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Abstract 

The research comprising this thesis is primarily concerned with applications of 

computational protein design (CPD) to red fluorescent proteins (FPs); it is presented in 

three chapters divided into two parts. Part One, Chapters 2 & 3, of the thesis focuses on 

the application of rational design and CPD to the core residues of FPs. Chapter 2 applies 

CPD to the well known red fluorescent protein mCherry. Design hypotheses in this work 

were driven by a desire to red-shift the fluorescence emission of the parent protein. 

Chapter 3 takes the most successful results from the mCherry system and attempts to 

applies these results to the far-red FP mPlum. These two proteins, mCherry and mPlum, 

share a directed evolution parent, mRFP1. Part Two, consisting of Chapter 4, presents the 

beginnings of a comprehensive study into the applications CPD for designing FP 

surfaces. The system used is based on DsRed, the oligomeric parent of monomer 

mCherry. 
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Introduction 

Fluorescent proteins (FPs) are a dream system for the biophysical protein chemist. These 

molecules marry the studies of quantum mechanisms, kinetics, protein chemistry, and 

spectroscopy into an intellectually engaging blend of experimental phenomena. Not only 

is there a wealth of information about these proteins and their experimental systems, but 

there is also always a new wealth of information to collect in any FP project. The vibrant 

colors and predictable behaviors of these proteins make them a joy to work worth, as 

well. 

In 2008, the Nobel Prize in Chemistry was awarded “for the discovery and development 

of the green fluorescent protein, GFP” [1]. This prize signified the importance of FPs in 

research science. These proteins share a common “β-can” motif with a coaxial α-helix 

located within an 11-stranded β-barrel [2, 3]. A chromophore located in the middle of this 

helix is responsible for the fluorescent properties that make these proteins so useful for 

in vivo labeling experiments. This chromophore is formed by autocatalytic cyclization of 

a tripeptide sequence (Xaa-Tyr-Gly) in the core of the β-barrel fold  [3]. Although 

variations exist, the chromophore comes mainly in green and red forms [3, 4]. The same 

key steps are believed to underlie the initial chromophore formation process regardless of 

the final covalent structure  [5, 6]. 

Accordingly, the most salient chemical feature for all colors of FPs is this ability to 

undergo autocatalytic backbone cyclization resulting in the formation of a fluorescent 

chromophore. No external cofactors or enzymes are needed to obtain fluorescence during 

heterologous expression of these proteins [2, 3].  The biosynthesis of this chromophore is 

therefore completely encoded in the primary structure of these proteins.  The mechanism 
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of chromophore formation has been intensely studied, and the knowledge gained has 

been successfully applied toward the rational engineering of FP variants with novel 

properties [7-9]. 

With regards to this mechanism, the most thoroughly characterized contributor to rapid 

autocatalytic backbone cyclization in GFP is the presence of a buried lysine or arginine 

residue [10].  This residue, which is conserved as an arginine in all known FPs [3], 

contributes a buried positive charge to the area near the chromophore-forming residues of 

the central helix.  In GFP, this R96 residue has been successfully replaced by a lysine 

(GFP-R96K) with no significant effect on the rate of fluorescence development after 

overnight expression in E. coli [10].  Furthermore, rapid generation of fluorescence was 

recovered when the Q183R mutation was incorporated into GFP-R96A [10].  These 

results were confirmed by crystallography whereby the position 96-adjacent R183 residue 

was shown to fulfill all H-bonds of the wild-type R96 to the chromophore and to occupy 

the internal pocket created by the R96A mutation [10]. 

It is still not completely clear how the universally conserved glutamate residue in FPs 

contributes to the mechanism of chromophore formation.  A variety of compensating and 

tolerated mutations have been investigated for the corresponding E222 in GFP, such as 

E222Q [11, 12] and E222G [13].  In fact, a colorless and non-fluorescent GFP homolog 

from Aequorea coerulescens was made fluorescent by an E222G mutation discovered 

through random mutagenesis [14].  The optimized fluorescent mutant, termed aceGFP, 

has 92% sequence identity with GFP from A. victoria, and reversal of the required E222G 

mutation severely compromises chromophore maturation in this mutant (only ~3% of 

soluble aceGFP-G222E reaches the mature state) [14].   
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However, it is clear that E222 in GFP has some effect on the environment inside the GFP 

core.  For instance, the E222G mutation in A. victoria GFP lowers the pKa of the mature 

chromophore to the point that the deprotonated chromophore is the only species detected 

at pH 7.0 [2, 13]. Additionally, Wachter et al. reported that the maturation rate of GFP-

E222Q increases dramatically with increasing pH, whereas the maturation rate of wild-

type GFP is constant above pH 8.0 [11].  They interpreted this change in pH dependence 

to mean that E222 effectively lowers the pKa of the nucleophilic amide nitrogen involved 

in backbone cyclization. 

The sequence dependence of chromophore formation for core residues in the 11-stranded 

β-barrel fold of FPs has never been intentionally investigated in an hypothesis-directed 

experimental fashion [2, 3].  Countless mutagenesis protocols have deeply inquired into 

what residue substitutions allow chromophore formation while attenuating various 

properties of the protein [4], such as maturation rate [15], stability [16], emission 

wavelength [17-19], and fluorescence brightness [20, 21].  However, very few if any 

reports have addressed what core substitutions maintain protein stability but disallow 

chromophore formation at positions other than the catalytic residues or those immediately 

adjacent to the chromogenic tripeptide [10-12, 22, 23]. 

Red fluorescent proteins (RFPs) derived from organisms in the class Anthozoa, in 

particular, have gained widespread notoriety through their applications to cell biology [3, 

24, 25].  For example, these proteins have been used as markers of gene expression, 

expressed as fusion partners for the tracking of intracellular endogenous protein-RFP 

chimeras, and complemented with other FPs for use in fluorescence resonance energy 

transfer (FRET) experiments [3, 25, 26].  The availability of monomeric versions of these 
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proteins has even further bolstered their worth as fusion tags and vaulted them into 

routine experimental use [24, 27]. 

In the past, a variety of techniques for large-scale random mutagenesis and screening 

have been used to push the emission wavelength of RFPs to its far-red limits [16, 24, 28].  

Starting from different wild-type precursors, these procedures have produced some of the 

best and brightest mutants to date:  mCherry [16], mKate [29], mNeptune [30], and 

mPlum [10].  However, these approaches were based on the exploration of a sequence 

space that by design differs from the template by single nucleotide mutations.  The limits 

of these methods can be circumvented by a rational approach using computational protein 

design (CPD).  This approach can be used to identify focused combinatorial libraries of 

mutants, and these libraries correspond to sequences that satisfy a given three-

dimensional structure according to a molecular dynamics based force field [31, 32]. 

Wild-type RFPs are typically obligate oligomers [3, 26]. Generation of monomeric FPs 

for molecular tagging is usually accomplished by a disrupt-and-recover approach.  This 

approach starts with the sampling of mutations that disrupt known protein-protein 

interfaces [27].  However, disruption often leads to significant interference with the 

fluorescent properties of an FP, making it necessary to search for mutations to recover 

fluorescence [27].  Moreover, this approach can be tedious because full recovery may 

require multiple rounds of directed evolution and screening, and in some cases, may 

never be achievable. Here as well, rational design-based approaches guided by the use of 

CPD can benefit the course of this process. 

The research comprising this thesis is presented in three chapters divided into two parts. 

Part One, Chapters 2 & 3, of the thesis focuses on the application of rational design and 
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CPD to the core residues of FPs. Chapter 2 applies CPD to the well known red 

fluorescent protein mCherry. Design hypotheses in this work were driven by a desire to 

red-shift the fluorescence emission of the parent protein. Chapter 3 takes the most 

successful results from the mCherry system and attempts to applies these results to the 

far-red FP mPlum. These two proteins, mCherry and mPlum, share a directed evolution 

parent, mRFP1. Part Two, consisting of Chapter 4, presents the beginnings of a 

comprehensive study into the applications CPD for designing FP surfaces. The system 

used is based on DsRed, the oligomeric parent of monomer mCherry. Professional and 

personal acknowledgments conclude the thesis. 
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Abstract 

The longer emission wavelengths of red fluorescent proteins (RFPs) make them 

attractive for whole-animal imaging because cells are more transparent to red light. 

Although several useful RFPs have been developed using directed evolution, the 

quest for further red-shifted and improved RFPs continues. Herein, we report a 

structure-based rational design approach to red shift the fluorescence emission of 

RFPs. We applied a combined computational and experimental approach that uses 

computational protein design as an in silico pre-screen to generate focused 

combinatorial libraries of mCherry mutants. The computational procedure helped 

us identify residues that could fulfill interactions hypothesized to cause red shifts 

without destabilizing the protein fold. These interactions include stabilization of the 

excited state through H-bonding to the acylimine oxygen atom, destabilization of the 

ground state by hydrophobic packing around the charged phenolate, and 

stabilization of the excited state by a π-stacking interaction. Our methodology 

allowed us to identify three mCherry mutants (mRojoA, mRojoB, and mRouge) that 

display emission wavelengths >630 nm, representing red shifts of 20–26 nm.  

Moreover, our approach required the experimental screening of a total of ∼5000 

clones, a number several orders of magnitude smaller than those previously used to 

achieve comparable red shifts. Additionally, crystal structures of mRojoA and 

mRouge allowed us to verify fulfillment of the interactions hypothesized to cause red 

shifts, supporting their contribution to the observed red shifts.  
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Red fluorescent proteins (RFPs) derived from organisms in the class Anthozoa have 

found widespread application in cell biology. For example, these proteins have been used 

as markers of gene expression [2], expressed as fusions to track endogenous protein 

within cells [3], and applied with other fluorescent proteins (FPs) for use in FRET 

experiments [4]. The availability of monomeric versions of these proteins has bolstered 

their worth as fusion tags and vaulted them into routine experimental use [5, 6].   

The red fluorescence displayed by these proteins arises from the presence of an acylimine 

group conjugated with the standard p-hydroxybenzylideneimidazolinone GFP 

chromophore [7]. The additional double bond extends the size of the chromophore 

conjugated system leading to an increase in emission wavelength. The longer emission 

wavelength of RFPs makes them attractive for whole-animal imaging because cells are 

more transparent to red light. For imaging applications, higher emission wavelengths 

(650–900 nm) are desirable because they tend to minimize background absorption and 

light scattering by tissue components and are less damaging to cells, enabling longer 

acquisition times.  

Naturally-occurring Anthozoa RFPs, such as zRFP574 [8], eqFP578 [9], DsRed [10], and 

eqFP611 [11], are obligate oligomers that display emission wavelengths ranging from 

574 nm to 611 nm. Significant effort has been made to monomerize and red-shift the 

emission wavelength of these RFPs using directed evolution. Starting from various wild-

type precursors, these procedures have produced several far-red (λem > 630 nm) 

monomeric RFPs such as mPlum [12], mKate2 [13], and mNeptune [14]. Each of these 

useful monomeric RFPs was developed using random mutagenesis [6, 14, 15]. Although 

directed evolution has successfully yielded red-shifted monomeric RFPs, a strictly 
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rational methodology to red shift Anthozoa class FPs has not yet been described. Aside 

from the T203Y mutation in Aequorea victoria GFP that red-shifts emission by 20 nm to 

yield the yellow variant YFP [16], and mutations leading to a trans-to-cis isomerization 

in the chromophore of eqFP611 [3], the rational prediction of mutations causing red shifts 

has proven difficult. 

We were interested in developing a structure-based rational design approach to red shift 

the fluorescence emission of RFPs. Toward this end, we proposed three structure-based 

hypotheses supported by results reported in the literature and tested them using the 

mCherry scaffold. We applied a combined computational and experimental approach that 

used computational protein design (CPD) as an in silico pre-screen to generate focused 

combinatorial libraries of mCherry mutants. The computational procedure helped us 

identify residues that could fulfill the interactions hypothesized to cause red shifts 

without destabilizing the protein fold. This methodology allowed us to identify mutants 

displaying bathochromic emission wavelength shifts of up to 26 nm. Moreover, our 

approach required the experimental screening of libraries several orders of magnitude 

smaller than those previously used to achieve comparable red shifts. Additionally, crystal 

structures of two of our most red-shifted mutants allowed us to verify fulfillment of our 

structure-based design hypotheses and gain a better understanding of the causes of red 

shifts in RFPs.  
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Results and Discussion 

Design hypotheses. To red shift the emission wavelength of a monomeric RFP, three 

literature-based hypotheses were tested by screening for red shifting in libraries of 

computationally designed mCherry variants. RFP chromophores contain a 

p-hydroxybenzylideneimidazolinone group prepended with an acylimine substituent at 

the C1 atom. The acylimine group is the result of an oxidation coupled to trans-to-cis 

isomerization of the peptide bond between the first chromophore-forming residue and the 

preceding residue (F65-M66 bond in mCherry) [7]. The presence of the acylimine 

electron-withdrawing substituent creates a resonance structure for the deprotonated form 

of the chromophore in which the partial negative charge is located on the acylimine 

oxygen atom (Fig. 1A, bottom right). The deprotonated chromophore has been 

demonstrated to be the species responsible for red fluorescence in RFPs [6] and quantum 

mechanical studies have indicated that resonance forms of this species with the partial 

negative charge localized on the imidazolinone and acylimine oxygen atoms make higher 

contributions to the description of the excited state [1, 17, 18]. Design hypothesis I (Fig. 

1A) involves stabilization of the excited state by H-bonding the acylimine oxygen of the 

chromophore. 

In all known crystal structures of FPs [19], a strictly conserved Arg residue forms an 

H-bond to the imidazolinone oxygen atom (R95, Fig. 1A). However, no conserved 

residue has been identified as H-bonding to the acylimine oxygen. CPD was used to 

identify potential H-bond donor residues located within direct or water-mediated 

H-bonding distance to the acylimine oxygen. The goal was to preferentially stabilize the 

resonance form of the chromophore in which the negative charge is located on the 
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acylimine oxygen. We hypothesized that such an H-bond would stabilize the excited 

state, thereby decreasing the energy difference between the excited and ground states, 

resulting in an increased emission wavelength. Literature results suggest that this type of 

interaction would have the predicted effect. The crystal structures of mPlum and its E16Q 

variant demonstrate an H-bond between the acylimine oxygen and E16 or Q16, 

respectively [20]. Mutation of E16 to hydrophobic residues leads to hypsochromic 

emission wavelength shifts [12]. Additionally, in the course of this work, the crystal 

structure of the far-red RFP Neptune demonstrated a water-mediated H-bond between the 

acylimine oxygen and neighbouring residue S28 that leads to red-shifted excitation and 

emission [14]. 

Design hypothesis II (Fig. 1B) involves destabilizing the ground state by hydrophobic 

packing around the charged chromophore phenolate group. We theorized that 

destabilization of negative charge localization at the oxygen atom of the phenolate would 

raise the energy of the ground state relative to the excited state, thereby creating a further 

red-shifted emission spectrum. To test this hypothesis, CPD was used to identify 

hydrophobic residues that could be accommodated at positions surrounding the phenolate 

negative charge (residues 143, 146, 161, and 163). Campbell et al. [5] postulated that 

residues just above the plane of the chromophore of DsRed (residues 161, 163, 175, and 

177) influence polarization of the RFP chromophore, thus affecting the emission 

wavelength. For example, DsRed has a Lys at position 163, which can stabilize the 

phenolate negative charge through an electrostatic interaction. In mCherry, an uncharged 

Gln is found at this position, perhaps partially accounting for its red-shifted emission 

relative to DsRed.  
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Design hypothesis III (Fig. 1C) involves stabilizing polarization of the excited state with 

a π-stacking interaction, similar to that seen in the crystal structures of yellow variants of 

Aequorea victoria GFP containing the T203Y mutation [21, 22]. In these mutants, 

π-stacking between Y203 and the chromophore phenolate is thought to stabilize the 

polarization of the chromophore excited state [16], leading to a 20 nm bathochromic shift 

in emission wavelength.  

Computational design. To test these hypotheses, we applied a novel CPD approach to 

generate focused combinatorial libraries of mCherry variants containing mutations that 

could potentially fulfill the interactions hypothesized to cause red shifts [23]. The library 

design procedure takes as input a list of scored sequences, and two sets of constraints: a 

list of allowed sets of amino acids, and a range of desired library sizes.  The algorithm 

generates a list of the combinatorial libraries that satisfy these constraints, and then ranks 

the libraries by the degree to which they reflect the energetic preferences present in the 

list of scored sequences. Thus, CPD was used to perform an in silico pre-screen to 

eliminate sequences incompatible with the protein fold and generate combinatorial 

libraries amenable to rapid experimental screening. Thirteen positions with side chains 

that point towards the chromophore were divided into 3 groups intended to test the 3 

design hypotheses (Table 1). Design hypothesis I (library 1) was tested by varying 

residues with side chains ≤ 6 Å from the acylimine oxygen (positions 14, 16, and 120). 

Design hypothesis II (library 2) was tested by varying residues with side chains within 

5 Å of the chromophore phenolate (positions 143, 146, 161, and 163). Positions 175 and 

177 were also varied, since they have been suggested to influence polarization of the 

chromophore [5]. Design hypothesis III (library 3-1) was tested by introducing a 
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π-stacking Tyr at position 197 and varying neighbouring residues (73, 146, 195, and 217) 

to stabilize the Tyr in the correct orientation. In all the designs, all 20 amino acids were 

allowed at each of the designed positions. 

Prior to computational design, these 13 positions were subjected to site-saturation 

mutagenesis and screening to identify single mutations producing emission red shifts. We 

found several point mutations that caused small red shifts (3-8 nm): F14S, F14N, V16S, 

V16T, W143M, S146C, S146T, I161M, Q163M, I197T, I197Y, and A217S. I197Y was 

already known to cause red shifts in mRFP1.1 [14] and GFP [22], F14S was shown to 

red-shift DsRed [24], and V16T was critical in red-shifting mGrape2 [14]. I197R and 

I197H led to hypsochromic shifts (to 593 nm and 605 nm, respectively), a result that 

correlates well with the fact that basic residues near the chromophore phenolate, such as 

K163 in DsRed and H199 in amFP486 [25], decrease emission wavelength. This effect 

can be explained by stabilization of the ground state through a favourable electrostatic 

interaction with the phenolate negative charge. 

For each of the designed positions, the red-shifting point mutations identified above and 

the wild-type residue were required in the final library composition during computational 

library design. A217C, which was found to enhance brightness, was also required for 

some libraries, as was S146G (to allow similar degenerate codon composition for 

libraries 3-1 and 3-2).  

For libraries 1 and 2, we specified a size of ∼500 sequences—a compromise between 

sufficient sequence diversity and ease of screening. Library 3 was divided into two half-

size libraries of ∼250 sequences. Library 3-1 only allowed Tyr in its π-stacking 
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conformation (see Materials and Methods) at position 197 (to test design hypothesis III) 

and 3-2 only allowed the red-shifting Thr at position 197, but in this case its 

conformation was allowed to vary. 

Computational library design results are listed in Table 1. For library 1, 540 sequences 

predicted to be the most energetically favourable were identified for screening. The final 

library composition included a large variety of amino acids of different sizes and 

properties. Each position included multiple H-bond donor residues, allowing 

comprehensive testing of design hypothesis I. Interestingly, Glu and Gln found in mPlum 

and its E16Q mutant were also found to be favourable at position 16 even though they 

were not required during library design. For library 2, the wild-type residue was the most 

energetically favourable at positions 175 and 177. Hydrophobic residues were predicted 

at each designed position, allowing design hypothesis II to be adequately tested. In 

addition to the required wild-type Gln and red-shifting Met at position 163, another 

hydrophobic residue (Ile) was predicted as well as Lys, the residue found in parent 

DsRed. The composition of libraries 3-1 and 3-2 was very similar but not identical, as 

expected, given the similarity of the required amino acids.  

Library screening. The four mutant libraries were screened for emission wavelength red 

shifts using a 96-well plate fluorimetric assay. Screening of library 1 identified 7 mutants 

with red shifts ≥ 4 nm (λem ≥ 615 nm) (Table S1). All retained the wild-type Tyr at 

position 120 and contained an H-bond donor (Ser or Thr) at positions 14 or 16. These 

findings correlate well with design hypothesis I. Neither Glu nor Gln at position 16 

caused a red shift, which is seen with mPlum and its E16Q variant. However, it has been 

shown that Glu must be combined with F65I to induce a red shift in mPlum [12]. 
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Although the point mutants F14S and F14N showed small red shifts, library members 

containing these mutations did not exhibit λem ≥ 615 nm.  

Screening of library 2 produced 16 mutants with red shifts ≥ 9 nm. All contained a 

hydrophobic residue at position 163 (Leu or Met), which correlates well with design 

hypothesis II. I161M and Q163M found in library 2 are also observed in mRaspberry and 

mPlum, which could partially account for their far red-shifted emission wavelengths. 

Neither the wild-type Gln nor Lys (found in DsRed) was found at position 163 in our 

most red-shifted mutants. All had Cys, Thr, or Ala at position 146, with Cys strongly 

preferred (14 of 16). Given the low propensity of Cys to form H-bonds, it is possible that 

no or weak H-bonding to the chromophore phenolate would shift electron density away 

from it and towards the imidazolinone and acylimine groups, resulting in a red shift. At 

position 143, nonpolar, polar, and aromatic amino acids were found, indicating no 

preference. Screening of library 3-1 identified 9 mutants with red shifts ≥ 9 nm, whereas 

only 1 was found for library 3-2. The brightest from these 2 libraries were the triple 

mutants A195-Y197-C217 (AYC) and T195-T197-N217 (TTN). Interestingly, only the 

small amino acids Ala, Val, and Thr were found at position 195 in red-shifted mutants 

from library 3-1 (Table S1), indicating that a small residue at this position may be 

required to accommodate the Y197 mutation. The larger amino acids Met and Ile, 

although included in the library (Table 1), were not found at this position in the most red-

shifted mutants. 

