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ABSTRACT

Quantum mechanical calculations are presented of approxi-
mate scattering cross sections for elastic and inelastic collisions,
including rearrangements, for several processes involving
electrons, hydrogen (H), helium (He), and potassium (K) atoms,
and hydrogen (Hz) and hydrogen halide (HX) molecules. In addition
to their interest in terms of the processes themselves, the results
are intercompared and compared with previous experimental and
theoretical results in such a way as to provide tests of the general
usefulness of the various methods used.

Electron scattering is treated using the Born, polarized
Born, and Vainshtein-Presnyakov-Sobelman approximations for
the direct scattering and thirteen different methods for the exchange
scattering. The transitions treated are 1ls-1s, 1s-2s, and 2s-2s
nH, 1%5-22, 115-3!P, and 1 15-2 15 in He, and elastic
scattering and rovibrational excitation of the ground state of H2.
Most emphasis is placed on impact energies less than about 100 eV
but higher energies are also treated. We draw conclusions con-
cerning the accuracy of the various methods for treating the ex-
change scattering and for calculating integral cross sections and
the angular dependences of differential cross sections for small
and medium scattering angles. A version of the distorted wave
approximation which should often be useful is presented. Some of
the results and discussions for scattering off H and for excitation
of the 2 1P state of He have been presented in two articles and a
long abstract which are summarized and referred to in the text.

The statistical phase space theory of Light, Pechukas, and
Nikitin is used to calculate cross sections and rate constants for
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the reactions H + HX (including two isotopes of H) and K + HCl.
The H + HX calculations presented here supplement those already
published. The probability of reaction is studied as a function of
the incident translational energy and impact parameter and the
internal states of the products. A generalized nonstatistical phase
space theory is presented which is adiabatic in one limit and equi~-
valent to the statistical theory of Light, Pechukas, and Nikitin in
another. Some sample calculations using the new theory on

H + HBr reactions are also given.

We present numerical solutions of the three-body
Schroedinger equation for the collinear H + H2 and D + D2 chemical
reactions on an assumed potential energy surface. The parame-
trized analytic surface is based on the calculations of Shavitt and
coworkers and is thought to be the most accurate surface available.
Calculations are performed in one mathematical dimension by the
conservation-of ~vibrational-energy and vibrational-adiabaticity
models. Calculations are presented in two mathematical dimen-
sions which are essentially exact for the collinear collision. The
calculations include vibrationally excited reactants and products.
The calculations are compared and their relation to and impli-

cations for the usual tunneling approximations are discussed.
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This chapter contains a brief review of some of the methods
and techniques used in collision theory. References to some more
detailed discussions and derivations are included. More elementary
introductions to scattering theory may be found in many classical
mechanics and quantum mechanics texts. There are also many texts
and review articles concerned with more advanced aspects of the
theory and with applications. Later sections of this thesis describe
applications of collision theory to calculate scattering cross sections
for processes involving electrons, atoms, molecules, and ions. The
purpose of the present section is to provide the background necessary
for placing these calculations in perspective in terms of some of the
other more and less rigorous methods available for such calculations.

In general we are interested in many-body phenomena.
Usually the first step, before applying collision theory, is to refor-
mulate the many-body problem in terms of a few composite particles
(or, more esoterically, quasiparticles). When we can neglect the
internal structure of these quasiparticles we have achieved an im-
portant simplification. However, when the few-quasiparticle model
causes appreciable error in the calculation, we want to be able to
systematically remove the error by accounting for the internal
structure of the quasiparticles. As an example, let us consider the
collision of a deuterium atom (D) and a protium molecule (Hz). Let
2y S, ey ey =y -

1 -1
rp1 , rp2, rp3, I Topr Tago and .3 represent the space and

spin coordinates of the protons, the neutron, and the electrons,
respectively, and let the corresponding symbols without primes

-y -1 -y

. t
denote the space coordinates only. Further let r e =To1r Tags To3-

The problems of conversion from the laboratory frame of reference

to the center-of-mass coordinate system do not concern us here and



we will refer all these coordinates to the center of mass of the
seven-particle system. The wave function for the system can be

represented to arbitrary accuracy by the expansion

Y= z cijk&moq wi(rpl) wj(rpz) vk(rp3) *L( r )
ijktmoq W

-

[} - f -y
V(T ¥ (1) 'qu( r.s)
where wi} is a complete set of functions. This wave function satisfies

the Schroedinger equation
(H,7 -E)y =0 ' (2)

where H,7 is the seven-particle Hamiltonian (this development is at
least partly formal since the nuclear interaction is not well enough
understood to be able to write down the Hamiltonian rigorously). At
energies below the MeV range it is a good approximation to consider
the deuteron as a quasiparticle without internal structure. Then we

rewrite (1) as

v = 2 cijmoq, st wi(rpl) d'j(rpz) ll's(rd) wm(rel)
ijmogst (3)
wo( re2) wq(re3) *t(:’(rp3 “ T Tn " Tqr Spy Sn)

where sp3 and s, are spin coordinates, r d is the coordinate of the
center of mass of the deuteron, and {Wf } are the stationary state
eigenfunctions of the deuteron. The advantage of (3) is that the
problem reduces to a 6-body problem if we assume



cijmoq, ot = 0 if t#1 (4)
which corresponds to the deuteron being in its ground state. For the
6-body problem the Hamiltonian is

-y - -t d, - - -
» T Le ) = <‘ljl(rp3"rd’ Th =T Sp3 ‘S"n)I

6( I‘pl ’ p2

(5)

-l ? -

7(rp1’ p2) p3’ £ )' '111(1' d rn" & Sp3; Sn)>; g
p3’ ' n

where the subscripts indicate the variables over which the integration
is carried out. The 6-body wave function may be rewritten as
: s
Y= ) e BT YT ) GED TG T, Ty Ty (O
ijvu

where {q;ff} are any set of functions which completely span the
coordinate and spin space of the three electrons. Note that wﬁL
depends parametrically on the coordinates of the nuclei. Because

of the light mass of the electrons relative to the nuclei, the motion
of the electrons bound coulombicly tothe nuclei is much faster than
the nuclear motion except at very large nuclear velocities (corre-
sponding to energies of at least 10 keV). Thus in many low energy
atomic and molecular collision processes not involving free electrons
the electronic motion adjusts adiabatically to changes in the nuclear
positions. Then it is useful to use for the abﬁ!’ the electronically
adiabatic states which are the eigenfunctions defined by

(Hgl“ - E%Y w‘ej’ -0 (7)



where

el
H."=H.-T ,-T.-T 8
o p (8)

and Ta is the kinetic energy operator for particle a. With this set
of functions we can often assume that cijvu is nonzero only for the
lowest one or lowest few values of u. The 6-body problem is reduced

to a 3-body problem (H2D) if we assume that

cijvu =0 if u#1 (9)
and
;Hl = 1-:.pl
;HZ = f"pz (10)
rp = Ty

[Assumptions with a smaller error than that involved in (9) - (10)
can be made by defining appropriate reduced masses but for most
cases of interest this is merely a small correction. ] The wave
function for motion of these three quasiparticles satisfies the

Schroedinger equation

(H3 -E)y =0 (11)

where



-1 ey -y -

- - - _ el .
Hg(ryp Tygr Tp) = ¥y (X Tpp Tpoy Tg ) [Hgl

(12)
el —il. - ¢ - -
\'Il (re’ rp]_: rpZ’ rd )>-. '
~e
and
v =) e (T ) b (F) 4 () (13)

ijs

The assumption of electronic adiabaticity for atomic collisions has
been made here in about the simplest possible way. More discussion
is given in Appendix 1. Classical mechanics is usually not a good
approximation for bound intranuclear motion or bound electronic
motion but it sometimes is useful for atomic motion.* Thus we
might obtain an approximate solution of the scattering problem by
using classical mechanics to solve the 3-body problem with Hamil-
tonian (12). The classical equations of motion, however, have no
provision for changes in the internal energy and structure of the
composite particles and the assumption of electronic adiabaticity
could not be systematically removed within this semiclassical model.
By the quantum mechanical close coupling approximation we can treat
the three-composite-body problem (5) - (6) in such a way that we can
systematically either make or not make the assumption (9).

It is possible to reduce the D +H - H example problem further
to a two-composite-particle problem (D + Hz). This might be useful
for the study of nonrearrangement collisions. If, however, we are

* Classical mechanics has also been applied to electron scattering,
sometimes with surprisingly good success (see, e.g., Gr59, Ba69,
Ma69, and references therein).



interested in the chemical reaction to form HD or the dissociation
reaction to form 3 atoms, then the problem is a rearrangement and
is intrinsically a three-body problem (in this case, three composite
bodies). The scattering theory for rearrangement collisions is more
difficult than that for nonrearrangement collisions and some of the
problems have not been solved even formally. Technically, even the
elastic scattering of D from H2 or the vibrational excitation of H2
caused by a collision with D involve rearrangement collisions be-
cause the electrons may exchange during the collision. However, if
it is a good approximation to treat the collision in terms of one or a
few electronically adiabatic electronic states then this exchange effect
can be included in the calculation of the potential energy surface
[i.e., during the solution of eq. (7)] and need not be included ex-
plicitly in the scattering problem. Then we do not need to use the
theory of rearrangement collisions for such problems.

We next consider in more detail the close coupling method of
describing scattering problems. We also discuss a.) how various
simpler methods such as first order perturbation theory, the semi-
classical theory of scattering, and the optical model arise as approxi-
mations to the complete quantum mechanical theory which are valid
under special circumstances, b.) the relation of the close coupling
theory to the direct numerical solution of the Schroedinger equation,
c.) nonrearrangement and rearrangement collisions for the case
where the (composite) particles are distinguishable, d.) special
effects on the scattering theory due to the quantum mechanical in-

distinguishability of identical particles.



A. Distinguishable Particles

In this section we will treat all the particles as if they are
distinguishable. The changes which must be made in the theory when
this is not the case are considered in the next section.

1. State Expansion Methods for Nonrearrangements and

General Discussion

Let us first consider the cases of elastic and inelastic
nonrearrangement collisions such as the collision of the composite
particles A and B. The wavefunction for this system can be ex-

panded as

v =) Fy(R) via) ) (14)
i

g -

where R = 1 A" ;B 3Ty and FB are the coordinates of the centers
of mass of the A and B particles; and a(b) indicates the whole set
of internal coordinates of the component particles of A(B) referred
to the center of mass of A(B) as origin, i.e., a = ;1 - FA’
Fg=Tps - - - where T'ys To etc. , are the coordinates of these
component particles. The summation sign in (14) indicates sum-
mations over the discrete values of the indices and integrations over
the continuous ranges, if any. {\b? } and {\l;? } are complete sets
of functions chosen for their convenience as expansion basis sets.
They are further discussed below. If particle B has no internal
structure, then d;]iB = 1. This is the case, for example, in electron
scattering; in that case the wavefunction (14) has (except for the

lack of an antisymmetrizer) the form of the configuration interaction



wave function whichis commonly used in electronic bound state
calculations on atoms and molecules. The difference is that in the
case of (14) one of the orbitals satisfies scattering boundary con-
ditions instead of vanishing at infinity. For the general cases, we

decompose the Hamiltonian H as
H(a, b, R) =T(R)+H_(a, b) + V(a, b, R) (15)

where To (R) is the kinetic energy operator for relative A - B

motion and

H (a,b) = lim [H(a, b, R) - T (BR)] (16)
0~ ~ R =« -~ o

Le., H0 is the “I;Iamiltonéan of non-interacting A and B aﬂd c%ﬂd
be written as H (a) + H (b). A useful set of functions Vi wj to
use in eq. (14) is the set of eigenfunctions of the separated composite
particles. These complete, orthonormal sets of functions satisfy the

equations
Hy(a, b) ¥(2)¥5(e) = B +ED) ¥} (2)v5(b) . (17)
Substituting (15) and (17) into
(H-E)Yy = 0, (18)
multiplying from the left in turn by each of the products W? \V? and

integrating over a and b we obtain the infinite set of coupled

differential equations
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A R) =
<wiw T, +H, - B| ¥} wJ a,b Fij (R) = 19)

ISR, IVH:kwL b Fee (B -

The summation sign again indicates summations of the discrete
eigenfunction terms and integration over the continuum ones.
Equation (19) is also the equation that is obtained for the functions

F\ L(I—i ) by applying the Kohn variational method, i.e., the scattering
amplitudes calculated from the wavefunction (14) will be stationary

to second order in small variations if the expansion functions are

~ solutions of (19) (see, e.g., Ma 65, Chapter XIV, §2). If we choose

our units so that #» = 1, then

E - g8 + gB +<F ITIF (20)
1 ] R
A -1,2
-2 + BB+ 21
; ] (2u)” J (21)

where F;)j = lim F,, ij and the reduced mass is given by
R- o

m, m
M= A_B (22)
lmA + me

in terms of the masses of the colliding particles. Also kij is the
wave number vector of relative motion when the separated particles
are in states i and j (» Eij = “;ij’ where ;ij is the relative velocity)
and the total energy is E. Using (21), we can rewrite the coupled

channels eqs. (19) as (see Bu 61, p. 379)
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2 -—p _ ‘ —
(-2uT, -kij) Fij(R) = Z Ui ke F, , (R) (23)
K4
where
_ A B A B
U, ke = 20 Vv IV v0 ) (24)

If the initial conditions are particle A in state m approaching
particle B in state n with the relative motion in the kmn direction,
then the coupled egs. (19) or (23) must be solved with the boundary
conditions (or asymptotic conditions; see, e.g., Me 61, p. 835,

Ba 61, p. 381)

FOE R~ e U
] R large (25)

where R is the unit vector in the R direction. Note that the channels
are open or closed depending upon whether kizj as computed from (21)
is positive or negative. The other conditions on the solution are that
¥ (or, equivalently, each Fij(fi)) be finite and continuous everywhere
and have a continuous first derivative. The solution (14) with
boundary conditions (25) is denoted Yf;r)x (Emn). In terms of the
asymptotic behavior of the solution the differential cross section for
scattering with scattering angles 8, ¢ (measured from ﬁmn) and a
transition from the states i =m, j=n to the states i =0, j=p is
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given by

v 2
_'op mn ~
Imn, op Vv Ifop (kmn ’ kop) [ (26)

where ?{op is a unit vector in the 8, o direction. The scattering
amplitude flgm can be determined from the asymptotic form of the
wave functionas in (25) or from (see, for example, Me 61, Chapter

XIX, § 19)

e —

ik - R
20 (0,0) = - (WA@Bme P vIHDE » @)
# . R
g A B mn
- 37 Yop®op) V1V @)V B) e > (28)

The interaction V can be replaced by (H - E) in these two equations
if desired. The lack of a subscript after the ket symbol implies an
integration over all the coordinates (a, b, and R). Eq. (27) is
called the post interaction formulation and eq. (28) is called the
prior interaction formulation.

It is of interest to consider the partial wave expansion for
this general two composite body case (Bl52a). A partial wave ex-
pansion is often the first step in a practical calculation. Many
different angular momentum coupling schemes are possible. We
will consider only one general one as an example. We define the
total system angular momentum K and its component Kz which are
conserved quantities during the collision. We vectorially add the
internal (rotational, electronic, spin) angular momenta I1 and I2
of the particles A and B to give a total internal angular momentum

S with component SZ and we denote the coupled wave function ng
Z
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where o denotes remaining quantum numbers. In the case where

both particles have no internal angular momentum a typical Xoés
z

might be W? w? . Welet L and LZ be the orbital angular momentum
quantum numbers for relative motion of A and B. Wedefine the

""channel angular function' for a channel with quantum numbers K,
K, L, and § as (what is here called L is sometimes called 1)

L S

, L _

Q= ) ) (LSLZSZILSKKZ)YLZ(ﬁ) X3 (29)
L,=-L § =-§ : z

where the Clebsch-Gordan vector-addition coefficient is defined in
Co 35. Then (14) is replaced by (we need consider only states with

KZ = Sz and we label the initial channel o«'L'S'; see Bl 52a for more

details)
® > K 4 1 1
_ / v 1 *®z _Ka'L'S 0
Y= ) Z Z Z e Ors Forg B (30)
K=0 S L=0 « Ve

MKSL)

where vy is the velocity of relative motion and the triangle inequality
A(K1K2K3) means the summation over K3 is restricted to

IK1 - KZ' <Ky <(K; +K,). Now, substituting this expansion into
(18), multiplying by the complex conjugates of the channel angular
functions and integrating over a, b, and R, we obtain the coupled
set of 1-dimensional differential equations for the Fa(R) . There is

a separate set of coupled equations corresponding to each value of the
total angular momentum K of the system. These are to be solved

subject to the boundary conditions
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. 1
FKCX.'L'S'(R) - 5 5 5 e-l(kaR_—iL TT)
aLS R large 00 LL'°S'S’
8 . (31)
K +1(kaR-§L TT)
*S,1s, aLs' ©

K 1] . *xrt?
where the S «LS, o'L'S' are elements of the "'scattering matrix
(S matrix). In this way the mp 2F€ given as sums of products of

K " mn .
(S o'LS, a'L'S' - 1) and angular factors, and the f™ jj areegiven by
sums over products of (S LS, 'L'S') and angular factors. The
cross sections are given d1rect1y in terms of the S matrix elements

as (where primes now denote the final state)

2
m
o - AQe T Ty 'q 1 ' I (32)
oLSSZ a'S SZ k2 onS'SZ , onSSZ
o 4
where
> 1
Ius's, !, oSS, ) ) Lo a)?
K=0 L L'
MKSL) A(KS'L')
(LSOS, |LSKS ) (L'S'(S, - 8,")s, IL'S'KS,) (33)

S -8 !

K
)Y (e ).

(6,10 8518 oL = Syis'Le, aSL

The integral cross section is the integral of the differential cross
section over all scattering angles 6 and ¢ . To obtain the observable
cross sections for the ocIII2 '11'12' transition for the case of
unpolarized beams, we must sum over final internal angular

momentum directions SZ' and average over initial ones SZ to give
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948 = o'S' and perform the sum and average
s - 2 Z 28 +1 o
al.I, - a'I,'L’ (21, +1)(21,+1) “aS-a'S’
172 172 S gt 1 2
1T orQt (34)
A(IIIZS) A(I1 I2 S')
Alternatively the asymptotic conditions for the regular
solutions of the coupled equations can be taken as
Ka'LL'S' . o 1
Fus ®  ~ 8 481185 sin(kR-5Lm)
R large . (35)
K 1
*RoLs, qLtgr ¢08 (KR -5 L)
K

instead of eq. (31) where the R
"reactance matrix''. In this case the scattering matrix elements

aLS. o'L'S" are elements of the
)

can be calculated from
§ = (1-iR)1 (1 +iR) (36)

where ,1 is the unit matrix. This procedure has some advantages
for approximate calculations as discussed in Chapters II and IV.
We note from eq. (33) that the probability of a process is really

determined by the transition matrix
T=1-8 (37)
and that this is given in terms of the reactance matrix by

T =(1- 113)'1(-215) : | (38)
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Notice that T and S are complex while R is real. The constraint
that particle flux be conserved (see, e.g., Ma 65, pp. 324 ff.) places
the restrictions on the T matrix that the magnitudes of its diagonal
elements must be less than or equal to 2 and the magnitudes of off-
diagonal elements must be less than or equal to 1.

In addition to the ease of interpretability, the advantage of
the expansion (30) is that coupled one-dimensional equations can be
solved numerically in a more straightforward and convenient way.
The methods used to solve these coupled equations in actual calcu-
lations are discussed in Appendix 2. These methods are an important
part of solving the scattering problem because the solution of the
close coupling equations is a difficult and complicated matter. In
fact, the development of practical, accurate methods of solving the
equations delayed progress in the field of molecular scattering for a
long time.

Often it is impractical timewise or costwise to solve the full
set of close coupled equations (including enough states in the ex-
pansion for essentially complete convergence of the solution to the
exact one). One systematic approximation scheme is to include only
a few states in the expansion (14) or (30). In this case the results
depend upon which states are included and it may be possible to
achieve a better approximation from an incomplete expansion by
choosing functions wij (a, b, R) different from the eigenfunctions
of the separated subsystems (this is done, for example, in the method
of perturbed stationary states, also called the method of molecular
states; see Wu 62, pp. 228-231). This complicates the close coupling

equations. In any case, for open channels we should have

i R) = 39
i Y; (25 B, B) = ¥;(2) 4, (b) (39)
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so that scattering boundary conditions can be imposed. When only
one or a few states are included in the expansion it is possible to
use the method of Fechbach (Fe 58, Fe 58a) to show formally what
kind of effects are being neglected. As an example, we consider the
nonrearrangement transition mn - op in more detail by rewriting

the expansion (14) as

¥ = Ymn + Ymn + v;i;mnop (40)
mn op
where
Nad — ik R
ik R mn
mn A B mn e
¥ ~ ¥ (a)y (b)le mig RS 1 (41)
manarge m~ n-~ mn mn’ R
ikopR
mn A B mn e
¥ ~ p)f " (k__,R (42)
B 1 g 0@ o ® fop B ™ R
w (aw (B) [¥77Ry L ~ 0 (43)
~’ ~ R -
where qr = mn or op. Let
ymnop Z ¥ (44)
a

(0

where {Y } is a complete basis for the two particles in the space
orthogonal to the two functions W i and w‘g \b?) . Each Ya satisfies

boundary conditions like (42) or represents a bound AB system. Then
the infinite set of coupled equations may be rewritten (see Fe 58 and
Ha 66)



18

A B A B =
(45)
‘ A B A B =
=- )y WA, p Fio(B)
ki =mn, op
where ij = mn or o p and
_ -1 46
W = V+Z 1Y (D7) g (¥ lV (46)
aB
where
. At
D, = (¥ |E +i0 -HH’B> : (47)

(Note that the lack of a subscript after the ) in (46) and (47) indicates
the corresponding integrations are over all the variables.) W is a
nonlocal, complex potential and Im W is negative definite. The
imaginary part of W is nonzero only if at least one channel other than
the channels explicitly included in the expansion (in the example, the
mn and op channels) is open. This can be seen by making the trans-
formation among the Ya necessary to diagonalize the matrix D (see
Fe 58 for further details). In general, for any set of explicitly
included channels, we can define (by its matrix representation) a
complex, nonlocal potential which can be used so that the finite
expansion gives the exact resulis. If only one state is explicitly
included, this potential is called the optical potential and if more
states are included it is the generalized potential (for further dis-
cussion and references, see Vo 67). Note that the optical or gener-
alized potential depends on what basis is chosen [i.e., on the form

of the ;.(a, b, R) for all R]. Although it is not usually possible
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to solve for the exact optical or generalized potential, it is some-
times possible to obtain an approximation to it. For example, we
can sum a selected part of the series (46) to include specific effects
such as resonance compound states of the target and projectile or
adiabatic polarization of the target.

Another class of approximation methods can be obtained by
substituting into eq. (27) or (28) a wavefunction Y obtained other than
by solving the close coupling equations. Using for ¥ the solution to
the 1-state close coupling equation yields the distorted wave approxi-
mation. This neglects any polarization of the bound state wave
functions during the scattering event. (The distorted wave approxi-
mation will be discussed again in subsection II.A.2.j.). If the
distorted wave solution Y is further approximated as

- —

ik..- R
APE) -e T ) B (48)

we obtain the first Born approximation. This formula for the scattering
amplitude can also be derived from the Fermi-Wentzel Golden Rule
(see, e.g., Go 66) and represents the result of applying first order
perturbation theory to the scattering process. The Born approxi-
mation is expecfed to be accurate when the energy is sufficiently high
and/or the interaction potential is sufficiently weak (see, e.g., Ko 54
and Wu 62, p. 42) that the perturbation theory provides a good approxi-~
mation. Some applications of the Born approximation to electron
scattering are given in chapter II. /Another approximation can be
obtained by putting an approximate optical potential for the one-state
equation into eq. (27) or (28) and then approximating the solution Y of
the one-state equation as in eq. (48). An example of this method is
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the polarized Born approximation calculations of electron-molecule
scattering which are discussed inChapter I. In this case the optical
potential corresponds to approximately summing terms in eq. (46)
which correspond to virtual excitation of excited electronic states
of the molecule.

Using the invariance of the Hamiltonian under the operation of
time reversal we can show that the scattering matrix and the re-
actance matrix are symmetric and we can obtain a relation between
the cross section or probability for a process and that for its reverse
(see, e.g., Ro 67, chapter 10). Some approximation methods yield
cross sections which satisfy this relation. Other approximation
methods do not necessarily yield cross sections which satisfy this
relation. We prefer when possible to use the former methods instead
of the latter ones.

By use of procedures like the close coupling method we have
been treating the scattering problem as a time-independent quantum
mechanical problem by imposing scattering boundary conditions on
the solution. It is, in fact, possible to formulate any collision
problem in terms of time-independent quantum theory. It is also
possible to formulate these problems including the time dependence
explicitly. This involves the scattering of wave packets. The time-
independent formalism is usually preferred for numerical calcu-
lations. (Some examples where the wave packet approach has been
used for numerical calculations are Ma 59 and Mc 69.) The formal
relationship of the two methods has been discussed many times (see,
e.g., Go 64 and Ne 66).

An approach to calculations which differs from the close
coupling theory is to forsake quantum mechanics for the relative
motion of the colliding subsystems at the very beginning. Then their

collision trajectory is calculated classically and the change in
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internal states of the subsystems is calculated by full time-dependent
quantum mechanics (see, e.g., Ba 62, Os 63 or Ke 66) or by the first
order (quantum mechanical) time-dependent perturbation theory (see,
e.g., Sh 65, Fl 69, and references therein) where the time-dependence
of their interaction is calculated frdm the trajectory. The difficulties
with this approach are that it is hard to systematically improve it and
to account for the effect back on the trajectory of changes in the.
internal motion. Nevertheless this method can yield useful and
accurate results in some circumstances. Recently, the formalism
necessary to account for the effect on the classical trajectory of the
quantum transitions of the subsystem has been worked out by Pechukas
(Pe 69).

2. Rearrangements

In the last subsection we have outlined the close coupling
theory for nonrearrangements. In practical applications it is never
possible to solve the infinite set of coupled equations and we must
work with the truncated ones involving, say, N coupled differential
equations. These equations are equivalent to a set of N coupled
integral equations (see, e.g., Ne 66, chapter 16). In the case of the
scattering of two elementary particles, the kernels of the untruncated
set of integral equations are nonsingular and can be represented to an
arbitrarily great accuracy by an expansion in a finite number of
functions. This means that arbitrarily accurate solutions of the
coupled integral equations or the coupled differential equations may
be obtained by solving the truncated equations if enough expansion
functions are retained. However, in the equations corresponding to

systems of three or more particles, the kernel is badly behaved (not
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"compact'', not "completely continuous"), the set of equations may
not be truncated, and numerical calculations are suspect (see Ne 66,
p. 555). The bad behavior of the infinite set of coupled equations is
directly due to the integration over the continuum states of the target.
In practice, if we expect that the wavefunction can be represented
accurately by a sum over discrete bound state eigenfunctions of two
composite particles, we generally consider this lack of rigor in the
truncated equations to be merely an unimportant formal difficulty.
The problem, however, obviously cannot be ignored for rearrange-
ments. By incorporating the exact solutions to all the component
two-body problems, the integral equation for the many-body wave
function can be rearranged to yield a new integral equation with a
compact (completely continuous) kernel. This involves a major
change in all the equations and the methods used to solve them.
Fadeev (Fa 60, Fa 63) was the first to write down the well-behaved
equations and to give a complete discussion in this context; the
resulting equations are called the Fadeev equations. These equations
are similar to those used earlier by Watson (Wa 53, Wa 57). The
Fadeev equation formalism has two complicating features not found
in the equations for two-body processes. First, it involves nonlocal
potentials. (Since the Fadeev equations are usually written as rela-
tions among transition operators in momentum space these show up
in that the equations require as input the two-body transition ampli-
tudes off-the-energy-shell.) Nonlocal potentials are a general
feature of most treatments of rearrangements; a simple example

is the exchange potentials which occur in electronic problems. Second,
if there is a real three-body term in the interaction potential, the
Fadeev equations are not very useful for calculations. A real three-
body term is one which cannot be written as the sum of two-body
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interactions. There are no three-body terms in electron-atom
scattering, for example. But in chemical collision problems we
usually treat the atoms as the composite particles and the interaction
potential between atoms cannot be realistically written as the sum of
pairwise interactions at least in cases where chemical reactions are
possible.

[A possible difficulty in using the Fadeev equations for
problems involving Coulomb potentials was mentioned in Tr 68. It
has been pointed out by Chen, Chung, and Kramer that this is not
really a difficulty (Ch 69b). ]

The difficulty actually arises in rearrangements because of
the fact that a different coordinate system is appropriate for ex-
pressing the boundary conditions in the initial and the rearranged
channels. Thus if we use the expansion (14) for the wavefunction for
the collision A + B, the boundary conditions in the rearranged channels
must be expressed in terms of continuum eigenfunctions of A and B.
There is then no straightforward way of incorporating all the boundary
conditions into the egs. (23) or into the corresponding coupled integral
equations. We seek a procedure by which the wavefunction in each
arrangement channel can be expanded or expressed in terms of the
coordinates and functions appropriate to that channel and the compli-
cations these functions cause in any other channels can be eliminated.
The rearranged integral equations of Fadeev are one way to do this
and to incorporate all the scattering boundary conditions. Another
way to do this is to use projection operators (Fe 62). The relation
of the Feshbach projection operator approach to the Fadeev equation
approach has been discussed by Hahn (Ha 68). Althodgh the projectors
can be very complicated, their use enables us to describe rearrange-

ment collisions exactly in terms of coupled integrodifferential
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equations which can be solved numerically (see, e.g., Mi 64 and Vo
68). The coupled equations involve simultaneously state expansions
appropriate to each of the possible arrangement channels. Recently
Miller has written the coupled equations for rearrangement scattering
in a particularly uncomplicated form where the projectors appear
implicitly but not explicitly (Mi 69). When account is taken of the
reduced masses, different coordinates, and eigenfunction expansions
appropriate in the different channel asymptotic regions, the treatment
of the cross section in terms of the asymptotic form of the wave-
function in each channel and the S matrix theory is easily generalized
from the equations given in the last section (see, e.g., Mo 65, p.
436, Ge 69, section 29).

A third method for incorporating the rearrangement scattering
boundary conditions into the solution of the wave equation is to use a
special coordinate system. We can define a special set of coordinates
for the collision process which is correct in either asymptotic region.
For example, for the collision A + BC - AB +C in one dimension we
can define a reaction coordinate s which passes monotonically from
-» to +« as the reaction proceeds. Then we can write the wave-

function as

¥ = ) F 6ol s (49)
i

where t is measured transverse to s. Then we can easily impose
scattering boundary conditions in the unrearranged and rearranged
channels. The biggest difficulty with this approach is that the coupled
equations for the Fi become very complicated because of the co-
ordinate system. A particular coordinate system like this has been
suggested by Marcus (Ma 66a) and used by Rankin and Light (Ra 68,
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Li 69, Ra 69). This coordinate system has the advantage that the
coupled equations are not too complicated but the disadvantage that
the coordinate system is not unique (i.e., three possible s, t pairs
can sometimes be used to describe the same point) and the results
obtained are not rigorously correct. Their hope is that the method
will give accurate numerical results if the coordinate system is
chosen so that the wavefunction is small in the region where the
coordinates are nonunique.

A fourth method by which the boundary conditions for the
rearrangement can be incorporated is the method of subtracted
asymptotics (Ef 68). This method, like the projection operator
formalism, leads to coupled integrodifferential radial equations
resembling (but more complicated than) the nonrearrangement close
coupling equations.

The fifth and last method we consider here is the direct so-
lution of the Schroedinger equation without a state expansion. The
asymptotic behavior of the solutions obtained can be analyzed in each
channel's asymptotic region in terms of the separated subsystem
eigenfunctions. The solution will not generally have the correct
boundary conditions but a solution with the correct boundary con-
ditions can be obtained as a linear combination of a finite number of
linearly independent solutions with arbitrary boundary conditions
(Di 68, Di 68b). This direct solution method is often but not always
prohibitively difficult. It can of course also be applied to nonrear-
rangements, but it has a real advantage for rearrangements because
it enables us to avoid the special difficulties and complications
associated with imposing rearrangement boundary conditions on
coupled channels expansions. This method of separating into steps
the numerical work required to obtain a solution of the Schroedinger

equation and the problem of insuring correct scattering conditions is
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a direct extension of the numerical methods (discussed in Appendix
2) which are used to solve the close coupling equations. The direct
numerical solution of the multidimensional Schroedinger equation
without a state expansion is discussed in Appendix 3.

As for nonrearrangements, it is also possible to calculate the
scattering amplitudes for rearrangements by using nonoptimized
trial functions and expressions like eq. (27) or eq. (28) which yield

the scattering amplitude in terms of the trial function. In this case
the particles are arranged differently in the initial and final states so
that H0 is different before the collision than after the collision. Then
the post-collision interaction must be used in (27) and the pre-
collision interactions in (28). When an approximation scheme yields
a different result from eq. (27) than from eq. (28) for the same
process, the former is called the post form and the latter the prior
form.

Some other aspects of rearrangement collisions have been
reviewed recently by Bransden (Br 65) and Watson (Wa 69).

B. Identical Particles

When identical particles are involved in only one or the other
of the scattering composite particles and do not become rearranged
from one to the other we need only account for them by constructing
the internal wavefunctions with the correct permutation and spin
symmetry. This does not concern the scattering theory directly.

When the scattering process itself involves identical particles
we must consider the quantum mechanical interference between
classically distinguishable events. A rigorous and straightforward
way to include the effects of the indistinguishability of identical
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particles is to apply the Kohn variational method (Ko 48, Br 58) to

a trial function like (14) but with the correct permutation and spin
symmetry. This leads to a set of coupled integrodifferential equations
which are like the previously considered close coupling equations
except for the addition of nonlocal exchange potentials (see, e.g.,

Sm 62).

In this thesis we consider in detail the quantum mechanics of
two scattering processes involving identical particles. One is the
collision on a line of a hydrogen atom with a hydrogen molecule. In
this case we assume that the particles cannot pass through one
another because of their repulsive interaction at small distances of
approach. Then the ordering of the particles on the line is un-
changed throughout the collision and we treat them as distinguishable
(for collisions in more dimensions, we would have to treat them as
indistinguishable).

The other problem of identical particles we consider is
electron-atom and electron-molecule scattering. This problem can
be treated by the close coupling method with inclusion of exchange
as described already. This requires the use of antisymmetrized
trial functions. Then the incident electron spin quantum numbers
I1 and IZ1 are coupled to the target spin quantum numbers I2 and
IZ2 to give total system spin quantum numbers Z and u . The last
two are conserved quantities. Separate sets of close coupled
equations are solved for each value of I to yield partial cross
sections oi“ and the total cross section is calculated by averaging

—'Da'

over the possible values of (Z, u) as in eq. (34):
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Another method of including exchange is to calculate an approximate
wave function as if there were no exchange between the incident
electron and the target electrons. Then we can antisymmetrize the
wave function just before calculating the scattering amplitudes from
it (by using eq. (27) or (28) or any variationally correct expression
for the scattering amplitude with antisymmerized wave functions).
This is the method used in chapter II. The first and simplest example
of this second method is due to Oppenheimer (Op 28). By anti-
symmetrizing eq. (48) for the Born approximation, he obtained what
is called the Born-Oppenheimer approximation for including exchange.
Ochkur has emphasized that application of this second method to
approximate wave functions ¥ computed from the close coupling
equations without exchange is an easier alternative to solving the
close coupling equations with exchange but that it corresponds to a
variational solution in a more restricted class of functions (Oc 65).
In summary, formulas like the Born-Oppenheimer formula
for including exchange in calculations using a nonoptimized trial
function may be derived using eq. (48) if the partial cross sections
are calculated from antisymmetrized versions of the trial function
with the spins coupled to give ¥ and u for the total system spin
quantum numbers (some examples of this procedure are worked out
in Ri 69). Using this method the partial cross sections for different
total system spin states are additive according to eq. (50). For
example, in electron scattering from a doublet atom (I2 = %) the
singlet (£ = 0) and triplet (£ = 1) scattering do not interfere.
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By treating the particles as distinguishable we can separately
calculate amplitudes for direct scattering (no exchange of the incident
electron with a bound one) and exchange scattering. These processes
are really indistinguishable and interfere. If we call the direct and
exchange scattering amplitudes f and g we find upon using anti-
symmetrized, spin-eigenfunction versions of the same trial functions
used for f and g that the scattering amplitude for a definite spin

state T can be expressed

fog = 211+ 2,8 (51)

where a; and a, depend on I, 12, 12', etc. We will later denote the

amplitude in (47) as fi,a(al, az). The weighted-average of the
partial cross sections for well-defined spin states or the sum of the
direct and exchange cross sections and their interference term is
denoted the total cross section (or the unpolarized beam cross
section). In chapter II we calculate f and g as primary quantities,
then calculate total cross sections from eqs. (50) - (51) and

T _a z
%a-a' T Kk £

| . (52)
Good discussions of the treatment of identical particles in

scattering are given in Go 64 and Ro 67. A general treatment of the

close coupling equations (including exchange) for electron-atom

scattering is given in Dr 65.
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This chapter contains a discussion of some aspects of electron
scattering from H, He, and H2. Many numerical calculations have
been done; all these calculations used trial functions that were not
functionally optimized by a variational principle. There were several
motivations for these studies; the most noteworthy are:

1. There has been recently a lot of new experimental data
(see, for example, Ku 68, La 68a, and Wi 69) on differential cross
sections for inelastic processes for electron impact energies in the
intermediate range (about 10-125 eV). There is a need for a simple
quantum mechanical framework for interpreting these results. There
is also a need to know how well simple theories (such as the Born
approximation) predict qualitative and quantitative properties of these
cross sections.

The energy dependence of the integral cross sections for
elastic scattering and excitation of various types of states (optically
allowed excitations, singlet-triplet transitions, etc.) have been
studied many times and many of their qualitative features can be
predicted empirically or from physical principles or both. At present,
the angular dependencies of the differential cross sections are not
understood in detail. We hope by adding the present calculations to
the small body of experimental and theoretical data now available for
the angular dependencies of differential cross sections that the
emergence of a deeper and fuller understanding of this topic will be
hastened.

2. Electron exchange collisions are examples of rearrange-
ment collisions which are amenable to systematic quantum mechanical
treatment. We can test conceptual and calculational procedures on
these collisions and perhaps make use of what we learn in treating

more complicated rearrangements like chemical reactions. .
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Electron exchange collisions are also of great interest for
their own sake. In the low and intermediate energy regions of
interest here the spin-orbit coupling and other relativistic effects
(these are discussed in Ke 69) are generally very small. If we
neglect these relativistic effects, then direct electron scattering
cannot cause transitions involving a change of spin multiplicity of
the target. Such transitions are very important and are caused by
electron exchange. Since in these cases the total cross section is
equal to the exchange cross section, these exchange cross sections
are measured in the laboratory in straightforward ways without using
polarized beams or targets. Exchange cross sections for some
processes where direct and exchange collisions can both contribute
have also been measured in the laboratory. Dehmelt, Novick and
Peters and Franken, Sands, and Hobart obtained bounds on cross
sections for exchange scattering of thermal electrons by alkali atoms
by observing depolarization by free electrons of an alkali gas previ-
ously aligned by optical pumping (De 58, No 58, Fr 58). Lichten and
Schultz measured the ratio of the exchange integral cross section to
the total integral cross section for electron scattering from the
hydrogen atom with excitation of the 2s state by crossing a mono-
energetic electron beam and a polarized atomic beam and analyzing
by the selective quenching action of a magnetic field (Li 59). Rubin,
Perel, and Bederson obtained exchange differential cross sections
for elastic collisions by crossing a polarized alkali atom beam with
a monoenergetic electron beam and measuring the partial depolari-
zation of the atom beam (Ru 60). Rubin, Bederson, Goldstein, and
Collins applied the same technique for scattering involving electronic

excitation of alkali atoms (Ru 69).
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The theory of electron scattering from atoms and molecules
is reviewed in detail in many places (two excellent sources of infor-
mation are Ma 65 and Dr 65). We will be particularly interested in
some of the more elementary theories of électron scattering. The
quantum mechanical formulas involved in these methods are dis-

cussed in the following section.

A. Formulas

1. Calculation of Cross Sections from Scattering Amplitudes

In this subsection we give formulas derived using the
procedure given in section 1. B for treating scattering involving
identical particles. The algebfa involved in the derivation is not

shown.

a. Electron-Hydrogen Atom Scattering. In this case both

the initial (i) and final (f) states of the atom are doublets. The ex-

change cross section is
: | (1)

in terms of the exchange amplitude gji and the wave numbers ki
and k. of the initial and final states. The direct cross section is

ol R P (2)
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in terms of the direct amplitude fji' The total cross section is

k 2 2
t " (1,0 3,1 ,
;= B {4|fji(1, 1) + 4Ifji(l,-l)l } (3)

in terms of the amplitudes defined in eq. (I. 51).

b. Electron-Helium Atom and Electron-Hydrogen
Molecule Scattering. In these cases the initial states of the targets

are two-electron (the number of electrons N with which the incident
electron can exchange is 2) closed-shell ground states and the final
target states may be these ground states (electronically elastic
scattering) or excited singlet or triplet states (electronically in~
elastic scattering). In the first two cases the final target state is

a singlet and the cross sections are

I e
L; = K lfjil (4)
k. 2
ex _ ] l
k. 2
t _ T§ o 1/2 1

i

In the case where the final state of the target is a triplet the cross

sections are

d _
o= o 1)
k. 2

ex _ J /3

Ly =g |5 Ney | (8)
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k 2
t % .12, /3N

2. Calculation of Scattering Amplitudes

In this subsection we consider the calculation of the direct
and exchange scattering amplitudes for electron scattering from the
ground electronic states of the hydrogen and helium atoms and the
hydrogen molecule. Most of the methods have been discussed in
detail elsewhere; some of the pertinent references are given here.

We shall use the following notation:

Iij the differential cross section for the i - j process.

N A number of nuclei (each of charge Z n) in the target .
number of electrons in the target. N=1lor 2.

ﬁn vector to the nth nucleus of the target from the center
of mass of the target.

R the vector to the scattering electron from the center of
mass of the target.

FS the vector to the s-th electron fram the center of mass

of the target.
I, J the electronic quantum numbers of the target in states i, j.

l.{. the wave number vectors of the incident and scattered

electrons, respectively. Ei = m;i/h .
m the mass of the electron.

v.,v. the velocities of the incident and scattered electrons,

respectively.
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the energy of the atom or molecule in state i.

2
. A A 2
the total energy: E = E i + o ki .

Ei’Ej the kinetic energy of the scattering electron before and

=R

i

jii

after the collision, respectively. Ei =E - E‘lA‘

atoms: the spatial electronic wave function in state I
molecules: the spatial electronic wave function times the

nuclear motion wave function.
the ionization potential of the atom in state i.

) A
the angle of scattering; 6 = arccos (ki . k].).
q= kl - j

direct scattering amplitude for the process involving an

K. . The momentum transfer is ha .
i - j transition.

exchange scattering amplitude for the process involving

an i — j transition.

the product of the differentials of all the volume elements
of spatial electronic (and nuclear motion, if a molecule)

internal coordinates of the target.

In the following we shall use hartree atomic units. In

these units 2 =m = a, = 1, the charge on an electron is 1, energy is

given in hartrees (1 h = 27.210 eV), and integral and differential cross

sections are given in ag and af/steradian, respectively. We shall

also use many abbreviations for scattering theory approximations.

Some of these are summarized in Table I. Sometimes energy is

given in rydbergs (Ry); Ei = (ao ki)2 Ry .
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a. Born Approximation. In the Born approximation (B)

f.. = fl? and g.. = 0 where (Be 30)
jiooil ji

B 2 2
£ = =% NM. - 6. %P, (10)
2 IJ 2
n q n q n
- — N L —
2 -ik,- R ik, - R .
M, =+ [¥ie 1 ) 1 ve ' dtdR (11)
n ] - lR-r '
s=1 S
. iq.T
= [ve 1y gn (12)
j i
2 fw e Yid'r : (13)

Cross sections calculated in the Born approximation satisfy detailed
balance. The Born approximation is discussed in subsection I. A. 1
and in many textbooks. It does not take into account the quantum
mechanical indistinguishability of the scattering electron from the
bound electrons. This indistinguishability of electrons is important
except at very high impact energies. In section I. B we discussed how
we can take this into account by antisymmetrizing the trial function to

give the Born-Oppenheimer approximation.

b. Born-Oppenheimer Approximations. In the Born-
BO

Oppenheimer approximation (BO or BOP), fji = fjlia and g=¢g

(prior) or gBOP (post) where (Op 28, Ba 50)



g Yj (r, rN+1)e

T T 2m N+1
(14)
and
N Ny z
veo. vy L.y =2 (15)
s=1 er+1 rs' n=1 er+1_Rnl
N Na z
vBoP_ 1 Y _—B__ (16)
s=2 ‘rl-rsl n=1 'rl_Rn‘

The prior and post approximations are obtained by applying the
method discussed in section I. C with plane wave trial functions using
eqs. (28) and (27). The results are the same in both formulations

if exact bound state wave functions are used. Cross sections com-
puted in the Born-Oppenheimer approximation satisfy detailed balance
if exact bound state wave functions are used or if the prior form is
used for one direction of reaction and the post form for the other.

The Born-Oppenheimer approximation is known to give cross sections
which are much too high (Ba 50). In the Born-Oppenheimer-minus-

core-terms approximation (BOMC), fji = fjli3 and g = gBOMC where
gBOMC is given by an expression like (14) except that the potential
is (Ka 66)
VBOMC - _:___}__’_____ . (17)
| ry-Ty +1]

Cross sections computed with this method satisfy detailed balance.

For N > 1, other expressions for the potential including some but
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not all of the core terms have also been employed (Jo 65, Jo 66, Mi
68). These are also called the BOMC approximation.

c. The First Order Approximation in the Methods of
Bates, Bassel, Gerjuoy, and Mittleman. The trial functions for the
initial and rearranged states are not orthogonal in the Born-Oppen-
heimer approximation. It has been stated many times in the published
literature that this is at least partly responsible for the BO approxi-
mation yielding such inaccurate results. Attempts to correct the

formula (14) for this nonorthogonality have led to many new pro-
cedures including the BOMC approximation, the first order exchange
approximation (Fe 32, Be 63, Br 65), and the first order approxi-
mation of Bates, Bassel and Gerjuoy, and Mittleman (Ba 58, Ba 60,
Mi 61, Mi 62). The last two methods (E1 and BBGM1) are identical
for elastic scattering and differ only slightly for electronically in-
elastic scattering (Tr 68). The BBGM1 approximation is calculated
from an expression like (14) except VBO is replaced by

VBBGM _ VBO _ f Yi* VBO yid-r } (18)

It is physically reasonable to subtract the second term in (18) since
such an averaged interaction should not lead to rearrangements.
Mittleman has considered other methods where even more of the
interaction is subtracted like this (Mi 62).

d. The Ochkur Approximatioris. " At high energies, the
Born-Oppenheimer approximation can be expanded (for fixed q) in

inverse powers of ki' This yields (Bo 62, Oc 63)
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BO(P) BOMC -6
i ~ gji +0(ki ) (19)
and
BOMC o -3
where
o 2
i

The notation BO(P) refers to the Born-Oppenheimer approximation

in either the prior or the post form. Similarly,

fﬁ ~ fj% + exactly 0 (22)
i.e., for the Born direct amplitude, there are no terms of higher
orders of smallness at large ki than the first term but for the Born-
Oppenheimer approximation there are such terms. Ochkur proposed
that these terms of higher order of smallness correspond to higher
order effects which cannot be taken into account in first order pertur-
bation theory and that they should therefore be dropped (Oc 63). Thus
the Ochkur approximation (O) consists in taking fji = fg and 85 = g;(J)1
We call this the prior formulation because of its relation to the prior
Ochkur-Rudge approximation discussed below.

By making an expansion in kj-1 instead of ki'1 we obtain instead
(Oc 63, Go 64, pp. 158, 163)

BO(P) OoP -3
.. ~ gl + O(k. 23
85 8 ( i ) (23)



41

where

oP _ 2

gji kz Mji . (24)
j

. _ B _ OP
Using fji = fji and gji = g].i
(OP). Ochkur recommended the use of the prior form for excitation

is called the post Ochkur approximation

processes and the post form for de-excitation processes since then
the expansion is in terms of a smaller parameter. Also it is only
this particular combination which yields cross sections satisfying
detailed balance (Oc 63).

In the Ochkur approximation the amplitude for a specified total
spin state is then (with aé = az/N)

?

£ (. a)=(d +22)CanM) + L2 s (25)
iR R T T2 A e
1

The total cross section for scattering off the hydrogen atom is

k.
S dL Ll i lyam?)
1 ki q4 qzk.2 kf} "
k
d 1 4p2 I
ti Sl Py + 8M, Py) - 55 (4M; PL)T.
i q qa k. nol

1

The total cross section for scattering off the helium atom or

hydrogen molecule is
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1 1 1 2
L, = (= -~ =5 + —) (16M5)

ij ki q4 q2k2 4k12 ji

(27)
+lij-5 [—1—(4P2+16MP)-——-1-—(8M P..)]
ki JI q4 ji jivji q2k2 jivji
for the final target state a singlet and

Iij = 5 (12 Mji) (28)

1

for the final target state a triplet.

e. The Ochkur-Rudge Approximations. Rudge noticed

that the Ochkur exchange amplitude cannot be derived from an ex-
pression of the form (I.27) or (I. 28) for a choice of trial function
which satisfies the correct boundary conditions for any approximation
to the scattering amplitudes at all energies. He found a trial function
which gives the Ochkur amplitude in the high energy limit, which is
correctly normalized and satisfies the correct scattering boundary
conditions at all energies, and which yields in eq. (I.28) the exchange
amplitude (Ru 65, Ru 65a)

g?R = 2 M, (29)

B (k, - 1/20; pood

e H__2 Mo (30)

where
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/20,

_ 1
gij = arctan ( kj ) . (31)

This is called the (prior) Ochkur-Rudge approximation (OR).
Similarly, the post form of this exchange amplitude can be shown
to be (Cr 66)

ORP -2 M.. (32)

g.. =
R &, - i/‘ZtTj)2 n

2i€ .
= - n "-2——2——— M.. . (33)
k§ + 20 n

This is called the post Ochkur-Rudge approximation (ORP). The
Ochkur~Rudge approximations are nonoptimized-trial-function
methods. Rudge and Morrison and van Blerkom made calculations
using a similar trial function to calculate the direct amplitude (Ru
65a, Mo 66a, Mo 67, Va 68). We call the method finally adopted by
them the Morrison-Rudge method. We use f., = fB and

jio i

g i ggR (or g?iRP) and the result is called the prior (or post) Born-
Ochkur-Rudge approximation. The prior Born-Ochkur-Rudge approxi-
mation was first used in Tr 68 and Be 68. The post Born-Ochkur -~
Rudge approximation was first used in Tr 69a.

Neither of the Ochkur-Rudge approximations for exchange
- scattering nor the Born-Ochkur-Rudge approximations for the total
scattering satisfy detailed balance. Bely suggested that this be

corrected by using the exchange amplitude (Be 66, Be 67)
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ORB.I _ 2 (34)

i k2 + gy, 9
] 1

which we call the symmetrized Ochkur-Rudge exchange amplitude
(ORB.I). Bely mentioned that the problem of finding what kind of

direct scattering amplitude should be used with g(.zRB' I was un-
settled. We have used f; = fﬁ and g?iRB ‘1 2nd the result is

called the symmetrized Born-Ochkur-Rudge approximation (BORB.]I).
It satisfies detailed balance. It had not been used prior to the calcu-
lations discussed in this thesis. Recently Ochkur has derived a
result which is identical to the symmetrized Born-Ochkur-Rudge
approximation by applying approximations based on the dynamics of
the collision process to the matrix elements involved in the Born-
Oppenheimer and Ochkur approximations (Oc 69). While he claimed
the Ochkur approximation was a correction of the perturbation theory
of the Born-Oppenheimer approximation, he considers the new result
is an improvement in which something beyond the perturbation theory
is added.

f. Unitarizing Procedures. The scattering amplitudes

computed by any of the methods above can be expanded in terms of
scattering matrix elements (see chapter I). Since these methods are
approximations to the scattering amplitude they can be considered to
yield approximations to these scattering matrix elements in a straight-
forward way. An alternative procedure and a less straightforward

one is to consider that they yield approximations to the reactance
matrix elements. This procedure is applicable only if the approxi-

mate scattering amplitude is real and satisfies detailed balance. Then
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it can be analyzed to give approximate elements of a real, symmetric
reactance matrix. Equation (I.36) has the property that a scattering
matrix calculated from it and from a real, symmetric reactance
matrix will always be unitary and symmetric. The calculated cross
sections will therefore satisfy the constraints imposed by conservation
of particle flux (see subsection I.A. 1). The procedure for unitarizing
the scattering matrix this way was originated by Seaton (Se 61) and
has been applied many times to direct scattering in the Born approxi-
mation (Va 60, Bu 66a, Sa 61, So 61, So 62, So 63, Fo 66, Fo 67).
The result is called the unitarized Born approximation (B.II or UBA).
This result was recently rediscovered (Ab 68). Bely applied this
method to his modification and extension of the Ochkur-Rudge method
to calculate exchange scattering from ions (Be 67). The procedure
was first applied to exchange scattering from neutrals by the present
author and coworkers and the details have been published (Tr 68). We
applied the procedure to the Ochkur approximation to obtain the uni-
tarized Ochkur approximation (O.II) and to the symmetrized Ochkur-
Rudge approximation to obtain the unitarized Ochkur-Rudge approxi-
mation (ORB.II). The method was applied to elastic scattering and
electronic excitation. Since then Sloan and Moore have derived and
used a unitarized version of the Born-Oppenheimer approximation

for elastic exchange scattering from a neutral target (S1 68).

The Seaton unitarization procedure requires that we obtain
approximations to all the reactance matrix elements in some square
subblock of the full R matrix. For example, to unitarize the result
for a -~ b transitions we must obtain Raa_’ R ab’ and Rbb to use the
matrix equation (I. 36). Such a procedure includes allowance for back
coupling (a = b - a) and competition among two channels. Thus the
sum of the transition probabilities to the two states a and b from
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either state a or b does not exceed the maximum possible value
allowed for that sum by the conservation of particle flux theorem.
Similarly we could include Rac’ Rbc’ Rad’ Rbd’ Rcd’ Rcc’ and Rdd
in the analysis and use a 4 x 4 subblock of the matrix equation. Such
a treatment includes back coupling, successive first order transitions

(a -~ ¢ »b), and competition among four channels.

g. The Method of Vainshtein, Presnyakov, and Sobelman.
Presnyakov, Sobelman, Vainshtein, and Opykhtin (Va 63, Va 64, Pr
64) attempted to derive an expression for the cross section that takes

account of electron-electron repulsion as much as possible. Their
result is called the method of Vainshtein, Presnyakov, and Sobelman
(VPS). In this method an attempt is made to treat distortion of the
scattering electron wave function. They made several mathematical
approximations which have been variously criticized (Mc 65, Mo 68a,
Ky 69). However, the method has been shown to give good integral
cross sections even at intermediate energies (Va 64, Pr 64, Pr 66).
This is an empirical reason for doing calculations by the method.
The formulas necessary for the calculations are all given in Pr 64.

It turns out that the scattering amplitudes can be written in terms of
Mji but they differ from the Ochkur approximation results by additional
factors involving q. In addition, by taking the ratio of their exchange
and direct scattering amplitudes, we find it yields a relatively simple
Ochkur-like relation.* We can use this ratio and the Born direct

amplitude to obtain yet another approximation to the exchange

* An Ochkur-like relation is a relation between the direct and
exchange scattering amplitudes which is independent of the structure
of the target (except for number of electrons, spin quantum numbers,
ete. ).
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amplitude. We call this amplitude the Born-transferred VPS method

(BTVPS); that is, t; =f§ and

VPS
BTVPS _ %ji B (35)
&5 T VES i

ji

Some of the errors caused by the mathematical approximations in the
VPS method may cancel out in the BTVPS method and help us to
understand better why the VPS cross sections have been so accurate.

h. Coulomb Wave Approximation. Another attempt to

eliminate the orthogonality difficulties associated with the Born-
Oppenheimer approximation for electron exchange collisions is called
the symmetric approximation or the Coulomb wave approximation

(Bo 53, Bo 56, Ka 67). This method uses Coulomb waves as trial
functions. These functions are not optimized in any way for the
particular process to be studied. There is some question as to how
appropriate they are for first order calculations on electron scattering
off neutral systems. The question is not completely answered.

Using approximations to the amplitudes in the Coulomb
wave approximation, Kang and Foland derived another Ochkur-like
relation, i.e., they found that the ratio of their exchange amplitude
to their direct amplitude was a quotient which did not depend on the
bound state wave functions (Ka 67). We use this relation and the Born
direct amplitude to obtain an exchange amplitude. We use this ex-
change amplitude with the Born direct amplitude to calculate the cross
sections. We call this’ the transferred Kang-Foland approximation
(TKF) far the exchange part of the scattering and the Born-TKF

approx. (BTKF) for the total scattering. The result is fji = fﬁ and



48

o}
gji = CKF gji where (Ka 67)
2i(kikj - Ei . 12’].)
(Y)i /ki(on+5 ; /kj F( 1—1/ki, 1, kizkj )
C....=(2 277
KF "~ ‘o a Fi/k;, /K, LX) (36)

and a, B, v, and x are defined in terms of ki’ kj‘,q., and cos 0 in

Ka 67. F(u,v,x) and F(u, v, w; X) in eq. (36) denote the confluent
hypergeometric function and the hypergeometric function, respectively
(Ab 64). In the high energy limit, the complex number CK‘F ap-
proaches 1 and the BTKF approximation is equivalent to the prior

and post Ochkur approximations. Since Kang and Foland did not use
any high-energy expansions to derive the Ochkur-like relation, they
said it is valid at all energies. Of course there are many approxi-

mations involved.

i. Including Polarization inthe Effective Interaction

Potential by the Polarized Born and Born-Ochkur-Rudge Approxi-

mations. The scattering of an electron is determined by the elements
of the potential matrix Y,(ﬁ) which occurs in the close coupling

equations. The matrix elements are defined by (see subsection 1. A. 1)
V. (R) T vv.d 37
" = | ¥ VY dr (37)

where V represents the interaction of the scattering electron at the
position R with the target. We will briefly consider these matrix

elements and their effect on the scattering cross sections (we exclude
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elastic scﬁﬁerin_g near zero energy and inelastic scattering near the
threshold from this discussion). Long range potentials cause large,
forward-peaked cross sections. Thus the integral cross section

for any process i - j is affected most strongly by that part of the
Vji(ﬁ) which has the longest range. The close coupling equations
contain, in addition to terms involving the Vji(fi), terms due to the
possibility of exchange of the incident electron with one of the bound
ones. H we attempt instead to account for this exchange by an
effective local potential, the potential will be exponentially decreasing
at large R because the bound charge distribution is decreasing expo-
nentially there. This short range "'potential" is totally responsible
for exchange cross sections and is important for large angle scattering
in cases where direct and exchange processes compete. Transitions
for which direct scattering can contribute usually have differential
cross sections which are more forward peaked than exchange cross

ji
depends on the electronic quantum numbers I and J of states i and j

sections because the Vji(ﬁ) are long ranged. The range of the V_,

(see Se 61, Da 68). Let us consider the potential matrix elements
K

Vi, il

irom making a partial wave expansion of the close coupling equations.

(R) which occur in the coupled radial equations resulting

Here K is the total angular momentum and 4 and 4' are the initial
and final orbital angular momenta of the scattering electron. We will
abbreviate this quantity as V(j,i,R). For atoms if i =j or I and J
are both S states, V(j,i,R) decreases exponentially at large R. For
molecules, the presence of a permanent dipole moment or quadrupole
gv, i decreases as R™2 or R'3, respectively,
at large R. If the I - J transition is optically allowed by electric

moment means that V

dipole selection rules, the transition can occur with a change of the

orbital angular momentum of the scattering electron equal to A% = £1,
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Then V(j, i, R) decreases as R™2 at large R. Other transitions
I - J which are not forbidden optically by the spin selection rules can
occur by direct scattering with » = |4’ - ¢t|] >2. Then V(j,i,R) is
decreasing as rM1 at large R (Se 61).

Now consider the generalized optical potential method where
we consider explicitly only the initial and final states but use the
generalized potentials W(j, i, R) instead of V(j,i, R). This method

was discussed in subsection I. A. 1. The inclusion of the corrections
v'G,i,R) = W(,i,R) - V(j,i,R) (38)

in the 2-state close coupling-like equations makes them yield exact
cross sections for the i »i, i+ j, and j - j processes. A discussion
of how these corrections account for virtual and real transitions to
other states is given in subsection I.A. 1. The charge of the incident
electron induces a dipole moment in the target. This mechanism is
responsible for the fact that V'(j,i,R) ~ a ) onji/ZR4 at large R where
A1y is a constant and aji can be computed by second order pertur-
bation theory (see, e.g., Pu 63, Da 68). This result is based on the
adiabatic approximation (assumption that the electron velocity relative
to the target is slow compared to the velocities of the bound electrons)
which is accurate at large R even at high energy (E > 100 eV). But
for Ei > 100 eV, the adiabatic theory may begin to overestimate the
polarization even at long distances. At even higher energies (say 10
keV) the polarization effect becomes negligible. If the first order
approximations which are used to derive the Born approximation

from the close coupling equations are applied instead to the general-
ized optical potential method coupled equations we obtain a plane wave

approximation just like the Born approximation except that the
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generalized potential replaces the direct potential Vji(ﬁ). This too
was discussed in subsection I. A. 1. We can thus sometimes obtain
better results by adding a correction term V' to the usual potential.
We have used this approximation where V' is based entirely on con-
siderations of the dipole polarization of the target by the electron
clnexx'ge.”= The resulting theory is called the dipole polarized Born
approximation or simply the polarized Born approximation. We can
also include an exchange amplitude in the calculation. When this is
done using the prior Ochkur-Rudge exchange approximation, the result
is called the polarized Born-Ochkur-Rudge approximation.

Now consider when the use of the polarized Born approximation
(B/P) is expected to provide imporfant qualitative differences from

the Born approximation (B). For S - P transitions in atoms
.. -2
V(J; 1, R) ~ O(R )

on../2R4 .

