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Abstract

We have carried out an experiment to test the theory of the thermo-optic response of

a dielectric stack mirror coating and to measure parameters of interest in calculating

thermo-optic noise. Specifically, we measured the coefficient of thermal expansion

and the change of index of refraction with temperature (dn/dT ) for thin film silica

(SiO2) and tantala (Ta2O5) in mirror coatings. These measurements were achieved

by driving thermal fluctuations in such mirrors in one arm of a small Michelson

interferometer. We report on the results of that experiment along with its potential

implications for future gravitational wave detectors, and suggest next steps for this

important line of investigation.
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Chapter 1

Introduction

1.1 Gravitational Waves

1.1.1 Wave Solutions to Einstein’s Equations

In 1916 Albert Einstein gave us our current theory of gravity, General Relativity

(GR). In contrast to the previous Newtonian theory, which involved instantaneous

action (force) at a distance and took place on a background of flat Euclidian space,

Einstein’s theory dispensed with the idea of force and instead described the geome-

try of a four-dimensional spacetime. In Einstein’s theory, objects acting solely under

the influence of gravity move in freely-falling trajectories through a curved spacetime,

and the spacetime takes its curvature due to the presence of energy (the most concen-

trated form people are familiar with being mass). Given a distribution of energy and

momentum, the curvature of spacetime and the metric are determined by Einstein’s

field equations

Rµν −
1

2
Rgµν = 8πGTµν (1.1)

where Tµν on the right side is the stress-energy tensor, and the left side contains

the spacetime metric g and the Ricci tensor and scalar which are contractions of the

spacetime curvature. For more details see [7].

In the weak-field regime, we can write the metric as a background flat metric η

plus a small perturbation:

gµν = ηµν + hµν (1.2)
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where we will assume that h is small enough that terms of order h2 and higher can

be neglected. Using this definition along with the choice of a convenient gauge (the

so-called transverse traceless gauge) we find that solutions to equation 1.1 in free

space (with Tµν = 0) obey the differential equation

�hµν = 0 (1.3)

which is recognized as the wave equation, supporting transverse waves in the metric

perturbation which propagate at the speed of light.

1.1.2 Effects on Matter

By altering the spacetime metric, these waves impart an oscillating transverse quadrupole

strain on space as they go by. The fact that the motion takes the form of a strain

means that objects separated by a certain distance L will appear to move apart or

together by a fraction h of that distance so that the displacement observed is hL,

where h is the perturbation mentioned in equations 1.2 and 1.3. The quadrupole

nature of this radiation means that as space expands maximally in one direction per-

pendicular to the direction of propagation, it will be contracting maximally in the

other direction perpendicular to the direction of propagation, and vice versa in the

following half cycle.

Due to the constraints imposed by the transverse traceless gauge and the field

equations, hµν only has two linearly independent traveling modes, which are referred

to as “plus” and “cross” modes. If we align our transverse axes so that the plus modes

stretch and squeeze along the x̂ and ŷ directions in the manner described above, then

the cross mode will stretch and squeeze in the x̂ + ŷ and x̂− ŷ directions.

1.2 Signal Strength / Expected Sources

The source of gravitational waves is a mass/energy distribution with a time-changing

quadrupole moment. The canonical example of a time-changing quadrupole moment
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is the spinning bar-bell, or two massive objects orbiting each other.

For a pair of masses with a quadrupole moment Q that changes with time, the

observed effects of emitted gravitational waves at a distance r away from the source

will be on the order of

h ∼ G

c4

Q̈

r
(1.4)

Unfortunately, since Newton’s constant G is a small number and the speed of

light c is a large number, gravitational wave strains are extremely small. There are

no sources on Earth or in our solar system that will create waves that we will detect

any time soon. Our best bet is looking for waves caused by neutron star and black

hole inspirals and collisions.

LIGO’s standard candle is the few solar mass neutron star binary system, which

in its final merger phase (when the gravitational waves are at a frequency of many 10s

of Hz to a few kHz) give gravitational wave strains on Earth of the order h ' 10−21.

This is the level of sensitivity LIGO has achieved, and Advanced LIGO (AdLIGO)

hopes to beat.

1.3 LIGO Interferometers

The quadrupole radiation pattern that gravitational waves assume is perfect for de-

tection with a traditional Michelson interferometer, which uses the interference of

light to measure the path length difference in two perpendicular arms. Since one

arm is lengthened while the other is shortened, the difference in the arm lengths is

twice the distance by which either arm is changed. If we have such an interferometer

where both arms are initially the same length L, then the measured length change

(presuming of course that the arms are aligned along the polarization of the incoming

wave) is

L′
2 − L′

1 = L(1 + h)− L(1− h) = 2Lh (1.5)
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The LIGO detectors are, at their heart, Michelson interferometers. The arms con-

tain Fabry-Perot cavities, and there are power recycling and resonant signal extrac-

tion techniques, but these are essentially techniques for more sensitively measuring

the distance to the mirrors at the ends of the 4 km arms of the interferometer.

With arm lengths of 4 km, the instruments need to be sensitive to mirror motion

on the order of 10−19 m, or 1/10, 000th the width of a proton. Acoustic vibrations

move objects in air many orders of magnitude more than this, so the mirrors are held

in vacuum. Seismic motion of the ground moves objects many orders of magnitude

more than this, so there is aggressive passive and active isolation of the mirrors.

Microscopic random motion of the suspensions that hold the mirrors in place can be

devastating if the supports aren’t carefully designed and materials carefully selected

and pure. A huge number of noise sources must be carefully accounted for, controlled,

and minimized. Some of the most challenging sources arise from the very surfaces of

the mirrors whose position is being measured.

1.4 The Advanced LIGO Noise Curve

As one can see in Figure 1.1, the AdLIGO interferometers will be pushing down to low

enough strain sensitivities that we believe the first direct detection of gravitational

waves is likely. Also, the interferometers’ main noise source will be quantum in origin

over a wide range of frequencies, a very theoretically interesting region comprised of

radiation pressure at low frequencies and shot noise at high frequencies. Observation

of quantum behavior in ∼ 40 kg test mass mirrors is truly a spectacular achievement

on its own. The quantum noise floor is spoiled by Brownian motion of the mirror’s

surface in the interferometer’s most sensitive frequency range. This noise source is of

pressing concern to LIGO but will not be addressed here.

The noise source we address in this thesis is the thermo-optic noise, shown on a

slightly less cluttered noise curve in Figure 1.2 with two different theoretical treat-

ments in brown dashed line and green solid line. The entire purpose of the paper in

which this graph appeared [23], on which I was a co-author, was to introduce this
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Figure 1.1: An Advanced LIGO Predicted Noise Curve

new theory to supplant the old theory. Thermo-optic noise is the result of local tem-

perature fluctuations (or more accurately fluctuations of local energy density) in the

mirror coating, and is comprised of two components. These are typically broken up as

“thermo-elastic” (TE), or the expansion of the coating with temperature change, and

“thermo-refractive” (TR), which is the change in the optical properties of the coating

with temperature, which in turn change the reflection coefficient of the multilayer

mirror coating.

As a side note, this nomenclature is slightly unfortunate in the following way.

The term thermo-refractive was chosen because as the index of refractions change the

layer reflection coefficients change and the layers’ optical path lengths change — this

index of refraction dependence is why the effect was called thermo-refractive, but it

must be emphasized that the optical path length of a layer depends on both its index

of refraction and its thickness. The reflection properties of the stack will change when

layer thicknesses change, in addition to the fact that the surface of the coating will

move. Thus we will keep the TE and TR nomenclature, but note that there is a
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Figure 1.2: An Advanced LIGO predicted noise curve from Evans et al[23] with
thermo-optic, Brownian, and quantum noise highlighted.
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”TE-like” component to the TR effect.

In previous analyses, noise power spectral densities for TE and TR effects had

been calculated separately and then added as incoherent noise sources. We argued

in [23] that these effects were both driven by the same underlying random temper-

ature fluctuations and thus needed to be added coherently. What’s more, given the

expectation that the coefficients involved (the coefficients of thermal expansion α and

the changes of index of refraction with temperature β) would be positive, we showed

theoretically that they should partially cancel. As the temperature increased, the

surface of the mirror would expand into the oncoming beam, making it look like the

light from the measurement laser had traveled a shorter distance, but the complex

reflection coefficient of the coating would change in such a way that it would appear

on reflection that the light had traveled a longer distance. This is the difference in

the OLD versus NEW thermo-optic noise curves in figure 1.2.

This result was good for the LIGO community; it meant that a noise source

we had previously kept in consideration (especially given the fact that the exact

parameters were not well known) was now likely to be an order of magnitude smaller

than we would care about. However, we observed that a) this theory had not been

experimentally tested, and b) measured values for the parameters in question showed

great variation. One paper even had one of them listed as negative rather than

positive - if this were the case, there was an outside chance that the TE and TR

effects would add coherently rather than partially cancel. This would be bad news

since it would indicate the NEW noise would actually be larger than the OLD noise.

Given this discrepancy and uncertainty, we set out to test the theory and measure

the parameters in an environment as close to the LIGO mirror coatings as we could

manage. The theory, our experiment, and its results are described in the rest of this

thesis.
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Chapter 2

Coating Thermo-Optic Noise
Theory and Background

The dielectric mirror coatings in the LIGO experiment add their own noise to the in-

terferometer due to statistical fluctuations. These fluctuations’ influence on the grav-

itational wave signal are most commonly broken down in two categories: mechanical

fluctuations in density/volume of the coating, commonly referred to as ”Brownian

Noise”, and motion or apparent motion that is the result of fluctuations in the local

effective temperature of the coating, commonly referred to as ”Thermo-Optic Noise”.

This thesis will be concerned with the latter, and measurement of the parameters that

govern the translation of thermal fluctuations into motion (and apparent motion) of

the mirror.

2.1 Calculating Temperature Fluctuations

The Fluctuation-Dissipation Theorem of Callen and Welton [6] provides a means for

calculating the fluctuation of a coordinate given knowledge of the loss induced by

applying a force that will drive that coordinate. Following Levin [19], we consider the

injection of entropy, which is the thermodynamic conjugate that drives temperature,

with a profile weighted according to the amount of optical power we see at that part

of the mirror.

δs

dV
=

1

T

δQ

dV
= F0 cos(2πft)q(−→r ) (2.1)
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where F0 is the magnitude of a dummy force that will be divided out, f is the fre-

quency of the noise component, and q(−→r ) is a form factor that in a sense aggregates

the fluctuations of different parts of the mirror into their effects on the single pa-

rameter we are measuring and want to know the fluctuations of. Braginsky [25]

identified the coordinate of interest (temperature weighted by the power profile of

the measurement beam) to be

δT̂ =
1

πr2
0l

∫ ∞

−∞
dxdy

∫ ∞

0

dzδT (−→r , t)e−(x2+y2)/r2
0e−z/l (2.2)

with r0 the radius of the measurement beam and l the effective coating thickness.

From this we deduce (Levin [19] equation 14) that the appropriate form factor q will

be

q(−→r ) =
1

πr2
0l

e−(x2+y2)/r2
0e−z/l. (2.3)

Injecting entropy in the form of equation 2.1, we can solve the heat equation for

the temperature profile and use the fact ([18], [20], [19]) that the dissipated energy is

given by

Wdiss =

∫
d3r

κ

T

〈
(δT )2

〉
(2.4)

with κ the thermal conductivity of the medium, and 〈...〉 indicating a time-average

over one full period of the injection oscillation.

Performing this calculation and inserting the result into the appropriate formula-

tion of the fluctuation-dissipation theorem gives the resulting power spectral density

of temperature-coordinate fluctuations [19] [25]:

SδT̂ (f) =

√
2kBT 2

πr2
0

√
ωCρκ

. (2.5)

Equation 2.5 gives us an appropriately weighted temperature variation of the

surface of the mirror for use in calculating the effects of these random fluctuations on

the apparent position of the mirror. In the next section, we will describe the exact
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Figure 2.1: Illustration of thermo-elastic effect. We define this part of the effect to
include only the motion of the mirror surface

mechanisms by which a change in temperature causes both an actual motion of the

surface, as well as an observed change in the position of the surface.

2.2 Thermo-Elastic Expansion of the Coating

In the frequency regime we’re working in, it is safe to assume that the coating is at

a uniform temperature (in other words λthermal, the length scale over which thermal

dynamics take place is much greater than the thickness of the coating). The first

effect we need to calculate is the simple expansion of the coating’s surface into the

beam, as illustrated in Figure 2.1.

When the temperature increases by an amount ∆T , each of the layers will expand

by an amount
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δl = αtlayer∆T

where α is the coefficient of thermal expansion of the layer (indeed, this is the def-

inition of that parameter) and tlayer is the thickness of the layer. To find the total

motion of the surface of the mirror, we add up the coefficients for the layers, and take

the negative of the result to calculate the change in the path length of the laser:

δl = −
∑

layers

αiti∆T . (2.6)

This is the thermo-elastic (TE) part of the thermo-optic response.

2.3 Thermo-Refractive Coefficient of the Coating

Next, we need to calculate the rate of change in the optical phase of the reflected

laser beam with respect to temperature, as illustrated in Figure 2.2.

2.3.1 Quarter-Wave Full Derivation

We will start out by doing the full calculation for a so-called quarter-wavelength

(QWL) stack. This means our coating will be made of doublets of high- and low-

index materials, in which each layer has an optical path length equal to one quarter

of the wavelength of the light. In our case the mirrors are also capped with a full

wavelength of low-index material. Following Fowles [13], we start with a plane wave

of the form

−→
E (z, t) = E0x̂ei(kz−ωt)

and on reflection from a multilayer coating the field will pick up a complex reflection

coefficient given by

r =
A + Bns − C −Dns

A + Bns + C + Dns

(2.7)
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Figure 2.2: Illustration of thermo-refractive effect. We define this part of the effect to
include only the change of phase that occurs promptly on reflection from the surface,
and not surface motion
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where ns is the index of refraction of the substrate, and we have assumed the in-

dex of refraction of the incident medium (air/vacuum) is equal to 1. The A,B,C,D

coefficients are entries of the coating matrix

 A B

C D

 = M = M1M2M3...MN . (2.8)

Here the constituent matrices are for individual layers (layer 1 corresponding to

the top layer facing the vacuum, and layer N corresponding to the layer adjacent to

the substrate) and take the form

Mi =

 cos(kl) −i/n sin(kl)

−in sin(kl) cos(kl)

 (2.9)

with kl being the phase accumulated by the light in a one-way pass through a layer

and n being the index of refraction of that layer.

For traditional quarter-wave stacks, kl for all layers is equal to π/2 (one quarter

of a wave), and we have a simplified version of the Ms

Mi,λ/4 =

 0 −i/n

−in 0


and combinations for a layer of high index followed by a layer of low index give

MHML =

 −nL/nH 0

0 −nH/nL


so that the overall transfer matrix for N doublets of this sort (for a total of 2N

layers) is

Mtot,λ/4 =

 (−nL/nH)N 0

0 (−nH/nL)N


and the reflection coefficient is
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r =
(−nL/nH)N − (−nH/nL)Nns

(−nL/nH)N + (−nH/nL)Nns

=
1− (nH/nL)2Nns

1 + (nH/nL)2Nns

(2.10)

Many coatings have an additional half-wave low index layer on the side facing the

vacuum, but this will not change the reflection coefficient in the ideal layer case.

What we will calculate now is the predicted change in the reflection coefficient as

we add a small phase to each of the layers. I’ll add in a change of

kl = π/2 −→ (kl)′ = π/2 + δ

This means our layer matrices will change, but as long as we operate in the regime

where δ << 1 we can linearize the result and drop terms higher than first order in δ.

In this case, our layer matrices become

Mi,δ =

 −δ −i/n

−in −δ


And, again to first order in the small parameter, we have doublet matrices of the

form

MHML =

 −δH −i/nH

−inH −δH

 −δL −i/nL

−inL −δL

 =

 −nL/nH i(δH/nL + δL/nH)

i(δLnH + δHnL) −nH/nL

 .

Note that as we take powers of this matrix, the on-diagonal elements will remain

the same as they were in the original matrix without this δ shift since, as we perform

the matrix multiplications, any contribution to diagonal elements from off-diagonal

elements will be second order (or higher) in the small parameters.

For the crucial off-diagonal parameters, we will develop a recursive formula. First,

to help keep track of the algebra, we’ll rewrite the doublet matrix in the form

MHML =

 A ix1

ix2 1/A

 with A = −nL/nH ,
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x1 = δH/nL + δL/nH and x2 = δLnH + δHnL.

