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Abstract

In this thesis, I use source inversion methods to improve understanding of crustal deformation along
the Nyainquentanglha (NQTL) Detachment in Southern Tibet and the Piceance Basin in northwest-
ern Colorado. Broadband station coverage in both regions is sparse, necessitating the development
of innovative approaches to source inversion for the purpose of studying local earthquakes.

In an effort to study the 2002-2003 earthquake swarm and the 2008 M,, 6.3 Damxung earthquake
and aftershocks that occurred in the NQTL region, we developed a single station earthquake location
inversion method called the SP Envelope method, to be used with data from LHSA at Lhasa, a
broadband seismometer located 75 km away. A location is calculated by first rotating the seismogram
until the azimuth at which the envelope of the P-wave arrival on the T-component is smallest (its
great circle path) is found. The distance at which to place the location along this azimuth is measured
by calculating the S-P distance from arrivals on the seismogram. When used in conjunction with an
existing waveform modeling based source inversion method called Cut and Paste (CAP), a catalog
of 40 regional earthquakes was generated.

From these 40 earthquakes, a catalog of 30 earthquakes with the most certain locations was
generated to study the relationship of seismicity and NQTL region faults mapped in Google Earth'
and in|[Armajo et al|(1986) and |Kapp et al. (2008). Using these faults and focal mechanisms, a fault
model of the NQTL Region was generated using GOCAD, a 3D modeling suite. By studying the
relationship of modeled faults to mapped fault traces at the surface, the most likely fault slip plane
was chosen. These fault planes were then used to calculate slip vectors and a regional bulk stress
tensor, with respect to which the low-angle NQTL Detachment was found to be badly misoriented.

The formation of low-angle normal faults is inconsistent with the Anderson Theory of faulting, and
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the presence of the NQTL Detachment in a region with such an incongruous stress field supports
the notion that such faults are real.

The timing and locations of the earthquakes in this catalog with respect to an anomalous increase
in the eastward component of velocity readings at the single ¢GPS station in Lhasa (LHAS) were
analyzed to determine the relationship between plastic and brittle deformation in the region. The
fact that ¢GPS velocities slow significantly after the 2002-2003 earthquake swarm suggests that this
motion is tectonic in nature, and it has been interpreted as only the second continental slow slip
event (SSE) ever to be observed. The observation of slow slip followed by an earthquake swarm
within a Tibetan rift suggests that other swarms observed within similar rifts in the region are
related to SSEs.

In the Piceance Basin, CAP was used to determine source mechanisms of microearthquakes
triggered as a result of fracture stimulation within a tight gas reservoir. The expense of drilling
monitor wells and installing borehole geophones reduces the azimuthal station coverage, thus making
it difficult to determine source mechanisms of microearthquakes using more traditional methods. For
high signal to noise ratio records, CAP produced results on par with those obtained in studies of
regional earthquakes. This finding suggests that CAP could successfully be applied in studies of

microseismicity when data quality is high.
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Chapter 1

Introduction

Regional deformation within the seismogenic zone of the crust manifests itself in the form of large-
scale faults. Geologists performing field studies can determine fault geometries near the surface, but
any thorough study of regional deformation requires that we know how faults behave at depth. The
study of earthquake locations and source mechanisms can allow us to better understand fault behav-
ior by revealing the orientations of faults and the sense of slip which occurs on them. Studies such
as these help us to define the relationship between faulting and deformation and can be performed
at regional and local scales.

One tool that can be used to obtain the source mechanisms of earthquakes is Cut and Paste
(CAP), a waveform modeling method developed in the early 1990s here at the California Institute
of Technology. This method, first outlined in Zhao and Helmberger [1994] calculates a source
mechanism by splitting a broadband seismogram into body wave and surface wave sections and then
cross correlating the resulting data to synthetic seismograms obtained by performing a grid search of
optimum fault orientation characteristics. First applied in Southern California, this method has been
successful in studies of seismicity and deformation in regions all over the world. In this thesis, I use
CAP to determine the source mechanism of earthquakes which occur along the Nyainquentanglha
(NQTL) Detachment in Southern Tibet. CAP is especially well suited for use in this region because
it can obtain reliable results in regions where broadband station coverage is sparse. In the case of
the NQTL region, there is only one permanent broadband seismometer, and it is situated in Lhasa,

approximately 75 km away.
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Using data from the single station at Lhasa (LHSA) I performed a series of studies which reveal
the nature of crustal deformation in the NQTL region. In chapter 2, I develop a new single station
earthquake location inversion method. This method, called SP Envelope, when used in conjunction
with CAP allows for the determination of source mechanisms and locations. Both methods were
applied to locate and determine the source characteristics of a swarm of earthquakes which occurred
in and near the Yangbajain valley between 2002 and 2003. In 2008, the M,, 6.3 Damxung Earthquake
and aftershock series occurred in the same region and were recorded not only at LHSA, but also by
multiple broadband stations installed by the Chinese government in the years after the earthquake
swarm. In order to validate the SP envelope method, we applied CAPloc, a version of CAP which
is able to invert for accurate source locations if given broadband data from multiple stations, to the
data obtained from these new stations. By comparing CAPloc and CAP/SP envelope inversions of
events recorded by both LHSA and the Chinese stations in 2008, I was able to confirm the efficacy of
the new joint method. I then used CAP/SP Envelope to compile an earthquake catalog of 40 events
which could be used to study crustal deformation in the NQTL Region and the large Yadong-Gulu
Rift of which it is a small part.

In chapter 3, I use this earthquake catalog along with digitized maps of Quaternary faults and
the results of seismic refraction surveys to generate a 3D fault model. The 3D faults within the
model are simply extensions of the fault surfaces represented by the earthquake source mechanisms
obtained by CAP. By comparing the strikes of these 3D faults with the trends of the digitized surface
faults, I was able to make an educated guess as to which of the two fault planes represented by the
source mechanism is the one on which slip occurred. Using this “most likely” fault plane information,
I was then able to generate vectors showing sense of slip on each of these planes. The pattern of
slip revealed by these vectors suggests that the earthquakes in this region are related to the isostatic
rebound of the crust as a result of extension along the NQTL Detachment. Using software developed
in [Michael| (1984), T was able to take my analysis one step further by calculating the bulk stress
tensor for the region in which the earthquakes occurred. The results of this analysis indicate that

the stress field in this region is oriented in a way that would discourage the formation of low-angle
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normal faults such as the NQTL. The NQTL is also found to be misoriented with respect to the
stress field. The formation of low-angle normal faults is inconsistent with the Anderson Theory of
faulting and their existence is a hotly debated topic in the field of structural geology. The fact that
we observe them in the NQTL region supports the notion that such faults are real.

In chapter 4, I focus on the timing and location of the 2002-2003 earthquake swarm and 2008
mainshock/aftershock series with respect to anomalous velocity readings at the single ¢GPS station
in Lhasa (LHAS) in order to explore the possible relationship between brittle deformation along the
NQTL and plastic deformation along a surface beneath it. Between 2001 and mid 2002 there was
an increase in the eastward component of velocity recorded at LHAS. This increase in velocity was
followed by the NQTL region swarm. After the swarm presumably released potential energy within
the region, the eastward component of motion measured at LHAS slowed significantly. This finding
is very exciting because the motion observed at the cGPS station is very similar to that observed
at cGPS stations situated along subduction zones. These stations often record slow slip occurring
along the subduction interface. Before Wernicke et al. [2008], published observations of such slow
slip events (SSEs) occurring in the Basin and Range Province, these events were not thought to
occur in continental settings. The observations at LHAS and the occurrence of earthquakes with
source mechanisms consistent with eastward motion along an interface beneath the region suggest
that SSE could be occurring in Tibet as well. This result is very exciting because this event would
be only the second continental SSE ever observed. The fact that the mainshock/aftershock series
2008 event was not preceded by an anomalous change in ¢GPS recorded at LHAS suggests that
such slow slip events are only associated with swarms. The observation of slow slip followed by an
earthquake swarm within a Tibetan rift suggests that other swarms observed within similar rifts in
the region are related to continental SSEs.

Chapter 5 is different from the others in that the study region has shifted from Tibet to north-
western Colorado. The Piceance Basin is another region in which the relationship between seismic-
ity and crustal deformation can be studied. This basin contains a large tight gas reservoir from

which hydrocarbons can only be produced if fracture stimulation is performed. Hydraulic fractur-
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ing of tight sands, such as the Piceance Basin’s Williams Fork Formation produces thousands of
microearthquakes. Service companies that perform the hydraulic fracturing generally only provide
the oil company with microearthquake locations. These locations, although useful for charting the
progression of fracture formation, tell us nothing about the geometry of the fractures formed. Lim-
itations in station coverage caused by the expense of drilling monitor wells and installing borehole
geophones reduce the azimuthal coverage of the small area in which fracturing is occurring. This
limited coverage makes it very difficult to determine the source mechanisms of microearthquakes
using traditional methods such as plotting the first motions of P-wave arrivals measured at borehole
geophones. In an effort to work around the problem of sparse station coverage, I have worked to use
CAP in the inversion of microearthquake source mechanisms. CAP, although promising, produced
mediocre results because the signal to noise ratio of the data was quite low. In cases where the data
was less noisy, CAP produced results on par with those obtained in studies of regional earthquakes.
This result suggests that CAP could successfully be applied in studies of microseismicity when data
quality is high.

The results obtained in each of these chapters demonstrate how the study of seismicity in con-

junction with geology can improve our understanding of regional and local crustal deformation.



Chapter 2

Building an Earthquake Catalog
for the Nyainquentanglha
Detachment Region in Southern
Tibet, Using a New Method of

Single Station Location Inversion

2.1 Introduction

When station coverage in a region is insufficient for the production of a reliable P-wave first mo-
tion plot, waveform modeling methods that model regional seismograms can be used to generate an
earthquake’s source mechanism. Such methods had their start in the early 1990s with the develop-
ment of modern broadband instrumentation which would allow the study of long and short period
responses (Kanamori et al., [1992)). Initial difficulties in separating faulting information from wave
propagation effects within broadband records led to removal of the shorter period body waves during
the inversion process (Thio and Kanamori, 1992; |[Romanowicz et al., 1993} |Ritsema and Layl, {1993)).
These methods, which used surface waves with periods of 5s to < 50s, worked best when azimuthal
coverage was good and the signal to noise ratio was low. Difficulties experienced in the inversion of
stronger low period surface waves led to the development of a waveform modeling method in which
only body waves were used (Dreger and Helmberger), (1993 |Fan and Wallacel, [1991)). Although this

method worked well enough to determine stable source orientations with a single station, higher



frequency inversions proved to be problematic.

The Cut and Paste (CAP) waveform modeling method, detailed in |Zhao and Helmberger| (1994])
and|Zhu and Helmberger|(1996)), was developed in an effort to maximize the benefits and minimize the
limitations of using long and short period portions of broadband records. ThiS-waveform modeling
method performs source mechanism inversions by dividing the seismogram into body wave and
surface wave segments and then searching for each segment’s best fitting synthetic waveform, while
allowing differential time shifts between the synthetic and the seismogram segment. Splitting the
seismogram into segments greatly reduces sensitivity of the inversion to the timing between crustal
arrivals, and thus makes it possible to generate accurate source mechanisms with less than perfect
Green’s functions. The CAPloc method, developed in|Tan et al.| (2006]) takes CAP one step further
by including an inversion for the location of the event. This location inversion requires the calibration
of regional paths and has been successfully implemented in Tibet and Southern California, where
such calibrations have been performed (Zhu et al., [2006; | Tape), 2009).

Both CAP and CAPloc allow for source inversion with a minimal number of stations, and accurate
mechanisms have been obtained using as few as two. |Tan et al.| (2006]) proved the effectiveness of
the new CAPloc method by comparing the inversions performed using two Tibetan stations (LHSA
and TUNL) 500 km away from each other with inversions performed using the whole PASSCAL
array, present in central Tibet from 1991 to 1992. |Tan et al. (2010) obtained a similarly impressive
result in Southern California when inverting for the source mechanisms of historical events using
stations PAS and GSC. CAPloc, when run with a single station and a fixed source mechanism, can
obtain a location, but this location will have a wider range of azimuthal uncertainty (Wei et al.l
2009, unpublished manuscript). If velocity structure is well constrained, CAP and its long period
body-wave inversion predecessor are both able to perform inversions that obtain accurate source
mechanisms with as little as one station (Dreger and Helmberger), 1993).

One station CAP could be very useful in determining focal mechanisms of earthquakes that occur
in regions with low broadband seismic station coverage. In these regions, only moderate to large sized

earthquakes, which can be recorded by global networks, are widely studied, and any investigation
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into smaller earthquakes’ mechanisms and locations is nearly impossible. In an effort to improve our
ability to locate earthquakes in regions of sparse station coverage, we have worked to develop a new
single station earthquake location method dubbed the SP Envelope method. This method calculates
the location of an earthquake by first determining the optimum azimuthal location by finding the
smallest envelope of the P-arrival on the record’s T-component then determining the radial distance
from the difference between S and P-arrival times. This method, when used in conjunction with
CAP, allows for the determination of a source’s mechanism, depth, magnitude, and location once
the most likely azimuth is known.

