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Abstract

This thesis contains topics related mostly to the dynamics of white dwarfs (chapter 2), the dynamics

of stars around binary super massive black holes (chapters 4, 5 and 6) and dynamics in the singular

isothermal sphere (chapter 7).

In chapter 2 the kinematics of young (< 3 × 108 yr) galactic white dwarfs are investigated. A

relationship between the mass and kinematics of white dwarfs is demonstrated, whereby high-

mass white dwarfs have low velocity dispersion. This is the result of less scattering during the

shorter lifetime of their more massive precursors. The kinematics of the highest-mass white dwarfs

(> 0.95 M⊙) are also investigated, and it is shown that they are consistent with the majority being

formed via single-star evolution from massive progenitor stars.

In chapter 3 it is shown that the coolest, oldest white dwarfs can be identified photometrically

from their unique colors, and five new ultracool white dwarfs are spectroscopically confirmed.

In chapter 4 it is shown that close binary supermassive black holes (SMBHs) should produce

a burst of tidal disruptions of up to 0.1 yr−1 as they form. The quiescent rate is ∼ 10−5 yr−1 per

galaxy, and it is therefore shown that binary SMBHs can potentially be identified via multiple tidal

disruptions from the same system.

In chapter 5 we perform more extensive simulations of the dynamics of stars around binary

SMBHs to better quantify and understand the stellar dynamics. By incorporating general relativistic

corrections, we also investigate the processes undergone by compact remnants orbiting the binary

SMBHs, analyzing both objects that plunge directly into the SMBHs, and those that undergo extreme

mass ratio inspirals (EMRIs). The potential used to mimic general relativistic precession in these

simulations is novel, and more accurate for the type of nearly parabolic orbits considered in this

work: It is described in chapter 6.

In chapter 7 an analytic solution to the manner in which stars diffuse in the background of a

singular isothermal sphere is developed. It is shown a self-similar solution should exist, and this

solution is found.
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1
Introduction

1.1 Overview

In this chapter the background needed to understand the importance of the remainder of the thesis

is introduced. While the chapters in this thesis are somewhat disparate they all relate to galactic

dynamics (chapters 4, 5, 6, and 7), white dwarfs (chapter 3) or both (chapter 2). In addition we

(attempt to) apply the analytic work in chapter 7 to white dwarfs to provide an example of its use,

and calculate the kinematics of the white dwarfs in chapter 3. This is summarized in the Venn

diagram in figure 1.1.

Galactic Dynamics White Dwarfs

Ultracool White Dwarfs :
Chapter 3

White Dwarf
Kinematics vs

Mass :
Chapter 2

Fokker-Planck Equation
in the Singular Isothermal

Sphere : Chapter 7Pseudo-Newtonian
Potential:
Chapter 6

Tidal
Disruptions, EMRIS,

and Plunges from
Binary SMBHs:

Chapter 5

Multiple Tidal
Disruptions From

Binary SMBHs:
Chapter 4

Figure 1.1 Diagrammatic overview of thesis. Chapter 3 contains only a small amount of galactic
dynamics: checking the kinematics of the discovered ultracool white dwarfs. Chapter 7 contains
only a small amount of white dwarf work: applying the analytic solution of the Fokker-Planck to
the dynamics of white dwarfs in globular clusters.
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As background to chapters 2 and 3, methods of identifying white dwarfs are introduced in

section 1.2, and the kinematics of stars in the solar neighborhood in section 1.3. In chapters 4, 5

and 6 the dynamics of stars around supermassive black hole (SMBH) binaries are investigated. The

relevant introductory material is contained in section 1.4, where the relevant scales are discussed in

section 1.4.1, and background on SMBH binaries is contained in section 1.4.2. Chapter 7 contains an

astrophysically motivated analytic solution to the Fokker-Planck equation, for which few analytic

solutions are known. This chapter is more pedagogical, and the necessary background material is

contained within the introduction (section 7.1).
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1.2 White Dwarfs

White dwarfs are the ultimate end state of any star less massive than ∼ 8 M⊙ and as such are

ubiquitous. Despite this they can be difficult to identify, particularly the cool objects that are the

focus in chapter 3. White dwarfs are simplest to identify in clusters where, owing to the common

distance, they are identifiable as being sub-luminous in comparison to their pre-evolved stellar

counterparts. A striking example of this is shown in figure 1.2.
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Figure 1.2 A color-magnitude plot of NGC 6397 imaged using the Advanced Camera for Surveys
(ACS) on the Hubble Space Telescope (HST). The white dwarf cooling sequence is clearly visible
as the sequence of objects ∼ 5 mag fainter than the main sequence. Data taken from Richer et al.
(2007). The cooling sequence in this cluster was examined in detail in Hansen et al. (2007) and the
age of the cluster found to be 11.5 ± 0.5 Gyr (95% confidence limit).

In the field white dwarfs are more challenging to identify. We consider young, hot white dwarfs

in chapter 2, which were identified via their blue colors and so targeted by SDSS for spectroscopic

follow up. However after approximately 1 Gyr (for white dwarf mass MWD = 0.6 M⊙) white dwarfs

cool below ∼ 8000 K and their colors become indistinguishable from the stellar locus of field stars.

This is demonstrated in figure 1.3.

Instead, when the white dwarfs have colors indistinguishable from the stellar locus, the reduced

proper motion has often been utilized to select probable low luminosity objects and therefore
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Figure 1.3 Demonstration of selection of hot white dwarfs in color-color space. In grey are all
stellar objects with from SDSS in a 4 deg2 area of sky that have a shape consistent with the PSF and
‘good’ photometry (see section 3.2). In red are all white dwarfs identified in SDSS DR4 (Eisenstein
et al., 2006). In blue are the sample of DA white dwarfs with Teff > 13000 K whose kinematics were
analyzed in chapter 2. The black line shows the WD atmospheric and cooling model of Bergeron1 for
a white dwarf with mass 0.6 M⊙.

possible white dwarfs. The reduced proper motion is defined as

H ≡ m + 5 logµ + 5 (1.1)

=M + 5 log v⊥ − 3.38 , (1.2)

where m and M are the apparent and absolute magnitudes, respectively, µ is the proper motion in

arc-seconds per year, and v⊥ is the transverse velocity in km s−1. For groups of stars with the same

kinematics the reduced proper motion therefore acts as a proxy, at least statistically, for the absolute

magnitude. A cut is then made in the resulting color-reduced proper motion plot so as to best

exclude the main stellar locus, and the remaining WD candidates targeted for spectroscopy. The

disadvantage of this method is that there is little separation between low-velocity white dwarfs and

high-velocity sub-dwarfs. This can result either in inefficient selection, or a highly biased sample

of high-velocity white dwarfs. This is illustrated in figure 1.4, which shows there is considerable

overlap between high reduced proper motion objects confirmed as white dwarfs, and those that

were instead sub-dwarfs. Finally, attempts have been made to use narrow filters to eliminate this

1Available from http://www.astro.umontreal.ca/~bergeron/CoolingModels/, uses results from from Holberg and
Bergeron (2006), Kowalski and Saumon (2006), Tremblay et al. (2011) and Bergeron et al. (2011)

http://www.astro.umontreal.ca/~bergeron/CoolingModels/
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contamination, however they have not yet been successful (Kilic et al., 2004).

g − i

H
g
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g
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µ
+

5
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V⊥ = 20 km s−1

V⊥ = 40 km s−1

Figure 1.4 Demonstration of selection of hot white dwarfs via reduced proper motion. Blue triangles
are objects selected via their high reduced proper motion and identified as white dwarfs by Kilic
et al. (2006). Red square are were also selected via their high reduced proper motion but are sub-
dwarfs. The black lines shows the WD atmospheric model of Bergeron for a 0.6 M⊙ white dwarf
at transverse velocities of 20 km s−1 and 40 km s−1. In grey are all stellar objects with from SDSS in
a 4 deg2 area of sky that have a shape consistent with the PSF and ‘good’ photometry (see section
3.2).

The interest in the coolest white dwarfs are that they represent the remnants of the earliest

populations, for all stars with initial mass 0.8 M⊙ . M . 8 M⊙. Work has been performed on the

luminosity function of white dwarfs, and the age of the disk estimated from luminosity of the

faintest coolest white dwarfs (e.g., Leggett et al., 1998, find 8.5 ± 1.5 Gyr for the age of the disk).

In addition they represent remnants of a large fraction of stars, both by number and stellar mass.

Their detection and presence in the halo2 could therefore shed light on the low-mass end of early

stellar populations.

In chapter 3 we show that the coolest, oldest white dwarfs can be identified purely photomet-

rically via their unique colors. This can anticipated by the white dwarf models moving out of the

stellar locus as the white dwarf cools below ∼ 4000 K in figure 1.3.

2In addition Oppenheimer et al. (2001) found what appeared to be an excess of cool white dwarfs showing Halo
kinematics. It was claimed that this could represent significant component of the galactic dark matter budget which briefly
ignited great interest.
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1.3 Local Kinematics

In chapter 2 we investigate the relationship between the kinematics of white dwarfs and their mass.

The samples of white dwarfs we investigate are all in the solar neighborhood. Therefore here we

briefly introduce the kinematics of stars in the local neighborhood. In figure 1.5 we plot the mean

velocity and dispersion of stars in the solar neighborhood as a function of age.
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Figure 1.5 Dispersion (left panels) and mean velocity (right panels) of stars in the solar neighborhood
as a function of age. U is in the direction of rotation about the galactic center, V is directed towards
the galactic center, and W is towards the north galactic pole. Data is taken from the recalibrated
Geneva Copenhagen survey of nearby F and G dwarf stars (Holmberg et al., 2007; Nordstrom et al.,
2004). Only those stars whose ages are reliably determined, with formal error less than 20 per cent,
are plotted.

In the local neighborhood the vast majority of stars are members of the disk, as is the Sun. As a

result the majority of local stars have velocities around the galactic center close to the circular velocity

of∼ 200 km s−1. The sun has a peculiar velocity of (U⊙,V⊙,W⊙) = (10.0±0.4, 5.3±0.6, 7.2±0.4) km s−1

(Dehnen and Binney, 1998). The U and W solar motions are visible as the mean 〈U〉 and 〈W〉 in

figure 1.5. Measurement of V⊙ is complicated by asymmetric drift.

Detailed quantitative understanding of asymmetric drift can be found from the Jeans Equation
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in cylindrical coordinates (e.g., Binney and Tremaine, 2008). However the majority of the effect

can be simply understood: As the velocity dispersion is increased from zero, stars in the solar

neighborhood have orbits with increasing eccentricities. However, because the density of stars

increases inward, stars in the solar neighborhood are more likely to be close to apoapsis than

periapsis. A star close to apoapsis will have lower velocity in the direction of galactic rotation than

the Solar velocity, which has an orbit close to a circular. Therefore a group of stars with increased

velocity dispersion has more negative 〈V〉. Empirically this relationship is (Dehnen and Binney,

1998)

〈V〉 = −
σ2

U

(80 ± 5) km s−1
. (1.3)

The asymmetric drift can clearly be seen in middle right panel of figure 1.5. Extrapolating 〈V〉
to zero dispersion gives the solar velocity V⊙ = (5.3± 0.6) km s−1 (Dehnen and Binney, 1998).

Also shown in figure 1.5 is the increase in velocity dispersion over time, known as disk heating.

Stars are initially formed with dispersion of ∼ 10 km s−1, and are scattered over their lifetime to

higher velocities. These scattering mechanisms may include molecular clouds, spiral arms, merging

satellite galaxies, dark matter substructure or some combination of these (Binney and Tremaine,

2008).

In chapter 2 we investigate the relationship between the local kinematics of newly formed white

dwarfs and their mass. We find that the dispersion increases with decreasing white mass. This can

be understood to be as a result of their increased precursor lifetime from their lower-mass precursor

stars.

In chapter 3 we find that all the ultracool white dwarfs discovered are consistent with thick

disk kinematics. There is however one previously discovered white dwarf whose kinematics is not

consistent with being a disk object, and is instead most likely a halo remnant. Halo stars have more

isotropic velocity distribution, and as a result their mean velocity is 〈V〉 ∼ −220 km s−1.

1.4 Supermassive Black Holes

There is now overwhelming evidence that most galactic nuclei harbor supermassive black holes

(SMBHs) with mass & 106 M⊙ in their centers3. This evidence includes (e.g., the review by Ferrarese

and Ford, 2005):

• The stellar orbits which have been monitored (known as S-stars Ghez et al., 2005; Schödel

et al., 2002) around the extremely compact (Doeleman et al., 2008) radio source Sgr A* in the

center of our galaxy.

3Not all galaxies harbor a SMBH however: There is not one in the nearby bulgeless disk galaxy M33 (Gebhardt et al.,
2001).



8

• Hypervelocity (v > 275 km s−1) stars ejected by dynamical interactions with the SMBH in the

galactic center (e.g., Brown et al., 2007; Yu and Tremaine, 2003).

• The Keplerian nature of MASER emission from the centers of a handful of nearby galaxies

imply a large mass in a small region (e.g., Miyoshi et al., 1995).

• When the sphere of influence of the black hole is resolved (see equation 1.4), the stellar and

gas velocity dispersion rises in the very center of many galaxies. Kinematic modeling of this

indicates the presence of a massive compact object (e.g., Gebhardt et al., 2003; Sargent et al.,

1978).

• The energy liberated by accretion onto a massive compact object is the only feasible model

for emission from AGN due to their rapid variability and high luminosity (e.g., Ferrarese and

Ford, 2005).

In chapters 4, 5, and 6 we consider the dynamics of stars around binary supermassive black

holes (SMBHs). However first, in section 1.4.1, we introduce the relevant processes around isolated

SMBHs and the scales relevant to the problem. In section 1.4.2 we extend this to SMBH binaries.

1.4.1 Supermassive Black Hole Scales

Stars whose orbits lie within the sphere of influence of the black hole have orbits whose motion is

dominated by the influence of the black hole. The radius of the sphere of influence is given by

rinf ≡
GMBH

σ2 = 11.2
(

MBH

108 M⊙

)

(

σ

200 km s−1

)−2
pc . (1.4)

The stars considered in chapters 4, 5, and 6 are drawn from those initially bound to the SMBH, i.e.,

largely inside equation (1.4).

The smallest characteristic scale of the SMBH is the Schwarzschild radius

rs ≡
2GMBH

c2 = 9.6 × 10−6
(

MBH

108 M⊙

)

pc . (1.5)

Since the stars considered in chapters 4 and 5 have typical initial semi-major axis rinf, which is much

larger than rs, stars that closely approach the SMBH normally have very high eccentricity. In chapter

6 we develop pseudo-Newtonian potentials tailored to this case. In this chapter the refer to the

orbits as being ‘nearly parabolic’ meaning that the orbital energy of the particle is small compared to

c2. This is equivalent to having semi-major axes much larger than rs. The usual pseudo-Newtonian

potentials, and the potential of Paczyński and Wiita (1980) in particular, are tailored to particles

in nearly circular orbits and accretion disks. The potentials of chapter 6 however much more
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accurately trace the trajectories considered in this work, and indeed the trajectory of any ‘nearly

parabolic’ orbit.

Stars whose orbits take them closer than the tidal disruption radius will be torn apart by tidal

forces. In chapters 4 and 5 we calculate rates of tidal disruptions around SMBH binaries. To order of

magnitude, the tidal disruption radius can be estimated by comparing the self-gravity and the tidal

force experienced by a star of mass M⋆, and radius R⋆, at a distance r from the black hole. The tidal

force will be ∼ R⋆ ×GMBH/r3, while the stars self gravity is ∼ GM⋆/R2
⋆. Comparing these forces the

tidal disruption radius,rt, is

rt = 1.0 × 10−5η

(

R⋆ M⊙
M⋆r3

⊙

)1/3 (

MBH

108 M⊙

)1/3

pc (1.6)

= 1.2rsη

(

R⋆ M⊙
M⋆r3

⊙

)1/3 (

MBH

108 M⊙

)−2/3

, (1.7)

where rs is the Schwarzschild radius, and η is an order unity factor which depends on the structure

of the star. Therefore for sun-like stars when MBH > 1.2 × 108 M⊙ the tidal disruption radius lies

within the Schwarzschild radius, and the star silently ‘plunges’ across the event horizon, adding

only to the mass of the black hole with no observational consequences. higher-mass black holes

can disrupt stars if the spinning and the orientation is prograde. For maximal spin, SMBHs with

mass up to ∼ 8 × 108 M⊙ are able to disrupt with the correct orientation (Beloborodov et al., 1992;

Kesden, 2012). The typical eccentricities of the particles of interest in chapters 4 and 5 (i.e., those

that plunge, become an EMRI) or are tidally disrupted will be 1 − e ∼ rs/rh and 1 − e ∼ rs/rt which

is of order 10−5. It is important therefore that the integrator used is able to accurately integrate

these highly eccentric orbits. For this reason we use the adaptive symplectic integrator of Preto and

Tremaine (1999) whose implementation is described in chapter 5. Since it integrates the paths of

orbits in Keplerian potentials exactly, it is ideal for the highly eccentric orbits considered.

An important timescale in our simulations is the dynamical timescale, or the time is takes for

stars to cross the system. This is given by4

tdyn ≡
√

r3

GMBH
= 1, 500

(

r

1 pc

)3/2 (

MBH

108 M⊙

)−1/2

yr . (1.8)

The other relevant timescale is the relaxation time. This is the characteristic timescale on which

the stellar distribution evolves. The relaxation time due to star-star interactions is to order of
4Note that by defining tdyn to depend on MBH and not the mass enclosed at radius r, M(< r) this is longer than the orbital

timescale when the stars contribute considerably, i.e., close to rinf. However most of our interesting events come from stars
where this is not the case, and this definition remains constant even as the distribution evolves.
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magnitude given by (Binney and Tremaine, 2008)

trlx ∼
0.1N

log N

tdyn

2π
∼ 1010

(

MBH

108 M⊙

)1/2 (

r

1 pc

)3/2

yr , (1.9)

where N, the number of stars in the system is ∼MBH/M⊙.

Since this timescale is much longer than the ∼ 1 Myr simulations in chapters 4 and 5 we ignore

star-star scatterings5 and the problem becomes a parallel series of reduced three-body scatterings.

On timescales longer than the relaxation time, the system is expected to relax to its equilibrium

configuration. This single mass systems this is known as a Bahcall-Wolf cusp (Bahcall and Wolf,

1976). To derive this equilibrium solution6, first assume the power law ansatz, ρ ∝ r−η. More

accurate calculations than equation (1.9), of the type performed in chapter 7, find that the local

star-star relaxation time is given by (equation 7.106 of Binney and Tremaine, 2008)

trlx ∼
σ3

G2M⋆ρ logΛ
. (1.10)

where logΛ is the Coulomb logarithm. The velocity dispersion close to the SMBH will rise as
〈

v2
〉

= σ2 = GMBH/r and therefore trlx ∝ rη−3/2. A star that is destroyed by the hole via, for example,

a tidal disruption, coming from radius r, has energy E = −GMBHM⋆/r. If N(r) is the number of stars

interior to r, then the flow from radius r will be approximately N(r)E(r) per relaxation time. Since

N(r) ∝ r3−η then the energy flux is approximately N(r)E(r)/trlx ∝ r2−η/rη−3/2 = r7/2−2η. In steady state

the flux must be independent of radius and therefore η = 7/4. This equilibrium solution, whereby

the density of stars forms a cusp with ρ ∝ r−7/4, is known as a Bahcall-Wolf cusp.

In multimass systems mass segregation complicates the above argument. However, provided

that there the highest-mass components are massive enough and not too numerous (Alexander

and Hopman, 2009), then the heaviest component forms a ρ ∝ r−7/4 cusp close the hole, while the

lighter components are less centrally concentrated. This has been shown via analytic calculations

(Alexander and Hopman, 2009; Bahcall and Wolf, 1977; Keshet et al., 2009) and is born out in

numerical simulations (Freitag et al., 2006).

The relaxation timescale in equation (1.9) represents a considerable uncertainty in the processes

and dynamics around SMBHs since it is of the same order as the Hubble timescale, as well as the

timescale between major mergers which would destroy the equilibrium state. Therefore it is not

clear whether the Bahcall-Wolf cusp is realized in the majority of galaxies. Indeed the best resolved

cusp is in the center of our galaxy, where the surface density rises consistent with a ρ ∝ r−1.5 cusp

(Genzel et al., 2003). This interpretation however assumes a constant mass-to-light ratio, which

5This is not as good an approximation in some cases as it may naively appear: The relaxation time to change the angular
momentum by of order unity is is reduced to (1 − e)trlx which can be near to the length of the simulation for some stars.

6This argument follows section 7.5.9b of Binney and Tremaine (2008).
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would not be the case if there is mass segregation. Around external galaxies the ACS Virgo sample

of galaxies (Côté et al., 2004) appears to show that more massive galaxies (& 240 km s−1) tend to

have less-steep cores than the Bahcall-Wolf cusp (Merritt et al., 2009).

In chapter 5 we also consider the dynamics of compact objects (i.e., stellar mass black holes,

neutron stars, white dwarfs) around SMBH binaries. In this case the star is not tidally disrupted on

close encounters, and general relativistic corrections can become important.

In the radial direction, the orbits of test particles around a Schwarzschild black hole in General

Relativity can be reduced to one-dimensional motion in an effective potential (equation 25.16 of

Misner et al., 1973)
(

dr

dτ

)2

=

(

E

c2 + 1
)2

− V2(r) , (1.11)

where V(r) is the effective potential given by

V2(r) =
(

1 − rs

r

)

(

1 +
L2

c2r2

)

. (1.12)

In these equations r is the radial coordinate in the Schwarzschild metric, E and L are the orbital

energy and angular momentum, respectively, per unit rest mass of the orbiting particle, and τ is the

proper time.

For the orbits of interest E≪ 1 and periapsis and apoapsis of the test particle correspond to the

roots of
(

1 − rs

r±

)

(

1 +
L2

c2r±2

)

≈ 1 , (1.13)

where r+ and r− are the two largest roots of the quartic and correspond to the apoapsis and periapsis,

respectively. However if L ≤ 2rsc = 4 GMBH/c then a real solution for r− does not exist and so a

particle traveling towards the black hole with angular momentum L ≤ 4 GMBH/c with dr/dt < 0

experiences no turning point in dr/dt and ‘plunges’ across the event horizon. The orbit with

L = 4 GMBH/c is known as the separatrix (Cutler et al., 1994) or the unstable circular orbit (UCO)

(Gair et al., 2005).

When gravitational radiation is included finite mass objects with L > 4GMBH/c may still be

captured by the SMBH. At each close periapse passage a burst of gravitational radiation is emitted,

and the object gradually loses energy and angular momentum inspiraling into the SMBH. This

process whereby a stellar mass object inspirals into an SMBH is known as an extreme mass ratio

inspiral (EMRI).

Using the approximation of Peters (1964) (whereby the orbit remains Keplerian, and radiation
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is calculated to quadrupole order), then the time for an EMRI to inspiral is7 (Freitag, 2003)

temri = 3.2 × 109
(

MBH

108M⊙

)2 (

M⋆

10M⊙

)−1 ( rp

10rs

)4 (1 − e

10−5

)−1/2

yr . (1.14)

In order for an object to inspiral as an EMRI it cannot be perturbed too greatly by scatterings

from other stars. The relaxation time trlx is the time for stars angular momentum to be perturbed by

of order the circular angular momentum, Lc. In the Newtonian limit L2 = GMa(1− e2) = L2
c(1− e2) ≈

2L2
c(1−e) = 2 GMrp. Since star-star scatterings constitute a random walk then∆L/Lc =

√
t/trlx where

∆L is the change in L. Therefore the time for a potential EMRI to change h, and therefore its periapsis

distance, by order unity is ∼ trlxL2/L2
c ∼ (1− e)trlx. This results in a region of parameter space where

temri(1 − e) < trlx. Stars scattered into this region are likely to become EMRIs.

1.4.2 Supermassive Black Hole Binaries

In section 1.4 we described some of the overwhelming evidence that most galaxies harbor a SMBH

in their center. In addition galaxies are known to merge regularly, both observationally (Lotz et al.,

2011), and from the success of cosmological simulations showing the hierarchical merger of their

parent halos (Stewart et al., 2009). However the evidence for the formation, and merger, of binary

SMBHs is remarkably limited.

The standard picture by which SMBH binaries form, and merge, is set out in Begelman et al.

(1980). Initially the black holes in their parent galaxies are efficiently brought together by dynamical

friction with the surrounding stars on a timescale

tdf =
v3

4π logΛ Mgal ρ(< v)
. (1.15)

where Mgal is the mass of the less massive galaxy, and ρ(< v) is the local density of stars with velocity

less than v. Considering the larger galaxy to be a singular isothermal sphere with ρ = σ2
1/2πGr2,

and that the satellite is stripped of stars as it inspirals, truncated at its Hill radius, then the satellite

galaxy inspirals on a timescale (Binney and Tremaine, 2008)

tdf = 2.7 Gyr
1

logΛ

(

σ1

200 km s−1

)2
(

100 km s−1

σ2

)3 (

ri

30 kpc

)

. (1.16)

where σ1 and σ2 is the velocity dispersion of the more massive and satellite galaxy, respectively, and

ri is the initial distance between the galaxy centers.

Eventually, provided that the ratio of velocity dispersions is not too great, the SMBHs in their

7However in chapter 5 the Peters (1964) expressions are not used for the loss due to gravitational radiation. Instead
more accurate expressions for the loss of energy and angular momentum given by Gair et al. (2006b) using semianalytic fits
to the Teukolsky equation are used.
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centers will form a bound binary system. In chapters 4 and 5 we consider the SMBHs to be

surrounded by a cusp of stars. In this case the SMBHs will continue to inspiral rapidly by a

combination of dynamical friction (i.e., weak scatterings) and ejections (strong scatterings) until

insufficient mass in stars remains. Stars will be ejected from the binary with a specific energy

of order ∼ GM1/R where M1 is the mass of the primary SMBH, and R is their separation. Each

subsequent reduction of the semi-major axis by a factor of two in requires that a mass of stars very

approximately equal to the secondary SMBH mass, M2, be ejected. The evolution will therefore

stall at a radius Rstall given by

M⋆(< Rstall) ∼M2 , (1.17)

where M1 and M2 are the masses of the more massive, primary SMBH and the less massive, sec-

ondary SMBH, respectively, and C is a numerical coefficient to be found via scattering experiments.

Assuming a Bahcall and Wolf (1976) cusp with stellar mass, M⋆(< r) = 2M1(r/rc)−3/4, and radius rc,

given by equation (4.6) then the stalling radius is

Rstall ∼ (q/2)4/5rc = 2 (q/2)4/5(M1/108M⊙)0.55 pc . (1.18)

In chapters 4 and 5 we make use of the simulations of Sesana et al. (2008), who determines Rstall

for a range of mass ratios to be approximately a factor of 10 smaller than the crude estimate in

equation (1.18).

The other manner in which the binary will evolve is via scatterings with stars outside their im-

mediate cusps. However only stars with angular momentum L .
√

G(M1 +M2)Rstall will approach

and subsequently be ejected, extracting energy from the binary. Stars within this region of angular

momentum are referred to as being in the loss cone. Each subsequent reduction of the semi-major

axis by a factor of two requires that a mass of stars equal to the secondary SMBH mass be ejected.

Therefore the evolution stalls once more when the mass of stars in the loss cone is less than the mass

of the secondary. After this the evolution proceeds more slowly, as stars are scattered into the loss

cone, on the much longer relaxation timescale.

At sufficiently close separations the evolution is driven by gravitational radiation. A SMBH

binary in a circular orbit with separation a will decay in a timescale (Peters, 1964)

tgw =
5c5a4

256G3M3
BHq(1 + q)

= 58
(1 + q)2

q

(

a

0.1 pc

)4 (

MBH

108M⊙

)−3

Gyr . (1.19)

An unsolved problem is the manner in which the binary reaches a radius at which tgw becomes

less than the age of the universe. The most naive approximation, that stars enter the loss cone
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due to star-star scatterings, results in a timescale longer than a Hubble time. Since this occurs

at scales of a parsec or less it is often referred to as ‘the final parsec problem’ (Milosavljević and

Merritt, 2003). Many attempts have been made to solve this problem. These include evolution in

flattened and triaxial galaxies (Yu, 2002), the Brownian wandering of the binary about the galactic

center (Chatterjee et al., 2003), perturbations from a third SMBH and the Kozai mechanism (Blaes

et al., 2002), and the evolution to high eccentricity of the SMBH binary (Iwasawa et al., 2011; Khan

et al., 2011). In wet mergers (where gas is present) this could also help drive the binary to merger

(Armitage and Natarajan 2002; Ivanov et al. 1999, but see also Lodato et al. 2009).

Despite this uncertainty in SMBH binary dynamics two things are more secure: 1. The timescale

for evolution of the binary lengthens considerably after the binary has hardened. 2. This timescale

appears to empirically be less than a Hubble time in the majority of SMBH binaries since there is

little evidence that nearby SMBHs are members of binaries. I.e., it appears Nature has solved the

final parsec problem, we are just not sure how she did it.

Based on the theoretical picture outlined above it is expected that many SMBH binary systems

should exist, particularly at separations close to the stalling radius. It is therefore surprising that

no secure close binary SMBH systems have been found.

At wide, ∼ kpc scales many pairs of quasars at the same redshift are visible. While most of

these are actually multiple images of the same quasar, at least some are convincingly pairs of black

holes (e.g., Komossa, 2003; Mortlock et al., 1999). However, there are no convincing subparsec scale

SMBH binaries. One candidate is OJ 287, (Valtonen et al., 2008, 2010) a postulated 1.8×1010 M⊙ black

hole within 10,000 years of merging at a redshift of 0.3. A priori such a system is unlikely, however

in the coming decade pulsar timing measurements should be able to test the binary nature of OJ

287. In the same way a postulated SMBH binary with period 1.05 years in 3C 66 (Sudou et al., 2003)

was ruled rules out by the lack of pulsar timing residuals predicted by gravitational wave emission

from the system (Jenet et al., 2004). At present the closest we have come to observing a SMBH

binary at its stalling radius is in 0402+379: A pair of radio loud AGN at a projected separation of

only 7.3 pc (Rodriguez et al., 2006, 2009). However, despite extensive searches, there is a paucity of

observed close SMBH binaries.

In chapter 4 a novel method to identify the elusive close SMBH binaries is proposed, using the

greatly increased tidal disruption rate as the SMBH binary stalls.

In chapter 5 the simulations are expanded upon, both explaining the simulations in more

detail, and increasing the number of simulated systems. We have also included general relativistic

corrections so that the simulations incorporate emission of gravitational waves and precession

(which is described in chapter 6). This allows the simulation of EMRIs and plunges from compact

objects around SMBH binaries. Detection of the perturbations in the EMRI waveform by low-

frequency gravitational wave missions, such as the successors to LISA, would also provide a novel
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close SMBH binary detection strategy (Yunes et al., 2011).

1.5 The Fokker-Planck Equation

In chapter 7 we present a new, astrophysically relevant, analytic solution to the Fokker-Planck

equation, and introduce the Fokker-Planck Equation as background to that chapter here. The

Fokker-Planck equation is often used in astrophysics, particularly in simulations of the evolution of

globular clusters (e.g., Cohn, 1979; Cohn and Kulsrud, 1978; Freitag and Benz, 2001; Joshi et al., 2000;

Quinlan, 1996) or around supermassive black holes (e.g., Alexander and Hopman, 2009; Hopman,

2009; Hopman and Alexander, 2005; Keshet et al., 2009; Lightman and Shapiro, 1977; Magorrian

and Tremaine, 1999; Preto and Amaro-Seoane, 2010). The Fokker-Planck equations utility is that it

can be integrated much faster than direct N-body simulations, as well as lending itself more easily

to physical understanding of the underlying physical processes.

We begin by deriving the collision-less Boltzmann equation before generalizing to the Fokker-

Planck equation. A distribution function f (p, q) where q are positions, p their conjugate momenta,

specifies the number of stars in a region of phase space, i.e., dN = f (p, q) dp dq. As such (ignoring

interactions) it must satisfy a continuity equation

∂ f

∂t
+
∂ f

∂p
· ṗ + ∂ f

∂q
· q̇ = 0 (1.20)

which may be more elegantly expressed using Hamilton’s equations of motions as

∂ f

∂t
+

{

f ,H
}

= 0 (1.21)

where { · ,H} is the Poisson bracket with the Hamiltonian. Equations (1.20) or (1.21) are known as

the collision-less Boltzmann equation. Generally a self-consistent distribution function must also

satisfy Poisson’s equation:

∇2Φ = 4πGρ = 4πGm

∫

f dp (1.22)

where m is the mass of the stars being considered.

Interactions between stars modify the Boltzmann equation. ConsiderΨ(w,∆w) d∆w dt to be the

probability that a star in phase space at w = (p, q) scatters via interactions to w+∆w. This modifies

the right-hand side of equation (1.21):

∂ f

∂t
+

{

f ,H
}

=

∫

d∆w
[

Ψ(w − ∆w,∆w) f (w − ∆w)

−Ψ(w,∆w) f (w)
]

(1.23)
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where the first term in the square brackets is the flux into w from w−∆w and the second is the flux

out of w into w + ∆w. Equation (1.23) is known as the Master equation.

The Fokker-Planck equation results from the observation that in relaxation or dynamical friction

equal decades of impact parameter between stars contribute equally. Since there typically many

more decades in a system which result in small perturbational scatterings than large scatterings

then the integrand of equation (1.23) can be expanded in a Taylor series. Truncating at second order

this gives

Ψ(w − ∆w,∆w) f (w − ∆w) −Ψ(w,∆w) f (w) =

−
∑

i

∆wi∆w j
∂

∂wi

[

Ψ(w,∆w) f (w)
]

+
1
2

∑

i, j

∆wi
∂2

∂wi∂ j

[

Ψ(w,∆w) f (w)
]

(1.24)

As a result equation (1.23) becomes a diffusion equation known as the Fokker-Planck equation

∂ f

∂t
+

{

f ,H
}

= −
∑

i

∂

∂wi

[

D1
i f (w)

]

+
1
2

∑

i, j

∂2

∂wi∂ j

[

D2
i j f (w)

]

(1.25)

where the diffusion coefficients are given by

D1
i =

∫

d∆wΨ(w,∆w)∆wi , (1.26)

D2
i j =

∫

d∆wΨ(w,∆w)∆wi∆w j . (1.27)

The Fokker-Planck equation is a second-order partial differential equation (PDE) which admits

analytic solutions in only a handful of cases (e.g., Risken, 1989). We present a new, astrophysically

motivated, analytic solution in chapter 7.
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2
White Dwarf Kinematics vs Mass1

Abstract

We have investigated the relationship between the kinematics and mass of

young (< 3 × 108 years) white dwarfs using proper motions. Our sample

is taken from the color-selected catalogues of SDSS (Eisenstein et al., 2006)

and the Palomar-Green Survey (Liebert et al., 2005), both of which have

spectroscopic temperature and gravity determinations. We find that the

dispersion decreases with increasing white dwarf mass. This can be ex-

plained as a result of less scattering by objects in the Galactic disk during

the shorter lifetime of their more-massive progenitors. A direct result of

this is that white dwarfs with high mass have a reduced scale height, and

hence their local density is enhanced over their less-massive counterparts.