Also, given the above argument about the diagonal elements containing no powers

of the small parameters (the xs in this case), we know that the nth power of this

doublet matrix has to take the form

(MHML)n =

 An ix1f1,n(A)

ix2f2,n(A) 1/An


And, in fact, if you’ll excuse the mixed notation (raised numbers on A’s are powers

of the number, raised numbers on M coefficients are the power of the matrix in which

the coefficient resides), we can come up with a recursion relation for the off-diagonal

elements of the nth power of this doublet matrix:

(MHML)n = (MHML)n−1MHML =

 An−1 Mn−1
12

Mn−1
21 1/An−1

 A ix1

ix2 1/A



Mn
12 = An−1ix1 + (1/A)Mn−1

12

Mn
21 = (1/An−1)ix2 + AMn−1

21 .

It can be shown that these recursion equations are both satisfied by the same

solution (with the only exception being x1 for M12 elements and x2 for M21 elements):

Mn
12 = Mn

21 = ix1,2
1

An−1

n−1∑
m=0

A2m.

Since A is less than 1 in magnitude, we can, for large values of n, take the limit

of the sum as the upper bound becomes infinite, and write for “many doublets”

Mn
12 = Mn

21 −→ ix1,2
1

An−1

1

1− A2

or, replacing the indices of refraction and negative sign that were hidden inside the

As,
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Mn
12 = Mn

21 −→ ix1,2
nHnL

n2
H − n2

L

(−nH/nL)n.

Finally, to complete the calculation we add one more layer on the top (multiplied

from the left) that is a half-wavelength of low index. Since this layer is twice as thick

as the quarter-wavelength layers and we are operating around kl = π, its form will

be

Mcap =

 −1 i/nL2δL

inL2δL −1

 .

Plugging these into equation 2.7, we arrive at the reflection coefficient for our

doublet:

r =
nS − (A)2n + i[2δL(1 + nLA2n)− x1f1nLAn + x2f2A

n]

−nS − (A)2n + i[2δL(1− nLA2n)− x1f1nLAn − x2f2An]
.

We may safely drop terms of second order in An, since (1.43/2.065)11 = .018, so

the square will be 4 orders below unity, in which case we have

r =
nS + i[2δL − x1f1nLAn + x2f2A

n]

−nS + i[2δL − x1f1nLAn − x2f2An]
. (2.11)

The magnitude of this number will be effectively determined by the ns terms in

the numerator and denominator, since they will be of order unity, and as expected

this reduces to the value of equation 2.10 as δ → 0. To find the phase of this reflection

coefficient, we take

arg(r) = tan−1

(
=(top)

<(top)

)
− tan−1

(
=(bottom)

<(bottom)

)
∼=
=(top)

<(top)
− =(bottom)

<(bottom)

which after some algebra simplifies to

arg(r) = 4
δL

nL

+
2nHnL

n2
H − n2

L

(
δH

nL

+
δL

nH

)
≡ φc. (2.12)
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Now to attend to the details of the δs in terms of temperature and the coefficients

that we’re interested in measuring. By definition, we have that δ is the deviation

from an optical path length of π/2, or

δ = (kl)′ − π/2 = kl + lδk + kδl − π/2 = lδk + kδl

where we have ignored second-order terms in the small variations. Plugging in the

definition of the wavevector k and the thermal expansion l, we get

δ =
2π

λ0

l(β + nα)∆T =
π

2
(
β

n
+ α) (2.13)

with β the change of index of refraction with temperature (dn/dT ) for the layer, α the

coefficient of thermal expansion (l−1dl/dT ) for the layer, and n the index of refraction

of the layer.

As long as we’re here, let’s check the condition that the change in optical path

length be much less than one. This would imply changes in temperature

∆T � 2

π(β/n + α)
≈ 400◦C. (2.14)

We expect temperature variations on the order of a few ◦C, so the above analysis

should hold. Finally, we can plug the formula 2.13 into equation 2.12 to obtain a

formula for the effective β for our quarter-wavelength coating

βeff =
∂φc

∂T
=

π

n2
H − n2

L

(βH + αHnH + βL + αLnL) +
2π

nL

(
βL

nL

+ αL). (2.15)

It is worth noting that this entire calculation separates into the first term on the

right side of 2.15, which is for the quarter-wave stack (and is the same with or without

the half-wave cap), and the second term which is present only with (and due to) the

half-wave cap.

When we designed our mirror coatings, we chose to include the half-wave cap

because this enhanced thermo-refractive effect would provide for a larger signal. In
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future studies, for instance those trying to determine whether layer thickness affects

thermo-optical properties, the signal from this layer might actually make it more

difficult to see the effect being studied.

2.3.2 1/8-3/8 Calculation

In our experiment, we will be using both the traditional quarter-wave coatings de-

scribed above, and also coatings made of alternating 1/8th and 3/8th wavelength

thicknesses. Such coatings, which have altered thickness ratios but still satisfy the

condition that a doublet adds up to half of an optical wavelength, are known as Bragg

reflectors and also provide for a maximum-reflectivity plateau at the wavelength of

interest.

To calculate the effect of temperature change on these coatings, I performed es-

sentially the same calculation as above, but let Mathematica keep track of the gory

details. We start by defining layer matrices as in equation 2.9, the overall matrix of

equation 2.8, and the reflection coefficient of equation 2.7, leaving the optical path

lengths in the layers ϕi ≡ kili as variables. Then I define my reflectance function

r = r(nL, nH , ϕL, ϕH , ϕcap, N).

I then have Mathematica carry out this calculation for a standard mirror

r0 = r(1.43, 2.065, π/2, π/2, π, 11)

and also for a stack which has had its temperature raised by 1◦C (which keeps us in

the linear regime, see 2.14, and is a very convenient ∆T for calculating derivatives

by difference approximation), leaving the αs and βs as variables in the full matrix

calculation. The result will be very messy, but we will let Mathematica keep track of

the details.

r′ = r(ni → ni + βi, ϕi → ϕi(1 + αi + βi/ni))
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Now we can calculate the rate of change of the reflection coefficient with temper-

ature by noting that

dr

dT
∼=

∆r

∆T
=

r′ − r0

1◦C
.

Now that we have in Mathematica a full expression for the reflection coefficient

with temperature, we can extract the pieces, i.e., the partial derivatives of r with

respect to αL, αH , βL, βH by evaluating the above expression with the other parame-

ters set to zero. In other words, to first order in these parameters, we know that the

complicated expression in Mathematica’s memory must be reducible to

dr

dT
= aαL + bαH + cβL + dβH (2.16)

and we can extract a, for instance, by evaluating

a =
1

αL

dr

dT
|αH=βL=βH=0

and discarding terms higher than first order in αL. Doing similar evaluations for the

other constants gives us a numerical formula for the change in reflection coefficient

of our quarter-wavelength (QWL) coating:

dr

dT QWL
= −i(6.4αL + 2.9αH + 4.5βL + 1.4βH). (2.17)

We note here that this formula matches exactly with the results of the previous

section. Numerically this is clear from plugging numbers for indices of refraction into

Equation 2.15, and the −i coefficient out front is because we are expanding around

a reflection coefficient that starts off at −1; at the −1 point in the complex plane,

increasing the phase of the complex number without increasing the size of the number

corresponds to motion in the −i direction.

Now that we have verified this technique against the analytic results of the previous

section, we move on to apply it to the other coating we are going to test. This coating

differs from the previous one in the ratio of high-index to low-index optical path. For
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this second round of coatings, we have ϕL = 3λ/8 and ϕH = λ/8. Otherwise the

calculation remains exactly as described above, and evaluation leads to the following

formula for the change in reflection coefficient for what I will refer to as the Bragg

coating:

dr

dT Bragg
= ei243◦(9.6αL + 2.18αH + 6.9βL + 1.18βH). (2.18)

The strange angle on the change of the reflection coefficient reflects the fact that

this coating without temperature modulation does not have a −1 reflection coefficient

like the quarter wave stack. The baseline reflection coefficient for this 1/8-3/8 stack

is

r0,Bragg = 0.995ei153◦ . (2.19)

Comparing 2.19 and 2.18, it is clear that the change in reflection coefficient with

temperature is again at 90◦ from the original reflection coefficient, meaning the am-

plitude of the reflected field is unchanged, and an increased temperature corresponds

to an increase in reflected phase.

2.4 Previously Published Parameters

Thin film material parameters are notorious for having different values than those

of the same materials in bulk form. In this section we discuss the current state of

knowledge of these parameters. Values from the literature and from Advanced LIGO

(AdLIGO) software and documents are listed in Tables 2.1 through 2.4. We will

comment on the measurements listed and why they prompt us to our own study of

these parameters.

From Tables 2.1 and 2.2, we have Cetinorgu’s values for the coefficients of thermal

expansion for silica and tantala. This reference uses the curvature induced upon

heating (due to different coefficients of expansion in the substrate and coating) to

determine the coefficient of expansion of the coating. They also do a more extensive
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Table 2.1: Previously published α silica measurements
Measured Value Author Notes
2.1× 10−6K−1 Cetinorgu et al. [11] DIBS, 1.1-µm-thick coating
5.5× 10−7K−1 Braginsky et al. [4] LIGO ETM coatings, though

they seem to have assumed bulk
silica value

Table 2.2: Previously published α tantala measurements
Measured Value Author Notes
4.4× 10−6K−1 Cetinorgu et al. [11] DIBS, 1.1-µm-thick coating

(5± 1)× 10−6K−1 Braginsky et al [3] LIGO ETM coatings, though
they seem to have assumed bulk
silica value

−4.4× 10−6K−1 Inci [17] Fiber tip coated with 3.3µm tan-
tala coating

3.6× 10−6K−1 Crooks et al. [8] Unclear where this comes from
— possibly private communica-
tion with REO

Table 2.3: Previously published β silica measurements
Measured Value Author Notes

8× 10−6K−1 Braginsky (GWINC v2) Could not find specific reference

Table 2.4: Previously published β tantala measurements
Measured Value Author Notes
1.21× 10−4K−1 Inci [17] Fiber tip coated with 3.3µm tan-

tala coating
6× 10−5K−1 Gretarsson [15] Silica tantala multilayer coating,

needs assumed value of α for sil-
ica, tantala, β of silica
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study of index of refraction versus ion beam energy, and Young’s modulus/Poisson

ratio measurements using nanoindentation. The CTE is what we’re interested in

though. These numbers are quite interesting, and we will look at comparisons between

them and our results. There may or may not be significant differences though, due

to their dual-ion-beam-sputtering deposition technology and the fact that they have

a monolayer that is roughly ten times thicker than our individual layers.

A reference to Braginsky for the CTE of fused silica is listed in our internal pro-

grams for determining noise levels in LIGO interferometers (Bench and GWINC);

however, I was unable to track down an actual publication of an experiment to mea-

sure it, and it is (suspiciously) the exact same value as that for bulk silica. Braginsky’s

measurement for the CTE of tantala was measured using an actual LIGO end mirror

coating on a silica cantilever, along with a bending technique similar to Cetinorgu’s.

Using this technique, he came up with a value for the lumped CTE of the whole

coating, from which he inferred the CTE of tantala — though I suspect he used that

bulk fused silica number for the fused silica stack layers.

Inci performed a beautiful experiment that enabled him to determine both the

CTE and dn/dT for a tantala layer in one measurement. He used a fiber “Michelson”-

type interferometer where one fiber end was a “mirror” comprised of a thin layer

of tantala. He illuminated the interferometer with a superluminescent diode that

had wavelengths spanning multiple free spectral ranges of the etalon formed by the

tantala layer. He monitored the output of the interferometer with an optical spectrum

analyzer as he raised the temperature of the tantala fiber end, and by watching the

interference as a function of wavelength and temperature was able to do a one-shot

measurement of both material properties. While a truly elegant measurement, the

resulting numbers are of questionable use in our application for two reasons. The

first is that the tantala layer is, at 3.3 microns, quite thick (he needed 3.3 microns

in order to get multiple free spectral ranges over the wavelength range of the diode),

and if these properties depend on thickness his results could be in an entirely different

regime from the 129 nm that constitutes λ/4 at a free space laser wavelength of 1064

nm. Second, a single coating deposited on the end of a glassy optical fiber is under
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significantly different stresses and boundary conditions that a thin coating in a stack

on top of a large glassy substrate.

Finally, for the last of the α measurements, Crooks et al. refer to a value of the

CTE of tantala in their paper on Brownian noise, but we were not able to track down

their reference — it was likely in a referenced private communication with the coating

company, Research Electro-Optics (REO).

The change of index with temperature is even less well measured. For fused silica,

the one value we found was quoted in GWINC (LIGO internal software), but again I

was unable to track down a reference.

As mentioned before, the fiber interferometer measurement by Inci was able to

give a value of dn/dT, but the previous objections to the applicability of his numbers

apply here as well.

Finally, Andri Gretarsson made a measurement of dn/dT for tantala in a sil-

ica/tantala coating by using a laser on the edge of the mirror’s reflectance plateau

while heating the sample up in an oven. This seems like a quite applicable method for

determining this parameter; our only caveat is that he needed to assume values for

all the other coating parameters in order to extract a number for dn/dT of tantala;

a troubling requirement given the state of knowledge above.

2.5 Our Measurement

We would like to measure these material parameters in a setting as close to that

of their eventual use as possible. To that end, we have designed a pump-probe style

experiment and a set of coating samples that will allow us to measure these parameters

as they appear in a dielectric stack mirror coataing.

A cartoon of the measurement idea is presented in Figure 2.3. We start with a

mirror and a dielectric coating, and cyclically heat it with a chopped (or more precisely

AOM-modulated) heating laser. The heating laser is a CO2 laser with a wavelength

of 10.6µm which is highly absorbed in the coating (in fact we put a layer of chromium

under the coating to make sure that any absorption happens in the coating, not the
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Figure 2.3: Measurement Idea — heat the coating with a chopped CO2 laser, watch
for changes in reflection cofficient and expansion of coating with 1064 nm probe laser
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substrate). The oscillating temperature in the coating creates thermal waves that

penetrate into the substrate a thermal distance scale that is approximately the same

as the thermal wavelength, given by

λT =

√
κ

ρCP πf
(2.20)

where κ is the thermal conductivity, ρ the density, CP the specific heat, and f the

frequency of the heating beam modulation. As long as we operate in a regime where

this thermal distance scale is large compared to the coating thickness (4 microns), all

the parameters above are substrate parameters.

As we increase the modulation frequency of the heating beam, we decrease the

length scale of the thermal variations, and we will switch from a regime where the

effects measured by the probe beam are dominated by the expansion of the substrate

to a regime where the effects measured by the probe beam are largely influenced by

the changing temperature of the coating.

The response of the coating to these driven temperature changes is what we are

measuring. It is determined by the coefficient of thermal expansion (α) of both coating

materials, as well as the change of index of refraction with temperature (β) of the

materials. In other words, when we take one measurement, we get a number we will

refer to as βeff for the whole coating, which will be a linear combination of αL, αH ,

βL, and βH .

To sort out the four parameters we are interested in, we make changes in the

coatings and look for changes in the resulting βeff . Our first parameter of variation

is to use both a traditional “quarter wavelength” (QWL) coating in which each layer

constitutes 1/4 of an optical wavelength, and also a so-called ”Bragg” coating in

which doublets of layers add up to 1/2 of an optical wavelength but the ratio of low-

to high-index material is altered (in our case we will use 1/8 wavelength of high index

tantala and 3/8 wavelength low-index silica).

These are the two coatings we use, but we still need two more independent mea-

surements to sort out the four parameters of interest. For the final measurements,
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we apply a thin layer of gold on the surface of both types of coatings above and

re-take the measurements. The gold layer is thin enough that its expansion can be

neglected, but thick enough to fully block both laser beams from penetrating even

into the coating. Some small amount of CO2 power will still be absorbed in the gold,

and drive thermal oscillations, but the probe beam will measure only the expansion

of the coating; when the probe does not penetrate into the coating at all, the indices

of the layers will not play a role in the measured response.

These four measurements, the “combined” measurements where we see both ex-

pansion and index effects of the QWL and Bragg coatings, and the “thermo-elastic

expansion (TE) alone” measurements of the QWL and Bragg coatings give us enough

information to infer the four parameters of interest.

As a final detail, it turns out that the expansion of our chromium layer mentioned

earlier is large enough that we need to measure that too. We add one more measure-

ment, of the gold-coated type, with QWL coating where the layer of chromium is thin

(too thin to block the CO2 radiation, but that doesn’t matter under the gold layer),

so that we can estimate its effects and subtract them out of the final measurements.
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Chapter 3

The Experiment

3.1 Introduction

We designed our photothermal experiment to measure the photothermal coefficients

(dn/dT ) as well as the coefficients of expansion for layers in our dielectric stack mirror

coating. This is a pump-probe style measurement using a low-noise 1064 nm NPRO

as the probe laser and an amplitude-modulated 10.6 µm CO2 pump laser to heat the

device under test.

