
GRAph Parallel Actor Language — A
Programming Language for Parallel

Graph Algorithms

Thesis by

Michael deLorimier

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2013

(Defended June 12, 2012)

ii

c© 2013

Michael deLorimier

All Rights Reserved

iii

Abstract

We introduce a domain-specific language, GRAph PArallel Actor Language, that enables

parallel graph algorithms to be written in a natural, high-level form. GRAPAL is based on

our GraphStep compute model, which enables a wide range of parallel graph algorithms

that are high-level, deterministic, free from race conditions, and free from deadlock. Pro-

grams written in GRAPAL are easy for a compiler and runtime to map to efficient parallel

field programmable gate array (FPGA) implementations. We show that the GRAPAL com-

piler can verify that the structure of operations conforms to the GraphStep model. We

allocate many small processing elements in each FPGA that take advantage of the high

on-chip memory bandwidth (5x the sequential processor) and process one graph edge per

clock cycle per processing element. We show how to automatically choose parameters for

the logic architecture so the high-level GRAPAL programming model is independent of the

target FPGA architecture. We compare our GRAPAL applications mapped to a platform

with four 65 nm Virtex-5 SX95T FPGAs to sequential programs run on a single 65 nm

Xeon 5160. Our implementation achieves a total mean speedup of 8x with a maximum

speedup of 28x. The speedup per chip is 2x with a maximum of 7x. The ratio of energy

used by our GRAPAL implementation over the sequential implementation has a mean of

1/10 with a minimum of 1/80.

iv

Contents

Abstract iii

1 Introduction 1

1.1 High-Level Parallel Language for Graph Algorithms 2

1.2 Efficient Parallel Implementation . 4

1.3 Requirements for Efficient Parallel Hardware for Graph Algorithms 8

1.3.1 Data-Transfer Bandwidths . 8

1.3.2 Efficient Message Handling . 10

1.3.3 Use of Specialized FPGA Logic 10

1.4 Challenges in Targeting FPGAs . 11

1.5 Contributions . 12

1.6 Chapters . 14

2 Description and Structure of Parallel Graph Algorithms 16

2.1 Demonstration of Simple Algorithms . 16

2.1.1 Reachability . 16

2.1.2 Asynchronous Bellman-Ford . 17

2.1.3 Iterative Bellman-Ford . 19

2.2 GraphStep Model . 21

2.3 Graph Algorithm Examples . 23

2.3.1 Graph Relaxation Algorithms . 23

2.3.2 Iterative Numerical Methods . 25

2.3.3 CAD Algorithms . 26

2.3.4 Semantic Networks and Knowledge Bases 27

v

2.3.5 Web Algorithms . 27

2.4 Compute Models and Programming Models 27

2.4.1 Actors . 28

2.4.2 Streaming Dataflow . 28

2.4.3 Bulk-Synchronous Parallel . 30

2.4.4 Message Passing Interface . 31

2.4.5 Data Parallel . 31

2.4.6 GPGPU Programming Models . 32

2.4.7 MapReduce . 33

2.4.8 Programming Models for Parallel Graph Algorithms 34

2.4.9 High-Level Synthesis for FPGAs 36

3 GRAPAL Definition and Programming Model 38

3.1 GRAPAL Kernel Language . 38

3.2 Sequential Controller Program . 44

3.3 Structural Constraints . 45

4 Applications in GRAPAL 48

4.1 Bellman-Ford . 48

4.2 ConceptNet . 50

4.3 Spatial Router . 53

4.4 Push-Relabel . 57

4.5 Performance . 59

5 Implementation 62

5.1 Compiler . 62

5.1.1 Entire Compilation and Runtime Flow 64

5.1.1.1 Translation from Source to VHDL 67

5.1.1.2 Structure Checking . 70

5.2 Logic Architecture . 71

5.2.1 Processing Element Design . 76

vi

5.2.1.1 Support for Node Decomposition 82

5.2.2 Interconnect . 85

5.2.2.1 Butterfly Fat-Tree . 88

6 Performance Model 90

6.1 Model Definition . 91

6.1.1 Global Latency . 92

6.1.2 Node Iteration . 95

6.1.3 Operation Firing and Message Passing 95

6.2 Accuracy of Performance Model . 97

7 Optimizations 99

7.1 Critical Path Latency Minimization . 100

7.1.1 Global Broadcast and Reduce Optimization 100

7.1.2 Node Iteration Optimization . 102

7.2 Node Decomposition . 102

7.2.1 Choosing ∆limit . 104

7.3 Message Synchronization . 106

7.4 Placement for Locality . 108

8 Design Parameter Chooser 115

8.1 Resource Use Measurement . 116

8.2 Logic Parameters . 117

8.3 Memory Parameters . 121

8.4 Composition to Full Designs . 123

9 Conclusion 125

9.1 Lessons . 125

9.1.1 Importance of Runtime Optimizations 125

9.1.2 Complex Algorithms in GRAPAL 125

9.1.3 Implementing the Compiler . 126

vii

9.2 Future Work . 126

9.2.1 Extensions to GRAPAL . 126

9.2.2 Improvement of Applications . 127

9.2.3 Logic Sharing Between Methods 127

9.2.4 Improvements to the Logic Architecture 128

9.2.5 Targeting Other Parallel Platforms 128

Bibliography 129

A GRAPAL Context-Free Grammar 139

B Push-Relabel in GRAPAL 141

C Spatial Router in GRAPAL 145

1

Chapter 1

Introduction

My Thesis: GRAPAL is a DSL for parallel graph algorithms that enables them to be written

in a natural, high-level form. Computations restricted to GRAPAL’s domain are easy to

map to efficient parallel implementations with large speedups over sequential alternatives.

Parallel execution is necessary to efficiently utilize modern chips with billions of tran-

sistors. There exists a need for programming models that enable high-level, correct and ef-

ficient parallel programs. To describe a parallel program on a low level, concurrent events

must be carefully coordinated to avoid concurrency bugs, such as race conditions, deadlock

and livelock. Further, to realize the potential for high performance, the program must dis-

tribute and schedule operations and data across processors. A good parallel programming

model helps the programmer capture algorithms in a natural way, avoids concurrency bugs,

enables reasonably efficient compilation and execution, and abstracts above a particular

machine or architecture. Three desirable qualities of a programming model are that it is

general and captures a wide range of computations, high level so concurrency bugs are rare

or impossible, and easy to map to an efficient implementation. However, there is a tradeoff

between a programming model being general, high-level and efficient.

The GRAPAL programming language is specialized to parallel graph algorithms so it

can capture them on a high level and translate and optimize them to an efficient low-level

form. This domain-specific language (DSL) approach, which GRAPAL takes, is a common

approach used to improve programmability and/or performance by trading off generality.

GRAPAL is based on the GraphStep compute model [1, 2], in which operations are lo-

calized to graph nodes and edges and messages flow along edges to make the structure of

2

the computation match the structure of the graph. GRAPAL enables programs to be de-

terministic without race conditions or deadlock or livelock. Each run of a deterministic

program gets the same result as other runs and is independent of platform details such as

the number of processors. The structure of the computation is constrained by the Graph-

Step model, which allows the compiler and runtime to make specialized scheduling and

implementation decisions to produce an efficient parallel implementation. For algorithms

in GraphStep, memory bandwidth is critical, as well as network bandwidth and network

latency. The GRAPAL compiler targets FPGAs, which have high on-chip memory band-

width (Table 1.1) and allow logic to be customized to deliver high network bandwidth with

low latency. In order to target FPGAs efficiently, the compiler needs the knowledge of the

structure of the computation that is provided by restriction to the GraphStep model. Graph-

Step tells the compiler that operations are local to nodes and edges and communicate by

sending messages along the graph structure, that the graph is static, and that parallel activity

is sequenced into iterations. The domain that GRAPAL supports, as a DSL, is constrained

on top of GraphStep to target FPGAs efficiently. Local operations are feed-forward to make

FPGA logic simple and high-throughput. These simple primitive operations are composed

by GraphStep into more complex looping operations suitable for graph algorithms.

We refer to the static directed multigraph used by a GraphStep algorithm asG = (V,E).

V is the set of nodes and E is the set of edges. (u, v) denotes a directed edge from u to v.

1.1 High-Level Parallel Language for Graph Algorithms

An execution of a parallel program is a set of events whose timing is a complex function of

machine details which include operator latencies, communication latencies, memory and

cache sizes, and throughput capacities. These timing details affect the ordering of low-

level events, making it difficult or impossible to predict the relative ordering of events.

When operations share state, the order of operations can affect the outcome due to write

after read, read after write, or write after write dependencies. When working at a low

level, the programmer must ensure the program is correct for any possible event ordering.

Since it is very difficult to test all possible execution cases, race-condition bugs will be

3

exposed late, when an unlikely ordering occurs or when the program is run with a different

number of processors. Even if all nondeterministic outcomes are correct, it is difficult

to understand program behavior due to lack of repeatability. nondeterminism can raise a

barrier to portability since the machine deployed and the test machine often expose different

orderings.

Deadlock occurs when there is a cycle of N processes in which each process, Pi, is

holding resource,Ri, and is waiting for P(i+1) mod N to releaseR(i+1) mod N before releasing

Ri. When programming on a primitive level, with locks to coordinate sharing of resources,

deadlock is a common concurrency bug. Good high-level models prevent deadlock or help

the programmer avoid deadlock. Many data-parallel models restrict the set of possible

concurrency patterns by excluding locks from the model, thereby excluding the possibility

of deadlock. In transactional memory the runtime (with possible hardware support) detects

deadlock then corrects it by rolling back and re-executing.

Even if it seems that deadlock is impossible from a high-level perspective, bufferlock,

a type of deadlock, can occur in message passing programs due to low-level resource con-

straints. Bufferlock occurs when there is a cycle of hardware buffers where each buffer is

full and is waiting for empty slots in the next buffer [3]. Since bufferlock depends on hard-

ware resource availability, this is another factor that can limit portability across machines

with varying memory or buffer sizes. For example, it may not work to execute a program

on a machine with more total memory but less memory per processor than the machine it

was tested on.

The GraphStep compute model is designed to capture parallel graph algorithms at a

high level where they are deterministic, outcomes do not depend on event ordering, and

deadlock is impossible. A GraphStep program works on a static directed multigraph in

which state-holding nodes are connected with state-holding edges. First, GraphStep syn-

chronizes parallel operations into iterations, so no two operations that read or write to

the same state can occur in the same iteration. Casting parallel graph algorithms as iter-

ative makes them simple to describe. In each iteration, or graph-step, active nodes start

by performing an update operation that accesses local state only and sends messages on

some of the node’s successor edges. Each edge that receives a message can perform an

4

operation that accesses local edge state only and sends a single message to the edge’s

destination node. Destination nodes then accumulate incoming messages with a reduce

operation and store the result for the update operation in the next graph-step. A global

barrier-synchronization separates these reduce operations at the end of one graph-step from

the update operations at the beginning of the next. Figure 1.2 shows the structure of these

operations in a graph-step for the simple graph in Figure 1.1. Since node update and edge

operations act on local state only and fire at most once per node per graph-step, there is

no possibility for race conditions. With the assumption that the reduce operation is com-

mutative and associative, the outcome of each graph-step is deterministic. All operations

are atomic so the programmer does not have to reason about what happens in each opera-

tion, or whether to make a particular operation atomic. There are no dependency cycles, so

deadlock on a high level is impossible. Since there is one message into and one message

out of each edge, the compiler can calculate the required message buffer space, making

bufferlock impossible.

1.2 Efficient Parallel Implementation

Achieving high resource utilization is usually more difficult when targeting parallel ma-

chines than when targeting sequential machines. If the programmer is targeting a range

of parallel machine sizes, then program efficiency must be considered for each possible

number of parallel processors. In a simple abstract sequential model, performance is only

affected by total computation work. That is, if T is the time to complete a computation

and W is the total work of the computation, then T = W . In general, parallel machines

vary over more parameters than sequential machines. One of the simplest parallel abstract

machine models is Parallel Random Access Machine (PRAM) [4], in which the only pa-

rameter that varies is processor count, P . In the PRAM model, runtime depends is the

maximum amount of time used by any processor: T = maxP
i=1wi. Minimizing work,

W =
∑P

i=1wi, still helps minimize T , but extra effort must be put into load balancing

work across processors, so T ≈ W/P . Other parallel machine models include parameters

for network bandwidth, network latency, and network topology. The performance model

5

Figure 1.1: Simple graph

Figure 1.2: The computation structure of a graph-step on the graph in Figure 1.1 is shown
here. In graph-step i, node update operations at nodes n1 and n2 send to edge operations at
edges e1, e2, e3 and e4, which send to node reduce operations at nodes n1 and n2.

most relevant to GraphStep is the bulk-synchronous parallel model (BSP), [5] which has

processor count, a single parameter to model network bandwidth, and a single parameter

to model network latency. To optimize for BSP, computation is divided into supersteps,

and time spent in a superstep, S, needs to be minimized. The time spent in a superstep

performing local operations is w = maxP
i=1wi, where wi is the time spent by processor i.

The time spent communicating between processors is hg, where h is the number of mes-

sages and g is the scaling factor for network load. The inverse of network bandwidth is the

primary contributor to g. Each superstep ends with a global barrier synchronization whose

time is l. A superstep is the sum of computation time, communication time, and barrier

6

synchronization time:

S = w + hg + l

Now work in each superstep (
∑P

i=1wi) needs to be minimized and load balanced, and

network traffic needs to be minimized.

Figure 1.3: Work should be load bal-
anced across the 4 processors to min-
imize runtime (T = maxP

i=1 Ti in the
PRAM model).

Figure 1.4: This linear topology of nodes
or operators should be assigned to the 2
processors to minimize network traffic so
h in the BSP model is 1 (bottom) not 7
(top).

An efficient execution of a parallel program requires a good assignment of operations to

processors and data to memories. To minimize time spent according to the PRAM model,

operations should be load-balanced across processors (Figure 1.3). In BSP, message pass-

ing between operations can be the bottleneck due to too little network bandwidth, g. To

minimize message traffic, a local assignment should be performed so operations that com-

municate are assigned to the same processor (Figure 1.4). This assignment for locality

should not sacrifice the load-balance, so both w and hg are minimized. Most modern paral-

lel machines have non-uniform memory access (NUMA) [6] in which the distance between

memory locations and processors matters. Typically, each processor has its own local mem-

7

Figure 1.5: Decomposition transforms a node into smaller pieces that require less memory
and less compute per piece. The commutativity and associativity of reduce operators allows
them to be decomposed into fanin nodes. Fanout nodes simply copy messages.

ory which it can access with relatively low latency and high bandwidth compared to other

processors’ memories. In BSP each processor has its own memory and requires message

passing communication for operations at one processor to access state stored at others. For

graph algorithms to use BSP machines efficiently operations on nodes and edges should

be located on the same processor as the node and edge objects. For graph algorithms to

minimize messages between operations, neighboring nodes and edges should be located

on the same processor whenever possible. Finally, load-balancing nodes and edges across

processors helps load-balance operations on nodes and edges. In general, this assignment

of operations and data to processors and memories may be done by part of the program,

requiring manual effort by the programmer, by the compiler, or by the runtime or OS. For a

good assignment either the programmer customizes the assignment for the program, or the

programming model exposes the structure of the computation and graph to the compiler

and runtime.

GraphStep abstracts out machine properties and assignment of operation and data to

processors. The GRAPAL compiler and runtime has knowledge of the parameters of the

machine being targeted so it can customize the computation to the machine. The GRAPAL

runtime uses the knowledge of the structure of the graph to assign operations and data to

processors and memories so machine resources can be utilized efficiently. The runtime

tries to assign neighboring nodes and edges to processors so that communication work, hg,

is minimized. Edge objects are placed with their successor nodes so an edge operation

may get an inter-processor message on its input but never needs to send an inter-processor

message on its output. Each operation on an inter-processor edge contributes to one inter-

8

processor message, so the runtime minimizes inter-processor edges. For GraphStep algo-

rithms, the runtime knows that the time spent on an active node v with indegree ∆−(v) and

outdegree ∆+(v) is proportional to max(∆−(v),∆+(v)). Therefore, computation time in

a BSP superstep at processor i, where v(i) is the set of active nodes, is:

wi =
∑
v∈v(i)

max(∆−(v),∆+(v))

Load balancing is minimizing maxP
i=1wi so nodes are assigned to processors to balance the

number of edges across processor. For many graphs, a few nodes are too large to be load

balanced across many processors (|E|/P < maxv∈V max(∆−(v),∆+(v))). The runtime

must break nodes with large indegree and outdegree into small pieces so the pieces can be

load balanced (Figure 1.5). Node decomposition decreases the outdegree by allocating in-

termediate fanout nodes between the original node and its successor edges, and fanin nodes

between the original node and predecessor edges. Fanout nodes simply copy messages and

fanin nodes utilize the commutativity and associativity of reduce operations to break the

reduce into pieces. Finally, restriction to a static graph simplifies assignment since it only

needs to be performed once, when the graph is loaded.

1.3 Requirements for Efficient Parallel Hardware for

Graph Algorithms

This section describes machine properties that are required for efficient execution of Graph-

Step algorithms.

1.3.1 Data-Transfer Bandwidths

Data-transfer bandwidths are a critical factor for high performance. In each iteration, or

graph-step, the state of each active node and edge must be loaded from memory, making

memory bandwidth critical. Each active edge which connects two nodes that are assigned

to different processors requires an inter-processor message, making network bandwidth

9

XC5VSX95T 3 GHz Xeon 5160 3 GHz Xeon 5160
FPGA One Core Both Cores

On-chip Memory Bandwidth 4000 Gbit/s 380 Gbit/s 770 Gbit/s
On-chip Communication Bandwidth 7000 Gbit/s N/A 770 Gbit/s

Table 1.1: Comparison of FPGA and Processor on-chip memory bandwidth and on-chip
raw communication bandwidth. Both chips are of the same technology generation, with a
feature size of 65 nm. The FPGA frequency is 450 MHz, which is the maximum supported
by BlockRAMs in a Virtex-5 with speed grade -1 [7]. The processor bandwidth is the
maximum available from the L1 cache [8]. All devices can read and write data concurrently
at the quoted bandwidths. Communication bandwidth for the FPGA is the bandwidth of
wires that cross two halves of the reconfigurable fabric [9, 10]. Communication bandwidth
for the dual-core Xeon is the bandwidth between the two cores. Since cores communicate
through caches, this bandwidth is the same as on-chip memory bandwidth.

critical (g in the BSP model). For high performance, GraphStep algorithms should be

implemented on machines with high memory and network bandwidth. Table 1.1 shows

on-chip memory and on-chip communication bandwidths for an Intel Xeon 5160 dual core

and for a Virtex-5 FPGA. Both chips are of the same technology generation, with a feature

size of 65 nm. Since the raw on-chip memory and network bandwidths of the FPGA are

5 times and 9 times higher, respectively, than the Xeon, our GRAPAL compiler should be

able to exploit FPGAs to achieve high performance.

Figure 1.6: A regular mesh with nearest
neighbor communication is partitioned
into squares with 4 nodes per partition.
Each of the 4 partitions shown here is
identified with a processor.

Figure 1.7: The regular mesh partition
(left) has 4 neighboring partitions so
its nodes can pack their 8 high-level,
fine-grained messages into 4 low-level,
coarse-grained messages. Nodes in the
irregular graph partition (right) have 8
neighboring nodes in 8 different parti-
tions, so each of the 8 low-level, mes-
sages carries only one high-level mes-
sage.

10

1.3.2 Efficient Message Handling

Graph applications typically work on sparse, irregular graphs. These include semantic net-

works, the web, finite element analysis, circuit graphs, and social networks. A sparse graph

has many fewer edges than a fully connected graph, and an irregular graph has no regular

structure of connections between nodes. To efficiently support graphs with an irregular

structure the machine should perform fine-grained message passing efficiently. For regular

communication structures, small values can be packed into large coarse-grained messages.

An example of a regular high-level structure is a 2-dimensional mesh with nodes that com-

municate with their four nearest neighbors. This mesh can be partitioned into rectangles

so nodes in one partition only communicate with nodes in the four neighboring partitions

(Figure 1.6). High-level messages between nodes are then packed into low-level, coarse-

grained messages between neighboring partitions (Figure 1.7). When an irregular struc-

ture is partitioned, each partition is connected to many others so each connection does not

have enough values to pack into a large coarse-grained message. High-level messages in

GraphStep applications usually contain one scalar or a few scalars, so the target machine

needs to handle fine-grained messages efficiently. Conventional parallel clusters typically

only handle coarse-grained communication with high throughput. MPI implementations

get two orders of magnitude less throughput for messages of a few bytes than for kilobyte

messages [11]. Grouping fine-grained messages into coarse-grained messages has to be

described on a low level and cannot be done efficiently in many cases. FPGA logic can

process messages with no synchronization overhead by streaming messages into and out of

a pipeline of node and edge operators. Section 5.2.1 explains how these pipelines handle a

throughput of one fine-grained message per clock cycle.

1.3.3 Use of Specialized FPGA Logic

The structure of the computation in each graph-step is known by the compiler: Node update

operators send to edges, edges operations fire and send to node reduce operators, then node

reduce operators accumulate messages (Figure 1.2). By targeting FPGAs, the GRAPAL

compiler specializes processors, or Processing Elements (PEs), for this structure. Compo-

11

nents of FPGA logic are often organized as spatial pipelines which stream data through

registers and logic gates. We implement GraphStep operators as pipelines so each operator

has a throughput of one operation per cycle. We group an edge operator, a node reduce

operator, a node update operator, and a global reduce operator into each PE. This means

that the only inter-PE messages are sent from a node update operation to an edge opera-

tion, which results in lower network traffic (h in BSP) than the case where each operator

can send a message over the network. Since memory bandwidth is frequently a bottleneck,

we allocate node and edge memories for the operators so they do not need to compete for

shared state. Section 5.2.1 explains how PEs are specialized so each active edge located at

a PE uses only one of the PE pipeline’s slots in a graph-step. In terms of active edges per

cycle, specialized PE logic gives a speedup of 30 times over a sequential processor that is-

sues one instruction per cycle: Sequential code for a PE executes 30 instructions per active

edge (Figure 5.8). Further, by using statically managed on-chip memory there are no stalls

due to cache misses.

Like BSP, GraphStep performs a global barrier synchronization at the end of each

graph-step. This synchronization detects when message and operation activity has qui-

esced, and allows the next graph-step after quiescence. We specialize the FPGA logic to

minimize the time of the global barrier synchronization, l. By dedicating special logic to

detect quiescence and by dedicating low-latency broadcast and reduce networks for the

global synchronization signals we reduce l by 55%.

1.4 Challenges in Targeting FPGAs

High raw memory and network bandwidths and customizable logic give FPGAs a perfor-

mance advantage. In order to use FPGAs, the wide gap between the high-level GraphStep

programs and low-level FPGA logic must be bridged. In addition to capturing parallel

graph algorithms on a high-level, GRAPAL constrains program to a domain of computa-

tions that are easy to compile to FPGA logic. Local operations on nodes and edges are

feed forward so they don’t have loops or recursion. This makes it simple to compile op-

erators to streaming spatial pipelines that perform operations at a rate of one per clock

12

cycle. The graph is static so PE logic is not made complex by the need for allocation,

deletion, and garbage collection functionality. GRAPAL’s restriction that there is at most

one operation per edge per graph-step allows the implementation to use the FPGA’s small,

distributed memories to perform message buffering without the possibility of bufferlock or

cache misses.

Each FPGA model has a unique number of logic and memory resources, and a compiled

FPGA program (bitstream) specifies how to use each logic and memory component. The

logic architecture output by the GRAPAL compiler has components, such as PEs, whose

resource usage is a function of the input application. To keep the programming model ab-

stract above the target FPGA, the GRAPAL compiler customizes the output architecture to

the amount of resources on the target FPGA platform. Unlike typical FPGA programming

languages (e.g. Verilog), where the program is customized by the programmer for the target

FPGA’s resource count, GRAPAL supports automated scaling to large FPGAs. Chapter 8

describes how the compiler chooses values for logic architecture parameters for efficient

use of FPGA resources.

1.5 Contributions

• GraphStep compute model: We introduce GraphStep as a minimal compute model

that supports a wide range of high-level parallel graph algorithms with highly efficient

implementations. We chose to make the model iterative so it is easy to reason about tim-

ing behavior. We chose to base communication on message passing to make execution

efficient and so the programmer does not have to reason about shared state. GraphStep

is interesting to us because we think it is the simplest model that is based on iteration

and message passing and captures a wide range of parallel graph algorithms. Chapter 2

explains why GraphStep is a useful compute model, particularly how it is motivated by

parallel graph algorithms and how it is different from other parallel models. This work

explores the ramifications of using GraphStep: how easy it is to program, what kind of

performance can be achieved, and what an efficient implementation looks like.

13

• GRAPAL programming language:

We create a DSL that exposes GraphStep’s graph concepts and operator concepts to the

programmer. We identify constraints on GraphStep necessary for a mapping to simple,

efficient, spatial FPGA logic, and include them in GRAPAL. We show how to statically

check that a GRAPAL program conforms to GraphStep so that it has GraphSteps’s safety

properties.

• Demonstration of graph applications in GRAPAL: We demonstrate that GRAPAL

can describe four important parallel graph algorithm benchmarks: Bellman-Ford to com-

pute single-source shortest paths, the spreading activation query for the ConceptNet se-

mantic network, a parallel graph algorithm for the netlist routing CAD problem, and the

Push-Relabel method for single-source, single-sink Max Flow/Min Cut.

• Performance benefits for graph algorithms in GRAPAL: We compare our benchmark

applications written in GRAPAL and executed on a platform of 4 FPGAs to sequential

versions executed on a sequential processor. We show a mean speedup of 8 times with a

maximum speedup of 28 times over the sequential programs. We show a mean speedup

per chip of 2 times with a maximum speedup of 7 times. We also show the energy cost

of GRAPAL applications compared to sequential versions has a mean ratio of 1/10 with

a minimum of 1/80.

• Compiler for GRAPAL: We show how to compile GRAPAL programs to FPGA logic.

Much of the compiler uses standard compilation techniques to get from the source pro-

gram to FPGA logic. We develop algorithms specific to GRAPAL to check that the

structure of the program conforms to GraphStep. These checks prevent race conditions

and enable the use of small-distributed memories without bufferlock.

• Customized logic architecture: We introduce a high-performance, highly customized

FPGA logic architecture for GRAPAL. This logic architecture is output by the compiler

and is specialized to GraphStep computations in general, and also the compiled GRA-

PAL program in particular. We show how to pack many processing elements (PEs) into

an FPGA with a packet-switched network. We show how to architect PE logic to input

messages, perform node and edge operations, and output messages at a high throughput,

at a rate of one edge per graph-step. We show how the PE architecture handles fine-

14

grained messages with no overhead. We show how to use small, distributed memories at

high throughput.

• Evaluation of optimizations: We demonstrate optimizations for GRAPAL that are en-

abled by restrictions to its domain. We show a mean reduction of global barrier synchro-

nization latency of 55% by dedicating networks to global broadcast and global reduce.

We show a mean speedup of 1.3 due to decreasing network traffic by placing for locality.

We show a mean speedup of 2.6 due to improving load balance by performing node de-

composition. We tune the node decomposition transform and show that a good target size

for decomposed nodes is the maximum size that fits in a PE. We evaluate three schemes

for message synchronization that trade off between global barrier synchronization costs

(l) on one hand and computation and communication throughput costs (w + hg) on the

other. We show that the best synchronization scheme delivers a mean speedup of 4 over a

scheme that does not use barrier synchronization. We show that the best synchronization

scheme delivers a mean speedup of 1.7 over one that has extra barrier synchronizations

used to decrease w + hg.

• Automatic choice of logic parameters: We show how the compiler can automatically

choose parameters to specialize the logic architecture of each GRAPAL program to the

target FPGA. With GRAPAL, we provide an example of a language that is abstract above

a particular FPGA device while being able to target a range of devices. We show that

our compiler can achieve a high utilization of the device, with 95% to 97% of the logic

resources utilized and 89% to 94% of small BlockRAM memories utilized. We show

that the mean performance achieved for the choices made by our compiler is within 1%

of the optimal choice.

1.6 Chapters

The rest of this thesis is organized as follows: Chapter 2 gives an overview of parallel graph

algorithms, shows how they are captured by the GraphStep compute model, and compares

GraphStep to other parallel compute and programming models. Chapter 3 explains the

GRAPAL programming language and how it represents parallel graph algorithms. Chap-

15

ter 4 presents the example applications in GRAPAL, and evaluates their performance when

compiled to FPGAs compared to the performance for sequential versions. Chapter 5 ex-

plains the GRAPAL compiler and the logic architecture generated by the compiler. Chap-

ter 6 gives our performance model for GraphStep, which is used to evaluate bottlenecks in

GRAPAL applications and evaluate the benefit of various optimizations. Chapter 7 evalu-

ates optimizations that improve the assignment of operations and data to PEs, optimizations

that decrease critical path latency, and optimizations that decrease the cost of synchroniza-

tion. Chapter 8 explains how the compiler chooses values for parameters of its output logic

architecture as a function of the GRAPAL application and of FPGA resources. Finally

Chapter 9 discusses future work for extending and further optimizing GRAPAL.

16

Chapter 2

Description and Structure of Parallel
Graph Algorithms

This chapter starts by describing simple representative examples of parallel graph algo-

rithms. We use the Bellman-Ford single-source shortest paths algorithm [12] to motivate

the iterative nature of the GraphStep compute model. GraphStep is then described in detail.

An overview is given of domains of applications that work on parallel graph algorithms.

The GraphStep compute model is compared to related parallel compute models and perfor-

mance models.

2.1 Demonstration of Simple Algorithms

First we describe simple versions of Reachability and Bellman-Ford in which parallel ac-

tions are asynchronous. Next, the iterative nature of GraphStep is motivated by show-

ing that the iterative form Bellman-Ford has exponentially better time-complexity than the

asynchronous form.

2.1.1 Reachability

Source to sink reachability is one of the simplest problems that can be solved with parallel

graph algorithms. A reachability algorithm inputs a directed graph and a source node then

labels each node for which there exists a path from the source to the node. Figure 2.1

shows the Reachability algorithm setAllReachable. setAllReachable initiates

17
class node

boolean reachable
set<node> neighbors
setReachable()

if not reachable
reachable := true
for each n in neighbors

n.setReachable()

setAllReachable(node source)
for each node n

n.reachable := false
source.setReachable()

Figure 2.1: Reachability pseudocode

activity by calling the setReachable method at the source node. When invoked on a

node not yet labeled reachable, setReachable propagates itself to each successor node.

