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Abstract

This dissertation consists of two essays that focus on learning under state uncertainty and

econometric applications for it, in which agents learn hidden state variables from their noisy

measures sequentially.

In Chapter 2, “Nonparametric Learning Rules from Bandit Experiments: The Eyes Have

It!”, which is coauthored with Yingyao Hu and Matthew Shum, we assess, in a model-free

manner, subjects’ belief dynamics in a two-armed bandit learning experiment. A novel

feature of our approach is to supplement the choice and reward data with subjects’ eye

movements during the experiment to pin down estimates of subjects’ beliefs. Estimates

show that subjects are more reluctant to “update down” following unsuccessful choices,

than “update up” following successful choices. The profits from following the estimated

learning and decision rules are smaller (by about 25% of typical experimental earnings) than

what would be obtained from an fully rational Bayesian learning model, but comparable to

the profits from alternative non-Bayesian learning models, including reinforcement learning

and a simple “win-stay” choice heuristic.

In Chapter 3, I examine the optimal learning models for predicting price dynamics un-

der outlier risk. Two kinds of outlier risk in price processes are considered here; A price

process in which outliers occur as its fundamental value has changed, and that with little

fundamental change. In the latter process outliers occur as observation error, which are

often referred as price anomalies in behavioral finance. The two optimal learning models

are characterized with non-Gaussian Kalman filter as Bayesian reinforcement learning and
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are solved numerically using sequential Monte Carlo sampling. Several key features are

summarized in their learning rate and prediction error; The learning rate with outlier risk

in fundamental value is a monotonically increasing function of absolute value of prediction

error, while the learning rates with outlier risk in observation noise is a monotonically de-

creasing function. Interestingly, the uncertainly of the learning is seemingly identical among

the two models, having a hump-shaped function of absolute value of prediction error.
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Chapter 1

Introduction

How optimal are humans’ learning rules? The two essays in this thesis address the question

on optimality of learning rules under state uncertainty, in which agents sequentially esti-

mates hidden state variables from observable noisy signals of them. We present learning

rules that explains the observed behavior in our laboratory experiments. The Chapter 2

presents a nonparametric estimates of subjects’ learning rules in a dynamic two-armed ban-

dit (probabilistic reversal-learning) task. Auxiliary measures of subjects’ eye movements as

they make their choices are employed to “pin down” subjects’ beliefs in each round of the

learning experiment. To our knowledge, the nonparametric estimation of learning rules is a

new endeavor in both the behavioral learning literature, as well as the empirical literature

in economics and marketing in which dynamic learning models are estimated structurally.

While Chapter 2 is concerned with a nonparametric estimation of learning rule to assess

subjects’ optimality, in Chapter 3, I characterize an optimal learning under outlier risk,

which has attracted considerable attention in finance recently (Taleb (2008)). In order to

characterize the optimal learning rules under the outlier risk, I employ an unified approach

of Bayesian learning and reinforcement learning, namely Bayesian reinforcement learning,

in which the model components of reinforcement learning play crucial roles to describe the

model characteristics.

A sizeable literature has been developed around structural estimation of empirical learning
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models. Some representative papers include, Erdem and Keane (1996), Ackerberg (2003),

Crawford and Shum (2005) and Chan and Hamilton (2006). This literature typically as-

sumes that agents process information according to a forward-looking Bayesian learning

model. This restrictive assumption is driven in part by data considerations: oftentimes, all

that is observed are the sequences of agents’ choices, so that a lot of (parametric) structure

must be placed on the learning model for identification.

In controlled experimental settings, richer data are observed: not only subjects’ choices, but

also the outcomes (rewards) from their choices. In addition, there is also the opportunity

to observe “auxiliary” measures of subjects’ beliefs (or valuations), such as brain activity

(cf. Boorman, Behrens, Woolrich, and Rushworth (2009), Hsu, Bhatt, Adolphs, Tranel, and

Camerer (2005), Preuschoff, Bossaerts, and Quartz (2006) in the recent fMRI neuroscience

literature) or attension measures, or “lookups”, from mouse tracking (Camerer, Johnson,

Rymon, and Sen (1993), Johnson, Camerer, Sen, and Rymon (2002), Costa-Gomes, Craw-

ford, and Broseta (2001), Costa-Gomes and Crawford (2006), Gabaix, Laibson, Moloche,

and Weinberg (2006), Brocas, Carrillo, Wang, and Camerer (2009)), or from eye tracking

(Wang, Spezio, and Camerer (2010), Knoepfle, Wang, and Camerer (2009)).

Because of this additional data richness, researchers in the behavioral/experimental liter-

ature have been able to consider more flexible learning rules, and to test the fully ratio-

nal Bayesian learning benchmark versus boundedly rational, non-Bayesian “reinforcement

learning” rules (cf. Sutton and Barto (1998)). An incomplete list of papers which con-

sider these questions includes Grether (1992), El-Gamal and Grether (1995), Nyarko and

Schotter (2002), Charness and Levin (2005), Kuhnen and Knutson (2008), Camerer and Ho

(1999), and Payzan-LeNestour and Bossaerts (2011). Particularly, reinforcement learning

has attracted considerable attention in the recent neuroeconomics and decision neuroscience

literature (cf. Glimcher, Camerer, Poldrack, and Fehr (2008), Rushworth and Behrens

(2008)), ever since studies showing that the “prediction errors” of these models are appar-

ently encoded in certain regions of the brain (cf. Schultz, Dayan, and Montague (1997)) for

evidence from primates). Recently, reinforcement learning models have also been used to
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explain some observed anomalies in savings and investment behavior (e.g., Choi, Laibson,

Madrian, and Metrick (2009), Strahilevitz, Odean, and Barber (2011)).

In Chapter 2, we take a new approach to assessing learning in experimental settings. Taking

advantage of recent developments in the econometrics of estimating dynamic models with

serially correlated unobservables, we use the observed experimental and auxiliary data,

namely eye-tracking data, to estimate, nonparametrically, subjects’ choice probabilities and

learning rules, without imposing a priori functional forms on these functions. Thus, our

learning rules can be reasonably interpreted as “what the subjects actually think”, as re-

flected in their observed choices. Subsequently, we compare our estimated learning rules to

specific parameterized learning rules which have been considered in the previous literature,

including the Bayesian and reinforcement-learning models.

While Chapter 2 is concerned with nonparametric estimation of learning rule compared to

Bayesian learning and reinforcement learning, in Chapter 3, I characterize optimal learning

rules in a unified approach of Bayesian learning and reinforcement learning, especially fo-

cusing on financial applications to learning hidden states under outlier risk (Taleb (2008)).

Here agents learn dynamics of hidden state variables from observable signals in financial

markets with outlier risk, where the former is unobservable fundamental values and the

latter observable prices. Two kinds of outlier risk in the price processes are considered here;

A price process in which outliers occur as its fundamental value has changed, and that with

little fundamental change. In the latter process outliers occur as observation error, which

are often referred as price anomalies in behavioral finance. The two optimal learning models

are characterized with non-Gaussian Kalman filter as Bayesian reinforcement learning and

are solved numerically using sequential Monte Carlo sampling. To characterize the optimal,

Bayesian learning under the outlier risk, two model components of reinforcement learning

—prediction error and learning rate —play crucial roles.

Chapter 3 is a part of broader, interdisciplinary research agenda among finance, machine

learning and decision neuroscience, in which we explore human nature of predicting price
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dynamics under outlier risk in neurofinance. Recent studies in decision neuroscience (Yu

and Dayan (2005), Aston-Jones and Cohen (2005)) and psychology (Kruschke and Johansen

(1999)) revealed that salient information often alter mental models in the human mind,

suggesting that humans are more likely to see fundamental changes behind salient, large

price changes. However as behavioral finance argues, in the modern financial market, price

dynamics often shows salient outliers that are seemingly unrelated to fundamental changes.

We speculate that the counterintuitive contradiction between humans’ impulsive thinking

behind outliers and the price anomalies in financial market could be a source of humans’

suboptimal behavior in price predictions in the financial markets. Currently less is known

about the neurobiological foundations of information processing of outliers in human minds,

however, the comprehensive studies of the issue would help us uncover the nature of human

suboptimal behavior in the financial markets.
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Chapter 2

Nonparametric Learning Rules
from Bandit Experiments: The
Eyes Have It!

2.1 Introduction

How do individuals learn from past experience in dynamic choice environments? A growing

literature has documented, using both experimental and field data, that the benchmark fully

rational Bayesian learning model appears deficient at characterizing actual decision-making

in real-world settings.1 Other papers have demonstrated that observed choices in strategic

settings with asymmetric information are typically not consistent with subjects’ having

Bayesian (equilibrium) beliefs regarding the private information of their rivals.2 Recently,

non-Bayesian reinforcement learning (Sutton and Barto (1998)) models have also been used

to explain some observed anomalies in savings and investment behavior (e.g., Choi, Laibson,

Madrian, and Metrick (2009), Strahilevitz, Odean, and Barber (2011)).
1An incomplete list of papers which consider these questions includes Grether (1992), El-Gamal and

Grether (1995), Nyarko and Schotter (2002), Charness and Levin (2005), Kuhnen and Knutson (2008), and
Payzan-LeNestour and Bossaerts (2011).

2For instance, Bajari and Hortaçsu (2005), Goldfarb and Xiao (2011), Ho and Su (2010), Aguirregabiria
and Magesan (2011), Crawford and Iriberri (2007), Gillen (2011), Brown, Camerer, and Lovallo (2010),
Brocas, Carrillo, Wang, and Camerer (2009) .
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Given the lack of consensus in the literature about what the actual learning rules used by

agents in real-world decision environments are, there is a need for these rules to be esti-

mated in a manner flexible enough to accommodate alternative models of learning. In this

paper, we propose a new approach for assessing agents’ belief dynamics. In an experimen-

tal setting, we utilize data on subjects’ eye movements during the experiment to aid our

inference regarding the learning (or belief-updating) rules used by subjects in their decision-

making process. Previous studies (e.g., Shimojo, Simion, Shimojo, and Scheier (2003)) have

established a connection between subjects’ eye movements and gaze durations and their val-

uations in choice experiments. We exploit this connection and use gaze durations to pin

down subjects’ evolving beliefs in a dynamic choice setting.

Eye-movement data are an example of novel non-choice variables, the measurement and

analysis of which has constituted an important strand in experimental economics. Caplin

and Dean (2008) broadly call these auxiliary measures “neuroeconomic” data, in the sense

of data other than the usual choice and rewards data gathered from typical experiments.

Besides eye tracking (Krajbich, Armel, and Rangel (2010), Wang, Spezio, and Camerer

(2010), Knoepfle, Wang, and Camerer (2009)), other examples of such data include mea-

surements of brain activity (Boorman, Behrens, Woolrich, and Rushworth (2009), Hsu,

Bhatt, Adolphs, Tranel, and Camerer (2005), Preuschoff, Bossaerts, and Quartz (2006)),

pupil dilation (Preuschoff, Marius Hart, and Einhauser (2011)), skin conductance response

(Sokol-Hessner, Hsu, Curley, Delgado, Camerer, and Phelps (2009)) and mouse tracking

(Camerer, Johnson, Rymon, and Sen (1993), Johnson, Camerer, Sen, and Rymon (2002),

Costa-Gomes, Crawford, and Broseta (2001), Costa-Gomes and Crawford (2006), Brocas,

Carrillo, Wang, and Camerer (2009), Gabaix, Laibson, Moloche, and Weinberg (2006)).

To our knowledge, we are the first to use such “neuroeconomic” data in estimating behav-

ioral decision-making models.3 Taking advantage of recent developments in the economet-
3The existing neuroeconomic literature has used neuroeconomic data to either test or select among

behavioral models (cf. Caplin, Dean, Glimcher, and Rutledge (2010); Symmonds, Bossaerts, and Dolan
(2010); Wunderlich, Beierholm, Bossaerts, and O’Doherty (2011); Hsu, Bhatt, Adolphs, Tranel, and Camerer
(2005); Hampton, Bossaerts, and O’Doherty (2008); Hsu, Krajbich, Zhao, and Camerer (2009).) but not,
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rics of dynamic measurement error models, we use the observed choice and eye- tracking

data to estimate subjects’ decision rules and learning rules, without imposing a priori func-

tional forms on these functions. Estimating the learning rules in such a model-free manner

allows us to assess the optimality of subjects’ choices in learning experiments in a manner

quite distinct from that taken in the existing literature.

Our main results are as follows. First, our estimated learning rules do not correspond to

any one of the existing learning models. Rather, we find that beliefs are reward-asymmetric,

in that subjects are more reluctant to “update down” following unsuccessful (low-reward)

choices, than “update up” following successful (high-reward) choices. Such asymmetries

are novel relative to existing learning models (such as reinforcement or Bayesian learning);

moreover, from a payoff perspective, they are suboptimal relative to the fully rational

Bayesian benchmark.

Correspondingly, we find that, using the estimated learning rules, subjects’ payoffs are, at

the median, $4 (or about two cents per choice) lower than under the Bayesian benchmark;

this difference represents about 25% of typical experimental earnings (not including the

fixed show-up fee). However, subjects’ payoffs under the estimated choice and learning

rules are comparable to the profits from alternative non-Bayesian learning models, including

reinforcement learning.

In the next section, we describe the dynamic two-armed bandit learning (probabilistic

reversal-learning) experiment, and the eye-movement data gathered by the eye-tracker ma-

chine. In Section 3, we present an econometric model of subjects’ choices in the bandit

model, and discuss nonparametric identification and estimation. In Section 4, we describe

the experimental data, and present our nonparametric estimates of subjects decision rules

and learning rules. Section 5 contains a comparison of our estimated learning rules to “stan-

dard” learning rules, including those from the Bayesian and non-Bayesian reinforcement-

learning models. Section 6 concludes.

as far as we are aware, for estimating models.
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2.2 Two-armed bandit “reversal-learning” experiment

Our experiments are adapted from the “reversal-learning” experiment used in Hampton,

Bossaerts, and O’Doherty (2006). In the experiments, subjects make repeated choices

between two actions (which we call interchangeably “arms” or “slot machines” in what

follows): in trial t, the subject chooses Yt ∈ {1(= “green”), 2(= “blue”)}. The rewards

generated by these two arms are changing across trials, as described by the state variable

St ∈ {1, 2}, which is never observed by subjects. When St = 1, then green (blue) is the

“good” (“bad”) state, whereas if St = 2, then blue (green) is the “good” (“bad”) state.

The rewards Rt that the subject receives in trial t depends on the action taken, as well as

(stochastically) on the current state: the reward process is

Rt =

 ±$0.50 with prob. 50%± 20% if good arm chosen

±$0.50 with prob. 50%∓ 10% if bad arm chosen.
(2.1)

For convenience, we use the notation Rt = 1 to denote the negative reward (-$0.50), and

Rt = 2 to denote the positive reward ($0.50).

The state evolves according to an exogenous binary Markov process. At the beginning of

each block, the initial state S1 ∈ {1, 2} is chosen with probability 0.5, randomly across all

subjects and all blocks. Subsequently, the state evolves with transition probabilities4

P (St+1|St) St = 1 St = 2

St+1 = 1 0.85 0.15

St+1 = 2 0.15 0.85

. (2.2)

4This aspect of our model differs from Hampton, Bossaerts, and O’Doherty (2006), who make the non-
Markovian assumption that the state St changes with probability 25% after a subject has chosen the good
arm four successive times. Estimating such non-Markovian models would, typically, require including another
state variable, which describe how uncertain the subject is at any point in time about the underlying state
(such as the variance of rewards). In principle, our estimation method can be extended to allow for these
additional state variables, but since we take a nonparametric approach, a much larger sample size (far beyond
typical samples sizes in experimental work) would be required to obtain reasonable estimates.
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Because St is not observed by subjects, and is serially correlated over time, subject have an

opportunity to learn and update their beliefs about the current state on the basis of past

rewards. Moreover, because St changes randomly over time, so that the identity of the good

arm varies across trials, this is called a “probabilistic reversal-learning” experiment.

2.2.1 Optimal decision-making in reversal-learning model

Before proceeding to describe the experimental data, we consider how subjects should opti-

mally make decisions in the dynamic reversal-learning model used in our experiments. The

qualitative features of the optimal decision and belief-updating rules presented here will

motivate the assumptions which underlie the empirical learning model which we estimate

in this paper. As in the experiments, we consider a finite (25 period) dynamic optimization

problem, in which each subject aims to choose a sequence of actions to maximize expected

rewards E
[∑25

t=1 Rt

]
. (The details of this model are given in Appendix A.1.)

Let B∗
t denote the probability (given by Bayes’ Rule) denote the probability that a subject

places on “green” being the good arm in period t, conditional on the whole experimental

history up to then. We evaluate the optimal decision rules—the mapping from period t

beliefs B∗
t to a period t choice—in this dynamic Bayesian learning model by computer

simulation. Importantly, we accommodate nonstationarity in the problem, in that our

simulations allow the decision rules to differ arbitrarily across periods. This permits the

relationship between subjects’ choices and their beliefs B∗
t to vary across periods, depending

perhaps on the periods remaining in the experiment, or to allow for history dependence in

either choices or the belief-updating rule. An important maintained assumption in this

paper is that subjects’ decision rules are solely a function of the current state probabilities

B∗
t , so that by allowing the decision rules to vary across periods in these simulations, we

can assess the restrictiveness of such an assumption.