We next combined the best red-shifting mutations from each library to determine if the 

red-shifting effects were additive. Starting with either the AYC or TTN triple mutants 

from libraries 3-1 and 3-2 as templates, two combinatorial libraries were prepared. V16T 
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from library 1 and S146C/T, I161I/M, and Q163L/M from library 2 were introduced into 

both templates. Wild-type S146 was also included as it is important in maintaining the 

chromophore in its deprotonated state [26]. Thus, a total of 24 additional mutants were 

screened using the same 96-well plate assay. These second-generation mutants displayed 

red-shifted emission wavelengths of up to 26 nm, well over the 8-10 nm induced by AYC 

or TTN alone (Table 2). The results demonstrate that red-shifting mutations from the 

different libraries can have an additive effect and that this is independent of the template 

used. The observed additivity could arise from the fact that these mutations cause red 

shifts through independent processes. For example, the V16T mutation, which satisfies 

design hypothesis I, caused a 4 nm red shift on either the AYC or TTN templates. 

Moreover, mutants containing additional mutations that satisfy design hypothesis II 

(I161M, Q163M, Q163L) displayed even greater red shifts, adding 9-18 nm to the red 

shifts induced by the template. Noticeably, proteins with combinations of mutations from 

all three libraries had decreased quantum yields, leading to lower brightness. 

Spectroscopic characterization. Absorption, excitation and emission spectra were 

measured for the most red-shifted mutants and are reported in Fig. S1. We identified 

three second-generation mutants with λem > 630 nm and named them mRojoA, mRojoB, 

and mRouge, after the Spanish and French words for red, respectively. Both mRojoA and 

mRojoB were derived from the AYC triple mutant, whereas mRouge was derived from 

TTN. These proteins differ from mCherry by 5-7 mutations, display λem of 631-637 nm, 

and have λex near 600 nm, 9-12 nm higher than λex of mCherry (Table 2, SI text, and Fig. 

S1). All three mutants achieve a longer λem than mRaspberry with fewer mutations away 
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from mCherry. This indicates that these mutations mostly result in λem bathochromic 

shifts, which is expected since we screened only for red-shifted emission.  

Extinction coefficients are reported for each mutant in Table 2. The extinction 

coefficients determined for mCherry and mRaspberry differ from those reported in the 

literature (72,000 M-1cm-1 for mCherry and 86,000 M-1cm-1 for mRaspberry) [6, 12]. This 

discrepancy is caused by differences in the experimental conditions during the critical 

chromophore maturation phase. These conditions include the availability of soluble 

oxygen, the time allowed for maturation, and variations in temperature. Nonetheless, all 

the extinction coefficient values reported in Table 2 are for proteins purified in the same 

96-well plate under identical maturation conditions. mRojoA, mRojoB, and mRouge 

exhibit much lower quantum yields (<0.10) than mCherry even though their extinction 

coefficients are not drastically smaller. In all cases, our mutants are not as bright as 

mCherry. This is not unexpected as we did not screen for improved brightness nor did our 

computational design target residues towards this goal. Since mRaspberry is also brighter 

than our mutants, we expect that this is accounted for by the extra mutations in 

mRaspberry (with respect to mCherry).   

To better understand the role of each mutation on the observed spectral properties, 11 

point mutants accounting for all the mutations found in mRojoA, mRojoB, and mRouge 

were prepared and characterized. As shown in Table 2, mutations V16T, S146C, Q163M, 

I197T, and I197Y are largely responsible for the red shifts, while S146C, Q163L, I197T, 

and I197Y primarily account for the decreases in quantum yield. Lower quantum yields 

could result from decreased rigidity of the chromophore. It is unclear how these 

mutations affect this property. A217N is the only point mutant that causes a 
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hypsochromic shift. The Q163M and A217N point mutants display higher quantum 

yields, but A217C is the only single mutant that is as bright as wild-type mCherry. 

Causes of red shifts in RFPs. Crystal structures were solved for our two most red-

shifted mCherry variants, mRojoA and mRouge (Table S2 and SI text). The 

conformational predictions of the CPD software agree well with the crystal structures 

obtained (Fig. S2), as indicated by the atomic RMSDs for the 13 designed residues (0.30 

± 0.02 Å for mRojoA and 0.23 Å for mRouge). Analysis of the crystal structures 

demonstrates that two of the three design hypotheses were clearly achieved. Hypothesis I 

(Fig. 1A) was fulfilled by the T16 mutation found in both variants, which provides a 

water-mediated H-bond with the acylimine group of the chromophore (Fig. 2). This 

interaction should stabilize the resonance form of the chromophore in which negative 

charge is localized on the acylimine oxygen. A similar interaction was demonstrated to 

red-shift the emission wavelength in Neptune [14]. Hypothesis III (Fig. 1C) was fulfilled 

by the I197Y mutation in mRojoA, which causes a clearly observable π-stacking 

interaction with the chromophore phenolate group (Fig. 2A), similar to that observed in 

YFP [22]. The I197Y mutation has been shown to contribute to red-shifted emission 

wavelength in a series of recently reported mFruits termed mGrapes [27], presumably 

through a similar process. Additionally, a recently reported variant of DsRed-Express2 

called E2-Crimson [28] contains the S197Y mutation, which along with Q66F is largely 

responsible for the observed red shift (λem = 646 nm).  

It is more difficult to determine whether design hypothesis II (increasing hydrophobicity 

around chromophore phenolate) was fulfilled. Compared to mCherry, mRojoA and 

mRouge have more hydrophobic residues at position 163 directly above the chromophore 
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phenolate ring (Leu and Met, respectively), replacing the more polar Gln found at this 

position in mCherry. M163 is found in the two far-red mFruits, mRaspberry and mPlum, 

suggesting that it is involved in the red shifting observed. The measured pKa values for 

mRojoA, mRojoB, and mRouge are higher than for mCherry (Table 2, SI text, and 

Fig. S3), indicating that the hydroxyl hydrogen of the chromophore phenol group is less 

acidic. Since a more hydrophobic environment would destabilize the ionized form of the 

chromophore phenol, a higher pKa would be an expected result of satisfying design 

hypothesis II.   

Far-red fluorescent proteins. The quest for higher emission wavelength monomeric 

RFPs is ongoing given the enormous potential for applications in whole-body imaging of 

research model animals. Far-red RFPs (> 630 nm) that are already available include 

mKate/mKate2 [13, 15], HcRed [29], RFP639 [3], E2-Crimson [28], mPlum [12], 

Neptune/mNeptune [27], AQ143 [30], and TagRFP657 [31]. With λems ranging from 

630-657 nm, most of these far-red RFPs have been successfully used in imaging 

experiments. However, they all have disadvantages, such as pKa's near physiological pH 

(mKate/mKate2), oligomeric states (RFP639, HcRed, E2-Crimson, and AQ143), 

monomer-dimer equilibriums (Neptune/mNeptune), slower maturation (TagRFP657), 

low brightness (HcRed, AQ143), and incomplete maturation (mPlum). Recently, 

monomeric bacterial phytochrome-derived FPs that emit in the IR region (>700 nm) have 

been developed [20]. These IR-FPs are very useful but require an exogenous cofactor for 

fluorescence. Thus, engineering GFP homologues that emit brightly in the far-red or 

near-IR region of the spectrum is still highly desirable. Until now, using structure-based 

rational design to increase emission wavelength has proven difficult. For this reason, 
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most far-red FPs were discovered by screening very large libraries of mutants generated 

by random mutagenesis in a directed evolution approach.  

Here, using CPD as a pre-screen, we combined structure-based rational design with 

experimental screening to increase the emission wavelength of mCherry, a monomeric 

RFP. The computational pre-screen discarded mutations that were incompatible with the 

protein fold, allowing us to drastically decrease the size of libraries required for 

experimental screening. We were thus able to achieve a 26 nm red shift by screening 

libraries several orders of magnitude smaller than those previously used to achieve 

comparable red shifts in other RFP scaffolds. Performing 2 rounds of combinatorial 

mutagenesis, we screened a total of ∼5000 clones to identify several mutants with λems 

> 630 nm. In contrast, starting from mRFP1.2 (whose λem of 612 nm is similar to that of 

our starting structure), Wang et al. performed 10 rounds of somatic hypermutation 

random mutagenesis and screened millions of cells to obtain mRaspberry (λem = 625 nm, 

ΦF = 0.15) [12]. Perhaps the best comparison to mRaspberry is our 3-2.A9 mutant, which 

is red shifted by the same amount (λem = 623 nm) and has a similar ΦF (0.11) (Table 2). 

We were able to isolate 3-2.A9 by combining 3 mutations (found after screening only 

∼700 clones from library 3-2) with 1 mutation (V16T) that we had previously identified 

through site-saturation mutagenesis. To obtain mPlum from mRaspberry, Wang et al. 

performed an additional 13 rounds of somatic hypermutation, screening millions of 

clones [12]. 

The development of the far-red-shifted RFP mKate was guided by identification of an 

optimized dimeric mutant of eqFP578 termed TurboRFP. Using 4 rounds of random 
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mutagenesis and screening >100,000 clones, Shcherbo et al. isolated an RFP with an λem 

of 635 nm termed Katushka [15]. The red-shifting mutations of Katushka were then 

inserted into a monomeric variant of TurboRFP, yielding mKate. TagRFP657, a further 

optimized mKate mutant with an λem of 657 nm, is currently the most red-shifted 

monomeric RFP [31]. Recently, Strack et al. [28] developed E2-Crimson, a very red-

shifted DsRed-derived RFP. E2-Crimson was isolated after screening more than 

1,000,000 colonies in 3 rounds of targeted combinatorial mutagenesis and 2 rounds of 

random mutagenesis. Thus, directed evolution approaches, though generally more time-

consuming and costly than CPD-based approaches, have yielded several useful RFPs. 

Generating targeted, computationally designed combinatorial libraries has a distinct 

advantage in that it allows one to identify combinations of mutations that would have 

been difficult to predict rationally or to obtain through random mutagenesis (which often 

builds on point mutations discovered in individual rounds). Synergistic effects are more 

easily obtained by a semi-rational approach involving combinatorial mutagenesis [32]. 

For instance, under other experimental circumstances the A217N mutation found in the 

TTN triple mutant motif described earlier would have been discarded during screening as 

it causes a hypsochromic shift. However, these three mutations together resulted in an 

8 nm bathochromic shift. Another example of synergistic effects is seen in mutant 3-1.A3 

(Table 2), which contains the red-shifting but quantum yield-reducing I197Y mutation. 

The presence of V195A and A217C compensate for the decrease in quantum yield, 

bringing it up from 0.03 to 0.08. Since neither A217C nor V195A increase the quantum 

yield by themselves (Table 2), this increase is the result of the interplay between these 
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three residues. Synergistic effects are similarly seen in mutant 3-2.A3, likely due to the 

presence of the quantum yield-increasing A217N.  

Conclusion 

Using a structure-based rational approach that combines CPD with experimental 

screening, we were able to identify three mutants exhibiting emission red shifts of 20–26 

nm: mRojoA, mRojoB, and mRouge. Although these mutants are not as bright or as red-

shifted as other useful RFPs, these results suggest that this approach may be applicable to 

red shift the emission wavelength of other RFPs. It could also be used to further red shift 

the recently engineered phytochrome-based IR-FPs. We expect that other useful 

properties, such as increased quantum yield and maturation rate, could also be improved 

using this method. Additionally, red-shifted mutants developed using our design 

procedures could serve as templates for optimization of other properties such as 

brightness through random mutagenesis, thereby combining the benefits of both rational 

design and directed evolution.  

 

Materials and Methods 

Computational design. Four independent libraries were computationally designed using 

the procedure described in SI text. Residues 14, 16, and 120 of mCherry were designed in 

library 1. Residues 143, 146, 161, 163, 175, and 177 were designed in library 2. Residues 

73, 146, 195, and 217 were designed in libraries 3-1 and 3-2. These latter two libraries 

differ by the presence of a Tyr (library 3-1) or Thr (library 3-2) residue at position 197. 

All 20 proteinogenic amino acids were allowed at designed positions; residues with side 
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chains pointing towards and within 4 Å of the designed residues were allowed to sample 

alternative conformations during the design, but their identities were not modified. The 

crystallographic conformer at each designed position was also allowed. A standard 

backbone-dependent side chain rotamer library [33] with expansions by one standard 

deviation about χ1 and χ2 was used. Prior to our design procedure, we generated an in 

silico structure of mCherry mutant I197Y in which residue Y197 is stacked next to the 

chromophore phenolate group. To generate this structure, which would serve as the input 

structure for computational design in library 3-1, we sampled different conformations of 

Y197 using a large backbone-independent conformer library [34]. During computational 

design of library 3-1, the conformation of the π-stacked Y197 residue was not allowed to 

vary. The energy function used is described in SI text. 

Screening. The DNA libraries prepared as described in SI text were transformed into 

chemically competent E. coli BL21-Gold(DE3) cells (Stratagene). Colonies were picked 

into individual wells of Nunc V96 MicroWell polypropylene plates containing 200 µL of 

medium (LB with 100 µg/mL ampicillin supplemented with 10% glycerol). The plates 

were covered with a sterile Breathe-Easy gas permeable sealing membrane (Sigma) and 

incubated overnight at 37 °C with shaking. After incubation, these mother plates were 

used to inoculate sterile Nunc V96 MicroWell polypropylene plates (“daughter” plates) 

containing 300 µL of Overnight Express Instant TB media (Novagen) supplemented with 

ampicillin per well. Daughter plates were sealed with breathable membranes and 

incubated overnight (37 °C, 250 rpm). After incubation, the cells were harvested by 

centrifugation and the cell pellets were washed twice with PBS (pH 7.4). Washed cell 

pellets were then incubated at 4 °C for 72 h to allow chromophore maturation. These 
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pellets were resuspended in PBS and transferred to a Fluotrac 96-well plate (Greiner Bio-

One) for screening. Screening was performed using a Tecan Safire2 plate reader 

equipped with a plate stacker. Emission spectra (λex = 565 nm) and excitation spectra 

(λem = 650 nm) were measured. Purification and spectroscopic characterization of 

mutants is described in SI text. 
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Figures & Legends.  

 

	  

	  

	  

 

Fig. 1. Structure-based design hypotheses tested on mCherry scaffold. (A) Design 

hypothesis I: stabilization of the excited state form on lower right by H-bonding to 

acylimine oxygen. H-bonds that stabilize each resonance structure are indicated by wide 

dashed lines. (B) Design hypothesis II: destabilization of ground state by hydrophobic 

packing around charged phenolate. (C) Design hypothesis III: stabilization of polarization 

of excited state by π-stacking the chromophore phenolate with a tyrosine. (A-C) Designed 

interactions are shown in blue. 
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Fig. 2. Crystal structures of designed positions in the most red-shifted mutants, mRojoA 

(A) and mRouge (B). The chromophore is shown in magenta. Residue C217 in mRojoA 

(A) and residues C146 and T195 in mRouge (B) exhibit two conformations in the crystal 

structure. H-bonds are indicated by dashed lines. 
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Supporting Information 

 

SI Results and Discussion 

Absorption spectroscopy. The absorption spectrum of mRojoB is unique among the 

most red-shifted mutants in that it has an additional peak centered at around 510 nm (Fig. 

S1C). This peak has been suggested to correspond to the deprotonated green form of the 

chromophore [1]. The green form is equivalent to the p-hydroxybenzylidene-

imidazolinone group shown in Fig. 1 without the acylimine substitution on the five-

membered ring. The deprotonated green form has been postulated to be a dead-end 

product created during chromophore maturation [2]. The 510 nm peak is absent in the 

excitation spectrum of mRojoB monitored at 650 nm, indicating that the species 

associated with this peak does not contribute to far-red fluorescence. This result further 

validates that the 510 nm peak does not correspond to the acylimine substituted red form 

of the chromophore. The  510 nm peak is also found in the absorption spectrum of 

mRFP1 [3] from which mCherry is derived, as well as in the spectrum of mCherry point 

mutant Q163M (Fig. S1E). The 510 nm species could be caused by the combination of 

residues M163 and I161, which is found in mRojoB, mRFP1, and mCherry mutant 

Q163M, but is absent in mCherry, mRojoA, and mRouge. 

mRouge has an additional absorbance peak at ∼390 nm (Fig. S1D) which could 

correspond to the protonated green form of the chromophore. This peak is also absent in 

the excitation spectrum monitored at 650 nm. The protonated green chromophore could 

be favoured in this protein due to the S146C mutation, since the substitution of a Cys at 
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this position would significantly increase the pKa of the phenol group of the 

chromophore, given the low H-bonding propensity of thiols. In line with this supposition, 

it is significant to note that the measured pKa of the red chromophore in mRouge is one 

pH unit higher than that of mRojoB (Table 2, Fig. S3). Since the microenvironments of 

red and green chromophore species will be identical in these cases, it is safe to assume 

that the pKa of the green chromophore in mRouge will also be higher than that of 

mRojoB. This implies that the assignment of the ∼390 nm peak for mRouge to the 

protonated green chromophore is correct. 

Crystal Structure of mRojoA. The crystal structure of mRojoA (PDB accession code 

3NEZ) was solved at 1.70 Å resolution by molecular replacement using the structure of 

mCherry (PDB code: 2H5Q [4]) (Table S2). mRojoA crystallized in space group P1211 

with unit cell dimensions of a = 61.2 Å, b = 97.4 Å, c = 84.2 Å. The asymmetric unit 

consisted of four molecules organized into two pairs of dimers that slant toward each 

other to form an A-frame-like tent structure. The tetrameric association of protomers in 

mRojoA is significantly different than the tight tetramer seen in DsRed and other class 

Anthozoa FPs [5, 6]. Superimposition of the backbone atoms of individual molecules of 

mRojoA with mCherry yielded an average RMSD of 0.21 ± 0.01 Å.  

Treatment of the mRojoA chromophore was left until the end of refinement. Weak 

electron density for the phenolate group of the chromophore necessitated building the 

chromophore one atom at a time between refinement cycles. Building of the 

chromophore revealed a mixture of mature and immature species. The mature species is 

the acylimine-containing red chromophore. It is characterized by a cis peptide bond 

between F65 and M66. The immature species corresponds to the green chromophore, 
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which is characterized by a trans peptide bond between F65 and M66. Occupancy 

refinement of the red and green forms was performed as described for DsRed [7]. Each 

associated dimer in the structure was found to have one chromophore with ∼70%/30% 

red/green split and one chromophore with ∼50%/50% red/green split. The presence of the 

green chromophore indicates incomplete maturation. No evidence for the trans 

configuration of the chromophore phenolate ring was observed during refinement. 

The H-bonding network around the chromophore of mRojoA is illustrated in Fig. S4A. 

The conserved H-bond between the chromophore imidazolinone O2 atom and catalytic 

R95 is present. The other catalytic residue, E215, makes a close H-bond with the 

chromophore imidazolinone N2 atom through Oε1 with a similar configuration to what is 

seen in mCherry [4]. The Oε2 atom of E215 shows an H-bond to a conserved 

crystallographic water above the imidazolinone ring of the chromophore. The H-bond 

between S146 and the chromophore phenolate oxygen atom present in mCherry is also 

present in mRojoA. This H-bond has been suggested to stabilize the deprotonated 

phenolate form of the chromophore [8]. Additionally, a water-mediated H-bond between 

residue T16 and the acylimine oxygen atom is observed (Fig. 2A). The interoxygen 

distances between the acylimine and water, and between water and T16 in monomer A 

were 2.5 Å and 2.9 Å, respectively. This water-mediated H-bond differs from the one 

observed in the crystal structure of Neptune [9]. The H-bond in Neptune involves residue 

S28, analogous to G31 in mRojoA, and is located on the opposite side of the acylimine 

oxygen. 

The structure of mRojoA shows the same type of chromophore π-stacking interaction 

observed in GFP-derived YFPs [10-12]. In mRojoA, π-stacking occurs with Y197. The 
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centroid to centroid distance from the chromophore phenolate to the Y197 side chain in 

mRojoA is 3.9 Å, and the angle between the normals of these planes is ∼8°. These values 

are comparable to those found in the crystal structure of the yellow fluorescent protein 

citrine (PDB code: 3DQO [10]) with a centroid to centroid distance of 3.6 Å and an angle 

of 6°.  

Crystal Structure of mRouge. The crystal structure of mRouge (PDB accession code 

3NED) was solved at 0.95 Å resolution using direct methods (Table S2). mRouge 

crystallized in space group P1211 with unit cell dimensions of a = 48.9 Å, b = 42.9 Å, c = 

61.3 Å. Unlike mRojoA, the structure of mRouge contains only one protein molecule per 

asymmetric unit. Superimposition of the protein with mCherry gives a backbone-atom 

RMSD of 0.10 Å. 

For mRouge, in-depth treatment of the chromophore was again left until the end of the 

refinement procedure. Throughout most of the refinement only the imidazolinone 

heterocycle was fit due to very weak electron density corresponding to the Tyr-derived 

phenol ring of the chromophore (Fig. S4B). After refinement on the rest of the protein 

was completed, significant electron density in the difference map was observed within 

covalent bonding distance of the chromophore C1 atom. Prior studies on GFP mutants 

suggested that this density corresponds to hydroxylation at the C1 position [13-15]. 

