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Abstract

Many physical and engineering problems involving uncertainty enjoy certain low-dimensional struc-

tures, e.g., in the sense of Karhunen-Loeve expansions (KLEs), which in turn indicate the existence

of reduced-order models and better formulations for efficient numerical simulations. In this thesis,

we target a class of time-dependent stochastic partial differential equations whose solutions enjoy

such structures at any time and propose a new methodology (DyBO) to derive equivalent systems

whose solutions closely follow KL expansions of the original stochastic solutions. KL expansions

are known to be the most compact representations of stochastic processes in an L2 sense. Our meth-

ods explore such sparsity and offer great computational benefits compared to other popular generic

methods, such as traditional Monte Carlo (MC), generalized Polynomial Chaos (gPC) method, and

generalized Stochastic Collocation (gSC) method. Such benefits are demonstrated through various

numerical examples ranging from spatially one-dimensional examples, such as stochastic Burgers’

equations and stochastic transport equations to spatially two-dimensional examples, such as stochas-

tic flows in 2D unit square. Parallelization is also discussed, aiming toward future industrial-scale

applications. In addition to numerical examples, theoretical aspects of DyBO are also carefully an-

alyzed, such as preservation of bi-orthogonality, error propagation, and computational complexity.

Based on theoretical analysis, strategies are proposed to overcome difficulties in numerical imple-

mentations, such as eigenvalue crossing and adaptively adding or removing mode pairs. The ef-

fectiveness of the proposed strategies is numerically verified. Generalization to a system of SPDEs



vii

is considered as well in the thesis, and its success is demonstrated by applications to stochastic

Boussinesq convection problems. Other generalizations, such as generalized stochastic collocation

formulation of DyBO method, are also discussed.
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Chapter 1

Introduction

Uncertainty arises in many complex real-world problems of physical and engineering interests, such

as wave, heat, and pollution propagation through random media [75], and flow driven by stochastic

forces [109, 85, 73, 108, 55, 53]. Additional examples can be found extensively in other branches

of science and engineering, such as geosciences [90, 32], statistical mechanics, meteorology [28],

biology [11], finance [42, 43], and social science [64]. Meanwhile, Ordinary Differential Equations

(ODEs) and Partial Differential Equations (PDEs) are often, if not all the time, adopted to describe

and represent physical, engineering, economic or even social models. Therefore, Stochastic Ordi-

nary Differential Equations (SODEs) and Stochastic Partial Differential Equations (SPDEs), which

contain randomnesses in terms of random variables or stochastic processes, are natural extensions

of ODEs and PDEs to investigate Uncertainty Quantification (UQ).

Numerical simulations of PDEs by themselves can be very challenging, e.g., direct numerical

simulation of 3D Navier-Stokes equations [82, 51, 58], and flows in porous medium with high con-

trast [8, 35, 36, 25]. With the introduction of random variables and/or stochastic processes, numer-

ical simulations are greatly complicated. In this chapter, we first briefly review SPDEs and existing

numerical methods to put our discussions in appropriate settings. After introducing Karhunen-

Loeve expansions, we point out that many stochastic problems have an inherent low-dimensional

structure which has not been fully taken advantage of in existing numerical methods.
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1.1 Uncertainty Quantification and Stochastic Partial Differential Equa-

tions

There are a number of different sources of uncertainty in SPDEs. Below we will discuss a few of

them which have been used widely in the literature [62, 85, 27].

Parametric Uncertainty which comes from some model parameters whose exact values are

infeasible to obtain in practice. A non-trivial example comes from predictions of flow and transport

in natural porous media such as water aquifer and oil reservoirs [75], which essentially requires

numerical simulations of an elliptic PDE for the steady state flow u,

− ∂

∂xp

(
apq(x, ω)

∂

∂xq
u(x, ω)

)
= f(x),

where the permeability field a(x, ω) contains random model parameters in the sense that their exact

values are infeasible to obtained in practice primarily due to low resolution of seismic data.

Model deficiency/inadequacy which comes from discrepancy between mathematical models

and physical processes. Such discrepancy may be due to the lack of full understanding of true

physical processes, or the lack of sophisticated mathematical tools available to describe adequately

the underlying complex physical processes, or simplifications of complicated mathematical models

for further theoretical or numerical analysis. A concrete example, which we will discuss extensively

in the thesis, is randomly forced Burgers or Navier-Stokes equations. The large-scale structures

of flows are primarily governed by deterministic PDEs and random forcing f(x, t, ω) in terms of

random variables or Brownian motions are introduced to model unresolved small-scale effects from

turbulence.

Algorithmic uncertainty which comes from numerical round-off errors due to finite digits
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of modern computer architectures and numerical approximation errors arising from discretizations,

numerical integrations, and truncation of infinite summations. Generally, such numerical algorithms

solve exactly some modified ODEs/PDEs, which are similar to the original ODEs/PDEs with extra

terms. However, the exact forms of such terms are only known in very limited applications, so it is

convenient to introduce noise terms to replace them and to study the effect of numerical errors on

complicated systems.

Analytical solutions of SODEs/SPDEs are only available in very special cases. For most of

practical problems, numerical schemes are used to approximate stochastic solutions and quantify

uncertainty. However, due to the complex nature of SODEs and especially SPDEs, numerical simu-

lations pose a great challenge to the applied mathematical community. In this thesis, we are primar-

ily concerned with SPDEs and their efficient numerical schemes. Methods developed in this thesis

are still applicable to certain types of SODEs.

Throughout the thesis, we consider the following time-evolutionary/time-dependent stochastic

partial differential equation

∂u

∂t
(x, t, ω) = Lu(x, t, ω), x ∈ D ⊂ Rd, t ∈ [0, T ], ω ∈ Ω, (1.1a)

u(x, 0, ω) = u0(x, ω), (1.1b)

B(u(x, t, ω),
∂u

∂x
(x, t, ω)) = 0, x ∈ ∂D, (1.1c)

where L is a differential operator and may contain random coefficients and/or stochastic forces. The

randomnesses may also enter the system through initial condition u0 and/or boundary condition B.
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1.2 Existing Numerical Methods

Before embracing the data-driven philosophy underlying in this thesis, it is worth reviewing briefly

existing numerical methods for SPDEs along with their applicable regime and limitations.

1.2.1 Non-Sampling Methods

Perturbation methods (PM). When both input and output uncertainties are small compared to

mean values, perturbation methods are shown to be effective in many engineering problems [75].

These methods start with expanding stochastic solutions via Taylor expansion and result in a system

of deterministic equations by truncating after certain order. Typically, at most second-order expan-

sions are used in practice as the system of equations become very cumbersome if higher-order terms

are included. One limitation of perturbation methods is that the magnitude of the uncertainty must

be small. Moreover, they do not reveal faithfully probability distributions of stochastic solutions.

Probability Density Function Methods (PDF) and Moment Equation (ME) Methods. When

statistical information is of main interests, instead of tackling directly SPDEs, effective equations for

moments and PDFs can be derived and solved numerically, such as Fokker-Planck equations [68].

For nonlinear problems, such methods suffer from closure issues, i.e., equations of lower moments

depend on higher-order moments or certain terms in PDF equations take complicated integral forms

and are hardly computable. Such difficulty can be alleviated by using some heuristic arguments to

achieve closure, but it also introduces modeling errors which are hard to control.

Concentration of Measure (CM). Modern engineering or biological systems tend to have more

than hundreds of inputs. Examples of such kind include neural networks, the Internet, and smart

grids of next-generation electricity supply networks and so on. Solutions or response functions

of such systems are actually functions over high-dimensional input spaces where oscillation on a
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single input can only cause small oscillation on outputs, i.e., response functions are well centered

around their expectations. Such a phenomenon is called concentration of measure. Study of this

phenomenon can be tracked back to Levy and has been studied systematically by Milman, Ledoux

[74], Talagand [105], etc. A bunch of powerful concentration-of-measure inequalities, such as

McDiarmid’s inequality, have been developed in the past years, which can be used to provide tight

bounds on response fluctuations over means. Owhadi and others have demonstrated the success

of this method in the context of parameter sensitivity and certification [2, 3, 107, 104, 76], i.e.,

showing the failure probability of complex system is within a certain tolerance, and have proposed

the Optimal Uncertainty Quantification (OUQ) framework [103, 92] to achieve optimal bounds

on uncertainty for a given set of assumptions and information. However, these methods do not

reveal the KL expansions of the stochastic solutions, which is important for understanding physical

systems.

1.2.2 Non-Intrusive Sampling Methods

Modern software systems for numerical simulations of deterministic models of engineering or phys-

ical systems can be very complex and may contain more than thousands of lines of codes and its

validations against experimental results may take years. For example, sophisticated Computational

Fluid Dynamic (CFD) code can easily exceed ten thousands of line of codes [89]. Changes in a

small segment of code may introduce unforeseeable bugs and require another round of validations.

Therefore, sampling methods are preferred in some of industrial applications for their non-intrusive

nature, i.e., requiring no direct modifications on legacy codes.

Monte Carlo Method (MC). Because of stability and non-intrusive nature of MC, it remains

a popular numerical method for SPDEs especially when the dimensionality of input uncertainty,

p, is very large. According to the law of large numbers, the convergence rate of MC is merely
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O
(
M−

1
2

)
, where M is the number of realizations, so MC methods are “famous” for their slow

convergence.

Quasi-Monte Carlo Method (qMC). The slow convergence of MC is partially due to the low

uniformity or high discrepancy of pseudo-random number sequences generated by computer algo-

rithms [60, 59, 83, 17]. qMC methods [45, 84] use instead a deterministic sequence of numbers of

low discrepancy to achieve almost O
(
M−1

)
for small to moderate dimensionality of input uncer-

tainty. However, such convergence rate is still considered to be slow for industrial-scale applications

where numerical simulation of a single realization may take hours or even days. Furthermore, the

above convergence rate degrades to O
(
M−

1
2

)
for large p.

Generalized Stochastic Collocation Method (gSC). gSC [78, 87, 33, 7, 106, 116, 7] meth-

ods explore the smoothness of stochastic solutions with respect to random variables, and use in-

stead a deterministic sequence of sampling points {ωi}Mi=1 resulting from tensor products of one-

dimensional quadrature points. The exact locations of such points and weights wi associated with

them depend on underlying probability distributions. Because of tensor products, the number of

sampling points increases exponentially fast as the number of random variables increases, which is

also known as curse of dimensionality. Sparse grid [18] is introduced and further exploits smooth-

ness to reduce the number of sampling points to some extent.

The sampling methods are after an ensemble of solutions {u(x, ωi)}Mi=1 along with weights

{wi}Mi=1 associated with each realization. The above mentioned three non-intrusive methods only

differ in the selection of sampling points and associated weights.

Multilevel Monte Carlo Methods (MLMC). Recently, there is a surge of interests in Multilevel

Monte Carlo methods, which was pioneered by Giles [43, 42] for SODEs in areas of stock pricing

models and later extended to stochastic elliptic problems by Cliffe et al. [26] and Barth et al. [8],

and Navier-Stokes equations with random initial data by Mishraa et al. [80]. MLMC explores two
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aspects of numerical simulations of SODEs and SPDEs to achieve accelerations. One is that, besides

sampling errors, numerical errors due to spatial and temporal discretizations also contribute to final

results and thus the effective number of sampling points are constrained by grid resolutions. The

other, which may be more important, is that the variances of solution differences on two adjacent

discretization grids in a geometrical grid hierarchy may decay exponentially fast and the number of

sampling points on each level decay exponentially. An intrinsic limitation associated with MLMC

methods comes from that the fore-mentioned assumption about variance decay is true only when

the grid size reaches some asymptotic regime. In this case, each realization on the “coarse level” is

already quite expensive and the computational saving is not as much as one would like to get.

1.2.3 Intrusive Methods

Generalized Polynomial Chaos Methods (gPC). While non-intrusive sampling methods repre-

sent the solution of SPDEs as an ensemble of realizations, another way to represent stochastic

solutions is to employ truncated expansion on a set of polynomial chaos basis and drive a sys-

tem of coupled deterministic PDEs. The stochastic solution generally takes the form of u(x, ξ) =∑
α∈J uα(x)Hα(ξ) where J is some multi-index set and will be explained in detail in Sec. 2.3.2.1.

The original idea can be traced back to Wiener [113] in 1938. At the time, the method did not

receive much attention from the applied mathematics community until Cameron and Martin [19]

developed an explicit and intuitive formulation for Wiener Chaos Expansion(WCE) in their elegant

work in 1947. In the past decade or so, we have witnessed huge interests and research efforts on

developing efficient methods based on generalized Polynomial Chaos Expansions (gPCE), see, e.g.,

Ghanem and Spanos [41], Xiu [115], Xiu and Shen [119], Xiu and Karniadakis [118, 117], Wan and

Karniadakis [111, 110], Hou et al. [55, 77], and Matthies and Keese [79], which demonstrate its

effectiveness and potential applicability to broad classes of SPDE problems. However, gPC meth-
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ods also suffer from the curse of dimensionality. For example, if a SPDE involve p independent

random variables and only polynomials of total order at most P are chosen, then the total number

of polynomial chaos basis functions is

NP =

(
P + p

p

)
=

(P + p)!

P !p!
,

which increases exponentially and can easily exceed available computational resource even for small

p and P as demonstrated in Table 1.1.

p P NP

4 3 35
4 5 126
6 3 84
6 5 462
8 3 162
8 5 1287

10 5 3003

Table 1.1: Illustration of the exponential growth of the number of polynomial chaos basis functions,
NP .

The situation gets worse for spatially three-dimensional SPDEs since each gPC coefficient is a

function over a three-dimensional domain. Updating or solving a system of deterministic PDEs with

hundreds of such components may not be a realistic goal in a reasonable time frame. Based partially

on heuristic arguments, several strategies to select adaptively the most important polynomial chaos

basis functions have been proposed and shown to be effective in some numerical tests. The situation

gets even worse for time-dependent SPDEs since the set of most important polynomial chaos basis

functions may change in time and is hard to predict. Other variants of gPC methods have also

been developed, such as Wiener-Haar Chaos Expansion [71, 72, 70, 69], using wavelet bases, and

multi-element gPC [110, 33, 111] based on domain decomposition of random spaces.
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Figure 1.1: Conceptual illustration of efficiency of gPC, gSC, MC, and CM with respect to dimen-
sionality of random space

1.2.4 Post-Processing

The efficiency of MC, gPC, gSC, and CM with increasing number of random variables are illustrated

in Fig. 1.1. Both gPC and gSC suffer from the curse of dimensionality, so their efficiencies degrade

very fast as the number of random variables increases. On the other hand, concentration-of-measure

inequalities, although powerful, inherently assume the presence of a large number of uncertainty

sources and therefore are only effective at the high end of random dimensions. The convergence

rate of MC methods depends largely on the number of realizations, so its efficiency remains almost

constant, regardless of the dimensionality of the space of random variables. It is clear that other

structures of stochastic solutions of SPDEs should be further explored to design new and more

efficient numerical algorithms.

One of potential candidates reveals itself after we pay a close examination to the post-processing

of intrusive and non-intrusive methods, an aspect which receives a little attention in the litera-

ture. The numerical simulation process of SPDEs never stops at just getting a set of realizations

{u(x, ωi}Mi=1 for non-intrusive methods or a set of gPC coefficients {uα(x)}α∈J for intrusive meth-

ods. To obtain useful information and grasp physical insights of the system involving randomness,

some post-processing steps of the large number of realizations or gPC coefficients are necessary, for

example, to obtain expectation and variances of stochastic solutions.
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Solution Process

∂u
∂t

(x, t, ω) = Lu(x, t, ω)

Post-process KL ExpansionOr

Monte Carlo Solution

gPC Solution

Or u ≈ ū +
∑m

i=1 ui(x, t)Yi(ω, t)

SPDE

gSC Solution

Dynamically Bi-Orthogonal Method (DyBO)

Figure 1.2: The numerical simulation process of SPDEs

The Karhunen-Loeve Expansion (KLE) has received increasing attention in many fields, such

as statistics [1], image processing [65], and UQ [100, 22]. Among many reasons for its popular-

ity, one is that KLE reveals not only mean and variance but also the most important spatial and

stochastic modes of the stochastic solution, allowing sparse representation of stochastic solutions

and extractions of physical understandings. However, the computation of KLE is not trivial at all.

For example, the computation of KLE from an ensemble of realizations generally involves solving

a large-scale SVD problem. Certain methods have been developed to make such computation more

efficient, e.g., randomized algorithms [86]. If we look at the entire numerical simulation process of

SPDEs in Fig. 1.2, we find that a large number of realizations or gPC coefficients are first obtained

after a lot of computational resources and time are spent, and then “condensed” to KLE. Therefore,

a question arises naturally,

Can we skip the step of solving a large number of realizations or gPC coefficients and

target directly KL expansions of SPDE solutions?

1.3 Exploring Sparsity

Sparse structures prevail in many physical and engineering problems in one form or another and

have been explored in several methods, such as signal reconstruction [20], hierarchical matrix [48,

47], fast multipole methods [100], and adaptive data analysis [56]. In this thesis, we propose a
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method for the numerical simulation of SPDEs, which fully explores the sparsity in the sense of KL

expansions. To make the following discussion more precise, we first review briefly KL expansions in

this section and then outline the philosophy of proposed data-driven algorithms for SPDEs. Before

that, the following two remarks are worth mentioning.

Remark 1.1. The sparsity which we explore here is not the usual entry-wise sparsity, i.e., only a few

non-zero entries or coefficients, but data-sparsity, i.e., few data are required to provide an accurate

description of the stochastic solutions. Such a difference has been pointed out by Hackbusch [47],

and Hackbusch and Khoromskij [48], in the context of matrices. For numerical SPDEs, the former

sparsity has been explored in elliptic PDEs with stochastic coefficients by Todor and Schwab [106],

Bieri and Schwab [14], Schwab and Todor [99], and Doostan and Owhadi [29]. However, the set

of sparse coefficients are unknown a priori, which is necessary for effective computation reduc-

tion. A heuristic algorithm based on purely-stochastic problems is suggested by Schwab to select

such a set prior to computations. Doostan formulates l0- and l1- optimization problems and uses

Orthogonal Marching Pursuit (OMP) algorithm and Spectral Projected Gradient (SPGL) algorithm

to demonstrate its effectiveness.

Remark 1.2. The combined sparsity, i.e., data sparsity and entry-wise sparsity, has been explored

by Chandrasekaran et al. [24, 23] in the context of matrix decomposition. However, it is not clear

at the moment how such combined structures should be explored in numerical SPDEs.

1.3.1 Karhunen-Loeve Expansions

Consider a probability space (Ω,F ,P), where Ω is called the event space and is equipped with a σ-

algebra F and a probability measure P. Suppose a stochastic process u(x, ω) defined on a compact
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spatial domain D ⊂ Rd is a second-order stochastic process, i.e.,

u ∈ L2 (D × Ω) =

{
v(x, ω) |

∫
D

∫
Ω
v(x, ω)2 P( dω) dx

}
.

Sometimes, we also write L2 (D × Ω) = L2
(
Ω→ L2 (D)

)
to emphasize that u is a function-valued

random variable taking values in L2 (D). Here L2 (D) is the Hilbert space equipped with the usual

inner product

〈f(x), g(x)〉L2(D) =

∫
D
f(x)g(x) dx,

which induces the usual L2-norm

‖f(x)‖2L2(D) = 〈f(x), f(x)〉

on L2 (D) and a norm

‖v(x, ω)‖2L2(D×Ω) =

∫
D

∫
Ω
v(x, ω)2 P( dω) dx = E

[
‖v(x, ω)‖2L2(D)

]

on L2 (D × Ω). When no ambiguity arises, we may drop subscripts. Denote ū(x) = E [u(x, ω)],

the expectation of u, and the covariance function of stochastic process u is defined as

Covu(x, y) = E [(u(x, ω)− ū(x)) (u(y, ω)− ū(y))] , ∀x, y ∈ D.

When no ambiguity arises, we simply write Cov(x, y). The covariance function naturally defines a

linear operator on L2 (D), i.e.,

g(x) =

∫
D

Cov(x, y)f(y) dy : L2 (D)→ L2 (D) .
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It is easy to show that this linear operator is compact, self-adjoint and positive definite and, by

Mercer’s theorem, admits a spectral decomposition [41] on L2 (D),

Cov(x, y) =
∞∑
i=1

λifi(x)fi(y),

where λi’s and fi’s are the eigenvalues and eigenfunctions of the covariance kernel and {fi(x)}∞i ⊂

L2 (D) form a complete orthonormal basis, i.e., 〈fi, fj〉 = δij . The stochastic process u(x, ω) can

be expanded in a Fourier-type series as

u(x, ω) = ū(x) +
∞∑
i=1

√
λifi(x)Yi(ω), (1.2)

where random variables Yi(ω)’s are zero mean and uncorrelated, i.e., E [Yi] = 0, E [YiYj ] = δij ,

and are given by

Yi(ω) =
1√
λi

∫
ũ(x, ω)fi(x) dx, for i = 1, 2, 3, · · · ,

with ũ(x, ω) = u(x, ω)− ū(x). fi(x)’s or
√
λifi(x)’s are referred to as spatial modes and Yi’s are

referred to as stochastic modes in this thesis.

The KL expansion (1.2) is named after Kari Karhunen and Michel Loeve who derived it in-

dependently around 1947 [41]. Generally, the eigenvalues λi’s are sorted in descending order and

cluster at zero, whose decay rate depends only on the regularity of the covariance kernel Covu.

It has been shown that algebraic decay rate, i.e., λi = O (i−γ), is achieved asymptotically if the

covariance kernel is of finite Sobolev regularity, and exponential decay rate, i.e., λi = O
(
e−γi

)
,

if the covariance kernel is piecewisely analytical [100]. In either case, an m-term truncated KLE

converges to the original stochastic process u(x, ω) in ‖·‖L2(D×Ω) as m→∞. This can be seen by
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computing the truncation error

‖εm‖2L2(D×Ω) =

∥∥∥∥∥
∞∑

i=m+1

√
λifi(x)Yi(ω)

∥∥∥∥∥
2

L2(D×Ω)

=

∞∑
i=m+1

λi → 0, asm→∞,

where we have used the bi-orthogonality of KLE.

The most important property characterizing KLE is the so-called error-minimizing property,

which can be summarized in the following theorem,

Theorem 1.1 (Error Minimizing Property of KLE). Among all complete orthonormal bases of

L2 (D), KLE of second-order stochastic process u(x, ω) ∈ L2 (D × Ω) minimizes the m-term trun-

cation errors for m = 1, 2, 3, · · · , i.e.,

{fi(x)}∞i=1 = arg min〈hi, hj〉=δij ‖εm(x, ω)‖L2(D×Ω) , (1.3)

where the m-term truncation error

εm(x, ω) = u(x, ω)− ū(x)−
m∑
i=1

√
θihi(x)Zi(ω),

and Zi(ω) = 1√
θi

∫
ũ(x, ω)hi(x) dx.

Proof. See [41] or Sec. 5.2.

While the error-minimizing property implies KLE is the sparsest expansion of a second-order

stochastic process in the energy norm ‖·‖L2(D×Ω), bi-orthogonality of KLE characterizes it com-

pletely from another aspect, i.e.,

Theorem 1.2 (Bi-Orthogonality of KLE). The second-order stochastic process u(x, ω) ∈ L2 (D × Ω)
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admits a unique bi-orthogonal expansion (1.2) where

〈fi(x), fj(x)〉 = δij ,

E [Yi(ω)Yj(ω)] = δij .

Proof. See [41] or Sec. 5.2.

1.3.2 Overview of Dynamically Bi-Orthogonal Methods

Many physical and engineering problems involving uncertainty enjoy certain low-dimensional struc-

tures, e.g., in the sense of KL expansions, which in turn indicates the existence of reduced-order

models and better formulations for efficient numerical simulations. Clearly, such basis do not come

for free and should be constructed by using available information, i.e., data-driven algorithms. In

this thesis, we consider the numerical simulation of SPDEs and will derive an equivalent system

whose solution closely follows the KL expansion of the stochastic solution. Theorem 1.1 implies

that the KL expansion is the most compact representation of a stochastic process in the L2 sense.

Therefore, such a system offers great computational benefits compared to other popular generic

methods, such as traditional MC, gSC, and gPC.

Such low-dimensional structures of SPDE solutions have been explored partially in some meth-

ods, such as classic Proper Orthogonal Decomposition (POD) methods [95, 12], certified reduced

basis (RB) methods [68], and Dynamically Orthogonal (DO) methods [97, 96]. Most of these meth-

ods try to construct a spatial basis, either offline (e.g., POD or RB) or on-the-fly (e.g., DO), to

replace the standard spatial discretizations. Thus, they reduce the number of equations to solve and

improve computational efficiency. In POD methods, such spatial bases are constructed from Singu-

lar Value Decomposition (SVD) of a cluster of snapshot solutions taken at different times. In RB
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methods, the spatial bases are constructed in a similar way from a cluster of solutions correspond-

ing to different parameters/realizations. The selection of the set of parameter values are guided by

some posterior error estimates. While both POD and RB methods construct a spatial basis in an

offline manner, the DO method tracks such a spatial basis on-the-fly by imposing DO conditions.

Although the DO method tries to achieve a similar objective as ours, it requires computation of the

covariance function frequently in time to take advantage of the low-dimensional structure, which

could be computationally expensive.

All these methods emphasize spatial bases and ignore stochastic bases, so they only partially

explore the low-dimensional structures provided by KL expansions. The method proposed in this

thesis essentially tracks the KL expansions of SPDE solutions by deriving and solving a system of

equations for the spatial and stochastic modes in KL expansions. More specifically, our method

dynamically constructs the optimal basis on-the-fly by exploiting the sparse structure provided by

the KLE of the stochastic solution without the need of computing the covariance functions. This

unique feature is what distinguishes our method from other methods.

We consider the following KLE-type expansion of the stochastic solution at time t of the time-

dependent SPDE (1.1),

u(x, t, ω) ≈ ū(x, t) +

m∑
i=1

ui(x, t)Yi(ω, t) = ū(x, t) + U(x, t)YT (ω, t),

where U = (u1, u2, · · · , um) and Y = (Y1, Y2, · · · , Ym). Later, we will see how vector notation

significantly simplifies the formulations.

Unlike POD or gPC methods, we allow both spatial basis U and stochastic basis Y to change

dynamically in the above representation. Clearly, without additional requirements on U and Y, the

decomposition is not unique and we cannot derive a closed system of evolutionary equations for
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ū, U and Y. In terms of computational costs, the natural requirement is to minimize the number

of terms, m, for a given error threshold. According to Theorem 1.2 and 1.1, this is equivalent to

preserving the bi-orthogonality of spatial modes U and stochastic modes Y all the time, which

turns out to be sufficient for deriving a closed system of equations for ū, U and Y (see Sec. 2.1 for

details).

By enforcing the bi-orthogonal condition, we obtain

∂ū

∂t
= E [Lu] ,

∂U

∂t
= −UDT + E

[
L̃uY

]
,

dY

dt
= −YCT +

〈
L̃u, U

〉
Λ−1

U ,

where L̃u = Lu − E [Lu] and m-by-m matrices C and D can be solved from a linear system

involving only matrix G∗(u,U,Y) = Λ−1
U

〈
UT , E

[
L̃uY

]〉
∈ Rm×m. The first two equations

are time-dependent deterministic PDEs and are coupled to the third equation, a system of stochastic

ODEs. Because the method we have developed preserves bi-orthogonality of spatial and stochastic

modes on the fly, it is called the Dynamically Bi-Orthogonal (DyBO) method.

1.4 Summary of the Thesis

This thesis focuses on the innovative DyBO methods and their efficient numerical implementations

for a class of time-dependent SPDEs or a system of time-dependent SPDEs, whose solutions enjoy

low-dimensional structures in the sense of KL expansions. We have given careful considerations to

various aspects of the proposed methods, such as formulations, analysis, computational complex-

ities, and numerical implementations. Several challenging problems involving randomnesses have

been carefully chosen and used to demonstrate the applicability and the efficiency of DyBO meth-
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ods, and to verify the theoretical results. The contributions of this thesis is summarized in the next

section. A road map is also provided in Sec. 1.4.2 for the ease of readers.

1.4.1 Summary of Main Contributions

Direct tracking of KL expansions. In the popular numerical methods for SPDEs, such as MC,

qMC, gPC, and gSC, additional post-processing steps are necessary to get the KL expansions of

stochastic solutions. Without any additional post-processing steps, DyBO methods explore the

inherent low-dimensional structures and give directly the stochastic solutions in bi-orthogonal form

that essentially tracks the KL expansion of the stochastic solutions. The ability to preserve bi-

orthogonal forms in DyBO methods has been proved rigorously and verified numerically in various

challenging problems, such as stochastic Burgers equations, and stochastic flows in 2D unit square.

Reduced-order models and computation reductions. An important benefit associated with

DyBO formulations is the significant savings of computational costs both in memory consumptions

and computational times. Detailed complexity analysis has been conducted for DyBO-gPC methods

for certain classes of time-dependent SPDEs and verified numerically in Chapter 4.2. In practice, we

have observed speedup up to 200 times compared to gPC methods in 2D stochastic flow problems.

Adoption of vector/matrix/tensor notations in formulations. With the introduction of mul-

tiple spatial modes and stochastic modes, the final formulations of DyBO methods can be very

messy and error-prone in numerical implementations. To avoid such technical difficulties, we have

carefully designed the formulations and extensively adopted vector/matrix/tensor notations. For

examples, we write the spatial modes as a row vector of functions of space and time, U(x, t) =

(u1(x, t), u2(x, t), · · · , um(x, t)). In this way, the DyBO formations are presented in very concise

forms and also reveal physical insights and interesting structures for some numerical examples con-

sidered in this thesis. For examples, see the formulation (4.17) or (4.18) for 2D stochastic flows.
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Adoptions of vector/matrix/tensor notations also enable programming to proceed in an intuitive way,

especially for object-oriented programming languages.

Adaptivity and other implementation issues. Based on error analysis, sophisticated strate-

gies have been proposed in this thesis to adaptively and dynamically add and remove spatial and

stochastic mode pairs to achieve both accuracy and efficiency. The effectiveness of such strategies

have been confirmed in numerical examples in this thesis. See Sec. 3.3.3.2, Sec. 4.2.2, and Sec. 6.3,

for example. Other difficulties in numerical implementations, e.g., eigenvalue crossing, are also

considered and strategies are proposed.

Generalizations to a system of SPDEs. Multiple physical fields are generally involved in

practical applications along with randomnesses, which result in a coupled system of time-dependent

SPDEs. For example, the standard three-dimensional incompressible Navier-Stokes equations in-

volve four physical fields, velocity components along x-, y-, z-axis and pressure. The DyBO method

is also generalized for a system of SPDEs and demonstrated in 2D stochastic flow driven by both

stochastic external forces and buoyancy forces in Chapter 6. Such generalization, certainly interest-

ing by itself, potentially provides a way to tackle problems involving both multiscale phenomena

and randomnesses, which will be explained in detail under Future Work in Chapter 8.

Parallelization Nowadays, parallelization almost becomes an indispensable ingredient for suc-

cessful numerical simulations of PDEs in industrial applications [80, 102, 44]. Although the pro-

posed DyBO methods have explored the inherent sparsity within SPDEs themselves, further compu-

tational reductions by parallelization are still necessary, especially for spatially three-dimensional

SPDEs with multiple physical components. Based on the computational complexity analysis in

Sec. 4.1.2.2, we propose a simple, yet powerful, parallelization strategy based on domain decompo-

sition for stochastic flows in Sec. 6.4. The effectiveness of the parallelization strategy is confirmed

on multi-core computing nodes at the Caltech Center for Advanced Computing Research (CACR)
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and about 5 times speedup is observed with 8 computing processes.

The proposed method still has some limitations. For example, the decay rate of eigenvalues in

the KL expansion of stochastic solutions can be very slow in stochastic multiscale problems with

small correlations [100]. For this type of problem, our method may lead to expensive computational

costs. Potential fixes along with other issues are discussed under Future Work in Chapter. 8.

1.4.2 Roadmap

The thesis is organized as follows.

• Chapter 2 focuses on the theoretical aspects of the DyBO method, such as bi-orthogonality

preserving, and error analysis, along with numerical algorithms and other numerical imple-

mentation details.

• Chapter 3 and Chapter 4 present various numerical examples ranging from spatially-one-

dimensional stochastic Burgers’ equation to spatially two-dimensional stochastic Navier-

Stokes equation. Each numerical example emphasizes different aspects of our analysis in

Chapter 2. Computational complexities in terms of memory and computational time are care-

fully analyzed in Chapter 4.

• Chapter 5, Chapter 6 and Chapter 7 include generalizations to other stochastic processes, gen-

eralizations to a system of time-dependent SPDEs and DyBO formulations on sparse grids.

Parallelization is also considered in stochastic flow problems to demonstrate the applicability

of DyBO methods for industrial-scale problems.

• Chapter 8 summarizes the thesis and points out several future directions.



21

Chapter 2

Dynamically Bi-Orthogonal (DyBO)
Method

For most time-dependent types of physical and engineering problems involving randomness, we can

assume the stochastic process or SPDE solution u(x, t, ω) given by the system (1.1) is a second-

order stochastic process at each fixed time t > 0, i.e., u(·, t, ·) ∈ L2 (D × Ω). Therefore, u admits

the KL expansion (1.2),

u(x, t, ω) = ū(x, t) +

∞∑
i=1

√
λi(t)ǔi(x, t)Yi(ω, t), (2.1)

where ū(x, t) = E [u(x, t, ω)] is the expectation of u and Yi’s are zero-mean random variables, i.e.,

E [Yi] ≡ 0, given by

Yi(ω, t) =
1√
λi(t)

∫
D
ũ(x, t, ω)ǔi(x, t) dx, for i = 1, 2, 3, · · · .

According to Theorem 1.2, both ǔi’s and Yi’s satisfy bi-orthogonality conditions, i.e.,

〈ǔi, ǔj〉 =

∫
D
ǔi(x)ǔj(x) dx = δij ,

E [YiYj ] = δij ,
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and {ǔi}∞i=1 and {Yi}∞i=1 are orthogonal basis for L2 (D) and L2 (Ω), respectively.

If the eigenvalue λi’s are distinct, such decomposition is unique up to a sign. For practical

problems, such requirement is almost always true. Thus, we can assimilate the factor
√
λi(t) into

ǔi and arrive at

u(x, t, ω) = ū(x, t) +
∞∑
i=1

ui(x, t)Yi(ω, t), (2.2)

where ui =
√
λiǔi and 〈ui, uj〉 = λiδij . For the ease of future derivations, we use, extensively

throughout this thesis, vector and matrix notations. For example, we group the first m spatial and

stochastic modes into row vectors, respectively, i.e.,

U(x, t) = (u1(x, t), u2(x, t), ..., um(x, t)) = (ui(x, t))i=1,2,··· ,m ∈ R1×m,

Y(ω, t) = (Y1(ω, t), Y2(ω, t), ..., Ym(ω, t)) = (Yi(ω, t))i=1,2,··· ,m ∈ R1×m.

