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Abstract

Thin-walled structures made of polymers and reinforced polymer composites are prominent candi-

dates for constructing large lightweight structures. A major challenge in designing polymer-based

thin-walled structures is their time and temperature dependent behavior originating from material

viscoelasticity and its interaction with the highly geometrically nonlinear response due to thinness

of the walls. Although polymer viscoelasticity and geometric nonlinearity have been extensively

studied, the mechanics of structures exhibiting both phenomena are not well understood.

This thesis presents a combination of experimental, numerical, and analytical investigations of the

behavior of viscoelastic thin-walled structures. The first goal of this research is to establish general

methods of analysis for two types of structural components, namely composite shells and polymer

membranes, that will serve as the basis for full-scale structural analysis. The second goal is to

demonstrate the capability of the developed methods by analyzing time and temperature dependent

behavior of deployable structures and balloon structures.

In the study of deployable structures, the deployment and shape recovery processes after stowage

are investigated. Fundamental features of viscoelastic deployable structures are studied first with ho-

mogeneous polymer beams and shells. A simple closed-form solution describing the shape evolution

of a beam after stowage is proposed. The effects of rate and temperature on the bending instabil-

ity of shells are revealed. Building on the understanding gained from the analysis of homogeneous

structures, modeling techniques are developed for polymer composite structures. A micromechan-

ical viscoelastic model for carbon fiber reinforced polymer thin shells is established through finite

element homogenization and applied to evaluate the effects of long-term stowage in a representative

composite deployable structure.

In the study of balloon structures, a membrane model is developed to study polymer balloon

films with stress concentrations due to thickness variation. A nonlinear viscoelastic constitutive

model is first formulated for the film material. The wrinkling instability behavior is incorporated

into the model through correction of stress and strain states in the presence of wrinkling. Stress

concentration factors in balloon films are predicted and measured with the membrane model and

full-field displacement measurement techniques, respectively.
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Chapter 1

Introduction

1.1 Polymer and Composite Thin-walled Structures

Thin-walled structures are three-dimensional objects in which one dimension is much smaller than

the other two. Because of their structural efficiency, thin-walled structures are widespread in many

branches of engineering with areas of applications ranging from aircrafts, ships, and space vehicles

to bridges, buildings, and storage vessels. A growing proportion of thin-walled structures is made of

polymers and reinforced polymer composites, most notably in the construction of large lightweight

structures, because of the significant weight benefits. Two outstanding types of such kind are

composite shell structures and polymer membrane structures.

Composite shells are made from two or more constituent materials which are distinct at the

microscopic scale. The most widely used composite shells are fiber reinforced polymer composites

in which stiff reinforcing fibers are embedded in a polymer matrix. Common fiber reinforcements

include carbon and glass fibers. For matrix material, thermosetting polymers such as epoxy are

usually chosen due to their higher mechanical and thermal stability, even though there are renewed

interests in thermoplastic matrix recently. Remarkable examples of fiber reinforced composite shell

structures include the fuselage of Boeing 787 Dreamliner aircraft shown in Figure 1.1, and the

lightweight deployable booms used by the German Aerospace Center (DLR) to unfold large solar

sails, Figure 1.2.

Polymer membranes often appear in either fabric or film form. Nylon, polyester, and polyethy-

lene are common materials for manufacturing membranes. The area of application is primarily in

inflatable structures such as aerostats, airships, balloons, and radomes. The 30 m diameter sea-

based inflatable radome in Figure 1.3 and the tethered aerostat with a volume of 11,893 m3 shown

in Figure 1.4 are two examples of polymer membrane structures.

The structures mentioned above are designed for long duration operation, during which tem-

perature variations will occur. Whether a structure can perform its desired function under such

conditions is in question because the polymeric materials that make up the structure have viscoelas-
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tic properties that vary with time and temperature.

The design of viscoelastic thin-walled structures pose significant challenges in analysis because

both geometry and material behavior play a key role. In particular, their response is highly geomet-

rically nonlinear due to the thinness of the walls; and sensitive to time and temperature change as

a result of the viscoelastic nature of polymers.

Figure 1.1. Carbon fiber composite fuselage section (courtesy of Boeing).

Figure 1.2. Composite deployable booms: (a) Snapshots during deployment, and (b) solar sail
unfolded by four deployable booms (courtesy of DLR).
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Figure 1.3. Sea-based inflatable radome (courtesy of ILC Dover).

Figure 1.4. Tethered aerostat (courtesy of ILC Dover).
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1.2 Motivation

The research presented in this thesis is motivated by recent developments in space structures and

balloon structures that are made of thin composite laminates and polymer films, respectively. Specif-

ically, the focus is on long-term stowage effects in deployable spacecrafts and stress concentrations

in superpressure balloons. These two problems have notable similarities in the theoretical, experi-

mental, and computational tools required.

1.2.1 Stowage Effects in Deployable Spacecraft

For designing large space structures such as reflectors, antennas, and solar sails, the payload and

stowage capacity of launch vehicles are the main limiting factors. A routinely employed solution is

to design large space structures as deployable structures which can be packaged into a much smaller

volume for stowage and deployed in space for operation. Inflatables, motorized and mechanically

jointed structures, elastically deformed structures, and structures with shape memory are common

packaging and deployment schemes.

Packaging a structure by recoverable deformation is a particularly attractive solution because

the structure is able to self-deploy upon releasing the packing constraint. Thin shell structures are

extensively used for this packaging scheme because they can undergo large shape reconfiguration

with relatively small deformation by virtue of geometrically nonlinear behavior. To increase mass

efficiency, there is rising interest in designing deployable structures with fiber reinforced polymer

composite materials (Yee and Pellegrino, 2005; Soykasap et al., 2008). Notable examples of com-

posite deployable structures include the Springback Antennas on the Mobile Satellite System (Seizt,

September 4, 1994) and the Flattenable Foldable Tubes forming the Mars Advanced Radar for Sub-

surface and Ionospheric Sounding (MARSIS) antenna on the Mars Express Spacecraft (Mobrem

and Adams, 2009). The antenna consisted of two 20 m dipoles and a 7 m monopole. Slots were

introduced into the antenna tubes at several intervals for packaging and stowage in a 1.7 m x 0.3 m

x 0.2 m cradle as shown in Figure 1.5.

One important issue in designing composite deployable structures is the inherent creep behavior of

the polymer matrix, which often limits the amount of deployment force and the shape precision that

can be achieved. The MARSIS antenna, for instance, was found to have a reduction in deployment

moment after a long period of stowage (Adams and Mobrem, 2009). As space structures are often

stowed for extended periods and subject to varying temperature environments, realistic predictions

on, for instance, the loss in deployment force during stowage and the time required for a complete

shape recovery are required for robust designs. It is necessary to gain a fundamental understanding

of the viscoelastic behavior of the structure during the folding, stowage, deployment, and shape

recovery processes.
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Figure 1.5. Flattenable foldable tubes used on MARSIS (courtesy of Astro Aerospace).

1.2.2 Stress Concentrations in Superpressure Balloons

Balloon systems provide a potential low-cost platform for telecommunication and scientific observa-

tion in the stratosphere. However, no balloon systems today are able to carry large payloads for long

duration. The Superpressure Balloon (SPB) program started by NASA, originally known as Ultra

Long Duration Balloon program, aims to develop a general purpose platform that can carry pay-

loads of several tonnes for up to 100 days at constant altitudes above 99% of the Earth’s atmosphere

(Smith, 2004).

Zero-pressure balloons which have an opening at the bottom are not able to maintain a constant

altitude because the volume of the balloon is free to expand and contract as a result of heating and

cooling of the gas inside the balloon during the day-night cycle. To minimize altitude variation,

lobed superpressure balloons with a closed envelope are currently employed for SPB. The balloon is

assembled from a number of identical gores by sealing neighboring lobes together and incorporating a

tendon along the common boundary in the meridional direction as shown in Figure 1.6. The tendons

are hollow-braided cords made of high strength fibers intended for carrying meridional stress. Hoop

stress is primarily taken up by the polymer gore films and can be reduced by increasing the local

lobe curvature. This design has the advantage of decreased self-weight by using thin membranes to

construct the lobes (Smith and Rainwater, 2004).

A limiting factor in designing these balloons is the presence of local stress concentrations in

relatively small regions of the balloon film, for example, at the junction of the end-fitting and the

balloon film. To enable the estimation of realistic factors of safety, the actual stress concentrations

in these regions need to be predicted, which requires a detailed understanding of the balloon film

behavior. The balloon film is made of linear low density polyethylene (LLDPE) with thicknesses

ranging from 20 µm to 38 µm. This film exhibits nonlinear viscoelastic and anisotropic behavior
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Figure 1.6. Lobed superpressure balloon: (a) inflated configuration during indoor test (courtesy of
NASA), and (b) laboratory scale model.

(Rand and Sterling, 2006), and is prone to wrinkling due to its small thickness. Accounting for these

effects and their interaction in design analysis is critical for successful balloon flights.

1.3 Objectives

The overall objective of this thesis is to establish general methods of analysis to understand time

and temperature dependent behavior of large thin-walled structures. The first goal of this research

is to develop analytical, experimental, and modeling techniques for composite shells and polymer

membranes that will serve as the basis for full-scale analysis of thin-walled structures exhibiting vis-

coelastic behavior. The second goal is to to investigate stowage effects in a representative composite

deployable structure and stress concentrations in balloon films used in NASA superpressure balloons

with the developed techniques.

1.4 Organization

This thesis is comprised of several self-contained studies performed on different types of viscoelastic

thin-walled structures. The organization is intended to present the techniques and results specific

to the topic at hand.

The detailed outline of the thesis is as follows. Chapter 2 reviews the essential elements in

polymer viscoelasticity and provides an overview of the theoretical, experimental, and numerical

tools relevant to the current research.

Chapters 3 to 5 are designated to studies on deployable structures. Each of them is focused

on a specific aspect of the general problem. To understand the general features of viscoelastic

deployable structures, the folding, stowage, deployment, and recovery sequence of a homogeneous
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polymer beam is formulated as a quasi-static time-dependent boundary value problem and solved

analytically in Chapter 3. This study provides insight into the effects of stowage temperature and

duration. Chapter 4 investigates the behavior polymer tape-springs, which are cylindrical shells

that often used as deployable actuator elements. The effects of rate and temperature on their highly

geometrically nonlinear behavior are studied. Chapter 5 is focused on micromechanical modeling of

woven composite shells and its application on dynamic deployment and shape recovery of composite

tape-springs.

Chapter 6 is devoted to the study of superpressure balloons. A membrane model that captures

both the anisotropic, nonlinear viscoelastic material behavior, as well as the wrinkling response of

the LLDPE balloon film is presented. The free volume nonlinear viscoelasticity theory is generalized

for orthotropic membranes. A wrinkling criterion and a correction algorithm for stress and strain

states due to the presence of wrinkles are incorporated into the viscoelastic model in finite element

implementation. Experiments and simulations based on the developed model are performed to study

a problem in which stress concentrations arise in the balloon film.

Chapter 7 concludes the thesis.
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Chapter 2

Polymer Viscoelasticity

The viscoelastic behavior exhibited by the structures studied in this thesis originates from the

response of the constituent polymer materials. This chapter describes the general mechanical char-

acteristics of polymers and provides an overview of the theoretical, experimental, and numerical

tools employed.

2.1 Mechanical Properties of Solid Polymers

Most solid polymers can be broadly classified into either thermoplastics or thermosets. The basic

physical difference between the two is related to the bonding between molecular chains. Ther-

moplastics only have secondary bonds between chains while primary bonds exist between chains

in thermosets. Because of differences in the molecular structures, the two types of polymers ex-

hibit different material behavior. Generally speaking, thermoplastics can be repeatedly melted and

remolded while thermosets cannot. Thermoplastics and thermosets are sometimes referred to as

uncrosslinked and crosslinked, respectively.

The mechanical properties of polymers are dependent on rate and temperature. If uniaxial tests

are performed under various constant strain rates and temperatures, stress-strain response similar

to Figure 2.1 will be observed. The rate and temperature dependence of the stress-strain response

is typical of many polymers. As seen in Figure 2.1, polymers have increased stiffness at faster rates

or lower temperatures. Such mechanical response is a result of the unique deformation mechanism

of the molecular structure. When subject to a load, a polymer responds not only by bond stretching

(as in the case of metals), but also by molecular chain rearrangement to bring the macromolecular

structure to a state of energy minimum. Bond stretching is relatively fast while chain rearrangement

is a long-term process. At fast loading rates, polymers deform mostly by bond stretching and the

observed stiffness is therefore higher. Chain reconfiguration is heavily influenced by chain mobility.

At high temperatures, the volume of a polymer expands, which creates more room for molecular

chains to reconfigure. The rearrangement process is sped up due to higher chain mobility, which
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leads to a lower observed stiffness.

A polymer can be stiff like glass or flexible like rubber depending on its temperature as compared

to the characteristic temperature known as the glass transition temperature Tg. Below the Tg,

polymers are glassy solids with only a small amount of time-dependence. Near and slightly above

the Tg, polymers become more viscoelastic and their moduli drastically decrease with time. This

regime is often known as the transition region. As the temperature is raised well above the Tg,

polymers exhibit rubbery like behavior. In the rubbery region, little time-dependence is again

observed, but the modulus is significantly lower than the glassy modulus.

The glass transition temperature for different polymers span a wide range from well below to

well above ambient temperature. Therefore, it is not unusual that two different polymers show dis-

similar behavior at room temperature because they may either be in the glassy or rubbery regime.

Thermoplastics are generally lighter, softer, and have lower glass transition temperatures than ther-

mosets. They are used in engineering devices where low stresses are expected. For higher thermal

and dimensional stability requirements, thermosets are employed. For instance, the LLDPE used

in NASA superpressure balloons is a thermoplastic with a glass transition of approximately -50◦C

while the epoxy resin in composite deployable structures studied in this thesis is a thermoset with

a glass transition temperature of 130◦C.

Figure 2.1. Typical stress-strain response for polymers (Brinson and Brinson, 2008).

2.2 Review of Phenomenological Theory

Even though it has been mentioned that the fundamental nature of viscoelastic behavior originates

from unique molecular mechanisms in polymers, modeling molecular deformation is a complicated
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task and still a subject of current research. For analysis of large structures such as those studied in

this thesis, a phenomenological theory provides a satisfactory approximation.

The phenomenological theory of viscoelasticity is well established (Coleman and Noll, 1961;

Flugge, 1975; Ferry, 1980; Christensen, 1982; Tschoegl, 1989). This section describes the definition

of terms and outlines the basic principles involved in the theory.

2.2.1 Relaxation and Creep

The two fundamental attributes of viscoelastic behavior are relaxation and creep. In relaxation, a

constant strain is applied to a specimen in a quasi-static manner at zero time. The stress required

to maintain the imposed strain decreases over time. Eventually, the stress reduces to zero for

uncrosslinked polymers but converges to a constant value for crosslinked polymers. The typical

stress and strain profiles during relaxation are shown in Figure 2.2(a). The modulus obtained from

such stress and strain variations is obviously a function of time and is defined as the relaxation

modulus E(t),

E(t) =
σ(t)

ϵ1
. (2.1)

If instead a constant stress is applied, the strain will increase over time as shown in Figure 2.2(b).

This situation is the inverse of relaxation and is known as creep. The creep compliance D(t) so

obtained is given by

D(t) =
ϵ(t)

σ1
. (2.2)

(a) (b)

Figure 2.2. Stress and strain evolution over time in (a) relaxation, and (b) creep.
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2.2.2 Boltzmann Superposition Principle

Relaxation and creep are relatively simple scenarios where either a constant strain or stress is ap-

plied. For problems with variable stress or strain inputs, the Boltzmann superposition principle

is applicable. Consider the case of imposing an arbitrary time-varying strain to a polymer. The

imposed strain profile is first thought of as a series of step strain inputs. Since the strain is constant

within each step, the resulting effect in each step is represented by a relaxation response. It is

assumed in the Boltzmann superposition principle that the relaxation responses are linearly inde-

pendent and can therefore be superposed to give the final stress response (McCrum et al., 2003).

The same holds for the case of applying a time-varying stress. The result of this principle is an

integral representation for viscoelastic constitutive relations written as

σ(t) =

∫ t

0

E(t− s)
dϵ(s)

ds
ds, (2.3)

ϵ(t) =

∫ t

0

D(t− s)
dσ(s)

ds
ds. (2.4)

2.2.3 Prony Series Representation

For practical stress analysis, it is necessary to know the actual viscoelastic properties of the materials.

Hence a mathematical representation of the experimental data obtained from relaxation or creep

tests is needed. The most frequently used mathematical form is an exponential series often referred

to as a Prony series (Brinson and Brinson, 2008). The Prony series representation for relaxation

modulus E(t) or creep compliance D(t) are given by

E(t) = E∞ +
n∑

i=1

Eie
−t/ρi , (2.5)

D(t) = D0 +
n∑

j=1

Dj(1− e−t/τj ), (2.6)

where E∞ is the long-term modulus, Ei are the relaxation coefficients, ρi are the relaxation times,

D0 is the instantaneous compliance, Dj are the retardation coefficients, τj are the retardation times.

The Prony series can be derived from a mechanical model consisting of a network of springs and

dashpots as shown in Figure 2.3. In this model, the elastic response is represented by the springs with

spring constants Ei and the viscous response is provided by the dashpots with viscosity µi. Each

leg of spring and dashpot gives rise to one exponential, which effectively models the time-dependent

behavior within 1 decade of time. Exponential terms can be added or removed depending on the time

span of interest. Figure 2.4 shows the typical behavior of relaxation modulus and creep compliance

with respect to logarithmic time.



12

Figure 2.3. Mechanical model of Prony series (Brinson and Brinson, 2008).

Figure 2.4. Typical viscoelastic property variation with time: (a) relaxation modulus, and (b) creep
compliance.
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2.2.4 Time-Temperature Superposition Principle

A particularly important function of engineering design is the ability to predict the performance of

structures over their lifetime, which can range from several months for superpressure balloons to

years for space structures. There is a huge advantage if methods of analysis are capable of predicting

long term response of polymer-based structures from relatively short-term test data. For polymers,

there exists a remarkable relationship between the dependence on time and temperature known as

the time-temperature superposition principle.

To illustrate the time-temperature superposition principle, consider a creep compliance curve

shown in Figure 2.5. If short-term creep tests are carried out at several temperatures, creep data

similar to Figure 2.5(a) will be observed. The compliance curve in Figure 2.5(b) is obtained by

shifting all curves above −10◦C to the right and those below −10◦C to the left in Figure 2.5(a) until

a continuous line appears. Essentially, the data collected above −10◦C represent the longer time

creep response at −10◦C while data below −10◦C represent the shorter time response. The total

curve in Figure 2.5(b) is called the creep compliance master curve at −10◦C. To obtain the master

curve at a different temperature, the curves can be shifted with respect to the desired temperature.

With this principle, the viscoelastic response for a wide time span can be determined by performing

short-term tests for a range of temperatures.

The theoretical basis for time-temperature superposition principle is the kinetic theory of poly-

mers, which has been extensively studied. The key result related to time-temperature superposition

principle is the postulation of a shift factor aT which expresses the ratio of relaxation times (or

retardation times) at two different temperatures,

aT =
ρ(T )

ρ(T0)
, (2.7)

where ρ is the relaxation time and T0 is some reference temperature. As indicated earlier, a polymer

has many relaxation times. If the same shift factor applies to all relaxation times, the polymer is

termed thermorheologically simple. A widely used empirical relation for aT is called the Williams-

Landel-Ferry (WLF) equation (Williams et al., 1955),

log aT = − c1(T − T0)

c2 + (T − T0)
, (2.8)

in which c1 and c2 are material constants that depend on the particular polymer and the logarithm

is of base ten.

To incorporate this temperature behavior into the integral constitutive equation, the concept of

reduced time t′ is introduced and is given by,
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t′ =

∫ t

0

ds

aT (T (s))
. (2.9)

In the simple case of constant temperature over time, the reduced time becomes

t′ =
t

aT
, (2.10)

and the following relations are obtained:

ET (t) = ET0(t
′), (2.11)

DT (t) = DT0(t
′). (2.12)

In other words, the relaxation modulus or creep compliance at one temperature is related to

that at the reference temperature by a shift in time, which justifies the curve shifting procedure in

forming the master curve illustrated earlier.

The constitutive equations, Equations 2.3 and 2.4 , are expressed in terms of reduced time as

σ(t) =

∫ t

0

E(t′ − s′)
dϵ(s)

ds
ds, (2.13)

ϵ(t) =

∫ t

0

D(t′ − s′)
dσ(s)

ds
ds. (2.14)
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Figure 2.5. Creep compliance master curve: (a) short term creep data, and (b) shifted data.

The applicability of time-temperature superposition over long time scales has been studied by

Capodagli and Lakes (2008). This study investigated the viscoelastic properties of PMMA and

LDPE over 11 decades of time and reached the conclusion that time-temperature superposition is
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acceptable for modulus curves, but not for damping curves. The sensitivity of the shift process with

respect to thermal variations was studied by Knauss (2008). Results of the study showed that a one

degree centigrade variation around a mean value limits the shift factor error to less than 4%, which

translates into a misrepresentation of two weeks out of a year.

2.2.5 Multiaxial Behavior

The constitutive behavior of viscoelastic materials discussed so far has been limited to the case of

uniaxial deformation. This section describes the equations, assumptions, and procedures employed

in solving boundary value problems in two or three dimensions.

For isotropic materials, the constitutive equations can be written in terms of deviatoric and

dilatational stress and strain components,

dij(t) = 2

∫ t

0

G(t′ − s′)
∂eij(s)

∂s
ds (2.15)

σkk(t) = 3

∫ t

0

K(t′ − s′)
∂ϵkk(s)

∂s
ds (2.16)

where dij and eij are the deviatoric stress and strain, σkk and ϵkk are the dilatational stress and

strain, G is the shear modulus and K is the bulk modulus. In practice, it is difficult to measure the

viscoelastic bulk modulus because it varies with time only by a small amount. Therefore the usual

practice is to infer the bulk modulus from Young’s modulus and Poisson’s ratio. Although such

interconversion of material functions are routinely performed in elasticity, their implementation

in viscoelastic solids present nontrivial theoretical and experimental difficulties due to the time-

dependent nature of the viscoelastic Poisson’s ratio.

In viscoelastic materials, the Poisson’s ratio is not uniquely defined and most definitions presented

in the literature are not compatible with each other (Hilton, 1998). A frequently cited definition of

viscoelastic Poisson’s ratio is the ratio of time-dependent transverse to time-dependent longitudinal

strain in axial creep extension,

ν(t) = −ϵt(t)

ϵl(t)
, (2.17)

where ϵt and ϵl are transverse and longitudinal strains. For comparison, the Poisson’s ratio defined

under relaxation conditions is

ν(t) = −ϵt(t)

ϵl
, (2.18)

in which the applied longitudinal strain, ϵl, is restricted to be time-independent. As shown in Lakes

(2006), the Poisson’s ratios in creep and relaxation can be expressed as
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νc(t) =
1

2
− 1

6
B

1

D(t)
, (2.19)

νr(t) =
1

2
− 1

6
BE(t), (2.20)

where νc is the Poisson’s ratio in creep, νr is the Poisson’s ratio in relaxation, and B is the bulk

compliance taken to be constant. It is observed that the two definitions are in general different

because

E(t) ̸= 1

D(t)
. (2.21)

Alternatively, the Poisson’s ratio can be defined as the ratio of the Fourier transforms of the time-

dependent strains, even though this does not admit a direct physical interpretation.

For simplicity of calculation, a time-independent Poisson’s ratio is often assumed. A constant

Poisson’s ratio tacitly leads to the condition that shear and bulk moduli are synchronous (i.e.,

proportional), which is inconsistent with the behavior of real materials. Hilton (2001) also suggested

that a constant Poisson’s ratio is only valid for analysis of homogeneous materials at constant

temperatures.

The experiment difficulty in converting material functions lies in the high precision required in

property characterization tests. For example, it has been reported that the Poisson’s ratio must be

determined to four significant digits in order to reasonably infer the bulk modulus (Lu et al., 1997;

Sane and Knauss, 2001). In general, viscoelastic properties in polymers depend on temperature,

moisture, specimen preparation and conditioning. Therefore the material functions being sought

need to be measured on the same specimen, in the same environment, and at the same time (Tschoegl

et al., 2002). Because of experimental difficulties in measuring two material functions simultaneously,

the assumption of constant Poisson’s ratio is frequently made for isotropic materials despite the fact

that the resulting material model may not describe real material behavior.

It is agreed that values of Poisson’s ratios obtained depend on the type of tests conducted and

should be used with caution. A more accurate approach is to avoid material function conversion

and determine directly the relaxation or creep functions.

For anisotropic materials, the constitutive equations formulated in terms of creep compliance are

ϵij(t) =

∫ t

0

Dijkl(t
′ − s′)

dσkl(s)

ds
ds, (2.22)

where Dijkl is the relaxation modulus matrix. The use of Poisson’s ratio has no advantage in this

case as the material characterization procedure requires more than a single experiment. Direct

measurements of entries in Dijkl provide a complete material description and the controversy with

Poisson’s ratio can be avoided.
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2.3 Experimental Characterization

The basic test configuration, procedure, and data analysis methods for uniaxial relaxation modulus or

creep compliance characterization are described in this section. Only the relaxation test procedure is

presented for illustration. Additional test procedures or assumptions employed for specific materials

will be discussed in the respective chapters.

