
Brownian Thermal Noise in Interferometric Gravitational
Wave Detectors and Single Photon Optomechanics

Thesis by

Ting Hong

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2013

(Defended July 16, 2012)



ii

c© 2013

Ting Hong

All Rights Reserved



iii

Acknowledgements

First and most, I would like to thank Yanbei Chen, my advisor, for supporting and encouraging

me on my research, for suggesting projects and guiding me with the problems, and for his kind and

consistent help in both my work and life.

I would also like to thank Rana Adhikari, for his advice and suggestion on the details of my

research, for teaching me how to write a scientific paper, for many helpful discussions, for giving

support on my thermal noise projects, and for giving up his travel to Vienna for my defense.

I would like to thank all the people who collaborated and assisted me in my research; they are

Huan Yang, Haixing Miao, Eric Gustafson, John Miller, and Hiro Yamamoto.

Keith Schwab and Julia Greer have my thanks for serving on my thesis committee.

I am grateful to JoAnn Boyd, Shirley Hampton, and Christy Jenstad for helping me with ad-

ministrative matters.

Finally, I would like to thank my family and friends. Without their support, and encouragement,

I’d never have made it this far. I thank my husband, Guoqiang, for all the love and care I enjoyed,

for being with me through the good times and bad times.

The research presented in this thesis was supported by NSF Grant PHY-0555406, PHY-1068881

and CAREER Grant PHY-0956189, the David and Barbara Groce Startup Fund, and the David and

Barbara Research Assistantship at the California Institute of Technology. Funding has also been

provided by the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center

with support of the Gordon and Betty Moore Foundation.



iv

Abstract

The Laser Interferometric Gravitational-Wave Observatory (LIGO) is designed to detect the Gravita-

tional Waves (GW) predicted by Albert Einstein’s general theory of relativity. The advanced LIGO

project is ongoing an upgrade to increase the detection sensitivity by more than a factor of 10,

which will make the events detection a routine occurrence. In addition to using higher power lasers,

heavier test mass, and better isolation systems, several new designs and techniques are proposed

in the long-term upgrade, such as modifying the optics configuration to reduce the quantum noise,

active noise cancellation of the Newtonian noise, optimizing the coating structure, and employing

non-Guassian laser beams etc.

In the first part of my thesis (Chapters 2 and 3), I apply statistical mechanics and elastostatics

to the LIGO coated mirrors, and study the thermal fluctuations that dominate advanced LIGO’s

most sensitive frequency band from 40 Hz to 200 Hz.

In particular, in Chapter 2, I study the so-called coating Brownian noise, fluctuations of mirrors

coated with multiple layers of dielectrics due to internal friction. Assuming coating materials to

be isotropic and homogeneous, I calculate the cross spectra of Brownian fluctuations in the bulk

and shear strains of the coating layers, as well as fluctuations in the height of the coating-substrate

interface. The additional phase shifting and back-scattering caused by photo elastic effects are also

considered for the first time.

In Chapter 3, I study whether it is realistic to adopt higher-order Laguerre-Gauss modes in LIGO,

in order to mitigate the effect of mirror thermal noise. We investigate the effect on the detector’s

contrast defect caused by the mode degeneracy. With both analytical calculation and numerical

simulation, we show that with this approach, the detector’s susceptibility to mirror figure errors is

reduced greatly compared to using the nondegenerate modes, therefore making it unacceptable for

LIGO requirements.

For the future GW detectors, with much lower noises and higher sensitivity, this might be used

to investigate the quantum behaviors of macroscopic mechanical objects. In recent years the linear

optomechanical systems with cavity modes coupling to a mechanical oscillator have been studied

extensively. In the second part of my thesis (Chapter 4), I study the interaction between a single

photon and a high-finesse cavity with a movable mirror, in the so-called strong coupling regime, where
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the recoil of the photon can cause significant change in the momentum of the mirror. The results

are applied to analyze the case with a Fabry-Perot cavity. We also present that with engineering

the photon wave function, it is possible to prepare the oscillator into an arbitrary quantum state.
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Chapter 1

Introduction

General relativity describes gravity in terms of the interaction between matter and space-time geom-

etry. The existence of gravitational waves is an important feature of general relativity. Observations

of relativistic binary pulsars has indirectly confirmed the existence of gravitational waves.

The effort to directly detect gravitational waves started in the 1960s when Joseph Weber con-

structed resonant bars and attempted to read out the excitations of the bars by gravitational-wave

bursts [1]. Since the last decade, an array of kilometer scale, laser interferometer gravitational-

wave detectors have been constructed, and put into operation. Among these are the detectors of

the Laser Interferometer Gravitational-wave Observatory (LIGO) [2], VIRGO [3], GEO600 [4] and

TAMA300 [5]. A first round of observations at the initial detectors’ design sensitivity has been per-

formed since 2007, but no detections has been made. The absence of detections is compatible with

astrophysical estimates of event rate at the strength accessible to these detectors. As planned, LIGO

and VIRGO are now being upgraded into second-generation detectors, while the KAGRA detector

in Japan are being constructed [6]. These second-generation detectors will have a sensitivity roughly

10 times the initial detectors—and will thereby reach out 10 times farther into the universe. While

the second-generation detectors are being constructed, third-generation detectors are being planned.

Those detectors will have even better sensitivity, and therefore make possible a fruitful observational

program of gravitational-wave astronomy. In Chapters 2 and 3 of this thesis, I will discuss coating

Brownian noise, the dominant noise source of advanced LIGO in its most sensitive band of 40 Hz –

200 Hz. In Chapter 2, we assumes coating materials to be homogeneous and isotropic, and calcu-

lates the level of bulk and shear fluctuations, accounting for light penetration into the coating layers;

Chapter 3 evaluates the feasibility of using a higher-order Laguerre-Gauss optical mode to mitigate

thermal noise.

Future gravitational-wave detectors will be operating very close to the so-called Standard Quan-

tum Limit, where quantum fluctuations in the motions of the mirrors will be at the same level of the

interferometer’s sensitivity; these detectors can be used to explore macroscopic quantum mechanics.

In Chapter 4 of this thesis, I will study quantum mechanical interaction between light and matter
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by calculating the effect of a single photon on the movable mirror of a Fabry-Perot cavity.

The rest of the introductory chapter is devoted to providing some background for Chapters 2,

3, and 4. Sec. 1.2 gives an overview of the LIGO interferometer, including a simple description of

the detection mechanism and a brief review of the main noise sources. In Sec. 1.3, I focus especially

on the thermal noise of the detectors. Sec. 1.4 gives a description of a simple linear and nonlinear

quantum system.

1.1 Laser Interferometer Gravitational-Wave Detectors: An

Overview

1.1.1 Gravitational Waves

Gravitational waves are propagations of space-time perturbations. One way to describe these waves

on a Minkowski background is to write the space-time metric as

gµν = ηµν + hµν (1.1)

namely the Minkowski metric plus a perturbation. The trace-reversed perturbation,

h̄µν = hµν −
1

2
ηµνh (1.2)

when setting the Lorenz gauge,

∂ν h̄µν = 0 (1.3)

satisfies a wave equation:

�h̄νσ = −16πG

c4
Tνσ (1.4)

where Tνσ is the momentum tensor of matter energy.

For a single plane wave, it is often convenient to adopt the so-called transverse traceless (or TT)

gauge. Assuming the wave to propagate along the z direction, then the only non-vanishing metric

perturbations in the TT gauge reads

hxx = −hyy = h+(t− z) , hxy = hyx = h×(t− z) . (1.5)

One way to appreciate the physical effect of the GW is to consider geodesic motion in the TT

gauge. It is not difficult to show that masses staying at constant coordinate locations are in fact

following geodesics. However, the proper spatial distance between these objects oscillate due to GW.

Another point of view applies better to a detector whose size is much less compared with the
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reduced wavelength of the gravitational wave. In this case, we can go into the Local Lorenz Frame

of the detector, in which test masses moving at low speeds are influenced by a tidal gravitational

field,

Mẍk =
M

2
hTT
jk x

j + Fk (1.6)

where Fk is the nongravitational force acting on the test mass. Light propagation, on the other

hand, is not affected. In this way, the problem of gravitational-wave detection simplifies into one

of measuring a weak classical tidal force field. In a gravitational-wave detector, the force Fk acting

on the test mass contains a conservative force that provides confinement of the test mass near its

zero-point position as well as an inevitable fluctuating force. The latter will be a source of noise.

For free mass (as is approximately the case for LIGO mirrors, which are hung as low-frequency

pendulums), we can easily integrate Eq. (1.6) and obtain

δxk =
hTT
jk

2
xk . (1.7)

This means an array of free masses will be distorted by a strain field with size comparable to h.

1.1.2 Laser Interferometry

LIGO detectors are Michelson interferometers with Fabry-Perot cavities in the arms (which are

orthogonal to each other and equal in length). Because the arm length L is 4 km, and the detection

band is up to several kHz, Eq. (1.6) is a good approximation. If we consider LIGO arms to be along

the x and y axes of a Cartesian coordinate system, and consider an incoming gravitational wave

along the z direction, with + polarization, then h+ should be proportional to the differential cavity

length. More precisely, in absence of noise, we have

h+ =
(q1 − q2)− (q3 − q4)

L
(1.8)

where q1 is the displacement of the center of mass of the end mirror of the x arm, q2 is the displace-

ment of the center of mass of the input mirror of the x arm, while q3,4 are the end- and input-mirror

displacements of the y arm.

In reality, LIGO’s noises arise from: (i) in presence of force noise, the combination on the right-

hand side of (1.8) is not only driven by h+, but also by force noise, and (ii) that combination cannot

be sensed without extra noise. Nevertheless, LIGO detectors are very sensitive devices; initial LIGO

detectors achieved a strain noise spectrum of
√
Sh ≈ 2 × 10−23/

√
Hz at around 150 Hz, while the

second-generation detectors will reach
√
Sh ≈ 2× 10−24/

√
Hz [7].
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1.1.3 Major Noise Sources of LIGO

In general, for ground-based detectors, the most important limitations to sensitivity result from

quantum noise, thermal noise, seismic noise and Newtonian noise. Fig. 1.1 shows the anticipated

noise curve of the advanced LIGO detector with an input laser power of 125W [8]. Here we review

each of these important noises briefly.

Figure 1.1: The noise curve for aLIGO baseline design

1. Quantum noise. This noise arises from quantum fluctuations of light and in the center of mass

motion of the test masses, driven by radiation pressure. This is the noise that survives even

when we idealize the interferometer to the simplest level. This noise can often be divided into

two components, with opposite scaling with laser power.

The first component of quantum noise is shot noise, which arises from the discreteness of

photons, which limits the resolution power of interferometry. For a simple Michelson interfer-

ometer without arm cavities driven by a laser with power I0 and angular frequency ω0, the

shot noise spectrum for displacement measurement is then

Sxsh =
~c2

I0ω0
. (1.9)

Here x is the differential arm length.

The second component is radiation-pressure noise, which is caused by the fluctuating radiation

pressure noise acting on the mirrors. The fluctuation in radiation pressure is in turn caused



5

by photon number fluctuations in the arm. For free test masses,

Sxrp ≈
Iω0

c2
~

m2Ω4
. (1.10)

When a Fabry-Perot cavity (on resonance with the carrier light) with input-mirror power

transmissivity T is inserted into the arms, photons stay in the cavity for a longer time before

leaving, and the interferometer’s sensitivity is boosted by a factor of 2/T in frequencies below

the cavity bandwidth. The insertion of Fabry-Perot cavities also causes higher radiation-

pressure noise—photons staying in the cavity for a longer time causes noisily radiation-pressure

force on the mirror to be coherent during the cavity storage time, leading to a higher level

of fluctuations at frequencies below the cavity bandwidth. More specifically, with cavities, we

have the total quantum noise as

Sh(Ω) =

[
1

κ
+ κ

]
4~

mΩ2L2
. (1.11)

Here κ = 8I0ω0

mL2Ω2(Ω2+γ2) , γ is the cavity bandwidth.

Note that the shot noise and the radiation-pressure noise have exactly the opposite scalings

with laser power, as well as cavity improvement. If we assume the two types of noise to be

independent, the sum of these noises in power will lead to a total noise spectrum that is always

greater than the so-called standard quantum limit (SQL) [9]. For Fabry-Perot Michelson (with

four movable mirrors with identical mass m), the SQL for h is given by

ShSQL =
8~

mΩ2L2
. (1.12)

The SQL can also be derived from various models of continuous position measurement; it char-

acterizes the level of sensitivity at which quantum measurement induced back action becomes

an important factor in determining a device’s sensitivity.

In initial LIGO, radiation-pressure noise is much lower than suspension and internal thermal

noise. For advanced LIGO, with increased laser power and lower level of other noise sources

(see below), quantum noise is an important noise source in the entire observation frequency

band of 10 Hz to several kHz.

2. Internal thermal noise. This noise arises from thermal fluctuations in the position of the mirror

surface sensed by the reflected light—with respect to the center of mass of the mirror [10, 11].

This noise can be further classified as either arising from isothermal fluctuations of elastic

stress distributions in the test mass (Brownian noise), or from shape (thermoelastic noise) and

refractive index (thermo-optical noise) fluctuations driven by temperature fluctuations [12].
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According to the fluctuation-dissipation theorem, each thermal noise corresponds to a mecha-

nism of damping. The Brownian noise corresponds to internal frictions in the mirror coating

and substrate, while thermo-optical noise corresponds to damping due to heat transfer. The

internal thermal noise dominates advanced LIGO’s noise budget from 40 Hz to 240 Hz.

3. Suspension thermal noise. This is the noisy motion of the center of mass of the test mass

driven by thermal fluctuations in the suspension system. This corresponds to energy loss in

the bulk and surface of the suspension wire, as well as the attachment points. This noise

dominates advanced LIGO’s noise spectrum at low frequencies (below ∼ 40 Hz) [13, 14].

4. Seismic noise. This refers to the noisy motion of the mirrors driven by ground vibration, after

being filtered through the multistage seismic isolation system. This dominates initial LIGO’s

noise below 40 Hz (serving as a low-frequency cutoff of sensitivity), and advanced LIGO’s noise

below 10 Hz.

5. Newtonian noise. This noise, also called the gravity gradient noise, is the mirror motion driven

by fluctuations in Newtonian gravitational field, which are in turn caused by mass density

fluctuations (usually seismic in nature) in vicinity to the test mass. Unlike the (vibrational)

seismic noise, the Newtonian noise cannot be shielded by isolation systems, although it might

be suppressed by monitoring ground motion and predicting the gravity field caused by that

motion [15].

1.2 Coating Thermal Noise in Interferometric Gravitational

Wave Detectors

1.2.1 Fluctuation Dissipation Theorem

The near equilibrium thermal noise spectrum could be related to the dissipation of the system by

fluctuation dissipation theorem [16]. Yuri Levin developed an approach to calculate the spectral

density of the internal thermal noise [17, 18]: For a generalized coordinate q (usually an average

longitudinal position of points on the mirror surface), we imagine applying an oscillating generalized

force force, conjugate to q, with single frequency f and amplitude F , onto the mirror and calculate

the dissipation rate Wdiss during this process. The thermal noise spectrum of the mirror, in absence

of that driving, is then given by:

Sq =
2kBT

π2f2

Wdiss

F 2
. (1.13)
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Here kB is the Boltzmann’s constant, and T is the temperature. If this q is associated with one of

the four LIGO mirrors, then this converts into a strain noise of

Sh = (4/L2)Sq . (1.14)

1.2.2 Multilayer Dielectric Coatings

Due to the low internal friction and wide commercial availability, fused silica is used in the current

LIGO optics, such as test mass, beam splitter, etc. In order to use the fused silica as the mirrors

in arm cavities, multidielectric coatings must be applied on the surface to achieve high reflectivity.

In all present operating GW interferometric detectors, the quarter-wave length (QWL) multi layer

coatings, specifically, alternating Ta2O5 and SiO2 layers are used to satisfy the designed reflectivity

requirements without inducing high optical loss. Although the QWL coating could achieve the

largest reflectivity with fixed number of coating layers, it does not necessarily yield the minimum

thermal noise for a prescribed reflectivity, therefore it is not optimal.

A considerable amount of scientific research has been done, both theoretically and experimen-

tally, to optimize the coating structure, such as using the repeating Ta2O5 and SiO2 doublets with

different ratio or even non-periodic configurations [19], injecting different dopants in the materials

and replacing the end mirror with an anti-resonant cavity, [20] etc.

In Chapter 2, we calculated the coating Brownian noise by separately considering each type

of fluctuations: thickness and transverse deformations of the coating layers, fluctuations in the

height of the coating-substrate interface, and fluctuations in refractive index, which causes both an

additional phase shift and back-scattering for light propagating within the layers. For each type of

fluctuation, we have incoherent contributions arising separately from shear and bulk losses of the

coating material—which we have assumed to be homogeneous and isotropic.

Compared with previous studies [10], we have newly introduced the two possible loss angles,

and the fact that they may not be equal to each other; we have also treated more rigorously effects

associated with light penetration into the coating layers. What we have found is that in the case

of advanced LIGO mirrors, because the most lossy coating material, Ta2O5, has a much higher

Young’s modulus compared with the substrate, the combination of the two loss angles that affect the

Brownian thermal noise is very similar to the one already being measured by existing experimental

programs, which measures the loss induced to a oscillating coated cantilever by a coating that is

compression free across its thickness. Nevertheless, information about both loss angles would be

important for a precise prediction of the coating Brownian noise, as well as in situations where the

balance of Young’s moduli is different. We have also found that light penetration effects in coating

Brownian noise is not very significant, and this seems to preclude tricks that try to cancel coating

Brownian noise by carefully arranging coating thickness.
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1.3 Light Beams and Mirror Shapes in Interferometric Grav-

itational Wave Detectors

1.3.1 Dependence of Thermal Noise on Beam Profile: Scaling Laws

The reason why LIGO can measure mirror displacement with an accuracy much higher than the

position uncertainty of individual atoms is because of averaging—fluctuations of mirror surface are

often incoherent at different transverse locations on the mirror surface across the beam, while the

center-of-mass motion induces a coherent displacement at different transverse locations. As it turns

out, when the mirror is approximated as a half-infinite space, and coating a thin infinite plate (with

thickness much less than the beam spot size), a simple set of scaling laws, which relate thermal noise

spectrum to the intensity profile of the beam (when the thermal, optical and mechanical properties

of the mirror remain constant), was developed by Lovelace, O’Shaughnessy and Vytachanin, [21, 22].

The scaling law states:

Sth ∝
∫ ∞

0

dk knp̃2(k) . (1.15)

Here the index n is 0 for Brownian noise, 1 for both coating Brownian and thermoelastic noise, and

2 for substrate thermoelastic noise. Here p̃(k) is the 2-D Fourier transform of the intensity profile

of the beam p(r) over the mirror surface, with

p̃(k) =

∫ ∞
0

drrJ0(kr)p(r) (1.16)

p(r) =

∫ ∞
0

dkkJ0(kr)p̃(k) . (1.17)

J0(kr) is the 0th Bessel function of the first kind. These definitions have assumed the beam to be

axisymmetric.

As we focus on the thermal noise of coating, we find the more specific form of

Scoating ∝
∫ ∞

0

drrp2(r) (1.18)

This in fact corresponds to having uncorrelated fluctuations at different locations across the mirror

surface; the interpretation is that because coating is very thin (in particular, when compared with

the beam spot size), thermal fluctuations are all local. We can rewrite Eq. (1.18) into

Scoating ∝
∫∞

0
drrp2(r)[∫∞

0
drrp(r)

]2 . (1.19)

such that this new formula does not depend on the normalization of the intensity profile p(r). If we

were to choose p(r) to be approximately uniform within an area A, and approximately zero outside



9

this area, then we will have coating thermal noise inversely proportional to the area:

Scoating ∝
1

A
. (1.20)

This means, even for p(r) that is non-uniform, we can still regard the coating noise as inversely

proportional to the effective area of the beam.

The scaling laws, strictly speaking, only apply to infinite mirrors with large beam spot and very

thin coating. However, for the dimensions of test masses and optical beams used in advanced LIGO,

Lovelace has estimated that the scaling laws cause errors not more than 15%.

1.3.2 Why Modified Beams?

According to the scaling law, the power spectrum of the coating Brownian noise is inversely pro-

motional to the effective area of the optical mode. Currently the baseline design of LIGO is using

Gaussian beams in the arm cavities, supported with spherical mirrors. The Gaussian beam is easy to

generate and could meet the strict requirement of low diffraction loss in the measurements, while its

steeply sloping profile also generates more thermal fluctuations on the mirror surface, therefore lead

to significant thermal noise. According to this, Thorne and O’Shaughnessy proposed the flat-topped

beams supported by nearly-at Mexican-hat-shaped mirrors, so called mesa beams, which have more

uniform amplitude profiles (see Fig. 1.2) with steep edges. They also proposed a way to construct

this kind of beam in experiments by superimposing a series of narrow Gaussian beams. With this

beam, the thermal fluctuations throughout the mirror surface would be more average, therefore give

lower thermal noise than the conventional Gaussian beams. Theoretical calculation shows it could

reduce the thermal noise of coatings by a factor of 1.5 in noise amplitude than the Gaussian beams.

Bondarescu and Chen also proposed a optimal beam noted as conical beam, which could maxi-

mally reduce the thermal noise with a factor of 2.3 in theory calculation [23]. While to employ this

beam, the optical system of the detector needs to be redesign, so that it could have good coupling

with the beam.

One big problem with both the mesa and conical beam is that they demand nonstandard optics,

which leads to the proposal of the higher-order Laguerre Gauss (LG) modes, more specifically, the

LG3,3 mode [24]. This mods is compatible with the current optical cavities employing standard

spherical mirrors, meanwhile, it can also reduce the coating thermal noise by a factor of ∼ 1.6 in

amplitude. Recent research also shows that the behavior of high order LG modes is similar to the

standard Gaussian beam [25], which makes it a promising alternative to the current Gaussian beam.
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Figure 1.2: The amplitude profiles of Gaussian (black), Mesa (blue), Conical (purple) and LG3,3

(red) modes

1.3.3 Mode Degeneracy

However, one issue with using high-order LG modes is that any nonfundamental LG mode is only

one member of a degeneracy mode space. For example, the mode (3,3) is ten fold degenerate. This

on its own is fine, except when we consider errors of the mirror surface: depending on how the mirror

deviates from a perfect spherical shape, the 10-fold space splits into 10 closely modes with profiles

that depend on the details of the deviation, which is often called the mirror figure error.

In Chapter 3, we consider the consequence of mirror figure error on the application of higher LG

modes in advanced interferometric gravitational-wave detectors. In particular, we note that the four

mirrors in the arm cavities will all have different figure errors from the manufacturer. This means

the two arm cavities will tend to have slightly different optical mode structures, and leading to a

degradation of contrast defect.

As we plug in state-of-the art levels of mirror figure error, we find the contrast defect of the

interferometer with injecting LG3,3 mode is around 10−2, which is way too big for the effective

detection (require contrast defect to be ∼ 10−4) of GW.

1.4 Quantum Dynamics of Optomechanical Systems

As has been mentioned before, the standard quantum limit marks the regime in which quantum

measurement induced back action significantly affects the sensitivity of the measuring device. This

means gravitational-wave detectors and prototype experiments may also be used to study quantum

mechanical behaviors of their macroscopic mirrors. More recently, optomechanical and electrome-

chanical systems at smaller mass scales have been demonstrated at the quantum limit [26–28].

In all quantum opto- and electro-mechanics experiments, the mechanical object (either an os-

cillator or a nearly free mass) is coupled to light (or microwave), but well isolated to the rest of
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the environment. During the experiment, the mechanical object is prepared into quantum states by

interacting with light; quantum state of the mechanical object is also read out throughout light.

1.4.1 Linear Systems

Most optomechanical systems realized so far operate in the linear regime, in which linear Heisenberg

equations of motion can be written for the mechanical object and the optical field. This dramatically

simplifies the theoretical treatment of such systems.

As an example, for a Fabry-Perot cavity with a movable mirror, driven by light with ω0, near

one particular eigenfrequency ωc of the cavity, we can write down a Hamiltonian of [29]

Ĥ = ~ωcâ†â+
p̂2

2m
+

1

2
mω2

mx̂
2 + ~G0â

†âx̂+ i~
√

2γ(âine
−iω0tâ† −H.c.). (1.21)

Here â and âin is the annihilation operator for the cavity mode and the ingoing optical field; x̂

and p̂ denote the position and momentum of the movable mirror; m is the mirror mass; G0 is the

optomechanical coupling constant.

The interaction Hamiltonian is proportional to

â†âx̂ . (1.22)

In the case the number of photons inside the cavity is large, we can linearize the annihilation (and

creation) operator â for the cavity mode by replacing it with the sum of an averaged term and a

perturbation term, then deduce a set of linear equations of motion.

Gaussian quantum states (those whose Wigner functions are Gaussian functions of x and p) are

the easiest to generate in linear systems, because linear dynamics makes sure that Gaussian states

always evolve into Gaussian ones, also because the most easily generated optical states, e.g., coherent

states, and squeezed states, are Gaussian. Macroscopic quantum mechanics of linear systems at

Gaussian states, in the context of gravitational-wave detectors, has been extensively studied, see,

e.g., [30, 31].

If we would like to demonstrate quantum mechanics in less trivial contexts, we will have to

prepare non-Gaussian quantum states. This can be done for linear systems, if light can be prepared,

via nonlinear means, into non-Gaussian states—and if the transfer of non-Gaussianity from light to

mass is efficient. Because non-Gaussianity is almost always a feature of a low number of photons,

such an efficient transfer requires a few photons to create enough change in a macroscopic mirror.

One way to facilitate this transfer is by “beating” the few photons with a high-amplitude coherent

pumping, as has been proposed by Khalili et al. [32].
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1.4.2 The Simplest Nonlinear Systems

However, in Chapter 4 of this thesis, my collaborators and I consider directly the interaction between

a single photon and the movable mirror of a Fabry-Perot cavity—when this interaction is sufficient

to modify the momentum of the mirror by a level comparable to its initial quantum uncertainty:

F ~ω0

c
>∼ ∆p ∼

√
~mωm (1.23)

where F is the finesse of the cavity; it roughly measures the number of times the photon bounces

inside the cavity before leaving. The requirement (1.23) can also be rewritten as

∆x ∼
√

~
mωm

>∼
λ

2πF
(1.24)

which has the interpretation that the linear range of the cavity (around resonance) must be less than

the quantum uncertainty in the position of the movable mirror. These equivalent conditions are often

referred to as determining the “strong-coupling regime”, although this notion has also been used in

a different context, when optical rigidity substantially shifts the frequency of a mechanical oscillator

(in practice the latter seems much easier to realize). Recent experimental progress shows that

the strong-coupling regime may eventually be accessible by nanomechanical oscillators—although it

seems rather hopeless for experiments involving gram or kilogram-scale test masses.