The important qualitative features of optimal decision-making are summarized in the op-

timal decision rules, which we plot in Figure 2.2 for four periods t = 1, 10, 20, 25. Two
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Figure 2.1: Timeline of a trial
After a fixation on the cross (top screen), two slot machines are presented (the left-right
position is randomized; second screen). Subjects’ eye movements are recorded by the eye-
tracking machine here. Subjects choose by pressing the left (right) arrow key to indicate
a choice of the left (right) slot machine. After choosing (third screen), a positive reward
(depicted by two quarters) or negative reward (two quarters covered by a red X) is deliv-
ered, along with feedback about the subject’s choice highlighted against a background color
corresponding to the choice. In the bottom screen, a subject is transitioned to the next
trial, and reminded that the a slot machine may switch from “good” to “bad” (and vice
versa) with probability 15%.
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Figure 2.2: Optimal decision rules in reversal-learning model

Plotted for periods t = 1, 10, 20, 25.

x-axis: Bayesian belief B∗
t ; y-axis: action choice
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features are apparent. First, we see that the decision rules are identical across all the peri-

ods, indicating that they are stationary. Second, the optimal decision rule takes a simple

form: in each period, the subject chooses simply blue once the current belief that the blue

arm is “good” exceeds 50%. This is a myopic decision rule.

Both of these features—stationarity and myopia of decision rules—are specific to the reversal-

learning setup considered here, and differs in important ways from optimal decision-making

in the standard multi-armed bandit (MAB) problem (cf. Jones and Gittins (1972), Banks

and Sundarum (1992)), in which the states of the bandits are fixed over all periods and

the bandits are “independent” in that a reward from one bandit is uninformative about

the state of another bandit. The optimal Bayesian decision rule in the standard MAB

model features exploration (or “experimentation”), which recommends sacrificing current

rewards to achieve longer-term payoffs; this makes simple myopic decision-making (choosing

the bandit which currently has the higher expected reward) suboptimal. In the reversal-

learning setting, however, the states of the bandits are negatively related, so that positive

information about one slot machine implies negative information about the other. Appar-

ently, as shown by these optimal decision rules, this eliminates most of the incentives for

subjects to experiment.

Moreover, in a finite-horizon decision environment, such as the experiments considered here,

the value of information decreases exogenously as the final period approaches, resulting in

reduced incentives for experimentation; this implies a nonstationary decision rule. Under

reversal learning, however, the lack of experimentation leads to stationary decision rules,

even in a finite-horizon problem.

2.2.2 Experimental data: preliminary analysis

The experiments were run over several weeks in November-December 2009. We used 21

subjects, recruited from the Caltech Social Science Experimental Laboratory (SSEL) subject

pool consisting of undergraduate/graduate students, post-doctoral students, and community
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members,5 each playing for 200 rounds (broken up into 8 blocks of 25 trials). Most of the

subjects completed the experiment within 40 minutes, including instruction and practice

sessions. Subjects were paid a fixed show-up fee ($20), in addition to the amount won

during the experiment, which was $14.20 on average.6

Subjects were informed of the reward structure for good and bad slot machines, and the

Markov transition probabilities for state transitions (reversals), but were not informed which

state was occurring in each trial. In Figure 2.1, we present the time line and some screenshots

from the experiment. In addition, while performing the experiment, the subjects were

attached to an eye-tracker machine, which recorded their eye movements. From this, we

constructed the auxiliary variable Z̃t, which measures the fraction of the reaction time (the

time between the onset of a new round after fixation, and the subject’s choice in that round)

spent gazing at the picture of the “blue” slot machine on the computer screen.7

For each subject, and each round t, we observe the data (Yt, St, Rt, Zt). Table 2.1 presents

some summary statistics of the data. The top panel shows that, across all subjects and all

trials, “green” (2108 choices) and “blue” (2092 choices) are chosen in almost-equal propor-

tions. Moreover, from the second panel, we see that subjects obtain the high reward with

frequency of roughly 57% (≈ 2398/(2398 + 1802)). This is slightly higher than, but signifi-

cantly different from, 55%, which is the frequency which would obtain if the subjects were

choosing completely randomly.8 Hence, subjects appear to be “trying”, which motivates

our analysis of their learning rules. On the other hand, simulation of the optimal Bayesian

decision rules (discussed above) show that the success rate from using the optimal decision
5Community members consisted of spouses of students at either Caltech or Pasadena City College (a

two-year junior college). While the results reported below were obtained by pooling the data across all
subjects, we also estimated the model separately for the subsamples of Caltech students, vs. community
members. There were few noticeable differences in the results across these classes of subjects.

6For comparison, purely random choices would have earned $10 on average.
7Across trials, the location of the “blue” and “green” slot machines were randomized, so that the same

color is not always located on the same side of the computer screen. This controls for any “right side bias”
which may be present (see discussion further below).

8This is the marginal probability of a good reward, which equals 0.5(0.7 + 0.4) from Eq. (2.1). The
t-statistic for the null that subjects are choosing randomly equals 169.67, so that hypothesis is strongly
rejected.
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Table 2.1: Summary statistics for experimental data

1(green) 2(blue)
Y : subjects’ choices 2108 2092

1 ($0.50) 2 (-$0.50)
R: rewards 2398 1802

mean median upper 5% lower 5%
Z̃: eye movement measurea -0.0309 0 1.3987 -1.4091

RT : reaction time (10−2 secs) 88.22 59.3 212.2 36.8

aDefined in Eq. (2.3)

rule is only 58.4%, which is just slightly higher than the in-sample success rate found in

the experiments. It appears, then, that in the reversal-learning setting, the success rate

intrinsically varies quite narrowly between 55% and 58.4%.

In Table 2.2, we present the conditional probabilities of choices in period t, conditional on

choices and rewards from the previous period (Yt|Yt−1, Rt−1). This can be interpreted as

a “reduced-form” decision rule for the subjects. The top row in that table contains the

reduced-form probabilities of choosing the green arm. Looking at the second (fourth) entry

in this row, we see that after a successful choice of green (blue), a subject replays this

strategy with probability 0.86 (0.88=1–0.12). Thus subjects appear to replay successful

strategies, corresponding to a “win-stay” rule-of-thumb.

However subjects appear reluctant to give up unsuccessful strategies. The probability of

replaying a strategy after an unsuccessful choice of the same strategy is around 50% for both

the blue and green choices (ie. the first and third entries in this row). Thus, subjects tend

to randomize after unsuccessful strategies. As far as we are aware, such an “asymmetric”

choice rule is new in the literature; moreover, as we will see below, this is echoed in the
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“asymmetric” belief-updating rule which we estimate.

In the remainder of Table 2.2, we also present the same choice probabilities, calculated

for each subject individually. There is some degree of heterogeneity in subjects’ strategies.

Looking at columns 2 and 4 or the table, we see that, for the most part, subjects pursue a

“win-stay” strategy: the probabilities in the second column are mainly >> 50%, and those

in the fourth column are most << 50%. However, looking at columns 1 and 3, we see that

there is significant heterogeneity in subjects’ choices following a low reward. In these cases,

randomization (which we classify as a choice probability between 40–60%) is the modal

strategy among subjects; strikingly, however, a number of subjects continue replaying an

unsuccessful strategy: for example, subjects 3, 8, and 11 continue to choose “green” with

probabilities of 79%, 89%, and 79% even after a previous choice of green yielded a negative

reward.9

One common feature of the choice strategies across all subjects is that choices are serially

correlated across periods, conditional on rewards. This serial correlation is very informative

for identifying the beliefs X∗
t . Essentially, we present a model below in which serial corre-

lation in choices across periods arises due to beliefs—thus, beliefs (which are unobserved to

the researcher) are the reason for serial correlation of choices. We will discuss this in more

detail in the next section, in which the empirical model is presented formally.

2.2.3 Remarks on eye-tracking measure

Although “lookups” data from mouse tracking has been employed in several studies to

understand cognitive processes in economic decisions10, recently, eye tracking has been
9In the reversal-learning model, however, such a strategy is not obviously irrational; because the identity

of the good arm changes exogenously across periods, an arm that was bad last period (i.e., yielding a low
reward) may indeed be good in the next period.

10Studies by Camerer, Johnson, Rymon, and Sen (1993) and Johnson, Camerer, Sen, and Rymon (2002)
(as well as the development of “Mouselab” system and its application to choice tasks in Payne, Bettman, and
Johnson (1993)) were the pioneering work in economics in which they applied mouse tracking in alternating-
offer bargaining games. Then, the attension measures were employed to study forward induction (Camerer
and Johnson (2004)), level-k models in matrix-games (Costa-Gomes, Crawford, and Broseta (2001), two-
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Table 2.2: “Reduced-form” decision rule: P (Yt = 1(green)|Yt−1, Rt−1)

(Yt−1, Rt−1): (1,1) (1,2) (2,1) (2,2)
All Subjects: 0.5075 0.8652 0.5089 0.1189

(0.0169) (0.0094) (0.1169) (0.0090)
Subject1: 0.1799 0.5192 0.8128 0.364

(0.0655) (0.0684) (0.0595) (0.0603)
Subject2: 0.1051 0.9820 0.9449 0

(0.0498) (0.0171) (0.0381) (0)
Subject3: 0.7938 0.9859 0.3340 0

(0.0591) (0.0136) (0.0871) (0)
Subject4: 0.3244 0.8796 0.6492 0.0610

(0.0704) (0.0514) (0.0726) (0.0283)
Subject5: 0.0419 0.8796 0.6492 0.0610

(0.0292) (0.0236) (0.0325) (0.0461)
Subject6: 0.2570 0.7498 0.8159 0.2021

(0.0652) (0.0592) (0.0602) (0.0532)
Subject7: 0.5792 0.9242 0.4647 0.0796

(0.0751) (0.0371) (0.0731) (0.0379)
Subject8: 0.8931 0.9803 0.1013 0.0165

(0.0496) (0.0186) (0.0482) (0.0163)
Subject9: 0.6377 1.0000 0.2741 0

(0.0831) (0) (0.0655) (0)
Subject10: 0.1986 0.9344 0.8037 0

(0.0622) (0.0352) (0.0587) (0)
Subject11: 0.7859 1.0000 0.4306 0

(0.0575) (0) (0.0870) (0)
Subject12: 0.5883 0.9262 0.3741 0.0131

(0.0841) (0.0406) (0.0733) (0.0129)
Subject13: 0.6741 0.8907 0.1962 0.2085

(0.0705) (0.0462) (0.0581) (0.0539)
Subject14: 0.4730 0.6147 0.5363 0.3842

(0.0831) (0.0653) (0.0735) (0.0664)
Subject15: 0.6759 0.9789 0.3351 0

(0.0761) (0.0206) (0.0714) (0)
Subject16: 0.4595 0.9135 0.5443 0.1953

(0.0715) (0.0316) (0.0742) (0.0666)
Subject17: 0.6358 0.5202 0.5322 0.4644

(0.0660) (0.0706) (0.0780) (0.0748)
Subject18: 0.6333 1.0000 0.2901 0

(0.0834) (0) (0.0734) (0)
Subject19: 0.6144 0.8197 0.5808 0.2013

(0.0702) (0.0444) (0.0806) (0.0625)
Subject20: 0.3699 0.5741 0.3699 0.3554

(0.0858) (0.0707) (0.0665) (0.0621)
Subject21: 0.6990 0.9602 0.2934 0.0177

(0.0658) (0.0274) (0.0693) (0.0171)
Note: standard errors (in parentheses) computed using 1000 bootstrap resamples
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employed to measure eye fixation more precisely11 in various decision environments: to

determine how subjects detect truth-telling or deception in sender-receiver games (Wang,

Spezio, and Camerer (2010)); how consumers evaluate comparatively a large number of

commodities, as in a supermarket setting (Reutskaja, Nagel, Camerer, and Rangel (2011));

and the relationship between visual attention (as measured by eye-fixations) and choices of

commodities in choice tasks (cf. Krajbich, Armel, and Rangel (2010), Armel and Rangel

(2008), Armel, Beaumel, and Rangel (2008), Rangel (2009)).12

Our use of eye movements in this paper is predicated on an assumption that gaze is related

to beliefs of expected rewards. This is motivated by some recent results in behavioral

neuroscience. Shimojo, Simion, Shimojo, and Scheier (2003) studied this in binary “face

choice” tasks, in which subjects are asked to choose one of the two presented faces on the

basis of various criteria. (Our two-armed bandit task is very similar in construction.) These

authors find that, when subjects are asked to choose a face based on attractiveness, their

eye movements tend to be directed to the preferred face as time goes, which they name

as ”gaze cascading effect”. Interestingly, the relationship between gaze direction and the

chosen face becomes significantly weaker when subjects are asked to choose a face based on

shape and “unattractiveness”. This strongly suggests that directed gaze duration reflects

preferences, rather than choices.

This work echoes primate experiments reported in Lauwereyns, Watanabe, Coe, and Hikosaka

(2002) and Kawagoe, Takikawa, and Hikosaka (1998) (see the survey in Hikosaka, Nakamura,

and Nakahara (2006)), which shows that primates tend to direct their gaze at locations

where rewards are available. They also establish a physiological basis for this relationship,

person guessing games (Costa-Gomes and Crawford (2006)), two-person games with private information
about payoff-relevant states (Brocas, Carrillo, Wang, and Camerer (2009), a boundedly rational, directed
cognition model in goods choice tasks (Gabaix, Laibson, Moloche, and Weinberg (2006)).

11Most of the mouse-tracking studies above employed“Mouselab” system in which subjects have to move a
cursor into a box to open its contents. However, as Wang, Spezio, and Camerer (2010) argued, “experimenter
cannot be certain the subject is actually looking at (and processing) the contents of the open box,” which
motivated them to use eye tracking in order to measure eye fixation more reliably.

12Eye tracking has also been used in marketing studies to evaluate the relationship between visual attention
to advertisements (e.g.,Lohse (1997)) and subsequentsales of advertised items (e.g., Zhang, Wedel, and
Pieters (2009)).
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by showing a connection between eye movements and reward-sensitive neuronal activities

in the basal ganglia part of the brain. These results, which link gaze direction and duration

with expected rewards, provide some precedence and justification to our use of eye move-

ments as “noisy measures” of beliefs, which likewise reflect perceptions of expected rewards

from the slot machines.13

Based on the papers above, we define Z̃it, our raw eye-movement measure, as the difference

in the gaze duration directed at the blue and green slot machines, normalized by the total

reaction time:

Z̃t = (Zb,t − Zg,t)/RTt; (2.3)

that is, for trial t, Zb(g),t is the fixation duration at the blue (green) slot machine, and

RTt is the reaction time, i.e., the time between the onset of the trial after fixation, and

the subject’s choice.14 Thus, Z̃t measures how much longer a subject looks at the blue

slot machine than the green one during the t-th trial, with a larger (smaller) value of Z̃t

implying longer fixation time at the blue (green) slot machine. Summary statistics on this

measure are given in the bottom panel of Table 2.1. There, we see that the average reaction

time is 0.88 seconds, and that the median value of Z̃t is zero, implying an equal amount of

time directed to each of the two slot machine.15

13An alternative to using eye movements to proxy for beliefs would have been to elicit beliefs (as in Nyarko
and Schotter (2002)). However, given the length of our experiments (8 trials of 25 periods each), and our
need to have beliefs for each period, it seemed infeasible to elicit beliefs. Indeed, in our pilot experiments,
we tried eliciting beliefs randomly after some periods, and found that this made the experiments unduly
long.

14Furthermore, in order to control for subject-specific heterogeneity, we normalize Z̃t across subjects by
dividing by the subject-specific standard deviation of Z̃t, across all rounds for each subject.

15Following the suggestions of a referee, we also considered an alternative definition of the eye-movement
measure Z̃t = (Zb,t − Zg,t)/(Zb,t + Zg,t), in which the time spent gazing at the middle of the screen (which
is RTt − Zb,t − Zg,t) is not included in the denominator. This allows for the possibility that the time spent
gazing in the middle may be indicative of “contemplation”, and may lead to stronger subsequent beliefs.
We found that the estimation results for the choice probabilities and learning rules from this alternative
specification (which are available from the authors upon request) are quite similar to the results from our
standard specification, which are reported below. This suggests that the time spent gazing in the middle
of the screen is not that informative about the evolution of subjects’ beliefs. Similarly, another referee
suggested that the absolute reaction time RTt itself could be included in the definition of eye movements.
However, we found that the absolute value of Z̃t is inversely related to RTt; this suggests that our measure
Z̃t appears to capture or contain the information in reaction time.
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Figure A.2 in the Appendix A.6 contains the scatter plot of Zb,t versus Zg,t. In our empirical

work, we will discretize the eye-movement measure Z̃t; to avoid confusion, in the following we

use Z̃t to denote the undiscretized eye-movement measure, and Zt the discretized measure,

which we describe below.

2.3 Empirical model

In this section, we describe our econometric model of dynamic decision-making in the two-

armed bandit experiment described above, and also discuss the identification and estimation

of this model. Importantly, most of the crucial assumptions of the model are motivated by

the structure of the optimal decision rules and learning (belief-updating) rules, as described

in Section 2.2.1. That is, we do not consider the whole gamut of learning models here, but

restrict attention to models which are “close” to optimal in that the structure of the learning

and decision rules are the same as in the optimal model; however, the rules themselves are

allowed to be different.