2.3.1 Test Configuration and Procedure

Uniaxial tension tests with rectangular test coupons were performed inside an environmental cham-

ber (Instron Heatwave Model 3119-506) utilizing a built-in thermocouple to control the temperature

with a precision of ±1◦C, Figure 2.6. A type-T thermocouple made of Copper/Constantan was

attached to the surface of a dummy specimen close to the test specimen to monitor the actual spec-

imen temperature. As a test for stable temperature conditioning inside the environmental chamber,

a temperature impulse was imposed and the subsequent temperature variation over time measured

by the built-in thermocouple and the dummy specimen thermocouple were recorded. It was found

that the temperature readings from the two thermocouples became identical 30 minutes after the

impulse. This indicates that thermal equilibrium can be established within such time frame, and

this thermal conditioning time was allowed prior to each test.

Prior to each test, the temperature was brought to the specified value after the specimen was

clamped onto the materials testing machine. The specimen was thermally conditioned for 30 minutes

at the test temperature. To make sure the specimen was not prestressed due to thermal expansion

or contraction, the position of the crosshead of the load frame was adjusted to obtain a zero axial

preload. Because of the viscoelastic nature of the specimen, the observed load on the specimen

changes over time after each crosshead adjustment. Therefore, before an adjustment was made, the

specimen was first allowed to rest until the observed load converged to a steady value. This step

was repeated until a steady zero axial preload was eventually reached.

Relaxation tests were carried out at several different temperatures. At each temperature, test

coupons were stretched to a strain of 0.005 in 1 second and held constant for 3 hours. The longitudinal

and transverse strains were measured using two laser extensometers (Electronic Instrument Research

Ltd LE-05) with a recording rate of 5 Hz for polymer sheet specimens. The laser extensometers

measure the average strains over relatively large gage lengths. For film specimens which easily

wrinkle under uniaxial tension, extensometers are not suitable because the transverse strains would

be overestimated due to specimen wrinkling. For characterization of films, a three dimensional digital

image correlation (DIC) system (Correlated Solutions Inc.) was employed. The DIC technique

measures full-field strains on a surface arbitrarily oriented in three-dimensional space and hence

avoids incorrect strain measurements.
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Figure 2.6. Materials testing facility.
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2.3.2 Data Analysis

The relaxation moduli at three different temperatures for low density polyethylene (LDPE) are

shown in Figure 2.7 as an example. The initial portion of the relaxation test data after loading

with a finite strain rate deviates from that in the case of ideal instantaneous straining. It has

been demonstrated the difference becomes negligible in about 10 times the loading time (Lee and

Knauss, 2000). For this reason, the data obtained during the first 10 s after loading were discarded.

The individual relaxation moduli at T = 0◦C and T = 10◦C were shifted with respect to the

reference temperature of T0 = 22◦C to form a master curve. The corresponding shift factors were

determined so that the shifted relaxation moduli and the unshifted one at T0 lie along a single smooth

curve. Figure 2.8 depicts the master curve of LDPE at the reference temperature. The long-term

modulus, relaxation coefficients and relaxation times were determined by fitting the Prony series

representation, Equation (2.5), to the experimental master curve using the Levenberg-Marquardt

optimization algorithm (Levesque et al., 2007). In this fitting procedure, the long-term relaxation

modulus was set to take the value at the end of the master curve. The number of Prony terms

was chosen to be the same as the number of decades in time spanned by the master curve. The

relaxation times could be fixed at equally spaced time intervals on the logarithmic scale, in which

case only the Prony coefficients were computed, or left also as variables to be determined. Similarly,

the material constants c1 and c2 were found by matching the temperature shift data to the WLF

equation, Equation (2.8).

If creep compliance is desired for model formulation, it can be determined from the convolution

relation between relaxation modulus and creep compliance,

∫ t

0

E(t)D(t− s)ds = t. (2.23)

2.4 Numerical Implementation

Finite element modeling is used extensively throughout this thesis. Hence, the material response

needs to be computed in each time step during the solution procedure of a finite element structural

analysis, which requires an integration over time and storage of information on the material states

for all previous time steps. This section discusses an efficient recursive numerical algorithm that

computes the constitutive integrals for viscoelastic materials.

A recursive algorithm was first proposed for linear viscoelastic integrals by Taylor et al. (1970).

With this algorithm, only the material state variables at the previous time step are required for

determining the current state. This approach minimizes the storage and arithmetic operations

required to perform numerical integration. Similar algorithms have been extended to nonlinear
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viscoelastic integrals (Henriksen, 1984; Lai and Bakker, 1996; Haj-Ali and Muliana, 2004). Here the

recursive algorithm for the case of linear viscoelastic uniaxial deformation is presented.

We begin by substituting the Prony series relaxation modulus, Equation 2.5 into the integral

expression for current stress σt, Equation (2.13), to obtain

σt = E∞ϵt +

n∑
i=1

Eiqi,t, (2.24)

where

qi,t =

∫ t

0

e−(t′−s′)/ρi
dϵs
ds

ds. (2.25)

The integral in Equation 2.25 can be divided into two parts. The first part is the integral from time

zero up to the previous time step while the second is from the previous to the current time step. In

other words,

qi,t =

∫ t−∆t

0

e−(t′−s′)/ρi
dϵs
ds

ds+

∫ t

t−∆t

e−(t′−s′)/ρi
dϵs
ds

ds. (2.26)

The first integral in Equation 2.26 can be expressed as

∫ t−∆t

0

e−(t′−s′)/ρi
dϵs
ds

ds = e−∆t′/ρiqi,t−∆t, (2.27)

where the reduced time increment is defined by

∆t′ =
∆t

aT,t−∆t
, (2.28)

in which the shift factor is assumed to be constant over the current time step. Assuming that the

strain varies linearly over the current time step, the second integral can be computed to be

∫ t

t−∆t

e−(t′−s′)/ρi
dϵs
ds

ds = (ϵt − ϵt−∆t)
1− e−∆t′/ρi

∆t′/ρi
. (2.29)

The integral qi,t can now be written as a recurrence relation with qi,t−∆t

qi,t = e−∆t′/ρiqi,t−∆t + (ϵt − ϵt−∆t)
1− e−∆t′/ρi

∆t′/ρi
. (2.30)

By substituting Equation 2.30 into Equation 2.24, the current stress is finally expressed as

σt = E∞ϵt +
n∑

i=1

Ei

[
e−∆t′/ρiqi,t−∆t + (ϵt − ϵt−∆t)

1− e−∆t′/ρi

∆t′/ρi

]
. (2.31)

The expression qi,t−∆t is the hereditary integral for each Prony term at the end of the previous time

increment t−∆t which has been computed in the last time increment. It should be noted that the
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integration is performed in an explicit manner. Accuracy of the integration is controlled by a user

defined tolerance that limits the allowed maximum strain rate.

This algorithm is implemented in the commercial finite element solvers Abaqus/Standard and

Abaqus/Explicit through user defined subroutines UMAT and VUMAT, respectively. The code is

validated against analytical solutions for the simple cases of relaxation and creep.
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Chapter 3

Quasi-Static Shape Recovery of
Polymer Beams

3.1 Introduction

The operation of deployable structures follows the sequence of folding, stowage, deployment, and

shape recovery. For elastic structures, the stowage step is irrelevant because the equilibrium state is

path independent. For viscoelastic structures, the stowage period changes the subsequent behavior.

This chapter formulates and solves analytically the folding-stowage-deployment process of a model

structure as a time-dependent boundary value problem with the aim of elucidating some of the

general features of the long term behavior of viscoelastic structures after stowage.

The model problem is a homogeneous linear viscoelastic beam with a uniform temperature dis-

tribution under bending. The beam is first subject to a constant deflection for a given holding time,

after which the prescribed deflection is reduced to zero quasi-statically. The beam is then allowed

to recover under a load free condition. One feature common to both the shape recovery problem in

composite deployable structures and the model problem is the switch of prescribed condition from

constant displacement in the holding duration to constant (zero) traction in the recovery period. It

is this aspect of the phenomenon that renders it of practical significance.

This chapter presents a closed-form solution for the shape recovery problem of a viscoelastic beam

with experimentally measured material properties based on separation of variables. The results are

validated against finite element simulations and experimental measurements. In particular, the effect

of holding duration and temperature on shape recovery time is investigated. The analytical relation

obtained allows easy comparison between different material systems and optimization of stowage

conditions in practical applications.
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3.2 Background

For quasi-static viscoelastic problems, Alfrey (1944) and Tsien (1950) were the first to obtain solu-

tions that are separated into a temporal and a spatial part under the condition of constant Poisson’s

ratio. Either the surface traction or displacement was specified for the entire history in the cases

discussed. Situations involving general viscoelastic materials are often tackled with integral trans-

form methods. Since the governing equations in the transformed domain have a identical form with

that of linear elasticity, it follows that the transformed viscoelastic solution can be obtained directly

from the solution of the corresponding elastic problem. The final solution in the time domain will be

realized upon inversion of the transformed solution. This analogy is known as the elastic-viscoelastic

correspondence principle and was first formally recognized by Read (1950) through the Fourier trans-

form. Lee (1955) and Lee et al. (1959) further developed the analogy in terms of Laplace transform

and applied the procedure to a variety of problems. However, one limitation of integral transform

methods is that the type of boundary condition at any point, whether it be prescribed traction or

displacement, is required to be time-invariant.

Viscoelastic contact problems such as the indentation of a viscoelastic half-space (Hunter, 1960;

Lee and Radok, 1960; Graham, 1965) and the rolling of a cylinder on a viscoelastic half-space

(Hunter, 1961; Morland, 1962 1967) are practical examples involving changing boundary conditions.

For these problems, the transform methods are inapplicable and no general methods of solution are

available. Similarly, because the type of boundary condition switches from prescribed displacement

to prescribed load over time, the shape recovery process belongs to the class of viscoelastic prob-

lems where integral transform methods and the elastic-viscoelastic correspondence principle are not

applicable. The solution needs to be developed directly in the time domain.

3.3 Analysis

Consider a beam that is initially straight in the unloaded state with a length of 2L. A uniform

bending moment is applied such that the tip of the beam reaches the specified deflection w0 at a

constant rate C. The deflected shape of the beam is then maintained with the tip deflection w0

constant for a given holding period. During the holding period, we seek to determine the evolution of

the bending moment M(t). At the end of the holding period, the moment is reduced quasi-statically

to zero and we seek to find the change of deflected shape over time under zero moment. Figure 3.1

shows the beam geometry. The sequence of deformation is described by time-dependent traction

and boundary conditions summarized as follows,
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Loading : w(t) = Ct, 0 < t ≤ tl

Holding : w(t) = w0, tl < t ≤ th

Unloading : w(t) = w0 − C(t− th), th < t ≤ tu

Recovery : M(t) = 0, t ≥ tu

where w(t) is the tip deflection, tl is the time required for imposing deflection, th is at the end of

the holding period, and tu is the instant at which the moment reaches zero.

Under quasi-static conditions, the deflection of the beam is governed by the following equation,

d2y(x, t)

dx2
=

M(t)

E(t)I
, 0 ≤ x ≤ L (3.1)

where y(x, t) is the vertical deflection, E(t) is the relaxation modulus and I is the second moment

of area of the beam cross section.

The temperature distribution is uniform throughout the beam but varies with time. We look

for spatial-temporal separable variable solutions to Equation (3.1) for the moment M(t) during

holding and deflection y(x, t) during recovery. The operational restrictions of employing separation

of variables technique are well documented (Christensen, 1982; Hilton, 2001) and are followed in the

present analysis.

y

x

w(t)

L

M(t)

Figure 3.1. Beam geometry.

3.3.1 Constitutive Model

To provide a basis for analysis and comparison with experimental results later on, the linear vis-

coelastic material model of low density polyethylene (LDPE) is first described.
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i Ei [MPa] ρi [s]
∞ 136.2 —–
1 150.6 2.43× 10−2

2 74.81 2.17× 10−1

3 68.26 1.52
4 65.22 1.24× 10
5 62.85 1.49× 102

6 49.83 1.69× 103

Table 3.1. Prony series parameters for LDPE master curve.

The uniaxial constitutive equation for linear viscoelastic material is

σ(t) =

∫ t

0

E(t′ − s′)
dϵ(s)

ds
ds, (3.2)

where σ is stress, ϵ is strain, E is the relaxation modulus, t′ and s′ are reduced times defined as

t′ =

∫ t

0

du

aT (T )
and s′ =

∫ s

0

du

aT (T )
. (3.3)

The relaxation modulus is represented by a Prony series as

E(t) = E∞ +
n∑

i=1

Eie
−(t/ρi), (3.4)

where t is time, E∞ is the long term modulus, Ei are the Prony coefficients, and ρi are the relaxation

times. The temperature shift factor is expressed by the Williams-Landel-Ferry (WLF) equation,

log aT = − c1(T − T0)

c2 + (T − T0)
, (3.5)

in which c1 and c2 are material constants that depend on the particular polymer and the logarithm

is of base ten.

The material properties of LDPE were characterized through a series of tensile relaxation tests

on rectangular test coupons cut from LDPE sheet stock with a thickness of 1.59 mm obtained from

United States Plastic Corporation. Figure 3.2 shows the relaxation modulus master curve of LDPE

at the reference temperature. Table 3.1 lists the Prony series parameters. The material constants

c1 and c2 were determined to be

c1 = −8.74 and c2 = −40.41.
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Figure 3.2. Master curve for LDPE at 22◦C.

3.3.2 Load Relaxation and Shape Recovery

Consider first the load response M(t) over time under the applied deflection w(t) for 0 ≤ t ≤ th.

Solving Equation (3.1) for M(t), we obtain

M(t) =
2I

L2

∫ th

0

E(t− τ)
dw(τ)

dτ
dτ, (3.6)

where th is the holding time. To generalize the solution for all temperatures, we carry out the

analysis in the reduced time domain and write

M(t′) =
2I

L2

∫ t′h

0

ET0(t
′ − τ ′)

dw(τ ′)

dτ ′
dτ ′, (3.7)

where t′h is the holding duration in the reduced time domain, ET0 is the relaxation modulus master

curve at the reference temperature. For an arbitrary temperature history, all time variables are first

converted into reduced time variables through Equation (3.3) and inserted into Equation (3.7) for

evaluating M(t′). In practice, the loading time is often a small fraction of holding time and hence

the applied deflection w(t′) can be closely approximated by an instantaneous jump,

w(t′) = w0H(t′), 0 ≤ t ≤ t′h (3.8)

where H(τ ′) is the Heaviside step function. Equations (3.7) and (3.8) only provide the solution of

M(t′) for 0 ≤ t′ ≤ t′h. The final expression of M(t′) is obtained by stitching the solution with the

imposed zero moment condition for t′ > t′h. This gives
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M(t′) =
2I

L2
ET0(t

′) (1−H(t′ − t′h)) . (3.9)

Note that the unloading is again approximated as an instantaneous event. Figure 3.3 plots the

graphical solution of Equation (3.9) for t′h = 100 s normalized by the instantaneous moment M(0).

The normalized moment demonstrates the expected relaxation behavior under a constant imposed

deflection, and varies with time as the uniaxial relaxation modulus.

The beam deflection is obtained by solving Equation (3.1) for y(x, t′), which gives

y(x, t′) =
x2

2I

∫ t′

0

DT0(t
′ − τ ′)

dM(τ ′)

dτ ′
dτ ′, a ≤ x ≤ b (3.10)

where DT0 is the creep compliance at the reference temperature. Inserting Equation (3.9) into

Equation (3.10), the beam deflection is given by

y(x, t′) =
x2

L2
w0, 0 ≤ t ≤ t′h (3.11)

y(x, t′) =
x2

L2
w0

(
1−DT0(t

′ − t′h)ET0(t
′
h)−

∫ t′

t′h

DT0(t
′ − τ ′)

dET0(τ
′)

dτ ′
dτ ′

)
, t′ > t′h (3.12)

For 0 ≤ t′ ≤ t′h, the beam deflection is constant over time. This result is consistent with the imposed

condition of constant deflection during the holding stage. For t′ > t′h, the change of deflected shape

over time depends on the reduced holding time t′h. Figure 3.4 plots the deformed shapes at 10 s,

100 s, and 10000 s after a holding period of t′h = 100 s with 2L = 20 mm.

The first term in Equation (3.12) is the transient response to the momentM(t′) during the holding

stage, whose effect continues beyond t′h. The second term and the third term are respectively the

instantaneous and transient response to the step change of M(t′) at t′h. As t′ tends to t′h, the

temporal part of Equation (3.12) reduces to 1−DT0(0)ET0(t
′
h), which indicates that the amount of

instantaneous recovery is linearly dependent on the relaxation modulus at the unloading instant.

3.3.3 Effect of Temperature and Holding Duration

The tip deflection normalized by w0 is plotted for different values of t′h in Figure 3.5. The beam

recovers to its original shape asymptotically and the recovery process takes longer when the t′h

increases. To establish a measure for recovery performance, we define the recovery time as follows.

First denote by t′f the time required to reach a prescribed final deflection by that satisfies the

following relation,

w(t′f )

w0
= e (3.13)
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30

in which e is a constant that depends on the required precision on the final deflection. The recovery

time can then be defined to be t′r = t′f − t′h. For e = 0.1, the relation between t′r and t′h is shown

on a log-log plot in Figure 3.6. The straight line in this plot suggests that t′r increases with t′h in

a manner that is similar to a creep response. Increase in time and temperature during holding will

raise the recovery time, but the sensitivity reduces over time.

Since the time variables are expressed in the reduced time domain, Figure 3.6 can be regarded as

a master curve relating recovery time and holding duration. Given a temperature history and holding

duration in real time scale, the holding duration in reduced time scale can be determined through

Equation (3.3). The corresponding recovery time in reduced time under the same temperature is

then found from the master curve and the real recovery time is obtained by an inverse mapping of

Equation (3.3).
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Figure 3.5. Beam deflection over time for different holding durations.

3.4 Experiments

The analytical results can be verified experimentally with a four-point bending test. The force

diagram of the bending test is shown in Figure 3.7. Equal and opposite bending moments on the

beam were applied through four vertical forces provided by a top and a bottom fixture. Rectangular

LDPE beams with a length of 170 mm, a width of 13.0 mm, and a thickness of 1.59 mm were cut

from the same sheet stock used for material characterization. The strip was placed between the

fixtures and subject to the loading profile described in Section 3.3 at the reference temperature of

22◦C. Specific values of the prescribed conditions are summarized in Table 3.2.
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tl 8.0 [s]
th 1008.0 [s]
tu 1012.5 [s]
C 1.0 [mm/s]
w0 8.0 [mm]

Table 3.2. Prescribed condition definitions.
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The load and shape measurements were taken respectively with an Instron load cell and a high

definition camcorder. Prior to the experiment, the orientation of the camcorder was adjusted until

there was no distortion in the image of a square taken by the camcorder. This ensured that the

camcorder was parallel to the plane of motion of the beam. A resolution of 1920× 1080 pixels and

a frame rate of 30 frames per second were used. Figure 3.8 plots images of the beam during the

loading, holding, and unloading stages, while Figure 3.9 plots the shape recovery of the beam over

time under zero moment in a representative test.

The coordinates of the beam centerline were determined from the recorded images by first tracing

the beam edges using the Canny edge detection algorithm in MATLAB and averaging the top

and bottom edges. A cubic spline interpolation was used to reconstruct the continuous centerline

coordinates from the sampled pixel coordinates. The measured load response and deformed shapes

are presented in Section 3.6.

L

P/2 P/2

P/2P/2

AO O

A
w(t)

M(t) = P(t)L

Top !xture

Bottom !xture

Figure 3.7. Free body diagram for four-point bending of a beam.

Figure 3.8. Images of beam under four-point bending at different stages.

3.5 Finite Element Simulations

The relatively simple analytical relations illustrated in Section 3.3 were obtained by approximating

loading and unloading as instantaneous events. To account for the effects of finite loading and

unloading times, a finite element simulation was carried out using the commercial simulation package
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(a) (b) (c)

(d) (e) (f )

Figure 3.9. Shape recovery under zero moment: (a) during holding; (b) 1 s after unloading; (c) 10 s
after unloading; (d) 100 s after unloading; (e) 1000 s after unloading; (f) 10000 s after unloading.

Abaqus/Standard. The finite element analysis aimed to quantitatively reproduce the beam behavior

observed experimentally in Section 3.4. Hence the prescribed deflection and loading profiles were

the same as described in Table 3.2.

The LDPE strip was modeled with 688 full integration quadrilateral shell elements (S4). The four

loading points of the fixture in contact with the strip were modeled as rigid cylinders with a radius of

0.1 mm using the *RIGID BODY function. A frictionless contact interaction was enforced between

the loading points and the beam through the *SURFACE INTERACTION command. Gravity load

was included by the use of *GRAV.

Geometrically nonlinear, quasi-static analyses were carried out by means of *NLGEOM and

*VISCO. All the rotational freedoms of the center node of the strip were constrained. Vertical

displacements were applied to the two top cylinders to impose a deflection of the strip through the

contact interaction while the all the degrees of freedom of the two bottom cylinders remained fixed

throughout the analysis. All simulations started at a time of 10−3 s and proceeded until 105 s

with automatic time incrementation. The size of the time increment was determined so that the

creep strain rate change over an increment was within the accuracy tolerance parameter *CETOL.

It was found that a tolerance limit of 10−4 was able to achieve accurate results with reasonable

computational expense.

The viscoelastic properties of LDPE expressed in terms of the Prony series in Table 3.2 were

assigned with the option *VISCOELASTIC, TIME=PRONY. The Abaqus/Standard implementa-

tion requires the specification of shear and bulk moduli, which are related to the uniaxial modulus

through the equations

G(t) =
E(t)

2(1 + ν)
, (3.14)

K(t) =
E(t)

3(1− 2ν)
, (3.15)

where ν is the Poisson’s ratio, G is the shear modulus and K is the bulk modulus. To be consistent

with the assumptions underlying the separation of variable solution developed in Section 3.3, a
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constant Poisson’s ratio was used. This assumption implicitly leads to the condition that bulk and

shear moduli are synchronous (Hilton, 1998 2001). However, the measurement of time-dependent

Poisson’s ratio and its conversion to other material moduli are extremely sensitive to experimental

errors (Lu et al., 1997; Tschoegl et al., 2002). As the bending behavior of beams is primarily one-

dimensional, the effect of Poisson’s ratio is expected to be minor. A Poisson’s ratio of 0.49 was

determined from relaxation tests and this value was assumed to be constant in the present study.

3.6 Results Comparison

Comparisons between analytical predictions, finite element simulations and experimental measure-

ments for the vertical force acting at the top of the LDPE strip during the holding period are shown

in Figure 3.10. All results are in close agreement except for the first 8 seconds, where the analytical

prediction differs from the finite element simulation and experimental measurements. The discrep-

ancy is due to the assumption that the deflection is applied as a step function in the theoretical

analysis and therefore achieves its maximum value instantaneously. This transient effect produces

no apparent difference in the load response beyond the loading period. The good agreement of the

results also suggests that friction and gravity effects are insignificant.

The deformed shapes of the beam and the deflection at A during the recovery period are compared

in Figures 3.11 and 3.12. Both the analytical prediction and finite element simulations have captured

the details of the shape recovery process accurately.
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Chapter 4

Folding, Stowage, Deployment, and
Shape Recovery of Polymer Shells

4.1 Introduction

In Chapter 3, stowage effects were studied analytically by solving an example problem of a homo-

geneous beam under bending. This chapter investigates the same type of stowage problem, but the

focus is on homogeneous cylindrical shells.

Thin shells are used extensively to design deployable structures because they are able to un-

dergo large shape reconfiguration with relatively small deformation by virtue of geometric nonlinear

behavior. In particular, thin shells in the form of a partial cylindrical surface with radius R and

subtended angle α as shown in Figure 4.1 can be bent extensively by buckling to form a localized

fold (Figure 4.2). The structure is contained in this packaged state with minimal effort and self

deploys to its original configuration upon release of any constraints. This structural form is often

known as a tape-spring and is the working principle behind the storable tubular extensible member

(Rimrott, 1965), which has been used as spacecraft antennas and to deploy solar arrays (Pellegrino,

1995).

Local buckling of elastic cylindrical shells under bending allows high longitudinal curvature to

be achieved without permanent deformation. When the shell exhibits viscoelastic properties, the

behavior is complicated by time and temperature dependence . The interaction between material

behavior and structural instability gives rise to characteristics that are distinct from the elastic

problem. This chapter specifically studies the effects of rate and temperature on the geometrically

nonlinear behavior.
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Figure 4.1. Geometry of open cylindrical shell (tape-spring).

Figure 4.2. Tape-spring made of LDPE having a radius of 19 mm and a subtended angle of 150◦:
(a) deployed and (b) folded.

4.2 Background

High curvature folding of open elastic cylindrical shells has been exploited in many deployable struc-

tures and is therefore well studied. Briefly, bending first induces ovalization of the shell cross section.