In Chapter 4, we consider the simplest way of driving a strongly coupled optomechanical system:

by injecting a single photon with wave function nearly matching the resonant frequency of a high-

finesse cavity with a movable mirror. This is neither linear nor Gaussian, yet the simplicity of this

problem lies in the fact that there is only one photon in the entire picture, and hence the dimension

of the dynamical system one needs to consider is rather low. This has been analyzed by Marshall

et al. [33], as a possible experimental scheme that tests the gravity decoherence theory proposed by

Penrose [34]. In that experimental proposal, a Michelson interferometer is proposed, with one fixed

cavity, and another cavity with a movable mirror.

However, in that previous analysis, the photon was assumed as starting off from within the cavity,

instead of being injected from outside. Our calculations shows agreement with Ref. [33] when the

photon has a short duration compared with cavity storage time—however, when if the injected

photon has an extended duration, the visibility evolution of the interferometer differs significantly

from the previous work. In addition, we have found that engineering the photon’s wave function and

conditioning on photon’s arrival can be used to prepare the movable mirror into specific quantum

states.
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Chapter 2

Coating Thermal Noise in
Interferometric Gravitational Wave
Detectors

We analyze the structure of the Brownian thermal noise of a multilayer dielectric coat-

ing, used in high-precision optical measurements, e.g., interferometric gravitational-

wave detectors. We assume the coating material to be isotropic, and therefore study

thermal noises as arising from shear and bulk losses of coating materials. We show that

coating noise arises not only from layer thickness fluctuations, but also from fluctua-

tions of the interface between the coating and substrate, driven by internal fluctuating

stresses of the coating. In addition, the nonzero photoeleastic coefficients of the thin

films modifies the influence of the thermal noise on the laser field. Among different

layers, thickness fluctuations are statistically independent. However, coherence exists

between layers and the substrate-coating interface. Taking into account uncertainties

in material parameters, we show that significant uncertainties still exist in estimating

coating Brownian noise.

Originally published as T. Hong, H. Yang, E. Gustafson, R. Adhikari, and Y. Chen,

LIGO Document P1200012 (2012), will submit to Physics Review D.
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2.1 Introduction

Brownian thermal noise in the dielectric coatings of mirrors limits some high precision experiments

which use optical metrology. This thermal noise is currently a limit for fixed spacer Fabry-Perots used

in optical clock experiments [1] and is estimated to be the dominant noise source in the most sensitive

band of modern gravitational wave detectors (e.g., advanced LIGO, GEO, advanced VIRGO and

LCGT) [2–6]. Recent work has indicated the possibility of suppressing the various kinds of thermal

noise by redesigning the shape of the substrate and the structure of the multi-layer coating [7, 8].

In this paper, we seek a comprehensive understanding of coating Brownian noise, by identifying

individual sources of fluctuations, calculating their cross spectra using the fluctuation dissipation

theorem [9, 10, 13], and finally evaluating how each of the sources and their correlations add up to

the total noise.

As a starting point, we will assume each coating layer to be isotropic, and hence completely

characterized by its complex bulk modulus K and shear modulus µ—each with small imaginary

parts related to energy loss in bulk and shear motions. The complex arguments of these moduli

are often referred to as loss angles. While values of K and µ are generally known, loss angles vary

significantly according to the details of how coating materials are applied onto the substrate and

their composition. Since the loss angles are small, we will still use K and µ to denote the real parts

of the bulk and shear moduli, and write the complex bulk and shear moduli, K̃ and µ̃ as

K̃ = K(1 + iφB) , µ̃ = µ(1 + iφS) . (2.1)

Here we have used subscripts B and S to denote bulk and shear, because these will be symbols

for bulk strain and shear strain. Note that this definition differs from previous literature and

measurements, which used φ‖ and φ⊥ to denote losses induced by elastic deformations parallel and

orthogonal to the coating-substrate interface [11]. We argue in Appendix 2.11 that φ‖ and φ⊥ cannot

be consistently used as the loss angles of a material.

Brownian thermal fluctuations of a multilayer coating can be divided as follows: (i) thickness

fluctuation of the coating layers, (ii) fluctuation of the coating-substrate interface, and (iii) refrac-

tive index fluctuations of the coating layers associated with longitudinal (thickness) and transverse

(area) elastic deformations—as illustrated in Figure 2.1. Using what is sometimes referred to as the

Levin’s direct approach [10] (based on the fluctuation dissipation theorem), one can lump all three

contributions into one quantity, and calculate its noise spectral density by calculating the mechani-

cal dissipation rate when a distribution of mechanical forces are applied at various locations on the

coated mirror [as has been done by Vyatchanin et al. [12]]. However, in order to obtain insights

into coating noise that have proven useful we have chosen to calculate the cross spectral densities

for each of (i), (ii), and (iii), and provide intuitive interpretations of each. We will show, that (i)
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Figure 2.1: Schematic plot of a mirror coated with multiple dielectric layers. Shown here are the
various fluctuations that contribute to coating noise, i.e., fluctuations in the amplitude and phase
of the returning light caused by fluctuations in the geometry (e.g., layer thickness δlj , layer area
stretch (δA/A)j and interface height zs) of the coating-substrate configuration and in refractive
indices [δnj(x, y, z)] of the layers.
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and (ii) above are driven by both bulk and shear fluctuations in the coating, in such a way that

thickness fluctuations of the j-th layer δlj , or in transverse locations separated by more than coating

thickness, are mutually statistically independent, yet each δlj is correlated with the fluctuation of

the coating-substrate interface zs—because zs is driven by the sum of thermal stresses in the coating

layers. We will also show that when coating thickness is much less than the beam spot size, the only

significant contribution to (iii) arises from longitudinal (thickness) fluctuations.

This paper is organized as follows. In Sec. 2.2, we express the amplitude and phase of the

out-going field in terms of fluctuations in the coating structure, thereby identifying the various

components of coating thermal noise. In Sec. 2.3, we introduce the loss angles of isotropic coating

materials, and use the Fluctuation-Dissipation Theorem to calculate the cross spectral densities of

the coating thermal noise ignoring light penetration into the multi-layer coating. In Sec. 2.4, we

discuss in detail the cross spectra of all the components of the coating structure fluctuation, thereby

obtaining the full formula for coating thermal noise, taking light penetration into account. In Sec. 2.5,

we discuss the effect of light penetration on coating thermal noise, using typical optical coating

structures. In Sec. 2.6, we discuss the dependence of thermal noise on the material parameters, and

optimize the coating structure in order to lower the thermal noise. In Sec. 2.7, we discuss how only

one combination of the two loss angles have been measured in past experiments, and how other

different combinations can be measured using a new experimental geometry. Finally, we summarize

our main conclusions in Sec. 2.8.

2.2 Components of the Coating Thermal Noise

In this section, we express the coating thermal noise in terms of the elastic deformations of the

coated substrate.

2.2.1 Complex Reflectivity

As illustrated in Figure 2.1, we consider a laser field normally incident (along the −z direction) onto

the mirror, with complex amplitude profile uin(x, y) at a fixed reference plane (dashed line in the

figure) and intensity profile I(x, y) = |uin(x, y)|2. Henceforth in the paper, we shall use arrows (e.g.,

~x) to denote the 2-dimensional vector (x, y) in the transverse plane, and boldface letters (e.g., x) to

denote 3-dimensional vectors.

Because coating thickness is much less than the beam spot size, the reflected field (traveling

along the +z direction) at transverse location ~x has an amplitude given by

uout(~x) = ρtot(~x)uin(~x) , (2.2)
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which only depends on the complex reflectivity ρtot(~x) and the complex amplitude of the incident

field uin(~x), at the same location ~x—assuming no incident light from the substrate (i.e., s2 = 0).

Here ρtot(~x) can be separated into three factors, as

ρtot(~x) =
uout(~x)

uin(~x)
=

[
uout(~x)

v2(~x)

] [
v1(~x)

uin(~x)

] [
v2(~x)

v1(~x)

]
(2.3)

in which v1(~x) is the incident complex amplitude at the coating-air interface, while v2(~x) is the

reflected complex amplitude at that interface.

The first two phase factors on the right-hand side of Eq. (2.3) are gained by the light when

traveling across the gap between the fixed reference plane (see Fig. 2.1) and the coating-air interface;

we therefore obtain, up to a constant phase factor,

[
uout(~x)

v2(~x)

] [
v1(~x)

uin(~x)

]
= e−2ik0[δzs(~x)+

∑N
j=1 δlj(~x)] (2.4)

where k0 = ω0/c is the wave number of the laser (ω0 its angular frequency) in vacuum, zs(~x) is

the vertical displacement of the coating-substrate interface (from its zero point), and lj(~x) is the

thickness of the j-th coating layer—both evaluated at a transverse location ~x.

The remaining complex reflectivity v2(~x)/v1(~x) can be determined as a function of the phase

shift experienced by the field in each layer, as well as the reflectivity of each interface, as described

in detail in Sec. 2.5. We can write:

v2/v1 = ρ[φ1(~x), . . . , φN (~x); r01(~x), . . . , rNs(~x)] . (2.5)

Here ρ is the complex reflectivity of a multilayer coating, measured at the coating-air interface,

which in turn depends on the optical thickness φj(~x) of each layer (j = 1, . . . , N) and the reflectivity

rp,p+1(~x) ≡ rp(~x) of each interface, (p = 0, . . . , N , with p = N + 1 representing the substrate, and

p = 0 the vacuum outside the coating). Assembling the above equations (2.3)–(2.5), we obtain:

ρtot(~x) = e−2ik0[δzs(~x)+
∑N
j=1 δlj(~x)]ρ[{φj(~x)}; {rp(~x)}] . (2.6)

Brownian thermal forces lead to fluctuations in both the real and imaginary parts of this complex

reflectivity. Fluctuations in the argument of the complex reflectivity phase modulates the out-

going light and directly produces sensing noise. Fluctuations in the magnitude, on the other hand,

amplitude modulate the out-going light, and produces a ponderomotive force noise.
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2.2.2 Thermal Phase and Amplitude Noise

Brownian thermal fluctuations in coating geometry and refractive index modify the total reflectivity

ρtot(~x) defined in Eq. (2.6). The real and imaginary parts of

δ log ρtot(~x) =
δρtot(~x)

ρtot(~x)
(2.7)

encode the amplitude/intensity and phase fluctuations of the reflected light at position ~x on the

mirror surface. In particular, intensity fluctuation of the reflected light is given by

δI(~x)

I(~x)
= 2

δ|ρtot(~x)|
|ρtot(~x)|

= 2Re [δ log ρtot(~x)] (2.8)

while phase fluctuation is given by

δφ(~x) = δ arg [ρtot(~x)] = Im [δ log ρtot(~x)] . (2.9)

In this way, if we further write

ξ(~x)− iζ(~x) = − i

2k0
δ [log ρtot] , (2.10)

with both ξ and ζ real-valued functions of ~x, with the dimensionality of displacement; they will

represent phase and amplitude noise, respectively. In particular, from Eq. (2.9), we have

2k0ξ(~x) = δφ(~x) , (2.11)

and this means ξ(~x) corresponds to the spurious displacement measured by the reflected light due

to phase fluctuations caused by the coating.

The quantity ζ is connected to amplitude/intensity noise via

2k0ζ(~x) = Re [δ log ρtot] =
δI(~x)

2I(~x)
. (2.12)

As we shall discuss in Sec. 2.2.5, ζ will cause a fluctuating force on the mirror, and contribute to

measurement noise, although the effect will be small for gravitational-wave detectors.
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Inserting the dependence of ρtot on ρ, lj and zs, we obtain

ξ(~x)− iζ(~x) = −δzs(~x)−
N∑
j=1

δlj(~x)

−
N∑
j=1

i

2k0

[
∂ log ρ

∂φj
· δφj(~x)

]

−
N∑
p=0

i

2k0

[
∂ log ρ

∂rp
· δrp(~x)

]
. (2.13)

The first two terms are due to the motion of the coating-air interface at location ~x and thickness

fluctuations of the layers, while the last two terms are due to light penetration into the coating

layers. In particular, the third term is due to fluctuations in the total phase the light gains when

propagating within the j-th layer, while the fourth term is due to the (effective) reflectivity of the

p-th interface (with p = 0 indicating the coating-air interface), whose origin will be explained below.

2.2.3 Fluctuations δφj and δrp

Light propagating within the coating layers are affected by the photoelastic effect, namely an isother-

mal fluctuation in δnj(x) (note here that x is a 3-D vector) due to fluctuating Brownian stresses

exerted onto the coating materials. Assuming isotropy of the coating materials, we can write

δnj(x) = βLj Szz(x) + βTj [Sxx(x) + Syy(x)] (2.14)

with

βLj ≡
(

∂nj
∂ log l

)
Aj

, βTj ≡
(

∂nj
∂ logA

)
lj

. (2.15)

Here L stands for longitudinal, and T stands for transverse, and the subscript Aj and lj indicate

fixing transverse area and longitudinal length, respectively. We have also used the usual strain

definition

Sij ≡
1

2

[
∂ui
∂xj

+
∂uj
∂xi

]
(2.16)

where ui(x), i = 1, 2, 3 are components of the displacement vector of the mass element at position x.

Please refer to Appendix 2.10 for more details in defining the elasticity quantities, and Appendix 2.9.1

for more details on the photo elastic effect.

We note that in Eq. (2.14) Szz is the fractional increase in length (i.e., linear expansion) in the

longitudinal direction, while Sxx + Syy is the fractional increase in the transverse area. According

to Appendix 2.9.4, we can ignore the second term representing area fluctuations in Eq. (2.14) when

the beam spot size is much larger than the coating thickness. In this case, we write βj in place for

βLj , whose value can be expressed in terms of a particular component of the photo elastic tensor, see
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Eq. (2.119).

As we discuss in Appendix 2.9.2, the (surviving) first term of Eq. (2.14) causes two effects for

light propagating along each direction (i.e., +z and −z): it adds an additional phase shift onto

the light, and it back-scatters a fraction of the light into the opposite direction. As we show in

Appendix 2.9.3 [c.f. Eqs. (2.130)–(2.132)], theses effects can be described by modifying the phase

shift δφj of each coating layer and the reflectivity δrj of interface:

δφj = k0

[
(nj + βj)δlj −

1− r2
j

2rj
βjδl

c
j +

1 + r2
j−1

2rj−1
βj−1δl

c
j−1

]
, (2.17)

δrj = k0t
2
jβjδl

s
j . (2.18)

Here we have defined

δlcj = −
∫ lj

0

Szz(zj+1 + z) cos(2k0njz)dz (2.19)

δlsj = −
∫ lj

0

Szz(zj+1 + z) sin(2k0njz)dz (2.20)

for j ≥ 1, δls0 = δlc0 = 0, and

zj ≡
N∑
n=j

ln (2.21)

marks the z-coordinate of the top surface of the j-th layer. We can also write

δlj =

∫ lj

0

Szz(zj+1 + z)dz . (2.22)

Note that

total coating

thickness
= z1 > z2 > . . . > zN+1 = 0 . (2.23)

Note that δrj , as well as the last two terms in δφj are due to back-scattering, and have not been

considered by previous authors.

Inserting Eqs. (2.17), (2.18) into Eq. (2.13), we obtain:

ξ(~x)− iζ(~x) = −zs(~x)−
N∑
j=1

∫ zj

zj+1

[
1 +

iεj(z)

2

]
uzz(~x, z)dz (2.24)



23

where

εj(z) = (nj + βj)
∂ log ρ

∂φj

− βj

[
1− r2

j

2rj

∂ log ρ

∂φj

−
1 + r2

j

2rj

∂ log ρ

∂φj+1

]
cos[2k0nj(z − zj)]

− t2jβj
∂ log ρ

∂rj
sin[2k0nj(z − zj+1)] , (2.25)

a term that accounts for all effects associated with light penetration. Here we need to formally define

∂ log ρ

∂φN+1
= 0 (2.26)

since φN+1 does not really exist. Alternatively, we can also write formulas separately for ξ and ζ,

using only real-valued quantities. For ξ, we have,

ξ(~x) = −zs(~x)

−
N∑
j=1

[
T ξj δlj(~x) + T ξcj δlcj(~x) + T ξsj δlsj(~x)

]
, (2.27)

where

T ξj = 1− nj + βj
2

Im

(
∂ log ρ

∂φj

)
(2.28)

T ξcj = −βj
4

Im

(
∂ log ρ

∂φj

)(
1− r2

j

rj

)

+
βj
4

Im

(
∂ log ρ

∂φj+1

)(
1 + r2

j

rj

)
(2.29)

T ξsj = −
βjt

2
j

2
Im

(
∂ log ρ

∂rj

)
(2.30)

are transfer functions from the various δl’s to the displacement-equivalent thermal noise. For ζ, we

have

ζ(~x) =
∑
j=1

[
T ζj δlj(~x) + T ζcj δlcj(~x) + T ζsj δlsj(~x)

]
(2.31)
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where

T ζj =
nj + βj

2
Re

(
∂ log ρ

∂φj

)
(2.32)

T ζcj =
βj
4

Re

(
∂ log ρ

∂φj

)(
1− r2

j

rj

)

− βj
4

Re

(
∂ log ρ

∂φj+1

)(
1 + r2

j

rj

)
(2.33)

T ζsj =
βjt

2
j

2
Re

(
∂ log ρ

∂rj

)
. (2.34)

Although for an arbitrary stack of dielectrics, ζ is comparable to the part of ξ [c.f. Eq. (2.25)]

that involves light penetration into the layers. In practice, for highly reflective stacks, the real parts

of ∂ log ρ/∂φj and ∂ log ρ/∂rj all turn out to be small, and therefore fluctuations in ζ should be

much less than fluctuations in ξ.

2.2.4 Mode Selection for Phase Noise

So far we have calculated phase and amplitude noise as functions of location ~x on the mirror sur-

face. However, there is only one displacement noise that the light will sense. In this and the next

subsection, show how ξ(~x) and ζ(~x) should be converted into measurement noise. In doing so, we

recognize that only one spatial optical mode is injected on resonance in the optical cavity, and this

mode has a complex amplitude of u0(~x) at the mirror surface. Now suppose we have uin = u0(~x)

incident on the mirror surface, we will then have uout(~x) = ρtot(~x)u0(~x), which contains not only

the resonant mode, but also other modes, which do not resonate in the cavity.

Let us select only the component of uout(~x) resonates, then we have a complex reflectivity of

ρ̄ =

∫
u∗0(~x)uout(~x)d2~x∫

u∗0u0d~x
=

∫
ρtot(~x)I(~x)d2~x∫

I(~x)d2~x
, (2.35)

specifically for the resonant mode, and hence independent of ~x. Here we have defined I(~x) ≡ |u0(~x)|2.

Note that the bar on top of ρ̄ represents averaging over the phase front, instead of averaging over

time.

Now, inserting Eq. (2.10) as definitions for ξ(~x) and ζ(~x) into Eq. (2.35), we obtain the fluctuating

part of ρ̄
δρ̄

ρ̄
= 2ik0(ξ̄ − iζ̄) , (2.36)

where

ξ̄ ≡
∫
ξ(~x)I(~x)d2~x∫
I(~x)d2~x

, ζ̄ ≡
∫
ζ(~x)I(~x)d2~x∫
I(~x)d2~x

. (2.37)

Note that 2ik0ξ̄ is the additional phase gained by the returning light, while 2k0ζ̄ is the relative
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change in amplitude [see discussions in Sec. 2.2.2]. Focusing first on ξ̄, we note that this creates the

same phase as that gained by the reflected light if the mirror does not deform but instead moves by

ξ̄. In this way, ξ̄ is an error in our measurement of the mirror’s displacement.

2.2.5 Conversion of Amplitude Noise into Displacement

The amplitude thermal noise produces spurious GW signal by modulating the radiation pressure

acting on the mirror, which in turn drives spurious mirror motion. Let us first consider a single-

bounce scenario, in which an incoming beam with intensity profile I(~x), unaffected by thermal noise,

is reflected with an intensity profile I(~x) + δI(~x), with δI(~x) induced by amplitude thermal noise.

In this case, the mirror feels a thermal-noise-induced recoil force of

F single
th =

∫
δI(~x)

c
d2~x . (2.38)

Using Eqs. (2.12) and (2.37), we obtain

F single
th =

4I0k0

c
ζ̄ (2.39)

with I0 the power incident on the mirror. If the mirror is within a cavity, then we need to consider

both the increase in the circulating power (which we denote by Ic) with respect to the input power,

and the coherent build-up of amplitude modulation within the cavity. We also note that now both

the incident and reflected beam contains amplitude modulation, and that we must also consider the

effect of this amplitude modulation on the input mirror.

If we restrict ourselves to a single optical cavity on resonance, then the force thermal noise below

the cavity bandwidth is given by

F cav
th =

16k0Ic

c
√
Ti

ζ̄ . (2.40)

Here Ic is the circulating power in the arm cavity. Suppose both input and end mirrors have the

same mass M , then the spectrum of cavity length modulation driven by the amplitude thermal noise

is given by √
Samp

th =
2

mΩ2

√
SF cav

th
=

32ω0Ic

mΩ2c2
√
Ti

√
Sζ̄ . (2.41)

Note that ζ̄ has the units of displacement, and therefore the prefactor in front of
√
Sζ̄ in Eq. (2.41)

is a dimensionless conversion factor from ζ̄ to displacement noise. For Advanced LIGO, this cannot

be completely dismissed at this stage, because

32ω0Ic

mΩ2c2
√
Ti

= 18 · Ic
800 kW

· 40 kg

m
·
[

10 Hz

Ω/(2π)

]2√
0.03

Ti
. (2.42)

Nevertheless, as we will show in Sec. 2.5.2, the minor amplification factor here is not enough in
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making amplitude noise significant, because ζ tend to be much less than ξ, for the coatings we

consider.

2.3 Thermal Noise Assuming No Light Penetration into the

Coating

In this section, we compute the coating Brownian noise assuming that the incident light does not

penetrate into the coating. This means light is promptly reflected at the coating-air interface, and

therefore we should only keep the first two terms on the right-hand side of Eq. (2.13), which leads to

ζ = 0. We therefore consider only coating phase noise ξ, in particular its weights average throughout

the mirror surface, ξ̄, see Eq. (2.37).

2.3.1 The Fluctuation-Dissipation Theorem

The fluctuation dissipation theorem relates the near-equilibrium thermal noise spectrum of a gener-

alized coordinate q to the rate of dissipation in the system when a generalized force acts directly on

this coordinate. More specifically, the thermal noise spectrum of q at temperature T is given by [13]

Sq(f) =
kBT

π2f2
Re[Z(f)] (2.43)

where f is frequency, Z(f) is the mechanical impedance (inverse of admittance), or

Z(f) = −2πifq(f)/F (f) . (2.44)

Alternatively, imagining a sinusoidal force

F (t) = F0 cos(2πft) (2.45)

with amplitude F0 acting directly on q, Eq. (2.43) can also be written as

Sx(f) =
4kBT

πf

Wdiss

F 2
0

=
4kBT

πf

U

F 2
0

φ (2.46)

where Wdiss is the energy dissipated per cycle of oscillation divided by 2π (in other words, Wdiss is

the average energy loss per radian), U is the peak of the stored energy in the system, and φ is the

loss angle, defined by

φ = Re[Z(f)]/Im[Z(f)] . (2.47)

It is important to note that φ is in general frequency dependent. However, for an elastic body, if
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the frequency is low enough (much below the first eigenfrequency), then U can be computed using

the quasi-static approximation, because it is equal to the elastic energy stored in the equilibrium

configuration when a constant F0 is applied to the system.

2.3.2 Mechanical Energy Dissipations in Elastic Media

It is straightforward to apply Eq. (2.46) to calculate the thermal noise component due to fluctuation

of the position of the coating-air interface—the weighted average [c.f. Eq. (2.35)] of the first two

terms of Eq. (2.13). This can be obtained by applying a force F with a pressure profile proportional

to I(~x) on to the mirror surface (coating-air interface). In this case, elastic energy can be divided

into bulk energy UB and shear energy US [Chapter I of Ref. [14]], with

Ucoating = UB + US =

∫
coating

(
K

2
Θ2 + µΣijΣij

)
dV , (2.48)

where Θ is the expansion, and Σij is the shear tensor (see Appendix 2.10 for details). If we give

small imaginary parts to K and µ, writing

K̃ = K(1 + iφB) , µ̃ = µ(1 + iφS) (2.49)

then Wdiss can be written as

Wdiss = φBUB + φSUS . (2.50)

Here have introduced the loss angles φB and φS , which are associated with the dissipation of expan-

sion energy density and the shear energy density, respectively. Note that our way of characterizing

loss differs from previous work by Harry, et. al. [11], because for isotropic materials, φB and φS are

the two fundamentally independent loss angles that characterize the dissipation of bulk and shear

elastic energy; were we to literally adopt φ⊥ and φ‖ as done in Ref. [11], there would be modes of

external driving that lead to negative dissipative energy, as shown explicitly in Appendix 2.11.

Once we have introduced φB and φS, other elastic moduli also gain small imaginary parts corre-

spondingly. For example, for the most widely used Young’s modulus and Poisson ratio, because

K =
Y

3(1− 2σ)
, µ =

Y

2(1 + σ)
(2.51)

we can write

Ỹ = Y (1 + iφY ) (2.52)
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with

φY =
(1− 2σ)φB + 2(1 + σ)φS

3
(2.53)

and

σ̃ = σ +
i

3
(1− 2σ)(1 + σ)(φB − φS) . (2.54)

Since −1 < σ < 1/2, we have (1 − 2σ)(1 + σ) > 0, therefore σ̃ has a positive imaginary part as

φB is greater than φS , and vice versa. To understand the physical meaning of the imaginary part

of the Poisson ratio, one has to realize that Young’s modulus and Poisson ratio together describe

the elastic response of a rod. Suppose we apply an oscillatory tension uniformly along a rod at a

very low frequency, whether the area of the rod leads or lags the length of the rod depends on the

relative magnitudes of the bulk and shear loss angles. In the situation when the two loss angles φB

and φS are equal to each other, the Poisson ratio is real, and we only need to deal with one loss

angle φY —although there is reason to assume the equality of these two angles.

If the coating material is made into the shape of a one-dimensional rod, and if we only consider

its elongational, bending or torsional modes, then the Young’s modulus is the appropriate elastic

modulus associated with these modes, and φY is the appropriate loss angle to apply. However, this

is not directly relevant for coating thermal noise. An elastic modulus that will actually prove useful

is that of the two-dimensional (2-D) flexural rigidity of a thin plate made from the coating material,

D =
Y h3

12(1− σ2)
= |D|(1 + iφD) (2.55)

where h is the thickness of the plate, with

φD =
(1− σ − 2σ2)φB + 2(1− σ + σ2)φS

3(1− σ)
. (2.56)

As we shall see in Sec. 2.7.1, this D is most easily measured through the quality factor of drum

modes of a thinly coated sample—although this will not turn out to be the combination of loss angle

that appear in the thermal noise.

