.25 plots energy/operation for each of our optimizations for the delay-aware and delay-

oblivious routers for des at 22 nm. We see that each successive optimization lowers the minimum

energy/operation point. The LUT remapping optimization does show an net energy increase for

both delay-oblivious and delay-aware cases, as the interconnect-only optimizations did not consider

LUT variation and the required energy increase of sizing up LUTs. However, the LUT remapping

optimization is able to reduce the energy gap created by this increased sizing. In summary, our

thorough design space exploration has led us to the following architectural design point for the

purpose of creating a low energy, variation-tolerant FPGA architecture:

80

• 4× 4 architecture with Lseg = 1 directional wires: In agreement with prior work, we use

a small cluster and lut size with minimum length segments for low-energy operation.

• Delay-aware routed interconnect: To tolerate defects induced by variation at low Vdd,

and to reduce leakage energy/operation, we perform delay-aware routing assuming full delay

knowledge of all interconnect resources. This saves a factor of 1.72× energy/operation.

• Power gated switches: We use fine-grained power gated at the individual switch level to

reduce leakage at low Vdd, improving our results by 5%.

• Size 2× SBox and CBox switches: We size SBox and CBox gates uniformly at 2× for the

optimal balance of energy efficiency and reliability, reducing energy by an additional 14%.

• 20% extra channels: We route with only 20% extra channels, showing that increased channel

counts do not improve component-specific routing.

• 4 Extra CLB I/O pins: We add 4 extra input and output pins to the CLB to tolerate I/O

failures, saving an additional 12%.

• Hybrid size 2× and 8× LUT: We size down the first two stages of the LUT while sizing up

the latter stages. This differential sizing depends on LUT remapping.

• Defect-aware mapped LUT: We remap LUTs around defects to tolerate low Vdd failures

in the first two stages of a LUT. This improves our energy savings by 17%.

In total, we show that architecture optimized component-specific mapping reduces energy by

2.66×, an improvement of 1.54× over the non-optimized architecture. In the following chapters we

will evaluate this optimized architecture under a variety of different contexts, to determine both the

sensitivity of the architecture to technological assumptions, and to determine how our results change

under more practical delay measurement assumptions.

81

Chapter 6

Practicality

As described Section 1.4, the scope of this work is not to provide a complete solution to component-

specific mapping. The goal of this work is to quantify the potential benefits obtainable through

component-specific mapping and its possible optimizations. The two key pieces missing for a com-

plete solution to component-specific mapping are determining how to actually perform component-

specific measurement of individual resource delays, and how to map each chip individually without

exploding CAD runtime by running a full mapping for every chip. This chapter outlines existing

and ongoing work in solving both of these problems in order to provide perspective that they are

not insurmountable.

6.1 Component-Specific Measurement: Timing Extraction

Without reconfiguration, measuring every device on a chip would be extraordinarily difficult: each

device would need to somehow be individually addressable and able to be contacted through a highly

complex tester. Testing would also have to consist of delay measurement, rather than the typical

pass/fail testing for chips today. Further, testing each of the millions or even billions of devices on

a chip would take an extraordinarily long amount of time at great cost.

Reconfiguration allows for the possibility of configurable, fast self-testing without complex ex-

ternal testers. However, reconfiguration does not in and of itself solve the problem of determining

the delay of every resource. If the goal is to directly measure the delay of every single inverter, pass

transistor, and wire in an FPGA by configuring a path through each element individually, this is

impossible. Individual circuit primitives are not addressable in an FPGA; for example, when config-

uring the switch in Figure 2.3b, we see that we cannot decouple the output driver inverter and any

input stub inverters from downstream switches. However, as the delay of a path is the linear sum of

these element delays, it may be possible to make many different path measurements to construct a

linear system of path delay equations. Then, if the system is determined, one could solve the system

of equations and resolve each individual element delay. This idea forms the basis of the technique

82

N - 1 Inverters

Ring Enable

Output

Figure 6.1: Ring oscillator

of FPGA timing extraction.

Prior work has demonstrated several techniques that quickly and precisely measure path delays

through self-measurement in FPGAs. Sedcole et al. performed the first delay variability characteri-

zation of an entire commercial FPGA using an array of configured ring oscillators [104]. N-stage ring

oscillators (Figure 6.1) are configured on the FPGA, where each stage delay is the delay through a

single LUT, interconnect switches, and associated wiring. Connecting the output of the ring oscil-

lator to a counter allows us to count the number of oscillations within a known time interval and

compute the ring oscillator frequency. A nand gate can be used to enable/disable the oscillator

so the count is taken for a well-defined period of time. A ring oscillator only requires at minimum

N=3 stages. However, at N=3, the oscillator frequency may be too high for reliable operation of the

counter; in practice values of N=5 or N=7 are required. This limits the granularity of measurement

to 5 stages of LUT + interconnect delays. Although individual stage delays cannot be obtained,

individual stage delay variance can be estimated by dividing the oscillator delay variance by the

number of stages. Three separate estimates can be made and correlated by measuring the delay of

the N=5 ring, the N=7 ring, and the difference between the two measurements:

σ2

stage ≈
σ2

N=7

7
≈ σ2

N=5

5
≈

σ2

difference

3
(6.1)

Figure 6.2 shows a possible, chip-level measurement scheme. Ring oscillators are configured in

an array on each CLB within the device, and can be individually selected and controlled to avoid

local self-heating effects.

Because this measurement technique lumps together LUT and interconnect delays, it is more

useful for characterizing and isolating LUT delay variability than for characterizing the delay of

specific resources. Ring oscillators are not fine-grained enough to measure the delay of an individual

resource and are difficult to use for higher levels of interconnect. Additionally, as they do not

represent real circuits mapped to FPGAs, actual oscillator delay measurements can only be used

indirectly for component-specific mapping.

Instead of using ring oscillators, actual configured path delays which can consist of any number

of LUT and interconnect stages can be measured using the circuit shown in Figure 6.3 [124]. A

84

L
U

T

In
te

rc
o
n
n
ec

t

D

Q

4-LUT

Input D
Input C
Input B
Input A

M
U

X

FF

Figure 6.4: CLB with 4-LUT, register, and local interconnect

test stimulus is clocked into the launch register, through the combinational path, and into a sample

register. The clock rate is generated by a test clock generator circuit. Conveniently, modern com-

mercial FPGAs contain clock generators with picosecond timing precision. Increasing clock rates are

applied for each test, and the input and output of the sample register are compared to determine if

the correct value was latched for the tested clock frequency. If an error is detected a status register

is set, indicating a timing failure.

With this strategy, precise combinational delays of real circuits can be obtained solely through

configuration and self-measurement. Only three cycles are required per test, and one test can be

performed immediately after another. Further, with appropriate consideration to self-heating and

coupling, testing may be applied in parallel, where status register outputs can be combined into words

and written in parallel into on-chip FPGA memory. Wong et al. [124] report full self-characterization

of all LUTs (using internal CLB paths, as in the ring oscillator case) on a commercial FPGA in 3

seconds with 2 ps precision. Arbitrary path delay measurements using custom embedded structures

such as carry-chains and embedded multipliers were also demonstrated for commercial parts.

Given this technique for precisely measuring full paths delays, it may be possible to resolved

the delays of individual circuit elements. However, resolving the delays of elements as fine-grained

as individual inverters and wires will still be impossible. Figure 6.4 shows the schematic of a CLB

with its LUT, register and local interconnect. We see that any signal using the switch at the

highlighted crosspoint must then traverse the LUT through input A. Both the switch and LUT are

comprised of multiple circuit primitives (Figures 2.3b and 2.2b), which are impossible to decouple

through different path measurements. However, decoupling down to the level of individual gates is

not necessary if signals must always pass through groups of gates together. Instead, we can try to

resolve the composite delay of these groups of circuit elements, or Logical Components (LCs) [44].

Figure 6.5 shows how to construct a graph of LCs given the schematic in Figure 6.4. With a set

of measured paths, construction of a set of linear equations, and an appropriate change of basis, it

can be shown that resolving the delays of individual LCs is possible [44].

86

� �

Figure 6.6: CYA example

Adventure novels [90], a popular series of children’s novels from the 1980s and 1990s where multiple

paths in a branching story lead to different endings, and readers often test story paths until they

find the best possible ending.

Figure 6.6 shows an example using CYA for defect tolerance for the routing of a single net

(A → B). The architecture contains four tracks, where the fourth track is exclusively reserved

for alternative paths generated by the CYA router. Routing is initially performed with the fourth

track labeled “off limits”, and a route using the first track is found. Next, the router generates

an alternative path using the fourth, reserved track. Both of these routes are embedded in the

bitstream. At load time the first path is programmed, and a simple reachability test is performed

using the first route. The test fails due a defect on the first track and the route is deprogrammed.

The alternative path is then programmed, tested, and finally configured as valid.

CYA relies on three key pieces: bitstream composition, bitstream generation, and bitstream

loading.

Bitstream composition: The bitstream is composed of a list of two point nets, each with (1) a

set of testing instructions, (2) a base path, and (3) a list of alternative paths. The CYA bitstream

format does not require changes to the core of the FPGA, including the FPGA routing architecture.

Bitstream generation: The base route is generated by a standard FPGA router, with the only

modification being to mark certain resources as reserved for later use by alternatives. Alternatives

must then be generated, and must not conflict with the base route. Mutual exclusion can be guar-

anteed by a simple strategy of reserving routing tracks as in the example above, or by generalizing

that idea to using independent routing domains [125].

87

Bitstream loading: The bitstream loading process consists of four components: the programmer,

deprogrammer, tester, and controller. The programmer and deprogrammer simply set and reset the

configuration bits in the FPGA; these components require very small modifications to current FPGA

loading mechanisms (e.g., re-organizing the structure of current FPGA programming frames, and

allowing state rollbacks). The tester can leverage existing FPGA structures (LUTs, flip-flops) to

help perform any number of tests. The simplest tests would be end-to-end reachability tests as

previously described; more complex tests to determine the actual timing of the configured paths can

also be performed using “launch-from-capture” transition fault testing (e.g., Figure 6.3, [105, 118].

Finally, the controller co-ordinates between the programmer, deprogrammer and tester to run a very

simple program, test, deprogram loop.

The costs of CYA are the following: some amount of extra resources for alternative paths,

increased bitstream size scaling linearly with the number of alternative per net, and increased loading

time. Rubin et al. showed orders of magnitude yield improvement with only 20% extra channels

above the minimum, which is a common, low stress routing case easily achieved with the over-

provisioning of interconnect in modern FPGAs. Bitstream size was shown to be 2–50× larger

depending on the number of alternatives, with load times taking 2–100× longer depending on the

configuration architecture. For many FPGA customers bitstream size and configuration time are of

minimal importance.