1{: = ~
V (]) l)R) a{/"{) ]1

Since we include the longest range effects without including the polari-
zation, we expect the B theory to give the correct angular dependence

at small scattering angles. For S - S transitions in atoms V'(j, i, R)

* The charge of the electron induces monopole, dipole, quadru-
pole, octupole, and higher order momenta in the target. These
moments lead, respectively, to effective interactions which at large
R are decreasing exponentially and as R"4, R‘G, R'8, and so forth.
The induced dipole moment is thus the most important term for small
angle scattering and integral cross sections.
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is longer range than V(j,i,R). Thus we expect that the experimental
differential cross section for S — S transitions will have a larger
forward peak than is predicted by the B theory and the B theory will
be more accurate for S » P transitions than for S - S transitions.
We should use the B/P theory for S - S transitions. For elastic
scattering from S state atoms, the direct potential is short range
and it is necessary to include polarization. For example, it has long
been known that it is necessary to include polarization for a quali-
tatively correct description of elastic electron scattering from the
helium atom (Kh 64, Kh 65). For elastic scattering from homo-
nuclear diatomic molecules, the longest range part of the potential
Vji(ﬁ) in the static approximation is the asymmetric RS potential
due to the charge-quadrupole interaction. The polarization leads to
an R"4 effective potential Vji(ﬁ) with symmetric and asymmetric
parts. Since the asymmetric potentials average to zero and the
symmetric potentials do not, it turns out (as is shown in part two of
this thesis) that the inclusion of polarization is necessary for a
qualitatively correct description of the scattering in this case also.
Further discussion of and details of the use of the polarized
Born and polarized Born-Ochkur-Rudge approximations are given in

part two of this thesis.

j. The Restricted sp-Distorted Wave Approximation and

the Polarized Restricted sp-Distorted Wave Approximation. The

partial waves corresponding to the lowest orbital angular momenta 4
of the scattering electron are the ones which semiclassically corre-
spond to the smallest impact parameters. Because of the centrifugal
potential the higher partial waves do not penetrate as close to the

center of the target (where the interaction is generally very strong)
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as the s and p partial waves do. Thus the s and p waves are the
ones where distortion is most likely to be important. Calculations
including the effects of distortion are usually done in a partial wave
expansion. At higher energies and at medium energies when long
range potentials are present many partial waves will be required.
Since the calculations are complicated it is usual to include only the
lowest partial waves where the scattering probability is high. The
small probability of scattering in each of many higher partial waves
can have an important effect on the small angle differential cross
sections and the integral cross sections. The calculations including
distortion are often corrected for this by adding the results of Born
calculations for some of the higher partial waves (see, e.g., Bu63,Sc 65,
and Tr 69a). The Born approximation is more accurate for these
higher partial waves for which the interaction is small than for the
partial waves with smaller ¢. However, it is more difficult to
carry out the plane wave approximat‘ion calculations in a partial wave
expansion than by using the unexpanded plane waves (which include
all the partial waves). To take into account only distortion of the
lowest two partial waves it is easier to compute the whole Born
approximation amplitude, subtract that part of it due to scattering
with £ =0 and ¢ = 1, and add the contribution from 4 =0 and ¢ =1
in a distorted wave approximation. A procedure for doing this in
electron-homonuclear diatomic molecule scattering (the procedure
could be used for electron-atom scattering by considering it to be a
special case) is given in this thesis in part two, section I.C. This
particular procedure uses the restricted distorted wave approxi-
mation (Ta 54, see Cu 69) as discussed there. It is expected that
this procedure will cure one of the most glaring weaknesses of the

Born, Ochkur, and Born-Ochkur-Rudge approximations and their



54

polarized versions. This weakness is that these theories often pre-
dict differential cross sections which are too small at large scattering

angles by more than an order of magnitude.

k. Close Coupling Approximation and Discussion of

Methods. The close coupling approximation is discussed in chapter
I. The close coupling approximation using the atomic eigenfunctions
is very slowly convergent for many electron scattering processes
(see, e.g., Bu 62¢c, Bu 63, Bu 63a). The reason that the close
coupling approximation with inclusion of only a few target eigenstates
is bad is the difficulty of adequately representing the target polari-
zation and the electron-target correlation in terms of only a few
eigenstates. Various methods of improving the close coupling
approximation to correct these deficiencies have been suggested and
tried (Ga 64, Ga 65, Ga 65a, Bu 66, Ta 67, Da 68, Pe 68, Bu 69a).
While these methods are promising, close coupling calculations will
remain complicated and difficult. Since some of the methods which
are easier to apply give better agreement with experiment than close
coupling calculations (see, e.g., Cr 65, Ru 65a, Tr 69a) it is worth-
while to study them in detail, not only because of their empirical
value, but also to attempt to understand their success in physical
and mathematical terms.

While it is not possible to completely separate the various effects
involved in the scattering, it is interesting when discussing the
methods given in sections a through i to make an approximate sepa-
ration. The 1l-state close coupling approximation is called the static
approximation if exchange of the incident electron is neglected and
the exchange approximation if it is included. The static approxi-

mation includes distortion and back coupling but does not include
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polarization of the target or strong coupling of other states. In a
plane wave calculation we neglect distortion. In the other calcu-
lations using nonoptimized trial functions we account for it in only

a very approximate way. By the 1l-state unitarization procedure we
account approximately for back coupling. We can account approxi-
mately for polarization by adding a polarization potential to the
potential in the single channel equation or to the potential in the non-
optimized trial function calculation. By actually solving the close
coupling equations including the excited target states responsible for
the polarization we can more easily account for the nonlocality of
the polarization potential. Further, if these excited states are open
channels, the close coupling method also includes the effects of
strong coupling. We can approximately include the effects of strong
coupling in calculations which do not use close coupling by using the
n-state unitarization procedure (where n > 2) as discussed in sub-
section II.A. 2.f. In close coupling calculations including exchange
the effects of exchange on the distortion and polarization and the
effects of distortion and polarization on exchange are fully included.
In the calculations using nonoptimized trial functions these second
order effects are not easily included. They can sometimes be im-
portant. Another effect which is included in a close coupling calcu-
lation is electron correlation. By electron correlation we mean the
representation in the wave function of the effects of the Pauli princi-
ple and the electron repulsion on the detailed electronic motion when
all the electrons are near the atom (or molecule); this includes, for
example, the cusp in the many electron wave function when the co-
ordinates of two electrons are equal. Most of the unoptimized trial
function methods treat electron correlation very incompletely and

indirectly, if at all.
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We have performed many calculations using the methods dis-
cussed in this subsection (subsection II.A.2 ). In section II.B we
summarize some of the conclusions concerning these methods' use-

fulness which we have been able to draw from these calculations.

3. Generalized Oscillator Strengths for the Helium Atom

The scattering amplitudes for electron-hydrogen atom
scattering were evaluated analytically (see Tr 68). For the calcu-
lations on electron-hydrogen molecule scattering the scattering
amplitudes were evaluated using both analytic and numerical tech-
nigues and some of the results were fit to power series (see part two
of this thesis). The methods used to obtain the scattering amplitudes
for electron-helium atom scattering are described in the rest of this
subsection.

All of the electron-helium scattering calculations were
done using the generalized oscillator strengths. The generalized
oscillator strength for electron scattering off the ground state g of
helium with excitation of the excited singlet state j is (see, e.g.,

Be 30, Mi 57, Bu 61, p. 397)

8 LA A 2

This quantity has been computed as a function of q many times in
the past. For excitation of the 2 1P, 3 1P, and 2 1S states, Kim and
Inokuti (Ki 68a) computed very accurate values by using the 52-54
term configuration interaction wave functions (including explicit o
dependence) of Weiss (We 67). For g <2, they estimated their
generalized oscillator strengths are accurate within 1% for the 2 1P
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and 2 1S excitations and 3% for the 3 1P excitations. For higher ¢
their values are slightly less accurate. Their best sets of general-
ized oscillator strengths will be labelled KI. Bell, Kennedy, and
Kingston (Be 68) used the 6-term configuration interaction wave
function (including explicit r 12 dependence) of Stewart and Webb for
the ground state (St 63) and a single-configuration, minimum-basis-
set, hydrogenic-exponent wave function for the 3 1P state to calculate
generalized oscillator strengths for the 1 1S -3 1P transition. Their
results using eq. (12) will be called the BKK set of generalized
oscillator strengths.

Since the calculations require many values of cpgj(q) at irregu-
lar values of q, we found it convenient to fit cpgj(q) to a power series.
Lassettre pointed out that a Maclaurin series in q is not convergent
for all possible q and suggested an alternative form which is con-
vergent in the entire physical domain for atomic S - S transitions.
The form is (La 65a, Vr 67, Vr 68)

g m
_ X ' X
%@ = 112 Fo * L Cm(rEE) ] (40)
where
azep .(q)
¢c = lim | —81 "~ (41)
o) 2
q-0 q B
x = q2/d (42)
and

_ 1/2 A _A..1/2
a = (2Ug) + [2(Ug +E]. - Eg )] . (43)
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The convergence properties require o be known only approximately.
Similarly for atomic S - P transitions the appropriate form is (Vr
67, Vr 68)

v .(0) ® m
9@ ——&1——6— 1+ ) e (135 (44)
(1 +x) m=1

where x is again given by eqs. (42) and (43). We used these series
with the sums truncated to M terms and selected the Cn for m>1
to give best agreement over some range of q with one of the available
sets of generalized oscillator strengths. For the fitting process we
used p values of q in the range a4 to qp. The fitting process was
well-conditioned but more so for S —» P transitions than S - S
transitions. Some of the resulting fits are given in Table XV.

B. Electron-Atom Scattering

We have written an article '"Rearrangement Collisions: Effect
of Core Terms, Nonorthogonality, and Conservation of Particle Flux
on Approximate Theories' which is already published. In this article
we discussed in detail the Born-Oppenheimer approximation with and
without the core term, the first order method of Bates, Bassel and
Gerjuoy, and Mittleman, the prior Ochkur and Ochkur-Rudge approxi-
mations, the symmetrized Ochkur-~Rudge approximation, and the
unitarized Ochkur and Ochkur-Rudge approximations for electron
exchange scattering. Many calculations using these methods for
differential and integral cross sections were presented for the 1s - 1s,
1s - 2s, and 2s - 2s processes of electron-hydrogen atom exchange

scattering and they were compared to calculations using optimized
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trial functions and to experimental results. There had been no
previous accurate calculation of the differential cross sections for
the BO, BOMC, BBGM1, O.II, and ORB. I methods. We also
discussed the application of these methods to other processes and
the application of other methods to the electron exchange problem.

Additional calculations, especially in the unitarized Ochkur
and unitarized Ochkur-Rudge approximations, have been performed
and the results are summarized in Tables O, I, IV, V, and VI
Additional calculations of exchange cross sections from optimized
trial function results of previous workers have been performed and
these are compared in Figs. 1-8 with the present results.

Some of the more important conclusions which can be drawn
from the article and from the calculations in the tables and figures
are:

1. The Born-Oppenheimer approximation without the core
term gives integral exchange cross sections and angular dependences
which are worse than the ones calculated from the full Born-
Oppenheimer approximation. The inclusion of the core term is
evidently necessary for consistency in a plane wave calculation.

2. The first order method of Bates, Bassel, Gerjuoy, and
Mittleman gives integral exchange cross sections which are better
than those in the Born-Oppenheimer approximation but are still in
poor agreement with experiment for impact energies below about 20
eV. Since the maxima in the inelastic exchange cross sections occur
very near to threshold (the threshold energy is 10. 2 eV for the
1s - 2s transition in the hydrogen atom) the BBGM1 method, like
the BO and BOMC methods, greatly overestimates the cross section

in the region of its maximum.
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3. The BO and BBGM1 approximations predict the angular
dependence of the exchange differential cross sections much more
accurately than the BOMC approximation does.

4. The Ochkur and Ochkur-Rudge methods predict integral
exchange cross sections mare accurately than the BO, BOMC, or
BBGM1 methods. Thus it is not merely spurious contributions to the
Born-Oppenheimer amplitude from core terms and nonorthogonality
of the plane waves which makes the Ochkur and Ochkur-Rudge
approximations work so well; the physical reason, if any, for their
success is still not clear. The Ochkur-Rudge method is more
accurate than the Ochkur method. However, neither of these methods
predict accurate angular dependences of the exchange differential
cross sections. The exchange differential cross sections they predict
are very similar to those predicted by the BOMC approximation.
Evidently the BOMC, O, and ORB.I methods do not treat the inter-
actions responsible for the exchange scattering in a consistent way at
least at low and intermediate energies. The differential cross sections
thus serve as a sensitive test of whether the O and OR methods predict
relatively accurate integral cross sections for the wrong reasons.

5. The unitarized Ochkur-Rudge approximation predicts re-
markably accurate integral exchange cross sections but neither it
nor the unitarized Ochkur approximation predicts more accurate
angular dependencies than their nonunitary versions. The shapes of
the differential cross sections as a function of angle are not much
changed by unitarization.

We have also calculated the total scattering (direct and exchange
scattering and their interference) for the 1s - 2s transition in the
hydrogen atom. The methods used for these calculations were the
same as those used and described in Tr 68 and Tr 70. For electron-

hydrogen atom scattering we evaluate the amplitudes analytically
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using exact bound state wave functions. One report of this work
"Cross Sections for Excitation of the 2 2S State of Hydrogen By
Electron Impact' has already been published (Tr 69a). This long
abstract emphasized the integral cross sections. New calculations
were reported using the Born approximation, the Born-Oppenheimer
approximation with and without the core term, the prior and post
Born-Ochkur and Born-Ochkur-Rudge approximations, the symme-
trized Born-Ochkur-Rudge approximation, the Born approximation
with exchange correction by the first order method of Bates, Bassel,
Gerjuoy, and Mittleman, the method of Vainshtein, Presnyakov, and
Sobelman, the Born-transferred Vainshtein-Presnyakov-Sobelman
approximation, and the Born-~transferred Kang-Foland approximation.
The cross sections were compared with other calculations and with
experiment. Some other results for the total scattering cross section
for the 1s - 1s elastic scattering and the 1s - 2s excitation of the
hydrogen atom are given in Tables VII, VIII, IX, X, XI, XII, and
XIII.

We have also done many calculations on the excitation of three
of the lowest energy excited singlet states of the helium atom -- the
2 1S, 2 1P, and 3 1P states. The calculations were carried out in the
B, O, OP, BOR, BORP, BORB.I, VPS, BTVPS, and BTKF approxi-
mations. The methods used for these calculations and the most im-
portant results for the excitation of the 2 1P state are given in an
article "Differential and Integral Cross Sections for Excitation of the
2 1P State of Helium by Electron Impact' which has been accepted for
publication (Tr 70). The article also includes experimental results
by Rice, Trajmar, and Kuppermann. In the article the new and all
the previously available theoretical and experimental data on the
excitation of the 2 1P state of helium are analyzed, discussed, and

compared. Further examples of the calculated cross sections for
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electron-helium scattering are given in Figs. 9-11 (mostly exchange
differential cross sections), 12-17 (mostly total differential cross
sections), * and 18-21 (total integral cross sections). In addition
some aspects of the ratios of the 2 1S excitation cross sections to
the 2 1P ones are illustrated by Figs. 22-23 and Table XIV. Calcu-
lations have been performed for excitation of the 2 1S state of helium
at all the energies for which there is any experimental data or any
previous theoretical calculations. An article discussing the 2 1S
cross sections and the 2 1S/2 1P intensity ratios in more detail is in
preparation (Ri 70). This article will compare the calculations to
experiments from this laboratory (see, e.g., Ku 68, Ri 69) and else-
where. Considering all these new results and their comparison with
experiment and with each other we can add a few more items to our
list of the most important conclusions:

6. The O and BTVPS theories give very similar results for
differential and integral cross sections. Hence the BTVPS approxi-
mation yields no new results and need not be considered further.

7. The BO, BOMC, BBGM1, OP, and BOR approximations
give maximum total integral cross sections larger and in worse
agreement with experiment than the Born approximation or some
close coupling calculations. The O, BORB.I, and VPS approximations
give lower cross sections than the Born approximation and few-state
close coupling methods. The BORP and BTKF approximations are

*In the semilog plots in Figs. 9-17 many of the cross sections
calculated by the O, OP, VPS, BTVPS, and BORB.I methods show
sharp, deep dips. These are actually zeroes but do not show up as
such on some of these computer-generated figures. They are easily
recognized and should not cause any confusion.
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sometimes better than and sometimes worse than the B approxi-
mation in this respect.

8. The O, BORB.I, and VPS theories and the calculations of
Morrison and Rudge (Mo 66a) are in rough agreement with the various
experimental total integral cross sections for the 1s - 2s transition
in the hydrogen atom. Further clarification of experimental results
will be necessary to determine which of these calculations is most
accurate in this case. These methods are the most useful for calcu-
lating total integral cross sections.

9. The VPS approximation gives better agreement with experi-
ment for the total integral cross sections for electronic excitation of
each of the three states of helium than any of the methods we tried
(B, O, OP, BOR, BORP, BORB.I, BTKF) which use the Born approxi-
mation for the direct amplitude. These results and the previous suc-
cess of the VPS theory are an empirical justification for using the VPS
approximation to calculate integral total cross sections.

10. The BORB.1, O, OP, and VPS methods predict the angular
dependencies of total differential cross sections very poorly. A
symptom of this is that they sometimes predict a nonphysical zero in
the differential cross section. This would not happen if either the
direct or exchange scattering amplitude or both were complex (not
real).

11. The Born and BOR approximations are in good agreement
(better than a factor of 2) with the angular dependence of the experi-
mental total differential cross sections for scattering angles 6 less
than about 45° for the excitation of the 2 1P state for impact energies
of 34-81.6 eV (81.6 eV is the highest energy for which experimental
differential cross sections for scattering angles as large as 45° are
available). At the higher energy end of this range where the cross
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sections are steeper functions of the scattering angle 6 the agree-
ment extends only to smaller 6 than it does at lower energies.
Evidently the large angle scattering corresponds to such a strong
perturbation that these first order theories fail. Formally this
means that distortion of the lowest one or more partial waves is
necessary to predict the large angle scattering even qualitatively
correctly. Evidence for accuracy and inaccuracy of the plane wave
theories' predictions of the angular dependences of the 2 1P differ-
ential cross sections at all energies for which experimental data are
available is summarized in Tr 70.

12. The BOR approximation can explain the angular dependence
of all the presently available experimental total differential cross
section data (within the stated experimental error limits) for exci-
tation of the He 2 'P state 8 < 20° and E; 2 34eV.

13. The BTKF and BORP approximations predict the angular
dependence of the 2 1P eXcitation total differentialbcross section in
worse agreement with experiment than the Born approximation. This
is not complete enough evidence to dismiss them. For example, it
is possible that by including distortion in the lowest few partial waves
of a BORP or BTKF calculation they would agree better with experi-
ment.

14. No consistent criterion except detailed balance arose so
far from the study of electron scattering from H and He to indicate
that the BOR, BORP, or BORB. I approximation is more correct in
any basic way. The inaccuracies in the first order treatments pre-
sented here for the total scattering (including direct and exchange
scattering and the interference between them) may be at least partly
due to treating the direct and exchange scattering by different methods
so that the relative phase of the direct and exchange scattering
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amplitudes may be predicted inaccurately. This fault can be cor-
rected by calculating the scattering using antisymmetrized trial
functions which are eigenfunctions of the electronic spin of the
three-electron system.

15. None of the methods we examined gave even approximately
correct angular dependences for the differential cross sections for
excitation of the 2 1P or 2 1S states of He for Ei =26.5eV. Evi-
dently this is too close to threshold for these first order methods to
work.

16. The ratios of differential cross sections for two processes
(e.g., 2 1S/2 1P or 3 1P/2 1p in helium) are much less sensitive to
the method of calculation used than are the cross sections themselves.
Thus the 2 1S/ 2 1P cross section ratios computed by the B, O, BOR,
BORP, BORB.I, BTKF, VPS, or BTVPS approximations agree with-
in a few per cent for 6 < 60° in the intermediate energy range. The
B, BOR, and BTKF approximations to these cross section ratios
agree with each other over an even wider angular range.

17. None of the methods we examined is in agreement with the
experimental angular dependences of the total differential cross
sections for excitation of the 2 1S state of helium for impact energies
in the range 34-55.5 eV. The theoretical cross sections do not fall
rapidly enough with increasing 6 at small 6, indicating the theory
has underestimated the range of the effective potential (as discussed
in section A.2.i). Since the first order theory was approximately cor-
rect for the angular dependence of the 2 1P total cross section at
small 8 (this too was expected as discussed in section A.2.i), the theory
does not predict the 2 1S/2 1P intensity ratios accurately. The
polarized Born approximation or polarized Born-Ochkur-Rudge
approximation should be applied to S = S transitions. The calcu-

lations without polarization are in better agreement with the 2 IS
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excitation total differential cross sections at Ei = 81. 6 eV than at
the lower energies. This could be an accidental result of several
effects including distortion or perhaps the energy is high enough so
that polarization is less important or there is more experimental

error.

C. Electron-Molecule Scattering

In part two of this thesis we present the methods used for
polarized Born and polarized Born-Ochkur-Rudge calculations of
electron-hydrogen molecule scattering. Calculated cross sections
for elastic scattering and vibrational excitation are included. These
calculations are much more complicated than the calculations on
electron-atom scattering. In chapter I of part two of the thesis we
also compare the calculations for elastic scattering to some previous
ones and to low energy and high energy experimental data for elastic
scattering. Table XVI gives additional calculations of the elastic
integral cross sections (these include elastic scattering plus pure
rotational excitation) in the intermediate energy range. Figure 24
compares low energy elastic differential cross sections with the very
recent theoretical results of Henry and Lane (He 69) and Hara (Ha 69a)
and with the experiments of Ehrhardt and Linder (Eh 68). The calcu-
lations of Henry and Lane and Hara include distortion and higher order
effects, but the present results are in good agreement with them when
polarization is included.

In chapter II of part two we present more calculations on low
and intermediate energy elastic scattering and comparison with previ-
ous theoretical and previous and new experimental results. In chapter

III of part two we present more calculations on vibrational excitation
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cross sections at low and intermediate energies and compare with

previous theoretical and previous and new experimental results.
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TABLE 1

Abbreviations for Exchange Scattering Theories®?

BO
BOP
BOMC

O.I nxn

oP

OR

ORP

ORB.I
ORB.II n xn

ORB.III, ORB.IV
BBGM1

E1l
KF

TKF
VPS
TVPS
PO
B/P
BOR/P

Born-Oppenheimer approximation (prior)
Born-Oppenheimer approximation (post)
Born-Oppenheimer approximation without coreterm(s)
Ochkur approximation (prior)

Unitarized Ochkur approximation (prior) including
n states

Ochkur approximation (post)

Ochkur -Rudge approximation (prior)
Ochkur -Rudge approximation (post)
Symmetrized Ochkur-Rudge approximation

Unitarized Ochkur-Rudge approximation including
n states

Approximately unitarized Ochkur-Rudge approximations

First order approximation of Bates, Bassel and
Gerjuoy, and Mittleman

First order exchange approximation

Kang-Foland approximation tothe Coulomb wave
approximation

Transferred KF approximation
Vainshtein-Presnyakov-Sobelman approximation
Transferred VPS approximation

Polarized orbital method

Polarized Born approximation

Polarized Born-Ochkur-Rudge approximation (prior)

AThe abbreviations used to name theories for exchange scattering
are listed in this table. The Born approximation for direct scattering
is called B and the prefix B used with an abbreviation for the exchange
amplitude is used to indicate a calculation of the total scattering (direct
plus exchange). For the various forms of the Born-Oppenheimer and

Ochkur theories,

however, the direct scattering is always calculated

in the Born approximation and thus the B is omitted from the abbreviation.
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TABLE I

Scattering angles (deg) at the positions of the highest peaks
of the calculated differential cross sections for electron exchange
scattering off the hydrogen atom with excitation from the ground

state to the 2s state.

E Method

(ev) BOMC BO o OR BBGM1 Bss? o. ]Ib OR. IIb

13.6 80 0 85 85 0 180 85 85
19.6 55 180 60 60 180 180 60 60
30.6 45 180 45 45 45 0 45 45
54.4 30 30 30 30 30 0 35 35

215 - 2s - 2p close coupling calculations (Bu 63)

b 2 x 2 matrix equation used for unitarization
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TABLE 1III

Integral exchange cross sections for electron scattering off
the ground state of the hydrogen atom in the 1 and 2-state unitarized
Ochkur and Ochkur-Rudge approximations. The exchange elastic
scattering and the exchange excitation of the 2s state are given.

1s - 1s 1s - 2s
E.(eV) O.1 O. ORB.II ORB.II O.II ORB.O

1 1x1 2 x 2 1x1 2x2 2x2 2x2

1.20 151. 46 28.72

1.36 134. 16 27.07

1.80 102.21 23.29

2.20 83.91 20.57

2. 60 71.03 18. 35

3.00 61.41 16.51

3. 40 53. 87 14.95

4.20 43.01 12. 47

5.44 32.01 9.73

7. 00 23. 40 7.42

9.52 15. 15 5.08

10.50 12.99 12. 98 4.45 4.34 0.00 0.09
11.00 12. 04 11. 98 4.17 4.01 0.01 0.14
12. 00 10. 39 10. 16 3.67 3.49 0.10 0.23
13. 00 9.01 8.68 3.25 3.09 0.20 0.27
13.60 8.28 7.95 3.03 2.88 0.23 0.27
14. 00 7.85 7.52 2.90 2.75 0.24  0.27
15. 00 6. 86 6.57 2.59 2. 417 0.25 0. 26
16. 00 6. 03 5.78 2.32 2.22 0.2¢4 0.24
17. 00 5.31 5. 10 2.09 2.00 0.23 0.22
19.59 3.89 3.75 1.62 1.56 0.20 0.18
22. 00 2.97 2.88 1.29 1.26 0.16 0.14
25. 00 2.17 2.11 1.00 0.98 0.13 0.11
30. 61 1.28 1.26 0.65 0.64  0.08 0. 07
40. 00 0.61 0.61 0.35 0.35 0.04 0.04
45. 00 0. 44 0. 44 0.26 0. 26 0. 03 0.03
54, 42 0.25 0.25 0.16 0.16 0. 02 0. 02
70. 00 0.12 0.12 0.09 0. 08 0.01  0.01
100. 00 0.04 0. 04 0.03 0. 03 0.00  0.00
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TABLE IV

Integral cross sections (aoz) for exchange elastic scattering
off the 2s state of the hydrogen atom in the 1 and 2-state unitarized
Ochkur and Ochkur-Rudge approximations.

2s ~ 2s

Ei 0.1 0.1 ORB. I ORB. II
(eV) 1x1 2 x 2 1x1 2 x2
1.80 200.22 198. 173 40. 09 38. 96
2.80 80. 00 78.59 19. 38 18. 85
3.40 48. 83 47.178 13.45 13.11
3.80 36.39 35.55 10. 84 10. 57
4.80 18. 95 18. 46 6.70 6.54
5.80 10. 99 10. 69 4. 44 4,34
6.80 6.93 6. 72 3.11 3.04
9.39 2.70 2.61 1.40 1.43
11.80 ~1.39 ~1.34 0.84 0. 82
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TABLE VII

Integral total cross sections (a,2) for elastic scattering of
electrons from hydrogen atoms (1s).
Born approximation and exchange amplitude is from five

different approximations.

multiplicative power of 10,

E

(Ry)

[\
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OOOOOOO&OAWO:D@-J»BQD

oI
e

.1

V-8

Direct amplitude is from

Cross sections

Number in parentheses, if any, is

BOMC
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.40
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.67(1
. 64(1
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.04(1
.16
.69

. 88
.99
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.39(2)
.53(2
. 43§2

1
1

3

. 99(2
.13(1
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.18

.23
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.61
.10

.13
.40
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.48(1)
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SRRORENWR G 30000000 w
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TABLE VIII

Peaks in the differential total cross sections for elastic
scattering of electrons from hydrogen atoms (1s). Given
are all peaks (highest first) among the angles 0(2) 24(6)
60(5) 180. Direct amplitude is from Born approximation
and exchange amplitude is from five different approxi-
mations. B =180°, If the minimum value of the differ-
ential cross section does not occur at either 0° or B, it
is given in parentheses.

E Peaks

(Ry) BOMC BO O OR BBGM1
0.1 0 B 0 0 B

0.3 0 B 0 0 B, 0(70
0.4 0 B 0 0 0, B(90
0.7 0 B, 0(60 0 0 0, B(125
0.76 0 B, 0(65 0 0 0, B(130
0.8 0 B, 0(65 0 0 0, B(135
0.9 0 0, B(75 0 0 0, B(145
1.0 0 0, B(80 0 0 0, B(155
1.3 0 0, B(95 0 0 0

1.44 0 0, B(100 0 0 0

2.0 0 0, B(125 0 0 0

2.25 0 0, B(135 0 0 0

3.0 0 0 0 0 0
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TABLE IX

Integral total cross sections (a,2) for inelastic scattering
of electrons from hydrogen atoms for the 1s—2s transition.
Direct amplitude from Born approximation and exchange
amplitude from five different approximations in the prior
formulations. Number in parentheses, if any, is the
multiplicative power of 10.

E Cross sections
(Ry) BOMC BO 0 OR BBGM1
0.76 2.78 3.15 2.50(-1) 5.70(-1) 2.18
0.80 5.33 5 77 5. 17(-1; 1.12 3.94
0.90 6.31 6. 22 7.35(-1 1.44 4. 11
1.00 5.63 5.18 7.85(-1) 1.43 3.32
1.30 3.07 2.55 7.18(-1 1.12 1.57
1.44 2.30 1.89 6. 69(-1 9.87(-1) 1.18
2.00 9.21 —1; 8. 095—1 5.15(-1 6. 59(-1) 5.88(-1
2.25 6.95(-1 6.39(-1) 4.68(-1 5. 74(-1) 4. 99(-1
3.00 4.11(~1 4, 13§-1 3.68(-1 4.18(-1) 3.68(-1
4,00 2.91(-1 3.00(-1) 2.89(-1 3.12(-1) 2.86(-1
6.00 2.00(-1 2.05}-1 2.04(-1 2.11(-1) 2.01(-1
9.00 1.40(-1 1.41(-1) 1.41(-1 1.44(-1) 1.40(-1
20.00 6.66(-2 6.67(-2) 6.68(-2 6. 70(-2) 6.66(-2
25.00 5,38(-2 5.38(-2) 5.39(-2 5.40(-2) b5.38(-2
50.00 2. 74(-2 2.74(-2) 2.74(-2 2. 74(-2) 2.74(-2
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TABLE X

iPeaks in the differential total cross sections for excitation

of the 2s state of the hydrogen atom from the ground state

by electron impact. Given are all peaks (highest first) among
the angles 0(1) 12(2) 24(6) 60(5) 180. Direct amplitude cal-
culated is from Born approximation and exchange amplitude
is from five different approximations. B = 180", If the cross
section is not a monotonic function of the scattering angle, the
position of the minimum is given in parentheses.

N
QO DWNN=RMHEROOO

Do
[$)]

E Peaks

(Ry) BOMC BO 6) OR BBGM1
.76 B 0 0 0 0
.80 B 0 0 0 0
.90 125(0; 0,B 155; 0 0 0, B(165
.00 100(0 0, B(120 0 0 0, B(125
.30 0, 70(B) 0, B(95 0 0 0, B(100
.44 0 0, B(95 0 0 0, B(100)
.00 0 0, B(85 0 0 0, B(95g
.25 0 0, B(85 0 0 0, B(95
.00 0 0, B(85 0 0 0, B(100
.00 0 0, B(85 0 0 0, B(105
.00 0 0, B(85 0 0 0, B(120
.00 0 0, B(85 0 0 0, B(140
.00 0 0, B(85 0 0 0
.00 0 0, B(85 0 0 0
.00 0 0, B(85 0 0 0

W
(=]
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TABLE XI

Differential cross sections (a,2/steridian) at 10° for 1s-2s
excitation of the hydrogen atom by electron scattering. Direct
amplitude is from the Born approximation and exchange
amplitude is from five different approximations in the prior

interaction formulation.

of 10 by which each cross section is to be multiplied.

E

(Ry)

o
S

Do
COOBWNNNA~OOO

Cross sections

Number in parentheses is the power

BOMC

= N OTOTOTNE R WWWWWN

786
S47(-1
“21(-
- 38(-
|31

. 66(-
- 29(-
54 (-
- 29(-
. 505-
125

- 66(-
- 36(-

. 03(-1
.4%4

-1

IND poek jod ek pod ek pmd ek ook e ek

e i i T O N

PEUNR SO IN000 N

BRI OIOITON B NN~

PENBR OO DO N
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TABLE XII

Differential cross sections (a,2/steredian) at 60° for 1s-2s
excitation of the hydrogen atom by electron scattering.
Calculations are by the Born approximation plus five different
methods for exchange. Number in parenthesis is multi-
plicative power of 10.

[\V]
TOOPBWNONRHHOOO

E Cross sections
(Ry) BOMC ‘BO (0] OR BBGM1
76 2. 13§-1 2.64(-1) 2. 10€-2 4.89(-2) 1. 85(-1?
80 3.97(-1 5.07(-1) 4.56(-2 1. 05§-1 3.58(-1
90 4.71(-1 5.57(-1) 6.71(-2 1.47(-1) 3. 79(—1;
00 4.32(-1 4,55(-1) 17.13(-2 1.51(-1) 3.01(-1
30 2.59(-1 1.93(-1) 5.178(-2 1.13(-1) 1.19(-1)
44 2. 00(-1 1. 302-1 4. 92(-2 9.29(-2) 17.90(-2
00 7.41(-2 3.37(-2) 2.41(-2 4.10(-2) 2.27(-2
.25  4.96(-2 2. 085—2 1. 75(-2 2. 88§—2 1.53(-2
00 1.71(-2 6. 59(-3) T.17(-3 1.08(-2) 6.20(-3
00 5.27(-3 2.09(-3) 2.53(-3 3.52(-3) 2.39(-3
00 8.50(-4 3. 74§-4 4, 69(-4 5.97(-4) 5.03(-4
00 1.16(-4 5.67(-5) 1. 095—5 8.40(-5) 8.27(-5
00 1.59(-6 8.98(-7) 1.12(-6 1.22(-6) 1.39(-6
25.00 4. 522-7 2.62(-7) 3.29(-7 3. 52§—7 4.07(-7
50.00 8.19(-9 5.07(-9) 6.47(-9 6.69(-9) 17.82(-9)
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TABLE XIII

Ratio of the electron scattering exchange integral cross

section for the 1s — 2s transition in the hydrogen atom to the total

integral cross section for the same process.

E, (Ry)

0.80
0.81
1.00
1.10
1.21
1.30
1.44
2.00
2.25
3.00
4.00
5.00
0.00
50. 00

Bss?

0.744
0.612

0.546

0. 435

0.178

0. 058

MRP

1.030

0.797
0.706

0.556

0.267

.118
. 064
. 040
. 0022
. 0003

o O O O o

BBGM1

0.

© O O O O ©

597

. 467

.263
. 186
. 061
. 058
. 067
. 059

. 0027
. 0004

0

© O O © O O

(=

0.

a 1s-2s-2p close coupling calculations (Bu 62b,

® Morrison and Rudge (Mo 66a).

BO

.672

. 583

.434
. 366
. 168
. 120
. 059
. 038

. 0024
0004

Bu 63).

BOR

0.

251

0.260

(=]

© © O © O 0O OO © ©

.254

. 236
. 222
. 156
. 133
. 085
. 051
. 034
.0021
. 0003
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Ele(':tron-H2 Elastic Scattering Cross Sections
(Atomic Units)

Polarized Born approximation
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The negative number is the power of ten, if any, by which the number is
to be multiplied.



Fig. 1.

84

Calculated elastic differential cross sections (a.u.) for
electron exchange scattering by the hydrogen atom in the

1s state:

BBGM1: first order method of Bates, Bassel, Gerjuoy,
and Mittleman

BO: Born-Oppenheimer approximation

BOMC: Born-Oppenheimer approximation without the
core term

BS: 1s-2s-2p close coupling calculations (Bu 62b)

BSS: 1s-2s-2p close coupling calculations (Bu 63)

E: 1s close coupling calculations (Jo 60, Te 61, Sm 62)

EA: exchange adiabatic approximation (Te 61)

GAILITIS: Gailitis' correlation method calculation (Ga 65)

G-3S: 1s-2s-3s close coupling calculations (Ge 60)

O.II: 1-state unitarized Ochkur approximation

OR: Ochkur-Rudge approximation

ORB. II: lstate unitarized Ochkur -Rudge approximation

SMF-2S: 1s-2s close coupling calculations (Sm 62)

TL-PO: polarized orbital method (Te 61)

TLS-PO: polarized orbital method (Te 61, S1 64)

(A)-(B): Ei = 1.224 eV

(C):
(D):

. Ei = 1.360eV
Ei =2.177 eV

(E)-(F): Ei =3.431 eV
(G)-(H) Ei =5.442 eV

(I):

Ei = 54.42 eV
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Fig. 2. Calculated differential cross sections (a.u.) for electron

exchange scattering.
(A)-(H): elastic scattering from the 1s state of the hydrogen atom:

BBGM1: first order method of Bates, Bassel, Gerjuoy,
and Mittleman
BO: Born-Oppenheimer approximation
BOMC: Born-Oppenheimer approxiination without the
core term

BS: 1s-2s-2p close coupling calculations (Bu 62b)

BSS: 1s-2s-2p close coupling calculations (Bu 63)

E: 1s close coupling calculations (Jo 60, Te 61, Sm 62)

G-3S: 1s-2s-3s close coupling calculations (Ge 60)

O.II 1x1: 1-state unitarized Ochkur approximation

O.10 2x2: 2-state unitarized Ochkur approximation

OR: Ochkur-Rudge approximation

ORB.II or ORB.II 1x1: 1-state unitarized Ochkur-Rudge
approximation

ORB.II 2 x2: 2-state unitarized Ochkur-Rudge approximation

TL-PO: polarized orbital method (Te 61)

TLS-PO: polarized orbital method (Te 61, Sl 64)

(A)-(B): Ei =9.52 eV
(C)-(F): E =13.60eV
(G)-(H): Ei =19.59eV
(I): excitation of helium from 1 1S state to 2 1S state in the Ochkur

approximation. Impact energy (in eV) is indicated.
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Fig. 3. Calculated differential cross sections (a.u.) for electron

scattering:

(4)-(G):

(H)-() =

BBGM1: first order method of Bates, Bassel, Gerjuoy,
and Mittleman

BO: Born-Oppenheimer approximation

BOMC: Born-Oppenheimer approximation without the
core term

BORB.I: symmetrized Born-Ochkur-Rudge approximation

BTKF: Born-transferred Kang-Foland approximation

BSS: 1s-2s-2p close coupling calculations (Bu 63)

O: prior Ochkur approximation

O.IH: 1-state unitarized prior Ochkur approximation

OR, ORB.I: Ochkur-Rudge approximation

ORB.II: unitarized Ochkur-Rudge approximation

TKF': transferred Kang-Foland approximation

VPS: method of Vainshtein, Presnyakov, and Sobelman

exchange excitation of the 2s state of the hydrogen atom
at the impact energies (in eV) indicated.

exchange (part H and curves labeled E in part I) and total
(curves labeled T) excitation of the 2 1S state of the
helium atom at the impact energies (in eV) indicated.
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Fig. 4. Calculated differential cross sections (a.u.) for electron
exchange elastic scattering from the 1s state of the
hydrogen atom at an impact energy of 30.61 eV. The

methods used are:

BBGM1: first order method of Bates, Bassel, Gerjuoy,
and Mittleman

BO: Born-Oppenheimer approximation

BOMC: Born-Oppenheimer approximation without the
core term

BSS: 1s-2s-2p close coupling calculations (Bu 63)

G-3S: 1s-2s-3s close coupling calculations (Ge 60)

O.II: unitarized Ochkur approximation

OR: Ochkur-Rudge approximation

ORB.II: unitarized Ochkur-Rudge approximation

Fig. 5. Differential cross sections (a02/ sr) for 1s-1s exchange
scattering off the hydrogen atom at Ei = 1.224 eV. The

polarized orbital calculations are from Te 61.
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Fig. 8

Fig. 9.

(a)

(B)-(1)

95

Integral cross sections (a.u.) vs. impact energy for total
scattering of electrons off the ground state of the hydrogen
atom with excitation of the 2s state. The present calculations
shown are the Born, Born-Oppenheimer, and symmetrized
Born-Ochkur -Rudge approximations. The circles are 1s-2s
close coupling calculations without exchange (Sm 60). The
triangles are 1s-2s-2p close coupling calculations including
exchange (Bu 63). Both these calculations are off scale at an
impact energy of 13.6 eV. The squares are calculations in a
modified version of the Vainshtein-Presnyakov-Sobelman
method (Cr 65). The pentagon is from the 6-state close
coupling calculations with exchange (Bu67). The dotted line
is the calculation of Morrison and Rudge (Mo 66a). The
vertical lines cover the range covered by the three "experi-
mental" results (see Tr 69a for a discussion).

Calculated differential cross sections (a.u.) for electron

scattering by the helium atom.

Total (T) and exchange (E) cross sections for excitation of
the 2 1S and 2 1p states (S and P, respectively) at E, =26.5

eV calculated in the BTVPS approximation.

Exchange cross sections according to the approximations
indicated for excitation of the 2 1P state at the energies

indicated.
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Fig. 10.
(A)-(H)
(a)-(C)
(D)

(E)

(F)

(G)

(H)

(1)

98

Calculated differential cross sections (a.u.) for electron

scattering by the helium atom.
Exchange cross sections for excitation of the 3 1P state.

The approximations used and the impact energies are
indicated. The O method DCS is greater than the TVPS

one at small angles.

Ei = 44 eV. The approximations used are indicated. The
O method DCS is not shown because it is too similar to
the OR one to be clearly distinguished. The TVPS method
DCS is multiplied by 0. 1 so it is separated from the OR

one.

i= 55.5 eV. The approximations used are indicated.
The O and TVPS method DCS's are not shown because
they are almost parallel to the OR one and within 10% of

it over the whole angular range.

Ei = 80 eV. The approximations used are indicated. The
O and ORB.I method DCS's are not shown because they
are almost indistinguishable from the OR one on the scale

of this figure.
O approximation. The impact energies (eV) are indicated.

ORB. I approximation. The impact energies (eV) are

indicated.

Total cross sections for excitation of the 2 1S state of
He. The approximations used are indicated. Ei = 125 eV.
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Fig. 11.

(A)-(F):

(G)-():

Fig. 12.

(A)-(F) :
(G)-@) :

100

Calculated exchange differential cross sections (a.u. ) for

excitation of the 2 1S state of helium.

Approximations used and impact energies are indicated.
In D the TVPS method DCS is not shown but for 8 > 40
it is greater than the O one but within 2% of it. In E the
O, OR, and TVPS method DCS's are not shown but lie
everywhere between the OP and VPS ones and within 1% of
the latter. In F the O method DCS is not shown because
it is between the OP and OR and for 6 > 20° it is within
2% of the TVPS one.

(0}

The impact energies (eV) are indicated. The approxi-
mations used are OP in G, OR in H, and TVPS in L.

Calculated differential cross sections (a.u.) for

total scattering of electrons off the ground state of the
helium atom with excitation of an n 1P state. The impact
energies and methods are indicated.
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Fig. 13.

(A)-(C):

(D):

(E)-(F):

(G):

(H)-(1):

Fig. 14.
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Calculated differential cross sections (a.u.) for electron
scattering off the ground state of the helium atom.

Total excitation of 3 1P state. The impact energies and
methods are indicated. The BORB.I curve is less than
7% higher than the BTVPS one at 0°.

Exchange (E) and total (T) excitation of 3 1P state according
to BTVPS approximation. The impact energies (in eV) are
indicated.

Exchange excitation of n 1P state according to OR approxi-
mation. The impact energies (in eV) and n are indicated.

Exchange excitation of the states indicated according to
OR approximation at an impact energy of 26.5 eV.

Exchange excitation of 2 1S state according to OR approxi-
mation. The impact energies (in eV) are indicated.

Calculated differential cross sections (a.u.) for electron

scattering off the helium atom with the transition 1 1S -2 1P.'

(A)-(I), except (F): total scattering. The impact energies and

(F):

methods are indicated.

Exchange (E) and total scattering at an impact energy of
80 eV. The methods are indicated. For the exchange
scattering, the O, OR, ORB.1, VPS, and TVPS cross
sections are all the same or practically the same in this
case. For the total scattering the VPS cross section is
not shown because it is quite similar to the BORB.I and
BTVPS ones in this case. |
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Fig. 15. Calculated differential cross sections (a.u. ) for electron
total scattering off the helium atom with the transition

115 - nlp.

(A): VPS approximation. The impact energies (in eV) and n

are indicated.
(B)-(I): n =3. The impact energies and methods are indicated.

(E): The VPS curve (not shown) is lower than but within 23%
of the BTVPS one.

(G): The VPS and BTVPS curves are too similar to the BORB. I

curve to be shown.

(H): The BTVPS curve (not shown) is within 20% of the VPS one.

Fig. 16. Calculated differential cross sections (a.u.) for electron
total scattering off the ground state of the helium atom
with excitation of the 2 1S state. The impact energies

and methods are indicated.

Fig. 17. Calculated differential cross sections (a.u.) for electron
total scattering off the helium atom with the transition
1 1S -2 1S. The impact energies and methods are indi-
cated. In part G, the VPS curve is not shown because the
VPS, TVPS, BORB.I, and O curves have very similar

shapes and magnitudes over the whole angular range.
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Fig. 18. Integral cross sections for electron scattering excitation
of the 3 1P state of helium as functions of impact energy.
The methods and sets of generalized oscillator strengths
used for the calculations are indicated (see section A. 3).
The results of two experimental investigations are also
shown. The +'s are from St 64 and the x's are from
Mo 69.

Fig. 19. Integral cross sections for electron scattering excitation
of the 3 1P state of helium as functions of impact energy.
The methods and sets of generalized oscillator strengths

used for the calculations are indicated (see section A. 3).

Fig. 20. Integral cross sections for electron scattering excitation
of the 2 1S state of helium as functions of impact energy.
The squares are the experimental results of Richards,
Dugan, and Muschlitz (corrected for cascade by the pro-
cedure of Gabriel and Heddle; Du 67, Ga 60); the triangles
and diamonds are the semi-experimental, semi-theoretical
results of Vriens, Simpson, and Mielczarek (Vr 68). The

curves are calculated using the methods indicated.
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Fig. 21,

Fig. 22,

Fig. 23.
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Integral cross sections for electron scattering excitation
of the 2 1S state of helium as functions of impact energy.
The square is an experimental result of Dugan, Muschlitz,

and Richards (see previous figure caption). The triangles

are 1 18-2 18-2 3S close coupling calculations including ex-

change (Ma 64b); the dotted curve is from 1 18-2 18-238-

2 1P-2 3P close coupling calculations including exchange

(Bu 65). The other curves are for the methods indicated.

Ratio of the total scattering differential cross section for

the 1 1S -2 1S transition in helium to that for the 1 1S -2 1P

‘transition as a function of scattering angle. The squares

with error bars are the experimental results of Rice,
Kuppermann, and Trajmar (Ri 68a) at an impact energy of

34 eV; the dotted curve with error bars represents the
results of Lassettre, Skerbele, Dillon, and Ross (La 68a)

at an impact energy of 48 eV. The solid curves are calcu-
lations by the B or BTKF methods (these methods yield
results which cannot be distinguished on the scale of this
figure). The asterisk is a 46 eV experiment of Doering (Ri 70).

Ratios of the total scattering differential cross sections

for the 1 1S -2 1S transition in helium to those for the

1 1S -2 1P transition as functions of scattering angle for
an impact energy of 81.6 eV. The circles are the experi-
mental results of Trajmar, Rice, and Kuppermann (Ri 70);
the asterisk is the result of Chamberlain, Heideman,

Simpson, and Kuyatt at 80.7 eV (Ch 65); and the curve is

 calculated in the Born approximation.
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Fig. 24.
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Differential cross sections for elastic scattering of
electrons by H2 at an impact energy of 4.42 eV. All these
calculations include electron exchange and the asymmetry
of the molecular potential. The HF calculations are in the
exchange approximation (discussed in subsection II. A. 2.Kk)
and the HF /P calculations are in the polarized exchange
approximation. In addition, these three calculations
include some coupling to excited rotational states. The
present calculations in the Born-Ochkur-Rudge approxi-
mation (labelled BORXP) and the polarized Born-Ochkur-~
Rudge approximation (BOR/P), the calculations of Hara
(H), and the experiments of Ramsauer and Kollath (Ra 32)
are for elastic scattering plus rotational excitation. The
calculations of Henry and Lane (HL) and the experiments
of Ehrhardt and Linder (Eh 68) are for pure elastic
scattering. The experiments are normalized arbitrarily

for this figure.
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Because of the large number of eigenstates associated with
the internal degrees of freedom of even simple molecules, the exact
solution of the close coupled equations (by exact solution we mean
the solution of the truncated equations when enough channel states
are included so that the truncation error is negligible) for molecular
collision processes is not feasible. In fact, except at the lowest
energies, it is not possible to even include all the open channels in
the wave function expansion. This is not a limitation which will be
removed by the next generation of computers, but a fundamental
problem. A second difficulty is that there is at present very little
accurate knowledge of the potential energy surfaces (see Appendix 1)
necessary for solution of the scattering equations. These difficulties
in performing rigorous calculations necessitate our using simplified
models and approximations. One method of approximation which is
useful for calculating cross sections of simple chemical reactions is
the phase space theory. This theory assumes that the probability of
occurrence of a reaction leading to a set of final states can be calcu-
lated directly from a knowledge of only the final states and how much
phase space corresponds to them. The details of the theory can be
filled in in such a way that it is possible to account for the quanti-
zation of the internal energy levels of the reactants and products, for
the correct long range force laws governing the probability of col-
lision, and for the exact conservation of any quantities which are
constants of the motion (such as the total energy and angular mo-
mentum of the collision system). Yet the theory does not require the
solution of the full equations of motion. Of course the theory cannot
be made exact but it gives estimates of the cross sections for
processes for which much more reliable calculations are prohibitively
difficult at this time.
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The phase space theory will be further defined here as a
theory which divides all space into an interaction region and various
reactants’ and products’ channel regions. The dynamics in the
channel regions are treated as rigorously as possible but the rigorous
quantum mechanical treatment of the interaction region is replaced
by the postulate that the probabilities of systems entering and leaving
the interaction region to and from the various channels can be calcu-
lated from the volume of phase space in each channel. This view-
point means that the phase space theory is closely related to Keck's
variational theory (Ke 58, Ke 67), to Wigner's derivative matrix
theory of collisions (Wi 47, Wi 49, La 58, Ni 64, Eu 66, Eu 66a),
and to the compound nucleus theory of nuclear reactions (Bu 36).

The statistical theory of Light, Pechukas, and Nikitin (Pe 65,
Ni 65, Ni 65a) is a particular example of the phase space theory in
which the probability for a system in the interaction region to yield
a specific set of final states is taken to be simply proportional to the
number of final states. In practice, the channel radii (the channel
radius is the distance between subsystems in a channel at which the
channel region is connected to the interaction region) have been taken
to be large enough so that the only scattering which takes place in
the channel region is elastic scattering. The statistical theory is a
phenomenological theory which works best when the collisions are
hard; but even when it is not strictly applicable it answers the
interesting question (Ho 61) of what happens in the limiting case that
all degrees of freedom of the interacting system are coupled in the
most efficient possible way. The statistical theory, when defined
in terms of phase space, is considered here to be the basic raison
d'etre for all the phase space theories, and the nonstatistical phase

space theories are motivated physically by considering what are the
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effects of the system being not quite coupled in the most efficient
possible manner. In the terminology of Pechukas and Light (Pe 65),
the statistical theory is the limiting form of the phase space theory
in which the "'weights'' of all final states are equal. To see in more
detail how the definition in terms of phase space arises from the
statistical assumption we will use the S matrix formalism outlined
in chapter I (this treatment is applicable to both rearrangements and
nonrearrangements provided no 3-body channels are open). The
statistical assumption has two parts (see, for a similar partition,
Fe 55). The first is that the collision is ""sudden' (hard and fast) so
that it randomizes all phase information in the wave function (and
thus also in the S matrix elements) and also causes nonadiabatic
transitions to all quantum states which can be reached without vio-
lating conservation of the energy and angular momentum of the total
system. Part two of the statistical assumption is that the elements
of the S matrix are random except for the constraint that the matrix
remains unitary (to insure conservation of particle flux) and sym-
metric (to insure detailed balancing). Using perturbation theory and
the sudden approximation, it can be shown that in the limit where the
collisions are hard and fast (potential energy of interaction and rela-
tive kinetic energy large compared to energy level separations of the
internal states) the S matrix can indeed be taken as an arbitrary
unitary matrix (see, e.g., Be 63). This is a physical motivation of
the statistical assumption and of the statistical theory of Light,
Pechukas, and Nikitin.

In nuclear physics, a model which assumes what we here
call part 1 is sometimes called a statistical theory although part 2
is replaced by a different criterion for the scattering amplitudes.
We will here call such a model a nonstatistical phase space theory.
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In nuclear physics the term "statistical theory' often implies that
the scattering wave function is expanded in terms of resonance states
and a statistical prescription is used for the distribution of energy
levels and widths of these states.

The assumption that the elements of the scattering matrix
have random phases means that when we consider an average over
a distribution (even a narrow one) of initial conditions or a sum over
a group (even a small one) of final conditions, ‘all the interference
terms (the cross terms in the square of the sum) in eq. (I. 32) vanish.
Then the equation for the differential cross section is the sum of
squared terms and is symmetric about 90° (further details may be
found in Wo 51 and Ha 52). As mentioned already, conservation of

particle flux is expressed by the unitarity of the S matrix

- K 2
Y ) L s | = 1. (1)
o' L' 8 (:(,'L'S', oS

Part 2 of the statistical assumption as stated above means that

K |2 1
(|s o= (2)
«'L'S', oLS av N{E, K
where the average is over all nonzero scattering matrix elements
for total angular momentum K and N(E, K) is the number of such

nonzero matrix elements, i.e.,

I,+L,
NE,K) = ) ) Y o1 (3)
o s=111-12| L
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where a includes the specification of all the subsystem quantum
numbers including their respective internal angular momenta I1 and
12, where the sum over o includes only open channels (at total
system energy E), and where the sum over L includes only partial
waves which satisfy the criterion for coupling of the channel region
to the interaction region. The angular momentum addition triangle
a(J 1J2J3) indicates that the corresponding summation over J 3 is
over all Jg for which IJ1 - J2| <Jg < (J1 +J2) (Ro 57, p. 36).
According to eqs. (I.30) and (I. 31), an S matrix element

SBa represents a flux |Sﬁa‘2 into channel B . Thus in the statistical

theory the flux is taken to be the same for any individual channel,
i.e., for each quantum state. Semiclassically, each nondegenerate
quantum state corresponds to the same amount of phase space (see,
e.g., Da 62, Bl 69). Thus counting quantum states and their de-
generacies is semiclassically equivalent to integrating over phase
space. In this thesis all calculations are fully quantum mechanical
and we apply the counting procedure. At higher energies there are
too many states for this to be practical and approximation procedures
are necessary.

Statistical reaction theories are frequently used in nuclear
physics (see, e.g., We 37, Ko 38, Fr 49). The justification for
their use there is the long life of the compound nucleus (Be 37). In
addition the lack of knowledge of the nuclear forces controlling the
reaction dynamics makes a statistical theory particularly appealing.
The statistical aspects of the dynamics of nuclear reactions are
sometimes augmented by statistical assumptions concerning the
distribution of resonance levels of the compound nucleus and the
density of states of the nuclei involved. In molecular problems we
have more knowledge about the states of the final system. Yet our
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knowledge of the intermediate states of the reaction process is often
very sketchy because they cannot be experimentally observed in a
direct way and the calculation of their properties is an extremely
difficult many-body problem. For this reason statistical assumptions
often prove useful in molecular problems also.

The statistical assumption is the antithesis of rovibrationally
adiabatic theories of reactions. It will fail whenever there is an
appreciable probability that the initial state of the system will spe-
cifically direct the reaction to proceed to one or a small set of final
states.™ F the collision complex lasts long enough the system loses
its memory of the initial state. This is the basis for the derivation
of the statistical theory given by Eu and Ross (Eu 66, Eu 66a) which
requires that the eigenlevels of the compound system have a spacing
D much greater than their average width AE . However, this is not
a good assumption for many molecular complexes; in fact, the levels
probably overlap (Ro 33, Ri 33, Ri 61, Mi 66). Another justification
of the statistical theory, not requiring a long-lived complex, is based
on the hardness of the collisions as discussed above (and in Li 64, Tr
69, and Li 68). This follows from the sudden approximation, which
requires that the incident relative translational energy Ei be much
greater than D. In the limit that the levels are effectively degenerate
and the interaction is strong, we obtain the statistical theory. In this
limit we consider that the interaction V [see eq. (I.15)]projects the

initial state vector | i ) uniformly over the space of all state vectors

* Similarly, if there is a barrier on the potential surface
between the reactants and products, there is a strong possibility the
system will be forced to pass through a col on the surface, i.e.,
that the reaction path will be guided through a restricted region of
phase space. This lessens the probability that the statistical
assumption is a good one.
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| £ ) which are compatible with the conservation laws. Since the

level density (1/D) is greater at high energies, we expect the statisti-
cal theory to work better at higher energies -~ i.e., in the '"con-
tinuum region" (cf. Bl 52, Section VIII. 7. B, p. 386). One consequence
is that at thermal energies the statistical theory is expected to work
better for exothermic reactions than for thermoneutral ones because
the energy available in the final state for translation and excitation of
internal modes is higher for the former class of reactions than for

the latter.

Some interesting examples of theoretical calculations in
adiabatic-like theories (the reaction proceeds preferentially to one
final state) are given in Ch 66, Ma 67, and Bo 68. Real collisions
are neither infinitely long-lived nor infinitely hard. These are among
the reasons why the statistical assumption is not completely correct.
Serauskas and Schlag have proposed corrections to the theory to
account for these nonstatistical limitations (Se 66a, Se 66b). Their
first correction accounts for the fact that some collisions do not last
long enough to form an intermediate state whose internal modes are
strongly enough coupled to exchange energy freely. Their second
correction comes from the fact that at low velocities the collisions
are too soft to effectively broaden the energy levels. In this case the
levels do not overlap and energy transfer is less likely. The physics
behind these corrections is similar to that involved in the two-state
theory of resonant and near-resonant charge transfer. At very low
energies there is no probability of charge transfer because the
perturbation of the initial state varies too slowly with time. At high
energies there is a 50:50 chance of charge transfer because the width
of any state is large compared to the separation of interfering states
(Li 63). Lichten has a criterion "Q" for the occurrence of this
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random process limit which is essentially that the perturbationenergy
(transition energy) in the strongly coupled region should be much
larger than the energy separation of the final states. The effective
perturbation energy in the charge transfer problem is larger athigher
energies because the system follows the diabatic potential surface

(Li 67).

In chemical collisions the long range interaction energy is
usually attractive, and we will consider only such cases. The combi-
nation of the attractive potential and the repulsive effective potential
due to the centrifugal force produces a barrier (the ''centrifugal
barrier') in the potential energy at large distances Ri* of separation
of the subsystems. * We assume for each orbital angular momentum
L; # of relative motion that systems colliding with enough translation-
al energy Ei to pass classically over the barrier do so and enter the
interaction region of configuration space. Systems in the interaction
region are called strongly coupled complexes. Sometimes the term
"complex'' is used elsewhere to mean a system where all the inter-
particle distances are small (about as small as equilibrium inter-
nuclear distances in the separated subsystems) for a time long enough
for many vibrations. In the phase space theory, however, we use the
term to designate the state of the colliding system during the time
when all the particles can interact strongly, but we do not necessarily
imply how close the particles are or how long this strong interaction
lasts. The configuration of the system at the subsystem separation

*In practice we always calculated an R.* as independent of
subsystem orientation because we used only the' spherically sym-
metric component of the long range potential. Some evidence that
this is not a bad approximation is given in Gr 66, p. 147.
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Ri* corresponding to the centrifugal barrier in the initial channel i
is the transition state for the association stage of the reaction; there

is similarly a transition state inthe final channel for the dissociation

of the complex. These transition states can be discussed in the
language of the theory of unimolecular reactions. Consider the
collisional process A + BC - ABCJr (the transition state for associ-
ation to form a complex). If BC can rotate freely in the transition
state (this is the case if Ri* is large enough) it is a loose transition
state. If the BC rotation has turned into an ABCf libration then
ABC* is a tight transition state. When the transition state for
association is at the centrifugal barrier, it seems generally to be

a loose one; however, a transition state which is determined by the
shape of the potential energy surface in a region where bonds are
being both made and broken is a tight one (Ma 51, We 62, Ma 65).