Moreover, a recent investigation of the maturation pathway for DsRed (the wild-type 

parent of mRouge) indicated that red chromophore maturation likely proceeds through an 

intermediate in which the acylimine bond preceding the chromophore is already oxidized 

and there is hydroxylation at the chromophore C1 position [16]. Evidence for the 

presence of this putative intermediate in the mRouge crystal structure was strengthened 
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by trypsin-digest mass spectrometry data, which showed a peptide fragment containing 

the chromophore tripeptide at the appropriate mass (−4 Da from the uncyclized 

chromophore tripeptide) (Fig. S5C). Mass spectrometry analysis also demonstrated the 

presence of the green chromophore in mRouge (Fig. S5B), which had already been 

observed spectroscopically (Fig. S1D). Given the spectroscopic evidence for both red and 

green chromophores in mRouge along with the mass spectrometry evidence and 

crystallographic indication for a hydroxylated species, all three of these molecular entities 

were modeled into the crystal structure of mRouge. Occupancy refinement yielded 22% 

for the red chromophore, 45% for the green chromophore, and 33% for the hydroxylated 

species. No evidence for the trans configuration of the chromophore phenolate ring was 

observed during refinement in any of the difference maps. 

For mRouge, many of the residues that form key interactions with the chromophore occur 

in multiple conformations (Fig. S4B). For example, C146 has two conformations 

occupied at 56% and 44%. In many RFPs (including mCherry and mRojoA), a Ser 

residue at this position is H-bonded to the chromophore phenolate OH atom [4, 5, 17]. 

This interaction stabilizes the anionic chromophore, which is recognized as the dominant 

fluorescent species in FPs [5, 17-20]. The major conformer of C146 points away from the 

chromophore. However, in the minor conformation, the sulfur atom points toward the 

chromophore in a similar conformation to what is observed for S146 in mCherry. 

Considering the low H-bonding strength of thiols, it is unlikely that this interaction 

represents a significant H bond.  

K70 has two conformations in mRouge (populated at 82% and 18%), with the major 

conformer pointing away from the bridging CB2 carbon of the chromophore and making 



- 37 - 
	  

an H-bond to T195. The minor conformer points toward the CB2 atom and forms a salt 

bridge with E148, as seen for K70 in mCherry [4].  

Another position of interest with multiple conformations in mRouge is the catalytic 

residue E215 (populated at 75% and 25%). E215 is speculated to be deprotonated in 

DsRed [21], but to be protonated in mCherry because its Oε1 atom comes within H-

bonding proximity to the chromophore N2 atom in mCherry [4]. The major conformation 

of E215 in mRouge is most similar to the conformation of that same residue in mCherry 

(Fig. S4B), with its Oε1 oxygen forming an H-bond with the N2 atom of the chromophore. 

This implies that the major conformer of E215 in mRouge is protonated, analogous to 

what is seen in mCherry. 

It is worth noting that the minor conformer of E215 in mRouge (Fig. S4B) is not in the 

same conformation as that seen for E215 in DsRed. In DsRed, E215 is oriented in such a 

way as to create a salt bridge with K70 across one face of the chromophore ring system 

[5, 7]. The minor conformer of the E215 residue in mRouge attains a previously 

unobserved conformation for DsRed variants. In this conformation, the Oε1 atom is within 

H-bonding distance of both the chromophore N2 atom and the hydroxyl group attached to 

the chromophore C1 atom (2.4 Å and 2.6 Å, respectively). This conformer of E215 

mainly differs from the protonated, major conformer in mRouge by a ∼90° twist about 

the side chain  χ3 angle. 

A water-mediated H-bond between residue T16 and the acylimine oxygen atom is also 

present in the structure of mRouge (Fig. 2B). It is nearly identical to the one observed in 
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the structure of mRojoA, with interoxygen distances between the acylimine and water, 

and between water and T16 of 3.0 Å and 2.7 Å, respectively. 

A sequence and structural motif consisting of T195-T197-N217 occurs in mRouge. This 

set of mutations leads to an 8 nm red shift in the emission spectra of mCherry mutants 

(Table 2). In mRouge, the Oε2 oxygen of the major conformer of E215 is H-bonded to the 

terminal nitrogen on the side chain amide of N217 (Fig. S6). Moreover, the side chain 

amide oxygen from N217 forms an H-bond with the hydroxyl group of T197. Finally, the 

side chain of T197 forms a water mediated H-bond with the side chain of the major 

conformer of T195. The means by which this set of interactions causes red-shifted 

emission is unclear. However, the network of H-bonds resulting from this set of 

mutations may explain the synergistic effects on emission wavelength encountered by 

including them in the mCherry scaffold. 

 

SI Materials and Methods 

Materials. All reagents used were of the highest available purity. Restriction enzymes 

and DNA-modifying enzymes were from New England Biolabs. Synthetic 

oligonucleotides were obtained from Integrated DNA Technologies, and Ni-NTA agarose 

resin was obtained from Qiagen. CelLytic B buffer and lysozyme were purchased from 

Sigma-Aldrich. All aqueous solutions were prepared using water purified with a 

Millipore BioCell system. 

Computational design. Hydrogens were added to the crystal structure of mCherry (PDB 

code: 2H5Q) using Molprobity [22]. Following removal of all water molecules and ions, 
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any strain or steric clashes in the structure were removed by performing 50 steps of 

conjugate gradient energy minimization [23]. Partial atomic charges for the chromophore 

were parameterized using the charges described by Sitkoff et al. [24]. Computational 

design was performed using the PHOENIX protein design software. The energy function 

used was based on the DREIDING force field [23] and included a scaled van der Waals 

term [25], hydrogen bonding and electrostatic terms [25], and terms for implicit solvation 

and phi-psi propensities. Implicit solvation energies were evaluated using a model based 

on occluded volume [26] described below. Amino acid phi-psi propensities were derived 

and applied following the method of Shortle [27]. Sequence optimization was carried out 

with FASTER; a Monte Carlo-based algorithm was then used to sample sequences 

around the minimum energy configurations identified by FASTER [28] and generate a 

list of high-scoring sequences. This was followed by a computational library design step 

in which combinatorial sequence libraries were defined as described by Allen et al. [29]. 

Briefly, based on the list of scored sequences generated by CPD and the list of required 

amino acids specified by the user, the algorithm determines the library composition that 

represents the best set of top-scoring sequences that can be encoded by a single 

degenerate codon at each position for a desired range of library sizes. 

Implicit solvation energies. To account for the contributions of solvent to the free 

energies of folding, we applied an implicit solvation potential inspired by the methods of 

Dahiyat and Mayo [25] and Lazaridis and Karplus [26]. The potential is intended to 

reward the burial of nonpolar groups, penalize the burial of polar groups, and penalize the 

exposure of nonpolar groups. In this scheme, atomic groups are scored based on how 
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their volumes are occluded by other groups in the protein structure. We used a Gaussian 

function to compute the occlusion Oi of atom i by other atoms j: 

! 

Oi = V j
j
" e#

Rij
2

2$2  

where Vj is the volume of atom j, Rij is the distance between i and j, and λ is the constant 

correlation length. We define the fractional exposure Θi for atom i as: 

! 

" i =
Oi,max #Oi

Oi,max #Oi,min

 

where the Oi minima and maxima are found from a database survey of protein crystal 

structures. When Oi = Oi,max, atom i is fully buried, and Θi = 0; when Oi = Oi,min, atom i is 

fully exposed, and Θi = 1.  

The nonpolar solvation energy of atom i is given by: 

! 

Enp,i = si" np (#np +1)$ i % si" np  

where si is a scaling parameter specific to the amino acid type and atom type for i, σnp is 

the nonpolar desolvation energy benefit, and κnp is the nonpolar exposure scale factor. 

This formula allows the balance between favourable nonpolar desolvation and 

unfavourable nonpolar exposure to be tuned between siκnpσnp energy units when i is fully 

exposed, and –siσnp energy units when fully buried. For each nonpolar atom i, si is the 

mode of exposed surface areas observed for the residue and atom type for i in truncated 

tripeptides with coordinates taken from proteins in a structural database previously used 

to generate conformer libraries [30]. In this way, nonpolar atoms with greater exposed 

surface area in the truncated tripeptide unfolded state model receive larger magnitude 
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energies than those with smaller unfolded state surface areas with the same fractional 

exposure value. 

The formula for polar solvation is analogous to that for nonpolar solvation, but with 

opposite signs, indicating that the preference for exposure versus burial is reversed: 

! 

Ep,i = "si# p ($ p +1)% i + si# p  

The si parameters for polar groups were derived via a linear fit between the Θi values and 

Poisson-Boltzmann reaction field energies calculated for side chains in a computationally 

tractable subset of the structural database. 

Mutagenesis. The mCherry and mRaspberry genes were PCR-amplified from plasmids 

mCherry-pBAD and mRaspberry-pBAD (provided by R.Y. Tsien, UCSD) and subcloned 

into pET11-a (Novagen) via NdeI/BamHI. The plasmids were then transformed into E. 

coli XL-1 Blue and BL21(DE3) cells. The entire NdeI/BamHI fragments, including the 

whole coding region, were verified by DNA sequencing. All mutations were introduced 

into the mCherry gene by overlap extension mutagenesis [31] using VentR DNA 

polymerase. Briefly, external primers were used in combination with sets of 

complementary pairs of degenerate oligonucleotides containing the desired mutations in 

individual PCR reactions. The resulting overlapping fragments were gel-purified 

(Qiagen) and recombined by overlap extension PCR. The resulting amplicons were 

digested with NdeI/BamHI, gel-purified, and ligated into pET11-a expression vector with 

T4 ligase. Library composition was verified by sequencing 96 clones per library 

(Agencourt Biosciences). 
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Protein expression and purification for spectral characterization. Mother plates 

containing the mutant libraries were used to inoculate 24-well culture plates (Whatman) 

containing 5 mL Overnight Express Instant TB media (Novagen) supplemented with 

ampicillin in each well. The 24-well plates were sealed with sterile Bugstopper venting 

capmats (Whatman) and incubated at 37 °C overnight with shaking. After expression, 

cells were harvested by centrifugation and washed twice with PBS. After maturation at 

4 °C for one week, the cell pellets were resuspended in 400 µL lysis buffer (50 mM 

sodium phosphate buffer, pH 8.0, 300 mM NaCl, 2.5 mM imidazole, 1X CelLytic B, 

1 mg/mL lysozyme, and 25 U/mL benzonase nuclease (Novagen)) and incubated at 30 °C 

for 30 min with shaking. After centrifugation, clarified lysates were recovered and 

proteins were purified by affinity chromatography using His-Select plates (Sigma) 

according to the manufacturer’s protocol.  

Protein expression and purification for crystallization. Protein was expressed in 1.0 L 

cultures by transformation of a pET11-a vector containing the gene of interest into E. coli 

BL21-Gold(DE3) and purified by Ni-NTA affinity chromatography according to the 

manufacturer’s protocol. Column elutions were desalted by gel filtration using a 

Superdex 75 10/300 GL Tricorn resin column (GE Healthcare) into a final buffer solution 

of 50 mM phosphate buffer, pH 7.5, and 150 mM NaCl. 

Spectroscopic characterization. Proteins purified as described above were quantified 

using the alkali denaturation method [32]. Briefly, RFPs were alkali-denatured with an 

equal volume of 2 M NaOH. It is known that the alkali-denatured RFP chromophore 

converts to a GFP-like one, with extinction coefficient 44,000 M-1 cm-1 at 452 nm under 

these conditions. Absorbance, emission, and excitation spectra were recorded in PBS 
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with a Tecan Safire2 plate reader. Path lengths for each well were calculated 

ratiometrically using the difference in absorbance of PBS at 900 nm and 998 nm. Based 

on the absorbance spectra of native proteins and the concentration determination of 

alkali-denatured proteins, molar extinction coefficients were calculated. For 

determination of quantum yields, the integrated fluorescence intensity of mutants of 

interest was compared with that of equally absorbing samples of mCherry and 

mRaspberry (quantum yields 0.22 and 0.15, respectively) with excitation at 550 nm.  

pKa measurements. pH titrations were performed using a range of buffers from pH 2 to 

9. Proteins were diluted into these buffers to a concentration of 5-10 µM. Fluorescence 

scans were taken at each pH value using a Tecan Safire2 plate reader. The Henderson-

Hasselbach equation was used to calculate the pKa for each protein (Fig. S3). 

Growth of Crystals and Screening. Light blue crystals of mRouge were grown in 1 µL 

× 1 µL hanging drops with a precipitant solution of 200 mM ammonium acetate, 100 mM 

Bis-Tris, pH 6.5, and 25% (w/v) polyethylene glycol 3350. Large multi-crystalline 

chunks (0.5 mm × 2.0 mm × 0.25 mm) were prodded with a nylon loop to break off 

smaller shards for isolation and collection of diffraction data. All the pieces screened 

were crystallographically identical in terms of space group and unit cell dimensions. Dark 

purple crystals of mRojoA were grown in hanging drops with 1 µL protein solution and 1 

µL of the same precipitant used to crystallize mRouge. These long stick-like rhomboidal 

crystals of mRojoA had approximate dimensions of 1.0 mm × 0.02 mm × 0.02 mm.  

Data Collection and Processing. For mRouge, a dataset was collected locally at 2.0 Å 

resolution, and another dataset resolved at 0.95 Å was collected at the Stanford 

Synchrotron Radiation Lightsource (SSRL) beamline 12-2. The low-resolution dataset 
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was integrated, merged, and scaled with IMOSFLM [33] and SCALA [34]. For the high-

resolution dataset, IPMOSFLM [33] was used for integration and ACORN was used for 

merging and scaling. For mRojoA, crystals were sent to the SSRL where the dataset was 

collected at 1.70 Å. This dataset was integrated, merged, and scaled with IMOSFLM and 

SCALA. 

Solution and Refinement of Crystal Structures. The 2.0 Å dataset of mRouge, and the 

1.70 Å dataset of mRojoA were solved by molecular replacement using PHASERMR 

[35]. For mRouge and mRojoA, the search model used consisted of the PDB coordinates 

from mCherry (2H5Q [4]) with the chromophore removed. After the higher resolution 

dataset of mRouge was solved by direct methods, the initial coordinates from the 2.0 Å 

structure were used as a starting point for further refinement of the sub-atomic resolution 

structure. 

Refinement was accomplished using REFMAC5 [36, 37] and PHENIX (Python-based 

Hierarchical ENvironment for Integrated Xtallography) [38]. PHENIX was used 

specifically for refinement of atomic occupancies. Model building was done with COOT 

[39], wherein water molecules were added manually when they were within H-bonding 

distance of other heteroatoms (2.3–3.5 Å) and had peaks in the Fo – Fc map of greater 

than 3.5 σ. In addition, water molecules were removed when they had equivalent 

isotropic B-factors greater than 60–80 Å2. During generation of R-factors, 5% of data 

was excluded for cross-validation with an Rfree value. Crystallographic R-factors were 

calculated in the standard fashion (R = ∑|Fobs - Fcalc|/∑ Fobs).  

In the crystal structure of mRouge, refinement was done with anisotropic ADPs after the 

initial few cycles of refinement. In the crystal structure of mRojoA, the final refinement 
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steps were carried out with 20 translation-libration-screw (TLS) groups per protein 

molecule [40]. TLS groups were identified automatically by using the TLS-Motion 

Determination web server (TLS MD) [40]. Riding hydrogens were included in the 

refinement of all structures for non-water molecules, but were only retained in the final 

structure of mRouge due to its high resolution. 

The library file for the chromophore was built based on the CH6 chromophore deposited 

in the Hetero-compound Information Centre - Uppsala (HIC-Up) online database. 

Appropriate constraints and atom types were added and/or edited to account for the 

alternative covalencies observed for different conformations of the chromophore. 

Mass Spectrometry Analyses. Following separation by SDS-PAGE, the ∼25 kDa band 

from a freshly purified sample of mRouge was excised and destained. Destaining of the 

Coomassie dye was accomplished by a 100 µL wash of 50 mM ammonium bicarbonate 

followed by a 50 µL wash of a 1:1 mixture of 50 mM ammonium bicarbonate and 

acetonitrile; this process was repeated for a total of three times. After destaining, the gel 

band sample was reduced with 25 µL of 50 mM ammonium bicarbonate plus 50 µL of 

freshly prepared 10 mM DTT in 100 mM ammonium bicarbonate for 30 minutes at 50°C. 

The sample was then alkylated in the absence of light with 25 µL of 50 mM ammonium 

bicarbonate plus 50 µL of freshly prepared 55 mM iodoacetate in 100 mM ammonium 

bicarbonate for 20 minutes at room temperature. Following additional washes with 100 

µL of 50 mM ammonium bicarbonate and 100 µL of acetonitrile, the gel band sample 

was digested overnight at 37°C with 75 µL of 50 mM ammonium bicarbonate plus 25 µL 

of 6 ng/µL sequencing grade porcine trypsin (Promega).  
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After digestion, the supernatant from the gel band sample was collected.  The gel band 

was washed three times: once with 100 µL of 1% formic acid/2% acetonitrile in water, 

once with 100 µL of a 1:1 acetonitrile and water mixture, and once with 100 µL of 1% 

formic acid in acetonitrile. The pooled supernatant and wash solutions were then 

vacuum-dried overnight and resuspended in 0.1% formic acid in preparation for 

collection of mass spectrometry data.  Samples of this nature were prepared in triplicate 

from the same freshly expressed and purified sample of mRouge. 

These tryptic-digest samples were desalted on a 150 µm × 3 cm C18AQ pre-column 

(Magic 5 µm, Michrom). After desalting, separation of peptides was performed with a 

CapLC XE HPLC system (Waters) using a 5 to 35% acetonitrile gradient in 0.2% formic 

acid on a 100 µm × 15 cm column packed with the same resin as the pre-column. The 

flow rate during separation was 0.35 µL/min and the HPLC column was connected 

directly to the mass spectrometer used for MS/MS analysis. Tandem mass spectra were 

acquired in data-dependent acquisition mode on a hybrid LTQ FT-ICR Ultra mass 

spectrometer (Thermo Fisher Scientific) with a nanoelectrospray ion source. Full scan 

mass spectra (400-1600 m/z) were acquired after accumulating 500,000 ions (with a 

resolution of 50,000 at 400 m/z). The seven most intense ions from the full scans were 

trapped in the linear ion trap and fragmented by CID after accumulating 5,000 ions 

(collisional energy: 35%, isolation width: 3 Da). Ion charge state screening was employed 

for singly and multiply charged ions. A dynamic exclusion list was set (maximum 

retention time: 60 s, relative mass window: 10 ppm) and early expiration was permitted. 
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SI Figures & Legends  

	  

	  

Fig. S1. Fluorescence and absorption spectra of mCherry (A), mRojoA (B), mRojoB (C), 

mRouge (D) and mCherry Q163M (E). The absorption spectra are shown with a solid 

line, the excitation spectra are shown with a dotted line and the emission spectra are 

shown with a dashed line.  
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Fig. S2. Comparison of structure predicted by CPD (white) and crystal structure 

(magenta) for red-shifted mutants mRojoA (A) and mRouge (B). Residue C217 in 

mRojoA (A) and residues C146 and T195 in mRouge (B) exhibit two conformations in 

the crystal structure. The chromophore was not designed.   
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Fig. S3. pH profiles for mCherry (A), mRojoA (B), mRojoB (C) and mRouge (D). 
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Fig. S4. Chromophore environment of mRojoA (A) and mRouge (B). H-bonds are 

indicated by dashed lines and crystallographic waters are indicated by red spheres. Omit 

maps (green) for the chromophores were contoured at 3.0 s for mRojoA and at 3.5 s for 

mRouge. Non-contiguous residues are colored pink (mRojoA) and purple (mRouge). The 

chromophore and its contiguous residues are colored gray. Note that the Og atom in both 

conformations of T195 for mRouge (B) is hidden behind the Cb atoms of that same 

residue. The refinement model for the hydroxylated conformation of mRouge did not 

include atoms from the phenolate ring of the chromophore due to a lack of electron 

density.  
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Fig. S5. Trypsin-digest mass spectrometry confirms the presence of a hydroxylated 

chromophore species in mRouge. Peptide fragments isolated by tandem mass 

spectrometry from an in gel trypsin-digest of mRouge indicate the presence of the 

uncyclized chromophore (A), the green chromophore species (B), and a hydroxylated 

species consistent with current literature on the maturation of DsRed (C). Note that in the 

uncyclized chromophore (A), the side chain sulfur atom of M66 was spontaneously 

oxidized to a sulfoxide during the process of data acquisition. 

 

 

 

 

Fig. S6. H-bond network in the red-shifting TTN (T195-T197-N217) motif of mRouge. 

H-bonds are indicated by dashed lines. Numbers in purple indicate distances in Å. 
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Abstract 

Red fluorescent proteins (RFPs) derived from organisms in the class Anthozoa have 

found widespread application as imaging tools in biological research. For most 

imaging experiments, RFPs that mature quickly to the red chromophore and 

produce little or none green chromophore are most useful. In this study, we 

converted a yellow fluorescent mPlum mutant to a red-emitting RFP by replacing 

Glu16 with small non-polar amino acids. We also created an optimized mPlum 

mutant (mPlum-E16P) that matures almost exclusively to the red chromophore. 

Analysis revealed two structural characteristics that may be critical for efficient red 

chromophore maturation in DsRed-derived RFPs. The first is the presence of a 

lysine residue at position 70 that is able to interact directly with the chromophore. 