2.3.3 Thermal Noise of a Mirror Coated with one Thin Layer

In the case where the coating thickness is much less than the size of the mirror substrate and the

beam spot size, the elastic deformation of the substrate is not affected by the presence of the coating.

As a consequence, if we include the elastic energy stored in the substrate Usub with loss angle φsub,
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we can write

Wdiss = φsubUsub + φBUB + φSUS

≈
[
φsub + φB

UB
Usub

+ φS
US
Usub

]
Usub . (2.57)

With the assumption of thin coating and half-infinite substrate, the total strain energy stored in

the sample can be considered as Usub. In such a way the coating adds on to substrate loss angle as

additional, effective angles

φcoated = φsub +
UB
Usub

φB +
US
Usub

φS . (2.58)

Note that when the total coating thickness l is much less than beam spot size w0, we have UB/Usub ∼

US/Usub ∼ l/w0 � 1. Unfortunately, however, φB and φS are found to be so much larger than the

substrate loss angle φsub that in practice coating thermal noise still dominates over substrate thermal

noise.

Now suppose we would like to measure a weighted average of the position of the mirror surface,

q = ξ̄ =

∫
d2~xw(~x)z(~x) (2.59)

with [cf. Eq. (2.37)]

w(~x) =
I(~x)∫
I(~x)d2~x

(2.60)

and z(~x) the position of the coating-air interface at transverse location ~x.

According to Sec. 2.3.1, we need to apply a pressure profile of

f(~x) = F0w(~x) (2.61)

onto the upper surface of the coating, which we shall also refer to as the coating-air interface.

Straightforward calculations give
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UB
F 2

0

=
(1− 2σc)l

3

[
Yc
Y 2
s

(1− 2σs)
2(1 + σs)

2

(1− σc)2

+
1

Ys

2(1− 2σs)(1 + σs)(1 + σc)

(1− σc)2

+
1

Yc

(1 + σc)
2

(1− σc)2

] ∫
w2(~x)d2~x (2.62)

US
F 2

0

=
2l

3

[
Yc
Y 2
s

(1− σc + σ2
c )(1 + σs)

2(1− 2σs)
2

(1− σc)2(1 + σc)

− (1 + σc)(1− 2σc)(1− 2σs)(1 + σs)

Ys(1− σc)2

+
(1− 2σc)

2(1 + σc)

Yc(1− σc)2

] ∫
w2(~x)d2~x . (2.63)

Here l is coating thickness; for Young’s modulus Y and Poisson’s ratio σ, substrates c and s represent

coating and substrate, respectively. Directly following Eqs. (2.46) and (2.50) will give rise to a noise

spectrum of

Sξ̄ =
4kBT

πf

[
φB

UB
F 2

0

+ φS
US
F 2

0

]
(2.64)

where UB/F
2
0 and US/F

2
0 are given by Eqs. (2.62) and (2.63), respectively.

Here we can define ∫
w2(~x)d2~x =

∫
d2~xI2(~x)[∫
d2~xI(~x)

]2 ≡ 1

Aeff
(2.65)

as the inverse of an effective beam area. Therefore noise power in q is proportional to coating

thickness and inversely proportional to beam area. In particular, for a Gaussian beam with

I(~x) ∝ exp

(
−
~2x2

w2
0

)
(2.66)

the effective area is Aeff = πw2
0.

Let us compare our results to previous calculations using φ⊥ and φ‖. As it turns out, if we

assume φS = φB , then formulas for thermal noise agree with Eq. (22) in Ref. [11]. To illustrate

the different roles now played by φB and φS , let us take the very simple case of Y = Yc = Ys and

σ = σc = σs, where

δUB
F 2

0

=
4l

3YAeff
(1 + σ)2(1− 2σ) (2.67)

δUS
F 2

0

=
2l

3YAeff
(1 + σ)(1− 2σ)2 . (2.68)

Using Eq. (2.64), we can get the power spectral density of the single-layer nonpenetration coating
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thermal noise as

Sξ̄(f)

=
8kBT (1− σ − 2σ2)l

3πfYAeff
[2(1 + σ)φB + (1− 2σ)φS ]. (2.69)

From Eq. (2.69), we can see that the bulk loss and shear loss contribute differently to the total

noise. More importantly, at least in this very simple case of Yc = Ys, the combination of φB and

φS , approximately 2φB + φS , that enters the thermal noise apparently differs significantly from the

combination φtot ≈ φB + 2φS , which has been measured by ring-down experiments that have been

performed so far [15–17]—as we will see in Eq. (2.110) and will be discussed in detail in the rest of

Sec. 2.7.

2.3.4 Discussions on the Correlation Structure of Thermal Noise

Before proceeding to more detailed calculations of Brownian noise that involve light penetrating into

the coating layers, we would like to gain more insight about thermal noise by inspecting our existing

expressions of coating thermal noise [Eqs. (2.62)–(2.64)] more carefully. We note that

Sξ̄ ∝ l
∫
w2(~x)d2~x. (2.70)

where the coefficient of proportionality depends only on material property. From such a depen-

dence on coating and beam geometries, we deduce that (i) each point on the coating-air interface

fluctuates along the z direction independently, and (ii) materials at different z’s within the coat-

ing also contribute independently to coating thermal noise. These observations will be confirmed

mathematically in the next section.

Finally, within the coefficient of proportionality [cf. Eqs. (2.62) and (2.63)], we found three types

of dependence on the Young’s moduli of the coating and substrate materias: terms proportional to

1/Yc are expected to arise from fluctuations in coating thickness, terms proportional to Yc/Y
2
s can

be interpreted as arising from coating thermal stresses driving the substrate-coating interface, while

terms proportional to 1/Ys are therefore interpreted as correlations between the above two types of

noise.

2.4 Cross Spectra of Thermal Noise Components

In this section, we compute the cross spectra of each component of coating thermal noise, and

assemble the formula for the spectral density of the total noise. Specifically, in Sec. 2.4.1, we

compute the cross spectra of the thickness fluctuations any two uniform sublayers of the coating,
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and obtain the cross spectrum of Szz; in Sec. 2.4.2, we compute the cross spectra involving height

fluctuation zs of the coating-substrate interface, i.e., SSzzzs and Szszs ; in Sec. 2.4.3, we dissect the

above results and analyze the separate roles of bulk and shear fluctuations; in Sec. 2.4.4, we write

down the full formula of coating thermal noise.

2.4.1 Coating-Thickness Fluctuations

Let us start by calculating thickness fluctuations of individual layers and correlations among them.

Following Levin’s approach, we imagine applying two pairs of opposite pressure,

f1(~x) = F0w1(~x), f3(~x) = F0w3(~x) (2.71)

in the z direction on layer I and layer III, as shown in Fig. 2.2, with thickness of l1 and l3, respectively.

Here w1(~x) and w3(~x), like the w(~x) used in Eq. (2.59), provides the shape of the pressure profiles.

We assume that within each of I and III, there is only one type of material, yet there could be

arbitrary number of different material sub layers in II. As it will turn out, the precise locations of

layers I and III along the z direction does not affect the result, as long as they do not overlap, or in

other words, layer II has nonzero (positive) thickness.

Throughout this paper, we shall assume that the beam spot size is much less than the radius of the

mirror, so that we can make the approximation that the mirror surface is an infinite two-dimensional

plane. In this case, we perform a spatial Fourier transformation for the applied pressure,

f̃j(~k) =

∫
ei
~k·~xfj(~x) d2~x = F0w̃j(~k) , j = 1, 3, (2.72)

and carry out our calculations for strain and stress distributions in the coating-substrate system in

the Fourier domain.

We further assume that the coating thickness is much less than the beam spot size, which is

inverse the maximum spatial frequency contained in w̃1,3. This means we only need to consider

~k’s with |~k|l � 1, with l the total coating thickness. According to calculations of Appendix 2.10,

nonzero components of the stress and strain tensors in Layers I and III are found to be (in the spatial

Fourier domain)

T̃ I
xx = T̃ I

yy =
σ1w̃1

1− σ1
F0 , T̃ I

zz = w̃1F0 , (2.73)

S̃I
zz = − (1− 2σ1)(1 + σ1)w̃1

Y1(1− σ1)
F0 , (2.74)

and

T̃ III
xx = T̃ III

yy =
σ3w̃3

1− σ3
F0 , T̃ III

zz = w̃3F0 , (2.75)
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S̃III
zz = − (1− 2σ3)(1 + σ3)w̃3

Y3(1− σ3)
F0 , (2.76)

respectively.

Note that deformations within layer I only depend on w̃1 (not w̃3), while deformations within layer

III only depend on w̃3 (not w̃1)—while regions outside these layers are found to have vanishing strain

and stress. This means we can treat deformations caused by each pair of forces independently, as long

as layer I and layer III do not overlap. The deformations are also independent from the thickness

of the layers. The vanishing of deformations outside these layers means that when we introduce

additional pairs of opposite forces, the new deformations introduced will be constrained within

those new layers—as long as those new layers do not overlap with existing ones. This independence

originates from the linearity of elastic response, and the fact that coating strains induced by force

applied on a single surface within the coating, as discussed in Appendix.2.10, does not depend on

distance away from that surface, as seen in Eqs. (2.159)–(2.166). The situation here is analogous to

the electric field generated by several pairs of oppositely charged infinite parallel planes.

In terms of thermal noise, such a distribution of elastic deformations corresponds to a dissipation

energy that consists of two independent terms, each corresponding to one layer and proportional to

its thickness:
Wdiss

F 2
0

= W11l1

∫
w2

1d
2~x+W33l3

∫
w2

3d
2~x . (2.77)

Here we have defined, for J = 1, 3:

Wjj ≡
(1− 2σj)(1 + σj)

3(1− σj)2Yj

[
1 + σj

2
φjB + (1− 2σj)φ

j
S

]
. (2.78)

This means the fluctuation of

q ≡
∫

[w1(~x)δl1(~x) + w3(~x)δl3(~x)] d2~x (2.79)

is given by

Sq =
4kBT

πf

∑
J=1,3

[
Wjj lj

∫
w2
j (~x)d2~x

]
. (2.80)

The absence of cross terms here means that fluctuations in δl1(~x) and δl3(~x′) are uncorrelated—and

hence statistically independent. Furthermore, within each layer, in the same spirit as the discussions

in Sec. 2.3.4, the particular form of dependence on lj and wj(~x) indicates that Szz fluctuations at

different 3-D locations (within this layer) are all uncorrelated and have the same spectrum. In this

way, we obtain the cross spectral density of Szz at two arbitrary 3-D locations within the coating:

SijSzzSzz (~x, z; ~x
′, z′) =

4kBT

πf
δijδ

(2)(~x− ~x′)δ(z − z′)Wjj . (2.81)
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Here we have assumed that (~x, z) belongs to layer i, while (~x′, z′) belongs to layer j. (The association

to layers helps to identify the material property to be used in Wjj .)

substrate

z

(x,y)

III

II

I

f3(x,y)

f1(x,y)

co
at
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g 

la
ye

rs

fs(x,y)

Figure 2.2: Illustrations of forces applied onto various interfaces within the coating. Each of Layers
I and III in the coating are assumed to be uniform (but they might each contain a different kind
of material); region II denotes the entire gap between them, which may well contain many different
dielectric layers. A pair of force distribution f1 (f3) in opposite directions is exerted on opposite
sides of Layer I (III), while fs is exerted on the coating-substrate interface. The three distributions
may well have different profiles (as also illustrated in the figure).

2.4.2 Fluctuations of Coating-Substrate Interface and Their Correlations

with Coating Thickness

To investigate the correlation between height of the coating-substrate thickness, zs(~x) and the thick-

ness of each coating layer, δlj(~x), we apply a pair of pressures f1(~x) = F0w1(~x) at opposite sides of

Layer I, and force fs(x, y) = F0ws(~x) onto the coating-substrate interface (along the −z direction),

as shown in Fig. 1. The same strain and stress as in Eqs. (2.73) and (2.74) are driven by f̃1, which

are only nonvanishing within layer I. On the other hand, f̃s drives uniform strain and stress over
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the entire coating, with nonvanishing components of stress and strain given by,

‖T̃ij‖ =
w̃s(1− σs − 2σ2

s)Yc
(1 + σc)κ2Ys


k2x+σck

2
y

1−σc kxky 0

kxky
σck

2
x+k2y

1−σc 0

0 0 0

 (2.82)

‖S̃ij‖ = − w̃s(1− σs − 2σ2
s)

κ2Ys


k2
x kxky

kxky k2
y

−σc
1− σc

, (2.83)

where Young’s modulus Yc and Poisson’s ratio σc of the coating are given by values within layer I.

The total dissipation in this case will have the following structure,

Wdiss

F 2
0

= l1

[
W11

∫
w2

1d
2~x+ 2W1s

∫
w1wsd~x+Wss

∫
w2
sd

2~x

]
, (2.84)

with the first term arising from dissipation in layer I that is due to strain and stress driven by f1,

the second term also arising from dissipation in layer I arising from cross terms between strains

and stresses caused by f1 and fs, and the third term arises from dissipations throughout the entire

coating, due to strain and stress caused by fs. Here W11 is the same as defined by Eq. (2.78), and

Wjs =
(1− σs − 2σ2

s)(1− σj − 2σ2
j )

2(1− σj)2Ys
(φjB − φ

j
S) (2.85a)

W (j)
ss =

(1− σs − 2σ2
s)2Yj

(1− σj)2Y 2
s

[
1− 2σj

2
φjB +

1− σj + σ2
j

1 + σj
φjS

]
. (2.85b)

Note that we have added a superscript (j) for Wss to indicate that here the dissipation is due to

force applied on one thin layer alone.

Here again, the dependences on w2
1 and w2

s indicate that fluctuations at different transverse

locations, ~x 6= ~x′, are uncorrelated, while the l1 in front of W11, and the arbitrariness of l1 means

that Szz fluctuations at different z locations within the thin layers are uncorrelated. The l1 in front

of both W1s and Wss indicates that all Szz within layer I are correlated with zs the same way, even

though all of them are mutually uncorrelated.

This allows us to extract the following

Szszs(~x, ~x
′) =

4kBT

3πf
δ(2)(~x− ~x′)

∑
j

ljW
(j)
ss (2.86a)

SSzz sz (~x; ~x′, z′) =
4kBT

3πf
δ2(~x− ~x′)Wjs . (2.86b)
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Here for Eq. (2.86b), j is the layer with which z′ is associated; and this labeling is to help identify

which material parameter to use in Wjs.

2.4.3 The Anatomy of Coating Thermal Noise

Here let us assemble Eqs. (2.81), (2.86a) and (2.86b) from the previous sections, and write:

SijSzzSzz (~x, z; ~x
′, z′) =

4kBT

3πf

(1 + σj)(1− 2σj)

Yj(1− σj)2

[1 + σj
2

φBj + (1− 2σj)φSj

]
δijδ

(2)(~x− ~x′)δ(z − z′)

(2.87a)

Szszs(~x, ~x
′) =

4kBT

3πf

(1− σs − 2σ2
s)2

Y 2
s

∑
j

Yj lj
(1− σj)2

[1− 2σj
2

φBj +
1− σj + σ2

j

1 + σi
φSj

]
δ(2)(~x− ~x′)

(2.87b)

Szs Szz (~x; ~x′, z′) =
2kBT

3πf

(1− σs − 2σ2
s)(1− σj − 2σ2

i )

Ys(1− σj)2
[φBj − φSj ]δ2(~x− ~x′) . (2.87c)

Here we have assumed that z belongs to the i-th layer and that z′ belongs to the j-th layer,

respectively. The thickness fluctuation of different layers are mutually independent [note the Kro-

necker delta in Eq. (2.87a)], while thickness fluctuation of each layer is correlated with the height

fluctuation of the coating-substrate interface [Eq. (2.87c)].

Fluctuations described by Eqs. (2.87a)–(2.87b) can be seen as driven by a set of microscopic

fluctuations throughout the coating. Suppose we have 3N thermal noise fields (i.e., 3 for each

coating layer), nBj (x), nSAj (x) and nSBj (x), all independent from each other, with

SnBj nBk =
4kBT (1− σj − 2σ2

j )

3πfYj(1− σj)2
φjBδjkδ

(3)(x− x′), (2.88a)

S
n
SA
j n

SA
k

= S
n
SB
j n

SB
k

=
4kBT (1− σj − 2σ2

j )

3πfYj(1− σj)2
φjSδjkδ

(3)(x− x′), (2.88b)

and all other cross spectra vanishing. Here j labels coating layer, the superscript B indicates bulk

fluctuation, while SA and SB label two types of shear fluctuations. The normalization of these fields

are chosen such that each of these fields, when integrated over a length lj along z, have a noise

spectrum that is roughly the same magnitude as a single-layer thermal noise.

Noise fields nBj (x), nSAj (x) and nSBj can be used to generate thickness fluctuations of the layers

and the interface fluctuation (2.87a)–(2.87b) if we define

uzz(~x, z) = CBj n
B
j (~x, z) + CSAj nSAj (~x, z) (2.89)
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Figure 2.3: Illustration of the correlations between coating thickness δlj and the height of the
coating-substrate interface, zs. On the left, for a bulk deformation: when a coating element is
expanding, its expansion along the x-y plane lifts the coating-substrate interface upwards, causing
additional motion of the coating-air interface correlated to that caused by the increase in coating
thickness. On the right, a a particular shear mode: when a coating element is expanding, its
contraction along the x-y plan pushes the coating-substrate interface downwards, causing addition
motion of the coating-air interface anticorrelated to that caused by the increase in coating thickness.

Thickness (δj) Surface height (zs)

Bulk CBj =

√
1 + σj

2
DB
j =

1− σs − 2σ2
s√

2(1 + σj)

Yj
Ys

Shear
A

CSAj =
√

1− 2σj DSA
j = −1− σs − 2σ2

s

2
√

1− 2σj

Yj
Ys

Shear
B

(none) DSB
j =

√
3(1− σj)(1− σs − 2σ2

s)

2
√

1− 2σj(1 + σj)

Yj
Ys

Table 2.1: Transfer functions from bulk and shear noise fields to layer thickness and surface height

and

zs(~x) =
∑
j

∫ Lj

Lj+1

dz

[
DB
j n

B
j (~x, z) +DSA

j nSAj (~x, z)

+DSB
j nSBj (~x, z)

]
. (2.90)

For each coating layer, CBj and DB
j are transfer functions from the bulk noise field nBj to its own

thickness δlj and to surface height zs, respectively; CSAj and DSA
j are transfer functions from the

first type of shear noise to thickness and surface height; finally DSB
j is the transfer function from the

second type of shear noise to surface height (note that this noise field does not affect layer thickness).

Explicit forms of these transfer functions are listed in Table. 2.1.
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Equations (2.89) and (2.90) owe their simple forms to the underlying physics of thermal fluctu-

ations:

For bulk noise, i.e., terms involving nBj , the form of Eqs. (2.89) and (2.90) indicates that the

interface fluctuation due to bulk dissipation is simply a sum of pieces that are directly proportional

to the bulk-induced thickness fluctuations of each layer. This means the thermal bulk stress in a layer

drive simultaneously the thickness fluctuation of that layer and a fluctuation of the coating-substrate

interface. The fact that DB
j and CBj having the same sign means that when thickness increases,

the interface also rises (with intuitive explanation shown in Figure 2.3). This sign of correlation is

generally unfavorable because the two noises add constructively towards the rise of the coating-air

interface.

For shear noise, the situation is a little more complicated, because unlike bulk deformations,

there are a total of 5 possible shear modes. From Eq. (2.73) and (2.74), it is clear that f1, applied

on opposites of Layer I (Figure 2.2), only drives the xx+ yy− 2zz shear mode and the xx+ yy+ zz

bulk mode, while from Eq. (2.82) and (2.83), the force distribution fs drives three shear modes of

xx− yy, xy + yx, and xx+ yy− 2zz. This means while thermal shear stresses in the xx+ yy− 2zz

mode drives layer thickness and interface fluctuation simultaneously, there are additional modes of

shear stress, xx − yy and xy + yx, that only drives the interface without driving layer thickness.

Our mode SA, which drives both layer thickness and interface height, therefore corresponds to the

physical shear mode of xx+ yy− 2zz; our mode SB , which only drives interface height, corresponds

to the joint effect of the physical shear modes xx− yy and xy+ yx. It is interesting to note that for

SA, its contributions to δlj and zs are anti correlated, because CSA and DSA have opposite signs.

This is intuitively explained in Fig. 2.3.

As an example application of Eqs. (2.89) and (2.90), if we ignore light penetration into the coating

layers, namely, when thermal noise is equal to

ξnp ≡ −zs −
∑
j

δlj (2.91)

we have

ξnp = −
∑
j

Lj+1∫
Lj

dz
[ (
CBj +DB

j

)
nBj

+
(
CSAj +DSA

j

)
nSAj

+DSB
j nSBj

]
(2.92)

in which contributions from each layer has been divided into three mutually uncorrelated groups,

each arising from a different type of fluctuations. Here we see explicitly that CB and DB sharing
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the same sign increases contributions from nB ; CSA and DSA having opposite signs suppresses

contributions from nSA .

Finally, we note that in the spectral density of ξnp, contributions directly from coating thickness

will be proportional to |CBj |2 and |CSAj |2, and hence proportional to 1/Yc, those from interface height

will be |DB
j |2, |DSA

j |2 and |DSB
j |2, and hence proportional to Yc/Y

2
s , while those from correlations

will be proportional to CBj D
B
j and CSAj DSA

j , and hence proportional to 1/Ys. This confirms our

anticipation at the end of Sec. 2.3.4.

2.4.4 Full Formula for Thermal Noise

As we consider light penetration into the coating, we resort to Eq. (2.24), and write:

ξ(~x)− iζ(~x)

= −
∑
j

∫ zj

zj+1

dz

{[[
1 +

iεj(z)

2

]
CBj +DB

j

]
nBj (~x, z)

+

[[
1 +

iεj(z)

2

]
CSAj +DSA

j

]
nSAj (~x, z)

+DSB
j nSBj (~x, z)

]}
. (2.93)

Here spectra of independent fields nBj , nSAj and nSBj have been given in Eqs. (2.88a)–(2.88b), ε is

defined in Eq. (2.25), while the transfer functions Cs and Ds are listed in Table. 2.1.

We can then obtain the spectrum of phase noise (after averaging over the mirror surface, weighted

by the power profile of the optical mode) as

Sξ̄ =
∑
j

∫ zj

zj+1

dz

λj

[[
1− Im

εj(z)

2

]
CBj +DB

j

]2

SBj

+
∑
j

∫ zj

zj+1

dz

λj

[[
1− Im

εj(z)

2

]
CSAj +DSA

j

]2

SSj

+
∑
j

[
DSB
j

]2 lj
λj
SSj

≡
∑
j

qBj S
B
j + qSj S

S
j (2.94)

and spectrum of amplitude noise as

Sζ̄ =
∑
j

∫ zj

zj+1

dz

λj

{[
CBj Re

εj(z)

2

]2

SBj

+

[
CSAj Re

εj(z)

2

]2

SSj

}
. (2.95)
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Here λj is the wavelength of light in Layer j, and we have defined

SXj ≡
4kBTλjφ

j
X(1− σj − 2σ2

j )

3πfYj(1− σj)2Aeff
, X = B,S . (2.96)

which is at the level of coating thickness fluctuation of a single layer of dielectrics with material

parameters identical to layer j and length equal to λj . Note that the quantity SXj only depends on

the material properties (and temperature) of the layer, and is independent from length of that layer;

the quantities qXj , on the other hand, give us the relative thermal-noise contribution of each layer

in a dimensionless way.

Note that the reason for keeping the integrals in Eqs. (2.94) and (2.95) is because ε has a z

dependence, which originates from the fact that the back-scattering contributions to δφj ’s and δrj ’s

a weighted integral of uzz within each layer [cf. (2.17) and (2.18)].

2.5 Effect of Light Penetration into the Coating

In this section, we synthesize results from Sec. 2.2 and Sec. 2.4, and compute the full Brownian

thermal noise for coating configurations. We will illustrate how the light penetration affects the

total noise in highly reflective coatings.

2.5.1 Optics of Multilayer Coatings

For completeness of the paper, we briefly review how light penetration coefficient ∂ log ρ/∂φj can be

calculated.

reflective surface

a

b

c

d

r r’=−r
a

b

c

d

free propagation

Figure 2.4: Two basic transformations involved in solving for optical fields in a multilayer coating

From an interface from layer i to j (here j is either i+ 1 or i− 1), we denote the reflectivity and

transmissivity of different layers by rij and tij : r
2
ij + t2ij = 1.

rij =
ni − nj
ni + nj

. (2.97)
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Parameter Tantala(Ti2O5) Silica(SiO2)
Refractive index 2.07 [18] 1.45 [18]
Poisson’s ratio 0.23 [19] 0.17[19]
Young’s modulus (Pa) 1.4× 1011[20] 7× 1010[19]
Loss angle (φB = φS) 2.3× 10−4[21] 4.0× 10−5[22]
Photoelastic coefficient -0.50 [23] -0.41[24]

Table 2.2: Baseline material parameters
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Figure 2.5: Real (solid curves) and imaginary (dashed curves) parts of ∂ log ρ/∂φj (upper panel) and
∂ log ρ/∂rj (lower panel), for conventional (red curve) and Advanced LIGO (blue curve) coatings.
[Note that Re(∂ log ρ/∂φj) = 0 for conventional coating.]

We also define nN+1 = n1, since that is the refractive index of the substrate.

A matrix approach can be applied to solve for the amplitude of light inside the layers, when we

view the coating as made up from two elementary transformations, each representable by a matrix.

In this approach, instead of writing out-going fields in terms of in-going fields, one write fields to the

right of an optical element in terms of those to the left. As illustrated in Figure 2.4, for reflection

at an interface (left panel), we write

 c

d

 ≡ Rr =
1

t

 1 −r

−r 1

 a

b

 . (2.98)
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Figure 2.6: Light penetration into the first 10 layers of a 38-layer coating (left panel for conventional
coating and right panel for Advanced LIGO coating). We plot the non-photoelastic part of Tj in
black solid curves, the photoelastic part of T sj in long-dashed red curves, as well as T sj (scaled by rms
value of δlcj with respect to the rms value of δlj , shown in short-dashed blue curves) and T sj (scaled
by rms value of δlsj , shown in dotted purple curves). These plots indicate that for both structures,
light penetration is restricted within the first 10 layers.