The bending stiffness is gradually reduced as the ovalization progresses until the structure finally

collapses by local buckling associated with a limit peak moment. The deformed configuration is

characterized by three different regions as shown in Figure 4.3: a longitudinally curved region with

zero transverse curvature, an almost straight region with the original transverse curvature, and a

transition region connecting the two (Calladine, 1988). The fold can spread under a constant bending

moment which has a value much lower than the peak (Seffen and Pellegrino, 1999). This is a char-

acteristic feature in steady-state propagation of instabilities in elastic structures (Kyriakides, 1994)

and can be captured using a simple but exact energy balance argument (Chater and Hutchinson,

1984). Throughout the entire bending process, the deformation remains elastic and is completely

reversible upon removal of the applied moment.

4.3 Experiments

The experimental program consisted of two sets of tests. The first set was conducted to investigate

the folding-stowage process with careful control and measurement of load and displacement with

respect to time. This experiment helps to develop an understanding of the shell deformation prior
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transition

Figure 4.3. Configuration of a bent tape-spring with three distinct zones of deformation.

to deployment. The second set of tests measured continuously the response of the shell from folding,

stowage to deployment over time, but focused on analyzing the final deployment and shape recovery

behavior.

4.3.1 Fabrication of Cylindrical Shells

Cylindrical shell specimens were fabricated from flat LDPE sheets obtained from United States

Plastic Corporation through a thermal remolding process. The LDPE sheet stock had a length of

610 mm, a width of 914 mm, and a thickness of 0.79 mm. Flat LDPE sheets were first cut to

length, sandwiched between two release fabric layers, wrapped around a cylindrical steel mandrel,

restrained with heat shrink tape, and subject to a thermal cycle. The assembly was heated to 120◦C,

maintained at this temperature for 4 hours, and then allowed to cool to room temperature in 8 hours

at a constant cooling rate inside an oven with a temperature control precision of ±2◦C. The long

heating and cooling periods allowed enough time for LDPE to recrystallize and to minimize the

effect of physical aging, respectively. To further eliminate the effect of physical aging, the fabricated

specimens were kept at room temperature for another 24 hours before any tests were performed.

After this procedure, it was assumed that temporally stable mechanical properties had been achieved

in the remolded material.

The dimensions of two specimens are listed in Table 4.1, in which t̄ denotes the average thickness

of the shell. The measured shell radius is higher than that of the steel mandrel because the shells

recoiled by a consistent amount after release from the mold. The thickness variation was measured

using an Elcometer 456 coating thickness gauge with a resolution of 10 microns. A rectangular

grid was drawn on each shell specimen and the thickness at the grid points was measured. The

grid spacing is such that the distance between adjacent grid points is 16 mm along the length and

10 mm along the circumference of the shell. The thickness contours of the specimen used in the

folding-stowage experiment are shown in Figure 4.4.
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Experiment L [mm] R [mm] t̄ [mm] α [deg]
Folding-Stowage 272.0 19.0 0.73 150

Deployment-Recovery 398.0 19.0 0.73 150

Table 4.1. Dimensions of tested specimens.
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Figure 4.4. Thickness distribution, in millimeters, of a representative specimen. The vertical coor-
dinate is the cross-sectional arc-length.

4.3.2 Folding-Stowage Experiment

The folding-stowage sequence was carried out by bending the specimen to a prescribed end rotation

and holding the rotation angle fixed over time. The specimen was bent in an opposite sense (i.e. the

longitudinal and transverse curvature changes have opposite signs) by applying eccentric compression

on the end cross sections by means of an Instron testing machine. To allow the end cross sections

to deform and rotate freely during folding, the connection between each end of the specimen and

the load frame was established through the points of contact with thin aluminum plates attached

to the Instron testing machine. The test configuration is schematically shown in Figure 4.5. The

procedure adopted in the present experiment allows full control of the boundary conditions and also

precise tracking of the load and displacement histories over time, which is important for achieving

repeatable measurements in the present path dependent problem.

Tests were carried out in displacement-controlled mode inside an environmental chamber. Prior

to testing, the specimen was preloaded with a small compression to secure contact. A downward

displacement of 80 mm was applied to the specimen, which was then held in this configuration for

5000 s. Two temperatures (T ), 15◦C and 22◦C; and two displacement rates (u̇), 1 mm/s and 5 mm/s,

were used. Full field views of the deforming shell were captured continuously using a high-resolution

digital camcorder.

The measured load P and displacement u over time during folding are plotted in Figure 4.6.

To provide a basis for discussion, the load response has been converted to a plot of moment M vs.

rotation θ in Figure 4.7 for the case of u̇ = 1 mm/s at T = 22◦C. The rotation is obtained from

summing the end rotations measured from the images of the deformed specimen, while the moment

is the product of the measured load and the horizontal distance from the line of load to the mid-span
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Figure 4.5. Schematic of folding-stowage test.

of the shell, also measured from the images. Images of the specimen at different stages of the test

are shown in Figure 4.8. These shapes correspond to the points marked in Figure 4.7.

The initial part of the response shown in Figure 4.7 shows a stiff, softening behavior. The

shell bends uniformly, as indicated in configurations A - C in Figure 4.8, with a bending stiffness

EI, where I is the second moment of area of the shell cross section about the neutral axis. The

nonlinearity is due to changes in both quantities in the bending stiffness: first the second moment

of area reduces with rotation as a result of ovalization and second the longitudinal modulus relaxes

with time because of viscoelasticity. In this uniform deformation stage, the longitudinal curvature

is given simply by κl = θ/L. Uniform bending ceases at configuration C, which is just past a

local instability at which a maximum moment is attained. The buckle initiates on the compression

side, in the middle of the shell. Although the applied loading is not completely symmetric due to

gravity, this asymmetry is too small to have a significant impact on the location of the buckle. From

configuration C to E, the moment drops sharply as the end rotations continue to increase. This

corresponds to an expansion of the buckle in the transverse direction and unloading of the regions

away from the buckle. The buckle has fully developed by configuration E, where a localized fold

region with zero transverse curvature is formed and the deformation is as described in Figure 4.3,

where longitudinally curved and straight phases coexist. From this point onwards, the moment

stays constant with rotation and the fold length increases as shown in configurations E - G, as

a result of the propagation of the localized fold into the straight portions of the shell. This fold

propagation could be dynamic but occurs in a quasi-static manner in the present case because a



42

displacement-controlled loading mode has been adopted.

Viscoelastic effects in the folding shell are apparent in Figure 4.6. Similar types of nonlinear

response are observed for the two different rates of folding and temperatures, but the maximum

load values are different. It can be seen in Figure 4.6 that higher maximum loads are found at

lower temperatures and faster rates. This is explained by the time and temperature dependence

of viscoelastic materials. Their mechanical response is in general nonlinearly affected by rate and

temperature, but the stresses are always higher at lower temperatures and faster rates. In Section 4.4

we will employ a viscoelastic constitutive model to analyze such effects in detail.

Load relaxation during stowage is evidenced by plotting the change in load over time on a semi-

log scale in Figure 4.9. The linearity of the curves from 1000 s to 5000 s on a log time axis implies

that the reduction in load is exponential in time. After 5000 s the load has dropped to about

one-third of its value at the end of folding. At both rates, higher loads are measured at the lower

temperature throughout the entire stowage period. The effect of folding rate on the load response

during stowage diminishes as time progresses. This can be concluded from the observation that the

load at the two different rates at the same temperature have similar values from t = 1000 s onwards.

4.3.3 Deployment-Recovery Experiment

For measuring the deployment and recovery dynamics, experiments were performed using the test

configuration shown in Figure 4.10. The specimen was clamped at the bottom and positioned

vertically. It was first folded to an angle of 87◦ in 9 s by manually applying a follower force on

the free end and was then held stowed for 983 s. While in the stowed configuration, the force at

the free end was measured by connecting the specimen to a load cell through a string. Deployment

was initiated by cutting the string at the end of the stowage period. The entire process was carried

out at 22◦C. In this procedure, the exact rate of folding was not precisely known, but its effect was

found in Section 4.3.2 to be transient only and therefore it had negligible impact on the deployment

behavior.

To characterize the deformation, a target point P near the free end was marked (Figure 4.10)

and its lateral displacement xp was tracked during deployment. Values of xp larger than 20 mm

were extracted from images taken using a high resolution camcorder with a frame rate of 30 fps. A

laser displacement sensor (Keyence LK-G87) was used to measure the values of xp below 20 mm

that could not be measured accurately from the images.

Figure 4.11 shows the deployed shapes over time with different time steps. The corresponding

values of xp and time are marked in Figure 4.12, which includes three detailed views of the dis-

placement response over time, each highlighting a particular feature. The process can be divided

into three stages with distinctive characteristics. A dynamic response is seen during the first 5 s,

Figure 4.12(b). A low vibration magnitude with a period of about 0.8 s about a finite displacement
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Figure 4.8. Sequence of deformed shapes corresponding to the response in Figure 4.7.
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that decreases with time is observed. The next phase involves a steady deployment that occurs

between 5 s and 55 s, with the lateral displacement actually overshooting the deployed configuration

by 11 mm, Figure 4.12(c). An interesting feature in these first two stages is that the fold location

is constant: this behavior is different from that of a linear elastic shell in which deployment is ac-

companied by the fold traveling towards the fixed end (Seffen and Pellegrino, 1999). Finally, a slow

creep recovery of the fold cross section leads to a nearly zero lateral displacement over a period

of 3000 s, Figure 4.12(d). After the test was terminated, a close examination of the shell revealed

that the cross section geometry had not completely recovered, but the magnitude of deformation

was too small to be measured precisely with the present experimental setup. The test specimens

were monitored visually over three months and the cross section of the fold was found to continue

recovering in an asymptotic manner.

Figure 4.10. Deployment test configuration.

4.4 Finite Element Analysis

Bending of open cylindrical shells is a highly nonlinear phenomenon. To investigate their nonlin-

ear behavior including the effects of rate and temperature in the present problem, we employ the

finite element method with a linear viscoelastic constitutive model for the shell. The analysis is

conducted with Abaqus/Standard using experimentally determined viscoelastic properties for the

material under study.
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Figure 4.11. Deployment sequence: (A)-(F) from 0 s to 2.5 s in steps of 0.5 s, (G)-(I): from 5 s to
55 s in steps of 25 s, and (J)-(L): from 1000 s to 3000 s in steps of 1000 s.



48

(a) (b)

0 500 1000 1500 2000 2500 3000
−15

25

65

105

145

185

225

265

305

t [s]

0 1 2 3 4 5
250

260

270

280

290

300

310

t [s]

5 15 25 35 45 55
−20

30

80

130

180

230

280

t [s]
500 1000 1500 2000 2500 3000

−12

−10

−8

−6

−4

−2

0

2

t [s]

(c) (d)

55

A

B

C

D

E

F

G

H

I

J
K L

x
p

 [
m

m
]

x
p

 [
m

m
]

x
p

 [
m

m
]

x
p

 [
m

m
]

Figure 4.12. Measured lateral displacement of point P during deployment.
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4.4.1 Finite Element Model

The two shells tested in Section 4.3 were modeled as cylindrical surfaces as shown in Figure 4.13.

The model dimensions are as defined in Table 4.1. Thickness variation was included in the model by

specifying the thickness of each element. The thickness at all node positions was first determined from

the measured distribution, with spline interpolation, and then within each element, the thickness

was linearly interpolated from its node values.

For simulating the folding-stowage experiment in Section 4.3.2, a mesh with 6800 quadrilateral

shell elements S4 with a maximum dimension of 2 mm was used. The mesh density in the cir-

cumferential direction was twice that in the longitudinal direction for precise computation of the

localized fold. Displacement boundary conditions were defined on two nodes A and B, one on each

end section of the shell and coinciding with the mid-point of the cross section. All the translational

degrees of freedom of node B were constrained and gravity load was defined to act in the positive z

direction throughout the analysis. A quasi-static analysis was carried out in two steps, as follows.

During the folding step, a displacement uz of 80 mm was imposed on node A, at the same rates

and temperatures used in the experiments. In the stowage step, the degrees of freedom of node A

take their values at the end of the folding step and were held constant for 5000 s. The accuracy of

integration in quasi-static analysis was controlled by specifying the tolerance parameter *CETOL

which puts a limit on the maximum change in creep strain rate allowed over a time increment. A

value of 1× 10−4 was found to be adequate for obtaining accurate solutions.

The deployment-recovery test in Section 4.3.3 was analyzed using a mesh with 2500 elements

and a maximum dimension of 4 mm. For this simulation, all nodes on the section CC ′ was fixed.

The analysis steps were carried out as follows. In the folding step, a displacement ux of 300 mm

was imposed over 9 s to node A. The degrees of freedom of node A remained unchanged for 983 s

in the stowage step. These two steps were carried out quasi-statically. The degrees of freedom at

node A were instantaneously removed at the end of stowage. The analysis was run for 3000 s with

a dynamic analysis procedure.

x
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C’

.

.

.

.

Figure 4.13. Finite element model.
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i Ei [MPa] ρi [s]
∞ 136.2 —–
1 150.6 2.43× 10−2

2 74.81 2.17× 10−1

3 68.26 1.52
4 65.22 1.24× 10
5 62.85 1.49× 102

6 49.83 1.69× 103

Table 4.2. Prony series parameters for LDPE master curve.

4.4.2 Constitutive Model

The uniaxial constitutive equation for linear viscoelastic material is

σ(t) =

∫ t

0

E(t′ − s′)
dϵ(s)

ds
ds, (4.1)

where σ is stress, ϵ is strain, E is the relaxation modulus, t′ and s′ are reduced times defined as

t′ =

∫ t

0

du

aT (T )
and s′ =

∫ s

0

du

aT (T )
. (4.2)

The relaxation modulus is represented by a Prony series as

E(t) = E∞ +

n∑
i=1

Eie
−(t/ρi), (4.3)

where t is time, E∞ is the long term modulus, Ei are the Prony coefficients, and ρi are the relaxation

times. The temperature shift factor is expressed by the Williams-Landel-Ferry (WLF) equation,

log aT = − c1(T − T0)

c2 + (T − T0)
, (4.4)

in which c1 and c2 are material constants that depend on the particular polymer and the logarithm

is of base ten.

The material properties of LDPE were characterized through a series of tensile relaxation tests

on rectangular test coupons that had been subject to the same thermal cycle as the shell specimens.

Figure 4.14 shows the relaxation modulus master curve of LDPE at the reference temperature.

Table 4.2 summarizes the Prony series parameters. The material constants c1 and c2 were determined

to be

c1 = −8.74 and c2 = −40.41.
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Figure 4.14. Master curve for LDPE at 22◦C.

Implementation of viscoelastic behavior in Abaqus/Standard requires the specification of shear

and bulk moduli, which are related to the uniaxial modulus through the equations

G(t) =
E(t)

2(1 + ν)
, (4.5)

K(t) =
E(t)

3(1− 2ν)
, (4.6)

where ν is the Poisson’s ratio, G is the shear modulus and K is the bulk modulus. A Poisson’s

ratio of 0.49 was determined from relaxation tests and this value was assumed to be constant in

the present study. This assumption implicitly leads to the condition that bulk and shear moduli

are synchronous (Hilton, 2001). In general, this is not a realistic description for most materials,

however, as shown in Section 4.5, this condition does not seem to have a significant effect on the

behavior of the shell.

4.4.3 Results

The evolution of the stress distributions over time can be studied with the finite element model.

The longitudinal bending stress on the outer shell surface in folding at T = 22◦C and u̇ = 1 mm/s is

shown in Figure 4.15. The shell has a relatively uniform stress state with tension on the longitudinal

edges. After the instability is initiated, the longitudinal bending stress starts localizing in the

middle of the shell with increasing variation in stress between the edges and the center. The buckle

subsequently spreads transversely to form a complete fold, which is in uniform compression but rises
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rapidly to tension towards the edges. The longitudinal bending stress reduces away from the fold as

localization takes place.

Stress relaxation in the stowed state is evidenced in Figure 4.16, which plots the longitudinal

stress at the beginning and the end of the stowage period. The longitudinal bending stress on the

outer shell surface decreases drops over time. At the same time, the fold region slightly extends in

the longitudinal direction. A reduction in the longitudinal curvature of the fold is also predicted by

the simulation as the fold region increases in length.

Three deformed shapes with their corresponding stress gradients during deployment are shown in

Figure 4.17. In the steady deployment phase, the arclength of the fold reduces while the transverse

curvature remains zero. This process is the reverse of buckle propagation during folding. As the shell

passes through the position with xp = 0 and overshoots, the longitudinal bending stress on the two

edges gradually reduces to zero. The longitudinal curvature is practically zero after the overshoot

and the remaining part of the deployment is controlled by the transverse curvature recovery in the

fold. The fold stays stationary throughout the entire deployment, which agrees with experimental

observation.

Figure 4.15. Longitudinal bending stress on the outer shell surface: (a) during initial uniform
bending, (b) after instability is initiated and (c) as buckle develops.

4.5 Results Comparison

Results from analysis and experiments are compared for the folding, stowage, deployment, and

recovery processes. The calculated load versus time responses during folding for the case of u̇ =



53

Figure 4.16. Relaxation of longitudinal bending stress on the outer shell surface: (a) beginning of
stowage and (b) end of stowage.

Figure 4.17. Longitudinal bending stress on the outer shell surface: (a) steady deployment (b)
passing through the xp =0 position and (c) overshoot.
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1 mm/s is plotted along with the corresponding experimental measurements in Figure 4.18. The

predicted response is found to be in good agreement with the observed response in all aspects. The

initial stiffness, onset of limit load instability, and postbuckling load plateau are well reproduced.

Minor discrepancies are found for the calculation of the buckling load, which are overpredicted by

0.9 N and 0.3 N for temperatures of 15◦C and 22◦C respectively. The errors are likely due to other

forms of geometric imperfections not characterized in the study, such as non-uniformity of the cross

section shape along the length of the shell. The discrepancies are however insignificant in magnitude.

Four deformed configurations of the shell in the folding stage from experiments and analysis are

compared in Figure 4.19. Both the evolution of the overall deformed geometry and the localized fold

are closely captured as seen in this qualitative comparison. Load relaxation responses in the stowed

configuration for the folding rate of u̇ = 1 mm/s are plotted in Figure 4.20. The agreement of the

predicted and measured responses indicates the accuracy of the finite element model in long term

simulations.

The lateral displacement xp during deployment of the shell are compared in Figure 4.21. All

features of the response have been reproduced by the analysis with minor discrepancies. In the

initial dynamic phase shown in Figure 4.21(a), the predicted oscillations are essentially over in 4 s,

which end earlier than the measured response. Slightly larger discrepancy is found in the steady

deployment phase shown in Figure 4.21(b), where the simulation overpredicts the overshoot by

20 mm, occurring about 2.5 s earlier than in the experiment. Nonetheless, the long term creep

recovery is reasonably well predicted, as shown in Figure 4.21(c). The discrepancy is less than 1 mm

by the end of the simulation at 3000 s. A comparison of the deployed shapes is shown in Figure 4.22,

which demonstrates good correlation in the dynamics of the fold. The main source of discrepancy

is believed to be variations in environmental conditions in the deployment experiments.
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Figure 4.18. Comparison of load vs. time during folding, for u̇ = 1 mm/s.
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Figure 4.19. Comparison of deformed shapes during folding and stowage.

100 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t [s]

P
 [

N
]

Experiment:  T=15˚ C 

Simulation:  T=15˚ C

Experiment:  T=22˚ C 

Simulation:  T=22˚ C

Figure 4.20. Comparison of load vs. time during stowage, for u̇ = 1 mm/s.
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Figure 4.22. Comparison of deployed shapes.



58

Chapter 5

Deployment and Shape Recovery
of Composite Shells

5.1 Introduction

The general features of stowage effects have been identified in Chapters 3 and 4 by studying homoge-

neous beams and shells. This chapter develops micromechanical modeling techniques for viscoelastic

composite shells and applies these models to a composite deployable structure.

Viscoelastic behavior of composite deployable structures has started to be addressed only recently.

While experimental results on recovery time and vibration characteristics of composite tubes after

stowage have been reported (Domber et al., 2002; Soykasap, 2009), a general method of analysis

is lacking. A detail material model that accurately computes viscoelastic composite properties can

effectively guide the design process of composite deployable structures.

This chapter presents a detailed study of a particular structure that poses the general challenges

typical of thin-walled deployable structures with viscoelastic properties. The particular structure

selected is a composite tape-spring made of epoxy matrix reinforced with plain-weave woven carbon

fabric. Tape-springs are thin shells with curved section, typically of uniform curvature and subtend-

ing an angle typically smaller than 180◦, Figure 5.1. This structural form can be folded by forming

a local buckle and is therefore routinely employed as self-deployable hinges on spacecraft. In the

current study, carefully controlled experiments on deployment and shape recovery of composite tape-

springs are presented along with numerical predictions using a finite-element based micromechanical

model for thin composites consisting of linear viscoelastic matrix and linear elastic fibers.

5.2 Background

In the area of micromechanical modeling of viscoelastic composites, many analytical approaches

were proposed for determining the viscoelastic moduli of unidirectional composites from constituent
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Figure 5.1. Composite tape-spring: (a) deployed and (b) folded.

fiber and matrix properties. The underlying approach is to extend existing micromechanical models

for elastic composites to viscoelastic composites by exploiting the elastic-viscoelastic correspondence

principle (Hashin, 1965 1966). Viscoelastic moduli were also obtained numerically through direct

finite element analysis (Brinson and Knauss, 1992) assuming a uniform distribution of fibers.

For woven composites, Govindarajan et al. (1996) and Shrotriya and Sottos (2005) considered

analytical models based on simplified weave geometries, but the flexural deformation of the fiber

tows was not accounted for and was believed to be the source of significant discrepancy between

predicted and measured viscoelastic responses. Predictions were improved when two-dimensional

(Shrotriya and Sottos, 2005) and three-dimensional (Zhu et al., 2003) finite element based methods

were utilized to incorporate the influence of weave geometry. However, only in-plane properties were

considered in these studies.

5.3 Micromechanical Modeling

The effective viscoelastic response of a woven composite lamina consisting of elastic carbon fibers

embedded in a viscoelastic epoxy matrix depends on factors such as the matrix relaxation moduli,

weave geometry and tow size. To model material and geometric effects at lower length scales, a finite

element homogenization approach is proposed in the present study. In particular, homogenization

of the viscoelastic properties is carried out both at the tow level and at the lamina level using the

properties of its constituents. A woven composite made from ±45 plain-weave fabric with 1 k tows of

T300 carbon fibers impregnated with PMT-F4 epoxy resin is assumed. The unit cell finite element

analyses are carried out in the commercial package Abaqus/Standard.
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5.3.1 Constituent Properties

The epoxy matrix is treated as an isotropic, linear viscoelastic solid and its time and temperature

dependent mechanical properties are modeled using a Prony series. The Prony series representation

of the relaxation modulus is written as

E(t) = E∞ +
n∑

i=1

Eie
−(t/ρi), (5.1)

where t is time, E∞ is the long term modulus, Ei are the Prony coefficients, and ρi are the relaxation

times. The temperature shift factor is expressed in terms of the Williams-Landel-Ferry (WLF)

equation,

log aT = − c1(T − T0)

c2 + (T − T0)
, (5.2)

in which c1 and c2 are material constants that depend on the particular polymer and the logarithm

is of base ten.

The material properties of PMT-F4 epoxy were characterized through a series of tensile creep

tests on rectangular test coupons with a length of 100 mm, a width of 12.7 mm, and a thickness of

3.2 mm. The epoxy specimens were made by curing neat PMT-F4 resin under vacuum at 120◦C

and 400 kPa for 2 hours. Tensile creep tests were conducted at temperatures ranging from 20◦C

to 90◦C, with 10◦C intervals. Figure 5.2 shows the relaxation modulus master curve of PMT-F4 at

the reference temperature of T0 = 40◦C. Table 5.1 lists the Prony series parameters. A Poisson’s

ratio of 0.33 was determined from relaxation tests and this value was assumed to be constant in the

present study. The material constants c1 and c2 were determined to be

c1 = 28.3816 and c2 = 93.291.

Carbon fibers are regarded as a transversely isotropic elastic solid (Daniel and Ishai, 2006). The

T300 carbon fibers were manufactured by Cytec Industries Inc. The mechanical properties of T300

fibers obtained from the manufacturer are listed in Table 5.2.

5.3.2 Viscoelastic Behavior of Tows

The viscoelastic properties of a straight and transversely isotropic fiber tow were determined from the

constituent properties by direct finite element analysis of a unit cell. This approach was first adopted

by Brinson and Knauss (1992) to compute the effective viscoelastic properties of a unidirectional

fiber composite. Using a two-dimensional unit cell finite element analysis, they determined the

plain-strain relaxation modulus. In the present work, the unit cell is treated as a three dimensional
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Figure 5.2. Master curve of PMT-F4 at a reference temperature of T0 = 40◦C.

i Ei [MPa] ρi [s]
∞ 1000 —–
1 224.1 1.0e+ 3
2 450.8 1.0e+ 5
3 406.1 1.0e+ 6
4 392.7 1.0e+ 7
5 810.4 1.0e+ 8
6 203.7 1.0e+ 9
7 1486.0 1.0e+ 10

Table 5.1. Relaxation times and relaxation coefficients for PMT-F4.

Properties Value
E1 [MPa] 233, 000
E2 [MPa] 23, 100
G12 [MPa] 8, 963

ν12 0.2
ν23 0.4

Table 5.2. Elastic properties of T300 carbon fibers.
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continuum solid and all effective viscoelastic moduli characterizing a transversely isotropic solid are

computed. The generality of the current computational scheme is necessary for multi-scale unit cell

homogenization.

