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Abstract

This thesis contains topics related mostly to the dynamics of white dwarfs (chapter 2), the dynamics
of stars around binary super massive black holes (chapters 4, 5 and 6) and dynamics in the singular
isothermal sphere (chapter 7).

In chapter 2 the kinematics of young (< 3 x 10® yr) galactic white dwarfs are investigated. A
relationship between the mass and kinematics of white dwarfs is demonstrated, whereby high-
mass white dwarfs have low velocity dispersion. This is the result of less scattering during the
shorter lifetime of their more massive precursors. The kinematics of the highest-mass white dwarfs
(> 0.95 M) are also investigated, and it is shown that they are consistent with the majority being
formed via single-star evolution from massive progenitor stars.

In chapter 3 it is shown that the coolest, oldest white dwarfs can be identified photometrically
from their unique colors, and five new ultracool white dwarfs are spectroscopically confirmed.

In chapter 4 it is shown that close binary supermassive black holes (SMBHs) should produce
a burst of tidal disruptions of up to 0.1yr™! as they form. The quiescent rate is ~ 10 yr™! per
galaxy, and it is therefore shown that binary SMBHs can potentially be identified via multiple tidal
disruptions from the same system.

In chapter 5 we perform more extensive simulations of the dynamics of stars around binary
SMBHs to better quantify and understand the stellar dynamics. By incorporating general relativistic
corrections, we also investigate the processes undergone by compact remnants orbiting the binary
SMBHs, analyzing both objects that plunge directly into the SMBHs, and those that undergo extreme
mass ratio inspirals (EMRIs). The potential used to mimic general relativistic precession in these
simulations is novel, and more accurate for the type of nearly parabolic orbits considered in this
work: It is described in chapter 6.

In chapter 7 an analytic solution to the manner in which stars diffuse in the background of a
singular isothermal sphere is developed. It is shown a self-similar solution should exist, and this

solution is found.
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Introduction

1.1 Overview

In this chapter the background needed to understand the importance of the remainder of the thesis
is introduced. While the chapters in this thesis are somewhat disparate they all relate to galactic
dynamics (chapters 4, 5, 6, and 7), white dwarfs (chapter 3) or both (chapter 2). In addition we
(attempt to) apply the analytic work in chapter 7 to white dwarfs to provide an example of its use,
and calculate the kinematics of the white dwarfs in chapter 3. This is summarized in the Venn

diagram in figure 1.1.

Galactic Dynamics White Dwarfs
Multiple Tidal White Dwarf
) i Kinematics vs
Disruptions From Mass :
ass :
Binary SMBHs: Chapter 2
Chapter 4
Tidal

Disruptions, EMRIS,
and Plunges from
Binary SMBHs:

Chapter 5 Fokker-Planck Equation
Ultracool White Dwarfs :

in the Singular Isothermal
Chapter 3

Pseudo-Newtonian Sphere : Chapter 7
Potential:
Chapter 6

Figure 1.1 Diagrammatic overview of thesis. Chapter 3 contains only a small amount of galactic
dynamics: checking the kinematics of the discovered ultracool white dwarfs. Chapter 7 contains
only a small amount of white dwarf work: applying the analytic solution of the Fokker-Planck to
the dynamics of white dwarfs in globular clusters.
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As background to chapters 2 and 3, methods of identifying white dwarfs are introduced in
section 1.2, and the kinematics of stars in the solar neighborhood in section 1.3. In chapters 4, 5
and 6 the dynamics of stars around supermassive black hole (SMBH) binaries are investigated. The
relevant introductory material is contained in section 1.4, where the relevant scales are discussed in
section 1.4.1, and background on SMBH binaries is contained in section 1.4.2. Chapter 7 contains an
astrophysically motivated analytic solution to the Fokker-Planck equation, for which few analytic
solutions are known. This chapter is more pedagogical, and the necessary background material is

contained within the introduction (section 7.1).



1.2 White Dwarfs

White dwarfs are the ultimate end state of any star less massive than ~ 8 My and as such are
ubiquitous. Despite this they can be difficult to identify, particularly the cool objects that are the
focus in chapter 3. White dwarfs are simplest to identify in clusters where, owing to the common
distance, they are identifiable as being sub-luminous in comparison to their pre-evolved stellar

counterparts. A striking example of this is shown in figure 1.2.

10 LA I L L L I B

151 1

20

F814W

25 -

0L b b b ba v by by

—-0.5 0 0.5 1 1.5 2 2.5 3
F606W - F814W

Figure 1.2 A color-magnitude plot of NGC 6397 imaged using the Advanced Camera for Surveys
(ACS) on the Hubble Space Telescope (HST). The white dwarf cooling sequence is clearly visible
as the sequence of objects ~ 5mag fainter than the main sequence. Data taken from Richer et al.
(2007). The cooling sequence in this cluster was examined in detail in Hansen et al. (2007) and the
age of the cluster found to be 11.5 £ 0.5 Gyr (95% confidence limit).

In the field white dwarfs are more challenging to identify. We consider young, hot white dwarfs
in chapter 2, which were identified via their blue colors and so targeted by SDSS for spectroscopic
follow up. However after approximately 1 Gyr (for white dwarf mass Mwp = 0.6 M) white dwarfs
cool below ~ 8000 K and their colors become indistinguishable from the stellar locus of field stars.
This is demonstrated in figure 1.3.

Instead, when the white dwarfs have colors indistinguishable from the stellar locus, the reduced

proper motion has often been utilized to select probable low luminosity objects and therefore
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Figure 1.3 Demonstration of selection of hot white dwarfs in color-color space. In grey are all
stellar objects with from SDSS in a 4 deg” area of sky that have a shape consistent with the PSF and
‘good” photometry (see section 3.2). In red are all white dwarfs identified in SDSS DR4 (Eisenstein
et al., 2006). In blue are the sample of DA white dwarfs with Teg > 13000 K whose kinematics were
analyzed in chapter 2. The black line shows the WD atmospheric and cooling model of Bergeron' for
a white dwarf with mass 0.6 M.

possible white dwarfs. The reduced proper motion is defined as

H=m+5logu+5 (1.1)

=M+5logv, —3.38, (1.2)

where m and M are the apparent and absolute magnitudes, respectively, u is the proper motion in
arc-seconds per year, and v, is the transverse velocity in kms™. For groups of stars with the same
kinematics the reduced proper motion therefore acts as a proxy, at least statistically, for the absolute
magnitude. A cut is then made in the resulting color-reduced proper motion plot so as to best
exclude the main stellar locus, and the remaining WD candidates targeted for spectroscopy. The
disadvantage of this method is that there is little separation between low-velocity white dwarfs and
high-velocity sub-dwarfs. This can result either in inefficient selection, or a highly biased sample
of high-velocity white dwarfs. This is illustrated in figure 1.4, which shows there is considerable
overlap between high reduced proper motion objects confirmed as white dwarfs, and those that

were instead sub-dwarfs. Finally, attempts have been made to use narrow filters to eliminate this

1 Available from http://www.astro.umontreal. ca/~bergeron/CoolingModels/, uses results from from Holberg and
Bergeron (2006), Kowalski and Saumon (2006), Tremblay et al. (2011) and Bergeron et al. (2011)


http://www.astro.umontreal.ca/~bergeron/CoolingModels/
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contamination, however they have not yet been successful (Kilic et al., 2004).

10

w15
+
3
20
2
0
+
>
Il g
T

V. =40kms !
25 .
-2 -1 0 1 2 3 4
g—1

Figure 1.4 Demonstration of selection of hot white dwarfs via reduced proper motion. Blue triangles
are objects selected via their high reduced proper motion and identified as white dwarfs by Kilic
et al. (2006). Red square are were also selected via their high reduced proper motion but are sub-
dwarfs. The black lines shows the WD atmospheric model of Bergeron for a 0.6 My white dwarf
at transverse velocities of 20 kms™ and 40 kms™!. In grey are all stellar objects with from SDSS in

a 4deg’ area of sky that have a shape consistent with the PSF and ‘good’ photometry (see section
3.2).

The interest in the coolest white dwarfs are that they represent the remnants of the earliest
populations, for all stars with initial mass 0.8 Mo < M < 8 Mo. Work has been performed on the
luminosity function of white dwarfs, and the age of the disk estimated from luminosity of the
faintest coolest white dwarfs (e.g., Leggett et al., 1998, find 8.5 + 1.5 Gyr for the age of the disk).
In addition they represent remnants of a large fraction of stars, both by number and stellar mass.
Their detection and presence in the halo” could therefore shed light on the low-mass end of early
stellar populations.

In chapter 3 we show that the coolest, oldest white dwarfs can be identified purely photomet-
rically via their unique colors. This can anticipated by the white dwarf models moving out of the

stellar locus as the white dwarf cools below ~ 4000 K in figure 1.3.

2In addition Oppenheimer et al. (2001) found what appeared to be an excess of cool white dwarfs showing Halo
kinematics. It was claimed that this could represent significant component of the galactic dark matter budget which briefly
ignited great interest.



1.3 Local Kinematics

In chapter 2 we investigate the relationship between the kinematics of white dwarfs and their mass.
The samples of white dwarfs we investigate are all in the solar neighborhood. Therefore here we
briefly introduce the kinematics of stars in the local neighborhood. In figure 1.5 we plot the mean

velocity and dispersion of stars in the solar neighborhood as a function of age.
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Figure 1.5 Dispersion (left panels) and mean velocity (right panels) of stars in the solar neighborhood
as a function of age. U is in the direction of rotation about the galactic center, V is directed towards
the galactic center, and W is towards the north galactic pole. Data is taken from the recalibrated
Geneva Copenhagen survey of nearby F and G dwarf stars (Holmberg et al., 2007; Nordstrom et al.,
2004). Only those stars whose ages are reliably determined, with formal error less than 20 per cent,
are plotted.

In the local neighborhood the vast majority of stars are members of the disk, as is the Sun. As a
result the majority of local stars have velocities around the galactic center close to the circular velocity
of ~ 200 km s~!. The sun has a peculiar velocity of (Us, Vo, Wo) = (10.0+0.4,5.3+0.6,7.2+0.4) km s~}
(Dehnen and Binney, 1998). The U and W solar motions are visible as the mean (U) and (W) in
figure 1.5. Measurement of V, is complicated by asymmetric drift.

Detailed quantitative understanding of asymmetric drift can be found from the Jeans Equation
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in cylindrical coordinates (e.g., Binney and Tremaine, 2008). However the majority of the effect
can be simply understood: As the velocity dispersion is increased from zero, stars in the solar
neighborhood have orbits with increasing eccentricities. However, because the density of stars
increases inward, stars in the solar neighborhood are more likely to be close to apoapsis than
periapsis. A star close to apoapsis will have lower velocity in the direction of galactic rotation than
the Solar velocity, which has an orbit close to a circular. Therefore a group of stars with increased
velocity dispersion has more negative (V). Empirically this relationship is (Dehnen and Binney,

1998)
2

(V) = o %u . (1.3)
(80 + 5) kms™!

The asymmetric drift can clearly be seen in middle right panel of figure 1.5. Extrapolating (V)
to zero dispersion gives the solar velocity Vi, = (5.3 + 0.6) kms™! (Dehnen and Binney, 1998).

Also shown in figure 1.5 is the increase in velocity dispersion over time, known as disk heating.
Stars are initially formed with dispersion of ~ 10 kms™!, and are scattered over their lifetime to
higher velocities. These scattering mechanisms may include molecular clouds, spiral arms, merging
satellite galaxies, dark matter substructure or some combination of these (Binney and Tremaine,
2008).

In chapter 2 we investigate the relationship between the local kinematics of newly formed white
dwarfs and their mass. We find that the dispersion increases with decreasing white mass. This can
be understood to be as a result of their increased precursor lifetime from their lower-mass precursor
stars.

In chapter 3 we find that all the ultracool white dwarfs discovered are consistent with thick
disk kinematics. There is however one previously discovered white dwarf whose kinematics is not
consistent with being a disk object, and is instead most likely a halo remnant. Halo stars have more

isotropic velocity distribution, and as a result their mean velocity is (V) ~ =220 kms~!.

1.4 Supermassive Black Holes

There is now overwhelming evidence that most galactic nuclei harbor supermassive black holes
(SMBHs) with mass > 10° M, in their centers®. This evidence includes (e.g., the review by Ferrarese

and Ford, 2005):

e The stellar orbits which have been monitored (known as S-stars Ghez et al., 2005; Schodel
et al., 2002) around the extremely compact (Doeleman et al., 2008) radio source Sgr A* in the

center of our galaxy.

3Not all galaxies harbor a SMBH however: There is not one in the nearby bulgeless disk galaxy M33 (Gebhardt et al.,
2001).
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e Hypervelocity (v > 275 km s™!) stars ejected by dynamical interactions with the SMBH in the

galactic center (e.g., Brown et al., 2007; Yu and Tremaine, 2003).

o The Keplerian nature of MASER emission from the centers of a handful of nearby galaxies

imply a large mass in a small region (e.g., Miyoshi et al., 1995).

e When the sphere of influence of the black hole is resolved (see equation 1.4), the stellar and
gas velocity dispersion rises in the very center of many galaxies. Kinematic modeling of this
indicates the presence of a massive compact object (e.g., Gebhardt et al., 2003; Sargent et al.,

1978).

o The energy liberated by accretion onto a massive compact object is the only feasible model
for emission from AGN due to their rapid variability and high luminosity (e.g., Ferrarese and

Ford, 2005).

In chapters 4, 5, and 6 we consider the dynamics of stars around binary supermassive black
holes (SMBHs). However first, in section 1.4.1, we introduce the relevant processes around isolated

SMBHs and the scales relevant to the problem. In section 1.4.2 we extend this to SMBH binaries.

1.4.1 Supermassive Black Hole Scales

Stars whose orbits lie within the sphere of influence of the black hole have orbits whose motion is

dominated by the influence of the black hole. The radius of the sphere of influence is given by

_ GM3gn _ Mgy o -2
Vinf = —0_2 = 112 (108 M@) (200 km S_l ) pC . (14)

The stars considered in chapters 4, 5, and 6 are drawn from those initially bound to the SMBH, i.e.,
largely inside equation (1.4).
The smallest characteristic scale of the SMBH is the Schwarzschild radius

2GMgu
c2

rs =

=9.6x107° (15):1—]31\1/{1@) pe. (1.5)
Since the stars considered in chapters 4 and 5 have typical initial semi-major axis ri¢, which is much
larger than r,, stars that closely approach the SMBH normally have very high eccentricity. In chapter
6 we develop pseudo-Newtonian potentials tailored to this case. In this chapter the refer to the
orbits as being ‘nearly parabolic’ meaning that the orbital energy of the particle is small compared to
c?. This is equivalent to having semi-major axes much larger than r;. The usual pseudo-Newtonian
potentials, and the potential of Paczynski and Wiita (1980) in particular, are tailored to particles

in nearly circular orbits and accretion disks. The potentials of chapter 6 however much more
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accurately trace the trajectories considered in this work, and indeed the trajectory of any ‘nearly
parabolic’ orbit.

Stars whose orbits take them closer than the tidal disruption radius will be torn apart by tidal
forces. In chapters 4 and 5 we calculate rates of tidal disruptions around SMBH binaries. To order of
magnitude, the tidal disruption radius can be estimated by comparing the self-gravity and the tidal
force experienced by a star of mass M,, and radius Ry, at a distance r from the black hole. The tidal
force will be ~ Ry X GMpp /7>, while the stars self gravity is ~ GM, /R%. Comparing these forces the

tidal disruption radius,r, is

1/3 1/3
- (R, M Mgy
=1.0x 1075 =x=2 1.6
Tt T]( M*r% ) (108M®) pC ( )
_ 1oy [ReMo V3 Mgy VP @7)
. ST] M*}’% 108M® ’ .

where 7; is the Schwarzschild radius, and 7 is an order unity factor which depends on the structure
of the star. Therefore for sun-like stars when Mpg > 1.2 x 108 My, the tidal disruption radius lies
within the Schwarzschild radius, and the star silently ‘plunges’ across the event horizon, adding
only to the mass of the black hole with no observational consequences. higher-mass black holes
can disrupt stars if the spinning and the orientation is prograde. For maximal spin, SMBHs with
mass up to ~ 8 X 108 M, are able to disrupt with the correct orientation (Beloborodov et al., 1992;
Kesden, 2012). The typical eccentricities of the particles of interest in chapters 4 and 5 (i.e., those
that plunge, become an EMRI) or are tidally disrupted willbe 1 —e ~ r;/r; and 1 — e ~ /1 which
is of order 10™. It is important therefore that the integrator used is able to accurately integrate
these highly eccentric orbits. For this reason we use the adaptive symplectic integrator of Preto and
Tremaine (1999) whose implementation is described in chapter 5. Since it integrates the paths of
orbits in Keplerian potentials exactly, it is ideal for the highly eccentric orbits considered.

An important timescale in our simulations is the dynamical timescale, or the time is takes for

stars to cross the system. This is given by*

3/2 -1/2
_ 7’3 _ T MBH
fayn =\ Cvign — 1’500(1 pc) (108Mo) e )

The other relevant timescale is the relaxation time. This is the characteristic timescale on which

the stellar distribution evolves. The relaxation time due to star-star interactions is to order of

4Note that by defining tayn to depend on Mpy and not the mass enclosed at radius r, M(< ) this is longer than the orbital
timescale when the stars contribute considerably, i.e., close to rins. However most of our interesting events come from stars
where this is not the case, and this definition remains constant even as the distribution evolves.
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magnitude given by (Binney and Tremaine, 2008)

01N fayn  of Meu \2( r \*
by ~ 2 L , 1.
5~ fogn 2n 0 sy (Tpe) VT (1.9)

where N, the number of stars in the system is ~ Mgn/Mo.
Since this timescale is much longer than the ~ 1 Myr simulations in chapters 4 and 5 we ignore
star-star scatterings® and the problem becomes a parallel series of reduced three-body scatterings.
On timescales longer than the relaxation time, the system is expected to relax to its equilibrium
configuration. This single mass systems this is known as a Bahcall-Wolf cusp (Bahcall and Wolf,
1976). To derive this equilibrium solution®, first assume the power law ansatz, p o« r~7. More
accurate calculations than equation (1.9), of the type performed in chapter 7, find that the local

star-star relaxation time is given by (equation 7.106 of Binney and Tremaine, 2008)

o3

—_—. 1.1
G?M,plog A (1.10)

Erx ~

where log A is the Coulomb logarithm. The velocity dispersion close to the SMBH will rise as
<vz> = 02 = GMgyu/r and therefore t,, o ¥1-3/2. A star that is destroyed by the hole via, for example,
a tidal disruption, coming from radius r, has energy E = —GMgpuM, /r. If N(r) is the number of stars
interior to r, then the flow from radius r will be approximately N(r)E(r) per relaxation time. Since
N(r) o r*~" then the energy flux is approximately N(r)E(r)/tux o r271/r173/2 = ¢7/2721_In steady state
the flux must be independent of radius and therefore n = 7/4. This equilibrium solution, whereby

the density of stars forms a cusp with p oc r=7/4

, is known as a Bahcall-Wolf cusp.
In multimass systems mass segregation complicates the above argument. However, provided
that there the highest-mass components are massive enough and not too numerous (Alexander

74 cusp close the hole, while the

and Hopman, 2009), then the heaviest component forms a p o« r~
lighter components are less centrally concentrated. This has been shown via analytic calculations
(Alexander and Hopman, 2009; Bahcall and Wolf, 1977; Keshet et al., 2009) and is born out in
numerical simulations (Freitag et al., 2006).

The relaxation timescale in equation (1.9) represents a considerable uncertainty in the processes
and dynamics around SMBHs since it is of the same order as the Hubble timescale, as well as the
timescale between major mergers which would destroy the equilibrium state. Therefore it is not
clear whether the Bahcall-Wolf cusp is realized in the majority of galaxies. Indeed the best resolved

-1.5

cusp is in the center of our galaxy, where the surface density rises consistent with a p oc ¥ cusp

(Genzel et al., 2003). This interpretation however assumes a constant mass-to-light ratio, which

5This is not as good an approximation in some cases as it may naively appear: The relaxation time to change the angular
momentum by of order unity is is reduced to (1 — e)t,;x which can be near to the length of the simulation for some stars.
6This argument follows section 7.5.9b of Binney and Tremaine (2008).
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would not be the case if there is mass segregation. Around external galaxies the ACS Virgo sample
of galaxies (Coté et al., 2004) appears to show that more massive galaxies (> 240 kms™!) tend to
have less-steep cores than the Bahcall-Wolf cusp (Merritt et al., 2009).

In chapter 5 we also consider the dynamics of compact objects (i.e., stellar mass black holes,
neutron stars, white dwarfs) around SMBH binaries. In this case the star is not tidally disrupted on
close encounters, and general relativistic corrections can become important.

In the radial direction, the orbits of test particles around a Schwarzschild black hole in General
Relativity can be reduced to one-dimensional motion in an effective potential (equation 25.16 of

Misner et al., 1973)

2 2
(%) - (CEZ +1) V), (1.11)
where V(r) is the effective potential given by
rs L2
V2(r) = (1 - 7)(1 + W) . (1.12)

In these equations r is the radial coordinate in the Schwarzschild metric, E and L are the orbital
energy and angular momentum, respectively, per unit rest mass of the orbiting particle, and 7 is the
proper time.

For the orbits of interest E < 1 and periapsis and apoapsis of the test particle correspond to the

1- L)(1 " L_z) “1, (1.13)

Ty 2ry2

roots of

where r, and r_ are the two largest roots of the quartic and correspond to the apoapsis and periapsis,
respectively. However if L < 2r;c = 4 GMgy/c then a real solution for »_ does not exist and so a
particle traveling towards the black hole with angular momentum L < 4 GMgy/c with dr/dt < 0
experiences no turning point in dr/dt and ‘plunges” across the event horizon. The orbit with
L = 4 GMpp/c is known as the separatrix (Cutler et al., 1994) or the unstable circular orbit (UCO)
(Gair et al., 2005).

When gravitational radiation is included finite mass objects with L > 4GMjzy/c may still be
captured by the SMBH. At each close periapse passage a burst of gravitational radiation is emitted,
and the object gradually loses energy and angular momentum inspiraling into the SMBH. This
process whereby a stellar mass object inspirals into an SMBH is known as an extreme mass ratio
inspiral (EMRI).

Using the approximation of Peters (1964) (whereby the orbit remains Keplerian, and radiation
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is calculated to quadrupole order), then the time for an EMRI to inspiral is” (Freitag, 2003)

2 -1 -1/2
Mgu M, m\H(1-e
femri = 3.2 X 10° ( ) (—) : 1.14
et = 3.2 X 10 (108M®) (101\4@) 0r,) \105) ¥ (1.14)

In order for an object to inspiral as an EMRI it cannot be perturbed too greatly by scatterings
from other stars. The relaxation time #, is the time for stars angular momentum to be perturbed by
of order the circular angular momentum, L. In the Newtonian limit L?> = GMa(1 —¢?) = L2(1 —¢?) ~
2L%(1-e) = 2 GMr,. Since star-star scatterings constitute a random walk then AL/L. = V#/t;, where
AL is the change in L. Therefore the time for a potential EMRI to change #, and therefore its periapsis
distance, by order unity is ~ b2/ LE ~ (1 - e)tyx. This results in a region of parameter space where

temri(1 — €) < . Stars scattered into this region are likely to become EMRIs.

1.4.2 Supermassive Black Hole Binaries

In section 1.4 we described some of the overwhelming evidence that most galaxies harbor a SMBH
in their center. In addition galaxies are known to merge regularly, both observationally (Lotz et al.,
2011), and from the success of cosmological simulations showing the hierarchical merger of their
parent halos (Stewart et al., 2009). However the evidence for the formation, and merger, of binary
SMBHs is remarkably limited.

The standard picture by which SMBH binaries form, and merge, is set out in Begelman et al.
(1980). Initially the black holes in their parent galaxies are efficiently brought together by dynamical

friction with the surrounding stars on a timescale

3

" 4nlogA Mgy p(<0)

tas (1.15)

where Mg, is the mass of the less massive galaxy, and p(< v) is the local density of stars with velocity
less than v. Considering the larger galaxy to be a singular isothermal sphere with p = ¢2/2nG?,
and that the satellite is stripped of stars as it inspirals, truncated at its Hill radius, then the satellite

galaxy inspirals on a timescale (Binney and Tremaine, 2008)

3 1 o1 )2 100 kms'\’ 7
far = 27 Gy A(200 v ( = e (1.16)

where 01 and 0, is the velocity dispersion of the more massive and satellite galaxy, respectively, and
r; is the initial distance between the galaxy centers.

Eventually, provided that the ratio of velocity dispersions is not too great, the SMBHs in their

"However in chapter 5 the Peters (1964) expressions are not used for the loss due to gravitational radiation. Instead
more accurate expressions for the loss of energy and angular momentum given by Gair et al. (2006b) using semianalytic fits
to the Teukolsky equation are used.
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centers will form a bound binary system. In chapters 4 and 5 we consider the SMBHs to be
surrounded by a cusp of stars. In this case the SMBHs will continue to inspiral rapidly by a
combination of dynamical friction (i.e., weak scatterings) and ejections (strong scatterings) until
insufficient mass in stars remains. Stars will be ejected from the binary with a specific energy
of order ~ GM;/R where M; is the mass of the primary SMBH, and R is their separation. Each
subsequent reduction of the semi-major axis by a factor of two in requires that a mass of stars very
approximately equal to the secondary SMBH mass, M, be ejected. The evolution will therefore
stall at a radius Rgan given by

M, (< Rstan) ~ M2, (1.17)

where M; and M, are the masses of the more massive, primary SMBH and the less massive, sec-
ondary SMBH, respectively, and C is a numerical coefficient to be found via scattering experiments.
Assuming a Bahcall and Wolf (1976) cusp with stellar mass, M (< 7) = 2M;(r/r;)~%*, and radius r,
given by equation (4.6) then the stalling radius is

Ryt ~ (7/2)*r = 2(9/2)*°(M1/10°Mo)*> pe . (1.18)

In chapters 4 and 5 we make use of the simulations of Sesana et al. (2008), who determines Rtan
for a range of mass ratios to be approximately a factor of 10 smaller than the crude estimate in
equation (1.18).

The other manner in which the binary will evolve is via scatterings with stars outside their im-

mediate cusps. However only stars with angular momentum L < \/ G(M;1 + M3)Rsann will approach
and subsequently be ejected, extracting energy from the binary. Stars within this region of angular
momentum are referred to as being in the loss cone. Each subsequent reduction of the semi-major
axis by a factor of two requires that a mass of stars equal to the secondary SMBH mass be ejected.
Therefore the evolution stalls once more when the mass of stars in the loss cone is less than the mass
of the secondary. After this the evolution proceeds more slowly, as stars are scattered into the loss
cone, on the much longer relaxation timescale.

At sufficiently close separations the evolution is driven by gravitational radiation. A SMBH

binary in a circular orbit with separation a will decay in a timescale (Peters, 1964)

A 5c5a*
B 256G3M3,q(1 + )
1+ 9?( a Y Mgy \7
=58 7 1) \ 1o Gyr . (1.19)

An unsolved problem is the manner in which the binary reaches a radius at which t,, becomes

less than the age of the universe. The most naive approximation, that stars enter the loss cone
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due to star-star scatterings, results in a timescale longer than a Hubble time. Since this occurs
at scales of a parsec or less it is often referred to as ‘the final parsec problem” (Milosavljevi¢ and
Merritt, 2003). Many attempts have been made to solve this problem. These include evolution in
flattened and triaxial galaxies (Yu, 2002), the Brownian wandering of the binary about the galactic
center (Chatterjee et al., 2003), perturbations from a third SMBH and the Kozai mechanism (Blaes
et al., 2002), and the evolution to high eccentricity of the SMBH binary (Iwasawa et al., 2011; Khan
et al., 2011). In wet mergers (where gas is present) this could also help drive the binary to merger
(Armitage and Natarajan 2002; Ivanov et al. 1999, but see also Lodato et al. 2009).

Despite this uncertainty in SMBH binary dynamics two things are more secure: 1. The timescale
for evolution of the binary lengthens considerably after the binary has hardened. 2. This timescale
appears to empirically be less than a Hubble time in the majority of SMBH binaries since there is
little evidence that nearby SMBHs are members of binaries. Le., it appears Nature has solved the
final parsec problem, we are just not sure how she did it.

Based on the theoretical picture outlined above it is expected that many SMBH binary systems
should exist, particularly at separations close to the stalling radius. It is therefore surprising that
no secure close binary SMBH systems have been found.

At wide, ~ kpc scales many pairs of quasars at the same redshift are visible. While most of
these are actually multiple images of the same quasar, at least some are convincingly pairs of black
holes (e.g., Komossa, 2003; Mortlock et al., 1999). However, there are no convincing subparsec scale
SMBH binaries. One candidate is OJ 287, (Valtonen et al., 2008,2010) a postulated 1.8 x 10'° M, black
hole within 10,000 years of merging at a redshift of 0.3. A priori such a system is unlikely, however
in the coming decade pulsar timing measurements should be able to test the binary nature of OJ
287. In the same way a postulated SMBH binary with period 1.05 years in 3C 66 (Sudou et al., 2003)
was ruled rules out by the lack of pulsar timing residuals predicted by gravitational wave emission
from the system (Jenet et al., 2004). At present the closest we have come to observing a SMBH
binary at its stalling radius is in 0402+379: A pair of radio loud AGN at a projected separation of
only 7.3 pc (Rodriguez et al., 2006, 2009). However, despite extensive searches, there is a paucity of
observed close SMBH binaries.

In chapter 4 a novel method to identify the elusive close SMBH binaries is proposed, using the
greatly increased tidal disruption rate as the SMBH binary stalls.

In chapter 5 the simulations are expanded upon, both explaining the simulations in more
detail, and increasing the number of simulated systems. We have also included general relativistic
corrections so that the simulations incorporate emission of gravitational waves and precession
(which is described in chapter 6). This allows the simulation of EMRIs and plunges from compact
objects around SMBH binaries. Detection of the perturbations in the EMRI waveform by low-

frequency gravitational wave missions, such as the successors to LISA, would also provide a novel
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close SMBH binary detection strategy (Yunes et al., 2011).

1.5 The Fokker-Planck Equation

In chapter 7 we present a new, astrophysically relevant, analytic solution to the Fokker-Planck
equation, and introduce the Fokker-Planck Equation as background to that chapter here. The
Fokker-Planck equation is often used in astrophysics, particularly in simulations of the evolution of
globular clusters (e.g., Cohn, 1979; Cohn and Kulsrud, 1978; Freitag and Benz, 2001; Joshi et al., 2000;
Quinlan, 1996) or around supermassive black holes (e.g., Alexander and Hopman, 2009; Hopman,
2009; Hopman and Alexander, 2005; Keshet et al., 2009; Lightman and Shapiro, 1977; Magorrian
and Tremaine, 1999; Preto and Amaro-Seoane, 2010). The Fokker-Planck equations utility is that it
can be integrated much faster than direct N-body simulations, as well as lending itself more easily
to physical understanding of the underlying physical processes.

We begin by deriving the collision-less Boltzmann equation before generalizing to the Fokker-
Planck equation. A distribution function f(p, g) where g are positions, p their conjugate momenta,
specifies the number of stars in a region of phase space, i.e., AN = f(p, q) dpdq. As such (ignoring
interactions) it must satisfy a continuity equation

o L of.

d
p+—f‘q=0 (1.20)
ot dp dq

which may be more elegantly expressed using Hamilton’s equations of motions as

of

= {f,H} =0 (1.21)

where { - ,H} is the Poisson bracket with the Hamiltonian. Equations (1.20) or (1.21) are known as
the collision-less Boltzmann equation. Generally a self-consistent distribution function must also
satisfy Poisson’s equation:

V20 = 4nGp = 4nGm f fdp (1.22)

where m is the mass of the stars being considered.

Interactions between stars modify the Boltzmann equation. Consider W(w, Aw) dAw dt to be the
probability that a star in phase space at w = (p, q) scatters via interactions to w + Aw. This modifies
the right-hand side of equation (1.21):

of

=t {f,H} = f dAw [V(w — Aw, Aw) f(w — Aw)

-V (w, Aw)f(w)] (1.23)
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where the first term in the square brackets is the flux into w from w — Aw and the second is the flux
out of w into w + Aw. Equation (1.23) is known as the Master equation.