The second is an absence of non-bonding interactions limiting the conformational 

flexibility at the peptide backbone that is oxidized during red chromophore 

formation. Our data, as well as structural features for known acylimine-forming 

fluorescent proteins, supports this proposition. 
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Red fluorescent proteins (RFPs) derived from organisms in the class Anthozoa are widely 

employed as imaging tools in biological research. For example, these proteins have been 

used as markers of gene expression, expressed as fusion partners for the tracking of 

intracellular endogenous protein-RFP chimeras, and complemented with other 

fluorescent proteins (FPs) for use in fluorescence resonance energy transfer experiments 

[1, 2]. The longer emission wavelengths of RFPs result from a chromophore whose 

p-hydroxybenzylidene-imidazolinone group is prepended with an acylimine substituent at 

the C1 atom as a result of backbone oxidation [3, 4]. The extended conjugation afforded 

by unsaturation from the acylimine lowers the energy of both excitation and emission 

from the analogous fluorophore found in green fluorescent proteins (GFPs), resulting in a 

bathochromic wavelength shift [5]. 

Chromophore maturation in RFPs is a long-studied phenomenon. In the past, green 

chromophore maturation was seen as an intermediate step on the pathway to complete red 

chromophore maturation [6]; this interpretation turned out to be false [7]. Recent work 

has revealed much about how the red and green chromophore pathways branch off from 

one another during the maturation process. A study using deuterium labeling uncovered 

evidence that a branch upstream to green chromophore formation splits the population of 

proteins in solution into two: a population that will mature to the GFP-like green 

chromophore and one that will pass through a blue intermediate species to form the RFP 

red chromophore [7]. Previous to this study, characterization of the RFP HcRed revealed 

a peak at 410 nm during maturation that corresponds to this blue intermediate species [8]. 

This peak is significant in that it shows the expected behavior of an intermediate species 

in the red chromophore maturation process. In addition, X-ray crystallography and 
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computational modeling support the existence of a species with the structure that has 

been proposed for this blue intermediate [9, 10]. 

A schematic illustrating the proposed mechanism for chromophore formation in RFPs is 

shown in Fig. 1. Briefly, the uncyclized chromogenic tripeptide (Xaa-Tyr-Gly) 1 

undergoes a cyclization reaction that is trapped by oxidation to a colorless intermediate 

species 3. This colorless intermediate reversibly eliminates a hydroxide moiety yielding 

6, thus enabling a branch in the chromophore maturation pathway. Colorless 

intermediates that eliminate hydroxide are poised to undergo further oxidation, resulting 

in the crystallographically observable blue intermediate with an absorption peak at 410 

nm (7) that was mentioned above. The exact electronic structure of this blue intermediate 

is unknown—both cationic [7] and anionic [10] structures have been proposed. 

Completion of this second oxidation reaction seals the fate of FPs and directs their 

maturation to the red chromophore (9 and 10). A base-induced elimination of water 

follows this second oxidization as evidenced by a kinetic isotope effect on the C-beta 

carbon of the conserved tyrosine residue central to the chromogenic tripeptide [7]. 

Colorless intermediates that retain hydroxide (3) may also undergo elimination of water 

by proton abstraction at the C-beta carbon of the conserved tyrosine residue, leading to 

production of FPs with green chromophores (4 and 5) in the other branch of this 

maturation pathway [11]. 

Red and green chromophores cannot interconvert—both are dead-end products of 

chromophore maturation [6, 7]. Consequently, some RFPs express as mixtures of proteins 

with either green or red chromophores. DsRed and its mutant mPlum are notable 

examples of RFPs that express in this fashion [12, 13]. Studies of Lys70 in various 
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mutants of DsRed indicate that this residue is crucial for the formation of the acylimine 

group and thus red fluorescence [3, 14, 15]. Additionally, the proximity of the Lys70 

terminal amino group to the chromophore ring system has been shown to correlate with 

increasing quantum yield (ΦF) among DsRed mutants [4, 14]. 

Fast and complete maturation to the red chromophore is a desired property for RFPs used 

in imaging experiments. To improve maturation efficiency, investigators have used 

directed evolution and have obtained RFPs that display fast and efficient red 

chromophore maturation such as mCherry [16], DsRed.T4, [17] and mKate2 [18]. Here, 

we present a rational approach to enhance RFP chromophore maturation in the DsRed 

mutant mPlum. We hypothesized that the identity of the amino acid at position 16 may be 

crucial to promoting or inhibiting red chromophore maturation. Because residues at 

position 16 interact directly with the peptide bond that oxidizes during red chromophore 

formation, we postulated that this interaction could interfere with the oxidation reaction 

at this position. Using rational design, we converted a yellow-emitting mPlum mutant to 

a red-emitting RFP by replacing Glu16 with small non-polar amino acids. We also 

created an optimized mPlum mutant (mPlum-E16P) that matures almost exclusively to 

the red chromophore. 

Results and Discussion 

Red chromophore maturation deficient mPlum mutant. In a previous study, we 

developed a structure-based, rational design approach that combined computational 

protein design and experimental screening of combinatorial mutant libraries to red shift 

the emission wavelength of RFPs [19]. One of the hypotheses that we formulated to 
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achieve this goal was that the introduction of a π-stacking interaction with the 

chromophore phenol ring (similar to the one observed in yellow fluorescent proteins [20]) 

would red shift the emission wavelength of mCherry by stabilizing the excited state. 

Using our combined computational and experimental approach, we successfully 

introduced a π-stacking interaction with the mCherry chromophore by making a I197Y 

mutation (numbering based on DsRed). Two additional mutations, T195A and A217C, 

improved the quantum yield of the single mutant I197Y. This mutational motif, termed 

“AYC” for A195/Y197/C217, resulted in a 10 nm bathochromic shift in emission 

wavelength relative to mCherry [19].  

To create a further red-shifted monomeric RFP, we investigated whether the AYC motif 

could red shift the emission wavelength of the far-red emitting RFP mPlum [21]. mPlum 

is a member of the mFruit family of monomeric RFPs derived from DsRed [16] and 

differs from mCherry by 13 mutations (excluding N- and C-terminal tags, see Table 1). 

Its fluorescence emission wavelength (λem) of 649 nm is the longest of the mFruits and is 

red-shifted 38 nm compared to that of mCherry (λem = 611 nm). Ile65 and Glu16 appear 

to be major contributors to mPlum’s long emission wavelength as replacement of either 

residue results in an up to 40 nm hypsochromic shift [21]. These residues interact through 

an H-bond between the side chain of Glu16 and the acylimine carbonyl oxygen atom of 

Ile65 [22], and this interaction gives rise to a dynamic Stokes shift that is responsible for 

the far-red emission wavelength of 649 nm [13]. Given the very high sequence identity 

between mCherry and mPlum (> 90%), we hypothesized that the AYC motif would red 

shift the emission wavelength of mPlum as was observed in mCherry, yielding a 

monomeric RFP with λem > 650 nm.  
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Transplanting the AYC motif into mPlum to generate mPlumAYC resulted in a mutant 

protein that was completely deficient in red chromophore maturation; i.e., red 

chromophore formation was essentially undetectable by either absorption or fluorescence 

spectroscopy (Fig. 2). The absorption peak corresponding to the anionic red chromophore 

(Fig. 1, 10), which is at 588 nm in the spectrum of mPlum, is absent in the spectrum of 

mPlumAYC. This variant instead displays peaks centered at 396 nm and 508 nm; the 

396 nm peak corresponds to the neutral green chromophore (Fig. 1, 4), and the 508 nm 

peak corresponds to the anionic green chromophore (Fig. 1, 5). As seen in Fig. S1, when 

the pH is increased from 7.0 to 9.5, the intensity of the 396 nm peak decreases and a 

concomitant increase in intensity of the 508 nm peak is observed, indicating ionization of 

the green chromophore. This same behavior is observed in mPlum (Fig. S1). Given that 

the mPlumAYC green chromophore pKa is 7.3 (Table 1, Fig. S2), peaks corresponding to 

both ionization states of the green chromophore should be observable at the pH value of 

the measurements (pH 7.0). When excited at 508 nm, mPlumAYC displayed dim 

fluorescence at 527 nm with a quantum yield of 0.02, and no red fluorescence was 

detected with excitation at 590 nm. Thus, the AYC motif transformed mPlum into a dim 

yellow fluorescent protein. 

To examine the effect of the AYC motif on chromophore maturation, we performed 

maturation experiments. RFPs were expressed anaerobically in airtight culture tubes and 

purified rapidly at 4 °C in deoxygenated solutions to obtain protein samples that 

contained few or no fully mature chromophores. Absorption scans were then done to 

follow the maturation process at 28 °C. Chromophore maturation of mPlum at pH 7.5 

(Figs. 3 and S5A) demonstrates an increase in absorbance as a function of time for the 
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anionic green (506 nm) and red (588 nm) chromophore peaks. Additionally, a peak at 410 

nm appears to shift to 391 nm during the maturation process at pH 7.5. The peak at 410 

nm corresponds to the blue intermediate species [7, 10] (Fig. 1, 7), and the peak at 391 

nm corresponds to the neutral green chromophore (Fig. 1, 4). To remove spectral overlap 

of these two peaks, we performed the same maturation experiments at pH 9.5 (Fig. 3). At 

this pH, the neutral green chromophore (pKa 7.3–7.5) is deprotonated, thereby decreasing 

the peak intensity at 391 nm and leaving the 410 nm peak unaffected. mPlum maturation 

at pH 9.5 (Figs. 3 and S5B) shows an increase in absorbance as a function of time for the 

anionic green (508 nm) and red (588 nm) chromophore peaks. Additionally, a peak at 410 

nm increases in intensity and then disappears. This result confirms that the blue 

intermediate is formed transiently during maturation, as expected [6, 7, 23].  

For mPlumAYC, increases in absorbance are observed during maturation at pH 7.5 for 

the neutral (390 nm) and anionic (508 nm) green chromophore peaks. At pH 9.5, the 390 

nm peak disappears due to ionization of the neutral green chromophore, which would 

allow a 410 nm peak to be observed, if present. For mPlumAYC, however, no such peak 

is observed (Fig. 3), indicating that the intermediate blue species does not form and that 

the second oxidation reaction (Fig. 1, 6 to 7) does not occur. No evidence for the 

presence of the red chromophore was observed in mPlumAYC as indicated by the 

absence of any absorption peak at > 550 nm (Fig. 2). Thus, introduction of the AYC 

motif into mPlum prevents red chromophore maturation by inhibiting the second 

oxidation reaction, which results in a dim yellow fluorescent protein containing only the 

green chromophore. 
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Recovery of red chromophore maturation through rational design. Chromophore 

maturation in mPlum results in a mixture of protein molecules containing either the red 

chromophore (λ = 588 nm) or the green chromophore (peaks at 391 nm and 506 nm) [13] 

(Fig. 2). This is not the case for mCherry, a fast and efficient maturing RFP that matures 

almost exclusively to the red chromophore with a single peak centered at 586 nm 

(Fig. S1) [19]. We hypothesized that Glu16 plays an important role in mPlum's inefficient 

red chromophore maturation compared to mCherry. Our hypothesis is based on the fact 

that Glu16 H-bonds to the chromophore acylimine oxygen atom [22]. We postulated that 

this H-bonding interaction could restrict the conformational freedom of the peptide 

backbone, which may be required for the second oxidation reaction generating the 

acylimine group to take place (Fig. 1, 6 to 7). Previously, researchers suggested that a cis-

trans isomerization of the peptide backbone between residues 65 and 66 was necessary 

for this second oxidation reaction to occur [5, 24]. However, such an isomerization would 

result in a red chromophore with an acylimine oxygen atom pointing up away from 

catalytic residue Glu215; this has never been observed [25]. During the second oxidation 

reaction, the C-alpha carbon of residue 66 is transformed from sp3-hybrization to sp2-

hybridization, changing its geometry from tetrahedral to trigonal planar. This process 

clearly requires a conformational change in the peptide bond between residues 65 and 66. 

An H-bonding interaction between Glu16 and the carbonyl oxygen of residue 65 would 

very likely decrease conformational flexibility around this bond.  

An additional observation that lends support to our hypothesis comes from the absorption 

spectrum of mRojoA [19], an mCherry mutant that contains the AYC motif as well as a 

water-mediated H-bond between the side chain of Thr16 and the chromophore acylimine 
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oxygen. Absorption spectra for mRojoA demonstrate that as the pH is increased from 7.5 

to 9.5, a peak at 517 nm is revealed, indicating that mRojoA expresses as a mixture of 

green and red chromophore-containing proteins (Fig. S1). mCherry, which contains a 

non-H-bonding valine at position 16, does not exhibit this behavior (Fig. S1), indicating 

that purified preparations of this protein are essentially homogeneous in their maturation 

to the red chromophore. 

Based on these observations, we hypothesized that replacement of Glu16 with residues 

that cannot donate H-bonds to the acylimine oxygen would improve maturation to the red 

chromophore in maturation-deficient mPlumAYC. To test this hypothesis, we performed 

mutagenesis at position 16 in mPlumAYC followed by fluorescence detection of mutants 

that displayed emission at wavelengths > 550 nm. A total of 11 different amino acids 

including glutamine were tested at position 16; these included mutations to polar, 

hydrophobic, aromatic, acidic, and basic residues (Fig. S3). The E16D and E16T 

mutations did not recover red fluorescence in mPlumAYC, suggesting that side chains 

that can participate in H-bonding with the acylimine oxygen are detrimental to the second 

oxidation reaction leading to the red chromophore. The polar residues tyrosine and 

arginine also did not recover red fluorescence.  

Mutation to either an alanine or a proline resulted in the highest recovery of red 

fluorescence intensity. Some recovery was seen for other non-polar mutations (E16G, 

E16V, E16I and E16F), but the average integrated red fluorescence signal for these 

mutants was less than that seen for E16P and E16A (Fig. S3). Decreased fluorescence 

intensity may be due to lower protein expression levels or impaired fluorescence. 

However, since cellular densities were controlled, discrepancies in integrated 
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fluorescence intensity are unlikely to result from well-to-well differences in cellular 

growth levels. Thus, our mutagenesis study revealed that small non-polar residues 

improve red chromophore maturation efficiency, possibly by allowing for conformational 

flexibility during oxidation of the peptide backbone that generates the acylimine. 

Additionally, the presence of side chains smaller than glutamine at position 16 may 

increase molecular oxygen accessibility to the peptide backbone, thereby improving the 

initiation efficiency of this oxidation reaction. 

The two mutants that displayed the highest red fluorescence intensity, mPlumAYC-E16A 

and mPlumAYC-E16P, were further characterized. Their absorption spectra displayed 

three peaks centered at ~390 nm (neutral green chromophore), ~510 nm (anionic green 

chromophore), and ~590 nm (red chromophore), similar to what is observed for mPlum 

(Fig. 2). However, unlike mPlum, the highest intensity peaks for both of these mutants in 

the pH 7.0–9.5 range are the ~390 nm and ~510 nm peaks (Figs. 2 and S1), suggesting 

that the majority of RFP molecules contain a green chromophore instead of a red 

chromophore. The red/green chromophore ratios are reported in Table 2 as ratios of 

absorbance at 590 nm and 510 nm (A590/A510). These ratios were computed using 

absorbance values measured at pH 9.5 in order to deprotonate all green chromophores 

present in solution, converting the entirety of green chromophore-related absorbance to a 

single peak around 510 nm. The red/green chromophore ratio for mPlum is close to unity, 

whereas it is approximately 0.15 for mPlumAYC-E16A and mPlumAYC-E16P. Since the 

extinction coefficients of the red and green chromophores in FPs do not typically differ 

by orders of magnitude, this change in red/green ratio is significant. When excited at 510 

nm, mPlumAYC-E16A and mPlumAYC-E16P display yellow fluorescence at 523 nm 
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and 525 nm, respectively, with ΦF = 0.02. These proteins thus contain a significant 

proportion of molecules that contain a yellow-emitting green chromophore, similar to 

mPlumAYC.  

mPlumAYC-E16A and mPlumAYC-E16P also mature to molecules containing red 

chromophores that emit at 639 nm and 637 nm, respectively (Table 1). Interestingly, 

these mutants emit at wavelengths 10–12 nm shorter than mPlum (λem = 649 nm). This is 

presumably because they have lost the dynamic Stokes shift resulting from the H-bonding 

interaction between the chromophore acylimine and Glu16. Other mPlum mutants with 

non-polar amino acids at position 16 have been shown to emit at 615–626 nm [21, 22]. 

Since our mPlumAYC-E16A and mPlumAYC-E16P mutants emit at 637–639 nm, we 

propose that their 11–24 nm longer emission wavelengths result from the red-shifting 

effect of the π-stacking interaction incorporated through the AYC motif. Although the 

E16P and E16A mutations in mPlumAYC partially restore red chromophore maturation, 

the red fluorescence quantum yields for these mutants (ΦF = 0.04 and 0.05, respectively) 

are about half that of mPlum (Table 1).  

Maturation kinetics experiments on mPlumAYC-E16A and mPlumAYC-E16P revealed 

that both variants display a time-dependent increase in the peaks corresponding to the 

green (~390 and ~510 nm) and red (~590 nm) chromophores at pH 7.5 (Fig. S4). As 

observed for mPlum, the ~390 nm peak overlaps with the 410 nm peak of the blue 

intermediate species. To remove this spectral overlap, maturation experiments were also 

performed at pH 9.5 (Fig. S4). At this higher pH, we observe a peak at 410 nm that 

increases in intensity and then disappears, suggesting that the blue intermediate species 

has been consumed to form the red chromophore, as seen for mPlum (Fig. 3). Thus, loss 



 

- 72 - 

of the H-bonding interaction between residue 16 and the acylimine oxygen appears to 

partially restore oxidation of the backbone with subsequent formation of the intermediate 

blue species (Fig. 1, 7).  

A fast and efficient red chromophore maturing mPlum mutant. A disadvantage of 

mPlum for imaging experiments is that preparations of this protein result in a mixture of 

molecules that contain either red or green chromophores [13], as observed in Fig. 2. This 

is an undesirable property for multicolor imaging applications. To assess whether 

removal of the H-bonding interaction between Glu16 and the chromophore would result 

in improved maturation to the red chromophore in mPlum, we prepared the point mutant 

mPlum-E16P and measured its absorption spectrum. This single amino acid change 

resulted in an RFP that matures almost exclusively to the red chromophore (Fig. 2). The 

506 nm anionic green chromophore peak at pH 7.0 was ablated, and only one major peak 

located at 590 nm is observed. When the pH is increased to 9.5 (Fig. S1), a small but 

observable peak appears at 509 nm, corresponding to the anionic green chromophore. 

These results indicate that maturation to the red chromophore in mPlum-E16P, although 

dramatically improved, is not complete. Nevertheless, the absorbance ratio A590/A510, 

representing the ratio of red chromophore to green chromophore, is four times that of 

mPlum (Table 1), indicating that red chromophore-containing molecules constitute the 

majority of the RFP population in solution. Maturation kinetics experiments of 

mPlum-E16P at both pH 7.5 and 9.5 show a clearly observable 410 nm peak 

corresponding to the intermediate blue species (Fig. S5D). The blue species is formed 

rapidly and is consumed to produce the red chromophore. No peak for the neutral green 

chromophore is present to overlap with the 410 nm peak, again suggesting that little 
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green chromophore is present. Therefore, the E16P mutation improved red chromophore 

maturation efficiency in mPlum, similar to its effect in mPlumAYC. 

mPlum-E16P emits red fluorescence at 630 nm, which is almost 20 nm blue-shifted 

relative to mPlum. This is not unexpected as the dynamic Stokes shift responsible for the 

large red shift in mPlum is lost when Glu16 is replaced by a proline. Interestingly, this 

630 nm emission wavelength is identical to that of mPlum-E16Q [22], which can still 

form an H-bond with the chromophore acylimine group. Moreover, the emission 

wavelength of mPlum-E16P is 12 nm longer than that of the E16L mutant, which cannot 

form such an interaction [22]. Notably, the quantum yield of mPlum-E16P is 40% higher 

than the quantum yield of mPlum (Table 1) and its extinction coefficient of 

29,350 ± 2000 M–1cm–1 is similar to that of mPlum (22,000 M–1cm–1 [18]), resulting in a 

brighter RFP. Another characteristic of mPlum-E16P is that its excitation at 509 nm does 

not result in detectable yellow fluorescence. Hence, removal of the Glu16-acylimine 

H-bond largely improved red chromophore maturation in mPlum, resulting in a brighter 

RFP that matures almost exclusively to the red chromophore.  

Chromophore maturation mechanism. To better understand the roles of the AYC motif 

and position 16 residue identity during chromophore maturation, we performed 

maturation kinetics experiments for all the mPlum-derived RFPs described above 

(mPlum, mPlum-E16P, mPlumAYC, mPlumAYC-E16P, and mPlumAYC-E16A). These 

experiments were performed at pH 7.5 to approximate physiological pH and at pH 9.5 to 

avoid spectral overlap of the ~390 nm and 410 nm absorption peaks. Maturation half-

times for the anionic green and red chromophores (Fig. 1, 5 and 10) were measured, as 

well as the time to reach maximum 410 nm absorbance. Maturation half-times for the 
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formation of the neutral green chromophore (Fig. 1, 4) were not measured for two 

reasons. First, the ~390 nm peak corresponding to this species overlaps with that of the 

410 nm absorbing blue intermediate, introducing measurement errors. Second, maturation 

data from mPlumAYC, which matures exclusively to the green chromophore, revealed 

that maturation half-times for the neutral and anionic green chromophores were identical 

at the pH of measurement (Fig. S5C). This result indicates that ionization of the green 

chromophore occurs on a much faster timescale than chromophore formation. Thus, the 

maturation half-time of the anionic green chromophore is sufficient to accurately reflect 

the maturation half-time of the dehydration step leading to the neutral green chromophore 

(Fig. 1, 3 to 4). 