If the node is labeled reachable then setReachable doesn’t need to do anything. This

algorithm can be interpreted as a sequential algorithm, in which case setReachable

blocks on its recursive calls. It can also be interpreted as an asynchronous parallel

algorithm, where calls are non-blocking. In the asynchronous case, setReachable

should be atomic to prevent race conditions between the read of reachable in if not

reachable and the reachable := true write. Although this algorithm is correct

if setReachable is not atomic, without atomicity time is wasted when multiple threads

enter the if statement at the same time and generate redundant messages. Activity in the

asynchronous case propagates along graph edges eagerly, and the only synchronization

between parallel events is the atomicity of setReachable.

2.1.2 Asynchronous Bellman-Ford

Bellman-Ford computes the shortest path from a source node to all other nodes. The input

graph is directed and each edge is labeled with a weight. The distance of a path is the sum

over its edges’ weights. Bellman-Ford differs from Dijkstra’s shortest paths algorithm in

that it allows edges with negative weights. Bellman-Ford is slightly more complex than

reachability and is one of the simplest algorithms that has most of the features we care

about for parallel graph algorithms.

18
class node

integer distance
set<edge> neighboringEdges
setDistance(integer newDist)

if newDist < distance
distance := newDist
neighboringEdges.propagateDistance(newDist)

class edge
integer weight
node destination
propagateDistance(integer sourceDistance)

destination.setDistance(sourceDistance + weight)

bellmanFord(node source)
for each node n

n.distance := infinity
source.setDistance(0)

Figure 2.2: Asynchronous Bellman-Ford

Figure 2.2 describes Bellman-Ford in an asynchronous style, analogous to the Reacha-

bility algorithm in Figure 2.1. An edge class is included to hold each edge’s weight state

and propagateDistance method. This method is required to add the edge’s weight

to the message passed along the edge. Like the Reachability algorithm this algorithm is

sequential when calls are blocking and parallel when calls are non-blocking.

The problem with the asynchronous attempt at Bellman-Ford algorithm is that the num-

ber of operations invoked can be exponential in the number of nodes. An example graph

with exponentially bad worst-case performance is the ladder graph in Figure 2.3. Each

edge is labeled with its weight, the source is labeled with s and the sink is labeled with

t. Each path from the source to sink can be represented by a binary number which lists

the names of its nodes. The path “111” goes through all nodes labeled 1, and “110” goes

through the first two nodes labeled 1 then the last node labeled 0. The distance of each

path is the numerical value of its binary representation: The distance of “111” is 7 and the

distance of “110” is 6. An adversary scheduling the order of operations will order paths

discovered from s to t by counting down from the highest “111” to the lowest “000”. In the

general case, a graph with ladder length l has node count 2l+2. The adversarial scheduling

requires 2l paths to be discovered, with (l+1)2l edge traversals. This is exponentially more

19

Figure 2.3: Ladder graph to illustrate pathological operation ordering for asynchronous
Bellman-Ford

than a schedule ordered by breadth-first search, which requires only 4l edge traversals (one

for each edge).

2.1.3 Iterative Bellman-Ford

To avoid a pathological ordering, firings of the setDistance method can be sequenced

into an iteration over graph-steps: At each node, setDistance is invoked at most once

per graph-step. In the asynchronous algorithm the node method, setDistance, first re-

ceives a single message, then sends messages. Now a single invocation of setDistance

needs to input all messages from the previous graph-step. To do this, setDistance

is split into two parts where the first receives messages and the second sends messages.

Figure 2.4 shows the iterative version of Bellman-Ford. reduce setDistance re-

ceives messages from the previous graph-step, and update setDistance sends mes-

sages after all receives have completed. All of the messages destined to a particular

node are reduced to a single message via a binary tree, with the binary operator reduce

setDistance. To minimize latency and required memory capacity, this binary operator

is applied to the first two messages to arrive at a node and again each time another message

arrives. Since update setDistance fires only once per graph-step, it is in charge of

reading and writing node state.

Synchronizing update operations into iterations is not the only way to prevent expo-

nential work complexity. [13] gives an efficient, distributed version of Shortest Path with

20
class node

integer distance
set<edge> neighboringEdges

// The reduce method to handle messages when they arrive.
reduce setDistance(integer newDist1, integer newDist2)

return min(newDist1, newDist2)
// The method to read and write state and send messages is
// the same as asynchronous setDistance.

update setDistance(integer newDist)
if newDist < distance

distance := newDist
neighboringEdges.propagateDistance(newDist)

class edge
integer weight
node destination
propagateDistance(integer sourceDistance)

destination.setDistance(sourceDistance + weight)

bellmanFord(node source)
for each node n

n.distance := infinity
source.setDistance(0)

// An extra command is required to say what to do once all
// messages have been received.

iter_while_active()

Figure 2.4: Iterative Bellman-Ford

negative weights, in which all synchronization is local to nodes. This distributed algorithm

is more complex than the iterative Bellman-Ford since it requires reasoning about com-

plex orderings of events. The iterative nature of GraphStep gives the programmer a simple

model, while preventing pathological operation orderings.

Iterative Bellman-Ford leaves it to the language implementation to first detect when

all messages have been received by the reduce method at a node so the update method

can fire. The implementation uses a global barrier synchronization to separate reduce and

update methods. This global barrier synchronization provides a natural division between

graph-steps. The command iter while active directs the machine to continue on the

next graph-step whenever some message is pending at the end of a graph-step.

Continuing with iterations whenever there is a message pending is fine if there are no

negative cycles in the graph. If a negative cycle exists then, this algorithm will iterate for-

ever, continually decreasing the distance to nodes in the negative cycle. Since the maximum

21
// Return true iff there is a negative loop.
boolean bellmanFord(graph g, node source)

for each node n
n.distance := infinity

source.setDistance(0)
active = true
for (i = 0; active && i < g.numNodes(); i++)

active := step()
return active

Figure 2.5: Iterative Bellman-Ford loop with negative cycle detection

length of a minimum path in a graph without negative cycles is the number of nodes, n, we

can always stop after n steps. Figure 2.5 has a revised bellmanFord loop which runs

for a maximum of n steps and returns true iff there exists a negative cycle. The command

step performs a graph-step and returns true iff there were any active messages at the end

of the step.

2.2 GraphStep Model

The GraphStep model [1, 2] generalizes the iterative Bellman-Ford algorithms in Fig-

ures 2.4 and 2.5. Just like Bellman-Ford, the computation follows the structure of the

graph and operations are sequenced into iterative steps. Since most iterative graph algo-

rithms need to broadcast from a sequential controller to nodes and reduce from nodes to

a sequential controller, GraphStep also includes these global broadcast and reduce opera-

tions.

The graph is a static directed multigraph. Each directed edge with source node i and

destination node j is called a successor edge of i and predecessor edge of j. If an edge

from i to j exists then node j is a successor of i and i is a predecessor of j. Each node

and each edge is labeled with its state. Operations local to nodes and edges read and write

local state only. An operation at a node may send messages to its successor edges, and an

operation at an edge may send a message to its destination node.

Computation and communication is sequenced into graph-steps. A graph-step consists

of operations in the three phases:

22

1. reduce: Each node performs a reduce operation on the messages from its predecessor

edges. This reduction should be commutative and associative.

2. update: Each node that received any reduce messages performs an update operation

which inputs the resulting value from the reduce, reads and writes node state, then pos-

sibly sends messages to some of its successor edges.

3. edge: Each edge that received a message performs an operation which inputs it, reads

and writes local state, then possibly sends a message to its destination node.

For each graph-step, at most one update operation occurs on each node and at most one

operation occurs on each edge. A global barrier between graph-steps guarantees that each

reduce operation only sees messages from the previous graph-step. In the reduce phase,

reduce operations process all their messages before the update phase. The programmer

is responsible for making the reduce operation commutative and associative so message

ordering does not affect the result. Since there is at most one operation per node or edge

per phase and inputs to an operation do not depend on message timing there are no race

conditions or nondeterminism. This way, the programmer does not need to consider the

possible timings of events that could occur across different machine architectures or opera-

tion schedules. Since there is at most one operation per node or edge per phase, the amount

of memory required for messages is known at graph-load time. This way, the programmer

only needs to consider whether the graph fits in memory and does not need to consider

whether message passing can cause deadlock due to filling memories.

An ordinary sequential process controls graph-step activity by broadcasting to nodes,

issuing step commands and reducing from nodes. These broadcast, step, and reduce com-

mands are atomic operations from the perspective of the sequential process. The GraphStep

program defines operators of each kind: reduce, update and edge. For each operator kind,

multiple operators may be defined so different operators are invoked on different nodes

or at different times. The global broadcast determines which operators are invoked in the

next graph-step. The sequential controller uses results from global reduces to determine

whether to issue another step command, issue a broadcast command, or finish. For exam-

ple, the controller for Bellman-Ford in Figure 2.5 uses iteration count to determine whether

to step or finish. This controller also uses the Boolean active, which is returned by the

23

step command, to indicate that node updates have not yet quiesced. Other graph algorithms

need to perform a global reduction across node state. For example, Conjugate Gradient

(Section 2.3.2) uses a global reduction to determine whether the error is below a threshold,

and CNF SAT uses a global reduction to signal that variables are overconstrained.

A procedure implementing the general GraphStep algorithm is in Figure 2.6. In this

formulation, the sequential controller calls the graphStep procedure to broadcast values

to nodes, advance one graph-step, and get the result of the global reduce.

2.3 Graph Algorithm Examples

In this section we review applications and classes of applications which use parallel graph

algorithms.

2.3.1 Graph Relaxation Algorithms

Both Reachability and Bellman-Ford are examples of a general class of algorithms that

perform relaxation on directed edges to compute a fixed point on node values. Given an

initial labeling of nodes, l0 ∈ L, a fixed point is computed on a function from labelings to

labelings: f : L → L. A labeling is a map from nodes, V , to some values in the set A, so

the set of labelings is L = V → A. f updates each node’s label based on its neighbors’

labels:

f(v) =
∨
{propagate(l, u, v) : u ∈ predecessors(v)}

The lattice meet operator,
∨

, propagate, and the initial labeling define the graph relaxation

algorithm.
∨
∈ P(L)→ L does an accumulation over the binary operator ∨ ∈ L×L→ L.

(L,∨) is a semi-lattice where l1 ∨ l2 is the greatest lower bound of l1 and l2. Propagate is

a monotonic function which propagates the label of source node along an edge and can

read but not write a value at the edge. For Bellman-Ford ∨ = min and propagate adds the

source’s label to the edge’s weight.

Graph relaxation algorithms are described in GraphStep with ∨ as the node reduce

method and propagate as the edge update method. The node update method per-

24

GlobalVariable messagesToNodeReduce
(boolean, globalReduceValue) graphStep(doBcast, bcastNodes, bcastArg,

nodeReduce, nodeUpdate, edgeUpdate, globalReduce, globalReduceId)
g := globalReduceId
edgeMessages := {}
for each node n
Variable nodeUpdateArg, fireUpdate
if doBcast then

nodeUpdateArg = bcastArg
fireUpdate = n ∈ bcastNodes

else
nodeMessages = {m ∈ messagesToNodeReduce : destination(m) = n}
nodeUpdateArg = reduce(nodeReduce, nodeMessages)
fireUpdate = 0 < |nodeMessages|

if fireUpdate then
(s, x, y) = nodeUpdate(state(n), nodeUpdateArg)
state(n) := s
g := globalReduce(g, x)
edgeMessages := union(edgeMessages, (e, y) : e ∈ successors(n))

finalMessages := {}
for each (e, y) ∈ edgeMessages
(s, z) = edgeUpdate(state(e), y)
state(e) := s
finalMessages := union(finalMessages, (destination(e), z))

active = 0 < |edgeMessages|
messagesToNodeReduce = finalMessages
return (active, g)

Figure 2.6: Here the GraphStep model is described as a procedure implementing a sin-
gle graph-step, parameterized by the operators to use for node reduce, node update and
edge update. This graphStep procedure is called from the sequential controller. If
doBcast is true, graphStep starts by giving bcastArg to the nodeUpdate op-
erator for each node in bcastNodes. Otherwise nodeReduce reduces all message
to each node and gives the result to nodeUpdate. Messages used by nodeReduce
are from edgeUpdates in the previous graph-step and are stored in the global variable
messagesToNodeReduce. The globalReduce operator must also be supplied with
its identifier, globalReduceId. A Boolean indicating whether messages are still active
and the result of the global reduce are returned to the sequential controller.

25

Algorithm Label Type Node Initial Value Meet Propagate u to v

Reachability B l(source) = T , l(others) = F or l(u)
Bellman-Ford Z∞ l(source) = 0, l(others) =∞ min l(u) + weight(u, v)
DFS N∞ list l(root) = [], l(others) = [∞] lexicographic min l(u) : branch(u, v)
SCC N l(u) = u min l(u)

Table 2.1: How various algorithms fit into graph-relaxation model

forms ∨ on the value it got from reduce and its current label to compute its next label.

If the label changed then node update sends its new label to all successor nodes. The

fixed point is found when the last graph-step has no message activity.

Other graph relaxation algorithms include depth-first search (DFS) tree construction,

strongly connected component (SCC) identification, and compiler optimizations that per-

form dataflow analysis over a control flow graph [14]. In DFS tree construction, the value

at each node is a string encoding the branches taken to get to the node from the root. The

meet function is the minimum string in the lexicographic ordering of branches. In SCCs,

nodes are initially given unique numerical values. The value at each node is the component

it is in. For SCC, each node needs a self edge, and the meet function is minimum. The algo-

rithm reaches a fixed point when all nodes in the same SCC have the same value. Table 2.1

describes Reachability, Bellman-Ford, DFS, and SCC in terms of their graph relaxation

functions.

2.3.2 Iterative Numerical Methods

Iterative numerical methods solve linear algebra problems, which includes solving a sys-

tem of linear equations (find x in Ax = b), finding eigenvalues or eigenvectors (find x or λ

in Ax = λx), and quadratic optimization (minimize f(x) = 1
2
xTAx + bTx). One primary

advantage of iterative numerical methods, as opposed to direct, is that the matrix can be

represented in a sparse form, which minimizes computation work and minimizes memory

requirements. One popular iterative method is Conjugate Gradient [15], which works when

the matrix is symmetrical positive definite and can be used to solve a linear system of equa-

tions or perform quadratic optimization. Lanczos [16] finds eigenvalues and eigenvectors

of a symmetrical matrix. Gauss-Jacobi [17] solves a linear system of equations when the

26

matrix is diagonally dominant. MINRES [18] solves least squares (finds x that minimizes

Ax− b).

An n×n square sparse matrix corresponds to a sparse graph with n nodes with an edge

from node j to node i iff there is a non-zero at row i and column j. The edge (j, i) is labeled

with the non-zero value Aij . A vector a can be represented with node state by assigning

ai to node i. When the graph is sparse, the computationally intensive kernel in iterative

numerical methods is sparse matrix-vector multiply (x = Ab), where A is a sparse matrix,

b is the input vector and x is the output vector. When a GraphStep algorithm performs

matrix-vector multiply, an update method at node j sends the value bj to its successor

edges, the edge method at (j, i) multiplies Aijbj , then the node reduce method reduces

input messages to get xi =
∑n

j=1Aijbj . Iterative numerical algorithms also compute dot

products and vector-scalar multiplies. To perform a dot product (c = a · b) where ai and

bi are stored at node i, an update method computes ci = aibi to send to the global reduce,

which accumulates c =
∑n

i=1 ci. For a scalar multiply (ka) where node i stores ai, k is

broadcast from the sequential controller to all nodes to compute at each node kai with an

update method.

2.3.3 CAD Algorithms

CAD algorithms implement stages of a compilation of circuit graphs from a high-level cir-

cuit described in a Hardware Description Language to an FPGA or a custom VLSI layout,

such as a standard cell array. The task for most CAD algorithms usually is to find an ap-

proximate solution to an NP-hard optimization problem. An FPGA router assigns nets in

a netlist to switches and channels to connect logic elements. Routing can be solved with a

parallel static graph algorithm, where the graph is the network of logic elements, switches

and channels. Section 4.3 describes a router in GRAPAL, which is based on the hardware

router described in [19]. Placement for FPGAs maps nodes in a netlist to a 2-dimensional

fabric of logic elements. The placer in [20] uses hardware to place a circuit graph, which

could be described using the GraphStep graph to represent an analogue of the hardware

graph. Register retiming, which moves registers in a netlist to minimize the critical path re-

27

duces to Bellman-Ford. Section 4.1 describes the use of Bellman-Ford in register retiming.

2.3.4 Semantic Networks and Knowledge Bases

Parallel graph algorithms can be used to perform queries and inferences on semantic net-

works and knowledge bases. Examples are marker passing [21, 22], subgraph isomor-

phism, subgraph replacement, and spreading activation [23].

ConceptNet is a knowledge base for common-sense reasoning compiled from a web-

based, collaborative effort to collect common-sense knowledge [23]. Nodes are concepts

and edges are relations between concepts, each labeled with a relation-type. The spreading

activation query is a key operation for ConceptNet used to find the context of concepts.

Spreading activation works by propagating weights along edges in the graph. Section 4.2

describes our GRAPAL implementation of spreading activation for ConceptNet.

2.3.5 Web Algorithms

Algorithms used to search the web or categorize web pages are usually parallel graph algo-

rithms. A simple and prominent example is PageRank, used to rank web pages [24]. Each

web page is a node and each link is an edge. PageRank weights each page with the prob-

ability of a random walk ending up at the page. PageRank works by propagating weights

along edges, similar to spreading activation in ConceptNet. PageRank can be formulated as

an iterative numerical method (Section 2.3.2) on a sparse matrix. Ranks are the eigenvector

with the largest eigenvalue of the sparse matrix A+ I ×E, where A is the web graph, I is

the identity matrix, and E is a vector denoting source of rank.

2.4 Compute Models and Programming Models

This section describes how graph algorithms fit relevant compute models and how Graph-

Step compares to related parallel compute models and performance models. The primary

difference between GraphStep and other compute models is that GraphStep is customized

28

to its domain, so parallel graph algorithms are high level, and the compiler and runtime

have knowledge of the structure of the computation.

2.4.1 Actors

Actors languages are essentially object-oriented where the objects (i.e. actors) are concur-

rently active and communication between methods is performed via non-blocking message

passing. Actors languages include Act1 [25], ACTORS [26]. Pi-calculus [27] is a mathe-

matical model for general concurrent computation, analogous to lambda calculus. Objects

are first-class in actors languages.

Like GraphStep, all operations are atomic, mutate local object state only, and are trig-

gered by and produce messages. Like algorithms in GraphStep, it is natural to describe a

computation on a graph by using one actor to represent a graph node and one actor for each

directed edge. Unlike GraphStep, actors languages are for describing any concurrent com-

putation pattern on a low level, rather than being high level for a particular domain. Nothing

is done to prevent race conditions, nondeterminism or deadlock. There is no primitive no-

tion of barrier synchronizations or commutative and associative reduces for the compiler

and runtime to optimize. Since objects are first-class, the graph structure can change, which

makes processor assignment to load balance and minimize inter-processor communication

difficult.

2.4.2 Streaming Dataflow

Streaming, persistent dataflow programs describe a graph of operators that are connected

by streams (e.g. Kahn Networks [28], SCORE [29], Ptolemy [30], Synchronous Data

Flow [31], Brook [32], Click [33]). These languages are suitable for high-performance

applications such as packet switching and filtering, signal processing and real-time control.

Like GraphStep, streaming dataflow languages are often high-level, domain-specific, and

the static structure of a program can be used by the compiler. In particular, many streaming

languages are suitable for or designed for compilation to FPGAs. The primary difference

between persistent streaming languages and GraphStep is that the program is the graph,

29

rather than being data input at runtime. A dataflow program specifies an operator for each

node and specifies the streams connecting nodes. Data at runtime is in the form of tokens

that flow along each stream. There is a static number of streams into each operator, which

are usually named by the program, so it can use inputs in a manner analogous to a procedure

using input parameters. Some streaming models are deterministic (e.g. Kahn Networks,

SCORE, SDF), and other allow nondeterminism via nondeterministic merge operators (e.g.

Click). Bufferlock, a special case of deadlock, can occur in streaming languages if buffers

in a cycle fill up [3]. Some streaming models prevent deadlock by allowing unbounded

length buffers (e.g. Kahn Networks, SCORE), others constrain computations so needed

buffer size is statically known (e.g. SDF), and in others the programmer must size buffers

correctly to prevent deadlock. GraphStep’s global synchronization frees the implementa-

tion from the need to track an unbounded length sequence of tokens, in the case of a model

with unbounded buffers, or frees the programmer from sizing streams to prevent bufferlock,

in the case of a model with bounded buffers.

The graph of operators could be constructed to match an input data graph either by

using a language with a dynamic graph or by generating the program as a function of the

graph. The most straight forward description of graph algorithms in this case has nodes ea-

gerly send messages just like the initial asynchronous Bellman-Ford (Figure 2.2), leading

to exponentially bad worst-case performance. In a more complex, iterative implementa-

tion, nodes firings could synchronize themselves into graph-steps by counting the number

of messages received so far. First, nil-messages are used so all edges can pass one mes-

sage on each graph-step. Second, each node knows the number of predecessor edges and

it counts received messages up to its predecessor count before performing the update oper-

ation and continuing to the next iteration. This means the number of messages passed per

graph-step equals the number of edges in the graph, which is usually at least an order of

magnitude higher than in GraphStep’s barrier-synchronized approach. In languages with

nondeterministic merges (e.g. Click) the programmer can describe barrier synchronization,

like GraphStep’s implementation, to allow sparse activation with fewer messages. In this

case the programmer will have to describe the same patterns for each graph algorithm,

and avoid errors due to race-conditions and deadlock. Since the compiler would not be

30

specialized to GraphStep, it would have to allow an unbounded length sequence of tokens

along each edge. Also, the implementation would not be able to do GraphStep specific

optimizations, such as node decomposition.

2.4.3 Bulk-Synchronous Parallel

Bulk-synchronous parallelism (BSP) is a bridging model between parallel computer hard-

ware and parallel programs [5]. BSP abstracts important performance parameters of paral-

lel hardware to provide a simple performance model for parallel programs to target. BSP

is also a compute model, where computation and communication are synchronized into

supersteps, analogous to graph-steps. There are libraries for BSP, such as BSPlib [34] and

BSPonMPI [35] for C and BSP ML [36] for Ocaml.

In each superstep, a fixed set of processors performs computation work and sends and

receives messages. The time of each superstep is w+ hg + l, where w is the maximum se-

quential computation work over processors, h is the maximum of total message sends and

total message receives, g is the scaling factor for network load, and l is the barrier synchro-

nization latency. The scaling factor g is platform dependent and is primarily determined

by the inverse of network bandwidth. GraphStep can be thought of as a specialized form

of BSP and the performance model is similar to GraphStep’s performance model (Chap-

ter 6). Like GraphStep, BSP’s synchronized activity into supersteps makes it easy to reason

about event timing. GraphStep is higher level, with program nodes and edges as the units of

concurrency, rather than processors. A compiler and runtime for BSP programs cannot per-

form the optimizations that are performed for GraphStep since it does not have knowledge

of the computation and graph structure. Our customization of FPGA logic (Section 5.2) to

the structure of message passing between operations in a graph-step cannot be performed

on ordinary processes. The knowledge of the graph structure and knowledge that reduce

operations are commutative and associative allow GraphStep runtime optimizations that

load balance data and operations (Section 7.2) and assign nodes to edges for locality (Sec-

tion 7.4).

31

2.4.4 Message Passing Interface

Message Passing Interface (MPI) [37] is a popular standard for programming parallel clus-

ters. Processes are identified with processors and communicate by sending coarse-grained

messages. MPI is an example of a low-level model that presents difficulties to the program-

mer that GraphStep is designed to avoid. An MPI programmer must be careful to avoid

race-conditions and deadlock. The programmer must decide how to assign operations and

data to processors. Further, graph algorithms’ naturally small messages are a mismatch

for MPI’s coarse-grained messages. For example, Bellman-Ford sends one scalar, rep-

resenting distance, per message. MPI implementations get two orders of magnitude less

throughput for messages of a few bytes than for kilobyte messages [11]. If Bellman-Ford’s

message contains a 4 byte scalar then the Bellman-Ford implementation must pack at least

256 fine-grained messages into one coarse-grained message. Extra effort is required by

the programmer and at runtime to decide how to pack messages. Fragmentation may lead

to too few fine-grained messages per coarse-grained message to utilize potential network

bandwidth.

2.4.5 Data Parallel

Parallel activity can be described in a data parallel manner, in which operations are applied

in parallel to elements of some sort of data-structure [38, 39, 40, 41]. The simplest data par-

allel operation is map, where an operation is applied to each element independently. Many

data parallel languages include reduce or parallel-prefix operations [42, 41]. Some data

parallel languages include the filter operator, which uses a predicate to remove elements

from a collection. SIMD or vector languages use vectors as the parallel data structures,

where each vector element is a scalar. NESL [38] and *Lisp [40] use nested vectors, where

each vector element can be a scalar or another vector. Map can be applied at any level in

the nested structure, and there is a concatenation operation for flattening the structure.

GraphStep is data parallel on nodes and edges and can be thought of as a data parallel

language with a graph as the parallel structure rather than a vector. Like graph algorithms

for GraphStep, algorithms that match the flat vector model are very efficient when mapped

32

to vector (or SIMD) machines. In data parallel languages the graph structure is not exposed

so the computation cannot be specialized for graph algorithms. Further, most data parallel

implementations are optimized for regular structures, not irregular structures.

2.4.6 GPGPU Programming Models

Programming models have been developed to provide efficient execution for General-

Purpose Graphics Processing Units (GPGPUs) and to abstract above the particular device.

OpenCL [43] and CUDA [44] capture the structure of GPGPUs where SIMD scalar pro-

cessors are grouped into MIMD cores. Each core has one program counter which controls

multiple SIMD scalar processors. OpenCL and CUDA make the memory hierarchy ex-

plicit, so the program explicitly specifies whether a data item goes in memories local to

cores or memories shared between cores. To write an efficient program, the programmer

uses a model of the architecture, including the number of SIMD scalar processors in each

core and the sizes of memories in the hierarchy. OpenCL is general enough for programs to

run on a wide range of architectures, including GPGPUs, the Cell architecture and CPUs,

but requires programs to be customized to specific machines to be efficient. Although

CUDA hides the number of SIMD scalar processors in each core with its Single Instruction

Multiple Thread (SIMT) model, the programmer must be aware of this number in the tar-

get machine to write efficient programs. Unlike OpenCL and CUDA, GraphStep captures

a class of algorithms so the programmer can write at a high level and the compiler can

customize the program to target architecture.

Although parallel graph algorithms implemented on a single chip are memory band-

width dominated, GPGPUs are usually unable to achieve a bandwidth close to peak for

parallel graph algorithms. Contemporary GPGPUs do not efficiently handle reads and

writes of irregular data to memory. Usually the graph structure is irregular and optimized

implementations achieve about 20% of peak memory bandwidth. Conjugate Gradient is

a heavily studied sparse graph algorithm implemented on GPGPUs. Conjugate Gradi-

ent (Section 2.3.2) uses Sparse Matrix Vector Multiply as its main kernel and can be de-

scribed as a simple GraphStep program. For Conjugate Gradient the Concurrent Number

33

Cruncher [45] achieves 20% of peak memory bandwidth and a multi-GPU implementa-

tion [46] achieves 22% of peak memory bandwidth.

GraphStep enables the logic architecture to couple data with compute, so nodes and

edge data is located in the same PE that performs operations on nodes and edges. Coupling

data with compute allows GraphStep implementations to use small, local memories with

higher peak bandwidth than off-chip main memory.

2.4.7 MapReduce

MapReduce [41] is a simple model with data parallel operators on a flat structure. Example

uses are distributed grep, URL access counting, reversing web-links, word counting, and

distributed sort. In MapReduce, the central data structure is a collection of key, value pairs.

First, an operator is mapped to each pair to generate a collection of intermediate key, value

pairs. Second, a reduce operator is applied to all intermediate values associated with each

key to produce one value per key. MapReduces are chained together like graph-steps.

Like GraphStep, MapReduce gives the programmer a simple, high-level, specialized

model that avoids race conditions, nondeterminism and deadlock. This simple model helps

MapReduce implementers achieve fault-tolerance on large-scale machines. Although it is

possible to describe parallel graph algorithms with MapReduce, MapReduce is not special-

ized for graph algorithms, so it is not convenient for describing graph algorithms and does

not get good performance for graph algorithms. GraphLab [47], a framework for parallel

graph algorithms similar to GraphStep, outperformed the Hadoop [48] implementation of

MapReduce by 20 to 60 times [47].

An additional combiner operator may be specified by the programmer to perform the

same function as the reduce operator, except on the processor generating intermediate key,

value pairs. The combiner then sends a single key, value pair per processor per key. A

combiner, reducer pair of operators in MapReduce is analogous to a node reduce method

in GraphStep: In both cases the reduce function should be commutative and associative to

allow it to be split into pieces located at different processors. Section 7.2 explains how this

decomposition is performed for GraphStep.

34

2.4.8 Programming Models for Parallel Graph Algorithms

In this section we survey programming frameworks designed for parallel graph algorithms.

Pregel [49] has an iterative compute model similar to GraphStep. Signal/Collect [50] sup-

ports both iterative synchronization and asynchronous message passing and is designed

for (semantic) web queries. GraphLab [47] is designed for parallel machine learning algo-

rithms. CombinatorialBLAS [51] is designed for linear algebra on sparse matrices. In these

frameworks, the structure of the computation is based on the structure of the graph, which

is known to the runtime. Pregel and CombinatorialBLAS computations and optionally Sig-

nal/Collect and GraphLab computations are iterations over parallel activity at nodes and

edges with one operation per node per step. GraphStep restricts the structure of the com-

putation to a greater extent than these frameworks, which makes it safer to program and

easier for the compiler and runtime to optimize (especially for FPGAs), but narrows the

domain of algorithms.

Pregel [49] is a C++ library for parallel graph algorithms on large clusters. Like Graph-

Step, operations are local to nodes and communicate by sending messages to successor

nodes. Operations on nodes are sequenced into steps, and operators are similar to Graph-

Step’s operators: A Compute() method in Pregel is analogous to a node update method, but

also does the work of successor edge methods. Compute() has access to successor edge

state and is in charge of sending messages to successor nodes. A Combine() method in

Pregel is analogous to a node reduce method and permits the implementation to break re-

ductions into pieces, similar to our decomposition optimization (Section 7.2). An Aggrega-

tor is analogous to a fused global reduce and global broadcast in GraphStep. After a global

reduce is performed in one step, its value is available to Compute() methods in the next.