We introduce the variable X∗
t , which denotes the agent’s round t beliefs about the cur-

rent state St; obviously, agents know their beliefs X∗
t , but these are unobserved by the

researcher.16 In what follows, we assume that both X∗ and Z are discrete, and take sup-

port on K distinct values which, without loss of generality, we denote {1, 2, . . . ,K}. We

make the following assumptions regarding the subjects’ learning and decision rules:

Assumption 1 Subjects’ choice probabilities P (Yt|X∗
t ) only depend on current beliefs. More-

over, the choice probabilities P (Yt = y|X∗
t ) varies across different values of X∗

t (i.e., beliefs

affect actions).

Because we interpret the unobserved variables X∗
t here as a measurement of subjects’ current

16X∗
t corresponds to the prior beliefs pt from the previous section except that, further below, we will

discretize X∗
t and assume that it is integer-valued. Therefore, to prevent any confusion, we will use distinct

notation pt, X∗
t to denote, respectively, the beliefs in the theoretical vs. the empirical model.



20

beliefs regarding which arm is currently the “good” one, the choice probability P (Yt|X∗
t )

can be interpreted as that which arises from a “myopic” choice rule. As we remarked before,

in Section 2.2.1, such an interpretation is justified by the simulation of the optimal choice

rules under the reversal-learning setting, which showed that these rules are myopic and

depend only on current beliefs.

Furthermore, Assumption 1 embodies an important exclusion restriction that, conditional

on beliefs X∗
t , the observed action Yt is independent of the eye movement Zt. As we will

see below, this is a critical identification assumption which pins down the beliefs X∗
t in the

empirical model.

Assumption 2 The law of motion for X∗
t , which describes how subjects’ beliefs change over

time given the past actions and rewards, is called the learning rule. This is a controlled

first-order Markov process, with transition probabilities P (X∗
t |X∗

t−1, Rt−1, Yt−1).

This assumption is motivated by the structure of the optimal Bayesian belief-updating rule

(cf. Eq. (A.1) in Appendix A.1), in which the period t beliefs depend only on the past

beliefs, actions, and rewards in period t − 1. However, we allow the exact form of the

learning rule to deviate from the exact Bayes formula.

Assumption 3 The eye-movement measure Zt is a noisy measure of beliefs X∗
t :

(i) Eye movements are serially uncorrelated conditional on beliefs: P (Zt|X∗
t , Yt, Zt−1) =

P (Zt|X∗
t ).

(ii) For all t, the K×K matrix GZt|Zt−1
, with (i, j)−th entry equal to Pr(Zt = i|Zt−1 = j),

is invertible.

(iii) E[Zt|X∗
t ] is increasing in X∗

t .

As with Assumption 1, this assumption involves an important exclusion restriction that,

conditional on X∗
t , the eye movement Zt in period t is independent of Zt−1. This serial

independence assumption is, to some extent, imposed by construction in the experimental



21

setup, because we require subjects to “fix” their gaze in the middle of the computer screen

at the beginning of each period. This should remove any inherent serial correlation in eye

movements which is not related to the learning task.17

The invertibility assumption (3(i)) is made on the observed matrix GZt|Zt−1
with elements

equal to the conditional distribution of Zt|Zt−1; hence it is testable. Assumption 3(ii)

“normalizes” the beliefs X∗
t in the sense that, because large values of Zt imply that the

subject gazed longer at blue, the monotonicity assumption implies that larger values of X∗
t

denote more “positive” beliefs that the current state is blue.

Assumption 4 The choice probabilities P (Yt|X∗
t ), learning rules P (X∗

t |X∗
t−1, Rt−1, Yt−1),

and measurement probabilities P (Zt|X∗
t ) are the same for all subjects and trials t.

This “stationarity” assumption justifies pooling the data across all subjects and trials for

estimating the model. As with the other assumptions, it is motivated by the structure of

optimal decision-making discussed in Section 2.2.1 above, where both the Bayesian belief-

updating rule (Eq. (A.1) in Appendix A.1) and optimal choice rules in Figure 2.2 are indeed

stationary.

2.3.1 Identification

In this section, we will use the shorthand notation f(· · · ) to denote generically a probability

distribution. For identification, we exploit the following relationship: conditional on (Rt−1),

we have

f(Yt, Zt, X
∗
t |Y<t, Z<t, R<t, X

∗
<t) = f(Yt, Zt, X

∗
t |Yt−1, Rt−1, X

∗
t−1). (2.4)

17At the same time, we have also estimated models in which we allow Zt and Zt−1 to be correlated, even
conditional on X∗

t . These are reported in Appendix D.4. The results there show that the results are quite
similar, for different values of Zt−1, which imply that Assumption 3 is quite reasonable.
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Abusing terminology somewhat, we call this a “first-order Markov” property, because the

model exhibits only a one-period history dependence:

f(Yt, Zt, X
∗
t |Y<t, Z<t, R<t, X

∗
<t)

=f(Yt|Zt, X
∗
t , Y<t, Z<t, R<t, X

∗
<t) · f(Zt|X∗

t , Y<t, Z<t, R<t, X
∗
<t) · f(X∗

t |Y<t, Z<t, R<t, X
∗
<t)

=f(Yt|X∗
t ) · f(Zt|X∗

t ) · f(X∗
t |X∗

t−1, Rt−1, Yt−1)

=f(Yt, Zt, X
∗
t |Yt−1, Rt−1, X

∗
t−1).

In the above, the second equality applies Assumptions 1, 2, and 3.

The unknown functions we want to identify and estimate are:

(i) f(Yt|X∗
t ), the choice probabilities;

(ii) the learning rule f(X∗
t |X∗

t−1, Yt−1, Rt−1); and

(iii) the measurement probabilities f(Zt|X∗
t ), the mapping between the auxiliary measure

Zt and the unobserved beliefs X∗
t .

The nonparametric identification of these elements follows from an application of results

from Hu (2008), and follows two main steps. Before presenting it, we note that, despite its

simplicity, this model is not straightforward to estimate: given data on subjects’ choices

and rewards, we need to estimate choice probabilities conditional on subjects’ beliefs, even

though these beliefs are not only unobserved, but also changing over time.

Step one: identification of choice probabilities P(Yt|X∗
t) and measurement prob-

abilities P(Zt|X∗
t). Consider the joint density f(Zt, Yt|Zt−1), which is solely a function



23

of variables observed in the data. We can factor this density as follows:

f(Zt, Yt|Zt−1) =
∑
X∗

t

f(Zt, Yt, X
∗
t |Zt−1)

=
∑
X∗

t

f(Zt|Yt, X
∗
t , Zt−1)f(Yt, X

∗
t |Zt−1)

=
∑
X∗

t

f(Zt|Yt, X
∗
t , Zt−1)f(Yt|X∗

t , Zt−1)f(X∗
t |Zt−1)

=
∑
X∗

t

f(Zt|X∗
t )f(Yt|X∗

t )f(X∗
t |Zt−1)

where the last equality applies to Assumptions 1 and 3.

For any fixed Yt = y, then, we can write the above in matrix notation as:

Ay,Zt|Zt−1
= BZt|X∗

t
Dy|X∗

t
CX∗

t |Zt−1

where A, B, C are all K × K matrices, and D is a K × K diagonal matrix. These are

defined as:

Ay,Zt|Zt−1
=

[
fYt,Zt|Zt−1

(y, i|j)
]
i,j

BZt|X∗
t

=
[
fZt|X∗

t
(i|k)

]
i,k

CX∗
t |Zt−1

=
[
fX∗

t |Zt−1
(k|j)

]
k,j

Dy|X∗
t

=


fYt|X∗

t
(y|1) 0 0

0 fYt|X∗
t
(y|2) 0

0
. . . 0

0 0 fYt|X∗
t
(y|K)



(2.5)

Similarly to the above, we can derive that

GZt|Zt−1
= BZt|X∗

t
CX∗

t |Zt−1
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where G is likewise a K ×K matrix, defined as

GZt|Zt−1
=

[
fZt|Zt−1

(i|j)
]
i,j

. (2.6)

From Assumption 3(i), we combine the two previous matrix equalities to obtain

Ay,Zt|Zt−1
G−1

Zt|Zt−1
= BZt|X∗

t
Dy|X∗

t
B−1

Zt|X∗
t
. (2.7)

This is an eigenvalue decomposition of the matrix Ay,Zt|Zt−1
G−1

Zt|Zt−1
, which can be com-

puted from the observed data sequence {Yt, Zt}.18 This shows that from the observed data,

we can identify the matrices BZt|X∗
t

and Dy|X∗
t
, which are the matrices with entries equal to

(respectively) the measurement probabilities P (Zt|X∗
t ) and choice probabilities P (Yt|X∗

t ).

In order for this identification argument to be valid, the eigendecomposition in Eq. (2.7)

must be unique. This requires the eigenvalues in this decomposition (corresponding to choice

probabilities P (y|X∗
t )) to be distinctive; that is, P (y|X∗

t ) should vary in X∗
t . This is ensured

by Assumption 1. Furthermore, even if the eigendecomposition is unique, the representation

in Eq. (2.7) is invariant to the ordering (or permutation) and scalar normalization of

eigenvectors. Assumption 3(ii) imposes the correct ordering on the eigenvectors: specifically,

it implies that columns with higher average value correspond to larger value of X∗
t . Finally,

because the eigenvectors in the decomposition correspond to the conditional probabilities

P (Zt|X∗
t ), it is appropriate to normalize each column so that it sums to one. Hence,

the uniqueness of the eigendecomposition, coupled with the ordering and normalization

assumptions, ensure that the choice probabilities, measurement probabilities, and learning

rules can be uniquely identified from the observed matrices A and G.
18Note that, from Eq. (2.6), the invertibility of G (which is Assumption 3(i)) implies the invertibility of

B.
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Step two: identification of learning rule probabilities P(X∗
t+1|X∗

t ,Rt,Yt). Again,

start with a factorization

f(Zt+1, Yt, Rt, Zt) =
∑
X∗

t

∑
X∗

t+1

f(Zt+1, X
∗
t+1, Yt, X

∗
t , Rt, Zt)

=
∑
X∗

t

∑
X∗

t+1

f(Zt+1|X∗
t+1)f(X∗

t+1|Yt, X
∗
t , Rt)f(Zt|X∗

t )f (Yt, X
∗
t , Rt)

=
∑
X∗

t

∑
X∗

t+1

f(Zt+1|X∗
t+1)f(X∗

t+1, Yt, X
∗
t , Rt)f(Zt|X∗

t )

where the second equality applies to Assumptions 1, 2, and 3. Then, for any fixed Yt = y

and Rt = r, we have the matrix equality

HZt+1,y,r,Zt = BZt+1|X∗
t+1

LX∗
t+1,X∗

t ,y,rB′
Zt|X∗

t
.

The matrices H and L are K ×K matrices defined as

HZt+1,y,r,Zt =
[
fZt+1,Yt,Rt,Zt(i, y, r, j)

]
i,j

LX∗
t+1,X∗

t ,y,r =
[
fX∗

t+1,X∗
t ,Yt,Rt(i, j, y, r)

]
i,j

.
(2.8)

Assumption 4 ensures that BZt+1|X∗
t+1

= BZt|X∗
t
. Hence, we can obtain LX∗

t+1,X∗
t ,y,r (corre-

sponding to the learning rule probabilities) directly from

LX∗
t+1,X∗

t ,y,r = B−1
Zt+1|X∗

t+1
HZt+1,y,r,Zt [B

′
Zt|X∗

t
]−1. (2.9)

This result implies that two periods of data (Zt, Yt, Rt), (Zt−1, Yt−1, Rt−1) are sufficient to

identify and estimate this learning model.
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2.4 Estimation

Our estimation procedure mimics the two-step identification argument from the previous

section. That is, for fixed values of (y, r), we first form the matrices A, G, and H (as defined

previously) from the observed data, using sample frequencies to estimate the corresponding

probabilities. Then we obtain the matrices B, D, and L using the matrix manipulations in

Eqs. (2.7) and (2.9).

To implement this, we assume that the eye-movement measures Zt and the unobserved

beliefs X∗
t are discrete, and take three values.19 One technical feature is that, because

all the elements in the matrices of interest B, D, and L correspond to probabilities, they

must take values within the unit interval. However, in the actual estimation, we found

that occasionally the estimates do go outside this range. In these cases, we obtained the

estimates by a least-squares fitting procedure, where we minimized the element-wise sum-

of-squares corresponding to Eqs. (2.7) and (2.9), and explicitly restricted each element of

the matrices to lie ∈ [0, 1]. This was not a frequent recourse; only a handful of the estimates

reported below needed to be restricted in this manner.20

In addition, while the identification argument above was “cross-sectional” in nature, being

based upon two observations of {Yt, Zt, Rt} per subject, in the estimation we exploited

the long time series data we have for each subject, and pooled every two time-contiguous

observations {Yi,r,τ , Zi,r,τ , Ri,r,τ}τ=t
τ=t−1 across all subjects i, all blocks r, and all trials τ =

2, . . . , 25. Formally, this is justified under the assumption that the process {Yt, Zt, Rt} is

stationary and ergodic for each subject and each block; under these assumptions, the ergodic

theorem ensures that the (across time and subjects) sample frequencies used to construct

19Since the eye-movement measure Z̃t is continuous, we must discretize it for estimation. We leave the
details of our discretization procedure (including a discussion of whether three points of discretization is
appropriate) in Appendix A.3.

20In principle, because we do not impose a priori that the estimated probabilities must lie in [0,1] in
estimated, we could use these overidentifying restrictions to test the model. While this works as an informal
“eyeball” test, developing the formal sampling theory behind such a test seems difficult, due to the com-
plexities in characterizing the behavior of a test statistic at the boundary values of 0 and 1, and so we do
not pursue it here.
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the matrices A, G, and H converge towards population counterparts.21

2.4.1 Estimation results

Tables 2.3 and 2.4 present estimation results. Both X∗
t and Zt are discretized to take values

{1, 2, 3}. We interpret X∗ = 1, 3 as indicative of “strong beliefs” favoring (respectively)

green and blue, while the intermediate value X∗ = 2 indicates that the subject is “not

sure”.22

Table 2.3 contains the estimates of the choice and measurement probabilities.23 The first

and last columns of the panels in this table indicate that choices and eyes movements

are closely aligned with beliefs, when beliefs are sufficiently strong (i.e., are equal to either

X∗ = 1 or X∗ = 3). Specifically, in these results, the probability of choosing a color contrary

to beliefs—which is called the “exploration probability” in the literature—is small, being

equal to 1.3% when X∗
t = 1, and only 0.64% when X∗

t = 3.

When X∗
t = 2, however, suggesting that the subject is unsure of the state, there is a slight

bias in choices towards “blue”, with Yt = 2 roughly 56% of the time. The bottom panel

indicates that when subjects are not sure, they tend to split their gaze more evenly between

the two colors (i.e., Zt = 2) around 63% of the time.

The learning rule estimates are presented in Table 2.4. The left columns show how beliefs

are updated when “exploitative” choices (i.e., choices made in accordance with beliefs) are
21Results from Monte Carlo simulations (available from the authors on request) show that the estimation

procedure produces accurate estimates of the model components, with the differences between the estimated
and actual values usually on the order of magnitude of 10−1 times the parameter value.

22We have tried to re-estimate the model allowing for more belief states (≥ 4), but the results we obtained
was not encouraging. This is due to our relatively small sample size; since our estimation approach is
nonparametric, it is difficult to obtain reliable estimates with modest sample sizes. At the same time, as we
pointed out above, statistical evidence indicates that it is sufficient to discretize the eye-movement measure
Zt into three values, which implies that beliefs X∗

t should not take more than 3 values.
23We also considered a robustness check against the possibility that subjects’ fixations immediately before

making their choices coincide exactly with their choice. While this is not likely in our experimental setting,
because subjects were required to indicate their choice by pressing a key on the keyboard, rather than clicking
on the screen using a mouse, we nevertheless re-estimated the models but eliminating the last segment of the
reaction time in computing the Zt. The results are very similar to the reported results, both qualitatively
and quantitatively.
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Table 2.3: Estimates of choice and measurement probabilities

Each cell contains parameter estimates, with bootstrapped standard errors in parentheses. Each
column sums to one.

P (Yt|X∗
t )

X∗
t 1(green) 2(not sure) 3(blue)

Yt = 1 0.9866 0.4421 0.0064
(green) (0.0561) (0.1274) (0.0146)

2 0.0134 0.5579 0.9936
(blue)

P (Zt|X∗
t )

X∗
t 1(green) 2(not sure) 3(blue)

Zt = 1 0.8639 0.2189 0.0599
(green) (0.0468) (0.1039) (0.0218)

2 0.0815 0.6311 0.0980
(middle) (0.0972) (0.1410) (0.0369)

3 0.0546 0.1499 0.8421
(blue) (0.0581) (0.1206) (0.0529)
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Table 2.4: Estimates of learning (belief-updating) rules
Each cell contains parameter estimates, with bootstrapped standard errors in parentheses. Each

column sums to one.