When the ranges of indices are clear from the context, we drop them and simply write U = (ui)i

and Y = (Yi)i. Sometimes, we also write U = (ui)1×i to emphasize U is a row vector. Similarly

for the rest of the spatial and stochastic modes,

Ũ(x, t) = (um+1(x, t), um+2(x, t), ...) ∈ R1×∞,

Ỹ(ω, t) = (Ym+1(ω, t), Ym+2(ω, t), ...) ∈ R1×∞.

Correspondingly, E[YTY] and
〈
UT , U

〉
are m-by-m matrices and the bi-orthogonality condition

can be rewritten compactly as

E
[
YTY

]
(t) = (E [YiYj ])ij = I ∈ Rm×m, (2.3a)

〈
UT , U

〉
(t) = (〈ui, uj〉)ij = ΛU ∈ Rm×m, (2.3b)
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where ΛU = diag(
〈
UT , U

〉
) = (〈ui, uj〉 δij)ij ∈ Rm×m. The KL expansion of u at some fixed

time t reads

u = ū+ UYT + ŨỸT . (2.4)

As stated in the previous chapter, the class of time-dependent SPDEs we consider in this thesis enjoy

a low-dimensional structure in the sense of KLE, or precisely, the eigenvalue spectrum {λi(t)}∞i=1

decays fast enough, allowing for a good approximation with a truncated KL expansion (2.4). There-

fore, we have the following approximation of u,

u ≈ ū+ UYT = ū+ YTU. (2.5)

The last equality is due to the fact that both U and Y are simply row vectors. This chapter is devoted

to the derivation of the reduced-order model of the original system (1.1) stemming from the above

truncated KLE (2.5), i.e., a system of equations for ū, U and Y, and efficient numerical algorithms

based on the reduced-order model. The next section focuses on the derivation of the reduced-

order formulation and its bi-orthogonality-preserving property is proved in Sec. 2.2. Because error

analysis also hints on how spatial and stochastic modes can be adaptively and dynamically added

into and removed in computations (Sec. 2.6), it is deferred to Sec. 2.5 after two important aspects

of numerical algorithms, representations of stochastic modes and eigenvalue crossing, have been

discussed (Sec. 2.3 and Sec. 2.4). In Sec. 2.7, the overall numerical algorithm is presented along

with other implementation details.

Before jumping to the derivation, two remarks are worthy of mentioning,

Remark 2.1. Later in the derivation, we will find many terms emerging as orthogonal complements

with respect to the orthogonal basis U in L2 (D) or Y in L2 (Ω). Thus, we define the following



24

orthogonal complementary operators

ΠU(v) = v −UΛ−1
U

〈
UT , v

〉
for v(x) ∈ L2 (D) ,

ΠY(Z) = Z −YE
[
YTZ

]
for Z(ω) ∈ L2 (Ω) .

Remark 2.2. Anti-symmetrization operator Q : Rk×k → Rk×k and partial anti-symmetrization op-

erator Q̃ : Rk×k → Rk×k play an important role in our derivations, which are defined, respectively,

as follows. For any real matrix A ∈ Rk×k,

Q(A) =
1

2

(
A−AT

)
,

Q̃(A) =
1

2

(
A−AT

)
+ diag(A),

where diag(A) denotes a diagonal matrix constructed from a square matrix A by removing the

off-diagonal entries. In the partial “anti-symmetrization” operation, the diagonal entries remain

untouched while the off-diagonal entries are anti-symmetrized. BothQ and Q̃ are used primarily to

enforce bi-orthogonality, which characterizes KLE according to Theorem 1.2.

2.1 Derivations of DyBO Method

For the ease of readers, the derivations are broken down into three steps.
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2.1.1 Derivations of Reduced-Order Model for Truncated KLE

We begin our derivation by plugging eqn. (2.5) into the first equation of the original stochastic

partial equation eqn. (1.1a) and get

∂ū

∂t
+
∂U

∂t
YT + U

dYT

dt
= Lu, (2.7)

or equivalently,

∂ū

∂t
+ Y

∂UT

∂t
+

dY

dt
UT = Lu. (2.8)

Taking expectations on both sides of eqn. (2.7) and taking into account the fact that Yi’s are zero-

mean random variables, we have

∂ū

∂t
= E [Lu] ,

which gives the evolutionary equation for the expectation of the solution u. Multiplying both sides

of eqn. (2.7) by Y from the right and taking expectations, we obtain

∂U

∂t
E
[
YTY

]
+ UE

[
dYT

dt
Y

]
= E

[
(Lu− ∂ū

∂t
)Y

]
.

After using the orthogonality of stochastic modes Y, we have

∂U

∂t
= E

[
L̃uY

]
−UE

[
dYT

dt
Y

]
,

where L̃u = Lu − E [Lu]. Similarly steps can be repeated for Y, i.e., multiplying both sides of

eqn. (2.8) by U from the right and taking inner products give

Y

〈
∂UT

∂t
, U

〉
+

dY

dt

〈
UT , U

〉
=

〈
Lu− ∂ū

∂t
, U

〉
,
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or after the orthogonality of spatial modes U is used,

dY

dt
ΛU =

〈
L̃u, U

〉
−Y

〈
∂UT

∂t
, U

〉
.

Therefore, we have the following time-evolutionary system

∂ū

∂t
= E [Lu] , (2.9a)

∂U

∂t
= E

[
L̃uY

]
−UE

[
dYT

dt
Y

]
, (2.9b)

dY

dt
ΛU =

〈
L̃u, U

〉
−Y

〈
∂UT

∂t
, U

〉
, (2.9c)

which is apparently not a truly time-evolutionary system since the right sides still involve time

derivatives such as dY
dt and ∂U

∂t . To transform it into a truly time-evolutionary system, we continue

by substituting eqn. (2.9c) into eqn. (2.9b) and get,

∂U

∂t
= E

[
L̃uY

]
−UE

[
Λ−1

U

(〈
UT , L̃u

〉
−
〈

UT ,
∂U

∂t

〉
YT

)
Y

]
= E

[
L̃uY

]
−UΛ−1

U

〈
UT , E

[
L̃uY

]〉
+ UΛ−1

U

〈
UT ,

∂U

∂t

〉
,

where we have used the orthogonality of the stochastic modes, i.e., E
[
YTY

]
= I. Similarly,

substituting eqn. (2.9b) to eqn. (2.9c) yields,

dY

dt
ΛU =

〈
L̃u, U

〉
−Y

〈
E
[
L̃uYT

]
− E

[
YT dY

dt

]
UT , U

〉
=
〈
L̃u, U

〉
−Y

〈
E
[
L̃uYT

]
, U
〉

+ YE
[
YT dY

dt

]
ΛU.
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So the system (2.9) can be re-written as

∂ū

∂t
= E [Lu] , (2.10a)

∂U

∂t
= UΛ−1

U

〈
UT ,

∂U

∂t

〉
+GU(u,U,Y), (2.10b)

dY

dt
= YE

[
YT dY

dt

]
+GY(u,U,Y), (2.10c)

where

GU(u,U,Y) = ΠU

(
E
[
L̃uY

])
= E

[
L̃uY

]
−UΛ−1

U

〈
UT , E

[
L̃uY

]〉
, (2.11a)

GY(u,U,Y) = ΠY

(〈
L̃u, U

〉)
Λ−1

U =
〈
L̃u, U

〉
Λ−1

U −Y
〈
E
[
L̃uYT

]
, U
〉

Λ−1
U , (2.11b)

i.e., GU(u,U,Y) is the orthogonal compliment of E
[
L̃uY

]
with respect to span(U) in L2 (D)

and GY(u,U,Y) is the orthogonal compliment of
〈
L̃u, U

〉
with respect to span(Y) in L2 (Ω).

In other words,

GU(u,U,Y) ⊥ spanU in L2 (D) ,

GY(u,U,Y) ⊥ spanY in L2 (Ω) .

2.1.2 Enforcing Bi-Orthogonality Condition

The following crucial observation makes further derivation possible and its meaning will become

clear soon. The partial anti-symmetrization Q̃ of
〈
UT , ∂U∂t

〉
in the first term on the right side of

eqn. (2.10b) and the anti-symmetrization Q of E
[
YT dY

dt

]
in the first term on the right side of

eqn. (2.10c) do produce an equivalent system to the system (2.10) as long as U and Y are bi-

orthogonal. This can be seen by taking the temporal derivative of orthogonality conditions (2.3a)
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and (2.3b),

d

dt

〈
UT , U

〉
=

〈
dUT

dt
, U

〉
+

〈
UT ,

dU

dt

〉
,

d

dt
E
[
YTY

]
= E

[
dYT

dt
Y

]
+ E

[
YT dY

dt

]
.

Obviously, the off-diagonal elements of both matrices d
dt

〈
UT , U

〉
and d

dtE
[
YTY

]
are zeros

due to the bi-orthogonality condition (2.3), which in turn implies both matrices
〈

dUT

dt , U
〉

and

E
[

dYT

dt Y
]

are invariant under partial anti-symmetrization Q̃. Furthermore, Y being orthonormal

implies E
[

dYT

dt Y
]

is anti-symmetric. On the other hand, bi-orthogonality (2.3) is preserved if

it is satisfied initially at t = 0 and such invariance is satisfied at any later time t > 0, which is

summarized in the following theorem.

Theorem 2.1 (Equivalence of bi-orthogonality and anti-symmetry). Bi-orthogonality condition

(2.3) is preserved all the time if and only it is true initially and, for ∀t > 0,

Q̃
(〈

UT ,
∂U

∂t

〉)
=

〈
UT ,

∂U

∂t

〉
, (2.14a)

Q
(
E
[
YT dY

dt

])
= E

[
YT dY

dt

]
. (2.14b)

In other words, anti-symmetrization enforces the bi-orthogonality condition, which essentially

characterizes KL expansions. After applying the above theorem to the system (2.10), we arrive at

∂ū

∂t
= E [Lu] , (2.15a)

∂U

∂t
= UΛ−1

U Q̃
(〈

UT ,
∂U

∂t

〉)
+GU(u,U,Y), (2.15b)

dY

dt
= YQ

(
E
[
YT dY

dt

])
+GY(u,U,Y). (2.15c)



29

2.1.3 Eliminating Time Derivatives from RHS

We continue with our derivation by noticing that (U, Ũ) forms a complete orthogonal basis of

L2 (D). Thus, the change of spatial modes, ∂U∂t , can be written in the form of

∂U

∂t
= UC + ŨC̃, (2.16)

where C(t) ∈ Rm×m and C̃(t) ∈ R∞×m . Note that

〈
UT ,

∂U

∂t

〉
=
〈
UT , UC + ŨC̃

〉
=
〈
UT , U

〉
C +

〈
UT , Ũ

〉
C̃ =

〈
UT , U

〉
C.

Substituting this and eqn. (2.16) into the second equation of the system (2.15) gives

UC + ŨC̃ = UΛ−1
U Q̃ (ΛUC) +GU(u,U,Y),

or

U
(
C−Λ−1

U Q̃ (ΛUC)
)

= GU(u,U,Y)− ŨC̃,

where the left side is in span(U) ⊂ L2 (D) while the right side is in its orthogonal complement, so

C−Λ−1
U Q̃ (ΛUC) = 0, (2.17a)

ŨC̃ = GU(u,U,Y). (2.17b)

Similarly, the change of stochastic modes, dY
dt , can be written in the form of

dY

dt
= YD + ỸD̃, (2.18)
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where D(t) ∈ Rm×m and D̃(t) ∈ R∞×m. Immediately, we see

E
[
YT dY

dt

]
= E

[
YTY

]
D + E

[
YT Ỹ

]
D̃ = D.

substituting this and eqn. (2.18) into the third equation of the system (2.15), we get

YD + ỸD̃ = YQ (D) +GY(u,U,Y),

or

Y (D−Q (D)) = GY(u,U,Y)− ỸD̃,

where the left side in span(Y) ⊂ L2 (Ω) and the right side is in its orthogonal complement, so

D−Q (D) = 0, (2.19a)

ỸD̃ = GY(u,U,Y). (2.19b)

However, eqn. (2.17a) and eqn. (2.19a) are not sufficient to determine matrices C and D. To find

additional equations for C and D, we substitute eqn. (2.16) and eqn. (2.18) back into the original

stochastic partial differential equation eqn. (1.1a) and get

∂U

∂t
YT + U

dYT

dt
= YCTUT + YC̃T ŨT + UDTYT + UD̃T ỸT = L̃u,

or

U
(
DT + C

)
YT + UD̃T ỸT + ŨC̃YT = L̃u.

Multiplying UT from the left and Y from the right on both sides of the above equality and taking
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inner products 〈·, ·〉 and expectations E [·], we obtain

〈
UT , U

〉 (
DT + C

)
E
[
YTY

]
+
〈
UT , U

〉
D̃TE

[
ỸTY

]
+
〈
UT , Ũ

〉
C̃E

[
YTY

]
=
〈
UT , E

[
L̃uY

]〉
,

or after applying bi-orthogonality conditions,

DT + C = G∗(u,U,Y), (2.20)

where G∗(u,U,Y) = Λ−1
U

〈
UT , E

[
L̃uY

]〉
∈ Rm×m. Matrices C and D can then be solved

uniquely assuming 〈ui, ui〉 6= 〈uj , uj〉 for i 6= j as the following theorem shows,

Theorem 2.2. If 〈ui, ui〉 6= 〈uj , uj〉 for i 6= j, i = 1, 2, . . . ,m, j = 1, 2, . . . ,m, m-by-m matrices

C and D can be solved uniquely from the following linear system

C−Λ−1
U Q̃ (ΛUC) = 0, (2.21a)

D−Q (D) = 0, (2.21b)

DT + C = G∗(u,U,Y). (2.21c)
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The solutions are given entry-wisely

Cii = G∗ii, (2.22a)

Cij =
‖uj‖2L2(D)

‖uj‖2L2(D) − ‖ui‖
2
L2(D)

(G∗ij +G∗ji) for i 6= j, (2.22b)

Dii = 0, (2.22c)

Dij =
1

‖uj‖2L2(D) − ‖ui‖
2
L2(D)

(
‖uj‖2L2(D)G∗ji + ‖ui‖2L2(D)G∗ij

)
for i 6= j. (2.22d)

Proof of solvability of matrices C and D. From the second equation (2.21b), we have D−Q (D) =

D − 1
2

(
D−DT

)
= 1

2

(
D + DT

)
= 0, i.e., D must be anti-symmetric matrix, which gives

eqn. (2.22c). Taking transposes on both sides of eqn. (2.21c) and adding to itself, we arrive at

C + CT = G∗(u,U,Y) +G∗(u,U,Y)T ,

which gives eqn. (2.22a) for the diagonal entries of matrix C. For the off-diagonal entries i 6= j,

Cij + Cji = G∗ij(u,U,Y) +G∗ji(u,U,Y). (2.23)

On the other hand, by the definition of anti-symmetrization operator Q̃, eqn. (2.21a) can be simpli-

fied to

1

2

(
C + Λ−1

U CTΛU

)
− diag(C) = 0, (2.24)

which gives, for the diagonal entries i = j, a trivial equality,

Cii − Cii = 0,
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and for the off-diagonal entries i 6= j,

Cij +
‖uj‖2L2(D)

‖ui‖2L2(D)

Cji = 0. (2.25)

Since ‖ui‖L2(D) 6= ‖uj‖L2(D) for i 6= j, solving eqn. (2.23) and eqn. (2.25) gives eqn. (2.22b).

Substituting in eqn. (2.21c), we arrive at eqn. (2.22d).

Remark 2.3. In the event that two eigenvalues approach each other and then separate as time in-

creases, which we refer to as the eigenvalue-crossing case, we can detect such an event and tem-

porarily freeze the spatial modes U or the stochastic modes Y and continue to evolve the system for

a short duration. Once the two eigenvalues separate, the solution can be recast into the bi-orthogonal

form via KL expansion. However, we can take advantage of the fact that one of U and Y is always

kept orthogonal even during the “freezing” stage and devise a KL expansion algorithm which avoids

the need to form the covariance function explicitly. The details will be discussed in Sec. 2.4.

2.1.4 DyBO Formulation for Time-Evolutionary SPDE

Combining the above discussion, we arrive at the following reduced-order system

∂ū

∂t
= E [Lu] , (2.26a)

∂U

∂t
= UC +GU(u,U,Y), (2.26b)

dY

dt
= YD +GY(u,U,Y), (2.26c)
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where C and D are given in (2.22), GU and GY are given in (2.11) and the solution of SPDE is

approximated by a bi-orthogonal form

u ≈ ū+ UTY = ū+
m∑
i=1

ui(x, t)Yi(ω, t).

From the definition of G∗, , note that GU and GY can be rewritten as

GU = E
[
L̃uY

]
−UG∗,

GY =
〈
L̃u, U

〉
Λ−1

U −YGT∗ ,

so the system (2.26) can be rewritten as

∂ū

∂t
= E [Lu] , (2.27a)

∂U

∂t
= U (C−G∗) + E

[
L̃uY

]
, (2.27b)

dY

dt
= Y

(
D−GT∗

)
+
〈
L̃u, U

〉
Λ−1

U . (2.27c)

Furthermore, after plugging in eqn. (2.21c), we finally arrive at the reduced-order system for the

original SPDE (1.1),

∂ū

∂t
= E [Lu] , (2.28a)

∂U

∂t
= −UDT + E

[
L̃uY

]
, (2.28b)

dY

dt
= −YCT +

〈
L̃u, U

〉
Λ−1

U , (2.28c)

which will be the main focus throughout the thesis. We also call the above system the DyBO

formulation of SPDE (1.1a).
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Remark 2.4. In some applications, such as predictions of flow and transport in porous media, con-

vergence of such expansion in stronger norms, e.g., ‖·‖L2(Ω→Hk(D)), is preferred. Generalization of

KLE and then our DyBO method in this sense will be discussed in Chapter 5, which in turn enables

the method proposed in this thesis to be applicable for a broader class of problems.

2.2 Bi-Orthogonality Preservation

In this section, we are going to show in the following theorem that the DyBO formulation preserves

the bi-orthogonality of the spatial modes U and the stochastic modes Y for t ∈ [0, T ] if the bi-

orthogonality condition is satisfied initially. The case that U and Y initially are not perfectly bi-

orthogonal is considered in Theorem 2.4 and Remark 2.5.

Theorem 2.3 (Preservation of Bi-Orthogonality in DyBO). The solutions U and Y of system

(2.28) satisfy the bi-orthogonality condition (2.3) exactly as long as the initial conditions U(x, 0)

and Y(ω, 0) satisfy the bi-orthogonality condition. Moreover, Y remains normalized exactly, i.e.,

‖Yi‖L2(Ω) (t) = 1 for i = 1, 2, · · · ,m and t ∈ [0, T ].

To motivate the proof, we first study the semi-discretization of system (2.28) at t = n dt, n =

0, 1, 3, · · · , if we are set out to use the forward Euler scheme with time step size dt. Assume the

bi-orthogonality is preserved at time t = tn and let us evaluate at time t = tn,

〈
∂UT

∂t
, U

〉∣∣∣∣
t=tn

=
〈
CTUT +GU(u,U,Y)T , U

〉∣∣
t=tn

=
〈
CTUT + E

[
L̃uYT

]
−
〈
E
[
L̃uYT

]
, U
〉

Λ−1
U UT , U

〉∣∣∣
t=tn

= CT
〈
UT , U

〉∣∣
t=tn

+
〈
E
[
L̃uYT

]
, U
〉∣∣∣
t=tn

−
〈
E
[
L̃uYT

]
, U
〉

Λ−1
U

〈
UT , U

〉∣∣∣
t=tn

= CTΛU

∣∣
t=tn

,
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where we have used the orthogonality of U at t = tn in the second to last line. Similarly,

〈
UT ,

∂U

∂t

〉∣∣∣∣
t=tn

= ΛUC|t=tn .

Combining the above two equations, we have

d

dt

〈
UT , U

〉∣∣∣∣
t=tn
≈
〈
∂UT

∂t
, U

〉∣∣∣∣
t=tn

+

〈
UT ,

∂U

∂t

〉∣∣∣∣
t=tn

= CTΛU + ΛUC
∣∣
t=tn

= ΛU

(
C + Λ−1

U CTΛU

)∣∣
t=tn

.

We know immediately from eqn. (2.24) that the off-diagonal entry

d

dt
〈ui, uj〉

∣∣∣∣
t=tn

= 0, for i 6= j,

implying that U remains orthogonal at time t = tn+1 since 〈ui, uj〉|t=tn+1 = 〈ui, uj〉|t=tn +

d
dt 〈ui, uj〉

∣∣
t=tn

dt. Similarly for Y, we have

E
[

dYT

dt
Y

]∣∣∣∣
t=tn

= E
[(

DTYT +GY(u,U,Y)T
)
Y
]∣∣
t=tn

= E
[(

DTYT + Λ−1
U

〈
UT , L̃u

〉
−Λ−1

U

〈
UT , E

[
L̃uY

]〉
YT
)

Y
]∣∣∣
t=tn

= DTE
[
YTY

]∣∣
t=tn

+ Λ−1
U

〈
UT , E

[
L̃uYT

]〉∣∣∣
t=tn

− Λ−1
U

〈
UT , E

[
L̃uY

]〉
E
[
YTY

]∣∣∣
t=tn

= DT
∣∣
t=tn

,
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and

E
[
YT dY

dt

]∣∣∣∣
t=tn

= D|t=tn .

Thus, Y remains orthonormal at time t = tn+1 because, at time t = tn,

d

dt
E
[
YTY

]∣∣∣∣
t=tn
≈ E

[
dYT

dt
Y

]∣∣∣∣
t=tn

+ E
[
YT dY

dt

]∣∣∣∣
t=tn

= DT + D
∣∣
t=tn

= 0.

The above “discretized” version of proof can be turned into a rigorous and “continuous” one

Proof of Theorem 2.3. Like in the “discretized” version, we evaluate directly

d

dt

〈
UT , U

〉
=

〈
∂UT

∂t
, U

〉
+

〈
UT ,

∂U

∂t

〉
= −D

〈
UT , U

〉
+
〈
E
[
L̃uYT

]
, U
〉
−
〈
UT , U

〉
D +

〈
UT , E

[
L̃uY

]〉
= −D

〈
UT , U

〉
−
〈
UT , U

〉
DT +GT∗ΛU + ΛUG∗,

where we have used the definition of G∗ in the second to last equality. For i 6= j,

d

dt
〈ui, uj〉 = −

m∑
k=1

Dik 〈uk, uj〉 −
m∑
l=1

〈ui, ul〉Djl +G∗ji ‖uj‖2L2(D) +G∗ij ‖ui‖2L2(D)

= −
m∑

k=1,k 6=j
Dik 〈uk, uj〉 −

m∑
l=1,l 6=i

〈ui, ul〉Djl

−Dij ‖uj‖2L2(D) −Dji ‖ui‖2L2(D) +
(
‖uj‖2L2(D) − ‖ui‖

2
L2(D)

)
Dij

= −
m∑

k=1,k 6=i,j
Dik 〈uk, uj〉 −

m∑
l=1,l 6=i,j

Djl 〈ui, ul〉 , (2.29)

where eqn. (2.22d) is used in the first equality and the last equality is due to the fact that matrix D

is anti-symmetric. Write χ(i,j)(t) = 〈ui, uj〉 (t) for i > j and column vector χ(t) =
(
χ(i,j)

)
i>j
∈

R
m(m−1)

2
×1 where the parenthesis enclosing the pair i and j is used to emphasize the pair (i, j) is
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actually a linear index. From eqn. (2.29), we see that χ(t) satisfies a linear ODE system

dχ(t)

dt
=W(t)χ(t), (2.30a)

χ(0) = 0, (2.30b)

where matrixW(t) ∈ R
m(m−1)

2
×m(m−1)

2 is given in terms ofDij and the initial condition comes from

the fact that U(x, 0) are a set of orthogonal functions. It is easy to see that, as long as the solutions

of system (2.28) exist, W(t) is well defined and the ODE system admits only zero solution, i.e.,

orthogonality of U is preserved for t ∈ [0, T ]. Similar arguments can be used to show Y remains

orthonormal for t ∈ [0, T ], which completes the proof.

Furthermore, we have the following theorem regarding the structure of matrixW .

Theorem 2.4. MatrixW in ODE system (2.30) is anti-symmetric.

Proof of Theorem 2.4. Consider two pairs of indices (i, j) and (p, q) with i > j and p > q. The

corresponding equations for χ(i,j) and χ(p,q) are

dχ(i,j)

dt
= −

m∑
k=1,k 6=i,j

Dikχ(k,j) −
m∑

l=1,l 6=i,j
Djlχ(i,l), (2.31a)

dχ(p,q)

dt
= −

m∑
k=1,k 6=p,q

Dpkχ(k,q) −
m∑

l=1,l 6=p,q
Dqlχ(p,l), (2.31b)

where we have identified χ(i,j) with χ(j,i). First, we consider the case two index pairs are identical.

We see from eqn. (2.31a) that there is no χ(i,j) on the right side, so W(i,j),(i,j) = 0. Next, we

consider the case none of indices in one index pair is equal to any in the other, i.e., i 6= p, q and

j 6= p, q. It is obvious that no χ(p,q) appears in the summations on the right side of eqn. (2.31a),

which implies W(i,j),(p,q) = 0. Similarly, we have W(p,q),(i,j) = 0. Last, we consider the case in

which one index in one index pair is equal to one index in another index pair but the remaining two
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indices from two index pair are not equal. Without loss of generality, we assume i = p and j 6= p, q.

From eqn. (2.31a), we have

dχ(i,j)

dt
= · · · −Djqχ(i,q) − · · · = · · · −Djqχ(p,q) − · · · ,

where we have intentionally isolated the relevant term from the second summation and the last

equality is due to i = p. Similarly, from eqn. (2.31b), we have

dχ(p,q)

dt
= · · · −Dqjχ(p,j) − · · · = · · · −Dqjχ(i,j) − · · · .

The above two equations imply thatW(i,j),(p,q) =W(p,q),(i,j) = −Djq. Similar arguments apply to

other cases.

Similar results hold for the stochastic modes Y. Due to numerical errors, such as round-off

errors, and discretization errors, U and Y may not be perfectly bi-orthogonal at the beginning or

become so later in the computation. Theorem 2.4 sheds lights on the numerical stability of DyBO

formulation for this scenario. As we know, the eigenvalues of an anti-symmetric matrix are purely

imaginary or zero and the geometric multiplicities are 1 (see page 115, [34]), so any deviation from

the bi-orthogonal form will not be amplified.

Remark 2.5. However, we have observed much better results through all of numerical examples, i.e.,

that the bi-orthogonality condition is preserved almost all the time. Even if spatial and stochastic

modes become imperfectly bi-orthogonal, e.g., due to introducing new mode pairs as discussed

in Sec. 2.6, the bi-orthogonality is restored after several time iterations. This may be due to the

non-sympleticness and artificial numerical dissipation of numerical integrators (see page 33, [49]).
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2.3 Representation of Stochastic Modes

Before presenting error analysis of DyBO, we devote this and the next sections to some numerical

aspects of DyBO formulation. One of conceptual difficulties, from the viewpoint of the classical

numerical PDEs, involves representations of random variables or functions defined on abstract prob-

ability space Ω. Essentially, there are two ways to represent numerically stochastic modes Y(ω, t):

ensemble representations in sampling methods, e.g., MC, and spectral representations, e.g., gPC.

2.3.1 Ensemble Representation

In MC, the stochastic modes Y(ω, t) are represented by an ensemble of realizations, i.e.,

Y(ω, t) ≈ {Y(ω1, t),Y(ω2, t),Y(ω3, t), · · · ,Y(ωNr , t)} ,

where Nr is the total number of realizations. Then the expectations in the DyBO formulation (2.28)

can be replaced by ensemble averages, i.e.,

∂ū

∂t
(x, t) =

1

Nr

Nr∑
i=1

Lu(x, t, ωi), (2.32a)

∂U

∂t
(x, t) = −U(x, t)D(t)T +

1

Nr

Nr∑
i=1

L̃u(x, t, ωi)Y(ωi, t), (2.32b)

dY

dt
(ωi, t) = −Y(ωi, t)C(t)T +

〈
L̃u(x, t, ωi), U(x, t)

〉
ΛU(t)−1, (2.32c)

where C(t) and D(t) can be solved from (2.22) with

G∗(u,U,Y) = Λ−1
U

〈
UT ,

1

Nr

Nr∑
i=1

L̃u(x, t, ωi)Y(ωi, t)

〉
. (2.33)
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The above system is the MC version of DyBO method and we call it DyBO-MC. Close examina-

tions reveal that eqn. (2.32a) for expectation and eqn. (2.32b) for spatial modes are only solved once

for all the realizations at each time iteration while eqn. (2.32c) for stochastic modes is decoupled

from realization to realization and can be solved simultaneously across all realizations.

Clearly, not only the number of realizations, but also how these realizations {ωi}Nri=1 are chosen

in Ω affects the numerical accuracy and the efficiency of the DyBO approximation to the solution

of SPDE (1.1). qMC, variance reduction, and other techniques may be combined into DyBO-MC to

further improve its efficiency and accuracy. Since such choice of realizations are generally problem-

dependent and our main interests here are the discussion of a general methodology, we will make

no further discussion on this topic.

2.3.2 Spectral Representation

2.3.2.1 Some Preliminaries of gPC Methods

In many physical and engineering problems, randomness generally comes from various independent

sources, so randomness in SPDE (1.1) is often given in terms of independent random variables

ξi(ω). Throughout this thesis, we assume only a finite number of independent random variables

are involved, i.e., ξ(ω) =
(
ξ1(ω), ξ2(ω), · · · , ξNp(ω)

)
, where Np is the number of such random

variables. Without loss of generality, we can further assume they all have identical distribution

ρ(·). Thus, the solution of SPDE (1.1) is a functional of these random variables, u(x, t, ω) =

u(x, t, ξ(ω)). When SPDE is driven by some known stochastic process, such as Brownian Motion

Bt, by Cameron-Martin theorem [19], the stochastic solution can be approximated by a functional

of identical independent standard Gaussian variables, i.e., u(x, t, ω) ≈ u(x, t, ξ(ω)) with ξi’s being

standard normal random variables.

We write {Hi(ξ)}∞i=1, the one-dimensional polynomials orthogonal to each other with respect
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to the common distribution ρ(z), i.e.,

∫ ∞
−∞

Hi(ξ)Hj(ξ)ρ(ξ) dξ = δij .

For some common distributions, such as Gaussian, uniform, and Poisson, such polynomial sets are

well-known and well-studied, many of which fall in the Ashley scheme (see [117, 98, 5, 38] and

references therein). For general distributions, such polynomial sets can be obtained by numerical

methods (see [111] and references therein). Furthermore, by a tensor product representation, we

can use the one-dimensional polynomial Hi(ξ) to construct a complete orthonormal basis Hα(ξ)’s

of L2 (Ω) as follows

Hα(ξ) =

Np∏
i=1

Hαi(ξi), α ∈ J∞Np ,

where α is a multi-index, i.e., a row vector of non-negative integers,

α =
(
α1, α2, · · · , αNp

)
αi ∈ N, αi ≥ 0, i = 1, 2, · · · , Np,

and J∞Np is a multi-index set of countable cardinality,

J∞Np =
{
α =

(
α1, α2, · · · , αNp

)
|αi ≥ 0, αi ∈ N

}
\ {0} ,

We have intentionally removed the zero multi-index corresponding to H0(ξ) = 1 since it is as-

sociated with the expectation of the stochastic solution and it is better to deal with it separately

according to our experience. When no ambiguity arises, we simply write the multi-index set J∞Np

as J∞. Clearly, the cardinality of J∞Np is infinite. For the purpose of numerical computations, we

prefer a polynomial set of finite size. There are many choices of truncations, such as the set of
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polynomials whose total orders are at most P , i.e.,

JPNp =

α |α =
(
α1, α2, · · · , αNp

)
, αi ≥ 0, αi ∈ N, |α| =

Np∑
i=1

αi ≤ P

 \ {0} ,
and sparse truncations proposed in Luo’s thesis [77]. Again, we may simply write such truncated

set as J when no ambiguity arises. The cardinality of J, or the number of polynomial chaos basis

functions, is denoted as NP = |J| <∞.

By Cameron-Martin theorem [19], we know that the solution of SPDE (1.1) admits a generalized

Polynomial Chaos expansion (gPCE)

u(x, t, ω) = v̄(x, t) +
∑

α∈J∞
vα(x, t)Hα(ξ(ω)) ≈ v̄(x, t) +

∑
α∈J

vα(x, t)Hα(ξ(ω)). (2.34)

If we write

HJ(ξ) =
(
Hα1(ξ),Hα2(ξ), · · · ,HαNP

(ξ)
)
αi∈J

,

V(x, t) =
(
vα1(x, t), vα2(x, t), · · · , vαNP (x, t)

)
αi∈J

,

both of which are row vectors, the above gPCE can be compactly written in a vector form

ugPC(x, t, ω) = v(x, t, ω) = v̄(x, t) + V(x, t)H(ξ)T . (2.35)

By substituting the above gPCE into eqn. (1.1a), it is easy to get the gPC formulation for SPDE
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(1.1) (see Appendix A for details),

∂v̄

∂t
= E [Lv] , (2.36a)

∂V

∂t
= E

[
L̃vH

]
. (2.36b)

Remark 2.6. Throughout the thesis, we only consider SPDEs where randomness is given in terms

of independent standard Gaussian random variables, i.e., ξi ∼ N (0, 1) and H are a set of Hermite

polynomials. When the distribution of ξi is not Gaussian, the discussions remain almost identical

and the major difference is the set of orthogonal polynomials.

2.3.2.2 gPC Version of DyBO

The Cameron-Martin theorem also implies the stochastic modes Yi(ω, t)’s in the KL expansion (2.5)

can be approximated by the linear combination of polynomials chaos, i.e.,

Yi(ω, t) =
∑
α∈J

Hα(ξ(ω))Aαi(t), i = 1, 2, · · · ,m, (2.37)

or in a matrix form,

Y(ω, t) = H (ξ(ω)) A, (2.38)

where A ∈ RNp×m. The expansion (2.5) now reads

u ≈ ū+ UATHT .