While Rubin et al. demonstrated results for defect tolerance, the basic technique of testing

precomputed alternatives embedded in the bitstream can also be used to perform delay-aware routing

for variation. As noted above, by including timing requirements and substituting a timing test for

the correctness test, alternatives can be used to identify and replace slow paths on a fabricated

component. Instead of having complete knowledge of all resource delays to route a net, CYA can

instead obtain the aggregate delay of resources on a path. Then, CYA can select the fastest path

among a set of possible paths. Additionally, the CYA loading stage could be performed across a range

of voltages, detecting and avoiding defects and slow paths at low voltages, in order to determine the

minimum-energy configuration. However, because CYA relies on local substitutions and not global

routing information, we expect the results from using CYA for variation to be of lower quality than

those obtained by full knowledge delay-aware routing.

6.3 Impact of Delay Precision

The solutions outlined for component-specific measurement (timing extraction) and component-

specific mapping (CYA) raise questions about how the benefits of using full knowledge delay-aware

routing scale to more practical solutions. The delay-aware router presented in this work assumed

complete knowledge of all primitive circuit delays (i.e., inverters, muxes, LUTs) and full double

88

Vdd (V)

P
a
ra

m
e
tr

ic
 D

e
la

y
 (

s
)

1e−09

1e−08

1e−07

1e−06

1e−05

0.2 0.4 0.6 0.8

l

l

l

l

l

l

l

l

l
l

l
l l

l

l

l

l

l

l

l

l

l
l

l
l l

l

l

l

l

l

l

l

l

l

l
l

l l

l

l

l

l

l

l

l

l

l
l

l
l l

l

l

l

l

l

l

l

l

l

l
l

l l

l

l

l

l

l

l

l

l

l
l

l
l l

Measurement Precision (s)

1e−10
1e−09
1e−08

1e−07
1e−06
Defect−Only

Figure 6.7: Delay vs Vdd of delay-aware router for different measurement precisions (des, 22 nm LP)

floating point precision for every delay. However, both timing extraction and the delay tests in CYA

are limited in the precision at which delays can be measured. This section will examine the impact

of delay precision on the energy benefits of delay-aware routing.

6.3.1 Limited Measurement Precision Mapping

We saw that the path delay measurement scheme in Figure 6.3 has a maximum precision of 2ps (for

the particular 90 nm component used). It is likely that timing extraction will produce delays with

precisions on the order of picoseconds; it is possible that this limit on measurement precision will

have an impact on the delay and energy benefits of component-specific routing.

Figure 6.7 plots parametric delay as a function of Vdd for various measurement precisions, ranging

from 10s of picoseconds to microseconds, for the des benchmark at 22 nm using optimized sizing

and sparing. Measurement precision limits are applied to segment delays, which are assumed to be

the atomic unit of measurement. We also include a special case where only defects are measured; all

other delays are assumed to be nominal by the router. The maximum precision plotted is 100 ps,

as we found that 100 ps was the maximum precision needed to track the full measurement precision

case within 1% error.

We see that as measurement precision is reduced, the routed delay increases. One observation is

that the delay increase depends on both the measurement precision and the voltage. For example,

at 500 mV, 1 ns of measurement precision increases delay by 40%; however, at 300 mV, 1 ns of

89

Vdd (V)

D
e
la

y
 R

a
ti
o

1

2

3

4

0.2 0.4 0.6 0.8

ll

ll

ll

ll

ll

ll

ll

ll

ll
ll ll ll ll

Figure 6.8: Delay ratio of defect-only to full precision to routing vs Vdd (des, 22 nm LP)

Vdd (V)

P
a
ra

m
e
tr

ic
 E

n
e
rg

y
/O

p
e
ra

ti
o
n
 (

J
)

1e−12

0.2 0.4 0.6 0.8

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

Measurement Precision (s)

1e−10
1e−09
1e−08

1e−07
1e−06
Defect−Only

Figure 6.9: Energy/operation vs Vdd of delay-aware router for different measurement precisions (des,
22 nm LP)

90

measurement precision yields a delay identical to the full precision case. This is because segment

delays at 500 mV are much faster (on the order of 10s of nanoseconds) and measurement errors have

a more significant effect than at 300 mV where segments are much slower (100s of nanoseconds). At

low voltages high precision measurements are of less importance because of slow delays. We see that

the defect-only case is roughly equivalent to a measurement precision of 1µs. Figure 6.8 plots the

delay ratio of the defect-only route to full precision routing. In the worst case (300 mV) we see that

defect-only routing is approximately 4.5× slower than 100 ps–10 ns precision equivalent routing.

Figure 6.9 plots energy vs Vdd for each measurement precision case. At large Vdd we see that

energy is identical for all cases: at high Vdd delay and hence leakage energy have no impact on total

energy/operation. As we reduce Vdd, we see that reduced measurement precision increases energy/-

operation. Again we see that 100 ps–10 ns at low voltages is equivalent to the full precision case, with

minimum energy/operation achieved at 250 mV. As limited measurement precision increases delay,

we see the energy/operation curves begin to turn around due to the increase in leakage energy/op-

eration. For the defect-only and 1µs cases, the 4.5× increase in delay and leakage energy/operation

shifts the energy minimum up to 300 mV. The overall energy cost of performing defect-only routing

is 30% relative to the 100 ps–10 ns measurement precision case. In Chapter 5 we demonstrated

that full precision delay-aware routing can reduce energy with respect to delay-oblivious routing by

2.66×; with defect-only routing these savings fall to 2.04×.

While these results do quantify the impact of measurement precision, they do not explore the

impact of actually using a technique such as CYA routing for variation. Because CYA uses local

instead of global routing information and hence produces lower quality routes than a full CAD

routing step, we expect CYA routed designs to have both higher delay and energy than full knowledge

designs. However, the results presented here are a hard bound: CYA routing will perform no worse

than our defect-only case. With the addition of even moderately accurate delay tests, it is possible

that CYA will approach the full benefits of full knowledge delay-aware routing.

6.3.2 Limited Storage Precision Mapping

If component-specific mapping is to be practically usable on a large scale, it will be necessary to

implement techniques such as CYA where a single routing step is used to produce a bitstream that

can be customized per chip. However, it may be possible to run full routing on a component-specific

basis on a small scale. Several FPGA vendors manufacture very low volume, high cost, highly

specialized FPGAs for domain-specific applications [5]. Customers of such parts may be willing

to dedicate CAD resource to individual chips if the benefit of component-specific mapping is great

enough.

In these cases, measurement time and mapping time may not be the primary concern. However,

storing the entire delay and defect map for a high density FPGA may be infeasible—for a component

91

Vdd (V)

P
a
ra

m
e
tr

ic
 D

e
la

y
 (

s
)

1e−09

1e−08

1e−07

1e−06

1e−05

0.2 0.4 0.6 0.8

l

l

l

l

l

l

l

l

l

l
l

l l

l

l

l

l

l

l

l

l

l
l

l
l l

l

l

l

l

l

l

l

l

l
l

l
l l

l

l

l

l

l

l

l

l

l
l

l
l l

Storage Precision (bits)

2
4

8
64

Figure 6.10: Delay vs Vdd of delay-aware router for different storage precisions (des, 22 nm LP)

with billions of resources, a complete delay map may require tens of gigabytes of RAM allocated to

the processor performing delay-aware routing. However, it may not be necessary to store delays in

the delay map at their full numerical precision, which could significantly cut memory requirements.

This section will briefly examine the impact of reduced storage precision on the benefits of delay-

aware routing.

Given a fixed number of n storage bits allowed per segment delay, we use a simple, linear

binning scheme to break the range of delays into 2n bins. We then assign segment delays into their

appropriate bins, and set their actual delay as seen by the router as the max delay of the bin.

Figure 6.10 plots parametric delay as a function of Vdd for the 2-bit, 4-bit, 8-bit, and full 64-bit

precision cases for the des benchmark at 22 nm using optimized sizing and sparing. We see that

8-bits of precision using our very simple linear binning method provides results identical to the full

storage precision case. If less than 8-bits of precision are used, routed delay will increase. However,

even with only 2-bits of precision (4 total bins), we can achieve within a factor of 2× the full precision

delay in the worst case at 200 mV.

Figure 6.11 similarly plots energy vs Vdd results for each storage precision case. Again, we

see that 8-bits of storage precision is equivalent to the full precision case. When comparing the

minimum-energy points, we actually note that 4-bits of precision achieves within 2% of the full

precision minimum energy at 250 mV. The worst case of 2-bits of precision has an energy overhead

of an additional 26%.

92

Vdd (V)

P
a
ra

m
e
tr

ic
 E

n
e
rg

y
/O

p
e
ra

ti
o
n
 (

J
)

1e−12

0.2 0.4 0.6 0.8

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

Storage Precision (bits)

2
4

8
64

Figure 6.11: Energy/operation vs Vdd of delay-aware router for different storage precisions (des, 22
nm LP)

In conclusion, we find that measurement and storage precision can have a significant impact

on both the delay and energy of component-specific routing. However, very high measurement

and storage precisions are not needed to perform delay-aware routing. We find that 100 ps of

measurement precision and 8-bits of storage precision produce results identical to the full precision

cases. Additionally, we find that using a defect-aware router only incurs a 30% energy overhead with

respect the fully delay-aware router.

93

Chapter 7

Sensitivity

Thus far we have demonstrated the benefits of component-specific mapping, explored several op-

timizations, and examined how these benefits might scale with a more practical implementation.

In this chapter we will further explore how the benefits of component-specific mapping change un-

der design and technological assumptions. Specifically, we will see how sensitive our results are

to circuit pipeline depth, circuit size, the magnitude of Vth variation, and feature size. We will

quantify the energy margins of delay-oblivious mapping, and the corresponding energy savings of

component-specific mapping, across all benchmarks and feature sizes.

7.1 Pipeline Depth

In this work we have examined results from mapping the Toronto20 benchmark set [17], the standard

benchmark set for academic FPGA research. Unfortunately, from Table 4.1 we can see that these

benchmarks are very small by modern standards, using only 4,624 LUTs in the largest case. Mod-

ern FPGAs have hundreds of thousands of LUTs; for example, the largest Xilinx Virtex-6 contains

760,000 LUTs. Additionally, we note that half of the Toronto20 benchmarks use completely com-

binational logic. Modern FPGA designs are typically heavily pipelined to achieve high throughput;

therefore, our benchmark set is not fully representative of large, high performance modern designs.