The CO2 laser has benefits and drawbacks as pump. Its major benefits are that it

is absorbed well in the coating (glasses have very high absorption coefficients at this

wavelength), and CO2 lasers are available with very high power for relatively low cost.

Thus driving the heating of the coating under test is much easier than using a laser for

which the coating materials have low absorption. This property also makes it almost

impossible not to separate the pump and probe beams before the photodetectors,

mitigating the problem of direct pump/probe crosstalk; any glass windows, lenses, or

other optics in the probe path will completely block stray pump light.

The first drawback of this laser wavelength is the flip-side of its benefits. Because

it is easily absorbed by most materials, any scattered light will be efficiently absorbed

wherever it happens to land, and because the laser is relatively powerful it can create

heating expansion large enough to drive mechanical resonances in, e.g., mounts of

any mirrors it might land on. These driven mechanical resonances are particularly

devious because they show up at the driving frequency of the heating beam, and thus,
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while they are completely spurious they are impossible to separate from the optical

signal we are trying to detect. The solution to this problem is to be very careful to

avoid (to the extent possible) scattering of the CO2 beam, e.g. by keeping the beam

focused, avoiding clipping on optics, and shielding all the measurement optics from

the CO2 laser path. We used a wall of aluminum foil to sequester the optic under test

and the heating beam from the rest of the interferometer. In the same vein, it was

also important to dump the excess CO2 power off of the interferometer table; such

a dump by definition involves absorbing the entire remaining beam, which we found

created enough motion in the dump to shake interferometrically sensitive optics and

ring up resonances of their mounts and the table.

The second drawback to the 10.6µm wavelength is that although it is strongly

absorbed, the absorption length (the depth at which the electric field is reduced to 1/e

of its inital strength) is roughly 34 µm, which is significantly longer than the depths we

want the thermal waves to penetrate. Our solution to this problem, described below, is

to include a layer of chromium underneath the dielectric stack coating. The chromium

is highly reflective of the heating laser, preventing its electromagnetic radiation from

penetrating far into the substrate, but being at the back of the substrate it does not

(except through its expansion, also described below) significantly affect the probe

beam reflection.

3.2 Theory

In this section, we will work out the expected signal from the interferometer as a

function of the modulation frequency of the probe beam. To do this, we will need to

work out the expected temperature profile of the mirrors in our experiment, both in

a frequency regime where simplifications make the math particularly easy, and in a

more complicated low frequency regime.
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Table 3.1: Typical values of mirror geometry parameters
rmirror rpump rprobe λthermal tcoating

12.7 mm 2.0 mm 0.37 mm 10 µm 4 µm

3.2.1 Mirror Geometry

The essential geometry of our problem can be seen in Figure 2.3. The relevant details

are the relative dimensions of a few important parameters:

rmirror > rpump > rprobe > λthermal > tcoating. (3.1)

Table 3.1 shows values for these parameters in a typical run.

The mirror is being heated by a probe beam that is approximately half its diam-

eter. This will potentially make edge effects important at the few percent level. We

analyze these effects in COMSOL simulations described below.

The pump beam is 5-10 times larger than the probe beam, which simplifies the

problem of figuring out the signal that the probe beam will read out. Rather than

integrating the phase picked up by the probe beam at each transverse point, weighted

by the Gaussian beam profile, we can just assume the phase is a constant across the

probe beam, and equal to the value of that number at the center of the pump beam.

The error in making this approximation is of order ∼ 1/5e in the tails of the probe

Gaussian, so we estimate this also at less than a few percent.

The heating power is modulated, giving rise to oscillating changes in the tempera-

ture profile in the mirror. These effects generally do not travel forever, but penetrate

only to a certain depth λthermal, beyond which temperature changes are negligibly

small (and exponentially suppressed). For almost the entire range of our tests, the

distance scale over which thermal effects are significant is much smaller than either

the pump or probe beams, allowing us to treat temperature variations as plane waves

propagating in from the surface.
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3.2.2 1-D Approximation

In this section we will work out the response of the mirror under the simplest of

assumptions; namely that 1) the mirror and heating beam are infinite in extent with

a given power per unit area incident on the surface, and 2) the thermal wavelengths

are much longer than the coating thickness so that it can be ignored in determining

the temperature profile, and will respond only to the temperature at the very surface

of the mirror.

3.2.2.1 Temperature Profile

In this regime, the only dimension along which the temperature could be expected

to vary is the z-direction; into the substrate. With no variation in the transverse

directions, the heat equation takes the form

∂u

∂t
= a

∂2u

∂z2
(3.2)

where u is the temperature (or more precisely the small deviation about the mean

temperature), z is distance into the substrate (z = 0 being the coating’s location,

z < 0 assumed to be thermally insulating vacuum), and the constant a being given

by

a ≡ κ

ρCp

(3.3)

with κ being the thermal conductivity, ρ the density, and Cp the specific heat of the

bulk substrate. Again, we are working in the limit where the coating is a surface layer

thin enough that it does not contribute to the heat equation dynamics.

Since this problem statement has no heat sources in the substrate, we can just

write out solutions to the homogeneous equation, and we will use the influx of power

at the surface as our boundary condition. Solutions to the heat equation here take

the form
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u(t, z) = Cei(ωt−kz) (3.4)

and the heat equation will give us a relationship between the temporal and spatial

frequencies:

iω = −ak2.

=⇒ k = e−i45◦
√

ω/a (3.5)

We selected which root to use by demanding that the temperature variations go

to zero as z goes to infinity (as opposed to an unphysical exponential rise).

Now to determine the constant C in equation 3.4 (which will be a function of

frequency but constant in time and space), we will employ the power flux boundary

condition at the surface:

−κ
∂u

∂z
|z=0 =

P0

A
eiωt (3.6)

where κ is the thermal conductivity of the substrate, P0 is the incident power in the

pump beam, and A is the area over which the pump beam is distributed.

Taking the appropriate derivative and solving for C gives us

C =
P0

ikκA
=

P0

√
a

κA

e−i45◦

√
ω

.

We now have our temperature profile throughout the substrate:

u(t, z) =
P0

√
a

κA

e−i45◦

√
ω

ei(ωt−kz). (3.7)

3.2.2.2 Thermo-Refractive Response

With this temperature profile in hand, we can go ahead and calculate the response

of the mirror as seen by the probe beam. The thermo-refractive effects are simply
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the temperature at the surface of this temperature profile multiplied by the effective

β for the coating, calculated in the previous section.

δlTR =
λ

4π
βeff

P0

√
a

κA

1√
ω

ei(ωt−45◦) (3.8)

The prefactor of λ/(4π) is to convert the phase change calculated in the previous

section into an equivalent length so as to compare it to the other length changes that

are observed.

3.2.2.3 Substrate Thermo-Elastic Response

In addition to the thermo-refractive effect, we will also observe the expansion of

the substrate. To calculate this effect, we integrate the temperature profile along z,

multiplied by the coefficient of thermal expansion of the substrate (α).

δlTE = −α

∫ ∞

0

u(t, z)dz = −α
P0

√
a

κA

e−i45◦

√
ω

eiωt

∫ ∞

0

e−ikzdz

= α
P0a

κA

1

ω
eiωtei90◦ (3.9)

The negative sign in this first equation reflects the fact that in the readout of

our interferometer an increase in the size of the substrate will be read as a decrease

in the corresponding arm length. Also note that the negative sign is responsible for

changing the expected 90 degree lag into a 90 degree lead on the driving signal (or if

you prefer, a 270 degree lag, but the lock-in amplifier we used returns phases in the

range {−180◦, 180◦}).

3.2.3 Effects of Penetrating Radiation in 1-D Approximation

During the course of setting up and debugging the experiment, I discovered that my

first run of mirrors had a chromium layer that was far to thin to prevent radiation

from penetrating into the substrate. A second set of mirrors was ordered to ensure

this wouldn’t be a problem, but it was of interest to calculate how any penetrating
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CO2 radiation would affect the results of the experiment.

3.2.3.1 Solving the Heat Equation

Once again we will solve the heat equation in the regime where the transverse spot

size is much greater than the thermal length scale and the probe beam length scale,

but this time we will apply two uniform volumetric heat injections - one in the coating

and another in the first ∼ 30µm of the substrate. This is realistic for the coating,

and although we would expect the substrate power to be injected with a profile

that exponentially decays with distance from the surface, this should be a decent

approximation to observe the effects we are concerned with. The plan will be to

inject a total power equal to the amount we observe being absorbed, and then change

the fraction of that power that is absorbed in the coating vs. substrate to see if we

should expect an observable difference in the response of the interferometer.

The heat equation with a forcing function becomes

∂u

∂t
= a

∂2u

∂z2
+ F (3.10)

where our forcing function will be defined to be

F =


eiωtfracP0/(ρCCCAz1) ≡ f1e

iωt for 0 ≤ z < z1

eiωt(1− frac)P0/(ρSCSAl) ≡ f2e
iωt for z1 ≤ z < z2

0 for z2 < z

. (3.11)

Region I from z = 0 to z = z1 is the coating, with z1 = 4 µm. Regions II and III

are both substrate, the distinction being that Region II will have a uniform power

injection (this will be the “absorption layer”) and Region III will not. I am going

to take the total power I observe being absorbed by my mirror, P0, and inject some

fraction frac uniformly in the coating (Region I) and inject the remaining power

uniformly into Region II which has a length l (so that x2 − x1 = l). We will look for

solutions that vary sinusoidally with time at the same frequency as the driving force:
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u(t, z) = u(x)eiωt.

This gives the heat equation the inhomogeneous form

iωu = a
∂2u

∂z2
+ fi. (3.12)

The homogeneous solutions to this equation are the same as in the previous sec-

tion, equations 3.4 and 3.5, and are reprinted here

u(t, z) = Cei(ωt−kz) with k = e−i45◦
√

ω/a.

Next we need a particular solution to the equation with the forcing function in

each of the regions where the forcing function is nonzero. Fortunately, this particular

solution is easy to deduce and takes on the simple form

up(z, t) =
−ifi

ω
eiωt. (3.13)

So our solutions in the free region will be exponentially decaying thermal waves,

and in the other two regions they will be linear combinations of exponentially de-

caying and growing thermal waves, combined with uniform oscillation at the driving

frequency. Or in other words, my temperature profile will be

u(z) =


A′eik1z + A′′e−ik1z − if1

ω
Region I

Beik2z + Ce−ik2z − if2

ω
Region II

De−ik2z Region III

.

My first boundary condition will be an easy one — I’ll assume no heat flows into

or out of the mirror surface. Previous calculations have had the driving force flow in

through the surface, but in this case we’re modeling the driving thermal force as being

sourced in the bulk. Aside from that, the only heat that would enter or leave the

surface is radiative heat transfer to other parts of the inside of the vacuum chamber.

Since the temperature differences in question are small (a few degrees at most), this
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will be negligible.

The effect of assuming no heat flow at z = 0 is that the temperature profile must

be flat there, which in turn will imply A′ = A′′. We can therefore rewrite that first

temperature profile as

u1(z) = A′(eik1z + e−ik1z)− if1

ω
= A cos(k1z)− if1

ω
.

We now have four coefficients to be determined (A, B, C,D), and to solve for

them I will impose boundary conditions of 1) temperature continuity and 2) power

flux continuity at each of the two interfaces between layers.

For the first boundary, we have from temperature continuity

A cos(k1z1)−
if1

ω
= Beik2z1 + Ce−ik2z1 − if2

ω
(3.14)

and from power flux continuity

−κ1k1A sin(k1z1) = κ2(ik2Be−k2z1 − ik2Ce−ik2z1) (3.15)

For the second boundary, we have from temperature continuity

Beik2z2 + Ce−ik2z2 − if2

ω
= De−ik2z2 (3.16)

and from power flux continuity

κ2(ik2Be−k2z2 − ik2Ce−ik2z2) = −κ2ik2De−ik2z2 (3.17)

These equations can be solved to determine the four unknowns. The algebra

becomes cumbersome, so I will spare the reader some of the details and in addition

write C in terms of A, and D in terms of B and C. Thus they will all be determined

with minimal clutter, and from here on we will use Mathematica to keep track of

algebraic details.
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A =
i

ω

f1 − f2 + f2e
−ik2l

cos(k1z1) + ir sin(k1z1)
(3.18)

B =
if2

2ω
e−ik2z2 (3.19)

C = eik2z1

[
−irA sin(k1z1) +

if2

2ω
e−ik2l

]
(3.20)

D = eik2z2
[
−Beik2z2 + Ce−ik2z2

]
(3.21)

and we have defined the ratio

r =
κ1k1

κ2k2

=
κ1

κ2

√
a2

a1

. (3.22)

We have now written down the full solution for u(z, t), or alternatively, in phasor

notation, u(z, ω). To determine the mirror response in a Michelson interferometer,

we need to add up the TE and TR pieces. To find the TE response, we integrate the

temperature profile over z multiplied by α in the different regions.

δlTE = −αc

∫ z1

0

u1(z, ω)dz − αS

∫ z2

z1

u2(z, ω)dz − αS

∫ ∞

z2

u3(z, ω)dz. (3.23)

In practice the third integral will only be taken to the back of the substrate, but

with the exponential decay of waves the distinction is one we don’t have to worry

about.

The other piece of the mirror response is the thermo-refractive response of the

coating. As in previous sections, we will assume the coating is approximately at the

same temperature throughout, which is a good approximation as long as the thermal

wavelength is longer than the coating thickness. Thus, we will use the temperature at

z = 0 as the temperature of the entire coating, and simply multiply by the effective

β calculated in Section 2.3.
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δlTR =
λ

4π
βeffu(0, ω) (3.24)

where the prefactor has been added to convert the phase change with temperature

into an equivalent observed displacement (a displacement of one wavelength in a

Michelson arm will change the phase of the returning light by 4π).

3.2.3.2 Results

Plotting the above solutions in Mathematica, we find two major results worth noting.

The first result is for a sapphire substrate, where the entire response is dominated by

the TE expansion.

Figure 3.1: Sapphire response magnitude — location of absorption makes no difference
in this frequency range

We show the magnitude response in Figure 3.1. For sapphire in the frequency

range of interest (10 Hz – 5000 Hz), there is no appreciable difference in response

magnitude whether the power is absorbed in the coating or in the substrate absorption

layer. This value agrees extremely well with the calculation done in Sections 3.2.2

and 3.2.4. Looking at the phase in Figure 3.2, we see that there is a slight difference

in the phase at the high end of the frequency range, where the thermal wavelengths

are just starting to get small enough to make a difference in the balance between TE
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and TR effects.

Figure 3.2: Sapphire response phase for fraction absorbed in coating = 100% (blue),
50% (green), 0% (red)

The next application of these formulae that is instructive to look at is the effects

of penetrating radiation in the case of a Zerodur substrate, where the entire response

of the mirror is dominated by the coating response. The simple theory discussed in

Section 3.2.2 suggests that the surface temperature (and thus the coating response

magnitude) will fall as f−1/2. The traditional thermal expansion that is proportional

to f−1 is due to the integration of the thermal profile (which brings down an additional

factor of f−1/2). In Zerodur, while the thermal wavelengths are similar to those of

fused silica or Infrasil, the coefficient of expansion is so small that the effects of the

integrated temperature profile in the substrate do not contribute significantly.

The interesting feature to note in Figure 3.3 is that the more radiation that is ab-

sorbed in the substrate, the more the magnitude response deviates from the expected

f−1/2 frequency dependence (the observed deviation even with 100% absorbed in the

coating is due to some residual mixing with a non-zero substrate expansion as well

as the beginnings of the onset of higher frequency dynamics which will tend to shift

the TR response to f−1 as well).

The trend observed in the magnitude of our Zerodur response, namely that ab-

sorption in the substrate layer leads to significant deviation from predicted frqeuency
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Figure 3.3: Zerodur response magnitude for fraction absorbed in coating = 100%
(blue), 50% (green), 0% (red). Dashed line is arbitrary f−1/2 for visual aid.

dependence, is even more pronounced in the phase response. The simple prediction

with no substrate expansion (just TE/TR coating response) would be a flat 135◦

phase response. As can be seen in Figure 3.4, it is indeed the case that absorption

in the coating is closest to this (with a move towards 90◦ at low frequency as non-

zero substrate expansion starts to become important), while significant deviation is

in evidence with more substrate absorption.

