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ABSTRACT 

Mitochondria are dynamic organelles that undergo membrane fusion and fission 

and transport.  The dynamic properties of mitochondria are important for regulating 

mitochondrial function.   Defects in mitochondrial dynamics are linked to 

neurodegenerative diseases and affect the development of many tissues.  To investigate the 

role of mitochondrial dynamics in diseases, versatile tools are needed to explore the 

physiology of these dynamic organelles in multiple tissues.  Current tools for monitoring 

mitochondrial dynamics have been limited to studies in cell culture, which may be 

inadequate model systems for exploring the network of tissues.  Here, we have generated 

mouse models for monitoring mitochondrial dynamics in a broad spectrum of tissues and 

cell types.  The photoactivatable mitochondria (PhAMfloxed) line enables Cre-inducible 

expression of a mitochondrial targeted photoconvertible protein, Dendra2 (mito-Dendra2).  

In the PhAMexcised line, mito-Dendra2 is ubiquitously expressed to facilitate broad analysis 

of mitochondria at various developmental processes.   

We have utilized these models to study mitochondrial dynamics in the nigrostriatal 

circuit of Parkinson’s disease (PD) and in the development of skeletal muscles.  Increasing 

evidences implicate aberrant regulation of mitochondrial fusion and fission in models of 

PD.  To assess the function of mitochondrial dynamics in the nigrostriatal circuit, we 

utilized transgenic techniques to abrogate mitochondrial fusion.  We show that deletion of 

the Mfn2 leads to the degeneration of dopaminergic neurons and Parkinson’s-like features 

in mice.  To elucidate the dynamic properties of mitochondria during muscle development, 

we established a platform for examining mitochondrial compartmentalization in skeletal 
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muscles.  This model system may yield clues to the role of mitochondrial dynamics in 

mitochondrial myopathies. 



 

 

vii 

TABLE OF CONTENTS 

List of Figures ..................................................................................................... ix 

Chapter 1: Introduction                    1 

Mitochondria as Dynamic Organelles .......................................................... 1  
Mitochondrial Dynamics in Diseases ........................................................... 8  
Physiological Roles of Mitochondrial Fusion and Fission ......................... 11  
Dysfunctional Mitochondria in Parkinson’s Disease ................................. 16 
Thesis Overview .......................................................................................... 20 
References ................................................................................................... 23 

Chapter 2:  Mouse Lines with Photoactivatable Mitochondria (PhAM) to Study 

Mitochondrial Dynamics                                                                                 32   

Abstract ........................................................................................................ 33  
Introduction ................................................................................................. 34 
Results and Discussion ................................................................................ 36 
Materials and Methods ................................................................................ 42 
Figure Legends ............................................................................................ 48 
Figures ......................................................................................................... 52 
References ................................................................................................... 58  

Chapter 3:  Loss of Mfn2 Results in Progressive, Retrograde Degeneration of 

Dopaminergic Neurons in the Nigrostriatal Circuit                                    61   

Abstract ........................................................................................................ 62  
Introduction ................................................................................................. 63 
Results ......................................................................................................... 65 
Discussion ................................................................................................... 71 
Materials and Methods ................................................................................ 73 
Figure Legends ............................................................................................ 76 
Figures ......................................................................................................... 80 
References ................................................................................................... 87  
 

Chapter 4:  Measuring Mitochondrial Dynamics in Muscle Tissue          92   

Introduction ................................................................................................. 93 
Results ......................................................................................................... 96 
Discussion ................................................................................................. 100 
Materials and Methods .............................................................................. 102 
Figure Legends .......................................................................................... 104 
Figures ....................................................................................................... 106 



 

 

viii 

References ................................................................................................. 111 

Chapter 5:  Future Directions                                                                       115   

References ................................................................................................. 119 
 
Appendix A: Preparing Parasagittal Organotypic Slices ................................ 121  
Appendix B: Broad Activation of the Ubiquitin Proteasome System by 
Parkin is Critical for Mitophagy  ................................................................... 126  
Appendix C: Postsynaptic Decoding of Neural Activity: eEF2 as a 
Biochemical Sensor Coupling Miniature Synaptic Transmission to Local 
Protein Synthesis  ............................................................................................ 138  
 
 
 
 
 
 
 
 
 
 
 



 

 

ix 

LIST OF FIGURES 

 Page 
Chapter 2 

Figure 2.1 Construction of PhAMfloxed and PhAMexcised mouse 

lines ....................................................................................................... 52  

Figure 2.2 Tracking of mitochondria in PhAMfloxed tail fibroblasts ...... 53 

Figure 2.3 Expression of mito-Dendra2 in PhAMexcised tissues ............ 54  

Figure 2.4 Imaging of mito-Dendra2 in live isolated cells .................. 55 

Figure 2.5 Purkinje-specific labeling of mitochondria ......................... 56  

Figure 2.6 Visualizing mitochondria in Purkinje cells lacking 

Mfn2   .................................................................................................... 57 

Chapter 3 
Figure 3.1 Growth defect in Mfn2 mutant mice ................................... 80  

Figure 3.2 Longitudinal analysis of locomotion in Mfn2 mutants ....... 81 

Figure 3.3 Retrograde degeneration of SNc dopaminergic 

neurons .................................................................................................. 82  

Figure 3.4 Mitochondrial fragmentation and depletion in slice 

cultures of Mfn2 mutants ...................................................................... 83 

Figure 3.5 Decreased mitochondrial transport in Mfn2 mutant 

cultures .................................................................................................  84 

Figure 3.6 Analysis of Mfn1-null mice ................................................. 85 

Figure 3.7 Comparison of Mfn-double mutants with Mfn2 

mutants in the open field test ................................................................ 86 

Chapter 4 
Figure 4.1 Mitochondrial fusion declines with age in EDL ............... 106  

Figure 4.2 Mitochondrial morphology is dependent on muscle 

type ...................................................................................................... 107 

Figure 4.3 Myofibers with tubular mitochondria exhibit higher 

membrane potential ............................................................................. 108  

Figure 4.4 Discrete mitochondrial domains along the myofiber  

 ............................................................................................................. 109 



 

 

x 
 

Figure 4.5 Expansive mitochondrial domain in the soleus muscle .... 110  

 

 
 



 

 

1 
 

C h a p t e r  1  

INTRODUCTION 

Mitochondria as Dynamic Organelles 

Live imaging of mitochondria using fluorescent probes show mitochondria as 

dynamic and mobile organelles.  Mitochondria can be visualized using genetically encoded 

fluorescent proteins targeted to the mitochondrial compartment or mitochondrial membrane 

potential sensitive dyes that accumulate in respiratory active mitochondria.  Using these 

methods to monitor mitochondria in mammalian cells, mitochondria are observed to form 

reticular networks that undergo continuous structural remodeling through cycles of 

membrane fusion and division.  Mitochondrial fusion results in merging of mitochondrial 

membranes and protein contents, while mitochondrial fission divides mitochondria into 

two shorter halves.  The balance in membrane fusion and fission events dynamically 

regulates mitochondrial morphology.  Under steady state, mitochondria appear as short 

tubules.  However, mitochondrial profiles can range from small punctate structures to 

elongated tubules depending on the state of the cell.  Cells undergoing apoptosis exhibit 

fragmented morphology while cells in the G1-S phase of the cell cycle show extended 

mitochondrial networks (Jagasia, Grote et al. 2005; Barsoum, Yuan et al. 2006; Mitra, 

Wunder et al. 2009).   

A family of dynamin-related, large GTPases regulates mitochondrial morphology.  

Tethering of mitochondrial outer membranes is mediated by homo- and heteroprotein 

interactions between mitofusins, Mfn1 and Mfn2 (Chen, Detmer et al. 2003; Koshiba, 

Detmer et al. 2004).  Based on fusion assays with isolated mitochondria, heterotypic 
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interactions between Mfn1 and Mfn2 mediate outer membrane fusion more efficiently 

compared to homotypic interactions (Hoppins, Edlich et al. 2011).  However, the types of 

interactions found in cells are tissue specific, with heteroallelic interactions being 

predominant in mouse embryonic fibroblasts (MEFs) whereas giant cells in the placenta 

and Purkinje neurons of the cerebellum require only Mfn2 for membrane fusion (Chen, 

Detmer et al. 2003; Chen, Mccaffery et al. 2007).  More study is necessary to determine 

whether the strengths of mitofusin interactions, based on in vitro data, dictates the 

efficiency of mitochondrial fusion in different tissue types.   

The shaping machineries for mitochondrial outer and inner membrane fusion are 

distinct.  Mitochondrial inner membrane fusion is mediated by optic atrophy protein Opa1 

(Olichon, Baricault et al. 2003; Cipolat, Martins de Brito et al. 2004; Griparic, van der Wel 

et al. 2004).  During normal conditions, mitochondrial outer and inner membrane fusion is 

tightly coupled.  Studies in Saccharomyces cerevisiae and mammalian systems show that 

loss of Mgm1 (yeast orthologue of Opa1) or Opa1, respectively, results in fusion 

intermediates that have multiple matrix compartments bounded by a single outer membrane 

(Hoppins, Horner et al. 2009; Song, Ghochani et al. 2009).  These studies suggest that 

mitochondrial fusion occurs in a stepwise process with mitofusins necessary for bringing 

the outer membranes together and Opa1 facilitating inner membrane fusion. 

The fusion of mitochondrial inner membranes is intimately linked to the 

bioenergetics of mitochondria (Detmer and Chan 2007).  Uncoupling drugs that dissipate 

mitochondrial membrane potential, which is essential for the production of ATP, induce 

proteolytic processing of Opa1 and attenuate mitochondrial fusion (Duvezin-Caubet, 

Jagasia et al. 2006; Ishihara, Fujita et al. 2006; Griparic, Kanazawa et al. 2007; Song, Chen 
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et al. 2007).  The dependence of inner membrane fusion on mitochondrial membrane 

potential has also been observed under endogenous conditions in the cell.  By monitoring 

doubly labeled mitochondria with photoactivatable green fluorescent protein (GFP) and a 

mitochondrial dye that is potential sensitive, Twig and colleagues show that mitochondrial 

fusion occurs most frequently between mitochondria with intact membrane potential and 

sufficient Opa1 levels (Twig, Elorza et al. 2008).  These findings suggest that 

mitochondrial fusion is a selective process that enables isolation of respiratory inactive 

mitochondria from the healthy pool (Twig, Elorza et al. 2008).   

Taken together, the profusion machinery is an important regulator of mitochondrial 

morphology and can be exquisitely responsive to the bioenergetics of the cell.   

Mitochondrial fusion plays a protective role by enabling the exchange of proteins and 

metabolites for complementing mitochondrial defects.  However, the fusion process is also 

tightly regulated to ensure quality control of the mitochondrial network.   

The opposing process of mitochondrial division is mediated by dynamin-related 

protein Drp1(Smirnova, Griparic et al. 2001).  In mammalian cells, mitochondrial fission 

occurs through the recruitment of cytosolic Drp1 to the mitochondria by several receptor 

proteins, including mitochondrial fission 1 (Fis1), mitochondrial fission factor (Mff), and 

more recently, mitochondrial dynamics protein 49 and Mid 51 (MiD49, MiD51).  

Overexpression of these receptors increases the recruitment of Drp1 to the mitochondria 

(James, Parone et al. 2003; Yoon, Krueger et al. 2003; Gandre-Babbe and Van Der Bliek 

2008; Otera, Wang et al. 2010; Palmer, Osellame et al. 2011; Zhao, Liu et al. 2011).  

However, only Fis1 and Mff promote the fission activity of Drp1 whereas MiD49 and 

MiD51 sequester Drp1 and limit its fission activity (Dikov and Reichert 2011; Palmer, 
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Osellame et al. 2011; Zhao, Liu et al. 2011).  Studies investigating the properties of Drp1 

recruitment and regulation by these receptors are ongoing.  The fission activity of Drp1 is 

further modulated by posttranslational modifications, including phosphorylation, 

sumoylation, and ubiquitination. The copious mechanisms for regulating mitochondrial 

morphology within a cell are impressive, and further studies will elucidate how these 

modes of regulation interplay in physiological and pathological states.   

In addition to mitochondrial fusion and fission, mitochondria dynamically 

redistributes throughout the cell along cytoskeletal tracks.  Disruption of the cytoskeleton 

by various drugs dramatically alter the distribution of mitochondria in multiple cell lines 

(Summerhayes, Wong et al. 1983).  In neuronal studies, drugs that depolymerize actin and 

microtubules cause the mitochondrial network to collapse around the soma (Morris and 

Hollenbeck 1995; Ligon and Steward 2000).  Lastly, mitochondria have also been shown to 

bind to neurofilaments in vitro, in a manner that is sensitive to mitochondrial membrane 

potential (Wagner, Lifshitz et al. 2003).  Taken together, these studies suggest that 

mitochondrial transport is a regulated process that utilizes multiple cytoskeletal 

components in the cell.  

In fluorescence time-lapse studies, mitochondria reversibly transitions between 

immobile and mobile states.  An elegant in vivo study of mitochondrial transport in nerve-

muscle explant and living mice observed that 87% of mitochondria are stationary in 

neuronal axons (Misgeld, Kerschensteiner et al. 2007).  These results are consistent with 

studies in cultured neurons, which report 65% to 85% of the population as stationary 

(Overly, Rieff et al. 1996; Ligon and Steward 2000; Chang, Honick et al. 2006; Sheng and 
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Cai 2012).  Syntaphilin has been identified as the receptor for docking mitochondria on 

microtubules in axons.  Genetic deletion of syntaphilin in mice results in increased 

mitochondrial mobility and decreased mitochondrial density in axons (Kang 2008).  In the 

mobile state, mitochondria exhibit bidirectional transport directed toward (retrograde) and 

away from the cell body (anterograde). The velocities of moving mitochondria vary 

greatly, ranging from 0.1 to 2 µm/s, and thereby result in mean velocity between 0.3 and 

0.9 µm/s for both anterograde and retrograde directions (Ligon and Steward 2000; Misgeld, 

Kerschensteiner et al. 2007; Sheng and Cai 2012).  Often times, mitochondrial movement 

appears saltatory, alternating between docked and moving states.  

The rapid redistribution of mitochondria is particularly important for sustaining the 

dynamic activity and signaling cascades in neurons.  Mitochondria support neuronal 

function by providing ATP and sequestering calcium to maintain calcium homeostasis.  

Neurons have specialized dendritic and axonal processes for transmitting and conducting 

electrochemical activity.  Due to the unique functions and metabolic demand at these sites, 

mitochondrial distribution and properties are not uniform along neuronal processes.  

Multiple studies have shown that mitochondria are enriched at sites with high ATP 

demand, including active growth cones, the synaptic terminals, sites of demyelination, and 

nodes of Ranvier (Fabricius, Berthold et al. 1993; Morris and Hollenbeck 1993; Mutsaers 

and Carroll 1998; Li, Okamoto et al. 2004; Verstreken, Ly et al. 2005).  By using a 

potentiometric mitochondrial dye to monitor mitochondria, Overly et al. showed that 

mitochondria in axons are more depolarized, and thus less metabolically active, compared 

to dendritic mitochondria (Overly, Rieff et al. 1996).  There is also an inverse correlation 

between the size and motility of mitochondria, with smaller mitochondria exhibiting more 
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mobility (Misgeld, Kerschensteiner et al. 2007).  Similarly, axonal mitochondria are 

smaller in size and move greater distances compared to dendritic mitochondria (Overly, 

Rieff et al. 1996; Ligon and Steward 2000; Chang, Honick et al. 2006). 

In neurons, long-range transport of organelles in axons depends on microtubules 

whereas actin filaments mediate short-range movement in growth cones and presynaptic 

terminals. The kinesin superfamily and dynein are motor proteins that mediate 

microtubule-based transport in the anterograde and retrograde direction, respectively. 

Genetic screens in Drosophila melanogaster identified dMiro and Milton as adaptors 

required for mitochondrial transport.  Loss of either dMiro or Milton impairs anterograde 

transport of mitochondria and thereby results in depletion of mitochondria at presynaptic 

terminals (Stowers, Megeath et al. 2002; Guo, Macleod et al. 2005).  Miro is a 

mitochondrial outer membrane protein that has two EF-hand motifs for calcium sensing.  In 

cells, overexpression of Milton is sufficient to recruit endogenous kinesin heavy chain and 

interact with exogenously expressed Miro (Glater, Megeath et al. 2006).  Collectively, 

these results support the proposed model that the Milton-Miro complex associates with 

kinesin heavy chain for anterograde transport.  

Mitochondrial transport in neurons is dependent on neuronal activity and 

intracellular calcium.  Neuronal activity causes a high influx of calcium into neuronal 

processes.  The rise in intracellular calcium is buffered by the endoplasmic reticulum and 

the mitochondria to prevent excitotoxicity.  Multiple studies have observed changes in 

mitochondrial motility when neuronal activity is modulated by pharmacological agents.  

When synaptic activity is inhibited by tetrodotoxin, mitochondria exhibit more motility; in 



 

 

7 
 

contrast, stimulation of synaptic activity using glutamate or potassium chloride suppresses 

mitochondrial transport (Rintoul, Filiano et al. 2003; Li, Okamoto et al. 2004; Chang, 

Honick et al. 2006).  Mitochondrial movement is also arrested in the presence of high 

cytosolic calcium (Wang and Schwarz 2009; Zhang, Ho et al. 2010).   

Two studies have demonstrated that the EF-hand domains of Miro1 are required for 

the activity-dependent suppression of mitochondrial movement (MacAskill, Rinholm et al. 

2009; Wang and Schwarz 2009).  In cultured neurons, mutations in the Miro1 EF-hand 

motifs relieve the inhibition on mitochondrial transport, suggesting that calcium binding to 

Miro1 uncouples mitochondria from microtubules (MacAskill, Rinholm et al. 2009; Wang 

and Schwarz 2009).  However, the mechanism for mitochondrial release is controversial as 

immunoprecipitation experiments from these studies lead to two distinct models.  In the 

Wang et al. model, Miro1 was found to associate with the motor head of the kinesin heavy 

chain at high calcium levels to suggest that Miro1 competes with microtubules for binding 

with kinesin.  In the motor-releasing model by MacAskill et al., Miro1 association with 

kinesin heavy chain decreases at elevated calcium concentration to support a model where 

mitochondria are released from kinesin.  Collectively, these results demonstrate that the 

calcium-sensing domain of Miro1 enables regulated transport and release of mitochondria 

to active synapses with high metabolic demand and calcium signaling.  The mitochondrial 

fusion machinery has also been implicated in regulating mitochondrial transport.  

Mitofusins 1 and 2 was shown to indirectly interact with the Miro-Milton complex by co-

immunoprecipitation (Misko, Jiang et al. 2010).   
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The identification of molecular adaptors for mitochondrial transport has provided 

some mechanistic insight into how mitochondria are dynamically distributed in response to 

neuronal function.  However, further studies are needed to address how mitofusins mediate 

mitochondrial transport.  Since mitochondrial fusion and fission dynamics are important for 

mitochondrial function, it would be of interest to determine whether mitofusins serve a 

concerted role in quality control and regulated transport of mitochondria.  

 

Mitochondrial Dynamics in Diseases 

Mutations of mitochondrial shaping genes identified in human diseases highlight 

the importance of mitochondrial dynamics for cellular processes.  Currently, there are three 

diseases that are associated with the GTPases regulating mitochondrial morphology.   

Mitofusin 2 is the primary gene mutated in a common neuromuscular disease known as 

Charcot Marie Tooth type 2A (CMT2A) (Zuchner, Mersiyanova et al. 2004; Verhoeven, 

Claeys et al. 2006).  CMT2A is an axonopathy that preferentially affects the long nerve 

processes of the motor and sensory neurons in the peripheral nervous system.  Patients with 

CMT2A have a stepping gait, progressive muscle weakness and atrophy and loss of 

sensory in distal limbs.  A transgenic mouse model carrying the CMT2A mutant allele of 

Mfn2 provides direct evidence that implicate Mfn2 in the disease pathology.  Mice with 

overexpression of the T105M pathogenic allele in motor neurons exhibit a gait defect, 

muscle atrophy in the hindlimbs, and a decrease number of motor axons (Detmer, Velde et 

al. 2007).  The motor and cellular phenotypes in the mouse model strikingly resemble the 

classical signs of CMT2A.  Additionally, aggregation of mitochondria was detected in 
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cultured neurons with Mfn2 disease mutations to suggest that mitochondrial transport may 

be altered in the disease process (Baloh, Schmidt et al. 2007; Detmer, Velde et al. 2007).  

Collectively, these findings suggest that Mfn2 exert different regulatory function on 

mitochondrial dynamics, and its role in mitochondrial transport may explain the cell-

specific susceptibility of peripheral neurons with long axons.   

Mutations in Opa1 cause an autosomal dominant form of optic atrophy (ADOA), 

which leads to degeneration of the optic nerve and progressive blindness (Alexander, 

Votruba et al. 2000; Delettre, Lenaers et al. 2000).  Monocytes isolated from ADOA 

patients show a fragmented mitochondrial network, consistent with the role of Opa1 in 

mediating mitochondrial fusion (Delettre, Lenaers et al. 2000).  Recently, extraocular 

symptoms, including myopathies, deafness, and sensory-motor neuropathy have been 

described in a class of ADOA plus syndromes (Amati-Bonneau, Valentino et al. 2008; 

Hudson, Amati-Bonneau et al. 2008).   Samples collected from these patients demonstrate 

multiple mitochondrial DNA deletions to suggest that instability of mitochondrial DNA 

may contribute to the multisystemic manifestation of the disease. The phenotypic 

similarities shared between ADOA plus syndromes and CMT2A support the functional 

overlap of these mechanoenzymes in mediating mitochondrial fusion.  Interestingly, 

deletion of mitofusins in mouse skeletal muscles leads to increased rates of mtDNA 

mutations and depletion (Chen, Vermulst et al. 2010).  Collectively, these results 

underscore mitochondrial fusion as a key regulator of the integrity of mitochondrial DNA.   

Mutations affecting the mitochondrial fission machinery have also been described.  

A single case study reported a mutation in Drp1 that resulted in neonatal lethality.  



 

 

10 

Fibroblasts from this patient demonstrated elongated mitochondrial network, consistent 

with a defect in mitochondrial fission (Waterham, Koster et al. 2007). The neonate also 

displayed symptoms of hypotonia and optic atrophy that are broadly reminiscent of CMT 

and ADOA diseases.  The overlapping spectrum of neurological symptoms between these 

pathogenic alleles suggests that these neuronal subtypes may be selectively vulnerable to 

defects in mitochondrial dynamics.  The selective vulnerability may be attributed to the 

intrinsic stress loads that may decrease the threshold for tolerating mitochondrial 

impairments and ultimately result in degeneration (Saxena and Caroni 2011).   

Mitochondrial dysfunction and dynamics have also been observed in many late-

onset neurodegenerative disorders including Alzheimer’s (AD), Huntington’s (HD), and 

Parkinson’s disease (PD) (Chen and Chan 2009).  Abnormal mitochondrial structures have 

been detected in ultrastructural analysis of AD brains, and the levels of mitochondrial 

fusion and fission genes are also dysregulated in AD samples (Baloyannis 2006; Wang, Su 

et al. 2009).  The mutant huntingtin protein involved in HD has been shown to aggregate 

on mitochondria, induce mitochondrial fragmentation, and impair mitochondrial trafficking 

(Orr, Li et al. 2008; Wang, Lim et al. 2009) in cultured cells and mouse models.  The 

evidence for mitochondrial dysfunction in PD is considerable. Toxins that inhibit 

mitochondrial respiration have provided valuable neurotoxic mouse models to understand 

the pathophysiology and susceptibility of dopaminergic neurons, the main target of 

degeneration in PD (Dauer and Przedborski 2003; Cannon and Greenamyre 2010).  

Furthermore, exposure to the mitochondrial toxin, 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP), is sufficient to induce permanent Parkinsonism in humans 

(Langston, Ballard et al. 1983; Ballard, Tetrud et al. 1985).  Evidence for the involvement 
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of mitochondrial dynamics in PD has come from investigations of the genes associated 

with familial inheritance of PD, which will be elaborated in a later section.   

 

Physiological Roles of Mitochondrial Dynamics 

Several mouse models have elucidated a prominent role of mitochondrial dynamics 

in regulating embryonic, neuronal, skeletal muscle, cardiomyocyte development.  

Mitochondrial fusion and fission processes are essential for mouse embryonic development 

as genetic inactivation of Mfn1, Mfn2, Opa1, Fis1, and Drp1 all cause embryonic lethality 

(Chen, Detmer et al. 2003; Alavi, Bette et al. 2007; Davies, Hollins et al. 2007; Ishihara, 

Nomura et al. 2009; Wakabayashi, Zhang et al. 2009).  Loss of Mfn2 embryonically causes 

placental insufficiency due to an inadequate development of trophoblast giant cells (Chen, 

Detmer et al. 2003).  There is a dependence of Mfn2 and Drp1 for postnatal growth of the 

cerebellum since loss of either genes cause atrophy of the cerebellum and diminished 

dendritic arborization in Purkinje neurons (Chen, Mccaffery et al. 2007; Wakabayashi, 

Zhang et al. 2009; Kageyama, Zhang et al. 2012).  Strikingly, mitochondria are also 

improperly localized in Purkinje neurons to support an intimate link between mitochondrial 

shape and transport (Baloh, Schmidt et al. 2007; Chen, Mccaffery et al. 2007).  

Interestingly, embryonic deletion of fusion and fission genes affects similar populations of 

cells suggesting that the balance in fusion and fission dynamics is critical for cell survival.  

Abrogation of both mitofusins in glycolytic muscle caused muscle atrophy and concurrent 

instability of mitochondrial DNA via increased rates of mutations, deletions, and depletion 

(Chen, Vermulst et al. 2010). A role for mitofusin in cardiac function was demonstrated 
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recently.  Ablation of Mfn2 and both mitofusins in adult cardiac myocytes resulted in 

dilated cardiomyopathy, characterized by cardiac enlargement and defective contractility 

(Chen, Liu et al. 2011; Papanicolaou, Khairallah et al. 2011).   

Studies in cell lines have provided mechanistic understanding about the importance 

of mitochondrial fusion for mitochondrial metabolism, which may explain the severe in 

vivo defects in genetic mouse models.   Previous reports from our lab have shown that loss 

of mitochondrial fusion in mouse embryonic fibroblasts causes stochastic loss of 

mitochondrial membrane potential, suggesting that ATP production may be compromised 

(Chen, Detmer et al. 2003).  Indeed, when mitochondrial respiration was measured by 

oxygen consumption, these fibroblasts demonstrated decreased mitochondrial metabolism 

and cell growth (Chen, Chomyn et al. 2005).  The effects of mitofusin on cell growth may 

be explained by the role mitochondrial fusion in the G1-S transition of the cell cycle.  

Lippincott-Schwartz and colleagues have demonstrated that mitochondria form a 

hyperfused network during the G1-S transition (Mitra, Wunder et al. 2009).  This elongated 

and interconnected mitochondrial network exhibits hyperpolarized membrane potential, 

indicating a high electrical coupling and efficient ATP production.  Depolarization of 

mitochondrial membrane potential using the FCCP uncoupler causes arrest of the cell cycle 

at the G1-S checkpoint and blocks the transition into the S-phase of DNA duplication.  

Collectively, these results suggest that the hyperfused network ensures sufficient energy 

production for the progression into the energetically costly S-phase (Finkel and Hwang 

2009).  Hyperfusion of mitochondria have also been observed transiently during a process 

called stress-induced hyperfusion (SIMH).  When cells are exposed to stresses, including 

UV-irradiation, protein synthesis inhibition by cycloheximide, and repression of DNA 
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transcription by actinomycin D, mitochondria form a hyperfused network with an 

associated increase in ATP production (Tondera, Grandemange et al. 2009).  The process 

of SIMH is dependent on Mfn1, Opa1, and an inner membrane protein SLP2 since cells 

depleted of these proteins are SIMH incompetent and more sensitive to apoptosis.  

Collectively mitochondrial fusion seems to exert a protective role for the cell by promoting 

electrical coupling for efficient ATP production and conferring resistance to stress-induced 

cell death. 

Mitochondrial fission is implicated in apoptosis.  Apoptosis is a form of 

programmed cell death that is essential in development and can be triggered by various 

stimuli.  There are multiple pieces of evidence that highlight the importance of 

mitochondria in the progression of apoptosis.  First, proapoptotic molecules, such as 

cytochrome c, are stored in the mitochondrial intermembrane space and cristae junction, 

and the release of these molecules is necessary for downstream activation of the apoptotic 

caspase cascade.  Second, mitochondria switch to a fragmented state during apoptosis and 

the sites of mitochondrial division coincides with the localization of early activators of 

apoptosis (Frank, Gaume et al. 2001; Karbowski, Lee et al. 2002). In HeLa cells, 

overexpression of Drp1 causes mitochondrial fragmentation and sensitizes cells to 

apoptotic stimulus staurosporine (Szabadkai, Simoni et al. 2004).  In Caenorhabditis 

elegans, ectopic expression of Drp1 is sufficient to induce apoptosis in those cells (Jagasia, 

Grote et al. 2005).  However, the direct role of Drp1 and mitochondrial fission in apoptosis 

has been questioned.  By monitoring cytochrome c release using fluorescence time-lapse 

imaging, several studies have shown that the release of cytochrome c occurs before 

mitochondria fragment to argue against the model where mitochondrial fission is a 
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prerequisite of apoptosis (Gao, Ren et al. 2001; Arnoult, Grodet et al. 2005).   Furthermore, 

the depletion of Drp1 in cells and mouse models only causes the delayed release of 

cytochrome c rather than prevention of apoptosis (Parone, James et al. 2006; Ishihara, 

Nomura et al. 2009; Wakabayashi, Zhang et al. 2009).  Currently, cristae remodeling by 

Opa1 is proposed as another model for enabling the leakage of cytochrome c into the 

cytosol and the activation of apoptosis (Arnoult, Grodet et al. 2005; Frezza, Cipolat et al. 

2006; Arnoult 2007).  Taken together, these results suggest that the mechanism for Drp1 

involvement and the function of mitochondrial fission in apoptosis require further 

investigation.  Nonetheless, these findings show that perturbations to mitochondrial 

dynamics in favor of mitochondrial division may accelerate and sensitize cells to apoptosis.  