However, at the time of the development of this work, no modern benchmark set with large

pipelined circuits that easily maps to VPR was publicly available. Additionally, VPR is known to

have significant problems placing highly pipelined circuits; without significant modifications to the

placement engine, pipelined circuits can have post-routing delays that are more than 40% above

their actual delays [38]. Therefore, to simulate some of the effects of large, pipelined circuits, we

create a simple, parameterized, hand-placed multiplier benchmark circuit where we can vary both

the circuit size and the pipeline depth.

Figure 7.1 shows our multiplier design. The design is a simple array multiplier where every single

signal exits a register, traverses a single segment, and then enters another register, guaranteeing a

94

b0 b1 b3b2

a0

a1

a2

a3

c0 c1 c3c2 c4 c5

c7

c6

Registered Full Adder (sum)
Registered Full Adder (carry)

Pipeline Register
Registered AND

Configurable Logic Block
I/O Block

Figure 7.1: Fully pipelined 4× FPGA multiplier

pipeline stage delay of only one LUT + segment. The circuit can be scaled up in size by powers of

4, and register pipeline stages can removed arbitrarily to vary the pipeline depth. This section will

examine the impact of pipeline depth while the next section will vary the size of the multiplier.

We expect that longer pipeline stages (more segments and LUT delays between registers) will

experience more path length averaging, meaning that delay variation will be reduced. Hence, both

the delay margins induced by variation (and the corresponding reduction those margins by delay-

aware routing) will be relatively small. With short pipeline stages (fewer segments and LUT delays

between registers) we expect to see much more delay variation. Additionally, since every net in

the multiplier is critical, it will be extremely difficult for the delay-oblivious router to minimize the

delay of every routed path simultaneously. The delay-aware router will also encounter difficultly

minimizing delay—without a large amount of extra resources, it will be impossible for the delay-

aware router to make all paths the same delay as in the nominal case. However, we expect the

delay-aware router to significantly outperform the delay-oblivious router.

Figure 7.2 plots the delay of a 16-bit multiplier as a function of pipeline stage length at 22 nm.

We plot delays with Vdd fixed at 600 mV for simplicity. We see that as we increase pipelining, the

delay of the nominal multiplier decreases by an order of magnitude as expected. The delay-aware

router is nearly able to track the nominal, no variation delays, eliminating delay margins induced by

variation. However, we see as pipeline stage length scales down, the ability of delay-aware router to

reduce delay margins decreases. The delay-oblivious router produces routes that are substantially

slower than both other routers.

Figure 7.3 plots the delay margins (ratio to nominal delay) for both the delay-oblivious and delay-

95

Pipeline Stage Length (Segments Between Registers)

P
a
ra

m
e
tr

ic
 D

e
la

y
 (

s
)

1e−10

1e−09

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

l l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l l
l

l

l l
l

l

l

l

l
l

l

l
l

l

l
l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

Nominal
Delay−oblivious

Delay−aware

Figure 7.2: Delay vs pipeline stage length (mult16, 22 nm LP, Vdd = 600mV)

Pipeline Stage Length (Segments Between Registers)

D
e
la

y
 R

a
ti
o

1.0

1.5

2.0

2.5

3.0

3.5

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

l l l
l

l

l
l

l l l

l

l l

l

l

l

l
l l l l l l l l l l l l l

l

l

Delay−oblivious Delay−aware

Figure 7.3: Delay ratio to nominal vs pipeline stage length (mult16, 22 nm LP, Vdd = 600mV)

96

Pipeline Stage Length (Segments Between Registers)

D
e
la

y
 R

a
ti
o

1.4

1.6

1.8

2.0

2.2

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

l

l l

l

l

l

l

l

l l

l

l
l

l

l

l

Figure 7.4: Delay ratio of delay-oblivious/delay-aware routing vs pipeline stage length (mult16, 22
nm LP, Vdd = 600mV)

aware routers. We see that as pipeline stage lengths decrease, the delay margins of delay-oblivious

routing grows substantially, from 1.4×−3.7× when moving from the fully combinational case to the

fully pipelined case. As expected, delay-oblivious routing struggles to reduce the critical path delay

when faced with all near-critical paths with large delay variance. The delay-aware router, however,

is able to handle the pipelined case fairly well, incurring a 60% delay margin. Figure 7.4 plots the

ratio of delay-oblivious to delay-aware routing. We see that for a fully combinational multiplier

under variation, delay-aware routing is able to route 1.3× faster than the delay-oblivious router; for

the fully pipelined case the delay improvement is 2.3×. Therefore, pipelining increases the delay

savings of delay-aware routing by 1.76×.

When considering minimum energy, for the nominal, no variation case we expect more heavily

pipelined multipliers to dissipate less energy. As the length of an operation decreases, the amount of

leakage energy/operation decreases, lowering the minimum-energy point. The delay-oblivious router,

however, produces significantly slower routes relative to nominal with more pipelining. Therefore,

we expect the energy of the delay-oblivious router to increase relative to the nominal router. We

note that the delay and leakage increase will be even greater than we have seen in Figure 7.3, as the

minimum energy for each pipelined multiplier case will be below 600mV.

Figure 7.5 plots minimum energy/operation as a function of pipeline stage length for the 16-bit

multiplier. We see that as we increase pipelining, the energy/operation of the nominal multiplier

decreases. The energy/operation of the delay-oblivious router, however, remains relatively con-

97

Pipeline Stage Length (Segments Between Registers)

P
a
ra

m
e
tr

ic
 E

n
e
rg

y
/O

p
e
ra

ti
o
n
 (

J
)

1e−13

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

l l l
l

l
l

l l

l
l

l

l

l

l

l

l

l
l l l

l l l l
l l l l

l l
l l

l l
l

l
l l

l l
l l

l l
l

l

l
l

Nominal
Delay−oblivious

Delay−aware

Figure 7.5: Minimum energy/operation vs pipeline stage length (mult16, 22 nm LP)

Pipeline Stage Length (Segments Between Registers)

E
n
e
rg

y
 R

a
ti
o

2

4

6

8

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

l
l l

l l

l
l

l l
l

l

l

l

l

l

l

l l l l l l l l l l
l

l

l

l
l

l

Delay−oblivious Delay−aware

Figure 7.6: Minimum energy/operation ratio to nominal vs pipeline stage length (mult16, 22 nm
LP)

98

Pipeline Stage Length (Segments Between Registers)

E
n
e
rg

y
 R

a
ti
o

1.8

2.0

2.2

2.4

2.6

2.8

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

l

l

l

l l

l

l
l l

l

l

l

l

l

l

l

Figure 7.7: Minimum energy/operation ratio of energy-oblivious/energy-aware routing vs pipeline
stage length (mult16, 22 nm LP)

stant. At low Vdd the delay-oblivious router produces routes with enough delay overhead at short

pipeline stage lengths that leakage energy/operation remains relatively constant at minimum energy.

This implies that, because of variation, we see no minimum energy/operation benefit to increasing

pipelining.

The delay-aware router is able to restore these energy/operation benefits of pipelining by routing

faster relatively to the delay-oblivious case with shorter pipeline lengths. Figure 7.6 plots the

minimum energy/operation ratio to nominal of both routers. In the unpipelined case, the energy

margin due to variation is 3.4×; this margin increases to nearly 9× for the fully pipelined multiplier.

The delay-aware router is able to maintain margins between 1.9−3.1×. Figure 7.7 plots the minimum

energy/operation ratio of delay-oblivious to delay-aware routing. We see that the energy savings of

delay-aware routing increase as we increase pipelining, from approximately 1.8− 2.8×. This means

that moving from a combinational circuit to a fully pipelined circuit improves the benefit of delay-

aware routing by 1.55×. Hence, we expect to see even better results for more heavily pipelined

benchmarks because the ability of delay-aware routing to substantially reduce delay (and therefore

energy) margins.

99

Table 7.1: Multiplier benchmark characteristics

Benchmark CLBs LUTs Min Chan Nets Crit Path Registered
Width Segments

mult4 8× 8 256 8 101 1 Yes
mult16 32× 32 4096 10 1771 1 Yes
mult64 128× 128 65536 12 29091 1 Yes

Multiplier Size

P
a
ra

m
e
tr

ic
 D

e
la

y
 (

s
)

2e−10

4e−10

6e−10

4 16 64

l

l

l

l

l

l

l

l

l

Nominal
Delay−oblivious

Delay−aware

Figure 7.8: Delay vs multiplier size (22 nm LP, Vdd = 600mV)

7.2 Circuit Size

In addition to pipeline depth, we can also vary the size of our multiplier to measure how the delay

and energy savings of delay-aware routing scale as a function of circuit size. Table 7.1 lists the

circuit characteristics of the three multipliers we examined: 4× 4, 16× 16, and 64× 64. The 64× 64

multiplier is over an order of magnitude larger than the largest Toronto20 circuit. We use the fully

pipelined case for each of these designs.

Larger circuits have many more switches, which means that we sample farther out on the Vth

distribution when assigning threshold voltages to transistors. This means larger delay variance,

which should increase the delay margins of delay-oblivious routing. The 16-bit multiplier contained

1771 critical nets; for the 64-bit multiplier we see 29091 critical nets. This increase in delay should

also manifest as an increase in the minimum energy/operation margins, as we saw in the previous

section.

Figure 7.8 plots delay as a function of multiplier size at 22 nm, again with Vdd fixed at 600 mV.

Although our multiplier is fully pipelined, we see that as we increase circuit size the delay of the

100

Multiplier Size

D
e
la

y
 R

a
ti
o

1.5

2.0

2.5

3.0

4 16 64

l

l

l

Figure 7.9: Delay ratio of delay-oblivious/delay-aware routing vs multiplier size (22 nm LP, Vdd =
600mV)

nominal, no variation multiplier, delay increases very slightly. This is due to the minimum channel

width router assigning slightly larger channels widths for the larger multipliers, which increases wire

length. Examining the delay-oblivious router, we see that the delay margins induced by variation

increase as we scale up circuit size. Delay-aware routing is able to reduce those margins; Figure 7.9

plots the ratio of delay-oblivious to delay-aware routing. We see that moving from a 4-bit to 64-bit

multiplier, the delay improvement of delay-aware routing increases from approximately 1.1− 3×.

Figure 7.10 plots minimum energy/operation as a function of multiplier size. As we increase the

size of the multiplier by powers of 4 we see that energy also increases exponentially. To determine

the energy savings of delay-aware routing, Figure 7.11 plots the minimum energy/operation ratio

of delay-oblivious to delay-aware routing. As in the previous section, we see an energy savings of

2.8× for the fully pipelined 16-bit multiplier. For the smaller, 4-bit multiplier we only see an energy

savings of 1.6×, while for the larger 64-bit multiplier we see an improvement of 3.2×. Therefore, in

addition to seeing better results for increased pipelining, we also expect to see increased minimum

energy/operation savings as we move to larger benchmarks.