3.2.3.3 Conclusions

We take two conclusions away from this calculation with radiation penetrating into

the substrate. First of all, the Sapphire sample should show almost no deviation with

the effects of penetrating radiation, which means it will still be a useful calibration

tool even if this effect is taking place. Second, and more importantly, we can use the

response of samples on a Zerodur substrate as a check to see that our chromium layer

is doing its job; to the extent that the Zerodur samples show the expected frequency

response (magnitude and phase), we can be assured that the heating power is indeed

being absorbed solely in the coating.
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Figure 3.4: Zerodur response phase for fraction absorbed in coating = 100% (blue),
50% (green), 0% (red)

3.2.4 Low Frequency Green’s Function Calculation

As the last important bit of theory, I will calculate the expected low frequency re-

sponse of the substrate, as the thermal wavelength approaches the spot size and the

1-D approximation begins to break down. With the exception of Sapphire, most of

our experiments do not reach the regime where the thermal wavelength is on the

order of the heating spot size, but there are observable corrections that we can make

at the low end of our frequency response even so.

As usual, we start with the heat equation with a forcing function

∂u

∂t
− aO2u = F (3.25)

And again, we will be working in the regime where thermal wavelengths are much

larger than the coating thickness, but we will relax the condition that the thermal

wavelengths are larger than the heating spot size. This increases the dimensionality

of the problem to 3-D (well technically 2-D since we still have axial symmetry, but

we will solve it in 3-D).

We will take the heat injected by the CO2 laser to be a Gaussian intensity profile

centered at the center of the mirror and probe beam, at x = y = z = 0, and to be
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nonzero (and constant as a function of z) only in the first few microns of the substrate

(the coating). Our sinusoidal heat injection (normalized to a total absorbed power

P0) is

F (x, y, z, t) =
P0

ρCP πr2
0z0

e
−x2+y2

r2
0 eiωt for 0 < z < z0. (3.26)

The heat equation (3.25) has the Green’s function solution for point sources in an

infinite homogeneous space given by

G∞(t,−→x , τ,−→x ′) =

[
1

4πa(t− τ)

]3/2

e
−|−→x−−→x ′|2

4a(t−τ) . (3.27)

We will assume for this calcualtion that the Green’s function for point sources

on the surface of an infinite half-space will be twice this, since point sources on the

surface see essentially the same symmetry with the only exception that the energy

that would have flowed into the negative half-space now also flows into the positive

half-space. Technically for heat injection that is not directly on the surface, you would

need a different Green’s function (using method of images or some other technique,

see, e.g., Elementary Applied Partial Differential Equations by Haberman), but since

our coating is thin compared to the thermal length scale (remember we are carrying

out this equation to learn about behavior at low frequencies), this approximation

should suffice.

Given our Green’s function

G(t,−→x , τ,−→x ′) = 2G∞(t,−→x , τ,−→x ′) (3.28)

we can immediately write down the general solution to the temperature profile as

u(t, x, y, z) =

∫ t

−∞
dτ

∫∫∫
d3x′G(t,−→x , τ,−→x ′)F (−→x ′, τ)

=
2P0

ρCP πr2
0z0

∫ t

−∞
dτ

∫∫∫
dz′dy′dx′

[
1

4πa(t− τ)

]3/2

e
−|−→x−−→x ′|2

4a(t−τ) e
−x′2+y′2

r2
0 eiωτ .
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The z′-integral (from 0 to z0) is simple to carry out under the assumption that z0

is small, and gives us simply a factor of z0 and replaces z′ with 0. Again this approx-

imation is good as long as the coating is thin compared to the thermal wavelength,

which leaves us with

u(t, x, y, z) =
2P0

ρCP πr2
0

∫ t

−∞
dτ

[
1

4πa(t− τ)

]3/2

eiωτe
−z2

4α(t−τ)

∫∫ ∞

−∞
dy′dx′e

−[(x−x′)2+(y−y′)2]
4a(t−τ) e

−x′2+y′2

r2
0 .

Evaluating the overlap integral in x and y gives

u(t, x, y, z) =
2P0

ρCP πr2
0

∫ t

−∞
dτ

[
1

4πa(t− τ)

]3/2

eiωτe
−z2

4α(t−τ) π
r2
04α(t− τ)

r2
0 + 4α(t− τ)

e
−(x2+y2)

r2
0+4α(t−τ)

=
2P0

ρCP π
√

4πa

∫ t

−∞
dτ

1√
t− τ(r2

0 + 4a(t− τ))
eiωτe

−z2

4α(t−τ) e
−(x2+y2)

r2
0+4α(t−τ) .

Now to find the TR coefficient, let’s look at the temperature at the center of the

heating spot, i.e., at x = y = z = 0:

u(t, 0, 0, 0) =
2P0

ρCP π
√

4πa

∫ t

−∞
dτ

eiωτ

√
t− τ(r2

0 + 4a(t− τ))
.

With a suitable change of variables, this integral can be re-written in a form

that Mathematica can carry out (or at least rewrite in terms of well-studied integral

forms):

u(t, 0, 0, 0) =
4P0e

iωt

ρCP π
√

4πa

∫ ∞

0

dq
e−iωq2

r2
0 + 4aq2

=
P0e

iωtei
r2
0ω

4a

2ρCP ar0

√
π

(
−1 + (1 + i)FresnelC

√
r2
0ω

2πa
+ (1− i)FresnelS

√
r2
0ω

2πa

)
.

While slightly unwieldy, this function behaves as one would expect – for large

frequencies it levels off at −45◦ of phase and the amplitude asymptotically approaches

f−1/2. At low frequencies the phase is proportional to frequency (going to zero in the
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limit of a DC signal), and the amplitude levels off to a constant.

Now let’s push ahead and calculate the TE expansion at the center of the spot.

We’ll start with

u(t, 0, 0, z) =
2P0

ρCP π
√

4πa

∫ t

−∞
dτ

1√
t− τ(r2

0 + 4a(t− τ))
eiωτe

−z2

4α(t−τ)

and calculate the expansion of the mirror surface in the standard way

δlTE = −α

∫ ∞

0

u(t, 0, 0, z)dz

=
α2P0

ρCP π
√

4πa

∫ ∞

0

dz

∫ t

−∞
dτ

1√
t− τ(r2

0 + 4a(t− τ))
eiωτe

−z2

4α(t−τ)

=
αP0

ρCP π

∫ t

−∞
dτ

eiωτ

r2
0 + 4a(t− τ)

which again, switching variables of integration, gives us an integral to be evaluated

of

δlTE =
αP0

ρCP π
eiωt

∫ ∞

0

e−iωτ

r2
0 + 4aτ

=
αP0

ρCP π
eiωt

[
−ieir2

0ω/4a

4a

(
π − i · ExpIntegralEi[−ir2

0ω/4a]
)]

Again, this function behaves as we’d expect, and in the limit of large frequencies

asymptotically approaches

δlTE −→ −i
αP0

ρCP πr2
0ω

eiωt

which is the same result as equation 3.9 if you note that a/κ = 1/ρCP and A = πr2
0

for the purposes of calculating power intensity at the center of the Gaussian beam.
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3.2.5 Combined Signal

For our main substrates (fused silica and a similar glass called Infrasil), we will not

need to use the low-frequency complex integrals, and the previous formulae will suffice.

The full response of one of our mirrors will then be

δl(ω) =
αP0

ρCP πr2
0ω

ei90◦ +
λ

4π
βeff

P0

√
a

κA

1√
ω

e−i45◦ . (3.29)

We emphasize here again that since we are working at frequencies low enough

to put us in the long wavelength limit, the relevant material parameters listed here

are all substrate parameters except for those hidden inside βeff . The first term will

dominate at low frequencies and will only contain substrate information. The second

term will eventually take over at a frequency where

αP0

ρCP πr2
0ω

=
λ

4π
βeff

P0

√
a

κA

1√
ω

or

ω =
1

a

(4π)2

λ2

α2

β2
eff

. (3.30)

The form of this crossover frequency is quite interesting – it is proportional essen-

tially to the ratio of the substrate expansion coefficient and the effective phase change

of the coating (both reflection coefficient and volume expansion). This also hints at

our overall strategy for measuring βeff , which will involve fitting to both the low-

frequency part of the response and the high-frequency part — effectively comparing

the two and eliminating the need for specific knowledge of the incident power, beam

area, etc.

3.3 Simulation

We performed simulations of the experiment in COMSOL (version 3.5a) to understand

two effects that are harder to deal with theoretically.
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The first of these is a nonzero Poisson ratio. The traditional assumption is that

disturbances in the substrate are small and limited to the extent of the spot width.

This means that expansion is not allowed in directions parallel to the surface, sug-

gesting that perhaps there will be more expansion in the direction of the surface

normal. In the future it would be useful to go through the theory of the temperature

and elastic constitutive equations, but for now we note the form that is given in the

literature for these effects, and, using the finite element model, confirm the stated

dependence on the Poisson ratio.

The second effect we look to COMSOL to help us understand is boundary con-

ditions. Although it is true that thermal disturbances will be confined to very small

regions (the thermal distance scale being on the order of 10s of microns), the elastic

(“sound”) wavelength is large, 10s to 100s of meters, and one might thus expect the

boundary conditions (finite mirror size, clamping technique, etc.) to affect the result-

ing physical expansion of the mirror. We use COMSOL to help us get a handle on

boundary condition effects.

Shown in Figure 3.5 is the block diagram used for our model. The thermal and

mechanical properties of the top and bottom blocks were those of aluminum, and in

most of our simulations the back surface of the mount (the surface farthest from the

mirror) was taken to be fixed and held at room temperature. These conditions were

intended to ensure we suppressed “center of mass” modes in position and temperature.

Both were justified by testing with varied constraints (which made no difference) and

ensuring that the assumption that the temperature and motion that far from the

heating spot was negligible. The model validated all these assumptions.

Next, in figures 3.6 and 3.7 we show the grid of elements used for the simulations.

We took care to have very small elements (smaller than the thermal wavelengths we

used) in the region where the thermal waves would penetrate so that the effects we

were interested in didn’t get washed out by averaging over too large an area.

For reference, we also include in figures 3.8 and 3.9 some graphical plotting of

temperatures in the model at the end of 6 cycles at 100 Hz. The thermal wave is

clearly visible, as is the fact that temperatures are stable any real distance from the
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Figure 3.5: Block view of our COMSOL model. From top to bottom, the elements
are the mirror mount (aluminum), the mirror itself (various materials), and the metal
washer that was screwed to the mount to hold the mirror in place.
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Figure 3.6: Full grid for COMSOL model

heated spot (and importantly, at the back of the mirror mount).

3.3.1 Poisson Ratio Correction

In literature where such things are accounted for carefully (e.g., [14], [10]), the factor

α is frequently replaced with a corrected factor α(1 + σ). This factor comes from

the fact that a small volume element, when heated, tries to expand by a factor

of αδl in all three directions, but in our application is constrained in such a way

that it does not move in the plane of the mirror (at infinity, there should be no

motion, and this is a good approximation when the thermal wavelength is small).

This suppressed expansion in plane is coupled through the Poisson ratio to extra

expansion perpendicular to the plane. We did not do a proper derivation of this

factor from the underlying thermoelastic equations, rather we performed a simulation

of the experiment and altered the values of the Poisson ratio to test for the solution’s

dependence on this parameter.
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Figure 3.7: Grid for COMSOL model zoomed in on thermal spot region
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Figure 3.8: Snapshot temperature profile at the end of a simulation (after 6 cycles at
100 Hz)
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Figure 3.9: Snapshot temperature profile at the end of a simulation (after 6 cycles at
100 Hz), zoomed in on the region exhibiting thermal waves
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Figure 3.10: COMSOL simulated response amplitude at 100 Hz as a function of
Poisson ratio. Points are simulation results, the blue line is a fit to an α(1 + σ)
model.

Figure 3.10 shows results of our testing the model above with varying values of the

Poisson ratio in the fused silica mirror body (all tests run at 100 Hz thermal driving

frequency). The first thing we point out is that the simulations agree very well with

dependence proportional to (1+σ). We will take this as justification to use the factor

α(1 + σ) as our expansion coefficient for the substrate, and also as the parameter we

measure when we look at substrate expansion.

The second thing we point out in Figure 3.10 is the red line shown — this is the

level of mirror motion predicted by our theory (with zero Poisson ratio). It is, to

good precision, exactly half the motion reported by the model. We currently do not

understand why this is the case, but we note that asking COMSOL to report the

temperature integral along the axis of symmetry and calculating

δl = α

∫
(T − T0)dz

gives the same result as our theoretical calculations (and again, half the result we get

when we ask COMSOL to report the motion of the central surface point of the mirror).
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We concede that this is a problem that needs to be understood, but for the purposes

of this document we will assume that it is an error inherent in the understanding of

COMSOL’s position reporting but that COMSOL is still otherwise a good source for

understanding the relative effects of things like Poisson ratio effects and boundary

condition effects. This seems to be reasonable given that the temperature integral

matches our theory so well, and that the theory matches the experiment to within

20% — there is no factor of two between the theory, the temperature integral, and

the experiment.

3.3.2 Boundary Conditions

3.3.2.1 Finite Boundaries

The speed of sound in glass is on the order of 4000 m/s; this means that at any of

the frequencies we are interested in, the elastic response of our materials (which are

of order 0.1 m) will be instantaneous throughout the entire body. This in turn means

the elastic solution will “feel” its boundaries, and we should take care to check that

they don’t change our solution too much.

To determine the effects of boundary conditions on our solution, we re-ran the

simulation above with varied boundary conditions on the mirror, the washer, and the

mount. The front surface was always free (except for the portion that was in contact

with the washer, which we let COMSOL treat as an internal boundary). The other

two sides of the mirror (the lateral side and the base in contact with the mount) were

the ones we were interested in. In all simulations the back of the mount was fixed in

space to suppress the center of mass motion of the system (descriptions below where

the block is described as “free” mean except for this back boundary). We ran tests

and looked at the magnitude of the 100 Hz response for the following sets of boundary

conditions:

• Baseline; lateral mirror boundary free, washer free, aluminum block free

• Mirror lateral wall fixed, washer and mount free
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• Mirror lateral wall fixed, washer body area completely fixed, mount free

• Mirror lateral wall fixed, washer and mount body area fixed

• Mirror lateral wall fixed, mount body fixed, no washer

• Mirror lateral wall free, mount body fixed, no washer

• Mirror lateral wall free, mount body free, no washer.

The first three tests, with the mount free to expand and compress, gave results

identical to each other. The next three tests, with the mount body entirely fixed,

gave results identical to each other and 1.4% smaller than the previous three. The

final test with the mirror as free as we could imagine it without losing semblance to

our experiment, returned to the value of the first three.

It is worth restating that these results also were a factor of 2 higher than we

expected (to better than 2%).

It seems that our approximation that the mirror material on heating is not allowed

to expand laterally is a good one, based on the results with the clamped lateral wall.

The largest effect seems to be from whether or not we allow the mount to expand

with the mirror or not, but even this is on the order of a few percent. Since this is a

much smaller error than other sources we will come across, we will neglect boundary

condition corrections in our analysis.

3.3.2.2 Clamping Pressure

In order to determine the effects of our particular mounting on the outcome of the

experiment, we ran the simulation of the geometry in Figure 3.5 and applied various

pressure boundary conditions to the front surface of the metal washer. First, we left

the front surface free, then we tried applying a constant inward pressure of 10,000

N/m2 (or 10 N over the surface of the washer, the total force of a 1 kg weight), then

we tried 1,000,000 N/m2 (1,000 N or 100 kg weight).
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To within less than 1%, these gave no change in the Fourier component of the

surface motion. We therefore conclude that the setup is quite insensitive to our

clamping method.

3.4 Materials and Methods

3.4.1 Mirrors and Coatings

Mirror substrates were ordered from CVI-Melles Griot. We used various materials

to allow for calibrations and checks of the coating signals as they balanced against

substrates with differing thermal conductivities, densities, specific heats, and coeffi-

cients of thermal expansion; basically, we adjusted the thermal wavelength and the

TE response of the substrate by changing materials. At one end, we had sapphire

with a huge thermal conductivity and very large coefficient of thermal expansion, and

at the other end we had Zerodur with a thermal conductivity comparable to other

glasses, but a very small coefficient of thermal expansion.

The substrates were all from CVI/Melles Griot’s PM (Plane Mirror) and PW

(Plane Window) lines (the difference being whether the back surface was optically

flat and/or slightly wedged, neither of which matter in our application). All were 1”

diameter and most were .375” thick, but due to availability issues some of the samples

were .25” thick and one sapphire mirror was .125” thick. All flat surfaces that we

coated were specified to have transmitted wavefront error (at 633 nm) of λ/10 or less.

Coatings were applied by Thin Film Lab in Pennsylvania using electron beam

deposition with materials of 99.9% purity. We realize there will likely be significant

differences between the numbers we measure for these coatings and the numbers

that will be measured for Advanced LIGO suppliers’ coatings, but we started with a

relatively inexpensive supplier for proof-of-principle.