Mitochondrial division is another quality control mechanism for mitochondria.  

Mitochondrial division helps to segregate defective mitochondria for selective removal by 

autophagy, termed mitophagy. By following mitochondrial dynamics with a potentiometric 

mitochondrial dye and a mitochondrial targeted photoactivatable GFP, Twig and 

colleagues observed that mitochondria division often generates daughter mitochondria with 

heterogeneous membrane potential.  One daughter mitochondrion would exhibit 

hyperpolarized membrane potential and undergo subsequent rounds of fusion with the 

mitochondrial network.  In contrast, the remaining depolarized mitochondrion would be 

fusion incompetent and be surrounded by fluorescently labeled autophagosomes (Twig, 

Elorza et al. 2008).  Additionally, when cells are treated with the mitochondrial uncoupler 

CCCP to induce depolarization of the mitochondrial network, Drp1-dependent fission has 

been shown to be important for mediating clearance of dysfunctional mitochondria 
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(Tanaka, Cleland et al. 2010).  These results suggest that mitochondrial fission facilitates in 

the separation of damaged mitochondria for mitophagy.   

The targeting mechanism for mitophagy has recently been elucidated by the studies 

of two genes implicated in Parkinson’s disease (PD), Pink1 and Parkin.  Pink1 is a 

mitochondrial kinase that acts upstream of Parkin, a cytosolic E3 ubiquitin ligase. By 

overexpressing fluorescently tagged Parkin in cells, Narendra and colleagues show that 

Parkin selectively accumulates on depolarized mitochondria and recruits autophagosome 

formation for mitophagy (Narendra, Tanaka et al. 2008).  Furthermore, Parkin localization 

on mitochondria occurs in a Pink1-dependent manner as Pink1 deficient cells lose Parkin 

recruitment and Parkin-mediated mitophagy (Narendra, Jin et al. 2010).  In healthy 

mitochondria, Pink1 is maintained at a low level by constitutive cleavage.  However, upon 

mitochondrial membrane depolarization, Pink1 cleavage is inhibited, enabling Pink1 to 

accumulate on the mitochondrial outer membrane and recruit Parkin (Narendra, Jin et al. 

2010).  Studies from our lab and others highlight that Parkin-mediated mitophagy also 

requires the proteasome machinery (Tanaka, Cleland et al. 2010; Chan and Chan 2011; 

Chan, Salazar et al. 2011; Glauser, Sonnay et al. 2011).  Using quantitative mass 

spectrometry, we found that components of the ubiquitin proteasome (UPS) machinery 

were highly upregulated during Parkin recruitment.  Immunoblots further confirmed that 

many mitochondrial outer membrane proteins, including mitofusins, were degraded via the 

UPS prior to mitophagy.  Significantly, we showed that inhibition of the UPS is sufficient 

to block mitophagy, suggesting that the degradation of mitochondrial outer membrane 

proteins is a distinct and necessary process in mitophagy (Chan, Salazar et al. 2011).  The 

observed degradation of mitofusins also supports the fragmented phenotype observed by 
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immunofluorescent studies and may reinforce the isolation of dysfunctional mitochondria 

after mitochondrial fission.  Taken together, these results show that the UPS machinery 

provides an additional mechanism for targeting dysfunctional mitochondria for autophagic 

clearance and implicate impaired quality control of mitochondria in PD. 

 

Mitochondrial Dysfunction in Parkinson’s Disease (PD) 

  Parkinson’s disease affects over 4 million people worldwide, making PD the most 

common movement disorder (Dorsey, Constantinescu et al. 2007).  PD is a progressive 

neurodegenerative disease characterized by resting tremor, postural instability, 

bradykinesia, and rigidity.  Classically, PD is confirmed by postmortem detection of 

proteinaceous inclusion bodies known as Lewy bodies and the degeneration of 

dopaminergic neurons in the substantia nigra (SNc).  However, neurodegeneration in many 

circuits, including cholinergic, serotonin, and norepinephrine neurons, suggests that PD is a 

multisystemic disorder.  The idiopathic form of PD is most common and occurs in patients 

older than 50 years of age.  The remaining 10% of PD cases have genetic origins and affect 

younger patients.  Currently, treatments for PD only provide symptomatic relief rather than 

reverse the progressive neuronal loss.  Cellular studies of the PD-related genes have 

provided valuable insight into the pathogenic mechanisms contributing to dopaminergic 

cell loss.  Oxidative stress, toxicity of protein aggregates, calcium excitotoxicity, and 

mitochondrial dysfunction have all been implicated in the disease pathology.  The different 

mechanisms causing PD have led to a proposal that dopaminergic cell loss is attributed to 
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multiple hits including intrinsic vulnerabilities, genetic risks, and environmental toxins 

(Sulzer 2007).   

Mitochondrial dysfunction has been extensively documented in idiopathic and 

familial forms of PD.  Deficiencies in the mitochondrial complex I activity have been 

reported in platelets, brain, fibroblasts, and muscle samples from PD patients (Parker, 

Boyson et al. 1989; Schapira, Cooper et al. 1989; Shoffner, Watts et al. 1991; Mann, 

Cooper et al. 1992; Benecke, Strumper et al. 1993; Parker and Swerdlow 1998).  A recent 

genome-wide meta-analysis comprising over 400 samples from PD patients also confirmed 

the metabolic deficiencies suggested by early studies (Zheng, Liao et al. 2010).  

Environmental toxins and pesticides, including 1-methyl-4-phenylpyridine (MPP), that 

inhibit mitochondrial complex I activity can also induce chronic parkinsonism in humans 

(Langston, Ballard et al. 1983; Liou, Tsai et al. 1997; Gash, Rutland et al. 2008; Tanner, 

Ross et al. 2009).  It is apparent from these studies that SN dopaminergic neurons are 

exquisitely sensitive to defects mitochondrial bioenergetics.   

Gene expression analyses comparing the SN neurons to other dopaminergic 

neurons in the brain have provided some insight into the vulnerabilities of the SN.  

Dopaminergic neurons are found throughout the brain, with three types of dopamine 

neurons residing in the midbrain, the retrorubral area (A8), the substantia nigra (A9), and 

the ventral tegmental area (A10).  These neurons are classified based on their anatomical 

organization and axonal projections (Björklund and Dunnett 2007).  Remarkably, early 

histological examinations of PD brains demonstrate a pattern of loss that is regionally 

confined to the A9 neurons (Hirsch, Graybiel et al. 1988; Fearnley and Lees 1991).  By 
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combining laser capture microdissection to isolate individual A9 and A10 neurons and 

microarray analysis of gene expression, several studies have identified distinct expression 

profiles between these neurons.  Genes related to energy metabolism and mitochondrial 

proteins were consistently elevated in A9 neurons, suggesting that SN neurons have higher 

metabolic demand to support homeostatic function (Chung, Seo et al. 2005; Greene, 

Dingledine et al. 2005).  Higher transcripts of adenine nucleotide translocase 2 (ANT-2) 

and caspase 7 were also found in A9 neurons by microarray and quantitative PCR analyses 

(Chung, Seo et al. 2005).  The involvement of ANT-2 in regulating the mitochondrial 

permeability transition pore, important for cytochrome c release and apoptosis induction, 

and the higher caspase level may sensitize SN neurons to apoptosis.  Moreover, the A9 

cells exhibit lower levels of protective factors, including neurotrophic factors, 

neuropeptides, and genes involved in synaptic plasticity, compared to the VTA neurons 

(Grimm, Mueller et al. 2004; Chung, Seo et al. 2005; Greene, Dingledine et al. 2005).  The 

combination of high metabolic load and low plasticity for adapting to insults may explain 

the susceptibility of SN neurons toward mitochondrial defects and complex I inhibitors.  

Collectively, the gene expression studies present mechanisms that may explain the 

vulnerability of the SNc toward environmental toxins and highlight the importance of 

mitochondrial function in these neurons.   

Studies of PD-related genes and mutations underscore mitochondria as a central 

player in the disease and provide direct evidence for impaired mitochondrial dynamics.  

Multiple genes associated with PD have been shown to modulate mitochondrial 

morphology, including α-synuclein, LRRK-2, DJ-1, Parkin, and Pink1.  Overexpression of 

α-synuclein, the main component in Lewy bodies, inhibits mitochondrial fusion and 
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induces mitochondrial fragmentation in human cells and the body wall muscles of C. 

elegans (Kamp, Exner et al. 2010).  Moreover, wild-type DJ-1, Pink1, and Parkin, and not 

PD-related mutations, can rescue the mitochondrial fragmentation induced by α-synuclein 

(Kamp, Exner et al. 2010).  Similar studies using of LRRK-2 and DJ-1 also demonstrate 

increased mitochondrial fragmentation with PD-linked mutations (Irrcher, Aleyasin et al. 

2010; Wang, Yan et al. 2012).  As stated previously, Pink1 and Parkin regulate mitophagy 

and are therefore important in the quality control of mitochondria.  Null mutations of Pink1 

and Parkin in Drosophila cause swollen mitochondria and flight defects due to dysfunction 

of the indirect flight muscles (Clark, Dodson et al. 2006; Yang, Gehrke et al. 2006).  

Interestingly, the muscle and mitochondrial abnormalities in Pink1 and Parkin mutants are 

rescued by the overexpression of Drp1 or the knock-down of fusion components, including 

Marf (the Drosophila homolog of mitofusin) and Opa1 (Deng, Dodson et al. 2008; Poole, 

Thomas et al. 2008; Yang, Ouyang et al. 2008).  These results clearly demonstrate that 

regulators of mitochondrial dynamics genetically interact with the Pink1/Parkin pathway 

and may modify the disease course.  Recent studies also suggest that DJ-1 functions in a 

parallel pathway with Pink1/Parkin to regulate mitochondrial morphology.  In Drosophila, 

expression of DJ-1 rescues the muscle and mitochondrial impairments of Pink1 mutants 

(Hao, Giasson et al. 2010).  In DJ-1-null cells, overexpression of Pink1 or Parkin reverses 

the fragmentation of mitochondria, implying that these genes promote mitochondrial fusion 

(Irrcher, Aleyasin et al. 2010; Thomas, McCoy et al. 2011).  Although these results 

demonstrate that mitochondrial dynamics may be abnormally regulated in PD, the 

importance of mitochondrial dynamics in dopaminergic neurons has not been directly 

examined.     
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Thesis Overview 

It is clear that mitochondrial function is essential for the development and survival 

of many tissues, and that impairments in mitochondria will impact cells with the lowest 

threshold to metabolic defects.  Terminally differentiated cells such as neurons and muscles 

critically rely on mitochondrial integrity for survival.  More studies are needed to identify 

the intrinsic processes that enhance cellular susceptibility to dysfunction in mitochondrial 

dynamics.  To investigate the role of mitochondrial dynamics in diseases, versatile tools are 

needed to explore the physiology of these dynamic organelles in multiple tissues. Toward 

this goal, we have generated a mitochondrial reporter that facilitates broad analysis of 

mitochondria in different tissues and developmental stages.  In the subsequent chapters, we 

demonstrate the versatility of these models for examining mitochondrial function in 

neuronal circuits and muscle compartments. 

Chapter 2  

Mitochondrial dynamics are important in the development and survival of many 

tissues.  Current tools for monitoring mitochondrial fusion have been limited to cell 

cultures.  Here, we characterize the development of mouse models with photoactivatable 

mitochondria for visualizing mitochondria in a wide spectrum of tissue types.  We 

constructed a mitochondrial-localized version of the photoconvertible protein, Dendra2 

(mito-Dendra2), and targeted the mitochondrial reporter to the Rosa26 locus for ubiquitous 

expression.  The PhAMflox line provides Cre-inducible expression using a floxed 

termination signal upstream of mito-Dendra2.  GermLine excision of the floxed 

termination cassette produced the PhAMexcised line, which exhibits broad tissue expression 
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of mito-Dendra2.  In these lines, Dendra2 fluorescence is restricted to the mitochondria and 

the photoswitchable properties of Dendra2 enable high resolution analysis of mitochondrial 

dynamics in dense tissues and mitochondrial network. 

Chapter 3 

Although mitochondrial dysfunction has been extensively documented in PD, 

studies of PD-related genes implicate dysfunctional mitochondrial dynamics in the 

pathology.  To determine the role of mitochondrial dynamics in dopaminergic neurons, we 

performed targeted deletion of mitofusin2 (Mfn2) to abrogate mitochondrial fusion in the 

nigrostriatal circuit.  We show that loss of Mfn2 causes age-dependent deficits in 

locomotion that precedes the degeneration of dopaminergic neurons in the substantia nigra.  

Slice cultures of mutant animals also exhibit severe mitochondrial fragmentation as well as 

diminishment of mitochondrial mass and transport in neuronal processes.  These results 

suggest that defects in mitochondrial dynamics may be a risk for the progression of 

neurodegeneration. 

Chapter 4 

Mitochondrial fusion is important for maintaining the integrity of mitochondrial 

DNA in skeletal muscles.  How this is achieved in unclear since the dynamics of 

mitochondria in skeletal muscles have not been extensively characterized.  Using the 

PhAMexcised model, we show that mitochondrial fusion decreases during postnatal 

development.  We also observe a correlation between mitochondrial fusion and muscle 

types, with oxidative fibers exhibiting more elongated mitochondria.  To explore the 
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compartmentalization of mitochondria along the length of a multinucleated muscle fiber, 

we took advantage of the leaky expression of a tamoxifen inducible Cre system to achieve 

sparse labeling of mitochondria along the myofiber.  With this platform, we examined the 

dynamics of mitochondrial compartments in the myofiber during different development 

stages.  Collectively, these results have implications for examining mitochondrial dynamics 

in models of mitochondrial myopathies. 
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ABSTRACT  

Many pathological states involve dysregulation of mitochondrial fusion, fission, or 

transport. These dynamic events are usually studied in cells lines because of the challenges 

in tracking mitochondria in tissues. To investigate mitochondrial dynamics in tissues and 

disease models, we generated two mouse lines with photoactivatable mitochondria 

(PhAM). In the PhAMfloxed line, a mitochondrially localized version of the photoconvertible 

fluorescent protein Dendra2 (mito-Dendra2) is targeted to the ubiquitously expressed 

Rosa26 locus, along with an upstream loxP-flanked termination signal. Expression of Cre 

in PhAMfloxed cells results in bright mito-Dendra2 fluorescence without adverse effects on 

mitochondrial morphology. When crossed with Cre drivers, the PhAMfloxed line expresses 

mito-Dendra2 in specific cell types, allowing mitochondria to be tracked even in tissues 

that have high cell density. In a second line (PhAMexcised), the expression of mito-Dendra2 

is ubiquitous, allowing mitochondria to be analyzed in a wide range of live and fixed 

tissues. By using photoconversion techniques, we directly measured mitochondrial fusion 

events in cultured cells as well as tissues such as skeletal muscle. These mouse lines 

facilitate analysis of mitochondrial dynamics in a wide spectrum of primary cells and 

tissues, and can be used to examine mitochondria in developmental transitions and disease 

states. 

 

KEY WORDS: mitochondrial fusion, organelle trafficking, neurodegeneration, mouse 

model, Cre reporter. 
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INTRODUCTION  

In recent years, the dynamic properties of mitochondria have become increasingly 

appreciated. Mitochondria are dynamic and mobile organelles that continually undergo 

fusion and fission (division). These opposing processes control the morphology of 

mitochondria, and more importantly, also regulate their physiological functions Detmer and 

Chan (2007). As a result, mitochondrial fusion and fission impact cellular respiration, 

apoptosis, necrosis, and maintenance of mitochondrial DNA. Multiple neurodegenerative 

diseases have also been associated with defects in mitochondrial dynamics (Chen and Chan 

2009).  

Most studies of mitochondrial dynamics rely on cultured cells, where mitochondria 

can be imaged at high resolution. In cell lines, the fusion of mitochondria can be directly 

measured using photoactivatable fluorescent proteins targeted to the mitochondria 

(Karbowski, Arnoult et al. 2004). There is a pressing need to extend such studies to tissues, 

particularly where cell-based models are inadequate in recapitulating complex cellular 

interactions. It is important to be able to study a broad range of tissues, given that 

mitochondrial dynamics has been shown to affect the physiology of multiple systems, 

including the placenta, central nervous system, peripheral nervous system, skeletal muscle, 

and cardiac muscle (Alexander, Votruba et al. 2000; Delettre, Lenaers et al. 2000; Chen, 

Detmer et al. 2003; Zuchner, Mersiyanova et al. 2004; Chen, McCaffery et al. 2007; 

Waterham, Koster et al. 2007; Ishihara, Nomura et al. 2009; Wakabayashi, Zhang et al. 

2009; Chen, Vermulst et al. 2010). Moreover, the metabolism of tissues can change during 

developmental transitions, and methods are needed to track mitochondria during such 

processes. To address this need, we have developed mouse models in which the 



 

 

35 

photoconvertible fluorescent protein Dendra2 can be used to track mitochondria. These 

mouse models allow mitochondria to be readily studied in fixed and live tissues. 

Furthermore, the photoswitchable properties of Dendra2 allow subsets of mitochondria to 

be precisely monitored within a dense mitochondrial network. 
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RESULTS AND DISCUSSION 

Generation of mice with photoactivatable mitochondria  

We used homologous recombination in mouse embryonic stem (ES) cells to insert 

an expression cassette containing mito-Dendra2 (a version of Dendra2 targeted to the 

mitochondrial matrix) into the ubiquitously expressed Rosa26 locus. In the expression 

cassette, the CAG (cytomegalovirus/β-actin) enhancer-promoter drives strong expression, 

and a loxP-flanked (floxed) termination sequence upstream of mito-Dendra2 provides Cre-

regulated expression (figure 2-1 A). Once mice were generated from correctly targeted 

embryonic stem cells (figure 2-1 B), the neomycin selection cassette was removed to 

generate the PhAMfloxed line (figure 2-1 A, C). In this mouse line, mito-Dendra2 expression 

relies on Cre-mediated excision of the termination sequence. These mice can be maintained 

as heterozygotes or homozygotes without apparent defects in viability or fertility.  

To determine the potential of the PhAMfloxed line in tracking mitochondrial 

dynamics, tail fibroblasts were isolated for image analysis. No Dendra2 fluorescence was 

detected in these cells (figure 2-2 A left panel). Upon expression of Cre recombinase, the 

cells show bright green fluorescence that co-localizes precisely with HSP-60, a marker of 

the mitochondrial matrix (figure 2-2 A, right panel). The expression of mito-Dendra2 does 

not alter the morphology of the mitochondrial network (figure 2-2 B).  

Taking advantage of the photoswitchable properties of Dendra2, we used a 405 nm 

laser to photoconvert a sub-population of mitochondria in live fibroblasts. After 

photoconversion, the mitochondria switch to red fluorescence (figure 2-2 C). In 

fluorescence time-lapse movies, we observed both transport and fusion of these labeled 
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mitochondria. Fusion events between the red and green mitochondria result in the transfer 

of fluorescence signal, an indication of matrix mixing (figure 2-2 C, D). 

 

Widespread expression of mito-Dendra2  

We generated mice with ubiquitous expression of mito-Dendra2 by crossing the 

PhAMfloxed mice to Meox2-Cre mice. The resulting mouse line, referred to as PhAMexcised,  

lacks the floxed termination cassette (figure 2-1 A, D). In tissue sections, all organs isolated 

from these animals exhibit bright mito-Dendra2 fluorescence localized specifically to the 

mitochondrial compartment. Widespread expression is found in the central nervous system, 

heart, testis, lung, liver, kidney, and thymus (figure 2-3). Therefore, the PhAMexcised line can 

be used to survey mitochondrial morphology in a wide range of tissues. For example, 

cardiomyocytes contain linearly aligned mitochondria in contrast to the punctate structures 

found in hepatocytes (compare figure 2-3 D to 2-3 G). Homozygous PhAMexcised mice are 

viable and fertile.  

 

Tracking of mitochondria in live cells and tissues  

Live cells can be isolated from PhAMexcised mice to facilitate imaging of the 

mitochondrial network (figure 2-4). In live mouse sperm (figure 2-4 A), we observed a 

region of intense mito-Dendra2 fluorescence in the midpiece. This fluorescence pattern is 

consistent with ultrastructural data showing cylindrical packing of mitochondria around the 

midpiece of the spermatozoa (Cardullo and Baltz 1991). We were unable to resolve 

individual mitochondria, suggesting that these mitochondria are packed tightly. When a 

small portion of the midpiece was illuminated with the 405 nm laser, we found that the 
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photoconverted region was stable, indicating that the packed mitochondria are discrete and 

do not share matrix contents.   

We also examined mitochondria in dissociated tissues and intact skeletal muscles. 

In collagenase-digested myofibers, mito-Dendra2 fluorescence is arranged in a repeating 

pattern of doublets (figure 2-4 B). In fixed myofibers, mito-Dendra2 signal localizes 

adjacent to the Z-disk marker, α-actinin (figure 2-4 D). This pattern is consistent with 

ultrastructural studies showing the stereotyped architecture of mitochondria in skeletal 

muscle (Ogata and Yamasaki 1997). In dissociated cardiomyocytes, mitochondria are 

arranged in linear arrays (figure 2-4 C). In each case, a subpopulation of mitochondria can 

be labeled by photoconversion.    

To test whether mitochondria can be tracked in live tissues, we monitored 

mitochondrial dynamics in whole extensor digitorum longus (EDL) muscles. By following 

a subset of photoconverted mitochondria over time, we observed mitochondrial fusion 

between intramyofibrillar mitochondria. The fusion events occurred along both the 

longitudinal and transverse axes of the myofiber (figure 2-4 E). Therefore, although 

mitochondria in skeletal muscle appear static and rigidly organized, they are dynamic and 

fusion competent. We previously observed that postnatal development of fast-twitch 

muscle is accompanied by a dramatic increase in mitochondrial DNA copy number (Chen, 

Vermulst et al. 2010). This observation suggests that mitochondria may play an important 

role in the development of skeletal muscle. To explore this idea, we analyzed mitochondrial 

morphology during the postnatal development of EDL muscle. In fixed whole mounts of 

EDL, we noted a dramatic remodeling of mitochondrial structure between postnatal day 11 

and 30 (figure 2-4 F-H).  In EDL muscle at postnatal day 11, the mitochondria appear as 
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elongated tubules oriented along the long axis of the muscle fiber (figure 2-4 F). By 

postnatal day 30, the mitochondria are punctate and organized into doublets (figure 2-4 H). 

These morphological observations in the PhAMexcised muscles were confirmed by electron 

microscopy analysis of wild-type mice (figure 2-4 G, I). Taken together, these results 

suggest that extensive mitochondrial remodeling accompanies skeletal muscle 

development, and indicates that the PhAM mouse lines can be used to examine 

mitochondria in developmental processes.   

 

Cell-specific labeling of mitochondria  

The experiments above indicate that the PhAMexcised line can be used to monitor 

mitochondria in a wide range of cell types. In some tissues with high cell density and 

diversity, however, the near ubiquitous expression of mito-Dendra2 results in overlapping 

mitochondrial signals from multiple cells. In such cases, it would be advantageous to 

restrict labeling to a particular cell type. To test this idea, we crossed PhAMfloxed mice with 

the Pcp2-Cre line, which drives Cre expression in Purkinje neurons of the cerebellum. To 

facilitate high resolution imaging in brain tissue, we used organotypic culturing methods to 

maintain parasagittal cerebellar slices. Purkinje neurons in the cerebellum were identified 

by calbindin immunofluorescence. As expected, mito-Dendra2 expression is restricted to 

Purkinje neurons (figure 2-5 A-C). In these neurons, we noted several morphologically 

distinct populations of mitochondria (figure 2-5 D). Tubular mitochondria occupy the soma 

and primary dendrites, whereas focal clusters of smaller mitochondria appear in the 

secondary and tertiary dendrites. In these clusters, the mitochondria are densely packed, 

and individual organelles often cannot be distinguished without photoconversion. 
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Interestingly, when mito-Dendra2 expression is restricted by the Pcp2-Cre driver, the 

mitochondria in individual Purkinje cells are better resolved. In the PhAMexcised line, the 

expression of mito-Dendra2 in granular cells and supporting cells obscures the tracking of 

mitochondria in Purkinje neurons beyond the soma and primary dendrites (compare figure 

2-3 C to 2-5 C). 

 

Detection of mitochondrial defects in mutant mice  

One of our motivations for constructing the PhAM mice was to facilitate the 

systematic evaluation of mitochondrial dynamics in mutant mouse models. To assess this 

possibility, we used the PhAMfloxed line to examine mitochondrial morphology in Purkinje 

neurons with a targeted deletion of Mfn2, which is important for mitochondrial fusion. We 

have previously shown that the loss of Mfn2 results in mitochondrial abnormalities as well 

as degeneration of Purkinje neurons (Chen, McCaffery et al. 2007). Consistent with our 

previous study, cerebellar sections of Mfn2 mutant mice show severe mitochondrial 

fragmentation and sparseness in the dendritic processes (figure 2-6).  

The PhAMexcised and PhAMfloxed mouse models provide new opportunities for 

assessing mitochondrial dynamics in mouse tissues and cells. Other mouse models with 

fluorescently labeled mitochondria exist (Misgeld, Kerschensteiner et al. 2007; Sterky, Lee 

et al. 2011; Magrane, Sahawneh et al. 2012), but our models are the first to combine both 

photoconversion and conditional expression in a wide spectrum of cell types. With 

ubiquitous expression of mito-Dendra2, the PhAMexcised line should be useful to 

investigators surveying mitochondrial dynamics in diverse tissues. Mitochondrial defects in 

mutant mouse models can be readily screened by histological analysis. Moreover, 



 

 

41 

photoswitching of mito-Dendra2 enables high-resolution analysis and direct measurement 

of mitochondrial fusion in live cells. The PhAMfloxed line can be combined with Cre drivers 

to restrict mito-Dendra2 expression to specific cells, facilitating the analysis of 

mitochondria in tissues with high cell diversity. Finally, our analysis in skeletal muscle 

indicates that these mouse lines can be used to study structural changes in mitochondria 

that may accompany developmental transitions. Such remodeling events may be 

particularly important in tissues that undergo developmentally programmed changes in 

metabolism, activity, or oxygenation.   
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MATERIALS AND METHODS 

Construction of the PhAMfloxed mouse line  

The mito-Dendra2 expression cassette was assembled in a modified pBluescript 

shuttle plasmid (kindly provided by Dr. John Burnett). First, the CAG enhancer-promoter 

was transferred from Rosa26 mT/mG (Muzumdar, Tasic et al. 2007) with PmeI-SpeI 

restriction sites. Second, the floxed termination signal was excised as an EcoRI-SpeI 

fragment from pBS302 (Sauer 1993) and subcloned downstream of the CAG promoter. 

This floxed termination signal is composed of two loxP sites flanking the SV40 

polyadenylation signal sequence. Third, the mitochondrial targeting sequence of subunit 

VIII of cytochrome c oxidase was fused to the N-terminus of Dendra2 (Evrogen) 

(Chudakov, Lukyanov et al. 2007) and cloned into the pcDNA3.1(+) vector (Invitrogen) 

containing the bovine growth hormone (bGH) polyadenylation signal.  Fourth, the mito-

Dendra2/bGH segment was cloned into the shuttle vector downstream of the floxed 

termination signal. Finally, the pCA mT/mG sequence from Rosa26 mT/mG was replaced 

with the expression construct. All plasmids were verified by DNA sequence analysis.   

The targeting construct was linearized with PvuI and electroporated into low 

passage 129/SvEV ES cells as previously described (Chen, Detmer et al. 2003). Of 94 

neomycin-resistant clones, four were correctly targeted, as determined by PCR and 

Southern blot analysis. One ES clone was injected into C57BL/6 blastocysts to generate 

chimeric mice. Founder chimeric mice were bred to C57BL/6 to confirm germLine 

transmission. The mice were then crossed with FLPeR mice (Farley, Soriano et al. 2000) to 

remove the neomycin-resistance cassette, thereby generating the PhAMfloxed line. The 
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PhAMfloxed mice were crossed with the Meox2-Cre mice (Tallquist and Soriano 2000) to 

generate the PhAMexcised line. 

 

Confirmation of the PhAMfloxed and PhAMexcised alleles  

For Southern analysis, genomic DNAs were digested with HindIII and hybridized 

with the published probe from the pROSA26-5’ plasmid (Soriano 1999).  To genotype the 

PhAMfloxed allele by PCR, the set of three primers were used: Rosa4 5’–

TCAATGGGCGGGGGTCGTT (Zong, Espinosa et al. 2005), R26-F 5’–

TCCTGGCTTCTGAGGACCGC, and R26-R 5’– TTCCCCTGCAGGACAACGCC. The 

wild-type allele yields a 150 bp band while the mito-Dendra2 insertion results in a 252 bp 

band. GermLine excision of the termination sequence was verified using the following set 

of primers: CAG 5’–TACAGCTCCTGGGCAACGTGCT, Stop 5’–

TGGCAGCAGATCTAACGGCCG, Dendra2 5’ – GTTCACGTTGCCCTCCATGT. The 

lower 265 bp band is derived from the termination cassette whereas the upper 345 bp band 

represents Cre-mediated excision of the floxed region.  

 

Antibodies and cell stains 

The following dyes were used: wheat germ agglutinin A594 (1:250, Molecular 

Probes), NeuroTrace fluorescent Nissl stain A640 (1:200, Molecular Probes), DAPI (300 

nM, Molecular Probes), and Alexa Fluor 546 streptavidin (1:500, Molecular Probes). 

Primary antibodies included  mouse anti-Map2 (1:1000, Sigma), mouse anti-calbindin 

(1:1500, Sigma), goat anti-HSP60 (1:200, Santa Cruz), rabbit anti-Dendra2 (1:500, 

Evrogen), and mouse anti-α-actinin (1:100, Sigma). Secondary antibodies included 
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biotinylated goat anti-mouse (Vector labs), Alexa Fluor 546 donkey anti-goat, Alexa Fluor 

546 donkey anti-mouse, and Alexa Fluor 488 goat-anti-rabbit (1:500, Molecular probes). 