In addition, we have investigated whether the kinematics of the highest-

mass white dwarfs (> 0.95 M⊙) are consistent with the expected relative

contributions of single-star evolution and mergers. We find that the kine-

matics are consistent with the majority of high-mass white dwarfs being

formed through single-star evolution.

1This chapter is a slight expansion of an article accepted by MNRAS with the authors as: Christopher Wegg and Sterl
Phinney in this order, arXiv:1206.1056, (Wegg and Phinney, 2012).

http://www.arxiv.org/abs/1206.1056
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2.1 Introduction

Despite the significant work on both the kinematics and mass distribution of white dwarfs, very

little work has addressed their connection.

The kinematics of galactic white dwarfs have been studied on numerous occasions with several

motivations. They have proven useful in attempts to unravel the evolutionary history and progen-

itors of the various classes of white dwarfs (Anselowitz et al., 1999; Sion et al., 1988). Interest in

white dwarf kinematics was also prompted by the suggestion that halo white dwarfs could provide

a significant contribution to Galactic dark matter (Oppenheimer et al., 2001; Reid, 2005). This effort

has concentrated on the identification of halo white dwarfs and estimating the resultant density,

which now appears to be a small contribution to the Galactic dark matter budget (Pauli et al.,

2006). Moreover, the mass distribution of the most common hydrogen rich (DA) white dwarfs has

also been extensively investigated, particularly for white dwarfs with T & 10,000 K which are hot

enough for their masses to be deduced spectroscopically from fits to their Balmer lines (Kepler et al.,

2007; Liebert et al., 2005; Vennes, 1999). The mass distribution shows a peak at 0.6 M⊙ due to the

relative abundance of their lower-mass progenitors with a tail extending to higher-masses formed

from more-massive progenitors.

The connection between the galactic kinematics of a group of thin disk objects and their progen-

itors is largely due to the process of kinematic disk ‘heating’ (Nordstrom et al., 2004; Wielen, 1977).

The hot white dwarfs with short cooling ages we observe in the galactic neighborhood today are

formed from a wide range of progenitor masses (∼ 0.8–8 M⊙) and hence have a wide range in age.

We therefore expect high-mass disk white dwarfs to have a low velocity dispersion in comparison

to low-mass disk white dwarfs whose progenitors formed earlier. This connection was suggested in

Guseinov et al. (1983) who performed an analysis suggesting that white dwarfs with larger masses

have smaller dispersions, however this was re-investigated by Sion et al. (1988) with a larger sample

of 78 DA white dwarfs where no evidence for any correlation was found. This paper readdresses

the connection between mass and kinematics with a greatly increased sample size.

The outline of the paper is as follows: In section 2.2 we discuss the sample selection and

the calculation of distances and proper motions. In section 2.3 we discuss how we estimate the

kinematics of the sample without radial velocity information. We use two methods, that of Dehnen

and Binney (1998) (section 2.3.1), and a Markov Chain Monte Carlo (MCMC) where we marginalize

over the unknown radial velocity (section 2.3.2). In section 2.4 we analyze whether the kinematics are

consistent with single-star evolution (SSE) both via analytic methods (section 2.4.1) and simulations

(section 2.4.2). In section 2.5 we analyze whether the highest-mass white dwarfs are largely formed

through single-star evolution or are the product of the merger of two lower-mass white dwarfs.

Finally, we discuss the implications of our findings on the scale height of white dwarfs in section
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2.6.

For the reader in a hurry, the primary result of this paper, the relationship between the mass of

young white dwarfs and their velocity dispersion, is shown in figure 2.3 and discussed in section

2.3. The implied scale heights, the second key result, are then discussed in section 2.6 and shown in

figure 2.18. These results have been checked using a Monte Carlo simulation of the formation and

observation of an ensemble of white dwarfs, which is described by flowcharts in figures 2.6–2.8: in

figure 2.6 the process of choosing stars is described, in figure 2.7 the process of placing them in the

disk is described, and in figure 2.8 the process of determining the observability of the simulated

white dwarf is described.

2.2 Sample

We investigate only hydrogen atmosphere (DA) white dwarfs due to the relative simplicity of their

spectra and the resultant security of the spectroscopic masses. The sample of DA white dwarfs is

taken from two sources, the Palomar-Green (PG) white dwarf survey (Liebert et al., 2005) and the

SDSS DR4 white dwarf survey (Eisenstein et al., 2006). The SDSS sample is much larger the the PG

sample. The PG sample is included as a demonstration that the results are secure, and not a result

of systematics in SDSS, such as the complex selection of targets. For clarity we first discuss which

types of white dwarfs we select, then discuss how the SDSS survey is dealt with, and finally how

the PG survey was dealt with. The sample and its selection is summarized in table 2.1.

SelectedWhite Dwarfs: Both PG and SDSS are color selected, eliminating the kinematic biases

inherent in proper motion based surveys, and contain spectroscopic determinations of surface

gravity, log g, and effective temperature, Teff , obtained by fitting the profile of the Balmer lines.

We restrict the sample to objects whose fitted Teff was between 13,000 K and 40,000 K, since log g

appears to be systematically overestimated at low temperatures and Teff overestimated at higher

temperatures (Eisenstein et al., 2006).

The fitted log g and Teff are converted to masses and ages using the models of the carbon core

white dwarf cooling models of Fontaine et al. (2001) below 30,000 K and Wood (1995) with thick

hydrogen layers of fractional mass 10−4 above 30,000 K 1. White dwarfs with inferred masses less

than 0.47 M⊙ are instead assumed to have helium cores whose masses and ages are calculated from

the models of Serenelli et al. (2001). Only objects with cooling ages below 3× 108 years are included

in the sample to avoid significant kinematic heating after white dwarf formation. The requirements

of cooling age below 3 × 108 years and Teff above 13,000 K are competing. Above 0.60 M⊙ the WDs

cool more slowly and thus the age limit is used, while below 0.60 M⊙ the temperature limit is used.

White dwarfs previously discussed in the literature as known members of binaries were removed

from the samples.
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SDSS Survey (Eisenstein et al., 2006): Many of the SDSS spectra have low signal-to-noise ratios

and hence large errors on their fitted log g and Teff. To ensure accurate masses and photometric

distances only objects whose spectra had a signal-to-noise ratio larger than 10 are included. The

grid of model atmospheres fitted in the SDSS catalog extends only to log g = 9, and thus, for objects

at this limit, the refitted log g and Teff given in Kepler et al. (2007) were used.

Photometric distances to the white dwarfs in SDSS are calculated by minimizing

χ2 =
∑

i=(u,g,r,i,z)

(mi − [Mi(log g,Teff)+

Agai + 5 log d − 5])2/σ2
i (2.1)

where mi and σi are the 5 band SDSS photometry and their errors, Mi are the model absolute

magnitudes, Agai is the reddening and d the distance in parsecs. The photometric σi is the quoted

photometric error in SDSS each band added in quadrature to a systematic error of (u, g, r, i, z) =

(0.015, 0.007, 0.007, 0.007, 0.01) (Kleinman et al., 2004). Model absolute magnitudes are taken from

the atmospheric models provided by Bergeron2. Agai is the product of RV = 3.1 extinction in

each band of (au, ag, ar, ai, az) = (1.36, 1.00, 0.73, 0.55, 0.39) and the overall extinction Ag, which is

constrained to lie between zero and the value of galactic extinction map of Schlegel et al. (1998) at

the position of the object considered.

The resulting distribution of χ2 values calculated by minimizing equation (2.1) is plotted in

figure 2.1. It closely resembles a χ2 distribution, but with an extended tail. Objects with reduced

χ2 larger than 5 were removed from the sample, most of these objects show an excess towards the

redder photometric bands, indicating they are in binaries with a cooler white dwarf companion.

Errors in the photometric distance are taken to be the ∆χ2 = 1 surface added in quadrature to the

distance errors introduced though the uncertainty in log g and Teff.

Proper motions for the SDSS sample are taken from the catalogue of Munn et al. (2008). These

proper motions are calculated from the USNO-B1.0 plate positions re-calibrated using nearby

galaxies together with the SDSS position so that the proper motions are more accurate and absolute.

By measuring the proper motions of quasars Munn et al. (2004) estimates that the 1σ error is

5.6 mas yr−1.

PG Survey: For 132 stars in the PG survey, SDSS photometry was available and the same method

was used as for SDSS stars. For the remaining objects the PG catalog photometric distances were

used. These were estimated in Liebert et al. (2005) from comparison of the V band magnitude with

the predicted MV from the same models of Holberg and Bergeron (2006). Comparison of the stellar

distances given by the two methods gives a standard deviation of 7 per cent. The majority of this

2Available from http://www.astro.umontreal.ca/~bergeron/CoolingModels/, uses results from from Holberg and
Bergeron (2006), Kowalski and Saumon (2006), Tremblay et al. (2011) and Bergeron et al. (2011)

http://www.astro.umontreal.ca/~bergeron/CoolingModels/
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Figure 2.1 χ2 per degree of freedom (DOF) for the fitted photometric distance of the 1443 SDSS DA
white dwarfs considered. A χ2 function with 3 DOF is plotted as the dotted line. Beyond χ2 = 5 the
white dwarfs are rejected.

error is expected to be in the PG survey distances and hence a conservative 10 per cent error was

applied to these.

Proper motions for PG white dwarfs that appear in SDSS are taken from the catalog of Munn

et al. (2008). For the remaining objects, the PPMXL proper motion was used where available, which

has typical 1σ error of ∼ 8 mas yr−1 (Roeser et al., 2010).

Finally 4 objects in the PG sample have no reliable PPMXL proper motion, primarily due to a

spurious matching of objects between epochs. For these, the proper motion was calculated directly

between the scanned Digital Sky Survey-Palomar Observatory Sky Survey (POSS-I Abell, 1955) and

POSS-II plates. The proper motion was measured relative to nearby faint stars of similar magnitude

corrected for galactic rotation (see section 2.3.1). Typical errors estimated from the proper motions

of stars of similar magnitude to be 11 mas yr−1. We emphasize that only 4 of 1491 white dwarfs use

this method, and none have mass above 0.95 M⊙ analyzed in more detail in section 2.5.

Final Sample: The resulting sample of 1443 SDSS and 211 PG white dwarfs contains young

DA white dwarfs with reliable masses, proper motions and photometric distances. The mass

distribution of the samples is shown in figure 2.2. The process of constructing the sample together

with numbers of objects is summarized in table 2.1.
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PG SDSS
Number of DA white dwarfs with 299 6926good photometry not known to be binaries
of these number with signal-to-noise > 10 299 3125
of these number with 13, 000 K < Teff < 40, 000 K 215 1555
of these number with age < 3 × 108 yrs 211 1491
Distance source:
Liebert et al. (2005) 79 0
SDSS Photometry 132 1491
of these number rejected with χ2 > 5 0 48
Proper Motion Source:
Munn et al. (2008) 153 1443
PPMXL 54 0
Manual measurement from POSS I/II 4 0

Table 2.1 Summary of the sample of WDs which passed the cuts described in detail in section 2.2.

2.3 Kinematics Without Radial Velocities

We now turn to calculating the mean velocity and the velocity dispersion for our sample. While

radial velocities are required to completely determine the kinematics of an individual object, bulk

kinematic properties such as the mean velocity and the velocity dispersion can be determined from

only transverse motions.

We use two methods to do so, the frequentist method used in section 2.3.1, and a Markov Chain

Monte Carlo in section 2.3.2. Both methods give similar results which are summarized in

tabresults.

2.3.1 Method of Dehnen and Binney (1998)

The method used here is adapted from Dehnen and Binney (1998). First the observed proper

motions in galactic coordinates, µ(obs)
ℓ

and µ(obs)
b

, are corrected for Galactic rotation through

µℓ = µ(obs)
ℓ − A cos(2ℓ) − B

µb = µ(obs)
b
+ A sin(2ℓ) cos b sin b.

(2.2)

using A = 14.82 km s−1 kpc−1 and B = −12.37 km s−1 kpc−1 (Feast and Whitelock, 1997). In galactic

coordinates where the components are directed towards the galactic center, in the direction of

galactic rotation, and towards the north Galactic pole we observe the velocity

V⊥ = 4.74d





























−µℓ sin ℓ cos b − µb cos ℓ sin b

µℓ cos ℓ cos b − µb sin ℓ sin b

µb cos b





























km s−1 (2.3)
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Figure 2.2 Mass distribution of the samples of SDSS (black line) and PG (dashed red line) white
dwarfs after the cuts described in section 2.2. Inset graph shows the same data on logarithmic axes.

with d in kpc and proper motions in mas yr−1. This is the projection of the velocity V onto the sky

plane though the projection matrix

V⊥ = A ·V , A = I − r̂ ⊗ r̂ (2.4)

where r̂ is the unit vector to the star.

Next the quantity S2 is formed through

S2(V0) ≡
〈

|V⊥ −A ·V0|2
〉

. (2.5)

Under the assumption that the positions of the observed objects are uncorrelated with the velocity,

then the choice of V0 that minimizes S2 is the mean velocity. Also S2 at the minimum is a measure

of the dispersion of the group.

Dehnen and Binney (1998) then calculate all independent six elements of the dispersion tensor.

Unfortunately, this entails estimating nine parameters which limits its use to samples with large

numbers of objects. This would require excessively wide bins for the high-mass region where there

are few objects. Instead we choose to make further assumptions about the objects’ velocities in

order to reduce the number of fitted parameters. The mean velocity of each group towards the

galactic center and the north Galactic pole is simply a result of the solar motion and we take these

to be 10.00 km s−1 and 7.17 km s−1 , respectively, (Dehnen and Binney, 1998). The mean velocity

in the direction of galactic rotation, V0, is kept as a free parameter since in addition to the solar
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motion this varies between groups due to asymmetric drift. We also assume that the dispersion

tensor takes the form

σ = σ1diag
(

1,
1

1.4
,

1
2.2

)

(2.6)

which is accurate for main sequence stars in the solar neighborhood (Dehnen and Binney, 1998). This

reduces the number of parameters for each group to the asymmetric drift V0 and the normalization

of the dispersion tensor σ1.

V0 is calculated by minimizing equation (2.5), and then σ1 is estimated though a Monte-Carlo

simulation: Since S2 is a measure of the dispersion, an initial estimate of σ2
1 is taken to be S2, and a

set of simulations is performed where a new velocity is chosen for each white dwarf at its position

in the sky from the isothermal distribution with the assumed dispersion tensor and the calculated

mean velocity. The error in tangential velocity, assumed to be Gaussian, is added to this. The set of

simulations produces a distribution of S2 values, and σ2
1 is iterated until the mean S2 corresponds

to the value calculated from observations. S2 is almost proportional to σ2
1 when errors in tangential

velocity are neglected and so the error in σ2
1 is estimated from the distribution of S2 scaled by this

proportionality constant.

2.3.2 MCMC Estimate

In addition, a Markov Chain Monte Carlo (MCMC) likelihood-based estimate of the kinematic

parameters was obtained. We use uninformative flat priors for the fitted parameters.

We denote the probability that the velocity of the ith object was V to be P(V|Di, σi) where

Di = (l, b, d, µℓ, µ(b)) is the data for the ith object together with the corresponding errors σi. µℓ

and µ(b) are the values corrected for galactic rotation by equation (2.2). Under the assumption

that positions are uncorrelated with velocity then the distribution function is a function only of

velocity: f (V). In addition, in what follows we do not consider the positions, but instead focus on

the kinematics through the velocity V. Under these assumptions the overall likelihood for a set of

observations of a group of white dwarfs is

L =
∏

i

∫

dV f (V)P(V|Di, σi) (2.7)

⇒ logL =
∑

i

log
∫

dV f (V)P(V|Di, σi) (2.8)

≡
∑

i

logLi . (2.9)

In calculating the likelihoods, Li, we assume a Schwarzschild distribution function, and normally

distributed error in proper motion. The unknown radial velocity is integrated over analytically.

Explicit expressions for Li are given in appendix 2.A.
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Figure 2.3 Dispersion of SDSS (black) and PG (red) white dwarfs against mass calculated using the
using the method described in section 2.3.2. Each bin is plotted at its mean mass.

Again, the dispersion tensor and mean were constrained to reduce the number of parameters.

We use flat priors on the dispersion and asymmetric drift. The expression for the likelihood was used

to calculate the maximum likelihood estimate of the dispersion tensor, while errors were estimated

from a MCMC using Metropolis-Hastings sampling. When the constraints on the dispersion tensor

and mean velocity were relaxed this did not substantially alter the results, aside from the larger

errors, particularly in the underpopulated bins due to the reduced degrees of freedom. In particular,

the results are insensitive to allowing vertex deviation.

The fitting results for the SDSS and PG samples are summarized in table 2.2 and plotted in

figure 2.3. In addition, in figure 2.4 the raw transverse velocities measured from the proper motions

for three groups of white dwarfs are shown. The lowest-mass white dwarfs, M < 0.45 M⊙, are

expected to be predominantly formed through binary evolution and have a binary white dwarf

partner.This potentially introduces errors into their photometric distances and so we do not consider

them beyond simply stating the fitting results in table 2.2.
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Figure 2.4 Cumulative transverse velocity distribution of the combined SDSS and PG surveys. low-
mass white dwarfs (0.5 M⊙ ≤ M < 0.75 M⊙, with M = M1 +M2) as solid black, high-mass white
dwarfs (M > 0.95 M⊙) as dashed red, and intermediate mass white dwarfs (0.75 M⊙ ≤M < 0.95 M⊙)
as dotted green.

2.4 Expectations from Single-Star Evolution

2.4.1 Analytic

In this section we describe the reasons for the relationship WD mass and dispersion within a simple

analytic model, before moving onto the more complex Monte Carlo simulations of section 2.4.2.

Within the framework of single-star evolution (SSE) an ensemble of white dwarfs with the same

mass would be expected to have a dispersion σ(tTOT), where σ(t) is the disk heating relation, and

tTOT is the total age of the white dwarf including its precursor lifetime (i.e., total pre-white dwarf

stellar lifetime). Here tTOT will be given by tTOT = tWD + tSSE(Mi(MWD)) where tWD is the cooling

age of the white dwarf and tSSE(Mi(MWD)) is the total precursor lifetime, which is a function of the

white dwarf mass through the initial-final mass relation (IFMR) Mi(M f ). Two components of this

prediction are particularly uncertain: the disk heating relation and the IFMR. We discuss these now.

The best constraints on the IFMR come from open clusters. Spectroscopic fits of the masses

of white dwarfs give the final mass. The initial mass is estimated using isochrone fitting to the

main sequence turnoff to calculate the age of the cluster, which finally allows the corresponding

initial mass to be inferred using the precursor lifetime (Catalán et al., 2008). This method has

succeeded in producing IFMRs with a typical uncertainty of less than 20%. The strong dependence

of the precursor lifetime on mass however makes this a considerable uncertainty in the dispersion
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Figure 2.5 Predicted dispersions from models A-D described in table 2.3, as dashed blue, solid blue,
dashed green and solid green, respectively. Also plotted are SDSS white dwarfs (black error bars)
with the data taken from the MCMC column of table 2.2.

relation.

The most accurate data on the disk heating relation is given in Nordstrom et al. (2004) from

an analysis of F and G dwarfs with radial velocities and Hipparcos data, although this data still

permits a range of heating models (Seabroke and Gilmore, 2007). However, for consistency, we

instead use the disk heating models estimated in Just and Jahreiß (2010), since we also use their

companion star formation histories.

The effect of these model uncertainties are shown in figure 2.5 for the models described in

table 2.3. Qualitatively the results appear to agree with the predicted relations: for white dwarfs

more massive than 0.75 M⊙ the white dwarf progenitors precursor lifetime is short and there is

little dependence of the kinematics on mass. Below 0.75 M⊙ the dispersion sharply increases as the

progenitor lifetime approached 1 Gyr and longer where the disk heating is significant.

However, while qualitatively the results in figure 2.5 are consistent, there is quantitative dis-

agreement. To assess this disagreement we turn to a more-sophisticated Monte Carlo treatment.

2.4.2 Monte Carlo

As a quantitative check of our results in section 2.4.1 we have performed a Monte Carlo simulation

of the production, kinematics, and observation of the white dwarfs in the solar neighborhood, as

described in this section. We also describe the simulated selection and observation of these white

dwarfs by SDSS and PG. We perform this simulation to assuage fears that our results could be



29

Ta
bl

e
2.

3
M

od
el

in
pu

tp
ar

am
et

er
s

fo
r

th
e

m
od

el
s

of
si

ng
le

-s
ta

r
ev

ol
ut

io
n

(S
SE

).
M

od
el

σ
(t

)/
km

s−
1

M
i(M

W
D

)/
M
⊙

t S
SE

(M
i)
/

G
yr

SF
R

(t
)a

A
66

(

0.
5+

t/
G

yr
0.

5+
12

)

1/
2

b
Fr

om
H

ur
le

y
et

al
.(

20
00

)
M

od
el

fr
om

H
ur

le
y

et
al

.(
20

00
)

3.
25

b

B
62

(

0.
32
+

t/
G

yr
0.

32
+

10

)

1/
2

c
Fr

om
H

ur
le

y
et

al
.(

20
00

)
M

od
el

fr
om

H
ur

le
y

et
al

.(
20

00
)

7.
68

ex
p(
−t
/8

G
yr

)c

C
66

(

0.
5+

t/
G

yr
0.

5+
12

)

1/
2 b

(M
W

D
−

0.
39

4)
/0
.1

09
d

10
(

0.
33

4−
√ 1.

79
0−

0.
22

32
×(

7.
76

4−
lo

g
M

i))

/0
.1

11
6

e
3.

25
b

D
62

(

0.
32
+

t/
G

yr
0.

32
+

12

)

1/
2 c

(M
W

D
−

0.
39

4)
/0
.1

09
d

10
(

0.
33

4−
√ 1.

79
0−

0.
22

32
×(

7.
76

4−
lo

g
M

i))

/0
.1

11
6 e

7.
68

ex
p(
−t
/8

G
yr

)c

a In
un

it
s

of
M
⊙

pc
−2

G
yr
−1

.N
ot

us
ed

in
th

e
an

al
yt

ic
SS

E
si

m
ul

at
io

n
of

se
ct

io
n

2.
4.

1
b
Ju

st
an

d
Ja

hr
ei

ß
(2

01
0)

m
od

el
C

c Ju
st

an
d

Ja
hr

ei
ß

(2
01

0)
m

od
el

D
d

Fr
om

K
al

ir
ai

et
al

.(
20

08
)

e Fr
om

Pa
d

ov
an

ia
nd

M
at

te
uc

ci
(1

99
3)



30

Get random initial mass Mi from IMF

Calculate WD mass MWD from initial
final mass relation

Calculate WD age tWD using stellar age
for Mi and formation time

Is 0 < tWD < 3 × 108 yr?

Place WD in disk — see flowchart
on disk simulation

Get random star formation time from SFR(t)

No

Yes

Figure 2.6 Flowchart illustrating the process of simulating white dwarfs formed from single-star
evolution (SSE). If a star reaches the final stage, then it is placed in the disk using a process described
by the flowchart shown in figure 2.7.

impacted by effects such as selection biases.

This process is somewhat involved, and so for clarity it is summarized in the flow charts in

figures 2.6–2.8. The final results of the Monte Carlo simulation are compared with the white dwarf

sample in figure 2.10.

Picking Stars: The initial mass was drawn from a Kroupa IMF and one of two star formation

histories (Table 2.3). If this resulted in a white dwarf at the present time with an age less than 3×108

years, and a temperature between 13,000 K and 40,000 K using the cooling models of Wood (1995)

as explained in section 2.2, then it was included in the simulation. See figure 2.6 for synopsis.

Placing Stars in Disk: If a star has been included in the simulation, it is given a velocity

dispersion taken from the previously described disk heating models of table 2.3 and axis ratios of

the velocity ellipsoid of 1:1/1.4:1/2.2 (Dehnen and Binney, 1998). Its velocity in the disk was drawn

from a Gaussian with these widths and it was placed in the plane of the Galaxy using a radial

exponential disk with a scale length of 2.5 kpc. Since the furthest > 0.47 M⊙ WD projected into

plane is less than 1 kpc, only WDs placed within this distance are simulated further.
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For an isothermal population the vertical position, z, and velocity, vz, are given by

fz(Ez) ∝ exp(−Ez/σ
2
z)

∝ exp(−v2
z/2σ

2
z) exp(−Φz(z)/σ2

z) , (2.10)

where Φz is the gravitational potential. Each star’s velocity is thus drawn from a Gaussian with

standard deviation given by the previously calculated σz, while z is chosen by first drawing Φz(z)

from an exponential distribution with scale σ2
z , and then inverting this to calculate z. We use the

mass models of Holmberg and Flynn (2000) for Φz(z).

This process of placing white dwarfs in the local galactic disk is summarized in figure 2.7.

White Dwarf Observability: As a result of this process, each white dwarf has an assigned

galactic position and velocity, together with its mass and age. It is then assessed whether it is likely

to be observed in either the SDSS or PG survey as follows: First its galactic position is translated

to a right ascension, RA, and declination, dec, and, unless this falls on one of the PG plates or the

SDSS DR4 spectroscopic plates, the probability of observation is zero.

For white dwarfs in the PG survey the apparent U and B magnitude is calculated from the models

of Holberg and Bergeron (2006) with a 0.27 mag error added to each to mimic the photometric errors

in PG (Liebert et al., 2005). If it is bluer than U−B = −0.46 and brighter than the B band magnitude

limit for the PG plate on which it lies then it is considered observed.

For SDSS the spectroscopic targeting is more complex (Kleinman et al., 2004), and the strategy

was to construct an empirical observational probability for a star at each magnitude and color. A

four-dimensional table of probability of spectroscopic follow up was constructed in (r, u−g, g−r, r−i)

grouped in 0.2 mag bins from the SDSS DR4 clean photometry. The expected spectroscopic signal-

to-noise was calculated using a quadratic least squares fit to the observed signal-to-noise ratio as

a function of g-band magnitude together with normally distributed scatter in signal-to-noise with

standard deviation of 1.7. If the signal-to-noise ratio was greater than 10 it was included in the

mock sample.

Finally, measurement errors in mass of 0.03 M⊙ and proper motion errors of 5.6 mas yr−1are

introduced.

The process of assessing if each white dwarf is observed by the PG or SDSS surveys is summa-

rized in figure 2.8. In all simulations we simulate a total of ∼ 2 × 1011 objects.

Monte Carlo Results: The results of this simulation are shown in figure 2.10. As a further

check that the simulated white dwarfs have the correct kinematics we plot the distributions in the

U, V and W directions (directed towards the Galactic center, in the direction of galactic rotation,

and towards the north Galactic pole, respectively) in figure 2.9.

The results of the singe-star evolution (SSE) simulation, described in this section, closely agree
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Get random distance from galactic center,
R, from number density dν ∝ exp(−R/R0)R dR

Get random orientation in galactic plane from
sun φ from uniform distribution

Is WD within 1 kpc of the
sun in the galactic plane?

No

Yes

Get WD from SSE/BSE with mass MWD

and age since star formation tTOT

Get σz from age-dispersion relation using tTOT

Get random vz and Φz(z) assuming isothermal
distribution fz ∝ exp(−v2

z/2σ2
z) exp(−Φz(z)/σ2

z)

Calculate z by inverting the Φz(z) given by
the mass model of Holmberg & Flynn (2000)

Is the white dwarf observable at this position?
See observability flow chart

Get random vx and vy assuming Schwarzschild
distribution with σ from age-dispersion relation

Add solar motion and asymmetric drift of 〈vy〉
= −σ2

x/80 km s−1 (Dehnen and Binney, 1998)

Figure 2.7 Flowchart illustrating the process of placing white dwarfs in the galactic disk and picking
their velocity. This process is undertaken if a star reaches the final stage of the flowchart shown in
figure 2.7. If a star reaches the final stage of this flowchart, the observability is finally determined
using the algorithm described in the flowchart shown in figure 2.8
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Does WD lie on a survey plate?

Get WD from SSE/BSE and place in the disk

No

Yes

No

Yes

No

Yes

Using WD age tWD, mass MWD and
distance calculate apparent u, g, r, i, z mag

Estimate probability of object within 0.2 mag
in (r, u− g, g − r, r − i) having SDSS spectra

Is random uniform number in
[0, 1) less than probability?

Predict signal-to-noise with quadratic
fit from g-band with scatter 1.7

Is signal-to-noise> 10

WD is observed in SDSS sample

(a) SDSS.

Does WD lie on a survey plate?

Get WD from SSE/BSE and place in the disk

No

Yes

No

Yes

No

Yes

Is WD brighter than mag
limit for the plate it lies on?

WD is observed in PG

Is WD blue enough to be in
PG? (U − B < −0.46)

Add to U and B normally distributed
photometric error of 0.27 mag

Using WD age tWD, mass MWD and
distance, calculate apparent U and B mag

(b) Palomar-Green (PG).

Figure 2.8 Flowchart illustrating the process of simulating whether white dwarfs are observed. This
process is undertaken if a star has reached the final stage of the flowchart shown in figure 2.7.
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Figure 2.9 Histograms showing the agreement between the observed and simulated velocity dis-
tribution in U, V, W directions of SDSS WDs. The black line is the observed distribution, while
the dashed red line is the distribution of the SSE simulation for model C. Zero radial velocity is
artificially assumed, and number of simulated WDs is normalized to the number observed. U is
directed towards the Galactic center, V in the direction of galactic rotation, and W towards the north
Galactic pole.
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with the observations, modulo the normalization factor. We do not concern ourselves with this

overall normalization, however the normalization factor is typically . 2. The simulation also does

not produce white dwarfs below ≈ 0.47 M⊙, which are generally expected to form through binary

evolution. As may be expected from the analytic models plotted in figure 2.5, the models in table 2.3

all produce white dwarfs that reasonably closely explain the observed samples and their kinematics

and so we only plot the results of only one representative model in figure 2.10.

2.5 Expectations from Binary-Star Evolution

It has been suggested that the majority of high-mass white dwarfs were formed from mergers of

binary white dwarfs, both on the basis of their number density (Liebert et al., 2005) and a possible

peak at 1 M⊙ (Vennes, 1999). To test this hypothesis we use two binary evolution codes (discussed

in section 2.5.1) to perform binary population synthesis (described in section 2.5.2), and ultimately

what fraction of the sample is likely to have had a binary WD progenitor (section 2.5.4).

2.5.1 Binary Evolution Codes

To address the considerable uncertainties in binary evolution, two binary evolution codes were

used. Specifically, the BSE code described in Hurley et al. (2000), and the SeBa code described in

Nelemans et al. (2001). Both codes use the same approach to modeling binary evolution: semi-

analytic fits to the structure and evolution of isolated stars are combined with prescriptions for

interactions between the stars.

We now turn to the key uncertain physics in binary evolution and describe how it is treated in

the two codes.

There are four key initial conditions that govern the evolution of a binary: the initial primary

mass M1i, the initial secondary mass M2i (or equivalently the mass ratio qi = M1i/M2i), the initial

binary semi-major axis ai and the initial eccentricity ei.

One slice through the four-dimensional space of initial conditions (M1i, qi, ai, ei) showing those

conditions, which result in the merger of a pair of white dwarfs is shown in figure 2.11. For those

binaries that result in the merger of a pair of white dwarfs there are generally two phases of mass

transfer in their evolution. One as each star evolves from the main sequence and expands. Both

codes have two distinct channels for forming pairs of white dwarfs. These correspond to the

stability of the first phase of mass transfer. The lower branch of figure 2.11 corresponds to binaries

where the first phase of mass transfer is stable Roche lobe overflow (RLOF) as the primary evolves

off the main sequence and crosses the Hertzsprung gap. For binaries in the upper branch the first

phase is dynamically unstable, resulting in a binary in a common envelope (CE). The second phase

of mass transfer is always unstable, independent of the branch, resulting in a common envelope
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Figure 2.11 Comparison of the WD+WD merger outcomes from the SeBa and BSE codes with their
default prescriptions for binary evolution. All simulations use an initial mass ratio of qi = 0.5
and eccentricity of ei = 0. SeBa results are lines 450 counterclockwise from vertical and BSE 450

clockwise. Green corresponds to CO+CO, red He+CO and blue He+He. The darker green are
super-Chandrasekhar (M1 +M2 < 1.4 M⊙) mergers, and the light green sub-Chandrasekhar.

(CE). Following the ejection of this common envelope the two white dwarfs are brought to merger

through the emission of gravitational radiation.

The differences between the BSE code and SeBa code in figure 2.11 are striking, and are largely

due to the different binary evolution prescriptions, and in particular the treatment of the RLOF and

CE phases.

In the RLOF phase mass is transferred on the thermal timescale of the primary as it crosses the

Hertzsprung gap. This is shorter than the thermal timescale of the less massive secondary and so it

cannot remain in equilibrium. The BSE code treats this by reducing the transfer rate while keeping

mass transfer conservative, while SeBa assumes any mass transfer in excess of the thermal timescale

of the secondary is ejected from the system with a multiple nJ = 2.5 of the angular momentum of

the binary. This can be a significant difference for white dwarfs on the lower branch of figure 2.11.

There is also considerable uncertainty in the treatment of the important CE evolution phase. The

most fundamental difference is the treatment of the first phase of mass transfer. BSE uses the most

commonly used prescription for common envelope evolution known as the α parametrization, for

both phases of mass transfer. This is defined through

Ebind = αCE∆Eorb (2.11)

Mi(Mi −Mf)
λR

= αCE

(

Mfm

2af
− Mim

2ai

)

(2.12)
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where the donor mass and radius are denoted M and R, and the accretor mass m. λ is an order

unity factor parametrizing the envelope energy of the binary. We have used a constant αCEλ = 2

for both SeBa and BSE in figure 2.11.

By default SeBa uses a different parametrization for the first phase of mass transfer known as

the γ prescription. This treats the common envelope in terms of the angular momentum balance as

opposed to the energy balance in the α prescription. Specifically

Ji − Jf = γJi
∆M

Mtot
(2.13)

where Ji and Jf are the initial and final orbital angular momenta of the binary, Mtot is the total mass

of the binary, ∆M is the mass lost, and γ is a parameter taken to be 1.5 in this work.

2.5.2 Binary Population Synthesis

We now describe our method of binary population synthesis.

We use the same distributions in the parameters (M1i, qi, ai, ei) as Han (1998) and Nelemans et al.