We can derive equations for ū, U and A, instead of ū, U and Y. In other words, the stochastic

modes Y are identified with a matrix A ∈ Rm×m. Substituting eqn. (2.38) into eqn. (2.28c), we
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have

dY

dt
= H

dA

dt
= −HACT +

〈
L̃u, U

〉
Λ−1

U .

Multiply both sides by column vector HT from the left and take expectations,

E
[
HTH

] dA

dt
= −E

[
HTH

]
ACT +

〈
E
[
HT L̃u

]
, U
〉

Λ−1
U .

After using the orthogonality of the polynomial chaos basis, i.e., E
[
HTH

]
= I, we get

dA

dt
= −ACT +

〈
E
[
HT L̃u

]
, U
〉

Λ−1
U .

The gPC version of DyBO formulation for SPDE (1.1), which we call DyBO-gPC, is

∂ū

∂t
= E [Lu] , (2.39a)

∂U

∂t
= −UDT + E

[
L̃uH

]
A, (2.39b)

dA

dt
= −ACT +

〈
E
[
HT L̃u

]
, U
〉

Λ−1
U , (2.39c)

where C(t) and D(t) can be solved from (2.22) with

G∗(u,U,Y) = Λ−1
U

〈
UT , E

[
L̃uY

]〉
= Λ−1

U

〈
UT , E

[
L̃uH

]〉
A. (2.40)

By solving the system (2.39), we have an approximate solution to SPDE (1.1)

uDyBO-gPC = ū+ UATHT ,

or simply uDyBO or u when no ambiguity arises.
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Remark 2.7. In DyBO-gPC formulation, Y ∈ Rm is replaced by an NP -by-m matrix. The stochas-

tic modes Y being orthonormal are translated to the columns of A being orthonormal vectors,

i.e., ATA = I ∈ Rm×m. Note that AAT ∈ RNP×NP in general is not an identity matrix. When

m = NP , AAT = I. However,m� NP throughout the thesis since the SPDE solution is assumed

to have a low-dimensional structure.

2.3.3 gSC Version of DyBO

In our DyBO-gPC method, the stochastic process Yi(ξ(ω), t) is projected on to the gPC basis H

and replaced by gPC coefficients, i.e., Aαi, which can be computed by

Aαi = E [Yi(ω)Hα(ξ(ω))] .

Numerically, the above integral can be evaluated with high accuracy on some sparse grid. In other

words, the stochastic modes Y can also be represented as an ensemble of realizations Y(ωi) where

ξ(ωi)’s are nodes from some sparse grid and associated with certain weight wi. The gSC version of

DyBO formulation, which we call DyBO-gSC, is

∂ū

∂t
(x, t) =

Nr∑
i=1

wiLu(x, t, ωi),

∂U

∂t
(x, t) = −U(x, t)D(t)T +

Nr∑
i=1

wiL̃u(x, t, ωi)Y(ωi, t),

dY

dt
(ωi, t) = −Y(ωi, t)C(t)T +

〈
L̃u(x, t, ωi), U(x, t)

〉
ΛU(t)−1, i = 1, 2, · · · , Nr

where C(t) and D(t) can be solved from (2.22) with

G∗(u,U,Y) = Λ−1
U

〈
UT ,

Nr∑
i=1

wiL̃u(x, t, ωi)Y(ωi, t)

〉
. (2.42)
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Figure 2.1: Illustration of eigenvalue crossing and two strategies, Y-Stage and U-Stage

We defer further discussion and numerical examples until Chapter 7.

2.4 Eigenvalue Crossing

As the system evolves, eigenvalues of different modes in the KL expansion of the SPDE solution

may increase or decrease. Some of them may approach each other at some time, cross and then

separate as illustrated in Fig. 2.1, In the figure, λ1 and λ2 cross each other at t∗1 and λ1 and λ3

cross each other at t∗2. In this case, if C and D continue to be solved from the linear system (2.21)

via (2.22), numerical errors will render the results useless. Here, we propose to freeze U or Y

temporarily for a short time and continue to evolve the system using different equations as derived

below. At the end of this short duration, the solution is recast into the bi-orthogonal form via KL

expansion, which can be achieved efficiently since one of U and Y is still kept orthogonal in this

short duration.
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2.4.1 Detection of Eigenvalue Crossing

In order to apply the above strategy, we have to be able to detect that two eigenvalues may potentially

cross each other in the near future. There are multiple ways to detect such crossing. Here we propose

to monitor the following quantity

τ = min
i 6=j

|λi − λj |
max(λi, λj)

. (2.43)

Once this quantity drops below certain threshold δin
τ ∈ (0, 1), the algorithm freezes U or Y, contin-

ues to evolve the system and monitor this quantity τ . When τ exceeds some pre-specified threshold

δout
τ ∈ (0, 1), the algorithm recasts the solution in the bi-orthogonal form via efficient algorithms

detailed in the next two sub-sections and continues to evolve DyBO system. Since the computation

of eigenvalues involves some non-trivial numerical operations, the quantity τ can be monitored pe-

riodically, i.e., every several time iterations, instead of at each time iteration, in favor of the balance

of computational efficiency and accuracy. Threshold δin
τ and δout

τ may be problem-dependent. In our

numerical experiments, we found δin
τ = 1% and δout

τ = 1% gave accurate results.

2.4.2 Freeze Y or Y-Stage

Suppose at some time t = s, potential eigenvalue crossing is detected and the stochastic modes Y

are frozen for a short duration ∆s, i.e., Y(ω, t) ≡ Y(ω, s) for t ∈ [s, s + ∆s], which we call Y-

stage. Because Y are orthonormal, the solution of SPDE (1.1) admits the following approximation

of truncated expansions

u(x, t, ω) ≈ ū(x, t) +
m∑
i=1

ui(x, t)Yi(ω, s) = ū(x, t) + U(x, t)Y(ω, s)T . (2.44)
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It is easy to derive the new system for this stage,

∂ū

∂t
= E [Lu] , (2.45a)

∂U

∂t
= E

[
L̃uY

]
. (2.45b)

During this stage, Y is unchanged and orthogonal, but not U. The solution is not bi-orthogonal any

more, so eigenvalues cannot be computed via λi = ‖ui‖2L2(D) any more. Next, we derive formula

for eigenvalues in this stage and then show how the solutions are recast into the bi-orthogonal form

at the end of the stage, i.e., t = s+ ∆s.

The covariance function can be computed as

Covu(x, y) = E [(u(x)− ū(x)) (u(y)− ū(y))]

= E
[
U(x)YTYUT (y)

]
= U(x)E

[
YTY

]
UT (y)

= U(x)UT (y),

where t is omitted for simplicity and E
[
YTY

]
= I is used in the second to last line. By some

stable orthogonalization procedures, such as a modified Gram-Schmidt process [44], U(x) can be

written as

U(x) = Q(x)R, (2.46)

where Q(x) = (q1(x), q2(x), · · · , qm(x)), qi(x) ∈ L2 (D) for i = 1, 2, · · · ,m,
〈
QT (x), Q(x)

〉
=

I and R ∈ Rm×m. RRT ∈ Rm×m is a positive definite symmetric matrix and its SVD decomposi-

tion

RRT = WΛRWT , (2.47)
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where W ∈ Rm×m is an orthonormal matrix, i.e., WWT = WTW = I, and ΛR is a diagonal

matrix with positive diagonal entries. The computational cost of W and ΛR is negligible compared

to other parts of the algorithm. The covariance function can be rewritten as

Covu(x, y) = Q(x)RRTQT (y) = Q(x)WΛRWTQT (y).

Now, it is easy to see that the eigenfunctions of covariance function Covu(x, y) are

Ũ(x) = Q(x)WΛ
1
2
R, (2.48)

and eigenvalues are diag (ΛR) because

〈
ŨT , Ũ

〉
=

〈
Λ

1
2
RWTQT , QWΛ

1
2
R

〉
= Λ

1
2
RWT

〈
QT , Q

〉
WΛ

1
2
R

= ΛR,

where we have use the orthogonality of Q and W. To compute Ỹ, we start with the identity

ỸŨT = YUT ,

and multiply row vector Ũ on both sides from the right and take inner product 〈·, ·〉,

Ỹ
〈
ŨT , Ũ

〉
= Y

〈
UT , Ũ

〉
,
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where

〈
ŨT , Ũ

〉
= ΛR,〈

UT , Ũ
〉

=

〈
RTQT (x), Q(x)WΛ

1
2
R

〉
= RTWΛ

1
2
R.

So we have the equation for Ỹ

Ỹ = YRTWΛ
− 1

2
R . (2.49)

Algorithm 2.1 Strategy in Y-Stage
1: Compute τ via eqn. (2.43) at time t = s
2: if τ >= δin

τ then
3: Continue to evolve the system according to (2.28).
4: else
5: Enter Y-Stage by Y(x, t) ≡ Y(x, s)
6: i← 1
7: repeat
8: Continue to evolve the system from t = s+ (i− 1)kYδt to t = s+ ikYδt according to

(2.45).
9: Compute eigenvalues via eqn. (2.47) and τ

10: until τ > δout
τ

11: Recast the solution to bi-orthogonal form via eqn. (2.48) and eqn. (2.49).
12: end if

If a generalized polynomial basis H is adopted to represent Y, we freeze A instead, i.e., A(t) ≡

A(s) and the system (2.45) is replaced by

∂ū

∂t
= E [Lu] , (2.50a)

∂U

∂t
= E

[
L̃uH

]
A, (2.50b)
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where A(t) ≡ A(s). At the exiting point, eqn. (2.49) is replaced by

Ã = ARTWΛ
− 1

2
R . (2.51)

As we can see, the computation of eigenvalues in this stage is not trivial, so we do not want to

compute τ every time iteration. Instead, τ is only evaluated every kY time steps to achieve a

balance between computational efficiency and accuracy. The strategy is summarized in Algorithm

2.1. See the zoom-out figure in Fig. 2.1 for illustration.

2.4.3 Freeze U or U -Stage

Similarly, we consider the strategy of freezing U or U-stage. Suppose at some time t = s, the

spatial modes U are frozen, i.e., U(x, t) ≡ U(x, s) for t ∈ [s, s + ∆s]. Instead of approximation

(2.44), we have

u(x, t, ω) ≈ ū(x, t) +

m∑
i=1

ui(x, s)Yi(ω, t) = ū(x, t) + U(x, s)Y(ω, t)T , (2.52)

which gives the new system for this stage,

∂ū

∂t
= E [Lu] , (2.53a)

dY

dt
=
〈
L̃u, U

〉
Λ−1

U . (2.53b)

During this stage, U is orthogonal, but not Y, so eigenvalues cannot be computed via λi =

‖ui‖2L2(D) any more. We follow a similar procedure to derive eigenvalues and the new bi-orthogonal
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form at the end of the stage. Again, start from the covariance function

Covu(x, y) = E [(u(x)− ū(x)) (u(y)− ū(y))]

= E
[
U(x)YTYUT (y)

]
= U(x)E

[
YTY

]
UT (y)

= U(x)Λ
− 1

2
U Λ

+ 1
2

U E
[
YTY

]
Λ

+ 1
2

U︸ ︷︷ ︸
R

Λ
− 1

2
U UT (y)

= U(x)Λ
− 1

2
U WΛRWTΛ

− 1
2

U UT (y),

where

R = Λ
+ 1

2
U E

[
YTY

]
Λ

+ 1
2

U ,

and its SVD decomposition

R = WΛRWT . (2.54)

It is easy to see that the eigenfunctions of covariance function Covu(x, y) are

Ũ(x) = U(x)Λ
− 1

2
U WΛ

+ 1
2

R , (2.55)
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and eigenvalues are diag (ΛR) because

〈
ŨT , Ũ

〉
=

〈
Λ

+ 1
2

R WTΛ
− 1

2
U UT (x), U(x)Λ

− 1
2

U WΛ
+ 1

2
R

〉
= Λ

+ 1
2

R WTΛ
− 1

2
U

〈
UT (x), U(x)

〉
Λ
− 1

2
U WΛ

+ 1
2

R

= Λ
+ 1

2
R WTΛ

− 1
2

U ΛUΛ
− 1

2
U WΛ

+ 1
2

R

= Λ
+ 1

2
R WTWΛ

+ 1
2

R

= ΛR.

To compute Ỹ, we start with the identity

ỸŨT = YUT ,

and multiply row vector Ũ on both sides from the right and take inner product 〈·, ·〉,

Ỹ
〈
ŨT , Ũ

〉
= Y

〈
UT , Ũ

〉
,

where

〈
ŨT , Ũ

〉
= ΛR,〈

UT , Ũ
〉

=

〈
UT , UΛ

− 1
2

U WΛ
+ 1

2
R

〉
= Λ

+ 1
2

U WΛ
+ 1

2
R .

We have the equation for Ỹ

Ỹ = YΛ
+ 1

2
U WΛ

− 1
2

R . (2.56)
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The algorithm in U-Stage is summarized in Algorithm 2.2. See the zoom-out figure in Fig. 2.1 for

illustration.

Algorithm 2.2 Strategy in U-Stage
1: Compute τ via eqn. (2.43) at time t = s
2: if τ >= δin

τ then
3: Continue to evolve the system according to (2.28).
4: else
5: Enter U-Stage by U(x, t) ≡ U(x, s)
6: i← 1
7: repeat
8: Continue to evolve the system from t = s+ (i− 1)kUδt to t = s+ ikUδt according to

(2.53).
9: Compute eigenvalues via eqn. (2.54) and τ

10: until τ > δout
τ

11: Recast the solution to bi-orthogonal form via eqn. (2.55) and eqn. (2.56).
12: end if

If a generalized polynomial basis H is adopted to represent Y, we can write system (2.55) as

∂ū

∂t
= E [Lu] , (2.57a)

dA

dt
=
〈
E
[
L̃uHT

]
, U
〉

Λ−1
U , (2.57b)

where the last equation comes from substituting Y = HA into the last equation of (2.53), multi-

plying HT on both sides from the left and taking expectations. The definition of matrix R is also

replaced by

R = Λ
+ 1

2
U E

[
ATHTHA

]
Λ

+ 1
2

U = Λ
+ 1

2
U ATAΛ

+ 1
2

U ,

and new Ã at the exiting point is

Ã = AΛ
+ 1

2
U WΛ

− 1
2

R . (2.58)
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2.5 Error Analysis

In this section, we focus on error analysis of DyBO formulation with respect to the original system

(1.1) and consider the evolution of three types of errors,

Type-0 Errors between the true solution u(x, t, ω) and DyBO solution uDyBO = ū+UYT , which

is the error in the usual sense.

Type-J Errors between true gPC coefficients vα and ones computed from DyBO-gPC solution,

i.e.,
∑m

i=1 uiAαi.

Type-KLE Errors between true spatial modes
∑

α∈J vαAαi’s and ones ui’s computed in DyBO-

gPC

When randomness comes into the system through initial conditions only and operator L is linear

and deterministic, the next theorem shows the error of DyBO is associated with the well-posedness

of the original system. Interestingly, the last type of errors shed some lights on the proper strategy to

add new spatial and stochastic modes when necessary, which will be discussed in detail in Sec. 2.6.

2.5.1 Type-0 Errors

Theorem 2.5 shows DyBO formulation is consistent with the original SPDE. For the sake of notation

simplicity, we write u for uDyBO here.

Theorem 2.5. The stochastic solution of system (2.28) satisfies the following modified SPDE

∂u

∂t
= Lu+ em, (2.59)
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where em is the error due to m-term truncation and

em = −ΠY(ΠU(L̃u))

= −
(
L̃u−UΛ−1

U

〈
UT , L̃u

〉)
+ E

[(
L̃u−UΛ−1

U

〈
UT , L̃u

〉)
Y
]

YT . (2.60)

Proof of Consistency. We show consistency by computing directly from eqn. (2.28b) and eqn. (2.28c)

U
dYT

dt
= UDTYT + UGY(u,U,Y)T

= UDTYT + UΛ−1
U

〈
UT , L̃u

〉
−UΛ−1

U

〈
UT , E

[
L̃uY

]〉
YT

= L̃u+ UDTYT −
(
L̃u−UΛ−1

U

〈
UT , L̃u

〉)
−UΛ−1

U

〈
UT , E

[
L̃uY

]〉
YT ,

Y
∂UT

∂t
= YCTUT + YGU(u,U,Y)T

= UCYT + YE
[
L̃uYT

]
−Y

〈
E
[
L̃uYT

]
, U
〉

Λ−1
U UT .

Combining the above two, we have

U
dYT

dt
+ Y

∂UT

∂t
= L̃u+ em,

where

em = −
(
L̃u−UΛ−1

U

〈
UT , L̃u

〉)
+ U

(
DT + C

)
YT − vUΛ−1

U

〈
UT , E

[
L̃uY

]〉
YT

+ YE
[
L̃uYT

]
−Y

〈
E
[
L̃uYT

]
, U
〉

Λ−1
U UT

= −
(
L̃u−UΛ−1

U

〈
UT , L̃u

〉)
+ YE

[
L̃uYT

]
−UΛ−1

U

〈
UT , E

[
L̃uY

]〉
YT

= −
(
L̃u−UΛ−1

U

〈
UT , L̃u

〉)
+ E

[
L̃uY

]
YT − E

[
UΛ−1

U

〈
UT , L̃u

〉
Y
]
YT

= −
(
L̃u−UΛ−1

U

〈
UT , L̃u

〉)
+ E

[(
L̃u−UΛ−1

U

〈
UT , L̃u

〉)
Y
]

YT ,
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where eqn. (2.21c) is used in the first equality. By noticing L̃u = Lu − E [Lu], eqn. (2.59) is

recovered from the last line.

Remark 2.8. According to Theorem 2.3, the bi-orthogonality of U and Y are preserved all the time.

Because both Hilbert space L2 (D) and L2 (Ω) are separable, the spatial modes U and the stochastic

modes Y become a complete set of basis for L2 (D) and L2 (Ω) as m → +∞, respectively, which

implies limm→+∞ em = 0.

Next we consider a special case where the differential operator L is deterministic and linear,

such as Lv = c(x) ∂v∂x , Lv = − ∂
∂xi

(
aij(x) ∂v∂xj

)
where c(x) and a(x) are deterministic and only

functions of spatial coordinates x. Only initial conditions are assumed to be random, i.e., the ran-

domness propagates into the system only through the initial conditions.

Corollary 2.6. Let the differential operatorL be deterministic and linear. The residual in eqn. (2.59)

is zero all the time, i.e.,

em ≡ 0.

Proof. This can be seen by directly computing the truncation error em. First substitute L̃u =

Lu− E [Lu] into eqn. (2.60),

em = −ΠY

(
Lu− E [Lu]−UΛ−1

U

〈
UT , Lu− E [Lu]

〉)
.

Because of the linearity of L, we have Lu = Lū + LUYT where LU = (Lu1,Lu2, · · · ,Lum).
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which gives

em = −ΠY

(
Lū+ LUYT − E

[
Lū+ LUYT

]
−UΛ−1

U

〈
UT , Lu− E [Lu]

〉)
= −ΠY

(
LUYT −UΛ−1

U

〈
UT , LU

〉
YT
)

= −ΠY

((
LU−UΛ−1

U

〈
UT , LU

〉)
YT
)
.

The last line is the orthogonal complementary project, so we see immediately that em = 0.

The above corollary implies that DyBO is exact if the randomness can be expressed in finite-

term KL expansion. The next corollary concerns a slightly different case where the differential

operator L is affine in the sense that Lu = L̊u+ f(x, t, ω) and the differential operator L̊ is linear

and deterministic and f(·, t, ·) ∈ L2 (D × Ω) for all t.

Corollary 2.7. If the differential operator L is affine, i.e., Lu = L̊u+f(x, t, ω), and f is a second-

order stochastic process at each fixed time t, the residual in eqn. (2.60) is given below

em = −ΠYΠU(f).

Proof. Again by directly computing, we have by the linearity of the differential operator L̊

Lu = L̊ū+ L̊UYT + f.
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Simple calculation shows that

L̃u = Lu− E [Lu]

= L̊ū+ L̊UYT + f − L̊ū− E [f ]

= L̊UYT + f − E [f ] .

Substituting into eqn. (2.60), we complete the proof.

Remark 2.9. For this special case, Corollary 2.7 implies that numerical solutions are accurate as

long as the spatial basis U and stochastic basis Y provide good approximations to the external

forcing term f , which is not a surprising result at all.

2.5.2 Type-J Error

Next, we focus on the gPC and DyBO-gPC formulations and consider two types of errors. First,

we consider the errors between true gPC coefficients vα and ones computed from the DyBO-gPC

solution, i.e.,

ε̄ = ū− v̄, (2.61a)

εJ = UAT −V. (2.61b)
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When no ambiguity arises, we simply write ε = εJ. To derive the error evolution equations, we

start with

∂
(
UAT

)
∂t

=
∂U

∂t
AT + U

dAT

dt

= −UDTAT + E
[
L̃uH

]
AAT −UCAT + UΛ−1

U

〈
UT , E

[
L̃uH

]〉
= E

[
L̃uH

]
AAT −U

(
DT + C

)
AT + UΛ−1

U

〈
UT , E

[
L̃uH

]〉
= E

[
L̃uH

]
AAT −UG∗A

T + UΛ−1
U

〈
UT , E

[
L̃uH

]〉
= E

[
L̃uH

]
AAT + UΛ−1

U

〈
UT , E

[
L̃uH

]〉 (
I−AAT

)
,

where eqn. (2.39b) is plugged in the first equality, eqn. (2.21c) and G∗ definition are used in the

third equality. Now, from the gPC formulation (2.36) and the DyBO-gPC formulation (2.39), we

arrive at the evolution equations for Type-J errors,

∂ε̄

∂t
= E [Lu− Lv] , (2.62a)

∂ε

∂t
= E

[
L̃uH

]
AAT − E

[
L̃vH

]
+ UΛ−1

U

〈
UT , E

[
L̃uH

]〉 (
I−AAT

)
. (2.62b)

An interesting observation regarding the affine operator L as defined in Corollary 2.7 is summarized

into the following corollary.

Corollary 2.8. If the operator L is affine as defined in Corollary 2.7, i.e., L = L̊ + f , where

f = E [f ] + FHT . The evolution equations for type-J errors are

∂ε̄

∂t
= L̊ε̄, (2.63a)

∂ε

∂t
= L̊ε+

(
F−UΛ−1

U

〈
UT , F

〉) (
AAT − I

)
. (2.63b)



62

Proof. The corollary can be proved by directly substituting L = L̊+ f into eqn. (2.62b) and using

the linearity of L̊.

Corollary 2.8 implies that, for an affine operator L, type-J errors are introduced when the spatial

modes U fail to represent the external force f accurately and subsequent amplification or diminish-

ing of errors depends on the property of the deterministic linear operator L̊.

2.5.3 Type-KL Error

Before ending this section, we consider another type of errors between the gPC and DyBO-gPC

formulations. Define

ε̄ = ū− v̄, (2.64a)

εKL = U−VA. (2.64b)

When no ambiguity arises, we simply write ε = εKL. Rough speaking, these are errors between

true spatial modes in KL expansions and ones computed from the DyBO-gPC solution.

Remark 2.10. As pointed out in Remark 2.7, AAT 6= I in general when m � NP . Type-J errors

are related to type-KL errors in the following way

εJA =
(
UAT −V

)
A = UATA−VA = εKL,

εKLAT = (U−VA) AT = εJ + V
(
I−AAT

)
.

Clearly, εKLAT = εJ, when m = NP .
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To derive the evolution equations for type-KL errors, we calculate

∂ε

∂t
=
∂U

∂t
− ∂V

∂t
A−V

dA

dt

= −UDT + E
[
L̃uH

]
A− E

[
L̃vH

]
A + VACT −V

〈
E
[
L̃uHT

]
, U
〉

Λ−1
U

=
(
E
[(
L̃u− L̃v

)
H
])

A + UD + VACT −V
〈
E
[
L̃uHT

]
, U
〉

Λ−1
U

=
(
E
[(
L̃u− L̃v

)
H
])

A + εD + VA
(
D + CT

)
−V

〈
E
[
L̃uHT

]
, U
〉

Λ−1
U

=
(
E
[(
L̃u− L̃v

)
H
])

A + εD + V
(
AAT − I

) 〈
E
[
L̃uHT

]
, U
〉

Λ−1
U ,

where eqn. (2.39b) is plugged in the first equality and eqn. (2.21c) is used in the fourth equality.

Therefore, the evolution equations for type-KL errors are

∂ε̄

∂t
= E [Lu− Lv] , (2.65a)

∂ε

∂t
= E

[(
L̃u− L̃v

)
H
]

A + εD + V
(
AAT − I

) 〈
E
[
L̃uHT

]
, U
〉

Λ−1
U . (2.65b)

Similar to Corollary 2.8, we have

Corollary 2.9. If the differential operator L is affine as defined in Corollary 2.7, i.e., L = L̊ + f ,

where f = E [f ] + FHT . The evolution equations for type-KL errors are reduced to

∂ε̄

∂t
= L̊ε̄, (2.66a)

∂ε

∂t
= L̊ε+ εD + V

(
AAT − I

) 〈
FT , U

〉
Λ−1
U . (2.66b)

Proof. The corollary can be proved by directly substituting L = L̊+ f into eqn. (2.65b) and using

the linearity of L̊.
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2.6 Adding or Removing Mode Pairs

So far, we have been assuming the number of spatial and stochastic mode pairs, {ul, Yl}’s, in the

DyBO-gPC formulation is fixed to some integer m, which determines the number of functions U

and the size of matrix A to update at each time iteration. The detailed computational complexity

analysis is deferred to Chapter 4 along with numerical verifications. Certainly, fixing m is not ideal

for practical applications for the consideration of both computational cost and accuracy. For exam-

ple, some spatial and stochastic mode pairs may become negligibly small as the system evolves.

Keeping such pairs in computation not only wastes computational resource and increase computa-

tional time, but may also bring in unexpected numerical instability since small spatial modes may

not be well-resolved on the current spatial and temporal grids. On the other hand, some small pairs

may become important later on. Ignoring them certainly introduces numerical errors. Therefore,

strategies for changing m adaptively and on-the-fly are necessary.

In this section, we propose strategies to remove and add mode pairs on-the-fly, i.e., insert new

equations or drop some equations in the DyBO-gPC formulation (2.39).

2.6.1 Removing Modes

Since E
[
Y 2
i

]
= 1, we only need to check the size of ui(x, t) to evaluate the importance of mode

pair (ui, Yi). The strategy to remove modes is relatively straightforward. At the end of each time

iteration, we compute ‖ui‖ and drop the i-th pair {ui, Yi} if it is below certain threshold value. This

simple strategy is summarized into Algorithm 2.3, where η ∈ (0, 1) is a pre-selected threshold and

λmax = maxi=1,2,··· ,m λi
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Algorithm 2.3 Removing Mode Pairs

1: for i = 1, 2, · · · ,m do
2: Compute λi = ‖ui‖2
3: if λi

λmax
< η then

4: Drop mode pair ui and Yi from (2.39).
5: m← m− 1
6: end if
7: end for

2.6.2 Adding Modes

The situation for adding mode pairs becomes much more complicated. Essentially, we want an

algorithm to know when and what to add without sacrificing too much computational efficiency. A

naive approach would be adding some spatial and stochastic mode pair if the smallest eigenvalue

rises above some threshold, i.e., λmin > ηλmax. An immediate question is what spatial function and

random variable should be used as the initial conditions for the new spatial mode um+1(x, t) and

the stochastic am+1(t) ∈ RNp×1 at some time t = s.

What’s more, the newly added mode pair may remain small and be removed later, which may

happen repeatedly and should be avoided. In other words, we should estimate the growth rate of the

largest unresolved eigenvalue, i.e., dλm+1

dt or
d
√
λm+1

dt and check if it may potentially grow above

the threshold, i.e.,
d
√
λm+1

dt ∆T ≥
√
ηλmax after some finite time interval ∆T . It turns out that these

two questions are related.

The basic idea of the strategy proposed later for adding mode pairs is to start from the same

initial condition, evolve the system by gPC and DyBO-gPC methods, respectively, for a short du-

ration ∆s and use the solution discrepancy at a later time to estimate the growth rate of unresolved

eigenvalues, and also initial conditions for the new spatial and stochastic modes if additions of new

mode pairs are demanded. This heuristic conjecture can be made more rigorous by looking at the

type-KL errors we have discussed in the previous section.
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Suppose at time t = s, the DyBO-gPC solution

u(x, s, ξ) = ū(x, s) + U(x, s)A(s)TH(ξ)T (2.67)

remains a good approximation to the gPC solution, i.e.,

v(x, s, ξ) ≈ u(x, s, ξ). (2.68)

However, as the system continues to evolve for a short time, discrepancy between these two solu-

tions arises and can not be ignored any more. Otherwise, errors will accumulate significantly and

render the DyBO-gPC solution at later time useless. Alternatively, we can add one pair of spatial

mode
√
λm+1(t)ǔm+1(x, t) and stochastic modes H(ξ(ω))am+1(t) to compensate such discrep-

ancy, i.e., at time t = s,

u(x, s, ξ) = ū(x, s) + (U(x, s), um+1(x, s)) (A(s), am+1(s))T H(ξ)T

= ū(x, s) +
(
U(x, s),

√
λm+1(s)ǔm+1(x, s)

)
(A(s), am+1(s))T H(ξ)T , (2.69)

where λm+1 ≈ 0, 〈U(x, s), ǔm+1(x, s)〉 = 0, ‖ǔ(x, s)‖L2(D) = 1, A(s)Tam+1(s) = 0. Both√
λm+1(t)ǔm+1(x, t) and H(ξ(ω))am+1(t) are unknown at this moment t = s and will be de-

rived later. After including the unresolved (m + 1)th mode pair, the type-KL error is given by

eqn. (2.65b). Now let’s estimate both sides at time t = s. From eqn. (2.68), we know that
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V(x, s) = U(x, s)A(s)T , so

ε(x, s) =
(
U(x, s),

√
λm+1(s)ǔm+1(x, s)

)
−U(x, s)A(s)T (A(s), am+1(s))

= (0,
√
λm+1(s)ǔm+1(x, s))

= 0, as λm+1 → 0,

where we have used orthogonality of A(s) and am+1(s) in the first equality. This simply implies

that the second term εD on the right-hand side of eqn. (2.65b) is zero at time t = s. Similar

calculations reveal the third term on the right-hand side is also zero as λm+1 → 0, i.e.,

V(x, s)
(

(A(s), am+1(s)) (A(s), am+1(s))T − I
)

= U(x, s)A(s)T
(

(A(s), am+1(s)) (A(s), am+1(s))T − I
)

= U(x, s)A(s)T
(
A(s)A(s)T + am+1(s)am+1(s)T − I

)
= U(x, s)

(
A(s)T + 0am+1(s)T −A(s)T

)
= 0.

Therefore, only the first term on the right-hand side of eqn. (2.65b) really contributes, which can be

approximated to the first order accuracy O(∆s) as follows,

E
[
L̃v(x, s, ξ)H

]
= E

[
v(x, s+ ∆s, ξ)− v(x, s, ξ)

∆s
H

]
,

E
[
L̃u(x, s, ξ)H

]
= E

[
u(x, s+ ∆s, ξ)− u(x, s, ξ)

∆s
H

]
.
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Because u|t=s → v|t=s as λm+1 → 0,

E
[(
L̃u− L̃v

)
H
]

(A, am+1)
∣∣∣
t=s
≈ E

[
u(x, s+ ∆s, ξ)− v(x, s+ ∆s, ξ)

∆s
H

]
(A(s), am+1(s)) .

The last component of the above equality is

E
[(
L̃u− L̃v

)
H
]
am+1

∣∣∣
t=s

= E
[
u(x, s+ ∆s, ξ)− v(x, s+ ∆s, ξ)

∆s
H

]
am+1(s) + O(∆s).

(2.70)

Now we calculate the last component on the left hand side of eqn. (2.65b), i.e., ∂εm+1

∂t (x, s, ξ). As

λm+1 → 0, we have

∂εm+1

∂t

∣∣∣∣
t=s

=
∂
(√

λm+1ǔm+1

)
∂t

∣∣∣∣∣∣
t=s

=
d
√
λm+1

dt
ǔm+1

∣∣∣∣∣
t=s

+
√
λm+1

∂ǔm+1

∂t

∣∣∣∣
t=s

=
d
√
λm+1

dt
(s)ǔm+1(x, s).

Combining the above discussion, we have the following equality from eqn. (2.65),

d
√
λm+1

dt
(s)ǔm+1(x, s) = E

[
u(x, s+ ∆s, ξ)− v(x, s+ ∆s, ξ)

∆s
H

]
am+1(s). (2.71)

Now consider the KL expansion of the solution discrepancy at time t = s+ ∆s, i.e.,

∆u(x, s+ ∆s, ξ) = u(x, s+ ∆s, ξ)− v(x, s+ ∆s, ξ) =
√
θ1w1(x)bT1 H + · · · , (2.72)

where θ1, w1(x) and Hb1 are the largest eigenvalue, normalized spatial and stochastic modes, re-

spectively. The above equality implies that the growth rate of the largest unresolved eigenvalue
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t t+ ∆T t+ 2∆T t+ 3∆T
Time

s = t+ ∆T s+ ∆s

Addition of new mode pairs

Removal of i’th pair
λi
λmax

< η

uDyBO

uDyBO

uDyBO

uDyBO

ugPC

No Removal

∆u ≈
√
θ1w1(x)bT1H

Figure 2.2: Illustration of strategies of adding and removing mode pairs

λm+1 can be estimated from the largest eigenvalue of ∆u. What’s more, a sensible choice of initial

conditions for the newly added mode pair um+1(x, s) and am+1(s) would be the largest spatial and

stochastic mode of ∆u(x, s+ ∆s, ξ), i.e.,
√
θ1w1(x) and Hb1. This strategy involves computation

of gPC solutions for a short time ∆s, which can be expensive. Instead of invoking such strategy

every time step, we can instead only invoke such procedure every duration ∆T , ∆T � ∆s.

The above discussion is summarized into Algorithm 2.4. See Fig. 2.2 for illustrations.

Remark 2.11. Similar strategies of removing and adding spatial and stochastic mode pairs may be

developed for DyBO-gSC and DyBO-MC.

Remark 2.12. Algorithm 2.4 can be generalized to add more than one pair of spatial and stochastic

modes at a time.

Remark 2.13. The new spatial mode um+1 and new stochastic mode Ham+11(t) may not be per-

fectly orthogonal to other modes U(x, t) and HA at time t = s. Due to Remark 2.5 in Sec. 2.2, it

will become so after several time iterations.
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Algorithm 2.4 Adding Mode Pairs

1: if λmin < ηλmax then
2: Continue without adding mode pairs
3: end if
4: Evolve DyBO system (2.39) from t = s to t = s+ ∆s with the initial condition

u(x, s, ξ) = ū(s) + U(x, s)A(s)TH(ξ)

5: Evolve gPC system (2.36) from t = s to t = s+ ∆s with the same initial condition

v(x, s, ξ) = ū(s) + U(x, s)A(s)TH(ξ)

6: Compute the largest spatial and stochastic mode pair
{√

θ1w1(x), b1
}

in the KLE of solution
difference ∆u(x, t, ξ) at time t = s+ ∆s, i.e., eqn. (2.72).