P (X∗
t+1|X∗

t , y, r), r =1(lose), y =1(green)
X∗

t 1(green) 2 (not sure) 3(blue)
X∗

t+1 = 1 0.5724 0.3075 0.1779
(green) (0.0694) (0.0881) (0.2257)

2 0.0000a 0.3138 0.4002
(not sure) (0.0662) (0.1042) (0.2284)

3 0.4276 0.3787 0.4219
(blue) (0.0624) (0.0945) (0.2195)

P (X∗
t+1|X∗

t , y, r), r =2(win), y =1(green)
X∗

t 1(green) 2 (not sure) 3(blue)
X∗

t+1 = 1 0.8889 0.6621 0.8242
(green) (0.0894) (0.1309) (0.2734)

2 0.0000 0.2702 0.1758
(not sure) (0.0911) (0.1297) (0.1981)

3 0.1111 0.0678 0.0000
(blue) (0.0340) (0.0485) (0.1876)

P (X∗
t+1|X∗

t , y, r), r =1(lose), y =2(blue)
X∗

t 3(blue) 2 (not sure) 1(green)
X∗

t+1 = 3 0.5376 0.2297 0.2123
(blue) (0.0890) (0.0731) (0.1436)

2 0.0458 0.2096 0.1086
(not sure) (0.0732) (0.0958) (0.1524)

1 0.4166 0.5607 0.6792
(green) (0.0874) (0.0968) (0.1881)

P (X∗
t+1|X∗

t , y, r), r =2(win), y =2(blue)
X∗

t 3(blue) 2 (not sure) 1(green)
X∗

t+1 = 3 0.8845 0.6163 0.6319
(blue) (0.1000) (0.1136) (0.1647)

2 0.0000 0.3558 0.3566
(not sure) (0.0968) (0.1160) (0.1637)

1 0.1155 0.0279 0.0116
(green) (0.0499) (0.0373) (0.0679)

aThis estimate, as well as the other estimates in this table which are equal to zero, resulted from applying
the constraint that probabilities must lie between 0 and 1. See the discussion in Section 4 for more details.
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taken, and illustrate an important asymmetry in subjects’ belief-updating rules. When

current beliefs indicate “green” (X∗
1 = 1) and green is chosen (Yt = 1), beliefs evolve

asymmetrically depending on the reward: if Rt = 2 (high reward), then beliefs update

towards green with probability 89%; however, if Rt = 1 (low reward), then belief still stay

at green with probability 57%. This tendency of subjects to update up after successes, but

not update down after failures also holds after a choice of “blue” (as shown in the left-hand

columns of the bottom two panels in Table 2.4): there, subjects update their belief on blue

up to 88% following a success (Rt = 2), but still give the event blue a probability of 53%

following a failure (R1 = 1). This muted updating following failures is a distinctive feature

of our learning rule estimates and, as we will see below, is at odds with optimal Bayesian

belief updating.

The results in the right-most columns describe belief updating following “explorative” (con-

trarian to current beliefs) choices. For instance, considering the top two panels, when cur-

rent beliefs are favorable to “blue” (X∗
t = 3), but “green” is chosen, beliefs update more

towards “green” (X∗
t+1 = 1) after a low rather than high reward (82% vs. 18%). However,

the standard errors (computed by bootstrap) of the estimates here are much higher than

the estimates in the left-hand columns; this is not surprising, as the choice probability esti-

mates in Figure 2.3 show that explorative choices occur with very low probability, leading

to imprecision in the estimates of belief-updating rules following such choices.

The second columns in these panels show how beliefs evolve following (almost-) random

choices. Again considering the top two panels, we see that when current beliefs are unsure

(X∗
t = 2), there is stronger updating towards “green” when green choice yielded the higher

reward (66% vs. 31%). The results in the bottom two panels are very similar to those in

the top two panels, but describe how subjects update beliefs following choices of “blue”

(Yt = 2).
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2.5 How optimal are estimated learning rules?

In the remainder of the paper, we compare our estimated learning rules to alternative

learning rules which have been considered in the literature. We consider four alternative

parametric learning rules: (i) the optimal dynamic Bayesian model, which is the model

discussed in Section 2.2.1 above; (ii) a pseudo-Bayesian model, which is a version of the op-

timal Bayesian model in which the decision rules are smoothed relative to the step-function

decision rules in the optimal model (cf. Figure 2.2); (iii) reinforcement learning (cf. Sutton

and Barto (1998)); and (iv) win-stay, a simple choice heuristic whereby subjects replay

successful strategies. All of these models, except (i), contain unknown model parameters,

which we estimated using the choice data from the experiments. Complete details on these

models, and the estimated model parameters, are given in Appendix A.2.

The relative optimality of each learning model was assessed via simulation. For each model,

we simulated 100,000 sequences (each containing eight blocks of choices, as in the exper-

iments) of rewards and choices, and computed the distributions of payoffs obtained by

agents. The empirical quantiles of these distributions are presented in Table 2.5.

Table 2.5: Simulated payoffs from learning models
Optimal Nonparametric Pseudo- Reinforcement Win-stay

Bayesiana Bayesian Learning
5-%tile $5 $1 $2 $1 $1
25-%tile $12 $8 $9 $8 $8
50-%tile $17 $13 $14 $13 $13
75-%tile $22 $18 $19 $18 $18
95-%tile $29 $25 $26 $25 $25

aAs described in Section 2.2.1
Reinforcement-learning, pseudo-Bayesian, and win-stay models are described in Appendix A.2. For each

model, the quantiles of the simulated payoff distribution (across 100,000 simulated choice/reward sequences)

is reported.

As we expect, the optimal Bayesian model generates the most revenue for subjects; the

simulated payoff distribution for this model stochastically dominates the other models, and

the median payoff is $17. The other models perform almost identically, with a median
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payoff around $3-$4 less than the Bayesian model (or about two cents per choice). This

difference accounts for about 25% of typical experimental earnings (not counting the fixed

show-up fee).

In the next section, we look for explanations for the differences (and similarities) in perfor-

mance among the alternative learning models by comparing the belief-updating and choice

rules across the different models.

2.5.1 Comparing choice and belief-updating rules across different learn-

ing models

For the optimal Bayesian and reinforcement-learning models, we can recover the “beliefs”

corresponding to the observed choices and rewards, and compare them to the beliefs from

the nonparametric learning model.24 Appendix A.2 contains additional details on how the

beliefs were derived for the learning models.

In Table 2.6, we present some summary statistics for the implied beliefs from our nonpara-

metric learning model (denoted X∗
t ), vs. the Bayesian beliefs B∗ and the valuations V ∗

in the reinforcement-learning model. For simplicity, we will abuse terminology somewhat

and refer in what follows to X∗, V ∗, and B∗ as the “beliefs” implied by, respectively, our

nonparametric model, the reinforcement-learning model, and the Bayesian model.25 This

table contains eight panels.

Panel 1 gives the total tally, across all subjects, blocks, and trials, of the number of times

the nonparametric beliefs X∗ took each of the three values. Subjects’ beliefs tended to

favor green and blue roughly equally, with “not sure” lagging far behind. The close split
24There are no beliefs in the win-stay model, which is a simple choice heuristic. The pseudo-Bayesian model

has the same beliefs as the optimal Bayesian model (with the difference that the choice rule is smoothed).
25As we clarify in Appendix A.2, the nonparametric beliefs X∗

t were estimated from a maximum likelihood
procedure which ignores the implied correlation between choices and beliefs; this is because, given the
estimates of the choice probabilities in Table 3, which showed that P (Yt = 1|X∗

t = 1) ≈ P (Yt = 2|X∗
t =

3) ≈ 1, estimating beliefs X∗
t based on observed choices Yt would lead to estimates of beliefs which practically

coincide with choices (i.e., X∗
t = Yt), an artificially good “fit” which we felt does not accurately represent

the belief process of the subjects.
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Table 2.6: Summary statistics for beliefs in three learning models

X∗: Beliefs from nonparametric model
B∗: Beliefs from Bayesian model

V ∗: “Beliefs” (valuations) from reinforcement learning model Panel 1:

X∗ 1(green) 2(not sure) 3(blue)
1878 (45%) 366 (10%) 1956 (45%)

Panel 2:
mean median std. 33%-tile 33%-tile

B∗ (Bayesian Belief) 0.4960 0.5000 0.1433 0.4201 0.5644
V ∗(= Vb − Vg) -0.0104 0 0.4037 -0.2095 0.1694

See Appendix A.2 for details on computation of beliefs in these three learning models.

between “green” and “blue” beliefs is consistent with the notion that subjects have rational

expectations, with flat priors on the unobserved state S1 at the beginning of each block.

The second panel shows analogous statistics for the beliefs from the reinforcement-learning

and Bayesian models. The reinforcement-learning valuation measure V ∗ appears largely

symmetric and centered around zero, while the average Bayesian B∗ lies also around 0.5.

Thus, on the whole, all three measures of beliefs appear equally distributed between “green”

and “blue”.

Next, we compare the learning rules from the nonparametric, (optimal) Bayesian, and

reinforcement learning models. In order to do this, we discretized the beliefs in each model

into three values, in proportions identical to the frequency of the different values of X∗
t as

reported in Table 2.6, and present the implied learning rules for each model.26 These are

shown in Table 2.7.

Comparing the three sets of learning rules, we see that the most striking difference between
26Specifically, we discretized the Bayesian (resp. reinforcement-learning) beliefs so that 45% of the beliefs

fell in the B∗
t = 1(resp. V ∗

t = 1) and B∗
t+1 = 3(resp. V ∗

t = 3) categories, while 10% fell in the intermediate
B∗

t = 2(X∗
t = 2) category, the same as for the nonparametric beliefs X∗

t (cf. Panel 1 of Table 6). The results
are even more striking when we discretized the Bayesian and reinforcement-learning beliefs so that 33% fell
into each of the three categories.
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Table 2.7: Learning (belief-updating) rules for alternative learning models

P (X∗
t+1|X∗

t , y, r), r =1(lose), y =1(green)
Optimal Bayesian Learning Reinforcement Learning

Beliefs B∗
t+1, V ∗

t+1: 1(green) 2 (not sure) 3(blue) 1(green) 2 (not sure) 3(blue)
1 (green) 0.2878 0 0 0.6538 0 0

2 (not sure) 0.1730 0 0 0.1381 0.0115 0
3 (blue) 0.5392 1.0000 1.0000 0.2080 0.9885 1.0000

P (X∗
t+1|X∗

t , y, r), r =2(win), y =1(green)
Optimal Bayesian Learning Reinforcement Learning

Beliefs B∗
t+1, V ∗

t+1: 1(green) 2 (not sure) 3(blue) 1(green) 2 (not sure) 3(blue)
1 (green) 1.0000 1.0000 0.6734 1.0000 0.8818 0.6652

2 (not sure) 0 0 0.1250 0 0.1182 0.1674
3 (blue) 0 0 0.2016 0 0 0.1674

P (X∗
t+1|X∗

t , y, r), r =1(lose), y =2(blue)
Optimal Bayesian Learning Reinforcement Learning

Beliefs B∗
t+1, V ∗

t+1: 3(blue) 2 (not sure) 1(green) 3(blue) 2 (not sure) 1(green)
3 (blue) 0.3060 0 0 0.6576 0 0

2 (not sure) 0.1601 0 0 0.1261 0.0109 0
1 (green) 0.5338 1.0000 1.0000 0.2164 0.9891 1.0000

P (X∗
t+1|X∗

t , y, r), r =2(win), y =2(blue)
Optimal Bayesian Learning Reinforcement Learning

Beliefs B∗
t+1, V ∗

t+1: 3(blue) 2 (not sure) 1(green) 3(blue) 2 (not sure) 1(green)
3 (blue) 1.0000 1.0000 0.6760 1.0000 0.8898 0.6983

2 (not sure) 0 0.0000 0.1440 0 0.1102 0.1379
1 (green) 0 0 0.1800 0 0 0.1638
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them is in how beliefs update following unsuccessful choices (i.e., choices which yielded a

negative reward). Comparing the Bayesian and the nonparametric learning rules (in Ta-

ble 5), we see that Bayesian beliefs exhibit less “stickiness”, or serial correlation, following

unsuccessful choices. For example, consider the case of (Yt = 1, Rt = 1), so that an unsuc-

cessful choice of green occurred in the previous period. The nonparametric learning rules

(Table 5) show that the weight of beliefs remain on “green” (X∗
t+1 = 1) with 57% probabil-

ity, whereas the Bayesian beliefs place only 28% weight on green. A similar pattern exists

after an unsuccessful choice of blue, as shown in the left-hand column of the third panel.

On the other hand, the learning rules for the reinforcement-learning model (also reported

in Table 2.7) are more similar to the nonparametric learning rule, especially following un-

successful choices. Again, looking at the top panel, we see that following an unsuccessful

choice of “green” (Yt = 1), subjects valuations are still favorable to green with probability

65%; this is comparable in magnitude to the 57% from the nonparametric learning rule.

Similarly, after an unsuccessful choice of blue (third panel), valuations in the reinforcement-

learning model still favor blue with probability 66%, again comparable to the 54% for the

nonparametric model. It appears that the updating rules from the reinforcement-learning

and nonparametric model share a common defect: a reluctance to “update down” follow-

ing unsuccessful choices; this common defect relative to the optimal Bayesian model may

explain the lower revenue generated by these models.

In Table 2.8 we compare the choice rules across the different models. As in the previous

table, we discretized the beliefs from each model into three values. Comparing the top

two panels, we see that, even though the belief-updating rule is the same for the optimal

Bayesian and pseudo-Bayesian models, the choice rules are strikingly different. Evaluated

at the estimated model parameter (discussed in Appendix A.2), choice probabilities in the

pseudo-Bayesian model are practically invariant to the beliefs, and equal to around 50% for

all values of beliefs.

In contrast, choice rules in the optimal Bayesian model are deterministic functions of beliefs.



36

Table 2.8: Choice rules for alternative learning models
Optimal Bayesian Learning

Beliefs B∗
t : 1(green) 2(not sure) 3(blue)

Yt = 1 (green) 1.0000 0.5000 0.0000
2 (blue) 0.0000 0.5000 1.0000

Pseudo-Bayesian Learning
Beliefs B∗

t : 1(green) 2(not sure) 3(blue)
Yt = 1 (green) 0.5141 0.4996 0.4850

2 (blue) 0.4859 0.5005 0.5150

Reinforcement Learning
Beliefs V ∗

t : 1(green) 2(not sure) 3(blue)
Yt = 1 (green) 0.7629 0.4939 0.2250

2 (blue) 0.2371 0.5061 0.7750

Overall, the estimated choice rules in Table 2.3 are much closer to the optimal Bayesian

model, than the pseudo-Bayesian model. This suggests that the lower payoffs from the

estimated model relative to the optimal Bayesian model arise primarily not from the choice

rules (which are very similar in the two models), but rather from the belief-updating rules

(which are quite different, as discussed previously).

The bottom panel of Table 2.8 contains the choice rules for the reinforcement-learning

model. As shown there, the choice rules are much smoother than in the optimal Bayesian

model and the estimated model, but not as smooth as the pseudo-Bayesian model. This sug-

gests that the similarities of the payoffs from the estimated model relative to reinforcement-

learning (as shown in Table 2.5) arise mainly from the similarities in belief-updating rules,

and less from the choice rules, which are quite different in the two models.

Finally, the similarity in payoffs between the nonparametric and win-stay models is not

surprising because, as we showed in Section 2.2.3 above, the reduced-form choice behavior

from the experimental data is in line with a “win-stay/lose-randomize” rule of thumb. Such

behavior is confirmed in the formal parameter estimates for the win-stay model (presented

in Appendix A.2.5) which show that, after receiving a positive reward, subjects tend to
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repeat the previous choice with probability 87% while, after a negative reward, subjects

essentially randomize. This asymmetry in choices following good/bad rewards echoes the

nonparametric learning rules from Table 5, which showed that subjects “update down”

much less following bad rewards than they “update up” following good rewards.

2.5.2 Are eye movements noisy measure of beliefs?

The empirical exercise we undertake in this paper hinges crucially on the assumption that

eye movements are (noisy) measurements of the unobserved beliefs, and are not merely

noisy measurements of choices. Having used the choice data to estimate beliefs for the

nonparametric learning model, as well as the benchmark Bayesian model, we conclude the

paper by using these beliefs to perform an assessment of this critical assumption.27

Independently of our empirical model and its underlying assumptions, eye movements are

really related to some intuitive notion of how beliefs evolve? Using Bayesian beliefs as such

an intuitive (and objective) measure of beliefs, we compare each Bayesian belief B∗
it to the

corresponding (undiscretized) eye movement measure Z̃it (as defined in Eq. (2.3)) recorded

for that subject and trial. The graphs are presented in Figure 2.3. In the top graph, we see

that Z is clearly increasing with B∗, suggesting that eye movements track well a standard

notion of beliefs.

Of course, this positive relationship could be spurious; if eye movements were not a noisy

measure of beliefs, but rather of choice, then the graph here may be picking up simply the

common dependence of both Z̃ and B∗ on choices. To address this, we consider, in the

remaining two graphs in Figure 2.3, a plot of (Z̃t, B
∗
t ) values conditional on the choice Yt;

by conditioning on choice, we eliminate any variation in eye movements due to differences

in choice.

For the most part, we see that the positive relationship between Z̃t and B∗
t remains, even

27See also Appendix A.5 for another approach to assessing this assumption.
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Figure 2.3: How eye movements track Bayesian beliefs

after conditioning on choice.28 For example, the overall positive trend in the second graph

suggests, reassuringly, that the eye tracking measure Z̃t more strongly favored blue (i.e., Z̃t

takes large values) when there was strong evidence that blue was the good arm (i.e., B∗
t is

large), than when there is only weaker evidence (i.e., B∗
t is small), even after controlling

for the relationship between eye movements and choices. This is solid evidence that eye

movements are related to some intuitive notion of how beliefs behave, and are not simply

noisy measures of choices.29

28Moreover, the data will be less concentrated in the region of small values of B∗ in the second graph
(when blue would tend not to be chosen), and large values of B∗ in the bottom graph (where green would
tend not to be chosen). This may explain the kinks in the graphs in those regions.