The coating specifications were supplied by me and were designed to balance TE

and TR effects in the coating. Since the experiment involves measuring the TE effect

and a sum of TE and TR effects, it is desirable to have them on the same order
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of magnitude. If the TE effect is too small (i.e. for very few coating layers), then

this effect will be difficult to observe by itself, but if it is too large (i.e. too many

coating layers), then it will be difficult to accurately subtract out of the the combined

measurement. We settled on 11 doublets with a capping half-wavelength of low index

material.

Both measurements give a volume-weighted average for the parameters measured.

For example, in a traditional quarter-wavelength stack (where each layer is 1/4 of

an optical wavelength for light in the medium) of alternating silica and tantala, the

thickness of the silica layers is 183nm, while the thickness of the tantala layers is

129nm. This means that in the cavity photothermal experiment the coefficient of

thermal expansion of tantala will contribute to the overall measured coating coefficient

of expansion with a weight of approximately 1/3 (129/312), while the silica will

contribute with a weight of approximately 2/3 (183/312). A similar effect happens

in the case of the combined TE/TR measurement, as outlined in section 2.3.

In order to extract coating parameters for the individual materials, we use two

different coatings, both optimized to be highly reflective at 1064nm. The first is the

quarter-wave coating described above, with 11 doublets and a half-wave silica cap.

The second is a so-called ”1/8 - 3/8” coating, with doublets that combined still add

up to 1/4 wavelength, but with the tantala layers being 1/8 wavelength (64.6 nm)

and the silica layers being 3/8 wavelength (275 nm), also comprised of 11 doublets

and a half-wave silica cap.

3.4.2 Experimental Layout

3.4.2.1 Optical Probe Layout

The experimental layout is shown in Figure 3.11. The Lightwave/JDSU M126N-

1064-200 NPRO laser is run at full output power of ∼ 200 mW, and the power used

in the Michelson interferometer is adjusted using a half-wave plate and polarizing

beamsplitter combination. A 254-mm-focal length lens is used to roughly collimate

the beam coming out of the NPRO. After the power control stage, a 356-mm-focal
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Figure 3.11: Experimental layout. Black thin lines: 1064 nm radiation, red thick
lines: 10.6 µm radiation

length lens is used to create a waist 37 cm away on the beamsplitter, with radius ∼=

.270 mm . Our test mirror is then within the 21 cm Rayleigh range of this waist, so

the spot on the test mirror is expected to be less than a factor of
√

2 larger than this,

or .370 mm — thus satisfying our condition that rprobe � rpump (the pump radius will

be on the order of 2 mm).

The optics shown in the vacuum chamber are indeed in vacuum (generally pumped

down to ∼ 70 mtorr), and on an optical table which sits on a 3-stage seismic isolation

stack with resonant frequency on the order of 3 Hz. Electrical connecting wires are

attached to the side of each level of the stack on their way to the table to reduce their

contribution to mechanical coupling with the external environment.

The Michelson interferometer is very slightly misaligned so that the output sym-

metric port beam is not retro-reflected onto its incoming path, making it easier to

measure (there is no need for a circulator, e.g., to separate the incoming and outgo-
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ing beams). As was pointed out to us, this technically makes ours a Mach-Zender

interferometer since the beams are not recombined at the point where they are split,

but a Mach-Zender interferometer where the splitting beamsplitter and the recom-

bining beamsplitter are just different points on the same physical object. We believe

conceptually it is simpler and has just as much explanatory power to refer to our

configuration as a Michelson and will continue to do so.

Once the beams are recombined they are sent to the symmetric (S) and antisym-

metric (AS) ports, refocused along the way as needed, and onto the photodiodes.

We used Thorlabs Det110 photodiodes, powered by 12 volts supplied by a Tektroinx

CPS250 DC power supply.

In order to isolate the data signal as much as possible from extraneous coupling

(e.g., through ground loops), we have a completely separate electronic path to lock

the interferometer to mid-fringe. A small amount (∼ 10%) of the AS signal is picked

off and sent to an auxiliary locking photodiode (NewFocus 2001 photodiode box). A

similar amount of light is picked off and dumped in the S optical path to preserve as

much as possible the matching gains in the two paths.

3.4.2.2 Optical Pump Layout

The pump laser is a Synrad 48-1 10 W CO2 laser with UC-2000 controller. The laser’s

power control is achieved by means of pulse-width modulation of the RF discharge

current in the lasing gas mixture. For tests of mirrors without gold coatings, the

PWM duty cycle was set at 20%, giving just over 2 W DC power in the beam exiting

the laser and an AC absorbed power of approximately 0.6 W in amplitude absorbed

by the test mirror. For tests of mirrors with gold coatings, the PWM duty cycle was

set much higher, at 90%, giving almost 10 W DC power in the beam exiting the laser,

approximately 8 W on the test mirror, of which approximately .05% is absorbed. The

amount absorbed by the gold-coated mirrors was too small to measure directly with

the power meter, so all we had to go on was the substrate calibration technique.

Amplitude modulation of the beam is accomplished using an AGM-406B1 in-

frared AOM from Intraaction Corp., driven by their GE-4030 driver. We use the
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0th-order transmitted beam as our modulated signal, with the 1st-order deflected

beam dumped. With a maximum efficiency of 85%, this means a decently large DC

component even at the maximum amount of light deflected away, but the alternative

(using the deflected beam which does go all the way to zero) is unacceptable due to

the relatively large angular motion of the deflected beam during operation (presum-

ably due to thermal effects in the AOM crystal — at the full deflection setting, there

is 30 W of power being dissipated in the AOM).

The beam then travels into the vacuum chamber (through custom zinc-selenide

windows from II-VI Infrared) and is focused onto the test mirror by a 7.5-inch-focal-

length zinc-selenide lens. This creates a Gaussian spot on the mirror with 1/e power

radius of ∼ 2 mm. We verified the diameter of the heating spot by replacing the test

mirror mount with knife edge on a micrometer in front of a power meter. The knife

edge was scanned across the beam and the power transmitted recorded, then fitted to

an appropriate erfc function, shown in Figure 3.24 and described in Section 3.4.3.3.

We could conceivably do a better job characterizing the size of the beam at various

points along the path (since the beam is converging over a roughly 7.5 inch distance

in the vicinity of the test mirror, displacements of the sample can make a difference in

the power density deposited), but we believe that the best characterization of the spot

size and absorbed power will be achieved by looking at the low-frequency response

of the sample in our readout. The low-frequency regime will be dominated by the

bulk properties of the substrate, which are well known, and the only unknown is the

power density. Thus we take this measurement for ballpark calibration, but we get

precision by fitting the low-frequency substrate response to find the power level.

After hitting the sample mirror, the reflected power (∼ 20% for stacks without

gold overlayers, ∼ 99% for those with) is guided out of the chamber and dumped in

a power meter. This power meter is monitored during the taking of data to ensure

we have a good understanding of the power on the mirror. Occasionally the CO2

laser will mode-hop, especially if it has not been on long enough to achieve a steady

thermal state, and these mode hops are accompanied by significant jumps in power

output. If the subsequent jump in power is not large enough to significantly alter
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the lock point of the interferometer, then the new power level is adjusted for in the

data. If the jump in power is large enough to significantly move the lock point of the

interferometer, we discard the data set.

A point worth mentioning is that we found it important to dump the unused pump

beam off the Michelson table (somewhere on the other side of the seismic isolation).

While the radiation pressure of the light is negligible, in dumping this much power

there is bound to be thermal expansion which, by changing the center of mass of

objects such as a beam dump, can cause vibrations. These induced vibrations can

ring up mechanical modes of the power dump mount, the optical table, and the

mounts for the interferometer optics, which then contaminate the output signal of

the interferometer. This is a particularly devious effect because the vibrations are

at the AOM drive frequency and thus can not be separated using lock-in techniques

from the signal we’re interested.

A similar thing can be said for any scattered CO2 light which happens to hit

interferometer optics. We found it to be important to avoid scattering pump light as

much as possible (presumably this is also aided by dumping the beam off-table), and

also to shield the interferometer optics as much as possible from the CO2 beam path

using foil barriers wherever possible.

3.4.2.3 Data Readout Electronics

The data readout path is as simple as we could make it. The two voltages from the

S and AS photodiodes are fed directly into the A and B inputs (respectively) of an

SR830 lock-in amplifier, set to measure the difference (A − B). The frequency to

be used as the lock-in reference is taken from the reference output of the function

generator that controls the CO2 AOM driver.

The frequency of the measurement is set by a DS345 function generator which

provides the 5 V synchronization signal to the lock-in amplifier, and the 0.6V peak-

to-peak signal (with 0.5 V DC offset) to the AOM driver. The AOM driver has an

input voltage range of 0–1 V, but we found the response of the AOM starts to become

nonlinear in turn-on/saturation fashion below 0.15 V and above 0.85 V respectively,
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as described in Section 3.4.3.2.

3.4.2.4 Locking Electronics

In order to linearize the readout of the Michelson interferometer, we lock the inter-

ferometer to mid-fringe using proportional gain with a low-pass filter stage. This is

accomplished by feeding the difference between the auxiliary output photodiode and

a reference voltage back to a PZT actuator on the end mirror in the “non-test” arm

of the Michelson interferometer.

A portion (∼ 10%) of the AS light output is diverted to an auxiliary locking

photodiode (NewFocus model 2001, with a gain of 10 and a low-pass filter at 10

kHz). This signal is then differenced with the desired reference voltage (set on an

Agilent E3644A DC power supply) that corresponds to the Michelson mid-fringe point

in an SR560 preamplifier. This stage is set to have a gain of 20 and a low-pass filter

that was set to -12 dB/oct at 0.1 Hz. This cutoff frequency is low enough that the

effects of the feedback loop can be safely neglected in the frequency range where we

are taking data (10 Hz – 5000 Hz) as shown in the next section. We chose to do this

because it turned out to be nontrivial to measure (and thus divide out) the effects of

the feedback loop in lock.

The next stage is another SR560 preamplifier with no filtering and unity gain,

which is used to inject a swept sine wave for the purpose of taking in-loop transfer

functions from time to time. When not in use, we ground the second (injection) input

with a 50 ohm terminator.

The final electronic stage is a PZT driver with a gain of ∼15 V/V. The output of

the driver is connected to the PZT on the control arm of the Michelson interferometer

which can change the length of that arm, which changes the power at the AS port,

thus closing the loop.

3.4.2.5 The Servo Loop

In order to simplify calibration, we designed our servo loop to operate at low frequen-

cies outside our measurement band. It is essentially a proportional feedback loop with
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Figure 3.12: Full control loop diagram

a DC gain of order 50, with two poles at 0.1 Hz (giving us a unity gain frequency of

roughly 1 Hz).

Figure 3.12 shows the schematic of our control loop. The factor 4π/λ is the

interferometer’s conversion from length change into optical phase, the factors of−Vp−p

and (1/2)VAux are the readout voltages as described in Section 3.4.3.1. The “lock-to”

voltage is set by hand to mid-range of the Aux photodiode readout, and is supplied

by an Agilent E3644A DC power supply. Typical values for this voltage are in the

range of 1 V - 1.3 V. The differencing of the photodiode voltage and the reference

signal, as well as the gain G (typically 20 V/V) and a low pass filter (two poles at 0.1

Hz as mentioned) are performed in a Stanford SR560 preamplifier. The box D is a

piezo driver, measured to have a flat gain of 15.1 V/V across our entire measurement

band. The box P is a piezoelectric element which moves the reference mirror of the

Michelson interferometer. This has a typical gain of 15 nm/V, but displays hysteresis

and fairly radical variation from lock to lock (up to 50%). The difficulty this hysteresis

presented to the process of exact calibration of the piezo element was our motivation

for pushing the response of the servo down to low enough frequencies that it does not

affect our measurement band.

Figure 3.13 shows the control loop re-written in such a way that it is clear how the
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Figure 3.13: Simplified control loop schematic

servo will affect our measurement. The box S is algebraically related to the product

of the loop transfer functions by “unity-forward-gain” loop equivalent factor,

S =
1

1 + 4π
λ

1
2
VAuxGDP

. (3.31)

The factor G contains an aggressive low-pass filter, so the transfer function S will

be close to unity by the 8 Hz start of our measurement band.

In Figures 3.14 and 3.15 we show the loop gain transfer function — i.e., the term

added to 1 in the denominator of equation 3.31. The data points were measured

with the two-pole low-pass filter at 10 Hz, rather than the 0.1 Hz we usually use, to

facilitate the measurement and to demonstrate some of the features of this transfer

function (the DC gain is visible, the corner and a table resonance at 300 Hz are visible

above the noise — this is not the case when the filter is set to 0.1 Hz). The dark-

and light-blue points are data taken with the loop open and closed, respectively, (the

latter is an in-loop measurement of the one-way transfer function around the loop).

The blue line is a model of the transfer function, and the purple line is the same
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Figure 3.14: Servo loop gain magnitude

model with the cutoff frequency set to 0.1 Hz rather than 10 Hz.

The first comments we will make here regard stability. Our model gives a unity

gain frequency of ∼ 0.7 Hz, and an associated phase margin of less than a degree. This

is close to unstable — indeed it is generally known that two-pole low-pass filters can

be tough, since they achieve a nominal 180 degrees of phase asymptotically, so any

extra phase (say due to a delay somewhere in the loop) can make the system unstable.

However such systems are theoretically fine, and we experimentally observed that our

system is quiet enough around this frequency to maintain lock for indefinitely long

periods of time.

Second, we note that at 8 Hz, our model gives a loop gain of .008, and a phase of

0.1 degree. This is sufficient to state that to better than 1% we can treat the control

loop transfer function S as unity over our measurement band. This low-pass filtering

is sufficient to ignore the action of the servo on the measurement.

3.4.3 Rough Calibration

In this section we will describe base calibration of our signal. Aside from frequency,

which we intentionally vary, there will be three experimental parameters of critical
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Figure 3.15: Servo loop gain phase

importance. The first two can be seen in equations 3.8 and 3.9, and are P0, the overall

amplitude of the Fourier component of the power variations incident on the mirror,

and A, the area of the heating beam. Indeed, as long as we are in the regime where

λtherm is much smaller than r0, the heating spot size, the important parameter that

dictates the size of the thermal response is P0/A, the absorbed intensity.

Unfortunately, absolute power calibrations are notoriously tricky to perform, es-

pecially in our setup where we are modulating a powerful beam with an AOM. Tradi-

tional power measurements are made with thermopile-type power meters that depend

on changing the temperature of a relatively large thermal body, limiting them to very

slow “DC” measurements. To get true power readings of Fourier components at high

frequency it is necessary to switch to a photodiode measurement. Unfortunately, CO2

photodiodes are extremely inefficient, so it takes a lot of power in a small area to get

any signal at all, and being small devices with large power fluxes they are subject to

thermal effects, especially at low frequencies. This makes it very difficult to calibrate

their response at-frequency with DC power levels.

Our solution to the above problem will be to do our best with the AOM/PD

combination for the power level and measure the spot size at the mirror as best
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as possible with a scanning knife-edge technique, but to use these measurements

as only a baseline sanity check. If we are within a few tens of percent (easily the

range of combined error on power meter/PD calibration, the spot size error due to

placement of the sample, and inhomogeneities in the heating beam profile) we will use

this as confirmation that we understand the system, and then use the low-frequency

substrate response as our power calibration. Since the signal at low frequencies will

be dominated by substrate expansion, and all the quantities in equation 3.9 are well-

known, except for the combination P0/A, we will claim that the level of the low

frequency response is the most accurate measurement of the heating intensity.

The third and final number we need to measure is the conversion factor of the

Michelson interferometer readout. This is a very simple number to measure, and we

will get that out of the way first. Also we note that although it is customary to

include the fringe locking servo in the calibration section, we will not do so, since we

have shown in a previous section that it does not significantly affect the output of

the interferometer.

3.4.3.1 Michelson Readout

Here we describe the readout of a Michelson interferometer, showing how a change

in the phase of our test arm (either through a length change or through an apparent

length change due to thermo-refractive effects) will map into a change in the measured

output voltage. This will also give us a formula to recreate the motion (or apparent

motion) from the voltage we read out.

We can write the output of a Michelson interferometer at the symmetric (S) and

antisymmetric (AS) ports as

PS =
P0

2
(1 + cos(δ))

PAS =
P0

2
(1− cos(δ)) (3.32)

where δ is the optical path length difference between the arms, measured in ra-



66

dians, and without loss of generality is taken to be zero when there is no exten-

sion/displacement of the test mirror. For pure surface motion, this phase will be

given by

δ = −4π

λ
dz

where dz is the small mirror motion we wish to measure.