In order to test the efficacy of this new method, we performed as study of small to moderate sized
earthquakes in the Yadong-Gulu Rift of Southern Tibet (figure . An earthquake swarm occurred
within the rift between 2002 and 2003 and was only recorded by the nearby (~ 75 km away)
broadband station at Lhasa (LHSA). The 2008 M,6.3 Damxung earthquake and its aftershocks
occurred in the same region as the swarm. This later sequence of earthquakes was not only recorded
by LHSA, but also by five local Chinese stations. By comparing CAPloc results obtained using
records from these five stations to source mechanism and location results obtained by applying CAP
and SP Envelope to records from LHSA, we are able to determine that the new combined method is
very effective at calculating earthquake source characteristics. Further comparison of geodetic and
INSAR inversions of the Damxung earthquake to our single station inversion result, also supports
the efficacy of our new combined method. Using CAP along with the SP Envelope method, we
compile an earthquake catalog of the 2002-2003 swarm and 2008 mainshock and aftershock series
which can be used in future studies of faulting and crustal deformation within the Yadong-Gulu

Rift.
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2.2 Single Station Earthquake Location—The State of the

Art

In methods of single-station earthquake location, azimuth is most often determined from polarization

analysis or on artificial-intelligence based pattern-recognition methods (Dai and MacBeth), (1995,

(1997} | Zhizhin et al., 2006} |Frohlich and Pulliam| [1999; |Agius and Galea), 2011)). These polarization

analysis methods determine the location of earthquakes by first using a three-component broadband

signal to build a data covariance matrix. The largest eigenvalue of this matrix and its associated

eigenvector define the azimuth (Agius and Galed, [2011). (Magotra et al. |1989) pioneered this

method by using only horizontal components of the broadband records and Park et al. [1987],

[Jurkevics| (1988)); [Ruud et al.| (1988); [Ruud and Husebye| (1992)) and [Kim and Gao| (1997) used

all three broadband components. [Roberts et al.| (1989) and |Agius and Galea| (2011) demonstrated

that similar azimuth values could be obtained from auto- and cross-correlation functions of the
three components calculated over short time windows, thus avoiding the computationally expensive
covariance matrix inversion. Azimuth determination is often quite difficult when P-wave polarization
is influenced by scattering effects and signal to noise ratios are low.

Earthquake distances are easier to determine than azimuths. Phase arrivals and their separations

along with travel time tables and estimates of slowness allow distances to be quickly calculated

(Zhao and Helmberger| 1991} [Dreger and Helmbergerl, [1991],[1993). The only caveat is that regional

crustal structure must be well constrained. In an effort to develop a better earthquake early warning

system using a single station, |[Lockman and Allen|(2005) determined distance by developing a scaling

relationship between P-wave amplitude and period and an earthquake’s hypocentral location.

2.3 Previous Studies of Tibetan Seismicity

Because of sparse coverage of broadband stations, most previous studies of Tibetan seismicity have

focused on teleseismic data or data acquired from temporary arrays. |[Molnar and Chen| (1983)

used long period teleseismic data acquired by the World Wide Standardized Seismograph Network
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(WWSSN) to determine the focal mechanisms and focal depths of 16 earthquakes occurring beneath
the highest elevation portions of the plateau. They found all of their earthquakes to be either strike-
slip or normal events with focal depths between 5 and 10 km and with t-axes oriented to support the
theory that east-west extension is dominant across the plateau. |Molnar and Lyon-Caen| (1989) also
inverted teleseismic data to determine the mechanisms of earthquakes that occurred within Tibet
and along its margins. They found that, where elevations are higher than 5 km, deformation is split
between normal and strike-slip faulting. This split allows the east-west extension in the area to be
partitioned into equal parts east-west crustal thinning and roughly north-south crustal shortening.
They also note that the seemingly random locations of normal and strike-slip faults supports the
idea that Tibet is split up into many small discrete blocks.

In the 1990s, Project INDEPTH (INternational DEep Profiling of Tibet and the Himalayas), a
multidisciplinary study of the crustal structure of the region, installed broadband and short period
seismic arrays, which made it possible to study regional Tibetan seismicity at close range. INDEPTH
I and II’s arrays were studies located close to the Yadong Gulu Rift system. There, |[Makovsky et al.
(1996)) and discovered seismic bright spots, and |Chen et al.| (1996)) found a region of high conductivity.
Both findings are consistent with the presence of a zone of partial melting which could provide an
explanation for ranges of focal depths observed in the region. The original goal of INDEPTH III goal
was to image the lithosphere through monitoring teleseismic events, but many local and regional
earthquakes were recorded as well. |Langin et al.| (2003)) performed an extensive study of these
events. They located 267 earthquakes and calculated 50 focal mechanisms. Most earthquakes were
strike-slip and normal and occurred along the large grabens in the region. These events displayed
east-west extension and were shallow enough (< 25) km to support the earlier finding that a zone of
partial melting is located in the upper crust. Some thrust events were also observed. The authors
concluded that these earthquakes were a result of north-south shortening occurring as Tibet is being
extended.

More recently, |Liang et al.| (2008)), using data obtained from an array of 37 stations running from

Tangra Yum Co to Yadong-Gulu Rift in southern Tibet, determined mechanism and hypocenter
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locations using Hypoinverse2000 and a joint hypercenter determination method. They found that
250 of the 885 quakes observed were clustered north of the Yalu-Indus structure and west of the
Pumpqu Xianza rift and were able to map crustal and upper mantle events associated with subducted
lithosphere. In 2010, Elliott et al. used body wave modeling techniques to determine the mechanism
of five earthquakes with My5.9 — 7.1 that occurred in 2008 and three other events that occurred
between 1992 and 2008. Through the use of INSAR, they were able to determine fault locations and
determine which of the mechanism’s fault planes represent the event. They also found that fault

slip occurred on planes dipping (40°-(50° at depths of 10-15 km.

2.4 Data

Broadband records obtained from LHSA at Lhasa were used in all CAP inversions. Initial CAP
inversions were performed using locations obtained from the International Seismological Centre (ISC)
catalog. Although there were many earthquakes in the NQTL/YGR region during the time of the
2002-2003 swarm and 2008 earthquake/aftershock series, only 40 of these events were clearly recorded
by LHSA. By 2008, five additional broadband stations were installed by the Chinese government.
Data from these stations (LKZ, SNA, NMU, MZG, and DXI) made it possible to perform a set of

multi-station inversions on seven of the largest events in the earthquake series using CAPloc.

2.5 Methods

2.5.1 Source Mechanism Inversion using Cut and Paste (CAP)

The CAP method was chosen for this study because it is excellent at inverting regional broadband
seismograms for source mechanisms. This method allows us to invert short period body waves and
long period surface waves separately and thus allows us to correct for imperfections propagated dur-
ing the inversion process by inaccurate Green’s functions and the velocity model from which they
were derived (Zhao and Helmberger), (1994; |Zhu and Helmberger| [1996). Body waves have a smaller

signal to noise ratio, whereas surface waves studies are more sensitive to subsurface structural het-
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erogeneities and thus are less stable than body waves. In whole waveform inversion, the limitations
of both wave types would lead to inaccuracies. CAP provides a better result than these methods
because it is much less sensitive to lateral and vertical heterogeneities.

CAP inverts for a source mechanism by solving the equation f(t) = g(t), where g(t) is a synthetic
seismogram and f(t) is data. The seismogram represented by ¢(t) is built by convolving a trapezoid
shaped source time function s(¢) with sum of radiation pattern from the radial, tangential and
vertical Green’s functions representing the three fundamental faults — dip slip, 45° dip slip, and
strike-slip — at the source location (Zhao and Helmberger), 1994). The synthetic seismograms are

generated using the equations

=2
g(t) = 5(t) * ZQi(t)Ai+3(03 A, 0) (2.1)
i=1
for the radial component
i=2
g(t) = S(t)* Y Vi(t)Air3(0,),0) (2.2)
i=1

for the tangential component,

g(t) = St) x ) Wi(t)Airs(0, A, 0) (2.3)

=2
1=

—

for the vertical component.

In these equations, S(t) a trapezoidal source time function and Q(t), V(t), and W(t) are the
radial, tangential, and vertical Green’s functions for the three fundamental faults (strike slip, dip
slip, and 45°) dip slip at the source’s distance and depth. The radiation pattern is represented by the
variable A; and is a function of ©, §, and A. © is the station azimuth minus the strike fanddandA
are dip and rake (Zhao and Helmberger) |1994]).

The focal mechanism is determined by first performing a grid search over a range of strike,
dip rake, and magnitude values. Next, the synthetic is shifted in time until the cross correlation

coeflicient between the synthetic and the data is the highest. Time shifts and cross correlation fits
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Figure 2.2: An example CAP ouput. The best results will have small time shifts and high correlation
coefficients.

Table 2.1: Velocity Model for the Tibetan Plateau

Layer Thickness (km) P Velocity (km/s) S Velocity (km/s) Density (¢9/m3) Qp Qs

2 4.70 2.70 2.274 100 150
60 6.25 3.50 2.770 300 800
6316 8.08 4.72 3.355 700 1200

are recorded for both Pnl and surface wave portions of the record. The best location is the one with
the lowest misfit error, and this low error results from the smallest time shifts and highest cross-
correlation fits. Small time shifts indicate an accurate source location. The depth of the mechanism
is determined by cycling through a set of Green’s functions calculated for the source and velocity
model. As detailed in Zhao and Helmberger [1994], event magnitude is determined from record

amplitudes using the equation

Moy = Maz(|(t)])/Maz(|g(t)]) (2.4)

2.5.2 Preliminary CAP Results

In order to get an initial impression of source mechanism type and locations, we ran single station

CAP using broadband data from LHSA at the locations obtained from the ISC catalog (figure .
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We used a 1D velocity model developed in |Zhu| (1998) to perform the inversions (table . Twelve
of the 40 records were noisy and were filtered using a bandpass filter between 0.2 and 2 Hz. Green’s
functions were built using F-K factorization and were made at 1 km intervals. Because molten crust
is observed in southern Tibet beneath 30 km depth, we chose to cycle through green’s functions
between 1-30 km (Langin et al. |2003). The resulting depths are accurate to +/- 1 km. Maximum
shifts for Pnl and surface waves were 5 s and 9 s respectively. The search interval within the grid
search was (5° for values of strike, dip, and rake and was 0.2 for magnitude. The resulting fault

information is accurate to +/- (5°

and the resulting magnitude information is accurate to within
+/- 0.2 units of My, .

Locations provided by the ISC gave some good results (table . Most waveform components
had cross correlation fits above 70 and shifts that indicated that the ISC catalog locations were < 8
km away from the actual location of the event. Considering data limitations, these results were
good; however, we believe that we can only get an understanding of active faulting and deformation
in the NQTL/YGR region if locations used in CAP are no more than 3-4 km away from the actual
locations. We chose 3-4 km as the maximum distance because the rift valley within the NQTL/YGR
region is a maximum of 15 km wide. Larger radial location uncertainties would make it more difficult
for us to determine where earthquakes are occurring with respect to the rift. Only 12 of the 40 ISC
locations were within this range, and thus we had to determine a method of improving earthquake
locations.

Before proceeding with improving earthquake locations, we needed to be able to assess the quality
of the source mechanism produced using single station CAP. We did this by comparing our results
with source mechanisms inverted with CAPloc, which is detailed in (Zan et al.l 2006). CAPloc is
a version of CAP that used multiple stations to invert for the location of the earthquake as well as
its strike, dip, and rake. After performing the grid search for the source mechanisms, it performs
a grid search for longitude and latitude. Using records obtained from Chinese stations LKZ, SNA,
NMU, MZG, and DXI, (We: et all |2009)) inverted for the source mechanisms of six of the same

events recorded during October 2008 at LHSA (figure . These events ranged in magnitude from
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My, ~ 3 to My, ~ 6, and so were representative of the size events observed in both the swarm and the
mainshock/aftershock series. Comparison of the mechanisms confirm that single station CAP does

a good job of inverting for mechanisms observed in the NQTL/YGR region (figure (table .

2.6 Earthquake Location Determination

2.6.1 SP Envelope Method

Data and station coverage limitations make single station CAP the best option for inverting for
the source mechanisms of the 2002-2003 swarm and 2008 mainshock/aftershock series recorded at
LHSA. While comparison of single station CAP and CAPloc results lead us to trust the accuracy
of our source mechanism, the CAP time shifts suggest that the earthquake location’s uncertainty is
larger than we would like. For the purpose of associating source mechanisms with known faults, we
would like locations with uncertainties of < 4 km or Pnl time shifts of < 0.8 s when P-wave velocity
is 4.7 km/s and time shifts of < 0.8 s when P-wave velocity is 6.25 km/s. We are less concerned
with large time shifts in surface waves because the quality of their fits could be affected by shallow
surface heterogeneities, but we would like to minimize these time shifts as well.

In order to improve ISC earthquake locations, we have developed the SP Envelope method. In
this method, we find the great circle path between the source and station by determining optimal
rotation azimuth for the data. Because we know the general location of the earthquakes in the swarm
and mainshock/aftershock sequence, the (180° uncertainty in azimuth could be eliminated. As a
result of this reduction of uncertainty, we could determine our final rotation azimuth by rotating
broadband records to points in the western half of circle centered at LHSA. The circle contained
186 points and had a radius of 120 km (figure . At this distance, each point was approximately
3.6 km away from the next. At the distance of 78 km from (0.7° from LHSA, where many of the
earthquakes’ ISC catalog locations are clustered, the distance between points was 1.16 km. After
rotating records recorded at LHSA, to back-azimuths corresponding to each of these points, we

recorded the maximum absolute value of the P-wave arrival’s envelope on the T component of the
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Figure 2.5: Schematic of seismogram rotation with rotated seismogram. Rotating a seismogram to
its great circle path (GCP) converts east (E) north (N) and up (Z) components into radial (R),

tangential (T) and vertical components (V) (Top).