29See also Appendix A.5 for an alternative assessment of this.
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2.6 Conclusions

In this paper, we estimate learning rules nonparametrically from data drawn from exper-

iments of multi-armed bandit problems. The experimental data are augmented by mea-

surements of subjects’ eye movements from an eye-tracker machine, which play the role of

auxiliary measures of subjects’ beliefs. Our estimated learning rules have some distinctive

features—notably that subjects tend to update asymmetrically after unsuccessful choices

as compared to successful choices. The profits from following the estimated learning and

decision rules are smaller than what would be obtained from an optimal Bayesian learn-

ing model (about $4 less for each subject, at the median), and comparable to the profits

obtained from three other parametric models: a reinforcement-learning model, a “pseudo”-

Bayesian model, and a win-stay choice heuristic. Relative to the optimal Bayesian model,

the belief-updating rules from the nonparametric and reinforcement-learning model share

a common feature that subjects appear reluctant to “update down” following unsuccessful

choices; this may explain the sub-optimality of these models (in terms of profits).

Our nonparametric estimator for subjects’ choice probabilities and learning rules is easy to

implement, involving only elementary matrix operations. Furthermore, from a methodolog-

ical point of view, the modus operandi used in this paper—the nonparametric estimation

of learning models using experimental data—appears to be a portable idea which can be

potentially applied more broadly to other experiments involving dynamic decision problems.
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Chapter 3

Learning Under Outlier Risk in a
Non-Gaussian World

3.1 Introduction

Predicting price dynamics, especially after extremely large price changes such as bubble

bursts, has been one of the central questions in financial economics, hence intensive studies

has been done, often referred as heavy-tailed returns or outlier risk problem (Taleb (2008)).

However, it is still elusive how and what kind of dynamics people see behind extremely

large price changes, either some systemic changes or just an observation error without little

structural change. In traditional financial economics, a large stock price change occurs as

a result of its fundamental change (Cochrane (2005)), which derives that the price follows

unpredictable random walk process (Malkiel (1999)). On the contrary in behavioral finance,

a large price deviation could occur due to a temporal overreaction without any fundamental

change (De Bondt and Thaler (1989), Bondt and Thaler (1985), Shiller (2003)) and the

deviation would disappear with a predictable reversion to its fundamental value sooner or

later.

Recent studies in decision neuroscience (Yu and Dayan (2005), Aston-Jones and Cohen

(2005), Sara (2009)) and psychology (Kruschke and Johansen (1999), Griffin and Tversky
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(1992), Gilovich, Vallone, and Tversky (1985)) revealed that salient information changes

often alter mental models in the human mind (Gentner and Stevens (1983), Craik (1943)),

suggesting that humans are more likely to see fundamental changes behind salient, large

price changes; In natural environment, salient information generally have been critical sig-

nals which warn animals against “fundamental” changes of the surrounding environment

which could be a thread of their lives, hence humans, or animals in general, might have

developed a cognitive ability to inevitably pay attention to salient information in the long

evolutionary histories (Bromberg-Martin, Matsumoto, and Hikosaka (2010)).

However as behavioral finance argues, in the modern financial market stock prices often

show salient outliers which are seemingly unrelated to fundamental changes, and reverting

to the original price level either in the short term (Bremer and Sweeney (1991)) or in the

long term (the 2009 correction to the 2008 downfall in average world stock prices being one

example). I speculate that the counterintuitive contradiction between the modern financial

markets and natural environment could be a potential source for suboptimal behavior of

humans in price predictions in the financial markets; Human might tend to see fundamental

changes behind outliers even without them in financial markets, as similarily as animals see

fundamental changes in environment from salient information.

In this study, I develop the optimal learning models for predicting price dynamics, or more

precisely belief-updating process on price dynamics under the two kinds of outlier risk, as

Bayesian reinforcement-learning models, solving them numerically using sequential Monte

Carlo (SMC) sampling. More precisely, the two kinds of outlier risk considered here are

followings;

1. “Fundamental” case in which, when the stock price shows a large movement, the

subsequent change will tend to be around the new price level, depicting that the

“fundamental” value of the stock has changed with the big leap.

2. “Anomaly” case in which, when the price shows a large movement, the price will tend

to revert to the original level in the subsequent period; That is, the price deviates
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from fundamental value temporally but revert to it, depicting a price “anomaly” in

behavioral finance.

The modern financial markets have attracted a wide range of people, and as a result many

people, who are not necessarily specialized in financial tradings, are involved in predicting

price dynamics to earn their money. They are unavoidably faced with large price changes

which are unclear to be whether permanent, or just temporal. It is not clear whether and

how humans dissociate between these two types of outliers. Exploring the human nature of

predicting price dynamics associated with large price changes is important and necessary

for better decision-making for any financial participants, as its knowledge improves their

decision-making as “nudge” (Thaler and Sunstein (2008)). It is also beneficial for policy

makers to establish better market mechanisms such as circuit breaker, elaborated monetary

policies and effective market interventions in a turbulent market, in order to maintain stable

and sound financial markets.

In the next section, I present experimental evidence showing that humans are actually capa-

ble of discriminating the two price processes involving outliers with/without fundamental

changes, which motivates our optimal learning model under outlier risk. In Section 3, I

characterize the optimal learning models as Bayesian reinforcement learning models using

non-Gaussian Kalman filter, and obtain optimal estimates of the hidden, fundamental value

with sequential Monte Carlo (SMC) sampling. Then, I conclude in Section 4.

3.2 Human perception of outliers

Do people correctly attribute the sources of outliers, either fundamental changes or just

observation noises as anomalies? To assess this issue, Bossaerts’ research group conducts

a behavioral experiment on human perception of the two kinds of outliers with/without

fundamental changes1. They asked their subjects to predict movements of a Target depicting
1I acknowledge Peter Bossaerts and his research group for allowing me to use their data set.
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Figure 3.1: Target position prediction task

price dynamics including the two different kinds of outlier risk. In their Target position

prediction task, subjects see a Target (red dot) that moves along a circle (Fig. 3.1), in both

clockwise and counterclockwise direction. On the same circle, subjects will also observe a

Robot (blue dot). The task will be to control the Robot by changing how much it responds

to Target movements, using a slider underneath the circle (Fig. 3.1). Subjects’ task is to

forecast the Target’s subsequent position and navigate the Robot to the predicted position.

Moving the cursor towards “1” increases the adjustment of the Robot towards the Target’s

last move, while moving the cursor towards “0” decreases the Robot’s adjustment. The

experiment has two separated blocks, each having a distinctive experimental treatment for

Target movement2:

1. “Fundamental” treatment in which, when the Target shows a large movement, the

Target’s subsequent position will tend to be around the new position, depicting that

the “fundamental” value of the stock has changed with the big leap.

2. “Anomaly” treatment in which, when the price shows a large movement, the Tar-

get will tend to revert to the original level in the subsequent period; That is, the

price deviates from fundamental value temporally but revert to it, depicting a price
2The full description of the two stochastic processes is in the Appendix B.1.
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“anomaly” in behavioral finance.

Figure 3.2: Learning rate and prediction error

(Subject 8) Left: Fundamental treatment; Right: Anomaly treatment

x-axis: Learning rate; y-axis: Absolute value of prediction error

I plot learning rates and absolute values of prediction error for a subject (subject 9) in

Figure 3.2. Here learning rate is the adjustment of the Robot, which controls how much

subjects respond to the Target’s last movement, whereas prediction error is the difference

between Robot’s current position and Target’s new position, indicating how much her prior

forecast was missed3.

Apparently, the subject differentiates her forecasting strategy depending on the treatments

as the distributions of learning rate are different according to the treatments with larger

prediction error, suggesting that the subject certainly distinguishes the two stochastic pro-

cesses. Although she takes a seemingly identical, random strategy for forecasting in both

treatments when the prediction error is small (less than ten), faced with unexpected large

movement of the Target she shows significantly larger learning rates in the fundamental

treatment (left panel) than those in the anomaly treatment (right panel). The two plots
3The mathematical definition of learning rate and prediction error is fully discussed in the next section.
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are clearly separable in the area of larger prediction error. Observing an outlier in Targets

movement in the fundamental treatment, she tracks it a lot, expecting that the Target’s

subsequent position will be around its new position, which suggests that possibly she real-

izes the “fundamental” change of the Target’s position behind the outliers. Contrarily in

the anomaly treatment, she does not respond to outliers, implying that she expects their

reversions to the previous positions in the subsequent trials, as she assumes that the outliers

are just temporal “anomalies”.

Not only the subject 9, but also most of the subjects more or less correctly distinguish the

two underlying stochastic process successfully. Table 3.1 contains the evidence suggesting

that most people more or less differentiate their predictions systematically in accordance

with the treatments. The top row in the table contains the mean learning rate in the trials in

which they are faced with large Target movements or jumps, conditional on the treatments

either the fundamental or the anomaly treatment. The threshold value for jump detection is

defined as the value three times larger than 3.04, where the value “3.04” is 84.13 percentile

of the distribution of the prediction error. Three times larger than the 84.13 percentile is 3

in a standard Gaussian distribution (99.9 percentile), which is generally regard as outliers4.

Comparing the first and second entries in this row, we see that the mean learning rate

in the fundamental treatment shows much larger value (0.7192) than that in the anomaly

treatment (0.3650). Thus, on average, people see permanent, “fundamental” changes of

the Target’s movements with outliers in the fundamental treatment while people see less in

the anomaly treatment. In order to examine the difference of their forecasting strategies

under the two treatments more statistically, I compare the distributions of learning rate in

jump trials conditional on each treatment using Kolmogorov-Smirnov test. The last entry

in Table 3.1 contains the p-value of Kolmogorov-Smirnov one-sided test that the cumulative

distribution function of learning rate in jump trials in the anomaly treatment, denoted by
4The definition of outliers is consistent with Dayan and Yu (2003) who employ a threshold value that is

three times as large as the standard error in a Gaussian distribution for outliers due to regime switches in
volatility of the underlying process.
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Table 3.1: Mean learning rate at jump trials

Mean: Fundamental Mean: Anomaly Kolmogorov-Smirnov test, P

Across All Subjects: 0.7192 0.3650 0.0000
(0.0133) (0.0158) ∗∗

For each individual subject:
Subject1: 0.8297 0.5825 0.0068

(0.0333) (0.0665) ∗∗
Subject2: 0.9992 0.1835 0.0000

(0.0006) (0.0510) ∗∗
Subject3: 0.8558 0.5825 0.0027

(0.0262) (0.0525) ∗∗
Subject4: 0.3822 0.3557 0.0595

(0.0361) (0.0483)
Subject5: 0.7751 0.2150 0.0000

(0.0344) (0.0442) ∗∗
Subject6: 0.4432 0.2356 0.0003

(0.0364) (0.0401) ∗∗
Subject7: 0.7507 0.2703 0.0000

(0.0574) (0.0640) ∗∗
Subject8: 0.7900 0.0772 0.0000

(0.0612) (0.0297) ∗∗
Subject9: 0.7920 0.0897 0.0000

(0.0181) (0.0271) ∗∗
Subject10: 0.8739 0.4705 0.0000

(0.0480) (0.0429) ∗∗
Subject11: 0.8507 0.8513 0.1732

(0.0000) (0.0002)
Subject12: 0.7712 0.2503 0.0000

(0.0435) (0.0661) ∗∗
Subject13: 0.6650 0.3172 0.0000

(0.0619) (0.0473) ∗∗
Subject14: 0.9578 0.2856 0.0000

(0.0157) (0.0652) ∗∗
Subject15: 0.7563 0.3195 0.0001

(0.0573) (0.0869) ∗∗
Note: standard errors in parentheses

Asterisks show the rejection of the null with 5% (*) or 1% (**) significance level.
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F (x), is larger than that in the fundamental treatment, denoted by G(x)5. The P-value

is smaller than 0.0001, showing that the two distribution F (x) and G(x) is not identical6,

and moreover, the former is larger than the latter, implying that people correctly see more

fundamental changes in the fundamental treatment than in the anomaly treatment.

In the reminder of the Table 3.1, I also present the same statistics, the mean learning rate

for each treatment and Kolmogorov-Smirnov test, calculated for each subject individually.

Although there is some degree of heterogeneity in subjects’ strategies, most of the subjects

show much larger mean learning rate in the fundamental treatment than that in the anomaly

treatment, except for subjects 4 and 11 who show almost identical learning rate under both

treatments. Indeed, the Kolmogorov-Smirnov test rejects the null hypothesis for the thirteen

subjects out of fifteen, which offers a concrete evidence that humans are able to discriminate

the two kind of outlier risks.

3.3 Optimal learning models under outlier risk

Having seen the humans’ capability of distinguishing the two kind of outlier risks with

and without fundamental changes, in this section I describe optimal learning model for

price dynamics which involves outlier risk, and discuss the difference from an benchmark

learning in a Gaussian world, using Kalman filter framework in order to illuminate the

features. Kalman filter is an efficient, statistical estimator predicting the dynamic system

of hidden Markov process using noisy signals of it, however it is also known as a Bayesian

optimal sequential estimator on the dynamics of hidden variable (Harrison and Stevens

(1971), Meinhold and Singpurwalla (1983)). Indeed, Kalman filter is often applied in finance

for short-term forecast of the unobservable fundamental value of financial securities (Wells

(1996)) where prices are a noisy measure of fundamental value, including noises which
5The null hypothesis is that the two distributions are identical.
6There is no opportunity of order effect over the treatments since the experimental order of the treatments

is reversed between odd numbered subjects (starting with the fundamental treatment) and even numbered
subjects (starting with the anomaly treatment).
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various microstructures of financial markets generate. As a benchmark for the comparison,

I start with a standard Kalman filter without outlier risk to describe its basic structure and

model assumptions.

After considering a standard Kalman filter, using the common structure of standard Kalman

filter but modifying its key assumptions, I describe optimal learning models under out-

lier risk in two ways; Optimal learning under a price process in which outliers occur as

fundamental changes, and a price process in which outlier occur without fundamental

changes rather as temporal observation noise. Two main streams of the academic finance

today—traditional finance and behavioral finance—have their own distinctive views on the

price changes; Traditional finance theories assume a price change is a result of its funda-

mental change, while price change might occur without its fundamental value change in

behavioral finance. The price change in the latter case is referred to price anomalies. I

present the optimal learning under outlier risk both in fundamentals and price anomalies

in the following sections.

3.3.1 Benchmark: optimal learning in a Gaussian world (Kalman filter)

Let {y1, y2, ..., yt} be a sequence of a scalar variable which is directly observable to econo-

metricians. The variable yt depends on an unobservable variable xt, known as the state of

the nature. Here in the financial application, the observable variable is a stock price, and

the unobservable variable is its fundamental value. The goal of Kalman filter is to make

inferences about the unobservable xt from the history of yt up to time t. The relationship

between yt and xt is linear and is specified by the observational equation,

yt = xt + et, (3.1)
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where the observation noise, denoted by et is assumed to be a Gaussian distribution with

mean zero and variance σ2
o , denoted as N(0, σ2

o).

The dynamics of the state variable is defined by the system equation,

xt = xt−1 + ut, (3.2)

where the system innovation, denoted by ut is assumed to be a Gaussian distribution with

mean zero and variance σ2
i , denoted as N(0, σ2

i ). Importantly, the observation noise et and

system innovation ut are assumed to be independent.

Let x̂t be the best estimate at time t for the state of the nature, as it minimizes the mean

square error of predictions. Kalman filter gives the analytical solution for x̂t.

x̂t = x̂t−1 +
1
σ2

o

1
V 2

t−1+σ2
i

+ 1
σ2

o

(yt − x̂t−1)

Vt
2 =

1
1

V 2
t−1+σ2

i
+ 1

σ2
o

(3.3)

where Vt is the variable which characterizes the uncertainty of the estimates on xt. More

precisely in Bayesian framework, the Bayesian posterior belief on the state of nature is

described by a Gaussian distribution with mean x̂t and variance V 2
t , denoted by N(x̂t, V

2
t ).

The value V0 takes zero if the true value of the state of nature is fully revealed at time 0.

Interestingly, the Kalman filter equation is transformed into a reinforcement learning frame-

work, which is often referred as Bayesian reinforcement-learning. To transform the equa-

tions, I define a variable “prediction error”, which is commonly employed in machine learn-

ing.

Here, prediction error, denoted by δt, is the difference between the predicted value x̂t−1 at

time t-1 and the observed value yt at time t.
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δt = yt − x̂t−1, (3.4)

As it is verified with a little computation below, the expected value of the prediction error

at time t-1 (conditioned on the information set It−1 at time t-1) is zero, implying that

the prediction error takes positive (negative) value when the realized value yt is greater

(smaller) than the expected value.

E[δt|It−1] = E[yt − x̂t−1|It−1]

= E[xt − x̂t−1|It−1]

= E[xt−1 − x̂t−1|It−1]

= 0.

(3.5)

Now the first equation in Kalman filter (3.3) is transformed in a reinforcement-learning

framework with prediction error δt.

x̂t = x̂t−1 + At · δt, (3.6)

The first equation describes how the predicted value for xt is updated with the feedback of

prediction error via Rescorla and Wagner rule (Rescorla and Wagner (1972))7. Here At is

a learning rate, or Kalman gain, which controls the magnitude of feedback on value update

from prediction error.
7For technical details on reinforcement learning, see Sutton and Barto (1998).
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At =
1
σ2

o

1
V 2

t−1+σ2
i

+ 1
σ2

o

. (3.7)

The remarkable feature of the Kalman filter in a Gaussian world is that the learning rate

At is a constant function with respect to prediction error; Even if the prediction error is

extremely large, the learning rate does not change at all. Rather than prediction error, the

determinants of the learning rate in a Gaussian world are the uncertainty of the prior belief

δt, and the variances of the observation error et and the system innovation ut. Besides the

contribution of the uncertainty of the prior belief δt, the learning rate is determined by the

relative strength of the two signals, namely the observation noise and system innovation.

