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Abstract

There has been a barrage of interest in recent years to marry the fields of nanomechanics and quantum

optics. Mechanical systems provide sensitive and scalable architectures for sensing applications

ranging from atomic force microscopy to gravity wave interferometry. Optical resonators driven by

low noise lasers provide a quiet and well-understood means to read-out and manipulate mechanical

motion, by way of the radiation pressure force. Taken to an extreme, a device consisting of a

high-Q nanomechanical oscillator coupled to a high-finesse optical cavity may enable ground-state

preparation of the mechanical element, thus paving the way for a new class of quantum technology

based on chip-scale phononic devices coupled to optical photons. By way of mutual coupling to

the optical field, this architecture may enable coupling of single phonons to real or artificial atoms,

an enticing prospect because of the vast “quantum optics toolbox” already developed for cavity

quantum electrodynamics.

The first step towards these goals — ground-state cooling of the mechanical element in a “cavity

optomechanical” system — has very recently been realized in a cryogenic setup. The work presented

in this thesis describes an effort to extend this capability to a room temperature apparatus, so that

the usual panoply of table-top optical/atomic physics tools can be brought to bear. This requires a

mechanical oscillator with exceptionally low dissipation, as well as careful attention to extraneous

sources of noise in both the optical and mechanical componentry. Our particular system is based

on a high-Q, high-stress silicon nitride membrane coupled to a high-finesse Fabry-Perot cavity. The

purpose of this thesis is to record in detail the procedure for characterizing/modeling the physical

properties of the membrane resonator, the optical cavity, and their mutual interaction, as well as

extraneous sources of noise related to multimode thermal motion of the oscillator, thermal motion

of the cavity apparatus, optical absorption, and laser phase fluctuations. Our principle experimental

result is the radiation pressure-based cooling of a high order, ' 4.8 MHz drum mode of the membrane

from room temperature to ' 100 mK (' 500 phonons). Secondary results include an investigation

of the Q-factor of membrane oscillators with various geometries, some of which exhibit state-of-the-

art Q×frequency products of 3 × 1013 Hz, and a novel technique to suppress extraneous radiation

pressure noise using electro-optic feedback.
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Chapter 1

Introduction

1.1 Background

The field of cavity optomechanics [1] has experienced remarkable progress in recent years [2, 3],

owing much to the integration of micro- and nanomechanical resonator technology [4, 5, 6, 7]. Using

a combination of cryogenic pre-cooling [8, 9, 10] and improved fabrication techniques [11, 12, 13], it

is now possible to realize systems wherein the mechanical frequency of the resonator is larger than

both the energy decay rate of the cavity and the rethermalization rate of the resonator [4, 14, 15, 6].

These represent two basic requirements for ground-state cooling using cavity light forces [2, 16, 17],

an advance that would help to establish a new class of quantum technology based on chip-scale

phononic devices [18].

Very recently the field has reached a milestone. The use of radiation pressure in an optomechani-

cal system combined with cryogenic pre-cooling has made possible the ground-state preparation of a

solid-state microwave-frequency mechanical resonator [6]. This result closely followed the successful

ground-state cooling of a micro-resonator in a microwave cavity system [15] and a system based solely

on conventional cryogenics [10]. A variety of systems have also demonstrated phonon occupations

of n̄ < 10 [19, 4]. Essential to these efforts has been the development of ultra-high-Q mechanical

resonators that are compatible with low-loss optical (or microwave) cavities where radiation pressure

dominates over photothermal effects.

Looking forward, an enabling advance would be to push capabilities of optomechanics to an ex-

treme where quantum limits could be achieved in the presence of a room-temperature thermal bath.

Cryogen-free operation at optical wavelengths would greatly facilitate the integration of mesoscopic

quantum mechanical oscillators into hybrid quantum systems. For example, using cold atoms, me-

chanical oscillators could be coupled to atomic motional states or spin thus linking to a rich quantum

optics toolbox [20, 21]. Via projective measurements utilizing atomic ensembles, quantum effects

could also be recognized without achieving full ground-state cooling [22].

It is with these goals in mind that the Quantum Optics group at Caltech, under the guidance
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of post-docs Cindy Regal and Scott Papp, began a first series of optomechanics experiments in

the summer of 2008. We adopted a promising optomechanical platform introduced at Yale, in

which a flexible SiN membrane with exceptional mechanical properties is coupled to a standard

high-finesse Fabry-Perot cavity [13, 7, 23]. We first demonstrated [14] that SiN membranes could

be optimized to realize one of the key minimum requirements for ground-state cooling from room

temperature, namely a mechanical quality factor Qm larger than the number of room-temperature

thermal phonons, i.e., Qm > n̄room ≡ kBTroom/(~Ωm) [24]. We then developed an optomechanical

system [14] in which cavity cooling could be applied to multiple higher-order modes of these films,

with negligible optical absorption and scattering at a wavelength of interest for cold-atom systems

[20, 21, 22]. Using this system, we have been able to cool a radio-frequency (Ωm/2π = 4.8 MHz)

vibrational mode of the membrane from room temperature to an occupation number of n̄ ≈ 500.