7.3 Vth Variation

The PTM models predict 3σVth
as shown in Table 3.1. These values of σ are calculated using the

Avt method described in Section 3.1.2. While the Avt method is quite accurate and typically used

101

Multiplier Size

P
a
ra

m
e
tr

ic
 E

n
e
rg

y
/O

p
e
ra

ti
o
n
 (

J
)

1e−14

1e−13

1e−12

1e−11

4 16 64

l

l

l

l

l

l

l

l

l

Nominal
Delay−oblivious

Delay−aware

Figure 7.10: Minimum energy/operation vs multiplier size (22 nm LP)

Multiplier Size

E
n
e
rg

y
 R

a
ti
o

1.5

2.0

2.5

3.0

3.5

4 16 64

l

l

l

Figure 7.11: Minimum energy/operation ratio of energy-oblivious/energy-aware routing vs multiplier
size (22 nm LP)

102

Year 2013 2014 2015 2016 2017 2018 2019 2020 2021
Feature Size (nm) 27 24 21 18.9 16.9 15 13.4 11.9 10.6
ITRS 3σVth

/σVth
Variation (%) 58 81 81 81 81 112 112 112 112

PTM 3σVth
/σVth

Variation (%) - - 35 - - 42 - 50 -

Table 7.2: ITRS predicted Vth variation (Tables PIDS2 and DESN9 in [3])

in industry, it is still only a predictive technique. Another commonly used way of predicting Vth

variation is to cite the 3σVth
/µVth

values predicted by the ITRS [3]. The ITRS uses MASTAR [1]

to generate technology predictions; in general, the Vth variation values in the ITRS considered to

be pessimistically high. Table 7.2 shows the Vth variation predicted by the ITRS as a function of

feature size, obtained by ITRS Tables PIDS2 and DESN9. We can see that the magnitude of Vth

variation predicted by the ITRS is indeed high; for example, the ITRS predicts 3σ/µ variation at

22 nm to be 81%, which is approximately 2.3× larger than the PTM predictions.

Because predictions of Vth can vary, it is useful to examine the sensitivity of the energy savings

of component-specific to the magnitude of Vth variation for a fixed feature size. Figure 7.1 plots

the ratio of the minimum energy of delay-oblivious and delay-aware to nominal as a function of Vth

variation for des at 22 nm. The plot is marked at values of σVth
predicted by the PTM and ITRS

for 22 nm. At low σVth
the energy overhead of component-specific mapping is relatively small; at

σVth
= 10mV the ratio of delay-oblivious to nominal is only 1.6×. Component-specific mapping is

able to close the gap to 1.2×, for an energy savings of 1.33×. As σVth
increases, the energy overhead

of delay-oblivious mapping increases, up to 4.81× at the PTM predicted variation and 9.68× at the

ITRS predicted variation. Delay-aware mapping is able to close this gap at the PTM and ITRS

points, for an energy savings of 2.66× and 2.80× respectively. In general, we see that the energy

benefits of delay-aware mapping increase as the magnitude of Vth variation increases.

7.4 Feature Size

Thus far we have focused on the 22 nm node for consistency and to constrain our parameter space

for developing optimizations. To analyze how our results scale with respect to feature size, we

plot minimum energy/operation as a function of technology in Figure 7.13 for the nominal, no

variation case and both the delay-oblivious and delay-aware cases. As technology scales we expect

nominal energy/operation to decrease due to reduced capacitance; however, Vth variation increases

substantially (Table 3.1) and will induce energy margins. When examining the no variation case,

we see energy/operation does decrease with each technology generation, as expected. We also see

substantial energy margins in the delay-oblivious case, up to 8.44× in the worst case at 12 nm.

Delay-aware mapping is able to reduce this energy margins across all technologies, with a reduction

of 2.98× in the best case at 12 nm.

103

Vth Variation (1σ mV)

P
a
ra

m
e
tr

ic
 E

n
e
rg

y
/O

p
e
ra

ti
o
n
 R

a
ti
o
 t
o
 N

o
m

in
a
l

2

4

6

8

10

20 40 60 80 100

PTM ITRS

Delay−aware Delay−oblivious

Figure 7.12: Minimum energy/operation ratio to nominal vs Vth sigma (des, 22 nm LP)

Feature Size (nm)

P
a
ra

m
e
tr

ic
 E

n
e
rg

y
/O

p
e
ra

ti
o
n
 (

J
)

5.0e−13

1.0e−12

1.5e−12

2.0e−12

12 16 22 32 45

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

Nominal
Delay−oblivious

Delay−aware

Figure 7.13: Minimum energy/operation vs feature size (des)

104

Table 7.3: Minimum energy/operation variation-induced margins and component-specific mapping
benefits

Design Margin (Oblivious/Nominal) Benefit (Oblivious/Knowledge)
45nm 32nm 22nm 16nm 12nm 45nm 32nm 22nm 16nm 12nm

alu4 2.42 3.24 4.25 5.23 7.45 1.95 2.59 2.43 2.27 2.78
apex2 2.34 3.20 3.84 5.88 7.05 2.09 2.32 2.33 2.79 2.36
apex4 2.85 3.10 4.76 6.22 8.57 1.54 2.11 2.52 2.96 2.74
bigkey 1.93 2.94 3.88 4.99 8.89 1.58 2.45 2.64 2.67 2.63
clma 1.84 2.81 4.65 5.78 8.68 1.37 2.23 2.64 2.90 3.47
des 2.45 3.12 4.42 5.49 8.44 1.90 2.33 2.54 2.70 2.98
diffeq 1.82 3.45 4.55 5.87 7.29 1.73 3.03 2.68 2.64 2.62
dsip 2.45 3.51 4.40 5.70 6.99 1.88 2.42 2.84 2.84 2.55
elliptic 2.23 3.68 4.39 5.71 8.24 1.54 2.20 3.16 3.02 3.05
ex1010 2.46 2.90 3.90 4.88 8.65 1.68 1.97 2.23 2.57 3.04
ex5p 2.40 3.25 4.12 5.32 8.68 1.86 1.99 2.62 2.61 2.90
frisc 2.37 3.29 4.23 5.55 9.02 1.68 2.35 2.53 2.66 3.00
misex3 2.47 3.10 4.33 5.34 9.12 1.65 2.31 2.61 2.54 3.59
pdc 1.94 2.45 4.21 5.45 8.87 1.72 1.86 2.63 2.81 3.10
s298 1.55 3.15 4.77 5.68 8.55 1.26 2.28 3.08 3.17 3.53
s38417 1.58 3.55 4.54 5.38 8.42 1.39 2.75 2.52 2.54 2.86
s38584.1 1.58 3.22 4.87 6.23 8.98 1.26 2.48 2.88 3.19 3.25
seq 2.14 2.84 3.99 5.69 8.67 1.89 1.81 2.35 2.66 2.79
spla 2.56 2.90 4.22 5.99 7.94 1.77 1.86 2.54 2.58 2.65
tseng 2.65 3.01 4.00 6.01 8.88 2.17 2.08 2.22 3.25 3.46

Geomean 2.17 3.12 4.31 5.61 8.34 1.68 2.25 2.59 2.76 2.95

This energy margins induced by variation are large enough that we can see it no longer beneficial

in terms of minimum energy to scale from 16 nm to 12 nm: the delay-oblivious case shows a net

increase in energy when scaling from 16 nm to 12 nm. Here, the energy savings from scaling down to

a smaller feature size is lost due to the energy overhead of variation. This corresponds to the result

from [20] that demonstrated a similar trends for ASICs, and a similar turning point at 32 nm. When

examining delay-aware mapping, we see energy/operation decrease across the range of 45 nm–12 nm.

This means that component-specific mapping is effectively able to allow technology scaling to continue

delivering reductions in minimum operating energy for at least one more technology generation.

Table 7.3 compiles our results for delay-aware and delay-oblivious mapping across all the Toronto20

benchmarks and PTM feature sizes. We tabulate the energy margin induced by variation (delay-

oblivious/nominal energy/operation) and the energy savings achieved by component-specific map-

ping. Across all benchmarks and technologies, we observe minimum energy/operation savings of

1.68–2.95×.

105

Chapter 8

Future Work

This work is not a complete solution to component-specific mapping as it does not solve the is-

sues surrounding measurement and the one-mapping-fits-all model for current FPGA development.

Therefore, the most pressing future work would be to advance the partial solutions described in

Chapter 6.

However, there are a number of possible improvements that could be made towards the goal of

demonstrating the potential benefits of component-specific mapping:

Improved circuit modeling: Chapter 3 described in detail the circuits simulated for this work

and the methodology used for developing accurate and fast delay and energy estimates for academic

FPGA CAD tools. These models could be expanded to include a number of improvements.

Input slew rates have non-negligible impact on gate delay, developing a simulation model that

accounts for slew rate would make our results more accurate. This would also involve modifying the

timing analysis routines of VPR to account for prior gate delays when calculating the delay through

a given gate.

Improved circuits: Only particular implementations of the FPGA circuit primitives were ex-

plored in this work. There are a number of possible circuit implementation of LUTs, multiplexers

and switches. Some other circuit topologies have been explored in [64]. A thorough exploration of

these other possible switch implementations may yield a design with lower total energy dissipation.

Correct modeling of these switch types would require more extensive modifications to VPR.

Improved architecture modeling: There are several other additional sources of potentially

significant energy dissipation on modern FPGA architectures that are not modeled in this work:

I/O drivers, embedded DSPs, and embedded memories.

While none of these block are likely to contribute nearly as much energy as FPGA interconnect,

because they are hard, non-reconfigurable blocks, in order to maintain high-yield they may need

106

to be sized up, which would increase their energy dissipation proportionately. Memories have well

developed techniques for defect tolerance such as ECC and sparing [126]. However, it may be useful

to examine ways to use coarse-grained sparing for other blocks to help tolerate some amount of

failure. Another possibility is to explore making these block partially reconfigurable for the sole

purpose of increased reliability.

Additional benchmarks: This work only examined a hand mapped multiplier and the Toronto20

benchmark set, which is almost 15 years old [17]. We see in Table 4.1 that these benchmarks are

very small and mostly purely combinational. Very recently the FPGA community has compiled

a set of modern benchmarks [96]. These benchmarks are significantly larger and more pipelined

than the Toronto20. Section 7.1 and 7.2 attempted to scale our simple, pipelined multiplier up to

demonstrate the potential increased energy savings from using component-specific mapping on large,

pipelined circuits. Verifying these results for real circuits would prove useful.