Different phase arrivals are most easily seen

on the rotated records e.g., P-arrvials on the radial component and SH arrivals on the tangential

component (bottom).
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Figure 2.7: Degrees vs. Envelope Plot for the 2008 My, 6.3 Damxung earthquake. The minimum T
component envelope of the P-wave arrival is at (308°

record. At the best azimuth, the P-wave arrival on T will be at its minimum (figure . We then
determine the event’s distance from the source by measuring the time between the P-arrival and the
SH arrival. The SP distance was then calculated using the equation,

Dy, = {s=ty) o, (2.5)

(V3-1)

(Lay and Wallace) 1995). Where ¢, and t, are the S and P arrival times and « is the P-wave
velocity. The combination of azimuth and distance provides us with an earthquake location. From
now on, we will refer to this new location as the SP location.

Large Pnl time shifts observed when CAP was run at SP locations suggested that many of the SP
locations were not as accurate as we had hoped. In an effort to further improve these locations, we
use the Pnl time shifts observed at the SP locations to calculate new locations at which to run CAP
(figure Since CAP time shifts at the SP location are a measure of earthquake location uncer-
tainty, shifting the earthquake location forward and backward along the optimal rotation azimuth by

the distance indicated by the SP location time shift should yield a better result. After running CAP
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Figure 2.8: SP Envelope Method workflow.

at the forward-shifted location (P or positive time shift location) and the negative-shifted location
(N or negative time shift location), we determine the best location by comparing the time shifts and
fits for each component of the wave form for CAP results obtained at P, SP, N and O (original ISC)
locations. The best locations were generally the ones with the lowest time shifts and highest fits
(tables . For earthquakes for which there was no location at which all
time shifts were lower and all fits were higher than all others, we had to choose the best location by
evaluating each Pnl and surface wave shift and fit separately. For example, in a case in which all
fits for all phases were high but the time shifts were high and low, the location at which 3 or more
of the 5 time shifts were lowest would be chosen as the best. In cases where all time shifts and fits
were very close in quality, we chose the location with the slightly smaller time shifts. Also in these
close cases, because of surface waves’ possible interaction with shallow subsurface heterogeneities,
locations with better Pnl shifts and fits were chosen over those with better surface wave shifts and

fits.
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2.7 Results

2.7.1 Characteristics of Located Earthquakes

The SP Envelope method has allowed us to greatly improve the locations of earthquakes by obtaining
results using single station CAP (table and . Using the method of comparing time shifts
and fits of O, P, SP, and N locations, we found that 32 of 40 picked earthquake locations were the
P, SP, or N locations determined using the SP Envelope method. The original ISC locations which
provided the best location results for their event were included in our final set of locations and will
no longer be referred to separately.

Earlier we stated that in order to draw reliable conclusions about faulting and deformation in the
region, we would need earthquake locations to be no more than 3-4 km from the actual location. In
the case of CAP run at ISC locations, only 12 of 40 events have a location uncertainty range (LUR)
of < 4.375 km . With 33 of 40 events having a LUR of < 4.375 km, SP Envelope locations are a
great improvement over this result. Fifteen of these 32 have a LUR < 1km, 9 of 32 events with LUR
between 1 and 3 km and 8 of 33 events with a LUR between 3 and 4.375 km. Of the 7 events with
LUR > 4.375 km, 5 have records which had to be filtered to make it possible to pick the arrivals
needed to run the SP Envelope method. Although much care was taken to use filters which allowed
arrivals to be picked correctly, filtering may have added artifacts which were incorrectly picked S-
arrivals. 20081009132830 and 20081011033227, the other two events with LURs > 4.375 km did not
have records which required filtering. This probably resulted from P-waves interacting with small
scale deep heterogeneities or in smaller arrival picking errors than those made with filtered records.

Most of the focal mechanisms calculated at the new locations were oblique slip events with normal
and strike-slip components (figures . Very few were pure strike-slip or pure normal events.
There were some earthquakes which were found to have occurred in the Yangbajain Valley, but most
are clustered in a region east of the valley which has not been well mapped in previous studies. There
was no clear chronological trend in the location of earthquakes or types of mechanisms. Most events

were quite shallow and were clustered between 2 and 10 km depth. This finding backs up previous
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Figure 2.9: 2002 earthquake swarm locations calculated using the SP envelope method. The
earthquakes occur in the Yangbajain valley and in the mountains bounding the valley. Events
20021021072337 and 20031310601240 occur far away from the rest of the swarm and thus may be
unrelated.
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Figure 2.10: 2008 earthquake swarm locations calculated using the SP envelope method. The main
shock is shown in red. These earthquakes mostly occur in the mountains bounding the east side of
the Yangbajain valley, but are in the same general region as the 2002 earthquake swarm events.
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studies’ findings that a region of partial melting limits the seismogenic zone to the upper third of the
crust in southern Tibet and that there is a zone of partial melting in the mid-crust along the NQTL
where earthquakes cannot occur (Chen and Molnar, (1981 |Brown et al., [1996; |Chen et al.l 1996
Makovsky et all 1996; |Wei et al., 2001)). (Langin et al., 2003|) saw very few events deeper than 25
km and we saw none. Only 6 of our events had focal depths of > 10 km. The deepest one of these,
200211161205125840, had a depth of 24 km and was located far west of the rest of the swarm in the
NQTL range and outside the region where partial melting had been observed. The same was true of
20031310601243, the 15 km deep event that occurred south of the Yalu Zangbo River, also far from
the NQTL Range. The second deepest event, 20081006084349, was one of the filtered events whose

location and CAP result could not be trusted because of possible arrival picking errors.

2.8 Discussion

2.8.1 Single-Station CAP vs. 5 Station CAPloc Mechanisms and Loca-

tions

In order to access the accuracy of the locations and source mechanisms determined by CAP run
at SP Envelope locations, we must compare the results we obtained with those obtained using 5
station CAPloc. Broadband records from Chinese stations, installed in the NQTL region before
2008, were used to perform inversions of seven of the largest events. Because the stations used in
the CAPloc inversion are located in a rough circle around the locations of the NQTL swarm and
mainshock aftershock series, coverage of the focal sphere was more complete (figure table .
As a result the CAPloc mechanisms are likely to be more accurate. Single-station CAP produced
mechanisms that were quite similar to CAPloc (figure (table . The differences between
the strike, dip, and rake of mechanisms inverted using the two methods ranged from (4° to (35° The
average differences between strike, dip, and rake values are (19.21°, (12.61°, (27.57° respectively.
These values are not negligible, but they are not large enough to completely change the sense of

motion represented by the source mechanism. For example, if adjustments of these magnitudes were
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made to the strike, dip, and rake of oblique-slip event displaying normal and strike-slip motion, the
new source mechanism may appear to have a greater strike-slip or normal component, but would
not be transformed into a thrust event. For this reason, we believe that we can be confident of the
sense of motion represented by the focal mechanisms generated by single-station CAP.

The accuracy of the locations generated by CAPloc and the SP Envelope method can be assessed
by running single-station CAP at these locations and comparing the time shifts and fits (table.
The best locations generated by the SP Envelope method and CAPloc were, on average, 11.91 km
apart. The best SP Envelope location produced the lowest time shifts and highest fits for 4 of 7 of
the 2008 events held in common between the data sets. For 20081006083045 and 20081006101711,
two events for which CAPloc produced a better location, the time shifts and fits suggest that the
CAPloc location was only slightly better than the SP Envelope location. In addition, the distance
between CAPloc and SP Envelope locations for 20081006083045 and 20081006101711 are 4.37 and
2.72 km respectively. The nearness of these two sets of locations reinforce the assertion the SP
Envelope produces accurate locations. The only event for which CAPloc produced a location which
was clearly better than SP Envelope was 20081008140716. Although the time shifts and fits were only
slightly different, the distance between the two locations was 13.98 km. This large distance suggests
that these small differences and time shifts and fits can occasionally represent large differences in
location. The average differences between depths and magnitudes calculated using the CAPloc and
SP Envelope locations were 2.34 km and M,,0.69 respectively. The differences in depths are related
to the fact that different locations produce different fit errors. The depth at which the lowest fit
errors occur is the depth which is chosen for the event, and thus the differences in depths between the
two methods is unrelated to the accuracy of the location. The event magnitude is calculated from
the maximum amplitude of the broadband record. Because the data used in the CAPloc and SP
Envelope methods were obtained from different sets of broadband stations within different networks,
recorded amplitudes may be slightly different. These differences are also unrelated to the location

accuracy.
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2.8.2 M, 6.3 Damxung Earthquake Location from Joint Inversion of In-

SAR and Broadband Seismic (CAPloc)

The accuracy of the location and source mechanism of the My,6.3 Damxung Earthquake calculated
using CAP and SP Envelope can also be assessed through comparison with the results of joint
inversion of InSAR and broadband seismic data presented in |Elliott et al| (2010) and |Wei et al.
(2009). In |Elliott et al|(2010), the authors estimated the source mechanisms and fault parameters
of 8 large Tibetan earthquakes through the study of teleseismic body waves and interferometric
measurements. Their body wave study yielded an approximately north-south striking fault with a
westward dip of (51° and a centroid depth of 7 km. The sense of motion on the fault was normal with
a moderate right-lateral component. The model that best fits the slip displayed in the interferogram
was also north-south striking, westward dipping fault with a component of right lateral slip. There
was no surface rupture and slip occurred along a (47° dipping surface which extended from 4 to 11
km. The fault location was determined by projecting the midpoint of the best-fitting fault plane
determined by InSAR, to the surface. Joint inversion of interferometric data and broadband seismic
data in |Wei et al|(2009) yielded very similar results (figure The best fitting plane was also a
north-south striking fault with a westward dip of (56° and a depth of 8.5 km. The fault plane model
used to generate this result had dimensions of 16.5 km along strike and 19.5 km along dip and also
did not rupture the surface.

Because the source mechanisms obtained by all five methods are quite similar, the way in which
we can assess their relative quality is by determining which of their locations produces the lowest
time shifts and highest fits. When run through CAP, we find that five-station CAPloc still produces
the best location of the group and SP Envelope is a close second. This result supports the notion
that in situations where data coverage is sparse, the SP Envelope method when used with CAP can

be trusted to produce very good source mechanisms and locations.
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2.9 Conclusion

In this chapter we have demonstrated that a new single-station earthquake location method, SP
Envelope, can be used in conjunction with CAP to produce an accurate earthquake catalog for a
region with sparse broadband station coverage. When azimuth can be confidently assigned to a
prior range of>(18°, this method allows us to determine high quality earthquake locations in regions
where earthquakes are too small to be detected and located teleseismically. This joint method is
especially useful in regions like Tibet, where the velocity model is well constrained.

In an effort to demonstrate the efficacy of this method, we implemented it in southern Tibet’s
Yadong-Gulu Rift. Only one station, LHSA, recorded both the 2002-2003 earthquake swarm and
2008 M, 6.3 Damxung earthquake and its aftershocks. The fact that the 2008 mainshock/aftershock
series was covered by additional 5 Chinese stations allowed us to compare multistation CAPloc source
mechanisms and locations to those calculated using single-station CAP. The similarity of the source
mechanisms and the low time shifts and high fits between broadband and synthetic data suggests
that the CAP/SP Envelope method works well. In the comparison of SP Envelope and CAPloc
locations, there may be a positive bias given to the SP envelope locations because the method used
to pick the best SP Envelope locations (assessing time shifts and fits) is the same as the method
used to compare CAPloc and SP Envelope locations. This means that, because we have determined
the best SP Envelope location result by comparing the time shifts and fits of multiple locations (P,
SP, N, and original ISC locations) to each other, we are able to pick a result that may be better
than that produced by CAPloc simply because we have more options. Although this slight positive
bias exists, we believe that the SP Envelope method remains a viable and reliable option of locating
earthquakes when station coverage is sparse.

The main limitation of the SP Envelope method is that it requires that the azimuth be known.
This requirement restricts the method’s use to regions where the general location of seismicity is well

constrained. Future work should expand the method to include the automatic picking of azimuths.
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Chapter 3

Crustal Deformation along the
Nyainquentanglha Detachment
Region, Southern Tibet, from
Local seismicity and 3D Fault
Modeling

3.1 Introduction

Among the most longstanding, unresolved problems in tectonics is the discrepancy between experi-
mental and theoretical approaches to fault mechanics on one hand, and observations of crustal fault
zones on the other. Experiment and theory predict that the formation and continued slip on faults
occurs when the ratio of shear stress to normal stress is maximized, i.e., on planes oriented at a
moderate angle (30° to 60°) to the principal stresses in the crust (Scholz|, [2002). The discrepancy
was first recognized in the case of thrust faulting, where intracrustal shortening is accommodated
primarily on decollement planes oriented at a high angle to the least principal stress (Hubbert and
Rubeyl,|1959)). A more severe problem is reflected in the “stress paradox” on the San Andreas Fault.
It has long been noted that the orientation of the fault appears to be at high angle to the maximum
horizontal stress (Townend and Zoback), |2004)), and that the lack of a heat flow anomaly near the
fault zone indicates low shear stress on the fault (Lachenbruch and Sassl [1988)). Mechanisms invok-

ing high pore fluid pressure and stress rotation in the vicinity of the fault zone, accompanied by
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strong spatial and temporal variations in permeability, have been proposed as possible resolutions

(Rice} [1992).