The Fokker-Planck equation results from the observation that in relaxation or dynamical friction
equal decades of impact parameter between stars contribute equally. Since there typically many
more decades in a system which result in small perturbational scatterings than large scatterings
then the integrand of equation (1.23) can be expanded in a Taylor series. Truncating at second order

this gives
W(w — Aw, Aw) f(w — Aw) — P(w, Aw)f(w) =
- Z Awiijaiwi [W(aw, Aw) f(w)] + 5 Z]: Awi% [(W(w, Aw)f(w)]  (1.24)
As a result equation (1.23) becomes a diffusion equation known as the Fokker-Planck equation
L eifH=- ¥ 2 i)+ Z]l %{;] [D3f(w)] a25)
where the diffusion coefficients are given by

D! = f dAw W (w, Aw)Aw;, (1.26)
ij = f dAw ¥ (w, Aw)AwAw; . (1.27)
The Fokker-Planck equation is a second-order partial differential equation (PDE) which admits

analytic solutions in only a handful of cases (e.g., Risken, 1989). We present a new, astrophysically

motivated, analytic solution in chapter 7.
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White Dwarf Kinematics vs Mass'

Abstract

We have investigated the relationship between the kinematics and mass of
young (< 3 x 10% years) white dwarfs using proper motions. Our sample
is taken from the color-selected catalogues of SDSS (Eisenstein et al., 2006)
and the Palomar-Green Survey (Liebert et al., 2005), both of which have
spectroscopic temperature and gravity determinations. We find that the
dispersion decreases with increasing white dwarf mass. This can be ex-
plained as a result of less scattering by objects in the Galactic disk during
the shorter lifetime of their more-massive progenitors. A direct result of
this is that white dwarfs with high mass have a reduced scale height, and
hence their local density is enhanced over their less-massive counterparts.
In addition, we have investigated whether the kinematics of the highest-
mass white dwarfs (> 0.95My) are consistent with the expected relative
contributions of single-star evolution and mergers. We find that the kine-
matics are consistent with the majority of high-mass white dwarfs being

formed through single-star evolution.

IThis chapter is a slight expansion of an article accepted by MNRAS with the authors as: Christopher Wegg and Sterl
Phinney in this order, arXiv:1206.1056, (Wegg and Phinney, 2012).
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2.1 Introduction

Despite the significant work on both the kinematics and mass distribution of white dwarfs, very
little work has addressed their connection.

The kinematics of galactic white dwarfs have been studied on numerous occasions with several
motivations. They have proven useful in attempts to unravel the evolutionary history and progen-
itors of the various classes of white dwarfs (Anselowitz et al., 1999; Sion et al., 1988). Interest in
white dwarf kinematics was also prompted by the suggestion that halo white dwarfs could provide
a significant contribution to Galactic dark matter (Oppenheimer et al., 2001; Reid, 2005). This effort
has concentrated on the identification of halo white dwarfs and estimating the resultant density,
which now appears to be a small contribution to the Galactic dark matter budget (Pauli et al,,
2006). Moreover, the mass distribution of the most common hydrogen rich (DA) white dwarfs has
also been extensively investigated, particularly for white dwarfs with T > 10,000 K which are hot
enough for their masses to be deduced spectroscopically from fits to their Balmer lines (Kepler et al.,
2007; Liebert et al., 2005; Vennes, 1999). The mass distribution shows a peak at 0.6 My due to the
relative abundance of their lower-mass progenitors with a tail extending to higher-masses formed
from more-massive progenitors.

The connection between the galactic kinematics of a group of thin disk objects and their progen-
itors is largely due to the process of kinematic disk ‘heating” (Nordstrom et al., 2004; Wielen, 1977).
The hot white dwarfs with short cooling ages we observe in the galactic neighborhood today are
formed from a wide range of progenitor masses (~ 0.8-8 M) and hence have a wide range in age.
We therefore expect high-mass disk white dwarfs to have a low velocity dispersion in comparison
to low-mass disk white dwarfs whose progenitors formed earlier. This connection was suggested in
Guseinov et al. (1983) who performed an analysis suggesting that white dwarfs with larger masses
have smaller dispersions, however this was re-investigated by Sion et al. (1988) with a larger sample
of 78 DA white dwarfs where no evidence for any correlation was found. This paper readdresses
the connection between mass and kinematics with a greatly increased sample size.

The outline of the paper is as follows: In section 2.2 we discuss the sample selection and
the calculation of distances and proper motions. In section 2.3 we discuss how we estimate the
kinematics of the sample without radial velocity information. We use two methods, that of Dehnen
and Binney (1998) (section 2.3.1), and a Markov Chain Monte Carlo (MCMC) where we marginalize
over the unknown radial velocity (section 2.3.2). In section 2.4 we analyze whether the kinematics are
consistent with single-star evolution (SSE) both via analytic methods (section 2.4.1) and simulations
(section 2.4.2). In section 2.5 we analyze whether the highest-mass white dwarfs are largely formed
through single-star evolution or are the product of the merger of two lower-mass white dwarfs.

Finally, we discuss the implications of our findings on the scale height of white dwarfs in section
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2.6.

For the reader in a hurry, the primary result of this paper, the relationship between the mass of
young white dwarfs and their velocity dispersion, is shown in figure 2.3 and discussed in section
2.3. The implied scale heights, the second key result, are then discussed in section 2.6 and shown in
figure 2.18. These results have been checked using a Monte Carlo simulation of the formation and
observation of an ensemble of white dwarfs, which is described by flowcharts in figures 2.6-2.8: in
figure 2.6 the process of choosing stars is described, in figure 2.7 the process of placing them in the
disk is described, and in figure 2.8 the process of determining the observability of the simulated

white dwarf is described.

2.2 Sample

We investigate only hydrogen atmosphere (DA) white dwarfs due to the relative simplicity of their
spectra and the resultant security of the spectroscopic masses. The sample of DA white dwarfs is
taken from two sources, the Palomar-Green (PG) white dwarf survey (Liebert et al., 2005) and the
SDSS DR4 white dwarf survey (Eisenstein et al., 2006). The SDSS sample is much larger the the PG
sample. The PG sample is included as a demonstration that the results are secure, and not a result
of systematics in SDSS, such as the complex selection of targets. For clarity we first discuss which
types of white dwarfs we select, then discuss how the SDSS survey is dealt with, and finally how
the PG survey was dealt with. The sample and its selection is summarized in table 2.1.

SeLecTED WHITE DwarFs: Both PG and SDSS are color selected, eliminating the kinematic biases
inherent in proper motion based surveys, and contain spectroscopic determinations of surface
gravity, log g, and effective temperature, Tes, obtained by fitting the profile of the Balmer lines.
We restrict the sample to objects whose fitted Tes was between 13,000K and 40,000K, since log g
appears to be systematically overestimated at low temperatures and T overestimated at higher
temperatures (Eisenstein et al., 2006).

The fitted log g and T are converted to masses and ages using the models of the carbon core
white dwarf cooling models of Fontaine et al. (2001) below 30,000K and Wood (1995) with thick
hydrogen layers of fractional mass 10 above 30,000K !. White dwarfs with inferred masses less
than 0.47 M, are instead assumed to have helium cores whose masses and ages are calculated from
the models of Serenelli et al. (2001). Only objects with cooling ages below 3 x 10® years are included
in the sample to avoid significant kinematic heating after white dwarf formation. The requirements
of cooling age below 3 x 10® years and Tes above 13,000K are competing. Above 0.60 M the WDs
cool more slowly and thus the age limit is used, while below 0.60 Mg the temperature limit is used.

White dwarfs previously discussed in the literature as known members of binaries were removed

from the samples.
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SDSS SurvEY (EISENSTEIN ET AL., 2006): Many of the SDSS spectra have low signal-to-noise ratios
and hence large errors on their fitted log ¢ and Teg. To ensure accurate masses and photometric
distances only objects whose spectra had a signal-to-noise ratio larger than 10 are included. The
grid of model atmospheres fitted in the SDSS catalog extends only to log ¢ = 9, and thus, for objects
at this limit, the refitted log g and Te¢ given in Kepler et al. (2007) were used.

Photometric distances to the white dwarfs in SDSS are calculated by minimizing

X = Z (m; — [Mi(log g, Test)+

i=(u,8,1,i,z)

Agai +5logd — 5])*/o7 (2.1)

where m; and o; are the 5 band SDSS photometry and their errors, M; are the model absolute
magnitudes, Aga; is the reddening and d the distance in parsecs. The photometric o; is the quoted
photometric error in SDSS each band added in quadrature to a systematic error of (1, g,7,i,z) =
(0.015,0.007,0.007,0.007,0.01) (Kleinman et al., 2004). Model absolute magnitudes are taken from
the atmospheric models provided by Bergeron®. Aga; is the product of Ry = 3.1 extinction in
each band of (a,,ag,a,,a;,a;) = (1.36,1.00,0.73,0.55,0.39) and the overall extinction A;, which is
constrained to lie between zero and the value of galactic extinction map of Schlegel et al. (1998) at
the position of the object considered.

The resulting distribution of x? values calculated by minimizing equation (2.1) is plotted in
figure 2.1. Tt closely resembles a x? distribution, but with an extended tail. Objects with reduced
x? larger than 5 were removed from the sample, most of these objects show an excess towards the
redder photometric bands, indicating they are in binaries with a cooler white dwarf companion.
Errors in the photometric distance are taken to be the Ax? = 1 surface added in quadrature to the
distance errors introduced though the uncertainty in log ¢ and Teg.

Proper motions for the SDSS sample are taken from the catalogue of Munn et al. (2008). These
proper motions are calculated from the USNO-B1.0 plate positions re-calibrated using nearby
galaxies together with the SDSS position so that the proper motions are more accurate and absolute.
By measuring the proper motions of quasars Munn et al. (2004) estimates that the 1o error is
5.6 masyr .

PG Survey: For 132 stars in the PG survey, SDSS photometry was available and the same method
was used as for SDSS stars. For the remaining objects the PG catalog photometric distances were
used. These were estimated in Liebert et al. (2005) from comparison of the V band magnitude with
the predicted My from the same models of Holberg and Bergeron (2006). Comparison of the stellar

distances given by the two methods gives a standard deviation of 7 per cent. The majority of this

2 Available from http://www.astro.umontreal .ca/~bergeron/CoolingModels/, uses results from from Holberg and
Bergeron (2006), Kowalski and Saumon (2006), Tremblay et al. (2011) and Bergeron et al. (2011)


http://www.astro.umontreal.ca/~bergeron/CoolingModels/
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Figure 2.1 x? per degree of freedom (DOF) for the fitted photometric distance of the 1443 SDSS DA
white dwarfs considered. A x? function with 3 DOF is plotted as the dotted line. Beyond x* = 5 the
white dwarfs are rejected.

error is expected to be in the PG survey distances and hence a conservative 10 per cent error was
applied to these.

Proper motions for PG white dwarfs that appear in SDSS are taken from the catalog of Munn
et al. (2008). For the remaining objects, the PPMXL proper motion was used where available, which
has typical 1o error of ~ 8 masyr~! (Roeser et al., 2010).

Finally 4 objects in the PG sample have no reliable PPMXL proper motion, primarily due to a
spurious matching of objects between epochs. For these, the proper motion was calculated directly
between the scanned Digital Sky Survey-Palomar Observatory Sky Survey (POSS-I Abell, 1955) and
POSS-1I plates. The proper motion was measured relative to nearby faint stars of similar magnitude
corrected for galactic rotation (see section 2.3.1). Typical errors estimated from the proper motions
of stars of similar magnitude to be 11 mas yr~'. We emphasize that only 4 of 1491 white dwarfs use
this method, and none have mass above 0.95 M analyzed in more detail in section 2.5.

FinaL Samrre: The resulting sample of 1443 SDSS and 211 PG white dwarfs contains young
DA white dwarfs with reliable masses, proper motions and photometric distances. The mass
distribution of the samples is shown in figure 2.2. The process of constructing the sample together

with numbers of objects is summarized in table 2.1.
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PG SDSS
Number of DA white dwarfs with 299 6926
good photometry not known to be binaries
of these number with signal-to-noise > 10 299 3125
of these number with 13,000K < Teg < 40,000K 215 1555
of these number with age < 3 x 10 yrs 211 1491
Distance source:
Liebert et al. (2005) 79 0
SDSS Photometry 132 1491
of these number rejected with 2 > 5 0 48
Proper Motion Source:
Munn et al. (2008) 153 1443
PPMXL 54 0
Manual measurement from POSS I/I1 4 0

Table 2.1 Summary of the sample of WDs which passed the cuts described in detail in section 2.2.

2.3 Kinematics Without Radial Velocities

We now turn to calculating the mean velocity and the velocity dispersion for our sample. While
radial velocities are required to completely determine the kinematics of an individual object, bulk
kinematic properties such as the mean velocity and the velocity dispersion can be determined from
only transverse motions.

We use two methods to do so, the frequentist method used in section 2.3.1, and a Markov Chain
Monte Carlo in section 2.3.2. Both methods give similar results which are summarized in

tabresults.

2.3.1 Method of Dehnen and Binney (1998)

The method used here is adapted from Dehnen and Binney (1998). First the observed proper

(obs) (obs)

P , »are corrected for Galactic rotation through

motions in galactic coordinates, 1, and u

pe = u —Acos(20)-B

gy = [uz"bs) + Asin(2{) cos bsin b.

(2.2)

using A = 14.82 kms™! kpc™! and B = —12.37 kms™" kpc™" (Feast and Whitelock, 1997). In galactic
coordinates where the components are directed towards the galactic center, in the direction of

galactic rotation, and towards the north Galactic pole we observe the velocity

—U¢ sin€ cosb — pp cos € sinb
V., =474d| u; cosl cosb—py sinf sinb | kms™ (2.3)

Up cosb
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Figure 2.2 Mass distribution of the samples of SDSS (black line) and PG (dashed red line) white
dwarfs after the cuts described in section 2.2. Inset graph shows the same data on logarithmic axes.

with d in kpc and proper motions in mas yr~!. This is the projection of the velocity V onto the sky

plane though the projection matrix
V.,=A-V, A=1-1Q% (2.4)

where t is the unit vector to the star.

Next the quantity S? is formed through
S(Vo) = (IV.L - A- Vo). (2.5)

Under the assumption that the positions of the observed objects are uncorrelated with the velocity,
then the choice of V, that minimizes S? is the mean velocity. Also S$? at the minimum is a measure
of the dispersion of the group.

Dehnen and Binney (1998) then calculate all independent six elements of the dispersion tensor.
Unfortunately, this entails estimating nine parameters which limits its use to samples with large
numbers of objects. This would require excessively wide bins for the high-mass region where there
are few objects. Instead we choose to make further assumptions about the objects’ velocities in
order to reduce the number of fitted parameters. The mean velocity of each group towards the
galactic center and the north Galactic pole is simply a result of the solar motion and we take these
to be 10.00 kms™ and 7.17 kms™!, respectively, (Dehnen and Binney, 1998). The mean velocity

in the direction of galactic rotation, Vj, is kept as a free parameter since in addition to the solar
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motion this varies between groups due to asymmetric drift. We also assume that the dispersion
tensor takes the form

o= oldiag(l, ﬁ, %) 2.6)

which is accurate for main sequence stars in the solar neighborhood (Dehnen and Binney, 1998). This
reduces the number of parameters for each group to the asymmetric drift Vo and the normalization
of the dispersion tensor o0;.

Vy is calculated by minimizing equation (2.5), and then oy is estimated though a Monte-Carlo
simulation: Since S? is a measure of the dispersion, an initial estimate of G% is taken to be S?, and a
set of simulations is performed where a new velocity is chosen for each white dwarf at its position
in the sky from the isothermal distribution with the assumed dispersion tensor and the calculated
mean velocity. The error in tangential velocity, assumed to be Gaussian, is added to this. The set of
simulations produces a distribution of 5? values, and 07 is iterated until the mean S? corresponds
to the value calculated from observations. S is almost proportional to 03 when errors in tangential
velocity are neglected and so the error in 09 is estimated from the distribution of S* scaled by this

proportionality constant.

2.3.2 MCMC Estimate

In addition, a Markov Chain Monte Carlo (MCMC) likelihood-based estimate of the kinematic
parameters was obtained. We use uninformative flat priors for the fitted parameters.

We denote the probability that the velocity of the ith object was V to be P(V|D;, ;) where
D; = (I,b,d, ue, hw)) is the data for the ith object together with the corresponding errors o;. e
and @) are the values corrected for galactic rotation by equation (2.2). Under the assumption
that positions are uncorrelated with velocity then the distribution function is a function only of
velocity: f(V). In addition, in what follows we do not consider the positions, but instead focus on
the kinematics through the velocity V. Under these assumptions the overall likelihood for a set of

observations of a group of white dwarfs is

£=]] f AVF(V)P(V|D;, o) 2.7)
=logL = Zlog f AV F(V)P(V|D;, o) 2.8)
= Zlog.ﬁi. (2.9)

In calculating the likelihoods, £;, we assume a Schwarzschild distribution function, and normally
distributed error in proper motion. The unknown radial velocity is integrated over analytically.

Explicit expressions for L; are given in appendix 2.A.
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Figure 2.3 Dispersion of SDSS (black) and PG (red) white dwarfs against mass calculated using the
using the method described in section 2.3.2. Each bin is plotted at its mean mass.

Again, the dispersion tensor and mean were constrained to reduce the number of parameters.
We use flat priors on the dispersion and asymmetric drift. The expression for the likelihood was used
to calculate the maximum likelihood estimate of the dispersion tensor, while errors were estimated
from a MCMC using Metropolis-Hastings sampling. When the constraints on the dispersion tensor
and mean velocity were relaxed this did not substantially alter the results, aside from the larger
errors, particularly in the underpopulated bins due to the reduced degrees of freedom. In particular,
the results are insensitive to allowing vertex deviation.

The fitting results for the SDSS and PG samples are summarized in table 2.2 and plotted in
figure 2.3. In addition, in figure 2.4 the raw transverse velocities measured from the proper motions
for three groups of white dwarfs are shown. The lowest-mass white dwarfs, M < 0.45Mp, are
expected to be predominantly formed through binary evolution and have a binary white dwarf
partner.This potentially introduces errors into their photometric distances and so we do not consider

them beyond simply stating the fitting results in table 2.2.
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Figure 2.4 Cumulative transverse velocity distribution of the combined SDSS and PG surveys. low-
mass white dwarfs (0.5Mp < M < 0.75Mo, with M = M; + M>) as solid black, high-mass white
dwarfs (M > 0.95 M) as dashed red, and intermediate mass white dwarfs (0.75 Mg < M < 0.95Mg)
as dotted green.

2.4 Expectations from Single-Star Evolution

2.4.1 Analytic

In this section we describe the reasons for the relationship WD mass and dispersion within a simple
analytic model, before moving onto the more complex Monte Carlo simulations of section 2.4.2.
Within the framework of single-star evolution (SSE) an ensemble of white dwarfs with the same
mass would be expected to have a dispersion o(fror), where o(t) is the disk heating relation, and
fror is the total age of the white dwarf including its precursor lifetime (i.e., total pre-white dwarf
stellar lifetime). Here tror will be given by ttor = twp + tsse(Mi(Mwp)) where twp is the cooling
age of the white dwarf and tssg(Mi(Mwp)) is the total precursor lifetime, which is a function of the
white dwarf mass through the initial-final mass relation (IFMR) M;(My). Two components of this
prediction are particularly uncertain: the disk heating relation and the IFMR. We discuss these now.
The best constraints on the IFMR come from open clusters. Spectroscopic fits of the masses
of white dwarfs give the final mass. The initial mass is estimated using isochrone fitting to the
main sequence turnoff to calculate the age of the cluster, which finally allows the corresponding
initial mass to be inferred using the precursor lifetime (Cataldn et al., 2008). This method has
succeeded in producing IFMRs with a typical uncertainty of less than 20%. The strong dependence

of the precursor lifetime on mass however makes this a considerable uncertainty in the dispersion
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Figure 2.5 Predicted dispersions from models A-D described in table 2.3, as dashed blue, solid blue,
dashed green and solid green, respectively. Also plotted are SDSS white dwarfs (black error bars)
with the data taken from the MCMC column of table 2.2.

relation.

The most accurate data on the disk heating relation is given in Nordstrom et al. (2004) from
an analysis of F and G dwarfs with radial velocities and Hipparcos data, although this data still
permits a range of heating models (Seabroke and Gilmore, 2007). However, for consistency, we
instead use the disk heating models estimated in Just and Jahreifs (2010), since we also use their
companion star formation histories.

The effect of these model uncertainties are shown in figure 2.5 for the models described in
table 2.3. Qualitatively the results appear to agree with the predicted relations: for white dwarfs
more massive than 0.75 M the white dwarf progenitors precursor lifetime is short and there is
little dependence of the kinematics on mass. Below 0.75 M, the dispersion sharply increases as the
progenitor lifetime approached 1 Gyr and longer where the disk heating is significant.

However, while qualitatively the results in figure 2.5 are consistent, there is quantitative dis-

agreement. To assess this disagreement we turn to a more-sophisticated Monte Carlo treatment.

2.4.2 Monte Carlo

As a quantitative check of our results in section 2.4.1 we have performed a Monte Carlo simulation
of the production, kinematics, and observation of the white dwarfs in the solar neighborhood, as
described in this section. We also describe the simulated selection and observation of these white

dwarfs by SDSS and PG. We perform this simulation to assuage fears that our results could be
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v

Get random star formation time from SFR(t)

v

Get random initial mass M; from IMF

v

Calculate WD mass Mwp from initial
final mass relation

v

Calculate WD age twp using stellar age
for M; and formation time

Is 0 <twp <3 x 108 yr?

Yes

Place WD in disk — see flowchart
on disk simulation

Figure 2.6 Flowchart illustrating the process of simulating white dwarfs formed from single-star
evolution (SSE). If a star reaches the final stage, then it is placed in the disk using a process described
by the flowchart shown in figure 2.7.

impacted by effects such as selection biases.

This process is somewhat involved, and so for clarity it is summarized in the flow charts in
figures 2.6-2.8. The final results of the Monte Carlo simulation are compared with the white dwarf
sample in figure 2.10.

PickiNG Stars: The initial mass was drawn from a Kroupa IMF and one of two star formation
histories (Table 2.3). If this resulted in a white dwarf at the present time with an age less than 3 x 10®
years, and a temperature between 13,000 K and 40,000 K using the cooling models of Wood (1995)
as explained in section 2.2, then it was included in the simulation. See figure 2.6 for synopsis.

PracinG Stars IN Disk: If a star has been included in the simulation, it is given a velocity
dispersion taken from the previously described disk heating models of table 2.3 and axis ratios of
the velocity ellipsoid of 1:1/1.4:1/2.2 (Dehnen and Binney, 1998). Its velocity in the disk was drawn
from a Gaussian with these widths and it was placed in the plane of the Galaxy using a radial
exponential disk with a scale length of 2.5 kpc. Since the furthest > 0.47 My WD projected into

plane is less than 1 kpc, only WDs placed within this distance are simulated further.
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For an isothermal population the vertical position, z, and velocity, v,, are given by

fz(Ez) & eXP(—Ez/Ug)
oc exp(—02/20%) exp(—D,(z)/02), (2.10)

where @, is the gravitational potential. Each star’s velocity is thus drawn from a Gaussian with
standard deviation given by the previously calculated o, while z is chosen by first drawing @,(z)
from an exponential distribution with scale 02, and then inverting this to calculate z. We use the
mass models of Holmberg and Flynn (2000) for ®,(z).

This process of placing white dwarfs in the local galactic disk is summarized in figure 2.7.

WHITE DwARF OBSERVABILITY: As a result of this process, each white dwarf has an assigned
galactic position and velocity, together with its mass and age. It is then assessed whether it is likely
to be observed in either the SDSS or PG survey as follows: First its galactic position is translated
to a right ascension, RA, and declination, dec, and, unless this falls on one of the PG plates or the
SDSS DR4 spectroscopic plates, the probability of observation is zero.

For white dwarfs in the PG survey the apparent U and B magnitude is calculated from the models
of Holberg and Bergeron (2006) with a 0.27 mag error added to each to mimic the photometric errors
in PG (Liebert et al., 2005). If it is bluer than U — B = —0.46 and brighter than the B band magnitude
limit for the PG plate on which it lies then it is considered observed.

For SDSS the spectroscopic targeting is more complex (Kleinman et al., 2004), and the strategy
was to construct an empirical observational probability for a star at each magnitude and color. A
four-dimensional table of probability of spectroscopic follow up was constructed in (r, u—g, g—r, r—1i)
grouped in 0.2 mag bins from the SDSS DR4 clean photometry. The expected spectroscopic signal-
to-noise was calculated using a quadratic least squares fit to the observed signal-to-noise ratio as
a function of g-band magnitude together with normally distributed scatter in signal-to-noise with
standard deviation of 1.7. If the signal-to-noise ratio was greater than 10 it was included in the
mock sample.

Finally, measurement errors in mass of 0.03 My and proper motion errors of 5.6 masyr'are
introduced.

The process of assessing if each white dwarf is observed by the PG or SDSS surveys is summa-
rized in figure 2.8. In all simulations we simulate a total of ~ 2 x 10'! objects.

MonTte Carro Resurrs: The results of this simulation are shown in figure 2.10. As a further
check that the simulated white dwarfs have the correct kinematics we plot the distributions in the
U, V and W directions (directed towards the Galactic center, in the direction of galactic rotation,
and towards the north Galactic pole, respectively) in figure 2.9.

The results of the singe-star evolution (SSE) simulation, described in this section, closely agree
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v

Get random distance from galactic center,
R, from number density dv « exp(—R/Ro)RdR

v

Get random orientation in galactic plane from
sun ¢ from uniform distribution

Is WD within 1 kpc of the
sun in the galactic plane?

Get WD from SSE/BSE with mass Mwp
and age since star formation troT

v

Get o, from age-dispersion relation using tror

v

Get random v, and ®,(z) assuming isothermal
distribution f, oc exp(—v2/202) exp(—®,(2)/0?)

v

Calculate z by inverting the ®,(z) given by
the mass model of Holmberg & Flynn (2000)

v

Get random v, and v, assuming Schwarzschild
distribution with ¢ from age-dispersion relation

v

Add solar motion and asymmetric drift of (v,)
= —02/80 km s~' (Dchnen and Binney, 1998)

v

Is the white dwarf observable at this position?
See observability flow chart

Figure 2.7 Flowchart illustrating the process of placing white dwarfs in the galactic disk and picking
their velocity. This process is undertaken if a star reaches the final stage of the flowchart shown in
figure 2.7. If a star reaches the final stage of this flowchart, the observability is finally determined
using the algorithm described in the flowchart shown in figure 2.8
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\

Get WD from SSE/BSE and place in the disk

Does WD lie on a survey plate?

Using WD age twp, mass Mwp and
distance calculate apparent u, g, 7,4, 2 mag

¥ A
Estimate probability of object within 0.2 mag
in (r,u —g,g — r,r — i) having SDSS spectra

Is random uniform number in
[0,1) less than probability?

Predict signal-to-noise with quadratic
fit from g-band with scatter 1.7 A

Is signal-to-noise> 10

WD is observed in SDSS sample

(a) SDSS.

Figure 2.8 Flowchart illustrating the process of simulating whether white dwarfs are observed. This
process is undertaken if a star has reached the final stage of the flowchart shown in figure 2.7.

\

Get WD from SSE/BSE and place in the disk

Does WD lie on a survey plate?

Using WD age twp, mass Mwp and
distance, calculate apparent U and B mag

v

Add to U and B normally distributed
photometric error of 0.27 mag

Is WD blue enough to be in
PG? (U - B < —0.46)

Is WD brighter than mag
limit for the plate it lies on?

WD is observed in PG

(b) Palomar-Green (PG).
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Figure 2.9 Histograms showing the agreement between the observed and simulated velocity dis-
tribution in U, V, W directions of SDSS WDs. The black line is the observed distribution, while
the dashed red line is the distribution of the SSE simulation for model C. Zero radial velocity is
artificially assumed, and number of simulated WDs is normalized to the number observed. U is
directed towards the Galactic center, V in the direction of galactic rotation, and W towards the north
Galactic pole.
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with the observations, modulo the normalization factor. We do not concern ourselves with this
overall normalization, however the normalization factor is typically < 2. The simulation also does
not produce white dwarfs below ~ 0.47 Mo, which are generally expected to form through binary
evolution. As may be expected from the analytic models plotted in figure 2.5, the models in table 2.3
all produce white dwarfs that reasonably closely explain the observed samples and their kinematics

and so we only plot the results of only one representative model in figure 2.10.

2.5 Expectations from Binary-Star Evolution

It has been suggested that the majority of high-mass white dwarfs were formed from mergers of
binary white dwarfs, both on the basis of their number density (Liebert et al., 2005) and a possible
peak at 1 My (Vennes, 1999). To test this hypothesis we use two binary evolution codes (discussed
in section 2.5.1) to perform binary population synthesis (described in section 2.5.2), and ultimately

what fraction of the sample is likely to have had a binary WD progenitor (section 2.5.4).

2.5.1 Binary Evolution Codes

To address the considerable uncertainties in binary evolution, two binary evolution codes were
used. Specifically, the BSE code described in Hurley et al. (2000), and the SeBa code described in
Nelemans et al. (2001). Both codes use the same approach to modeling binary evolution: semi-
analytic fits to the structure and evolution of isolated stars are combined with prescriptions for
interactions between the stars.

We now turn to the key uncertain physics in binary evolution and describe how it is treated in
the two codes.

There are four key initial conditions that govern the evolution of a binary: the initial primary
mass M;, the initial secondary mass My; (or equivalently the mass ratio q; = M;i/Mpy;), the initial
binary semi-major axis 4; and the initial eccentricity e;.

One slice through the four-dimensional space of initial conditions (M, gi, 43, e;) showing those
conditions, which result in the merger of a pair of white dwarfs is shown in figure 2.11. For those
binaries that result in the merger of a pair of white dwarfs there are generally two phases of mass
transfer in their evolution. One as each star evolves from the main sequence and expands. Both
codes have two distinct channels for forming pairs of white dwarfs. These correspond to the
stability of the first phase of mass transfer. The lower branch of figure 2.11 corresponds to binaries
where the first phase of mass transfer is stable Roche lobe overflow (RLOF) as the primary evolves
off the main sequence and crosses the Hertzsprung gap. For binaries in the upper branch the first
phase is dynamically unstable, resulting in a binary in a common envelope (CE). The second phase

of mass transfer is always unstable, independent of the branch, resulting in a common envelope
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Figure 2.11 Comparison of the WD+WD merger outcomes from the SeBa and BSE codes with their
default prescriptions for binary evolution. All simulations use an initial mass ratio of g; = 0.5
and eccentricity of ¢; = 0. SeBa results are lines 45° counterclockwise from vertical and BSE 45°
clockwise. Green corresponds to CO+CO, red He+CO and blue He+He. The darker green are
super-Chandrasekhar (M; + M, < 1.4 M) mergers, and the light green sub-Chandrasekhar.

(CE). Following the ejection of this common envelope the two white dwarfs are brought to merger
through the emission of gravitational radiation.

The differences between the BSE code and SeBa code in figure 2.11 are striking, and are largely
due to the different binary evolution prescriptions, and in particular the treatment of the RLOF and
CE phases.

In the RLOF phase mass is transferred on the thermal timescale of the primary as it crosses the
Hertzsprung gap. This is shorter than the thermal timescale of the less massive secondary and so it
cannot remain in equilibrium. The BSE code treats this by reducing the transfer rate while keeping
mass transfer conservative, while SeBa assumes any mass transfer in excess of the thermal timescale
of the secondary is ejected from the system with a multiple n; = 2.5 of the angular momentum of
the binary. This can be a significant difference for white dwarfs on the lower branch of figure 2.11.

There is also considerable uncertainty in the treatment of the important CE evolution phase. The
most fundamental difference is the treatment of the first phase of mass transfer. BSE uses the most
commonly used prescription for common envelope evolution known as the @ parametrization, for

both phases of mass transfer. This is defined through

Epind = aceAEorb (2.11)
M;(M; — M) _ (Mfm Mim)
A (2.12)
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where the donor mass and radius are denoted M and R, and the accretor mass m. A is an order
unity factor parametrizing the envelope energy of the binary. We have used a constant acgA = 2
for both SeBa and BSE in figure 2.11.

By default SeBa uses a different parametrization for the first phase of mass transfer known as
the y prescription. This treats the common envelope in terms of the angular momentum balance as

opposed to the energy balance in the « prescription. Specifically

Ji—Ji= yh% (2.13)

where J; and J; are the initial and final orbital angular momenta of the binary, M. is the total mass

of the binary, AM is the mass lost, and y is a parameter taken to be 1.5 in this work.