Fully component-specific CAD flow: This work only examined random sources of variation.

While these sources are anticipated to be the most dominant future sources of variation, regional

and global variation are still significant. Future work would include modeling all possible sources

of variation. To combat regional variation, component-specific placement and clustering may be

essential. A complete delay-aware CAD flow would be able to demonstrate the full potential of

component-specific mapping to tolerate variation.

Benchmark analysis: Section 7.2 showed a correlation between circuit size and pipeline depth

and the energy savings from component-specific mapping. There are a number of other ways to

quantify the structure of benchmarks, and it may prove that other benchmark metrics correlate

strongly to increased benefits from component-specific mapping. For example, near-critical paths

are important under variation because there is a probability that they will become critical. The larger

the number of near-critical paths, the less likely that oblivious routing will find an adequate solution.

However, given enough routing flexibility component-specific routing should be able to compensate

for those near-critical paths that become critical. It may be useful to determine the correlation

between number of near-critical paths in a benchmark using techniques such as SSTA to component-

specific routing benefits. Ideally, one would be able to perform a simple set of circuit analyses on

the structure of a given benchmark to predict the energy reduction possible from component-specific

mapping.

Additional technologies: At the onset of this work, commercial FPGA feature sizes were at 90

nm. By the time this work was completed, 28 nm FPGAs are nearing production. The range of

technologies examined in this work (45 nm, 32 nm, 22 nm, 16 nm, 12 nm) is no longer completely

107

Ratio (FPGA/ASIC)
Metric Logic-Only Logic, DSP Logic, Memory Logic, Memory, DSP

Area 35 25 33 18
Delay 3.4 3.5 3.5 3.0
Dynamic Power 14 12 14 7.1

Table 8.1: FPGA/ASIC gap [59]

predictive—only three nodes project into the future. It would be beneficial to quantify the benefits

of component-specific mapping for more technology nodes into the future. In particular we would

like to see if component-specific mapping is still able to maintain a net minimum energy/operation

reduction under variation for the next technology node after 12 nm.

Additionally, there are a number of significant process changes that are on the horizon for FPGAs.

FinFET transistors are currently in production for commercial microprocessors [52] and will likely

be used for FPGAs. Other technologies such as fully depleted SOI [37] and CNTFETs [121] are also

candidate technologies for FPGAs. The PTM group has begun to develop predictive models for some

of these technologies that could be used for additional component-specific mapping experiments [108].

Component-specific mapped FPGA vs ASIC comparison: This work compared a component-

specific mapped FPGA to an oblivious mapped FPGA. A more interesting comparison may be to

compare the component-specific mapped FPGA to an ASIC, to demonstrate how close an FPGA

can come to an ASIC in terms of minimum energy/operation under variation.

Kuon and Rose [59] began to quantify the FPGA/ASIC power gap by synthesizing a set of

benchmark circuits for both a 90 nm FPGA and a 90 nm ASIC process using a standard, commercial

EDA flow without any specific power optimizations. They compared area, delay and dynamic power

of the ASIC to that of the FPGA in several different configurations: logic-only and logic with

different combinations of modern embedded structures (memory and DSPs). Table 8.1 summarizes

their results, showing that on average a logic only FPGA without any optimizations utilizes 14× the

dynamic power of a process equivalent ASIC. With non-configurable embedded memories and DSPs

this gap decreases to 7×. Embedded elements do not contain programmable interconnect, saving

capacitance and hence dynamic power. When comparing static power, they found that the gap is

roughly correlated (correlation coefficient of 0.8) to the area overhead of 18–32×, with embedded

blocks again reducing power overhead.

These results, however, were generated without quantifying the impact of variation. It may be

possible in future technologies that the energy margin induced by variation may be so large in ASICs

that FPGAs using component-specific mapping can close this energy gap.

Recreating the Kuon and Rose experiments using industrial CAD flows but with modeling vari-

ation and low Vdd operation would prove to be very challenging. It may however be possible to

108

perform some simple estimations and limit studies to develop an ASIC power model.

The dynamic energy overhead of FPGAs lies in the programmable interconnect. This intercon-

nect adds switched capacitance from drivers, and increases area which increases wire lengths. Signals

in ASICs do not need to traverse several switches to reach their destination, and will travel shorter

wire lengths. The reduction in switched capacitance is the main difference between the dynamic

energy of our delay-oblivious case from a real ASIC; however, because ASIC paths do not travel

through several switches, they will experience far less path length averaging than FPGAs. Therefore,

we expect an ASIC to perform much more similarly to our fully pipelined multiplier circuit than the

Toronto20 benchmarks.

We saw that in the best case at 12 nm component-specific mapping can save approximately 3×

energy; we also saw that pipelining typically increases energy savings by 1.5× because of the delay

increase of delay-oblivious mapping. Therefore, if we can save 4.5× minimum energy/operation,

we may be able to close the FPGA/ASIC gap (assuming no embedded blocks) from 14× down to

3.1×. If we assume some sort of embedded blocks that allow variation hardening, but maintain the

same energy ratio that Kuon and Rose measured, the 7.1× gap may be reduced to 1.5×. An energy

overhead of only 50% from using an FPGA would be very significant.

One simple study that might help to validate these estimates would be to use our existing FPGA

infrastructure, but to change the delay and energy cost of interconnect. For example, we could

assume that switches cost nothing in terms of delay and energy, and we could scale down wire

lengths proportional to the area ratios estimated by Kuon and Rose. To model logic, we could

perform technology mapping targeted to 2-input NAND gates instead of LUTs. We would then

need to simply develop a composable device model for NAND gates to develop delay and energy

estimates. These two relatively simple modifications may be enough to provide a rough idea on how

the energy of an ASIC might compare to an FPGA under variation, and by how much an FPGA

with component-specific mapping would be able to close the energy gap.

109

Chapter 9

Conclusions

In this thesis we have quantified the benefits of post-fabrication, component-specific mapping for

FPGAs targeting low-energy operation under variation. We have measured the impact of variation

at low Vdd, demonstrating that the energy margins induced by variation are substantial (2.17–8.34×

from 45 nm–12 nm). These margins are large enough that continued scaling to 12 nm does not

result in a net reduction in energy. We have shown that component-specific mapping can reduce

these energy margins significantly, saving 1.68–2.95× across all benchmarks and technologies. This

means we can continue minimum-energy scaling to 12 nm and possibly beyond.

To obtain these results, we developed accurate FPGA circuit and CAD models using HSPICE and

VPR. We then extensively explored the FPGA architectural design space to determine circuit and

architectural optimizations that enhance the benefits of component-specific mapping. We showed

that power gating, gate sizing, interconnect sparing, and LUT remapping optimizations increase the

energy savings of component-specific mapping by 1.54×. We propose an architecture that uses small

4× 4 clusters, minimum length segments, 2× sized switches, 4 extra CLB I/O pins, and mixed 2×

and 8× sized LUTs, to maximize the benefits of component-specific mapping.

We highlight some of the key lessons of this thesis as follows:

• Accurate circuit and CAD models are important: When characterizing the energy and

performance of an FPGA over a very wide range of Vdd and Vth, it is critical to use accurate

circuit models. Without accurate device models, predictions of delay and energy at low voltages

can contain substantial errors (potentially orders of magnitude) than can accumulate. Without

timing-targeted routing, stable routed results are difficult to obtain given Vth variation.

• Defects occur at non-negligible rates at low Vdd: While variation does slow devices down,

for our relatively unpipelined benchmarks, path length averaging reduces the delay impact of

variation. However, tolerating switching failures at low Vdd are very important when trying to

minimize energy.

• Defects for active nodes that cannot be overdriven matter: FPGAs consist of several

110

circuit primitives (i.e., inverters, SRAMs, passgates, muxes) that are each subject to failure.

However, nodes that are inactive (SRAMs) or can be statically overdriven (passgates) can be

specifically hardened. Circuits such as inverters that actively switching are harder to design

for increased reliability.

• Power gating is important for minimizing energy: Because FPGAs have so many un-

used resources, leakage energy/operation is substantial. Extraneous leakage energy/operation

raises the minimum Vdd point, hindering minimum-energy scaling. Power gating is an effective

technique for extending scaling to lower voltages.

• Minimum sized gates are not always energy-optimal under Vth variation: Without

variation, minimum sized gates are always energy-minimal; however, we have shown cases

where minimum sized gates actually dissipate more energy due to decreased reliability and the

required scaling up of Vdd. In some cases larger, more reliable gates enable scaling to lower

voltages.

• FPGAs are vulnerable to CBox defects, while SBox defects can be avoided: When

examining both sizing and sparing, we found it much more important to increase the size and

connectivity of CBox switches. These switches bottleneck signals in and out of CLBs, and

are commonly allocated without a large amount of natural sparing. The flexibility of FPGA

interconnect allows for more defect avoidance with SBox switches.

• Defect-only routing approaches the benefits of delay-aware routing: While delay

information provides high quality, lower energy routes, defect-only routing is adequate in

reducing energy, costing only 30% energy.

• Minimum-energy scaling will end with unchecked Vth variation: Without techniques

like component-specific mapping to deal with variation, it will become more beneficial to use

older feature sizes when designing parts for very low energy.

Component-specific mapping is not a solved problem; actually performing fine-grained measure-

ment and per-chip mapping without excessive CAD costs are key challenges that must be overcome.

Future work will be necessary to make actual, complete component-specific mapping on real parts

a reality. However, we have demonstrated that the energy benefit of overcoming these challenges is

large. Component-specific mapping relies on the very simple fact that it is always better to have

more information about the characteristics of the substrate being mapped. That is, mapping circuits

while ignorant to the specific physical characteristics of a device comes at a cost, in both delay and

energy. Hence, we believe that knowledge is power [14] (or more precisely, energy).

111

Bibliography

[1] Model for Assessment of CMOS Technology and Roadmaps (MASTAR). <http://www.itrs.

net/Links/2007ITRS/LinkedFiles/PIDS/MASTAR5/MASTARDownload.htm> , 2010.

[2] HSPICE. <http://www.synopsys.com/Tools/Verification/AMSVerification/

CircuitSimulation/HSPICE> , 2010.

[3] International Technology Roadmap for Semiconductors. <http://www.itrs.net/Links/

2010ITRS/Home2010.htm> , 2010.

[4] Achronix Semiconductor Corporation, Inc. Achronix Speedster Data Sheet, preliminary (v1.0)

edition, 2010.