 

Histological analysis 

For all histological sections, mice were perfused transcardially with phosphate 

buffered saline (PBS) followed by 10% formalin (Sigma). Tissues were embedded 

overnight at 4°C in 30% sucrose solution and frozen in OCT for sectioning by a cryostat. 

For fluorescence staining, slides were either incubated with primary antibodies overnight or 

overlaid with WGA or Nissl stain for 1 to 2 hrs at room temperature.  

For organotypic slices, membranes surrounding the cerebellum were trimmed and 

fixed overnight with 4% paraformaldehyde-lysine-periodate fixative at 4°C. Slices were 

permeabilized with 1% Triton-X for 15 min and incubated with blocking buffer (2% goat 

serum, 1% BSA, and 0.1% Triton-X) for 4-6 hrs. Samples were incubated with primary 

antibodies overnight followed by secondary antibodies for 2 hrs.   

To stain muscles, EDL samples were fixed for 1 hour at room temperature with 

10% formalin. Myofibers were mechanically teased apart and immunostained with the 

Vector M.O.M. kit (Vector labs, Burlingame, CA) according to the manufacturer’s 

protocol. 

 

Fibroblast cells 

Tail fibroblasts were isolated from the wild-type or PhAMfloxed line by trypsin-

EDTA digestion of skin fragments from the tail. After several days in culture with media 

containing DMEM, 10% fetal bovine serum, 1 mM L-glutamine, and 1x 
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penicillin/streptomycin (Life Technologies/GIBCO, Carlsbad, CA), fibroblasts from hair 

follicles migrated onto the plate. To facilitate immortalization, these fibroblasts were 

transduced with retrovirus harboring SV40 large T antigen. For assessment of 

mitochondrial morphology, fibroblasts were plated in 8-well chamber slides. In each well, 

200 cells were classified into one of three mitochondrial profiles: 100% tubular, 50% 

mixture of fragmented and short tubules, or completely fragmented.       

 

Isolated cells and tissues 

To isolate primary cardiomyocytes for live imaging of mitochondrial dynamics, the 

ventricles were rinsed with cold PBS supplemented with 10 mg/mL of glucose and 

mechanically minced in 0.5% collagenase PBS buffer. The tissue was digested in 20 min 

intervals at 37°C in a rotary shaker, and myocyte supernatants were collected and pooled 

between digestion intervals until minimal ventricular tissues remained. Only rod shaped 

ventricular myocytes were selected for imaging. 

For primary myofibers, the EDL muscle was digested with 0.2% collagenase in 

DMEM media for 2 hrs at 37°C in a rotary shaker. Digested EDL muscles were triturated 

several times using decreasing bore sizes of flame-heated pasteur pipettes to obtain 

individual myofibers for live imaging. For whole muscle imaging, the EDL was removed, 

placed in a coverglass bottom petri dish, and held in place using a slice anchor (Warner 

instruments, Hamden, CT). Whole muscles were imaged in media containing DMEM (no 

phenol red), 10% fetal bovine serum, 1 mM pyruvate, and 25 mM HEPES.   

Mouse sperm were isolated from the cauda epididymus of 2-3 months old males. 

Longitudinal cuts were made along the epididymus to enable motile, mature sperm to swim 
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out into the PBS solution. All live samples were imaged on a stage-top heated platform 

maintained at 37°C. 

 

Organotypic slice cultures  

Pups from postnatal days 10-12 were used for organotypic cultures. Tail samples 

from each animal were retained for genotyping. The cerebellum was removed and 

incubated in ice-cold preparation media containing 1X GBSS (Sigma) supplemented with 

6.5 mg/mL of glucose. Each hemisphere was glued onto a rotating magnetic stage for 

sectioning by a Leica VT1200S vibratome. For each animal, approximately 4-6 sections (2-

3 per hemisphere) of 330 µm thickness were collected and transferred to a petri dish with 

cold preparation media using a wide bore pipette. Evenly sliced sections were selected 

under the dissecting scope and transferred to Millicell membrane inserts (Millipore, 

PICM3050) in a 6 well plate. Typically, 2-4 sections were plated onto one insert for 

culturing by the interface method at 35°C with 5% CO2 (Stoppini, Buchs et al. 1991).  The 

culture medium is a mixture of MEM (Life Technologies, 51200), 2 mM L-glutamine, 1 

mM GlutaMAX (Life Technologies, 35050), 0.5 mg/mL penicillin-streptomycin, 50% 

heat-inactivated horse serum, 25% Hank’s salt solution, 10 mM HEPES, and 6.5mg/mL of 

glucose. The media was buffered to a pH of 7.2. Slices were fed with new media on 

alternating days 3 times a week and equilibrated in culture for at least 10 days prior to 

experimentation. 
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Image analysis 

Fluorescence images were acquired with a Zeiss LSM 710 confocal microscope 

with EC-Plan-Neofluar 40X/1.3 oil and Plan-Apochromat 63X/1.4 oil objectives. Z-stack 

acquisitions oversampled each optical slice twice, and the Zen 2009 image analysis 

software was used for maximum z-projections. The 488 nm laser line and the 561 nm laser 

excited Dendra2 in the unconverted state and photoconverted state, respectively. To 

photoswitch Dendra2, a region was illuminated with the 405 nm line (4% laser power) for 

30-60 bleaching iterations at a scan speed of 6.3–12.61 µs/pixel. Alexa 594 and Alexa 640 

conjugated dyes were excited by the 561 nm laser and the 633 nm laser, respectively. For 

live imaging of primary cardiomyocytes, sperm, and myofibers, the C-Apochromat 

63X/1.2W objective was used. 

For EM, the EDL muscle was immobilized in an outstretched position by tying onto 

a toothpick splint prior to excision. Muscles were fixed in 3% paraformaldehyde, 1.5% 

glutaraldehyde, 100 mM cacodylate (pH 7.4), and 2.5% sucrose for 1 hour and stored in 

PBS.  Samples were processed and imaged as described previously (Chen, McCaffery et al. 

2007). 
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FIGURE LEGENDS 
 
Figure 2.1. Construction of PhAMfloxed and PhAMexcised mouse lines. (A) Targeting of 

mito-Dendra2 into the Rosa26 locus. Schematic 1 represents the wild-type Rosa26 locus. 

The targeting construct (schematic 2) contains a floxed termination signal upstream of 

mito-Dendra2 and flanking sequences from the Rosa26 genomic DNA, followed by a 

diphtheria toxin expression cassette. Homologous recombination in embryonic stem cells 

results in insertion of the construct into the Rosa26 locus (schematic 3). In mice, removal 

of the neomycin selection marker by flippase (Flp) recombinase results in the PhAMfloxed 

line (schematic 4), which can be mated to a Cre driver line to obtain cell-specific labeling 

of mitochondria. GermLine excision of the termination signal produced the PhAMexcised line 

(schematic 5). PGK-DTA, phosphoglycerate kinase promoter driving diphtheria toxin; 

CAG, cytomegalovirus/β-actin enhancer-promoter; black arrowheads, loxP sites; stop 

symbol, termination cassette; PGK-Neo, phosphoglycerate kinase promoter driving the 

neomycin-resistance gene; gray diamonds, flippase recognition target (frt) sites; half 

arrows, PCR primers for genotyping; short horizontal line, probe for Southern blot. (B) 

Representative Southern blot analysis of ES cell clones. Genomic DNA was digested with 

HindIII and hybridized with the Rosa26 probe indicated in schematic 1 of (A). (C) PCR 

genotyping of the PhAMfloxed strain for the wild-type or knock-in allele using the set of 

three primers in schematic 3 of (A). (D) PCR genotyping of the PhAMexcised strain using the 

three primers in schematic 4 of (A). 

 

Figure 2.2. Tracking of mitochondria in PhAMfloxed tail fibroblasts. (A) Representative 

images of mitochondria in tail fibroblasts cultured from the PhAMfloxed mice. Tail 
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fibroblasts were cultured in the absence (left) or presence of Cre-expressing retrovirus 

(right). Mitochondria are identified by immunostaining for HSP60 (red), a mitochondrial 

marker. The mito-Dendra2 fluorescence (green) was found only after expression of Cre 

(yellow color indicates co-localized signals of Dendra2 and HSP60). Mitochondrial 

morphology remains tubular (inset). Scale bar is 10 mm. (B) Quantification of 

mitochondrial morphology in wild-type and PhAMfloxed fibroblasts. The table shows the 

percentage of cells with the indicated morphology ± SEM (n=4). (C) Monitoring 

mitochondrial fusion in PhAMfloxed fibroblasts. A subset of mitochondria was 

photoconverted (red) and tracked by time-lapse imaging. Three still images from the 

resulting movie highlight a mitochondrial fusion event (arrowhead) and exchange of matrix 

contents. Scale bar is 5 mm. (D) Fluorescence line analysis of the two mitochondria 

undergoing fusion in the frames from (C). Each plot measures the red and green signals 

along the drawn line. The line analysis demonstrates that mitochondrial fusion results in the 

transfer of red fluorescence to the adjoining mitochondrion. 

 

Figure 2.3. Ubiquitous expression of mito-Dendra2 in PhAMexcised tissues. Frozen tissue 

sections from the PhAMexcised mice. (A) pyramidal neurons in the cortex; (B) pyramidal 

neurons in the hippocampus; (C) Purkinje neurons of the cerebellum; (D) myocardium; (E) 

testis; (F) lung; (G) liver cannula, inset shows magnified image of the boxed region; (H) 

kidney cortex; (I) thymus. Cell counter stains are shown in red or purple. In (A-B), anti-

Map2 (red) stains the dendritic processes of neurons; in (A-B), a fluorescent Nissl stain 

(purple) marks neurons; in (C), anti-calbindin (red) highlights Purkinje neurons; in (D-I), 

wheat germ agglutinin (WGA) labels cell borders. Scale bars, 10 mm.   
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Figure 2.4. Imaging of mito-Dendra2 in live isolated cells. The fluorescence of mito-

Dendra2 (green) was imaged in a (A) spermatocyte, (B) myofiber, and (C) cardiomyocyte. 

In each case, a subset of mitochondria was irradiated with a 405 nm laser to photoswitch 

mito-Dendra2 (red). (D) Comparison of mito-Dendra2 (green) in a fixed myofiber with the 

Z-disc marker α-actinin (red). Since the myofiber in (D) was processed for 

immunostaining, the resolution of mitochondrial doublets is lower than (B). (E) Detection 

of mitochondrial fusion in isolated EDL muscle from a 2-month-old animal. A subset of 

mitochondria was photoconverted and tracked. Intensity maps of the photoconverted signal 

show two mitochondrial fusion events (marked by arrowheads) over a 12-minute period. In 

the top fusion event, the transfer of red signal into an unconverted mitochondrion was 

detected. In the bottom event, fusion occurs between two photoconverted mitochondria and 

results in equalization of the intensity. Intensity values of the heat maps are indicated in the 

legend. Scale bars: 10 mm for sperm and 5 mm for myofibers and cardiomyocyte. (F, H) 

Changes in mitochondrial structure during postnatal muscle development. Whole EDL 

muscles were isolated and imaged by mito-Dendra2 fluorescence at indicated ages. Scale 

bars: 5 mm. (G, I) Ultrastructural analysis of fixed EDL sections. Mitochondria are 

indicated by arrowheads. Scale bars: 10 mm. 

 

Figure 2.5. Purkinje-specific labeling of mitochondria. PhAMfloxed mice were crossed 

with a Purkinje-specific driver, Pcp2 Cre, and organotypic slice cultures were prepared 

from the offspring. (A) Merged image of mito-Dendra2 (green) and anti-calbindin (red). 

Two Purkinje cells express mito-Dendra2. (B) Single-channel image of anti-calbindin 
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highlighting the borders of Purkinje neurons. (C) Single-channel image of mito-Dendra2 

signal. (D) Zoomed image of the boxed region in (C). Note the tight clusters of 

mitochondria in the distal dendritic branches. Scale bars: 10 mm. 

 

Figure 2.6. Visualization of mitochondrial defects in Purkinje neurons lacking Mfn2. 

Frozen sections of cerebellum with stained for calbindin (red) and Dendra2 (green). The 

top panel is from a control animal with normal Purkinje neurons. The bottom panel is from 

a littermate lacking Mfn2 in Purkinje neurons due to the Pcp2 Cre driver. The last column 

shows zoomed images of the boxed regions. Scale bar: 10 mm in the merged image and 5 

mm in the zoomed image. 
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Figure 2.1 
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Figure 2.2 
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Figure 2.3 
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Figure 2.4 
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Figure 2.5 
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Figure 2.6 
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ABSTRACT 
 

Mitochondria continually undergo fusion and fission, and these dynamic processes 

play a major role in regulating mitochondrial function. Studies of several genes associated 

with familial Parkinson's disease (PD) have implicated aberrant mitochondrial dynamics in 

the disease pathology, but the importance of these processes in dopaminergic neurons 

remains poorly understood. Because the mitofusins Mfn1 and Mfn2 are essential for 

mitochondrial fusion, we deleted these genes from a subset of dopaminergic neurons in 

mice. Loss of Mfn2 results in a movement defect characterized by hypoactivity, tremors, 

and a rearing defect. In open field tests, Mfn2 mutants show severe, age-dependent motor 

deficits. These motor deficits are preceded by loss of dopaminergic terminals in the 

striatum. However, loss of dopaminergic neurons in the midbrain occurs weeks after the 

onset of these motor and striatal deficits, suggesting a retrograde mode of 

neurodegeneration. In our conditional knockout strategy, we incorporated a 

mitochondrially targeted fluorescent reporter to facilitate tracking of mitochondria in the 

affected neurons. Using an organotypic slice culture system, we detected fragmented 

mitochondria in the soma and proximal processes of these neurons. In addition, we found 

markedly reduced mitochondrial mass and transport, which may contribute to the neuronal 

loss. These effects are specific for Mfn2, as loss of Mfn1 yielded no corresponding defects 

in the nigrostriatal circuit. Our findings indicate that perturbations of mitochondrial 

dynamics can cause nigrostriatal defects and may be a risk factor for the neurodegeneration 

in PD. 
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INTRODUCTION 

Parkinson's disease (PD) is a neurodegenerative movement disorder characterized 

by resting tremor, rigidity, bradykinesia, and postural instability. PD symptoms are 

classically attributed to dopamine depletion and the degeneration of dopaminergic neurons 

in the substantia nigra pars compacta (SNc). However, other neuronal circuits are affected, 

and non-motor symptoms suggest a systemic pathology. There is compelling evidence that 

mitochondrial dysfunction is a primary event in the disease process. Decreased 

mitochondrial electron-transport chain activity has been detected in tissues from PD 

patients (Schapira, Cooper et al. (1989); (Parker and Swerdlow 1998), and toxins that 

inhibit mitochondrial respiration can give rise to parkinsonism in humans and animal 

models (Langston, Ballard et al. 1983; Cannon and Greenamyre 2010).  The most direct 

evidence, however, has come from the study of genes associated with familial forms of PD. 

Disruption of the PD-associated genes PINK1, Parkin, DJ-1, or LRRK2 results in 

mitochondrial defects and aberrant mitochondrial morphology (Greene, Whitworth et al. 

2003; Clark, Dodson et al. 2006; Park, Lee et al. 2006; Irrcher, Aleyasin et al. 2010; 

Krebiehl, Ruckerbauer et al. 2010; Wang, Yan et al. 2012).  

Fusion and fission are fundamental processes that control the function of 

mitochondria (Detmer and Chan 2007). Mitofusins Mfn1 and Mfn2 are outer membrane 

GTPases that mediate fusion of mitochondrial outer membranes by homotypic and 

heterotypic interactions. The optic atrophy protein OPA1 is necessary for the fusion of the 

mitochondrial inner membranes. The dynamin-related protein Drp1 mediates the opposing 

process of mitochondrial fission. Several neurodegenerative diseases, including PD, have 

been linked to perturbations in mitochondrial dynamics (Chen and Chan 2009). 
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Recently, this link has been strengthened by the analysis of genes that cause 

familial forms of PD. The PINK1/Parkin pathway is profoundly affected by mitochondrial 

fusion and fission. In Drosophila, PINK1 and Parkin loss-of-function mutants have severe 

mitochondrial defects, characterized by swollen mitochondria with abnormal cristae 

(Greene, Whitworth et al. 2003; Clark, Dodson et al. 2006; Park, Lee et al. 2006; Yang, 

Gehrke et al. 2006). These mitochondrial perturbations lead to dysfunction of the indirect 

flight muscles. The defects in mitochondria and muscles are efficiently rescued by the 

overexpression of Drp1 or knockdown of Marf (a fly ortholog of mitofusin) or OPA1 

(Deng, Dodson et al. 2008; Poole, Thomas et al. 2008; Yang, Ouyang et al. 2008). In 

cultured mammalian cells, the PINK1/Parkin pathway has been shown to promote the 

elimination of dysfunctional mitochondria by the autophagy machinery. This degradative 

process, termed mitophagy, is dependent on mitochondrial fission (Twig, Elorza et al. 

2008; Tanaka, Cleland et al. 2010). Disruption of DJ-1 function causes mitochondrial 

fragmentation and enhanced sensitivity to oxidative stress (Irrcher, Aleyasin et al. 2010; 

Krebiehl, Ruckerbauer et al. 2010; Thomas, McCoy et al. 2011; Wang, Petrie et al. 2012). 

Overexpression of PINK1 and Parkin in DJ-1 deficient cells rescues the fragmented 

mitochondrial morphology, suggesting regulation of mitochondrial dynamics by each 

pathway (Irrcher, Aleyasin et al. 2010; Thomas, McCoy et al. 2011). Finally, PD-

associated mutations of LRRK2 in cells induce mitochondrial fragmentation and increased 

localization of Drp1 to the mitochondria (Wang, Yan et al. 2012).   

These observations indicate that PD-related mutations and mitochondrial dynamics 

have a reciprocal relationship. PD-related mutations can perturb mitochondrial dynamics, 

and the consequences of these mutations can be modulated by mitochondrial dynamics. 
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These results highlight the need to understand the function of mitochondrial dynamics in 

dopaminergic neurons. To address this issue, we have analyzed the consequences of 

removing the mitofusins from dopaminergic neurons. We find that loss of Mfn2 results in a 

severe movement disorder attributed to progressive degeneration of the nigrostriatal circuit. 

 

RESULTS 

Deletion of Mfn2 from dopaminergic neurons 

We utilized a genetic approach to assess the role of mitochondrial fusion in 

dopaminergic neurons. Mfn1 and Mfn2 conditional knockout mice were crossed to the 

Slc6a3-Cre driver (Bäckman, Malik et al. 2006), in which the endogenous dopamine 

transporter locus expresses Cre recombinase in the A8-A10 subset of dopaminergic 

neurons, including those of the SNc (figure 3.1 A).  Our mating scheme also incorporated a 

Photoactivatable Mitochondria (PhAM) Cre reporter (Pham, McCaffery et al. 2012) for the 

dual purpose of labeling mitochondria and monitoring Cre-dependent excision. Mice with 

disruption of Mfn1 show no phenotype up to 1 year of age (figure 3.6). In contrast, mice 

with disruption of Mfn2 are hunched and hypoactive by 5 weeks of age when compared to 

wild-type or heterozygous Mfn2 littermates. These mice also exhibit kyphosis, reduced 

activity, and tremor  (figure 3.1 B). Weight gain is stagnant after 4 weeks of age, resulting 

in an increasingly larger weight difference between mutant and control littermates (figure 

3.1 C). 

In our initial cohort of Mfn2 mutants, many animals died at approximately 6-7 

weeks of age due to apparent malnutrition. Mutant animals (n = 15) died or were culled due 

to significant weight loss between 36 and 48 days of age. These phenotypes resemble the 
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aphagia and adipsia found in models of dopamine depletion (Zhou and Palmiter 1995; 

Palmiter 2008). However, when supplied with hydrated gel packs and crushed pieces of 

regular chow on the cage floor, all mutant Mfn2 mice survive beyond 6 months, with a 

majority surviving past 1 year of age. To minimize possible secondary effects due to 

malnutrition, the phenotypic analyses reported below were performed using mutant and 

control mice provided with this dietary supplementation. 

 

Movement disorder in Mfn2 mutants  

Because initial observations suggested that Mfn2 mutant mice had reduced activity, 

we monitored their spontaneous movements in a longitudinal open field study. Mfn2 

mutant mice show an age-dependent decline in locomotive activity (figure 3.2 A). At 4-5 

weeks, mutant animals travel only 68% of the distance traversed by wild-type control 

animals. This defect progresses over the next several weeks. By 8-11 weeks of age, the 

distance traveled by mutants reduces to 34% of wild-type controls (figure 3.2 B). In 

contrast, Mfn2 heterozygous animals show normal locomotion. We compared the Mfn2 

homozygotes to both wild-type controls and heterozygous controls carrying Slc6a3-Cre, 

because the knock-in Cre allele causes a slight, insignificant, decrease in dopamine 

transporter levels in the heterozygous state (Bäckman, Malik et al. 2006).  We found that 

Mfn2 heterozygotes carrying Slc6a3-Cre are indistinguishable from wild-type controls in 

all the assays used in this study.   

Similar to travel distance, the speed of movement exhibited by Mfn2 mutant 

animals declines with age (figure 3.2 C). We also observed a strong rearing defect in 

mutant Mfn2 mice that is present as early as 4 weeks of age (figure 3.2 D and). This 
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postural defect likely contributes to the starvation and dehydration observed at 6 weeks 

when cages are not supplemented with food and gel packs on the floor. Consistent with the 

decreased locomotion, Mfn2 mutants spend twice as much time inactive at 6-7 weeks of 

age. By 8-11 weeks, this discrepancy increases to 6-fold (figure 3.2 E). Of note, the 

locomotive defect is specific for Mfn2 mutants; Mfn1 mutants show no motor deficiency in 

the open field test (figure 3.6). Moreover, the double Mfn1/Mfn2 mutants do not have an 

exacerbated phenotype compared to Mfn2 mutants (figure 3.7). Overall, measurements 

from the open field test suggest that, beginning at 4-5 weeks, Mfn2 mutants exhibit 

progressive bradykinesia and a postural defect, both cardinal signs of PD.    

 

Retrograde degeneration of SNc dopaminergic neurons 

To determine whether the motor deficits in mutant animals are accompanied by a 

loss of dopaminergic innervation, we used tyrosine hydroxylase (TH)-immunoreactivity to 

assess the nigrostriatal circuit. We first analyzed the striatum, the endpoint of the 

nigrostriatal pathway. Here, TH-staining marks the axon terminals derived from the SNc. 

In Mfn2 mutants, the striatum shows a 25% reduction in dopaminergic terminals at 3 weeks 

of age (figure 3.3 A, C). Loss of TH-immunoreactivity is detected first in the dorsolateral 

striatum (figure 3.3 A, outlined region in 3 week sample) and gradually encompasses the 

entire striatum by 11 weeks. Interestingly, the regional severity of striatal loss in Mfn2 

mutants resembles the pattern described in PD patients (Kish, Shannak et al. 1988; Stoessl 

2011). By 8-10 weeks, the depletion of dopaminergic terminals increases to 76% in Mfn2 

mutant animals (figure 3.3 C). In contrast, the projections to the nucleus accumbens (NAc) 

and olfactory tubercle (OT), which come from dopaminergic neurons in the ventral 
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tegmental area (VTA), appear to be more protected. These dopaminergic terminals, which 

are part of the mesolimbic pathway, are moderately preserved at 11-14 weeks (figure 3.3 A, 

outlined regions).   

Moving upstream in the nigrostriatal circuit, we counted the number of TH-

immunoreactive neurons in the SNc. In contrast to the striatum, there is no notable loss of 

neurons in the SNc at either 3 weeks or 8-9 weeks (figure 3.3 B, D). The earliest time point 

with neuronal loss occurs at 10-12 weeks, with a 52% decrease in TH-immunopositive 

neurons. Further degeneration followed at subsequent ages (figure 3.3 D). Additionally, the 

neurons remaining in Mfn2 mutants appear to have smaller cell bodies as well as 

diminished neuronal processes (figure 3.3 E). Partial loss of neurons was also observed at 

the VTA but not to the extent of the SNc. Taken together, these results indicate two 

pertinent features of neurodegeneration in this mouse model. First, multiple types of 

dopaminergic neurons have a requirement for Mfn2, but the nigrostriatal circuit exhibits 

enhanced vulnerability compared to the mesolimbic pathway. Likewise, SNc neurons in 

PD patients are more severely affected than the VTA population (Hirsch, Graybiel et al. 

1988; Damier, Hirsch et al. 1999). Second, the degeneration of Mfn2-deficient 

dopaminergic neurons occurs in a stepwise manner. The initial defects appear at the axon 

terminals, followed one to two months later by degeneration of the cell bodies.   

 

Mitochondrial fragmentation and depletion in dopaminergic neurons 

We have previously generated a Cre reporter of mitochondrial dynamics that targets 

the photoconvertible fluorescent protein Dendra2 to the mitochondrial matrix (Pham, 

McCaffery et al. 2012).  The expression of mito-Dendra2 relies on Cre-mediated excision 
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of an upstream loxP-flanked termination signal. In our mating scheme (Figure 3.1 A), mito-

Dendra2 expression depends on the Slc6a3-Cre driver, thereby allowing us to visualize 

mitochondria within the affected neurons, a key benefit in the densely populated midbrain. 

We have also established a slice culture system to assess mitochondrial dynamics in Mfn2-

null dopaminergic neurons. The organotypic culture system has been extensively used for 

long-term assessment of neuronal function and development in vitro, because it preserves 

the cytoarchitecture and circuitry between multiple brain regions (Gahwiler, Capogna et al. 

1997; Cho, Wood et al. 2007). To best preserve the nigrostriatal connections, we sectioned 

the brains at an angle previously characterized to retain these projections (Beurrier, Ben-

Ari et al. 2006; Ammari, Lopez et al. 2009).  

In slice cultures from wild-type and heterozygous brains, we found that Slc6a3-

Cre/mito-Dendra2 expression is specific for dopaminergic neurons, as evidenced by its 

restriction to cells with TH immunoreactivity (figure 3.4 A). The morphology of 

mitochondria in heterozygous slices has a mixed profile, consisting of both tubular 

structures in proximal processes and short puncta in distal projections. In Mfn2-null slices, 

we found swollen and fragmented mitochondria in the soma and proximal processes. 

Consistent with our histological analysis (figure 3.3 E), the Mfn2 mutant neurons have 

fewer and thinner processes extending from the cell body (figure 3.4 A). In addition, the 

Mfn2 mutant cultures contain many neurons that express mito-Dendra2 but lack or have 

reduced TH signal. The failure to maintain TH expression suggests that these neurons are 

in the early stages of degeneration (figure 3.4 A, starred neurons). We also noted a severe 

depletion of mitochondria in neuronal processes both proximal and distal to dopaminergic 
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cell bodies (figure 3.4 B). Mutant slices show a 70% reduction in mitochondrial mass after 

normalizing to mito-Dendra2-positive cell bodies (figure 3.4 C).  

 

Decreased mitochondrial transport along nerve processes in Mfn2 mutants  

To monitor mitochondrial transport along dopaminergic axons and dendrites, we 

performed live imaging of mito-Dendra2 in the slice cultures. For accurate monitoring of 

mitochondrial dynamics in the dense milieu of dopaminergic projections, we 

photoconverted mitochondria in a nerve process and tracked the movement of this labeled 

subpopulation (figure 3.5 A, top). From the time-lapse movies, we generated kymograph 

representations that resolved the complex trajectories of the photoconverted mitochondria 

(figure 3.5 A, bottom). With a vertical time axis, mobile mitochondria create diagonal 

tracks, whereas stationary mitochondria project as vertical streaks. Consistent with previous 

studies describing the mobility of mitochondria in neuronal processes (Misgeld, 

Kerschensteiner et al. 2007; Kang, Tian et al. 2008; Sheng and Cai 2012), we found that a 

subpopulation of mitochondria is highly mobile in heterozygous control dopaminergic 

neurons (figure 3.5 A). In contrast, mitochondrial transport is minimal in Mfn2-null 

neurons (figure 3.5 B). In heterozygous controls, 50% of photoconversion experiments 

resulted in at least one transport event, defined as directed movement for 5 mm. In Mfn2 

mutants, only 14% of photoconversion experiments showed a transport event  (Figure 3.5 

C). Additionally, mobile mitochondria in mutant dopaminergic neurons exhibit more 

intermittent movements and longer immobile periods. As a result, the average velocity for 

mitochondria in Mfn2-null slices is also slower relative to controls, 0.05 µm/s versus 0.15 

µm/s (figure 3.5 D). 
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DISCUSSION 

Several genes associated with familial PD—including PINK1, Parkin, DJ-1, and 

LRRK2—have been associated with mitochondrial dynamics. As a result, we sought to 

understand the role of mitochondrial dynamics in the nigrostriatal pathway. We deleted the 

mitofusins Mfn1 and Mfn2 from a subset of dopaminergic neurons, including those of the 

SNc. Mfn2 homozygous mutants exhibit severe locomotive defects, which are preceded by 

the loss of dopaminergic efferents to the striatum. Importantly, these mice show 

dopaminergic depletion in the striatum and motor deficits weeks earlier than the loss of 

nigral neurons. This sequence of pathological findings is consistent with retrograde 

degeneration, in which neuronal deficits initiate distally in the axon terminals and progress 

backwards to the cell bodies. Interestingly, pathological studies of PD brains have 

suggested a similar dying back mode of neurodegeneration based on the disproportionate 

loss of striatal dopamine relative to the neuronal loss in the SNc (Hornykiewicz 1998; 

Cheng, Ulane et al. 2010). Administration of MPTP to rhesus monkeys also produces this 

differential pattern of neuronal damage (Pifl, Schingnitz et al. 1991).   

