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Abstract

The development of a safe, selective, and efficient gene delivery system is key to the success of human

gene therapy. In polymer-based gene delivery systems, biocompatible polymers electrostatically

bind and condense the genetic material into protective nanoparticles. These nanoparticles must

subsequently overcome several challenges, which remain poorly understood. In particular, once

internalized by the cell, the nanoparticles are trapped inside a membrane-bound compartment called

the endosome. In the proton sponge hypothesis, the buffering capacity of the polymers leads to an

increase in osmotic pressure that eventually ruptures the endosomal membrane and releases the

trapped nanoparticles.

To obtain a mechanistic understanding of the endosomal escape, we first develop a coarse-grained

model to study the equilibrium interaction between a positively charged nanoparticle and a lipid

membrane. Results indicate the existence of a pore with an inserted particle, whose metastability

depends on the membrane tension and particle properties (size and charge). These pores are subse-

quently shown to lower the critical tension necessary for membrane rupture, thus possibly enhancing

the release of the trapped genetic material from the endosome.

Next, we address the actual escape pathway, which is likely a thermally nucleated process and

cannot be simulated directly or studied by equilibrium methods. Hence, we develop a novel method

for studying minimum free energy paths in membranes. Our results indicate that thermally nucleated

rupture may be an important factor for the low rupture strains observed in lipid membranes. Under

the moderate tensions found in this regime, there are multiple pathways for crossing the membrane:

(1) particle-assisted membrane rupture, (2) particle insertion into a metastable pore followed by

translocation and membrane resealing, and (3) particle insertion into a metastable pore followed
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by membrane rupture. This suggests a direct role of the nanoparticle in the endosomal escape not

previously envisioned in the proton sponge hypothesis, and illustrates the importance of having an

induced tension on the membrane.

Finally, the methodology developed in this work represents the most advanced theoretical tech-

nique for describing nucleation pathways in soft condensed matter systems that also include hard-

particle degrees of freedom. We expect the method to be useful for studying a wide range of

nucleation phenomena beyond membrane systems, for example, in nanoparticle polymer compos-

ites.
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Chapter 1

Introduction

Gene therapy is the insertion of a corrective gene into cells to alleviate the symptoms of disease.

With advances in the identification of the genetic and molecular origins of diseases, gene therapy

holds the potential to treat hereditary diseases by replacing errant genes and nonhereditary diseases

by delivering genes to alter the production of naturally occurring or cytotoxic proteins. The latter

may be used to treat diseases such as cancer and acquired immunodeficiency virus (AIDS). While

simple in principle, several issues remain to be overcome before gene therapy can be successfully

applied in the clinic. The primary challenge is developing an efficient method for delivering the gene

to the target cells [1–3]. In this thesis we will address the intracellular barriers associated with the

gene delivery issue.

The delivery of the genetic material to the nucleus is achieved through the use of delivery vectors,

which can be divided into two major categories: viral and nonviral. Although viral vectors are

extremely efficient, serious safety concerns limit their clinical applications [4–6]. In contrast, nonviral

vectors, which rely on cationic molecules to electrostatically complex with the nucleic acids into

protective nanoparticles, are less toxic and less immunogenic [7]. We will consider cationic polymers,

which have the added benefit of facile preparation with immense flexibility to incorporate multiple

features, such as targeting ligands. However, to achieve an efficiency comparable to that of their

viral vector counterparts, a mechanistic understanding of each step during the gene delivery process

is still needed, including: the formation and stability of the nanoparticles; the systemic delivery

and targeting; the internalization, endosomal escape, cytoplasmic trafficking and nuclear transport;
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and finally the unpackaging of the nucleic acid from the nanoparticle and incorporation into the

genome [8]. While many of the above issues involve detailed biochemistry, some are clearly physical

in nature can be addressed with theory and simulation, using concepts in polymer and membrane

biophysics. In particular, the motivation for this thesis will be to address the endosomal escape

mechanism.

Understanding the endosomal escape mechanism is critical for the design of efficient polymer-

based gene delivery systems. Once the nanoparticle is internalized by the cell, it becomes trapped

inside a membrane-bound compartment called the endosome. At later stages, the endosome fuses

with the lysosome, a vesicle specialized for the intracellular digestion of macromolecules. Hence,

the nanoparticle containing the polymer-gene complex must escape or face degradation. In the

proton sponge hypothesis [9–11], it is believed that the buffering capacity of the polymers leads to

an increase in osmotic pressure that translates to increased tension on the endosomal membrane.

Eventually, the membrane forms pores and ruptures, thus releasing the trapped nanoparticles into

the cytosol.

Two biophysical questions arise naturally from the proton sponge hypothesis: How does a mem-

brane form a pore and rupture? And can the nanoparticle interact with the membrane to play a

direct role (beyond simply serving as substrate for protonation) in this process? Though apparently

simple, these questions remain unanswered and are fundamental to understanding how to design

nanoparticles that can successfully escape the endosome. Our goal is to provide a molecular-level

picture of these processes. This has required substantial efforts in developing new computational

tools capable of capturing the essential features of these complex biological systems and the time

scales of these events.

We have developed a coarse-grained model consisting of amphiphilic, double-tailed lipids in ex-

plicit solvent with added salt ions. Importantly, the model accounts for both the short-ranged

hydrophobic interactions and the long-range Coulomb interactions of the hydrophobic tails and the

negatively charged head groups, respectively, as well as the lipid chain configurational entropy. This

difficult many-body problem is converted into a one-body problem, using a well-established tech-
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Figure 1.1: Schematic of the self-consistent (mean) field theory: replacing the interactions among
molecules with the interaction between a single molecule and an average external field [12]

nique in the polymer community known as the self-consistent field theory (SCFT); see Fig. 1.1.

In Chapter 2, we use this model to study the equilibrium interaction between a positively charged

nanoparticle and a lipid membrane as a function of the particle size, charge, and membrane tension.

For moderately high membrane tensions and for nanoparticles comparable to the membrane thick-

ness, we find a metastable pore state (Fig. 1.2) that significantly reduces the critical tension for the

mechanical rupture of the membrane, defined as the limit of metastability. This suggests that if the

nanoparticle can insert into the membrane, the endosomal escape is enhanced. However, the kinetic

pathways for particle insertion and the subsequent membrane rupture cannot be addressed with the

equilibrium calculations used in this study. Furthermore, membranes are examples of soft matter

systems that can undergo many interesting processes as thermally nucleated (rare) events; particle

insertion and rupture are two likely examples.

Figure 1.2: Solutions to the SCFT equations, where the particle position is fixed. The rightmost
image corresponds to the metastable pore state. Contour plot shows the lipid head density in
cylindrical coordinates.

Developing a method to study rare events in soft matter systems is a difficult problem due
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primarily to the following challenges:

1. Long timescales: Conventional molecular dynamics simulations attempt to overcome the long

timescales by setting up the system in such an unstable state that the phase transition occurs

instantaneously, i.e., via spinodal decomposition, rather than nucleation.

2. High dimensional reaction coordinate: The potential of mean constraint force method artifi-

cially selects a reaction coordinate constraint that, in general, does not coincide with the true

transition pathway involving the many molecular degrees of freedom.

3. Complex molecules: Simple toy models are developed in an effort to reduce the computational

load of the problem. The interpretation of structures comparable to the molecular size is highly

problematic for these overly simplified models.

We have developed a novel approach that overcomes all of the aforementioned challenges. The

method captures the full minimum free energy path (MFEP) of nucleated events by using a string [13]

to identify the pathway for barrier crossing on a known free energy landscape. In SCFT the free

energy functional is not known a priori. Thus we traverse the free energy landscape by evaluating

the gradients “on the fly” [14–16].

In Chapter 3, we present results showing that the free energy barrier for pore formation and

rupture becomes surmountable well before the onset of mechanical instability of the membrane,

thus offering a possible explanation for the low rupture strains observed in lipid membranes [17].

In Chapter 4, we further demonstrate that the nanoparticle is able to insert into pores and either

translocate or assist in the rupture of the membrane. From a practical point of view, this result

suggests that engineering the nanoparticle to interact with the membrane in a way that lowers the

nucleation barrier in these pathways can be an effective way to increase the endosomal escape rate.

To achieve efficiencies comparable to the viral vectors, it may be necessary to combine multiple

tactics for overcoming the endosomal escape barrier. Recent experiments suggest that if there are

excess cationic polymers that have not condensed with the genetic material into nanoparticles, the

endosomal escape is enhanced [18,19]. The effects of these free polymers are hypothesized to be two-



5

fold. First, the polymer can insert into the endosomal membrane, thereby decreasing the mechanical

strength and lowering the nucleation barrier for membrane rupture. Second, if these polymers are

only partially inserted into the membrane, then the polymer segment sticking out may obstruct

the fusion of the endosome with lysosomal vesicles containing hydrolytic enzymes. Results from

Chapters 3 and 4 already suggest that rupture of the endosomal membrane is a nucleated event

and that the nanoparticle can directly assist in lowering this barrier. Future studies are expected

to reveal whether these free polymers can be used to further enhance the endosomal escape. A

molecular picture of the pathways associated with these processes is obtainable for the first time

using the method developed in this thesis.

Although the focus of this thesis is on the endosomal escape of polymer-based gene delivery

systems, the guiding principle used here can be extended to the investigation of other biophysical

problems. We have shown that coarse-grained models solved using appropriate computational meth-

ods can provide interesting insights into seemingly complex biological systems. In Chapter 5, two

additional studies in line with this theme are included. First, we develop a kinetic model to describe

the dynamics of cellulase, a two-domain enzyme that converts biomass into biofuels. This study

revealed the role of the flexible linker region for achieving an optimal hydrolysis rate. Second, we

define a thermodynamic model for the self-assembly of RNA viruses. Using this model, we were able

to explain—for the first time—the source of the net negative charge that is prevalent in naturally

occurring viruses, a topic of considerable controversy in the virology community.



6

Bibliography

[1] R. C. Mulligan, Science 260, 926 (1993).

[2] I. M. Verma and N. Somia, Nature 389, 239 (1997).

[3] M. Nishikawa and L. Huang, Human Gene Therapy 12, 861 (2001).

[4] A. D. Miller, Nature 357, 455 (1992).

[5] M. A. Kay, J. C. Glorioso, and L. Naldini Nat. Med. 7, 33 (2001).

[6] C. E. Thomas, A. Ehrhardt, and M. A. Kay Nat. Rev. Genet. 4, 346 (2003).

[7] M. A. Mintzer and E. A. Simanek Chem. Rev. 109, 259 (2009).

[8] D. W. Pack, A. S. Hoffman, S. Pun, and P. S. Stayton, Nat. Rev. Drug Discov. 4, 581 (2005).

[9] J. Haensler and F. C. Szoka, Bioconjugate Chem. 4, 372 (1993).

[10] J. P. Behr, Chimia. 51, 34 (1997).

[11] N. D. Sonawane, F. C. Szoka, and A. S. Verkman, J. Biol. Chem. 278, 44826 (2003).

[12] G. H. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers (Oxford University

Press, New York, 2005).

[13] W. N. E, W. Q. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002).

[14] J. Fraaije, J. Chem. Phys. 99, 9202 (1993).

[15] N. M. Maurits and J. G. E. M. Fraaije, J. Chem. Phys. 107, 5879 (1997).



7

[16] S. W. Sides, B. J. Kim, E. J. Kramer, and G. H. Fredrickson, Phys. Rev. Lett. 96, 250601

(2006).

[17] K. Olbrich, W. Rawicz, D. Needham, and E. Evans, Biophys. J. 79, 321 (2000).

[18] S. Boeckle, K. von Gersdorff, S. van der Piepen, C. Culmsee, E. Wagner, and M. Ogris, J. Gene

Med. 6, 1102 (2004).

[19] Y. Yue, F. Jin, R. Deng, J. Cai, Y. Chen, M. C. M. Lin, H.-F. Kung, and C. Wu, J. Control.

Release 155, 67 (2011).



8

Chapter 2

Interactions of a Charged
Nanoparticle with a Lipid
Membrane: Implications for Gene
Delivery

We use self-consistent field theory to study the thermodynamics of membrane-particle interactions

in the context of polymer-based gene delivery systems. Our aim is to guide the design of dendrimers

that can overcome the endosomal escape barrier by inserting into membranes and creating pores.

We study the interaction between a dendrimer, which we model as a nanoparticle, and a membrane

under controlled tension as a function of their separation. In all the cases considered, the lowest

free energy state corresponds to the particle absorbing onto the surface of the membrane. However,

with moderate tension, we find that a G5 (or larger) generation dendrimer, through thermal fluctu-

ation, can insert into membranes to form metastable pores. These pores are subsequently shown to

significantly lower the critical tension necessary for membrane rupture, thus possibly enhancing the

release of the trapped genetic material from the endosomal vesicle [1].

2.1 Introduction

Polymer-based synthetic vectors hold great promise as gene delivery vehicles. They afford immense

flexibility in design, are easy to manufacture, and allow repeated administration without adverse

immune responses. The synthetic vectors rely on the ability of the positively charged polymers
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to electrostatically bind and condense the genetic material into nanoparticles, which are termed

polyplexes. Rational design of an efficient gene delivery vehicle requires a mechanistic understanding

of each step during the gene delivery process, including the formation and stability of the polyplexes;

the systemic delivery and targeting; the cellular internalization, endososomal escape, cytoplasmic

trafficking and nuclear transport; and finally the unpackaging of the nucleic acid from the polyplex

and incorporation into the genome [2].

In this thesis, we focus on the endosomal escape mechanism. As the polyplex is trafficked from

the endosome to the lysosome, acidification activates hydrolytic enzymes that degrade the trapped

genetic material. In the proton sponge hypothesis [3–5], it is believed that cationic polymers are

able to avoid this fate by absorbing the protons. This causes the polymer to swell and additional

protons to be pumped into the endosome. Together with an attendant influx of counterions, this

results in an increase in osmotic pressure that eventually ruptures the membrane and releases the

trapped polyplexes into the cytosol.

In addition to the proton sponge effect of the polymers, it has been experimentally shown that

nonspecific interactions between free polyamidoamine (PAMAM) dendrimers and lipid membranes

enhance membrane permeability and hole formation, depending on dendrimer size (generation, G)

and charge (terminal functional groups) [6–9]. Specifically, G7 amine-terminated dendrimers induce

the formation of holes, while G5 amine-terminated dendrimers primarily expand pre-exisiting defects,

and G5 acetamide-terminated (charge neutral) dendrimers do not cause hole formation. With respect

to overcoming the endosomal escape barrier, these observations, together with results indicating

that the presence of excess free polymers can increase the transfection efficiency by two orders of

magnitude [10, 11], suggest that a molecular understanding of the membrane-particle interactions

can provide a foundation for the design of dendrimers as efficient gene delivery vehicles (in what

follows, we use the terms dendrimer and particle interchangeably).

Towards this end, recent advances in computation power and simulation methodologies have

produced interesting observations that both complement the experimental findings and provide

additional molecular-level insights [12]. In particular, Lee and Larson have performed coarse-grained
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MD simulations of G3 to G7 dendrimers on a dipalmitoylphosphatidylcholine (DPPC) bilayer. Their

results suggest that the dendrimer is more efficient in inducing membrane permeability, as compared

to flexible linear polymers, because its rigid spherical structure prefers to gain favorable electrostatic

interactions from both leaflets, thus facilitating the formation of a pore [13].

Here we use self-consistent field theory (SCFT) [14] to explore the structural and energetic

properties of metastable and unstable states involved in dendrimer-induced pore formation and

membrane rupture. In comparison to direct molecular simulation, SCFT allows access to both true

equilibrium and metastable states without limitations due to short simulation times. Furthermore,

thermodynamic variables such as the membrane tension are easily and directly controlled. We seek

to understand how the effect of the dendrimer is coupled to the effect of the tension in the membrane.

Our aim is to find conditions favoring the formation of a metastable pore, which we show can nucleate

membrane rupture. As was demonstrated by Lee and Larson [13], this requires properly treating

the electrostatics. In particular, we account for the spatially varying dielectric constant and include

the Born energy of the ions [15]. Although SCFT has been applied to similar systems, electrostatic

effects from charged species were not included [16, 17]. Thus, we begin with a brief description of

the model and SCFT derivation.

2.2 Model

Our system consists of a membrane bilayer assembled from double-tailed lipids (L) in solvent (S)

with salt ions (±). The lipids are represented as graft copolymers, which we model as discrete

Gaussian chains, consisting of a negatively charged head segment of NH solvophilic head monomers

with volume vH and two identical tail segments, each consisting of NT solvophobic tail monomers

with volume vT , see Fig. 2.1. The harmonic potential for the connectivity of chain i takes the form

hi =
3kBT

2b2

N−1∑
j=1

(ri,j+1 − ri,j)
2. (2.1)
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i = 1

qH(r; i)

q∗H(r;NH − i+ 1)

i = NH

?
6

j = 1

qT (r; j)

q∗T (r;NT + 1− j + 1)

j = NT + 1

�
�

zzzz

zzz
zz
zz

zz
zz
zz
z

Figure 2.1: A double-tailed lipid model consisting of head (blue) and tail (red) monomers. qI and
q∗I , where I = H,T , are the chain propagator and complementary chain propagator, respectively,
used for calculating the single chain statistics; see Appendix C.

Here ri,j is the position of the jth monomer in the ith chain, b is the bond length, N is the total

number of monomers in the chain, kB is the Boltzman constant, and T is the temperature. In

what follows, we set kBT = 1. We note that in using the discrete Gaussian chain as our model,

we have ignored bending rigidity. Indeed, real lipid molecules have bonds with limited flexibility;

in particular, unsaturated lipids contain double bonds, or kinks. However, bond order parameters

calculated from similar lattice models [18–20] in the same spirit as our discrete Gaussian chain

model have shown good qualitative agreement with experimental findings [21–23], and even excellent

agreement with molecular dynamics simulations [24–26]. We use the Gaussian model primarily for

convenience, as it is the simplest model that captures the conformational degrees of freedom of the

lipid molecules. Similar models have been used to study membrane processes such as fusion [27].

In addition to the lipids, there are solvent monomers with volume vS , and salt ions taken as point

charges of elementary electron charge e and valency z±. We work mostly in the grand canonical

ensemble, where the number of lipid, solvent, and ion molecules are controlled by their chemical

potentials µI (I = L, S,±), which are obtained from the homogeneous bulk phase. For a range of

dendrimer generations and charge densities, we calculate the free energy of the system as a function of

the dendrimer position with respect to the membrane. In other words, we include a fixed dendrimer
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in the system, whose position and density profile we specify, and solve for the remaining density

profiles of the lipids, solvents, and ions; the free energy follows immediately from these solutions.

We begin with a particle-based Hamiltonian for our system, given by

H =

nL∑
i=1

hi +

∫
drdr′

{∑
JK

φ̂J(r)uJK(r− r′)φ̂K(r′) +
e2

2
ρ̂c(r)C(r, r′)ρ̂c(r

′) +
z2
±e

2ĉ±(r)

8πa±ε(r)

}
. (2.2)

In this expression, the first term accounts for the chain connectivity of the nL lipids. The second

term accounts for the pairwise energetic interaction potentials among species, where the summation

is over JK ∈ {HT, TS, SH} and the instantaneous volume fractions of solvent, head, and tail

monomers are defined

φ̂S(r) = vS

nS∑
j=1

δ(r− rj),

φ̂H(r) = vH

nL∑
i=1

NH∑
a=1

δ(r− ria),

φ̂T (r) = 2vT

nL∑
i=1

NT∑
b=1

δ(r− rib).

(2.3)

We assume the pairwise interaction potential uJK(r−r′) to be short-ranged, so that one may perform

a gradient expansion to quadratic order; see Appendix A. This gives the following approximation:

H ≈
nL∑
i=1

hi +

∫
drdr′

{∑
JK

[
φ̂J(r)χJK φ̂K(r) +

κJ
2
|∇φ̂J(r)|2

]
+
e2

2
ρ̂c(r)C(r, r′)ρ̂c(r

′) +
z2
±e

2ĉ±(r)

8πa±ε(r)

}
.