The cross section of a representative tow is shown in Figure 5.3, from which the fiber diameter

and volume fraction were determined to be df = 7.0 µm and vf = 0.64 respectively. The unit cell

model is composed of a single fiber surrounded by matrix, which implicitly assumes a square array

fiber arrangement. Hexagonal array and random array fiber arrangements were also implemented,

but the difference between these configurations was found to be insignificant at this volume fraction.

The particular finite element model shown in Figure 5.4 is a cube with edge length of ℓ = 7.7 µm

and is composed of 16800 8-node brick elements (C3D8) and 800 6-node triangular prism elements

(C3D6). The material properties defined in Section 5.3.1 were assigned to the fiber and matrix

elements accordingly. Periodic displacement boundary conditions were enforced between each pair

of opposite boundary faces of the unit cell through the following constraint equations in terms of

normal and shear strains of a homogeneous continuum solid:

u(
ℓ

2
, y, z)− u(− ℓ

2
, y, z) = ϵ1ℓ (5.3)

v(
ℓ

2
, y, z)− v(− ℓ

2
, y, z) = ϵ6ℓ (5.4)

w(
ℓ

2
, y, z)− w(− ℓ

2
, y, z) = ϵ5ℓ (5.5)

u(x,
ℓ

2
, z)− u(x,− ℓ

2
, z) = ϵ6ℓ (5.6)

v(x,
ℓ

2
, z)− v(x,− ℓ

2
, z) = ϵ2ℓ (5.7)

w(x,
ℓ

2
, z)− w(x,− ℓ

2
, z) = ϵ4ℓ (5.8)

u(x, y,
ℓ

2
)− u(x, y,− ℓ

2
) = ϵ5ℓ (5.9)

v(x, y,
ℓ

2
)− v(x, y,− ℓ

2
) = ϵ4ℓ (5.10)

w(x, y,
ℓ

2
)− w(x, y,− ℓ

2
) = ϵ3ℓ, (5.11)

where u, v, and w denote displacements in the x, y, and z directions respectively, and ϵ denotes

strains expressed in Voigt notation.

The constitutive equation for a homogenized transversely isotropic solid with the coordinate

directions defined in Figure 5.4 is written as

[σ(t)] =

∫ t

0

(
[C(t− s)] [ϵ̇(s)]

)
ds, (5.12)
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where [σ(t)], [C(t)], and [ϵ(t)] are respectively written as

[σ(t)] =



σ1(t)

σ2(t)

σ3(t)

σ4(t)

σ5(t)

σ6(t)


, (5.13)

C(t) =



C11(t) C12(t) C12(t) 0 0 0

C12(t) C22(t) C23(t) 0 0 0

C12(t) C23(t) C22(t) 0 0 0

0 0 0 C44(t) 0 0

0 0 0 0 C55(t) 0

0 0 0 0 0 C55(t)


, (5.14)

[σ(t)] =



ϵ1(t)

ϵ2(t)

ϵ3(t)

ϵ4(t)

ϵ5(t)

ϵ6(t)


. (5.15)

Because of transverse isotropy, the matrix C(t) has only five independent terms, which are C11,

C22, C12, C23, and C55. The term C44 is related to C22 and C23 by

C44(t) =
C22(t)− C23(t)

2
. (5.16)

The minimum number of analyses needed to compute the independent time-varying functions

in C(t) is three because each analysis provides more than one function. In the present work, four

analyses were conducted to determine all the functions without invoking Equation (5.16). In each

analysis, a unit amplitude of one of the strain variables, ϵ1, ϵ2, ϵ4, and ϵ5, was applied to the unit

cell in the form of a step function and the corresponding stresses were obtained as functions of time.

Each entry in the C(t) matrix was modeled by a Prony series having the same relaxation times as the

matrix. The Prony coefficients were determined by numerical fitting using the computed stresses.

The results are plotted with respect to time in Figure 5.5.
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Figure 5.3. Cross section of a tow.
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Figure 5.4. Finite element model for unidirectional fiber tow unit cell.
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Figure 5.5. Viscoelastic properties of unidirectional fiber tow.

5.3.3 Viscoelastic Properties of Laminas

A single plain-weave composite lamina is modeled as a Kirchhoff plate consisting of viscoelastic tows

and matrix. The cross section of the lamina is shown in Figure 5.6. The geometric properties of

the lamina were measured from photomicrographs of several different cross sections. The lamina is

characterized by a weave length of L = 3.5 mm, a maximum tow thickness of h = 0.063 mm, a tow

width of w = 1.05 mm, and a tow-to-tow spacing of g = 0.7 mm. The overall fiber volume fraction

was calculated to be νf = 0.52 from weight of cured lamina and resin.

The lamina unit cell model is composed of four tows with gaps filled with pure matrix as shown

in Figure 5.7. The unit cell was constructed by combining four identical bundles with different

orientations in space. Each bundle consisted of a tow and pure matrix. The boundary surfaces

of a bundle were defined by sinusoidal functions. For example, the boundaries of the bundle in

Figure 5.7(a) are given by

z = ±h

2
sin
(2πx

L

)
+

h

2
sin
(2πy

L

)
. (5.17)

The remaining bundles were created by rotating this bundle by increments of 90◦ around the origin.

This representation provides an exact geometric between all tows in the lamina.

Each tow consists of 960 8-node brick elements (C3D8) and the matrix is made up of 1920

8-node brick (C3D8) and 640 6-node triangular prism elements (C3D6). The material properties

for the tows were defined by the relaxation moduli obtained in Section 5.3.2 through a user defined
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material subroutine (UMAT). To impose the Kirchhoff constraint, nodes lying on the boundary faces

of the unit cell were tied to nodes in the mid-plane through rigid connections. The displacements

and rotations of each mid-plane node on one face were paired to the corresponding node on the

opposite face by constraint equations that impose periodic boundary conditions in terms of mid-

plane strains and out-of-plane curvatures of a homogenized Kirchhoff plate. The kinematic relations

for a Kirchhoff plate are

ϵx =
∂u

∂x
(5.18)

ϵy =
∂v

∂y
(5.19)

γxy =
∂u

∂y
+

∂v

∂x
(5.20)

κx = −∂2w

∂x2
(5.21)

κy = −∂2w

∂y2
(5.22)

κxy = −2
∂2w

∂x∂y
. (5.23)

The displacement constraints that impose periodic boundary conditions are written as

u(
L

2
, y)− u(−L

2
, y) = ϵxL (5.24)

v(
L

2
, y)− v(−L

2
, y) =

1

2
γxyL (5.25)

w(
L

2
, y)− w(−L

2
, y) = −1

2
κxyyL (5.26)

θx(
L

2
, y)− θx(−

L

2
, y) = −1

2
κxyL (5.27)

θy(
L

2
, y)− θy(−

L

2
, y) = κxL (5.28)

θz(
L

2
, y)− θz(−

L

2
, y) = 0 (5.29)

u(x,
L

2
)− u(x,−L

2
) =

1

2
γxyL (5.30)

v(x,
L

2
)− v(x,−L

2
) = ϵyL (5.31)

w(x,
L

2
)− w(x,−L

2
) = −1

2
κxyxL (5.32)

θx(x,
L

2
)− θx(x,−

L

2
) = −κyL (5.33)
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θy(x,
L

2
)− θy(x,−

L

2
) =

1

2
κxyL (5.34)

θz(x,
L

2
)− θz(x,−

L

2
) = 0, (5.35)

where θ are rotations and the subscripts denote the rotation directions.

The constitutive relationships for the homogenized plate are written as

[N(t)] =

∫ t

0

(
[A(t− s)] [ϵ̇(s)] + [B(t− s)] [κ̇(s)]

)
ds, (5.36)

[M(t)] =

∫ t

0

(
[B(t− s)] [ϵ̇(s)] + [D(t− s)] [κ̇(s)]

)
ds, (5.37)

where [N ] and [M ] denote force and moment resultants given by

[N(t)] =


Nx(t)

Ny(t)

Nxy(t)

 , (5.38)

[M(t)] =


Mx(t)

My(t)

Mxy(t)

 . (5.39)

The variables [ϵ] and [κ] denote mid-plane strains and out-of-plane curvatures written as

[ϵ(t)] =


ϵx(t)

ϵy(t)

ϵxy(t)

 , (5.40)

[κ(t)] =


κx(t)

κy(t)

κxy(t)

 . (5.41)

The matrices [A], [B] and [D] represent the in-plane stiffness, stretching-bending coupling, and

bending stiffness matrices. They are combined to give the ABD stiffness matrix,

ABD(t) =



Axx(t) Axy(t) Axs(t) Bxx(t) Bxy(t) Bxs(t)

Ayx(t) Ayy(t) Ays(t) Byx(t) Byy(t) Bys(t)

Asx(t) Asy(t) Ass(t) Bsx(t) Bsy(t) Bss(t)

Bxx(t) Bxy(t) Bxs(t) Dxx(t) Dxy(t) Dxs(t)

Byx(t) Byy(t) Bys(t) Dyx(t) Dyy(t) Dys(t)

Bsx(t) Bsy(t) Bss(t) Dsx(t) Dsy(t) Dss(t)


. (5.42)
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Similar to the homogenization procedure conducted for the fiber tows, each entry in the ABD(t)

matrix was modeled by a Prony series having the same relaxation times as the matrix. Six separate

analyses, each corresponding to a unit amplitude of the six deformation variables (ϵx, ϵx, ϵxy, κx,

κx, κxy), were conducted to determine all the entries. The following ABD matrix was obtained:

ABD(t) =



Axx(t) Axy(t) 0 0 0 0

Axy(t) Axx(t) 0 0 0 0

0 0 Ass(t) 0 0 0

0 0 0 Dxx(t) Dxy(t) 0

0 0 0 Dxy(t) Dxx(t) 0

0 0 0 0 0 Dss(t)


, (5.43)

where the non-zero entries are plotted with respect to time in Figure 5.8 and Figure 5.9. It is observed

that Axx = Ayy and Dxx = Dyy because the fill and warp tows have identical properties. Because

Axs = Ays = 0, stretching and shearing are decoupled. Similarly, bending and twisting are also

decoupled as Dxs = Dys = 0. Note that [B] = 0, which suggests that there is no coupling between

in-plane and out-of-plane behavior. The plain-weave lamina has stiffness properties resembling that

of a symmetric crossply composite.

0.1
Fill towWarp toww

L/2

Figure 5.6. Cross section geometry of a plain-weave lamina. Warp and fill tows are perpendicular
and parallel to the page respectively.

5.3.4 Model Validation

The homogenized viscoelastic model of Section 5.3.3 was verified by performing tension and four-

point bending creep tests on single-ply ±45 laminas. Tension tests were carried out on a specimen

with a length of 100 mm and a width of 20 mm. For bending tests, a 100 mm long and 50 mm wide

specimen was used. Both tests were done at the temperatures of 50◦C, 60◦C, and 70◦C. Each type

of test was done twice.

The average axial and bending compliances at a 45◦ angle from the tow direction were obtained

from the two tests conducted. The data from different temperatures were shifted to the reference

temperature of 40◦C and plotted in Figures 5.10 and 5.11. The model predictions were obtained by

running uniaxial tension and bending creep analyses on the plain-weave lamina unit cell. The com-
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Figure 5.7. Finite element model for plain-weave lamina unit cell: (a) single bundle only, and (b)
complete unit cell.
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Figure 5.8. Viscoelastic in-plane stiffnesses of plain-weave lamina.
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Figure 5.9. Viscoelastic bending stiffnesses of plain-weave lamina.

parisons demonstrate good agreement between model predictions and experimental measurements.

Higher noise is observed in the bending test data. In the four-point bending test, the specimen was

loaded through point contacts. The vibration of the specimen caused by air circulation inside the

environmental chamber was therefore more severe.

Figure 5.10. Axial compliance of plain-weave lamina at 45◦ angle to fiber direction at a reference
temperature of 40◦C.
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Figure 5.11. Bending compliance of plain-weave lamina at 45◦ angle to fiber direction at a reference
temperature of 40◦C.

5.4 Deployment and Shape Recovery Experiments

To assess the deployment and shape recovery behavior after stowage, experiments were carried out

on a composite tape-spring with a radius of 19 mm, a thickness of 0.125 mm, a length of 596 mm,

and an areal density of 131.2 g/m2. The tape-spring was made of ±45 plain-weave fabric with 1

k tows of T300 carbon fibers impregnated with PMT-F4 epoxy resin. It was fabricated by laying

the resin-impregnated fabric on a cylindrical steel mandrel, wrapping the assembly in release films,

and cured under vacuum for 2 hours at 120◦C and 400 kPa. A single-ply lamina was used so that

the resulting tape-spring would have a relatively low stiffness and its deployment would span for a

longer period for experimental measurements. The lamina layup was chosen to be ±45 because the

behavior in the longitudinal direction of the tape-spring is dominated by the matrix and hence more

sensitive to effects of time and temperature changes.

An important feature of viscoelastic behavior in polymers is the temperature dependence of the

relaxation time. Epoxy matrix materials have glass transition temperature Tg well above room tem-

perature and therefore show little viscoelastic response. A long stowage time is required to observe

noticeable viscoelastic effects during deployment. However, relaxation or creep behavior accelerates

as the temperature moves towards Tg. To shorten stowage time for experimental measurements, the

tape-spring was therefore stowed at a higher temperature.

Each test consisted of stowing the tape-spring for a given length of time at a specified tempera-

ture, deploying it, and measuring the shape change over time after deployment. Experiments were

performed inside a thermal chamber that stabilizes the temperature of the specimens within 0.1◦C

over the test period. The test specimen was clamped on the bottom and positioned vertically on a
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granite table to reduce background vibration. Thermocouples were placed at three different loca-

tions in the vicinity of the specimen to monitor the temperature uniformity, which can be controlled

within ±0.5◦C. In Chapter 4, it was discovered that the behavior of viscoelastic tape-springs is char-

acterized by a short-term deployment phase followed by a long-term recovery phase. Tape-springs

undergo large displacements within a short period during deployment and exhibit infinitesimal de-

formations over extended periods during shape recovery. Two displacement measurement schemes

were therefore employed to probe the behavior under such drastically different length and time

scales. The deployed angle was extracted from images taken using a high resolution camcorder with

a frame rate of 30 fps. Full field displacements of the fold region in the tape-spring were measured

using a three dimensional digital image correlation system during the recovery phase. The system

consists of two Point Grey Research CCD cameras with a resolution of 2448 x 2048 and a pixel size

of 3.45 µm x 3.45 µm. The cameras were positioned to capture a series of images of the inner surface

of the tape-spring throughout the test. The experimental configuration is shown in Figure 5.12.

The test proceeded as follows. The chamber was first heated and stabilized at the stowage

temperature. The chamber was then opened for manually stowing the tape-spring to an angle of

87◦ so that gravity could be taken advantage of to slow down the initial deployment time. To

minimize the disturbance of the thermal environment, the chamber was kept opened for only a short

time. The specimen was stowed for a period of 8 h, after which the temperature inside the chamber

was changed to the deployment temperature and the specimen was deployed. Displacements were

measured continuously over time from the instant of deployment to 8 h after deployment. Three

sets of tests with different stowage and deployment temperatures summarized in Table 5.3 were

conducted. Each type of test was repeated with nominally identical conditions.

As noted previously, the behavior of tape-springs after stowage can be divided into two stages,

namely deployment and recovery. Figure 5.13 plots the measured deployed angle over time for all

tests and Figure 5.14 shows a series of intermediate shapes of the tape-spring during deployment for

test 2. In all cases, the tape-spring passes through the undeformed configuration and overshoots by

a small amount, after which the deployed angle gradually tends towards zero. The effect of stowage

at different temperatures is apparent in Figure 5.13. In test 1, the maximum overshoot occurred at

0.4 s with a magnitude of -1.4◦. In test 2, the maximum overshoot was delayed to 0.65 s with a

larger angle of -2.5◦. The deployment responses for tests 2 and 3 are nearly identical with only a

minor difference in the overshoot time. This result suggests that short-term deployment is affected

mainly by the stowage conditions and the deployment conditions have only a minor effect.

Figure 5.15 shows the measured out-of-plane displacement field in the fold region of the tape-

spring, superimposed on images of the specimen over a longer time span for test 2. The displacement

field measurements were obtained from analyzing images of the deformed specimens with the Vic-3D

digital image correlation software. The principle of analysis is the following. A reference image is first
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chosen and divided into small square regions. The software then matches these regions between any

subsequent image and the reference image based on pattern recognition algorithms and determines

the displacement components between the two images. The result is then a displacement field for

each image relative to the reference. To illustrate the small movements during recovery, the image

taken at the instant of maximum overshoot was chosen to be the reference. As shown in Figure 5.15,

an out-of-plane displacement of only 3.0 mm was recorded over 5743 s (1.6 h) whereas the original

depth of the tape-spring is 16.0 mm. This indicates that the cross-sectional shape of the tape-spring

was slowly changing over a long period after deployment, even though the tape-spring had nearly

reached the undeformed configuration in about 1 s. If the tape-spring had been made of a time-

independent material, the cross section would have fully recovered and arrived at the fully deployed

configuration almost instantaneously.

The experimental results presented provide a quantitative characterization of how stowage ex-

tends the time for deployment and shape recovery in viscoelastic composite structures.

Specimen

Thermocouples

Thermal 

chamber

Digital image 

correlation system 

Figure 5.12. Experimental configuration.

Test Stowage temperature [◦C] Deployment temperature [◦C]
1 23 23
2 60 60
3 60 23

Table 5.3. Conditions of tests conducted.
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Figure 5.13. Measured deployed angle vs. time.

5.5 Finite Element Analysis and Results Comparison

The response of composite tape-springs, studied experimentally in Section 5.4, was simulated in

Abaqus/Standard using a model with 2268 quadrilateral shell elements (S4) with a maximum di-

mension of 3.85 mm as shown in Figure 5.16. The viscoelastic stiffness properties of the shell elements

were defined by assigning the ABD matrix obtained in Section 5.3.3 via a user-defined shell section

subroutine (UGENS). The temperature shift factor of the shell elements was taken to be the same

as that of the matrix.

The boundary conditions were applied as follows. The bottom end section CC ′ was held fixed

throughout the analysis. To reach the stowed configuration, the cross section at the fold region

was first flattened by applying equal and opposite rotations on the two edge nodes B and B′. At

the same time, a rotation of 87◦ was applied to the middle node A of the top cross section of the

tape-spring. The prescribed rotations on the edge nodes were then removed and the tape-spring

was kept at the stowed configuration for 8 h. The boundary condition on the top node was released

instantaneously at the end of the stowage step. The analysis was quasi-static for the folding and

stowage steps, and was switched to dynamic after the removal of the top node constraint. The

deployment process was simulated for 8 h. Gravity loading was imposed in the z-axis throughout

the simulation. The analysis took 40 h to complete.

Figure 5.17 compares the deployment angle vs. time profile during deployment between experi-

mental measurements and finite element simulations for test 2. Overall, the simulations show good

agreement with the observed response, except that the overshoot angle is overpredicted by about
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Figure 5.14. Snapshots at 0 s, 0.13 s, 0.26 s, 0.39 s, 0.52 s, 0.65 s, 0.78 s, 0.91 s, and 1.04 s of
deployment sequence.
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Figure 5.15. Measured out-of-plane displacements of the fold region relative to the configuration of
maximum overshoot: (a) at overshoot (reference), (b) after 50 s, and (c) after 5743 s.
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Figure 5.16. Finite element model for tape-spring.

Figure 5.17. Comparison of deployment angle vs. time.

5.6 Prediction of Long-term Stowage Effects

The effect of long-term stowage was investigated numerically using the micromechanical viscoelastic

model. A finite element analysis in which the composite tape-spring was subject to a stowage period

of 1 year at 23◦C was carried out. The finite element model and the simulation techniques were

identical to those in Section 5.5. The deployment angle is plotted against time in Figure 5.18. It is

observed that the deployment is drastically different from the behavior after shorter stowage times
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studied in Section 5.4. The tape-spring only deploys to an angle of 82.6◦ in 15 days and seems to

stay at this angle. This is because the internal force has reduced to a low value after 1 year of

stowage and is not sufficient to deploy the tape-spring under gravity loading.

0 5 10 15
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90

t [day]

θ 
[d

eg
]

Figure 5.18. Predicted deployment angle after 1 year of stowage at 23◦C.
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Chapter 6

Stress Concentrations in Balloon
Films

6.1 Introduction

As mentioned in Chapter 1, the NASA superpressure balloon consists of a thin envelope made of

linear low density polyethylene (LLDPE) film, contained within equally spaced meridional tendons.

A limiting factor in the design of these balloons is the presence of high stress concentrations in

relatively small regions of the balloon film. One area where stress concentrations arise is at the

junction of tendon pockets and balloon envelope. To maintain the position of a tendon in between

adjacent lobes, a tendon pocket constructed by the same balloon film material is bonded to the

balloon envelope, Figure 6.1. As a result, the thickness of the envelope abruptly increases at the

locations of tendon pockets.

To enable the estimation of realistic factors of safety the actual stress concentrations in these

regions need to be predicted, which requires accurate modeling of the phenomena that affect the

stress state at regions with localized deformation. The film used in NASA superpressure balloons is

a 38 µm thick polymer film called StratoFilm 420, which exhibits nonlinear viscoelastic, anisotropic

properties (Rand and Sterling, 2006; Rand andWakefield, 2010) and is easily wrinkled. A viscoelastic

model for StratoFilm 420 has been formulated based on the Schapery theory by Rand and Sterling

(2006) and implemented in a finite element analysis to study the overall shape and stress distribution

(Gerngross et al., 2008). However, the local strains in regions of stress concentrations are expected

to exceed the limits of validity of this model.

This study establishes a computational model that accurately predicts the anisotropic, viscoelas-

tic material response as well as the wrinkling instability behavior at large strains to avoid over-

conservative designs due to incorrect estimates of localized stress concentrations. The proposed

model is applicable up to the point where the instantaneous stiffness of the material vanishes and

irrecoverable deformation begins.
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Figure 6.1. Thickness variation in balloon envelops due to bonding extra layers of film to construct
tendon pockets.

6.2 Background

6.2.1 Nonlinear Viscoelasticity

Time and temperature dependent behavior of polymers is well studied in linear viscoelasticity. When

the viscoelastic behavior is nonlinear, the Boltzmann superposition principle used in linear viscoelas-

ticity is no longer directly applicable. Constitutive models based on the multiple integral approach

were first proposed but found limited usage due to the complexity of the resulting equations and

substantial laboratory characterization required. The first widely used nonlinear viscoelastic model

is due to Schapery, who introduced a single integral formulation where nonlinearities appear in the

constitutive equations as stress or strain dependent material parameters (Schapery, 1966 1969 1997).

Another single integral model is the free volume model presented by Knauss and Emri (1981

1987). Instead of relying on the stress or strain dependent material parameters that have no direct

physical interpretation, they postulated a relation between macroscopic deformation and time shift

factor through the concept of free volume. Free volume is the intermolecular space in a polymer

that allows for freedom of molecular chain motions over time in response to imposed deformation,

giving rise to the observed viscoelastic response. Chain mobility is enhanced with increased free

volume, allowing for faster accommodation of the chains to the imposed deformation. Hence the

free volume implicitly controls the time scale of the material. The time shift factor was related to

the free volume by Doolittle (1951),

log a =
B

2.303

(
1

f
− 1

f0

)
, (6.1)

where B is a material function, f denotes the fractional free volume and f0 is the fractional volume

at some reference conditions. In the free volume model, the volumetric dilatation ϵv is correlated
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with free volume by

f = f0 + αv(T − T0) + ϵv, (6.2)

where αv is the volumetric coefficient of thermal expansion. Combining Equations (6.1) and (6.2)

gives

log a =
−B

2.303f0

[
αv(T − T0) + ϵv

f0 + αv(T − T0) + ϵv

]
. (6.3)

It can be shown that Equation (6.3) reduces to the Williams-Landel-Ferry (WLF) equation in linear

viscoelasticity in the case of negligible volumetric strain. The free volume model was formulated

using finite kinematics to predict the rubbery behavior of polymers (O’Dowd and Knauss, 1995) and

modified to include distortional effects by Popelar and Liechti (1997). The modified model has been

implemented in finite element simulations to study nonlinear shear behavior (Popelar and Liechti,

2003). Only isotropic materials were considered in these studies.

Both the Schapery model and the free volume model were found to be inadequate in predicting

the unloading behavior in uniaxial cyclic tests (Xia et al., 2006). In particular, the experimentally

determined unloading path has a concave curvature while the models predict a convex path. The

same discrepancy was observed for other nonlinear viscoelastic models (Zhang and Moore, 1997),

including the distortion-modified free volume model (Arzoumanidis and Liechti, 2003). Models with

an incorrect unloading path curvature tend to underestimate the strain recovery during unloading.

Among the attempts to remedy this problem, the unloading switch rule proposed by Xia et al.

(2006) has demonstrated the ability to correct the curvature sign when incorporated into nonlinear

viscoelastic models.