We found that dopaminergic neurons lacking Mfn2 have a prominent defect in 

mitochondrial content and transport in neuronal processes. This latter observation supports 

growing evidence that the mitofusins are important for mitochondrial movement (Chen, 

Detmer et al. 2003; Misko, Jiang et al. 2010). Mechanistically, this link may be related to 

the observation that Mfn2 can co-immunoprecipitate with exogenously expressed Miro and 

Milton, which are important components for kinesin-mediated transport of mitochondria 

along microtubules (Misko, Jiang et al. 2010).   
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The identification of PD-related genes, such as a-synuclein, PINK1, Parkin, DJ-1, 

and LRRK2, has led to the development of numerous mouse models of PD. Although some 

of these models show modest decreases of striatal dopamine and associated motor 

impairments, they generally fail to recapitulate the progressive loss of dopaminergic 

neurons that is the pathological hallmark of PD (Dawson, Ko et al. 2010; Chesselet and 

Richter 2011). We find that dopaminergic neurons deficient in Mfn2 exhibit early deficits 

at the nerve terminals and progressive loss over the course of several months. The time 

span between distal defects and cell loss presents a window for investigating the cellular 

mechanisms leading to degeneration of dopaminergic neurons. 
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MATERIALS AND METHODS 

Generation of Mfn mutant mice. Conditional mouse lines of Mfn1 and Mfn2 have been 

previously described (Chen, McCaffery et al. 2007).  The PhAM Cre reporter is detailed 

(Pham, McCaffery et al. 2012). The Slc6a3-Cre driver was obtained from the Jackson 

Laboratory (B6.SJL-Slc6a3tm1.1(cre)Bkmn/J). All experiments were approved by the 

Caltech Institute Animal Care and Use Committee. 

 

Open field test. Animals were placed in a 50 cm by 50 cm white Plexiglass box and 

allowed an adaptation period of 30-60 minutes prior to being analyzed. Activity was 

recorded for two consecutive sessions, each lasting 15 minutes, by a ceiling-mounted video 

camera. The Ethovision software (Noldus, Leesburg, VA) was used to measure the 

distance, velocity, rearing frequency, and immobility of the mice.   

 

Histological analysis. Animals were sacrificed after anesthesia with halothane. Brains 

were dissected and fixed overnight at 4°C in 10% neutral buffered formalin. The caudal 

portions of the brains were trimmed in an acrylic matrix (2 mm from the end) before 

specimens were mounted and sectioned with the Leica VT1200S vibratome. Brains were 

sliced into consecutive sections of 50 µm for the striatum or 35 µm for the midbrain. For 

counting, every 4th midbrain slice was processed for TH (1:1000, Chemicon) 

immunohistochemistry following the manufacturer's protocol (Vectastain elite ABC kit, 

Vector Labs). To enhance antigenicity, slides were boiled for 40 min in 10 mM sodium 

citrate buffered at pH 6. Sections were developed with 3,3'-diaminobenzidine and 

subsequently immersed in a 0.1% cresyl violet acetate solution for Nissl counterstain. Each 
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slide contained a set of homozygous, heterozygous, and wild-type samples to minimize 

staining variability between samples. Two reviewers, blinded to the genotypes, counted 

TH-immunoreactive and Nissl-positive cells at 100X magnification. For each animal, 9 

sections spanning the midbrain were counted. Total counts from the heterozygotes and 

homozygotes were normalized to the age-matched wild-type controls. Densitometry of the 

TH signal in the striatum has been described (Gunapala, Chang et al. 2010). Briefly, the 

Nikon Elements software was used for computer-assisted measurement of TH intensity in 

the striatal area. The same threshold was maintained across all samples on the slide. For 

each animal, 3 sections, spanning the rostral-caudal extent of the striatum, were measured, 

summed, and normalized to wild-type measurements.  

 

Imaging and microscopy analysis. Images were acquired on a Zeiss LSM 710 confocal 

microscope using EC-Plan-Neofluar 40X/1.3 oil or Plan-Apochromat 63X/1.4 oil 

objectives. Z-stack acquisitions oversampled twice the thickness of the optical slice, and 

Zen 2009 analysis software was used for maximum z-projections. To photoconvert 

Dendra2, a small region was irradiated with the 405 nm laser (4% laser power) for 60 

iterations at a scan speed of 6.3–12.61 µs/pixel. For live imaging, slices were submerged in 

Tyrode’s buffer (Sigma) supplemented with 25 mM HEPES and 6.5mg/mL glucose and 

stabilized with a slice anchor (Warner Instruments). Slices were imaged on a stage-top 

heated platform maintained at 35°C. Four fields were imaged in each slice and time-lapse 

movies were acquired at 20 s intervals for 15 minutes. Custom macros were written for 

ImageJ software to produce kymographs and to measure velocity traces. In quantifying 

mitochondrial area, noise reduction in maximally z-projected images utilized the median 
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and Liptschitz top hat filters. Subsequently, the dynamic thresholding plugin was applied to 

segment mitochondria, and the Analyze particles algorithm in ImageJ provided quantitation 

of mitochondrial signal. Manual counts of mito-Dendra2-positive cells in the z-stacks used 

the Cell counter algorithm.  

 

Organotypic slice cultures. Preparations of sagittal organotypic slices have been described 

(Kearns, Scheffler et al. 2006). We made modifications to the angle of sectioning to 

improve preservation of nigrostriatal projections (Beurrier, Ben-Ari et al. 2006).  The 

rotating magnetic stage from the Leica VT1200S vibratome was tilted so that sections 

could be acquired between 10° and 15° from the midline. Pups were sacrificed at postnatal 

day 10-12. Typically, only two slices (one per hemisphere) of 330 µm thickness contained 

the nigrostriatal pathway. Slices acquired between 1 mm and 1.2 mm lateral from the 

midline were retained for culturing. Cultures were fed 3 times a week using Stoppini media 

(Stoppini, Buchs et al. 1991). Brain slices were equilibrated in culturing conditions for at 

least 2 weeks prior to experimentation. For immunofluorescence, membranes around the 

slices were trimmed and fixed in 4% paraformaldehyde-lysine-periodate overnight at 4°C. 

Slices were permeabilized with 1% Triton X-100 for 30 minutes and incubated with 

blocking buffer (2% goat serum, 1% BSA, and 0.1% Triton-X100) for 4-6 hours at room 

temperature. Samples were incubated with anti-TH antibody overnight at 4°C, followed by 

secondary antibody (goat anti-rabbit IgG Alexa 568, Molecular Probes) for 2 hours. 
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FIGURE LEGENDS 

Figure 3.1. Growth defect in Mfn2 mutant mice. (A) Mating scheme. Slc6a3-Cre is 

controlled by the dopamine transporter locus and expressed in a subset of dopaminergic 

neurons, particularly the SNc, VTA, and retrorubral field (RRF) (Bäckman, Malik et al. 

2006).  (B) Representative image of a 22 week old Mfn2 mutant (Mfn2-/-) compared to a 

heterozygous littermate (Mfn2+/-). Note the small size and severe kyphosis of the Mfn2 

mutant. (C) Plot showing weekly weight measurements. Each point represents the average 

weight ± SEM (n = 10-15 for each genotype and sex). Both male and female Mfn2 mutants 

are significantly smaller (p < 0.05, two-tailed Student t-test) than control animals by 5 

weeks of age. 

 

Figure 3.2. Longitudinal analysis of locomotive activity in Mfn2 mutants. (A) 

Representative traces from open field analysis. The traces represent spontaneous movement 

in an open field during a 15-minute observation period. The genotypes and ages of the mice 

are indicated. The black square indicates the starting position of the mice. The open field 

analysis was quantified to obtain the (B) distance traversed, (C) average velocity, (D) 

rearing frequency, and (E) immobile periods between activity. In all graphs, values from 

the heterozygous and homozygous animals were normalized to that of the wild-type 

controls, and error bars represent propagated standard error. The Student t-test was used to 

obtain p-values between Mfn2 mutants and wild-type controls (* p < 0.05; ** p < 0.001; n 

= 6-10 animals per age and genotype).   
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Figure 3.3. Retrograde degeneration of SNc dopaminergic neurons. (A) Dopaminergic 

projections to the striatum (Str), nucleus accumbens (NAc), and olfactory tubercle (OT). 

The diagram delineates these regions. Sections were stained with TH antibody to label 

dopaminergic projections (brown pigment). At 3 weeks of age, Mfn2 mutant animals show 

decreased TH-immunoreactive terminals in the dorsolateral striatum (outlined region). 

Later time points reveal widespread loss in the striatum. VTA projections to the Ac and OT 

are still present, albeit reduced, at 11 and 14 wks (outlined regions in bottom 2 panels). (B) 

Dopaminergic neurons at the SNc and VTA. Sections of the midbrain were stained with 

TH and counterstained with Cresyl violet (blue) to identify dopaminergic neurons. At 11 

and 14 weeks, the Mfn2 mutants exhibit reduced staining in the SNc, whereas the VTA is 

relatively preserved. The SNc and VTA regions are outlined. (C) Quantification of TH-

staining. Measured values of TH-positive signal from heterozygous and homozygous 

animals were normalized to wild-type controls. For each animal, 3 sections were measured. 

The Student t-test was used to obtain p-values (* p < 0.05; ** p < 0.001; n = 3-6) and error 

bars represent propagated error. (D) Quantitation of dopaminergic cell loss in the SNc. 

Counts from heterozygous and homozygous animals were normalized to wild-type controls 

(n = 3 for ages and genotype). For each animal, 9 sections spanning the rostro-caudal extent 

of the midbrain were manually counted. Statistical analysis was performed as in (C). (E) 

Magnified images of (B) showing loss of dopaminergic neurons and processes in Mfn2 

mutant.   

 

Figure 3.4. Mitochondrial fragmentation and depletion in slice cultures of Mfn2 mutants. 

Cre-mediated expression of mito-Dendra2 labels dopaminergic neurons. (A) Slice cultures 



 

 

78 

of heterozygous controls and Mfn2 mutants. Slices were immunostained with TH (red). The 

first column shows a merged image of TH and mito-Dendra2 fluorescence (green) while 

the last column is an enlargement of the boxed zone. The asterisks highlight degenerating 

Mfn2-null neurons that have diminished or absent TH staining. (B) Mito-Dendra2 signal in 

neuronal projections. Marked depletion of mitochondria in both proximal and distal 

processes is evident in Mfn2 mutant slices. (C) Quantification of mitochondrial mass 

normalized to the number of dopaminergic neurons. For each sample, the total mito-

Dendra2-positive area in a 5 mm x 5 mm region was measured and normalized to the 

number of Dendra2-positive neurons. Mitochondrial mass is reported as percentage area of 

heterozygous control ± SEM. The Student t-test was used to evaluate statistical significance 

(* p < 0.001; n = 5 for mutant slices; n = 7 for control). Scale bar is 10 µm for all images.   

 

Figure 3.5. Decreased mitochondrial transport in Mfn2 mutant cultures. (A) A 

representative tracking experiment of an Mfn2 heterozygous control.  A subset of 

mitochondria in the nerve process was photoconverted to red for time-lapse imaging. The 

image collection from the photoconverted signal was processed into a kymograph to 

visualize mitochondrial movement (binary image). Velocity measurements were calculated 

from the red tracks that overlay mitochondrial trajectories. (B) Representative tracking 

experiment in an Mfn2 mutant showing loss of mitochondrial transport. (C) Quantification 

of mitochondrial transport in neuronal processes. For each region of photoconversion, a 

positive event was defined as directed movement of more than 5 µm during the 15 minute 

imaging session. The graph shows the frequency of photoconversion experiments that 

resulted in at least one positive event. For Mfn2 heterozygous slices, 150 regions were 
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scored; for Mfn2 mutant slices, 138 regions were scored. The Student t-test was used to 

calculate statistical significance (** p < 0.001 ). (D) A scatter plot of the average velocity 

of moving mitochondria. The red dots indicate the population averages ± SD. Statistical 

significance was calculated as in (C) (n = 138 mitochondria in heterozygous slices, n = 38 

mitochondria in mutant slices). Scale bar is 5 µm for all images. 

Figure 3.6. Analysis of Mfn1-null mice. Representative images of TH-immunoreactivity in 

(A) striatum and (B) midbrain at 22 weeks of age. No loss of TH signal is evident in the 

striatum or the SNc. Open field summary of (C) total distance, (D) average velocity, (E) 

rearing frequency and (F) immobile duration. Results of heterozygous and homozygous 

Mfn1 mutants were normalized to wild-type controls.  Error bars represent propagated 

standard error. 

 

Figure  3.7. Comparison of Mfn-double mutants with Mfn2 mutants in the open field test. 

(A) Total distance traveled during a 15-minute period of observation. (B) Average velocity 

exhibited by animals. (C) Rearing frequency. (D) Average duration of immobility between 

bouts of activity. In all calculations, values were normalized to wild-type controls and error 

bars indicate the propagation of standard error. The Student t-test was used to calculate 

statistical significance (n=3-9 animals). * p < 0.05; ** p < 0.01; *** p < 0.001. 
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Figure 3.1 
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Figure 3.2 
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Figure 3.3 
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Figure 3.4 
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Figure 3.5 
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Figure 3.6 
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Figure 3.7 
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INTRODUCTION  

Live-imaging analysis of mitochondria in different cell types demonstrate that 

mitochondria are dynamic organelles that continually remodel its size and shape and 

actively redistribute throughout the cells.  However, in ultrastructural images of skeletal 

muscles, mitochondria appear as doublets rigidly organized along the electrodense Z-discs 

(Ogata and Yamasaki 1997).  Multiple reports have suggested an important role for 

mitochondrial dynamics in muscle function and development (Bo, Zhang et al. 2010; Chen, 

Vermulst et al. 2010; Zorzano, Hernandez-Alvarez et al. 2010).  In particular, decreased 

expression of Mfn2 has been detected in skeletal muscles of obese and diabetic patients and 

obese rodent models (Bach, Pich et al. 2003; Bach, Naon et al. 2005).  These studies 

suggest that mitochondrial dynamics may be critical regulators of muscle function. 

However, assessment of mitochondria in live skeletal muscles has been precluded by the 

lack of tools available for imaging mitochondria in tissues.  By using the mouse lines we 

have previously developed with photoactivatable mitochondria (PhAM), we explore and 

characterize the dynamic properties of mitochondria.  

Muscles are composed of multinucleated myofibers that extend the length of the 

muscle.  Myofibers compose single cell units in muscle tissue.  Postnatal development of 

skeletal muscles is a dynamic period that involves rapid changes in myofiber size and 

architecture of organellar networks.  Between the postnatal ages of 7 and 21 days, the fast 

twitch extensor digitorum longus (EDL) muscle undergoes significant hypertrophy, 

characterized by the expansion of myofiber cross-section and accumulation of myonuclei 

attributed to fusion of satellite cells (White, Biérinx et al. 2010).  Maturation of the triad 

connections between the sarcoplasmic reticulum, mitochondria, and the transverse T-
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tubules also occur during this stage (Boncompagni, Rossi et al. 2009).  A past study from 

our lab has shown that mitochondrial fusion plays an important role for the development of 

fast twitch muscles and the maintenance of mitochondrial DNA integrity (Chen, Vermulst 

et al. 2010).  In support of these findings, we demonstrated in chapter 2 that mitochondrial 

network undergoes dramatic rearrangement during postnatal development of the extensor 

digitorum longus (EDL) muscle, a fast twitch muscle.  Developing muscles exhibited 

tubular interconnected mitochondria oriented along the long axis of the myofiber.  In adult 

EDL muscles, mitochondria rearrange as fragmented doublets aligned at the Z-discs.  The 

tubular morphology of mitochondria in young muscles suggests that rates of mitochondrial 

fusion may be occurring more frequently in developing muscles.  In this chapter, we take 

advantage of the photoswitchable properties of Dendra2 in the PhAM mouse lines to 

quantify mitochondrial fusion during muscle development.  

Muscle fibers are classified by its contractile, metabolic, and molecular properties.  

Fast twitch muscle fibers exhibit higher contraction and faster fatigue rates relative to slow 

twitch fibers.  Furthermore, fast twitch fibers are more reliant on glycolysis for ATP 

synthesis while slow twitch fibers mainly utilize aerobic respiration to generate fuel.  The 

compositions of the myosin heavy chains, part of the contractile units in muscles, also 

differ between fiber types (Schiaffino, Gorza et al. 1989; Schiaffino and Reggiani 1994). 

Recent reports support the existence of fiber-type specialization of mitochondrial function 

(Leary, Lyons et al. 2003; Picard, Hepple et al. 2012).  

Although the multinucleated organization of myofibers suggests that individual 

muscle cells act as a syncytium, there are numerous evidences to suggest that myofibers are 
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compartmentalized.  Serial sections of different rodent muscles demonstrate isolated 

segments of atrophy within the fiber that correlated with age (Cao, Wanagat et al. 2001; 

Wanagat, Cao et al. 2001; Bua, McKiernan et al. 2002).  These segments of sarcopenia, 

loss of muscle mass with aging, exhibited diminishment of mitochondrial-encoded 

enzymes involved in the electron transport system and an accumulation of deleted 

fragments of mitochondrial DNA (mtDNA) (Cao, Wanagat et al. 2001; Wanagat, Cao et al. 

2001; Bua, McKiernan et al. 2002).  Interestingly, the positional correlation between fiber 

atrophy and mitochondrial defects suggests a causal link between mtDNA deletions and 

sarcopenia (Herbst, Pak et al. 2007; Hiona and Leeuwenburgh 2008).  Similar serial 

analysis in aging muscles from humans also shows detrimental accumulation of mtDNA 

deletions in fiber segments with defects in the electron transport system (Bua, Johnson et 

al. 2006).  These pathological findings suggest that myofibers may have functionally 

independent compartments wherein a damaged region can be isolated from the remaining 

healthy parts of the fiber.  Nonetheless, the segmentation of myofibers has never been 

directly visualized under nonpathological states.  

Muscle fibers are complex tissues that exhibit dynamic changes in structural and 

organelle compositions during various stages, including development, adaptation, and 

aging.  Multiple lines of evidence suggest that mitochondrial properties may also fluctuate 

in response these transitions.  In this chapter, we apply the PhAM mouse models to assess 

mitochondrial morphology and metabolic properties during development.  We also 

compare mitochondrial profiles across fiber types.  To explore the compartmentalization of 

myofibers, we describe a novel system that enables quantification and comparison of 

muscle segments in different fiber types.    
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RESULTS 

Developing fast twitch muscles exhibit higher rates of mitochondrial fusion 

In chapter 2, we previously showed that young EDL muscles exhibited more 

tubular mitochondria oriented along the long axis of the myofiber.  To determine whether 

these elongated mitochondria result from higher fusion of decreased fission rates, we 

directly quantified mitochondrial fusion.  We utilized the PhAMexcised line which expresses 

mito-Dendra2 ubiquitously to assess mitochondrial morphology and dynamics in the EDL 

muscle.  The photoswitchable properties of mito-Dendra2 enable quantification of 

mitochondrial fusion based on the dilution of the photoconverted signal.  A subset of 

mitochondria in the myofiber has been photoswitched to red fluorescence and the red signal 

is monitored over time (Figure 4.1).  A positive fusion event is characterized by an increase 

in the area of photoconverted signal and a corresponding decrease in the intensity of the 

original mitochondrion. In a young EDL myofiber, several mitochondrial fusion events are 

indicated while a representative adult EDL myofiber shows minimal changes in the area or 

intensity of the red signal (Fig 4.1 A and B).  To quantify the frequency of myofibers with 

fusing mitochondria, we determined the number of myofibers that exhibited a statistically 

significant change in the intensity of photoconverted signal  by the end of the timelapse.  

We noted that fusion events were detected in 43% of myofibers at postnatal ages between 9 

and 13 days (Fig 4.1C).  The frequency of mitochondrial fusion events decreases as the 

muscle develops into adulthood.  By 4 months old, only 18% of myofibers exhibited 

mitochondrial fusion within the observation period.   

Mitochondrial profile is fiber-type dependent 
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From chapter 2, we noted that mitochondrial network rearranges from tubular to 

fragmented doublets during the development of the EDL muscle.  We decided to extend the 

analysis toward oxidative type I fibers such as the soleus.  Interestingly, oxidative 

myofibers retained tubular mitochondrial network along the long axis of the fiber (figure 

4.2 C and D).  Consistent with published reports, there is a striking difference in 

mitochondrial mass, with the soleus exhibiting higher mitochondrial content (Picard, 

Hepple et al. 2012).  In contrast, mitochondrial network in the EDL appear more scarce and 

oriented along the transverse axis of the myofiber (figure 4.2 A and B).  To determine 

whether there are differences in mitochondrial function between these fibers, we utilized a 

mitochondrial dye called TMRM that is readily uptaken by metabolically active 

mitochondria.  We observed that mitochondria in the soleus exhibited intense uniform 

TMRM signal, which is consistent with a higher metabolic status for oxidative fibers 

(figure 4.3 E-H).  In the EDL, the TMRM staining is more heterogeneous (figure 4.3A).  

Myofibers that have elongated mitochondria and high mitochondrial density show greater 

uptake of the dye whereas the myofibers with sparse and punctate mitochondria exhibit less 

TMRM intensity (figure 4.3 B-D). 

A tool for measuring mitochondrial domains in myofibers 

To assess whether myofibers have distinct functional domain of mitochondria, we 

designed a mosaic fluorescent reporter system for visualizing mitochondria in myofibers.  

Previously, we generated a PhAMfloxed line that relies on Cre recombinase for expression of 

mito-Dendra2.  To create a system wherein Cre recombinase is sparsely expressed in the 

myofiber, we took advantage of the developmental transitions during postnatal growth of 
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muscle. During the first three weeks of postnatal development, myofibers undergo 

significant hypertrophy, which is characterized by an increase in the size and number of 

myonuclei per myofiber (White, Biérinx et al. 2010).  Myofiber hypertrophy is attributed to 

the differentiation of satellite cells, the muscle stem cells, into myoblasts and the 

subsequent incorporation of myoblasts into the myofiber (Seale and Rudnicki 2000; Seale, 

Sabourin et al. 2000; Zammit, Relaix et al. 2006).  Since the regions where myoblast-

derived satellite cells fuse with myofibers occur at random, a Cre driver expressed in 

satellite cells provides a way to achieve sparse distribution of Cre-positive myonuclei.  We 

selected the Pax7-CreER driver (Lepper and Fan 2010) because Pax7 expression is 

restricted to satellite cells and the tamoxifen inducible Cre provides further tunable 

induction of Cre.  

In a preliminary study, we crossed the Pax7-CreER line with the PhAMfloxed/floxed 

line and analyzed young EDL muscle from the pups.  Consistent with a previous study 

which reported some leaky activity of CreER in the absence of tamoxifen induction 

(Nishijo, Hosoyama et al. 2009), we observed excision of the floxed terminal signal and 

expression of mito-Dendra2 in the myofibers (figure 4.4A).  In this system, the leakiness of 

CreER activity provided stochastic and mosaic expression of mito-Dendra2 that is 

conducive for assessing the mitochondrial domain along the myofiber.  In live-imaging 

analysis, we used TMRM as a counterstain for identifying healthy and metabolically active 

myofibers.  When mito-Dendra2 signal is measured along the longitudinal axis of the 

myofiber, the fluorescence is distributed as individual peaks demonstrating that the 

myonuclear compartment is discrete (figure 4.4 B and C).  Furthermore, the multimodal 
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distribution of mito-Dendra2 also suggests that the mitochondrial network may be 

compartmentalized along the myofiber. 

Since our previous observations showed a drastic difference in mitochondrial 

profiles across fiber types, we applied a similar analysis to examine the soleus muscle.  In 

contrast to the EDL, discrete mito-Dendra2 peaks were difficult to identify (compare figure 

4.5 A and B).  By plotting the intensity of mito-Dendra2 along the horizontal axis of the 

myofiber, it is evident that the peak widths of the soleus myofibers are broader (compare 

figure 4.5 C-F).  The expansive activation of mito-Dendra2 may make it difficult to 

measure the muscle compartmentalization in the soleus.  Nonetheless, the diffuseness of 

the mitochondrial domain in the soleus is striking and may be attributed to any of the 

following scenarios.  In the first scenario, more incorporation of myoblast-derived satellite 

cells along the myofiber may result in higher numbers of Cre positive myonuclei.  A 

second possibility could be that the myonuclear compartment is larger in oxidative fibers.  

And lastly, frequent rates of mitochondrial fusion and exchange of matrix content may 

increase the spread of the mito-Dendra2 signal.  Future studies aimed at elucidating the 

mechanisms underlying our observations may yield insights into how mitochondrial 

networks may determine or affect the physiology of different fiber types.   
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DISCUSSION  

Mitochondrial dynamics play important roles for the health and maintenance of 

muscle tissues.  However, few studies have explored the dynamics of mitochondria in the 

complexities of muscle development or different fiber types.  In this chapter, we applied the 

PhAM mouse lines to elucidate mitochondrial properties in muscle tissues.  We showed 

that mitochondrial fusion decreases with maturation of myofibers, but this phenomena is 

fiber-type dependent.  Oxidative muscles such as the soleus retain the elongated and 

interconnected mitochondrial network into adulthood, whereas the fast-twitch EDL muscle 

switch to fragmented doublets with maturation.  Using TMRM staining as a measure of 

mitochondrial metabolism, we observed that myofibers with elongated mitochondria 

exhibited greater retention and uptake of TMRM irrespective of the fiber type.  In the EDL, 

TMRM intensity was heterogeneous with myofibers having predominantly tubular 

mitochondria showing higher TMRM signal.  Although the EDL muscle is considered fast 

twitch containing mostly glycolytic components, 4% of myofibers in the EDL are oxidative 

in origin (Agbulut, Noirez et al. 2003).  It is unclear whether the fibers with higher TMRM 

intensity belong to the oxidative type.  Since the tools for classifying myofibers in live 

tissues are limiting, future studies are needed to clarify the link between mitochondrial 

morphology and mitochondrial membrane potential.  Nonetheless, several studies have 

observed the correlation between loss of mitochondrial fusion and diminished membrane 

potential (Chen, Detmer et al. 2003; Olichon, Baricault et al. 2003).  Consistent with the 

previous reports, we found that myofibers with fragmented mitochondria exhibited dimmer 

TMRM in the EDL muscle.   
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To assess whether the multi-nucleated organization of myofibers behave as a 

syncytium or discrete compartments, we have designed a powerful platform for visualizing 

the mitochondrial domain contributed by individual myonuclei.  We achieved a low 

stochastic distribution of Cre positive myonuclei using Pax7-CreER to track sites of 

myoblast fusion into the myofiber.  The leaky activity of CreER afforded minimally mosaic 

expression of mito-Dendra2 to track the mitochondrial domain in the myofiber.  Our 

analysis demonstrated that glycolytic muscles such as the EDL exhibit more segmentation 

compared to the oxidative soleus muscle.  The mito-Dendra2 fluorescence in the EDL was 

easily resolved into single or multimodal peaks whereas the soleus muscle showed diffuse 

distribution of mito-Dendra2 signal.  Interestingly, studies have observed that fast twitch 

glycolytic muscle undergo greater susceptibility to segmental sarcopenia and mitochondrial 

defects (Wanagat, Cao et al. 2001; Bua, McKiernan et al. 2002). Taken together, our 

findings are consistent with a model wherein glycolytic muscles have discrete 

compartments that may be apt for containing and segregating defects along the myofiber.  

Future studies will need to explore how the expansive compartments in oxidative fibers are 

protective for sarcopenia.  Our characterization of tubular mitochondria in the soleus 

muscle suggests that the larger compartment may result in greater complementation of 

defects, and thereby may confer protection against metabolic defects and sarcopenia.  Our 

characterization of mitochondrial dynamics in skeletal muscles may lead to a better 

understanding of mechanisms underlying myopathies.  
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MATERIALS  AND METHODS 

Mouse colonies and mating.  Generation of the PhAM mouse lines has been described 

(Anh, Michael et al. 2012).  The Pax7CreER driver was obtained from the Jackson 

Laboratory (B6;129-Pax7tm2.1(cre/ERT2)Fan/J).  All experiments were approved by the 

Caltech Institute Animal Care and Use Committee. 

 

Muscle preparation.  Animals were euthanized by halothane.  Whole EDL or soleus 

muscles were dissected and rinsed in Tyrodes salt solution (Sigma T2145) containing with 

1 g/L of bicarbonate and 25 mM HEPES and pH to 7.4.  For mitochondrial fusion 

measurements, muscles were imaged in DMEM (Gibco, 21063-029) supplemented with 1 

mM sodium pyruvate (Gibco), 10% heat-inactivated horse serum, and 1X of penicillin-

streptomycin (Gibco).  For TMRM staining, muscles were transferred to DMEM (Sigma, 

D5030) supplemented with 2 mM of sodium pyruvate, 5 mM of D-glucose, 10% dialyzed 

horse serum, 1X penicillin-streptomycin, 25 mM HEPES, and pH to 7.4.  Muscles were 

incubated with 200 nM of TMRM for 3 hrs at 37°C prior to live imaging.    

 

Imaging analysis.  Images were acquired on a Zeiss LSM 710 confocal microscope using 

Plan-Apochromat 63X/1.4 oil or Plan-Apochromat 20X/0.8 objectives.  Z-stack 

acquisitions oversampled twice the thickness of the optical slice.  To photoconvert 

Dendra2, a small region was irradiated with the 405 nm laser (4% laser power) for 90 

iterations at a scan speed of 6.3–12.61 µs/pixel.  For live imaging, muscle samples were 

placed in a coverglass bottom dish, stabilized with a slice anchor (Warner Instruments), and 

imaged on a stage-top heated platform maintained at 35°C.  To measure mitochondrial 
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fusion, one region per myofiber was photoswitched and recorded for 20 minutes at 1 min 

intervals.  Myofibers were recorded over a Z-depth of 4 µm, and 4-5 regions of the tissue 

would be imaged during the experiment.  Custom scripts were written in Matlab by Dr. 

Prashant Mishra to analyze the voxel intensity over time and to apply the two-sample 

Kolmogorov-Smirnov test for statistical comparison.  A fusion event is scored when there 

is statistically significant differences between the voxel intensities at the beginning and the 

bend of the time lapse.  To avoid drifting artifacts that may change voxel intensities, the 

last 3-5 frames of the time lapse must be statistically significant for a fusion event to be 

scored.  