(2001) with the exception of the IMF for which we use a Kroupa (2001) IMF as opposed to a Miller

and Scalo (1979) IMF. For reference the probability distributions are:

P(M1i) ∝M−1.35
1i 0.8 < M1i ≤ 10 ,

P(qi) ∝ const. 0 < q ≤ 1 , (2.14)

P(log ai) ∝ const. 0 < log ai/R⊙ ≤ 5 ,

P(ei) ∝ ei 0 ≤ ei < 1 .

Our approach to simulating the results of binary-star evolution is to first produce a 4-dimensional

grid of binary simulations in the parameters (M1i, qi, ai, ei). Grid points were linearly spaced in M1i

between 0.8 and 10 M⊙, linearly spaced in qi between 0 and 1, logarithmically spaced in ai between

1 and 104 R⊙, and linearly spaced in e2
i between 0 and 1. The grid size used was a 25 × 25 × 50 × 10

grid in (M1i, qi, ai, ei), respectively. With this choice of grid combined with the distributions in

equation (2.14) the population synthesis is particularly simple: an initial primary mass is drawn

from the Kroupa (2001) IMF and a random binary from the closest corresponding (qi, ai, ei) slice is

chosen. In all simulations a total of ∼ 1013 objects are places in the disk.

The process of simulating stars formed from binary evolution is summarized in figure 2.12.

To assess the uncertainties due to the poorly understood phases of binary evolution we have

used four models across the two binary evolution codes: the BSE code with αCEλ = 2 (model i),

the BSE code with αCEλ = 1 (model ii) the SeBa code using the γα common envelope prescription

(model iii) and the SeBa code using the αα prescription (model iv). Both SeBa models (iii and iv)
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Is 0 < tWD < 3× 108 yr?

Place WD in disk — see flowchart
on disk simulation

No

Yes

No

Yes

No

Yes

Get random binary formation time
from SFR(t)

Does closest simulation in
grid result in merger of WDs

Does this merger produce a new WD?

Calculate MWD and twd

Get random (M1i, qi, ai, ei) according to
equation 14

Generate grid of BSE outcomes in
(M1i, qi, ai, ei)

Figure 2.12 Flowchart illustrating the process of simulating white dwarfs formed from binary-star
evolution.
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Table 2.4 Summary of the four binary evolution models considered. The BSE code is that described
by Hurley et al. (2000), and the SeBa code is described in Nelemans et al. (2001). The CE prescription
describes how the two phases of common envelope evolution are treated. For example γα describes
treatment of the first phase through equation (2.13) and the second through equation (2.12).

Model Evolution Code CE Prescription αCEλ γ
i BSE αα 2 -
ii BSE αα 1 -
iii SeBa γα 2 1.5
iv SeBa αα 2 -

use αCEλ = 2 and γ = 1.5. These models are summarized in table 2.4.

2.5.3 White Dwarf Merger Outcomes

We distinguish between four types of white dwarf mergers, the merger of two helium core white

dwarfs (He+He), the merger of a helium core white dwarf with a carbon/oxygen core white dwarf

(He+CO) and the merger of two carbon/oxygen core white dwarfs (CO+CO) whose total mass is

above or below the Chandrasekhar mass.

The highest-mass white dwarfs may have ONeMg cores. White dwarfs with ONeMg cores have

not been considered separately from CO white dwarfs in this work. Since they are the highest-mass

white dwarfs it is difficult for a pair of white dwarfs with one member an ONeMg white dwarf to

merge with total mass below the Chandrasekhar limit.

The Galactic and local merger rates of the various types of white dwarfs for one particular BSE

model are shown in figures 2.13 and 2.14, respectively.

In what follows we concern ourselves with the merger of CO+CO white dwarfs, since these

are the mergers proposed to result in & 1 M⊙ white dwarfs. Thus, in figure 2.15 we plot the rate

at which pairs of white dwarfs with sub-Chandrasekhar total mass merge as calculated from our

binary population synthesis of the four models in table 2.4. Note that the overall normalization can

be very different. In particular, model ii uses a relatively efficient CE prescription with αCEλ = 1 for

both phases of mass transfer. This in turn results in a smaller range of initial separations that will

ultimately result in a gravitational radiation driven WD merger. Despite the differences in overall

rate between the models they all display a similar distribution of merger times. This is because, apart

from at early times, the merger time is dominated by the time to merge by gravitational radiation.

This is a strong function of separation, a, specifically tGW ∝ a4. As a result, at late times, the merging

WDs originally formed a narrow range in separation at WD+WD birth. Approximating this as a

power law, dN
da ∝ aǫ leads to a merger rate dN

dt =
dN
da

da
dt ∝ t−(3−ǫ)/4, and so for a wide range of ǫ the

merger rate declines as dN
dt ∼ t−1(Maoz et al., 2010).
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Figure 2.15 Merger rates of CO+CO WDs with sub-Chandrasekhar total mass following a burst of
star formation. The error bars are purely statistical due to the finite size of the simulated binary
grid. SNuM ≡ 1/(100 yr) /(1010 M⊙).



43

2.5.4 Proportion of High-Mass White Dwarfs Formed in Mergers

To assess the possible proportion of high-mass white dwarfs that formed through mergers, the

CO+CO merger products with 0.95 M⊙ ≤ M1 +M2 < 1.4 M⊙ from the binary population synthesis,

are subjected to the same process as the single population synthesis results, i.e., they are placed

locally in the disk according to the method summarized in figure 2.7 and their observability in the

SDSS and PG samples assessed according to figure 2.8.

We assume that no mass is ejected during the merger so that resultant white dwarf has mass

MWD =M1+M2. We also assume that the merger reheats the white dwarf sufficiently that the white

dwarf has a cooling age of

tWD = tform − tmerge

where tform is the time prior to the present at which the binary initially formed, and tmerge is the

length of time it took for the merger to occur, including the precursor lifetime. The resulting

cumulative transverse velocity of 0.95 M⊙ ≤M1 +M2 < 1.4 M⊙ CO+CO merger products are shown

in figure 2.16.

In figure 2.16 and the following we have combined the PG and SDSS samples to improve the

statistics. We combine the Monte Carlo results by the empirical proportions of WDs in this sample,

i.e., the observed PG-to-SDSS ratio of 5:9. Note however there is a possible discrepancy between the

two samples in this high-mass bin. In particular the SDSS sample has few low velocity (< 14 km s−1)

white dwarfs (see the bottom right panel of figure 2.10), and this results in a 12% probability that

they are drawn from the same distribution.

The distribution of transverse velocities in figure 2.16 shows that despite the uncertainties in

binary evolution resulting in very different binary histories (figure 2.11) and overall merger rates

(figure 2.15), the resultant velocity distributions are very similar. This is a result of the ∼ t−1 merger

time distribution at late times discussed previously.

The results in figure 2.16 naturally lead the question of what fraction of mergers is consistent

with the data to be addressed. We wish to assess the fraction of high-mass galactic white dwarfs

formed by binary mergers (BSE) which we parameters by θ. This results in a fraction 1 − θ from

single-star evolution (SSE). To assess a value of θ for a given SSE and BSE Monte Carlo realization

we first calculate the galactic formation rate of high-mass WDs from SSE and BSE in this realization,

which we denote ΓSSE and ΓBSE, respectively. Then, for both PG and SDSS we make α copies of

the BSE objects simulated as observed, and β copies of objects simulated as observed from SSE.

Assuming that equal numbers of objects were simulated in both the BSE and SSE realizations, then

the two simulated samples combined have a galactic BSE fraction of

θ =
βΓBSE

βΓBSE + αΓSSE
.
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Figure 2.16 Predicted distribution of transverse velocities observed in SDSS and PG resulting from
the merger of CO+CO WDs with 0.95 < M1 +M2/M⊙ < 1.4. Lines are the BSE code with αCEλ = 2
(solid blue line, model i), the BSE code with αCEλ = 1 (dotted blue line, model ii) the SeBa code
using the γα common envelope prescription (dashed blue line, model iii) and the SeBa code using
the αα prescription (dash-dot blue line, model iv). Both SeBamodels use αCEλ = 2 and γ = 1.5. The
red line is the predicted distribution of transverse velocities resulting from single-star evolution
to a 0.95 < M/M⊙ < 1.4 white dwarf according to model A in table 2.3, and the black line are the
observed distributions. All BSE models use a constant SFR and the disk heating relation of model
A in table 2.3.



45

To test whether the data is consistent with this realization, we use the two sample Anderson-Darling

statistic (Pettitt, 1976). The Anderson-Darling test considers the difference between the samples

across the entire distribution, and so is more statistically powerful that the more commonly used

Kolmogorov-Smirnov test which depends only on the extremum. The number of simulated white

dwarfs is always much larger, by at least a factor of ten, than the number observed.

The results for one particular choice of SSE and BSE model are shown in figure 2.17(a). In

figure 2.17(b) we show the combined probability that the PG and SDSS samples are consistent with

each value of θ. In table 2.5 we summarize the results of this procedure for the range of the BSE

and SSE models described in tables 2.3 and 2.4.

The results in table 2.5 show that for the majority of models the fiducial numbers of white dwarfs

formed via SSE and BSE are consistent with the data. The results taken at face value would also

appear to show that, for most models, at the 1 per cent probability level, high-mass white dwarfs

must come from a combination of single-star evolution and mergers of high-mass white dwarfs.

This appears artificial however: From the right column of figure 2.17(a) the PG sample is consistent

with all SSE, while the SDSS sample that has a low probability of arising purely from SSE.

This is a result of the lack of low velocity (< 14 km s−1) white dwarfs in the SDSS sample. It may

be that the lack of low velocity white dwarfs in SDSS is a statistical anomaly, since the number of

objects is small. In theory this would be taken account of in the analysis described above, however

young stellar objects can display prominent substructure in their kinematics as a result of moving

groups (e.g., Dehnen, 1998). This would have the result of both reducing the effective sample size,

and producing a very different velocity distribution than the Schwarzschild distribution assumed

in the SSE Monte Carlo. There are indications that this is the case, since when the SDSS objects

are plotted in the U − V plane (assuming zero radial velocity) 7 of the 9 objects lie in the negative

U, negative V quadrant. Depending on the unobserved radial velocity, many of these could have

kinematics consistent with the Pleiades and Hyades moving groups. Indeed it has been shown that

the the white dwarf GD 50, has a velocity and cooling age consistent with a Pleiades origin (Dobbie

et al., 2006).

That the data rules out a white dwarf merger origin for the majority of high-mass white dwarfs

appears more secure, despite the apparent consistency of the SDSS sample with the BSE simulations:

The PG sample is entirely consistent with SSE, and neither sample contains a high-mass white dwarf

traveling at > 50 km s−1 which would be convincing evidence of a BSE origin for some high-mass

white dwarfs. This is not surprising, since the expected number of merger products observed in

PG and SDSS (N(BSE) in table 2.5) is significantly smaller than the observed number of objects.

We note that a simpler empirical test for the origin of the high-mass white dwarfs is suggested

by figure 2.4. The distribution of high-mass white dwarfs is consistent with the velocity distribution

of the intermediate group that displays the kinematics of young objects at the 13 per cent level by
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the Anderson-Darling test. This ignores the selection effects which the Monte Carlo simulation

addresses, but does suggest that the entire combined group of high-mass white dwarfs is broadly

consistent with SSE.

2.6 Scale Heights

One of the key results of this study is that hot white dwarfs of mass& 0.75 M⊙ had much shorter main

sequence lifetimes than their lower-mass counterparts, and hence their kinematics are characteristic

of young stars. A direct result of this is that these higher-mass white dwarfs will have reduced scale

height. This is vitally important to consider when calculating the formation rate as a function of

mass using local samples such as in Liebert et al. (2005) or Kepler et al. (2007) or producing galactic

white dwarf simulations such as Nelemans et al. (2001).

Unfortunately, neither the SDSS or PG sample allow accurate direct determination of the scale

height of each white dwarf population, particularly the rare and less luminous high-mass groups.

Instead, here we list the expected scale height by comparison with the SSE models that appear to

accurately describe the kinematics. We do this to allow simple initial corrections without resorting

to the simulations of the type performed in this work. The scale height, h, was defined through

ν(z) = ν0 sech2
(

z

2h

)

, (2.15)

where ν(z) is the stellar number density in terms of the height above the plane of the galactic disk,

z. The scale height, h, was estimated by constraining equation (2.15) to give both the correct overall

number and central WD density, ν0. We choose this method since the most common usage of the

scale height is to calculate galactic birthrates from local densities. The results are give in table 2.6.

Plots of the simulated vertical distributions in the solar neighborhood, together with their scale

heights defined through equation (2.15) are shown in figure 2.18. Note that the higher-mass groups

smaller scale height results in a local density enhanced by more than a factor of two over the more

common low-mass group. In particular, the apparent excess of high-mass white dwarfs found in

the PG survey (discussed in section 6 of Liebert et al., 2005) can be naturally explained by their

lower scale height, which causes a high abundance in this relatively local survey. That the number

of high-mass white dwarfs is consistent with single-star expectations in PG is confirmed by the

number of expected white dwarfs from single-star evolution in table 2.5.
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Table 2.6 Scale heights, h, defined through equation (2.15) for three different mass groups. h is
calculated by matching the central density and overall number to the simulations described in
section 2.4.2.

Mlow /M⊙ Mhigh /M⊙ h / pc
0.45 0.75 120
0.75 0.95 58
0.95 1.40 54

z / pc

ν
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o
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Figure 2.18 The vertical distribution of equation (2.15) with the scale heights from table 2.6 as
dashed lines, compared to the simulations described in section 2.4.2 as solid lines. The three
groups plotted are the low-mass (0.45M⊙ < M ≤ 0.75M⊙) in blue, the intermediate mass in green
(0.75M⊙ < M ≤ 0.95M⊙) and high-mass (> 0.95M⊙) in red.
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2.7 Summary

We have analyzed the kinematics of young (< 3 × 108 years) DA white dwarfs from both the

PG and SDSS surveys and find a strong connection between their mass and kinematics: low-

mass white dwarfs (0.45 M⊙ ≤ M1 + M2 < 0.75 M⊙) display the kinematics of old stars, with

higher velocity dispersion (∼ 46 km s−1) and asymmetric drift, while higher-mass white dwarfs

(0.75 M⊙ ≤ M1 +M2 < 0.95 M⊙) display the kinematics of young stars with a velocity dispersion of

only ∼ 19 km s−1. We have shown in section 2.4 that this is expected due to the shorter precursor

lifetime of the more massive progenitors, and that there is agreement both on simple analytic

grounds (section 2.4.1) and more quantitative Monte Carlo simulations of the PG and SDSS samples

(section 2.4.2).

A further key conclusion is that the white dwarf scale height and its variation with age and mass

is vitally important to consider when calculating birth rates based on local samples (section 2.6).

In addition, we have separately analyzed the highest-mass white dwarfs (M > 0.95 M⊙, section

2.5), since it has been suggested that many of these formed as a result of the merger of two lower-

mass CO white dwarfs. We find at present a discrepancy in the SDSS velocity distribution where

no high-mass white dwarfs with transverse velocity less than 14 km s−1 is detected. This results in

a velocity distribution that within our statistical framework is inconsistent with purely single-star

evolution. We argue this is likely to an anomaly, either be a statistical, or a result of a number of

these white dwarfs being members of moving groups. We find that, even under the most optimistic

binary evolution models, we would only expect to find 3 white dwarfs formed via white dwarf

binary mergers and that the apparent excess of high-mass white dwarfs found in PG is caused by

their reduced scale height. In addition, we note the kinematic ‘smoking gun’ of some fraction of

high-mass white dwarfs coming from binary evolution would be high-mass white dwarfs traveling

at > 50 km s−1, of which none are found in PG or SDSS.

Appendix 2.A Likelihoods

Here we give our expressions for the proper motion likelihoods of an individual object. These

largely follow Ratnatunga et al. (1989), modified to include errors in proper motion. We ignore

errors in sky position (ℓ, b), which are small.

Assuming a Schwarzschild distribution function, then, in coordinates aligned with the principle

axes of the velocity ellipsoid,

f (V) =
1√

8π3σ1σ2σ3

exp
(

−(V −V0)T · Γ · (V −V0)
)

, (2.16)

where Γ = diag(1/2σ1, 1/2σ2, 1/2σ3) and V0 is the mean velocity. Ignoring errors in distance, we
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then rotate to axes aligned with the sky plane, and integrate over the unobserved radial velocity,

which, in this case, is a nuisance parameter.

We define, Λ, to be the dispersion tensor rotated into the coordinate system, (ℓ, b, d), aligned

with the sky plane. This will be given by Λ = R · Γ, where R is a rotation matrix (given explicitly

as equation A4 in Ratnatunga et al., 1989). The probability distribution, after integrating over the

radial velocity as a nuisance parameter, is an ellipsoid in the sky plane

p(vl, vb) = C′ exp
[

− α(vℓ − v̄ℓ)2 − β(vb − v̄b)2

− 2γ(vℓ − v̄ℓ)(vb − v̄b)
]

, (2.17)

where v̄ℓ and v̄ℓ are the components of V0 in the directions of l and b (which can be obtained via

(v̄ℓ, v̄b, v̄d) = R ·V0) and α, β, γ, and C′ are given by

α = Λ22 −Λ2
12/Λ11 , (2.18)

β = Λ33 −Λ2
13/Λ11 , (2.19)

γ = Λ23 −Λ12Λ13/Λ11 , (2.20)

C′ =
√

αβ − γ2/π . (2.21)

For each object we have measurements of vl and vb, together with an associated velocity error σ.

Integrating over the ‘true’ vl and vb gives the log likelihood used in equation (2.9) as

logLi(vobs
ℓ , vobs

b ) ≡ log
∫

dV f (V)P(V|vobs
ℓ , vobs

b , σ)

= log C′′ − δ

(α + δ)(β + δ) − γ2×
[

(∆v2
b + ∆v2

ℓ)(αβ − γ2)+

δ(β∆v2
b + α∆v2

ℓ + 2γ∆vℓ∆vb)
]

, (2.22)

where

δ = 1/2σ2 , (2.23)

∆vℓ = vobs
ℓ − v̄ℓ , (2.24)

∆vb = vobs
b − v̄b , (2.25)

C′′ = C′
δ

√
π

√

(α + δ)(β + δ) − γ2
(2.26)

= δ

√

αβ − γ2

π3[(α + δ)(β + δ) − γ2]
. (2.27)
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Note that for small error, δ → ∞, and equation (2.22) reduces to the log of equation (2.17) as

expected.
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3
Photometric Identification and Spectroscopic Confirmation

of Ultracool White Dwarfs1

Abstract

Ultracool white dwarfs display significant flux suppression red-wards of

∼ 6000 Å due to collision-induced opacity (CIA). This which moves them

out of the stellar locus. We show that their unique colors enable their

identification purely photometrically. We applied cuts to SDSS photometry

to produce targets and have observed and spectroscopically confirmed

four new ultracool white dwarfs with a 100 per cent purity. One additional

ultracool white dwarf was found in the SDSS data but did not pass the

photometric quality cuts. These five new ultracool white dwarfs display

disk kinematics and their density is consistent with previous estimates.

1This work will be submitted for publication in ApJ with authors: Christopher Wegg and Sterl Phinney in this order.
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3.1 Introduction

Hot white dwarfs can easily be identified on the basis of their blue colors (e.g., Eisenstein et al., 2006;

Liebert et al., 2005), however cool (Teff . 8000 K) white dwarfs are more challenging to identify. In

clusters they can readily be identified from their sub-luminous nature (e.g., Hansen et al., 2007), but

in the field their colors are typically indistinguishable from the stellar locus. Instead the statistical

technique of finding sub-luminous objects via their high proper motion and therefore faint reduced

proper motion is used (e.g., Kilic et al., 2006; Vidrih et al., 2008). In this work we show that the

coolest white dwarfs, those known as ultracool white dwarfs, can be identified via their unique

colors, a prospect first suggested by Hansen (2001).

When white dwarfs cool below an effective temperature of ∼ 4000 K the hydrogen in their

atmosphere forms neutral H2 molecules. Since H2 in its ground state has zero dipole moment, it

usually absorbs photons only via higher-order transitions such as electric quadrupole transitions.

This results in a dramatic lowering of the mean opacity of the atmosphere.

One result of this lowering of opacity is that the depth of the photosphere increases, and hence

the pressure at the photosphere increases. This has the effect of increasing the rate of collisions

between H2 and other H2 or He molecules. At these rates of collisions the dominant form of

opacity becomes collision-induced absorption (CIA). CIA is the process whereby a H2 molecule is

sufficiently close to another species that a dipole is induced, resulting in electric dipole transitions

being allowed. These CIA transitions are typically roto-vibrational and very broad. At the pressures

found in white dwarfs at low temperature, they dominate the opacity at wavelengths longer than

1µm (see Lenzuni et al., 1991, for opacity calculations and good explanations of the physics). As a

result of this strong red-ward opacity there is a flux deficit, relative to a black body, at wavelengths

longer than > 1µm.

A subset of these white dwarfs show stronger CIA. These are the white dwarfs termed ultracool

white dwarfs by Gates et al. (2004) and Harris et al. (2008), which we search for and identify in

this work. In these objects the flux deficit extends to 6000 Å. An example spectrum, that of SDSS

J133739.40+0001428 (hereafter SDSS J1337, Harris et al., 2001), is compared to a 4000 K blackbody

in figure 3.1.

Other examples of ultracool white dwarfs displaying significant CIA and flux suppression red-

wards of 6000 Å are LHS 3250 (which was the first discovered, Harris et al., 1999), and those

serendipitously targeted for spectroscopy by SDSS, such as the aforementioned SDSS J1337 and

those found in Gates et al. (2004) and Harris et al. (2008). We summarize the known ultracool white

dwarfs that lie in the SDSS DR7 footprint in table 3.1.
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Table 3.1 Summary of the properties of the previously known, spectroscopically confirmed, ultracool white dwarfs which lie within the SDSS
DR7 survey footprint. Three other ultracool white dwarfs showing strong optical CIA lie outside the survey footprint and are omitted: LHS 1402
(Oppenheimer et al., 2001; Salim et al., 2004), GD 392 (Farihi, 2004), and SSS J1556-0806 (Rowell et al., 2008).

Short RAa Deca Epocha

u g r i z
µb µαb µδ

b

Hg
c dd v⊥d Discovery Strong

Name (MJD) (mas yr−1) (pc) (km s−1) Paper Optical CIA?
J0947 09 47 23.0 +44 59 49 52283.4 20.74 19.45 18.85 18.93 19.44 85 ± 7 68 ± 5 51 ± 5 19.09 53 21 Gates et al. (2004) Yes
J1001 10 01 03.4 +39 03 40 52639.5 21.42 20.04 19.58 19.99 20.55 353 ± 14 −302 ± 4 −181 ± 14 22.77 69 115 Gates et al. (2004) Yes
J1220 12 20 48.7 +09 14 12 52345.3 22.43 20.35 19.31 19.45 19.88 501 ± 15 −320 ± 9 −385 ± 12 23.84 79 188 Gates et al. (2004) Yes
J1251 12 51 06.1 +44 03 03 52724.3 21.44 20.17 20.39 20.69 20.86 170 ± 8 −167 ± 6 30 ± 6 21.32 73 59 Harris et al. (2008) Yes
J1337 13 37 39.4 +00 01 43 51258.4 20.79 19.55 19.13 19.52 20.03 175 ± 7 −16 ± 5 −175 ± 5 20.77 55 46 Harris et al. (2001) Yes
J1403 14 03 24.7 +45 33 33 52704.5 20.10 18.90 18.95 19.48 19.76 283 ± 10 −267 ± 7 −94 ± 7 21.15 41 55 Gates et al. (2004) Yes
J16545 16 54 01.2 +62 53 55 51638.4 19.68 18.39 17.86 18.07 18.55 570 ± 7 −548 ± 5 157 ± 5 22.17 32 87 Harris et al. (1999) Yes
J0146 01 46 29.0 +14 04 38 51464.4 21.21 19.99 19.37 19.24 19.71 252 ± 7 251 ± 5 29 ± 5 22.00 67 81 Harris et al. (2008) No
J0310 03 10 49.5 -01 10 35 52522.4 22.49 20.95 20.20 19.89 19.97 81 ± 8 −25 ± 6 −77 ± 6 20.50 105 40 Harris et al. (2008) No
J0854 08 54 43.3 +35 03 53 52585.5 23.67 20.51 19.38 19.06 18.91 234 ± 8 −140 ± 6 −188 ± 6 22.36 86 95 Gates et al. (2004) No
J1238 12 38 12.9 +35 02 49 53111.3 24.73 21.76 20.31 19.87 20.31 189 ± 9 −138 ± 6 −130 ± 6 23.14 152 136 Harris et al. (2008) No
J1452 14 52 39.0 +45 22 38 52788.2 21.59 20.03 19.35 19.26 19.30 91 ± 7 −55 ± 5 72 ± 5 19.82 69 29 Harris et al. (2008) No
J1632 16 32 42.2 +24 26 55 52811.3 21.33 19.60 18.72 18.49 18.47 349 ± 8 −16 ± 6 −349 ± 6 22.31 56 93 Harris et al. (2008) No
J2239 22 39 54.1 +00 18 47 52197.3 21.51 20.16 19.53 19.47 20.09 120 ± 7 1 ± 5 120 ± 5 20.56 73 41 Harris et al. (2008) No

aRA and Dec are given as equinox J2000 at the Julian date of SDSS observation in the Epoch column.
bProper motions taken from the PPMXL catalog (Roeser et al., 2010).
cReduced proper motion in g-band. See equation (1.2).
dAssuming the absolute magnitude in the g-band of LHS 3250.
eOriginally discovered as LHS 3250.
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Current model atmosphere fits to white dwarfs displaying strong CIA perform poorly. An

example of this can be seen in the fits to ultracool white dwarfs in figure 16 of Kilic et al. (2010). It

is especially useful therefore that LHS 3250 has a measured parallax of (33.04± 0.5) mas placing it

at (30.3 ± 0.5) pc (Monet et al., 1992). This allows the absolute magnitude to be calculated directly,

for example, in the V band it is Mv = (15.72± 0.04) (Harris et al., 1999). The close distances of these

objects cause them to have very high proper motions2. For example, LHS 3250 has a proper motion

of 565.7 ± 0.1 mas yr−1, which is an order of magnitude larger than the typical proper motions

displayed by the white dwarfs in chapter 2.

There are also a number of white dwarfs which display less significant CIA with only a mild

optical flux suppression with more significant suppression in the IR. Examples of this class are LHS

1126 (Bergeron et al., 1994) and WD 0346 (Hambly et al., 1997), as well as several found in Harris

et al. (2008). We do not attempt to exhaustively catalog this class in table 3.1, but when included

they are marked as not having strong optical CIA.

The blue-ward evolution of the coolest white dwarfs is also illustrated as a blue-ward ‘hook’

in the cooling sequences of the globular cluster NGC 6397 shown in figure 1.2 (although the mass

evolution along the cooling sequence may also contribute).

In this chapter we show that ultracool white dwarfs which display strong CIA can be detected

by the unique colors alone. In section 3.2 we describe the cuts in color-color space that isolate CIA

white dwarfs, in section 3.3 we describe our observations of four of these objects, all of which are

confirmed to be ultracool white dwarfs, and in section 3.4 we discuss the implications and possible

uses of this work.

3.2 Selection

The flux suppression red-ward of ∼ 6000 Å shown in figure 3.1 results in ultracool white dwarfs

with strong CIA having reduced brightness in the i, z, and (to a lesser extent) the r-bands. This

moves them out of the stellar locus into an extremely sparsely populated region of color space. By

choosing cuts in color-color space that exclude the stellar locus but include the known CIA white

2This is why many ultracool white dwarfs have the object name prefix Luyten Half Second (LHS) — a catalog of objects
with proper motions larger than 0.5" per year (Luyten, 1979).
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Figure 3.1 The spectrum of the white dwarf SDSS J1337 which displays significant CIA red-ward
of 6000 Å (Harris et al., 2001). Also plotted is a 4000 K blackbody as the dashed line, and the SDSS
response in filters u, g, r, i, z in blue, green, red, magenta, and gray, respectively.

dwarfs the number of targets is reduced to a manageable number. The cuts used were

r − i < −0.3 + 0.5 (g− r) ,

r − z < 0.95 (g− r) − 0.7 ,

r − z < −0.4 , (3.1)

u − g > 1 ,

g − r < 0.5 (u − g) + 0.1 .

These cuts are illustrated in figure 3.2 together with the known ultracool white dwarfs from table

table 3.1. Six of the seven previously known white dwarfs showing strong optical CIA pass these

cuts.

These cuts were chosen empirically. However, in principle, it would be possible to make these

cuts via atmospheric models. At present though the atmospheric models do not fit the spectra of

ultracool white dwarfs sufficiently well to make this possible (Kilic et al., 2010).

Even a small number of the vast number3 of objects in the stellar locus being scattered into this re-

gion of color-color space would be catastrophic. We therefore also require that the candidate objects

have reliable photometry. We require in addition to the color-color cuts given in equation (3.1):

1. The object is classified by the SDSS photometry pipeline as a star.

3There are 357 million objects with measured photometry in SDSS DR7, from which we select O(10) candidate objects.
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Figure 3.2 Known and candidate ultracool white dwarfs. The color-color cuts of equation (3.1)
are shown as dashed lines. Known ultracool white dwarfs in table 3.1 are plotted in blue, those
showing strong CIA absorption are plotted with filled circles and labeled. Candidate objects from
table 3.2 are plotted in green, those observed in this work and shown to be ultracool white dwarfs
are plotted as filled symbols. Contours of density of objects in color-color space are shown in pink
and trace the stellar locus.
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2. The object lies at galactic latitude higher than 30 deg. Accurate photometry in crowded fields

is more difficult, and the SDSS photometry pipeline has occasional catastrophic failures in

these fields that scatter objects from the stellar locus into the cuts described here.

3. The error in each band less than 0.21 mag. Errors larger than this often indicate unreliable

photometry.

4. That none of the flags recommended by SDSS as indicating unreliable photometry are set

in each band4: EDGE, NOPROFILE, PEAKCENTER, NOTCHECKED, PSF_FLUX_INTERP, SATURATED, or

BAD_COUNTS_ERROR.

5. That the object was not deblended as a moving object (DEBLENDED_AS_MOVINGflag).

6. If the object was deblended that the parent does not have the DEBLEND_UNASSIGNED_FLUXflag

set. If this is the case the unassigned flux is assigned proportionally to its child objects, hence

the child objects have unreliable photometry.

7. That there is no neighbor object within 6". Very close neighbors (<1") indicate spurious

detections. Wider separations have PSFs where the wings may overlap making reliable

photometry more difficult.

The resulting 14 objects which pass these selection criteria are shown in table 3.2 of which two

were previously discovered as ultracool white dwarfs. Despite the efforts to isolate only genuine

detections, five of these appear to be spurious since they are not detected in the Digitalized Sky

Survey of second Palomar Observatory Sky Survey (POSS-II, Reid et al., 1991). A further three

objects, despite passing the color-color selection cuts, had proper motion consistent with zero. If

these objects were ultracool white dwarfs with the same absolute magnitude as LHS 3250 their

transverse velocity would be less than 5 km s−1 and so are highly unlikely to be ultracool white

dwarfs and were discounted. This leaves a sample of 4 candidate ultracool white dwarfs.

4http://www.sdss.org/dr7/tutorials/flags/index.html#clean

http://www.sdss.org/dr7/tutorials/flags/index.html#clean
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Table 3.2 White dwarfs that pass the candidate selection cuts described in section 3.2.
Short RAa Deca Epocha

u g r i z
µb µαb µδ

b

Hg
c dd v⊥d

Candidate?
Name (MJD) (mas yr−1) (pc) (km s−1)
J0805 08 05 21.7 +21 30 33 51638.4 20.65 19.60 19.64 19.97 20.64 - - - - 56 - No: Not detected in POSS II
J0821 08 21 47.4 +42 24 02 51987.4 20.89 19.42 19.18 19.38 19.73 14 ± 11 10 ± 8 −9 ± 8 15.08 52 3 No: Zero proper motion
J0826 08 26 38.7 +58 47 14 52754.4 21.53 20.51 20.31 20.56 20.84 6 ± 13 0 ± 9 −6 ± 9 14.44 85 2 No: Zero proper motion
J0957 09 57 43.4 +22 38 54 51962.2 21.89 19.75 19.58 20.09 20.79 10 ± 10 10 ± 7 1 ± 7 14.81 60 3 No: Zero proper motion
J1001 10 01 03.4 +39 03 40 51258.4 21.42 20.04 19.58 19.99 20.55 249 ± 10 127 ± 7 −215 ± 7 22.02 69 81 Yes: Found by Gates et al. (2004)
J1043 10 43 46.1 +32 12 38 52671.2 21.71 19.85 19.56 19.99 20.18 - - - - 63 - No: Not detected in POSS II
J1121 11 21 00.1 +14 17 29 52667.5 21.01 19.72 19.19 19.49 20.13 317 ± 7 94 ± 5 −303 ± 5 22.22 59 89 Yes: Observed. See figure 3.4
J1330 13 30 37.7 +00 29 01 53359.5 20.96 19.45 19.37 19.68 20.04 - - - - 53 - No: Not detected in POSS II
J1336 13 36 42.7 +07 48 27 53111.3 22.17 20.49 19.95 20.34 20.80 265 ± 9 −61 ± 7 258 ± 7 22.61 85 106 Yes: Observed. See figure 3.4
J1358 13 58 11.2 +04 30 02 52639.5 20.39 19.20 19.24 19.58 20.10 - - - - 47 - No: Not detected in POSS II
J1449 14 49 47.9 +09 08 40 52756.3 20.55 19.25 19.19 19.47 20.02 - - - - 48 - No: Not detected in POSS II
J1542 15 42 03.7 +27 50 22 52963.4 21.92 20.79 20.27 20.51 21.15 72 ± 10 −67 ± 7 −26 ± 7 20.07 97 33 Yes: Observed. See figure 3.4
J1602 16 02 44.9 +08 56 29 52812.2 21.68 20.51 19.92 20.05 20.80 56 ± 10 20 ± 7 −53 ± 7 19.26 86 23 Yes: Observed. See figure 3.4
J1654e 16 54 01.2 +62 53 55 52755.4 19.68 18.39 17.86 18.07 18.55 570 ± 7 −548 ± 5 157 ± 5 22.17 32 87 Yes: Found by Harris et al. (1999)

aRA and Dec are given as equinox J2000 at the Julian date of SDSS observation in the Epoch column.
bProper motions taken from the PPMXL catalog (Roeser et al., 2010).
cReduced proper motion in g-band. See equation (1.2).
dAssuming the absolute magnitude in the g-band of LHS 3250.
eOriginally discovered as LHS 3250.
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Figure 3.3 The spectrum, taken by SDSS, of SDSS J083511.55+184402.9: A white dwarf displaying
CIA serendipitously found in the SDSS data which displays significant CIA red-ward of 6000 Å .
This object did not pass the stringent cuts to be a candidate object, but instead the SDSS spectrum
was serendipitously discovered while selecting those cuts.