When we collect these two optical power levels with photodetectors, we will get

the two voltages

VS = G1
P0

2
(1 + cos(δ))

VAS = G2
P0

2
(1− cos(δ)) (3.33)

and the signal voltage we measure is the difference between the two:

VSig = VS − VAS = (G1 −G2)
P0

2
+ (G1 + G2)

P0

2
cos(δ). (3.34)

If we equalize the gains as best we can in the two paths, G1 = G2 = G, then the

first term drops out and we are left with

VSig = GP0 cos(δ) = Vp−p cos(δ). (3.35)

I have replaced GP0 with Vp−p in the second equality, where Vp−p is the difference

between the maximum voltage seen on a single channel and the minimum voltage

seen on that channel as the interferometer is scanned through many fringes. This

equivalence can be seen by looking at equation 3.33 and noticing that the minimum

value of these expressions is 0 and the maximum is GP0.

When reading out the interferometer, we lock to the point where the cosine func-

tion goes through zero (giving us maximum change in output for a given phase

change). For small variations around this operating point we have
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∂VSig

∂δ
|δ=π/2 = −Vp−p sin(π/2) = −Vp−p

so that for small signals we have

VSig = −Vp−pδ = Vp−p
4π

λ
dz

and to recreate the motion (or apparent motion) of the mirror given a measured

signal, we can use

dz =
λ

4π

1

Vp−p

VSig. (3.36)

Thus the calibration of the readout of the interferometer is simple and elegant -

assuming a correctly functioning interferometer, the only number that needs to be

measured is the peak-to-peak voltage on the readout channels. It is also easy to show

(by going back to equation 3.34) that, should the gains be slightly unequal, the correct

number to use for Vp−p is the average of the two values for the individual channels.

Measuring this peak-to-peak voltage of the aligned (but not locked) interferometer

for both channels separately and then averaging is the technique we use to calibrate

the transfer function between the output of the interferometer and the actual (and/or

apparent) motion of the mirror.

3.4.3.2 Pump Power Calibration

Our overall strategy for this section will be to find the conversion factor between

measured DC power coming out of the chamber and P0, the amplitude of the Fourier

component of the power absorbed by the mirror.

In operation, we will have the CO2 laser set at a constant power output. For the

full photothermal measurement, the setting was 20% full power, for the photother-

mal expanasion (with gold topped coatings), this setting was 90% full power (in an

attempt to increase absorbed power, despite the high reflectivity of the gold layer).

The CO2 achieves its power control by pulse-width-modulation (PWM) with a base
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Figure 3.16: AOM deflected power vs. AOM driver input voltage, showing linearity
range. Blue line is arbitrary straight line to guide the eye.

frequency of 5 kHz. This can lead to laser mode hopping accompanied by power

fluctuations on the order of 1/5 the output power of the laser — more frequent when

the laser is not warmed up, far less frequent once it is. We deal with these mode hops

by monitoring the power reflected off of our test mirror; if a significant jump in power

occurs during data collection, that data is discarded. If not, we found the laser’s DC

power output to be constant to within a few percent.

We also needed to check that the AOM’s transfer function was linear in the regime

we used. Figure 3.16 shows data demonstrating good linearity of the AOM over the

input range of 0.2 V - 0.8 V. Thus, we will drive the AOM with a signal from a

function generator of 0.6 V peak-to-peak with a DC offset of 0.5 V, giving

V (t) = .5V + .3V sin(2πft).

This will give us a power on the mirror that has the form

P (t) = PDC + P0sin(2πft).

Since we are going to be using a powermeter to monitor the power on the mirror,

we would like to determine the ratio P0/PDC , which should not change downstream

of the AOM anywhere, since the absorption coefficients of mirrors and other optics
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Figure 3.17: Oscilloscope trace of power as a function of time, measured with CO2

photodiode (blue dots), with approximate sine wave fit (red line), and dark voltage
(purple dots and associated flat red line)

are not frequency dependent at our measurement frequencies (which are extremely

low compared to optical frequencies).

Figure 3.17 shows just such a signal, measured immediately downstream of the

sample mirror with a CO2 photodiode. The signal shown here is modulated at 22.6

Hz by the AOM, and looks “filled-in” below the AOM modulation curve because the

photodetector is fast enough to also see the 5 kHz PWM of the laser.

To determine the ratio of AC power to DC power, we shift the entire signal so

that the “0 V” line (measured at -0.018 V) is at zero, and write the equation that fits

the red line shown in Figure 3.17. The result is

V (t) = .41 + .215 cos(142t + .34)

which gives the ratio that we are interested in as

P0/PDC = .215/.408 = .53. (3.37)
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Figure 3.18: AOM+PD response magnitude, swept 5 times with exact same setup

Again, since there’s nothing downstream of the AOM to change this ratio (i.e., no

absorption that acts differently on a DC power level than it would on an AC power

level at these “low” frequencies), we now have a handle on how much oscillating power

we have, given a measurement of the DC power present.

Next we want to refine this to account for the fact that the AOM might have

a nontrivial transfer function, i.e., it might put out slightly different amplitudes or

phases at different frequencies. The AOM and driver we’re using specify a modulation

bandwidth of 750 kHz, and an optical rise time which gives an even faster equivalent

response, but do not list specifics for things like pass-band ripple and phase shift.

First we show the transfer function from the AOM driver input to the amplified

output of the photodiode, magnitude in Figure 3.18, phase in Figure 3.19. The

magnitude has been adjusted to reflect the size of the voltage output we’d see from

a chopped square wave with the same max power level, in anticipation of a later

measurement with a chopper to determine the effects of the photodiode by itself.

A few points to make about these plots. First, there are definitely dynamics; on

the order of 20% variation in magnitude across the frequency band we will be using

for measurement (10 Hz – 5 kHz), and +10/-20 degrees of phase. Second, there is

variation in the response, even though the measurements were taken consecutively
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Figure 3.19: AOM+PD response phase, swept 5 times with exact same setup

with the exact same setup. There were no observed CO2 mode hops between these

data sets; we attribute the differences to thermal effects in the photodiode (which

was, after all, absorbing 200 mW in a very small area). Finally, this is the combined

transfer function of the AOM and the photodiode; to get the behavior of the AOM

by itself, we will need to take out the effects of the photodiode’s dynamics.

In order to measure the response of the photodiode, we set the CO2 laser/AOM

combination to provide a constant power (approximately equivalent to the maximum

power seen by the photodiode in the previous tests), and placed a chopper in front of

the AOM. We then used a lock-in amplifier to measure the amplitude of the amplified

photodiode output at various chopping frequencies. Because of the limited frequency

range of the chopper, we took the data in three sections. From roughly 20 Hz to just

under 4 kHz we used a chopping wheel with 40 slots per revolution. From roughly 1 Hz

to 100 Hz we used a hand-made chopping wheel with two slots per revolution. Below

roughly 2 Hz, we performed the chopping operation by hand, letting the spectrum

analyzer ”control signal” tell us when to insert and remove an anodized metal plate in

the CO2 beam path. Needless to say this final method is far from precise, introducing

an especially large error in the phase near and above 1 Hz (where it becomes difficult

to synchronize movement of large things like arms and anodized metal plates).
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Figure 3.20: CO2 photodiode response magnitude, measured with various chopping
techniques

Figure 3.21: CO2 photodiode response phase, measured with various chopping tech-
niques
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Figure 3.22: AOM transfer function magnitude, including ”sine component factor”

The colored lines in Figure 3.20 show the magnitude response of the photodi-

ode with the three chopping techniques in different colors. The magnitudes are as-

measured with a lock-in amplifier for the chopping wheel data sets (though converted

from RMS to amplitude measurements), and converted from a transfer function to a

measured voltage with a spectrum analyzer for the lowest frequency portion.

The colored lines in Figure 3.21 show the phase reponse of the photodiode, also

with the three chopping techniques in different colors. The noisy low-frequency regime

is as-measured. The two higher-frequency regimes have been adjusted upwards or

downwards to match up with the overlap in the region(s) to their left — this is

simply to remove the unknown phase between the actual chopping wheel and the

electronic synchronization signal sent to the lock-in amplifier.

In both figures, we also show a set of points we will use for an interpolation

function to represent the photodiode response.

Finally, we show the inferred transfer function of the AOM.

Figure 3.22 shows the magnitude of the AOM transfer function, normalized to the

measured AC/DC ratio from equation 3.37 (0.53 W/W at 22.6 Hz). We note two

things when looking at this graph. First, fluctuations are very small — less than 10%

over the entire frequency range, a few percent over most of the measurement band
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Figure 3.23: AOM transfer function phase

— and second, that suspicious behavior at lower frequencies tends to be close to the

overlap regions between chopping techniques.

Figure 3.23 shows the phase of the AOM transfer function. Again there are some

suspicious bumps and troughs at low frequency, especially around transition frequen-

cies. We suspect these are artificial, and that the AOM transfer function is pretty

flat with zero phase at low frequencies. There is, however, significant phase added

around and above 1 kHz. This will show up in our data and need to be corrected

for. As will be explained below, we hope to use these transfer functions as a sanity

check and use Sapphire substrate data as a more precise calibration over the entire

frequency range.

3.4.3.3 Pump Beam Spot Size

To measure the size of the pump beam on the sample, we used a scanning knife-edge

technique. We replaced the mirror mount with a metal “knife edge” on a micrometer

translation stage, and measured the power transmitted past the knife edge using a

power meter, as a function of the position of the edge.

To determine the amount of power we should see as we scan the knife edge, we
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start with a Gaussian intensity profile normalized to have a total power P0

I(x, y) =
P0

πr2
0

e
−x2+y2

r2
0 .

With a knife edge at position x, the power that is not blocked will be

P (x) =

∫ ∞

x

dx′
∫ ∞

−∞
dy

P0

πr2
0

e
−x′2+y2

r2
0

=
P0√
πr0

∫ ∞

x

e
−x′2

r2
0 dx′

=
P0√
π

∫ ∞

x/r0

e−t2dt.

This expression can be rewritten in terms of the well-known error function

erf(z) =
2√
π

∫ z

0

e−t2dt

or more succinctly in terms of the complementary error function erfc(z) = 1− erf(z):

P (x) =
Pmax

2
erfc(x/r0). (3.38)

Data obtained for this technique in the horizontal direction is shown in figure 3.24,

along with the best fit line that gives an r0 of 2.0 mm.

This measurement was taken in the plane of the mirror, with the knife edge

scanned in the horizontal direction. In this direction the beam will be elongated due

to the fact that it is coming in at a 45◦ angle. In reality our circular beam will have

an elliptical projection on our mirror, with the profile

I(x, y) =
P0

πrxry

e−(x/rx)2−(y/ry)2 (3.39)

Assuming the beam is a symmetric Gaussian (the specification by the manufac-

turer has the laser’s M2 parameter less than 1.2), our x-radius and y-radius will be

related by
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Figure 3.24: Knife edge data with fit line for r0 = 2.0mm

rx = ry

√
2.

Or, for the purposes of making estimates of how big our signal ought to be, we

will use an equivalent reff
0 that is the geometric mean of these two and will give the

same intensity at our probe spot. That radius will be, in terms of the x-radius we

measure

reff
0 =

√
rxry =

√
rx

rx√
2
. (3.40)

To estimate the error in our measurement of the spot size, we note that the

beam is converging from approximately 4mm at the focusing lens to a small waist

approximately 7.5 inches (190 mm, the focal length of the lens) from the lens. This

means that the radius is changing at a rate of 4mm/190mm = .02mm/mm. We

estimate that the error in our knife-edge placement (as well as the error inherent in

swapping out mirrors) is on the order of a few mm, which implies a spot size error

of a few hundred microns, or a few percent, which means up to ∼ 10% error in our

estimate of the spot intensity.



77

3.4.4 Sapphire Substrate Response Calibration

Due to the difficulties listed above in accurately measuring the absolute power per

unit area on our substrate, and its phase and relative magnitude as a function of

frequency, we will use a technique we believe to be much more accurate and reliable

in processing our data; we will use substrate responses as our overall power calibration,

and to check the effects of the AOM and driver chain.

3.4.4.1 Intensity via LF Substrate Response

As was hinted at previously, we are going to do an overall power calibration by

using substrates such as fused silica, in which we will see the effects of both terms

in equation 3.29. We will fit to two parameters, P0 and βeff . The first parameter

is essentially equivalent to fitting to an overall signal magnitude (which will give us

an accurate calibration of power per unit area at the probe spot if the CO2 spot is

nonuniform, high or low absorption if the mirror absorption is slightly different at

running temperature, and even overall factors like error in the Michelson readout

calibration). The second parameter is equivalent to fitting the crossover frequency in

3.30, and will give us information about the coating response.

This technique does not work if the drive power changes with frequency, thus

we use another technique to give us the frequency dependence of the heating power,

which we divide out before fitting to 3.29.

3.4.4.2 Sapphire Response Calibration Function

Given the difficulties in measuring the AOM transfer function (combined with its

driver), we decided to use the response of a sample mirror on a sapphire substrate

as our “standard candle” for calibration purposes. Since sapphire does have a long

thermal wavelength, we will need to include the Green’s function correction for the

low-frequency region.

Figure 3.25 shows the raw sapphire data (uncorrected for AOM transfer function,

but otherwise processed as normal data) along with a predicted value which is scaled
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Figure 3.25: Sapphire response magnitude, raw data (uncorrected for AOM trans-
mission) - dots, prediction - solid line.

to agree at 22.6 Hz, where we have our measured DC-Fourier component calibration

from Section 3.4.3.2. From here we will infer our relative correction factor induced

by the AOM (recall that we expect our overall magnitude factor to be calibrated out

in the final fit, and in the end it won’t play a role in determining coating response).

Figure 3.26 shows the two AOM correction functions. They show very similar

behaviors, with an increase in the transmitted magnitude somewhere between 30 and

100 Hz, to 5% or so for the PD method, 10% or so with the sapphire calibration

method.

Figure 3.27 shows the raw sapphire phase data (uncorrected for AOM transfer

function, but otherwise processed as normal data) along with a predicted value. From

here we will infer our relative phase added by the AOM. It is worth noting that the

phase added at low frequencies due to the Green’s function “low-frequency correction”

shows remarkably good agreement.

Figure 3.28 shows the two AOM phase correction functions. Again, they show

simliar behaviors, with little to no phase added at low frequencies, and a sharp drop

in phase above about 1 kHz. Again there is slight disagreement, but we suspect
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Figure 3.26: Sapphire magnitude correction: sapphire reference method (blue),
AOM/photodiode calibration (red)

Figure 3.27: Sapphire response phase: raw data (uncorrected for AOM transmission)
(dots), prediction (solid line)
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Figure 3.28: Sapphire phase correction: sapphire reference method (blue),
AOM/photodiode calibration (red)

this is due to thermal difficulties in the photodiode and the inherent difficulties in

determining the phase of a chopping wheel (which depends on spot size relative to

chopping wheel slot width), and believe the sapphire will be the better guide.

For the rest of the data processing in this paper we will use the correction functions

in blue to remove the frequency-dependent magnitude and phase effects of the AOM

from the data we take.

3.4.5 Data Acquisition

3.4.5.1 Laser Alignment

The first step to taking data is to insert the mirror to be measured and align the

Michelson interferometer (ensuring both beams are centered on the photodiode and

then tweaking alignment for maximum visibility of fringes). We easily achieved

greater than 90% visibility.

Next, we test the overlap of the heating beam with the probe beam. For visualizing

the position of the CO2 beam we use fluorescent viewing cards made by Macken

Instruments. These cards fluoresce when exposed to the UV lamp that comes with
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the kit, but the CO2 laser disrupts the fluorescence. Thus, when the CO2 laser hits the

card a dark spot appears. Fortuitously this same effect is observed with the probe

laser, so both are visible on the card at the same time. We ensure that the spot

centers match vertically, and are appropriately offset horizontally. Due to geometry,

we can not place the fluorescing surface on the surface of the mirror, and because the

CO2 laser is approaching at a 45◦ angle, its center on the card will not coincide with

the center of the heating beam. We carefully measured that the displacement of the

fluorescent surface is 8 mm in front of the mirror surface, so at that point the CO2

beam properly aligned needs to be 8 mm offset horizontally.

In the early days of the experiment we routinely checked (with a thermal imaging

camera) to ensure that the CO2 light was not scattering off the edge of the mirror

mount. This was never seen to be a problem, so we do not routinely check this in the

data sets reported here.

3.4.5.2 Warming Up and Pumping Down

The next step was to pump the air out of the chamber and allow the sample to reach

a steady thermal state. We routinely operated around 70 mtorr with a turbopump

backed by a rotary vane roughing pump.