6.2.2 Wrinkling

Wrinkling can be explained as a structural instability where a thin plate deforms out-of-plane when it

is subject to in-plane compression. Numerical modeling of wrinkling is mainly performed using either

shell or membrane elements. Shell elements are able to capture the three-dimensional wrinkled shape,

but such an analysis requires small element size and hence high computational cost. Membrane

elements neglect the shape of wrinkles and aim to capture only the mid-plane deformation and stress

distribution. When the details of the wrinkles are not the primary concern, a membrane analysis

provides an efficient approach. However, in finite element analysis using conventional membrane

elements, wrinkling leads to element over-contraction and thus the strain and stress states are

incorrectly computed.

In classical theory, a membrane is under plane stress and has no bending stiffness. When the

compressive stress exceeds the critical load, the membrane wrinkles because it has no bending stiff-
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ness and stops carrying compression. This instability is not accounted for in conventional membrane

elements, which result in overestimation of compressive strain and stress. The issue is outlined in

Figure 6.2. Many models have been proposed to circumvent the issue of element over-contraction

and are based upon two unifying assumptions: (1) the critical compressive load for wrinkling is zero,

and (2) a wrinkled element is in a uniaxial tension state and the direction of tension is perpendicular

to the wrinkling direction.

The aforementioned simplifications were first used in the tension field theory to tackle isotropic

membrane wrinkling (Reissner, 1938). Based on the same assumptions, Stein and Hedgepeth (1961)

modified the elastic properties and introduced the concept of variable Poisson’s ratio to remove com-

pressive stress in the wrinkled regions. Pipkin (1986) treated wrinkling as an energy minimization

problem and replaced the standard strain energy density with the relaxed energy density, which

becomes zero when a compressive strain is applied. Roddeman et al. (1987) introduced a virtual

elongation into the deformation gradient of a wrinkled membrane so that the modified deformation

reflects the actual deformation.

Analysis of anisotropic membranes is more challenging because the direction of wrinkles is gener-

ally not aligned with the principal stress direction as in the case of isotropic membranes. A wrinkle

direction search procedure is necessary before any modification can be made. Kang and Im (1997)

proposed a scheme that modifies the transverse strain in the wrinkle direction so that the transverse

stress in that direction vanishes. They observed that the shear strain of an over-contracted element

is the same as that in a truly wrinkled membrane and used this as a condition to find the wrin-

kling direction. Alternatively, Epstein and Forcinito (2001) extended the relaxed energy function to

anisotropic membranes through the concept of saturated elasticity.

Although a variety of approaches has been proposed, the resulting constitutive relations obtained

are essentially identical because the models are based on common assumptions (Miyazaki, 2006).

The difference is in their numerical implementation and physical interpretation.

The incorporation of wrinkling behavior in membrane analysis leads to different element modifi-

cations depending on the stress state of the element. The three possible states of a membrane are the

taut state, in which tensile stress exists in all directions; the wrinkled state, in which both tension and

compressive are present; and the slack state, in which only compression exists. A wrinkling criterion

is used to distinguish the element state in the course of a finite element analysis. Three wrinkling

criteria, namely stress criterion, strain criterion, and combined stress-strain criterion (Roddeman

et al., 1987), have been proposed. Kang and Im (1997) compared the three criteria and concluded

that the stress-strain criterion is the most suitable for wrinkling analysis of anisotropic membranes.

The combined stress-strain criterion is given by
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taut : σ2 > 0

wrinkled : ϵ1 > 0 and σ2 ≤ 0

slack : ϵ1 ≤ 0

(6.4)

where ϵ1 is the major principal strain and σ2 is the minor principal stress.

Wrinkling direction

Figure 6.2. Membrane element over-contraction due to wrinkling.

6.3 Model Formulation

StratoFilm 420 is produced by a coextrusion process of three layers of films, resulting in directional-

dependent material properties. In the current work, the film is modeled as an orthotropic membrane

with principal material directions denoted as machine direction (MD) and transverse direction (TD).

The free volume nonlinear viscoelastic model is extended to include material orthotropy. For mod-

eling wrinkling, the procedure proposed by Kang and Im (1997) is adopted.

6.3.1 Orthotropic Free Volume Model

The free volume model is adopted for the balloon film and plane stress conditions are assumed.

Finite strains and rotations are present during large deformations, making different stress and strain

measures possible for constitutive modeling (Holzapfel, 2000). To satisfy the principle of objectivity,

the model formulated herein is formulated in terms of the second Piola-Kirchoff stress P and the

Green-Lagrange strain E, which form a conjugate pair. They are defined as

[P ] = J [F−1][σ][F−T ], (6.5)

[E] = [FT ][F ]− [I], (6.6)
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where [F ] is the deformation gradient, [σ] is the Cauchy stress, and J is the Jacobian defined by

J = det[F]. The constitutive relation is given as

[E(t)] =

∫ t

0

[D(t′ − s′)]
[
Ṗ (s)

]
ds, (6.7)

where t′ is the reduced time defined as

t′ =

∫ t

0

du

a
and s′ =

∫ s

0

du

a
. (6.8)

The shift factor a is given by Equation (6.3). The Green strains and the second Piola Kirchoff

stresses are

[E(t)] =


E1(t)

E2(t)

E3(t)

E6(t)

 , (6.9)

[P (t)] =


P1(t)

P2(t)

0

P6(t)

 , (6.10)

where the subscripts 1 and 2 denote the machine and transverse direction of the film respectively,

the subscript 3 denotes the direction normal to the film, and the subscript 6 denotes the in-plane

shear direction. The creep compliance D(t) takes the form

[D(t)] =


D11(t) D12(t) D13(t) 0

D12(t) D22(t) D23(t) 0

D13(t) D23(t) D33(t) 0

0 0 0 D66(t)

 , (6.11)

Under plane stress conditions the compliance is often written as a 3 by 3 matrix, however the

compliance matrix in Equation (6.11) has the additional terms D13, D23 and D33 corresponding to

the film behavior in the thickness direction. These coefficients are needed to compute the volumetric

strain as an internal state variable in the free volume model. The volumetric strain is defined as

ϵv = det(F )− 1. (6.12)

Each entry in D(t) is represented by a Prony series,
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D(t) = D0 +
n∑

j=1

Dj(1− e−t/τj ), (6.13)

where D0 is the instantaneous compliance, Dj are the retardation coefficients, τj are the retardation

times.

In summary, the complete model describes the nonlinear viscoelastic response by means of Equa-

tions (6.3), (6.7), (6.8), and (6.11).

6.3.2 Material Parameters for StratoFilm 420

To implement the orthotropic free volume model, the material parameters in Equations (6.3) and

(6.11) need to be determined. For calculating the time shift factor in Equation (6.3), the necessary

parameters are B, αv, and f0. In Equation (6.11), there are 7 independent compliance functions, but

only 6 are needed because D33(t) is multiplied by zero in the case of plane stress. For StratoFilm 420,

most of the required parameters can be converted from data collected in (Rand, 2008a) by making

certain assumptions on the film behavior in the thickness direction. The remaining parameters were

obtained by carrying out additional material characterization tests. This section describes how each

parameter was obtained for implementation of the proposed model.

The volumetric coefficient of thermal expansion is written as the sum of the linear coefficients of

thermal expansion,

αv = α1 + α2 + α3, (6.14)

where the subscripts 1, 2, and 3 denote the machine, transverse, and thickness directions. Both α1

and α2 were obtained as polynomial functions of temperature by Young (2010),

α1 =
13∑
j=1

pjT
13−j , (6.15)

α2 =

13∑
j=1

qjT
13−j , (6.16)

where T is temperature in degree Kelvin, pj and qj are polynomial coefficients given in Table 6.1.

In this work we assume α3 to be the average of α1 and α2. The resulting αv is plotted in Figure 6.3.

The material functions B and f0 were determined from temperature shift data in Rand (2008a)

as follows. Note that the time shift factor given by Equation (6.3) reduces to the temperature shift

factor in linear viscoelasticity where the volumetric strain is infinitesimal. Therefore, B and f0 can be

found by fitting temperature shift data obtained from creep tests at small strains to Equation (6.3)

with ϵv = 0.
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Rand (2008a) obtained the temperature shift data for StratoFilm 420 and expressed the data by

the following numerical functions,

log aT =

 (T − 293.16)[7.33× 10−4(T − 273.16)− 0.179133] if T ≥ 233.16 K;

3.1068− 0.2350275(T − 273.16) if T < 233.16 K.
(6.17)

To determine B and f0, the data represented by Equation (6.17) were fitted to Equation (6.3) with

ϵv = 0 and T0 = 293.16 K, which is

log a =
−B

2.303f0

[
αv(T − 293.16)

f0 + αv(T − 293.16)

]
. (6.18)

In the numerical fitting procedure, Equation (6.19) was first rewritten in the WLF form,

log a =
−c1(T − 293.16)

c2 + (T − 293.16)
. (6.19)

where c1 and c2 are constants given by

B

2.303f0
= c1, (6.20)

f0
αv

= c2. (6.21)

The Levenberg-Marquardt algorithm in Matlab was used in the fitting procedure to first find c1 and

c2, B and f0 were then obtained with known αv. The results are plotted in Figures 6.4 and 6.5.

The creep compliance of the film in the machine direction, D11, was expressed as a Prony series of

15 terms at the reference temperature T0 = 293.16 K in Rand (2008a). The master curve is plotted

in Figure 6.6 and the corresponding Prony series terms are summarized in Table (6.2). Following

the work of Rand (2008b), the remaining in-plane compliances were assumed to be expressed by

the same Prony series as the compliance in the machine direction, but multiplied by experimentally

determined constants as follows:

D12(t) = −0.48D11(t), (6.22)

D22(t) = (1.122 + 6.5895× 10−4T − 6.609× 10−6T 2)D11(t), (6.23)

D66(t) = 4.45D11(t). (6.24)

It is noted that assuming the compliance functions to be related by time-independent functions or

constants results in a simplified representation of the material behavior because the creep compliance

functions in different directions can vary with time differently. Independent characterization of the
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j pj [K−1] qj [K−1]
1 −1.314349420165660× 10−27 1.656628670569420× 10−27

2 3.757961363054510× 10−24 −4.538552920810370× 10−24

3 −4.870560919889060× 10−21 5.644504822368260× 10−21

4 3.783161974578100× 10−18 −4.213294503544060× 10−18

5 −1.961126506078030× 10−15 2.102008465628270× 10−15

6 7.146793667601330× 10−13 −7.383200108461120× 10−13

7 −1.877228425197230× 10−10 1.871956621022750× 10−10

8 3.580706769622300× 10−8 −3.451673660888610× 10−8

9 −4.922242452967390× 10−6 4.593443382129490× 10−6

10 4.755521948988130× 10−4 −4.302432036460990× 10−4

11 −3.065068396780760× 10−2 2.692250002443280× 10−2

12 1.183350730959610× 100 −1.010550330725230× 100

13 −2.069690662157120× 101 1.720772480526920× 101

Table 6.1. Coefficients of polynomials characterizing the coefficients of thermal expansion.

in-plane compliance functions is currently underway. For the purpose of model development and

demonstration, this simplified representation is employed.

The compliance functions D13 and D23 of StratoFilm 420 were not characterized by Rand.

Because of the small thickness of the film, direct measurements of these properties would pose

significant challenges. In the present study, D13 and D23 were determined by fitting the model

predictions to the results of uniaxial tensile tests.

Uniaxial tension tests on 38 µm thick specimens of StratoFilm 420 were conducted with an Instron

materials testing machine equipped with a thermal chamber. Reflective targets were adhered to the

specimen for strain measurements using laser extensometers. A type-T thermocouple was used to

monitor the temperature throughout the tests. Prior to testing, the thermal chamber was maintained

at T = 10◦ for 1 hour to achieve stable thermal equilibrium. Specimens with machine and transverse

direction oriented along the loading direction were stretched at a nominal strain rate of 0.1%/s to

provide data for fitting D13 and D23 respectively.

The Prony series for D13 and D23 were assumed to have the same retardation times ρj as that

of D11. The Prony coefficients were determined by fitting the nonlinear viscoelastic model to data

obtained by uniaxial tension tests described above using the Levenberg-Marquardt algorithm in

Matlab. The results of the uniaxial tension tests and the numerical fits are shown in Figure 6.7.

The Prony series for D13 and D23 are plotted in Figure 6.8.

6.3.3 Unloading Behavior

To correctly simulate the unloading behavior, the switch rule proposed by Xia et al. (2006) was

modified and incorporated into the current free volume model. Xia et al. (2006) first distinguished

between loading and unloading using a criterion based on the von Mises stress level experienced by



88

180 200 220 240 260 280 300 320
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

T [K]

α v [K
−

1 ]

Figure 6.3. Volumetric coefficient of thermal expansion.

240 250 260 270 280 290 300 310 320
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

T [K]

f 0

Figure 6.4. Reference fractional free volume.



89

240 250 260 270 280 290 300 310 320
15

20

25

30

35

40

45

T [K]

B

Figure 6.5. Material function B in the time shift factor of the free volume model.

−15 −10 −5 0 5
0

1

2

3

4

5

6

7

8

9
x 10

−3

log t [s]

D
 [M

P
a−

1 ]
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j D11,j [MPa−1] ρj [s]
0 3.0000× 10−4 —–
1 1.8764× 10−4 1.6548× 10−16

2 2.9249× 10−5 4.8697× 10−15

3 5.8224× 10−5 1.4330× 10−13

4 8.7542× 10−5 4.2170× 10−12

5 1.1561× 10−4 1.2409× 10−10

6 1.4159× 10−4 3.6517× 10−9

7 1.6989× 10−4 1.0746× 10−7

8 2.0924× 10−4 3.1623× 10−6

9 2.7274× 10−4 9.3057× 10−5

10 3.7796× 10−4 2.7264× 10−3

11 5.4670× 10−4 8.0584× 10−2

12 8.0581× 10−4 2.3714
13 1.1844× 10−3 69.783
14 1.7204× 10−3 2053.5
15 2.6285× 10−3 60430

Table 6.2. Prony series representation of D11.
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the material. The criterion is checked throughout the deformation history. No correction is made

when loading but when unloading is detected the nonlinear parameters in the viscoelastic model

retain their values at the point of switching from loading to unloading. In the present free volume

model, the criterion is based upon ϵv. A local maximum in the volumetric strain history corresponds

to switching from loading to unloading:

dϵv
dt

∣∣∣∣
switch

= 0; (6.25)

d2ϵv
dt2

∣∣∣∣
switch

< 0. (6.26)

During the entire unloading path, the time shift factor is kept constant and is computed using

the value of ϵv at the switch point. The reverse switching from unloading to loading occurs when

Equation (6.25) is again satisfied and Equation (6.26) is reversed.

6.3.4 Orthotropic Wrinkling Model

The model for orthotropic wrinkling is divided into three steps: element state detection, wrinkling

angle search in the case of wrinkled element, and recalculation of stress and strain states.

The combined stress-strain criterion described in Section 6.2.2 is employed to determine the state

(taut, wrinkled, slack) of an element.

When both principal stresses are positive, the membrane is under biaxial tension and is therefore

taut. Then, no stress or strain modification is necessary, and the constitutive equation, Equa-
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tion (6.7), gives the correct membrane response.

When both principal strains are less than zero, the membrane is slack. In this case, all stresses

of the membrane are zero:

[P (t)] = 0. (6.27)

When the major principal strain is positive and the minor principal stress is negative, the mem-

brane is wrinkled. It has been mentioned that the state of a wrinkled element is characterized by

uniaxial tension in the direction perpendicular to the wrinkles. The correction procedure therefore

involves first determining the wrinkling direction and imposing the uniaxial tension state in the

wrinkling coordinate frame. The method for searching the wrinkling direction is based upon the

work of Kang and Im (1997), but modified for nonlinear viscoelastic membranes described by the

constitutive integral in Equation (6.7).

The correction procedure is described as follows. Consider the three configurations of a material

element shown in Figure 6.9. The undeformed configuration is denoted by ABCD with (1, 2) defining

the directions of material orthotropy. The final, wrinkled configuration is defined by A”B”C”D”,

in which x and y denote the directions of uniaxial tension and wrinkling respectively. The angle

between the material coordinate frame (1, 2) and the wrinkling coordinate frame (x, y), α, is known

as the wrinkling angle. The wrinkling direction aligns with the minor principal stress or strain

direction in isotropic materials, but this is generally not true for anisotropic materials.

Under a locally homogeneous planar deformation, ABCD deforms to the wrinkled configuration

A”B”C”D”. The deformation may be thought of as a two-step process. The first step is a purely

material deformation from ABCD to A′B′C ′D′ under uniaxial tensile stress Pw. Wrinkling is

absent in this step because the boundaries of the element are free to move. The strain components

involved are normal strain Eu
x , transverse strain Eu

y due to Poisson’s contraction, and shear strain

Eu
xy because of coupling between normal and shear compliances of the material in the wrinkling

frame (x, y). The second step is a purely wrinkling deformation from A′B′C ′D′ to A”B”C”D”.

The material stress and strain states remain the same during this process, but the element contracts

due to the formation of wrinkles. Because of the presence of wrinkles, the actual material element

is non-planar. The profile represented by A”B”C”D” is in fact only the two-dimensional projection

of the actual wrinkle element. An over-estimation of transverse strain in the wrinkling direction

would be resulted if it were calculated using the projected surface. This is the origin of the error

in conventional membrane analysis. The correct material strains (i.e. without over-contraction in

the wrinkling direction) is represented by A′B′C ′D′, which we seek to determine by correcting the

known strains in A”B”C”D”.

Kang and Im (1997) demonstrated that the normal and shear strains remain unchanged in going
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from A′B′C ′D′ to A”B”C”D”, but the transverse strain reduces. In other words,

Eu
x = Ex, (6.28)

Eu
xy = Exy, (6.29)

Eu
y ≥ Ey, (6.30)

where Ex, Ey, Exy are the normal, transverse, and shear strains in A”B”C”D”.

The unknowns to be found are then Px, E
u
y and α. They are determined by invoking the uniaxial

tension condition in the wrinkling coordinate frame, in which the constitutive equations are written

as

Eu
x (t) =

∫ t

0

D̂11(t
′ − s′)Ṗx(s)ds, (6.31)

Eu
y (t) =

∫ t

0

D̂12(t
′ − s′)Ṗx(s)ds, (6.32)

Eu
xy(t) =

∫ t

0

D̂16(t
′ − s′)Ṗx(s)ds, (6.33)

where D̂11, D̂12, D̂16 denote the compliance terms in the winkling coordinate frame. They are

related to the in-plane compliance terms in the material coordinate frame by a rotation of α,

[̂D] = [R] [D] [R]
−1

, (6.34)

where [D] is a 3 by 3 matrix filled by the in-plane compliance terms in Equation (6.11) and

[T ] =


cos2(α) sin2(α) 2 sin(α) cos(α)

sin2(α) cos2(α) −2 sin(α) cos(α)

− sin(α) cos(α) sin(α) cos(α) cos2(α)− sin2(α)

 · (6.35)

Equations (6.31), (6.32), and (6.33) present 3 equations for finding the three unknowns, Px, E
u
y

and α. An iterative approach is used to solve the nonlinear systems of equations. At the beginning of

the solution process, an initial guess is made for α and Px is first calculated through Equation (6.31)

with known Eu
x . The strains Eu

y and Eu
xy are then determined from Px with Equations (6.32) and

(6.33). The iteration continues until the conditions Eu
xy = Exy and Eu

y ≥ Ey are satisfied. It was

shown in Kang and Im (1997) that only one solution of α satisfies all the imposed conditions and

therefore the wrinkling direction is unique. The strains Eu
x , E

u
y , E

u
xy, and the uniaxial tensile stress

Px finally obtained define the correct stress and strain states of an element that wrinkles at an angle
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α from the material directions.
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Undeformed membrane

corrected membrane

overcontracted membrane

1

2

α

P

Figure 6.9. States of an element in the wrinkling process.

6.4 Numerical Implementation

The nonlinear viscoelastic model, loading/unloading switch rule, and wrinkling models described in

Section 6.3 were combined and implemented in the explicit dynamic finite element solver Abaqus/Explicit

through a user-defined material (VUMAT) subroutine. Because of the presence of strong nonlin-

earity due to wrinkling, an explicit solver has advantages in terms of computational cost over an

implicit solver. For this reason Abaqus/Explicit was chosen for the current study. This section first

describes the overall scheme of the numerical implementation and discusses the each component of

the subroutine in detail.

An overview of the computational scheme within an iteration is depicted in Figure 6.10. In each

iteration, the Abaqus solver passes to the VUMAT subroutine the time increment size ∆t and the

corresponding Green strains at the end of the current increment [Et]. The role of VUMAT is to

update the Cauchy stress [σt].

The VMAT subroutine first uses the volumetric strain at the end of the previous time increment,

ϵv,t−∆t, to decide whether a switch from loading to unloading is required, and computes the time

shift factor at−∆t using the chosen volumetric strain and the given temperature T . The current

in-plane stresses [Pt] are obtained from the constitutive equations based on at−∆t and [Et]. At this

point, each element is checked for wrinkling and corresponding corrections are made to the element

stress and strain states depending upon the element state. The through-thickness strain E3,t and

the volumetric strain ϵv,t are now determined from the correct [Pt] and [Et], and stored for the next
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iteration.

Note that the stress update is based on at−∆t, instead of an iterative scheme to arrive at a closer

approximation for the current increment. Such an explicit integration approach is augmented by a

step size adjustment process to maintain the accuracy of the solution. In this procedure, the time

increment is reduced and the numerical procedure is repeated from the beginning until a specified

tolerance on the change in volumetric strain ∆ϵv is satisfied. The computed stresses [Pt] are finally

pushed forward to the Cauchy stresses [σt] for returning to the Abaqus solver.

6.4.1 Loading/Unloading Switch Rule

Numerically, the criterion for switching described by Equations (6.25) and (6.26) is realized by com-

paring the values of volumetric strain at consecutive time steps. The time shift factor is determined

according to

at−∆t = a(Tt−∆t, ϵv,t−∆t) if ϵv,t−∆t ≥ ϵv,t−2∆t;

at−∆t = a(Tt−∆t, ϵv,s) if ϵv,t−∆t < ϵv,t−2∆t.
(6.36)

where s is the time at which loading switches to unloading. For an element loaded from its unstressed

configuration at t = 0, the first instance ϵv,t−∆t < ϵv,t−2∆t is detected identifies the first switching

point. It follows that a local maximum volumetric strain is located at t− 2∆t and therefore ϵv,s =

ϵv,t−2∆t. This value of the volumetric strain is stored and used for computing at−∆t until when

ϵv,t−∆t ≥ ϵv,t−2∆t is detected again. The model uses the closest local maximum volumetric strain

to compute the time shift factor during unloading for each cycle.

6.4.2 Stress Computation

To compute [Pt], the recursive integration algorithm proposed by Lai and Bakker (1996) is employed.

The derivation of the discretized constitutive equations formulated in terms of relaxation modulus

has been described in Chapter 2. In the present implementation, the algorithm is modified for

the free volume nonlinear viscoelastic model and formulated in terms of creep compliance. For

illustration of the algorithm, the discretized equations are presented for the uniaxial case first and

then generalized for multiaxial situations. In uniaxial deformation, assuming the stress Pt varies

linearly over the current time step, the current strain Et, is expressed by

Et = D0Pt +
n∑

j=1

DjPt −
n∑

j=1

Djqj,t, (6.37)

where

qj,t = e−∆t′/ρjqj,t−∆t + (Pt − Pt−∆t)
1− e−∆t′/ρj

∆t′/ρj
. (6.38)



96

 

Compute principal stresses and strains

In p u t fro m A baqus solver :

1. Current strain 
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4. Old volumetric strain 
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Check tolerance on change in volumetric strain
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1. New volumetric strain 
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3. New hereditary integrals

Yes

No

Compute shift factor and reduced time increment

tautwrinkledslack

Zero stress Uniaxial stress

Loading/Unloading Switch

Figure 6.10. Overview of model implementation in VUMAT subroutine in Abaqus/Explicit.
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The hereditary integrals qj,t−∆t and stress Pt−∆t have been computed in the previous step and stored

as state variables. The reduced time increment ∆t′ is computed assuming the time shift factor is

constant over ∆t:

∆t′ =
∆t

at−∆t
. (6.39)

where the time shift factor at−∆t in the free volume model is determined by

log at−∆t =
−Bt−∆t

2.303f0,t−∆t

[
αv,t−∆t(Tt−∆t − T0) + ϵv,t−∆t

f0,t−∆t + αv,t−∆t(Tt−∆t − T0) + ϵv,t−∆t

]
. (6.40)

The volumetric strain in Equation (6.40) is also determined in the previous time step and stored as

a state variable. The final form of the current strain Et is obtained by substituting Equation (6.38)

into Equation (6.37) and rearranging:

Et = D̄tPt − ft−∆t, (6.41)

where

D̄t = D0 +
n∑

j=1

Dj −
n∑

j=1

Dj
1− e−∆t′/ρj

∆t′/ρj
, (6.42)

ft−∆t =

n∑
j=1

Dj

[
e−∆t′/ρjqj,t−∆t −

1− e−∆t′/ρj

∆t′/ρj
Pt−∆t

]
. (6.43)

Equations (6.42) and (6.43) are dependent only on information at t −∆t which is already known.