(2.4)

Here, the local interactions are captured by the terms containing the Flory χ parameters and non-

local interactions are captured by the gradient terms [28]. We comment that in modeling systems

involving long polymers, such gradient terms are usually not included, as the chain connectivity is

sufficient to capture the nonlocal effects on length scales of interest. Because we are treating shorter

chains, we include these terms to account for nonlocal effects at shorter length scales due to the

short chain nature of the lipids.
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The third term in Eq. (2.4) is the Coulomb energy of the system, where

C(r, r′) =
1

4πε|r− r′|
(2.5)

is the Coulomb operator satisfying [−∇ · (ε∇)]C(r, r′) = δ(r− r′). Later, it will be useful to note

that its inverse operator is

C−1(r, r′) = −ε∇2δ(r− r′). (2.6)

The Coulomb energy accounts for the long-ranged electrostatic interactions from the total charge

density of all charged species:

eρ̂c(r) = cFφF (r)− cH
vH

φ̂H(r) + z+eĉ+(r)− z−eĉ−(r). (2.7)

Here cF is the magnitude of the charge density on the fixed dendrimer and cH is the magnitude of

the charge per head monomer (and is dimensionless). ĉ±(r) is the instantaneous number density of

the ions. Note that the density profile φF (r) for the dendrimer is specified by us. Any reasonable

function may be used. We choose a hyperbolic tangent function with a characteristic width for the

interface [29] so that the dielectric constant ε(r), which is spatially varying and depends on the

volume fractions of the different species, will be smooth and continuous in r. However, with respect

to the lipids, the dendrimer is impenetrable and the density profile of the fixed particle is essentially

a step function. Finally, the forth term in Eq. (2.4) is the Born self-energy of the ions in a weakly

varying dielectric medium.

The grand canonical partition function Ξ is obtained by summing over all particle degrees of

freedom, including the position of each solvent and ion molecule, as well as the position and confor-

mation of each lipid chain:

Ξ =

∞∑
n{L,S,±}=0

e(µLnL+µSnS+µ±n±)

nL!nS !n±!vLnLvSnSv±n±

∫ nL∏
i=0

Dri
∫ nS∏

j=0

drj

∫ n±∏
k=0

drk

×
∏
r

δ
[
1− φ̂H(r)− φ̂T (r)− φ̂S(r)− φF (r)

]
e−H.

(2.8)
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Here, the delta functional accounts for the incompressibility at all positions r within the system

volume, the notation Dri is shorthand for integrating over all monomers in the chain, i.e., Dri ≡

dri,1dri,2 . . . dri,N , and the Boltzmann factor H is given by Eq. (2.4).

In SCFT, the first step is to replace the above (computationally intractable) particle-based

model with a field-theoretic model, using a series of techniques related to Hubbard-Stratonovich

transformations. This decouples the interactions among particles and replaces them with interactions

between single particles and effective fields; for details, see Appendix B. The final result for the field-

theoretic partition function can be generically written in the form

Ξ =

∫
Dω exp(−F [ω]), (2.9)

where F is an effective Hamiltonian that is complex and depends on the (multidimensional) field

variable ω. In general, the field-theoretic partition function cannot be evaluated in closed form. The

mean-field, or self-consistent field approximation, amounts to assuming that a single field configura-

tion ω∗ dominates the functional integral, i.e., Ξ ≈ exp(−F [ω∗]), where F [ω∗] in our model is given

by

F =− eµL

vL
ZL(ξH , ξT )− eµS

vS
ZS(ξS)− eµ±

v±
Z±(ψ)

+

∫
dr

{∑
JK

(χJKφJφK − ξJφJ +
κJ
2

[∇φJ ]2) + ψ
(
cFφF −

cH
vH

φH
)
− ε

2
(∇ψ)2

}
.

(2.10)

In Eq. (2.10), and in what follows, we recognize the imaginary nature of the potential field variables

at the saddle point and redefine the conjugate chemical potential fields iξ → ξ, and the electrostatic

potential field −iψ → ψ. Also, the incompressibility constraint is invoked to eliminate φS in favor

of φH , φT , and φF . Finally, the r dependence has been dropped for notational conciseness.

The partition functions that arise in the above expression are for a single molecule in its respective
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field(s) and are given by

ZS(ξS) =

∫
dr exp{−vSξS},

Z±(ψ) =

∫
dr exp

{
∓ ψez± − ub±

}
,

Zl(ξH , ξT ) =

∫
drqH(r;NH)q2

T (r;NT + 1)e2vHξH ,

(2.11)

for the solvents, ions and lipids, respectively. The form of ZS(ξS) is simple enough; Z±(ψ) and

Zl(ξH , ξT ) require some explanation. Firstly, we have introduced the Born self-energy of the ions

ub± =
z2
±e

2

8πa±ε
, (2.12)

where ε is the spatially varying dielectric constant. Although the volume of the salt ions does not

enter into the incompressibility, with respect to the self-energy of an ion, we specify a± = 0.3 nm

as the radius. ub± cannot be absorbed into a redefinition of the chemical potential for a spatially

varying dielectric medium. The derivation of the expression for the Born energy of a spatially varying

dielectric medium is rather involved and we refer the interested reader to a complete derivation by

Wang [15]. Secondly, we have introduced the chain propagator qI(r; i) for I = H,T , where i is the

monomer index, to obtain the single-chain statistics of the lipid. The propagator accounts for the

chain connectivity and the Boltzmann weight due to the self-consistent potential field. Calculation of

the propagator for our discrete Gaussian chain is described in Appendix C, with the initial condition

for placing the end monomers:

qH(r; 1) = exp{−vHξH},

qT (r; 1) = exp{−vT ξT }.
(2.13)

The total partition function for a single chain follows naturally by joining the chain propagators at

the branch point, where an extra exponential factor e2vHξH is included in the partition function to

correct for over-counting the joined monomer; see Fig. 2.1.
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Finally, the mean-field configuration that gives F [ω∗] is obtained by requiring that Eq. (2.10)

is stationary with respect to variations in the fields. Variation with respect to the volume fraction

fields φH and φT gives,

ξH =ξS + χSH(1− 2φH − φT − φF ) + (χHT − χST )φT

− κH∆φH −
cH
vH

ψ − (εH − εS)

(
(∇ψ)

2

2
+
z2
±e

2c±

8πa±ε2

)
,

ξT =ξS + χST (1− φH − 2φT − φF ) + (χHT − χSH)φH

− κT∆φT − (εT − εS)

(
(∇ψ)

2

2
+
z2
±e

2c±

8πa±ε2

)
.

(2.14)

Here, c± = eµ±v−1
± exp

{
∓ z±eψ − ub±

}
is the ion distribution. Variation with respect to ψ gives,

−∇(ε∇ψ) = cFφF −
cH
vH

φH ± (z±ec±) ; (2.15)

with respect to ξS gives,

1− φH − φT − φF = eµS exp{−vSξS}; (2.16)

and with respect to ξH and ξT gives,

φH(r) =
vHeµL

vL

NH∑
i=1

qH(r; i)evHξH q∗H(r;NH − i+ 1),

φT (r) = 2
vT eµL

vL

NT∑
i=1

qT (r; i)evT ξT q∗T (r;NT + 1− i+ 1).

(2.17)

Here we have introduced the complementary chain propagator q∗I (r; i), which also satisfies a similar

equation to that for qI(r; i), but with the initial conditions (for beginning at the branch point):

q∗H(r; 1) = evHξH qT (r;NT + 1)qT (r;NT + 1),

q∗T (r; 1) = evHξH qT (r;NT + 1)qH(r;NH).

(2.18)
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Eq. (2.15) is the Born-energy augmented Poisson-Boltzmann equation [15]. Eq. (2.16) can be trivially

solved to to yield ξS = −v−1
S log(1− φH − φT − φF ), where we have defined µS ≡ 0 because the

chemical potentials of the solvents and lipids are not independent for an incompressible system.

Numerical SCFT requires solving eqs. (2.14–2.17), together with Eq. (C-2) for the chain propagators,

iteratively until convergence. From these solutions, the free energy is obtained from Eq. (2.10).

2.3 Results

In this section, we study the thermodynamics of membrane-particle interactions and consider the

implications to the endosomal escape, where, in addition to the proton sponge effect, another possible

effect of the dendrimers is to insert into the endosomal membrane and form pores that can nucleate

rupture at significantly lower tensions. As a reference, we first study the tension required to rupture

a uniform membrane in the absence of the dendrimer.

2.3.1 Rupture of a Uniform Lipid Membrane

Lipid membranes such as DPPC are often used as models for understanding the more complex

and diverse biological membranes that define the boundaries of (and within) a cell. We begin by

developing a coarse-grained model of a lipid membrane in a volume containing explicit solvent and

mobile ion species at physiological salt concentration, 150 mM. For the lipid we choose NH = 2

and NT = 8 (per tail), with the monomer volumes vH = vT = 0.05 nm3. With these values, the

total volume of our lipid is vl = 0.9 nm3, which is on the order of the value for a lipid in a fully

hydrated bilayer (vl = 1.232 nm3) as determined by Nagle [30]. The desired surface charge density

is experimentally obtained by specifying the composition of lipid species in the membrane [31]. For

simplicity, we choose to distribute the charge evenly among the head monomers and set cH = 0.25

for the (dimensionless) charge magnitude per head monomer.

The Flory and square gradient interaction parameters are chosen so that the model captures real-

istic features of a lipid membrane. Setting χHT = 75, χTS = 25, χSH = 0 and κH = κT = 2, κS = 0,

we obtain, in the tensionless state, an area per lipid of 0.74 nm2 and a membrane width of ∼ 3.5 nm;
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Figure 2.2: (a) Volume fractions and (b) ion number concentrations (nm−3) across the axis perpen-
dicular to the membrane

see Fig. 2.2(a). Both values are similar to those obtained from experiments and molecular dynamic

simulations [32]. We choose εT = 2 and εH = 50 for the dielectric constants of the tail and head

regions [33], respectively, and for the solvent we use εS = 80. Figure 2.2(b) shows an accumulation

of cations in the head region due to the negatively charged head monomers, and a depletion of ions

in the tail region due to the low value of the dielectric constant, εT .

The above parameters are chosen based on experimental results for membranes in the tensionless

state. The tension is defined by γ = ∂F/∂A|nl
, where F is the appropriate free energy and A is

the area. To study the limit of stability for a membrane under increasing tensions, we work in a

semi-open system (open with respect to solvent and small ions but closed with respect to the number

of lipids so that the number of lipids in the membrane is fixed) and obtain the free energy per unit

area f as a function of the area per lipid σ. The tension is then evaluated according to

γ = f + σ
∂f

∂σ

∣∣∣∣
nl

. (2.19)
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Figure 2.3: Membrane tension (kBT/nm2) as a function of the area per lipid (nm2). The limit of
metastability occurs where ∂γ/∂σ = 0.

For a mechanically stable membrane, (∂γ/∂σ) > 0. Therefore, the condition (∂γ/∂σ) = 0 signals

the onset of mechanical instability, which we identify with the point of rupture and term the value

of tension at this point the critical tension. In Fig. 2.3, the rupture corresponds to the maximum

of the tension-area curve, with a critical value of the areal expansion of ∼ 0.45, and critical tension

γc ∼ 4.5 kBT/nm2. The same calculation is repeated in the grand canonical ensemble, which is open

to all species. In this system, the excess grand potential (given by Eq. (2.10) relative to the uniform

bulk solution) per unit area directly gives the tension up to the rupture value. The results from

these two ensembles are identical. For convenience, particularly when a dendrimer is present, in

what follows we work in the grand canonical ensemble.

We note that the rupture captured by this one-dimensional calculation is the limit of metasta-

bility for a uniform static membrane. In reality, thermal fluctuations and lipid rearrangements are

responsible for regions of membrane thinning [34, 35] that lead to rupture under much lower ten-

sions. Therefore, it is not surprising that our value for the critical tension is higher than the values

determined from micropipette aspiration experiments (0.75 − 2.5 kBT/nm2, depending on degree

of saturation of the lipid tails [36]), and the areal expansion we obtain is an order of magnitude

greater than the areal expansion obtained experimentally for lipid vesicles [37] (but comparable to

the results for polymersome mebranes [38]). We emphasize that these results do not suggest that

our model is unphysical, but rather that the experimentally observed rupture is likely a nucleated
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event. In what follows, we explore the thermodynamics of membrane-particle interactions.

2.3.2 Thermodynamics of Membrane-Particle Interactions

Properties of the fixed particle are chosen to capture the size and charge of different generations

of PAMAM dendrimers [39]. Because the outer surface of a high-generation dendrimer is highly

congested and unlikely to be penetrated by lipids (see Zhang [6] and references within), we define a

radius RF , which excludes any lipids from within the volume of the particle. The total charge of the

particle is given by the number of terminal amine groups, which are essentially all protonanted at

neutral pH [40]. Due to significant backfolding of these amines [41], the charge can be assumed to

be distributed evenly in the volume of the particle (see Fig. 2.7 for the dendrimer sizes and charge

densities used in this work).

We find the results insensitive to the dielectric constant chosen for the particle, and assign

εF = εS = 80. Because the system is axially symmetric, we work in cylindrical coordinates, with the

center of the particle defined as rF = (rF , zF ) = (0, zF ) and the membrane positioned at z = 0. The

vertical position of the particle zF then becomes a natural reaction coordinate for the system. In

what follows, we constrain the position of the particle and numerically solve the set of SCF equations

at each position. The solutions to the uniform membrane case are used as the boundary condition,

holding the membrane at fixed tension and its outer edges at fixed position.

In general, the SCF equations can have multiple solutions, corresponding to different free energy

minima, with one being the global minimum and the rest being the metastable minima. Capturing

all the free energy minima is a nontrivial task. However, symmetry and simple physical intuition can

often be used to limit the search. Here, we take advantage of the different ways of initializing the

SCF equations as a means to access the stable and metastable minima. We consider two methods:

1. We begin with a noninteracting membrane-particle system and slowly move the particle along

the path of decreasing zF . At each step, the previous solutions are used to initialize the new

equations.

2. We instantaneously place the particle at zF , sometimes initializing the configurations with a
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Figure 2.4: Free energy profile (kBT ) for the tensionless membrane. ∆F is relative to a nonin-
teracting membrane-particle system, where zF → ∞. The particle is a G5 dendrimer with radius
RF = 2.7 nm and charge density cF = 1.55 nm−3 (all 128 surface amines are protonated). For
comparison, we have also plotted the results for a hypothetical G5 dendrimer with cF = 5.00 nm−3.
Empty symbols correspond to method 1; + and × correspond to method 2 (see text for description).

hole in the membrane. This hole can be interpreted as a temporary defect caused by fluctua-

tions.

2.3.2.1 Tensionless Membrane

We first apply method 1 to a tensionless membrane and a fully protonated G5 dendrimer. While the

specific interactions are local, the electrostatic interactions are long-ranged and rearrangements of

the lipid molecules allow the membrane to reach out and meet the particle, as shown in Fig. 2.5(a).

At this point, the particle is within the attractive range of the membrane. This is depicted in Fig. 2.4,

where the potential well in the free energy profile is due to a competition between satisfying the

favorable electrostatic interactions and deforming the membrane. From the free energy profile, we see

that the particle will continue towards zF ∼ 0 nm, corresponding to a metastable, partially wrapped

state.

Interestingly, if we imagine an external force which continues to slowly push the particle, we

find that the membrane does not rupture. Instead, it deforms until the two sides of the membrane

trailing the leading edge of the particle fuse together, and a dendrimer-filled vesicle naturally pinches

off from the membrane. Although beyond the scope of this article, further analysis of this process
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Figure 2.5: φH in cylindrical coordinates for a tensionless membrane and a fully protonated G5
dendrimer with cF = 1.55 nm−3. (a–c) are solutions to both methods 1 and 2, while (d–f) are only
solutions to the latter.

of pushing the particle through the membrane could provide information as to the energetics and

forces required by the cell (in particular, the proteins recruited) to enforce shape transitions of the

membrane involved in endocytosis.

We next solve the same SCF equations by method 2. Depending on the extent of the hole

created by the particle and the parameters of the system (membrane tension, dendrimer charge and

dendrimer size), the system will fall into one of two solutions: either the membrane reseals the hole

and partially wraps the particle, or the membrane forms a head-lined pore around the particle. This

is observed from the density plots (Fig. 2.5) and from the free energy profile (Fig. 2.4), where the

SCF solutions correspond to a partially wrapped particle until zF ∼ 2.0 nm. Beyond this, if thermal

fluctuations initiate a hole (as simulated by method 2), then the system will find the solutions to

the higher energy path corresponding to a membrane pore. However, the particle must squeeze its

way into the pore, as can be seen in Fig. 2.5(d) and the free energy increases with decreasing zF .

This indicates that any pore induced into a tensionless membrane is highly unstable and will be

short-lived. In all of our calculations, it is important to remember that the particle position is fixed.

In other words, we have constrained the SCF equations so that the membrane is forced to respond

to a particle at fixed zF . If we lift this constraint, the membrane will expel the particle and reseal

the pore. The system will then find the metastable state corresponding to the partially wrapped
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particle.

From the above analysis for a fully protonated G5 dendrimer interacting with a tensionless

membrane, it is clear that the pore state cannot exist without constraining the position of the

particle. It is of interest to know whether the pore state can be stabilized by appropriately modifying

the dendrimer. If the increase in free energy is due to the particle having to squeeze its way through

the pore as it deforms the membrane, increasing the particle size is not the solution. Instead, suppose

that we can increase the charge density on the dendrimer by chemically modifying the functional

groups.

In Fig. 2.4 we compare the result for a hypothetical, highly charged G5 dendrimer (cF = 5.00 nm−3)

to the result for a fully protonated G5 dendrimer (cF = 1.55 nm−3). Due to screening by the salt

ions, increasing the charge density does not increase the range of electrostatic attraction. It increases

the extent and stability of the wrapped state. If the system manages to reach the unstable pore

state, it will be short-lived, according to the same explanation given in the preceding paragraph for

cF = 1.55 nm−3. From method 1, we find that electrostatic interactions alone are insufficient for a

dendrimer to induce holes in a tensionless membrane. From method 2, even if thermal fluctuations

assist by initiating temporary holes, we find that the dendrimer is unable to stabilize pores in a

tensionless membrane.

2.3.2.2 Membrane Under Tension

In the proton sponge hypothesis, an increase in osmotic pressure is believed to rupture the endosome.

We account for the osmotic pressure by applying a tension to the membrane, and explore the

combined effects of the applied tension and the electrostatic interactions between the membrane

and the particle. In Fig. 2.6, we continue with a fully protonated G5 dendrimer and plot the free

energy profile for γ = 0.74 kBT/nm2. The cost of deforming a membrane under tension has shifted

the metastable state from partially wrapped (zF ∼ 0 nm) to surface-absorbed (zF ∼ 2.8 nm). The

membrane is also less successful at healing defects (e.g., those initialized by method 2) and transitions

earlier to the pore state, which now corresponds to a second metastable state. It is also known that
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Figure 2.6: Free energy profile (kBT ) for a membrane with γ = 0.74 kBT/nm2, shown together with
the tensionless membrane from Fig. 2.4. The particle is once again a fully protonated G5 dendrimer.
Empty symbols correspond to method 1; + and × correspond to method 2 (see text for description).
Note that we are well below the limit of metastability for a homogeneous membrane, where rupture
occurs at γc ∼ 4.5 kBT/nm2.

membrane permeability and hole formation are dependent on dendrimer generation and terminal

functional groups [6–9]. Therefore, we also consider G3–G7 dendrimers. Our results agree with

experimental trends, where we find that G3 dendrimers do not stabilize pores, while G5 and G7

dendrimers do, see Fig. 2.7.