For the RFPs studied here, maturation half-times of both green and red chromophores 

were faster at pH 9.5 than at pH 7.5, except for mPlumAYC-E16P (Table 2). In this 

protein, red chromophore formation half-times were not significantly different at these 

two pHs. A shortening of maturation half-times in response to increased pH suggests that 

a base may be involved in the rate-limiting step on both the green and red chromophore 

maturation pathways. This assessment is supported by previous studies in which 

dehydration along both maturation pathways was shown to be rate limiting [7, 11]. Since 

dehydration reactions in the chromophore maturation mechanism (Fig. 1) require proton 

abstraction to eliminate hydroxide, it is expected that a higher pH would accelerate these 

reactions. Interestingly, the greatest acceleration in maturation as a function of pH occurs 

for mPlum (Table 2 and Fig. S5A, B). For green chromophore maturation, the half-time 

decreases from 2.8 h at pH 7.5 to 0.47 h at pH 9.5, whereas for the red chromophore, 

maturation half-time decreases from 7.3 to 3.9 h. It is unclear why only mPlum would 
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display such a large acceleration of chromophore maturation, but ionization of the Glu16 

residue at higher pH could be a factor. 

For all the RFPs studied here, the first peak that appears during chromophore maturation 

is the 410 nm blue species peak, followed by the green chromophore ~510 nm peak, and 

finally the red chromophore ~590 nm peak (Figs. 3, S4, and S5A, B, D). Formation of the 

blue intermediate before the red chromophore is expected. Formation of this blue species 

by the second oxidation reaction has been demonstrated to shunt intermediates down the 

red chromophore-forming pathway [7]. Studies in other RFPs have shown similar 

behaviors [6, 26]. The times at which the 410 nm peak reaches maximum absorbance are 

reported in Table 2 for all RFPs studied here. After this time point, the production rate of 

the blue species falls behind the consumption rate, and this species is continually 

transformed into red chromophore. Except in mPlum-E16P, the 410 nm peak maximum 

is reached after the green chromophore maturation half-time. This observation indicates 

that the blue intermediate species is still forming when half of the total green 

chromophores in solution have been produced. Importantly, the relative rates for the 

dehydration step leading to green chromophore formation (Fig. 1, 3 to 4) and the 

oxidation step leading to the acylimine-containing blue species (Fig. 1, 6 to 7) should 

determine the final ratio of red to green chromophore-containing molecules. Thus, a 

kinetic effect at the branch point of the mechanism (Fig. 1, boxed) should determine the 

efficiency of RFP chromophore maturation. Consequently, if the half-time of green 

chromophore maturation is shorter than the time of peak maximum for the blue species, a 

significant proportion of molecules should contain green chromophores. This is indeed 

what is observed for mPlum, mPlumAYC-E16A, and mPlumAYC-E16P, which have 
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red/green chromophore ratios less than 1.0 (Table 2). On the other hand, if formation of 

the blue species is faster than the dehydration step, the final ratio of red/green 

chromophores should increase. This is what we observe for our mPlum variant with the 

most efficient red chromophore maturation, mPlum-E16P, whose 410 nm peak maximum 

is reached 1.8 h before its green chromophore maturation half-time (Table 2). Thus, in 

mPlum-E16P, before half of the total green chromophore is formed, the majority of flux 

through the blue species has already occurred via consumption along the pathway to yield 

red chromophore. As a result, at the completion of the maturation process, this protein 

displays the highest red/green ratio of all mPlum mutants described here 

(A590/A510 = 3.7).   

In summary, our data support the notion that to obtain RFPs displaying more efficient red 

chromophore maturation, the blue species formation rate must exceed the green 

chromophore formation rate. The overall red chromophore formation rate need not be 

increased outright, since the half-time of red chromophore maturation is always longer 

than the half-time of green chromophore maturation (Table 2) [6, 7]. Presumably, the 

E16A and E16P mutations speed up the second oxidation step (Fig. 1, 6 to 7) and 

possibly slow down the dehydration step leading to green chromophore formation (Fig. 1, 

3 to 4). Alternatively, the competition for intermediate substrates (3 and 6) becomes more 

pronounced when the second oxidation step is made more efficient, which then impedes 

dehydration. For example, Table 2 shows that the maximum absorbance of the 410 nm 

peak is reached ~0.2 h faster during mPlum-E16P maturation than during maturation of 

mPlum. Simultaneously, the maturation half-time of the green chromophore is lengthened 

in mPlum-E16P relative to mPlum at both pH 7.5 and pH 9.5. Longer green chromophore 
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maturation half-times are also observable for the mPlumAYC-E16P and 

mPlumAYC-E16A mutants relative to mPlumAYC (Table 2). 

Lastly, the AYC motif affects maturation by slowing down formation of the blue species, 

and in the case of mPlumAYC, by completely inhibiting it. As seen in Table 2, the time 

of 410 nm peak maximum is much longer for the AYC motif-containing mPlum mutants 

than for mPlum and mPlum-E16P, which do not contain this motif. At the same time, the 

AYC mutations appear to speed up dehydration leading to the green chromophore. For 

example, at pH 7.5, green chromophore maturation half-time is ~2 h shorter in 

mPlumAYC than in mPlum and is ~1.7 h shorter in mPlumAYC-E16P than in mPlum-

E16P. At pH 9.5, green chromophore formation remains faster for mPlumAYC-E16P 

compared to mPlum-E16P. Notably, the green chromophore formation rate for mPlum 

exceeds that for mPlumAYC at pH 9.5, but this may be related to interfering effects from 

ionization of Glu16 at higher pH. On balance, the AYC motif appears to favor the 

dehydration reaction leading to formation of the green chromophore (Fig. 1, 3 to 4) over 

the second oxidation reaction (Fig. 1, 6 to 7) that eventually leads to red chromophore 

formation. 

Crystallographic support of maturation studies. The various mPlum mutants 

described here constitute a useful set of proteins for studying the structure-function 

relationships involved in RFP chromophore maturation. Thus, to help elucidate the 

mechanisms underlying the observed effects of our mutations on chromophore 

maturation, we solved the crystal structures of mPlum-E16P, mPlumAYC, and 

mPlumAYC-E16A. Data collection and refinement statistics are reported in Table S1. 

The structure of mPlumAYC demonstrates that the intended π-stacking interaction 
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between Tyr197 and the chromophore was successfully introduced (Fig. 4A). The 

centroid-to-centroid distance between the Tyr197 phenol ring and the chromophore 

phenol ring was 3.0 Å and the interplanar angle between these rings was 12.3°. In the 

mPlumAYC-E16A structure (Fig. 4B), the centroid-to-centroid distances were 4.1 Å and 

4.0 Å and the interplanar angles were 11.6° and 11.1° for chains A and B, respectively. 

For comparison, the π-stacking interaction of the yellow fluorescent protein citrine has a 

centroid-to-centroid distance of 3.6 Å and an interplanar angle of 6.1° [27]. In mRojoA, 

an mCherry mutant equipped with the AYC motif, centroid-to-centroid distances are 

tightly clustered in a range of 3.8–3.9 Å for all subunits in the crystal, and the interplanar 

angles span 4.2°–12.8° [19]. Thus, our crystallographic data demonstrate that 

introduction of the AYC motif in mPlum resulted in successful creation of the desired π-

stacking interaction with the chromophore (Fig. 4A, B).  

The crystal structures of mPlumAYC and mPlumAYC-E16A did not contain appreciable 

omit map density (contoured at 3σ) corresponding to the presence of an oxidized peptide 

backbone with sp2-hybridized C-alpha carbon at residue 66 (Fig. 4C), which is indicative 

of red chromophore formation. However, these structures did show well-resolved 

tetrahedral sp3-hybridized C-alpha atoms at position 66 (Fig. 4D), indicating green 

chromophores. This observation is consistent with the weaker intensity observed for the 

red chromophore absorption peak (~590 nm) of mPlumAYC-E16A and for the absence 

of such a peak for mPlumAYC (Fig. 2). This weaker or absent peak corresponds to a 

concentration of red chromophore-containing molecules that is substantially lower or 

absent. In turn, this smaller population of red chromophore molecules in solution 

contributes to a smaller population of these molecules in the crystal and consequently an 
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absence of appreciable electron density. Conversely, the structure of mPlum-E16P 

presents no appreciable omit map electron density for the green chromophore when 

contoured at 3σ. Only density corresponding to a planar sp2-hybridized C-alpha carbon at 

residue 66 (Fig. 4C), indicating the red chromophore, is apparent. Notably, this correlates 

with the near complete red chromophore maturation observed for mPlum-E16P. During 

analysis of the electron density in all three structures, occupancy refinement starting with 

50% of both red and green chromophores terminated by driving the appropriate green or 

red population to 0% occupancy. 

For chains A and B, the dihedral angles of the acylimine-containing peptide bonds in 

mPlum-E16P are 87.5° and 88.3°, which are both close to the theoretically expected 

value of 90° for RFP red chromophores [24]. For mCherry, this angle is about 30° larger 

at 119.7°, and for the red chromophore of mPlum, this angle is 168.8°. On the acylimine 

side of the chromophore, the Pro16 residue in mPlum-E16P appears to slightly distort the 

secondary structure of the first β-strand in the protein, but does not cause any major 

structural changes. Specifically, the φ and ψ angles for Pro16 in chain A of mPlum-E16P 

are –97.9° and 141.1°, respectively; in chain B, they are –91.0° and 139.2°. For mPlum, 

the corresponding angles at the red chromophore-proximal Glu16 are –126.2° (φ) and 

145.7° (ψ). The canonical angles for a protein β-sheet are φ = –135° and ψ = 135°. The 

allowed φ angles of a proline residue are restricted due to the five-membered ring in this 

amino acid involving the backbone amine nitrogen. Thus, a deviation of the expected 

φ angle for a β-sheet at Pro16 would be anticipated. 
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Except for the expected φ angle change at position 16 due to the presence of a proline 

residue, there are no substantial φ and ψ angle-changing effects propagated down the rest 

of the first β-strand in mPlum-E16P in either direction. In mPlumAYC-E16A, the first 

β-strand of the protein, which contains position 16, is indistinguishable in structure from 

that of the Glu16-containing proteins mPlum and mPlumAYC. For Ala16 in 

mPlumAYC-E16A, φ = –129.4° for chain A and –129.1° for chain B, and the ψ angles 

for this residue are 138.9° in chain A and 139.0° in chain B. In mPlumAYC, the Glu16 

residue has φ = –128.6° and ψ = 140.0°.  

When comparing the crystal structures of mPlum, mPlum-E16P, mPlumAYC, and 

mPlumAYC-E16A, we observed strong overall similarity for residues surrounding the 

chromophore, including the catalytic residues Arg96 and Glu215. The only appreciable 

difference we could find among these three structures was in the crystallographic side 

chain conformation of Lys70. In mPlum-E16P, the Lys70 side chain adopts a 

conformation similar to that found in the fast and efficient maturing RFP mCherry [4]. 

However, in mPlum, the red chromophore-adjacent Lys70 residue adopts a slightly 

different conformation, causing the NZ atom to retract away from the chromophore by 

1.4 Å with respect to its position in mPlum-E16P (Fig. 4C). In mPlumAYC and 

mPlumAYC-E16A, the presence of Tyr197 blocks the space where the NZ atom of the 

Lys70 side chain in mPlum-E16P and mCherry would sit (Fig. 4D). In these AYC motif-

containing proteins, the side chain of Lys70 forms three H-bonding interactions: one with 

the side chain of Glu148, another with the side chain of Tyr197, and a third with a water 

molecule (Fig. 4A, B). In contrast, the side chain of Lys70 in mPlum and mPlum-E16P 

only forms two H-bonding interactions: one with the side chain of Glu148 and another 
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with a water molecule. The AYC motif therefore appears to lock the terminal amine of 

Lys70 into a position roughly 6 Å away from the chromophore (Table 2). In contrast, the 

terminal amino groups of Lys70 in mPlum-E16P and mPlum are able to sit about 4 Å and 

5 Å away (Table 2), respectively, from the nearest red chromophore heavy atom (CB2, 

the bridging methylene carbon between the phenol and imidazolinone moieties of the 

chromophore). Thus, we propose that the AYC motif slows down (mPlumAYC-E16A 

and mPlumAYC-E16P) or completely hinders (mPlumAYC) the second oxidation 

reaction during chromophore maturation (Fig. 1, 6 to 7). It does so by pushing Lys70 

away from the chromophore and locking it into a more distal conformation through an 

additional H-bond. Thus, sequestration of the Lys70 side chain away from the 

chromophore results in the observed maturation deficiency.  

In support of the above statement, we see a general trend toward less efficient red 

chromophore maturation for longer NZ-to-chromophore distances in our mPlum mutants. 

Moreover, we observed a correlation between a longer crystallographic distance from the 

Lys70 terminal amino group to the chromophore and the final proportion of red versus 

green chromophore-containing molecules in the RFP population. Specifically, we 

observe a negative correlation between the Lys70 NZ-to-chromophore distance and the 

red/green ratio (Table 2). Most DsRed-derived RFPs have a conserved lysine at position 

70, and it was shown that the K70M mutation in DsRed suppresses red chromophore 

formation completely [3, 12]. Recently, Lys70 was proposed to be important for the 

formation of the intermediate blue species through an electrostatic interaction with the 

chromophore’s imidazolinone oxygen atom [10]. Our observation that proximity to the 
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chromophore of the Lys70 side chain correlates with RFPs that mature more efficiently 

agrees with this proposal. 

Maturation promoting mutations. Because FPs need to fold before any of the chemical 

transformations required to produce the chromophore can occur [28, 29], chromophore 

maturation is the rate-limiting step for FPs to become fluorescent. For most imaging 

experiments, RFPs that mature quickly to the red chromophore are preferred. Commonly-

used FPs mature with half-times of 40 min to 2 h at 37°C [30]. To eliminate background 

signal, complete maturation to the red chromophore is also desirable. Furthermore, RFPs 

that express as mixtures of molecules containing either the green or red chromophore are 

inconvenient for multicolor labeling applications. As a result, much effort has been 

devoted to the optimization of red chromophore maturation in RFPs [16, 17, 31].  

Mutations that improve red chromophore maturation in RFPs have been discovered 

primarily through screening of large mutant libraries obtained through random 

mutagenesis. Much work has focused on improving DsRed maturation, resulting in a 

number of mutants displaying accelerated maturation and decreased green chromophore 

formation [16, 17, 31, 32]. Positions in the sequence of DsRed that are known to affect 

chromophore maturation include residues 42, 66, 70, 71, 83, 105, 163, and 217. DsRed 

mutations N42Q [17], V105A [32], Q66M [3, 16], and M163Q [16] have been shown to 

improve maturation by accelerating red chromophore formation or decreasing green 

chromophore formation. Conversely, mutations V71M [32], K70M [12] and K83R [33] 

have been shown to inhibit red chromophore formation and result in green fluorescent 

proteins. Of the residues involved in the AYC motif, position 217 has been shown to 

accelerate red chromophore maturation when mutated to alanine [17].  
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In this study, mutations that hinder or improve red chromophore maturation in DsRed-

derived RFPs were rationally designed. We converted the red fluorescent protein mPlum 

into a strictly yellow-emitting FP by introducing three mutations around the chromophore 

(T195A, I197Y, and A217C). Then, we used rational design to successfully reintroduce 

red chromophore formation into mPlumAYC and to drastically improve red chromophore 

maturation efficiency in mPlum. The rationally designed mutations that resulted in the 

greatest improvement of chromophore maturation efficiency were E16A and E16P.  

One other example of the conversion of green chromophore-containing FPs into RFPs via 

mutagenesis has been reported. In 2008, Mishin et al. used random mutagenesis and high-

throughput screening to convert Aequorea victoria GFP into a mutant that emits at 

585 nm [34]. The authors proposed that the red fluorescence-emitting GFP mutant 

undergoes a dehydration reaction at Ser65 of the chromogenic tripeptide (Ser65-Tyr66-

Gly67), which results in a dehydroalanine residue that tautomerizes to an acylimine 

group. The presence of this acylimine extends the conjugation of the chromophore, 

resulting in red fluorescence at 585 nm. Unlike this prior study, our results represent the 

first instance in which a green chromophore-containing FP was converted to a red 

chromophore-containing FP by rational design. Moreover, this conversion was 

accomplished without reverting any of the mutations causing the maturation deficiency 

and without altering the chromophore’s covalent structure. 

Conclusion 

In this study, we converted a yellow fluorescent mutant of mPlum into a red-emitting 

RFP using principles of rational design. Based on our observations, we propose two 

structural features that are important for efficient red chromophore formation in DsRed-
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derived RFPs. The first is the presence of a lysine residue at position 70 that is able to 

interact directly with the chromophore. Such an interaction has already been shown to be 

important for red chromophore formation [3, 10]. To interact efficiently with the 

chromophore, this lysine must be within a certain distance range and must not be locked 

in a conformation that sequesters the side chain NZ atom away from the chromophore. 

The second structural feature is an absence of non-bonding interactions limiting the 

conformational flexibility at the peptide bond that is oxidized to form an acylimine 

during red chromophore formation. Since the geometry of the C-alpha atom in the first 

amino acid of the chromogenic tripeptide (residue 66 for mPlum) must change from 

tetrahedral to trigonal planar during oxidation, flexibility is needed for this process to 

occur efficiently. Our data, as well as structural features for known acylimine-forming 

FPs, support this proposition. Satisfying or improving these structural features in other 

maturation-deficient RFPs may result in RFPs with faster and more complete maturation 

to the red chromophore. 

Materials and Methods 

Materials. All reagents used were of the highest available purity. Restriction enzymes 

and DNA-modifying enzymes were from New England Biolabs. Synthetic 

oligonucleotides were obtained from Integrated DNA Technologies, and Ni-NTA agarose 

resin was obtained from Qiagen. CelLytic B buffer and lysozyme were purchased from 

Sigma-Aldrich. All aqueous solutions were prepared using water purified with a 

Millipore BioCell system. 

Mutagenesis. The mPlum gene was PCR-amplified from plasmid mPlum-pBAD 

(provided by R.Y. Tsien, UCSD) and subcloned into pET11-a (Novagen) via 
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NdeI/BamHI. The plasmid was then transformed into Escherichia coli XL-1 Blue. The 

entire NdeI/BamHI fragments, including the whole coding region, were verified by DNA 

sequencing. All mutations were introduced into the mPlum gene by overlap extension 

mutagenesis [35] using VentR DNA polymerase (NEB). Briefly, external primers were 

used in combination with sets of complementary pairs of degenerate oligonucleotides 

containing the desired mutations in individual PCR reactions. The resulting overlapping 

fragments were gel-purified (Qiagen) and recombined by overlap extension PCR. The 

resulting amplicons were digested with NdeI/BamHI, gel-purified, and ligated into 

pET11a expression vector with T4 ligase.  

Characterization of mPlum mutants. The plasmids prepared as described above were 

transformed into chemically competent E. coli BL21-Gold(DE3) cells (Stratagene). 

Colonies were picked into individual wells of Nunc V96 MicroWell polypropylene plates 

containing 200 µL of medium (LB with 100 µg/mL ampicillin supplemented with 10% 

glycerol). The plates were covered with a sterile Breathe-Easy gas permeable sealing 

membrane (Sigma) and incubated overnight at 37°C with shaking. After incubation, these 

mother plates were used to inoculate sterile Nunc V96 MicroWell polypropylene plates 

(daughter plates) containing 300 µL of Overnight Express Instant Terrific Broth media 

(Novagen) supplemented with 100 µg/µL ampicillin per well. Daughter plates were 

sealed with breathable membranes and incubated overnight (37°C, 250 rpm shaking). 

After incubation, the cells were harvested by centrifugation and the cell pellets were 

washed twice with PBS (pH 7.4). Washed cell pellets were then incubated at 4°C for 72 h 

to allow chromophore maturation. These pellets were resuspended in PBS and transferred 

to a Fluotrac 96-well plate (Greiner Bio-One) for screening. Fluorescence was measured 
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with a Tecan Safire2 plate reader. Emission spectra (λex = 570 nm) were measured from 

590 nm to 700 nm.  

Protein expression and purification for spectral characterization and crystallization. 

Protein was expressed in 1.0 L cultures by transformation of a pET11-a vector containing 

the gene of interest into E. coli BL21-Gold(DE3) and purified by Ni-NTA affinity 

chromatography according to the manufacturer’s protocol. Column elutions were desalted 

by gel filtration using a Superdex 75 10/300 GL Tricorn resin column (GE Healthcare) 

into a final buffer solution of 50 mM phosphate buffer, pH 7.5, and 150 mM NaCl. 

Spectroscopic characterization. All absorbance and emission spectra were recorded 

with a Tecan Safire2 plate reader in Greiner UV-Star 96-well plates. Proteins purified as 

described above were quantified using the alkali denaturation method [33]. Briefly, RFPs 

were alkali-denatured with an equal volume of 2 M NaOH. It is known that the alkali-

denatured RFP chromophore converts to a GFP-like one, with extinction coefficient 

44,000 M-1 cm-1 at 452 nm under these conditions. Absorbance, emission, and excitation 

spectra were recorded in PBS. Path lengths for each well were calculated ratiometrically 

using the difference in absorbance of PBS at 900 nm and 998 nm. Based on the 

absorbance spectra of native proteins and the concentration determination of alkali-

denatured proteins, molar extinction coefficients were calculated. For determination of 

quantum yields, the integrated fluorescence intensity of mutants of interest was compared 

with that of equally absorbing samples of mCherry and DsRed (quantum yields 0.22 and 

0.80, respectively) with excitation at 550 nm. 

pH Studies and pKa measurements. pH titrations were performed using a range of 

buffers from pH 2.0 to 9.5. Proteins were diluted into these buffers to a concentration of 
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5–10 µM. Fluorescence and absorbance scans were taken at each pH value using a Tecan 

Safire2 plate reader. The Henderson-Hasselbach equation was used to calculate the pKa 

for each protein. 