For in-plane stresses, the discretized equations are


E1

E2

E6


t

=


D̄11 D̄12 0

D̄12 D̄22 0

0 0 D̄66


t


P1

P2

P6


t

−


f1

f2

f6


t−∆t

. (6.44)

The current stress [P ]t is inverted from the given strain [E]t in Equation 6.44.

6.4.3 Wrinkling Correction

The element state is determined from the computed stresses using the combined stress-strain crite-

rion. Depending on the element state, the stresses and strains are recalculated differently.

For taut elements, no correction for stress or strain is needed. The stresses are calculated from

the given strains as
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
P1

P2

P6

 =


D̄11 D̄12 0

D̄12 D̄22 0

0 0 D̄66


−1 

E1 + f1

E2 + f2

E6 + f6

 . (6.45)

For wrinkled elements, the wrinkling angle search procedure described in Section (?? is used to

find the wrinkling direction. The stresses in the wrinkle coordinate frame are then determined by


P̂1

P̂2

P̂6

 =


Ê1+f̂1̂̄D11

0

0

 (6.46)

where the 1-axis and 2-axis are normal and parallel to the wrinkling direction respectively. To

correct over-contraction in the direction transverse to wrinkle, the strain is recalculated from the

corrected stress:

Ê2 = ̂̄D12P̂1 − f̂2. (6.47)

For slack elements, the stresses in the current time step are set to zero,


P1

P2

P6

 =


0

0

0

 . (6.48)

However, the strains do not vanish instantaneously as in the case of elastic materials. Instead, they

are computed from the deformation history as


E1

E2

E6

 = −


f1

f2

f6

 . (6.49)

For all elements, the corrected stresses and strains are then rotated back to the material coordi-

nate frame for computing the through-thickness strain E3:

E3 = D̄13P1 + D̄23P2 − f3. (6.50)

6.5 Validation of Orthotropic Nonlinear Viscoelastic Model

The accuracy of the nonlinear viscoelastic model without wrinkling first was assessed by comparison

to experimental data obtained from cyclic tests under controlled conditions. To avoid wrinkling,
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test cases with uniform stress distribution were chosen and described in this section.

6.5.1 Experiments

Biaxial tension and in-plane shear experiments were conducted on cylindrical specimens with a

diameter of 100 mm and height of 270 mm. The specimens were fabricated by bonding with a heat

sealer two 38 µm thick rectangular pieces of StratoFilm 420. This construction technique provided

two diametrically opposite seams that balance the stiffness distribution and thus avoid that the

cylinder bends when it is loaded axially. Each end of the cylinders was bonded and clamped around

the rim of a wooden disc acting as an end-fitting for connection with the load frame. The bottom

fitting was equipped with two air ports for inflation and pressure measurements. Reflective targets

were adhered to the cylinder surface for strain measurements using laser extensometers. A type-

T thermocouple and a differential pressure transducer were used to monitor the temperature and

pressure throughout the tests. The test setup is shown in Figure (6.11).

Specimen

Pressure ports

Top end !tting

connected to load cell

Gage points

Figure 6.11. Cylindrical specimen mounted inside a thermal chamber.

For the biaxial tension tests, the cylinders were first inflated to the required pressure over a period

of 10 s to provide hoop stress. Once the set pressure had been reached, the specimens were stressed

axially by the load frame at a rate of 0.1 MPa/s for one cycle. For investigation of shear behavior, the

cylinder was oriented such that the loading direction was at 45◦ from either material direction. This

created a shear stress in the material frame of reference. The pressure, axial load, temperature, axial
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Test Type of test Axial loading direction Pressure [Pa] Temperature [C]
1 Biaxial tension Machine direction 700 -10
2 Biaxial tension Transverse direction 400 0
3 In-plane shear 45◦ from machine direction 150 0

Table 6.3. Parameters of validation tests for nonlinear viscoelastic model.

and transverse strains were measured synchronously over time. The test conditions are summarized

in Table 6.3.

6.5.2 Finite Element Analysis

A finite element model of the cylinder was constructed in to test the validity of the model and the

numerical algorithm by comparing simulations with the tests conducted. The mesh consisted of 208

M3D4 square membrane elements. The constitutive behavior of the elements were defined with the

free volume model described in Section 6.3 and Section 6.4, but with the wrinkling model deactivated.

A material coordinate system was defined on all elements such that the material directions varied

according to the load case being considered in Table 6.3.

Boundary conditions were imposed on the two ends of the cylinder. One end was fully constrained

while the other was constrained in the radial direction, but free to translate in the axial direction.

Geometrically nonlinear analyses were carried out. A uniform pressure was applied on all elements

through the command *DLOAD and the axial load was imposed on the nodes at the partially

constrained end using *CLOAD. The test conditions in Table 6.3 were replicated in the simulations.

6.5.3 Results Comparison

The stress-strain behavior for the biaxial tension and shear tests is plotted in Figs. (6.12)-(6.14),

where it can be seen that the general features of each response have been satisfactorily reproduced.

With the switch rule, the viscoelastic model treats loading and unloading differently. This allows

the correct unloading path curvature to be predicted. It is worthwhile to mention that strain

continues to increase with decreasing load for a short period of time before it reduces with load

during unloading. This is a typical result of viscoelastic material under load control mode. The

increase in strain in the initial part of the unloading segment is due to the prior loading, whose

effect diminishes with time until the effect of unloading on the material eventually dominates. Close

agreement is achieved between simulations and experimental data for the loading path for all three

load cases presented. Despite having the correct curvature, the model predictions for the unloading

path show some discrepancy with the measured response. In particular the model underestimates

the strain and the errors in strain grow in size as the load decreases. In the fully unloaded state,
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the discrepancies are about 1.5%, 1% and 2% for tests 1, 2 and 3 respectively. Good correlation is

obtained also in the plots of strain response over time for both material directions (tests 1 and 2) as

illustrated in Figs. (6.15) and (6.16), except for the same kind of discrepancy described earlier for

the unloading path.
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Figure 6.12. Stress vs. strain plots for test 1.
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Figure 6.13. Stress vs. strain plots for test 2.
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Figure 6.14. Stress vs. strain plots for test 3.
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Figure 6.15. Strain vs. time plots for test 1.
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Figure 6.16. Strain vs. time plots for test 2.

6.6 Validation of Combined Nonlinear Viscoelastic andWrin-

kling model

The accuracy of the proposed model was assessed by comparison to experimental measurements

obtained from uniaxial stretch tests on StratoFilm 420 under a specified temperature and strain

rate. As both nonlinear viscoelastic and wrinkling effects are present, this test serves as a verification

for the proposed membrane model. This section describes the experimental configuration, specimen

preparation, and finite element simulation techniques. Results from measurements and predictions

are compared.

6.6.1 Experiments

Uniaxial tension tests were carried out on rectangular StratoFilm 420 specimens with a length of

250 mm, a width of 114 mm, and a thickness of 38 µm. An important step in specimen preparation

is applying uniform clamping pressure on the two ends so that a uniaxial stress state is maintained

in the middle region of the specimen. During preparation, a mist of water was first sprayed on a

flat plastic sheet. A specimen with the required dimensions was put on the plastic sheet and lightly

pressured with a hand roller to eliminate air bubbles. The specimen was held firmly against against

the plastic sheet by the water surface tension at the interface. The top and bottom edges of the

specimen were glued onto plastic plattens, which were clamped between metallic fixtures. Before

mounting onto the testing machine, a black speckle pattern with a characteristic length of 2 mm

was spray-painted onto the specimen for displacement measurements with digital image correlation.
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Figure 6.17 shows the final specimen.

The experimental configuration is shown in Figure 6.18. The specimen was tested inside an

environmental chamber. To correctly measure strains on a wrinkled surface, three-dimensional

digital image correlation was employed. Digital image correlation is a non-contact technique that

measures full-field displacements of a surface in three dimensional space. The system consists of two

Point Grey Research CCD cameras with a resolution of 2448 x 2048 and a pixel size of 3.45 µm x

3.45 µm, each equipped with a lens with a focal length of 12 mm. The cameras were positioned

to capture a series of images of the specimen through the window of the chamber. A lightbox was

placed behind the specimen inside the chamber to illuminate the speckle pattern for displacement

measurements.

The test proceeded as follows. The chamber was first cooled and stabilized at 0◦C. To avoid

disturbance of the optical path due to fogging at sub-ambient temperatures, the vicinity of the

chamber window is constantly purged with dry nitrogen gas. The specimen was stretched to a

nominal strain of 10% at a rate of 0.1%/s.

Figure 6.19 shows the measured out-of-plane displacement field of the stretched specimen. The

displacement field measurements were obtained from analyzing images of the deformed specimens

with the Vic-3D digital image correlation software. The principle of analysis is the following. A

reference image is first chosen and divided into small square regions. The software then matches

these regions between any subsequent image and the reference image based on pattern recognition

algorithms and determine the movements of the regions between the two images. The result is then

a displacement field for each image relative to the reference. The presence of wrinkling is apparent in

Figure 6.19. The wrinkle amplitude is highest in the middle of the specimen and decreases towards

the edges. Comparing the wrinkled shapes at nominal tensile strains of 5% and 10%, it is observed

that the number of wrinkles increases with higher tensile strain, but the amplitude of the wrinkles

is smaller.

6.6.2 Finite Element Simulations

By taking advantage of symmetry, only half of the rectangular film was modeled in Abaqus/Explicit.

The finite element model is an uniform mesh of 720 quadrilateral membrane elements (M3D4).

The membrane behavior was defined through the user subroutine VUMAT with both nonlinear

viscoelastic and wrinkling behavior. The bottom edge of the model was held fixed while the top

edge was given a displacement of 25 mm in 100 s. The prescribed displacement rate is sufficiently

slow such that no spurious dynamic effects were observed.

Abaqus/Explicit is an explicit solver with conditional stability. The minimum time step required

to satisfy the stability limit for the current simulation is 10−7 s. To speed up analysis, the mass of

the finite element model was artificially scaled up so that a stable time increment of 10−4 s could
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Figure 6.17. Specimen preparation showing the clamped boundary and the mounted configuration.

Figure 6.18. Experimental configuration.
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Figure 6.19. Measured out-of-plane displacements at a nominal strain of (a) 5%, and (b) 10%.

be achieved. The simulations results were not adversely affected because the problem is quasi-static

and therefore the effects of inertia are insignificant.

6.6.3 Results Comparison

The transverse strain field at an overall longitudinal strain of 10% obtained from experimental

measurements and finite element simulations are compared in Figure 6.20. The transverse strain

determined from digital image correlation is the transverse strain component measured on the wrin-

kled surface and represents the actual material strain. Even though the wrinkles appear across the

the membrane specimen, the transverse strain is effectively uniform. The three-dimensional defor-

mation resulting from wrinkling does not have a significant effect on the in-plane behavior. This

justifies the use of membrane approximation which only models homogeneous deformation within

an element. A reasonable agreement is obtained between measured and predicted transverse strain

fields. The stress-strain curves are compared in Figure 6.21, which shows that the proposed model

which incorporates nonlinear viscoelastic and wrinkling behavior is capable of predicting the stress

response accurately.
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Figure 6.20. Comparison of transverse strain fields for uniaxial stretch at a rate of 0.1%/s and a
temperature of 0◦C at an overall longitudinal strain of 10%: (a) measured, and (b) predicted.

Figure 6.21. Comparison of stress-strain response for uniaxial stretch at a rate of 0.1%/s and a
temperature of 0◦C.
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6.7 Thickness Variation in Balloon Films

Stress concentrations in balloon films resulting from sudden thickness changes are studied experi-

mentally and numerically with the proposed nonlinear viscoelastic and wrinkling membrane model.

The problem considered is applying a uniaxial tension on a rectangular film in which a small re-

gion has a higher thickness than the rest of the film. This aims to replicate the thickness variation

at the junction of balloon envelope and tendon pockets. This section presents the construction of

test specimens, experimental conditions, and details of finite element analysis. Experimental and

numerical results are compared and important findings are discussed.

6.7.1 Experiments

The construction of test film specimen is shown in Figure 6.22. The thickness in the middle region of

the rectangular film is increased by bonding 4 additional layers of film using an impulse heat sealer.

The experimental configuration and procedure was identical to that described in Section 6.6. The

film was stretched uniaxially at a rate of 0.1%/s and at a temperature of 0◦C.

The deformed shape at a tensile strain of 2% is shown in Figure 6.23, where the wrinkling pattern

is clearly affected by the introduction of a thicker region. Wrinkles appear only in the thinner region.

The wrinkling direction is approximately aligned with the film diagonal at the corners of the thicker

film region and is parallel to the loading direction at the end of section of the thicker region. This

wrinkling pattern is consistent with the transverse strain field shown in Figure ??, where localized

compressive strains are observed around the intersection region of the thicker and thinner regions.

The longitudinal and shear strain distributions are shown in Figure 6.25 and Figure 6.26. Because

of the sudden change in thickness, the longitudinal strain is redistributed locally at the termination

of the thicker region. Along the film centerline, a jump in longitudinal strain is found in crossing

from the thicker to the thinner region. The longitudinal strain discontinuity leads to localized shear

deformation at the corners of the thicker region. All the strain components gradually spread out

from the local concentration region.

The strain distributions suggests that significant shear lag effects result from the abrupt change

thickness and hence sudden loss in tensile stress at the interface of the thicker and thinner regions

along the centerline. The excess stress needs to be carried by shear on the two sides of the thicker

region.

6.7.2 Finite Element Analysis

For finite element analysis, half of the film was modeled with 1578 triangular membrane elements

(M3D3) with a minimum element edge length of 0.25 mm. The finite element mesh is shown in

Figure 6.27. The mesh density is increased in the region of local concentration to capture the high
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Figure 6.22. Balloon film specimen with thickness variation.

Figure 6.23. Measured out-of-plane deformation of balloon film with thickness variation at a ten-
sile strain of 2%: (a) two-dimensional plot superimposed on the specimen image, and (b) three-
dimensional deformed shape.
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Figure 6.24. Measured transverse strain distribution at an average tensile strain of 2%.

0

2.2

3.3

4.5

5.7

6.8

8.0

[%]

Figure 6.25. Measured longitudinal strain distribution at an average tensile strain of 2%.
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Figure 6.26. Measured shear strain distribution at an average tensile strain of 2%.

strain gradients. The constitutive behavior of the elements and the mass scaling techniques described

in Section 6.6 were employed. The thickness of the red region was defined to be 5 times of that of

the grey region in Figure 6.27. In the analysis, the bottom edge of the model was held fixed while

a displacement of 15.2 mm was imposed on the top edge linearly over 100 s.

Figure 6.27. Finite element model.
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6.7.3 Results Comparison

The longitudinal strain distributions from experimental measurements and finite element analysis

are compared in Figure 6.28 and Figure 6.29. Good agreement is achieved for both the longitudinal

and transverse strain distributions. At the local concentration region, the model predicts a jump in

strains while the experimental measurements show a continuous change in strain. This is because

local averaging is performed during strain computation in digital image correlation and the strain

variation resulted is smoothed.

To quantify more precisely the strain concentration due to thickness change, a plot of longitudinal

strain profile along the centerline of the specimen is shown in Figure 6.30. The longitudinal strain

in the thicker region is always lower than the applied strain of 2% while the opposite is true for

the thinner region. At the location of sudden thickness reduction, the strain jumps from 0.5% to

8.0%. The strain approaches the applied value towards the two ends. A concentration factor of 4 is

found for the present case where the thickness difference is 5 times. A similar profile is observed for

transverse strain along the centerline as shown in Figure 6.31. The transverse strain tends to zero

on the two ends because of the clamp constraints. A maximum strain of −3.4% is reached.
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Figure 6.28. Longitudinal strain field with an applied strain of 2%: (a) measured, and (b) predicted.
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Figure 6.29. Transverse strain field with an applied strain of 2%: (a) measured, and (b) predicted.
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Figure 6.30. Longitudinal strain along centerline of balloon film.
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Figure 6.31. Transverse strain along centerline of balloon film.
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Chapter 7

Conclusions

This chapter discusses the achievements and limitations of the present work. It also suggests poten-

tial directions for future research.

7.1 Findings and Discussion

A detailed analysis of the shape recovery behavior of a homogeneous linear viscoelastic beam after

being held at a constant deflection under quasi-static conditions has been presented. Closed-form

solutions for both force relaxation and shape recovery were obtained assuming the solutions are

spatial-temporal separable. Relaxation behavior during stowage can lead to a significant reduction in

internal force, which determines the amount of instantaneous recovery upon removal of the deflection

constraint. The long term recovery response of a viscoelastic beam shows asymptotic behavior over

time and depends strongly on temperature and holding duration. The recovery time increases with

stowage temperature and duration, but the effects diminish with time. The time and temperature

effects can be concisely represented on a master curve relating stowage time and recovery time in

the reduced time scale for a given material. The simple expressions for load and deflection resulting

from the analysis show close agreement with finite element simulations that model the finite amount

of time required to impose each change in boundary conditions as well as experimental results.

The analytical relations presented are limited to one-dimensional structures in which spatial-

temporal separable solutions are permissible. The applicability of the results are thus limited to

problems involving quasi-static loading, homogeneous materials, and uniform spatial temperature

distribution throughout the structure. Nonetheless, they provide an intuitive understanding of the

shape recovery process and are useful for choosing materials for recovery performance. The simple

closed-form solutions provide a starting point for understanding shape recovery in more complicated

structures.

The nonlinear behavior of open cylindrical shells made of homogeneous polymer materials under

bending has been studied with respect to the effects of time and temperature. Open cylindrical shells
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can be folded to high curvatures by triggering a local instability and the resulting nonlinear load-

displacement relationship is characterized by a limit load and a propagation load. Both the limit

and the propagation load increase with folding rate but decrease with temperature. The behavior

in the stowed configuration is characterized by significant load relaxation. This indicates the loss

over time of the available deployment force over time for shells subject to long term stowage.

The behavior of these shells after stowage encompasses three distinct stages. The first is a weak

dynamic response accompanied by a low magnitude vibration. This short dynamic phase is followed

by a steady deployment that returns the shell to almost the straight deployed configuration but with

a slight overshoot. A complete shape recovery requires a final slow creep recovery of the fold cross

section. An interesting feature is that the fold remains stationary throughout deployment. These

features are distinct from elastic shells, which show much stronger dynamic response and a localized

fold that travels along the shell during deployment. The difference can be explained by the inherent

energy dissipation in viscoelastic structures. Because of load relaxation, the energy stored in folding

the shell is dissipated over time and the internal force is too low to cause significant dynamics. An

advantage of this effect is that the deployment process becomes more steady and the risk of damage

due to dynamic events is decreased. However, the internal force may drop to a point that is not

sufficient to bring the structure back to the original configuration.

The continuous folding, stowage, deployment, and shape recovery processes have been analyzed

with a finite element model that incorporates a linear isotropic viscoelastic material model with an

experimentally determined master curve. The material model constitutes of a six-term Prony series

and a Williams-Landel-Ferry type temperature shift function. The finite element model uses shell

elements with thickness defined by the measured thickness distribution of tested specimens to closely

capture the instability in load response. The finite element model captures the experimentally mea-

sured behavior, including the effects of rate and temperature in the nonlinear load-displacement

response during folding, load relaxation over an extended stowage duration, and short term deploy-

ment as well as long term shape recovery. Good qualitative and quantitative results in modeling the

viscoelastic and nonlinear behavior of shells under quasi-static and dynamic situations have been

demonstrated.

A micromechanical finite element modeling framework for determining the homogenized vis-

coelastic properties of woven composite laminas made from linear elastic fibers and viscoelastic

matrix has been developed. In the modeling framework, unit cell homogenization is carried out at

both the tow level and the lamina level to capture the microscopic details of the composite laminas.

The microscopic geometric and compositional information have been obtained from examination of

photomicrographs of woven composite laminas fabricated in-house using an autoclave. At the tow

level, the viscoelastic behavior of a unidirectional tow is determined from the constituent fiber and

matrix properties, which have been experimentally characterized. A uniform distribution of fibers
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has been assumed. Since the fiber volume fraction is higher at the tow level, the effect of the fiber

distribution is minor. The outcome of the unit cell analysis is a transversely isotropic viscoelastic

model of a tow. The results from the tow level homogenization serve as the input for the lamina

unit cell which is composed of wavy viscoelastic tows connected by regions of pure epoxy matrix. A

sinusoidal shape has been assumed for the tow geometry. The lamina has been homogenized to a

viscoelastic Kirchhoff plate with a viscoelastic ABD matrix. The homogenized properties have been

verified with a series of tension and bending creep tests at several temperatures.

In the proposed modeling framework, the composite has been assumed to be thermorheologically

simple and its temperature dependent behavior is the same as that of the matrix. This assumption

is generally not true for heterogeneous materials made of phases with distinct molecular structures.

Perfect interfacial bonding has been assumed in the unit cell finite element modeling. It has been

suggested that a thin interfacial region having mechanical properties different from the constituents

exists because the molecular structures are altered when two constituents adhere. As good agreement

has been obtained between model predictions and experimental results, it is concluded that in the

present case this microscopic interfacial bonding effect is secondary. The micromechanical model

presented is limited to linear viscoelastic behavior only. Since the difference in modulus between

carbon fibers and epoxy matrix is generally more than 10 times, locally nonlinear deformation

in the interfacial regions is possible when the composite is subject to larger overall deformation.

The model predictions based on the assumption of linearity would produce an over-estimation of

composite modulus.

The viscoelastic micromechanical model developed for woven composite shells has been applied

to study the stowage effects of a composite tape-spring. Based on the time-temperature superposi-

tion principle, stowing composite tape-springs at higher temperatures is equivalent to extending the

stowage time. This principle has been exploited to investigate the effects of different stowage times

by varying the stowage temperatures. Finite element analyses of deployment and shape recovery

behavior after stowage for different stowage and deployment temperatures have been carried out.

Also, deployment and shape recovery experiments have been conducted on composite tape-springs

in a controlled temperature environment and compared with model predictions. It has been found

that a tape-spring deploys quickly and overshoots the deployed configuration by a small amount,

and then moves slowly towards its final reference configuration. The short-term deployment is de-

pendent mainly on the stowage conditions and insignificantly affected by the deployment conditions.

The full shape recovery from the overshoot position to the fully deployed state takes place in an

asymptotic manner. Stowing a composite tape-spring has the effect of extending the time required

for deployment and shape recovery. The observed behavior has been well predicted by finite-element

simulations based on the micromechanical composite shell model. The effects of long-term stowage

on the deployment of composite tape-springs were studied with finite element analysis. For the spe-
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cific case in which the tape-spring deploys against gravity after it is stowed for 1 year, the analysis

has shown that deployment is never completed.

As mentioned before, the micromechanical model used for the simulation of tape-springs is linear

viscoelastic. For composite tape-springs made of several plies, the maximum strain reached is po-

tentially beyond the range of validity of linear viscoelastic models. Simulations of long-term stowage

effects are based upon the principle of time-temperature superposition. The predicted results there-

fore rely on how precisely the master curve has been constructed and on the time range of validity

of the time-temperature superposition principle. The behavior of tape-springs under thermal cycles

during stowage has not been investigated and the effects of long-term stowage have been assumed

to be due to viscoelasticity of the matrix only. Other effects such as physical and chemical ageing,

degradation due to moisture have not been considered.

A membrane model that captures the nonlinear viscoelastic and wrinkling behavior of polymer

balloon films has been established. The model is capable of predicting the large strain and wrinkling

behavior of StratoFilm 420, which is the film currently used for NASA superpressure balloons.

The model is formulated in terms of finite kinematics using the single integral approach. For the

nonlinear viscoelastic model, the free volume theory is generalized for orthotropic materials and

applied to StratoFilm 420. The nonlinear behavior is incorporated through a time shift function

that is dependent on the volumetric strain. A switching rule that distinguishes between loading

and unloading behavior is included into the model and found capable of predicting the correct

curvature of the unloading path, a feature that had not been previously captured by nonlinear

viscoelastic models. For membrane wrinkling, an orthotropic wrinkling model that corrects the

stress and strain states of wrinkled elements is established for nonlinear viscoelastic materials. The

orthotropic nonlinear viscoelastic and wrinkling models have been combined and implemented in

the finite element solver Abaqus as a user-defined subroutine. The computational scheme is based

on a recursive algorithm which results in efficient computation.

Two sets of validation tests have been conducted to verify the proposed membrane model. The

first set aims at validating the nonlinear viscoelastic behavior only. In this validation, model pre-

dictions of cyclic biaxial tension and shear stress states have been compared with experiments

conducted on inflated cylindrical specimens under controlled thermal conditions. The results show

good agreement between experiments and numerical simulations, except that the model consistently

overestimates the strain recovery during unloading; this discrepancy increases as the specimen grad-

ually approaches the zero stress configuration. Since the model had been “calibrated” against the

loading parts only of two tension tests, it is not surprising that the unloading predictions are less

accurate. The second set of tests aims to verify the combined viscoelastic and wrinkling model.

For this model validation, uniaxial stretch test on StratoFilm 420 has been conducted. The strain

fields on the wrinkled surface have been measured by a technique based on three-dimensional digi-
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tal image correlation. Comparisons between transverse strain fields and stress-strain response have

demonstrated good model accuracy.

The material parameters of StratoFilm 420 in the thickness direction need to be characterized

for implementing the nonlinear viscoelastic model. Because of the experimental difficulty associated

with the small thickness of the film, the required parameters have been obtained by fitting model

predictions to in-plane test data at a particular temperature. Even though the model provides

good predictions at temperatures near the temperature for model calibration, it is expected that its

accuracy will deteriorate at temperatures away from the calibration point.