On the other hand, for propagation across a gap with phase shift φ, we have c

d

 ≡ Tφ =

 eiφ

e−iφ

 a

b

 . (2.99)

In this way, assuming the input and output field amplitude at the top surface of a multi-layer

coating to be v1 and v2, and writing those right inside the substrate to be s1 and s2, we have s1

s2

 =

 M11 M12

M21 M21

 v1

v2

 = M

 v1

v2

 (2.100)

where M is given by

M = RrN,N+1
TφN−1

RrN−1,N
. . .Rr12Tφ1Rr01 . (2.101)

The complex reflectivity is given by

ρ = −M21/M22 . (2.102)

2.5.2 Levels of Light Penetration in advanced LIGO ETM Coatings

In advanced LIGO, the coating stack is made from two alternating layers of materials: SiO2 (n1 =

1.45) and Ta2O5 (n2 = 2.07). Here we consider the end test-mass mirror (ETM). In order to achieve
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Figure 2.7: A break-down of thermal noise contributions from silica (upper panels) and tantala
(lower panels) layers, from bulk (left panels) and shear (right panels) losses. Blue curves correspond
to β = −1, black β = 0 and red β = 1. Dashed curves indicate results calculated without including
back-scattering effects.

very high reflectivity, the coating is made of 19 successive pairs of alternating SiO2 and Ta2O5

layers, all λ/4 in thickness except the top one, which is λ/2. We will refer to this as the conventional

coating. An alternative design has been made to allow the coating to operate at both 1064 nm and

532 nm. We shall refer to this as the advanced LIGO coating (see Appendix. 2.12) [25].

In Fig. 2.5, we plot real and imaginary parts of ∂ log ρ/∂φj and ∂ log ρ/∂rj , for both conventional

and advanced LIGO coating. Here we note that the real parts of these derivatives are at the order

of 10−6, which means ζ̄ is less than ξ̄ by 6 orders of magnitude. This, together with considerations

in Sec. 2.2.5, will make amplitude coating noise negligible.

In Eq. (2.27), we have divided contributions to ξ into four terms, the first, zs, is the height of the

coating-substrate interface, while the other three are related to fluctuations in layer thickness, δlj ,

δlcj , and δlsj , see Eqs. (2.27)–(2.30). We can illustrate the effect of light penetration by showing the

relative size of these three contributions for each layer. In Figure 2.6, we carry out this illustration,

for conventional coating on the left panel and for advanced LIGO coating on the right. We use a solid

black line to indicate the nonphotoelastic part of T ξj [i.e., term not containing βj , see Eq. (2.28)],

and we use red-long-dashed, blue-short-dashed, and purple-dotted curves to indicate the photoelastic
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part of T ξj , T ξcj
√
〈(δlcj)2〉/〈(δlj)2〉 and T ξsj

√
〈(δlsj)2〉/〈(δlj)2〉, respectively. The weighting factors,

√
〈(δlcj)2〉/〈(δlj)2〉 =

1√
2

√
1 +

sin 4φj
4φj

, (2.103)

√
〈(δlsj)2〉/〈(δlj)2〉 =

1√
2

√
1− sin 4φj

4φj
, (2.104)

have been added for T ξcj and T ξsj , respectively, to correct for the fact that δlcj and δlsj have different

r.m.s. values compared to δl. Because of the lack of experimental data, we have assumed βj = −0.4

identically. Note that in order to focus on the effect of light penetration, we have only shown the

first 10 layers.

In the figure, the effect of light penetration into the coating layers is embodied in the deviation

of the black solid curve from unity in the first few layers, and in the existence of the other curves.

Although we cannot perceive the correlation between these contributions, we can clearly appreciate

that only the first few layers are penetrated, and that the total effect of light penetration will be

small. We should also expect the effect of photoelasticity (dashed curves) to be small, and the effect

of back-scattering (which gives rise to T ξcj and T ξsj , blue and purple dashed curves) even smaller.

2.5.3 Thermal Noise Contributions from Different Layers

Let us now examine the breakdown of the total coating noise by plotting the coefficients qBj and qSj

in Eq. (2.94). In Fig. 2.7, we plot silica contributions on top panels, and tantala contributions on

lower panels, with bulk contributions on left panels, and shear contributions on right panels. Here

we use the baseline parameters shown in Table 2.2. As it turns out, the results for conventional

and advanced LIGO coatings are hardly distinguishable from each other—therefore we only use

the advanced LIGO coating. The red curve uses β = −1, black uses β = 0 and blue uses β = 1.

Superimposed onto the solid lines are dashed lines of each type, calculated without introducing the

back-scattering terms; the effect is noticeable for the first few layers.

2.6 Dependence of Thermal Noise on Material Parameters

Experimental knowledge of coating materials is limited. Most notably, values of Young’s moduli and

Poisson’s ratios of the coating materials are still uncertain, while only one combination of the two

loss angles have been experimentally measured by ring-down experiments. In this section, we explore

the possible variation in coating Brownian noise, away from the baseline configuration (Table 2.2),

considering these uncertainties. We shall use the advanced LIGO coating structure mentioned in

the previous section.
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Figure 2.8: (color online) Variations in thermal noise contributions when φB/φS is varied. Contri-
butions from tantala layers is shown in blue, those from silica layers are shown in red. The total
thermal noise is in black. Bulk contributions are shown in dotted curves, while shear contributions
are shown in dashed curves.

2.6.1 Dependence on Ratios Between Loss Angles

In the baseline (Table 2.2), we have assumed that φB and φS are equal, but this is only out of our

ignorance: experiments have only been able to determine one particular combination of these two

angles. We now explore the consequence of having these loss angles not equal, while keeping fixed

the combination measured by ring down rate of drum modes [see Eq. (2.69)].

In Figure 2.8, while fixing all other baseline parameters, we plot how each type of thermal noise

(i.e., silica vs tantala, bulk vs shear) varies when the ratio φB/φS for both tantala and silica layers

varies between 1/5 and 5. We use blue for tantala, red for silica, dotted for bulk, dashed for shear,

and solid for the total of bulk and shear. In this configuration, tantala layers’ contribution to thermal

noise always dominate over silica layers, mainly due to the higher loss angle. As we vary the ratio

between the loss angles, there is moderate variation of thermal noise. For the dominant tantala, as

φB/φS vary from 1/5 to 5, there is a 30% change in thermal noise, while for silica, the change is a

more significant 68%.

As we see from Fig. 2.8, a larger value of φB/φS gives rise to higher bulk, lower shear, and

higher total noise—this is reasonable because bulk fluctuations drive correlated noise between layer’s

thickness and the height of coating-substrate interface, while shear fluctuations drive anticorrelated
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Figure 2.9: (color online) Variations in total noise when φB/φS is varied: (solid) total noise, (dotted)
total bulk noise, (dashed) total shear noise. The red (blue) curve corresponds to only varying φB/φS
for tantala (silica). With φB/φS of tantala or silica varying from 0.2 to 5, the change in total noise
is 58.1% and 10.6%, respectively.

noise, as shown in Fig. 2.3.

Moreover, the fact that variation is more significant for silica layers can be explained when we

recall that thickness-induced thermal noise is proportional to 1/Yc, while surface-height-induced

thermal noise is proportional to Yc/Y
2
s . For silica layers, Yc is assumed to be equal to Ys, so the

two types of noise being added (bulk) or subtracted (shear) are more comparable in magnitude; by

contrast, the Young’s modulus of tantala layers is significantly higher than that of the substrate,

causing the noise to be dominated by fluctuations of the height of the coating-substrate interface,

therefore making correlations between the two types of noise less important.

In Fig. 2.9, we plot variations in the total noise as we vary φB/φS for silica layers (blue) or

tantala layers (red) only, and fix the other one. It shows that the variance of tantala’s loss angle

will generate larger change of the total noise.

2.6.2 Dependence on Young’s moduli and Poisson’s ratios

Since the Young’s modulus and Poisson’s ratios of coating materials, especially of tantala, are also

uncertain. In Fig. 2.10, we plot variations of tantala thermal noise when its Young’s modulus varies

from the baseline value by up to a factor of 2, for φB/φS = 0.2, 0.5, 1, 2, and 5. The noise is seen
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Figure 2.10: Thermal noise contribution from tantala, as its Young’s modulus deviates from baseline
value, for φB/φS=5 (blue dashed), 2 (blue dotted), 1 (black solid), 1/2 (red dotted), and 1/5 (red
dashed)
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Figure 2.11: Thermal noise contribution from tantala, as its Poisson’s ratio deviates from baseline
value, for φB/φS=5 (blue dashed), 2 (blue dotted), 1 (black solid), 1/2 (red dotted), and 1/5 (red
dashed)
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Figure 2.12: Fractional change in the contribution to thermal noise from all silica layers (left panel)
and all tantala layers (right panel), due to bulk (blue) and shear (red) loss. Dashed lines indicate
results calculated without including back-scattering terms.

to vary by ∼ 15% as Young’s modulus varies by a factor of ∼ 2.

We can also explain the way the thermal noise varies as a function of Yc. Starting from the

baseline value, a lower Yc leads to a lower thermal noise, until Yc becomes comparable to Ys (which

we fix at the baseline value, equal to 0.5YTa), and starts to increase again. Such a behavior is

reasonable because thickness noise spectrum and interface noise spectrum are proportional to ∼ 1/Yc

and ∼ Yc/Y
2
s , respectively—as we decrease Yc from the baseline YTa value, we transition from

interface fluctuation being dominant towards equal amount of both noises (which gives a minimum

total noise), and then towards thickness fluctuation becoming dominant.

In Fig. 2.11, we explore the effect of varying coating Poisson’s ratio, for the same values of φB/φS

chosen in Fig. 2.10. In the baseline assumption of φB = φS , when bulk and shear have the same

level of loss, thermal noise does not depend much on Poisson’s ratio. However, if φB/φS turns out

to differ significantly from 1, and if Poisson’s ratio can be larger than the baseline value by more

than ∼ 0.1, then thermal noise can vary by ∼ 10%.

2.6.3 Dependence on Photoelastic Coefficients

Photoelastic properties of the coating materials are not yet well known. In Fig. 2.12, we plot the

fractional change in thermal noise, separately for silica (left panel) and tantala (right pane), and for

bulk (blue) and shear (red) losses, when we vary β between -1 and +1. Dashed curves are obtained

ignoring back-scattering effects.

It is interesting to note that for small values of β, the dependence of noise on β have different

trends for bulk and shear contributions. This is also related to the different types of correlations
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between thickness and interface height fluctuations. As we can see from the Figure, the effect of

varying β is small, since it only affects thermal noise due to light penetration into the first few layers.

If bulk and shear losses are indeed comparable, then cancelation between these two types of noises

(especially for the more lossy tantala layers) will likely make the photo elastic effect completely

negligible. Even in the case when one particular type of loss dominates shall we expect at most

∼ 2% contribution from photo elasticity of the more lossy tantala—if we further assume that |β| ∼ 1

[right panel of Fig. 2.12].

2.6.4 Optimization of Coating Structure

Although a standard highly reflective coating consists of λ/4 layers of alternating material capped

by a λ/2 layer, this structure can be modified to lower thermal noise while still maintaining a

high reflectivity for the 1064 nm carrier light, e.g., as shown by Agresti et al. [26]. As their results

have indicated, for baseline coating parameters and neglecting light penetration into the coating

layers [11], the optimal structure is more close to a stack of pairs of λ/8 (Ta2O5) and 3λ/8 (SiO2)

layers, capped by a λ/2 (SiO2) layer. This alternative coating structure shortens the total thickness

of the more lossy tantala layers, while maintaining a high reflectivity for the light. The advanced

LIGO type coating given in Appendix 2.12, on the other hand, has been optimized considering

reflectivity at both 1064 nm and 532 nm, as well as thermal noise—although light penetration into

the layers have not been considered.

In this section, we carry out a numerical optimization taking penetration into account. We first

fix the number N of layers (N is even, so we have N/2 pairs), and then for N , we use the Lagrange

multiplier method to search for the constrained minimum of Sth, fixing T1064 and T532, namely the

power transmissivity, 1 − |ρ|2 assuming the coating is lossless, evaluated at 1064 nm and 532 nm,

respectively. The quantity we seek to minimize (or, the cost function) is

y ≡
√
Sth + µ1T1064 + µ2(T532 − 5%)2 . (2.105)

As we vary µ1 and µ2 and minimizing y, we obtain the constrained minimum of
√
Sth for different

pairs of (T532, T1064). The aim is to obtain a series of coating configurations with approximately 5%

transitivity for 532 nm, and with minimized thermal noise for a variable 3–20 ppm transmissivity for

1064 nm. (Note that the choice of the cost function contains a certain level of arbitrariness.)

Since we are going to carry out minimization for a large number of multipliers over a large number

of degrees of freedom, we have chosen to proceed gradually allowing only the first n pairs and last

n pairs of layers to vary, while maintaining the same pair structure for N/2− n pairs in the middle
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(repeating doublets). In other words, our coating structure looks like:

free︸ ︷︷ ︸
2n layers

repeating pair︸ ︷︷ ︸
N − 2n layers

free︸ ︷︷ ︸
2n layers

.

In this work, we found that it suffices to choose n = 2 (which corresponds to optimizing over 10

parameters); further increasing n does not lead to noticeable improvements. During our numerical

optimization, we have adopted the downhill simplex method [27, 28].

target Resulting Coating Structure
√
Sopt

th

√
S
λ/4
th

φB/φS N First 4 layers Repeated Pair Last 4 layers φB
φS

= 1
5

φB
φS

= 1 φB
φS

= 5

1/5 42 0.0479 0.1581 0.3430 0.1760 0.2919 0.1897 0.3164 0.1738 0.3178 0.1627 5.01 6.64 8.81 5.35
1 42 0.1020 0.1250 0.3267 0.1917 0.2911 0.1914 0.3110 0.1752 0.3196 0.1609 5.02 6.64 8.81 7.05
5 42 0.1118 0.0968 0.3353 0.1882 0.2893 0.1939 0.3135 0.1673 0.3199 0.1662 5.02 6.64 8.81 9.33

Table 2.3: Results of coating-structure optimization. We list optimized coating structures for T1064 =
5 ppm and T532 = 5%, for three target values of φB/φS while fixing the measured effective loss angle
φD [[Eq. (2.56)]] and other baseline material parameters [Table 2.2]. Thickness of coating layers are
given in units of wavelength (for 1064 nm light). For each optimized coating structure, thermal noise
is calculated separately for all three values of φB/φS , and given in units of 10−21 m/

√
Hz (thermal

noise for the target φB/φS is given in boldface, and boldface numbers should be the minimum
within its column); thermal noise spectra of the 38-layer λ/4 stack assuming the target φB/φS are
also listed for comparison.
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Figure 2.13: Optimized thermal noise versus transmissivity at 1064 nm, for a coating of 38 (red), 40
(blue), and 42 (purple) layers

Results for baseline material parameters (Table. 2.2) and N = 38, 40 and 42 have been shown

in Figure 2.13. This figure indicates that different numbers of layers should be chosen for different
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target T1064—more layers are required for lower transmissivity (higher reflectivity). Overall, the

optimal thermal noise varies by around ∼ 10% as for T1064 from 3 to 20 ppm. In particular, for the

standard Advanced LIGO requirement of 5 ppm (see first column of Table 2.3), 42 layers are found

to be optimal. This is 2 more pairs or 4 more layers than the 38-layer λ/4 doublet, which has the

minimum number of layers to reach 5 ppm. The larger number of layers here gets lower thermal

noise (by 6 %) because the more-lossy tantala layers are shortened, and the less-lossy silica layers

lengthened.

We have further optimized the structure when the ratio φB/φS is different from 1, while keeping

fixed the effective loss angle measured so far—as done in Sec. 2.6.1. For T1064 = 5 ppm, we have

listed results of optimized coating structure and thermal noise in the second and third columns of

Table 2.3. The extent of variation found here is comparable to those obtained in Sec. 2.6.1 using a

standard coating structure without optimization: the optimal coating structures consistently lower

thermal noise by about 6%. In addition, as shown in Table 2.3, the optimal coating structure is

robust against changes in φB/φS : structure obtained for any one of the values of the ratio is already

almost optimal for all other ratios.

2.7 Measurements of Loss Angles

In this section, we study possible mechanical ringdown experiments that can be used to measure

independently the bulk and shear loss angles, φB and φS of a coating material.

In a ringdown experiment, a sample with a high intrinsic Q is coated with a thin layer of the

coating material in question. Due to the mechanical losses in the coating, the quality factor of

the mechanical eigenmodes of the sample will be reduced [29, 30]. More specifically, for the nth

eigenmode with resonant frequency fn, if an e-folding decay time of τn is measured, then the quality

factor is

Qn = πfnτn , (2.106)

while correspondingly, the loss angle is given by

φ(fn) = 1/Qn , (2.107)

which is equal to the amount of energy dissipated Wdiss per radian.

2.7.1 Bending Modes of a Thin Rectangular Plate

Figure 2.14 shows the schematic geometry of a rectangularly shaped sample, in which a thin coating

layer with thickness d is deposited on a rectangular plate with dimensions a× b× c (c� a, b), and d

is much less than c. If we pay attention only to the transverse oscillations of the plate, the amount
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a

b

c

d

Figure 2.14: Rectangular shaped thin plate (a×b×c) with thin coating (thickness d): c� a, b; d� c.
The transverse vibration mode is considered in this case.

of energy stored in the coating layer, in the form of bulk and shear energies UB and US , as a fraction

of the entire energy U , can be calculated as

UB
U

=
d

c

Yc
Ys

(1− σ2
s)(1− 2σc)

(1− σc)2
(2.108)

US
U

=
2d

c

Yc
Ys

(1− σ2
s)(1− σc + σ2

c )

(1− σc)2(1 + σc)
. (2.109)

Using Eq. (2.58), the the total loss angle of the sample is

φ = φsub

+
d

c

Yc
Ys

(1− σ2
s)

(1− σc)2

[
φB(1− 2σc) + 2φS

1− σc + σ2
c

1 + σc

]
. (2.110)

It is not surprising that this combination of φB and φS is proportional to φD [cf. Eq. (2.56)], the

loss angle of the 2-D flexural rigidity of the coating material, which we defined in Sec. 2.3.2. This is

because when the drum mode of a thinly coated plate is excited, the stress Tzz remains zero within

the coating layer, and the layer’s elastic response is governed by the flexural rigidity, as defined in

Sec. 13 of Ref. [14].

As it turns out, the part of coating thermal noise due to bending of the coating-substrate interface

[Szszs in Eq. (2.87b)] also depends directly on φD, because the loss mechanism in this case is the

same as during the oscillation of a drum mode—one only applies a perpendicular force from below

the coating layer, while keeping Tzz = 0 within the layer.

It proves less straightforward to connect the thickness fluctuation part of thermal noise [Suzuz

in Eq. (2.87a)] to the effective loss angle of either Y or D. Although the loss mechanism here is

due to the compressing of a thin membrane from both sides—this membrane is not characterized by

vanishing Txx and Tyy, because the coating is attached to a substrate which provides restoring forces

along the transverse (x and y) directions. However, in the case when the Poisson ratio σc of the

coating vanishes, the thickness fluctuation does depend on the loss angle of the Young’s modulus.
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Figure 2.15: Thin cylindrical shell with thin coating outside. The first torsional eigenmodes of such
a shell can be used to measure the shear loss angle of the coating.

For our baseline parameters, mechanical dissipation is mostly contributed by the tantala layers,

and because the Young’s modulus of the tantala coating material is assumed to be much greater

than that of the substrate, the largest contribution to the LIGO mirrors’ Brownian noise is bending

noise Szszs . This explains why the noise only varies by 30% (as noted in Sec. 2.6.1) even if no further

measurements on the other loss angle are made.

2.7.2 Torsional Modes of a Coated Hollow Cylinder

Here we propose an approach with which we can measure another combination of loss angles. We

consider a cylindrical shell with a thin, uniform coating layer outside, as shown in Fig. 2.15(c� R,

d� c). In this configuration, the surface deformations produce strains in the plane of shell according

to the Donnell shell theory [31]. Here we assumed that there is only angular displacement in the

shell, which means the longitudinal position of the cross section won’t change. For a torsion mode,

we only have shear strain energy, the expressions are given by

UB
U

= 0 (2.111)

US
U

=
d

c

Yc
Ys

(1 + σs)

(1 + σc)
. (2.112)

As a consequence, the total loss angle can be expressed as

φ = φsub +
d

c

Yc
Ys

(1 + σs)

(1 + σc)
φS . (2.113)

For a cylinder shell, according to the Donnell shell theory, the natural frequency of the n-th

torsional mode is given by [32]

fn =
n

2
3
2L

[
Y

ρ(1 + σ)

]1/2

. (2.114)

A more accurate calculation may be found by using the Flügge shell theory [33].
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Using the values from Table 2.4, we can estimate the resonant frequency to be 9.2 kHz. The

coating contribution to loss angle, assuming a φS of at least 10−5, would be at least the order of

10−6, which seems plausible to be extracted from ring-down measurements.

Table 2.4: Example parameters of a thin, uniformly coated cylindrical shell (SiO2)

L R c d
unit(mm) 200 50 1 0.04

With the measurement of both the thin plate and cylinder shell, we can obtain φB and φS of the

coating.

2.8 Conclusions

In this paper, by applying the fluctuation-dissipation theorem, we obtained a full set of correla-

tion functions (2.87a)–(2.87c) of Brownian thermal fluctuations of a multilayer dielectric coating.

In particular, we have related fluctuations of coating thickness and coating-substrate interface to

independent bulk and shear thermal stresses associated with each coating layer. These stresses not

only induce thickness fluctuations of the layers themselves, but also bends the coating-substrate

interface—this bending noise had not been previously appreciated intuitively, although its effect has

been incorporated into formulas, e.g., in Ref. [11]. As a result, we found that although thickness

fluctuations of different coating layers are independent of each other, they each have partial corre-

lations with the height fluctuations of the coating-substrate interface. Moreover, bulk loss creates a

positive correlation between them, while shear loss creates a negative correlation. The entire picture

is succinctly written mathematically in Eqs. (2.89) and (2.90). This coherence structure then gives

coating Brownian noise in Eq. (2.93). Apart from having provided a pedagogical and systematic

derivation of these noise components, the most important conceptual consequence of our work is to

point out an uncertainty in coating loss angles, which has not been anticipated previously. We have

also incorporated the photo elastic effect, the reflectivity fluctuations of the interfaces within the

multilayer coating, and considered the effect of amplitude modulations caused by Brownian thermal

noise. All of these turned out to be rather unimportant.

We have applied our formalism to mirrors that are to be used in Advanced LIGO detectors.

As estimated in Sec. 2.6 and summarized in Table 2.5 (calculated for a typical candidate for the

Advanced LIGO end test-mass mirror coating configuration), parameter uncertainties could lead to

non-negligible corrections to coating Brownian noise calculations. The biggest uncertainties actually

arise from the elastic moduli of coating materials—for example, current uncertainties in Young’s

modulus of the tantala coating material might lead up to 60% increase in thermal noise. Although

photo elastic coefficients for our coating materials are very uncertain, they do not significantly affect
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material
parameter

range
uncertainty

in
√
Sx

for details,
see

φB/φS 0.2 – 51 ±37% Sec. 2.6.1, Figs. 2.8, 2.9.
YTa factor of ∼ 2 ∼60% Sec. 2.6.2, Fig. 2.10.

σTa ± 0.2
up to 10% if
φB/φS 6= 1

Sec. 2.6.2, Fig. 2.11.

β −1 < β < +1 ±1% 2 Sec. 2.6.3, Fig. 2.12.

Table 2.5: Levels of thermal noise uncertainty caused by parameter uncertainties

thermal noise since light does not penetrate through many layers.

It is rather remarkable that our lack of experimental knowledge about the loss angles, beyond

what we had already obtained from the ring down of drum modes, would not give rise to a higher

uncertainty in thermal noise. This is rather serendipitous, considering our path of understanding

of the problem: for the baseline parameters of advanced LIGO, the highest contribution to coating

Brownian noise arises from the coating-substrate bending noise caused by losses in tantala layers,

because these layers are much more lossy than the silica layers, and have been assumed to have a

much higher Young’s modulus than the substrate material. This bending noise, first elaborated by

this work, turns out to be associated with the loss angle of the 2-D flexural rigidity, which in turn

is directly connected to the decay of the drum modes of a thinly coated sample. This means the

currently existing program has been measuring the predominant loss angle all along. Nevertheless,

the level of uncertainty noted in our study still warrants further experiments seeking the other loss

angle, e.g., as outlined in Sec. 2.7. In addition, since future gravitational-wave detectors may use

different substrate and coating materials, situations may arise when the loss angle measured now

does not correlate with the total coating brownian noise.

At this moment, it is worth looking once more at the previously used loss angles, φ‖ and φ⊥—

although they are mathematically ill defined, they do correctly reflect the existence of two channels

of loss. The φ‖ was meant to characterize losses incurred by the x-y deformations of the coating

measurable when we do not compress the coating but instead drive its deformations using drum

modes of the substrate. This loss angle is now replaced by the (mathematically well-defined) imag-

inary part of the flexural rigidity, for which extensive measurements have already been carried out.

The φ⊥ was meant to characterize the losses incurred by compressing the coating layers. This

has not been measured because it had not been obvious how to easily excite this mode of coating

deformation (the most obvious way would be to compress the coating layer, but that is difficult);

however, because the Young’s modulus of the coating is much larger than that of the substrate, this

difficult-to-measure loss angle should not contribute as much to the total coating noise. This said,

in this work, we do come up with ways to measure both loss angles, φS and φB , without having to

compress the coating layers—but instead by exciting different modes of substrate deformation. Of

course, this is only possible because we have assumed that the material is isotropic—otherwise we
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may have to compress the coating to directly access the loss induced by such a deformation.

On the other hand, one may think of the possibilities of using substrate materials with higher

Young’s modulus to reduce the bending noise. Sapphire and Silicon are two viable choices because

they both have higher Young’s modulus than tantala. Using Eq. (2.87a)–(2.87c), it is straight

forward to estimate the new coating Brownian noise while replacing the substrate material by sap-

phire or silicon but keeping the same aLIGO coating design. It turns out that the coating brownian

noise will be reduced to 35% of its original power spectra value if we use silicon substrate or 32%

if we use sapphire. However, there are other disadvantages for sapphire or silicon substrate that

prevents us from using them for aLIGO mirrors. The main problem is that they both have very

high thermal conductivity—much higher than fused silica. As a result, the substrate thermoelastic

noise is one of the important noise source for both materials. For instance, if the aLIGO mirror

was made of sapphire, the bulk thermal elastic noise would have about the same magnitude as the

coating brownian noise at 100 Hz. As for silicon substrate, the bulk thermal elastic noise is more

than 4 times larger than its corresponding coating brownian noise in power because silicon has even

higher thermal conductivity than sapphire. One may refer to [37] for detailed methods to calculate

bulk thermal elastic noise. Setting up the experiment in a cryogenic enviroment is a possible way to

reduce the thermooptic noise.

Furthermore, our formula Eq. (2.93) can serve as a starting point for optimizing the material

choice and structure design of the multilayer coating taking light penetration effects into account.

Our numerical results in Sec. 2.6.4 (see Table 2.3) have shown that optimization of the coating

structure consistently offers a ∼ 6% decrease in thermal noise, regardless of φB/φS . In fact, the

optimal structure for these ratios are quite similar, and configurations obtained for each presumed

ratio of φB/φS are shown to work for other ratios interchangeably.