The ImageJ software was used to generate line analysis of mitochondrial 

compartments in myofibers.  Briefly, myofibers were straightened and the Plot algorithm 

measured intensity values along a drawn line of 200 µm thickness. 
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FIGURE LEGENDS 

Figure 4.1.  Mitochondrial fusion declines with age in EDL.  Mitochondrial fusion was 

monitored over a duration of 20 minutes in EDL muscles at indicated ages.  (A) 

Representative images of a young myofiber wherein a subset of mitochondria was 

photoswitched (colored red) and tracked.  The heat map shows the photoconverted signal at 

the beginning and the end of the time lapse.  The heat intensity values are indicated by the 

gradient.  Mitochondrial fusion results in a spread of the photoconverted signal and a 

concurrent decrease in intensity (denoted by arrowheads).   Scale bar is 5 µm.  (B) 

Representative images of adult EDL.  (C) Quantification of myofibers that exhibits 

fusogenic mitochondria at various ages.  A positive fusion event is scored when there is a 

statistically significant change (p < 0.05) in the intensity of the photoconverted signal by 

the end of the recording. n = 24-56 myofibers for each age group. 

Figure 4.2.  Mitochondrial morphology is dependent on muscle type.  Mitochondrial 

profile in adult EDL (A and B) and soleus (C and D) muscles at 3.5 months of age.  Last 

column shows magnified images of the boxed regions.  Scale bar 10 µm. 

Figure 4.3.  Myofibers with tubular mitochondria exhibit higher membrane potential.  

TMRM staining of myofibers in the EDL (A-D) and soleus (E-H) muscles at 3 months of 

age.  The intensity of TMRM signal is shown in the gradient.  (B-D) Magnified images of 

the boxed zones in (A).  Although most myofibers in the EDL have low TMRM signal, a 

myofiber containing tubular mitochondria exhibit TMRM staining that is comparable to 

soleus myofibers.  (F-H) Magnified images of boxed regions in (E).  Scale bar 10 µm. 
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Figure 4.4.  Discrete mitochondrial domains along the myofiber.  EDL muscle was 

isolated from offsprings of the Pax7CreER/PhAMfloxed/floxed mating at the postnatal age of 15 

days.  TMRM staining (red) was used as a counterstain for healthy myofibers. (A) Minimal 

mosaic activation of mito-Dendra2 (green) demonstrates compartments of mitochondrial 

network within the myofiber.  (B and C)  Mito-Dendra2 images of the labeled myofibers in 

(A) after linearizing along the horizontal axis of the myofiber.  (D) Histogram showing the 

summed intensity of mito-Dendra2 signal along the horizontal axis of (B).  (E) A similar 

plot analysis for (C).  Scale bar 10 µm.   

Figure 4.5.  Expansive mitochondrial domain in the soleus muscle.  EDL (A) 

and soleus (B) muscles were isolated from animals in the Pax7CreER/PhAMfloxed/floxed 

mating at 3 months of age.  Single channel images of mito-Dendra2 signal are shown in the 

first column.  The merged images contain TMRM counterstain (red).   The last column 

shows magnified images of the respective boxed region.  (C and D) Intensity plots of the 

EDL myofibers labeled in (A).  (E and F) Intensity plots of the soleus myofibers in (B).  

Scale bar 10 µm. 
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FIGURES 
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Figure 4.2 
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Figure 4.3 
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Figure 4.4 
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Figure 4.5 
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C h a p t e r  5  

FUTURE DIRECTIONS 

Although it is evident that mitochondrial dynamics is critical for the survival of 

many cell types, the function of mitochondrial fusion in cellular physiology is evolving as 

more tools are generated for monitoring mitochondria in tissues and disease models.  

Future avenues for research include elucidating other mechanistic roles for mitofusins in 

primary cells, assessing the redundancy of mitofusins in multiple tissues, and exploring the 

mitochondrial dynamics in sarcopenia. 

 

Roles of Mitofusins in Primary Cells 

Although mitofusins have been classically associated with mediating mitochondrial 

fusion, multiple lines of evidences suggest that these GTPases have potential roles in ER 

tethering, maintaining mtDNA, and organelle trafficking (Baloh, Schmidt et al. 2007; 

Detmer, Velde et al. 2007; de Brito and Scorrano 2008; Chen, Vermulst et al. 2010; Misko, 

Jiang et al. 2010).  It is unclear whether mitofusins directly mediate these processes or exert 

indirect impact.  Live imaging of fluorescently labeled ER and mitochondria may yield 

dynamic interactions between mitochondrial morphology and the ER network.  The 

incorporation of calcium reporters as indicators of ER function may also provide some 

insight into the functional interactions between mitochondrial-ER contacts.  To understand 

the prevalence of mitofusins in protecting mtDNA, it may be worthwhile to determine 

mtDNA levels in our dopaminergic mouse model.  Since a previous report from our lab has 

demonstrated the importance of mitofusins in maintaining the integrity of mtDNA in 
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skeletal muscles (Chen, Vermulst et al. 2010), it would be worthwhile to determine the 

prevalence of this function in different tissues.   

In the case of mediating mitochondrial transport in neurons, studies from our labs 

and others suggest that Mfn2 play an essential role in mitochondrial trafficking in multiple 

neuronal subtypes including the dorsal root ganglion, motor neurons, and dopaminergic 

neurons (Baloh, Schmidt et al. 2007; Detmer, Velde et al. 2007).  A recent report has 

shown that Mfn2 can immunoprecipitate with the motor protein complexes, but the 

mechanistic function of Mfn2 in transport remains elusive (Misko, Jiang et al. 2010).  

Future experiments may be aimed at testing rescue strategies to address whether Mfn2 play 

complementary or independent roles with components of the motor complex.   These 

efforts will be aided by the generation of conditional knockout mouse models of motor 

proteins. 

 It is also important to address these questions in an appropriate cellular model.  

Defects in any of these processes may not be critical for the survival of fibroblast cells or 

cell lines, but may lead to lethal effects in primary and terminally differentiated cells.  

Perhaps the primary and tissue models provide more physiological environments and 

stresses that recapitulate the vulnerability of the cells toward mitochondrial defects.  Using 

the PhAM mouse lines we have generated, it is possible to visualize mitochondrial function 

and dynamics in any tissue or primary cells. 

 

Dissecting the Tissue Specific Redundancy of Mfn1 and Mfn2  

Many studies support a complementary function for both mitofusins, but several 

knockout mouse models suggest a tissue-specific pattern of redundancy.  Results from our 
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dopaminergic animal model clearly demonstrate the lack of defects when Mfn1 is deleted in 

the single or double mitofusin deletion (Pham, Meng et al. 2012).  Similarly, targeted 

deletion of Mfn1 in cardiac tissues or post-placental development causes no defects 

compared to the Mfn2 knockout mutants (Chen, Mccaffery et al. 2007; Papanicolaou, 

Khairallah et al. 2011; Papanicolaou, Ngoh et al. 2012).  These reports suggest that Mfn1 

may be completely redundant to Mfn2.  Nonetheless, in mouse embryonic fibroblasts and 

during placental and skeletal muscle development, Mfn1 exert nonredundant functions with 

Mfn2 for sustaining cell health (Chen, Detmer et al. 2003; Chen, Chomyn et al. 2005; 

Chen, Vermulst et al. 2010).  Further characterization of the relative expression levels of 

mitofusins in specific tissues may help resolve the differential pattern of redundancy 

observed.  The predominant expression of one mitofusin may determine the vulnerability of 

a particular tissue to the abrogation of Mfn1 versus Mfn2.  Interestingly, a recent in vitro 

assay of mitochondrial fusion suggests that heterotypic interactions between Mfn1-Mfn2 

are more efficient (Hoppins, Edlich et al. 2011).  Perhaps the relative expression levels of 

mitofusins may sensitize a particular tissue to defects in mitochondrial fusion.    

 

Mitochondrial Dynamics in Sarcopenia  

Our preliminary analysis of mitochondria in skeletal muscles demonstrates 

differential patterns of mitochondrial dynamics across muscle types and developmental 

transitions.  Studies from human tissues and animal models find a prevalence of 

mitochondrial defects occurring in fast twitch muscles (Wanagat, Cao et al. 2001; Bua, 

McKiernan et al. 2002; Hoppins, Edlich et al. 2011).  These results provide the motivation 

to explore whether these vulnerabilities may be linked to differences in mitochondrial 
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dynamics.  In our Pax7 analysis of mitochondrial domains, we observed variable 

mitochondrial domains between glycolytic and oxidative fibers.  This result suggests that 

the complementation of mitochondrial defects may differ across fiber types.  Whether 

mitochondrial complementation can lead to susceptibilities towards sarcopenia require 

further exploration.  It will be prudent to quantify the exact mitochondrial domain in 

different fiber types and developmental ages. 
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A p p e n d i x  A  

PREPARING PARASAGITTAL ORGANOTYPIC SLICES 

I. Dissection tools 
Scalpel (to cut skin overlying the cranium) 
Two spatula  (filed at one edge to increase sharpness) 
Big blunted scissor (head dissection) 
Iris scissors-delicate (FST 14060-10) 
Forceps to remove cranium 
2 Individually wrapped transfer pipets with fine tip (VWR #414004-037)   
-‐ Cut the fine tip of the pipet to obtain a larger bore size.  This is used to transfer 

tissue sections onto the chamber wells.  
-‐ One uncut fine tip pipet for removing media from the slices on the membrane 
One medium fine brush (Robert Simmons White Sables #3 for transferring sections 
out of the vibratome media chamber 
50 mL conicals to keep brain in submerged in cold 1X GBSS solution before 
sectioning 
Prechilled metal plates as a cold cutting surface 

 
II. Equipment 

Leica vibratome (VT1200S) 
Feather Double Edge Carbon Steel blade razor for tissue chopper (Ted Pella #1219) 
Vacuum filter sterilizer for medium, 0.22 µm pore size (Millipore Stericup & 
Steritop #SCGPU02RE) 
Cell culture incubator at 35°C, 95% air, 5% CO2     
Sterilized culture plate inserts, 0.4 µm membrane thickness (Millipore Millicell 
membrane, 30 mm diameter, #PICM03050) 
6-well culture plates 
12-well culture dishes  
Converters blue film self seal sterilization pouch 5’’ x 10’’ (VWR #11213-241) 

 
III. Reagents 

MEM 1X  
Contains Earle's salts and L-glutamine 
 
MEM 1X (Phenol-red Free) 
Contains Earle's salts and no L-Glutamine 

Invitrogen SKU 11095-080 
 
 
SKU 51200-038 

10X HBSS (Hank’s Balanced Salt Solution) 
No calcium chloride, magnesium chloride, magnesium sulfate, 
sodium bicarbonate, or phenol red 

Invitrogen SKU 14185-052  

Horse serum, heat-inactivated 
EIA tested (negative) serum from a donor herd 

Invitrogen SKU 26050-088  
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1M HEPES buffer solution Invitrogen SKU 15630-080 
100X GlutaMAX I supplement 
200 mM supplied in 0.85% NaCl. Extremely stable in aqueous 
solution. 

Invitrogen SKU 35050-061 Lot# 
612197 

100X Penicillin/Streptomycin 
10,000 U/mL & 10,000 µg/mL (100X stock) 

Invitrogen SKU 15140-122 

 
GBSS (Gey’s Balanced Salt Solution) 
Sterile-filtered, cell culture tested 
Add 6.5mg/mL D-glucose to supplement 

Sigma G9779-500ML  
Lot# 128K2368 

 
IV. Preparation 

a. Autoclave the vibratome plastic media chamber and the following 
dissection equipment in the sterilization pouch.    

1. Scalpel handle 
2. Forceps 
3. Scissors 

b. Spray the fine paint brushes with 70% EtOH to sterilize. 
V. Technique 

a. Add 1 mL of Stoppini media into each well of a six-well plate and place one 
membrane insert into each well.  Keep plate in the incubator to warm during 
the dissection. 

b. Aliquot 1X GBSS supplemented with 6.5 mg/mL of glucose into 12-well 
plate & 50 mL conical. 

c. Place several filter papers on the prechilled metal plates and wet filter paper 
with GBSS solution. 

d. Transect head of P10-P12 pups. 
e. Disinfect the head and scissors with 70% EtOH. 
f. Use the scalpel to make a midline longitudinal cut and push the skin 

rostrally to visualize the skull. 
g.  Use the sharp scissor to cut the cranium at midline from caudal to rostral 

(beginning from spinal cord towards forebrain). 
h. Use forceps to open the cranium and expose the brain.  Gently remove the 

brain from the rostral end (begin at the olfactory tubercle) using a spoon 
spatula. 

i. Place brain in 50 mL conical containing GBSS and place on ice until ready 
for sectioning.  Continue dissecting until 3-4 brains are on ice. 

j. Use a spoon spatula to transfer the brain onto the GBSS wetted filter paper.   
k. Trim the lateral edges of the cortex to create a flat surface for gluing the 

brain on the specimen holder.  Make a longitudinal cut at midline to 
separate the brain hemisphere. 
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l. Place a small strip of tape in the center of the specimen holder and add 2 
drops of glue (one for each hemisphere).  Place the brain hemispheres in 
parallel such that the medial surface faces upward (an open book position). 

m. Position the specimen plate onto the magnetic stage.  Orient the brain such 
that the caudal end (cerebellar end) is closes to the blade.  Tilt the specimen 
at the maximum angle up toward you). 

n. Settings for the vibratome:  
1.  Speed: 0.22 mm/s 
2.  Amplitude: 2.00 mm 
3.  Thickness: 330 um 

o. Keep slices that look like 
the image below (this 
should occur within 3-4 
sections). 

p. Transfer the brain slices 
into 12-well plate (on ice) 
containing GBSS solution 
and keep the plate on ice 
until 6 brains have been 
dissected & sectioned. 

q. Transfer brains onto 
membrane inserts using the large bore transfer pipette.  Remove as much 
GBSS as possible using the fine tip transfer pipette.  Place the 6-well plate 
into the cell incubator. 

r. Change the media 24 hours after the dissection.  Subsequently, feed slices 3 
times per week every other day.  

 
VI. Immunostaining for slice health  

Antibodies Type Host Company Cat# Dilution  
anti-Tyrosine 
Hydroxylase (TH) 

Polyclonal Rabbit Millipore/C
hemicon 

AB152 1:500 IF 

anti-Microtubule 
associated protein 
(MAP2) 

Monoclonal 
(HM-2) 

Mouse Sigma M4403 1:1000 IF 

Fluoro-Jade C Dye  Millipore AG325 0.0001% IHC 
anti-Dopamine 
Transporter 
(DAT) 

Monoclonal Rat Millipore MAB369 1:75 IF 

 
a. Supplies: 

16% Formaldehyde (w/v) [Thermo-Scientific, 10 mL ampules, #28908] 
L-Lysine monohydrochloride [Sigma # L5626] 
Sodium (meta)periodate [Sigma # S1878-25G] 
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Glycine [JT Baker #4059-06] 
Richard-Allan Cytoseal XYL 60 mounting medium [Thermo Scientific #8310-
4] 
Normal Goat Serum 
 

0.2M Sodium phosphate 
monobasic (anhydrous) 

500 mL 
12 g  

200 mL 
4.8 g 

0.2 M Sodium phosphate 
dibasic (anhydrous) 

1L 
28.3 g  

500 mL 
14.2 g 

0.1M PBS (pH 7.3-7.4) 1L 
100 mL sodium phosphate 
monobasic 
400 mL sodium phosphate dibasic 
Add 450 mL ddH2O 
pH to 7.3-7.4 
Add water for total of 1 L 

500 mL 
50 mL sodium phosphate 
monobasic 
200 mL sodium phosphate dibasic 
Add 200 mL ddH2O 
pH to 7.3-7.4 
Add water for total of 500 mL 

Lysine-phosphate buffer 3.66 g L-Lysine 
monohydrochloride 
100 mL ddH2O 
pH to 7.4 with dibasic sodium 
phosphate 
Double the total volume with the 
0.1M PBS 

 

16% Paraformaldehyde  16 g paraformaldehyde in 100 mL 
ddH2O heated slowly to 60°C.  Add 
drops of 1N NaOH with stirring 
until paraformaldehyde dissolves.  
Add 5.4 g glucose. 
 
 

 

Periodate-lysine-
phosphate fixative (~ lasts 
1-2 months if stored at 
4°C) 

10 mL preprepared 16% 
formaldehyde ampule  
0.54 g glucose  
30 mL of lysine-phosphate buffer 
0.084 g periodate 

 

Stop solution (50 mM 
glycine in 0.1M phosphate 
buffer) 

50 mL 
0.1876 g 

200 mL 
0.7507g 

1% Triton X 
permeabilization in 0.1M 
phosphate buffer 

20 mL 
2 mL 10% TX-100 

40 mL 
4 mL 10% TX-100 

Deerinck Block (in 0.1M 
phosphate buffer) 

100 mL 
2 mL Normal Goat serum (2% 
final) 
1 g BSA (1% final) 
2.5 mL of 10% Triton X (0.25% 
final) 

200 mL 
4 mL Normal Goat serum (2% 
final) 
2 g BSA (1% final) 
5  mL of 10% Triton X (0.25% 
final) 

Deerinck working 
solution (for antibody & 
washing) 

100 mL 
0.2 mL Normal goat serum (0.2% 
final) 

200 mL 
0.4 mL Normal goat serum (0.2% 
final) 
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0.1 g BSA (0.1% final) 
1 mL of 10%Triton X (0.1% final) 

0.2 g BSA (0.1% final) 
2 mL of 10%Triton X (0.1% final) 

 
 

b. Protocol 
1. Trim the Millicell insert and transfer the membrane & slice to a 24 well plate 

containing PLP fixative.  Fix for 5 min at 37°C and subsequently fix for O.N. at 
4°C. 

2.  Wash fixative 3X with PBS for 5 min each time. 
3.   Inhibit the fixation with 5 min incubation of 0.1M of glycine 
4.   Permeabilize with 1% Triton-X for 30 min at RT. 
5.   Block in Deerinck block buffer for 4-6 hrs at RT or O.N. at 4°C. 
6.   Apply primary antibody diluted in Deerinck working solution and incubate for 

O.N. at 4°C. 
7.   Rinse primary antibody 3X with PBS for 10 min each time. 
8.   Apply secondary antibody for 2 hrs at RT 

 
1X Gey’s Balanced Salt Solution (GBSS) [1 L] 
pH to 7.1-7.2 (10X solution does not dissolve) 

CaCl2 
CaCl2·2H2O 

0.2251 g 
0.298 g 

MgCl2·6H2O 0.21 g 
MgSO4 (anhydrous) 
MgSO4·7H2O 

0.0342 g 
0.0700 g 

KCl 0.37 g 
KH2PO4 (anhydrous) 0.03 g 
NaHCO3  2.27 g 
NaCl 7.0 g 
Na2HPO4 (anhydrous) 
Na2HPO4·7H2O 

0.1196 g 
0.2258 g 

D-glucose 1.0 g 
Supplement with D-glucose (6.5 mg/mL)  when using for slice preparation 
 
Stoppini Media (100 mL) 

MEM 50 mL 
Heat inactivated horse serum 25 mL 
10X HBSS 1 mL 
1 M HEPES  1 mL 
100X L-GlutaMAX-I  0.5 mL 
 100X L-Glutamine 1 mL 
100X Pen-Strep 1 mL 
ddH2O 18.5 mL 
D-glucose 0.65 g 
pH to 7.2 with NaOH  
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Parkin, an E3 ubiquitin ligase implicated in Parkinson’s disease, promotes degradation of dysfunctional mito-
chondria by autophagy. Using proteomic and cellular approaches, we show that upon translocation to mito-
chondria, Parkin activates the ubiquitin–proteasome system (UPS) for widespread degradation of outer
membrane proteins. This is evidenced by an increase in K48-linked polyubiquitin on mitochondria, recruit-
ment of the 26S proteasome and rapid degradation of multiple outer membrane proteins. The degradation
of proteins by the UPS occurs independently of the autophagy pathway, and inhibition of the 26S proteasome
completely abrogates Parkin-mediated mitophagy in HeLa, SH-SY5Y and mouse cells. Although the mitofu-
sins Mfn1 and Mfn2 are rapid degradation targets of Parkin, we find that degradation of additional targets
is essential for mitophagy. These results indicate that remodeling of the mitochondrial outer membrane
proteome is important for mitophagy, and reveal a causal link between the UPS and autophagy, the major
pathways for degradation of intracellular substrates.

INTRODUCTION

Parkin and PINK1 are Parkinson’s disease (PD)-related pro-
teins that operate in a common pathway to ensure mitochon-
drial integrity (1–5). Recent studies indicate that Parkin
monitors the quality of the mitochondrial population and trans-
locates from the cytosol onto dysfunctional mitochondria (6–
11). Once on mitochondria, it promotes their degradation via
mitophagy, an autophagic pathway specific for mitochondria
(8). Loss of this surveillance mechanism presumably contrib-
utes to the accumulation of degenerative mitochondria
observed in Parkin mutant flies (1,2,4).

Molecular models of Parkin function have evolved over the
last decade. Parkin is an E3 ubiquitin ligase (12), and some
disease alleles have impaired enzymatic activity (6,12,13).
Because PD is characterized pathologically by intracellular
protein aggregates termed Lewy bodies, early models postulated
that Parkin functioned to promote the ubiquitin–proteasome
system (UPS), which is activated by K48-linked polyubiquitina-
tion of substrate proteins (14). Mutation of Parkin would impair

the ubiquitin–proteasome pathway (UPS) of protein degra-
dation, leading to the toxic accumulation of misfolded or aggre-
gated proteins. Since the discovery that Parkin promotes
mitophagy (8), however, recent models have instead empha-
sized the ability of Parkin to mediate K63-linked polyubiquitin
chains, distinct from the classic K48-linked polyubiquitin
chains associated with the UPS. The topology of the polyubiqui-
tin chain linkage determines the cellular outcome of polyubiqui-
tination (15). It has been shown that the K63-linked
ubiquitination of mitochondrial proteins by Parkin activates
the autophagic machinery through recruitment of ubiquitin
binding adaptors, such as HDAC6 and p62/SQSTM1
(6,13,16). The importance of this mechanism requires clarifica-
tion, however, because p62/SQSTM1 null cells have no defect
in Parkin-mediated mitophagy (17,18). Thus, the key molecular
events occurring between Parkin-mediated ubiquitination of
mitochondrial proteins and the degradation of mitochondria
by the autophagic pathway remain unresolved.

To elucidate the proximal function of Parkin, we used quantitat-
ive proteomics to define, in an unbiased and highly comprehensive
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manner, how the mitochondrial proteome changes in response
to Parkin activity. Our results indicate that in addition to
K63-linked polyubiquitination, the K48-mediated UPS pathway
has a major role in Parkin-dependent mitophagy. We observe
robust recruitment of the 26S proteasome onto mitochondria,
leading to widespread degradation of mitochondrial outer mem-
brane proteins via the UPS. Strikingly, activation of the UPS not
only precedes mitophagy, but is required for mitophagy. Inhibition
of the UPS causes complete abrogation of mitophagy.

RESULTS

Parkin activation results in changes to the mitochondrial
proteome

We performed stable isotope labeling by amino acids in cell
culture (SILAC) analysis (19) to monitor changes in the

mitochondrial proteome in a clonal Parkin-expressing HeLa
S3 cell line after a 2 h treatment with carbonyl cyanide
m-chlorophenylhydrazone (CCCP). CCCP dissipates the mito-
chondrial membrane potential, resulting in recruitment of
Parkin to mitochondria and Parkin-dependent mitophagy (8).
With this mass spectrometry-based approach, we quantified
2979 unique protein groups. Of these, 766 were mapped to
proteins in the human MitoCarta inventory (20), which con-
tains 1013 mitochondrial proteins. This represents a highly
comprehensive coverage of the mitochondrial proteome,
especially given that cultured cell lines express fewer mito-
chondrial proteins than tissues.

To sort through the proteins with altered SILAC ratios, we
set a stringent threshold by considering only those with a
calculated significance of ,0.01 (Table 1 and Supplementary
Material, Tables S1–S4). As expected, Parkin was highly

Table 1. Proteins with altered abundance in the mitochondria of CCCP-treated cells

Protein Biological function SILAC ratioa Significanceb

Increased proteins
PARKIN E3 ubiquitin ligase 13 4.42E220
DRP1 Mitochondrial fission 6.3 4.78E207

Autophagy related
NBR1 Autophagy adaptor 8.3 2.90E206
p62/SQSTM1 Autophagy adaptor 5.8 1.75E206
MAP1LC3B2;MAP1LC3B Autophagosome component 5.4 3.70E206
GABARAPL2 Autophagosome component 3.4 7.87E206
ATP6V1B2 V-type proton ATPase subunit 3.3 1.64E205
ATP6V1E1 V-type proton ATPase subunit 3.1 4.77E203
ATP6V1C1 V-type proton ATPase subunit 2.9 7.23E203
ATP6V1A V-type proton ATPase subunit 2.9 2.45E203

UPS related
Ubiquitin Protein modification 8.9 9.58E215
PSMA2 20S proteasome subunit 4.2 8.08E205
PSMB5 20S proteasome subunit 4.2 4.21E204
PSMA1 20S proteasome subunit 4.0 5.38E204
PSMB3 20S proteasome subunit 4.0 6.20E204
PSMB6 20S proteasome subunit 3.9 2.30E204
PSMA6 20S proteasome subunit 3.7 1.18E203
PSMB4 20S proteasome subunit 3.7 1.96E203
PSMA7 20S proteasome subunit 3.7 1.29E203
PSMA4 20S proteasome subunit 3.6 4.70E204
PSMA3 20S proteasome subunit 3.6 4.85E204
PSMB1 20S proteasome subunit 3.3 2.66E203
PSMA5 20S proteasome subunit 3.2 9.68E204
PSMD6 19S proteasome subunit 2.7 6.22E203
PSMD2 19S proteasome subunit 2.5 6.38E203

Decreased proteinsc

MFN1 Mitochondrial fusion 0.09 6.94E218
MFN2 Mitochondrial fusion 0.10 2.51E235
TOM70 Mitochondrial import 0.13 3.78E240
MIRO1/RHOT1 Mitochondrial transport 0.16 4.29E215
CPT1A Fatty acid metabolism 0.23 1.62E221
MOSC2 Oxidoreductase 0.26 6.67E210
MITONEET/CISD1 Regulation of respiration 0.26 8.74E218
GPAM Glycerolipid synthesis 0.42 3.39E204
MIRO2/RHOT2 Mitochondrial transport 0.44 4.94E206
FIS1 Mitochondrial fission 0.55 1.33E203

Summary of the most significantly altered proteins in mitochondria isolated from Parkin-expressing HeLa S3 cells after treatment with or without CCCP for 2 h.
aCombined SILAC ratio from three independent mass spectrometry experiments consisting of two independent biological samples, and one technical replicate. In
one of the experiments, the SILAC cells were reverse labeled with SILAC. The ratio represents the protein level in mitochondria of CCCP-treated cells divided by
the level in untreated cells.
bCorresponds to the significance calculated in MaxQuant.
cOnly MitoCarta proteins annotated as ’outer membrane proteins’ in Uniprot are shown.
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enriched (13-fold) in mitochondria after CCCP treatment.
Consistent with studies indicating that Parkin translocation
leads to mitophagy, we found enrichment of several
autophagy-related proteins, including p62/SQSTM1, NBR1,
LC3 and the LC3 family member GABARAPL2. In addition,
we found an increase in several subunits of the V-type proton
ATPase, which is a component of acidic organelles, such as
endosomes and lysosomes. The mitochondrial fission factor
Drp1 was also substantially enriched, and probably contributes
to the fragmentation of mitochondria observed after CCCP
treatment.

In addition to the autophagy pathway, the SILAC data
provided evidence for a major induction of the ubiquitin–
proteasome system (UPS). Firstly, ubiquitin was 9-fold more
abundant in the mitochondria of CCCP-treated cells
(Table 1). Secondly, numerous subunits of the proteasome
were identified as enriched. This included subunits of both
the 20S core particle and the 19S regulatory particle, thereby
suggesting that 26S proteasomes are recruited to
CCCP-treated mitochondria. Finally, we found a number of
mitochondrial proteins that were substantially under-
represented after CCCP treatment. Among them, there are pro-
teins from all four mitochondrial sub-compartments. Because
Parkin translocates to the surface of mitochondria, we
focused on outer membrane proteins, which are more likely
to represent proximal effects of Parkin translocation.

Mitochondrial outer membrane proteins were over-
represented in the list of mitochondrial proteins with
reduced abundance (Table 1). Although mitochondrial outer
membrane proteins make up only 5% of the quantified mito-
chondrial proteins in our SILAC experiment, they constitute

20% of the reduced abundance proteins (P ¼ 0.00014). The
most severely reduced outer membrane proteins include the
mitofusins Mfn1 and Mfn2, which mediate mitochondrial
fusion. In addition, Miro1 and Miro2, which are involved in
mitochondrial transport along microtubules, are also highly
reduced. These data, along with the increase in Drp1,
support the recent suggestion that Parkin, as part of a quality
control mechanism, may serve to restrict defective mitochon-
dria from fusing with neighboring mitochondria (11,21).
Although several proteins involved in mitochondrial dynamics
are degraded by Parkin, the list of rapidly degraded mitochon-
drial proteins is broad and includes ones involved in protein
import and various biosynthetic pathways. For example, the
mitochondrial import receptor subunit Tom70 is one of the
most severely reduced proteins.