However, with respect to the endosomal escape, our interest lies in dendrimers that can nucleate

rupture, not stabilize pores. Recall that rupture of a uniform membrane occurs at γc ∼ 4.5 kBT/nm2.

Consider the membrane under tension with an inserted G5 dendrimer (cF = 1.55 nm−3) shown in

Fig. 2.6, where the pore state is metastable. If we slowly increase the tension from this state, we find

that the limit of metastability occurs at γc ∼ 0.84 kBT/nm2, see Fig. 2.8. For tensions exceeding

this value, the pore radius expands indefinitely and the membrane ruptures. Interestingly, even a

highly charged particle, which should have strong adhesion to the head-lined pore periphery, lowers

the rupture tension, where γc levels off at ∼ 1.3 kBT/nm2.

We should comment that increasing the charge on dendrimers makes the pore state energetically

more favorable as compared to the wrapped state. So even though membranes containing higher-

charged dendrimers require higher rupture tensions, the higher-charged dendrimers are more effective

at stabilizing the pore state to begin with (see Fig. 2.7), and therefore more effective at facilitating
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Figure 2.7: Free energy profile (kBT ) for a membrane with γ = 0.74 kBT/nm2 interacting with G3
(RF = 1.8 nm, cF = 1.30 nm−3), G5 (RF = 2.7 nm, cF = 1.55 nm−3), and G7 (RF = 4.0 nm,
cF = 2.0 nm−3) dendrimers. Empty symbols correspond to method 1; +, ×, and N correspond to
method 2 (see text for description).

Figure 2.8: Rupture tension (kBT/nm2) for a membrane containing a pore, plotted as a function of
the charge density (nm−3) of the G5 dendrimer stabilizing the pore

rupture. The study of the actual nucleation barriers and pathways to pore formation and rupture

are beyond the scope of this work. Nevertheless, these results show that highly charged dendrimers

can greatly lower the rupture tensions. In terms of the endosomal escape, this dendrimer-induced

rupture at significantly lower tensions is precisely what we seek.

2.4 Conclusion

In this work, we have used SCFT to study the thermodynamics of membrane-particle interactions

in the context of polymer-based gene delivery systems. We have focused on the endosomal escape
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mechanism, where our main goal is to understand the role of the dendrimer in nucleating membrane

rupture (with the eventual release of the genetic material from the endosome). For different mem-

brane tensions, dendrimer sizes and charge densities, we have explored the structural and energetic

properties of the system. In what follows, we summarize our main findings and the implications for

designing polymer-based gene delivery vectors.

For tensionless membranes, we find that the hydrophilic pore with an inserted dendrimer is

unstable; the tensionless membrane prefers to satisfy the favorable electrostatic interactions by

partially wrapping the dendrimer. Our results indicate that increasing the charge density of the

dendrimer only increases the extent and stability of the wrapped state, while the pore state, if

somehow created, remains unstable and short-lived. In other words, the tensionless membrane is

so robust that even a highly charged particle is unable to insert into the membrane and stabilize

a pore. This suggests that the osmotic pressure contribution from the proton sponge hypothesis

is a necessary component if the endosomal escape is to be enhanced by particle insertion into the

membrane.

To study the effect of the osmotic pressure, we apply a tension γ = 0.74 kBT/nm2 to the

membrane. This value is well below the limit of metastability for a uniform membrane, for which

γc ∼ 4.5 kBT/nm2. For G5 dendrimers and higher, we find that the pore corresponds to a metastable

state, while for G3 dendrimers the pore is unstable. This agrees with experimental trends on

the ability of the dendrimer to cause membrane permeability and hole formation [6–9]. Lee and

Larson [13], using MD simulations on similar membrane-particle systems, found that dendrimer-

induced membrane disruption was dependent on generation and concentration. We believe that

the apparent concentration dependence is related to local membrane tensions that are induced by

nearby particles due to the fixed membrane area. This is in agreement with the effect of tension in

our findings, where metastable pores exist only in combination with an applied tension. Finally, our

results indicate that these same metastable pores can act as nucleation sites for rupture.

With respect to overcoming the endosomal escape barrier (one of many to consider in gene

delivery systems), we have shown that there are at least two properties to consider in the design
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of the vector: (1) the dendrimer should be able to induce a tension on the membrane, e.g., by

increasing the osmotic pressure through the proton sponge mechanism; and (2) the dendrimer should

be sufficiently large and with enough charge so as to stabilize the pore state. Without the combined

effect of the two, the membrane would prefer to satisfy the electrostatic interactions by partially

wrapping around the dendrimer.

Finally, we comment on the limitations of our present study. In all of our calculations, we have

fixed the position of the dendrimer zF so that the solutions we obtain are subject to this constraint.

The free energy profile in this sense yields the potential of mean force between the particle and the

membrane. The multiple unstable and metastable states are obtained from the behavior of the free

energy as a function of zF . However, the reaction coordinate for nucleating rupture most likely will

not be zF , but will involve the rearrangement of the lipids in the pre-pore state. The current study

does not address how the particle becomes inserted into the membrane from the partially wrapped

state, nor does it address the subsequent nucleation event leading to rupture.

To study the pathways associated with these activated processes will require minimum energy

path (MFEP) calculations using, e.g., the nudged elastic band [42, 43] or the string method [44].

We note that simpler calculations, where physical insight is used to impose one or more reaction

coordinate constraints (in a similar spirit to our particle position zF ) have sometimes been used

to study nucleation processes in membrane fusion [27]. However, the structures associated with

dendrimer-induced pore formation and membrane rupture are more complicated and it is not obvious

that some simple constraints can be identified. In Chapter 3, we apply MFEP calculations to

dynamic SCF theory to address the actual nucleation events involved in the dendrimer-induced pore

formation and membrane rupture.

The authors gratefully acknowledge support from the Jacobs Institute for Molecular Engineering

for Medicine at Caltech. C.L.T. is thankful for financial support from an NIH training grant.
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Appendix A: Gradient Expansion

For the second term in Eq. (2.2), we focus on one term in the sum and perform a change of variables

r̄ = r− r′ and expand around r′

∫
drdr′φ̂J(r)uJK(r− r′)φ̂K(r′) =

∫
dr̄dr′φ̂J(r̄ + r′)uJK(r̄)φ̂K(r′) ≈∫

dr̄dr′
[
φ̂J(r′) + r̄T∇φ̂J(r′) +

1

2
r̄T∇∇φ̂J(r′)r̄

]
uJK(r̄)φ̂K(r′).

(A-1)

The zeroth-order term in Eq. (A-1) defines the Flory interaction parameter

∫
dr̄uJK(r̄)

∫
dr′φ̂J(r′)φ̂K(r′) ≡ χJK

∫
dr′φ̂J(r′)φ̂K(r′). (A-2)

Assuming uJK(r̄) is symmetric, the first-order term vanishes; performing an integration by parts,

the second-order term defines the phenomenological square gradient parameter κJK

−1

2

∫
dr̄ r̄T r̄uJK(r̄)

∫
dr′∇φ̂J(r′)T∇φ̂K(r′) ≡ κJK

2

∫
dr′∇φ̂J(r′)T∇φ̂K(r′). (A-3)

Neglecting the cross square gradient terms and defining κJJ ≡ κJ gives the following approximation

to Eq. (2.2):

H ≈
nL∑
i=1

hi +

∫
drdr′

{∑
JK

[
φ̂J(r)χJK φ̂K(r) +

κJ
2
|∇φ̂J(r)|2

]
+
e2

2
ρ̂c(r)C(r, r′)ρ̂c(r

′)

}
. (A-4)
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Appendix B: From a Particle-Based to a Field-Theoretic Model

We will make use of the following two identities:

1. The Hubbard-Stratanovich transformation:

exp

[
−1

2

∫
dx

∫
dx′J(x)A(x, x′)J(x′)

]
=∫

Df exp
[
− 1

2

∫
dx
∫
dx′f(x)A−1(x, x′)f(x′) + i

∫
dxJ(x)f(x)

]∫
Df exp

[
− 1

2

∫
dx
∫
dx′f(x)A−1(x, x′)f(x′)

] (B-1)

where J is the instantaneous density, A is the operator and f is the auxiliary field.

2. Alternatively, one can introduce the field variables φI through a series of formal functional

analysis identities for the Dirac distribution. First the instantaneous densities (expressed as a

unitless volume fractions) are converted into smooth scalar density fields φ̂I = φI :

∫
DφIδ

[
φI(r)− φ̂I(r)

]
F [φI(r)] = F [φ̂I(r)]. (B-2)

Then the associated (conjugated) fields ξI are introduces via the formal Fourier representation

of δ[f(r)− g(r)]:

δ
[
f(r)− g(r)

]
=

∫
DξI exp

{
i

∫
drξI(r)

[
f(r)− g(r)

]}
. (B-3)

These two steps also decouple the interactions among particles and replace them with inter-

actions between single particles and effective fields.
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Using these two identities, we can now write the partition function in Eq. (2.8) as

Ξ =

∞∑
n{L,S,±}=0

e(µLnL+µSnS+µ±n±)

nL!nS !n±!vLnLvSnSv±n±

∫ nL∏
i=0

Dri
∫ nS∏

j=0

drj

∫ n±∏
k=0

drk

∫
DφI

∫
DξI exp

{
i

∫
drξI(r)[φI(r)− φ̂I(r)]

}
× exp

{
−

nL∑
i=1

hi −
∫
dr

(∑
JK

[
φJ(r)χJKφK(r) +

κJ
2
|∇φJ(r)|2

]
+
z2
±e

2ĉ±(r)

8πa±ε(r)

)}

×
∫
Dψ exp

{
i

∫
drψ(r)

[
cFφF (r)− cH

vH
φH(r)± z±eĉ±(r)

]
−
∫
dr
ε(r)

2
(∇ψ(r))2

}
.

(B-4)

Where we have used Eq. (B-1), together with Eq. (2.6), to decouple the quadratic terms in the

Coulomb energy. Note, also, that incompressibility condition is imposed directly by defining φS =

1− φH − φT − φF . Separating the terms containing the microscopic densities from those containing

the fields, we write

Ξ =

∫
DφI

∫
DξI

∫
Dψ

×
∞∑

nL=0

eµLnL

vLnLnL!

∫ nL∏
i=0

Dri exp

{
−

nL∑
i=1

hi −
∫
drξH,T φ̂H,T

}

×
∞∑

nS=0

eµSnS

vnS

S nS !

∫ nS∏
j=0

drj exp

{
−
∫
drξSφ̂S

}

×
∞∑

n±=0

eµ±n±

v
n±
± n±!

∫ n±∏
k=0

drk exp

{
−
∫
drez+ψ ĉ± −

∫
dr
z2
±e

2ĉ±

8πa±ε

}

× exp

{
−
∫
drψ

(
cFφF −

cH
vH

φH

)
− ε

2
(∇ψ)2

}
× exp

{
−
∫
dr
∑
JK

(
χJKφJφK − ξJφJ −

κJ
2

[∇φJ ]2
)}

.

(B-5)

In anticipation of the imaginary nature for the field variables ξI and ψ at the saddle point, we have

redefined the real field iξI → ξI and −iψ → ψ. Noting that the molecules within each species are
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indistinguishable and making use of the microscopic density operators, this can be rewritten:

Ξ =

∫
DφI

∫
DξI

∫
Dψ

× exp

{
eµL

vL

∫
Dre−h−vH,T ξH,T +

eµS

vS

∫
dre−vsξs +

eµ±

v±

∫
dre∓ez±ψ−u

b
±

}
× exp

{
−
∫
drψ

(
cFφF −

cH
vH

φH

)
− ε

2
(∇ψ)2

}
× exp

{
−
∫
dr
∑
JK

(
χJKφJφK − ξJφJ −

κJ
2

[∇φJ ]2
)}

.

(B-6)

Fitting this expression into Eq. (2.9), it is evident that the field theoretic partition function is given

by Eq. (2.10) with the single molecule partition functions given by Eq. (2.11). For the lipids, the

Boltzmann factor contains the term h for the chain connectivity. This is further weighted by the

external fields ξH and ξT . To obtain the single chain statistics for the lipids, our approach will be to

compute the chain propagators qH and qT , as described in Appendix C. Finally, we comment that

the Boltzmann factor for the ions contains the Born-self energy ub± in a spatially varying dielectric

medium [15].
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Appendix C: Propagator for a Single Chain in External Fields

We introduce the chain propagator by analogy to a Markovian process, where the monomer index

i can be thought of as the analogue of a discrete time variable in a stochastic process. In this way

we seek to build up the configuration of the graft copolymer, from the free end of each arm to the

branch point, beginning with the initial condition that

qI(r, 1) = e−vIξI(r) (C-1)

for I = H,T . Moving to subsequent monomers i corresponds to propagating forward in the “time”

index:

qI(r; i) = e−vIξI(r)

∫
dr′Γ(|r− r′|)qI(r′; i− 1). (C-2)

Here i ∈ (2, NI) and Γ denotes the transition probability from one monomer to the next, assumed

to be Gaussian. For notational simplicity, in what follows we drop the subscript I and denote

q(r, i) as simply qi(r). The above expression is essentially a reduced partition function for a chain

beginning at r and ending anywhere. Rather than attempt to evaluate Eq. (C-2) directly by an

integration scheme, we recognize that for a reasonably smooth external potential, the contributions

are dominated by the transitions for which |r− r′| is on the order of the range of (or less than) the

Gaussian. Thus, following the usual practice in deriving a differential equation from the Chapman-

Kolmogoroff equation, we expand r′ around r to quadratic order. Further representing the spatial

derivatives by differences in cylindrical coordinates for our axially-symmetric membrane-particle

system, we get

qi+1(rj , zk) = e−vξ(rj ,zk)

{[
1− 4γ

]
qi(rj , zk) + γqi(rj , zk+1) + γqi(rj , zk−1)

+ γ(1 +
1

2j
)qi(rj+1, zk) + γ(1− 1

2j
)qi(rj−1, zk)

}
.

(C-3)
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Here we have defined γ = b2/6h2, where b2 is the variance of the transition probability and and h is

the grid spacing, and we have discretized space by a uniform grid:

(rj , zk) = (jh, kh), j = 0, ..., nr, k = −nz, ..., nz. (C-4)

From Eq. (C-3), we can identify the following transition probabilities on the discretized lattice:

Γ(rj , zk+1 → rj , zk) = γ,

Γ(rj , zk−1 → rj , zk) = γ,

Γ(rj+1, zk → rj , zk) = γ(1 +
1

2j
),

Γ(rj−1, zk → rj , zk) = γ(1− 1

2j
),

Γ(rj , zk → rj , zk) = 1− 4γ,

(C-5)

where the last expression can be thought of as the “survival probability”. Eq. (C-3) applies to j 6= 0.

For j = 0, we have

qi+1(r0, zk) =e−vξ(r0,zk)

{[
1− 6γ

]
qi(r0, zk) + γqi(r0, zk+1) + γqi(r0, zk−1) + 4γqi(r1, zk)

}
, (C-6)

from which we similarly obtain the transition probabilities. Note that the positivity of the transition

probabilities requires that γ < 1/6. Continuing with the analogy to a Markovian process, we can

define an equivalent “master equation” for the chain propagator on our discrete grid, and Eq. (C-2)

becomes

qi(rj , zk) = e−vξ(rj ,zk)
∑
r′j ,z

′
k

Γ(r′j , z
′
k → rj , zk)qi−1(r′j , z

′
k), (C-7)

where it is understood that the summation is restricted to the nearest neighbors of (rj , zk). The

discretization scheme we have used assumes that the range of a bond joining two monomers is on

the order of (or less than) the grid spacing h. More precisely b <
√

3/2h. For cases where we wish

to lengthen the range of the bonds, we can include next-nearest neighbor transitions (and beyond)
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by inserting fictitious monomers at intermediate positions. These intermediate beads satisfy Eq. (C-

3) and Eq. (C-6), but without the Boltzmann weight associated with the external field. Finally,

we comment that the discrete Gaussian chain given here, unlike the continuous Gaussian chain

model, has finite range of bond lengths, which are specified by the grid spacing h and the number

of intermediate beads.
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Chapter 3

The Minimum Free Energy Path to
Membrane Pore Formation and
Rupture

We combine dynamic self-consistent field theory with the string method to calculate the minimum

energy path to membrane pore formation and rupture. In the regime where nucleation can occur on

experimentally relevant time scales, the structure of the critical nucleus is between a solvophilic stalk

and a locally thinned membrane. Classical nucleation theory fails to capture these molecular details

and significantly overestimates the free energy barrier. Our results suggest that thermally nucleated

rupture may be an important factor for the low rupture strains observed in lipid membranes [1].

3.1 Introduction

Membrane bilayers define boundaries for cells and are directly involved in many cellular functions [2].

Understanding the natural processes of the cell therefore requires understanding the physical and

mechanical properties of its membranes. The fusion of membranes and the controlled transport

of materials across cells involve the formation of transient membrane pores, while the resistance

against cell lysis (rupture) is determined by the stability of the membrane against the formation of

pores, e.g., during osmotic swelling. In addition to these natural processes, pores can be formed by

antimicrobial peptides [3] or electroporation [4]. The latter is a common method for introducing

foreign material, such as drugs or genes, to the cell [5].
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Several experimental methods have been developed to study pore formation under an applied

tension [6–8]. A variety of computational methods have also been used to study the energetic and

structural properties of membrane pores [9–15]. Conventional molecular dynamics simulations often

require very high tensions, where pore formation is no longer a rare event. On the other hand,

the potential of mean constraint force method can be applied to study pore formation as an ac-

tivated process [13–15]. The method requires artificially selecting a reaction coordinate constraint

that, in general, may not coincide with the true transition pathway involving local lipid rearrange-

ments. Furthermore, computer simulations are limited by the number of amphiphiles and are usually

performed under constant area. A pore opening under such conditions simultaneously relaxes the

surface tension and can either expand, reseal, or stabilize, depending in a nontrivial manner on the

system size [15]. In solvent-free models consisting of two- or three-bead “lipids”, there is disagree-

ment between density functional predictions [10] and Monte Carlo simulations [12] with regard to

the existence of small metastable pores. The interpretation of structures comparable to the lipid

molecular size is highly problematic for these overly simplified models.

3.2 Model and Method

In this chapter, we study the full minimum free energy path (MFEP) to pore formation and rupture

by combining the string method [16] with dynamic self-consistent field (DSCF) theory [17]. As

opposed to calculations that require physical insight to impose one or more constraints on the

system [18], the string method automatically determines the reaction coordinate of the MFEP

connecting two stable states on a given free energy landscape, while DSCF theory provides a full

description (at the mean-field level) of the lipid conformation changes. We begin with an arbitrary

set of states between two free energy minima. The states are connected on the free energy landscape

by a string and relax towards the MFEP by an iterative procedure. First, all states are evolved

independently for some time ∆t according to

∂φI
∂t

= −D δF

δφI
, (3.1)
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where φI is the monomer volume fraction, D is the mobility coefficient, and F is the free energy

functional of the system. Note that for a system not at equilibrium, the gradient cannot be computed

using the usual SCF theory. Instead, we solve for a hypothetical external potential V (r), which makes

the given nonequilibrium density φI(r) an “equilibrium” one; see [19] for details. Briefly, V (r) must

satisfy

φI(r) = eµI

N∑
i=1

qI(r, i)e
V (r)q∗I (r, N − i), (3.2)

where the chain propagator qI(r, i) is again obtained using the discrete version of Eq. (C-2), i.e.,

Eq. (C-7). The equation of motion then becomes

∂φI
∂t

= −D [ξI(r)− VI(r)] , (3.3)

where ξI is the usual field obtained by taking the variation of the free energy functional, i.e., δF
δφI

.