2.5.2 Binary Population Synthesis

We now describe our method of binary population synthesis.

We use the same distributions in the parameters (M, g1, 4i, €;) as Han (1998) and Nelemans et al.
(2001) with the exception of the IMF for which we use a Kroupa (2001) IMF as opposed to a Miller
and Scalo (1979) IMEF. For reference the probability distributions are:

P(My;) oc MM 0.8 < My; <10,
P(g;) oc const. 0<g<1, (2.14)
P(loga;) oc const. 0 <logai/Ro <5,

P(ei)ocei 0<eg<1.

Our approach to simulating the results of binary-star evolution is to first produce a 4-dimensional
grid of binary simulations in the parameters (M, gi, a;, €;). Grid points were linearly spaced in Mj;
between 0.8 and 10 Mo, linearly spaced in g; between 0 and 1, logarithmically spaced in a; between
1 and 10* Ro, and linearly spaced in ¢? between 0 and 1. The grid size used was a 25 x 25 x 50 X 10
grid in (M, i, ai, €;), respectively. With this choice of grid combined with the distributions in
equation (2.14) the population synthesis is particularly simple: an initial primary mass is drawn
from the Kroupa (2001) IMF and a random binary from the closest corresponding (g, ai, e;) slice is
chosen. In all simulations a total of ~ 10'® objects are places in the disk.

The process of simulating stars formed from binary evolution is summarized in figure 2.12.

To assess the uncertainties due to the poorly understood phases of binary evolution we have
used four models across the two binary evolution codes: the BSE code with acgA = 2 (model i),
the BSE code with acgA = 1 (model ii) the SeBa code using the ya common envelope prescription

(model iii) and the SeBa code using the aa prescription (model iv). Both SeBa models (iii and iv)
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Generate grid of BSE outcomes in
(Mii, ¢i, as, &)

Y

Get random binary formation time
from SFR(t)

Y A

Get random (M, ¢i, a;, €;) according to
equation 14

Does closest simulation in
grid result in merger of WDs

Calculate Mwp and t,q

Is 0 < twp < 3 x 108 yr?

Place WD in disk — see flowchart
on disk simulation

Figure 2.12 Flowchart illustrating the process of simulating white dwarfs formed from binary-star
evolution.
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Table 2.4 Summary of the four binary evolution models considered. The BSE code is that described

by Hurley et al. (2000), and the SeBa code is described in Nelemans et al. (2001). The CE prescription

describes how the two phases of common envelope evolution are treated. For example ya describes

treatment of the first phase through equation (2.13) and the second through equation (2.12).
Model Evolution Code CE Prescription acgdA y

i BSE aa 2 -
ii BSE aa 1 -
iii SeBa ya 2 1.5
iv SeBa aa 2 -

use acgA = 2 and y = 1.5. These models are summarized in table 2.4.

2.5.3 White Dwarf Merger Outcomes

We distinguish between four types of white dwarf mergers, the merger of two helium core white
dwarfs (He+He), the merger of a helium core white dwarf with a carbon/oxygen core white dwarf
(He+CO) and the merger of two carbon/oxygen core white dwarfs (CO+CO) whose total mass is
above or below the Chandrasekhar mass.

The highest-mass white dwarfs may have ONeMg cores. White dwarfs with ONeMg cores have
not been considered separately from CO white dwarfs in this work. Since they are the highest-mass
white dwarfs it is difficult for a pair of white dwarfs with one member an ONeMg white dwarf to
merge with total mass below the Chandrasekhar limit.

The Galactic and local merger rates of the various types of white dwarfs for one particular BSE
model are shown in figures 2.13 and 2.14, respectively.

In what follows we concern ourselves with the merger of CO+CO white dwarfs, since these
are the mergers proposed to result in 2 1 My white dwarfs. Thus, in figure 2.15 we plot the rate
at which pairs of white dwarfs with sub-Chandrasekhar total mass merge as calculated from our
binary population synthesis of the four models in table 2.4. Note that the overall normalization can
be very different. In particular, model ii uses a relatively efficient CE prescription with acgA = 1 for
both phases of mass transfer. This in turn results in a smaller range of initial separations that will
ultimately result in a gravitational radiation driven WD merger. Despite the differences in overall
rate between the models they all display a similar distribution of merger times. This is because, apart
from at early times, the merger time is dominated by the time to merge by gravitational radiation.
This is a strong function of separation, 4, specifically tgw o« a*. As a result, at late times, the merging
WDs originally formed a narrow range in separation at WD+WD birth. Approximating this as a
power law, 9 o« 4¢ leads to a merger rate 4 = DN di o 4=G-9/4 and so for a wide range of € the

merger rate declines as ‘%’ ~ t71(Maoz et al., 2010).
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Figure 2.13 Galactic merger rate of pairs of white dwarfs as a function of mass using the BSE model
i, the constant 3.25 M Gyr™'pc2 star formation rate of SSE model A, and a 50 per cent binary
fraction. The green dotted line corresponds to CO+CO, red dashed line He+CO, and the blue solid
line to He+He.
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Figure 2.14 As figure 2.13 but as a function of the time since current merging white dwarf binaries
formed. For the constant star formation rate considered here this is equivalent to the time to merger
since a burst of star formation. The CO+CO mergers are split into super-Chandrasekhar as the
dotted green, while the sub-Chandrasekhar are the dashed green.
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Figure 2.15 Merger rates of CO+CO WDs with sub-Chandrasekhar total mass following a burst of
star formation. The error bars are purely statistical due to the finite size of the simulated binary
grid. SNuM = 1/(100 yr) /(10'° Mp).
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2.5.4 Proportion of High-Mass White Dwarfs Formed in Mergers

To assess the possible proportion of high-mass white dwarfs that formed through mergers, the
CO+CO merger products with 0.95 Mg < M; + M, < 1.4 M,, from the binary population synthesis,
are subjected to the same process as the single population synthesis results, i.e., they are placed
locally in the disk according to the method summarized in figure 2.7 and their observability in the
SDSS and PG samples assessed according to figure 2.8.

We assume that no mass is ejected during the merger so that resultant white dwarf has mass
Mwp = M +M,. We also assume that the merger reheats the white dwarf sufficiently that the white
dwarf has a cooling age of

fwD = fform — tmerge

where tom, is the time prior to the present at which the binary initially formed, and fmerge is the
length of time it took for the merger to occur, including the precursor lifetime. The resulting
cumulative transverse velocity of 0.95Mg < M; + M, < 1.4 My CO+CO merger products are shown
in figure 2.16.

In figure 2.16 and the following we have combined the PG and SDSS samples to improve the
statistics. We combine the Monte Carlo results by the empirical proportions of WDs in this sample,
i.e., the observed PG-to-SDSS ratio of 5:9. Note however there is a possible discrepancy between the
two samples in this high-mass bin. In particular the SDSS sample has few low velocity (< 14 kms™)
white dwarfs (see the bottom right panel of figure 2.10), and this results in a 12% probability that
they are drawn from the same distribution.

The distribution of transverse velocities in figure 2.16 shows that despite the uncertainties in
binary evolution resulting in very different binary histories (figure 2.11) and overall merger rates
(figure 2.15), the resultant velocity distributions are very similar. This is a result of the ~ t~! merger
time distribution at late times discussed previously.

The results in figure 2.16 naturally lead the question of what fraction of mergers is consistent
with the data to be addressed. We wish to assess the fraction of high-mass galactic white dwarfs
formed by binary mergers (BSE) which we parameters by 0. This results in a fraction 1 — 6 from
single-star evolution (SSE). To assess a value of 0 for a given SSE and BSE Monte Carlo realization
we first calculate the galactic formation rate of high-mass WDs from SSE and BSE in this realization,
which we denote I'ssg and I'ssg, respectively. Then, for both PG and SDSS we make a copies of
the BSE objects simulated as observed, and p copies of objects simulated as observed from SSE.
Assuming that equal numbers of objects were simulated in both the BSE and SSE realizations, then

the two simulated samples combined have a galactic BSE fraction of

3 BI'ssE
Blese + al'ssE
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Figure 2.16 Predicted distribution of transverse velocities observed in SDSS and PG resulting from
the merger of CO+CO WDs with 0.95 < M; + M>/Mp < 1.4. Lines are the BSE code with acgA = 2
(solid blue line, model i), the BSE code with acgA = 1 (dotted blue line, model ii) the SeBa code
using the ya common envelope prescription (dashed blue line, model iii) and the SeBa code using
the aa prescription (dash-dot blue line, model iv). Both SeBa models use acgA =2 and y = 1.5. The
red line is the predicted distribution of transverse velocities resulting from single-star evolution
toa 0.95 < M/My < 1.4 white dwarf according to model A in table 2.3, and the black line are the
observed distributions. All BSE models use a constant SFR and the disk heating relation of model

A in table 2.3.



45

To test whether the data is consistent with this realization, we use the two sample Anderson-Darling
statistic (Pettitt, 1976). The Anderson-Darling test considers the difference between the samples
across the entire distribution, and so is more statistically powerful that the more commonly used
Kolmogorov-Smirnov test which depends only on the extremum. The number of simulated white
dwarfs is always much larger, by at least a factor of ten, than the number observed.

The results for one particular choice of SSE and BSE model are shown in figure 2.17(a). In
figure 2.17(b) we show the combined probability that the PG and SDSS samples are consistent with
each value of 0. In table 2.5 we summarize the results of this procedure for the range of the BSE
and SSE models described in tables 2.3 and 2.4.

The results in table 2.5 show that for the majority of models the fiducial numbers of white dwarfs
formed via SSE and BSE are consistent with the data. The results taken at face value would also
appear to show that, for most models, at the 1 per cent probability level, high-mass white dwarfs
must come from a combination of single-star evolution and mergers of high-mass white dwarfs.
This appears artificial however: From the right column of figure 2.17(a) the PG sample is consistent
with all SSE, while the SDSS sample that has a low probability of arising purely from SSE.

This is a result of the lack of low velocity (< 14 km s™1) white dwarfs in the SDSS sample. It may
be that the lack of low velocity white dwarfs in SDSS is a statistical anomaly, since the number of
objects is small. In theory this would be taken account of in the analysis described above, however
young stellar objects can display prominent substructure in their kinematics as a result of moving
groups (e.g., Dehnen, 1998). This would have the result of both reducing the effective sample size,
and producing a very different velocity distribution than the Schwarzschild distribution assumed
in the SSE Monte Carlo. There are indications that this is the case, since when the SDSS objects
are plotted in the U — V plane (assuming zero radial velocity) 7 of the 9 objects lie in the negative
U, negative V quadrant. Depending on the unobserved radial velocity, many of these could have
kinematics consistent with the Pleiades and Hyades moving groups. Indeed it has been shown that
the the white dwarf GD 50, has a velocity and cooling age consistent with a Pleiades origin (Dobbie
et al., 2006).

That the data rules out a white dwarf merger origin for the majority of high-mass white dwarfs
appears more secure, despite the apparent consistency of the SDSS sample with the BSE simulations:
The PG sample is entirely consistent with SSE, and neither sample contains a high-mass white dwarf

traveling at > 50 kms™

which would be convincing evidence of a BSE origin for some high-mass
white dwarfs. This is not surprising, since the expected number of merger products observed in
PG and SDSS (N(gsg) in table 2.5) is significantly smaller than the observed number of objects.

We note that a simpler empirical test for the origin of the high-mass white dwarfs is suggested
by figure 2.4. The distribution of high-mass white dwarfs is consistent with the velocity distribution

of the intermediate group that displays the kinematics of young objects at the 13 per cent level by



46

the Anderson-Darling test. This ignores the selection effects which the Monte Carlo simulation
addresses, but does suggest that the entire combined group of high-mass white dwarfs is broadly

consistent with SSE.

2.6 Scale Heights

One of the key results of this study is that hot white dwarfs of mass 2 0.75 Mg had much shorter main
sequence lifetimes than their lower-mass counterparts, and hence their kinematics are characteristic
of young stars. A direct result of this is that these higher-mass white dwarfs will have reduced scale
height. This is vitally important to consider when calculating the formation rate as a function of
mass using local samples such as in Liebert et al. (2005) or Kepler et al. (2007) or producing galactic
white dwarf simulations such as Nelemans et al. (2001).

Unfortunately, neither the SDSS or PG sample allow accurate direct determination of the scale
height of each white dwarf population, particularly the rare and less luminous high-mass groups.
Instead, here we list the expected scale height by comparison with the SSE models that appear to
accurately describe the kinematics. We do this to allow simple initial corrections without resorting

to the simulations of the type performed in this work. The scale height, /1, was defined through

v(z) = vy sech? (%) , (2.15)

where v(z) is the stellar number density in terms of the height above the plane of the galactic disk,
z. The scale height, h, was estimated by constraining equation (2.15) to give both the correct overall
number and central WD density, v9. We choose this method since the most common usage of the
scale height is to calculate galactic birthrates from local densities. The results are give in table 2.6.
Plots of the simulated vertical distributions in the solar neighborhood, together with their scale
heights defined through equation (2.15) are shown in figure 2.18. Note that the higher-mass groups
smaller scale height results in a local density enhanced by more than a factor of two over the more
common low-mass group. In particular, the apparent excess of high-mass white dwarfs found in
the PG survey (discussed in section 6 of Liebert et al., 2005) can be naturally explained by their
lower scale height, which causes a high abundance in this relatively local survey. That the number
of high-mass white dwarfs is consistent with single-star expectations in PG is confirmed by the

number of expected white dwarfs from single-star evolution in table 2.5.
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(@) The left column shows the cumulative distribution of transverse velocities of
high-mass (M > 0.95 M) white dwarfs in the SDSS and PG survey. The dashed-dot
lines are the predictions of SSE model C and the dashed lines are the predictions
of BSE model iv. The right column shows, for each fractional galactic formation
fraction from BSE, 0, the probability that the velocity distribution is consistent with
the data using the Anderson-Darling statistic for the PG sample, Ppg, and the SDSS
sample, Pspss. The fiducial 0 is the fiducial predicted galactic fraction from BSE
model iii compared to SSE model C with 50 per cent binary fraction.
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SDSS samples. Calculated by the product of the probabilities in the right column
of figure 2.17(a).

Figure 2.17 Plots showing the calculation of the galactic formation fraction of high-mass white
dwarfs formed in mergers during binary-star evolution in model C compared to single-star evolu-
tion model iii.
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Table 2.6 Scale heights, h, defined through equation (2.15) for three different mass groups.  is
calculated by matching the central density and overall number to the simulations described in
section 2.4.2.

Miow /Mo Mhigh /Mo h/ pc

0.45 0.75 120
0.75 0.95 58
0.95 1.40 54
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Figure 2.18 The vertical distribution of equation (2.15) with the scale heights from table 2.6 as
dashed lines, compared to the simulations described in section 2.4.2 as solid lines. The three
groups plotted are the low-mass (0.45My < M < 0.75Mp) in blue, the intermediate mass in green
(0.75Mp < M < 0.95Mp) and high-mass (> 0.95Mp) in red.
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2.7 Summary

We have analyzed the kinematics of young (< 3 x 10® years) DA white dwarfs from both the
PG and SDSS surveys and find a strong connection between their mass and kinematics: low-
mass white dwarfs (0.45Mg < M; + M, < 0.75Mp) display the kinematics of old stars, with
higher velocity dispersion (~ 46 kms™) and asymmetric drift, while higher-mass white dwarfs
(0.75Mp < M + M, < 0.95M,) display the kinematics of young stars with a velocity dispersion of
only ~ 19 kms™'. We have shown in section 2.4 that this is expected due to the shorter precursor
lifetime of the more massive progenitors, and that there is agreement both on simple analytic
grounds (section 2.4.1) and more quantitative Monte Carlo simulations of the PG and SDSS samples
(section 2.4.2).

A further key conclusion is that the white dwarf scale height and its variation with age and mass
is vitally important to consider when calculating birth rates based on local samples (section 2.6).

In addition, we have separately analyzed the highest-mass white dwarfs (M > 0.95 My, section
2.5), since it has been suggested that many of these formed as a result of the merger of two lower-
mass CO white dwarfs. We find at present a discrepancy in the SDSS velocity distribution where

1is detected. This results in

no high-mass white dwarfs with transverse velocity less than 14 km s~
a velocity distribution that within our statistical framework is inconsistent with purely single-star
evolution. We argue this is likely to an anomaly, either be a statistical, or a result of a number of
these white dwarfs being members of moving groups. We find that, even under the most optimistic
binary evolution models, we would only expect to find 3 white dwarfs formed via white dwarf
binary mergers and that the apparent excess of high-mass white dwarfs found in PG is caused by
their reduced scale height. In addition, we note the kinematic ‘smoking gun’ of some fraction of

high-mass white dwarfs coming from binary evolution would be high-mass white dwarfs traveling

at > 50 kms™!, of which none are found in PG or SDSS.

Appendix 2.A Likelihoods

Here we give our expressions for the proper motion likelihoods of an individual object. These
largely follow Ratnatunga et al. (1989), modified to include errors in proper motion. We ignore
errors in sky position (¢, b), which are small.

Assuming a Schwarzschild distribution function, then, in coordinates aligned with the principle

axes of the velocity ellipsoid,

f(V) = exp (—(V-Vo)-T-(V-Vyp)), (2.16)

1
V8713510003

where I' = diag(1/201,1/202,1/203) and Vj is the mean velocity. Ignoring errors in distance, we
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then rotate to axes aligned with the sky plane, and integrate over the unobserved radial velocity,
which, in this case, is a nuisance parameter.

We define, A, to be the dispersion tensor rotated into the coordinate system, (¢, b, d), aligned
with the sky plane. This will be given by A = R - T, where R is a rotation matrix (given explicitly
as equation A4 in Ratnatunga et al., 1989). The probability distribution, after integrating over the

radial velocity as a nuisance parameter, is an ellipsoid in the sky plane

p(o,00) = C'exp | - a(vr = 7)? - (o, — 7)?

—2y(0c = 90)(0 — W), (2.17)

where 7y and 9, are the components of Vj in the directions of / and b (which can be obtained via

(9¢,0p,74) = R-Vg) and a, B, y, and C’ are given by

a=Ap—A%/ A1, (2.18)
B=Axn—AL/An, (2.19)
Y = Aoz — AnAaz/ A1, (2.20)

C' = \Jap—y?/m. (2.21)

For each object we have measurements of v; and v, together with an associated velocity error o.

Integrating over the ‘true’ v; and v, gives the log likelihood used in equation (2.9) as

log Li(vﬁbs, Z)Ebs) Elog def(V)p(Vlv?bsl Z]gbs’ G)

0
@+ 8)E+0) -1
[(Avi + Av?)(aﬁ - y2)+

=logC” -

S(BAVE + A} + 2yAveAvy)|, (2.22)
where
6 =1/20%, (2.23)
Avp =09 — 7, (2.24)
Avy = 0™ — 7, (2.25)
7’ !’ 6
C’'=C (2.26)

Vi y/(a +0)(B+0) —)?

_ ap-y?
‘6Jnma+®w+&—yﬂ' (2:27)
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Note that for small error, 6 — oo, and equation (2.22) reduces to the log of equation (2.17) as

expected.
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3

Photometric Identification and Spectroscopic Confirmation

of Ultracool White Dwarfs'

Abstract

Ultracool white dwarfs display significant flux suppression red-wards of
~ 6000 A due to collision-induced opacity (CIA). This which moves them
out of the stellar locus. We show that their unique colors enable their
identification purely photometrically. We applied cuts to SDSS photometry
to produce targets and have observed and spectroscopically confirmed
four new ultracool white dwarfs with a 100 per cent purity. One additional
ultracool white dwarf was found in the SDSS data but did not pass the
photometric quality cuts. These five new ultracool white dwarfs display

disk kinematics and their density is consistent with previous estimates.

I This work will be submitted for publication in Ap] with authors: Christopher Wegg and Sterl Phinney in this order.
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3.1 Introduction

Hot white dwarfs can easily be identified on the basis of their blue colors (e.g., Eisenstein et al., 2006;
Liebert et al., 2005), however cool (T.¢ < 8000 K) white dwarfs are more challenging to identify. In
clusters they can readily be identified from their sub-luminous nature (e.g., Hansen et al., 2007), but
in the field their colors are typically indistinguishable from the stellar locus. Instead the statistical
technique of finding sub-luminous objects via their high proper motion and therefore faint reduced
proper motion is used (e.g., Kilic et al., 2006; Vidrih et al., 2008). In this work we show that the
coolest white dwarfs, those known as ultracool white dwarfs, can be identified via their unique
colors, a prospect first suggested by Hansen (2001).

When white dwarfs cool below an effective temperature of ~ 4000K the hydrogen in their
atmosphere forms neutral H, molecules. Since H in its ground state has zero dipole moment, it
usually absorbs photons only via higher-order transitions such as electric quadrupole transitions.
This results in a dramatic lowering of the mean opacity of the atmosphere.

One result of this lowering of opacity is that the depth of the photosphere increases, and hence
the pressure at the photosphere increases. This has the effect of increasing the rate of collisions
between H, and other H, or He molecules. At these rates of collisions the dominant form of
opacity becomes collision-induced absorption (CIA). CIA is the process whereby a H, molecule is
sufficiently close to another species that a dipole is induced, resulting in electric dipole transitions
being allowed. These CIA transitions are typically roto-vibrational and very broad. At the pressures
found in white dwarfs at low temperature, they dominate the opacity at wavelengths longer than
1 ym (see Lenzuni et al., 1991, for opacity calculations and good explanations of the physics). As a
result of this strong red-ward opacity there is a flux deficit, relative to a black body, at wavelengths
longer than > 1 um.

A subset of these white dwarfs show stronger CIA. These are the white dwarfs termed ultracool
white dwarfs by Gates et al. (2004) and Harris et al. (2008), which we search for and identify in
this work. In these objects the flux deficit extends to 6000 A. An example spectrum, that of SDSS
J133739.40+0001428 (hereafter SDSS J1337, Harris et al., 2001), is compared to a 4000 K blackbody
in figure 3.1.

Other examples of ultracool white dwarfs displaying significant CIA and flux suppression red-
wards of 6000 A are LHS 3250 (which was the first discovered, Harris et al., 1999), and those
serendipitously targeted for spectroscopy by SDSS, such as the aforementioned SDSS J1337 and
those found in Gates et al. (2004) and Harris et al. (2008). We summarize the known ultracool white
dwarfs that lie in the SDSS DR7 footprint in table 3.1.



Table 3.1 Summary of the properties of the previously known, spectroscopically confirmed, ultracool white dwarfs which lie within the SDSS
DR?7 survey footprint. Three other ultracool white dwarfs showing strong optical CIA lie outside the survey footprint and are omitted: LHS 1402

(Oppenheimer et al., 2001; Salim et al., 2004), GD 392 (Farihi, 2004), an

d SSS J1556-0806 (Rowell et al., 2008).
1

Short B " Epoch” u Lo s’ .47 v, 7 Discovery Strong
Name RA Dec (MJD) 8 ! ! z (mas yr‘l) Hy (pc) (km sh Paper Optical CIA?
J0947 0947230 +445949 522834 2074 1945 1885 1893 1944 85+7 68 £5 51+5 19.09 53 21 Gates et al. (2004) Yes
J1001 1001034 +390340 52639.5 2142 20.04 1958 19.99 2055 353+14 -302+4 -181+14 2277 69 115 Gates et al. (2004) Yes
J1220 122048.7 +091412 523453 2243 2035 1931 1945 1988 501+15 -320+9 -385+12 2384 79 188 Gates et al. (2004) Yes
J1251  125106.1 +440303 527243 2144 20.17 2039 20.69 2086 170+8 -167+6 306 2132 73 59 Harris et al. (2008) Yes
J1337 1337394 +000143 512584 20.79 1955 1913 1952 20.03 175+7 -16+5 -175+5 2077 55 46 Harris et al. (2001) Yes
J1403 1403247 +453333 527045 20.10 1890 1895 1948 19.76 283+10 -267+7 -94+7 2115 41 55 Gates et al. (2004) Yes
J1654> 165401.2 +625355 516384 19.68 1839 17.86 18.07 1855 570+7 —548+5 157 +5 2217 32 87 Harris et al. (1999) Yes
J0146 0146290 +140438 514644 2121 1999 1937 19.24 1971 252+7 251+5 29+5 22.00 67 81 Harris et al. (2008) No
J0310 0310495 -011035 525224 2249 2095 2020 19.89 1997 81+8 -25+6 -77+6 20.50 105 40 Harris et al. (2008) No
Jos54 0854433 +350353 52585.5 23.67 2051 19.38 19.06 1891 234+8 -140+6 1886 2236 86 95 Gates et al. (2004) No
J1238 1238129 +350249 53111.3 2473 2176 2031 19.87 2031 189+9 -138+6 -130x6 23.14 152 136 Harris et al. (2008) No
J1452 145239.0 +452238 52788.2 21.59 20.03 1935 19.26 19.30 91+7 -55+5 72+5 19.82 69 29 Harris et al. (2008) No
J1632 1632422 +242655 52811.3 21.33 19.60 1872 1849 1847 349+8 -16+6 -349+6 2231 56 93 Harris et al. (2008) No
J2239 2239541 +001847 52197.3 21.51 20.16 19.53 1947 20.09 120+7 1+£5 120+5 2056 73 41 Harris et al. (2008) No

“RA and Dec are given as equinox J2000 at the Julian date of SDSS observation in the Epoch column.
b Proper motions taken from the PPMXL catalog (Roeser et al., 2010).

‘Reduced proper motion in g-band. See equation (1.2).

4 Assuming the absolute magnitude in the g-band of LHS 3250.

Originally discovered as LHS 3250.

qq
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Current model atmosphere fits to white dwarfs displaying strong CIA perform poorly. An
example of this can be seen in the fits to ultracool white dwarfs in figure 16 of Kilic et al. (2010). It
is especially useful therefore that LHS 3250 has a measured parallax of (33.04 + 0.5) mas placing it
at (30.3 £ 0.5) pc (Monet et al., 1992). This allows the absolute magnitude to be calculated directly,
for example, in the V band it is M, = (15.72 + 0.04) (Harris et al., 1999). The close distances of these
objects cause them to have very high proper motions”. For example, LHS 3250 has a proper motion
of 565.7 + 0.1 masyr~!, which is an order of magnitude larger than the typical proper motions
displayed by the white dwarfs in chapter 2.

There are also a number of white dwarfs which display less significant CIA with only a mild
optical flux suppression with more significant suppression in the IR. Examples of this class are LHS
1126 (Bergeron et al., 1994) and WD 0346 (Hambly et al., 1997), as well as several found in Harris
et al. (2008). We do not attempt to exhaustively catalog this class in table 3.1, but when included
they are marked as not having strong optical CIA.

The blue-ward evolution of the coolest white dwarfs is also illustrated as a blue-ward ‘hook’
in the cooling sequences of the globular cluster NGC 6397 shown in figure 1.2 (although the mass
evolution along the cooling sequence may also contribute).

In this chapter we show that ultracool white dwarfs which display strong CIA can be detected
by the unique colors alone. In section 3.2 we describe the cuts in color-color space that isolate CIA
white dwarfs, in section 3.3 we describe our observations of four of these objects, all of which are
confirmed to be ultracool white dwarfs, and in section 3.4 we discuss the implications and possible

uses of this work.

3.2 Selection

The flux suppression red-ward of ~ 6000 A shown in figure 3.1 results in ultracool white dwarfs
with strong CIA having reduced brightness in the 7, z, and (to a lesser extent) the r-bands. This
moves them out of the stellar locus into an extremely sparsely populated region of color space. By

choosing cuts in color-color space that exclude the stellar locus but include the known CIA white

2This is why many ultracool white dwarfs have the object name prefix Luyten Half Second (LHS) — a catalog of objects
with proper motions larger than 0.5" per year (Luyten, 1979).
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Figure 3.1 The spectrum of the white dwarf SDSS J1337 which displays significant CIA red-ward
of 6000 A (Harris et al., 2001). Also plotted is a 4000 K blackbody as the dashed line, and the SDSS
response in filters u, g, , 1,z in blue, green, red, magenta, and gray, respectively.

dwarfs the number of targets is reduced to a manageable number. The cuts used were

r—i<-=03+05(g-1),

r—z<095(g-r)-07,

r—z<-04, (3.1)
u-g>1,

g-r<05(u-g)+0.1.

These cuts are illustrated in figure 3.2 together with the known ultracool white dwarfs from table
table 3.1. Six of the seven previously known white dwarfs showing strong optical CIA pass these
cuts.

These cuts were chosen empirically. However, in principle, it would be possible to make these
cuts via atmospheric models. At present though the atmospheric models do not fit the spectra of
ultracool white dwarfs sufficiently well to make this possible (Kilic et al., 2010).

Even a small number of the vast number’ of objects in the stellar locus being scattered into this re-
gion of color-color space would be catastrophic. We therefore also require that the candidate objects

have reliable photometry. We require in addition to the color-color cuts given in equation (3.1):

1. The object is classified by the SDSS photometry pipeline as a star.

3There are 357 million objects with measured photometry in SDSS DR7, from which we select O(10) candidate objects.
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Figure 3.2 Known and candidate ultracool white dwarfs. The color-color cuts of equation (3.1)
are shown as dashed lines. Known ultracool white dwarfs in table 3.1 are plotted in blue, those
showing strong CIA absorption are plotted with filled circles and labeled. Candidate objects from
table 3.2 are plotted in green, those observed in this work and shown to be ultracool white dwarfs
are plotted as filled symbols. Contours of density of objects in color-color space are shown in pink
and trace the stellar locus.
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2. The object lies at galactic latitude higher than 30 deg. Accurate photometry in crowded fields
is more difficult, and the SDSS photometry pipeline has occasional catastrophic failures in

these fields that scatter objects from the stellar locus into the cuts described here.

3. The error in each band less than 0.21 mag. Errors larger than this often indicate unreliable

photometry.

4. That none of the flags recommended by SDSS as indicating unreliable photometry are set
in each band*: EDGE, NOPROFILE, PEAKCENTER, NOTCHECKED, PSF_FLUX_INTERP, SATURATED, or
BAD_COUNTS_ERROR.

5. That the object was not deblended as a moving object (DEBLENDED_AS_MOVING flag).

6. If the object was deblended that the parent does not have the DEBLEND_UNASSIGNED_FLUX flag
set. If this is the case the unassigned flux is assigned proportionally to its child objects, hence

the child objects have unreliable photometry.

7. That there is no neighbor object within 6". Very close neighbors (<1") indicate spurious
detections. Wider separations have PSFs where the wings may overlap making reliable

photometry more difficult.

The resulting 14 objects which pass these selection criteria are shown in table 3.2 of which two
were previously discovered as ultracool white dwarfs. Despite the efforts to isolate only genuine
detections, five of these appear to be spurious since they are not detected in the Digitalized Sky
Survey of second Palomar Observatory Sky Survey (POSS-II, Reid et al., 1991). A further three
objects, despite passing the color-color selection cuts, had proper motion consistent with zero. If
these objects were ultracool white dwarfs with the same absolute magnitude as LHS 3250 their
transverse velocity would be less than 5 kms™ and so are highly unlikely to be ultracool white

dwarfs and were discounted. This leaves a sample of 4 candidate ultracool white dwarfs.

4http://www.sdss.org/dr7/tutorials/flags/index.html#clean
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Table 3.2 White dwarfs that pass the candidate selection cuts described in section 3.2.

Short

Epoch”

1

1

1

dd

v, °

a a : u Ha Hs c : 0]
Name RA Dec (MID) g r i z (masyr) Hg () (kms™) Candidate?
J0805 080521.7 +213033 516384 20.65 19.60 19.64 19.97 20.64 - - - - 56 - No: Not detected in POSS II
J0821 0821474 +422402 519874 20.89 1942 19.18 1938 19.73 14+11 10+8 -9+8 15.08 52 3 No: Zero proper motion
J0826 0826387 +584714 527544 21.53 20.51 20.31 20.56 20.84 6+13 0+£9 -6+9 1444 85 2 No: Zero proper motion
J0957 0957434 +223854 519622 21.89 19.75 1958 20.09 20.79 10+10 10+£7 1+7 14.81 60 3 No: Zero proper motion
J1001 1001034 +390340 512584 2142 20.04 1958 19.99 2055 249+10 127+7 2157 22.02 69 81 Yes: Found by Gates et al. (2004)
J1043 104346.1 +321238 526712 21.71 19.85 19.56 19.99 20.18 - - - - 63 - No: Not detected in POSS II
J1121 1121001 +141729 52667.5 21.01 19.72 19.19 1949 2013 3177 94 +5 -303+5 2222 59 89 Yes: Observed. See figure 3.4
J1330 133037.7 +002901 53359.5 20.96 19.45 19.37 19.68 20.04 - - - - 53 - No: Not detected in POSS II
J1336 1336427 +074827 53111.3 2217 2049 1995 2034 2080 265+9 —-61+7 258+7 2261 85 106 Yes: Observed. See figure 3.4
J1358 135811.2 +043002 52639.5 20.39 19.20 19.24 19.58 20.10 - - - - 47 - No: Not detected in POSS II
J1449 1449479 +090840 527563 20.55 19.25 19.19 1947 20.02 - - - - 48 - No: Not detected in POSS 1I
J1542  154203.7 +275022 529634 2192 2079 2027 2051 2115 7210 -67+7 267 20.07 97 33 Yes: Observed. See figure 3.4
J1602 1602449 +085629 528122 21.68 20.51 19.92 20.05 20.80 56+10 20+7 -53+7 1926 86 23 Yes: Observed. See figure 3.4
J1654° 165401.2 +625355 527554 19.68 1839 1786 18.07 1855 570+7 -548+5 157+5 2217 32 87 Yes: Found by Harris et al. (1999)

“RA and Dec are given as equinox J2000 at the Julian date of SDSS observation in the Epoch column.

bProper motions taken from the PPMXL catalog (Roeser et al., 2010).
‘Reduced proper motion in g-band. See equation (1.2).