Parkin promotes degradation of mitochondrial outer
membrane proteins

To extend these findings, we used immunoblotting to monitor
the abundance of specific mitochondrial proteins in response
to CCCP treatment. In agreement with our SILAC data, we
found rapid degradation of Mfn1, Mfn2 and Tom70 upon
CCCP treatment of Parkin-expressing cells (Fig. 1A).
Almost complete degradation of these proteins occurred
within the first hour of CCCP treatment. Such degradation
was dependent on Parkin, because the levels of Mfn1, Mfn2
and Tom70 remained unchanged with CCCP in the parental
HeLa S3 cells (Fig. 1A), which do not express Parkin (Sup-
plementary Material, Fig. S1A). Similarly, we found Parkin-
dependent degradation of other outer membrane proteins,

Figure 1. Parkin mediates extensive proteolysis of outer membrane proteins via the UPS. (A) Parkin- and CCCP-dependent proteolysis of mitochondrial outer
membrane proteins. HeLa S3 cells or clonal Parkin-expressing HeLa S3 cells were treated with vehicle or 20 mM CCCP to dissipate the mitochondrial membrane
potential. Total cell lysates at the indicated time points were analyzed by immunoblotting for the indicated proteins. Outer membrane proteins: Mfn1, Mfn2,
Tom70, VDAC1, Bak, Fis1, Tom20. Intermembrane space protein: cytochrome c. Inner membrane protein: Opa1. Matrix proteins: Hsp60, Sod2, F1b.
Loading control: actin. (B) Inhibition of outer membrane protein degradation by the proteasome inhibitor MG132. Immunoblot analysis of Mfn1, Mfn2,
VDAC1, Tom20 and actin (loading control) levels after CCCP with or without treatment with the proteasome inhibitor MG132 (10 mM). (C) Inhibition of
outer membrane protein degradation by the proteasome inhibitor epoxomicin. Same as (B), except epoxomicin (2 mM), a more specific proteasome inhibitor,
was used.
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although with slower kinetics. These proteins support a range
of mitochondrial activities, including solute transport
(VDAC1), regulation of apoptosis (Bak), mitochondrial
fission (Fis1) and protein import (Tom20). Because of the
slower kinetics, some of these proteins were not identified as
reduced in the SILAC experiment, where cells were analyzed
after 2 h of CCCP treatment. For Bak and Fis1, higher molecu-
lar weight species appeared after CCCP treatment (asterisks,
Fig. 1A). No significant changes were observed for several
mitochondrial matrix proteins, as well as the intermembrane
space protein cytochrome c. In addition, there was only a
slight reduction in the short isoforms of Opa1, an inner mem-
brane protein. As reported previously, the long isoform of
Opa1 is degraded in response to CCCP treatment (22,23),
but in a Parkin-independent manner.

To determine whether the observed Parkin-mediated degra-
dation of outer membrane proteins is dependent on the UPS,
we incubated cells with proteasome inhibitors before treatment
with CCCP (Fig. 1B and C). Indeed, inhibition of the protea-
some with either MG132 or epoxomicin substantially blocked
the degradation of Mfn1, Mfn2, VDAC1 and Tom20. In the
case of Mfn1, Mfn2 and VDAC, this treatment also resulted
in higher molecular weight species (asterisks, Fig. 1B and
C). Therefore, we conclude that a proximal function of
Parkin recruitment to depolarized mitochondria is to mediate
the proteasome-dependent degradation of multiple mitochon-
drial outer membrane proteins. The degradation of outer mem-
brane proteins was less efficient in HeLa cells expressing the
R275W mutant, which has a partial defect in ubiquitination
(Supplementary Material, Fig. S1B) (6).

We obtained similar protein degradation profiles by treating
cells with valinomycin, a potassium ionophore that dissipates
the electric potential across the inner membrane of mitochon-
dria (Supplementary Material, Fig. S1C). In contrast, treat-
ment with the complex I inhibitor rotenone did not result in
outer membrane protein degradation (Supplementary Material,
Fig. S1C). These results support the view that Parkin is acti-
vated by severe mitochondrial depolarization, rather than by

mitochondrial dysfunction per se (24). Indeed, Parkin does
not localize to mitochondria upon treatment with rotenone
(25).

Degradation of outer membrane proteins occurs
independently of autophagy

As in HeLa cells, expression of Parkin in mouse embryonic
fibroblasts (MEFs) results in CCCP-induced mitophagy
(8,17,18,26). We took advantage of the genetic tractability
of this system to determine whether Parkin-dependent degra-
dation of mitochondrial outer membrane proteins occurs
independently of the autophagy pathway. Atg3 is an E2-like
enzyme that is essential for conjugation of Atg8/LC3 to
phosphatidylethanolamine, an early step in the induction of
autophagosomes. Atg3-null MEFs do not show LC3 conju-
gation and are defective in autophagy (27). We found that
Parkin-expressing Atg3-null MEFs underwent mitochondrial
outer membrane protein degradation in response to CCCP
(Fig. 2A). This degradation was blocked by epoxomicin
(Fig. 2B). These results indicate that Parkin-mediated degra-
dation of outer membrane proteins occurs via the proteasome
and independently of the autophagy pathway.

Recruitment of the proteasome to depolarized
mitochondria

The UPS is classically associated with polyubiquitination via
the K48 residue of ubiquitin (15). In our SILAC analysis,
we found a substantial increase in both K48-linked (9-fold)
and K63-linked (28-fold) polyubiquitination in mitochondria
of cells treated with CCCP (Fig. 3A). We independently con-
firmed these mass spectrometric observations by immunoblot
analysis using anti-polyubiquitin antibodies that are linkage
specific (Fig. 3B). The increases in K48-linked and K63-
linked polyubiquitin are both Parkin- and CCCP-dependent.
Our SILAC data also indicated the accumulation of multiple
26S proteasome subunits to CCCP-treated mitochondria

Figure 2. Proteolysis of the outer membrane occurs independently of the autophagy pathway. (A) CCCP-dependent degradation of mitochondrial outer membrane
proteins in Atg3-null MEFs expressing Parkin. Atg3-null MEFs expressing EGFP-Parkin were treated with dimethyl sulfoxide (DMSO) (vehicle) or 20 mM CCCP for
the indicated time. Total cell lysates were isolated and immunoblotted against the indicated proteins. (B) Inhibition of outer membrane protein degradation by the
proteasome inhibitor epoxomicin. Atg3-null MEFs expressing EGFP-Parkin were treated with DMSO (vehicle) or the proteasome inhibitor epoxomicin (2 mM) for
2 h prior to treatment with 20 mM CCCP for the indicated times. Total cell lysates were isolated and immunoblotted against the indicated proteins.
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(Table 1). We confirmed this observation by immunostaining
against a and b subunits of the proteasome. In Parkin-expres-
sing HeLa cells, the anti-proteasome staining was diffusely
cytosolic, but a clear enrichment on mitochondria was found
upon CCCP treatment (Fig. 3C and D).

Degradation of mitochondrial outer membrane proteins
precedes mitophagy

Given our finding that Parkin mediates proteolysis of outer
membrane proteins, we investigated the temporal relationship
of this process to mitophagy. We compared the behavior of the
outer membrane marker Tom20 to the matrix marker Hsp60,

which is not degraded by the UPS (Fig. 1A). When
Parkin-expressing HeLa cells were treated with CCCP for
4 h, two populations of mitochondria could be distinguished
(Fig. 4A). The bulk of the mitochondria aggregated around
the perinuclear region, consistent with previous studies
(6,10,17). These perinuclear aggregates were positive for
both Tom20 and Hsp60, although discrete patches were nega-
tive for Tom20 (Fig. 4B, filled arrowhead). The second popu-
lation consisted of individual mitochondria dispersed in the
cell periphery. Remarkably, in all cells, this second mitochon-
drial population was strongly positive for Hsp60, but devoid of
any Tom20 signal (Fig. 4A and B). These results indicate that
the loss of Tom20 is distinct from mitophagy. Both the

Figure 3. Parkin activation results in mitochondrial K48-linked and K63-linked polyubiquitination and proteasome recruitment. (A) The SILAC ratio for
K48-linked and K63-linked polyubiquitination obtained from mass spectrometric analysis of mitochondria isolated after 2 h of CCCP treatment. Both modifi-
cations yield unique diglycine signature peptides that can be quantified (41). Mitochondria were isolated under conditions where the activity of the 26S protea-
some was not inhibited. (B) Accumulation of K48- and K63-linked polyubiquitinated proteins in mitochondria of CCCP-treated cells. Immunoblot analysis of
mitochondria isolated from HeLa S3 or Parkin-expressing HeLa S3 cells, with or without CCCP treatment. Blots were probed with the following antibodies:
anti-ubiquitin, anti-K48-linked polyubiquitin, anti-K63-linked polyubiquitin and anti-F1b (loading control). Purified polyubiquitin chains of the K48-linked
or K63-linked type were used as controls to verify the specificity of the antibodies used. Cells were pretreated with the proteasome inhibitor MG132
(10 mM) together with CCCP, and mitochondria were isolated in the presence of N-ethylmaleimide (10 mM) to prevent deubiquitination. (C) Analysis of protea-
some localization. HeLa cells expressing Parkin were treated with DMSO (vehicle) or 20 mM CCCP for 4 h. Formalin-fixed cells were stained for the b subunit
PSMB5 of the proteasome (green), Hsp60 (red) and nuclei [4′,6-diamidino-2-phenylindole (DAPI), blue]. (D) Same as (C), except cells were immunostained for
PSMA2 (green), an a subunit of the proteasome.
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perinuclear clustering and loss of Tom20 signal were Parkin-
dependent, as these events do not occur in HeLa cells
lacking Parkin (Supplementary Material, Fig. S3A).

Later time points showed an even more dramatic discre-
pancy between Tom20 and Hsp60 staining. After 24 h of
CCCP treatment, �20% of the cells showed complete loss
of Tom20 immunostaining (Fig. 4A), consistent with previous

studies. Among these cells, �40% have no detectable Hsp60
signal, whereas the other �60% retained strong Hsp60
signals despite an obvious reduction in overall mitochondrial
biomass (Fig. 4A and C). The above observations are not
specific to Hsp60, as immunostaining against two independent
matrix proteins, TRAP-1 (Supplementary Material, Fig. S3B)
and F1b (Supplementary Material, Fig. S3C), revealed a

Figure 4. Degradation of Tom20 occurs prior to mitophagy and does not require the autophagy pathway. (A) Degradation of Tom20 induced by CCCP treatment.
After 4 and 24 h of CCCP (20 mM) or vehicle treatment, HeLa cells expressing Parkin were stained for Hsp60 (green), Tom20 (red) and nuclei (DAPI, blue). In
the second row, the insets show enlarged views of the boxed area. Arrowheads mark examples of dispersed mitochondria that are positive for Hsp60 but negative
for Tom20. In the fourth row, the asterisk indicates a cell with Tom20-negative/Hsp60-positive mitochondria. (B) Loss of Tom20 in both dispersed mitochondria
and within patches of the mitochondrial aggregate. HeLa cells expressing Parkin were treated with CCCP for 4 h and stained for Hsp60 (green), Tom20 (red) and
nuclei (DAPI, blue). The lower three panels correspond to the boxed area in the top panel. The filled arrowhead marks a patch in the perinuclear mitochondrial
aggregate that is positive for Hsp60, but negative for Tom20. Unfilled arrowheads mark dispersed mitochondria that are Tom20 negative/Hsp60 positive. (C)
Quantitation of the 24 h time point in (A). Cells that were Tom20 negative were scored for Hsp60 immunoreactivity. Error bars indicate standard deviations from
three independent experiments; 100 cells were scored per experiment. (D) Tom20 degradation in Atg3-null MEFs. Wild-type and Atg3-null MEFs expressing
EGFP-Parkin were treated with 20 mM CCCP for 24 h and immunostained for Tom20 or Hsp60. Cells were scored for complete loss of Tom20 or Hsp60. Repre-
sentative images of Atg3-null cells are shown on the right. The left image shows an example of a Tom20-negative cell (asterisk). No Hsp60-negative cells were
ever found (right image). Error bars represent standard deviations from three independent experiments; 100 cells were analyzed per experiment. The P-value was
calculated using the t-test. All scale bars are 10 microns.
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similar staining pattern. Previous studies have used the outer
membrane protein Tom20 as a marker to monitor loss of mito-
chondria through Parkin-mediated mitophagy (6,8,9,13). Our
observations indicate that, in some cases, the loss of Tom20
staining reflects Tom20 degradation by the UPS, rather than
frank removal of the organelle. Our data therefore provide evi-
dence that the Parkin-mediated proteolysis of outer membrane
proteins precedes, and is distinct from, degradation of mito-
chondria via mitophagy.

We compared wild-type versus autophagy-deficient
Atg3-null MEFs to further clarify the distinction between
outer membrane protein degradation and mitophagy. After
CCCP treatment, Parkin-expressing Atg3-null MEFs failed
to undergo mitophagy (as indicated by preservation of
Hsp60 staining) but still showed loss of Tom20 staining
(Fig. 4D). These observations clearly demonstrate that degra-
dation of mitochondrial outer membrane proteins, but not
mitophagy, occurs independently of the autophagy machinery.

The UPS is essential for Parkin-mediated mitophagy

When Parkin-expressing cells were treated with CCCP for 4 h,
dispersed mitochondria at the cell periphery are Tom20 nega-
tive but Hsp60 positive (Figs 4A and B and 5B). Intriguingly,
the autophagosome marker LC3B is selectively associated
with these dispersed mitochondria (Fig. 5A). LC3B is
present in �90% of the dispersed mitochondria, but generally
absent from the aggregated mitochondria. Treatment with the
proteasome inhibitor MG132 prevented the formation of dis-
persed, Tom20 negative, mitochondria at 4 h after CCCP treat-
ment (Fig. 5B), without affecting the recruitment of Parkin to
mitochondria (Supplementary Material, Fig. S4A and B).
Quantification showed that, in the absence of MG132,
�90% of CCCP-treated cells show 30 or more Tom20-
negative mitochondria that are dispersed in the cell periphery
(Fig. 5B). In contrast, .90% of MG132-treated cells show no
dispersed, Tom20-negative mitochondria (Fig. 5B). Similar
results were obtained with epoxomicin (Supplementary
Material, Fig. S4C and D). To understand the dynamics of
Tom20 loss, we performed additional immunostaining exper-
iments at early time points after CCCP treatment. In the
absence of epoxomicin treatment, some Tom20-negative mito-
chondria arise prior to the overt perinuclear aggregation of
mitochondria (Supplementary Material, Fig. S3D). After
aggregation of the mitochondria, Tom20-negative mitochon-
dria continue to accumulate. The latter observation suggests
that the 26S proteasome may facilitate dispersion of mitochon-
dria from the perinuclear aggregate, and thereby their uptake
by the autophagy machinery. In addition, however, it is clear
that Tom20-negative mitochondria can also arise without
first being part of the perinuclear mitochondrial aggregate.

Because Parkin-dependent proteolysis occurs prior to mito-
phagy, we asked whether this proteolysis is functionally
coupled to mitophagy. When cells are treated with a
100 min pulse of CCCP and allowed to recover for 12 h,
.90% of the cells show highly fragmented and dispersed
mitochondria (Fig. 5C). By 24 h, �30% of the cells show
complete loss of mitochondria, reflecting a high level of mito-
phagy (Fig. 5D). Pretreatment of cells with MG132 or epoxo-
micin dramatically changed the cellular outcome of the CCCP

pulse. At 12 h, the cells showed an obvious preservation of
mitochondria mass and tubular mitochondria, compared with
cells without MG132 or epoxomicin (Fig. 5C and Supplemen-
tary Material, Fig. S4C and E). Most remarkably, at 24 h, all
cells treated with MG132 or epoxomicin retained abundant
mitochondria (Fig. 5D), indicating that the 26S proteasome
is critical for Parkin-mediated mitophagy. Inhibition of the
proteasome also blocked mitophagy in MEFs expressing
Parkin (Supplementary Material, Fig. S4G). The degradation
of mitochondria was reduced in HeLa cells overexpressing
the K48R ubiquitin mutant (Supplementary Material,
Fig. S2), consistent with the idea that K48-linked polyubiqui-
tination is involved in Parkin-mediated mitophagy.

To determine whether these results apply to neuronal cells,
we utilized the dopaminergic neuroblastoma cell line
SH-SY5Y, which also undergoes CCCP-induced mitophagy
upon expression of Parkin (6). As in HeLa cells, CCCP treat-
ment of Parkin-expressing SH-SY5Y cells led to, at 4 h post-
treatment, the appearance of peripheral mitochondria that were
Tom20 negative but Hsp60 positive. Treatment with epoxomi-
cin prevented the appearance of such Tom20-negative mito-
chondria (Fig. 5E and Supplementary Material, Fig. S4F). At
24 h post-CCCP treatment, epoxomicin also completely
blocked mitophagy in the SH-SY5Y cells (Fig. 5F and Sup-
plementary Material, Fig. S4F).

Because Mfn1 and Mfn2 are rapidly degraded downstream
of Parkin in response to mitochondrial depolarization, we
wondered whether inhibition of their degradation was respon-
sible for the ability of proteasome inhibitors to block Parkin-
mediated mitophagy. To address this issue, we tested
whether epoxomicin could inhibit Parkin-mediated mitophagy
in Mfn-null MEFs that lack both Mfn1 and Mfn2. We found
that mitophagy in these cells, as in wild-type MEFs, was
still completely blocked by epoxomicin (Fig. 6), indicating
that degradation of proteins beyond Mfn1 and Mfn2 are essen-
tial for mitophagy caused by Parkin activation.

DISCUSSION

Previous studies showed that, upon recruitment to dysfunc-
tional mitochondria, Parkin predominantly mediates
K63-linked polyubiquitination, which facilitates recruitment
of the autophagic adaptor p62 (6,13,16–18). However, p62
appears to be involved in controlling mitochondrial distri-
bution and is not essential for degradation of mitochondria
(17,18). In addition to the enrichment of K63-linked polyubi-
quitination, our proteomics and biochemical experiments
revealed significant enrichment of K48-linked polyubiquitina-
tion, which is the linkage-type that classically targets proteins
for degradation via the UPS. Given the rapid degradation of
K48-linked proteins, effective detection of this type of polyu-
biquitination requires sensitive methods such as mass spec-
trometry, unless degradation of K48-linked proteins is
prevented by inhibition of the UPS. Thus, it is not surprising
that the role of K48-polyubiquitination in Parkin-mediated
mitophagy was previously underappreciated. Taken together,
these results indicate a dual molecular function for the ubiqui-
tin ligase activity of Parkin. Polyubiquitination of mitochon-
drial proteins is used as an interaction module to recruit the
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autophagic machinery, as well as a signal for outer membrane
protein degradation.

Several recent studies have focused on mitofusins as a
degradation target of Parkin. In Drosophila, mitofusin
(dmfn) is ubiquitinated and downregulated by Parkin
(11,21). This relationship may underlie, in part, the strong

genetic interactions between mitochondrial fusion/fission
and the Pink1/Parkin pathway (28–30). In mammals,
Mfn1 and Mfn2 are polyubiquitinated (31) and degraded
(32) in response to Parkin activation. These studies in mam-
malian and Drosophila cells suggest that degradation of
mitofusins may serve to segregate dysfunctional

Figure 5. Activation of the ubiquitin–proteasome pathway is essential for mitophagy. (A) Co-localization of dispersed mitochondria and LC3B in CCCP-treated
cells. HeLa cells expressing Parkin and EGFP-LC3B were treated with 100 nM bafilomycin A1 and CCCP for 4 h, and stained for Hsp60 (red), EGFP-LC3B
(green) and nuclei (DAPI, blue). Enlarged views of the boxed area are shown in the right column. Filled arrowheads mark examples of co-localization
between dispersed mitochondria and EGFP-LC3B. The unfilled arrowhead marks an example of a dispersed mitochondrion that does not co-localize with
EGFP-LC3B. Quantitation of this experiment is shown in the graph below. Error bars represent standard deviations from three independent experiments.
Twenty cells were analyzed for each replicate, and �2400 dispersed mitochondria were manually assessed in total. In (B)–(D), Parkin-expressing HeLa
cells were treated with CCCP in the presence or absence the proteasome inhibitor MG132 (10 mM). Cells were immunostained for Hsp60 (green), Tom20
(red) and nuclei (DAPI, blue). (B) MG132 inhibits Tom20 loss after 4 h of persistent CCCP treatment. Inset shows an enlarged view of the boxed area, high-
lighting the presence of dispersed, Tom20-negative mitochondria when MG132 is not present. The graph on the right shows quantification of this experiment.
Each cell was scored into one of the five indicated bins, depending on the number of dispersed mitochondria that are Tom20 negative, but Hsp60 positive. Error
bars indicate standard deviations from three independent experiments; 100 cells were scored per experiment. (C) MG132 preserves mitochondrial morphology at
12 h after a 100 min pulse treatment with CCCP. The graph on the right shows quantification of mitochondrial morphology. Cells were scored as having tubular
mitochondria, fragmented mitochondria or no mitochondria. Error bars indicate standard deviations from three independent experiments; 500 cells were scored
per experiment. (D) MG132 or epoxomicin abrogates CCCP-induced mitophagy. The images show cells 24 h after a 100 min pulse treatment with CCCP in the
presence or absence of MG132 (10 mM). The graph on the right shows quantification of this experiment and a related one with epoxomicin (2 mM). Cells without
mitochondria were defined by the complete lack of both Tom20 and Hsp60 signal. Error bars indicate standard deviations from three independent experiments.
1000 cells were scored for each MG132 experiment, and 200 cells were scored for each epoxomicin experiments. Scale bars equal 10 mm for (A)–(D). (E)
Degradation of Tom20 in human neuroblastoma SH-SY5Y cells expressing exogenous Parkin. Cells were treated with DMSO (vehicle) or CCCP (20 mM)
for 4 h. Cells were scored into one of the indicated five bins, depending on the number of dispersed mitochondria lacking Tom20, as described for (B).
Error bars indicate standard deviations in three independent experiments; 100 cells were scored per experiment. (F) Epoxomicin abrogates CCCP-induced mito-
phagy in SH-SY5Y cells expressing Parkin. Cells were treated as in (D) in the presence or absence of epoxomicin (2 mM) and stained for Hsp60 and nuclei
(DAPI). Cells without mitochondria were identified by complete loss of Hsp60 signal around the DAPI-stained nucleus. Error bars represent standard deviations
from three independent experiments; 200 cells were analyzed per experiment.
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mitochondria, thereby enhancing the functional benefits of
mitophagy (32–34).

During preparation of this manuscript, it was reported that
Parkin-mediated degradation of mitofusins is prevented by
over-expression of dominant-negative p97 or the proteasome
inhibitor MG132 (32). Inhibition of either p97 or the protea-
some also blocks mitophagy, but it is unclear whether this
effect is due to the prevention of mitofusin degradation (32).
Given that inhibition of the proteasome inhibits mitophagy,
it is important to characterize the role of the UPS in this
pathway and to evaluate whether mitofusins are the critical
degradation targets of Parkin. Our proteomics and cell biologi-
cal experiments demonstrate robust recruitment of the 26S
proteasome to mitochondria and enrichment of K48-linked
polyubiquitin, thus supporting a direct role of the UPS in
Parkin-mediated mitophagy. In addition to mitofusins, we
identified a broad range of mitochondrial outer membrane pro-
teins that are degraded in a Parkin- and UPS-dependent
manner. Importantly, we find that Parkin-mediated mitophagy
in Mfn1/Mfn2-null cells is still blocked by inhibition of the
proteasome. Therefore, although degradation of mitofusins
may indeed serve to segregate dysfunctional mitochondria,
our results provide strong evidence that additional remodeling
of the mitochondrial outer membrane proteome, involving
widespread proteolysis, is necessary to promote mitophagy.
As a technical point, we note that accurate assessment of mito-
phagy in future studies will require the use of a marker protein
located in the mitochondrial matrix, and not an outer mem-
brane protein such as the commonly used Tom20.

Further work will be necessary to understand mechanisti-
cally how the UPS facilitates mitophagy. Two general
models, not mutually exclusive, can be proposed. First,
removal of outer membrane proteins may facilitate engulfment
of mitochondria by autophagosomes. We speculate that aggre-
gation of depolarized mitochondria depends on outer mem-
brane proteins, and that degradation of such proteins by the

UPS may help disperse mitochondria into small individual
units so that they can be substrates for autophagy. This
model is consistent with the broad degradation of outer mem-
brane proteins by Parkin, and the observation that fragmenta-
tion of mitochondria is important for mitophagy (35).
Alternatively, Parkin-mediated degradation may serve to
remove one or more negative regulators of mitophagy on the
mitochondrial surface, thereby triggering a signal for engulf-
ment of a defective mitochondrion by an autophagosome.

By linking Parkin-mediated polyubiquitination to the UPS,
our results support, in a general sense, earlier models postulat-
ing a role for Parkin in cellular protein quality control (14). In
PD and other neurodegenerative disorders—including Alzhei-
mer’s, prion and polyglutamine diseases—defects in the UPS
are thought to contribute to toxic accumulation of misfolded or
aggregated proteins in the cytosol (14,36). Distinct from these
earlier models, however, we show that for Parkin, the UPS
operates within a separate cellular pathway involving mito-
chondrial quality control.

Our results provide evidence for the concept that the two
major degradative pathways—the UPS and autophagy—are
functionally linked (37). In future studies, it will be important
to explore whether activation of the UPS is important for other
forms of autophagy. In addition, although the UPS is clearly
essential for Parkin-mediated mitophagy, it remains possible
that activation of the UPS by Parkin has additional functions
for mitochondria. Clarification of this issue will have impor-
tant implications for the pathogenesis of PD.

MATERIALS AND METHODS

Cell culture and stable isotope labeling by amino acid
in cell culture (SILAC)

Parkin-expressing cell lines were generated via lentivirus-
mediated transduction of HeLa S3, HeLa cells and
SH-SY5Y cells, followed by isolation of clones where indi-
cated. Expression of Parkin is driven from the cytomegalo-
virus promoter. The wild-type and Atg3-null MEFs were
kindly provided by Yu-Shin Sou and Masaaki Komatsu (27).
Enhanced green fluorescent protein (EGFP)-tagged mouse
Parkin was expressed in MEFs via retrovirus-mediated trans-
duction, and EGFP-Parkin-expressing cells were selected by
G418 (400 mg/ml). HeLa, HeLa S3 and MEF cell lines were
cultured in Dulbeco’s modified Eagle’s medium (DMEM)
containing 10% bovine serum (for HeLa and HeLa S3), or
10% fetal bovine serum supplemented with non-essential
amino acids (for MEFs). For SILAC, DMEM lacking arginine
and lysine was used, along with 10% dialyzed fetal bovine
serum. For heavy labeling, Arg6 (U-13C6) and Lys8
(U-13C6, U-15N2) (Cambridge Isotopes) were supplemented
at the same concentration as in the standard DMEM formu-
lation. For light labeling, regular DMEM was used.

To dissipate the mitochondrial membrane potential, 20 mM

carbonyl cyanide CCCP (Sigma) was used. For pulse treat-
ments, cells were incubated in media with 20 mM CCCP for
100 min, followed by incubation in media without CCCP for
the indicated time. For inhibition of the proteasome, cells
were pretreated with 10 mM MG132 (Sigma), or 2 mM epoxo-
micin (Sigma) prior to treatment with CCCP.

Figure 6. Parkin-mediated mitophagy in Mfn-null cells is blocked by the pro-
teasome inhibitor epoxomicin. EGFP-Parkin was expressed in wild-type (WT)
and Mfn1/Mfn2-null MEFs containing matrix-targeted TagRFP-T. Cultures
were treated with the indicated drugs, and EGFP-positive cells were scored
for the presence of mitochondria. Error bars indicate standard deviations
from three experiments; 200 cells were scored per experiment. The P-values
were calculated using the t-test.
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Isolation of mitochondria

For immunoblot analysis, mitochondria were isolated as pre-
viously described (20). For SILAC, mitochondria were iso-
lated from a 1:1 mixture of heavy and light SILAC-labeled,
Parkin-expressing HeLa S3 cells. Cells were lysed using a
nitrogen bomb (Parr) at 200 psi for 10 min, followed by mech-
anical homogenization with a glass–glass dounce homogen-
izer. Crude mitochondria were purified by differential
centrifugation and further purified by a discontinuous Percoll
gradient consisting of 80, 52 and 21% Percoll.

Isoelectric focusing of peptides

In-solution digested peptides (150 mg) were separated accord-
ing to their isoelectric point with the Agilent 3100 OFFGEL
fractionator (Agilent). The system was set up according to
the manufacturers’ guidelines (Agilent, 5969-1582), but
strips were exchanged by 13 cm ImmobilineTM DryStrip, pH
3–10 (GE Healthcare), and ampholytes were substituted by
IPG buffer, pH 3–10 (GE Healthcare). Peptides were
focused for 20 kilovolt hours at a maximum current of
50 mA, maximum voltage of 8000 V and maximum power
of 200 mW into 12 fractions. Each peptide fraction was acid-
ified by adding 1% trifluoroacetic acid, then desalted and con-
centrated on a reversed-phase C18 StageTips (Proxeon
Biosystems) utilizing a reported adaptation (38). StageTips
were first washed with 80% acetonitrile: 0.5% acetic acid,
then methanol, followed by 2% acetonitrile: 1% triflouroacetic
acid. Peptides were then loaded onto StageTips, washed with
0.5% acetic acid and eluted with 80% acetonitrile: 0.5%
acetic acid.

Mass spectrometric analysis

All mass spectrometry experiments were performed on an
EASY-nLC connected to a hybrid LTQ–Orbitrap classic
(Thermo Fisher Scientific) equipped with a nanoelectrospray
ion source (Proxeon Biosystems) essentially as previously
described (39) with some modifications. Peptides were separ-
ated on a 15 cm reversed-phase analytical column (75 mm
internal diameter) in-house packed with 3 mm C18 beads
(ReproSil-Pur C18-AQ medium; Dr Maisch GmbH) with a
160 min gradient from 5 to 35% acetonitrile in 0.2% formic
acid at a flow rate of 350 nl per minute. The mass spectrometer
was operated in data-dependent mode to automatically switch
between full-scan MS and tandem MS acquisition. Survey full
scan mass spectra were acquired in the Orbitrap (300–1700 m/z),
after accumulation of 500 000 ions, with a resolution of 60 000
at 400 m/z. The top 10 most intense ions from the survey scan
were isolated and, after the accumulation of 5000 ions, frag-
mented in the linear ion trap by collisionally induced dis-
sociation (collisional energy 35% and isolation width 2 Da).
Precursor ion charge state screening was enabled and all
singly charged and unassigned charge states were rejected.
The dynamic exclusion list was set with a maximum retention
time of 90 s, a relative mass window of 10 ppm and early
expiration was enabled.