While choosing the targets an ultracool WD already observed by SDSS was identified: SDSS

J083511.55+184402.9, whose spectrum is shown in figure 3.3.

3.3 Observations

Four of the white dwarfs passing the cuts described above were observed using the Double Spec-

trograph (DBSP) on the 200-inch Hale telescope at Palomar observatory on the nights of 13 and 14

April 2007. The spectra were reducing using the standard procedure doslit in iraf.

The spectra are shown in figure 2.3. All four candidate objects are clearly white dwarfs demon-

strating strong CIA.

Both nights were photometric and the spectra were flux calibrated using the standards HZ44,

HD84937, BD+262606, and BD+284211. Since the observations were blind offset observation of

objects with significant proper motions since the last epoch of observation, it possible that they

were not well centered in the slit. However the observations were taken with the slit at the

parallactic angle and, from figure 2.3 the results of the spectrophotometry are close to the SDSS

photometry.
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Figure 3.4 Spectra of ultracool white dwarfs observed using the double spectrograph on the 200-inch
Hale telescope at the Palomar observatory. The SDSS photometry which led us to identify them is
also plotted with each filter plotted at its λeff .

3.4 Discussion

The density of ultracool white dwarfs can be estimated from the six found over the 8423 deg2 legacy

footprint of SDSS DR7 (which is the vast majority of SDSS imaging above 30 deg Galactic latitude).

This gives an area density of ∼ 0.0007 deg−2. Only two of the seven white dwarfs previously known

to display strong optical CIA pass the stringent selection cuts however. Correcting for this gives an

area density of ∼ 0.0025 deg−2. This is larger than the ∼ 0.0015 deg−2 found in SDSS spectra through

April 2004 by Gates et al. (2004). The sample here is marginally deeper however, since that was

based on those targeted as QSO candidates for which i < 20.2 is required.

The investigation of the kinematics of the white dwarfs in chapter 2 was complicated by the lack

of radial velocity information. However in that work distances were calculable via fits to atmo-

spheric models. The atmospheric models of ultracool white dwarfs however fit the observations

poorly, and therefore are insufficient for this purpose. The ultracool white dwarfs are close enough

however that the parallaxes should typically be 10−30 mas, and therefore be measurable in the near



63

future. Indeed GAIA could measure highly accurate parallaxes for many of the objects in this work

(Lindegren, 2009), the primary difficultly being that the objects here are close to the faint magnitude

limit.

Without either distances or radial velocities, detailed kinematic modeling of the type performed

in chapter 2 is unwarranted. Instead we perform a qualitative check. In figure 3.5 we plot the

velocities of the candidates in the Galactic plane i.e., the U-V plane, where U is towards the Galactic

center, and V is directed in the direction of Galactic rotation. In making these plots we have

assumed that all the ultracool white dwarfs have the same g-band absolute magnitude as LHS 3250.

In addition in figure 3.5(a) we assume that the velocity out of the galactic plane is zero (i.e., W = 0),

while in figure 3.5(b) we assume the unobserved radial velocity is zero.

While these are crude checks of the kinematics there are several points worth noting. None

of the ultracool white dwarfs discovered in this work display halo kinematics. Indeed only one

of the 19 ultracool white dwarfs displays halo kinematics: J1220 whose kinematics were noted by

Gates et al. (2004). The other 18 white dwarfs in appear to have a dispersion and asymmetric drift

(mean V velocity) consistent with membership of an old disk population, i.e., thick disk. This also

indicates that on their absolute magnitudes are consistent with LHS 3250, at least on average, since

this was assumed in the distance calculation.

3.4.1 Prospects

In the light of this work the upcoming Large Synoptic Survey Telescope (LSST) survey is especially

promising for discovering ultracool white dwarfs. LSST is expected to have single-visit 5-σ depths

in the u, g, r, i, z, and y-bands of 23.9, 25.0, 24.7, 24.0, 23.3, and 22.1, respectively (Ivezic et al., 2008).

Each area of the sky is visited times 70, 100, 230, 230, 200, and 200, respectively, giving co-added

depths of approximately 26.3, 27.5, 27.7, 27.0, 26.2, and 24.9. Assuming that all ultracool white

dwarfs are similar to LHS 3250 and conservatively that they can be detected the single visit 5-σ

depth then they would be detectable to ∼ 210 pc, the limiting band being the u-band. This is a

factor of 2.4 greater in distance than even the SDSS 2-σ limit of 22.0, and we therefore expect at least

a factor of 10 increase in number. Less conservatively the single visit depth in the g and r-bands

are ∼ 650 pc and so, these images can be used to calculate the astrometric solution (i.e., position,

proper motion, and parallax) of each object. The color-color cuts involving the u, i, and z-bands

could be applied to the co-added image increasing the maximum detectable distance to ∼ 650 pc.

This would result in a 400-fold increase in number of ultracool white dwarf detections over SDSS,

or of order 4000 ultracool white dwarfs.

This huge increase in number also highlights one of the important aspects of this work. LSST

will identify vast numbers of many classes of objects, for example, in this thesis we predict both

O(1000) ultracool white dwarfs in this chapter, and O(1000) tidal disruptions in chapter 4. It is
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clearly unfeasible to follow up more than a small number of these objects. This work shows that

ultracool white dwarfs will potentially require no follow up: they can unambiguously be identified

photometrically.

In atmospheric fits to cool white dwarfs there is a degeneracy between distance and log g. In

the hotter white dwarfs in chapter 2, this degeneracy was broken by fits to the Balmer series.

However, in cool white dwarfs this not possible. This degeneracy can is easily understood as a

solid angle degeneracy: In cool white dwarfs the effect of increasing log g is to decrease the solid

angle subtended, and therefore the white dwarf can also be fit by decreasing the distance (Mortlock

et al., 2009).

Because the spectra of ultracool white dwarfs display broad absorption in their spectra, if the

future, once the atmospheric models are of sufficient quality, it may be possible to fit the atmospheric

parameters, Teff , log g and N(H)/N(He), purely from photometry. The greater difficulty may prove

to be breaking the degeneracy between log g and N(H)/N(He), since both strongly affect the pressure

at the photosphere. If the distance were known, then Teff and N(H)/N(He) would be calculable.

Unfortunately parallaxes are unlikely to be available for the majority of LSST objects. Instead it

may be necessary to assume a mass, similar to the often used assumption log g = 8. The validity of

this assumption can be readily checked for those ultracool white dwarfs for which parallaxes will

be measured by GAIA.

It should therefore be possible, purely from the photometry, to probe the Teff and infer the ages

of a large number of ultracool white dwarfs using LSST. If the models turn out to be non-degenerate

in log g and N(H)/N(He), then the masses will also be estimable. These are tantalizing prospects

since ultracool white dwarfs are the current end state of the majority of population II or halo stars

with initial mass 0.9 M⊙ . M . 8 M⊙, and therefore tell us about the Galactic population of old

stars, from parts of the initial mass function not probed by low mass main sequence stars. They

therefore represent the local fossils with the most direct relation to the light from high redshift

galaxies studied by missions such as Spitzer and the Hubble Space Telescope.
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(a) Kinematics of ultracool white dwarfs assuming W = 0.
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(b) Kinematics of ultracool white dwarfs assuming zero radial velocity.

Figure 3.5 Kinematics of ultracool white dwarfs assuming either that the velocity out of the galactic
plane is zero in figure 3.5(a),or that the unobserved radial velocity is zero in figure 3.5(b). To calculate
distances, and therefore transverse velocities, all white ultracool white dwarfs are assumed to have
the same g-band absolute magnitude as LHS 3250. Previously known ultracool white dwarfs are
shown in blue. Ultracool white dwarfs identified in this work are plotted in green and labeled. The
gray ellipses are the galactic thin disk, thick disk, and halo, in order of increasing size. The dashed
line is the 1-σ density contour (i.e., 68 per cent of objects should be enclosed), and solid line is the
2-σ density, assuming that the local velocity distribution is a Schwarzschild distribution.
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4
Multiple Tidal Disruptions as an Indicator of Binary

Supermassive Black Hole Systems1

Abstract

We find that the majority of systems hosting multiple tidal disruptions

(TDs) are likely to contain hard binary SMBH systems, and also show that

the rates of these repeated events are high enough to be detected by LSST

over its lifetime. Therefore, these multiple TD events provide a novel

method to identify supermassive black hole (SMBH) binary systems with

parsec to sub-parsec separations. The rates of TDs are investigated using

simulations of non-interacting stars initially orbiting a primary SMBH and

the potential of the model stellar cusp. The stars are then evolved forward

in time and perturbed by a secondary SMBH inspiraling from the edge

of the cusp to its stalling radius. We find with conservative magnitude

estimates that the next generation transient survey LSST should detect

multiple TDs in approximately 3 galaxies over 5 years of observation,

though less conservative estimates could increase this rate by an order of

magnitude.

1This work was published as ApJL, 738, L8 (2011) , arXiv:1011.5874 with authors: Christopher Wegg and Nate Bode in
this order (Wegg and Bode, 2011). Reproduced here by permission of the AAS, copyright c© (2011).

http://iopscience.iop.org/2041-8205/738/1/L8
http://www.arxiv.org/abs/1011.5874
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4.1 Introduction

Stars with radius R⋆, and mass M⋆, which pass within the tidal disruption radius rt ∼ R⋆(MBH/M⋆)1/3

of a supermassive black hole (SMBH) of mass MBH, will be ripped apart by tidal forces. In the case

of sun-like stars,

rt ≈ 1.2rsM
−2/3
8 , (4.1)

where rs is the Schwarzschild radius, and M8 is MBH/108M⊙. Therefore, when MBH & 108M⊙ the

Schwarzschild radius lies outside rt and any sun-sized star would be swallowed whole. Below

this critical black hole mass the star’s debris is launched on orbits which span an energy range

∆E ≈ GMBHR⋆/r2
t (Rees, 1988). This energy range is large compared to the energy of the highly

elliptic initial orbit, and hence half the material will be initially unbound while half will begin to fall

back onto the black hole. For main sequence stars the late time canonical fall-back rate declines as

t−5/3 (Phinney, 1989). This fall-back rate is initially super-Eddington for the canonical 10% accretion

efficiency (Evans and Kochanek, 1989), but it is unclear whether a radiatively driven outflow results

(Lodato and Rossi, 2011; Strubbe and Quataert, 2009), or the disk adjusts to lower its accretion rate.

Galaxies harboring an isolated SMBH at their center are expected to quickly clear a ‘loss cone’ of

orbits whose angular momenta about the black hole are low enough that their peribothra lie inside

rt. At this point tidal disruptions (TDs) are predicted at a rate ∼ 10−4 − 10−5 yr−1 as stars diffuse

into the loss cone (Donley et al., 2002; Magorrian and Tremaine, 1999; Wang and Merritt, 2004). The

majority of candidate TDs thus far have been found though x-ray (e.g., Donley et al., 2002) or UV

surveys (e.g., Gezari et al., 2008). This is expected, as can be seen by modeling the TD as a thick

disk emitting as a black body with luminosity Ledd, temperature Teff , and initially extending to rt.

In reality the disk will expand outwards on a viscous timescale and the initial super-Eddington rate

could launch an outflow. Ignoring these complications, however, gives (Ulmer, 1999)

Teff ∼ 3.7 × 105M1/12
8

(

M⋆

M⊙

)−1/6 (

r⋆
r⊙

)−1/2

K , (4.2)

and the spectrum peaks in the extreme UV. Despite being in the Rayleigh-Jeans tail of this flux,optical

transient surveys such as the Palomar Transient Factory (PTF), the Panoramic Survey Telescope and

Rapid Response System (Pan-STARRS) and the Large Synoptic Survey Telescope (LSST) provide the

prospect of finding many more TDs because of their unprecedented combination of high cadence

and depth. It is expected that LSST will detect a striking ∼ 100 − 3000 yr−1 (Strubbe and Quataert,

2009).

In this chapter we calculate the rates of multiple TDs from a merging SMBH binary system, and

show that the detection of multiple TDs from a single galaxy likely indicates the galaxy hosts a

SMBH binary with a parsec to sub-parsec separation. Our results are summarized in table 4.1.



68

4.2 Simulations

We determine the rates of multiple TDs from a binary SMBH system using a simulation of 5 × 105

stars of radius R⊙ orbiting the primary SMBH of mass M1 in the test particle limit. The stars are

initially chosen from a self-consistent isotropic stellar distribution centered on the primary SMBH

(Dehnen, 1993; Tremaine et al., 1994). Given its initial conditions, each star is then integrated

forward in time whilst, at the same time, the secondary, of mass qM1, is moved inwards on a slightly

eccentric inspiral until it reaches the stalling radius. During the integration, we ignore star-star

interactions and, additionally, assume that the stellar potential does not change. If the star reaches

rt, it is counted as a TD, unless its angular momentum was initially within the TD loss cone.

Two mechanisms for enhanced rates of TDs in close SMBH binary systems have been considered

in the literature: the Lidov-Kozai effect (Ivanov et al., 2005) and chaotic 3-body orbits (Chen et al.,

2009). We have extended these works by including two additional aspects: the evolution of the

binary, and the non-Keplerian stellar potential2.

The initial conditions of our stars are drawn from an η-model cusp with stellar mass 2 M1

(Dehnen, 1993; Tremaine et al., 1994) whose density is given by

ρ(r) =
GM1η

2πr3
c

1
(r/rc)3−η(1 + r/rc)1+η . (4.3)

Here, rc is the characteristic radius of the cusp and ηparametrizes the cusp steepness. The advantage

of this model is that it self-consistently describes a finite mass of isotropic stars distributed around

a central black hole together with their stellar potential. A centrally relaxed Bahcall-Wolf cluster

corresponds to η = 1.25 Bahcall and Wolf (1976). For the duration of the scattering experiments the

stellar potential is assumed to be centered on the primary SMBH and is not allowed to vary with

time. These assumptions are made for simplicity, and will be relaxed in future studies.

For a given η and SMBH mass ratio q ≤ 1, our simulations depend only on the TD radius through

rt/rc. The scaling of rt/rc to real galaxies is described later by equations (4.6) and (4.7).

The stars are initially on orbits consistent with the primary SMBH and the stellar potential,

however their orbits are perturbed by the secondary SMBH. In a fully self-consistent simulation the

orbit of the secondary would evolve due to this exchange of energy with the stars. However, for

efficiency and simplicity the secondary SMBH’s orbit follows an inspiral dominated by dynamical

friction, halting at the stalling radius. Our approximation is checked in the lower panels of figure 4.1

where we plot the change in stellar and binary energies. If the secondary path had been chosen

perfectly the two would lie on top of each other.

Specifically the secondary SMBH is, at time t = 0, given an eccentricity of 0.1 and an initial

2During the review process a further paper was published (Chen et al., 2011), which also considered the SMBH binary
evolution and the stellar potential. Their disruption rates are consistent with ours.
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Figure 4.1 Results for mass ratio q = 0.1. The left-hand panels show an η = 1.25, Bahcall-Wolf
cusp, the right-hand panels an η = 1.5 cusp. The upper panels shows TD rate, Γbin, for TD to cusp
radius ratios rt/rc = (9, 7, 5)× 10−7 in solid, dotted and dashed lines, respectively. The distribution
of disruption times have been kernel smoothed with a Gaussian of width σ = 2. The middle panels
shows the evolution of the binary separation as a solid line and radii enclosing 0.1, 0.2, 0.4% of
the stellar mass in dotted, 1, 2, 4% in dashed and 10, 20, 40% in dash-dot lines. The lower panel
shows the evolution of the energy of the binary as the solid line and the stars as the dotted. In a
fully self-consistent evolution these would lie on top of each other. The simulations are scaled by
Ω ≡ (2GM1/r3

c )1/2.

separation equal to the cusp radius, rc. It is then migrated inwards on a path governed by

dv

dt
= −

G
[

M1(1 + q) +M⋆(< r)
]

r3 r − v

tdf
(4.4)

where M⋆(< r) is the stellar mass interior to r and

tdf =
v3

4π logΛ q M1 ρ(< v)
(4.5)

characterizes the dynamical friction (Binney and Tremaine, 2008). Here ρ(< v) is the density of

stars at r with velocity less than v. We have used a Coulomb logarithm that begins at logΛ ≈ 4,

but which smoothly decreases to zero at the stalling radius calculated by Sesana et al. (2008). The

functional form of the decrease was chosen to approximate the rate of shrinkage caused by the

energy exchange with the stars during our simulations.
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Figure 4.2 Results as described in figure 4.1 for q = 0.3.
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Figure 4.3 Plots of our η = 1.25, q = 0.3 simulation. Left panel shows the stars that are tidally
disrupted for rt/rc = 5 × 10−7 as a function of their initial radius and z-component of angular
momentum normalized to the circular angular momentum at that radius, Jz/Jc. The Kozai wedge
is plotted together with the overall stellar density. A large fraction of the disrupted stars lie well
outside the Kozai wedge indicating that these are chaotic orbits (cf. Chen et al., 2009). The contours
show the initial stellar distribution, each is evenly spaced in density. The right-hand panel shows the
rates from the same simulation scaled using the relations in equations (4.6) and (4.7) for M1 = 108M⊙
in solid, 5 × 107M⊙ in dotted and 107M⊙ dashed lines.
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To perform our scattering experiments we implemented the adaptive symplectic integrator

described in Preto and Tremaine (1999), with a timestep which varies as ∆t ∼ U−1 where U is

the potential energy. With this choice of timestep the integrator has the desirable property that it

reproduces exactly Keplerian orbits independent of step size. Even for our mildly non-Keplerian

orbits, this allows Kozai resonances to be correctly reproduced, since the spurious precession

frequently found in other algorithms is absent. In addition, this integrator is well suited for this

problem since it has been shown to correctly reproduce the highly eccentric orbits required for a

star to be tidally disrupted (Peter, 2009).

The results of our scattering experiments and the resultant disruption rates, Γtd, are shown in

figures 4.1 and 4.2 for q = 0.1 and q = 0.3, respectively. The plots are scaled by Ω ≡ (2GM1/r3
c )1/2.

The evolution of the rates can be understood qualitatively. Because we exclude stars initially

in the loss cone, the rates are initially low. But, as the secondary inspirals, it enters denser regions

and interacts with increasing numbers of stars, with a concomitant increase in the TD rate. The rate

increases until the secondary reaches the stalling radius, where it clears a path and the rate begins

to decline.

We find that the majority of TDs are due to the type of chaotic orbits described by Chen et al.

(2009) as opposed to the Kozai effect discussed by Ivanov et al. (2005). This is demonstrated in

the left-hand panel of figure 4.3. The primary reason for this is that apsidal precession in the

non-Keplerian potential destroys the secular Kozai effect for the majority of orbits.

Our rates are lower than those discussed by Chen et al. (2009) largely because we have consid-

ered less steep cusps. This both reduces the number of stars that can be disrupted as the binary

hardens, and increases the orbital timescale at the hardening radius. Both effects reduce the rate of

disruptions. In addition we have considered the binary evolution which Chen et al. (2009) did not,

although this has a smaller effect

To apply our simulations to physical galaxies, we use the fits from Merritt et al. (2009) to the

inner regions of ACS Virgo Cluster galaxies (Côté et al., 2004). For power-law galaxies these give 3

rc = 22 (M1/108M⊙)0.55 pc . (4.6)

We assume the stars have radius R⊙, thus giving

rt/rc = 4.9 × 10−7(M1/108M⊙)0.22 . (4.7)

With these scalings, our simulations for η = 1.25 and q = 0.3 are shown in figure 4.3.

3D. Merritt personal communication. From fitting to figure 12 of Merritt et al. (2009).
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4.3 Observable Tidal Disruptions

The absolute magnitude of an individual disruption has considerable modeling uncertainties and

is likely to depend on many quantities such as the SMBH mass, the SMBH spin and the geometry

of the disruption (Strubbe and Quataert, 2009).

We instead derive a simple empirical estimate of the volume accessible by comparison to Gezari

et al. (2008). Two luminous optical events coincident with UV flares were discovered in ∼ 2.9 deg2.

Their spectra and light curves were consistent with TD events, making this their most likely expla-

nation. Their redshifts were z = 0.33 and z = 0.37, giving extinction corrected (but not K-corrected)

absolute g-band magnitudes of −17.7 and −18.9 (Gezari, 2010). Requiring that these two cases be 2

mags brighter than the 25.0 g-band limit of LSST gives maximum redshifts of detection of z = 0.27

and z = 0.43, respectively. The 2 magnitude buffer better ensures a convincing light curve, which

would display the characteristic fast rise and decay of a TD. Based on these numbers we choose

z = 0.35 as the limit for LSST.

There is also only a small range of SMBH masses which needs to be considered. Because SMBHs

of mass greater than 108 M⊙ can’t tidally disrupt stars (equation 4.1, ignoring SMBH spin), and

SMBHs of mass less than 107 M⊙ are significantly less luminous, (particularly if super-Eddington

outflows are neglected), we restrict our analysis to SMBHs with masses between 107–108 M⊙.

4.4 Rates of Single Tidal Disruptions

We now calculate the rate of TDs observable by LSST both for systems with isolated SMBHs and

systems with SMBH binaries.

In the case of isolated SMBHs, the rate of TDs observed by LSST will be approximately

R(td)
single = fsky

∫

dN

dMBH
Vc(MBH)Γtd(MBH) dMBH (4.8)

where fsky is the fraction of the sky covered by LSST, Γtd is the rate of TDs per galaxy, Vc is the total

co-moving volume over which a TD is observable and dN/dMBH is the black hole mass function.

We have used the black hole mass function (Aller and Richstone, 2002)

dN

dMBH
= c

(

MBH

M⋆
BH

)−α
e−MBH/M⋆

BH , (4.9)

with the parameters c = 3 × 10−11M−1
⊙ Mpc−3, M⋆

BH = 1.1 × 108M⊙ and α = 0.95 (values derived by

Aller and Richstone, 2002, scaled to H0 = 71 km s−1 Mpc−1). The rate of TDs per galaxy is highly

uncertain, and so we parametrize, Γtd = γ × 10−5 yr−1, scaling to the observationally motivated

constant rate per galaxy of (Donley et al., 2002) independent of MBH. We also assume Vc is
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independent of MBH and is 10.7 Gpc3, corresponding to our redshift limit of z = 0.35 with the

assumption that H0 = 71 km s−1 Mpc−1. Using these approximations and fsky ≈ 0.5, the rate of TDs

detected by LSST in galaxies containing isolated SMBHs is predicted to be

R(td)
single ∼ ΓtdVc fsky

∫ 108M⊙

107M⊙

dN

dMBH
dMBH

= Γtd × 3 · 107 Galaxies

= 300γ yr−1 . (4.10)

Now consider systems hosting binary SMBHs. The rate of disruptions will be

R(td)
bin = fsky

∫

VcΓbin(M1, q, t)Rmerge(M1, q) dq dM1 dt , (4.11)

where Rmerge(M1, q) dq dM1 is the rate of mergers per unit co-moving volume for binary SMBHs with

primary mass between M1 and M1 + dM1 and with mass ratio between q and q + dq. The quantity
∫

Γbin(M1, q, t) dt is the total number of TDs in a merger and was linearly interpolated/extrapolated

from the simulations in figures 4.1 and 4.2 together with equations (4.6) and (4.7).

Over the narrow range of redshift and primary mass accessible we approximate

Rmerge(M1, q) = C
dN

dM1
F(q) , (4.12)

where we have assumed the mass ratio distribution of SMBH binaries follows the local galaxy

merger mass ratio distribution given by Stewart et al. (2009), F(q) = q−0.25(1−q)1.1. The normalization

constant C = 0.03 Gyr−1 was chosen to reproduce the simulated local merger rate4 of SMBH binaries,

with 107M⊙ < M1 < 108M⊙ and q > 0.05, of approximately 9 × 10−5 Mpc−3 Gyr−1.

Using these approximations, then, if all galaxies have an η = 1.25 cusp, we can expect LSST to

detect

R(td)
bin ∼Vc fskyC

×
108M⊙
∫

107M⊙

dM1

0.5
∫

0.05

dq

∫

dt
dN

dM1
F(q)Γbin(M1, q, t)

=8 yr−1 , (4.13)

where we have limited the mass ratio to q < 0.5, since this is the limit of our simulations.

4M. Volonteri personal communication. From data in figure 2 of Volonteri et al. (2009).
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Table 4.1 Summary of rates of tidal disruptions for three current and upcoming transient surveys.
Symbols and calculation are described in the text. The numbers N

(multi)
single and N

(multi)
bin are for an

observation time of tobs = 5 yr and scale roughly as t2
obs.

Survey mag limit
zlim fsky R(td)

single/ yr−1 R(td)
bin / yr−1 N(multi)

single N
(multi)
bin(g-band)

PTF 21.0 0.06 0.2 0.7γ 0.02 0.9 × 10−4 γ2 0.008
Pan-STARRSa 25.0 0.35 10−3 0.7γ 0.02 0.8 × 10−4 γ2 0.007

LSST 25.0 0.35 0.5 300γ 8 0.03γ2 3
aMedium Deep Survey

Note that the number of galaxies in the enhanced state which occurs for

tenh ∼ 10/Ω ∼ 1.5(M1/108M⊙)0.33 Myr (4.14)

is

Nenh ∼Vc fskyC

×
108M⊙
∫

107M⊙

dM1

0.5
∫

0.05

dq

[

dN

dM1
F(q) × 10/Ω(M1)

]

=400 . (4.15)

4.5 Rates of Multiple Tidal Disruptions

We now calculate the rate of multiple TDs in systems containing both isolated and binary SMBHs.

In the case of isolated SMBHs, over a period of observing tobs the total number of TDs will follow

a Poisson distribution with mean x ≡ tobsΓtd. The probability of observing multiple TDs from a

single galaxy is therefore, P(x) = 1 − e−x − xe−x.

Then the expected number of isolated SMBHs exhibiting multiple TDs during tobs is

N
(multi)
single = Vc fsky

108M⊙
∫

107M⊙

dN

dMBH
P(tobsΓtd) dMBH

∼ 0.03γ2 (tobs/5 yr
)2 , (4.16)

where in the final relation we have expanded in the small parameter x ≡ tobsΓtd.

Similarly, the expected number of multiple TDs observed from binary SMBHs is

N
(multi)
bin = fskyVc

∫

P(Γbintobs)Rmerge dM1 dt dq . (4.17)
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Using the same approximations used in estimating equation (4.13) we find over an observation

time, tobs = 5 yr, the expected number of close binary SMBHs exhibiting multiple TDs observable

by LSST to be

N
(multi)
bin ∼Vc fskyC

∫ 108M⊙

107M⊙

dM1

∫ 0.5

0.05
dq

×
∫

dt
dN

dMBH
F(q)P(Γbin(M1, q, t)tobs)

=3 , (4.18)

where P(Γbintobs) was calculated from our simulations together with equations (4.6) and (4.7).

Towards the upper end of the range 107–108M⊙, Γbintobs ∼ 0.5 for major mergers. This indicates

that the majority of close SMBH binaries with primaries in the upper end of this range could

potentially be identified using multiple disruptions. Equation (4.18) broadly scales as (tobs/5 yrs)2,

but this is only approximate because x ≡ Γbintobs ∼ 0.5 for some systems.

4.6 Discussion

We have estimated the enhanced rate of tidal disruptions (TDs) from SMBH binaries, and shown

that if a system exhibiting multiple TDs is observed then, in our fiducial model, it is ∼ 100/γ2 times

more likely to be a close SMBH binary than an isolated SMBH system. It has also been shown that

the upcoming transient survey LSST is likely to detect several systems with multiple disruptions

during a 5 year observation period.

Once a double TD is detected these galaxies would be expected to have a steady TD rate,

with further events on a human timescale. In the case that γ is larger, or it varies significantly

between galaxies, other signatures will likely identify TDs that occurred in binaries. These include

possible spectroscopic signatures, morphology or kinematics indicating a recent major merger, or

interruption of the TD flare on a binary orbital timescale (Liu et al., 2009).

An ancillary conclusion is that, in our fiducial model, approximately 3% of all TDs occur in

hardening binaries. Therefore, all systems containing a TD are potential binary hosts and should

be monitored, either for a second TD or for other evidence of a SMBH binary.

Stone and Loeb (2011) suggested using multiple TDs due to the merged black holes recoil to

identify host galaxies of SMBH mergers observed by LISA. Their period of enhancement is short

enough to not affect our conclusions. Also since LISA will indicate where on the sky (≈ 1 deg2) the

merger takes place, the high rates discussed here do not effect their conclusions.

The TD rates are largely determined by the number of stars in the central regions of the galaxy,

which, in turn, depends on the cusp profile and the size of the cusp. In this sense, multiple TDs are
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also diagnostic of cusp profiles.

All our numbers scale by the uncertain detection volume, which could be significantly higher

than we have conservatively assumed. Recently van Velzen et al. (2011) found two candidate

disruptions with absolute g-band magnitudes −20.3 and −18.3. If the event with magnitude −20.3

was representative of the higher black hole mass disruptions where our binary-induced disruptions

typically occur, then LSST could detect disruptions of this type to z ∼ 0.7 increasing our predicted

rates by approximately an order of magnitude.
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5
The Increased Rate of Tidal Disruptions, Plunges, and

EMRIs in Supermassive Black Hole Binaries1

Abstract

As discussed in chapter 4 the rate of tidal disruptions from a galactic

nucleus would be greatly increased by the presence of close supermassive

black hole (SMBH) binary. In this chapter we expand on that work.

The simulations, and their assumptions, are described in greater detail

than the cursory description given in chapter 4. Additionally, relativistic

corrections have been added which allow the simulation of extreme mass

ratio inspirals (EMRIs). These corrections are described, and rates of EMRIs

and plunges calculated. We also present an increased variety of simulation

runs, primarily to encompass a greater range of SMBH binary mass ratios.

1This work in progress is as yet unpublished. A modified version of section 5.4 will be submitted in the coming weeks
to MNRAS as part of a paper with authors: Nate Bode and Christopher Wegg in this order. Small sections of this work also
appear in the thesis by Bode (2011), these sections are noted in the text.
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5.1 Introduction

It is now well established that the majority of galaxies harbor a supermassive (& 106 M⊙) black

hole (SMBH) in their center (e.g., Ferrarese and Ford, 2005). In our current hierarchical formation

scenario of galaxy formation, galaxy mergers are also frequent. Since observed galaxies contain

only one SMBH, empirically the merger of galaxies must ultimately result in the merger of their

central SMBHs, even if not all of the aspects of this process are understood (e.g., the ‘final parsec

problem’, Milosavljević and Merritt, 2003).

In chapter 4 we showed that during the merger process, when the SMBHs form a close binary,

separated by 0.1–1 pc, the rate of tidal disruptions is greatly increased. We also showed that this

increased rate may allow close binary SMBHs to be detected via multiple tidal disruptions from a

single galaxy.

The increased rate of tidal disruptions is due to the increased frequency of close encounters

between stars and the SMBHs. In the case considered in chapter 4 these were main sequence

stars encountering a SMBH with mass . 108 M⊙. In this case a close interaction results in a tidal

disruption. However, if the star was a compact object2, or the SMBH more massive than 108 M⊙,

a tidal disruption would not result. In this case the most likely outcome is a plunge, whereby the

star crosses the event horizon of the SMBH without being torn apart by the tidal forces. Instead

the mass of the SMBH is silently increased, without a transient flare. Less frequently the star may

be captured in an elliptical orbit by the SMBH, and lose energy via the emission of gravitational

radiation. This loss of gravitational radiation decreases the semi-major axis of the orbit, and

increases the orbital frequency. Eventually the frequency is increased sufficiently that the emitted

gravitational radiation lies in the band of potential low-frequency gravitational wave detection

missions, such as the proposed Laser Interferometer Space Antenna (LISA), or its successors. These

extreme mass ratio (typically & 106M⊙
10M⊙

∼ 105) inspirals (EMRIs) are one of the primary sources for

these low-frequency gravitational wave detectors. The typical formation scenario of EMRIs are

that star-star scattering perturbs the orbit of an already eccentric star so that its periapsis is close

to the SMBH. If sufficiently close then the timescale for gravitational wave losses is shorter than

the timescale that perturbations due to star-star scattering can significantly change the periapsis.

At this point an inspiral becomes likely and the star eventually forms an EMRI (e.g., the review by

Amaro-Seoane, 2012).

An initial investigation of the rate of production of EMRIs by binaries was performed by Bode

(2011), using extensions of the work in chapter 4. In this chapter we further extend those calculations

by calculating a greater range of simulations. In particular we extend the range of SMBH mass

ratios beyond the two (q = 0.1, q = 0.3) performed previously to encompass small mass ratios, and

2Throughout we use star to refer to either a compact object (i.e., neutron star, black hole, white dwarf), or conventional
star (e.g., main sequence star).
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mass ratios larger than one, i.e., we consider the cusp of stars around the secondary SMBH. To

elucidate the dynamics, we also perform calculations of the relevant physical processes: The Kozai

effect, precession due to General Relativity (GR) and the non-Keplerian stellar potential, and the

fluctuations in angular momentum on shorter timescales than the secular Kozai effect. The resultant

dynamics caused by the interplay of these processes can be rich and interesting.

This chapter is organized as follows: In section 5.2 we describe the numerical implementation

and code in greater detail than the cursory explanation in chapter 4 or Bode (2011). In section 5.3

we show the results of our expanded parameter space, and apply them to EMRIs in section 5.5.1,

plunges in section 5.5.2, and tidal disruptions in section 5.5.3. Finally we discuss the caveats and

extensions of this work in section 5.6 and conclude in section 5.7.

5.2 Numerical Implementation

5.2.1 Physical Setup

In chapter 1 we discussed the processes that drive the evolution of pairs of SMBH in galactic nuclei,

and briefly summarize the situation here. The aim of this work is to consider the cusp around a

primary supermassive black hole (SMBH) together with a a second inspiraling SMBH and calculate

the number of stars that have close approaches to either SMBH as a result. As described in section

1.4.1, depending on the nature and mass of the star and SMBH, these can result in a tidal disruption,

an EMRI, or in the star silently plunging across the event horizon of the SMBH.

The parameter space of interest is not the final stages of merger where gravitational wave losses

dominate, nor the widely separated pairs of SMBHs3 found as AGN pairs. Of greater importance

to stellar encounters are parsec-scale separations. The SMBH pairs are brought to these separations

by exchanging energy with the neighboring stars, via a combination of dynamical friction (weak

scatterings) and ejection (strong scatterings). For each factor of two reduction in the binary SMBH

semi-major axis, the secondary SMBH must scatter a mass of stars approximately equal to its own

mass. Hence when the stellar mass enclosed by the secondary SMBH is approximately equal to

its mass, scatterings become inefficient, and inspiral slows. Under the simplest assumptions of a

spherical galaxy, without gas, and a circular SMBH binary, the gravitational radiation timescale at

this point is longer than a Hubble time, an issue known as the ‘final parsec problem’ (Milosavljević

and Merritt, 2003).