4 Assuming the absolute magnitude in the g-band of LHS 3250.
Originally discovered as LHS 3250.

09
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Figure 3.3 The spectrum, taken by SDSS, of SDSS J083511.55+184402.9: A white dwarf displaying
CIA serendipitously found in the SDSS data which displays significant CIA red-ward of 6000 A .
This object did not pass the stringent cuts to be a candidate object, but instead the SDSS spectrum
was serendipitously discovered while selecting those cuts.

While choosing the targets an ultracool WD already observed by SDSS was identified: SDSS
J083511.55+184402.9, whose spectrum is shown in figure 3.3.

3.3 Observations

Four of the white dwarfs passing the cuts described above were observed using the Double Spec-
trograph (DBSP) on the 200-inch Hale telescope at Palomar observatory on the nights of 13 and 14
April 2007. The spectra were reducing using the standard procedure doslit in iraf.

The spectra are shown in figure 2.3. All four candidate objects are clearly white dwarfs demon-
strating strong CIA.

Both nights were photometric and the spectra were flux calibrated using the standards HZ44,
HD84937, BD+262606, and BD+284211. Since the observations were blind offset observation of
objects with significant proper motions since the last epoch of observation, it possible that they
were not well centered in the slit. However the observations were taken with the slit at the
parallactic angle and, from figure 2.3 the results of the spectrophotometry are close to the SDSS

photometry.
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Figure 3.4 Spectra of ultracool white dwarfs observed using the double spectrograph on the 200-inch
Hale telescope at the Palomar observatory. The SDSS photometry which led us to identify them is
also plotted with each filter plotted at its A

3.4 Discussion

The density of ultracool white dwarfs can be estimated from the six found over the 8423 deg? legacy
footprint of SDSS DR7 (which is the vast majority of SDSS imaging above 30 deg Galactic latitude).
This gives an area density of ~ 0.0007 deg™. Only two of the seven white dwarfs previously known
to display strong optical CIA pass the stringent selection cuts however. Correcting for this gives an
area density of ~ 0.0025 deg™2. This is larger than the ~ 0.0015 deg™ found in SDSS spectra through
April 2004 by Gates et al. (2004). The sample here is marginally deeper however, since that was
based on those targeted as QSO candidates for which i < 20.2 is required.

The investigation of the kinematics of the white dwarfs in chapter 2 was complicated by the lack
of radial velocity information. However in that work distances were calculable via fits to atmo-
spheric models. The atmospheric models of ultracool white dwarfs however fit the observations
poorly, and therefore are insufficient for this purpose. The ultracool white dwarfs are close enough

however that the parallaxes should typically be 10 —30 mas, and therefore be measurable in the near
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future. Indeed GAIA could measure highly accurate parallaxes for many of the objects in this work
(Lindegren, 2009), the primary difficultly being that the objects here are close to the faint magnitude
limit.

Without either distances or radial velocities, detailed kinematic modeling of the type performed
in chapter 2 is unwarranted. Instead we perform a qualitative check. In figure 3.5 we plot the
velocities of the candidates in the Galactic plane i.e., the U-V plane, where U is towards the Galactic
center, and V is directed in the direction of Galactic rotation. In making these plots we have
assumed that all the ultracool white dwarfs have the same g-band absolute magnitude as LHS 3250.
In addition in figure 3.5(a) we assume that the velocity out of the galactic plane is zero (i.e., W = 0),
while in figure 3.5(b) we assume the unobserved radial velocity is zero.

While these are crude checks of the kinematics there are several points worth noting. None
of the ultracool white dwarfs discovered in this work display halo kinematics. Indeed only one
of the 19 ultracool white dwarfs displays halo kinematics: J1220 whose kinematics were noted by
Gates et al. (2004). The other 18 white dwarfs in appear to have a dispersion and asymmetric drift
(mean V velocity) consistent with membership of an old disk population, i.e., thick disk. This also
indicates that on their absolute magnitudes are consistent with LHS 3250, at least on average, since

this was assumed in the distance calculation.

3.4.1 Prospects

In the light of this work the upcoming Large Synoptic Survey Telescope (LSST) survey is especially
promising for discovering ultracool white dwarfs. LSST is expected to have single-visit 5-0 depths
inthewu, g, 7,1,z and y-bands of 23.9, 25.0, 24.7,24.0, 23.3, and 22.1, respectively (Ivezic et al., 2008).
Each area of the sky is visited times 70, 100, 230, 230, 200, and 200, respectively, giving co-added
depths of approximately 26.3, 27.5, 27.7, 27.0, 26.2, and 24.9. Assuming that all ultracool white
dwarfs are similar to LHS 3250 and conservatively that they can be detected the single visit 5-0
depth then they would be detectable to ~ 210 pc, the limiting band being the u-band. This is a
factor of 2.4 greater in distance than even the SDSS 2-¢ limit of 22.0, and we therefore expect at least
a factor of 10 increase in number. Less conservatively the single visit depth in the g and r-bands
are ~ 650 pc and so, these images can be used to calculate the astrometric solution (i.e., position,
proper motion, and parallax) of each object. The color-color cuts involving the u, i, and z-bands
could be applied to the co-added image increasing the maximum detectable distance to ~ 650 pc.
This would result in a 400-fold increase in number of ultracool white dwarf detections over SDSS,
or of order 4000 ultracool white dwarfs.

This huge increase in number also highlights one of the important aspects of this work. LSST
will identify vast numbers of many classes of objects, for example, in this thesis we predict both

0(1000) ultracool white dwarfs in this chapter, and O(1000) tidal disruptions in chapter 4. It is
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clearly unfeasible to follow up more than a small number of these objects. This work shows that
ultracool white dwarfs will potentially require no follow up: they can unambiguously be identified
photometrically.

In atmospheric fits to cool white dwarfs there is a degeneracy between distance and log g. In
the hotter white dwarfs in chapter 2, this degeneracy was broken by fits to the Balmer series.
However, in cool white dwarfs this not possible. This degeneracy can is easily understood as a
solid angle degeneracy: In cool white dwarfs the effect of increasing log g is to decrease the solid
angle subtended, and therefore the white dwarf can also be fit by decreasing the distance (Mortlock
et al., 2009).

Because the spectra of ultracool white dwarfs display broad absorption in their spectra, if the
future, once the atmospheric models are of sufficient quality, it may be possible to fit the atmospheric
parameters, Teg, log ¢ and N(H)/N(He), purely from photometry. The greater difficulty may prove
to be breaking the degeneracy between log ¢ and N(H)/N(He), since both strongly affect the pressure
at the photosphere. If the distance were known, then T and N(H)/N(He) would be calculable.
Unfortunately parallaxes are unlikely to be available for the majority of LSST objects. Instead it
may be necessary to assume a mass, similar to the often used assumption log g = 8. The validity of
this assumption can be readily checked for those ultracool white dwarfs for which parallaxes will
be measured by GAIA.

It should therefore be possible, purely from the photometry, to probe the Tes and infer the ages
of a large number of ultracool white dwarfs using LSST. If the models turn out to be non-degenerate
in log ¢ and N(H)/N(He), then the masses will also be estimable. These are tantalizing prospects
since ultracool white dwarfs are the current end state of the majority of population II or halo stars
with initial mass 0.9 My < M < 8 Mo, and therefore tell us about the Galactic population of old
stars, from parts of the initial mass function not probed by low mass main sequence stars. They
therefore represent the local fossils with the most direct relation to the light from high redshift

galaxies studied by missions such as Spitzer and the Hubble Space Telescope.
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(b) Kinematics of ultracool white dwarfs assuming zero radial velocity.

Figure 3.5 Kinematics of ultracool white dwarfs assuming either that the velocity out of the galactic
planeis zeroin figure 3.5(a), or that the unobserved radial velocity is zero in figure 3.5(b). To calculate
distances, and therefore transverse velocities, all white ultracool white dwarfs are assumed to have
the same g-band absolute magnitude as LHS 3250. Previously known ultracool white dwarfs are
shown in blue. Ultracool white dwarfs identified in this work are plotted in green and labeled. The
gray ellipses are the galactic thin disk, thick disk, and halo, in order of increasing size. The dashed
line is the 1-0 density contour (i.e., 68 per cent of objects should be enclosed), and solid line is the
2-0 density, assuming that the local velocity distribution is a Schwarzschild distribution.
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Multiple Tidal Disruptions as an Indicator of Binary

Supermassive Black Hole Systems'

Abstract

We find that the majority of systems hosting multiple tidal disruptions
(TDs) are likely to contain hard binary SMBH systems, and also show that
the rates of these repeated events are high enough to be detected by LSST
over its lifetime. Therefore, these multiple TD events provide a novel
method to identify supermassive black hole (SMBH) binary systems with
parsec to sub-parsec separations. The rates of TDs are investigated using
simulations of non-interacting stars initially orbiting a primary SMBH and
the potential of the model stellar cusp. The stars are then evolved forward
in time and perturbed by a secondary SMBH inspiraling from the edge
of the cusp to its stalling radius. We find with conservative magnitude
estimates that the next generation transient survey LSST should detect
multiple TDs in approximately 3 galaxies over 5 years of observation,
though less conservative estimates could increase this rate by an order of

magnitude.

I This work was published as Ap]JL, 738, L8 (2011) , arXiv:1011.5874 with authors: Christopher Wegg and Nate Bode in
this order (Wegg and Bode, 2011). Reproduced here by permission of the AAS, copyright © (2011).


http://iopscience.iop.org/2041-8205/738/1/L8
http://www.arxiv.org/abs/1011.5874
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4.1 Introduction

Stars with radius R, and mass M, , which pass within the tidal disruption radius 7; ~ Ry (Mpp/M)'/3
of a supermassive black hole (SMBH) of mass Mgy, will be ripped apart by tidal forces. In the case
of sun-like stars,

re ~ 1.2r, M, (4.1)

where 7, is the Schwarzschild radius, and Mg is Mpr/108My. Therefore, when Mgy = 108M, the
Schwarzschild radius lies outside 7; and any sun-sized star would be swallowed whole. Below
this critical black hole mass the star’s debris is launched on orbits which span an energy range
AE ~ GMpuR,/r? (Rees, 1988). This energy range is large compared to the energy of the highly
elliptic initial orbit, and hence half the material will be initially unbound while half will begin to fall
back onto the black hole. For main sequence stars the late time canonical fall-back rate declines as
t75/3 (Phinney, 1989). This fall-back rate is initially super-Eddington for the canonical 10% accretion
efficiency (Evans and Kochanek, 1989), but it is unclear whether a radiatively driven outflow results
(Lodato and Rossi, 2011; Strubbe and Quataert, 2009), or the disk adjusts to lower its accretion rate.

Galaxies harboring an isolated SMBH at their center are expected to quickly clear a ‘loss cone’ of
orbits whose angular momenta about the black hole are low enough that their peribothra lie inside
r;. At this point tidal disruptions (TDs) are predicted at a rate ~ 107 — 107> yr~! as stars diffuse
into the loss cone (Donley et al., 2002; Magorrian and Tremaine, 1999; Wang and Merritt, 2004). The
majority of candidate TDs thus far have been found though x-ray (e.g., Donley et al., 2002) or UV
surveys (e.g., Gezari et al., 2008). This is expected, as can be seen by modeling the TD as a thick
disk emitting as a black body with luminosity Leqq, temperature Teg, and initially extending to 7;.
In reality the disk will expand outwards on a viscous timescale and the initial super-Eddington rate
could launch an outflow. Ignoring these complications, however, gives (Ulmer, 1999)

M -1/6 . -1/2
Teit ~ 3.7 x 10°M/ 2 (M—*) (r—*) K, 4.2)
© 0]

and the spectrum peaks in the extreme UV. Despite being in the Rayleigh-Jeans tail of this flux, optical
transient surveys such as the Palomar Transient Factory (PTF), the Panoramic Survey Telescope and
Rapid Response System (Pan-STARRS) and the Large Synoptic Survey Telescope (LSST) provide the
prospect of finding many more TDs because of their unprecedented combination of high cadence
and depth. It is expected that LSST will detect a striking ~ 100 — 3000 yr~! (Strubbe and Quataert,
2009).

In this chapter we calculate the rates of multiple TDs from a merging SMBH binary system, and
show that the detection of multiple TDs from a single galaxy likely indicates the galaxy hosts a

SMBH binary with a parsec to sub-parsec separation. Our results are summarized in table 4.1.
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4.2 Simulations

We determine the rates of multiple TDs from a binary SMBH system using a simulation of 5 x 10°
stars of radius R orbiting the primary SMBH of mass M; in the test particle limit. The stars are
initially chosen from a self-consistent isotropic stellar distribution centered on the primary SMBH
(Dehnen, 1993; Tremaine et al., 1994). Given its initial conditions, each star is then integrated
forward in time whilst, at the same time, the secondary, of mass gM;, is moved inwards on a slightly
eccentric inspiral until it reaches the stalling radius. During the integration, we ignore star-star
interactions and, additionally, assume that the stellar potential does not change. If the star reaches
1¢, it is counted as a TD, unless its angular momentum was initially within the TD loss cone.

Two mechanisms for enhanced rates of TDs in close SMBH binary systems have been considered
in the literature: the Lidov-Kozai effect (Ivanov et al., 2005) and chaotic 3-body orbits (Chen et al.,
2009). We have extended these works by including two additional aspects: the evolution of the
binary, and the non-Keplerian stellar potential®.

The initial conditions of our stars are drawn from an n-model cusp with stellar mass 2 M;

(Dehnen, 1993; Tremaine et al., 1994) whose density is given by

(}’) _ GM1T] 1
PO = 0 wr L+ rfrgn

(4.3)

Here, 7. is the characteristic radius of the cusp and 1 parametrizes the cusp steepness. The advantage
of this model is that it self-consistently describes a finite mass of isotropic stars distributed around
a central black hole together with their stellar potential. A centrally relaxed Bahcall-Wolf cluster
corresponds to 1 = 1.25 Bahcall and Wolf (1976). For the duration of the scattering experiments the
stellar potential is assumed to be centered on the primary SMBH and is not allowed to vary with
time. These assumptions are made for simplicity, and will be relaxed in future studies.

For a given 1 and SMBH mass ratio g < 1, our simulations depend only on the TD radius through
tt/1c. The scaling of r;/r. to real galaxies is described later by equations (4.6) and (4.7).

The stars are initially on orbits consistent with the primary SMBH and the stellar potential,
however their orbits are perturbed by the secondary SMBH. In a fully self-consistent simulation the
orbit of the secondary would evolve due to this exchange of energy with the stars. However, for
efficiency and simplicity the secondary SMBH’s orbit follows an inspiral dominated by dynamical
friction, halting at the stalling radius. Our approximation is checked in the lower panels of figure 4.1
where we plot the change in stellar and binary energies. If the secondary path had been chosen
perfectly the two would lie on top of each other.

Specifically the secondary SMBH is, at time t = 0, given an eccentricity of 0.1 and an initial

2During the review process a further paper was published (Chen et al., 2011), which also considered the SMBH binary
evolution and the stellar potential. Their disruption rates are consistent with ours.
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Figure 4.1 Results for mass ratio g = 0.1. The left-hand panels show an n = 1.25, Bahcall-Wolf
cusp, the right-hand panels an 1 = 1.5 cusp. The upper panels shows TD rate, I'vin, for TD to cusp
radius ratios /7. = (9,7,5) X 1077 in solid, dotted and dashed lines, respectively. The distribution
of disruption times have been kernel smoothed with a Gaussian of width ¢ = 2. The middle panels
shows the evolution of the binary separation as a solid line and radii enclosing 0.1, 0.2, 0.4% of
the stellar mass in dotted, 1, 2, 4% in dashed and 10, 20, 40% in dash-dot lines. The lower panel
shows the evolution of the energy of the binary as the solid line and the stars as the dotted. In a

fully self-consistent evolution these would lie on top of each other. The simulations are scaled by
Q= 2GM; /)12,

separation equal to the cusp radius, r.. It is then migrated inwards on a path governed by

d_v 3 _G[M1(1 +4) + M (< r)]r_ v
dr r3 tas

(4.4)

where M, (< r) is the stellar mass interior to r and

3

" in logA g M; p(<v)

tas (4.5)

characterizes the dynamical friction (Binney and Tremaine, 2008). Here p(< v) is the density of
stars at r with velocity less than v. We have used a Coulomb logarithm that begins at log A ~ 4,
but which smoothly decreases to zero at the stalling radius calculated by Sesana et al. (2008). The
functional form of the decrease was chosen to approximate the rate of shrinkage caused by the

energy exchange with the stars during our simulations.
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Figure 4.2 Results as described in figure 4.1 for g = 0.3.
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Figure 4.3 Plots of our n = 1.25, g = 0.3 simulation. Left panel shows the stars that are tidally
disrupted for r;/r. = 5 X 1077 as a function of their initial radius and z-component of angular
momentum normalized to the circular angular momentum at that radius, /,/J.. The Kozai wedge
is plotted together with the overall stellar density. A large fraction of the disrupted stars lie well
outside the Kozai wedge indicating that these are chaotic orbits (cf. Chen et al., 2009). The contours
show the initial stellar distribution, each is evenly spaced in density. The right-hand panel shows the
rates from the same simulation scaled using the relations in equations (4.6) and (4.7) for M; = 108M,,

in solid, 5 x 10’ My, in dotted and 10’ M, dashed lines.
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To perform our scattering experiments we implemented the adaptive symplectic integrator
described in Preto and Tremaine (1999), with a timestep which varies as At ~ U™! where U is
the potential energy. With this choice of timestep the integrator has the desirable property that it
reproduces exactly Keplerian orbits independent of step size. Even for our mildly non-Keplerian
orbits, this allows Kozai resonances to be correctly reproduced, since the spurious precession
frequently found in other algorithms is absent. In addition, this integrator is well suited for this
problem since it has been shown to correctly reproduce the highly eccentric orbits required for a
star to be tidally disrupted (Peter, 2009).

The results of our scattering experiments and the resultant disruption rates, I'y4, are shown in
figures 4.1 and 4.2 for g = 0.1 and g = 0.3, respectively. The plots are scaled by Q = (2GM; /r3)!/2.

The evolution of the rates can be understood qualitatively. Because we exclude stars initially
in the loss cone, the rates are initially low. But, as the secondary inspirals, it enters denser regions
and interacts with increasing numbers of stars, with a concomitant increase in the TD rate. The rate
increases until the secondary reaches the stalling radius, where it clears a path and the rate begins
to decline.

We find that the majority of TDs are due to the type of chaotic orbits described by Chen et al.
(2009) as opposed to the Kozai effect discussed by Ivanov et al. (2005). This is demonstrated in
the left-hand panel of figure 4.3. The primary reason for this is that apsidal precession in the
non-Keplerian potential destroys the secular Kozai effect for the majority of orbits.

Our rates are lower than those discussed by Chen et al. (2009) largely because we have consid-
ered less steep cusps. This both reduces the number of stars that can be disrupted as the binary
hardens, and increases the orbital timescale at the hardening radius. Both effects reduce the rate of
disruptions. In addition we have considered the binary evolution which Chen et al. (2009) did not,
although this has a smaller effect

To apply our simulations to physical galaxies, we use the fits from Merritt et al. (2009) to the

inner regions of ACS Virgo Cluster galaxies (Coté et al., 2004). For power-law galaxies these give °
re = 22(M1/10*Mg)**° pc. (4.6)

We assume the stars have radius Ro, thus giving
re/re = 4.9 x 1077 (M; /108M)*2 . 4.7)

With these scalings, our simulations for n = 1.25 and g = 0.3 are shown in figure 4.3.

3D. Merritt personal communication. From fitting to figure 12 of Merritt et al. (2009).
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4.3 Observable Tidal Disruptions

The absolute magnitude of an individual disruption has considerable modeling uncertainties and
is likely to depend on many quantities such as the SMBH mass, the SMBH spin and the geometry
of the disruption (Strubbe and Quataert, 2009).

We instead derive a simple empirical estimate of the volume accessible by comparison to Gezari
et al. (2008). Two luminous optical events coincident with UV flares were discovered in ~ 2.9 deg?.
Their spectra and light curves were consistent with TD events, making this their most likely expla-
nation. Their redshifts were z = 0.33 and z = 0.37, giving extinction corrected (but not K-corrected)
absolute g-band magnitudes of —17.7 and —18.9 (Gezari, 2010). Requiring that these two cases be 2
mags brighter than the 25.0 g-band limit of LSST gives maximum redshifts of detection of z = 0.27
and z = 0.43, respectively. The 2 magnitude buffer better ensures a convincing light curve, which
would display the characteristic fast rise and decay of a TD. Based on these numbers we choose
z = 0.35 as the limit for LSST.

There is also only a small range of SMBH masses which needs to be considered. Because SMBHs
of mass greater than 108 M, can’t tidally disrupt stars (equation 4.1, ignoring SMBH spin), and
SMBHs of mass less than 107 M, are significantly less luminous, (particularly if super-Eddington

outflows are neglected), we restrict our analysis to SMBHs with masses between 107-10% M.

4.4 Rates of Single Tidal Disruptions

We now calculate the rate of TDs observable by LSST both for systems with isolated SMBHs and
systems with SMBH binaries.
In the case of isolated SMBHs, the rate of TDs observed by LSST will be approximately

dN
Wfﬁ)gle = foky f mvc(MBH)rtd(MBH) dMgn (4.8)

where fq is the fraction of the sky covered by LSST, I'yq is the rate of TDs per galaxy, V. is the total
co-moving volume over which a TD is observable and dN/dMzgy is the black hole mass function.

We have used the black hole mass function (Aller and Richstone, 2002)

dN MBH - _MBH/M*
— = 4.9
i <L) < =
with the parameters ¢ = 3 x 1071M! Mpc™, M#, = 1.1 X 108M; and a = 0.95 (values derived by
Aller and Richstone, 2002, scaled to Hy = 71 kms™ Mpc™!). The rate of TDs per galaxy is highly
uncertain, and so we parametrize, 'y = y X 1075 yr‘l, scaling to the observationally motivated

constant rate per galaxy of (Donley et al.,, 2002) independent of Mgy. We also assume V. is
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independent of Mgy and is 10.7 Gpc®, corresponding to our redshift limit of z = 0.35 with the
assumption that Hy = 71 kms™ Mpc™'. Using these approximations and fsky = 0.5, the rate of TDs
detected by LSST in galaxies containing isolated SMBHs is predicted to be
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Now consider systems hosting binary SMBHs. The rate of disruptions will be

R = foy f Velbin(M, g, )Rumerge (M1, ) dg dM dt, (4.11)

where Rierge(M1, q) dq dM is the rate of mergers per unit co-moving volume for binary SMBHs with
primary mass between M; and M; + dM; and with mass ratio between ¢ and g + dq. The quantity
f I'bin(M1, g, t) dt is the total number of TDs in a merger and was linearly interpolated/extrapolated
from the simulations in figures 4.1 and 4.2 together with equations (4.6) and (4.7).

Over the narrow range of redshift and primary mass accessible we approximate
dN
Rmerge(Mlz q) - Cd_]th(q) 7 (412)

where we have assumed the mass ratio distribution of SMBH binaries follows the local galaxy
merger mass ratio distribution given by Stewart etal. (2009), F(g) = 47%%(1—¢)*. The normalization
constant C = 0.03 Gyr~! was chosen to reproduce the simulated local merger rate* of SMBH binaries,
with 10’Mg < M; < 103Mg and g > 0.05, of approximately 9 x 10> Mpc™ Gyr™.

Using these approximations, then, if all galaxies have an 1 = 1.25 cusp, we can expect LSST to

detect

d
R(t ) o cfskyc

bin
108Mo 0.5
X dM d dtd—NF( M pin(M t)
1 q M, g binliVl1, g,
10"Mo 0.05
=8 yr!, (4.13)

where we have limited the mass ratio to g < 0.5, since this is the limit of our simulations.

4M. Volonteri personal communication. From data in figure 2 of Volonteri et al. (2009).
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Table 4.1 Summary of rates of tidal disruptions for three current and upcoming transient surveys.
Symbols and calculation are described in the text. The numbers N™% and N™% are for an

single
observation time of fops = 5yr and scale roughly as 2, .
Survey I?;%ahnlgl)t Zim  feky Rgi(rjlzgle/ yr ! Rgfn) [yrt N iﬁ;}:) Nl()IiIIllultl)
PTF 21.0 0.06 02 0.7y 0.02 09x107*y*  0.008
Pan-STARRS” 25.0 035 1073 0.7y 0.02 0.8x107*y%  0.007
LSST 25.0 035 05 300y 8 0.03y2 3
"Medium Deep Survey

Note that the number of galaxies in the enhanced state which occurs for
tenh ~ 10/Q ~ 1.5(M;/108M5)%3 Myr (4.14)
is

Nenn ~ cfskyC

108Mo 0.5
dN
X f dMy f dq[d—]\/hP(q)xlo/Q(Ml)
107M, 0.05
=400. (4.15)

4.5 Rates of Multiple Tidal Disruptions

We now calculate the rate of multiple TDs in systems containing both isolated and binary SMBHs.

In the case of isolated SMBHs, over a period of observing t.ps the total number of TDs will follow
a Poisson distribution with mean x = fops['tq. The probability of observing multiple TDs from a
single galaxy is therefore, P(x) =1 — ™ — xe™.

Then the expected number of isolated SMBHs exhibiting multiple TDs during tops is

108M,
i dN
Niriigiz) = ngsky f mp (tobsrtd) dMBH
10"Mo
~ 0.03)2 (tobs /5 yI)* , (4.16)

where in the final relation we have expanded in the small parameter x = topsI'tg.

Similarly, the expected number of multiple TDs observed from binary SMBHs is

Nl()rir;lulti) = fskyvc fp(rbintobs)Rmerge dMl dt dq . (417)



75

Using the same approximations used in estimating equation (4.13) we find over an observation
time, tohs = Syr, the expected number of close binary SMBHs exhibiting multiple TDs observable
by LSST to be

» 108Mo 0.5

t

NI Ly £ C f dM; f dq
10"Ms 0.05

dN
X f dth(q)P(rbm(Ml/ q, t)tobs)

=3, (4.18)

where P(I'yintobs) was calculated from our simulations together with equations (4.6) and (4.7).
Towards the upper end of the range 10’~10°Mo, Tpintops ~ 0.5 for major mergers. This indicates

that the majority of close SMBH binaries with primaries in the upper end of this range could

potentially be identified using multiple disruptions. Equation (4.18) broadly scales as (fobs/5 yrs)?,

but this is only approximate because x = I'pintobs ~ 0.5 for some systems.

4.6 Discussion

We have estimated the enhanced rate of tidal disruptions (TDs) from SMBH binaries, and shown
that if a system exhibiting multiple TDs is observed then, in our fiducial model, it is ~ 100/y? times
more likely to be a close SMBH binary than an isolated SMBH system. It has also been shown that
the upcoming transient survey LSST is likely to detect several systems with multiple disruptions
during a 5 year observation period.

Once a double TD is detected these galaxies would be expected to have a steady TD rate,
with further events on a human timescale. In the case that y is larger, or it varies significantly
between galaxies, other signatures will likely identify TDs that occurred in binaries. These include
possible spectroscopic signatures, morphology or kinematics indicating a recent major merger, or
interruption of the TD flare on a binary orbital timescale (Liu et al., 2009).

An ancillary conclusion is that, in our fiducial model, approximately 3% of all TDs occur in
hardening binaries. Therefore, all systems containing a TD are potential binary hosts and should
be monitored, either for a second TD or for other evidence of a SMBH binary.

Stone and Loeb (2011) suggested using multiple TDs due to the merged black holes recoil to
identify host galaxies of SMBH mergers observed by LISA. Their period of enhancement is short
enough to not affect our conclusions. Also since LISA will indicate where on the sky (~ 1deg?) the
merger takes place, the high rates discussed here do not effect their conclusions.

The TD rates are largely determined by the number of stars in the central regions of the galaxy,

which, in turn, depends on the cusp profile and the size of the cusp. In this sense, multiple TDs are
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also diagnostic of cusp profiles.

All our numbers scale by the uncertain detection volume, which could be significantly higher
than we have conservatively assumed. Recently van Velzen et al. (2011) found two candidate
disruptions with absolute g-band magnitudes —20.3 and —18.3. If the event with magnitude —20.3
was representative of the higher black hole mass disruptions where our binary-induced disruptions
typically occur, then LSST could detect disruptions of this type to z ~ 0.7 increasing our predicted

rates by approximately an order of magnitude.
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The Increased Rate of Tidal Disruptions, Plunges, and

EMRIs in Supermassive Black Hole Binaries'

Abstract

As discussed in chapter 4 the rate of tidal disruptions from a galactic
nucleus would be greatly increased by the presence of close supermassive
black hole (SMBH) binary. In this chapter we expand on that work.

The simulations, and their assumptions, are described in greater detail
than the cursory description given in chapter 4. Additionally, relativistic
corrections have been added which allow the simulation of extreme mass
ratio inspirals (EMRIs). These corrections are described, and rates of EMRIs
and plunges calculated. We also present an increased variety of simulation

runs, primarily to encompass a greater range of SMBH binary mass ratios.

I This work in progress is as yet unpublished. A modified version of section 5.4 will be submitted in the coming weeks
to MNRAS as part of a paper with authors: Nate Bode and Christopher Wegg in this order. Small sections of this work also
appear in the thesis by Bode (2011), these sections are noted in the text.
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5.1 Introduction

It is now well established that the majority of galaxies harbor a supermassive (> 10° M) black
hole (SMBH) in their center (e.g., Ferrarese and Ford, 2005). In our current hierarchical formation
scenario of galaxy formation, galaxy mergers are also frequent. Since observed galaxies contain
only one SMBH, empirically the merger of galaxies must ultimately result in the merger of their
central SMBHs, even if not all of the aspects of this process are understood (e.g., the ‘final parsec
problem’, Milosavljevi¢ and Merritt, 2003).

In chapter 4 we showed that during the merger process, when the SMBHs form a close binary,
separated by 0.1-1 pc, the rate of tidal disruptions is greatly increased. We also showed that this
increased rate may allow close binary SMBHs to be detected via multiple tidal disruptions from a
single galaxy.

The increased rate of tidal disruptions is due to the increased frequency of close encounters
between stars and the SMBHs. In the case considered in chapter 4 these were main sequence
stars encountering a SMBH with mass < 108 M. In this case a close interaction results in a tidal
disruption. However, if the star was a compact object’, or the SMBH more massive than 108 Mo,
a tidal disruption would not result. In this case the most likely outcome is a plunge, whereby the
star crosses the event horizon of the SMBH without being torn apart by the tidal forces. Instead
the mass of the SMBH is silently increased, without a transient flare. Less frequently the star may
be captured in an elliptical orbit by the SMBH, and lose energy via the emission of gravitational
radiation. This loss of gravitational radiation decreases the semi-major axis of the orbit, and
increases the orbital frequency. Eventually the frequency is increased sufficiently that the emitted
gravitational radiation lies in the band of potential low-frequency gravitational wave detection

missions, such as the proposed Laser Interferometer Space Antenna (LISA), or its successors. These

105M,
T0Mo

extreme mass ratio (typically = ~ 10°) inspirals (EMRIs) are one of the primary sources for
these low-frequency gravitational wave detectors. The typical formation scenario of EMRIs are
that star-star scattering perturbs the orbit of an already eccentric star so that its periapsis is close
to the SMBH. If sufficiently close then the timescale for gravitational wave losses is shorter than
the timescale that perturbations due to star-star scattering can significantly change the periapsis.
At this point an inspiral becomes likely and the star eventually forms an EMRI (e.g., the review by
Amaro-Seoane, 2012).