7: Estimate the growth rate of the largest unresolved eigenvalue

d
√
λm+1

dt
(s) ≈

√
θ1

∆s

8: if d
√
λm+1

dt <
√
ηλmax
∆T then

9: Continue without adding mode pairs
10: else
11: m← m+ 1
12: Compute λm+1 by extrapolation from several smallest eigenvalues, i.e.,

λm−q, λm−q+1, · · · , λm.
13: Add a new spatial mode um+1(x, s) =

√
λm+1w1(x).

14: Add a new stochastic mode am+1(s) = b1.
15: end if
16: Continue to evolve DyBO system (2.28).
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2.7 Overall DyBO-gPC Algorithm

2.7.1 Initializations

Discussions in the previous sections mainly concern updates of spatial and stochastic modes as

the system evolves. However, we still need to provide initial conditions for such updates to start.

When randomness only comes into the system through the stochastic differential operator L, e.g.,

stochastic forcing, the initial condition u(x, 0, ω) is deterministic and the spatial and stochastic

modes, U(x, 0) and HA(0) in the DyBO-gPC formulation are not well defined. A similar situation

arises when the randomness is only present along the spatial domain boundary ∂D and propagates

into the interior.

To rectify such situations and improve numerical stability, we solve SPDE (1.1) by the gPC

formulation (2.36) for a short time duration ∆T0, compute the KL expansion of v(x,∆T0, ω) as

described in Sec. 2.4.2 and truncate it after certain threshold, i.e.,

v(x,∆T0, ξ) ≈ v̄(x,∆T0) +
m∑
i=1

√
λiv̌i(x,∆T0)bi(∆T0)TH(ξ)T ,

where λi’s are arranged in descending order and m is chosen such that λmλ1 < η. The initial condi-

tions for DyBO-gPC formulation are

ū(x,∆T0) = v̄(x,∆T0), (2.73a)

U(x,∆T0) =
(√

λ1v̌1(x,∆T0),
√
λ2v̌2(x,∆T0), · · · ,

√
λmv̌m(x,∆T0)

)
, (2.73b)

A(∆T0) = (b1(∆T0), b2(∆T0), · · · , bm(∆T0)) . (2.73c)

That is to say, we start the numerical simulation of the DyBO-gPC system (2.39) at time t = ∆T0
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instead t = 0.

2.7.2 DyBO-gPC Algorithm

In addition to the finite truncation of KL expansion, spatial and temporal discretizations also con-

tribute to numerical errors. Since the primary interests of this thesis are to investigate the possibility

of utilizing the low-dimensional structure of the system and solving the SPDE efficiently, we as-

sume periodic boundary conditions throughout the thesis, and apply a pseudo-spectral method [16]

for spatial discretization and fourth-order Runge-Kutta method for temporal integration. In this way,

errors due to spatial and temporal discretizations are considered to be much smaller than those due

to finite truncation of expansions. An additional benefit of using a spectral method is that all the

numerical computations of inner products 〈·, ·〉 have spectral accuracy [94].

Now we are ready to present the overall algorithm in the following pseudo code.

Algorithm 2.5 Overall DyBO-gPC Algorithm
1: Solve gPC formulation (2.36) up to time t = ∆T0.
2: Compute initial conditions (2.73) for DyBO-gPC method as described in Sec. 2.7.1.
3: t← ∆T0

4: while t < T do
5: Evolve DyBO-gPC system (2.39) for duration ∆T0, where Algorithm 2.1 of Y-Stage or

Algorithm 2.2 U-Stage is invoked every time step to check eigenvalue crossing.
6: Invoke Algorithm 2.3 to remove small mode pairs if any.
7: if No mode pair are removed then
8: Invoke Algorithm 2.4 to add unresolved mode pairs if necessary.
9: end if

10: t← t+ ∆T
11: end while
12: Compute various statistical quantities, such as mean, variance and high-order moments.
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Chapter 3

Applications to Spatially
One-dimensional SPDEs

While Chapter 2 highlights the theoretical aspects of DyBO method, this chapter demonstrates its

success by several numerical examples of increasing difficulties, each of which emphasizes and ver-

ifies some of analytical results in the previous chapter. All of the numerical examples in this chapter

are spatially one-dimensional, i.e., d = 1. In Sec. 3.1, SPDE driven purely by stochastic forces

are considered, which can be considered the simplest situation. Corollary 2.6 from error analysis

of DyBO is numerically verified in Sec. 3.2 by considering a transport equation with deterministic

velocity and random initial conditions. In the last section, we consider Burgers’ equation driven

by stochastic force as an example of a nonlinear PDE driven by stochastic forces, where the con-

vergence of the DyBO method with respect to the number of mode pairs, m, and the effectiveness

of proposed strategies for adding and removing mode pairs are our primary focus. More involved

numerical examples, such as spatially two-dimensional SPDE and/or a system of SPDEs, will be

considered in Chapter 4 and Chapter 6.

Remark 3.1. The arrangement of sections in this chapter is not by accident, but actually reflects how

our DyBO method along with its numerical algorithm was developed in the course of PhD study. At

the very beginning, we did not consider eigenvalues crossing and were immediately forced to do so

once we applied it to the first numerical example in Sec. 3.1. When we considered Burgers’ equation
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driven by stochastic forces, we were once again forced to consider some strategies for adding and

removing mode pairs from the DyBO system. Surprisingly, the simplest numerical example Sec. 3.1

again guides our development of such strategies.

3.1 SPDE Purely Driven by Stochastic Force

To investigate numerically the proposed DyBO-gPC algorithms, it is ideal to have some SPDE

problems whose solutions and their KL expansions are known exactly and can be controlled easily,

so critical phenomena which may arise in more involved numerical simulations, such as eigenvalues

crossing, can be thoroughly examined in such controlled environments first. However, it is not a

trivial task to obtain such SPDE problems which satisfy conditions mentioned above. In this section,

we consider a simple case, SPDE driven purely by stochastic force f , i.e., ∂u∂t = Lu = f(x, t, ω),

whose solution can be obtained by direct integration u(x, t, ω) = u(x, 0, ω) +
∫ t

0 f(x, s, ω) ds or

f can be obtained by differentiating directly the exact solution u. Specifically, in this section, we

consider SPDE

∂u

∂t
= Lu = f(x, t, ξ(ω)), x ∈ D = [0, 1], t ∈ [0, T ], (3.1)

where ξ =
(
ξ1, ξ2, · · · , ξNp

)
are independent standard Gaussian random variables, i.e., ξi ∼

N (0, 1) and the stochastic force f will be given by differentiating the exact solution. The exact

solution is constructed as follows

u(x, t, ξ) = v̄(x, t) + V(x, t)ZT (ξ, t), (3.2)

V(x, t) = V̊(x)WV(t)Λ
1
2
V(t),

Z(ξ, t) = Z̊(ξ)WZ(t),
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where V̊(x) = (̊v1(x), · · · , v̊m(x)) with 〈̊vi(x), v̊j(x)〉 = δij and Z̊(ξ) =
(
Z̊1(ξ), · · · , Z̊m(ξ)

)
with E

[
Z̊iZ̊j

]
= δij for i, j = 1, 2, · · · ,m. WV(t) and WZ(t) arem-by-m orthonormal matrices,

and Λ
1
2
V(t) is a diagonal matrix.

Clearly, the exact solution u is intentionally given in the form of KL expansion which has only

finite terms and the diagonal entries of matrix ΛV(t) consist of eigenvalues. By carefully choosing

the values of eigenvalues, we can mimic various difficulties which may arise in more involved

situations and devise corresponding strategies. Thus, the stochastic forcing term on the right-hand

side of eqn. (3.1) can be obtained by differentiating the exact solution, i.e.,

Lu = f =
∂v̄

∂t
+
∂V

∂t
ZT + V

dZT

dt
, (3.3)

∂V

∂t
= V̊

 dWV

dt
Λ

1
2
V + WV

dΛ
1
2
V

dt

 ,

dZ

dt
= Z̊

dWZ

dt
.

The initial condition of SPDE (3.1) can be obtained by simply setting t = 0 in eqn. (3.2). Now we

are ready to derive the DyBO-gPC formulation for SPDE (3.1). Simple calculations give

E
[
L̃uH

]
=
∂V

∂t
E
[
ZTH

]
+ VE

[
dZT

dt
H

]
=
∂V

∂t
WT

ZE
[
Z̊TH

]
+ V

dWT
Z

dt
E
[
Z̊TH

]
=

(
∂V

∂t
WT

Z + V
dWT

Z

dt

)
E
[
Z̊TH

]
,

〈
E
[
HT L̃u

]
, U
〉

= E
[
HT Z̊

]〈
WZ

∂VT

∂t
+

dWZ

dt
VT , U

〉
.

By plugging the above equalities into DyBO-gPC system (2.39), we arrive at the DyBO-gPC for-
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mulation for SPDE (3.1)

∂ū

∂t
=
∂v̄

∂t
, (3.4a)

∂U

∂t
= −UDT +

(
∂V

∂t
WT

Z + V
dWT

Z

dt

)
E
[
Z̊TH

]
A, (3.4b)

dA

dt
= −ACT + E

[
HT Z̊

]〈
WZ

∂VT

∂t
+

dWZ

dt
VT , U

〉
Λ−1

U , (3.4c)

and

G∗ (u,U,A) = Λ−1
U

〈
U, ∂V

∂t
WT

Z + V
dWT

Z

dt

〉
E
[
Z̊TH

]
A.

The initial conditions are simply

ū(x, 0) = v̄(x, 0),

U(x, 0) = V(x, 0),

A(0) = E
[
HTZ(ξ, 0)

]
= E

[
HT Z̊

]
WZ(0).

In the event of eigenvalue crossing, we have the Y-stage system from (2.50),

∂ū

∂t
=
∂v̄

∂t
, (3.5a)

∂U

∂t
=

(
∂V

∂t
WT

Z + V
dWT

Z

dt

)
E
[
Z̊TH

]
A, (3.5b)

or the U-stage from system (2.57),

∂ū

∂t
=
∂v̄

∂t
, (3.6a)

dA

dt
= E

[
HT Z̊

]〈
WZ

∂VT

∂t
+

dWZ

dt
VT , U

〉
Λ−1

U . (3.6b)
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In the numerical examples presented in this section, we consider a small system m = 3 and use

the following settings,

V̊(x) =
(√

2 sin(πx),
√

2 sin(5πx),
√

2 sin(9πx)
)
,

Z̊(x) = (H1(ξ1),H2(ξ1),H3(ξ1)) ,

WV(t) = PVOV(t)PT
V,

WZ(t) = PZOZ(t)PT
Z,

OV(t) =


cos bVt − sin bVt 0

sin bVt cos bVt 0

0 0 1

 , bV = 2.0,

OZ(t) =


cos bZt − sin bZt 0

sin bZt cos bZt 0

0 0 1

 , bZ = 2.0,

H (ξ) = (H1(ξ1),H2(ξ1), · · · ,H5(ξ1)) ,

where PV and PZ are two orthonormal matrices generated randomly,

PV =


1.49785196602× 10−02 9.75211144424× 10−01 2.20768810614× 10−01

9.97706302488× 10−01 0 −6.76914616037× 10−02

6.60134677383× 10−02 −2.21276351631× 10−01 9.72974305049× 10−01

 ,

PZ =


−9.53187324001× 10−01 −3.02188804978× 10−01 1.07634338851× 10−02

1.12913248587× 10−02 0 9.99936250959× 10−01

3.02169540731× 10−01 −9.53248092652× 10−01 −3.41211196568× 10−03

 .
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3.1.1 Eigenvalue Crossing

Eigenvalues in a KL expansion of an SPDE solution may increase or decrease as time goes. Some

of them may approach each other at some time, cross and then separate later. When two eigenvalues

are close or equal to each other, numerical instability may arise in solving matrices C and D via

(2.22). In Sec. 2.4.1, we have proposed a U-stage by freezing the spatial modes U or a Y-stage by

freezing the stochastic modes Y temporarily to solve this issue. Here, we demonstrate the success

of incorporation of such strategies into the overall DyBO algorithm. To this end, we choose T = 1.2

and eigenvalues

Λ
1
2
V = diag (sin 2πt+ 2, cos 2πt+ 1.5, 1.8) ,

where eigenvalues cross each other at t ≈ 0.0675, 0.2015, 0.5320, 0.7985, 0.9650, 1.0675 for t ∈

[0, T ]. See Fig. 3.3.

In this numerical example, the time step δt = 1.0 × 10−3 and kU = 20 in the U-stage , i.e.,

the exiting condition is checked every 20 time iterations when the system is in the U-stage. Mean

E [u], Standard Deviation (STD)
√

Var (u) and the three spatial modes in KLE at time t = T are

shown in Fig. 3.1 and Fig. 3.2, respectively. Clearly, the results given by DyBO almost perfectly

match the exact ones with L2 relative errors of mean and STD below 10−10 since only spatial and

temporal discretizations contribute to numerical errors in this example.

In Fig. 3.3, eigenvalues are plotted as functions of time and zooming-outs are given at t =

0.0675 and t = 0.7985 to show eigenvalue crossings and invoking of the U-stage Algorithm 2.2.

We also check the deviation of computed spatial and stochastic modes from bi-orthogonality

by monitoring 〈ui, uj〉
‖ui‖L2(D)‖uj‖L2(D)

for spatial modes and E [YiYj ] for stochastic modes, which are

shown in Fig. 3.4. We observe that the deviation of spatial modes from orthogonality is very small

(< 10−10) throughout the computation. Large deviations of stochastic modes from orthogonality
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Figure 3.1: Mean and STD computed by DyBO at time t = 1.2
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Figure 3.2: Spatial modes in KL expansion of SPDE solution computed by DyBO at time t = 1.2

only occur when eigenvalues cross each other since the DyBO algorithm is not designed to preserve

the orthogonality of Y during the U-stage and orthogonality is only restored once the algorithm

exits from the U-stage. Instead, we also apply the Y-stage to overcome eigenvalue-crossing issues

in this numerical examples and get similar results.

3.1.2 Adding and Removing Modes

Now we consider a slightly different numerical example for adding or removing mode pairs from

the DyBO system (3.4).

Λ
1
2
V = diag (3.0001 + sin(2πt), 2.0001 + sin(2πt), 1.0001 + sin(2πt)) ,

where λ3 becomes very small ∼ 10−8 near t = 0.25. See Fig. 3.5. When Algorithm 2.4 for adding

mode pairs is invoked, it is crucial to know the change rate of the largest unresolved eigenvalue and
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Figure 3.4: Bi-orthogonality of spatial and stochastic modes. Orthogonality of U is preserved
throughout the computation while stochastic modes deviate from orthogonality only at eigenvalue
crossing
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Figure 3.5: Eigenvalues. Eigenvalues are plotted as function of time. λ3 becomes small near
t = 0.25

avoid adding such mode pair if it continues to be small in the near future ∆T . This is accomplished,

as described in Sec. 2.6.2, by computing solutions by DyBO and gPC for a short time ∆s and

estimating the change rate
d
√
λm+1

dt from the difference.

In Fig. 3.6, we verify the accuracy of such estimates, where the third mode pair is intentionally

dropped at t = 0.2 when it becomes small (∼ 10−3) and never put back in the remaining com-

putation. The solid line is the exact change rate of the largest unresolved eigenvalue, i.e., d
√
λ3

dt ,

while the dotted line is the estimate. In computations, we actually use different short time duration

∆s = 8δt, 4δt, 2δt, δt to verify the convergence of such estimate. However, all of these estimates

cluster together and cannot be distinguished from the figure. As we can see from Fig. 3.6, such

estimates are very accurate when the largest unresolved eigenvalue is indeed small and become less

accurate when the largest unresolved eigenvalue is not so small compared to resolved ones.

In Fig. 3.7, we consider the effect of invoking frequency of Algorithm 2.4, i.e., 1
∆T . If no

mode pair is added, the relative error of STD at t = 1.0 is about 26%. When Algorithm 2.4 is

incorporated, the error can be brought down to ≤ 1.5% depending on the invoking frequency. The

threshold η in Algorithm 2.4 is taken to be 10−4 and
√
η = 10−2, so we see such difference is

relatively marginal. We will continue to demonstrate the effectiveness of Algorithm 2.4 in more

involved numerical examples in the rest of the thesis.
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Figure 3.6: Change rate of the largest unresolved eigenvalue d
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dt . Solid line is given by the exact
solution, while the dotted line are computed as described in Sec. 2.6.2
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Figure 3.7: L2 relative errors of STD given by DyBO for different invoking frequency of Algorithm
2.4 for adding or removing mode pairs

3.2 Linear Deterministic Differential Operators with Random Initial

Conditions

In this section, we consider a linear PDE with random initial conditions, i.e., differential operator L

is deterministic and linear. For simplicity, we assume periodic boundary conditions.

∂u

∂t
= Lu, x ∈ [0, 1], t ∈ [0, 0.4], (3.7a)

u(0, t, ξ) = u(1, t, ξ), (3.7b)

u(x, 0, ξ) = ů(x, ξ), (3.7c)

where ξ = (ξ1, ξ2, · · · , ξNP ) are independent standard Gaussian random variables.
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Consider the gPC expansion of solution u = v̄ + VHT . From eqn. (2.36), it is easy to get the

gPC formulation of this SPDE,

∂v̄

∂t
= Lv̄, (3.8a)

∂V

∂t
= LV, (3.8b)

where initial conditions v̄(x, 0) = E [̊u] and V(x, 0) = E [̊u(x)H]. Clearly, gPC formulation (3.8)

is linear and provides the exact solution to the original SPDE (3.7) if the gPC expansion of initial

condition is exact, i.e., ů = E [̊u] + E [̊uH] HT .

Now consider the KL expansion of solution u = ū+UYT = ū+UATHT . Simple calculations

give

Lu = Lū+ LUATHT ,

E [Lu] = Lū,

L̃u = LUATHT ,

E
[
L̃uH

]
= LUAT .

From eqn. (2.39), we have the DyBO-gPC formulation

∂ū

∂t
= Lū, (3.9a)

∂U

∂t
= −UDT + LU, (3.9b)

dA

dt
= −ACT + A

〈
LUT , U

〉
Λ−1
U , (3.9c)
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where C and D can be computed via eqn. (2.22) from

G∗ = Λ−1
U

〈
UT , LU

〉
.

If we compare the DyBO formulation (3.9) and the gPC formulation (3.8) for the linear SPDE

(3.7), an interesting observation arises immediately. Although the original SPDE is linear and the

gPC formulation remains linear, the DyBO formulation is clearly not linear. However, this is not

a surprise because KL expansion is not a linear procedure, i.e., we cannot simply add spatial and

stochastic modes of two stochastic processes to get the KL expansion of the sum of these two

stochastic processes. On the other hand, the gPC expansion is indeed a linear procedure. As we

argue in Sec. 2.5, our DyBO formulation essentially tracks the KL expansion of the exact solution.

Therefore, the nonlinearity of KLE must be naturally built into the DyBO formulation to enable

such tracking.

Corollary 2.6 implies that the solution given by the DyBO formulation is exact if the initial

condition ů can be expressed exactly by a finite-term KL expansion. To verify this numerically, we

consider a non-trivial transport equation, i.e., L = − sin(2π(x+ 2t)) ∂
∂x and the initial condition is

a functional of three standard Gaussian random variables, i.e., Np = 3

ů(x, ξ) = cos(2πx) +

(
sin(2πx),

1

2
sin(4πx),

1

3
sin(6πx)

)
ÅTHT

J ,

where J =
{
α |α ∈ J4

3, α3 ≤ 3
}
\ {0}. Matrix Å is generated randomly and its columns ai’s are

orthogonal to each other and have unit length.

With time step δt = 1.0× 10−3 and spatial grid size δx = 1/128, the spatial modes computed

by DyBO match perfectly the exact ones given by gPC as shown in Fig. 3.8. In Fig. 3.9, the L2

relative error of STD is plotted as a function of time t and remains very small (≤ 10−8). To confirm
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Figure 3.8: Spatial modes in KL expansion of SPDE solution computed by DyBO at time t = 0.4
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Figure 3.9: L2 relative errors of STD computed by DyBO with different spatial and temporal grid
sizes. The horizontal axis is time t

such errors are introduced mainly by spatial and temporal discretizations, we use another two sets

of finer grid sizes, δt = 0.5 × 10−3, δx = 1/256, and, δt = 0.25 × 10−3, δx = 1/512 and repeat

the computations. The STD error drops significantly since we use spectral methods and fourth order

RK method, which essentially verifies numerically Corollary 2.6.

3.3 Burgers’ Equation Driven by Stochastic Forces

Having demonstrated the success of DyBO-gPC method for relatively simple SPDEs, we should

move on to nonlinear SPDEs. Stochastic Burgers equations immediately catch our attention not

only because many successful numerical schemes have used deterministic Burgers equations as a

benchmark, but also because of the rich structures stemming out of the interaction between nonlin-

earity and randomness in stochastic Burger equations and their applications in statistical mechanics,

such as interfacial dynamics and directed polymers in random media, and in the context of turbu-

lence. For more discussion regarding the stochastic Burgers equations and their applications, please
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see [13, 81, 55, 77, 63, 9, 31, 30, 22, 61, 91, 15] and the reference therein.

Consider a one-dimensional Burgers’ equation driven by zero-mean stochastic force f(x, t, ξ(ω)),

∂u

∂t
= Lu = L̊u+ f = −u∂u

∂x
+ ν

∂2u

∂x2
+ f, x ∈ [0, 1], t ∈ [0, T ], (3.10a)

u(x, 0, ξ) = ů(x), (3.10b)

u(0, t, ξ) = u(1, t, ξ), (3.10c)

where the initial condition is deterministic and the boundary condition is periodic. Here, we

call L̊u = −u∂u∂x + ν ∂
2u
∂x2

the deterministic Burgers’ differential operator or Burgers’ operator

in short. To ensure the stochastic solution does not blow up in a finite time, we assume that

f(x, t, ξ) ∈ L2 (D × Ω) at any fixed time t and the stochastic force admits a finite gPC expan-

sion, i.e., f(x, t, ξ) = F(x, t)H(ξ)T . where row vector F = (Fα)α∈J for some multi-index set J

and |J| = NP .

Remark 3.2. When Burgers’ equation is driven by stochastic processes, e.g., Brownian motions, the

above formulation still provides a good approximate model. The exact form of stochastic force f

can be obtained by choosing a certain orthonormal basis on L2 ([0, T ]) and projecting the Brownian

path onto such a basis. See [55, 77, 32] or the below numerical examples for details.

3.3.1 gPC Formulation for Stochastic Burgers’ Equation

We first derive the gPC formulation of (3.10). In the thesis by Dr. Wuan Luo [77], the gPC for-

mulation of Burgers’ equation driven by Brownian motion has been developed. He did not use

vector/matrix notation and gave the gPC formulation in terms of uα. Here, we repeat the derivation,

but use the vector/matrix/tensor notation introduced earlier or in the course of the derivation. Com-
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paring the two approaches, ours not only simplifies the derivations, but also more clearly reveals the

physical structure of the problem. Similar benefits carry over to numerical implementations.

Consider the gPC expansion of solution v = v̄ + VHT . Simple calculations give

Lv = −
(
v̄ + VHT

)(∂v̄
∂x

+
∂V

∂x
HT

)
+ ν

(
∂2v̄

∂x2
+
∂2V

∂x2
HT

)
+ FHT

= −v̄ ∂v̄
∂x
− v̄ ∂V

∂x
HT − ∂v̄

∂x
VHT −VHTH

∂VT

∂x
+ ν

∂2v̄

∂x2
+ ν

∂2V

∂x2
HT + FHT

= L̊v̄ +

(
ν
∂2V

∂x2
− ∂ (v̄V)

∂x

)
HT + FHT −VHTH

∂VT

∂x
.

where ∂V
∂x and ∂2V

∂x2
are understood as row vectors

(
∂vα
∂x

)
α∈J and

(
∂2vα
∂x2

)
α∈J

, respectively. By using

E [H] = 0 and E
[
HTH

]
= I, we have

E [Lv] = L̊v̄ −V
∂VT

∂x
,

L̃v =

(
ν
∂2V

∂x2
− ∂ (v̄V)

∂x

)
HT + FHT + V

∂VT

∂x
−VHTH

∂VT

∂x
,

and

E
[
L̃vH

]
=

(
ν
∂2V

∂x2
− ∂ (v̄V)

∂x

)
− E

[
VHTH

∂VT

∂x
H

]
+ F

=

(
ν
∂2V

∂x2
− ∂ (v̄V)

∂x

)
−
(
vα
∂vβ
∂x

E [HαHβHγ ]

)
1γ

+ F

=

(
ν
∂2V

∂x2
− ∂ (v̄V)

∂x

)
−
(
vα
∂vβ
∂x

T
(H)
αβγ

)
1γ

+ F,

where we have used the Einstein summation convention and tensor T(H) to simplify notations.

Here (·)1γ is used to emphasize that it is a row vector. In the last equality, T(H) is a third-order
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NP -by-NP -by-NP tensor

T
(H)
αβγ = E [HαHβHγ ] , α,β,γ ∈ J,

which only depends on the set of orthonormal polynomials and the multi-index set J, and can be

computed ahead. Clearly, T(H) is symmetric with respect to all of three indices, i.e., T(H)
αβγ =

T
(H)
perm(αβγ) for ∀α,β,γ ∈ J, where perm (αβγ) is any permutation of multi-indices α,β,γ.

From eqn. (2.36) and the above calculations, we arrive at the gPC formulation for stochastic

Burgers equation (3.10a),

∂v̄

∂t
= L̊v̄ −V

∂VT

∂x
, (3.11a)

∂V

∂t
=

(
ν
∂2V

∂x2
− ∂ (v̄V)

∂x

)
−
(
vα
∂vβ
∂x

T
(H)
αβγ

)
1γ

+ F. (3.11b)

From the above derivation of the gPC formulation, it is easy to see that the usage of vector and

tensor notations not only greatly reduces the complexity of the derivation, but also clearly reveals

the structure of the gPC formulation and its relation to the deterministic Burgers equation. For

example, the mean flow v̄ is still driven by the deterministic Burgers’ differential operator L̊ and

exchanges energy with stochastic flows V through the term −V ∂VT

∂x . The stochastic flows V are

convected by the mean flow through term −∂(v̄V)
∂x , dissipate through term ν ∂

2V
∂x2

and interact with

each others through −
(
vα

∂vβ
∂x T

(H)
αβγ

)
1γ

.

What’s more, the usage of vector notation also enables fast, reliable and efficient numerical

implementations. Nowadays, there are plenty of reliable and efficient software packages or libraries

available in various computer languages for all kinds of numerical tasks ranging from basic vector-

matrix multiplications to sophisticated Finite Element Methods (FEM). Instead of writing numerical

programs from scratch, developing new algorithms based on the existing reliable packages has
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proven to be an efficient and cost-effective way. In our case, the usage of vector notation enables us

to write codes in matlab in a way that is very close to native mathematical expressions. For object-

orientated programming languages, such as C++, Java, and C#, similar effects can be achieved if

good packages for basic numerical tasks are adopted, which in turn reduces developing time and

maintenance burdens.

Similar benefits for DyBO methods also stem out of the usage of the vector and tensor notations

as we can see from the next section.

3.3.2 DyBO-gPC Formulation for Stochastic Burgers’ Equation

Now consider the m-term truncated KL expansion of the stochastic Burgers equation solution u =

ū+ UYT = ū+ UATHT . Again, simple calculations give

Lu = −
(
ū+ UYT

)(∂ū
∂x

+
∂U

∂x
YT

)
+ ν

(
∂2ū

∂x2
+
∂2U

∂x2
YT

)
+ f

= −ū∂ū
∂x
− ū∂U

∂x
YT − ∂ū

∂x
UYT −UYTY

∂UT

∂x
+ ν

∂2ū

∂x2
+ ν

∂2U

∂x2
YT + f

= −ū∂ū
∂x

+ ν
∂2ū

∂x2
+

(
ν
∂2U

∂x2
− ū∂U

∂x
− ∂ū

∂x
U

)
YT −UYTY

∂UT

∂x
+ f

= L̊ū+

(
ν
∂2U

∂x2
− ∂ (ūU)

∂x

)
YT −UYTY

∂UT

∂x
+ f.

So

E [Lu] = L̊ū−U
∂UT

∂x
,
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where we have used the properties of zero-mean stochastic processes Y, i.e., E
[
YTY

]
= I and

E [Y] = 0, and also E [f ] = 0. Similar calculations give

L̃u =

(
ν
∂2U

∂x2
− ∂ (ūU)

∂x

)
YT −UYTY

∂UT

∂x
+ U

∂UT

∂x
+ f,

E
[
L̃uY

]
=

(
ν
∂2U

∂x2
− ∂ (ūU)

∂x

)
+ E [fY]− E

[
UYTY

∂UT

∂x
Y

]
,

〈
L̃u, U

〉
= Y

〈
ν
∂2UT

∂x2
−
∂
(
ūUT

)
∂x

, U

〉
+ 〈f, U〉

+

〈
U
∂UT

∂x
, U

〉
−
〈

UYTY
∂UT

∂x
, U

〉
,

ΛUG∗(u,U,Y) =

〈
UT , ν

∂2U

∂x2
− ∂ (ūU)

∂x

〉
+
〈
UT , E [fY]

〉
−
〈

UT , E
[
UYTY

∂UT

∂x
Y

]〉
,

where the last terms on the right hand sides of the last three equations can be written in component

forms, for i, j, k = 1, 2, · · · ,m,

E
[
UYTY

∂UT

∂x
Y

]
=

(
E
[
uiYiYj

∂uj
∂x

Yk

])
1k

=

(
ui
∂uj
∂x

E [YiYjYk]

)
1k

,〈
UYTY

∂UT

∂x
, U

〉
=

(〈
uiYiYj

∂uj
∂x

, uk

〉)
1k

=

(
YiYj

〈
ui
∂uj
∂x

, uk

〉)
1k

,〈
UT , E

[
UYTY

∂UT

∂x
Y

]〉
=

(〈
ui
∂uj
∂x

, ul

〉
E [YiYjYk]

)
lk

,

where (·)1k and (·)lk emphasize row vector and m-by-m matrix, respectively. We write third-order

m-by-m-by-m tensors

T
(Y)
ijk = E [YiYjYk] ,

T
(U)
ijl =

〈
ui
∂uj
∂x

, ul

〉
i, j, k, l = 1, 2, · · · ,m.
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Clearly, T(Y) is symmetric with respect to all three indices, i.e., T(Y)
ijk = T

(Y)
perm(ijk) for ∀i, j, k ∈

{1, 2, · · · ,m}, where perm (ijk) is any permutation of indices i, j, k, and T(U) is symmetric with

respect to the first and the third indices, i.e., T(U)
ijk = T

(U)
kji for ∀i, k ∈ {1, 2, · · · ,m}. Such sym-

metries can be explored in numerical implementations to achieve further computational reductions.

Using eqn. (2.28), we obtain the DyBO formulation,

∂ū

∂t
= L̊ū−U

∂UT

∂x
, (3.12a)

∂U

∂t
= −UDT +

(
ν
∂2U

∂x2
− ∂ (ūU)

∂x

)
−
(
ui
∂uj
∂x

T
(Y)
ijk

)
1k

+ E [fY] , (3.12b)

dY

dt
= Y

(
−CT +

〈
ν
∂2UT

∂x2
−
∂
(
ūUT

)
∂x

, U

〉
Λ−1

U

)
+
(
T

(U)
iik

)
1k

Λ−1
U

−
(
YiYjT

(U)
ijk

)
1k

Λ−1
U + 〈f, U〉Λ−1

U , (3.12c)

where

ΛUG∗(u,U,Y) =

〈
UT , ν

∂2U

∂x2
− ∂ (ūU)

∂x

〉
−
(
T

(U)
ijl T

(Y)
ijk

)
lk

+
〈
UT , E [fY]

〉
.
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Similarly, we can derive the DyBO-gPC formulation,

L̃u =

(
ν
∂2U

∂x2
− ∂ (ūU)

∂x

)
ATHT

−U
(
ATHTHA− E

[
ATHTHA

]) ∂UT

∂x
+ FHT

=

(
ν
∂2U

∂x2
− ∂ (ūU)

∂x

)
ATHT −UATHTHA

∂UT

∂x
+ U

∂UT

∂x
+ FHT ,

E
[
L̃uH

]
=

(
ν
∂2U

∂x2
− ∂ (ūU)

∂x

)
AT − E

[
UATHTHA

∂UT

∂x
H

]
=

(
ν
∂2U

∂x2
− ∂ (ūU)

∂x

)
AT −

(
ui
∂uj
∂x

AαiAβjT
(H)
αβγ

)
1γ

+ F,

〈
E
[
L̃uHT

]
, U
〉

= A

〈
ν
∂2UT

∂x2
−
∂
(
ūUT

)
∂x

, U

〉
−
(
AαiAβjT

(U)
ijk T

(H)
αβγ

)
γk

+
〈
FT , U

〉
,

where E
[
YTY

]
= ATA = I. From eqn. (2.39), we arrive at the DyBO-gPC formulation of the

stochastic Burgers equation (3.10),

∂ū

∂t
= L̊ū−U

∂UT

∂x
, (3.13a)

∂U

∂t
= −UDT +

(
ν
∂2U

∂x2
− ∂ (ūU)

∂x

)
−
(
ui
∂uj
∂x

AαiAβjAγkT
(H)
αβγ

)
1k

+ FA, (3.13b)

dA

dt
= A

(
−CT +

〈
ν
∂2UT

∂x2
−
∂
(
ūUT

)
∂x

, U

〉
Λ−1

U

)

−
(
AαiAβjT

(U)
ijk T

(H)
αβγ

)
γk

Λ−1
U +

〈
FT , U

〉
Λ−1

U , (3.13c)

where matrices C and D can be solved from the linear system (2.21) with

ΛUG∗(u,U,Y) =

〈
UT , ν

∂2U

∂x2
− ∂ (ūU)

∂x

〉
−
(
T

(U)
ijl AαiAβjAγkT

(H)
αβγ

)
lk

+
〈
UT , F

〉
A.

In the following numerical examples, the fourth-order RK method is used as the numerical in-

tegrator and a pseudo-spectral method is applied to the first two equations, i.e., eqn. (3.13a) and
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eqn. (3.13b), for spatial discretizations. See [94], [44] and [16] for details of these standard numer-

ical methods.