While pumping down, we would set the CO2 laser and AOM to their operational

settings, as if we were taking data, to let the equipment and mirror warm up. By

pumping down without the heating laser on, locking the servo, and then turning on

the heating beam and watching the lock-to point change over time, we were able to

determine that the setup (with a fused silica mirror) has a thermal time constant of

approximately 10 minutes (see Figure 3.29). Other glassy mirrors would have similar

time constants, and sapphire would equilibrate much faster.

Given the thermal time constant of 10 min, we would turn on the vacuum pump

and lasers, pump down, and then allow another 30–40 minutes of warm up time before

taking data.
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Figure 3.29: Servo locking voltage over time as sample heats up. Also shown is an
exponential fit with a time constant of 590 seconds.

3.4.5.3 Pre-Run Data

Once the apparatus and mirror were warm, we would fill out a data sheet in our “T.O.

Experiment Auxiliary Data” binder. This binder is filled with forms with questions

designed to ensure that all relevant information about particular runs are recorded.

The important details about the sample are there (what substrate, what number,

etc.), as well as a record of CO2 power levels, servo settings, lock-in settings, and,

critically, the visibility on each channel (for calibrating the output signal in terms of

effective displacement - see Section 3.4.3.1).

3.4.5.4 Data Acquisition Routine

Data was taken using a laptop running Windows and LabView to coordinate a lock-in

amplifier (which took the data), a frequency generator (which provided the modula-

tion signal to the AOM driver and a synchronization signal to the lock-in), and an

ADC which measured the output of a power meter to monitor the power level of the

CO2 laser (looking at the power in the reflected beam after it left the sample and

exited the chamber).
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Frequencies for data points are selected by giving the program a low and high

frequency, and a number of data points desired — the program then distributes the

measurement frequencies exponentially so that they are evenly spread on a log-log

plot. The user can also specify a number of independent measurements per frequency

if he/she wants more than one reading per frequency. We generally used a range of 8

Hz – 5000 Hz with 100 frequency points and 1 or 2 measurements per frequency.

After switching from one frequency to the next, the program waits a specific time

before taking its first data point, and waits that amount of time again before taking

multiple subsequent data points. We set these wait times to be the required settling

time as detailed in the lock-in amplifier’s manual. For the 12 dB/oct low-pass filtering

we used, the settling time was 7 times the lock-in time constant, or 21 seconds for

our most common setting of a 3 second time constant.

With these values, a run took a little longer than an hour. We also wrote a looping

program that would run the above multiple times in succession. For the combined

α/β measurements which had relatively large signal we would use 3-4 runs for our

data, mostly to ensure consistency, since the data was very clear. For the α alone

measurements we frequently wound up using 10–15 runs, which were then processed

separately to give us an estimate of our statistical error.

3.5 Results

In this section we will list the results of the individual measurements. First we

will describe how data recorded directly from the experiment was transformed into

apparent length changes in the interferometer arm, then we will show results first

from the TE/TR combined measurements and then from the TE alone (gold-coated

sample) measurements, along with sample data sets and model fits.

3.5.1 Data Processing

The data recorded from this experiment was in the form of a list of data points with

three parameters: a voltage magnitude (the RMS value of the Fourier component of
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interest), phase, and a reading of the DC powermeter.

In converting the voltage data to length data, we take the following steps:

1. Convert the RMS value from the lock-in amplifier into an amplitude by multi-

plying by
√

2.

2. Divide out the AOM transfer function calculated as above, normalized to unity

magnitude at 22.6 Hz (divide the voltage magnitude by the value of the AOM

magnitude transfer function, and subtract the phase of the transfer function

from the phase of the measurement).

3. Divide by the amplitude of the Fourier component of the power delivered to the

mirror, using factors measured as in the calibration section above as well as the

power value of the data point. This does two things. First it removes the effect

of power fluctuations (which we allow as long as they aren’t large). Second, it

normalizes the response to what we would see if we applied 1 W of AC power,

so that we can compare the results of multiple runs even if they had somewhat

different power levels.

4. Multiply by a conversion factor from voltage to interferometer length, using

measured voltages as in Section 3.4.3.1. Again, the conversion factor is δl =

(λ/4πV ave
p−p)δV .

5. Subtract 19◦ of phase that is artificially inserted between the function genera-

tor’s output and the measured phase of the lock-in amplifier with respect to its

reference input.

6. Cut out data with known issues (high-frequency spurious couplings, known

noisy areas around 60 Hz and just below 20 Hz for the low-amplitude gold-

coated measurements).

Once we have our data cleaned up in this way, we fit the model to extract the

two parameters that define it, P0 and βeff . To simplify the fitting, we use only
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the magnitude data for fitting, and then compare the phase prediction using the fit

parameters with the phase data as a consistency check.

Our data spans multiple orders of magnitude, so early attempts using a traditional

fitting function tended to ignore the data at high frequencies (small magnitudes);

unfortunately these are exactly the data points that carry information about the

coating response.

Our solution to this problem was to take the logarithm (base 10, though any base

would do) of the data and do a fit to a new function that is the logarithm of the old

function. By defining our errors logarithmically, we effectively ask the fitting function

to minimize the sum (or more accurately sum of squares) of the percent differences

between the data and model.

To perform the fits, we used Mathematica’s nonlinear “FindFit” function with the

“Levenberg-Marquardt” method specified.

3.5.2 Combined TE/TR

Here we will show sample data for the combined measurement, where we are seeing

the effects of both the coating expansion and the index of refraction changes.

Figure 3.30 shows sample data from a silica substrate with a quarter wavelength

coating. The fit for this particular data set finds P0 = 1.1W and β = .0001188. Our

average for four such data sets was .000118. Figure 3.31 shows a sample plotting of

the phase recorded in our data, along with a prediction using the fit parameters from

the magnitude data. Since we are within a few degrees over most of the measurement

range, we believe our measurements are seeing the coating response we are interested

in.

Figure 3.32 shows sample data from a silica substrate with a Bragg coating. The

fit for this particular data set finds P0 = 0.77W and β = .0001079. Our average for

four such data sets was .000108.
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Figure 3.30: Sample silica substrate data with quarter-wave coating. Blue line is fit,
red lines are “chi-by-eye” error bars (roughly double statistical errors).

Figure 3.31: Silica QWL phase using fit parameters from magnitude data



87

Figure 3.32: Sample silica substrate data with Bragg coating. Blue line is fit, red
lines are “chi-by-eye” error bars (roughly double statistical errors).

3.5.3 TE Alone

Figure 3.33 shows sample data from an Infrasil substrate with a QWL coating and

full 0.9 µm chromium layer. The fit for this particular data set finds P0 = .030

and β = .000337. Figures 3.34 and 3.35 show histograms of the fitted βeff for the

same Infrasil sample — between the two sets of runs we removed the sample took

measurements of other samples, and reinstalled it. The inferred values and errors

for the two figures are (3.2 ± 0.11) × 10−4 and (3.5 ± .15) × 10−4, respectively. As

discussed in the following section on error, we have what we believe to be a random

systematic uncertainty displayed here which needs to be addressed in the future. For

the purposes of this thesis we will claim the combination of these numbers to give

(3.3 ± 0.2) × 10−4, and also attribute this larger uncertainty in future gold-coated

data sets (rather than the smaller uncertainty we measured within a set of runs).

Figure 3.36 shows sample data from an infrasil substrate with a Bragg coating

and full 0.9 µm chromium layer. The fit for this particular data set finds P0 =

.0169 and β = .0003118. Figure 3.37 shows a histogram of our βeff values for an

Infrasil substrate with a Bragg coating on it. The inferred value and error for βeff
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Figure 3.33: Sample Infrasil substrate with QWL + gold coating. Blue line is fit, red
lines are statistical error bars derived from multiple runs

Figure 3.34: Histogram of βeff values for Infrasil substrate QWL coating
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Figure 3.35: Histogram of βeff values for Infrasil substrate QWL coating after re-
installation

is (3.1 ± 0.12) × 10−4, although, as mentioned, we will assign a larger 0.2 × 10−4

uncertainty to this number due to our belief that these numbers suffer from the same

systematic uncertainty as the previous gold-coated measurements.

Figure 3.38 shows sample data from an infrasil substrate with a QWL coating with

a thin 0.128 µm chromium layer. The fit for this particular data set finds P0 = .0156

and β = .0003103. Figure 3.39 shows a histogram of our βeff values for an Infrasil

substrate with a QWL coating that has the extra-thin Cr layer. The inferred value

and error for βeff is (3.2±0.14)×10−4, although as mentioned we will assign a larger

0.2×10−4 uncertainty to this number due to our belief that these numbers suffer from

the same systematic uncertainty as the previous gold coated measurements.

3.5.4 Error Analysis

To get a handle on our error, we first tried the time-tested “chi-by-eye” method of

varying the parameter of interest (βeff ) upward and downward until the fit looked

clearly wrong. Later, we switched to a more rigorous method; we took multiple data

sets (4 each for the combined numbers, which presented very clean signals, and 14

each for the gold-coated TE numbers) and performed fits to each, treating each run
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Figure 3.36: Sample Infrasil substrate with Bragg + gold coating. Blue line is fit, red
lines are statistical error bars derived from multiple runs.

Figure 3.37: Histogram of βeff values for Infrasil substrate Bragg coating
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Figure 3.38: Sample Infrasil substrate with QWL + gold with thin Cr layer coating.
Blue line is fit, red lines are statistical error bars derived from multiple runs.

Figure 3.39: Histogram of βeff values for Infrasil substrate with QWL coating with
thin underlying Cr layer
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as an independent test. Then we took all the recorded parameters from the batch of

runs and calculated the mean and standard deviation of the βeff values. This gave us

error bars a factor of 2 or so lower than “chi-by-eye”, as one might expect. The mean

and standard deviation from these sets of tests and fits are the values and errors that

we report for the combined TE+TR measurements. We report something slightly

larger for the gold-coated TE-alone results, for reasons described below.

As far as consistency, the combined TE+TR measurements with their large SNR

were extremely consistent. The four traces we used for each result (QWL and Bragg)

were from four different mirrors. For the QWL coating, two of the substrates were

fused silica and two were Infrasil. Obviously, the fits took into account the different

substrate parameters. The numbers thus derived for βeff were all within 4% of the

mean. The four substrates used for the Bragg coatings were all fused silica, and

yielded similar consistency.

We had planned on assuming this sort of consistency for the TE measurements

(indeed we had only one fused silica and one infrasil sample each of QWL, Bragg,

and QWL-thin-Cr gold-coated), but discovered at a first pass that our errors between

immediate subsequent measurements of the same sample were slightly larger, on the

order of 10–15%, and on reinstalling one mirror to investigate this, we observed on

the order of 25% change when removing, reinstalling, and re-measuring one sample.

Clearly in the gold-coated samples we had a) larger error in repeated runs, and b)

an even larger random systematic error. We hypothesized that this had to do with the

larger noise levels at low frequency around 20–60 Hz effectively giving an inaccurate

power calibration to the fit, and spurious coupling starting to become visible above

approximately 1 kHz. These spurious couplings can be seen starting to sneak in at

the high-frequency ends of Figures 3.33, 3.36, and 3.38. If these couplings were, for

example, mechanical coupling (where the expansion of the mirror caused the mount

or table to physically shake), we might expect them to have different amplitudes when

we removed the mirror/mount and reinstalled it. And their magnitudes, being far out

at the end of a linear (in log space) fit, will tend to contribute heavily to the inferred

value of βeff .
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In order to decrease this error, we did two things. First, we removed low-frequency

data from 20–70 Hz from the fits. Second, we cut out as much high-frequency data as

we thought we could get away with while still seeing coating effects. The ranges and

data sets we came up with can be seen in the figures above. Once this was done, the

spread within consecutive runs decreased dramatically, to approximately 4%, and the

difference between the same Infrasil sample removed and reinstalled for that second

batch of runs was 8%.

We have not had time to take more repeat data to better characterize this sys-

tematic error; in our later data analysis we will assume all gold measurements have

the larger 8% systematic error bars. These errors need to be studied. We suspect

that these systematic errors can be brought down to the level of the consecutive-run

error with some work. This will be discussed in the future work section.

3.6 Poisson Factor Correction

All of the above analysis was completed without taking into account the Poisson factor

correction. We will work out here the effect this correction has on our measurement.

The data in the points we fit to will not change; the motion we observed is the

motion we observed. What will change is the equation we fit to. Originally we fit to

equation 3.29, which we will reproduce here:

δl(ω) =
αP0

ρCP πr2
0ω

ei90◦ +
λ

4π
βeff

P0

√
a

κA

1√
ω

e−i45◦

Remembering where this equation comes from, most of it is a determination of

the temperature profile; none of that derivation will change since the Poisson ratio is

a structural-elastic correction. What will change is the projected motion due to that

expansion. The places where we predicted a structural expansion were the places

where we inserted α coefficients. The first term on the right-hand side is the obvious

one. We will now be fitting to a new equation
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δl(ω) =
α(1 + σ)P0

ρCP πr2
0ω

ei90◦ +
λ

4π
βeff

P0

√
a

κA

1√
ω

e−i45◦

where σ is the Poisson ratio of the substrate. How will this change the parameters

we fit? Since the δl we are dealing with is measured experimentally, our estimated

length change will not be different. What will be different is that in order for this

new calculation to match the old length measurements, we will estimate a new power

P ′
0 =

P0

1 + σ
.

An increase in the effective coefficient of expansion by a factor of (1+σ) will lead

us to infer that the power we observed was smaller by that same factor.

Given that we infer a smaller power by a factor of (1 + σ), how does that change

our estimation of βeff? We will again make the same argument that the second term

on the right-hand side must remain the same since our data has not changed. Now

that our estimated power is smaller though, we need to estimate a larger βeff by the

same factor, (1 + σ), to ensure our predicted/estimated line matches the data points,

which have not moved.

Therefore we conclude (and verified on a few data sets though not all) that the

values estimated above for the measured βeff are too small by a factor of (1 + σ).

Below are the measured values after we apply the correction factor, with the value

σ = 0.17 for both fused silica and Infrasil.

βQWL
eff = (1.39± 0.03)× 10−4K−1 (3.41)

βBragg
eff = (1.26± 0.04)× 10−4K−1 (3.42)

βQWL−TE
eff = (3.9± 0.2)× 10−4K−1 (3.43)
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βBragg−TE
eff = (3.6± 0.2)× 10−4K−1 (3.44)

βQWL−TE−ThinCr
eff = (3.7± 0.2)× 10−4K−1 (3.45)

The other Poisson ratio correction we will need to make is in our interpretation of

the coefficients of thermal expansion that went into these effective βs. We assumed

there was a certain value α for each of the layers that related the change in length

to temperature. Really, since the coating layers are subject to the same constraint

as the substrate, i.e., no lateral expansion, the number there should be α(1 + σC),

where the Poisson ratios are those for the coating layers. Since these are also not

particularly well known, we will at the end of this thesis quote values for αL(1 + σL)

and αH(1 + σH), since these are the parameters that will be of interest in calculating

the thermal noise effects in interferometers anyway.
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Chapter 4

Parameter Extraction

Now that we have four measurements (TE/TR combined for QW and Bragg coatings,

as well as TE alone for QW and Bragg coatings), we can extract the four material

parameters we are interested in.

4.1 The Measurement Matrix

In Section 2.3 we calculated the thermo-refractive response coefficients of the coatings

to be

β
TR

QWL = 6.4αL + 2.9αH + 4.5βL + 1.4βH (4.1)

β
TR

Bragg = 9.6αL + 2.18αH + 6.9βL + 1.18βH . (4.2)

This is not the full story, however. In addition to the altered reflection coefficient,

the surface of the mirror will be moving itself due to the expansion of the layers (in-

cluding the expansion of the chromium underlayer). Fortunately, we need to calculate

this effect anyway since it is exactly the effect we measure in the gold-coated samples.

For a multilayer mirror, we can define an effective coefficient of thermal expansion

for the entire mirror that is equivalent to the appropriate thickness-weighted sum of

coefficients of the individual layers
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α =
1

L

∑
layers

αili (4.3)

where L is the total thickness of the coating, and li is the thickness of the ith layer.

Then, when we have an expansion of the coating, it will appear to contribute an

added phase to the laser beam of

∆φTE = −4π

λ
αL∆T .

Thus, we define an effective β due to the expansion of the coating by

β
TE

= −4πL

λ
α.

Since we know the layer thicknesses, we can calculate numerically the coefficients

of αL and αH for this expression. Unfortunately, we must also include a term for the

expansion of the chromium layer underneath the coating, an effect which is too large

to neglect.