Tectonic reconstructions of continental rifts over the last three decades have generally included a

significant role for low-angle normal faults within the upper 15 km of the continental crust, particu-

larly where horizontal extension is large (Davis and Coneyl, 1979 |Gibbs, |1984; | Wernicke et al., (1985}

[Howard and John), [1987; [Lister and Davis), [1989} [Davis and Listerl, [1988; [Xiao0 et all [1991}; [Azen]

(1993} |Froitzheim and Manatschall, [1996; |Reston| [2007; |[Kapp et all, 2008). These faults present the

same problem as the San Andreas: Even with hydrostatic pore pressure, neither initiation nor slip
on planes dipping less than 30° is possible in materials obeying Coulombic or Byerlee failure crite-
ria. Further, strike-slip faults and low-angle thrusts are clearly illuminated in the historic record of

earthquake focal mechanisms. A number of studies have focused on data that support seismogenic

low-angle normal faulting (Johnson and Loyl [1992; |Abers et al. [1997; |Wernicke), |1995)) and have

inspired a generation of physical models attempting to explain low-angle normal faults and shear

zones (Azxen), 1992 |Forsyth, 11992 |Melosh), 11996} |[Regenauer-Lieb et al.l [2006).
(Azen, [1992; |Forsyth), [1992; | » [1996; | Reg » [2006)

One of the limitations of many recent studies of the origin of low-angle normal faults is the
fact that the best exposed, reconstructable examples of these faults are mainly inactive. The best
documented examples of active low-angle normal faults, in particular large structures with active
slip that appears to be resolvably well below the 30° threshold for Coulombic slip in an Andersonian

fault system (i.e. o7 vertical), include (1) north-dipping faults in the Gulf of Corinth, Greece (15° to

(20°; |Rietbrock et al|(1996)); |Taylor et al| (2011)); (2) the Altotiberna detachment in the Appenine

Mountains of central Italy (< 20°; [Collettini and Holdsworth| (2004)); [Smith et al] (2007)); (3) the

Sevier Desert detachment in the Basin and Range province, western USA (~ 10— 20°; |Allmendinge

let al.| (1983); |Planke and Smith| (1991); [McBride et al| (2010)); and (4) the Nyaingentanglhe de-

tachment of southern Tibet (15° to (37°;|Pan and Kidd (1992);|Harrison et al. (1995); |Cogan et al.|

(1998); | Kapp et al.|(2005)).

To investigate the stress paradox as it applies to low-angle normal faults, we have chosen to study

the relatively intense seismicity over the last decade associated with the Nyaingentanglhe (NQTL)
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example (Harrison et all, {19955 |[Kapp et all 2005). The Altotibernia and Gulf of Corinth detach-

ments are associated with relatively frequent microearthquakes, some of which have been inferred to

accommodate active low-angle slip (Rietbrock et al., (1996} |Chiaraluce et al.,|2007)). Evidence for slip

during large earthquakes with dip of <~ 30° has thus far not been observed in these areas. However,

in both the Gulf of Corinth and in the D’Entrecasteaux islands of Papua New Guinea, mainshock

focal mechanisms with planes dipping as little as 20° to 15° have been observed (Rigo et al| (1996);

[Abers et al| (1997), respectively). Near southern exposures of the NQTL detachment, a vigorous

earthquake swarm, typical of Tibetan rift valleys, occurred in 2002-2003. Beginning with the M, 6.3

mainshock on October 6, 2008, the Damxung earthquake and its aftershocks occurred in the same

area (Elliott et al)[2010). Locations and focal mechanisms were determined for a number of events,

including both the My, 2002-2003 swarm (M, 2 to 4) and the 2008 mainshock and aftershock events
(My, 2 to 5.5; chapter 2). This earthquake catalog presents an opportunity to investigate the NQTL
detachment from a seismotectonic point of view, in particular to assess whether any of the events

occurred on the NQTL detachment plane, and to determine the state of stress in the upper crust.

3.1.1 Geologic Setting of the NQTL Detachment

The neotectonics of southern Tibet reflects the on-going northward movement of India into Asia, and

is dominated by east-west extension (Molnar and Tapponnier, [1977; |[Armijo et all [1986} [Taylor and

2009) which manifests itself in the form of relatively localized zones of north-trending normal
faulting and related seismicity. In the southern portion of the plateau, extension is accommodated

along a system of widely spaced, approximately 300 km long north-trending rift systems defined by en

echelon normal faults of variable polarity (Armijo et al.l|{1986,[1989; | Kapp et al.,2005)). Field studies

of active faults indicate that these rifts contain numerous grabens and half grabens with conjugate

normal faults. Grabens generally trend north-south along the rifts, but are locally transected by

strike-slip faults trending NE-SW and NW-SE (Armijo et all, [1986; |Cogan et all, [1998)).

Among the most prominent of these rift systems is the Yadong-Gulu Rift (YGR), located just

west Lhasa, Tibet, and stretching from the northern margin of the High Himalaya in the south to
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Figure 3.1: Major Tibetan Faults. The study region is located within the red box. The triangles
represent the locations of cGPS stations that are currently active.

the Bangong suture zone in the north (figure e.g. |Pan and Kidd| (1992)); |Nelson et al| (1996)).

The Yadong- Gulu Rift is one of the rifts on which Neogene extension in southern Tibet is focused,

being only one of two rifts that contain exhumed mid-crustal rocks (metamorphic core complexes),

the other being the Lunggar rift of western Tibet (Kapp et al) 2008). The average opening rate of

the YGR since 10 Ma is estimated from geochronological data to be 3 mm/yr. Relatively sparse

campaign GPS coverage suggests the rate may be as great as 5 to 8 mm/yr (Chen et all, [2004),

interpreted by some workers to be the result of the weakness due to the presence of a partially molten

zone within the upper crust (Makovsky et al., (1996 |Chen et all[1996; | Kind et all|1996; |Alsdorf and

1999). In the northern portion of the YGR, the NQTL detachment crops out is an east-

to southeast-dipping normal fault (Armijo et al., 1986; |Pan and Kidd, (1992} |Harrison et al., 1995;

[Kapp et all,[2005). The NQTL detachment forms the SE boundary of the NQTL Range, and forms

the NW boundary of the Yangbajain-Damxung graben (YDG). Along the range front, a discrete

brittle normal fault zone is roughly parallel to an extensive zone of mylonitic gneisses with shallowly
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dipping foliation (Kapp et all [2005). Within the YDG, numerous faults with dips of > 60° and
with offsets of 10s to 100s of meters cut the alluvium and glacial till that fills it (Armijo et al., |1986;
Kapp et all|2005). Chloritic breccias along the fault surface, a uniform shear sense in the mylonites,
strongly sheared rocks adjacent to alluvial graben fill, the similarity of orientation and kinematics of
hanging wall normal faults and the NQTL detachment are all typical elements of metamorphic core
complexes (Davis, [1983). The rapid Late Cenozoic cooling history of mylonites and ultramylonites
found within the central low angle shear zone (cooling from > 300°C to < 100°C from 6 to 3 Ma;
Pan and Kidd) (1992)) suggest that the NQTL Range is among the youngest known metamorphic
complexes on earth.

In this chapter, we examine the neotectonics and deformation of the NQTL region, compar-
ing mapped faults and other structures with a catalog of earthquakes obtained using a waveform-
modeling method called Cut and Paste (CAP), in conjunction with a new earthquake location
method called SP Envelope. These techniques enable characterization of smaller events such as
swarms and aftershock sequences, which would otherwise be impossible because of the sparse cov-
erage of broadband instruments in the region. We build upon the results shown in chapter 2 which
details how, when used together, CAP and the SP envelope method can be used to invert for source
mechanisms and locations of small magnitude earthquakes in a region with sparse broadband seismic

station coverage.

3.2 Data

3.2.1 Faults

In August 2009, approximately ten months after the October 2008 Damxung mainshock, we con-
ducted a field reconnaissance in the epicentral region of the earthquake to search for evidence of
surface rupture. We inspected most of the region of the 2002-2003 swarm, including the NQTL
range front, for fresh ruptures. Interviews with local residents (largely shepherds) as to any changes

in the land surface that occurred in association with the earthquake led to recognition of some small
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landslides (< 50m? in area), but otherwise there were no observed surface disturbances associated
with the earthquake, in agreement the analysis of InNSAR images by |Elliott et al.|(2010).

In order to understand the relationship between the earthquakes and regional faulting, we con-
structed a fault model using the GOCAD modeling suite. The advantage of this approach, particu-
larly where there is significant complexity, is that the focal mechanisms can be easily visualized in
three dimensions relative to both subsurface faults and to one another, to look for possible align-
ments. It also allows for the evaluation of whether any given nodal plane, or group of similar nodal
planes, is most consistent with the overall pattern of surface faulting. The fault model contains
Quaternary fault traces from |[Armijo et al| (1986)); |Pan and Kidd) (1992); |Sun et al| (2011)); |Kapp
et al| (2005), which were georeferenced within ArcGIS. In an effort to supplement the sparse fault
coverage afforded by these maps, we mapped shorter length faults using the satellite images within
Google EarthTM, which were verified by brief field reconnaissance in the summer of 2009. Faults
within the southern Yanbajain Valley are relatively small but numerous, and cut Quaternary valley
fill deposits. Faults within the mountains east of the valley were much more difficult to detect. The
fault traces in the model were draped onto a topographic surface generated from a digital elevation
model (DEM) with 90 m pixel spacing. The DEM, known as SRTM 90, is from the Space-Shuttle
Radar Topography Mission (SRTM) in 2000 (Farr et al., 2007).

In addition to the traces of surface faults, we have included in the fault model the subsurface
projection of the NQTL detachment based on seismic imaging and interpretive cross sections of
Cogan et al. (1998)(figure . In each one of the cross sections (figure 7 the location of the
NQTL detachment surface trace was visible and its average dip at the surface ranges from 22° to
37° (Kapp et all |2005). The dips measured from the three interpretive sections in |Cogan et al.
(1998)), based on the imaged contact between valley fill and bedrock, are somewhat shallower than
the measured surface dips, at 20°, 26° , and 22°, from north to south.

After georeferencing the cross section locations in ArcGIS, the NQTL detachment surface trace
points were imported into GOCAD. Once within GOCAD, elevation data from the topography

surface was transferred to the surface trace points. Dipping lines originating from these surface



50

9yms Surepow (I¢ VOO 9Ys uyyum TLON °U} JO [oPOW & J0TIISU0D 0} PISTL dIom SUOIPIDS SSOID 9SN} WO paurejqo TI,ON Y3 jo dip ayj
JO SJUSWIDINSLAN “AS[[RA 91} SSOIOR So[oId UOI)ORIJoI OIWSIOS FUIjRIdIoNUl A POIRIOUSS SIoM SUOIJISS SSOID O, "Ad[[eA Uleleqduex oY) SUISSOID SOUI]
¥or[q oY) Aq pojusserdar ore SUOIIRDO] UOIRS oY, “(WSH)|8G6T| 70 42 upboy| woyy suoroes sso1d pajordivjur pue (o) uordor TLHN UL :¢'¢ 9MSL]

000L 0059 0009 00SS 0005 O0O0S¥ OO0

ouoz meays eylburiuabueAN - ZSN weweseq sugnsio wybuniusbuein BN siglaw
- ArewsienpyeusBoey
- red wo wimae opzoemd (74 Suswipes Ed 216 16 806 906 06 206 .06

\ \. \
(8-q11) uoijoes
Aeojlep ujelegbuep

.-zl (01-qil) uopoes
== Aejjep BuoyzujAN

uopoes |
Aajjep Bunxweq

26 .16 806 906 F06 .2'06 .06



o1

R
Leal e
o T
. P s
= £ L A p; - =
-
—
Legend
B A 2002 Earthguakes L
" o .W{ U ® 2008 Earthquakes s
‘,J - Google Earth Quartenary Faults
{ (‘. e Kapp et al., 2008 Faults
A A .
i A ." \,_:_\ —— Armijo et al., 1936 Faults
r ' ére ® -
ol 4@ ’
. r L] .
J 6\" 4 [oioon ‘.
r Ty,
J / -\ Lhasa
e A p
2.‘ / ¥
LY
=] l : - o Kilometers q
#\ . D36 12 18 2

T T T
90 91 L]
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trace points were then used to generate a simplified, multisegment surface with variable dips. We
extrapolated the fault southward from the Yangbajian Valley section in|Cogan et al.| (1998), using the
surface trace to constrain the strike of the fault. We built lines with the same dip as was measured
at southern Yangbajain (22°) and generated a surface with a uniform dip from them that follows
the surface trace. It is possible that the southward trace of the detachment differs from this value,
but we presume below that it continues southward at a dip somewhere within the total measured

range of dips of the detachment (20° to 37°).

3.2.2 Earthquakes

Our inversions from chapter 2 produced in a catalog of 30 earthquakes with reliable radial locations
(“low uncertainty range” or LUR catalog, table , with a maximum mislocation error threshold
set at 4.4 km (chapter 2, tables and . This catalog includes 13 earthquakes from the 2002-
2003 swarm (all 13 occurred in 2002) and 17 from 2008. Earthquake focal mechanisms, their fault
planes, and their P and T axes were visualized within GOCAD using a plugin detailed in |Plesch,
(2000). The depths of the focal mechanisms and planes are reported with respect to an elevation
of 3660 m, the elevation of the broadband station LHA, at Lhasa. For each nodal plane, synthetic
planar fault surfaces were constructed as 8 km squares centered on the earthquake location, so that
their intersections with surface topography, surface faults, and the subsurface model of the NQTL
detachment could be evaluated, so as to provide a criterion for determining which nodal plane was
the most likely slip plane.