Upon completion of this manuscript, we noted that the optimization of coating structure for

the case assuming φB = φS (and β = 0) has been carried out by Kondratiev, Gurkovsky and

Gorodetsky [34]. [We note that their formalism is capable to treating β 6= 0 and φB 6= φS , as well

as back-scattering induced by photo elasticity, but they did not explore the impact of these effects

in their optimization.] Our results are compatible with theirs, if we also use these restrictions in

parameter space and ignore back-scattering.

A comparison between our result, Kondratiev et al., and Harry et al. [11] (which ignores light

penetration into the layers, and also effectively assumes φS = φB) would therefore illustrate the

effects caused by ignoring photoelasticity and further ignoring light penetration into the coating.

This is shown in Table 2.6. This again confirms that for total coating thermal noise, light penetra-

tion causes noticeable difference in coating thermal noise, while photoelasticity causes a negligible

difference.
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Coating
Ref. [11]

(no light penetration)
Ref. [34]

(β = 0 and no back scattering)
This Work

λ/4 7.18 7.08 7.08
Advanced LIGO 6.93 6.82 6.83

optimal 6.73 6.62 6.64

Table 2.6: Comparison of thermal noise spectral density (assuming φB = φS and evaluated at 200 Hz,
in units of 10−21m/

√
Hz) between different works

2.9 Appendix A: Fluctuations of the Complex Reflectivity

due to Refractive index fluctuations

Brownian noise is not only caused by the random strains, but also by the refractive-index fluctuations

caused by such strains, through the photo elastic effect [cf. Eqs. (2.13) and (2.14)]. We shall quantify

this contribution in this section.

2.9.1 The Photoelastic Effect

If we denote the displacement of coating mass elements as (ux, uy, uz), then the relative coating-

thickness change from its equilibrium value can be written as

δl/l = uz,z (2.115)

and the relative transverse area expansion can be written as

δA/A = ux,x + uy,y . (2.116)

If we denote 2-dimensional displacement vectors along the x-y plane as ~u = (ux, uy), and two-

dimensional gradient as ~∇, then we have

δA/A = ux,x + uy,y = ~∇ · ~u . (2.117)

We can then write the change in refractive index as

δn =

[
∂n

∂ log l

]
Aj

δl

l
+

[
∂n

∂ logA

]
lj

~∇ · ~u (2.118)

where ∂n/∂ log l and ∂n/∂ logA only depends on material properties. The two terms on the right-

hand side of Eq. (2.118) represent refractive index change driven by relative length and area changes,
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respectively. The first term is given by [24]

βL =

[
∂n

∂ log l

]
A

= −1

2
n3CY (2.119)

where C is the photoelastic stress constant, Y is the Young’s modulus. For silica, CY ≈ 0.27,

therefore βL
Si = −0.41. The photoelastic coefficient can also be written as

β = −1

2
n3pij (2.120)

where pij is the photo elastic tensor [36]. Some experiments have been done to measure this coefficient

for tantala [23]. Empirically, the value of pij varies from −0.15 to 0.45 for Ta2O5 thin film fabricated

in different ways. Here for the longitudinal photoelasticity, βL
Tan , we use −0.5 in our numerical

calculation.

We shall next obtain formulas that will allow us to convert fluctuations in n into fluctuations in

the complex reflectivity of the multilayer coating.

2.9.2 Fluctuations in an Infinitesimally Thin Layer

Because the coating is much thinner than the beam spot size, we only consider phase shifts along

the z direction—for each value of ~x. If the refractive index δn at a particular location δn(z) is

driven by longitudinal strain uzz at that location, the fact that 〈uzz(z′)uzz(z′′)〉 ∝ δ(z′− z′′) causes

concern, because this indicates a high variance of δn at any given single point z, with a magnitude

which is formally infinity, and in reality must be described by additional physics (for example, there

would be a scale at which the above-mentioned delta function starts to become resolved). Therefore,

if we naively considers the reflection of light across an interface, at z = z0, then the independent

and high-magnitude fluctuations of n(z0−) and n(z0+) would lead to a dramatic fluctuation in the

reflectivity

r =
n(z0−)− n(z0+)

n(z0+) + n(z0−)
(2.121)

of the interface, whose magnitude of fluctuation seems to be indefinitely large. Fortunately, for

any thin layer, if we simultaneously consider propagation through this layer and the reflection and

transmission across both of its boundaries, then the effect caused by the refractive index fluctuation

of this particular layer can be dramatically suppressed. Nevertheless, we do find an additional

fluctuating contribution to the total complex reflectivity of the multilayer coating.

In order to carry out a correct calculation that does not diverge, we first consider a three-layer

and two-interface situation, as shown in Fig. 2.16, with n1, n2, and n3 separated by two interfaces,

with the length of the n2 layer given by ∆l—and here we only consider fluctuations in n2. The
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n1

n2

n3

r12

r23

∆lφ2

Figure 2.16: Light propagation across a thin layer (thickness of ∆l) with fluctuating refractive index
(from a uniform n2 to an average of n2 + δn2 within this thin layer). The propagation matrix
corresponding to this structure is given by Eq. (2.122).

entire transfer matrix (from below to above, in Fig. 2.16) is given by

M = Rr12Tφ2
Rr23 . (2.122)

following the same convention as in Sec. 2.2.3. Suppose the originally uniform n2 now fluctuates,

and after averaging over this think layer, gives a mean refractive index of n2 + δn2, we use this as

the refractive index of the entire layer, and then have

δM =
n2√
n1n3

 i −i

i −i

 δn2 · k0∆l (2.123)

This can be considered as a regularization, because each individual Rr12 or Rr12 (since their

expressions only contain n1, n2, and n3 but no l) has a standard deviation proportional to O(1/
√

∆l)

(when ∆l is greater than the coherence length of refractive-index fluctuation) or O(1/∆l) (when ∆l

is less than the coherence length of refractive-index fluctuation)—both diverge as ∆l → 0—which

means the reflectivity fluctuation of each of these layers diverge. However, in order for our use of

average refractive index to make sense in calculating the reflectivities r12 and r23, ∆l should be less

than the coherence length of refractive index fluctuations. In any case, the total transfer matrix δM

does not diverge; it instead has an infinitesimal fluctuation. Moreover, since δM only depends on

δn2 ·∆l, we shall see that the particular choice of ∆l will not affect the final results when layers like

these are stacked together.

The physical meaning of Eq. (2.123) is clear: a random field of refractive index not only gives a

random phase shift (diagonal term), but also gives rise to a random reflectivity (nondiagonal term).

The latter term is an additional contribution that has been ignored by previous calculations.
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2.9.3 The Entire Coating Stack

Now we are ready to consider the entire multilayer coating. Here we bear in mind that eventually,

the fluctuation in n has a non-zero coherence length—and we can then divide our existing layers

further into sub layers with length δl much less than the physical coherence length. Since each of

these sub layers only makes a negligible contribution to the entire complex reflectivity, we only need

to consider layers that contain only one coating material. Let us first focus on Layer j, bounded by

two interfaces with reflectivities rj−1 and rj , respectively. The total transfer matrix of the entire

stack is written as

M = · · ·Tφj+1
RrjTφjRrj−1

· · · . (2.124)

Here reflectivity fluctuations within Layer j are going to add to the matrix Tφj above. Consider

dz-thick sublayer located at distance z′ from the rj boundary (lower boundary in Fig. 2.1), therefore

at coordinate location z = zj+1 + z′ and integrate, we have

Tφj → Tφj + k0

∫ lj

0

δn(zj+1 + z)Tk0njz

 i −i

i −i

Tk0nj(lj−z) dz
′

=

 1 δηj

δη∗j 1

Tφj+k0δn̄j lj (2.125)

where

δn̄j =
1

lj

∫ lj

0

δnj(zj+1 + z)dz (2.126)

and

δηj = −ik0

∫
δnj(zj+1 + z)e2ik0njzdz . (2.127)

Here we have defined

zj ≡
N∑
n=j

ln (2.128)

to be the z coordinate of the top surface of Layer j.

We need to adapt the new transfer matrix into the old form, but with modified {rj} and {φj}.

From Eq. (2.125), since δηj is complex, we need to adjust φj , rj , as well as φj+1:

Tφj+1
RrjTφj

→ Tφj+1+δψ+
j

Rrj+δrjTφj+k0ljδn̄j+δψ
−
j
. (2.129)
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Here we have defined, in addition,

δrj = −t2jk0

∫ lj

0

δnj(zj+1 + z) sin(2k0njz)dz (2.130)

and

δψ±j =
r2
j ± 1

2rj
k0

∫ lj

0

δnj(zj+1 + z) cos(2k0njz)dz . (2.131)

As we consider photoelastic noise of all the layers together, δrj in Eq. (2.130) needs to be used for

the effective fluctuation in reflectivity of each layer, while

δφj = k0ljδn̄j + δψ−j + δψ+
j−1 (2.132)

should be used as the total fluctuation in the phase shift of each layer.

2.9.4 Unimportance of Transverse Fluctuations

Connecting with photoelastic effect, we have explicitly

δnj(z, ~x) = βLj uzz(z, ~x) + βTj
~∇ · ~u . (2.133)

Here the vector ~u is the two-dimensional displacement vector (ux, uy) and ~∇· is the 2-D divergence

along the x-y plane. For terms that contain ~u, we note that when taking the optical mode into

account [see Sec. 2.2.4], i.e., when a weighted average of ξ is taken, they yield the following type of

contribution

∫
M

I(~x)
(
~∇ · ~u

)
d2~x

=

∫
∂M

dl(~n · ~uI) +

∫
M

~u · ~∇I d2~x

=

∫
M

~u · ~∇I d2~x . (2.134)

Here M stands for the 2-d region occupied by the beam, and ∂M is the boundary on which power

already vanishes. As a consequence, the first term is zero according to the boundary condition,

while the second term gains a factor of (li/rbeam) with respect to other types of coating Brownian

noise, here lj is the thickness of the j-th layer, and rbeam is an effective beam radius. Since we

always assume coating thickness li to be much smaller than the beam radius rbeam, we can neglect

refractive index fluctuation due to area fluctuation.
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2.10 Appendix B: Elastic Deformations in The Coating

Throughout this paper, we assume the mirror substrate to be a half infinite space. We establish

a Cartesian coordinate system, with (x, y) directions along the coating-substrate interface, and z

direction orthogonal to the mirror surface (in the elasticity problem, we also ignore mirror curvature).

This allows us to calculate elastic deformations in the spatial frequency domain. We will also assume

the coating thickness to be much less than the beam spot size.

We denote the displacement along x, y and z directions as ux, uy, and uz. It is then straightfor-

ward to express the 3× 3 strain tensor S in terms of their derivatives, and stress tensor T in terms

of Hooke’s Law:

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.135)

Θ = Sii (2.136)

Σij =
1

2
[Sij + Sji]−

1

3
δijΘ (2.137)

Tij = −KΘIij − 2µΣij . (2.138)

Here we have xj = (x, y, z), with Latin indices (like i and j) running from 1 to 3. Within any layer,

it is straightforward to write down the most general solution of the elasticity equilibrium equation

Tij,j = 0 (2.139)

as

ũx = ikx[(α̃+ + κzβ̃+)eκz + (α̃− − κzβ̃−)e−κz]

− iky[γ̃+e
κz + γ̃−e

−κz] (2.140)

ũy = iky[(α̃+ + κzβ̃+)eκz + (α̃− − κzβ̃−)e−κz]

+ ikx[γ̃+e
κz + γ̃−e

−κz] (2.141)

ũz = −κ[α̃+ + β̃+(−3 + 4σ + κz)]eκz

+ κ[α̃− + β̃−(−3 + 4σ − κz)]e−κz (2.142)

where tilde denotes quantities in the x-y spatial-frequency domain, and κ =
√
k2
x + k2

y. Namely

ux(x, y, z) =

∫
dkxdky
(2π)2

ũ(kx, ky, z)e
−i(kxx+kyy) . (2.143)

We now consider a single-layer coating on a substrate, with the coating-substrate interface located

at z = 0, and the coating-air interface at z = l. Suppose there is a force profile F (x, y) exerted
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Figure 2.17: Sample with single layer coating. Force is applied perpendicular to the air/coating
interface.

perpendicular to the coating surface, at z = d, 0 < d < l, and let us calculate the elastic deformation

field caused by F . The entire system is now divided into three regions, (a): d < z < l, (b): 0 < z < d,

and (s): z < 0. At the interfaces, we obtain the following 15 boundary conditions,

T aiz = 0 , z = l (2.144)

T axz = T bxz , T
a
yz = T byz , T

b
zz − T azz = F , z = d (2.145)

uaj = ubj , z = d (2.146)

T biz = 0 , ubj = usj , z = 0 (2.147)

as well as the condition that when z → −∞, usj → 0 (which leads to α̃s− = β̃s− = γ̃s− = 0). We are

left with 15 fields of

(α̃a±, β̃
a
±, γ̃

a
±, α̃

b
±, β̃

b
±, γ̃

b
±, α̃

s
+, β̃

s
+, γ̃

s
+) (2.148)

which can be solved from the 15 boundary conditions. Assuming κd � 1 and κl � 1, we obtain
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that all γ̃ vanish, and

α̃a+ =
F (1 + σs)[2− 3σs + σc(−3 + 4σs)]

2Ysκ2(−1 + σc)
(2.149)

α̃a− =
F (σc − σs)(1 + σs)

2Ysκ2(−1 + σc)
(2.150)

β̃a+ = −F (1 + σs)(−3 + 4σs)

4Ysκ2(−1 + σc)
(2.151)

β̃a− =
F (1 + σs)

4Ysκ2(1− σc)
(2.152)

α̃b+ =
F (1 + σs)[2− 3σs + σc(−3 + 4σs)]

2Ysκ2(−1 + σc)
(2.153)

α̃b− =
F (σc − σs)(1 + σs)

2Ysκ2(−1 + σc)
(2.154)

β̃b+ =
F [Ys(1 + σ)− Yc(−3 + σs + 4σ2

s)]

4Y Ysκ2(−1 + σc)
(2.155)

β̃b− =
F [Ys(1 + σc)− Yc(1 + σs)]

4Y Ysκ2(−1 + σc)
(2.156)

α̃s+ =
F (1 + σs)(−1 + 2σs)

Ysκ2
(2.157)

β̃s+ = −F (1 + σs)

Ysκ2
. (2.158)

We can therefore obtain the strain tensor in the frequency domain for the coating, the nonzero

elements for region (a) are given by

Saxx =
Fk2

x(−1 + 2σs)(1 + σ2
s)

Ysκ2
(2.159)

Sayy =
Fk2

y(−1 + 2σs)(1 + σ2
s)

Ysκ2
(2.160)

Saxy = Syx =
Fkxky(−1 + 2σs)(1 + σ2

s)

Ysκ2
(2.161)

Sazz = F
σc(−1 + σs + 2σ2

s)

Ys(−1 + σc)
(2.162)

while those in region (b) are given by

Sbxx =
Fk2

x(−1 + 2σs)(1 + σ2
s)

Ysκ2
(2.163)

Sbyy =
Fk2

y(−1 + 2σs)(1 + σ2
s)

Ysκ2
(2.164)

Sbxy = Syx =
Fkxky(−1 + 2σs)(1 + σ2

s)

Ysκ2
(2.165)

Sbzz = F

[
−(1 + 2σc)

Yc
− σc(−1 + σs + 2σ2

s)

Ys(1− σc)

]
. (2.166)
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Using linear superposition, as well as taking the appropriate limits of the above solution, it is

straightforward to obtain elastic deformations in all the setups required in order to obtain cross

spectra between different noises.

2.11 Appendix C: Definition of loss angle

In the past [11], the coating loss angle was defined in association with the parallel and perpendicular

coating strains. The equation is written as

φcoated = φsub +
δU‖d

U
φ‖ +

δU⊥d

U
φ⊥ (2.167)

where δU‖ and δU⊥ are the dissipation energy density in parallel and perpendicular coating strains

δU‖ =

∫
s

1

2
(SxxTxx + SyyTyy) dxdy (2.168)

δU⊥ =

∫
s

1

2
SzzTzz dxdy (2.169)

and where Sij are the strains and Tij are the stresses. While such a definition seems to be compatible

with the symmetry of the system, the quantities δU‖ and δU⊥ cannot be used as energy, since in

certain scenarios they each can become negative.

For example, if we have a cube with surface area of each side A (Poisson’s ratio σ, Young’s

modulus Y), we uniformly apply two pairs of forces, one pair with magnitude f on opposite yz

planes, the other with magnitude F on opposite xy planes, with f � F , as shown in Figure 2.18.

According to definition of Young’s modulus and Poisson’s ratio, up to leading order in f/F the

nonvanishing strains are,

Szz = −F/A
Y

, Sxx = Syy = σ
F/A

Y
. (2.170)

On the other hand, for stress, we have, up to leading order in f/F ,

Txx = −f/A , Tyy = 0 , Tzz = −F/A . (2.171)

As a consequence, we have

δU‖ = SxxTxx + SyyTyy = −σfF/(A2Y ) < 0 (2.172)

which means δU‖ is not a reasonable candidate for energy, at least with σ 6= 0. Since it is also true

that SxxTxx < 0 we will arrive at

δU⊥ = SzzTzz < 0 (2.173)
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if we take this configuration and rotate for 90 degrees around the y axis, such that x rotates into z.

F

F

f f
x

z

Figure 2.18: Solid cube with two pairs of forces applied on the side: f � F

One reasonable way of defining the loss angle is to derive from the fundamental elastic energy

equation. The general form of the stored elastic energy density U can be written as

U =
1

2
KΘ2 + µΣijΣij (2.174)

UB =
1

2
KΘ2 (2.175)

US = µΣijΣij . (2.176)

Where K is called the bulk modulus and µ is the shear modulus. In the calculation, we use Young’s

modulus Y and the Poisson’s ratio σ instead of K and µ. Their relation is given in Eq.(15). The

expansion Θ and shear Σ are both irreducible tensorial parts of the strain tensor S.

Θ = Sii (2.177)

Σ =
1

2
(Sij + Sji)−

1

3
gijSkk (2.178)

Note that the expansion and shear energy UB and US is always positive, so it is consistent to define

loss angle by φB and φS .

2.12 Appendix D: Advanced LIGO Style Coating [25]

In Table 2.7, we provide the structure of the coating optimized jointly for dichroic operation and

thermal noise (baseline parameter, neglecting penetration).
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j lj
1–5 0.497325 0.208175 0.289623 0.237274 0.250176
6–10 0.245330 0.249806 0.240129 0.270968 0.224129
11–15 0.251081 0.259888 0.260826 0.213460 0.290468
16–20 0.214524 0.273240 0.230905 0.259924 0.230020
21–25 0.275429 0.233086 0.270385 0.208581 0.273798
26–30 0.249741 0.267864 0.204698 0.292317 0.209712
31–35 0.278560 0.220264 0.282694 0.221687 0.268559
36–38 0.233460 0.270419 0.223050

Table 2.7: Structure of an advanced LIGO-like coating optimized jointly for dichroic operation
and thermal noise. Thickness of each layer is given in units of wavelength (for light with vacuum-
wavelength of 1064 nm) are listed here for the 38 layers. Note that l1,3,5,... are SiO2 layers, while
l2,4,6,... are Ta2O5 layers.
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Chapter 3

Effects of Mirror Aberrations on
Laguerre-Gaussian Beams in
Interferometric Gravitational-Wave
Detectors

A fundamental limit to the sensitivity of optical interferometers is imposed by Brow-

nian thermal fluctuations of the mirrors’ surfaces. This thermal noise can be reduced

by using larger beams which “average out” the random fluctuations of the surfaces. It

has been proposed previously that wider, higher-order Laguerre-Gaussian modes can

be used to exploit this effect. In this article, we show that susceptibility to spatial

imperfections of the mirrors’ surfaces limits the effectiveness of this approach in in-

terferometers used for gravitational-wave detection. Possible methods of reducing this

susceptibility are also discussed.

Originally published as T. Hong, J. Miller, H. Yamamoto, R. Adhikari, and Y. Chen,

Physics Review D 84,102001(2011).
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3.1 Introduction

Long-baseline laser-interferometer gravitational-wave detectors, such as those used in LIGO [1],

VIRGO [2], GEO600 [3], and LCGT [4], use Michelson interferometry to measure tiny differential

changes in arm length induced by gravitational waves. Spurious motions of a mirror’s surface,

such as those caused by seismic, thermal, and radiation-pressure fluctuations, can compromise the

sensitivity to gravitational wave signals. Brownian thermal noise in the dielectric mirror coatings,

or coating Brownian noise, is known to be the dominant noise source in the intermediate frequency

band of Advanced LIGO [5] and other similar interferometers.

As described by the fluctuation-dissipation theorem [6, 7], dissipation via internal friction in the

dielectric coatings must lead to fluctuations in the thickness of the coatings. When the beam spot

size is much larger than the coating thickness, coating Brownian noise at different locations on the

mirror’s surface can be considered to be uncorrelated. This leads to the following scaling law [8, 9],

Sx ∝

∫
I2(~r) d2~r[∫
I(~r) d2~r

]2 (3.1)

which describes how the power spectrum of observed coating Brownian noise Sx depends on the

intensity profile I(~r) of the optical field which is used to read out the mirror motion; i.e., the coating

Brownian noise power spectrum is inversely proportional to the effective area of the optical mode.

Mode Mirror Shape Suppression Factor Ref.
LG3,3 Spherical 1.61 [10]
Mesa Sombrero 1.53 [11, 12]

Conical Conical 2.30 [13]

Table 3.1: Beam shapes that have been considered for use in gravitational-wave detectors, mirror
shapes that support them and their thermal-noise suppression factors (in power) for advanced LIGO
parameters (cavity length L = 4 km, mirror radius of 17 cm)

Three families of optical modes have so far been considered for mitigating coating thermal noise

(see Table 3.1). Among these modes, only the higher-order Laguerre-Gauss mode, LG3,3, can be

supported by optical cavities employing standard spherical mirrors. Due to the practical advantages

associated with the use of spherical mirrors, experimental testing of LG3,3 modes has begun. It has

thus far been demonstrated that these modes can be generated with high efficiency and resonated

in tabletop cavities with small mirrors [14, 15].

An unpleasant property of higher-order LG modes is that each LGp,l mode is 2p + |l| + 1 fold

degenerate, the LG3,3 mode being 10 fold degenerate. Mirror figure errors will inevitably split each

formerly degenerate mode into 2p+ |l|+ 1 single modes with eigenfrequencies which depend on the

particulars of the figure error. By contrast, a nondegenerate mode, under the same figure error, will
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usually remain as a single, weakly-perturbed nondegenerate mode.

In this work we explore the effects of LG3,3 modal degeneracy quantitatively, via both numer-

ical and analytical methods. Guided by experience with existing interferometers we have selected

contrast defect as our metric of interferometer performance.

To ground our investigation in reality we incorporate mirror figure errors derived from measure-

ments of the first advanced LIGO optics. The creation of these maps is described in Section 3.2.

In Section 3.3, we use perturbation theory to analyze the effect of such mirror perturbations

on the degenerate subspace which includes the LG3,3 mode. We then use this newly perturbed set

of modes to calculate the contrast degradation of a single Fabry-Perot arm cavity analytically in

Section 3.4.1.

In Section 3.4.2, we utilize a sophisticated numerical field propagation code to confirm analytical

results and examine a more complicated interferometer topology.

In Sec. 3.5, we explore two methods of mitigating contrast degradation; neither of the methods

was ultimately successful.

3.2 Mirror Figure Errors

10
−2

10
−110

−3

10
−2

10
−1

10
0

10
1

Spatial frequency [mm−1]

S
ur

fa
ce

 r
ou

gh
ne

ss
 [n

m2  m
m

−
1 ]

 

 

ITM06

ETM04

ITM04

Model

Figure 3.1: Power spectral densities of uncoated mirror surface roughness. The dashed lines are
the measured spectra of three Advanced LIGO arm cavity mirrors. A model approximating these
spectra (black trace, see (3.2)) was created to generate the random maps used in our work.
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In this work we investigate the consequences of realistic mirror imperfections on the performance

of the LG3,3 mode. The parameters of the particular imperfections applied are therefore significant.

Fig. 3.1 illustrates measured surface roughness power spectral densities of selected advanced

LIGO mirror substrates, prior to the application of dielectric mirror coatings (the PSD plots end

up to spatial wavelength of 2 mm). Based on the measured initial LIGO optics and small optics

of advanced LIGO, we construct an analytical model (solid black line) which falls roughly in the

middle of advanced LIGO test mass PSDs,

S(f) ∝ (1 + (0.04f)2)−1. (3.2)

This one-dimensional function was used to generate random mirror maps which are statistically

similar to those one might find in an advanced gravitational-wave interferometer. Such random

mirror maps, used in all aspects of this investigation, were constructed by multiplying each point of

the amplitude spectral density’s magnitude by a random complex number a+ ib before transforming

back to coordinate space and appropriately scaling the result to yield the desired RMS. Scalars a

and b are drawn independently from a normal distribution with zero mean and a standard deviation

of one [16].

The entire surface is fit by Zernike polynomials and the terms corresponding to Piston, tilt and

power (Zernike polynomials Z0
0 , Z±1

1 Z0
2 ) were removed from our maps (the Piston term is irrelevant

because the lock process adjusts the microscopic length; the tilt term is removed to represent the

alignment control; the ROC of the generated surface is corrected by hand). The RMS values quoted

are calculated after this subtraction.

Fig. 3.2 shows the surface figure of one map generated using our algorithm. This map is typical

of a larger population and was selected as a reference to be used in all analytical calculations.

3.3 Degenerate Perturbation-Theory Analysis

3.3.1 Laugerre-Gauss modes

The Laguerre-Gauss modes (LGp,l) are a set of circularly symmetric modes which can be written in

cylindrical coordinates as [17]

up,l(r, φ, z) =

√
2 p!

π(|l|+ p)!

1

ω(z)

[√
2r

ω(z)

]|l|
× L|l|p

[
2r2

ω2(z)

]
exp[i(2p+ |l|+ 1)ψ(z)]

× exp

[
−ik r2

2R(z)
+ ilφ

]
exp

[
−r2

ω2(z)

]
,

(3.3)
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Figure 3.2: Surface figure (in nm) of a typical generated phase map with Piston, tilt, power and
astigmatism terms subtracted

where ω(z) is the beam radius, ψ(z) is the Gouy phase, and R(z) is phase front curvature of the

beam. L
|l|
p (x) is the associated Laguerre polynomial where p ≥ 0 and l are the radial and azimuthal

indices, respectively.

The mode selectivity of the cavity is determined by the cavity finesse and the mode dependent

phase shift (2p + |l| + 1)ψ(z). From this we see that the LGp,l mode has 2p + |l| + 1 degenerate

eigenmodes. For example, LG3,3 belongs to a ten fold degenerate space, which can be spanned by:

LG3,±3, LG0,±9, LG1,±7, LG2,±5 and LG4,±1.