Instead of using a sequential controller process to broadcast values to nodes, Pregel shares

global state for Compute() methods. Unlike GraphStep, nodes are first class to allow Com-

pute() to mutate the graph. Pregel example applications in [49], PageRank, ShortestPaths,

Bipartite Matching, and Semi-Clustering, do not mutate the graph. The Pregel implemen-

tation is fault-tolerant which allows it to scale to large clusters. Pregel’s fault-tolerance

scheme uses rollback to return the computation to a previously checkpointed state when a

35

fault occurs. Its barrier-synchronized, iterative structure enables checkpointing rollback by

providing a clean state at each barrier.

Signal/Collect [50] is a Scala library designed to perform queries on the web, especially

the semantic web. Operations are local to nodes and communicate by sending messages

to successor nodes. Signal/Collect supports multiple synchronization styles: Operations

on nodes can be sequenced into graph-steps, they can fire in an asynchronous style, when-

ever they receive a message, or they can use a scheme to fire asynchronously only for

high-priority messages. Operations on nodes are broken into Collect, to process incoming

messages, and Signal, to send messages. Collect is analogous to GraphStep’s node reduce

methods, and Signal is analogous to GraphStep’s node update messages. Like GraphStep,

Signal/Collect is for static graphs.

GraphLab [47] is a C++ library for parallel graph algorithms for machine learning. Like

GraphStep, GraphLab’s computation is based on the graph structure. Unlike GraphStep,

GraphLab’s node operation reads and write to neighboring nodes’ state instead of sending

messages between nodes. The schedule of node updates can be synchronous, like Graph-

Step, or asynchronous, or specified by the programmer. Node operations are atomic (which

implies sequential consistency), which is enforced by synchronizing a node’s operations

with its neighbors. This synchronization is implemented by either coloring to pre-schedule

operations, or dynamically locking all nodes in a neighborhood. GraphLab’s neighbor-

hood locking reduces the available parallelism, especially when there are nodes with many

neighbors (which occur graphs with a power-law distribution over node degree).

Combinatorial BLAS [51] is a C++ library designed for linear algebra on sparse matri-

ces and can be used for iterative numerical methods (Section 2.3.2). It provides combina-

tors for a variety of operations on sparse matrices and dense vectors. Each vector element

corresponds to a graph node, and each non-zero in a sparse matrix corresponds to an edge.

Each supported linear algebra operation is a combinator, which takes the definition of a

scalar field as a parameter. Defining the scalar field corresponds to defining methods in

GraphStep. Each matrix operation is atomic, which sequences parallel operations on into

steps, like GraphStep. Unlike GraphStep, new graph structures can be created by multiply-

ing two sparse matrices.

36

2.4.9 High-Level Synthesis for FPGAs

Since GRAPAL is designed to target FPGAs efficiently we compare to other approaches

for supporting high-level languages mapped to FPGAs. A common approach is to compile

C or a modification of C to Register-Transfer Level (RTL). The RTL can be described with

VHDL or Verilog and is the level of abstraction at which FPGA programmers typically

work. Similarly, our compiler maps the high-level GRAPAL program to RTL in VHDL

(Section 5.1.1.1).

There is usually not enough instruction-level parallelism in a C program for it to be

worthwhile to use an FPGA. Instead of using instruction-level parallelism, compilers and

languages for high-level synthesis use process-level parallelism and data-parallel inner

loops. An efficient program in Handel-C [52], Transmogrifier C [53], Streams-C [54],

RaPiD-C [55] or SystemC [56] is a static set of processes that communicate on static chan-

nels. Like persistent streaming languages, (Section 2.4.2) Streams-C, Handel-C, SystemC,

Catapult-C [57], and AutoESL [58] support streaming channels between processes. The

primary difference between high-level synthesis approaches and GraphStep is the same as

the difference between persistent dataflow and GraphStep: the program is the graph instead

of being data input at runtime. Each process is a complex sequential process like Commu-

nicating Sequential Processes [59]. Like methods in GRAPAL, processes cannot perform

recursion or memory allocation. This restriction enables processes to be compiled to ef-

ficient FPGA logic. Unlike methods in GRAPAL, processes can contain loops, and each

process is typically a collection of loop nests. In Handel-C, Transmogrifier C, Streams-C,

and RaPiD-C each process is made parallel by the programmer explicitly specifying which

inner loops are parallel.

Another approach couples a sequential Instruction Set Architecture (ISA) processor

with a reconfigurable coprocessor. In this a approach, a compiler extracts kernels from an

ordinary C program to be run on the reconfigurable fabric. These kernels group instructions

into large RTL operators, so each group can be executed in parallel on the reconfigurable

fabric. For example, the GARP compiler [60] identifies VLIW-style hyperblocks [61]

to be translated into RTL operators. Like GRAPAL, each of GARP’s RTL operators is

37

transformed from a feed-forward control-flow structure. More recent projects extend the

coprocessor approach by mapping looping functions to multiple, parallel RTL modules.

LegUp [62] and Altera’s C2H [63] map sub-procedures that loop but do not recurse or al-

locate memory to RTL modules. These modules use local memories and also have access

to main memory to enable access to large data structures.

38

Chapter 3

GRAPAL Definition and Programming
Model

GRAph Parallel Actor Language (GRAPAL) is our high-level programming language for

the GraphStep compute model. GRAPAL describes the parallel kernels of GraphStep with

nodes and edge objects (i.e. actors) passing messages along the graph structure. Along

with GRAPAL as the kernel language, a sequential controller is described in C. Nodes and

edges are statically typed as classes to catch programming errors and to enable an efficient

implementation. Since objects communicate with message passing and GRAPAL’s types

are static, we use familiar syntax similar to the statically typed, object-oriented language

Java. We use Bellman-Ford as an example to explain language features. Figure 3.1 shows

Bellman-Ford’s kernels in GRAPAL, Figure 3.6 shows the sequential controller in C, and

Figure 3.7 shows the C header file which declares the interface for the sequential controller

to use to access GRAPAL kernels. Appendix A contains GRAPAL’s context-free grammar.

3.1 GRAPAL Kernel Language

A GRAPAL program is a set of class and function definitions, where each class contains

methods, out fields and value fields. Each class has one of three attributes node, edge,

or global. A GRAPAL program has any number of node and edge classes and exactly

one global class. Our Bellman-Ford example only has one node class, Node, and

one edge class, Edge. The global class (Glob in Bellman-Ford) defines the interface

between the sequential controller and the parallel code.

39

global Glob {
out Node source;
bcast bcastToSource (int<32>) source.update;

}

node Node {
out Edge successorEdges;
boolean inf;
int<32> dist;

reduce tree update(int<32> dist1, int<32> dist2) {
return dist1 < dist2 ? dist1 : dist2;

}
send update(int<32> distArg) {
if (inf || distArg < dist) {

inf = false;
dist = distArg;
successorEdges.propagate(dist);

}
}

}

edge Edge {
out Node dest;
int<32> len;

fwd propagate(int<32> dist) {
dest.update(len + dist);

}
}

Figure 3.1: Bellman-Ford in GRAPAL

40

Sets of objects are typed and named in GRAPAL with class fields labeled with the

attribute out. These out sets determine the structure of the graph and are used to send

messages. They are used for all message sends, which includes messages from nodes to

edges, from edges to nodes, from a global broadcast to nodes, and from nodes to a global

reduce. Since the graph is static, the elements of each out set are specified by the input

graph. In Bellman-Ford Nodes have only one type of neighbor so successorEdges is

their only out set. After the graph is loaded, the only use for out sets is to send messages.

A dispatch statement of the form <out-set>.<dest-method>(<arguments>) is

used by some method to send a message to each object in <out-set>. When a message

arrives, it invokes <dest-method> applied to <arguments>. In Bellman-Ford, the

dispatch statement successorEdges.propagate(dist) in send update sends

identical messages to each successor Edge of the sending Node. In general, different out

sets in a class may be used by different methods or by the same method. Since each edge

has a single successor node, an edge class can only declare one out set which contains

exactly one element.

To enable global broadcast to a subset of Nodes, the global object declares out sets.

Many algorithms use an out set in the global class which contains all nodes. Bellman-

Ford only broadcasts to the source node, which is a set of size one and is determined by the

input graph. Each node which sends a message to a global reduce dispatches on an out set

whose only element is the global object. There is at most one out set declared to point

to the global class per node class.

Methods in GRAPAL are used to represent GraphStep operators. Each graph-step is

a subsequence of four phases, and a method’s attributes declare the phase the method is

in:

• Node Reduce: A reduce tree method in a node class defines a binary operator

used to reduce all pending messages to a single message.

• Update: A send method in a node class defines an update operator, which inputs a

message, can read and write node state, and can send messages on out sets. A send

method’s arguments are supplied by the message which triggers it. This input message

may be the result of a reduce tree method, may be from a global broadcast, or from

41

an edge.

• Edge: A fwd method in a edge class is the only kind of edge method. The input

message is received from the edge’s predecessor node and an output message may be

sent to the successor node. fwd methods may read and write edge state.

• Global Reduce: A reduce tree method in the global class defines a binary oper-

ator used to reduce all global reduce messages, which are sent from send methods, to a

single message. Each global reduce tree method defines an identity value to be

the result of the global reduce when there are no global reduce messages.

The fifth and final kind of method in GRAPAL is bcast, which goes in the global

class. A bcast method’s contents are of the form <out-set>.<dest-method>,

which specifies the set of nodes to broadcast to and the destination send method. Fig-

ure 3.5 shows the communication structure of bcast, node reduce tree, send,

fwd, and global reduce tree methods on the simple graph in Figure 3.2. In Fig-

ure 3.3 graph-step i is initiated with a bcastmethod and in Figure 3.4 graph-step i follows

another graph-step.

To specify where messages go that are produced by each accumulation over node

reduce tree binary operators, the programmer pairs node reduce tree and

send methods by giving them the same name. A node reduce tree method uses

a return statement to output its value rather than a dispatch statement because the

implementation decides whether output messages go back to the node reduce tree

accumulate or forward to the paired send method. Although a node reduce tree

method cannot exist by itself, a send methods can since it may receive messages from

bcast or edge fwd methods.

GRAPAL methods are designed to be very lightweight so they can be compiled to

simple and efficient FPGA logic. Methods do not contain loops or call recursive func-

tions to allow them to be transformed into primitive operations with feed-forward data

dependencies. Section 5.2.1 describes how this feed-forward structure allows operations

to flow through PE logic at a rate of one per clock-cycle. To exclude loops, the Java-like

control-flow syntax includes if-then-else statements, but not for or while loops.

An iteration local to an object can be performed with multiple method firings in successive

42

Figure 3.2: Simple graph

Figure 3.3: Graph-step i follows a bcast send.

Figure 3.4: Graph-step i follows graph-step i+ 1.

Figure 3.5: The computation structure of a graph-step following a bcast call (Figure 3.3)
and a graph-step following another graph-step (Figure 3.4) on the graph in Figure 3.2 is
shown here. Methods firings are located in nodes n1 or n2 or edges e1, e2, e3, e4 or in the
global object.

43

#include <gsutil.h>
#include "gsface.h"

int gs_main(int argc, char** argv) {
Graph g = get_main_graph();
bcast_bcastToSource(0);
char active = 1;
int i;
for (i = 0; active && i <= num_nodes(g); i++)

step(&active);
return 0;

}

Figure 3.6: Sequential controller for Bellman-Ford in C

#include <gsutil.h>
#define Graph unsigned

Graph get_main_graph();

// number of nodes or edges of any class
unsigned num_nodes(Graph g);
unsigned num_edges(Graph g);

// number of objects of each defined class
unsigned num_Node(Graph g);
unsigned num_Edge(Graph g);

// broadcast to each defined bcast method
void bcast_bcastToSource(int in0);

// advance one graph-step; set *pactive = no pending messages
void step(char* pactive);
// advance until graph-step reached with no pending messages
void iter();

Figure 3.7: The header file that bridges between the Bellman-Ford sequential controller
and the Bellman-Ford GRAPAL kernels. It includes functions for node and edge counts,
broadcast and reduce methods, and graph-step advancing commands.

44

graph-steps. All functions are pure with no side-effects, and can be called from methods or

other functions. Functions also do not have loop statements and the compiler checks that

they are no recursive cycles in the call graph. This lack of recursion allows function calls

to be inlined into methods so methods can be transformed into FPGA logic.

Each container that holds data values has a type that determines its values’ sizes. Con-

tainers are data-fields in classes, and variables and parameters in methods and functions.

The fixed size types for data-fields tell the compiler how many bits are required for object.

This lets the compiler size memory words so the entire object state can be read or written

in one clock cycle (Section 5.2.1). Fixed sizes are needed to size datapaths in operators,

PEs, and the network (Section 5.2). Further, fixed sizes for message data allows small,

distributed buffers to be given enough capacity to avoid bufferlock.

Scalar types are boolean, signed integers, int<N>, and unsigned integers,

unsigned<N>. A boolean is one bit, and int<N> and unsigned<N> are N

bits. Since we are primarily targeting FPGAs and FPGA have no natural word size, it

would be arbitrary to choose a default bit-width for integer types. For this reason, all

integer types are parameterized by their width. Composite values are constructed with

n-ary tuples written (A, B, ...). Tuples are destructed with indices starting at 0, so

x == (x, y)[0] and y == (x, y)[1]. The current version of GRAPAL does not

have records, but constructor, getter, and setter functions can be defined to name tuple

elements.

3.2 Sequential Controller Program

A sequential C program controls the GRAPAL kernels by sending broadcasts, receiving

global reduce results and issuing commands to advance graph-steps. To generate the header

file that bridges GRAPAL kernels to C, the programmer runs graph step init on the

command line. Section 5.1 explains how the graph step utility is used to compile and

run GRAPAL programs. For Bellman-Ford, Figure 3.6 shows the sequential controller, and

Figure 3.7 shows the header file it uses. This interface declares global broadcast and global

reduce methods defined in the global class, stepper commands, and procedures to query

45

the size of the graph. Procedures declared in the interface use the same names and types

as the global methods. The C program broadcasts by calling bcast <name>, where

<name> is the name of the broadcast method in the global class. In Bellman-Ford,

bcast bcastToSource calls the only bcast method, bcastToSource.

The step command causes one graph-step then writes to the passed active Boolean

pointer. The value written to active says whether there were any pending messages sent

from the last graph-step. In Bellman-Ford, no pending messages mean the iteration has

reached a fixed point, so it stops after the first step active is false. Instead of step, the

controller may call iter, which steps until quiescence (i.e. there are no active messages).

Since negative cycles will cause infinite iteration, the Bellman-Ford controller cannot use

iter, and must stop after n iterations.

When global reduce methods are not used, step and iter suffice to advance graph-

steps. Since each global reduce produces a value at the end of its graph-step, we add ver-

sions of step and iter that output global reduce results. A graph-step which ends with

the global reduce method <gr> is stepped with the procedure step <gr>. step <gr>

sets the active Boolean pointer, like step, and also sets a pointer (or pointers in the case

of a tuple) to the result of the global reduce. The controller may also call iter <gr>,

which advances graph-steps until a step is reached which contains the global reduce method

<gr>.

3.3 Structural Constraints

The GRAPAL compiler checks constraints that ensure the source program conforms to the

GraphStep model and enable compilation to efficient FPGA logic.

• No-Recursion: To enable compilation of methods to feed-forward FPGA logic, the

function call graph is checked to ensure that there are no recursive cycles.

• Send-Receive: For each message dispatch statement, the kind of the sender method and

the kind of the receiver method is constrained.

• Single-Firing: Conservative, static checks are performed to ensure that there is at most

one update operation per node per graph-step, at most one operation per edge per graph-

46

Ksource Kdest

bcast node send
node reduce node send
node send edge fwd OR global reduce
edge fwd node reduce
global reduce

Table 3.1: This table shows structural constraints on message passing. Each method with
kind Ksource is only allowed to send to methods with one of the Kdest kinds in its row.

step, and at most one global reduce per graph-step.

GraphStep defines the message passing structure between bcast, node reduce,

node send, edge fwd and global reduce methods. To enforce this structure, the

GRAPAL compiler checks that the source program conforms to the Send-Receive con-

straint. For each source method of kind Ksource that sends to a destination method of

kind Kdest, the pair Ksource, Kdest must appear in Table 3.1. For each dispatch state-

ment, <out-set>.<dest-method>(<arguments>), the source method contains

the dispatch statement and the destination method is <dest-method>. Sends from node

reduce tree to node send methods do not need to be checked because they are im-

plicitly specified by giving the pair of methods the same name.

The Single-Firing constraint enforces GraphStep’s synchronization style which se-

quences parallel activity into graph-steps: At each node, operations of kind node send

are sequenced with graph-steps and at each edge, operations of kind edge fwd are se-

quenced with graph-steps. This means at most one node send and at most one edge

fwd operation can fire per object per graph-step. Reduce methods are invoked multiple

times to handle multiple messages per graph-step. However, all messages in a graph-step to

a node reduce at a particular node must invoke the same method so there is at most one

value for one node send method. Likewise, all messages in a graph-step to a global

reduce must invoke the same method so there is only one reduce value for the sequential

program.

Single-Firing is enforced with two sub-constraints:

• One-Method-per-Class: For each class (c), each method kind (k) and each graph-step,

all operations at objects in c with kind k invoke the same method. For example, if class

C has two node send methods, C.M1 and C.M2, then C.M1 and C.M2 cannot both

47

fire in the same graph-step.

• One-Message-per-Pointer: Each pointer in an out set transmits at most one message

per graph-step.

To see how One-Method-per-Class and One-Message-per-Pointer imply Single-

Firing, each method kind must be considered:

• node send: Due to One-Method-per-Class all node send operations at a partic-

ular object have the same method. A node reduce or bcast produces only one

message for each node send at each object. Since there is at most one message for at

most one node send, only one node send operation can fire.

• edge fwd: Due to Single-Firing for node send, at most one node send fires

at each edge’s predecessor node. Due to One-Message-per-Pointer, this node send

sends at most one message each edge. Since an edge can receive at most one message,

at most one edge fwd operation can be invoked at each edge.

• node reduce: Since each node reduce is followed by one unique node send

method, if there are two node reduce methods of the same class in the same graph-

step then there are two node send methods of the same class in the same graph-step.

Therefore, for One-Method-per-Class to hold for node send, it must hold for node

reduce.

• global reduce: One-Method-per-Class is the only constraint on global

reduce methods.

One-Method-per-Class is conservatively enforced by first classifying graph-step into

graph-step types, then checking that at most one method can fire per class per graph-step

type. Section 5.1.1.2 explains how the compiler constructs graph-step types, based on

the graph of possible message sends in the chain of graph-steps after a bcast. One-

Message-per-Pointer is conservatively enforced by checking that the dispatch statements

in each path through a method’s control flow graph contain each out set at most once

(Section 5.1.1.2).

48

Chapter 4

Applications in GRAPAL

This chapter describes four benchmark applications implemented in GRAPAL: Bellman-

Ford (Section 4.1), ConceptNet (Section 4.2), Spatial Router (Section 4.3) and Push-

Relabel (Section 4.4). For each application, we show the GRAPAL program and sequential

controller in C. Spatial Router and Push-Relabel are fairly complex so we describe how to

adapt them to GRAPAL. Each application is tested on a set of benchmark graphs.

Section 4.5 describes the speedups and energy savings of all applications over all graphs

compared to sequential applications. For Bellman-Ford and ConceptNet, the sequential

algorithms are just sequentially scheduled versions of the parallel algorithms. They both

have the same iterative structure as GraphStep with an outer loop that iterates over graph-

steps and an inner loop that iterates over active nodes. They each use a FIFO to keep track of

the active nodes. For Spatial Router, the sequential program is part of a highly optimized

package that solves routing. For Push-Relabel, the sequential program is a performance

contest winner for the solving single-source, single-sink Max Flow/Min Cut problem.

4.1 Bellman-Ford

The Bellman-Ford algorithm solves the single-source shortest paths problem for directed

graphs with negative edge weights. Given an input graph and source node, it labels every

node with the shortest path to it from the source. This algorithm is naturally parallel and

does not require any specialization to adapt it to GRAPAL. Bellman-Ford was used for

GRAPAL example code in Chapter 3 with GRAPAL code in Figure 3.1 and C code in

49

Figure 3.6.

We test Bellman-Ford on the circuit-retiming CAD problem. Circuit retiming moves

registers in a circuit graph to minimize the critical path [64]. Our circuits are from the

Toronto 20 benchmark suite [65]. A circuit graph, or netlist, is a network of primitive logic

gates and registers. Retiming works on synchronous logic, which means that the subgraph

of logic gates is a Directed Acyclic Graph (DAG). This subgraph of logic gates is the

original netlist with all registers and their adjacent edges removed. A netlist’s critical path

is the maximum over path delays through the logic gate DAG. Moving registers changes

critical path by changing the depth of the logic gate DAG. Decreasing the critical path

decreases the clock period, thus increasing performance.

We use a simple timing model in which the delay of each logic gate is 1. When

the delay of each logic gate is one, Leiserson’s [64] generalization of systolic retiming

can be used. This retiming algorithm first finds the minimum depth, dmin for which

a retiming exists. Then it determines the actual registers placement in some retiming

with depth dmin. To find dmin, a binary search is performed over depth d using the

procedure retime for depth(G, d). The graph G represents the netlist being re-

timed. retime for depth(G, d) weights the edges of graph G so that no negative

cycle exists iff there exists a retiming of the netlist with depth less than or equal to d.

retime for depth(G, d) then runs Bellman-Ford on the weighted graph to determine

whether a negative cycle exists. The register placement that satisfies dmin is a simple

function of the shortest paths computed by retime for depth(G, dmin).

The graph G represents a netlist with one node for each logic gate, one edge for each

wire connecting logic gates and one edge for each chain of registers connecting logic gates.

Rather than representing each input pin with a node, all input pins are collapsed into the

source node. A single register that connects two logic gates is collapsed to a single edge. A

chain of registers connecting two logic gates is also collapsed to a single edge. The weight

of each edge, w(e) depends on depth d and on the number of registers collapsed to form

it, r(e), so w(e) = r(e)− 1/d. retime for depth(G, d) first weights the graph, then

runs Bellman-Ford. To extract register placement we use the distance to each node, D(v),

computed by retime for depth(G, dmin). Each node v subtracts dD(v)e registers

50

from its input edges, and adds dD(v)e to its output edges.

Section 4.5 compares performance between GRAPAL and a sequential implementation

with Figure 4.3. For both the sequential and the GRAPAL implementation most work is

in edge relaxation, with one edge relaxation per active edge per iteration. Compared to

the sequential implementation the GRAPAL implementation has extra overhead for node

iteration and barrier synchronization. For node iteration, the GRAPAL implementation

iterates over each node per iteration while the sequential implementation iterates over only

active nodes that were updated on the last iteration. The GRAPAL implementation must

perform a barrier synchronization on each iteration, or graph-step. Figure 4.3 sorts graphs

from smallest to largest and shows that the largest graphs get greater speedups due to a

lower relative overhead.

4.2 ConceptNet

ConceptNet is a knowledge base for common-sense reasoning compiled from a Web-based,

collaborative effort to collect common-sense knowledge [23]. Nodes are concepts and

edges are relations between concepts, each labeled with a relation-type. An important

query on a ConceptNet graph is spreading activation, which is used to find the context of a

set of concepts. Spreading activation inputs a set of concepts (initial) and a weight for

each relation-type (weights). It then assigns the input weights to edges in the graph

according on their types. Each concept in initial corresponds to a node in the graph to

which it assigns a high activity factor of 1. All other nodes are given an activity factor of

0. Activities factors are propagated through the graph, stimulating related concepts. After

a fixed number of iterations, nodes with high activities are identified as the most relevant

to the query.

Figure 4.1 shows the GRAPAL kernels for spreading activation, and Figure 4.2 shows

the query procedure in the C sequential controller. The main computation is performed

by the node methods reduce tree update, send update, and the edge method

prop. The update methods are in charge of accumulating incoming activation to add

to state and propagate to successor edges. The edge method reweights and transmits

51

activation. The nextact function is used to combine activations by the binary reduce and

by the activation state update.

All activations, weights and discounts are in the range [0, 1]. In order to use FPGA logic

efficiently we use fixed-point arithmetic by representing numbers with 1 integer digit and

8 fractional digits. GRAPAL currently does not have a fixed-point type, so we use the type

unsigned<9> and define mult fixed point for multiplication.

The sequential controller iterates spreading activation by first broadcasting to nodes

with bcast start spreading activation() then issuing step() commands.

Before iterating, the query procedure (spreading activation) must first set the

source nodes and set the edge weights. Source nodes are set to have an initial activation

of 1 with set source and other nodes are set to 0 with clear sources. Edges are

weighted by their relation types by set edge weights, which is first broadcast to

nodes then forwarded to successor edges. After each initializing broadcast command, a

step() command is issued to perform the graph-step that makes the changes to node and

edge state.

To test ConceptNet, we used a small version of the ConceptNet semantic network

(cnet small), which has 15, 000 nodes and 27, 000 edges. Our tests run spreading acti-

vation for 8 iterations.

Figure 4.3 shows that the speedup of the GRAPAL implementation of ConceptNet over

the sequential implementation is 7 times per chip. The relation between the GRAPAL

implementation and the sequential implementation of ConceptNet is analogous to the two

implementations of Bellman-Ford: For both implementations, most work is for operations

on active edges. The sequential implementation keeps a FIFO of active nodes so edges

are sparsely active and work is performed for only the active edges. There is overhead

for the GRAPAL implementation due to iterating over all nodes, rather than just active

nodes, and due to the cost of the barrier synchronization. Larger graphs generally have less

relative overhead due to barrier synchronization. The ConceptNet graph is larger than the

Bellman-Ford graphs so the ConceptNet speedup is better than the Bellman-Ford speedup.

52
global Glob {
out Node nodes;

// query initialization
bcast clear_sources() nodes.clear_sources;
bcast set_source(int<20>) nodes.set_source;
bcast set_edge_weights(boolean, int<6>, unsigned) nodes.set_edge_weights;

// query computation
bcast start_spreading_activation() nodes.start_spreading_activation;

}

node Node {
out Edge edges;

boolean is_source;
int<20> idx;
unsigned<9> discount, act;

// query initialization
send clear_sources() {
is_source = false;
act = 0;

}
send set_source(int<20> set_idx) {

if (idx == set_idx) is_source = true;
}
send set_edge_weights(boolean all_types, int<6> type, unsigned<9> weight) {
edges.set_weight(all_types, type, weight);

}

// query computation
send start_spreading_activation() {

if (is_source) {
edges.prop(one_fixed_point());
act = one_fixed_point();

}
}
reduce tree update(unsigned<9> act1, unsigned<9> act2) {
return nextact(act1, act2);

}
send update(unsigned<9> more_act) {
edges.prop(mult_fixed_point(more_act, discount));
act = nextact(act, more_act);

}
}

edge Edge {
out Node to;
int<6> type;
unsigned<9> weight;

// query initialization
fwd set_weight(boolean all_types, int<6> set_type, unsigned<9> new_weight) {

if (all_types || type == set_type) weight = new_weight;
}

// query computation
fwd prop(unsigned<9> act) {
to.update(mult_fixed_point(act, weight));

}
}

unsigned<9> nextact(unsigned<9> act1, unsigned<9> act2) {
return act1 + act2 - mult_fixed_point(act1, act2);

}
unsigned<9> one_fixed_point() {

return ((unsigned<9>) 1) << 8;
}
unsigned<9> mult_fixed_point(unsigned<9> x, unsigned<9> y) {
return (((unsigned<17>) x) * y) >> 8;

}

Figure 4.1: ConceptNet’s spreading activation in GRAPAL

53
void spreading_activation(int n_source_nodes, int* source_node_idxs,

float* default_weight, int n_rel_weights, int* rel_weight_types, float* rel_weights,
int n_iterations) {

int i;

// initialize source nodes
bcast_clear_sources();
step();
for (i = 0; i < n_source_nodes; i++) {
bcast_set_source(source_node_idxs[i]);
step();

}

// initialize relation weights
bcast_set_edge_weights(true, -1, to_fixed_point(default_weight));
step();
for (i = 0; i < n_rel_weights; i++) {
bcast_set_edge_weights(false, rel_weight_types[i], to_fixed_point(rel_weights[i]));
step();

}

// run spreading activation iterations
bcast_start_spreading_activation();
for (i = 0; i < n_iterations; i++) {
step();

}
}

Figure 4.2: Sequential controller for ConceptNet’s spreading activation in C

4.3 Spatial Router

The Spatial Router routes a netlist on a 2-dimensional FPGA fabric. The FPGA fabric is

a graph of 4-LUTs, switches and I/O pads and is taken from the FPGA Place-and-Route

Challenge [65]. LUTs are placed in a 2-dimensional mesh bordered by I/O pads. Switches

route signals between LUTs and pads, with wires connecting switches to each other and

to LUTs and I/O pads. Switches are arranged in horizontal and vertical channels that run

between each row and column, respectively, of LUT and pads. The channel width, W , of

the architecture is the width of each channel and is proportional to the number of switches.

The netlist to be routed is a set of LUTs and pads that are connected by nets. Each net

is used to transmit a single bit from one LUT or pad to a set of LUTs and pads. Before

the routing stage, virtual LUTs and pads in the netlist were assigned to LUTs and pads in

the FPGA. The job of the router is to allocate paths through switches so they implement

the nets. Each net, z, has a source LUT or pad, src(z) and a set of sink LUTs and pads,

sinks(z). For each net and each sink, t ∈ sinks(z), the router must choose one of the

possible paths through switches from src(z) to t. Also, nets cannot share switches, which

54

makes routing a difficult combinatorial optimization problem. The existence of a route for

a netlist on a particular topology is NP-Complete. Our router, and the router we compare

to, tries to find a route for the FPGA-challenge architecture parameterized by the channel-

width, W .

Our router is an adaptation of Huang and DeHon’s Stochastic, Spatial Router [66, 67].

The GRAPAL code for the router is in Appendix C. The Stochastic, Spatial Router accel-

erates routing by adding logic to FPGA hardware so the FPGA can self-route. Logic and

state in hardware switches search for acceptable routes in a decentralized fashion. In our

router a static graph models the FPGA topology, rather than extra hardware. This graph has

a node for each LUT and pad and a node for each switch. Adjacent nodes are connected by

a pair of directed edges, with one in each direction. For these routers, one source, sink pair

is routed at a time with parallel search over possible paths to each sink.