In all the phase space calculations which have been performed so

far the transition state has been treated as a loose one. The collision
is considered to be adiabatic up to this transition state so that all
vibrational and angular momentum quantum numbers are unchanged.
In calculating whether the system can pass over the centrifugal
barrier we assume that all the rotational and vibrational energies

are unchanged from what they were in the free subsystems. To
account for changes in these energy levels or for effects of rigid
transition states requires knowledge of the potential energy surfaces.
In a rigid transition state the rotations have become bending vibrations
and if the collision has been adiabatic during the course of the
collision preceding the transition state some energy has been re-
moved from relative translation and put into this rotational-librational
motion. This lowers the probability of formation of the complex and

is a "'steric factor'. Free and restricted rotation in transition states
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for association to a complex have been discussed in a general way by
Marcus (Ma 66, section VII, subsections C and D). I we consider a
reaction coordinate s which passes from - « to +« as the reaction
occurs, then the statistical phase space theory assumes the collision
is adiabatic up to s = a (where Ri = Ri*), statistical from s =a to

s =b (where Rf = Rf*), and adiabatic from S =b to s = +«, We have
used notation where b > a . If a were equal to b, the reaction would
be treated as wholly adiabatic. This is the case in the usual transition
state theory of reactions with potential energy barriers and tight
transition states (see Ma 67 and references therein). In case such a
barrier and tight transition states are important we cannot use the
phase space theory with a and b at the centrifugal barriers in the
entrance and exit channels. However, for some reactions, especially
‘many ion-molecule reactions, such a barrier is not important and the
statistical phase space theory provides a useful means of calculation.
For complicated reactions we might consider some of the modes not
to be "active" (i.e., statistical) in the interaction region. Such modes
would be treated as adiabatic while the others were treated statisti-
cally. As a simple example, for A + BCD - AB + CD we could treat
the CD vibration as adiabatic. When we know more about how strongly
various modes of internal motion are coupled during collisions, this
mixed-mode calculational method might provide a means of calcu-
lating approximate cross sections for polyatomic systems. At present
we will consider only triatomic systems. Wolf and Haller (Wo 69)
have considered the reaction H2+ + H2 - H3+ + H using phase space
theory. They treated all the modes as statistical in the interaction

region.
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A. Statistical Theory

1. General Formalism

The quantum mechanical statistical theory for rearrange-
ment collisions in triatomic systems has been derived several times
(Pe 65, Ni 65, Ni 65a, Pe 66, Pe 66a, Eu 66, Eu 66a, Li 68). The
spin and electronic orbital angular momentum of the atom and the
molecule have always been neglected since they are small compared
to the rotational angular momentum and the orbital angular momentum
of the relative motion of the atom and the molecule. The (generalized)
result for the reaction cross section for reactants in state i to pro-

duce products in state f is
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where g?L is the state degeneracy for channel f which is due to
electronic and nuclear spin and electronic orbital angular momentum;
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(i, f) is a transmission coefficient to be discussed below; CL is the
f

"sticking probability' (Be 37; Mo 65, chapter XV, § 4), i.e., the
probability that a particle incident in channel f with orbital angular
momentum of relative motion L fh will enter the interaction region;
i and f are complete sets of quantum numbers [including the chemical
identity - electronic quantum numbers I and F, the vibrational
quantum numbers n, and n (in this thesis the lowest vibrational
state is numbered 0), and the rotational quantum numbers Mi and
Mf J; and My is the reduced mass for relative motion in the arrange-
ment channel F. We must take «(i,f) = «(f,i) so that the cross
sections predicted by (4) and (5) satisfy the principle of detailed
balance”

50 Q= &P Y ®)
(where 8¢ and p, are the total degeneracy and momentum of relative
motion, respectively) at constant total energy E and total angular
momentum K. However, detailed balance is more manifest in eq.
(2) than in eq. (1). The above formulas reduce to the usual statistical

theory if

wi,f) = 1 (9)

and

*What is here called the principle of detailed balance is often
called the principle of microscopic reversibility or the reciprocity
theorem.
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= (10)

where Lf max is determined by the requirement that the system has
enough relative translational energy E £ to pass over the centrifugal

barrier and

W, =1 (11)

in the absence of corrections for reflection and/or steric effects.
The statistical theory is valid for completely strong coupling as
discussed earlier.
In actual calculations NTOT(K) is a large number. E.g., in
some calculations on H + DBr, the maximum NTOT(K) for the case
Ei = 0,012 eV, Mi =3, n, = 0 was 842 and the maximum N (K) for
the case Ei =0.063 eV, Mi =3, n, = 0 was 1192,

TOT

2. Specific Applications

Many calculations have been performed using this
formalism and its classical mechanics counterpart (a summary of the
work done up to the end of 1967 is given in Li 68). Further discussion
of the statistical theory, including techniques of calculation, is given
in the article "Application of the Statistical Phase-Space Theory to
Reactions of Atomic Hydrogen with Deuterium Halides' which has
already been published (Tr 69).

In that article we consider the H + DBr, H + DI, and
H + HI reactions as examples. We also include some calculations on
H + DCI (for which the theory is inapplicable because there is an
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important potential energy barrier) to also see what effects are pre-
dicted by the statistical theory in a case where it should not be applied.
The H + DBr reaction might involve a small potential energy barrier
(of the order of magnitude of 1 kcal/mole) and therefore the results
for this reaction at low energy might not be strictly comparable with
experiment. The iodide reactions do not seem to involve a barrier
(Su62) and the treatment may be more appropriate for them. The
H + DX(X = halogen) reactions are interesting test cases because of
the competition between the endothermic rearrangement channel
(HX + D) and the exothermic one (HD +X). In the second rearrange-
ment channel the halogen atom can be produced in an electronically
excited state (X*), Tables I, II, and IIIl summarize the predicted cross
sections for reactions from a specific initial rotational state (with
quantum number Mi) leading to products in their ground electronic
state and Tables IV and V summarize the predicted cross sections for
the two rearrangement channels for well-defined rotational tempera ~
tures. The cross section for the reaction H + DBr -~ HD + Br, shown
in Table IV, is predicted to be decreasing exponentially for Ei < 0.1
eV but more slowly than that at higher energies. These cross sections
(and others not included in these tables ) can be used to calculate the
reaction rate constants given in Table VI.

White, Kuppermann, Davis, and Betts have devised experi-
mental methods for determining the fraction of H + DX reactions
which lead to abstraction (HD) instead of exchange (HX). Their
methods consist in photolyzing DX (containing a small amount of HX
impurity) in the presence of excess helium, with monochromatic light

of variable wavelength. The atoms produced react by the processes
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H+DX-HX +D
H+DX-HD +X
D+DX—*D2 +X
X +X —vX2

Since the ratio a of extinction functions of DX and HX is a very strong
function of wavelength for the conditions used, a measurement of the
[HD] / [DZJ product ratio can be made as a function of a to determine
the abstraction fraction. An extrapolation to infinite rare gas fraction
can be made to insure that only thermalized atoms contribute. Persky
and Kuppermann have performed further similar experiments. The
statistical theory is in fairly good agreement with these experiments
(Wh66, Da 69, Pe 69a) for the ratio of reaction rates into the two
rearrangement channels (see Table VII) and for the energy dependence
of the ratio. The theory, however, predicts that 10% of the I atoms
produced in the H + HI reaction are in the electronically excited 2P1 /2
state compared to an upper bound on this quantity of 2 + 1.5% obtained
from different experiments (Ca 68).

In the article we aIso presented the predictions of the theory
for the energy distributions in the vibrational and rotational modes of
the pi'oducts. Some more examples of these product distributions for
the H + DBr reaction are given in Tables VI, IX, X, XI, and XII and
Figs. 1 and 2. Table VIII illustrates how the probability of production
of vibrationally excited products depends on the initial translational
and rotational energy and Tables IX and X show how this probability
and some ratios of cross sections for producing different molecules
and specific electronic states depend on reactant vibrational energy.
Tables XI and XII give reaction cross sections and rate constants for
producing vibrationally unexcited and excited molecules for reactions
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from the ground vibrational state. They also illustrate the competi-~
tion between channels and electronic states. Figs. 1 and 2 show
typical patterns for the rotational distribution of each product, inclu-
ding the chemically nonreactive one.

As a test of the accuracy of the computer program we checked
numerically the detailed balance relation (8) by calculating separately
the cross sections for forward and reverse reactions. Some examples
are given in Table XIII. They show that relation (8) is adequately
satisfied.

The statistical theory has also been applied to the reaction
K + HCl1 - KC1 + H. This reaction is of particular interest because it
has been studied in molecular beams* by Greene, Moursund, Ross,
and Ackerman (Ac 64, Mo 64, Gr 66) and Odiorne and Brooks (Od 69).
By observing the loss of intensity of large angle nonreactive scattering
and making a semiclassical analysis, similar to the optical model,
the first group of workers was able to determine the probability of
reaction P as a function of the initial impact parameter b (Gr 66).
Their results are shown in Figs. 3-5. Using the data given in Table
XIV and a slightly modified version of the computer program described
previously (Tr 69), we calculated the reaction cross section and the
probability of reaction as a function of impact parameter for six inci-
dent energies Ei' The calculated probability of reaction as a function
of impact parameter is given in Figs. 3-6 and the calculated cross
sections are given in Fig. 7 and Table XV, Table XV also includes
the results for the rotationally inelastic cross section (without chemi-

cal reaction) and for the reaction cross sections Qv' into different

* The author is grateful to Prof. E. F. Greene, Dr. A. L.
Moursund, and Prof. J. Ross for discussions of this work.
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vibrational states ng = v' of the product KCl. Greene et al. also

obtained the integral reaction cross section by the relation
Q(KC1) = 2m j Pbdb

These results are compared to the theoretical results in Fig. 7.
Greene et al. could not make useful measurements directly on the
scattered KC1 because of problems with their detector (Ac 64).
Odiorne and Brooks have recently made such measurements (Od 69).
One interesting feature of the comparison of the theoretical and
experimental P vs. b curves is the good agreement in shape. Espe-
cially at the highest energy considered (Ei = 4.5 kcal/mole), both
theory and experiment show a rapid drop of P from about 0.9to 0 in a
small range of b. The systematic difference in the maximum impact
parameter for which reaction can occur could be caused by any of the
assumptions in the theory or by the experimental errors. For example,
the absissa for any experimental point is directly proportional to
"rm" (see Gr 66, the experimental value is 3. 311). Two parts of the
data for the theoretical calculation which strongly affect the maximum
impact parameter for which reaction can occur are uncertain. These
are the endothermicity and the van der Waal's constant for potential
energy in the final state. The endothermicity for the present calcu-
lation was taken as Ethr = 0. 7749 kcal/mole but this could be in error
by as much as 1.1 kcal/mole. The endothermicity and the potential
energy in the final state are very important for this reaction since the
possibility of reaction is limited by the ability of the system to pass
over the centrifugal barrier in the final state. (This is to be contras-
ted to the H + DX cases where reaction was limited by the centrifugal
barrier in the initial state. This difference between the systems is

due to the differences in the heat of reaction and in the ratio of
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reduced masses for relative motion in the initial and final states.). It
is interesting that the experiment and the statistical theory agree best
for P vs. b at the largest initial energy considered (see Fig. 5). At
this energy the effect of any error in E thr °0 the calculated reaction
properties is minimized. The systematic error in the maximum
impact parameter for which reaction can occur is the reason for the
discrepancy between the theoretical results and the results of Greene
et al. for the integral cross sections in Fig. 7.

The break in the experimental P vs. b curves was interpreted

by Greene et al. as being due to the opening of a new vibrational
excitation channel in the final state. This break does not occur in the
theoretical curve although the cross sections for vibrationally excited
reaction products (see Table XV) indicate that vibrational excitation of
the reaction product is predicted to occur to a noticeable extent.

The statistical theory predicts a large cross section Qrot for
the change of rotational state of unreacted HCl(see Table XV). The
assumptions in the statistical phase space theory as discussed above
are expected to be more valid for rearrangements than for inelastic
nonrearrangemeﬁts. One assumption which can be particularly bad
for nonrearrangements is eq. (10). Nevertheless the statistical theory
prediction of large rotational excitation is interesting. Since the sta-
tistical theory sometimes predicts that some systems will have a
small ratio of rotational excitation to chemical reaction, Table XV
shows that rotational excitation is especially favored by the kinematics

in this case when compared to the endothermic chemical reaction.
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B. Nonstatistical Theories

1. Theory of Nonstatistical Corrections

If the full statistical assumption is not made, eqgs. (4) -~ (7)
above provide a formally valid approximation if the constraints

< 1 (12)

x(i, f)< 1 (13)

are observed. These constraints insure that the conservation of par-
ticle flux theorems (Mo 65, Chapter XII, § 1) are satisfied; i.e., the
conditions (12) - (13) are necessary to prevent the probability of reaction
from exceeding the maximum possible probability of collision.

Part 2 of the statistical assumption is sometimes the
weaker part of the statistical phase space theory. The statistical
theory of Light, Pechukas, and Nikitin has some formal advantages
and also the advantage that it is actually correct in a limit indicated by
the sudden approximation derivation (Be 63, Tr 69). However, by
changing equations (9) - (11) we can obtain nonstatistical theories which
may be more accurate in some practical cases.*

Various methods of assigning values to W, (leaving the
rest of the statistical theory unchanged) lead to one class of

*The statistical theory often predicts too much excitation
in the products of chemical reaction. A similar result was found in
nuclear physics and Wigner conjectured that perhaps the probability
is constant per unit energy interval instead of per unit state (Wi 55).
This is an example of a nonstatistical phase space theory as defined
here.
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nonstatistical theories.* The assignment (11) gives the statistical
theory of Light, Pechukas, and Nikitin. This choice is implicit in the
transition state theory of Wigner and Eyring. For example, the
assumption of a loose transition state located at the position of the
centrifugal barrier results in a transition state theory rate for the
association which is equal to the rate calculated for it by collision
theory using (4), (6), (10), and (11) (Jo 62, Jo 66a). This choice is
also implicit in the phase spaée theory of Keck (Ke 67, Li 68).
Another possibility is used by Fermi (Fe 50) and Eu and Ross (Eu 66a);

they let W, depend on the asymptotic velocity in channel f, e.g.,

A

__f 4
Wf__v; CO (1)

where v is the highest possible velocity in any possible exit channel
at energy E and total angular momentum K#, and C0 = Co (E,K) is a
constant less than or equal to 1. Serauskas and Schlag (Se 66a, Se 66b)
have suggested some nonstatistical modifications of the statistical
theory formulas for the case of intermolecular vibrational energy trans-
fer in nonrotating systems. A straightforward attempt to generalize

their results to the case oftriatomic rearrangements considered here

leads to
el Li max
2 g MSS
_ T f n_(f,K)
Qs =30 E. @M 1) ) Z( (2K +1) =5 (15)
S R A Nror (K)
i MML:K)

*
The author is grateful to Dr. F. H. Mies and to Prof.
E. F. Greene for discussions of the ideas in this paragraph.
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where MSS stands for '"'modified Serauskas-Schlag",

L

f max -y
MSS g el fi -
n (f, K) = 24 gF (1 -€ )H( lAEW.c.m. l h/Tfi) (16)
f
A(MfKLf)
in terms of the Heavisidé function
| 1 x>0
H(x) = 1/2 x=0 |, (17)
0 x <90

g;f' is the electronic state degeneracy of state F, L is the collision
time, v is a characteristic frequency of vibrational energy transfer,
and AEW‘ c.m. is some measure of hard-to-transfer energy (w.c.m.
stands for "weakly coupled modes') that must be transferred to effect
the transition i - f. The factor in parentheses on the right hand side
of (16) is used in the theory to decrease the reaction probability at
high velocity because high-velocity collisions are over too rapidly.
The next factor decreases the calculated reaction probability at low
velocity because low-velocity collisions are too soft. Equations (15)and
(16) follow the Serauskas-Schlag renormalization but do not satisfy

detailed balance even if T Tif Serauskas and Schlag assumed
T = 2'ri # Tif (18)

where ™ is the half-collision time (time for only either the incoming

part of the trajectory or the outgoing part) for a collision in channel i.
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Calculations based on (15) - (16) have led us to believe
that the Heaviside function used by Serauskas and Schlag is too steep
a criterion for the softness-of-collisions corrections and leads to
unrealistic results when applied in this way to systems with low

vibrational quantum numbers.

2. Generalized Nonstatistical Theory

To obtain a more satisfactory phase space theory of
rearrangements incorporating these nonstatistical corrections we
take the softness correction to be of the form of an energy denomi-
nator. Such energy denominators appear naturally when collision
processes are treated from the point of view of perturbation theory
or resonance theory (see, e.g., Eu 66, Eu 66a, Le 66, Li 63, Li 67,
Mi 66, Mo 65, Chapter XV, $ 4, Ro 67, Chapter XII, §6, Se 55,
Chapter VII, §29). Their appearance is intimately connected with
the uncertainty principle and with energy level broadening and they
provide a realistic way to incorporate this correction into the model.

The basic equation of this new theory becomes

2 N
mh 1 ' TOT
Q, - eaz (2K +1)

2k (2m, +1)g] & (DE )2

(K)n(@i, K)n(f, K)

y  (19)

where n(i, K) and NTOT(K) are again given by eqs. (6) and (7) but

_ (20)
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As in the statistical theory, Lf max

that the system have enough translational energy to surmount the

is determined by the requirement

centrifugal barrier in channel f. In the absence of corrections for
other potential energy barriers in the f channel, Wf is given by eq.
(11). To ensure detailed balance we take

T = T T (21)

fi f
where T and T, are given by the definition following eq. (18).

Finally the correction previously included by the Heaviside function
in eq. (16) is now included by taking

_ w.Cc.m.
DE = W NSUP(K) (22)
where
L
f max
el
f L -

£
MMKL)

The energy denominator correction DE has the property that the

i - f transition probability is decreased if the collision is too slow
or the energy change in the weakly coupled modes is too large. The
physical justification of this term from the theories of nonadiabatic
processes* that has been given by Serauskas and Schlag (Se 66a) and

* Some of these theories have been reviewed in Ma 52, Chapter
VII, § 10 and Chapter VI, § 6.1, Ni 67, and He 68a.
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reviewed above leads to the parameter d having a value of the order
of magnitude of 1. For example, in the slow collision time limit

(T - =) for which this DE correction is most important, making the
correction using DE with d = 1 decreases the cross section for a
given process by a factor of 1/2 for the same value of AEw.c. m.
Tt /h that making the correction with the Heaviside function gives
a factor of 1/2 [see eq. (17)]. We can somewhat arbitrarily

consider

d=1 (24)

to be the nonempirical value for the new theory. If the value can ever
later be adjusted to give better agreement of the theory with a parti-
cular reaction, that should be considered an empirical adjustment.
A better, less arbitrary way to establish a nonempirical value for
d is to adjust it to make the calculations agree as much as possible
with the calculations performed using the modified Serauskas-Schlag
procedure described earlier (note that the new nonstatistical theory
is not a special case of the modified Serauskas-Schlag theory and
also that the MSS theory is not a special case of the new nonstatis-
tical theory.) Below we will consider how d may be used to give a
range of theories with more or less statistical behavior.

It is interesting to note the formal similarity of eq. (19)

to Levine's eq. (30) of Le 66, especially if we take

[€ay | Ty | 1) 12 = n(, K) (25)

where the left hand side uses the notation of Le 66. Levine's equation,
however, is derived from a different point of view for a different

purpose and has a different interpretation.



145

The energy denominator correction means the new theory
has the following interpretation. For very slow collisions even inti-
mate encounters retain a certain amount of wave function phase
coherency leading to a special type of nonstatistical breakup of the
complex. This special breakup is predominantly elastic scattering
but includes contributions from other processes that have small
AEW. . m.’ i.e., processes that do not require large transfers of
energy between weakly coupled modes.

The nonstatistical theory in the above form is obviously
not applicable to reactions in which there are appreciable effects due
to electronic potential energy barriers (above and beyond the centri-
fugal and endothermicity barriers). However, the statistical theory
has three faults even when applied to reactions without these extra
barriers: (i) the absolute values of the cross sections are generally
too large; (ii) the theory cannot ever predict an inverted vibrational
population in the final state (Li 68); (iii. ) the reaction cross section
does not fall to zero properly at high energies. Fault(i.) is probably
due to the sticking probability being taken as 1 instead of less than 1
and possibly does not have a large effect on the ratios of cross sec-
tions for competitive channels of rearranged products. The new
sticking probabilities [eq.(20)] are less than 1 and are thus more
realistic. Fault (ii. ) is a basic failing of the statistical approach. It
is possible for the new theory to predict inverted vibrational popu-
lations but such a prediction is not probable for many reactions.
Fault (iii. ) occurs because at high energy the total collision cross
section equals (Li 68, Tr 69) the geometrical cross section and strong
coupling is still fully allowed for these hard collisions. In the new
theory the cross section is reduced at high energy because NSUP
becomes larger than N TOT 25 the energy increases and because of
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the factor in eq. (20) which tends to zero as E - = (and thus T and
T 0) since there is not enough time for energy transfer or particle
transfer. This correctly mimics the physical reason why the experi-
mental cross section tends toward zero at high energies.

The new theory is not an attempt to provide a fit to every
experiment. If v is fixed by some physical argument concerning the
speed of molecular motions in the complex, then the theory provides
a framework far a priori calculations of reaction processes which
(hopefully) will be accurate and useful fa some classes of reactions.

The nonstatistical theory can no longer be given the average
S matrix interpretation (Le 68a) and we can no longer define a cross
section for formation of a strongly complex or a partially coupled
complex. Yet because the theory satisfies the constraints of detailed
balance and conservation of particle flux we can define an S matrix
(where any S matrix element has no simple relation to the average
S matrix element or the average squared S matrix element). Since
the theory does not require an interpretation in terms of a complex or
in terms of equal accessability of all phase space, it does not imply a
symmetric angular distribution in the center-of-mass coordinate
system and can be applied to a more general class of compounds.
Without additional hypotheses, we cannot calculate angular distribution
from the present theory and thus angular distributions cannot be used
to test it.

The energy denominator correction in the new nonstatistical
theory means that transitions requiring little energy transfer are
favored over less adiabatic ones. Thus the theory is part way between
adiabatic and statistical. In this respect it is similar to the theory of
"statistical adiabaticity' used by Marcus (Ma 68). In both theories the
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transitions are restricted to states which are within a small range
centered on the "adiabatic' level but are otherwise statistical in some
sense. In Marcus' theory the adiabatic levels are defined correctly
in terms of their quantum numbers and numerical calculations on real
systems are difficult. In the present theory the ""adiabatic' levels
are defined only crudely in terms of AEW ) but numerical calcu-

.c.m
lations can easily be carried out. We calculate AEW from the

energy levels of the separated subsystems. It would l;:e IIl)ll:eferable to
use the value which is effective in the interaction region in which the
transition occurs.* This problem has long been recognized in the
theory of inelastic collisions involving the '""Massey adiabatic criterion"
(see, e.g., Ma 49, Ma 52, p. 441, Ra 62, Ha 62, Pa 64, Wa 67,
Bo 68). We hope that the error in the cross sections due to this inade-
quacy of the model is small in this case because so many levels are
important and the errors can cancel. Anyway, if we knew the details
of the energy separations of the states in the interaction region we
could probably do a better calculation than the phase space theory.
The spirit of the phase space theory calculations is to see what infor-
mation we can obtain without using detailed knowledge about the system
in the strong interaction region. The nonstatistical theory requires
only simple, approximate average properties of the system in the
interaction region: the average frequency of intermolecular energy
transfer (v) and the approximate collision duration in any channél
(7 i ).

A precise definition cannot be given for the characteristic
frequency v. A similar quantity appears in Slater's theory of

*The author is grateful to Dr. R. D. Levine for a discussion
of this point. ‘
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unimolecular reactions. In the case of unimolecular reactions it can
be shown that v should be the root mean square of the normal fre-
quencies of the complex, weighted with amplitude factors as they
affect the erucial coordinate for reaction (S1 59). Thus a typical
value for v might be 4 x 1013 sec '1. A more sophisticated non-
statistical calculation might make v a function of i,f, and K. We will
constrain v to be a constant.

In the limit that T 0 and v - = fast enough so that
VT ™ @, the nonstatistical theory reduces to the statistical theory.
This limit occurs for fast collisions for which the energy transfer in
the complex is even faster. We can also obtain the statistical theory
at lower velocities by setting the parameters v = » and d = 0. Setting
v equal to any constant gives a whole series of theories depending
upon the value of d. For v = « (which means we neglect the correction
for the collision being over too fast for complete energy sharing
between the subsystems) we obtain an interesting series ranging from
d =0 for the old statistical theory to d = = for a very adiabatic theory.
K v is given a value representing the characteristic frequency of
energy transfer in the complex, we obtain a set of theories which
includes for d = 1 the new nonstatistical theory. Recently Bunker and
Chang (Bu 69) have also proposed a series of models in which the
degree of adiabaticity or statisticality assumed in the treatment may
be parametrically varied. In Bunker and Chang's theory, like the
present nonstatistical theory, the reaction is adiabatic in regions of
the reaction coordinate s = -~ to s=a and s = b to s = « and
semistatistical from s = a to s = b. In their theory a and b are not
necessarily located at the position of the centrifugal barrier. Their
treatment does not satisfy detailed balance. Also unlike the present

set of theories their models do not reduce to the statistical theory of
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Light, Pechukas, and Nikitin in any limit. Both the present set of
nonstatistical models and Bunker and Chang's set have the disadvan-
tage that although they span the range of behavior between adiabatic
and statistical (or semistatistical) they cannot correctly handle
reactions which are not either and are not in the range between these
limits. For example, some reactions might proceed preferentially
into one or a small bundle of states not centered around the adiabatic
one. For example, at very high energy it is sometimes likely that
the system will follow one diabatic path.

3. Calculations

Some sample calculations were performed on the H + DBr
system using both the modified Serauskas-Schlag theory (MSS) and the
new nonstatistical theory. These calculations show what kind of
changes can be caused by nonstatistical corrections.

The calculations required estimates of the collision times
Tee For the MSS calculations these were calculated with classical
mechanics and a Lennard-Jones 6-12 potential (no new parameters are
required in this case since this potential is uniquely determined by the
Van der Waals constant CF and the hard sphere collision cross sec-
tion Op which already entered the theory). This, of course, is just
a model used to calculate characteristic times for each channel and
is not meant to imply anything about the true potential. The collision
times were calculated by numerical integration and fitted to poly-
nomials. The polynomials were used in the MSS program. In view
of the crudity of the model we no longer feel such a complicated treat-
ment is justified and in the new generalized nonstatistical theory

calculations we used (Be 60)
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Ry - op)/v
T, = max (26)
(0.01 a 0)/ Ve

where R}‘ is the position of the centrif ugal barrier and v £ is the
velocity of relative motion. Another possibility for computing the
collision time would be to assume the complex is long-lived and to
compute T from the internal motion of the complex (see, e.g.,
Bu 52). We did not attempt this approach.
As an example of the first approach to calculating the colli~
sion times, the T f in the HBr + D channel for H + DBi' with
= 0.04 eV, n, = 0, and M, = 6 - 28 were in the range
1.5 x 10° 4
An examination of the normal coordinate frequencies of a

sec to 1 x 10'1 sec with the mean around 2 x 10'13sec.

semiempirical potential energy surface for HDBr (Pa 69) led us to
13 -1

believe a reasonable value for v wouldbe 3.6 x 10" "sec ~. With
the range of T £ given in the previous paragraph, this would give a
range of vT £ = 0.5 - 18. We also tried various other values to see
what would be their effect.

For AE we want a measure of the energy which is

wW.C.m.
hard to transfer. We used

fi _ el el
w.c.m. Evib,f - Evib,i *Ep - E (27)

AE
where the terms on the right hand side are the vibrational energies of
the product and reactant and the electronic excitation energies of the
product and reactant, respectively. Thus AEW is taken to be

c.m.
the difference of the vibronic energies of the initial and final states.
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Some typical results of the modified Serauskas-Schlag calcu-
lations are given in TablesXVI and XVII for H + DBr reactions with
Ei = 0.04 - 0.153 eV. These calculations predicted that there was no
vibrational excitation of the reactant or product molecules and that
there was no electronic excitation. We expect that this is too drastic
a reduction of calculated vibrational excitation and that changing from
the Heaviside function correction to the energy denominator correction
will give more reasonable results. The calculations also show that
v has only a small effect on the calculated results. This is because
v Tij is usually large at these energies. The correction for a finite
frequency of energy flow in the complex would be more important at
higher energies. |

Some typical results of the new nonstatistical theory are
shown in Table XVIII. We note that the characteristic frequency v
has more effect on the cross sections than on their ratios. Table
XVl also shows some statistical calculations for comparison (for
these, d = 0 and v = «), We note that the amount of excitation in
the reaction products depends on both corrections in a complicated
manner but that the nonempirical version (d = 1) of the nonstatistical
theory predicts very little excitation. Thus the corrections improve
agreement of experiment and theory for excitation of halogen atoms
in these reactions. Also the corrections lower the abstraction
fraction which is the correct direction for improving the statistical
theory to agree with experiment. An effect which is more significant
and meaningful, however, is the decrease in the magnitudes of the
cross sections. The statistical theory often predicts cross sections
(or rate constants) which are too large by a factor of 3 or 4. The
nonstatistical corrections, at least for H + DBr, are about of this

magnitude.
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Clearly more work is required on the nonstatistical
corrections to see if they can be used to improve the statistical

theory in general or to see under what conditions they are useful.
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OCOO0OOCOO0OO0

153

TABLE 1

Reaction cross sections (a 02) for H + DC1 reaction calculated by

statistical theory for the ground vibrational state of DCl

. 012
. 040
. 063
. 087
. 153
. 250
. 370
.570

. 012
. 040
. 063
. 087
. 153
. 250

. 370

.570

HC1 +D

2 6 10
Product:

0.0 0.0 30.8
0.0 6.4 26.4
4.8 15.3 28.6
14.4 21.6 27.6
21.7 23.6 25.2
22.17 23.6 23.7
20.1 20.0 20.5
17.7 17.9 18.2

14

52.
36.
35.
31.
217.
24.
21.
18.

DU WN OO =I=J

19

63.
41.
38.
33.
27.
25.
22.
19.

Product: HD + CIl (atom unexcited)

129.5 88.
65.1 55.
49.8 46.
38.3 36.
24.0 23.
18.8 18.
13.8 14.
11.4 11.

Db OJWN oM

66.
45.
36.
32.
23.
18.
14,
12.

N WOW O -

56.
36.
32.
30.
22.
18.
15.
12.

Ol QO = «F p= U OO 1

47.
31.
29.
26.
21.
19.
16.
13.

=R WWMHOoO oM

N b= OO -Jw

26

64.
42.
39.
35.
29.
26.
22,
19,

40.
28.
26.
24.
21.
19.
17.
14.

DOOOWWW O

=tk QN O O O OO
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Reaction cross sections (a02) for H + DBr reaction calculated

by statistical theory for the ground vibrational state of DBr

. 012
. 040

. 063

. 087
. 153
.250
. 370
.570
. 000

. 012
. 040
. 063
. 087

. 153

. 250
. 370
.570
. 000

AU HOOODOO

14

Product: HBr + D

OO ONMO

10.
11.
14.
13.
14.
14.
14,

RO WOOO-TO W

20.
117.
16.
15.
15.
14.
15.
15.
15.

Q = O s O 0 W Wi

21

35.
26.
23.
20.
18.
16.
16.
16.
15.

Product: HD + Br (atom unexcited)

192,
133.
109.
88.
65.
46.
36.
24.
15.

T OWU O =N

186.
128.
104.
85.
64.
45.
36.
24.
15.

O TTNW-JW~TWN

178.
119.
99.
81.
64.
44,
36.
24.
15.

O =2 O IO et it N

145.
102.
89.
76.
61.
44,
35.
24.
16.

WK ON O O st

120.
86.
75.
65.
55.
40.
34.
25.
17.

PO OOWhOON

CONONOODOMNW

28

42,
31.
28.
25.
22.
18.
18.
16.
15.

98.
71.
64.
56.
48.
31.
32.
24,
117.

qJ WO BRNDUI-JN

=TT O Wt =W
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TABLE III

Reaction cross sections (a02) for H + DI reaction calculated by
statistical theory for the ground vibrational state of DI

hdi 3 8 13 19 24 33

Ei(eV)
Product: HI + D
0. 012 0.0 0.05 8.2 18.6 26.6 40.
0. 040 0.3 3.2 7.8 14.2 18.4 28.
0. 063 2.9 5.0 8.3 13.1 16.4 24.
0. 087 4.7 6.3 8.7 12.0 14,7 21.
0. 153 7.8 8.7 9.9 11.7 14.1 18.
0.250 9.7 10.2 10.7 12. 4 14.0 17.
0. 370 11.3 11.8 12.5 13.6 14. 4 16.
0.570 13.5 13.7 14.1 14.7 15.2 16.
Product: HD +1 (atom unexcited)

0. 012 249.9 242.2 226.4 204, 2 187.2 155,
0. 040 162.6 157.3 149.6 136.7 126.1 105.
0. 063 135.0 132.1 127.4 116.9 107.6 91,
0. 087 113.4 111.1 106.9 100. 1 92.3 78.
0. 153 87.8 86.4 84.4 79.7 75.6 65.
0. 250 67.1 66.2 64.7 62.8 59.6 53.
0.370 53.0 52.7 51.7 50.4 49,1 45,
0.570 37.4 37.3 37.1 37.0 37.0 36.

NN OO D O

COBWOIBII®M
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TABLE IV

Reaction cross sections for H + DX reactions calculated by statisti-
cal theory for the ground vibrational state of DX and an initial rota-

tional temperature of 300°K

o2
X Ei Cross section (A7)
. (eV) HX +D HD +IorI*
I 0.012 0.34 74. 47
0.040 0.173 48.53
0.063 1.29 40.71
0. 087 1.66 34. 28
0.153 2.38 26. 97
0. 250 2. 82 20.80
0. 370 3. 27 | 16.64
0.570 3.83 12.08
Br 0.012 0.51 59. 39
0. 040 0.93 40.58
0. 063 1.80 33.84
0.087 2.54 27.73
0. 153 3.62 21,17
0.250 3.81 15. 08
0.370. 3.89 12.31
0.570 4,11 8.46
1. 000 4. 12 5.67
Cl 0.012 1,22 28. 49
0. 040 1.87 16. 35
0.063 3.65 13.26
0.087 5.50 10.91
0. 153 6. 47 8.05
0. 250 6.51 6.74
0.370 5.64 5.39
0.570 5.01 4,38
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TABLE V

Reaction cross sections for H + DI reaction
calculated by statistical theory

Trot(oK) Ei(eV) Cross section (K 2)
HI +D HD +1 HD +I*
500 0.012 0.95 66.6 6. 62
0. 040 1.20 43.5 4,56
0. 063 1.63 36.6 3.82
0. 087 1.91 30.8 3.29
0. 153 2.51 24.0 2.82
0. 250 2.89 18. 4 2.30
0.370 3.35 14. 6 1.95
0.520 3. 87 10. 4 1.65
700 0.012 1.54 65.2 6.59
0. 040 1.61 42.17 4,53
0. 063 1.93 36.0 3.80
0. 087 2.13 30. 4 3.29
0. 153 2.64 23.8 2.82
0. 250 2. 98 18.3 2. 30
0.370 3.42 14.6 1. 96
0.570 3.91 10. 4 1. 66
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TABLE VI

Reaction rate constants (cc/sec -
statistical theory for H + AX for products in specified elec-

tronic states

A X T(°K)
Cl1 300
Br 300

500
700
D I 300
500
700
H I 300
500
700

HX +A

TN

.34 (-11)2

.50 (-11)
.47 (-11)
.71 (-10)

.44 (-11)
.73 (~11)
.84 (-11)

.47 (-11)P
11.
14.

05 (-10)P
93 (-10)0

molecule) calculated by

HA +X

11.
11.
12,

11.
11.
12,

.31 (-10)

. 94 (-10)
.11 (-10)
.07 (-10)

42 (-10)
84 (-10)
16 (-10)

07 (-10)
37 (-10)
41 (-10)

| SRRy b et

bk ek ped

*
HA +X

.16 (-12)

. 307 (-10)
. 390 (-10)
. 459 (-10)

. 171 (-10)
.261 (-10)
. 332 (-10)

. 183 (-10)
. 267 (-10)
.44 (-10)

2 The number in parentheses is a power of 10 by which the

b

preceeding number is to be multiplied.

Half the HI yielded by decomposition of the strongly coupled

complex is included here as reaction.
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TABLE VI

Abstraction fractions (AF) calculated by statistical
theory for the H+DBr and H +DI reactions (T = 300°K)

X AF(statistical theory)? 'AF(experimental)
Br 0. 967 | 0. 99"

0. 92°¢
1 0. 981 0.97°

0. 95°¢

a For more details see Tr 69.

P pa 69.

C Pe 69.
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TABLE VIO

Cross sections calculated by statistical theory for reaction
leading to vibrationally excited species for H + DI reaction

[
Trot(oK) Ei(eV) Cross section (Az)
HI' +D DY +1  HD' +1°
300 0.012 0. 00 38. 85 0.72
0. 040 0. 00 25. 19 0. 64
0. 063 0. 00 21. 33 0. 63
0. 087 0. 00 18. 27 0. 62
0. 053 0. 00 13. 93 0. 66
0. 250 0. 01 11.19 0. 64
0. 370 0.34 9. 09 0. 62
0.570 1.15 6. 75 0. 67
500 0.012 0. 00 38. 03 0.79
0. 040 0. 00 24. 88 0.70
0. 063 0. 00 21. 05 0. 67
0. 087 0. 00 17. 97 0. 66
0.153 0. 00 13. 87 0. 68
0. 250 0. 03 11. 13 0. 66
0. 370 0. 40 9. 08 0.64
0.570 1.19 6. 76 0. 68
700 0.012 0. 00 37.27 0. 87
0. 040 0. 00 24.52 0.176
0. 063 0. 00 20. 78 0.71
0. 087 0. 00 17.73 0. 70
0. 153 0. 01 13. 80 0. 70
0. 250 0. 07 11. 07 0. 67
0. 370 0. 47 9. 06 0.65
0.570 1.23 6.77 0. 69

v indicates vibrationally excited species.
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TABLE XI
Statistical theory calculations of abstraction fractions (AF) and

per cent of products produced in excited electronic (PCE) and
vibrational (PCVE) states for H + DX reaction with n, = 0 and

T .=300°K
rot

X E, AF PCE PCVE PCVE
(eV) X HX HD

Cl 0. 012 0. 959 0.24 0 0
0. 040 0. 897 0.87 0 0
0. 063 0.784 2.19 0 0
0. 087 0. 665 6.10 0 0
0. 153 0.554 17.28 0 0
0. 250 0.509 23.51 0 0
0. 370 0. 489 26. 30 0 0
0.570 0. 467 26. 04 17 14

Br 0. 012 0. 992 12.76 0 27
0. 040 0. 978 12. 37 0 26
0. 063 0. 949 13.24 0 27
0. 087 0.916 13.53 0 27
0. 153 0.854 14. 13 0 30
0. 250 0.798 15. 29 0 35
0. 370 0. 760 17.11 29 40
0.570 0.673 19. 02 24 45
1. 000 0.579 21.97 47 57

I 0. 012 0. 995 8.93 0 53
0. 040 0. 985 9.43 0 53
0. 063 0. 970 9.44 0 54
0. 087 0.954 9.50 0 55
0. 153 0.919 10. 41 0 54
0. 250 0. 881 10. 95 0 57
0. 370 0.836 11.61 10 58
0.570 0. 759 13.55 30 61
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TABLE XII
Statistical theory calculations of reaction rate constants (cc/sec -

molecule) for H + AX for vibrationally excited products in specified

. a
electronic states

A X TECK) HX+A HA +X HA +X*
D Cl 300 b b b
D Br 300 b 2.70 (-10)  4.37 (-14)

500 6.41 (-14) 2.88 (-10) 9.64 (-13)
700 7.05 (-14) 3.02 (-10) 3.66 (-12)

D I 300 b 6.53 (-10) 1.65 (~11)
500 1.50 (-13) 6.83 (-10) 2.24 (-11)
700  1.23 (-13) 7.07 (-10) 2.74 (-11)

H I 300 5.78 (-10) 9.60 (-12)
500 6.02 (-10) 1.57 (-11)
700 6.68 (-10) 2.08 (-11)

2 Each number in parentheses is a power of 10 by which the
preceding number is to be multiplied.

P 1,ess than 1.0 (-15).
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TABLE XII

Checks of how well detailed balance is satisfied for actual com-

puter calculations using the statistical theory

Example E (a.u.) f n, Mf Ef (eV) F

1 0. 00655551 1 0 3 0. 0559577 H + DBr
2 0 6 0.04 H + DBr

- 2
(2M1 + l)E1 Q12 = 1,02167 eV ao2
(2M2 + 1)E2 Q21 = 1,00268 eV ao
Detailed balance holds within 1. 9%.

2 0.01183338 1 0 3 0. 1995771 H + DBr
2 0 6 0. 1836194 H + DBr

_ 2
(zM1 + 1)E1 Qy, = 1.65456 eV a02
(2M2 + 1)E2 Q21 = 1.62740 eV a
Detailed balance holds within 1. 7%.

3 0.0152144 1 0 2 0.2 C++D2
2 0 5 0.10944065 Ct+D

_ 2
(2M1 + 1)E1 Q, = 14.125 eV a02
(2M2 + 1)E2 Qy = 14.333 eV a,
Detailed balance holds within 1. 4%.

Example 3 was computed by calculating only every third partial
wave directly and interpolating the others.
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TABLE XIV

Data for the statistical theory calculations on the reaction

K+HC?
K HCI H KCl
D, (eV) 4. 6369 4. 4373
Wy (cm‘l) 2989. 74 280.
R, (a,) 2. 4087 5. 2724
b
Ro (ao) 6.1 5.8
Ce? a05)° 285, 26.

2 Tn addition to these data the calculation requires the masses
of all the atoms.

b Hard sphere collision radius.
€ Coefficient of -R~° in long range potential.
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Rotational distribution. Shown is Q(F; H + DBr, n, = 0,

M, =6, E. =0.087eV)vs. M
1 L 2 £ * o o 2

F. Br indicates Br ( P3 /2), Br" indicates Br ( P1 /2).

for each arrangement channel

Rotational distribution. Shown is Q(F; H + DBr, n, =0,
Mi =21, Ei = 0.370 eV) vs. M, for each arrangement
channel F.

Probability of reaction vs. impact parameter for K + HC1.
Circles are from Gr 66; curve is result of present statisti-

cal calculation.
Same as Fig. 3.
Same as Fig. 3.

Probability of reaction vs. impact parameter for K + HC1

from statistical calculations.

Reaction cross section vs. incident energy for K + HCl1
from experiment (circles are from Ac 64, square is from
Od 69) and theory (X's are from present statistical calcu-

lations).
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IV. EXACT QUANTUM MECHANICAL CALCULATIONS
ON COLLINEAR CHEMICAL REACTIONS
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The quantum mechanical theory of rearrangement collisions
and the problems encountered in attempting numerical calculations
on rearrangements were reviewed in subsection I.A.2 of this thesis.
Because the quantum theory of rearrangements is so difficult (see
subsection I. A. 2), most of our understanding of chemical reactions
has come from transition state theory, simplified collision theories
such as the statistical phase space theory and hard sphere collision
theory with stereochemical corrections, classical trajectory calcu-
lations, and other semiclassical chemical models which involve ex-
tensive or questionable approximations. Actual calculations using
quantum mechanical scattering theory to approximate the wave
functions or scattering amplitudes for chemically reactive systems
have been performed only a few times (Go 49, Ba 53, Ya 54, Go 54,
Ma 59, Mo 62, Mi 65, Ny 65, Su 67, Ka 68, Di 68b, Mo 68, Ta 69,
Mc 69). Most of these calculations used either a highly approximate
treatment of the scattering or an unrealistic, artificial potential
energy surface. Two of the treatments, however, are very signifi-
cant attempts to treat the H + H2 - H2 +H reaction quantum mechani-
cally. The most important approximation involved in both is the
assumption (made in different ways in the two studies) that the im-
portant reactive collisions are approximately linear and can be
treated as linear with corrections for nonlinearity added. Karplus
and Tang used the distorted wave approximation to treat the H + H2
reaction for relative translational energies in the range 0.25 - 3.3
eV (Ka 68) and Mortensen and Pitzer used a numerical solution of the
Schroedinger equation to treat it and three of its isotopic analogues
for relative translational energies in the range 0.16 - 0.6 eV (Mo 62,
Mo 68). Both these calculations assumed electronic adiabaticity (see

Appendix 1) and used semiempirical approximations of the lowest
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potential energy surface which are probably fairly accurate. The
biggest difficulty in extending these types of calculations to other
reactive systems is obtaining an accurate representation of the
potential energy surfaces of these systems.

In chapters II and III we felt that it was most important to
compare our calculated cross sections with experiment and we felt
the scattering treatment was more satisfactory if the calculated
results agreed with the experimental ones. Since the quantum me-
chanical calculation of real reaction cross sections is so difficult,
we take a different approach in this chapter. Here we do essentially
exact quantum mechanical calculations on simplified models of
chemical reactions (in particular, the H + H2 and D + D2 reactions)
and compare these to easier, more approximate calculations on the
same models. In this way we make progress in the theory of chemi-
cal dynamics in the following ways: (1) we develop and improve the
techniques for solving the Schroedinger equation for rearrangement
collisions; (2) we learn which of the easier, more approximate
theories are reliable enough to be applied to the more complicated
cases of real chemical reactions where the exact quantum mechanical
treatment is too hard; (3) we learn about the real dynamics of col-
lision processes which are models of chemical reactions and thus
indirectly learn about the dynamics of real chemical reactions; (4)
we learn about the real properties of reaction probabilities in simpli-
fied versions of the H +HZ and D + D2 reactions and thus indirectly
learn about the properties of the reaction probabilities for the real
H + H2 and D + D2 reactions.

Transition state theory (Ey 35, Hi 36, Hi 39) has been very
important in the history, understanding, and practical applications
of chemical kinetics (transition state theory is also called absolute
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reaction rate theory; a recent review of its basic principles is given
in Jo 66a). In transition state theory we assume that motion along
the direction of a reaction coordinate s can be separated from the
other motion of the reacting system and that a potential energy can
be defined for motion along this coordinate. This potential as a
function of s usually involves a barrier between reactants and
products. The effect of quantum mechanical tunneling through this
barrier is included in the transmission ccefficient which occurs in
transition state theory. It usually has a very important effect on the
calculated rate constants. In section B, we review the work that has
been done on calculating quantum mechanical transmission coefficients
for transition state theory. We discuss what is the theoretically
most justifiable way of calculating transmission coefficients, and we
do numerical calculations the best way and show how much error is
introduced by incorrect treatments.

In section C we also consider the collisions of H with H2
and D with D2 in one-dimensional space. In this space, assuming
electronic adiabaticity and a potential energy surface based on recent
a priori calculations (Sh 68), we solve the scattering problem exactly
(which requires a treatment in two mathematical dimensions). This
is the first exact solution of the H + H2 reaction problem with a
realistic potential energy surface for collisions in any number of
dimensions (1, 2, or 3). These calculations can provide the basis
for testing various approximate theories and for better understanding
the dynamics of the collision process. In section C of this chapter
we present the results for probabilities of reactions and briefly

discuss their interpretation and the comparisons with other theories.
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A. An Accurate Analytic Potential Energy Surface

As discussed in Appendix 1 we may consider the H + H2
reaction as proceeding in the ground electronic state with the nuclear
motion determined by an effective potential calculated using the Born-
Oppenheimer separation of electronic and nuclear motions. This
potential has been calculated fairly accurately (using configuration
interaction techniques to solve for the electronic wave functions) by
Shavitt, Stevens, Minn, and Karplus (Sh 68). Their results confirm
the conclusion of many earlier less accurate studies that the lowest
energy reaction path for the H + H2 reaction corresponds to a linear
collision and that the highest potential energy that must be achieved
along this minimum energy path (or reaction path) occurs for the
symmetrical éonfiguration where the two band lengths are equal
(R AB © RBC in the notation introduced below). The calculation
predicts that this barrier height is 0. 477 eV. Shavitt, by an analysis
discussed below, estimated that the best guess at the real barrier,
as determined by comparing transition state theory to the rate experi-
ments of Westenberg and de Haas (We 67a) and others, is 0.424 eV.
He suggested that the barrier in the surface of }Shavitt, Stevens, Minn,
and Karplus (SSMK) be scaled by a factor (0.424/0. 477) = 0. 89 along
the entire reaction path but that the predicted energy variation not be
scaled in directions transverse to this minimum energy path. This
scaling can be applied in a straightforward way at the barrier top
(which is the transition state saddle point of the potential energy
surface) but is ambiguous at other places.

In scattering calculations involving long range potentials, the
numerical integration must extend over a large region, including tne
whole portion of the configuration space where the potential or its
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tail is nonnegligible. In the H + H2 reaction there is a long range
potential due to the induced dipole-induced dipole dispersion inter-
action. This long range interaction means there is a shallow
potential well in the surface at large separation of H and H2. An
estimate which is probably accurate within a factor of 2 of the depth
of this potential well is the value 0. 001 eV obtained from the SSMK
calculations (Sh 68). The approximate calculations of Dalgarno,
Henry, and Roberts also predict a potential well depth of 0.001 eV
(Da 66). This depth is thus at least a factor of a hundred less than
the smallest translational energies in which we might be interested for
reactive collisions. It is thus not expected to have a significant effect
on the scattering considered here and we will neglect it.

Two additional reasons for neglecting this well are that its
depth and shape are not known accurately and that including the long
range forces makes the calculation more expensive (or for the same
cost the numerical approximations are less accurate.)

It is convenient for scattering calculations to have an analytic
expression for the potential energy as a function of the internuclear
distances involved. Shavitt et al. fit their surface fbr linear colli-
sions to an expression with 28 linear parameters and 1 nonlinear
parameter (Sh 68). This is a fit to the surface before scaling. If we
consider only linear collisions, one way to effect the scaling for the
whole surface is by adapting to this purpose a procedure developed by
Wall and Porter for constructing parametrized potential energy
surfaces (Wa 62). This method can be used to construct a surface
which has the scaled barrier height, the transition state parameters
suggested by Shavitt (Sh 68a; these are the parameters of the SSMK

surface except in the direction of the reaction coordinate) and the
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correct asymptotic H2 behavior for Ri or Rf large.* In addition the
method still has one as yet undetermined parameter (4 in the notation
of Wall and Porter). The effect of this parameter is shown schema-~
tically in Figure 1. It turns out that this parameter can be chosen so
that the contours of the Wall-Porter-~type surface with barrier height
0. 424 eV are approximately parallel all over the surface to the
contours fa the SSMK surface with barrier height 0.477 eV. This
choice yields ¢ = 3. Figure 2 is a comparison of the SSMK surface
and the Wall-Porter parametrized surface with £ = 3 for the linear
Hg collision. If the shape of the accurate surface (the SSMK surface)
had been such that none of the family of surfaces obtainable by the
method of Wall and Porter could be made to resemble it, we would
have had to use a different method to obtain an analytic representation
of the surface.

The Wall-Porter -type fit with £ = 3 to the scaled SSMK surface
will simply be called the scaled SSMK surface in the rest of this
chapter. ‘

The Wall-Porter method yields a surface which is a generali-
zation of the Morse potential. For R AB > R_o and RBC < Ro it
reduces exactly to a Morse potential in RBC’ and for RBC > RO and
R

A

R AB < R0 and RBC < Ro the surface is an elbow-shaped valley

which contains a barrier and which connects the two asymptotic

B = R, it reduces exactly to a Morse potential in R, 5. For

regions. In the present case Ro = 3.620 a - The following is a
FORTRAN IV packagecontaining a double precision function subprogram.

*
Ri is the distance from A to the center of mass of BC; Rf is

the distance from the atom to the center of mass of the molecule in
the final state.
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BLOCK DATA

IMPLICIT REAL*8(A-H,0~2)

COMMON /DWCOM/ ALFDyA9SNyRNyDyALFN,ALFDIF 4 XNsRNMSN,RNMXN4R2T,L
DATA ALFDyAsSNyDyALFNyXN/0.70152D090,08939D0+1.765D0,109.47D0,41.04

X435D0, 1,40083D0/
DATA L,RNMSM/3,1.8563000/
END

SUBROUTINE PREH3
C THIS SUBPROGRAM SHOULD BE CALLED ONCE BEFORE THE FIRST CALL TO V.
IMPLICIT REAL*8{A-H,0-2)
COMMON /DWCOM/ ALFDyAySNyRNyDyALFNLALFDIF o XNyRNMSNsRNMXNR2T L
RN = RNMSN + SN
ALFDIF = ALFD - ALFN
RNMXN = RN - XN
R2T = 144142136D0%RNMSN
RETURN
END
DOUBLE PRECISION FUNCTION V(RAB,RBC)
IMPLICIT REAL*8(A-H,0~-2)
LOGICAL RABL,RBCL
COMMON /DWCOM/ ALFDysA4sSNyRNyDyALFNyALFDIF 3 XNsRNMSNJRNMXNGR2TyL
RABL = RAB.GT.RN
IF (RABL.OR.,RBCL) GO TO 12
RNMX = RN - RAB
THETA =DATAN((RN = RBC)/RNMX)
STT =DSIN(2.0D0%THETA)
LM4 = L - 4
IF (LM&4) 3,4,5

3 STTL = STTx*(L |
STT4 = STTLXSTTH%(~LM&)
GO TO 6

4 STT4 = STT*%4
STTL = STT4
GO TO 6

5 STT4 = STT#%4

STTL = STT4%STTx*LM4
6 GAM = D*{(1.0 DO~ AX*STTL)
ALF = ALFN + ALFDIF*STT4
BRACK = R2T - RNMXN
RCRC = 2.0D0O*%RN%RN + RAB#*RAB + RBC*RBC - 2.0D0O*RN*{(RAB + RBC)

SQUIG = BRACK*STT4 + RNMXN ~-DSQRT(RCRC)
SQUIG = BRACK*STT4 + RNMXN - RNMX/COS(THETA)
GO T0 13

12 GAM = D
ALF = ALFN
IF (RABL) SQUIG = RBC -~ XN
IF (RBCL) SQUIG = RAB - XN

IF (RABL.AND.RBCL) SQUIG = SQUIG + RBC -~ RN

IF (RABL.AND.RBCL) SQUIG = RAB + RBC - XN - RN
13 QUAN = 1.0 DO-DEXP(-ALF*SQUIG)

V = GAM*(QUAN*QUAN - 1.,000) + D

V = V/627.71D0

RETURN

END
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The package was written for the IBM 360/75. A call to the function

subprogram returns the value of the potential in atomic units.

B. Exact Tunneling Calculations

1. Introduction

We consider the bimolecular reaction
A+BC~- AB +C (1)

with a transition state saddle point in the potential energy surface
corresponding to linear ABC and with C an isotope of A or the same
as A. When B is a light atom and the potential energy barrier height
Vc at the transition state is not negligible, we expect that an appre-
ciable contribution to the reaction rate will result from quantum
mechanical tunneling through the barrier. Much work has been done

[ not only for reaction (1) but also for the more general A + BC -
AB +C where A, B, and C are general atoms, molecules, or molecu-

lar fragments ] in an effort to estimate transmission coefficients for
transition state theory that account for this tunneling (and sometimes
for other effects such as the nonseparability of the reaction path).
The trajectory for a linear atom-diatomic molecular

collision occurs in the 2-dimensional configuration space with

coordinates

aB = | Ta (2)
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where T A FB’ and ;C are the coordinates of the three atoms with
respect to the center of mass of the ABC system (see Fig. 3). Most
of the tunneling calculations that have been done are based on some
effective one~-mathematical-dimension (1-MD) approximation (see
Fig. 2) but a few treatments (Jo 61, Ma 64c, Ma 65b, Ma 66a) have
attempted to consider two-mathematical-dimensional (2-MD) effects.
Mortensen and Pitzer (Mo 62, Mo 68) considered the full 2-MD linear
collision with approximate corrections for bending. Comparison of
the calculations that have been carried out is sometimes difficult
because not only the models but also the numerical approximations
are different. In this chapter we do not examine the justification for
a 1-MD treatment of tunneling but, assuming the 1-MD model, we
consider the accuracy with which such 1-MD calculations are made by
approximate methods and models. This can be done by numerically
computing exact 1-MD scattering solutions of the Schroedinger equa-
tion for a typical barrier problem and comparing the results to the
results of other numerical methods as applied to this same barrier.
In addition, by using the exact numerical solutions for each given
model, we can make a legitimate comparison of the models. Further,
now that exact 2-MD solutions are becoming practical (see Mo 62,
Mo 68, Di 68b, and section C of this chapter), it is interesting to have
exact 1-MD calculations for comparison. For this reason we use
special methods of reducing the 2-MD barrier to a 1-MD barrier so
that the comparison will be more meaningful. Section C presents
exact 2-MD solutions of a type that will make this comparison
possible.

In subsection 2 we review previous 1-MD treatments of tun-
neling. In subsection 3 we discuss the transition state theory and
consider what is the proper way to make a 1-MD tunneling correction.
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2. Previous Treatments of Tunneling in One Mathematical

Dimension

There are three basic approaches to the tunneling
correction to transition state theory. The first is to consider this as
a quantum mechanical correction to the (assumed separable) asym-
metric stretch rectilinear reaction normal mode of the transition
state (Jo 61, Jo 61a, Jo 62a, Jo 66, pp. 133 ff., 190 ff., 230 ff. ).
This procedure considers tunneling along path a (see Figs. 3 and 4).
The other two approaches consider tunneling along path s (or c¢). The
second approach is to consider the tunneling as a correction to a
separable curvilinear reaction coordinate in a modified transition
state theory which treats all modes consistently including curvilinear
effects (Ma 64c, Ma 64b). This treatment, unlike the first approach,
may be applicable even if the de Broglie wavelength for the motion
along the potential surface is large compared to the size of the quad-

ratic region of the saddlepoint region. The third approach considers
the tunneling correction as a transmission coefficient for the standard
rectilinear coordinate transition state theory (as given, e.g., in Jo66a)
but includes in it any estimable effects due to the curvilinear nature
of the reaction coordinate or of the nonseparability of the 2-MD prob-
lem. Based on these approaches, various models (with different
criteria for choosing the parameters) and various numerical methods
have been used. In this subsection we review the calculations that
have been done. In the next subsection (subsection 3) we will criti -
cally discuss the models behind these calculations and in a following
subsection (subsection 5) we will consider the numerical methods.

The easiest tunneling correction to apply is the correction

factor derived by Wigner (Wi 32) for the case where the reaction
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normal mode is separable at the saddle point. This correction factor
is for a quadratic barrier and is correct to the second power of

Planck's constant. I islr

2
1 h V¥
1+ 57 (k ) (4)
where v* = | Va | and Va is the imaginary frequency associated with

the reaction coordinate (the asymmetric stretch normal mode at the
saddle point) and T is the absolute temperature. This correction
factor is only valid when there is only a small amount of tunneling
(e.g., at high T) but has found frequent application (Hi 36, Bi 49,
Po 55, Bi 59, Sh 59a, Ya 59, Jo 61a, Jo 66a, p. 235). Wigner also
derived (Wi 32) an approximation that included a correction for a
quartic term in the potential energy at the saddlepoint but this is
rarely used (Sh 59a).

Another method is to treat the problem as tunneling through a
parabolic barrier or a truncated parabola barrier with the same height
and force constant (curvature at the top) as the assumed potential
energy surface and to obtain the full quantum mechanical solution for
this barrier (Sh 59a, Jo 6la, Jo 61, Ch 63, Ma 64c, Ti 64, Kl 64,

Le 68, Sh 68a, Pa 69). At high energies this reduces to the Wigner
correction (4), but at lower energies it probably overestimates the
tunneling because the barrier is too thin. Various ways to correct
this failing by using a parabola with a different force constant have
been considered. The parabola may be required to give the "best fit"
to the barrier as a function of distance along path ¢ (Sh 62) or to

~rh is Planck's constant and k is the Boltzmann constant.
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give the best fit, in the energy range for which tunneling is important,
to the barrier along path s (Bi 59). Alternatively it may be chosen
as the truncated parabola with the same height and area as the normal
mode barrier a (We 59). Or it may be chosen so the truncated barri-
er gives the same tunneling as another barrier in certain cases

(Sc 65a). The analytic mathematical treatment of the parabolic
barrier model has been worked out by Bell (Be 59) and others (Hi 53,
Bi 59, Sh 62, We 59, We 68, Ma 68a).

Another potential for which, like the untruncated parabola
discussed above, an exact analytic solution is possible is the Eckart
barrier (Ec 30). For a symmetrical surface (A and C chemically
the same although they may be isotopes) this takes the form

V=E sech? (dmv* /(2 u/E_)) (5)

where Ec is the barrier height, and u is the reduced mass, and d is
the distance from the top of the barrier. For this potential the force
constant F at the top of the barrier (d =0) is ~(2 nv* )2 u and the
range is about 4 = /(Ec /2u) /v* . This force constant is for the
symmetric stretch normal mode of the transition state. There are
thus two independent parameters, one of which has always been used
to give the correct force constant. Various procedures have been
used to assign the other parameter: the barrier can be required to
have the correct height Vc (Sh 59a, Jo 61a, Jo 61, Kl 64, Jo 66a,
pp. 193 ff., Le 68d, Sh 68a, Sc 65a), the correct height v, (Jo 61,
Jo 62a, Su 63), the height Vo=V, - E?ZC where E?ZC is the zero
point energy of the reactants (Jo 62, Ch 63, Jo 66a, p. 235, Ki 68b),
or the height VOO = V0 + E; where E; is the zero point energy of
the transition state (Ma 64c, Mo 68). The last of these choices is an
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attempt to include effects due to the nonseparable nature of the 2-MD
problem, and the ideas behind it will be discussed in detail in sub-
section 3. The Eckart barrier has also been chosen to have the
correct 4th derivative at the top (Sh 68a) or to be the best fit over the
energy range where tunneling is importént to the barrier along path
¢ (Sh 68a). The analytic solutions for transmission across an Eckart
barrier have been worked out by Eckart (Ec 30) and others (Jo 61,

Jo 62a, Sh 63).

Johnston and Rapp developed an approximation to the 2-MD
tunneling which consists in taking a Boltzmann factor -weighted
average of Eckart tunneling corrections for several paths parallel to
the a path in Fig. 1 (Jo 61). It has been applied frequently (Jo 61,
We 59, Ch 63, Kl 64, Ca 64, Wi 65, Jo 66a, pp. 191 ff., 230 ff.). A
version of this ""2-MD' tunneling correction with a modified definition
of the Eckart barriers has also been used (Ki 68b).

3. Transition State Theory

The transition state transmission coefficient is a quan-
tum mechanical correction to the treatment of the reaction coordinate
"normal mode.'" It has been pointed out many times that the transition
state theory results if one assumes a Boltzmann distribution of
reactants and that all modes of the system, except a separable reaction
mode, are adiabatic (Hi 39, Ma 67 and references therein). Denoting
progress along the reaction mode coordinate by s (s proceeds from
- = to + « and may be taken to be zero at the top of the barrier), the
conserved total energy is then a sum E = Es (s) + Et (s) where ES
is the energy in the reaction mode and Et is the energy in the other
modes. Based on the adiabatic hypothesis (the quantum numbers of
the t modes do not change), we calculate Et along the path s (the



193

path of minimum energy from reactants to products) to find its highest
value Et+ (s+). Then, classically, reaction occurs for all ES(- ©)
such that Es (s+) > 0. Thus, as Hirschfelder and Wigner (Hi 39)
and Marcus (Ma 67) have pointed out, the potential energy which is
responsible for motion of the system along the reaction coordinate is
the quantum mechanical adiabatic energy of the other modes of
motion of the system (i.e., the energy E, (s) of the system-minus-
the-reaction-mode). Although other interpretations of the transition
state theory may be possible, we believe this is the most reasonable
one for discussing tunneling corrections. This interpretation disa-
grees with most of the calculations* described in the previous section
and especially with Johnston's statement ''the quantum correction for
one supposedly separable coordinate does not canstitute potential
energy for the reaction coordinate" (Jo 66, p. 195 ). We consider
Johnston's statement inconsistent with the proper interpretation of
transition state theory.

For a one~dimensional atom-diatomic molecule collision
A + BC, the only mode of motion besides motion along the reaction
coordinate is the vibrational mode (called the t mode) which is a
molecular vibration for the molecule separated from the atom but is
the symmetric stretch at the transition state, i.e., it is successively
a vibration of BC, a symmetric stretching vibration of ABC, and a
vibration of AB. The potential energy for the reaction coordinate
mode of motion is the classical potential energy (the potential energy

*Marcus (Ma 67) took the point of view of this interpretation
but was inconsistent in practice--presumably for the sake of compu~
tational expediency--because he took the imaginary asymmetric
stretch frequency from the classical potential energy curve instead
of the quantum mechanical adiabatic potential curve.
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due to treating electronic motion quantum mechanically and adiaba-
tically and neglecting zero point vibrational energy everywhere) plus
the adiabatic vibrational energy in mode t. Neglecting the change in
energy in this mode (so that the potential energy for the reaction
coordinate mode is determined entirely by the classical potential
energy) is treating that mode as inactive in Marcus' terminology.