Stress concentrations arising from sudden thickness variation in balloon films have been stud-

ied with finite element analysis using the proposed membrane model and experiments. Thickness

variation has been introduced into balloon films by bonding additional layers thus creating stress

concentration regions when the films are subject to tension. Because of the sudden change in stiff-

ness at the intersection of thick and thin regions, significant shear lag effects have been observed and

cause heavy wrinkling in the region. The longitudinal strain is locally redistributed at the location

of concentration. A strain concentration factor of 4 is found for the case of a thickness difference of 5

times. The membrane model has accurately captured the strain fields and quantitatively reproduced

the strain discontinuity.

The membrane model is limited to nonlinear viscoelastic behavior and therefore fails to capture

any viscoplastic effects which are expected at higher overall applied strain and larger thickness

difference. Rupture of the film at locations of stress concentrations is important for the design for

superpressure balloons, but has not been considered in this thesis.

The primary contribution of this thesis is the development and validation of general modeling

techniques for viscoelastic shells and membranes that are applicable for study of time and tem-

perature dependent behavior in thin-walled structures. This thesis has also characterized stowage

effects in deployable structures and stress concentrations in balloon structures using the established

modeling and experimental techniques. The work presented can serve to derive guidelines for design

improvement.

7.2 Future Work

A number of future research directions have been identified in the course of this research.

As mentioned in the previous section, the micromechanical model developed in this thesis has

been limited to linear viscoelastic behavior. To take into account possible nonlinear behavior at

higher strain, it would be useful to incorporate a nonlinear viscoelastic model to describe the matrix

behavior. The free volume model used for the balloon film in this thesis can potentially applied

to model the matrix. An advantage of this model is that environmental effects such as moisture
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degradation and physical ageing can be incorporated into the model through the time shift function.

At high temperatures or over long time scales, the matrix may become sufficiently soft that the

deformation of the stiff fibers is geometrically nonlinear. At such point it would be important to

include geometric nonlinear behavior of the fibers in the micromechanical modeling. The assumption

of periodicity used in unit cell homogenization imposes stringent restrictions on the deformation.

A more general framework for nonlinear homogenization is necessary to model such geometrically

nonlinear effects.

The mechanical properties of the matrix has been assessed only through constant temperature

creep tests. It would be beneficial to investigate experimentally the matrix behavior under thermal

cycles as well as cyclic loads.

Mechanical properties of balloon films have been characterized only at relatively high temper-

atures with respect to the flight temperature of superpressure balloons. More experimental data

at lower temperatures are needed. The ultimate stresses and strains are especially important to

characterize the failure behavior of balloon films.

To predict balloon film behavior up to the point of failure, it would be useful to incorporate a vis-

coplastic model in the established nonlinear viscoelastic model to provide a viscoelastic-viscoplastic

constitutive description of the balloon film. It is also important to develop a failure criterion that

can be assimilated into the current membrane model to predict failure of balloon films at regions of

stress concentrations.

Finally, it would be interesting to investigate numerically the behavior of a full-scale balloon

under flight conditions using the nonlinear viscoelastic model established in this thesis and carry

out detailed simulations for particular regions of the balloons where stress concentrations arise.
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Appendix A

Abaqus User-defined Subroutines

A.1 UMAT for Viscoelastic Tows

*USER SUBROUTINES

C***********************************************************************

C23456789012345678901234567890123456789012345678901234567890123456789012

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,

1 RPL,DDSDDT,DRPLDE,DRPLDT,

2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME,

3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,

4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC)

INCLUDE ’ABA_PARAM.INC’

CHARACTER*80 CMNAME

DIMENSION STRESS(NTENS),STATEV(NSTATV),

1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS),

2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1),

3 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3)

INTEGER NProny, counter

REAL*8 rhoi(7)

REAL*8 C11inf, C12inf, C22inf, C23inf, C44inf, C55inf

REAL*8 C11i(7), C12i(7), C22i(7), C23i(7), C44i(7), C55i(7)

REAL*8 qold(NTENS, 7), q(NTENS, 7)

REAL*8 f111, f122, f123, f121, f222, f233, f232, f223

REAL*8 f444, f555, f556
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REAL*8 depsilon(NTENS), epsilonE(NTENS), sigmaE(NTENS)

C----------PROPS DESIGNATION----------C

C

C PROPS 1 - 7 : rhoi %relaxation times

C PROPS 8 : C11inf

C PROPS 9 - 15 : C11i

C PROPS 16 : C12inf

C PROPS 17 - 23 : C12i

C PROPS 24 : C22inf

C PROPS 25 - 31 : C22i

C PROPS 32 : C23inf

C PROPS 33 - 39 : C23i

C PROPS 40 : C44inf

C PROPS 41 - 47 : C44i

C PROPS 48 : C55inf

C PROPS 49 - 55 : C55i

C----------STATEV DESIGNATION----------C

C

C STATEV 1 - 42 : qold %old hereditary integrals

C-----linear viscoelastic parameters---------C

C Number of Prony terms

NProny=7

C Obtain Prony coefficients

do i=1,NProny

rhoi(i)=PROPS(i)

C11i(i)=PROPS(8+i)

C12i(i)=PROPS(16+i)

C22i(i)=PROPS(24+i)

C23i(i)=PROPS(32+i)

C44i(i)=PROPS(40+i)

C55i(i)=PROPS(48+i)
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end do

C Obtain long term modulus

C11inf=PROPS(8)

C12inf=PROPS(16)

C22inf=PROPS(24)

C23inf=PROPS(32)

C44inf=PROPS(40)

C55inf=PROPS(48)

C----------solution-dependent variables----------C

C old heredity integrals

counter = 1

do j = 1,NTENS

do i = 1,NProny

qold(j,i) = STATEV(counter)

counter = counter+1

end do

end do

C----------update stress--------------C

C switch to Voight notation

depsilon(1)=DSTRAN(1)

depsilon(2)=DSTRAN(2)

depsilon(3)=DSTRAN(3)

depsilon(4)=DSTRAN(6)

depsilon(5)=DSTRAN(5)

depsilon(6)=DSTRAN(4)

epsilonE(1)=STRAN(1) + DSTRAN(1)

epsilonE(2)=STRAN(2) + DSTRAN(2)

epsilonE(3)=STRAN(3) + DSTRAN(3)

epsilonE(4)=STRAN(6) + DSTRAN(6)

epsilonE(5)=STRAN(5) + DSTRAN(5)

epsilonE(6)=STRAN(4) + DSTRAN(4)
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C compute q

do j = 1,NTENS

do i = 1, NProny

q(j,i)=EXP(-DTIME/rhoi(i))*qold(j,i)+

1 depsilon(j)*(1-EXP(-DTIME/rhoi(i)))/(DTIME/rhoi(i))

end do

end do

C compute f

f111=0

f122=0

f123=0

f121=0

f222=0

f233=0

f232=0

f223=0

f444=0

f555=0

f556=0

do i = 1, NProny

f111=f111+C11i(i)*q(1,i)

f122=f122+C12i(i)*q(2,i)

f123=f123+C12i(i)*q(3,i)

f121=f121+C12i(i)*q(1,i)

f222=f222+C22i(i)*q(2,i)

f233=f233+C23i(i)*q(3,i)

f232=f232+C23i(i)*q(2,i)

f223=f223+C22i(i)*q(3,i)

f444=f444+C44i(i)*q(4,i)

f555=f555+C55i(i)*q(5,i)

f556=f556+C55i(i)*q(6,i)

end do

sigmaE(1) = C11inf*epsilonE(1)+f111+C12inf*epsilonE(2)+f122+
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1 C12inf*epsilonE(3)+f123

sigmaE(2) = C12inf*epsilonE(1)+f121+C22inf*epsilonE(2)+f222+

1 C23inf*epsilonE(3)+f233

sigmaE(3) = C12inf*epsilonE(1)+f121+C23inf*epsilonE(2)+f232+

1 C22inf*epsilonE(3)+f223

sigmaE(4) = C44inf*epsilonE(4) + f444

sigmaE(5) = C55inf*epsilonE(5) + f555

sigmaE(6) = C55inf*epsilonE(6) + f556

STRESS(1) = sigmaE(1)

STRESS(2) = sigmaE(2)

STRESS(3) = sigmaE(3)

STRESS(4) = sigmaE(6)

STRESS(5) = sigmaE(5)

STRESS(6) = sigmaE(4)

C-----update solution-dependent variables-----C

C hereditary integrals

counter = 1

do j = 1,NTENS

do i = 1, NProny

STATEV(counter)=q(j,i)

counter=counter+1

end do

end do

C-----update Jacobian (tangent stiffess)-----C

do i = 1, NTENS

do j = 1, NTENS

DDSDDE(i,j)=0.0

end do

end do

do i = 1, NProny
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DDSDDE(1,1)=DDSDDE(1,1)+C11inf+

1 C11i(i)*(1-EXP(-DTIME/rhoi(i)))/(DTIME/rhoi(i))

DDSDDE(1,2)=DDSDDE(1,2)+C12inf+

1 C12i(i)*(1-EXP(-DTIME/rhoi(i)))/(DTIME/rhoi(i))

DDSDDE(2,2)=DDSDDE(2,2)+C22inf+

1 C22i(i)*(1-EXP(-DTIME/rhoi(i)))/(DTIME/rhoi(i))

DDSDDE(2,3)=DDSDDE(2,3)+C23inf+

1 C23i(i)*(1-EXP(-DTIME/rhoi(i)))/(DTIME/rhoi(i))

DDSDDE(5,5)=DDSDDE(5,5)+C55inf+

1 C55i(i)*(1-EXP(-DTIME/rhoi(i)))/(DTIME/rhoi(i))

DDSDDE(6,6)=DDSDDE(6,6)+C44inf+

1 C44i(i)*(1-EXP(-DTIME/rhoi(i)))/(DTIME/rhoi(i))

end do

DDSDDE(1,3)=DDSDDE(1,2)

DDSDDE(2,1)=DDSDDE(1,2)

DDSDDE(3,1)=DDSDDE(1,3)

DDSDDE(3,2)=DDSDDE(2,3)

DDSDDE(3,3)=DDSDDE(2,2)

DDSDDE(4,4)=DDSDDE(5,5)

C----------update energy----------C

C update elastic strain energy in SSE

SSE = 0.0

C update creep dissipation in SCD

SCD = 0.0

C update plastic dissipation in SPD

SPD = 0.0

RETURN

END

C***********************************************************************

C***********************************************************************
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C23456789012345678901234567890123456789012345678901234567890123456789012

SUBROUTINE SDVINI(STATEV,COORDS,NSTATV,NCRDS,NOEL,NPT,

1 LAYER,KSPT)

INCLUDE ’ABA_PARAM.INC’

DIMENSION STATEV(NSTATV),COORDS(NCRDS)

C Initialize state variables

do i = 1,NSTATV

STATEV(i) = 0.0

end do

RETURN

END

A.2 UGENS for Viscoelastic Laminas

*USER SUBROUTINES

C***********************************************************************

C23456789012345678901234567890123456789012345678901234567890123456789012

SUBROUTINE UGENS(DDNDDE,FORCE,STATEV,SSE,SPD,PNEWDT,STRAN,

1 DSTRAN,TSS,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CENAME,NDI,

2 NSHR,NSECV,NSTATV,PROPS,JPROPS,NPROPS,NJPROP,COORDS,CELENT,

3 THICK,DFGRD,CURV,BASIS,NOEL,NPT,KSTEP,KINC,NIT,LINPER)

INCLUDE ’ABA_PARAM.INC’

CHARACTER*80 CMNAME

DIMENSION DDNDDE(NSECV,NSECV),FORCE(NSECV),STATEV(NSTATV),

1 STRAN(NSECV),DSTRAN(NSECV),TSS(2),TIME(2),PREDEF(*),

2 DPRED(*),PROPS(*),JPROPS(*),COORDS(3),DFGRD(3,3),

3 CURV(2,2),BASIS(3,3)

INTEGER nProny, counter

REAL*8 rhoi(7)
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REAL*8 A11inf, A12inf, A33inf, D11inf, D12inf, D33inf

REAL*8 A11i(7), A12i(7), A33i(7), D11i(7), D12i(7), D33i(7)

REAL*8 qold(NSECV, 7), q(NSECV, 7)

REAL*8 a111, a122, a121, a112, a333

REAL*8 d114, d125, d124, d115, d336

REAL*8 strainE(NSECV)

REAL*8 c1, c2, Tr, aT

C----------PROPS DESIGNATION----------C

C

C PROPS 1 - 7 : rhoi %relaxation times

C PROPS 8 : A11inf

C PROPS 9 - 15 : A11i

C PROPS 16 : A12inf

C PROPS 17 - 23 : A12i

C PROPS 24 : A33inf

C PROPS 25 - 31 : A33i

C PROPS 32 : D11inf

C PROPS 33 - 39 : D11i

C PROPS 40 : D12inf

C PROPS 41 - 47 : D12i

C PROPS 48 : D33inf

C PROPS 49 - 55 : D33i

C----------STATEV DESIGNATION----------C

C

C STATEV 1 - 42 : qold %old hereditary integrals

C-----material parameters---------C

C Number of Prony terms

nProny=7

C Obtain Prony coefficients

do i=1,nProny

rhoi(i)=PROPS(i)
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A11i(i)=PROPS(8+i)

A12i(i)=PROPS(16+i)

A33i(i)=PROPS(24+i)

D11i(i)=PROPS(32+i)

D12i(i)=PROPS(40+i)

D33i(i)=PROPS(48+i)

end do

C Obtain long term modulus

A11inf=PROPS(8)

A12inf=PROPS(16)

A33inf=PROPS(24)

D11inf=PROPS(32)

D12inf=PROPS(40)

D33inf=PROPS(48)

C WLF parameters

Tr=313.0

c1=28.3816

c2=93.291

C----------solution-dependent variables----------C

C old heredity integrals

counter = 1

do j = 1,NSECV

do i = 1,nProny

qold(j,i) = STATEV(counter)

counter = counter+1

end do

end do

C----------update stress--------------C

C generalized section strains at the end of increment

strainE(1)=STRAN(1) + DSTRAN(1)
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strainE(2)=STRAN(2) + DSTRAN(2)

strainE(3)=STRAN(3) + DSTRAN(3)

strainE(4)=STRAN(4) + DSTRAN(4)

strainE(5)=STRAN(5) + DSTRAN(5)

strainE(6)=STRAN(6) + DSTRAN(6)

C shift factor

aT=10**(-c1*(TEMP-Tr)/(c2+TEMP-Tr))

C reduced time increment

dtr=DTIME/aT

C compute q

do j = 1,NSECV

do i = 1, nProny

q(j,i)=exp(-dtr/rhoi(i))*qold(j,i)+

& DSTRAN(j)*(1-exp(-dtr/rhoi(i)))/(dtr/rhoi(i))

end do

end do

C compute a and d

a111=0

a122=0

a121=0

a112=0

a333=0

d114=0

d125=0

d124=0

d115=0

d336=0

do i = 1, nProny

a111=a111+A11i(i)*q(1,i)

a122=a122+A12i(i)*q(2,i)

a121=a121+A12i(i)*q(1,i)

a112=a112+A11i(i)*q(2,i)
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a333=a333+A33i(i)*q(3,i)

d114=d114+D11i(i)*q(4,i)

d125=d125+D12i(i)*q(5,i)

d124=d124+D12i(i)*q(4,i)

d115=d115+D11i(i)*q(5,i)

d336=d336+D33i(i)*q(6,i)

end do

FORCE(1) = A11inf*strainE(1)+a111+A12inf*strainE(2)+a122

FORCE(2) = A12inf*strainE(1)+a121+A11inf*strainE(2)+a112

FORCE(3) = A33inf*strainE(3)+a333

FORCE(4) = D11inf*strainE(4)+d114+D12inf*strainE(5)+d125

FORCE(5) = D12inf*strainE(4)+d124+D11inf*strainE(5)+d115

FORCE(6) = D33inf*strainE(6)+d336

C-----update solution-dependent variables-----C

C hereditary integrals

counter = 1

do j = 1,NSECV

do i = 1, nProny

STATEV(counter)=q(j,i)

counter=counter+1

end do

end do

C-----update Jacobian (tangent stiffess)-----C

do i = 1, NSECV

do j = 1, NSECV

DDNDDE(i,j)=0.0

end do

end do

do i = 1, nProny

DDNDDE(1,1)=DDNDDE(1,1)+A11inf+



138

& A11i(i)*(1-exp(-dtr/rhoi(i)))/(dtr/rhoi(i))

DDNDDE(1,2)=DDNDDE(1,2)+A12inf+

& A12i(i)*(1-exp(-dtr/rhoi(i)))/(dtr/rhoi(i))

DDNDDE(3,3)=DDNDDE(3,3)+A33inf+

& A33i(i)*(1-exp(-dtr/rhoi(i)))/(dtr/rhoi(i))

DDNDDE(4,4)=DDNDDE(4,4)+D11inf+

& D11i(i)*(1-exp(-dtr/rhoi(i)))/(dtr/rhoi(i))

DDNDDE(4,5)=DDNDDE(4,5)+D12inf+

& D12i(i)*(1-exp(-dtr/rhoi(i)))/(dtr/rhoi(i))

DDNDDE(6,6)=DDNDDE(6,6)+D33inf+

& D33i(i)*(1-exp(-dtr/rhoi(i)))/(dtr/rhoi(i))

end do

DDNDDE(2,1)=DDNDDE(1,2)

DDNDDE(2,2)=DDNDDE(1,1)

DDNDDE(5,4)=DDNDDE(4,5)

DDNDDE(5,5)=DDNDDE(4,4)

C----------update energy----------C

C update elastic strain energy in SSE

SSE = 0.0

C update plastic dissipation in SPD

SPD = 0.0

RETURN

END

C***********************************************************************

C***********************************************************************

C23456789012345678901234567890123456789012345678901234567890123456789012

SUBROUTINE SDVINI(STATEV,COORDS,NSTATV,NCRDS,NOEL,NPT,

1 LAYER,KSPT)

INCLUDE ’ABA_PARAM.INC’
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DIMENSION STATEV(NSTATV),COORDS(NCRDS)

C Initialize state variables

do i = 1,NSTATV

STATEV(i) = 0.0

end do

RETURN

END

A.3 VUMAT for StratoFilm 420

*USER SUBROUTINES

C***********************************************************************

C23456789012345678901234567890123456789012345678901234567890123456789012

subroutine vumat(

1 nblock, ndir, nshr, nstatev, nfieldv, nprops, lanneal,

2 stepTime, totalTime, dt, cmname, coordMp, charLength,

3 props, density, strainInc, relSpinInc,

4 tempOld, stretchOld, defgradOld, fieldOld,

5 stressOld, stateOld, enerInternOld, enerInelasOld,

6 tempNew, stretchNew, defgradNew, fieldNew,

7 stressNew, stateNew, enerInternNew, enerInelasNew )

include ’vaba_param.inc’

dimension props(nprops), density(nblock), coordMp(nblock,*),

1 charLength(nblock), strainInc(nblock,ndir+nshr),

2 relSpinInc(nblock,nshr), tempOld(nblock),

3 stretchOld(nblock,ndir+nshr),

4 defgradOld(nblock,ndir+nshr+nshr),

5 fieldOld(nblock,nfieldv), stressOld(nblock,ndir+nshr),

6 stateOld(nblock,nstatev), enerInternOld(nblock),

7 enerInelasOld(nblock), tempNew(nblock),

8 stretchNew(nblock,ndir+nshr),
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8 defgradNew(nblock,ndir+nshr+nshr),

9 fieldNew(nblock,nfieldv),

1 stressNew(nblock,ndir+nshr), stateNew(nblock,nstatev),

2 enerInternNew(nblock), enerInelasNew(nblock)

character*80 cmname

integer nProny, counter, state

real*8 tauj(15)

real*8 S110, S120, S130, S220, S230, S660

real*8 S11j(15),S12j(15),S13j(15),S22j(15),S23j(15),S66j(15)

real*8 CTEMD, CTETD, CTEV

real*8 c1, c2, Tr

real*8 fr, B

real*8 PK2pold(3)

real*8 q11old(15),q12old(15),q13old(15)

real*8 q21old(15),q22old(15),q23old(15)

real*8 q66old(15)

real*8 thetaold, thetaolder, thetashift

real*8 aTtheta, dtr

real*8 S11, S12, S13, S22, S23, S66

real*8 f11, f12, f13, f21, f22, f23, f66

real*8 U(3,3), UT(3,3), U2(3,3), I(3,3), E(3,3), PK2(3,3), detS

real*8 Ep(3), PK2p(3), PK2ppr(3), Eppr(3)

real*8 Sp(3,3), fp(3)

integer nalpha, nloop, nbeta, ngamma

real*8 alpha(19), beta(19), gamma(19), angle_w

real*8 T(3,3), Tinv(3,3)

real*8 Ep_rot(3), Sp_rot(3,3), fp_rot(3), Ep_u(3)

real*8 Ep1_a(19), deltaEp2_a(19), deltaEp3_a(19)

real*8 Ep1_b(19), deltaEp2_b(19)
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real*8 angle_l, angle_r, f_l, f_r, angle_new, f_new

real*8 Ep_w(3), Sp_w(3,3), fp_w(3), PK2p_w(3)

real*8 Ep_c(3), PK2p_c(3)

real*8 Uppr(2), theta, detU, detUp

real*8 temp1(3,3), temp2(3,3), sigma(3,3)

real*8,PARAMETER:: pi=3.14159265358979323846d0

real*8,PARAMETER:: tol=1.0d-12

C----------PROPS DESIGNATION----------C

C

C PROPS 1 - 13 : CTEMD %Coefficient of Thermal Expansion MD

C PROPS 14 - 26 : CTETD %Coefficient of Thermal Expansion TD

C PROPS 27 - 32 : WLF %William-Landel-Ferry Constants

C PROPS 33 - 47 : tauj %Retardation Times

C PROPS 48 : D0 %Prony Coefficients MD

C PROPS 49 - 63 : Dj %Prony Coefficients MD

C PROPS 64 : S130 %Prony Coefficients MD & ThD

C PROPS 65 - 79 : S13j %Prony Coefficients MD & ThD

C PROPS 80 : S230 %Prony Coefficients TD & ThD

C PROPS 81 - 95 : S23j %Prony Coefficients TD & ThD

C

C----------STATEV DESIGNATION----------C

C

C statev 1 - 3 : PK2old %PK2 stresses at the beginning of increment

C statev 4 - 108 : qold %hereditary integrals at the beginning of increment

C statev 109 - 112 : E %Green strain at the beginning of increment

C statev 113 : thetaold %volumetric strain at the beginning of increment

C statev 114 : thetaolder %volumetric strain at the beginning of previous increment

C statev 115 : thetashift %volumetric strain used for shift factor

C statev 116 : aTthetaold %shift factor at the beginning of increment

C

C----------material parameters---------C
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C Number of Prony terms

nProny=15

C Obtain compliance Prony coefficients

do j=1,NProny

tauj(j)=PROPS(32+j)

S11j(j)=PROPS(48+j)

S12j(j)=-0.4*PROPS(48+j)

S13j(j)=PROPS(64+j)

S22j(j)=(1.122+(6.5895D-4)*T-(6.609D-6)*T**2)*PROPS(48+j)

S23j(j)=PROPS(80+j)

S66j(j)=2.45*PROPS(48+j)

end do

C Obtain instantaneous compliance

S110=PROPS(48)

S120=-0.4*PROPS(48)

S130=PROPS(64)

S220=(1.122+(6.5895E-4)*T-(6.609E-6)*T**2)*PROPS(48)

S230=PROPS(80)

S660=2.45*PROPS(48)

C----------zeroth increment---------C

if (stepTime==0) then

do km = 1,nblock

detS=S110*S220-S120*S120

stressNew(km,1)=stressOld(km,1)

& +(S220*strainInc(km,1)-S120*strainInc(km,2))/detS

stressNew(km,2)=stressOld(km,2)

& +(-S120*strainInc(km,1)+S110*strainInc(km,2))/detS

stressNew(km,3)=0.0d0

stressNew(km,4)=stressOld(km,4)+strainInc(km,4)/S660
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end do

end if

C----------actual increments---------C

if (stepTime/=0.0d0) then

do km = 1,nblock

C----------free volume parameters---------C

C Calculate CTE

CTEMD=props(1)*tempOld(km)**12+props(2)*tempOld(km)**11

& +props(3)*tempOld(km)**10+props(4)*tempOld(km)**9

& +props(5)*tempOld(km)**8+props(6)*tempOld(km)**7

& +props(7)*tempOld(km)**6+props(8)*tempOld(km)**5

& +props(9)*tempOld(km)**4+props(10)*tempOld(km)**3

& +props(11)*tempOld(km)**2+props(12)*tempOld(km)+props(13)

CTETD=props(14)*tempOld(km)**12+props(15)*tempOld(km)**11

& +props(16)*tempOld(km)**10+props(17)*tempOld(km)**9

& +props(18)*tempOld(km)**8+props(19)*tempOld(km)**7

& +props(20)*tempOld(km)**6+props(21)*tempOld(km)**5

& +props(22)*tempOld(km)**4+props(23)*tempOld(km)**3

& +props(24)*tempOld(km)**2+props(25)*tempOld(km)+props(26)