Spatial Router is based on simple source to sink reachability (Section 2.1.1) but has

many heuristics and optimizations that make it much more complex. Its GRAPAL code is

340 lines, and the sequential controller is 180 lines. A simple, non-victimizing, version of

the router routes each source, sink pair (s, t) of a net z sequentially, with higher fanout nets

first:

• Search: The search phase propagates reachability from source node to other nodes in the

graph. In each graph-step, nodes on the reachable frontier propagate activation to their

successor nodes. Each successor node that is newly reachable propagates on the next-

graph step. A global reduce is performed on each graph-step to say if the sink has been

reached. Once the sink is reached, graph-step iteration stops. If there is no route to the

sink (because too many switches have been allocated to other paths) then then activity

will quiesce before a sink is reached. The first path to reach the sink is the shortest one,

so this algorithm chooses the shortest available path.

• Allocate: Switches in the path found by search are locked so future searches cannot use

them. To allocate, messages are sent backwards along the path found by search from

the sink to the source. Search recorded the predecessor of each node touched in the

reachability propagation so the path can be recovered.

We add a number of optimizations to the reachability based router:

55

• Fanout Reuse: Switches allocated for the net z should be reused for paths to different

sinks in sinks(z). If there is already a path to sink t1 ∈ sinks(z), and t2 is close to t1

but far from src(z), then t2 should use a path that branches off of t1’s path. Search with

fanout is performed by setting all nodes currently allocate to z as sources. The source

node closest to t2 is then used as the branch point. Allocate is modified so it records the

index of z. This way, after a broadcast to all nodes each node knows whether to mark

itself as a source for the current net.

• Victimize: In the simple algorithm, if the initial search fails to reach the sink then the

netlist cannot be routed. A victimizing search is allowed to use switches that were al-

ready allocated so the current sink can always be reached. The old path through a real-

located switch must be ripped up, deallocating its use of other switches, and its source,

sink pair must be reinserted into a queue of unrouted pairs. Victimizing, ripping up and

rerouting is a common technique in routers. Victimizing search and allocation phases

are only run if the initial search fails.

Rip up is performed in the allocation phase by propagating rip-up signals along a vic-

timized path. The allocation signal propagates backwards along the path it is allocation,

from the sink to the source. When the allocation signal touches a victimized switch, it

sparks rip-up signals to that travel along the old path that was routed through the switch.

One rip-up signal travels forward along the old path, towards the sink LUT, and one

rip-up signal travels backward along the old path, towards the source LUT. Since rip-up

signals are initiated as the allocation signal travels, many can be active at the same time.

If two rip-up signals traveling in opposite directions on the same path collide then they

cancel out. A forward rip-up signal must branch into multiple rip-up signals when it

reaches a switch at which the path branches. A backward rip-up signal will usually stop

when it gets to a branching switch so the other paths through the switch are preserved.

Each switch has a counter that keeps track of the number of times its path branches.

This counter is decremented each time a backward rip-up removes on of its branches,

and incremented each time alloc adds a branch. In the case where multiple backward

rip-up signals arrive at a branching switch in the same graph-step, a switch compares the

current count to the number of input rip-ups. If the number of input rip-ups equals the

56

current count then the switch sends a rip-up signal back.

• Congestion Delay: Victimizing old paths should be discouraged so the router does not

get trapped and cycle over mutually victimizing source, sink pairs. Each routed path has

a congestion factor that discourages new routes through its switches. This congestion

factor is unique to each net and is increased each time one of the net’s sinks is ripped

up. It starts at 4 and doubles on each rip up. This doubling makes paths more likely to

avoid high-congestion regions when they can. Congestion delay is not used in Huang

and DeHon [66, 67]. Instead congestion delay is inspired by the standard sequential

FPGA router Pathfinder’s [68] use of congestion factors in its cost function. In both

cases, congestion is used detect hot-spots and encourage routes to avoid them.

Without a congestion factor, the search algorithm naturally finds the shortest path since

each leg takes one graph-step, and the first path to reach the sink is chosen. To implement

the congestion factor we reuse this technique by delaying the search frontier wherever it

reaches already-used switches. A congestion factor of d simply delays the search by d

graph-steps. To delay the search frontier, an already-allocated node sends a wait message

on a self edge d times.

• High-Fanout Locking: High-fanout nets are routed first and locked so they are never

ripped up. The current algorithm locks all nets with fanout at least 20.

• Coincident Paths: A new path, P1, that causes an old path, P2, to be ripped up only

does damage to P2 the first time it victimizes a switch of P2’s. So P1 should not be

penalized for later victimizations of P2’s switches. Since GRAPAL messages are a fixed

size, we cannot keep track of the identifiers for all paths P1 victimized. Instead, each

search signal keeps track of the identifier for the last victimized path, so P1 is only

penalized once for each segment of P2 it intersects that goes in the same direction. We

have not implemented a similar treatment for oppositely aligned coincident segments

(which would also use local, distributed node state).

We use netlists from the LGSynth93 Benchmark Set [69] that are small enough to fit

on FPGA fabrics that are small enough for our on-chip memories. To compare Stochastic

Router’s performance to a sequential router, we use VPR 4.30’s router [70, 71]. VPR

has been highly optimized for place and route and is the standard benchmark for FPGA

57

router studies. For each netlist, G, before we run VPR we find the minimum channel

width routable by Stochastic Route, Wmin(G). For each G, VPR successfully routes with a

channel width of Wmin(G). We compare the times of the two routers with a fixed channel

width of Wmin(G). VPR is run with the option -fast, which increases its speed but

makes some netlists not route able. VPR is run with no router algorithm parameter,

so timing-driven mode is not used.

Figure 4.3 shows the performance per chip of the GRAPAL implementation of Spatial

Router over the sequential implementation is between 1/4x to 2.5x. Spatial Router does

not give large speedups because our current implementation is not parallel enough. Across

benchmark graphs, the average number of active edges per graph-step is only 65 to 147.

This means that each of the 26 PEs has an average of 2.5 to 6 active edges per graph-step,

which is not enough to fill the PE pipeline and diminish the impact of overhead due to

barrier-synchronization and node iteration. A more efficient Spatial Router would increase

parallelism and increase edge activity by finding routes for multiple sinks in parallel.

The performance of the current implementation suffers by up to 20% due to a bad

dynamic load balance: Neighboring switches in the mesh are usually assigned to the same

PE to minimize communication traffic (Subsection 7.4). However, neighboring switches’

activity is correlated so a majority of operations occurs in one or a few PEs in any particular

graph-step. This means work is sequentialized instead of being distributed to many parallel

PEs. Performing multiple routes in parallel, that are not localized to the same area of the

mesh, would improve the dynamic load balance.

4.4 Push-Relabel

The push-relabel method solves the single-source, single-sink max flow/min cut problem.

The input graph is G = (V,E, s, t, u), where V is the set of nodes, E is the set of directed

edges, s is the source node, t is the sink node, and u labels each edge with its capacity.

The objective is to find the maximum flow through edges from s to t that respects edge

capacities. The flow on each edge e is f(e) and f(e) ≤ u(e)

Goldberg and Tarjan [72, 73] originally developed the push-relabel method. Push-

58

Relabel proceeds by performing two operations: push is applied to edges and relabel

is applied to nodes. The operations are local to edge and node neighborhoods and can be

performed on many nodes and edges in parallel. The operation push(e), where e = (u, v),

reads and writes e’s state, u’s state and v’s state. The operation relabel(v) reads and writes

v’s state and reads the state of neighboring nodes and edges. push must be atomic but two

relabel operations can occur on neighbors in parallel.

Our implementation of Push-Relabel in GRAPAL is in Appendix B. The main push-

relabel algorithm consists of two alternating phases in GRAPAL: In the push phase, all

nodes try to push in parallel, and in the relabel phase, all nodes try to relabel in parallel.

Since push(e) is atomic, e can be the only edge neighboring either u or v that is pushed

in a graph-step. To implement this atomicity, request and acknowledge messages are sent

between nodes in the push phase. Each node first uses the push request method to

request exclusive access for an edge from neighboring nodes. Each node that receives a

request then sends an acknowledgment to one of its requesters, with push ack. Each

node that receives any acknowledgments chooses one and propagates the change to the

acknowledged edge, with push do. Nodes are labeled with unique priorities to arbitrate

these decisions.

In the relabel phase, each node sends relevant state to its neighbors so each neighbor

can decide whether to perform relabel. Since relabel(v) only reads neighboring state

and is not atomic, it does not need to use request and acknowledge to acquire exclusive

access to neighbors. The method relabel start sends node state to neighbors, and

relabel height inputs and acts on neighbors’ state.

Modern, sequential implementations of Push-Relabel utilize heuristics that give large

speedups. The most commonly used heuristics are global relabeling and gap relabel-

ing [74]. Global relabeling accelerates relabeling using a shortest path search from the

sink to all reachable nodes in the residual flow network. Global relabeling is common in

parallel implementations of Push-Relabel [75]. Our implementation uses Bellman-Ford

to perform global relabeling. The methods named global relabel in the Edge and

Node classes implement Bellman-Ford. Gap relabeling also accelerates relabeling. Gap re-

labeling works by inserting and removing nodes from doubly linked lists when their labels

59

change. We chose not to implement gap relabeling because a straightforward implementa-

tion of gap relabeling in GRAPAL would sequentialize relabel operations.

Figure 4.3 shows that the performance of the GRAPAL implementation of Push-Relabel

is 1/10 the sequential implementation. The GRAPAL implementation has low relative per-

formance because it performs many more push and relabel operations than the sequential

implementation. This increase in total work counteracts GRAPAL’s performing edge op-

erations faster. In the sequential case, at any point in time there are many push and relabel

operations that could be applied next. Goldberg and Tarjan’s efficient sequential implemen-

tation uses a dynamic tree data structure [72] to choose the next push or relabel operation,

which decreases the total number of operations. In contrast, the natural scheduling in a

graph-step algorithm eagerly performs all pending push operations on the next graph-step.

It may be possible to utilize the dynamic tree data structure of Goldberg and Tarjan in GRA-

PAL since the trees are embedded in the static graph structure. We have yet to see whether a

GRAPAL implementation including dynamic trees significantly reduces the required work.

Another factor leading to more work performed by the GRAPAL implementation is that it

does not perform the gap relabeling heuristic. Gap relabeling uses a dynamic data structure

which is mismatched to GRAPAL’s static graph data-structure. Although gap relabeling

can be adapted to parallel implementations of Push-Relabel (e.g. [76]), it is impossible to

implement as a computation on a static graph without sequentializing relabel operations.

An efficient GRAPAL algorithm for Push-Relabel would require significantly more work in

finding a good operation scheduling technique and a good replacement for gap relabeling.

4.5 Performance

To test the performance of GRAPAL we compare our multi-FPGA GRAPAL implemen-

tation to the performance of a sequential processor. The multi-FPGA platform is a BEE3

containing four Virtex-5 XC5VSX95T FPGAs and is described in Section 5.2. The se-

quential processor used is a single core of the dual core 3 GHz Xeon 5160. Both chips

are of the same technology generation, with a feature size of 65 nm. GRAPAL program

runs use all optimizations discussed in Chapter 7. In particular, the runtime performs node

60

decomposition and local assignment.

Figure 4.3 shows the speedup of the GRAPAL version over the sequential version per

chip for each benchmark application and each benchmark graph. GRAPAL varies from

1/10 of the sequential performance to 7 times the sequential performance, with a mean

of 2 times. The simple graph applications ConceptNet and Bellman-Ford perform well,

especially for larger graphs. Push-Relabel provides no speedup since we have not incorpo-

rated heuristics used by the sequential version. For future work our push-relabel algorithm

should incorporate techniques that deliver speedups for parallel implementations (such as

parallel gap relabeling) that are explored by [75, 76, 77, 78].

We compare the energy used for each run by the GRAPAL implementation and the

sequential implementation. To calculate energy use for GRAPAL programs on the BEE3

system and sequential programs on the Xeon system we first measured the current of sam-

ple runs of benchmark applications. We used an Amp meter with a resolution of 0.1 Amps.

We measured a constant AGRAPAL = 0.4 Amps for many sample runs on the BEE3. We

measured a constant ASeq = 1.2 Amps for many sample runs on the Xeon system. Both

systems were plugged into the same AC power supply of VRMS = 208 RMS Volts. Watts

for the BEE3 are WGRAPAL = AGRAPALVRMS = 83 and Watts for the Xeon system are

WSeq = ASeqVRMS = 250. The times for a GRAPAL and Sequential run are TGRAPAL and

TSeq, respectively. We calculate energy consumption for a particular run as E = WT :

EGRAPAL = 83TGRAPAL Joules (4.1)

ESeq = 250TSeq Joules (4.2)

The GRAPAL implementation delivers significantly better energy performance since

the BEE3 system of 4 chips uses 1/3 the power of the sequential system of 1 chip. Fig-

ure 4.4 show the relative energy use of the GRAPAL version compared to the sequential

version for each benchmark application and each benchmark graph. The mean energy used

for GRAPAL is 1/10 that for sequential, the minimum is 1/80 and maximum is 82%.

61

 0.1

 1

 10

cnet_sm
all

tseng

ex5p
apex4

m
isex3

diffeq

alu4
dsip

des
seq

bigkey

apex2

s298
elliptic

frisc
spla

ex1010

pdc
s38584.1

s38417

clm
a

BVZ_32

sqrt8
m

isex2

cc count

5xp1
s382

m
ult32a

duke2

S
e

q
 T

im
e

 /
 G

R
A

P
A

L
 T

im
e

 /
 #

C
h

ip
s

Application.Graph
Spatial RouterPush-RelabelBellman-FordConceptNet

Figure 4.3: The speedup per chip of the GRAPAL implementation on the BEE3 platform
over the sequential implementation on a Xeon 5160 for each application and each graph

 0.01

 0.1

 1

cnet_sm
all

tseng

ex5p
apex4

m
isex3

diffeq

alu4
dsip

des
seq

bigkey

apex2

s298
elliptic

frisc
spla

ex1010

pdc
s38584.1

s38417

clm
a

BVZ_32

sqrt8
m

isex2

cc count

5xp1
s382

m
ult32a

duke2

G
R

A
P

A
L

 E
n

e
rg

y
 /

 S
e

q
 E

n
e

rg
y

Application.Graph
Spatial RouterPush-RelabelBellman-FordConceptNet

Figure 4.4: Energy use of GRAPAL implementation on BEE3 platform relative to energy
use of sequential implementation on Xeon 5160 system, for each application and each
graph

62

Chapter 5

Implementation

This chapter explains the design and implementation of our GRAPAL compiler and our

FPGA logic architecture. The platform we target is a BEE3 which has a circuit board of

four Virtex-5 XC5VSX95T FPGAs.

5.1 Compiler

The GRAPAL compiler translates the source level language to a logic architecture that can

be loaded and run on an FPGA. The core of our compiler translates the source program to

VHDL modules that describe the logic architecture. The primary pieces of the compiler:

• Perform standard compilation steps: Parse, type check, and canonicalize on an interme-

diate representation.

• Check that the control flow structure and method and function call structure conforms to

the constraints specified in Section 3.3.

• A library that represents HDL makes it easy for the compiler to describe arbitrary, highly

parameterized HDL structures.

• Transform source language methods into HDL operators.

• Describe the HDL for the logic architecture (Section 5.2), which is parameterized by

data from the intermediate representation of the GRAPAL program.

• Choose the parameters for the logic architecture that affect performance but are not a

implied by the GRAPAL program (Chapter 8).

• Manage the FPGA tool-chain which translates the logic architecture described in VHDL

63

Figure 5.1: Entire compilation and run flow for GRAPAL programs

output by the compiler’s backend to bitstreams for execution on FPGAs.

Figure 5.1 shows the entire compilation and runtime flow for GRAPAL programs.

sources.gs are the parallel kernel code in GRAPAL, and sources.c are the sequen-

tial controller controller code. The compiler and runner is composed of the stages INIT,

HARDWARE, SOFTWARE and RUN. These stages can be run independently, or the three

compilation stages, INIT, HARDWARE and SOFTWARE, can be run at once. The INIT

stage declares global broadcast and reduce methods in the GRAPAL program as C function

signatures in interface.h for the sequential controller to call. A programmer typically

develops the GRAPAL and C code together, and INIT needs to be a separate stage so it

can be part of the development process. INIT also creates a target directory for files used

and generated by later stages. The HARDWARE stage performs the core translation of the

source program to VHDL logic. HARDWARE then passes the VHDL through the exter-

nal Synplify Pro and Xilinx EDK CAD tools to generate bitstreams, one for each of the

four FPGAs in our BEE3 target platform. The SOFTWARE stage compiles all C code,

64

Figure 5.2: Embedded architecture on the BEE3 platform

sources.c and interface.h, with Xilinx’s modified GCC compiler that targets the

MicroBlaze soft processor [79]. SOFTWARE is a separate stage to allow the programmer

to make changes to the sequential controller without waiting for the CAD tools to recompile

the bitstreams. The RUN stage first loads bitstreams onto FPGAs with the JTAG hardware

interface, then uses our custom bootloader to load the sequential controller binary onto the

MicroBlaze.

5.1.1 Entire Compilation and Runtime Flow

Bitstreams generated by the HARDWARE stage implement the embedded level architec-

ture shown in Figure 5.2. There is one bitstream for each of the four FPGAs in the BEE3

platform. The core logic on each FPGA is the GRAPAL application-specific logic, which

consists of PE logic and memory, the packet-switched network and global broadcast and

reduce networks. VHDL files describing this application-specific logic is generated by the

65

core GRAPAL compiler, shown in Figure 5.3. After VHDL generation, Synplify Pro per-

forms logic synthesis to translate each FPGA’s top-level VHDL module into a netlist. The

netlist for each FPGA is then composed with inter-chip routing channels. The netlist for the

master FPGA is also composed with a MicroBlaze soft processor, an Ethernet controller,

and FSL queues. Inter-chip communication channels form a cross-bar connecting each pair

of FPGAs. Up, Down and Cross logic components, labeled C in Figure 5.2, translate be-

tween application logic channels and inter-chip channels. The MicroBlaze processor runs

the sequential controller program described by sources.c. It is linked to a host PC with

Ethernet to load the sequential controller, load and unload graphs, and perform miscella-

neous communication. There is one Fast Simplex Link (FSL) queue to send tokens from

the MicroBlaze process to application-specific logic, and one FSL queue to send tokens

from application-specific logic to the MicroBlaze. The compiler packages each full FPGA

design as a Xilinx Embedded Development Kit (EDK) project. The EDK tool then maps,

places and routes each EDK project to generate a bitstream for each FPGA. The RUN

stage running on the host PC loads bitstreams onto the four FPGAs in sequence via the

JTAG hardware interface.

Most standard compiler optimizations are excluded from compilation down to HDL.

Instead, we rely on the logic synthesis tool (Synplify Pro), the first step of the FPGA tool

chain, to perform constant folding and common subexpression elimination on the HDL

level. Since GRAPAL has simple semantics with no loops, recursion, or pointers there

is no need to perform other standard optimizations. However, dead code elimination is

performed to improve compiler efficiency, and translation to HDL requires all functions to

be inlined.

The core of the GRAPAL compiler checks source code and transforms it into VHDL

files describing the logic architecture. Figure 5.3 shows the compiler stages between source

code and VHDL files. Representations of the program are drawn with sharp corners and

checking and transformation steps are listed in boxes with rounded corners. In the canonical

intermediate representation used by the compiler, methods and functions are represented as

control flow graphs (CFGs) with static single assignment (SSA) [80].

66

Figure 5.3: The core of the compiler translates source GRAPAL files to VHDL files. This
is the first step of the HARDWARE stage (Figure 5.1)
.

67

5.1.1.1 Translation from Source to VHDL

First the parser converts source files into an Abstract Syntax Tree (AST) and reports syntax

and undeclared identifier errors. The control flow in each method and function is trans-

formed from nested control-flow structures and expression trees in the AST to a control

flow graph (CFG) [81]. The initial control flow graph box in Figure 5.4 shows an example

CFG immediately after the transform from an AST. Each node in the CFG is a basic block,

which is straight-line code ending in a control flow transfer. This flat structure is easier to

perform transforms on than a nested AST structure. Each CFG has a source basic block,

where execution starts, and possibly multiple sink basic blocks where execution ends. Ev-

ery non-sink ends in a branch or jump to transfer control to another basic block. Sinks end

with a return statement in the case of functions and returning methods and a nil statement

otherwise.

After type checking, variable declarations and assignments are transformed into static

single assignment (SSA) form [80]. In SSA, variables cannot be assigned values after they

are declared; each is assigned a value once in its definition statement. This makes the

dataflow structure explicit which simplifies transforms and checks on the code. Figure 5.4

shows how assignments in the initial CFG are transformed into definitions with SSA. Mul-

tiple assignments to a variable which occur in sequence are transformed into a sequence

of definitions of different variables. Each reference to the variable is then updated to the

last definition. When a variable which is assigned different values in different paths, a new

variable must defined at the point of convergence for any later references to use. The new

variable at the point of convergence is defined to be a Φ function of the variables in the

convergent paths. At execution time, the Φ function selects the variable on the path that

was traversed.

A series of canonicalization steps on control and data flow is performed:

1. Case expressions of the form Predicate ? ThenExpr : ElseExpr are trans-

formed to basic blocks.

2. Return statements are unified into a single return statement in a unique sink basic block.

3. All function calls are inlined into ancestor methods. This is possible because the No-

68

Figure 5.4: The control flow representations used by the compiler after inputting Source
Code are: the Initial Control Flow Graph, the Control Flow Graph with Static Single As-
signment, Straight Line Code, and Hardware Description Language. Control flow graphs
consist of basic blocks with transfer edges. Control out of a branching basic block fol-
lows the edge labeled with the Boolean value supplied by the branch’s predicate. Static
single assignment has Φ (phi) functions to select a value based on the input edge control
followed. Straight line code uses case expressions to implement Φ functions. Hardware
description language substitutes case expressions with multiplexers. The HDL’s wires are
labeled with the variables from previous stages that they correspond to.

69

Recursion constraint (Section 3.3) disallows recursion.

4. Multiple message send statements on the same out field are unified into a single state-

ment, with all send statements moved to the sink basic block. This is possible because

the One-Message-per-Pointer constraint disallowed calls on the same out field that are

on the same control flow graph.

5. All field reads are moved to variable definitions in the source basic block and all field

writes are moved to the destination basic block. New variables are introduced when

fields are read from after being written to. This will allow object state read to be packed

into a single large read at the beginning of operation and write to be packed into a single

large write at the end.

6. Tuple expressions are flattened into atomic expressions, tuple types are flattened into

atomic types, and tuple references are eliminated.

The last canonicalization step transforms each method’s CFG into straight-line code,

which is almost equivalent to the HDL description of the method. The CFG is a DAG, so

basic blocks can be sequenced with a topological ordering. Case expressions of the form

Predicate ? ThenExpr : ElseExpr are reintroduced to replace Φ expressions.

Figure 5.4 shows how the SSA’s Φ functions are transformed into straight-line code’s case

expressions. For each Φ expression, nested case expressions are constructed whose pred-

icates are the predicates used by branches which are post-dominated by the Φ. Variables

input to the Φ become case expressions’ then and else expressions. Nested case expressions

are once again flattened into a sequence of statements.

The straight-line code for each method is transformed into HDL directly by replacing

each case expression with a two-input multiplexer and ignoring the order of statements.

The statement order can be ignored because statements SSA never change variables. Each

variable declaration is typed as a Boolean or signed or unsigned integer parameterized by

width so it can be converted into a wire with the correct width. Each arithmetic operation

corresponds directly to an HDL arithmetic operation. Figure 5.4 shows how variables are

converted to wires and case expressions are converted to multiplexers.

HDL modules described by the compiler includes the operators generated from GRA-

PAL methods as well as the entire logic architecture. The compiler uses its own library

70

for constructing HDL modules. It is more convenient to describe arbitrary, highly pa-

rameterized HDL modules with functions and data structures than to rely on externally

defined modules in a language like VHDL or Verilog. The Java libraries JHDL [82] and

BOOM [83] and Haskell libraries Lava [84] and Kansas Lava [85] take the same approach

to supporting highly parameterized structures. Code to print the target VHDL operators can

go in a single function in the library, rather than appearing in each part of the compiler that

generates HDL. Parameters which depend on the compiled program are pervasive through-

out the generated logic. By using a library we can pass these parameters to functions which

encapsulate HDL modules, which simplifies the number of changes that need to be made

when the meaning of or the set of parameters changes during compiler development. Using

ordinary functions to describe complex structures like the network is also more convenient

than using VHDL or Verilog functions.

5.1.1.2 Structure Checking

Once method control-flow is in SSA form, checks are performed to ensure that the program

conforms to the structural constraints given in Section 3.3.

The Send-Receive constraint forces message-passing between methods in a graph-step

to conform to the structure displayed in Figure 3.5 (rules are in Table 3.1). The compiler

checks dispatch statements to enforce this message-passing structure.

According to the Single-Firing constraint at most one node send method and at

most one edge fwd method fires per object per graph-step. Single-Firing is guaran-

teed by the One-Method-per-Class constraint and One-Message-per-Pointer constraint

(Section 3.3).

The One-Method-per-Class means that at most one method of each kind in each class

can fire in any given graph-step. The compiler proves One-Method-per-Class by catego-

rizing dynamic graph-steps into static graph-step types. A graph-step type is defined as the

set of methods that can possibly fire in a graph-step. If no two methods of the same kind

and same class are present in any graph-step type then no two methods of the same kind

and same class can fire in any graph-step. At runtime, each chain of graph-steps is initiated

with a bcast method. The compiler uses the method-call graph to construct a chain of

71

graph-step types for each bcast method in the program. Figure 5.5 shows the compiler’s

algorithm to construct and check graph-step types. Each successive graph-step type lists

the methods which can follow the methods listed in its predecessor. If a graph-step type’s

methods have no successors then the chain ends and graph-step type construction termi-

nates. If there are successors, but they are identical to a previous graph-step type’s methods

then the chain loops back to the previous graph-step type and graph-step type construc-

tion terminates. Since the method-call graph follows the graph-step structure of method

kinds node send, edge fwd, global reduce and node reduce (Figure 3.5),

each graph-step type must be broken into one phase for each of the four method kinds.

One-Message-per-Pointer states that each node send method firing sends at most

one message on each of its node’s out sets, and analogously each edge fwd method fir-

ing sends at most one message of each of its edge’s out sets. To prove that there will be at

most message on each out set the compiler checks dispatch statements in each method’s

CFG. A violation is reported if there exists a path through the CFG that contains multiple

dispatch statements to the same out set. This check does allow multiple dispatch state-

ments in different branches of an if statement, for example. The feed-forward structure of

GRAPAL methods allows this One-Message-per-Pointer check to be performed statically

at compile-time. To simplify implementation logic, sends in the same method on the same

out set must have the same destination method.

No loops and no recursion are allowed to enable compilation to logic which can be

pipelined to execute one edge per clock-cycle. Loop syntax is absent from the language

definition. No-Recursion is checked by constructing a graph of function calls and checking

it for cycles. After the No-Recursion check all functions can be inlined into their ancestor

methods.

5.2 Logic Architecture

The performance of sparse graph algorithms implemented on conventional architectures is

typically dominated by the cost of memory access and by the cost of message-passing. FP-

GAs have high on-chip memory bandwidth to stream graph data between memory and op-

72

// Check each chain of graph-step types starting at each global broadcast.
checkOneMethodPerClass(program)

for each method m ∈ methods(program)
if kind(m) = bcast

checkGraphStepType({}, {bcast})

// Recursively construct chain of graph-step types and check each phase
// of a graph-step type. A call to checkGraphStepType checks the four
// phases following lastPhase. There is one phase for each method kind:
// node send, global reduce, edge fwd and node reduce.
checkGraphStepType(stepsChecked, lastPhase)

nodeSendPhase = successorPhase(nodeSend, lastPhase)
globalReducePhase = successorPhase(globalReduce, nodeSendPhase)
edgeFwdPhase = successorPhase(edgeFwd, nodeSendPhase)
nodeReducePhase = successorPhase(nodeReduce, edgeFwdPhase)
graphStepType = (nodeSendPhase, globalReducePhase,

edgeFwdPhase, nodeReducePhase)
// No two methods in the same class with the same kind can appear in
// a graph-step type.
for each phase in graphStepType

if ∃ m_1, m_2 ∈ phase : m_1 6= m_2 ∧ class(m_1) = class(m_2)
raise violation exception

// The chain ends with an empty graph-step type or
// a repeated graph-step type.
if graphStepType 6= ({}, {}, {}, {}) ∧ graphStepType /∈ stepsChecked
checkGraphStepType(stepsChecked ∪ {graphStepType}, nodeReducePhase)

// Union method successors to make phase successors.
successorPhase(kind, phase)

union m ∈ phase
{n in successorMethods(m) : methodKind(n) = kind}

Figure 5.5: The compiler checks One-Method-per-Class by constructing a chain of graph-
step types for starting at each global broadcast. Each phase of a graph-step type corresponds
to one of the method kinds: node send, edge fwd, global reduce and node
reduce. The method call graph, represented by the successorMethods function, is used
to construct graph-step types.

73

erators and a high on-chip communication bandwidth to enable high throughput message-

passing. Compared to a 3 GHz Xeon 5160 dual-core processor, the Virtex-5 XC5VSX95T

FPGA we use has 5 times greater memory bandwidth and 9 times greater communication

bandwidth (Table 1.1). Further, by using knowledge of the graph-step compute structure

and the particular GRAPAL application’s data widths, the logic architecture can be cus-

tomized to perform one operation per clock cycle. Logic for communication between par-

allel components can be customized for the styles of signals needed to implement GRAPAL

applications: A packet-switched network can implement high-throughput message-passing

and dedicated global broadcast and reduce networks can implement low-latency barrier

synchronization.

Parallel graph algorithms usually need to access the entire graph on each graph-step. In

a graph-step, all active node and edge state needs to be loaded and possibly stored resulting

in little temporal memory locality. This makes it difficult to utilize caches to hide high

memory latency and low memory bandwidth. To achieve high bandwidth and low latency

we group node and edges operators and node and edge memories into Processing Elements

(PEs). Each PE supports all nodes and edges. Each operator has direct, exclusive access to

the memory storing the nodes or edges it acts on. Typically, each PE is much smaller than

an FPGA so our logic architecture fills up the platform’s FPGAs with PEs, resulting in an

average of 41 PEs across applications (Table 5.1). Message-passing between PEs allows

communication without having to provide shared memory access between PEs. Since most

sparse graphs have many edges per node, the quantity our logic architecture minimizes is

memory transfer work per edge. Our benchmark graphs have between 1.9 and 4.8 edges

per node with an average of 3.6. Table 5.2 shows the number of edges per node for each

benchmark graph. Our logic architecture utilizes dual ported BlockRAMs to provide one

edge load concurrent with one edge store per cycle.