For example, larger variations in system innovation strengthens its relative contribution to

the transition of xt, hence optimally the larger part of the prediction error is attributed to

the system innovation and vice versa.

As I discuss in the following sections, in the non-Gaussian, heavy-tailed world, the learning

rate is no more just a constant function with respect to prediction error. Hereafter I compare

the standard Kalman filter in a Gaussian world with those in a non-Gaussian world with

outlier risk, especially focusing on the functional form of the optimal learning rate.

3.3.2 Optimal learning under outlier risk in fundamental value transition

Traditional finance theory assumes that price changes are caused by its fundamental value

changes (Cochrane (2005), Malkiel (2003)). The outlier risk is included in the dynamics

of fundamental value, and the outliers in price changes are for the most part due to its

fundamental changes. In order to allow the occasional outliers in fundamental values in

the Kalman filter framework, the assumption on the system innovation in the standard

Kalman filter is modified to incorporate heavy-tailed distribution. As is often employed as

a heavy-tailed distribution in finance (Behr and Pötter (2009)), here I use a finite-mixture
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of Gaussian distributions model, which is first introduced as models of return distribution

by Kon (2012). Kon (2012) examines daily returns from 30 various stocks and estimates

mixtures of Gaussian distributions. Mixtures of Gaussian distribution is a conventional way

of generalizing a given family of distributions, including heavy-tailed distribution which is

the aim of the study.

Here the system innovation in the system equation is assumed to follow a two mixture of

Gaussian distributions, denote by N(0, σ2
s) + I(t) ·N(0, σ2

l ), where the index function I(t)

follows a Bernoulli distribution, occasionally taking one with a chance of Pl, otherwise zero.

Without loss of generality, σ2
l is larger than σ2

s . Other model assumptions in the standard

Kalman filter are maintained.

It is a well-known fact that Kalman filter with non-Gaussian distribution has no simple,

tractable analytical solution as we have seen in the standard Kalman filter in equation (3.7).

However, numerical solutions are available for various extended Kalman filter models. A

conventional, commonly applied technique for numerical solutions in non-Gaussian Kalman

filter, or Bayesian filtering problem in general, is sequential Monte Carlo (SMC) sampling

(Kitagawa (1987), Doucet, Godsill, and Andrieu (2000), Doucet, De Freitas, and Gordon

(2001)).

The implementation of SMC sampling in the case here follows,

1. First, the prior distribution of xt−1 is generated by simulation. Here I denote each

simulated sample with subscript “j”, {xj
t−1}

j=M
j=1 , where the sample size M is set to

40000 to ensure reliable numerical estimates.

2. Second, in order to generate the prior distribution of xt, the system equation as well

as another randomly drawn variables are employed; First, the sample of system in-

novations {uj}j=M
j=1 are randomly drawn using the mixture of Gaussian distribution,

and then the simulated prior {xj
t−1}

j=M
j=1 are added to the simulated system innova-

tions to derive the prior distribution of xt, denoted by {xj
p,t}

j=M
j=1 . Here the resulting
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distribution is the prior distribution of xt before observing the new evidence yt.

3. Finally, in order to derive the posterior distribution f(xt|yt), an importance sampling

is employed; resample the prior distribution of xt ({xj
p,t}

j=M
j=1 ) with weight of the

probability distribution f(yt|xj
p,t), denoting the resulting sample by {xj

t}
j=M
j=1 . Since

the observation error et follows a Gaussian distribution, the probability distribution

f(yt|xj
p,t) has an analytically tractable expression and is computed with little difficulty.

Then, the resulting numerical distribution {xj
t}

j=M
j=1 follows Bayesian posterior distribution

f(xt|yt), given the prior distribution f(xt−1) and the evidence yt. Moreover, recursively,

the numerical distribution {xj
t}

j=M
j=1 is employed as the prior distribution of the next stage,

namely referred as “sequential” Monte Carlo sampling.

Figure 3.3: Learning under outlier risk in system innovation

Mean (left) and standard deviation (right) of posterior belief

Parameter values: variance of observation noise σo = 2.5; variance of two mixture of Gaussians σs = 0.5

and σl = 23.5; the probability of mixture of Gaussian with larger variance Pl = 0.125.

The left panel of Figure 3.3 is the plot of simulated learning rate At (mean of the posterior

belief) over the absolute value of prediction error under outlier risk in system innovations,

computed using the SMC sampling. For simplicity of the simulation, the fundamental value
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xt of the previous period is assumed to be known without uncertainty to eliminate the

effect of the uncertainty in prior belief. The learning rate is a S-shape, upward function of

the absolute value of the prediction error, implying that the less precise the prediction is,

the more magnified the feedback of the prediction error is into the value update process.

The shape is remarkably different from the one in the standard Gaussian world in which

the functional form was a constant value with respect to prediction error. The intuition

behind the S-shaped learning rate is quite reasonable; once a prediction error is large, people

optimally attribute the most part of the error to the system innovation since larger changes

are easier to occur in system innovation due to its heavier-tailed distribution than that of

the observation noise.

The right panel of the Figure 3.3 is the plot of the standard deviation of the posterior belief

on the state variable xt over prediction error, as a measure of the subjective uncertainty

of the belief. Contrarily to the mean value of the belief, the standard deviation is not

a monotonic function of prediction error, rather it is a hump-shaped; It monotonically

increases to reach a plateau with prediction error being approximately 8, then decrease

to be a constant value with prediction error being approximately 12 or more. This result

suggests that the prediction of the fundamental value is the most inaccurate and unstable

at a middle size of forecast error, rather than extremely large deviations, perhaps as people

cannot attribute the principal source of the prediction error well, to either system innovation

or observation noise.

3.3.3 Optimal learning under outlier risk in observation noise

Contrary to traditional finance theories, behavioral finance has proposed a theory with

empirical evidence that stock prices and their fundamental values occasionally diverge sig-

nificantly, often referred as price anomalies (De Bondt and Thaler (1989), Shiller (2003)).

A price deviation from the fundamental value is temporal and the price tends to revert

to its fundamental value predictably in a short term or a long term. Although the earlier
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studies on price reversions were mainly focused on relatively long-term reversions (Bondt

and Thaler (1985)), Bremer and Sweeney (1991) also find the evidence of the short-term

reversions of stock prices associated with outliers of their price changes, suggesting that

these outliers include significant price anomalies.

To allow occasional outliers in the price anomalies instead of fundamental values, here I

assume that the observation noise in the observation equation follows a two mixture of

Gaussian distributions as same as in the case of outliers in fundamental values, denote dy

N(0, σ2
s)+I(t) ·N(0, σ2

l ), where again the index function I(t) follows Bernoulli distribution,

occasionally taking one with a probability of Pl, otherwise zero.

Figure 3.4: Learning under outlier risk in observation noise

Mean (left) and standard deviation (right) of posterior belief

Parameter values: variance of system innovation σi = 2.5; variance of two mixture of Gaussians σs = 0.5

and σl = 23.5; the probability of mixture of Gaussian with larger variance Pl = 0.125.

The SMC sampling of the previous model is also applicable to this case with little modifi-

cations. The left panel of Figure 3.4 shows the plot of simulated learning rate with respect

to the absolute value of prediction error under outlier risk in observation error using SMC

sampling, given that the fundamental value xt of the previous period is fully revealed for

the sake of simplicity of the simulation. Indeed, the shape of the function has a distinc-
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tive feature; The function of the learning rate is an inverse-S-shape, downward function

of the absolute value of prediction error; The less precise the prediction is, the less the

feedback of the prediction error is. Again, the shape is remarkably different from the one

in Gaussian world (a constant value with respect to the value of prediction error). The

inverse-S-shape function also differs from that in the case for outliers in system innovations

case, whose learning rate was the S-shape upward function. In the world of outlier risk

in price anomalies, people optimally attribute the prediction error to the observation error

rather than the system innovations when they are faced with a large prediction error, since

now the observation error has a heavier-tail in its distribution rather than that of the system

innovation.

The right panel of the Figure 3.4 is the plot of the standard deviation of the posterior belief.

Interestingly, the shape of the plot is almost identical to the case of system innovation with

outliers while the learning rate curve is remarkably different; It has a hump-shaped having a

maximum value with prediction error being around 8, and decrease to be a constant value.

Again, the agent is maximumly uncertain on the source of the prediction error at the middle

value, rather than extremely large prediction error.

3.4 Discussion

In the present study I show the optimal learning for price dynamics under outlier risk. Two

kinds of outlier risk in price processes are considered here; A price process in which outliers

occur as its fundamental value has changed, and a price process in which outliers occur

even with little fundamental change as deviations from its fundamental value, rather they

are due to observation noise. The latter is often referred as price anomaly in behavioral

finance.

The two optimal learning models are characterized as Bayesian reinforcement-learning mod-

els using non-Gaussian Kalman filter, and are solved numerically with sequential Monte
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Carlo sampling. The numerical solutions revealed several key features of the two opti-

mal learning model, which are mainly summarized in their learning rate and prediction

error; The learning rate with outlier risk in fundamental value is a monotonically increasing

function of absolute value of prediction error, while the learning rate with outlier risk in ob-

servation noise is a monotonically decreasing function. Interestingly, the uncertainly of the

learning is seemingly identical among the two, having a hump-shaped function of absolute

value of prediction error.

Several further research directions should be considered, however, I believe one of the most

fruitful would be investigation on neural substrates of outlier risk as less is known about

the neurobiological foundations of outlier processing in humans. Only a few suggestions

have been made in the literature (Yu and Dayan (2005), Aston-Jones and Cohen (2005),

Sara (2009)), with links to neuromodulators like norepinephrine, or specific brain struc-

tures such as hippocampus, but little concrete is known. Moreover, neuroscientists have

tended to investigate only outliers that are associated with fundamental/regime changes of

environments, rather than outliers that are less associated. As often discussed in finance

literature, outliers play a crucial role in financial markets. The profound knowledge on

human outlier processing would help to understand human behavior in financial markets,

perhaps uncovering the human suboptimal behavior for their price predictions.
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Appendix A

Appendix of Chapter 2

A.1 Details of optimal Bayesian learning model

Here we provide more details about the simulation of the optimal learning and decision

rules from Section 2.2.1. First we introduce some notation and describe the information

structure and how Bayesian updating would proceed in the reversal learning context. Let

(Yt, St, Rt) denote the actions, state, and rewards. Furthermore, let Q denote the 2 × 2

Markov transition matrix for the state St, corresponding to Matrix (2.2).

Let B∗
t denote the prior belief that St = 1, at the beginning of period t, while B̃∗

t denotes

the posterior belief that St = 1, at the end of period t, after taking action Yt and observing

reward Rt. The relationship between B∗
t and B̃∗

t is given by Bayes rule:

p̃t = P (St = 1|pt, Rt, Yt) =
pt · f(Rt|St = 1, Yt)

pt · f(Rt|St = 1, Yt) + (1− pt) · f(Rt|St = 2, Yt)

Combining this with Q, we obtain the period-by-period transition for the prior beliefs B∗
t :

 B∗
t+1

1−B∗
t+1

 = Q ·

 B̃∗
t

1− B̃∗
t

 = Q ·

 P (St = 1|B∗
t , Rt, Yt)

1− P (St = 1|B∗
t , Rt, Yt)

 (A.1)

Next we describe a dynamic Bayesian learning model for the reversal-learning environment.
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As in the experiments, we consider a finite (25 period) horizon, with t = 1, . . . T = 25. Each

subject’s objective is to choose sequence of actions to maximize expected rewards:

max
i1,i2,...,iT

E

[
T∑

t=1

Rt

]

The state variable in this model is B∗
t , the beliefs at the beginning of each period. Corre-

spondingly, the Bellman equation is:

Vt(B∗
t ) = max

Yt∈{1,2}

{
E

[
Rt + Vt+1(B∗

t+1)|Yt, B
∗
t

]}
= max

Yt∈{1,2}

{
E [Rt|Yt, B

∗
t ] + ERt|Yt,B∗

t
EB∗

t+1|B∗
t ,Yt,Rt

Vt+1(B∗
t+1)

} (A.2)

Above, the expectation EB∗
t+1|B∗

t ,Yt,Rt
is taken with respect to Eq. (A.1), the law of motion

for the prior beliefs, while the expectation ERt|Yt,B∗
t

is derived from the assumed distribution

of (Rt|Yt, ωt) via

P (Rt|Yt, B
∗
t ) = B∗

t · P (Rt|Yt, ωt = 1) + (1−B∗
t ) · P (Rt|Yt, ωt = 2).

While we have not been able to derive closed-form solutions to this dynamic optimization

problem, we can compute the optimal decision rules by backward induction. Specifically,

in the last period T = 25, the Bellman equation is:

VT (B∗
T ) = max

Yt∈{1,2}
E [Rt|Yt, B

∗
T ] . (A.3)

We can discretize the values of B∗
T into the finite discrete set B. Then for each B ∈ B,

we can solve Eq. (A.3) to obtain the period-T value and choice functions V̂T (B) and

ŷ∗T (B) = argmaxiE[Rt|i, B] for each value of B ∈ B. Subsequently, proceeding backwards,

we can obtain the value and choice functions for periods t = T − 1, T − 2, . . . , 1. These

choice functions are plotted in Figure 2.2.
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A.2 Details on model fitting and belief estimation in different

learning models

In Section 2.5, we compared belief dynamics in the nonparametric model (X∗) with counter-

parts in other two benchmark learning models, the Bayesian belief (B∗) and the valuation

in the reinforcement-learning model (Vb − Vg). Here we provide additional details for how

the beliefs for each of the three models were computed.

A.2.1 Belief dynamics X∗ in the nonparametric model

The values of X∗, the belief process in our nonparametric learning model, were obtained

by maximum likelihood. For each block, using the estimated choice and measurement

probabilities, as well as the learning rules, we chose the path of beliefs {X∗
t }

25
t=1 which

maximized P ({X∗
t } | {Zt, Rt}), the conditional (“posterior”) probability of the beliefs, given

the observed sequences of eye-movements and rewards. Because

P ({X∗
t , Zt} | {Yt, Rt}) = P ({X∗

t } | {Zt, Rt}) · P ({Zt} | {Yt, Rt}),

where the second term on the RHS of the equation above does not depend on X∗
t , it is

equivalent to maximize P ({X∗
t , Zt} | {Yt, Rt}) with respect to {X∗

t }. Because of the Markov

structure, the joint log-likelihood factors as:

log L({X∗
t , Zt}|{Yt, Rt}) =

24∑
t=1

log
[
P (Zt|X∗

t )P (X∗
t+1|X∗

t , Rt, Yt)
]
+ log(P (Z25|X∗

25)).

(A.4)

We plug in our nonparametric estimates of P (Z|X∗) and P (X∗
t+1|X∗

t , Rt, Yt) into the above

likelihood, and optimize it over all paths of {X∗
t }25

t=1 with the initial condition restriction

X∗
1 = 2 (beliefs indicate ”not sure” at the beginning of each block). To facilitate this opti-

mization problem, we derive the optimal sequence of beliefs using a dynamic-programming
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(Viterbi) algorithm; cf. Ghahramani (2001).

In the above, we treated the choice sequence {Yt} as exogenous, and left the choice probabil-

ities P (Yt|X∗
t ) out of the log-likelihood function (A.4) above. By doing this, we essentially

ignore the implied correlation between beliefs and choices in estimating beliefs. This was

because, given our estimates that P (Yt = 1|X∗
t = 1) ≈ P (Yt = 2|X∗

t = 3) ≈ 1 in Table 2.3,

maximizing with respect to these choice probabilities would leads to estimates of beliefs

{X∗} which closely coincide with observed choices; we wished to avoid such an artificially

good “fit” between the beliefs and observed choices.

For robustness, however, we also estimated the beliefs {X∗} including the choice probabil-

ities P (Yt|X∗
t ) in the likelihood function. Not surprisingly, the correlation between choices

and beliefs Corr(Yt, X
∗
t ) = 0.99, and in practically all periods, the estimated beliefs and

observed choices coincided (ie. X∗
t = Yt). However, we felt that this did not accurately

reflect subjects’ beliefs.

A.2.2 Bayesian learning model

The learning and decision rules for the Bayesian model were described and computed in

Section 2.2.1, with additional details provided in Appendix A.1. The sequence of Bayesian

beliefs B∗
t is obtained from Eq. (A.1) and evaluated at the observed sequence of choices

and rewards (Yt, Rt).

A.2.3 Reinforcement-learning model

We employ a variant of the TD (Temporal-Difference)-Learning models (Sutton and Barto

(1998) , Section 6) in which action values are updated via the Rescorla-Wagner rule (Rescorla

and Wagner (1972)). The value updating rule for a one-step TD-Learning model is given

by:

V t+1
Yt
←− V t

Yt
+ αδt. (A.5)
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where Yt denotes the choice taken in trial t, α denotes the learning rate, and δt denotes the

“prediction error” δt for trial t, defined as:

δt = Rt − V t
Yt

, (A.6)

the difference between Rt (the observed reward in trial t) and V t
Yt

(the current valuation).