An initial investigation of the rate of production of EMRIs by binaries was performed by Bode
(2011), using extensions of the work in chapter 4. In this chapter we further extend those calculations

by calculating a greater range of simulations. In particular we extend the range of SMBH mass

ratios beyond the two (g = 0.1, g = 0.3) performed previously to encompass small mass ratios, and

2Throughout we use star to refer to either a compact object (i.e., neutron star, black hole, white dwarf), or conventional
star (e.g., main sequence star).
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mass ratios larger than one, i.e., we consider the cusp of stars around the secondary SMBH. To
elucidate the dynamics, we also perform calculations of the relevant physical processes: The Kozai
effect, precession due to General Relativity (GR) and the non-Keplerian stellar potential, and the
fluctuations in angular momentum on shorter timescales than the secular Kozai effect. The resultant
dynamics caused by the interplay of these processes can be rich and interesting.

This chapter is organized as follows: In section 5.2 we describe the numerical implementation
and code in greater detail than the cursory explanation in chapter 4 or Bode (2011). In section 5.3
we show the results of our expanded parameter space, and apply them to EMRIs in section 5.5.1,
plunges in section 5.5.2, and tidal disruptions in section 5.5.3. Finally we discuss the caveats and

extensions of this work in section 5.6 and conclude in section 5.7.

5.2 Numerical Implementation

5.2.1 Physical Setup

In chapter 1 we discussed the processes that drive the evolution of pairs of SMBH in galactic nuclei,
and briefly summarize the situation here. The aim of this work is to consider the cusp around a
primary supermassive black hole (SMBH) together with a a second inspiraling SMBH and calculate
the number of stars that have close approaches to either SMBH as a result. As described in section
1.4.1, depending on the nature and mass of the star and SMBH, these can result in a tidal disruption,
an EMRY, or in the star silently plunging across the event horizon of the SMBH.

The parameter space of interest is not the final stages of merger where gravitational wave losses
dominate, nor the widely separated pairs of SMBHs® found as AGN pairs. Of greater importance
to stellar encounters are parsec-scale separations. The SMBH pairs are brought to these separations
by exchanging energy with the neighboring stars, via a combination of dynamical friction (weak
scatterings) and ejection (strong scatterings). For each factor of two reduction in the binary SMBH
semi-major axis, the secondary SMBH must scatter a mass of stars approximately equal to its own
mass. Hence when the stellar mass enclosed by the secondary SMBH is approximately equal to
its mass, scatterings become inefficient, and inspiral slows. Under the simplest assumptions of a
spherical galaxy, without gas, and a circular SMBH binary, the gravitational radiation timescale at
this point is longer than a Hubble time, an issue known as the ‘final parsec problem’ (Milosavljevi¢
and Merritt, 2003).

As the SMBHs approach the stalling radius, the stellar density around the secondary increases
and therefore the rate of close interactions resulting in tidal disruptions, EMRIs or plunges also

increases, reaching a maximum just before the stalling radius, where the timescale for inspiral

3These are referred to a pairs as opposed to a binary since, being typically separated by ~ 1 kpc, the SMBHs are not
directly gravitationally bound to each other.
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rapidly increases from O(Myr) to O(Gyr) as the stars responsible for energy loss are ejected, and
further shrinkage of the orbit becomes dependent on stellar relaxation. Since we are not interested
in the slow, relaxation driven phase, we therefore neglect star-star scatterings. For the length of
our simulations these are small perturbations compared to those from the secondary SMBH. This
has the advantage that each star can be evolved separately making the computational problem
embarrassingly parallel.

Both black holes are likely to be surrounded by a cusp of stars. The steepness of this cusp is an
unsettled question. The equilibrium, equipartition, solution is of a steep Bahcall and Wolf (1976)
cusp, whose stellar central density is p o« 27>, The best studied SMBH is that at the center of

-1.5

our galaxy surrounding Sgr A*. This cusp shows a profile closer to p o« ¥™*~, and the timescale

for reaching the Bahcall-Wolf cusp is approximately a Hubble time (e.g. Alexander, 2005; Phinney,

-175 gince it is the

1989). It remains possible, however, that the stellar density cusp does have p o r
visible stars that are observed, and the equilibrium solution would be mass segregated with the
heaviest stars: ~ 10 M, black holes, distributed as p o =17 in the center (Freitag et al., 2006).

To simulate the cusp of stars around the primary SMBH, and the resultant potential, we use
the n-models described in Tremaine et al. (1994). The n-models are equivalent to the models of
Dehnen (1993), but also contain a central SMBH. They are a spherical, isotropic, self-consistent,
potential-density pair, for stars around an SMBH. The 7-models contain a parameter, denoted g,

which represents the ratio between the SMBH mass and the total stellar mass. Throughout we use

u = 0.5, i.e., the stellar mass in the cusp is twice the primary SMBH mass. The stellar density is

(}’) _ GM1T] 1
P = o wir 1+

(5.1)
where M; is the mass of the primary SMBH, and . is the characteristic scale of the cusp. The stellar
mass enclosed is by radius r is

2Mq 11
(re+m)n°

M, (< 1) =4n fo V p(r)dr = (5.2)
Since the n-models are spherical and isotropic, the distribution function can be calculated using
Eddington’s formula (Binney and Tremaine, 2008). The process of assigning positions and velocities
to stars such that they are drawn from this distribution function is described in appendix 5.A.

The secondary SMBH, of mass M, = gM;, inspirals towards the primary SMBH into this cusp.
During this period, provided there is a cusp of stars around the primary, then the rate of inspiral is
dominated by scattering of these stars (Sesana et al., 2008). In principle the path of the secondary
SMBH could be calculated self-consistently, by requiring the total (stellar plus SMBH binary) en-
ergy and angular momentum be conserved. However, for computational efficiency, we instead

pre-calculate the inspiral path adjusting it so that the instead the total energy is approximately
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Figure 5.1 Functional form of the Coulomb logarithm, logA, given in equation (5.5) as a function of
the SMBH binary semi-major axis, R, and the stalling radius, Rgtap-

conserved in representative prior simulations. In this manner the computational problem remains
embarrassingly parallel.
In particular, the SMBH inspiral path we choose is one governed by dynamical friction:
dv _G[M1(1+q)+M*(< 7] v

- = r——,
dt r3 tas

(5.3)

where

o3

e logAq GM; p(<v)’

tas (5.4)

and M, (< 7) is the stellar mass interior to r, and p(< v) is the stellar density at r with velocity less
than v. The functional form of the Coulomb logarithm, logA, was chosen to begin at logA = 5,
smoothly decreasing to zero at a stalling radii interpolated from those calculated by Sesana et al.
(2008). The form was chosen so that the energy was approximately conserved in the lower panel of

figures 4.1 and 4.2. Specifically we use

5
logA = , 5.5
°6% = 10 exp [~Rstan/ (Rstann — R)] — 9 )

where R is the semi-major axis of the SMBH binary and Ry, is the stalling radius. For reference
we plot the functional form of the Coulomb logarithm given by equation (5.5) in figure 5.1.
It is important that the pre-calculated SMBH path is consistent with the integrated test particle

equations of motion. If an inconsistency is present then a particle orbiting close to the primary



82

has a different acceleration towards the secondary. This represents an unphysical dipole-like per-
turbation, which would typically dwarf the smaller physical tidal quadrupole perturbation. An
inconsistency of this type would arise if the stellar potential was chosen as the n-model poten-
tials extending to infinity fixed to the primary, while the secondary orbit was calculated using
equation (5.3) where only the stellar mass interior to the secondaries orbit appears.

This inconsistency could be resolved by forcing the secondary SMBH to effectively orbit a
primary of mass M; + M, tot Where M, 1ot = 2 M is the total stellar mass. However, instead we
choose a different approach: The stellar potential is truncated marginally inside the stalling radius.
This has the result that the potential and stellar density are no longer self-consistent outside the
stalling radius. However, stars outside the stalling radius that closely approach the SMBHs have
typically undergone strong chaotic interactions with the binary. Therefore the stellar potential is
less important in this region than for stars close to the primary which undergo secular interactions,
for which having the correct potential, and therefore precession rate is important.

For reference therefore the potential used is

%-F%nl—l)[( i )”_1_( r )n_l] ifr<randn#1

t Yottt tetr

NG
V(r) = —j; :—2 dr=q% 4 % 1“(11//;1:11//:,) ifr<rrandn=1 (5.6)

<

ifr>r,

where M; is the stellar mass inside the truncation radius, i.e., M; = My (ry).

5.2.2 Symplectic Integrator Implementation

We require an integrator that is stable and accurate enough to produce interesting secular effects,
such as the Lidov-Kozai effect. These effects of interest can occur on timescales much longer than
the stellar orbital period. Naive integration schemes we tried, such as Runge-Kutta, were not
sufficient. Instead, the integration scheme used is that described in Preto and Tremaine (1999). It is
a symplectic integrator with an adaptive time step. The key features for the purposes of this work
are that, with an appropriate choice of step size, the trajectories of orbits in Keplerian potentials
are reproduced exactly, and that the time step can be adjusted to resolve periapsis for the highly
eccentric orbits of interest, while remaining efficient elsewhere.

In this section, we outline our implementation of the symplectic integrator of Preto and Tremaine
(1999) in the context of test particle integrations in the field of a supermassive black hole binary
(SMBHB) plus the (truncated) stellar potential given of equation (5.6). We describe the integrator
in our code units wherein G = 7, = 1, and the primary SMBH mass, M; = u = 0.5.

The Hamiltonian, H, is

H=T) + U, ) (5.7)
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where the kinetic energy, T = 1v?, and U is the potential energy. In barycentric coordinates *

p qu

[t—r| [r—1

U, t) = - —V(r—rl), (5.8)

while in primary-centered coordinates (denoted with primes)

uwp=-2-_2 a1
7 7 Ir/ _ ré| r;

-V, (5.9

where 11 = r1(t) (r2 = r2(t)) is the position of the primary (secondary) at time f, p(qu) is the masses
of the primary (secondary). The third term in equation 5.9 is the indirect term which arises in the
non-inertial primary centered frame as opposed to the center of mass frame. V is the stellar potential
given in equation (5.6). Both primary centered and barycentric equations are implemented in the
code. However, we use the barycentric frame throughout this work. Far from the primary the
indirect term (i.e., center of mass motion) dominates, and in this region it is required to use the
barycentric frame to avoid the barycentric motion dominating. While using primary centered frame
close to the primary would be preferable, however switches between frames are non-symplectic,
and thus we remain in the barycentric frame throughout.

Symplectic integrators typically require a fixed step size to preserve their symplectic properties.
For the highly eccentric orbits considered in this work, this presents serious issues: To resolve
periapsis a short time step is required making the points away from periapsis highly inefficient.
The solution to this problem by Preto and Tremaine (1999) is to extend phase space through the

introduction of a fictitious time variable 7 defined through
dt = g(q, tydt . (5.10)

and then promoting ¢, and its conjugate variable, pp = —H, to be members of phase space. With
a suitable g, fixed symplectic steps in 7, will resolve periapsis, while taking larger steps in ¢, and

remaining computationally efficient elsewhere.

5.2.3 Equations of Motion

The easiest suitable choice of g is a function of the potential energy ¢ = g(U). Choosing this to be a
power law:

gh)=eU™, (5.11)

“Note that in the majority of simulations we modify the potential from o« 1/r, as given in equations 5.8 and 5.9, to
incorporate precession, for the reasons described in section 5.2.6. This is discussed in detail in chapter 6.
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then the new Hamiltonian is (c.f. equation 35 of Preto and Tremaine, 1999):

= 1S (ol 7 - U D) r#1

=€ (log[Te(Vz PO)] - 10g[_u(1‘r t)])r Y= 1 ’

where T,(v, po) = v*/2 + po.

The equations of motion are:

dr €v

E B (02/2 +p0))/ ’
at €

v (2/2+po)
v €

& Uy Y
dpo € 811

dt Uty ot

where in barycentric coordinates,

_ _ 1 r—rn r—n
dU(r,t) ' vi.(r—r11) N vo.(r—17)
o @A+r| r—rP Ir — 13

and in primary centered coordinates

VU(t, t) = —F =

7 r r-n) n
H (1+r)’l]r_3 +q#|:|r—1‘2|3 +r_3] ’

2
dU(r,t) [_ (r—-1r)vy rv, 1.1 01y

ot PR TR T

2 2

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

We choose to use y = 1 for reasons motivated in section 5.2.4. The second-order drift-kick-drift

leapfrog scheme for a constant step size of A7 = 1 in this case are (c.f. equation 37 of Preto and
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Tremaine 1999, 3.21-3.26 of Peter 2008, or 14-19 of Peter 2009):

EV;

B 5.21
i+1/2 i 01-2 n 2]70,1‘ ( )
i+1/2 i 01-2 " 2P0,1‘ ( )

€
=Vt ——— VU(ti1/2, i 5.23
VYT Ui, i) (riyzs ft 2 62
€ IU(ti112, tis12)
Po,i+1 = Po,i + Ut 0, 1) s (; ; adll (5.24)
€V;
L1 = T — (5.25)
Uiy T 2P0
€
tin =timp + 50— (5.26)
Uit 2pojin
which for faster computation can be written explicitly as a leapfrog scheme:
EV;
Fjs = Titjs + i (5.27)
1+ 1 012/2 + po/,‘
b g€ 5.28
i+1/2 = ti-1/2 22 po; (5.28)
€
=Vt ——— VU(ti1/2, i 5.29
ViR =V U(xis1/2, tiv1/2) (Fivaye,tisay2) 529
€ IU(xis1)2, tiv1)2)
Poi+1 = Po,i + L (5.30)

U(I‘l/z, t1/2) ot

5.2.4 Step Size

Preto and Tremaine (1999) show that for a Keplerian potential, U = u/r, then using g = u/r for
the step size, reproduces Keplerian orbits exactly, with only a phase error whose size is O(N~2),
where N is the number of steps per orbit. Close to either the primary or secondary our potential
approaches Keplerian and this motivates the choice y = 1, since the phase error is less important
for our purposes.

Preto and Tremaine (1999) also show that the change in eccentric anomaly, Au, per step, for y =1
in a Keplerian potential, is given by

1 - cosAu

=y 31
€ HnasinAu (5.31)

where n = (u/a®)!/? and a is the semi-major axis. When many steps are taken per orbit Au is small

and this becomes

e~p. (5.32)
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Since the number of steps per orbit is N = 2rt/Au then

_2np 2my (533)
“T Nna ~ NQuja)2 ‘
This motivates our choice of initial step size:
2n
e K (5.34)

- N(Q@2po)/?’

where poo = po(t = 0). This will overestimate the points required close to the secondary whose mass
is only gu, and will underestimate the number of points by u far from the primary where the stellar
potential is significant. We use equation (5.34) with a fiducial N = 20000 to estimate our initial step
size.

While equation (5.34) is an appropriate initial choice for the step size, €, orbits can undergo
significant changes in their orbital timescale over their evolution, particularly the chaotic orbits in
the “outer problem’ discussed by Chen et al. (2009). Our approach is to monitor whether the current
choice of € is appropriate by checking Ar/r at each step for, both the primary and secondary. If this
is larger than 1% then the entire integration is restarted with € reduced by a factor of 4. Additionally,
due to the finite lifespan of the authors, we limit the total number of steps taken to 2 x 10'°. These

stars lie at smaller semi-major axis than those of interest, and are marked as crosses in figure 5.14.

5.2.5 General Relativistic Corrections

In addition to the Newtonian simulations described above, and performed in chapter 4 we have
also incorporated general relativistic corrections. These have the additional advantage that they
allow us to simulate the production of EMRIs in SMBH binaries.

While the ideal simulation method would be to integrate the Teukolsky equation, this is nu-
merically challenging, and computationally intensive. Instead our approach was to integrate using
the symplectic method described above, with general relativistic effects taken into account approx-
imately. We ignore possible spins of the SMBHs. The two effects to be taken into account are
precession of perihelia, and gravitational radiation. In this case, in the absence of perturbations due
to the second SMBH, the the orbital plane remains constant. This provides two constants of motion
(in the Keplerian limit the longitude of the ascending node, €, and the inclination , i), the gravita-
tional radiation provides changes to two others (energy, E, and angular momentum, L), while the
precession changes the argument of periapsis (w). We do not consider relativistic corrections to the
time of periapsis in this work, concentrating instead on the trajectories of the particles.

Note that recently (Naoz et al., 2012) studied the secular evolution of hierarchical triples in the

secular limit to first post-Newtonian order (1PN). They reproduce the Lidov-Kozai effect (section
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5.4.1, Lidov 1961, English translation Lidov 1962, Kozai 1962) but with additional terms in the

Hamiltonian at 1PN. Our simulations are direct integrations, but should produce similar results,
provided that higher order PN-terms, as included in our gravitational wave radiation and pseudo-
Newtonian potential, do not significantly effect the orbit. We do not however include relativistic
precession of the outer binary (which is included by Naoz et al. 2012), since it is negligible compared
to precession in the stellar potential in our case. Similarly, the 1PN interaction term considered by
Naoz et al. (2012) is also negligible, over the length of our simulations, because our outer SMBH

binary orbit has low eccentricity as it stalls (e < 0.05).

5.2.6 General Relativistic Precession

Relativistic precession was taken into account by the use of a pseudo-Newtonian potential. Pseudo-
Newtonian potentials are potentials in Newtonian physics which do not solve Poisson’s equation
(i.e., VU # 4mp). Instead they are chosen to better approximate some physical aspect of the of
the problem at hand. In this case we choose the potential so that the precession of orbits perihelia
matches the general relativistic precession for the nearly parabolic orbits that are typical in this work
(stars of interest have typical eccentricities of > 10~°). The choice of potential is discussed in detail in
chapter 6, and potential B from that chapter is used here. Potential C more accurately reproduces the
precession for orbits close to the marginally bound orbit at specific angular momentum L = 4 GM/c.
However for those low angular momenta the neglected spin is likely to be important since there is
evidence that at least some SMBHs have high spin (Brenneman and Reynolds, 2006). Therefore the
accuracy is unwarranted, even for the marginal additional computational complexity. For reference

this potential is

ue) = -

GM, 1 %) _ GM; ( 1 @) (5.35)

+ +
rn \1-5rq/3rn  3n r2 \1-5rp/3r  3r

where 7y; = GM;/ ¢ and 7; is the distance to the i-th hole. In figure 5.2 we show the precession
of an orbit produced by this potential and show that it matches the GR precession. In figure 5.3
we show a ‘whirling” orbit with angular momentum just above the separatrix angular momentum,

L = 4GM/c.

5.2.7 Gravitational Radiation °

When an object passes close to either hole, higher-order post-Newtonian effects become important.
When the test particle passes within 100 GM/c? of each hole, we calculate an approximate change

in specific energy and angular momentum, AE and AL.

5The text and equations from equation (5.36) to equation (5.39), as well as figure 5.4, also appear in the thesis by Bode
(2011).
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(a) Precession of an orbit in the pseudo-potential of equation (5.35) using the sym-
plectic integrator described in section 5.2. The orbit is in the x-y plane, and the black
hole is placed at x = y = 0. In this figure G = ¢ = 1, however in the text we have
retained these factors for clarity.
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(b) Comparison of the argument of periapsis of figure 5.2(b) as triangles, with the

far-field GR expression where the change in periapsis per orbit of A¢ = Czi’élc_j\fz)

(provided the periapsis is in the far-field, i.e., > GM/c?) as the solid line.

Figure 5.2 Demonstration of an orbit precessing in the pseudo-Newtonian potential in equa-
tion (5.35) using the symplectic integrator described in section 5.2. The orbit has periapsis of
100 GM/c? and apoapsis 300 GM/c>.



Figure 5.3 Demonstration of whirling orbit in the pseudo-Newtonian potential in equation (5.35)
as the black line. The red line is the Newtonian GM/r potential. The green line is potential A from
chapter 6 which matches the relativistic far-field precession, but does not diverge as L — 4 Gm/c.
The particle has an angular momentum L = 4.0001 GM/c.

We then subtract this energy and angular momentum loss at the step closest to periapsis. Since
the changes typically occur slowly compared to the orbital timescale, the results are insensitive to
point in the time at which the adjustment is made. However making the adjustment at the time
step closest to periapsis is the best approximation, since close to periapsis is where the majority of
the gravitational radiation losses occur.

Therefore, at the time step closest to periapsis we give the star a new velocity, o/, calculated
using the new specific energy, E’ = E + AE, and angular momentum, L’ = L + AL, where AE and AL
are the change in specific energy and angular momentum calculated using methods A, B, C or D.

Since the position is unchanged the potential energy is unchanged and therefore
v? =v> +2AE. (5.36)

The orbital plane is invariant for orbits around a Schwarzschild hole and therefore

- L+AL
T L

-

L=7xv. (5.37)

Taking the dot product of this with itself yields

-

2.5 = N2 7207 (5.38)
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Figure 5.4 Plot showing the errors in conservation of reduced angular momentum, L over many
orbital periods (tob), of a high eccentricity (¢ = 1 — 107™) test particle. The red is without the
procedure for calculating the change in 7 at periapsis, the black uses equation (5.39) but with
AL = 0. The secondary has zero mass. The errors are still at the level Ah/h ~ 10712,

where we take positive branch of 70" since this corresponds to the outgoing, post-periapsis solution.
The cross-product 7x L’ yields
o = rlz [ o7-7x '] (5.39)
Equation (5.39) together with (5.36), (5.37) and (5.38) are used to calculate the new velocity v
following a periapsis passage.
In figure 5.4 we show the numerical accuracy of this procedure by considering whether L remains
constant over many orbits. The errors remain small over many orbital timescales.
We implemented four methods of calculating the gravitational wave loss, i.e., the change in
specific energy and angular momentum, AE and AL, to be inserted to equations 5.36 and 5.37. As
described below we adopted the fourth, the more accurate method D, as the method for the majority

of simulations, varying it only to see the effect of the less accurate methods A, B, and C.

A) The approximation that the conic section of the orbit is unchanged and the losses on this path
calculated using the quadrupole approximation (i.e., Peters and Mathews, 1963). The loss in

>
specific energy E, and specific angular momentum L = |L| = | X ] over a conic section in the



91

quadrupole approximation is (Peters, 1964; Peters and Mathews, 1963):

5/2
AE = -8TN2GMe (1 (1 Doy iﬂ) (5.40)
5 p \p 24 96
2
AL = 16T GMe (r—) (1 i Zez) , (5.41)
5 ¢ \p 8

where € = m, /m; is the mass ratio between the test particle and the black hole, p is the semi-latus

rectum given by

2
= == 5.42
P= (5:42)
and e is the eccentricity given by
2p0L2
e=4/1- CME (5.43)

For hyperbolic orbits there are corrections to equations (5.41) and (5.40) (these corrections are
analogous to the errata Gair et al., 2006a). These corrections were calculated, but are not
implemented in the code since they were found to be negligible for the orbits considered here.
The majority of the loss occurs close to the hole and since the eccentricities are large this is a
small correction. This is because the difference between hyperbolic, parabolic and eccentric

close to periapsis of an e ~ 1 orbit is small.

B) The approximation that the orbit is a conic section close to the black hole, but where approximate
orbital elements are calculated from the geodesic equation. This is Peters and Mathews (1963)
with geodesic parameters in the vernacular of Gair et al. (2005). In particular we use equations

(5.40) and (5.41) but replace equations (5.42) and (5.43) with equation (19) of Gair et al. (2005).

C) That the orbit follows the geodesic equation and the gravitational wave loss is calculated from
the quadrupolar approximation. This is the semi-relativistic approximation of Gair et al. (2005).
Equations (5.40) and (5.41) are replaced with equations (33) and (34) of Gair et al. (2005). For

numerical speed the fitting functions were implemented.

D

~

The that the orbit is parabolic and the loss is calculated by fitting functions to integrations of
the Teukolsky equation provided by Gair et al. (2006b). Equations (5.40) and (5.41) are replaced
with with equations (13) and (15) of Gair et al. (2006b)

Either method A, or direct integration of the order 2.5 post-Newtonian approximation (2.5PN)
are the most common approaches (e.g., Merrittetal., 2011a). However method D is the mostaccurate
for the simulations considered here since the orbits are nearly parabolic. In addition methods D
and C capture the divergent behavior as orbits approach the separatrix (L — 4GM/c? for parabolic

orbits). This behavior is analogous to the ‘whirling’ part of zoom-whirl orbits (e.g., Healy et al.,
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2009; Pretorius and Khurana, 2007), and cannot be accurately simulated using PN expansions. Our
simulations are unique in simulations of galactic dynamics in capturing this whirling behavior, using
a combination of our pseudo-Newtonian potential, and gravitational radiation loss calculation.

We use D in this work as our fiducial method of calculating the gravitational radiation loss.
A demonstration of the different timescales for EMRI formation for one particular star is shown
in figure 5.5. The methods of gravitational wave loss are also compared in simulations S13-16,
the results of which are given in table 5.2. As expected we find that D, which typically has the
shortest EMRI timescale, produces the largest number of EMRIs, while A, which has the longest
EMRI timescale, produces the least.

5.2.8 Implementation of Plunges, EMRIs and Tidal Disruptions

At each < 100 GM/c? periapsis passage we also check for plunges directly into the black hole. The
marginally bound orbit is the appropriate limit since the particles lie on highly eccentric orbits. This
has a reduced angular momentum around a Schwarzschild black hole of i = 4GM/c. On periapsis
passages if i < 4 GM/c a direct plunge is assumed to result and the integration is halted.

At each < 100GM/c? periapsis passage we additionally check whether the particles has entered
the LISA frequency band, becoming an EMRI. We do this by checking if the semi-major axis is small
enough that the test particles orbital period is below 10* s, i.e., for an EMRI produced by hole i:

\2/3
GM _ %(ZRGMz) (5.44)

>
Po = a 104 s

A demonstration of this is shown in figure 5.5.

We also keep track of the closest periapsis passage, and the time at which it occurred, as this
allows the simulations to be applied to tidal disruptions. Given the adopted stellar mass and radius,
the tidal disruption radius is calculated. For each star in the simulation we check if it crossed the
tidal disruption radius during the simulation, and if it did, the time at which this occurred is
calculated and recorded. This process is efficiently carried out following the simulation, using the

recorded times and periapsis distances of close passages.

5.2.9 Code Tests and Checks

In this section we describe two of the tests performed to check that the code was reliable and
accurate.

Stars picked from the n-model were evolved forwards in time with a negligible mass secondary
in the full, non-truncated stellar potential. Since the -model should be dynamically stable and not

evolve with time under these conditions, this test checks both that the integration is correct and
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Figure 5.5 Demonstration of the four gravitational radiation approximations implemented for one
star which becomes an EMRI The SMBH has mass 10° M, and the star 10 M. The integration is
terminated, and the star flagged as an EMRI, as it enters the LISA band. Method A is the black line,
method B is red, method C is green, and method D blue. The initial angular momentum of the star
isL =4.9GM/c.

that the initial conditions of the stars are correctly being chosen from the n-model. One such test,
showing that the stellar density is statistically constant, is shown in figure 5.6.

To check that we are accurately able to reproduce the Kozai effect and high eccentricities figure 1
from Ivanov et al. (2005) was reproduced. We compared the result of directly integrating a star with
the result of integrating the secular Kozai equations. The result of this test is shown in figure 5.7.
The oscillations seen in our simulations occur on the timescale of the binary SMBH orbit. They are

real and are discussed in section 5.4.4.
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Figure 5.6 Demonstration that the stellar density for stars picked from n-model cusp is statistically
constant when there is no secondary SMBH. Test shown is for 10,000 stars in an n = 1.25 cusp. The
initial distribution is shown as the solid black line, the distribution after 5 dynamical times is shown
as the red dotted line. Also shown is a cusp that has been rescaled to r. = 0.2 initially (blue dashed
line) and after 5 dynamical times (green dash-dot line). Typically we use code units where r. = 1,
however cusps with r. # 1 are used for the simulations of g > 1. The error bars are the shot noise as
a result of the number of stars in each radial bin.
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Figure 5.7 Demonstration that the code reproduces Kozai oscillations correctly. In the solid black
and green lines we plot the eccentricity and cosi of a star integrated using our code. In the dashed
red and blue lines we plot the eccentricity and cosi of integrations of the secular Kozai equations
(e.g., Bode, 2011; Ivanov et al., 2005) for the same initial conditions. The SMBH mass ratio was
g = 0.1 and had a circular orbit. The semi-major axis ratio between star and SMBH binary was
0.1. The initial conditions we chosen so as to reproduce figure 1 from Ivanov et al. (2005). The
oscillations seen in our simulations occur on the timescale of the binary SMBH orbit. They not
numerical artifacts and are discussed in section 5.4.4.



5.3 Simulations

For this work we have performed a wider range of simulations than either in chapter 4 or Bode
(2011). They are summarized in table 5.1. For simulations with the same mass ratio, but different
M, or GW loss method, it was not necessary to repeat the integration of all stars. These parameters
are only utilized when gravitational radiation losses are taken into account and therefore can be
neglected for stars that never pass within 100GM)/c? of either hole. Therefore stars that pass within
100 GM/¢? of either SMBH are noted, and only these stars are reintegrated.

Since each star is integrated independently the problem is embarrassingly parallel. The code was
therefore written to utilize MPI, with one master node communicating the stars to be integrated to
each worker node as they become available. The simulations were performed on the Northwestern

Fugu cluster®. Each full 10° particle simulation typically requires 10 hours when distributed across

~ 150 cores.

Table 5.1 Summary of simulations performed.

Id* q’ n° Mi/Me My/Ms" 7r./pc® GW Loss Method N/
S1¢ 03 1.25 10° 10 1.7 D 10°
S2 03 1.25 100 1 1.7 D 10°
S3 01 1.25 106 10 1.7 D 106
S4 01 1.25 106 1 1.7 D 106
S5 0.03 1.25 106 10 1.7 D 106
S6 0.03 1.25 106 1 1.7 D 106
S7 06 1.25 106 10 1.7 D 106
S8 06 1.25 106 1 1.7 D 106
S9 10/3 1.25 106 10 1.7 D 106
S10 10/3 1.25 106 1 1.7 D 106
S11 10 1.25 106 10 1.7 D 106
512 10 1.25 10° 1 1.7 D 10°
513 0.3 1.25 10° 10 1.7 None 10°
S14 03 1.25 10° 10 1.7 A 10°
S15 03 1.25 10° 10 1.7 B 10°
S16 03 1.25 10° 10 1.7 C 10°
S17" 03 1.25 10° 10 1.7 D 3x10°

?Unique simulation identification used to cross reference throughout this chapter.

YSMBH mass ratio ¢ = M;/My. The stellar cusp is placed around M; therefore for g > 1 the stellar cusp is around the

secondary.

€Cusp profile, see equation (4.3) for definition. ) = 1.25 corresponds to a Bahcall and Wolf (1976) cusp.

dStellar mass, M4. All stars are assumed to have this mass.
“Radius of the stellar cusp,r, see equation (4.6).

fNumber of stars simulated.
8Fiducial simulation.

" As simulation S1, but with increased number of stars and simulation length.

Simulations 59-12 have SMBH binary mass ratio, g, greater than 1. In this case the stellar cusp

is effectively placed around the secondary. We do not follow the integration of the stars in the cusp

®Partially funded by NSF MRI grant PHY-0619274
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around the more massive SMBH, although these dominate the rate of inspiral in our pre-calculated
SMBH binary path. In simulations with mass ratio 10/3 (511 and S12) we use the SMBH binary
pre-calculated for the ¢ = 0.3 simulations. In simulations with mass ratio 10 we utilize the the
g = 0.1 binary inspiral. The stars must be integrated consistently with the binary evolution (for the
reasons described in section 5.2). From equation (5.3), it follows that for a 4! simulation, the binary

separation and velocity from the g simulation must be increased by a factor

3

[Total g>1 mass]l/3 _ [O.S(q‘1 +1) + Mipnew | (5.45)

Total g < 1 mass 0.5(1+q) + M oig

The new stellar mass in the truncated potential is given by Minew = My (ftnew) Where the new

truncation radius ¢ new is chosen to lie at approximately the Hill radius.

5.4 Dynamics

The dynamics are surprisingly rich and interesting. We demonstrate some of the key aspects in this
section with particular reference to our fiducial simulation S1. Where possible order-of-magnitude
calculations that emphasize physical understanding are given.