β
TE

QWL = −28αL − 17αH − 10.6αCr (4.4)

β
TE

Bragg = −40αL − 8.4αH − 10.6αCr (4.5)

With this added variable, the coefficient of thermal expansion for thin-film chromium,

we need one more measurement to pin down all the unknowns. Fortunately, we had

in the lab a set of samples from an earlier run where the chromium layer was designed

incorrectly and was too thin to stop the penetration of the CO2 radiation. We sent

these to be gold coated with the rest of the “TE only” samples, and with the thinner

layer of chromium they provide us one more data point:

β
TE

ThinCr = −28αL − 17αH − 1.5αCr. (4.6)

We are making the assumption here that the coefficient of thermal expansion is
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the same for 128 nm of chromium as it is for 900 nm of chromium, but we believe

deviations from that assumption should not significantly affect our outcome.

Finally, noting that the response of the bare coatings (without gold) is simply the

sum of the TR effects from equations 4.1 and 4.2, and the TE effects from equations

4.4 and 4.5, we can write out equations in matrix form relating the measurements we

make to the parameters we are interested in.



β
Combined

QWL

β
Combined

Bragg

β
TE

QWL

β
TE

Bragg

β
TE

ThinCr


=



−21.6 −14.1 4.5 1.4 −10.6

−30.4 −6.22 6.9 1.18 −10.6

−28 −17 0 0 −10.6

−40 −8.4 0 0 −10.6

−28 −17 0 0 −1.5





αL

αH

βL

βH

αCr


. (4.7)

The vectors in the matrix are linearly independent, and thus it is nonsingular and

invertible. Using Mathematica to invert this matrix, we find our parameter extraction

matrix



αL

αH

βL

βH

αCr


=



0 0 .041 −.038 −.023

0 0 −.059 .063 −.031

−.27 .32 .21 −.26 .028

1.6 −1.0 −1.5 .90 .08

0 0 −.11 0 .11





β
Combined

QWL

β
Combined

Bragg

β
TE

QWL

β
TE

Bragg

β
TE

ThinCr


. (4.8)

4.2 Error Analysis

4.2.1 Statisical Error

We will assume there is no error in the matrices in equations 4.7 and 4.8. This is

not strictly right — if we recall where these coefficients came from, they will depend

on two quantities. First, they depend explicitly on the indices of refraction of the

materials in the layers. This is well known, however, and will be a much smaller
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source of error than our experimental uncertainty. The second factor that goes into

these coefficients is the coating layer thicknesses — the thicknesses factor implicitly

in our assumption that we were expanding around a quarter-wave thickness, or 1/8,

or 3/8 wave thicknesses. On private communication from our coating manufacturer,

I have been informed that I can expect ∼ 2% variation in layer optical path lengths,

from which I expect the same order variation or less in matrix coefficients (being at a

reflectance plateau, leading order corrections would be expected to go as the square of

the errors in optical path lengths). Again, this will be smaller than the experimental

error we observe, and so will be neglected here.

Given this assumption, we can translate measurement error directly into param-

eter error by the formula

σparameter−i =
√

m2
ijσ

2
measurement−j (4.9)

where the mij are the matrix elements in the parameter extraction matrix from equa-

tion 4.8, and there is an implied sum over j under the square root.

4.2.2 Known Unknowns

There are two effects that we have mentioned before that are worth bringing up

again in this error analysis section, before we examine the results of our paramter

estimation.

The first is the factor of 2 in our COMSOL simulation. As mentioned, we believe

this to be an artifact that is safe to neglect. If it turns out to be real, that means

that elastic effects are causing the surface of the mirror to actually move twice as

much as we expect it to move for a given input power and temperature profile. We

would then expect this effect to be confirmed by a complete elastic theory analysis.

This would clearly affect the way we fit to our data sets; our given substrate motion

would be fit with approximately half the power, and with a halved power estimate,

we would estimate our βeff to be twice as large to fit the data points taken.

The second effect that is worth mentioning again is the random systematic un-
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certainty in the low-signal gold-coated measurements. We have not yet characterized

this uncertainty well, and our estimate of their size is based on a very small set of

measurements. With the data we have, we believe the error bars we present are

reasonable, but they could be larger than we estimate.

4.3 Results

Using the techniques described in the previous sections, along with the results of our

measurements, we get the following measured values for the parameters of interest:

αL(1 + σL) = (6.4± 1.4)× 10−6K−1 (4.10)

αH(1 + σH) = (1.1± 0.2)× 10−5K−1 (4.11)

βL = (1.9± 8.0)× 10−6K−1 (4.12)

βH = (1.2± 0.4)× 10−4K−1 (4.13)

which use the derived value for our thin film of chromium

αCr(1 + σCr) = (1.3± 3.6)× 10−6K−1. (4.14)

These error bars are rather large (compared to our ∼ 5% errors on individual βeff

results) due to the fact that we are subtracting numbers close to the same magnitude.

Since the errors add in quadrature, they stay at the same absolute order of magnitude

while the differencing process can mean our results for actual parameter values are

down an order of magnitude or so from the measured numbers. This means our

fractional errors go up by an order of magnitude. In the next chapter, on future

directions, we will discuss possible ways to decrease these errors. They will include

decreasing the error on the original measurements as well as increasing the size of the
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difference of measurements by making coating variations more extreme.
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Chapter 5

Conclusions and Future Directions

5.1 Conclusions

We report here, to the best of our knowledge, the first measurement of the thermo-

optic parameters α and β (dn/dT ) for individual layers of thin-film materials in a

dielectric stack. Our error bars are larger than we would like and we have systematic

effects to study, but we have shown the technique to be feasible and believe this to

be a solid starting point for further research.

5.1.1 Comparison with Published Values

We compare our measured values with published values from tables 2.1 to 2.4. For

the α values, we will divide by (1 + σc), using values for Poisson ratios listed in

GWINC. We have not studied the literature for these Poisson ratio values, so there is

potentially some error induced in the use of these values, but we believe there would

be more without using them.

For the coefficient of expansion of thin-film fused silica, our value of (5.5± 1.2)×

10−6 compares reasonably with Centigoru’s value. Ours is higher than theirs, but

within a few standard deviations and, as noted, they used different deposition tech-

nology and a much thicker layer. We are a factor of 10 larger than Braginsky’s number

used in GWINC, but again we do not have a reference for this and it appears to be

a bulk value.
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For the coefficient of thermal expansion of thin-film tantala, our value of (8.9 ±

1.8) × 10−6 is approximately a factor of 2 larger than the measurements listed, but

does seem to contradict the negative sign observed by Inci.

Our dn/dT measurement for silica has unfortunately large error bars, which do

include the value suggested in the GWINC documentation attributed to Braginsky.

Our dn/dT measurement for tantala agrees with the value quoted by Inci (sur-

prisingly, since the situations are so different and we get radically different α values).

We are larger than Andri Gretarsson’s measurement by a factor of 2, but his value is

within two of our standard deviations, and we unfortunately don’t know at the time

of writing what values he assumed for the other material parameters.

Finally, we compare our results with the measurement published by Farsi [10].

This was an experiment where the power in a Fabry-Perot cavity was modulated, and

the resulting change in power absorbed in the mirrors was used to measure a version

of βeff and α (presumably weighted by volume) for their coatings. When we compare

our α to theirs, we get (6.9± 2)× 10−6 versus their measured (2.3± 0.3)× 10−6. Our

measurement here is significantly higher. We can also use our numbers to calculate

their version of βeff , which is slightly different from ours and includes only TR effects.

The result is our (1.7 ± 0.6) × 10−5 versus their (4.4 ± 0.6) × 10−6. Our values are

again larger, and more than two standard deviations from theirs.

We observe a trend where our numbers are consistently large compared to the

rest of the literature. We can not say at this point whether or not this is due to

systematic errors in our experiment, or the noted differences in our coatings (likely

some combination of both).

5.1.2 Possible Implications for Future Gravity Wave Detec-

tors

The material parameters we measure are substantially different from values commonly

used in Advanced LIGO noise predictions. A summary of the changes between our

numbers and the numbers currently used in LIGO’s Gravitational Wave Interferom-
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Table 5.1: Comparison of GWINC v3 parameters and our measured paramters.
Parameter GWINC value Our Value New/Old ratio

αL 5.1× 10−7 5.5× 10−6 10.8
αH 3.6× 10−6 8.9× 10−6 2.5
βL 8× 10−6 1.9× 10−6 0.24
βH 1.4× 10−5 1.2× 10−4 8.6

eter Noise Calculator (GWINC) version 3 (the current version) is listed in Table 5.1.

Again, we have divided our numbers by (1 + σc), using the values for coating Poisson

ratios listed in the program, in order to make an “apples to apples” comparison.

The major changes between our measurements and the widely used values are

factors of ∼ 10 in αL and βH , though it is important to note that αH also went up

significantly. These changes, if also measured in the coatings LIGO will use for its ad-

vanced interferometers, could have significant implications for the noise performance

in the interferometers’ most sensitive frequency range.

We repeat our standard AdLIGO curve from Chapter 1 in Figure 5.1. In Figure

5.2, we show a GWINC calculation of the AdLIGO noise curve based on our parame-

ters. Figures 5.3 and 5.4 show our estimates of thermo-optic noise with the best-case

parameters and worst-case parameters within our one-standard-deviation errors.

The main cause of the raised thermo-optic noise levels is the increased αs with a

relatively small increase in the βs. The earlier cancellation predictions had parameter

values that fortuitously put TE and TR effects on the same footing, so coherent

addition had them largely cancelling. With our numbers, the TE effect is much

larger due to the increased α values, the effect of which is leveraged by the fact that

AdLIGO coatings will have approximately twice as many layers as our samples, and

all contribute to the expansion. We do have larger TR effects predicted, but the

coating reflection coefficient effects decrease with variations deeper in the coating, so

the higher cancelling effects scale with the parameters, but are not leveraged by the

number of layers.

It is not clear that the numbers we have measured here imply such large thermo-

optic noise levels for Advanced LIGO and future detectors. First, we used a different
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Figure 5.1: Baseline Advanced LIGO noise curve
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Figure 5.2: Predicted AdLIGO noise using our measured material parameters.
Thermo-optic noise may be substantially different with different coating processes,
manufacturers
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Figure 5.3: One-sigma best-case AdLIGO noise curve using our measured material
parameters. Thermo-optic noise may be substantially different with different coating
processes, manufacturers

manufacturer and a different deposition technology (electron beam sputtering rather

than ion beam sputtering), so our coatings were almost certainly structurally different

from those that will be used in AdLIGO. Second, as mentioned in our error analysis

section, there are systematic effects in our small-signal TE measurements that we

have not studied well; since the TE effects are the ones in question, and also since

all of our measurements depend on them (we can not extract the β numbers without

first getting the αs from the TE experiment), there could be change in the future as

this research continues.

What we do hope to assert in this thesis is that this issue is important. It is quite

conceivable for coating parameters to differ from those that cancel nicely in Advanced

LIGO or future detectors’ coatings, so the parameters need to be studied and mea-

sured closely. The technique described here is starting to yield good results, and in

the near future can and should be pushed to better precision and understanding.
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processes, manufacturers

5.2 Future Work

5.2.1 Decrease Noise in Gold-Coated Measurements

As we mentioned in the section on gold-coated error analysis, we believe we have

systematic errors that are not well characterized. These errors need to be better

characterized and reduced.

As mentioned, we suspect these errors are induced by noise at low frequencies and

spurious couplings (mechanical and/or electrical) at high frequencies. The noise at

low frequencies can be averaged down by increasing the time constant on the lock-in

amplifier, which we effectively tried to do originally by averaging many data sets.

However, even with the averaging we observed what looked to be increased power

in that region at low frequencies. A better strategy would be to increase the signal,

either by increasing the heating laser power or by taking data at lower frequencies

where the signal should continue to rise as 1/f until we hit low-frequency “Cerdonio-
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type” effects at tens to hundreds of mHz (assuming of course we don’t run into more

low-frequency seismic or flicker noise).

The high-frequency coupling is a more challenging problem. If they are truly

vibrational couplings, increasing pump power won’t help because that will increase the

mechanical shaking along with our signal. Possible solutions in this case would include

determining exactly what’s moving (e.g., the sample mount vs. table resonance vs.

other IFO mounts responding to scattered CO2 light) and damping it or otherwise

redesigning mechanical portions of the system. If the couplings are electrical (ground

loops or radiative coupling of the 40 MHz AOM driver signal) then they can be

tracked down and eliminated with more careful grounding and/or filtering. It might

also be possible, if the couplings aren’t too pervasive, to simply characterize them well

enough to remove data only in the vicinity of known couplings, rather than cutting

out large swathes of high-frequency data.

5.2.2 Coating Design for Increased Signal

As we discussed in our error analysis, the errors on our coating parameters were

larger than the errors on our measurements due to the fact that we were looking for

the difference in approximately equal numbers. In hindsight, anything we could do to

increase the difference between these numbers would decrease the relative error in our

material parameter measurements. An easy example of this would be to repeat the

experiment with 1/8–3/8 and 3/8–1/8 mirrors rather than the QWL design (though

using all three would certainly provide extra information and consistency checks).

One could also envision relatively larger differences in ratios — the Bragg condition

will give high reflectivity for any configuration in which the layer doublets add up to

λ/2. However, one would want to take care to consider effects that kick in on the

length scales over which layers might diffuse into each other (see Section 5.2.5).
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5.2.3 Boundary Condition and Poisson Ratio Effects

It would be useful to work with theorists to write up comprehensible descriptions

of why the correct Poisson ratio factor for expansion constrained to zero in-plane

expansion is α(1 + σ).

Another next step is to work on understanding what our COMSOL simulations

are telling us. First and foremost it is critical to sort out the embarrassing factor

of 2 between the reported z-displacement of the surface and α times the integrated

temperature profile. We do not believe this doubling of expected surface motion is

a real effect, since our experimental results with the combined TE and TR effects

agree with our naive prediction to within the ∼ 20% error that we estimate exists on

our overall power levels. We believe it to be extremely unlikely that we are missing a

factor of 2. However, if we were, this would definitely change the power we get from

fitting our low-frequency data, and thus also change our estimates of the coating

response at high frequency.

5.2.4 Advanced LIGO Coating Measurements

As noted in our Theory and Background chapter, these parameters are quite likely

dependent on deposition technology, and quite possibly dependent on coating stress

environment. The numbers we report here are useful to demonstrate this as a valid

technique, but the numbers we measure are for electron-beam-gun-deposited coatings

of 99.9% pure silica and tantala. Advanced LIGO will use coatings of silica and

titania-doped tantala deposited by ion beam deposition, with approximately twice as

many layers. These numbers will need to be remeasured for the deposition technology

and coating materials used by the project.

The thicker coatings for Advanced LIGO should be easier to measure. We designed

our coatings so that the TE effect would be on par with the TR effect, thinking that

would make the cancellation as easy to observe as possible. It turned out our main

limitation was by far the noise in the measurement of the αs due to the small signal

involved once the entire coating is hidden under a gold layer. Increasing the thickness
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of coating that participates in our α measurements will increase that signal by a

factor of 2 or so with respect to the spurious couplings we’re seeing and decrease that

noise source, and should not significantly decrease the observability of the TR effects

without the gold coating.

5.2.5 Further Coating Studies

As mentioned earlier, there are many hypotheses as to why thin film materials prop-

erties are so different from their bulk values. Groups in LIGO are studying the actual

structure of the material through computational methods, low frequency mechanical

loss measurements, and, in the near future, through X-ray diffraction.

The technique outlined here is an additional way of studying these materials, and

has the benefit of providing measurements that are as close to real world “in-situ”

measurements as one can get. This technique samples coating parameters as they are

in coatings — high stress, and in contact with other layers of similar makeup.

One possible source of the difference between coating material parameters is the

high stresses these coatings experience. Under high stress, any temperature depen-

dence of the Young’s modulus could cause unanticipated motion of the coating surface.

Another possibility is diffusion from adjacent layers — it has been shown via SEM

investigation of coatings [12] that material types don’t change discontinuously across

layer boundaries, but transition gradually over a region of tens of nanometers. Layer

thicknesses for our λ/4 coatings are 129 nm of tantala and 183 nm for silica. In our

Bragg coatings, λ/8 of tantala was 64.6 nm. It shouldn’t take much more of a push

in this direction before tens of nm of diffusion start to have a significant impact on

the thermal and mechanical properties of the layers. We envision a parametric study

with various Bragg coating designs in which the thin layers approach these diffusion

lengths to confirm or exclude models of layer diffusion and the resulting impacts on

materials parameters.

Now that this technique has been shown to be feasible, there are many avenues of

study that are open for us to learn more about the physical and optical properties of
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these exciting and critical materials.
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