Data analysis

Raw data files were analyzed by MaxQuant (v 1.0.13.13) (40)
and searched against the IPI human database (v 3.54) with
tryptic digestion, maximum of two missed cleavages, fixed
carboxyamidomethyl modifications of cysteine, variable
oxidation modifications of methionine and variable protein
N-terminus acetylations with 1% false discovery rate
thresholds for both peptides and proteins. At least two differ-
ent peptide sequences were required for protein identification
and two different ratio measurements were required for protein
quantitation. Protein groups whose overall ratios were signifi-
cantly different (P , 0.01) and whose ratios in at least two out
of three replicates were also significantly different (P , 0.05)
were considered to be significantly altered. Mitochondrial
annotations were derived from MitoCarta (20) and mitochon-
drial outer membrane annotations were derived from Uniprot.
Quantification of K48-linked and K63-linked polyubiquitin
was performed by analysis of unique diglycine signature pep-
tides associated with each modification (41).

Fluorescence microscopy

All images were acquired using a Plan-Apochromat 63X/1.4
oil objective on a LSM 710 confocal microscope with Zen
2009 software (Carl Zeiss) and processed (to crop out irrele-
vant areas, brightness and contrast adjustment) using ImageJ
software.

Antibodies

The following commercially available antibodies were used:
anti-actin (Mab1501R, Millipore), anti-Bak (Y164, Abcam),
anti-cytochrome c (Mitosciences), anti-F1b (Mitosciences),
anti-Fis1 (Alexis), anti-Hsp60 (SC-1052, Santa Cruz
Biotech), anti-Mfn2 (Sigma), anti-Parkin (PRK8, Cell Signal-
ing), anti-Parkin (Abcam), anti-Psma2 (BioMol), anti-Psmb5
(Abcam), anti-Sod2 (Abcam), anti-Tom20 (FL-145, Santa
Cruz), anti-Tom70 (Novus Biologicals), anti-TRAP-1
(Abcam), anti-ubiquitin (Enzo), anti-K48-polyubiquitin (Cell
Signaling), anti-K63-polyubiquitin (Enzo) and anti-VDAC
(Molecular Probes). The following antibodies were raised
in-house: anti-Opa1 monoclonal 1E8 and anti-Mfn1 (42).

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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SUMMARY

Activity-dependent regulation of dendritic pro-
tein synthesis is critical for enduring changes
in synaptic function, but how the unique fea-
tures of distinct activity patterns are decoded
by the dendritic translation machinery remains
poorly understood. Here, we identify eukaryotic
elongation factor-2 (eEF2), which catalyzes
ribosomal translocation during protein synthe-
sis, as a biochemical sensor in dendrites that
is specifically and locally tuned to the quality
of neurotransmission. We show that intrinsic
action potential (AP)-mediated network activity
in cultured hippocampal neurons maintains
eEF2 in a relatively dephosphorylated (active)
state, whereas spontaneous neurotransmitter
release (i.e., miniature neurotransmission)
strongly promotes the phosphorylation (and
inactivation) of eEF2. The regulation of eEF2
phosphorylation is responsive to bidirectional
changes in miniature neurotransmission and is
controlled locally in dendrites. Finally, direct
spatially controlled inhibition of eEF2 phos-
phorylation induces local translational activa-
tion, suggesting that eEF2 is a biochemical
sensor that couples miniature synaptic events
to local translational suppression in neuronal
dendrites.

INTRODUCTION

Recent work has implicated local dendritic protein synthe-

sis in many enduring forms of synaptic plasticity, such as

long-term potentiation and long-term depression (e.g.,

Kang and Schuman, 1996; Huber et al., 2000; Bradshaw

et al., 2003), although the means by which synaptic activ-

ity is coupled to the protein synthetic machinery in

dendrites remains poorly understood. The fact that these
648 Neuron 55, 648–661, August 16, 2007 ª2007 Elsevier Inc.
forms of synaptic modification require different patterns of

synaptic activity for their induction raises the question of

how the local translational machinery decodes these

unique activity patterns. Here, we explore this issue in

the context of endogenous levels of two qualitatively dis-

tinct forms of synaptic transmission: (1) action potential

(AP)-triggered release of neurotransmitter and (2) minia-

ture synaptic transmission (minis) mediated by spontane-

ous, AP-independent neurotransmitter release (Fatt and

Katz, 1952). Previous results have shown that these

two forms of neurotransmission regulate local translation

in opposite directions—blocking APs alone inhibits,

whereas blocking both APs and minis stimulates, den-

dritic protein synthesis (Sutton et al., 2004, 2006). These

observations suggest that neuronal dendrites possess

a biochemical sensor that is specifically tuned to miniature

synaptic transmission and capable of engaging the den-

dritic translation machinery.

In principle, this sensor could be represented by a gen-

eral signaling pathway that is broadly coupled to protein

translation, or alternatively, it could be a signal that is

dedicated to the regulation of protein translation machin-

ery itself. One candidate in the latter category is eukaryotic

elongation factor-2 (eEF2) and its associated kinase,

Ca2+/calmodulin-dependent protein kinase III (CAMKIII;

Nairn and Palfrey, 1987), now known as eEF2 kinase.

eEF2 catalyzes ribosomal translocation during polypep-

tide elongation. Phosphorylation of eEF2 at Thr56 strongly

inhibits its activity, thereby inhibiting protein synthesis

(Ryazanov et al., 1988; Redpath et al., 1993). In addition,

eEF2 phosphorylation is known to be stimulated by strong

activation of ionotropic glutamate receptors (GluRs; Marin

et al., 1997; Scheetz et al., 2000; Chotiner et al., 2003) and

can be regulated in isolated synaptic biochemical frac-

tions (Scheetz et al., 2000; Carroll et al., 2004). These find-

ings raise the possibility that eEF2 phosphorylation might

serve to couple particular patterns of synaptic input to

local translational suppression in neuronal dendrites.

Here, we demonstrate that eEF2 is a biochemical

sensor tuned to ongoing levels of miniature synaptic

transmission in hippocampal neurons. Similar to the regu-

lation of dendritic protein synthesis, basal AP-dependent
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and miniature transmission regulate eEF2 phosphoryla-

tion in opposite directions, with miniature events positively

associated with the amount of eEF2 that is in its phos-

phorylated (translationally inactive) state. The regulation

of eEF2 phosphorylation by miniature transmission is

bidirectional—blocking minis markedly reduces, whereas

enhancing minis stimulates, eEF2 phosphorylation. More-

over, miniature events regulate eEF2 locally in dendrites,

and this regulation in turn inhibits dendritic translation

in a spatially specific fashion. Taken together, our results

suggest that eEF2 is a local sensor of miniature synaptic

activity in dendrites that serves to couple this form of

neurotransmission to local translational suppression.

RESULTS

Miniature Synaptic Events Inhibit Dendritic Protein

Synthesis Locally

Previous work has shown that AP-dependent and minia-

ture synaptic transmission regulate dendritic protein

synthesis in opposite directions—blocking APs with tetro-

dotoxin (TTX) inhibits dendritic translation, whereas

blocking miniature events stimulates dendritic protein

synthesis (Sutton et al., 2004, 2006). Bath application of

TTX, however, blocks both presynaptic and postsynaptic

APs. To confine the effects of TTX to presynaptic neurons,

we used a microfluidic chamber (Taylor et al., 2005) in

which presynaptic or postsynaptic neurons can be fluidi-

cally isolated (Figures 1A and 1B). Application of TTX to

the presynaptic compartment blocked spiking of presyn-

aptic neurons but did not prevent postsynaptic neurons

from spiking (Figure 1C). We then followed the presynaptic

TTX application with postsynaptic APV to examine the ef-

fects of blocking the NMDA receptor (NMDAR)-mediated

component of miniature neurotransmission on dendritic

protein synthesis. Time-lapse imaging of dendrites ex-

pressing a fluorescent translation reporter (Figure 1D;

Aakalu et al., 2001) revealed that, whereas control den-

drites treated with TTX alone exhibited a small decline in

fluorescence over time, inhibition of NMDAR minis re-

sulted in an increase in dendritic protein synthesis (Figures

1E and 1F). These results indicate that the translational

activation accompanying mini blockade is evident during

selective elimination of presynaptic APs.

To examine the spatial specificity of this translational

regulation, we used a dual micropipette delivery system

to locally perfuse different dendritic regions of convention-

ally cultured neurons expressing the dendritic protein

synthesis reporter. Pyramidal-like hippocampal neurons

in culture were perfused continuously in HEPES-buffered

saline (HBS) containing TTX (1 mM) to block all AP-induced

evoked neurotransmission. After a baseline image series

was taken, dendritic segments were locally perfused

with TTX plus a cocktail of GluR antagonists (the AMPA

receptor [AMPAR] antagonist, CNQX [40 mM] and the

NMDAR antagonist APV [60 mM]), and changes in the

rate of reporter synthesis over time were monitored. A

fluorescent dye (Alexa 568) was included in the delivery
perfusate to monitor the perfusion area throughout the ex-

periment. We compared changes in reporter expression in

the treated dendritic segment with those of other seg-

ments of the same dendrite outside the perfused area

both prior to and following local perfusion. As shown in

Figures 2A–2D, we found that the change in reporter

expression in the treated area was initially comparable

with that of other segments of the same dendrite (at t =

0 min), but following local mini blockade, perfused areas

demonstrated a progressive increase in reporter expres-

sion over the next 100 min (Figures 2B–2D). Restricted

perfusion of vehicle alone (Figures 2E and 2F) was ineffec-

tive in altering local reporter synthesis, and the stimulation

of local protein synthesis by mini blockade was com-

pletely prevented by bath application of the protein syn-

thesis inhibitor anisomycin (40 mM; Figure 2F). These

results indicate that local blockade of excitatory miniature

neurotransmission enhances dendritic protein synthesis

in a spatially specific fashion.

eEF2: A Biochemical Sensor Uniquely Regulated

by Miniature Neurotransmission

How do postsynaptic neurons distinguish minis from AP-

driven input, and how is this distinction conveyed to the

translation machinery in dendrites? To begin to address

this question, we first examined the regulation of two sig-

naling pathways strongly linked to translational control in

most eukaryotic systems: the ERK-MAPK and PI3 kinase

pathways (for reviews, see Holland, 2004; Ruggero and

Sonenberg, 2005). We measured the phosphorylation sta-

tus of ERK isoforms and Akt, a well-known downstream

target of the PI3 kinase pathway, under conditions of AP

block alone (with TTX) or block of both APs and excitatory

miniature neurotransmission (TTX+CNQX+APV). Whereas

the phosphorylation of Akt was unaltered by either manip-

ulation, the phosphorylation (and presumably activity) of

both ERK isoforms (p42 and p44) exhibited strong activity

sensitivity: phosphorylation was depressed by AP block-

ade (Figure 3A) and exhibited an even stronger depression

when minis were also blocked. These results identify the

ERK-MAPK signaling pathway as a system that is highly

sensitive to levels of postsynaptic activity, but it does

not appear differentially responsive to evoked and sponta-

neous neurotransmission.

We next examined if posttranslational regulation of

eEF2 accompanies mini blockade. eEF2 catalyzes ribo-

somal translocation during polypeptide elongation, and

phosphorylation of eEF2 near the N terminus (at Thr56)

is known to strongly inhibit its activity in the elongation

phase of protein synthesis (Ryazanov et al., 1988;

Redpath et al., 1993). We found that unlike ERK phos-

phorylation, the regulation of eEF2 phosphorylation by

AP-dependent and miniature neurotransmission was

both qualitatively and quantitatively distinct. Relative to

control, AP blockade alone induced significantly greater

phosphorylation of eEF2 at Thr56, whereas additional

blockade of miniature transmission produced significantly

diminished levels of eEF2 phosphorylated at that site
Neuron 55, 648–661, August 16, 2007 ª2007 Elsevier Inc. 649
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Figure 1. Selective Blockade of Presyn-

aptic APs with Postsynaptic Block of

NMDAR Minis Leads to an Enhancement

of Dendritic Protein Synthesis

(A) Schematic of microfluidic culture chamber

containing two (one ‘‘presynaptic’’ and one

‘‘postsynaptic’’) somatic compartments con-

nected by microgrooves. A volume difference

between the somatic compartments (�50 ml)

established a pressure difference between

them, allowing each chemical microenviron-

ment to be isolated for several hours.

(B) DIC image of a microfluidic chamber; cell

bodies are evident in both somatic compart-

ments and axons and dendrites can be ob-

served in the microgrooves. Addition of Alexa

Fluor 488 (MW 570) to the presynaptic cell

body compartment shows that the dye only ex-

tends partially into the proximal grooves and

negligibly affects the dendritic or somatic re-

gion at the other end of the chamber after 3 hr

of isolation. Alexa 488 fluorescence intensity is

indicated by the color look-up table.

(C) TTX was added to the presynaptic somatic

compartment. After 60 min, current-clamp

recordings were obtained from cell bodies in

either presynaptic or postsynaptic compart-

ments. TTX addition blocked spiking in presyn-

aptic neurons in response to current injection,

but did not block spiking of postsynaptic neu-

rons. Scale bar, 10mV, 100 ms. These data in-

dicate that TTX acts selectively on presynaptic

neurons in this experiment.

(D) Example of a neuron expressing the GFP

translation reporter in the postsynaptic com-

partment. Dendrites extend into microgrooves

where they come into contact with axons (not

visible here); fluorescence intensity (reporter

expression) is indicated by the color look-up

table.

(E) Design of experiment. TTX (5 mM) (see

Experimental Procedures) was added to the

presynaptic compartment to block APs; 1–1.5 hr later, baseline images were taken every 10 min, then APV (250 mM) (see Experimental Procedures)

was isolated to the postsynaptic compartment. In control experiments, TTX was isolated to the presynaptic compartment for the baseline images,

then buffer (instead of APV) was added to the postsynaptic somatic side. Fluorescence images of dendrites expressing the GFP translation reporter

were obtained before (t = 0 min) and after (t = 80 min) the addition of APV to block the NMDAR component of miniature excitatory synaptic events;

fluorescence intensity as in (D). Scale bar, 20 mm. Inhibition of NMDAR minis led to an enhancement of dendritic translation, as compared with control

(TTX alone)-treated dendrites.

(F) Ensemble average of all control (TTX alone, n = 3 experiments, five dendrites) and NMDAR mini block (TTX pre + APV post, n = 4 experiments, eight

dendrites) experiments. Inhibition of NMDAR minis led to a significant and rapid enhancement of dendritic protein synthesis.
(Figure 3A). Total levels of eEF2 protein were not different

between the groups, suggesting that minis regulate eEF2

phosphorylation posttranslationally. These results indi-

cate that eEF2 phosphorylation is differentially tuned to

AP-dependent and miniature synaptic transmission, and

the direction of the changes are consistent with eEF2 play-

ing a causal role in the local translational suppression me-

diated by excitatory miniature events.

Bidirectional Regulation of eEF2 Phosphorylation

by Miniature Synaptic Transmission

If eEF2 is a sensor of miniature neurotransmission, then

an increase in Thr56 phosphorylation should occur when
650 Neuron 55, 648–661, August 16, 2007 ª2007 Elsevier Inc.
miniature transmission is enhanced. To address this

question, we used a-latrotoxin (a-LTX), which is known

to stimulate the release of predocked synaptic vesicles

from presynaptic terminals (e.g., Ceccarelli et al., 1973).

In whole-cell voltage-clamp recordings (n = 8), we con-

firmed that a low concentration of a-LTX (100 pM; in com-

bination with 0.1 mM LaCl3 to prevent formation of a-LTX

pores; Ashton et al., 2001) stimulates miniature release by

approximately 1.5- to 2-fold (Figure 3B1; see also Sutton

et al., 2004). We thus examined whether augmenting

miniature neurotransmission enhances eEF2 phosphory-

lation during AP blockade. As shown in Figure 3B, treat-

ment with TTX alone enhanced eEF2 phosphorylation
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Figure 2. Blockade of Excitatory Minis

Induces Local Translation in Dendrites

Example and summary of local perfusion

experiments in cultured hippocampal neurons

(>21 DIV) expressing a GFP-based fluorescent

translation reporter (Aakalu et al., 2001). Neu-

rons were globally treated with TTX (1 mM,

bath applied) to block AP-dependent neuro-

transmission prior to spatially restricted perfu-

sion of either a mini-blocking cocktail (the

AMPAR antagonist CNQX [40 mM] plus the

NMDAR antagonist APV [60 mM]; n = 10 den-

drites from six cells) or vehicle as a control

(n = 8 dendrites from four cells). In an additional

set of experiments, local mini blockade was

examined with protein synthesis blocked by

bath application of anisomycin (40 mM; n = 10

dendrites from five cells).

(A–C) Example of an experiment in which prior

bath application of TTX was followed by local

perfusion of a mini-blocking cocktail for 120

min. (A) Shown is a neuron expressing the pro-

tein synthesis reporter, with superimposed

perfusion area demarcated by Alexa 568 (pres-

ent in the local perfusate in all experiments)

fluorescence in red. (B) A time-lapse montage

of the dendrite (straightened) from the cell

shown in (A) from initiating local perfusion to

120 min later, at 30 min intervals; the perfusion

area is marked in red above the dendrites.

(C) 3D plot of fluorescence intensity in the

same dendrite from t = 0–120 min, at 30 min in-

tervals; relative fluorescence intensity (reporter

expression) is indicated by the color and height of the pixels. A spatially specific and progressive increase in dendritic reporter expression in the

treated area (indicated by color tower above t = 0) was evident after local disruption of miniature synaptic transmission.

(D and E) Summary data. Mean (±SEM) change in reporter expression with local mini blockade (D) or vehicle (E) in different segments of treated den-

drites over time, relative to baseline (20 min prior to local perfusion), normalized to the average change in untreated dendritic segments. Whereas the

rate of change in vehicle-treated segments closely matched that in untreated regions of the same dendrite at all time points, a progressive increase in

reporter expression, relative to other areas of the same dendrite, was evident in segments treated locally with CNQX+APV.

(F) Mean (±SEM) change in reporter expression (relative to baseline) in untreated and treated segments of dendrites over time in the three conditions

examined. Under anisomycin treatment, a progressive loss in reporter expression was observed over time due to the lack of protein synthesis; the rate

of reporter loss in treated versus untreated dendritic segments was indistinguishable, indicating that local mini blockade does not alter local reporter

degradation or accumulation.
relative to untreated controls, but additional treatment

with a-LTX produced a significantly greater phosphoryla-

tion of eEF2 that was sustained for at least 60 min. In con-

trast, block of miniature synaptic transmission with GluR

antagonists again produced significantly diminished

levels of p-eEF2 relative to control. Importantly, the effect

of a-LTX was lost when minis were blocked postsynapti-

cally, indicating that its positive effects on eEF2 phosphor-

ylation require the integrity of miniature neurotransmis-

sion. Taken together, these results indicate that the

phosphorylation of eEF2 is bidirectionally regulated by

miniature synaptic transmission.

The phosphorylation of eEF2 at Thr56 is catalyzed

by eEF2 kinase, a Ca2+/calmodulin-dependent protein

kinase (Nairn and Palfrey, 1987). Since NMDARs, rather

than AMPARs, are the principal source of activity-depen-

dent Ca2+ influx at synapses, we next examined the role of

these different receptor types in mediating eEF2 phos-

phorylation during miniature transmission (Figure 3C).
N

We found that blocking only the NMDAR component of

miniature neurotransmission (TTX+APV) was sufficient to

inhibit eEF2 phosphorylation during AP blockade, and

the additional blockade of AMPARs (TTX+CNQX+APV)

did not significantly alter the magnitude of this effect.

These results suggest that the regulation of eEF2 phos-

phorylation by minis is primarily downstream of NMDAR

activation.

To further validate the role of NMDAR minis in regulating

eEF2 phosphorylation, we examined whether blocking

voltage-gated Ca2+ channels that support AP-triggered

neurotransmitter release would also enhance eEF2

phosphorylation at Thr56. Similar to the effects of direct

AP blockade (with TTX), neurons treated with antagonists

to the Ca2+ channels associated with evoked transmission

at hippocampal synapses (N-type channel blocker u-con-

otoxin GVIA, 1 mM, and the P/Q-type blocker u-agatoxin

IVA, 200 nM; Wheeler et al., 1994) exhibited increased

levels of p-eEF2 relative to untreated controls. As before,
euron 55, 648–661, August 16, 2007 ª2007 Elsevier Inc. 651
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Figure 3. Bidirectional Regulation of

eEF2 Phopshorylation by Miniature Syn-

aptic Transmission

(A) To examine potential regulation of transla-

tion-relevant signaling pathways by miniature

neurotransmission, neurons were either un-

treated (control) or treated with TTX (2 mM) for

12 hr with or without mini blockade (CNQX

[40 mM] + APV [50 mM]) for the last 2 hr. Repre-

sentative western blots (top) and summary

data (below) using antibodies specific for du-

ally phosphorylated (Thr202/Tyr204) and total

p42/p44 MAPK, phosophorylated (Ser473)

and total Akt, and phosphorylated (Thr56) and

total eEF2 are shown. Whereas PI3 kinase sig-

naling (using phosphorylated Akt as a down-

stream readout) was unaffected by either con-

dition of activity blockade, p42/p44 MAP

kinase signaling was strongly depressed by

AP blockade alone, and even more so by the

additional blockade of miniature neurotrans-

mission (TTX+CNQX+APV). By contrast, eEF2

was regulated in opposite directions by AP ver-

sus mini blockade: TTX alone lead to signifi-

cantly enhanced levels of p-eEF2 (the inactive

form), whereas mini blockade lead to signifi-

cantly diminished levels of p-eEF2 (i.e., a larger

proportion of active eEF2). Data are from eight

independent experiments.

(B) To examine if the regulation of eEF2 phos-

phorylation by minis is bidirectional, neurons

were treated with TTX with or without mini

blockade as in (A), and additionally challenged

with a-latrotoxin (a-LTX; 100 pM) to stimulate

miniature transmission. (B1) Representative

whole-cell voltage-clamp recording demon-

strating the frequency of mEPSCs in the

same neuron in the presence of TTX alone

(baseline), 10 min after addition of 100 pM a-

LTX, and 5 min following addition of

CNQX+APV. Scale bar, 100 ms, 10 pA. (B2)

Stimulating miniature transmission with a-LTX

significantly enhanced eEF2 phosphorylation;

this effect required the integrity of miniature

synaptic activity—mini blockade with CNQX+

APV completely prevented the increase in

p-eEF2 with a-LTX.

(C) Blockade of the NMDAR component of

miniature neurotransmission alone (TTX+APV)

produced comparable decreases in eEF2

phosphorylation to blocking both the AMPAR

and NMDAR components, suggesting that

the regulation of eEF2 by excitatory miniature

transmission is primarily downstream of the

NMDARs.

(D–F) To assess whether AP blockade enhances eEF2 phosphorylation in dendrites, neurons were either untreated (control, n = 33) or treated with TTX

(2 mM) for 2.5 hr (n = 31) prior to fixation and labeling with an antibody specific for p-eEF2. To examine if miniature transmission promotes eEF2 phos-

phorylation in dendrites, neurons were treated with TTX (2 mM; 2.5 hr) either alone (n = 31) or coincident with APV (60 mM; n = 33) or CNQX (40 mM) + APV

(n = 33) over the last 1.5 hr. (D and E) Representative straightened dendrites from untreated controls and each of the above treatment conditions; color

look-up table indicates p-eEF2 immunofluorescence intensity. (F) Mean (±SEM) change in dendritic p-eEF2 intensity relative to average control (left) or

average in TTX alone (right). TTX alone led to significantly elevated levels of p-eEF2 in dendrites; coincident mini blockade led to significantly diminished

dendritic levels of p-eEF2.

For all panels, *p < 0.05 versus control; **p < 0.05 versus TTX alone.
652 Neuron 55, 648–661, August 16, 2007 ª2007 Elsevier Inc.

anhpham
Typewritten Text
142



Neuron

eEF2 and Dendritic Protein Synthesis
Figure 4. Spatially Restricted NMDAR

Mini Blockade Produces a Local

Decrease in eEF2 Phosphorylation

TTX (1 mM) was bath applied approximately 60

min prior to local perfusion of either TTX+APV

(60 mM; n = 11 dendrites from six cells) or

TTX+vehicle (n = 9 dendrites from five cells)

for 60 min.

(A) DIC image showing neuron with local APV

perfusion spot (red).

(B) p-eEF2 staining for the neuron shown in (A);

intensity of p-eEF2 immunofluorescence given

by color look-up table. Scale bar, 20 mm.

(C) Straightened dendrite from the cell shown

in (A) and (B); the perfused area is also shown

above the dendrite in red. Scale bar, 10 mm.

(D) 3D plot of relative p-eEF2 immunofluores-

cence for the dendrite shown in (C); perfusion

spot is also indicated. Scale bar, 20 mm.

(E) Summary data. Mean (±SEM) relative p-

eEF2 fluorescence intensity, normalized to

the average nonzero pixel intensity outside

the treated area. On the abscissa, positive

and negative values indicate segments distal

and proximal (toward), respectively, from the

treated area. Local NMDAR mini blockade led

to a significant (*p < 0.05) decrease in p-eEF2

expression in the treated region, whereas local

perfusion of vehicle had no effect.
coincident blockade of NMDARs produced the opposite

effect—significantly diminished levels of p-eEF2 (Fig-

ure S1 in the Supplemental Data available with this article

online). Thus, the differential regulation of eEF2 phos-

phorylation by AP-dependent and miniature neurotrans-

mission revealed in our earlier experiments is not strictly

dependent on blocking APs per se, but rather on evoked

neurotransmitter release.

Minis Regulate eEF2 Phosphorylation

in Neuronal Dendrites

To further examine activity-dependent eEF2 phosphoryla-

tion, we stained neurons with an antibody specific for

p-eEF2 (Marin et al., 1997) and examined the levels of p-

eEF2 in the dendrites of neurons treated with AP blockade

alone or a coincident blockade of miniature synaptic

transmission (Figure 3D–3F). Similar to our biochemical

experiments, neurons treated with TTX alone exhibited

marked elevation of p-eEF2 in dendrites relative to

untreated controls (Figure 3D). Coincident blockade of

both AMPAR and NMDAR-dependent miniature neuro-

transmission (TTX+CNQX+APV) during TTX treatment

strongly counteracted the increase in eEF2 phosphoryla-

tion observed with AP block alone. Again, this effect was

primarily mediated by NMDARs, since selective blockade

of NMDAR miniature neurotransmission (TTX+APV)

largely accounted for the decrease in p-eEF2 levels in

dendrites (Figures 3E and 3F). Together, these results

demonstrate that ongoing miniature synaptic transmis-

sion, acting primarily through NMDAR activity, stimulates

eEF2 phosphorylation in neuronal dendrites.
N

Minis Regulate eEF2 Phosphorylation Locally

in Dendrites

We next asked whether minis can regulate eEF2 phos-

phorylation locally in dendrites. To address this, we

blocked APs in the entire dish (by bath application of

TTX) and then locally blocked NMDARs using restricted

perfusion of APV. Post hoc immunostaining for p-eEF2

revealed that local blockade of NMDAR minis (for

60 min) resulted in a decrease in p-eEF2 in the treated

area relative to adjacent dendritic segments (Figures 4A–

4E), whereas local perfusion of vehicle alone had no effect

on p-eEF2 expression (Figure 4E). Conversely, local en-

hancement of miniature synaptic transmission by spatially

restricted delivery of a-LTX during global AP blockade

produced the opposite effect—a specific increase in p-

eEF2 levels in perfused dendritic segments relative to

other dendritic segments (Figures 5A–5E). These effects

on local p-eEF2 levels were not due to redistribution of

eEF2 in dendrites, since the relative levels of total eEF2, in-

dependent of the phosphorylation state, were not altered

by restricted perfusion of either APV or a-LTX (Figure 5F).

Together, these results indicate that the phosphorylation

of eEF2 at Thr56 is bidirectionally and locally regulated

in neuronal dendrites by levels of miniature neurotrans-

mission.

The Regulation of eEF2 Phosphorylation by Minis

Locally Controls Translation in Dendrites

The above results indicate that ongoing miniature synaptic

transmission potently regulates eEF2 phosphorylation,

primarily via the activity of NMDARs. Given that this
euron 55, 648–661, August 16, 2007 ª2007 Elsevier Inc. 653
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Figure 5. Local Enhancement of Minia-

ture Transmission Stimulates eEF2

Phosphorylation

TTX (1 mM) + LaCl3 (0.1 mM) was bath applied

approximately 60 min prior to local perfusion of

the same solution plus 500 pM a-LTX for an

additional 45–60 min (n = 11 dendrites from

five cells).

(A) DIC image showing neuron with local a-LTX

perfusion spot (red).

(B) p-eEF2 staining for the neuron shown in (A);

intensity of p-eEF2 immunofluorescence given

by color look-up table. Scale bar, 20 mm.

(C) Straightened dendrite from the cell shown

in (A) and (B); the perfused area is also shown

above the dendrite in red. Scale bar, 10 mm.

(D) 3D plot of relative p-eEF2 immunofluores-

cence for the dendrite shown in (C). Scale

bar, 20 mm.

(E) Summary data. Mean (±SEM) relative

p-eEF2 fluorescence intensity, normalized to

the average nonzero pixel intensity outside

the treated area. On the abscissa, positive

and negative values indicate segments distal

and proximal (toward soma), respectively,

from the treated area. Data for local APV and

local vehicle groups are replotted from Figure 3

for comparison. Local enhancement of minia-

ture neurotransmission led to a significant

(*p < 0.05) increase in p-eEF2 expression in

the treated region, indicating that the local

regulation of eEF2 phosphorylation by minis

is bidirectional.

(F) Summary data for experiments examining

dendritic expression of total eEF2 (inde-

pendent of phosphorylation state) after local

perfusion with APV (n = 8 dendrites from four

cells) or a-LTX (n = 9 dendrites from four cells).