To demonstrate that we have captured most of the EMRIs and plunges, in figure 5.8 the number

of events as a function of time is plotted. Time is plotted in our code units of

3
é =3 Cjidl =23x10%yr 1524—]\140 ( 1.;Cpc) . (5.46)

It is clear from the longer period and larger simulation in figure 5.8(b) that, while the rate of
events is not yet zero in figure 5.8(a), we have captured the peak in the rates of EMRIs and plunges.
Note that our numbers of events are a lower limit because we only simulate the OMyr as the SMBH
binary stalls. It is likely the rate of tidal disruptions, EMRIs, and plunges remains higher than the
isolated SMBH rate throughout the possibly OGyr of the SMBH binary’s existence. We outline the

reasons for this in section 5.6.

5.4.1 Lidov-Kozai Effect

The key process in the formation of EMRIs, plunges, and (to a lesser extent) tidal disruptions is
the secular Lidov-Kozai effect (Lidov 1961, English translation Lidov 1962, Kozai 1962). We do not
give a mathematical treatment here 7 instead referring the reader to the extensive literature on the

subject (e.g., Innanen et al. 1997, or Ivanov et al. 2005).

7 Appendix 5.B does derive the Kozai equations, but with the addition of relativistic precession. The orbital plane in
appendix 5.B is different because we do not average over the SMBH binary orbit but, translating this, the Kozai equations
are just equations (5.99)-(5.102) without the GR precession, £~2, term in (5.99).
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(a) The cumulative distribution of plunges and EMRIs as a function of time in
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(b) The cumulative distribution of plunges and EMRIs as a function of time in
simulation S17. This simulation is equivalent to simulation S1 but contains three
times more stars, integrated for a longer period. It was performed to assuage fears
that we had captured only a small fraction of the the total number of EMRIs.

Figure 5.8 The cumulative distribution of plunges (solid line) and EMRIs (dashed line) as a function
of time are plotted on the left-hand axis. The binary separation during the pre-calculated inspiral
path is plotted as the red line on the right-hand axis.
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In the Lidov-Kozai process, stellar orbits around the primary SMBH are perturbed by the
tidal quadrupole perturbation from the secondary SMBH. This process occurs on a long, secular,
timescale and therefore both the stellar and secondary SMBH orbits are averaged over. We place
the SMBH binary orbit in the x-y plane, and so symmetry about the z axis causes the z component
of the stellar angular momentum, L., to be conserved. This holds to quadrupole order even in the
case of an eccentric SMBH binary orbit in the restricted three body case (Naoz et al., 2011).

In figure 5.9 we plot the outcome of simulation S1 for each star as a function of its initial L.
The majority of stars that form EMRIs (gold stars) do indeed have initially low L,. Far from the
secondary those that plunge (green dots), also have initially low L..

We also demonstrate in figure 5.10 that it is not that EMRIs and plunges all come from low
angular momentum, and that L, is ‘special’. Low angular stars would naturally have a close
pericenter distance so this is an important verification.

The timescale of the Lidov-Kozai process is to order unity given by (Chen et al., 2011)

L1
twoz L dt’

(5.47)

where Keplerian specific angular momentum is given by L? = GMppa(1 — ¢2), and the torque due to

the quadrupolar tidal force from the secondary is

dL| = qGMppa’
=[x~ (5.48)
This gives a Kozai timescale of
V1-e¢2 (R
fkoz ~ an (_) Py (549)
Vi—e? (R\*?
- (;) P, (5.50)

where P, is the orbital period of the star, and Py is the orbital period of the SMBH binary. Except for
the V1 —¢2 and a 2/3 factor, this is just the conventional Kozai timescale (e.g., Ivanov et al., 2005).

2 (R)*?
T3 (;) P, (5.51)

We have retained the non-constant factor, V1 —e?, in equation (5.50) since it illustrates that the
timescale for changes is shorter during high-eccentricity periods. We refer to ty,, as the instanta-

neous Kozai timescale to emphasize this difference.
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the range of oscillations on the binary SMBH orbital period discussed in section
544.

Figure 5.9 Outcome for each star in simulation S1. EMRIs are gold stars, plunges green dots.
Other stars are color coded by their distance of closest approach during the simulation. In the
secular approximation L, is conserved and therefore all plunges should come from the region with
|L.| < 4 GM/c which is plotted in black. This region is known as the Kozai wedge. A version of this
figure also appears in Bode (2011).
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Figure 5.10 Distribution of EMRIs and plunges in angular momentum. While many of the plunges
and EMRIs are outside the Kozai wedge where L, < 4 GM/c, they still predominantly come from
low L,.

5.4.2 Apsidal Precession

In the far-field limit general relativity causes the line of apsides to precess each orbit by an angle of
(Weinberg, 1972)
(5.52)

The timescale to precess though 7 radians, upon which the torque due to the SMBH binary

quadrupole, and hence the resultant evolution in L is reversed, is

n c?a(1 —e)

t = — ——P,. 5.53
OOR = 5 Y B oM (5.53)

There is also purely Newtonian precession due to the non-Keplerian stellar potential. This

results in a precession per orbit of (e.g., Merritt et al., 2011b)

V1-e2 My(<a)
1+ Vi-¢& Msn

dwsp ~ =27 (5.54)

and hence orbits precess though 7 radians on a timescale

1+Vi-&
Tp, it VIZE Men o (5.55)

Wsp Vi—e2 Mi(<a)

t¢/5p =
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Note that 0wgr and dwsp have opposite signs, i.e., GR and precession due to the stellar potentials
are in opposite directions, and therefore competing effects. The GR precession however dominates

for high eccentricities (1 — e — 0).

5.4.3 Extreme Apsidal Precession

When the timescales for apsidal precession (e.g., ty cr Or tysp) are shorter than the Kozai timescale,
then the size of the oscillations in L is reduced. This is sometimes referred to as ‘detuning’ the
Kozai mechanism in the literature. In this case there are still oscillations, but their size is typically
reduced by a fraction ~ tyGr/tkoz (OF ~ tysp/tkoz). The mathematical details of this process when
GR precession dominate are described in appendix 5.B. A result is that if a star is delivered to a
high eccentricity, low angular momentum orbit, then the star’s oscillations are damped and it will
remain at high eccentricity. In this case the ‘detuning’ of the Kozai mechanism is an advantage in

the formation of EMRIs.

5.4.4 Fluctuations on the orbital timescale of the SMBH binary

When averaged over the timescale of the binary the component of angular momentum perpendic-
ular to the binary’s orbit is conserved, however on shorter timescales this is not the case. The size
of these fluctuations will be of order

ALy~ =, (5.56)

where the factor 4 reflects, approximately, that this is a quadrupolar force, and hence there are 4

reverses in sign per Py,. Using the previously calculated torque

GMBHQZP GMBH a 3/2
ALy ~ T R? Zb: 4q q(E) P (5:57)
or
AL, 7g {a\3?
e g
C

where L, = YGMBpna is the angular momentum of a circular orbit.
More rigorous calculations of this effect are given in appendix B of Ivanov et al. (2005). The
result which differs only by an order unity factor from equation (5.57), is that, close to the peak in

eccentricity,

= (5.59)

= —— COS Imin
L. 8

AL, 15 ( a )3/ 2
where imin is the minimum inclination, which for high eccentricity orbits will be small.
These oscillations, which result in oscillations in the otherwise conserved L, are particularly

important in the case considered here because of the extreme eccentricities. However they are
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Figure 5.11 Zoom in on one of the peaks in eccentricity from figure 5.7. The black points are the
simulated star, one point plotted at each periapsis passage. The red line is integration of the secular
Kozai equations. The oscillations are due to the orbital period of the binary as the described in
section 5.4.4. The green lines are the range of oscillations predicted by equation (5.59).

always present in the Kozai mechanism, and are often neglected because they do not appear in
the secularly averaged equations. They are the reason for the oscillations seen in figure 5.7. In

figure 5.11 we zoom in on one of the peaks in eccentricity to demonstrate these oscillations.

5.4.5 Stellar Orbital Timescale

The star has discrete periapsis passages. This make the stellar radial orbital period, P4, an important
timescale because, for example, if the angular momentum falls below L = 4 GM/c, a plunge does
not immediately occur. Instead a plunge occurs only if the angular momentum remains below
L = 4GM/c at the next periapsis passage. Between periapsis passages the angular momentum of

the star will undergo a change in angular momentum of typical size

dL qGMBHa2 GMBHq a\3
ALy ~ =Py ~ 3 Pe= — (E) Py (5.60)
or
AL, a\?
=2 (= 61
L. "q(R) ’ (5.61)

which is naturally of order P, /P, smaller than the oscillations on the binary timescale given by

equation 5.57.
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Figure 5.12 Schematic illustration of Hill stability in the x-y plane of the co-rotating frame. Each
sub-figure (a)—(c) represents the allowed region of a star with decreasing Jacobi constant. Stars may
not travel through the gray regions which have 2U < C;. In (a) C; < C; < Cj and a star orbiting
close to the primary must remain orbiting the primary. In (b) C; < C; < C; and so the star may
pass through the L1 Lagrange point to orbit the secondary, but cannot become unbound. In (c)
Cj < G < C; the star may also pass through the L2 Lagrange point to become unbound.

5.4.6 Unbound Stars

In the circular restricted three-body problem the only integral of motion is Jacobi’s constant (e.g.,
Murray and Dermott, 2000). In the non-rotating, barycentric frame (which we work in throughout

this section) this is given by
C; = —2(E-nL,) = 2U — v* + 2nL, . (5.62)

where E is the energy in the barycentric frame, and # is the mean motion of the massive bodies.

The case considered here is not the circular restricted three-body problem: The SMBH binary
both inspirals, and is not circular. However, for the stars of interest, the inspiral is nearly adiabatic
and so the adiabatic invariant semi-major axis of the stars remains nearly constant, and it is a semi-
major axis limit we search for in this section. In addition the SMBH binary stalls with negligible
eccentricity. The resultis that the limit based on the Jacobi constant, Cj, in this section is remarkably
accurate, despite its approximate nature.

At zero velocity C; = 2U, which defines the zero-velocity surface (e.g., Murray and Dermott,
2000). This is a useful relation since a particle cannot travel through regions of space where 2U < C;.
Define the value of the the Jacobi constant at Lagrange point L; to be C;. If C; < C; then a particle
initially orbiting the primary is able to cross L; and orbit the secondary. It will not however be
ejected unless C; < C; and it is able to exit the system across L,. This is illustrated in figure 5.12.

In simulation S1, which has g = 0.3, the positions of L1 and L2 are 0.3791R and 0.4991R from the
secondary, respectively. This gives C; = 5.001GM;/R and C, = 4.627GM; /R.

The Hill stability criterion that C; > C; can be translated to a criterion in semi-major axis, inside

which all stars must remain bound. In the case under consideration, the most stringent stability



105

10000

1000

5
\

= 100
].0 E E :f —
- = a4 ]
1 E vl L L M N | L L Lo =
0.01 0.1 1
a [pc]

Figure 5.13 Demonstration of Hill stability criteria in simulation S1 (g = 0.3). A histogram of all
stars is plotted in black. In orange are those stars that are unbound at the end of the simulation. In
this case the criteria for stability (C; > C;) is a < R = 0.2462Rgtap-

criterion occurs at the SMBH stalling radius, Rgtay1, at which point

GM
"= 1(1 + ‘7) ) (5.63)
Rg)’tall

At any semi-major axis the largest possible L, is the circular orbit with L, = VGMa. Therefore the

largest possible C; at semi-major axis a is

1+
C = G];/h +GM,; ( 3q)a :
stall

(5.64)

Setting this equal to C; and solving for a, gives the radius inside which all orbits must remain
bound:

Rz = 0.2462R a1 - (5.65)

In figure 5.13 we plot a histogram of the stars that become unbound for simulation S1. No stars
with initial semi-major axis less that Ry are unbound at the conclusion of the simulation.
In figure 5.26 in appendix 5.D an example star that becomes unbound is shown. This star

becomes unbound on a secular timescale after undergoing a Kozai oscillation.
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5.4.7 Formation of EMRIs and Plunges

In figure 5.14 we plot the size of the oscillations in L on the star and binary orbital timescale given
by equations (5.61) and (5.57), respectively, and the plunge angular momentum Lpjunge = 4 GM/c.
We also plot lines when the Kozai timescale, ty.,, and the apsidal precession timescales, 4 sp and
ts,Gr, are equal. For smaller semi-major axis than these lines, the Kozai mechanism will be detuned.
The results of the previous section allow the dynamics of the EMRI and plunge formation to be
understood.

At the largest semi-major axes, from ~ Ry outwards, the majority of stars are ejected from the
system, becoming unbound often after chaotic encounters with the secondary. A small fraction of
these may be scattered close enough to either SMBH to plunge instead. A star scattered towards
either SMBH has a larger cross section to plunge rather than form an EMRI, and therefore only a
small fraction of the stars in this region form EMRIs.

Moving inwards from Ry all stars remain bound at the conclusion of the simulation. This is
the region in which the secular Kozai oscillations become important. In this region if L, + AL; <
Lplunge then the there is the possibility that the Kozai oscillations will drive the stars total angular
momentum to Lppunge, and a EMRI or plunge will result.

In the region where L, is a significant fraction of Lpjunge, then stars are more likely to plunge
than form an EMRI, because of the larger cross section for plunges.

However as L. becomes small compared to Lpiunge, stars are slowly perturbed towards the
primary SMBH. Since the angular momenta for EMRI formation lie outside Lpiunge, stars will be
perturbed into this region first and an EMRI will result.

Finally to the left of the tko, = tycr line neither EMRIs nor plunges occur. This is because in
this region, as a star is perturbed to smaller L, the GR precession rate increases precipitously, the
star precesses reversing direction of the perturbing torque, and L increases again. This is referred
to as the Schwarzschild barrier around isolated SMBHs by Merritt et al. (2011b). In that case the
perturber was the torque due to the statistically aspherical stellar distribution, however this effect
will occur when any sufficiently secular perturbation is combined with GR precession.

The result is that there is a “sweet spot” for EMRI formation lying to the right of the tx,, = t,cr
line, where L, < Lpunge + ALy and ALy << Lpjunge. In this region the timescale for GR precession
ts,Gr is also close to the orbital timescale of the SMBH binary, P, making the dynamics especially
complex. The integration of an example star, the red outlined star in figure 5.14, from this region is
shown in figure 5.27 in appendix 5.D.

In appendix 5.C we show equivalent plots for the other simulations in table 5.1.
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Figure 5.14 Results of S1 (g = 0.3, M« = 10) simulation as function of normalized angular momentum
and semi-major axis. Outcomes are shown as function of normalized angular momentum and semi-
major axis along with important delimiting lines (described in section 5.4). Initial L/L; and L./L.
are plotted in the upper and lower panels, respectively. Each star is represented by its outcome: an
EMRI (gold star), a plunge (green dot), becoming unbound (orange dot) or remaining in the cusp
at the conclusion of our simulation (blue dot).
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5.5 Results

A summary of the numbers of EMRIs, plunges and tidal disruptions produced from each simulation

are shown in table 5.2.



Table 5.2 Summary of raw simulation results. Additional parameters for each simulation are described in table 5.1. These are the numbers of each
event produced from our simulations with 10° stars. To scale to physical numbers produced from each merger, the number EMRIs or plunges
should be multiplied by 2/M,. L.e., We predict 2 EMRIs should arise during a SMBH merger with S1 parameters. To scale the TD numbers multiply
by 2M;/10°M,. Caveats regarding the scaling of TDs to primary masses other than 10°M,, are discussed in section 5.5.3.

p b . GW Loss TDs from primary of mass TDs from secondary of mass
d*q" Mi/Mo \pogoq EMRIs Plunges 10°Mo 1}())7Mo Y 1My q10°Ms  q107Mo Y 7105Mo
S19 03 10 D 10 287 427 341 301 4 3 3
S2 0.3 1 D 1 217 369 294 243 3 1 1
S3 0.1 10 D 13 277 451 351 298 3 3 3
S4 0.1 1 D 3 195 362 287 222 1 1 1
S5  0.03 10 D 9 417 695 530 446 4 2 0
S6  0.03 1 D 1 217 420 320 256 4 2 0
S7 0.6 10 D 39 390 605 488 415 16 10 6
S8 0.6 1 D 3 282 512 390 313 6 3 3
S9  10/3 10 D 13 577 856 718 598 61 52 44
510 10/3 1 D 1 400 671 561 469 27 17 15
S11 10 10 D 35 600 1155 933 776 85 69 64
S12 10 1 D 1 482 859 701 581 35 30 30
S13 0.3 10 None - 212 373 292 237 2 1 1
S14 0.3 10 A 2 203 363 275 231 2 1 1
S15 0.3 10 B 5 223 369 285 241 2 1 1
S16 0.3 10 C 3 238 377 294 249 2 1 1
517 0.3 10 D 58 1270 1629 1441 1300 27 24 15

"Unique simulation identification. See table 5.1

YSMBH mass ratio § = M;/Ma. The stellar cusp is placed around M; therefore for g > 1 the stellar cusp is around the
secondary.

Stellar mass, M. All stars are assumed to have this mass.

4Fiducial simulation

¢As S1 but with 3 x 10° stars and an increased simulation time.

60T
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Figure 5.15 Number of EMRIs and plunges produced as a function of SMBH mass ratio, g, in
simulations S1-512. The number of EMRIs produced by the M, = 10 My and M, = 1 M simulations
are plotted in black and red, respectively. The number of plunges produced by the M, = 10 My and
M, = 1M, simulations are plotted in blue and green, respectively.

5.5.1 EMRIs

In figure 5.15 we plot the number of EMRIs produced by the various mass ratios simulated in
S1-512. Here we scale these numbers to estimate the number of EMRIs produced in close binary
SMBHs to redshift z = 1. We first assume that all objects in the cusp are 10 M black holes.
Simulations S7 (g = 0.6) and S11 (g = 10) produce a significantly higher number of EMRIs than
the other simulations. The reason for this is unknown, especially considering the smaller number
produced by S9 (g = 10/3), whose mass ratio lies between these. Instead we conservatively reject
these simulations, assuming the results to be spurious, and will investigate the possibility that they
are real in future work. The remainder of the simulations give a statistically constant number of
EMRIs per simulation of 11 + 2 (including S7 and S11 increases this number to 20 but a number
independent of mass ratio would no longer be appropriate). Scaling this to the 2 x 10° objects in the

2x10° M, CUSP Mass _ .
mass objectsx10¢ objects simulated — 5) we predict 2.2+ 0.4 EMRIs per

cusp (i.e., dividing by TR
merger.

We now wish to calculate an approximate rate of SMBH mergers with one component of mass
1035 — 10%5 Mg, up to redshift 1. We choose this mass range and redshift as appropriate for (opti-

mistic), future space-based, low-frequency gravitational wave detectors.
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Using the black hole mass function (Aller and Richstone, 2002)

dzi% - (ﬁ—ii) Ry (5.66)
with the parameters ¢ = 3 x 10"1M! Mpc ™, My, = 1.1 x 108 M, and a = 0.95 (values derived by
Aller and Richstone, 2002, scaled to Hy = 71 kms™ Mpc_l). Gives the number of SMBHSs of mass
10%5 — —10°5 M, to be 6 x 103 Mpc ™.

Stewart et al. (2009) gives the number of merger rate of these galaxies with mass ratio 0.01 < g <1
to be ~ 0.02 Gyr*(1 +z)?? (which is consistent with observational constraints, e.g., Conselice, 2006).
Assuming the density of black holes over this mass range to be constant, then integrating over
co-moving volume, gives the rate of mergers to redshift 1 to be 0.06 yr~1.

We therefore predict 0.13 yr™! EMRIs per year from SMBHs in the mass range 10°°-10°°M,
merging with less massive counterparts if the cusp was entirely made of 10 M, black holes. We have
also begun simulations with mass ratios larger than 1, i.e., the less-massive SMBH in the frequency
range to which the gravitational wave detector is sensitive. The results of these simulations (S9-12)
are given in table 5.2, and it appears promising that a similar number will be produced through this
channel.

Of course not all members of the cusp will be 10 M, black holes. However the EMRIs produced
in our simulations originate from radii of ~ 0.01 pc (figure 5.14 and appendix 5.C). If the cusp is
mass segregated, it is likely that the majority of objects at this radius will be stellar mass black holes
7.

Interestingly, our simulations containing objects with M, = 1 Mg produce O(1) object. Scaling
this by the 2 X 10° objects in the cusp in this case gives ~ 2 EMRIs per merger. Therefore, if the
objects at ~ 0.01 pc are compact objects of mass 1 My, we also predict a similar rate.

If not all objects at ~ 0.01 pc are compact our results can be scaled to other densities by simply

multiplying by the fraction of objects that are compact.

5.5.2 Plunges

The relatively large numbers of plunges produced from our simulations have little prospect of
observation, since it is likely that for future low-frequency gravitational wave missions, they would
be detectable only from the SMBH in our Galactic center (Hopman et al., 2007).

Instead they silently add only their mass to the SMBH. The mean number of plunges is 425 + 8
from the 10 M simulations, and 299 + 7 from the 1 M, simulations. Scaling these to the number of
objects in the cusp, we predict an increase in mass of (6 — —8.5) X 10° My, or 0.06 — —0.085 per cent
of the SMBH mass.

Of more astrophysical interest is the resultant spin evolution. The change in the dimensionless
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Figure 5.16 Distribution of reduced angular momenta of plunging stars from simulation S1.
spin of the black hole, a, will be given by (e.g., Kesden et al., 2010)

pa=a()~ oo (as - 2 am) (5.67)
where S is the spin of the hole, and M its mass. A plunging orbit has close to zero energy and so
AM is just the rest mass, M, while AS is the angular momentum of the plunging star.

In figure 5.16 we plot the distribution of reduced angular momenta of plunging stars from
simulation S1. From these distributions we see that the (assumed) initially zero spin will make a
random walk as stars plunge. In simulation S1 we predict 58 plunges of stars with mass 10 My and
RMS plunge angular momentum m = 3.0M;. The RMS dimensionless spin at the conclusion of

the simulation is therefore

V(@) ~ \[Nplunge X 2% ”<L2 Z=2x107*, (5.68)

This too small to be astrophysically interesting, however the situation changes if the SMBH was
initially close to having maximum spin. Consider the spin to initially be a1 = 1 -6, with 01 possibly
as small as 0.002, depending on the accretion and merger history of the SMBH (Kesden et al., 2010).
Rewriting equation (5.67)

A (ﬁ - 2%) (5.69)

s M
If the distribution of plunge angular momenta was symmetric, as in simulation S1, then the first

term would again make a small contribution. Neglecting this term and integrating equation (5.69)
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Figure 5.17 Tidal disruption rate as a function of time from simulation S1. The rate is not as
significantly enhanced over the expected quiescent rate of ~ 10~ as the simulations in chapter 4.
This is because of the relatively low-mass 10° M, primary SMBH, and the resultant low-mass stellar
cusp.

then

% - (A%)_z . (5.70)

The increase in mass of 0.6-0.85 per cent due to plunges in our simulations therefore, to first order
in 0, causes the spin to be limited to a < (0.9988-0.9983) — 0;. In fact the first term in equation (5.69)
will make this limit stricter, since retrograde, negative AS plunges, are likely to dominate due to
their larger cross section and magnitude. We therefore predict that recently stalled SMBHs will
not be maximally spinning. SMBHs at merger would also not be maximally spinning, without a

subsequent period of spin evolution.

5.5.3 Tidal Disruptions

The tidal disruption rate from simulation S1 is shown in figure 5.17. The rate is not significantly
enhanced, especially compared to the rates calculated in chapter 4. The reason is that in this chapter
we have concentrated on simulations of lower-mass, 10° My, SMBHs than those considered in
chapter 4. These naturally have cusps containing fewer stars which can be scattered and become
tidal disruptions. We choose to focus on these as these lower mass SMBH's in this chapter because,
if the stars are compact objects as opposed to main sequence stars which could be tidally disrupted,
those are the black holes to which space-based, low-frequency gravitational wave detectors are

expected to be sensitive.
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Unlike the simulations in chapter 4 the simulations here cannot be directly scaled to other SMBH
masses when calculating the tidal disruption rates. This is because the relativistic corrections
introduced an additional scale to the problem: In essence the rate of GR precession at the tidal
disruption radius cannot be varied without rerunning the simulation.

In table 5.2 however, we still scale the simulations in a similar manner to chapter 4 utilizing
equation (4.7). This is because we have rerun the g = 0.3 simulation with a range of SMBH masses:
10°Mo, 3 X 10°Ms, 10’M,, and 3 X 10’M,, and with cusp sizes given by equation (4.7). We found
estimates made in the manner of table 5.2 to be underestimates, in error by less than 35 per cent.
We therefore provide numbers for M; # 10°M,, but they should however be used with caution for

this reason.

5.6 Caveats

Schwarzschild Black Holes: Throughout this work we ignore the effects of black hole spin on stellar
dynamics. This is done for simplicity, since there is increasing evidence that at least some SMBHs
have significant spin (Brenneman and Reynolds, 2006). Apart from very close passages, even in
the presence of spin, the precession will be dominated by the Schwarzschild terms (Merritt, 2010).
Instead the largest effect on the this work would be Lense-Thirring precession of the orbital plane
since, if the BH spin is not aligned with the orbital plane, this would result in non-conservation
of L,. We expect this could therefore increase the rate of EMRIs and plunges since more stars
can potentially undergo Kozai oscillations which result in close BH encounters, and we hope to
investigate this possibility in the future.

Cusp Profile: One of the major factors in determining the rates is the stellar distribution. In
our simulations we use an -model (Tremaine et al., 1994) of a spherical stellar cusp with a central
SMBH to establish the stellar distribution. This is the a self-consistent family of models of a stable
spherical isotropic stellar cusp around an SMBH. In our simulations, we have chosen 1 = 1.25, the
value appropriate for a relaxed stellar cusp. However, there is a complication: the galaxy where
we can best resolve the inner parsec is our own Milky Way, and the visible cusp does not appear
to be relaxed (Yusef-Zadeh et al., 2012). Of course, this raises the question of not only whether
or not stellar cusps are generally relaxed. An alternative interpretation of the lack of a visible
relaxed cusp is that a (Bahcall and Wolf, 1976) cusp is present in the Galactic center, but is ‘dark’
as a result of mass segregation causing the density to be dominated by stellar mass black holes
(Freitag et al., 2006; Preto and Amaro-Seoane, 2010). In addition the cusps around M31 and M32 are
also steep (Lauer et al., 1998), although the dynamics in the nucleus of M31 is complex (Tremaine,
1995). Our rates scale roughly linearly with the number density of stellar mass black holes at about

Retan/10 ~ 0.01 pc, allowing them to easily be rescaled to other cusp profiles. This is also the reason
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Figure 5.18 Stellar mass interior to a given radius normalized to the total stellar mass, My (< 7)/Mxiot.
In black we plot the initial cumulative stellar mass, while in blue we plot the cumulative stellar
mass at the end of the simulation for the g = 0.1, M, = 10 M run, and in red we plot the cumulative
stellar mass at the end of the simulation for the g = 0.3, M, = 10 My run. Note that the initial
conditions for all runs are the same. The only difference between the outcomes of the runs with the
same g but different stellar masses is due to those stars which go within 100 GM; / 2, only a small
fraction of all stars. Thus, the cumulative stellar mass for the runs with M, = 1M are virtually
the same as the 10 My counterparts with the same q. The hatched regions are stars that had not
completed the full simulation within the preset limit of 10'” steps. For reference we also plot the
stalling radii of the secondary as vertical lines. A version of this figure also appears in Bode (2011).

that the assumption of the majority stars being 10 M black holes is valid: While this would naively
result in an unfeasible number of 10 Mg black holes in the cusp, in reality all we are assuming is
that the majority of stars at ~ 0.01 pc where the EMRIs form are 10 M, black holes.

Stellar Interactions: We have not considered relaxation processes such as that due to star-star
scattering. The timescale for relaxation via star-star scattering is approximately 1 Gyr at . (Amaro-
Seoane and Preto, 2011) and is not a strong function of  in the cusp (Alexander, 2005). Because
this is much longer that out simulations we have neglected it. However, this approximation is
not as accurate as might be assumed because the timescale to change angular momentum by of
order itself will be reduced for high-eccentricity orbits to ~ (1 — ¢?)t, (Hopman and Alexander,
2005). Therefore for the highest eccentricity stars in our simulation relaxation could be beginning to
become non-negligible. We expect the inclusion of star-star interactions to increase the numbers of
EMRIs from SMBH binaries over that found in this work since any relaxation increases the number
of stars that can potentially become EMRIs. In particular by the conclusion of our simulations the
rate of EMRIs and plunges has dropped significantly since there are few low L stars remaining.
Relaxation would refill this region of phase, a possibility we hope investigate in the future.

Invariant stellar potential: One inconsistency of our methodology is the assumption that the

stellar potential does not evolve with time, though the stars’ orbits do. To demonstrate the possible
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effect of such an assumption we plot the mass interior to a given radius as a function of radius in
figure 5.18. There the solid black line is the initial distribution given by equation (5.2), the red solid
line is the curve for the g = 0.3 and M, = 10 M, simulation, and the blue solid curve is for the
g = 0.1 and M, =10 M, simulation. The mass of the star has little to no effect on these curves. The
filled region represents stars that required more than 10'° steps to complete the simulation and were
therefore terminated. Most EMRIs originate from ~ 1072 pc and at this radius the mass interior has
not changed significantly, the plunges and EMRIs representing a small fraction of the stellar mass.

Simulation Length We have performed simulations only of length ~ 1 Myr. Although the exact
timescale is uncertain, the SMBH binary is expected to remain stalled for much longer than this.
We expect that the rate of tidal disruptions, EMRIs, and plunges will remain enhanced over their
rate from isolated SMBHs for this entire period. This is because it is only necessary for stars to be
scattered to the L; + AL, < Lpiunge l0ss wedge’ in order to be secularly perturbed close to the SMBH,
as opposed to the much smaller loss cone with |L| < Lpjunge- Simulations of this would require
prescriptions of relaxation to be incorporated to the code. However analytic estimates should be
possible from our present simulations which provide the regions of parameter space from which

tidal disruptions, EMRIs, and plunges result.

5.7 Conclusion

We have performed a range of simulations of the stellar dynamics around SMBH binaries, con-
centrating on calculating the number of EMRIs, plunges and tidal disruptions produced by each
merger. In addition the code used to perform the simulations in chapter 4 and Bode (2011) was
described in greater detail, and the modifications to incorporate general relativistic effects necessary
to simulate the production of EMRIs.

We predict 0.13 yr~! EMRIs per year from SMBHs in the mass range 10>° — —=10°°M,, merging
with less massive counterparts to redshift 1. This number must be scaled by the fraction of compact
objects at 0.01 pc where the majority of the EMRIs in our simulations form. There is therefore reason
to be optimistic that future, space-based, low-frequency, gravitational wave detectors could detect
EMRIs from SMBH binaries. The stalled binary companion SMBH could potentially be inferred
from the EMRI waveform Yunes et al. (2011). This prospect would be very unlikely without the
greatly enhanced rates estimated here and, to date, no convincing SMBH binaries at this separation
have been detected.

In addition we expect a much larger number of objects will plunge directly into the SMBHs.
This will increase their mass by only 0.6 — —0.85 per cent, but could have interesting consequences
in reducing spin of an initially close to maximally spinning hole.

We have also calculated the numbers of tidal disruptions assuming the cusp was composed of
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Sun-like main sequence star. We find for our simulations of 10°M, SMBHs that the rates are only
slightly enhanced over the isolated rates, but have provided rough scalings to other, higher-mass

SMBHs.

Appendix 5.A Picking stars from the 7-Models

Picking positions is straightforward. In code units (which are the same as the units in Tremaine

et al., 1994) the total stellar mass is unity, and the mass interior to radius r is

'
1+

M(<r)=4n fr rzp,](r) dr = (5.71)
0

Therefore, given a uniform random number u = U(0, 1), stars drawn from this radial distribution

can be generated via
ut/n

r=—.
1—ul/n

(5.72)

It is also necessary to pick a velocity for that star. Given a distribution function (&) the number

of stars at r with velocities between v and v + dv is

dp = Anf(E)Pdv = 4nf(E) V2(V(r) — &) dE (5.73)

where & = W — 107 is the relative energy. The relative potential W(r) is given by

1 11 v
W(r) = ) [1 o r)’l‘l] + n#1, (5.74)

—In(1+1/7) + %
where p is the SMBH mass.
The distribution function is calculated using Eddington’s formula (Binney and Tremaine, 2008;

Tremaine et al., 1994)

1 d dp d¥
O = 5575 f = (5.75)
1 d?p 4V
- oms jj T (5.76)

We numerically calculated and tabulated the distribution function using equation (5.76). These

tables were evenly distributed in log & between —4 and 4 with 100 points per decade.
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At the lowest energies (closest to unbound, & — 0) the distribution function becomes

&) - 22 &2 5.77

At the highest energies (most bound to SMBH, & — o) the distribution function becomes

TTF(4 - T]) 8,]_3/2 )

o= 2725235 — 1)

(5.78)

Beyond the extent of the tabulations the approximations in equations (5.77) and (5.78) were used.
A rejection method was used to pick velocities from these distributions (Press et al., 1992).