Maturation studies. To start, 30 mL cultures were inoculated with frozen cell stocks of 

E. coli BL21-Gold(DE3) containing the gene of interest in a pET11-a vector. After 

growing for 2–3 h at 37°C with shaking, cultures were induced with 5 mM IPTG, then 

capped and sealed to create an anaerobic environment. Proteins were expressed under 

these anaerobic conditions for 3–4 h at room temperature. After expression, cells were 

harvested by centrifugation and resuspended in 1.8 mL deoxygenated lysis buffer 

(50 mM Tris-HCl, pH 8.0, 300 mM NaCl, 5 mM imidazole, 1X CelLytic B, 1 mg/mL 

lysozyme, and 25 U/mL benzonase nuclease (Novagen)). Resuspended cell lysates were 

sealed from the air, then incubated at room temperature for 30–40 min without shaking to 

allow for complete cell lysis by lysozyme. After centrifugation, clarified lysates were 

recovered and proteins were quickly purified by Ni-NTA affinity chromatography at 4°C. 

Absorbance and emission spectra were recorded with a Tecan Safire2 plate reader. 

Spectroscopic data collection for maturation studies was performed at 28°C for all 

proteins studied here. All experiments were performed in triplicate. 

Crystallography. A very large purple crystal of mPlum-E16P was grown in 0.3 µL × 

0.3 µL sitting drops with a precipitant solution of 200 mM MgCl, 100 mM sodium 

cacodylate, pH 6.5, and 50% (v/v) polyethylene glycol 200. This large rhomboidal crystal 

had approximate dimensions 0.4 mm × 0.5 mm × 0.1 mm. Bluish crystalline chunks of 

mPlumAYC-E16A were grown in sitting drops with 0.3 µL protein solution and 0.3 µL 

of the same precipitant used to crystallize mPlum-E16P; approximate dimensions were 
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0.05 mm × 0.10 mm × 0.08 mm. Bright yellow cubes of mPlumAYC were grown in 

sitting drops with 0.3 µL protein solution and 0.3 µL of a precipitant solution consisting 

of 200 nM sodium cacodylate, 100 mM Tris-HCl, pH 8.5, and 30% (w/v) polyethylene 

glycol 4000. These cubes had approximate dimensions of 0.05 mm × 0.05 mm × 

0.05 mm. All datasets were collected at the Stanford Synchrotron Radiation Lightsource 

(SSRL) beamline 12-2. IPMOSFLM [36] was used for integration and SCALA [37] was 

used for merging and scaling. All datasets collected were solved by molecular 

replacement using PHASERMR [38]. The search model used consisted of the PDB 

coordinates from mPlum (2QLG [39]) with the chromophore removed. 

Refinement was accomplished using REFMAC5 [40, 41] and PHENIX [42]. PHENIX 

was used specifically for refinement of atomic occupancies. Model building was done 

with COOT [43], wherein water molecules were added manually when they were within 

H-bonding distance of other heteroatoms (2.3–3.5 Å) and had peaks in the Fo – Fc map of 

greater than 3.5 σ. In addition, water molecules were removed when they had equivalent 

isotropic B-factors greater than 60–80 Å2. During generation of R-factors, 5% of data 

was excluded for cross-validation with an Rfree value. Crystallographic R-factors were 

calculated in the standard fashion (R = ∑  |Fobs − Fcalc|  /  ∑ Fobs). For all crystal structures, 

the final refinement steps were carried out with 20 translation-libration-screw (TLS) 

groups per protein molecule [44]. TLS groups were identified automatically by using the 

TLS Motion Determination web server (TLSMD) [45]. Riding hydrogens were included 

in the refinement of all structures for non-water molecules. The library file for the 

chromophore was built based on the CH6 chromophore deposited in the Hetero-

compound Information Centre - Uppsala (HIC-Up) online database.  
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Fig. 2. Absorption and fluorescence spectra of various RFPs. Absorption spectra 

(heavy black lines) are normalized to the largest intensity absorbance peak present in 

each spectrum. Fluorescence emission spectra (dotted lines) are normalized to the 

absorbance peak in each spectrum corresponding to the excitation wavelength used to 

induce fluorescence. All spectra were measured at pH 7.0. 
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Fig. 3. Maturation experiments. All spectra are normalized to the 280 nm absorbance 

peak. Heavy black and blue traces represent the beginning (t = 0 h) and end (t = 20 h) of 

the maturation experiment, respectively. The distance in time between each gray or black 

trace is 1.0 h. Arrows indicate the primary direction of peak movement during 

maturation. Each heavy red trace indicates the point in time when the 410 nm absorbance 

peak reached its maximum during the course of maturation. Black traces occur before the 

410 nm peak reaches its maximum level; gray traces occur after the maximum. 
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Fig. 4. Crystal structures. (A and B) Introduction of the AYC motif results in π-stacking 

interactions between the chromophore and Tyr197 in both mPlumAYC (A) and 

mPlumAYC-E16A (B). H-bonding interactions with Lys70 are illustrated with dashed 

lines. These interactions combine to sequester the terminal amino group of Lys70 away 

from the chromophore. (C and D) Comparisons of Lys70-to-chromophore distance are 

illustrated between mCherry (pink), mPlum (purple), and mPlum-E16P (mauve) (C), as 

well as between mPlum (purple), mPlumAYC (yellow), and mPlumAYC-E16A (blue) 

(D). A dotted line connects the NZ atom of Lys70 in mPlum to the CB2 atom of the 

mPlum red (C) or green (D) chromophore. Note that Lys70 in mPlum adopts a slightly 

different conformation in the red versus green chromophore contexts. All proteins were 

aligned by the atoms of their five-membered heterocyclic chromophore ring. A dashed 

circle highlights the C-alpha carbon of residue 66, which is either sp2-hybridized in the 

red chromophore (C) or sp3-hybridized in the green chromophore (D). 
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Supporting Information 

 

SI Figures & Legends 

 

Fig. S1. pH affects the absorption spectra of various RFPs. All spectra are normalized 

to the 280 nm absorbance peak. Heavy green and blue traces represent spectra taken at 

pH 7.0 and 9.5, respectively. All remaining black traces are separated from each other by 

0.5 pH units (specifically: pH 7.5, 8.0, 8.5, and 9.0). 
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Fig. S3. Red fluorescence level in mPlumAYC E16 mutants. Integrated red 

fluorescence intensity between 590 nm and 700 nm with excitation at 550 nm was 

measured for one to six samples of each mPlumAYC E16 point mutant. Shown are the 

average integrated fluorescence intensities with error bars representing ± 1 σ. The control 

sample contained an empty protein expression plasmid. 
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Fig. S4. Maturation experiments with recovery mutants. All spectra are normalized to 

the 280 nm absorbance peak. Heavy black and blue traces represent the beginning 

(t = 0 h) and end (t = 20 h) of the maturation experiment, respectively. The time between 

each gray or black trace is 1.0 h. Arrows indicate the primary direction of peak 

movement during maturation. Each heavy red trace indicates the point in time when the 

410 nm absorbance peak reached its maximum level during the course of maturation. 

Black traces occur before the 410 nm peak reaches its maximum level; gray traces occur 

after the maximum. Selected regions of each panel (insets) are magnified to illustrate the 

revelation of a more pronounced peak at 410 nm during maturation at pH 9.5.  
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Fig. S5. Maturation kinetics plots. All spectral data is normalized to the maximum peak 

intensity observed over the course of maturation for each wavelength depicted. 

Suppression of spectral interference involving the 410 nm absorbance peak is illustrated 

for mPlum when maturation is tracked at higher pH (A and B). In mPlumAYC (C), green 

chromophore maturation half-time is equivalent when tracking both the neutral green 

chromophore (396 nm) and the ionized green chromophore (508 nm). This result 

indicates that green chromophore ionization and maturation occur on much different 

timescales. Lastly, a shift to faster red chromophore maturation half-time and faster 

arrival at the 410 nm peak maximum occurs when tracking maturation at pH 9.5 in 

mPlum-E16P (D). This shift to shorter half-times can be seen in mPlum as well for pH 

7.5 (A) versus pH 9.5 (B). 
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Table S1. Crystallography Data 
 

 mPlum-E16P mPlumAYC mPlumAYC-E16A 
Resolution, Å 33.9–1.65 37.9–1.75 40.3–2.0 
Space Group P212121 P22121 P212121 
Observations 178,646 74,017 61,173 
Unique Observations 53,773 22,710 23,844 
Rmerge, % 8.2 (51.1) 22.9 (38.7) 10.3 (15.0) 
Completeness, % 97.9 (97.5) 95.5 (99.9) 92.2 (95.1) 
I / !I 7.2 (1.7) 3.5 (2.1) 6.0 (4.4) 
Rwork / Rfree, % 19.0 / 22.7 22.1 / 28.1 21.5 / 27.4 
Molec. / Asymm. Unit 2 1 2 
Unit Cell Dimensions, Å a = 61.2 a = 38.7 a = 61.2 
 b = 76.9 b = 61.6 b = 64.7 
 c = 95.8 c = 96.3 c = 94.8 
 ! = " = # = 90° ! = " = # = 90° ! = " = # = 90° 

 
Values in parentheses are statistics for the highest resolution shell of data. 
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Abstract 

Often the usefulness of a fluorescent protein tag is limited by its oligomerization 

state. To address this issue, a computational protein design (CPD) method was 

explored for efficiently identifying monomeric mutants of fluorescent proteins 

derived from class Anthozoa organisms. Focused combinatorial libraries of surface 

mutations were made in a variant of the tetrameric red fluorescent protein DsRed; 

this variant had a truncated C-terminal tail and thirteen point mutations 

corresponding to the core of mCherry, a monomeric derivative of DsRed. One 

library (M-Lib) was composed of sequences designed with an occlusion-based 

implicit solvation model using CPD. Another, smaller library (R-Lib) was produced 

through random sampling of amino acids from a distribution of residues found on 

the surface of proteins in mesophilic bacteria. Protein expression and 

characterization revealed that 97% of the M-Lib members were more than 

minimally fluorescent (quantum yield, ΦF, > 0.1) compared to only 27% of the 

R-Lib members. A monomeric state was confirmed for fluorescent members of both 

M-Lib and R-Lib using fluorescence anisotropy, size exclusion chromatography, 

and analytical ultracentrifugation. We also discovered that only certain sets of core 

residues enable chromophore formation in an oligomerization state-independent 

manner. Specifically, we found that the set of core residues in mCherry supports 

chromophore formation in both oligomeric and monomeric contexts, but the core 

residues of DsRed only support chromophore formation in an oligomeric context. 
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Fluorescent proteins (FPs) have revolutionized the world of cell biology [1]. They have 

proven to be particularly valuable when employed as molecular tags for the in vivo 

monitoring of protein-protein interactions [2-5]. Most of the naturally occurring FPs 

discovered so far are high-order oligomers [1] and although their oligomeric state does 

not significantly affect their ability to function as reporters of gene expression [2, 3, 6], it 

has a dramatic effect on their success as molecular tags [3, 5]. When a protein of interest 

is fused with an FP tag, any protein-protein interactions that are observed can be called 

into question if the tag is not monomeric. The ambiguity stems from the fact that the 

fusion constructs can oligomerize through their non-monomeric FP tags, resulting in 

non-native protein-protein interactions that are indistinguishable from any native protein-

protein interactions that may also occur. This artificial aggregation can also affect 

diffusion rates and cause problems in protein transport and trafficking. 

To avoid these problems, researchers have sought to generate monomeric FPs from 

oligomeric ones. This is usually accomplished by a disrupt-and-recover approach [7], 

which starts by identifying mutations that disrupt known protein-protein interfaces. 

Unfortunately, the disruption often alters the fluorescent properties of the protein 

significantly, making it necessary to search for mutations to recover fluorescence [7]. 

This approach can be tedious because full recovery may require multiple rounds of 

directed evolution and screening, and in some cases, may never be achievable. 

There are ten notable literature examples wherein oligomeric FPs have been intentionally 

converted to monomeric ones [7-16]. Some variation of the disrupt-and-recover approach 

was used in all these cases, and in the majority of them, some type of fluorescence 

recovery process was required. There are only two instances (mAG1 [8] and mEosFP 
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[10]) in which the authors were fortunate enough to find that their interface-disrupting 

mutations did not cause significant interference with wild-type fluorescent properties. In 

addition, a recent study using dynamic light scattering indicates that the solution state 

behavior of some well-known “monomeric” proteins is actually oligomeric [17]. This 

result illustrates another salient problem with the disrupt-and-recover approach; namely, 

limited forethought given to a plan for restructuring oligomer-forming interfaces can lead 

to proteins that are “monomeric enough” to behave appropriately in test systems but that 

exhibit unreliable oligomerization state fidelity when more scrutiny is applied. 

An alternate strategy that may prove more successful is to use a rational design-based 

approach facilitated by computational protein design (CPD). CPD can be combined with 

empirical data to produce a medium- to high-throughput process for FP monomerization. 

CPD-generated focused combinatorial libraries can be screened for monomeric FP 

mutants using a high-throughput assay based on fluorescence anisotropy measurements 

[18]. The monomeric nature of these mutants can then be confirmed by size exclusion 

chromatography [8, 14] and analytical ultracentrifugation [17]. The utility of this 

approach was explored here. Our work focused on monomerization of the tetrameric FP 

DsRed, but this method could also be applied to other class Anthozoa FPs for which 

crystal structures already exist.  

Results and Discussion 

Analysis of C-terminal deletions in DsRed. We initially hypothesized that C-terminal 

residues after position 220 could be cleaved from any class Anthozoa FP of interest as 

they are not required for protein folding or fluorophore formation [1, 2, 7]. Removal of 

these residues is desirable because it decreases the computational complexity for CPD 
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calculations and simplifies gene assembly during library construction. Furthermore, 

because these C-terminal residues are intimately involved in one of the conserved 

oligomerization interfaces found in class Anthozoa FPs [19-26], we wanted to clarify the 

extent to which they affect the oligomerization state of DsRed. 

We created several DsRed mutants by deleting one to five C-terminal residues and found 

that deletions of any length significantly altered the solubility and fluorescent properties 

of this FP. Notably, DsRed∆225 was the only C-terminal deletion mutant that expressed 

soluble protein at levels sufficient to purify samples for further characterization. 

DsRed∆225 ranks lower than wild-type DsRed in terms of quantum yield (ΦF) (Table 1). 

However, λmax
abs and λmax

ems for these two proteins are the same, giving them very 

similar absorbance and emission spectra (Fig. S1A). Importantly, DsRed∆225 nearly co-

elutes with wild-type DsRed by size exclusion chromatography (Fig. S1B), indicating 

that they have the same oligomerzation state in solution. DsRed is known to primarily 

form homotetrameric oligomers in solution [2, 7, 16, 24, 27], which we confirmed using 

analytical ultracentrifugation (Fig. S3). 

Characterization of DsRed and mCherry core mutants. Since C-terminal deletions 

were poorly tolerated in DsRed, we sought a means for buffering this protein against the 

disruptive effects of this modification. We postulated that mutating the core of DsRed to 

the core of a well known monomeric derivative of this protein, mCherry [28, 29], would 

provide the intended buffering effect. In addition, we aimed to isolate any effects 

oligomerization state would have on the fluorescent properties of our mutants. To this 

end, we constructed genes for two proteins (Table S1). The first protein, DsRed with 13 

core mutations corresponding to the core residues found in mCherry, was dubbed 
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DsRmCh (DsRed with an mCherry core). The second protein was the inverse mutant and 

was dubbed mChDsR (mCherry with a DsRed core). 

We found the fluorescence and spectral properties of DsRmCh to be nearly identical to 

those of mCherry (Table 1). The most notable difference is that DsRmCh has 36% higher 

quantum yield. As expected from its DsRed surface, DsRmCh co-elutes with DsRed by 

size exclusion chromatography (Fig. S2A) and gives a peak corresponding to a solution 

state homotetramer by analytical ultracentrifugation (Fig. S3).  

Removing the C-terminal residues of DsRmCh (DsRmCh∆221–225) had no effect on the 

protein’s fluorescence and spectral properties (Fig. S1B). The quantum efficiency of this 

deletion mutant is statistically equivalent to that of mCherry (Fig. 1A). Size exclusion 

chromatography shows it elutes close to DsRed and DsRed∆225 (Fig. S2A), and 

analytical ultracentrifugation reveals it is homotetrameric in solution (Fig. S3). Taken 

together, these results indicate that the C-terminal tail does not determine DsRed’s 

oligomerization state in solution. 

In contrast, the inverse mutant of DsRmCh, mChDsR, was completely non-fluorescent. 

Fortunately, its soluble expression was sufficient to characterize the protein by size 

exclusion chromatography. The elution profile indicates that its oligomerization state in 

solution is more similar to mCherry than it is to any of the DsRed surface-bearing 

proteins discussed above (Fig. S2A). Trypsin digest mass spectrometry of mChDsR 

revealed no evidence of peptide modifications in the string of protein sequence where 

modifications due to chromophore formation would produce a mass loss. For mCherry, 

equivalent trypsin digest mass spectrometry indicated mass losses of –20 Da and –2 Da, 
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which are consistent with chromophore formation and intermediate oxidation on the path 

to chromophore formation, respectively [1, 2, 30, 31]. 

To further investigate the distinct non-fluorescent behaviour of mChDsR, we constructed 

a series of single mutants in which we modified the core of mChDsR or the surface of 

DsRed. First, we explored single mutations reverting the core of mChDsR back to 

mCherry (Fig. S4A). We discovered that the chromophore-proximal F177V and S197I 

mutations led to significant red fluorescence recovery in mChDsR. The significance of 

these mutations is unclear, as a survey of the ten FP monomerization studies mentioned 

previously indicates that position 177 is typically a phenylalanine [7-16]. Position 197 is 

known to be involved in π-stacking interactions with the mature FP chromophore [32-

34], but its role in promoting or inhibiting red chromophore maturation has not been 

studied. Similarly, we examined the effect of point mutations on the surface of DsRed 

leading to the construction of mChDsR (Fig. S4B). These experiments revealed the 

following surface mutations to cause the least disruption of red fluorescence in DsRed: 

V127T, A164R, Y192A, and Y194N. The Y192A mutation was the best in terms of red 

fluorescence retention. All four of these mutations correspond to positions central to 

DsRed’s dimeric interfaces [24]. 

Monomerization methodology. The two dimeric interfaces of tetrameric FPs from class 

Anthozoa organisms have been well characterized in a number of crystal structures [19-

26]. These two interfaces (AB and AC) were thoroughly described in the original 

crystallographic analysis of DsRed [24].  The AB interface is the weaker of the two and 

its center occurs around residue 125. This interface is reminiscent of most protein-protein 

interfaces in that the core interfacial residues are hydrophobic and are surrounded by a 
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shell of hydrophilic residues [35].  The AC interface is the stronger of the two and 

includes symmetrical interactions between surface patches on each protein as well as 

their C-terminal tails. 

The general layout of these interfaces can be captured schematically using a grid-like 

diagram, and the number of mutations made at a given interface position can be tabulated 

from FP monomerization studies reported in the literature [7-16] (Figs. S5 and S6). For 

oligomeric wild-type FPs from class Anthozoa, the geometry for the association of 

β-barrel subunits is highly conserved [2, 3]. Thus, one can infer the importance of a 

position toward disruption of an interface from its mutational frequency. This analysis led 

to 7 positions being identified as most important for disruption of the AB interface 

(positions 21, 96, 106, 125, 127, 180, and 182). Disruption of the AC interface was 

associated with 10 positions (positions 145, 149, 153, 162, 164, 174, 176, 192, 194, and 

216). Consequently, our CPD monomerization procedure aimed to include diversity at 

those 17 positions. 

We hypothesized that computational design of the surface residues of any class Anthozoa 

oligomeric FP would lead to a set of surface-compatible mutations incapable of 

supporting the wild-type oligomeric interfaces. In the past, explicit design for 

homodimeric interactions by CPD has been a challenge, even when abundant design 

constraints aimed at ensuring molecular complementarity were employed [36, 37]. Thus, 

we reasoned that the stochastic nature of CPD algorithms coupled with a lack of explicit 

design toward retention of any molecular complementarity found in the wild-type 

interfaces would result in a very low probability of new oligomer formation and a 

reasonable probability of monomerization.  
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Library design with CPD. We applied a CPD software package developed in-house [32] 

to design the AB and AC interfaces of a well-studied DsRed crystal structure (PDB code: 

1G7K)	  [38]. Interfaces were designed for one molecule of the DsRed homotetramer using 

an occlusion-based implicit solvation model [32, 39, 40]. The 17 positions described 

above were varied in amino acid identity during the design calculation. In addition to the 

wild-type residue, only non-hydrophobic, non-cysteine, and non-proline residue identities 

were allowed. The design results were ranked by a molecular dynamics force field-based 

scoring function [41, 42], and the top 89 sequences were chosen for gene assembly. 

These sequences made up a putative monomer library and were numbered sequentially as 

M-Lib #1 through M-Lib #89, with M-Lib #1 being the top-scoring sequence (with the 

lowest energy) (Table S2).  

The results from our characterization of DsRmCh and mChDsR indicated that certain sets 

of core mutations are incompatible with proper chromophore formation outside the 

homotetrameric context found in DsRed. In contrast, the constellation of core residues in 

mCherry sustains proper chromophore formation in both monomeric and oligomeric 

contexts. These findings led us to conclude that wild-type DsRed would be an 

inappropriate starting scaffold for designing monomeric FPs with CPD. Accordingly, 

DsRmCh∆221–225 was chosen to be the parent protein for our putative monomer library 

of top-ranked CPD sequences. During gene assembly of this library, 6 other derivative 

sequences were produced (M-Lib #90–95), which did not rank among the top 100 

sequences produced by our CPD calculations. Importantly, these derivative sequences did 

not differ substantially from the other 89 library members of M-Lib, and the consensus 
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sequence of the inclusive 95 member library is equivalent to the sequence of M-Lib #1 

(Fig. S7A). 