Some earthquakes, including the 2008 Damxung mainshock, have epicenters in the rift valley
(Yangbajain Valley) just E of the southern NQTL Range, but most are clustered beneath uplands
east of the valley, which have not been well mapped in previous studies (ﬁgure. The depth range
of events is 2 to 13 km. Most of the focal mechanisms within our LUR catalog were oblique slip
events with normal and strike-slip components (figures and . Very few are pure strike-slip
or pure normal events. There are no clear chronological trends in the location of events or types of

mechanisms (e.g., normal mechanisms preceding strike-slip mechanisms, etc.), nor any distinction
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Figure 3.4: Low LUR events from the 2002-2003 earthquake swarm. All events pictured occurred in
2002.
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Figure 3.5: Low LUR events from the 2008 mainshock and aftershock sequence. The mainshock
location is represented by the yellow star.

between the distribution and mechanisms of the 2002 and 2008 events, except that the five deepest

events (10-13 km) occurred in 2008, including the mainshock at 11 km depth (Table [3.1] figures

and .

3.3 Analysis

3.3.1 Defining Active Faults Using Alignments of Similar Focal Planes

The mechanisms fit our general expectation of east- to east-southeast extension and associated
strike-slip faulting. To first order, the swarm events and the aftershocks fill a large volume of

crust (most of them within a 40 km by 40 km by 13 km volume), rather than clustering along the
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plane of the mainshock, the subsurface trace of the NQTL detachment, or some other planar zone
(figure . Most are located in the area of the 20°-dipping projection of the detachment, but
do not have shallowly east-dipping nodal planes that would align with the fault (figure . For
the relatively shallow dip (20°), most events lie below the fault plane, including the My,6.3 2008
Damxung mainshock, which lies > 10 km below the detachment plane. The likely fault plane for the
mainshock strikes 159° and dips 59° to the west. This orientation is consistent with the best fit plane
(180° strike, 56° dip) obtained from joint inversion of INSAR broadband seismic data discussed in
chapter 2.

Based on the complex distribution of events and mechanisms (ﬁgures and it is not obvious
that any of them bear a clear relationship to surface faulting, and as shown below, it appears that
many of the events, including the 2008 Damxung mainshock, define previously unknown active faults
in the subsurface (Elliott et al.,|2010). In order to better define the overall structural geometry and
kinematics at depth, we have attempted to group events with similar mechanisms and locations, and
then use GOCAD visualization to “fly through” the data set to determine if there are sets of events
that define a subsurface fault plane, and evaluate any potential relationship with surface faulting.
Based on analysis earthquake locations and mechanisms on maps and in GOCAD, we have identified
four groups of earthquakes with similar mechanism and locations (figures and . We will refer
to the events below by sequence (swarm or Damxung mainshock) and order within the sequence
(table , such that “S5” refers to the 5th event determination during the 2002-2003 swarm, “D3”
is the third event in the 2008 Damxung sequence, etc.

The first group includes two aftershocks, events D2 and D3, under the southern Yangbajian
Valley, which appear to define a shallowly NW-dipping, left-lateral oblique-slip fault (figure )
These earthquakes occurred within 5 seconds of each other the same day as the mainshock, have
nearly the same mechanism, and occur at very shallow depth (2 km). Two very similar events (D9.5
and S5) are located on the western edge of the range to the west (figure ) They are also very
shallow (2 km), with one occurring on the same day as the mainshock, and the other in 2002. When

viewed looking to the NNW of the subsurface projection of the NQTL detachment (figure ),
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Figure 3.6: NQTL Region earthquake locations with respect to the NQTL. In these GOCAD screen
captures, the earthquakes are shown with respect to theM6.3 6.3 Damxung Earthquake plane
and lines representing the minimum and maximum possible dips of the NQTL (gray dotted lines).
Topography is represented by the black line at the top of the A. 2002-3 swarm events. B. 2008
mainshock/aftershock series. C. 2002-3 swarm and mainshock/aftershock series.
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Figure 3.7: Group 1 earthquakes. A. Possible faults mapped within the Yangbajain Valley and
Eastern Mountains. The fault mechanisms suggest that these earthquakes are occurring on either
the same plane or on faults with similar orientations. B. GOCAD screen capture of group 1 events.
The cross section of the NQTL fault surface is shown in gray. The fault plane common to all four
events seems to be conjugate to the NQTL. C. A second GOCAD screen capture from a different
view supports the notion that these earthquakes are occurring on a single fault plane.
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the three best-located events (S5, D2 and D3) define a shallowly NW dipping plane that is well
aligned with the subhorizontal plane of the mechanisms. Event D9.5 falls slightly below the plane,
but also has a large location error. Viewed in cross section relative to slip along the most likely
planes, the four events appear on average to define a shallow crustal, top-NE low-angle fault zone
(decollement?), which we infer, based on figure[3.7B, to lie structurally above the NQTL detachment.

A second group of three events is also oblique slip, defined by events S1, S7 and S13 (figure )
A GOCAD view looking northward suggests that they define a steep, N-striking, west-side-down
normal fault (figure ) This fault is a bit less convincing because the strike of event S1 differs
slightly from the strike of the fault plane in the other two events. In addition, the location errors
of S1 and S13 are relatively high, at 3.75 km and 4.375 km, respectively, which, given their N-S
spacing of 5 to 10 km, introduces significant error in strike. Both the orientation and sense of offset
of the steep planes are highly consistent with surface faulting in the southeastern Yangbajian Valley
(figure [3.2). However, because the events occur at depths of 3 to 6 km, they appear to lie in the
footwall of the subsurface projection of the NQTL detachment. All three events would all lie in the
hanging wall of the NQTL detachment if it had a dip of > 30° beneath southern Yangbajian Valley.

A third group of five similar events is located along the eastern edge of the valley. Based on their
map view projection, events D5, D6, D7, D15 and D16 appear to define a NNE-striking normal fault
(figure[3.9A). The events are all relatively deep (7 to 13 km), and reside in the footwall of the NQTL
detachment (figure ) The mechanisms are predominantly normal, but do not define a simple
plane when viewed in cross section across strike (figure ) The deepest event (D6) has a large
location error (3.75 km), and thus may be coplanar with the better located, shallower events. The
largest events of the entire aftershock sequence are events D5 and D7. They are the best located
events (errors < 1 km, table , and their moderately NW-dipping focal planes are well aligned
(figure ) Events D15 and D16 are misaligned with the D5-D7 plane by 1 and 3 km, respectively,
but occur near one another about 10 km along strike of D5 and D7. Thus some combination of their
location error (both 1.9 km, table and non-planarity of the fault may account for their position

slightly off of the D5-D7 plane.
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Figure 3.8: Group 2 earthquakes. A. A possible fault defined by events occurring along the western
edge of the Eastern Mountains. B. GOCAD capture of the range bounding fault. An approximation
of the NQTL surface is shown in gray. The fault on which these events likely occur seems to be
slightly curved.
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Figure 3.9: Group 3 and group 4 earthquakes. A.The events in group 3 line up along the fault in
the western portion of the Eastern Mountains. The events in group 4 line up along the fault in
the eastern part of the Eastern Mountains. Only the events in group 3 seem to line up along a
likely fault plane when viewed in GOCAD. B. GOCAD capture of the group 3 earthquakes. A cross
section of the NQTL fault surface is shown in gray. Although the mechanisms of these events look
very similar and line up nicely in map view, only D5 and D7 seem to line up along a plane when
viewed in 3D.
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A fourth group of events located beneath the mountains east of Yangbajian (S10, D11 and D17)
form a quasi-linear array of normal events whose steep, west-dipping nodal planes are much better
aligned than their auxiliary planes (figure . The NNE strike of these events is similar to the
third group of events, and thus appear to define a similar structure. No known active surface faults
with this trend or offset have been identified in the surface geology. Given their eastern position
and relatively shallow depth (2 to 8 km), these events occurred in the hanging wall of the NQTL
detachment.

These groups of events, which include about half of the events in the LUR catalog, thus appear
to define four structures, a shallow “decollement” beneath the Yanbajian Valley, and at least three
NNE-striking, west-side-down, right-oblique normal faults. This pattern is generally in agreement
with active surface normal faulting in the southern Yangbajian Valley. For the remainder of the
events, the mechanisms are similar to those in the groups, but their locations do not form any
discernible patterns. For these events, we used a criterion for most likely slip plane wherein the
projected surface trace of the nodal plane most closely aligns with the traces of surface faulting.
This criterion is relatively weak, such that as many as half of these planes (i.e., a statistically

random sample) are not the true slip plane.

3.4 Slip Vector Patterns and Stress Tensor Calculations

Slip vectors from the most likely focal planes (strike, dip and rake, table were converted into
direction cosines (Stein and Wysession), 2003, p. 218), using Matlab, and into trend and plunge for
use in Stereonet software (Allmendinger et al.,|2011). Focal mechanism data were used to calculate a
regional stress tensor using the program SLICK, based on the methods described in (Michaell, 1984,
1987). The method is based on minimizing the mismatch between observed slip vectors on any given
plane with those predicted by a uniform stress field. The average angular mismatch between the
observed slip vectors and the best-fit model slip vectors (8 angle of |Michael| (1984)) can be used to
assess the quality of the model. We chose to use SLICK even though it well known that deformation

patterns of earthquakes (in the form of slip and stress field perturbation) are generally known to
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be spatially heterogeneous over a region. Variation in the spatial and chronological distribution of
earthquakes is responsible for this heterogeneity and resulting variations in the stress field have been
successfully modeled when large numbers of regional earthquakes are available for study (Smith and
Heatonl 2011)). Because we only had access to a catalog of 30 earthquakes, we chose use a method
which would give us a more general idea of stresses within the region.

Slip vectors calculated from the most likely fault planes of the 2002 and 2008 events fall into
three sets, consonant with the subset of events that may be grouped spatially with one another
(figure . These include vectors trending NE or nearly due east on shallowly dipping planes
(similar to group 1), north to NW-trending vectors on steeply dipping, NNW-striking planes (similar
to groups 2 and 4), and NW-trending vectors on moderately inclined planes (similar to group 3).
A fourth set that includes six planes, not apparent in any of the spatial groupings, includes gently
to moderately east- to south-plunging vectors that are nearly pure normal events on shallowly to
steeply inclined planes. These events have the strongest potential to be auxiliary planes, and their
conjugate planes and slip vectors would mostly lie in the orientations of the other sets of planes.
Nonetheless, some of the shallowly dipping planes in this set may well represent slip on the NQTL
detachment, or faults parallel to it in the hanging wall and footwall.

In map view, the vectors have a relatively complex overall pattern (figure[3.11]). The 2002 vectors
mostly trend northward, with a large subset of events making a seemingly random pattern. The 2008
vectors appear to define a more organized pattern, diverging from an area centered on the western
margin of Yangbajian Valley, opposite the salient in the surface trace of the NQTL detachment.
Viewed as a whole, especially when factoring out the very shallow vectors trending NE (i.e., group
1 faults), the vectors seem to reinforce uplift of the area along the western margin of Yangbajian
Valley, more-or-less centered on the population of events (figure . An examination of the 3D
model of the vectors constructed using Matlab did not reveal any obvious relationship between depth
and the orientation of the slip vectors.

Because of the possibility that many of the likely slip planes (table may be in error, we

calculated stress orientations using three different assumptions (table [3.1). The first assumes the
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Figure 3.12: Slip Vectors associated with most likely planes plotted in map view (continued). Com-
bined 2002 (blue) and 2008 (green) slip vectors.

plane randomly selected by CAP to represent the focal mechanism is the true slip plane. The second
assumes the auxiliaries to these planes are the true slip planes. The third is the population of likely
slip planes presented in table

The results indicate that the orientations of the principal stresses are largely insensitive to which
set of planes are assumed. Most sensitive are the 2002 swarm events, where the assumption of plane
1 yields a mean angular mismatch between observed and modeled slip vectors (3) of 16°, almost half
the value of 29° for the events deemed most likely (table . The complexity of the swarm is also
indicated by the strong variation in the trend of calculated o3 with the set of assumed planes, ranging
from S12°E to S48°E, all much more southerly than determinations from other sets of assumptions
(table [3.1).

Both the 2008 and combined 2002-2008 datasets yield a far more narrow range of results. The
2008 events alone show < 10° variation in the trend of o3, from S 77°E to S68°E, and only 5°
variation in the plunge of o1, from 61° to 66°. In contrast to the 2002 events, the lowest 8 value of
the three sets of assumed planes corresponds to the likely set of events, at 17°. The combined 2002

and 2008 results yield a similar result to the 2008 results alone. Trends of o3 are all within 1° of
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each other, with the most likely planes trending S63°E. The plunge of o7 lies within a 5° window,

with the most likely planes plunging 68°.

3.5 Discussion

The salient result of our analysis of these events is that the maximum principal stress (o) derived
from stress inversion of the earthquakes is oriented at a high angle to the NQTL detachment.
Under traditional Andersonian theory of faulting [1951)), the vertical stress is a maximum
principal stress. Therefore, the ~ 20°-30° SSE to SE dip of the detachment would make it marginally
oriented (30° or greater) to misoriented (< 30°) within the regional stress field to slip. The fact that
o1 is not vertical, but rather plunges N36°W at 68°, suggests that it is oriented within < 10° of the
normal to the detachment plane which on average strikes ENE and dips 20 to 30° ESE
. Assuming these measurements are correct, the NQTL detachment is yet another example of
a major normal active fault in the brittle crust that is oriented such that the ratio of shear stress
to normal stress across the fault plane is far below that expected for yielding under a Coulombic or
Byerlee failure criterion.