It is expected to be a bad approximation. Assuming that the quantum
numbers of the vibrational modes transverse to the reaction coordi-
nate do not change is called vibrational adiabaticity.

For a collision in a plane or a collison in three dimensional
space we would also have to consider the adiabatic transformation of
the rotations of the separated molecule and the orbital motion of A
and BC into bending vibrations and rotations at the transition state.
For the planar case, the adiabatic energies of the rotations and bends
have been worked out by Child (Ch 68a). For the three-dimensional
collision, an approximate consideration of this correlation has been
worked out by Mortensen and Pitzer for the lowest rotational state of
the separated molecule (Mo 62). The adiabatic assumption is not
expected to be as good an approximation for these rotations, orbital
motions, and bending modes as it is for the vibrational mode of the
collinear H + H, reaction (Ma 66a, footnote 13). In this chapter we

make calculations only for linear collisions.

4, Normal Mode Coordinates

A good discussion of normal mode coordinates for atom-
molecule reactions is given in Johnston's book (Jo 66a, chapter 5 and

appendix C). The reaction coordinate in transition state theory is a

curvilinear coordinate which is tangent to the asymmetric stretch
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normal mode coordinate at the transition state but differs from it
elsewhere. To compute the transmission coefficient as a quantum
mechanical correction to the treatment of the reaction coordinate
normal mode, we shall express the reaction coordinate in terms of
the transition state normal mode coordinates. Linear scaling of one
of the normal mode coordinates by a constant ¢ gives a new set of
normal mode coordinates for which the effective mass corresponding
to motion along that one normal mode coordinate is multiplied by a
factor c'z. We choose that set of normal mode coordinates for
which the reduced mass is the same (pN) in each normal mode.
Then distances appropriate to one-dimensional motion (with reduced
mass “N) along the reaction coordinate can be computed as curvi-
linear distances along the reaction coordinate curve in the normal
mode coordinate space.

For the H + H2 or D + D2 reactions with the transition state
at RAB = RBC =8, the normal coordinates

3

X; = 5 (Ryp *Rpc - 28)) (6)
X9 = '21' (Rpe - Rypp) (7)

are coordinates for which the effective mass in any direction is

I
wlne
B8

My A (8)
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where m, is the atomic mass* (Sh 68a). We shall refer to the
coordinates X4 and X, as simply the normal mode coordinates.
The numerical method used to calculate distances along the
curvilinear reaction coordinate in the normal mode space is
numerical line integration using points on the reaction path close

enough (less than 0.1 ao) so that the error involved is negligible.

5. One-Dimensional Potential Energy Barriers, Including

the Vibrationally Adiabatic Potential Energy Barrier

Shavitt, Stevens, Minn, and Karplus computed the
"minimum energy reaction path" for the H + H2 reaction and also
computed a 29-parameter fit to the potential energy surface (Sh 68).
The coordinates of some points on this path are given in columns 1
and 2 of Table 1. The energy as a function of distance along this path
as plotted in the normal coordinate space was used as the best appro-
xXimation to the barrier vby Shavitt (Sh 68a). The correct minimum
energy reaction path is the path of steepest descent in the normal
mode coordinate space from the transition state (saddle point of the
potential energy surface) to the reactants' configuration or, equiva-
lently, the path of steepest ascent from the reactants' configuration
to the transition state. This path is different from the path of
steepest descent and ascent in the R Ap’ Rpc» Space. We computed
the minimum energy reaction path in normal coordinate space for the
SSMK surface from the 29-parameter fit and obtained a different path

*
In atomic units, m.,, = 1837.1 and m.,. = 3671. 37.

H D
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from the one given in Sh 68. The path given in Sh 68 was constructed
using a different definition of the minimum energy path (not using the
normal mode coordinates). The correct path for the SSMK surface is
given in columns 3 and 4 of Table I. The minimum energy path for
our scaled SSMK surface is given in columns 5 and 6 of Table I.

Using these paths we computed the effective one-dimensional barriers
for motion (with reduced mass My ) along the reaction coordinate.
These barriers are given in Tables II and III in the columns labelled
V. The barrier from the SSMK surface has been scaled by 0.89. For
calculating the tunneling, we fit these barriers to expressions of

the form

sech2 (b3 d2) + b, exp (-b4 d2) (9)

V=>

1 2

+(B-Db -bz)exp(-4b4d2)

1
where B is the barrier height, the bi are determined by least squares
fitting, and both B and the bi are given in Tables II and III. Because
of its nonlinear parameters, this form is capable of very accurate
fits. This is illustrated in Tables II and III where the numbers in the
columns labelled Vfit are computed from eq. (9).

From the 29-parameter fit to the SSMK surface and from the
analytic expression for our scaled SSMK surface we numerically
computed for points on the reaction path in normal coordinate space
the second derivative of the potential energy in the direction perpen-
dicular to the reacticn path in normal coordinate space. From this,
for each point on the reaction path, we computed the force constant
and zero point energy of a harmonic oscillator of mass Hye These
zero point energies are a function ZPE (d), where d = |s -8 | and
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s, is the position of the barrier along the reaction coordinate. This
function is the harmonic approximation to the zero point energy of
the motion transverse to the reaction coordinate. If the ZPE (d)
function is added to the classical potential energy function V(d) we get
a quantum surface Vq (d) for vibrationally adiabatic reactions. (These
quantities can also be written as functions of s.) According to the
Hirschfelder-Wigner-Marcus interpretation of transition state theory
the transmission coefficient should be calculated from a one-dimensional
calculation using V q (s)--not V(s). The present work is the first
determination ever made of Vq (s) and also the first calculation of
scattering off such a potential.

| The quantum barrier was computed for two choices of the
classical potential energy function V(s). The two choices are the
scaled barrier from the SSMK surface (column 5 of Table II) and the
barrier from the scaled SSMK surface (column 2 of Table III). The
quantum barriers are given in Table IV, which shows they are very
similar to each other. Their similarity is an indication of the consis-
tency of our fitting procedure (using the parametrized surface of Wall
and Porter). The quantum surfaces were fit to expressions of the
form (9) by the least-squares method. The parameters of the fits and
some values of the potentials computed from the fits are given in
Table IV,

Figure 5 illustrates the V(s) and Vq (s) barriers for the
scaled SSMK surface and the Wall-Porter-type £ = 3 surface for
linear H3 . The Vq (s) barrier for the strictly linear collisions is
0. 274 eV high and is about 0. 4 a  wider at the top than the classical
barrier.

One dimensional scattering calculations off the two potentials
V(s) and Vq (s) represent. two distinct models of the reaction. Use
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of the classical potential V(s) assumes conservation of vibrational
energy (CVE)in the normal mode for motion transverse to the mo-
tion along the reaction coordinate. Use of the "quantum" potential

\'4 a (s) assumes conservation of vibrational quantum number (vibra-
tional adiabaticity or VA) in that mode. The exact numerical

solution of the scattering problem for these one dimensional barriers
will be discussed in the following subsections.

The simplest interpretation of the vibrational adiabaticity is
the one we use here, i.e., to construct the potential V (s) by adding
the local vibrational energy of the transverse mode to the classical
potential energy along the minimum energy reaction path. This is
not a Strictly correct treatment because the coordinates are nonsepara-
ble due to the curvilinear nature of the reaction path. One importé.nt
effect of the curvature of the minimum energy reaction path and the
nonseparability of the Schroedinger equation for the reaction coor-
dinate and the vibrational coordinate is a "'centrifugal effect.' This
and other corrections to the simple scheme used here have been
considered by Marcus (Ma 65, Ma 66a), but he has not done numerical
calculations like the present ones.

6. Numerical Treatment of One Dimensional Tunneling

The Schroedinger equation is (with # = 1)

1 52
[-5— —5 + V(s) -E] ‘I!k(S) =0 (10)

2“N 632

where k labels the degenerate solutions. We select a set of N

evenly spaced mesh points 85 i=1, 2, ..., N, S; <81 and
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approximate the equation for the solution at each of these points in
terms of second differences in the standard way. This yields the

set of N coupled linear equations

N
! h .

Z (rij-xaij)wjk_bi i=1,2, ..., N (11)

=1

for the approximate values of the solutions wl}; (Sj) at the mesh

points. In eq. (11),

\ = -2h%°E (12)
h =8 ;-8 (13)
F =-2[—1— +h2V(s)]6 +—1—(6 + 8 ) (14)
ij M i ij EN i, j-1 i, j+1
=1
bi = -FI;I- [\bk(Sl - h) 5i1 + \[Ik(SN + h) 61N] . (15)

As h - 0, the approximate solutions approach the exact ones,

i.e.,

) h
¥ (s) = lim ¥ (s.)
K"T7 pao K7

We choose $1 = =8N and SN to be large enough that V(s 1) is

negligible, i.e.,
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V(sN) << V(0) (16)
V(s 1) << V(0) (17)
where V(0) is the height of the barrier. We require two independent

solutions with otherwise arbitrary boundary conditions. The first

may be obtained with the boundary conditions

drl(s1 -h) = 1 (18)

11r1(sN +h) = 0 (19)
and the second with

t(8;-h) = 0 (20)

tolsy +h) = 1 (21)

These choices make the wave functions real everywhere. Since we
are considering the case where the barrier is symmetrical about

s = 0, we need not solve for the second solution by solving the set

of equations (11) because we can obtain it from the first by reflection
through s = 0. The asymptotic form of the solutions to the Schroe-

dinger equation is

() ~ Al -ips | £ (k) ips (22)

S—o&

wk(s) a(k) o-ips | E(k) oips (23)

S 2 =®
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where

1/2

P = (2uyE) (24)

(since # = 1) and we do not use the bar to mean complex conjugate.
We want to analyze the ¢V jll{l for large and small j (corresponding

to large |s| ) in the same way. For large j we set

-ips, _ ips.

A(k) e ] + A(k) e ] - w]lil | (25)
~-ips, _ ips,

Al T g0 T W?M K (26)

where 4 is a small integer (4 is usually 1 or 2). Solving these

equations for Alk) and alk) gives
K h ips. + h ips.
AW (e Tl e T/ (27)
5 (k) (k)*
A\ _ A (28)
D = 2isin(pth). (29)

Eq. (28) results from the fact that the \b?k are real. For small

i, a(k) and E(k) are given by the same equations. We consider
the particle to be incident from the right of the barrier. The

solution we seek has A=1 and a =0, i.e.,
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W(s) ~ ) Keiks

s — ® (30)
t(s) ~ q e 1PS

S — o O

We can obtain this solution as a linear combination of any two
linearly independent solutions. In terms of our approximate so-

lIutions we seek the solution with values

2
- DR (31)

2
)¢ A® _ (32)
k=1

2

) cka(k) -0 . (33)
k=1

Equations (32) - (33) can be written in matrix form as
AC -1 (30

or
Al) 4@ ¢ 1

( ) ( ) = () (35)
(1) ) c, 0
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The probability of reflection from the barrier (R) and the probability
of transmission across it (T) are then obtained from the asymptotic
form of the solution with scattering boundary conditions {\l!jh} as
2
C, alk) (36)
k=1

R

2
T = Z C a(k) (37)

For the case of symmetric potentials the only properties of the
second linearly independent solution which we need to obtain R

and T are
7\(2) = a(l) (39)
a(z) = 7&(1) (40)
22 - A (41)

The procedure was programmed in FORTRAN IV for the Caltech
IBM 7094 computer and the program was checked by computing R
and T for the Eckart potential (R and T for the Eckart potential
can be obtained analytically as discussed in section IV.B. 2; the
analytic solutions are given in Sh 59a and Jo 61). In that case we
could obtain R and T to an accuracy of 0.3% with N = 100 and

0. 04% with N = 400. For the H, barriers we used N = 400 and
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Sy = 4.0t0 8.0 a The computing time was about 1.0 sec per
energy (at one energy we obtain one R and one T; the analysis

was usually done at 6 pairs of s; as a consistency check).

7. Calculation of Boltzmann Transmission Coefficients

The energy of the reacting system A + BC in the center-

of-mass coordinate system is

A BC
E = Ei + Ei + Ei (42)
- + T
= Ei + Ei (43)

where Ei is the initial relative translational energy, EiA and EiBC

are the initial internal energies of A and BC respectively for the
system in state i (i represents the set of all quantum numbers for
the separated subsystems), and Ei+ is the energy available for
motion along the reaction coordinate at the transition state if the
internal energy at the transition is EiT. In the CVE model,

EiT = EiA + EiBC. In the VA model EiT is the energy of the

system at the transition state for the same quantum numbers i. In
either model the tunneling factor (or Boltzmann transmission coef-
ficient) is computed as the average over a Boltzmann distribution of
energies of the ratio of the correct quantum mechanical transmission
probability to the classical 1-MD transmission probability Tc (Ei)'
This classical probability is

T, (E,) = ! (44)
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The transmission coefficient is (cf. Ma 67)

Z n; €Xp (-EiT /KkT)

= A - (45)
Z exp(-—Ei /kT)

i

where T is the temperature and "y is the state-selected trans-

mission coefficient for the reactants in internal states i :

©

1 + . +
K = P f_m dE, " T(E,, i)exp(-E,"/kT) . (46)

T(Ei’ i) is the probability of transmission across the barrier for
the case where the initial energy is Ei and the initial internal state
is i. In eq. (46) we have already performed an integration over
Tc(Ei) of eq. (44) to obtain the factor kT in the denominator of eq.
(46). The integral in eq. (46) requires the definition

T(Ei’ i) = 0 if E, <0. (47)

We restrict ourselves now to linear H + H2 and D + D2 reactions
in the ground electronic state. Then i is Vi the initial vibrational
quantum number. We are interested in the temperature region
where only the ground vibrational state of H2 is appreciably popu-

lated and i= v, = 0. Then

o

~ 1 + +
n = o j dE_" T(E_,0) exp(-E " /kT) . (48)

- 0
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Shavitt has shown how the integral (48) can be recast as the sum of
two finite range integrals which can be easily integrated (Sh 59). He
obtained accurate results (0. 01%) using 200 points per integral. We
have used his formula [eq. (27) of Sh 59 ] for the integrals but
evaluated them using Gaussian integration. By using 21 points per
integral (42 energy points in all) we were able to obtain accuracy

usually much better than 1%.

8. Results

In his paper (discussed in section IV. A and subsections
IV. B.2 and IV. B.5) on correlation of experimental rate constants
with theoretical data on the H3 potential energy, Shavitt fit an Eckart
barrier to the high energy part of the scaled SSMK potential energy
barrier (for the reaction path of Sh 68) and calculated the tunneling
factors for this potential (Sh 68a). This Eckart barrier had a height
of only 0. 174 eV and thus H and H2 are considered to have 0. 250 eV
(0.424-0. 174 = 0.250) of their energy in potential energy at infinite
separation. As discussed in subsection IV. B. 2, the other parameter
of his Eckart barrier was chosen 8o that it had the correct second
derivative at the top. Shavitt reasoned that the amount of transmission
is determined by the nature of the potential barrier in the region
where |d | is small, i.e. » close to the top of the barrier, and that
his potential was a good approximation to the barrier in that region.
He considered the tunneling factors computed that way to be the best
available estimate. By using the method described in subsection
IV. B.6 we can compute the transmission functions (and hence the
tunneling factors) for any potential barrier and we need not resort to

fits with Eckart barriers.
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Column 2 of Table V shows the tunneling factors for the H + H2
reaction computed using Shavitt's method (the 0. 174 eV high Eckart
barrier) and column 3 of Table V shows tunneling factors computed
numerically far the fit to the scaled SSMK barrier for the minimum
energy path of Sh 68 and Sh 68a (see columns 1-3 of Table II; this
barrier will be called SSSMK). Column 4 shows the tunneling factors
computed numerically for the fit to the scaled barrier from the SSMK
surface for the correct minimum energy path (see columns 4-6 of
Table II; this barrier will be called SNSSMK). Columns 2-4 of Table
VI show the corresponding tunneling factors for the D + D2 reaction.

Columns 5 of Table V and VI show tunneling factors computed
numerically for the fit to the potential energy barrier of the scaled
SSMK surface (see Table III; this barrier will be called the NSSSMK
barrier).

To check the effect of the small inaccuracies in our fits to the
barriers, we also computed the scattering from other fits to these
barriers. The differences of the results from those reported here
were very small.

For comparison with these attempts to do the problem more
accurately than usual, we also computed the tunneling factors using
the usual Eckart barrier treatment (see subsection IV. B.2). This
Eckart barrier has the classical barrier height (0. 424 eV) and the
correct force constant at the transition state. The results are given
in column 6 of Table V and column 2 of Table VII.

The tunneling factors given in Tables V and VI and in column
2 of Table VII are based on the conservation-of-vibrational-energy
approximation. We also computed tunneling factors using the vibra-
tionally adiabatic quantum barriers of subsection IV. B.5. These

tunneling factors are given in columns 3 and 4 of Table VII. The
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barrier of column 3 of Table IV is labelled SMSSMK and the barrier
of column 6 of Table IV is labelled MSSSMK.
Table VII reviews the labels used for the different barriers.

9. Discussion

The tunneling factors enter the transition state theory
expression for the rate constant as a multiplicative factor. A plot of
the logarithm of the tunneling factors vs. the reciprocal temperature
gives curves whose ordinates are additive components of the logarithms
of the rate constants. When the reaction rate constants are put on an
Arrhenius plot (logarithm of reaction rate vs. the reciprocal of the
temperature), the fact that the tunneling factors become large at high
(1/T) produces curvature on the Arrhenius plots. The curvature in
theArrhenius plots of experimental rates is usually interpreted as
evidence of tunneling. The tunneling factors in Tables V, VI, and VII
predict that such experimental evidence for tunneling will be most
prominent for temperatures below room temperature.

The most important conclusions to be drawn from these tun-
neling calculations are the following.

1. The tunneling for the SSSMK barrier can be compared to
the tunneling for Shavitt's Eckart approximation to it. Because the
false bottom on his Eckart barrier (see figure in Sh 68a) makes it too
wide at energies much below the highest part, Shavitt's method under-
estimates the tunneling at low temperature (as expected). However,
evidently because its wrong behavior at large d is equivalent to
allowing the particle to surmount a large fraction of the barrier with
zero reflection, the Shavitt Eckart barrier overestimates the tunnel-

ing due to the SSSMK barrier over most of the experimentally
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accessible energy range.

2. The standard Eckart barrier overestimates the tunneling
as compared to the 1-MD treatment of the real barrier because it is

too thin.

3. The tunneling predicted by the NSSSMK and SNSSMK
barriers is very similar except at low temperatures. This is another
indication of the accuracy of the Wall-Porter parametrized surface
in representing the SSMK surface with the energy variation scaled
down along the reaction coordinate. The difference between these
two sets of tunneling factors at low temperature is due to the Wall-
Porter barrier being much thinner near the bottom and thus allowing
extra low energy tunneling. For example, at an incident energy of
0.212 eV, the transmission probability for the NSSSMK barrier is
8.0 x 10"5 whereas the transmission probability for the SNSSMK
barrier is 2.9 x 10_5. At lower energies the discrepancy is

even greater.

4. The NSSSMK result must be considered the corrected
version of Shavitt's model in which two aspects of the computations
(the position of the minimum energy path and the evaluation of the
transmission functions for the given barrier) are corrected. The
NSSSMK tunneling factors are in good agreement with the Shavitt ones
except at low temperatures where they are higher. Shavitt's results
are in good agreement with experiment except at low temperatures
(T < 300° K) where they are as much as 40% too low. Thus the
NSSSMK results bring the theoretical and experimental results much
closer together.

5. The tunneling factors computed in the vibrationally adia-
batic approximations are much different from those computed in the
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conservation-of -vibrational-energy approximations. The tunneling

factors computed for the wider Vq (s) barriers are much smaller

than those computed from the V (s) barriers--as expected. The
transmission coefficient according to the VA treatment is sometimes
less than 1.0 (i.e., there is more reflection above the barrier than
transmission below the barrier for a system with a Boltzmann
distribution of relative translational energies). This last fact is a
surprising result. It is the first time tunneling factors less than 1.0

have ever been obtained.

6. The tunneling factors have generally been computed on
the basis of linear collisions (see subsection IV. B.2). The VA
model we used to compute the tunneling factors is the correct model
to use with transition state theory for linear collisions (see Hi 39,
Ma 65b, Ma 67, and subsection IV. B.3). Since the CVE results do
not resemble the VA results, the usual treatment of tunneling appears
to be theoretically unjustified and the significance in terms of molecu-
lar dynamics of any agreement of theory and experiment using the
CVE models (such as point 4 above) is questionable. Including the
adiabatic change in the rotational levels for three-dimensional
collisions will make the VA barrier resemble the CVE barrier more
closely again. However, the amount of agreement of the VA and CVE
barriers will then depend on summation and cancellation of at least
two factors and the interpretation will still not be straightforward.

The one dimensional calculations will be considered again in

section C.
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C. Ezxact Solution of the Linear Collision Problem for H + H2 and

D+D2

1. Method

The methods available for solution of the Schroedinger
equation for rearrangements have been reviewed in section I. B. The
method we use is essentially the method of Diestler and McKoy
(Di 68, Di 68b) which is discussed in section I. B and Appendix 3.
This is called the finite difference boundary value method. The
numerical method used in section IV. B. to solve scattering problems
in one mathematical dimension is an application of this method. There
are additional complications in applying it to the present problem in
two mathematical dimensions.

In the case of collinear collisions A + BC -~ A +BC or
AB + C, the method consists of the following steps:

i. Select a set of mesh points (each specified by R AB
and RBC ) which cover a region which includes the interaction region
and also parts of both the asymptotic regions (one where Ri is large
and one where Rf is large). The interaction region is the region
where the potential energy differs from its form in either asymptotic
region by an amount which is not negligible when compared with the
total energy E or the barrier height. Ri’ as defined in chapter I,
is the distance from A to the center of mass BC, and Rf is the
distance from C to the center of mass of AB.

ii. Use the finite differences method to obtain a number
(TNSOL) of linearly independent solutions of the Schroedinger equation
at these mesh points. The linearly independent solutions are obtained

by specifying a set of linearly independent but otherwise formally



213

arbitrary boundary conditions in the asymptotic regions. These
numerical solutions with arbitrary boundary conditions are called

the ¥x's.

iii. Numerically analyze the solutions in each asymp-
totic region in terms of a product of an internal eigenfunction of the
separated molecule and a travelling wave in the relative motion.

The travelling wave has one of the forms e * ipi Ri or a linear com-
bination of both the + pair or ei ipf Rf or a linear combination of
both of the # pair where p, (pf) is the momentum in atomic units

of relative motion in the i (f) channel.

iv. Based on the analysis of the x 's, take linear com-
binations of them to form as many scattering solutions as there are
open channels. A scattering solution is one that has unit incoming
flux in one open channel, no incoming flux in the other open channels,
and no components that are increasing with increasing Rf in the

closed channels.

v. Analyze the scattering solutions to see how much
outgoing flux they have in each channel and from this compute the

reaction probabilities.

vi. Repeat steps i through v at several values of the
step size h and extrapolate to h = 0.

In the rest of this subsection we discuss the modifications and
changes we made in the method of Diestler and McKoy. In subsection
2 we discuss the details of the calculations and present the results.

A brief discussion of the results is presented in subsection 3.

The calculations were done using the method just the way it is

given in Di 68 or Di 68b except for the following changes and modifi-

cations:
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1. For the analysis of the yx's (step iii) Diestler and McKoy
used the exact analytic solution for the vibrational potential well at
Ri or Rf = « or they used their best approximation to this exact
solution. The integrals involving these functions were evaluated by
Simpson's rule. When the exact solution is not available we pre-
ferred to use the numerical solution which is obtained with the same
finite difference approximation and the same mesh as used for that
solution for the x's and to compute the integrals using the trape-
zoidal rule (see appendix 4 for further discussion of these numerical
solutions). This analysis is more consistent with the particular

approximate x 's used and should lead to better behavior of the extra-

polation (step vi). Further, unless the functions used for analysis
are equal to the exact functions in the limit h = 0, the solution will
not converge to the exact solution.

2. Diestler and McKoy analyzed their solutions in the asymp-
totic region in terms of travelling waves. This is equivalent to
analyzing the solutions for the approximate elements of the scattering
matrix. We analyze our solutions in terms of standing waves. This
procedure gives us approximate elements of the reactance matrix.
We can compute the scattering matrix from the reactance matrix.
The advantages of making approximations to the reactance matrix
instead of to the scattering matrix have already been discussed in
subsections I. A.1 and II. A.2. {f. The relation between the scattering
matrix and the reactance matrix is discussed in Mo 65, pp. 369-372.

According to the procedure of Diestler and McKoy the proba-

bility of reaction from the i state to the j state is expressed as

Ei
P,. = ki bora. | (49)
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where

T=AC=44"1 (50)
P=(r1. (51)

The matrices A, C, A, and L' are defined in Di 68 and Di 68b.

C is the coefficient matrix. Each column of g corresponds to the
coefficients of the y's in one scattering solution of the Schroedinger
equation. I" is just like L’ except for dimensions. For the case
where there are N open channels corresponding to A + BC and N'
open channels for AB + C, the dimensions of these matrices are

(the dimensions in the computer program which performs the analysis

must be at least this big)

A is (N+N) x TNSOL (52)
A is TNSOL x TNSOL (53)
I' is TNSOL x N (54)
I" is TNSOL x N' (55)
I’ is TNSOL x (N + N') (56)
C is TNSOL x (N +N') B )
T is (N +N) x (N + N') . (58)
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This procedure is exactly equivalent to expressing the probabilities

in terms of elements of the scattering matrix by the following

equations
2
Pij = Isjil (59)
s - -k 540K (60)
where K is the wave number matrix defined by
and
K is (N+N) x (N+N). (62)
S is the scattering matrix and
$ is (N+N') x (N +N'). (63)

The analysis to obtain reactance matrix elements proceeds
just like the analysis of Diestler and McKoy except that the asymptotic
form of the ¥y's is expressed in the notation of Di 68b as

= Z {D(Lj)sin[ké(ax 23)]+D(J)cos[k (ax +x23)]}cp (xlz)
1=1

+ Z{Bg)e"p[‘kﬁ“xlz 23)]”]3(1)‘*"1’[k (0% 12y 5) 1}, (x 1)
N )
Xy3 2 Xg3
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N'
X; = ) {5?)31“[1‘;(9"23 Xyl —E;(L])exP[kli(Bx23 +%19)1} ¥, (y5)
t=1

o 1 (P explai (bxy +x,10)1 + B explk, (535 13101} B, 059)
N’

X0 > X (0) (64)

12 12

instead of as in eq. (18) of Di 68b. Then we define the matrices

D and D analogous to A and A where

is (N +N') x TNSOL (65)

4wl

D is TNSOL x TNSOL . (66)

For example, for the symmetric case with N = N' and
TNSOL = N +N' + 6, they are given by

.
ng) i=1 ..., N

E? i=N+1 ..., N+3

Dii= | ) (67)
=\ s _
6i—N-3 i=N+4, ..., 2N +3
(3) .
Bi-N—s 1 - 2N +4’ * ooy 2N +6

et
il

—Dijz . (68)
s4) i = N+1, ..., 2N,
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Then the reactance matrix is given by

R = K (69)
If the scattering matrix is now computed from the reactance matrix
by eq. (I. 36) and the reaction probabilities are computed from the
scattering matrix by eq. (59), the results will be exactly the same
as for the analysis directly in terms of scattering matrix elements.
The advantage of the present scheme is that if we symmetrize the
R matrix obtained from (69) the scattering matrix obtained from
(I.36) will automatically be symmetric and unitary (see the dis-
cussions in chapters I and II). When we have obtained a very
accurate numerical solution S and R are automatically symmetric
to several significant figures and S is automatically unitary to
several significant figures. In less accurate calculations, these
properties do not hold. However, we introduce a symmetrized

reactance matrix ES defined by

s 1
Rij =3 (Rij + Rji) (70)

The scattering matrix computed from
S = (L-1iR°)'(L +iR®) (1)
is then unitary and symmetric. In a similar but less general

numerical problem, Delves showed that the transformation (70)

is a variationally improved estimate of the reactance matrix
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(De 61, the variational principle is discussed in De 62). * We find
in practice that, for a given step size, the unitarized result is more
accurate than the result calculated by the method of Diestler and
McKoy. This does not mean the results obtained using the re-
actance matrix analysis with symmetrization are necessarily more
accurate than those from the scattering matrix analysis for all
possible cases. But the reactance matrix analysis with symme-
trization is the most convenient way to achieve the desirable proper-
ty of having all the results satisfy detailed balance and conservation
of particle flux.

Finally we consider the method of extrapolation. Diestler
and McKoy said that they performed extrapolation to h =0 by
fitting their probabilities P(h) computed at different step sizes h

to the series

NEX -
Ph) = ) P _, b7, (72)
i=1

It is well known that the local truncation error due to using second
central differences (the procedure used here) to approximate
elliptic differential operators of the form which occur in the
Schroedinger equation for our problem can be expressed as a power
series in h which includes only even powers of h . Thus it is

possible that the error can be expressed by the series

* The author is grateful to Dr. Delves for correspondence
concerning his result.
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8

Ph) = ) P, p2G-1) (73)

and that we should perform extrapolations to h = 0 by using

PR) = ) B, w21 (74)
i-1

We performed extrapolations using eqs. (72) and (74) and found
that the extrapolated results obtained using different step sizes

and different numbers of step sizes were much more accurate

when we used eq. (74). We believe the use of eq. (72) may lead

to spurious results except perhaps if NEX is very large. We used
eq. (74) to extrapolate to h = 0 for all the results reported here.
We found that the error component which is proportional to h2 was
almost always the biggest component. So, for example, extra-
polations assuming the error had components proportional to h2,

h3, ... led to results very similar to those which assumed the

error components were proportional to h2, h4, .... Use of eq.
(74) with NEX = 2 is called Richardson's hz-extrapolation. Use of
eq. (74) with NEX = 4 is called Richardson's h4-extrap01ation (see,

e.g., Ko 61).

2. Calculations and Results

A number of choices of variables in the numerical
method must be made in order to perform numerical calculations.

The variables permitted by the numerical method are:
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(a) the shape and location of the region over which

the mesh is placed;

(b) the number of linearly independent ¥x's to be
obtained and what boundary conditions each ¥

should satisfy;

(c) the values of R, and Rf at which the analyses

of the ¥x's are performed;
(d) the number of vibrator functions used to anzlyze

the y's;
(e) the number of mesh points.

We will now discuss how these choices were made for our calcu-
lations on the symmetric cases H + H2 and D + D2 and what
values we used for the variables. Our guiding principle was to
obtain an accuracy of 1% in the computed scattering probabilities.

(a.) The mesh must cover the classically accessible
parts of the interaction region and the near-asymptotic region* and
extend far enough into the classically inaccessible region so that it
is not too bad an approximation to neglect the tail of the wave
function outside the region of the mesh. Diestler and McKoy sug-
gested using a block-L shaped region (in R AB’ RBC space) which
covers the valley of the reaction path on the potential energy surface
and which extends to R AB = RBC = 0. A block-L shaped region
contains an interior angle greater than 90° and the finite difference

treatment of such regions is sometimes inaccurate. We might

* The near-asymptotic region is that part of the asymptotic
region within about 4-10 step sizes of the interaction region.
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expect that this angle is not a serious problem in the present case
because the potential surface is high near the position of this angle
and the wave function is small there. We verified this numerically
by comparing solutions obtained with a block-L shaped region to
solutions obtained with a square region obtained by placing mesh
points in the upper right corner of the block L. The restriction
that the mesh points extend to the origin in the (R AR’ RBC) plane
was removed and the results were found to be insensitive to changing
the small-R boundaries of the grid when they are placed far enough
into the classically forbidden region. We also found that extending
the arms of the L far into the asymptotic region did not give worth-
while improvement of the results. We finally settled on using a
square region for which the boundary values on the wave function
are given along the four lines R AB = 0. 3a0, RBC = 0. 3ao,

R B~ 4, 2ao, and RBC =4, 2a0 . This region was used for all the

A
production runs reported here.

(b.) We obtained NSOL linearly independent x's with
the boundary condition that x be equal at the R AB = 4, 2a o edge of
the mesh region in the A + BC asymptotic region to one of NSOL
linearly independent functions and that it be equal to 0 at the other
three edges of the mesh region. The NSOL edge functions were
taken to be the lowest NSOL eigenfunctions of the BC vibrator. We
obtained NSOL more linearly independent x's by reflection of the
first group through the line R AB = RBC' This is the same scheme
as used by Diestler and McKoy (Di 68, Di 68b). With this scheme
we found that accurate results could be obtained in all cases con-
sidered by letting NSOL = NOPEN(1) + 3 where NOPEN(1) is the
number of open channels for A + BC. Using this many y's
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provided a basis set that was more than good enough since es-
sentially the same results were obtained using NSOL = NOPEN(1)
+n for 2 <n < 5. Weused n =3 for general production runs

to be safe from error.

(c.) The analysis of a Xj is done on two lines across
the mesh region at large Rf and on two other lines across the mesh
region at large Ri' At each large R edge, we used all six pairs
of two lines chosen from among the last four lines of mesh points
at that edge. The six analyses should all give the same probabili-
ties if the calculation is accurate. Their deviations from one
another are an internal indication of the accuracy of a calculation.
We used as the result of a calculation the average of the probabili-
ties determined by the six analyses. The values of the probabilities
computed from any one pair of lines usually differed from the

average by less than 1%.

(d.) The number of vibrator functions used to analyze
the x's was NSOL + INS where 1 < INS < 3. If NSOL is too
small, using different values of INS will give different results. We
found that the probabilities were almost independent of INS for the
values of NSOL and INS we used. ’

(e.) Once the mesh region is decided upon, the
number of mesh points NN determines the step size h. We used
square grids with MDM points across the grid. Then NN = (MDM)
and h = (3. 9a0)/(MDM +1). Although we could work in the step
size region where scattering probabilities at different step sizes
agree within 1% with each other, we found by using h2 -extrapolation

2

that these probabilities at even small step sizes were not that

accurate. However, we found that extrapolated scattering proba-
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bilities which were not as expensive to compute as probabilities
from one very large grid were very accurate and were more
accurate than those obtained using the largest number of mesh
points we could use. The largest number of mesh points we used
was 5625 (corresponding to MDM = '75). This is close to the largest
size grid we could possibly have run on the IBM 360/75. We de-
termined which step sizes to use for the production runs by first
running many step sizes at selected energies in the energy range

of the production run. The accuracy of the extrapolated results
was ascertained by noting the consistency of results extrapolated
from different numbers of runs and from runs with different values
of MDM. From the well-studied selected energies we could choose
subsets of 2 or 3 values of MDM which seemed reasonably sure
to yield accurate extrapolated values at other nearby energies.

| We made production runs on H + H2 at energies below that
necessary to excite the v = 1 vibrational level. For these runs,

we made two calculations at each energy and calculated the results
by hz-extrapolation. The grid sizes were MDM = 34 and 49. The
compute time* for these two runs was about 3.1 min. The final
results of each run are PI:I, the probability of reaction, and PYI,
the probability of reflection. These are given in Figs. 6-9 and in
Table IX. We also made production runs on D + D2 at energies
below that necessary to excite the v = 1 vibrational level. For
these runs we followed the same procedure as for H + H2 except
we used MDM = 40 and 55. This required 5.3 min. compute time
per energy. The results are given in Fig. 10 and in Table X.

* Al compute times are for the GO step as executed on the
IBM 360/75.
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We made production runs on H + H2 for energies between
the first two vibrational excitation thresholds, i.e., for
NOPEN(1) = 2. For these runs we did calculations at three values
of MDM (45, 55, and 65) and used eq. (74) with NEX = 3 for extrap-

olation. These three runs required 13.1 min. compute time per
energy. The final results of each run are the probabilities for the
system initially in the ground vibrational level to react to give
ground state (P?l) or vibrationally excited (PR) product, to
scatter with vibrational ex01tat1on but no reaction (P¥2) or only

to collide elastically (P 1) and the probabilities of the system
1n1t1a11y vibrationally excited to react to give ground state (P21)

or v1brat1ona11y excited product (P 2) to scatter with V1brat10na1de-
excitation but no reaction (P;,l)’ or only to collide elastically (Pzz)
These results are given in Figs. 7-9 and 11-12,

We also numerically computed the vibrational energy levels
for the Morse potential which is the separated subsystem limit of
the Wall-Porter parametrized potential surface. These calcu-
lations were done for the same step sizes used for the scattering
calculations and extrapolated the same way the scattering calcu-
lations were done (the calculations are described in Appendix 4).
These eigenvalues should be used to interpret Figs. 6-11. The
resulting zero point energies are 0.2728 eV (H2) and 0.1938 eV
(D2). The vibrational energies of the first excited vibrational
levels are 0.'7940 eV (Hz) and 0.5692 eV (D2). The vibrational

energy of the v = 2 state of H, is 1.2830eV.

2
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3. Discussion

The reaction probability for energies below the first

threshold has the qualitative behavior we expected, i.e., it is a
steeply rising function of energy (see Figs. 6-9 and 10). Fig. 9
shows that the results of the 1-MD calculation using the vibration-
ally adiabatic potential barrier are in qualitative agreement with
the 2-MD calculations whereas the calculations using the classical
barrier (i.e., the conservation-of-vibrational-energy barrier) are
in poor agreement with the 2-MD probabilities. The difference
between the two 1-MD treatments is that the vibrationally adiabatic
one allows for adiabatic release of the diatomic reagent's vibration-
al energy into kinetic energy of motion along the reaction coordinate
and so it lowers the effective barrier to reaction. Despite the good
agreement between the vibrationally adiabatic 1-MD treatment and
the 2~-MD calculation, there are quantitative discrepancies at low
translational energies which mean that the amount of tunneling pre-
dicted to occur for a room temperature or lower temperature
distribution of relative translational energies could be quite differ-
ent. Table IX shows that the vibrationally adiabatic 1-MD treat-
ment could predict tunneling factors too low by an order of magni-
tude and the conservation-of-vibrational-energy 1-MD treatment
is even worse. Fig. 10 shows that the conservation-of-vibrational-
energy 1-MD calculations are very bad for D + D2 also. These
comparisons mean that tunneling factors computed from simple
models must be used with extreme caution.

If the H3
symmetric stretching mode or the reaction coordinate mode, its

energy would be 0.424eV. An H + H2 system with a relative

system had zero energy in motion of either the
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translational energy of 0.151 eV has a total energy of 0. 424 eV.
Any reaction at translational energies lower than 0.151 eV is
strictly classically forbidden if the reagent has the zero point
vibrational energy before the reaction and can be called tunneling
in even the strictest interpretation of the term. Table IX shows
that this type of tunneling does occur to an important extent.

Figs. 7 and 11 show that the reaction probabilities are pre-
dicted to be appreciable in every channel at energies much above
the first vibrational excitation threshold. In fact the probabilities
show a striking resemblance to those which would be predicted by
a statistical phase space theory treatment of H + H2 collisions in
1 physical dimension (the statistical phase space theory is discussed
in chapter III). Such a treatment predicts all the probabilities in
the energy range between the first two thresholds are 1/4. Yet the
oscillations of the probabilities about their mean values (such as
the dip in PI:I at a translational energy of 0. 63 eV) are not random.
Further study of the calculations (such as plotting the scattering
wave functions at various energies or comparing the reaction
probabilities here with classical mechanical calculations for linear
collisions on the same potential energy surface) may reveal a
detailed mechanistic interpretation of the maxima and minima in
the scattering probability curves. Any such interpretation will have
to take into account the competition between all the channels.

It is interesting that in the region between the thresholds
Pfltl > Pfl{2 and P:I;2 > P?l, i. e., the reaction probability is
greater for the reactive channel in which the vibrational quantum
number is conserved than for the channel in which it is changed.
Thus even at these higher energies the vibrationally adiabatic model

has some merit (the vibrationally adiabatic model predicts the
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vibrational quantum number is 100% conserved, i.e., that

R,V _ R ,,V _
P12 +P12 = 0 and P21 +P21 = 0).

Figs. 11 and 12 show that the probabilities of de-excitation
or reaction of vibrationally excited molecules do not rise rapidly
from threshold. This is an indication of the difficulty of converting
the initial vibrational excitation energy into energy of other modes
of motion. Thus at energies up to 0. 09 eV above threshold, most
of the vibrationally e.xcited molecules simply undergo elastic
collisions.

~ The importance of the energy of the internal degrees of
freedom of the reactants for ofrercoming the barrier to reaction
has been discussed recently for the reactions H2 + H2 and isotopic
analogues (Ba 66, Mo 67a, Le 68e) and HI + DI (Ja 69) and for
other reactions. Inthe present case the vibrationally excited H2
has an energy of 0.794 eV plus its translational energy. The
classical barrier height is 0. 424 eV. The energy of H3 at the
transition state with zero point energy in the symmetric stretching
mode is 0.55 eV plus the kinetic energy of motion along the reaction
coordinate.™ If the H,g
excitation in the symmetric stretching mode at the transition state,

its energy is about 0. 79 eV plus the kinetic energy of motion along

system has one quantum of vibrational

the reaction coordinate. Thus if the vibrational quantum number is
conserved so that the effective potential barrier for one-dimensional
motion along the reaction coordinate is the quantum mechanically
vibrationally adiabatic one, a classical mechanical treatment of that

motion predicts a threshold energy near zero. This may explain

* In this discussion, remember that the levels are quantized
at the transition state only in the approximation of separability of
the coordinates. H, at the transition state is a short-lived meta-
stable species.
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why the reaction probability for vibrationally excited species
neither rises very fast from threshold nor has such a large delayed
onset for appreciable reaction as the H + H2 reaction (where Fig.
8 shows there is such an onset for a relative translational energy
of over 0. 20 eV).

It is interesting to make a comparison between the results
of our studies of hydrogen atom scattering and electron scattering
from the hydrogen molecule. In general we expect a mode of
internal motion of the target to adjust adiabaticity to the presence
of the incident particle if the mode's characteristic velocity of
motion (which determines its relaxation rate) is very large com-
pared to the velocity of the particle. In hydrogen atom scattering
the velocities of the electrons are so much greater than the veloci-
ties of the protons that electronic adiabaticity is certainly a good
approximﬁtion (see Appendix 1). But the velocity of internuclear
motion in the hydrogen molecule is only about the same as, not an
order of magnitude larger than, the relative velocity of the incident
hydrogen atom. Yet the calculations show that vibrational adia-
baticity is a good approximation. For the scattering of electrons
in the intermediate energy range, the velocities of the bound
electrons in the target are only about the same as, not an order
of magnitude larger than, the relative velocity of the incident
electron with respect to the target. But the calculations show that
adiabatic polarization of the target by the scattering particle is
again a good approximation. At higher initial translational energies
the breakdown of the adiabatic approximation is more apparent in
both these last two cases (see part two for electron impact energies
over 100 eV and notice that pR P‘1’2 # 0 in Fig. 7 in this section).

12
The internuclear motion of the H2 molecule during electron impact
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is not at all adiabatic and is well represented by unperturbed vibra-
tional functions. Since the internuclear velocity is much slower
than the impinging electron's velocity, this is not unexpected.

The calculations presented in this chapter are the first step
in our attempt to understand the H + H2 chemical dynamics. The
calculations will be interpreted more fully in future publications.

In addition we will report more reaction probability results for
collinear collisions for the H + H2 system and its isotopic analogues.
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TABLE 1

Points on the minimum energy path for the H + H2 reaction.

Distances are in atomic units.

SSMK surface scaled SSMK surface
R a R R_ P R b
AB Fmc AB Rpc AB Rac

1.765 1.765 1.765 1.765 1.765 1. 765
1.880 1.679 1.784 1.745 1.784 1.746
1. 945 1. 640 1.808 1.720 1. 809 1.722
2.020 1.609 1.867 1.671 1.868 1.673
2.105 1.582 1.925 1.623 1.924 1.625
2.198 1.559 2.045 1.555 2.046 1.555
2.300 1.539 2.111 1.525 2.110 1.526
2.414 1.522 2.162 1.505 2. 162 1.505
2.553 1.507 2.235 1.483 2.237 1. 487
2.694 1.493 2.299 1.467 2.297 1.472
2.838 1. 481 2.409 1.448 2.405 1. 459
2.984 1.470 2.479 1.439 2.471 1. 453
3.192 1. 457 2.547 1.432 2.535 1. 449
3. 407 1. 445 2.614 1.426 2.600 1. 447
3.638 1.435 2.681 1.421 2.663 1.445
3.872 1. 427 2.744  1.417 2.725 1.444
4.150 1.419 2.822 1.414 2.801 1. 443
4,331 1.412 2.900 1.411 2.878 1. 441

2.965 1. 409 2.942 1.439

3.031 1. 407 3.010 1.436

3.093 1. 406 3.073 1. 433

3.153 1. 405 3.137 1. 429

3.212 1. 404 3.200 1. 424

3.300 1.403 3. 326 1.414

3.518 1. 402 3.518 1. 403

3.582 1.401 3.582 1.401

4 Sh 68, Sh 68a.

b Present.



232

TABLE II

Potential energy barriers from the SSMK surface as a function of
distance from the saddle point. The barriers have been scaled
by 0. 89.

a b c d
d v Vfﬁ d v Vfﬁ

() V) (V) (@) €V (V)
0. 000 0.424 0.424 0. 000 0.424 0. 424
0.104 0.417 0.419 0.044 0.422 0.423
0. 160 0. 407 0.411 0. 099 0.417 0.418
0.226 0. 393 0.399 0. 152 0. 408 0.410
0.301 0.375 0. 381 0. 257 0.383 0. 387
0.385 0. 353 0. 357 0.314 0.367 0.371
0.478 0. 327 0.329 0. 358 0. 355 0. 358
0.585 0.297 0.296 0.424 0.336 0.337
0.717 0.261 0.257 0. 482 0.319 0. 319
0. 852 0.225 0.221 0.583 0.289 0.287
0.990 0.191 0.188 0. 649 0.270 0. 267
1.131 0. 159 0.158 0.714 0.252 0.249
1.332 0. 120 0.122 . 0. 843 0.217 0.215
1.542 0. 087 0. 090 0. 904 0.202 0. 201
1.768 0.061 0. 063 1. 056 0. 167 0. 168
1. 998 0.041 0. 042 1. 186 0.141  0.142
2.274 0. 024 0.024 1. 306 0.120 0.121
2.500 0.019 0.014 1.424 0.101 0. 102
1. 546 0. 085 0. 085

1.606 0.078 0. 077

1.671 0.070 0. 068

2 Sh 68a, Sh 68b.
b

by = 0.0850 eV, by = 0.2520 eV, by = 0.25602, b, = 0.89044 .
(¢

Present.
b, =0.1129 eV, b, = 0.2294 eV, by = 0.30855, b, = 1. 11123 .
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TABLE III

Potential energy barrier from the scaled SSMK surface as a function
of the distance from the saddle point. The scaled SSMK surface is
the parametrized potential energy surface of Wall and Porter with

the parameters selected as described in section III. A.

a

d \s V..
fit

(ao) (eV) (eV)

0. 000 0.424 0.424
0. 043 0.423 0. 423
0. 098 0. 417 0. 417
0. 151 0. 408 0. 408
0.256 0. 382 0. 382
0. 312 0. 366 0. 365
0. 358 0.351 0. 350
0. 421 0. 330 0.329
0. 479 0. 309 0. 309
0.581 0.272 0. 272
0. 644 0.248 0.251
0. 706 0.224 0.226
0. 832 0. 176 0. 177
0. 894 0.153 0.153
1. 046 0. 100 0.101
1. 175 0.061 0. 059
1.299 0. 032 0. 033
1.418 0.014 0.018
1.542 0. 004 0. 009
1.603 0. 002 0. 006
1.668 0. 0003 0. 004

a by = 0.2691eV, b, = 0.0, by = 1.01006, b, = 1. 16372. This

barrier could be represented accurately enough by a fit with only
- 3 parameters.
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TABLE IV

Quantum barriers as functions of the distance from the saddle point.

a b c d

d Vq Vq, fit d Vq Vq, fit
(a,) (eV) (eV) (@) (eV) (eV)
0. 000 L2717 27T 0. 000 277 2T
0. 044 .278 277 0.043 L2717 2717
0. 099 277 L2717 0. 098 .26 L2717
0. 152 .279 .276 0.151 21 2T
0. 257 L2717 .273 0. 256 .275 .276
0.314 . 2176 .270 0. 312 .275 .275
0. 358 .276 . 268 0. 358 L2176 .273
0. 424 .270 .263 0.421 .272 . 269
0.481 .263 . 258 0.479 . 267 .264
0.583 . 247 . 247 0.581 . 249 . 250
0. 649 .235 . 237 0.644 .235 L2317
0.714 .223 L2217 0.706 .219 .221
0.778 .210 .215 0.770 .200 .202
0. 843 . 198 . 202 0.832 . 180 . 180
0. 904 . 186 . 189 0. 894 . 159 . 158
1. 056 . 157 . 156 1. 046 . 105 . 101
1. 186 . 134 . 131 1. 115 . 061 . 058
1. 306 . 115 . 112 1.299 . 027 . 028
1.424 . 098 . 097 1.418 . 007 . 009
1.484 . 090 . 090 1. 481 . 001 . 002
1.546 . 083 . 084 1.542 -. 002 -. 003
1.606 . 076 . 079 1.603 -. 002 -. 007
1.671 .072 .074 1.668 -.001 -.010

4 The sum of the scaled V(d) and the ZPE(d) from the SSMK surface.

®b, = 0.1099 eV, b, = 0.1050 eV, b, = 0. 952810, b, = 0. 178496,
Bl= 0.2772 eV.

€ The sum of the V(d) and the ZPE(d) from our scaled SSMK surface.

b, = 0.2982 eV, b, = -0.0224 eV, b, = 0.941853, b, = 0. 116551,
B- 0.2772 eV.

2 3 4

3 4

2
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TABLE V

Transmission coefficients for H + H2 reaction computed for four

barriers discussed in section IV. B.

T(°K) Eckart’ SSSMK®  SNSSMK?  NSSSMK®
150 502. 30
200 45. 00 57.39 83. 48 307. 32
250 13. 13 11.25 14. 74 24. 10
300 6. 49 5. 09 6. 21 7. 95
350 4.17 3.26 3. 80 4. 44
400 3.11 2. 47 2.79 3. 12
450 2.53 2. 05 2.26 2. 48
500 2. 17 1.80 1. 95 2. 11
550 1.93 1.63 1.75 1. 87
600 1.77 1.52 1. 61 1.71
650 1. 65 1.43 1.51 1.59
700 1.56 1.37 1. 44 1.50
750 1.48 1.32 1.38 1. 43
800 1. 43 1.28 1.33 1.38
850 1.38 1.25 1.29 1.34
900 1. 34 1.22 1.26 1.30
950 1.31 1.20 1.23 1.27
1000 1. 28 1.18 1.21 1.25
1050 1.26 1.16 1.19 1.23
1100 1.24 1.15 1.18 1.21
1150 1. 22 1. 14 1.16 1.19
1200 1.21 1.13 1.15 1.18
1250 1.19 1.12 1.14 1.17

a See text and Table VIII.

o V, = 0.174eV.
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TABLE VI

Transmission coefficients for D + D2 reaction computed for four

barriers discussed in section IV. B.

T(°K)

150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000
1050
1100
1150
1200
1250

avc =0.424 eV.

b

¢ See text and Table VIII.

Eckartb

61.
10.
.52
.91
.23
.88
.66
.53
.43
. 36
.31
.27
.23
.21
.19
.17
.15
.14
.13
.12
.11
.10
.10

el ol el e T S S SN C N I S

17
24

Vc =0.174 eV.

SsSMK®

60.
.91
.15
.17
.75
.54
.41
.32
.26
.22
.18
.16
.14
.12
.11
.10
.09
.08
.07
.07
.06
.06
. 05

ol el el ol ol ol N Sy I R X W e

74

SNSSMK®

104.
.90
.01
.58
.00
.70
.93
.42
.34
.28
.24
.21
.18
. 16
.14
.13

ol ol ol el ol ol I Ol CI T

91

11

.10
.10
.09
.08
.08
.07

NSSSMK®

380.
14.
4.
2.95
2.21
1.85
1.63
1.50
1.40
1.33
1.28
1.24
1.
1
1
1
1
1
1
1
1
1
1

80
39
89

21

.19
17
.15
.14
.12
.11
.11
.10
.09
.08

Eckarta

24. 45
6.09
3.26
2.33
1.90
1.65
1.50
1.40
1.33
1.28
1.24
1.21
1.18
1.16
1.14
1.13
1.12
1.11
1.10
1.09
1.08

1.08
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TABLE VII

Transmission coefficients for H + H2 reaction computed for three

barriers discussed in section IV. B.

T(°K) Eckart®  MSSSMK®  SMSSMK?
150 4.63 18. 53
200 666. 25 1.80 1.72
250 44. 10 1.35 1.12
300 11. 59 1.19 0.98
350 5.61 1.11 0.94
400 3.63 1.07 0. 92
450 2. 74 1. 04 0.91
500 9. 25 1.03 0. 90
550 1.96 1.01 0. 90
600 1.76 1.01 0. 90
650 1. 62 1. 00 0.91
700 1.52 1. 00 0.91
750 1. 44 0.99 0.91
800 1.39 0.99 0.91
850 1.34 0. 99 0. 92
900 1.30 0.99 0. 92
950 1.27 0. 99 0. 92

1000 1.24 0. 99 0.93

1050 1.22 0.99 0. 93

1100 1.20 0.99 0.93

1150 1.18 0.99 0. 93

1200 1.17 0. 99 0.93

1250 1.15 0.99 0.94

a V, = 0.424 eV.

b See text and Table VIII.
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TABLE VI

Labels for barriers for H + H2 reaction and D + D2 reaction

SNSSMK The barrier is computed from the SSMK surface
using the correct minimum energy path for this
surface in normal coordinate space. Then every

point on the barrier is multiplied by 0. 89.

NSSSMK The barrier is computed from the Wall-Porter
parametrized surface using the correct minimum
energy path for this surface in normal coordinate
space. This surface is a fit to the scaled SSMK
surface suggested by Shavitt.

SMSSMK The local zero point energy of the t mode as
computed from the SSMK surface is added to the
SNSSMK barrier.

MSSSMK The local zero point energy of the t mode as

computed from the Wall-Porter parametrized
surface is added to the NSSSMK barrier.
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TABLE IX

Low energy transmission probabilities for the collinear H + H2
reaction on the scaled SSMK potential energy surface as computed
exactly (2-MD) and by two approximate methods (1-MD) discussed

in section IV.B.

9 -MD—— 1-MD
VA - CVE
E T E T E T
) o 0
(eV) (eV) (eV)
0. 0809 2.79(-5) 0.0798 2.79(-7) . 0706 2. 12(-8)
0.1174 1.77(-4) 0. 0987 1. 11(-6) .0951 1. 04(-"7)
0. 1572 1.49(-3) 0.1184 3. 87(-6) . 1221 5. 34(-7)
0. 1980 1.49(-2)  0.1386 1.61(-5) . 1510 2. 85(-6)
0.2170 4. 44(-2) 0. 1588 5.77(-5) . 1812 1.53(-5)
0.2361 1.29(-1) 0.1785 2. 46(-4) L2121 8.03(-5)
0.2448 2.02(-1) 0. 1974 7.99(-4) .2430 4. 00(-4)
0.2510 2. 74(-1) 0.2151 2.57(-3) .2732 1. 84(-3)
0.2578 3.69(-1) 0.2311 9. 03(-3) .3021 7.48(-3)
0.2647 4.78(-1) 0.2451 2. 46(-2) . 3291 2.61(-2)
0.2682 5.24(-1) 0.2661 1.10(-1) . 3536 7. 45(-2)

The number in parentheses is the power of 10 by which the preceding
number should be multiplied.



240

TABLE X

Low energy transmission probabilities for the collision D + D2
on the scaled SSMK potential energy surface computed numerically.

E T
(o)
(eV)
0.1327 2. 60(-7)
0. 1599 2. 12(~5)
0.1964 1.70(-5)
0.2143 2. 47(-4)
0.2361 9. 03(-4)

The number in parentheses is the power of 10 by which the preceding

number should be multiplied.
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Fig. 1. Wall-Porter-type H3 potential
energy surfaces for various choices of

parameter 4.
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FIG. 3. Two dimensional orthogonal coordinate system
for the reaction A + BC - AB +C. The path s from I
to F is the path of minimum potential energy. T is the
transition state. The path a from H to G corresponds
to the asymmetric stretch normal mode of the transition
state and is tangential to the reaction path s at the saddle

point T.
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Ve

)
Distance

FIG. 4. Barrier along various paths through the potential
energy surfa'c,e. Paths a and s are shown in figure 3.
Path c¢ is the path of minimum potential energy in a skewed
coordinate system in which the cross terin in the kinetic
energy vanishes and the reduced mass is the same for motion
in all directions (Jo 66a, pp. 336f).
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Potential energy barriers for the collinear H + H2 reaction
as described in the text as a function of distance (in the
normal coordinate space) from the saddle point of the
surface. The barriers are symmetrical so only one half

of each barrier is shown. The V barrier is the classical
conservation-of-vibrational-energy barrier. The Vq
barrier is the quantum mechanical one assuming vibrational

adiabaticity. 1eV = 23. 069 kcal/mole.

Probability of reaction as a function of translational energy
for the collinear H + H2 reaction (2-MD calculation).

Probabilities of reaction and vibrational excitation for the
collinear H + H2 system as functions of total energy of the
system. The H2 is initially in the vibrational ground
state. The ""T'" along the abscissa indicates the threshold

for vibrational excitation.

Scattering probabilities for the collinear H + H2 reaction
as functions of initial relative translational energy. The
H2 is initially in its ground vibrational state. The "T"

along the abscissa indicates the threshold for vibrational

excitation.
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Fig. 9.

Fig. 10.

Fig. 11,

Fig. 12,
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Probabilities of reaction computed for the collinear H + H2
system as functions of initial relative translational energy.
These are summed over final vibrational states. The H2
is initially in the ground vibrational state. The "T' along
the abscissa indicates the threshold for vibrational exci-

tation.

Probabilities of reaction computed for the collinear D + D2
reaction. The results are for total probability of reaction.
The left curve is calculated exactly for the scaled SSMK
surface. The right curve is calculated by the conservation-
of-vibrational-energy model (a treatment in one mathe-
matical dimension) for the SNSSMK barrier defined in

Table VIII. The "T'" along the abscissa marks the threshold

energy for vibrational excitation.

Probabilities of reaction and vibrational de-excitation for
the H + H2 system as functions of total energy of the

system. The H2 is initially vibrationally excited.

Scattering probabilities for the collinear H + H2 reaction
as functions of initial relative translational energy. The

H2 is initially in the v = 1 vibrationally excited state.
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APPENDIX 1

ELECTRONIC ADIABATICITY AND POTENTIAL
ENERGY SURFACES FOR MOLECULAR DYNAMICS

It is usual in treating molecular mechanics to make an
approximate separation of electronic and nuclear motion (Bo 27,
Bo 54). This is possible because of the light mass of the electrons
compared to the nuclei. For each fixed set of nuclear coordinates
we solve for the energy states of the electronic system. These
are the electronically adiabatic energy states so called because the
electrons are considered to adjust instantaneously to their appropri-
ate fixed-nuclei distribution for any change in the nuclear coordi-
nates. The energy of each of these electronic states as a function
of the nuclei positions can be considered a hypersurface in
coordinate -energy space. Each hypersurface is the effective
potential energy for motion of the nuclei when the system is in that
electronic state. We will generally be interested only in the lowest-
energy electronically adiabatic potential energy surface. The theory
that chemical reactions occur without changes in the quantum
numbers of the electronic system was first discussed by London
(Lo 28) and is sometimes called London's adiabatic hypothesis.
Although reactions which produce electronically excited species
are well known (see, e.g., Th 66, Mo 66), most thermal energy
chemical reactions involving reactants in the ground electronic

states produce products in their ground electronic states (Th 68). *

* The author is grateful to Prof. L. R. Martin for
discussions of this subject.
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Reactions where the potential surface involves a degenerate state
in the separated subsystems limit are one example where many
electronic states are likely to be important in the region where the
subsystems are interacting strongly. It is important to notice that
reaction on the lowest electronically adiabatic surface will usually
look like a crossing of surfaces if viewed in terms of electronically
diabatic states.” For the low-energy collisions of interest here it
is most convenient to use the electronically adiabatic surfaces and
we will do this. At higher collision energies (the few eV range)
some collisions will be nonadiabatic and the lowest few adiabatic
surfaces may be important. In the very high energy range (impact
energies greater than about 20 keV) the collisions can be described

equally well or better in a diabatic basis.

The potential energy surfaces for systems that are isotopic
analogs (e.g., H + DX and H + HX) are exactly the same in this
approximation. However, the energetics on them will be different
because the zero point energies differ (the zero point energy for
any bounded mode of motion is approximately proportional to u~ 1/2
where u is the reduced mass for that mode). Even in the absence
of zero point energy differences the difference in reduced mass
produces different classical mechanical dynamics and would produce

different quantum mechanical dynamics.

* This follows by looking at the coefficients of the various
structures in a valence bond description (atomic orbital basis
description) of the wave function. Before the reaction the coef-
ficient(s) of the structure(s) corresponding to bonding in the bond
to be broken is(are) large and the one(s) for the structure(s) corre-
sponding to bonding in the bond to be formed are small. After the
reaction, this situation is reversed. See, e.g., Ya 59, Po 69,

Ma 40, and Ch 69.



258

Once the potential energy surfaces corresponding to differ-
ent electronic states have been determined, the scattering process
can be treated by methods discussed elsewhere. If the atomic
scattering is treated classically, we must be able to assign one
unique potential energy to each set of atomic coordinates. One case
where this is possible is when the system remains in one particular
total-system electronic state throughout the entire collision event.
If the atomic scattering is treated quantum mechanically, the
coupling of different electronic states may be included. The close
coupling method using an expansion in eigenfunctions of the sepa-
rated subsystems (see chapter I) can be used for the coupling of the
electronically diabatic states. The perturbed stationary state
method (see section I.A. 1) can be used for the coupling of the
electronically adiabatic states. In the latter case the potential
energy becomes a differential operator in the matrix close coupling
equations and we require both the diagonal and the off-diagonal
matrix elements as input. The calculations described in chapter
IV are an approximation to this method where only one (the lowest)
electronically adiabatic electronic state has been retained so that
we require only one diagonal matrix element, i.e., the potential
energy. In addition there are even corrections to the fixed-nuclei
potential energy diagonal matrix element; we neglect these. This
is the Born-Oppenheimer approximation. The corrections to this
approximation and the full nonadiabatic treatment of the coupling
of Born-Oppenheimer electronic states have been presented by
Hirschfelder and Meath (Hi 67).
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APPENDIX 2
NUMERICAL SOLUTION OF THE CLOSE COUPLING EQUATIONS

The close coupling approximation involves expanding VY as

v = ) F®e). (1)

i

It is described in section I. A, but in this appendix a more simpli-
fied notation suffices. R is the distance between the colliding
subsystems and cpi( r) are products of their internal eigenfunctions
and channel angular functions.