Message-passing can be a performance bottleneck due to a large overhead for sending

or receiving each message, or too little network bandwidth. In particular we would like

to avoid the large overhead for each message typical to clusters. Our logic architecture

is customized to the GRAPAL application so one message is input or output per clock-

cycle. Graph algorithms generate one message for each active edge. Since the logic can

74

Application NPEs NPEs/Nchips

ConceptNet 51 13
Bellman-Ford 51 13
Push-Relabel 26 7
Spatial Router 37 9

Table 5.1: Number of PEs and number of PEs per FPGA

Application Graph |V | |E| |E|/|V |
ConceptNet cnet small 15000 27000 1.87
Bellman-Ford tseng 1000 3800 3.59

ex5p 1100 4000 3.76
apex4 1300 4500 3.55
misex3 1400 41000 3.55
diffeq 1500 5300 3.54
alu4 1500 5400 3.55
dsip 1400 5600 4.12
des 1600 6100 3.84
seq 1800 6200 3.54
bigkey 1700 6300 3.70
apex2 1900 6700 3.56
s298 1900 61000 3.60
elliptic 3600 13000 3.50
frisc 3600 13000 3.59
spla 3700 14000 3.74
ex1010 4600 16000 3.50
pdc 4600 17000 3.76
s38584.1 6400 21000 3.23
s38417 6400 21000 3.33
clma 8400 30000 3.63

Push-Relabel BVZ 128 870 2800 3.18
BVZ 64 1700 7000 4.06
BVZ 32 3500 17000 4.79

Spatial Router sqrt8 1400 13000 9.59
misex2 1600 16000 9.62
cc 1600 16000 9.62
count 2600 26000 9.70
5xp1 2600 28000 10.79
s382 31000 43000 10.86
mult32a 7400 81000 10.95
duke2 7800 98000 12.47

Table 5.2: Number of nodes, edges and edges per node for each benchmark graph

75

Figure 5.6: Computation structure of a graph-step is divided into four phases. In Global
Broadcast the sequential controller broadcasts to all PEs. In Node Iteration each PE iterates
over nodes assigned to it and initiate operations on them. PE0 initiates operations on its
nodes 0 and 1, and PE1 initiates operations on its nodes 5 and 6. In Dataflow Activity,
locally synchronized operations fire on nodes and edges and pass messages between PEs.
First fanin nodes fire and send messages (nodes 0 and 1), then root nodes fire (nodes 2, 5
and 6), then fanout nodes fire (nodes 3 and 4), and finally node reduce operations on fanin-
tree leaves fire (nodes 0, 1, 5 and 6). The red triangle is a fanin tree and the green triangle
is a fanout tree. In Global Reduce, the global reduce values and quiescence information is
accumulated to give to the sequential controller.

be customized to each application, message send and receive logic is pipelined to handle

one message per cycle. Using knowledge of method input sizes the compiler generates

datapaths that are large enough to handle one message per cycle. Graph algorithm imple-

mentations on conventional architectures must pack multiple, small, edge-sized values into

large messages to amortize out message overhead. This is difficult since graphs structures

are often irregular and the set of active edges on each graphs-step is a difficult-to-predict

subset of all graph-edges. Our specialized PE architecture is an improvement over an equiv-

alent PE implementation for a conventional, sequential architecture. Figure 5.8 shows an

assembly language implementation of a PE that requires 30 instructions per edge.

76

The logic architecture implements a graph-step with the following four phases (Fig-

ure 5.6):

• Global Broadcast: The sequential controller broadcasts instructions to all PEs on a

dedicated global broadcast network. The broadcast instructions say which GRAPAL

methods are active in the current graph-step. If the graph-step is the first one after a

bcast call by the user-level sequential program then the global broadcast also carries

the value broadcast.

• Node Iteration: Each PE iterates over its nodes to initiate node firings.

• Dataflow Activity: Operations in PEs on nodes and edges act on local state and send

messages. Messages travel over the packet-switched network and are received by other

operations which may send more messages.

• Global Reduce: A dedicated global reduce network accumulates values for the current

global reduce method and detects when operations and messages have quiesced.

Once the global reduce network reports quiescence, the sequential controller can proceed

with the next global broadcast. The network accumulates a count of message receive

events and message send events so that quiescence is considered reached when the send

count equals the receive count.

5.2.1 Processing Element Design

The entire PE datapath (Figure 5.7) is designed to stream one message in and one mes-

sage out per cycle. This means that in each clock-cycle a PE can perform one edge-fwd

operation concurrent with sending a message to a successor edge. Knowledge of the struc-

ture of graph-step computations allows us to fuse edge-fwd, node-reduce, node-update, and

global-reduce methods together in the PE datapath. An implementation of a more generic

actors language (Section 2.4.1) or concurrent object-oriented language would have to send a

message between each pair of operations. Knowledge of the GRAPAL application widths

allows the width of each bus in the datapath to be matched to the application. Memory

word-widths are sized so a whole node or edge is loaded or stored in one cycle.

The mostly linear pipeline shown in Figure 5.7 is oriented around nodes. First nodes

77

Figure 5.7: Processing element datapaths. Each channel is labeled with the width of its
data in bits for the Push-Relabel application.

78
Message receive phase:

First read message from receive_buffer,
then execute edge_op and node_reduce_op.

for msg_idx = 0 to receive_count - 1
msg = &(receive_buffer[msg_idx])
edge_idx = msg->edge_idx
msg_val = msg->val
edge = &(edge_mem[edge_idx])
edge_state = edge->edge_state
dest_node_idx = edge->dest_node
edge_op_out = edge_op(edge_state, msg_val) // edge_op
edge_state_new = edge_op_out->edge_state
edge_word->edge_state = edge_state_new
edge_return = edge_op_out->return
node = &(node_mem[dest_node_idx])
// reduce_valid is false only for the first node_reduce_op for a node
reduce_valid = node->reduce_valid
reduce_val = node->reduce_val
reduce_out = node_reduce_op(reduce_val, edge_return)
reduce_val_new = reduce_valid ? reduce_out : edge_return
node->reduce_val = true
node->reduce_val = reduce_val_new

Message Send Phase:
For each node, first execute node_update_op
then write messages to send_buffer.

send_buffer_idx = send_buffer_base
for node_idx = 0 to nnodes - 1

node = &(node_mem[node_idx])
reduce_valid = node->reduce_valid
if reduce_valid then

node->reduce_valid = false
node_state = node->node_state
reduce_val = node->reduce_val
node_op_out = node_update_op(node_state, reduce_val)
send_valid = node_op_out->send_valid
if send_valid then

send_val = node_op_out->send_val
send_base_idx = node->send_base_idx
send_bound_idx = node->send_bound_idx
for send_idx = send_base_idx to send_bound_idx - 1

send_struct = &(send_mem[send_idx])
dest_address = send_struct->dest_address
edge_idx = send_struct->edge_idx
msg = &(send_buffer[send_buffer_idx])
send_buffer_idx = send_buffer_idx + 1
msg->dest_address = dest_address
msg->edge_idx = edge_idx
msg->val = send_val

Figure 5.8: A PE is described as a sequential program in pseudo assembly. Each C-
style statement corresponds to one MIPS instruction, except loops which take two in-
structions. We simplify the GraphStep operators edge op, node reduce op, and
node update op, so they each take one instruction. Each of the 30 statements colored
green is executed once for each active edge.

79

Figure 5.9: Nodes (n) and edges (e) are assigned to PEs by first grouping nodes with their
predecessor edges, then assigning each group to a PE. This example shows four nodes
grouped with their predecessor edges. The four groups are then split between two PEs.

are grouped with their predecessor edges and assigned to PEs (Figure 5.9). For each node

assigned to a PE some of its state is stored in Node Reduce Memory and some is stored in

Node Update Memory. Edge state for each edge which is a predecessor of one of the PE’s

nodes is stored in Edge Memory. Each node points to successor edges, and these pointers

are stored in Send Memory. Each memory in Figure 5.7 has an arrow to its associated

operator to represent a read. An arrow from the operator to the memory represents a write.

Each channel of the PE is labeled with the width of its data in bits for the Push-Relabel

application. Since the datapath widths are customized for the application, these widths

vary between applications.

The Node Update Operator contains and selects between the GRAPAL application’s

send methods, which occur in the update phase of a graph-step. Figure 5.10 shows the

contents of the Node Update Operator. This operator contains logic for each send method

in each node class in the GRAPAL application. It must input method arguments and

the firing node’s address, load node state, multiplex to choose the correct method, store

resulting node state, and output data for sent messages. The compiler checks that at most

80

Figure 5.10: Node Update Operator containing the logic for four node send methods:
C1.M1 and C1.M2 in class C1, and C2.M3 and C2.M4 in class C2. Each method inputs
node state and arguments and outputs node state, send data for messages, and a global re-
duce value. Multiplexers are used to select which method fires on each cycle. The methods
in each class are selected based on the current graph-step type for the currently executing
graph-step. A class identifier, which was read from Node Memory along with node state,
selects which class’s method fires.

one method of each class can fire in any graph-step type (Section 5.1.1.2), which allows us

to select the method as a function of the node’s class and the graph-step type. The graph-

step type is provided by the global broadcast at the beginning of each graph-step. The node

class is stored in Node Update Memory along with node state. The Node Reduce Operator

wraps nodes’ reduce tree methods, the Edge Operator wraps edges’ fwd methods,

and the Global Reduce Operator wraps global reduce tree methods. Similar to

Node Update Operator, these operators input node or edge addresses along with method

arguments, output the result of the method, and possibly load and store to their associated

memories. An Edge Operator chooses from possible methods from graph-step type and

edge class, Node Reduce Operator chooses from graph-step type and node class, and Global

Reduce Operator chooses from graph-step type only. The Send to Edge Operator inputs

message data from a node firing and outputs a message for each of the nodes’ successor

edges.

At the beginning of a graph-step, PE control logic iterates over all nodes assigned to

81

the PE. Each active node iterated over feeds a token containing the node reduce result from

the previous graph-step containing to the Node Reduce Queue. After this initial node it-

eration, all inter-operator data elements are wrapped as self-synchronized tokens. Tokens

carry data-presence and tokens’ channels are backpressured so control and timing of a

channel’s source operator is decoupled from control and timing of the destination opera-

tor. The packet-switched, message-passing network has data presence and back-pressure

so messages are considered tokens. This pervasive token-passing makes all computation

and communication in a graphs step between the initial node iteration and the final global

reduce asynchronous.

Without asynchronous operation firing, a single locus of control (per PE) must iterate

over potentially active elements. For example, an input-phase could iterate over a PE’s

input edges controlling firing for Edge Operator, Node Reduce Operator and Node Update

Operator. Next, an output-phase would iterate over pointers to successor edges generating

messages to be stored at their destination PEs for the next inputs-phase. These two sub-

phases per graph-step would waste cycles on non-active edges, with each edge located in

a PE using 2 cycles per graph-step. Since there are between 1.9 and 4.8 edges per node in

our benchmark graphs, it is critical for performance to iterate over nodes only as our token-

synchronized design does. Critical path latency is also increased since an extra global

synchronization is required to ensure that all messages have arrived from output-phase

before input-phase can start.

The initial iteration over nodes assigned to a PE fetches the result of the previous graph-

step’s Node Reduce Op from the Node Reduce Memory and inserts it into the Node Reduce

Queue. These reduce results can only be used after the barrier synchronization dividing

graph-steps because the number of messages received by a node is a dynamic quantity.

Tokens from Edge Op to Node Reduce Op are blocked until the iteration finishes so they

do not overwrite node reduce results from the previous graph-step. Although each token-

passing channel functions as a small queue, the large Node Reduce Queue has enough space

for a token corresponding to each node assigned to the PE. This large queue is required to

prevent bufferlock due to tokens filling up slots in channels and the network. Node Update

Op inputs the result of the reduce and the node state stored in Node Update Memory to

82

a send method. The send method may generate data for the global reduce, handled by

Global Reduce Op, and may generate data for messages to successor edges. Global Reduce

Op accumulates values generated by Node Update Op in its PE along with values from at

most two neighboring PEs (on ports Global Reduce in1 and in2). Since global reduce

methods are commutative and associative, the order of accumulation does not matter. Once

the global reduce values arrive from neighboring PEs and all local nodes have fired, the PE

sends the global reduce value on Global Reduce Out. Each node points to a sequence of

successor edges in Send Memory and requires one load to send each message through the

port Message Out. The packet-switched, message-passing network routes each message to

the Message In port at the destination PE. Once a message arrives Edge Op fires, reading

state from Edge Memory and possibly updating state. For each edge fired, Node Reduce Op

fires to execute a node reduce treemethod. Node Reduce Op accumulates a value for

each node which is stored in Node Reduce Memory. Node Reduce Op is pipelined so Read

After Write hazards exist between different firings on the same node. Hazard detection is

required here to stall tokens entering Node Reduce Op.

5.2.1.1 Support for Node Decomposition

The decomposition transform (analyzed in Section 7.2) impacts PE design by allowing PEs

to have small memories and by relying on PE subcomponents’ dataflow-style synchroniza-

tion. If PEs can have small memories then we can allocate a large number of PEs to each

FPGA with minimal memory resources per PE. When a node is assigned to a PE it uses one

word of Edge Memory for each of its predecessor edges and one word of Send Memory for

each of its pointers to a successor edge (Figure 5.9). This prevents PEs with small memo-

ries from supporting high-degree nodes. Many graphs have a small number of high-degree

nodes, so small PEs could severely restrict the set of runnable graphs. In our benchmark

graphs, the degree of the largest node relative to average node degree varies from 1.3 to

760 with a mean of 185. By performing decomposition, memory requirements per PE are

reduced by 10 times, averaged across benchmark applications and graphs (Section 7.2).

Computation cost in a PE is one cycle per edge so breaking up large nodes allows load-

balancing operations as well as data. The speedup from decomposition is 2.6, as explained

83

Figure 5.11: An original node with 4 input messages and 4 output messages is decomposed
into 2 fanin nodes, 1 root node, and 2 fanout nodes. The global barrier synchronization
between graph-steps cuts operations at the original node. For the decomposed case, the
global barrier synchronization only cuts operations at leaves of the fanin tree. A sparse
subset of the arrows with dashed lines carry messages on each graph-step. All arrows with
solid lines carry one message on each graph-step.

in Section 7.2.

Figure 1.5 shows how decomposition breaks each original node into a root node with

a tree of fanin nodes and a tree of fanout nodes. Each fanout node simply copies its input

message to send to other fanout nodes or edges. Fanin nodes must perform GraphStep’s

node reduce operation to combine multiple messages into one message. We are only al-

lowed to replace a large node with a tree of fanin nodes because GraphStep reduce operators

are commutative and associative.

Figure 5.11 shows how decomposition relates to barrier synchronization and which PE

operators (Figure 5.7) occur in which types of decomposed nodes in our PE design. After

decomposition only fanin-trees leaves wait for the barrier synchronization before sending

messages. Other nodes are dataflow synchronized and send messages once they get all their

input messages. We make the number of messages into each dataflow synchronized node a

constant so the node can count inputs to detect when it has received all inputs. Each fanout

84

node only gets one message so it only needs to count to one. Without decomposition, all

edges are sparsely active, so their destination nodes do not know the number of messages

they will receive on each input. To make this number constant, edges internal to a fanin

tree are densely active. Dense activation of fanin-tree messages requires that each fanin-tree

leaf sends a message on each graph-step. At the beginning of a graph-step, each PE iterates

over its fanin-tree leaves to send messages that are stored from the previous graph-step’s

node reduce and send nil messages for nodes which have no stored message.

We place the barrier immediately after node reduce operators to minimize memory

requirements for token storage. Whichever tokens or messages are cut by the barrier need

to be stored when they arrive at the end of a graph-step so they can be used at the beginning

of the next graph-step. If the barrier were before node reduce operators then memory would

need to be reserved to store one value for each edge. We instead store the results of node

reduce operators since they combine multiple edge values into one value. These tokens are

stored in Node Reduce Memory (Figure 5.7). This node reduce state is not visible to the

GRAPAL program, so moving node reduce operations across the barrier does not change

semantics.

One alternative logic design would perform one global synchronization for each stage

of the fanin and fanout tress so all edges are sparsely active. Another alternative logic

design would perform no global synchronizations and make all edges densely active. In

Section 7.3 we show that our mixed barrier, dataflow synchronized architecture has 1.7

times the performance of the fully sparse style, and 4 times the performance of the fully

dense style.

To make our decomposition scheme work, extra information is added to PE memories

and the logic is customized. Each node and edge object needs to store its decomposition-

type so the logic knows how to synchronize it and knows which operations to fire on it.

We were motivated to design the PE as self-synchronized, token-passing components to

support dataflow-synchronized nodes. If all operations are synchronized by a barrier then

a central locus of control can iterate over nodes and edges, invoking all actions in a pre-

scheduled manner. To handle messages and tokens arriving at any time, a PE’s node and

edge operators in Figure 5.7 are invoked by token arrival.

85

Application Wmsg Wflit dWmsg/Wflite
ConceptNet 30 30 1.0
Bellman-Ford 40 30 2.0
Push-Relabel 90 30 4.0
Spatial Router 40 30 2.0

Table 5.3: This table shows the datapath widths of messages, widths of flits, and flits per
message for each application.

5.2.2 Interconnect

The logic architecture’s interconnect routes messages between PEs. Figure 5.9 shows how

nodes are mapped to PEs. All inter-PE messages are along active edges, from node send

methods to edge methods. Since the set of active edges in any graph-step is dynamic,

route scheduling is performed dynamically by packet-switching. Packet-switched mes-

sages contain their destination PE and destination edge address, along with payload data.

The interconnect topology has two stages, with the top stage for inter-FPGA messages and

the bottom stage for intra-FPGA messages (Figure 5.12). The inter-FPGA network con-

nects the four FPGAs in the BEE3 platform with a crossbar. Each intra-FPGA network uses

a Butterfly Fat-Tree to connect PEs on the same FPGA and connect PEs to the inter-FPGA

stage.

PE datapaths for messages are wide enough for all address and data bits to transmit

one message per cycle. Messages routed in the interconnect are split into multiple flits

per message with one flit per cycle. Flits make interconnect datapaths smaller which pre-

vents network switches from taking excessive logic resources and allows applications with

wide data-widths to route messages over the fixed-width inter-FPGA channels. Table 5.3

includes the size of messages before being broken into flits, and the size of flits for each

application. One flit per message is equivalent to not using flits. The flit-width is automati-

cally chosen by the compiler (Section 8.2). Self messages, whose source PE is the same as

the destination PE, are never serialized into flits. Not serializing self messages is significant

for throughput since, with node placement for locality, a significant fraction of messages

are self messages. The fraction of self-messages varies from 0.15 to 0.7 with an mean of

0.4 for benchmark applications.

86

The inter-FGPA network connects each FPGA in the BEE3 to the other three FPGAs.

Each message can go clockwise up the four-FPGA ring, counterclockwise down the ring,

or cross the ring. Figure 5.2 shows the embedded architecture on the four FPGAs. Each

logic component labeled with C connects the on-chip network to I/O pins. FPGAs are con-

nected with circuit board traces. Each C component bridges between an internal channel,

clocked at the application logic frequency, and an external channel, with a DDR400 format

providing a data rate of 400 MHz. Tested applications usually have an application logic

frequency of 100 MHz, so to match internal and external bandwidth, an internal channel’s

words are larger than an external channel’s words. Up and down channels have 36 bits in

each direction at DDR400 and cross channels have 18 bits in each direction. C components

resize words of internal streams to match the bandwidth offered by the external channels.

The on-chip network connects PEs on the same chip to each other and to the external

channels (Figure 5.12). Each FPGA connects to the three others in the up (clockwise),

down (counterclockwise) and cross directions. PEs are connected to each other with a

Butterfly Fat-Tree (BFT) and a bridge of splitters and multiplexers connects the BFT to the

external channels. Each of the Ctop channels coming up from the BFT is routed to each of

the three up, down and cross directions.

We use Kare’s [86] architecture for switches, which are composed of split and merge

components. Each of the m components in the Bridge consists of a splitter and a merge.

A splitter directs each input message on a single input channel to one of multiple outputs.

Splitters from the BFT to external channels use destination PE addresses to direct each

message to the correct FPGA. Splitters from external channels to the BFT choose output

channels in a round-robin order with a preference for uncongested channels. A merge

merges messages on multiple input channels to share the single output channel. Each split-

ter has a buffer on its outputs so if one destination channel is congested, it will not block

messages to other destinations until the buffer fills up.

Although Figure 5.12 shows only one channel for each external direction, in general

there can be multiple channels for each external direction. The number of external channels

depends flit-width and frequency, which are application dependent. The Ctop channels

coming from the BFT are evenly divided between Cext external channels so each external

87

Figure 5.12: The on-chip network contains a Butterfly Fat-Tree (BFT) connecting PEs and
a bridge connecting the BFT with inter-chip channels. Drawn channels are bidirectional.

88

channel is shared bCtop/Cextc or dCtop/Cexte times.

5.2.2.1 Butterfly Fat-Tree

The Butterfly Fat-Tree network connects PEs on the same chip to each other and to the

bridge to inter-chip channels. A BFT with a rent parameter of P = 0.5 was chosen for

its efficient use of two-dimensional FPGA fabric and for simplicity. A mesh network also

efficiently uses two-dimensional fabric but has more complex routing algorithms and is

more difficult to compose into an inter-FPGA network. To compose a BFT into an inter-

FPGA network the top-level switches are simply connected up to other FPGAs.

The P = 0.5 BFT is constructed recursively by connecting four child BFTs with new

top-level 4-2 switches. Figure 5.12 shows a two level BFT. Each 4-2 switch (Figure 5.13)

has four bottom channels and two top channels. The address of each message from a bottom

channel into a 4-2 switch determines whether the message goes to one of the other three

bottom channels or a top channel. The address of a message from a top channel determines

which bottom channel it goes to. The two top channels are chosen in a round-robin order

with a preference for uncongested channels.

In general, BFTs are parameterized around their rent parameter P , with 0 ≤ P ≤ 1.

P determines the bandwidth between sections of the BFT: If a subtree has n PEs then the

bandwidth out of the subtree is proportional to nP . With P = 0.5 the bandwidth out of

a subtree is proportional to n1/2, which is the maximum bandwidth afforded by an n1/2

size perimeter out of a region of n PEs on a two-dimensional fabric. This match to two-

dimensional fabric makes the P = 0.5 BFT area-universal: network bandwidth out of a

subregion per unit area is asymptotically optimal.

89

Figure 5.13: Each P = 0.5 Butterfly Fat-Tree node is a 4-2 switch. The 4-2 switch has
two T -switches and two Π-switches. The T -switch has three 2-to-1 merges and three 1-to-
2 splitters, where each splitter directs a message based on its address. The Π-switch has
two 2-to-1 merges, two 1-to-2 splitters, two 3-to-1 merges, and two 1-to-3 splitters. Each
of the 3-to-1 splitters decides whether to route a message in one of the two up directions
or in down based on its address, and it routes messages going in the up direction to the
least congested switch. All splitters in both T - and Π-switches have buffers on their out-
puts to prevent congestion in one output direction from blocking messages going to other
directions.

90

Chapter 6

Performance Model

We developed a performance model for GraphStep to inform decisions about the logic ar-

chitecture and runtime optimizations. In general, the performance model could be used to

estimate performance for a new platform to see if it is likely to be worth the implementa-

tion effort to target that platform. The performance model helps us understand where the

throughput bottlenecks are and which components of the critical path are most significant.

Section 7.1 shows which components of the critical path are important to optimize, and

what the effect of each optimization is on each component rather than just on total runtime.

Section 7.3 explores the benefit of alternative synchronization styles using the performance

model. Since it is difficult to instrument FPGA logic, it is especially important to have a

good performance model when targeting FPGAs. We use our GRAPAL implementation

on the BEE3 platform to supply concrete values for modeled times. Section 6.2 discusses

the accuracy of the performance model when used to measured application runtimes on

the BEE3 platform. The mean error runtime predicted by the model, compared to actual

runtime, is 11%.

The GraphStep performance model approximates total runtime by summing time over

graph-steps. The time to perform each graph-step (Tstep) is a function of communica-

tion and computation operation latency along with throughput costs of communication and

computation operations on hardware resources. Components of the time are latencies (L∗),

throughput-limited times (R∗), and composite times that include both L∗ components and

R∗ components. Our performance model can be thought of as an elaboration of BSP [5]

(Section 2.4.3) for GraphStep. Like BSP, the time of a step is a function of latency and

91

throughput components, and the significant pieces are computation work on processors (w

in BSP), network load (h in BSP), network bandwidth (g in BSP), and barrier synchroniza-

tion latency (l in BSP).

6.1 Model Definition

Graph-step time is the sum of the time taken by the four subphases: global broadcast, node

iteration, dataflow activity, and global reduce (Section 5.2). Figure 6.1 illustrates the work

done by the four subphases.

Tstep = Lbcast + Lnodes + Tdataflow + Lreduce

1. Lbcast is the latency of the global broadcast from the sequential controller to all PEs

(Section 6.1.1).

2. Lnodes is the time taken to iterate over logical nodes assigned to each PE to initiate node

firings (Section 6.1.2). Each PE starts iterating once it receives the global broadcast. It

takes one cycle per node for each node stored at the PE, including nodes which are not

fired initially. In the example (Figure 6.1) there are two PEs which each initiate activity

in their fanin-tree leaf nodes.

3. Tdataflow is the time taken by the dataflow-synchronized message passing and operation

firing activity that was initiated by the node iteration (Section 6.1.3). This includes the

time taken by node and edge operations and messages in fanin and fanout trees until the

final operations before the end of the graph-step.

4. Lreduce is the time taken by the global reduce from all PEs to the sequential controller

(Section 6.1.1). The global reduce network is used for both detecting message and oper-

ation quiescence. Although the global reduce network is also used to for the high-level

gred methods’ global reduce, only quiescence detection is on the critical path of a

graph-step. Since quiescence detection works by counting message sends and receives,

the increment from the last message receive, through the global reduce network, to the

92

Fanin Leaf Roots
AVG 0.97 0.97
MIN 0.91 0.92
MAX 1.00 1.00

Table 6.1: Fraction of nodes that are fanin-tree leaves and root nodes across all benchmarks
graphs. A node with no fanin-tree nodes is both a fanin-tree leaf and a root.

sequential controller is on the critical path.

NPEs is the number of processing elements. The graph is a pair of nodes and edges:

G = (V,E). The set of nodes assigned to PE i is Vi, so |V | =
∑NPEs

i=1 Vi. The function

pred : V → E maps nodes to their predecessor edges and succ : V → E maps nodes to

the successor edges.

6.1.1 Global Latency

Our logic architecture dedicates specialized communication channels for global broadcast

and global reduce. A global broadcast signal is first generated by control logic, then serial-

ized, then sent to the destination FPGA, then deserialized, and then is forwarded between

neighboring PEs in the on-chip mesh. The critical-path latency of a global broadcast from

the controller to the farthest PE is:

Lbcast = Lbcast control + Linterchip + 2Lbcast deserialize + Lmesh (6.1)

1. Lbcast control is the time between the controller deciding to start a graph-step and the

broadcast word reaching the serializer. Serialization time is included since it takes only

one cycle for the serializer to begin sending bits after it receives the broadcast word.

2. Linterchip is the latency for a bit to travel from the source FPGA to another FPGA.

3. Lbcast deserialize = Wbcast/2 is the time for the deserializer to receive all bits of the broad-

cast word. It must receive all Wbcast bits before it can pass the full word on to PEs.

The logic architecture serializes global broadcast and reduce words to 2 bits per cycle,

resulting in Wbcast/2 cycles total. A coefficient of 2 appears next to Lbcast deserialize in

93

Figure 6.1: Computation structure of a single graph-step

94

Application Lbcast Lbcast control Linterchip Lbcast deserialize Lmesh

ConceptNet 108 4 32 56 16
Bellman-Ford 100 4 32 48 16
Push-Relabel 114 4 32 66 12
Spatial Router 132 4 32 80 16

Table 6.2: Latency of global broadcast on the BEE3 platform for each application

Application Lreduce Lreduce control Linterchip Lreduce deserialize Lmesh

ConceptNet 66 4 32 14 16
Bellman-Ford 66 4 32 14 16
Push-Relabel 74 4 32 26 12
Spatial Router 76 4 32 24 16

Table 6.3: Latency of global reduce on the BEE3 platform

the total latency, Lbcast, because a done signal is sent from the controller to PEs at the

end of each graph-step. This done signal must finish serializing and deserializing before

the next graph-step can start its global broadcast. Effectively, this means the controller

must wait an extra Lbcast deserialize cycles after it receives the global-reduce and before

starting the next graph-step.

4. Lmesh = 2(width + height− 1) is the latency for the broadcast word to pass through the

mesh of PEs. It takes 2 cycles for each vertical hop, then 2 cycles for each horizontal

hop.

Lbcast control and Linterchip are constant across applications, but Lbcast deserialize and

Lmesh are application dependent since they depend on Wbcast and PE count, respectively.

Table 6.2 shows the cycle counts for each component of Lbcast for each application.

Global reduce latency has analogous components in reverse:

Lreduce = Lmesh + Linterchip + Lreduce deserialize + Treduce control (6.2)

Unlike broadcast, Lreduce deserialize is only counted once. Table 6.3 shows the cycles counts

for each component of Lreduce for each application.

95

6.1.2 Node Iteration

Once a PE receives the global broadcast signal it iterates over its nodes to initiate operation

firing and message passing activity. In the first graph-step following a bcast call from the

sequential controller, activity is initiated with root node firings. On successive graph-steps

activity is initiated with fanin-tree leaf firings. For simplicity, in our implementation, each

PE iterates over all of its nodes including nodes which are not fired. Each node takes one

cycle, so Lnodes is the maximum of node count over all PEs: Lnodes = maxNPEs
i=1 |Vi|. Using

a cycle for each node in |Vi| could be wasteful if a significant number of nodes do not fire.