Coating Brownian noise power is proportional to the integral of beam intensity, as the scaling

law (Eq. (3.1)) indicates. In Table 3.2, we present theoretical thermal noise suppression factors

for selected LG modes. To permit a fair comparison, the widths of all modes considered here and

henceforth were chosen to be 0.018 m, which yield a clipping loss [18], due to the finite size of the

cavity mirrors, of around 1 ppm. We see that the LG3,3, considered by many as the leading candidate

for use in gravitational wave interferometers, offers a theoretical thermal noise reduction factor of

∼ 1.6 compared to a standard Gaussian beam (LG0,0). The transverse intensity distribution of the

LG3,3 mode is presented in Fig. 3.3.
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Figure 3.3: Normalized intensity distribution of the LG3,3 mode at the mirror position (ω0 = 0.021
m, z = 1997.25 m)

LG0,0 LG0,9 LG1,7 LG2,5 LG3,3 LG4,1

Beam radius
(mm) 9.96 16.5 17.3 17.9 18.2 18.4
Suppression
Factor 1 1.51 1.62 1.64 1.61 1.51

Table 3.2: Suppression factors of thermal noise (in power spectral density) for LG modes with a
fixed clipping loss of 1 ppm
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3.3.2 Application of Degenerate Perturbation Theory to the Perturbed

Fabry-Perot Cavity

The combination of eigenmodes excited in a cavity depends on the composition of the incident field

and on the properties of the cavity itself. In this section we discuss how first-order perturbation

theory can be applied to this problem. We first explore how mirror figure error breaks the degeneracy

of LG cavity modes before describing the phase shift each mode experiences in an optical cavity and

finally constructing the total field (prompt plus leakage) reflected from a perturbed Fabry-Perot

resonator.

3.3.2.1 Mode Splitting

Fig. 3.4 illustrates light propagation in a simple Fabry-Perot cavity, introducing the notation em-

ployed in our formalism.

Figure 3.4: Fabry-Perot cavity with a perturbation δh(x, y) on the end mirror

We use the following standard method for propagating cavity fields,

Ψr(~r) =

∫
K(~r, ~r ′)Ψl(~r

′) d2~r ′, (3.4)

or |Ψr〉 = K̂|Ψl〉, where Ψr and Ψl are the electric fields near the right and left mirror, respectively,

and K is the field propagator from the left mirror to the right

K(~r, ~r ′) =
ik

2πL
e−

ik
2L |~r−~r

′|2 . (3.5)

Therefore, if |ψ〉 is an eigenmode of the cavity,

|ψ〉 = R̂K̂R̂′K̂|ψ〉, (3.6)

where R̂ is the reflection operator of the left mirror and R̂′ is for the right. Hence, |ψ〉 is an eigenmode

of the operator (R̂K̂R̂′K̂).

We assume that the mirror on the left is ideal and study the consequences of applying a surface

figure perturbation δh to the right hand (end mirror) optic. The reflection operator R̂′ can then be
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written as

R̂′ = R̂e2ikδh ≈ R̂(1 + 2ikδh). (3.7)

To obtain the real cavity eigenmodes, we need to solve for the eigenfunctions of (R̂K̂R̂′K̂). Note

that the original LG33 mode is an eigenfunction of an unperturbed cavity:

|33〉 = (R̂K̂R̂K̂)|33〉. (3.8)

As introduced above, the LG33 mode is degenerate with 9 other modes, each having eigenfre-

quency ω0, thus R̂K̂R̂K̂ also has 10 degenerate eigenmodes at ω0.

For reasonable parameters, modes outside of this degenerate subspace are far enough from res-

onance that we may ignore them in this first-order analysis. Therefore, to good approximation, we

can assume the new eigenmodes of the perturbed cavity are still members of the Hilbert space of the

original 10 LG modes, which we represent by |i〉, (i=1,2,. . . ,10). These new eigenmodes, denoted

|i′〉, are the eigenvectors of the matrix with elements 〈i|R̂K̂δhR̂K̂|j〉 = 〈i|δh|j〉, (i, j = 1, 2, . . . , 10)


〈1|δh|1〉 . . . 〈1|δh|10〉

...
. . .

...

〈10|δh|1〉 . . . 〈10|δh|10〉

 . (3.9)

Denoting the electric field of |i〉 as φi, we write

〈i|δh|j〉 =

∫ ∫
φ∗i (x, y)δh(x, y)φj(x, y) dxdy. (3.10)

The frequency shift of the degenerate modes introduced by the perturbation is then proportional to

the eigenvalues of the matrix

ωi′ =
kc

L
〈i′|δh|i′〉, (3.11)

where k = 2π/λ is the optical wavenumber, c is the speed of light and L is the cavity length.

This quantity was evaluated using the reference map shown above (Fig. 3.2). The RMS rough-

ness of the reference was scaled to be similar to those of measured Advanced LIGO mirror surfaces

(0.3 nm RMS). Results are presented in Fig. 3.5. Here the frequency splits are given in Hertz (ω/2π).

The frequency shifts are one order of magnitude smaller than the advanced gravitational-wave in-

terferometer’s cavity linewidth. Thus, multiple perturbed eigenmodes will be partially resonant,

radically distorting the shape of the output field.
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Figure 3.5: Frequency shift of LG modes introduced as a result of realistic mirror perturbations

3.3.2.2 The Modal Input-Output Equation

Above we have shown that mirror figure errors will lift the modal degeneracy and split the degenerate

LG3,3 space into distinct states with unique eigenfrequencies. We now consider how each of these

modes interacts with a cavity.

For any mode |in〉 injected into an ideal cavity, there exists a frequency dependent phase shift

between the input and total reflected or output fields. This can be written as [19]

|out〉 =
γc + i(ω − ω0)

γc − i(ω − ω0)
|in〉, (3.12)

where ω is the frequency of the injected field, ω0 is the resonant frequency of the cavity closest

to ω and γc = cTinput/4L is the cavity pole frequency in Hertz. Here, Tinput denotes the power

transmissivity of the cavity input mirror; the transmissivity of the end mirror is assumed to be zero.

Suppose that this ideal cavity hosts an N -fold degenerate space and that we inject an input mode

|in〉 which belongs to this space. If the N -fold degeneracy is broken by some mirror figure error, the

new eigenmodes can be approximated by |n〉, n = 1, 2, . . . , N , where each mode still belongs to the

original subspace, but has a new eigenfrequency ωn. As we shall see in Appendix 3.7, this is justified

as long as the cavity finesse is high enough and the eigenfrequencies of the non-degenerate modes

are well separated from this subspace.

The output from the perturbed cavity can be obtained by projecting the input mode |in〉 onto
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the new basis |n〉 and calculating the phase shifts using the following relation:

|out〉 =

N∑
n′=1

γc + i(ω − ωn′)
γc − i(ω − ωn′)

|n′〉〈n′|in〉. (3.13)

This procedure was applied to the LG3,3 degenerate space using the resonant frequencies of the

previous section, ωn. With the reference phase map scaled to 0.3 nm RMS, the intensity profile of

the resulting output mode is shown in Fig. 3.6.

3.4 Contrast Defect

In gravitational-wave interferometers, contrast defect is defined as the ratio of the minimum possible

optical power at the anti-symmetric (dark) port to the power incident on the beamsplitter. This

quantity can be expressed as

C =
PAS

PX + PY
, (3.14)

where X and Y are labels for the two arm cavities, P� =
∫∫

R2(Ψout
� )∗Ψout

� dxdy and Ψout
AS = Ψout

X −

Ψout
Y represents the field at the anti-symmetric port (AS) of the interferometer.

In principle, the dark port could be completely dark. However, the presence of intentional im-

balances in the arms (finite beamsplitter size, Schnupp asymmetry, etc.) and unintentional imper-

fections (mirror shape, scatter loss, mirror motion, etc.) result in imperfect destructive interference

between the fields which recombine at the beamsplitter. This imperfect interference leads to the

leakage of some ‘junk’ light to the dark port where the gravitational-wave signal is also detected.

Excess light at the dark port can lead to a degradation of sensitivity via several mechanisms and com-

promise the robust operation of interferometer longitudinal and alignment control systems [20, 21].

Contrast defect is thus a useful metric to employ when comparing interferometer configurations.

The above perturbation analysis shows that the fields resonating in the arm cavities of a real

interferometer will no longer be pure LG3,3 modes. Further, the relative amplitudes of the quasi-

degenerate modes are strongly dependent on mirror properties, which will, in general, be different

for each arm. Hence the perturbed arm cavity fields will interfere imperfectly at the beamsplitter.

We therefore expect an LG3,3 interferometer to exhibit a larger contrast defect than, e.g., an LG0,0

mode. We now test this hypothesis by analytical and numerical means.
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Figure 3.6: Intensity distributions of the total field reflected from an arm cavity whose end mir-
ror was perturbed by the reference map. These distributions were calculated independently via
two different techniques. Top—Analytic method described in Section 3.3.2. Bottom—FFT-based
numerical simulation (see Section 3.4.2)
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3.4.1 Analytic Calculation

According to Appendix 3.7, the contrast defect in an interferometer with one perfect arm cavity and

one perturbed arm cavity, can be analytically written as

ε = 1− |〈in|out〉|, (3.15)

when the mirror perturbations are sufficiently small (ε� 1).

Appendix 3.7 also shows that when a frequency shift is small compared with the line width of

the cavity, i.e. ω − ωn � γ, Eq. 3.15 can be approximated as

ε =

[∑
n′

〈33|δh|n′〉〈n′|δh|33〉 − 〈33|δh|33〉2
](

8
√

2π

λT

)2

, (3.16)

where

〈33|δh|pl〉 =

∫
δh(u∗33upl) dxdy. (3.17)

Alternatively, this can be written as

ε =

[
(8
√

2π)

λT

]2

δz2, (3.18)

where

δz2 =
∑

2p+|l|=10
(p,l)6=(3,3)

|〈33|δh|pl〉|2 . (3.19)

This suggests that in order to minimize contrast defect, one must strive to suppress the projection

of δh onto the 9 complex basis functions, given by u∗33upl. Since these functions are complex and δh

is real, this actually corresponds to 18 basis functions.

Based on Eq. (3.13), the contrast defect has been evaluated analytically in the case that only

the end mirror (ETM) of one cavity is perturbed with the reference phase map of Fig. 3.2. The

perturbation for different RMS values was obtained by rescaling the reference phase map. The

results are shown in Fig. 3.7.

One can show that, for small perturbations, perturbing two cavity mirrors using phase maps

derived from the same power spectral density function, will, on average, result in twice the contrast

defect when compared to perturbations of a single mirror. However, depending on the spatial

correlations between the mirrors, the contrast defect can be as much as twice the average in some

cases.
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Figure 3.7: Contrast defect with the ETM of one cavity perturbed by rescaling the reference phase
map: Solid red is from the analytical calculation, blue marker is from the FFT calculation.

3.4.2 Numerical Calculation

To confirm the results obtained via perturbation theory and to extend our analysis to more compli-

cated configurations, a parallel investigation was carried out using numerical methods. We utilized

an FFT-based field propagation tool—the stationary interferometer simulation (SIS) [23].

SIS is predominantly used to inform the design of the advanced LIGO interferometers and is

under continuous development at Caltech’s LIGO laboratory. SIS employs an iterative procedure to

find the stationary fields for a given optical configuration and input beam. Mirror surface maps can

be generated from user-defined power spectral density functions, allowing one to study the effects

of various hypothetical mirror aberrations. Cavity systems are ‘locked’ using a Pound-Drever-Hall

signal [24] to realize an operating condition similar to that which would be observed experimentally.

SIS was used to model advanced LIGO Fabry-Perot arm cavities supporting LG0,0, LG3,3 and

nearly concentric mesa modes [11, 12]. The parameters of the LG3,3 and mesa cavities (see Ta-

ble 3.4.2) were adjusted to yield systems with round-trip diffraction loss equivalent to that of the

fiducial LG0,0 resonator (. 1 ppm). In each case the input beam remained fixed as the beam which

was ideally coupled to an unperturbed cavity. To suppress the aliasing effect, a larger FFT grid of

1024×1024 points on a 0.7 m×0.7 m square was used for all modes.

Initially SIS was used to simulate a configuration identical to that studied analytically. Under

these conditions both sets of results are in good agreement (better than 10%) (see Figs. 3.6, 3.7

and 3.8). The flexibility of SIS was then used to consider more complex simulations where both
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LG0,0 LG3,3 Mesa
Ritm 1934 m 2857 m 1997.25 m
Retm 2245 m 2857 m 1997.25 m
Cavity g factor 0.83 0.16 —

Table 3.3: Cavity parameters used in the numerical simulations. All three resonators had a length
of 3994.5 m. The mesa radii of curvature refer to the fiducial sphere from which the mesa correction
profile is subtracted (cf. [11]). Cavity g factor is not well defined for mesa modes.
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Figure 3.8: Ratio, numerical/analytical, of single-cavity contrast defects calculated with the end
mirror perturbed by a 0.3 nm RMS figure error
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cavity mirrors are perturbed and to emulate a Fabry-Perot Michelson interferometer. SIS was also

employed to study high-RMS cases in which the analytic approximation breaks down.

For each simulation run, two random surfaces, with a specified RMS roughness and a spatial

spectrum approximating that of the first Advanced LIGO mirrors (see Fig. 3.1), were generated

and added to the profiles of the cavity mirrors. SIS then evaluated the field Ψout reflected from

the cavity at its operating point, which is chosen from the cavity which is locked by using the

Pound-Drever-Hall error signal.

Results from two discrete, single-cavity simulations, representing the X and Y arms of an in-

terferometer, were then combined according to Eq. 3.14 to estimate interferometer contrast defect.

Multiple trials were conducted at each value of RMS surface roughness with different random maps,

allowing one to consider more than 100 unique arm cavity pairs. From these data, the mean and

standard deviation of interferometer contrast defect were found as a function of mirror aberration

RMS. Results for all three beams are shown in Fig. 3.9. The simulated contrast defect for Gaussian

beam (TEM00) is consistent with the measured value of LIGO, which is around 10−4 [25] and low

enough for the effective detection.
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Figure 3.9: Interferometer contrast defect as a function of test mass surface roughness (all 4 mirrors
are perturbed with random phase map at the same level of RMS). Solid markers report mean
values of numerical results with the corresponding shaded regions illustrating one standard deviation
(see 3.4.2), which is roughly four times higher than the trace in Fig. 3.7

Our numerical work confirms the result from perturbation theory; LG3,3 interferometers are

more sensitive to mirror surface roughness than those supporting a fundamental Gaussian mode.
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Figure 3.10: Analytic calculation with different conditions for reducing the contrast defect: solid
curve is the original contrast defect; dashed line has corrective rings added to the phase map; dotted
curve is with detuned injecting laser frequency

We further show that LG3,3 beams are also outperformed in this respect by nearly-concentric mesa

beams, indicating that this sensitivity arises due to the properties of the Laguerre-Gauss mode itself

and is not an inevitable handicap for all beams capable of mitigating mirror thermal noise.

3.5 Contrast Defect Improvement

Here we examine several methods of reducing the contrast defect.

3.5.1 Better Polishing

The most direct approach is to reduce the mirror figure error. However, reaching appropriate levels

of surface roughness is beyond the capabilities of current technology. We estimate that in order to

achieve reasonable performance, LG3,3 modes require mirrors with an RMS roughness roughly one

order of magnitude smaller than is currently achievable (assuming the mirror coatings introduce no

additional roughness, i.e., perfectly smooth, uniform coatings).

In the remainder of this section, we thus consider more unconventional means of reducing the

contrast defect. Fig. 3.10 shows the results of each investigation.
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3.5.2 Arm Cavity Detuning

Equation (3.12) shows that the output field varies with the frequency of light injected into a cavity,

or equivalently with cavity length. This motivated us to study the variation in contrast defect as a

function of arm cavity detuning.

It was found that detuning was effective in modifying contrast defect. Unfortunately, the large

detuning necessary to recover good contrast had the effect of simultaneously reducing the optical

power circulating in the cavity.

With a detuning of 100 Hz (approximately two cavity linewidths), it was possible to recover

acceptable contrast (dotted line, Fig. 3.10). However, the same detuning causes the circulating

power to drop by ∼ 60%. We therefore do not consider this approach to be viable in gravitational-

wave interferometers where the injected frequency is usually tuned to maximize the optical power

circulating in the coupled-cavity system. This technique can, however, be considered for experiments

where the thermal noise needs to be reduced, but the cavity’s stored power is not of concern.

3.5.3 Mirror Corrections

The increase in contrast defect observed when using LG3,3 modes in the presence of realistic surface

roughness results from the presence of multiple pseudo-degenerate higher-order modes. Here we

attempt to see if this effect can be mitigated by depositing corrective structures on the mirror’s

surface.

By introducing material at the nodes of the desired LG3,3 mode it was hoped that the unwanted

modes from the same subspace could be suppressed.

As a concrete example, two Gaussian rings were added to the random phase map at nodes 1 and

3 of the LG3,3 mode. Each ring was of the form:

f(x, y) =
λ

20
e
− (r−rp)2

2(R/100)2 (3.20)

where rp indicates the position of the different nodes. The frequency split is plotted in Fig. 3.11.

Compared to Fig. 3.5, the frequency splits under this condition are much larger, therefore the other

degenerate modes will be harder to excite.

The analytically computed contrast defect for this case is plotted as the dashed line in Fig. 3.10.

Although the defect is improved for values of surface roughness similar to that which is currently

achievable, we find that, in order to significantly break the modal degeneracy, the height of the rings

must be increased to such a degree that the induced scatter becomes unacceptably high (∼ 500 ppm),

reducing the stored power and thus the interferometer’s phase sensitivity. We hence conclude that

this approach is not promising.

At Caltech, Yamamoto has studied a similar approach whereby the mirror reflectivity is set to
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Figure 3.11: Frequency shift in LG modes introduced by adding rings to the reference phase map.

zero at the nodes of the LG3,3 mode [26]. This technique was found to be similarly unsuitable for

application to gravitational wave interferometers.

3.5.4 Mode Healing

Previous work [27] has shown that the presence of a signal recycling cavity can substantially reduce

the contrast defect in the case where the resonant mode in the interferometer is TEM0,0. The higher

order transverse modes are not resonant in the signal recycling cavity and are therefore suppressed.

In the LG3,3 case, however, the signal cavity is resonant for the LG3,3 mode as well as all of the

modes which are in the degenerate subspace. Therefore, our expectation is that there would not

be a mode healing effect when using any higher order mode which can be split in this way. In

the case where the signal recycling cavity is detuned to amplify the gravitational wave response at

a particular frequency, the situation could be significantly more complicated due to the frequency

splitting shown in Fig. 3.5. To quantitatively explore the effect of the compound cavity on degenerate

modes, further analytic and numerical work is required.

3.6 Conclusions

In this paper, we use numerical analysis as well as perturbation theory to analyze the modes of a

Fabry-Perot cavity resonating a LG3,3 beam. We prove that with realistic mirror figure errors, the

real output mode of the cavity will change significantly, resulting in an unacceptable increase of the

contrast defect.

We also investigate unconventional corrective techniques to reduce the contrast defect. While
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they turn out to be unsuitable for quantum shot noise limited interferometers, they may have some

utility for other classes of cavities. For LG3,3 modes to function effectively, we estimate that surface

figure errors must be reduced to the order of 10−2 nm RMS to achieve the required contrast defect of

LIGO(∼ 10−4). Such precise polishing and coating uniformity will likely not be available for several

years. Using high-order Laguerre-Gauss modes in standard spherical mirror cavities appears to be

a poor choice in light of current technologies.

Numerical simulations using mesa and normal Gaussian beams show these beams are not so

sensitive to figure errors. Future effort will be directed toward the construction of a new family of

optical modes which can reduce the thermal noise impact while simultaneously being robust against

mirror imperfections.

3.7 Appendix: Contrast Defect

Here we show that the contrast defects defined in equations (3.15) and (3.14) are equivalent in the

limit of small perturbations. We denote the input and output field for the two cavities (X and Y) as

|in〉X , |out〉X , |in〉Y , |out〉Y . In our analytical calculation, we assume the input and output fields of

each cavity are normalized, because we ignore transmissivity of the ETM, and the diffraction loss,

so that we have

〈in|in〉X = 〈in|in〉Y = 〈out|out〉X = 〈out|out〉Y = 1. (3.21)

We can then write

PX = 〈in|in〉X = 1, PY = 〈in|in〉Y = 1 (3.22)

and the power at the anti-symmetric port can be written as

PAS = ‖|out〉X − |out〉Y ‖2

= 2− 〈out|out〉XY − 〈out|out〉Y X . (3.23)

With the definition of contrast defect in Eq. (3.15), we have

εX = 1− |〈in|out〉X |, εY = 1− |〈in|out〉Y | (3.24)

so that we can write the output field as

|out〉X = (1− εX)eiφX |in〉X + |δX〉

|out〉Y = (1− εY )eiφY |in〉Y + |δY〉 (3.25)
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where

〈δX |in〉X = 0, 〈δX |δX〉 = εX

〈δY |in〉Y = 0, 〈δY |δY 〉 = εY

〈δX |in〉Y = 〈δY |in〉X = 0 . (3.26)

In both the analytical and numerical calculations, we assume one of the two interferometer

cavities is perfect and the other is with mirror figure errors, so here we can write εY = 1, |δY 〉 = 0,

therefore, to the first order approximation (εX � 1), we obtain

PAS = 2εX (3.27)

which shows that the contrast defect defined in Eq. (3.14) is the same as the analytical definition in

Eq. (3.15).

When we consider two cavities both with imperfections, if they are statistically independent, we

can write 〈δX |δY 〉 = 0, so that the average value of the contrast defect of the system is

PAS = 2(εX + εY ). (3.28)

We now show that Eq. (3.15) can be approximately written as given in Eq. (3.16). From

Eq. (3.13), we have

〈in|out〉 =
∑
n′

γ + i(ω − ωn′)
γ − i(ω − ωn′)

〈in|n′〉〈n′|in〉 (3.29)

when ω − ωn′ � γ, Eq. (3.29) can be expanded as

∑
n′

[
1 +

2i(ω − ωn′)
γ

− 2(ω − ωn′)2

γ2

]
〈in|n′〉〈n′|in〉 . (3.30)

Note that when the mode frequency is shifted ωn′ , the optical power in the cavity is maximized,

so that the linear term vanishes, therefore that the modulated frequency of the beam ω can be given

by:

ω =
kc

L
〈33|δh|33〉 . (3.31)

The contrast defect defined in Eq. (3.15) is

ε =
∑
n′

2(ω − ωn′)2

γ2
〈in|n′〉〈n′|in〉

=
2

γ2

(∑
n′

〈in|n′〉ω2
n′〈n′|in〉 − ω2

)
. (3.32)
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After perturbation, the frequency split is the eigenvalue of the matrix given in Eq. (3.9) and the

eigenvector of the matrix is the real eigenmode of the cavity, thus we can write

∑
n′

〈in|n′〉ω2
n′〈n′|in〉

=

(
2πc

λL

)2 ∑
n′m′l′

〈in|n′〉〈n′|δh|m′〉〈m′|δh|l′〉〈l′|in〉

=

(
2πc

λL

)2∑
m′

〈in|δh|m′〉〈m′|δh|in〉 (3.33)

where γ = cT/4L. Then, in this limit, when the injected field is |33〉, the contrast defect can be

written as in Eq. (3.16).
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Chapter 4

Open Quantum Dynamics of
Single-photon Optomechanical
Devices

We study the quantum dynamics of a Michelson interferometer with Fabry-Perot cavity

arms and one movable end mirror, and driven by a single photon—an optomechanical

device previously studied by Marshall et al. as a device that searches for gravity deco-

herence. We obtain an exact analytical solution for the system’s quantum mechanical

equations of motion, including details about the exchange of the single photon between

the cavity mode and the external continuum. The resulting time evolution of the in-

terferometer’s fringe visibility displays interesting new features when the incoming

photon’s frequency uncertainty is narrower or comparable to the cavity’s line width—

only in the limiting case of much broader-band photon does the result return to that

of Marshall et al., but in this case the photon is not very likely to enter the cavity and

interact with the mirror, making the experiment less efficient and more susceptible to

imperfections. In addition, we show that in the strong-coupling regime, by engineering

the incoming photon’s wave function, it is possible to prepare the movable mirror into

an arbitrary quantum state of a multidimensional Hilbert space.

Originally published as T. Hong, H. Yang, H. Miao, and Y. Chen, submitted to Physics

Review A, preprint available at arXiv: quant-ph/1110.3348.
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4.1 Introduction

Recently, significant progress has been made in observing quantum effects in macroscopic mechanical

systems [1]. As presented in the work of O’Connell et al. [2], a 6-GHz nanomechanical oscillator was

cooled down near its quantum ground state with dilution refrigeration, and later prepared into a Fock

state by coupling the oscillator to a superconducting qubit. States with thermal occupation numbers

below unity have also been achieved with cavity-assisted radiation-pressure cooling, by Teufel et al. [3]

and Safavi-Naeini et al. [4]. Further more, as shown by Gupta et al. [5] and Thompson et al. [6], it

is possible to couple a single photon strongly with a mechanical degree of freedom, such that the

momentum imparted by a single photon to a mechanical degree of freedom can be comparable to

its initial momentum uncertainty.

In this paper, we study the open quantum dynamics of a nonlinear optomechanical device, namely

a Michelson interferometer with Fabry-Perot cavities, one of them with a movable end mirror (acting

as the mechanical oscillator). This device, driven by a single photon, was proposed by Marshall et

al. [7, 8] as an experiment to search for Penrose’s conjecture of gravity decoherence [9]. Such single-

photon driven devices have also been more recently studied by Rabl [10] and Nunnenkamp et al. [11].

By taking advantage of the conserved quantity—the total number of photons in the system, one can

obtain exact solutions to this system’s quantum dynamics. Unlike Rabl and Nunnenkamp et al.,

who studied systematically the statistics of the out-going photons and the steady state reached by

the mechanical oscillator, we focus instead on the fringe visibility of a single-photon interferometer,

and the conditional quantum state of the mechanical oscillator upon the detection of an out-going

photon.

The single-photon Michelson interferometer is shown schematically in Fig. 4.1, in which the port

on the left is the input port, towards which the single photon is injected; the photon, after interacting

with the Michelson interferometer, may exit either from the input port, or from the other open port.

Each of the two arms consists of a high-finesse optical cavity; the setup of these two cavities are

identical, except one of them has a movable end mirror, which acts as the mechanical oscillator that

interacts with light in the cavity. The 50/50 beam splitter splits the quantum state of the entire

mirror-light system into two components, one of them corresponding to the photon entering the fixed

cavity (and leaveing the oscillator at its initial state), the other corresponding to the photon entering

the movable cavity (thereby modifying the oscillator’s state through radiation pressure). We will

set the displacement zero-point of the interferometer to have equal arm lengths, with each arm at a

distance equal to the beamsplitter. At such a zero point, the photon injected from the input port

will return to the input port with unit probability. Therefore we also call the input port the “bright

port” and the other open port the “dark port”. We can artificially tune the interferometer away

from its zero point, e.g., by adjusting the fixed microscopic distances between the front mirrors and
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the beamsplitter. This changes the relative phase ϕ between the two superimposed components in

wave function of the entire system; the resulting variations in the probability density of having the

photon exiting the bright port at time t, quantified by the fringe visibility, is a measure of the degree

of coherence between these two components at this moment in time.