In this dissertation, I will elaborate on the development of our first-generation “membrane-in-

the-middle” experiment in the Kimble group. A pictorial outline is provided in Figure 1.1. A short

summary of each chapter is given below.

1.2 Outline

In Chapter 2 we provide a basic theoretical description of mechanical oscillators, optical cavities, and

their interaction via the radiation pressure force. The treatment is fully classical, which is suitable

for the description of all of the experimental results presented in later chapters. Our main objective

is to derive coupled equations of motion for the amplitude of the resonator and the intracavity field

using a language amenable to the standard input-output formalism for optical cavities. Towards

this end, we use as a model the “canonical” 1D optomechanical system in which one end-mirror in

a planar Fabry-Perot resonator has been replaced by a compliant micro-mirror.

In Chapter 3 we introduce the MIM system, using a transfer matrix formalism to describe its

steady-state, linear optical properties. We take a ground-up approach, first obtaining a model for

a thin dielectric film, then a dielectric mirror, then a Fabry-Perot cavity constructed from two

dielectric mirrors. We then study the effect of inserting a thin dielectric film between the cavity

mirrors. The transfer matrix formalism is used to analytically and numerically model the dispersive

coupling between the position of the film and the cavity resonance. We also model the finesse and

transmission/reflection coefficients of the compound cavity as a function of the position of the film

and the reflection and loss coefficients of the film and the mirrors.

In Chapter 4 we discuss the mechanical properties of high-stress silicon nitride films — in par-

ticular, the square “membrane” resonators we have purchased commercially from Norcada, Inc. We

outline the construction and material properties of these membranes, the shape and spectrum of their

vibrational modes, and their dynamic mechanical properties. We then describe a simple experimen-
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Figure 1.1: Illustrated thesis outline. In Chapters 2–3 we discuss the basic dynamic properties of
optomechanical systems and the peculiar steady-state properties of the “membrane-in-the-middle”
(MIM) system. In Chapter 4 we elaborate on the membrane resonator and characterization of its
mechanical properties. In Chapters 5–6 we describe the design and characterization of a high-finesse
cavity interfaced with a membrane resonator. In Chapters 7–8 we discuss aspects of modeling
and measuring thermal vibrations of a multimode MIM system. In Chapter 9 we demonstrate
optomechanical cooling of a high-order membrane mode. In Chapter 10 we investigate a fundamental
roadblock to ground-state cooling associated with Brownian motion of the mirror substrates.
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tal apparatus used to characterize their mechanical properties. Using this apparatus, we conduct a

phenomenological study of the role of membrane geometry and mounting conditions on mechanical

quality. We demonstrate that quality × frequency factors in excess of 1013 Hz are attainable for the

higher harmonics of a 500-µm-wide by 30-nm-thick membrane oscillating at a frequency of several

MHz. Significantly, this represents a key minimum requirement for ground-state optomechanical

cooling from room temperature [24].

In Chapter 5 we present a top-down description of the MIM apparatus currently in operation

in our lab, discussing design criteria and construction of the cavity, the system for nano-positioning

the membrane between the cavity mirrors, the vacuum chamber, the vibration isolation system, and

the optical circuit used to lock and probe the cavity.

In Chapter 6 we discuss measurements of the linear optical properties of our MIM cavity, walking

step-by-step through the predictions of Chapter 3. We first individually characterize the optical

properties of the membrane and the mirrors. We then characterize the transfer function of the

cavity (output/input power vs. laser detuning) with and without the membrane, using the membrane

position and the laser frequency as variable parameters. We infer, for example, the optomechanical

coupling of the membrane. Comparing the transfer function to the numerical matrix model also

gives information about the absorption and reflection of the mirrors and membrane.

In Chapter 7 we discuss two important departures from the 1D model presented in Chapters 2–3.

First we include the transverse spatial profile of both the cavity mode and mechanical vibration in

our computation of the optomechanical coupling. Then we consider the full multi-mode spectrum

of vibration modes in our model for the Brownian displacement noise spectrum of the membrane

resonator. As an important corollary, we model the Brownian displacement noise spectrum of the

cavity mirror substrates, using finite element analysis to compute their vibrational eigenmodes and

eigenfrequencies.

In Chapter 8 we discuss two methods used to characterize Brownian motion of the membrane.

These include directly monitoring the transmitted power of the detuned cooling beam and monitor-

ing the phase of a resonant probe via the Pound-Drever-Hall technique. We describe the sensitivity

of these measurements and how they may be calibrated. We then step through an example mea-

surement of the membrane’s effective temperature. Finally, we use these techniques to characterize

laser phase noise and Brownian motion of the mirror substrates — a result revisited in Chapter 10.

In Chapter 9 we investigate optical spring and damping forces in our MIM system. Using ∼ 1 W

of circulating power and a cavity finesse of ≈ 104, we are able to optically damp the (6, 6) drum mode

of a square 500µm-wide by 50-nm-thick membrane (oscillating at 4.8 MHz) from room temperature

to ≈ 500 phonons, representing a temperature compression of ≈ 104. We compare our results to a

simple multimode cooling model.