Generation of random library. We also produced a smaller library of sequences using 

the same interface positions and allowing the same set of residue identities as in the CPD 

calculation, minus glycine (Table S3). However, in this case, we randomly sampled 

residue identities from a published amino acid distribution for surface residues in 

mesophilic bacteria [43]. This distribution was adjusted to only include our chosen design 

residues plus the wild-type residue at each position—mirroring the residue identities 

allowed for CPD. This library thus provided a set of sequences with randomly chosen 

interface residues (Fig. S7B) consistent with observed amino acid distributions on the 

surface of proteins in bacteria. A random library of this nature serves as a check against 

the effectiveness of our CPD monomerization methodology in producing libraries 

enriched with soluble protein mutants [44]. This 22-member random library (R-Lib) was 

also constructed via gene assembly using DsRmCh∆221–225 as the parent protein. 

Monomer library and random library results. Expression of the 95-member M-Lib 

revealed that nearly all (92) were more than minimally fluorescent (ΦF > 0.1); only 3 

mutants showed ΦF < 0.1: M-Lib #53, 66, and 79. There were no prominent sequence-

based differences between these 3 proteins and the rest of the sequences in M-Lib 

(Table S2). Also, the 6 derivative sequences (M-Lib #90–95), which were not ranked 

among the top 100 CPD design sequences, had spectral and fluorescent properties similar 

to the parent protein, DsRmCh∆221–225 (Table S4). In contrast, 9 of the 22-member 

R-Lib (41%) were minimally fluorescent, and 6 other R-Lib sequences showed no 

evidence of chromophore maturation or exhibited zero quantum yield (Table S5). 
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Therefore, in total, 97% of the M-Lib sequences were more than minimally fluorescent 

compared to only 27% for R-Lib. This result demonstrates that sequences predicted by 

CPD are more likely to retain fluorescence in our DsRed-based experimental system. 

M-Lib and R-Lib sequences were fairly invariant with regard to λmax
abs and λmax

ems 

(Table 2). Distinctly leptokurtic (excess kurtosis > 0.0) distributions were observed for 

both of these parameters. Leptokurtic distributions are more sharply peaked than a 

corresponding normal distribution. On balance, distributions measured for M-Lib values 

were more leptokurtic than for R-Lib values (Table 2). Strong negative skewness (< –1.0) 

was observed for the distribution of λmax
abs in both M-Lib and R-Lib. In most of the 

parameters measured for M-Lib, distributions were observed to be negatively skewed 

(Table 2). Negative skewness indicates that the mean of a distribution is less than the 

median and mode for that distribution. Thus, the majority of measurements for the 

sequences in M-Lib fall above the mean value for this library. 

M-Lib and R-Lib members were also evaluated by the ratio of their λmax
abs to λ280nm

abs 

peak heights (Fig. 1B). This ratio gives an indication of the extent of red chromophore 

maturation, the size of the chromophore extinction coefficient, and the protein expression 

level in our system. For reference, mCherry consistently produces a λmax
abs/λ280nm

abs of 

1.3–1.4 after affinity purification in our medium throughput expression system. The 

average λmax
abs/λ280nm

abs for all sequences measurable in M-Lib was 1.00, with a standard 

deviation of 0.18 (Table 2). Notably, seven of the ten mutants with the highest quantum 

yields measured for M-Lib showed λmax
abs to λ280nm

abs ratios lower than one standard 

deviation below this average (M-Lib #1, 2, 7, 16, 17, 55, & 57) (Table S4). For R-Lib, 
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the average λmax
abs/λ280nm

abs was 0.34, and the standard deviation was 0.45 (Table 2). 

Larger standard deviations for R-Lib were apparent in nearly all measurement metrics 

used to evaluate M-Lib and R-Lib (Fig. 1 and Table 2). 

With regard to the scoring function used to rank library members, four of the top ten 

ranked CPD sequences were among the top ten highest measured ΦF mutants in M-Lib 

(Table S2 and Table S4). Furthermore, M-Lib #1 and M-Lib #2, the two top-ranking 

sequences by our CPD scoring function, also had the highest measured ΦF. A consensus 

sequence produced for the top ten highest ΦF mutants in M-Lib did not substantially 

differ from the consensus sequence for all of M-Lib (Fig. S7C). However, N182 was 

more prevalent among high ΦF mutants than among any other consensus sequence 

produced using the top ten ranked mutants along different library metrics (Fig. S7).  

Expanding the ΦF selection, we observed that eight of the top ten mutants with the 

highest measured ΦF were within the top twenty CPD ranked sequences. A strong linear 

correlation between ΦF and our scoring function was not observed (R2 = 0.31). However, 

the absence of any correlation between ΦF and the scoring function value could not be 

rejected in a two-tailed Spearman rank correlation test at the 99% confidence level. The 

Spearman test, as opposed to a standard linear correlation coefficient (R2), is not 

restricted by the assumption that both dependent and independent variables are normally 

distributed.  

By multiplying ΦF and λmax
abs/λ280nm

abs, then scaling by 100, we developed a brightness 

proxy metric that could be used to rank the effective fluorescence of our mutants (Fig. 1). 

The average brightness proxy metric for measurable sequences in M-Lib (26.5) was > 3.5 
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times higher than the R-Lib average (7.2) (Table 2). For comparison, in our expression 

system, mCherry scores 29.5 ± 1.1 on this metric, whereas DsRed scores 62.5 ± 5.0; 

DsRmCh∆221–225, the parent protein to M-Lib and R-Lib, scores 24.8 ± 0.6 (Fig. 1C). 

Fourteen members of M-Lib rank higher than mCherry on this metric, the best of which 

are M-Lib #13 (34.8) and M-Lib #49 (33.0). None of R-Lib rank above mCherry on this 

metric (Table S5), and only two of R-Lib rank near their parent protein (R-Lib #2 and 

R-Lib #14). 

The ultimate test of these libraries, however, is in determining the oligomerization state 

of their members. When a fluorophore is excited with polarized light, the extent to which 

that polarization is maintained upon emission depends on the amount of time it takes the 

molecule to tumble in solution (the rotational correlation time). This time is longer for 

larger molecular complexes up to a certain point [18].  For FPs, the lifetime of the excited 

state (the fluorescence lifetime) is much shorter than the rotational correlation time.  

Because of this large difference in lifetime versus correlation time, incoming polarized 

light used for excitation should remain relatively unchanged after emission.  However, in 

homomolecular complexes of FPs, homomolecular fluorescence resonance energy 

transfer (homoFRET) can occur [18].   

When homoFRET occurs, the polarization of incoming light is changed according to the 

orientation of the dipoles in the excited states in both molecules.  The more members that 

a homomolecular complex has, the higher the probability that homoFRET can occur.  

Thus, the anisotropy of incoming polarized light is better retained by monomeric FPs 

than by oligomeric FPs.  This means emitted light from oligomeric FPs has lower 

anisotropy—it is more depolarized—than that emitted from monomeric FPs [18].  The 
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degree to which polarization is maintained (the fluorescence anisotropy, r) was measured 

for all members of M-Lib, R-Lib, mCherry, DsRed, DsRmCh, and our C-terminal 

truncations of these proteins. For this parameter to be meaningful, the rotational 

correlation time must be longer than the lifetime of the excited state for an FP; this is true 

in general for FPs [18]. As shown in Fig. 2, monomeric and oligomeric proteins were 

clearly distinguishable by fluorescence anisotropy measurements. As expected, r for 

monomeric mCherry is higher than for our oligomeric proteins, which maintain the same 

surface residues as DsRed. M-Lib and R-Lib measurements were also consistent with the 

r value for mCherry, a solution state monomer (Table 2). 

Since oligomerization is concentration dependent, the fluorescence anisotropy effect is 

also concentration dependent [45].  This means that the degree to which fluorescence 

anisotropy varies with dilution factor (DF) belies information about the strength of 

homooligomer formation [45], or Kd. In our expression system, we observe the 

magnitude of the mCherry r-versus-DF slope to be about six times larger than for DsRed 

(Table 1). This result affirms the idea that mCherry (Table 1), a monomer, forms much 

weaker homooligomeric interactions in solution, and thus greater dilutions of mCherry 

(smaller DF) result in higher measurements for fluorescence anisotropy. The average 

r-versus-DF slope for M-Lib is not as large in magnitude as for mCherry, but it is still 

nearly five times larger than the slope for DsRed. For R-Lib, only two r-versus-DF slope 

measurements could be made, and both are larger in magnitude than for DsRed (Table 2 

and Table S5). 

To further confirm the oligomerization state of M-Lib and R-Lib members, we performed 

size exclusion chromatography on eight members of M-Lib and four members of R-Lib 
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(Fig. S2). Library members from M-Lib were chosen because of high ΦF (M-Lib #1, 2, 

and 16), high λmax
abs/λ280nm

abs (M-Lib #23), high brightness proxy score (M-Lib #13 and 

49), or lack of fluorescence (M-Lib #53 and 79). The three most fluorescent members of 

R-Lib were chosen (R-Lib #2, 14, and 17) along with one other randomly chosen 

minimally fluorescent member (R-Lib #7). All twelve of these proteins showed elution 

profiles by size exclusion chromatography consistent with a monomeric oligomerization 

state in solution (Fig. S2). To bolster evidence for monomerization even further, we 

performed analytical ultracentrifugation on M-Lib #23, which produced a peak 

overlapping with mCherry in molecular weight distribution (Fig. S3). These results show 

that both CPD and random sampling approaches produce monomeric FP sequences. 

However, the proportion of solubly expressed fluorescent proteins produced is 

significantly higher in M-Lib versus R-Lib. 

Conclusion 

A CPD-guided method for generation of monomeric FPs was demonstrated for a DsRed-

based experimental system. A higher proportion of sequences resulted in soluble protein 

expression for the CPD-generated library of FPs than for a library generated by random 

sampling from a distribution consistent with the known surface residue distribution in 

mesophilic bacteria [43]. Both CPD and random sampling methods were successful in the 

production of monomeric FPs. Our current methodology is limited by an incomplete 

understanding of which constellations of core residues in FPs support chromophore 

formation in both an oligomeric and a monomeric context. We discovered that the set of 

core residues in mCherry supports chromophore formation in both contexts, but the core 

residues of DsRed only support chromophore formation in an oligomeric context. Further 
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investigation of the factors that enable context-independent chromophore formation will 

make our methodology extensible to class Anthozoa FPs in general. 

Materials and Methods 

Library Design. Surface mutations for M-Lib were computationally designed using the 

PHOENIX protein design software [32, 42]. Chain A of the PDB structure 1G7K for 

DsRed was used for surface designs [38]. The C-terminal residues 221–225 were deleted 

from this structure and hydrogen atoms were added using Molprobity [46]. Strain or 

steric clashes were removed by performing 50 steps of conjugate gradient energy 

minimization prior to computational design calculations. The energy function used was 

based on the DREIDING force field [41] and included a scaled van der Waals term, 

hydrogen bonding and electrostatic terms, and terms for implicit solvation and phi-psi 

propensities. Implicit solvation energies were evaluated using a model based on occluded 

volume [39, 40], as described previously [32]. Sequence optimization was carried out 

with FASTER [47].  

The following design positions were included in the CPD calculation: AB interface 

positions 21, 96, 106, 125, 127, 180, and 182; and AC interface positions 145, 149, 153, 

162, 164, 174, 176, 192, 194, and 216. In addition to the wild-type residue identity, the 

following 12 amino acid identities were allowed at each of these 13 design positions: Ala, 

Arg, Asn, Asp, Glu, Gln, Gly, His, Lys, Ser, Thr, and Tyr. The size of this sequences 

space is approximately 1014.  

For R-Lib, the following 11 amino acids were allowed for sampling: Ala, Arg, Asn, Asp, 

Glu, Gln, His, Lys,  Ser, Thr, and Tyr. A published distribution of surface amino acid 



 

- 121 - 

residues for mesophilic bacteria was used as the basis for sampling [43]. This distribution 

was renormalized to 100% for each surface position in DsRed following removal of 

residues not listed above and not equivalent to the wild-type residue at each position. 

Amino acid identities for each of the 13 AB and AC interface positions designed above 

were chosen for R-Lib using a random number table with sampling based on the modified 

distributions just described. 

Construction of Library Mutants. All protein sequences except C-terminal deletions 

and point mutations were constructed by gene assembly using a Tecan Freedom Evo 

robotic liquid handling system equipped with a thermocycler. During design of the gene 

assembly primers, codons were optimized for E. coli expression. Genes were cloned into 

pET-DEST53 or pET-11a after assembly using the same robotics system. The C-terminal 

deletions in DsRed and DsRmCh were produced using QuikChange inverse PCR 

mutagenesis on supercoiled plasmid DNA isolated from E. coli BL21-Gold(DE3) cells 

(Stratagene). All point mutations for mChDsR and DsRed were produced by QuikChange 

as well. Purification and characterization of mutants are described in SI text. 
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Figure & Legends 

 

 

Fig. 1. M-Lib (Lm) and R-Lib (LR) measurements and scoring metric distributions. Error 

bars represent ±1σ for all panels. Each vertical gray tick represents the measurement of 

one mutant in either M-Lib or R-Lib; overlapping gray ticks appear darker. Mutant 

protein labels are ordered according to measurement value; mCherry (red) and DsRed 

(orange) are color-coded. A blue vertical tick marks the average value for all 

measurements made along a metric in M-Lib or R-Lib. The metrics shown by panel 

correspond to: (A) quantum yield (ΦF), (B) λmax
abs to λ280nm

abs peak-height ratio 

(λmax
abs/λ280nm

abs), and (C) brightness proxy score (ΦF	  ·[λmax
abs/λ280nm

abs]·100). 
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Fig. 2. Fluorescence anisotropy measurements clearly differentiate monomeric FPs 

(mCherry, M-Lib, and R-Lib) from oligomeric FPs (DsRmCh, DsRed, and their 

truncations). Fluorescence anisotropy is lower for oligomers, which undergo more homo-

FRET. M-Lib and R-Lib values are the average of measurements made on all library 

members. Other FP values are the average of six measurements. Error bars represent 

±1σ from these averages. 
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Supporting Information 

 

SI Materials and Methods 

Materials. All reagents used were of the highest available purity. Synthetic 

oligonucleotides were obtained from Integrated DNA Technologies, and Ni-NTA agarose 

resin was obtained from Qiagen. CelLytic B buffer and lysozyme were purchased from 

Sigma-Aldrich. All aqueous solutions were prepared using water purified with a 

Millipore BioCell system. 

Protein expression and purification. The DNA libraries prepared as above were 

transformed into chemically competent E. coli BL21-Gold(DE3) cells (Stratagene). 

Colonies were picked into individual wells of Nunc V96 MicroWell polypropylene plates 

containing 200 µL of medium (LB with 100 µg/mL ampicillin supplemented with 10% 

glycerol). The plates were covered with a sterile Breathe-Easy gas permeable sealing 

membrane (Sigma) and incubated overnight at 37 °C with shaking. These mother plates 

containing the mutant libraries were used to inoculate 24-well culture plates (Whatman) 

containing 5 mL LB supplemented with ampicillin in each well.  

The 24-well plates were sealed with breathable membranes and incubated for 2–3 hrs at 

37 °C. After incubation, wells were induced with 1 mM IPTG each, then grown overnight 

with shaking (25 °C, 250 rpm). After overnight protein expression, cells were harvested 

by centrifugation. Cell pellets were then incubated at 4 °C for 72 h to allow chromophore 

maturation. After maturation, cell pellets were resuspended in 400 µL lysis buffer 
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(50 mM Tris-HCl buffer, pH 8.0, 300 mM NaCl, 2.5 mM imidazole, 1X CelLytic B, 

1 mg/mL lysozyme, and 25 U/mL benzonase nuclease (Novagen)) and incubated at room 

temperature for 1.0 hr. After centrifugation, clarified lysates were recovered and proteins 

were purified by affinity chromatography using His-Select plates (Sigma) according to 

the manufacturer’s protocol. 

Spectroscopic characterization. All absorbance and emission spectra were recorded 

with a Tecan Safire2 plate reader in Greiner UV-Star clear cyclic olefin copolymer 96-

well flat bottom plates. For determination of quantum yields, the integrated fluorescence 

intensity of mutants of interest was compared with that of equally absorbing samples of 

mCherry and DsRed (quantum yields 0.22 [1, 2] and 0.80 [3], respectively) with 

excitation at 550 nm. DsRed was used as an internal standard to check the effectiveness 

of this measurement procedure. 

Size exclusion chromatography. Purified protein samples were eluted on an ÄKTA 

Purifier FPLC system by gel filtration using a Superdex 75 10/300 GL Tricorn resin 

column (GE Healthcare) into a final buffer solution of 50 mM phosphate buffer, pH 7.0, 

and 150 mM NaCl. 

Analytical ultracentrifugation. A Beckman XL-1 ultracentrifuge with 4-hole rotor was 

used for sedimentation velocity measurements and molecular weight determinations. 

Absorbance scans were taken at 575 nm while spinning at 48,000 rpm overnight.  Data 

was analyzed with SedFit, using C(S) and C(M) distributions. 

Fluorescence anisotropy. Rose Bengal (Sigma Aldrich) was used as a standard for 

measuring an instrument-specific g-factor for subsequent polarization measurements.  A 
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g-factor of 1.115 was determined by calibrating a Tecan Safire2 plate reader with 100µM 

Rose Bengal, which has a standard fluorescence anisotropy of 349 mP at 610 nm. For 

calibration, excitation was performed with a 530 nm laser line. Polarization 

measurements were made for all proteins using excitation at 530 nm and detection at 

610 nm. 

Mass spectrometry analyses. Following separation by SDS-PAGE, the ∼25 kDa band 

from a freshly purified protein sample was excised and destained. Destaining of the 

Coomassie dye was accomplished by a 100 µL wash of 50 mM ammonium bicarbonate 

followed by a 50 µL wash of a 1:1 mixture of 50 mM ammonium bicarbonate and 

acetonitrile; this process was repeated for a total of three times. After destaining, the gel 

band sample was reduced with 25 µL of 50 mM ammonium bicarbonate plus 50 µL of 

freshly prepared 10 mM DTT in 100 mM ammonium bicarbonate for 30 minutes at 50°C. 

The sample was then alkylated in the absence of light with 25 µL of 50 mM ammonium 

bicarbonate plus 50 µL of freshly prepared 55 mM iodoacetate in 100 mM ammonium 

bicarbonate for 20 minutes at room temperature. Following additional washes with 100 

µL of 50 mM ammonium bicarbonate and 100 µL of acetonitrile, the gel band sample 

was digested overnight at 37°C with 75 µL of 50 mM ammonium bicarbonate plus 25 µL 

of 6 ng/µL sequencing grade porcine trypsin (Promega).  

After digestion, the supernatant from the gel band sample was collected. The gel band 

was washed three times: once with 100 µL of 1% formic acid/2% acetonitrile in water, 

once with 100 µL of a 1:1 acetonitrile and water mixture, and once with 100 µL of 1% 

formic acid in acetonitrile. The pooled supernatant and wash solutions were then 
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vacuum-dried overnight and resuspended in 0.1% formic acid in preparation for 

collection of mass spectrometry data. Samples of this nature were prepared in triplicate 

from the same freshly expressed and purified sample of protein. 

These tryptic-digest samples were desalted on a 150 µm × 3 cm C18AQ pre-column 

(Magic 5 µm, Michrom). After desalting, separation of peptides was performed with a 

CapLC XE HPLC system (Waters) using a 5 to 35% acetonitrile gradient in 0.2% formic 

acid on a 100 µm × 15 cm column packed with the same resin as the pre-column. The 

flow rate during separation was 0.35 µL/min and the HPLC column was connected 

directly to the mass spectrometer used for MS/MS analysis. Tandem mass spectra were 

acquired in data-dependent acquisition mode on a hybrid LTQ FT-ICR Ultra mass 

spectrometer (Thermo Fisher Scientific) with a nanoelectrospray ion source. Full scan 

mass spectra (400-1600 m/z) were acquired after accumulating 500,000 ions (with a 

resolution of 50,000 at 400 m/z). The seven most intense ions from the full scans were 

trapped in the linear ion trap and fragmented by CID after accumulating 5,000 ions 

(collisional energy: 35%, isolation width: 3 Da). Ion charge state screening was employed 

for singly and multiply charged ions. A dynamic exclusion list was set (maximum 

retention time: 60 s, relative mass window: 10 ppm) and early expiration was permitted. 