Data are expressed as in (E). Neither local APV

nor local a-LTX altered overall expression of

eEF2 in the treated area.
phosphorylation inhibits eEF2 function, we hypothesized

that activation of eEF2 kinase by NMDAR minis contributes

to the translational suppression that miniature events nor-

mally provide. If so, then inhibiting the kinase should be

sufficient to stimulate translation. To address this ques-

tion, we took advantage of two distinct eEF2 kinase inhib-

itors, rottlerin (Gschwendt et al., 1994) and NH125 (Arora

et al., 2003), and examined their effect on protein synthesis

(using the reporter described above) in dendrites when

APs were blocked. After acquiring a baseline image in

the presence of TTX alone, neurons were acutely chal-

lenged with either rottlerin (5 mM), NH125 (10 mM), or vehi-

cle (TTX alone) and imaged 60 and 120 min later. While

neurons maintained in TTX alone exhibited stable levels

of reporter expression in distal dendrites, those acutely

challenged with rottlerin or NH125 each exhibited marked

increases in dendritic reporter expression over time (Fig-

ures 6A and 6B). To examine if these changes in reporter

expression were due to enhanced protein synthesis, we re-

peated the same experiment in the presence of the protein

synthesis inhibitor anisomycin (40 mM). Reporter expres-
654 Neuron 55, 648–661, August 16, 2007 ª2007 Elsevier Inc.
sion in neurons treated with anisomycin diminished sub-

stantially over time, and importantly, the rate of reporter

loss was nearly identical under the three conditions exam-

ined (Figures 6C and 6D). These results indicate that the

increase in reporter expression observed after blocking

eEF2 kinase is due to enhanced protein synthesis rather

than other posttranslational factors (e.g., degradation).

Finally, since rottlerin is also known to inhibit PKCd, we

examined the effects of a PKC inhibitor, Bisindolymalei-

mide I (Bis; 1 mM), at a concentration that effectively

blocks this isoform. Unlike the effects of rottlerin or

NH125, coincident administration of Bis during TTX did

not alter dendritic reporter expression relative to TTX

alone (mean ± SEM baseline at 120 min: TTX alone,

91.2% ± 14.6%; TTX + Bis, 88.6% ± 17.3%; n = 12

cells/group, nonsignificant). Thus, the enhanced rates of

reporter synthesis observed with rottlerin and NH125

cannot be attributed to their effects on PKC.

Given that under conditions of intact miniature trans-

mission, direct inhibition of eEF2 kinase stimulates den-

dritic protein synthesis, we next asked whether the local
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Figure 6. Inhibition of eEF2 Kinase during Miniature Trans-

mission Drives Dendritic Protein Synthesis

Neurons (n = 16 cells/group) expressing the protein synthesis reporter

were treated with TTX (2 mM) prior to imaging, and challenged with one

of two distinct eEF2 kinase inhibitors—rottlerin (5 mM) or NH125

(10 mM)—immediately following acquisition of a baseline image (t = 0).

A second set of experiments examined the same treatment conditions

(n = 14 cells/group) in the presence of the protein synthesis inhibitor

anisomycin (40 mM).

(A) A time-lapse montage of straightened dendrites from cells either

maintained in TTX alone or acutely challenged with NH125.

(B) Mean (±SEM) reporter expression (relative to baseline) in the distal

dendritic compartment (>125 mm from soma) for each of the three

treatment conditions. Treatment with rottlerin or NH125 enhanced

dendritic reporter expression, whereas expression remained stable

in the presence of TTX alone.

(C) A time-lapse montage of straightened dendrites from cells treated

as in (A), but in the presence of anisomycin.

(D) Mean (±SEM) reporter expression (relative to baseline) in distal

dendrites in each of the three treatment conditions in the presence

of anisomycin. Substantial decreases in reporter expression over

time were evident with anisomycin treatment, but the rate of reporter
N

regulation of eEF2 phosphorylation by miniature neuro-

transmission is sufficient to provide spatially specific con-

trol of dendritic translation. After a baseline image series

was acquired in the presence of bath-applied TTX, den-

dritic segments were locally perfused with TTX+NH125

to block eEF2 kinase in a spatially defined area. For locally

treated dendrites, we compared changes in reporter ex-

pression in the treated dendritic segment with those of

other dendritic segments outside the perfused area both

prior to and 0–80 min following local perfusion of NH125.

For dendrites that did not pass through the perfusion

area (untreated), we compared changes in reporter ex-

pression in an area of identical size and distance from

the cell soma as the treated dendrites from the same neu-

rons. We found that the change in reporter expression in

the treated area was initially comparable to that of other

segments of the same dendrite (t = �20 to 0 min), but fol-

lowing local NH125 perfusion, treated areas demon-

strated a progressive increase in reporter expression

over the next 80 min (Figures 7A–7C). By contrast, no

such differential effect was observed in untreated den-

drites (Figure 7D) from the same neurons, and local perfu-

sion of TTX alone also did not alter reporter synthesis lo-

cally (Figure 2E), indicating that the marked increase in

local reporter expression was specifically due to NH125

treatment. These results thus indicate that eEF2 kinase

activity not only exerts control over dendritic protein syn-

thesis, but that it does so in a spatially limited manner.

DISCUSSION

We have demonstrated that eEF2 acts as a local biochem-

ical sensor for miniature synaptic transmission, serving to

couple this form of neurotransmission to local translational

suppression in dendrites. Other studies have demon-

strated a strong relationship between phosphorylation of

eEF2 and translational suppression in cultured neurons

(Marin et al., 1997), synaptic biochemical fractions

(Scheetz et al., 2000), or hippocampal slices (Chotiner

et al., 2003) in response to intense activation of ionotropic

GluRs. Here, we find that eEF2 phosphorylation driven by

miniature neurotransmission acts to constrain neuronal

protein synthesis, working locally within intact neuronal

dendrites to suppress translation in a spatially specific

fashion. Interestingly, we have also found that intrinsic

AP-dependent network activity in cultured hippocampal

neurons maintains eEF2 in a relatively dephosphorylated

(active) state, suggesting that basal levels of AP-depen-

dent and miniature neurotransmission regulate eEF2 in

opposite directions, similar to their opposing influences

on dendritic protein synthesis (Sutton et al., 2004). Thus,

while eEF2 phosphorylation is clearly engaged by intense

increases in AP-triggered neurotransmission, its respon-

siveness to AP-dependent and miniature synaptic

turnover in the absence of protein synthesis was similar among treat-

ment groups. Fluorescence intensity is indicated by the color look-up

table in (C).
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Figure 7. Spatially Restricted Blockade

of eEF2 Kinase Stimulates Local Den-

dritic Protein Synthesis

Neurons expressing the translation reporter

and treated with TTX (2 mM) were imaged

before and after local perfusion with NH125

(10 mM; starting at t = 0).

(A) Shown is a neuron with superimposed

perfusion area demarcated by Alexa 568 fluo-

rescence in red.

(B) A time-lapse montage of a straightened

dendrite from the cell shown in (A) from 20

min before to 80 min following local perfusion,

at 20 min intervals; the perfusion area (in red) is

also shown above the dendrites. Fluorescence

intensity is indicated by the color look-up table

in (A).

(C and D) Mean (±SEM) change in reporter

expression in different segments of treated

(C) or untreated (D) dendrites (n = 12 and

10 dendrites, respectively, from six cells) over

time relative to baseline (40 min prior to local

perfusion) normalized to the average change

in the same dendrites outside the perfusion

area. Dendrites from the same cells as in (C),

but not passing through the perfusion area,

were used for the analysis in (D); an area iden-

tical in size and distance from the soma (relative to the corresponding treated dendrite from the same neuron) was used for the ‘‘perfusion area’’ in (D).

Spatially restricted blockade of eEF2 kinase induced local reporter synthesis in treated dendrites, whereas reporter expression in the same region of

untreated dendrites remained consistent with the dendrite as a whole.
transmission is qualitatively distinct during periods of nor-

mal AP-triggered network activity.

eEF2 Is a Biochemical Sensor Tuned to Local

Miniature Synaptic Transmission

In recent years, it has become clear that different activity-

driven signaling pathways at synapses are capable of

encoding particular features of the activity patterns that

activate them. For example, CAMKII, a protein kinase

strongly implicated in the induction of long-term potentia-

tion (e.g., Malinow et al., 1989; Silva et al., 1992; Barria

et al., 1997), is capable of decoding the frequency of

Ca2+ oscillations in vitro (De Koninck and Schulman,

1998). Likewise, persistent activation of p42/p44 MAPK

by membrane depolarization in cultured hippocampal

neurons is critically dependent on spacing of individual

stimuli (Wu et al., 2001). Our results indicate that p42/

p44 MAPK is generally tuned to the absolute levels of syn-

aptic activity, without specific responsiveness to the qual-

ity of neurotransmission (i.e., whether the activity derives

from evoked or spontaneous release). By contrast, the

activity-dependent phosphorylation status of eEF2 is crit-

ically dependent on relative levels of AP-dependent and

miniature synaptic transmission. When AP-dependent

transmission dominates, a sizeable amount of eEF2 is

dephosphorylated. However, during AP blockade, when

miniature neurotransmission dominates, a marked in-

crease in eEF2 phosphorylation results. We have further

shown that this eEF2 phosphorylation is specifically driven

by miniature neurotransmission, since increasing (with
656 Neuron 55, 648–661, August 16, 2007 ª2007 Elsevier Inc.
a-LTX) or removing (with GluR antagonists) the impact of

minis produces corresponding increases or decreases in

eEF2 phosphorylation. Finally, using restricted perfusion

techniques, we have shown that this bidirectional regula-

tion of eEF2 phosphorylation by miniature neurotransmis-

sion is implemented in a spatially specific fashion. These

results suggest that eEF2 phosphorylation is tuned to local

levels of miniature synaptic transmission.

Unique Modes of Translational Inhibition Conferred

by AMPAR and NMDAR Minis

Phosphorylation of eEF2 at Thr56 is catalyzed by a Ca2+/

calmodulin-dependent protein kinase (Nairn and Palfrey,

1987). Thus, the fact that minis regulate eEF2 phosphory-

lation primarily through NMDARs suggests a model in

which the Ca2+ influx through the NMDAR engages this

phosphorylation step directly, through activation of eEF2

kinase. In support of this notion, the open-channel

NMDAR antagonist MK-801, when applied during AP

blockade, also drives dendritic protein synthesis (data

not shown), suggesting that ion flux through the NMDARs

rather than glutamate binding is responsible for the trans-

lational suppression. Moreover, the characteristics of

eEF2 kinase match well with the small currents generated

by miniature release; for example, relative to CAMKII,

eEF2 kinase is activated by >5-fold lower Ca2+ concentra-

tions (Hughes et al., 1993) and exhibits approximately

two orders of magnitude greater affinity for calmodulin

(Mitsui et al., 1993). Thus, whereas CAMKII has been

shown to effectively decode aspects of AP-triggered
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neurotransmission such as input frequency (e.g., De Ko-

ninck and Schulman, 1998), eEF2 kinase seems optimized

for decoding asynchronous activity on a dramatically dif-

ferent scale of sensitivity.

Previous studies have indicated that AMPAR and

NMDAR minis cooperate in inhibiting dendritic protein

synthesis (Sutton et al., 2004). Our results suggest that

a major component of the NMDAR-mediated inhibition

of local translation involves the phosphorylation (and inac-

tivation) of eEF2. However, whereas blockade of both

AMPAR and NMDAR minis enhances protein synthesis

to a greater degree than NMDAR mini blockade alone,

blockade of NMDAR minis fully accounts for the dephos-

phorylation of eEF2. These observations suggest that

miniature transmission recruits an additional, as of yet un-

identified mechanism for local translational suppression

through AMPARs. Other studies also support a unique

role for the AMPAR component of miniature synaptic

transmission in mediating certain aspects of synaptic

function. For example, McKinney et al. (1999) demon-

strated that miniature synaptic events can maintain spine

density in organotypic hippocampal slices during pro-

longed periods (7 days) of activity deprivation and that

the AMPAR component of these events was critically

important for this structural stability. Together, these ob-

servations suggest unique functional roles for the AMPAR

and NMDAR components of excitatory miniature neuro-

transmission.

Functional Implications of Translational Control

at the Level of Elongation

Although diminished rates of protein synthesis are the im-

mediate functional consequences of lowering elongation

efficiency, it has been suggested that this means of trans-

lational control serves at least two other functions. First,

previous studies have demonstrated that, in some circum-

stances, reducing elongation efficiency can reduce trans-

lation error rates (e.g., Thompson and Karim, 1982; Abra-

ham and Pihl, 1983). Given the metabolic cost inherent in

long-range mRNA transport into dendrites at distances of

hundreds of microns, translational fidelity is presumably of

greater importance for local translational control in den-

drites than in the soma, where translational capacity is

less limiting. Thus, minis may also act to limit missense

errors or premature termination of translation at individual

synapses, where, based on polyribosome numbers from

electron micrographs, it is likely that only a handful of

mRNAs can be translated at any one time (e.g., Steward

and Reeves, 1988; Ostroff et al., 2002). Second, it has

been suggested that reducing elongation efficiency may

favor the translation of particular mRNAs and thus serve

to alter the complement of mRNAs in the actively translat-

ing pool (Walden and Thach, 1986; Scheetz et al., 2000).

For example, in synaptoneurosomes prepared from supe-

rior colliculus neurons, intense NMDAR stimulation stimu-

lates eEF2 phosphorylation, reduces global protein syn-

thesis by 50%, and yet enhances synthesis of aCAMKII

(Scheetz et al., 2000). Importantly, low concentrations of
N

the elongation inhibitor cycloheximide also enhanced

aCAMKII synthesis while depressing global translation in

synaptoneurosomes, suggesting that the reduction in

elongation efficiency itself can be sufficient to drive syn-

thesis of aCAMKII (and possibly other proteins), given

the appropriate context. Based on these findings, Scheetz

et al. (2000) proposed that NMDAR-dependent phosphor-

ylation of eEF2 could shift the rate-limiting step in local

translation from initiation to elongation, which could select

particular mRNAs for translation that are normally trans-

lated poorly. Thus, it is possible that ongoing miniature

transmission alters the propensity for particular mRNAs

to be locally translated, either by a mechanism similar to

that proposed above or by maintaining the association

of specific mRNAs with polyribosomes. It is noteworthy,

however, that in our studies we find that local synthesis

of a fluorescent translation reporter (which is flanked by

the 50 and 30 untranslated regions of aCAMKII) in hippo-

campal neurons was suppressed by eEF2 phosphoryla-

tion driven by NMDAR minis, suggesting that the context

provided by miniature synaptic transmission is not per-

missive for the unique mode of regulation identified by

Scheetz et al. (2000). Other studies have demonstrated,

for example, that strong NMDAR stimulation produces

several biochemical changes that promote translation ini-

tiation (e.g., Banko et al., 2004; Kelleher et al., 2004; Gong

et al., 2006), raising the question as to how these changes

interact with regulation at the level of elongation. Alterna-

tively, the inverse relationship between elongation

efficiency and aCAMKII synthesis observed by Scheetz

et al. (2000) might depend on a limited mRNA pool,

a potential issue that we intentionally circumvent through

overexpression of our reporter mRNA. In fact, mini

blockade is known to broadly activate synthesis of

a number of endogenous proteins (Sutton et al., 2004),

suggesting that the conditions of reporter expression we

use capture general changes in translational efficiency

more strongly than specific regulatory mechanisms

unique to aCAMKII. Nevertheless, consistent with the

proposal of Scheetz et al. (2000), our results do show

that the local phosphorylation of eEF2 in dendrites con-

strains local protein synthesis, indicating that elongation

efficiency can be a limiting condition for local translational

control.

Multiple Parallel Mechanisms for Coupling Activity

Patterns to the Translation Machinery

A major challenge in studies of local translational control is

to understand how specific regulatory mechanisms oper-

ate within the highly dynamic nature of activity within neu-

ronal circuits. CA1 hippocampal neurons, for example, are

continuously bombarded by activity from any one of the

�30,000 different inputs they receive, yet any one of

these inputs may experience extended periods without

AP-triggered synaptic activity. Considerable attention

has been devoted to the former case, and while important

progress has been made in understanding the mecha-

nisms by which evoked activity patterns engage the
euron 55, 648–661, August 16, 2007 ª2007 Elsevier Inc. 657
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protein synthesis machinery to alter synaptic function (for

reviews, see Klann and Dever, 2004; Sutton and Schu-

man, 2005, 2006; Pfeiffer and Huber, 2006), how these

unique patterns of activity are decoded by the local trans-

lation machinery is still poorly understood. In the latter

case, where evoked activity at particular inputs is low,

miniature synaptic events appear to serve a local stabiliz-

ing role at synapses, preventing runaway scaling of synap-

tic strength during these periods of inactivity (Sutton et al.,

2006). Here, we have identified eEF2 as one of the bio-

chemical sensors that is tuned to miniature synaptic trans-

mission, and show that it contributes to the local transla-

tional suppression conferred by miniature events.

Moreover, we have shown that intrinsic AP-mediated net-

work activity opposes the impact of miniature transmis-

sion on eEF2 phosphorylation. These results indicate

that distinct modes of neurotransmission (AP-dependent

versus spontaneous release) are decoded by the transla-

tional apparatus in dendrites, which implies the existence

of other decoding mechanisms that act in parallel to link

specific features of evoked synaptic activity (e.g., pattern,

frequency) with local translational control.

EXPERIMENTAL PROCEDURES

Cell Culture and Infection

Dissociated postnatal (P1–2) rat hippocampal neuron cultures, plated

at a density of 230–460 mm2 in poly-D-lysine-coated glass-bottom

petri dishes (Mattek), were prepared as previously described (Aakalu

et al., 2001) and maintained for at least 21 DIV at 37�C in growth

medium [Neurobasal A supplemented with B27 and Glutamax-1 (Invi-

trogen)] prior to use. To analyze dendritic protein synthesis, neurons

were infected with a Sindbis viral vector encoding a fluorescent trans-

lation reporter (coding sequence for a myristoylated, destabilized GFP

flanked by the 50 and 30 untranslated regions of a-CAMKII; Aakalu

et al., 2001). For infection, cells were washed once with growth me-

dium, then incubated with virus (diluted in growth medium) for 10–20

min at 37�C. Following infection, cells were washed again with growth

medium, then incubated with conditioned media containing 2 mM TTX

for 7–8 hr prior to imaging.

Electrophysiology

Whole-cell patch-clamp recordings were made from cultured hippo-

campal neurons bathed in HBS (containing 119 mM NaCl, 5 mM

KCl, 2 mM CaCl2, 2 mM MgCl2, 30 mM glucose, and 10 mM HEPES

[pH 7.4]), plus 1 mM TTX and 10 mM bicuculine, with an Axopatch

200B amplifier. Whole-cell pipette internal solutions contained

100 mM cesium gluconate, 0.2 mM EGTA, 5 mM MgCl2, 2 mM aden-

osine triphosphate, 0.3 mM guanosine triphosphate, and 40 mM

HEPES (pH 7.2), and had resistances ranging from 4–6 MU. Cultured

neurons with a pyramidal-like morphology were voltage-clamped

at �70 mV and series resistance was left uncompensated. mEPSCs

were analyzed off-line using Synaptosoft mini analysis software. Sta-

tistical differences between experimental conditions were determined

by ANOVA and post hoc Fisher’s LSD test.

Microfluidic Experiments

Microfluidic chambers were previously developed to isolate microen-

vironments composed of dendritic and axonal regions (Taylor et al.,

2003, 2005). These chambers consist of two parallel microfluidic chan-

nels, both connected by inlet and outlet wells. These two channels or

compartments are separated by a solid barrier region with over 150

microgrooves embedded in the bottom of the connecting barrier.
658 Neuron 55, 648–661, August 16, 2007 ª2007 Elsevier Inc.
The dimensions of the microgrooves (7.5 mm wide, 3 mm high) allow

dendrites and axons to enter, but prevent the passage of larger cell

bodies. Due to the high fluidic resistance of the microgrooves, a slight

volume difference between the two channels (30–50 ml) generates

a pressure difference which facilitates the isolation of soluble treat-

ments to one side. For smaller-molecular-weight molecules, which

generally have larger diffusion coefficients (e.g., TTX and APV), there

is some diffusion within the microgrooves after 3 hr (Figure 1B), which

decreases substantially over the 900 mm barrier. Using xy scans of iso-

lated Alexa Fluor 488 (1 mM, MW 570, 3 hr) through the microgrooves,

we estimate that the concentration in the proximal 100 mm of the mi-

crogroove is <45% of the concentration in the treated side, and <3%

in the distal 100 mm. Due to the small cross-sectional area of the micro-

grooves and the pressure gradient, we found the concentration in the

adjacent compartment to be negligible.

We plated two populations of neurons on either side of the barrier,

allowing processes and synaptic connections to form within the micro-

grooves. We applied TTX selectively to one side (the presynaptic com-

partment), then performed whole-cell patch-clamp recordings to

examine whether APs could be selectively blocked in the treated

side. Due to the pressure difference between the two compartments,

there is a slight flow through the microgrooves, which generates a dilu-

tion effect in the treated side. To compensate for this, we used higher

than normal concentrations of TTX (5 mM). For current-clamp record-

ings, we used a volume difference of 50 ml, applied TTX for 1 hr, then

rinsed out the TTX and removed the poly(dimethylsiloxane) (PDMS)

chamber. APs were selectively blocked for >45 min. In addition to

showing that we can selectively block APs, this experiment also con-

firms the ability to selectively treat one compartment without influenc-

ing the other.

Neurons were infected with the reporter virus in one compartment

(the postsynaptic side). Typically, 10–20 infected neurons had den-

drites extending into the microgrooves, and in all cases the virus

infected cells only on the virus-applied (postsynaptic) side. After 8–

9.5 hr, the entire chamber was rinsed with HBS three times, then

300 ml of HBS was applied to the reporter-infected side and 250 ml of

TTX (5 mM) was applied to the presynaptic side. After 1–1.5 hr, images

were taken every 10 min. Three or four baseline images were taken,

then the fluid was removed from the chamber, 300 ml of HBS was

added to the presynaptic side, and 250 ml of APV (250 mM) was added

to the postsynaptic side. Images were taken every 10 min. We estimate

a concentration of APV within the microgrooves sufficient to block

NMDARs (45% of 250 mM is 112.5 mM).

Western Blotting

Neurons were treated in conditioned media with TTX (2 mM) for 12 hr

either alone or with CNQX (40 mM) + APV (60 mM) coincident with the

last 2 hr of TTX treatment. Samples were collected in lysis buffer con-

taining 100 mM NaCl, 10 mM NaPO4, 10 mM Na4P2O7, 10 mM lysine,

5 mM EDTA, 5 mM EGTA, 50 mM NaF, 1 mM NaVO3, 1% Triton-X,

0.1% SDS, and 1 tablet Complete Mini protease inhibitor cocktail

(Roche)/7 ml (pH 7.4). The samples were centrifuged at top speed in

a microfuge for 15 min to remove any insoluble material, then total pro-

tein concentrations were determined by a modified Lowry assay (DC

protein assay, Biorad). Equal amounts of protein for each sample

(20–30 mg) were loaded and separated on 4%–15% Tris-HCl gradient

gels, then transferred to polyvinylidene fluoride (PVDF) membranes.

Blots were blocked with Tris-buffered saline containing 0.1% Triton-

X (TBST), 5% BSA, 50 mM NaF, and 1 mM NaVO3 for 60 min at

room temperature (RT), and incubated with the following rabbit poly-

clonal primary antibodies (all from Cell Signaling Technology) for either

60 min at RT or overnight at 4�C: anti-phospho Akt (Ser473; 1:1000),

anti-total Akt (1:1000), anti-phospho p42/p44 MAPK (Thr202/Tyr204;

1:2000), anti-total p42/p44 MAPK (1:2000), anti-phospho eEF2

(Thr56; 1:500), and anti-total eEF2 (1:500). After extensive washing

with TBST, blots were incubated with HRP-conjugated anti-rabbit

secondary antibody (1:5000; Jackson Immunoresearch) followed by
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chemiluminescent detection (ECL, Amersham Biosciences). Band in-

tensity was quantified with densitometry using NIH Image J, and the

ratio of phosphorylated protein to total protein was calculated and

expressed relative to the matched control sample. Statistical differ-

ences between treatment conditions and control were assessed by

Chi square, whereas comparisons between TTX alone and TTX+

CNQX+APV were assessed with either paired t tests (two groups) or

ANOVA followed by Fisher’s LSD.

Immunocytochemistry

Prior to labeling, neurons were untreated (controls) or treated with TTX

(2 mM; 2.5 hr) in conditioned media either alone or with CNQX (40 mM) +

APV (60 mM) or APV (60 mM) alone coincident with the last 1.5 hr of TTX

treatment. Cells were then fixed on ice for 20 min with 4% paraformal-

dehyde/4% sucrose in PBS, permeabilized (0.1% Triton-X in PBS, 10

min), and labeled with rabbit polyclonal antibody against p-eEF2

(1:100, 60 min at RT; kindly provided by Dr. A.C. Nairn, Dept. Psychi-

atry, Yale University), followed by immunocytochemical detection with

Alexa 488-conjugated anti-rabbit secondary antibody (1:250, 60 min at

RT). Neurons were also labeled with either mouse monoclonal anti-

MAP2 antibody (1:800; Sigma), followed by Alexa 546-conjugated

anti-mouse secondary antibody, or with rhodamine-phalloidin (1:200,

60 min RT; Molecular Probes).

For analysis of immunocytochemistry experiments, images were ob-

tained with Olympus IX-70 or Zeiss LSM 510 laser scanning confocal

microscopes using a Plan-Apochromat 633/1.4 oil objective. Alexa

488 and 546 were visualized by excitation with the 488 line of an argon

ion laser and the 543 nm line of a HeNe laser, respectively, with emis-

sion filters of LP 505 and BP 565-615. Neurons with a pyramidal-like

morphology were selected for imaging by epifluorescent visualization

of MAP2 or phalloidin staining, to ensure blind sampling of p-eEF2

expression. Identical acquisition parameters were used to acquire

images from each treatment condition. For analysis, the principal den-

drite of each neuron was linearized using the straighten plugin for

Image J, and the average nonzero pixel intensity for the p-eEF2 chan-

nel was measured for each dendrite. Data for each variable in all

groups were normalized to the average value in the respective control

groups (untreated or TTX alone). Statistical differences were assessed

by ANOVA, followed by Fisher’s LSD post hoc tests.

Live-Cell Reporter Imaging

For experiments examining synthesis of the translation reporter using

bath application of eEF2 kinase inhibitors, conditioned media was re-

placed with HBS containing 1 mM TTX, and neurons were maintained

at 37�C for 1.5–2 hr prior to imaging and throughout the experiment.

All neurons chosen for experiments had a pyramidal-like morphology

with one or two major dendrites emerging from the soma. After a base-

line image was acquired, neurons were immediately challenged with

rottlerin (5 mM), NH125 (10 mM), or 0.05% DMSO (the vehicle for

both rottlerin and NH125), and imaged at 30 or 60 min intervals. Unfor-

tunately, exposures of rottlerin and NH125 >2.5 hr were found to be

cytotoxic, precluding analysis of long-term effects of eEF2 kinase inhi-

bition. Anisomycin (40 mM), when used, was applied coincident with

the initial replacement of conditioned media with HBS.

All images were acquired in 0.4 mm sections, and z-series were set to

span the entire neuronal volume. Image analysis was conducted on

maximal intensity z-compressed image stacks. The primary dendrite

from each cell was linearized using NIH Image J, and fluorescence in-

tensity was measured as a function of both time and distance from the

cell soma. The dendritic compartment was divided into proximal and

distal domains, defined by distances of less or greater than, respec-

tively, 125 mm from the soma. Comparable changes in both proximal

and distal domains were observed in these experiments, so only the

data from the distal dendritic compartment is presented.

Statistical differences in reporter expression (relative to baseline)

between groups were assessed by ANOVA and Fisher’s LSD post

hoc tests.
Local Perfusion

All local perfusion experiments were performed with an Olympus

IX-70 confocal laser scanning microscope using Plan-Apochromat

403/0.95 air or 403/1.0 oil objectives. The delivery micropipette

was pulled as a typical whole-cell recording pipette with an aperture

of �0.5 mm. The area of dendrite targeted for local perfusion was

controlled by a suction pipette, which was used to draw the treat-

ment solution across one or more dendrites and to remove the per-

fusate from the bath. Alexa 568 hydrazide (1 mg/ml) was included in

the perfusate to visualize the affected area. The 568 nm line of a kryp-

ton ion laser was used to visualize Alexa 568 fluorescence (emitted

light collected above 600 nm) and to collect differential interference

contrast (DIC) images. GFP and Alexa 488 (for p-eEF2 labeling)

were excited with the 488 nm line of an argon ion laser, and emitted

light was collected between 510 and 550 nm. In all local perfusion

experiments, the bath was maintained at 37�C and continuously per-

fused at 1.5 ml/min with HBS containing 1 mM TTX and other agents

as indicated.

For analysis, the size of the treated area was determined in each lin-

earized dendrite based on Alexa 568 fluorescence integrated across all

images (typically 6–10) taken during local perfusion. Adjacent nonover-

lapping dendritic segments, 25 mm in length, proximal (i.e., toward the

cell soma) and distal to the treated area were assigned negative and

positive values, respectively.

For experiments examining local regulation of p-eEF2 expression,

cells were immediately fixed following local perfusion, and processed

for immunostaining as described above. Analysis of p-eEF2 expres-

sion in local perfusion experiments was performed on maximal inten-

sity z-compressed image stacks. The average nonzero pixel intensity

for the entire length of the dendrite, excluding the treated area, was

used to normalize p-eEF2 intensity and was assigned a value of 1.

The intensity of p-eEF2 immunofluorescence was then computed for

the treated and all untreated dendritic segments and expressed rela-

tive to the average nontreated value. Statistical differences in normal-

ized p-eEF2 staining between segments were assessed by ANOVA

and Fisher’s LSD post hoc tests.

For experiments examining local synthesis of the translation reporter

during local perfusion, reporter expression was determined from max-

imal intensity z-compressed stacks. Prior to local perfusion, a baseline

series of images was acquired to determine the pre-existing trajectory

of reporter expression dynamics in both the treated area and untreated

areas of dendrites. Reporter expression in all dendritic segments was

expressed relative to a baseline image taken 20–40 min prior to local

perfusion. The change at each time point for each dendritic segment,

excluding the treated area, was averaged and assigned a value of 1 to

normalize the change in reporter expression based on the trajectory of

the dendrite as a whole. Statistical differences in normalized reporter

expression between segments were assessed by ANOVA and Fisher’s

LSD post hoc tests.

Supplemental Data

The Supplemental Data for this article can be found online at http://

www.neuron.org/cgi/content/full/55/4/648/DC1/.
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