For a graph-step following a bcast each root nodes fires but each fanin node and fanout

node use a cycle without firing. For successive graph-steps each fanin-tree leaf node fires

but every other node uses a cycle without firing. Table 6.1 shows that the large majority

of nodes in our benchmark-graphs fire in each node iteration: the mean number of nodes

which are roots is 96% and the mean number of nodes which are fanin-tree leaves is 95%.

Note that a node with no fanin-tree nodes is both a fanin-tree leaf and a root.

6.1.3 Operation Firing and Message Passing

Node firings initiated by node iteration cause further operation firing and message passing.

As shown by Figure 6.1, activity flows up fanin-trees to root nodes, then down fanout-trees,

then along edges, until finally node reduce operators at fanin-tree leaves fire. This activity

is dataflow-synchronized, where each node after the fanin-tree leaves fires as soon as it gets

one message from each of its predecessors. Similarly, each edge fires as soon as it gets an

input message. This dataflow style requires only a local count at each node, which allows

multiple stages of message passing to be performed without incurring the cost of global

synchronization.

The time for the dataflow computation is:

Tdataflow = max(Ldataflow, Rnet, Rser)

96
Lbcast

Tstep

Lreduce

Tstep

Lnodes

Tstep

Tdataflow

Tstep

mean 0.28 0.18 0.21 0.34
min 0.12 0.07 0.07 0.14
max 0.41 0.26 0.54 0.52

Table 6.4: Breakdown of Tstep into each of the four stages of a graph-step aggregate across
all applications and graph

1. Ldataflow =
∑D

k=1 LPE +Mk: Ldataflow is the latency of the critical path through nodes

and edges. The length of the path in terms of operation firings is D. D = Din + Dout

where Din is the depth of the fanin tree and Dout is the depth of the fanout tree. The kth

hop includes the latency of node and edge operations inside a PE (LPE), and the latency

of the messages sent through the packet-switched network to the next PE (Mk). Message

latency depends on the distance between the source PE and the destination PE.

2. Rnet = maxS
j=1{Nflit × N

(j)
switch}: Rnet is the throughput cost of passing messages on

their network switch resources. The jth switch routes N (j)
switch messages in the current

graph-step, each usingNflit = Wmsg/Wflit cycles. Rnet is the lower bound calculated by

counting the number of cycles that each switch is occupied by a message and performing

useful work.

3. Rser = maxN
i {max(N

(i)
sends, N

(i)
recvs)}: Rser is the throughput cost of processing message

sends and receives as well as node and edge operation firings. PE logic can concurrently

input one message per cycle and send one message per cycle. The throughput lower-

bound for messages at each PE is then the maximum over input messages and output

messages. Rser is the maximum of this lower-bound over all PEs. There is one edge

operation per message receive, and at least one message send per node operation. Oper-

ations do not add extra cycles to Rser since they have their own dedicated logic that acts

concurrently with message sends and receives.

The mean times taken by the four graph-step stages, Lbcast, Lreduce, Lnodes, and

Tdataflow, as a fraction of total Tstep are 0.28, 0.18, 0.21, and 0.34, respectively, (Table 6.4).

These times are over all applications and graphs and use the optimizations in Chapter 7.

None of these times dominates the rest so we should not focus all optimization effort on

one stage. None of the stages has time so insignificant that it is not useful to optimize the

97

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

cnet_sm
all

tseng

ex5p
apex4

m
isex3

diffeq

alu4
dsip

des
seq

bigkey

apex2

s298
elliptic

frisc
spla

ex1010

pdc
s38584.1

s38417

clm
a

BVZ_128

BVZ_64

BVZ_32

sqrt8
m

isex2

cc count

5xp1
s382

m
ult32a

duke2

Graph

Lbcast
Lreduce
Lnodes

Tdataflow

Spatial RouterPush-RelabelBellman-FordConceptNet

Figure 6.2: Graph-step time (Tstep) as a sum of the four stages for each application and
graph

stage. Figure 6.2 shows the time taken by each of the four stages for each application and

graph.

6.2 Accuracy of Performance Model

To gauge the value of our performance model, we measure its accuracy for our applications

run on the BEE3 platform. Over all applications and graphs, the mean error of modeled

runtime (T (model)
step) compared to actual runtime (T (actual)

step) is 11% and the maximum error is

46%. The error is calculated as:

|
T

(model)
step

T
(actual)
step − 1

|

The performance model tends to underpredict performance and not overpredict. For

our benchmark applications and graphs the mean prediction is 90% of actual performance.

Figure 6.3 shows that the model under predicts for the Push Relabel and Spatial Router

applications. Our model does not include congestion between messages in the network,

which causes it to under predict Rnet. Congestion occurs when contention between mes-

sages through a merge backs up predecessor switches to cause messages not destined for

98

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

cnet_sm
all

tseng

ex5p
apex4

m
isex3

diffeq

alu4
dsip

des
seq

bigkey

apex2

s298
elliptic

frisc
spla

ex1010

pdc
s38584.1

s38417

clm
a

BVZ_128

BVZ_64

BVZ_32

sqrt8
m

isex2

cc count

5xp1
s382

m
ult32a

duke2

T
s
te

p
(m

o
d
e
l)
 /

 T
s
te

p
(a

c
tu

a
l)

Application.Graph
Spatial RouterPush-RelabelBellman-FordConceptNet

Figure 6.3: Modeled cycles divided by measured cycles for each application and graph.
Maximum and minimum deviations are on the right.

the merge to stall. Our model also ignores the case where a message that is not on the

critical path, blocks a message on the critical path.

In general, computation in the four phases global broadcast, node iteration, dataflow

activity, and global reduce can overlap. This overlap can cause the model to over predict

when actions on the critical path in a particular phase occur before all actions in the pre-

vious phase have completed. For example, node iteration on a PE close to the sequential

controller starts before time Lbcast, when the global broadcast reaches the farthest PEs. If

one of the nodes close to the sequential controller is on the critical path then Lbcast does not

fully contribute to Tstep. Node iteration and dataflow activity overlap so when the last node

is not on the critical path, the impact of node iteration is not the full Tnode. Finally, when the

last message received is close to the sequential controller Lreduce does not fully contribute

to Tstep. This under prediction indicates that time saved due to overlapping computation is

not having a large impact on performance.

99

Chapter 7

Optimizations

This chapter explores optimizations for the logic architecture and data placement for

GraphStep. We show the benefit of dedicated global broadcast and reduce networks in

Section 7.1. Node decomposition (Section 7.2) and placement for locality (Section 7.4)

optimize how operations and data are assigned to PEs. Section 7.3 compares alternative

synchronization styles for message passing and node firing. Table 7.1 shows the speedup

of each optimization.

We evaluate our optimizations on GRAPAL programs mapped to the BEE3 platform.

The use of GraphStep allows us to try these optimizations without changing GRAPAL

source program. However, most of these optimizations are relevant for graph algorithms

on multiprocessor architectures in general. In particular, a parallel graph algorithm written

in a general model run on a conventional multiprocessor architecture can use node decom-

position, placement for locality, and any of the synchronization styles in Section 7.3. Sec-

tion 7.1 shows the benefit of choosing a multiprocessor architecture with dedicated global

networks.

Decomposition Locality Latency Ordering Dedicated Global Networks
AVG 2.18 1.20 1.01 1.51
MIN 1.00 0.79 0.98 1.17
MAX 5.53 1.81 1.03 1.72

Table 7.1: Speedup due to each optimization

100
Lbcast

Lstep

Lnodes

Lstep

Ldataflow

Lstep

Lreduce

Lstep

AVG 0.28 0.21 0.33 0.18
MIN 0.14 0.07 0.14 0.08
MAX 0.41 0.61 0.52 0.26

Table 7.2: Contributions, after optimization, to the graph-step critical path, Lstep

7.1 Critical Path Latency Minimization

For small graphs the critical path latency dominates graph-step time. To model critical path

latency, we remove throughput times from the model for Tstep defined in Section 6.1. Like

Tstep, the critical path latency of a graph-step (Lstep) contains the global broadcast latency

(Lbcast), node iteration latency (Lnodes), and global reduce latency (Lreduce). Instead of

Tdataflow, the critical path of dataflow activity, Ldataflow, is used.

Lstep = Lbcast + Lnodes + Ldataflow + Lreduce

Table 7.2 shows the contribution of each latency component to Lstep for the optimized

case. These latencies are calculated with our performance model and averaged over all

applications and graphs. To allow averaging, each component of Lstep is reported as a

fraction of total latency.

We optimize the graph-step latency by providing dedicated networks for global broad-

cast and reduce, and we evaluate an optimization that orders the iteration over nodes per-

formed by each PE.

7.1.1 Global Broadcast and Reduce Optimization

One way in which we customize our logic architecture to GraphStep is that we devote a

global broadcast and reduce network to minimize Lbcast and Lreduce. This is enable by the

knowledge of the types of communication in GraphStep. A general actors implementation

would have to use the message passing network for this critical global synchronization. In

a nonspecialized implementation of global broadcast, a controller PE sends one message

to each PE. For global reduce each PE must send to the controller PE, which performs the

101

 0

 100

 200

 300

 400

 500

 600

 700

 800

cnet_sm
all

tseng

ex5p
apex4

m
isex3

diffeq

alu4
dsip

des
seq

bigkey

apex2

s298
elliptic

frisc
spla

ex1010

pdc
s38584.1

s38417

clm
a

BVZ_128

BVZ_64

BVZ_32

sqrt8
m

isex2

cc count

5xp1
s382

m
ult32a

duke2

Graph

Lbcast
Lreduce
Lnodes

Ldataflow

Spatial RouterPush-RelabelBellman-FordConceptNet

Figure 7.1: Latency of a graph-step (Lstep) as a sum of the latencies of the four stages for
each application and graph

global reduce computations. The unoptimized global reduce implementation would have

to trade off between frequency of quiescence updates and network congestion. The un-

optimized case is that messages travel over the packet-switched network and are sent or

received one at a time. These unoptimized times may be optimistic since network conges-

tion is not modeled here. The unoptimized global broadcast and reduce are:

L
(unopt)
bcast =

NPEs
max
i=1

Mi + 2NPEsd
Wbcast

Wflit

e

L
(unopt)
reduce =

NPEs
max
i=1

Mi +NPEsd
Wreduce

Wflit

e

The network latency to PE i is Mi. There are NPEs messages sent or received where the

number of cycles for each one is the number of flits it requires. Similar to the optimized

broadcast (Equation 6.1), there is a factor of 2 because there is one broadcast at the be-

ginning of a graph-step and one at the end. Table 7.3 compares the unoptimized global

broadcast and reduce to the optimized Lbcast and Lreduce (Equations 6.1,6.2). The speedups

due to optimization on global broadcast and reduce are 2.5 and 1.8, respectively. For the

total Lstep the speedups is 1.6.

102

L
(unopt)
bcast

Lbcast

L
(unopt)
reduce

Lreduce

L
(unopt)
step

Lstep

2.5 1.8 1.6

Table 7.3: Speedup due to using global broadcast and reduce network on the Lbcast and
Lreduce stages themselves and on Lstep

7.1.2 Node Iteration Optimization

We attempted to minimize Tstep by ordering nodes in each PE to be sensitive to the critical

path in message passing and operation firing. The node iteration and dataflow activity

stages in a graph-step should be made to overlap so their critical path latency is close to

max{Lnodes, Ldataflow} instead of Lnodes + Ldataflow. We define Ldataflow(v) to be the

latency of messages and operations from node v’s firing to the end of the dataflow stage.

This latency includes message hops through fanin trees and fanout trees. Now,

Ldataflow = max
v∈V

Ldataflow(v)

This calculation uses a model of the network latencies from PE to PE as well as the laten-

cies of operators in each PE. The node iteration optimization orders nodes in each PE by

Ldataflow(v) so the higher latency nodes come earlier in the iteration.

Unfortunately, optimized node ordering makes little difference on total runtime. Com-

paring Tstep for the optimized case to the case where nodes are ordered randomly in PEs

gives an average speedup of 1.01, with a minimum of 0.98 and maximum of 1.03.

7.2 Node Decomposition

Section 5.2.1.1 explains how node decomposition allows the logic architecture to use many

small PEs with high throughput and how decomposition is implemented. Figure 1.5 pro-

vides and example of the decomposition transform on a node. Node decomposition re-

structures the graph so each large node is broken into a fanin-tree and fanout-tree of small

nodes. In-degree, ∆in(v) = |pred(v)| and out-degree ∆out(v) = |succ(v)| determine node

v’s data load and computation load. For load balancing we care about the number prede-

103

Original Decomposed Speedup
Rdense 1395 490 5.5
Rser 268 60 4.1

Table 7.4: Decomposition reduces both Rdense and Rser.

cessor and successor edges into nodes assigned to a PE. The set of predecessor edges into

PE i is Pi = pred(Vi) and the set of successors is Si = succ(Vi). So |Pi| =
∑

v∈Vi
∆in(v)

and |Si| =
∑

v∈Vi
∆out(v). The load across PEs is the maximum over predecessors and

successors:

L =
NPEs
max
i=1
{max(|Pi|, |Si|)} (7.1)

Edge Memory and Send Memory in each PE have capacity Dedges and must fit all assigned

predecessor and successor nodes, so:

Dedges ≥ L

In a simple model where all edges are active in a graph-step, the time to input and

output messages for the most imbalanced PE is:

Rdense = L

Rser is the component of Tdataflow that models edge operation time and message input and

output time (Section 6.1.3). When all edges are active Rdense = Rser, however edges are

usually sparsely active so Rser ≤ Rdense. We find that minimizing Rdense helps decrease

Rser: Table 7.4 uses the performance model to show the impact of decomposition on both

Rdense and Rser. On average across benchmark graphs, decomposition reduces Rdense by

6.3 times which helps decrease Rser by 4.7 times.

Figure 7.2 shows the speedup from performing decomposition. Graphs with and

without decomposition are placed for locality, and nodes are ordered by fanin/fanout tree

latency-depth. The mean speedup is 2.6, the minimum is 1.0 and the maximum is 5.6.

104

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

cnet_sm
all

tseng

ex5p
apex4

m
isex3

diffeq

alu4
dsip

des
seq

bigkey

apex2

s298
elliptic

frisc
spla

ex1010

pdc
s38584.1

s38417

BVZ_128

BVZ_64

BVZ_32

sqrt8
m

isex2

cc count

5xp1
s382

m
ult32a

duke2

S
p

e
e

d
u

p

Application.Graph
Spatial RouterPush-RelabelBellman-FordConceptNet

Figure 7.2: Speedup due to decomposition on Tstep for each graph which fits without de-
composition.

7.2.1 Choosing ∆limit

The decomposition transform is performed on graphs at runtime before they are loaded into

memory. The runtime algorithm places the limit ∆limit on in- and out-degrees:

∀v ∈ V : ∆limit ≥ ∆in(v) ∧∆limit ≥ ∆out(v)

Figure 1.5 shows an example transform where ∆limit = 2. ∆limit is chosen by the runtime

algorithm. Smaller ∆limit enables load-balancing nodes across PEs. However, smaller

∆limit increases the depth of fanin and fanout trees, which increases the graph-step latency,

Ldataflow. So we maximize ∆limit with the constraint that PEs can be load balanced. Per-

fectly load balanced PEs have |Pi| = |Si| = |E|/NPEs. For each decomposed node, v, we

want ∆in(v) ≤ |E|/NPEs and ∆out(v) ≤ |E|/NPEs, so we set:

∆limit =
|E|
NPEs

For the purpose of maximizing memory load balance, it is fine to have one node take

105

 0

 5

 10

 15

 20

 25

 30

cnet_sm
all

tseng

ex5p
apex4

m
isex3

diffeq

alu4
dsip

des
seq

bigkey

apex2

s298
elliptic

frisc
spla

ex1010

pdc
s38584.1

s38417

clm
a

BVZ_128

BVZ_64

BVZ_32

sqrt8
m

isex2

cc count

5xp1
s382

m
ult32a

duke2

M
e

m
o

ry
 f

o
r

U
n

d
e

c
o

m
p

o
s
e

d
 G

ra
p

h
 /

 M
e

m
o

ry
 f

o
r

D
e

c
o

m
p

o
s
e

d
 G

ra
p

h

Application.Graph
Spatial RouterPush-RelabelBellman-FordConceptNet

Figure 7.3: The ratio of memory required by the undecomposed graph to memory required
for the decomposed graph for each application and graph. RMS is on the right. Uniform
PE memory sizes are assumed.

up all or most of a PE. The load balancer can use the many small nodes to pack PEs evenly.

Figure 7.3 shows, for each application and graph, the ratio of memory required when de-

composition is not performed to memory required with decomposition. This assumes that

memory per PE is uniform, as it is in our logic architecture. The average memory reduction

due to decomposition is 10 times, and the maximum is 27 times.

Unlike memory requirements, the amount of computation work for a node in a particu-

lar graph-step is dynamic. In general only a subset of nodes are active in each graph-step so

the observed computation load balance is not the same as the memory load balance and is

different for each graph-step. Large decomposed nodes which take up most of the PE could

potentially ruin the computation load-balance. Also contributing to Tstep is the amount of

message traffic. The node to PE placement algorithm tries to place fanin and fanout nodes

on the same PE as their descendants. Smaller nodes may result in less message traffic due

to fewer long-distance messages, resulting in lower decreasing Rnet. However large nodes

mean the depth of fanin and fanout trees in smaller, resulting in a lower Ldataflow latency.

Figure 7.4 plots the root mean square of normalized Tstep across all graphs for a range

106

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
o

rm
a

liz
e

d
 R

u
n

ti
m

e

∆limit / (|E| / NPEs)

min
RMS
max

Figure 7.4: Root-mean-square along with min and max across applications and graphs of
Tstep for a range of ∆limits. ∆limit is normalized to |E|/NPEs.

of ∆limits; ∆limit is normalized to |E|/NPEs. The choice with the best RMS is the simplest:

∆limit = |E|/NPEs. Figure 7.5 shows the effect of varying ∆limit on various contributors to

graph-step time, where ∆limit is normalized to |E|/NPEs. This figure shows that Ldataflow

is the dominating contributor. For ∆limit < |E|/NPEs the depth of fanin and fanout trees

increases, so Ldataflow becomes more severe. For ∆limit > |E|/NPEs it is impossible to

perfectly load-balance nodes across PEs. Figure 7.6 shows the number of fanin and fanout

level across decomposed nodes.

7.3 Message Synchronization

For a graph which has no decomposed nodes, each node operates on messages sent from

the last graph-step. Normally, we use a global barrier to tell each node that all messages

have arrived so it can fire. An alternative to global synchronization is to use nil messages

so each edge passes a messages on each step. This way, each node can fire as soon as it

receives one message from each of its input edges, so there is no need for a costly global

barrier. When we consider decomposed graphs, we have three options:

107

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
o

rm
a

liz
e

d
 R

u
n

ti
m

e

∆limit / (|E| / NPEs)

Tstep
Ldataflow

Rnet
Rser

Figure 7.5: Contributors to Tstep, which are affected by ∆limit, along with Tstep

 0

 0.5

 1

 1.5

 2

 2.5

 3

cnet_sm
all

tseng

ex5p
apex4

m
isex3

diffeq

alu4
dsip

des
seq

bigkey

apex2

s298
elliptic

frisc
spla

ex1010

pdc
s38584.1

s38417

clm
a

BVZ_128

BVZ_64

BVZ_32

sqrt8
m

isex2

cc count

5xp1
s382

m
ult32a

duke2

F
a

n
in

 +
 F

a
n

o
u

t
D

e
p

th

Application.Graph
Spatial RouterPush-RelabelBellman-FordConceptNet

Figure 7.6: The depth of fanin and fanout trees when ∆limit = |E|/NPEs

108

• fully-dense: All edges transmit (possibly nil) messages on each graph-step. Nodes use

local dataflow synchronization to fire.

• fully-sparse: A sparse subset of edges are active on each graph-step, including fanin

edges. Nodes use global barrier synchronization to fire. Since they input one message

only, fanout nodes can be dataflow synchronized with no cost in terms of extra message

traffic.

• fan-dense: Edges internal to fanin trees transmit messages on each graph-step. Like-

wise, nodes internal to fanin trees are dataflow synchronized. Edges which were in the

original undecomposed graph are sparsely active so fanin leaf nodes need to be barrier

synchronized. Fanout nodes are dataflow synchronized. This is the style used by the

logic architecture, described in Section 5.2.1.1 and Figure 5.11.

Figure 7.7 shows that the rate of edge activation varies from 1/800 to 1/4 across ap-

plications and graphs with a mean of 1/8. This low activation means fully-dense

synchronization has a high cost in terms of network traffic and message processing time.

Figure 7.6 shows the maximum number of fanin and fanout levels over decomposed nodes.

The number of levels for an undecomposed node is 1. fully-dense synchronization

will require one global barrier for each level.

Figure 7.8 shows time for the fully-dense and fully-sparse cases normalized

to our default fan-dense case. The fully-dense case has a mean Tstep of 4 times the

fan-dense case due to higher compute and computation load. Edge activation (Figure 7.7)

is too low for fully-dense to be useful. The fully-sparse case has a mean Tstep of

1.7 times the fan-dense case since it needs to perform more barrier synchronizations, and

the time saved due to sparse activation of fanin-tree nodes is minimal. Figure 7.6 shows

that in most cases the latency of all barrier synchronizations in a graph-step increases by 2

to 3 times.

7.4 Placement for Locality

In this section we study the effect of assigning nodes to PEs to optimize for locality. Most

graphs for most applications can be partitioned into balanced regions so the probability

109

 0.001

 0.01

 0.1

 1

cnet_sm
all

tseng

ex5p
apex4

m
isex3

diffeq

alu4
dsip

des
seq

bigkey

apex2

s298
elliptic

frisc
spla

ex1010

pdc
s38584.1

s38417

clm
a

BVZ_128

BVZ_64

BVZ_32

sqrt8
m

isex2

cc count

5xp1
s382

m
ult32a

duke2

E
d

g
e

 A
c
ti
v
a

ti
o

n
 R

a
te

Application.Graph
Spatial RouterPush-RelabelBellman-FordConceptNet

Figure 7.7: Average fraction of edges which are active (i.e. pass messages) over graph-steps

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

cnet_sm
all

tseng

ex5p
apex4

m
isex3

diffeq

alu4
dsip

des
seq

bigkey

apex2

s298
elliptic

frisc
spla

ex1010

pdc
s38584.1

s38417

clm
a

BVZ_128

BVZ_64

BVZ_32

sqrt8
m

isex2

cc count

5xp1
s382

m
ult32a

duke2

R
u

n
ti
m

e
/f

a
n

-d
e

n
s
e

 R
u

n
ti
m

e

Graph

fully-sparse
fully-dense

Spatial RouterPush-RelabelBellman-FordConceptNet

Figure 7.8: Performance of message synchronization options

110

that a pair of nodes in the same region is connected is higher than the average probability.

Assigning local regions to PEs can minimize the message traffic between PEs and minimize

message latency on the critical path.

We define A : V → PEs to be assignment of nodes to PEs. The number of cut edges

in PE i is sum over non-local predecessor and successor nodes:

Ci =
∑
v∈Vi

|{u ∈ pred(v) ∪ succ(v) : A(u) 6= A(v)}|

The total cut edges is:

C =

NPEs∑
i=1

Ci

To assign for locality, C should be minimized while keeping the maximum load, L, (Equa-

tion 7.1) close to optimal. To measure the quality of the maximum load we define the load

balance B:

B =
L

|E|/NPEs

With an optimal load balance B = 1.

Graphs from physics problems such as FEM usually have a two- or three-dimensional

structure. A graph with a regular three-dimensional structure (e.g. a 3-D fluid dynamics

simulation) can be partitioned into balanced, local regions by slicing the three-dimensional

space, so Ci ∝ |Vi|2/3. Our Spatial Router works on a two-dimensional mesh which can be

partitioned into a two-dimensional array of submeshes with Ci ∝ |Vi|1/2. Circuit netlists

(used for benchmarks in Bellman-Ford) often follow Rent’s Rule [87]. Rent’s Rule states

that for a large range over |Vi|, Ci ∝ |Vi|P where P is some constant. When P < 1 there is

local structure in the graph, which is common for circuits.

The placement algorithm partitions the graph hierarchically to match the hierarchical

structure of the platform. Total chip-to-chip bandwidth is less than total bandwidth be-

tween neighboring PEs. The total bandwidth of high levels of a BFT on-chip network (Fig-

ure 5.12) is less than total bandwidth between its neighboring PEs. To match this structure,

we first partition the graph into a binary tree of subgraphs: Each subgraph is partitioned

into two children with PE-sized subgraphs as the leaves. We then map this binary tree onto

111

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

cnet_sm
all

tseng

ex5p
apex4

m
isex3

diffeq

alu4
dsip

des
seq

bigkey

apex2

s298
elliptic

frisc
spla

ex1010

pdc
s38584.1

s38417

clm
a

BVZ_128

BVZ_64

BVZ_32

sqrt8
m

isex2

cc count

5xp1
s382

m
ult32a

duke2

L
o

a
d

 B
a

la
n

c
e

 (
B

)

Application.Graph
Spatial RouterPush-RelabelBellman-FordConceptNet

Figure 7.9: Load balance (B) with local assignment for each application and graph

the tree of chips, subnetworks and PEs. Each binary partition is performed by the Mlpart

5.3.6 graph partitioner [88].

Each recursive step of the binary partition algorithm maps the vertices of a subgraph,

V (sub), into two parts: V (sub)
1 and V (sub)

2 . The assignment function computed in the binary

partition is A(sub) : V (sub) → {1, 2}. The objective function is to minimize the number of

cut edges between V (sub)
1 and V (sub)

2 :

obj(A(sub)) = |{e ∈ E(sub) : A(sub)(pred(e)) 6= A(sub)(succ(e))}|

The load balance B(sub) specifies the target load balance, so that:

B(sub) ≈ 2
V

(sub)
i

V (sub)

B(sub) is chosen so the final load balance of edges on PEs is B ≈ 1.2. The height of the

binary tree of partitions is h = dlog2NPEse so setting B(sub) = 1.21/h gives B ≈ 1.2. The

mean load balance across benchmark applications and graphs is 1.2 with a maximum of 1.4

and minimum of 1.0. Figure 7.9 shows the load balance for each application and graph.

112

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

cnet_sm
all

tseng

ex5p
apex4

m
isex3

diffeq

alu4
dsip

des
seq

bigkey

apex2

s298
elliptic

frisc
spla

ex1010

pdc
s38584.1

s38417

clm
a

BVZ_128

BVZ_64

BVZ_32

sqrt8
m

isex2

cc count

5xp1
s382

m
ult32a

duke2

s
p

e
e

d
u

p

Application.Graph
Spatial RouterPush-RelabelBellman-FordConceptNet

Figure 7.10: Speedup due to local assignment for benchmark graphs and applications

We compare Tstep for locally assigned graphs to Tstep for the baseline case. The baseline

assignment is oblivious to locality and randomly assigns nodes to PEs with the constraint

that the load balance B is minimized. The overall mean speedup by local assignment is

1.3, the minimum is 0.8 and the maximum is 1.8. Figure 7.10 shows the speedup for all

application and graphs due to local assignment. Most graphs benefit from local assignment

with the exception of Spatial Router graphs.

Local assignment matters most when message traffic (Rnet) is the main contributor

to Tstep. We use our performance model to estimate the effect of local assignment on

message traffic in the context of total runtime. Figure 7.11 shows Tstep for the baseline

case (Oblivious), the locally assigned case (Local), and the case where the cost of message

traffic is removed (Rnet = 0) (No Traffic). For our benchmarks, local assignment always

achieves the same Tstep as no network traffic.

In some cases local assignment produces worse results than oblivious assignment. As

discussed in Section 7.2, load balancing minimizes the static load, L, as a heuristic for min-

imizing the dynamic load, Rser. With random assignment there is no correlation between

node firings in the same PE so Rser should be proportional to L. When nodes are locally

113

 200

 300

 400

 500

 600

 700

 800

 900

 1000

cnet_sm
all

tseng

ex5p
apex4

m
isex3

diffeq

alu4
dsip

des
seq

bigkey

apex2

s298
elliptic

frisc
spla

ex1010

pdc
s38584.1

s38417

clm
a
BVZ_128

BVZ_64

BVZ_32

sqrt8
m

isex2

cccount

5xp1
s382

m
ult32a

duke2

T
s
te

p

Graph

Oblivious
Local

No Traffic

Spatial RouterPush-RelabelBellman-FordConceptNet

Figure 7.11: The performance model is used to show the effect of local assignment on
message traffic (Rnet) and a fraction of Tstep.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

cnet_sm
all

tseng

ex5p
apex4

m
isex3

diffeq

alu4
dsip

des
seq

bigkey

apex2

s298
elliptic

frisc
spla

ex1010

pdc
s38584.1

s38417

clm
a

BVZ_128

BVZ_64

BVZ_32

sqrt8
m

isex2

cc count

5xp1
s382

m
ult32a

duke2

α
lo

c
a
l /

 α
o
b
liv

io
u
s

Application.Graph
Spatial RouterPush-RelabelBellman-FordConceptNet

Figure 7.12: α = Rser/L is compared for local assignment and random assignment. This
shows how much correlation in activity between nodes in the same PE increases Rser.

114

assigned PE firings can be correlated, making Rser unexpectedly large. For example, the

graph may model a narrow pipe where activation propagates in a wavefront along the pipe.

A good local assignment will assign a section of the pipe to each PE, resulting in only one

or two PEs containing active nodes at any point in time. Correlated activation causes Rser

to increase relative to L, so we define α = Rser/L to measure the effect of correlation

on Rser. Figure 7.12 compares α for local assignment (αlocal) and for random assignment

(αrandom). This shows that correlation increases Rser by up to 3 times. Correlation is worst

for Spatial Router graphs, which are the ones for which local assignment decreases perfor-

mance. This makes sense since the Spatial Router propagates wavefronts on a mesh. The

other graph which has a relatively high correlation is Bellman-Ford’s clma. However, clma

benefits from locality since its network traffic is decreased (Figure 7.11).

115

Chapter 8

Design Parameter Chooser

The logic architecture generated by the compiler has parameters that determine how many

FPGA logic and memory resources are used. These design parameters size components

which compete for logic and memory resources so they need to be traded-off judiciously

for good performance. Since datapath widths, memory word widths and method contents

are application dependent, design parameters need to be chosen for each GRAPAL applica-

tion. Further, each FPGA model has a different number of logic and memory resources, so

the design parameters must be customized to the target FPGA to maximally utilize resource

without using more resources than available. For typical FPGA programming models, the

programmer must consider the resource availability of the target FPGA for the program

to be correct and/or efficient. A typical FPGA programmer must also set the clock fre-

quency so signals have enough time to propagate from one stage of registers to the next.