As the SMBHs approach the stalling radius, the stellar density around the secondary increases

and therefore the rate of close interactions resulting in tidal disruptions, EMRIs or plunges also

increases, reaching a maximum just before the stalling radius, where the timescale for inspiral

3These are referred to a pairs as opposed to a binary since, being typically separated by ∼ 1 kpc, the SMBHs are not
directly gravitationally bound to each other.
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rapidly increases from O( Myr) to O( Gyr) as the stars responsible for energy loss are ejected, and

further shrinkage of the orbit becomes dependent on stellar relaxation. Since we are not interested

in the slow, relaxation driven phase, we therefore neglect star-star scatterings. For the length of

our simulations these are small perturbations compared to those from the secondary SMBH. This

has the advantage that each star can be evolved separately making the computational problem

embarrassingly parallel.

Both black holes are likely to be surrounded by a cusp of stars. The steepness of this cusp is an

unsettled question. The equilibrium, equipartition, solution is of a steep Bahcall and Wolf (1976)

cusp, whose stellar central density is ρ ∝ r−1.75. The best studied SMBH is that at the center of

our galaxy surrounding Sgr A*. This cusp shows a profile closer to ρ ∝ r−1.5, and the timescale

for reaching the Bahcall-Wolf cusp is approximately a Hubble time (e.g. Alexander, 2005; Phinney,

1989). It remains possible, however, that the stellar density cusp does have ρ ∝ r−1.75 since it is the

visible stars that are observed, and the equilibrium solution would be mass segregated with the

heaviest stars: ∼ 10 M⊙ black holes, distributed as ρ ∝ r−1.75 in the center (Freitag et al., 2006).

To simulate the cusp of stars around the primary SMBH, and the resultant potential, we use

the η-models described in Tremaine et al. (1994). The η-models are equivalent to the models of

Dehnen (1993), but also contain a central SMBH. They are a spherical, isotropic, self-consistent,

potential-density pair, for stars around an SMBH. The η-models contain a parameter, denoted µ,

which represents the ratio between the SMBH mass and the total stellar mass. Throughout we use

µ = 0.5, i.e., the stellar mass in the cusp is twice the primary SMBH mass. The stellar density is

ρ(r) =
GM1η

2πr3
c

1
(r/rc)3−η(1 + r/rc)1+η , (5.1)

where M1 is the mass of the primary SMBH, and rc is the characteristic scale of the cusp. The stellar

mass enclosed is by radius r is

M⋆(< r) = 4π
∫ r

0
r2ρ(r) dr =

2M1rη

(rc + r)η
. (5.2)

Since the η-models are spherical and isotropic, the distribution function can be calculated using

Eddington’s formula (Binney and Tremaine, 2008). The process of assigning positions and velocities

to stars such that they are drawn from this distribution function is described in appendix 5.A.

The secondary SMBH, of mass M2 ≡ qM1, inspirals towards the primary SMBH into this cusp.

During this period, provided there is a cusp of stars around the primary, then the rate of inspiral is

dominated by scattering of these stars (Sesana et al., 2008). In principle the path of the secondary

SMBH could be calculated self-consistently, by requiring the total (stellar plus SMBH binary) en-

ergy and angular momentum be conserved. However, for computational efficiency, we instead

pre-calculate the inspiral path adjusting it so that the instead the total energy is approximately
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Figure 5.1 Functional form of the Coulomb logarithm, logΛ, given in equation (5.5) as a function of
the SMBH binary semi-major axis, R, and the stalling radius, Rstall.

conserved in representative prior simulations. In this manner the computational problem remains

embarrassingly parallel.

In particular, the SMBH inspiral path we choose is one governed by dynamical friction:

dv

dt
= −G

[

M1(1 + q) +M⋆(< r)
]

r3 r − v

tdf
, (5.3)

where

tdf =
v3

4π logΛ q GM1 ρ(< v)
, (5.4)

and M⋆(< r) is the stellar mass interior to r, and ρ(< v) is the stellar density at r with velocity less

than v. The functional form of the Coulomb logarithm, logΛ, was chosen to begin at logΛ = 5,

smoothly decreasing to zero at a stalling radii interpolated from those calculated by Sesana et al.

(2008). The form was chosen so that the energy was approximately conserved in the lower panel of

figures 4.1 and 4.2. Specifically we use

logΛ =
5

10 exp [−Rstall/(Rstall − R)] − 9
, (5.5)

where R is the semi-major axis of the SMBH binary and Rstall, is the stalling radius. For reference

we plot the functional form of the Coulomb logarithm given by equation (5.5) in figure 5.1.

It is important that the pre-calculated SMBH path is consistent with the integrated test particle

equations of motion. If an inconsistency is present then a particle orbiting close to the primary
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has a different acceleration towards the secondary. This represents an unphysical dipole-like per-

turbation, which would typically dwarf the smaller physical tidal quadrupole perturbation. An

inconsistency of this type would arise if the stellar potential was chosen as the η-model poten-

tials extending to infinity fixed to the primary, while the secondary orbit was calculated using

equation (5.3) where only the stellar mass interior to the secondaries orbit appears.

This inconsistency could be resolved by forcing the secondary SMBH to effectively orbit a

primary of mass M1 +M⋆,tot where M⋆,tot = 2 M1 is the total stellar mass. However, instead we

choose a different approach: The stellar potential is truncated marginally inside the stalling radius.

This has the result that the potential and stellar density are no longer self-consistent outside the

stalling radius. However, stars outside the stalling radius that closely approach the SMBHs have

typically undergone strong chaotic interactions with the binary. Therefore the stellar potential is

less important in this region than for stars close to the primary which undergo secular interactions,

for which having the correct potential, and therefore precession rate is important.

For reference therefore the potential used is

V(r) = −
∫ ∞

r

M⋆(r)
r2 dr =







































Mt

rt
+

M1
2rc(η−1)

[

(

rt

rc+rt

)η−1
−

(

r
rc+r

)η−1
]

if r < rt and η , 1

Mt

rt
+

M1
2rc

ln
(

1/rc+1/r
1/rc+1/rt

)

if r < rt and η = 1

Mt

r if r ≥ rt ,

(5.6)

where Mt is the stellar mass inside the truncation radius, i.e., Mt ≡M⋆(rt).

5.2.2 Symplectic Integrator Implementation

We require an integrator that is stable and accurate enough to produce interesting secular effects,

such as the Lidov-Kozai effect. These effects of interest can occur on timescales much longer than

the stellar orbital period. Naive integration schemes we tried, such as Runge-Kutta, were not

sufficient. Instead, the integration scheme used is that described in Preto and Tremaine (1999). It is

a symplectic integrator with an adaptive time step. The key features for the purposes of this work

are that, with an appropriate choice of step size, the trajectories of orbits in Keplerian potentials

are reproduced exactly, and that the time step can be adjusted to resolve periapsis for the highly

eccentric orbits of interest, while remaining efficient elsewhere.

In this section, we outline our implementation of the symplectic integrator of Preto and Tremaine

(1999) in the context of test particle integrations in the field of a supermassive black hole binary

(SMBHB) plus the (truncated) stellar potential given of equation (5.6). We describe the integrator

in our code units wherein G = rc = 1, and the primary SMBH mass, M1 = µ = 0.5.

The Hamiltonian, H, is

H = T(v) +U(r, t) (5.7)



83

where the kinetic energy, T = 1
2 v2, and U is the potential energy. In barycentric coordinates 4

U(r, t) = −
µ

|r − r1|
−

qµ

|r − r2|
− V(|r − r1|) , (5.8)

while in primary-centered coordinates (denoted with primes)

U(r, t) = −
µ

r′
−

qµ

|r′ − r′2|
+

qµr′.r′2
r3

2

− V(r′) , (5.9)

where r1 = r1(t) (r2 = r2(t)) is the position of the primary (secondary) at time t, µ(qµ) is the masses

of the primary (secondary). The third term in equation 5.9 is the indirect term which arises in the

non-inertial primary centered frame as opposed to the center of mass frame. V is the stellar potential

given in equation (5.6). Both primary centered and barycentric equations are implemented in the

code. However, we use the barycentric frame throughout this work. Far from the primary the

indirect term (i.e., center of mass motion) dominates, and in this region it is required to use the

barycentric frame to avoid the barycentric motion dominating. While using primary centered frame

close to the primary would be preferable, however switches between frames are non-symplectic,

and thus we remain in the barycentric frame throughout.

Symplectic integrators typically require a fixed step size to preserve their symplectic properties.

For the highly eccentric orbits considered in this work, this presents serious issues: To resolve

periapsis a short time step is required making the points away from periapsis highly inefficient.

The solution to this problem by Preto and Tremaine (1999) is to extend phase space through the

introduction of a fictitious time variable τ defined through

dt ≡ g(q, t)dτ . (5.10)

and then promoting t, and its conjugate variable, p0 = −H, to be members of phase space. With

a suitable g, fixed symplectic steps in τ, will resolve periapsis, while taking larger steps in t, and

remaining computationally efficient elsewhere.

5.2.3 Equations of Motion

The easiest suitable choice of g is a function of the potential energy g = g(U). Choosing this to be a

power law:

g(U) = ǫU−γ , (5.11)

4Note that in the majority of simulations we modify the potential from ∝ 1/r, as given in equations 5.8 and 5.9, to
incorporate precession, for the reasons described in section 5.2.6. This is discussed in detail in chapter 6.
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then the new Hamiltonian is (c.f. equation 35 of Preto and Tremaine, 1999):

Γ =
ǫ

1 − γ
(

[Te(v, p0)]1−γ − [−U(r, t)]1−γ
)

, γ , 1 , (5.12)

= ǫ
(

log[Te(v, p0)] − log[−U(r, t)]
)

, γ = 1 ,

where Te(v, p0) = v2/2 + p0.

The equations of motion are:

dr

dτ
=

ǫv
(

v2/2 + p0
)γ , (5.13)

dt

dτ
=

ǫ
(

v2/2 + p0
)γ , (5.14)

dv

dτ
= − ǫ

U(r, t)γ
∇U , (5.15)

dp0

dτ
= − ǫ

U(r, t)γ
∂U

∂t
, (5.16)

where in barycentric coordinates,

∇U(r, t) = −F =

[

µ +
rη

(1 + r)η

]

r − r1

|r − r1|3
+ qµ

r − r2

|r − r2|3
(5.17)

∂U(r, t)
∂t

=

[

µ +
rη

(1 + r)η

]

v1.(r − r1)
|r − r1|3

+ qµ
v2.(r − r2)
|r − r2|3

(5.18)

and in primary centered coordinates

∇U(r, t) = −F =

[

µ +
rη

(1 + r)η

]

r

r3 + qµ













(r − r2)
|r − r2|3

+
r2

r3
2













, (5.19)

∂U(r, t)
∂t

= qµ













− (r − r2).v2

|r − r2|3
+

r.v2

r3
2

− 3
r.r2

r4
2

∂r2

∂t













. (5.20)

We choose to use γ = 1 for reasons motivated in section 5.2.4. The second-order drift-kick-drift

leapfrog scheme for a constant step size of ∆τ = 1 in this case are (c.f. equation 37 of Preto and
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Tremaine 1999, 3.21–3.26 of Peter 2008, or 14–19 of Peter 2009):

ri+1/2 = ri +
ǫvi

v2
i
+ 2p0,i

(5.21)

ti+1/2 = ti +
ǫ

v2
i
+ 2p0,i

(5.22)

vi+1 = vi +
ǫ

U(ri+1/2, ti+1/2)
∇U(ri+1/2, ti+1/2) (5.23)

p0,i+1 = p0,i +
ǫ

U(r1/2, t1/2)
∂U(ri+1/2, ti+1/2)

∂t
(5.24)

ri+1 = ri+1/2 +
ǫvi+1

v2
i+1 + 2p0,i+1

(5.25)

ti+1 = ti+1/2 +
ǫ

v2
i+1 + 2p0,i+1

(5.26)

which for faster computation can be written explicitly as a leapfrog scheme:

ri+1/2 = ri−1/2 +
ǫvi

v2
i
/2 + p0,i

(5.27)

ti+1/2 = ti−1/2 +
ǫ

v2
i
/2 + p0,i

(5.28)

vi+1 = vi +
ǫ

U(ri+1/2, ti+1/2)
∇U(ri+1/2, ti+1/2) (5.29)

p0,i+1 = p0,i +
ǫ

U(r1/2, t1/2)
∂U(ri+1/2, ti+1/2)

∂t
(5.30)

5.2.4 Step Size

Preto and Tremaine (1999) show that for a Keplerian potential, U = µ/r, then using g = µ/r for

the step size, reproduces Keplerian orbits exactly, with only a phase error whose size is O(N−2),

where N is the number of steps per orbit. Close to either the primary or secondary our potential

approaches Keplerian and this motivates the choice γ = 1, since the phase error is less important

for our purposes.

Preto and Tremaine (1999) also show that the change in eccentric anomaly, ∆u, per step, for γ = 1

in a Keplerian potential, is given by

ǫ = 2µ
1 − cos∆u

na sin∆u
(5.31)

where n = (µ/a3)1/2 and a is the semi-major axis. When many steps are taken per orbit ∆u is small

and this becomes

ǫ ∼ µ∆u

na
. (5.32)
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Since the number of steps per orbit is N = 2π/∆u then

ǫ =
2πµ
Nna

=
2πµ

N(µ/a)1/2 . (5.33)

This motivates our choice of initial step size:

ǫ =
2πµ

N(2p0,0)1/2 , (5.34)

where p0,0 ≡ p0(t = 0). This will overestimate the points required close to the secondary whose mass

is only qµ, and will underestimate the number of points by µ far from the primary where the stellar

potential is significant. We use equation (5.34) with a fiducial N = 20000 to estimate our initial step

size.

While equation (5.34) is an appropriate initial choice for the step size, ǫ, orbits can undergo

significant changes in their orbital timescale over their evolution, particularly the chaotic orbits in

the ‘outer problem’ discussed by Chen et al. (2009). Our approach is to monitor whether the current

choice of ǫ is appropriate by checking ∆r/r at each step for, both the primary and secondary. If this

is larger than 1% then the entire integration is restarted with ǫ reduced by a factor of 4. Additionally,

due to the finite lifespan of the authors, we limit the total number of steps taken to 2 × 1010. These

stars lie at smaller semi-major axis than those of interest, and are marked as crosses in figure 5.14.

5.2.5 General Relativistic Corrections

In addition to the Newtonian simulations described above, and performed in chapter 4 we have

also incorporated general relativistic corrections. These have the additional advantage that they

allow us to simulate the production of EMRIs in SMBH binaries.

While the ideal simulation method would be to integrate the Teukolsky equation, this is nu-

merically challenging, and computationally intensive. Instead our approach was to integrate using

the symplectic method described above, with general relativistic effects taken into account approx-

imately. We ignore possible spins of the SMBHs. The two effects to be taken into account are

precession of perihelia, and gravitational radiation. In this case, in the absence of perturbations due

to the second SMBH, the the orbital plane remains constant. This provides two constants of motion

(in the Keplerian limit the longitude of the ascending node, Ω, and the inclination , i), the gravita-

tional radiation provides changes to two others (energy, E, and angular momentum, L), while the

precession changes the argument of periapsis (ω). We do not consider relativistic corrections to the

time of periapsis in this work, concentrating instead on the trajectories of the particles.

Note that recently (Naoz et al., 2012) studied the secular evolution of hierarchical triples in the

secular limit to first post-Newtonian order (1PN). They reproduce the Lidov-Kozai effect (section
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5.4.1, Lidov 1961, English translation Lidov 1962, Kozai 1962) but with additional terms in the

Hamiltonian at 1PN. Our simulations are direct integrations, but should produce similar results,

provided that higher order PN-terms, as included in our gravitational wave radiation and pseudo-

Newtonian potential, do not significantly effect the orbit. We do not however include relativistic

precession of the outer binary (which is included by Naoz et al. 2012), since it is negligible compared

to precession in the stellar potential in our case. Similarly, the 1PN interaction term considered by

Naoz et al. (2012) is also negligible, over the length of our simulations, because our outer SMBH

binary orbit has low eccentricity as it stalls (e . 0.05).

5.2.6 General Relativistic Precession

Relativistic precession was taken into account by the use of a pseudo-Newtonian potential. Pseudo-

Newtonian potentials are potentials in Newtonian physics which do not solve Poisson’s equation

(i.e., ∇2U , 4πρ). Instead they are chosen to better approximate some physical aspect of the of

the problem at hand. In this case we choose the potential so that the precession of orbits perihelia

matches the general relativistic precession for the nearly parabolic orbits that are typical in this work

(stars of interest have typical eccentricities of& 10−5). The choice of potential is discussed in detail in

chapter 6, and potential B from that chapter is used here. Potential C more accurately reproduces the

precession for orbits close to the marginally bound orbit at specific angular momentum L = 4 GM/c.

However for those low angular momenta the neglected spin is likely to be important since there is

evidence that at least some SMBHs have high spin (Brenneman and Reynolds, 2006). Therefore the

accuracy is unwarranted, even for the marginal additional computational complexity. For reference

this potential is

U(r) = −GM1

r1

(

1
1 − 5rg1/3r1

+
4rg1

3r1

)

− GM2

r2

(

1
1 − 5rg2/3r2

+
4rg2

3r2

)

(5.35)

where rgi = GMi/c2 and ri is the distance to the i-th hole. In figure 5.2 we show the precession

of an orbit produced by this potential and show that it matches the GR precession. In figure 5.3

we show a ‘whirling’ orbit with angular momentum just above the separatrix angular momentum,

L = 4GM/c.

5.2.7 Gravitational Radiation 5

When an object passes close to either hole, higher-order post-Newtonian effects become important.

When the test particle passes within 100 GM/c2 of each hole, we calculate an approximate change

in specific energy and angular momentum, ∆E and ∆L.

5The text and equations from equation (5.36) to equation (5.39), as well as figure 5.4, also appear in the thesis by Bode
(2011).
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(a) Precession of an orbit in the pseudo-potential of equation (5.35) using the sym-
plectic integrator described in section 5.2. The orbit is in the x-y plane, and the black
hole is placed at x = y = 0. In this figure G = c = 1, however in the text we have
retained these factors for clarity.
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(b) Comparison of the argument of periapsis of figure 5.2(b) as triangles, with the
far-field GR expression where the change in periapsis per orbit of ∆φ = 6πGM

c2a(1−e2)

(provided the periapsis is in the far-field, i.e.,≫ GM/c2) as the solid line.

Figure 5.2 Demonstration of an orbit precessing in the pseudo-Newtonian potential in equa-
tion (5.35) using the symplectic integrator described in section 5.2. The orbit has periapsis of
100 GM/c2 and apoapsis 300 GM/c2.
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Figure 5.3 Demonstration of whirling orbit in the pseudo-Newtonian potential in equation (5.35)
as the black line. The red line is the Newtonian GM/r potential. The green line is potential A from
chapter 6 which matches the relativistic far-field precession, but does not diverge as L → 4 Gm/c.
The particle has an angular momentum L = 4.0001 GM/c.

We then subtract this energy and angular momentum loss at the step closest to periapsis. Since

the changes typically occur slowly compared to the orbital timescale, the results are insensitive to

point in the time at which the adjustment is made. However making the adjustment at the time

step closest to periapsis is the best approximation, since close to periapsis is where the majority of

the gravitational radiation losses occur.

Therefore, at the time step closest to periapsis we give the star a new velocity, ~v′, calculated

using the new specific energy, E′ = E+∆E, and angular momentum, L′ = L +∆L, where ∆E and ∆L

are the change in specific energy and angular momentum calculated using methods A, B, C or D.

Since the position is unchanged the potential energy is unchanged and therefore

v′2 = v2 + 2∆E . (5.36)

The orbital plane is invariant for orbits around a Schwarzschild hole and therefore

~L′ =
L + ∆L

L
~L = ~r × ~v′ . (5.37)

Taking the dot product of this with itself yields

~r · ~v′ =
√

L′2 − r2v′2 (5.38)
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Figure 5.4 Plot showing the errors in conservation of reduced angular momentum, L over many
orbital periods (torb), of a high eccentricity (e = 1 − 10−5) test particle. The red is without the
procedure for calculating the change in ~v at periapsis, the black uses equation (5.39) but with
∆L = 0. The secondary has zero mass. The errors are still at the level ∆h/h ∼ 10−12.

where we take positive branch of~r.~v′ since this corresponds to the outgoing, post-periapsis solution.

The cross-product ~r × ~L′ yields

~v′ =
1
r2

[

(~r · ~v′)~r − ~r × ~L′
]

. (5.39)

Equation (5.39) together with (5.36), (5.37) and (5.38) are used to calculate the new velocity ~v′

following a periapsis passage.

In figure 5.4 we show the numerical accuracy of this procedure by considering whether L remains

constant over many orbits. The errors remain small over many orbital timescales.

We implemented four methods of calculating the gravitational wave loss, i.e., the change in

specific energy and angular momentum, ∆E and ∆L, to be inserted to equations 5.36 and 5.37. As

described below we adopted the fourth, the more accurate method D, as the method for the majority

of simulations, varying it only to see the effect of the less accurate methods A, B, and C.

A) The approximation that the conic section of the orbit is unchanged and the losses on this path

calculated using the quadrupole approximation (i.e., Peters and Mathews, 1963). The loss in

specific energy E, and specific angular momentum L = |~L| = |~r × ~v| over a conic section in the
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quadrupole approximation is (Peters, 1964; Peters and Mathews, 1963):

∆E = −8π
√

2
5

GMǫ

p

(

rs

p

)5/2 (

1 +
73
24

e2 +
37
96

e4
)

, (5.40)

∆L = −16π
5

GMǫ

c

(

rs

p

)2 (

1 +
7
8

e2
)

, (5.41)

where ǫ = m⋆/m1 is the mass ratio between the test particle and the black hole, p is the semi-latus

rectum given by

p =
L2

GM
, (5.42)

and e is the eccentricity given by

e =

√

1 − 2p0L2

G2M2 . (5.43)

For hyperbolic orbits there are corrections to equations (5.41) and (5.40) (these corrections are

analogous to the errata Gair et al., 2006a). These corrections were calculated, but are not

implemented in the code since they were found to be negligible for the orbits considered here.

The majority of the loss occurs close to the hole and since the eccentricities are large this is a

small correction. This is because the difference between hyperbolic, parabolic and eccentric

close to periapsis of an e ≈ 1 orbit is small.

B) The approximation that the orbit is a conic section close to the black hole, but where approximate

orbital elements are calculated from the geodesic equation. This is Peters and Mathews (1963)

with geodesic parameters in the vernacular of Gair et al. (2005). In particular we use equations

(5.40) and (5.41) but replace equations (5.42) and (5.43) with equation (19) of Gair et al. (2005).

C) That the orbit follows the geodesic equation and the gravitational wave loss is calculated from

the quadrupolar approximation. This is the semi-relativistic approximation of Gair et al. (2005).

Equations (5.40) and (5.41) are replaced with equations (33) and (34) of Gair et al. (2005). For

numerical speed the fitting functions were implemented.

D) The that the orbit is parabolic and the loss is calculated by fitting functions to integrations of

the Teukolsky equation provided by Gair et al. (2006b). Equations (5.40) and (5.41) are replaced

with with equations (13) and (15) of Gair et al. (2006b)

Either method A, or direct integration of the order 2.5 post-Newtonian approximation (2.5PN)

are the most common approaches (e.g., Merritt et al., 2011a). However method D is the most accurate

for the simulations considered here since the orbits are nearly parabolic. In addition methods D

and C capture the divergent behavior as orbits approach the separatrix (L→ 4GM/c2 for parabolic

orbits). This behavior is analogous to the ‘whirling’ part of zoom-whirl orbits (e.g., Healy et al.,
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2009; Pretorius and Khurana, 2007), and cannot be accurately simulated using PN expansions. Our

simulations are unique in simulations of galactic dynamics in capturing this whirling behavior, using

a combination of our pseudo-Newtonian potential, and gravitational radiation loss calculation.

We use D in this work as our fiducial method of calculating the gravitational radiation loss.

A demonstration of the different timescales for EMRI formation for one particular star is shown

in figure 5.5. The methods of gravitational wave loss are also compared in simulations S13–16,

the results of which are given in table 5.2. As expected we find that D, which typically has the

shortest EMRI timescale, produces the largest number of EMRIs, while A, which has the longest

EMRI timescale, produces the least.

5.2.8 Implementation of Plunges, EMRIs and Tidal Disruptions

At each < 100 GM/c2 periapsis passage we also check for plunges directly into the black hole. The

marginally bound orbit is the appropriate limit since the particles lie on highly eccentric orbits. This

has a reduced angular momentum around a Schwarzschild black hole of h = 4GM/c. On periapsis

passages if h ≤ 4 GM/c a direct plunge is assumed to result and the integration is halted.

At each < 100GM/c2 periapsis passage we additionally check whether the particles has entered

the LISA frequency band, becoming an EMRI. We do this by checking if the semi-major axis is small

enough that the test particles orbital period is below 104 s, i.e., for an EMRI produced by hole i:

p0 ≥
GM

2a
=

1
2

(2πGMi

104 s

)2/3

(5.44)

A demonstration of this is shown in figure 5.5.

We also keep track of the closest periapsis passage, and the time at which it occurred, as this

allows the simulations to be applied to tidal disruptions. Given the adopted stellar mass and radius,

the tidal disruption radius is calculated. For each star in the simulation we check if it crossed the

tidal disruption radius during the simulation, and if it did, the time at which this occurred is

calculated and recorded. This process is efficiently carried out following the simulation, using the

recorded times and periapsis distances of close passages.

5.2.9 Code Tests and Checks

In this section we describe two of the tests performed to check that the code was reliable and

accurate.

Stars picked from the η-model were evolved forwards in time with a negligible mass secondary

in the full, non-truncated stellar potential. Since the η-model should be dynamically stable and not

evolve with time under these conditions, this test checks both that the integration is correct and
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Figure 5.5 Demonstration of the four gravitational radiation approximations implemented for one
star which becomes an EMRI. The SMBH has mass 106 M⊙ and the star 10 M⊙. The integration is
terminated, and the star flagged as an EMRI, as it enters the LISA band. Method A is the black line,
method B is red, method C is green, and method D blue. The initial angular momentum of the star
is L = 4.9 GM/c.

that the initial conditions of the stars are correctly being chosen from the η-model. One such test,

showing that the stellar density is statistically constant, is shown in figure 5.6.

To check that we are accurately able to reproduce the Kozai effect and high eccentricities figure 1

from Ivanov et al. (2005) was reproduced. We compared the result of directly integrating a star with

the result of integrating the secular Kozai equations. The result of this test is shown in figure 5.7.

The oscillations seen in our simulations occur on the timescale of the binary SMBH orbit. They are

real and are discussed in section 5.4.4.
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Figure 5.6 Demonstration that the stellar density for stars picked from η-model cusp is statistically
constant when there is no secondary SMBH. Test shown is for 10,000 stars in an η = 1.25 cusp. The
initial distribution is shown as the solid black line, the distribution after 5 dynamical times is shown
as the red dotted line. Also shown is a cusp that has been rescaled to rc = 0.2 initially (blue dashed
line) and after 5 dynamical times (green dash-dot line). Typically we use code units where rc = 1,
however cusps with rc , 1 are used for the simulations of q > 1. The error bars are the shot noise as
a result of the number of stars in each radial bin.
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Figure 5.7 Demonstration that the code reproduces Kozai oscillations correctly. In the solid black
and green lines we plot the eccentricity and cos i of a star integrated using our code. In the dashed
red and blue lines we plot the eccentricity and cos i of integrations of the secular Kozai equations
(e.g., Bode, 2011; Ivanov et al., 2005) for the same initial conditions. The SMBH mass ratio was
q = 0.1 and had a circular orbit. The semi-major axis ratio between star and SMBH binary was
0.1. The initial conditions we chosen so as to reproduce figure 1 from Ivanov et al. (2005). The
oscillations seen in our simulations occur on the timescale of the binary SMBH orbit. They not
numerical artifacts and are discussed in section 5.4.4.
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5.3 Simulations

For this work we have performed a wider range of simulations than either in chapter 4 or Bode

(2011). They are summarized in table 5.1. For simulations with the same mass ratio, but different

M⋆ or GW loss method, it was not necessary to repeat the integration of all stars. These parameters

are only utilized when gravitational radiation losses are taken into account and therefore can be

neglected for stars that never pass within 100GM/c2 of either hole. Therefore stars that pass within

100 GM/c2 of either SMBH are noted, and only these stars are reintegrated.

Since each star is integrated independently the problem is embarrassingly parallel. The code was

therefore written to utilize MPI, with one master node communicating the stars to be integrated to

each worker node as they become available. The simulations were performed on the Northwestern

Fugu cluster6. Each full 106 particle simulation typically requires 10 hours when distributed across

∼ 150 cores.

Table 5.1 Summary of simulations performed.

Ida qb ηc M1/M⊙ M⋆/M⊙d rc/pce GW Loss Method Nf

S1g 0.3 1.25 106 10 1.7 D 106

S2 0.3 1.25 106 1 1.7 D 106

S3 0.1 1.25 106 10 1.7 D 106

S4 0.1 1.25 106 1 1.7 D 106

S5 0.03 1.25 106 10 1.7 D 106

S6 0.03 1.25 106 1 1.7 D 106

S7 0.6 1.25 106 10 1.7 D 106

S8 0.6 1.25 106 1 1.7 D 106

S9 10/3 1.25 106 10 1.7 D 106

S10 10/3 1.25 106 1 1.7 D 106

S11 10 1.25 106 10 1.7 D 106

S12 10 1.25 106 1 1.7 D 106

S13 0.3 1.25 106 10 1.7 None 106

S14 0.3 1.25 106 10 1.7 A 106

S15 0.3 1.25 106 10 1.7 B 106

S16 0.3 1.25 106 10 1.7 C 106

S17h 0.3 1.25 106 10 1.7 D 3 × 106

aUnique simulation identification used to cross reference throughout this chapter.
bSMBH mass ratio q ≡ M1/M2. The stellar cusp is placed around M1 therefore for q > 1 the stellar cusp is around the

secondary.
cCusp profile, see equation (4.3) for definition. η = 1.25 corresponds to a Bahcall and Wolf (1976) cusp.
dStellar mass, M⋆. All stars are assumed to have this mass.
eRadius of the stellar cusp,rc, see equation (4.6).
fNumber of stars simulated.
gFiducial simulation.
hAs simulation S1, but with increased number of stars and simulation length.

Simulations S9–12 have SMBH binary mass ratio, q, greater than 1. In this case the stellar cusp

is effectively placed around the secondary. We do not follow the integration of the stars in the cusp

6Partially funded by NSF MRI grant PHY-0619274
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around the more massive SMBH, although these dominate the rate of inspiral in our pre-calculated

SMBH binary path. In simulations with mass ratio 10/3 (S11 and S12) we use the SMBH binary

pre-calculated for the q = 0.3 simulations. In simulations with mass ratio 10 we utilize the the

q = 0.1 binary inspiral. The stars must be integrated consistently with the binary evolution (for the

reasons described in section 5.2). From equation (5.3), it follows that for a q−1 simulation, the binary

separation and velocity from the q simulation must be increased by a factor

[

Total q > 1 mass
Total q < 1 mass

]1/3

=

[

0.5(q−1 + 1) +Mt,new

0.5(1 + q) +Mt,old

]1/3

. (5.45)

The new stellar mass in the truncated potential is given by Mt,new = M⋆(rt,new) where the new

truncation radius rt,new is chosen to lie at approximately the Hill radius.

5.4 Dynamics

The dynamics are surprisingly rich and interesting. We demonstrate some of the key aspects in this

section with particular reference to our fiducial simulation S1. Where possible order-of-magnitude

calculations that emphasize physical understanding are given.

To demonstrate that we have captured most of the EMRIs and plunges, in figure 5.8 the number

of events as a function of time is plotted. Time is plotted in our code units of

1
Ω
=

√

r3
c

2GM1
= 23 × 103 yr

M1

106M⊙

(

rc

1.7 pc

)3

. (5.46)

It is clear from the longer period and larger simulation in figure 5.8(b) that, while the rate of

events is not yet zero in figure 5.8(a), we have captured the peak in the rates of EMRIs and plunges.

Note that our numbers of events are a lower limit because we only simulate the OMyr as the SMBH

binary stalls. It is likely the rate of tidal disruptions, EMRIs, and plunges remains higher than the

isolated SMBH rate throughout the possibly OGyr of the SMBH binary’s existence. We outline the

reasons for this in section 5.6.

5.4.1 Lidov-Kozai Effect

The key process in the formation of EMRIs, plunges, and (to a lesser extent) tidal disruptions is

the secular Lidov-Kozai effect (Lidov 1961, English translation Lidov 1962, Kozai 1962). We do not

give a mathematical treatment here 7 , instead referring the reader to the extensive literature on the

subject (e.g., Innanen et al. 1997, or Ivanov et al. 2005).
7Appendix 5.B does derive the Kozai equations, but with the addition of relativistic precession. The orbital plane in

appendix 5.B is different because we do not average over the SMBH binary orbit but, translating this, the Kozai equations
are just equations (5.99)-(5.102) without the GR precession, ℓ−2 , term in (5.99).
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(a) The cumulative distribution of plunges and EMRIs as a function of time in
simulation S1
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(b) The cumulative distribution of plunges and EMRIs as a function of time in
simulation S17. This simulation is equivalent to simulation S1 but contains three
times more stars, integrated for a longer period. It was performed to assuage fears
that we had captured only a small fraction of the the total number of EMRIs.

Figure 5.8 The cumulative distribution of plunges (solid line) and EMRIs (dashed line) as a function
of time are plotted on the left-hand axis. The binary separation during the pre-calculated inspiral
path is plotted as the red line on the right-hand axis.
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In the Lidov-Kozai process, stellar orbits around the primary SMBH are perturbed by the

tidal quadrupole perturbation from the secondary SMBH. This process occurs on a long, secular,

timescale and therefore both the stellar and secondary SMBH orbits are averaged over. We place

the SMBH binary orbit in the x-y plane, and so symmetry about the z axis causes the z component

of the stellar angular momentum, Lz, to be conserved. This holds to quadrupole order even in the

case of an eccentric SMBH binary orbit in the restricted three body case (Naoz et al., 2011).

In figure 5.9 we plot the outcome of simulation S1 for each star as a function of its initial Lz.

The majority of stars that form EMRIs (gold stars) do indeed have initially low Lz. Far from the

secondary those that plunge (green dots), also have initially low Lz.

We also demonstrate in figure 5.10 that it is not that EMRIs and plunges all come from low

angular momentum, and that Lz is ‘special’. Low angular stars would naturally have a close

pericenter distance so this is an important verification.