Equation (5.73) can be written

ZTZ = 4 f(E) V2(¥(r) — &) = 4n V2W (&) V1 - /W (5.79)

and since & is always positive an upper limit is

dpmax
a&

= 42w max f(€). (5.80)

To pick velocities therefore first an energy is picked between 0 and W and the ratio

dp  fE)VI-E[T

dpmax B maXo<g<w f (8)

(5.81)

calculated. A uniform random number U(0, 1) is then picked and compared to this to the ratio. If
less the energy is kept and converted to a velocity. If greater then the energy is rejected and the
process is repeated.

In calculating f(&), motivated by the power law form of equations (5.77) and (5.78), a power law

distribution function over each interval in energy is assumed:
E\"
f&=fe)s) E<e<én, 582)

where the coefficients g; are calculated from the tabulated data via

_ log fin —log fi

4= log&iv1 —log&i

(5.83)

Outside the range of the tabulated data the asymptotic equations (5.77) and (5.78) were used.

Examples of realizations of the resulting velocity distributions are shown in figure 5.19.



119

2500
2000

LT
x.
x,

1500

(29)"2/p dp/cv

1000

x
ok
o

500

0.4 06 08
v/(28)'"?

<
o
o
N
s}

Figure 5.19 Comparison of Monte-Carlo stars within 10% of * = 0.1 (solid line), r = 1 (dotted) and r = 10
(dashed) for n = 1.5 and u = 1 to the expected distribution of velocities from the tabulated values of f(E). A
total of 10° stars were simulated.

Appendix 5.B The ‘Reverse-Kozai Effect’

In section 5.4 we discussed the situation of ‘extreme apsidal precession”: The situation whereby
the precession rate of the star is faster than the orbital period of the binary. In this case Kozai like
oscillations still occur, with with reduced size. These can be thought of in the rotating frame where
the stellar orbital apsis are fixed. In this case this frameitis clear that the Kozai effect remains, but the
SMBH binary is effectively orbiting at the precession rate. We have termed this the ‘reverse-Kozai
effect’. In this section we derive the equations of motion for the star under these circumstances.

In the reverse-Kozai effect considered here the precessional period of the star orbiting the primary
is much shorter than the binaries orbital period. In this case the secondary can be considered as a
stationary perturber to the primaries orbit. The orbital period of the star, and hence its semi-major
axis is also assumed to be much smaller than the secondaries.

Using purely Newtonian gravity the potential in the frame of the primary is

GM GMg . GMgr.r,

r ool R

U) =- -V, (5.84)
where 1, is the position of the secondary which is assumed constant, M(Mg) is the mass’ of the
primary (secondary). The third term in equation (5.84) is the indirect term which arises in the non-

inertial primary centered frame as opposed to the center of mass frame. V is the stellar potential



120

for which we use (Tremaine et al., 1994)

GM it
V) = - 5.85
0= s | ) o
Expanding the second term in equation (5.84) in Legendre polynomials, Pj(x) gives
© )
U(r) = —G—M - GMg Z %P[(COS 0) — Lz cosO|—V(r)
r =0 "2 "2

GM. s
— _G_M _ 1_ GMgq r—P[(COS 0)-V(n), (5.86)

r ik =

where 6 is the angle between the secondary and the star. By assumption r < r; so retaining only

the lowest order quadruple term leaves

GM GMg GMqgr*(3cos®6 —1)
tie) = o 2r3

— V(). (5.87)

Close to the primary the first term dominates producing nearly Keplerian orbits. By assumption
the second term is an unimportant constant while the other terms cause a secular drift in the orbital
elements. To calculate that drift we use perturbation theory following Merritt et al. (2011a). The

perturbing Hamiltonian is therefore
AH = HQ + Hym + Hgr (5.88)

where

_ GMgr*(3cos* 6 - 1)

3
2r2

Hg

(5.89)

Hm = V(r) (5.90)

and Hgr represents GR precession.

Since Hy is a function of radius only it can only perturb the argument of periapsis. By assumption
in the reverse-Kozai effect the precession due to GR dominates and so this term is unimportant and
is ignored here.

Averaging the perturbational Hamiltonian over an orbit

AH = Hq + Hy + Hcr (5.91)
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where

3G*M?

= (1-e)12. (5.92)

Hgr = -

For simplicity GR precession has been included to first PN order. Aligning the z-axis with the

secondary (and thus the orbital elements) then
cos 0 = sini sin(y + w) (5.93)

where i is the inclination, w the argument of periapsis, and i the true anomaly. Averaging over an

unperturbed orbital period, P = 2 G”TSW

1 (T
Ho =5 j; dt Hq (5.94)

changing variables using 1> = (GMa)'/2¢ where (* = 1 — ¢? gives

oM
Ho = —1

27T
= ZP{’rg j; dy * (3 sin? isin2(¢ +w)-1)

_ GMg o 4y -y
~ 2P(GMa)' 2613 Jo ¢(1+ecos¢)4
GMga?

5

[3sin?isin(y + w) - 1]

{662 =10+ 3[5 - 3¢% + 5(£* - 1) cos(2w)] sin? i} . (5.95)
Following Merritt et al. (2011a) we define the dimensionless time, T = vot, where

(5.96)

Vo = Vr
c2a

and v, is the radial frequency given by v, = 4/GM/a3. This gives the dimensionless perturbing

Hamiltonian
AH
AH = ——
vo(GMa)172
= —(1- )2+ Agl? {662 — 10 + 3[5 - 362 + 5(£2 — 1) cos(2w)] sin? i}
=~ + Aq [6£* =10+ 3[5 - 362 + 5(£* — 1) cos(2w)] sin” i} (5.97)
where
A= I (5.98)
°T ueMA” '

For our example star Aq is approximately 10. Note that this is just the usual Kozai perturbing

potential with the addition of a term due to GR precession (e.g., Innanen et al., 1997). There are two
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key differences: i) In the case of Kozai oscillations the orbital reference plane is the orbital plane
of the binary, while here the reference plane is perpendicular to the instantaneous position of the
secondary. i) There is an additional term due to GR precession which dominates the precession
rate for high eccentricities.

Calculating the secular changes in the orbit using this potential gives

dw _ I(AH')
ot It
= (7 + 6Aql {2 + [5 cos(2w) — 3] sin’ i (5.99)
at _ I(AH)
ot dw
= —30Aq(* — 1) sin(2w) sin? i (5.100)
2Q _ JAH)
at ¢,
> > cosi
= 6AQ[5 -3 +5((° -1) cos(2a))]7 (5.101)
at.  IMH)
55 o C 0 (5.102)
For small £ when the GR precession dominates then
do 2 (5.103)
at
If we further assume that changes in ¢ are small then
W=7 (5.104)
€ = () — 15Aq {£)* sin(27/ (€)*) sin? i (5.105)
Q = (Q) +30Aq(1 — )2 sin(27/ (€)*) cos i (5.106)

where (£) is the mean angular momentum over a cycle. The precise meaning of small changes in £
are that we have assumed () > {, — {_ where ¢, and {_ are the maximum and minimum angular

momenta given by
ly — - =15Aq(£)*sin®i (5.107)
Hence for our solution to be valid we require

£y > b, — (- = 15Aq(£)*sin’i (5.108)
- () < (15Agsin?i) (5.109)
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which is satisfied when the GR precession dominates as shown by equation (5.99).

Finally we can rewrite the solution in terms of eccentricity

_ VRK

2

1-e=(1-¢e)—(e; —e_)sinvrxt

where
o _ _6GM @
= 21— VoM
p a3
" 3r, YGM’

er —e- =15Aq (&) sin?i

S 2 304q(Osin’i
2 gc’a*
= i q (1-e)/?sin%i
4 GMR

The period of oscillation is

2n 2, |GM Tp
Prx = — = — \/— =—P,.
RK VRK 3rq asd 3rq *

(5.110)

(5.111)

(5.112)

(5.113)

(5.114)
(5.115)

(5.116)

(5.117)

In figures 5.20 and 5.21 we show an artificial test designed to test the reverse-Kozai effect derived

here, while in figure 5.22 we show an actual simulated star which is undergoing the reverse-Kozai

effect.
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Figure 5.20 Simulation illustrating the reverse-Kozai effect. Parameters used are g = 0.1, , = 1,
a = 0.01, () = 0.001. As expected there are two oscillations over each cycle in w due to the
quadrupole nature of the perturbation. Note the discrete nature of the precession of the argument
of periapsis, w, at each periapsis passage where GR becomes significant.
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Figure 5.21 Simulation as figure 5.20 but over a longer period. As the secondary orbits the inclination
of the test particle’s orbit relative to it changes and this alters the amplitude of the oscillations. The
envelope of the oscillations predicted by equation (5.107) is shown in red.
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Figure 5.22 Star from simulation S1 simulation demonstrating the reverse-Kozai effect. Note the
two oscillations over each cycle in w due to the quadrupole nature of the perturbation. The envelope
of the oscillation predicted by equation (5.107) is shown in blue.

Appendix 5.C Selected Parameter Space Plots
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Figure 5.23 Parameter space plot showing outcomes as function of normalized angular momentum and semi-major axis along with important
delimiting lines (described in section 5.4). Initial L/L, and L,/L. are plotted in the upper and lower panels, respectively. Each star is represented by
its outcome: an EMRI (gold star), a plunge (green dot), becoming unbound (orange dot), reaching the limit of 10'° steps (blue cross) or remaining
in the cusp at the conclusion of our simulation (blue dot).
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Figure 5.24 As figure 5.23 for simulations S5 and S7.
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(a) Results of S9 (g = 10/3, My = 10) simulation.

Figure 5.25 As figure 5.23 for simulations S9 and S11.
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Appendix 5.D Example Integrations of ‘Interesting Stars’
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Figure 5.26 Illustration of a star becoming unbound after a Kozai oscillation. The upper plot shows
the distance between the star and each hole, the primary SMBH in black, and secondary in red. The
lower plot shows the projection onto the x-y plane, in primary centered coordinates, of the stellar
orbit in black, and the secondary SMBH orbit in red. The star has small L, and at peak eccentricity
over a Kozai oscillation this star has an apoapsis which lies close to the secondary. It undergoes a
strong interaction, and is ejected. The peak in eccentricity occurs when L, and L, are small and the
orbit lies in the plane of the secondary, thus the chance of a close secondary encounter during this
period is high.
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Figure 5.27 Example EMRI from simulation S1. In the upper-left we plot a(1 — e) which is a proxy
for periapsis distance, in this plot the event horizon is at 8 M and stars that pass inside 100 M have
the prescription for gravitational radiation losses applied. Kozai oscillations are clearly present
in this plot, appearing as the binary inspirals. The upper-right panel shows the evolution of the
semi-major axis (in black) and the binary separation (in red). Note the decreasing semi-major axis
at the end of the integration as the star becomes an EMRI. The middle panels zoom in on this
EMRI formation region. The left panel plots the stars angular momentum L in black, each periapsis
passage is marked with a cross. In red is the argument of periapsis, plotted on the right axis. The

right-hand middle plot shows the semi-major axis decreasing as an EMRI is formed. The lower-left
panel shows the fractional integration error defined by %4 = @. We choose this representation
of errors since with no integration error then py = —H = —-T — U. Peter (2009) shows that in
Keplerian orbits errors in pg cause the equations of motion to still be Keplerian, but with increased

mass M + OM.
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Pseudo-Newtonian Potentials for Nearly Parabolic Orbits'

Abstract

We describe a pseudo-Newtonian potential which, to within 1% error at
all angular momenta, reproduces the precession due to general relativity
of particles whose specific orbital energy is small compared to ¢? in the
Schwarzschild metric. For bound orbits the constraint of low energy is
equivalent to requiring the apoapsis of a particle to be large compared to
the Schwarzschild radius. Such low-energy orbits are ubiquitous close to
supermassive black holes in galactic nuclei, but the potential is relevant
in any context containing particles on low-energy orbits. Like the more
complex post-Newtonian expressions, the potential correctly reproduces
the precession in the far-field, but also correctly reproduces the position
and magnitude of the logarithmic divergence in precession for low angular
momentum orbits. An additional advantage lies in its simplicity, both in
computation and implementation. We also provide two simpler, but less
accurate potentials, for cases where orbits always remain at large angular
momenta, or when the extra accuracy is not needed. In all of the presented
cases the accuracy in precession in low-energy orbits exceeds that of the
well known potential of Paczyriski and Wiita (1980), which has ~ 30% error

in the precession at all angular momenta.

IThis work was published as Ap], 749, 183 (2012) , arXiv:1202.5336 with Christopher Wegg as the sole author (Wegg,
2012). Reproduced here by permission of the AAS, copyright © (2012).
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Table 6.1 Coefficients for the potentials U(r) = —aM/r — (1 — a)M/(r = Ry) — MR,/ r? (equation 6.1)
described in this work.

Potential a R./M RyM f:%essﬁr;;‘ﬁm D;lvjrfij?at
A 1 — 3 0 No 100%"
B 0 5/3 43 0 Yes <30%
C 2(2+V6) (4v6-9) F(2v6-3) 0 Yes <1%
PW’ 0 2 0 33% Yes 33%

“Does not diverge at h = 4M
bPaczyriski-Wiita

6.1 Introduction

Pseudo-Newtonian potentials that modify the Newtonian gravitational potential have a long his-
tory of use in astrophysics. While general relativity is now well understood in the astrophysics
community, pseudo-Newtonian potentials are still useful in approximating relativistic effects in
simpler and faster Newtonian simulations. The potential of Paczyrski and Wiita (1980) is often
used in the study of accretion onto relativistic objects. In this regime the Paczyniski-Wiita potential
often gives results close to those using full GR since it correctly reproduces the location of the
inner most stable circular orbit (ISCO) and the marginally bound orbit as well as being a good
approximation to the binding energy at the ISCO (for a review see Abramowicz, 2009).

Here we propose a series of Newtonian potentials with a different aim: to correctly reproduce
the precession produced by general relativity in the Schwarzschild metric for test particles whose
apoapsis lies far from the hole, i.e., in the nonrelativistic region. The Paczyniski-Wiita potential has
been used in this context multiple times (e.g., Chen et al., 2011), despite its key properties of closely
reproducing the location and energy of the ISCO being unimportant in this regime. Instead, we
propose alternative potentials that are more accurate and physically relevant for these orbits. We
have used them to simulate galactic dynamics around supermassive black holes (SMBHs) in Bode
and Wegg (2012). The primary concern in that context was to ensure that stars passing close to
the black hole exited along the correct trajectories. These potentials are likely to be useful in other
contexts, motivating the brief presentation here. Throughout this chapter we use geometrized units

where G =c=1.

6.2 Summary of Proposed Potentials

We present three new pseudo-Newtonian potentials in this paper. All of these potentials, and the

potential of Paczynski and Wiita (1980), can be written in the form

aM  (1-a)M MR,
U(r):—T— r—-R, 12

6.1)
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Figure 6.1 Comparison of the precession per orbit produced by the proposed potentials with the GR
expression for parabolic orbits as a function of specific angular momentum, /. The labeled potentials
are described in table 6.1. The GR precession is shown by a solid black line (in the upper panel the
precession produced by potential C lies almost on top of the GR expression). In the lower panel we
plot the fractional error relative to the relativistic precession, defined to be (A — Apcr)/(Apgr —27).
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where the values of the coefficients a, R, and R, for the potentials are summarized in table 6.1. We
choose potentials of this form since the presence of the 1/r? term allows the far-field behavior to
reproduced, while the 1/(r — R,) term allows reproduction of the divergent behavior as the specific
angular momentum approaches 4 M. The resultant precession per orbit is compared to the GR

value in figure 6.1. In what follows we justify these choices.

6.3 Approach To Calculating Proposed Potentials

6.3.1 Precession Due to General Relativity

In general relativity the change in azimuthal angle of a test particle between two consecutive
apoapsides on a geodesic in the Schwarzschild metric is given by (e.g., Equation 25.42 of Misner

etal., 1973)

T+

Adcr = 2f

(E+12 (1 1 oM\ dr
el R (R | =2 (¢2)

where E is the specific energy of the particle without rest mass energy (i.e., E = —po/u — 1 where
u is the particles mass),  is the specific angular momentum (i.e., i = py/u), and r. are the radii of

periapsis (—) and apoapsis (+) given by the two largest roots of the equation

(E+1)2—(1—%)(1+Z—22)=0. 6.3)

For our ‘nearly parabolic orbits’ (E < 1) the precession due to relativity is a function only of the

angular momentum. Unless otherwise noted in this paper we work in the limit that E = 0.

6.3.2 Precession due to Newtonian Central Potential

By comparison, in classical mechanics the change in azimuthal angle for a test particle of any
energy between two consecutive apoapsides in a central potential, U(r), is given by (e.g., Landau

and Lifshitz, 1969)

L ([E-uw 17ar
Aomen =2 [ [W“] dar (649

72 72

r_

where in this case . are given by

2

2(E - U(r)) - rh? =0. (6.5)
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6.3.3 Requirements of Proposed Pseudo-Newtonian Potentials

In principle it is possible to define a pseudo-Newtonian potential, U(r), such that the precession

angles given by equations (6.2) and (6.4) are equal in the limit E <« 1, i.e,,
A¢pcr(h) = ApNewt.(h) - (6.6)

This potential would have the property desired: on returning to large radii, test particles would
have precessed through the correct angle, and be traveling along the correct path with only a time
error. However, we also desire a simple potential for efficient calculation and so instead we seek

potentials that minimize the precession error, 6¢), defined through
0¢p(h) = Apcr(h) — Adpnewt. (1) . 6.7)

We propose three potentials that, in order of complexity, minimize 6¢: A) in the far-field (large
h) ; B) in the far-field and whose precession diverges logarithmically in the same location as GR
(h = 4M); and C) in the far-field, and whose precession diverges logarithmically as h — 4M with

the correct magnitude.

6.4 Proposed Pseudo-Newtonian Potentials

6.4.1 Potential A: Matching The far-field Precession

In this section we consider the behavior of orbits with i > 4M, but we do not require E = 0, only
that E < 1. In this case, inspection of equation (6.3) shows r+ > M and the entire orbit lies in the
far-field.

The change in angle in the far-field in GR can be calculated from equation (6.2) and is well

known to be (e.g., Weinberg, 1972)

67t M?>
2

Apcr(h) =21 + for h>4M. (6.8)

Note that all that is required is a sufficiently distant periapse. It is not required that the orbit have
E=0.

In the far-field we require potentials have the form

M MR,

Uu(r) = —— o). (6.9)

Neglecting the terms O(r~%) and higher, after some algebra, the precession calculated from equa-
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tion (6.4) is

T+

_ 2rya V2 4y
APNewt.(h) = Zf[m] — (6.10)

where 1, = h?/2M, a = —M/2E, and

T =a[li w/l—%(Ry—rh)] . (6.11)

Contour integration gives the integral

R, —a\'?
AdNewt (h) = 270 (1 - )
2nMR,
=21+ T + O(ﬂ/rh) . (612)

Provided that & > M and E < 1, then the final term can be dropped and matching the far-field
precession given by equation (6.8) requires R, = 3M.

When concerned with the far-field precession we therefore propose the pseudo-Newtonian
potential

uer) = —¥ (1 + @) (6.13)

which requires only modest additional computation over the Newtonian expression. Note that
this pseudo-Newtonian potential gives the correct precession for all orbits (parabolic, eccentric, or
hyperbolic), provided that the periapse lies in the far-field. The resultant precession, labeled as
potential A, is plotted in figure 6.1.

Since this potential does not reproduce the divergence as i — 4M this potential performs worse
than the Paczynski-Wiita potential, even for parabolic orbits, when h < 4.8M which corresponds to
periapsis separation of r < 8.5M. For reference i = 4M corresponds to periapsis separation » = 5M

for parabolic orbits in this potential.

6.4.2 Potential B: Logarithmic Divergence As h — 4M

In this section we construct a potential that reproduces the logarithmic divergence of the general
relativistic precession as h — 4M.

First consider a potential of the form

um =--"_ (6.14)
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The precession in this potential for E = 0 is given by

e8]

72 2 4y
Apnewt.(h) =2 f I:—) - 1] —. (6.15)

rp(r — Ry r

r_

The roots of the quadratic form in the integrand can be written as

Fog = %’1[1 + 4 /1- 45"] : (6.16)
so that .
~ m(r—Ry) 17 dr
AdpNewt.(h) = 2f[m] - (6.17)

7p
As 1, — 4Ry, then r, — r; and the integral diverges logarithmically. 7, — 4R, corresponds to

h — V8MR, and the leading order behavior of the integral is

lim A¢newt (h) = —log (h — y8MR,) . (6.18)

1 —ARY

A similar calculation using the GR expression gives a logarithmic divergence as 1 — 4M and

the corresponding expression is
im  Adar(l) = - V2log (h — 4M) . (6.19)

For A¢newt. to diverge at i = 4M, we must have R, = 2M. This is exactly the potential of
Paczynski and Wiita (1980), which therefore diverges at the correct angular momentum. However
comparing equations (6.18) and (6.19), the potential of Paczyrski and Wiita (1980) has the incorrect
magnitude (by a factor of V2) as the angular momentum approaches 4M, and as noted previously,
has incorrect precession in the far-field.

To correct the far-field behavior consider the potential

M MR
- —rzy. (6.20)

u@) = -

The calculation of the precession proceeds in the same manner, but with the roots now given by

rn—R 4R
o=~ y{li 1_7;1—)1(%}. (6.21)

Again, as the roots coincide the integral diverges logarithmically. Requiring that the divergence

occurs as i — 4M and that the potential has the correct far-field limit (i.e., far from the hole the
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expansion is given by equation (6.9) with R, = 3M) gives R, = 5M/3 and R,, = 4M/3. Our proposed
potential which has the correct precession in the far-field and which also logarithmically diverges
as h — 4M is therefore
ue = -~ (%M/?ﬂ +30) (6.22)
The resultant precession, labeled as potential B, is shown in figure 6.1. This is the potential used

in Bode and Wegg (2012). For reference h = 4M corresponds to periapsis separation * = 10M/3 for

parabolic orbits in this potential.

6.4.3 Potential C: Correct Rate Of Logarithmic Divergence As 1 — 4M

The potential proposed in equation equation (6.22), has the correct far-field behavior, and diverges
logarithmically at the correct angular momentum. However, the rate of that divergence is incorrect:

The behavior of the integral as h — 4M is

. B 6
Tim Adwow () = \@ log (h — 4M) , (6.23)
which does not match the GR expression in equation equation (6.19).

An additional term in the potential allows this to rectified. Using a potential of the form

aM (1-aM MR,
e

, (6.24)

enables us to match the three constraints for the three coefficients a, R, and R,. The constraints on
the coefficients are that: 1) in the far-field the precession approaches equation (6.8) (i.e., equation 6.9
with R, = 3M), 2) the integral diverges logarithmically as 1 — 4M, and 3) the rate of divergence as
h — 4M is given by equation equation (6.19). The values of a, R, and R, satisfying these constraints

are

a= %4(2+ \/g) ’
R, =(4V6-9)M, (6.25)

R, = %4(2\/6—3)1\/1.

The precession produced by this “potential C” is compared to the GR expression in figure 6.1. For
reference /1 = 4M corresponds to periapsis separation of 7 = 2( V6 — 1)M for parabolic orbits in this
potential.

This potential produces precession which agrees with GR to within 1% for all orbits where

E < 1, i.e., whose specific orbital energy is small compared to ¢? in the Schwarzschild metric. For
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bound orbits this corresponds to requiring apoapsis be large compared to the Schwarzschild radius

(ry > M).

6.5 Conclusions

We have proposed three pseudo-Newtonian potentials appropriate for ‘nearly parabolic orbits’
(orbital energy, E < 1) around a Schwarzschild black hole. These nearly parabolic orbits correspond
to orbits with large apoapsis compared to the Schwarzschild radius of a central black hole, or mildly
hyperbolic orbits.

For bodies which pass close to the black hole, these potentials accurately reproduce the changes
in the “Newtonian” parts of the trajectories far from the black hole, differing from the exact GR
expression only by a time error. In the far-field the time error as a fraction of the orbital period is
of order 6P/P = O(E) < 1 but diverges as h — 4M like 6P/P = O(E*?*log(h — 4M)). Therefore, for
E < 1, the fractional period error is small outside of an exponentially narrow region in  close to
4M.

The potentials reproduce general relativistic precession with varying degrees of accuracy and
simplicity. Namely, these potentials produce accurate relativistic precession: (Potential A) in the
far-field (equation 6.13); (Potential B) in the far-field and with the logarithmic divergence as h — 4M
(equation 6.22); and (Potential C) in the far-field and with the correct magnitude of logarithmic
divergence as i — 4M (equation 6.24).

The potentials described do not include the effects of spin, or gravitational radiation, which can
be astrophysically important for orbits passing close to the hole. Neither of these effects can be
described by a pseudo-Newtonian potential without the presence of undesirable inseparable terms
including both r and v, and so were not considered in this work. For objects whose mass ratio
with the black hole is sufficiently close to the test particle limit, the effects of gravitational radiation
can be included by subtracting energy and angular momentum at periapsis, for example, using the
results of Gair et al. (2006b).

Close to the black hole these potentials should be interpreted with care since although they
diverge at the correct angular momentum, the r at which this occurs does not correspond to the

Schwarzschild radial coordinate.
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An Analytic Solution to the Fokker Planck Equation in the

Singular Isothermal Sphere'!

Abstract

We consider the relaxation of stars using the Fokker-Planck equation in
a background singular isothermal sphere. Dimensional arguments sug-
gest that a self-similar solution should exist and we derive this solution
analytically. We also present a simple general solution. Many astrophysi-
cal systems display properties approaching the singular isothermal sphere
over some part of their profile, and we expect our solution to be used as
a stepping stone between order of magnitude relaxation arguments and
full N-body simulations. In addition we expect our solution to be of use
in testing the relaxation properties of N-body codes. We discuss the ap-
plicability of the solution to the radial distribution of sub-populations in

Galactic globular clusters.

1A shortened version of this work will be submitted for publication in MNRAS with the following authors: Christopher
Wegg and Sterl Phinney in this order.
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7.1 Introduction

The singular isothermal sphere is the simplest potential-density pair, i.e., the solution of both
equations (1.21) and (1.22). The singular isothermal sphere is reviewed in section 7.3 however in
order to understand the motivation for this work all that is required is that the density declines
everywhere as o« 2. The singular isothermal sphere is therefore scale-free, characterized only by
the density at some fiducial radius (or equivalently the velocity dispersion). Consider then releasing
a number of test stars into the singular isothermal sphere.

A priori we expect some properties from the manor in the which the stellar distribution evolves:

e That there is a characteristic relaxation time at each radius, t.eax. This relaxation time can be

estimated to be (e.g., equation 4-9 of Binney and Tremaine, 2008)

~

stars X feross ~ proX — ~ —=—. (71)

trelax

e Therefore, at a time ¢, inside of a radius yelax = A / %”t, the relaxation time is such that the stars
will have approximately reached equipartition. In the case of equal mass stars the density of

test stars is therefore proportional to that of the field stars: p o r72.

e Since the problem is scale-free we expect a self-similar solution to exist in the variable

72 trelax
Gm t t

(7.2)

These properties are summarized graphically in figure 7.1.

While the problem may appear to be excessively contrived to be of practical use this is not the
case. Globular clusters are well described by King profiles, which are a method of truncating the
(non-singular) lowered isothermal sphere at zero energy and hence making them finite. Therefore
when sufficiently outside the core of the isothermal sphere, and inside the truncation radius, then
the density closely resembles the singular isothermal sphere.

The radial distribution of objects has been used to infer information about the progenitors of
a number of types of objects. For example the radial distribution of blue stragglers has been
investigated on numerous occasions (e.g., Ferraro et al., 2004; Lanzoni et al., 2007a,b; Mapelli et al.,
2006; Salinas et al., 2012) in attempts to determine between the competing formation scenarios of
collisions, or mass transfer in a close binary. In addition the lack of radial distribution of extreme
horizontal branch (EHB) stars by Rich et al. (1997) to argue against a dynamical origin.

In addition we expect the solution, owing to the its simplicity, to be useful in checking the

correctness and accuracy of both Fokker-Planck and N-body codes.
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Figure 7.1 Illustration of the expected manor in which the stellar distribution evolves in a back-
ground of the singular isothermal sphere.

The work most closely related to that contained here is Merritt (2010) who considers 10 M, black
holes as test particles that mass segregate in a background of lighter stars. The difference being that
Merritt (2010) considers the distribution in the potential of a supermassive black hole surrounded

by a Bahcall and Wolf (1976) cusp (p o r~7/4), and is largely a numerical work.

7.2 Derivation of Energy Evolution Equation

Following King (1960) we first derive the evolution of the distribution function (i.e., the Fokker-
Planck equation) in velocity space.

For the calculation of the diffusion coefficients in equations (1.26) and (1.27) we refer the reader
to Rosenbluth et al. (1957). From equation (22) of Rosenbluth et al. (1957), equation (1.25) can be
written in covariant form. Denoting the quantities relating to the field stars with a subscript b, and

those relating to the test stars with subscript 4, then

1
1—‘_1&tfa = _(faTH);y + E(fasw);yv (7‘3)
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where I' = 47G*m? log A and

T(u = h;p Syvzg;pv
wo = 2 [ o

myp

f dv’ f()|5 - 7/

()

Using spherical polar coordinates in velocity space, i.e., ds? = dv?+0v2d6+v? sin® 0d¢?, and assuming

isotropy in both the field star and background star distributions then, f, = f,(v) and f, = f,(v) so

that the only non-vanishing derivatives of the Rosenbluth potentials, f and g, are those with respect

to v. This gives

then

TU
(faT")u
gwv
Svﬁ

(faS* )

= d,h, T =0, T® =0

= 020,(v*fI,h)

= dig, §% = —v739,g, S = —v3sin2 00, g
= S0 =g" =g =8% =36% =0

= —20720y(f,008) + v 2o (fi0?d3Q)

19 f, =029, [— f0?duh + %av (fiv?d2g) - fgavg]

where g and & can be evaluated through

h(@)

8(@)

m,;+m
a hfdv*ffb(z?)w—z?frl

my

00 1
Mg + My, D v g d(cos 0)
2n———— d
T my j(; v f(@)do j:l (02 + 02 = 200’ cos O)1/2
U 72 00
. m, + my |:f do’ v_fb(v/) + f dU,U,fb(U,)]
mb 0 0 v

f v’ fy (oG - o'

) 1
2n f 02 f(v')do’ f (0% + "2 = 200’ cos 0)%d(cos )
0 -1

47 [fv av’ f,(v") (g—: + v’zv) + f‘” av’ f,(v") (%Uz + 0’3)
0 v

(7.4)

(7.5)

(7.6)

(7.7)
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Substituting equations (7.6) and (7.7) into (7.5) gives

anl)y 9, = 02, [% ( [ v’sz(v’)dv’)fa
+ % (fo v f,(0)dv’ + USL v’fh(v’)dv’) QDfﬂ] (7.8)

this equation agrees both with equation 2 of King (1960) and 2.10 of Hénon (1961). In the case
of a spherically symmetric isotropic distribution of test stars then from Jeans theorem then the
distribution function may be written as f;,(¥, 7, t) = f,(E, t). If we define N(E)dE to be the number of

stars with energies in the range E to E + dE then (from equation 4-157 of Binney and Tremaine, 2008)

’/W(E)
N(E) = 167> f r*drof(E) = 4r°p(E) f(E) (7.9)
0
where r,,(E) is the maximum radius a star with energy E can reach, i.e., ®(r,,) = E and where
7 (E)
p(E) =4 f (2E — 20(r))/?rdr (7.10)
0
Taking the time derivative of equation (7.9) gives

ON(E) = 41°p(E)d:f(E) (7.11)

u(E) ma [ °
(4n)3rf rdro'0, [—ﬂ (f v’sz(v’)dv')fu
0 mp \Jo
N 31_0 (j(; v f,(0))dv’ + Usf U’fb(v,)dv,) avfﬂ]
7 (E) m £
0 My \Jo
1
3

Following Hénon (1961), since at ¥ = r,,, , v vanishes, then the integrand of this expression vanishes,

E 0o
f (2E" - 2®)®2 f,(E")dE’ + (2E — 2D)%/2 f ﬁ,(E')dE')aE fu] )
E

D

m(E . .
and at r,, and we are free to swap the for ® gy and de. Also, since f; and f;, are functions of energy

only, we may swap the integrations over r and E’. Defining
4 ’/m(E)
q(E) = 3 f (2E — 20(r))**r*dr (7.12)
0
then, following Cohn (1980), we may write the diffusion equation in flux conservative form 2,

ON(E, t) = - Tr (7.13)

2The total number is obviously conserved when written in this form: J;Not = f INdE = TEIE““_’X, i.e,, the change in
number depends only on the flux F through the endpoints.
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where
FE = —Depdefa — Defa (7.14)
and
m E
D = 16n°T—= f p(E") f»(E")dE’ (7.15)
My Ja(0)
E 0o
Der = 167731"[ f q(E’) fo(E")AE’ + g(E) f fb(E’)dE’]. (7.16)
@(0) E

In the case that f, = f;, (i.e., stars interact with themselves as opposed to a background distribution
function) then this agrees with equations 6 through 8 in Cohn (1980) and 2.29 in Hénon (1961).
Note that the form of the diffusion equation in energy space given by equations (7.13) and (7.14)
could easily be derived directly via the same procedure as the Fokker-Planck in velocity space
(equation 1.25). Calculation of the diffusion coefficients however requires the treatment given

above.