Then, to prevent the states from falling into one of the two end states (the trivial equilibrium

solutions), we make use of the connectivity imposed by the string. Precisely, we compute the total

arc length l of the string according to its Euclidian distance:

l =

Nstates−1∑
i=1

||φi+1 − φi||, (3.4)

and interpolate the new states so that they are equidistantly spaced along the string:

s = l/(Nstates − 1). (3.5)

The procedure is repeated until the dynamics balance the reparameterization, i.e., the evolution of

the string has reached a steady state. At this point the string coincides with the MFEP [16] and the

free energy and density profiles of all states along the MFEP are immediately known without addi-

tional calculations. We note that a similar strategy was recently employed to study the nucleation

of order-order transitions in diblock copolymer melts [20].

A starting point for discussing pore formation and rupture is often based on classical nucleation
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Figure 3.1: An amphiphile consisting of a solvophilic (A) segment of NA = 5 monomers with volume
vA = 0.05 nm3 (blue) and two solvophobic (B) segments, each with NB = 15 monomers with volume
vB = 0.05 nm3 (red). qI and q∗I , where I = A,B, are the chain propagator and complementary
chain propagator, respectively. Additional parameters include the solvent (S) monomer volume:
vS = 0.15 nm3, and interaction parameters: χAB , χBS , χSA = 75, 18, 0 and κA, κB , κS = 0, 8, 0.

theory (CNT) [21,22]. For a membrane under tension γ > 0, CNT defines the free energy of a pore

of radius r as

F = 2πrσ − πr2γ. (3.6)

Here σ > 0 is the line energy. The first term is the cost of forming the rim of a pore and the second

term is the relief in elastic energy. The above expression leads to a free energy barrier F ∗ = πσ2/γ

at a critical radius r∗ = σ/γ, beyond which the pore grows indefinitely (ruptures).

For membranes with different tensions γ, we obtain properties of the nucleation pathway, in-

cluding the structure and activation energy F ∗ of the critical nucleus. Comparing the values of our

calculated F ∗ with those predicted by CNT, we find that CNT is valid only for small γ, where the

free energy barrier is nearly insurmountable on experimentally realistic time scales. For the phys-

ically relevant regime, where F ∗ . O(10 kT ), CNT significantly overestimates the barrier height.

Furthermore, in this regime the critical nuclei are not well-defined pores, as assumed by CNT, but

rather “stalks” of amphiphile head groups or, in the case of large γ, merely a local thinning of the

membrane.

Our model consists of a bilayer assembled from double-tailed amphiphiles in explicit solvent. The

amphiphiles are modeled as discrete Gaussian chains having a solvophilic block and two solvophobic

tails; see Fig. 3.1. The solvents are represented as monomers. The different monomer species are

assumed to interact with short-ranged, pairwise potentials, and the hard-core repulsion is accounted

for by treating the system as incompressible. We work mostly in the grand canonical ensemble,
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where the numbers of amphiphile and solvent molecules are controlled by their chemical potentials.

kT is used as the energy unit. The particle-based Hamiltonian for the system, accounting for the

chain connectivity of the n amphiphiles and the pairwise energetic interactions among species, is

H =

n∑
i=1

hi({r}) +
∑
JK

∈{AB,BS,SA}

∫
drdr′φ̂J(r)uJK(r, r′)φ̂K(r′). (3.7)

The particle to field transformation follows the same derivation given in Chapter 2. Briefly, the

interactions among particles are decoupled and replaced with interactions between particles and

effective fields; see also [23]. The resulting field-theoretic partition function can be generically

written Ξ =
∫
Dω exp(−F [ω]), where F is an effective, complex-valued free energy that depends on

the field variable ω. Here, we make the mean-field approximation, which amounts to assuming that

a single field configuration ω∗ dominates the functional integral so that Ξ ≈ exp(−F [ω∗]). In our

model F [ω∗] is given by

F = −eµP

vP
ZP (ξA, ξB)− eµS

vS
ZS(ξS) +

∑
JK

∈{AB,BS,SA}

∫
dr
[
χJKφJφK − ξJφJ +

κJ

2
(∇φJ)2

]
. (3.8)

The Flory χ parameters and the square-gradient coefficients capture, respectively, the local and non-

local part of the short-ranged interactions [24]. Their values are chosen to reproduce some known

experimental properties of lipid membranes. The incompressibility condition φS + φA + φB = 1 is

used to eliminate φS and we have used the imaginary nature of the potential field variables at the

saddle point to redefine the conjugate potential fields iξ → ξ [23]. The partition functions that arise

in Eq. (3.8) are for a single molecule in its respective field(s) and are given by ZS =
∫
dre−vSξS for the

solvents and ZP =
∫
drqA(r;NA)e2vAξAq2

B(r;NB + 1) for the amphiphiles. The chain propagators

qA and qB account for the chain connectivity and the Boltzmann weight due to the self-consistent

potential field. They begin at the free ends and are used to obtain the single-chain statistics for

each arm of the amphiphile. The total partition function for the amphiphile follows naturally by

joining the propagators at the branch point, where an extra exponential factor e2vAξA is included to
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correct for over-counting the joined monomer; see C for details on the chain propagator calculation.

We then apply DSCF theory, together with the string method, to the free energy functional given

by Eq. (3.8). In what follows, we discuss the main results.

3.3 Results

Consider a membrane under tension γ. If the membrane size is much larger than the size of the

critical nucleus, we may regard pore formation and rupture as occurring at constant tension, which

we implement as the boundary condition. In what follows, we work in the grand canonical ensemble,

as it is most convenient for studying the MFEP. In this open system, the excess grand potential

(Eq. (3.8) relative the bulk solution) per unit area directly gives the tension up to the rupture

value, identified as the point of vanishing slope in Fig. 3.2 inset. This corresponds to a critical

tension γc ∼ 4.77 kT/nm2 and an areal strain of ∼ 0.6. The linear stretching modulus is found to

be 170 mN/m, which falls within the range for lipid membranes, as determined from micropipette

aspiration experiments [26]. Finally, to confirm that the results are independent of the ensemble

choice, we repeat the same calculation in the canonical ensemble. In this closed system, the tension

is evaluated according to

γ = f + a
∂f

∂a

∣∣∣∣
n

. (3.9)

Here f is the Helmholtz free energy per unit area and a is the area per lipid. The results from these

two ensembles are identical.

The rupture captured above corresponds to the limit of metastability for a uniform membrane.

In reality, thermal fluctuations and lipid rearrangements can nucleate pore formation and rupture

when the membrane is subjected to a positive tension γ. If the timescale for nucleation is suffi-

ciently long relative to the timescale for molecular relaxation, then the nucleation rate is of the

form ν = ν0 exp(−F ∗/kT ), where ν0 is some transition frequency associated with the molecular

relaxation. Assuming a molecular relaxation time on the order of 10 µs [27], nucleation will take

place on experimentally relevant timescales if F ∗ . O(10 kT ). For any given tension, the DSCF-
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Figure 3.2: The free energy barrier as a function of the surface tension: DSCF-MFEP (markers) and
CNT (line). Inset: the surface tension as a function of the area per lipid: grand canonical (markers)
and canonical (line) ensemble.

MFEP calculations provide an exact description (within the mean-field framework) of the nucleation

pathway. In Fig. 3.2, we plot the free energy barrier F ∗ as a function of the membrane tension γ

on a log-linear plot. Also shown is the result from CNT [Eq. (3.6)], where the line energy σ is a

phenomenological parameter that is assumed constant and used to describe the excess free energy

cost associated with forming the rim of a pore. An equilibrium line energy is only well-defined

for a pore with zero curvature in a tensionless membrane. Our SCF method determines this value

(σeq = 5.16 kT/nm) as input into the CNT. For small γ, the predictions from CNT agree well with

the DSCF-MFEP calculations. Indeed, we expect CNT to become exact in the limit γ = 0. However,

in this regime, the barrier is too high, and the rate vanishingly small, for nucleation to be a relevant

mechanism. As γ increases, the free energy barrier decreases (reflecting the fact that the metastable

intact membrane becomes less stable) and vanishes at the critical tension (γc), corresponding to the

spinodal. From Fig. 3.2, CNT severely over-predicts the free energy barrier in the important regime

where γ ∼ 3− 4 kT/nm2, and completely fails to capture the spinodal. To understand the source of

discrepancy between CNT and our results, we examine the MFEP for three representative values of

γ.

On the left panel of Fig. 3.3, we show the free energy profile and the line energy (inset) as a

function of a reduced reaction coordinate, here taken to be the deficiency in the number of lipid

molecules in the bilayer, m. We choose to use m rather than the radius r because the latter is only
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Figure 3.3: Left: Free energy as a function of the deficiency in the number of lipids: MFEP (dashed
lines, states given by the colored markers) and CNT (solid lines). Right: density profiles for images
along the respective MFEPs. The contour lines correspond to 25% of the maximum solvophilic (A)
density of the initial intact membrane. In all cases, the critical nucleus is shown in red and the
intact membrane in grey. From top to bottom: γa, γb, γc = 0.85, 2.73, 4.52.

well-defined for macroscopic pores. The free energies of the states along the MFEP are given by the

markers and the prediction from CNT is given by the solid line. Here the line energy used for the

CNT result is obtained from the respective membrane containing a pore with zero curvature. On

the right panel, we plot the density profiles of the amphiphiles for selected states along the MFEP.

For γ = 0.85 kT/nm2 [Fig. 3.3(a)], except at the very initial stages, the MFEP closely follows

the prediction from CNT, with the nucleation process largely involving the expansion of a well-

defined solvophilic pore with negligible penetration of solvents. The density profile is nearly invariant

(but shifted in radial direction) once the pore forms. For this low γ, the free energy barrier is

F ∗ = 92.18 kT , indicating that nucleation of a large pore leading to rupture is highly improbable.

In fact, even smaller, transient pores are unlikely. The blue image where the membrane has not

yet formed a pore already requires a substantial free energy cost. Next consider γ = 2.73 kT/nm2
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[Fig. 3.3(b)] and observe that CNT over-predicts the free energy barrier and under-predicts the

size of the critical nucleus. From the density profiles obtained from the DSCF-MFEP calculations,

we see that the critical nucleus is not even a well-defined pore, but rather a “stalk” of solvophilic

monomers that contains finer molecular structure than can be captured by CNT. Therefore, CNT is

not a good model for the MFEP in the intermediate regime where F ∗ = 21.59 kT . We note that a

similar structure has been observed as a transition state [18] for the fusion of two bilayers. Finally,

consider a membrane approaching the spinodal: γ = 4.52 kT/nm2 [Fig. 3.3(c)]. Here CNT grossly

over-predicts the nucleation barrier and under-predicts the size of the critical nucleus. In fact, the

nucleation pathways predicted by the two methods qualitatively differ, with the CNT prediction

crossing the MFEP and approaching it from below at large pore sizes. From the density profiles

[Fig. 3.3(c), right], we find, not surprisingly, that a small perturbation involving local membrane

thinning is enough to nucleate pore formation and rupture. Interestingly, rupture occurs even before

the membrane is able to fully prepare for pore formation and a solvophobic hole that is penetrated

by solvents forms in the membrane. Only afterwards do the amphiphiles rearrange to line the pore

with solvophilic monomers and seal off the hole. This can be seen from the contour lines given in

blue and green. The free energy barrier in this case is only twice the thermal energy, and hence

we do not expect the picture of nucleation as a rare event to hold. However, with longer-chain

amphiphiles, such as in the case of polymersomes [6], we expect a higher barrier height for the same

amount of strain. Thus the scenario presented in this near-spinodal case can still be relevant.

To gain further insight, we separate the free energy from our DSCF-MFEP calculations into a

piece involving the reduction in the elastic free energy, and other contributions. In analogy with

CNT, we consider the reduction in the elastic energy to be given by the second term in Eq. (3.6),

where we use the lipid number deficiency m and the area per lipid in a uniform membrane to define

the pore size. For a macroscopic pore, m is related to the pore radius r as r ∼
√
m. The first

term can then be considered an operational definition of the line energy σ, which now represents

all the excess free energy to the elastic free energy. Figure 3.3 insets show the behavior of σ as a

function of m. In all three cases, for sufficiently large pores, σ approaches a constant value less than
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the equilibrium value given earlier for the tensionless membrane (σeq = 5.16 kT/nm2). We also see

that for small m, there is a strong size dependence in the line energy, including a nonmonotonic

dependence for case (c) that captures the initial penalty for forming a solvophobic hole. Importantly,

when the critical nucleus involves a pre-pore state with molecular features that cannot be captured

by CNT, the size dependence of σ becomes important.

Finally, if we associate rupture as occurring when the nucleation barrier is surmountable on

experimentally relevant time scales, our results indicate that the strain at which rupture occurs can

be significantly lower than the strain at the limit of mechanical stability of the membrane. Thus,

thermally nucleated rupture may be an important factor for the low rupture strains observed in lipid

membranes [7].

3.4 Conclusion

In conclusion, we have combined the string method with DSCF theory to obtain the MFEP to pore

formation and rupture for a range of membrane tensions. For the experimentally relevant regime

where F ∗ . O(10 kT ), the critical nucleus is somewhere between a stalk-like structure [Fig. 3.3(b)]

and a thinned membrane leading to a hole that is partially exposed to solvents [Fig. 3.3(c)]. In this

regime, CNT fails to capture the important local rearrangements of the lipids and significantly over-

predicts the nucleation barrier. Within the framework of mean-field theory for describing spatially

localized fluctuation phenomena, the present work (and that by Cheng et al. [20]) represents the

most advanced methodology in treating nucleation in soft condensed matter, including membranes.

The combination of the string method and DSCF theory opens the way to studying a wide range

of related membrane nucleation phenomena beyond pore formation and rupture, such as membrane

fusion and fission [28,29], and particle insertion and penetration [30].

This work was supported by the Joseph J. Jacobs Institute of Molecular Engineering for Medicine

and the NSF Center for the Science and Engineering of Materials at Caltech, and by an NIH training

grant (to C.L.T.).
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Chapter 4

Minimum Free Energy Paths for a
Nanoparticle Crossing the Bilayer
Membrane

Within self-consistent field theory, we develop an “on-the-fly” string method to compute the mini-

mum free energy path for several activated processes involving a charged, solvophobic nanoparticle

and a lipid membrane. Under tensions well below the mechanical stability limit of the membrane, and

in the regime where nucleation can occur on experimentally relevant time scales, our study suggests

that there can be at least three competing pathways for crossing the membrane: (1) particle-assisted

membrane rupture, (2) particle insertion into a metastable pore followed by translocation and mem-

brane resealing, and (3) particle insertion into a metastable pore followed by membrane rupture. In

the context of polymer-based gene delivery systems, we discuss the implications of these results for

the endosomal escape mechanism.

4.1 Introduction

The interaction of nanoparticles with lipid membranes is a common theme underlying a number

of important topics in bionanotechnology, ranging from cytotoxicity [1] to the delivery of therapeu-

tics [2]. In polymer-based gene delivery systems [3], the nanoparticle is comprised of genetic material

condensed with cationic polymers. Once internalized by the cell via endocytosis, the nanoparti-

cles are enclosed within membrane-bound vesicles called endosomes, and are trafficked along the
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endolysosomal pathway, where acidification activates hydrolytic enzymes [4]. Hence, the nanopar-

ticle must escape the endosome before crossing the nuclear envelope for successful gene expression.

Clearly, membrane-particle interactions play a central role in several key steps along the gene de-

livery pathway. In particular, understanding the endosomal escape mechanism provides a direct

motivation for the work described in this chapter.

In the proton-sponge hypothesis [5–7], the nanoparticle plays an indirect role in its own endosomal

escape by serving as a buffering substrate for protons. As additional protons are pumped into the

endosome with an attendant influx of counterions, the increase in osmotic pressure translates to

increased tension on the endosomal membrane. Eventually the membrane ruptures, thus releasing

the trapped nanoparticles into the cytosol. Importantly, membrane rupture is a thermally nucleated

process [8–13] under the small-to-moderate tensions generated in the proton sponge hypothesis [7,14].

It is therefore possible to imagine that the nanoparticle takes a more direct role in the endosomal

escape by interacting directly with the membrane to lower the nucleation barrier for rupture. We

examine this scenario in the broader context of nucleated pathways involving membrane-particle

interactions.

A number of computational studies on membrane-particle systems have been conducted to eluci-

date the equilibrium structures [15–19], as well as the dynamics under (nearly) spontaneous condi-

tions [20, 21] or when induced by an external force [22]. However, these studies have not addressed

the thermally nucleated processes we are interested in here. Besides the long time scales associated

with these rare events, a significant challenge arises because of the high dimensional free energy sur-

face due to the conformation degrees of freedom of the lipid molecules, characteristic of many soft

matter systems. Hence, with any sizable nucleation barrier, direct computer simulation is unfeasible.

The potential of mean constraint force method attempts to overcome this challenge by artificially

choosing a reaction coordinate that (in general) does not coincide with the true nucleation path-

way, while the transition path sampling method [23, 24] is impractical for systems involving large

assemblies of complex molecules.

Recently, two groups [13, 25] have developed a powerful mean-field technique for studying mini-
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mum free energy paths (MFEP) in self-assembled polymeric systems. The technique combines the

self-consistent field theory (SCFT) [26] with the string method [27,28], and overcomes the aforeme-

tioned time scale and dimensionality challenges. Ting et al. [13] have applied this technique to

study nucleated pore formation and rupture in membrane bilayers; see also Chapter 3. To explore

nucleated pathways involving the membrane-nanoparticle interactions of interest here, we must fur-

ther account for the particle degree of freedom. This highly nontrivial task requires additional

development in the methodology. We therefore start with a description of the model and method.

4.2 Model and Method

Our membrane bilayer consists of double-tailed amphiphiles (A) assembled in explicit solvent (S)

containing ions (±). The amphiphiles are modeled as discrete Gaussian chains having a solvophilic

head (H) segment of NH negatively charged monomers with volume vH and two solvophobic tail (T)

segments, each consisting of NT monomers with volume vT . The solvents are modeled as monomers

with volume vS and the ions are represented as monovalent point charges of the elementary charge

e. The short-ranged repulsion involving the monomer units is represented by an incompressibility

condition everywhere in the system. We work in the grand canonical ensemble, where the number

of molecules are determined from their respective chemical potentials µJ (J = A,S,±). In addition

to the fluid species, there is a positively charged nanoparticle (P), whose density profile is defined

by a cavity function that excludes the fluid species from its interior:

hP (|r− rP |) =
1

2
(1 + tanh[(RP − |r− rP |)/w]) . (4.1)

Here, RP is the particle radius, w is the width of the interface and rP is the particle position [29,30].

The essential contributions to the model are the chain connectivity of the amphiphiles, the

incompressibility condition, the short-ranged pairwise interactions and the long-ranged electrostatic

interactions. The derivation of the SCFT is described in detail in Refs. [13,18,26] and also Appendix
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B. The final expression for the grand potential is:

F = −eµA

vA
ZA[ξH , ξT ]− eµS

vS
ZS [ξS ]− eµ±

v±
Z±[ψ]

+

∫
dr

{∑
JK

[
χJKφJφK +

κJ
2
|∇φJ |2 − ξJφJ

]
+ χTPφThP + ψρc −

ε

2
|∇ψ|2

}
.

(4.2)

Here the summation is over JK ∈ {HT, TS, SH} and the fields φJ , ξJ , and ψ denote the monomer

volume fraction, its conjugate potential, and the electrostatic potential fields, respectively. For

notational conciseness we omit the r dependence in these field variables. The partition functions in

the first line account for the Boltzmann weight of a single molecule in its respective field(s), and are

given by

ZA[ξH , ξT ] =

∫
drqH(r, NH)e2vHξH q2

T (r, NT + 1),

ZS [ξS ] =

∫
dr exp{−vSξS},

Z±[ψ] =

∫
dr exp{∓ψe− ub±},

(4.3)

for the amphiphiles, solvents, and ions, respectively. Here qH and qT are the chain propagators used

to obtain the single-chain statistics for each arm of the amphiphile [18]; see also Appendix C.

ub± = e2(8πa±ε)
−1 (4.4)

is the Born self-energy of an ion, where ε is the spatially varying dielectric constant (assumed to be

a simple local volume-fraction weighted average) and a± = 0.1 nm is the Born radius.