The timescale of the Lidov-Kozai process is to order unity given by (Chen et al., 2011)

1
tkoz
∼ 1

L

dL

dt
, (5.47)

where Keplerian specific angular momentum is given by L2 = GMBHa(1− e2), and the torque due to

the quadrupolar tidal force from the secondary is

∣

∣

∣

∣

∣

dL

dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

~F × ~r
∣

∣

∣

∣

∼ qGMBHa2

R3 . (5.48)

This gives a Kozai timescale of

tkoz ∼
√

1 − e2

2πq

(

R

a

)3

P⋆ (5.49)

∼
√

1 − e2

2πq

(

R

a

)3/2

Pb . (5.50)

where P⋆ is the orbital period of the star, and Pb is the orbital period of the SMBH binary. Except for

the
√

1 − e2 and a 2/3 factor, this is just the conventional Kozai timescale (e.g., Ivanov et al., 2005).

Tk =
2

3πq

(

R

a

)3/2

Pb (5.51)

We have retained the non-constant factor,
√

1 − e2, in equation (5.50) since it illustrates that the

timescale for changes is shorter during high-eccentricity periods. We refer to tkoz as the instanta-

neous Kozai timescale to emphasize this difference.
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(b) Plot with Lz unnormalized. The additional red line marks, |Lz| < 4 GM/c+∆Lb,
the range of oscillations on the binary SMBH orbital period discussed in section
5.4.4.

Figure 5.9 Outcome for each star in simulation S1. EMRIs are gold stars, plunges green dots.
Other stars are color coded by their distance of closest approach during the simulation. In the
secular approximation Lz is conserved and therefore all plunges should come from the region with
|Lz| < 4 GM/c which is plotted in black. This region is known as the Kozai wedge. A version of this
figure also appears in Bode (2011).
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Figure 5.10 Distribution of EMRIs and plunges in angular momentum. While many of the plunges
and EMRIs are outside the Kozai wedge where Lz < 4 GM/c, they still predominantly come from
low Lz.

5.4.2 Apsidal Precession

In the far-field limit general relativity causes the line of apsides to precess each orbit by an angle of

(Weinberg, 1972)

δωGR =
6πGMBH

c2a(1 − e2)
. (5.52)

The timescale to precess though π radians, upon which the torque due to the SMBH binary

quadrupole, and hence the resultant evolution in L is reversed, is

tφ,GR ≡
π

δωGR
P⋆ ∼

c2a(1 − e)
3GMBH

P⋆ . (5.53)

There is also purely Newtonian precession due to the non-Keplerian stellar potential. This

results in a precession per orbit of (e.g., Merritt et al., 2011b)

δωSP ∼ −2π

√
1 − e2

1 +
√

1 − e2

M⋆(< a)
MBH

(5.54)

and hence orbits precess though π radians on a timescale

tφ,SP ≡
π

ωSP
P⋆ ∼

1 +
√

1 − e2
√

1 − e2

MBH

M⋆(< a)
P⋆ . (5.55)
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Note that δωGR and δωSP have opposite signs, i.e., GR and precession due to the stellar potentials

are in opposite directions, and therefore competing effects. The GR precession however dominates

for high eccentricities (1 − e→ 0).

5.4.3 Extreme Apsidal Precession

When the timescales for apsidal precession (e.g., tφ,GR or tφ,SP) are shorter than the Kozai timescale,

then the size of the oscillations in L is reduced. This is sometimes referred to as ‘detuning’ the

Kozai mechanism in the literature. In this case there are still oscillations, but their size is typically

reduced by a fraction ∼ tφ,GR/tkoz (or ∼ tφ,SP/tkoz). The mathematical details of this process when

GR precession dominate are described in appendix 5.B. A result is that if a star is delivered to a

high eccentricity, low angular momentum orbit, then the star’s oscillations are damped and it will

remain at high eccentricity. In this case the ‘detuning’ of the Kozai mechanism is an advantage in

the formation of EMRIs.

5.4.4 Fluctuations on the orbital timescale of the SMBH binary

When averaged over the timescale of the binary the component of angular momentum perpendic-

ular to the binary’s orbit is conserved, however on shorter timescales this is not the case. The size

of these fluctuations will be of order

∆Lb ∼
dL

dt

Pb

4
, (5.56)

where the factor 4 reflects, approximately, that this is a quadrupolar force, and hence there are 4

reverses in sign per Pb. Using the previously calculated torque

∆Lb ∼
qGMBHa2

R3

Pb

4
=

GMBHq

4a

(

a

R

)3/2
P⋆ , (5.57)

or
∆Lb

Lc
=
πq

2

(

a

R

)3/2
, (5.58)

where Lc =
√

GMBHa is the angular momentum of a circular orbit.

More rigorous calculations of this effect are given in appendix B of Ivanov et al. (2005). The

result which differs only by an order unity factor from equation (5.57), is that, close to the peak in

eccentricity,
∆Lb

Lc
=

15q

8
cos imin

(

a

R

)3/2
, (5.59)

where imin is the minimum inclination, which for high eccentricity orbits will be small.

These oscillations, which result in oscillations in the otherwise conserved Lz, are particularly

important in the case considered here because of the extreme eccentricities. However they are
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Figure 5.11 Zoom in on one of the peaks in eccentricity from figure 5.7. The black points are the
simulated star, one point plotted at each periapsis passage. The red line is integration of the secular
Kozai equations. The oscillations are due to the orbital period of the binary as the described in
section 5.4.4. The green lines are the range of oscillations predicted by equation (5.59).

always present in the Kozai mechanism, and are often neglected because they do not appear in

the secularly averaged equations. They are the reason for the oscillations seen in figure 5.7. In

figure 5.11 we zoom in on one of the peaks in eccentricity to demonstrate these oscillations.

5.4.5 Stellar Orbital Timescale

The star has discrete periapsis passages. This make the stellar radial orbital period, P⋆, an important

timescale because, for example, if the angular momentum falls below L = 4 GM/c, a plunge does

not immediately occur. Instead a plunge occurs only if the angular momentum remains below

L = 4 GM/c at the next periapsis passage. Between periapsis passages the angular momentum of

the star will undergo a change in angular momentum of typical size

∆L⋆ ∼
dL

dt
P⋆ ∼

qGMBHa2

R3 P⋆ =
GMBHq

a

(

a

R

)3
P⋆ (5.60)

or
∆L⋆
Lc
= 2πq

(

a

R

)3
, (5.61)

which is naturally of order P⋆/Pb smaller than the oscillations on the binary timescale given by

equation 5.57.
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Figure 5.12 Schematic illustration of Hill stability in the x-y plane of the co-rotating frame. Each
sub-figure (a)–(c) represents the allowed region of a star with decreasing Jacobi constant. Stars may
not travel through the gray regions which have 2U < CJ. In (a) C2 < C1 < CJ and a star orbiting
close to the primary must remain orbiting the primary. In (b) C2 < CJ < C1 and so the star may
pass through the L1 Lagrange point to orbit the secondary, but cannot become unbound. In (c)
CJ < C2 < C1 the star may also pass through the L2 Lagrange point to become unbound.

5.4.6 Unbound Stars

In the circular restricted three-body problem the only integral of motion is Jacobi’s constant (e.g.,

Murray and Dermott, 2000). In the non-rotating, barycentric frame (which we work in throughout

this section) this is given by

CJ = −2(E − nLz) = 2U − v2 + 2nLz . (5.62)

where E is the energy in the barycentric frame, and n is the mean motion of the massive bodies.

The case considered here is not the circular restricted three-body problem: The SMBH binary

both inspirals, and is not circular. However, for the stars of interest, the inspiral is nearly adiabatic

and so the adiabatic invariant semi-major axis of the stars remains nearly constant, and it is a semi-

major axis limit we search for in this section. In addition the SMBH binary stalls with negligible

eccentricity. The result is that the limit based on the Jacobi constant, CJ, in this section is remarkably

accurate, despite its approximate nature.

At zero velocity CJ = 2U, which defines the zero-velocity surface (e.g., Murray and Dermott,

2000). This is a useful relation since a particle cannot travel through regions of space where 2U < CJ.

Define the value of the the Jacobi constant at Lagrange point Li to be Ci. If CJ < C1 then a particle

initially orbiting the primary is able to cross L1 and orbit the secondary. It will not however be

ejected unless CJ < C2 and it is able to exit the system across L2. This is illustrated in figure 5.12.

In simulation S1, which has q = 0.3, the positions of L1 and L2 are 0.3791R and 0.4991R from the

secondary, respectively. This gives C1 = 5.001GM1/R and C2 = 4.627GM1/R.

The Hill stability criterion that CJ > C2 can be translated to a criterion in semi-major axis, inside

which all stars must remain bound. In the case under consideration, the most stringent stability
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Figure 5.13 Demonstration of Hill stability criteria in simulation S1 (q = 0.3). A histogram of all
stars is plotted in black. In orange are those stars that are unbound at the end of the simulation. In
this case the criteria for stability (CJ > C2) is a < RHill = 0.2462Rstall.

criterion occurs at the SMBH stalling radius, Rstall, at which point

n =

√

GM1(1 + q)
R3

stall

. (5.63)

At any semi-major axis the largest possible Lz is the circular orbit with Lz =
√

GMa. Therefore the

largest possible CJ at semi-major axis a is

CJ =
GM1

a
+ GM1

√

(1 + q)a

R3
stall

. (5.64)

Setting this equal to C2 and solving for a, gives the radius inside which all orbits must remain

bound:

RHill = 0.2462Rstall . (5.65)

In figure 5.13 we plot a histogram of the stars that become unbound for simulation S1. No stars

with initial semi-major axis less that RHill are unbound at the conclusion of the simulation.

In figure 5.26 in appendix 5.D an example star that becomes unbound is shown. This star

becomes unbound on a secular timescale after undergoing a Kozai oscillation.
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5.4.7 Formation of EMRIs and Plunges

In figure 5.14 we plot the size of the oscillations in L on the star and binary orbital timescale given

by equations (5.61) and (5.57), respectively, and the plunge angular momentum LPlunge = 4 GM/c.

We also plot lines when the Kozai timescale, tkoz, and the apsidal precession timescales, tφ,SP and

tφ,GR, are equal. For smaller semi-major axis than these lines, the Kozai mechanism will be detuned.

The results of the previous section allow the dynamics of the EMRI and plunge formation to be

understood.

At the largest semi-major axes, from ∼ RHill outwards, the majority of stars are ejected from the

system, becoming unbound often after chaotic encounters with the secondary. A small fraction of

these may be scattered close enough to either SMBH to plunge instead. A star scattered towards

either SMBH has a larger cross section to plunge rather than form an EMRI, and therefore only a

small fraction of the stars in this region form EMRIs.

Moving inwards from RHill all stars remain bound at the conclusion of the simulation. This is

the region in which the secular Kozai oscillations become important. In this region if Lz + ∆Lb .

LPlunge then the there is the possibility that the Kozai oscillations will drive the stars total angular

momentum to LPlunge, and a EMRI or plunge will result.

In the region where L⋆ is a significant fraction of LPlunge, then stars are more likely to plunge

than form an EMRI, because of the larger cross section for plunges.

However as L⋆ becomes small compared to LPlunge, stars are slowly perturbed towards the

primary SMBH. Since the angular momenta for EMRI formation lie outside LPlunge, stars will be

perturbed into this region first and an EMRI will result.

Finally to the left of the tKoz = tφ,GR line neither EMRIs nor plunges occur. This is because in

this region, as a star is perturbed to smaller L, the GR precession rate increases precipitously, the

star precesses reversing direction of the perturbing torque, and L increases again. This is referred

to as the Schwarzschild barrier around isolated SMBHs by Merritt et al. (2011b). In that case the

perturber was the torque due to the statistically aspherical stellar distribution, however this effect

will occur when any sufficiently secular perturbation is combined with GR precession.

The result is that there is a ‘sweet spot’ for EMRI formation lying to the right of the tKoz = tφ,GR

line, where Lz . LPlunge + ∆Lb and ∆Lb ≪ LPlunge. In this region the timescale for GR precession

tφ,GR is also close to the orbital timescale of the SMBH binary, Pb, making the dynamics especially

complex. The integration of an example star, the red outlined star in figure 5.14, from this region is

shown in figure 5.27 in appendix 5.D.

In appendix 5.C we show equivalent plots for the other simulations in table 5.1.
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Figure 5.14 Results of S1 (q = 0.3, M⋆ = 10) simulation as function of normalized angular momentum
and semi-major axis. Outcomes are shown as function of normalized angular momentum and semi-
major axis along with important delimiting lines (described in section 5.4). Initial L/Lc and Lz/Lc

are plotted in the upper and lower panels, respectively. Each star is represented by its outcome: an
EMRI (gold star), a plunge (green dot), becoming unbound (orange dot) or remaining in the cusp
at the conclusion of our simulation (blue dot).



108

5.5 Results

A summary of the numbers of EMRIs, plunges and tidal disruptions produced from each simulation

are shown in table 5.2.
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Table 5.2 Summary of raw simulation results. Additional parameters for each simulation are described in table 5.1. These are the numbers of each
event produced from our simulations with 106 stars. To scale to physical numbers produced from each merger, the number EMRIs or plunges
should be multiplied by 2/M⋆. I.e., We predict 2 EMRIs should arise during a SMBH merger with S1 parameters. To scale the TD numbers multiply
by 2M1/106M⊙. Caveats regarding the scaling of TDs to primary masses other than 106M⊙ are discussed in section 5.5.3.

Ida qb M⋆/M⊙c GW Loss EMRIs Plunges TDs from primary of mass TDs from secondary of mass
Method 106M⊙ 107M⊙ 108M⊙ q106M⊙ q107M⊙ q108M⊙

S1d 0.3 10 D 10 287 427 341 301 4 3 3
S2 0.3 1 D 1 217 369 294 243 3 1 1
S3 0.1 10 D 13 277 451 351 298 3 3 3
S4 0.1 1 D 3 195 362 287 222 1 1 1
S5 0.03 10 D 9 417 695 530 446 4 2 0
S6 0.03 1 D 1 217 420 320 256 4 2 0
S7 0.6 10 D 39 390 605 488 415 16 10 6
S8 0.6 1 D 3 282 512 390 313 6 3 3
S9 10/3 10 D 13 577 856 718 598 61 52 44

S10 10/3 1 D 1 400 671 561 469 27 17 15
S11 10 10 D 35 600 1155 933 776 85 69 64
S12 10 1 D 1 482 859 701 581 35 30 30
S13 0.3 10 None - 212 373 292 237 2 1 1
S14 0.3 10 A 2 203 363 275 231 2 1 1
S15 0.3 10 B 5 223 369 285 241 2 1 1
S16 0.3 10 C 3 238 377 294 249 2 1 1
S17e 0.3 10 D 58 1270 1629 1441 1300 27 24 15

aUnique simulation identification. See table 5.1
bSMBH mass ratio q ≡ M1/M2. The stellar cusp is placed around M1 therefore for q > 1 the stellar cusp is around the

secondary.
cStellar mass, M⋆. All stars are assumed to have this mass.
dFiducial simulation
eAs S1 but with 3 × 106 stars and an increased simulation time.
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Figure 5.15 Number of EMRIs and plunges produced as a function of SMBH mass ratio, q, in
simulations S1–S12. The number of EMRIs produced by the M⋆ = 10 M⊙ and M⋆ = 1 M⊙ simulations
are plotted in black and red, respectively. The number of plunges produced by the M⋆ = 10 M⊙ and
M⋆ = 1 M⊙ simulations are plotted in blue and green, respectively.

5.5.1 EMRIs

In figure 5.15 we plot the number of EMRIs produced by the various mass ratios simulated in

S1–S12. Here we scale these numbers to estimate the number of EMRIs produced in close binary

SMBHs to redshift z = 1. We first assume that all objects in the cusp are 10 M⊙ black holes.

Simulations S7 (q = 0.6) and S11 (q = 10) produce a significantly higher number of EMRIs than

the other simulations. The reason for this is unknown, especially considering the smaller number

produced by S9 (q = 10/3), whose mass ratio lies between these. Instead we conservatively reject

these simulations, assuming the results to be spurious, and will investigate the possibility that they

are real in future work. The remainder of the simulations give a statistically constant number of

EMRIs per simulation of 11 ± 2 (including S7 and S11 increases this number to 20 but a number

independent of mass ratio would no longer be appropriate). Scaling this to the 2× 105 objects in the

cusp (i.e., dividing by
2×106 M⊙ cusp mass

10 M⊙ mass objects×106 objects simulated = 5) we predict 2.2 ± 0.4 EMRIs per

merger.

We now wish to calculate an approximate rate of SMBH mergers with one component of mass

105.5 − 106.5 M⊙ up to redshift 1. We choose this mass range and redshift as appropriate for (opti-

mistic), future space-based, low-frequency gravitational wave detectors.
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Using the black hole mass function (Aller and Richstone, 2002)

dN

dMBH
= c

(

MBH

M⋆
BH

)−α
e−MBH/M⋆

BH , (5.66)

with the parameters c = 3 × 10−11M−1
⊙ Mpc−3, M⋆

BH = 1.1 × 108 M⊙ and α = 0.95 (values derived by

Aller and Richstone, 2002, scaled to H0 = 71 km s−1 Mpc−1). Gives the number of SMBHs of mass

105.5 − −106.5 M⊙ to be 6 × 10−3 Mpc−3.

Stewart et al. (2009) gives the number of merger rate of these galaxies with mass ratio 0.01 < q < 1

to be ∼ 0.02 Gyr−1(1+ z)2.2 (which is consistent with observational constraints, e.g., Conselice, 2006).

Assuming the density of black holes over this mass range to be constant, then integrating over

co-moving volume, gives the rate of mergers to redshift 1 to be 0.06 yr−1.

We therefore predict 0.13 yr−1 EMRIs per year from SMBHs in the mass range 105.5–106.5M⊙

merging with less massive counterparts if the cusp was entirely made of 10 M⊙ black holes. We have

also begun simulations with mass ratios larger than 1, i.e., the less-massive SMBH in the frequency

range to which the gravitational wave detector is sensitive. The results of these simulations (S9–12)

are given in table 5.2, and it appears promising that a similar number will be produced through this

channel.

Of course not all members of the cusp will be 10 M⊙ black holes. However the EMRIs produced

in our simulations originate from radii of ∼ 0.01 pc (figure 5.14 and appendix 5.C). If the cusp is

mass segregated, it is likely that the majority of objects at this radius will be stellar mass black holes

??.

Interestingly, our simulations containing objects with M⋆ = 1 M⊙ produce O(1) object. Scaling

this by the 2 × 106 objects in the cusp in this case gives ∼ 2 EMRIs per merger. Therefore, if the

objects at ∼ 0.01 pc are compact objects of mass 1 M⊙, we also predict a similar rate.

If not all objects at ∼ 0.01 pc are compact our results can be scaled to other densities by simply

multiplying by the fraction of objects that are compact.

5.5.2 Plunges

The relatively large numbers of plunges produced from our simulations have little prospect of

observation, since it is likely that for future low-frequency gravitational wave missions, they would

be detectable only from the SMBH in our Galactic center (Hopman et al., 2007).

Instead they silently add only their mass to the SMBH. The mean number of plunges is 425 ± 8

from the 10 M⊙ simulations, and 299± 7 from the 1 M⊙ simulations. Scaling these to the number of

objects in the cusp, we predict an increase in mass of (6 − −8.5) × 102 M⊙, or 0.06 − −0.085 per cent

of the SMBH mass.

Of more astrophysical interest is the resultant spin evolution. The change in the dimensionless
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Figure 5.16 Distribution of reduced angular momenta of plunging stars from simulation S1.

spin of the black hole, a, will be given by (e.g., Kesden et al., 2010)

∆a = ∆
(

S

M2

)

≈ 1
M2

(

∆S − 2S

M
∆M

)

, (5.67)

where S is the spin of the hole, and M its mass. A plunging orbit has close to zero energy and so

∆M is just the rest mass, M⋆, while ∆S is the angular momentum of the plunging star.

In figure 5.16 we plot the distribution of reduced angular momenta of plunging stars from

simulation S1. From these distributions we see that the (assumed) initially zero spin will make a

random walk as stars plunge. In simulation S1 we predict 58 plunges of stars with mass 10 M⊙ and

RMS plunge angular momentum
√

〈

L2〉 = 3.0M1. The RMS dimensionless spin at the conclusion of

the simulation is therefore

√

〈

a2〉 ∼
√

Nplunge ×
√

〈

L2〉M⋆

M2
1

= 2 × 10−4 . (5.68)

This too small to be astrophysically interesting, however the situation changes if the SMBH was

initially close to having maximum spin. Consider the spin to initially be a1 = 1−δ1, with δ1 possibly

as small as 0.002, depending on the accretion and merger history of the SMBH (Kesden et al., 2010).

Rewriting equation (5.67)
∆a

a
=

(

∆S

S
− 2
∆M

M

)

. (5.69)

If the distribution of plunge angular momenta was symmetric, as in simulation S1, then the first

term would again make a small contribution. Neglecting this term and integrating equation (5.69)
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Figure 5.17 Tidal disruption rate as a function of time from simulation S1. The rate is not as
significantly enhanced over the expected quiescent rate of ∼ 10−5 as the simulations in chapter 4.
This is because of the relatively low-mass 106 M⊙ primary SMBH, and the resultant low-mass stellar
cusp.

then
a

a1
=

(

M

M1

)−2

. (5.70)

The increase in mass of 0.6–0.85 per cent due to plunges in our simulations therefore, to first order

in δ, causes the spin to be limited to a < (0.9988–0.9983)− δ1. In fact the first term in equation (5.69)

will make this limit stricter, since retrograde, negative ∆S plunges, are likely to dominate due to

their larger cross section and magnitude. We therefore predict that recently stalled SMBHs will

not be maximally spinning. SMBHs at merger would also not be maximally spinning, without a

subsequent period of spin evolution.

5.5.3 Tidal Disruptions

The tidal disruption rate from simulation S1 is shown in figure 5.17. The rate is not significantly

enhanced, especially compared to the rates calculated in chapter 4. The reason is that in this chapter

we have concentrated on simulations of lower-mass, 106 M⊙, SMBHs than those considered in

chapter 4. These naturally have cusps containing fewer stars which can be scattered and become

tidal disruptions. We choose to focus on these as these lower mass SMBH’s in this chapter because,

if the stars are compact objects as opposed to main sequence stars which could be tidally disrupted,

those are the black holes to which space-based, low-frequency gravitational wave detectors are

expected to be sensitive.
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Unlike the simulations in chapter 4 the simulations here cannot be directly scaled to other SMBH

masses when calculating the tidal disruption rates. This is because the relativistic corrections

introduced an additional scale to the problem: In essence the rate of GR precession at the tidal

disruption radius cannot be varied without rerunning the simulation.

In table 5.2 however, we still scale the simulations in a similar manner to chapter 4 utilizing

equation (4.7). This is because we have rerun the q = 0.3 simulation with a range of SMBH masses:

106M⊙, 3 × 106M⊙, 107M⊙ and 3 × 107M⊙ and with cusp sizes given by equation (4.7). We found

estimates made in the manner of table 5.2 to be underestimates, in error by less than 35 per cent.

We therefore provide numbers for M1 , 106M⊙, but they should however be used with caution for

this reason.

5.6 Caveats

Schwarzschild Black Holes: Throughout this work we ignore the effects of black hole spin on stellar

dynamics. This is done for simplicity, since there is increasing evidence that at least some SMBHs

have significant spin (Brenneman and Reynolds, 2006). Apart from very close passages, even in

the presence of spin, the precession will be dominated by the Schwarzschild terms (Merritt, 2010).

Instead the largest effect on the this work would be Lense-Thirring precession of the orbital plane

since, if the BH spin is not aligned with the orbital plane, this would result in non-conservation

of Lz. We expect this could therefore increase the rate of EMRIs and plunges since more stars

can potentially undergo Kozai oscillations which result in close BH encounters, and we hope to

investigate this possibility in the future.

Cusp Profile: One of the major factors in determining the rates is the stellar distribution. In

our simulations we use an η-model (Tremaine et al., 1994) of a spherical stellar cusp with a central

SMBH to establish the stellar distribution. This is the a self-consistent family of models of a stable

spherical isotropic stellar cusp around an SMBH. In our simulations, we have chosen η = 1.25, the

value appropriate for a relaxed stellar cusp. However, there is a complication: the galaxy where

we can best resolve the inner parsec is our own Milky Way, and the visible cusp does not appear

to be relaxed (Yusef-Zadeh et al., 2012). Of course, this raises the question of not only whether

or not stellar cusps are generally relaxed. An alternative interpretation of the lack of a visible

relaxed cusp is that a (Bahcall and Wolf, 1976) cusp is present in the Galactic center, but is ‘dark’

as a result of mass segregation causing the density to be dominated by stellar mass black holes

(Freitag et al., 2006; Preto and Amaro-Seoane, 2010). In addition the cusps around M31 and M32 are

also steep (Lauer et al., 1998), although the dynamics in the nucleus of M31 is complex (Tremaine,

1995). Our rates scale roughly linearly with the number density of stellar mass black holes at about

Rstall/10 ∼ 0.01 pc, allowing them to easily be rescaled to other cusp profiles. This is also the reason
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Figure 5.18 Stellar mass interior to a given radius normalized to the total stellar mass, M⋆(< r)/M⋆tot.
In black we plot the initial cumulative stellar mass, while in blue we plot the cumulative stellar
mass at the end of the simulation for the q = 0.1, M⋆ = 10 M⊙ run, and in red we plot the cumulative
stellar mass at the end of the simulation for the q = 0.3, M⋆ = 10 M⊙ run. Note that the initial
conditions for all runs are the same. The only difference between the outcomes of the runs with the
same q but different stellar masses is due to those stars which go within 100 GM1/c2, only a small
fraction of all stars. Thus, the cumulative stellar mass for the runs with M⋆ = 1 M⊙ are virtually
the same as the 10 M⊙ counterparts with the same q. The hatched regions are stars that had not
completed the full simulation within the preset limit of 1010 steps. For reference we also plot the
stalling radii of the secondary as vertical lines. A version of this figure also appears in Bode (2011).

that the assumption of the majority stars being 10 M⊙ black holes is valid: While this would naively

result in an unfeasible number of 10 M⊙ black holes in the cusp, in reality all we are assuming is

that the majority of stars at ∼ 0.01 pc where the EMRIs form are 10 M⊙ black holes.

Stellar Interactions: We have not considered relaxation processes such as that due to star-star

scattering. The timescale for relaxation via star-star scattering is approximately 1 Gyr at rc (Amaro-

Seoane and Preto, 2011) and is not a strong function of r in the cusp (Alexander, 2005). Because

this is much longer that out simulations we have neglected it. However, this approximation is

not as accurate as might be assumed because the timescale to change angular momentum by of

order itself will be reduced for high-eccentricity orbits to ∼ (1 − e2)tr (Hopman and Alexander,

2005). Therefore for the highest eccentricity stars in our simulation relaxation could be beginning to

become non-negligible. We expect the inclusion of star-star interactions to increase the numbers of

EMRIs from SMBH binaries over that found in this work since any relaxation increases the number

of stars that can potentially become EMRIs. In particular by the conclusion of our simulations the

rate of EMRIs and plunges has dropped significantly since there are few low Lz stars remaining.

Relaxation would refill this region of phase, a possibility we hope investigate in the future.

Invariant stellar potential: One inconsistency of our methodology is the assumption that the

stellar potential does not evolve with time, though the stars’ orbits do. To demonstrate the possible
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effect of such an assumption we plot the mass interior to a given radius as a function of radius in

figure 5.18. There the solid black line is the initial distribution given by equation (5.2), the red solid

line is the curve for the q = 0.3 and M⋆ = 10 M⊙ simulation, and the blue solid curve is for the

q = 0.1 and M⋆ = 10 M⊙ simulation. The mass of the star has little to no effect on these curves. The

filled region represents stars that required more than 1010 steps to complete the simulation and were

therefore terminated. Most EMRIs originate from ≈ 10−2 pc and at this radius the mass interior has

not changed significantly, the plunges and EMRIs representing a small fraction of the stellar mass.

Simulation Length We have performed simulations only of length ∼ 1 Myr. Although the exact

timescale is uncertain, the SMBH binary is expected to remain stalled for much longer than this.

We expect that the rate of tidal disruptions, EMRIs, and plunges will remain enhanced over their

rate from isolated SMBHs for this entire period. This is because it is only necessary for stars to be

scattered to the Lz+∆Lb . LPlunge ‘loss wedge’ in order to be secularly perturbed close to the SMBH,

as opposed to the much smaller loss cone with |L| < LPlunge. Simulations of this would require

prescriptions of relaxation to be incorporated to the code. However analytic estimates should be

possible from our present simulations which provide the regions of parameter space from which

tidal disruptions, EMRIs, and plunges result.

5.7 Conclusion

We have performed a range of simulations of the stellar dynamics around SMBH binaries, con-

centrating on calculating the number of EMRIs, plunges and tidal disruptions produced by each

merger. In addition the code used to perform the simulations in chapter 4 and Bode (2011) was

described in greater detail, and the modifications to incorporate general relativistic effects necessary

to simulate the production of EMRIs.

We predict 0.13 yr−1 EMRIs per year from SMBHs in the mass range 105.5 − −106.5M⊙ merging

with less massive counterparts to redshift 1. This number must be scaled by the fraction of compact

objects at 0.01 pc where the majority of the EMRIs in our simulations form. There is therefore reason

to be optimistic that future, space-based, low-frequency, gravitational wave detectors could detect

EMRIs from SMBH binaries. The stalled binary companion SMBH could potentially be inferred

from the EMRI waveform Yunes et al. (2011). This prospect would be very unlikely without the

greatly enhanced rates estimated here and, to date, no convincing SMBH binaries at this separation

have been detected.

In addition we expect a much larger number of objects will plunge directly into the SMBHs.

This will increase their mass by only 0.6 − −0.85 per cent, but could have interesting consequences

in reducing spin of an initially close to maximally spinning hole.

We have also calculated the numbers of tidal disruptions assuming the cusp was composed of
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Sun-like main sequence star. We find for our simulations of 106M⊙ SMBHs that the rates are only

slightly enhanced over the isolated rates, but have provided rough scalings to other, higher-mass

SMBHs.

Appendix 5.A Picking stars from the η-Models

Picking positions is straightforward. In code units (which are the same as the units in Tremaine

et al., 1994) the total stellar mass is unity, and the mass interior to radius r is

M(< r) = 4π
∫ r

0
r2ρη(r) dr =

rη

(1 + r)η
. (5.71)

Therefore, given a uniform random number u = U(0, 1), stars drawn from this radial distribution

can be generated via

r =
u1/η

1 − u1/η
. (5.72)

It is also necessary to pick a velocity for that star. Given a distribution function f (E) the number

of stars at r with velocities between v and v + dv is

dρ = 4π f (E)v2dv = 4π f (E)
√

2(Ψ(r) − E) dE (5.73)

where E = Ψ − 1
2 v2 is the relative energy. The relative potentialΨ(r) is given by

Ψ(r) =
1

η − 1

[

1 − rη−1

(1 + r)η−1

]

+
µ

r
, η , 1, (5.74)

= ln(1 + 1/r) +
µ

r
, η = 1,

where µ is the SMBH mass.

The distribution function is calculated using Eddington’s formula (Binney and Tremaine, 2008;

Tremaine et al., 1994)

f (E) =
1

23/2π2

d

dE

∫ E

0

dρ

dΨ

dΨ√
Ψ − E

(5.75)

=
1

23/2π2

∫ E

0

d2ρ

dΨ2

dΨ√
Ψ − E

. (5.76)

We numerically calculated and tabulated the distribution function using equation (5.76). These

tables were evenly distributed in logE between −4 and 4 with 100 points per decade.
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At the lowest energies (closest to unbound, E → 0) the distribution function becomes

f (E)→ 25/2

5π3(1 + µ)4
E5/2 . (5.77)

At the highest energies (most bound to SMBH, E → ∞) the distribution function becomes

f (E)→ ηΓ(4 − η)

27/2π5/2µ3−ηΓ( 5
2 − η)

Eη−3/2 . (5.78)

Beyond the extent of the tabulations the approximations in equations (5.77) and (5.78) were used.

A rejection method was used to pick velocities from these distributions (Press et al., 1992).

Equation (5.73) can be written

dρ

dE = 4π f (E)
√

2(Ψ(r) − E) = 4π
√

2Ψ f (E)
√

1 − E/Ψ (5.79)

and since E is always positive an upper limit is

dρmax

dE = 4π
√

2Ψ max
0≤E≤Ψ

f (E) . (5.80)

To pick velocities therefore first an energy is picked between 0 andΨ and the ratio

dρ

dρmax
=

f (E)
√

1 − E/Ψ
max0≤E≤Ψ f (E)

(5.81)

calculated. A uniform random number U(0, 1) is then picked and compared to this to the ratio. If

less the energy is kept and converted to a velocity. If greater then the energy is rejected and the

process is repeated.

In calculating f (E), motivated by the power law form of equations (5.77) and (5.78), a power law

distribution function over each interval in energy is assumed:

f (E) = fi(Ei)
( E
Ei

)ai

Ei < E < Ei+1 , (5.82)

where the coefficients ai are calculated from the tabulated data via

ai =
log fi+1 − log fi

logEi+1 − logEi
. (5.83)

Outside the range of the tabulated data the asymptotic equations (5.77) and (5.78) were used.

Examples of realizations of the resulting velocity distributions are shown in figure 5.19.
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Figure 5.19 Comparison of Monte-Carlo stars within 10% of r = 0.1 (solid line), r = 1 (dotted) and r = 10
(dashed) for η = 1.5 and µ = 1 to the expected distribution of velocities from the tabulated values of f (E). A
total of 106 stars were simulated.

.

Appendix 5.B The ‘Reverse-Kozai Effect’

In section 5.4 we discussed the situation of ‘extreme apsidal precession’: The situation whereby

the precession rate of the star is faster than the orbital period of the binary. In this case Kozai like

oscillations still occur, with with reduced size. These can be thought of in the rotating frame where

the stellar orbital apsis are fixed. In this case this frame it is clear that the Kozai effect remains, but the

SMBH binary is effectively orbiting at the precession rate. We have termed this the ‘reverse-Kozai

effect’. In this section we derive the equations of motion for the star under these circumstances.

In the reverse-Kozai effect considered here the precessional period of the star orbiting the primary

is much shorter than the binaries orbital period. In this case the secondary can be considered as a

stationary perturber to the primaries orbit. The orbital period of the star, and hence its semi-major

axis is also assumed to be much smaller than the secondaries.