[5] Actel. Design Techniques for Radiation-Hardened FPGAs. Actel, Inc., 955 East Arques

Avenue, Sunnyvale, CA 94086, 1997. Dual and TMR Application Note AC128 <https:

//www.actel.com/documents/Des_Tech_RH_AN.pdf> .

[6] E. Ahmed and J. Rose. The effect of LUT and cluster size on deep-submicron FPGA per-

formance and density. In Proceedings of the International Symposium on Field-Programmable

Gate Arrays, pages 3–12, New York, NY, USA, 2000. ACM.

[7] M. Alam, H. Kufluoglu, D. Varghese, and S. Mahapatra. A comprehensive model for PMOS

NBTI degradation: Recent progress. Microelectronics Reliability, 47(6):853–862, 2007.

[8] S. Alam, G. C. Lip, C. Thompson, and D. Troxel. Circuit level reliability analysis of Cu

interconnects. In Proceedings of the International Symposium on Quality Electronic Design,

pages 238–243, 2004.

[9] J. Anderson and F. Najm. Power-aware technology mapping for LUT-based FPGAs. In

Proceedings of the International Conference on Field-Programmable Technology, pages 211–

218, 2002.

[10] J. Anderson and F. Najm. Low-power programmable routing circuitry for FPGAs. In Pro-

ceedings of the International Conference on Computer-Aided Design, 2004.

http://www.itrs.net/Links/2007ITRS/LinkedFiles/PIDS/MASTAR5/MASTARDownload.htm
http://www.itrs.net/Links/2007ITRS/LinkedFiles/PIDS/MASTAR5/MASTARDownload.htm
http://www.itrs.net/Links/2007ITRS/LinkedFiles/PIDS/MASTAR5/MASTARDownload.htm
http://www.synopsys.com/Tools/Verification/AMSVerification/CircuitSimulation/HSPICE
http://www.synopsys.com/Tools/Verification/AMSVerification/CircuitSimulation/HSPICE
http://www.synopsys.com/Tools/Verification/AMSVerification/CircuitSimulation/HSPICE
http://www.itrs.net/Links/2010ITRS/Home2010.htm
http://www.itrs.net/Links/2010ITRS/Home2010.htm
https://www.actel.com/documents/Des_Tech_RH_AN.pdf
https://www.actel.com/documents/Des_Tech_RH_AN.pdf
https://www.actel.com/documents/Des_Tech_RH_AN.pdf

112

[11] A. Asenov. Random Dopant Induced Threshold Voltage Lowering and Fluctuations in Sub-

0.1µm MOSFET’s: A 3-D “Atomistic” Simulation Study. IEEE Trans. Electron Devices,

45(12):2505–2513, December 1998.

[12] A. Asenov. Intrinsic Threshold Voltage Fluctuations in Decanano MOSFETs Due to Local

Oxide Thickness Variation. IEEE Trans. Electron Devices, 49(1):112–119, January 2002.

[13] A. Asenov, S. Kaya, and A. R. Brown. Intrinsic Parameter Fluctuations in Decananome-

ter MOSFETs Introduced by Gate Line Edge Roughness. IEEE Trans. Electron Devices,

50(5):1254–1260, May 2003.

[14] F. Bacon. Meditationes Sacræ. De Hæresibus. 1597.

[15] R. Baumann. Soft errors in advanced computer systems. IEEE Design and Test of Computers,

22(3):258–266, May–June 2005.

[16] K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L. Ji, S. R. Nassif, E. J. Nowak,

D. J. Pearson, and N. J. Rohrer. High-performance CMOS variability in the 65-nm regime

and beyond. IBM Journal of Research and Development, 50(4/5):433–449, July/September

2006.

[17] V. Betz and J. Rose. FPGA Place-and-Route Challenge. <http://www.eecg.toronto.edu/

~vaughn/challenge/challenge.html> , 1999.

[18] S. Bijansky and A. Aziz. TuneFPGA: post-silicon tuning of dual-Vdd FPGAs. In Proceedings

of the ACM/IEEE Design Automation Conference, 2008.

[19] A. Bogiolo, L. Benini, and B. Riccò. Power estimation of cell-based CMOS circuits. In

Proceedings of the ACM/IEEE Design Automation Conference, pages 433–438, New York,

NY, USA, 1996. ACM.

[20] D. Bol, R. F. Ambroise, and J.-D. D. Legat. Impact of Technology Scaling on Digital Sub-

threshold Circuits. In Proceedings of the International Symposium on VLSI, pages 179–184,

2008.

[21] S. Borkar. Microarchitecture and Design Challenges for Gigascale Integration. <http://www.

microarch.org/micro37/presentations/MICRO37f> , December 2004. Keynote Talk at the

37th Annual IEEE/ACM International Symposium on Microarchitecture.

[22] S. Borkar. Designing Reliable Systems from Unreliable Components: the Challenges of Tran-

sistor Variability and Degradation. IEEE Micro, 25(6):10–16, November–December 2005.

http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.microarch.org/micro37/presentations/MICRO37f
http://www.microarch.org/micro37/presentations/MICRO37f

113

[23] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De. Parameter varia-

tions and impact on circuits and microarchitecture. In Proceedings of the ACM/IEEE Design

Automation Conference, pages 338–342, New York, NY, USA, 2003. ACM.

[24] B. Calhoun and A. Chandrakasan. Characterizing and Modeling Minimum Energy Operation

for Subthreshold Circuits. In Proceedings of the International Symposium on Low Power

Electronics and Design, pages 90–95, August 2004.

[25] B. Calhoun, F. Honore, and A. Chandrakasan. Design methodology for fine-grained leakage

control in MTCMOS. In Proceedings of the International Symposium on Low Power Electronics

and Design, 2003.

[26] B. Calhoun, S. Khanna, R. Mann, and J. Wang. Sub-threshold circuit design with shrinking

CMOS devices. In Proceedings of the IEEE International Symposium on Circuits and Systems,

pages 2541–2544, May 2009.

[27] B. Calhoun, A. Wang, and A. Chandrakasan. Device sizing for minimum energy operation

in subthreshold circuits. In Proceedings of the IEEE Custom Integrated Circuits Conference,

pages 95–98, October 2004.

[28] L. Cheng, D. Chen, and M. D. Wong. GlitchMap: An FPGA Technology Mapper for Low

Power Considering Glitches. In Proceedings of the ACM/IEEE Design Automation Conference,

pages 318–323, June 2007.

[29] L. Cheng, J. Xiong, L. He, and M. Hutton. FPGA Performance Optimization via Chipwise

Placement Considering Process Variations. In Proceedings of the International Conference on

Field-Programmable Logic and Applications, pages 1–6, 2006.

[30] C. Chow, L. Tsui, P. Leong, W. Luk, and S. Wilton. Dynamic voltage scaling for commercial

FPGAs. Proceedings of the International Conference on Field-Programmable Technology, pages

173–180, December 2005.

[31] W. B. Culbertson, R. Amerson, R. Carter, P. Kuekes, and G. Snider. Defect Tolerance on

the TERAMAC Custom Computer. In Proceedings of the IEEE Symposium on FPGAs for

Custom Computing Machines, pages 116–123, April 1997.

[32] A. DeHon. Balancing Interconnect and Computation in a Reconfigurable Computing Array

(or, why you don’t really want 100% LUT utilization). In Proceedings of the International

Symposium on Field-Programmable Gate Arrays, pages 69–78, February 1999.

[33] A. DeHon. Law of Large Numbers System Design. In S. K. Shukla and R. I. Bahar, editors,

Nano, Quantum and Molecular Computing: Implications to High Level Design and Validation,

chapter 7, pages 213–241. Kluwer Academic Publishers, Boston, 2004.

http://www.cs.berkeley.edu/projects/brass/documents/fixedws_fpga99.html
http://www.cs.berkeley.edu/projects/brass/documents/fixedws_fpga99.html

114

[34] A. DeHon and H. Naeimi. Seven Strategies for Tolerating Highly Defective Fabrication. IEEE

Design and Test of Computers, 22(4):306–315, July–August 2005.

[35] A. DeHon and M. J. Wilson. Nanowire-Based Sublithographic Programmable Logic Arrays.

In Proceedings of the International Symposium on Field-Programmable Gate Arrays, pages

123–132, February 2004.

[36] Q. Dinh, D. Chen, and M. Wong. A routing approach to reduce glitches in low power FPGAs.

IEEE Transactions on Computed-Aided Design for Integrated Circuits and Systems, 29(2):235–

240, 2010.

[37] B. Doyle, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton, A. Murthy,

R. Rios, and R. Chau. High performance fully-depleted tri-gate CMOS transistors. Electron

Device Letters, IEEE, 24(4):263–265, April 2003.

[38] K. Eguro and S. Hauck. Enhancing timing-driven FPGA placement for pipelined netlists. In

Proceedings of the ACM/IEEE Design Automation Conference, pages 34–37, New York, NY,

USA, 2008. ACM.

[39] A. H. Farrahi and M. Sarrafzadeh. FPGA Technology Mapping for Power Minimization. In

Proceedings of the International Conference on Field-Programmable Logic and Applications,

pages 66–77, London, UK, 1994. Springer-Verlag.

[40] D. J. Frank. Power Constrained CMOS Scaling Limits. IBM Journal of Research and Devel-

opment, 46(2/3):235–244, March 2002.

[41] A. Gayasen, K. Lee, N. Vijaykrishnan, M. Kandemir, M. Irwin, and T. Tuan. A Dual-Vdd

Low Power FPGA Architecture. In Proceedings of the International Conference on Field-

Programmable Logic and Applications, pages 145–157. Springer, 2004.

[42] A. Gayasen, Y. Tsai, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, and T. Tuan. Reducing

leakage energy in FPGAs using region-constrained placement. In Proceedings of the Interna-

tional Symposium on Field-Programmable Gate Arrays, pages 51–58, 2004.

[43] V. George, H. Zhang, and J. Rabaey. The design of a low energy FPGA. In Proceedings of the

International Symposium on Low Power Electronics and Design, pages 188–193, 1999.

[44] B. Gojman. Timing Extraction Method. Personal Communications, August 2011.

[45] B. Gojman and A. DeHon. VMATCH: Using Logical Variation to Counteract Physical Vari-

ation in Bottom-Up, Nanoscale Systems. In Proceedings of the International Conference on

Field-Programmable Technology, pages 78–87. IEEE, December 2009.

http://ic.ese.upenn.edu/abstracts/seven_strategies_ieeedt2005.html
http://ic.ese.upenn.edu/abstracts/nanopla_fpga2004.html
http://ic.ese.upenn.edu/abstracts/vmatch_fpt2009.html
http://ic.ese.upenn.edu/abstracts/vmatch_fpt2009.html

115

[46] S. Gupta, J. Anderson, L. Farragher, and Q. Wang. CAD techniques for power optimization

in Virtex-5 FPGAs. In Proceedings of the IEEE Custom Integrated Circuits Conference, pages

85–88, 2007.