In Eq. (4.2), the local and nonlocal parts of the pairwise interactions are captured by χJK and

κJ , respectively [31]. Their values (see Table 4.1) are chosen to reproduce some known experimental

properties of lipid membranes; in particular, the linear stretching modulus for our model is found to

be 210 mN/m [32]. The solvophobicity of the nanoparticle is modeled by a Flory-like parameter χTP

that acts locally over the interfacial region of the particle and the total fixed charge density is defined

ρc = cPhP + (cH/vH)φH . Here cP is the charge density on the nanoparticle and cH = −0.05 is the
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i vi Ni εi κi χiH χiT χiS

H l0.05 5 50 0 — 75 —
T 0.05 10 2 8 — — 22
S 0.15 1 80 0 0 — —

Table 4.1: (L to R) The monomer volume, number of monomers, dielectric value [33], gradient
coefficient, and Flory parameters. c± = 100 mM for the bulk ion concentration.

charge per head monomer. The SCF equations are obtained by requiring that Eq. (4.2) be stationary

with respect to variations in the fields, i.e., ∂F∂ω |ω∗ = 0, where ω = φI , ξI , ψ. These equations are then

solved iteratively until convergence, with the solutions corresponding to (meta)stable equilibrium

states of the system.

However, our interest here is in the nucleation pathways between equilibrium states, and in

particular the transition state, i.e., the critical nucleus. To map out these pathways, which necessarily

include nonequilibrium states, we apply the string method to Eq. (4.2). Briefly, we begin with a

string of discrete states in the space defined by the density fields of the monomer species and the

nanoparticle. The string is relaxed towards the MFEP by a two-step iterative procedure: (1) an

evolution equation describing the steepest descent dynamics on the free energy landscape and (2) a

redistribution of the states along the string. The latter step is key, as it prevents all the states from

falling into one of the trivial equilibrium solutions. While the string method is easily implemented on

a known free energy landscape, in SCFT the free energy as a functional of the densities is not known

a priori. Thus we take an “on the fly” approach to traverse the free energy landscape by evaluating

the gradients of Eq. (4.2) using a combination of the external potential dynamics (EPD) [34] and

hybrid particle field (HPF) [29] methods.

More specifically, we first evolve the states for some time ∆t according to the steepest descent

dynamics of the density fields. This approach is similar to that taken in dynamic SCFT [35], but for

computational convenience (see also Ceniceros and Fredrickson [36] for the target density problem),

we choose to reformulate the dynamics in terms of the fields ξI , using the EPD method:

∂ξI
∂t

= D1
δF

δφI
. (4.5)
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Here D1 is a scalar mobility coefficient and δF/δφI is the familiar functional derivative of Eq. (4.2)

so that ξI is updated by simple time iteration methods [37]. φI follows as usual by solving the

modified diffusion equation for the chain propagators in the presence of the new ξI [18]. Next, we

evolve the particle position rP according to the HPF method developed by Sides et al. [29]:

∂rP
∂t

= −D2
∂F

∂rP
= −D2

δF

δhP
g(rp − r), (4.6)

where g(r) ≡ 1
r
dhP (r)
dr r is a vector function related to the derivative of the cavity function. The

density fields and the particle position are then updated, subject to the incompressibility condition.

The second step in the string method involves a redistribution of the states along the string.

In the simplest case, this is enforced by an equal arc-length reparametrization of the string based

on the current densities, followed by a linear interpolation to obtain the new densities. The two

dynamical equations [Eq. (4.5) and Eq. (4.6)], followed by the reparametrization, are computed at

every time step. Once converged, the string coincides with the MFEP. In what follows, we discuss

the main results.

Figure 4.1: The transition state for homogeneous membrane rupture when γ = 0.6 (a) and γ = 1.9
(b). Contour plots show the lipid head densities in cylindrical coordinates.

4.3 Results

To understand the effect of the nanoparticle on membrane pore formation and rupture, we first

consider the case in the absence of the nanoparticle, i.e., homogeneous rupture. The free energy
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Figure 4.2: Membrane under low tension (γ = 0.6): states along the MFEP for membrane rupture
in the presence of a nanoparticle (RP = 4, cP = 0.5, χTP = 0)

barrier F ∗0 diverges for a tensionless membrane and vanishes at a threshold tension γt = 5.1, cor-

responding to the onset of mechanical instability. The structure and free energy of the transition

state in the intermediate regime will depend on the membrane tension. For low tensions (γ = 0.6)

the transition state corresponds to a well-defined pore with F ∗0 = 75, whereas for higher tensions

(γ = 1.9) the transition state corresponds to a solvophilic stalk with F ∗0 = 24; see Fig. 4.1. Assuming

an Arrhenius rate expression of the form k = ν exp[−F ∗], where ν ∼ 10 µs is a transition frequency

associated with the molecular relaxation [38], nucleation will take place on experimentally relevant

time scales if F ∗ . 25. Thus, nucleation is a relevant mechanism for homogeneous rupture of a

membrane under moderate tensions (γ & 1.9).

Next, we proceed to examine the effect of a charged and/or solvophobic nanoparticle on the

nucleation barrier to rupture, beginning with the low tension case (γ = 0.6). The string is initial-

ized between two fixed end states [see Fig. 4.2(a) and (f)] and evolved according to the algorithms

described earlier. The resulting MFEP reveals the following nucleation pathway. Through electro-

static attraction, the positively charged particle adsorbs onto the surface of the negatively charged

membrane. This metastable state is shown in (b). From here, rupture takes place by a two-step

nucleation process. First, the particle pushes into and punctures the membrane, overcoming the first
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Figure 4.3: The MFEP for membrane rupture in the presence of a nanoparticle (RP = 4, cP = 0.5,
χTP = 0), as a function of the reaction coordinate s and the particle position z (inset) for several
values of tension. The nucleation barrier for homogeneous rupture is shown in parentheses.

barrier; see (c). Note that the trans leaflet, which is already thinned in (b), is broken first, and the

cis leaflet is held intact by the electrostatic attraction to the particle. Once the membrane bilayer

is broken, the particle sits in a highly transient metastable pore that is lined by lipid head groups,

as shown in (d). From here the membrane can expel the particle and reseal the defect. However to

proceed to rupture, the pore must expand to some critical radius r∗; see (e). Importantly, r∗ > RP

for this case and hence the second transition state in the two-step nucleation pathway is essentially

the same as the transition state for homogeneous rupture; compare (e) with Fig. 4.1(a).

In Fig. 4.3, the MFEP for rupture in the presence of a particle is plotted as a function of the true

reaction coordinate s that defines the set of images along the string, and also as a function of the

particle position z, for several values of membrane tension. In all cases, the charged nanoparticle

first adsorbs onto the surface of the membrane, stabilizing the initial state. For the low tension

case (γ = 0.6), rupture then proceeds by the two barrier crossings described above: puncturing the

membrane with rate k1 [Fig. 4.2(c)] and expanding the pore with rate k2 [Fig. 4.2(e)]. The first of

these is reversible, with backward rate k−1, and the second, irreversible. Intermediate to the two

transition states is the transient, metastable pore [Fig. 4.2(d)]. The mean first-passage time for this

two-step nucleation process is given by

τ =
1

k1
+
k−1

k1k2
+

1

k2
, (4.7)
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and the nucleation rate may be approximated as J = τ−1 [39,40]. Here, breaking the surface of the

membrane is the more energetically costly step, with F ∗1 = 51. Furthermore, because the reverse

rate k−1 for the transient state to expel the particle and reseal the pore is high (F ∗−1 = 3, whereas

F ∗2 = 45), rupture can effectively be considered crossing a single barrier with F ∗ = 93. Recall

F ∗0 = 75 for homogenous rupture; thus, for a membrane under low tension the particle does not

assist in rupture.

In the proton sponge hypothesis, the membrane tension is believed to play an important role

in the endosomal escape [7]. We find that with increasing tension, the metastable pore becomes

more stable with respect to resealing k−1 but less stable with respect to rupture k2, and eventually

unstable altogether; see Fig. 4.3. In particular, for γ = 1.9 rupture becomes a one-step nucleation

process. To understand this result, recall that for this tension the transition state for homogeneous

rupture is a solvophilic stalk with F ∗0 = 24 [Fig. 4.1(b)]. The transition state for particle-assisted

membrane rupture also corresponds to a solvophilic stalk [Fig. 4.4(c)], but with a reduced barrier

F ∗ = 18 (Fig. 4.3). Here the positively charged nanoparticle is able to interact with both leaflets of

the membrane to facilitate the formation of the stalk-like structure, thereby lowering the nucleation

barrier to rupture. This result suggests a direct role of the nanoparticle in the endosomal escape,

not previously envisioned in the proton sponge hypothesis, and illustrates the importance of having

an induced tension on the membrane.

Next, we consider particle translocation as an alternate path for the endosomal escape. Here

the particle crosses without rupturing the membrane. Beyond the delivery of medical therapeutics,

Figure 4.4: Membrane under moderate tension (γ = 1.9): states along the MFEP for membrane
rupture in the presence of a nanoparticle (RP = 4, cP = 0.5, χTP = 0)
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Figure 4.5: The MFEP for particle translocation as a function of the particle position z for different
tensions and particle parameters, corresponding to (γ,RP , cP , χTP )

particle translocation is of interest for understanding the mechanisms of nanoparticle cytotoxicity [41]

and viral cell entry [42], and is therefore of interest in its own right. We return to the membrane under

low tension (γ = 0.6) and the same particle considered previously. The critical pore radius of the

transition state for rupture is larger than the radius of the particle. For successful translocation the

particle only needs to create a pore large enough to pass through, and thus we expect translocation

to be the preferred pathway over rupture. Although still highly unlikely, translocation is indeed the

more favorable mechanism for crossing the membrane, where F ∗ = 54 (Fig. 4.5?).

To lower the barrier to the regime where translocation can occur on experimentally relevant

time scales, we consider the effects of the particle size, charge, and solvophobicity. Particles smaller

than the critical pore radius for homogeneous rupture should translocate more easily. Reducing the

particle size to RP = 2 while maintaining the same charge density and solvophobicity, we find that

the free energy barrier is indeed lowered to F ∗ = 39 (Fig. 4.54), which is still on the high side for

thermally nucleated translocation. With the reduced particle size, we increase the charge density

to cP = 1.5, and find the free energy barrier is increased to F ∗ = 51 (Fig. 4.5◦). This result can

be rationalized by noting that the density of negatively charged amphiphilic heads is higher for an

intact membrane compared to a pore with high curvature. Thus the particle gains more favorable

electrostatic interactions by adsorbing onto the surface rather than inserting into a pore. If instead

we increase the particle solvophobicity by setting χTP = −2, the particle is able to interact with the

solvophobic tail region of the membrane, thereby lowering the free energy barrier for translocation
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to F ∗ = 33 (Fig. 4.5�).

Based on these results, we find that translocation of a charged and/or solvophobic nanoparticle

through a membrane under low tension is unlikely to occur by thermal nucleation. However, particle

translocation becomes possible upon increasing the membrane tension. Taking the particle with the

lowest free energy barrier for translocation (RP = 2, cP = 0.5, χTP = −2.0), we increase the

membrane tension to γ = 1.5 and find that the particle inserted into the middle of the membrane is

now a metastable state along the MFEP; see (Fig. 4.55). Translocation is now a two-step process, the

first barrier corresponding to particle insertion, with F ∗1 = 19, and the second barrier corresponding

to expelling the particle and resealing the pore, with F ∗2 = 10. Using Eq. (4.7), we compute the

nucleation rate for translocation and find J = ν exp[−19.6], indicating that the process can occur

on experimentally relevant time scales.

Interestingly, the critical nucleus for homogeneous rupture in this case is a pore on the order

of the size of the particle. Therefore, the electrostatic attraction between the positively charged

nanoparticle and the negatively charged amphiphilic heads are able to stabilize the pore, preventing

rupture. Based on this result, we can imagine a third pathway for crossing the membrane barrier:

particle insertion into the metastable pore followed by rupture. From our MFEP calculation, we

find F ∗1 = 19 and F ∗2′ = 8 for insertion and rupture, respectively, so that the overall nucleation rate

for crossing the two barriers is J = ν exp[−19.1]. Note that in the earlier mechanism depicted in

Fig. 4.2 and Fig. 4.3, the metastable state is a partially punctured membrane, whereas here the

metastable state is a membrane pore with a fully inserted particle.

4.4 Conclusion

We conclude with some general remarks on nucleated pathways for a nanoparticle to cross the

bilayer membrane, and some implications for the endosomal escape in gene delivery systems. Our

results indicate at least three competing pathways: (1) particle-assisted membrane rupture, (2)

particle translocation followed by membrane resealing, and (3) particle insertion into a metastable

pore followed by membrane rupture. These results suggest a direct role of the nanoparticle in
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the endosomal escape, not envisioned in the proton sponge hypothesis. In all cases, sufficiently

high membrane tension is required for the nucleation barriers to be surmountable on realistic time

scales, suggesting that the osmotic pressure component of the proton sponge hypothesis is crucial

for the successful endosomal escape of the nanoparticles. This conclusion is consistent with the

theoretical work of Yang and May [14], which found that the nanoparticle alone would not lead to

enough osmotic pressure to induce sufficient membrane tension, and that some excess free polymers

are needed. Experimental studies revealed that the presence of these free polymers can increase the

gene transfection efficiency by up to two orders of magnitude [43,44]. In what follows, we summarize

our findings on the three nucleated pathways.

For particle-assisted membrane rupture, a key consideration is the membrane structure at the

transition state, which is primarily controlled by the membrane tension. In particular, the membrane

tension must be sufficiently high, so that the size of the critical nucleus (e.g., a solvophilic stalk) is

on the order of the particle radius. Once this criterion is met, the charges on the particle should be

enough to promote the adsorption onto and subsequent puncture of the membrane but not so much

as to stabilize the pore. The particle solvophobicity is unimportant in this case, since rupture occurs

before the particle has had significant interaction with the solvophobic tail region of the membrane.

In the case of particle translocation, increasing particle charge increases the barrier because the

particle gains more favorable electrostatic interactions by adsorbing onto the surface of the membrane

rather than inserting into a pore. In contrast, increasing particle solvophobicity decreases the barrier

for translocation because the particle inserted into a pore can interact favorably with the lipid tails.

Again, membrane tension is critical to reaching barriers surmountable on realistic time scales. With

sufficient tension, the pore with a particle inserted into the center of the membrane becomes a

metastable state on the MFEP to translocation. This state suggests—and indeed we find—another

nucleated pathway from this metastable state: pore expansion, leading to rupture.

The mode of crossing the membrane bilayer depends on the membrane tension and the particle

properties. Here, we have considered particle radius, charge density and solvophobicity. Even within

this set of parameters, we have not exhaustively explored the space for the most likely nucleation
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pathways. With the introduction of other types of interactions, for example, specific ligand-receptor

interactions [21] or different geometries [22], it should be possible that any of the pathways can

become most favorable. The types of calculations illustrated in this work can be used to identify

the optimal conditions for selecting a particular pathway.

Finally, the methodology developed in this work represents the most advanced theoretical tech-

nique for describing nucleation pathways in soft condensed matter systems that also include hard-

particle degrees of freedom. We expect the method to be useful for studying a wide range of

nucleation phenomena beyond membrane systems, for example, in nanoparticle polymer compos-

ites [29,45,46].

The authors wish to thank Daniel Appelö for many helpful discussions. This work was supported

by the Joseph J. Jacobs Institute for Molecular Engineering for Medicine and by a Sandia National

Laboratory Fellowship to C.L.T.
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Chapter 5

Beyond the Endosomal Escape

5.1 A Kinetic Model for the Enzymatic Action of Cellulase

We develop a mechanochemical model for the dynamics of cellulase, a two-domain enzyme connected

by a peptide linker, as it extracts and hydrolyzes a cellulose polymer from a crystalline substrate.

We consider two random walkers, representing the catalytic domain (CD) and the carbohydrate

binding module (CBM), whose rates for stepping are biased by the coupling through the linker and

the energy required to extract the cellulose polymer from the crystalline substrate. Our results

show that the linker length and stiffness play a critical role in the cooperative action of the CD

and CBM. Specifically, for a given linker length the steady-state hydrolysis shows a maximum at

some intermediate linker stiffness, corresponding to a transition of the linker from a compressed

to an extended conformation. Here the system exhibits maximum fluctuation, as measured by the

variance of the separation between the two domains and the dispersion around the mean hydrolysis

speed. In the range of experimentally known values for the parameters in our model, improving

the intrinsic hydrolytic activity of the CD leads to a proportional increase in the overall hydrolysis

rate [1]

5.1.1 Introduction

Cellulosic ethanol is a renewable, carbon neutral source of energy with the added benefit of pos-

sessing excellent liquid fuel properties. Economic production of ethanol from cellulosic biomass on
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commercial scales will help reduce our dependence on fossil fuels. Towards this aim, research efforts

made to commercialize the process include, but are not limited to, the following areas [2]: (i) de-

veloping improved feedstocks, (ii) overcoming biomass recalcitrance through enhanced pretreatment

options and more efficient enzymes, (iii) improving ethanol fermentation and recovery methods, and

(iv) minimizing enzyme production costs. Although a concerted approach involving all aspects in

the biomass-to-ethanol conversion will be necessary in surmounting the economic challenges, per-

haps the greatest leverage arises from (ii) above, for which efforts are being made to develop better

enzymes using, for example, directed evolution and protein engineering [3]. In this respect, a molec-

ular, mechanistic understanding of how cellulase hydrolyzes the recalcitrant biomass can guide the

design of more efficient enzymes.

Cellulase consists of two domains—a carbohydrate binding module (CBM) and a catalytic do-

main (CD)—connected by a peptide linker; see Fig. 5.1. How these two domains work together to

extract a single polysaccharide chain from the crystalline cellulose and achieve the desired hydrolysis

is a question of considerable controversy. In particular, the role of the linker region between the two

domains is not known. Experimental efforts to reveal the structure of the linker remain inconclu-

sive [4–6], while molecular dynamics simulations are limited by the inordinately long computation

time necessary to model both the large size of the enzyme/substrate complex and the long timescale

for the motion of the enzyme. For example, recently reported results based on nanosecond timescales

concluded that the peptide linker is too flexible to store energy in a manner similar to spring [7].

This was subsequently contradicted by free energy calculations from the same group [8]. Developing

a fully atomistic model is clearly a nontrivial task with current computation power.

In this chapter, we develop a mechanochemical model, whereby the free energy gain from the

cellulose hydrolysis provides the driving force for the motion of the CD, which is then coupled to

the motion of the CBM through the linker. Rather than attempt to accurately model the atomistic

details of the system, we develop a stochastic model that captures the kinetic rates of the processive

CD and the random CBM. Importantly, the model accounts for the mechanical deformation of

the peptide linker joining the two domains and the energetics of the hydrogen bond disruption of
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(a) Hydrolytic activity of the catalytic domain (CD) on a soluble cel-
lulose polymer

(b) Lateral diffusion of the carbohydrate binding module (CBM) on an
unperturbed crystalline substrate. Springs represent noncovalent
hydrogen bonds.