3.3.3 Numerical Examples

By using the Cole-Hopf transformation, one can show that the deterministic Burgers equation can

be transformed to a heat equation. Thus, this model cannot be used to study Navier-Stokes (NS)

turbulence since it lacks an essential property: sensitivity to small perturbations [10, 9]. However,

recent years have witnessed a renewed interests in Burgers turbulence resulting from Burgers models

driven by stochastic forces, especially Brownian motions [77, 55, 112, 52], i.e.,

∂u

∂t
= Lu = L̊u+

dBt
dt

, x ∈ [0, 1], t ∈ [0, T ], (3.14a)

u(x, 0, ξ) = ů(x), (3.14b)

u(0, t, ξ) = u(1, t, ξ). (3.14c)

where the first SPDE is understood in the Itō sense. See [67, 66] and references therein for details

of Itō calculus.

To demonstrate the success of DyBO and Adaptive-DyBO, we consider here a stochastic force

f approximating the Brownian force dBt
dt . The construction of such stochastic force f follows that

in Luo’s paper [55]. We start by selecting a complete orthonormal basis {Mi(t)}∞i=1 ⊂ L2 ([0, 1]),

which induces an orthonormal basis
{
M̃i(t) = 1√

T
Mi(

t
T )
}∞
i=1
⊂ L2 ([0, T ]). To facilitate further

discussion, we write the characteristic function of time interval [0, t), t ∈ [0, 1],

1[0,t)(s) =


1, s < t,

0, s ≥ t,
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and its Fourier series under the orthonormal basis Mi,

1[0,t)(s) =

∞∑
i=1

ci(t)Mi(s),

where ci(t) =
∫ t

0 Mi(s) ds. It is easy to show that the characteristic function of time interval [0, t)

for t ∈ [0, T ] has a Fourier-type expansion

1[0,t)(s) =
∞∑
i=1

c̃i(t)M̃i(s),

where c̃i(t) =
√
Tci(

t
T ). Substituting the above expansion into the obvious Ito integral

Bt =

∫ T

0
1[0,t)(s) dBs,

we have

Bt =
∞∑
i=1

c̃i(t)

∫ T

0
M̃i(s) dBs =

∞∑
i=1

c̃i(t)ξi. (3.15)

where random variables ξi’s are independent standard Gaussian random variables because of isome-

try. For further details, see the thesis by Dr. Luo [77], lecture notes by Evans 1 , the book by Holden

et al. [52] and the reference therein for details. Truncating the above series after Np terms, we get

the stochastic force f used in the following numerical examples,

dBt
dt
≈ f =

Np∑
i=1

1√
T
Mi

(
t

T

)
ξi

=

Np∑
i=1

1√
T
Mi

(
t

T

)
Hei

=

(
1√
T
M1

(
t

T

)
,

1√
T
M2

(
t

T

)
, · · · , 1√

T
MNp

(
t

T

)
, 0, 0, · · · , 0

)
HT , (3.16)

1available at http://math.berkeley.edu/~evans/SDE.course.pdf.

http://math.berkeley.edu/~evans/SDE.course.pdf
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where ei is a multi-index of length Np whose ith entry is 1 and others are zeros.

Remark 3.3. This form of stochastic force f induces an interesting phenomena in the gPC formu-

lation of stochastic Burgers equations: the randomness is first “injected” into the system through

low-order gPC coefficients vei and then spreads into the mean v̄ and other high-order gPC coeffi-

cients.

3.3.3.1 Hierarchy of Errors

The Burgers equation driven by Brownian motions serves as a perfect example to explain the re-

lations among the exact solution u(Exact) of eqn. (3.14), the gPC solutions u(gPC, J∞∞), u
(

gPC, J∞Np

)
,

u

(
gPC, JPNp

)
given by eqn. (3.11) for different multi-index set J’s and the DyBO solutions u

(
DyBO, JPNp ,m

)
,

u

(
DyBO, JP̃Np̃ ,M̃

)
from eqn. (3.13), i.e., error hierarchy, see Fig. 3.10. When no truncation is made in

the expansion of Brownian path (3.15) and Hermite polynomials of all orders are used in the gPC

formulation (3.13), the solution u(gPC, J∞∞) is equal to the exact solution u(Exact). When only finite

number of random variables are used to approximate Brownian path, i.e., Np < ∞, the solution

u

(
gPC, J∞Np

)
approximates u(gPC, J∞∞).

Clearly, two aforementioned solutions are computationally intractable because an infinite num-

ber of terms are involved. To get a computational feasible gPC formulation, we can further trim

down the multi-index set J∞Np . There are multiple ways of selecting such multi-index sets of finite

size. Here, we choose polynomials of total orders at most P , i.e., JPNp . For other selections of multi-

index sets, the discussion stays the same. u
(

gPC, JPNp

)
is a good approximation to u

(
gPC, J∞Np

)
when

P is large enough [115, 117, 106]. Our DyBO solution u
(

DyBO, JPNp ,m
)

computed from eqn. (3.13)

then approximates u
(

gPC, JPNp

)
when m is large enough.

This error hierarchy shown in Fig. 3.10 has two profound implications regarding the numerical

computation of SPDE solutions.
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• We ultimately want to reduce the error between the exact solution u(Exact) and the DyBO

solution u
(

DyBO, JPNp ,m
)

, which can be decomposed into two parts,

E = u

(
DyBO, JPNp ,m

)
− u(Exact) =

{
u

(
DyBO, JPNp ,m

)
− u

(
gPC, JPNp

)}
+

{
u

(
gPC, JPNp

)
− u(Exact)

}
= Em + EJ.

The first part of the error Em diminishes as m → ∞, while the second part EJ is controlled

by the multi-index set J and goes to 0 as J → J∞∞. Thus, there is no need to increase m any

further once EM � EJ. We write m∗ for such m and will verify the convergence of Em and

calculate m∗ later.

• Numerical integration of the DyBO system (3.13) involves considerably less computational

work than that of the gPC system (3.11). Roughly speaking, for the gPC method,NP gPC co-

efficients, functions of spatial variable x, are updated at each time iteration. However, for the

DyBO method, only m spatial modes, still functions of spatial variable x, and one NP -by-m

matrix are updated at each time iteration. Generally, m is much smaller than NP and spatial

grid number, which leads to sizable computational saving. Computational complexity anal-

ysis for linear and second-order nonlinear PDEs driven by stochastic forces is discussed in

detail in Chapter 4 accompanied by numerical examples of spatially two-dimensional stochas-

tic Navier-Stokes equations. Such reduction in computational cost enables DyBO methods

to achieve small error E by using more random variables and higher-order polynomials, i.e.,

ÑP̃ > NP and P̃ > P , without exceeding available computational resources, as illustrated at

the top of Fig. 3.10.



97

u

(
DyBO, JP̃Np̃ ,M̃

)

u(Exact) u(gPC, J∞∞) u

(
gPC, J∞Np

)
u

(
gPC, JPNp

)
u

(
DyBO, JPNp ,m

)

Figure 3.10: Hierarchy of solutions

3.3.3.2 Numerical Results

We have chosen the following orthonormal basis for L2 ([0, T ]),

M1(t) = 1,

Mi(t) =
√

2 cos((i− 1)πt), i = 2, 3, · · · .

Np = 6 and multi-index set J = J3
6 \ {0}, which results in totally 83 terms in gPC expansion, i.e.,

|J| = 83. Spatial grid size δx is set to 1/128 and time step δt is set to 0.5× 10−3 for both gPC and

DyBO, both of which are numerically integrated to time t = T = 1.0. 106 realizations are computed

in the MC method to approximate u
(

gPC, J∞Np

)
with error of order less than 10−3 according to the

Central Limit theorem [66, 114].

Convergence to u
(

gPC, JPNp
)

. In Fig. 3.11, we plot the L2 relative errors of mean and STD

computed by DyBO withm = 4, 6, 8, 10, 12 with respect to the gPC solution u
(

gPC, JPNp

)
. Indeed, as

the number of mode pairs in DyBO increases, the L2 errors of mean and STD decreases, indicating

the convergence of u
(

DyBO, JPNp ,m
)

to u
(

gPC, JPNp

)
. The relative errors of mean and STD at time

t = 1.0 are also tabulated in the second and third columns of Table 3.1. With m = 12, both errors

are below 0.3%.

Adaptive-DyBO. In both Fig. 3.11 and Table 3.1, we also include results by using adaptive
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strategies of Alg. 2.3 and Alg. 2.4 to remove and add spatial and stochastic mode pairs when nec-

essary. In Fig. 3.11c, the number of mode pairs in DyBO system is plotted as a function of time,

showing that proposed adaptive strategies use a small number of mode pairs at the beginning and

automatically add new spatial and stochastic mode pairs when higher-order modes are excited later.

In Fig. 3.12, the first nine spatial modes at time t = T , i.e., ui(x, T ), i = 1, 2, · · · , 9, are plotted

and compared with ones computed from u

(
gPC, JPNp

)
. Very good matches are achieved for the first

six eigenfunctions (the first two rows in Fig. 3.12). Although the 7th, 8th, and 9th spatial modes are

under more influences of unresolved mode pairs, i.e., the (m + 1)th, (m + 2)th, ..., good matches

are still obtained for these spatial modes (the last row in Fig. 3.12).

In Fig. 3.13, we also plot the stochastic modes Y = HA. Since we never use directly the

polynomial chaos set H in our computation, we plot in Fig. 3.13b theNP -by-mmatrix A computed

in our DyBO method and in Fig. 3.13c the one computed from the gPC solution, respectively. The

stochastic modes are plotted for time t = T . The meaning of both figures may deserve some further

explanations. In Fig. 3.13a, the vertical axis from the top to the bottom is the multi-index α ∈ J,

while the horizontal axis from the left to the right is the index of stochastic mode i = 1, 2, · · · ,m. In

this setting, each column of such a plot represents a single column aj of matrix A, i.e., a stochastic

mode Yj = Haj . Similarly, each row of such plot represent the projections of all stochastic modes

Y on a certain polynomial basis Hβ , i.e., E [YHβ].

From Fig. 3.12 and Fig. 3.13, we see that the solution of DyBO can effectively track the trun-

cated KL expansion of the SPDE solution even if the differential operator is nonlinear.

Computational Speedup compared to gPC. Next we consider the efficiency of DyBO com-

pared to gPC. In the fourth and fifth columns of Table 3.1, we also tabulate the relative errors of

mean and STD computed by DyBO, with m = 4, 6, 8, 10, 12 and adaptive strategy, with respect to

the exact solution u
(

gPC, J∞Np

)
obtained by MC method with 106 realizations. The relative errors of
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Figure 3.11: L2 relative errors of mean and STD as functions of time

mean and STD computed by gPC method with respect to u
(

gPC, J∞Np

)
are also given in the first row.

Clearly, when m = 10 or m = 12, the errors of DyBO are comparable to those of gPC listed in

the first row. That’s to say, with m = 10 or m = 12, EM � EJ and further increasing m will not

decrease the overall error E , i.e., m∗ = 10 or m∗ = 12 in this numerical example. In this case, we

achieve 9.6X ∼ 12.7X speedup.
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(a) 1st spatial mode
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(b) 2nd spatial mode
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(c) 3rd spatial mode

0 0.2 0.4 0.6 0.8 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

 

 

0 0.2 0.4 0.6 0.8 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

 

 

0 0.2 0.4 0.6 0.8 1

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

 

 

0 0.2 0.4 0.6 0.8

−0.04

−0.02

0

0.02

0.04

0.06

0.08

 

 

0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

 

 

0 0.2 0.4 0.6 0.8 1
−0.04

−0.02

0

0.02

0.04

0.06

 

 

0 0.2 0.4 0.6 0.8 1
−0.06

−0.04

−0.02

0

0.02

0.04

 

 

0 0.2 0.4 0.6 0.8 1
−0.04

−0.02

0

0.02

0.04

0.06

 

 

0 0.2 0.4 0.6 0.8 1
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

 

 

DyBO
gPC

DyBO
gPC

DyBO
gPC

DyBO
gPC

DyBO
gPC

DyBO
gPC

DyBO
gPC

DyBO
gPC

DyBO
gPC

(d) 4th spatial mode
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(e) 5th spatial mode
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(f) 6th spatial mode
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(g) 7th spatial mode
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Figure 3.12: The first nine spatial modes computed by DyBO at time t = 1.0

Compared to u
(

gPC, JPNp

)
Compared to u

(
gPC, J∞Np

)
Methods Mean STD Mean STD Time (min)

gPC NA NA 1.1619% 2.1398% 42.1
DyBO m=4 3.219% 5.144% 3.096% 5.556% 1.32
DyBO m=6 2.855% 4.522% 2.935% 4.512% 2.01
DyBO m=8 0.930% 2.112% 1.333% 2.890% 2.64
DyBO m=10 0.444% 0.983% 1.222% 2.375% 3.32
DyBO m=12 0.171% 0.259% 1.109% 2.122% 4.37

Adaptive-DyBO 0.432% 0.462% 1.116% 2.157% 3.13

Table 3.1: Relative errors of statistical quantities computed by DyBO, Adaptive-DyBO, and gPC at
time t = 1.0
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Yj = Haj

α
∈
J

i = 1, 2, · · · ,mj

β

E [YHβ]

(a)
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Figure 3.13: Stochastic modes HA computed by DyBO at time t = 1.0
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Chapter 4

Applications to Spatially
Two-Dimensional SPDE

In this chapter, we continue to demonstrate the success of our DyBO-gPC method by applications

to spatially two-dimensional Navier-Stokes (NS) equations driven by stochastic forces. In addition,

we provide a detailed computational complexity analysis for linear PDE driven by stochastic forces

and second-order nonlinear PDE driven by stochastic forces in Sec. 4.1. We also verify numerically

the analysis in Sec. 4.2.

4.1 Computational Complexity Analysis

As we discussed in the previous chapters, the DyBO methods explore the low-dimensional structure

of the stochastic solutions of time-dependent SPDE and represent the solution in the most compact

form in the L2 sense. These changes in formulations not only bring in savings in memory con-

sumption, i.e., storage of solutions in computer memory, but also reduce the total computational

time since we have much fewer entries to update in each time iteration compared to gPC methods

when both systems are numerically integrated. Storage complexity, i.e., memory consumption, is

analyzed and compared with gPC method in Sec. 4.1.1. The saving in computational time depends

on the specific form of the stochastic operator L. Here, we provide analysis for two cases, linear
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PDE driven by stochastic forces in Sec. 4.1.2.1 and second-order nonlinear PDE driven by stochas-

tic forces in Sec. 4.1.2.2, respectively. As we will see later, these two cases already encompass a

large class of problems.

To make the discussion concrete, we assume throughout this section that the randomness is

given in terms of Np independent random variables of the same distribution ρ(·) and a multi-index

set J has been chosen of finite size NP = |J|, i.e., the polynomial chaos basis HJ corresponding

to the joint distribution
∏Np
l=1 ρ(zl) has NP elements. Furthermore, Nh grid nodes are used along

each direction of the hyper-cube D ∈ Rd, which results in a spatial grid of total Nd
h nodes. Such

discretizations generally lead to large systems for both gSC and DyBO-methods. In the numerical

results presented in this section, we have used explicit types of numerical integrators, such as the

forward Euler and the fourth-order RK methods. As a reminder, we have assumed throughout

the thesis that the solutions of SPDEs under consideration enjoy low-dimensional structures, i.e.,

m� NP .

4.1.1 Storage Complexity

From the gPC formulation (2.36), it is clear that v̄(x, t) and V(x, t) = (vα(x, t))α∈J have to

be updated in each time iteration. Thus, the storage cost of the gPC solution is proportional to

O
(
Nd
h

)
+ O

(
NPN

d
h

)
= O

(
NPN

d
h

)
. On the other hand, the mean ū(x, t), the spatial modes

U(x, t) = (u1(x, t), u2(x, t), · · · , um(x, t)) and the stochastic modes A(t) ∈ RNP×m from the

DyBO-gPC formulation (2.39) are updated every time iteration, which implies the memory con-

sumption is proportional to O
(
Nd
h

)
+ O

(
mNd

h

)
+ O (mNP ) = O

(
mNd

h +mNP

)
. Here we

have ignored the storage cost of axillary matrices in the DyBO formulation, i.e., matrices C, D and

G∗ ∈ Rm×m, which are O
(
m2
)
. For the convenience of readers, the above discussion regarding

the storage complexity is summarized in Table 4.1. Typically, the number of spatial grid nodes
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is far more than the number of polynomial coefficients, i.e., Nd
h � NP . Thus, the reduction of

DyBO-gPC compared to gPC in terms of memory consumption is O
(
m
NP

)
.

Method Variables to update Storage Complexity Reduction
gPC (2.36) v̄, V O

(
NPN

d
h

)
NA

DyBO-gPC (2.39) ū, U, A O
(
mNd

h +mNP

)
O
(
m
NP

)
+ O

(
m
Nd
h

)
≈ O

(
m
NP

)
Table 4.1: Storage complexity comparison between gPC and DyBO-gPC methods

4.1.2 Computational Cost

We continue to discuss the computational complexity in terms of computational time. Unlike the

analysis of the storage complexity in the previous section, the analysis of computational time re-

quires knowing the specific form of the stochastic differential operator L. Here, we consider two

important cases, linear or second-order nonlinear PDEs driven by stochastic forces, respectively,

where second-order nonlinear PDEs are defined to be second-order polynomials of the solution u

and its partial derivatives of any orders.

As analyzed in Sec. 2.5.2 and demonstrated numerically in Sec. 3.3, the DyBO-gPC formula-

tion is a good approximation to the gPC formulation if m is taken properly, which in turn implies

the computational time step sizes used to numerically integrate both systems should be compara-

ble. Thus, to compare the total computational time, we only need to compare the time required to

compute the right-hand sides if the same numerical integrating scheme is adopted for both gPC and

DyBO-gPC.

Before we consider each case, we make the following two assumptions regarding the computa-

tional complexity of the spatial derivatives and the stochastic forces.

Assumption 4.1. The spatial derivative can be computed in linear time. Let L̊ be a deterministic

linear differential operator. This assumption implies that the computational time of L̊u(x) on a
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spatial grid ofNd
h is O

(
Nd
h

)
. This assumption is certainly true for typical finite difference and finite

volume schemes, since the evaluation of derivatives of any order generally involves only several

adjacent layers of grid nodes. For pseudo-spectral methods, i.e., FFT is involved, this assumption

is almost true since the computational time of FFT is O (n log n), where n is the number of grid

nodes, and log n grows very slow as n increases.

Assumption 4.2. The gPC expansion of stochastic force, F, can be evaluated in linear time.

We assume the stochastic force f is sparse on the selected polynomial basis H. More precisely, the

stochastic force has a finite gPC expansion, i.e., f =
∑

α∈J FαHα = FHT . At mostm polynomial

coefficients Fα are non-zeros and the rest are identically zeros. This assumption implies that the

computational cost of F is bounded by mNd
h .

4.1.2.1 Linear PDE Driven by Stochastic Forces

First, we consider the following SPDE

∂u

∂t
= Lu = L̊u+ f = L̊u+ FHT , (4.1)

where the deterministic linear differential operator L̊ is driven by a zero-mean stochastic force f .

Similar to Sec. 3.2, we have the gPC formulation of SPDE (4.1),

∂v̄

∂t
= L̊v̄, (4.2a)

∂V

∂t
= L̊V + F. (4.2b)

Clearly, the evaluation of L̊v on the right-hand side costs O
(
Nd
h

)
, that of L̊V =

(
L̊vα

)
α∈J

costs

O
(
NPN

d
h

)
and that of F costs O

(
mNd

h

)
. Thus, the total computational cost of a single evaluation

of the right hand sides in the gPC formulation (4.2) adds up to O
(
NPN

d
h

)
.
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From Sec. 3.2, it is easy to derive the DyBO-gPC formulation for SPDE (4.1),

∂ū

∂t
= L̊ū, (4.3a)

∂U

∂t
= −UDT + L̊U + FA, (4.3b)

dA

dt
= −ACT + A

〈
L̊UT , U

〉
Λ−1
U +

〈
FT , U

〉
Λ−1
U , (4.3c)

where C and D can be computed via eqn. (2.22) from

G∗ = Λ−1
U

〈
UT , L̊U

〉
+ Λ−1

U

〈
UT , FA

〉
.

The computational costs of some typical terms on the right-hand side are given in Table 4.2. The

second column is due to the fact that the computation of −UDT is essentially the multiplication

of two matrices of size Nd
n × m and m × m. Assumption 4.1 is used for the third column and

Assumption 4.2 is used for the fourth column. The remaining columns can be deduced similarly.

Term −UDT L̊U FA −ACT
〈
UT , L̊U

〉
Total

Time O
(
m2Nd

h

)
O
(
mNd

h

)
O
(
m2Nd

h

)
O
(
m2NP

)
O
(
m2Nd

h

)
O
(
m2NP +m2Nd

h

)
Table 4.2: The computational time of some typical terms on the right-hand side of the DyBO-gPC
formulation

Therefore, the ratio between the computational cost of DyBO-gPC and that of gPC is

O

(
m2

NP

)
+ O

(
m2

Nd
h

)
≈ O

(
m2

NP

)
. (4.4)
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4.1.2.2 Second-Order Nonlinear PDE Driven by Stochastic Forces

Under Assumptions 4.1 and 4.2, any second-order nonlinear PDE driven by stochastic forces is

equivalent to the following SPDE in terms of computational cost

∂u

∂t
= Lu =

(
L̊u
)2

+ f =
(
L̊u
)2

+ FHT , (4.5)

where L̊ is a deterministic linear differential operator.

Like what we have done in the linear case, we first consider the computational complexity of

the gPC method. With the gPC expansion of the solution v = v̄ + VHT , simple calculations give

Lv =
(
L̊v̄
)2

+ 2L̊v̄L̊VHT + L̊VHTHL̊VT + FHT ,

E [Lv] =
(
L̊v̄
)2

+ L̊VL̊VT ,

L̃v = 2L̊v̄L̊VHT − L̊VL̊VT + L̊VHTHL̊VT + FHT ,

and

E
[
L̃vH

]
= 2L̊v̄L̊V + E

[
L̊VHTHL̊VTH

]
+ F

= 2L̊v̄L̊V +
(
L̊vαL̊vβT

(H)
αβγ

)
1×γ

+ F,

where we have used the tensor TH introduced in Sec. 3.3. Therefore, from eqn. (2.36), the gPC

formulation for SPDE (4.5) is

∂v̄

∂t
=
(
L̊v̄
)2

+ L̊VL̊VT , (4.6a)

∂V

∂t
= 2L̊v̄L̊V +

(
L̊vαL̊vβT

(H)
αβγ

)
1×γ

+ F. (4.6b)
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The computational cost of some typical terms on the right-hand sides is listed in Table 4.3.

Term
(
L̊v̄
)2

L̊VL̊VT
(
L̊vαL̊vβT

(H)
αβγ

)
1×γ

F Total

Time O
(
Nd
h

)
O
(
NPN

d
h

)
O
(
N3
PN

d
h

)
O
(
mNd

h

)
O
(
N3
PN

d
h

)
Table 4.3: The computational time of terms on the right-hand sides in the gPC formulation for
second-order nonlinear PDE driven by stochastic forces

Note that the third-order tensor T(H) only depends on the polynomial basis H and can be pre-

computed, so its computational cost is ignored in this analysis. To evaluate a single entry of row

vector
(
L̊vαL̊vβT

(H)
αβγ

)
1×γ

, we have to compute the summation
∑

α,β∈J L̊vαL̊vβT
(H)
αβγ , which

costs O
(
N2
PN

d
h

)
, because a single evaluation of L̊vα costs O

(
Nd
h

)
and a total of N2

P terms is

summed up. Therefore, the total cost of the whole row vector is O
(
N3
PN

d
h

)
.

Next we consider the computational cost of DyBO-gPC. With the truncated KL expansion of

the solution u = ū+ UATHT , simple calculations give

Lu =
(
L̊ū
)2

+ 2L̊ūL̊UATHT + L̊UATHTHAL̊UT + FHT ,

E [Lu] =
(
L̊ū
)2

+ L̊UL̊UT ,

L̃u = 2L̊ūL̊UATHT − L̊UL̊UT + L̊UATHTHAL̊UT + FHT ,

and

E
[
L̃uH

]
= 2L̊ūL̊UAT + E

[
L̊UATHTHAL̊UTH

]
+ F

= 2L̊ūL̊UAT +
(
L̊uiL̊ujAαiAβjT

(H)
αβγ

)
1×γ

+ F.
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Therefore, from eqn. (2.39), we have the DyBO-gPC formulation for SPDE (4.5),

∂ū

∂t
=
(
L̊ū
)2

+ L̊UL̊UT , (4.7a)

∂U

∂t
= −UDT + 2L̊ūL̊U +

(
L̊uiL̊ujAαiAβjAγkT

(H)
αβγ

)
1×k︸ ︷︷ ︸

Term 1

+FA, (4.7b)

∂A

∂t
= −ACT + 2A

〈
L̊ūL̊UT , U

〉
Λ−1
U +

(
T

(U)
ijk AαiAβjT

(H)
αβγ

)
γ×k︸ ︷︷ ︸

Term 2

+
〈
FT , U

〉
Λ−1
U , (4.7c)

where the third-order m-by-m-by-m tensor T(U) =
(〈
L̊uiL̊uj , uk

〉)
ijk

, and matrices C and D

can be solved via eqn. (2.22) from G∗,

ΛUG∗ = 2
〈
UT , L̊ūL̊U

〉
+
(
T

(U)
ijk AαiAβjAγlT

(H)
αβγ

)
k×l︸ ︷︷ ︸

Term 3

+
〈
UT , FA

〉
. (4.8)

It is not difficult to derive the computational costs listed in Table 4.4 regarding matrix-tensor prod-

ucts in the above formulation. Please note that the Einstein summation convention is implic-

itly assumed and the product should be computed in a recursive way, i.e., AαiAβjAγkT
(H)
αβγ =

Aαi

(
Aβj

(
AγkT

(H)
αβγ

))
. For simplicity of notation, we also drop O (·) from the second row.

Matrix-Tensor Product AαiT
(H)
αβγ AαiAβjT

(H)
αβγ AαiAβjAγkT

(H)
αβγ

Time mN3
P mN3

P +m2N2
P . mN3

P mN3
P +m2N2

P +m3NP . mN3
P

Table 4.4: The computational costs of matrix-tensor A and T(H) products

Similar to the gPC, the computational costs of some typical terms on the right-hand side of

the DyBO-gPC formulation (4.7) are given in Table 4.5, where the estimate of term 2 goes as

follows. The computation of T(U) in term 2 costs O
(
m3Nd

h

)
, while the computation of matrix-

tensor product AαiAβjT
(H)
αβγ costs O

(
mN3

P

)
as shown in Table 4.4. The last step of computing

tensor-tensor product costs O
(
NPm

3
)
. Thus, the total computational cost of term 2 in eqn. (4.7c)
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is O
(
m3Nd

h

)
+ O

(
mN3

P

)
+ O

(
NPm

3
)
≤ O

(
m3Nd

h

)
+ O

(
mN3

P

)
since m� NP .

Term L̊UL̊UT
〈
UT , L̊ūL̊U

〉
T(U) Term 1,2 or 3 Total

Time mNd
h m2Nd

h m3Nd
h mN3

P +m3Nd
h mN3

P +m3Nd
h

Table 4.5: The computational costs of terms on the right-hand sides in the DyBO-gPC formulation
for second-order nonlinear PDE driven by stochastic forces

In the light of the above discussions, the ratio of the computational costs between DyBO-gPC

and gPC for the second-order PDE driven by stochastic force is

O

(
m

Nd
h

)
+ O

((
m

NP

)3
)
≈ O

((
m

NP

)3
)

= O
(
mαN−βP

)
, (4.9)

where the exponents α = 3 and β = 3. In the next section, we will numerically verify these two

exponents for Navier-Stokes equations driven by stochastic forces.

Remark 4.1. If the distribution of ξi’s is Gaussian, the tensor T(H) can be quite sparse, i.e., a few

non-zero entries out of totalN3
P entries. However, this may not be the case for general distributions,

so we do not explore this sparsity in the above analysis. Later in numerical results, we will show that

even if such sparsity is explored in numerical implementations of the gPC method, our DyBO-gPC

is still superior.

4.2 Stochastic Navier-Stokes Equations

As a model to test numerically the proposed DyBO formulation for a spatially two-dimensional non-

linear SPDE, we consider the incompressible Naive-Stokes equations driven by stochastic forces.

Specifically, we consider the stochastic flow in a unit square, i.e., D = [0, 1]× [0, 1], with periodic

boundary conditions on both spatial directions x and y (see Fig. 4.1a). The governing SPDE of this
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stochastic flow is the Stochastic Navier-Stokes equations (SNS)

∂u

∂x
+
∂v

∂y
= 0, (4.10a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ ν∆u+ f1, (4.10b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ ν∆v + f2, (4.10c)

where the meanings of symbols are tabulated below

u(x, t, ω), v(x, t, ω) - x and y components of velocity
p(x, t, ω) - Pressure

f1(x, t, ω), f2(x, t, ω) - x and y components of zero-mean stochastic force f
deterministic constant ν - Dynamic viscosity

For spatially two-dimensional incompressible flow problems, it is convenient to consider the

vorticity-stream function formulation instead of the pressure-velocity formulation. The vorticity-

stream function formulation gives w = ∂v
∂x −

∂u
∂y and ψ, with u = ∂ψ

∂y and v = −∂ψ
∂x . Thus, the

above pressure-velocity formulation of SNS can be transformed to the vorticity-stream formulation,

∂w

∂t
+

(
u
∂

∂x
+ v

∂

∂y

)
w = ν∆w +

(
∂f2

∂x
− ∂f1

∂y

)
,

−∆ψ = w,

u =
∂ψ

∂y
, v = −∂ψ

∂x
,

or cast in the standard form (1.1a),

∂w

∂t
= Lw = −

(
u
∂

∂x
+ v

∂

∂y

)
w + ν∆w +

(
∂f2

∂x
− ∂f1

∂y

)
, (4.12)



112

where

−∆ψ = w, (4.13)

u =
∂ψ

∂y
= − ∂

∂y
∆−1w, (4.14)

v = −∂ψ
∂x

=
∂

∂x
∆−1w. (4.15)

We assume the randomness is given in terms of Np independent standard Gaussian random vari-

ables, ξ =
(
ξ1, ξ2, · · · , ξNp

)
, and the initial vorticity is deterministic, i.e., w(x, y, 0, ξ) = ẘ(x, y).

That is to say, the randomness is injected into the system only through the stochastic force f =

(f1, f2). Let J is a multi-index set of finite size. We assume that the stochastic force in eqn. (4.12)

has a finite-term gPC expansion, i.e.,

∂f2

∂x
− ∂f1

∂y
=
∑
α∈J

FαHα = FHT .

In the following numerical example, we adopt the initial vorticity field used in Luo’s thesis [77],

ẘ(x, y) = const− 1

2δ1
exp

(
−I(x)(y − 0.5)2

2δ2
1

)
,

where I(x) = 1+δ2 (cos(4πx)− 1) and the constant is taken such that
∫
D ẘ dx dy = 0. δ1 = 0.025

and δ2 = 0.3, so the initial vorticity concentrates in a narrow band along y = 0.5 as shown in

Fig. 4.1b, which models a perturbed flat vortex sheet in the limit that δ1 → 0. Like in the numerical

examples of stochastic Burgers equation in Sec. 3.3, we adopt an approximated version of Brownian

force (σ1(x, y)B1(t), σ2(x, y)B2(t))

(
∂f2

∂x
− ∂f1

∂y

)
= −∂σ1

∂y

4∑
i=1

1√
T
Mi

(
t

T

)
ξi +

∂σ2

∂x

8∑
i=5

1√
T
Mi−4

(
t

T

)
ξi. (4.16)
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Figure 4.1: Stochastic flows driven by stochastic force f in 2D unit square

The functions σ1 and σ2 are chosen such that

∂σ1

∂y
= δ3π cos (2πx) cos (2πy) ,

∂σ2

∂x
= δ3π sin (2πx) sin (2πy) ,

where δ3 = 0.3.

4.2.1 gPC and DyBO-gPC Formulations of SNSE

The derivations of gPC or DyBO-gPC formulations of SNSE, although quite technical, essentially

follow the similar steps of stochastic Burgers equations in Sec. 3.3. Here, we just give the results.

For details, see Appendix D and E.

By considering the gPC expansion w = w̄ + WHT , we can derive the gPC formulation of

SNSE (4.12),

∂w̄

∂t
= ν∆w̄ −D(ū,v̄)w̄ −D(U,V)W, (4.17a)

∂W

∂t
= ν∆W −D(ū,v̄)W

T −D(U,V)w̄ −
(
D(uα,vα)wβT

(H)
αβγ

)
1×γ

+ F, (4.17b)
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where D(·,·) (·) is the generalized material derivative defined in eqn. (D.9). DyBO-gPC can be

obtained by considering the m-term truncated KL expansion w = w̄ + WBTHT ,

∂w̄

∂t
= ν∆w̄ −D(ū,v̄)w̄ −D(U,V)W, (4.18a)

∂W

∂t
= −WDT

w +
[
ν∆W −D(ū,v̄)W −D(U,V)w̄

]
−
[
D(ui,vi)wjBαiBβjBγkT

(H)
αβγ

]
1×k

+ FB, (4.18b)

dB

dt
= B

(
−CT

w +
〈
ν∆WT −

(
D(ū,v̄)W

)T − (D(U,V)w̄
)T
, W

〉
Λ−1
W

)
−
[
T

(W)
ijk BαiBβjT

(H)
αβγ

]
γ×k

Λ−1
W +

〈
FT , W

〉
Λ−1
W , (4.18c)

where matrices Cw and Dw can be solved via eqn. (2.22) from G∗w,

ΛWG∗w =
〈
WT , ν∆W −D(ū,v̄)W −D(U,V)w̄

〉
−
[
T

(W)
ijk BαiBβjBγlT

(H)
αβγ

]
k×l

+
〈
WT , F

〉
B.

Both the gPC system and DyBO-gPC systems are numerically integrated by fourth-order RK method

with time step δt = 10−3 on a 128 × 128 spatial grid. The pseudo-spectral method with the 36th-

order Fourier smoothing [54] is used to compute spatial derivatives. Unless specified otherwise, all

computations are performed on a desktop equipped with Intel Pentium D processor of 3.4 GHz and

4 GB memory. Various numerical results are presented in the next section.

4.2.2 Numerical Results

Verification of Complexity Analysis. Clearly, SNSE (4.12) is a second-order nonlinear PDE

driven by stochastic forces, so the complexity analysis in Sec. 4.1.2.2 is applicable. Before present-

ing computational results, we first verify the complexity analysis, i.e., eqn. (4.9). To this end, we

record the wall time of a single time iteration when the gPC system (4.17) or the DyBO-gPC system
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(4.18) is numerically integrated by the fourth-order Runge-Kutta method. For NP = 80, 100, 120

and m = 4, 8, 12, 16, the computational times are summarized into Table 4.6. To improve the

accuracy of recorded wall times, we actually compute the average wall time of 10 time iterations.