For nonrearrangements, there are two basically different
approaches to solving for the close coupling approximation reaction
probabilities -~ one is based on solving for the scattering wave
function and the other solves for the transition matrix directly
without obtaining the wave function. To solve for the transition
probabilities from the wave function requires an analysis in the
asymptotic region of an appropriate number of linearly independent
solutions of the Schroedinger equation or its truncated matrix equi-
valent obtained by substituting (1) into (H - E) ¥ = 0 and successive-
ly taking inner products with the ® - Such an analysis of linearly
independent solutions was used for electron-atom collisions by
Bransden and McKee (Br 56), Marriott (Ma 57, Ma 58), Smith and
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coworkers (Sm 60, Sm 60a), and many others.™ The first appli-
cation of this method to a molecular problem was by Marriott (Ma
64, Ma 64a, Ma 65a) for atom-spherical vibrator collisions. The
method has since been used to solve the close coupling equations
for several molecular collision problems: atom-rigid diatomic
rotor collisions (Al 67, Le 67, Le 68, Er 68, Ki 68), electron-
rigid diatomic rotor collisions (La 67, Ar 68, La 68, Cr 68, It 69,
He 69, La 69, atom-atom collisions with transitions among hyper-
fine levels (Al 69), linear atom-diatomic vibrator collisions (Ri 67,
Ch 68) and linear diatomic vibrator-diatomic vibrator collisions
(Ri 67, Ri 68). The method of linear combinations of independent
solutions has also been applied to solutions of the Schroedinger
equation obtained directly by finite difference methods without using
a state expansion (Di 68a).

Different methods have been used to obtain the independent
solutions. One method is to integrate the differential equation out-
ward as an initial value problem. In order for the expansion (1) to
be complete it must include virtuals, i.e., closed channels. When
these are included one component of the solution is rising expo-
nentially at large R. If one must integrate out to fairly large R
this component may so dominate the wave function as to make it
impossible to analyze. To alleviate this difficulty, Smith and Burke
developed a method of integrating both outward from R = 0 and

inward from the asymptotic region to some intermediate values of

* See, for example, Go 62, Bu 62a, and many other papers
by P. G. Burke and K. Smith and their coworkers. A particularly
clear exposition of the general method is given in Ba 65. For a
review of the methods used and references to some other methods
of solving the equations, see Bu 62b and Bu 62c. For a recent
review of work in this field see Bu 68.
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R and there matching the solutions (Sm 61, see also Bu 62b). In
some applications to molecular problems it has been possible to
simply take a linear combination of solutions that eliminates the
rising virtual components (Ri 67, Ri 68, Di 68a). Chan, Light,
and Lin transformed at large R to a more truncated basis which
neglected virtuals (Ch 68). This could cause a lack of accuracy
which has not been evaluated. Johnson and Secrest devised a way
to eliminate these computational difficulties by using a modified
coordinate system at large R (Jo 67, Jo 68). A version of this
method is incorporated into the analysis scheme used in chapter
IV.

Another problem which arises when the method of initial
value problem with outward integration is used is that at large R
the solutions tend to become linearly dependent. * A method of re-
orthogonalization to counter this tendency has been developed and
successfully employed by Riley and Kuppermann (Ri 68). This
method successively recombines the solutions in order to obtain a
linearly independent set in the asymptotic region. It is called the
DRILL method (for Direct Reduction of ill-conditioning). A simpler
way to attain this result is to solve the problem by a boundary value
(BV) method instead of an initial value method. This method was
apparently first used for coupled equations by Pennell and Delves
(Pe 61, see also Bu 62). Diestler and McKoy considered this
method but concluded it would be difficult because the finite differ -
ence matrix would not be banded (Di 68a). However, this is

* This was first noted by Marriott (Ma 64) and is discussed
in detail in Ri 67 and Al 69. In some cases, however, this
tendency has not been as strong and it was possible just to ignore
it (e.g., Le 67, Le 68).
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because they did not consider the optimum sequence of equations.

A suitable renumbering of finite difference mesh points and equations
li.e., Fl(Rl)’ FZ(RI)’ ceey FN(RI)’ FI(RZ)’ F2(R2), ey FN(Rend)
instead of Fl(Rl)’ FI(RZ)’ ceey Fl(Rend)’ FZ(RI)’ F2(R2), cee
FN(Ren d)]produces a bonded matrix with narrow bandwidth. The
DRILL and BV methods can be equivalent if the outward DRILL inte-
gration initiates from a null value matrix (e.g., where R is aradial
coordinate and the boundary condition is Fi(O) = 0). In general the
disadvantage of BV methods over initial value (IV) methods of
solving differential equations is that they require more computer
storage. The BV method has been used by Gutschick et al. (Gu 69).

The molecular c.c. equations have also been solved by
methods which solve for the scattering matrix directly (without
obtaining the wave functions). A method of this type was first
developed by Degasperis (De 64) and the methods have been applied
to linear atom-diatomic vibrator collisions (Se 66, Ri 67, Ch 69a),
linear diatomic vibrator-diatomic vibrator collisions (Jo 67a, Jo
68, Le 67a, Le 68b, Le 68c).

Either the c.c. method (with a coordinate system of the
type used in Ma 66 and Ra 68) or the (no state expansion) finite
difference method (see Appendix 2) in any coordinate system can
be used to obtain linearly independent solutions for the scattering
problem which can then be analyzed by procedures like the one given
by Diestler and McKoy (Di 68a) for collinear atom-molecule col-
lisions. Of course various combinations of the c.c¢. and finite
difference (FD) methods are also possible. Also there is a large
variety of possible analysis procedures (for example, compare Di
68b with the R matrix analysis in chapter IV of this thesis and

compare the asymptotic analysis in terms of complex exponentials

with that in terms of spherical Bessel functions).
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With regard to combinations of the c.c. IV, c.c. BV, and
finite difference BV methods, one might consider using one method
for small R and another closer to the asymptotic region. If one
obtains a solution  of the Schroedinger equation for small R
using any of the three types of methods, this solution can always
be extended by a c.c. method but an FD extension would require
solving an elliptic differential equation with Cauchy boundary con-

ditions and is unstable (Mo 53).
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APPENDIX 3

NUMERICAL SOLUTION OF THE MULTIDIMENSIONAL
SCHROEDINGER EQUATION FOR SCATTERING PROBLEMS

Consider the Schroedinger for two interacting subsystems
A and B with composite internal wave function ll:ic (¢ ) where i
represents all the quantum numbers and c all the internal coordi-
nates of the subsystems and the coordinates representing their
orientation. Then if R is the distance from A to B the wave

function can be written

v =) en f®) 46 (o) (1)
i

where the f.(R) are a complete set of orthogonal functions. The

close coupling (c. ¢.) method defines

F,(R) = Z ¢y £ (R) (2)
A i
so that

v= ) F® LS () (3)

i

(cf. eq. (I.40)) and uses the variational method to derive an
equation which is solved numerically for the Fi(R)’ Thus the
close coupling method treats the variation along different coordi-
nates unevenly. The wave function's dependence on the ¢ coordi-
nates is represented by an expansion in basis functions and its
dependence on the R coordinate is solved for numerically.
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Depending on the numerical method used for integrating along the
R direction, the correspondence between the two representations
may be made to appear more or less similar. For example, the
three point finite difference scheme is equivalent to applying the
variational technique to the subspace of continuous piecewise linear
functions (He 68). In case this approximation is used we can
consider the close coupling equations to be a variational solution
of (1) where the functions \l!ic are chosen in one of the standard
ways and the functions fj are all the continuous functions which
are separately linear over each interval between adjacent finite
difference mesh points.

It is obviously possible to solve for the wave function VY
in a less asymmetric fashion. One way is to approximate Fi(R)
by an expansion in a finite set of functions as in eq. (2) and to
solve variationally for the coefficients. This will convert the
differential equations problem into an algebraic problem. The
input to the algebraic problem consists of integrals over the various
expansion functions. This method is called the method of internal
functions (Ma 65, chapter VI, § 1) or the Harris method (Ha 67,

Mi 67, Ne 68, Ha 69).

Another method of treating the coordinates more symmetri-
cally is to solve numerically in all coordinates as one multi-
dimensional problem. Many standard techniques of numerical
analysis may be brought to bear on this problem because the
numerical solution of elliptic partial differential equations is a
well-studied topic. This is the method used by Mortensen and
Pitzer (Mo 62, Mo 68) and Diestler and McKoy (Di 68a, Di 68b)
and in chapter IV.
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APPENDIX 4

NUMERICAL SOLUTION OF THE ONE DIMENSIONAL
SCHROEDINGER EQUATION FOR BOUND STATES

This appendix is concerned with the calculations of vibra-
tional energy eigenvalues and eigenfunctions for diatomic molecules.

A need to compute the nuclear vibrational motion eigen-
functions and eigenvalues for a diatomic molecule arose in two of
the projects descr‘ibed in this thesis: the scattering of electrons
and hydrogen atoms from hydrogen molecules. The programs used
to solve this problem are described in this appendix. The appendix
also contains a study of the one dimensional eigenvalue problem for
infinite square wells and parabolic wells; this was undertaken in
order to determine the accuracy of finite difference approximations
in these cases and to estimate what mesh sizes were needed to
obtain various levels of accuracy in the eigenfunctions. The latter
information was necessary to make an esfimate of the feasibility of
the H + H2 scattering calculations which were later undertaken.
The study also compared some approximations which can be made
in solving the problem and showed which procedures are more
accurate and should be used for more complicated cases where
detailed testing is not feasible.

Denote the positions of the two nuclei in the diatomic
molecule as ﬁl and ﬁz (with R = Iﬁl - ﬁ2|) and their masses
as M, and M, (with u = M1M2/[M1 + M, 1). Treating the motion
of the electrons as adiabatic with respect to nuclear motion (see
appendix 1) and making the usual separation of rotation and
vibration we obtain the radial equation for the kth vibrational wave
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function of the molecule (in a singlet state and its lowest energy
rotational state, see Mo 48, § 23 or La 65, pp. 293-294 for more

details):
H(R) 9, (R) = [T(R) +V(R)]% (R) = & o (R) (1)
where
2
_ 1 8
T®) = -3 3 (2)

and V(R) is the diatomic molecule's potential energy curve (total
fixed-nuclei electronic energy of the molecule minus total
electronic energy of the separated atoms). Equation (1) must be

solved with the boundary conditions

2,(0) = 0 (3)
wW® - 0. (4)

The problem is thus equivalent to the case of a single particle
moving in one dimension with an infinite potential energy for

R < 0 and the potential energy equal to V(R) for R>0. For
most realistic molecular potentials eq. (1) cannot be solved
analytically (see, however, Mo 29 and Mu 69). It is then con-
venient to use numerical integration (an alternative is to use the
Rayleigh- Ritz method to obtain the coefficients in an expansion
of the solution in terms of a set of known functions; a recent

example of this type calculation is given in Ze 67). A common
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method of integration is to treat eqs. (1) and (3) as an initial value
problem and to integrate outward. The method of Cooley is the
most often used procedure of this type (Co 61, Ca 63, Za 63); it
uses inward and outward integration with matching of the approxi-
mate solutions at intermediate R. The procedure must be iterated
until the correct eigenvalue is found. The method described in this
appendix is simpler to program and capable of equivalent accuracy.
It requires more storage locations but not enough to be a serious
problem on most computers. This method has two distinguishing
features. First, the system of eqs. (2) - (4) is treated as a

boundary value problem. For Rin small enough and Ro large

enough a good approximation to the boundary conditions isu:hat
cpk(Rin) = cpk(Rout) = 0. The equation is then solved by making the
finite difference approximation. This method is essentially an
application to one dimensional problems of a method applied to two
dimensional problems by Diestler, Winter, and McKoy (Di 67, Wi
68). Although for these 1-D problems we could use high order
difference formulas and a very fine mesh (i.e., a large number of
grid points), we were more interested in the model problems in
solving the 1-D problem to the same accuracy as the problems
which arise in H + H2 scattering. Therefore we used the 3 point
difference formula and 10 to 70 points across the well [Diestler
(Di 68) had used the 3 point difference formula with 20 to 32 grid
points in his scattering calculations and Mortensen (Mo 48) has
used 73 to 81 points]. For the problem of vibrational excitation
of the hydrogen molecule we found that sufficiently accurate eigen-
functions could be obtained by using the 3 point difference formula
and a large number of grid points. Further, the higher order

difference formula can be used without extra assumptions only in
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the interior of the grid point region for a boundary value problem
and extra testing is required to find out the effects of the special
approximations which must be used near the boundary. Thus we
will not consider the higher order difference formulas.

We now consider the theory of the application of this

method to specific cases, the numerical methods used, and the

results.
Infinite square well. We use reduced units where u=1
and
0 R<m
V(R) = (v)
® R>nm

Consider a set of N mesh points (or grid points) R, evenly spaced
between R =0 and R =m. Then the step size h between mesh
points is ©/(N +1). Let

P = B (Ri) (6)

and make the finite difference approximation

2

; S W -2 .+ O ) (7)
—7 751,k 7 2%k Y P,
R lgp-g B

1

Then the differential equation and its boundary conditions reduce
to a set of linear equations for the values of the eigenfunction at
the mesh points. These equations can be written in matrix form

as
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N
Z Hiop = &% i, k=12, ..., N (8)
=1

or more conveniently as

N
2 Givy = M@ Lk=1 .., N (9)
i=1
where
Gij = =2 6ij + Gi’ j-1 (1- ail_) + 5i,j+1(1 - siN) (10)
and
e, = -1 /2h2 (11)
k k :

As indicated, the finite difference approximation with N grid points
across the well yields approximations to the N lowest energy eigen-
functions and eigenvalues. The exact solutions of the differential

equation are known in this case and are

e = gk k=12 ... (12)

cpk=/27'1? sinkR. (13)

Parabolic well. We consider the case u=1. The

parabolic well is given by

2
V@R) = - %(R— %a) . (14)
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The Schroedinger equation is given by (1) or by

FRI%®) = [GR) + UE] g (R) = ¢ (R) (15)
where
G(R) = - 2n% T(R) (16)
UR) = -2n% V(R) (17)
N = -2h0 e . (18)

In matrix notation the equations for the finite difference solution

are
N
Z Fii®k = ™ % (19)
=1
F.. = G, + 5. U.. (20)
ij ij ij "ii

where

- UR,) = -h2(R -la)2 (21)

ji = UWRy) = i~33) -

The almost exact solutions of the differential equation (15) are

e, = (k-5) k=12, ... (22)

and
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-1/4 2
-(2R-a)"/8

Yy
2K k- 1)1

is a Hermite polynomial. These solutions would be exact

(23)

and Hk
if the boundary condition (3) were at R = -~ instead of R = 0. The
difference caused by this change in boundary condition is generally
small here because we consider large enough values of a.

Hydrogen molecule. In this case we use atomic units.
Then u = 919. 05 and V(R) is taken from the accurate calculations
of Kolos and Wolniewicz (Ko 65). The matrix equations for the

finite difference solutions are then
) Fii P = & Pk (24)
i

where

Fij = éij [-(2/m) + Uyl o+

1/u [51’]._1 (1-8,,) + 5, j+1(1 -8 1 (29)

_ 2
N = -2h € (26)

2
U, = -2h V(Ri). 27

For calculations on D2, the only change is u = 1836. 1.

Numerical methods. The numerical work principally

consists in diagonalizing the finite difference matrix to obtain its
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In all cases we used the Givens-

Householder method and single precision arithmetic on the Caltech

IBM 7094. The Givens-Householder eigenvalue and eigenvector

subroutine was supplied by F. P. Roullard III.

Results for model problems.

For the infinite square well

the energy eigenvalues could be obtained fairly accurately even for

high k. The following table illustrates this:

k
1
2
3
4
5
8
12
17
23
30

U WN -

12

23
30
40
60

N

~JOTWN = O W et =T B =

.999~
.998

.491

.972

.2431
. 1551
. 9741
. 3552
. 3502
. 6732
.5422
.5352

20

.991”
. 985
. 425
. 764
. 1931
.8361
. 4631
. 1601

O 1IN k= ) i )

60

O COD it =T 0O bt =T 4 b B

.999”
. 999
. 493
. 979
.2451
.1671
. 0321
. 3782
. 4242
. 8772
. 1182
. 6222

30

. 996"
. 993
. 465
.891
.2231
.029}
. 355
.1212
. 6452
. 9422

bk ek et OO GO b =T S e A

70

Pt OO M DN et =T QO bt T D et N

CODI DD i O QO bt =T 4 =2

80

-1

. 999
. 999
. 495
. 984
. 246
1741
o711
. 3932
. 4742
. 0152
.5192
.1213

40

. 998
. 996
. 480
. 938
.2351
. 1011
.7071
. 2522
. 0272
. 8362
. 4012

b OO W DD =t aT QO =t T N N

WO = OOt =] D A

90
-1

. 999
. 999

. 496

. 987

. 2471
. 1801
. 0081
. 4042
. 5092
. 1122
. 8072
. 2423

50

.998"
. 997

. 487

. 960

.2401
. 1361
.8781
. 3182
.2312
. 3572
. 6892

Exact

et OO W DN it =J QO = OO DO N

. 000~
. 000
. 500
. 000
.2501
.zoo}
.200
. 4452
. 6452
. 5002
. 0002
. 8003
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In this and other tables, the superscript indicates the power of ten
by which the number is to be multiplied. For the infinite square
well problem, the classically allowed region of the well does not
vary with k (for the parabolic well the classically allowed region
is wider for higher energy solutions). The results for the square
well illustrate the greater difficulty, with increasing k, representing
the rapidly oscillating eigenfunction with a finite number of points.
We also computed the overlap of the FD solution with the exact
solution. This was done two ways - using Simpson's Rule (SR) and
using the trapezoidal rule (TR). In each case the FD eigenfunction
was normalized using the same method that was to be used for
computing the overlap integral. Some typical overlap integrals are
given in the table below: in each case the upper of a pair of values

is the SR value and the lower is the TR value.

N 20 50 90
k

1 1. 000176 1. 000012 1. 000002
1. 000000 1. 000000 1. 000000
4 1. 002515 1. 000194 1. 000034
1. 000000 1. 000000 1. 000000
7 1. 005934 1.000571 1. 000105
1. 000000 1. 000000 1. 000000
16 1. 003665 1. 002268 1. 000504
1. 000000 1. 000000 1. 000000
25 1. 003259 1. 001057
1. 000000 1. 000000

The agreement obtained using the trapezoidal rule is excellent.
It results from the wave functions normalized this way agreeing
to more than 6 significant figures with the value of the exact wave

function, point-by-point. Likewise the error in the SR case is
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due to the SR-normalized wave functions differing (point-by-point)
from the exact wave function by about the same amount as the over-
lap integral differs from 1.0. The conclusion is that solutions
obtained using the 3 point difference formula should be normalized
using the TR.

We also computed the overlap of the appraximate solutions
with interpolated values determined from the N = 90, 40, and 30
approximate wave functions. The overlap integrals and conclusions
were similar to those above.

For the parabolic binding potential the situation is more
complicated because of the exponential tail on the exact wave
function. Because of the exponential tail, there is an optimum h
for any fixed N. K h is too small, the tail of the wave function
is truncated too close in by eq. (4). If h is too large the grid
points are being used to obtain an unnecessarily accurate repre-
sentation of the tail at the expense of a poor representation of the
part of the wave function that is large. In our model problem here,
h=a/(N +1). We did calculations with a = 8, 10, 12, 14, and 16.
For N = 40, 60 the conclusion concerning the optimum a depends
on the level considered and also on whether the eigenvalue or the
overlap is used as the criterion of goodness. The following table
illustrates this. For each criterion and level listed the table gives

the optimum a among those tried (8 - 16):
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Criterion Eigenvalue Overlap with exact solution
N 40 60 40 60
k
1 10 8 8 8
3 10 8 8 8
5 10 8 10 10
7 8 8 10 10
9 10 10 10 10
11 10 10 10 12
13 10 10 12 12
15 10 10 12 12
17 10 12 12 12
19 10 12 12 14
31 10 12

Even in low energy collision problems one will want a grid capable
of giving accurate results even for higher energy solutions because
of the importance of virtual states. This table provided a rough
guide (after scaling and allowance for anharmonicity) to the optimum
spacing of grids for our first attempts at collision problems.

The following table shows how accurately the eigenvalues
are predicted. Also listed for the levels shown are the widths of
the classically allowed regions (CW = classical width).
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a 10 12 10
CwW
N 40 40 60
K

1 2.00 4.981 4.973 4.992

3 4.47 2.476 2. 465 2. 489

5 6.00 4. 422 4. 387 4. 465

7 7.21 6.338 6.264 6. 428

9 8.25 8. 229 8. 092 8. 386
13 10. 00 1.2131 1. 1591 1.2561
19 12.17 1.9101 1.6531 2. 0761
27 14.56 2.8771 2. 2561 3.4741
36 17. 09 3.5591 2. 9051 5.1721
47 19.29 6.9031
a 12 14 16 Exact

N 60 60 60
K

1 4. 988 4.983 4.978 0.5

3 2. 484 2. 478 2.472 2.5

5 4. 450 4. 431 4.410 4.5

7 6. 396 6. 357 6.312 6.5

9 8.321 8. 254 8. 176 8.5

13 1.2111 1. 0121 1. 1741 12.5
19 1.7921 1.7291 1. 6881 18.5
27 2. 6071 2.4151 2.2971 26.5
36 3.8911 3. 2121 2. 8441 35.5
47 5. 0381 3. 9831 3.5751 46.5

The results show that good accuracy can be obtained for the
lower levels (which are of primary interest here). The overlaps
with the exact eigenfunctions are given in the next table. These

were computed with the trapezoidal rule.
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a 10 12 10 12 14 16
40 40 60 60 60 60
k

1 1. 00000 0.99999 1.00000 1.00000 1.00000 O.99999
3 0.99987 0.99973 0.99997 0.99995 0.99990 0.99983
5 0. 99911 0.99809 0.99982 0.99963 0.99931 0.99880
7 0. 99641 0.99242 0.99926 0.99857 0.99729 0.99525
9 0. 98796 0.97817 0.99664 0.99597 0.99231 0.98643
13 0. 83755 0.89417 0.89347 0.98061 0.96401 0.93564
19 -0.24473 0.34522 -0.12813 0.74848 0.82206 0.68343

The only really bad results in these tables occur when the grid does
not even cover the full classically allowed region. Of course one
would never use such a grid in a real problem. The tables show
one can obtain agreement within a few per cent for say the first ten
levels using practical sized grids. This means that it is possible
to use this method of obtaining vibrational eigenfunctions even in
problems involving much vibrational excitation. ‘

Results for H2' The following table gives the results for
H2 vibrational energy levels using the Kolos and Wolniewicz
potentials. The table lists values of R (in ao) at which the wave
function is assumed to vanish, the number N of grid points, the
step size h (in ao), the zero point energy (ZPE), and the amounts

of energy needed to excite the first and second vibrationally excited

levels. The energy quantities are in atomic units. The last line

gives the results of Kolos and Wolniewicz.



Range N
0.2 -3.8 17
0.2 -4.2 19
0.3 -4.1 37
0.35 -3.8 68
0.35 -4.05 73
0.39, - 4.01 361
0.393 - 4.006 541
Kolos-

Wolniewicz

0.200
0.200
0.100
0. 050
0. 050
0.010
0. 006
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ZPE

0. 0094530
. 0094530
. 0098155
. 0098963
. 0098963
. 0099220
. 0099226
. 0099291

COO0OOCOCOO

0
0
0
0
0.
0
0
0

AE1

. 017219
. 017219
. 018554
. 018861
018861
. 0189560
. 0189582
. 018959

COO0OO0OOCOOO

AE2

. 014217
. 014217
. 017171
. 017715
. 017715
. 0178811
. 0178849
. 017888

The superior dot indicates the digit is continued as a repeating

decimal number (e.g., 0.6 = 2/3).



Ab 64

Ab 68

Ac 64

Al 67

Al 69

Ar 68

Ba 34

Ba 50

Ba 53

Ba 58

Ba 60
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A. INTRODUCTION

An electron that collides with a molecule can leave it in a
vibrationally excited state. Although this process has received
considerable attention, there has been no previous calculation of the
differential scattering cross sections for electron-molecule collisions
with vibrational excitation of the ground state. -

In this paper, we describe a method that is used for such
calculations on the scattering of electrons by molecular hydrogen in é
series of papers, 1 of which this is the first. Further we present
some results of our calculations for differential and integral cross
sections. (The differential cross section--DCS--is differential in the
angle of scattering and the integral cross section--Q--is the integral

of the DCS over all possible scattering volume elements. )

The most complete previous calculations of the integral cross
sections are those of "I‘akayanagi2 and of Breig and Lin.3 Using a
plane wave approximation, Breig and Lin calculated the scattering due
to the long range forces. They obtained the necessary vibrational
matrix elements of the electric quadrupole moment and electronic po-
larizability from experimental data on the intensities of Raman spectra.
That data can be used only for one quantum transitions, so in our treatment
we have instead obtained the matrix elements by accurate numerical inte-
gration using properties calculated by Kolos and Wolniewicz.4 We have
extended Brieg and Lin's scattering treatment to simultaneously in-

clude contributions from long range and short range interactions.
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The treatment of the short range interactions basically follows that
used earlier by Carson, 5 We have used this extended method (a first
Born calculation for all important interactions augmented by polari-
zation) to calculate differential and integral cross sections for the
elastic scattering and the 0—~1, 0—~2, and 0~ 3 vibrational excitations
and to study the effects of various parts of the potential on the scatter-

ing cross section. We have also examined the inclusion of exchange

scattering in the theoretical description and the resulting cross sections
by means of the Ochkur-Ridge relation.s"7
We have compared our results for elastic scattering at impact

energy E < 20 eV with some partial wave method calculations of Wilkins

8 9 which do not include the polarization,

10 which

and Taylor™ and Tully and Berry
with some partial wave method calculations of Henry and Lane
include all important interactions, with some older theoretical calcu-
lations of elastic cross :section:s,1 1-14 and with experiments on the total
scattering cross section.15 We also compare our differential cross
sections for elastic scattering to the E = 3.5 eV experimental data of

16 and to the available high-energy experimental data

Ehrhardt et al.
(E > 100 eV) 17-20 In papers II and III of this series we compare the
theory to all the experimental data (including that of Trajmar et al .1 and
Ehrhardt et g_}._.m) for DCS's in the 7-100 eV energy region for elastic
scattering and vibrational excitation. and to all the experimental data

(it is all for E < 82 eV) for the magnitudes of the vibrational excita~

tion cross sections. We present in the present paper the first estimates
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of the elastic and vibrational excitation integral cross sections for
E = 90 eV. Our predictions of absolute values of elastic scattering
and vibrational excitation integral scattering cross sections at lower
energies are summarized in papers II and IIL

Previous éalculations of vibrational excitation cross sections
(e.g., Refs. 2-3,5) were concerned with integral cross sections. In
the most recent of those investigations it was shown3 that it is sufficient
to take into account only the long range potentials to obtain cross sec-
tions of the right magnitude. We will show that such calculations are
not sufficient for calculating the DCS. An improper treatment of the
forces at short range can lead to the wrong angular dependence of the
cross section at small scattering angle and order of magnitude errors
at large scattering angles.

The plane wave approximation used here is expected to be valid

at high energies .21a

We do calculations not only at high energies but
also at low and intermediate energies where distortion of the scatter-
ing waves might be important. Gerjuoy and Stein22 argue that when the
scattering is dominated by the long range part of the potential the plane
wave approximation is valid even at low energy because most of the
contribution to the transition integral comes from large electron-
molecule separations at low energy. But Takayanagi and Geltmam23
argue that s, p, and d waves (where the partial waves are named ac-
cording to the orbital angular momentum of the scattering electron with
respect to the center-of-mass of the molecule) are also important and

that s and p waves are appreciably distorted below about 6 eV (they did
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not consider higher energies). In section C we present the extension
of our method which is necessary for including some distortion in the
s and p waves. A calculation using this method would be a better test
of the importance of distortion than previous distorted wave calcula-

tions2

because the present treatment includes the long and short range
forces simultaneously and does not completely neglect any partial

waves.
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B. QUANTUM MECHANICAL THEORY OF ELECTRON-MOLECULE
SCATTERING IN THE GROUND ELECTRONIC STATE NEGLECTING

DISTORTION

The most complete and straightforward (and usually impractical
at present) way to treat electron-molecule scattering is to consider
all important molecular states explicitly and solve the full set of coupled
equations. Aside from this, several treatments of the nuclear motion
in electron-molecule scattering have already been given. 3,24-33
We treat the problem by computing an approximate local potential
V(;:, B) representing the interaction of the electron (at position r with
respect to the center-of-mass of the molecule) with the molecule.
This potential depends parametrically upon the nuclear positions (13 is
a vector fixed in the molecule; in particular, R is the vector from
one nucleus to the other). We treat the scattering problem as the
collision of a particle interacting with a rotating vibrator by the
interaction potential V(}'\, R). In this context polarization is treated by
modifying the effective potential. Another effective potential can be
added to simulate the effects of exchange of the scattering electron and

14,34-36

the bound electrons, or these effects can be included by using

an Ochkur-Bonham-like relation 6,7

between the exchange and direct
scattering amplitudes. In our calculations the latter method was
applied. We now consider the interaction potential and the scattering

calculation.
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1. Potentials
The interaction energy between an electron and a hydrogen

molecule can be written
VI,R) = V'(r, R) + V¥(r, R) (1)

where V' is the first order potential (i.e., the interaction energy
between the electron and the unperturbed molecule) and V? is the
polarization energy (i.e., the correction to V' due to the relaxation
of the molecule, in particular its eleetronic charge distribution, in the

presence of the electron). The static potential V' is given by37

Vi@, B = Vi R + Vo, B) @)
where
1 1
R) = [|w -R)F |- -
Vi, R = [ ¢TI T2 B)| ( o r| dndn (3)
and
e _ o2 1 1
v (F\’ B) - fl\pg(£1’ I;z»B)l (};’1' + 'fo—z)df\ldf\z (4)

v g is the unperturbed ground state electronic wavefunction of

H,, r, and r, are the coordinates of the bound electrons, ry; = |£ - £i| ,
and ToA and rog are the distances of the nuclei from the scattering
electron. The potential V' has been calculated accurately for H, at
one R by Ardill and Dawison.38 However, we require the dependence

5

of V! on R. A simple approximation used by Carson"” is to calculate
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the potential due to two spherically symmetric atomic charge distribu-
tions centered at the two nuclei. The atomic charge distributions have
R-dependent screening parameters.39 We call this potential VC. The

first two terms in the multipole expansion of Vc are calculated:
Ve, R = V@, R) + VO, R) Pyr-R) (5)

Unfortunately, such a charge distribution does not have a quadrupole
moment and thus VC (and every term in its multipole expansion)
decreases exponentially in magnitude at large r. In particular, taking
the atomic charge density of atom A to be proportional to e"2 Zr °A, we

obtain forr > %:

C 2& 2y .
Vo (r,R) = TyR [ ZR cosh ZR - (3 + Zy) sinh ZR] (6)
and
vie,R) - H)—e-—z—y{Rcosh ZR - y sinh ZR + —— [ (y%+R?) cosh ZR
’ yR YZR

- 3yR sinh ZR] + —>— [(R% 8y°R) cosh ZR
V2R

3

- (y3+ 8yR?) sinh ZR] +
(YZR

[21y°R? cosh ZR

)3

- 8yR(y*+R?) sinh ZR] + 2634 _[R cosh ZR

Y'ZR
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-y sinh ZR] - %3 sinh ZR} )
y’Z°R

where y = 2r. The potentials for r <§ are given by these expres-
sions with y and R interchanged. For the hydrogen atom exponent

Z, we used40
Z = 1.0 + 0.6875 exp(-1. 0002343 R). (8)

This is an approximate fit to the results of exponent-optimized
minimum basis set calculations on H, and is much more accurate
than the linear Z(R) dependence which Carson5 used.

Note that neither VOC nor V,_,C

can be written as the product of a
function of r times a function of R. This is illustrated in Fig. 1, which
shows (parts a and d) the change of shape of Vf (L=0,2) as R varies.
VoC (r, Re) agrees quite well with the accurate spherically sym-
metric potential computed from a one-center wavefunction by Ardill

and Davison38 (cf. Lane and Geltman35 for a graphical comparison of

Voc with the potential from a slightly less accurate single-center
calculation).

Gerjuoy and Stein22 have pointed out the importance of the
quadrupolar interaction term for electron-molecule collisions causing
rotational excitation. We expect that this interaction, because of its
long range, is important for vibrational excitation problems also.

Thus we have completed the V' potential for H, by adding to the short

range terms (6) and (7) an electron-molecular quadrupole interaction
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term
Vo, B) = - LB 1) BB (9)
r

where Q(R) is the molecular quadrupole moment, aQ is a "'cutoff
radius", and f(r) is a "cutoff function” which is 1 for r > aQ. Note
that some authors define the quadrupole moment to be a factor of two
smaller than the one used here. Four forms for f(r) were considered,;
’
B 3, B 4, C ¥

. = : = b = M = 1.
for r< g they are: f (r/aQ) ; f (r/aQ) ; v =0; f
For the first three, the best aq was determined by the criterion that
Q(Re)

5 r3 f(r) (10)

Vi(r, Rg) = VE(, Ry) -

give the smallest average deviation from the accurate V; (r, R e)
published by Ardill and Davison38 (their potential includes the quad-
rupole interaction automatically). For the comparison we had to take
Q(Re) = 0.978 a.u. and we considered various values of aQ in incre-
ments of 0.1 a,. (For our scattering calculations, we took Q and its
dependence on R from the accurate calculations of Kolos and
Wolniewicz. 4) Table I shows how good a fit could be obtained for each
form. We will consider scattering off all four forms of the potential to
. enable us to judge previous work but the B’ potential with aQ =2.0a,
agrees best with the accurate potential and is considered most theo-
retically justifiable for use in conjunction with the Carson potential.
Figure 1b shows a comparison of this V.: potential with the Ardill-

Davison one. The linear dependence of Q on R used by Breig and Lin3



318

for Av = 1 transitions (v is the vibrational quantum number) would not
give reliable results for Av > 1. Figure 1b also shows the R depen-
dence of the theoretically most justifiable V;. Since the shape of the r
dependence of Vz1 depends on R, a product form |

would not be a good approximation in this case either.

The second order potential V? is more difficult to evaluate.
However, it was pointed out by Dalgamo and Moffettz'7 that polari-
zation is very important for excitation of nuclear motion by electron

impact. They considered rotational excitation only. Breig and LinS

and Takayanagi ® pointed out the importance of the polarization
potential for vibrational excitation and Breig and Lin showed that it is
more important than the quadrupole interaction for vibrational
excitation by low energy elecfrons. A close coupling caléulation
including excited electronic states would automatically include the
polarization. However, we will include the effect as an additional
effective potential. The exact form of this potential could be chosen
in at least two different ways. We could choose the polarization
potential which, when included in our scattering calculation, gives
the best agreement with experiment. Or we could choose the polari-
zation potential from a consideration of the electronic interactions.
The former approach is unsatisfactory in that adjustment of Vv? could
compensate for any inherent inaccuracies of the scattering approxi-
mations (see sections 2 and 5 below) used here. Then the "best"
polarization potential might have little physical significance. The

latter alternative therefore seems likely to lead to better understanding

" of the scattering process.
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In the adiabatic approximation (V? calculated for each r and R

for fixed nuclei and a stationary scattering electron) it is well known

that
aR) d®R) , ~ = _
ViR O -5 e PR = Ve B {0
2 2 L2 A
VaF(g, R) = Vo’ aF(T; R) = Vz, 2T R) P,(r -R) (12)

where a and a are given in terms of the static dipole polarizability
of the molecule parallel (a”) and perpendicular (« ) to the inter-

nuclear axis by

a = %(a“ +2a_L) o = %(a” - a_L) (13)

The expression (11) holds for r large enough and E (the scattering
electron kinetic energy) low enough. But when r is small a more

complicated expression can be obtained for the adiabatic polarization

41

potential which is finite everywhere and nonzero at r = 0. Further,

except for r = o, the electron relative velocity is not zero and we
must consider effects due to the dynamic polarizability not being equal
to the static polarizability. These affects are particularly important
when r is small enough that the scattering electron is penetrating the
bound electronic charge distribution. Then the increase in electron ve-
locity due to the nuclear attraction is so strong that the first correction
to the adiabatic approximation is independent of E. This first correc-

42-47,36

tion amounts essentially to cutting off the potential for small
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r. In particular, it has been shown 45,39, 48 that coupling of the
scattering electron's kinetic energy with the motion of the electrons

in the perturbed target leads to an approximate potential which is
everywhere repulsive for H and He targets, which exactly cancels the
attractive adiabatic polarization potential at r = 0, and which
decreases asymptotically as r-8. This nonadiabatic cutoff of the polar-
ization potential at small r means that the scattering in the lowest
partial waves, which are the ones for which the electron can penetrate
appreciably to small r, is treated poorly by the adiabatic approximation

49,50 In fact, the detailed calcula-

at energies above about 20-25 eV.
tions of Poe and Chang51 show significant deviation from adiabaticity
even in the 5-20 eV range. We will include the nonadiabatic cutoff at
small r in our treatment and will also do calculations which show the
effect of not including it. Including the nonadiabatic effects (8,) and also
the second leading term in the adiabatic polarization potential, i.e., the

quadrupole polarizability (aq), gives for the long range interaction

a
Vozt\./- a -(_E-Sﬁl)_];. (14)
r—o

Since Khare examined the quadrupole polarizability of He and found
its inclusion in an elastic scattering calculation to have only a small
effect, 52 we will neglect it and we will consider the effect of nonadia-

baticity only at small r. That is, we take

Vi, R) = V; ,p(r, R) glr)
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+ V3, ap(r, R) g'(r) P,(r-R) (15)

where g and g'=1 for r—~ o and they negate the singularity in V;F

49, 13 that a treatment

at small r. Khare and Moisiewitsch argued
of this type can be used up to very high energies because the force

is so long range. This means that much of the cross section comes
from higher partial waves for which the long range part of the
polarization potential as determined by the static dipole polarizability
should be a good approximation. They used the static polarizability
in an expression of the form (15) up to an impact energy of 700 eV.

Several forms have been commonly used3 for g(r) and are considered

‘here:

gA(r) = r“(r2+a;)'2 (16)
1 r> a

£ow = { i an
r'ag r< ag,
1 r>a

) - P (18)
0 r < aP

Dn n,.n

g (r) = 1-exp(-r/ap) (19)

efr) = 1

The function g' is given similarly but in terms of the cutoff parameter

ap' . Because they do not show the nonadiabatic cutoff to zero, forms
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A, Band F are not realistic. (However, making this cutoff might have
given in some previous calculations an effective potential which appeared
too repulsive because exchange was neglected.35’ 36) For the same ap,
the Dn form involves a significantly shallower attractive well than the
other four. Comparison with the recent nonadiabatic calculation of Lane

47 for H, shows that the nonadiabatic polarization potential

and Henry
resembles the Dn form quite well and may even be more shallow.
Because the Dn potentials are found useful here and should be useful for
other electron-molecule scattering calculations, we have summarized
many of their properties in Appendix A.

It is interesting to note that Sampson and Mjolsness found that
their distorted wave calculations of rotational excitation of H, by electron
impact agreed with swarm experiments if they used form D4 for the
polarizability interaction but disagreed if they used form A.53 Both of

these potentials are nonzero at r = 0,
| In the spirit of the polarized orbital method,48 Lane and Henry47
calculated the polarization potential for R = R, as the adiétbatic one
except that, as a correction for nonadiabatic effects, they turned off the
interaction of the scattering electron with a bound electron whenever it
was closer than the bound electron to the center of positive charge in the
molecule, We consider this to be the best available approximation to
the real nonadiabatic V? for H,, and we calibrate a Dn potential against
the shape of their NP’ potential. Table II gives the position of the mini-

mum (r the full-width at half-minimum (Ar 1 ), and the potential at

min)’
the minimum (in units of the polarizability) of the NP’ potential.

Figure 2 shows for which values of a (ap = ap, 2, = ap’) and n the
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Dn potential has the same characteristics. Since we cannot pick a
Dn potential which gives all three parameters correctly, we choose as
the theoretically most justifiable Dn potentials the ones which give best
overall agreement with the shape of the NP’ potential. For the spheri-
cally symmetric component this yields n =5, ap = 2.1 a,. For the

54 These poten-

asymmetric component this yields n =5, aP’ =1. 8 a,.
tials are shown in Fig. 3. The properties of these and some other Dn
polarization potentials we will consider are given in Table I, In
addition, we have constructed an analytic fit to the NP’ potential which
deviates from it by less than 0. 1% over the range 1.0 < a,r < 5. 0 and
has the correct asymptotic form for large r. We call this the L potential.

One indication of the accuracy of the Lane-Henry polarization
potential is that it is in good agreement with the semiempirical polari-
zation potential of Lane and Geltman. 35 Lane and Geltman adjusted the
cutoff parameters in their potential so that their close coupling calcula-
tions using a realistic static potential and the polarization potential
would yield adequate integral elastic cross sections at energies high
enough for more than one partial wave to be important.

We obtained the polarizability necessary for the use of equation
(15) in scattering calculations from the accurate calculations of Kolos
and Wolniewicz. 4

It is convenient to give special names to certain combinations of
choices of cutoff radii. These "data sets'' are given in Table IV,

Date set 1 (DS1) gives the theoretically most justifiable potential when

used in conjunction with the B’ form for f and the D5 form for g and
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g’. The cutoff radii in DS1 were chosen to give for these forms of the
cutoff functions the best agreement of the analytic potentials with
accurate calculations of these potentials as described above. When
we refer to DS1 without specifying the forms of the cutoff functions,
i,t should be understood that we mean these. Data set 2 (DS2) similarly
éives the best fit of the analytic forms to the accurate potentials when
the B’ form is used for f and D7 forms are used for g and g’.

In summary, the overall interaction potential for the electron-H,

system is taken as

V(r,R) = Vi@, R) + V'(r, R) | (20)

Vo(r, R) + V,(r, R) P,(r - R)

Il

where from equations (5), (10), and (15):

Volr, B) = Vi, B) - 28 gt (21)
r .
and
"(
v, B) = v, R - Wiy - TR gy (22)
2r 2r

The scattering amplitudes for scattering off the five terms on the
right-hand sides of Eqs. (21) and (22) will be called S,, Py, S,, Q,, and
P,, respectively. The exchange scattering amplitude will be called
E,. Figures 1c and le show V, and V, for {, g, g’, n, and a, as in data

set 1. Figure 4 shows the potential surface V for this same data set
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as a function of r.

2. Separation of Rotational and Vibrational Motion and the

Scattering

For the transition from state p with vibrational quanium

number v and rotational quantum numbers J and M to the state p’
(v’, 3, M’) the integral (Qpp,) and differential (opp,) cross sections

are given by

Qpp,(E) = foppr(G,E) sin 6d0de (23)

o’ (6, E) = 'f , (e)l (24)

“p

in terms of the initial (kp) and final (kp,) momenta.36 of the scattering
electron for fixed total energy ET and the scattering amplitude fp,p. In the

plane wave approximation (neglécting exchange)
_ _ ¢l —
1p0) = - ) [exp[ig-x] V(@) dr (25)

where q= Ep - Ep’ and

Voo® = S ¥y ® VE B) ¥ py(R) AR, (26)

V({, 1}) is the interaction potential between the scattering electron and
the molecule discussed in the last section, and WvJM is the molecular
nuclear coordinate wavefunction for state p. We consider vibrational

and rotational motion to be separable and in particular we assume that

the vibrational wavefunction can be taken as the one for the J = 0
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rotational state. Then

wVJM(B) = ‘I/V(R) YJM(R) (27)
Now we consider only the first two terms in the multipole expansion of
the potential in (26). Substituting (20) and (27) into (26) and performing

the integration over R yield3

Vorplt) = Vo, yy(r) 8505 Sppny
(28)

w (MM A2y, e DM, IM) Y, o0

where we have chosen the z-axis in the r coordinate system to be
along R. In (28), cl (@'M’, JM) is the coefficient defined by Brieg

and Lin >

C(z)(J'M',JM) = (411/5)'5-' I YJ*:Mr(Q) Yo, M'-M(2) Yj,(2) d€2
and

Vi, (@ = [ (R) Vp(r, R) ¥, (R) R® dR. (29)

The error in (29) due to determining tpv for the J = 0 state (so that,
for example, V; _r  is taken to be the same for v— v’ transitions

’
with and without concommitant rotational transitions) has been shown

55 Note that scattering off the

to be small in related problems.
potential (28) strictly implies that AJ = 0, +2. Thus, for example,

there is no difficulty, at any temperature, in applying this procedure
to scattering from real hydrogen molecules which exist in ortho and

para forms.
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Substituting (28) into (24)-(25), summing over M’ and averaging

over M we obtain

o J 2 I\
OVJ,V'J' = GJ'J 0’0 +J(ZJ' + 1) 62 (30)
0 00
where
0y = Ky N, qz/kp (31)
Nv‘v = - (2/q?) f sinqr Vo,vrv(r) rdr (32)

0 AJ =0, £2
J=J"=0 (33)

&

1 Otherwise

~ 1
5 = 5l Myy/ky (34)
MV’V =2 fvz, V'V(r) j2(qr) r? dr (35)

Here j, represents the spherical Bessel function of order 2 and the
standard notation56 is used for the 3-j symbol. It is useful to write

(30) in the form

~ ~ JJ+1
Ovg,v'y = % T % BI-1)2T+ (36)
2
2 o -3 3J+3J-3 (37)

14
J’#J VJ,VJ' 24J2+4J"'3
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We will often be interested in experiments which do not resolve the
rotational structure in the excitation spectrum, i.e., we are interested
in the sum over all J’ and average over J which is (if we make the

approximations kp =K = kV)

O s = 0o+ Oy . (38)

vv’/
(This is the result for any distribution of J. ) The first order calcula-
tion which includes the polarization potential will be called the polarized
Born approximation (B/P). If we neglect the polarization potential we

have just the Born approximation (BXP).

3. Vibrational Matrix Elements

For the computation of equation (29) we require the matrix
elements of Vg(r, R), Vg(r, R), a(R), o'(R), and Q(R) between vibrational

wavefunctions. We used vibrational wavefunctions determined numeri-

o7

cally for the potential well given by Kolos and Wolniewicz. The numer-

ical method consists in converting the 1-D Schrédinger equation for the
problem to a boundary value problem by requiring the wave function to

vanish at some points far into the classically inaccessible region. The

58

second derivative is approximated in terms of second differences”” and

the eigenvalues and eigenfunctions of the resulting tridiagonal Hamiltonian

matrix are found by the Givens-Householder method.59 This method is

essentially a 1-D analog of the method used for 2-D problems by Diestler,

60

McKoy, and Winter "~ and it was originally programmed for use in atom-

molecule scattering problems.61 A similar method has recently been

62

used for 1-D problems by Rush. “ For our calculations involving a, o,

and Q we used 541 points in the range R = 0. 3933 - 4, 0067 a, with step size
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0.0067 a,. The matrix elements were then calculated by a 541 point
trapezoidal rule integration. For this integration the polarizabilities
and quadrupole moment were calculated by third order interpolation
(Bessel's formula) of the tabulated values of Kolos and Wolniewicz.4’ o7
The eigenvalues and matrix elements determined this way are in good
agreement with values determined by Wolniewicz and Kolos using a
more elaborate method. 63,4

The a, a’, and Q@ matrix elements are given in Table V.

4. Scattering Calculations (without exchange)

From equations (32) and (35) we obtain, with s = 1q,

C

Nioy = apry Ny + Noay (39)
where

N, = a? [r™* g(r) sin qr dr (40)

NG, = 2047 [R*y) (R) ¥, (R) Fo(R, Z(R), ) dR (41)

_[22%+s%\ sin sR

R R, 20, o <(EE)sns (42)
and

M, =a , M, + M., + MS (43)

v'v vivia’ QV\I Q viv

where

M, = -fr'zg’(r) j2(qr) dr (44)
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Mg = -fr7 £(r) j, @r) dr (45)
C 2
M5, = 2[Ry (R) W (R) F(R, Z(R), @) dR (46)

5(2Z2 + &%

F,(R, Z(R), q) = 933R3(Z2+82

[ (s*R® - 3) sin sR + 3sR cos sR]
(47
Several of the integrals N a’ Ma” and MQ can be done
analytically and the resulting expressions are given in Appendix B.
The others were done numerically using Romberg quadrature. 64
The integrals (41) and (46) were cdone numerically as described in
section B. 3 but with 253 points and step size 0.0143 a, for the range
R = 0.3857-4.0143 a,. The resulting amplitudes at 50 evenly spaced

values of q in the range 04.9 ao-lwere fit to series of a form suggested

to us by analogy with the work of Laszsettre:65
5 .
C 1 s !
N~ = - a_r. | ——— (48)
VYV os(Zi+ 7 is0 V! Zz+sz)
e
o 4orb . i
2 b)) S )
M5 = ———— b, .|——— (49)
Vo (2248’ =0 VN llZZas

with Z e = 1.18 = Z(Re). For M\?’v the first data point for the fit is at
q=0.05 ao"l instead of g = 0.0 for numerical reasons. The a and b
coefficients are given in Table VI. These equations and equations
(31) and (34) were used to calculate the differential cross

sections. The integral cross sections were
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computed using equation (23) and a 49 point Weddle's Rule integration

(unequal steps).

5. Inclusion of Exchange

There have not been many examples in electron scattering
which compared the scattering with and without exchange in a calcu-
lation where the long range forces are explicitly included (one excep-
tion is by Stone and Reitz 66 for cesium). Application of the Ochkur
and Ochkur-Rudge approximations to electron scattering without
electronic excitation has previously been carried out by Rudge 6 and

others 67,7

--but only for atoms. Further, these methods have never
been tested for scattering processes with long-range potentials except
by Bely in his application to electron scattering from ions.68 He did

not study angular distributions. In the absence of polarization, the DCS
in the prior Born-Ochkur-Rudge approximation (BOR, or, to emphasize
the neglect -X- of polarization - P-, BORXP)7 consists in subtracting an

from the direct amplitude f _, ~of equation (25)

exchange amplitude g_, p'p

PP
where69

E, *
gp'p(e) = -E;deWV:J,M,(B) lI/VJM(R)

”~

J dr vé(, R) expli(k-k') - r] (50)

where E,=q%2(k’ -iv2I)®, 1 is the ionization potential, and V¢ is defined
in equation (4). We do a multipole expansion of V¢ and retain only the
spherically symmetric term for the calculation of the exchange

amplitude. Then
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vé(r, R) = Vj (r, R) - Vo(r,R) (51)
where

r > R/2
V(?(r, R) =

(52)
r < R/2

We substitute (51) - (52) into (50) and perform the r and R integrals
to obtain (with s = é- q)

_ c 1
gprp(ﬂ) = 28 Ez [NV'V - ('s—s ) GV’V ]6J'J GM'M

Gv’v is evaluated numerically as discussed in section 4 and fit to a
series

in the range q = 0.0 - 4.9 a;*. The fit is generally accurate to better
than 0.1%. The coefficients C,ry. j are given in Table VI. Including
)

exchange in this way finally amounts to replacing N, in Eq. (39) by

C -
(1 - E,)NJo + E;s™ G (53)
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It is more difficult to account for exchange and polarization simul-
taneously. As a first order approximation to the exchange adiabatic
approximation (EAA) we will consider the scattering off the
polarization potential to be only direct scattering; i. e., we calculate
the direct and exchange scattering from the static potential as
described in section 4 and the present section and then correct the
direct scattering for polarization as described in section 4. This
procedure (like the EAA) cannot be derived variationally and neglects

71,44 which can be important in quantita-

exchange polarization terms
tive work. It will be called the polarized Born-Ochkur-~Rudge

approximation (BOR/P).
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C. INCLUSION OF DISTORTION IN THE FIRST TWO PARTIAL

WAVES

The scattering particle wave function can be expanded in a
series of partial waves, each of which is characterized by its angu-
lar momentum quantum numbers including ¢ (the orbital angular
momentum of the electron with respect to the center-of-mass of the
molecule). Distortion of the £ =0 and 1 partial waves (s and p waves)
might be important at any energy and should have a strong effect on
the large angle scattering. We will give the equations for a simple
treatment of this distortion (neglecting electron exchange) which could
be used as an improvement over the polarized Born approximation
just considered. In this treatment, the distorted partial waves are

taken to be the regular solutions X gc ©f

d2y , . (r)
fc 2 0(2+1) _
ar? + [kc - 2V0; celr) - 2 ] xlc(r) =0 (54)

where the potential is defined in (29) and

k? = ko - |AE_ | (55)

where AE,, is the vibrational excitation energy of the v’ = ¢ state.
Thus the distorting effect of the spherically averaged potential is
included but the distortion due to the anisotropic part of the potential

72,53 125 been called 'S the restricted dis-

is not. This approximation
torted wave approximation and is an important practical simplification

because it means the potential that is used to calculate the distorted
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waves depends neither on the rotational quantum numbers nor on the

angular coordinates of the scattering electron. This saves computer
time and also allows us to analytically perform averages over M and
sums over J’ and M’.

Another interpretation of the restricted distorted wave approx-
imation is possible if only terms proportional to P, (; . f?) and Pz(; . f%)
are important in the potential--as in the present case. Then the dis-
torting potential is the one seen by an electron whose trajectory is
at a 54.7° angle with the internuclear axis when the molecule does not
rotate appreciably during the collision.

This approximation of obtaining the distorted waves from
scattering off the spherically symmetric part of the potential was used

and justified by Sampson and Mjolsness53 for rotational excitation in

n74 for rotational excitation
26

e” - H, and e” - N, collisions and by Daviso
in H, ~ H, collisions. Arthurs and Dalgarno®" did model calculations on
e” - H, scattering and concluded orientation-dependent distortion is not

75 who did not

important for the integral cross sections. Also, Roberts,
use this approximation for his He - H, rotational excitation calculations,
argued it would be a good approximation; i. e., he argues from analysis of
his results that the role of V, in the transition matrix element where
it is not neglected is more important by far than its role in distortion.
The approximation should be even better for vibrational excitation.

In equation (25) we defined the (polarized) Born approximation

We now define the sums of the partial
B

p'p
in the (polarized) Born and (polarized) restricted distorted wave

scattering amplitude f?,p.
scattering amplitudes for the s and p partial waves as SPg
sp,DW

fp'p
approximations, respectively. The s wave amplitude includes final

and
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states with ¢’ = 0 and 2 and the p wave amplitude includes final states

with ¢’ =1 and 3. We define

£, (9) = SprW Spr

p'p p’p (56)

so that the scattering amplitude in the (polarized) restricted sp-distorted

wave approximation is

fg‘g’ ©®) = fg’p+f' . (57)

Then the differential cross section for vibrationally elastic scatter-
ing (v=v’) or vibrational excitation from level v to level v’ (averaged

over initial rotational magnetic substates and summed over final rota-

tional states) is

pw _ Ky | 58
Ovav’ = K, 12J+i§ J'M’ lf (9)[ (58)
o‘l?v, + -kl%—' HVV, (59)

where o?v, is given by equation (38). We obtain
H, , = H? + LH? + HyH, + &
oyt = HZ + £HZ + HH, + pHH,
+ [6(2H,+H,)H,/25] cos 6 + (36H/125) cos? 4 (60)

+ (108H2/125) sin® 6

where
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H, = '2[Iov’voo +3cos 61, . ] (61)

Hy = 2Ly'y2o (62)
0

H, = -4f° (r/q) sin quo,v,v(r)dr (63)

H. = -4 j'[sin qgr _ 3singr + 3 cos qr:]v (r)rzdr (64)

* ar (qr)°® (ar)’ 2 V'V

H5 = 312V’V31 - 2I2V'V11 (65)

He = Lyva* Lvtva (66)
o0

Livivers © j; Xpry! (r) VL, v’v(r) Xgv (r)r? dr (67)
m .

" I ) Vi g @) e, ar (68)

and j 'L is a spherical Bessel function of order ¢’. Note that the vibra-
tional excitation cross sections turn out to be independent of J to this
approximation.

In summary, in the (polarized) restricted sp-distorted wave
approximation the s and p partial waves are calculated in the
(polarized) restricted distorted wave approximation and all the higher
partial waves are calculated in the (polarized) Born approximation.
This will give more realistic results for small angle scattering than
distorted wave or close coupling calculations which calculate the
lowest few partial waves and neglect the others; it will be more accu-

rate for predicting large angle scattering than plane wave calculations.



338

D. THE EFFECTS OF VARIOUS PARTS OF THE POTENTIAL ON

THE SCATTERING CROSS SECTIONS

We will now consider the effects on the cross sections of
including the amplitudes for scattering off various terms in the inter-
action potential one-at-a-time and in combinations to determine the
energy and angle range in which each type of interaction is important.
We will indicate which amplitudes (see section B. 1) are included in a
cross section in parentheses; for example, when form B’ is used for f,
the integral elastic cross section in the Born approximation (BXP) is
denoted Q,, (S, SzQzB’) and in the Born-Ochkur-Rudge approximation
(BORXP) is denoted Q,, (S, E,,SzQzB '). Note that because of interference
terms the contributions from the different interaction terms of the same
angular symmetry are not additive. All the considerations in this

section are based on the plane wave approximation calculations.

1. Integral Elastic Cross Sections

Figures 5 and 6 show the integral elastic cross sections for
scattering by the symmetric and asymmetric parts of the electron-H,
interaction potential for the potential parameters of DS 1. Since
Qoo (5,2 PPP) is at most about 15% of Q, (S, E, PL?) for the whole
range of impact energies we studied (1 eV to 912 eV), the integral
elastic cross section is determined primarily by the symmetric parts
of the potential.

S, alone gives a relatively low cross section which decreases

monotonically with increasing energy. The addition of exchange
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[ Qoo (SoEp )] or polarization [ Qq, (S, P,)] increases the scattering by
comparable factors in the 5 to 100eVrange. At higher energies Qg4 (SoE,)
converges to Qq0(S,) While Qu(S, P?s)/Qoo(So) converges to a nearly
constant value of 2.13 (for DS 1) for E = 60-912 eV. Q(S, P, is a steep,
decreasing function of energy, e.g., at 1 eV, Q(S, Pcl,)s, DS1) = 125 a,”.
The addition of exchange to Q,, (S, P,) increases the cross section for
impact energies above 10eV. At higher energies Q,,(S,E,P,) con-
verges to Qq, (S, P,) and is within 13% (D5 form for g, DS1) of it above
100eV. The addition of the quadrupole and/or polarization interaction
terms to the asymmetric short range potential increases the cross
section at all energies. At energies above 100 eV, the quantities

Qoo (S.a,QzB 'PZDS): Qoo (SzQ,zB' ): Qg (S;) reach the constant ratio 1. 4:1.2:1.0
for D51.

The cutoff radius ap = 2.1 a, of data set 1 is larger than that
generally used in the past. For smaller cutoff radii, the potentials
become much deeper. For example, decreasing ap to 1.7 a, deepens
the polarization potentials (any form) by a factor of 1.53. The A, B,
or C form of the potential is then about 3. 3 times deeper than the
Lane-Henry NP’ potential. For any cutoff ap, the A, B, and C forms
of the polarization are 1. 46 times deeper than the D5 potential and 1. 58
times deeper than the D7 potential. Decreasing the cutoff parameter
ap increases Qoo (P,) as expected. Decreasing ap, from 2.1 a,to 2.0
a, increases Qg (P,) for all forms of g by the same factor of 1.21 at

energies above 20 eV. However, this same change raises Qy,(S,P,) by
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only a factor of about 1. 09 at the same energies. A change of ap from
2.1a,to 1.7 a, increases Q,, (P,) for all forms of g by a factor of
about 2. 32. At lower energies, decreasing ap has an even greater
effect on the integral cross sections.

Figure 7 shows the scattering due to the spherical component
of the polarization potential alone for DS 1. Q,,(P,) has essentially
the same energy dependence for all the forms of g that we examined.
For energies higher than about 20 eV, the quantities Qm(PoB ):

Qoo (P(I,) 5): Q(,O(PDC )t Qqo (Pf‘ ) attain a nearly constant proportionality
at 1.71:1. 00:0.55:0.34 for ap=2.1a, to1.22a,. Above about 6 eV,
the scattering from V(,C dominates that from the polarization potential
(for any form of g), and, for energies above 45 eV, Qoo(So)/ QOO(POD5

=~ 2,65 for ap= 2.1a,. Q,(P,) has a prominant peak at about 6 eV in

contrast to the monotomic decrease of Q,, (P,) in this region.

2. Elastic Differential Cross Sections

The elastic DCS's for scattering by various combinations of the
symmetric and asymmetric parts of the interaction potential for the
parameters of DS 1 are shown in Figs. 8-11 (E = 20 eV), Fig. 12
(E = 35 eV), and Figs. 13-15 (E = 60 eV).

The characteristics of the angular distributions for scattering
by the various parts of the potential can be interpreted qualitatively by
recalling that the scattering amplitude is closely related to the Fourier
transform of the potential--see equation (25). For spherically sym-
metric potentials, this reduces to a Fourier sine transform--see

equation (32)--and DCS's due to scattering by potentials confined to
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smaller regions of space are appreciable over wider ranges of q than
those due to scattering by potentials extending over longer ranges.
This is clearly illustrated, for example, by comparing 0., (S,) with
00 (PD%) in Fig. 8. In effect, the shape and magnitudes of the DCS's
at large q (and hence, high energies and large scattering angles) are '
determined primarily by short range interactions while those at smalli
q depend to a larger extent on the long range forces. Further, in
cases where the DCS's are highly forward peaked, the integral cross
sections are determined by small angle scattering (small q) and hence
these, too, are determined by the long range potentials.

In plane wave approximations, DCS's due to scattering from the
symmetric parts of the potential often peak at 6§ = 0° and decrease with
increasing 8, becoming steeper at higher energies. Those from the
asymmetric parts generally increase with increasing 6 (for small §)
and peak at larger angles, but at higher energiés they peak at lower
angles and are smaller at larger ones. This large-energy decrease in
large angle scattering is not nearly as great as is the similar decrease
of the large angle scattering due to the symmetric part of the potential.
As a result, the large angle DCS depends much more on the asymmetric
parts of the potential at higher energies than it does at lower ones.