(c) Hydrolytic activity of the full cellulase, consisting of a CD and
CBM coupled by a peptide linker

Figure 5.1: The cellulase enzyme

the crystalline cellulose substrate. Our results reveal that the two domains work cooperatively. In

particular, as the CD hydrolyzes the cellulose polymer and advances forward, it must simultaneously

extract the polysaccharide chain from the crystalline surface. This lifting, which is energetically

unfavorable, significantly slows down the motion of the CD, rendering it effectively inactive without

the assistance of the CBM, which disrupts the hydrogen bonds between the cellulose polymer and

the crystalline surface [9–11]. At the same time, the CBM also depends on the CD’s ability to lift the

polymer, thus preventing it from re-associating with the crystalline surface. We find that the ability

for the two domains to cooperate synergistically depends in a nontrivial way on their separation
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r, which depends on the linker length and flexibility, and that there exists an optimum enzymatic

rate. This observation suggests that the maximum hydrolytic activity is achieved by optimizing the

cooperative action between the CD and the CBM.

5.1.2 Model

In this section, we develop a kinetic model that captures the essential features of the cellulase,

while leaving out the atomistic details. Since binding to the substrate is an effectively irreversible

process [12], we will study the processive dynamics of the two domains—represented by coupled ran-

dom walkers—as they take discrete steps along the length of the cellulose polymer. Such stochastic

models of molecular motor/enzyme dynamics have recently gained considerable popularity [13–19].

They require less microscopic information and can often be solved analytically.

5.1.2.1 Kinetic Scheme

We describe the state of the enzyme by the discrete position x of the CD along the cellulose polymer,

and the distance r separating the two domains; see Fig. 5.1(c). We nondimensionalize these quantities

using the length of a step δ, representing the distance between two neighboring monomers of the

cellulose polymer. Generally speaking, for any state, three moves are allowed in the model: (1)

the CD may step forward, (2) the CBM may step forward, or (3) the CBM may step backward.

We denote P (x, r, t) as the probability for the enzyme to be in a state described by position x and

separation r at time t. Assuming a Markovian process, the master equation governing the time

evolution of P (x, r, t) is given by

dP (x, r, t)

dt
= kC(r + 1)P (x− 1, r + 1, t) + kB−(r + 1)P (x, r + 1, t)

+ kB+(r − 1)P (x, r − 1, t)− [kC(r) + kB+(r) + kB−(r)]P (x, r, t),

(5.1)

where the positive and negative terms in the sum are the joint probabilities of transitioning into

and out of, respectively, the state whose trajectory we are tracking. Note that the rate constants

depend only on the relative separation of the two domains and not on the actual position, assuming
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translation invariance of the crystalline surface. The argument in the rate constant refers to the

initial state. Thus, kC(r) is the transition probability per unit time for the CD to move to the

right from a separation distance r to r − 1, while kB+(r) is the transition probability per unit time

for the CBM to move to the right from a separation r to r + 1, since moving the CD to the right

decreases the separation while moving the CBM to the right increases the separation. Eq. (5.1)

describes a standard one-step process for a sufficiently small time step, where only one of the moves

can take place [20]. In what follows we give an explicit description of the rate constants that enter

into Eq. (5.1).

5.1.2.2 Two Random Walkers

Crystal structures of the catalytic domain reveal a long tunnel for the active site, containing many

nonspecific and solvent-mediated interactions. This suggests a forward processive motion of the CD

along the length of the cellulose polymer [21–23]; see Fig. 5.1(a). Thus, we choose to model the

catalytic domain as a one-dimensional stochastic walker that may only step in the forward direction,

as governed by an intrinsic rate constant k
(0)
C . Although the motion is a nonequilibrium process

that likely involves complex mechanochemical dynamics, such as the conformational change of the

enzyme and its grabbing and pulling of the polysaccharide chain, in the limit that the motion is

tightly coupled to the hydrolysis, the intrinsic rate constant may be expressed as

k
(0)
C = νe−∆U(g) = νe−[U(g)−U(0)]. (5.2)

Here ν is some transition frequency and ∆U(g) is the activation energy, in units of kBT , of the

intrinsic potential U(x) at position g; see Fig. 5.2. Since nothing is known a priori about the shape

of the potential, we can only say that g is some value between zero and the discrete step size δ of

the model, which we nondimensionalize so that 0 < g < 1. The assumption that the CD only steps

in the forward direction is justified by imagining what must occur in order for the CD to take a

reverse step: the hydrolyzed monomer must reattach to the polymer so that the CD has a track to

step back on. Thus, in the absence of the CD detaching from the polymer—an unlikely event for
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Figure 5.2: The intrinsic potential (solid) and the total potential (dashed)

the timescale of interest, considering that the enzyme binds strongly to the polymer through several

hydrogen bonds [23]—the rate constant for a back step is effectively zero.

In all cases of practical interest, the cellulose polymer is bound to a crystalline surface. The

presence of an active site enclosed within a tunnel requires that the CD disrupt and lift the cellulose

polymer from the crystalline surface as it advances along the chain. Furthermore, there will be a

compression energy for the linker, which couples the CD to the CBM. The relevant energy must

therefore account for the coupling E(r− x). Because the continuous form of E(r− x) is not known,

in particular the linker potential may depend on complex interactions with the substrate [8], we

perform a linear expansion, which assumes that δ varies slowly over the length scale. The total

potential may then be written

Ũ(x) = U(x) + E(r − x)

≈ U(x) + E(r)− E′(r)x = U(x) + E(r) + [E(r − 1)− E(r)]x.

(5.3)

In general, the coordinates of the minima and the maxima of Ũ(x) will not coincide with those of

U(x). However, in the limit where E(r − x) is a weak perturbation, we make the assumption that
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this is the case. Then the activation barrier of the total energy (see Fig. 5.2) is

∆Ũ(g) = U(g) + E(r − g)− [U(0) + E(r)]

≈ U(g)− U(0) + [E(r − 1)− E(r)] g

(5.4)

and the rate constant for the forward motion of the catalytic domain, as biased by the lifting of the

cellulose profile and the compression of the linker, becomes

kC(r) = νe−∆Ũ(g) ≈ k(0)
C e−g[E(r−1)−E(r)], (5.5)

where k
(0)
C is the intrinsic rate constant given by Eq. (5.2). A similar strategy has been used by

Kolomeisky and Fisher in their description of protein motors under various loading conditions [16,18]

and by Betterton and Julicher in their work on helicase unwinding of DNA [14,24]. Notice that the

rate constant is independent of the position x of the enzyme and is obtained for discrete values of r.

The carbohydrate binding module similarly follows a one-dimensional random walk along the

length of the cellulose chain. However, its motion can be in both the forward (+) and back-

ward (−) directions. For the diffusion of an isolated CBM on an unperturbed cellulose surface

[Fig. 5.1(b)], the intrinsic rate constants are given by k
(0)
B+ = ωe−[U(f)−U(0)] for the forward step,

and k
(0)
B− = ωe−[U(f)−U(1)] for the backward step. As before, ω is some transition frequency (ω 6= ν)

and f is the position of the activation barrier. Because the intrinsic dynamics of the CBM is un-

biased, we set U(0) = U(1) and f = 1/2, corresponding to a symmetric periodic potential, so that

k
(0)
B+ = k

(0)
B−. In the case where the CBM is connected to the CD, the peptide linker and the profile

of the perturbed cellulose surface will bias the diffusion of the CBM; see Fig. 5.1(c). To capture

these effects, we follow the same procedure as for the CD and obtain

kB+(r) = k
(0)
B+e−f [E(r+1)−E(r)] = k

(0)
B+e−

1
2 [E(r+1)−E(r)] (5.6)
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for the forward rate constant, and

kB−(r + 1) = k
(0)
B−e−(1−f)[E(r)−E(r+1)] = k

(0)
B−e−

1
2 [E(r)−E(r+1)] (5.7)

for the reverse rate constant. Note that kB+(r)/kB−(r+1) satisfies the detailed balance requirement

and is independent of the parameter f .

The master equation [Eq. (5.1)] and rate constants [Eq. (5.5)–Eq. (5.7)] completely describe the

kinetics of our system. Before we proceed with obtaining explicit expressions for the rate constants,

we point out two additional features of the model. Firstly, the CBM is always in front of the CD

and the two cannot cross; if r = 0, only the CBM may step forward. To account for this blockage

effect, we set kC(0) = kB−(0) = 0. Secondly, in the limit where the coupling includes an infinitely

stiff spring, the CD and the CBM are forced to move as one unit. In the weak coupling case assumed

here, the activation barrier for such a concerted move is roughly the sum of the activation barriers

for the CD and the CBM. Therefore, the rate constant for such a process is much smaller than the

rate constants for the individual moves allowed in the master equation. Together with the fact that

Eq. (5.1) only allows for one-step processes, we ignore the higher-order event of joint moves by the

CD and CBM.

In the next section, we obtain an explicit expression for the coupling potential E(r), defined as

the sum of the energy from the peptide linker L(r) and the energy from the cellulose profile H(r).

5.1.2.3 Coupling Potential

Because no satisfactory end-to-end probability distribution of the peptide linker can be found in the

literature [4, 5, 8, 25], we choose to model the linker as a simple Hookean spring. This assumption

is justified by the glycosylation and the high fraction of proline-threonine residues, both of which

impart a high rigidity to the linker, leading to extended conformations in solution [5]. The energy

of the linker as a function of the separation r is the familiar

L(r) =
κ

2
(r − r0)2. (5.8)
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Here κ is the spring constant representing the stiffness of the linker and r0 is some equilibrium length

in units of δ. In what follows, we only consider cases where r0 6= 0. The structure of the linker

region varies widely among cellulases, anywhere from 5 to 100 residues in length [26] and an average

of 3.0 to 0.7 Å/residue [4], depending on flexibility. We vary the length and the flexibility of the

linker and examine their effects on the hydrolysis kinetics.

Next, we obtain H(r) for the energy of the cellulose profile. Lignocellulose is a complex substrate

composed primarily of cellulose microfibrils in association with hemicellulose and surrounded by

a lignin seal. This makes modeling the enzymatic hydrolysis difficult without first noting that

several pretreatment options exist, which can break the lignin seal and solubilize the amorphous

hemicellulose, thus releasing the cellulose microfibril [27]. Furthermore, electron microscopy results

indicate worn edges of the cellulose microfibril, suggesting that the enzyme preferentially binds

to and processively hydrolyzes the most exposed chain on the surface, i.e., that with the fewest

interactions to the underlying crystal [28]. Thus it is reasonable to simplify the substrate into a

one-dimensional homopolymer that is bound to a surface through several noncovalent interactions.

To represent the cellulose polymer attached to the crystalline substrate, we adopt the Peyrard-

Bishop potential used for the unzipping of two DNA strands [29]:

H =

N−1∑
i=0

1

2
λ(si − s(0))2 +

N∑
i=0

{
d
(

1− exp[−a(yi − y(0))]
)2

− d
}
. (5.9)

Here the summation is over the monomers of the cellulose chain and we keep track of i = 0, 1, . . . , N

monomers, where 0 is always the monomer at the entrance of the tunnel, and N is taken to be

sufficiently large as to be in the unperturbed region of the cellulose crystal; see Fig. 5.1(c). The first

term represents the penalty for stretching the covalent bonds between the glucose monomers, where

λ is the effective spring constant of the covalent bond, s(0) = δ is the equilibrium bond length, and

si is the bond length between monomers i and i+ 1:

si =
√

(yi − yi+1)2 + (s(0))2. (5.10)
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Here, yi is the height of the ith monomer from the surface. For small yi − yi+1, the first term in

Eq. (5.9) can be approximated so that the sum becomes

H =
γ

8

N−1∑
i=0

(yi − yi+1)4 +

N∑
i=0

{
d
(

1− exp[−a(yi − y(0))]
)2

− d
}
, (5.11)

with γ ≡ λ/(s(0))2. The second term is the Morse potential for the hydrogen bond interactions

between the monomers of the chain to be extracted and the surface, where y(0) is the equilibrium

bond length, d is the bond dissociation energy, and a determines the width of the potential well.

Because each monomer is actually involved in several hydrogen bonds and we only model a single

interaction, each term of the Morse potential actually represents an approximation of all the non-

covalent interactions. In what follows, we refer to this as a single hydrogen bond for simplicity.

The local disruptive effect of the CBM on the crystal is captured by rewriting the second sum so

that the interaction energy for the monomers directly below the CBM, i = {r, . . . , r + nB}, are not

included. nB reflects both the size of the binding module and the number of monomers disrupted.

For example, nB = 4 in Fig. 5.1(c). Thus, we can rewrite Eq. (5.11) as

H =
γ

8

N−1∑
i=0

(yi − yi+1)4 +

N∑
i=0

i/∈{r,...,r+nB}

{
d
(

1− exp[−a(yi − y(0))]
)2

− d
}
. (5.12)

In this expression, the dependence on r enters through the second sum. Minimizing the energy

with respect to {yi}, subject to the boundary conditions that yi=0 = yh (the height the chain must

be lifted to enter the catalytic domain tunnel) and yi=N = y(0) (the equilibrium bond length in

the unperturbed region of the crystal), we obtain, for each discrete value of r, the profile {yri } =

{yr0, yr1 yr2 . . . , yr∞} = {yh, yr1 yr2 . . . , y(0)} and its corresponding potential H(r).

In Fig. 5.3, we plot the coupling potential E(r) = H(r) + L(r). The dashed line depicts the

cellulose profile potential H(r) determined by minimizing Eq. (5.12) with the following choice of

parameters: y(0) = 0.4, yh = 1.0, d = 12.89, a = 9.0, and γ = 33843.4. The zero of energy is set

relative to the unperturbed state of the cellulose crystal so that disrupting the surface by lifting

the chain and/or breaking hydrogen bonds results in a positive energy. Because the monomers near
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Figure 5.3: The coupling potential. Arrow indicates direction of increasing κ.

the CD are lifted from the crystalline surface, their hydrogen bonds are highly stretched, perhaps

even broken, according to the description given by the Morse potential. Thus, when the separation

r is small, the bond disruption property of the CBM has little or no effect on the total energy of

the cellulose profile. As r increases, the CBM is forced to break bonds that are increasingly more

favorable to be intact, and eventually bonds that are in the unperturbed region of the crystal. For

our parameters, this is achieved when r = 4, which we call r∗. For r > r∗, H(r) is independent of

r. As shown in Fig. 5.3 for two different initial linker lengths, E(r) has a nontrivial dependence on

both the linker length r0 and the linker stiffness κ. In particular, E(r) is bistable in a certain range

of r0 and κ. In the results section, we will discuss the implications of this observation.

5.1.3 Results

The key quantity of interest in developing more efficient enzymes is the net hydrolysis rate on the

crystalline cellulose, which in our model is given by the mean velocity at steady state. To better

understand the structure/function relationship of the linker, it is further useful to consider the mean

separation between the CD and the CBM. We begin by discussing these two quantities, and their

dependence on the properties of the linker. We follow this with a description of the fluctuation,

which is informative in understanding the transition between the compressed and the extended

conformations of the linker.
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The mean separation of the two domains is given by the probability-weighted sum

〈r〉 =
∑
r=0

rPss(r), (5.13)

where Pss(r) is the steady-state probability of finding the enzyme in a state defined by the separation

r. The mean velocity of the cellulase is similarly given by

〈v〉 = 〈vC〉 =
∑
r=0

kC(r)Pss(r), (5.14)

where we have used the fact that the mean velocity of the CD equals that of the enzyme and the

velocity is related to the rate constant by vC(r) = kC(r) when the velocity is given in number of steps

δ per unit time. The dispersion around the mean velocity defines the effective diffusion coefficient

and is given by [24]

D =
1

4

∑
r=0

[kC(r) + kB+(r) + kB−(r)]Pss(r). (5.15)

To obtain the steady-state probabilities, we note that the stationary distribution corresponds to a

constant probability flux, i.e., dPss(r)/dt = 0, where we have dropped the x and t dependence from

Eq. (5.1). Beginning from r = 0, we can write

dPss(0)

dt
= 0 = kB+(0)Pss(0)− [kB−(1) + kC(1)]Pss(1), (5.16)

from which, generalizing for any r, we obtain the following recursion relation [24]

Pss(r + 1) =
kB+(r)

kB−(r + 1) + kC(r + 1)
Pss(r). (5.17)

Following the proper normalization, Eq. (5.17) is used to generate the steady-state probability

distribution of the enzyme during the hydrolysis.

Having obtained expressions for the steady-state behavior of the hydrolysis, we next compute

the mean separation 〈r〉 and the mean velocity 〈v〉 for a cellulase with an equilibrium linker length



78

0 2 4 6
0
1
2
3
4
5
6

Κ

�
r�

0 2 4 6

10�0

10�5
10�4
10�3
10�2
10�1

Κ

�Ν��k C�
0�

0 2 4 6
0
2
4
6
8
10
12

Κ

�v��k C�
0� ,10

�
4

(a)	


(b)	


(c)	


Figure 5.4: For r0 = 6, k
(0)
C /k

(0)
B = 0.1: (a) 〈r〉 for a range of values of the parameter g, where all

curves coincide. (b) logarithmic plot of 〈v〉/k(0)
C for g = 0.05, 0.25, 0.50, 0.75, 0.95. Arrow indicates

direction of increasing g. (c) linear plot of 〈v〉/k(0)
C for g = 0.50.

r0 = 6. From the experiments, which show that the diffusion of the CBM does not appear to hinder

the hydrolysis [30], we set k
(0)
C = 10s−1 and k

(0)
B± = 100s−1 based on the simple requirement that

the intrinsic rate constants satisfy k
(0)
C < k

(0)
B± . The persistence length lp of a polyproline peptide

sequence [31] has been estimated to be ∼ 44 Å, which is on the order of the contour length of the

peptide linker. Therefore, the linker can be viewed as an elastic rod of length r0. Relating the

bending energy to the spring energy and taking the step length δ to be 5Å, we estimate κmax ∼ 7.

In what follows, we only consider the cases for 0 ≤ κ ≤ κmax.

As shown in Fig. 5.4(a), the mean separation increases monotonically with κ and is insensitive to

the parameter g of the activation barrier for the CD (the curves for 5 different values of g coincide

with each other). However, the mean velocity depends strongly on g, through the rate constant

kC(r) in Eq. (5.14), as shown in Fig. 5.4(b). In particular, the maximum attainable 〈v〉 increases
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Figure 5.5: Probability distribution of the separation r for r0 = 6 and κ = 2.5, 3.0, 4.0 (L–R). Empty

markers correspond to k
(0)
C /k

(0)
B = 0.1 and filled markers correspond to k

(0)
C /k

(0)
B = 1000.

with g. Furthermore, 〈v〉 depends nonmonotonically on the stiffness of the linker, as shown more

clearly on the linear scale plot in Fig. 5.4(c) for g = 0.5. In all cases, the peak in velocity occurs

during the transition from the compressed to the extended conformation of the cellulase as depicted

by the corresponding plot in Fig. 5.4(a) of the average separation. The origin of the transition can

be understood if one considers the two components of the coupling potential E(r). In Fig. 5.3(a),

we show that as the stiffness is increased the linker begins to dominate the coupling potential so

that the minimum in energy shifts from r = 0 (for κ < 2) to r = r0 (for κ > 4), with a double

well potential occurring for κ ∼ 3. This corresponds to a doubly peaked steady-state probability

distribution Pss(r), as shown in Fig. 5.5. We note that a dynamic transition in the separation

distance between two domains has also been observed for two motor proteins coupled by a linear

potential [32]. However, in that case the transition is a result of the balance between energetic

and rate effects, whereas here the transition is driven primarily by the energetics of the coupling

potential.

The double well feature of the energy function and the shift of the (global) energy minimum

from one value of the separation r to another as the stiffness changes are reminiscent of first-order

phase transitions in thermodynamics. However, because of the small number of degrees of freedom

in the current problem, no true discontinuous transitions take place; only the relative weights of

the two peaks change. The maximum mean velocity is obtained when the two peaks are of roughly

equal weights. Because of the finite barrier that separates the two energy minima, the dynamics of

the system is one where the system fluctuates between the two values of the separation, with some

characteristic lifetime around each. To directly observe this feature, we have performed kinetic Monte
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Carlo simulations, which produce the time evolution of a process when the rates are known [33–35].