Using purely Newtonian gravity the potential in the frame of the primary is

U(r) = −GM

r
− GMq

|r − r2|
+

GMqr.r2

r3
2

− V(r) , (5.84)

where r2 is the position of the secondary which is assumed constant, M(Mq) is the mass‘ of the

primary (secondary). The third term in equation (5.84) is the indirect term which arises in the non-

inertial primary centered frame as opposed to the center of mass frame. V is the stellar potential
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for which we use (Tremaine et al., 1994)

V(r) =
GM

rc(η − 1)

[

1 − rη−1

(rc + r)η−1

]

(5.85)

Expanding the second term in equation (5.84) in Legendre polynomials, Pl(x) gives

U(r) = −GM

r
− GMq















∞
∑

l=0

rl

rl+1
2

Pℓ(cosθ) − r

r2
2

cosθ















− V(r)

= −GM

r
− GMq

r2
− GMq

∞
∑

l=2

rl

rl+1
2

Pℓ(cosθ) − V(r) , (5.86)

where θ is the angle between the secondary and the star. By assumption r ≪ r2 so retaining only

the lowest order quadruple term leaves

U(r) = −GM

r
− GMq

r2
− GMqr2(3 cos2 θ − 1)

2r3
2

− V(r) . (5.87)

Close to the primary the first term dominates producing nearly Keplerian orbits. By assumption

the second term is an unimportant constant while the other terms cause a secular drift in the orbital

elements. To calculate that drift we use perturbation theory following Merritt et al. (2011a). The

perturbing Hamiltonian is therefore

∆H = HQ +HM +HGR (5.88)

where

HQ =
GMqr2(3 cos2 θ − 1)

2r3
2

(5.89)

HM = V(r) (5.90)

and HGR represents GR precession.

Since HM is a function of radius only it can only perturb the argument of periapsis. By assumption

in the reverse-Kozai effect the precession due to GR dominates and so this term is unimportant and

is ignored here.

Averaging the perturbational Hamiltonian over an orbit

∆H = HQ +HM +HGR (5.91)
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where

HGR = −
3G2M2

c2a2 (1 − e2)−1/2 . (5.92)

For simplicity GR precession has been included to first PN order. Aligning the z-axis with the

secondary (and thus the orbital elements) then

cosθ = sin i sin(ψ + ω) (5.93)

where i is the inclination, ω the argument of periapsis, and ψ the true anomaly. Averaging over an

unperturbed orbital period, P = 2π
√

a3

GM ,

HQ =
1
P

∫ τ

0
dt HQ (5.94)

changing variables using ψ̇r2 = (GMa)1/2ℓ where ℓ2 = 1 − e2 gives

HQ =
GMq

2Pℓr3
2

∫ 2π

0
dψ r4 (3 sin2 i sin2(ψ + ω) − 1)

=
GMq

2P(GMa)1/2ℓr3
2

∫ 2π

0
dψ

a4(1 − e2)4

(1 + e cosψ)4

[

3 sin2 i sin2(ψ + ω) − 1
]

=
GMqa2

8r3
2

{

6ℓ2 − 10 + 3[5 − 3ℓ2 + 5(ℓ2 − 1) cos(2ω)] sin2 i
}

. (5.95)

Following Merritt et al. (2011a) we define the dimensionless time, τ = ν0t, where

ν0 = νr
3GM

c2a
(5.96)

and νr is the radial frequency given by νr =
√

GM/a3. This gives the dimensionless perturbing

Hamiltonian

∆H′ ≡ ∆H

ν0(GMa)1/2

= −(1 − e2)−1/2 + AQℓ
2
{

6ℓ2 − 10 + 3[5 − 3ℓ2 + 5(ℓ2 − 1) cos(2ω)] sin2 i
}

= −ℓ−1 + AQ

{

6ℓ2 − 10 + 3[5 − 3ℓ2 + 5(ℓ2 − 1) cos(2ω)] sin2 i
}

(5.97)

where

AQ ≡
qc2a4

24GMr3
2

. (5.98)

For our example star AQ is approximately 10. Note that this is just the usual Kozai perturbing

potential with the addition of a term due to GR precession (e.g., Innanen et al., 1997). There are two
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key differences: i) In the case of Kozai oscillations the orbital reference plane is the orbital plane

of the binary, while here the reference plane is perpendicular to the instantaneous position of the

secondary. ii) There is an additional term due to GR precession which dominates the precession

rate for high eccentricities.

Calculating the secular changes in the orbit using this potential gives

∂ω

∂τ
=
∂(∆H′)
∂ℓ

= ℓ−2 + 6AQℓ
{

2 + [5 cos(2ω) − 3] sin2 i
}

(5.99)

∂ℓ

∂τ
= −∂(∆H′)

∂ω

= −30AQ(ℓ2 − 1) sin(2ω) sin2 i (5.100)

∂Ω

∂τ
= −∂(∆H′)

∂ℓz

= 6AQ[5 − 3ℓ2 + 5(ℓ2 − 1) cos(2ω)]
cos i

ℓ
(5.101)

∂ℓz

∂τ
= −∂(∆H′)

∂Ω
= 0 (5.102)

For small ℓ when the GR precession dominates then

∂ω

∂τ
≈ ℓ−2 (5.103)

If we further assume that changes in ℓ are small then

ω = 〈ℓ〉−2 τ (5.104)

ℓ = 〈ℓ〉 − 15AQ 〈ℓ〉2 sin(2τ/ 〈ℓ〉2) sin2 i (5.105)

Ω = 〈Ω〉 + 30AQ(1 − e)1/2 sin(2τ/ 〈ℓ〉2) cos i (5.106)

where 〈ℓ〉 is the mean angular momentum over a cycle. The precise meaning of small changes in ℓ

are that we have assumed 〈ℓ〉 ≫ ℓ+ − ℓ− where ℓ+ and ℓ− are the maximum and minimum angular

momenta given by

ℓ+ − ℓ− = 15AQ 〈ℓ〉2 sin2 i (5.107)

Hence for our solution to be valid we require

〈ℓ〉 ≫ ℓ+ − ℓ− = 15AQ 〈ℓ〉2 sin2 i (5.108)

→ 〈ℓ〉 ≪
(

15AQ sin2 i
)−1

(5.109)
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which is satisfied when the GR precession dominates as shown by equation (5.99).

Finally we can rewrite the solution in terms of eccentricity

ω =
νRK

2
t (5.110)

1 − e = 〈1 − e〉 − (e+ − e−) sin νRKt (5.111)

where

νRK =
6GM

c2a(1 − e2)

√

a3

GM
(5.112)

≈
rp

3rg

√

a3

GM
, (5.113)

e+ − e− = 15AQ 〈ℓ〉3 sin2 i (5.114)
e+ − e−
1 − e

≈ 30AQ 〈ℓ〉 sin2 i (5.115)

=
5
√

2
4

qc2a4

GMr3
2

(1 − e)1/2 sin2 i (5.116)

The period of oscillation is

PRK =
2π
νRK
≈

2πrp

3rg

√

GM

a3 =
rp

3rg
P⋆ . (5.117)

In figures 5.20 and 5.21 we show an artificial test designed to test the reverse-Kozai effect derived

here, while in figure 5.22 we show an actual simulated star which is undergoing the reverse-Kozai

effect.
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Figure 5.20 Simulation illustrating the reverse-Kozai effect. Parameters used are q = 0.1, r2 = 1,
a = 0.01, 〈ℓ〉 = 0.001. As expected there are two oscillations over each cycle in ω due to the
quadrupole nature of the perturbation. Note the discrete nature of the precession of the argument
of periapsis, ω, at each periapsis passage where GR becomes significant.
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Figure 5.21 Simulation as figure 5.20 but over a longer period. As the secondary orbits the inclination
of the test particle’s orbit relative to it changes and this alters the amplitude of the oscillations. The
envelope of the oscillations predicted by equation (5.107) is shown in red.
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Figure 5.22 Star from simulation S1 simulation demonstrating the reverse-Kozai effect. Note the
two oscillations over each cycle inωdue to the quadrupole nature of the perturbation. The envelope
of the oscillation predicted by equation (5.107) is shown in blue.

Appendix 5.C Selected Parameter Space Plots
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(a) Results of S2 (q = 0.3, M⋆ = 1) simulation.
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(b) Results of S3 (q = 0.1, M⋆ = 10) simulation.

Figure 5.23 Parameter space plot showing outcomes as function of normalized angular momentum and semi-major axis along with important
delimiting lines (described in section 5.4). Initial L/Lc and Lz/Lc are plotted in the upper and lower panels, respectively. Each star is represented by
its outcome: an EMRI (gold star), a plunge (green dot), becoming unbound (orange dot), reaching the limit of 1010 steps (blue cross) or remaining
in the cusp at the conclusion of our simulation (blue dot).
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(a) Results of S5 (q = 0.03, M⋆ = 10) simulation.
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(b) Results of S7 (q = 0.6, M⋆ = 10) simulation.

Figure 5.24 As figure 5.23 for simulations S5 and S7.
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(a) Results of S9 (q = 10/3, M⋆ = 10) simulation.
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(b) Results of S11 (q = 10, M⋆ = 10) simulation.

Figure 5.25 As figure 5.23 for simulations S9 and S11.
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Appendix 5.D Example Integrations of ‘Interesting Stars’
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Figure 5.26 Illustration of a star becoming unbound after a Kozai oscillation. The upper plot shows
the distance between the star and each hole, the primary SMBH in black, and secondary in red. The
lower plot shows the projection onto the x-y plane, in primary centered coordinates, of the stellar
orbit in black, and the secondary SMBH orbit in red. The star has small Lz and at peak eccentricity
over a Kozai oscillation this star has an apoapsis which lies close to the secondary. It undergoes a
strong interaction, and is ejected. The peak in eccentricity occurs when Lx and Ly are small and the
orbit lies in the plane of the secondary, thus the chance of a close secondary encounter during this
period is high.
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Figure 5.27 Example EMRI from simulation S1. In the upper-left we plot a(1 − e) which is a proxy
for periapsis distance, in this plot the event horizon is at 8 M and stars that pass inside 100 M have
the prescription for gravitational radiation losses applied. Kozai oscillations are clearly present
in this plot, appearing as the binary inspirals. The upper-right panel shows the evolution of the
semi-major axis (in black) and the binary separation (in red). Note the decreasing semi-major axis
at the end of the integration as the star becomes an EMRI. The middle panels zoom in on this
EMRI formation region. The left panel plots the stars angular momentum L in black, each periapsis
passage is marked with a cross. In red is the argument of periapsis, plotted on the right axis. The
right-hand middle plot shows the semi-major axis decreasing as an EMRI is formed. The lower-left
panel shows the fractional integration error defined by δM

M ≡
p0+T+U

p0
. We choose this representation

of errors since with no integration error then p0 = −H = −T − U. Peter (2009) shows that in
Keplerian orbits errors in p0 cause the equations of motion to still be Keplerian, but with increased
mass M + δM.
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6
Pseudo-Newtonian Potentials for Nearly Parabolic Orbits1

Abstract

We describe a pseudo-Newtonian potential which, to within 1% error at

all angular momenta, reproduces the precession due to general relativity

of particles whose specific orbital energy is small compared to c2 in the

Schwarzschild metric. For bound orbits the constraint of low energy is

equivalent to requiring the apoapsis of a particle to be large compared to

the Schwarzschild radius. Such low-energy orbits are ubiquitous close to

supermassive black holes in galactic nuclei, but the potential is relevant

in any context containing particles on low-energy orbits. Like the more

complex post-Newtonian expressions, the potential correctly reproduces

the precession in the far-field, but also correctly reproduces the position

and magnitude of the logarithmic divergence in precession for low angular

momentum orbits. An additional advantage lies in its simplicity, both in

computation and implementation. We also provide two simpler, but less

accurate potentials, for cases where orbits always remain at large angular

momenta, or when the extra accuracy is not needed. In all of the presented

cases the accuracy in precession in low-energy orbits exceeds that of the

well known potential of Paczyński and Wiita (1980), which has∼ 30% error

in the precession at all angular momenta.

1This work was published as ApJ, 749, 183 (2012) , arXiv:1202.5336 with Christopher Wegg as the sole author (Wegg,
2012). Reproduced here by permission of the AAS, copyright c© (2012).

http://iopscience.iop.org/2041-8205/738/1/L8
http://www.arxiv.org/abs/1202.5336
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Table 6.1 Coefficients for the potentials U(r) = −αM/r − (1 − α)M/(r − Rx) −MRy/r2 (equation 6.1)
described in this work.

Potential α Rx/M Ry/M
Precession error Diverges at

h = 4M?r≫M Maximum
A 1 — 3 0 No 100%a

B 0 5/3 4/3 0 Yes < 30%
C −4

3

(

2 +
√

6
) (

4
√

6 − 9
)

−4
3

(

2
√

6 − 3
)

0 Yes < 1%
PWb 0 2 0 33% Yes 33%

aDoes not diverge at h = 4M
bPaczyński-Wiita

6.1 Introduction

Pseudo-Newtonian potentials that modify the Newtonian gravitational potential have a long his-

tory of use in astrophysics. While general relativity is now well understood in the astrophysics

community, pseudo-Newtonian potentials are still useful in approximating relativistic effects in

simpler and faster Newtonian simulations. The potential of Paczyński and Wiita (1980) is often

used in the study of accretion onto relativistic objects. In this regime the Paczyński-Wiita potential

often gives results close to those using full GR since it correctly reproduces the location of the

inner most stable circular orbit (ISCO) and the marginally bound orbit as well as being a good

approximation to the binding energy at the ISCO (for a review see Abramowicz, 2009).

Here we propose a series of Newtonian potentials with a different aim: to correctly reproduce

the precession produced by general relativity in the Schwarzschild metric for test particles whose

apoapsis lies far from the hole, i.e., in the nonrelativistic region. The Paczyński-Wiita potential has

been used in this context multiple times (e.g., Chen et al., 2011), despite its key properties of closely

reproducing the location and energy of the ISCO being unimportant in this regime. Instead, we

propose alternative potentials that are more accurate and physically relevant for these orbits. We

have used them to simulate galactic dynamics around supermassive black holes (SMBHs) in Bode

and Wegg (2012). The primary concern in that context was to ensure that stars passing close to

the black hole exited along the correct trajectories. These potentials are likely to be useful in other

contexts, motivating the brief presentation here. Throughout this chapter we use geometrized units

where G = c = 1.

6.2 Summary of Proposed Potentials

We present three new pseudo-Newtonian potentials in this paper. All of these potentials, and the

potential of Paczyński and Wiita (1980), can be written in the form

U(r) = −αM

r
− (1 − α)M

r − Rx
−

MRy

r2 . (6.1)



134

∆
φ
−

2
π

0.01

0.1

1

h − 4M

F
ra

ct
io

n
a
l
E

rr
o
r

0.1 1 10
−0.8

−0.6

−0.4

−0.2

0

P
ot

en
ti
al

A

atiiW-iksńyzcaP
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Figure 6.1 Comparison of the precession per orbit produced by the proposed potentials with the GR
expression for parabolic orbits as a function of specific angular momentum, h. The labeled potentials
are described in table 6.1. The GR precession is shown by a solid black line (in the upper panel the
precession produced by potential C lies almost on top of the GR expression). In the lower panel we
plot the fractional error relative to the relativistic precession, defined to be (∆φ−∆φGR)/(∆φGR−2π).
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where the values of the coefficients α, Rx and Ry for the potentials are summarized in table 6.1. We

choose potentials of this form since the presence of the 1/r2 term allows the far-field behavior to

reproduced, while the 1/(r− Rx) term allows reproduction of the divergent behavior as the specific

angular momentum approaches 4 M. The resultant precession per orbit is compared to the GR

value in figure 6.1. In what follows we justify these choices.

6.3 Approach To Calculating Proposed Potentials

6.3.1 Precession Due to General Relativity

In general relativity the change in azimuthal angle of a test particle between two consecutive

apoapsides on a geodesic in the Schwarzschild metric is given by (e.g., Equation 25.42 of Misner

et al., 1973)

∆φGR = 2

r+
∫

r−

[

(E + 1)2

h2 −
( 1

h2 +
1
r2

) (

1 − 2M

r

)

]−1/2
dr

r2 , (6.2)

where E is the specific energy of the particle without rest mass energy (i.e., E ≡ −p0/µ − 1 where

µ is the particles mass), h is the specific angular momentum (i.e., h = pφ/µ), and r± are the radii of

periapsis (−) and apoapsis (+) given by the two largest roots of the equation

(E + 1)2 −
(

1 − 2M

r±

)

(

1 +
h2

r±2

)

= 0 . (6.3)

For our ‘nearly parabolic orbits’ (E ≪ 1) the precession due to relativity is a function only of the

angular momentum. Unless otherwise noted in this paper we work in the limit that E = 0.

6.3.2 Precession due to Newtonian Central Potential

By comparison, in classical mechanics the change in azimuthal angle for a test particle of any

energy between two consecutive apoapsides in a central potential, U(r), is given by (e.g., Landau

and Lifshitz, 1969)

∆φNewt. = 2

r+
∫

r−

[

E −U(r)
h2/2

− 1
r2

]−1/2
dr

r2 , (6.4)

where in this case r± are given by

2(E −U(r±)) − h2

r±2 = 0 . (6.5)
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6.3.3 Requirements of Proposed Pseudo-Newtonian Potentials

In principle it is possible to define a pseudo-Newtonian potential, U(r), such that the precession

angles given by equations (6.2) and (6.4) are equal in the limit E≪ 1, i.e.,

∆φGR(h) = ∆φNewt.(h) . (6.6)

This potential would have the property desired: on returning to large radii, test particles would

have precessed through the correct angle, and be traveling along the correct path with only a time

error. However, we also desire a simple potential for efficient calculation and so instead we seek

potentials that minimize the precession error, δφ, defined through

δφ(h) = ∆φGR(h) − ∆φNewt.(h) . (6.7)

We propose three potentials that, in order of complexity, minimize δφ: A) in the far-field (large

h) ; B) in the far-field and whose precession diverges logarithmically in the same location as GR

(h → 4M); and C) in the far-field, and whose precession diverges logarithmically as h → 4M with

the correct magnitude.

6.4 Proposed Pseudo-Newtonian Potentials

6.4.1 Potential A: Matching The far-field Precession

In this section we consider the behavior of orbits with h ≫ 4M, but we do not require E = 0, only

that E ≪ 1. In this case, inspection of equation (6.3) shows r± ≫ M and the entire orbit lies in the

far-field.

The change in angle in the far-field in GR can be calculated from equation (6.2) and is well

known to be (e.g., Weinberg, 1972)

∆φGR(h) = 2π +
6πM2

h2 for h≫ 4M . (6.8)

Note that all that is required is a sufficiently distant periapse. It is not required that the orbit have

E = 0.

In the far-field we require potentials have the form

U(r) = −M

r
−

MRy

r2 + O(r−3) . (6.9)

Neglecting the terms O(r−3) and higher, after some algebra, the precession calculated from equa-
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tion (6.4) is

∆φNewt.(h) = 2

r+
∫

r−

[

2rha

(r − r−)(r+ − r)

]1/2
dr

r
, (6.10)

where rh ≡ h2/2M, a ≡ −M/2E, and

r± = a













1 ±
√

1 − 2
a

(Ry − rh)













. (6.11)

Contour integration gives the integral

∆φNewt.(h) = 2π
(

1 −
Ry − a

rh

)−1/2

= 2π +
2πMRy

h2 + O(a/rh) . (6.12)

Provided that h ≫ M and E ≪ 1, then the final term can be dropped and matching the far-field

precession given by equation (6.8) requires Ry = 3M.

When concerned with the far-field precession we therefore propose the pseudo-Newtonian

potential

U(r) = −M

r

(

1 +
3M

r

)

(6.13)

which requires only modest additional computation over the Newtonian expression. Note that

this pseudo-Newtonian potential gives the correct precession for all orbits (parabolic, eccentric, or

hyperbolic), provided that the periapse lies in the far-field. The resultant precession, labeled as

potential A, is plotted in figure 6.1.

Since this potential does not reproduce the divergence as h→ 4M this potential performs worse

than the Paczyński-Wiita potential, even for parabolic orbits, when h . 4.8M which corresponds to

periapsis separation of r . 8.5M. For reference h = 4M corresponds to periapsis separation r = 5M

for parabolic orbits in this potential.

6.4.2 Potential B: Logarithmic Divergence As h→ 4M

In this section we construct a potential that reproduces the logarithmic divergence of the general

relativistic precession as h→ 4M.

First consider a potential of the form

U(r) = − M

r − Rx
. (6.14)
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The precession in this potential for E = 0 is given by

∆φNewt.(h) = 2

∞
∫

r−

[

r2

rh(r − Rx)
− 1

]−1/2
dr

r
. (6.15)

The roots of the quadratic form in the integrand can be written as

rp,q =
rh

2













1 ±
√

1 − 4Rx

rh













. (6.16)

so that

∆φNewt.(h) = 2

∞
∫

rp

[

rh(r − Rx)
(r − rp)(r − rq)

]1/2
dr

r
. (6.17)

As rh → 4Rx, then rp → rq and the integral diverges logarithmically. rh → 4Rx corresponds to

h→
√

8MRx and the leading order behavior of the integral is

lim
rh→4R+x

∆φNewt.(h) = − log
(

h −
√

8MRx

)

. (6.18)

A similar calculation using the GR expression gives a logarithmic divergence as h → 4M and

the corresponding expression is

lim
h→4M+

∆φGR(h) = −
√

2 log (h − 4M) . (6.19)

For ∆φNewt. to diverge at h = 4M, we must have Rx = 2M. This is exactly the potential of

Paczyński and Wiita (1980), which therefore diverges at the correct angular momentum. However

comparing equations (6.18) and (6.19), the potential of Paczyński and Wiita (1980) has the incorrect

magnitude (by a factor of
√

2) as the angular momentum approaches 4M, and as noted previously,

has incorrect precession in the far-field.

To correct the far-field behavior consider the potential

U(r) = − M

r − Rx
−

MRy

r2 . (6.20)

The calculation of the precession proceeds in the same manner, but with the roots now given by

rp,q =
rh − Ry

2















1 ±
√

1 − 4Rx

rh − Ry















. (6.21)

Again, as the roots coincide the integral diverges logarithmically. Requiring that the divergence

occurs as h → 4M and that the potential has the correct far-field limit (i.e., far from the hole the
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expansion is given by equation (6.9) with Ry = 3M) gives Rx = 5M/3 and Ry = 4M/3. Our proposed

potential which has the correct precession in the far-field and which also logarithmically diverges

as h→ 4M is therefore

U(r) = −M

r

( 1
1 − 5M/3r

+
4M

3r

)

. (6.22)

The resultant precession, labeled as potential B, is shown in figure 6.1. This is the potential used

in Bode and Wegg (2012). For reference h = 4M corresponds to periapsis separation r = 10M/3 for

parabolic orbits in this potential.

6.4.3 Potential C: Correct Rate Of Logarithmic Divergence As h→ 4M

The potential proposed in equation equation (6.22), has the correct far-field behavior, and diverges

logarithmically at the correct angular momentum. However, the rate of that divergence is incorrect:

The behavior of the integral as h→ 4M is

lim
h→4M+

∆φNewt.(h) = −
√

6
5

log (h − 4M) , (6.23)

which does not match the GR expression in equation equation (6.19).

An additional term in the potential allows this to rectified. Using a potential of the form

U(r) = −αM

r
− (1 − α)M

r − Rx
−

MRy

r2 , (6.24)

enables us to match the three constraints for the three coefficients α, Rx and Ry. The constraints on

the coefficients are that: 1) in the far-field the precession approaches equation (6.8) (i.e., equation 6.9

with Ry = 3M), 2) the integral diverges logarithmically as h→ 4M, and 3) the rate of divergence as

h→ 4M is given by equation equation (6.19). The values of α, Rx and Ry satisfying these constraints

are

α =
−4
3

(

2 +
√

6
)

,

Rx =
(

4
√

6 − 9
)

M , (6.25)

Ry =
−4
3

(

2
√

6 − 3
)

M .

The precession produced by this “potential C” is compared to the GR expression in figure 6.1. For

reference h = 4M corresponds to periapsis separation of r = 2(
√

6 − 1)M for parabolic orbits in this

potential.

This potential produces precession which agrees with GR to within 1% for all orbits where

E ≪ 1, i.e., whose specific orbital energy is small compared to c2 in the Schwarzschild metric. For
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bound orbits this corresponds to requiring apoapsis be large compared to the Schwarzschild radius

(r+ ≫M).

6.5 Conclusions

We have proposed three pseudo-Newtonian potentials appropriate for ‘nearly parabolic orbits’

(orbital energy, E≪ 1) around a Schwarzschild black hole. These nearly parabolic orbits correspond

to orbits with large apoapsis compared to the Schwarzschild radius of a central black hole, or mildly

hyperbolic orbits.

For bodies which pass close to the black hole, these potentials accurately reproduce the changes

in the “Newtonian” parts of the trajectories far from the black hole, differing from the exact GR

expression only by a time error. In the far-field the time error as a fraction of the orbital period is

of order δP/P = O(E) ≪ 1 but diverges as h → 4M like δP/P = O(E3/2 log(h − 4M)). Therefore, for

E ≪ 1, the fractional period error is small outside of an exponentially narrow region in h close to

4M.

The potentials reproduce general relativistic precession with varying degrees of accuracy and

simplicity. Namely, these potentials produce accurate relativistic precession: (Potential A) in the

far-field (equation 6.13); (Potential B) in the far-field and with the logarithmic divergence as h→ 4M

(equation 6.22); and (Potential C) in the far-field and with the correct magnitude of logarithmic

divergence as h→ 4M (equation 6.24).

The potentials described do not include the effects of spin, or gravitational radiation, which can

be astrophysically important for orbits passing close to the hole. Neither of these effects can be

described by a pseudo-Newtonian potential without the presence of undesirable inseparable terms

including both r and v, and so were not considered in this work. For objects whose mass ratio

with the black hole is sufficiently close to the test particle limit, the effects of gravitational radiation

can be included by subtracting energy and angular momentum at periapsis, for example, using the

results of Gair et al. (2006b).

Close to the black hole these potentials should be interpreted with care since although they

diverge at the correct angular momentum, the r at which this occurs does not correspond to the

Schwarzschild radial coordinate.
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7
An Analytic Solution to the Fokker Planck Equation in the

Singular Isothermal Sphere1

Abstract

We consider the relaxation of stars using the Fokker-Planck equation in

a background singular isothermal sphere. Dimensional arguments sug-

gest that a self-similar solution should exist and we derive this solution

analytically. We also present a simple general solution. Many astrophysi-

cal systems display properties approaching the singular isothermal sphere

over some part of their profile, and we expect our solution to be used as

a stepping stone between order of magnitude relaxation arguments and

full N-body simulations. In addition we expect our solution to be of use

in testing the relaxation properties of N-body codes. We discuss the ap-

plicability of the solution to the radial distribution of sub-populations in

Galactic globular clusters.

1A shortened version of this work will be submitted for publication in MNRAS with the following authors: Christopher
Wegg and Sterl Phinney in this order.
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7.1 Introduction

The singular isothermal sphere is the simplest potential-density pair, i.e., the solution of both

equations (1.21) and (1.22). The singular isothermal sphere is reviewed in section 7.3 however in

order to understand the motivation for this work all that is required is that the density declines

everywhere as ∝ r−2. The singular isothermal sphere is therefore scale-free, characterized only by

the density at some fiducial radius (or equivalently the velocity dispersion). Consider then releasing

a number of test stars into the singular isothermal sphere.

A priori we expect some properties from the manor in the which the stellar distribution evolves:

• That there is a characteristic relaxation time at each radius, trelax. This relaxation time can be

estimated to be (e.g., equation 4-9 of Binney and Tremaine, 2008)

trelax ∼ Nstars × tcross ∼ ρr3 × r

σ
∼ σr2

Gm
. (7.1)

• Therefore, at a time t, inside of a radius rrelax =

√

Gm
σ t, the relaxation time is such that the stars

will have approximately reached equipartition. In the case of equal mass stars the density of

test stars is therefore proportional to that of the field stars: ρ ∝ r−2.

• Since the problem is scale-free we expect a self-similar solution to exist in the variable

Θ =
σ2

Gm

r2

t
=

trelax

t
. (7.2)

These properties are summarized graphically in figure 7.1.

While the problem may appear to be excessively contrived to be of practical use this is not the

case. Globular clusters are well described by King profiles, which are a method of truncating the

(non-singular) lowered isothermal sphere at zero energy and hence making them finite. Therefore

when sufficiently outside the core of the isothermal sphere, and inside the truncation radius, then

the density closely resembles the singular isothermal sphere.

The radial distribution of objects has been used to infer information about the progenitors of

a number of types of objects. For example the radial distribution of blue stragglers has been

investigated on numerous occasions (e.g., Ferraro et al., 2004; Lanzoni et al., 2007a,b; Mapelli et al.,

2006; Salinas et al., 2012) in attempts to determine between the competing formation scenarios of

collisions, or mass transfer in a close binary. In addition the lack of radial distribution of extreme

horizontal branch (EHB) stars by Rich et al. (1997) to argue against a dynamical origin.

In addition we expect the solution, owing to the its simplicity, to be useful in checking the

correctness and accuracy of both Fokker-Planck and N-body codes.
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Initial Distribution

log r

log ρ
ρ ∝ r−2

Background SIS:

Relaxed inside

Initial conditions

outside

rrelax(t)

Figure 7.1 Illustration of the expected manor in which the stellar distribution evolves in a back-
ground of the singular isothermal sphere.

The work most closely related to that contained here is Merritt (2010) who considers 10 M⊙ black

holes as test particles that mass segregate in a background of lighter stars. The difference being that

Merritt (2010) considers the distribution in the potential of a supermassive black hole surrounded

by a Bahcall and Wolf (1976) cusp (ρ ∝ r−7/4), and is largely a numerical work.

7.2 Derivation of Energy Evolution Equation

Following King (1960) we first derive the evolution of the distribution function (i.e., the Fokker-

Planck equation) in velocity space.

For the calculation of the diffusion coefficients in equations (1.26) and (1.27) we refer the reader

to Rosenbluth et al. (1957). From equation (22) of Rosenbluth et al. (1957), equation (1.25) can be

written in covariant form. Denoting the quantities relating to the field stars with a subscript b, and

those relating to the test stars with subscript a, then

Γ−1∂t fa = −( faTµ);µ +
1
2

( faSµν);µν (7.3)
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where Γ = 4πG2m2
b

logΛ and

Tµ = h;µ Sµν = g;µν

h(~v) =
ma +mb

mb

∫

d~v′ fb(~v′)|~v − ~v′|−1

g(~v) =

∫

d~v′ fb(~v′)|~v − ~v′|

Using spherical polar coordinates in velocity space, i.e., ds2 = dv2+v2dθ2+v2 sin2 θdφ2, and assuming

isotropy in both the field star and background star distributions then, fa = fa(v) and fb = fb(v) so

that the only non-vanishing derivatives of the Rosenbluth potentials, f and g, are those with respect

to v. This gives

Tv = ∂vh, Tθ = 0, Tφ = 0

( faTµ);µ = v−2∂v(v2 f∂vh)

Svv = ∂2
vg, Sθθ = −v−3∂vg, Sφφ = −v−3 sin−2 θ∂vg

Svθ = Sθv = Svφ = Sφv = Sθφ = Sφθ = 0

( faSµν);µν = −2v−2∂v( fa∂vg) + v−2∂v( fav2∂2
vg) (7.4)

then

Γ−1∂t fa = v−2∂v

[

− fav2∂vh +
1
2
∂v

(

fav2∂2
vg

)

− fa∂vg
]

(7.5)

where g and h can be evaluated through

h(~v) =
ma +mb

mb

∫

d~v′ fb(~v′)|~v − ~v′|−1

= 2π
ma +mb

mb

∫ ∞

0
v′2 f (v′)dv′

∫ 1

−1

d(cosθ)
(v2 + v′2 − 2vv′ cosθ)1/2

= 4π
ma +mb

mb

[∫ v

0
dv′

v′2

v
fb(v′) +

∫ ∞

v

dv′v′ fb(v′)
]

(7.6)

g(~v) =

∫

d~v′ fb(~v′)|~v − ~v′|

= 2π
∫ ∞

0
v′2 f (v′)dv′

∫ 1

−1
(v2 + v′2 − 2vv′ cosθ)1/2d(cosθ)

= 4π
[∫ v

0
dv′ fb(v′)

(

v′4

3v
+ v′2v

)

+

∫ ∞

v

dv′ fb(v′)
(

v′v2

3
+ v′3

)]

(7.7)
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Substituting equations (7.6) and (7.7) into (7.5) gives

(4πΓ)−1∂t fa = v−2∂v

[

ma

mb

(∫ v

0
v′2 fb(v′)dv′

)

fa

+
1

3v

(∫ v

0
v′4 fb(v′)dv′ + v3

∫ ∞

v

v′ fb(v′)dv′
)

∂v fa

]

(7.8)

this equation agrees both with equation 2 of King (1960) and 2.10 of Hénon (1961). In the case

of a spherically symmetric isotropic distribution of test stars then from Jeans theorem then the

distribution function may be written as fb(~x, ~v, t) = fb(E, t). If we define N(E)dE to be the number of

stars with energies in the range E to E+ dE then (from equation 4-157 of Binney and Tremaine, 2008)

N(E) = 16π2
∫ rm(E)

0
r2drv f (E) = 4π2p(E) f (E) (7.9)

where rm(E) is the maximum radius a star with energy E can reach, i.e., Φ(rm) = E and where

p(E) = 4
∫ rm(E)

0
(2E − 2Φ(r))1/2r2dr (7.10)

Taking the time derivative of equation (7.9) gives

∂tN(E) = 4π2p(E)∂t f (E) (7.11)

= (4π)3Γ

∫ rm(E)

0
r2drv−1∂v

[

ma

mb

(∫ v

0
v′2 fb(v′)dv′

)

fa

+
1

3v

(∫ v

0
v′4 fb(v′)dv′ + v3

∫ ∞

v

v′ fb(v′)dv′
)

∂v fa

]

= (4π)3Γ

∫ rm(E)

0
r2dr∂E

[

ma

mb

(∫ E

Φ

(2E′ − 2Φ)1/2 fb(E′)dE′
)

fa

+
1
3

(∫ E

Φ

(2E′ − 2Φ)′3/2 fb(E′)dE′ + (2E − 2Φ)3/2
∫ ∞

E

fb(E′)dE′
)

∂E fa

]

.

Following Hénon (1961), since at r = rm , v vanishes, then the integrand of this expression vanishes,

and at rm and we are free to swap the
∫ rm(E)

0 dr and ∂E. Also, since fa and fb are functions of energy

only, we may swap the integrations over r and E′. Defining

q(E) =
4
3

∫ rm(E)

0
(2E − 2Φ(r))3/2r2dr (7.12)

then, following Cohn (1980), we may write the diffusion equation in flux conservative form 2:

∂tN(E, t) = −∂EFE (7.13)

2The total number is obviously conserved when written in this form: ∂tNtot =
∫

∂tN dE = FE|Emax
Emin

, i.e., the change in
number depends only on the flux FE through the endpoints.