We note, however, that scattering due to the quadrupole inter-
action and the asymmetric part of the polarization potential is rela-
tively unimportant at larger angles at high energies (compare o0,(S,)
and 0,,(S,Q,P,) in Fig. 14). At lower energies these interactions con-

tribute appreciably to ¢,,(S,Q,P,) as shown in Fig. 10, but the
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scattering from the whole asymmetric potential is less important at
any angle at these energies. Thus, the most important asymmetric
interaction is the short range one at any energy above about 10 eV.
Figure 12 shows the DCS's at 35 eV due to scattering from the
quadrupole and asymmetric polarization potentials, using for the cut-
6ff functions the theoretically most justifiable forms (DS1) and for the
extreme case of form F. The strong short range attraction of form F
leads to a large angle DCS which exceeds that of forms B’ or D5
by several orders of magnitude. It is interesting to note that
0o(QF) =2.08 X 1072 a2/sr for any energy or angle.
The small angle scattering is dominated by the symmetric
part of the potential. The most important effect of adding
exchange to S, is to increase the DCS at small angles (except at
low energy--see Section F), For example, at 30 eV and 6 =0°,
0o (So Eo)/Goo (S) = 1.43 while at 180° this ratio is 1.19. (Including
P(I,) 5 changes these figures to 1.10 and 1.21, respectively, for DS1.)
At higher energies, the importance of exchange at small angles
decreases (as does its contribution to the integral cross sections).
At 70 eV ¢,(SeEg)/ 000 (S,) = 1.32 at 0° and 1.09at180°. Adding
polarization to S, or S E, increases the small angle DCS. This
increase extends to larger angles at lower energies. In addition,
the large angle scattering is reduced somewhat, more so at lower
energies.
The steepest low angle DCS's are those which include

polarization, and a calculation which includes only P, will predict
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too seep a DCS. However, since the various forms of the polarization
potential differ only for small r and at small r differ from each other
much less than they differ from VoC , the angular dependence of the
scattering from these forms differs appreciably only for large 6.
0oo(P,) exhibits sharp dips to zero for forms B, C, and Dn but not for
A. The positions of these zeroes are correlated with the position of
the minimum in the potential. Decreasing ap causes the potential

to reach its minimum at smaller r and the zeroes in G,4(P,) to
occur at larger angles. The number of minima in ¢,4,(P,) and

their positions are also related to the incident energy--there are
more at higher energies and they occur at lower angles. Anal-
ogously the minimum at r = 0.7 a, in V,F causes 0yo(S,) to have a
zero at large angles for energies greater than 60 eV. These

zeroes are artifacts of the Born approximation with these simple

potential forms.

3. Integral Vibrational Excitation Cross Sections for v/ =1
5,76

It is known from previous calculations that the short
range interactions are much less effective in causing vibrational
excitation than they are for elastic scattering. A direct numeri-
cal verification of this fact is given in Table VII. This table gives

several values of the ratio ® ,, where
mV'v” = QOV”/QOV’ . (69)

The ratios are obtained by including various complete and incomplete
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sets of interactions from the theoretically most justifiable potential
in the calculation. All of the ®, are much less than one and the
smallest are those which include S,. The table also shows that the
asymmetric potential is relatively effective for vibrational
excitation: ®,,(S,) is larger than ®,,(P,) and ®,,(P,) is the
largest ratio of all.

Breig and Lin have suggested that the vibrational excitation
is dictated primarily by the longer range interactions and hence
they neglected the short range ones. Since both have been in-
cluded in the present calculation, we are able to test the validity
of their procedure. Table VIII shows the ratios Q,,(Y)/Q,,(Z) for
several combinations Y and Z of scattering amplitudes. In par-
ticular, the table shows that the long range forces alone (P Q,P,)
account for less than half of the polarized Born integral vibration-
al excitation cross section above about 13 eV. Recall, however,
that for the elastic scattering, Qqo(PoQ;P,)/Qo0(So PoS.QP;) is
less than 0.2 for E > 10 eV.

Figures 16 and 17 show the integral 0 — 1 vibrational
excitation cross sections for scattering as calculated using the
parameters of D3 1. Scattering by the asymmetric part of the
potential is relatively more important for vibrational excitation
than it is for elastic scattering. It accounts for about 30% of the

polarized Born cross section (DS 1) for v’/ = 1 above 20 eV.
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The addition of exchange to the polarized Born approximation
changes Q,, relatively little, even below 10 eV. Evidently, the
effective exchange potential implied by the Ochkur-Rudge method
is not very dependent on the internuclear separation.

Tables IX and X show cross sections which have been calcu-
lated using several different forms and cutoffs of the quadrupole and
polarization potentials for an impact energy of 20 eV. In general,
decreasing the cutoff parameter increases the depth of these potentials
and increases the cross section. In particular, changing the cutoff in
PoY (Y = A, B, C, or D5) from ap to bP changes Q,; (POY) by nearly a
factor (ap/ bp)4 as was the case for elastic scattering.

We have taken the polarization and quadrupole interaction
potentials to be products of a function of r and a function of R. For
the polarization potentials there is no better information available and
for the quadrupole interaction potential this is compensated by the way

we treat the short range static potential Vzc.

This product form of
these potentials has the effect that the predicted energy and angle
dependencies of the cross sections determined from any interaction
(e.g., Py, P,, or Q) are very similar for elastic scattering and for
excitation of the different vibrational levels. For example, if the
variable of integration  in equation (23) is changed to q in the usual
way, then the only differences in Q,;(Y) and Q,, (Y) for Y = P,, P,, or

Q, are small changes in the limits of integration q and 9 ax in

min
equation (23) and in k’ in equation (24) and the changes in the values

of the quantities in Table V. The changes in the interference terms
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for scattering off the various potentials and in the terms representing
scattering off this short range potential are more complicated, how-
ever, and the scattering off the whole potential is thereby allowed to be

much different.

4, Differential Vibrational Excitation Cross Sections for v/ = 1

The differential cross sections for excitation of the first vibra-
tionally excited level of H, for several combinations of the various
interaction potentials for data set 1 are shown in Figs. 18 and 19
for (E = 13.6 eV) and in Fig. 20 (E = 60 eV). The camparison
of the polarized Born approximation with the Born approxima-
tion in Figs. 19 and 20 shows that both the magnitude and shape of the
low angle DCS's are determined by the polarization potential. Polari-
zation has relatively little effect on the higher angle DCS's, becoming
less important at higher energies.

Including the exchange interaction raises the high angle DCS's
by only a small amount, even at lower energies where it is most
important (e.g., see Figs. 18 and 20). Increasing the depth of the
polarization potential has an effect on the integral cross sections which
is similar to that of exchange. However, their respective effects on
the angular distributions are quite different.

Scattering by the asymmetric parts of the potential contributes
most to the DCS at intermediate angles in the present calculations. At
higher impact energies this scattering is negligible at both high and
low angles, but at lower energies it becomes increasingly more im-

portant at higher angles.
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Comparing the BXP and S,S, curves indicates that the
quadrupole interaction is most significant at lower energies. At
higher energies it has practically no effect on high-angle scatter-
ing but does modify the low and intermediate angle DCS's. These
effects are shown more clearly in Fig. 21.

Figures 22 and 23 show the effect on B/P of changing the
cutoffs and forms of the polarization and/or quadrupole interaction
potentials at 13.6 and 60 eV. The shapes of the various distribu-
tions at each energy are similar, but they differ considerably in
magnitude.

Figures 24 and 25 show some DCS's for which the far-field
forms of the asymmetric part of the polarization and quadrupole
interactions are used. Although these forms of the potentials seem
unrealistic, they are sometimes used by other workers. It is inter-
esting to note that they increase the high angle scattering. This
change is in the same direction as the change due to the inclusion of

distortion in the scattering electron wave function.

5. Cross Sections for Excitation of the Higher Vibrational Levels

For scattering off each of the terms in equations (21) - (22)
considered separately, we find Qy; < Qo, < Qo1 < Qe for any choice
of potential forms we have studied. Some examples of this trend
are shown in Tables XI and XII. The ratios R, ryn (see Eq. (69)) for
v/ <v” are generally smallest if they are calculated using only

the long range forces. This is because the matrix elements in
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Table V decrease rapidly with increasing v’. Thus, although the
short range potentials are less effective than the long range ones in
causing the 0 - 1 transition at low energies, they are more important
for excitation of the higher vibrational states. For elastic scattering
Qoo (8¢52) exceeds Qu(PQ, P,) above about 2.5 eV. For 0 — 1 transi-
tions, this is true only for E > 48 eV, but for 0 — 2 transitions it holds
for E > 25 eV. For 0 — 3 transitions, Qu(S,S,) exceeds Qy(PQ,P,) at
all energies. As an example of the trends, at E = 25 eV, &,,(S,S,) is 3.7
times R, (S,S,) while &,(PL QB PPO) is 0. 43 times &,,(L%q.B PP)
for DS 1. At E = 5 eV, the long range forces (P,Q,P,, DS 1) contri-
bute only about 36% of the scattering predicted by the polarized Born
approximation for the 0 — 2 excitation. In addition, Tables XIII
and XIV show that the contribution to Qo v of the short range forces
increases relative to the contribution of the long-range forces as
the energy increases. In conclusion, the use of only a polarization
potential (Breig and Lin's procedure) to calculate Q,,+ would be a
poor approximation for v/ > 1 at any E.

Tables VIII, XIII, and XIV show that Q, (S,Q,P,) /Q‘E,{P
is a decreasing function of v/ at low energies and an increasing
function of v/ at high energies.

The integral cross sections Q,, and Q,, calculated using
data set 1 are shown in Figs. 26-29. Figures 26 and 28 show that
the addition of exchange in the prior Born-Ochkur-Rudge approxi-
mation to the polarized Born approximation changes the v = 0,
v’ =2 and 3 integral cross sections very little above about 20 eV.

We note, however, that the contribution of exchange scattering at
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lower energies increases with increasing v'. For example, using
DS1 at 13.6 eV the BOR/P cross section is about 5% larger than
the B/P one for v/ =1, 9% larger for vV =2, and 18% larger for
v =3.

The Q,, cross sections calculated with data set 1 in the
B/P (D5) and B/P(B) approximations are monotonically decreas-
ing functions of E over the whole range we calculated them
(1.8-912 eV). Both the B/P(A) and B/P(C) calculations exhibit
broad local maxima in the region of 60-70 eV.

The polarized Born calculations of Q,; for data sets 1 and
2.0 (with B’ form for f and A, B, C, or D5 forms for g and g’)
show broad minima in the vicinity of 45 eV, are increasing at 100 eV,
and are decreasing by E = 500 eV.

Table V shows that the sign of a;o is such that scattering
off the asymmetric polarization potential interferes with the other
scattering differently in the case of 0 = 3 excitation than in the
other cases. Figure 29 shows one effect of this. Qp 3(SzQzB, P2D5)
is less than Q,,,(S,QQB') and very nearly equals Qo(S,).

Tables XV to XVIII show cross sections which have been
calculated using several different forms and cutoffs of the quadru-
pole and polarization potentials. Comparing columns 2 and 3 of
Table XVII shows that increasing the depth of the asymmetric part
of the polarization potential, with a constant agy generally in-

creases the Q, cross section by a small amount (~ 1%). The
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same comparison in Table XVIII shows that Q,, is reduced 16-20%
for the same change in the polarization potential. The Q, v'(SzQZB’PzA)
appear to be exceptions in that the effect of changing aP' is in the
opposite direction to that for other cutoff function forms in each case
(v =1-3).

Figures 30 and 31 show v = 0, v’/ =2 - 3 differential cross
sections at 20 eV calculated using several combinations of the
various interaction potentials for DS 1. The low angle DCS's

are determined primarily by the polarization potential for both

the 0—2 and 0— 3 excitations. At high angles, the B/P 0~ 2
DCS's are a little larger than the BXP ones while this order is
reversed for the 0—- 3 DCS's.

The exchange effect becomes relatively more
important with increasing v’. This is consistent with the fact that
the scattering by the short range forces contributes proportionately
more to DCS's for large v’ than for small v’.

Scattering by the asymmetric part of the potential considerably
exceeds that by the symmetric part at higher angles. Adding the
asymmetric term in the polarization potential to the static potential
decreases the 0 —3 scattering because of the destructive interference
between the scattering by these parts of the asymmetric potential.

A comparison of the DCS's calculated in the Born approximation with
those calculated using only the short range forces (Carson's method)
shows that the quadrupole interaction is unimportant at low angles,

like the rest of the asymmetric part of the potential, and it is
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somewhat more effective in increasing the high angle scattering for
0 -3 than for 0—2.

Figures 32 and 33 show DCS's for excitation of the v’ = 2 and
3 levels calculated in the polarized Born approximation at 20 eV
using several choices of potential forms and data sets. The curves
in each figure exhibit the same general shape with rather large
differences in magnitude. An example of a calculation using a far-
field form of the asymmetric polarization and/or quadrupole poten-
tial is also shown in each figure. The enhancement in large angle
scattering due to use of form F for f (with g’ = 0) is larger than that
resulting from the inclusion of exchange for v = 0, v’ = 2 above 13 eV.
Similarly, this is true for the high angle 0 — 3 DCS's but only for
energies above about 25 eV.

Figure 34 shows the effect of exchange on the 0~ 3 DCS and
also how large an error would be made by following the Breig and

Lin procedure (long range forces only) for this transition.

E. HIGH ENERGY SCATTERING

Figures 35 to 37 show comparisons of the Born and

polarized Born calculations using data set 1 with the experiments
17 Arnot, 18 20

912 eV. At 150 eV, the McMillen experiment yields o,, (36°)/0,,

of McMillen, and Webb”"~ at impact energies 150 to



352

(10°) =~ 0.147. For data set 1, this same ratio is 0.032, 0.033,
0.138, and 0.127 in the B/P, BOR/P, BXP, and BORXP approxi-
mations, respectively. Thus the uncorrected Born approximation
(BXP) is in excellent agreement with the experimental angular
dependence at this energy. Over the angular range where experi-
mental data are available (see Fig. 36), the B/P decreases 4 and 5
times as much as experiment and the BXP decreases 2 and 4 times
as much as experiment at 412 and 812 eV, respectively. This fact
and the comparison of large angle scattering in Figs. 37 and 38 show
that, as expected, the plane wave approximation used here fails to
predict the gradual flattening out of the high energy DCS's at large

21b and large momenta transfers. 69 (The failure is

21b

scattering angles
due to neglect of distortion of the scattering wave. It could prob-
ably be corrected to a large degree by using the formalism of section
C.) This means that for Born calculations at high energies, the pre-
dicted scattering can be used only at small angles to judge the appro-

priateness of the potential. Further, the maximum angle at which the

inclusion of polarization in a calculation makes a significant
difference decreases with increasing energy to the extent that very
little of the previous experimental data is relevant to this point.
Nevertheless, examination of the small angle scattering shows that
sometimes the data are fit better by including polarization and
sometimes by neglecting it. Considering together all these results

and the possible inaccuracies of the data, it is probable that the true
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angular dependence at small angles lies somewhere between that
predicted by the B/P and BXP calculations. This conclusion is
in qualitative agreement with the recent study .of eléstic electron-
helium atom scattering for E = 100 - 400 eV by La Bahn and
Callaway. " They included distortion in the scattering waves
and compar’ed their calculation with normalized experimental
DCS's. They also found that the experimental small angle DCS lies -
between the one calculated without polarization (their SE calculations)
and the one calculated with a polarization potential corrected at
small r for nonadiabatic effects.

To com'plete our comparison with a]l the available high-energy
(&£ > 100 eV) experimental differential cross sections, Fig. 38 |
shows our calculated differential cross sections at E = 125 eV for
comparison'with the experiments of Mohr and Nicoll at § = 50°-160°,
In this case, in the angular range 6 > 50°, the polarization correction
‘ in the B/P calculation is less than 11%,. Thé figure shows that theory
and experiment disagree at very large angles, evidently due to
negleet of distortion (as discussed above). |

Table XIX gives computed integral cross sections Q,, at
high energies for various types of polarization potentials. These
are of interest since the Born approximation should be fairly accurate
at these energies. There are no data available for comparison
with these numbers at this time, but from the discussion earlier

in this section, we expect the accurate values to lie between the Born
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approximation neglecting polarization and the calculation including
polarization in the most reasonable way, i.e., between the BXP
and the B/P(D5) calculations, but closer to the former at the
highest energies and to the latter below 100 eV.

Tables XX and XXI give high energy integral cross sections
for vibrational excitation computed by various methods. These
should be only a little less accurate than the elastic scattering cross
sections and provide values of the cross sections in an energy region
where their experimental measurement would be difficult (because
they are so small). Vibrational excitation cross sections at lower

energies will be considered again in paper III.

F. LOW ENERGY ELASTIC SCATTERING

Figure 39 compares integral cross sections from calculations
in the BORXP and BXP approximations for the data set 1 static
potentital with those from four continuum Hartree-Fock (includes
exchange) and continuum Hartree (neglects exchange) calculations

of Wilkins and Taylor, 8 9 10

Tully and Berry, “ and Henry and Lane.
The calculations of the last two sets of authors are even more recent

than the present ones. These four calculations, unlike the present

ones, did not assume plane wave scattering states. The comparison

of the present calculations which include exchange and neglect polarization
(BORXP) with the calculations of these authors for the same interactions
(HF) and the comparison of the Born approximation (BXP) with the cor-

responding numerical calculations (H) of Wilkins and Taylor, show what
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errors are introduced by the plane wave approximation in our treat-
ment of the short range and quadrupole interactions. The figure also
includes the present calculations which include scattering off the
theoretically most justified polarization potential (DS 1), the calcu-

10

lations of Henry and Lane™~ which include polarization, and the

experimental results for total scattering (uncorrected) of Golden,

15 The older experiments of Ramsauer and

Bandel, and Salerno.
Kollath78 (not shown) are in good agreement with the ones shown. The
figure shows that the present simple calculations, especially the B/P
ones, are remarkably accurate (the comparison of curves 1 and 3 and
curves 2 and 4 shows that only a small error is caused by the plane
wave approximation when polarization is important) above 2 eV but
untrustworthy at energies below that. The present calculations were
not expected to be valid at very low energies because of the plane

wave approximation. For completeness of the comparison, Fig. 40

16 and theoreticale’ 9 differential cross sections

shows experimental
at 3.4 - 3.5 eV. The inclusion of exchange correctly lowers the
forward peak at low energy but good agreement with experiment is
hard to obtain.

Figure 41 shows some other calculations of integral elastic
scattering in the 5 - 20 eV range. The Q, calculated in the B/P approxi-
mation using data set 2 (with B’ form for f and D7 forms for g and g’)

and data set L (with B’ form for f) are both shown; they are both lower
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than the values calculated using DS1 but are within 11% of those values
in this energy range. This is an indication that our fitting procedures
are adequate since all three of these potentials are fits to the Lane-
Henry potential but with different restrictions (see section B.1).
Figure 41 also shows a calculation in the B/P approximation using
data set 1.7 (with B’ form for f and D5 forms for g and g’). This
curve shows that using a cutoff radius that is too small (which is
what has usually been done) leads to large overestimates of the cross
sections.

Another curve on the figure represents the calculations of

Fisk. 11

Fisk's calculation is an (exact) partial wave solution in the
static approximation (no exchange) for the scattering off a semi-
empirical potential expressed in spheroidal coordinates. The potential
does not correspond to that of two point charge‘protons and an
electronic charge cloud. This calculation yields cross sections which
are too small at energies above about 1 eV,

Nagahara12 obtained the (exact) partial wave solution (lowest
few partial waves only) for a static potential calculated from
Inui's H, wave function. His results, shown in Fig. 41, are in good

agreement with experiment. Hara14

calculated the partial wave
solution for scattering off a potential which included the static inter-

actions, a semiempirical polarization potential (A form for g, and
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a potential to represent the exchange interaction. He empirically
adjusted the cutoff radius ap in his polarization potential to get
agreement with experiment for Q,,. This yielded ap = 1.6 a,
and an A form polarization potential with a depth of 0.406h at
r = 0. This polarization potential is not attractive enough at medium
r. Figure 42 shows a plot of the B/P approximation for a case where
the spherically symmetric part of the polarization potential has A
form withap,, = 1.7a,. The agreement with Hara's calculation is
good .,

Elastic scattering at intermediate energies will be considered

in paper II.

G. SUMMARY

We present a quantum mechanical theory of electron scattering
by a homonuclear diatomic molecule in which the molecule is con-
sidered to be a polarizable, aspherical, rotating, anharmonic
oscillator with a realistic electronic ground state charge distribution.
Real electronic excitation is neglected, but virtual electronic excitation
is included by means of the dipole polarizability. We consider the
static electron-molecule potential, which includes the long-range
quadrupole interaction and electron exchange and the polarization
potential.

The theory assumes plane waves for the scattering electron
wave functions and includes electron exchange by the Born-Ochkur-

Rudge approximation. Formulas are derived for all possible
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rovibrational excitations and for vibrational excitations averaged
over the initial rotational states and summed over the final ones.
The latter are applied to the calculation of elastic scattering and
excitation of the first, second, and third vibrational states of H,.
For these calculations the vibrational excitation transition moments
of the polarizability and static interaction potential are evaluated
numerically.

We examine the effects of the various interaction potential
terms and electron exchange on the integral and differential scatter-
ing cross sections to learn in which energy and angular regions each
is most important. The calculations show that the relative contri-
bution of the static interaction to the integral cross sections increases
with increasing energy, is smaller for Q,, than for Q,,, and other-
wise increases with increasing v’. Conversely, scattering by the
polarization potential contributes appreciably to Q,, at low energies
and relatively little to Q,; at high energies. The effect of exchange
is predicted to be small at energies above about 20 eV, to decrease
rapidly with increasing energy, and to be smaller for vibrational
excitation than for elastic scattering. The shape and magnitude of
the low angle DCS's‘for elastic scattering and vibrational excitation
are determined primarily by scattering by the polarization potential.
At high angles, the static interaction is dominant.

The calculations are in fair agreement with the high energy
(E > 100 eV) experimental elastic scattering data at low angles (con-

sidering the errors in the experiments), but the inclusion of
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distortion of the scattering wave functions is apparently necessary to
correctly predict the high angle DCS's. We show how to improve the
present calculations to include distortion of the lowest two partial
waves while retaining the plane wave scattering approximation for all
higher ones. Our high-energy integral elastic scattering and vibra-
tional excitation cross sections, calculated without distortion, should
be the best estimates available of the cross sections in that energy
range.

The present calculations are also compared with previous
theoretical and experimental low-energy elastic cross sections. The
polarized Born approximation is in good agreement with experiment
above about 5 eV and the polarized Born-Ochkur-Rudge approximation
is in good agreement with experiment above about 1 eV.

In two subsequent articles, calculations using the present
method will be compared with all available intermediate energy elastic
scattering DCS's for H, and with all available cross section data for

vibrational excitation of H,.
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APPENDIX A: PROPERTIES OF Dn POTENTIALS

The Dn potential is given by

Pinr) = - L [1-exp(-r/al)) (A1)
2r
For a given n, increasing ap yields a potential which is broader, less
attractive, and has its minimum at larger r. For a fixed ar, increasing
n gives a potential which is narrower with little change in depth and a
minimum at larger r. The shape of the potential as a function of r can

be characterized by defining a dimensionless potential

D 22 p
uy (n,r) = VL (A2)

which implies

ulﬂ = -p.[1-exp(-p])] (A3)

where p; = r/aL. The minimum value of #E , its full-width at
half-minimum, and the position of its minimum are presented in
table Al for n equal 3 to 10. It is then a simple procedure to calculate

these same quantities for any VB given n, ay, and ag -
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Table Al. Properties of the dimensionless potential ulI)J defined
min

in Eq. (A3). pr, I8 the value of py, at the minimum of
u%. (ApL)1 /2 is the full-width at half -minimum of ulg.
n ppn (801)1/2 -u2 (0, o)
3 0.0 - 0
4 0.0 1.5936 1.0000
5 0.8450 0.9541 0.6865
6 0.9559 0.7584 0.6392
7 1.0044 0.6438 0.6322
8 1.0289 0.5682 0.6382
9 1.0421 0.5146 0.6489

10 1.0493 0.4745 0.6613
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APPENDIX B: ANALYTIC EXPRESSIONS FOR
SCATTERING AMPLITUDES

Analytic expressions are given below for N,(Y), M, (Y), and
MQ( Y) where Y indicates the form used for g, g’, or f in Egs. (40),
(44), or (45), respectively. Si is the standard notation for the sine

integral; C = qap, qapy, and an for N, Ma” and MQ, respectively.

N, (A) = T exp(-c)

[}

4c
Na(C) = -2—1-? (sin ¢ + ¢ cos ¢) + Si(c)/2 - n/4
c
Na(B) = Na(C) + (c%) (sinc - ¢ cos c)
M. (A) =(41‘1 ) [ -6aw + qrm (c® + 3¢® + 6¢ + 6) exp (-¢)]
c

M,/ (C) =( 9 - ) [(2¢? - 12) sin ¢ + (2¢® + 12¢) cos ¢ + ¢* (2Si(c) -7)
16¢

1

My (B) = My (O) + (=

) [44 sin ¢ - ¢q cos ¢ - 3gSi(c)]

1 .
C) = -
MQ( ) =( = ) (c cos ¢ - sin ¢)

MQ(B') = MQ(C)+( (1:3 Y[4 sinc - ¢ cos ¢ - 3Si(c)]
MQ(B) = MQ(C)+( 1 )[5¢ sin ¢ + 8 (cos ¢ - 1) -c? cos ¢

C
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The expression N a(C) was first given by Breig and Lin.3 They also
gave expressions for M when the far-field (F) forms (f = g = 1) are

used, viz., Ma,(F) = -7q/16 and MQ (F) = -(1/3).



364

Table I. Comparison of model potential V, with the accurate static

potential of Ardill and Davison for R = Re‘

Form Best aa Max. deviationb Ave. deviationb
(a,) (%) (%)
B’ 2.0 11 (f
B 1.9 13 9
C 1.5 30 17

2The deviations listed in the third and fourth columns both increase

if any one of these aQ is changed by 0.1 a,.

Prn the range 0.2a, =< r =< 2.0a,.
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Table II. Properties of the Lane-Henry NP’ polarization potentials,
NP’

VEP' (r,Rg); r min is the position of the minimum in VL , &1y /2
is the full-width at half-minimum.
NPI
L Y min Ar1/2 Vi (rmin)/BL
(ag) (ap) (a.u.)
0 1.5 1.4, -0.0182
2 1.5 1.4, -0.0248

a . . NP’ _ 4 -
By, is determined such that Vi = -BL/(Zr Yatr=5.0a,.
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Table ITIa. Properties of the D potentials VP employed in the present

. . - D .
work; r .. is the value of r at the minimum of »,” and Ar, /2 18 the
full-width at half-minimum. Column seven is the average percent

absolute deviation of the Lane-Henry NP’ potential from VP (n, r) (see

Eq. Al) over the range 1.0a, = r = 4.0 a, where a, is determined so

that V(I,) equals the NP’ potential at r = 5.0 a,.
Pan m ot T Anyy ol s
(a.u.) (a.u.) (a.u.) (a.u.)
1 5 2.10 1.77 2.00 0.0176 22
2 7 2,00 2.01 1.29 0.0198 37
3 5 1.70 1.44 1.62 0.0411 71
2.0 5 2.00 1.69 1.91 0.0214 29
1.7 6 1,70 1.62 1.29 0.0383 60
1.7 8 1.70. 1.75 0.97 0.0382 52
1.2 6 1.20 1.15 0.91 0.154 204
1.2 8 1.20 1.23 0.68 0.154 193
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Table IIb. Properties of the D potentials VP (n, r) employed in the
present work. (Refer to Table ITla.)

D o m Tmp My Tl e
a,
1 5 1.80 1.52 1.72 0.0327 24
2 7 1.80 1.81 1.16 0.0301 20
3 5 1.70 1.44 1.62 0.0411 36
2.0 5 2.00 1.69 1.91 0.0214 11
1.7 6 1.70 1.62 1.29 0.0383 217
1.7 8 1.70 1.75 0.97 0.0382 26
1.2 6 1.20 1.15 0.91 0.154 141
1.2 8 1.20 1.23 0.68 0.154 131
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Table IV. Parameters in the potential energy (a.u.).

Data set ag ap aI;
12 2.0 2.1 1.8
2 2.0 2.0 1.8
3 1.7 1.7 1.7
2.0 2.0 2.0 2.0
1.7 1.7 1.7 1.7
1.2 1.2 1.2 1.2
L 2.0 b b

31 addition, “data set 1' implies form B’ for f and D5 for

g and g’ unless explicitly stated otherwise.

l[’Special fit to Lane-Henry potential (see text, section B.1).
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Table V. Vibrational matrix elements of the quadrupole moment and
polarizabilitya. The number in parentheses, if any, is the power of

ten by which the preceding number is to be multiplied.

v/ v Qv’v Ayry A yry
0 0 9.6777(-1) 5.4118 1,3482
1 0 1.7580(-1) 7.3878(-1) 4.0627(-1)
2 0 -2,2370(-2) -7.1167(-2) -8.1422(-3)
3 0 3.1210(-3)  9.9493(-3) -3.7168(-3)

2 in atomic units. The phase of the vibrational wave functions is

chosen so that they are positive at large R.
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Table VI. Coefficients for calculating scattering off the short range
potential by equations (48), (49), (53). The number in parentheses

denotes the power of ten by which the preceding number is to be

multiplied.

v'v 00 10 20 30
i av’vz i
0 1.43 15(0) 6.00727(-2) -1.32878(-2) 3.94784(-3)
1 -3.61175(-1) 1.47877(-1) 4.38564(-2) -4.39155(-2)
2 3.66834(0) -5.12082(0) -3.77004(-1) 5.18085(-1)
3 -1.83074(1) 1.99999(1) 1.93515(0) -2.19092(0)
4 3.38465(1) -3.35461(1) -3.66333(0) 3.72918(0)
5 -2.51615(1) 1.89624(1) 2.68402(0) -2.27471(0)
i Dviv,i

3.45352(-4) -3.48046(-3) 9.155021(-5) -3.39928(-5)
-1.45861(0) 1.65779(-1) -3.75235(-3)  1.00812(-2)
.38204(0) -1.11926(1)  2.83195(-1) -1.56768(-1)
4.16715(0) 5.52215(1) -9.18101(-1)  6.55858(-1)
-1.36967(1) -1.05550(2) 1.39810(0) -8.16063(-1)
0.0(0) 6.76053(1) 0.0(0) 0.0(0)

S I
U
()
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Table VI, continued.

v'v 00 10 20 30

i cv’vz i

0 | 4.99990(-1) 1,63241(-6) -5.95354(-7) -1.02851(-6)
1 -1.77043(-1) -4.09983(-2) 2.22216(-3) -2.45187(-4)
2 1.97217(-2) 9.26648(-3) 9.46006(-4) -1.56290(-4)
3 -1.05692(-3) -7.48189(-4) -1.88839(-4) 4.64519(-6)
4 2.68733(-5) 2.48411(-5) 9.40457(-6) 6.28837(-17)
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= Q. (Y)/Qqy (Y) of predicted integral cross

sections when the terms Y are included in the scattering amplitude

calculated using DS1.

which preceding numbers are to be multiplied.

Numbers in parentheses are powers of 10 by

N:(GV) 5 10 50 100
S, 9.31(-4)  8.30(-4)  5.07(-3) 6.43(-3)
S, 9.81(-2)  7.44(-2)  2.91(-2) 2.03(-2)
SoS, 1.32(-3)  1.79(-3)  17.62(-3) 8.52(-3)
pD> 1.85(-2)  1.86(-2)  1.86(-2) 1.86(-2)
p,Dd 8.50(-2)  8.89(-2)  9.08(-2) 9.08(-2)
pDOpD5 1.87(-2)  1.90(-2)  1.92(-2) 1.92(-2)
s,pP° 6.39(-3)  5.70(-3)  7.77(-3) 8.40(-3)
5,Q,F 5.17(-2)  5.37(-2)  3.20(-2) 2.49(-2)
Q,B pP° 4.53(-2)  4.85(-2)  5.05(-2) 5. 05(-2)
s,oF pP° 5.83(-2)  6.02(-2)  3.84(-2) 3.01(-2)
S,E,P, P° 9 40(-3)  6.06(-3)  6.95(-3) 7.72(-3)
SEPLS,Q PPy 03(-2)  7.46(-3)  9.16(-3) 9.81(-3)
SoPg SzQeB D> 7.08(-3) 7.12(-3) 1.03(-2) 1.07(-2)
Q¥ 3.18(-2) 3.27(-2) 3.30(-2) 3.30(-2)
SoEo 2.01(-3)  1.29(-3)  4.86(-3) 6. 09(-3)
DSQP'P 1.93(-2)  2.00(-2)  2.05(-2) 2.05(-2)
505,Q,° 2.18(-3) 2.99(-3) 8.74(-3) 9.

55( -3)
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Table VII. Q,,(Y)/Q,,(Z) for DS1.

E(eV)
Y/Z 1 5 10 %0 100
P,Q,P,/S,P,S,Q,P, 0.661  0.595  0.541 0.342 0.322
P,P,/P,Q,P, 0.984 0.939  0.909  0.890 0.890
80S,Q,/S,P,S,Q,P, 0.043  0.101  0.171 0.420 0.454
P,P,/S,P,S,Q,P, 0.650 0.559  0.492 0.304 0.287
S, Py/S,P,S,Q,P, 0.986 0.890  0.779  0.689 0.701
SoS./SoP.S,Q,P,  0.036 0.060  0.099  0.354 0.393
S052/505,Q, 0.828 0.592 0.580 0.843 0.864
SoPoQ, P,/

SoEePyS,Q, P, - 0.965  0.912 0.947 0.950 0.964
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Table IX. Q,, (Y) in units of 10~ a’ at E = 20 eV.

Z
ap~ A B C D5 D7 (or L)
Y = p, 2
2.1 1.84 9.15 2.90 5.36 4,31
2.0 2.24 11.11 3.53 6.50 5.22
1.7 4.29 21.23 6.68 12.39 9.902
1.2 16.97 85.13 25.51 49.72
L 4.08(L)
Y=SoPoZ
2.1 4.41 14.25 6.73 9.81 8.70
2.0 4.90 16.44 7.73 11.24 9.95(D7)
1.7 7.23 27.08 12.14 17.92 15. 61
L 7.95(L)

2 For D8, the result is 9. 32.
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Table X. Q,(S,Q, ¥P,%) in units of 10 a at E = 20 eV. All

distances in atomic units.

\a’Q’aP'
Y,Z

2.0,2.0 2.0,1.8 2.0, L 1.7,1.7

B'A 3.07 2.94 3.65
B'B 4.15 4,55 5.20
B'C 3.32 3.63 4.20
B'D5 3.75 4.08 4.69
B'D7 3. 62 3.95 4.55
B'L 3.78

BB 4,31 4.72 5.36
BC 3.46 3.78 4,33
BD5 3.90 4.24 4.83
BD7 3.76 4.11 4. 69
BL 3.93

cc 2.81 3.09 3.66
CD5 3.20 3.50 4.11
CD7 3.08 3.38 3. 99
CL 3.22
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TABLE XI. Ratios R, = Qo,(Y)/Qp,(Y) of predicted
integral cross sections when the terms Y are included in the

scattering amplitude calculated using data set 1.

&(eV) 10 50 100 a
Y

So 6.03 2.271 421 -2
S, 0.303 3.18 6.27 -2
808, 2.93 2.64 4.95 -2
pD® 9.20 9.26 9.2 -3
pP® 3.93  4.02 4.02 -4
pDopDd 8.95 8.91 892 -3
s,p2° 1.69 1.64 2.39 -2
5,QF 0.633 2.53  4.70 -2
QE pD5 6.12 5.5 5.76 -3
s,Q.F pPb 0.420 1.76 3.25 -2
S,E,P° 1.78  1.69 2.44 -2
SEPDs,QE PP 1.48 1.1 2.68 -2
s5,pP%s,QB p D> 1.41 1.68 2.64 -2
QB 1.60 1.62 1.62 -2
SoEo 5.04 2.26 4.09 -2
pD5q B pD5 8.83 8.15 8.76 -3
S.5,Q.°5 2.01 2.40 4.43 -2
SoEeS, QL 2.38 2.37 4.3¢4 -2
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(TABLE XI continued)

&(eV) 10 50 100 a
Y

s.P s, pA 1.77  2.13  3.58 -2
s,PBs,QB pB 1.38 1.58 2.35 -2
s,PCs,QB pC 1.35 1.78  3.06 -2

2power of 10 by which the other numbers in that row

are to be multiplied.
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TABLE XII. Ratios ®,3 = Qp4(Y)/Qpg(Y) of
predicted integral cross sections when the terms Y are
included in the scattering amplitude calculated using data
set 1. All the ratios in this table have been multiplied by
100.

%V) 10 45 100
Y

So 9.87 5.10 5.69
S, 0.128  3.48 7.03
S8, 9.32 4.31 6.30
pD° 1.93 1.95 1.95
pD° 20.4  20.8  20.8
p,DopDd 1.95 1.98 1.99
s,pD° 4.42 3.74 4.67
5,QF 0.886  3.07 6.59
o2'p,P° 0.546  0.482  0.486
s,QB’ pD5 0.204  2.80 6.40
S,EoP. Ds 4,80 3.72 4.81
S.E p0 55,8 p° 4.54 3.45 5.36
s,PD%s,Q.B p2D5 4.15 3.45 5.30
QB 1.92 1.95 1.94
SoEo 9.43 4.74 5.78
p® Bp2D5 1.82 1.81 1. 81
5,5,Q; 7.85 4.02 6.12
SoEeS, QB 8. 06 3.96 6.14
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(TABLE XII continued)

\E(eV) 10 45 100

Y

s,P.2s,, B p,A 5.13  3.82  5.73
14

s,PEs,QF pB 3.80 3.32 5.02

s,pCs,0B pC 4.59 3.65 5. 63

|
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TABLE XIII. Q,,(Y)/Q,.(Z) for data set 1.

w 10 50 100
Y/Z

S05:Qu/SoPoS:Q; P; 0. 251 0. 600 0. 761
PyQ, P,/S,PoS;Q: P; 0. 339 0.178 0. 107
P,P,/P,Q, P, 0.921 0. 907 0. 907
SoPo/SePS: Q. P, 0. 934 0.673 0.633
SoS2/S0S:Q: 0. 821 0. 929 0. 966
SoPoS,Q, Py/SoEoPoS,Q, P 0. 892 0.932 0.953
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TABLE XIV. Qu;(Y)/Qus(Z) for data set 1.

N’ 10 45 100
S6S:Q2/SoPoS:Q: P, 0.475 0. 657 0.845
PoQ, P2/S,PoS;Q, P, 0.149 0.102 0.036
P,P,/ PQ, P, 0.988 0. 993 0. 993
SoPo/SoPeS,Qe P 0.995 0. 747 0.564
SoS2/S05:Q; 0.975 0.981 0.995
SoPuS:QPy/SEoPS:Q,P;,  0.815 0. 930 0.942

|
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TABLE XV. Qu(Y) (10™*af) at E = 45 eV.

\\\\Jf\ A B C D5
ap

Y = P2
2.1 0.760 3.78 1.22 2.21
2.0 0.924 4.60 1.48 2.69
1.7 1.71 8. 81 2.80 5.15
1.2 7.14 35.3 11.2 20.6
Y = S,P2
2.1 5.87 11.4 5.90 8. 65
2.0 6.22 12.8 6.46 9.60
1.7 7.83 19.4 9.44 14.0
1.2 15.2 51.3 24,2 34.9

B e}
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TABLE XVI. Q,(Y) (107° a?) at E = 20 eV.

\\Ei\ A B C D5 D7
a
P
Y = p2
2.1 0.330 1.64 0.519 0. 960 0. 772
2.0 0. 402 2.00 0.631 1.17 0.937
1.7 0. 771 3. 83 1.20 2.23 .78
Y = S,PZ
2.1 5.16 8.46 4.83 6.59 .83
2.0 5.44 9,32 5.18 7.17 .32
1.7 6. 69 13.3 6.84 9.85 .59
Y = S E, P,2
2.1 5. 81 9.10 5. 54 7. 26 6. 52
2.0 6. 09 9.95 5. 88 .01
1.7 7.31 13.8 7.53 .25
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TABLE XVII. Qu(S,Q,'P,2) (10™* a?) at E = 45 eV.

,ap’
YXP 2.0,2.0 2.0,1.8 1.7,1.7 1.2,1.2

B'A 3.83 3. 82 4.29 5. 67
B'B 3.92 3.99 4. 47 6.15
B'C 3.78 3.80 4.25 5. 79
B’ D5 3.86 3.91 4.37 5.97
BB 4.15 4,22 4.72 6. 40
BC 4.00 4.03 4.50 6.03
BD5 4.09 4.14 4.63 6.21
cC 3.217 3.30 3.53 4.90
CD5 3.35 3.39 3.64 5. 06
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TABLE XVIII. Q,(S,Q, P,2) (10~ a2) at E = 20 eV.

aQ,ap’
m 2.0,2.0 2.0,1.8 1.7,1.7

B'A 0. 865 0.930 1.05
B’'B 0.507 0. 421 0.543
B'C 0.768 0. 659 0.843
B’ D5 0.612 0.520 0.670
BB 0.588 0. 489 -
BC 0. 881 0. 760 0.945
BD5 0.709 0. 604 0.757
ccC 0. 440 0.376 0.507
CD5 0.347 0.300 0.394
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Table XIX. Integral elastic cross sections (a,’) computed without

exchange with data set 1, the B’form for f, and the indicated forms,

if any, for g and g’.a

E
ev) S, S.,PP° BXP B/P(D5) B/P(A) B/P(B) B/P(C)

90 1.70 3.62 2.05 4.04 3.24 5.17 3.05
100 1.53 3.26 1.86 3.64 2.92 4.66 2.76
125 1.22 2.61 1.50 2.93 2.36 3.75 2.22
150 1.02 2.17 1.26 2.45 1.97 3.13 1.86
200 0.766 1.63 0.977 1.84 1.48 2.36 1.40
350 0.439 0.934 0.551 1.06 - 0.852 1.35 0.804
412 0.373 0.793 0.467 0.899 0.724 1.15 0.684
600 0.256 0.545 0.319 0.618 0.498 0.788 0.470
820 0.187 0.399 0.234 0.452 0.364 0.576 0.343
912 0.168 0.358 0.210 0.406 0.327 0.518 0.309

2columns 4-8 include a small contribution from rotational excitation

as discussed in section B.2.
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Table XX. Integral 0 — 1 vibrational excitation cross sections

(10 %a,’) computed as in Table XIX.

E 5
(ev) s, S,pP BXP B/P(D5) B/P(A) B/P(B) B/P(C)

90 1.076 3.02 1.95 4.31 2.78 5.45 3.31
100 0.982 2.74 1.77 3.90 2.52 4.93 3.00
125 0.798 2.20 1.45 3.15 2.05 3.98 2.42
150 0.668 1.84 1.23 2.65 1.73 3.33 2.04
200 0.503 1.38 0.952 2.02 1.32 2.53 1.56
350 0.287 0.790 0.565 1.18 0.777 1.46 0.914
412 0.244 0.670 0.484 1.00 0.664 1.25 0.781
600 0.168 0.460 0.335 0.690 0.459 0.859 0.538
820 0.123 0.337 0.245 0.505 0.336 0.629 0.395
912 0.110 0.303 0.221 0.454 0.302 0.566 0.356
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Table XX1. Integral 0 — 2 vibrational excitation cross sections

(10™'a,”) computed as in Table XIX.
2

E
(ev) s, S,PP°  Bxp B/P(D5) B/P(A) B/P(B) B/P(C)

90 4.16 6.82  8.02  10.76 9.33 12.14  9.48
100 4.13 6.53  7.84  10.3 9.02 11.57  9.17
125 3.92 5.83  7.22 9.20 8.17 10.22  8.25
150 3.62 5.21  6.55 8.20 7.34 9.04  7.38
200 3.03 4.23  5.37 6.61 5.97 7.24  6.01
350 1.91 2.60  3.33 4.03 3.66 4.39  3.69
412  1.64 2.23  2.85 3.46 3.14 3.76  3.16
600 1.15 1.55  1.98 2.40 2.18 2.61  2.20
820 0.844 1.14  1.46 1.76 1.60 1.91  1.61
912  0.760 1.02  1.31 1.58 1.44 1.72  1.45
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FIGURE CAPTIONS

Fig. 1. Terms and sums of terms in the '""theoretically most
justifiable’’ semiempirical electron-molecule potential (for
R =1.0, 1.4, and 1.8 a;) as functions of the electron-molecule
separation distance. All quantities are in atomic units: (a) asymmetric
Carson-type short-range potential VzC ; (b) asymmetric static potential
Vzl; (c) whole asymmetric potential V,; (d) symmetric Carson-type
short-range potential VOC; (e) whole symmetric potential V,. Part

b also includes (as circles) the Ardill-Davison potential (for R = 1. 4 a,)

for comparison.

Fig. 2. Equicharacteristic lines for specific values of the

mln)
y

characteristics r and Ar1 /2 of reduced Dn

min’ Ymin = “'ll)a(n’pL
polarization potentials (see Eq. (A3) as functions of the parameters of
a'L and n.

Fig. 3. Polarization potentials (for R = 1.4 a;) as a function of
the distance of the electron from the center-of-mass of H,. The forms
of the potential are indicated. The solid curves are the symmetric
potentials with a; = 2.1 a, and the dotted ones are the asymmetric
potentials with ap = 1.8 a,. The circles and triangles are the NPS’
polarization potentials from Lane and Henry. The polarizabilities
used for the curves are determined such that VLNPS’ = aL/ 2r') at

r=5.0a,.
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Fig. 4. The potential V (r, R) for R = 1.4 a, and its negative
as a function of the position of the electron with respect to the center-
of -mass of the H, molecule. Only one quadrant of the plane through
the molecule is represented. The left side is a perspective view of
the surface with spherical polar coordinate viewing angles © = 60°
and ¢ = 30°, The right side is a view of the negative of the same

function from 8 =70° and ¢ = 80°.

Fig. 5. Integral elastic cross sections as a function of impact
energy for the parameters of data set 1. Each curve is calculated using
the indicated amplitudes for scattering off the symmetric parts of the

potential.

Fig. 6. Same as Fig. 5 except that it is for the asymmetric parts

of the potential.

Fig. 7. Integral elastic cross sections as a function of impact
energy calculated for scattering off the symmetric part of the polariza-
tion potential with ap= 2.1 a, and the asymmetric polarization potential
with a5, = 1.8 a,. The scattering predicted by the L forms for the

polarization potentials is also shown.

Fig. 8. Elastic differential cross sections for E = 20 eV. Each

curve is calculated using the indicated amplitudes for scattering off
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the symmetric parts of the potential. Data set 1 was used. It is not

shown that o, (P, DS) has a zero near 75°.

Fig. 9. Same as Fig. 8. Note that the predicted scattering off
form A of the polarization potential is a monotonically decreasing
function of angle over the whole angular range, reaching 1.55 x 10™

a,’/sr at 180°, Oy, (Poc) decreases to 5.52 x 10~ a ®/sr at 180°.

Fig. 10. Elastic differential cross sections for E = 20 eV calculated

using data set 1 for the indicated amplitudes.

Fig. 11. Elastic differential cross sections calculated at E = 20 eV
using data set 1 and the B’ form for f. Two calculations including
polarization are shown with the forms used for g and g’ indicated. The
Born approximation neglecting polarization is also compared with a

calculation for which the quadrupole interaction term is omitted. -

Fig. 12. Elastic differential cross sections at E = 35 eV. Each
curve is calculated using the indicated amplitudes for scattering off
the asymmetric long-range parts of the potential. Form B’ is used for
f with aQ = 2.0 a,, and form D5 is used for g’ with aP' =1.8a,.

Too (Q,,B') has a zero near 155° and then rises to 7.20 x 10'7a02/sr at 180°.
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Fig. 13. Elastic differential cross sections at E = 60 eV. Each
curve is calculated using the indicated amplitudes withap=2.1 a,
except for one curve for which ap=1.2 a;. 0, (PoDs), which is shown
to 90°, has a second zero near 100°, rises to a peak of 2.66 x 10™°
a, /sr at 120° and then decreases monotonically to 2.02 x 10™° a,’/sr
at 180°. o, (POB), which is shown to 40°, has a zero near 48°, rises
to a peak of 4.86 x 10~ a,®/sr near 65°, falls to zero again near 100°,
rises to a second peak of 3.22 x 10~ a,’/sr near 125° and then decreases
monotonically to 1.12 x 10™ a?/sr at 180°. o, (POA), which is shown

to 75°, decreases monotonically to 8.94 x 10™° a ?/sr at 180°.

Fig. 14. Elastic differential cross sections at E = 60 eV. Each
curve is calculated using the indicated amplitudes for scattering off
the asymmetric parts of the potential. Data set 1.2 is used for the
upper curve and data set 1 for the others. o, (P2D5) has a zero near
130°, rises to a peak of 1.30x 10" a,’/sr near 155°, and then
decreases to 1.25 x 10~ a,?/sr at 180°.
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Fig. 15. Elastic differential cross sections at E = 60 eV. Each
curve is calculated using the indicated amplitudes with data set 1.
Uoo (SoS,) is within about 7% of g, ( BXP } over the whole angular

range. 0, (S,) decreases monotonically to 8.68 x 10™° a */sr at 180°.

Fig. 16, Integral 0 — 1 vibrational excitation cross sections as
a function of impact energy calculated using various combinations of

the interaction potentials for data set 1.
Fig. 17. Same as Fig. 16.

Fig. 18. Differential cross sections forv=0, v' =1, E = 13.6 eV.
These are calculated with data set 1 using the approximations or sets

of amplitudes indicated.

Fig. 19. Differential cross sections forv=0, v'" =1, E = 13.6 eV.

These are calculated with data set 1 using the sets of amplitudes indicated.

Fig. 20. Differential cross sections forv=0, v' =1, E = 60 eV.
The curves are calculated using data set 1 with the indicated amplitudes.
The insert compares the B/P and BOR/P DCS's with the same angle

scale as the other curves.
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Fig. 21. Differential cross sections for v=0, v/ = 1, E = 45 eV.
The curves are calculated using the indicated amplitudes for scattering
by the asymmetric parts of the potential with data set 1.7 except as

noted.

Fig. 22. Differential cross sections in the polarized Born approxi-
mation for v=0, v/ = 1; E = 13.6 eV. Each curve is labeled by the
form used for f, the form used for g and g’, and the data set,
respectively. Changing the form of f alone makes only a small change
(less than 15% for data set 1.7 with form B for g and g’) and does this
only at large angles (8 ; 60°). The incomplete curve shown for the D7

polarization potential goes to 0.00498 a?/sr at 6 = 180°,

Fig. 23. Differential cross sections calculated in the polarized
Born approximation for v=0, v" =1, E = 60 eV. Each curve is
labeled by the forms used for f, the form used for g and g’, and the

data set, respectively.

Fig. 24. Differential cross sections forv=0, v' =1, E = 60 eV.
These are calculated using the sets of amplitudes and the data sets

shown.,

Fig. 25. Differential cross sections for v=0, v/ =1, E = 13.6 eV.
These are calculated with data set 1.7 using the sets of amplitudes

indicated.



401

Fig. 26. Integral cross sections for v = 0, v’ = 2 calculated
using the indicated approximations or amplitudes for DS1. The
letters A, B, and C refer to the form of g and g’ used in the polarized

Born calculations shown in the insert.

Fig. 27. Integral cross sections for v = 0, v/ = 2 calculated using

the indicated approximations or amplitudes for DS1.
Fig. 28. Same as Fig. 27 except v=0, v/ = 3.
Fig. 29. Same as Fig. 27 except v =0, v/ =3,

Fig. 30. Differential cross sections for v =0, v/ = 2, and
E = 20 eV, calculated using DS1 and the indicated amplitudes or approxi-
mations. Different ordinate scales, different by a factor of 20, are used
on either side of 0 =60°. o, (P,2°), which is not shown above 60°,
drops to zero near 75°, rises to a peak of 1.00 x 10™° a,’/sr near 110°,
and then decreases monotonically to 4.81 x 10™" a ?/sr at 180°. The
BOR/P is not shown for 6 < 60°,

Fig. 31. Differential cross sections forv=0, v/ =3, and E = 20 eV
calculated using DS1 and the indicated amplitudes or approximations.
The minima in gy, (S.A,Q,zB’PzD 5) and 0y (S,) are near 100° and 140°,

respectively.
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Fig. 32. Differential cross sections for v = 0, v/ = 2, and
E = 20 eV calculated using the polarized Born abproximation. _The
curve labeled FF is calculated with form F for f, D7 for g, and F for
g’ with DS2. The other curves are calculated with form B’ for f and

the indicated form for g and g’ and data set, respectively.

Fig. 33. Differential cross sections for v=0, v/ = 3, and
E = 20 eV. The curve labeled F is 0., (SOP(,D 5SZQ,‘,F) calculated with
DS1. The other curves are calculated in the polarized Born approxi-
mation with form B’ for f and the indicated form for g and g’ and

indicated data set, respectively.

Fig. 34. Differential cross sections for v =0, v’ = 3, and
E = 20 eV calculated using the indicated approximations, amplitudes,
and data sets. The BOR/P calculations use form B’ for f and the
indicated form for g and g'. The BORXP calculation uses form B’

for f.

Fig. 35. Differential cross sections for elastic scattering. The
curves are calculated in BXP approximations at 150, 421, and 812
eV using the B’ form with a = 2.0 a, for the quadrupole term. The
effect of exchange on these curves is neglected but was calculated to

be less than 4%. The diamonds are the experimental results of
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McMillen at 150 eV and the circles are the experimental results of
Arnot at 412 and 812 eV. For plotting purposes, all three experiments

were arbitrarily normalized to the BXP curves at 6 = 20°.

Fig. 36. Differential cross sections for elastic scattering. The
curves are calculated for data set 1 for an impact energy of 200 eV with
various combinations of terms included in the interaction potential;
in order of increasing magnitude at 40°, they include: S;S,Q,,

Se PoS,Q, P,, Ses S,Q,, S,. One effect of adding exchange to the
B/P calculation is to decrease the cross section 9% at 30°. The
triangles are the experimental results of Webb at 200 eV and the
circles are the experimental results of Arnot at 205 eV. For the
plot, both experiments were arbitrarily normalized to the B/P curve

at 30°.

Fig. 37. Differential cross sections for elastic scattering. The
curves are calculated for dafa set 1, both adding and neglecting
polarization for impact enefgies of 350, 600, and 912 eV. For each
energy, the higher curve at the smallest angles is the B/P approxi-
mation. The triangles are Webb's experimental results at these same
energies, arbitrarily normalized to the BXP curve at 20° in each

case.
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Fig. 38. Differential cross sections for elastic scattering at an
impact energy of 125 eV. The shaded region covers the results
predicted by the B/P calculation with data set 1 when either the B’
or the B or the C form is used for f and the D5 form is used for g and
g’. The dots are the experiments of Mohr and Nicoll, arbitrarily
normalized at a scattering angle of 50° to the calculation in which the
B’ form is used for f. The lower curve shows the calculated results
when just three long-range terms are included in the calculation

(using data set 1, the B’ form for f, and the D5 form for g and ¢’).

Fig. 39. Integral elastic (including rotational excitation) cross
sections for electron scattering from the ground state of H,. The
squares are the experiments of Golden, Bandel, and Salerno. The
curves are quantal calculations in the following approximations:

1 - polarized Born, 2 ~ polarized Born-Ochkur-Rudge, 3 - calculation
of Henry and Lane, including polarization but neglecting exchange,

4 - same as 3, except including exchange, 5 - Born, 6 - Born-Ochkur
Rudge, 7 - calculation of Wilkins and Taylor neglecting polarization
and exchange, 8 ~ same as 7, except including exchange, 9 - same as
8, except by Tully and Berry, 10 - same as 8, except by Henry and

Lane.

Fig. 40. Low-energy differential cross sections. The circles are
the experimental results of Ehrhardt et al. (Ref. 16) and the curves are

calculated results (see Fig. 39) at E = 3.5 eV, except for curves 7,8, and
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9 which are at E = 3.4 eV. The DCS's from Refs. 8 and 9 were cal-
culated with a program kindly supplied by Dr. John Tully.

Fig. 41. Integral elastic scattering cross sections as a function of
energy. The lower dotted curve is the calculation of Fisk, the x's
are the calculation of Nagahara, and the dashed curve is the
calculation of Hara. The other curves are the present calculations
using the theoretically justified static potential (B’ form for f) and
various polarization potentials. The curve labeled DSL uses the
special fit to the Lane-Henry potential for g and g’; and is in the B/P
approximation. The remaining three curves are also in the B/P

approximation and are labeled by the data set name and the form of

cutoff function used for g and g’.
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A. Introduction

Scattering of electrons by H, is one of the simplest electron-
molecule scattering processes and is therefore of fundamental impor-
tance. The elastic scattering has been studied over a wide range of
impact energies (E) and scattering angles (6)} Totalg’3 momen tum
transfer? and relative differential elastic cross sectionss-13 for
this process have been measured at several energies ranging from less
than 1 eV to 25 keV.

Our investigation is concerned with the intermediate energy range
(defined as approximately 10 to 100 eV). Differential cross sections
(DCS's) have been determined for elastic scattering from 10° to 80° at
7, 10, 13.6, 20, 45, 60, and 81.6 eV impact energies. The quantum
mechanical theory presented in a previous article (I)14 is applied
here to the calculation of differential and integral elastic cross
sections in the whole angular range for impact energies between 0.2 to
100 eV, Because of insufficient apparatus resolution, all of the ex-
perimental elastic scattering cross sections reported here include pure
rotational excitation contributions. Therefore, we include rotational
excitation in our quantum mechanical calculations of elastic scattering.
The experimental cross sections have been normalized using the total
e - Hy scattering cross sections of Golden, Bandel, and Salerno3 at 20 eV
and below. Above 20 eV, our integral elastic cross sections (the integral
cross section Q is the DCS integrated over all solid angles of scattering)
calculated by the Born plus polarization approximation served as the

stagndard for normalization., (The justification for this procedure is

discussed in Section D.1.)
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We compare our results with previous theoretical and
5-11,13 . . . .
experimental differential cross sections., All previous ex-
perimental DCS's have been given in arbitrary units. The previous

work is summarized in Tables I and II together with the present one.

B. Experimental and Theoretical Methods

Our electron impact spectrometer is the same type as the one
designed by Simpson19 and Kuyatt and Simpson%O The original version
of the apparatus has been described earlier%l’22 Since then, the
electron optics have been improved to increase the sensitivity and
to make it less dependent on energy loss. This was achieved by in-
troducing several new lens elements. The spectrometer consists of
an electron gun, two hemispherical electrostatic energy selectors
(monochromator and analyzer), a scattering chamber and a detector
system. Figure 1 shows the schematic diagram.of the apparatus. An
energy-selected electron beam with a distribution of energies cen-
tered around the required impact energy E is introduced into the
scattering chamber which contains the gaseous molecular target at
a pressure of about 10-3 torr. Electrons that lose a certain amount
of energy and undergo scattering by a specific angle are passed by
the analyzer and are detected. The specific energy loss for which
electrons can pass through tﬁe analyzer to the detector is determined
by an analog voltage signal V2 which is generated by the 1024-channel
detector system. The magnitude of V2 is linearly related to the channel

number of the detector memory into which the signal is accumulated and



450

to the difference between the impact energy E and the energy of the
scattered electron. For an ideal experimental setup, V, would be
zero for the detection of elastically scattered electrons. Due to
contact potentials of the order of *1 eV, however, this V, has a
nonzero value and, furthermore, since the electron beam is not
completely monoenergetic, a sweep in V2 over the energy distribution
of the electron beam is necessary. The scattering angle stays fixed
during one measurement, but it can be set to any angle between -30°
and +900 with respect to the direction of the incoming electron beam.
All the measurements reported here were taken for positive scattering
angles; however the symmetry of the scattering around zero angle and
therefore the alignment of the apparatus has been previously verified.
The scattered signal intensities were measured at a given impact
energy and scattering angle to obtain an energy loss spectrum. We found
that the line shape in the spectrum was not a function of scattering
angle; therefore the peak height was taken to be proportional to the
scattered intensity at that angle. From spectra taken at one impact
energy and several scattering angles, one can obtain the corresponding
DCS. An accurate determination of the elastic DCS requires that (a) the
experimental conditions remain unchanged for the measurements at all
angles, (b) the efficiency of the instrument be independent of scattering
angle, and (¢) a proper correction for the change of "effective path
length" with scattering angle be known and taken into account. The
satisfaction of these requirements was ascertained experimentally (a)

by measuring the beam intensity and target gas pressure before and after
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each experiment, and (b) by comparing our angular distributions of
e - He scattering to the ones measured by other investigators%3

y Geometrical considerations show that the effective path length
correction can be made by multiplying the signal at each scattering
angle by sin 8 provided that 6 is much larger than the beam divergence
angle, 1In some of our experiments this was not the case and a more
elaborate correction procedure has been applied to all our measurements.
The incoming electron beam has been considered as a cone with a trun-
cated Gaussian electron density distribution, having its maximum along
the cone axis. A view cone is defined by two apertures at the exit
of the scattering chamber. Scattered electrons can reach the detector
from the volume defined by the intersection of the two cones. The
volume elements within the scattering volume have been weighted for
electron density and for the solid angle subtended at the exit aper-
tures. The integration has been performed numerically within the limits
which are defined by the intersecting cone surfaces. The measured inten-
sities at each angle are then divided by the value of this integral to
bring the differential cross sections to the same arbitrary scale. This
method of correcting for the change of effective path length has been
discussed previously?2 A weighting factor that takes into account the
change of DCS with scattering angle within the view cone is also included
in the computer program; however, since most of the data reported here
are for 8 = 200, this additional correction was not made. The error

24
introduced in this way is small compared to other uncertainties.
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With the present electron optics the measurement of signal
intensities corresponding to elastic scattering below 10° is not
feasible. The signal for zero energy loss at these low angles is
the sum of scattered and direct beam intensities. The separation
of the total signal into the two components cannot be done with
satisfactory accuracy with the present instrument. (This problem
does not exist for the inelastic features because of the energy
selection capability of the analyzer and therefore the inelastic
signal intensities can be studied down to zero scattering angle,)
Experiments with no gas in the scattering chamber show that for a
typical case with the present apparatus, the signal (in this case
corresponding only to the direct beam) drops by five orders of mag-
nitude when the scattering angle increases from zero to 100; however
at the latter angle it is still about equal to the elastic scattering
intensity. Increasing thé scattering angle further, the beam-to-elastic
signal intensity ratio decreases sharply, and at 20O the direct beam
contribution is about a factor of ten less than the scattered elastic
signal. Our experimental elastic results at § < 10° can, therefore,
be subject to large errors.

The impact energies have not been calibrated and could be in
error by about 1 eV due té contact potentials.