By automatically choosing the clock frequency and good design parameter values the com-

piler abstracts above the target FPGA, so one program can be compiled to a wide range of

FPGAs. This chapter explains how the GRAPAL compiler automatically chooses design

parameters to provide good performance and evaluates the quality of the automatic chooser.

The number of PEs,NPEs, and the interconnect flit width,Wflit, are the two parameters

that compete for logic resources. The depth of node memories, Dnodes, and the depth

of edge memories, Dedges, are the two parameters that compete for BlockRAM memory

resources. Logic and memory resources are disjoint so the trade off between NPEs and

Wflit can be determined independently from the tradeoff between Dnodes and Dedges.

116

Application Full Design PE 4-2 switch
MHz logic-pairs MHz logic-pairs MHz

ConceptNet 100 2980 150 5224 195
Bellman-Ford 100 3247 174 4736 195
Push-Relabel 100 7493 147 5132 201
Spatial Router 100 4963 172 4958 194

Table 8.1: The resource use model used by LogicParameterChooser (Section 8.2)
is based on logic-pairs used by each PE and by each 4-2 switch. The full design found by
FullDesignFit (Section 8.4 for all applications is 100 MHz. Maximum frequencies
imposed by individual PE and 4-2 switch components are 50% to 2x greater than the full
design.

8.1 Resource Use Measurement

The three types of hardware resources used in the Xilinx Virtex-5 XC5VSX95T target

device are 6-LUTs, flip-flops, and BlockRAMs. Primitive FPGA components such as 5-

LUTs, SRL32 shift registers and distributed RAM use the same resources as 6-LUTs and

can be measured in terms of 6-LUTs. Other primitive devices, such as DSP48 multipliers,

are not used by the application logic. Virtex-5 hardware has one flip-flop on the output of

each 6-LUT. A 6-LUT and its associated flip-flop may be used together or may be used

without the other. The cost of each logic component, such as a PE or network switch, is

measured in terms of pairs of one 6-LUT and one flip-flop called logic-pairs. Logic-pairs

used by a component is the number of physical 6-LUT, flip-flop pairs in which the 6-LUT

is used, the flip-flop is used, or both are used. Table 8.1 shows the number of logic-pairs

used by a PE and by a 4-2 switch in the BFT for each benchmark application.

Before deciding how many components (e.g. PEs or network switches) of each type will

be used, the compiler must have a good model of resources used by each component. The

procedure used to measure resources used is called ComponentResources. The FPGA

tool chain passes a VHDL design through the synthesis, map, place and route stages. These

stages contain multiple NP-Hard optimizations so it is difficult to model their outcome in

terms of resource use and clock frequency without actually running them. The FPGA tool

chain is wrapped into a procedure so it can be used by our parameter-choice algorithms.

The standard use model for an FPGA tool chain is for a human programmer to:

• Specify the VHDL (or other HDL) design and the desired clock frequency (target fre-

117

quency).

• Run the tool chain: synthesis, map, place and route.

• Read log files which report resource usage, whether the desired clock frequency was

met, and the achieved clock frequency.

The GRAPAL compiler’s lowest-level component measurement procedure inputs target

frequency, prints out logic modules as VHDL, calls the tool chain commands, then parses

log files to return resource and frequency outcomes. All higher level algorithms should not

have to specify the clock frequency; instead the called procedure should return a good clock

frequency. The primary component measurement procedure inputs only the component,

and outputs resource usage along with achieved clock frequency. It does this by searching

over target frequency with multiple lower-level passes. Since FPGA report the achieved

frequency, whether it is less than or greater than the target frequency, each iteration of this

search can use the previous iteration’s achieved frequency. The first iteration uses a target

of 100 MHz, which is usually within a factor of 2 of the final frequency. By default two

iterations are performed, which is usually enough to bring the final frequency within 5% of

optimal.

8.2 Logic Parameters

This section explains the compiler’s strategy for choosing the NPEs and Wflit parameters,

examines the effectiveness of the strategy, and explains the LogicParameterChooser

algorithm which implements the logic parameter choice.

Ideally the compiler would know the runtime workload on PEs and the load on the inter-

connect. With knowledge of workloads, the compiler could optimally allocate logic-pairs

to PEs and the interconnect to maximize performance. However, the workload depends on

the graph supplied at runtime and the pattern of activation on node and edge at runtime.

Since the compiler does not have knowledge of the workload it uses a strategy to come

within a factor of 2 of the optimal allocation for any given run. It gives half of each FPGA’s

logic-pairs,Aall, to PEs and the other half to network switches, so PEs’ computation time is

at most 2 times optimal and message routing time is at most 2 times optimal. NPEs, is ap-

118

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 0.2 0.4 0.6 0.8 1

R
u

n
ti
m

e
 /

 R
u

n
ti
m

e
 o

f
D

e
fa

u
lt

Anet / Aall

Figure 8.1: The mean normalized runtime of all applications and graphs is plotted for each
choice of Anet. On the y-axis runtime is normalized to the runtime of the default choice
where Anet = Aall/2 and on the x-axis Anet is relative to Aall.

proximately proportional to area devoted to PEs, APEs. Time spent computing, assuming

a good load balance, is approximately inversely proportional to NPEs. So doubling APEs

speeds up the computing portion of total time by approximately 2. Total switch bandwidth

is approximately proportional to area devoted to interconnect, Anet. Time spent routing

messages is approximately inversely proportional to total switch bandwidth. So doubling

Anet speeds up the communication portion of total time by approximately 2.

We evaluate the choice of Anet = Aall/2 by running LogicParameterChooser on

a range of target Fnet = Anet/Aall ratios. Figure 8.1 shows the mean normalized runtime

of all applications and graphs for the range Fnet ∈ [0, 1]. For these graphs the choice of

Anet = Aall/2 is within 1% of the optimal choice of Anet = 3/8Aall. Runtime for each run

is normalized to the runtime of the run with Anet = Aall/2, then the mean is taken over all

runs with a particular Anet value. Figure 8.1 shows that runtime only varies for Fnets in the

range [1/4, 1/2]. Wflit is lower-bounded by a W (min)
flit so Fnet cannot be decreased beyond

1/4. Wflit is upper-bounded by a W (max)
flit so there is no point to increasing Fnet beyond

1/2.

119
LogicParameterChooser =

binary search to maximize Wflit

in the range [Wmin
flit , Wmax

flit]
given constraint Anet(Wflit) ≤ Aall / 2

return Wflit and N
(i)
PEs(Wflit) for each i

// Sum interconnect area over all FPGAs.
// Each FPGA’s interconnect area is a function of both Wflit and N

(i)
PEs.

Anet(Wflit) =
∑4

i=1 A
(i)
net(Wflit, N

(i)
PEs(Wflit))

// Compute number of PEs on FPGA i as a function of Wflit.

N
(i)
PEs(Wflit) =

binary search to maximize N
(i)
PEs

in the range [1, ∞]
given constraint APE × N

(i)
PEs + A

(i)
net(Wflit, N

(i)
PEs) ≤ A

(i)
all

Figure 8.2: LogicParameterChooser Algorithm. The outer loop maximizes Wflit.
With a fixed Wflit, the inner loop can maximize the PE count for each FPGA, N (i)

PEs, with
the constraint that PEs and interconnect fit in FPGA resources. Resources used for inter-
connect, A(i)

net(Wflit, N
(i)
PEs), can only be calculated when both Wflit and N (i)

PEs are known.

The master FPGA has fewer available resources than each of the three slave FPGAs

since it has the MicroBlaze processor and a communication interface to the host PC (Fig-

ure 5.2). In order to handle multiple FPGAs with different resources amounts the pa-

rameter choice algorithm sums resources over all chips in the target platform. Anet is

logic-pairs used for interconnect on all FPGAs, and APEs is logic-pairs used for all PEs.

Aall is the total number of logic-pairs available for GRAPAL application logic across all

FPGA. The entire interconnect, including each on-chip network, uses a single flit width,

so Wflit is global across FPGAs. On-chip PE count can be unique to each FPGA so

LogicParameterChooser must choose N (i)
PEs for FPGA i, so NPEs =

∑4
i=1N

(i)
PEs.

Figure 8.2 shows the LogicParameterChooser algorithm. This algorithm must

maximizeN (i)
PEs for each FPGA along with maximizingWflit soAnet ≈ APEs. It must also

satisfy the constraint that resources on each FPGA are not exceeded: A(i)
PEs + A

(i)
net ≤ A

(i)
all.

The only variable A(i)
PEs depends on is N (i)

PEs. A
(i)
net depends on N (i)

PEs for the switch count

and network topology and Wflit for the size of each switch. An outer binary search finds

Wflit and an inner binary search finds N (i)
PEs given Wflit. Binary searches are adequate for

finding optimal logic parameter values since A(i)
PEs and A(i)

net are monotonic functions of the

120

logic parameters. In FPGA i, the maximum N
(i)
PEs is codependent with the maximum Wflit

and Wflit is common across all FPGA so it is simplest to find Wflit first, in the outer loop.

Each binary search first finds an upper bound by starting with a base values and dou-

bling it until constraints are violated. It then performs divide and conquer to find the maxi-

mum feasible value. The range of the binary search overWflit is [W
(min)
flit ,W

(max)
flit]. W (min)

flit

is the message address width, used to route a message to a PE, which must be contained in

the first flit of every message. W (max)
flit is the minimum of the width of inter-FPGA channels

and the width of a message. Each flit must be routable over inter-FPGA channels, and there

is no reason to make flits larger than a message.

LogicParameterChooser must estimate resources used by a single PE, APE , and

estimate resources used by the interconnect, A(i)
net as a function of N (i)

PEs and Wflit. Each

PE inputs and outputs messages, so some of its datapath widths depend on width of the

address used to route messages to PEs. APE depends on NPEs, which we are trying to

compute as a function of APE . LogicParameterChooser places a lower bound on

PE resources by using an address width of 0, then places an upper bound on PE resources

by using an address with large enough to address a design with as many lower-bound PEs

as can fit on the FPGAs. To be conservative, the upper bound is used as APE . The effect of

this estimation is minimal since the address width for this upper bound is only 1 or 2 bits

greater than actual width for all benchmark applications. Since PE logic depends on the

GRAPAL application, resource usage for PE with a concrete address width must be mea-

sured by the procedure wrapping the FPGA tool chain, ComponentResources. Calls

to the FPGA tool chain are expensive, so the two measurements for APE are performed by

ComponentResources before the binary search loops.

A
(i)
net is estimated as the sum of resources used by all switches in the on-chip network.

The logic for each switch is a function of both Wflit and address width, Waddr. The address

width used is the same slight overestimate as that used by APE . Switch resources must be

recalculated for each iteration of the outer binary search loop over Wflit. To avoid a call

to the expensive FPGA tool chain in each iteration, a piecewise-linear model for switch re-

sources is used. A linear model provides a good approximation since all subcomponents of

switch logic which depend onWaddr orWflit are linear structures. At compiler installation-

121

time, before compile-time, ComponentResources is run for each switch crossed with

a range of powers of two of Waddr and Wflit. All powers of two are included up until the

switch exceeds FPGA resources. These ComponentResources measurements provide

the vertices of the piecewise-linear model. The interpolation performed to approximate

resources used by a switch, Asw(Waddr,Wflit), is:

Asw(Waddr,Wflit) = Abase + Aaddr + Aflit

where:

Abase = Asw(bWaddrc2, bWflitc2)

Aaddr =
Waddr − bWaddrc2
dWaddre2 − bWaddrc2

[Asw(dWaddre2, bWflitc2)− Abase]

Aflit =
Wflit − bWflitc2
dWflite2 − bWflitc2

[Asw(bWaddrc2, dWflite2)− Abase]

b�c2 and d�e2 round down and up, respectively, to the nearest power of 2.

8.3 Memory Parameters

This section explains the compiler’s strategy for choosing the Dedges and Dnodes

memory parameters, examines the effectiveness of the strategy, and explains the

MemoryParameterChooser algorithm which implements memory parameter choice.

There are five memories in each PE which contain state for nodes and edges (Fig-

ure 5.7). Node Reduce Memory, Node Reduce Queue, and Node Update Memory each

store one word for each node assigned to the PE. The depth of these node memories,Dnodes,

determines the maximum number of nodes which can be assigned to a PE. Edge Memory

stores one word for each edge assigned to the PE, while Send Memory stores one word for

each successor edge from a node assigned to the PE. The depth of these edge memories,

Dedges, determines the maximum number of predecessor or successor edges of nodes as-

signed to a PE. With a good load balance it is not beneficial to have different depths for

Edge Memory and Send Memory.

122

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.2 0.4 0.6 0.8 1

N
u

m
b

e
r

o
f

G
ra

p
h

s

Fedges

Figure 8.3: Number of benchmark graphs which fit in memory across all applications for
each ratio of edge BlockRAMs to total BlockRAMs (Fedges)

For all PEs the compiler allocates Bnodes BlockRAMs to node memories and Bedges

BlockRAMs to edge memories out of BPE available BlockRAMs in the PE. All available

BlockRAMs on the FPGA are divided evenly between PEs, except for those which are

used for MicroBlaze memory on the master FPGA. At compile-time, the compiler chooses

Fedges = Bedges/BPE , to maximize the chance that a graph loaded at runtime will fit in

memory. Typical graphs have many more edges than nodes, and much more edge bits

than node bits. Our benchmark graphs have between 1.9 and 4.8 edges per node with an

average of 3.6, and between 0.5 and 2.1 times more bits in edge memory than node memory.

The compiler’s strategy is to choose a robust Fedges by devoting approximately 3/4 of the

available BlockRAMs to edge memories and the rest to node memories. Compared to

Bedges/BPE = 3/4 an optimal strategy would allow at most 4/3 more edges. Even with

Bnodes/BPE = 1/4, node memory capacity is rarely the limiter. Figure 8.3 maps Fedges

to the number of graphs for all of our benchmark application that fit in memory. For

Fedges = 3/4 all benchmark graphs fit in memory.

MemoryParameterChoosermust use a model to count the number of BlockRAMs

required for each memory to getDnodes andDedges as a function of Fedges. B(depth, width)

123

is the number of BlockRAMs used by a memory as a function of depth and word width.

Before compilation time, at compiler-install time, ComponentResources uses the

FPGA tools to measure BlockRAM counts. This populates a table which represents

B(depth, width). Not every depth and word width must be measured by Componen-

tResources since B(depth, width) is constant over a range of depths and range of word

widths. Only the boundaries between constant regions need to be found.

8.4 Composition to Full Designs

PEs composed with network switches to get the full GRAPAL application logic. GRAPAL

application logic is then composed with inter-FPGA channel logic on all FPGA and with

the MicroBlaze processor and host communication logic on the master FPGA. Resources

used for the full design may be slightly different than the sum over components. Clock

frequency may be different than the minimum clock frequency over components. The

FullDesignFit algorithm refines logic parameters, memory parameters and frequency

until a legal design is produced.

The first iteration of FullDesignFit compiles the full design with the parameters

chosen by LogicParameterChooser and MemoryParameterChooser. These are the number

of PEs on each FPGA, N (i)
PEs, the flit width of the interconnect, Wflit, PE node memory

depth, Dnodes, and PE edge memory depth Dedges. It also uses the minimum clock fre-

quency over the logic components chosen by LogicParameterChooser. Each iteration runs

the FPGA tool chain separately for each FPGA with the current parameters. For each

FPGA, the FPGA tool chain wrapper may return success or failure with the reason for

failure. If success is returned for all FPGAs then FullDesignFit is finished and the

HARDWARE compilation stage is complete (Figure 5.1). The reason for failure may be

that excessive logic-pairs were used, excessive BlockRAMs were used, or the requested

clock frequency was too high. If excessive logic-pairs were used on FPGA i then N (i)
PEs

is multiplied by 0.9. Also, MemoryParameterChooser is run again to get a suitable Dnodes

and Dedges for the new N
(i)
PEs. If the design fits in logic on all FPGAs but used excessive

BlockRAMs then bothDnodes andDedges are multiplied by 0.9. If the design fit in logic and

124

BlockRAMs on all FPGAs but the requested clock frequency was not met, then the lower

feasible clock frequency found by the FPGA router tool is used for the next iteration. On

the other hand, if the design fit and the requested clock frequency was less than 0.9 times

the feasible clock frequency then the higher feasible clock frequency is used for the next

iteration.

Compilation time of each full design for each FPGA through the FPGA tool chain is

typically 1 hour, but can take up to 4 hours on a 3 GHz Intel Xeon. Further, one design must

be compiled for each of the four FPGA on the BEE3 platform. So full design compilation

dominates the runtime of the compiler and it is critical to minimize the number of iterations

of FullDesignFit.

For all applications the first iteration of FullDesignFit is successful. This means

that models used by LogicParameterChooser and MemoryParameterChooser

do not underestimate resource usage. Across applications, the FPGAs’ logic-pairs utilized

is 95% to 97%. BlockRAMs utilized is 89% to 94%. So our models overestimate resource

usage by at most 5% for logic-pairs and 11% for BlockRAMs.

125

Chapter 9

Conclusion

9.1 Lessons

9.1.1 Importance of Runtime Optimizations

Node decomposition to enable load-balancing is the most important runtime optimization

we explored. It allows us to fit larger graphs in our architecture of many, small PEs than

would otherwise fit. This allows us to always allocate as many PEs as possible so our

compiler does not have to trade off between throughput of parallel operations and mem-

ory capacity for large nodes. Further, it provided a mean 2.6x speedup by load-balancing

graphs that fit without decomposition.

Placement for locality mattered less than we expected. It only gave a 1.3x speedup

for our benchmark applications and graphs. However, we expect placement for locality to

provide greater speedups for larger systems with many more than four FPGAs.

9.1.2 Complex Algorithms in GRAPAL

We found that for the simple algorithms Bellman-Ford and ConceptNet, GRAPAL gives

large speedups per chip of up to 7x and very large energy reductions of 10x to 100x. Our

implementation effort in GRAPAL of the complex algorithms Spatial Router and Push-

Relabel did not yield per-chip speedups, though Spatial Router does reduce energy cost by

3x to 30x. We have yet to see whether GRAPAL implementations of Spatial Router and

Push-Relabel can be further optimized increase performance (Section 9.2.2).

126

9.1.3 Implementing the Compiler

Our compiler bridges a large gap between GRAPAL source programs and fully functioning

FPGA logic. The core of the compiler that checks the source program and transforms it

into HDL operators (Section 5.1) is an important part of the design of GRAPAL but is a

relatively small part of the implementation effort. Implementing the parameterized logic

architecture (Section 5.2) of PEs and switches was more complex. Our customized library

for constructing HDL operators helped us manage the complexity of a dataflow-style ar-

chitecture that is parameterized by the GRAPAL program. Managing BEE3 platform-level

details was a big part of implementation work: Implementing inter-chip communication

channels, implementing the host PC to MicroBlaze communication channel, and support-

ing the sequential C program with the C standard library on the MicroBlaze processor are

difficult pieces of work that we customized for the specific platform. For the compiler

to support a different FPGA platform, many of these low-level customizations need to be

changed. Another difficult piece of the compiler is wrapping FPGA tools with a simple

interface. An API interface to FPGA tools at the HDL level would save much effort in

reformatting and semantics-discovery for anyone who wants to wrap FPGA tools into a

automated, closed-loop.

9.2 Future Work

9.2.1 Extensions to GRAPAL

GRAPAL can be extended to make debugging more convenient and to enable simpler pro-

grams without sacrificing its efficient mapping to FPGA logic.

Assertion or exceptions would be a simple and very useful extension to GRAPAL. No

changes to the logic architecture are required for exceptions. Instead an extra transforma-

tion by the compiler would reduce GRAPAL with exceptions to GRAPAL without excep-

tions: Every global reduce includes an error code that tells the sequential controller what

error, if any, occurred in the previous graph-step. Messages are then augmented with error

codes to transmit a failure in any operation to the global reduce.

127

Both Push-Relabel (Section 4.4) and Spatial Router (Section 4.3) define node send

methods that always receive a single message from a single edge in each graph-step. Al-

though a single message should not need to be reduced with a node reduce tree

method, GRAPAL enforces the constraint that a node reduce tree method must be

between the edge fwd method and the node send method (See Table 3.1). This con-

straint means the implementation always knows what to do if multiple messages arrive.

Currently, the programmer must provide node reduce tree methods that do nothing.

An extension to GRAPAL would allow an edge fwd method to send directly to a node

send method. This extension would require checking at runtime to ensure that only one

message arrived. Only changes to the compiler are required for this runtime check as long

as exceptions are already supported.

9.2.2 Improvement of Applications

The GRAPAL applications Spatial Router and Push-Relabel offer little or no speedup per

chip over the highly optimized sequential applications to which they were compared (Sec-

tion 4.5). We spent little time tuning and optimizing the Spatial Router and Push-Relabel

GRAPAL programs, so more work tuning heuristics may deliver a performance advantage

per chip. To improve Push-Relabel performance, techniques from modern parallel imple-

mentations [75, 76, 77, 78] should be evaluated for GRAPAL. The current implementation

of Spatial Router routes one source, sink pair at a time, which results in a low degree of par-

allelism and a low edge-activation rate. Spatial Router can be parallelized to a greater de-

gree by finding routes to multiple sinks in parallel. This may be accomplished by searching

in mutually-exclusive regions or by assigning priorities to searches so low-priority searches

yield to high-priority searches.

9.2.3 Logic Sharing Between Methods

The HDL operators that GRAPAL methods are compiled to can be optimized further to

decrease logic resources used. Since each GRAPAL method is feed-forward, it closely

corresponds to HDL, which allows it to be optimized after our compiler outputs HDL

128

by the logic synthesis stage (Synplify Pro in Figure 5.1). A separate HDL module is al-

located for each method, with all methods of the same kind mapped to the same large

operator (Figure 5.10). For example, logic generated for all node send methods in all

classes are multiplexed into the same large Node Update Operator. Only one of these

method-operators is active in a cycle, with all other idle method-operators wasting area.

The compiler should be extended with an optimization that shares logic between methods.

In particular, floating point adders and multipliers take large amounts of logic and are easy

units for a logic-sharing optimization to identify. This should be performed by the GRA-

PAL compiler because ordinary logic synthesis on HDL is not advanced enough to share

logic between methods.

9.2.4 Improvements to the Logic Architecture

The clock frequency of most applications we tested is 100 MHz, which is much less than

the maximum frequency permitted by our target Virtex-5 FPGA. BlockRAM memories

are the fundamental limiting factor, whose maximum frequency is 450 MHz. First, careful

analysis of PEs and network switches is required to improve the frequency. Second, method

logic may need to be pipelined as well to adapt to methods with many operations on paths

between their inputs and outputs. Third, long channels between network switches should

be pipelined. To pipeline network switches effectively, the compiler should first place PEs

and switches in the two-dimensional FPGA fabric so it knows the distance between each

pair of connected switches. The compiler then uses the distance to calculate the number of

registers to add to each channel.

9.2.5 Targeting Other Parallel Platforms

Runtimes and backends for the GRAPAL compiler could be developed that target MPI clus-

ters, SMP machines, or GPUs. Like the FPGA implementation, these could take advantage

of the GraphStep structure to perform node decomposition (Section 7.2), placement for

locality (Section 7.4), and our mixed sparse and dense message synchronization style (Sec-

tion 7.3).

129

Bibliography

[1] M. deLorimier, N. Kapre, N. Mehta, D. Rizzo, I. Eslick, R. Rubin, T. E. Uribe, T. F.

Knight, Jr., and A. DeHon, “GraphStep: A System Architecture for Sparse-Graph

Algorithms,” in Proceedings of the IEEE Symposium on Field-Programmable Custom

Computing Machines. IEEE, 2006, pp. 143–151.

[2] M. deLorimier, N. Kapre, N. Mehta, and A. DeHon, “Spatial hardware implemen-

tation for sparse graph algorithms in graphstep,” ACM Transactions on Autonomous

and Adapative Systems, vol. 6, no. 3, pp. 17:1–17:20, September 2011.

[3] T. M. Parks, “Bounded scheduling of process networks,” UCB/ERL95-105, Univer-

sity of California at Berkeley, 1995.

[4] S. Fortune and J. Wyllie, “Parallelism in random access machines,” in Proceedings of

the Tenth Annual ACM Symposium on Theory of Computing. New York, NY, USA:

ACM, 1978, pp. 114–118.

[5] L. G. Valiant, “A bridging model for parallel computation,” Communications of the

ACM, vol. 33, no. 8, pp. 103–111, August 1990.

[6] B. Parhami, Introduction to Parallel Processing: Algorithms and Architectures.

Kluwer Academic Publishers, 1999.

[7] Xilinx, Virtex-5 FPGA Data Sheet: DC and Switching Characteristics,

<http://www.xilinx.com/support/documentation/data sheets/ds202.pdf>.

[8] Intel, Intel 64 and IA-32 Architectures Optimization Reference Manual,

<http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-

32-architectures-optimization-manual.html>.

130

[9] Xilinx, Achieving Higher System Performance with the Virtex-5 Family of FPGAs,

<http://www.xilinx.com/support/documentation/white papers/wp245.pdf>, 2006.

[10] P. B. Minev and V. S. Kukenska, “The virtex-5 routing and logic architecture,” Annual

Journal of Electronics — ET, vol. 3, pp. 107–110, September 2009.

[11] A. Rodrigues, K. B. Wheeler, P. M. Kogge, and K. D. Underwood, “Fine-grained

message pipelining for improved mpi performance,” in CLUSTER, 2006.

[12] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms. MIT Press,

1990.

[13] K. M. Chandy and J. Misra, “Distributed computation on graphs: shortest path algo-

rithms,” Commun. ACM, vol. 25, no. 11, pp. 833–837, 1982.

[14] G. A. Kildall, “A unified approach to global program optimization,” in POPL ’73:

Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of

Programming Languages. New York, NY, USA: ACM Press, 1973, pp. 194–206.

[15] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear

systems,” J. Res. Nat. Bur. Stand., vol. 49, no. 6, pp. 409–436, 1952.

[16] L. N. Trefethen and D. Bau, Numerical Linear Algebra. SIAM: Society for Industrial

and Applied Mathematics, 1997.

[17] A. Ralston, A First Course in Numerical Analysis (1st ed.), ser. International Series in

Pure and Applied Mathematics. New York, NY: McGraw-Hill, 1965.

[18] C. C. Paige and M. A. Saunders, “Solution of sparse indefinite systems of linear equa-

tions,” SIAM Journal on Numerical Analysis, vol. 12, no. 4, pp. 617–629, 1975.

[19] A. DeHon, R. Huang, and J. Wawrzynek, “Stochastic Spatial Routing for Reconfig-

urable Networks,” Journal of Microprocessors and Microsystems, vol. 30, no. 6, pp.

301–318, September 2006.

131

[20] M. Wrighton and A. DeHon, “Hardware-Assisted Simulated Annealing with Appli-

cation for Fast FPGA Placement,” in Proceedings of the International Symposium on

Field-Programmable Gate Arrays, February 2003, pp. 33–42.

[21] S. E. Fahlman, NETL: A System for Representing and Using Real-World Knowledge.

MIT Press, 1979.

[22] J.-T. Kim and D. I. Moldovan, “Classification and retrieval of knowledge on a parallel

marker-passing architecture,” IEEE Transactions on Knowledge and Data Engineer-

ing, vol. 5, no. 5, pp. 753–761, October 1993.

[23] H. Liu and P. Singh, “ConceptNet – A Practical Commonsense Reasoning Tool-Kit,”

BT Technical Journal, vol. 22, no. 4, p. 211, October 2004.

[24] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking:

Bringing order to the web.” Stanford InfoLab, Technical Report 1999-66, November

1999.

[25] H. Lieberman, Concurrent object-oriented programming in Act 1. Cambridge, MA,

USA: MIT Press, 1987.

[26] G. Agha, ACTORS: A Model of Concurrent Computation in Distributed Systems.

Cambridge: MIT Press, 1998.

[27] R. Milner, J. Parrow, and D. Walker, “A calculus of mobile processes, parts i and ii,”

Information and Computation, vol. 100, no. 1, pp. 1–77, September 1992.

[28] G. Kahn, “The semantics of a simple language for parallel programming,” in Pro-

ceedings of the IFIP CONGRESS 74. North-Holland Publishing Company, 1974,

pp. 471–475.

[29] E. Caspi, M. Chu, R. Huang, N. Weaver, J. Yeh, J. Wawrzynek, and A. DeHon,

“Stream computations organized for reconfigurable execution (SCORE): Extended

abstract,” in Proceedings of the International Conference on Field-Programmable

132

Logic and Applications, ser. LNCS. Springer-Verlag, August 28–30 2000, pp. 605–

614.

[30] E. Lee, “UC Berkley ptolemy project,” <http://www.ptolemy.eecs.berkeley.edu/>,

2005.

[31] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceedings of the

IEEE, vol. 75, no. 9, pp. 1235–1245, September 1987.

[32] “Brook project web page,” <http://brook.sourceforge.net>, 2004.

[33] N. Shah, W. Plishker, K. Ravindran, and K. Keutzer, “NP-Click: A productive soft-

ware development approach for network processors,” IEEE Micro, vol. 24, no. 5, pp.

45–54, September 2004.

[34] J. M. D. Hill, B. Mccoll, D. C. Stefanescu, M. W. Goudreau, K. Lang, S. B. Rao,

T. Suel, T. Tsantilas, and R. Bisseling, “Bsplib — the bsp programming library,”

Parallel Computing, vol. 24, 1997.

[35] “Bsponmpi,” <http://bsponmpi.sourceforge.net/>.

[36] F. Loulergue, F. Gava, and D. Billiet, “Bulk synchronous parallel ml: Modular im-

plementation and performance prediction,” in International Conference on Computa-

tional Science. Springer, 2005, pp. 1046–1054.

[37] E. Lusk, N. Doss, and A. Skjellum, “A high-performance, portable implementation of

the mpi message passing interface standard,” Parallel Computing, vol. 22, pp. 789–

828, 1996.

[38] G. E. Blelloch, S. Chatterjee, J. C. Hardwick, J. Sipelstein, and M. Zagha, “Imple-

mentation of a portable nested data-parallel language,” in Proceedings 4th ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming, San Diego,

May 1993, pp. 102–111.

[39] C. H. Koelbel, D. B. Loveman, R. S. Schreiber, J. Guy L. Steele, and M. E. Zosel,

The high performance Fortran handbook. Cambridge, MA, USA: MIT Press, 1994.