Rotation of principal stresses in the upper crust, as suggested by the earthquake data, has tradi-

tionally been attributed to effects including high fluid pressures within the fault zone 1992)),

or effects that create stress guides, such as flexure of the crust (Spencer and Chase, [1989), flow of

viscous fluid directly beneath the seismogenic layer (Yin,|1989; | Melosh|, 1990), or dilation of the deep

crust due to igneous intrusions (Parsons and Thompson) (1993). More recently, models of isotropic,

uniformly stressed continental lithosphere that account for feedbacks between elastic and viscous

strains in the upper crust and deep crust, respectively, predict the generation of subhorizontal shear

zones in the strongest crust, near the brittle-ductile transition (Regenauer-Lieb et al.[2006). Despite

these explanations, in the three decades or so of modern seismic instrumentation in continental rift

zones, a moderate to large earthquake on a normal fault dipping less than ~ 25° to 30° has not

yet been observed (Jackson and Whitel, [1989; | Wernickel 1995 |Elliott et all [2010; |Collettini et al.|

2011).
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The events from the 2002 swarm and 2008 sequence do not add significantly to the extant
database for seismic slip on low-angle normal faults. |Abers| (1991) and |Abers et al.| (1997)) de-
scribe large earthquakes along detachments bounding metamorphic core complexes in the Woodlark-
D’Entrecasteaux Rift System in Papua New Guinea, which dip 25° to 30° through the upper crust,
as determined unambiguously by focal mechanisms and marine seismic reflection profiles across
the hypocentral region of the earthquakes. Studies of the surface trace of the exhumed detach-
ment indicate that high fluid pressures were present during deformation along a 33 m thick zone
of serpentinite-rich fault gouge, suggesting that both high fluid pressures and non-Coulombic fault
rocks contribute to the ability of the fault to slip at low angle (Floyd et al.l 2001). As noted ear-
lier, relatively small low-angle normal fault earthquakes have also been observed in the Appenines
(Collettini et al.l [2011) and in the Gulf of Corinth (Katzir et all |[1996; |Famin et al., 2004; |Lecomite
et al., [2012} 2010} |Jolivet et al., [2010).

By comparison, in our LUR catalog there are only the four group 1 events, which appear to
define an upper crustal decollement, and two small earthquakes, D3 and D11 (M,, < 3), which may
have occurred on low-angle normal faults (table . The latter two events are located near each
other at shallow depth east of Yangbajian Valley, well above the NQTL detachment. The dips of the
most likely planes of D3 and D11 are 10° and 14°, respectively. The depths, locations and senses of
slip on these events suggest that they did not occur on the NQTL detachment.

The fact that the earthquakes analyzed here do not correspond to slip along the NQTL detach-
ment raises the question of precisely what their role is in the evolution of an active core complex.
The observation that most of the events occurred in the footwall of the detachment and did not
rupture through to the surface suggests that they reflect a significant component of brittle deforma-
tion in the footwall of a metamorphic core complex. The “radiating” pattern of slip vectors away
from an area to the east of the salient in the surface trace of the detachment appear to reflect the
uplift of the footwall. As noted by many authors, denudation of the upper crust along low-angle
normal faults is necessarily accompanied by isostatic rebound of the unloaded footwall (Wernicke

and Azen), |1988]). Uplift would be particularly intense along antiformal salients in the detachment,
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which are uplifted earlier than areas along regional strike, i.e. relative to embayments in the trace
of the detachment. Whereas many authors have stressed flexure as a mechanism of footwall uplift
(Spencerl, [1984)), |Wernicke and Axzen| (1988) cited specific examples of footwall normal faults that
also function to accommodate isostatic rebound. In the mid-Tertiary metamorphic core complexes
of western North America, large, relatively steep footwall normal faults, conjugate to the main de-
tachment, are common. For example, the Happy Valley fault in the footwall of the Catalina-Rincon
detachment (Drewes), [1981)), and the Ruby Valley fault in the footwall of the Ruby Mountains de-
tachment, are good ancient analogs to the active upift now ongoing beneath the NQTL detachment

in Yangbajian Valley.

3.6 Conclusions

Through the use of an earthquake catalog constructed from focal mechanisms and locations deter-
mined by relatively new waveform modeling methods (CAP and the SP Envelope method), we have
been able to analyze two earthquake sequences associated with an active metamorphic core complex
in an orogenic plateau setting, which would otherwise not have been accessible to study owing to
a lack of regional seismic coverage. Our analysis of the locations and earthquake focal mechanisms
in the Yangbajian Valley segment of the Yadong-Gulu rift between 2002 and 2008 defines a system
of west-side-down normal faults in the footwall and hanging wall of the NQTL detachment. The
footwall structures, which include the (M,,) 6.3 Damxung mainshock and two large aftershocks,
are best interpreted as accommodating distributed footwall uplift across strike from a salient in the
surface trace of the detachment, similar to structures that are well known from ancient metamorphic
core complexes.

Inversion of focal mechanisms from these events suggest a stress tensor with an ESE-WNW least
principal stress orientation, in close agreement with the sense of offset on the NQTL detachment
determined from surface exposures. The orientation of the maximum principal stress (trending
N36W, plunging 68°) is perpendicular (+10°) to the orientation of detachment, as recorded in surface

exposures and subsurface seismic reflection and refraction profiles (table [3.2]). This observation
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Table 3.2: Slick program outputs

o1 03 B
2002 Trend | Plunge | Trend | Plunge
Plane 1 -34.00 68.50 | 168.19 19.96 | 16.48
Plane 2 -29.31 64.13 | 131.90 24.62 | 25.21
Likely -23.12 68.00 | 146.82 21.64 | 29.41
2008
Plane 1 -45.14 66.25 | 104.14 20.68 | 23.01
Plane 2 -41.58 60.87 | 113.30 26.74 | 18.67
Likely -41.81 66.50 | 108.90 20.74 | 16.56
200242008
Plane 1 -36.33 69.06 | 115.89 18.66 | 22.59
Plane 2 -37.77 64.38 | 115.68 23.18 | 20.57
Likely -35.80 68.26 | 117.13 19.51 | 22.17

appears to add the NQTL detachment, a major active fault zone in the upper continental crust, to
a growing list of major upper crustal fault zones oriented at high angles to the maximum principal

stress.
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Chapter 4

A Possible Continental Slow Slip
Event in the Nyainquentanglha

Detachment Region, Southern
Tibet

4.1 Introduction

The advent of continuous GPS (¢GPS) coverage along subduction zones over the last 15 years has
led to the discovery of discrete slow slip events (SSEs) along the subduction interface (Schwartz
and Rokoskyl, [2007) and have been observed extensively in regions such as in Cascadia, Guerrero,
Mexico, New Zealand, Alaska, and northeast Japan (Dragert, |2001; |[Dragert et all 2004} |Lowry
et al., 2001} |Freymueller et al., |2002; |Douglas et al., 2005). These events radiate no seismic energy,
and originate at the transition zone between aseismic slip at depths of ~ 20 to 40 km depth, and the
shallower seismic zone. The zone of SSEs behavior is generally regarded as a rheological boundary
zone between velocity weakening and its associated stick-slip behavior, and velocity strengthening,
stable sliding or creep.

Although most instances of SSEs have been observed at subduction zones, these events are
also well known along a short stretch of the San Andreas Fault (Wesson) [1988; |Galehousel [2002)
and along the Hayward Fault in northern California (Burgmann et al., [2000; |Stmpson et al.l 2001}
Malseruvisi et all |2003)), which have long been instrumented with pre-GPS geodetic infrastructure. In

both of these instances slow slip occurs at the surface as well as at seismogenic depths. In addition,
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SSEs occur along mid-ocean ridge transform faults, and may accommodate as much as 85% of their

motion (Boettcher and Jordan| 2004).

Continental SSEs, not associated with motion along a nearby plate boundary, have also been

described in the orogenic plateau setting of the Basin and Range Province (Davis et al. [2006]). For

these events, large portions of the Basin and Range crust exhibit coherent velocity changes of ~ 1
to 4mm/yr, interpreted as representing oscillating motion along a megadetachment. Considering a

variety of indicators, including a magma injection event near the Moho during one of the slip events

(Smith et al., [2004)), the structure, the state of stress, and the rheology of the Basin and Range

lithosphere, these events have been interpreted to represent ductile stick-slip along a ~ 500km wide

detachment surface along the Moho (Wernicke et al) [2008} [Wernicke and Dawis| [2010)).

Another possible SSE in an orogenic plateau setting may be represented by a strong increase
in the east component of velocity which was recorded at a ¢GPS site in Lhasa, Tibet, between
the beginning of 2001 and the middle of 2002. The apparent rapid cessation of this event was
immediately followed by an earthquake swarm in 2002-2003 in the Yadong-Gulu rift, about 70 km

west of Lhasa (described in chapters 2 and 3), and then six years later by the(M,,6.3) Damxung

earthquake, in the same area of the rift as the swarm (Elliott et al.) [2010, chapters 2 and 3). The

western margin of the rift at this latitude is bounded by a major SE to E-dipping low-angle normal

fault, the Nyaingentanglha (NQTL) detachment (Harrison et all, [1995; |[Cogan et al) 1998} [Kapp|

2005)), which juxtaposes mid-crustal metamorphic tectonites in its footwall against Quaternary
and older basin fill in its hanging wall. In addition to these observations, the Yadong-Gulu rift valley

is underlain by a zone of strong mid-crustal reflections, below which magnetotelluric and seismic

velocity profiling suggest the existence of a partially molten zone (Nelson et al., 1996) and (Cogan

1998).

In this chapter, we synthesize these observations to develop the hypothesis that the swarm

observed within the rift region was related to a slow-slip event at depth, most plausibly along the
NQTL detachment, but possibly as deep as the Moho. If correct, it implies that the numerous

earthquake swarms that characterize Tibetan rift valleys (M,, < 4) are associated with SSEs on



73

inter- or intralithospheric decoupling horizons present at depth well outside the upper crustal rifts.

This event would also be only the second continental SSE ever observed.

4.2 Data and Methods

Continuous GPS data recorded at station LHAS at Lhasa, Tibet from 1996 to 2005 was initially
processed using the GAMIT/GLOBK and GIPSY OASIS II software packages. Daily position
estimates with uncertainties of 1-2 mm in east and north directions and 3-6 mm in the vertical
direction were determined using methods detailed in (Bennett et al.l |[2002} [2003; |Hreinsdottir et al.,
2003). Seasonal stochastic variations in velocities were removed using the Site Position Kalman
Filter (SPKF), which was developed for processing data recorded by the BARGEN network (Davis
et all 2006). These filtered data were then analyzed for the presence of velocity transients following
the method described in |Wernicke and Davis| (2010). Time series for continuous GPS data for
a new cGPS site LHAS, located near the decommissioned IGS site LHAS, from 2007.0 to 2010.9,
were processed using the GYPSY-OASIS software package following the methods described (Genrich
et al.l |2000)), and filtered to generate velocity time series as for site LHAS.

Earthquake focal mechanism locations and focal mechanisms were obtained using CAP (Cut and
Paste) along with the SP-Envelope method described in chapter 2. Kinematic data from surface
exposures of the NQTL detachment, which reflect its late Miocene and younger evolution, were

obtained by |Kapp et al.| (2005)).

4.3 Results

The average motion of site LHAS, relative to a Eurasian reference frame, is N45°E at 26 mm/yr
(Zhang et al., 2004, figure;)). Relative to a western Tibetan frame, it is moving due east at a rate
that varies from 15 to 19 mm/yr. The eastward motion is part of the overall eastward flow of
southern and central Tibet relative to both India and Asia (Copleyl, 2008]). Significant changes in

velocity were recorded at LHAS between 1998 and 2004 (ﬁgure. The east component of velocity,
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relative to its average value from 1995 to 1998, gradually decreased by 4 mm/yr over this period.
Then from its minimum near 2001.0, it rapidly increased by 4 mm/yr, peaking in late 2002, and then
rapidly decreased back to its T2001.0 value. The north component may have increased by up to 1
mm/yr over this period of “spiking” east velocity, but the change is not statistically different from
zero. The resulting combined velocity vector suggests that the rapid, anomalous motion measured
at LHAS was E or ENE; relative to its average velocity. It is noteworthy that all three components
of velocity began slowing in 2000, but only the east component appears to have a strong temporal
correlation with the earthquake swarm.

In marked contrast to the major velocity transients near the time of the swarm, no significant
velocity transients were observed in the 1.5 years before and after the October 6, 2008 Damxung
mainshock and its aftershocks (figure . This is somewhat surprising, given that the aftershocks
occur in the same area as the swarm, with a similar population of focal mechanisms as the swarm.

The kinematics of both the 2002-2003 swarm and 2008 earthquake sequence indicate generally
E-W extension. The NQTL detachment is divisible into two major segments, one striking NE and
the other striking N-S. The NE striking segment indicates ESE displacement along the shear zone,
but where the detachment bends southward, the kinematic data suggest more easterly extension
(figure 4.1). The orientation of the active stress field, derived from inversion of the 2002 and 2008

events described in chapter 3, suggests that the least principal stress trends S65°E.

4.4 Discussion and Conclusions

Velocity vectors calculated from transient GPS signals measured at LHAS indicate that the directions
of motion before and after the 2002-3 swarm were east with a smaller component of northward
motion, i.e. approximately parallel to the displacement along the NQTL detachment, but 20° to 30°
more easterly. These motions are very likely to be tectonic because the swarm occurred at the peak
of rapid eastward motion. The rapid decrease in east velocity recorded at LHAS after the swarm
suggests that the swarm and the motion were somehow related.