In the case of low environmental temperature and in the absence of unexpected mechanisms of

decoherence, Marshall et al. showed that the visibility will revive completely for every half of the

mechanical oscillation period. In obtaining such a result, they assumed the photon was initially

already in either of the two cavity arms, and considered a closed evolution of the cavity mode and

the mechanical oscillator. This assumption has also been widely used in analysis of such a nonlinear

optomechanical device, e.g., by Bose et al. [12] and subsequent analysis of the Marshall experiment [7]

by Bassi et al. [13].

Figure 4.1: (color online) A schematics showing the single-photon interferometer. The external single
photon excites the cavity mode which in turn interacts with the movable end mirror via radiation
pressure. This is adapted from Fig. 1 of Ref. [7] with small modifications.

In a realistic experimental setup, it is necessary to take full account of the open quantum dynamics

of this system, which that involves the oscillator (the mirror), the cavity mode and the external

continuous field, including how the single photon is coupled into the cavity in the first place. The

open quantum dynamics depends on the wave function of the photon, whose Fourier transform is

related to the frequency content of the photon. For example, if the photon has a short-pulse wave

function with time-domain duration much less than the cavity storage time, which corresponds to

a frequency uncertainty much larger than the cavity line width, then the photon will only enter

the cavity with a small probability. By contrast, a narrowband photon (with frequency uncertainty

below cavity line width) must have a wave packet duration much longer than cavity storage time,

and therefore we must address the issue that the photon can be simultaneously inside and outside

the cavity. The latter scenario, although more complicated, might be experimentally more favorable,

as in this scenario the photon has a high probability to enter the cavity and to interact with the

mirror much more strongly.

The outline of this article goes as follows: in Sec. 4.2, we will write down the Hamiltonian of our
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nonlinear optomechanical device and study the open quantum dynamics by solving the Shrödinger

equation exactly; in Sec. 4.3, we will give a detailed analysis of the single-photon interferometer,

and will calculate the interferometer’s fringe visibility; in Sec. 4.4, we will show that the mechanical

oscillator can be prepared to an arbitrary quantum state in a multidimensional Hilbert space, if we

inject the single photon with a properly designed profile into the interferometer; in Sec. 4.6, we will

summarize our main results.

4.2 A Single Cavity with one Movable Mirror

Figure 4.2: (color online) A schematics showing a single-photon interferometer with Fabry-Perot
cavity and a movable mirror. The displacement of the mirror-endowed mechanical oscillator y is
parametrically coupled to the cavity mode a, which has an eigenfrequency ω0 with y = 0. The cavity
mode in turn couples to the ingoing continuous filed c(x) and outgoing continuous field d(x).

Before studying the entire single-photon interferometer, we first consider a single cavity, as shown

schematically in Fig. 4.2. The cavity has one fixed mirror located at x = 0, and one movable mirror

which acts as a mechanical oscillator. Here, assuming the injected photon to have a frequency

content much less than the free spectral range of the cavity (which has a relatively high finesse), we

will only consider one optical mode of the cavity (which we shall refer to as the cavity mode). By

assuming a high finesse for the cavity, this mode couples to the external vacuum via single-photon

exchange. At linear order in the mirror’s motion and assuming low velocity, the coupling between the

mirror and the cavity mode is parametric: the position y of the mirror modifies the eigenfreqeuncy

of the cavity mode.

4.2.1 The Hamiltonian

Here we will write down the Hamiltonian of the system. For simplicity, we will use natural units

with ~ = 1 and c = 1 throughout this paper. The Hamiltonian of the external continuous optical

field, in the position space representation, is given by

Ĥo =
i

2

∫ 0

−∞
[(∂xĉ

†
x)ĉx − ĉ†x∂xĉx] dx

+
i

2

∫ 0

−∞
[(∂xd̂

†
x)d̂x − d̂†x∂xd̂x] dx (4.1)
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where ĉx and d̂x are the annihilation operators for ingoing and outgoing field at location x, respec-

tively. Note that for the actual setup shown in Fig. 4.2, the ingoing and outgoing field are on the

same side of the front mirror, namely both at x < 0. Since the field operators at different locations

commute with each other—[ĉx ĉ
†
x′ ] = δ(x − x′), we can fold the outgoing field from [−∞, 0] into

[0,+∞], therefore just use ĉ to denote both the ingoing and outgoing fields, with ĉx(x < 0) for the

ingoing field and ĉx(x > 0) for the outgoing field, namely:

Ĥo =
i

2

∫ ∞
−∞

(∂xĉ
†
xĉx − ĉ†x∂xĉx) dx. (4.2)

The free Hamiltonian of the single cavity mode is given by

Ĥc = ω0â
†â (4.3)

with â the annihilation operator and [â, â†] = 1.

The free Hamiltonian for the mechanical oscillator reads

Ĥm =
p̂2
y

2m
+

1

2
mω2

mŷ
2 , (4.4)

where ŷ and p̂y are the position and momentum operators, respectively.

The total interaction Hamiltonian HI between the external continuum and the cavity mode in

the rotating-wave approximation, and between the cavity mode and the mechanical oscillator, is

given by

ĤI = i
√
γ(ĉ0â† − âĉ†0) + kâ†âŷ. (4.5)

Here γ = T
2L is the cavity bandwidth with L being the cavity length; k = ω0/L is the optomechanical

coupling constant. The interaction between the cavity mode and the external continuum takes place

at the front mirror with x = 0 and the Hamiltonian describes the exchange of photon between them.

The total Hamiltonian is a sum of the free and the interaction parts, namely,

Ĥ = Ĥo + Ĥc + Ĥm + ĤI . (4.6)

Note once more that by including only a single cavity mode resonant at frequency ω0/(2π), we must

make sure the frequency content of the injected light is focused well within a free spectral range,

c/(2L).
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4.2.2 Structure of the Hilbert Space

Even though the Hamiltonian contains a cubic term â†âŷ, which implies a nonlinear dynamics, we

have a conserved dynamical quantity—the total photon number:

â†â+

∫ +∞

−∞
ĉ†xĉx dx, (4.7)

which makes the system’s evolution still analytically solvable, as also recognized by Rabl [10] and

Nunnenkamp et al. [11]. Since the initial state of our system consists of one single photon, there can

only be one photon throughout the entire evolution. Mathematically, this means we only need to

consider a one-photon subspace of the entire Hilbert space, which in turn consists of three disjoint

subspaces, which corresponds to: H1−, which corresponds to an incoming photon towards the cavity;

H2, which corresponds to a photon inside the cavity, andH1+, which corresponds to a photon leaving

the cavity. All quantum states in this space can be written as:

|ψ〉 =

∫ +∞

−∞
f(x, t)e−iω0(t−x)|x〉γ ⊗ |φ1(x, t)〉m dx

+ α(t)e−iω0tâ†|0〉γ ⊗ |φ2(t)〉m . (4.8)

Here

|x〉γ ≡ ĉ†x|0〉γ (4.9)

is the “position eigenstate” of the single photon outside of the cavity, and |0〉γ is the optical vacuum;

the subscripts γ and m indicate Hilbert spaces of light and movable mirror, respectively; f(x, t) is a

complex function of position (−∞ < x < +∞) and time, α(t) is a complex function of time t alone;

|φ1(x, t)〉m and |φ2(t)〉m are two families of state vectors that belong to the Hilbert space of the

mechanical oscillator. At any given time, the x < 0 part of the integral term on the right-hand side

corresponds to H1−, the x > 0 part of the integral term corresponds to H1+, while the non-integral

term corresponds to H2. In general, all three terms will be present, which means the entire system’s

quantum state is a superposition of having the photon simultaneously present in all three possible

locations. Note that the factors e−iω0(t−x) and e−iω0t are added to “factor out” the free oscillation

of the EM field, which has oscillation frequencies near ω0.

By imposing normalization conditions of

m〈φ1(x, t)|φ1(x, t)〉m = m〈φ2(t)|φ2(t)〉m = 1 , (4.10)

the probability for finding the photon at location x (with x < 0 indicating a photon propagating
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towards the cavity, and x > 0 a photon propagating away from the cavity) is given by

pγ(x, t) = |f(x, t)|2 (4.11)

while the probability that the photon is in the cavity is given by |α2(t)|. In this way, the normalization

condition of the joint quantum state

∫ +∞

−∞
|f(x, t)|2dx+ |α2(t)| = 1 (4.12)

is simply a statement about the conservation of total probability.

The function f(x, t) can be viewed as the out-of-cavity photon’s wave function, while |φ1(x, t)〉m
for each x can be viewed as the oscillator state that is entangled with each possibility for the out-

of-cavity photon. On the other hand, α(t) can be viewed as the probability amplitude of the cavity

mode, while |φ2〉m can be viewed as the oscillator state that is entangled with the in-cavity photon.

To facilitate calculation, for any joint quantum state |ψ〉, we define

|ψ1(x, t)〉m ≡ γ〈x|ψ〉eiω0(t−x) = f(x, t)|φ1(x, t)〉m (4.13)

|ψ2(t)〉m ≡ 〈0|a|ψ〉eiω0t = α(t)|φ2(t)〉m . (4.14)

Here |ψ1(x, t)〉m, −∞ < x < +∞, is a series of vectors, parametrized by x, in the Hilbert space of

the mechanical oscillator, while |ψ2(x, t)〉 is a single vector in the Hilbert space of the mechanical

oscillator. They together carry the full information of the quantum state of the entire system.

To further appreciate the role of |ψ1〉m and |ψ2〉m, we can project each of them into the position

eigenstate of the oscillator, |y〉m, obtaining

Φ1(t, x, y) ≡ m〈y|ψ1〉m = f(x, t)φ1(y, x, t) (4.15)

Φ2(t, y) ≡ m〈y|ψ2〉m = α(t)φ2(y, t) (4.16)

which can be viewed as the joint wave functions of the projection of the entire state into H1+⊕H1−

and H2, respectively. Note that although f(x, t) and |φ1(x, t)〉m [and similarly α(t) and |φ2(t)〉m]

share a phase ambiguity, |ψ1(x, t)〉m and |ψ2(t)〉m, and hence Φ1(t, x, y) and Φ2(t, y) are well defined

without ambiguity.

4.2.3 Initial, Final States and Photodetection

As special cases, we consider the quantum state of the system at t = 0 (the initial state), and at very

late times (the final state). For the initial state, the photon is propagating towards the cavity, and

the cavity is empty. This corresponds to α(0) = 0, and f(x, 0) = 0. In particular, we also presume
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the initial state to be separable between the photon and the oscillator, with

|ψ(0)〉 =

∫
eiω0xF (x)|x〉γ dx⊗ |φ0〉m . (4.17)

Here F (x) is the slowly-varying part of the initial wave function of the photon, and |φ0〉m the initial

wave function of the oscillator. In other words, we have

|ψ1(t = 0)〉m = F (x)|φ0〉m (4.18)

|ψ2(t = 0)〉m = 0 (4.19)

with F (x) = 0 for x > 0. At a sufficiently late time T , the photon will leave the cavity with unity

probability, and we expect α(T ) = 0 and f(x, T ) = 0 for x < 0. Mathematically,

|ψ1(x, t ≥ T )〉m = Fout(x, t)|φ(x, t)〉m

|ψ2(t ≥ T )〉m = 0 (4.20)

with Fout(t, x) = 0 for x < 0 and t > T . This is an explicitly entangled state between the out-going

photon and the mirror, if |φ(x, t)〉m for different values of x are not all proportional to the same

state vector.

At an intermediate time t > 0, suppose a photodetector is placed at x = L > 0 (i.e., for out-going

photons from the cavity), then the probability density for photon arrival time at T is given by

pL(T ) = m〈ψ1(L, T )|ψ1(L, T )〉m. (4.21)

In addition, by detecting a photon at this particular instant, the oscillator is left at a condition

quantum state of |φ(x, T )〉m

4.2.4 Evolution of the Photon-mirror Quantum State

Applying the operations γ〈x| and γ〈0|a onto the (joint) Schrödingier equation

i~
d|ψ〉
dt

= Ĥ|ψ〉 (4.22)

we will obtain coupled equations for |ψ1〉m and |ψ2〉m. Throughout this section, we will mostly

encounter states in the oscillator’s Hilbert space, therefore we will ignore the subscript “m” unless

otherwise necessary.
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t

x

region (i) region (ii)

region (iii)

Figure 4.3: (color online) Three regions of the t-x plane and the free evolutions of |ψ1〉. In region
(i), the photon has not yet entered the cavity; the joint quantum state of the system is a simple
free evolution of the initial quantum state, specified on t = 0, x < 0 (green horizontal half line),
see Eq. (4.25). In region (ii), the photon and the oscillator evolve freely after propagates after the
photon emerges from the cavity; the joint wave function depends on the wave function along x = 0,
t > 0 (green vertical half line). The red line dividing regions (i) and (ii) corresponds to the δ-function
in Eq. (4.23), which embodies the interaction between the outside photon and the in-cavity photon.
Region (iii) is causally irrelevant to our experiment.

4.2.4.1 Free Evolution

For |ψ1〉, by applying γ〈x| to both sides of Eq. (4.22) we obtain

[
∂t + ∂x + i Ĥm

]
|ψ1(x, t)〉 = −√γ δ(x)|ψ2(t)〉. (4.23)

Equation (4.23), without the δ-function term, simply describes the propagation of the initial photon

towards the cavity, and the free evolution of the oscillator. This is because when the single photon

is outside the cavity, its propagation is free, while the oscillator’s evolution is unaffected by light.

Equation (4.23), is a first-order partial differential equation with characteristics along x − t =

const. We hereby divide the t > 0 region of the t-x plane into three regions: (i) x < 0, (ii) x > 0 and

t > x, and (iii) x > 0 and t < x, as shown in Fig. 4.3. We can discard region (iii) right away, because

it is not causally connected with our experiment. In the interiors of regions (i) and (ii) separately,

Eq. (4.23) has the following general solution,

|ψ1(x, t)〉 = e−
i
2 Ĥm(t+x)|C(t− x)〉 (4.24)

with |C(v)〉 an arbitrary state-valued function of v.

In region (i), |C(v)〉 can be specified by initial data along the half line of t = 0, x < 0; by using

Eq. (4.24) twice, at (t, x) and (0, x− t), we obtain [See Fig. 4.3]:

|ψ1(x < 0, t)〉 = F (x− t)Ûm(t)|φ0〉. (4.25)



102

Here Um is the evolution operator for the free oscillator, given by

Ûm(t) = e−iĤmt . (4.26)

In terms of the Fock states |n〉, we have

Ûm(t) =
∑
n

|n〉e−i(n+ 1
2 )ωmt〈n| . (4.27)

Equation (4.25) corresponds to the photon’s wave packet freely propagating along the positive direc-

tion of the x axis and the mechanical oscillator independently evolving under its own Hamiltonian.

In region (ii), |C(v)〉 is specified by boundary data along the half line of x = 0+, t > 0, which

we denote by

|ψ1(t)〉0+ ≡ |ψ1(0+, t)〉 . (4.28)

By using Eq. (4.24) twice, at (t, x) and (t− x, 0), we obtain

|ψ1(x > 0, t)〉 = Ûm(x)|ψ1(t− x)〉0+ . (4.29)

Henceforth in the paper, 0+ and 0− stand for x 7→ 0+ (x approaches 0 from positive side of the

axis) and x 7→ 0− (x approaches 0 from negative side of the axis), respectively. Equation (4.29)

corresponds to the free evolution of the out-going photon and the mechanical oscillator.

4.2.4.2 Junction Condition

The δ-function on the right-hand side of Eq. (4.23) relates the out-going photon to the decay of the

in-cavity photon and the reflection of the in-going photon. To take this into account, we simply

integrate both sides from x = 0− to x = 0+, obtaining:

|ψ1(0+, t)〉 = |ψ1(0−, t)〉 − √γ|ψ2(t)〉 . (4.30)

This expresses the outgoing wave as a combination of the promptly reflected incoming wave and the

wave coming out from the cavity.

4.2.4.3 Coupled Evolution

By applying γ〈0|a to both sides of Eq. (4.22) and using Eq. (4.30), we obtain:

[
∂t +

γ

2
+ iĤγ

]
|ψ2(t)〉 =

√
γ|ψ1(t)〉0− . (4.31)
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Here as in Eq. (4.30), we have defined |ψ1〉0± ≡ |ψ1(0±, t)〉. We have also defined

Ĥγ ≡
p̂2
y

2m
+
mω2

m(ŷ − α)2

2
− β2ωm (4.32)

with

α = − k

mω2
m

, β =
k

ωm
√

2mωm
. (4.33)

The operator Ĥγ can be viewed as the modified Hamiltonian for the mirror when the photon is

present in the cavity. Here α characterizes the shift in equilibrium position of the harmonic oscillator

when the photon is inside the cavity and applies a constant force to the oscillator, while β (as seen

from this equation) modifies the eigenfrequency of the harmonic oscillator. It is easy to work out

the eigenstates and eigenvalues of Ĥγ : the eigenstates are

|ñ〉 = eiαp̂y |n〉 = D̂(β)|n〉 (4.34)

which are simply displaced from the original Fock states in phase space, due to the change of

equilibrium position, with

Ĥγ |ñ〉 =

(
n+

1

2
− β2

)
ωm|ñ〉 (4.35)

which indicates an overall down-shift of eigenfrequency. Here we have further defined the displace-

ment operator

D̂(β) ≡ exp[β(b† − b)] (4.36)

with b and b† the annihilation and creation operators for the free mechanical oscillator (i.e., before it

couples to light). As we shall see in Sec. 4.6, β will become an important characterizing parameter

of our optomechanical device; for example, β >∼ 1 is the regime in which the device is nonlinear.

For the photon, Eq. (4.31) means that the in-cavity photon is continuously driven by the in-

coming photon (right-hand side) and decays towards the outgoing photon (as indicated by the γ/2

term in the bracket on the left-hand side). The above discussion, together with the initial data of

|ψ2〉 = 0 at t = 0 gives

|ψ2〉 =
√
γ

∫ t

0

e−
γ
2 (t−t′)Ûγ(t− t′)|ψ1(t′)〉0− (4.37)

where

Ûγ(t) ≡ e−iĤγt =
∑
n

|ñ〉e−i(n+1/2−β2)ωmt〈ñ|, (4.38)

which is the modified evolution operator of the oscillator when the photon is in the cavity.
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4.2.4.4 Full Evolution

The full evolution of the entire system’s quantum state can now be obtained by combining Eqs. (4.29),

(4.25), (4.30), and (4.37). In order to study the outgoing photon, we only need to consider the region

x > 0 and t > x (see Fig. 4.3), because the emerges from the cavity at t > 0, and it propagates with

c = 1. For this region, we obtain a compact-form solution of

|ψ1(x, t)〉 = M̂ |φ0〉 (4.39)

where |φ0〉 is the initial quantum state of the oscillator, and

M̂ =

∫ t−x

0

g(t− x, t′)Ûm(x)Ûγ(t− x− t′)Ûm(t′)dt′

=

∫ t−x

0

g(t− x, t′)eiβ
2ωm(t−x−t′)

D̂(βe−iωmx)D̂(−βeiωm(t′−t))Ûm(t)dt′ (4.40)

where

g(t, t′) ≡ G(t− t′)F (−t′) (4.41)

with

G(t) = δ+(t) + γe−
γ
2 t (4.42)

the cavity’s optical Green function. Here the subscript + for the δ function indicates that its support

lies completely in the region t > 0. Within the operator M̂ [Eq. (4.40)], the factor g contains two

terms, the first contains a δ-function and the second an exponential decay over time. The first

term corresponds to the photon being promptly reflected by the cavity’s front mirror, while the

second term corresponds to the photon staying inside the cavity, for an amount of time equal to

t−x− t′, which ranges from 0 to t−x. As a sanity check, it is straightforward to see that when mass

of the oscillator approaches infinity, Ûγ coincides with Ûm, and M̂ simply describes the photon’s

propagation and the independent evolution of the oscillator.

4.3 Single-photon Interferometer: Visibility

In this section, we will use the results of the previous section to analyze the single-photon interfer-

ometer.
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4.3.1 The Configuration

We consider a scheme proposed and analyzed by Marshall et al. [7], which is shown in Fig. 4.1.

This Michelson interferometer (with 50/50 beamsplitter) has two arms: in the north arm, the end

mirror in cavity A is movable, and initially prepared at a quantum state |φ0〉, whereas mirrors

in cavity B or east arm are fixed. We assume the photon is injected from the west port, while

a fixed photodetector is placed at the south port. Apart from mirror A being movable, the two

cavities are otherwise identical: with the same input-mirror power transmissivity T , length L (for

cavity A, counted from the zero-point of A’s displacement). The front mirrors are placed at equal

macroscopic distance from the beamsplitter, while there is a phase detuning of ϕ in arm B for ω0
1.

In our convention, if mirror A is at zero point and ϕ = 0, the photon will always return to the west

port. Henceforth in the paper, we shall refer to the west port as the input port, and the south port

the output port—although we may not always find the photon at the output port. Indeed, whether

and when the photon arrives at the photodetector is jointly determined by ϕ and the state of motion

of mirror A.

In particular, we shall use p(t) to denote the probability density for the photon to arrive at the

detector at t (which can be measured by repeating the experiment many times). If we idealize the

arrival time of the in-going photon (at the front mirror) to be t = 0, and ignore the macroscopic

distance between the front mirrors, the beamsplitter, and the photodetector, then we are interested

in p(t) at t ≥ 0. We further define an instantaneous fringe visibility

v(t) =
pmax(t)− pmin(t)

pmax(t) + pmin(t)
, (4.43)

which measures the degree of coherence between the two components of returning photons at the

beamsplitter, and can only become unity if at time t the joint mirror-photon quantum state is

separable, as we shall see more clearly in Sec. 4.3.4.

4.3.2 The Role of the Beamsplitter and a Decomposition of Field Degrees

of Freedom

In Sec. 4.2.3, we have studied in detail how the photon first affects the x < 0 components of the

optical field outside of a cavity, then interacts with the mirror, and finally returns back to the

x > 0 components of the optical field. The scenario for a Michelson interferometer is slightly more

complicated: we now need to consider a set of input fields that replaces the x < 0 single field in the

single-cavity case, and a set of output fields which replaces the x > 0 single field.

As shown in Fig. 4.4, the annihilation operators of the input field for the two cavities are (ĵ−,

1To give rise to a detuning, we assume that all optical frequencies we consider are centered around ω0, and we
offset the location of cavity B from symmetry by a length l such that ω0l = ϕ/2.
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k̂−, â−, b̂−), while those of the output fields for the cavities are (ĵ+, k̂+, â+, b̂+). Each of these

files are defined as a function of −∞ < x < +∞, with x = 0 corresponding to the position of

the beamsplitter, and positive direction along the arrow shown in Fig. 4.4. Ultimately, we need to

calculate the fields of ĵ+ and k̂+ in terms of ĵ− and k̂−.

Note that at by allowing x to run through the entire real axis, we have assigned two input fields

and two output fields to each point along the optical path (note here that “input” and “output” refer

to the cavities, not the beamsplitter). This redundancy is necessary for a simplified treatment of the

beamsplitter: instead of treating its internal dynamics, we simply view it as a mapping between the

two different representations of the input and output fields. One representation (ĵ±, k̂±) corresponds

to the point of view of observers at the west and south ports, pretending that the beamsplitter does

not exist; the other (â±, b̂±) corresponds to the point of view of observers at the east and north

ports.

The conversion between the two representations takes the same form as the “input-output rela-

tion” of the beamsplitter:

b̂±(x) =
ĵ±(x)− k̂±(x)√

2
, â±(x) =

ĵ±(x) + k̂±(x)√
2

. (4.44)

As an example, consider a quantum state in which a (instantaneous) photon is injected from the

input port, which, according to the mapping in Eq. (4.44), has two equivalent representations:

ĵ†−(x0)|0〉 =
â†−(x0) + b̂†−(x0)

√
2

|0〉 . (4.45)

As time grows, the quantum state evolves as x0 → x0 + t. At any instant, the left-hand side

represents a single photon propagating from west to east, and continue through the location of the

beamsplitter. The right-hand side represents a photon that has a two-component wave function, the

first component propagates northwards, the second eastwards.

Although the two representations are equivalent, we still prefer to use the south-west representa-

tion when treating the generation and detection of photons, and the north-east representation when

treating the light’s interaction with the cavities.

4.3.3 Interactions Between Light and Cavities

For each individual cavity, we intend to apply the result of Sec. 4.2.1. We note that â−(x) (for

x < 0) and a+(x) (for x > 0) defined in this section maps to the ĉ(x) (for x < 0) and d̂(x) (for
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A

B

Figure 4.4: We illustrate the fields entering and exiting each of the four ports of the interferometer.
We use arrows to define the positive sense of the coordinate used to label their locations. For each
of them x = 0 corresponds to the location of the beamsplitter.

x > 0), respectively, as defined in Sec. 4.2.1 and illustrated in Fig. 4.2. For this reason, we define

â(x) ≡


â−(x) , x < 0 ,

â+(x) , x > 0 ,

(4.46)

and

b̂(x) ≡


b̂−(x) , x < 0 ,

b̂+(x) , x > 0 .

(4.47)

In this way, a(x) and b(x) here both map to c(x) defined in Sec. 4.2.1. [The a and b here are not

to be confused with operators of the optical mode and the mechanical oscillator—we shall always

explicitly include the argument (x) for these continuum operators.] We further define

ĵ(x) ≡


ĵ−(x) , x < 0 ,

ĵ+(x) , x > 0 ,

(4.48)

and

k̂(x) ≡


k̂−(x) , x < 0 ,

k̂+(x) , x > 0 .

(4.49)

Furthermore, for fields a, b, j and k, the transformation relations Ea. (4.44) also apply.

Now suppose at t = 0, we have a photon coming from the input (west) port with arbitrary wave
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function F (x) [like in Eq. (4.17), here F (x) = 0 for x > 0]. The initial quantum state of the entire

optomechanical system is

|ψ(0)〉 =

∫ 0

−∞
dxF (x)ĵ†−(x)|0〉γ ⊗ |φ0〉A . (4.50)

Since we would like to investigate this state’s evolution when the photon reaches the cavity, we

covert into the north-east representation:

|ψ(0)〉 =
1√
2

[|ψA(0)〉+ |ψB(0)〉] . (4.51)

Here we have defined

|ψA(0)〉 =

∫ 0

−∞
dxF (x)â†(x)|0〉γ ⊗ |φ0〉A (4.52)

|ψB(0)〉 =

∫ 0

−∞
dxF (x)b̂†(x)|0〉γ ⊗ |φ0〉A (4.53)

in which we have already taken Eqs. (4.46) and (4.47) into account.