CTEV=CTEMD+CTETD+(CTEMD+CTETD)/2.0d0

C WLF constants

if (tempOld(km)>233.16d0) then

c1=props(27)

c2=props(28)

Tr=props(29)

else

c1=props(30)

c2=props(31)

Tr=props(32)
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end if

C free volume at reference temperature Tr

fr=c2*CTEV

C Doolittle equation parameter

B=2.303d0*fr*c1

C----------solution-dependent variables----------C

C PK2 stresses at the beginning of increment

do j=1,3

PK2pold(j) = stateOld(km,j)

end do

C heredity integrals at the beginning of increment

counter = 4 ! first position of qold in stateOld

do j = 1,nProny

q11old(j) = stateOld(km,counter)

q12old(j) = stateOld(km,counter+nProny)

q13old(j) = stateOld(km,counter+2*nProny)

q21old(j) = stateOld(km,counter+3*nProny)

q22old(j) = stateOld(km,counter+4*nProny)

q23old(j) = stateOld(km,counter+5*nProny)

q66old(j) = stateOld(km,counter+6*nProny)

counter = counter+1

end do

C volumetric strain at the beginning of increment

thetaold=stateOld(km,113)

C volumetric strain at the beginning of previous increment

thetaolder=stateOld(km,114)

C volumetric strain used for shift

thetashift=stateOld(km,115)
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C----------determine element state--------------C

C change volumetric strain for loading/unloading switch

if (thetaold>=thetaolder) thetashift=thetaold

C shift factor

aTtheta=10.0d0**((-B/(2.303d0*fr))

& *(CTEV*(tempOld(km)-Tr)+thetashift)

& /(fr+CTEV*(tempOld(km)-Tr)+thetashift))

C reduced time increment

dtr=dt/aTtheta

C compute S

S11 = S110

S12 = S120

S13 = S130

S22 = S220

S23 = S230

S66 = S660

do j = 1, nProny

S11=S11+S11j(j)-S11j(j)*(1.0d0-dexp(-dtr/tauj(j)))/

& (dtr/tauj(j))

S12=S12+S12j(j)-S12j(j)*(1.0d0-dexp(-dtr/tauj(j)))/

& (dtr/tauj(j))

S13=S13+S13j(j)-S13j(j)*(1.0d0-dexp(-dtr/tauj(j)))/

& (dtr/tauj(j))

S22=S22+S22j(j)-S22j(j)*(1.0d0-dexp(-dtr/tauj(j)))/

& (dtr/tauj(j))

S23=S23+S23j(j)-S23j(j)*(1.0d0-dexp(-dtr/tauj(j)))/

& (dtr/tauj(j))

S66=S66+S66j(j)-S66j(j)*(1.0d0-dexp(-dtr/tauj(j)))/

& (dtr/tauj(j))

end do



146

C compute f

f11=0.0d0

f12=0.0d0

f13=0.0d0

f21=0.0d0

f22=0.0d0

f23=0.0d0

f66=0.0d0

do j = 1, nProny

f11=f11+S11j(j)*(dexp(-dtr/tauj(j))*q11old(j)-

& (1.0d0-dexp(-dtr/tauj(j)))*PK2pold(1)/(dtr/tauj(j)))

f12=f12+S12j(j)*(dexp(-dtr/tauj(j))*q12old(j)-

& (1.0d0-dexp(-dtr/tauj(j)))*PK2pold(1)/(dtr/tauj(j)))

f13=f13+S13j(j)*(dexp(-dtr/tauj(j))*q13old(j)-

& (1.0d0-dexp(-dtr/tauj(j)))*PK2pold(1)/(dtr/tauj(j)))

f21=f21+S12j(j)*(dexp(-dtr/tauj(j))*q21old(j)-

& (1.0d0-dexp(-dtr/tauj(j)))*PK2pold(2)/(dtr/tauj(j)))

f22=f22+S22j(j)*(dexp(-dtr/tauj(j))*q22old(j)-

& (1.0d0-dexp(-dtr/tauj(j)))*PK2pold(2)/(dtr/tauj(j)))

f23=f23+S23j(j)*(dexp(-dtr/tauj(j))*q23old(j)-

& (1.0d0-dexp(-dtr/tauj(j)))*PK2pold(2)/(dtr/tauj(j)))

f66=f66+S66j(j)*(dexp(-dtr/tauj(j))*q66old(j)-

& (1.0d0-dexp(-dtr/tauj(j)))*PK2pold(3)/(dtr/tauj(j)))

end do

C Green strains at the end of increment

do m=1,3

do n=1,3

U(m,n)=0.0d0

I(m,n)=0.0d0

end do

end do

U(1,1)=stretchNew(km,1)

U(2,2)=stretchNew(km,2)

U(3,3)=stretchNew(km,3)

U(1,2)=stretchNew(km,4)
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U(2,1)=stretchNew(km,4)

I(1,1)=1.0d0

I(2,2)=1.0d0

I(3,3)=1.0d0

UT=transpose(U)

U2=matmul(UT,U)

E=(U2-I)/2.0d0

C PK2 stresses at the end of increment

detS=S11*S22-S12*S12

PK2(1,1)=(S22*(E(1,1)+f11+f21)

& -S12*(E(2,2)+f12+f22))/detS

PK2(2,2)=(-S12*(E(1,1)+f11+f21)

& +S11*(E(2,2)+f12+f22))/detS

PK2(3,3)=0.0d0

PK2(1,2)=(E(1,2)+f66)/S66

PK2(1,3)=0.0d0

PK2(2,1)=(E(1,2)+f66)/S66

PK2(2,3)=0.0d0

PK2(3,1)=0.0d0

PK2(3,2)=0.0d0

C principal Green strains at the end of increment

Ep(1)=E(1,1)

Ep(2)=E(2,2)

Ep(3)=E(1,2)

Eppr(1)=(Ep(1)+Ep(2))/2.0d0

& +dsqrt(((Ep(1)-Ep(2))/2.0d0)**2.0d0+Ep(3)**2.0d0)

Eppr(2)=(Ep(1)+Ep(2))/2.0d0

& -dsqrt(((Ep(1)-Ep(2))/2.0d0)**2.0d0+Ep(3)**2.0d0)

C principal PK2 stresses at the end of increment

PK2p(1)=PK2(1,1)

PK2p(2)=PK2(2,2)

PK2p(3)=PK2(1,2)

PK2ppr(1)=(PK2p(1)+PK2p(2))/2.0d0
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& +dsqrt(((PK2p(1)-PK2p(2))/2.0d0)**2.0d0+PK2p(3)**2.0d0)

PK2ppr(2)=(PK2p(1)+PK2p(2))/2.0d0

& -dsqrt(((PK2p(1)-PK2p(2))/2.0d0)**2.0d0+PK2p(3)**2.0d0)

C element state (1:slack, 2:wrinkled, 3: taut)

state=0

if (Eppr(1)<=0.0d0) then

state=1

else if (PK2ppr(2)<0.0d0) then

state=2

else

state=3

endif

C----------slack element--------------C

if (state==1) then

C write(1,’(a)’), ’slack’

C PK2 stresses

PK2(1,1)=0.0d0

PK2(2,2)=0.0d0

PK2(3,3)=0.0d0

PK2(1,2)=0.0d0

PK2(1,3)=0.0d0

PK2(2,1)=0.0d0

PK2(2,3)=0.0d0

PK2(3,1)=0.0d0

PK2(3,2)=0.0d0

C Green strains

E(1,1)=S11*PK2(1,1)-f11+S12*PK2(2,2)-f21

E(2,2)=S12*PK2(1,1)-f12+S22*PK2(2,2)-f22

E(3,3)=S13*PK2(1,1)-f13+S23*PK2(2,2)-f23

E(1,2)=S66*PK2(1,2)-f66
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E(1,3)=0.0d0

E(2,1)=S66*PK2(1,2)-f66

E(2,3)=0.0d0

E(3,1)=0.0d0

E(3,2)=0.0d0

C right stretch tensor

Ep(1)=E(1,1)

Ep(2)=E(2,2)

Ep(3)=E(1,2)

Eppr(1)=(Ep(1)+Ep(2))/2.0d0

& +dsqrt(((Ep(1)-Ep(2))/2.0d0)**2.0d0+Ep(3)**2.0d0)

Eppr(2)=(Ep(1)+Ep(2))/2.0d0

& -dsqrt(((Ep(1)-Ep(2))/2.0d0)**2.0d0+Ep(3)**2.0d0)

Uppr(1)=dsqrt(Eppr(1)*2.0d0+1.0d0)

Uppr(2)=dsqrt(Eppr(2)*2.0d0+1.0d0)

detUp=Uppr(1)*Uppr(2)

if (E(1,2)>=0.0d0) then

U(1,2)=dsqrt(2.0d0*E(1,2)**2.0d0/(E(1,1)+E(2,2)+1.0d0+detUp))

endif

if (E(1,2)<0.0d0) then

U(1,2)=-dsqrt(2.0d0*E(1,2)**2.0d0/(E(1,1)+E(2,2)+1.0d0+detUp))

endif

U(1,1)=dsqrt(2.0d0*E(1,1)+1.0d0-U(1,2)**2.0d0)

U(2,2)=dsqrt(2.0d0*E(2,2)+1.0d0-U(1,2)**2.0d0)

U(3,3)=dsqrt(E(3,3)*2.0d0+1.0d0)

U(1,3)=0.0d0

U(2,1)=U(1,2)

U(2,3)=0.0d0

U(3,1)=0.0d0

U(3,2)=0.0d0

UT=transpose(U)

detU=detUp*U(3,3)

C material volumetric strain
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theta=detU-1

endif

C----------wrinkled element--------------C

if (state==2) then

C write(1,’(a)’), ’wrinkled’

C S in material directions

Sp(1,1)=S11

Sp(1,2)=S12

Sp(1,3)=0.0d0

Sp(2,1)=S12

Sp(2,2)=S22

Sp(2,3)=0.0d0

Sp(3,1)=0.0d0

Sp(3,2)=0.0d0

Sp(3,3)=S66

C f in material directions

fp(1)=f11+f21

fp(2)=f12+f22

fp(3)=f66

C compute strains at initial sampled angles

nalpha=11

do j=1,nalpha

C initial sampled angles

alpha(j)=pi*(j-1)/(nalpha-1)

C transformation matrix

T(1,1)=dcos(alpha(j))**2.0d0

T(2,1)=dsin(alpha(j))**2.0d0



151

T(3,1)=-dcos(alpha(j))*dsin(alpha(j))

T(1,2)=dsin(alpha(j))**2.0d0

T(2,2)=dcos(alpha(j))**2.0d0

T(3,2)=dcos(alpha(j))*dsin(alpha(j))

T(1,3)=2.0d0*dcos(alpha(j))*dsin(alpha(j))

T(2,3)=-2.0d0*dcos(alpha(j))*dsin(alpha(j))

T(3,3)=dcos(alpha(j))**2.0d0-dsin(alpha(j))**2.0d0

C inverse transformation matrix

Tinv(1,1)=dcos(alpha(j))**2.0d0

Tinv(2,1)=dsin(alpha(j))**2.0d0

Tinv(3,1)=dcos(alpha(j))*dsin(alpha(j))

Tinv(1,2)=dsin(alpha(j))**2.0d0

Tinv(2,2)=dcos(alpha(j))**2.0d0

Tinv(3,2)=-dcos(alpha(j))*dsin(alpha(j))

Tinv(1,3)=-2.0d0*dcos(alpha(j))*dsin(alpha(j))

Tinv(2,3)=2.0d0*dcos(alpha(j))*dsin(alpha(j))

Tinv(3,3)=dcos(alpha(j))**2.0d0-dsin(alpha(j))**2.0d0

C transform Green strains

Ep_rot=matmul(T,Ep)

C transform S

temp1=matmul(T,Sp)

Sp_rot=matmul(temp1,Tinv)

C transform f

fp_rot=matmul(T,fp)

C Green strains at uniaxial state

Ep_u(2)=Sp_rot(2,1)*(Ep_rot(1)+fp_rot(1))/Sp_rot(1,1)

& -fp_rot(2)

Ep_u(3)=Sp_rot(3,1)*(Ep_rot(1)+fp_rot(1))/Sp_rot(1,1)

& -fp_rot(3)

C Green strains for wrinkling angle criteria
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Ep1_a(j)=Ep_rot(1)

deltaEp2_a(j)=Ep_u(2)-Ep_rot(2)

deltaEp3_a(j)=Ep_u(3)-Ep_rot(3)

end do

C check shear strain wrinkling angle criterion

nbeta=0

do j=1,nalpha-1

if (abs(deltaEp3_a(j))<=tol) then

nbeta=nbeta+1

beta(nbeta)=alpha(j)

Ep1_b(nbeta)=Ep1_a(j)

deltaEp2_b(nbeta)=deltaEp2_a(j)

else if (deltaEp3_a(j)*deltaEp3_a(j+1)<0.0d0) then

angle_l=alpha(j)

angle_r=alpha(j+1)

f_l=deltaEp3_a(j)

f_r=deltaEp3_a(j+1)

f_new=1

nloop=0

do while (abs(f_new)>tol)

if (nloop>=100) then

C write(1,’(a, e20.10)’), ’f_new’, f_new

exit

end if

angle_new=(f_r*angle_l-f_l*angle_r)/(f_r-f_l)

C transformation matrix

T(1,1)=dcos(angle_new)**2.0d0

T(2,1)=dsin(angle_new)**2.0d0

T(3,1)=-dcos(angle_new)*dsin(angle_new)

T(1,2)=dsin(angle_new)**2.0d0

T(2,2)=dcos(angle_new)**2.0d0
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T(3,2)=dcos(angle_new)*dsin(angle_new)

T(1,3)=2.0d0*dcos(angle_new)*dsin(angle_new)

T(2,3)=-2.0d0*dcos(angle_new)*dsin(angle_new)

T(3,3)=dcos(angle_new)**2.0d0-dsin(angle_new)**2.0d0

C inverse transformation matrix

Tinv(1,1)=dcos(angle_new)**2.0d0

Tinv(2,1)=dsin(angle_new)**2.0d0

Tinv(3,1)=dcos(angle_new)*sin(angle_new)

Tinv(1,2)=dsin(angle_new)**2.0d0

Tinv(2,2)=dcos(angle_new)**2.0d0

Tinv(3,2)=-dcos(angle_new)*dsin(angle_new)

Tinv(1,3)=-2.0d0*dcos(angle_new)*dsin(angle_new)

Tinv(2,3)=2.0d0*dcos(angle_new)*dsin(angle_new)

Tinv(3,3)=dcos(angle_new)**2.0d0-dsin(angle_new)**2.0d0

C transform Green strains

Ep_rot=matmul(T,Ep)

C transform S

temp1=matmul(T,Sp)

Sp_rot=matmul(temp1,Tinv)

C transform f

fp_rot=matmul(T,fp)

C Green strains at uniaxial state

Ep_u(2)=(Sp_rot(2,1)/Sp_rot(1,1))*(Ep_rot(1)+fp_rot(1))

& -fp_rot(2)

Ep_u(3)=(Sp_rot(3,1)/Sp_rot(1,1))*(Ep_rot(1)+fp_rot(1))

& -fp_rot(3)

f_new=Ep_u(3)-Ep_rot(3)

if (f_new*fl<0.0d0) then

angle_r=angle_new



154

f_r=f_new

else if (f_new*fl>0.0d0) then

angle_l=angle_new

f_l=f_new

end if

nloop=nloop+1

end do

nbeta=nbeta+1

beta(nbeta)=angle_new

Ep1_b(nbeta)=Ep_rot(1)

deltaEp2_b(nbeta)=Ep_u(2)-Ep_rot(2)

end if

end do

C check uniaxial and transverse strain wrinkling criteria

ngamma=0

do j=1,nbeta

C write(1,’(a, i2, e20.10)’), ’beta’, j, beta(j)

if (Ep1_b(j)>0.0d0 .and. deltaEp2_b(j)>0.0d0) then

ngamma=ngamma+1

gamma(ngamma)=beta(j)

C write(1,’(a, i2, e20.10)’), ’gamma’, ngamma, gamma(ngamma)

end if

end do

C final wrinkling angle

angle_w=gamma(1)

C write(1,’(a, e20.10)’), ’angle_w’, angle_w

C transformation matrix

T(1,1)=dcos(angle_w)**2.0d0

T(2,1)=dsin(angle_w)**2.0d0

T(3,1)=-dcos(angle_w)*dsin(angle_w)

T(1,2)=dsin(angle_w)**2.0d0

T(2,2)=dcos(angle_w)**2.0d0

T(3,2)=dcos(angle_w)*dsin(angle_w)
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T(1,3)=2.0d0*dcos(angle_w)*dsin(angle_w)

T(2,3)=-2.0d0*dcos(angle_w)*dsin(angle_w)

T(3,3)=dcos(angle_w)**2.0d0-dsin(angle_w)**2.0d0

C inverse transformation matrix

Tinv(1,1)=dcos(angle_w)**2.0d0

Tinv(2,1)=dsin(angle_w)**2.0d0

Tinv(3,1)=dcos(angle_w)*dsin(angle_w)

Tinv(1,2)=dsin(angle_w)**2.0d0

Tinv(2,2)=dcos(angle_w)**2.0d0

Tinv(3,2)=-dcos(angle_w)*dsin(angle_w)

Tinv(1,3)=-2.0d0*dcos(angle_w)*dsin(angle_w)

Tinv(2,3)=2.0d0*dcos(angle_w)*dsin(angle_w)

Tinv(3,3)=dcos(angle_w)**2.0d0-dsin(angle_w)**2.0d0

C Green strains in wrinkling directions

Ep_w=matmul(T,Ep)

C write(1,’(e20.10, e20.10, e20.10)’),Ep_w(1),Ep_w(2),Ep_w(3)

C S at wrinkling directions

temp1=matmul(T,Sp)

Sp_w=matmul(temp1,Tinv)

C f at wrinkling directions

fp_w=matmul(T,fp)

C PK2 stresses at wrinkling directions

PK2p_w(1)=(Ep_w(1)+fp_w(1))/Sp_w(1,1)

PK2p_w(2)=0.0d0

PK2p_w(3)=0.0d0

C corrected PK2 stresses in material directions

PK2p_c=matmul(Tinv, PK2p_w)

PK2(1,1)=PK2p_c(1)

PK2(2,2)=PK2p_c(2)
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PK2(3,3)=0.0d0

PK2(1,2)=PK2p_c(3)

PK2(1,3)=0.0d0

PK2(2,1)=PK2p_c(3)

PK2(2,3)=0.0d0

PK2(3,1)=0.0d0

PK2(3,2)=0.0d0

C write(1,’(e20.10, e20.10)’),PK2p_w(1)

C write(1,’(e20.10, e20.10, e20.10)’),PK2(1,1),PK2(2,2),PK2(1,2)

C Green strains in wrinkling directions at uniaxial state

Ep_w(2)=Sp_w(2,1)*PK2p_w(1)-fp_w(2)

Ep_w(3)=Sp_w(3,1)*PK2p_w(1)-fp_w(3)

C corrected Green strains in material directions

Ep_c=matmul(Tinv, Ep_w)

E(1,1)=Ep_c(1)

E(2,2)=Ep_c(2)

E(3,3)=S13*PK2(1,1)-f13+S23*PK2(2,2)-f23

E(1,2)=Ep_c(3)

E(1,3)=0.0d0

E(2,1)=Ep_c(3)

E(2,3)=0.0d0

E(3,1)=0.0d0

E(3,2)=0.0d0

C right stretch tensor

Ep(1)=E(1,1)

Ep(2)=E(2,2)

Ep(3)=E(1,2)

Eppr(1)=(Ep(1)+Ep(2))/2.0d0

& +dsqrt(((Ep(1)-Ep(2))/2.0d0)**2.0d0+Ep(3)**2.0d0)

Eppr(2)=(Ep(1)+Ep(2))/2.0d0

& -dsqrt(((Ep(1)-Ep(2))/2.0d0)**2.0d0+Ep(3)**2.0d0)

Uppr(1)=dsqrt(Eppr(1)*2.0d0+1.0d0)
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Uppr(2)=dsqrt(Eppr(2)*2.0d0+1.0d0)

detUp=Uppr(1)*Uppr(2)

if (E(1,2)>=0.0d0) then

U(1,2)=dsqrt(2.0d0*E(1,2)**2.0d0/(E(1,1)+E(2,2)+1.0d0+detUp))

endif

if (E(1,2)<0.0d0) then

U(1,2)=-dsqrt(2.0d0*E(1,2)**2.0d0/(E(1,1)+E(2,2)+1.0d0+detUp))

endif

U(1,1)=dsqrt(2.0d0*E(1,1)+1.0d0-U(1,2)**2.0d0)

U(2,2)=dsqrt(2.0d0*E(2,2)+1.0d0-U(1,2)**2.0d0)

U(3,3)=dsqrt(E(3,3)*2.0d0+1.0d0)

U(1,3)=0.0d0

U(2,1)=U(1,2)

U(2,3)=0.0d0

U(3,1)=0.0d0

U(3,2)=0.0d0

UT=transpose(U)

detU=detUp*U(3,3)

C material volumetric strain

theta=detU-1

endif

C----------taut element--------------C

if (state==3) then

C write(1,’(a)’), ’taut’

C PK2 stresses

detS=S11*S22-S12*S12

PK2(1,1)=(S22*(E(1,1)+f11+f21)

& -S12*(E(2,2)+f12+f22))/detS

PK2(2,2)=(-S12*(E(1,1)+f11+f21)
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& +S11*(E(2,2)+f12+f22))/detS

PK2(3,3)=0.0d0

PK2(1,2)=(E(1,2)+f66)/S66

PK2(1,3)=0.0d0

PK2(2,1)=(E(1,2)+f66)/S66

PK2(2,3)=0.0d0

PK2(3,1)=0.0d0

PK2(3,2)=0.0d0

C Green strains

E(3,3)=S13*PK2(1,1)-f13+S23*PK2(2,2)-f23

C right stretch tensor

U(3,3)=dsqrt(E(3,3)*2.0d0+1.0d0)

UT=transpose(U)

detU=(U(1,1)*U(2,2)-U(1,2)*U(2,1))*U(3,3)

C material volumetric strain at the end of increment

theta=detU-1

endif

C----------update stress--------------C

C convert PK2 to Cauchy

temp1=matmul(U,PK2)

temp2=matmul(temp1,UT)

sigma=temp2/detU

stressNew(km,1) = sigma(1,1)

stressNew(km,2) = sigma(2,2)

stressNew(km,3) = sigma(3,3)

stressNew(km,4) = sigma(1,2)

C-----update solution-dependent variables-----C
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C update PK2 stresses at the end of increment

stateNew(km,1) = PK2(1,1)

stateNew(km,2) = PK2(2,2)

stateNew(km,3) = PK2(1,2)

C update hereditary integrals at the end of increment

counter = 4

do j = 1, nProny

stateNew(km,counter)=dexp(-dtr/tauj(j))*q11old(j)

& +(PK2(1,1)-PK2pold(1))*(1.0d0-dexp(-dtr/tauj(j)))/(dtr/tauj(j))

stateNew(km,counter+nProny)=dexp(-dtr/tauj(j))*q12old(j)

& +(PK2(1,1)-PK2pold(1))*(1.0d0-dexp(-dtr/tauj(j)))/(dtr/tauj(j))

stateNew(km,counter+2*nProny)=dexp(-dtr/tauj(j))*q13old(j)

& +(PK2(1,1)-PK2pold(1))*(1.0d0-dexp(-dtr/tauj(j)))/(dtr/tauj(j))

stateNew(km,counter+3*nProny)=dexp(-dtr/tauj(j))*q21old(j)

& +(PK2(2,2)-PK2pold(2))*(1.0d0-dexp(-dtr/tauj(j)))/(dtr/tauj(j))

stateNew(km,counter+4*nProny)=dexp(-dtr/tauj(j))*q22old(j)

& +(PK2(2,2)-PK2pold(2))*(1.0d0-dexp(-dtr/tauj(j)))/(dtr/tauj(j))

stateNew(km,counter+5*nProny)=dexp(-dtr/tauj(j))*q23old(j)

& +(PK2(2,2)-PK2pold(2))*(1.0d0-dexp(-dtr/tauj(j)))/(dtr/tauj(j))

stateNew(km,counter+6*nProny)=dexp(-dtr/tauj(j))*q66old(j)

& +(PK2(1,2)-PK2pold(3))*(1.0d0-dexp(-dtr/tauj(j)))/(dtr/tauj(j))

counter=counter+1

end do

C update Green strain at the end of increment

stateNew(km,109)= E(1,1)

stateNew(km,110)= E(2,2)

stateNew(km,111)= E(3,3)

stateNew(km,112)= E(1,2)

C update volumetric strain at the end of increment

stateNew(km,113)=theta

C update volumetric strain at the end of previous increment

stateNew(km,114)= thetaold
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C update volumetric strain used for shift factor

stateNew(km,115)= thetashift

C update shift factor at the beginning of increment

stateNew(km,116)= aTtheta

C----------update energy----------C

C update internal energy

enerInternNew(km)=0.0d0

C update dissipated inelastic energy

enerInelasNew(km)=0.0d0

end do

end if

return

end

C***********************************************************************