In trial t, only the value for the chosen alternative Yt is updated; there is no updating of

the valuation for the choice that was not taken.

P t
c , the current probability of choosing action c, is assumed to take the conventional “soft-

max” (i.e., logit) form with the temperature parameter τ :

P t
c = eV t

c /τ/

[∑
c′

eV t
c′/τ

]
(A.7)

We estimated the parameters τ and α using maximum likelihood. For greater model flex-

ibility, we allowed the parameter α to differ following positive vs. negative rewards. The

estimates (and standard errors) are:

τ = 0.2729 (0.0307)

α for positive reward (Rt = 2) = 0.7549 (0.0758)

α for negative reward (Rt = 1) = 0.3333 (0.0518).

(A.8)

We plug in these values into Eqs. (A.5), (A.6), and (A.10) to derive a sequence of valuations{
V ∗

t ≡ V t
b − V t

g

}
. The choice function (Eq. (A.7)) can be rewritten as a function of the

difference V ∗
t ; i.e., the choice probability for the blue slot machine is,

P t
b =

e(V t
b −V t

g )/τ

1 + e(V t
b −V t

g )/τ
=

eV ∗
t /τ

1 + eV ∗
t /τ

(A.9)

and P t
g = 1−P t

b . Hence, V ∗
t plays a role in the TD-Learning model analogous to the belief

measures X∗
t and B∗

t from, respectively, the nonparametric and Bayesian learning models.



69

A.2.4 Pseudo-Bayesian learning model

A pseudo-Bayesian learner uses Bayes rule to update her belief (as in the Optimal Bayesian

model), but her choices are determined (suboptimally) by the ”softmax” rule, as in rein-

forcement learning:

P t
c = eB∗t

c/τ/

[∑
c′

eB∗t
c′/τ

]
(A.10)

The maximum-likelihood estimate of τ is 0.2176 with bootstrapped standard error of 0.0138.

A.2.5 Win-stay model

The final model is a simple behavioral heuristic. If subjects choose a slot machine and receive

the positive reward Rt = 1, they repeat the choice in the next period with probability 1− δ

(and switch to the other choice with probability δ). If they choose a slot machine but obtain

the negative reward Rt = −1, they switch to the other slot machine in the next trial with

probability 1− ε.

We estimated the parameters δ and ε using maximum likelihood. The estimates we obtained

from the data were:

δ = 0.1268 (0.0142); ε = 0.4994 (0.0213). (A.11)

A.3 Details on discretization of eye movements

In this section, we present additional discussion on the discretization of the eye-movement

measure, and some evidence that a three-valued discretization (which we used in our pre-

ferred empirical specifications) is sufficient to capture most of the variation in this measure.

We start by assessing the discretization of Zt using a statistical approach based on the condi-
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tion number of the matrix containing the sample conditional probabilities of the discretized

values of (Zt|Zt−1). The intuition is straightforward: if we discretize into an excessive num-

ber of points, the matrix containing the discretized conditional distribution of (Zt|Zt−1)

will be singular, reflecting the redundancy of information in the overly discretized values of

Zt.

Furthermore, and more importantly, our identification assumptions imply that the rank of

the matrix Gzt|zt−1
is related to the dimension of the unobserved beliefs X∗; thus, a proper

discretization of Zt is required to obtain reasonable estimates of beliefs. Formally, given a

discretization of Z into K categories, the largest possible rank is

rank
(
Gzt|zt−1

)
=

 K if K ≤ dim(X∗)

dim(X∗) if K > dim(X∗)
.

In other words,

Gzt|zt−1
is

 nonsingular if K ≤ dim(X∗)

singular if K > dim(X∗)
.

Therefore, the dimension of X∗ is the largest discretization K with which Gzt|zt−1
is still

nonsingular.

The condition number of a matrix measures how “close to singular” a given matrix is,

with a larger condition number indicating a less well-behaved matrix.1 In this exercise,

we discretize Zt into number of points ranging from 2 to 6, and computed the condition

number for the matrix of sample conditional probabilities G(Zt|Zt−1) in each case. Table

A.1 shows the condition numbers for each case, along with block-bootstrap estimates of the

percentiles of their sampling distribution.

As the results show, the big jump in condition number occurs between 3 and 4; the sample
1Formally, the condition number of a matrix measures the sensitivity of the solution of a system of linear

equations to errors in the data, which depends on the invertibility of the matrix containing the coefficients
of the linear equations. Values of condition number near 1 indicate a well-conditioned matrix, while a larger
condition numbers suggests that a matrix is close to singular.
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Table A.1: Condition number of matrix Gzt|zt−1

Dimension
K = 2 K = 3 K = 4 K = 5 K = 6

original sample 3.3586 10.6571 48.1296 292.3680 198.9212
mean 3.3627 10.7541 176.1842 981.4516 1302.2
minimum 3.2270 6.3758 14.3674 29.7191 30.9333
5th percentile 3.2270 8.2144 22.2867 66.7 62.1
25th percentile 3.2594 9.5753 33.9472 107.9 109.6
median 3.2980 10.7541 49.7292 175.1 185.4
75th percentile 3.3898 12.1294 88.8227 401.6 407.5
95th percentile 3.6331 15.1768 345.9043 1985.0 2530.2
maximum 3.6331 22.6323 39013 273180 222780

condition number jumps almost five-fold from 10.7 to 48.1, while the estimated sampling

distribution also blows up, with the 95th percentile jumping from 15.2 to 345.9. This offers

some statistical confirmation for the three-point discretization of the eye movement measure

Zt used in our empirical analysis.

Besides this formal statistical evidence, we also present the raw histogram of the undis-

cretized eye-movement measure Z̃t in Figure A.1. It is apparently trimodal, with peaks at

-1, 0 and 1, suggesting that a three-value discretization of Zp indeed captures most of its

variation. In the empirical work, we use the following three-value discretization as follows:

Zt =


1 if Z̃t < −σz

2 if −σz ≤ Z̃t ≤ σz

3 if σz < Z̃t

(A.12)

where σz denotes a discretizing constant. As the baseline, we set σz = 0.20. However,

we do not find any difference in the estimation results either qualitatively nor significantly

if we vary σz from 0.05 to around 0.40, suggesting that the model is robust for different

classifications. Table A.2 shows the sample frequencies of the discretized measure Zt for

three different values of σz.
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Figure A.1: Histogram of undiscretized eye-movement measure Z̃t
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Table A.2: Correlations between (Y , Z̃) in different subsamples

Size Corr(Y, Z̃)
Full sample 4200 0.7647

σz = 0.20 (baseline):
Z = 1 (green) 1887 0.2845

2 (not sure) 540 0.2156
3 (blue) 1773 0.1706

σz=0.05:
Z = 1 (green) 2015 0.3223

2 (not sure) 255 -0.0599
3 (blue) 1930 0.2346

σz=0.40:
Z = 1 (green) 1725 0.1462

2 (not sure) 869 0.2777
3 (blue) 1606 0.0991

Note: Z̃t refers to the undiscretized eye-movement measure, as defined in Eq. (2.3), and Z refers to
the discretized version, as defined in Eq. (A.12).

Moreover, Table A.2 also shows the correlations between Y and Z̃, broken up into the

three ranges of Z̃ corresponding to the three discretized values Z ∈ {1, 2, 3}. Although the

correlation between (Y, Z̃) in the whole sample is 0.7647, the correlations within each of

the three ranges of Z̃ drop significantly, ranging from even negative values to values around

0.30. Because most of the variation in choices is across the different discretized values of

Z, rather than within these values, it appears the three-valued discretization is sufficient.

A.4 Conditional serial correlation in eye movements

In this section we assess more formally one critical part of Assumption 3, which is that the

eye-movement measures are serially independent, conditional on beliefs. That is, P (Zt|Zt−1, X
∗
t ) =

P (Zt|X∗
t ). Since this exclusion restriction plays a crucial role in pinning down the values
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of the beliefs, we assess it by estimating an alternative model in which we do not impose

this assumption. In this alternative model, the “measurement probabilities” are given by

the conditional distribution of f(Zt|X∗
t , Zt−1). In the remainder of this section, we describe

how this expanded model is estimated.

Consider the joint density f(Zt, Yt, Zt−1, Zt−2), which is solely a function of variables ob-

served in the data. Following the approach taken in Section 2.3.1 of the main text, we can

factor this density as follows:

f(Zt, Yt|Zt−1, Zt−2)

=
∑
X∗

t

∑
X∗

t−1

f(Zt, Yt, X
∗
t , X∗

t−1|Zt−1, Zt−2)

=
∑
X∗

t

∑
X∗

t−1

f(Zt|Yt, X
∗
t , X∗

t−1, Zt−1, Zt−2)f(Yt|X∗
t , X∗

t−1, Zt−1, Zt−2)f(X∗
t , X∗

t−1|Zt−1, Zt−2)

=
∑
X∗

t

f(Zt|X∗
t , Zt−1)f(Yt|X∗

t )
∑
X∗

t−1

f(X∗
t , X∗

t−1|Zt−1, Zt−2)

For a fixed zt−1, we have

f(Zt, Yt|zt−1, Zt−2) =
∑
X∗

t

f(Zt|X∗
t , zt−1)f(Yt|X∗

t )f(X∗
t |zt−1, Zt−2).

Technically, for any fixed Yt = yt and Zt−1 = zt−1, then, we can write the above in matrix

notation as:

Ayt,Zt|zt−1,Zt−2
= BZt|X∗

t ,zt−1
Dyt|X∗

t
CX∗

t |zt−1,Zt−2

where A, B, C are all K × K matrices, and D is a K × K diagonal matrix. These are

defined

Ay,Zt|zt−1,Zt−2
=

[
fYt,Zt|Zt−1,Zt−2

(yt, i|zt−1, j)
]
i,j

BZt|X∗
t ,zt−1

=
[
fZt|X∗

t ,Zt−1
(i|k, zt−1)

]
i,k

CX∗
t |zt−1,Zt−2

=
[
fX∗

t |Zt−1,Zt−2
(k|zt−1, j)

]
k,j
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The key eigendecomposition equation, analogous to Eq. (2.7) for the simpler model, be-

comes

Ayt,Zt|zt−1,Zt−2
G−1

Zt|zt−1,Zt−2
= BZt|X∗

t ,zt−1
Dyt|X∗

t
B−1

Zt|X∗
t ,zt−1

where2

GZt|zt−1,Zt−2
=

[
fZt|Zt−1,Zt−2

(i|zt−1, k)
]
i,k

Therefore, we can apply this eigendecomposition to estimate f(Zt|X∗
t , zt−1) for each value

of zt−1. To assess whether we need to allow for conditional serial correlation in Zt, we can

compare whether the estimated probabilities f(Zt|X∗
t , zt−1) differ in zt−1, i.e.,

f(Zt|X∗
t , z̃t−1)

?= f(Zt|X∗
t , zt−1).

The estimates of the probabilities f(Zt|X∗
t , zt−1) for zt−1 = 1, 3 are presented in Table A.3.3

As the results show, the estimates of these probabilities are quite similar across different

values of zt−1. This suggests that conditional serial correlation in eye movements is not a

major concern, and supports Assumption 3 underlying our empirical model.

A.5 Belief updating and choices following “unsure” belief

state

In Section 2.5.2 of the main text, we present some evidence, based on comparing the eye-

movement measures to the beliefs from the Bayesian model, that eye movements were noisy

measurements of beliefs, and not just of choices. Here, we consider another assessment of

this crucial assumption which underlies our empirical model.

Here, we exploit that fact that, in our model, beliefs (and eye movements) take more values

than choices. We consider what happens when beliefs are “unsure”; that is, when beliefs
2Note that the invertibility of GZt|zt−1,Zt−2 is testable for each zt−1.
3We were not able to estimate f(Zt|X∗

t , zt−1 = 2) because we observed too few observations with zt−1 = 2.
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Table A.3: Measurement probabilities: P (Zt|X∗
t )

Zt−1 = 1, (N = 1748)
X∗

t = 1 X∗
t = 2 X∗

t = 3
Zt = 1 0.8522 0.2138 0.0797

(0.1060) (0.1508) (0.0472)
Zt = 2 0.0923 0.4523 0.1257

(0.0649) (0.1264) (0.0508)
Zt = 3 0.0555 0.3340 0.7945

(0.0546) (0.1285) (0.0679)

Zt−1 = 2, (N = 487)
Insufficient sample size.

Zt−1 = 3, (N = 1629)
X∗

t = 1 X∗
t = 2 X∗

t = 3
Zt = 1 0.7844 0.1706 0.0574

(0.0950) (0.1170) (0.0513)
Zt = 2 0.0732 0.5398 0.1744

(0.0553) (0.2023) (0.1160)
Zt = 3 0.1425 0.2879 0.7682

(0.0697) (0.2019) (0.1378)

note 1: Cutoff for the three-value discretization is 0.2,

note 2: Standard errors (in parentheses) computed across 1500 bootstrap resamples.
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X∗
t take the intermediate value of 2. Since eye movements play a crucial role in pinning

down beliefs, if eye movements are just a noisy measure of choices, then choices should be

similar following the “unsure” state (X∗
t = 2) than following the “sure” states (X∗

t = 1

or X∗
t = 3). However, if eye movements contain extra information beyond that contained

in the choices, then we should find that belief updating and choice behavior following the

“unsure” state is different than that following the “sure” states. The goal is to show that

the “unsure” state matters for both belief updating and decision-making.4

First we show that beliefs update different following the unsure state than following a sure

state. To do this, we perform a joint test that the probabilities in the leftmost column

(corresponding to beliefs following belief-congruent choices) of each transition matrix in

Table 4 differs from the middle column. We construct the test statistic as follows. Let ~L

(resp. ~M) denote the left-hand (resp. middle) column of a matrix in Table 4, omitting the

bottom element. The test statistic is the quadratic form (~L− ~M)′Σ−1(~L− ~M), where Σ is

the variance-covariance matrix of (~L − ~M) which was computed by bootstrap (as was all

the estimates in Table 4).

Asymptotically, under the null hypothesis of no differences between the columns, this statis-

tic is distributed according to a χ2-distribution, with two degrees of freedom. The corre-

sponding p-values are given in Table A.4. The p-values are all small; the first two p-values

imply that the “not sure” and “green” belief states are distinct, while the last two indicate

that the “not sure” and “blue” states differ. Hence, the unsure state (X∗
t = 2) matters, in

the sense that beliefs in the following period X∗
t+1 are statistically different when X∗

t is a

sure (“blue”, “green”) state versus an unsure state.

However, beliefs are unobservable. How does the unsure state affect future observed choices?

To do this, we used our estimation results to compute the conditional distributions

Yt+1|X∗
t , Yt, Rt =

3∑
i=1

(Yt+1|X∗
t+1 = i) · (X∗

t+1 = i|X∗
t , Yt, Rt).

4We are grateful to a referee for this suggestion.
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Table A.4: Tests of belief updating following unsure state
H0: P (X∗

t+1|X∗
t = 1, Yt, Rt) = P (X∗

t+1|X∗
t = 2, Yt, Rt)

(Rt, Yt): (1, 1) (2, 1) (1, 2) (2, 2)
p-value: LH=middlea 0.016 0.121 0.032 0.072

aEach entry contains the p-value under the null hypothesis that the leftmost and middle columns in the
corresponding matrix in Table 5 have the same values. Under the null hypothesis, the test statistic has an
asymptotic χ2 distribution with two degrees of freedom.

The conditional distribution Yt+1|X∗
t , Yt, Rt describes how choices in period t are made,

conditional of beliefs, choices, and rewards in period t. This distribution is given in Table

A.5. As before, we want to test whether the “unsure” state (X∗
t = 2) has distinctive

effects on observed choices. To do this, we test, as before, whether the leftmost and middle

columns of each matrix in Table A.5 are the same. The p-values under the null that these two

columns are the same are also reported in Table A.5. These p-values are small, indicating

scant evidence favoring the null hypothesis; while we cannot reject the null hypothesis at

conventional significance levels in two of the four cases (corresponding to (Yt = 1, Rt = 1)

and (Yt = 2, Rt = 2)), the small p-values do favor the hypothesis that the leftmost and

middle columns are different. Thus, we also find that the “unsure” state is important in

predicting choices, which implies that the eye movements Zt contain more information than

is contained in choices alone. This lends support to our modeling assumption that eye

movements are noisy measures of beliefs.
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Table A.5: How current beliefs affect future choices
The conditional probabilities Yt+1|X∗

t , Yt, Rt computed from estimation results

P (Yt+1|X∗
t , y, r), r =1(lose), y =1(green)

X∗
t 1(green) 2 (not sure) 3(blue)

Yt+1 = 1 (green) 0.5675 0.4445 0.3551
2 (blue) 0.4325 0.5555 0.6449

P (Yt+1|X∗
t , y, r), r =2(win), y =1(green)

X∗
t 1(green) 2 (not sure) 3(blue)

Yt+1 = 1 (green) 0.8777 0.7731 0.8909
2 (blue) 0.1223 0.2270 0.1091

P (Yt+1|X∗
t , y, r), r =1(lose), y =2(blue)

X∗
t 3(blue) 2 (not sure) 1(green)

Yt+1 = 2 (blue) 0.5653 0.3527 0.2806
1 (green) 0.4347 0.6473 0.7195

P (Yt+1|X∗
t , y, r), r =2(win), y =2(blue)

X∗
t 3(blue) 2 (not sure) 1(green)

Yt+1 = 2 (blue) 0.8795 0.8114 0.8270
1 (green) 0.1205 0.1980 0.1731

H0: P (Yt+1|X∗
t = 1, Yt, Rt) = P (Yt+1|X∗

t = 2, Yt, Rt)
(Yt, Rt): (1, 1) (1, 2) (2, 1) (2, 2)
p-value: LH=middlea 0.109 0.091 0.022 0.163

aEach entry contains the p-value under the null hypothesis that the leftmost and middle columns in the
corresponding matrix in the above table have the same values. Under the null hypothesis, the test statistic
has an asymptotic standard normal distribution.
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A.6 Additional figures

Figure A.2: Scatter plot of Zb (fixation on blue) and Zg(fixation on green)
Both Zb and Zg are reported in 2× 10−2 seconds.
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A.7 Experimental instruction

Screen 1

This experiment lasts for approximately 60 minutes, consisting of 8 blocks. Each block

consists of 25 trials.