The fact that this transient was only recorded at LHAS weakens this hypothesis, because we
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of motion of a large earthquake that could occur along the NQTL in the future.

cannot eliminate the possibility that local site effects (e.g., hydrological effects), which are well
known from some cGPS sites, are a cause of the transient motions. In particular, the effect of
groundwater withdrawal and changes in the levels of large lakes are known to cause similar velocity
changes elsewhere (reference); however, it is not likely that such effects are the source of anomalous
motion seen at LHAS, because there are no lakes or other large bodies of water near the Lhasa site,
and the thickness of alluvium in the Lhasa River valley is at most tens to perhaps a few hundred
meters. Seasonal signals related to hydrology and climate, which as is obvious from figures[4.2|and [£.3]
produce large motions of the site, were removed during data processing by using the SPKF.
Motion on the NQTL detachment, or along some other interface below it, is the most straightfor-

ward explanation of the velocity transients (figure . Along subduction interfaces, at the depths

at which SSEs occur, temperatures are ca.350 — 550°C (Dragert et al.,[2004). As noted by previous

workers, at depths of 15 to 20 km beneath the region, temperatures high enough for a transition from
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brittle deformation to crystal-plastic deformation of granitic rocks have been observed (Makouvsky

let all [1996} |Chen et all [1996} |[Kind et all, (1996} [Alsdorf and Nelson| [1999). Wide-angle and near-

vertical incidence seismic reflection data acquired beneath the NQTL region during the INDEPTH

IT experiment exhibit strong P to S conversions, and reflection “bright spots” at 15 to 20 km depth

(Brown et all|1996;|Makovsky et al.,[1996} | Chen et all|1996;|Kind et al.[1996). Below these features,

teleseismic data suggest a pronounced intracrustal low-velocity zone, and magnetotelluric profiling

suggests low crustal resistivity (Nelson et al) 1996, summarized in). All of these observations are

consistent with the presence of the zone of partially molten material at 15-20 km depth beneath the
Yadong-Gulu rift and environs. These inferences regarding the active tectonic regime are supported
by the conditions of late Miocene deformation observed in the footwall of the NQTL, where both
syntectonic intrusions of granitic magmas, and mylonitic deformation of the intrusive rocks (Kapp
, indicate low amphibolite facies temperatures appropriate for SSEs on the down-dip
projection of the NQTL detachment into the middle crust (figure .

In the case of the Basin and Range SSEs, a variety of data support the hypothesis that SSEs are
generated by active intrusion and shearing along the Moho, rather than along a mid-crustal interface.
The primary data that support this hypothesis are the temporal correlation of an earthquake swarm
at Moho depth with one of the largest velocity transients observed in the GPS data
, and the spatial correlation of transient velocities with a strongly reflective Moho. In
the NQTL region we do not currently have any data to support the idea that the Moho, which
is found at depths of 70-80 km beneath Tibet, is the source of this motion. Rather, both criteria
for the SSE-generating interface in the Basin and Range, temporal correlation with seismicity and
spatial correlation with an imaged interface at depth, point toward the NQTL.

The ¢GPS transients and seismicity appear to define the cycle of seismic and geodetic events
that occur within the NQTL region. The sequence begins with a top-east, SSE along the down-dip
projection of the NQTL detachment beneath the Lhasa region east of the rift (figure . Strain
release on such an interface would be expected to be top-east, increasing the eastward velocity. This

sliding would be expected to increase differential stress to the west in the Yadong-Gulu rift region,
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and hence we suggest that the peak of eastward velocity triggered up-dip brittle failure in the form
of the 2002-2003 earthquake swarm. The modest strain relief represented by the swarm caused the
decrease in eastward velocity which transitioned into period of low velocity and coupling between the
upper crust and deep crust under Lhasa. The observation that the mainshock had no relation to SSE
sliding, whereas the swarm did, suggests that the swarms are an expression of geodetic transients.
In contrast, the large events, as is typically the case, occur without any warning.

Because we have only observed one NQTL region “cycle” we cannot say that the observed order
of events is the order in which they will always occur. It is likely that multiple episodes of rapid
sliding and associated earthquake swarms follow each other, given the decadal frequency of swarm
events associated with Tibetan rift valleys. In this sense, the 2008 Damxung mainshock may be
somewhat anomalous, in that most swarms are not followed by large events within the decade. The
Damxung event, in terms of net moment released in the Yadong-Gulu rift, is a minor event. The net
extension rate across the rift is perhaps as much as 5 mm/yr, and so the NQTL detachment need
only fail once every few thousand years. As such, there is little surprise (Elliott et al., 2010, cf. )
that the limited record of a few decades of Tibetan normal fault earthquakes grossly underestimates

the internal strain rate measured geodetically.
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Chapter 5

Using Cut and Paste to Invert for
Microearthquake Source
Mechanisms — A Preliminary

Study

5.1 Introduction

Reliable earthquake source characteristics are difficult to calculate from borehole geophone records
used in the passive microseismic monitoring of hydraulic fracturing. The quality of the calculated
source characteristics is heavily dependent on the azimuthal distribution of the monitor wells in which
borehole geophones are situated, the accuracy of the velocity model, the recorded data’s signal to
noise ratio, and general down-hole conditions. Because of these difficulties, records obtained from
microseismic monitoring studies are most often used to determine locations but not focal mechanisms
of microseisms associated with hydrofracturing in oilfields. These earthquake locations are used to
image the fracture networks activated during hydraulic fracturing stimulation of tight reservoirs
(Albright and Hanold), 1976} |Pearson), (1981} |Pine and Batchelor, 1984} |Fehler, 1989)) and during the
injection and production process (Majer and McEwilly, 1979; |Denlinger and Bufe| (1982 |Eberhart-
Phillips and Oppenheimer, [1984]).

Microseismicity induced by hydraulic fracturing generally occurs within a 3D, elongated cloud
of event locations (House, [1987; |Jones et all [1995; |Warpinsk: et al., (1995; |Phillips et all 1998)

and is thought be caused by several different mechanisms. Fracture nucleation can cause tensile
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failure earthquakes within the rock through which the fracture is propagating. Large shear stresses

at fracture tips are often generated as a result of the extension associated with fracture opening

(Sneddon, [1946)). These shear stresses also cause shear slip to occur on nearby favorably oriented

planes of weakness such as bedding, joints, and natural fractures (Nolen-Hoeksema and Ruff| 2001).

Earthquakes also occur when high pressure pore fluids present within the hydraulic fracture leak into

the surrounding rock, replace native pore fluids, and increase pore pressures (Mazwell et all, 2010).

These increased pore pressures change the local stress regime by reducing normal stresses, and thus

cause motion on nearby planes of weakness (Pearsonl [1981; |Cornet and Julien, 1989; |Fehler), 1989;

[Jupe et al., 1992, 1998 |[Feng and Lees|, 1998} |Nolen-Hoeksema and Ruff| [2001) .

The locations and source mechanisms of microseismic events can be used to calculate the volume

of the region stimulated by hydrofracturing, the orientation of fractures within this region, fracture

dimensions, local stresses, and fluid flow (Rutledge and Phillips, 2003). Methods for determining

earthquake locations can be classified into three groups. The first group of methods, called the

hodogram technique (e.g, (Albright and Hanold), [1976)), requires that data be recorded by a three

component geophone. A hodogram is a plot of the particle motion caused by the direct P and/or

Swave arrival. Back-azimuth can be calculated from a hodogram if it is assumed that these direct

arrivals are polarized in the direction of wave propagation (Mazwell et al.2010). The final location

is then determined by calculating the difference between P and S arrival times when the velocity

model is well-known. The second group of methods is derived from triangulation methods developed

in the early days of seismology (Shapirol 2008} |Gibowicz and Kijkol 1994) and uses P and S-wave

arrivals at multiple stations to obtain an earthquake location. The third group of location methods

avoids using P and S arrival times altogether by maximizing a semblance measure of a single phase

and is similar to Kirchoff migration (Drew et al.l [2005) and (Rentsch et all [2007). The accuracy

of locations obtained using any of these methods is dependent on the quality of the velocity model

and the suitability of the geophone array geometry to the region (Pavlisl [1986)).

Microseismic earthquake source location determination methods are well researched and generally

reliable. Conversely, microsesimic focal mechanism determination methods are less developed. The
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focal mechanisms of microseismic events are most often determined by plotting P-wave first motions
on a focal sphere (e.g. (Sasaki, [1998; |Rutledge and Phillips, [2003} |Rutledge et all 2004)). Previous
studies of P-wave radiation patterns have found that shearing is the dominant sense of motion
associated with hydraulic fracturing related microseismic events with depths of 10 to 4000 m (e.g.,
(Cash et al) [1983; |Matsunaga et al., [1989; |Wallroth) [1992)). Observed microsesimicity is unlikely
to be purely tensile because hydraulic fractures are nearly aseismic (Sasaki, [1998)). Although tensile
earthquakes do occur, the seismic energy radiated by tensile failure is small compared to that of
shear failure, and thus is much more difficult to detect.

Limited azimuthal distribution of boreholes and their borehole geophones has made it very
difficult to determine accurate source mechanisms of microseismic events using first motion plotting
methods. The expense of drilling wells to improve azimuthal coverage makes finding a method
of determining focal mechanisms with few geophones a desirable alternative option. One method
which could be effective in this endeavor is Cut-and-Paste (CAP). ThiS-waveform modeling method,
developed in (Zhao and Helmberger) 1994) and improved in (Zhu and Helmberger, |1996|) allows for
the determination of focal mechanisms using regional broadband seismic records and has been used
successfully in regions where station coverage is sparse. When given an earthquake location, CAP
calculates the source mechanism by splitting the record in the Pnl and surface wave components
and cross correlating the data with synthetic seismograms generated using a grid search for strike,
dip and rake. The fact that the seismograms are split into body-wave and surface-wave portions
reduces the impact of inaccuracies in the velocity model and Green’s functions on the quality of the
focal mechanism.

In this chapter, we test whether CAP can be effectively used to solve the problem of determin-
ing focal mechanisms in oilfields with poor azimuthal station coverage by studying a microseismic
dataset acquired in the Piceance Basin of northwestern Colorado in 2008. This data set, which was
acquired below ground by borehole geophones, does not contain any surface waves. CAP is able
to work around this problem by equating the S-waves in the record to surface waves. If successful

in working with such an unconventional dataset, CAP could make the calculation of microseismic



83

source parameters as ubiquitous as the calculation of source locations and could greatly improve our

understanding of crustal deformation associated with hydraulic fracturing microseismic events.

5.2 Geological Setting of the Piceance Basin

The Piceance Basin of northwestern Colorado is comprised of 10,101 square km of exposed Cenozoic
rocks (figure . The boundaries of the basin are demarcated by strong structural boundaries
and outcrops of the Cretaceous-Tertiary contact. The basin is a northwest-trending asymmetrical
downwarp with shallow dips on the southwest flank and steeper dips on the northeast flank. Folds,
high-angle normal faults, and fracture and joint systems can also be found throughout the basin
(Andersonl, |1980]).

The Precambrian basement complex lining the basin is draped by a continuous sequence of
sedimentary rocks with a maximum thickness of 8230 m (Anderson) 1980). The fracture stimulation
project that generated the micro-earthquakes studied in this chapter was performed in the Upper
Cretaceous Williams Fork Formation (figure . This formation is part of the Mesaverde Group,
one of the most productive tight gas reservoirs in the world. The rocks within the Williams Fork
Formation are mostly very low permeability, highly cemented, fine- to medium-grained sandstones
which are rich in volcanic and carbonate lithic fragments (Ozkan et al., [2010]). The formation also

contains mudrocks which were deposited in coastal and fluvial environments.

5.3 Data

5.3.1 Tools and Acquisition Geometry

From August to October 2008, microsesimic data were collected during a fracture stimulation pro-
gram in a gas well located in tight Williams Fork Formation sandstones. Data were acquired using
dual element Oyo DS 250 high output geophones. These three component geophones were deployed
via wireline in 12-unit arrays in two separate cased, vertical monitor wells (figure . In array 1 and

array 2, the geophones were distributed over 1277 m to 1408 m and 1405 m to 1536 m respectively.



84

EXPLANATION

® Wells of record in DWR
permit database

Figure 5.1: The Piceance Basin of northwestern Colorado. The study area is shown within the red
box (Sarkar et al.,|2011).
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Figure 5.2: Piceance basin regional stratigraphy. The study region is within the Williams Fork
Formation. (Cole and Cumella), [2003)
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Figure 5.3: Schematic of geophone positioning, array locations, and microearthquakes. The geophone
locations are represented by red bars.
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Figure 5.4: Event locations calculated using P and S arrivals from geophones in both arrays (trian-
gles) and array 2 P and S Picks and P-hodograms. The coordinate system is local and in meters.

In both arrays, the distance between neighboring geophones within an array was between 11 and 13
m. The two monitor wells sit along a line trending NNE, and the fracture initiation well was 160 m
west of array 1 and 310 m west of array 2. All fractures and microseismic events recorded by the

arrays occurred along a line striking east-west.