Fig. 5.6(c) shows that the system jumps between r = 2 and r = 6 for the transition at κ = 3.0,

which also corresponds to the peak of the mean velocity. If we compare this trajectory to Fig. 5.6(d)

for κ = 1.0, we see that the fluctuation of the system is considerably greater at the transition. As

another measure of the fluctuation, we plot the variance of the separation

σ2 =
∑
r

(r − 〈r〉)2Pss(r), (5.18)

from which we observe a strong peak at the transition; see Fig. 5.6(a). The large fluctuation is

also manifested in a maximum for the diffusion coefficient; see Fig. 5.6(b). Together, these results

suggest that the fluctuation is at a maximum during the transition from a compressed to a more

extended conformation of the linker, where the maximum mean velocity is obtained. The ability

to adopt different separations between the two domains is what gives rise to the positive synergy

between the two domains, i.e., the CD helps lift the polysaccharide chain from the crystalline surface

as it hydrolyzes the polymer (which is more easily accomplished at the shorter separation) while the

CBM disrupts the hydrogen bonds between the polymer and the crystalline surface (which is more

effectively achieved at a larger separation).

We next consider how the system behavior depends upon the intrinsic rate constants, k
(0)
C and

k
(0)
B , as these are the parameters that protein engineering aims to alter. Using the rate constants

obtained in Eq. (5.5)–Eq. (5.7), Eq. (5.17) can be rewritten in the form

Pss(r + 1) =
k

(0)
B+e

− 1
2 [E(r+1)−E(r)]

k
(0)
B−e

− 1
2 [E(r)−E(r+1)] + k

(0)
C e−g[E(r)−E(r+1)]

Pss(r). (5.19)

As before, if we assume k
(0)
B+ = k

(0)
B−, then

Pss(r + 1) =
e−[E(r+1)−E(r)]

1 +
k
(0)
C

k
(0)
B

e−(1/2−g)[E(r+1)−E(r)]

Pss(r). (5.20)
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Figure 5.6: (a) and (b): The variance of 〈r〉 and the effective diffusion constant D as a function of
the linker stiffness κ. (c) and (d): Separation r as a function of simulation time generated using the
kinetic Monte Carlo algorithm for κ = 3.0 and κ = 1.0, respectively

Setting f = g = 1/2, Eq. (5.20) can be further simplified to the form

Pss(r + 1) =
e−[E(r+1)−E(r)]

1 +
k
(0)
C

k
(0)
B

Pss(r). (5.21)

This recursion equation can be easily solved to yield

Pss(r) =
1

Q

e−[E(r)−E(0)](
1 +

k
(0)
C

k
(0)
B

)r =
1

Q
exp

[
−E(r)− r ln

(
1 +

k
(0)
C

k
(0)
B

)]
, (5.22)

where Q is a normalization factor given by

Q =

∞∑
r=0

exp

[
−E(r)− r ln

(
1 +

k
(0)
C

k
(0)
B

)]
. (5.23)

For an immobile enzyme in which k
(0)
C = 0, Eq. (5.22) produces the Boltzmann distribution.

For nonvanishing k
(0)
C , Pss(r) remains close to the equilibrium distribution as long as k

(0)
C /k

(0)
B < 1,

as shown in Fig. 5.5, for the parameters k
(0)
C = 10 and k

(0)
B = 100 (empty markers). As this

ratio increases, the probability distribution begins to favor smaller values of r (solid markers)—as
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dot-dashed), 2.5 (orange, long-dashed), 3 (green, solid), 4 (blue, dotted), 6 (purple, dashed)

compared with the equilibrium distribution—because the CD advances faster than the CBM can

diffuse back to equilibrium, forcing the linker into a more compressed conformation. In the limit

where k
(0)
C /k

(0)
B →∞, the two domains are adjacent to each other and the CBM blocks the hydrolysis

of the CD.

To better understand the dependence of the average velocity on the ratio of the intrinsic rate

constants, we plot the nondimensionalized velocity, 〈v〉/k(0)
C , as a function of k

(0)
C /k

(0)
B ; see Fig. 5.7.

The nondimensionalized velocity remains essentially constant up to k
(0)
C /k

(0)
B ∼ 100, implying that

the velocity is linearly proportional to the intrinsic rate constant k
(0)
C in this regime. Note that

the plateau (maximum) values of 〈v〉/k(0)
C for the curves in Fig. 5.7 show the same nonmonotonic

dependence on κ. We also see that the blockage effect at large k
(0)
C /k

(0)
B is greater for flexible linkers

(κ = 2) where the decay to 〈v〉/k(0)
C = 0 occurs more rapidly than for rigid linkers (κ = 6). We

note that the un-scaled velocity does not decay to zero, but reaches a plateau in the limit of large

k
(0)
C /k

(0)
B . In the biological regime, k

(0)
C /k

(0)
B << 1 [30]. This suggests that engineering more efficient

catalytic domains, without having to consider the binding module, can already provide significant

gains in improving the overall efficiency of the enzymatic hydrolysis. In this regime, increasing k
(0)
C

leads to a linear increase in 〈v〉 through Eq. (5.14).

Lastly, we examine the effect of the linker length on the hydrolysis. As can be seen in Fig. 5.3,
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Figure 5.8: (a) Nondimensionalized velocity 〈v〉/k(0)
C as a function of the linker stiffness κ, for r0 = 60

(purple, dashed), 20 (blue, long-dashed), 10 (green, dotted), 8 (orange, solid), 6 (red, dot-dashed).

(b) The coupling potential E(r), corresponding to the κ that maximizes 〈v〉/k(0)
C for the respective

values of r0 given in (a)

the coupling potential E(r) of the longer linker (r0 = 10) shows a marked difference from that of the

shorter linker (r0 = 6). Rather than a double well potential arising as κ is increased, the position

of the minimum jumps from r = 0 to r = r0, which is analogous to a phase transition from the

compact to extended conformation. As shown in Fig. 5.8(a), this corresponds to a sharp turn of

the slope at the peak of 〈v〉 (dotted line) rather than a smooth slope (dot-dashed line). We note

that because of the finite number of degrees of freedom, there is no singularity in the system, but

rather what appears to be a cusp in the scale of the figure. Secondly, there is a clear trend that

longer linkers are able to reach higher 〈v〉max. To understand this, recall that the maximum velocity

is obtained when the separation between the CD and the CBM is free to fluctuate. This requires

that the force be small, or equivalently, the slope of the composite potential be relatively flat; see

Fig. 5.8(b). The spring constant should be just enough so that L(r) can counterbalance the effect

of the fairly deep minimum at r = 0 in H(r). Too soft of a linker, and the enzyme will get stuck

in the compact conformation; too stiff of a linker, and the enzyme will be trapped at r = r0. The

linker functions to provide the separation necessary to get the CBM out of the range of influence of

H(r), where larger values of r0 will need smaller values of κ. However, for r0 >> r∗, where r∗ is

the range of influence of the potential H(r), additional increase in the linker length will not provide

more gains in increasing the efficiency of the hydrolysis. As shown in Fig. 5.8(a), the maximum in

〈v〉 approaches a limit of roughly 0.0016k
(0)
C . This limit is nearly attained with the linker length so

that there is little benefit for increasing the linker length beyond 20.
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5.1.4 Conclusion

We have developed a kinetic, mesoscopic model for cellulase, using two random walkers whose

dynamics are coupled by the peptide linker and the cellulose polymer. The role of the linker in

the hydrolysis has been a topic of considerable controversy. Our results show that the composite

potential due to the peptide linker and the cellulose polymer can give rise to a bimodal distribution

for the separation of the CD and CBM. Furthermore, the optimal hydrolysis rate is obtained at

the transition from a compressed to an extended conformation. At this transition, the system

exhibits maximum fluctuation as measured by the variance of the separation distance between the

two domains and the dispersion around the mean procession velocity. For a given linker length, the

mean velocity shows a nonmonotonic dependence on the stiffness of the linker, with a peak at some

intermediate stiffness value. We also find that the optimal stiffness value decreases and that the

maximum hydrolysis rate increases with increasing linker length.

Our study provides useful mechanistic insight to the action of the cellulase complex, as the

CD and CBM domains cooperate to extract and hydrolyze a single cellulose polymer from the

recalcitrant biomass. The results of this work can be useful for the design and engineering of more

efficient enzymes. For example, within the range of experimentally known values of the parameters

of our model, improving the intrinsic hydrolytic activity of the CD can serve to make significant

gains in the overall efficiency of the enzyme, without having to alter the CBM. However, our results

also suggest the importance of optimizing the linker length and stiffness, an insight that would not

be obvious without the help of a model.

We thank Bradley Olsen, Frances Arnold, and Pete Heinzelman for helpful discussions. C.L.T.

appreciates financial support from an NIH training grant.
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5.2 Thermodynamic Basis for the Genome-to-Capsid Charge

Relationship in Viral Encapsidation

We establish an appropriate thermodynamic framework for determining the optimal genome length

in electrostatically driven viral encapsidation. Importantly, our analysis includes the electrostatic

potential due to the Donnan equilibrium, which arises from the semipermeable nature of the viral

capsid, i.e., permeable to small mobile ions but impermeable to charged macromolecules. Because

most macromolecules in the cellular milieu are negatively charged, the Donnan potential provides an

additional driving force for genome encapsidation. In contrast to previous theoretical studies, we find

that the optimal genome length is the result of combined effects from the electrostatic interactions

of all charged species, the excluded volume, and, to a very significant degree, the Donnan potential.

In particular, the Donnan potential is essential for obtaining negatively overcharged viruses. The

prevalence of overcharged viruses in Nature may suggest an evolutionary preference for viruses to

increase the amount of genome packaged by utilizing the Donnan potential (through increases in the

capsid radius), rather than high charges on the capsid, so that structural stability of the capsid is

maintained [36].

5.2.1 Introduction

The most prevalent viruses in Nature are single-stranded RNA viruses with the genetic material

enclosed in icosahedral-shaped capsids made up of 60T protein units, where the T-number is a small

integer index. The protein units (capsomers) often contain highly basic peptide arms that extend

into the capsid interior and, under physiological conditions, are positively charged. Electrostatic

attraction provides the driving force for encapsidating the negatively charged RNA, which, in turn,

helps to overcome the electrostatic repulsion among the capsomers during the capsid assembly.

In a series of classic experiments, Bancroft et al. [37, 38] demonstrated that certain viruses can

encapsidate nonnative RNA and even generic polyanions. Dominance of the electrostatics as the

driving force for viral assembly has led to the expectation of a simple relationship between the total
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capsid charge QP and the genome charge QR, as every nucleotide carries one unit of negative charge.

Belyi and Muthukumar [39] compiled data for 19 wild-type viruses from several viral families and

found an apparent “universal” charge ratio of QR/QP ≈ 1.6, which they explained by combining the

ground-state dominance approximation for polyelectrolyte binding to an oppositely charged polymer

brush with the Manning condensation theory [40]. The former predicts a 1:1 charge ratio and the

latter is used as a qualitative argument for the actual charge on the RNA being less than the nominal

charge. Hu et al. [41], however, assumed that the RNA winds around individual peptide arms and

found that the viruses are most stable when the total contour length of the RNA is close to the

total length of the peptide arms; this roughly gives a charge ratio of 2. In other works that ignore

the peptide arms completely, there is additional disagreement for the charge ratio. For example,

van der Schoot and Bruinsma [42] obtained a charge ratio of 2, whereas the work of Angelescu et

al. [43] yielded a ratio of 1 as the most favorable condition (but predicted that encapsidation can

remain favorable up to a ratio of 3.5). Implicit in any expected relationship between the total capsid

charge QP and the genome charge QR is the assumption that at a given QP , there exists an optimal

genome length N∗ that can be encapsidated. However, the definition of N∗ has not been clearly

articulated in the literature, and the issue of a “universal” charge ratio remains unresolved.

In this chapter, we first clarify the meaning of an optimal genome length N∗. This requires a

clearly defined thermodynamic setup from which minimization of an appropriate free energy can

emerge in a way that is consistent with the assembly mechanism under typical in vitro or in vivo

conditions. We then use self-consistent field (SCF) theory [44] to calculate the free energy required to

determine N∗. We find that N∗ is not uniquely determined by the total charge of the capsid QP , but

depends on the placement of the capsid charges, the excluded volume effects and, most significantly,

the negative electrostatic potential outside the viral capsid. This Donnan potential [45] has been

neglected in all previous theoretical and computational studies. We find that this contribution is

essential for obtaining overcharged viruses.

By including the Donnan potential, we are able to vary the parameters in our model—the charge

density and length of the peptide arms, and the charge density and radius of the capsid shell—
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I

II

Figure 5.9: Two scenarios for viral assembly giving rise to an optimal genome length. Scenario I:
a monodisperse solution of RNA of length N0 > N∗, where the optimal length N∗ corresponds to
the largest population of viral particles containing N∗ segments inside the capsid. Here, the outside
fragment of RNA can be removed by nucleases, as represented by scissors. Scenario II: a polydisperse
solution of RNA, where viruses containing fully encapsidated molecules of length N∗ dominate the
population of singly encapsidated viral particles

to generate a set of hypothetical viruses for which the genome-to-capsid charge ratio behavior of

the genome length vs. the total capsid charge resembles data on real overcharged viruses from

Ref. [39]. On the basis of our analysis, the prevalence of overcharged viruses in Nature may suggest

an evolutionary preference for viruses that primarily utilize the Donnan potential, rather than highly

charged capsomers, to increase the amount of genome packaged, while still maintaining the structural

stability of the capsid shell.

5.2.2 Clarification of the Optimal Genome Length

Bancroft et al. [38] showed that viral assembly occurs by a nucleation and growth mechanism, with

the RNA acting as the nucleating agent. If the RNA are sufficiently large, and on account of their

electrostatic repulsion with each other, the likelihood of multiple RNA nucleating one capsid is low

and, for the optimal length question, we may confine ourselves to the population of single RNA-

encapsidated viral particles. Also, following previous theoretical works [39, 41–43, 46–51], we treat

the RNA as a linear polyelectrolyte, and ignore the secondary structures [52]. This is in part a



88

computational necessity and in part guided by the motivation to elucidate the generic features of

electrostatically driven viral assembly by using simple models. It will be shown that changing the

polyelectrolyte from a linear chain to a multi-armed star considerably reduces its physical dimension,

one of the main effects of the secondary structure, but has little effect on the results. As depicted

in Fig. 5.9, we consider two scenarios for the encapsidation. Under reasonable conditions, these two

scenarios yield identical results.

5.2.2.1 Scenario I

Consider a monodisperse solution of sufficiently long RNA (N0 > N∗) mixed with capsomers. Upon

nucleation around the RNA, the capsomers aggregate to form viruses of various T-number sizes with

N segments inside and N0 −N segments outside. It has been suggested that the outside fragments

can be removed by nucleases [53, 54]. We focus on the subpopulation of singly encapsidated viral

particles of a particular T-number. Treating viral assembly as an equilibrium system subject to

the laws of mass action (see [42] and references therein), the number concentration of viral capsids

containing a genome length N inside is

C(N) = Cref exp [−f(N)−∆fcap + µ+ 60Tλ] . (5.24)

Here f(N) is the free energy of interaction between the RNA and the capsid, ∆fcap is the free energy

of formation for an empty capsid, µ and λ are the chemical potentials of the free RNA and the free

capsomers, respectively, and Cref is a reference concentration that is assumed to be independent of

N . f(N) and ∆fcap are really semi-grand free energies, as the capsid is open with respect to small

salt ions and solvent. However, for notational conciseness, we do not explicitly include the chemical

potentials of these species in the expression. Throughout this work, we take the thermal energy kBT

as the energy unit. Clearly, the fraction of viral particles with N segments inside is given by

P (N) =
exp [−f(N)]∑
N ′ exp [−f(N ′)]

, (5.25)
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where the summation runs from Nmin, as required to nucleate the capsid [38], to N0. Importantly,

the free energy of formation of the capsid and the concentrations of RNA and capsomers, while

determining the concentration of the viral particles, play no role in P (N). If we ignore the con-

nectivity between the inside and outside portions of the RNA, then the free energy of interaction

may be separated into f(N) = fin(N) + fout(N0 −N). The main contribution to fout arises from

the external osmotic pressure Π and the finite electrostatic potential difference ∆ψ, i.e., the Donnan

potential. The former is due to the presence of other macromolecules, such as proteins and nucleic

acids or added osmolytes [55], and the latter due to the fact that these macromolecules are usually

charged. Thus, we have

fout(N0 −N) = (N0 −N)(vRΠ + e∆ψ), (5.26)

where vR is the monomer volume of a nucleotide and e is the elementary charge. Under usual solution

conditions, vRΠ << kT so that we can safely ignore the osmotic pressure term. Substituting the

free energy back into P (N), we get

P (N) =
exp[−g(N)]∑
N ′ exp[−g(N ′)]

, (5.27)

where g(N) = fin(N) − eN∆ψ. It is now clear that the largest population corresponds to the

minimum of this free energy.

5.2.2.2 Scenario II

We envision a polydisperse solution of RNA mixed with capsomers. Once packaged we assume that

the RNA molecules reside entirely within the viral capsid. Again, we focus on the subpopulation of

singly encapsidated viral particles of a particular T-number. Following arguments similar to those

in Scenario I, the fraction of viral particles with chain length N is given by

P (N) =
exp[−fin(N) + µN ]∑
N ′ exp[−fin(N ′) + µN ′ ]

. (5.28)
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Here µN is the chemical potential of free RNA of length N . Assuming ideal solution behavior for

the free RNA,

µN = µrefN + log(ρN/ρ
ref
N ) + eN∆ψ, (5.29)

where ρrefN is a reference concentration and µrefN is its respective chemical potential. These reference

terms contain contributions from the momentum and conformation integration of the reference

Gaussian chain and exactly cancel those in fin. The distribution then becomes

P (N) =
ρN exp[−fin(N) + eN∆ψ]∑
N ′ ρN ′ exp[−fin(N ′) + eN ′∆ψ]

. (5.30)

When the concentrations of RNA with different chain lengths are the same, the ρN exactly cancel

and Eq. (5.30) becomes identical to Eq. (5.27). In fact, because the free energy in the exponential is

O(N) (see Fig. 5.10), its contribution will dominate the distribution and the concentration prefactors

can be safely ignored. Therefore, for all practical purposes, the determination of N∗ is again a

minimization of the free energy, g(N).

We note that it is possible to include the part-in, part-out configuration of Scenario I in Sce-

nario II. Here, chain lengths longer than N∗ will likely have some fragments outside the capsid that

can be removed by nucleases. This will make the distribution P (N) even more dominated by N∗,

but the determination of N∗ remains unchanged. Also, for long enough chains, g(N) is primarily

determined by the total number of nucleotides in the capsid and is insensitive to the the actual num-

ber of chains nR or the architecture of the polyelectrolyte; see Fig. 5.10. In particular, the results for

a 12-arm star and for a linear chain with the same number of nucleotides are essentially identical,

indicating that packaging is insensitive to the radius of gyration or degree of branching—two main

effects of the RNA secondary structure [52]. In what follows, we briefly describe the components of

our SCF model used to obtain g(N), but refer the reader to the Appendix D for details, including

the model parameters.
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Figure 5.10: T= 4 virus with QP = 1847e in the presence (solid) and absence (dashed) of the Donnan
potential

5.2.3 Model

We approximate the icosahedral viral capsid by a spherical shell of some finite thickness with inner

radius rcap, uniform charge density of magnitude ccap, and nP = 60T peptide arms grafted to

the inner surface. The capsid is treated as a semi-permeable shell, open with respect to solvent

and ions, but closed with respect to the RNA and peptide arms. We represent the flexible RNA

molecule, whose persistence length l ∼ 1 nm is an order of magnitude smaller than the capsid radius,

by a discrete Gaussian chain of N monomers, each carrying a unit negative charge and having a

volume vR. The capsid proteins are represented by end-grafted polyelectrolyte chains of uniform

charge distribution and are similarly modeled by a discrete Gaussian chain of NP monomers, each

with volume vP and charge cP . The solvent molecules are represented by monomers of volume

vs and the monovalent salt ions are taken to be point charges of the elementary charge e. The

essential contributions to the model are the chain connectivity, the excluded volume effects, and the

electrostatic interactions from all charged species, with total charge density

ρc = ccapφcap − ρ− +
cP
vP
φP −

φR
vR

. (5.31)

Here ρ− is the charge density, assumed to be uniform, of the negatively charged macromolecules

outside the capsid. Following the usual SCF derivation (see Appendix B), we obtain the semi-grand
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Figure 5.11: k = ∆QR/∆QP without the Donnan potential (filled): k1 = 0.67 [NP ], k2 = 0.82 [cP ],
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free energy:

fin = − ln

(
ZR
vR

)
− ln

(
ZnP

P

vnP

P nP !