133

[40] W. D. Hillis, The Connection Machine, ser. Distinguished Dissertations. MIT Press,

1985.

[41] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large clus-

ters,” in Proceedings of the Symposium on Operating System Design and Implemen-

tation, 2004, pp. 137–150.

[42] W. D. Hillis and G. L. Steele, “Data parallel algorithms,” Communications of the

ACM, vol. 29, no. 12, pp. 1170–1183, December 1986.

[43] Khronos OpenCL Working Group, The OpenCL Specification, version 1.0.29,

<http://khronos.org/registry/cl/specs/opencl-1.0.29.pdf>, 2008.

[44] I. B. J Nickolls, “Nvidia cuda software and gpu parallel computing architecture,”

Microprocessor Forum, May 2007.

[45] L. Buatois, G. Caumon, and B. Lvy, “Concurrent number cruncher: An efficient

sparse linear solver on the gpu,” in High Performance Computation Conference

(HPCC), Springer Lecture Notes in Computer Sciences, 2007.

[46] A. Cevahir, A. Nukada, and S. Matsuoka, “High performance conjugate gradient

solver on multi-gpu clusters using hypergraph partitioning,” Computer Science -

R&D, vol. 25, no. 1-2, pp. 83–91, 2010.

[47] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, and C. Guestrin, “Graphlab: A dis-

tributed framework for machine learning in the cloud,” CoRR, vol. abs/1107.0922,

2011.

[48] D. Borthakur, The Hadoop Distributed File System: Architecture and Design, The

Apache Software Foundation, 2007.

[49] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Cza-

jkowski, “Pregel: a system for large-scale graph processing,” in Proceedings of the

2010 International Conference on Management of Data, ser. SIGMOD ’10. ACM,

2010, pp. 135–146.

134

[50] P. Stutz, A. Bernstein, and W. Cohen, “Signal/collect: graph algorithms for the (se-

mantic) web,” in Proceedings of the 9th International Semantic Web Conference on

the Semantic Web — Volume I, ser. ISWC’10. Springer-Verlag, 2010, pp. 764–780.

[51] A. Buluç and J. R. Gilbert, “The Combinatorial BLAS: Design, implementation, and

applications,” The International Journal of High Performance Computing Applica-

tions, 2011.

[52] M. Aubury, I. Page, G. Randall, J. Saul, and R. Watts, “Handel-c language reference

guide,” 1996.

[53] D. Galloway, “The transmogrifier c hardware description language and compiler for

fpgas,” in Proceedings of the IEEE Workshop on FPGAs for Custom Computing Ma-

chines, April 1995, pp. 136–144.

[54] M. Gokhale, J. Stone, J. Arnold, and M. Kalinoskwi, “Stream-oriented fpga comput-

ing in the streams-c high level lanugage,” in Proceedings of the IEEE Symposium on

Field-Programmable Custom Computing Machines. IEEE, April 2000.

[55] D. C. Cronquist, P. Franklin, S. G. Berg, and C. Ebeling, “Specifying and compiling

applications for rapid,” in FCCM, 1998, pp. 116–125.

[56] System C 2.1 Language Reference Manual,<http://www.systemc.org>, Open System

C Initiative, May 2005.

[57] T. Bollaert, “Catapult Synthesis: A Practical Introduction to Interactive C Synthesis

High-Level Synthesis,” in High-Level Synthesis, P. Coussy and A. Morawiec, Eds.

Springer Netherlands, 2008, ch. 3, pp. 29–52.

[58] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. A. Vissers, and Z. Zhang, “High-

level synthesis for fpgas: From prototyping to deployment,” IEEE Trans. on CAD of

Integrated Circuits and Systems, vol. 30, no. 4, pp. 473–491, 2011.

[59] C. A. R. Hoare, Communicating Sequential Processes, ser. International Series in

Computer Science. Prentice-Hall, 1985.

135

[60] T. Callahan, J. Hauser, and J. Wawrzynek, “The Garp Architecture and C Compiler,”

IEEE Computer, vol. 33, no. 4, pp. 62–69, April 2000.

[61] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann, “Effective

compiler support for predicated execution using the hyperblock,” in Proceedings of

Micro-25, 1992, pp. 45–54.

[62] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson, S. Brown,

and T. Czajkowski, “Legup: high-level synthesis for fpga-based processor/accelerator

systems,” in Proceedings of the 19th ACM/SIGDA international symposium on Field

programmable gate arrays. ACM, 2011, pp. 33–36.

[63] D. Lau, O. Pritchard, and P. Molson, “Automated generation of hardware accelerators

with direct memory access from ansi/iso standard c functions,” in Proceedings of the

IEEE Symposium on Field-Programmable Custom Computing Machines, April 2006,

pp. 45–56.

[64] C. Leiserson, F. Rose, and J. Saxe, “Optimizing synchronous circuitry by retiming,”

in Third Caltech Conference On VLSI, March 1983.

[65] V. Betz and J. Rose, “FPGA Place-and-Route Challenge,”

<http://www.eecg.toronto.edu/ vaughn/challenge/challenge.html>, 1999.

[66] A. DeHon, R. Huang, and J. Wawrzynek, “Hardware-Assisted Fast Routing,” in Pro-

ceedings of the IEEE Symposium on Field-Programmable Custom Computing Ma-

chines, April 2002, pp. 205–215.

[67] R. Huang, J. Wawrzynek, and A. DeHon, “Stochastic, Spatial Routing for Hyper-

graphs, Trees, and Meshes,” in Proceedings of the International Symposium on Field-

Programmable Gate Arrays, February 2003, pp. 78–87.

[68] L. McMurchie and C. Ebeling, “PathFinder: A Negotiation-Based Performance-

Driven Router for FPGAs,” in Proceedings of the International Symposium on Field-

Programmable Gate Arrays, 1995, pp. 111–117.

136

[69] K. McElvain, “LGSynth93 Benchmark Set: Version 4.0,”

<http://www.cbl.ncsu.edu/pub/Benchmark dirs/LGSynth93/doc/iwls93.ps>, May

1993.

[70] V. Betz and J. Rose, “VPR: A new packing, placement, and routing tool for FPGA

research,” in Proceedings of the International Conference on Field-Programmable

Logic and Applications, ser. LNCS, W. Luk, P. Y. K. Cheung, and M. Glesner, Eds.,

no. 1304. Springer, August 1997, pp. 213–222.

[71] J. Rose et al., “VPR and T-VPack: Versatile Packing, Placement and Routing for

FPGAs,” <http://www.eecg.utoronto.ca/vpr/>, 2008.

[72] A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum flow problem,”

in Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing,

ser. STOC ’86. ACM, 1986, pp. 136–146.

[73] A. Goldberg, A New Max-flow Algorithm, ser. MIT/LCS/TM-. Laboratory for Com-

puter Science, Massachusetts Institute of Technology, 1985.

[74] B. V. Cherkassy and A. V. Goldberg, “On implementing push-relabel method for the

maximum flow problem,” in Proceedings of the 4th International IPCO Conference

on Integer Programming and Combinatorial Optimization. Springer-Verlag, 1995,

pp. 157–171.

[75] R. J. Anderson and J. a. C. Setubal, “On the parallel implementation of goldberg’s

maximum flow algorithm,” in Proceedings of the Fourth Annual ACM Symposium on

Parallel Algorithms and Architectures, ser. SPAA ’92. ACM, 1992, pp. 168–177.

[76] D. A. Bader and V. Sachdeva, “A cache-aware parallel implementation of the push-

relabel network flow algorithm and experimental evaluation of the gap relabeling

heuristic,” in ISCA PDCS, 2005, pp. 41–48.

[77] Y. Lu, H. Zhou, L. Shang, and X. Zeng, “Multicore parallel min-cost flow algorithm

for cad applications,” in Proceedings of the 46th Annual Design Automation Confer-

ence, ser. DAC ’09. ACM, 2009, pp. 832–837.

137

[78] Z. He and B. Hong, “Dynamically tuned push-relabel algorithm for the maximum

flow problem on cpu-gpu-hybrid platforms,” in IPDPS, 2010, pp. 1–10.

[79] Xilinx, MicroBlaze Processor Reference Guide,

<http://www.xilinx.com/tools/microblaze.htm>.

[80] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Efficiently

computing static single assignment form and the control dependence graph,” ACM

Transactions on Programming Languages and Systems, vol. 13, no. 4, pp. 451–490,

Oct. 1991.

[81] R. Wilson, R. French, C. Wilson, S. Amarasinghe, J. Anderson, S. Tjiang, S. Liao,

C. Tseng, M. Hall, M. Lam, and J. Hennessy, “The suif compiler system: a paralleliz-

ing and optimizing research compiler,” Computer Systems Lab, Stanford University,

Tech. Rep., 1994.

[82] P. Bellows and B. Hutchings, “JHDL — an HDL for reconfigurable systems,” in IEEE

Symposium on FPGAs for Custom Computing Machines, K. L. Pocek and J. Arnold,

Eds. Los Alamitos, CA: IEEE Computer Society Press, 1998, pp. 175–184.

[83] M. Chu, N. Weaver, K. Sulimma, A. DeHon, and J. Wawrzynek, “Object Oriented

Circuit-Generators in Java,” in Proceedings of the IEEE Symposium on FPGAs for

Custom Computing Machines, April 1998, pp. 158–166.

[84] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh, “Lava: hardware design in haskell,”

SIGPLAN Not., vol. 34, no. 1, pp. 174–184, Sep. 1998.

[85] A. Gill, T. Bull, G. Kimmell, E. Perrins, E. Komp, and B. Werling, “Introducing

kansas lava,” in Implementation and Application of Functional Languages, ser. Lec-

ture Notes in Computer Science. Springer Berlin / Heidelberg, 2011, vol. 6041, pp.

18–35.

[86] N. Kapre, N. Mehta, M. deLorimier, R. Rubin, H. Barnor, M. J. Wilson, M. Wrighton,

and A. DeHon, “Packet-Switched vs. Time-Multiplexed FPGA Overlay Networks,”

138

in Proceedings of the IEEE Symposium on Field-Programmable Custom Computing

Machines. IEEE, 2006, pp. 205–213.

[87] B. S. Landman and R. L. Russo, “On pin versus block relationship for partitions of

logic circuits,” IEEE Transactions on Computers, vol. 20, pp. 1469–1479, 1971.

[88] A. Caldwell, A. Kahng, and I. Markov, “Improved Algorithms for Hypergraph Bipar-

titioning,” in Proceedings of the Asia and South Pacific Design Automation Confer-

ence, January 2000, pp. 661–666.

139

Appendix A

GRAPAL Context-Free Grammar

140

Program ::= (Class | Function)*
Class ::= GlobalClass | NodeClass | EdgeClass
GlobalClass ::= global Symbol { (OutDecl | GlobalMethod)* }
NodeClass ::= node Symbol { (OutDecl | FieldDecl | NodeMethod)* }
EdgeClass ::= node Symbol { (OutDecl | FieldDecl | EdgeMethod)* }
OutDecl ::= out Symbol Symbol ;
FieldDecl := ValueType Symbol ;
GlobalMethod ::= BcastMethod | GlobalReduceMethod
NodeMethod ::= SendMethod | NodeReduceMethod
EdgeMethod ::= FwdMethod
BcastMethod ::= bcast Symbol ParamList Symbol . Symbol
GlobalReduceMethod ::= reduce tree Symbol ParamList Value StatementBlock
SendMethod ::= send Symbol ParamList StatementBlock
NodeReduceMethod ::= reduce tree Symbol ParamList StatementBlock
FwdMethod ::= fwd Symbol ParamList StatementBlock
Function ::= ValueType Symbol ParamList StatementBlock
ParamList ::= () | (Param (, Param)*)
Param ::= ValueType Symbol
Statement ::= VarDecl | Assignment | Dispatch | Return | IfThenElse

| StatementBlock
Block ::= { Statement* }
VarDecl ::= ValueType Symbol = Expression ;
Assignment ::= LeftExpression = Expression ;
Dispatch ::= Symbol . Symbol ArgList ;
Return ::= return Value ;
IfThenElse ::= if Value Statement Statement?
LeftExpression ::= LeftTuple | TupleIndex
LeftTuple ::= Symbol | () | (LeftTuple (, LeftTuple)*)
Expression ::= Symbol | Group | TupleIndex | Tuple | FunctionCall

| Conditional | UnaryExpr | BinaryExpr
ArgList ::= () | (Expression (, Expression)*)
Group ::= (Expression)
Tuple ::= () | (Expression (, Expression)*)
TupleIndex ::= Symbol [Natural]
FunctionCall ::= Symbol ArgList
Conditional ::= Expression ? Expression : Expression
UnaryExpr ::= (! | - | ˜) Expression
BinaryExpr ::= Expression BinaryOp Expression
BinaryOp ::= (== | && | || | ˆ | & | | | + | - | * | / | % | << | >>)
ValueType ::= boolean | int < Natural > | unsigned < Natural > | TupleType
TupleType ::= () | (ValueType (, ValueType)*)
Value ::= Boolean | Integer | Decimal | Tuple
TupleValue ::= () | (Value (, Value)*)
Symbol ::= [_a-z][_a-z0-9]*
Natural ::= [0-9]+
Integer ::= -?[0-9]+
Decimal ::= -?[0-9]+(.[0-9]+)?

Figure A.1: Context-free grammar for GRAPAL: Nonterminals are green, literal terminals
are red, and terminals expressed as regular expressions are blue.

141

Appendix B

Push-Relabel in GRAPAL

142

global Glob {
out Node nodes;

bcast get_sink_overflow_b() nodes.get_sink_overflow;
reduce tree get_sink_overflow_r(int<24> x, int<24> y) 0 { return x + y; }

bcast init_start(int<24>) nodes.init_start;
bcast global_relabel_start() nodes.global_relabel_start;

bcast push_start() nodes.push_start;
bcast relabel_start() nodes.relabel_start;
reduce tree is_active(boolean x1, boolean x2) false { return x1 || x2; }

}

edge Edge {
out Node to;
int<24> capacity, complement_capacity, flow;
int<24> idx_from, idx_to;

fwd init_adj() {
flow = capacity;
to.init_adj(idx_from, capacity);

}
fwd init_back(int<24> idx_s) {
if (idx_to == idx_s) flow = -complement_capacity;

}

fwd global_relabel(int<24> height) {
if (complement_capacity != -flow) to.global_relabel(height + 1);

}

fwd push_request(int<24> height, int<24> overflow) {
int<24> push_amount = min(capacity - flow, overflow);
if (0 < push_amount) to.push_request(idx_from, height, push_amount);

}
fwd push_ack(int<24> idx_req, int<24> push_amount) {

if (idx_req == idx_to) {
to.push_ack(idx_from, push_amount);

}
}
fwd push_do_fwd(int<24> idx_ack, int<24> push_amount) {
if (idx_ack == idx_to) {
flow = flow + push_amount;
to.push_do(idx_from, push_amount);

}
}
fwd push_do_back(int<24> idx_req, int<24> push_amount) {
if (idx_req == idx_to) flow = flow - push_amount;

}

fwd relabel_height(int<24> height) {
if (flow != -complement_capacity) { // complement edge is in residual network
to.relabel_height(height);

}
}

}

Figure B.1: Push Relabel Part 1 of 3

143

node Node {
out Glob parent;
out Edge edges;

boolean is_source, is_sink;
int<24> idx, height, overflow, nnodes;

send get_sink_overflow() { if (is_sink) parent.get_sink_overflow_r(overflow); }

send init_start(int<24> nnodes_in) {
nnodes = nnodes_in;
if (is_source) {

height = max_int(); // not necessary if global_relabel run after init
edges.init_adj();

}
}
// only 1 message possible since there is 1 source and it’s not a multigraph
reduce tree init_adj(int<24> idx_s1, int<24> amount1,

int<24> idx_s2, int<24> amount2) {
return (0, 0);

}
send init_adj(int<24> idx_s, int<24> amount) {

overflow = amount;
edges.init_back(idx_s);

}

send global_relabel_start() {
if (is_sink) {

height = 0;
edges.global_relabel(height);

} else {
height = max_int();

}
}
reduce tree global_relabel(int<24> height1, int<24> height2) {
return min(height1, height2);

}
send global_relabel(int<24> n_height) {

if (n_height < height) {
height = n_height;
edges.global_relabel(n_height);

}
}

Figure B.2: Push Relabel Part 2 of 3

144

send push_start() {
if (!is_source && !is_sink && height < nnodes && 0 < overflow) {
edges.push_request(height, overflow);

}
}

// choose which neighbor to ack
reduce tree push_request(int<24> idx_req1, int<24> height_req1, int<24> push_amount1,

int<24> idx_req2, int<24> height_req2, int<24> push_amount2) {
if (idx_req1 < idx_req2) return (idx_req1, height_req1, push_amount1);
else return (idx_req2, height_req2, push_amount2);

}
send push_request(int<24> idx_req, int<24> height_req, int<24> push_amount) {

if (height_req == height + 1) {
edges.push_ack(idx_req, push_amount);

}
}

// choose which pushable edge to push on -- priority to lower flow,
// then priority to lower idx
reduce tree push_ack(int<24> idx_ack1, int<24> push_amount1,

int<24> idx_ack2, int<24> push_amount2) {
if (push_amount1 > push_amount2 ||

(push_amount1 == push_amount2 && idx_ack1 < idx_ack2)) {
return (idx_ack1, push_amount1);

} else return (idx_ack2, push_amount2);
}
send push_ack(int<24> idx_ack, int<24> push_amount) {
overflow = overflow - push_amount;
edges.push_do_fwd(idx_ack, push_amount);

}

reduce tree push_do(int<24> idx_req1, int<24> push_amount1,
int<24> idx_req2, int<24> push_amount2) {

return (0, 0); // there should be only 1 message, so this method should never fire
}
send push_do(int<24> idx_req, int<24> push_amount) {
overflow = overflow + push_amount;
edges.push_do_back(idx_req, push_amount);

}

send relabel_start() {
edges.relabel_height(height);

}
reduce tree relabel_height(int<24> height1, int<24> height2) {
return min(height1, height2);

}
send relabel_height(int<24> neighbor_height) {

if (!is_source && !is_sink && height < nnodes && 0 < overflow) {
height = neighbor_height + 1;
parent.is_active(true);

}
}

}

int<24> max_int() { return 8388607; }

int<24> min(int<24> x, int<24> y) {
return x < y ? x : y;

}
int<24> max(int<24> x, int<24> y) {

return x > y ? x : y;
}

Figure B.3: Push Relabel Part 3 of 3

145

Appendix C

Spatial Router in GRAPAL

146

unsigned<5> min(unsigned<5> x, unsigned<5> y) {
return x < y ? x : y;

}

unsigned<4> inid_to_vlutin(unsigned<5> inid) {
unsigned<4> one = 1;
return one << inid;

}
unsigned<8> outid_to_vout(unsigned<5> outid) {

unsigned<8> one = 1;
return one << outid;

}
boolean vout_get_outid(unsigned<8> v, unsigned<5> outid) {

unsigned<8> one = 1;
return (v & (one << outid)) != 0;

}

global Glob {
out Lut luts;
out Mux muxs;

// sets congestion delay for all muxs
bcast set_congestion_delay(unsigned<10>) muxs.set_congestion_delay;

// turn_current_net_routed_on(src)
bcast turn_current_net_routed_on(unsigned<16>) luts.turn_current_net_routed_on;

// called at begining of route set_pt2(src, sink, victimize)
bcast set_pt2(unsigned<16>, unsigned<16>, boolean) luts.set_pt2;

bcast search_no_victimize() muxs.start_search_no_victimize;
bcast alloc_no_victimize() luts.alloc_no_victimize;

bcast search_victimize() muxs.start_search_victimize;
bcast alloc_victimize() luts.alloc_victimize;

// gets only 1 msg
reduce tree found_sink(boolean found1, unsigned<5> inid1, boolean found2,

unsigned<5> inid2)
(false, 0) {
if (found1) return (found1, inid1);
else return (found2, inid2);

}

bcast query_victimized(boolean, unsigned<16>) luts.query_victimized;
reduce tree answer_victimized(boolean is_victim1, unsigned<16> lut1,

unsigned<4> ins1, boolean is_victim2,
unsigned<16> lut2, unsigned<4> ins2)

(false, 0, 0)
{

if (is_victim1 && (!is_victim2 || lut1 < lut2)) {
return (is_victim1, lut1, ins1);

} else return (is_victim2, lut2, ins2);
}

bcast fin_pt2() muxs.fin_pt2; // does this need to be different for (non)victimize?

// fin_net(lock, set_congestion_delay, new_congestion_delay)
bcast fin_net(boolean, boolean, unsigned<10>) muxs.fin_net;

}

Figure C.1: Spatial Router Part 1 of 6

147

node Lut {
out Glob parent;
out To_mux mouts; // muxs contained in this LUT
out From_mux mins; // muxs outside this LUT in the IO box

// constants
unsigned<16> this_id;
// variables
boolean current_sink;
unsigned<5> current_inid;
unsigned<4> ripped_ins;

// for nets which have been victimized and are being routed again
send turn_current_net_routed_on(unsigned<16> source) {

if (source == this_id) {
mouts.turn_current_net_routed_on(true, 0);

}
}

send set_pt2(unsigned<16> source, unsigned<16> sink, boolean victimize) {
if (source == this_id) mouts.set_src_mux(victimize);
current_sink = sink == this_id;

}

// search happens at a sink
reduce tree search(unsigned<5> inid1, unsigned<5> inid2) {

return min(inid1, inid2);
}
send search(unsigned<5> inid) {

if (current_sink) {
current_inid = inid;
parent.found_sink(true, inid);

}
}

send alloc_no_victimize() {
if (current_sink) mins.alloc_no_victimize(current_inid);

}

send alloc_victimize() {
if (current_sink) mins.alloc_victimize(false, 0, true, current_inid);

}

reduce tree rip_fwd(unsigned<4> ins1, unsigned<4> ins2) {
return ins1 | ins2;

}
send rip_fwd(unsigned<4> ins) {

ripped_ins = ripped_ins | ins;
}

send query_victimized(boolean exists_last_lut, unsigned<16> last_lut) {
if (exists_last_lut && last_lut == this_id) ripped_ins = 0;
else if (ripped_ins != 0) parent.answer_victimized(true, this_id, ripped_ins);

}
}

Figure C.2: Spatial Router Part 2 of 6

148
node Mux {

out To_mux mouts;
out To_lut lout; // should appear where mouts appears
out From_mux mins;
out Self_mux self;

unsigned<5> current_inid, routed_inid;
// current_net_routed => routed
boolean current_search, current_net_routed, routed, locked;
unsigned<5> fanout_count;
unsigned<8> mouts_on_route; // mouts_on_route != 0 <=> routed && (routed to mux)
unsigned<10> congestion_delay;

send set_congestion_delay(unsigned<10> congestion_delay_in) {
congestion_delay = congestion_delay_in;

}

reduce tree turn_current_net_routed_on() { return (); } // 1 in msg
send turn_current_net_routed_on() {
// this mux is a source => start on routed muxs only;
// not source => routed should always be true
if (routed) {
current_net_routed = true;
mouts.turn_current_net_routed_on(false, mouts_on_route);

}
}

reduce tree set_src_mux(boolean v1, boolean v2) { return v1; } // 1 in msg
send set_src_mux(boolean victimize) {
if ((victimize && !locked) || current_net_routed || !routed) current_search = true;

}

// ************ non victimizing ************

send start_search_no_victimize() {
if (current_net_routed || current_search) {
current_search = true;
mouts.search_no_victimize();
lout.search();

}
}
reduce tree search_no_victimize(unsigned<5> inid1, unsigned<5> inid2) {
return min(inid1, inid2);

}
send search_no_victimize(unsigned<5> inid) {

if (!routed && !current_search) {
current_search = true;
routed_inid = inid;
mouts.search_no_victimize();
lout.search();

}
}

// only gets 1 message
reduce tree alloc_no_victimize(unsigned<5> outid1, unsigned<5> outid2) {

return outid1;
}
send alloc_no_victimize(unsigned<5> outid) {

if (current_net_routed) { // increment fanout
fanout_count = fanout_count + 1;
mouts_on_route = mouts_on_route | outid_to_vout(outid);

} else { // set new route
routed = true;
current_net_routed = true;
fanout_count = 1;
mins.alloc_no_victimize(routed_inid);
mouts_on_route = outid_to_vout(outid);

}
}

Figure C.3: Spatial Router Part 3 of 6

149

// ************ victimizing ************

send start_search_victimize() {
if (current_net_routed || current_search) {
current_search = true;
mouts.search_victimize();
lout.search();

}
}

// keep whichever one has been delayed the most;
// if neither then break ties with min
reduce tree search_victimize(unsigned<10> delay_cnt1, unsigned<5> inid1,

unsigned<10> delay_cnt2, unsigned<5> inid2) {
if (delay_cnt1 > 0) return (delay_cnt1, inid1);
else if (delay_cnt2 > 0) return (delay_cnt2, inid2);
else return (0, min(inid1, inid2));

}
send search_victimize(unsigned<10> delay_cnt, unsigned<5> inid) {

if (!locked && (!current_search || delay_cnt > 0)) {
current_search = true;
current_inid = inid;
if (routed && delay_cnt < congestion_delay && routed_inid != inid) {
self.search_delay(delay_cnt + 1, inid);

} else {
mouts.search_victimize();
lout.search();

}
}

}

reduce tree alloc_victimize(boolean recv_rip_fwd1,
unsigned<5> recv_rip_back_cnt1, unsigned<8> recv_rip_back_vout1,
boolean recv_alloc1, unsigned<5> alloc_outid1,
boolean recv_rip_fwd2,
unsigned<5> recv_rip_back_cnt2, unsigned<8> recv_rip_back_vout2,
boolean recv_alloc2, unsigned<5> alloc_outid2) {

boolean recv_rip_fwd = recv_rip_fwd1 || recv_rip_fwd2;
unsigned<5> recv_rip_back_cnt = recv_rip_back_cnt1 + recv_rip_back_cnt2;
unsigned<8> recv_rip_back_vout = recv_rip_back_vout1 | recv_rip_back_vout2;
boolean recv_alloc = recv_alloc1 || recv_alloc2;
unsigned<5> alloc_outid = recv_alloc1 ? alloc_outid1 : alloc_outid2;
return (recv_rip_fwd, recv_rip_back_cnt, recv_rip_back_vout,

recv_alloc, alloc_outid);
}

Figure C.4: Spatial Router Part 4 of 6

150
send alloc_victimize(boolean recv_rip_fwd,

unsigned<5> recv_rip_back_cnt, unsigned<8> recv_rip_back_vout,
boolean recv_alloc, unsigned<5> alloc_outid) {

boolean recv_rip_back = recv_rip_back_cnt > 0;
boolean old_routed = routed && !current_net_routed;
unsigned<8> old_mouts_on_route = mouts_on_route;
unsigned<5> rip_back_remaining_fanout = fanout_count - recv_rip_back_cnt;

boolean send_rip_back =
old_routed && !recv_rip_fwd &&
((recv_rip_back && rip_back_remaining_fanout == 0) ||
recv_alloc);

boolean send_rip_fwd = old_routed && (recv_rip_fwd || recv_alloc);
boolean send_alloc = !current_net_routed && recv_alloc;

unsigned<5> rip_back_inid = routed_inid;
unsigned<5> alloc_inid = current_inid;

if (recv_alloc) {
if (current_net_routed) { // increment fanout

fanout_count = fanout_count + 1;
mouts_on_route = mouts_on_route | outid_to_vout(alloc_outid);

} else { // set new route
routed = true;
current_net_routed = true;
fanout_count = 1;
mouts_on_route = outid_to_vout(alloc_outid);
routed_inid = current_inid;

}
} else if (old_routed && recv_rip_fwd) { // clear old route
routed = false;
fanout_count = 0;
mouts_on_route = 0;

} else if (old_routed && recv_rip_back) {
// decrement fanout and possibly clear old route
if (rip_back_remaining_fanout == 0) routed = false;
fanout_count = rip_back_remaining_fanout;
mouts_on_route = mouts_on_route & ˜recv_rip_back_vout;

}

if (send_rip_back || send_alloc) { // rip_back and/or alloc
mins.alloc_victimize(send_rip_back, rip_back_inid, send_alloc, alloc_inid);

}

if (send_rip_fwd) {
lout.rip_fwd();
mouts.rip_fwd(old_mouts_on_route);

}
}

// ************ cleanup ************

send fin_pt2() {
current_search = false;

}

send fin_net(boolean lock, boolean set_new_congestion_delay,
unsigned<10> congestion_delay_in) {

if (current_net_routed) {
locked = lock;
if (set_new_congestion_delay) congestion_delay = congestion_delay_in;

}
current_net_routed = false;

}
}

Figure C.5: Spatial Router Part 5 of 6

151

edge To_mux {
out Mux to;
unsigned<5> outid, inid;

fwd turn_current_net_routed_on(boolean to_source, unsigned<8> mouts_on_route) {
if (to_source || vout_get_outid(mouts_on_route, outid))
to.turn_current_net_routed_on();

}

fwd set_src_mux(boolean victimize) { to.set_src_mux(victimize); }

fwd search_no_victimize() { to.search_no_victimize(inid); }

fwd search_victimize() { to.search_victimize(0, inid); }

fwd rip_fwd(unsigned<8> mouts_on_route) {
if (vout_get_outid(mouts_on_route, outid))
to.alloc_victimize(true, 0, 0, false, 0);

}
}

edge From_mux {
out Mux from;
unsigned<5> outid, inid; // same as its complement

fwd alloc_no_victimize(unsigned<5> recv_inid) {
if (inid == recv_inid) from.alloc_no_victimize(outid);

}
fwd alloc_victimize(boolean rip_back, unsigned<5> rip_back_inid, boolean alloc,

unsigned<5> alloc_inid) {
boolean send_rip_back = rip_back && inid == rip_back_inid;
unsigned<5> rip_back_cnt = send_rip_back ? 1 : 0;
unsigned<8> rip_back_vout = outid_to_vout(outid);
boolean send_alloc = alloc && inid == alloc_inid;
if (send_rip_back || send_alloc) {

from.alloc_victimize(false, rip_back_cnt, rip_back_vout, send_alloc, outid);
}

}
}

edge Self_mux {
out Mux to;

fwd search_delay(unsigned<10> delay_cnt, unsigned<5> inid) {
to.search_victimize(delay_cnt, inid); }

}

edge To_lut {
out Lut to;
unsigned<5> inid;

fwd search() { to.search(inid); }
fwd rip_fwd() { to.rip_fwd(inid_to_vlutin(inid)); }

}

Figure C.6: Spatial Router Part 6 of 6