The quantum mechanical calculations were performed using the

14
procedures of paper I. In particular, we use four approximate

scattering theories which assume the scattering wave functions are
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plane waves: the Born approximation (BXP), the prior formulation
of the Born-Ochkur-Rudge approximation (BORXP), the polarized Born
approximation (B/P), and the Born approximation with corrections
both for exchange in the prior formulation of the Ochkur-Rudge
approximation and for polarization (BOR/P). When any parameters

in the analytic forms used for the potentials are not explicitly
specified, they are taken from data set 1 (DS1), and when the forms
used for the cutoff functions in the potentials are not explicitly
stated, the polarization potential is of form D5 and the quadrupole
term has B' form.l4 This is our theoretically most justifiable
approximation to the effective e - H2 interaction potential.

C. Normalization of Experimental Cross Sections

The experimental procedure which was described in the previous
section yields the DCS in arbitrary units. A calibration based on
measuring all quantities that relate measured signal intensities to
DCS is not feasible with our present apparatus. Although the pressure,
the incoming electron beam current, and scattered signal intensities
could be quantitatively measured, the absolute deﬁermination of the
effective scattering path length is subject to considerable error,
and the instrument's overall efficiency is not known at all. We have
used known integrated cross sections to achieve the normalization.

In order to obtain the integral elastic cross sections from
our experimental DCS, the curves had to be extrapolated from 10° to
0° and from about 80° to 1800. This extrapolation procedure may at
first seem to introduce unreasonably large uncertainties into the

calibration; however a more careful examination shows that this is
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not the case. For extrapolation to O0 the experimental curve has

been simply extended as a straight line (on a logarithmic DCS scale)
whose slope is determined by the data between 20° and 30°. This
procedure does not appear to introduce more than a couple of percent
error. Two alternative extreme methods of extrapolation: (a) zero
slope and (b) five times as steep slope as the one measured between

20O and 30° yield integral cross sections which deviate by less than
5% from the values obtained as above. The extrapolation to 180° is more
uncertain; however it does not introduce too large an error into the
integral cross section since: (1) the DCS is much smaller at angles
above 80o than at low angles, where the experimental values are avail-
able; (2) the DCS curve is smooth and almost flat at around 800; (3)
the uncertainty in extrapolating the curves increases as one approaches
1800, but the elements of solid angle corresponding to large scattering
angles are small (the sin © factor in the integral) so that scattering
at very large angles contributes less to the integral cross sections.

Three methods of extrapolation were tried for the 800 to 180°

region:
¢
Type 1 DCS (6) = °
Type 2 DCS (6) = DCS (emax)
Type 3 DCS (8) = C, eC3°

where the q is the momentum transfer and emax is the maximum scattering

angle at which we measured experimental DCS., The constants n, Cl’ C2,
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and C3 were determined from two experimental data points (usually at
70° and 800). In cach case the choice of which method of extrapola-
tion to use was made after studying the early elastic scattering data
which extends to large scattering angles?_11 At 7, 10, and 13.6 eV
impact energies Type 1 extrapolation was accepted as the most reason-
able one, while at the higher energies Type 2 was used. The error due
to the extrapolation procedure is estimated to be less than 20% for
each integrated elastic cross section. This estimation is based on
the deviation that could be introduced into the integrated cross
sections by using the different types of extrapolations. On the right-
hand side of Figures 2-8, the extrapolated values of the cross sections
at the highest angle occurring on each figure are shown.

Golden, Bandel and Salerno3 measured the total e - H2 scattering

cross sections (Q ) from 0.2 to 15 eV with an estimated accuracy of

TOT
about 3% by measuring the loss of intensity of an electron beam passing
through a scattering chamber containing H2. Their results have been used
to calibrate our DCS at impact energies 7, 10, and 13.6 eV, and with ex-
trapolation at 20 eV. The total scattering cross section is the sum of

the integrated elastic (Q ), pure rotational (Qrot), rovibrational

elastic
(QOV,), and rovibronic (Qe) excitation cross sections. Table III
summarizes the contributions from the different channels that are open
at each particular energy. Rotational structure is not resolved in our
spectra; hence rotational excitation is mixed into the elastic, vibra-

tional excitation, and vibronic excitation features in our spectra

and into those cross sections in Table III. At 7 eV no electronic
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excitation channel is open. At higher energies, the integrated cross
sections for excitation of the triplet electronic states and ionization
. 25 , .
are taken from the measurements of Corrigan. The contributions from
excitation of the B and C singlet states have been estimated from Khare's
. 26 . . . .
calculations. Possible contributions from other weaker electronic tran-
sitions have been neglected. The integrated vibrational excitation cross
sections have been obtained in the same arbitrary units as the elastic
. . . . 27
one by the method described in the following article (III). At and below
20 eV the sum of these integral elastic and vibrational excitation cross
sections have been normalized to the total e - HZ scattering cross sec-
tion of Ref. 3 after the subtraction from the latter of the proper elec-
tronic contributions. Above 20 eV no absolute measurements are available
for any cross section that could serve to normalize our data. It is
believed, however, that our calculated integral elastic cross sections
calculated with the polarized Born approximation (B/P) are fairly accurate
at these energies (see Section D.1) and they have been used as a standard
for normalization of the experimental cross sections. If more accurate
integral elastic cross sections Q00 become available, the 45, 60 and

81.6 eV cross sections can be renormalized by multiplying them by the

Q Q Q

00 00 .4 00
7.86 > 5.97 ° 4. b4

The error bars on our experimental absolute values (+35% for E = 7,

factors , respectively,

10, 13.6 and 20 eV) have been estimated by summing all uncertainties in

the extrapolation, in the effective path length correction, in the experi-
mental measurements, and in the absolute measurement used for normalization.
For the 45, 60 and 81.6 eV DCS the error (£12%) does not include the

errors associated with the normalization to absolute scale. For a given
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impact energy, the errors in the relative DCS are only about +12%
which includes errors due to reproducibility, to effective path
length correction, and to counting statistics. Uncertainties
associated with the electrxonic contributions to the total cross
sections are not considered. (A renormalization of the data can,
however, be easily carried out if better values of these contri-
butions become available.) Errors in the vibrational contributions
were neglected since these contributions themselves are small
compared to the elastic cross sections.

D. Results and Discussion

1. Angular Dependence

Figures 2-11 show the angular dependence of the elastic DCS at
different impact energies. 1In the figures, curves always refer to
results of calculations and symbols to experimental data. Table I
summarizes the quantum mechanical calculations, and Table II, the
measurements on the angular distribution of the elastic scattering
in the 6 to 100 eV impact energy range. All the experimental DCS
published so far in the literature have been given in arbitrary units;
we have normalized them to our experimental values or to our B/P calcu-
lations (when an experimental value is not available) at 40° for
McMillen5 and at 60o for Arnot,6 for Bullard and Massey,7 for Ramsauer
and Kollath,8 for Mohr and Nicoll,9 for Hughes and McMillen,10 for Webb,

and for Ehrhardt et 1.13

In general, there is fairly good agreement among the experimental
angular distributions. For the most recent comparison, Ehrhardt et al.

claim 10% uncertainty in their relative values. It is evident from Fig.

11

2
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that their measured angular distribution (which was measured only for
6 2—200) is in excellent agreement with our measurements at 7 eV,

Khare and Moiseivitsch15 calculated the elastic cross sections in
the BE1SA approximation (direct scattering calculated in the Born approxi-
mation, exchange scattering calculated by the first-order exchange
method with the separated atom approximation, and polarization neglected).
They used a minimum basis set molecular orbital wave function for Hy
and evaluated some integrals in spheroidal coordinates by expanding the
plane wave in spheroidal functions. Their results at 50 and 100 eV are
shown in Figures 10-11 (curves marked by KM). Their cross sections are
too low at small angles due to the neglect of polarization and too high
at intermediate angles (perhaps due to the improper treatment of ex-
change). At high angles, their cross section, like many other Born
calculations, falls monotonically with increasing angle, contrary to
experimental observations. Curves marked by R in Figures 2-8 and 11
represent Rozsnyai's Born calculation (BXP approximation). Rozsnyai's
calculation neglects exchange and polarization and uses a Heitler-London-
like wave function for H2‘ This calculation gives cross sections which
are too low at all energies and at any energy the deviation from experi-
mental results is most serious at low scattering angles where polarization
is most important. Rozsnyai's calculation represents an improvement in
numerical technique by expanding the plane wave first into spherical
coordinates and making the change to spheroidal coordinates subsequently.
This improvement should be significant at low momentum transfers where

the existing tables of spheroidal functions cease to be sufficiently
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accurate. His calculation, however, doesn't include exchange and is
therefore not directly comparable to the KM curve,

Khare and Moiseivitsch15 also made some calculations without
exchange (BXP approximation). These can be directly compared to some
other BXP calculations of Rozsnyai which used a molecular orbital
wave function for H2 and to our BXP calculation which uses what we
consider to be our theoretically most justifiable approximation to the
static potential.laThe comparison at two energies is shown in Figure 12,
This figure shows that there is very good agreement between the three
sets of electronic transition moments which determine these DCS's
despite the entirely different calculational methods.

Wilkins and Taylor17 calculated phase shifts for elastic scat-
tering by solving numerically the static exchange equations for an
electron moving in the potential field of the neutral homonuclear
diatomic hydrogen molecule. This potential field is that calculated
using a Hartree-Fock wave function for the scatterer. While such a
wave function doesn't include correlation, it is expected, because
of Brillouin's theorem, that it gives accurate values for one-electron

28
properties like the potential field. Their treatment (denoted by
WT/E) takes full account of electron exchange, but neglects the effect
of polarization. Their calculated integral elastic cross sections are
in good agreement with experimental results. (See Fig. 13.) (This
agreement, however, is completely lost in calculations where they inten-
tionally neglected exchange (WIXE).) We have interpolated their calculated

phase shifts and computed differential cross sections from them at 7, 10,
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and 13.6 eV impact energies (curves marked by WT/E on Figs. 2-4) by

a method described by Temkin and Vasavada29 and Tully and Berry}8

These differential cross sections include s and p waves and their
interference with each other and with the d wave, but do not include
terms quadratic in the d phase shifts or of any order in the higher
phase shifts}8 These differential cross sections are in good agreement
with experiment at high scattering angles. At lower scattering angles,
however, the agreement is poor and the reason for this discrepancy seems
to be the neglect of the polarization.

Tully and Berry18 carried out calculations at low energies similar
to those of Wilkins and Taylor with some improvements (a better bound
state wave function and better numerical methods for the scattering),
but they also neglected polarization. We have extrapolated their phase
shifts to 7 eV and transformed them into DCS by the method mentioned in
the previous paragraph. The curve marked by TB/E on Fig. 2 shows these
cross sections. The two curves TB/E and WI/E are nearly identical above
700. At lower angles, however, the TB/E curve lies appreciably under
the WT/E curve, which is quite surprising. One would not expect such
a large deviation from the differences in the computational methods.
Tully and Berry concluded that, if the old DCS data of Ramsauer
and Kollath8 are substantially correct, then the calculations of
Wilkins and Taylor must be wrong at low energy. Therefore, it is inter-
esting to note that our experimental confirmation of the RK DCS results

at slightly higher energies gives credence to all the RK DCS data.
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Hara30 performed calculations similar to those of Wilkins and
Taylor except he made extra simplifying approximations. However, he
also included polarization. An example of his calculations is given
in Fig. 3; it predicts an angular distribution similar to that predicted
by the calculations of Wilkins and Taylor. That the large forward‘peak
that we find due to the polarization potential was not completely ob-
tained by Hara is probably due to the fact that he (like Wilkins and
Taylor and Tully and Berry) retained only the first three partial waves
in the expansion of the wave function. Our calculation includes all the
partial waves.

Curves B/P and BOR/P (see, e.g., the B/P and BOR/P cross sections
in Fig. 3) represent the results of our Born and Born-Ochkur-Rudge cal-
culations, respectively, with the theoretically most justifiable potential
(data set 1), including polarization. This potential is calibrated against
the a priori potenfials of Ardill and Davison31 and Lane and Henry32 as
explained in Paper I. These calculations give good agreement with
experiment in the 7 to 81.6 eV energy and 10o to 90° angular range (see
Figs. 2-8). 1In fact, the present calculations are in better agreement
with experiment than any of the previous ones. We have to emphasize
again that at 7, 10, 13.6 and 20 eV impact energies the experimental
cross sections have been normalized independently of any calculation
and the agfeement, both in magnitude and angular distribution, is sig-
nificant. Above 20 eV no experimental data areavailable for calibration;
therefore we assumed that our calculated integral elastic cross sections

are correct and we used them for the normalization. This assumption is
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supported by two things: (a) the B/P calculation gives good agreement
with experimental (absolute) integral cross sections from 5 to 15 eV
(Fig. 13) and with DCS (both magnitude and angular distribution) at
7, 10, 13.6 and 20 ¢V (Figs. 2-5); (b) at the higher energies, the
planc wave approximation which is made in the calculations should be
even more reliable, and it is found that the angular distributions are
in excellent agreement with experiment.

Changing the short range part of the polarization potential,
which is the part of the whole potential which is least well known,
has a more noticeable effect on the magnitude of the DCS than on its
angular dependence at small angles. This has been discussed in Paper I
and a few more cases are shown in Fig. 6. For example, retaining a
polarization potential which is zero at r = 0 (r is the separation of
the electron from the molecule) but which has a deeper potential well
(this is the direction in which older calculations using a polarization
potential were usually wrong)predicts a DCS which is steeper, in worse
agreement with experiment at 45 eV, but larger. Since the D5 polari-
zation potential and the parameters of DSl are most justifiable a priori
and do agree with experiment, we will continue to use this potential
to interpret the experiments.

The inclusion of polarization terms in the potential increases
the cross sections at low angles and makes the agreement between the
calculated and experimental values good down to 10° (the lowest angle

investigated experimentally). It is interesting to note that the plane
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wave calculation with the semiempirical potential that includes
polarization gives better overall agreement with experiment tha;

more rigorous calculations which neglect polarization. At higher
angles the effect of polarization is much smaller because our polari-
zation potential is a long range potential located mainly outside the
region of the bound charge distribution. At 100 eV the B/P and BOR/P
curves rise too fast below 300. This discrepancy may be due to the
fact that we calculated our polarization terms in the interaction
potential from the static polarizabilities. At high electron velocities
one has to use the dynamic polarizabilities; these quantities are,
however, difficult to calculate. (See Paper I for more detailed dis-
cussion.) Neglecting the polarization effect altogether gives better
angular distributions at 100 eV (dash-single dot and dash-triple dot
curves on Fig. 11), seemingly indicating that polarization is not
important at this energy. In Paper I we also found that the BXP curve
agreed better with experiment than the B/P one at 350, 412, 820, and
912 eV. But the data, especially at 200 and 600 eV, also showed that
polarization may still be important at high energies, But that accurate
differential cross sections at 8§ < 10° are necessary to judge this at
high energy. The D5 and C polarization potentials are zero at r = 0
and are approximations to potentials which include nonadiabatic effects
at small r, but the A and B polarization potentials are finite at the
origin like the adiabatic one. Figures 4, 8 and 11 show scattering off
the A, B, C, and D5 polarization potentials (with aP = 2.1 a, and

apr = 1.8 a,) in the B/P scattering approximation. These figures show
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that, even at high enough energies for the plane wave approximation to be
good, there are small differences between the angular dependences of
the resulting differential cross sections, and very accurate experi-
mental data could be used to distinguish between them,

The inclusion of exchange by our approximate theory (see Paper I)
usually improved the agreement with experiment. It lowered the cross
section over the whole angular range at 7 eV and over the 0-48° angular
range at 10 eV; at energies of 13,6 eV and greater, the BOR/P DCS is
greater than the B/P one at all angles. The effect of exchange becomes
smaller with increasing impact energy and it is small at around 100 eV,
Due to the known difficulties in trying to include exchange in first-
order theories;j3’34 we believe that the error in the treatment of
exchange may sometimes be as large as the difference between the B and
BOR calculations. The Ochkur-Rudge (OR) approximation for exchange does
have the advantage that it usually predicts approximately the correct
magnitude of the exchange esztect:.33,35’36 Since the OR approximation
predicts that exchange is not a major effect for the processes and
energies (at least above 10 eV) considered in this paper, we then feel
safer to be using only the BOR approximate theory for calculating the
exchange contributions.

Massey and Mohr37 used the Born approximation (BXP) to calculate
elastic DCS's and compared their results with experimental angular dis-
tributions. Reasonable agreement in angular dependence with the data

of Arnot was claimed at energies at 80 eV and higher. However, the

theory and experiment at 80 eV were compared only for 6 = 200. Figure 8
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shows that for scattering angles greater than 20o the BXP approximation
does agree well in shape with Arnot's experimental data if theory and
experiment are normalized at 200, but at 10o the BXP approximation
fails to predict the experimentally observed forward peak which is
correctly predicted by the B/P approximation. The BXP agrees well with
our data above 400 but is about a factor of 3 smaller at 10°. At higher
energies polarization may also be important (see Paper I), although the
lack of adequate low angle data precludes a definite conclusion.

Massey and Mohr also conclude that the Born approximation fails
to predict the correct shape of the DCS at 30 eV. This is confirmed
in Fig. 9. The BXP approximation predicts a DCS which is too small
at low angles (by a factor of about 6 at 50) and is in reasonable agree-
ment with the data at angles between 50O and 900. The inclusion of
polarization (B/P) yields a DCS of the correct shape for all angles up
to about 900.

At very high scattering angles, the curves B/P and R merge into
each other., This is expected since the effect of polarization here
is negligible, but it also indicates that our Born calculation carried
out with the semiempirical Carson potential (see Paper I) augmented by
a quadrupole term gives just as good results as the more rigorous Born
calculation of Rozsnyai (who used the potential generated by a complete
valence bond wave function). The polarized Born calculation is in good
agreement with the experimental angular distributions up to 900, but it
continues to drop steadily at higher angles, while the experimental curves

o
reach a minimum at around 100 and then increase with increasing scattering
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angle to form a local maximum at around 1600, as shown by Hughes and
McMillen's data,10 which extends to 1650. This phenomenon, which is
due to scattering in the lowest partial waves (including the inter-

6,9,38 is not predicted by the Born or Born-Ochkur-Rudge

ference terms),
theories with the present approximation to the potential.

2. Energy Dependence

Figure 13 shows integral elastic cross sections as a function of
incident energy. The "experimental' values are determined from the data
of Ramsauer andKollath8 (A) and Golden, Bandel, and Salerno3 (o) by
the procedure used for Table III (see Section C). The curves are from
the calculations of Wilkins and Taylor17 and Tully and Berry18 in the
static exchange approximation and from the present calculations. The
four x's are from the calculations of Nagahar.a39 in the static approxi-

mation (without exchange) in spheroidal coordinates. At energies above

5 eV, our B/P and BOR/P calculations predict an energy dependence in

agreement with experiment and with the Wilkins-Taylor calculation.
However, Fig. 13 shows that the cross sections predicted by the present
calculations are not reliable below 2 eV or below 5 eV if exchange is
neglected, evidently because the plane wave approximation made in these

calculations is not valid at low energies., Further, the angular dependence

of the cross sections (as discussed in Paper I and Section D.1 of this
paper) also indicates that our treatment of the static and polarization
potentials is at least qualitatively correct at energies above 5 eV,
Figure 13 also shows a comparison with the results of Armot. Arnot
measured the DCS over a 100° angular range at 29 eV and 83 eV in the same

arbitrary units. He also integrated his experimental DCS over all scattering
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angles to obtain integral cross sections. We normalized his Q,, at
83 eV to our B/P calculation, and with this normalization factor we
obtained Q,, in atomic units from his experiments at 29 eV. The figure
shows that this energy dependence is in disagreement with the more recent
results.,

Table IV gives a comparison of our integral cross sections with
the calculations (RXE) of Rozsnyai which were already discussed. Also
given are some unpublished calculations (R/E) of Rozsnyai which include
exchange in the Ochkur approximation. The difference between the BXP
and RXE results is due to the different approximations used for the
effective static charge distribution of Hy. The table also shows that
the OR method predicts a greater effect of exchange than does the Ochkur
method.

Since our measurements are normalized, it is possible to investi-
gate the energy dependence of the differential cross sections. Theo-
retical calculations in the past have been compared to total electron-
molecule or integrated elastic and inelastic scattering cross sections,
It is a more critical test of scattering theories, models, and approxi-
mations, however, to see how well they can predict angular and energy
dependencies of differential cross sections. 1In Figs. 14-21, DCS at
100, 200, 300, 400, 600, 700, 800, and 110° are shown as a function of
impact energy. The crosses are our experimental values; the solid and
dashed lines are our B/P and BOR/P calculations, respectively. The dotted
curves show the values calculated from the phase shifts of Tully and Berry%

The agreement between our experimental values and the B/P calculation is
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very good above 10 eV, as we have already seen for the angular dependence
of the DCS at each impact energy. The BOR/P calculations are in good
agreement with experiment at all energies. The only other measurement

on the energy dependence of the elastic DCS for H2 is given by Ehrhardt

et 1.13 in the 1 to 10 eV energy range at 200, 40

© 70°, 90°, and 110°

(arbitrary units). We have normalized their values to our experimental
ones at 10 eV for the 200, 400, and 700 cases and to the calculation of
Tully and Berry at 7 eV for the 110° case, and their normalized values
are shown in Figs. 15, 17, 19, and 21. 1In the 10 to 100 eV region, the
DCS monotonically decreases with increasing energy at all angles. The
decrease is small at low angles (about a factor of two at 100). As the
scattering angle increases, the DCS versus energy curve becomes steeper
and at 80° the value of the DCS decreases by about two orders of magnitude
from 10 eV to 100 eV. The data of Ehrhardt et al. shows that the DCS
curve has a peak below 7 eV for angles 20° to 70°.
E. Conclusions

In summary, first-order calculations with theoretically justified
static and polarization potentials predict the elastic cross sections for
e - H2 scattering approximately correctly. Not only the magnitude of the
integrated cross sections, but also the angular and energy dependence of
the elastic differential cross sections are obtained in good agreement
with experiments in the 10° to 80° angular and 10 eV to 81.6 eV (inter-
mediate) energy range. Below 10 eV, the agreement is less satisfactory.

15,17 we find that inclusion of polarization

Contrary to previous work
is essential for getting the good agreement with experiment, particularly

with the DCS at low scattering angles, and use of the static polarizability

appears to be adequate at least up to 82 eV. At higher energies, however,
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the nonadiabatic corrections may become too large to use only the
static polarizability to calculate the polarization potential, and
one would need to consider the dynamic polarizability. Below about
5 eV, the Born calculations (with polarization) without exchange, as
well as the more rigorous calculation of Wilkins and Taylor without
exchange, give unreasonably large cross sections and the inclusion of
exchange is necessary to correct for this failure, The introduction
of exchange transforms the monotonically increasing Qoo curve (Fig,
13) into one that has a maximum at intermediate energies. This is
qualitatively the right feature; the quantitative agreement with
experiment is also fairly good for E > 2 eV for our approximate treat-
ment of the exchange. Above 50 eV, the calculated exchange contribution
is small (less than 207% of the integral cross section), and it becomes
even smaller (about 13%) by 100 eV. The angular distributions predicted
by our B/P calculations are in good agreement with experiments up to
about 900. Above this angle, the plane wave theories we examined do
not predict the proper angular behavior, evidently because of neglect
of distortion of the scattering electron wave function.

The 35-40 year old experimental data on electron-hydrogen molecule
elastic scattering are found to be generally, but not always, reliable.
There is good agreement between the present results and the low energy

' X 13
cross sections of Ehrhardt et al. There is no comparable previous work

on the energy dependencies of the cross sections in the intermediate

energy range.
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TABLE 1. Summary of the Theoretical Work on the Angular

Dependence of e - H2 Elastic DCS®

Ref. No. Abbr. E (eV) Method® Fig. No. Symbol
15 KM-B 50, 100 BXP-MO 12 ..
KM 50, 100 BXp/E-MO* 10, 11 e
g b
16 R-HL 7 - 81.6 BXP-HL 2 -8, 11 -
R-MO 50, 100 BXP-MO 12 ———
17 WT 7 - 13.6 NXP/E-MO 2 -4
18 T8 7¢ NXP/E-W 2 ..
30 H : 10.9 N/P/E-MO 3 e
This paperd 7 - 100 B/P 2 - 11 ..
7 - 100 BOR/P 2 - 11
30 - 100 BXP 8, 9, 11, 12 {_TT-::_—T
60 - 81.6 BORXP or 7,8 ..
(BORXP) _
a

Only the 7 to 100 eV impact energy range is included.

The DCS was calculated as a function of momentum transfer for q = 0 - 2 a;l.

Extrapolated phase shifts.
Present calculation.

The following notation is used: B = Born; BOR = Born-Ochkur-Rudge;

N = pumerical solution for scattering wave function; / means plus; X means
without; E = exchange; P = polarization; HL = valence bond bound state wave
function; MO = molecular orbital bound state wave function; W = Weinbaum

bound state wave function.

This calculation by Khare and Moiseivitsch is sometimes called BEISA.

This is sometimes called R or RXE.



Ref. No.

10

11

13

b
This paper

TABLE 1I,

Abbr.

BM

RK

ELLT
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Summary of Experimental Work on the Angular

Dependence of e - H

E(eV)

50, 100
29, 83
10, 20, 30
7.4, 10
63
35, 50, 100
30, 50, 100
7

7, 10, 13.6
20, 45, 60,
81.6

. a
Elastic DCS

2

9(deg)
10 40
10 120
20 120
15 167.5
45 165
43.5 - 170
5 150
20 110
10 - 80

a Only the 6to 100 eV impact energy range is included.

Present results.

Fig. No.

Symbol

ODbmebd oo
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TABLE 1V,

E (eV) B/P BOR/P
30 11.52 13.83
50 7.11 8.43
60 5.97 7.00
70 5.15 5.98
80 4.52 5.20
90 4,04 4,60

100 3.64 4,12

8 Ref. 16.

b

Integral
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2
Elastic Cross Sections (ao )

BXP

5.57

3.53

2.99

2.59

2.29

2.05

B. F. Rozsnyai, private communication (1969).

BORXP

7.38

4,52

3.20

2.78

2.46

2.20

a,b
RXE

4.68

3.01

2.54

2.23

1.76

1.60

with the Heitler-London-like wave function with exponent 1.18.

R/E
5.46
3.56
3.01

2.95

2.36

1.92

These results were obtained
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Figure Captions

Fig. 1 Schematic diagram of the electron impact spectrometer.
Fig. 2 Elastic DCS at E = 7 eV, The curves are calculated results
as listed in Table I. The symbols refer to varic:: nspzri-

mental results as listed in Table II. The RK and ELLT data
are normalized to those of the present work at 6 = 600(*).
The x's at § = 180O are the type 1, 2, and 3 extrapolated

DCS values.

Fig. 3 Elastic DCS at E = 10 eV. Refer to Tables I and II for
definitions of the curves and symbols. The BM and RK data
are normalized to those of the present work at 6§ = 60°.

The x's at 6 = 180° are the type 1, 2, and 3 extrapolated

DCS values., Hara did not report the DCS for 6 < 110.

Fig. &4 Elastic DCS at E = 13,6 eV, Refer to Tables I and II for
definitions of the curves and symbols. The B/P scattering
is shown for three tyées of polarization potentials at small
angles. At these angles the B/P(B) cross section is within
10% of the BOR/P(D5) one. The x's at § = 180° are the type

1, 2, and 3 extrapolated DCS values for the experimental data.

Fig. 5 Elastic DCS at E = 20 eV. Refer to Tables 1 and II for
definitions of the curves and symbols. The BM data are
normalized to those of the present work at § = 600. The
x's at 6 = 180° are the type 1, 2, and 3 extrapolated DCS

values.
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Figure Captions (Cont.)

Fig. 6
Fig. 7
Fig. 8
Fig. 9

Elastic DCS at E = 45 eV, Refer to Tables I and II and
text for definitions of the curves and symbols. The *'s
at § = 140° are the type 1, 2, and 3 extrapolated DCS
values at 6 = 140°. The data set and the type of cutoff
function used for the two polatization terms are shown

in parentheses.

Same as Fig. 6 except that E = 60 eV and the MN data
are presented and normalized to those of the present work
at 6 = 60°. The dotted line is the BORXP calculation when

only the spherically symmetric part of the potential is used.

Elastic DCS at E = 81.6 eV. Refer to Tables I and II for
definitions of the curves and symbols. At small angles

the B/P approximation is shown for four different choices

of the polarization potential. The BORXP approximation is
aléo shown in this region. At 6 = 600, the four curves
would all lie within 247 of the B/P(D5) one. The calcu-
lations are all for data set 1 with a B' form for the quad-
rupole term cutoff function. The Arnot data are normalized

o

to those of the present work at 6 = 60°. The *'s at 6 = 140

are the type 1 and 2 extrapolated DCS values at § = 1400.

Elastic DCS at E = 30 eV. Refer to Tables I and II for
definitions of the curves and symbols. The A, BM, HM, and

W data are normalized to the B/P curve at 6 = 600(*).
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Figure Captions (Cont.)

Fig. 10 Elastic DCS at E = 50 eV, Refer to Tables I and II for
definitions of the curves and symbols. The HM and W data
are normalized to the B/P curve at § = 60°. The M “ats

are normalized to those of W at 6 = 40°,

Fig. 11 Elastic DCS at E = 100 eV, Refer to Tables I and II for
definitions of the curves and symbols. Four B/P curves
are shown just as in Fig. 8. The HM and W data are nor-

600. The M data are

malized to the B/P curve at 6

40°.

normalized to those of W at 6

Fig. 12 Elastic DCS at E = 50 and 100 eV, Comparison of three
Born calculations which neglect polarization and exchange.
The curve marked BXP is from the present calculations, the
curve marked R-MO is Rozsnyai's calculation with an MO wave
function, and the curve marked KM-B is the BXP calculation

of Khare and Moiseiwitsch.

Fig. 13 Integral elastic cross sections as a function of impact
energy. Refer to Table I for definitions of the curves.
The circles are obtained from the experimental total cross
section measurements of Golden, Bandel, and Solerno by
subtracting the integral vibrational excitation cross sections
of Ehrhardt, Langhans, Linder, and Taylor from raw C of Table
ITI. The triangles are obtained from the data of Ramsauer and
Kollath the same way; squares are obtained from the measurements

of Arnot as discussed in Section D.2. The x's are cross sections

calculated by Nagahara.
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Figure Captions (Cont.)

Fig.

Fig,

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

14

15

16

17

18

19

The differential cross section at 10° is shown as a
function of impact energy. The curve TB/E represents
the calculation of Tully and Berry. The curves B/P
and BOR/P are our calculations, and our experimental

results are indicated by crosses.

Same as Fig. 14 except 6 = 200, and the results of

Ehrhardt et al. (Ref. 13) are also shown (as circles).

Same as Fig. 14 except 6 = 30°.

Same as Fig. 15 except 6 40° for the experimental data

and 420 for the calculations.

Same as Fig. 14 except 6 = 600.
Same as Fig. 15 except § = 700.
Same as Fig. 14 except 8§ = 80°.

The differential cross section at 110° as a function of

impact energy. The curve TB/E represents the calculation
of Tully and Berry, and the curve WT/E represents the cal-
culation of Wilkins and Taylor. The curves B/P and BOR/P
are the present calculations, and the experimental results

of Ehrhardt et al. (Ref. 13) are indicated by circles.
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A. Introduction

Diffusion® and swarm®:3 experiments carried out since the early
1930's have indicated the importance of vibrational excitation of
molecular gases by low-energy electrons. However, the actual obser-
vation of discrete vibrational transitions and the detailed study of
this phenomenon have become possible only recently with the advances
of electron beam techniques.

Vibrational excitation of H, by low-energy electrons (below 10 eV)
has been observed and studied by Schulz,* Menendez and Holt,® and

Ehrhardt et al.® The scattering cross section was observed to have

& and

a maximum between about 2 and 4 eV and the energy dependence®”
angle dependencef”g'11 of the cross section have been explained by
resonance models at these low energies. Vibrational excitation of
H, by electrons in the 11-13 eV range has been studied experimentally

1% this scattering could be explained

by Menendez and Holt® and others;
as due to contributions from higher energy resonances superimposed on
a potential scattering background. Vibrational excitation in Hz is
optically forbidden and has not been observed at very high energies
(35 keV)*® where the first Born approximation predicts that optical
electric dipole selection rules are approximately valid.

Our investigation is concerned with low energy scattering at 7
and 10 eV and with the intermediate energy range (from 10 to 100 eV).
The vibrational excitation in the intermediate energy range is expected
to be due to potential scattering, but there have been no previous ex-
perimental investigations of it in this range. The ratio of the intensity

of electrons scattered after causing a transition to a specific vibrational
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leyel of the ground electronic state of H, to the intensity of electrons
scattered without having caused either vibrational or electronic exci-
tation has been measured for scattering angles 6§ = 10° to 800, for
impact energies E = 7 to 81.6 eV, and for final vibrational levels
v/ =1 to 3. From these measurements and from the elastic differential
cross sections'?® the vibrational differential cross sections have been
obtained. By extrapolating the differential cross sections (DCS's) to
0° and 1800, the integral vibrational excitation cross sections were
determined. The experiments do not resolve the rotational structure
of the energy loss processes.

We have also calculated the vibrational excitation cross sections

1,18

by the quantum mechanical method described in paper Our experi-

mental and theoretical values are compared with the measurements of
Ramien® (E = 3.5 eV to 7.2 eV), Schulz®* (E = 3 eV to 8 eV), and

Ehrhardt e 1.° (E =1 eV to 10 eV), and with the calculational methods

6

(low energy) of Breig and Lin'® and Takayanagi.”

B. Experimental Methods and Data Handling

Measurement of scattered signal intensities corresponding to vibra-
tional excitation in H2 requires a moderately high energy-loss resolution
(about 0.1 eV or better) and a very sensitive detector. The first vi-
brational energy-loss feature is separated by only 0.52 eV from the
elastic peak in the energy-loss spectrum, and the latter is in some
cases 10* times stronger. The results presented here were obtained
with the same electron impact spectrometer used in II. The Hg pressure
was kept constant at about 10”2 torr as measured by an uncalibrated ion

gauge. At this pressure the effect of double scattering is negligible
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for the type of DCS which occurs in the present case. While obtaining
one spectrum, the electron impact energy (E) and scattering angle (8) are
fixed, and the energy-loss range from -0.2 to +1.6 eV is scénned. The
sweep is repeated many times and the scattered intensities from each
sweep are accumulated to form the final energy-loss spectrum. On the
average about 10 hours of multichannel scaling were necessary at each
€ and E to build up an acceptable signal-to-noise ratio in the vibra-
tional excitation part of the spectrum. A typical energy-loss spectrum
is shown on Fig. 1. Study of the angular and energy dependence of the
cross sections requires the collection of many spectra over a period of
months. It cannot be expected that the instrumental conditions remain
unchanged during these long data collecting periods. In order to mini-
mize the errors introduced by the changing instrumental conditions, the
following experimental procedure was used.
1. Each spectrum is a superposition of many repetitive energy-loss
scans, where each scan has a duration of about 10 minutes.
Since the instrument is very stable for a few hours, the
different parts of the spectrum are produced under identical
conditions.)
2. From each spectrum the ratios Rv' = Iv'/Io are measured for
v/ =1, 2, and 3, where Iv' is the scéttered intensity cor-
responding to excitation of the v’ vibrational state and I0
is the elastic scattering intensity. These ratios are the

quantities that are least subject to experimental errors and

are directly comparable at all angles.
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3. The elastic DCS's determined separately (paper II) are then
utilized to obtain the vibrational DCS's. The measurement
14
of the elastic angular distribution takes only about 3 hours,
during which the change in the experimental conditions can be
made negligible.

As Fig. 1 shows, there is some contribution from the tail of the
elastic peak to the vibrational intensities. This tail contribution,
however, is a smoothly varying function of energy loss and is inter-
polated and subtracted from the composite signal. A practically complete
resolution of the elastic scattering and vibrational excitation features
would have been possible; this, however, would have appreciably increased
the time required for the experiments. (The spectrometer is capable of
about 0.030 eV resolution and can measure a signal that corresponds to
one electron in every 20 seconds.)

The spectrum accumulated in the detector memory was smoothed by
averaging over three neighboring channels, and the intensity ratios RV,
were calculated from the peak heights of the energy-loss features after
subtraction of the background. Using the peak heights as a measure of
intensity is acceptable since it was found that the line shape was inde-
pendent of scattering angle. It was also experimentally established that
the instrument efficiency was independent of energy-loss over the spectral
range of interest here. (The gun, the energy selector, and entrance
optics to the scattering chamber were tuned to generate the required
electron beam and the second half of the apparatus was tuned to get the
optimum elastic peak (maximum intensity at the required resolution) at

o

40 With these settings, energy loss features about 6-8 eV away from
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the elastic peak were recorded at several lower and higher scattering
angles and then an attempt was made to reoptimize the second half of

the instrument to give maximum signal for the inelastic features at

the same resolution. 1In all cases it was found that no improvement

was possible and that the optimum tuning conditions for the elastic
feature were also the optimum conditions for the inelastic ones.

This was not true for inelastic features about 15-20 eV from the

elastic peak.) Since the factors relating the peak intensities to

their respective DCS's are the same for every energy-loss feature in

any one spectrum, Rv' = DCSov'/DCSoo’ where we denote the DCS for
excitation of the v’ vibrational state by DCSOV, and the elastic DCS

by DCSoo' Multiplication of Rv' by the elastic DCS, which was deter-
mined previously (paper II), gives the DCS for vibrational excitation

in the 10° to 80° angular range at each of seven individual impact
energies. The incident energy scale was not calibrated and hence E

can be in error by about 1 eV due to contact potentials. An angular
extrapolation and integration procedure similar to the one described

in the previous article (II) for the elastic scattering was applied to
the DCSOV; to obtain the integrated vibrational excitation cross sections
4

Q ,. Typel extrapolation?

was used to calculate Q@ , for Table III
ov ov

of Paper II and for this paper. The error bars shown on the figures
are typical values obtained by summing up all the estimated errors in
the experimental and calibration procedures. Their values are approxi-

mately 10% for Rl, 20% for Rz’ 30% for R,, 45% for the DCSO 55% for the

1)

DCS_ , and 65% for the DCS_...
o2 03
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C. Calculation Methods

A calculation procedure using plane wave scattering wave functions,
accurate unperturbed molecular vibrational wave functions, and model
potentials based on quantum mechanical considerations of the electronic
charge distributions has been described in I.'® This procedure represents

18 Breig

an improvement over earlier less complete methods used by Carson,
and Lin,'® and others (see I for references). One method we use is to
calculate in first order perturbation theory the transition probability
between unperturbed initial and final vibrational states, i.e., the Born
approximation (BXP). In addition, we sometimes make corrections to
account for exchange effects; this gives the prior Born-Ochkur-Rudge
approximation (BORXP). For accurate results, however, this method might
have to be carried to at least second order in the scattering to include
the distortion of the scattering electron wave function and/or to include
the polarization of the electronic wave function of the bound states of
H_. In I, we describe a method of including polarization by adding to

2

the static perturbation potential an effective (nonadiabatic) polari-

19 This is a common

zation potential based on variational calculations.
technique and it corresponds to a partial summation of the electronic
polarization terms in the perturbation series. The results are the
polarized Born approximation (B/P) and when we include exchange effects
the polarized BOR approximation (BOR/P). Because the conditions for
validity of the Ochkur-Rudge method of including exchange are not known,
we generally present the results of both calculations. These methods

neglect back coupling, the direct effect of distortion (which was con-

sidered by Takayanagilv), most of the effect of distortion on the
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exchange correction, and some other higher order effects which might be
important. The present calculations also do not include resonance effects.
To test these methods, they were applied to calculate the elastic scattering
cross sections for H2 and shown in Il to give good agreement with the experi-
mental integral and differential elastic cross sections at and above 10 ev
when the model potential (data set 1) which is considered theoretically most
justified (see Paper I) is used in the calculation. Thus, in the present
article we will continue to use this model. We will use data set | (DS1)
except where explicitly stated otherwise. DS1 implies the use of a D5 form
for the polarization potential cutoff functions and the B’ form for the
quadrupole interaction cutoff function.'®Sometimes calculations using A or

B forms of the polarization potentials (with the cutoff radii the same as
for DS1) are also shown for comparison.

D. Results and Discussion

1. Angular Dependence of Intensity Ratios

The experimentally measured RV,'s are not subject to uncertainties
introduced by the effective path length correction, the normalization
procedures, and changes in instrumental conditions which are slow with
respect to the sweep-time for one energy-loss scan. We pointed out in
Section B that these ratios are equal to the corresponding cross section
ratios. The experimental and calculated intensity ratios as a function
of scattering angle are given in Figs. 2 through 10. On Figs. 4 and 7,
several separate measurements of R1 taken over periods of up to half a
year are shown to demonstrate the reproducibility.

At scattering angles 10° - 15° and below the direct beam contribution
to the elastic scattering signal can be important;14 therefore, the errors
in the ratios and DCS's can be considerably greater at 10° than at larger

angles.
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Other experimental Rv,'s in this energy region with which our
measurements can be compared are those which we can obtain from the
measurements of Schulz®* and of Ehrhardt et al.® Schulz's data is

considered in Section D.3. Ehrhardt et al. give Q__, for vi=1, 2,
and 3 as a function of impact energy from about 1 eV to 10 eV. They
found that the shapes of the angular distributions for 20° <8 < 110°
for the v = 1 and 2 (and presumably for the v’ = 3) channels were the
same and were independent of impact energy from about 1 eV to 10 eV
within their experimental errors (about 10%). Therefore, the ratios
DCSOE/DCS01 and DCSOS/DCS01 should be independent of angle and equal
to Qol/Q02 = 8.3 and Qol/QOS = 1.0 X 102. These ratios combined with
our ratio R1 at several angles yield the values representing their R2
and R, in Fig. 2. The agreement with our experimental Qalues for Rz
is good.

At E = 7, 10, and 13.6 eV, the calculated R, curves agree fairly
well with the measured ones both in magnitude and shape. As one goes
to higher impact energies, the experimental ratio curves develop deep
minima around 20° - 40° scattering angles. At these energies the calcu-
lated curves are in poorer agreement as they do not reproduce the dips
quantitatively. There is, however, still an order of magnitude agreement
with experiment, and the experimentally observed shift of the minimum in
the ratio curves to lower angles with increasing impact energy is properly
predicted by the calculations. The BOR/P curves give somewhat better
agreement with experiment than the B/P ones. The difference, however,

is not always significant and becomes negligible at some energies.
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At low angles the term which has the largest effect on the calculated
scattering cross section is the polarization potential, as expected
from its long range nature. This is shown on Figs. 5 and 7 and in
Paper 1I.

The calculated values for R.2 and R, are about a factor of ten
less than the experimental ones at 7 and 10 eV, but at higher energies
the agreement for R2 is much better. The discrepancies at 7 and 10 eV
probably are due to inaccuracies in the vibrational excitation DCS cal-
culation and will be discussed in Sections D.2 and D.5. The calculated
R, curves are also shown above 10 eV, although at the present time no
experimental dataare available for comparison.

Figures 7 and 9 show the R, values calculated by the BOR model
with form A for the polarization potential'® [curve BOR/P(A)] and when
polarization is neglected (Curve BORXP). (See Paper I for further dis-
cussion of these methods.) These curves show that the polarization
potential is necessary for producing the deep dip in the R; ratio but
that the exact form of the polarization potential for small electron-
H, distances (r) is not crucial in determining the shape of the curve
in the vicinity of the dip. This is true ét all energies above 10 eV
except that at energies of several hundred eV the dip appears prominently
in the calculation even without polarization and the effect of including
the polarization potential is to make it deeper.

2. Angular Dependence of the DCS

The vibrational excitation DCS's as a function of scattering angle
are shown in Figs. 11-21. Calculations using the B/P and BOR/P approxi-

mations are shown. When only the former is indicated, the BOR/P curve
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would not deviate noticeably from the B/P one. The absolute values

for the experimental measurements were obtained from the normalized
elastic cross sections (Paper II) and from the experimentally determined
RV, as described in Section B. On the right-hand side of each figure,
the values of the DCS at the highest angle shown on that figure are
given as obtained by the three different extrapolation methods de-
scribed in II. Type 1 extrapolation has been used to calculate the
integral cross sections.

Figure 13 also shows the angular distribution measured by Ehrhardt
et al.® for the first vibrational excitation at 10 eV. Their cross
section was given in arbitrary units and for purposes of display has been
normalized to our experimental one at 60°. The two experimental angular
distributions are in excellent agreement. The dash-dot curve on Fig. 13
is obtained from the expression DCS(8)=(l + 2 co0s®8) by normalizing it
to experiment at 40°. This type of angular behavior is predicted by
resonance theories for scattering by means of a 2Zu+ intermediate
negative ion state.®’2’!% Although the predicted angular distribution
of the resonance model is in good agreement with experiment above 400,
at the lowest angles there is a considerable disagreement. 0'Malley
and Taylor® suggested that the deviation could be due to scattering
by higher partial waves, e.g., f waves. In our model the strong forward
scattering is due to scattering in many higher partial waves by the
polarization potential. The direct scattering model (B/P) curve gives

just as good or better agreement with experiment as the resonance model

and requires no empirical scale adjustment,
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As noted in Section D.1, Ehrhardt et al.® found that the shapes

of the angular distributions for vibrational excitation of the v’/ =1
and 2 states were independent of energy from about 1 eV to 10 eV and
were the same for both states. Our 7 and 10 eV measurements do not
eliminate this as a possibility within the limits of experimental
errors. In fact, if the angular distribution of Ehrhardt et al. for
v/ =1 at E = 10 eV and our four DCS's for E = 7 and 10 eV and v’ =1
and 2 are all normalized at 360, a median DCS can be obtained and all
the data points of these five DCS's in the 8° - 80O range fall within
20% of it., Within the limits of our much larger 42% estimated error
for the shape of DCS,,, even these points are consistent with the median
]

DCS. Ehrhardt et al.” argued that the excitation cross section must be

dominated by resonance scattering at all energies up to 10 eV since the
shape of the angular distribution is practically independent of impact
energy in that range. While it is true that pure resonance scattering
would lead to a DCS whose shape is exactly the same over the whole width
of the resonmance, it is possible that the shape of the angular distri-
bution due to potential scattering would also be fairly independent of
impact energy over some energy range. Since we have shown in the pre-
vious paragraph that a potential scattering explanation of the v’ = 1
vibrational excitation is not precluded in the 7 - 10 eV energy range,
this could be an example of inelastic scattering with an appreciable
contribution from potential scattering which still exhibits a DCS whose

shape does not change much with energy. Further support for such a

possibility comes from the calculations for potential scattering in
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the B/P approximation shown in Table I. The shape of the DCS from

0° to 120° does not change much between 7 and 10 eV. Such a phe-
nomenon could also occur in more accurate calculations. Another
example is the excitation of the 2'P state of helium by electrons
with energies in the 34 - 55.5 eV range. The DCS's for this process
have been determined in the 10° < 8§ < 70° region and their shape
changes only slightly more than experimental error in this non-

© These examples indicate that approximate

resonance energy range.>
energy-independence of the DCS shape is a necessary but not sufficient
criterion for pure resonance scattering.

Above 10 eV the experimental DCSOl exhibits a gradual change in
shape. A minimum and a maximum develop in the 10° - 80° range and
they shift progressively to lower angles with increasing impact
energies.

The B/P (or BOR/P) caléulation is in good agreement with meas-
urements at 7 and 10 eV for the excitation of the fundamental vibra-
tion. At higher energies, however, the agreement becomes poor and
the minimum found in the experimental angular distributions is not
reproduced quantitatively by the calculations. (This is the source
also for the disagreement in the experimental and calculated R1 curves
at the higher energies.) The polarized Born approximation evidently
overestimates the potential scattering cross section for excitation
of the first excited vibrational level of H,.

For the excitation of the first overtone (v’ = 2) at 7 and 10 eV

the calculated cross sections are about a factor of ten smaller than

the experimental ones. At 13.6 eV this factor is only about two and
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from 20 eV on the calculated and measured cross sections are in good
agreement. This discrepancy at low energy is also present in the R2
ratio versus scattering angle curves discussed previously and scems
to be due to resonance contributions. Although the peak of the res-
onance is in the 2 to 4 eV impact energy range and its half width is
about 3 eV,® the resonance tail contribution is apbarently still the
dominant part of the overtone excitation cross section up to over
10 eV impact energy. Thus the resonance is more important for S
than for o ,. This is discussed further in Section D.5. Figure 14
compares the DC802 with the 1 + 2 cos®8 angular distribution predicted
by the resonance model (see above). The agreement at lower angles is
poor.

There is only a limited amount of experimental data on the second
overtone excitation. At 10 eV we find experimentally that the ratio
DCSOE/DCS03 is about 4 and that DCS,., looks somewhat more isotropic

than either DC802 or DCSO This qualitative behavior is also shown

1
by the calculation, but the calculated cross section is about ten
times smaller. The quantitative disagreement is again probably due
to resonance contributions.

Figure 21 shows the results of calculations at 81.6 eV with
form A of the polarization potential [BOR/P(A)], with a potential
where the polarization terms were omitted (BORXP), and with a potential
where both polarization and quadrupole terms were neglected (BORXPXQ). At
this high impact energy it is hard to decide which of the calculations

gives better agreement with experiment. This also has been found in some

cases for the elastic scattering (see Papers I and II) and is attributed
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to the partial failing of the static polarizability model at high

impact energies. More accurate experimental differential cross
lo] 4

sections for 6 < 10  would provide a more critical test of this

point.

3. Energy Dependence of the Intensity Ratios

It is of some interest to look at the energy dependence of the
intensity ratios in a more explicit form. Figures 22 through 27 show
the ratios R, and Rz at 200, 300, 400, 600, 70° and 80° scattering
angles as a function of impact energy. The experimental Rl curves
have a minimum as a function of impact energy. This minimum becomes
more pronounced and shifts to lower impact energies as the scattering
angle increases. The agreement between the calculations and experiments
is poor at low éngles but reasonably good above 400. The minimum and
its shift to lower energies with increasing angle is propérly predicted
by the calculations. The R2 curves behave similarly to the R1 curves,
but for the former the experimental data extend only to 40 eV at 20°
and 30° and only to 20 eV at higher angles.

Figure 26 shows the intensity ratios R; measured by Schulz® at
72° scattering angle. He gave the integral cross section for the funda-
mental vibrational excitation as a function of impact energy (Fig. 11 of
Ref. 4). He obtained these cross sections from his measured ratios of
vibrational excitation to elastic scattering intensities at 72° and from
the total electron-hydrogen molecule scattering cross sections of Ramsauer
and Kollath®! by assuming the angular dependences of the elastic and

inelastic cross sections to be the same. Since DCSoo and DCS01 are now

known not to have exactly the same shape (or else our ratios R, would
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be independent of angle), the most meaningful results from Schulz's
measurements are the ratios R, at 720. We have Back-calculated his
intensity ratios and they are shown in Fig. 26. The agreement with
our measurements is excellent. This is a most significant check on
the measurements since these ratios were obtained directly from two
different instruments and since, as mentioned previously, the ratios
are the quantities least subject to experimental errors.

At E = 3.4 eV and B = 720, Schulz also observed excitation of

the v’ = 2 vibrational level.* From Fig. 11 of his paper one gets

[DC802(720)] = Q°1 = (.20, while the value of the same ratio is
DCS,, (72°) Qo5

0.074 from Fig. 5 of Ref. 6. For a wide range of choices of scattering
potential (and with and without exchange and/or polarization) we cal-
culate values of this quantity in the range 0.013 - 0.040 with 0.0145

for the theoretically most justifiable potential including polarization.
This discrepancy indicates either that potential scattering contributions
are proportionately much less important for v’ = 2 than for v’ = 1 even
at E = 3.4 eV (which is very near the nominal "resonance energy') and/or
that our first order calculation is very bad, even for the nonresonance
part of the cross section at this low energy. From the discussions in
Sections D.2 and D.5, it appears that the former alternative may Be
correct,

4, Energy Dependence of the Differential Cross Sections

The energy dependencies of the present experimental and theoretical
differential cross sections are shown explicitly in Figs. 28-34. Ehrhardt
et al.® also measured the energy dependence (for E < 10 eV) of the dif-

. . o ;
ferential cross section at 20 . We compare the two sets of results in
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Figure 28; for the comparison we normalize Ehrhardt's data such that
his DCS01 (200) is equal to ours at E = 10 eV. The agreement of the
different experiments is seen to be good.

These figures show explicitly what follows from the comparison
of the calculated and experimental elastic cross sections and scat-
tering intensity ratios; e.g., that for the first vibrational exci-
tation the calculated and experimental cross section versus energy
curves differ considerably at low angles, but the agreement is good
at high angles. For the overtone vibration, the angle-analyzed exci-
tation functions seem to be very similar to the ones corresponding to
the fundamental vibration. The experimental data are, however, limited
to low energies for the overtone.

It is noteworthy that the experimental DCS,, is an increasing
function of energy at energies near 60 eV. This behavior is especially
striking in the 30° - 60° range. While this behavior is not predicted
quantitatively by the calculations, the BXP cross section, which peaks
very close to threshold, is again an increasing function of energy at
least one higher energy range at any angle. The B/P calculations also
show minima, but they are smaller. The minima in the experimental DCS01
as functions of energy move to lower energies at higher angles. The BXP
calculations are in approximate qualitative agreement with this trend at
higher energies, but the present calculations do not predict this feature
accurately,.

5. Energy Dggendence of the Integral Cross Sections

The excitation functions Q01(E), Qoz(E), and Q,,(E) are shown on

Figs. 35-36.
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The experimental values of Ramien! and Ehrhardt et al.® are in
good agreement with our measurements. Ramien's data are from multiple-
scattering experiments in which he obtains the ratio of the number of
inelastic collisions (with energy loss 0.5 eV) to the total number of
collisions, i.e., approximately Qol/(Qooﬁ-Qov). From this ratio, we
obtained and plotted Q01 by using the cross sections of Golden, Bandel,
and Salerno.2? The differences between the results of Ehrhardt et al.
and our data are within the combined errors of the experiments and the
extrapolations of the DCS's to 1809. The B/P and BOR/P calculations
yield QOI's which agree within a factor of 3 with experiment over the
1.5 - 100 eV enexrgy range.

For the overtone vibrational excitations, the two sets of experi-
mental integral cross sections are in agreement within their error limits.
The calculated cross sections are also in agreement with experiment at
20 and 40 eV; at the lower energies, however, they are about an order of
magnitude smaller than the experimental values. This discrepancy is
discussed at the end of this section.

Since there is very little information available for the excitation
of the second overtone, our calculated integral cross sections for this
process are given in Table II. The BOR/P calculation is the most reliable
estimate of these cross sections presently available.

It has long been known that the static potential alone c;nnot account
for the order of magnitude of the vibrational excitation cross sections at
low energies. Figure 35 shows the calculated cross sections for vibrational
excitation (v/ = 1) due to scattering off the static potential (Soszqu')

and off the spherically symmetric component of this potential (So)' Our

experimental and theoretical results show that the static potential becomes

so much more important at higher energies that it cannot be neglected even
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for qualitative work above 20 eV. Breig and Lin did plane wave calculations
below 10 eV using only the spherically symmetric part of the polarization
potential P?S for the scattering.'® They showed that this calculation could
predict scattering of the correct order of magnitude. In Fig. 35 we show

a calculation which usecs only our DS1 polarization potential. Breig and
Lin showed that it is possible using just the polarization potential to

get more quantitative agreement with experiment at low energies by empiri-
cally increasing the potential's depth. This led to a D8 polarization
potential with ap = 1.3 a (using the notation of Paper I). Such a po-
tential has é depth of 0.604 h®® at r = 1.34 a. This potential appears
unrealistic because the Lane-Henry polarization potential (see Paper I

and Ref. 19) has a maximum depth of 0.095 h at r = 1.50 a_s while the
deeper static potential is deepest at r = 0.70 a- Breig and Lin's
incomplete procedure also leads to the prediction of qualitatively in-
correct DCS's (see Paper 1). Takayanagi did distorted wave calculations
for the spherically symmetric part of the polarization potential.17 His
calculations, like Breig and Lin's, were exploratory and cannot be used

for quantitative estimation of cross sections because he used an over-
simplified potential and unrealistic values for the cutoff radius.
Nevertheless, his calculations do show that the distorted wave and plane
wave treatments agree fairly well at low energies when compared for similar
potentials and values of the cutoff radius.

&

Ehrhardt et al.” showed that at very low energies the vibrational

excitation cross sections can be qualitatively explained using resonance
theory. The resonance can be seen, for example, on Fig. 35. This resonance

is a shape resonance in the pO partial wave and is associated with the

+ - -
22u state of H, ion®*. Our discussion of the 7-10 eV differential cross
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sections, however, has shown that potential scattering can account at
least approximately for the v/ = 1 excitation cross section. It is
interesting therefore to attempt a crude breakdown of the low energy
scattering into resonance and potential scattering contributions.

26 . , RES
Bardsley showed that the integral cross section curve Q

mf , pp

excitation of state p’ (= v'J'M’) of the electronic ground state g

? for

from state p (= vIJM) of the same electronic state by means of temporary
formation of the vibrational states n of the intermediate electronic
. a2ty .
state (resonance state) d having £ =1, m = 0 ( Zu) is given by
2

RES b gd _gd 1
= . 1
Q Kk, |5y £ £ (enﬂ (1)

where £ and m refer to the orbital angular momentum of the scattering

electron and to the component of this angular momentum along the inter-

nuclear axis, respectively. The f's are the Franck-Condon factors, kp

and k , are the wave numbers of the incident and scattered electrom.

€ =TI (2)

E is the impact energy, En is the energy of the resonance state with
respect to the ground state of Hz and a separated electron, and T is
the width of the resonance. Bardsley et al.” have estimated theoreti-
cally that %T" = 4.5 eV, but we will use the value %7 = 3 eV estimated

by Ehrhardt et al.® from their experiments. If we assume that the

rotational state doesn't change and that only one vibrational state r
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of the resonance contributes, we can rewrite (1) as

!
RES _ A,v .
i v’ - KK s(E2FT) )

where the numerator A is independent of impact energy. Finally,
without making a partial wave decomposition of the potential scat-
. . POT . . .
tering cross section vi, , the simplest approximation we can use
for the full (resonance + potential scattering) integral cross section
is
RES POT

Q0 = Q7+ Qo )

This amounts to neglecting terms due to interference of the resonance
and potential scattering in the £ = 1 partial wave. We will further
, , POT .
make the approximation that vi, can be estimated from our B/P
calculations (with data set 1).
For this one state resonance model, we estimate from the cross

sections of Ehrhardt et al.® that Er = 3.5 eV. Using eq. (4), we

RES

01’OVI at E = 3.5 eV. Then

also obtain from their data estimates of Q
we use eqs. (2) and (3) to calculate empirical values for A(0, v’, r)
for v/ =1, 2, and 3.

Next, eq. (3) with the value of A determined above is used to
predict Q?f?ovl at energies above 3.5 eV. Finally, the model's pre-
dictions for the full Qov' are calculated from eq. (4) and these cross
sections are compated with experiment in Table III. In view of the

approximations involved, these results can be considered only as quali-

tative estimates of the true situation. For the v’ = 1 case this crude
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model gives good agreement with experiments up to 10 eV and indicates
that above about 7 eV the contribution from potential scattering is
comparable to or larger than the one from resonance scattering.

For the excitation v = 0 » v’ = 1, a more realistic model would

include at least the r = 0 and r = 1 vibrational states of the resonance.

The disagreement of the model and experiment for the energy dependence
of QO1 would be lessened for a 2 vibrational-state resonance model because

the added resonance state would raise the cross section more at 5 eV than
at 10 eV. Ehrhardt et gl.s interpreted the unsymmetrical shape of the

Q , curve as meaning that several states of the negative ion are important.
It seems more probable, however, that only the lowest ~w!+ 1) states

are very important and that the rest of the tail in the Q,; curve is

due to contributions from potential scattering. For the higher v’, the
agreement between the predictions of this model and the experiments becomes
progressively worse. The table indicates that excitation of these states
is much closer to being pure resonance scattering than is the v’ = 1
excitation. The one-state model predicts that the cross sections decrease
too rapidly with energy. Since we probably have not underestimated the
potential scattering (the comparison of theory and experiment in the
nonresonant regions indicates that our theoretical treatment overestimates
the potential scattering cross section), this error is probably due to

our oversimplified treatment of the resonance. One defect of the model

is that the n = 2 and 3 states, which it neglects, probably are more
important for excitation of these higher vibrational states. Also,

perhaps the results indicate that a half-width larger than 3 eV should

be used. Both these corrections would raise the predicted cross sections

at energies above 3.5 eV.
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E. Conclusions

The differential cross sections for vibrational excitation of
v/ =1 level of Hz are strongly decreasing functions of scattering
angle in the 10° - 30° region for E = 7 - 81.6 eV. At energies above
20 eV they show a deep minimum near 30°. The polarized Born and
polarized prior Born-Ochkur-Rudge calculations are in qualitative
agreement with experiment except that they do not give a deep enough
minimum in the differential cross section. The energy and angle
dependence of the quantum mechanical cross sections is quantitatively
very good in the 50° - 80° range. For the integral cross sections,
theory ard experiment agree only within a factor of about 3, and the
calculations seem to overestimate the nonresonance contributions to
the cross sections in the intermediate energy range.