)
− eµs

vs
Zs −

eµ±

v±
Z±

+

∫
dr

[
−

∑
I=R,P,S

ξIφI + ψρc −
ε

2
(∇ψ)2

]
.

(5.32)

In this expression, the Zα (α = R,P, S,±) are the single-molecule partition functions in their respec-

tive self-consistent fields ξI, ψ is the electrostatic potential (measured in reference to a monovalent

salt solution when ρ− = 0), and the dielectric constant ε depends on the local volume fraction of the

species.

5.2.4 Results

To understand how each of the different capsid parameters affects the optimal genome length N∗, we

begin by varying one parameter at a time, holding all else fixed. For different ways of changing the

capsid charges, we obtain the optimal genome charge QR = eN∗ from the free energy minimization

with respect to N . In Fig. 5.11 we show the relationship between QR and the total capsid charge

QP . In all cases, an approximately linear relationship is obtained in the range of charges considered,

with a slope k = ∆QR/∆QP .

We first examine the situation in the absence of the Donnan potential, when ρ− = 0 mM and
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c± = 130 mM (filled markers). Changing the charge density of the capsid shell ccap has the smallest

effect (k3 = 0.33) on the optimal genome charge, while changing the charge density of the peptide

arms cP has the largest effect (k2 = 0.82). Intermediate to these, we find k4 = 0.38 for increasing the

radius of the capsid shell rcap (at fixed grafting density) and k1 = 0.67 for increasing the length of the

peptide arms NP . To understand these different dependencies, we consider a reference T = 4 capsid

with a total charge QP = 1440e distributed only on the nP = 240 peptide arms. In Fig. 5.12(a), we

plot (solid line) the radial density profile for the optimal genome with QR = 769e. We observe, as

expected, a region of RNA density near the capsid surface, with most of the capsid interior devoid

of genome. In this case, the main contribution comes from the electrostatic interactions with the

peptide arms grafted to the inner surface of the capsid. We subsequently double QP by changing

NP , cP , ccap, and rcap individually. From the density profiles, it is clear that increasing ccap (dashed)

has a local effect and the resulting optimal genome only increases to QR = 1171e. The region where

the genome can benefit from additional electrostatic interactions is limited to a concentrated shell

at the inner surface of the capsid, where additional layers are hindered by excluded volume from

the genome and peptide arms. In contrast, delocalizing the charges onto the peptide arms allows

the genome to interact with the entire region of the peptide brush and we find QR = 2011e or

QR = 1802e, depending on whether we increase cP (dotted) or NP (dot-dashed), respectively. The

discrepancy between the two can be understood again from the excluded volume effect. Increasing

NP increases the volume fraction of the protein arms and therefore the excluded volume effect,

while increasing cP does not. Finally, one could double the capsid charge by doubling the number

of peptide arms at fixed grafting density, thus increasing rcap (note that this is a hypothetical case,

since the number of peptide arms is restricted by the T-number). We find that the density profile is

largely the same, except for a shift in position with the capsid shell. Not surprisingly, the optimal

genome has approximately doubled with the number of peptide arms, where we find QR = 1488e.

In all cases considered, we find undercharged viruses, where QR/QP < 1.

We next consider the effect of negatively charged macromolecules outside the viral capsid and

set ρ− = 100 mM, c+ = 130 mM and c− = 30 mM [56]. As usual, the small ions, which can diffuse
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Figure 5.12: Radial density profiles (nm) corresponding to the optimal genome length for a T= 4
virus. (a) For nP = 240, NP = 36, cP = 0.167, and ccap = 0.0 (solid) we double the charge by
changing one of the following: NP = 72 (dot-dashed), cP = 0.33 (dotted), and ccap = 0.177 (dashed).
(b) For NP = 36 and cP = 0.083 we increase the capsid charge density: ccap = 0.00 (solid), 0.05
(dotted), 0.10 (dashed). (c) For ccap = 0.10 without protein arms (solid), with neutral protein arms
NP = 36 (dotted), and with charged protein arms NP = 36, cP = 0.083 (dashed)

freely, maintain charge neutrality subject to equality of chemical potential for each of the small

ion species across the viral capsid. This combination of charge neutrality with equality of chemical

potential gives rise to a negative electrostatic potential (relative to a neutral monovalent salt solution)

that makes it favorable for an RNA molecule to be inside the viral capsid. The optimal genome

length occurs when the potential inside the capsid becomes comparable to this Donnan potential.

In Fig. 5.11 (empty markers), we show that increasing rcap at constant grafting density now has

the greatest effect on increasing the optimal genome length, where k8 = 1.69. In contrast, the

optimal genome lengths for changing NP , cP , or ccap have primarily shifted by a constant, while the

slopes ∆QR/∆QP remain largely unchanged. These observations can be explained from the density

profiles in Fig. 5.12(b), where we note that accounting for the negative background charge fills the

capsid interior with RNA. When we increase ccap, the concentrated density of RNA near the surface

increases (as is the case when ρ− = 0 mM), while the density in the interior remains unchanged. We

note that it is possible to increase QR simply by increasing the volume of the capsid so that even

negative slopes can be obtained, e.g., by increasing rcap while decreasing QP .

Lastly, in Fig. 5.12(c), we demonstrate the combined effects of the excluded volume, electrostatics

and Donnan potential. We start with a charged capsid shell without protein arms (solid). As
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Figure 5.13: (a) QR as a function of QP for hypothetical small (green circles), medium (blue squares),
and large (purple triangles) T = 4 viruses obtained from our model. For a given T-number, QP is
increased by varying NP , cP , and/or ccap using no particular methodology. Also shown is a set of
overcharged viruses (red circles) with a slope of 1.1 and intercept 1192. (b) QR as a function of QP
for a selection of WT virus obtained from [39] (red circles) and [41] (blue triangles), with a combined
slope of 1.1 and intercept 1214

expected, we find a concentrated density of RNA near the inner surface of the capsid and a lower

density throughout the interior of the capsid. We next add neutral protein arms (dotted) to isolate

the effect of the excluded volume, and find that the peptide arms repel the RNA from the surface of

the capsid, resulting in a decrease in QR. If we add back charges to the peptide arms (dashed), we

find that the favorable electrostatic interactions overcome the excluded volume effect and, as before,

the delocalization of the capsid charges creates an extended region of enhanced RNA density.

From these results, it is clear that no universal relationship exists between the optimal genome

length and the total capsid charge. The optimal genome length depends in a nontrivial way on

the placement of charges, the peptide arm length, and, importantly, the capsid radius (through the

Donnan potential). In real viruses, the variation in the total capsid charge from one virus to another

almost certainly occurs by a combination of these parameters. Therefore, very different genome vs.

capsid charge relationships can be obtained. To illustrate this, in Fig. 5.13(a) we generate three data

sets designated by the green circles, blue squares, and purple triangles, corresponding, respectively,
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to hypothetical small, medium, and large T = 4 viruses at different values of the total capsid charge.

Here the size refers to rcap = 17, 22, and 25 nm for small, medium, and large, respectively. Several

interesting observations can be made. First, even at zero capsid charge, there is a finite QR that

depends on the volume of the capsid available to the genome. This is a direct consequence of the

negative Donnan potential outside the capsid, which fills the interior with a nearly constant density

of genome; see Fig. 5.12(b) and (c). Second, it is obvious that the same total capsid charge QP

can correspond to multiple values of the optimal genome charge QR. Finally, there are multiple

ways to connect these 12 data points, each defining a different genome-to-capsid charge relationship.

In fact, there is essentially a continuum of points in the general area covered by these 12 points,

corresponding to different combinations of NP , cP , ccap, and rcap.

5.2.5 Discussion

We have developed a thermodynamic framework for viral assembly and clarified the notion of the

optimal genome length as the minimization of an appropriate free energy, which we obtain using SCF

theory. Importantly, we have accounted for the Donnan potential due to the presence of charged

macromolecules outside the viral capsid and find it to be essential for obtaining overcharged viruses.

Based on the minimization of the free energy defined in our work, we find that the optimal genome

length depends in a nontrivial way on the placement of the capsid charges, the excluded volume

inside the capsid and, significantly, the Donnan potential. We conclude that there is no “universal”

genome to capsid charge ratio.

What, then, can be made of the apparent linear relationship QR ≈ 1.6QP that was obtained

from 19 wild-type viruses in Ref. [39]? To address this question, we first note that if we exclude

the three obvious outliers in the data used in that study, a slope of 1.3 with an intercept of 668 is

obtained instead. On the other hand, another set of viruses chosen by Hu et al. [41], when fitted to

a linear function, yields a slope of 0.3 and an intercept of 3275. If we combine both sets of data, an

apparent linear relationship with slope 1.1 and intercept 1214 is obtained; see Fig. 5.13(b). These

data therefore suggest that a fitted linear relationship between the genome and capsid charge is quite
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sensitive to the choice of which viruses to include in a set; this is consistent with our discussion of

Fig. 5.13(a) in the last section. Whether an apparent linear relationship can be obtained if data on

all available viruses are compiled remains an open question. However, it is safe to say that there is

nothing particularly meaningful about 1.6 being the genome-to-capsid charge ratio.

Nevertheless, it can be seen from Fig. 5.13(b) that all the viruses selected in Refs. [39] and [41] are

overcharged. Indeed, overcharged viruses are prevalent in Nature [57]. To understand this, we have

generated a set of hypothetical viruses by tuning the parameters (peptide arm length NP and charge

density cP ; and capsid shell radius rcap and charge density ccap) in our model so that only overcharged

viruses are obtained. It is in fact possible to make the genome vs. capsid charge relationship for

these hypothetical viruses appear similar to real viruses; see Fig. 5.13(a) and (b), red circles. A

common attribute of these hypothetical viruses is that the charges on the peptide arms and capsid

shell are relatively low. The primary driving force for packaging comes from the Donnan potential,

which fills the capsid volume with genome (the finite positive offset in QR at QP = 0 for both the

real viruses and our hypothetical viruses is also consistent with this). Thus, the greatest increases in

QR come from increasing the capsid radius. We emphasize that without the Donnan potential, we

cannot obtain overcharged viruses because the genome is limited to electrostatic interactions near

the inner surface of the capsid, where the excluded volume effects become an issue. We recognize

that many factors contribute in the evolutionary pressure on the genome-to-capsid ratio in naturally

occurring viruses. However, in light of our thermodynamic analysis, the prevalence of overcharged

viruses in Nature suggests that there may be an evolutionary advantage for viruses that primarily

use the Donnan potential, and not the electrostatic attraction between the RNA and the capsomers,

for increasing the amount of genome encapsidated. The charges on the capsomers should be just

enough to help nucleate viral assembly [38], but not so large as to compromise the structural stability

of the capsid.
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5.2.6 Conclusion

In conclusion, our study offers a resolution to the issue of a “universal” charge ratio, highlights the

importance of the negative Donnan potential in viral assembly, and provides an explanation for the

prevalence of overcharged viruses in Nature. The thermodynamic framework developed in this study

should be useful for interpreting results from experimental studies of in vitro assembly of viruses

and virus-like particles [58–62], as well as for the design of viral vectors for gene therapy, where, in

addition to minimizing toxicity, a major goal is to successfully deliver the appropriate amount of

therapeutic gene [63]. More generally, because the presence of charged macromolecules in cells is

ubiquitous, we expect the associated Donnan effects, much like the well-known crowding effects [64],

to significantly influence a wide range of biomacromolecular behaviors and cellular processes.

The authors acknowledge support from the Jacobs Institute for Molecular Engineering for Medicine

at Caltech. CLT is thankful for financial support from an NIH training grant.

Appendix D: SCFT Model for the Virus

Consider a spherical capsid shell with uniform charge density of magnitude cc, whose density profile

we define

φcap(r) =
1

2

[
tanh

(r− rcap)
δ

− tanh
(r− rcap − 2d)

δ

]
. (D-1)

In this expression, rcap is the capsid radius at the inner surface, 2d is the thickness of the shell, and

δ is the characteristic width of the interface. The RNA is represented by a polyanion of N identical

monomers, each carrying a unit negative charge and having a volume vR = 0.22 nm3 [65]. The

peptide arms are represented by end-grafted polycation chains of NP monomers, each with volume

vP = 0.065 nm3 [65] and charge magnitude (per monomer) cP , where cP is allowed to vary. The

solvent molecules are represented by monomers of volume vs = vP and the salt ions are taken to be

simply point charges of elementary charge e and valency z± = 1. Outside the capsid, we account for

the negatively charged macromolecules by setting ρ− = 100 mM. As usual, the salt ions maintain

charge neutrality, where c+ = 130 mM and c− = 30 mM (when ρ− = 0 mM we set c± = 130 mM).



99

The particle-based Hamiltonian for the model, which captures the essential contributions to viral

encapsidation, is

H = hR({r})+

nP∑
i=1

hPi ({r})+
e2

2

∫
drdr′ρ̂c(r)C(r, r′)ρ̂c(r

′). (D-2)

The first and second terms account for the chain connectivity of the RNA and peptide arms, re-

spectively. The third term is the Coulomb energy of the system, accounting for the long-ranged

electrostatic interactions from the total charge density of all charged species. This includes the

capsid shell, peptide arms, RNA, salt ions, and negatively charged macromolecules outside the cap-

sid. C(r, r′) is the Coulomb operator satisfying −∇ · [ε(r)∇C(r, r′)] = δ(r− r′), where ε(r) is the

dielectric constant, which is spatially varying and depends on the volume fractions of the different

species. We set εcap = εP = 12 for the capsid [66], εR = 2 for the RNA [67], and, as usual, εs = 80

for the solvent.

The semi-grand canonical partition function is obtained by summing over all particle degrees

of freedom, including the position of each solvent and ion molecule, as well as the position and

conformation of each polyelectrolyte:

Ξ =

∞∑
ns,n±=0

e(µsns+µ±n±)

ns!n±!vsnsv±n±

∫
Dri

nP∏
j=0

Drj
ns∏
k=0

drk

n±∏
l=0

drl

×
∏
r

δ
[
1− φ̂R(r)− φ̂P (r)− φcap(r)

]
e−H.

(D-3)

Here, φ̂P (r) and φ̂R(r) are the instantaneous volume fractions of the peptide arms and RNA molecule,

respectively, and the delta functional accounts for the incompressibility (excluded volume) at all

positions r within the system volume.

In SCFT, the first step is to replace the above particle-based model with a field-theoretic model,

using a series of techniques related to Hubbard-Stratonovich transformations [44]. This decouples

the interactions among particles and replaces them with interactions between single particles and

effective fields. The final result for the field-theoretic partition function can be generically written



100

in the form

Ξ =

∫
Dω exp(−F [ω]), (D-4)

where F is an effective Hamiltonian that is complex and depends on the (multidimensional) field

variable ω. In general, the field-theoretic partition function cannot be evaluated in closed form. The

mean-field, or self-consistent field approximation, amounts to assuming that a single field configura-

tion ω∗ dominates the functional integral, i.e., Ξ ≈ exp(−F [ω∗]), where F [ω∗] in our model is given

by Eq. (5.32). In this expression, the partition functions are for a single particle in its respective

field and are given by

Z±(ψ) =

∫
dr exp{∓ψez± − ub±},

Zs(ξs) =

∫
dr exp{−vsξs},

ZI(ξI) =

∫
drqI(r;NI), I = R,P,

(D-5)

for ions, solvents, RNA, and protein arms, respectively. Z±(ψ) contains the Born self-energy of the

ions ub± = z2
±e

2/8πa±ε, where ε is the spatially varying dielectric constant. This term cannot be

absorbed into a redefinition of the chemical potential for a spatially varying dielectric medium [68].

Although the volume of the salt ions does not enter into the incompressibility, with respect to the self-

energy of an ion, we specify a± = 0.18 nm as the radius. We have introduced the chain propagator

qI(r; i), where i is the monomer index, to obtain the single-chain statistics of the polyelectrolytes.

The propagator accounts for the chain connectivity and the Boltzmann weight due to the self-

consistent potential field, with the initial conditions that

qR(r; 1) = exp[−vRξR(r)],

qP (r; 1) = exp[−vP ξP (r)]δ(r− rcap).
(D-6)

Here the delta function accounts for the fact that the initial monomer of the peptide arm must be

grafted to the inner surface of the capsid shell at r = rcap. Because of the lack of inversion symmetry

of the peptide arm, it is necessary to introduce a complimentary chain propagator q∗P (r; i) that
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propagates from the free end of the protein arm with the initial condition q∗P (r; 1) = exp[−vP ξP (r)].

The self-consistent field equations are obtained by requiring that Eq. (5.32) is stationary with

respect to variations in the fields. Variation with respect to the volume fraction fields φI gives,

ξR = ξs −
1

vR
ψ − (εR − εs)

[
(∇ψ)2

2
+
z2
±e

2c±

8πa±ε2

]
, (D-7)

ξP = ξs +
cP
vP
ψ − (εP − εs)

[
(∇ψ)2

2
+
z2
±e

2c±

8πa±ε2

]
. (D-8)

Here, c± = eµ±v−1
± exp

{
∓ z±eψ − ub±

}
is the ion distribution. Variation with respect to ψ gives,

−∇(ε∇ψ) =

(
ccapφcap − ρ− +

cP
vP
φP −

φR
vR

)
± (z±ec±); (D-9)

with respect to ξs gives,

1− φR − φP − φcap = eµs exp{−vsξs}, (D-10)

and with respect to ξR and ξP gives,

φR =
vR
ZR

N∑
i=1

qR(r; i)evRξR(r)qR(r;N − i+ 1), (D-11)

φP =
vPnP
ZP

NP∑
i=1

qP (r; i)evP ξP (r)q∗P (r;NP − i+ 1). (D-12)

To correct for over-counting the monomer when the propagators are joined, we include an extra

exponential factor in the expressions for φR and φP . Numerical SCFT requires solving Eq. (D-7) to

Eq. (D-12), together with the chain propagators, iteratively until convergence. From these solutions,

the free energy is obtained from Eq. (5.32).

Finally, additional parameters used in Fig. 5.11 are given in Table 5.1 of this Appendix.
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Variable parameter Fixed parameters

k1 NP = 12, 24, 36 cP , rcap, ccap = 1/3, 17, 0.10
k2 cP = 1/6, 1/3, 1/2 NP , rcap, ccap = 12, 17, 0.10
k3 ccap = 0.05, 0.10, 0.20 NP , cP , rcap = 12, 1/6, 17
k4 rcap = 10, 12.8, 17 NP , cP , ccap = 24, 1/6, 0.10
k5 NP = 12, 20, 24 cP , rcap, ccap = 1/6, 17, 0.10
k6 cP = 1/12, 1/6, 1/4 NP , rcap, ccap = 12, 20, 0.05
k7 ccap = 0.05, 0.10, 0.20 NP , cP , rcap = 12, 1/6, 12.8
k8 rcap = 12.8, 17, 20 NP , cP , ccap = 12, 1/6, 0.10

Table 5.1: Additional model parameters used for Fig. 5.11
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