In Table 4.6, the exponents α and β in eqn. (4.9) are estimated by linear regression. The last

column uses wall times corresponding to m = 8, 12, 16 , while the second to last column uses all

four values of m. As we can see from the fourth column of the table, the computational time is

relatively small when m = 4. In this case, the dominant terms in our previous analysis may not

truly dominate other terms and some inevitable programming overheads, such as memory allocation

and function calling overhead, may kick in. In Fig. 4.2 accompanying Table 4.6, the computational

times corresponding to m = 8, 12, 16 align nicely into a straight line for each NP = 80, 100, 120,

respectively, but the computational times corresponding to m = 4 drift up. If we remove these

points from our fitting, the linear regression estimate of the exponent α in eqn. (4.4) would be

approximately equal to 2.73, close to the theoretically predicated value 3.

As we mentioned in Remark 4.1, T(H) is very sparse when Hermite polynomials are used for

Gaussian random variables. In Table 4.6, we also report the wall times of gPC in the second and

third columns, respectively, depending on whether such sparsity is explored or not in the numerical

implementation of gPC methods. Clearly, the computational time is significantly smaller if such

sparsity is considered. However, we may not have such luxury for non-Gaussian random variables,

i.e., general distributions. In the last two row of Table 4.6, the exponent β is estimated by linear

regression, respectively, when sparsity is explored or not. The last row gives∼ 2.9 for the exponent

β confirming our analysis in eqn. (4.9).

Numerical Errors of DyBO-gPC. As mentioned in Chapter 1, the number of polynomial

chaos basis functions Hα grows exponentially fast as the number of random variables Np and the

total order P increase. The scheme of sparse truncation proposed in Luo’s thesis [77] proves to be
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gPC (sec) DyBO-gPC (sec) α
NP Sparse Non-Sparse m = 4 m = 8 m = 12 m = 16 α1 α2

80 17.242 772.10 0.3946 1.6238 4.8850 10.5483 2.3670 2.7006
100 26.302 1482.7 0.4221 1.5666 4.9577 10.7119 2.3334 2.7779
120 36.440 2558.3 0.4246 1.6567 5.0451 10.8200 2.3342 2.7099

β - Sparse 1.6621 1.8056 1.7683 1.7844β
β - Non-Sparse 2.7683 2.9117 2.8744 2.8905

Table 4.6: Comparison of wall times of a single RK step of gPC and DyBO-gPC systems. Depend-
ing on whether the sparsity of tensor T(H) is explored or not, the wall times are reported in the
second and third columns for gPC method, respectively. The wall times of DyBO-gPC are reported
in columns 4–7 for m = 4, 8, 12, 16. The exponents α and β in eqn. (4.9) are estimated by linear
regression. The last column in red uses wall times corresponding to m = 8, 12, 16 to compute
the exponent α, while the second to last column in gray uses all four values of m to estimate the
exponent β. The values of β are reported in the last two rows.

a relatively effective method to alleviate the situation. In the following computation, we follow this

scheme and choose a multi-index set J obtained from a sparse truncation of the multi-index set J3
8,

J =
{
α ∈ J3

8 and if |α| = 3, then α2 ≤ 2, α3 ≤ 1, α4 ≤ 1, α6 ≤ 2, α7 ≤ 1, α8 ≤ 1
}
\ {0} ,

which still results in total 130 multi-indices!

The mean and STD of the vorticity field and the first four spatial modes in the KL expansion of

vorticity field at time t = 1.0 are given in Fig. 4.3 and Fig. 4.4, respectively. In both figures, the

results by our DyBO-gPC method with m = 8 are given in the left column and compared to the

results by the gPC method in the right column. The results are almost indistinguishable. We further

confirm the convergence of DyBO-gPC to gPC by plotting the relative errors of mean and STD of

vorticity field as functions of time in the top two subplots of Fig. 4.5.

In the same figure, we also report the relative errors as functions of time when the adaptive

strategy of adding and/or removing mode pairs is enacted. Two numerical examples are provided:

one starts with four mode pairs, i.e., m0 = 4 and the other starts with six mode pairs, i.e., m0 =

6. In Fig. 4.5c, the number of mode pairs in the DyBO-gPC method is plotted against time t.
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Figure 4.2: Wall time of a single RK step of the DyBO-gPC system as a function of m

Because of the special form of the stochastic force f considered in this numerical example, the

randomness is only introduced through low-order gPC coefficients and then spread to the mean and

other high-order gPC coefficients. See Remark 3.3 for details. At the beginning of the evolution of

the stochastic flow, the randomness is not strong and the adaptive algorithm finds no need to add

new mode pairs before time t = 0.35. As the system evolves, the randomnesses get strong through

interactions among different mode pairs and the adaptive algorithm automatically adds more mode

pairs when necessary.

Avoiding Selection of Multi-index Set J. As mentioned in Chapter 1, the gPC method

suffers greatly from the curse of dimensionality. In the above numerical example, we use low-order

(≤ 3) polynomials and also the sparse truncation technique to further reduce the size of multi-

index set J, which still results in a set of 130 polynomials. It takes more than 8 hour of wall time to

numerically integrate the gPC system from t = 0.0 to t = 1.0! Adaptive gPC methods try to include
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Figure 4.3: Mean and STD of vorticity field at time t = 1.0. The left column is computed by
DyBO-gPC, while the right column is computed by gPC. They are essentially the same.
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(a) 1st spatial mode
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(b) 1st spatial mode
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(c) 2nd spatial mode
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(d) 2nd spatial mode
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(e) 3rd spatial mode
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(f) 3rd spatial mode
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(g) 4th spatial mode
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Figure 4.4: The first four spatial modes at time t = 1.0. The left column is computed by DyBO-gPC,
while the right column is computed by gPC. They are essentially the same.
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Figure 4.5: The L2 relative errors of mean and STD of vorticity field computed by DyBO. The
errors are plotted as functions of time in the top two figures, while the numbers of mode pairs used
in the adaptive strategy are given in the last figure.
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only important gPC coefficients wα in the computation, i.e., the selection of multi-index set J.

In Fig. 4.6a, we plot the energy spectrum of the gPC solution at t = 1.0, i.e.,
{
‖wα‖L2(D)

}
α∈J

,

which clearly does not decay monotonically. Index J is a multi-index set, so we do not have suffi-

cient information and a good strategy, prior to the computation, to sort J and select the most impor-

tant ones. We can re-arrange the multi-indices α’s, such that ‖wα‖L2(D) decays monotonically as

is shown in Fig. 4.6b. We also call it the sorted energy spectrum of the gPC solution.

On the other hand, our DyBO method tracks the KL expansion of the true solution and automat-

ically includes only the most important ones. Furthermore, the KL expansion is known to provide

the most compact representation of second-order stochastic process, so the energy spectrum of the

DyBO solution, i.e.,
{
‖wi‖L2(D)

}
i=1,2,··· ,m

, has a faster decay rate even compared to the sorted

energy spectrum of the gPC solution (see Fig. 4.6b). This difference in decay rate implies that our

method gives a smaller system to solve, leading to less computational cost.

To further illustrate and understand the benefits of the DyBO method, we consider a little

“stronger” stochastic force

(
∂f2

∂x
− ∂f1

∂y

)
= −∂σ1

∂y

4∑
i=1

it

T
ξi +

∂σ2

∂x

8∑
i=5

(i− 4)t

T

(
t

T

)
ξi. (4.19)

With this stochastic force, the (sorted) energy spectrum of both gPC and DyBO solutions along

with the square roots of eigenvalues are plotted in Fig. 4.7a. Clearly, the energy spectrum of DyBO

decays much faster than that of gPC.

Once the gPC coefficientswα’s are sorted in the descending order of ‖wα‖L2(D), we can use the

first several gPC coefficients, i.e., the most important ones, to compute a solution and compare with

the exact one. The relative errors of STD computed by this procedure are plotted in Fig. 4.7b against

the number of gPC coefficients. However, from the perspective of practical numerical simulations,
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we are making two “crimes” here.

• In general, the multi-indices α’s corresponding to the most important gPC coefficients can

not be known prior to the beginning of computations. What’s more, such set of multi-indices

may change with respect to time t, making the selection of an effective multi-index set J even

harder.

• Less important gPC coefficients excluded from the gPC system may induce additional errors

when we solve the system which only includes the most important ones.

Even if we are willing to make these two “crimes”, the solution obtained by this procedure is less

accurate than that by our DyBO method with the same number of mode pairs, as shown in Fig. 4.7b.

With only 8 mode pairs, our DyBO method achieves the same accuracy (∼ 0.5%) as that by gPC

method with 60 gPC coefficients. By using Table 4.6, we can estimate speedup in this case. When

the sparsity of tensor TH is not explored in the numerical implementation of gPC, the speedup is

∼ 200X (327.8 sec vs. 1.6567 sec per time iteration). When the sparsity is explored, the speedup

is ∼ 6X (10.628 sec vs. 1.6567 sec per time iteration). Fig. 4.7a also confirms numerically that our

DyBO method can accurately recover the eigenvalues in the KL expansion.

Looking into the stochastic modes Y = HA reveals the origin of fast error decay in our DyBO-

gPC method. In Fig. 4.8, we plot the stochastic modes computed by DyBO in the second figure and

ones recovered from the gPC solution in the third figure, respectively. For detailed explanations of

the meaning of such plots, see Fig. 3.13 and explanation there. Clearly, each stochastic mode Yi is

a linear combination of several, possibly many, gPC bases. Therefore, unlike gPC methods, where

the stochastic basis H is fixed and does not change with time, our DyBO method “agglomerates”

the polynomial basis and forms a more efficient stochastic basis Y. Moreover, this set of stochastic

bases is automatically adapted in time without introducing any heuristics for the selection of the
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Yj = Haj

α
∈
J

i = 1, 2, · · · ,mj

β

E [YHβ]
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Chapter 5

Generalization to Stochastic Processes
L2
(

Ω→ Hk (D)
)

As we see in the previous chapters, the DyBO solution uDyBO converges to the true solution of

SPDE in the ‖·‖L2(D×Ω) sense, which turns out to be insufficient or too restrictive in some practical

applications. For example, when predictions of deterministic flow and transport in porous media

are under considerations, we generally expect numerical solutions to converge to true ones in a

stronger norm ‖·‖H1(D), instead of merely ‖·‖L2(D), to ensure an accurate estimate of the flux,

which is an important quantity in understanding underground flows [93, 57]. Correspondingly, we

desire for convergence in the same strong norm ‖·‖L2(Ω→Hk(D)), instead of ‖·‖L2(Ω→L2(D)), when

porous media is modeled as some stochastic process to account for uncertainty. On the other hand,

a weaker norm may be desired for the computational efficiency when uncertainty only concentrates

over some isolated small regions within the whole domain or only a part of region are of primary

interests.

In this chapter, we generalize the DyBO formulation (2.28) for a stochastic solution u(·, t, ·) ∈

L2
(
Ω→ Hk(D)

)
by first generalizing the KL expansion while preserving the error-minimizing

(Theorem 1.1) and bi-orthogonal (Theorem 1.2) properties of KL in L2 (D × Ω). The essence of

the KL expansion is to find a complete orthonormal set of spatial modes fi(x)’s to minimize the

error of an m-term truncated expansion among all such orthonormal sets. To this end, we derive
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first in the next section the necessary condition (5.4) for such spatial modes.

5.1 Necessary Condition for Spatial Modes in L2 (Ω→ V(D))

Assume V(D) is a separable Hilbert space of functions defined on a compact domainD ∈ Rd. V(D)

is equipped with an inner product 〈·, ·〉V(D) and an induced norm ‖·‖V(D). Consider a stochastic

process of zero mean u(x, ω) ∈ L2 (Ω→ V(D)) where

L2 (Ω→ V(D)) =
{
u(x, ω) |E [u] = 0, ‖u‖2L2(Ω→V(D)) = E

[
‖u‖2V(D)

]
<∞

}
.

Part of the derivation is adapted from Ghanem and Spanos ’s book (see Chapter 2, [41]). Consider

any complete orthonormal set of functions {hi(x)}∞i=1 ⊂ V(D), i.e.,

〈hi, hj〉 = δij , for i, j = 1, 2, · · · .

The stochastic process u(x, ω) admits a Fourier-type series expansion

u(x, ω) =
∞∑
i=1

ξi(ω)hi(x), (5.1)

where

ξi(ω) = 〈u(x, ω), hi(x)〉V(D) (5.2)

Then the m-term truncation error is

εm(x, ω) =

∞∑
i=m+1

ξi(ω)hi(x),
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whose norm is

‖εm‖2L2(Ω→V(D)) = E
[
〈εm, εm〉V(D)

]
= E

〈 ∞∑
i=m+1

ξihi,
∞∑

j=m+1

ξjhj

〉
V(D)


=

∞∑
i=m+1

∞∑
j=m+1

E [ξiξj ] 〈hi, hj〉V(D)

=
∞∑

i=m+1

∞∑
j=m+1

E [ξiξj ] δij

=

∞∑
i=m+1

E
[
〈u, hi〉2V(D)

]
,

where we have used the orthogonality of hi’s in the second equality and eqn. (5.2) in the second

to last equality. To minimize ‖εm‖L2(Ω→V(D)) subject to the orthogonality of {hi(x)}∞i=1, we use a

Lagrange multiplier λi and consider the following optimization problem of minimizing functional

F
[
{hi}∞i=m+1

]
= ‖εm‖2L2(Ω→V(D)) −

∞∑
i=m+1

λi

(
〈hi, hi〉V(D) − 1

)
=

∞∑
i=m+1

E
[
〈u, hi〉2V(D)

]
− λi

(
〈hi, hi〉V(D) − 1

)
. (5.3)

Differentiating with respect to hj for j = m+ 1,m+ 2, · · · , we have

1

2

∂F ({hi}∞i=1)

∂hj
δhj = E

[
〈u, hj〉V(D) 〈u, δhj〉V(D)

]
− λj 〈hj , δhj〉V(D)

= E
[〈
〈u, hj〉V(D) u, δhj

〉
V(D)

]
− λj 〈hj , δhj〉V(D)

=
〈
E
[
〈u, hj〉V(D) u

]
, δhj

〉
V(D)

− λj 〈hj , δhj〉V(D)

=
〈
E
[
〈u, hj〉V(D) u

]
− λjhj , δhj

〉
V(D)

.
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Since δhj is arbitrary, we obtain the necessary conditions for a complete orthonormal set {hi(x)}∞i=1

being spatial modes in the KL expansion in the generalized sense,

E
[
〈u, hj〉V(D) u

]
− λjhj = 0, for j = 1, 2, · · · ,

which is an eigenvalue problem

E
[
〈u, h〉V(D) u

]
= λh. (5.4)

as explained in the next section.

5.2 Generalized KLE for L2
(
Ω→ Hk (D)

)
Next we confine ourselves to the Sobolev space, i.e.,

V (D) = Hk (D) =

f(x) | ‖f‖2Hk(D) =
∑
|γ|≤k

‖Dγf‖2L2(D) <∞

 ,

where γ = (γ1, γ2, · · · , γd) is a multi-index of length d and Dγf(x) = ∂|γ|f(x1,x2,··· ,xd)
∂γ1x1∂γ2x2···∂γdxd . This

multi-index γ should not be confused with the multi-indexα of lengthNP used in gPC expansions.

In this section, we consider the stochastic process u ∈ L2
(
Ω→ Hk (D)

)
. Clearly, the generalized

KL expansion of u can be obtained by solving the following eigenfunction problem,

Ah = E
[
〈u, h〉Hk(D) u

]
= λh. (5.5)

In the following two lemmas, we are going to show thatA is a linear, compact, non-negative definite

and self-adjoint operator onHk (D). We should note that A is a deterministic operator.

Lemma 5.1. A is a linear and compact operator onHk (D).
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Proof. The linearity of A is obvious. For ∀h ∈ Hk (D), we will show that Ah ∈ Hk (D). By

linearity of expectation E [·] and inner product 〈·, ·〉, for ∀ |γ| ≤ k

Dγ (Ah) = E
[
〈u, h〉Hk(D)D

γu
]
.

So we have

‖Dγ (Ah)‖2L2(D) =
∥∥∥E [〈u, h〉Hk(D)D

γu
]∥∥∥2

L2(D)
(Jensen’s inequality)

≤
(
E
[∥∥∥〈u, h〉Hk(D)D

γu
∥∥∥
L2(D)

])2

=
(
E
[∣∣∣〈u, h〉Hk(D)

∣∣∣ ‖Dγu‖L2(D)

])2
(Cauchy-Schwarz inequality)

≤ E
[
〈u, h〉2Hk(D)

]
E
[
‖Dγu‖2L2(D)

]
(Cauchy-Schwarz inequality)

≤ E
[
‖u‖2Hk(D) ‖h‖

2
Hk(D)

]
E
[
‖Dγu‖2L2(D)

]
= ‖u‖2L2(Ω→Hk(D)) ‖h‖

2
Hk(D) E

[
‖Dγu‖2L2(D)

]
.

Summing over all |γ| ≤ k, we have

‖Ah‖2Hk(D) ≤ ‖u‖
4
L2(Ω→Hk(D)) ‖h‖

2
Hk(D) ,

or

‖Ah‖Hk(D) ≤ ‖u‖
2
L2(Ω→Hk(D)) ‖h‖Hk(D) . (5.6)

This implies that A : Hk (D)→ Hk (D) is compact as long as u ∈ L2
(
Ω→ Hk (D)

)
.

Lemma 5.2. A is self-adjoint and non-negative definite..
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Proof. The self-adjointness of operator A, i.e.,

〈Ah, f〉Hk(D) = 〈h, Af〉Hk(D) , ∀f, h ∈ Hk (D) ,

follows from the following equality,

〈Ah, f〉Hk(D) =
〈
E
[
〈u, h〉Hk(D) u

]
, f
〉
Hk(D)

(because f is deterministic )

= E
[〈
〈u, h〉Hk(D) u, f

〉
Hk(D)

]
= E

[
〈u, h〉Hk(D) 〈u, f〉Hk(D)

]
.

Therefore, 〈Ah, h〉Hk(D) = E
[
〈u, h〉2Hk(D)

]
≥ 0. The equality implies that 〈u, h〉Hk(D) = 0

almost surely. Clearly, A is a non-negative definite self-adjoint operator.

By applying Mercer’s theorem, we have the following theorem concerning the solution of the

eigenvalue problem (5.5).

Theorem 5.3. The eigenvalues λi are non-negative and may cluster at 0 only. The eigenfunctions

hi’s form a complete orthogonal basis ofHk (D).

We will assume the eigenfunctions are properly normalized and form an orthonormal set, i.e.,

〈hi, hj〉Hk(D) = δij . The stochastic process u ∈ L2
(
Ω→ Hk (D)

)
admits the following general-

ized Karhunen Loeve expansion (gKLE),

u(x, ω) =

∞∑
i=1

ξi(ω)hi(x), (5.7)

with ξi(ω) = 〈u(x, ω), hi(x)〉Hk(D). Next lemma shows the bi-orthogonality of gKLE

Lemma 5.4. ξi’s in gKLE (5.7) are orthogonal to each other and E
[
ξ2
i

]
= λi
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Proof. Substituting gKLE (5.7) into the eigenvalue problem (5.5) yields

E

[
ξj

∞∑
i=1

ξihi

]
= λjhj ,

or
∞∑
i=1

E [ξjξi]hi = λjhj .

Taking inner product with hk, we have

∞∑
i=1

E [ξiξj ] 〈hi, hk〉Hk(D) = λj 〈hj , hk〉Hk(D) ,

or

E [ξkξj ] = λjδjk.

In practice, we also normalize the stochastic modes and write the gKLE of u as

u(x, ω) =

∞∑
i=1

√
λiξ̂i(ω)hi(x), (5.8)

where ξ̂ = 1√
λi
ξ = 1√

λi
〈u, hi〉Hk(D).

Obviously, gKLE has the desired error-minimizing property in the sense of ‖·‖L2(Ω→Hk(D)).

The bi-orthogonality of gKLE is shown in the following theorem.

Theorem 5.5. If the eigenvalues of the covariance function of the stochastic process u(x, ω) ∈

L2
(
Ω→ Hk (D)

)
are distinct, it admits a unique bi-orthogonal expansion (5.8), and λi and hi are

eigenvalue and eigenfunction solving (5.5).
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Proof. We only need to show that the spatial modes hi’s are eigenfunctions of A, i.e.,

Ahi = E
[
〈u, hi〉Hk(D) u

]
= E

[√
λiξ̂iu

]
= λihi,

where we have used the bi-orthogonality property of the spatial and stochastic modes in the second

and third equalities. Since we assume the eigenvalues are distinct, the above eigenfunction problem

admits an unique set of solutions up to signs. This proves the theorem.

Remark 5.1. When k = 0, A reduces to the covariance kernel. This can be seen by computing

directly

Ah(x) = E
[
〈u, h〉L2(D) u(x, ω)

]
= E

[∫
D
u(y, ω)h(y) dy u(x, ω)

]
= E

[∫
D
u(x, ω)u(y, ω)h(y) dy

]
=

∫
D
E [u(x, ω)u(y, ω)]h(y) dy

=

∫
D

Covu(x, y)h(y) dy.

Remark 5.2. When k ≥ 1, the corresponding eigenvalue problem (5.5) is no longer of Fredholm

integral equation type as demonstrated below for a simple case where k = 1 and d = 1.

Ah(x) = E
[
〈u, h〉H1(D) u(x, ω)

]
= E

[
〈u, h〉L2(D) u(x, ω)

]
+ E

[〈
∂u

∂x
,

dh

dx

〉
L2(D)

u(x, ω)

]

=

∫
D
E [u(x, ω)u(y, ω)]h(y) dy +

∫
D
E
[
u(x, ω)

∂u

∂x
(y, ω)

]
dh

dx
(y) dy

=

∫
D

Covu(x, y)h(y) dy +

∫
D
E
[
u(x, ω)

∂u

∂x
(y, ω)

]
dh

dx
(y) dy.
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5.3 Generalized DyBO for L2
(
Ω→ Hk (D)

)
Now we are ready to present our generalized DyBO for a SPDE solution u(·, t, ·) ∈ L2

(
Ω→ Hk (D)

)
.

∂ū

∂t
= E [Lu] , (5.9a)

∂U

∂t
= −UDT + E

[
L̃uY

]
, (5.9b)

dY

dt
= −YCT +

〈
L̃u, U

〉
Hk(D)

Λ−1
U , (5.9c)

where C(t) and D(t) can be solved from the linear system (2.21) via (2.22) with

G∗(u,U,Y) = Λ−1
U

〈
UT , E

[
L̃uY

]〉
Hk(D)

. (5.10)

When the stochastic modes Y are represented by gPC expansions as described in Sec. 2.3.2, i.e.,

Y = HA, the DyBO-gPC formulation is

∂ū

∂t
= E [Lu] , (5.11a)

∂U

∂t
= −UDT + E

[
L̃uH

]
A, (5.11b)

dA

dt
= −ACT +

〈
E
[
HT L̃u

]
, U
〉
Hk(D)

Λ−1
U , (5.11c)

where C(t) and D(t) can be solved from (2.22) with

G∗(u,U,Y) = Λ−1
U

〈
UT , E

[
L̃uH

]〉
Hk(D)

A. (5.12)

Remark 5.3. Comparing the generalized DyBO-gPC formulation (5.11) and the DyBO-gPC for-
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mulation (2.39) discussed in Chapter 2, we see that the essential difference is at the definition of

the inner product 〈·, ·〉. Therefore, the discussions regarding the bi-orthogonality preservation and

error propagation in Chapter 2 can be trivially extended to the generalized DyBO formulations here.

What’s more, the strategies proposed in the previous chapters to overcome some issues in numerical

implementations, such as eigenvalue crossing and removing/adding mode pairs, are also applicable

to the generalized formulations.

Remark 5.4. The appropriate definition of the inner product 〈·, ·〉 depends on the specific applica-

tions. Certainly, a different definition of the inner product gives a different convergence property

of the DyBO solution. It will also affect the number of terms that we need to keep in the gKLE,

which will in turn affect the computational cost. In general, if a stronger inner product is used in

the DyBO formulation, we will need to take more terms, i.e., larger m, which gives rise to higher

computational cost. From a numerical implementation perspective, such definition of inner products

can be encapsulated in a single subroutine. Without changing the rest of codes, different definitions

of inner products can be tested easily.
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Chapter 6

Generalizations of DyBO for a System of
Time-Dependent SPDEs

In the previous chapters, we have demonstrated both analytically and numerically the successes

of DyBO methods for a single time-dependent SPDE. However, many applications involve multi-

ple physical fields, or physical components, i.e., a system of SPDEs. For example, the standard

three-dimensional incompressible Navier-Stokes equations involve four physical components, three

velocity components along x-, y-, z-axis and pressure. When compressibility cannot be ignored,

e.g., in aerodynamics [4], two additional components, typically density and temperature fields, get

involved. For multiphase flow problems, combustion problems, chemical reaction flow problems

and the like, more equations are needed for additional physical components.

To demonstrate that real-world numerical simulations may continue to benefit from DyBO meth-

ods, we generalize DyBO methods for a system of time-dependent SPDEs in this chapter. More

precisely, we consider

∂ul
∂t

(x, t, ω) = Ll {u1, u2, · · · , uNs} , l = 1, 2, · · · , Ns, x ∈ D ⊂ Rd, t ∈ [0, T ], (6.1)

where eachLl is a stochastic differential operator acting on the physical components u1, u2, · · · , uNs .
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When no ambiguity arises, we simply use shorthand notation

u = {u1, u2, · · · , uNs} and Llu = Ll {u1, u2, · · · , uNs} .

For simplicity, we also assume periodic boundary conditions for all physical components and suit-

able initial conditions.

The development of our DyBO method for a system of SPDEs is similar to that for a single

SPDE in Chapter 2. In the next section, we just outline the derivation and highlight some key steps

and results. Appendix C provides more details. In Sec. 6.3, we consider 2D stochastic Rayleigh-

Benard convection as a test model for the generalized DyBO method. When more physical com-

ponents get involved or spatially three-dimensional simulations are under considerations, effective

parallelization strategies are necessary to achieve numerical results in reasonable time. Based on the

computational complexity analysis in Chapter 4.1, we propose a simple, yet powerful, paralleliza-

tion strategy for this numerical example.

6.1 DyBO for a System of SPDEs

Unlike a single SPDE, randomnesses introduced through initial conditions, boundary conditions,

stochastic forcing terms not only propagate in space and time, but also between different physical

components. Randomness introduced by one physical component may affect other components.

Generally, different physical components respond to randomness differently, so a common basis,

such as the ones used in gPC methods, may still work in some numerical simulation, but not work

most efficiently. The most compact representations in L2 sense are the KL expansions of each

physical component, which is our starting point to derive the DyBO formulation for system (6.1).
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Consider the ml-term truncated KL expansion of the lth physical component ul (x, t, ω),

ul = ūl +

ml∑
i=1

uliYli = ūl + UlY
T
l , (6.2)

where Ul is a row vector of functions of spatial coordinate x and temporal coordinate t,

Ul(x, t) = (ul1(x, t), ul2(x, t), · · · , ulml(x, t)) ∈ R1×ml ,

and Yl is a row vector of random variables,

Yl(ω, t) = (Yl1(ω, t), Yl2(ω, t), · · · , Ylml(ω, t)) ∈ R1×ml .

Remark 6.1. The physical components should not be confused with spatial modes. The former

refers to the stochastic solutions of a system of SPDEs and each component represents some phys-

ical quantity, e.g., x-velocity. The latter refers to the eigenfunctions in the KL expansion of some

stochastic processes. One physical component may have several physical modes.

By following the steps in the DyBO derivation of a single SPDE, i.e., plugging the expan-

sion (6.2) into the system (6.1), using anti-symmetrization Q and Q̃ operators to enforce the bi-

orthogonality of spatial and stochastic modes Ul and Yl of each physical component ul, and pro-

jecting the growth rate of spatial and stochastic modes ∂Ul
∂t and dYl

dt onto themselves, we arrive at

the generalized DyBO formulation for (6.1), for l = 1, 2, · · · , Ns,

∂ūl
∂t

= E [Llu] , (6.3a)

∂Ul

∂t
= −UlD

T
l + E

[
L̃luYl

]
, (6.3b)

dYl

dt
= −YlC

T
l +

〈
L̃lu, Ul

〉
Λ−1

Ul
, (6.3c)



139

where matrices Cl’s and Dl’s can be solved from linear systems

Cl −Λ−1
Ul
Q̃ (ΛUl

Cl) = 0, (6.4a)

Dl −Q (Dl) = 0, (6.4b)

DT
l + Cl = G∗l(u,Ul,Yl), (6.4c)

with G∗l(u,Ul,Yl) = Λ−1
Ul

〈
UT
l , E

[
L̃luYl

]〉
∈ Rml×ml .

For DyBO-gPC, the stochastic modes Yl are presented in the form of gPC expansions, i.e.,

Yl(ω, t) = H (ξ(ω)) Al,

where Al ∈ RNp×ml . The DyBO-gPC formulation is, for l = 1, 2, · · · , Ns,

∂ūl
∂t

= E [Llu] , (6.5a)

∂Ul

∂t
= −UlD

T
l + E

[
L̃luH

]
Al, (6.5b)

dAl

dt
= −AlC

T
l +

〈
E
[
HT L̃lu

]
, Ul

〉
Λ−1

Ul
, (6.5c)

where Cl(t) and Dl(t) can be solved from

G∗l(u,Ul,Yl) = Λ−1
Ul

〈
UT
l , E

[
L̃luYl

]〉
= Λ−1

Ul

〈
UT
l , E

[
L̃luH

]〉
Al. (6.6)

Please see Appendix C for details.

Various theoretical results in Chapter 2, such as preservation of bi-orthogonality and error anal-

ysis, can be trivially generalized to the generalized DyBO formulation for a SPDE system. Fur-

thermore, strategies proposed in Chapter 2.2 for several numerical implementation issues, such as
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eigenvalues crossing and adding new mode pairs, are also applicable here.

6.2 Stochastic Navier-Stokes Equations with Boussinesq Approxima-

tion

As a model to test numerically the proposed DyBO formulation for a SPDE system, we consider

the Navier-Stokes equations whose velocity components are driven by both stochastic forces and

buoyancy forces due to small density difference induced by temperature variations. Specifically,

we consider the stochastic flow in a unit square, i.e., D = [0, 1] × [0, 1], with periodic boundary

conditions on both spatial directions. See Fig. 6.1a.
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Figure 6.1: Stochastic flow driven by stochastic force and buoyancy force due to Boussinesq ap-
proximation. On the left: Diagram of the stochastic flow in an unit square. The gravity is downward
parallel to y-axis and periodic boundary conditions are assumed on both x and y directions. On the
right, the initial temperature field is plotted, while the initial vorticity is uniformly zero.

The temperature field is not spatially uniform and causes variations of the density field. Such

variations are small because we assume the thermal expansion coefficient is very small. The in-

duced buoyancy force may drive the flow motion in addition to external stochastic forces. Here, we

adopt the Boussinesq approximation to model such buoyancy force. The governing SPDE of such
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stochastic flow in Fig. 6.1a is the Stochastic Navier-Stokes equations (SNSE)

∂u

∂x
+
∂v

∂y
= 0, (6.7a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ ν∆u+ f1, (6.7b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ ν∆v + f2 + µgθ, (6.7c)

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
= κ∆θ, (6.7d)

where the meanings of symbols are tabulated below

u(x, t, ω), v(x, t, ω) - x and y components of velocity
p(x, t, ω) - Pressure with static hydraulic part removed

f1(x, t, ω), f2(x, t, ω) - x and y components of zero-mean the stochastic force f
θ(x, t, ω) - temperature

deterministic constant ν - Dynamic viscosity
deterministic constant κ - Thermal diffusivity
deterministic constant µ - Thermal expansion coefficient
deterministic constant g - The gravity of Earth

For the constants, we have chosen ν = 2.0 × 10−4, κ = 2.0 × 10−4 and scaled gravity µg =

11.31, partially following the paper by Ceniceros and Hou [21].

First glance, this numerical example is similar to the one in Sec. 4.2.2 except introducing temper-

ature field and gravity effect. However, the stochastic flow is very different from the one considered

previously for the following reason. We see that the buoyancy force depends on the gradient of

temperature field and is actually a stochastic force. In other words, the stochastic flow considered

in this section is driven by two kinds of stochastic forces: one “external” stochastic force injecting

randomness from the ambient environment into the unit square and one “internal” stochastic force

feeding randomness back to the system, from temperature component to vertical velocity compo-

nent. Such stochastic flow provides a severe test model for our generalized DyBO methods.

As we did in Sec. 4.2.2, it is convenient to consider the vorticity-stream formulation instead of
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the standard one for incompressible flows in 2D. By introducing the vorticity w = ∂v
∂x −

∂u
∂y and

stream function ψ satisfying u = ∂ψ
∂y and v = −∂ψ

∂x , the above pressure-velocity formulation of

SNSE can be transformed to the vorticity-stream formulation,

∂θ

∂t
+

(
u
∂

∂x
+ v

∂

∂y

)
θ = κ∆θ,

∂w

∂t
+

(
u
∂

∂x
+ v

∂

∂y

)
w = ν∆w +

(
∂f2

∂x
− ∂f1

∂y

)
+ µg

∂θ

∂x
,

−∆ψ = w,

u =
∂ψ

∂y
, v = −∂ψ

∂x
,

or cast in the standard form defined in the system of SPDEs (6.1),

∂θ

∂t
= Lθ {θ, w} = −

(
u
∂

∂x
+ v

∂

∂y

)
θ + κ∆θ, (6.9a)

∂w

∂t
= Lw {θ, w} = −

(
u
∂

∂x
+ v

∂

∂y

)
w + ν∆w +

(
∂f2

∂x
− ∂f1

∂y

)
+ µg

∂θ

∂x
, (6.9b)

where

−∆ψ = w, (6.10)

u =
∂ψ

∂y
= − ∂

∂y
∆−1w, (6.11)

v = −∂ψ
∂x

=
∂

∂x
∆−1w. (6.12)

We assume the randomness is given in terms of Np independent standard Gaussian random vari-

ables, ξ =
(
ξ1, ξ2, · · · , ξNp

)
, and the initial conditions are deterministic, i.e., θ(x, 0, ξ) = θ̊(x) and

w(x, 0, ξ) = ẘ(x). Let J be a multi-index set of finite size. We assume that the stochastic force has
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a finite gPC expansion, i.e.,

∂f2

∂x
− ∂f1

∂y
=
∑
α∈J

FαHα = FHT .