Here |ψA(0)〉 corresponds to the case in which the photon enters Cavity A with the movable

mirror, and |ψB(0)〉 the case in which the photon enters Cavity B with the fixed mirror. As time

goes on, these two states evolve individually, and Eq. (4.51) remains true for t > 0. For the Cavity

A component |ψ〉A, we have [cf. Eq. (4.39)]

|ψA(t)〉 =

∫ t−x

0

dt′g(t− x, t′)eiβ
2ωm(t−x−t′)D̂(βe−iωmx)

D̂(−βeiωm(t′−t))â†(x)|Φ(t)〉 (4.54)

where we have defined

|Φ(t)〉 ≡ Ûm(t)|0〉γ |φ0〉A , (4.55)

while for |ψ〉B , we set β → 0 and obtain

|ψB(t)〉 = eiϕ
∫ t−x

0

dt′g(t− x, t′)b̂†(x)|Φ(t)〉. (4.56)

4.3.4 The Final State

In order to describe the quantum state seen by the photodetector, we map a and b into j and k, only

keeping the k component. We further project onto the single-photon basis of γ〈0|k(x), assuming

x = 0+, obtaining

|ψ(t)〉m =
1

2

[
|ψA(t)〉m + eiϕ|ψB(t)〉m

]
(4.57)
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with

|ψA(t)〉m =

∫ t

0

dt′g(t, t′)Ô(t− t′)|φ0(t)〉 (4.58)

|ψB(t)〉m =

∫ t

0

dt′g(t, t′)|φ0(t)〉 (4.59)

with

|φ0(t)〉 ≡ Ûm(t)|φ0〉 (4.60)

and

Ô(t) ≡ eiβ
2ωmtD̂(β)D̂(−βe−iωmt) , (4.61)

in particular Ô(0) = 1. In this way, we are using the same notation as Eq. (4.39), and we can use

Sec. 4.2.3 for obtaining photo-detection probability density at each time t > 0, which is given by

p(t) =
‖|ψA〉m‖2 + ‖|ψB〉m‖2 + 2Re

(
eiϕm〈ψA|ψB〉m

)
4

(4.62)

which, when adjusting values of ϕ, leads to an instantaneous visibility of [Cf. (4.43)]:

v(t) =
2|m〈ψA|ψB〉m|

‖|ψA〉m‖2 + ‖|ψB〉m‖2
. (4.63)

It relies on how different ψA is from ψB , which indicates how much the movable mirror in Cavity

A is capable of “learning” about the existence of the photon in Cavity A. At any instant, if ψA

is proportional to ψB (differ by a phase), the state of the movable mirror does not change, and

therefore we have a perfect visibility. By contrast, if the photon is able to transform the movable

mirror into a state substantially different from its freely evolving state, e.g., the orthogonal state in

the extreme case, then we will have a significantly reduced visibility.

Similar to Eq. (4.39), here ψA and ψB each has a promptly reflected part [which arises from the

δ-function part of g(t, t′)], and a part in which the photon enters the cavity [which arises from the

exponential decay part of g(t, t′)]. It is the second part that contributes to the reduction of visibility.

4.3.5 Examples

We consider an experimental situation with the central frequency of the injecting photon tuned to

the resonant frequency of the cavity, with a wave function of

F (x) =
√

2ΓeΓxΘ(−x) . (4.64)
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Here Γ measures the frequency-domain width of the photon. We further assume that the mechanical

oscillator’s eigenfrequency (when uncoupled with light) is equal to the cavity bandwidth, or ωm = γ.

As in Ref. [7], we assume that the mechanical oscillator, i.e., the mirror, is initially prepared at its

ground state:

|φ0〉 = |0〉A. (4.65)

With these specializations, we have

|ψA(t)〉m = C(t) [|0〉+ γ|M(t)〉] (4.66)

|ψA(t)〉m = C(t)

[
|0〉+ γ

∫ t

0

dt′ f(t− t′)|0〉
]

(4.67)

with

C(t) ≡
√

2Γe−(Γ+iωm/2)t , f(t) ≡ e(Γ−γ/2)t (4.68)

and

|M(t)〉 ≡
∫ t

0

dt′ f(t− t′)eiβ
2[ωm(t−t′)−sinωm(t−t′)]

×
∣∣∣β − βeiωm(t′−t)

〉
. (4.69)

By comparing with Sec. 4.3.4, we first find that visibility depends on the similarity between |M(t)〉

and its counterpart in Eq. (4.67): when they are similar to each other (e.g., when β <∼ 1 ) or when

they do not contribute significantly to |ψA,B(t)〉m, the visibility will tend to be high. By contrast,

in order to achieve a complete incoherence, we need |M(t)〉 to contribute significantly, and nearly

orthogonal to |0〉—and this requires β >∼ 1. The arrival probability density (4.62) and contrast defect

(4.63) can be computed if we use

〈0|β〉 = 〈0|D̂(β)|0〉 = e−β
2/2 . (4.70)

In Fig. 4.5, we plot maximum and minimum of the probability density in the left panels, and

visibility in the right panels, both as functions of time. We have chosen β = 0.5 for upper panels,

β = 1.2 for middle panels and β = 2 for lower panels. In each panel, we have also shown curves with

Γ = 0.2 (red dotted), Γ = 1 (blue dashed), and Γ = 2 (solid black). As β increases (as we move

from upper to lower panels), the photon’s ponderomotive effect on the movable mirror increases,

therefore the visibility is able to vary more. This means β >∼ 1 is necessary (but not sufficient, see

below) for visibility to substantially decay and then revive — a feature Ref. [7] has used to search

for decoherence effects.

On the other hand, another condition for visibility to first decrease and then revive, and repeat
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on, seems to be Γ >∼ 1, as also indicated by each of the right panels of Fig. 4.5. In addition, as Γ� 1,

our result becomes comparable to Ref. [7]. Qualitatively, this is because for Γ � 1, if photon does

arrive at a time around ∼ 1, we can be sure the photon has interacted with the mirror—and we can

roughly treat the photon as already within the cavity at t = 0.

Mathematically, for t� 1/Γ, the conditional quantum state of the mirror given photon detection

at time t could be approximately written as:

|ψ〉m =
γ√
2Γ
e−(γ+iωm)t/2[

eiϕ|0〉+ eiβ
2ωmtD̂(β)

∣∣−βe−iωmt〉] . (4.71)

=
γ√
2Γ
e−(γ+iωm)t/2[

eiϕ|0〉+ eiβ
2(ωmt−sinωmt)

∣∣β − βe−iωmt〉] . (4.72)

This is consistent with results of Ref. [7].

However, in order for Γ � 1 and to observe a revival of visibility, we have to wait till t ≥ 2π.

The probability for detecting the photon at such late times is exponentially small — as indicated

by the left panels of Fig. 4.5 This means we may have to make a trade off between having a very

sharp revival of visibility and being robust against loss and able to cumulate enough statistics within

reasonable amount of time.

4.4 Conditional Quantum-state Preparation

In this section, we show how to engineer an arbitrary quantum state of the mechanical oscillator by

injecting a single photon with specifically designed wave function and by post selecting the arrival

time of the output photon. Note that unlike Refs. [10, 11], our state preparation procedure is

conditional. This guarantees a pure quantum state for the mechanical oscillator, but requires a low

decoherence rate and a high detection quantum efficiency for the outgoing photon.

4.4.1 The Configuration

The scheme is shown in Fig. 4.6. It is very similar to the single-photon interferometer discussed in

the previous section, except that in the east arm we replace the cavity B with a perfectly reflected

mirror B. In this case, most of the previous analysis are still valid: Eq. (4.57) to Eq. (4.59). The

only difference is that the g(t, t′) function in Eq. (4.59) needs to be replaced by δ(t− t′), as we have

a perfectly reflecting mirror instead of a cavity here, namely,

|ψB(t)〉m = |φ0(t)〉 . (4.73)



112

0 Π 2 Π 3 Π 4 Π
10-8

10-6

10-4

0.01

1

Ωt

p

0 Π 2 Π 3 Π 4 Π
0.0

0.2

0.4

0.6

0.8

1.0

Ωt

V

0 Π 2 Π 3 Π 4 Π
10-8

10-6

10-4

0.01

1

Ωt

p

0 Π 2 Π 3 Π 4 Π
0.0

0.2

0.4

0.6

0.8

1.0

Ωt

V

0 Π 2 Π 3 Π 4 Π
10-8

10-6

10-4

0.01

1

Ωt

p

0 Π 2 Π 3 Π 4 Π
0.0

0.2

0.4

0.6

0.8

1.0

Ωt

V

Figure 4.5: (color online) (left) Probability density and (right) fringe visibility for the photon to
come out with different β: (Top-to-bottom: first row, β = 0.5; second row, β = 1.2; third row,
β = 2). For each β, three different values of Γ are considered for comparison: Γ = 0.2 (red dotted),
1(blue dashed), 2(black solid). All the calculation assume γ = 1, ωm = 1. For probability density
plot, the upper line of the same color is the maximum value of the probability density, the lower one
is the minimum value.
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Single-Photon
      Source
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A

B

Figure 4.6: (color online) The sample device which uses single photon to prepare mechanical
oscillator quantum state. Here the the detuning phase for the mirror on the east arm is adjusted
such that the promptly reflected photon will come out from west port, with 0 probability coming
out from south port.

To proceed, we further adjust the detuning phase ϕ in Eq. (4.57) such that at the dark port,

the promptly reflected wave from the front mirror of cavity A exactly cancels the promptly reflected

wave from the mirror B. In this case, having a photon emerging from our detection port (Fig. 4.6)

automatically indicates that the photon has entered the cavity and interacted with the mirror;

Eq. (4.57) or the conditional quantum state of the mechanical oscillator (unnormalized) is given by:

|ψ(t)〉m =
1

2

∫ t

0

dt′ gp(t, t
′)Ô(t− t′)|φ0(t′)〉 (4.74)

with

gp(t, t
′) = γe−γ/2(t−t′)F (−t′). (4.75)

As gp(t, t
′) is related to the input photon wave function F (x), by modifying input photon wave

function, we can therefore engineer the conditioning mechanical oscillator quantum state |ψ(t)〉m.

Even if there is a finite probability that the photon will come out through the west arm or the bright

port, once we detect a photon at time t at the dark port, we know that it must come from arm A

and it also has stayed in the cavity A for a certain amount of time.

4.4.2 Preparation of a Single Displaced-Fock State

First of all, we notice that when different in-coming photon wave function F ’s are used, if we keep

conditioning over the same photon arrival time t, the conditional quantum states we obtain for the

mechanical oscillator will depend linearly on F . In other words, if F1 allows us to prepare |φ1〉,

and F2 allows us to prepare |φ2〉, then injecting a new photon with a superimposed wavefunction

F = α1F1 + α2F2 will allow us to prepare α1|φ1〉+ α2|φ2〉 .
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initial
state
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Figure 4.7: A sketch of the phase-space trajectory of the mechanical oscillator. The Wigner function
of the initial state |0〉 is represented by the shaded disk, the dot marked with β on the real axis is the
new equilibrium position of the oscillator when the photon is in the cavity, while the dashed circle
is the trajectory of the oscillator’s Wigner function when the photon is inside the cavity. Detection
of the out-going photon at t = 2nπ/ωm corresponds to superimposing all mechanical-oscillator
quantum states along the dashed trajectory, weighted by the photon’s wave function.

This means we only need to show how members of a complete basis can be prepared, and we

choose this to be

|ψ(t)〉m = |ñ〉 = D̂(β)|n〉 , n = 0, 1, 2 . . . . (4.76)

These displaced Fock states are simply Fock states of the oscillator when the photon is inside the

cavity, see Eq. (4.34).

Let us assume that the mechanical oscillator is initially prepared at its ground state. Before

studying preparation of an arbitrary conditional quantum state for the mechanical oscillator, we

first show that we can prepare a conditional state with an arbitrary quantum number n, by injecting

a photon with the following wave function:

F (x) =
√
γe(γ/2−iβ2ωm+inωm)xΘ(−x). (4.77)

As we plug Eq.(4.77) into Eq.(4.74) we obtain the conditional quantum state of

|ψ(t)〉m =
D̂(β)γ3/2e−

γ
2 t+iβ

2τ

2ωm

∫ τ

0

dτ ′e−inτ
′
| − βei(τ

′−τ)〉 (4.78)

with τ ≡ ωt. This is a coherent superposition coherent states, which in the complex amplitude

domain all line up in a circle with radius β around the center located at complex amplitude equal
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to β; these states are parametrized mathematically by D̂(β)| − βeiφ〉. These states are superposed

with the same magnitude, but different phases, due to the decay rate of γ/2 in the F chosen by

Eq. (4.77). Obtaining such a state is understandable, as given the photon detection at t, the actually

time t′ for the photon staying inside the cavity is uncertain, and we have to sum up all the possible

contributions from 0 to t. This situation is illustrated in Fig. 4.7.

One important feature in the above expression is that the integrand is a periodic function. If we

denote

τ ≡ ωmt = 2πN + ∆φ , (4.79)

where N is some integer and ∆φ is the residual phase ranging from 0 to 2π. In this way, the integral

in Eq. (4.78) then becomes [
N

∫ 2π

0

+

∫ ∆φ

0

]
dφ e−inφ| − βeiφ〉 . (4.80)

In the limit of N � 1, when the photon arrives at the photodetector with a delay large compared

to the oscillator’s oscillation period, the first term in Eq. (4.80) always dominates. This means we

obtain the same conditional state if we restrict τ around an integer multiple of 2π, or make sure

it is large enough. This leads to the interesting effect that in the asymptotic limit of τ → +∞,

the conditional state will be independent from τ . In practice, however, although the integral (4.80)

increases with N , the exponential decay factor in Eq. (4.78) always favors simply choosing N = 1.

It is straightforward to evaluate this conditional state; using

∫ 2π

0

dφ e−inφee
iφâ† |0〉 =

1

n!
(â†)n|0〉 , (4.81)

we have

∫ 2π

0

dφ e−inφ| − βeiφ〉 =
2π(−β)ne−

β2

2

√
n!

|n〉

= 2π|n〉〈n| − β〉 , (4.82)

which means

|ψ〉m =
πγ3/2e−

πγ
ωm e2πiβ2

ωm

(−β)ne−
β2

2

√
n!

|ñ〉 . (4.83)

This is indeed proportional to |ñ〉, as promised. Here we have used

〈−β|n〉 =
(−β)ne−β

2/2

√
n!

. (4.84)

Since the probability for the returning photon to arrive at precisely 2π/ωm is zero, we must allow

an interval around this target, which on the one hand provides us with a nonzero probability, but

on the other hand makes the conditional state imprecise. If we require the actual conditional state
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Figure 4.8: Probability for obtaining displaced Fock states |1̃〉 (red solid), |2̃〉 (blue dashed), |5̃〉
(magenta dotted) and |1̃0〉 (black dash-dotted), a range of β and minimum state overlap of 1 − ε.
Vertical gridlines are draw for β = 1,

√
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P1,2,5,10 are reached.

to have a high overlap with the target state (or high fidelity),

|m〈ψ|ñ〉|√
m〈ψ|ψ〉m

≥ 1− ε (4.85)

then, by perturbing the integration upper bound of Eq. (4.82), we obtain the following requirement

on the allowed photon arrival time

|τ − 2π| ≤ ∆τ ≡
√

8π2ε
|〈−β|n〉|√

1− 〈−β|n〉2
, (4.86)

which, for each trial of the experiment, would happen with a probability of

P = |m〈ψ|ψ〉m|2
2∆τ

ωm

= 2
√

8ε

(
πγ

ωm

)3

e−
2πγ
ωm

|〈−β|n〉|3√
1− |〈−β|n〉|2

. (4.87)

And this would be the probability with which we can create a conditional state with overlap at least

1− ε with the target.

From Eq. (4.87), we further notice that we should fix

γ/ωm = 3/(2π) (4.88)
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in order to obtain a maximized success probability of

Pn =
√

8ε
27

4e3

|〈−β|n〉|3√
1− |〈−β|n〉|2

. (4.89)

For each n, the maximum of Pn is reached at β =
√
n. In Fig. 4.9, we plot Pn for a range of β, for

ε = 0.1, or a state overlap of ≥ 90%. We can see that the probability of producing |ñ〉 decreases

rather quickly as n increases.

This dependence (4.89) on β comes from two sources, which we can understand better by going

to the phase-space reference frame centered at the equilibrium position of the oscillator when the

photon is inside the cavity. In this reference frame, the complex amplitude of the coherent states

being superimposed are located on a circle with distance β away from the center, while the target

we would like to prepare is simply the Fock state |n〉. Although the photon’s wave function selects

out an oscillator state proportional to |n〉, this post-selection does not improve the intrinsic overlap

between all those that participate the superposition, which is actually proportional to

|〈−βeiφ|n〉|2 = |〈−β|n〉|2 . (4.90)

This explains the dependence of m〈ψ|ψ〉m on beta. The other factor of dependence on β is that when

the target state has a very low overlap with the individual members |βeiφ〉 of the superposition, the

requirement on the accuracy of photon arrival time, or ∆τ , increases, as shown in Eq. (4.86).

4.4.3 Preparation of an Arbitrary State

Since the displaced number states forms a complete basis we can expand any target state as

|ψtg〉 =

+∞∑
n=0

cn|ñ〉 ,
+∞∑
n=0

|cn|2 = 1 . (4.91)

Since a linear combination of F s leads to a linear combination of conditional states, we simply need

to apply the result of the last subsection and have

F (x) =

√
γe(γ/2−iβ2ωm)x

Z

+∞∑
n=0

c̃ne
inωmx (4.92)

with

Z ≡

 +∞∑
j,k=0

c̃j c̃
∗
k

1 + i(j − k)ωmγ

1/2

, (4.93)

c̃n ≡ cn
〈−β|n〉

=
√
n!(−β)neβ

2/2cn . (4.94)
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Figure 4.9: Minimum success probability for states in Hilbert spaces H1,2,...7 (solid curves with
markers), together with success probability for producing single displaced Fock states, P0,1,2,...,7

(dashed curves without markers). Fidelity is fixed at 10%. Note that P0 would become greater than
1 at low values of β—but in this case our approximation in obtaining ∆τ breaks down.

This is an additional periodic modulation (with period 2π/ωm) of the photon’s wave function. We

caution that in order for the summation in Eq. (4.92) to converge, if cn does not go to zero for all

n ≥ N , then it must decay very fast when n → +∞, due to the presence of the
√
n! factor (which

grows faster than β−n).

As in the previous subsection, we obtain the conditional state at τ ≡ ωmt = 2π, 4π, . . ., as well

as any τ that is substantially large. Again, let us consider τ = 2π, this gives the conditional state of

|ψ〉m =
πγ3/2e−

πγ
ωm e2πiβ2

ωmZ
|ψtg〉 . (4.95)

We can use the same approach as the previous subsection to evaluate the probability with which

this conditional state is achieved with a high overlap. For a minimum overlap of 1− ε, we require

|2π − τ | ≤ ∆τ =

√
8πε∣∣∣∑+∞

m=0 c̃m

∣∣∣√1− |〈−β|ψtg〉|2
. (4.96)

Note that this ∆τ diverges if
∑+∞
m=0 c̃m = 0, because in this case the overlap does not vary at

O[(τ − 2π)2] order. Assuming the target state to be generic, then the probability for obtaining this

state is then

P|ψ〉 = 2
√

8ε

(
πγ
ωm

)3

e−
2πγ
ωm

[
1−

∣∣∣∑+∞
n=0〈−β|n〉2c̃n

∣∣∣2]−1/2

∣∣∣∑+∞
m=0 c̃m

∣∣∣ +∞∑
j,k=0

c̃j c̃
∗
k

1 + i (j−k)ωm
γ

. (4.97)

Here the choice of γ/ωm depends on the target quantum state, but if we assume this dependence is
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weaker than the pre-factor, and continue to use Eq. (4.88), then we obtain

P|ψ〉 =
27

e3

√
ε

2

[
1−

∣∣∣∑+∞
n=0〈−β|n〉2c̃n

∣∣∣2]−1/2

∣∣∣∑+∞
m=0 c̃m

∣∣∣ +∞∑
j,k=0

c̃j c̃
∗
k

1 + 2πi(j−k)
3

. (4.98)

As it turns out, P|ψ〉 depends on the detail of |ψ〉—even if we only try to create a combination of

|0̃〉 and |1̃〉, the combination coefficients would lead to very different success probabilities. In order to

provide a concrete measure of the ability of our state-preparation scheme, we have chosen to compute

the minimum success probabilities of creating all the states in the mechanical oscillator’s Hilbert

subspaces spanned by the lowest displaced Fock states, e.g., H1 ≡ Sp{|0̃〉, |1̃〉}, H2 ≡ Sp{|0̃〉, |1̃〉, |2̃〉},

etc. We define

PHj = min
|ψ〉∈Hj

P|ψ〉 , Hj =

{
j∑
l=0

αl|l̃〉 : αl ∈ C

}
. (4.99)

In Fig. 4.9, we plot PH1
, PH2

, . . . , PH7
as functions of β (in solid purple curves). Because

H1 ⊂ H2 ⊂ · · · ⊂ H7, it is increasingly difficult to create all states in Hj with higher values of j, and

therefore PH1 ≥ PH2 ≥ . . . PH7 , namely our success probability decreases globally when j increases.

In fact, as we overlay the single-Fock-state success probabilities P0, P1, . . . , P5, we also discover

that for any PHj (β), it asymptotes to P0 at higher β, and to Pj at lower β; moreover, the transition

between these two asymptotic regions are brief, and the PHj (β) curves do not lie much below the

minimum of P0 and Pj .

This asymptotic behavior can be understood from the behavior of Pn, the success probability for

single (displaced) Fock states. For smaller β, it is much more difficult to prepare a higher Fock state,

therefore, if β is sufficiently small, the difficulty of preparing Hj is dominated by the preparation

of |j̃〉, the single most difficult state in the space to prepare—and therefore PHj agrees with Pj .

Vice versa, for sufficiently large β, the difficulty of preparing Hj lies in the preparation of 0̃〉, and

therefore PHj would agree with P0. The fast transition between the two extremes indicates that

when trying to prepare states in Hj , the difficulty either lies in |0̃〉, or in |j̃〉, and only for a small

region of β the two difficulties might compete with each other—while none of the intermediate states

contribute to the difficulty of state preparation. This is consistent with the relative locations of the

Pn curves in Fig. 4.9: (i) for any β, P1,2,...,j−1 are always much greater than the minimum of P0 and

Pj , and (ii) as we move away from the β at which P0 and Pj crosses each other, their discrepancy

increases quickly.

As a matter of practicality, we see that if we choose β ≈ 0.87 the probability of achieving, with

an overlap (or fidelity) above 90%, any superposition of |0̃〉 and |1̃〉 (i.e., any member of the subspace

H1) is guaranteed to be above 6.3%. On the other end, with a probability of at least 0.1%, we can
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produce all states in the 8-dimensional subspace of H7.

4.5 Practical Considerations

In order to realize such a state-preparation scheme, we need to fulfill the following three requirements.

The first requirement is that the series in Eq. (4.92) be converging. This can be satisfied if β ≥ 1.

To see what this means, we restore all the physical units:

β =
k/(2ωm)√
~mωm/2

=

[
~ω0

c

]√
2

~mωm

[
2ωm

L

c

]−1

. (4.100)

It characterizes the momentum kick of photon ~ω0/c to the oscillator during one oscillation period

compared to the ground-state momentum uncertainty
√

~mωm/2. The momentum kick from the

photon needs to be big enough to substantially change the mirror state. The second requirement is

that cavity bandwidth be smaller than the mechanical frequency

γ < ωm. (4.101)

This is because we need to wait at least several oscillation periods to approach the asymptotic state,

and the photon should be long enough such that we have a finite probability for detecting photon

at t > ω−1
m .

Combining the above two conditions, we obtain the following relation

λ

F
<

√
~

2mωm
(4.102)

where λ is the optical wavelength of the photon, F is the cavity finesse. This means the cavity

linear dynamical range much be less than the zero point uncertainty to realize the optomechanical

nonlinearity. An alternative scheme has been proposed to make it more achievable experimentally

[16].

The third requirement is that the thermal decoherence effect be small within one mechanical

oscillation period, namely [cf. also Eq. (5) in Ref. [7]]:

Q >
kTE
~ωm

, (4.103)

where Q is the mechanical quality factor of the oscillator and TE is the environmental temperature.

These three requirements can be achieved experimentally, e.g., the current setups shown in Refs. [3, 4]

and the one proposed in Ref. [6].

Finally, we require the the capability of generating a single photon with an arbitrary wave
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function with duration comparable to the mechanical oscillation frequency of the photon. This is

possible with cavity QED systems, as has been discussed by Ref. [17–19].

4.6 Conclusions

We have presented an exact solution to the open quantum dynamics of an single-photon interfer-

ometer with a movable mirror. Since the photon number is preserved, we have been able to write

the total wave function of photon as three components: incoming photon, inside-cavity photon and

out-going photon. We analyzed the details of how the photon exchanges between the cavity mode

and the external continuous field.

We studied the fringe visibility of the interferometer in a specific case by injecting a single photon

with exponentially decaying profile and with the movable mirror initially prepared at the ground

state. This scheme has been proposed by Ref. [7] to explore decoherence of a macroscopic oscillator,

although in that proposal the photon has been assumed to start off from inside the cavity. In the

limit when the photon pulse is short (or a� γ), we did recover the result of Ref. [7], although our

result deviates significantly when a becomes comparable to γ. We believe this is experimentally

relevant, because in the case a � γ, the probability for the photon to exit from the detection port

is very small, and therefore the experiment may suffer significantly from imperfections.

We have also studied the use of such nonlinear optomechanical interactions to prepare the me-

chanical oscillator into an arbitrary quantum state—similar to the proposal of Ref. [12], although not

having to require that the photon to start off from within the cavity. To realize this, we require that:

(i) the optomechanical cavity must be working in the nonlinearity regime [i.e., the cavity’s spatial

line width must be less than the oscillator’s zero-point position fluctuation, see discussions above

Eq. (4.102)], (ii) the cavity’s frequency width must be less than the mechanical oscillator’s angular

frequency, (iii) the thermal decoherence time must be less than several times the mirror’s period of

oscillation, and (iv) we must be able to engineer the single-photon wave function arbitrarily, at a

time scale comparable to the mirror’s oscillation period and with coherence time longer than the

cavity storage time. Although we have shown mathematically that all quantum states whose expan-

sion coefficients in the displaced Fock states |ñ〉 drop sufficiently fast as n → +∞ can be prepared

by modulating the wave function of the incoming photon and conditioning over the arrival time of

the returning photon, in practice we will be confined to the superposition of a handful of nearby

displaced Fock states.
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