[47] S. Hanson, B. Zhai, K. Bernstein, D. Blaauw, A. Bryant, L. Chang, K. K. Das, W. Haensch,

E. J. Nowak, and D. M. Sylvester. Ultralow-voltage, minimum-energy CMOS. IBM Journal

of Research and Development, 50(4–5):469–490, July/September 2006.

[48] L. He, A. Kahng, K. H. Tam, and J. Xiong. Simultaneous Buffer Insertion and Wire Sizing

Considering Systematic CMP Variation and Random Leff Variation. IEEE Transactions on

Computed-Aided Design for Integrated Circuits and Systems, 26(5):845–857, May 2007.

[49] M. Hioki, T. Kawanami, T. Tsutsumi, T. Nakagawa, T. Sekigawa, and H. Koike. Evalua-

tion of granularity on threshold voltage control in flex power FPGA. In Proceedings of the

International Conference on Field-Programmable Technology, pages 17–24, December 2006.

[50] Y. Hu, Y. Lin, L. He, and T. Tuan. Physical synthesis for FPGA interconnect power reduction

by dual-Vdd budgeting and retiming. ACM Transactions on Design Automation of Electronic

Systems, 13(2):1–29, 2008.

[51] P. Jamieson, W. Luk, S. J. Wilton, and G. A. Constantinides. An energy and power consump-

tion analysis of FPGA routing architectures. Proceedings of the International Conference on

Field-Programmable Technology, pages 324–327, December 2009.

[52] E. Karl, Y. Wang, Y.-G. Ng, Z. Guo, F. Hamzaoglu, U. Bhattacharya, K. Zhang, K. Mistry, and

M. Bohr. A 4.6GHz 162Mb SRAM design in 22nm tri-gate CMOS technology with integrated

active VMIN-enhancing assist circuitry. In Proceedings of the International Solid-State Circuits

Conference, pages 230–232, February 2012.

[53] K. Katsuki, M. Kotani, K. Kobayashi, and H. Onodera. A Yield and Speed Enhancement

Scheme under Within-die Variations on 90nm LUT Array. In Proceedings of the IEEE Custom

Integrated Circuits Conference, pages 601–604, 2005.

[54] T. Kawanami, M. Hioki, Y. Matsumoto, T. Tsutsumi, T. Nakagawa, T. Sekigawa, and

H. Koike. Optimal set of body bias voltages for an FPGA with field-programmable Vth

components. Proceedings of the International Conference on Field-Programmable Technology,

pages 329–332, December 2006.

[55] S. Kirkpatrik, C. D. Gellatt, Jr., and M. P. Vecchi. Optimization by Simulated Annealing.

Science, 220(4598):671–680, May 1983.

[56] M. Klein. The Virtex-4 Power Play. Xcell Journal, (52):16–19, Spring 2005.

116

[57] G. Krishnan. Flexibility with EasyPath FPGAs. Xcell Journal, 0(4):96–98, 2005.

[58] A. Kumar and M. Anis. FPGA Design for Timing Yield Under Process Variations. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 18(3):423–435, March 2010.

[59] I. Kuon and J. Rose. Measuring the Gap Between FPGAs and ASICs. IEEE Trans. Computer-

Aided Design, 26(2):203–215, February 2007.

[60] E. Kusse and J. Rabaey. Low-Energy Embedded FPGA Structures. In Proceedings of the

International Symposium on Low Power Electronics and Design, pages 155–160, August 1998.

[61] J. Kwong and A. P. Chandrakasan. Variation-Driven Device Sizing for Minimum Energy Sub-

threshold Circuits. In Proceedings of the International Symposium on Low Power Electronics

and Design, pages 8–13, 2006.

[62] J. Lamoureux and S. Wilton. On the interaction between power-aware FPGA CAD algorithms.

In Proceedings of the International Conference on Computer-Aided Design. IEEE Computer

Society Washington, DC, USA, 2003.

[63] J. Lamoureux and S. Wilton. Activity Estimation for Field-Programmable Gate Arrays. Pro-

ceedings of the International Conference on Field-Programmable Logic and Applications, pages

1–8, August 2006.

[64] E. Lee, G. Lemieux, and S. Mirabbasi. Interconnect Driver Design for Long Wires in Field-

Programmable Gate Arrays. Journal of Signal Process. Systems, 51(1):57–76, April 2008.

[65] G. Lemieux, E. Lee, M. Tom, and A. Yu. Directional and Single-Driver Wires in FPGA Inter-

connect. In Proceedings of the International Conference on Field-Programmable Technology,

pages 41–48, December 2004.

[66] D. Lewis, E. Ahmed, D. Cashman, T. Vanderhoek, C. Lane, A. Lee, and P. Pan. Architectural

enhancements in Stratix-III and Stratix-IV. In Proceedings of the International Symposium

on Field-Programmable Gate Arrays, pages 33–42. ACM, 2009.

[67] F. Li, D. Chen, L. He, and J. Cong. Architecture evaluation for power-efficient FPGAs. In

Proceedings of the International Symposium on Field-Programmable Gate Arrays, page 175,

New York, New York, USA, 2003. ACM Press.

[68] F. Li, Y. Lin, and L. He. FPGA power reduction using configurable dual-Vdd. In Proceedings

of the ACM/IEEE Design Automation Conference, pages 735–740. ACM, 2004.

[69] F. Li, Y. Lin, and L. He. Vdd programmability to reduce FPGA interconnect power. In

Proceedings of the International Conference on Computer-Aided Design, pages 760–765. IEEE,

2004.

117

[70] F. Li, Y. Lin, L. He, and J. Cong. Low-power FPGA using pre-defined dual-Vdd/dual-Vt

fabrics. In Proceedings of the International Symposium on Field-Programmable Gate Arrays,

page 4250. ACM, 2004.

[71] H. Li, S. Katkoori, and W.-K. Mak. Power minimization algorithms for LUT-based FPGA

technology mapping. ACM Transactions on Design Automation of Electronic Systems, 9(1):33–

51, January 2004.

[72] Y. Lin and J. Cong. Power modeling and characteristics of field programmable gate ar-

rays. IEEE Transactions on Computed-Aided Design for Integrated Circuits and Systems,

24(11):1712–1724, November 2005.

[73] Y. Lin and L. He. Dual-Vdd Interconnect With Chip-Level Time Slack Allocation for FPGA

Power Reduction. IEEE Transactions on Computed-Aided Design for Integrated Circuits and

Systems, 25(10):2023–2034, October 2006.

[74] Y. Lin and L. He. Stochastic Physical Synthesis for FPGAs with Pre-routing Interconnect

Uncertainty and Process Variation. In Proceedings of the International Symposium on Field-

Programmable Gate Arrays, pages 80–88, 2007.

[75] Y. Lin, L. He, and M. Hutton. Stochastic physical synthesis considering prerouting intercon-

nect uncertainty and process variation for FPGAs. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 16(2):124, 2008.

[76] Z.-M. Ling, J. Cho, R. W. Wells, C. S. Johnson, and S. G. Davis. Method of Using Partially

Defective Programmable Logic Devices. United States Patent Number: 6,664,808, December

16 2003.

[77] N. Lotze, J. Goppert, and Y. Manoli. Timing modeling for digital sub-threshold circuits.

In Proceedings of the Conference and Exhibition on Design, Automation and Test in Europe,

pages 299–302, March 2010.

[78] G. Lucas, C. Dong, and D. Chen. Variation-aware placement for FPGAs with multi-cycle sta-

tistical timing analysis. In Proceedings of the International Symposium on Field-Programmable

Gate Arrays, pages 177–180, New York, New York, USA, 2010. ACM.

[79] R. Manohar. Reconfigurable asynchronous logic. In Proceedings of the IEEE Custom Integrated

Circuits Conference, pages 13–20, 2006.

[80] Y. Matsumoto, M. Hioki, T. Kawanami, H. Koike, T. Tsutsumi, T. Nakagawa, and T. Seki-

gawa. Suppression of Intrinsic Delay Variation in FPGAs using Multiple Configurations. Trans-

actions on Reconfigurable Technology and Systems, 1(1), March 2008.

118

[81] L. McMurchie and C. Ebeling. PathFinder: A Negotiation-Based Performance-Driven Router

for FPGAs. In Proceedings of the International Symposium on Field-Programmable Gate Ar-

rays, pages 111–117, 1995.

[82] N. Mehta, R. Rubin, and A. DeHon. Limit Study of Energy & Delay Benefits of Component-

Specific Routing. In Proceedings of the International Symposium on Field-Programmable Gate

Arrays, pages 97–106, 2012.

[83] A. Mishchenko, S. Chatterjee, and R. K. Brayton. Improvements to Technology Mapping for

LUT-Based FPGAs. IEEE Transactions on Computed-Aided Design for Integrated Circuits

and Systems, 26(2):240–253, February 2007.

[84] S. Mukhopadhyay, H. Mahmoodi, and K. Roy. Modeling of failure probability and statisti-

cal design of SRAM array for yield enhancement in nanoscaled CMOS. IEEE Transactions

on Computed-Aided Design for Integrated Circuits and Systems, 24(12):1859–1880, December

2005.

[85] G. Nabaa, N. Azizi, and F. N. Najm. An Adaptive FPGA Architecture with Process Variation

Compensation and Reduced Leakage. In Proceedings of the ACM/IEEE Design Automation

Conference, pages 624–629, 2006.

[86] K. Nagaraj and S. Kundu. Process Variation Mitigation via Post Silicon Clock Tuning. In

Proceedings of the Great Lakes Symposium on VLSI, pages 227–232, 2009.

[87] S. Narendra, V. De, D. Antoniadis, A. Chandrakasan, and S. Borkar. Scaling of stack effect

and its application for leakage reduction. In Proceedings of the International Symposium on

Low Power Electronics and Design, pages 195–200, New York, NY, USA, 2001. ACM.

[88] S. Nassif. Delay variability: sources, impacts and trends. In Proceedings of the International

Solid-State Circuits Conference, pages 368–369, 2000.

[89] S. R. Nassif, N. Mehta, and Y. Cao. A Resilience Roadmap. In Proceedings of the Conference

and Exhibition on Design, Automation and Test in Europe, March 2010.

[90] E. Packard. The Cave of Time. Bantam Books, 1979.