5.3.2 Piceeance Microearthquakes and Their Locations

The arrays in both monitor wells recorded thousands of microseismic events over the course of
multiple stages of hydraulic fracturing. Although there were many events, the low signal to noise
ratio of the data recorded by the geophones made it possible to identify and pick P and S-wave
arrivals on only 50 of the events recorded by both arrays. Only 15 of these events had P-wave

hodograms of high enough quality to allow for accurate location of the events.
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Table 5.1: Altcom Velocity Model

Depth (km) P Velocity (km/s) S Velocity (km/s)

-1.02 4.36 2.44
-1.06 4.46 2.49

-1.1 3.89 2.00
-1.14 4.34 2.67
-1.16 4.16 2.64

-1.2 4.08 2.45
-1.22 4.24 2.78
-1.24 3.76 2.20
-1.26 4.38 2.62
-1.28 4.01 2.81

-1.3 4.66 2.74
-1.36 4.61 2.60
-1.38 4.47 2.95

-1.4 4.35 2.51
-1.44 4.14 2.55
-1.46 4.21 2.52
-1.48 4.20 2.49

-1.5 4.00 2.42
-1.52 4.09 2.48
-1.54 4.00 2.42
-1.56 3.81 2.31
-1.58 3.20 2.40

-1.6 3.68 2.28
-1.62 3.58 2.20
-1.64 3.49 2.17
-1.66 3.53 2.20
-1.68 3.61 2.26

-1.7 3.57 2.20
-1.72 4.12 2.44
-1.74 4.21 2.49
-1.76 4.06 2.42
-1.78 4.55 2.58

-1.8 4.11 2.50

Earthquakes were located using a velocity model built from Vp/Vs logs in conjunction with P and
S arrivals and hodograms (table . Locations were determined using data from either both arrays
or the array closest to the stimulation well (array 2) (figure . When locating events with only
one array, P-hodograms were used to determine the optimum azimuth of energy propagation. Using
two arrays should improve the location estimates because this eliminates the 180 degree uncertainty
of the azimuth direction. Two-array event location determination also reduced the major axis of the
location error ellipsoids by one standard deviation and reduced uncertainties associated with P and

S-wave arrival picks and the velocity model by a factor of 2 (Jupe et al., |2011)).
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Ten of the events with the clearest P and S-wave arrivals and clearest P-hodograms were provided
for this study. Of these, eight had arrivals clear enough to be used with CAP. The names of the
events in the final list are 4960, 5069, 5169, 5407, 5547, 5740, 5779, and 5834. These events were all
recorded by both arrays, but data recorded by the geophones in array 2 had a much higher signal
to noise ratio. All data were in velocities and was provided in raw form, i.e., the amplitudes of the
velocity data did not reflect actual amplitudes recorded at each geophone. Because the shape of the
waveform is the same whatever the amplitude scale, the data could still be used to calculate accurate
source mechanisms using CAP. The inaccuracy of the amplitude only prevents the magnitudes of

the microearthquakes from being calculated correctly.

5.4 Methods

5.4.1 Data Preparation

The steps taken to prepare microseismic data for use with CAP are different from the steps taken
when using regional data. CAP requires an origin time to be present within the data. The origin
time is the starting point from which synthetic waveforms and data are lined up. Pnl and surface
wave portions of the synthetic waveforms are then shifted in time from this starting point until
the best cross correlation between data and synthetic is found. Because microseismic data do not
generally come with origin times, they had to be estimated from the P arrival time and P-wave
velocity model (figure . In the case of the Piceance data, we calculated origin times using the P
arrival and 4.06 km/s, the average P-velocity in the velocity model. Because P arrival times change
with depth as a result of moveout, the average P arrival time for each event was used to generate an
origin time. CAP also requires that data be rotated to the appropriate great circle path so that the
data can be separated into different arrival phases. The locations of the geophones and earthquakes
were provided only in meters. In order to rotate the data properly within the program used to
perform these analyses, all values in meters had to be converted to decimal degrees.

Green’s functions used to build synthetic waveforms used in CAP were generated using a frequency-
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Figure 5.5: A 3-component record of event 5069 from geophone 13 in array 2. The origin time is
marked by “O” and the P arrival is marked by “A”. Towards the end of the record, identifying record
information has been obscured. The title “00:00:00.000” is simply the start time of the record.
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wavenumber (FK) factorization code and a velocity model provided by the oil company vendor which
processed the microseismic data. This same velocity model was used to calculate the earthquake
locations. In order for the FK code to generate Green’s functions, the velocity model had to be
modified to include P and S-wave attenuation values. Appropriate values for P and S attenuation
within the Williams Fork Formation are 50 and 100 respectively (Anca Rosca, Personal Communica-
tion., 2009), and these were added to the model. Since the depths of the earthquakes in our data set
ranged from 1400 m to 1540 m, we generated Green’s functions at 10 m intervals within this depth
range. These depths represent the possible depth of the source. A source mechanism was calculated
using synthetics made from Green’s functions at these depths, and the most likely mechanism was
determined to be at the Green’s function depth with the lowest error.

Once Green’s functions are generated, they must have P and S arrival times marked within them.
Because the earthquakes locations were so close to the geophones, the regional travel time calculating
code used to place the P and S arrival times within the Greens functions could not be used. As a
result, all P and S arrivals were manually marked within each of the Green’s functions. After arrival
the needed modifications were made to the velocity model and Green’s functions, the amplitude of
the original microseismic data had to be reduced so that it was the same order of magnitude as the
Green’s functions. This last modification, although seemingly extraneous, had to be performed so

CAP would run.

5.4.2 Running CAP

Because we were given two sets of locations, one calculated using P and S arrival picks and the other
calculated using P-hodograms and array 2 P and S arrival picks, we decided to run CAP at both
sets of locations to see which one would provide the best results, i.e., those with the lowest time
shifts and highest cross correlation fits. The inputs used to run CAP were the same for both sets
of event locations. The grid search to determine the strike and rake of the source mechanism was
performed by searching between 0 and 360 degrees for strike, 0 and 90 degrees for dip, and -90 and

90 degrees for rake. The search interval within the grid search was 5 degrees for strike and 1 degree
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for dip and rake. The maximum time shifts used to fit the Pnl waves and surface wave synthetics
to the data were 0.05 and 0.15 s respectively. Before running, CAP performs a band-pass filter of
the data so that noise can be removed. Because the frequency range of our earthquake data is quite
high, we used a filter of 50 to 100 Hz for Pnl and surface waves. We also used a source duration of
0.05 s.

After performing two separate CAP runs using all geophone records and the locations determined
from either P and S arrival picks or the P and S arrival picks and P-hodograms, we decided to work
on improving the results by running CAP using only the records with the clearest P and S arrivals.
We assumed that, because these data were less noisy, we would be able to obtain a more accurate
result. We also tried to improve our results by going through the time shifts and fits recorded at
each station during the “all record” runs for both sets of locations and running the stations with

the best results again.

5.5 Results

For each event we obtained six different focal mechanisms (figures , ., [B-9). The first
set of three focal mechanisms was determined using the locations determined from P- and S-wave
picks only. Each of these three mechanisms were then calculated using records from all stations (the
“all” mechanism), records from the stations with the clearest arrivals (the “best” mechanism), and
records from the stations with the best CAP results when CAP was run with all stations (the “best
rerun” mechanism. The second set of three mechanisms was determined using the locations obtained
from P-hodograms and arrival picks. Each of these three mechanisms was produced according to

the same guidelines as those in the first set.

5.5.1 Event Mechanisms

Event 4960 is located on the eastern edge of the swarm of microearthquakes and has highly variable
mechanisms. The “best rerun” and “best” mechanisms obtained using the arrayl and array 2 arrival

picks locations are both NE/NW striking strike-slip events, but the “all” event is a NE/NW striking
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Figure 5.7: CAP source mechanisms obtained using locations obtained from P and S arrivals and
for all three runs (continued). Only “best rerun” mechanisms (bottom) are shown.
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arrivals and P-hodograms for all three runs. Only “best rerun” mechanisms are shown.
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oblique normal fault. The arrival picks and hodograms results have a greater thrust component.
The sense of motion imaged by the “best” and “best rerun” mechanisms are NW striking thrust
and NW striking oblique thrust. The “all” mechanism is a NE/NW striking oblique normal event
that looks very similar to the “all” mechanism calculated using the arrival picks location.

Event 5069 is located on the far western edge of the swarm of microearthquakes. Its mechanisms
are more consistent than those of 4960. The “all” mechanism for the arrival picks locations and
array 2 arrival picks and P-hodogram locations are both NE striking oblique thrusts. The “best”
and “best rerun” mechanisms calculated from the arrival picks locations are both NE/NW striking
oblique thrust events with one very low angle plane. Only the “best rerun” mechanism calculated
from arrivals and P-hodograms is a NE/NW striking normal fault.

Event 5169 (figure is located just to the east of the center of the swarm of microearthquakes
and has a more consistent set of mechanisms than 5169 or 5069. The “all” and “best” mechanisms
for the arrival picks locations as well as the “best” and “best rerun” for the array 2 arrival picks
and P-hodogram locations all show motion along a NE/NW striking strike-slip fault. The remaining
mechanisms are both NE/NW striking oblique slip mechanisms with a thrust component.

Event 5407 is located on the western edge of the swarm and also has a fairly consistent set of
source mechanisms. Four of the six mechanism show motion along an oblique thrust fault. The
oblique thrust faults in the case of the “all” and “best” mechanisms calculated using both arrival
picks have a NW or EW strike. The “all” and “best” mechanisms calculated using the array 2 arrival
picks and P-hodograms locations are NE/NW striking oblique thrusts. The remaining “best rerun”
events are NW-striking oblique thrust and NS/EW striking strike-slip.

Event 5547 (figure is also located in the western half of the swarm. Both “all” mechanisms
and the “best rerun” mechanism generated using arrival picks and P-hodograms show motion along a
NE/NW striking strike-slip fault. The “best” and “best rerun” mechanisms determined using arrival
picks locations are both likely to be NE/NW striking oblique thrust faults, but the “best rerun”
event has one very low angle plane and could possibly have a component of normal motion instead

of thrust motion. The “best” mechanism determined using array 2 arrival picks and P-hodograms
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is a northwest-striking oblique thrust.

Event 5740 is also in the eastern portion of the swarm. The mechanisms calculated from both sets
of locations display motion with opposite polarities. Both sets of “all” and “best rerun” mechanisms
display motion along a NE-striking normal fault, and both sets of “best” events show motion along
a NW-striking thrust fault.

Event 5779 is located in the center of the swarm and has the most consistent set of source
mechanisms. All mechanisms display motion along NE- or NW-striking strike-slip faults which have
a variable component of normal motion.

Event 5834 is located on the western edge of the swarm and has a much more variable set of
mechanisms than 5779. Both “all” mechanisms and are NW- or NE-striking strike-slip faults. The
“best” mechanism calculated using the arrival picks location and the “best rerun” location calculated
using the array 2 arrival picks and P-hodograms show motion along faults with NW or EW strike-slip
motion. The “best” rerun event calculated using the arrival picks and P-hodograms location shows

motion along an oblique normal fault.

5.6 Discussion

CAP was able to calculate source mechanisms of microearthquakes recorded within the Piceance
Basin using locations determined from arrival picks and P-hodograms, but the quality of the source
mechanisms obtained is dubious. The data recorded by the borehole geophones are incredibly noisy,
making arrival times difficult to pick and the locations determined from these arrival times unreliable.
We tried to alleviate the noise problem filtering the data, but we were unable to find a filter that
would remove the noise without further compromising data quality.

When tables of time shifts, cross correlation fits, and source characteristics are examined the
relationship between poor data quality and poor results is revealed. In the case of noisy events such
as 4960, 5069, and 5834, the low signal to noise ratio data lead to very poor cross correlation fits
and source mechanisms with highly variable source characteristics (tables . Even

when starting with a location obtained from the cleaner records from array 2 and their associated
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P-hodograms, the cross correlation fits improved slightly or not at all. The number of stations that
could be used in the inversion of source mechanisms was also reduced by noise in the data. Although
CAP can be successful in inverting for source mechanisms with as little as one station (chapter 2, this
thesis), it generally performs better when run using stations with have a wider range of azimuthal
coverage.

Events with cleaner records, such as 5779 and 5407, had more consistent source mechanisms
and better fits, no matter the location set used. The event with the cleanest records was 5779
(figures . All of its source mechanisms were NE/NW striking strike-slip with a compo-
nent of normal motion. The cross correlation coefficients were between 68 and 73 and would be a
respectable result in any CAP study of regional earthquakes. Event 5547, for which noisy data were
recorded only further down-hole, had passable cross-correlation fits and less variable source mecha-
nisms. The only event that defies the trend in which clean data correlate with cross correlation fits
is 5740. Although the arrivals are clear enough to pick, the noise in the data causes the records at
each geophone to look different (figure . The difference in the shape of the records recorded
by each geophone makes it likely that the characteristics of the CAP source mechanism would be
highly dependent on the records that were picked to run. This noise-induced shape difference be-
tween records obtained at different geophones for the same eventt is the most likely reason for the
observed variability in all event records.

The unfavorable geometry of the data acquisition setup also likely contributed to the low quality
of the source mechanisms inverted for by CAP. The expense of drilling multiple monitor wells limited
the azimuths at which the earthquakes could be observed to two. Because CAP can produce good
quality results with limited station coverage, these well locations could have been sufficient to produce
good results, but only array 2 was deep enough to obtain a good ”view” of the microseismic events.
Unlike array 2, the shallower arrayl viewed the focal sphere from above. In regional studies using
CAP, distances are large enough that a difference in the elevation of stations and the earthquakes
being studied are less significant.

Although the positioning of geophones within the array 2 may be more favorable for the view
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of the focal sphere, the favorability of the geophone depths is reduced by the fact that the F-
K factorization code used to generate Green’s functions within this study cannot give a result
corresponding to the depth of the observed event. This means that, that if an event depth is
recorded as -1470 m Green’s functions will not be generated for this depth and CAP will most likely
find the lowest error result at the next nearest location. Because of this issue and the 10 m interval
chosen for the calculation of Green’s functions, depth estimations calculated by CAP are likely off

by at least 10 m.

5.7 Conclusion

In this study we made a preliminary attempt at using the CAP-waveform modeling method to invert
for the source mechanisms of microseismic events recorded by borehole geophones. The resulting
mechanisms were of questionable quality because the signal to noise ratio was low and the data
acquisition geometry was suboptimal. Despite the limitations of the data set, the resulting source
mechanisms were shearing events, consistent with deformation expected to be observed within high-
pressure hydraulic fracturing environments. The few high-quality results obtained suggest that
future studies that use CAP to obtain source mechanisms of microseismic events can be successful

if data quality can be improved.
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