Raw files were converted to MGF files using ReAdW4Mascot2 (ver. 20090305a). The 

MGF files were searched using Mascot (v. 2.2.06) against the target proteins and a set of 

common contaminant proteins (297 sequences). Precursor error tolerance was set at 10 

ppm and fragment ion tolerances was set at 0.5 Da. Trypsin was specified as the digestion 

enzyme and up to two missed cleavages were allowed. The following variable 

modifications were specified: oxidation of methionine (+15.99491), protein N-terminal 
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acetylation (+42.01056), and tyrosine modifications (–22.041865, –20.026215, –2.01565, 

–4.031300). Carboxamidomethylation of cysteine (+57.02146) was specified as a fixed 

modification. Scaffold (version Scaffold_3_00_06, Proteome Software Inc., Portland, 

OR) was used to validate MS/MS based peptide and protein identifications. Peptide 

identifications were accepted if they could be established at greater than 90.0% 

probability as specified by the Peptide Prophet algorithm [4]. Protein identifications were 

accepted if they could be established at greater than 90.0% probability and contained at 

least one identified peptide. Protein probabilities were assigned by the Protein Prophet 

algorithm [5]. Proteins that contained similar peptides and could not be differentiated 

based on MS/MS analysis alone were grouped to satisfy the principles of parsimony. 
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SI Figures & Legends  

 

 

 

 

Fig. S1. Absorbance (solid) and emission (dashed) traces for select proteins. All 

absorbance spectra are normalized to the 280 nm protein peak. Proteins were excited at 

370 nm to collect emission spectra. Emission spectra are normalized to the chromophore 

absorbance peak. mCherry (red) and DsRed (orange) are color-coded. 
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Fig. S2. Size exclusion chromatography traces for select proteins. In all panels, mCherry 

(red) and DsRed (orange) are color-coded. (A) Data from select proteins in Table 1 

suggesting that C-terminal truncation minimally affects oligomerization state. (B) 

Samples from R-Lib elute after mCherry, indicating they are monomers in solution. (C & 

D) Samples from M-Lib also elute after mCherry. 

 

 

 

 

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

!")!# !"%!# !"*!# !"&!#

+,-./#

+,-./0$$*#

+,-123#

+,-1230$$(4$$*#

123+,-#

123.556#

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

!")!# !"%!# !"*!# !"&!#

+,-./#

7489:#;(#

7489:#;$#

7489:#;%<#

123.556#

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

!")!# !"%!# !"*!# !"&!#

+,-./#

7489:#;()#

7489:#;(&#

7489:#;$)#

123.556#

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

!")!# !"%!# !"*!# !"&!#

+,-./#

-489:#;$#

-489:#;(%#

-489:#;(=#

123.556#

>#

2#

?#

+#

!"#

!"#

!"#

!"#

$
%&
'
()
*+
,-

#.
/0
%&
/(

12
,#
3
1*
40
#

$
%&
'
()
*+
,-

#.
/0
%&
/(

12
,#
3
1*
40
#



 

- 137 - 

 

 

Fig. S3. Analytical ultracentrifuation data for select proteins. Molecular weight 

distributions for mCherry and M-Lib #23 indicate these proteins are solution state 

monomers; distributions for DsRed, DsRmCh, and DsRmCh∆221–225 indicate 

oliogmerization. 

 

 

 

Fig. S4. Point mutations to and from the mChDsR sequence. Integrated red fluorescence 

intensity is plotted for select mChDsR-to-mCherry core mutations (A) and select DsRed-

to-mChDsR surface mutations (B). Data for mutants with the least intensity is re-plotted 

on a smaller-scaled axis (insets).  
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Fig. S5. Generating schematic representations of the dimeric interfaces. (A) Literature 

examples of monomerized proteins; the wild-type residue is indicated on the left 

wherever mutations have occurred. Underlining indicates conserved positions. (B) Color-

coded representation of mutational frequency in the AB interface. (C & D) Translation of 

the interface into grid form for (C) chain A and (D) chain B. (E) Schematic representation 

of the AB interface; a model of the interface as viewed top-down through chain B is also 

shown (inset). Note that this schematic is symmetrical about the diagonal axis (dashed 

line). 
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Fig. S6. Schematic representation of the AC interface. (A) Literature examples of 

monomerized proteins; the wild-type residue is indicated on the left wherever mutations 

have occurred. (B) Color-coded representation of mutational frequency in the AC 

interface. (C) The resulting schematic representation of the AC interface from application 

of the procedure shown in Figure 3. Note that b-sheets from opposing subunits of the 

interface are stacked in an anti-parallel fashion instead of offset by ~90° (as in the AB 

interface, Fig. S5). Thus, this schematic diagram is symmetrical about the vertical, not the 

diagonal.  

 

 

 

Fig. S7. Protein sequence consensus diagrams for:  (A) the entire monomer design library 

(M-Lib), (B) the entire random mutation library (R-Lib), (C) the top ten ranking 

sequences in terms of quantum yield (ΦF), (D) the top ten ranking sequences in terms of 

λmax
abs to λ280nm

abs peak-height ratio, (E) the top ten ranking sequences as scored by the 

brightness proxy metric (ΦF ·[λmax
abs/λ280nm

abs]·100), and (F) the top ten ranked sequences 

as scored by dilution-dependent fluorescence anisotropy slope (r vs. DF slope).  
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Table S4. Data for Individual Mutants in Monomer Library (1 of 3) 
 
     Brightness  r vs. DF 
Protein !max

abs !max
ems "F !max

abs/!280nm
abs Proxy* r, mP† (slope)† 

M-Lib #1 586 609 0.355 ± 0.005 0.75 26.5 ± 3.3 415.0 ± 2.3 –7.1 ± 2.2 
M-Lib #2 584 607 0.371 ± 0.073 0.59 22.0 ± 9.8 416.7 ± 0.6 --- 
M-Lib #3 586 610 0.276 ± 0.005 1.07 29.5 ± 4.0 411.3 ± 5.3 --- 
M-Lib #4 586 610 0.278 ± 0.007 1.05 29.3 ± 4.9 411.7 ± 3.2 –6.2 ± 2.2 
M-Lib #5 584 610 0.266 ± 0.003 1.07 28.3 ± 3.4 411.3 ± 4.9 –8.3 ± 0.3 
M-Lib #6 586 609 0.299 ± 0.005 0.83 24.9 ± 3.4 413.7 ± 7.6 --- 
M-Lib #7 586 608 0.306 ± 0.005 0.65 20.0 ± 2.7 414.7 ± 8.1 --- 
M-Lib #8 584 609 0.320 ± 0.016 0.74 23.8 ± 5.3 413.7 ± 3.8 --- 
M-Lib #9 586 610 0.289 ± 0.017 1.06 30.6 ± 7.4 410.3 ± 3.8 –6.0 ± 1.4 
M-Lib #10 586 611 0.277 ± 0.011 1.07 29.8 ± 6.1 408.0 ± 6.4 –8.6 ± 2.5 
M-Lib #11 586 610 0.265 ± 0.006 1.01 26.9 ± 4.2 408.7 ± 6.1 –8.1 ± 3.1 
M-Lib #12 586 610 0.259 ± 0.002 1.06 27.4 ± 2.4 406.0 ± 5.2 –8.3 ± 1.4 
M-Lib #13 586 609 0.353 ± 0.004 0.99 34.8 ± 4.1 412.3 ± 0.6 –9.6 ± 1.4 
M-Lib #14 586 610 0.275 ± 0.003 1.06 29.3 ± 3.4 412.3 ± 0.6 –5.9 ± 0.8 
M-Lib #15 586 611 0.268 ± 0.009 1.10 29.5 ± 5.4 411.7 ± 1.5 –7.4 ± 2.7 
M-Lib #16 584 606 0.336 ± 0.012 0.42 14.1 ± 2.7 419.0 ± 2.0 --- 
M-Lib #17 584 606 0.331 ± 0.011 0.46 15.1 ± 2.8 417.7 ± 0.6 --- 
M-Lib #18 586 610 0.271 ± 0.002 1.01 27.3 ± 2.8 411.7 ± 1.5 –8.0 ± 2.8 
M-Lib #19 586 610 0.249 ± 0.008 1.10 27.3 ± 4.9 409.7 ± 1.5 –10.1 ± 4.3 
M-Lib #20 586 610 0.295 ± 0.014 0.91 26.9 ± 5.9 411.7 ± 0.6 –5.5 ± 1.7 
M-Lib #21 586 611 0.264 ± 0.011 1.13 30.0 ± 6.1 410.0 ± 0.0 –6.9 ± 2.4 
M-Lib #22 586 610 0.247 ± 0.007 1.19 29.4 ± 5.2 407.3 ± 0.6 –9.7 ± 0.6 
M-Lib #23 586 610 0.234 ± 0.005 1.25 29.3 ± 4.6 404.0 ± 1.0 –12.2 ± 2.8 
M-Lib #24 584 609 0.284 ± 0.003 0.79 22.4 ± 2.6 412.0 ± 1.0 --- 
M-Lib #25 586 610 0.302 ± 0.001 1.09 32.9 ± 2.2 411.0 ± 0.0 –10.7 ± 0.6 
M-Lib #26 586 610 0.275 ± 0.034 1.12 30.7 ± 10.9 412.0 ± 1.0 –9.5 ± 1.7 
M-Lib #27 586 610 0.264 ± 0.005 1.13 29.8 ± 4.3 412.0 ± 0.0 –7.0 ± 2.1 
M-Lib #28 586 609 0.265 ± 0.005 1.08 28.5 ± 4.1 411.0 ± 1.0 –9.4 ± 1.8 
M-Lib #29 584 609 0.270 ± 0.005 1.04 28.1 ± 4.0 412.3 ± 1.2 –8.5 ± 2.6 
M-Lib #30 586 609 0.267 ± 0.005 1.05 28.2 ± 4.0 411.0 ± 1.0 –8.8 ± 1.7 
M-Lib #31 586 610 0.252 ± 0.008 1.11 27.9 ± 5.1 410.0 ± 1.0 –8.9 ± 3.9 
M-Lib #32 586 610 0.265 ± 0.010 1.11 29.4 ± 5.9 409.3 ± 1.5 –10.0 ± 2.2 
M-Lib #33 586 611 0.267 ± 0.014 1.08 28.9 ± 6.7 410.0 ± 1.0 –7.0 ± 3.4 
M-Lib #34 586 610 0.254 ± 0.004 1.20 30.5 ± 3.9 406.7 ± 0.6 –11.3 ± 2.7 
M-Lib #35 586 610 0.246 ± 0.006 1.14 28.1 ± 4.6 407.3 ± 0.6 –10.7 ± 0.6 
M-Lib #36 586 611 0.236 ± 0.005 1.16 27.3 ± 4.0 405.7 ± 0.6 –9.3 ± 2.0 
M-Lib #37 586 610 0.289 ± 0.001 1.03 29.6 ± 2.0 411.3 ± 0.6 –7.9 ± 1.2 
M-Lib #38 586 610 0.274 ± 0.031 0.97 26.6 ± 9.0 413.0 ± 1.0 –6.4 ± 1.9 
M-Lib #39 586 610 0.257 ± 0.005 1.06 27.3 ± 4.0 410.3 ± 0.6 –10.1 ± 1.5 
M-Lib #40 586 609 0.270 ± 0.003 0.91 24.7 ± 2.9 412.3 ± 1.2 –8.0 ± 1.5 
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Table S4. Data for Individual Mutants in Monomer Library (2 of 3) 
 

     Brightness  r vs. DF 
Protein !max

abs !max
ems "F !max

abs/!280nm
abs Proxy* r, mP† (slope)† 

M-Lib #41 586 610 0.253 ± 0.007 0.98 24.9 ± 4.3 412.7 ± 1.5 –10.1 ± 1.7 
M-Lib #42 586 610 0.254 ± 0.002 0.96 24.3 ± 2.4 411.0 ± 1.0 –9.8 ± 2.3 
M-Lib #43 586 609 0.272 ± 0.005 0.86 23.3 ± 3.3 411.3 ± 1.2 –8.2 ± 2.1 
M-Lib #44 586 610 0.252 ± 0.004 1.00 25.1 ± 3.5 409.3 ± 1.2 –11.4 ± 3.0 
M-Lib #45 586 611 0.241 ± 0.010 1.10 26.6 ± 5.5 408.3 ± 0.6 –9.8 ± 1.1 
M-Lib #46 586 610 0.253 ± 0.008 1.03 26.0 ± 4.7 408.3 ± 1.2 –10.1 ± 0.7 
M-Lib #47 586 611 0.251 ± 0.007 0.99 24.7 ± 4.2 408.7 ± 0.6 –8.6 ± 1.7 
M-Lib #48 586 610 0.229 ± 0.006 1.04 23.8 ± 4.0 404.3 ± 0.6 –8.6 ± 1.3 
M-Lib #49 586 611 0.304 ± 0.010 1.08 33.0 ± 6.0 410.0 ± 0.0 –10.6 ± 2.2 
M-Lib #50 586 610 0.276 ± 0.028 1.06 29.4 ± 9.4 411.7 ± 0.6 –9.5 ± 1.0 
M-Lib #51 586 610 0.264 ± 0.004 1.04 27.4 ± 3.7 412.3 ± 1.2 –6.4 ± 1.2 
M-Lib #52 586 610 0.264 ± 0.005 1.00 26.4 ± 3.7 412.7 ± 0.6 -8.1 ± 1.0 
M-Lib #53 --- --- 0.024 --- --- --- --- 
M-Lib #54 586 609 0.273 ± 0.003 0.84 23.0 ± 2.6 413.7 ± 0.6 –7.3 ± 1.1 
M-Lib #55 586 606 0.311 ± 0.011 0.42 13.1 ± 2.5 417.7 ± 0.6 --- 
M-Lib #56 586 610 0.254 ± 0.001 1.11 28.4 ± 2.3 409.3 ± 1.2 –10.0 ± 1.4 
M-Lib #57 586 607 0.320 ± 0.016 0.43 13.9 ± 3.2 416.0 ± 1.0 --- 
M-Lib #58 586 610 0.257 ± 0.009 1.05 27.0 ± 5.3 410.0 ± 1.0 –9.2 ± 1.1 
M-Lib #59 586 610 0.237 ± 0.011 1.08 25.7 ± 5.5 408.0 ± 1.0 –7.7 ± 0.7 
M-Lib #60 584 610 0.229 ± 0.004 1.15 26.4 ± 3.6 404.0 ± 1.0 –7.7 ± 1.8 
M-Lib #61 586 610 0.285 ± 0.002 1.13 32.4 ± 3.0 409.7 ± 0.6 –10.7 ± 1.1 
M-Lib #62 586 610 0.288 ± 0.033 0.96 27.7 ± 9.5 414.0 ± 1.0 –7.4 ± 0.5 
M-Lib #63 586 610 0.244 ± 0.002 1.17 28.4 ± 2.8 409.7 ± 0.6 –9.1 ± 1.7 
M-Lib #64 586 610 0.241 ± 0.003 1.13 27.1 ± 3.4 410.7 ± 1.5 –8.6 ± 3.8 
M-Lib #65 584 608 0.255 ± 0.004 1.04 26.5 ± 3.4 412.0 ± 1.0 –9.4 ± 2.9 
M-Lib #66 --- 606 0.044 --- --- --- --- 
M-Lib #67 586 610 0.233 ± 0.003 1.16 27.1 ± 3.0 409.0 ± 1.0 –10.5 ± 2.5 
M-Lib #68 586 610 0.247 ± 0.003 1.15 28.4 ± 3.2 407.7 ± 1.5 –8.0 ± 3.0 
M-Lib #69 586 609 0.267 ± 0.018 1.08 28.9 ± 7.5 408.3 ± 1.2 –8.6 ± 2.0 
M-Lib #70 586 610 0.276 ± 0.018 0.98 26.9 ± 6.9 409.7 ± 0.6 –7.1 ± 1.3 
M-Lib #71 586 609 0.248 ± 0.008 1.11 27.6 ± 5.0 408.3 ± 0.6 –7.3 ± 1.2 
M-Lib #72 586 611 0.225 ± 0.001 1.16 26.1 ± 1.8 404.3 ± 0.6 –10.0 ± 1.8 
M-Lib #73 586 608 0.290 ± 0.009 1.11 32.3 ± 5.9 410.0 ± 0.0 --- 
M-Lib #74 586 610 0.256 ± 0.022 1.21 31.0 ± 9.3 408.3 ± 1.2 –9.9 ± 3.9 
M-Lib #75 586 609 0.249 ± 0.001 1.13 28.2 ± 2.4 410.3 ± 1.5 –6.7 ± 2.8 
M-Lib #76 586 611 0.246 ± 0.001 1.10 26.9 ± 2.1 410.0 ± 1.0 –9.0 ± 2.4 
M-Lib #77 586 610 0.235 ± 0.003 1.21 28.3 ± 3.5 407.3 ± 0.6 –11.4 ± 2.4 
M-Lib #78 586 610 0.251 ± 0.005 1.13 28.2 ± 4.0 409.3 ± 1.5 –10.1 ± 2.3 
M-Lib #79 --- 608 0.093 --- --- --- --- 
M-Lib #80 586 610 0.266 ± 0.018 1.00 26.7 ± 7.0 411.0 ± 1.0 –6.5 ± 0.3 

 



 

- 149 - 

 

a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S4. Data for Individual Mutants in Monomer Library (3 of 3) 
 

     Brightness  r vs. DF 
Protein !max

abs !max
ems "F !max

abs/!280nm
abs Proxy* r, mP† (slope)† 

M-Lib #81 586 609 0.251 ± 0.018 1.18 29.7 ± 8.1 406.0 ± 1.0 –9.0 ± 1.4 
M-Lib #82 586 611 0.238 ± 0.009 1.15 27.5 ± 5.4 406.0 ± 0.0 –10.2 ± 1.7 
M-Lib #83 586 610 0.240 ± 0.007 1.03 24.7 ± 4.3 406.7 ± 0.6 –8.9 ± 1.1 
M-Lib #84 586 610 0.239 ± 0.008 1.06 25.4 ± 4.8 405.0 ± 0.0 –9.3 ± 1.1 
M-Lib #85 586 611 0.267 ± 0.003 1.10 29.3 ± 3.5 407.7 ± 0.6 –12.7 ± 0.7 
M-Lib #86 586 610 0.240 ± 0.010 1.16 27.7 ± 5.8 407.0 ± 1.7 –10.0 ± 2.5 
M-Lib #87 586 610 0.255 ± 0.005 0.95 24.2 ± 3.6 409.3 ± 1.2 –7.1 ± 3.0 
M-Lib #88 586 611 0.236 ± 0.003 1.01 23.8 ± 2.7 408.7 ± 0.6 –7.8 ± 1.4 
M-Lib #89 584 608 0.289 ± 0.007 0.38 11.0 ± 1.8 415.7 ± 0.6 --- 
M-Lib #90 586 610 0.238 ± 0.012 1.04 24.6 ± 5.7 407.0 ± 1.0 –10.6 ± 0.3 
M-Lib #91 586 610 0.240 ± 0.002 0.98 23.4 ± 2.2 408.7 ± 0.6 –8.7 ± 1.5 
M-Lib #92 586 611 0.236 ± 0.003 1.03 24.3 ± 3.1 407.0 ± 1.0 –8.5 ± 2.1 
M-Lib #93 586 611 0.249 ± 0.019 0.91 22.6 ± 6.4 409.3 ± 0.6 --- 
M-Lib #94 586 609 0.250 ± 0.017 0.89 22.3 ± 5.8 408.3 ± 0.6 –10.2 ± 3.3 
M-Lib #95 586 609 0.263 ± 0.014 0.80 20.9 ± 4.8 408.0 ± 0.0 –6.6 ± 0.9 

 
* The "Brightness Proxy" score is defined as follows:  100·(!max

abs/!280nm
abs)·"F 

 
† Fluorescence anisotropy (r) was measured in milli-polarization units (mP). DF = Dilution Factor. The 
slope of r versus DF is a proxy for the dissociation constant (Kd) of an homo-oligomeric FP; a more 
negative slope indicates a higher Kd. 
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Table S5. Data for Individual Mutants in Random Library 
 

     Brightness  r vs. DF 
Protein !max

abs !max
ems "F !max

abs/!280nm
abs Proxy* r, mP† (slope)† 

R-Lib #1 590 609 0.141 ± 0.021 0.06 0.8 ± 0.3 --- --- 
R-Lib #2 588 611 0.249 ± 0.020 0.94 23.4 ± 6.7 402.7 ± 1.5 –6.7 ± 2.8 
R-Lib #3 --- --- 0.000 ± 0.001 --- --- --- --- 
R-Lib #4 --- --- 0.001 ± 0.000 --- --- --- --- 
R-Lib #5 552 610 0.015 ± 0.023 0.13 0.2 ± 0.2 --- --- 
R-Lib #6 --- 609 0.010 ± 0.058 --- --- --- --- 
R-Lib #7 --- 607 0.013 ± 0.005 --- --- --- --- 
R-Lib #9 --- 613 0.077 ± 0.062 --- --- --- --- 
R-Lib #10 --- 610 --- --- --- --- --- 
R-Lib #12 582 609 0.089 ± 0.051 0.07 0.6 ± 0.5 --- --- 
R-Lib #13 --- 605 0.000 ± 0.001 --- --- --- --- 
R-Lib #14 586 609 0.219 ± 0.007 1.19 25.9 ± 4.6 398.7 ± 0.6 –3.7 ± 2.4 
R-Lib #15 --- 610 0.128 --- --- --- --- 
R-Lib #16 582 609 0.193 ± 0.141 0.06 1.2 ± 1.0 --- --- 
R-Lib #17 586 610 0.218 ± 0.017 0.21 4.7 ± 1.3 404.3 ± 2.5 --- 
R-Lib #18 --- --- 0.001 ± 0.000 --- --- --- --- 
R-Lib #19 --- --- --- --- --- --- --- 
R-Lib #20 --- 612 --- --- --- --- --- 
R-Lib #21 --- --- 0.000 --- --- --- --- 
R-Lib #22 --- 612 0.012 ± 0.015 --- --- --- --- 
R-Lib #23 588 609 0.086 ± 0.038 0.06 0.5 ± 0.4 --- --- 
R-Lib #24 --- 612 0.002 --- --- --- --- 

 
* The "Brightness Proxy" score is defined as follows:  100·(!max

abs/!280nm
abs)·"F 

 
† Fluorescence anisotropy (r) was measured in milli-polarization units (mP). DF = Dilution Factor. The 
slope of r versus DF is a proxy for the dissociation constant (Kd) of an homo-oligomeric FP; a more 
negative slope indicates a higher Kd. 
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