[91] K. Poon, S. Wilton, and A. Yan. A detailed power model for field-programmable gate arrays.

ACM Transactions on Design Automation of Electronic Systems, 10:279–302, 2005.

[92] G. J. Pottie and W. J. Kaiser. Wireless integrated network sensors. Communications of the

ACM, 43(5):51–58, May 2000.

http://www.cs.washington.edu/research/projects/lis/www/papers/postscript/mcmurchie-FPGA95.ps
http://www.cs.washington.edu/research/projects/lis/www/papers/postscript/mcmurchie-FPGA95.ps
http://ic.ese.upenn.edu/abstracts/cspec_limit_fpga2012.html
http://ic.ese.upenn.edu/abstracts/cspec_limit_fpga2012.html

119

[93] A. Rahman, S. Das, T. Tuan, and S. Trimberger. Determination of Power Gating Granularity

for FPGA Fabric. In Proceedings of the IEEE Custom Integrated Circuits Conference, pages

9–12, September 2006.

[94] A. Ramalingam, S. V. Kodakara, A. Devgan, and D. Z. Pan. Robust analytical gate de-

lay modeling for low voltage circuits. In Proceedings of the Asia and South Pacific Design

Automation Conference, pages 61–66, Piscataway, NJ, USA, 2006. IEEE Press.

[95] J. Rose et al. VPR and T-VPack: Versatile Packing, Placement and Routing for FPGAs.

<http://www.eecg.utoronto.ca/vpr/> , 2009.

[96] J. Rose, J. Luu, C. W. Yu, O. Densmore, J. Goeders, A. Somerville, K. B. Kent, P. Jamieson,

and J. Anderson. The VTR project: architecture and CAD for FPGAs from verilog to routing.

In Proceedings of the International Symposium on Field-Programmable Gate Arrays, pages 77–

86, New York, NY, USA, 2012. ACM.

[97] E. Rosenbaum, P. Lee, R. Moazzami, P. Ko, and C. Hu. Circuit reliability simulator-oxide

breakdown module. In Technical Digest of the IEEE International Electron Device Meeting,

pages 331–334, December 1989.

[98] R. Rubin and A. DeHon. Choose-Your-Own-Adventure Routing: Lightweight Load-Time

Defect Avoidance. Transactions on Reconfigurable Technology and Systems, 4(4), December

2011.

[99] R. Rubin and A. DeHon. Timing-Driven Pathfinder Pathology and Remediation: Quantifying

and Reducing Delay Noise in VPR-Pathfinder. In Proceedings of the International Symposium

on Field-Programmable Gate Arrays, pages 173–176, 2011.

[100] J. Ryan and B. Calhoun. A sub-threshold FPGA with low-swing dual-VDD interconnect in

90nm CMOS. In Proceedings of the IEEE Custom Integrated Circuits Conference, pages 1–4,

September 2010.

[101] I. Sauciuc, R. Prasher, J.-Y. Chang, H. Erturk, G. Chrysler, C.-P. Chiu, and R. Mahajan.

Thermal Performance and Key Challenges for Future CPU Cooling Technologies. ASME

Conference Proceedings, 2005(42002):353–364, 2005.

[102] A. Scholten, H. Tromp, L. Tiemeijer, R. Van Langevelde, R. Havens, P. De Vreede, R. Roes,

P. Woerlee, A. Montree, and D. Klaassen. Accurate thermal noise model for deep-submicron

CMOS. In Technical Digest of the IEEE International Electron Device Meeting, pages 155–158,

1999.

http://www.eecg.utoronto.ca/vpr/
http://www.eecg.utoronto.ca/vpr/
http://ic.ese.upenn.edu/abstracts/cya_trets2011.html
http://ic.ese.upenn.edu/abstracts/cya_trets2011.html
http://ic.ese.upenn.edu/abstracts/pathfinder_noise_fpga2011.html
http://ic.ese.upenn.edu/abstracts/pathfinder_noise_fpga2011.html

120

[103] L. Schwiebert, S. K. Gupta, and J. Weinmann. Research challenges in wireless networks of

biomedical sensors. In Proceedings of the International Conference on Mobile Computing and

Networking, pages 151–165, New York, NY, USA, 2001. ACM.

[104] P. Sedcole and P. Y. K. Cheung. Within-die Delay Variability in 90nm FPGAs and Beyond. In

Proceedings of the International Conference on Field-Programmable Technology, pages 97–104,

2006.

[105] P. Sedcole and P. Y. K. Cheung. Parametric Yield Modeling and Simulations of FPGA Circuits

Considering Within-Die Delay Variations. Transactions on Reconfigurable Technology and

Systems, 1(2), June 2008.

[106] L. Shang, A. Kaviani, and K. Bathala. Dynamic power consumption in Virtex-II FPGA family.

In Proceedings of the International Symposium on Field-Programmable Gate Arrays, page 164.

ACM, 2002.

[107] A. Singh and M. Marek-Sadowska. Efficient circuit clustering for area and power reduction in

FPGAs. In Proceedings of the International Symposium on Field-Programmable Gate Arrays,

pages 59–66, New York, NY, USA, 2002. ACM.

[108] S. Sinha, G. Yeric, V. Chandra, B. Cline, and Y. Cao. Exploring sub-20nm FinFET design

with predictive technology models. In Proceedings of the ACM/IEEE Design Automation

Conference, pages 283–288, New York, NY, USA, 2012. ACM.

[109] S. Sivaswamy and K. Bazargan. Statistical Analysis and Process Variation-Aware Routing

and Skew Assignment for FPGAs. Transactions on Reconfigurable Technology and Systems,

1(1):1–35, 2008.

[110] J. S. Swarz, V. Betz, and J. Rose. A Fast Routability-Driven Router for FPGAs. In Pro-

ceedings of the International Symposium on Field-Programmable Gate Arrays, pages 140–149.

ACM/SIGDA, February 1998.

[111] E. Takeda and N. Suzuki. An empirical model for device degradation due to hot-carrier

injection. Electron Device Letters, IEEE, 4(4):111–113, April 1983.

[112] S. Tam, R. D. Limaye, and U. N. Desai. Clock Generation and Distribution for the 130-

nm Itanium 2 processor with 6-MB on-die L3 cache. IEEE Journal of Solid State Circuits,

39(4):636–642, 2004.

[113] S. M. Trimberger. Utilizing multiple test bitstreams to avoid localized defects in partially de-

fective programmable integrated circuits. United States Patent Number: 7,424,655, September

9 2008.

http://www.eecg.toronto.edu/~vaughn/papers/fpga98.pdf

121

[114] T. Tuan and B. Lai. Leakage Power Analysis of a 90nm FPGA. In Proceedings of the IEEE

Custom Integrated Circuits Conference, page 57. IEEE, 2003.

[115] T. Tuan, A. Rahman, S. Das, S. Trimberger, and S. Kao. A 90-nm Low-Power FPGA for

Battery-Powered Applications. IEEE Transactions on Computed-Aided Design for Integrated

Circuits and Systems, 26(2):296–300, 2007.

[116] K. Vorwerk, M. Raman, J. Dunoyer, A. Kundu, and A. Kennings. A technique for minimizing

power during FPGA placement. In Proceedings of the International Conference on Field-

Programmable Logic and Applications, pages 233–238, 2008.

[117] O. Weber, O. Faynot, F. Andrieu, C. Buj-Dufournet, F. Allain, P. Scheiblin, J. Foucher,

N. Daval, D. Lafond, L. Tosti, L. Brevard, O. Rozeau, C. Fenouillet-Beranger, M. Marin,

F. Boeuf, D. Delprat, K. Bourdelle, B.-Y. Nguyen, and S. Deleonibus. High immunity to

threshold voltage variability in undoped ultra-thin FDSOI MOSFETs and its physical under-

standing. In Technical Digest of the IEEE International Electron Device Meeting, pages 1–4,

December 2008.

[118] R. W. Wells, Z.-M. Ling, R. D. Patrie, V. L. Tong, J. Cho, and S. Toutounchi. Application-

Specific Testing Methods for Programmable Logic Devices. United States Patent Number:

6,817,006, November 9 2004.

[119] N. H. E. Weste and D. Harris. CMOS VLSI Design: A Circuits and Systems Perspective.

Addison-Wesley, third edition, 2005.

[120] S. Wilton, S. Ang, and W. Luk. The impact of pipelining on energy per operation in

field-programmable gate arrays. In Proceedings of the International Conference on Field-

Programmable Logic and Applications, pages 719–728. Springer, 2004.

[121] S. J. Wind, J. Appenzeller, R. Martel, V. Deycke, and P. Avouris. Vertical Scaling of Car-

bon Nanotube Field-Effect Transistors using Top Gate Electrodes. Applied Physics Letters,

80(20):3817–3819, 2002.

[122] C. Wong, A. Martin, and P. Thomas. An architecture for asynchronous FPGAs. In Proceedings

of the International Conference on Field-Programmable Technology, pages 170–177, 2003.

[123] H. Wong, L. Cheng, Y. Lin, and L. He. FPGA device and architecture evaluation considering

process variations. In Proceedings of the International Conference on Computer-Aided Design,

page 24. IEEE Computer Society, 2005.

[124] J. S. Wong, P. Sedcole, and P. Y. K. Cheung. Self-Measurement of Combinatorial Circuit

Delays in FPGAs. Transactions on Reconfigurable Technology and Systems, 2(2):1–22, June

2009.

122

[125] Y.-L. Wu, S. Tsukiyama, and M. Marek-Sadowska. Graph Based Analysis of 2-D FPGA

Routing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

15(1):33–44, January 1996.

[126] T. Yamada, H. Kotani, J. Matsushima, and M. Inoue. A 4-Mbit DRAM with 16-bit Concurrent

ECC. IEEE Journal of Solid-State Circuits, 23(1), February 1988.

[127] A. Yen, A. Tritchkov, J. P. Stirniman, G. Vandenberghe, R. Jonckheere, K. Ronse, and

L. Van den hove. Characterization and correction of optical proximity effects in deep ul-

traviolet lithography using behavior modeling. Journal of Vacuum Science Technology B:

Microelectronics and Nanometer Structures, 14(6):4175–4178, November 1996.

[128] W. Zhao and Y. Cao. New Generation of Predictive Technology Model for Sub-45 nm Early

Design Exploration. IEEE Transactions on Electron Devices, 53(11):2816–2823, 2006.

[129] X. Zhou, K. Lim, and D. Lim. A simple and unambiguous definition of threshold voltage and its

implications in deep-submicron MOS device modeling. Electron Devices, IEEE Transactions

on, 46(4):807–809, April 1999.