*Press SPACEBAR to continue.

Screen 2

In each trial, you are asked to choose one of 2 slot machines to play a gamble. One is

presented on the left side of the screen, and the other is presented on the right side. One is

blue and the other is green. The location of each slot machine will vary from trial to trial.

*Press SPACEBAR to continue

Screen 3

If you choose the left slot machine, press ”LEFTARROW”.

If you choose the right slot machine, press ”RIGHTARROW”.

Please ALWAYS put your fingers on ”LEFTARROW” key and ”RIGHTARROW” key.

*Press SPACEBAR to continue.

Screen 4

IMPORTANT;

It is important that you pay attention to the visual stimuli presented on the screen. In

particular, please look at the fixation cross when it appears. The software will not allow
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you to move on until the eyetracker has confirmed that you have focused on the fixation

cross for an appropriate amount of time. Also remember to keep your eyes on the pictures

of the slot machines while they are on the screen. You are free to look back and forth

between them, but just be sure that you are always looking at one or the other.

To insure this, please do not look at the keyboard at any time. Instead, keep your eyes

on the screen. To help you do this, you should keep your fingers on ”LEFTARROW” and

”RIGHTARROW” keys at all times.

*Press SPACEBAR to continue.

Screen 5

In each trial, ONE and ONLY ONE of the 2 slot machines is GOOD.

If the chosen slot machine is GOOD, then the probability of winning $0.5 is 70% and the

probability of losing $0.5 is 30%.

If the chosen slot machine is BAD, then the probability of winning $0.5 is 40% and the

probability of losing $0.5 is 60%.

*Press SPACEBAR to continue.

Screen 6

At the beginning of each block, you do not know which slot machine is good/bad. At

that time, both the blue slot machine and the green slot machine are good with an equal

probability.

*Press SPACEBAR to continue.
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Screen 7

But, when each trial ends, a good slot machine might switch to be bad (and vice versa) with

a small probability (15%) although good one tends to remain good with a large probability

(85%). For example, a blue slot machine that was good in a trial might switch to be bad

in the next trial with 15% chance.

*Press SPACEBAR to continue.

Screen 8

However, please note that when a slot machine becomes bad, the other slot machine AL-

WAYS becomes good. ALWAYS ONE and ONLY ONE of the 2 slot machines is good, and

the other is bad. The position of each machine on screen will vary randomly; the COLOR

is the only indicator of whether the slot machine is good/bad.

*Press SPACEBAR to continue.

Screen 9

Right after you choose a slot machine in each trial, the reward for the CHOSEN slot will

be presented. (Reward for the other slot will NOT be revealed.)

*Press SPACEBAR to continue.

Screen 10

Your best strategy is simple: Choose the slot machine that you think is good in the trial,

taking into account the possibility of good-bad slot machine switch between the blue/green.

The money you earn in this experiment will be paid to you with show-up fee after the

experiment. (If negative, it will be subtracted from show-up fee.)
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*Press SPACEBAR to continue.

Screen 11

Practice

In order to get used to the software, you will now play 15 practice trials. (Note: the money

you earn in the practice session will NOT be paid for you). Please note that in the actual

experiment, one block consists of 25 trials.

*Press SPACEBAR to continue.

Screen 12

[A BLOCK STARTS.]

A block is going to begin...

Please ALWAYS put your fingers on ”LEFTARROW” and ”RIGHTARROW” and wait.

Please note that, at the beginning of the new block, the blue/green slot can be good with

an equal probability.

*Press SPACEBAR to continue.

Screen 13

[A TRIAL STARTS.]

After a fixation(+), you will see 2 slot machines. If you choose the left slot machine, press

”LEFTARROW”. If you choose the right slot machine, press ”RIGHTARROW”.

*Please keep looking at the fixation(+) when presented. The screen will change soon.
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Screen 14

[TWO SLOT MACHINES ARE PRESENTED TO BE CHOSEN.]

Screen 15

Wait for the next trial... Please put your fingers on ”LEFTARROW” and ”RIGHTAR-

ROW” and wait. Please note that good-bad slot machine switch might occur between the

blue/green with 15% chance.

[END OF A TRIAL. REPEAT THE TRIAL 25 TIMES IN A BLOCK(15 FOR PRACTICE

BLOCK).]

Screen 16

This concludes the block.

So far, you finished [1,2,3,4,5,6,7,8] / 8 blocks.

Feel free to rest for a minute if you need a break.

*Press SPACEBAR when you are ready to continue on with the experiment.

[END OF A BLOCK.]

Screen 17

[SHOWN ONLY AT THE END OF PRACTICE BLOCK.]

This is the end of practice. Do you have any questions? (Please ask the experimenter if

you do now.) If you want to go through the instruction and practice again, press ”1”.

If you are ready to start the experiment, press ”0”.
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[THEN REPEAT 8 BLOCKS(SCREEN 12 - 16).]

Screen 18

This concludes this experiment. Thank you for participating! Your final earning is [TOTAL

PAYMENT]($).
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Appendix B

Appendix of Chapter 3

B.1 The experimental design

In this section, I describe the details of the experiment whose data is presented in Section

3.2. The experiment is performed by Bossaerts’ research group as a pilot experiment for

their own fMRI study1. The experiment were run over several weeks in June 2012. They

used 15 subjects, recruited from Caltech Social Science Experimental Laboratory (SSEL)

subject pool consisting of undergraduate/graduate students, post-doctoral students, each

performing for 800 trials of ”Target prediction task” described below. Subjects were paid a

fixed show-up fee ($14), in addition to the amount won during the experiment, which was

$18.7 on average.

B.1.1 Target position prediction task

In the task, subjects will see a Target (red dot) that moves along a circle (Fig. 3.1)2,

in both clockwise and counterclockwise direction. On the same circle, subjects will also
1The author is engaged in the project as a lab member of Bossaerts7 research group. Actually the

experiment is designed in the author’s collaborative work with Peter Bossaerts.
2Since a fMRI study is the primary purpose of the study of Bossaerts group, the experimental design is

optimized for fMRI imaging, rather than exactly depicting financial markets, such as circle structure and
slider input design. However, the data generating processes behind the task are exactly same as the model
premises in the previous sections.
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observe a Robot (blue dot). The task will be to control the Robot by changing how much

it responds to Target movements. Underneath the circle is a slider (Fig. 3.1). Moving the

cursor towards “1” increases the adjustment of the Robot towards the Target’s last move.

At “1”, the Robot catches up fully with the Target’s position. Moving the cursor towards

“0” decreases the Robot’s adjustment. At “0”, the Robot stays put, unresponsive to the

Target’s last move.

Subjects’ task is to ensure that the Robot is always as close as possible to the Target’s

subsequent position. The task proceeds as follow;

1. At the beginning of a trial, subject will observe the Target move to a new place.

2. After the Target moved, the circle segment between the Target and Robot is high-

lighted with yellow (Fig. 3.1). Then, subjects have a chance to change the Robot’s

adjustment for tracking the Target using a mouse. When the mouse moves, the slider

underneath the circle on the screen moves accordingly to let subjects see how much

they are going to adjust.

3. Then, subjects see the Robot move toward the Target according to the adjustment

they decided.

4. Then, we proceed to the subsequent trial. (One trial finishes in approximately 3

seconds.)

The whole task will consist of 2 blocks. Each block is subdivided in 2 consecutive sessions.

Each session takes approximately 12 minutes, and is subdivided in 200 trials. Between each

session, approximately 1.5 minutes resting period is scheduled.

The way the Target moves will differ across the two blocks. But within a block, the Target

uses a fixed strategy to move along the circle. This strategy will never depend on what

subjects do. They have two experimental treatments for the Target movements, namely

fundamental and the anomaly treatments, and the two treatments are exactly same as the
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model premises discussed in the previous section; The two processes are described with

simple hidden state Markov processes, where the observation noise is Gaussian and state

transition non-Gaussian (heavy-tailed, mixture of Gaussians) in the fundamental treatment,

while observation noise is non-Gaussian and state transition Gaussian in the anomaly treat-

ment.

More precisely, let yt and xt be the position of the Target and that of hidden state variable,

respectively. As described in Section 2, Yt and Xt follow the observational equation and

system equation.

yt = xt + et (observational equation)

xt = xt−1 + ut (system equation)
(B.1)

where et is the observation noise, and ut is the system innovation.

In the Fundamental treatment, the observation noise et follows a Gaussian distribution with

mean zero and variance σ2, denoted as N(0, σ2) while the system innovation follows a two

mixture of Gaussian distributions, denote by N(0, σ2
s) + I(t) · N(0, σ2

l ), where the index

function I(t) follows a Bernoulli distribution, occasionally taking one with a chance of Pl,

otherwise zero. And vice versa in the Anomaly treatment.

B.1.2 Incentive compatible payment design

The payment design of the task is designed to incentivize participants to express their true

estimates for the subsequent position of the Target (a mean value of the posterior belief

distribution). Roughly speaking, more precise their prediction is, more the probability of

winning reward. In each session, three randomly chosen trials have a chance to be rewarded.

And in each of these trials, subjects have a chance to win two dollars. The probability of

winning is determined by the accuracy of their navigating Robot R to the subsequent
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position of Target T(t+1), as follows,

Probability (win) = max[0, 100− 0.04 · (T(t+1) −R)2](%) (B.2)

Where the unit for T and R is degree.

B.1.2.1 Proof for the incentive compatibility of the payment design

Here I show the outline of the proof of the incentive compatibility of the payment design in

which subjects honestly announce the mean value of their posterior belief distribution.

Incentive compatible mechanism design for belief elicitation with non-risk neutral agents

has not been developed yet (Holt (1986)). Recently Hossain and Okui (2010) propose an

incentive compatible mechanism design for eliciting various statistics on the belief distribu-

tion, using a stochastic payment design. The bottom line of the design is that, instead of

manipulating the amount of payment according to the error of predictions, manipulating

the probability of winning (and pay a fixed amount, say $1) enables experimenters to ignore

concave shape of utility functions and treat as if the agent is risk neutral. The following

proof follows Hossain and Okui (2010)).

Let X̂ be an announced value for X by an agent, and let F (X) be the agent’s belief

distribution on X.

The payment design here is,

• Pay $1 with probability of g(X, X̂), where g(X, X̂) = 1−a ·(X−X̂)2. In the equation

a could take any number 3.

• Pay $0 with probability of 1− g(X, X̂)

3Any value of a satisfies incentive compatibility, however, the loss function a · (X − X̂)2 has to take
positive numbers in the support of X, in which g(X, X̂) takes positive numbers.



91

Then, the expected utility of the task is,

EX [Eg(X,X̂)U ]

= EX [g(X, X̂) · u(1) + (1− g(X, X̂)) · u(0)].
(B.3)

Normalization u(0) = 0 derives,

= EX [g(X, X̂) · u(1)]

= u(1) · EX [g(X, X̂)]

= u(1) · EX [1− a(X − X̂)2]

= u(1)− a · u(1) · EX [(X − X̂)2].

(B.4)

The utility is maximized when X̂ is a mean of the distribution of X̃. The rest of the proof

is as same as the case for Proper Scoring Rules for a risk neutral agent.

B.1.3 Experimental instruction

The experiment will last approximately 60 minutes. It will consist of 2 blocks. Each block

is subdivided in 2 consecutive sessions. Each session takes approximately 12 minutes, and

is subdivided in 200 trials.

Task overview

In this game, you will see a Target that moves along a circle (Fig. 2.7), in both clockwise

and counterclockwise direction. On the same circle, you will also observe a Robot. Your

task will be to control the Robot by changing how much it responds to Target movements.

Underneath the circle is a slider (Fig. 2.7 and Fig. B.1). Move the cursor towards “1” to

increase the adjustment of the Robot towards the Target’s last move. At “1”, the Robot
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Figure B.1: Target prediction task (highlighted)

catches up fully with the Target’s position. Move the cursor towards “0” to decrease Robot’s

adjustment. At “0”, the Robot stays put, unresponsive to the Target’s last move.

Your task is to ensure that the Robot is always as close as possible to the Target’s SUBSE-

QUENT position. Occasionally, the Target might partly reverse its last movement.

The game is divided into “blocks”. The way the Target moves (e.g., partly reverse its last

movement) will generally differ across blocks. But within a block (two consecutive sessions),

the Target uses a fixed strategy to move along the circle. This strategy will NEVER depend

on what you do. Specifically, Target movements are autonomous, unaffected by Robot

movements. For instance, the Target will not deliberately try to stay away from the Robot.

A block consists of two consecutive sessions. You will have a short break between sessions.

When you finish the first block (session 1 and 2), you will move on to the second block

(session 3 and 4). Again, The way the Target moves (e.g., partly reverse its last movement)

will generally differ across blocks. But within a block (two consecutive sessions), the Target

uses a fixed strategy to move along the circle.

At the end of the experiment, you will be able to win a show-up reward and bonus depending

on your performance in the game. The chances of winning increase with your success in
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making the Robot track the subsequent movements of the Target. The better you manage

to track the Target in the subsequent trial, the higher the chances.

You will be given the opportunity to practice. After the experiment is over, we will ask

a few questions about this task and your psychological and educational background. (The

practice block consists of 100 trials and lasts for approximately 6 minutes.)

Task protocol and interface

Task Protocol:

1. (Fig. 3.1) At the beginning of a trial, you will see the Target T(t−1) moves to a new

place (T(t)) (Fig. 3.1). The red dot in the screen indicates the Target. The blue dot

in the screen indicates the Robot.

2. After the Target moves, the circle segment between the Target and Robot is high-

lighted with yellow (Fig. B.1). Then, you have a chance to change the Robot’s

adjustment for tracking the Target, if you wish. (A slider is shown below on the

screen. For details, see “input” below.).

3. You then see the Robot moves toward the Target, according to the adjustment you

decided.

4. We then proceed to the subsequent trial soon. (Please note that, the above process

goes quite rapidly; one trial finishes approximately in 3 seconds.)

In every trial, if you wish to change the Robot’s adjustment for tracking the Target, you

can change it by moving the cursor on the slider, right after the Target moves and the circle

segment between the Target and the Robot is highlighted with yellow (Fig. B.1). Higher

the value of the speed is, closer the Robot moves to the Target.

• At “1”, the Robot fully catches up the Target.
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• At “0”, then the Robot stays put, unresponsive to the Target’s last move.

You change the place of cursor with a track-ball (or a mouse in pilot/practice experiments).

If you roll the tracking-ball to the left/right side, the cursor moves to the left/right side.

• The left-right direction of the slider bar may vary every 10 trials. In a certain trial,

“1” might be located on the left side of the slider and “0” is on the right side (Fig.

3.1 and Fig. B.1), however, they might be reversed in another trial.

• When the slider is reversed, the slider becomes grey for a while, right before the next

Robot movement.

• The starting value of the cursor is the value you decided in the last trial. (0.5 in the

first trial.)

(Time limit) Please move the cursor on the slider within 2.25 seconds.

• The slider will be locked after 2.25 seconds (then the Robot moves).

• You may leave the cursor to the starting value if you do not wish to change the speed.

Reward scheme

• The following reward scheme may look a little bit complicated; all you need to know

however, is that it incentivizes you to navigate the Robot close to what you think is

the best estimates for the position of Target in the subsequent trial, T(t+1).

• As such, you really do not need to remember the details of the math of the scheme.

In each session, you will be rewarded for THREE randomly chosen trials.

In each of these trials, you have a chance to win TWO dollars. The probability of winning

is determined by the accuracy of your navigating Robot R to the subsequent position of

Target T(t+1), as follows,



95

Probability (win) = max[0, 100− 0.04 · (T(t+1) −R)2](%) (B.5)

Where the unit for T and R is degree.

The following table (Table B.1) shows how the probability of winning changes with your

Robot navigation. The closer your Robot is to the Target in the subsequent trial, the larger

the probability of winning is.

Table B.1: Probability of winning the bonus of TWO dollars.

Difference with Chance of winning
Target and Robot TWO dollars
0 : 100%
20 degrees: 84%
30 degrees: 64%
40 degrees: 36%
50 degrees: 0%
60 degrees: 0%

* 30 degrees is equivalent to 1/12 of a circle, 60 degrees is 1/6.

To determine whether you won in a given trial, we generate a random variable with uni-

form distribution between 0 and 100. If the drawn value is smaller than the probability

determined by the above equation, you will be awarded. Otherwise you earn nothing (for

that trial).

Again, with this rule, your best strategy is simple: simply navigate the Robot to what you

think is the best estimate of the subsequent position of the Target.

At the end of the whole experiment, we will pay the cumulative earnings from the selected

trials in all blocks (plus the standard show-up reward).

Rewards are not paid for the practice block.

Thank you and good luck!