146

where

FE = −DEE∂E fa −DE fa (7.14)

and

DE = 16π3Γ
ma

mb

∫ E

Φ(0)
p(E′) fb(E′)dE′ (7.15)

DEE = 16π3Γ

[∫ E

Φ(0)
q(E′) fb(E′)dE′ + q(E)

∫ ∞

E

fb(E′)dE′
]

. (7.16)

In the case that fa = fb (i.e., stars interact with themselves as opposed to a background distribution

function) then this agrees with equations 6 through 8 in Cohn (1980) and 2.29 in Hénon (1961).

Note that the form of the diffusion equation in energy space given by equations (7.13) and (7.14)

could easily be derived directly via the same procedure as the Fokker-Planck in velocity space

(equation 1.25). Calculation of the diffusion coefficients however requires the treatment given

above.

7.3 Singular Isothermal Sphere

We begin by reviewing the properties of the singular isothermal sphere. These properties are

discussed more fully in Binney and Tremaine (2008).

Isothermal spheres have, by definition, a distribution function,

fb(E) ≡ ν1

(2πσ2)3/2 e−E/σ2
. . (7.17)

Integrating the distribution function over the isotropic velocity gives the number density at position

r:

ν(r) =
∫

fb(E)d3
v = 4π

∫

ν1

(2πσ2)3/2
exp













−Φ(r) − 1
2 v2

σ2













v2 dv

= ν1 exp
(

−Φ(r)/σ2
)

. (7.18)

Utilizing Poisson’s equation (1.22) then,

∇2Φ = 4πGρ (7.19)

1
r2

d

dr

{

r2 dΦ

dr

}

= 4πGmbν (7.20)

1
r2

d

dr

{

r2 d(−σ2 log ν/ν1)
dr

}

= 4πGmbν . (7.21)
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The singular isothermal sphere then results from the ansatz, ν = Cr−γ, which upon substitution

gives

γσ2r−2 = 4πGmbCr−γ . (7.22)

Hence, an isothermal sphere of the form ν = Cr−γ with γ = 2 and C = 1/2πGmb is self-consistent in

the sense that it is a solution of Poisson’s equation generating a potential-density pair:

ν(r) =
σ2

2πGmbr2 (7.23)

Φ(r) = 2σ2 log(r/r1) , (7.24)

where r1 is position defined through ν(r1) = ν1. This solution is known as the singular isothermal

sphere (SIS).

7.3.1 Calculation of Diffusion Coefficients

For the singular isothermal sphere the diffusion coefficients DE and DEE in equations (7.15) and

(7.16) can be readily calculated.

Calculating first the ‘density of states’3 factor, p(E), from Φ(r), using equation (7.24),

p(E) = 4
∫ r0eE/2σ2

0
(2E − 4

σ2

mb
log(r/r0))1/2r2dr

= 8r3
0σ

∫ eE/2σ2

0

(

E

2σ2 − log(r/r0)
)1/2

(r/r0)2 d (r/r0) (7.25)

substituting x = r/r0 and ez = xe−E/2σ2
reduces this to an elementary integral

p(E) = 8r3
0y3σ

∫ ∞

0
e−3zz1/2dz

=
4
3

√

π

3
r3

0σe3E/2σ2
. (7.26)

Making the same set of substitutions into equation (7.12) gives

q(E) =
8
9

√

π

3
r3

0σ
3e3E/2σ2

, (7.27)

3The factor p(E) is described as the density of states by analogy with solid-state and condensed matter physics since the
number of stars in the interval E to E + dE is dN = 4π2p(E) dE.
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which gives the diffusion coefficients from equations (7.15) and (7.16) as

DE =
64

3
√

6

ma

mb
π2Γν1r3

0eE/2σ2
(7.28)

DEE =
64

3
√

6
π2Γν1r3

0σ
2eE/2σ2

. (7.29)

Note that DE =
ma

mbσ2 DEE. This can be seen as a manifestation of the fluctuation dissipation

theorem, relating the drift coefficient DE, to the diffusion coefficient DEE. It may be derived by the

knowledge that the equilibrium solution in an isothermal sphere should have form fa = exp
(

−ma

mb

E
σ2

)

at which point FE = 0 in equation (7.14).

7.3.2 Dimensionless Form of Evolution Equation

If we make the substitutions

x = eE/2σ2
, T =

t

tr
, tr =

√
2π

σ3

Γν1
,

R =
ma

mb
, f =

w

σ3r3
1

e−ER/σ2
, (7.30)

then equation (7.13) becomes the dimensionless linear second-order PDE

∂Tw = x2(R−1)∂x(x2(1−R)∂xw) (7.31)

∂Tw = ∂2
xw +

2(1 − R)
x

∂xw . (7.32)

This is just the diffusion equation with an additional first-order term. Note that the characteristic

timescale,

tr =
√

2π
σ3

Γν1
=

1√
2π logΛ

σr2
1

Gmb
, (7.33)

is the same, up to an order unity factor, as the relaxation time estimated in equation (7.1).

7.3.3 Steady-State Solution

The steady-state solution must satisfy

x2(1−R)∂xw = C (7.34)
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with solution

w =
C

2(R − 1)
x2(R−1) +D

→ f =
C

2(R − 1)
e−E/σ2

+D exp
(

−Ema

σ2mb

)

(7.35)

So we see that the second term represents a Maxwellian distribution with velocity dispersion mb

ma
σ2

which is precisely equipartition.

The first term can be better understood by considering the rate of change of the total number of

stars

∂TNtot = 4π2
∫

dEp(E)∂T f (E, t)

∼
∫ ∞

0
∂Tw(x,T)x2(1−R)dx

∼
[

x2(1−R)∂xw
]∞

x=0
(7.36)

so whilst the first term conserves stars, for positive C it corresponds to injecting them at infinite

energy at a constant rate, whilst removing them at the same rate from zero energy. The steady state

without injecting stars is therefore the equipartition solution, as expected and anticipated by the

discussion on the fluctuation dissipation theorem in section 7.3.1.

7.3.4 Self-Similar Solution

7.3.4.1 Equal Mass Solution

When the mass ratio is equal (R = ma/mb = 1) then equation (7.32) becomes particularly simple:

∂Tw = ∂2
xw . (7.37)

Which in the context of the Fokker-Planck equation is known as a Weiner process (e.g., Risken,

1989), or in other situations as the heat equation. The self-similar solution to this equation is well

known since it is the classic application of the method of Green’s functions. Because the substitution

x = exp(E/2σ2) was used then equation (7.37) is only valid for x > 0. We use Neumann boundary

conditions at this boundary ∂xw(x = 0, t) = 0, as well as at x = ∞. This choice is motivated by

number conservation: With this choice then the flux through the boundary is zero and the number

of stars is conserved. Consider then initial condition w(x,T = 0) = δ(x). The solution is then,

w(x,T) =
1√
4πT

exp
[

− x2

4T

]

, (7.38)
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which is self-similar since it may be written in the form,

w(x,T) = h(T)g

[

x2

4T

]

. (7.39)

Equation (7.39) also gives a self-similar solution in density. The density, ρ(r), is given by:

ρ(r, t) = 4π
∫ ∞

0
f v2 dv (7.40)

= 4π
∫ ∞

Φ(r)
f (E)

√

2E − 2Φ(r) dE . (7.41)

Then using the self-similar solution equation (7.39) (and for a general mass ratio R)

ρ(r, t) = 4πσ−3r−3
1

∫

e−ER/σ2
w

(

eE/2σ2
,

t

tr

) √

2E − 4σ2 log r/r1 dE (7.42)

=

√

4πtr

t
σ−3r−3

1

∫

e−ER/σ2
g

[

eE/σ2
tr

4t

]

√

2E − 4σ2 log r/r1 dE . (7.43)

Substituting ζ = eE/σ2 tr

4t gives

ρ(r, t) =

√

8πtr

t

(

tr

4t

)R

r−3
1

∫ ∞

tr
4t

(

r
r1

)2 g [ζ]

√

log
4tr2

1ζ

r2

dζ

ζR+1 (7.44)

=

√

8πtr

t

(

tr

4t

)R

r−3
1 u

[

tr

4t

(

r

r1

)2
]

(7.45)

where

u [θ] =
∫ ∞

θ
g [ζ]

√

log
ζ

θ

dζ

ζR+1 . (7.46)

Equation (7.45) gives the self-similar solution in density space, given a self-similar solution in the

form of equation (7.39). In figure 7.2(a) we plot the self-similar solution in density space for the

equal mass case (R = 1).

Note that the similarity variable may be written as

θ =
tr

4t

(

r

r1

)2
=

σ

4
√

2πGmb logΛ

r2

t
, (7.47)

which is proportional to the similarity variable in equation (7.2), which we argued must exist via

dimensional arguments.
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Figure 7.2 Self-similar solution in density space of stars diffusing in a background of equal mass
stars in a singular isothermal sphere.
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7.3.4.2 Unequal Mass Solution

Substituting equation (7.39) into equation (7.32) gives

h′

h
T =

1
g

{

ζg′′ +
[

ζ −
(3

2
− R

)]

g′
}

, (7.48)

where ζ = x2/4T. The left-hand function is a function of only T, while the right is a function only of

ζ, and so both must separately be equal to a constant. The total number of stars is given by

Ntot = 4π2
∫

p(E) f (E) dE

∝
∫

x2(1−R)w dx =
√

Th(T)
∫

g(ζ) dζ . (7.49)

For the total number of stars to be conserved by the self-similar solution we therefore require

h(T) = 1/
√

T. As a result both sides of equation (7.48) are equal to − 1
2 . The right-hand side of

equation (7.48) results in a differential equation for g:

ζg′′ +
[

ζ +
(3

2
− R

)]

g′ +
1
2

g = 0 . (7.50)

This is a second-order ODE known as the confluent hypergeometric differential equation. It has

solution

g(ζ) = A 1F1

(1
2

;
3
2
− R;−ζ

)

+ B U
(1

2
,

3
2
− R,−ζ

)

(7.51)

where 1F1 ( · ; · ; · ) and U ( · , · , · ) are the confluent hypergeometric function of the first and second

kinds, respectively. The self-similar solution is plotted in density space in figure 7.2(b). We choose

B = 0 since this term results in an divergent number of stars.

7.3.5 Eigenfunction Expansion

Although we have calculated the self-similar solution which was the motivation for this work, we

also give the solution in terms of an eigenfunction expansion. We provide these since they are easier

to use: One may decompose an initial distribution function into its eigenfunctions which can then

be separately evolved forwards in time.

Using separation of variables on equation (7.32):

w(x,T) = ξ(x)τ(T) (7.52)

gives for τ(T), using −β2 as the separation constant,

τ′ = −βτ → τ ∼ exp(−β2T) . (7.53)



153

Equation (7.32) therefore becomes,

− β2ξ = Lξ , (7.54)

where L is the differential operator,

L = ∂2
x +

2(1 − R)
x

∂x . (7.55)

Written in this form it is clear that ξ(x) are the eigenfunctions of L.

L is not a Hermitian operator, however the problem can be transformed to one (e.g., Risken,

1989). Consider,

ψ(x) = x1−Rξ(x) , L′ = x1−RLxR−1 . (7.56)

Then it can be shown L′ is a Hermitian operator and equation (7.54) becomes the eigenfunction

equation,

L′ψ = −β2ψ (7.57)

→ x2ψ′′ + [R(1 − R) + (βx)2]ψ = 0 . (7.58)

For equal mass (R = 1) the solution is trivially ψ = A sin βx+ B cos βx. For R , 1 equation (7.58) this

may be written

0 = x2∂2
x(x−1/2ψ) + 2x∂x(x−1/2ψ) + (β2x2 − (R − 1/2)2)(x−1/2ψ) . (7.59)

which is Bessel’s equation with solution

ψ(x) = x1/2 (

AJR−1/2(βx) + BYR−1/2(βx)
)

. (7.60)

The solutions are orthogonal as expected for a Hermitian operator via the closure equation of Bessel

functions:
∫ ∞

0
xJa(βx)Ja(β′x) dx =

1
β
δ(β − β′) . (7.61)

Summarizing the solutions:

ξ(x) =







































xR−1/2 (

AJ1/2−R(βx)+ BY1/2−R(βx)
)

R < 3/2

A cos βx + B sin βx R = 1

xR−1/2 (

AJR−1/2(βx)+ BYR−1/2(βx)
)

R > 3/2

(7.62)

where Jν and Yν are the Bessel and Neumann functions of order ν, respectively.
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The most general solution is therefore

w(x,T) =
∫ ∞

0
dβ







































xR−1/2 [

A(β)J1/2−R(βx) + B(β)Y1/2−R(βx)
]

exp(−β2T) R ≤ 3/2
[

A(β) cos βx + B(β) sinβx
]

exp(−β2T) R = 1

xR−1/2 [

A(β)JR−1/2(βx) + B(β)YR−1/2(βx)
]

exp(−β2T) R > 3/2

(7.63)

As with the equipartition solution we must calculate the flux at the boundaries in order to choose

the physically relevant solution for the case at hand. We give an example of this for R = 2 below.

The boundary conditions, together with the initial distribution, determine A(β) and B(β).

7.3.6 Example for R = 2

Motivated by possible application to blue stragglers we show here an example the use of the

eigenfunction solution for mass ratio R = ma

mb
= 2. In this case the solution is

w(x,T) =
∫ ∞

0
dβ x3/2 [A(β)J3/2(βx) + B(β)Y3/2(βx)

]

exp(−β2T) . (7.64)

We also require boundary conditions. We use that the distribution function be zero at some large

x which we denote xmax. While we do this to eliminate divergences, but it is physically motivated

by the cluster being truncated at the energy corresponding to xmax. We use w(x ≥ xmax,T) = 0 as

opposed to the (number conserving) boundary condition that the flux go to zero. The physical

reason is that stars may diffuse outwards across xmax, and then be unbound. This is the same

boundary condition used by the lowered isothermal, or King models (Binney and Tremaine, 2008).

We also require that the flux be zero at some small x which we denote xmin. Again this is motivated

by lowered isothermal, or King models (Binney and Tremaine, 2008), where the center of the cluster

has a finite potential. Away from the core however this cut-off should not affect the solution beyond

a normalization. This boundary condition is ∂xw(x = xmin,T) = 0, and corresponds to a Robin (or

third type) boundary condition in ξ. For R = 2 this is

∂xξ +
3
2
ξ

x
= 0 . (7.65)

Consider the function

u(λnx) = Y3/2(λnxmax)J3/2(λnx) − J3/2(λnxmax)Y3/2(λnx) . (7.66)

As x→ xmax then u→ 0, so the outer boundary condition is naturally satisfied. Choosing λn to be
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the n-th largest root of

0 = ∂xu(λnxmin) +
3
2

u

λnxmin
, (7.67)

then the inner boundary condition is also satisfied. The solution consistent with the boundary

conditions is therefore

w(x,T) =
∞
∑

n=1

Anx3/2u(λnx) exp[−(λn/xmax)2T] . (7.68)

To calculate the coefficients An multiply by x−1/2u(λmx), and integrate from xmin to xmax. For the

boundary conditions considered here then (proved in Appendix 7.A)

∫ xmax

xmin

xu(λmx)v(λnx) dx = δm,n

{

xmax
2

2
u′(λnxmax)2+ (7.69)

xmin
2

2

[

u(λnxmin)u′′(λnxmin) −
(9

4
+

3
2λnxmin

)

u(λnxmin)2
]}

,

where δm,n is the Kronecker delta. Therefore

An =
2

Cn

∫ xmax

xmin

dx x−1/2u(λnx)w(x,T = 0) (7.70)

where

Cn = xmax
2u′(λnxmax)2 + xmin

2
[

u(λnxmin)u′′(λnxmin) −
(9

4
+

3
2λnxmin

)

u(λnxmin)2
]

. (7.71)

Again anticipating possible application to blue stragglers we choose the initial conditions to be

ρa ∝ ρb, i.e., f ∝ exp(−E/σ2) and w(x,T = 0) = Cx2 with C a normalization constant. We show the

evolution of these initial conditions, calculated via equations (7.68) and (7.70) in figures 7.3 and 7.4.

Because of the choice of boundary condition the equipartition solution is never completely

reached. The equilibrium equipartition solution corresponds to constant w, which due to the

boundary condition w(x = xmax,T) = 0 results in w→ 0 as T → ∞, i.e., given sufficient time all the

stars diffuse out of the cluster.

7.4 Numerical Solution

In order to check the analytic solution in the previous section we have also written a code to

numerically solve the spherical isotropic Fokker-Planck equation. Equation (7.13) can be written

∂t f =
1

4π2p(E)
∂E(DEE(E)∂E f +DE(E) f ) . (7.72)
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(a) Evolution of the distribution function. As time increases the radius to which
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(b) Evolution of the density. As time increases the radius to which the stars are in
equipartition (ρ ∝ r2) increases.

Figure 7.3 Evolution of test stars against a background of stars distributed as a singular isothermal
sphere. The mass ratio of test stars to background stars is R = ma

mb
= 2. The initial conditions are

that the test stars are distributed proportionally to the isothermal sphere, i.e., both are ρ ∝ r−2. The
boundary conditions are that flux is conserved at the inner edge, and that the distribution function
is zero at the outer edge. These boundary conditions are introduced to eliminate divergences, and
are physically motivated by the King model.
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(b) Evolution of the density normalized to the initial density, linear scale.

Figure 7.4 As figure 7.3 but with the density normalized to the initial conditions, which are also the
distribution of background stars i.e., ρ(t = 0) ∝ ρb ∝ r−2.
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We choose to make the substitution

w(E) = f exp
(

−
∫

DE

DEE
dE

)

, (7.73)

since exp
(

−
∫

DE

DEE
dE

)

is the equilibrium solution, and therefore the evolved variable, w(E), does not

contain the large variations present in f (E). Using equation (7.73) the diffusion equation becomes

∂tw =
e
∫ DE

DEE
dE

4π2p(E)
∂E(DEEe

−
∫ DE

DEE
dE∂Ew)

=
1

A(E)
∂E(B(E)∂Ew) (7.74)

There are many possible methods of numerically finding solutions to this equation, but the

method of Chang and Cooper (1970) has the desirable feature that the number of stars is conserved,

and is more elegant than naive differencing schemes. For the properties of this differencing scheme,

and proof that the number of stars is conserved, we refer the reader to Chang and Cooper (1970),

and only outline its implementation here.

Denote w(E, t) = wn
j

where j and n are indices defined through E = E0 + j∆E, t = n∆t. Writing

the flux in energy space as F = B∂Ew and representing the time derivative as a forward difference,

and the derivative in energy space as a centered difference gives

1
∆t

(wn+1
j − wn

j ) =
1

A j∆E
(F̃ j+1/2 − F̃ j−1/2) , (7.75)

where F̃ = θFn+1 + (1 − θ)Fn. Therefore, θ = 0 represents an explicit differencing scheme, θ = 1 is

the totally implicit scheme, and θ = 1/2 is the Crank-Nicolson scheme. The boundary conditions

used at the edge of the computation domain are F−1/2 = 0 and FJMAX+1/2 = 0 which corresponds to

zero flux of stars through the edge of the computational domain.

The energy derivative contained within the flux is represented as a centered difference, for

example,

F̃ j+1/2 =
B j+1/2

∆E
(w̃ j+1 − w̃ j) (7.76)

then

wn+1
j − wn

j = C j+1/2w̃ j+1 − (C j+1/2 + C j−1/2)w̃ j + C j−1/2w̃ j−1 (7.77)

where C = ∆t
∆E2 B.

The fully implicit method was implemented since it is guaranteed to be stable, while its analysis

tends to be simpler that the general or even Crank-Nicolson case. The equation to be solved at each

step is

C j+1/2wn+1
j+1 +

[

1 − (C j+1/2 + C j−1/2)
]

wn+1
j + C j−1/2wn+1

j−1 = wn
j , (7.78)



159

together with the corresponding equations at the boundaries

C1/2wn+1
1 +

[

1 − C1/2
]

wn+1
0 = wn

0
[

1 − CJMAX−1/2

]

wn+1
JMAX
+ CJMAX−1/2wn+1

JMAX−1 = wn
JMAX

. (7.79)

This set of implicit equations can be written as

D.wn+1 = wn , (7.80)

where w is the solution and D is a tridiagonal matrix.

The tridiagonal form of D allows the set of implicit JMAX equations to be solved in O(JMAX)

operations provided that D is diagonally dominant (see, e.g., 2.4 of Press et al., 1992). Since C will

be greater than zero for physical diffusion equations then for diagonal dominance it is sufficient to

require

1/2 > C j+1/2 + C j−1/2 . (7.81)

For most problems this simply sets a limit on the step size for a given number of grid points. For

especially pathological diffusion coefficients then, if this condition is violated, it is possible to fall

back to a less efficient method for the solution of the implicit equations, and as a last resort the

direct inversion of D.

In figure 7.5 we plot the evolution of a initially narrow distribution in energy, for the equal

mass case (R = 1), using this code. We also evolve the analytic Eigenfunction solution provided by

equation (7.63) and show that they agree.

7.5 Source Terms

Equation (7.13) can be easily be modified to include a source term:

∂tN(E, t) = −∂EFE + S(E) , (7.82)

where S(E) is the rate of production of test stars between E and E + dE.

The source term in energy space can be calculated from the production rate in position space by

using a slight variation on Eddington’s formula (Binney and Tremaine, 2008)

S(E) =
√

2p(E)
d

dE

[∫ ∞

E

dΓ

dΦ

dΦ√
Φ − E

]

, (7.83)

where Γ is considered to be a function of Φ through Φ(r).

As an example, in the case of collisions in position space the production rate per unit volume is
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Figure 7.5 Comparison of analytic and numerical solution. The plots show the evolution of an
initially narrow distribution in energy in an equal mass (i.e., R = ma

mb
= 1) background of stars

distributed as the singular isothermal sphere. The solid, dotted, dash-dot, and dashed lines are the
numerical solutions provided the code described in section 7.4 at times t/tr = 0.05, 0.5, 5 and 50,
respectively. The crosses are the analytic eigenfunction solution described in section 7.3.5.
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given by Binney and Tremaine (2008)

Γcoll(r) = 16
√
πν(r)2σR2

⋆

(

1 +
Gm

2σ2R⋆

)

, (7.84)

where R⋆ is the radius at which a merger occurs.

For the isothermal sphere then the density varies as ν = ν0e−Φ/σ
2

and so the collision rate is

proportional to ν2 = ν2
0e−2Φ/σ2

. This can be converted to energy space easily since this is just

proportional to the original isothermal density with σ→ σ/
√

2 and so the result of equation (7.83)

must be

S(E) =
16
√

2
π

R2
⋆ν

2
0

σ2

(

1 +
Gm

2σ2R⋆

)

p(E)e−2E/σ2
. (7.85)

In this case the resultant distribution is already in equilibrium. This is because the merger products

of collisions in a relaxed isotropic population are also relaxed. This also holds for multimass

systems, unequal mass mergers, and non-singular solutions. The only requirement is a Maxwellian

distribution function, and complete merger (i.e., no mass loss).

7.6 Applications

7.6.1 Radial Distribution of Blue Stragglers

Blue stragglers (BSS) are stars that lie on the main sequence in a globular cluster, but beyond the

main sequence turn off. There are two main theories for the origin of blue stragglers: That they

formed via collisions (sometimes denoted COL-BSS), or via mass transfer in a close binary (MT-BSS).

The radial distribution of blue stragglers has been investigated on numerous occasions (e.g.,

Ferraro et al., 2004; Lanzoni et al., 2007a,b; Mapelli et al., 2006; Salinas et al., 2012). These often

show a ‘zone of avoidance’ at roughly the radius to which the cluster is relaxed. An example of

this is shown in distribution of blue stragglers shown in figure 7.6. If formed by collisions then it

is difficult for the BSS fraction to rise towards the edge of the cluster. However the distribution is

very suggestive of the R = 2 analytic solution in figure 7.4(a).

Unfortunately the solution here is not directly applicable to any of the previously calculated

BSS distributions. For this solution we require that the density distribution be close to ∝ r−2 for a

significant range of radii. Globular clusters tend to be well fit by a lower isothermal sphere (or King

model). These models do approach∝ r−2, but only when they have a high concentration parameter.

The best fitting King model for 47 Tuc is plotted in figure 7.7. As can be seen in figure 7.7(b) there

is no radial range where the singular isothermal sphere is approached.

Instead for accurate application of this solution the cluster should have a high central con-

centration, c ≡ log rt/r0. These are clusters that have undergone core-collapse (e.g., Binney and
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Figure 7.6 Blue straggler radial distribution, normalized to the number of horizontal branch stars
for the globular cluster 47 Tuc. From data published in Ferraro et al. (2004).

Tremaine, 2008). Unfortunately it appears none of the globular clusters for which there is radial

BSS distribution data has undergone core collapse.

7.6.2 Application to NGC 6397

The globular cluster NGC 6397 is one of the closest globular clusters at only 2.2 kpc. It is fit by King

models with high concentration (c ≈ 2.47, Meylan and Mayor 1991) indicating that it has undergone

core collapse, and as a result its radial profile closely approximates the singular isothermal sphere.

The central region of NGC6397 was imaged by the Advanced Camera for Surveys Wide Field

Camera (ACS/WFC) camera on the Hubble Space Telescope (HST) over ten visits during 2004 and

2005 (Proposal ID: 10257, PI: Anderson). During each visit four long, ∼ 390 s exposures were taken

using the F658N (Hα) filter, and two exposures in either F435W (∼ B) or F625W (∼ r)— one long

(340 s) and one short (∼ 10 s). The result is a data-set consisting of 40 long exposures in Hα, and

five long and five short exposure in both B and r filters. Despite the changing roll angle of the

observations over the year the central 80" of the cluster are imaged in all exposures.

This data set was searched for He core white dwarfs by Strickler et al. (2009) and 24 strong

candidates identified. Since the primary aim here is to demonstrate the usefulness of the solution

described in this chapter, we do not attempt to produce the exquisite photometry of Strickler

et al. (2009). In that work models were fit to the spatial variation of the PSF in each image

separately. Instead the data consisting of the individual _flt.fits exposures in each filter were

aligned, cleaned of cosmic rays and bad pixels, and stacked using the Multidrizzle algorithm

(Koekemoer et al., 2003). All images were aligned with sub-pixel precision to the long R-band
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(b) Density of best fitting King model taken from Mclaughlin et al. (2005) compared
to a singular isothermal sphere with σ = 9 km s−1 .

Figure 7.7 Observational data, best-fitting King model, and singular isothermal sphere profile for
the globular cluster 47 Tuc.
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Figure 7.8 False color image of the core of NGC 6397. The red channel is the stacked 5 × 300s
exposures in the r-band, the green channel is the stacked 40 × 300s exposures in the Hα-band, and
the blue channel is the stacked 5 × 300s exposures B-band. All channels are logarithmically scaled.
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Figure 7.9 Color-magnitude diagrams of the core of NGC 6397. All objects lie in the central 80"
and are well fit by the PSF (χ2/DOF < 2). Objects defined to be white dwarfs are the green points
in the green box in the left-hand panel. Only those showing significant Hα absorption in the right
panel are included, which removes the red dots. Also plotted is the cooling model for a 0.6 M⊙
white dwarfa at a distance 2.2 kpc. The yellow region are white dwarfs with age < 107 yr, and red
< 106 yr. Objects in the blue box are those defined as main sequence turn off stars. The r-band
begins to saturate at r ∼ 17.

aAvailable from http://www.astro.umontreal.ca/~bergeron/CoolingModels/, uses results from from Holberg and
Bergeron (2006), Kowalski and Saumon (2006), Tremblay et al. (2011) and Bergeron et al. (2011).

image, j92801ckq_flt.fits, before stacking. The images were stacked into five separate stacks

composed of the Hα images, and the long and short B and r-band images. The resultant image of

the center of the cluster is shown in figure 7.8.

Photometry was performed using the crowded field PSF fitting package DAOPHOT (Stetson, 1987).

The initial source list provided for the fitting in all bands was taken from running DAOFIND on the

stacked Hα exposure as it was generally deepest, its length (40 × 390s) overcoming the narrowness

of the filter. The resultant color-magnitude diagram is show in figure 7.9. Photometric zero points

are taken from Sirianni et al. (2005).

The radial distribution of white dwarfs identified from their position in this diagram are shown

in figure 7.10.

The velocity dispersion in the inner arcmin is (4.5 ± 0.6) km s−1 (Meylan and Mayor, 1991).

http://www.astro.umontreal.ca/~bergeron/CoolingModels/
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Figure 7.10 Cumulative distribution of white dwarfs in the center of NGC 6397 are plotted as the
black line. Faint white dwarfs (R > 24) are in blue, bright in (R < 24) red. The distribution of main
sequence turnoff stars are plotted as the green line. The center is assumed to be at 17 : 40 : 42.049”,
−53 : 40 : 28.72” (Strickler et al., 2009). We only plot from 25" outwards since crowding inside this
severely limits the detection of faint white dwarfs.

Outside the core equation (7.33) gives the relaxation time to be,

tr = 4 × 105 yr
10

logΛ
σ

4.5 km s−1

1M⊙
mb

r2

(0.1 pc)2 . (7.86)

At a distance of 2.2 kpc the fiducial radius of 0.1 pc corresponds to 1 arcmin. Even at the at the edge

of the 80" field of figure 7.10 the relaxation time is only 1.8 × 106 yr. Therefore only the red region

of the white dwarf model plotted in figure 7.10 will the solution here be useful. The older white

dwarfs will be relaxed. This is why the radial white dwarf distribution in figure 7.10 is so similar

to the main sequence turn off distribution.

If sufficient young unrelaxed white dwarfs were available it would have been possible to test

the presence of the 3–6 km s−1 kick at the white dwarf birth suggested by Davis et al. (2008).

Unfortunately equation (7.86) also suggests the solution presented here cannot readily be applied

to any population in the observed NGC9397. Inside 80" there are only ∼ 10 horizontal branch stars

(Strickler et al., 2009), which have a lifetime of ∼ 108 yr. Therefore there will not be sufficient stars

to test this solution for any group of objects sufficiently young or short lived to not be relaxed.

From the attempted application to two clusters here the requirements for the applicability of the

solution to be presented can be formed.

First from section 7.6.1 the cluster should be have a high concentration, i.e., core collapsed with
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c & 2.5. Consider then a population with a lifetime or age T0. For the solution here to be useful,

then the radius to which that population is relaxed should lie in the region where the solution is

applicable. For the stars not be relaxed at the outer edge of the region of applicability we require

T0 < tr(ra) = 2 × 108 yr
10

logΛ
σ

5 km s−1

1M⊙
mb

r2
a

(2 pc)2 (7.87)

where the outer edge of the region of applicability is ra = min(rh, rfov), the minimum of the observed

field of view, and the half mass radius (beyond which King models no longer closely approach the

singular isothermal sphere). For the population to be relaxed at the inner edge of applicability we

require

T0 > tr(rc) = 5 × 105 yr
10

logΛ
σ

5 km s−1

1M⊙
mb

r2
c

(0.1 pc)2 (7.88)

where rc is the core radius.

From these relations we see the reason that the solution could not be applied to NGC 6397 was

that the observed field of view, and therefore ra, was too small. NGC 6397 was selected on the basis

of its nearby distance, however this in fact hampered attempts to apply the solution there. Based

on the requirements, the cluster M15 appears a more promising candidate for the application of

this solution, and there is already data on UV bright objects available (Dieball et al., 2007; Haurberg

et al., 2010). We plan to investigate application of the solution to M15 in the near future.

Appendix 7.A Orthogonality Relation

The derivation in this appendix broadly follows (4.31) of Tranter (1968) but with mixed Neumann

and Robin boundary conditions as opposed to purely Neumann.

The function

u = Yν(λnxmax)Jν(λnx) − Jν(λnxmax)Yν(λnx) (7.89)

satisfies Bessel’s equation

x2∂2
xu + x∂xu + (λ2

nx2 − ν2)u = 0 . (7.90)

Consider the function

v = Yν(λmxmax)Jν(λmx) − Jν(λmxmax)Yν(λmx) (7.91)

which satisfies

x2∂2
xv + x∂xv + (λ2

mx2 − ν2)v = 0 . (7.92)
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Multiplying equation (7.90) by v/x, equation (7.92) by u/x and subtracting gives

(λ2
m − λ2

n)xuv = x(u∂2
xv − v∂2

xv) + (u∂xv − v∂xu)

= ∂x[x(u∂xv − v∂xu)] . (7.93)

Integrating from xmin to xmax

(λ2
m − λ2

n)
∫ xmax

xmin

xuv dx = x(u∂xv − v∂xu)|xmax
xmin

. (7.94)

We are considering the boundary conditions u(x = xmax) = v(x = xmax) = 0 and ∂x(xR−1/2u) =

∂x(xR−1/2u) = 0. Note that ∂x(xR−1/2u)|x=xmin = 0 is the Robin boundary condition

∂xu(x = xmin) +
(

R − 1
2

)

u(x = xmin)
xmin

= 0 . (7.95)

Substituting these into the right-hand side of equation (7.94) gives zero. Therefore providedλm , λn

then
∫ xmax

xmin
xuv = 0. When λm , λn then u = v and using L’Hospital’s rule

∫

xu2 dx = lim
λm→λn

x

{

u(λnx)∂xu(λmx) − u(λmx)∂x(λnx)
λ2

m − λ2
n

}

= lim
λm→λn

x

{

λmu(λnx)u′(λmx) − λnu(λmx)u′(λnx)
λ2

m − λ2
n

}

= lim
λm→λn

[

− x

2λm

∂

∂λm

{

λmu(λnx)u′(λmx) − λnu(λmx)u′(λnx)
}

]

= − x

2λn
lim
λm→λn

[u(λnx)u′(λmx) + xλmu(λnx)u′′(λmx)

−λnxu′(λmx)u′(λnx)]

=
x2

2

[

u′(λnx)2 − u(λnx)u′′(λnx) − u(λnx)u′(λnx)
xλn

]

. (7.96)

Using the boundary conditions u(x = xmax) = ∂xu(x = xmin) + (R − 1/2)u(x = xmin)/xmin = 0 we find

∫ xmax

xmin

xu2 dx =
xmax

2

2
u′(λnxmax)2 +

xmin
2

2

[

u(λnxmin)u′′(λnxmin)−
(

(R − 1/2)2 +
R − 1/2
λnxmin

)

u(λnxmin)2
]

. (7.97)

Summarizing these results

∫ xmax

xmin

xu(λmx)v(λnx) dx = δm,n

{

xmax
2

2
u′(λnxmax)2+ (7.98)

xmin
2

2

[

u(λnxmin)u′′(λnxmin) −
(

(R − 1/2)2 +
R − 1/2
λnxmin

)

u(λnxmin)2
]}
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where δm,n is the Kronecker delta.
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