7.3 Singular Isothermal Sphere

We begin by reviewing the properties of the singular isothermal sphere. These properties are
discussed more fully in Binney and Tremaine (2008).
Isothermal spheres have, by definition, a distribution function,

vV _E/o?
folE) = 7(271012)3/26 Elo* (7.17)

Integrating the distribution function over the isotropic velocity gives the number density at position

r.

—D(r) — L1p?
v(r) = ffb(E)d3v = 4nf (27;;12)3/2 exp( (riz 29 )vz dv

= v exp (—(IJ(r)/az) . (7.18)

Utilizing Poisson’s equation (1.22) then,

V20 = 4nGp (7.19)
1d[,dd)
T_ZE {7’ E} = 47TGme (720)

1d rzd(—az logv/v1)
r2 dr

T } =4nGmyv. (7.21)
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The singular isothermal sphere then results from the ansatz, v = Cr™”, which upon substitution
gives

yo?r? = 4nGm,Cr7 . (7.22)

Hence, an isothermal sphere of the form v = Cr™” with y = 2 and C = 1/2nGm, is self-consistent in

the sense that it is a solution of Poisson’s equation generating a potential-density pair:

02
wr) = G (7.23)
(1) = 20%log(r/r1), (7.24)

where 1 is position defined through v(r1) = v1. This solution is known as the singular isothermal

sphere (SIS).

7.3.1 Calculation of Diffusion Coefficients

For the singular isothermal sphere the diffusion coefficients D¢ and Dgg in equations (7.15) and
(7.16) can be readily calculated.
Calculating first the ‘density of states” factor, p(E), from @(r), using equation (7.24),

E/202

14 2
p(E) 4f QE — 4% log(r/ro))2rdr
0 my

E/202

3 E 12 2
81 f: (——log(r/ro)) (r/ro)>d (r/r0) (7.25)

202

—E /20>

substituting x = r/rp and ¢* = xe reduces this to an elementary integral

p(E) = 8r3y°c f e 2712,
0

4 TC o2
=31 /grgae%/b ) (7.26)

Making the same set of substitutions into equation (7.12) gives

9B = \/grga%%/zﬁz , (7.27)

3The factor p(E) is described as the density of states by analogy with solid-state and condensed matter physics since the
number of stars in the interval E to E + dE is dN = 4r®p(E) dE.
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which gives the diffusion coefficients from equations (7.15) and (7.16) as

64 m,

Dp = —— —r?Tvyr3et/? 7.28
E S%mb 17 ( )
64 or 3 2 F20
DEE = —T FV17‘00 e . (7.29)
36
Note that Dg = m’;’;Z Dgg. This can be seen as a manifestation of the fluctuation dissipation

theorem, relating the drift coefficient D, to the diffusion coefficient Dgg. It may be derived by the

knowledge that the equilibrium solution in an isothermal sphere should have form f, = exp (— Z—Z 5)
at which point ¢ = 0 in equation (7.14).
7.3.2 Dimensionless Form of Evolution Equation
If we make the substitutions
2 03
x = et/ T=—, t,= V2n—» ,
r Fvl
_ mg _ w —ER/UZ
R=—, =— , 7.30
mh f 0_3;/? e ( )
then equation (7.13) becomes the dimensionless linear second-order PDE
orw = xR V9, (x217Rg,w) (7.31)
2(1-R
drw = Pw+ %&xw. (7.32)

This is just the diffusion equation with an additional first-order term. Note that the characteristic

timescale,
e 1 or?
= V210—= ————, 7.33
' 'y V2rlog A Gy ( )

is the same, up to an order unity factor, as the relaxation time estimated in equation (7.1).

7.3.3 Steady-State Solution

The steady-state solution must satisfy

x?Rg 1w = C (7.34)
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with solution

_ C 2(R-1)
w = 2(R—1)x +D

¢El” + Dexp (_Em") (7.35)

~f 2(R-1) o2y

So we see that the second term represents a Maxwellian distribution with velocity dispersion :Z—iaz

which is precisely equipartition.
The first term can be better understood by considering the rate of change of the total number of

stars

1Nt 47? f dEp(E)arf(E, t)

f drw(x, T)x*Rdx
0

[xZ(l—R) &xw]:’:

¢

¢

. (7.36)

so whilst the first term conserves stars, for positive C it corresponds to injecting them at infinite
energy at a constant rate, whilst removing them at the same rate from zero energy. The steady state
without injecting stars is therefore the equipartition solution, as expected and anticipated by the

discussion on the fluctuation dissipation theorem in section 7.3.1.

7.3.4 Self-Similar Solution
7.3.4.1 Equal Mass Solution

When the mass ratio is equal (R = m,/m; = 1) then equation (7.32) becomes particularly simple:
orw = d*w. (7.37)

Which in the context of the Fokker-Planck equation is known as a Weiner process (e.g., Risken,
1989), or in other situations as the heat equation. The self-similar solution to this equation is well
known since it is the classic application of the method of Green’s functions. Because the substitution
x = exp(E/20?) was used then equation (7.37) is only valid for x > 0. We use Neumann boundary
conditions at this boundary d,w(x = 0,f) = 0, as well as at x = co. This choice is motivated by
number conservation: With this choice then the flux through the boundary is zero and the number

of stars is conserved. Consider then initial condition w(x, T = 0) = 6(x). The solution is then,

w(x, T) = exp [—%] , (7.38)

1
V4anT
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which is self-similar since it may be written in the form,

2
w(x, T) = h(T)g [Z—T] : (7.39)

Equation (7.39) also gives a self-similar solution in density. The density, p(r), is given by:

1) =4 N 2d 7.40
p(r,t) = 4n j; fodo (7.40)
=47 f(E) y2E — 2(r) dE . (7.41)

O(r)

Then using the self-similar solution equation (7.39) (and for a general mass ratio R)

p(r, 1) = dna ™3 f e ERITy (eE/Zf’Z, ti) \J2E — 402 log r/r dE (7.42)
w/47”’ 3,3 f ~ER/o? [ ]W/ZE 402log r/r dE. (7.43)

E/o? tr

Substituting C = "7  gives
8ty (L \R 5 [ 4tr7C dc
prt) == (5) £ %(%)zg[C] \/IOg 2 TR (7.44)
o 8at (e \R 5 [ )2
-V (3) ’1”[@(;)] (7.45)
where
” ¢ dc
ulf] = fs glc] 10%5CR+1~ (7.46)

Equation (7.45) gives the self-similar solution in density space, given a self-similar solution in the
form of equation (7.39). In figure 7.2(a) we plot the self-similar solution in density space for the
equal mass case (R = 1).

Note that the similarity variable may be written as

t,/ 2 2
_ _(L) _ o - (7.47)
4t \rny 4V2nGmylog A t

which is proportional to the similarity variable in equation (7.2), which we argued must exist via

dimensional arguments.
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gives p oc r~2. This is the asymptotic solution for < r1 VE/E, and is the asymptotic
slope of the solution.
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(b) Massratio R = m,/m;, = 2. In this case the equipartition solution is v oc exp(-2E)
which gives p o ™ for r < 11 Vi/t;.

Figure 7.2 Self-similar solution in density space of stars diffusing in a background of equal mass
stars in a singular isothermal sphere.



152

7.3.4.2 Unequal Mass Solution

Substituting equation (7.39) into equation (7.32) gives
4 1(,, 3 ,
O

where C = x2/4T. The left-hand function is a function of only T, while the right is a function only of

C, and so both must separately be equal to a constant. The total number of stars is given by

Niot = 412 f p(E)f(E)dE
o f 0By dx = VTh(T) f g(Q)dc. (7.49)

For the total number of stars to be conserved by the self-similar solution we therefore require
WT) = 1/VT. As a result both sides of equation (7.48) are equal to —3. The right-hand side of

equation (7.48) results in a differential equation for g:
’’ 3 ’ 1
cg” +[c+ (3 -R)|g + 58=0. (7.50)

This is a second-order ODE known as the confluent hypergeometric differential equation. It has
solution

$© =4 (35 -R-0)+BU(3,5 R ~C) (7.51)

where 1Fi (+; -; -)and U (-, -, -) are the confluent hypergeometric function of the first and second
kinds, respectively. The self-similar solution is plotted in density space in figure 7.2(b). We choose

B = 0 since this term results in an divergent number of stars.

7.3.5 Eigenfunction Expansion

Although we have calculated the self-similar solution which was the motivation for this work, we
also give the solution in terms of an eigenfunction expansion. We provide these since they are easier
to use: One may decompose an initial distribution function into its eigenfunctions which can then
be separately evolved forwards in time.

Using separation of variables on equation (7.32):
w(x, T) = E(x)1(T) (7.52)
gives for 7(T), using —p? as the separation constant,

U =—pt — T~exp(-pT). (7.53)
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Equation (7.32) therefore becomes,

-pE= L, (7.54)

where L is the differential operator,

£=52+2020
X

s (7.55)

Written in this form it is clear that £(x) are the eigenfunctions of L.
L is not a Hermitian operator, however the problem can be transformed to one (e.g., Risken,
1989). Consider,
) =x"Re@) . Lo=x"RLk (7.56)

Then it can be shown £’ is a Hermitian operator and equation (7.54) becomes the eigenfunction

equation,

Ly =—p*y (7.57)
— x*” +[R(1=R) + (Bx)*]y = 0. (7.58)

For equal mass (R = 1) the solution is trivially {» = A sin fx + B cos fx. For R # 1 equation (7.58) this

may be written
0 = x20%(x"12) + 2x0, (x2) + (B2 — (R — 1/2)*)(x"V2y). (7.59)
which is Bessel’s equation with solution

P(x) = 2 (AJr-1/2(Bx) + BYro1/2(Bx)) - (7.60)

The solutions are orthogonal as expected for a Hermitian operator via the closure equation of Bessel

functions:

fo xJa(Bx)]a(B'x) dx = %6(/3 -p). (7.61)

Summarizing the solutions:

xRV2(AJ1jp-r(BX) + BY1)2-r(Bx)) R <3/2
&(x) = { Acosx + Bsin px R=1 (7.62)

xRV2 (AJp-12(BY) + BYr-12(Bx)) R >3/2

where J, and Y, are the Bessel and Neumann functions of order v, respectively.
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The most general solution is therefore

XA LAB) 12w (Bx) + B(B)Y1/2-r(Bx)] exp(=f°T) R <3/2
w(x, T) = j; dB {[A(B) cos Bx + B(B) sin fx] exp(—B>T) R=1 (7.63)

2RV [AB)TR-1/2(Bx) + B(B)Yr-1/2(Bx)| exp(=p°T) R > 3/2

As with the equipartition solution we must calculate the flux at the boundaries in order to choose
the physically relevant solution for the case at hand. We give an example of this for R = 2 below.

The boundary conditions, together with the initial distribution, determine A(f) and B(f).

7.3.6 Example for R =2

Motivated by possible application to blue stragglers we show here an example the use of the

eigenfunction solution for mass ratio R = ;i* = 2. In this case the solution is

wx, T) = fo 4B X2 [A(B)JaBx) + B(B)Ya2(Bx)] exp(—FT) . (7.64)

We also require boundary conditions. We use that the distribution function be zero at some large
x which we denote xm.x. While we do this to eliminate divergences, but it is physically motivated
by the cluster being truncated at the energy corresponding to xmax. We use w(x > Xmax, T) = 0 as
opposed to the (number conserving) boundary condition that the flux go to zero. The physical
reason is that stars may diffuse outwards across Xmax, and then be unbound. This is the same
boundary condition used by the lowered isothermal, or King models (Binney and Tremaine, 2008).
We also require that the flux be zero at some small x which we denote Xmin. Again this is motivated
by lowered isothermal, or King models (Binney and Tremaine, 2008), where the center of the cluster
has a finite potential. Away from the core however this cut-off should not affect the solution beyond
a normalization. This boundary condition is dyw(x = xmin, T) = 0, and corresponds to a Robin (or

third type) boundary condition in &. For R = 2 this is

3¢

Consider the function

u(Anx) = Y3/2(AnXmax)J3/2(AnX) = J3/2(AnXmax) Y3/2(AnX) - (7.66)

As x = Xmax then u — 0, so the outer boundary condition is naturally satisfied. Choosing A, to be
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the n-th largest root of
3 u

+ = 7
2 /\nxmin

0 = (A Xmin) (7.67)

then the inner boundary condition is also satisfied. The solution consistent with the boundary

conditions is therefore

wx, T) = Z A u(Ax) expl—(An/Xmax)?T] - (7.68)

n=1

To calculate the coefficients A, multiply by x~1/2u(A,,x), and integrate from Xmin to Xmax. For the

boundary conditions considered here then (proved in Appendix 7.A)

Xmax 2
f x1t(Ax)o(Ax) dx = 5”1,,1{"“12”‘ W Ay X2+ (7.69)
xminz ’” 9 3 2
2 [u(/\nxmin)u (/\nxmin) - (Z + 2/\nxmin ) u(/\nxmin) ]} s
where 0y, is the Kronecker delta. Therefore
2 X max
A, = oA dx x Pu(Ax)w(x, T = 0) (7.70)
n Xmin
where
Cor = X2t (A Xomas)? + Yo Z[u(/\ o)t (Mo )—(LL)L{(A o )2] (7.71)
n max n-+max min n-+min n4Amin 4 2/\nxmm n-+min . .

Again anticipating possible application to blue stragglers we choose the initial conditions to be
Pa & pp, i.e., f o< exp(—E/0?) and w(x, T = 0) = Cx? with C a normalization constant. We show the
evolution of these initial conditions, calculated via equations (7.68) and (7.70) in figures 7.3 and 7 4.
Because of the choice of boundary condition the equipartition solution is never completely
reached. The equilibrium equipartition solution corresponds to constant w, which due to the
boundary condition w(x = Xmax, T) = O resultsinw — 0 as T — oo, i.e., given sufficient time all the

stars diffuse out of the cluster.

7.4 Numerical Solution

In order to check the analytic solution in the previous section we have also written a code to

numerically solve the spherical isotropic Fokker-Planck equation. Equation (7.13) can be written

1
of = 47_(27;9(]5)(9E(DEE(E)315f+ De(E)f) . (7.72)
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(a) Evolution of the distribution function. As time increases the radius to which
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(b) Evolution of the density. As time increases the radius to which the stars are in
equipartition (p o r2) increases.

Figure 7.3 Evolution of test stars against a background of stars distributed as a singular isothermal

sphere. The mass ratio of test stars to background stars is R = % = 2. The initial conditions are

that the test stars are distributed proportionally to the isothermal sphere, i.e., both are p o« r~2. The
boundary conditions are that flux is conserved at the inner edge, and that the distribution function
is zero at the outer edge. These boundary conditions are introduced to eliminate divergences, and
are physically motivated by the King model.
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(b) Evolution of the density normalized to the initial density, linear scale.

Figure 7.4 As figure 7.3 but with the density normalized to the initial conditions, which are also the

distribution of background stars i.e., p(t = 0) o« p, o 2.
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We choose to make the substitution
D
w(E) = fexp (— f —£ dE) , (7.73)
Dee

since exp (— f g—;dE) is the equilibrium solution, and therefore the evolved variable, w(E), does not

contain the large variations present in f(E). Using equation (7.73) the diffusion equation becomes

Dg
el —fDDTEEdE
Qtw = 74RZP(E)8E(DEE6 8Ew)

= ﬁBE(B(E)&Ew) (7.74)

There are many possible methods of numerically finding solutions to this equation, but the

method of Chang and Cooper (1970) has the desirable feature that the number of stars is conserved,

and is more elegant than naive differencing schemes. For the properties of this differencing scheme,

and proof that the number of stars is conserved, we refer the reader to Chang and Cooper (1970),
and only outline its implementation here.

Denote w(E, t) = w7 where j and 7 are indices defined through E = Ej + jAE, t = nAt. Writing

the flux in energy space as F = Bdgw and representing the time derivative as a forward difference,

and the derivative in energy space as a centered difference gives

1 1 - -
E(w;lﬂ ~w) = m(l‘"m/z -Fiap), (7.75)

where F = F*! + (1 — O)F". Therefore, 6 = 0 represents an explicit differencing scheme, 6 = 1 is
the totally implicit scheme, and 6 = 1/2 is the Crank-Nicolson scheme. The boundary conditions
used at the edge of the computation domain are F_;;; = 0 and Fj,,,,+1/2» = 0 which corresponds to
zero flux of stars through the edge of the computational domain.

The energy derivative contained within the flux is represented as a centered difference, for

example,
B .
= j+1/2 -
Fjvpp = F(w”l — ;) (7.76)
then
w;‘” —w} = CipWin = (Cjrapz + Cra2)@j + CjoapWi (7.77)

where C = %B .

The fully implicit method was implemented since it is guaranteed to be stable, while its analysis
tends to be simpler that the general or even Crank-Nicolson case. The equation to be solved at each
step is

Cj+1/2w7:11 + [1 = (Cjr12 + Cj—l/z)] w;'“ + Cj—1/2w7f11 =wy, (7.78)
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together with the corresponding equations at the boundaries

C1/2w?+1 + [1 - C1/2] wg‘” = wg‘

[1 - CJMAx—l/z] Wit 4+ Chypmrpwft! =l (7.79)

] MAX

This set of implicit equations can be written as
D.w'l =w", (7.80)

where w is the solution and D is a tridiagonal matrix.

The tridiagonal form of D allows the set of implicit Jyax equations to be solved in O(Jpax)
operations provided that D is diagonally dominant (see, e.g., 2.4 of Press et al., 1992). Since C will
be greater than zero for physical diffusion equations then for diagonal dominance it is sufficient to
require

1/2>C]‘+1/2+C]‘_1/2 . (7.81)

For most problems this simply sets a limit on the step size for a given number of grid points. For
especially pathological diffusion coefficients then, if this condition is violated, it is possible to fall
back to a less efficient method for the solution of the implicit equations, and as a last resort the
direct inversion of D.

In figure 7.5 we plot the evolution of a initially narrow distribution in energy, for the equal
mass case (R = 1), using this code. We also evolve the analytic Eigenfunction solution provided by

equation (7.63) and show that they agree.

7.5 Source Terms
Equation (7.13) can be easily be modified to include a source term:
IN(E,t) = —dcFg + S(E), (7.82)

where S(E) is the rate of production of test stars between E and E + dE.
The source term in energy space can be calculated from the production rate in position space by

using a slight variation on Eddington’s formula (Binney and Tremaine, 2008)

s(e) = Vape e | [ | 789

where I is considered to be a function of ® through ®(r).

As an example, in the case of collisions in position space the production rate per unit volume is
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Figure 7.5 Comparison of analytic and numerical solution. The plots show the evolution of an
initially narrow distribution in energy in an equal mass (i.e., R =

iy

oL = 1) background of stars
distributed as the singular isothermal sphere. The solid, dotted, dash—ciot, and dashed lines are the
numerical solutions provided the code described in section 7.4 at times t/t, = 0.05, 0.5, 5 and 50,
respectively. The crosses are the analytic eigenfunction solution described in section 7.3.5.
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given by Binney and Tremaine (2008)

Gm
Toon(r) = 16 Vv(r20R2 (1 ; ﬁ) , (7.84)
*

where R, is the radius at which a merger occurs.

—D/g?

For the isothermal sphere then the density varies as v = vgpe and so the collision rate is

; 2 _ 2,-20/d?
proportional to v* = vge .

This can be converted to energy space easily since this is just
proportional to the original isothermal density with ¢ — ¢/ V2 and so the result of equation (7.83)
must be

S(E) =

16 V2 R3vj
Tt

Gm _2E/q?
- (1+2 )p(E)e %/ (7.85)

02R,

In this case the resultant distribution is already in equilibrium. This is because the merger products
of collisions in a relaxed isotropic population are also relaxed. This also holds for multimass
systems, unequal mass mergers, and non-singular solutions. The only requirement is a Maxwellian

distribution function, and complete merger (i.e., no mass loss).

7.6 Applications

7.6.1 Radial Distribution of Blue Stragglers

Blue stragglers (BSS) are stars that lie on the main sequence in a globular cluster, but beyond the
main sequence turn off. There are two main theories for the origin of blue stragglers: That they
formed via collisions (sometimes denoted COL-BSS), or via mass transfer in a close binary (MT-BSS).

The radial distribution of blue stragglers has been investigated on numerous occasions (e.g.,
Ferraro et al., 2004; Lanzoni et al., 2007a,b; Mapelli et al., 2006; Salinas et al., 2012). These often
show a ‘zone of avoidance” at roughly the radius to which the cluster is relaxed. An example of
this is shown in distribution of blue stragglers shown in figure 7.6. If formed by collisions then it
is difficult for the BSS fraction to rise towards the edge of the cluster. However the distribution is
very suggestive of the R = 2 analytic solution in figure 7.4(a).

Unfortunately the solution here is not directly applicable to any of the previously calculated
BSS distributions. For this solution we require that the density distribution be close to o =2 for a
significant range of radii. Globular clusters tend to be well fit by a lower isothermal sphere (or King
model). These models do approach o« 72, but only when they have a high concentration parameter.
The best fitting King model for 47 Tuc is plotted in figure 7.7. As can be seen in figure 7.7(b) there
is no radial range where the singular isothermal sphere is approached.

Instead for accurate application of this solution the cluster should have a high central con-

centration, ¢ = logt;/ro. These are clusters that have undergone core-collapse (e.g., Binney and



162

ot
=5

o o
w =

Ngss/Nup

e
=

N e

10 100
r [arcsec]

fe=}

(==l

V)
AR R R R RN R
L s 4

1000 10000

Figure 7.6 Blue straggler radial distribution, normalized to the number of horizontal branch stars
for the globular cluster 47 Tuc. From data published in Ferraro et al. (2004).

Tremaine, 2008). Unfortunately it appears none of the globular clusters for which there is radial

BSS distribution data has undergone core collapse.

7.6.2 Application to NGC 6397

The globular cluster NGC 6397 is one of the closest globular clusters at only 2.2 kpc. Itis fit by King
models with high concentration (c ~ 2.47, Meylan and Mayor 1991) indicating that it has undergone
core collapse, and as a result its radial profile closely approximates the singular isothermal sphere.

The central region of NGC6397 was imaged by the Advanced Camera for Surveys Wide Field
Camera (ACS/WFC) camera on the Hubble Space Telescope (HST) over ten visits during 2004 and
2005 (Proposal ID: 10257, PI: Anderson). During each visit four long, ~ 390 s exposures were taken
using the F658N (H,) filter, and two exposures in either F435W (~ B) or F625W (~ r)— one long
(340 s) and one short (~ 10 s). The result is a data-set consisting of 40 long exposures in H,, and
five long and five short exposure in both B and r filters. Despite the changing roll angle of the
observations over the year the central 80" of the cluster are imaged in all exposures.

This data set was searched for He core white dwarfs by Strickler et al. (2009) and 24 strong
candidates identified. Since the primary aim here is to demonstrate the usefulness of the solution
described in this chapter, we do not attempt to produce the exquisite photometry of Strickler
et al. (2009). In that work models were fit to the spatial variation of the PSF in each image
separately. Instead the data consisting of the individual _f1t. fits exposures in each filter were
aligned, cleaned of cosmic rays and bad pixels, and stacked using the Multidrizzle algorithm

(Koekemoer et al., 2003). All images were aligned with sub-pixel precision to the long R-band
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(b) Density of best fitting King model taken from Mclaughlin et al. (2005) compared

to a singular isothermal sphere with ¢ = 9 kms™!.

Figure 7.7 Observational data, best-fitting King model, and singular isothermal sphere profile for
the globular cluster 47 Tuc.
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Figure 7.8 False color image of the core of NGC 6397. The red channel is the stacked 5 X 300s
exposures in the r-band, the green channel is the stacked 40 x 300s exposures in the H,-band, and
the blue channel is the stacked 5 X 300s exposures B-band. All channels are logarithmically scaled.



Figure 7.9 Color-magnitude diagrams of the core of NGC 6397. All objects lie in the central 80"
and are well fit by the PSF (x?/DOF < 2). Objects defined to be white dwarfs are the green points
in the green box in the left-hand panel. Only those showing significant H, absorption in the right
panel are included, which removes the red dots. Also plotted is the cooling model for a 0.6 Mo
white dwarf® at a distance 2.2 kpc. The yellow region are white dwarfs with age < 107 yr, and red
< 10%yr. Objects in the blue box are those defined as main sequence turn off stars. The r-band
begins to saturate at r ~ 17.

#Available from http://www.astro.umontreal.ca/~bergeron/CoolingModels/, uses results from from Holberg and
Bergeron (2006), Kowalski and Saumon (2006), Tremblay et al. (2011) and Bergeron et al. (2011).

image, j92801ckq_flt.fits, before stacking. The images were stacked into five separate stacks
composed of the H, images, and the long and short B and r-band images. The resultant image of
the center of the cluster is shown in figure 7.8.

Photometry was performed using the crowded field PSF fitting package DAOPHOT (Stetson, 1987).
The initial source list provided for the fitting in all bands was taken from running DAOFIND on the
stacked H,, exposure as it was generally deepest, its length (40 x 390s) overcoming the narrowness
of the filter. The resultant color-magnitude diagram is show in figure 7.9. Photometric zero points
are taken from Sirianni et al. (2005).

The radial distribution of white dwarfs identified from their position in this diagram are shown
in figure 7.10.

The velocity dispersion in the inner arcmin is (4.5 + 0.6) kms™! (Meylan and Mayor, 1991).


http://www.astro.umontreal.ca/~bergeron/CoolingModels/
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Figure 7.10 Cumulative distribution of white dwarfs in the center of NGC 6397 are plotted as the
black line. Faint white dwarfs (R > 24) are in blue, bright in (R < 24) red. The distribution of main
sequence turnoff stars are plotted as the green line. The center is assumed to be at 17 : 40 : 42.049”,
—53 : 40 : 28.72” (Strickler et al., 2009). We only plot from 25" outwards since crowding inside this
severely limits the detection of faint white dwarfs.

Outside the core equation (7.33) gives the relaxation time to be,

(7.86)

10 o 1M r?
fr=4x10° yrlogA 45kms! mbe (0.1pe)? ”
At a distance of 2.2 kpc the fiducial radius of 0.1 pc corresponds to 1 arcmin. Even at the at the edge
of the 80" field of figure 7.10 the relaxation time is only 1.8 x 10° yr. Therefore only the red region
of the white dwarf model plotted in figure 7.10 will the solution here be useful. The older white
dwarfs will be relaxed. This is why the radial white dwarf distribution in figure 7.10 is so similar
to the main sequence turn off distribution.
If sufficient young unrelaxed white dwarfs were available it would have been possible to test
the presence of the 3-6 kms™! kick at the white dwarf birth suggested by Davis et al. (2008).
Unfortunately equation (7.86) also suggests the solution presented here cannot readily be applied
to any population in the observed NGC9397. Inside 80" there are only ~ 10 horizontal branch stars
(Strickler et al., 2009), which have a lifetime of ~ 10 yr. Therefore there will not be sufficient stars
to test this solution for any group of objects sufficiently young or short lived to not be relaxed.
From the attempted application to two clusters here the requirements for the applicability of the
solution to be presented can be formed.

First from section 7.6.1 the cluster should be have a high concentration, i.e., core collapsed with
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¢ 2 2.5. Consider then a population with a lifetime or age Ty. For the solution here to be useful,
then the radius to which that population is relaxed should lie in the region where the solution is

applicable. For the stars not be relaxed at the outer edge of the region of applicability we require

10 o 1M, 7
log A5kms™! mp (2pc)?

To < t(r;) =2%x 10%yr (7.87)

where the outer edge of the region of applicability is 7, = min(ry, 7fov), the minimum of the observed
field of view, and the half mass radius (beyond which King models no longer closely approach the
singular isothermal sphere). For the population to be relaxed at the inner edge of applicability we

require

10 o 1M 12
To > H(r) = 5% 10° °o___¢
0> £(ro) yrlog A5kms™t my (0.1 pC)2

(7.88)
where 7. is the core radius.

From these relations we see the reason that the solution could not be applied to NGC 6397 was
that the observed field of view, and therefore r,, was too small. NGC 6397 was selected on the basis
of its nearby distance, however this in fact hampered attempts to apply the solution there. Based
on the requirements, the cluster M15 appears a more promising candidate for the application of

this solution, and there is already data on UV bright objects available (Dieball et al., 2007; Haurberg
et al,, 2010). We plan to investigate application of the solution to M15 in the near future.

Appendix 7.A  Orthogonality Relation

The derivation in this appendix broadly follows (4.31) of Tranter (1968) but with mixed Neumann
and Robin boundary conditions as opposed to purely Neumann.

The function

U =Y, (AnXmax) [y (AnX) = [y (A Xmax) Yo (AnX) (7.89)
satisfies Bessel’s equation
X202 + xdeu + (A2 =) =0. (7.90)
Consider the function
v =Yy (AnXma) [y (AnX) = Jo(AnXmax) Yo (AnX) (7.91)

which satisfies

X220 + xd,0 + (A2 x* =) =0. (7.92)



168

Multiplying equation (7.90) by v/x, equation (7.92) by u/x and subtracting gives

(A%, = A2)xuv = x(ud%v — v9%0) + (U — VOu)

= dy[x(udyv — vdu)] . (7.93)

Integrating from Xmin t0 Xmax

(A%, - 72) xuvdx = x(udyv — VAU (7.94)

Xmin

We are considering the boundary conditions u(x = Xmax) = 0(X = Xmax) = 0 and I, (x"12u) =
dx(xR7Y2y) = 0. Note that d(x®Y/2u)|y=ymin = 0 is the Robin boundary condition
(X = Xomin) + (R - %) @ - 0. (7.95)

Substituting these into the right-hand side of equation (7.94) gives zero. Therefore provided A,, # A,
then fx x’f“‘x xuv = 0. When A,, # A, then u = v and using L'Hospital’s rule

fxuz dx = lim x{u(/\nx)axu(/\mx) - u(/\mx)ax(/\nx)}
—A,

/\m A%ﬂ - /\%
~ lm x Apt(Ap) !’ (Apx) — Ayt Ay )t (A, x)

An—Ay A2, = A2
= lim —ii{/\ U(Apx)tt" (Apx) = Ayu(Apx)u’ (A x)}
B /\m_)/\n ZAVH &/\Wl " " " ! " "

=~ lim [ (1) + XAt (i (A2)
—Anxu’ (Apgx)u’ (Anx)]

Using the boundary conditions #(x = Xmax) = Ix#(X = Xmin) + (R — 1/2)u(X = Xmin)/Xmin = 0 we find

f xu? dx = %u (Arzxmax)2 + mzn [u(/\nxmin)u (AnXmin)—

((R —1/22+ R_—l/z)u(/tnxmin)z] . (7.97)
/\nxmin
Summarizing these results
Xmax x 2
f xu(Amx)o(Apx) dx = 61n,n{ II;X ul(/\nxmax)z"' (7.98)
Xmin

.2 —
At i) = (R = 1/27 + 522

uthtoin?|}

nXmin
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where 0y, is the Kronecker delta.
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