6.2.1 gPC Formulation of SNSE

Consider the finite-term gPC expansion of the stochastic solutions of SNSE (6.9),

θ = θ̄ + θHT , (6.13a)

w = w̄ + WHT , (6.13b)

where row vectors θ = (θα)α∈J and W = (wα)α∈J. By plugging the above expansion into SNSE

(6.9), we can obtain the gPC formulation of SNSE. However, the derivation is technical. We leave

the details in Appendix D and give the main result here.

∂θ̄

∂t
= κ∆θ̄ −D(ū,v̄)θ̄ −D(U,V)θ, (6.14a)

∂w̄

∂t
= ν∆w̄ −D(ū,v̄)w̄ −D(U,V)W + µg

∂θ̄

∂x
, (6.14b)

∂θ

∂t
= κ∆θ −D(ū,v̄)θ −D(U,V)θ̄ −

(
D(uα,vα)θβT

(H)
αβγ

)
1×γ

, (6.14c)

∂W

∂t
= ν∆W −D(ū,v̄)W −D(U,V)w̄ + µg

∂θ

∂x
−
(
D(uα,vα)wβT

(H)
αβγ

)
1×γ

+ F, (6.14d)

where D(·,·) (·) is the generalized material derivative defined in eqn. (D.9) in Appendix D.
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6.2.2 DyBO Formulation of SNSE

Now consider the finite-term KL expansion of the solutions of SNSE (6.9),

θ = θ̄ + θYT = θ̄ + θATHT , (6.15a)

w = w̄ + WZT = w̄ + WBTHT , (6.15b)

where row vectors θ = (θ1, θ2, · · · , θmθ) and W = (w1, w2, · · · , wmw), and matrices A ∈

RNP×mθ and B ∈ RNP×mw . We also write mode number vector m = (mθ,mW). By plug-

ging the above expansion into eqn. (6.5), we obtain the DyBO-gPC formulation for SNSE (6.9).

∂θ̄

∂t
= κ∆θ̄ −D(ū,v̄)θ̄ −D(U,V)

(
θATB

)
, (6.16a)

∂θ

∂t
= −θDT

θ + κ∆θ −D(ū,v̄)θ −D(U,V)θ̄BTA

−
[
D(ui,vi)θjBαiAβjAγkT

(H)
αβγ

]
1×k

, (6.16b)

dA

dt
= A

(
−CT

θ + κ
〈
∆θT , θ

〉
Λ−1

θ −
〈(

D(ū,v̄)θ
)T
, θ
〉

Λ−1
θ

)
−B

〈(
D(U,V)θ̄

)T
, θ
〉

Λ−1
θ −

[
T

(θ)
ijkBαiAβjT

(H)
αβγ

]
γ×k

Λ−1
θ , (6.16c)

∂w̄

∂t
=

(
ν∆w̄ −D(ū,v̄)w̄ + µg

∂θ̄

∂x

)
−D(U,V)W, (6.16d)

∂W

∂t
= −WDT

w +
[
ν∆W −D(ū,v̄)W −D(U,V)w̄

]
+ µg

∂θ

∂x
ATB

−
[
D(ui,vi)wjBαiBβjBγkT

(H)
αβγ

]
1×k

+ FB, (6.16e)

dB

dt
= B

(
−CT

w +
〈
ν∆WT −

(
D(ū,v̄)W

)T − (D(U,V)w̄
)T
, W

〉
Λ−1

W

)
+ µgA

〈
∂θT

∂x
, W

〉
Λ−1

W −
[
T

(W)
ijk BαiBβjT

(H)
αβγ

]
γ×k

Λ−1
W +

〈
FT , W

〉
Λ−1

W ,

(6.16f)
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where matrices Cθ and Dθ can be solved via eqn. (2.22) from G∗θ,

ΛθG∗θ = κ
〈
θT , ∆θ

〉
−
〈
θT , D(ū,v̄)θ

〉
−
〈
θT , D(U,V)θ̄

〉
BTA

−
[
T

(θ)
ijkBαiAβjAγlT

(H)
αβγ

]
k×l

, (6.17)

and matrices Cw and Dw can be solved via eqn. (2.22) from G∗w,

ΛWG∗w =
〈
WT , ν∆W −D(ū,v̄)W −D(U,V)w̄

〉
+

〈
WT , µg

∂θ

∂x

〉
ATB−

[
T

(W)
ijk BαiBβjBγlT

(H)
αβγ

]
k×l

+
〈
WT , F

〉
B.

(6.18)

See Appendix E for details.

6.3 Numerical Results

The stochastic force (4.16) in Sec. 4.2.2 is used in the following numerical example. Both the

gPC system and the DyBO-gPC system are numerically integrated by fourth-order RK method with

time step δt = 10−3. Unlike the stochastic flow only driven by the stochastic force in Sec. 4.2.2,

we found by numerical experiments a higher-resolution spatial grid is required to resolve some

fine structures. Thus, we use 256 × 256 spatial grid in the numerical simulations. Computations

on higher-resolution grid, 512 × 512, are also performed for the gPC method to verify numerical

convergence. The pseudo-spectral method with the 36th-order Fourier smoothing [54] is used to

compute spatial derivatives. For the DyBO method, the gPC solution at ∆T0 = 0.2 are used as

initial conditions. Different values of ∆T0, such as 0.1 and 0.15, have also been used and no

significant differences have been found. Here, we use the sparse truncation technique and choose
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the multi-index set

J =
{
α ∈ J3

8 and if |α| = 3, then α2 ≤ 2, α3 ≤ 1, α4 ≤ 1, α6 ≤ 2, α7 ≤ 1, α8 ≤ 1
}
\ {0} .

Both initial vorticity and temperature fields are assumed to be deterministic. Unlike the numerical

examples considered in Chapter 4, we are primarily interested in the combined effect of stochastic

force f and the stochastic buoyancy force, so the vorticity is assume to be zero initially. We adopt

the initial temperature field from [21],

θ(x, y, 0, ξ) = θ̊(x, y) =
1

2
Hδ1 (ylb(x)− y) +

1

2
Hδ1 (yub(x)− y) , (6.19)

where

ylb(x) =
1

2
− δ2 − δ3y0(x),

yub(x) =
1

2
+ δ2 + δ3y0(x),

y0(x) = 1 + sin

(
2π

(
x+

3

4

))
,

and the mollified Heaviside step function,

Hε(z) =
x+ ε

2ε
+

1

2π
sin
(πx
ε

)
.

In Fig. 6.1b, the initial temperature field θ̊ is plotted.

In the first numerical example, we choose mode number vector m = (07, 08). In Fig. 6.2,

STD fields of vorticity and temperature are plotted at time t = 1.0 with the results by DyBO in

the left column and ones by gPC in the right column. In Fig. 6.3 and Fig. 6.4, we also compare
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the spatial modes of vorticity and temperature, W and θ, given by DyBO and gPC at time t = 1.0,

respectively. All of these three figures confirm that the solutions given by DyBO are not only a good

approximation to the solution given by gPC, but also track directly the KL expansion of the SPDE

solution.

To further study the numerical convergence of our DyBO method, we choose another two mode

number vectors, m = (03, 04) and m = (09, 10), and repeat the DyBO computation. The relative

errors of vorticity and temperature STD fields as functions of time are plotted in Fig. 6.5a and

Fig. 6.5b, respectively. When the mode number vector is increased from m = (03, 04) to m =

(09, 10), the relative error of STD is brought down from 11.9% to 1.8% for vorticity and from

10.7% to 1.8% for temperature, respectively.

We also enact the adaptive strategy for adding and removing mode pairs described in Sec. 2.6.

Initially, the mode number vector is chosen as m0 = (05, 06). As we can see in the top two plots

in Fig. 6.5, good accuracy is preserved as mode pairs are automatically added when necessary (see

Fig. 6.5c for the evolution of numbers of vorticity and temperature mode pairs).

6.4 Parallelization

With the introduction of multiple physical components, the storage complexity analysis in Sec. 4.1.1

is modified to O
((
mNd

h +mNP

)
Ns

)
≈ O

(
mNsN

d
h

)
, where we have assumed that m terms are

retained in the KL expansion of each physical component, i.e., ml = m for l = 1, 2, · · · , Ns.

Clearly, even for moderate values of m and Ns and spatial grids, the size of memory required in

computations may exceed the in-core memory available to a single processor. Furthermore, the

wall time of integrating numerically the DyBO system may not give a reasonable time span for

practical applications. The situation gets much worse for spatially three-dimensional SPDEs, which

makes distributive parallel computations paramount and indispensable. Based on the computational
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Figure 6.2: STD of vorticity and temperature fields at time t = 1.0. Left column by DyBO and
right column by gPC
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Figure 6.3: Vorticity spatial modes at time t = 1.0. Left column by DyBO and right column by gPC
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Figure 6.4: Temperature spatial modes at time t = 1.0. Left column by DyBO and right column by
gPC



1510.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

 

 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

 

 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
6

7

8

9

10

11

 

 

m = [03,04]

m = [05,06]

m = [07,08]

m = [09,10]

Adaptive

m = [03,04]

m = [05,06]

m = [07,08]

m = [09,10]

Adaptive

Adaptive

(a) Vorticity
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5
x 10

−3

 

 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

 

 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

6

7

8

9

10

 

 

Adaptive

m = [03,04]

m = [05,06]

m = [07,08]

m = [09,10]

Adaptive

m = [03,04]

m = [05,06]

m = [07,08]

m = [09,10]

Adaptive

(b) Temperature

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

6

7

8

9

10

11

 

 

Vorticity

Temperature

(c) Number of mode pairs

Figure 6.5: L2 relative errors of vorticity and temperature STDs as functions of time. The evolutions
of the numbers of vorticity and temperature mode pairs are also given in the last figure.

complexity analysis in Sec. 4.1.2.2, we propose a simple, yet powerful, parallelization strategy

based on domain decomposition for stochastic Navier-Stokes equations.

6.4.1 Parallelization Strategy

From the computational complexity analysis in Sec. 4.1.2.2, the computation costs of the following

four terms dominate others,

[
D(ui,vi)θjBαiAβjAγkT

(H)
αβγ

]
1×k

,
[
D(ui,vi)wjBαiBβjBγkT

(H)
αβγ

]
1×k

,T(W),T(θ),

and bear prohibitive costs of O
(
m3Nd

h

)
. Without resorting to other fancy parallelization techniques,

the definitions of these terms actually suggest a simple strategy based on the domain decomposition

method. In what follows, we explain this in detail for the computation of the third-order tensor
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T(W) while the same strategy applies to other three terms similarly.

Suppose the whole spatial domainD is partitioned toQ disjoint subdomainsDq’s, i.e., ∪Qq=1Dq =

D and Dq1 ∩ Dq2 = ∅ for q1 6= q2. From the definition of T(W), each entry

T
(W)
ijk =

∫
D
wk

(
ui
∂wj
∂x

+ vi
∂wj
∂y

)
dx dy

=

Q∑
q=1

∫
Dq
wk

(
ui
∂wj
∂x

+ vi
∂wj
∂y

)
dx dy =

Q∑
q=1

T
(W,q)
ijk , (6.20)

where T(W,q) is the portion of T(W) on the qth subdomain.

Assume Q processors or computational nodes are available and the qth processor is assigned to

the subdomain Dq . On the qth processor, only the solutions constrained to the subdomain Dq, i.e.,

θ̄
∣∣
Di

, θ|Dq , w̄|Dq , and W|Dq are stored in in-core memory. Thus, each process can compute its

own portion of the third-order tensor T(W,q) via eqn. (6.20). The result on each subdomain will be

combined at the end to get T(W). The partition of domain may be problem-dependent. In Fig. 6.6,

we illustrate a partition evenly along x-axis.

D2D1 D3 D4

x

y

Process 01

Process 02 Process 03

Process 04

Figure 6.6: Illustration of spatial domain decomposition
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6.4.2 Implementation and Speedup

The above parallelization strategy is implemented via POSIX multi-threaded programming in C++

and hooked to the main Matlab code via Matlab external APIs. When the computations of the above

four terms are needed, the C++ codes are invoked by the main Matlab routine with necessary input

arguments passed. The C++ codes in turn spawn Q threads corresponding to Q subdomains and

collect the results from threads when computations on all threads finish. After that, the C++ codes

return the results to the main Matlab routine and computations continue in Matlab.

Since we use FFT in the pseudo-spectral method, the domain partition scheme illustrated in

Fig. 6.6 is adopted for the maximum performance of FFT. The simulations are conducted on the

Shared Heterogeneous Cluster (SHC) at Caltech Center for Advanced Computing Research (CACR).

Due to the limitations posted by available campus Matlab licenses, our simulation is constrained

onto a single computing node where total 8 computing cores are available from two AMD Opteron

2390 of 2.5 GHz.

For two spatial grids, 256 × 256 and 512 × 512, the wall times of a single RK iteration steps

are recorded and reported in Table 6.1 for serial computation and parallel computation with 2, 4, 6

and 8 cores, respectively. Speedups of parallel strategies are also reported in the same table. Two

mode number vectors m = (07, 08) and m = (19, 20) are used in the computation. Confirming our

complexity analysis, the speedup is more significant for larger spatial grid and more mode pairs. For

example, the computational time on 8 cores is reduced to 1/6 on 256 × 256 spatial grid compared

to that on a single core.

Remark 6.2. In our implementation, the domain is only virtually, or conceptually, partitioned and

each thread can still access the solution information on other subdomains. However, this can only be

regarded as a special case from multi-threaded implementation. The proposed parallelization strat-
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256× 256 512× 512
m = [7, 8] m = [19, 20] m = [7, 8] m = [19, 20]

# proc Time Speedup Time Speedup Time Speedup Time Speedup
Serial 1.6930 NA 19.529 NA 10.658 NA 71.372 NA

2 1.2618 1.34 11.150 1.75 6.8218 1.56 34.471 2.07
4 1.0216 1.66 6.9873 2.79 4.4738 2.38 20.600 3.46
6 0.9787 1.73 4.4082 4.43 3.7902 2.81 16.940 4.21
8 0.9197 1.84 3.1262 6.25 3.5095 3.03 15.182 4.70

Table 6.1: Speedups by proposed parallelization strategy for different spatial grids and mode number
vectors. Wall times of a single RK time step for different parameters are given in the second, fourth,
sixth, and eighth columns. All times are in seconds.

egy applies to the true distributive computing environment and can use popular Message Passage

Interface (MPI) protocol to collect results from computing nodes.
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Chapter 7

Generalized Stochastic Collocation
Formulation of DyBO Method
(DyBO-gSC)

In this chapter, we explore another possibility proposed in Sec. 2.3.3 to numerically represent

stochastic modes Y, i.e., generalized Stochastic Collocation (gSC), which results in the gSC version

of DyBO (DyBO-gSC).

7.1 Formulation and Algorithm

In previous chapters, we have discussed in length the DyBO-gPC method, where the stochastic

process Yi(ω, t) is projected onto a set of gPC basis functions H and we only need to deal in

numerical implementations with the gPC coefficients, Aαi’s, i = 1, 2, · · · ,m, α ∈ J. That is

Y(ξ, t) = HA(t),

where the gPC coefficient is given by

Aαi(t) = E [Yi(ξ, t)Hα(ξ)] .
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Without loss of generality, we have been assuming that independent random variables ξl’s have

identical distribution ρ(z) : R → [0, 1]. Therefore, the above computations of gPC coefficients are

essentially multivariate integrals with a weight induced by the distribution ρ(z), i.e.,

Aαi(t) =

∫
RNp

Yi(z, t)Hα(z)

Np∏
l=1

ρ(zl) dz,

where z =
(
z1, z2, · · · , zNp

)T ∈ RNp . Numerically, the above integral can be approximated with

high accuracy by quadrature rules. A quadrature rule K for integrals in RNp with weight function∏Np
l=1 ρ(zl) is just a combination of a cloud of points zr’s in RNp and associated weights wr’s,

which we write K =
{

(zr, wr) | zr ∈ RNp , wr ∈ R, r = 1, 2, · · · , |K|
}

. Under this rule, the gPC

coefficient

Aαi(t) ≈ K [YiHα] =

|K|∑
r=1

wrYi(zr, t)Hα(zr).

Therefore, instead of representing the stochastic modes Y in DyBO-gPC method by their gPC

coefficients A, alternatively, we can also use their values at quadrature points zr’s from quadrature

rule K, i.e., {Y(zr, t)}|K|r=1. Before presenting our DyBO method in this form, we first elaborate a

little on the construction of quadrature rules for multivariate integrals. For detailed discussions on

sparse grid and multivariate integral, see [78, 87, 50, 33, 116, 88, 46, 40, 18].

7.1.1 Sparse Grid

Naive construction of quadrature rules for multivariate integrals will soon suffer from the curse

of dimensionality as the number of random variables, Np, increases. For example, consider the

quadrature rule GNp constructed from the tensor product of one-dimensional quadrature rule Gq
1,

which produces the integral exact value if the integrand is a polynomial of order at most 2q−1. The
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total number of quadrature points in this tensor grid is

∣∣GNp

∣∣ = |Gq
1|
Np ,

i.e., it explodes exponentially as the number of random variable,Np, increases and incurs prohibitive

computational costs.

Instead of direct tensor product of one-dimensional quadrature rule Gq
1, Smolyak algorithm

[101] uses a linear combination of tensor products of one-dimensional quadrature rules with lower-

order exactness, i.e., Gp
1, p ≤ q, to construct the multivariate quadrature rule KNp . Since such

quadrature rule has a significantly smaller number of quadrature points compared to GNp , it is

called sparse grid.

When the distribution ρ(x) is symmetric, e.g., standard Gaussian distribution ρ(x) = 1√
2π
e−x

2/2

considered in this thesis, such symmetry can be further explored to reduce the number of quadrature

points [39, 88, 50]. In the numerical results presented in Sec. 7.2, we have used the sparse grid

KqNp accompanying Heiss and Winschel’s paper [50] and published at http://www.sparse-grids.de/.

Parameter q indicates the accuracy level of the sparse grid, i.e., the corresponding quadrature rule

integrates exactly polynomials of total order no more than 2q − 1. In Fig. 7.1, we compare tensor

grids G10
Np

and sparse grids K10
Np

for Np = 2, 3, respectively. Even for Np = 3, we see that sparse

grid has significantly less number of quadrature points (703 vs. 6859).

7.1.2 Generalized Stochastic Collocation Method (gSC)

With the introduction of sparse grid, the application of gSC method to SPDE is very similar to that

of MC method. Specifically, for each quadrature point zr in the sparse grid K, we solve numerically
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Figure 7.1: Sparse grid vs. tensor grid
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SPDE (1.1), i.e.,

∂u

∂t
(x, t, zr) = Lu(x, t, zr), x ∈ D ∈ Rd, t ∈ [0, T ], (7.1a)

u(x, 0, zr) = u0(x, zr), (7.1b)

B(u(x, t, zr),
∂u

∂x
(x, t, zr)) = 0, x ∈ ∂D. (7.1c)

After an collection of solutions {u(x, t, zr)}|K|r=1 has been obtained, various statistics of SPDE solu-

tion can be approximated by applying the quadrature rule K. For example, the mean and the second

moment of the stochastic solution can be computed as

E [u(x, t, ·)] ≈
|K|∑
r=1

u(x, t, zr)wr,

E
[
u(x, t, ·)2

]
≈
|K|∑
r=1

u(x, t, zr)
2wr.

7.1.3 gSC version of DyBO Method (DyBO-gSC)

As proposed earlier, we can represent the stochastic modes Y by their values on the sparse grid K

and replace the expectations in the DyBO formulation (2.28) by the corresponding quadrature rule,

which gives the gSC version of our DyBO method (DyBO-gSC),

∂ū

∂t
(x, t) =

|K|∑
r=1

wiLu(x, t, zr), (7.2a)

∂U

∂t
(x, t) = −U(x, t)D(t)T +

|K|∑
r=1

wrL̃u(x, t, zr)Y(zr, t), (7.2b)

dY

dt
(zr, t) = −Y(zr, t)C(t)T +

〈
L̃u(x, t, zr), U(x, t)

〉
ΛU(t)−1,

for r = 1, 2, · · · , |K| , (7.2c)



160

where C(t) and D(t) can be solved from (2.22) with

G∗(u,U,Y) = Λ−1
U

〈
UT ,

|K|∑
r=1

wrL̃u(x, t, zr)Y(zr, t)

〉
. (7.3)

The DyBO-gSC formulation of SPDE is again a combination of time-dependent determinis-

tic PDEs (7.2a) and (7.2b), and ODE system (7.2c). By using spatial and temporal discretization

schemes of our choices, the DyBO-gSC system (7.2) can be numerically integrated and various

statistics of the stochastic solution can be computed by applying the quadrature rule K. Discussions

regarding numerical implementations of our DyBO-gPC method in Chapter 2 apply similarly to the

DyBO-gSC method.

Comparing the DyBO-gSC method to the gSC method in Sec. 7.1.2, we identify the roots of

potential speedups. In the gSC method, we have to update in each time iteration |K| functions of

spatial variable x, i.e., {u(x, t, zr)}|K|r=1, although we may not need to update them simultaneously.

On the other hand, the DyBO-gSC method explores the inherent low-dimensional structure of the

stochastic solution and only updates in each time iteration m spatial modes U(x, t) with m � |K|

plus |K| row vectors {Y(zl, t)}
|K|
l=1 ⊂ R1×m. Thus, the speedups become more significant when

larger spatial grids and sparse grids are used, which will be demonstrated numerically in the next

section.

Comparing the DyBO-gSC formulation to the DyBO-gPC formulation in Sec. 2.3.2.2, we find

the major difference between these two versions of DyBO methods are with the evolution equations

of the stochastic modes. The ODEs of stochastic modes Y in the DyBO-gSC formulation inherit

certain properties of the gSC method and are partially decoupled in the following sense. When a

numerical integrator is applied, the values of stochastic modes Y at different quadrature points zl’s

can be updated independently and/or simultaneously in each time iteration. That’s to say, although
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DyBO-gSC formulation does not preserve the non-intrusiveness of the gSC method, it inherits the

easy parallelism of the gSC method.

7.2 Numerical Example — Stochastic Burgers Equation

In this section, we re-visit the numerical example of Burgers equation driven by stochastic force in

Sec. 3.3, i.e., eqn. (3.10), and apply the gSC method and the DyBO-gSC method. From eqn. (3.12),

we obtain the DyBO-gSC formulation of stochastic Burgers equation,

∂ū

∂t
= L̊ū−U

∂UT

∂x
, (7.4a)

∂U

∂t
= −UDT +

(
ν
∂2U

∂x2
− ∂ (ūU)

∂x

)
−
(
ui
∂uj
∂x

T
(Y)
ijk

)
1k

+ F

|K|∑
r=1

wrH
T (zr)Y(zr, t), (7.4b)

dY

dt
(zr, t) = Y(zr, t)

(
−CT +

〈
ν
∂2UT

∂x2
−
∂
(
ūUT

)
∂x

, U

〉
Λ−1

U

)

+
(
T

(U)
iik

)
1k

Λ−1
U −

(
Yi(zr, t)Yj(zr, t)T

(U)
ijk

)
1k

Λ−1
U

+ H(zr)
〈
FT , U

〉
Λ−1

U , for r = 1, 2, · · · , |K| , (7.4c)

where the third-order tensor

T
(Y)
ijk (t) =

|K|∑
r=1

wrYi(zr, t)Yj(zr, t)Yk(zr, t), for i, j, k = 1, 2, · · · ,m,

and matrices C(t) and D(t) can be solved from (2.22) with

ΛUG∗(u,U,Y) =

〈
UT , ν

∂2U

∂x2
− ∂ (ūU)

∂x

〉
−
(
T

(U)
ijl T

(Y)
ijk

)
lk

+
〈
UT , F

〉 |K|∑
r=1

wrH
T (zr)Y(zr, t).
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In the following numerical experiment, we have adopted ν = 5.0×10−3 and the same stochastic

force defined in eqn. (3.16). By using the pseudo-spectral method (δx = 1/256) and the fourth-

order Runge-Kutta integrator (δt = 5× 10−4), the above system is integrated to time t = T = 1.0,

where the initial conditions of the DyBO-gSC method are provided by the gSC method at time

t = ∆T0 = 0.15. In Sec. 3.3.3, we have chosen a set of Hermit polynomials of total order at

most 3. In the DyBO-gSC formulation, a triple product E [YiYjYk] is involved. To compare fairly

the performances of the gPC and gSC versions of DyBO methods for the same problem, we have

chosen the sparse grid K6
6 which computes exactly the integral of polynomials of total order at most

2q − 1 = 11 > 9 = 3 + 3 + 3. We also apply the gSC method on a much larger sparse grid K12
6

with 98837 quadrature points and consider the solution to be exact.

In Table 7.1, we report the relative errors of the mean and STD given by our DyBO-gSC method,

with m = 4, 8, 12, 16, 20, with respect to the gSC solution on K6
6 and the exact solution obtained

on K12
6 , respectively. In the last columns, we also report the wall times for different methods.

When m = 20, the DyBO-gSC method achieves a solution of comparable accuracy with respect

to the exact solution as the gSC solution. See the third and the last rows in the fourth and the fifth

columns. Therefore, our DyBO-gSC method achieves ∼ 2.45X speedup compared to gSC method.

gSC-K6
6 gSC-K12

6
Methods Mean (%) STD (%) Mean (%) STD (%) Time (min)

gSC NA NA 0.5037 1.0600 15.2
DyBO-gSC m=4 2.9181 5.3131 2.9951 5.2513 1.0
DyBO-gSC m=8 2.3662 3.9506 2.4804 3.9780 1.7
DyBO-gSC m=12 0.8225 1.7178 0.9640 1.9889 2.9
DyBO-gSC m=16 0.5481 0.8811 0.7009 1.3024 4.2
DyBO-gSC m=20 0.3900 0.5723 0.6511 1.1613 6.2

Table 7.1: Relative errors of statistical quantities computed by DyBO-gSC and gSC at time t = 1.0

Remark 7.1. We also repeat the same numerical experiment on a smaller spatial grid of size δx =

1/128. Since the number of spatial nodes is far less than that of the sparse grid K6
6, the speedup
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is nearly marginal, ∼ 1.53. We expect a much larger speedup for spatially two/three-dimensional

SPDEs, which will be considered in future work.

Remark 7.2. Comparing Table 7.1 and Table 3.1, we see that DyBO-gSC achieves less speedup

than DyBO-gPC. Since only limited numerical experiments are performed for the comparison be-

tween gPC and gSC versions of DyBO methods at this moment, we refrain from drawing a general

conclusion here.
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Chapter 8

Conclusions and Future Work

In this thesis we have proposed DyBO formulations and their numerical implementations for a

class of time-dependent SPDEs or a system of time-dependent SPDEs, whose solutions enjoy low-

dimensional structures in the sense of KL expansions. Unlike other traditional methods, such as

MC, qMC, gPC, and gSC, our DyBO methods explore such inherent low-dimensional structures

and give directly the stochastic solutions in bi-orthogonal forms, and essentially track the KL ex-

pansion. Thus, without additional post-processing steps, the DyBO methods reveal directly the most

important and intrinsic low-dimensional structures/dynamics of related physical processes. We have

proved rigorously the preservation of bi-orthogonality in DyBO methods and verify it numerically

in several challenging problems, such as stochastic Burgers equations and stochastic flows in 2D

unit square. Depending on the numerical representations of the stochastic modes, three versions of

DyBO methods have been proposed in this thesis, i.e., DyBO-MC, DyBO-gSC, DyBO-gPC.

Another important benefit associated with the preservation of bi-orthogonality and the explo-

ration of the low-dimensional structures in our DyBO methods is the significant savings of compu-

tational costs both in memory consumptions and computational times. Detailed complexity analysis

has been conducted for DyBO-gPC methods for two classes of time-dependent SPDEs. In practice,

we have observed speedups of up to 200 times compared to gPC methods. From the perspective of

RB and POD methods, DyBO methods construct the best set of a spatial basis on the fly without
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invoking any expensive offline computations in RB or pre-computation stages. From the perspec-

tive of adaptive gPC/gSC methods, our DyBO methods automatically use the linear combinations

of polynomial chaos basis as the best set of a stochastic basis on the flight without introducing any

heuristics to select multi-indices.

To the best of our knowledge, the DyBO methods presented in this thesis are the first systematic

attempts to directly target KL expansions and fully explore the bi-orthogonality. One may wonder

why such methodology has not been introduced earlier. This may be due to several challenges in

both theory and numerical implementations. From the theoretical consideration, one of the main

difficulties is how to eliminate the extra degrees of freedom induced by allowing both the spatial

and the stochastic basis to change in time. From the numerical implementation view point, with

the introduction of multiple spatial modes and stochastic modes and spatial and temporal discretiza-

tion schemes, the final form of discretized system can be very messy, daunting and error-prone in

numerical implementations. By extensively adopting vector/matrix/tensor notations, we can not

only present the DyBO formations in a very concise form, but also enable codings to proceed in

an intuitive way, especially for object-oriented programming languages. Temporarily freezing spa-

tial modes U or stochastic modes Y has been proposed to deal with the special moments when

eigenvalues cross each other. What’s more, sophisticated strategies based on error analysis have

been proposed to adaptively and dynamically add and remove spatial and stochastic mode pairs to

achieve both accuracy and efficiency. The effectiveness of such strategies have been demonstrated

in the various numerical examples in this thesis.

Certainly, other non-trivial issues may arise in applications of the DyBO methods to the industrial-

scale problems involving uncertainty. Exhaustive discussions of such issues beyond the scope of this

thesis. However, we have paid special attention to one of the important issues, i.e., parallelization of

DyBO-gPC method, as the first step to fully unleash the power of our DyBO methods. Based on the
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computational complexity analysis, we have proposed a parallelization scheme based on a domain

decomposition technique for the stochastic flow in 2D unit square driven by stochastic and buoyancy

forces. The effectiveness of such scheme has been verified on the Caltech Shared Heterogeneous

Cluster.

This thesis has already covered many important aspects of the DyBO methods from formula-

tions to numerical implementations. However, a number of issues associated with these innovative

methods have been left for future work. We compile a list of selected topics in the following.

Intrinsic DyBO Formulations. Re-examining the KL expansion of stochastic solutions reveals

that the spatial modes U can be viewed as one kind of parametrization of some m-dimensional

function space which is optimal in the sense of m-term truncation errors. Specifically, let’s consider

a second-order stochastic process of zero mean, u ∈ L2 (D × Ω), and its m-term truncated KL

expansion, i.e.,

u ≈ UYT ,

where we assume U are orthonormal, i.e.,
〈
UT , U

〉
= I. Let G ∈ Rm×m be any normal matrix,

i.e., GTG = GGT = I. Consider another decomposition of the stochastic process u,

u ≈ VZT ,

where V = UG, Z = YG. Obviously, this “new” decomposition provides the same level of accu-

racy as UYT does although the stochastic modes Z may not be orthogonal to each other any more.

In other words, any basis set of the m-dimensional function subspace span (U) ⊂ L2 (D) provides

a decomposition of the same accuracy level. Therefore, it is this function subspace that is intrin-

sically associated with the stochastic process u. We write this function space as Vm(t) ⊂ L2 (D),

where t emphasizes the dependence on time for time-dependent SPDEs. From this perspective, the
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spatial modes U(t) in the DyBO formulation are just one way to parametrize this intrinsic function

space and our DyBO formulation essentially describes the evolution of Vm(t) in time. The DyBO

formulation may also be given in terms of Vm(t) instead of any particular parameterization, which

provides an intrinsic formulation of DyBO methods.

From the perspective of the intrinsic formulation discussed above, the DO method by Sapsis and

Lermusiaux [97, 96] attempts to provide another parameterization of the function space Vm(t). At

the moment, we have some preliminary understanding regarding the relationship between the DO

method and our DyBO method. The intrinsic formulation in terms of the function space V(t) may

provide an unified framework for both methods and better understanding about their connections.

However, it is worth noticing that the DO method needs to compute covariance matrix from time to

time, which is expensive, while our method does not need to do so.

Multiscale Stochastic Problems. Besides randomness, many physical and engineering prob-

lems also involve ubiquitously multiscale phenomena. For example, the underground water/pollution

transport takes place simultaneously in many scales. Meanwhile, due to current technical limita-

tions, the properties of the underground medium cannot be known precisely and have to be modeled

by some stochastic processes to accommodate unavoidable uncertainty. The interaction of multi-

scale phenomena and randomnesses further complicates the problems under consideration. Previous

attempts [37, 6] only explore the multiscale structures, but ignore the low-dimensional structures.

By decomposing the stochastic multiscale solution u first in different spatial scales, i.e.,

u = u(c) + u(f),

where u(c) and u(f) are solutions on coarse and fine grids, respectively, we may apply the general-

ized DyBO methods for a system of SPDEs of u(c) and u(f). Such method may potentially explore
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both the low-dimensional and the multiscale structures of the stochastic solutions on different spa-

tial scales. Depending on problems under consideration, we may further restrict fine-scale solutions

onto coarse-grid cells, i.e.,

u(f) =

NH∑
i=1

φi · u(f)

where NH is the number of grid points in the coarse grid and {φi(x)}NHi=1 are a partition of unity

associated to the coarse grid on spatial domain D, i.e.,
∑NH

i=1 φi(x) ≡ 1, ∀x ∈ D. The general-

ized DyBO methods can be applied to a system of SPDEs of u(c) and φ1u
f , φ2u

f , · · · , φNHuf .

The SPDE corresponding to φiuf can be numerical simulated locally, which may further reduce

computational costs.

Short-term Memory. Throughout the thesis, we have assumed the number of random variables

involved in the time-dependent SPDEs does not change in time, which may not be true for certain

class of SPDEs. For example, such number constantly increases in Burgers Equation driven by

Brownian motion if the stochastic process is approximated like eqn. (3.16). Although our DyBO-

gPC method already explores the inherent low-dimensional structure, its efficiency deteriorates very

quickly due to the fast growth of the number of random variables, NP . On the other hand, the

Burgers equation is dissipative, so the stochastic solution of Burgers equation, as a functional of

Brownian motion, does not depend uniformly on the whole Brownian trajectory, i.e., the segment of

Brownian trajectory near the present time is more influential than the segments at early time. Such

short-term memory property may be further explored to provide more efficient representations of

stochastic solutions for this class of time-dependent SPDEs.