? interpreted the excitation of

While Taylor and co-workers®:
the v’/ = 1, 2, and 3 levels at 10 eV impact energy as due mainly to
resonance contributions, we find that the potential scattering (or
direct interaction) contributions to the v’/ = 1 excitation cross section
are appreciable at 10 eV. However, these contributions decrease more
rapidly with incréasing v’ than do those predicted by a resonance mech-

anism so that excitation of the v’ = 2 levels is evidently due primarily
to resonance scattering even at 10 eV (about 7 eV away from the nominal
resonance energy). (It has been known for a long time that resonance
scattering often leads to appreciable cross sections for processes with
large Av.?”) However, at higher energies (E = 20-45 eV) our first order
calculations account quantitatively for the magnitude of the vi=2

cross sections. Both experimentally and theoretically, the shapes of

the differential cross sections for exciting the v/ = 1 and the v’ = 2
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levels are similar to each other as compared to the shapes of the DCS's

. . + +
for elastic scattering* or excitation of the b32u or the aa‘Zlg'states.26
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TABLE 1., Differential cross sections (ag/sr) for vibrational
excitation due to potential scattering (calculated in

the polarized Born approximation) at low energies.

v' 1 1 1 1 1 1 1 1 1
Data Set® 1 1 1 1 1 1 L L L
(eV)
5:535§“‘- 1.8 3.4 5 7 10 25 5 7 10
0 0.164  0.187  0.195 0.201  0.206  0.214 0,169  0.174  0.178
12 0.151  0.157  0.15 0,147  ©0.138  0.106  0.131  0.125  0.117
2% 0.129  0.123  0.112  0.100 0.086  0.045 0.093 0.083 0,071
36 0.109  0.095 0.080 0.066 0.051 0,016 0.066 0.05s 0,041
48 0.092  0.072  0.056  0.042  0.028  0.007 0,046  0.034 0,023
60 0.077  0.055  0.039  0.026  0.015  0.005 0.031  0.021  0.012
75 0,063  0.039  0.024  0.014  0.008  0.005 0.020 0.012  0.007
90 0,051  0.028  0.015  0.009  0.005 0,005 0.013  0.007  0.005
105 0.042  0.020 = 0.010 0,006 0.005 0,004 0.009 0.006 0.004
120 0.035  0.015  0.008 0.005 0.005 0,004 0.007 0.005 0.004
v* 2 2 2 2 2 2 3 3 3
*
Factor 10 10 102 102 102 10° 10% 10? 10*
Data Set 1 1 1 1 1 1 1 1 1
oae Y 1.8 3.4 5 7 10 25 3.4 7 10
0 0.145  0.200  0.222  0.234  0.245  0.262  0.552  0.710  0.759
12 0.140 0.181  0.188  0.187 0.180  0.145  0.517  0.595  0.586
24 0.128  0.150  0.144  0.133  0.118  0.068  0.440  0.425  0.375
36 0.115  0.120 0,108  0.092  0.074  0.030  0.358  0.288  0.231
48 0.101  0.096 0.080  0.063  0.046 0,012  0.28 0,198  0.155
60 0.089  0.076  0.059  0.043  0.028 0,005 0.226  0.147  0.118
75 0.076  0.057  0.041  0.027 0,015 0.002 0.174 0.l114  0.093
90 0.065  0.044 0,029 0.017 0.008 0.002 0.141 0,095  0.071
105 0.057  0.035  0.021  0.011  ©.005 0.003 0.120 0.081  0.050
120 0.050  0.028  0.016  0.008 0,003 0.004 0.107 0.067 0.033

a
See Paper I.

" The factor, if given, is the number by which the cross sections have been multiplied.
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TABLE II. Calculated integral vibrational excitation

. ) '
cross sections (1078 ai) for v/ = 3.

E(eV) 10 20 45 60 81.63 100 500
B/P 12.9 6.6 4.3 4.7 5.3 5.5 2.1
BOR/P 15.9 7.3 4.7 5.0 5.6 5.8

BXP 6.1 3.3 2.8 3.6 4.5 4.8 2.0

BORXP 8.9 4.0 3.2 3.9 4.7 5.1
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TABLE III. Summary of estimated resonance and potential scattering

contributions to the integral cross sections (a 2).
o

Calculation . Experiment
v' | E(ev) Res. Pot.? Sum. ELLT® TTRK®
1 3.5 1.256° | 0.504 1.760° 1.76
1 5 0.699° | 0.380 1.0798 | 1.32 -
1 7 0.260 | 0.290 | 0.5508 | 0.80 0.57
1 | 10 0.075F | 0.221 | 0.2068 | 0.31 | o0.32
2 3.5 | 0.13% 0.007 | 0.137% | o.14
2 5 0.069F | 0.006 | 0.075%8 | 0.12 -
2 7 0.025f | 0.004 | o0.0208 | 0.096 | 0.050
2 10 0.007% 0.003 0.010%8 - 0.034
3 3.5 0.015° 0.0002 | 0.0152% | o0.014
3 5 0.0055% | 0.0002 | 0.0057%8 | o.012 -
3 7 0.0025% | 0.0002 | 0.00278 | 0.008 -
3 10 0.0005% | 0.0001 | 0.00068 - (0.014)

qpresent B/P calculation (DS1).

b

Reference 5.

CPresent results.

dTaken_as equal to column 6.
®Taken as column 5 minus column 4.
fCalculated from eq. (3)

& Taken as sum of column 3 and column 4.
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Figure Captions

Fig. 1 Energy-loss spectrum of H, at E = 10 eV and 6 = 58.5° (before
smoothing). The spectrum is a superposition of 58 scans with
1 sec dwell time (time spent in one channel during each scan
accumulating the scattered signal intensity) and 1.75 MeV

increments between adjacent channels.

Fig. 2 The ratios RV, of the vibrational excitation to elastic scatter-
ing intensities as a function of scattering angle at E = 7 eV.
The indices 1, 2, and 3 on Rv' refer to final vibrational quantum
number v/ = 1, 2, and 3, respectively., The symbols x and * are
our measured values for R, and R,, respectively, and the symbols
o and [ show the values obtained for R2 and Ra’ respectively, by

=]

using the data of Ehrhardt et al.” and the procedure described

in Section D.1 of the text. The curves are the results of the

present calculation.

Fig. 3 The ratios Rv, of the vibrational excitation to elastic scatter-
ing intensities as a function of scattering angle at E = 10 eV,
The symbols x, *, and A are our measured values for Rl, R,, and

R respectively. The curves are the results of the present

3 H
calculation.

Fig. 4 Same as Fig. 3, except E = 13.6 eV and the symbols +, x, and o
represent three measurements of R, taken at different times.

No experimental R3 ratios are available.
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Figure Captions (cont'd.)

Fig.

Fig.

Fig.

5

6

7

Fig. 8

Fig.

Fig. 10

Fig.

9

11

20 eV,

Same as Fig. 3, except E

45 eV,

Same as Fig. 3, except E

The ratios Rv' of the vibrational excitation to elastic scat-
tering intensities as a function of scattering angle at E = 60 eV.
The symbols + and x are two separate measurements of R, and the
symbol % is a measured R2 value. The curves are the results of
the present calculation. (See Section D.1 of the text for an

explanation of the curves.)

The calculated values of R, as a function of scattering angle

at E = 60 eV.

The ratios Rv' of the vibrational excitation to elastic scat-
tering intensities as a function of scattering angle at E = 81.6 eV,
The symbols x are our measured values for Rl. The curves are the

results of the present calculation. (See text for explanation of

curves.)

The calculated values of R, as a function of scattering angle at

E = 81.6 eV.

Differential cross sections for the excitation of the fundamental
vibration (v’ = 1) in Hz by 7 eV electrons. The symbols x are
our measured values and the curves are our calculated values.

The asterisks at 180° show the values of the DCS predicted there
by the three methods of extrapolation discussed in Section C of

Paper II.
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Figure Captions (cont'd.)

Fig. 12 Differential cross sections for the excitation of the first
overtone vibration (v’ = 2) in H2 by 7 eV electrons. The‘
symbols X are our measured values and the curve is from our
calculations. The asterisks at 180° are explained in Fig.

caption 11.

Fig. 13 Differential cross sections for the excitation of the fundamental
vibration (v’ = 1) in H2 by 10 eV electrons. The open circles
and crosses are the measurements of Ehrhardt et al. (Ref. 6)
and the present measurements, respectively. The curve labelled
RESONANCE is proportional to (1 + 2 cos®8) and is normalized to
experiment at 40°. The solid and the dashed curves are the

results of the present calculation. The asterisks at 180° are

explained in Fig. caption 11.

Fig. 14 Differential cross sections for the excitation of the first (x)
and second (A) overtone vibrations in H2 by 10 eV electromns.
The resonance curve corresponds to a (1 + 2 cos®8) angular
distribution and is normalized to experiment at 50°. The
other curves are the results of the present calculation. (See

text for explanation of the curves.)

Fig. 15 Differential cross sections for the fundamental vibrational
excitation in Hz by 13.6 eV electrons. The x's are the present
experiments, the curves are the present calculations, and the

asterisks are explained in Fig. caption 11.
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Figure Captions (cont'd.)

Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Differential cross sections for the excitation of the first

overtone vibration in H, by 13.6 eV electrons. The %x's below
80° are the present experiments and the asterisks at 180° are
explained in Fig. caption 11. The curve is the result of the

present calculation.

20 eV,

Same as Fig. 15, except E

Same as Fig. 16, except E 20 eV.

Differential cross sections for the excitation of the fundamental
(x) and first overtone (%) vibrations in Hg by 45 eV electrons.
The asterisks at 180° represent possible extrapolations of the
v’ = 1 experiments. The curves are the results of the present

calculation.
Same as Fig. 19, except E = 60 eV,

Differential cross sections for the excitation of the fundamental
and first overtone vibrations in H, by 81.6 eV electrons. The
symbols are as in Fig. 19. The results of a BOR calculation without
polarization and quadrupole interaction terms in the potential

are also shown (BORXPXQ). The curves are the results of the

present calculation. (See text for explanation of the other

curves.)

. . . . o
Intensity ratios as a function of impact energy at 20 scattering
angle. Crosses and open circles are the experimental R1 and R2
values, respectively; the curves are the results of our calculations.

(See text for explanation of the curves.)



536

Figure Captions (cont'd.)

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

23

24

25

26

27

28

29

30

31

32

Same as Fig, 22, except 6 = 30°.
Same as Fig. 22, except 6 = 40°
Same as Fig. 22, except 0 = 60°.

Same as Fig. 22, except § = 70°. The R, values measured by

Schulz at 720 are also shown as boxes.

Same as Fig. 22, except © = 80°.

The energy dependence of the 20° differential cross sections for
the fundamental, first, and second overtone excitation in H,

(A, o, and [0, respectively). The low energy values indicated

by filled-in symbols represent the measurements of Ehrhardt et al.

The curves are the results of the present calculation,

The energy dependence of the DCS at 30° for the excitation of the
fundamental (A) and first overtone (o) vibrations. The symbols
are the present experiments and the curves are the results of the

present calculation (two typical error bars are shown).

The energy dependence of the DCS for vibrational excitation. The

. o
A and the o are the present experimental results at 8 = 40 for
v/ =1 and v’/ = 2, respectively. The curves are the present

calculations at 6 = 420.

Same as Fig. 29, except 6 = 60 .

70°, and the results of the BXP

Same as Fig. 29, except ©

calculation for DCSOl and DCSoz are also shown. The BXP cross

sections are the lower solid curves.
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Figure Captions (cont'd.)

Fig. 33
Fig. 34
Fig. 35
Fig. 36

Same as Fig. 29, except 6 = 80°.

The energy dependence of the DCS at © = 120° for excitation of
the fundamental vibration as calculated in the polarized B/P
and BOR/P approximations. The inclusion of polarization in the

calculation makes less than 187 difference above 35 eV,

Integral cross sections for the excitation of the fundamental
vibrations (v’ = 1) as a function of impact energy. The symbols
x, o, and{ represent the results of this paper, of Ehrhardt et al
and of Ramien, respectively. The curves are the present calcula-

tions using data set 1. The dotted curves are calculated using

only the amplitudes indicated (in the notation of Paper I).

Integral cross sections for the excitation of the first two
overtone vibrations (v’ = 2 and 3) as a function of impact
energy. Experimental cross sections are obtained from Ehrhardt

1. (o for v/ =2, 0 for v/ = 3) and from the present meas-

et
urements (% for v! = 2, A for v’ = 3), Typical error bars are
shown on some of our results. Theoretical cross sections are

shown only for v’ = 2 because the theoretical curves for v’ = 3

are too small to fit on scale.

*
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PROPOSITIONS
ABSTRACTS

The quantum mechanical statistical phase space theory of
Pechukas, Light, and Nikitin is used to calculate the cross
sections for the endothermic ion-molecule reaction

c’+ D2 ~cp’ + D in the energy range 0-4 eV. The statisti-
cal theory threshold law is predicted to be valid only for a
region less than 0.1 eV from threshold. Two different types
of dependence of the reaction probability on incident impact
parameter are distinguished and one is used to explain the

magnitude of the predicted cross section in this case.

It is proposed to make an experimental search for infrared
0
chemiluminescence in the 8, 000-18, 000 A range in diffusion

flames of alkali metals with methyl halides.

A variation-perturbation method is proposed to obtain approxi-
mate eigenvalues of oscillators with the potential energy
function

Vx) = ax4 + cx2 .

Numerical results are presented showing that the analytic
solution of a cubic equation can often yield energy differences
between the levels accurate to better than 0.001%. The

method is accurate for both high and low quantum numbers.
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It is shown that the singlet excited states of the water molecule
cannot be adequately represented by an a priori calculation
(no semiempirical elements) using a valence-like basis set of
Slater orbitals. The implications for the applicability of
simple molecular orbital theory of the type used by Mulliken,
Walsh, and Pople is discussed briefly.

The method of Shuler and Zwanzig for calculating vibrational
excitation in atom-molecule collisions with a hard sphere
interaction potential is known to lead to numerically ill-
conditioned equations. In many cases, this ill-conditioning
prevents us from including enough vibrator eigenfunctions in
the expansion of the scattering wave function for the solutions
to converge. An alternative method of solving for the
scattering wave function is proposed and tested. Suggestions

for future work on this problem are given.
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PROPOSITION 1

INTRODUCTION

Recently Maier has measured the cross section curve
(reaction cross section vs. initial translational energy Ei) for the
hydrogen atom transfer reaction1 ct 4+ D, ~ CD" + D. Because the
initial states of the reactants are well known (the C* atoms are all in
their ground state for these experiments, 2 but with some other
experimental techniques the ionic reactants have a poorly
characterized internal energy distribution), this presents an oppor-
tunity for an important test of the statistical phase space theory of
reactions. 3 The comparison of a theoretical model with experiment
for this reaction is important because of the doubt about how well

translational energy can be used to cause reaction in such systems. 4,5

1 that, for the first 0. 25 eV excess energy

Further, Maier has shown
(excess energy E ex is the excess translational energy above
threshold, i.e., E, - Ethreshold)’ the cross section curve is
approximately consistent with the statistical theory threshold law
o o E_¥* derived by Nikitin, Pechukas, and Light. %% The
experimental reaction cross sections fit this curve "only slightly less
well'" than a linear curve. It is interesting to test whether the
statistical theory also predicts the correct magnitude for the cross
section near threshold and whether it predicts the shape and /or

magnitude of the cross section curve at higher energies.
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Morrison has written, "One difficulty in assessing theoretical
calculations of threshold behavior is the fact that it is seldom
stated over how great an energy range the predicted laws are

7 We try to shed light on this difficulty here by

expected to hold. "
using the complete statistical theory (from which the threshold law
was derived) to calculate the cross section at a number of different
energies just above threshold. This answers the question of how far
the threshold law is predicted to hold.

REVIEW OF THRESHOLD LAwsS: 93

One type of threshold law (how the reaction cross sections for
endothermic processes depend on excess translational energy E ex)
is generally derived by assuming the kinematic factors in the initial
state and the dynamic factors of the reaction vary slowly with
incident energy in the threshold region for the new process. Then
the critical factor becomes the ability of the products to separate
(i. e., the amount of phase space in the final state). This depends
on the long range nature of the interaction potential, in particular on
any part of the potential which dies off as r=2 or slower. Thus the
threshold behavior depends on the orbital angular momentum in the
final state. Usually, at and just above the threshold the products
must be formed in an s wave. For a two-body collision yielding
two products with no r~2 or longer range interactions (e. g., an ion
and a molecule whose long range potential energy dies off as r~1),

this gives the Wigner threshold law8 ¢ « E exm' Although this
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quantum mechanical threshold law is sometimes useful for collisions
involving free electrons in the final state, it holds in a region smaller
than 0. 01 eV for typical atomic and riolecular processes. For these
cases the masses are large enough th.t quantization of the final
orbital angular momentum is not crucial for nigher energies, and we

9,3,10 This is obtained by summing

want a classical threshold law.
over a set of final partial waves (or integrating over a set of final
impact parameters). Since the upper limit of the sum depends on the
long range force law for any range of potential, the threshold law

depends on the exact nature of the potential. For the attractive r—4

3,6 E 5/4.

potential of interest here, the classical threshold law is ex

This type of threshold law, which is derived on the basis of
available phase space in the final channel, is not valid for reactions
in which the threshold behavior is controlled by the change of reaction
transition probabilities due to dynamic effects. Thus, for example,
many neutral-neutral reactions have threshold behavior controlled
by the tunneling through a potential energy barrier in a critical
region of configuration space. For these reactions the assumption
that dynamic factors are not changing rapidly with energy for
energies near the threshold is incorrect. However, such barriers
are not generally expected to play an important role in ion-molecule
reactions, and, in particular, they do not appear to be important for
ct+ D,. Thus the attempt to use the statistical phase space theory

threshold law is justified in this case.
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COMPUTATION

Calculations were carried out using the quantum mechanical
statistical theory formulas3’ 11 and a modification of programs
developed earlier. 12 The vibrational energy levels were calculated
from De’ We» and the Morse potential model as in Ref. 12. The
nuclear spin degeneracy factors for odd and even rotational levels
were included properly. The long range potential is the r-4 polar-
ization potential due to the interaction of the charge and the induced
dipole. The r-3 charge-quadrupole interaction is much smaller for

13 The data neces-

these reactants and products and was neglected.
sary for the calculations (except for the masses) are shown in

Table I. The data for CD' (*£*) were chosen so that the reaction is
0.4 eV endothermic1 for reactants without internal excitation. The
data for CD" (3H) are also uncertain and were estimated from the cal-
culations of Moore, Browne, and Matsen. 14 The program provides an
automatic check in the entrance and exit channels on the require-
ments12 imposed on the orbital angular momentum limits (Li

max

Lf ) by the gas kinetic cross sections. However, no corrections
max
to L were required in the present case.

max
Table II gives the arrangement numbers (used for subscripts)
and state degeneracy factors for the three arrangement channels. The
degeneracy of a particular vibrational-rotational state (with rotational
angular momentum My f) is taken as (@M + 1)g where g accounts for

electronic and nuclear spin degeneracies and electronic orbital

degeneracy.
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In judging the possible validity of a statistical approach it may
be of interest to know how many quantum states are involved. Thus
Table III lists the maximum values for N(ET, K KZ)11 which occur-~
red in a sample group of calculations. N(ET, K, Kz) is the number of
quantum states which can be formed upon decomposition of a strongly
coupled compound system of total energy ET and total angular mo-
mentum KH. This table also explains why computing times rise as
ET rises.

The phase space program was written in FORTRAN IV and
run on the IBM 7094. The average execution time per cross section
(over the whole energy range) was less than 20 seconds. This was
achieved by saving intermediate results for n(f, Er, K, KZ), in the
notation of Ref. 12, and using them without recomputation when they
reappeared in subsequent partial waves. In some of the runs only
every third partial wave was computed and the others were obtained
by interpolation. In every case this caused errors of much less than

one per cent.

RESULTS AND DISCUSSION

The dependence of the reaction cross section on initial rota-
tional energy was examined and found to be small. Table IV shows
some results at Ei = 0.7 eV (at this energy, the electronically excited
state of CD" is not accessible). The reaction cross section Tps the
per cent of viorational excitation in the product (PCVEF), and the

quantum number of the highest rotational state of the product that is
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formed (Mfmax) are predicted to be insensitive to the quantum number
of the initial rotational state (Mi). The table also shows the results
when all partial cross sections are averaged over a Boltzmann distri-
bution of rotational states at 300° K (room temperature conditions
corresponding to Maier's experimentl). This resuit agrees closely
with the result for Mi = 2, the most highly populated state of D, at
this temperature. Thus in the rest of the article we will consider
only reactions from the M; = 2 state of D,.

Figure 1 shows the results of the calculation for the reaction
cross section curve. This general agreement in size and shape of this
curve with Maier's experimental curve is very good. Neglecting a
possible systematic error in the collection efficiencies of product
ions, one can estimate from Maier's discw.xssions15 experimental error
limits of about 60% for the absolute calibration and 15% for the shape.
Then the present calculations are within experimental error except for
the shape above 2 eV (discussed below). The fact that collection
efficiencies of secondary ions are not unity is expected11 to make the
experimental reaction cross section too small at higher energies.
Since the statistical theory almost always predicts reaction cross
sections that are too large, 16 the close agreement of experiment with
the present calculation may indicate that this is not a great source of
error for this case (the error is expected to be small when the product
ion is heavy compared to the product neutral, as in the present
reaction).

The energy of the lowest excited electronic state of CHY is in

doubt and the value used here (taken from the calculations of Moore,



582
Browne, and Matsen14) may be in error by as much as an eV. In
addition to the full calculation, Fig. 1 shows the result of omitting
this electronic state from the calculation. The resulting curve is
then in better agreement for both magnitude and shape. The plateau
in this second calculation is due to two competing factors. The total
capture cross section is decreasing with increasing Ei but the fraction
of captures leading to cD' is rising because of the availability of new
channels. The improved agreement of theory and experiment when
the triplet state is omitted has at least three possiblé interpretations:
(1) the excitation energy of the 311, electronically excited state may be
higher than the estimate used here; (2) the excited state may be
energetically accessible in this region with the statistical theory over-
estimating the magnitude of the cross section for its production;
(3) other errors in the statistical theory treatment may have cancel-
ing effects so that the improved agreement of theory and experiment
when production of ®I1 CD* above 1. 4 eV is omitted is not meaningful.
Resolution of these possibilities will require further experimental
and/or theoretical work.

The statistical theory predicts that the reaction cross section
rises rapidly from threshold and that there is no ""delayed onset. "
This behavior is expected for ion-molecule reactions in general
because the strong attraction between the charge of the ion and the
induced dipole in the neutral should dominate over any small repulsive
forces so that there are no small electronic energy barriers to
reaction (exceptions occur in special cases where curve crossing is

important). This contrasts a typical behavior for neutrals. 17 This
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expectation is built into the statistical theory used here3 in the cri-
terion for whether a collision with certain parameters can form a
strong coupling complex. Thus the prediction is not surprising and is
not new. The agreement with experiment for the shape of the cross
section curve in this whole region is some evidence that the prediction
is correct. This fast rising of the cross section curve had to be
assumed by Maier in interpreting his data (but the assumption did not
affect the shape of the curve).

The statistical theory predicts that the threshold law energy
dependence E ex5/4 is valid for less than a tenth of an eV above thres-
hold. This is because one of the conditions for the threshold law to
hold (as pointed out by Pechukas and Light3) is that L max «<L

i
[Limax (Lfmax) is the highest orbital angular momentum (in unnixtzxof
1) of relative motion in the incident (exit) channel for which the
reactants (products) can pass over the barrier in the effective poten-
tial energy]. Near this threshold Lj ., = 64 and this condition is
fulfilled only in a very small energy range. For reactants in the

M; = 2 rotational state, the threshold is 0.3799 eV and the complete

54 g exs"‘ within

statistical calculation fits the curve ¢ = (26.3 A% ev
15% up to 0. 47 eV. In this range the complete statistical calculation
fits the E ex5/ * law much better than a linear E ox 1aW. This threshold
- law, however, predicts a cross section which is 98% higher than the
statistical theory calculation at 0.6 eV. Thus, while the experiments
are consistent with the statistical theory threshold law up to 0. 6 eV,

they are not consistent with the full statistical theory in this range.

In the range 0.41 - 0.5 eV the statistical calculations can be fit
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within 6% by the curve ¢ = (11.7 A% eV-1) E.4- This curve predicts a
cross section 29% higher than the statistical theory calculation at
0.6 eV. Thus one of the disadvantages of the threshold law is that it
holds, even within the realm of the statistical model, only for a very
small region near threshold (the exact size of the region depends on
the molecules and states involved and can be estimated, but only
roughly, without doing a full statistical calculation). This problem of
a small region of Validitylo or an uncertain region of validity18’ 7,19
has been a difficulty with other threshold laws in the past.

The statistial theory not only assumes that the various tran-
sition probabilities have their mean values (and that these mean values
can be predicted by considering only the conservation laws and the
amount of phase space available) but also implicitly assumes that we
can ignore fluctuations of these transition probabilities about their
mean values (this is partly justified theoretically because we consider
averaged properties of the collision which depend on large numbers of
transition probabilities). However, Moldauer pointed out20 that the
fluctuation of the transition probabilities (henceforth called the width
fluctuation effect) may cause a systematic error which is especially
important near threshold. Making further assumptions which were
known to be reasonable for nuclear physics, he showed that the cor-
rection factor for the width fluctuation effect always tends to decrease
the cross sections for reactions and increase the cross section for
compound elastic scattering. The correction factor approaches 1

(becomes unimportant) when many channels are open. Tucker, Wells

and Meyerhof21 studied inelastic neutron-nucleus scattering within
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0.3 MeV of various thresholds for neutron impact energies 0.65 - 2.5
MeV. They found that in this region the width fluctuation correction
factor can lower the statistical cross section by 50%. They found
much better agreement with experiment when the correction was
included. It is unknown how important this type of correction to the
statistical theory can be for chemical processes.

The general agreement with experiment for the shape of the
cross section curve for the reaction C* + D, is quite significant
because the predicted cross section curve does not have the same
shape as the Langevin cross section22 for orbitting collisions in this
case. Also the magnitudes of the two curves are different. This is
illustrated in Fig. 2, which also shows the predictions for the
reaction cross section at higher energies. Although new arrangement
channels open for this reaction above 3.3 eV, they were not included
in these calculations because there are no experiments in that energy
range yet.

A better understanding of the predicted cross section curves
can be obtained by studying the probability of reaction as a function of
initial orbital angular momentum Liﬁ. Semiclassically this is
equivalent to studying the probability of reaction as a function of the
impact parameter. For this reaction the reduced mass [Th
in the reactant channel (C+ + D,) is larger than the reduced mass Mg
in the product channel (CD+ + D). Thus the same orbital angular
momentum produces a larger centrifugal barrier for the separating
products than for the approaching reactants. Also the reaction endo-

thermicity means there is less energy available in the product channel
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than in the reactant one. All reactants with Li = Limax pass over the

initial centrifugal barrier and make a strongly coupled collision. How-
ever, because of the two facts just mentioned many of these collisions
still do not have enough energy to pass over the product channel centri~
fugal barrier; these systems then decompose entirely into various

rovibrational states of C* + D,. Table V compares Lj max With
max max

iF

leads to products in arrangement channel ¥. Reactants incident in

max

L is defined as the highest L; which actually

, Where LiF
partial waves with L; just a little less than LiF can form product
F only in a few internal states. These are the reasons for the shapes
of the curves in Fig. 3a for the probability of reaction as a function of
impact parameter. In summary, the statistical theory predicts that
My > g and/or a large endothermicity leads to the reaction cross
section being much less than the collision cross section. 23 or com~-
parison we show a contrasting case (H + HI - H, + I)z4 in Figs. 3b
and 3¢. This reaction is exothermic and has a higher reduced mass
for relative motion for the products than for the reactants. Thus for
this reaction the centrifugal barrier which most limits the cross
section is in the entrance channel. Another example where the more
important centrifugal barrier is in the reactant channel is CD" + D ~
ct+ D,.

Although it may not be necessary for the validity of the statis-
tical theory that a long-lived complex is formed, such a complex leads
to one possible way of attempting theoretical justification for the
theory. Because CD2+ can be held together by strong valence forces,

it may be a small system in which such a complex is formed. Usually,



587

however, it requires many degrees of freedom (hence polyatomic
systems are required) for such a complex to be favored. It is an
interesting but unsolved question whether such long-lived collisions
contribute to the success of the theory shown here. It is also possi-
ble that an improved theory would have to take account of these
valence forces in the calculational criteria for the occurrence of a
strongly coupled collision.

Talrose and Karachevtsev have reviewed some studies of iso-
tope effects in ion-molecule reactions. 25 Klein and Friedman studied
intramolecular isotope effects in HDX' systems where X is a rare
gas atom. 26 They'found that at low energies the isotope effect could
be expiained by a crude collision complex model which included two
types of complexes and three adjustable parameters. We have cal-
culated the isotope effect for the reactions

cDt + H
V

5

C++HD
cat+ D

by using the statistical phase space theory (which contains no adjust-
able parameters). The predictions are given in Table VI. These
numbers can be compared with experiment fairly easily and will pro-
vide another test of the theory for a property for which it is expected
to work well. The table also gives the predicted ratio of the reaction
cross section for C* + HD to that for C* + D, when both HD and D, are

in the Mi = 2 rotational state.
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CONC LUSIONS

The statistical phase space theory is fairly successful in pre-
dicting the magnitude and energy dependence of the cross section for
the reaction C* + D, - CD+ + D. This lends further support to the

16,12 of the theory for these proper-

now generally expected reliability
ties for simple molecular rearrangement reactions. Further tests

for these properties will require further experiments or a more
definitive treatment of the triplet state of cp®. Finally, it is shown
that the threshold law is predicted to be valid for an even shorter

range than the experiments would have indicated.

Because of the success of theory for the integral cross sections,
it would be interesting to see how well the internal energy distributions
and the angular differential cross sections can be predicted in this
way. A check against experiment of the predictions for product exci-
tation would start to answer the question of whether the statistical
reaction cross section is too large because it predicts too much excita-
tion or because it overestimates the total cross section for strongly
or moderately strongly coupled collisions. Since the experimental

determination of these properties has not yet been made, we did not

include the product excitation predictions in this report.
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TABLE 1. Data

Molecule De(eV) re(ao) we(cm"l) a(A?)
D, 4.7475 1.4011 3118. 46 0. 7749
cptezh) 4.2774% 2.137 2011.3 - -
cD’ ¢ 3.2774 2.23 1650. - -

24 better value can be obtained from F. Jenc, Collection

Czech. Chem. Commun. 5, 121 (1963). But see text.

TABLE II. Product labels and degereracy factors.
Parity of MF ogd e\g/en

c* + D, (125) 2 4

CD' ¢zT)+ D 2 2

cpt (3) + D 12 12
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TABLE III. Maximum N(ET, K, Kz) which occur in some

. +
calculations on C' + D,.

ﬁi Mi nia max N
(eV)

0.2 2 1 184
0.5 2 1 764
0.7 2 1 1634
1.2 2 1 5546
2.5 2 1 73276
4.8 2 1 557661
0.8 2 1 2308
0.8 9 1 4630
0.8 2 2 5318
0.8 9 2 10256

ani is the vibrational quantum number.
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TABLE IV. Reaction results at Ei =0.7 eV.

M, 0,(A?) PCVE, 1 A

0 2.32 6.8 17

1 2.40 7.6 17

2 2.49 9.7 17

3 2.70 12.0 18

4 2.99 15.0 19

5 3.13 17.8 20
10 5. 03 37.9 26

300°K" 2.58 9.3

*The integration over rotational energy Boltzmann factors

was done using a 7 pt. generalized Gauss-Laguerre-Radau scheme.



592

TABLE V. Maximum incident partial waves which lead to strongly

coupled complexes and which lead to reactive transitions.

o) Fimax L, £,
0.20 54 - -
0. 39 64 20 -
0. 40 65 24 -
0.50 68 39 -
0.70 75 52 -
1.00 82 62 -
1.50 90 T 41
2.50 103 96 79
3.50 112 109 98
4. 80 121 121 115

4 For formation of CD* (*z).

Y For formation of CD* (3II).
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TABLE VI. Intramolecular (C+ + HD) and intermolecular
(C+ + HD, D,) isotope effects.

E; 0s/0,2 (05 +0,)/ 0,0

(eV)

0.45 0.565 ' 1.78
0.55 ' 0. 802 1.27
0.70 0. 826 1.16
0.95 0. 893 1.12
1.00 0.917 1.06
1.15 0. 927 1. 06
1.30 0.932 1.04

a&cu*/p*) for ¢ + HD.
bo(c™ + D,)/o(C* + HD).
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Fig. 1. Cross section for c’+ D, - CD" + D as a function of the
relative kinetic energy of the reactants. Dashed line is the experi-
ment of Maier with a kinetic energy resolution which is probably
better than 1%. Solid line is the present calculation (for D, in the
ground vibrational state and the M; = 2 rotational state). Dotted line
is the present calculation when production of the triplet electronically

excited state of CD" is arbitrarily excluded.
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Fig. 2. Reaction cross sections as a function of initial relative kinetic
energy. The curve L gives the Langevin cross section (the total cross
section for formation of the strongly coupled complex). The other

curves are the results of the present statistical phase space calcula-

tions when the triplet state formation is and is not included.
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Fig. 3. Probability of reaction as a function of initial relative orbital
angular momentum in atomic units. For each curve, except the lowest
in (a), the incident kinetic energy E; is given in eV. For the unlabel-
let curve D; = 0.385 eV. (a) C” + D, (M;=2)~ CD" +D. (b)H +HI
(Mi =2)-H, + I(ZP%). (¢) H + HI (Mi =2)-H, + I(ZPW). The two

dotted curves have 0.1 added to them so that they can be seen better.
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PROPOSITION II

Electronically excited atoms and molecules are often produced
in flames. Because flames are so complicated, the mechanism is gen-
erally known only very incompletely and the particular reactions
responsible for producing the electronically excited species are often
not known. 1 Nevertheless, the progress that is made in understanding
flames and the chemical reactions occurring in them is very exciting
and much effort has been spent on understanding the chemical kinetics

2-9

of flames using spectroscopic and other techniques. These studies

have had much success.

Chemiluminescent emission from flames of Na and K atoms
with inorganic and organic halides has been well studied. 10-24 In
many flames with methyl halides such as K + CCl;, CHCl;, or CBr, and
Na + CCl, a blue emission is seen in the region around 5, 000 A. 21,23
This emission has been identified as being the C, Swan bands

22,23

(A 3Hg - X lzg) by Palmer and Miller. They suggested that

electronically excited C, is produced by reactions like
C +CCl~- C,(A 3ng) +Cl . 1)

They studied the distribution of intensity coming from the different
rovibrational states of electronically excited C, and speculated on the
dynamics of reaction (1). Reaction (1) was an important part of the
mechanism they used to interpret the flame kinetics. This mechanism,
for example, gave an indication that disproportionation reactions of the

radicals were important in these flames.
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While the emission of visible light from flames of alkali metals
and metal and organic halides has been studied for a long time (since
1922), it appears that no search has ever been made for infrared

chemiluminescence.

Fourgere and Nesbet carried out extensive configuration inter-

25

action calculations on the electronic wave functions of C,. Their

results indicate that there are pr’bbably six excited states of C, that

have lower excitation energies than the A n g state. Downward transi-
tions allowed by electric-dipole selection rules from previously unob-
; and lAg states are predicted to lie in the 9, 000-12, 000 &
spectral region. In addition, the previously observed Ballik-Ramsay

1
served "X

and Phillips band systems lie in the 11, 600-25, 000 A spectral range.

It seems likely that whatever mechanism in the alkali flames with
methyl halides is responsible for the production of the A °1 g upper
state of the Swan bands will also produce at least one of the four lower
energy upper states of these four electronic transitions. For example,
if the reaction C + CCl is really responsible for the production of the
Swan bands in the K + CCl, system, then we expect it will also lead to
C, molecules in some of the other lower energy electronically excited
states. Observation of infrared chemiluminescence due to any of these
electronic transitions would lead to information about the energies of
the previously unobserved excited states, the chemical kinetics of the
flames, or both. Using modern techniques infrared chemiluminescence
has already been observed from chemical reaction products in other

26

systems. It would be interesting to look for it in the flame reactions

of sodium and potassium with methyl halides.
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PROPOSITION III

Considerable work has been done obtaining approximate eigen-

values and eigenfunctions of potentials of the form
U =1k +bx . (1)

Chan, Stelman, and Thompson1 (CST) have discussed both several
attempts to solve the numerical problem and the theoretical basis for
expecting mixed harmonic~-quartic potential functions to occur in
specific cases. It is desirable to have a method of obtaining the eigen-
values of such systems without resorting to lengthy machine calcula-
tions. The problem is most easily attacked by considering the quartic
term as a perturbation of a harmonic oscillator. Unfortunately it is
known'> 2 that perturbation theory fails badly for systems of interest.
For example, for b/k = 0.25, the energy to the second order is off by
80% for the ground state and of the wrong sign for all other states.
CST and Reid3 were able to obtain accurate solutions but only by a
linear variational method involving 20 basis functions. McWeeny and
Coulson4 suggested as a first approximation on a treatment with a
single harmonic oscillator basis function including a variable scale
factor. The results (for typical cases) are accurate to about 0. 5%.
Following the observation of CST that the quartic oscillator repre-
sentation is a more suitable basis system for mixed potentials with
moderately large anharmonicities, the present paper considers a
treatment based on a single quartic oscillator basis function with a

variable scale factor. A simple derivation of the scale factor method is
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given. This makes clear the generality of the method and its limita-
tions to problems where the first order perturbation energy is nonzero.
Numerical results are presented showing that the analytic solution of a
simple cubic equation can often yield energy differences between the
levels accurate to better than 0.001%. Further, it is shown that the
scale factor method, unlike either conventional perturbation theory or
linear variational methods with a small number (5) of basis functions,
is accurate for both high levels and large perturbations.

In 1947 Kohn® considered the Schréedinger Equation for the

Hamiltonian
H=TE) + V(X) + cv(x) (2)

where T(x) is the kinetic energy and V(x) and v(x) are potentials (such

as electrostatic potentials) with the property
URE/A) = AU®EX) . (3)

The particular example he chose was the helium atom where the per-
turbation v(x) is the electron-electron repulsion term. By using the
unperturbed wave function with a variable scale factor as a trial
function for the perturbed Schriedinger equation, he obtained (by the
variational method) a lower bound for the second order perturbation
energy in terms of the unperturbed and first order energies. My
method is essentially an extension of Kohn's method to the oscillator
problem.

Consider the Hamiltonian



where

and

Then

and
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H = T(X) + V(x) + v(x)

T(X) = - _Qf_
2m?® 6x°

V(x) = ax®

v(x) = cx

T(x/A) = A’ T(x)
V(x/A) = A7 V()

v(x/A) = A v(x)

4)

()

(6)

1
Let us take as trial function A2y, (Ax) where ¥,(x) is the solution to the

unperturbed quartic oscillator.

Now by the quantum mechanical virial theorem, for the unperturbed

problem

and

W = [0 Ox)HE) d, XN dx

= [ 9, Ox)H(x) 3, (1x)d(\x)

Sy HE/) b, (x)dx
22 [ 9", (0T 3, @)dx
™ [0 @)VE) 9, x)dx

+ %0 [ ¥, ®)v(x) 9, (x)dx

I
i
3

(T)

]

|

g
5 o

'

Then the energy is given by

(8)

(9)
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so that (8) becomes

W = 2 X¥wW

n ‘1)1 + 3 A-‘}W; + e (K) (10)

Q

where (xz) is the first order perturbation energy €,". Letting dw/dx

= 0 we obtain

¥ -3y -1=0 (11)

where y = celQ/ ZW&. The cubic can be solved for ¥, giving one real

positive root, which is, for the usual case y* > 1,
X = 2y cos(* arccos(1/2y*?)) . (12)

The energy obtained in this quartic oscillator representation by using
equations (10) and (12) is called WS, The W;’l and e? are available. ©
The units are equivalent to CST 5 units with ¢ = 7.

One may also solve the problem of potential (1) by considering
the quartic term as a perturbation and taking the trial function as a

scaled harmonic oscillator function. One then obtains

H - -3 H
W, = §XWD + 3 XFWy + A be (13)
where f is a solution of
6 .2 H g0
X -X -4be /W) =0 . (14)

Here the first order perturbation energy €1H is the matrix element of

x* in the harmonic oscillator representation. Convenient units, denoted
h, are obtained by taking i = m = k= 1 in equations (1) and (5). These

units are such that Wfll has one-fourth the value it has in the CST £ units,
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where £ = b. The calculation of W;’1 and elH in this representation is a

H

n are identical numerically to

textbook problem. 7 The resulting W
those obtained by the method of McWeeny and Coulson.

The results of equations (10) and (13) are compared with several
other approximate solutions [upper bounds to eigenvalues (UB), lower
bounds to eigenvalues (LB), and perturbation theory energies (P1-first
order and P2-second order)]| in Tables I, II, and III. The values of
Reid3 and his answers (E for exact since his UB and LB are equal to
each other to the precision indicated) using twenty basis functions and
double precision. He used the partitioning technique of Lwdin. 8 The
Bazley-Fox calculations2 use a five function basis set. Their UB is
obtained by the method of intermediate Hamiltonians and their LB by
using a five function linear variational scheme in the harmonic
oscillator representation. The UB values of CST were obtained using
twenty basis functions and a perturbed quartic oscillator representation.
Also listed is a LB calculated by Reid using the method described above
but limiting himself to a five function basis set and single precision.

Table III is particularly interesting because it compares energy
differences~~-which are the experimental observables. The calculations
by the new method are superior to perturbation theory and in many
cases also to the McWeeny-Coulson method and a five function varia-
tional method. The method works well for large perturbations and
excited states. It is felt that the model is accurate enough to be of
practical importance for mixed harmonic-quartic potential wells and

also for double minimum wells of the type9
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V = -dx® + bx?

In cases where the energy or eigenfunction is not deemed accurate
enough, a basis set composed of these easily calculated scaled functions
should be more quickly convergent than the unscaled function set and
result in a considerable saving of computer time.

We have emphasized the goodness of the eigenvalues we ob-
tained. The eigenfunction obtained by the method discussed here is

probably not as accurate as the eigenvalue.
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Calculation

Transition

0-1

1-2

2~3

3-4

4-5

5-6

6-17

7-8

8-9

TABLE III.

:—H—-A.hv—u—t.bo-dl-uh)—n-nbt—n—lAHH.#HH.J:HH»&HH@

.0
. 587401
.9
.0
. 587401
.0
.0
. 587401
.5
.0
. 587401
.5
.0
. 587401
.5
.0
. 587401
.5
.0
. 587401
.5
.0
. 587401
.0
.0
. 587401

5
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Energy differences in 9 units.

w<

9. 9999
8.2073
8.1382
11,2742
10. 0780
10. 0305
12,5232
11. 3432
11. 3000
13,4231
12. 3483
12,3091
14.2037
13,2032
13.1667
14. 8974
13,9543
13. 9200
15,5256
14, 6288
14, 5962
16,1022
15. 2437
15,2125
16. 6368
15. 8109
15. 7809

E

9. 9903
8.2058
8.1369
11.4458
10. 0951
10. 0460
12,5309
11,3437
11. 3004
13.4296
12, 3491
12,3098
14,2080
13.199
13.1672
14. 9002
13. 96
13.9201
15,5280
14.63
14.5964
16.1041
15.2
15.2126
16. 6384

15,7811

10.
. 2523

11.
10.

12,
11,

13.
12,

14,
13.

14,
13.

15.
14.

15.
15.

16.
15.

0172
4016
0008

4674
2447

3528
2418

1204
0888

8038
8326

4231
5003

9919
1091

5195
6705

Note: These correspond to values of b of 0.125, 0.5, and 0.54433105.
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PROPOSITION IV*

The ground state of the water molecule has been well studied in
quantum chemistry. 1-9 Although some of the excited states were dis-

10 in 1935 and
11-12 o

cussed in terms of molecular orbital theory by Mulliken

3

Walsh n

in 1953, there had been only two ab inito calculations
the excited states of the water molecule until the last two years. Quite
recently, however, much interest has been directed to the calculation
of wave functions for the excited states of this molecule. 13-18 The
interest in this problem is further accentuated by the interesting new
- experimental spectra obtained by the techniques of electron impact
spectroscopy. 19-22
The present work is an examination of how well ab initio LCAO
molecular orbital calculations using basis sets appropriate for the
ground state can be used to predict the energies and order of the excited
states of molecules. Since all the excited states of water are Rydberg
states,T we might expect that the deScription of the wave functions will
require the use of expanded basis functions. Thus this is a stiff test
for the use of valence-like functions. Hopefully the results, while not
completely general, will at least be indicative of the situation which

exists for Rydberg states of other polyatomic molecules. Further, it

>kThe calculations reported here were all done in collaboration
with Thomas H. Dunning, Jr.

TWe use the definition here that if the excited orbital of a state
has a principal quantum number n greater than the principal quantum
numbers in the united-atom limit of all the orbitals occupied in the
ground state, the excited state is a Rydberg state. Other definitions of
Rydberg states may be more appropriate in other cases.
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has been common for chemists to use simple LCAO molecular orbital
theory to visualize almost all low-lying (in energy) excited states of
molecules in terms of orbitals of similar spatial extent to the orbitals
occupied in the ground state. Two examples follow. Roothaan23 sug-
gested that excited states could be described acceptably well by using
the virtual orbitals arising from a ground state calculation using a min-
imum basis set of atomic orbitals appropriate to fhe g round states of ‘
the atoms. Walsh3 interpreted the lowest singlet excitation (*B,) of
water to be an excitation to an antibonding orbital of "intra-valency
shell" type. He apparently considered this to be a nonexpanded orbital.
Many semiempirical schemes also implicitly assume that the excited
state orbitals are not diffuse. For example, in the CNDO/2 method24
the parameters are chosen so that the calculations agree as well as
possible with a priori molecular orbital calculations on the ground
states of diatomic molecules. The parameters are thus appropriate
for valence orbitals and not for diffuse orbitals. Yet these calculations
have been applied to molecular excited states. 25

It was shown nine years ago that the inclusion of expanded
orbitals in the basis set is necessary to obtain even a qualitative

26-27 Recently

14, 16, 28

description of Rydberg states of diatomic molecules.
it has been shown that this is also true for polyatomic molecules.
The results given here are part of the present evidence for the case of
polyatomic molecules.

We have done calculations using excitation operator methods

28

and programs developed previously. All of the molecular integrals
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are accurate. The methods have been adequately discussed else-

where. 23,28-34 Nevertheless we give a brief review of the methods

here:

23,28 g

1. Restricted virtual orbital approximation (RVO).
method is also called the single-transition approximation. The ground
state wave function is approximated as the restricted Hartree-Fock
single Slater determinant. The wave function for the excited state is
constructed by replacing the product of doubly occupied orbitals for

electrons (m-1) and m
¢;(m -1)a(m - 1)¢;(m)s(m) (1)

in the Slater determinant by

240106 (m) & ¢3(m-)gy ()| bt el

(2)

where the excitation is from orbital ¢; to the virtual orbital ¢j from the
ground state calculation. In Eq. (2), the upper signs are for the singlet
and the lower signs are for the triplet. Since the orbital ¢i corre-
sponds physically to an electron moving in field of a neutral molecule
instead of a positive ion, the restricted virtual orbital approximation is

expected to be very bad. 35,16, 28

30,28 1 this method,

2. Tamm-Dancoff approximation (TDA).
the ground state is again represented by the Hartree-Fock wave function.
The excited state wave functions and energies are those obtained from
a configuration interaction calculation which includes all the configura-

tions which can be formed from the ground state wave function by
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making single excitations of the kind which are used in the restricted-
virtual-orbital approximation. In practice, the configuration inter-
action Hamiltonian matrix factors into blocks corresponding to different
symmetries of the excited state. Since solution of the configuration
interaction problem is a linear variational method, the Tamm-Dancoff
approximation is a variational one.

29, 28

3. The random-phase approximation (RPA). In this

method the ground state is represented by a superposition of configura-
tions including the Hartree-Fock wave function and configurations
obtained from the Hartree-Fock wave function by double excitations.
The excited state wave function is represented by a superposition of
configurations which includes single excitations and single deexcitations
from the ground state. The determination of the coefficients in these
wave functions is not done variationally but by a series of approxima-
tions. This method has its origins in the theory of an infinite electron
gas and in solid-state and nuclear physics.

In addition to these methods used here we compare our results
with results from some other methods:

4. Improved-virtual-orbital approximation (IVO). 16,28 This is
also called the improved single-transition-approximation. It corre-
sponds to including in the Tamm-Dancoff approximation only those
configurations which correspond to excitation from any one orbital. It
also corresponds to using the Harfree-Fock ground state and obtaining

the excited state by solving the Hartree-Fock self-consistent-field

equation for the excited orbital in the field of the core orbitals (the
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core orbitals are the orbitals in the ground state wave function which
are unchanged upon excitation).

5. Hartree-Fock self-consistent-field approximation (HF). 36
In this method, the wave functions for the ground and excited states are
obtained by separate Hartree-Fock calculations. This method, when
compared to the improved~virtual-orbital approximation, allows for
relaxation of the core. Since the correlation energy (defined here as
the difference between the Hartree-Fock energy and the real energy) is
expected to be less for the excited state than for the ground state, the
self-consistent~field approximation is expected to yield excitation
energies too low. If the neglect of core relaxation in the improved-
virtual-orbital approximation gives a cancellation of errors, the
improved-virtual-orbital approximation will be in better agreement
with experiment than the self-consistent-field approximation.

Three basis sets were used:

a. Minimum basis set with Slater values for the exponents.
The calculations with this basis set were carried out for a geometry
with an O-H distance of 1. 8103 a, and an H-O-H angle of 105°, It gives
a ground state Hartree-Fock energy of -75. 65559 a.u.

b. Optimized minimum basis set. The calculations with this
basis set were carried out for the same geometry as for basis set a.
The basis set is optimized for the ground state Hartree-Fock wave
function and gives a ground state energy of -75. 70313 a. u. in the
Hartree-Fock approximation.

c. Almost double zeta basis set. The calculations with this
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basis set are for a geometry with an O-H distance of 1.8111 a, and a
bond angle of 104° 27’. This basis set was created by dropping the

8 It lacks a

d functions in basis set III of Aung, Pitzer, and Chan.
second 1s function on the oxygen atom from being a double zeta basis
set. It is a very good basis set for the ground state, for which it gives
a Hartree~Fock energy of -75. 95800 a. u.

The results of the calculations for the excitation energies of
the predicted lowest two states of each symmetry are given in Table 1.
The calculated excitation energies are all too high. The excitation
energies for the minimum basis set with exponents optimized for the
ground state are higher than those for the set with Slater exponents.
The Slater exponents are a more reasonable basis to use for excitation
energy calculations since they are not optimum for either state. The
minimum basis set has only two virtual orbitals. The use of a bigger
basis set allows more freedom to the excited state orbital and allows
more configurations to interact to lower the excited state energy. The
results in Table I for the larger basis set, however, indicate that this
basis set, which is a valence sef appropriate for the molecular ground
state, improves the ground and excited states to about the same extent
from the optimized minimum basis set and does not remove the error
of using a basis set optimized for the ground state. (The conclusions
drawn here are similar to those of Lefebvre-Brion, Moser, and

26, 21 who found they could not use valence-~like double zeta basis

Nesbet
sets for Rydberg excited states of diatomic molecules.) Based on these
conclusions, we will consider further only the results with the unopti-

mized basis set a. Because Table I shows that the random-phase
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approximation does not give significant improvement over the Tamm-
Dancoff approximation, we will not consider it further.
Table II compares the results of the present calculations using

basis set a to the calculations of Hunt and Goddard, 1® Hunt, Goddard,

and Dunning, 17 and Segal and Claydon18

and to some experimental
results. The authors of references 16 and 17 used Gaussian type
functions (GTF's) and arrived at their basis sets by adding expanded
orbitals to good ground state basis sets. In each case they added at
least one GTF with an exponent less than 0. 004. The calculations in
the restricted-virtual-orbital approximation are hard to interpret
because this method is so crude (see above); the restricted-virtual-
orbital approximation will not be discussed further. The improved-
virtual-orbital calculations of Ref. 16 are in much better agreement
with experiment if the comparison is made of stabilities instead of
excitation energies. 16 However, we are not interested here in that
aspect of their results., Since Hunt and Goddard's basis set is much
more appropriate for the description of the excited states of water,
their calculations are more appropriate for interpreting the observed
spectra. We will limit ourselves here to an examination of the errors
caused by the use of a minimum basis set. This is a test of the model
of the excited states of water as nonexpanded (or valence-like) states.
We compare the Hunt -Goddard calculations in the improved-
virtual-orbital approximation with the present results in the Tamm-
Dancoff approximation. The first conclusion is that the present calcu-
lations, because of the small valence-like basis set, are not at all

appropriate for the description of excited states which are not the lowest
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state of that symmetry. This was entirely expected. The second con-
clusion is that the present results are much more appropriate for the
triplets than for the singlets. The triplets which are the lowest states
of their symmetry seem to be described approximately correctly. The
error due to not having expanded orbitals in the basis set appears to be
a few tenths of an eV. It is difficult to be quantitative about this
because of the sensitivity of the results to the exponents in this small
basis set. It is possible that the Slater values of the exponents are
accidently better for the excited triplet states than for the ground states
and that this makes the excitation energies fortuitously accurate. The
actual excited state energies from the Hunt-Goddard calculation are
much lower than those from the present calculation. The present calcu-
lations give excitation energies about 13 eV too high for the excited
singlet states. [Hunt and Goddard did find (private communication) that
the excited singlet states are more expanded than the excited triplet
states. This is expected because the exchange integral Kij makes the
effective potential for the excited orbital more attractive in the triplet
state than in the singlet state.] The present calculations appear to
have only minimal use in predicting even the qualitative aspects of the
H,O excited state spectrum.

The conclusion that the minimum basis set calculation is not a
qualitatively correct treatment of the excited states of polyatomic
molecules means that many of Walsh's argumentss’ 31 and similar
arguments about the spectra of small molecules are untrustworthy.
While this could also have been concluded from the work of Hunt,

Goddard, 16 and Dunning, 28 more calculations are needed to provide
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adequate descriptions of the excited states of molecules and to properly
classify the excited states and systematize their interpretation.

It had been argued that the antibonding valence-like orbitals of
molecules such as methane and ammonia have nodal properties and
spatial extent similar to the diffuse Rydberg orbitals of the central
atom. 38 Our conclusion is that these antibonding orbitals are not dif-
fuse enough.

Finally we conclude that the semiempirical calculations such
as CNDO/2, which use nonexpanded orbitals, must be interpreted in
terms of the empirical nature of the energy quantities which enter the
calculations rather than in terms of the orbitals.

The author is grateful to Dr. Thomas H. Dunning, Jr. for his
collaboration on this project and to Dr. Sandor Trajmar for stimulating
his interest in the excited states of the water molecule. The author
and Dr. Dunning are grateful to Professor Russell M. Pitzer,
Professor William E. Palke, Dr. Soe Aung, Professor Sunney L Chan,
Professor William A. Goddard III, and Mr. C. Woodrow Wilson for
use of their integral values or programs and for advice on various
aspects of the calculations. The author is grateful to Mr. Steve L.
Guberman, Mr. William J. Hunt, Professor Goddard, Professor
Gerald A. Segal, and Dr. Charles R. Claydon for discussions of their

calculations on the water molecule and excited states of other mole-

cules.
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PROPOSITION V

The first scattering problem in molecular physics for which an
essentially exact numerical solution was obtained was the linear col-
lision of an atom A with a diatomic vibrator BC for the case where
the atom interacts with the vibrator according to a hard sphere
potential. 1 We will consider this problem.

We consider a case considered by Riley2 in reduced coordinates
x and y and reduced units. The reduced units and their interpretation

in terms of a linear atom-diatomic molecule collision are discussed

elsewhere. 2,3 The Schriedinger equation is2
2
[H,(y) - -a@— + VIP(x,y) - E] %(x,y) = 0 (1)
X

where i labels the degenerate solutions, Ho(y) is the internal
Hamiltonian of the diatomic molecule in reduced units,

0 X>y
Vio(x,y) = (2)
00 X<y

is a hard sphere interaction between A and B and E is the total energy.
The diatomic molecule potential is a square well (of width 7 in
reduced units) with the orthogonal eigenfunctions (pn(y). The boundary

conditions on the wave function are

¥(y,y) = 0 (3)

ik.

~-ik.x hag ik x
Lxy)=e ' ooy + 21 D;e " ?n ) Xx=¥ (4)
n=



631
where the D ; are as yet undetermined and

Hy(y) @, () = 1 ¢, (v) (5)

kn J(E -n°) (6)

for n=1,2,... and the probability of scattering from the state i to

the state f is
2
l n=1,2,...,N (7)

The number of open channels is M where M is the highest n for
which the radicand in (6) is positive. To obtain the scattering prob-
abilities we must solve for the upper left M x M subblock of the D
matrix, The Shuler-Zwanzig method of solving for D is to approximate
v, by

-ik.x N ik x
¥ o=e gy 21 D e ¥ #n0 (8)
n:.

where N > M and to obtain N equations for the Dni’ i=1,2,...,Nby
requiring Eq. (3) to be true for the approximate scattering solution in

the space spanned by {qu li=1,2,...,N}, ie.,
(o:) ¥ (7,5 = 0 j=1,2 N (9)
] 1 2 P B SRR |
Equation (9) for all j is equivalent to the N x N matrix equation2

UD = -U* (10)

e
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where
ik x
U, = (i0fe ™ 0,60 . (11)
Schuler and Zwa,nzig1 applied their method to the collision of
an atom and a diatomic molecule with a harmonic potential. They con-
sidered cases M < 4 and used 9 < N < 21, They were able to obtain
accurate scattering probabilities this way but for N > 21 they had
computer overflow. This meant they could not go to higher energies
where N > 21 would be required for accurate solutions. Grimaldi,
Endres, and Wilson4 applied the method to the collision of an atom
with a triatomic molecule with nearest-neighbor harmonic-potential
atom~atom interactions. They included 25 to 49 terms in the sum of
reflected waves and exponentially decreasing virtual solutions in their
approximate wave function corresponding to Eq. (8), and they con-
sidered cases with up to 11 open channels. They found that their
matrix corresponding to U was often ill-conditioned™ so that the results
depended sensitively on round-off errors even for double precision
arithmetic. In some cases they could not obtain even approximately
accurate results. They found that the possible accuracy depended on
the atomic mass ratios and the vibration frequencies. Endres5
applied the method to the collision of an atom with a diatomic Morse
oscillator. He considered cases with M < 5 and used N = 15 for his

published results. He checked that these were accurate by varying N

*An ill-conditioned matrix is one that is hard to invert
numerically.
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to prove the results had converged. His accuracy was limited by
inaccuracies in computing the an rather than by lack of convergence
or by inversion problems. Diestler and McKoy6 applied the method to
the collision of a diatomic harmonic oscillator with another diatomic
harmonic oscillator. They found upon increasing the number of terms
in their approximate wave function that numerical instability set in
before the scattering probabilities converged. Grimaldi, Endres, and
Wilson'7 considered the same problem. They had no problems with
ill-conditioned matrices, convergence, or instability. They con-
sidered cases with M < 13 and obtained accurate results with 37 to 50
terms in their approximate scattering wave function. Riley2 applied
the method to the collision of an atom and a diatomic molecule with
an infinite square well binding potential (the case considered here).
He found U could seldom be inverted for N > 11. He obtained accurate
results by extrapolating the results computed for different N to

8,9 to use the Shuler-Zwanzig

(1/N) = 0. At least two other attempts
method had led to severe problems due to ill~conditioned matrices. In
summary, the biggest difficulties in the Shuler-Zwanzig procedure seem
to be that the matrix U is ill-conditioned and that the scattering prob-
abilities converge to the exact results only slowly as N - «, However,
these difficulties are not fully understood.

2,2a

Secrest and Johnson3 and Riley have obtained accurate

solutions for the atom-diatomic vibrator collision problem by methods
which are equivalent to solving the close coupling equations. Riley2

found for the case considered here that for a given number N of
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states included in the approximate wave function the close coupling
method was more accurate than the Shuler-Zwanzig method. Never-
theless, there are reasons for continuing to study the Shuler-Zwanzig
method. First, Riley2 found that it was three times faster in computer
time than the close coupling method in his calculations. Second, the
procedure of projection used in Eq. (9) is a general one which can be
used in many problems and it is important to understand the sources
of the difficulties it engenders.

There is simplicity to recommend the Shuler-Zwanzig pro-
cedure of obtaining N conditions on the approximate scattering wave
function \Iti\I by requiring it to satisfy Eq. (3) in the space spanned by
the lowest N eigenfunctions of the vibrator. Since this leads to ill-
conditioned equations, we tested the effect of varying the weight with
which each of the N conditions enters in the determination of the D

matrix. Thus we replaced Eq. (9) by
(@;0)Hy@) -E] |9} (7, 7)) = 0 j=1,2,...,N (12)

which leads to

yHp - -y (13)

L

in analogy with Eq. (10). The quantity [Ho(y) - E] is a weighting
function Wj' This procedure was programmed using single precision
arithmetic on the IBM 7094. Particular attention was paid to arranging
the computations to minimize round-off error. The system (13) was
solved by Gaussian elimination with row interchanges. For N > 12

we could not obtain accurate solutions. A study of the matrix QH
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convinced us that this inaccuracy was due to QH'S ill-conditioning for
high N. For N < 11 our results were similar to those obtained by
Riley using the Shuler-Zwanzig procedure. We feel that this procedure
deserves further study and that a weighting function which puts more
weight in the higher j equations in Eq. (12) will lead to better con-
ditioned matrices. However, these weighting functions may be less
appropriate physically than the Shuler-Zwanzig functions wj =1, Thus
the probabilities might be less accurate for a given N. This should be
tested.

A second suggestion is to use the approximate wave function
\p? and obtain the N equations for the Dni by the delta function projector

in
2 j N .
(;G(Y'N’J_'*_Tﬂ),‘l’i> ]=1,2"";N . (14)

A test of this method showed the equations were much better conditioned
but that their solution did not yield very accurate scattering probabilities.
This method should be studied further.

To understand the difficulties in these methods, it is suggested
we plot \If?(y, y) as a function of y and see how big the errors are,
where this function is lafge, and whether it oscillates rapidly. Then
we can choose a new set of basis functions ¢p3. (v) which are most well

suited to minimizing max ¥}'(y,y). The trial function will then be
O<y<m

,  -ikx N ikx T -k
#H N _ e-kl qoi(y)’“j?leﬂ5 ¢5) + E1e !k]lxajm 1)

1

j=N+
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where N> M. The ?p'-j(y) are orthogonal to {<pj(y)lj= 1,2,...,N} and
are obtained from the ¢3(y) by (i) orthogonalizing the <pJf(y) to
{ (pj(y) |j=1,2,...,N} and (ii) diagonalizing the matrix representation of

Hy, for these orthogonalized functions. Then

HO(y)E?](Y) = Wj'éj(y) (16)
and

k. = V(E-W;) 1)

In this way we utilize our freedom to represent the closed channels in
the most efficient possible way. The qu(y) have the form sin jy. An
example of the type of functions which might be useful as basis functions
are functions which are nonzero over only a finite range of y which is
smaller than 0 < y < 7, e.g., spline functions or bell-shaped functions.

Another example is

o) - G- d) (18)
where p is an integer. It may be necessary to include functions with
high Wn in order to get a good representation of the end effects (the
end is where x is just a little longer than y) in the wave function.
These end effects could be important because of the nature of the hard
sphere interaction. Once we have chosen the N’ -parameter trial
oo N

function , we can obtain N’ conditions by

oW Ny =0 =12, (19)
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where the cpép (y) may be the N functions ; (y) and the (N’-N) functions
“q’)j(y) and the w; may be 1 or the gpf (y) and wj(y) may be chosen in any
of the other ways suggested above. Hopefully these generalized trial
functions will increase the convergence as N increases with fixed
(N’-N) or as N’ increases with fixed N.

The author is grateful to Dr. Dennis J. Diestler for stimulating

discussions.
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