Refinements of Numerical Schemes for DyBO Formulations. The DyBO methods give a

peculiar formulation which is a combination of coupled PDEs and ODEs. There are a couple of

possible refinements which have not been considered in the numerical implementations in this the-
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sis. For example, different time steps may be used for PDEs and ODEs to improve the overall com-

putational efficiency. Furthermore, the lower-order spatial modes in KL expansions are generally

smoother than the higher-order spatial modes. These can be explored by discretizing lower-order

spatial modes on coarser spatial grids to achieve further computation reductions.
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Appendix A

Derivation of the gPC formulation of
Time-Evolutionary SPDE

In this appendix, we provide the detailed derivations of gPC formulation of time-evolutionary

SPDEs, i.e., (2.36). We start by substituting gPCE expansion (2.35)

u(x, t, ω) = v̄(x, t) + V(x, t)H(ξ)T ,

into SPDE (1.1a) and get

∂v̄

∂t
+
∂V

∂t
HT = Lu. (A.1)

Taking expectations on both sides, we get the first equation in (2.36a)

∂v̄

∂t
= E [Lu] ,

since E [H] = 0. Substituting the above equality into eqn. (A.1), we have

∂V

∂t
HT = Lu− E [Lu] = L̃u, (A.2)
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Multiplying both sides of the above equation by the row vector H from the right and taking expec-

tations, we have

∂V

∂t
= E

[
L̃uH

]
,

where we have used the orthogonality of the polynomial chaos basis H, i.e., E
[
HTH

]
= I. This

completes the derivation of (2.36).
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Appendix B

Proof of Corollary 2.8 and 2.9

In this appendix, we prove Corollary 2.8 and 2.9. Their proofs are quite similar.

Proof of Corollary 2.8. By the linearity of differential operator L̊, we have for the gPC solution,

v = v̄ + VHT ,

Lv = L̊v + f = L̊v̄ + L̊VHT + f,

where L̊V =
(
vα1 , vα2 , · · · , vαNP

)
αi∈J

is a row vector. By the linearity of expectation, we have

from the above equality

E [Lv] = L̊v̄ + f̄ ,

L̃v = L̊VHT + f − f̄ ,

E
[
L̃vH

]
= L̊V + F,

where f̄ = E [f ] and F = E [fH], and we have used E
[
HHT

]
= I to get the last equation. We
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have similar equations for the DyBO-gPC solution, u = ū+ UATHT ,

E [Lu] = L̊ū+ f̄ ,

L̃u = L̊UATHT + f − f̄ ,

E
[
L̃uH

]
= L̊UAT + F.

Eqn. (2.63a) follows immediately from the above equations. Substituting the above equations into

eqn. (2.62b), we obtain

∂ε

∂t
=
(
L̊UAT + F

)
AAT −

(
L̊V + F

)
+ UΛ−1

U

〈
UT , L̊UAT + F

〉 (
I−AAT

)
= L̊ε+ F

(
AAT − I

)
+ UΛ−1

U

〈
UT , L̊U

〉 (
AT −ATAAT

)
+ UΛ−1

U

〈
UT , F

〉 (
I−AAT

)
= L̊ε+ F

(
AAT − I

)
+ UΛ−1

U

〈
UT , F

〉 (
I−AAT

)
.

This completes the proof.

Proof of Corollary 2.9. Eqn. (2.66a) is obvious. To get eqn. (2.63b), we compute directly

∂ε

∂t
=
(
L̊UAT − L̊V

)
A + εD + V

(
AAT − I

) 〈
FT + AL̊UT , U

〉
Λ−1
U

= L̊ε+ εD + V
(
AAT − I

) 〈
FT , U

〉
Λ−1
U

+ V
(
AAT − I

)
A
〈
L̊UT , U

〉
Λ−1
U .

This completes the proof.
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Appendix C

Derivation of DyBO Methods for a
System of Time-Dependent SPDEs

In this appendix, we provide the details of the derivation of the DyBO formulation for the system of

time-dependent SPDEs (6.1). The derivation is similar to that in Sec. 2.1. The major difference is

that each physical component has its own KL expansion.

For l = 1, 2, · · · , Ns, consider the ml-term truncated KL expansion of the lth physical compo-

nent ul (x, t, ω),

ul = ūl +

ml∑
i=1

uliYli = ūl + UlY
T
l , (C.1)

where Ul is a row vector consisting of functions of spatial coordinate x and temporal coordinate t

Ul(x, t) = (ul1(x, t), ul2(x, t), · · · , ulml(x, t)) ∈ R1×ml ,

and Yl is a row vector of random variables

Yl(ω, t) = (Yl1(ω, t), Yl2(ω, t), · · · , Ylml(ω, t)) ∈ R1×ml .

We also write the mode numbers of different physical components as a row vector m = (m1, · · · ,mNs).

We call m a mode number vector. Substituting the expansion (C.1) into the lth equation of the SPDE
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system yields

∂ūl
∂t

+
∂Ul

∂t
YT
l + Ul

dYT
l

dt
= Llu, (C.2)

or equivalently,

∂ūl
∂t

+ Yl
∂UT

l

∂t
+

dYl

dt
UT
l = Llu. (C.3)

Taking expectations on both sides gives

∂ūl
∂t

= E [Llu] .

We write L̃lu = Llu−E [Llu]. Next, we multiply both sides of eqn. (C.2) by Yl from the right, take

expectations and use the orthogonality of stochastic processes Yl. Similarly, multiply both sides of

eq. (C.3) by Ul from the right, take inner products with Ul and use the orthogonality of Ul. At the

end, we arrive at the following system, for l = 1, 2, · · · , Ns,

∂ūl
∂t

= E [Llu] , (C.4a)

∂Ul

∂t
= E

[
L̃luYl

]
−UlE

[
dYT

l

dt
Yl

]
, (C.4b)

dYl

dt
ΛUl

=
〈
L̃lu, Ul

〉
−Yl

〈
∂UT

l

∂t
, Ul

〉
, (C.4c)

where ΛUl
= diag(

〈
UT
l , Ul

〉
) = (〈uli, ulj〉 δij)ij ∈ Rml×ml . By substituting eqn. (C.4c) into

eqn. (C.4b), we can eliminate the time derivative ∂UT
l

∂t from eqn. (C.4b). Similarly, by substituting

eqn. (C.4b) into eqn. (C.4c), we can eliminate the time derivative ∂YT
l

∂t from eqn. (C.4c). After these
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two steps, the system (C.4) becomes, for l = 1, 2, · · · , Ns,

∂ūl
∂t

= E [Llu] , (C.5a)

∂Ul

∂t
= UlΛ

−1
Ul

〈
UT
l ,

∂Ul

∂t

〉
+GUl

(u,Ul,Yl), (C.5b)

dYl

dt
= YlE

[
YT
l

dYl

dt

]
+GYl

(u,Ul,Yl), (C.5c)

where

GUl
(u,Ul,Yl) = ΠUl

(
E
[
L̃luYl

])
= E

[
L̃luYl

]
−UlΛ

−1
Ul

〈
UT
l , E

[
L̃luYl

]〉
, (C.6a)

GYl
(u,Ul,Yl) = ΠYl

(〈
L̃lu, Ul

〉)
Λ−1

Ul

=
〈
L̃lu, Ul

〉
Λ−1

Ul
−Yl

〈
E
[
L̃luYT

l

]
, Ul

〉
Λ−1

Ul
, (C.6b)

i.e.,GUl
(u,Ul,Yl) is the orthogonal compliment of E

[
L̃luYl

]
with respect to span(Ul) in L2 (D)

andGYl
(u,Ul,Yl) is the orthogonal compliment of

〈
L̃lu, Ul

〉
with respect to span(Yl) in L2 (Ω).

By using the anti-symmetrizationQ and the partial anti-symmetrization Q̃ operators, we can en-

force the bi-orthogonality, which is essential to the KL expansions. Finally, we obtain an equivalent

system from (C.5),

∂ūl
∂t

= E [Llu] , (C.7a)

∂Ul

∂t
= UlΛ

−1
Ul
Q̃
(〈

UT
l ,

∂Ul

∂t

〉)
+GUl

(u,Ul,Yl), (C.7b)

dYl

dt
= YlQ

(
E
[
YT
l

dYl

dt

])
+GYl

(u,Ul,Yl). (C.7c)

Let Ũl be orthogonal to Ul and
(
Ul, Ũl

)
form a complete set of orthogonal basis of L2 (D). To
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remove the term involving time derivative of Ul from the right hand side of eqn. (C.7b), we notice

the growth of the spatial mode Ul of the lth component can be written in the form of

∂Ul

∂t
= UlCl + ŨlC̃l, (C.8)

where Cl(t) ∈ Rml×ml and C̃l(t) ∈ R∞×ml . As a result, we get

〈
UT
l ,

∂Ul

∂t

〉
=
〈
UT
l , UlCl + ŨlC̃l

〉
=
〈
UT
l , Ul

〉
Cl +

〈
UT
l , Ũl

〉
C̃l =

〈
UT
l , Ul

〉
Cl.

Substituting this and eqn. (C.8) into the second equation of the system (C.7) gives,

UlCl + ŨlC̃l = UlΛ
−1
Ul
Q̃ (ΛUl

Cl) +GUl
(u,Ul,Yl),

or

Ul

(
Cl −Λ−1

Ul
Q̃ (ΛUl

Cl)
)

= GUl
(u,Ul,Yl)− ŨlC̃l,

where the left side is in span(Ul) ⊂ L2 (D) while the right side is in its orthogonal complement.

Thus, we have

Cl −Λ−1
Ul
Q̃ (ΛUl

Cl) = 0, (C.9a)

ŨlC̃l = GUl
(u,Ul,Yl). (C.9b)

Similarly, the growth of stochastic modes dYl
dt can be written in the form of

dYl

dt
= YlDl + ỸlD̃l, (C.10)
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where Dl(t) ∈ Rml×ml and D̃l(t) ∈ R∞×ml and

Dl −Q (Dl) = 0, (C.11a)

ỸlD̃l = GYl
(u,Ul,Yl). (C.11b)

To find additional equations for Cl and Dl, we substitute eqn. (C.8) and eqn. (C.10) into the lth

SPDE of system (6.1) to get

Ul

(
DT
l + Cl

)
YT
l + UlD̃

T
l ỸT

l + ŨlC̃lY
T
l = L̃lu.

Multiplying UT
l from the left and Yl from the right on both sides of the above equality and taking

both inner products 〈·, ·〉 and expectations E [·], we obtain

〈
UT
l , Ul

〉 (
DT
l + Cl

)
E
[
YT
l Yl

]
+
〈
UT
l , Ul

〉
D̃T
l E
[
ỸT
l Yl

]
+
〈
UT
l , Ũl

〉
C̃lE

[
YT
l Yl

]
=
〈
UT
l , E

[
L̃luYl

]〉
.

Again, by the bi-orthogonality condition, we can eliminate Ũl and Ỹl from the above and get

DT
l + Cl = G∗l(u,Ul,Yl), (C.12)

where G∗l(u,Ul,Yl) = Λ−1
Ul

〈
UT
l , E

[
L̃luYl

]〉
∈ Rml×ml . Thus, we have the following three
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matrix equations for Cl and Dl,

Cl −Λ−1
Ul
Q̃ (ΛUl

Cl) = 0, (C.13a)

Dl −Q (Dl) = 0, (C.13b)

DT
l + Cl = G∗l(u,Ul,Yl). (C.13c)

According to Theorem 2.2, matrices Cl and Dl can then be solved uniquely via eqn. (2.22) from

eqn. (C.13) as long as ‖uli‖L2(D) 6= ‖ulj‖L2(D) for i 6= j.

Combining the above discussions, we arrive at the DyBO formulation for the time-evolutionary

system of SPDEs (6.1), for l = 1, 2, · · · , Ns,

∂ūl
∂t

= E [Llu] , (C.14a)

∂Ul

∂t
= −UlD

T
l + E

[
L̃luYl

]
, (C.14b)

dYl

dt
= −YlC

T
l +

〈
L̃lu, Ul

〉
Λ−1

Ul
, (C.14c)

where matrices Cl’s and Dl’s can be solved from linear systems (C.13).

If the stochastic modes Yl are presented in the form of the gPC expansion, i.e.,

Yl(ω, t) = H (ξ(ω)) Al, (C.15)

where Al ∈ RNp×ml for l = 1, 2, · · · , Ns. then the DyBO-gPC formulation becomes, (l = 1, · · · , Ns),
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∂ūl
∂t

= E [Llu] , (C.16a)

∂Ul

∂t
= −UlD

T
l + E

[
L̃luH

]
Al, (C.16b)

dAl

dt
= −AlC

T
l +

〈
E
[
HT L̃lu

]
, Ul

〉
Λ−1

Ul
, (C.16c)

where Cl(t) and Dl(t) can be solved from

G∗l(u,Ul,Yl) = Λ−1
Ul

〈
UT
l , E

[
L̃luYl

]〉
= Λ−1

Ul

〈
UT
l , E

[
L̃luH

]〉
Al. (C.17)
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Appendix D

Derivations of gPC Formulation of
SNSE

In this appendix, we provide the details of the derivation of the gPC formulation of SNSE (6.9)

by using the vector/matrix/tensor notations introduced earlier. In addition to the gPC expansions

(6.13) of the temperature and vorticity components, we also need the gPC expansions of the stream

function and the velocity components in the x and y directions, i.e.,

ψ = ψ̄ +ψHT , (D.1a)

u = ū+ UHT , (D.1b)

v = v̄ + VHT , (D.1c)

where ψ = (ψα)α∈J, U = (uα)α∈J and V = (vα)α∈J are row vectors. Plugging the above

expansions into eqn. (6.10), we have

−∆ψ̄ −∆ψHT = w̄ + WHT ,
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or

−∆ψ̄ = w̄, (D.2)

−∆ψ = W. (D.3)

Similarly, by plugging the expansions (D.1) into eqn. (6.11) and eqn. (6.12), we have

ū =
∂ψ̄

∂y
= − ∂

∂y
∆−1w̄, (D.4)

v̄ = −∂ψ̄
∂x

=
∂

∂x
∆−1w̄, (D.5)

U =
∂ψ

∂y
= − ∂

∂y
∆−1W, (D.6)

V = −∂ψ
∂x

=
∂

∂x
∆−1W. (D.7)

Substituting the gPC expansions (6.13) into the first equation of SNSE (6.9a), we get

Lθ {w, θ} = −
(
ū+ UHT

)(∂θ̄
∂x

+
∂θ

∂x
HT

)
−
(
v̄ + VHT

)(∂θ̄
∂y

+
∂θ

∂y
HT

)
+ κ∆θ̄ + κ∆θHT

=

(
κ∆θ̄ − ū ∂θ̄

∂x
− v̄ ∂θ̄

∂y

)
+

(
κ∆θ − ū∂θ

∂x
− v̄ ∂θ

∂y
− ∂θ̄

∂x
U− ∂θ̄

∂y
V

)
HT −UHTH

∂θT

∂x
−VHTH

∂θT

∂y
.
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Taking expectations on both sides, we get

E [Lθ {w, θ}] =

(
κ∆θ̄ − ū ∂θ̄

∂x
− v̄ ∂θ̄

∂y

)
−U

∂θT

∂x
−V

∂θT

∂y
,

L̃θ {w, θ} =

(
κ∆θ − ū∂θ

∂x
− v̄ ∂θ

∂y
− ∂θ̄

∂x
U− ∂θ̄

∂y
V

)
HT

+ U
∂θT

∂x
+ V

∂θT

∂y
−UHTH

∂θT

∂x
−VHTH

∂θT

∂y
,

and

E
[
L̃θ {w, θ}H

]
=

(
κ∆θ − ū∂θ

∂x
− v̄ ∂θ

∂y
− ∂θ̄

∂x
U− ∂θ̄

∂y
V

)
− E

[
UHTH

∂θT

∂x
H

]
− E

[
VHTH

∂θT

∂y
H

]
=

(
κ∆θ − ū∂θ

∂x
− v̄ ∂θ

∂y
− ∂θ̄

∂x
U− ∂θ̄

∂y
V

)
−
((

uα
∂θβ
∂x

+ vα
∂θβ
∂y

)
T

(H)
αβγ

)
1×γ

.

Similarly, we have for the second equation of SNSE (6.9),

Lw (w, θ) = −
(
ū+ UHT

)(∂w̄
∂x

+
∂W

∂x
HT

)
−
(
v̄ + VHT

)(∂w̄
∂y

+
∂W

∂y
HT

)
+
(
ν∆w̄ + ν∆WHT

)
+ FHT +

(
µg
∂θ̄

∂x
+ µg

∂θ

∂x
HT

)
=

(
ν∆w̄ − ū∂w̄

∂x
− v̄ ∂w̄

∂y
+ µg

∂θ̄

∂x

)
+

(
ν∆W − ū∂W

∂x
− v̄ ∂W

∂y
− ∂w̄

∂x
U− ∂w̄

∂y
V + µg

∂θ

∂x

)
HT

−UHTH
∂WT

∂x
−VHTH

∂WT

∂y
+ FHT ,
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where the second term on the second line is due to the stochastic force f and the third term is due

to the buoyancy force. Thus,

E [Lw (w, θ)] =

(
ν∆w̄ − ū∂w̄

∂x
− v̄ ∂w̄

∂y
+ µg

∂θ̄

∂x

)
−U

∂WT

∂x
−V

∂WT

∂y
,

L̃w (w, θ) =

(
ν∆W − ū∂W

∂x
− v̄ ∂W

∂y
− ∂w̄

∂x
U− ∂w̄

∂y
V + µg

∂θ

∂x

)
HT + U

∂WT

∂x
+ V

∂WT

∂y

−UHTH
∂WT

∂x
−VHTH

∂WT

∂y
+ FHT ,

and

E
[
L̃w (w, θ) H

]
=

(
ν∆W − ū∂W

∂x
− v̄ ∂W

∂y
− ∂w̄

∂x
U− ∂w̄

∂y
V + µg

∂θ

∂x

)
− E

[
UHTH

∂WT

∂x
H

]
− E

[
VHTH

∂WT

∂y
H

]
+ F

=

(
ν∆W − ū∂W

∂x
− v̄ ∂W

∂y
− ∂w̄

∂x
U− ∂w̄

∂y
V + µg

∂θ

∂x

)
−
((

uα
∂wβ

∂x
+ vα

∂wβ

∂y

)
T

(H)
αβγ

)
1×γ

+ F.

Combining the above discussion, we derive the gPC formulation for SNSE (6.9),

∂θ̄

∂t
=

(
κ∆θ̄ − ū ∂θ̄

∂x
− v̄ ∂θ̄

∂y

)
−U

∂θT

∂x
−V

∂θT

∂y
, (D.8a)

∂w̄

∂t
=

(
ν∆w̄ − ū∂w̄

∂x
− v̄ ∂w̄

∂y
+ µg

∂θ̄

∂x

)
−U

∂WT

∂x
−V

∂WT

∂y
, (D.8b)

∂θ

∂t
=

(
κ∆θ − ū∂θ

∂x
− v̄ ∂θ

∂y
− ∂θ̄

∂x
U− ∂θ̄

∂y
V

)
−
((

uα
∂θβ
∂x

+ vα
∂θβ
∂y

)
T

(H)
αβγ

)
1×γ

, (D.8c)

∂W

∂t
=

(
ν∆W − ū∂W

∂x
− v̄ ∂W

∂y
− ∂w̄

∂x
U− ∂w̄

∂y
V + µg

∂θ

∂x

)
−
((

uα
∂wβ

∂x
+ vα

∂wβ

∂y

)
T

(H)
αβγ

)
1×γ

+ F. (D.8d)
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To further simplify notations, we introduce a slightly generalized version of the material derivative

of a scalar or row-vector field θ under scalar or row-vector velocity field u and v,

D(u,v)θ =



u
∂θ

∂x
+ v

∂θ

∂y
, u, v, θ are scalars,

u
∂θ

∂x
+ v

∂θ

∂y
, u, v are scalars and θ is a row vector,

∂θ

∂x
u+

∂θ

∂y
v, u, v are row vectors and θ is a scalar,

u
∂θT

∂x
+ v

∂θT

∂y
, u, v, θ are row vectors,

(D.9)

When u and v can be row vectors of the same length and the right-hand side is understood in the

usual sense of vector-vector multiplications or scalar-vector multiplications. By using this notation,

the above gPC formulation of SNSE can be compactly written as

∂θ̄

∂t
= κ∆θ̄ −D(ū,v̄)θ̄ −D(U,V)θ, (D.10a)

∂w̄

∂t
= ν∆w̄ −D(ū,v̄)w̄ −D(U,V)W + µg

∂θ̄

∂x
, (D.10b)

∂θ

∂t
= κ∆θ −D(ū,v̄)θ −D(U,V)θ̄ −

(
D(uα,vα)θβT

(H)
αβγ

)
1×γ

, (D.10c)

∂W

∂t
= ν∆W −D(ū,v̄)W −D(U,V)w̄ + µg

∂θ

∂x
−
(
D(uα,vα)wβT

(H)
αβγ

)
1×γ

+ F. (D.10d)
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Appendix E

Derivations of the DyBO Formulation of
SNSE

In this appendix, we provide the details of the derivations of the DyBO-gPC formulation of SNSE

(6.9). Plugging the expansion (6.13b) into the incompressibility condition (6.10), we have

−∆ψ = w̄ + WZT , (E.1)

which implies an expansion ψ = ψ̄ +ψZT with

−∆ψ̄ = w̄,

−∆ψ = W.

From the above expansion of ψ, it is easy to get expansions of u and v from eqn. (6.11) and

eqn. (6.12),

u =
∂ψ̄

∂y
+
∂ψ

∂y
ZT = ū+ UZT , i.e., ū =

∂ψ̄

∂y
= − ∂

∂y
∆−1w̄, U =

∂ψ

∂y
= − ∂

∂y
∆−1W,

v = −∂ψ̄
∂x
− ∂ψ

∂x
ZT = v̄ + VZT , i.e., v̄ = −∂ψ̄

∂x
=

∂

∂x
∆−1w̄, V = −∂ψ

∂x
=

∂

∂x
∆−1W.

Note that all these expansions of ψ, u and v are not necessarily KL expansions.
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First, we derive the equation for the temperature. Substituting the KL expansion into eqn. (6.9b),

we have

Lθ {θ, w} = −
(
ū+ UBTHT

)(∂θ̄
∂x

+
∂θ

∂x
ATHT

)
−
(
v̄ + VBTHT

)(∂θ̄
∂y

+
∂θ

∂y
ATHT

)
+ κ

(
∆θ̄ + ∆θATHT

)
= −

(
ū
∂θ̄

∂x
+ v̄

∂θ̄

∂y

)
+ κ∆θ̄ +

[
κ∆θ −

(
ū
∂θ

∂x
+ v̄

∂θ

∂y

)]
ATHT

−
(
∂θ̄

∂x
U +

∂θ̄

∂y
V

)
BTHT −UBTHTHA

∂θT

∂x
−VBTHTHA

∂θT

∂y
.

Taking expectations on both sides yields

E [Lθ {θ, w}] = −
(
ū
∂θ̄

∂x
+ v̄

∂θ̄

∂y

)
+ κ∆θ̄ −UBTA

∂θT

∂x
−VBTA

∂θT

∂y
,

L̃θ {θ, w} =

[
κ∆θAT −

(
ū
∂θ

∂x
+ v̄

∂θ

∂y

)
AT −

(
∂θ̄

∂x
U +

∂θ̄

∂y
V

)
BT

]
HT

+ UBTA
∂θT

∂x
+ VBTA

∂θT

∂y
−UBTHTHA

∂θT

∂x
−VBTHTHA

∂θT

∂y
,

and

E
[
L̃θ {θ, w}H

]
= κ∆θAT −

(
ū
∂θ

∂x
+ v̄

∂θ

∂y

)
AT −

(
∂θ̄

∂x
U +

∂θ̄

∂y
V

)
BT

− E
[
UBTHTHA

∂θT

∂x
H

]
− E

[
VBTHTHA

∂θT

∂y
H

]
= κ∆θAT −

(
ū
∂θ

∂x
+ v̄

∂θ

∂y

)
AT −

(
∂θ̄

∂x
U +

∂θ̄

∂y
V

)
BT

−
[(
ui
∂θj
∂x

+ vi
∂θj
∂y

)
BαiAβjT

(H)
αβγ

]
1×γ

.



188

Further, we plug in the above equality into the inner product. We get

〈
θT , E

[
L̃θ {θ, w}H

]〉
= κ

〈
θT , ∆θ

〉
AT −

〈
θT , ū

∂θ

∂x
+ v̄

∂θ

∂y

〉
AT −

〈
θT ,

∂θ̄

∂x
U +

∂θ̄

∂y
V

〉
BT

−
[〈
θk, ui

∂θj
∂x

+ vi
∂θj
∂y

〉
BαiAβjT

(H)
αβγ

]
k×γ

= κ
〈
θT , ∆θ

〉
AT −

〈
θT , ū

∂θ

∂x
+ v̄

∂θ

∂y

〉
AT −

〈
θT ,

∂θ̄

∂x
U +

∂θ̄

∂y
V

〉
BT

−
[
T

(θ)
ijkBαiAβjT

(H)
αβγ

]
k×γ

,

where the third-order mw-by-mθ-by-mθ tensor

T(θ) =

(〈
θk, ui

∂θj
∂x

+ vi
∂θj
∂y

〉)
ijk

.

From eqn. (6.5), we have the DyBO-gPC formulation for the temperature component,

∂θ̄

∂t
= κ∆θ̄ −

(
ū
∂θ̄

∂x
+ v̄

∂θ̄

∂y

)
−UBTA

∂θT

∂x
−VBTA

∂θT

∂y
,

∂θ

∂t
= −θDT

θ + κ∆θ −
(
ū
∂θ

∂x
+ v̄

∂θ

∂y

)
−
(
∂θ̄

∂x
U +

∂θ̄

∂y
V

)
BTA

−
[(
ui
∂θj
∂x

+ vi
∂θj
∂y

)
BαiAβjAγkT

(H)
αβγ

]
1×k

,

dA

dt
= A

(
−CT

θ + κ
〈
∆θT , θ

〉
Λ−1

θ −
〈
ū
∂θT

∂x
+ v̄

∂θT

∂y
, θ

〉
Λ−1

θ

)
−B

〈
∂θ̄

∂x
UT +

∂θ̄

∂y
VT , θ

〉
Λ−1

θ −
[
T

(θ)
ijkBαiAβjT

(H)
αβγ

]
γ×k

Λ−1
θ ,

where matrices Cθ and Dθ can be solved via eqn. (2.22) from G∗θ,

ΛθG∗θ = κ
〈
θT , ∆θ

〉
−
〈
θT , ū

∂θ

∂x
+ v̄

∂θ

∂y

〉
−
〈
θT ,

∂θ̄

∂x
U +

∂θ̄

∂y
V

〉
BTA

−
[
T

(θ)
ijkBαiAβjAγlT

(H)
αβγ

]
k×l

.
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Next, we derive the DyBO equations for the vorticity component. Substituting the KL expansion

into eqn. (6.9a), we have

Lw {θ, w} = −
(
ū+ UBTHT

)(∂w̄
∂x

+
∂W

∂x
BTHT

)
−
(
v̄ + VBTHT

)(∂w̄
∂y

+
∂W

∂y
BTHT

)
+ ν

(
∆w̄ + ∆WBTHT

)
+ FHT + µg

∂θ̄

∂x
+ µg

∂θ

∂x
ATHT

=

(
ν∆w̄ − ū∂w̄

∂x
− v̄ ∂w̄

∂y
+ µg

∂θ̄

∂x

)
+

[
ν∆W −

(
ū
∂W

∂x
+ v̄

∂W

∂y

)
−
(
∂w̄

∂x
U +

∂w̄

∂y
V

)]
BTHT + µg

∂θ

∂x
ATHT

−UBTHTHB
∂WT

∂x
−VBTHTHB

∂WT

∂y
+ FHT .

Taking expectations on both sides, we have

E [Lw {θ, w}] =

(
ν∆w̄ − ū∂w̄

∂x
− v̄ ∂w̄

∂y
+ µg

∂θ̄

∂x

)
−U

∂WT

∂x
−V

∂WT

∂y
,

L̃w {θ, w} =

[
ν∆W −

(
ū
∂W

∂x
+ v̄

∂W

∂y

)
−
(
∂w̄

∂x
U +

∂w̄

∂y
V

)]
BTHT + µg

∂θ

∂x
ATHT

U
∂WT

∂x
+ V

∂WT

∂y
−UBTHTHB

∂WT

∂x
−VBTHTHB

∂WT

∂y
+ FHT ,

and

E
[
L̃w {θ, w}H

]
=

[
ν∆W −

(
ū
∂W

∂x
+ v̄

∂W

∂y

)
−
(
∂w̄

∂x
U +

∂w̄

∂y
V

)]
BT + µg

∂θ

∂x
AT

− E
[
UBTHTHB

∂WT

∂x
H

]
− E

[
VBTHTHB

∂WT

∂y
H

]
+ F

=

[
ν∆W −

(
ū
∂W

∂x
+ v̄

∂W

∂y

)
−
(
∂w̄

∂x
U +

∂w̄

∂y
V

)]
BT + µg

∂θ

∂x
AT

−
[(
ui
∂wj
∂x

+ vi
∂wj
∂y

)
BαiBβjT

(H)
αβγ

]
1×γ

+ F.
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Plugging the above equality into the inner product gives

〈
WT , E

[
L̃w {θ, w}H

]〉
=

〈
WT , ν∆W −

(
ū
∂W

∂x
+ v̄

∂W

∂y

)
−
(
∂w̄

∂x
U +

∂w̄

∂y
V

)〉
BT

+

〈
WT , µg

∂θ

∂x

〉
AT −

[〈
wk, ui

∂wj
∂x

+ vi
∂wj
∂y

〉
BαiBβjT

(H)
αβγ

]
k×γ

+
〈
WT , F

〉
=

〈
WT , ν∆W −

(
ū
∂W

∂x
+ v̄

∂W

∂y

)
−
(
∂w̄

∂x
U +

∂w̄

∂y
V

)〉
BT

+

〈
WT , µg

∂θ

∂x

〉
AT −

[
T

(W)
ijk BαiBβjT

(H)
αβγ

]
k×γ

+
〈
WT , F

〉
,

where the third-order mw-by-mw-by-mw tensor

T(W) =

(〈
wk, ui

∂wj
∂x

+ vi
∂wj
∂y

〉)
ijk

. (E.2)

From eqn. (6.5), we have the DyBO-gPC formulation for the vorticity component,

∂w̄

∂t
=

(
ν∆w̄ − ū∂w̄

∂x
− v̄ ∂w̄

∂y
+ µg

∂θ̄

∂x

)
−U

∂WT

∂x
−V

∂WT

∂y
,

∂W

∂t
= −WDT

w +

[
ν∆W −

(
ū
∂W

∂x
+ v̄

∂W

∂y

)
−
(
∂w̄

∂x
U +

∂w̄

∂y
V

)]
+ µg

∂θ

∂x
ATB[(

ui
∂wj
∂x

+ vi
∂wj
∂y

)
BαiBβjBγkT

(H)
αβγ

]
1×k

+ FB,

dB

dt
= B

(
−CT

w +

〈
ν∆WT −

(
ū
∂WT

∂x
+ v̄

∂WT

∂y

)
−
(
∂w̄

∂x
UT +

∂w̄

∂y
VT

)
, W

〉
Λ−1
W

)
+ µgA

〈
∂θT

∂x
, W

〉
Λ−1
W −

[
T

(W)
ijk BαiBβjT

(H)
αβγ

]
γ×k

Λ−1
W +

〈
FT , W

〉
Λ−1
W ,
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where matrices Cw and Dw can be solved via eqn. (2.22) from G∗w,

ΛWG∗w =

〈
WT , ν∆W −

(
ū
∂W

∂x
+ v̄

∂W

∂y

)
−
(
∂w̄

∂x
U +

∂w̄

∂y
V

)〉
+

〈
WT , µg

∂θ

∂x

〉
ATB−

[
T

(W)
ijk BαiBβjBγlT

(H)
αβγ

]
k×l

+
〈
WT , F

〉
B.

Combining the above discussion and using the generalized material derivative (D.9), we arrive at

the DyBO-gPC formulation for SNSE (6.9),

∂θ̄

∂t
= κ∆θ̄ −D(ū,v̄)θ̄ −D(U,V)

(
θATB

)
, (E.3a)

∂θ

∂t
= −θDT

θ + κ∆θ −D(ū,v̄)θ −D(U,V)θ̄BTA

−
[
D(ui,vi)θjBαiAβjAγkT

(H)
αβγ

]
1×k

, (E.3b)

dA

dt
= A

(
−CT

θ + κ
〈
∆θT , θ

〉
Λ−1

θ −
〈(

D(ū,v̄)θ
)T
, θ
〉

Λ−1
θ

)
−B

〈(
D(U,V)θ̄

)T
, θ
〉

Λ−1
θ −

[
T

(θ)
ijkBαiAβjT

(H)
αβγ

]
γ×k

Λ−1
θ , (E.3c)

∂w̄

∂t
=

(
ν∆w̄ −D(ū,v̄)w̄ + µg

∂θ̄

∂x

)
−D(U,V)W, (E.3d)

∂W

∂t
= −WDT

w +
[
ν∆W −D(ū,v̄)W −D(U,V)w̄

]
+ µg

∂θ

∂x
ATB

−
[
D(ui,vi)wjBαiBβjBγkT

(H)
αβγ

]
1×k

+ FB, (E.3e)

dB

dt
= B

(
−CT

w +
〈
ν∆WT −

(
D(ū,v̄)W

)T − (D(U,V)w̄
)T
, W

〉
Λ−1

W

)
+ µgA

〈
∂θT

∂x
, W

〉
Λ−1

W −
[
T

(W)
ijk BαiBβjT

(H)
αβγ

]
γ×k

Λ−1
W +

〈
FT , W

〉
Λ−1

W , (E.3f)

where matrices Cθ and Dθ can be solved via eqn. (2.22) from G∗θ,

ΛθG∗θ = κ
〈
θT , ∆θ

〉
−
〈
θT , D(ū,v̄)θ

〉
−
〈
θT , D(U,V)θ̄

〉
BTA

−
[
T

(θ)
ijkBαiAβjAγlT

(H)
αβγ

]
k×l

, (E.4)
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and matrices Cw and Dw can be solved via eqn. (2.22) from G∗w,

ΛWG∗w =
〈
WT , ν∆W −D(ū,v̄)W −D(U,V)w̄

〉
+

〈
WT , µg

∂θ

∂x

〉
ATB−

[
T

(W)
ijk BαiBβjBγlT

(H)
αβγ

]
k×l

+
〈
WT , F

〉
B.
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