In Chapter 10 we investigate a fundamental roadblock to ground-state cooling associated with
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Brownian motion of the mirror substrates. This motion produces extra intensity noise on the cavity

field, which can result in radiation pressure heating of the low-mass membrane. We analyze this

“substrate noise” in the context of the MIM system and discuss the role of spatial mode overlap

between the mechanical and optical modes in determining its relative magnitude. We show that

by simultaneously driving two separate spatial modes of the cavity, it is possible to exploit this

overlap to measure the substrate noise background independent of the membrane. We then develop

a method to suppress substrate noise by applying open loop feedback to the frequency of the input

field.
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Chapter 2

Basic Theory

The purpose of this chapter is to establish a formal language that will be used in the rest of this thesis

to describe mechanical resonators, electric fields in optical cavities, and their interaction in a typical

cavity-optomechanical system. As a model for the latter, we consider the “canonical” arrangement

shown in Figure 2.1, in which one of the end-mirrors in a rigid Fabry-Perot cavity is replaced by a

compliant micro-mirror. The fields inside and outside the cavity will be modeled as plane waves and

the mechanical resonator as a rigid plate on the end of a pendulum spring. With this simple model,

we will classically derive the coupled equations of motion for the cavity field and the end-mirror.

We will then use the coupled equations of motion to derive expressions for the optical spring and

damping forces experienced by the micro-mirror, in a “weak” limit that is appropriate for modeling

Figure 2.1: Schematic of the “canonical” 1D optomechanical system: a planar Fabry-Perot resonator
with a compliant end-mirror. {Ein, Eref , E+

circ, E
−
circ, Eout} represent the traveling waves incident

on, reflected from, circulating inside, and transmitted from the cavity, respectively. Variable b
represents the displacement of the mirror face from its equilibrium position in the absence of cavity
light forces.
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the experimental results in later chapters.

Parts of this section will rely on mathematical tools developed for the Fourier analysis of periodic

and noisy signals. In the next section we briefly outline these tools.

2.1 Mathematical Tools: Fourier Analysis

We here establish conventions that will be used to describe the spectral content of periodic and noisy

signals. For good references see, for example [25, 26, 27].

Let x(t) be a possibly complex function of time that describes a physical process. The Fourier

transform (FT) and inverse Fourier transform (IFT) will be formally defined:

x(Ω) =

∫ ∞
−∞

x(t)e−iΩtdt, (2.1a)

x(t) =

∫ ∞
−∞

x(Ω)eiΩtdΩ/2π, (2.1b)

respectively, where Ω = 2πf is the angular counterpart to Fourier frequency f .

By formally, we mean to suggest that for some functions, the FT does formally exist. An

important condition for existence is that the function have a finite “energy” or zero “power”:

“energy” ≡ Ex ≡
∫ ∞
−∞
|x(t)|2dt <∞, (2.2a)

“power” ≡ 〈x(t)2〉 ≡ lim
T→∞

1

T

∫ T/2

−T/2
|x(t)|2dt = 0. (2.2b)

Unfortunately, many useful functions do not have zero power. A sinusoidal function is an im-

portant example. To get around this particular case, we introduce the Dirac-delta function, δ(Ω),

which has the property:

δ(Ω− Ω0) =

∫ ∞
−∞

eiΩ0te−iΩtdt, (2.3a)

eiΩ0t =

∫ ∞
−∞

δ(Ω− Ω0)eiΩtdΩ/2π. (2.3b)

Thus we have, for a common sinusoidal function:

x(t) = x0 cos(Ω0t) =
x0

2

(
eiΩ0t + e−iΩ0t

)
, (2.4a)

x(Ω) =
x0

2
(δ(Ω− Ω0) + δ(Ω + Ω0)). (2.4b)

Fourier transform x(Ω) has units of [x]/Hz and is related to the energy of x(t) by Parseval’s
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theorem:

Ex =

∫ ∞
−∞
|x(Ω)|2dΩ/2π. (2.5)

The quantity |x(Ω)|2 has units of [x]2/Hz2 and is referred to as the “double-sided energy spectral

density” of x. “Double-sided” refers to the fact that both positive and negative frequencies are

included in the normalization of the density function. Importantly, note that although |x(Ω)|2 has

been expressed as an explicit function of angular Fourier frequency Ω, it is normalized like a density

function in the domain of non-angular Fourier frequencies, f = Ω/2π. This notational convention

will greatly simplify later expressions.

A random function x(t) is a second important example of a function with non-zero power. x(t)

might describe a “noisy” physical process like the flux of electrons through a resistor or the amplitude

of a cantilever undergoing Brownian motion. In this situation the spectral content of x(t) is defined

relative to one of its statistical measures.

For the following we consider only functions x(t) which are real-valued and “stationary” in the

(loose) sense that statistical properties of x(t) and time-shifted value x(t+ τ) are the same (see [27]

for details). An important statistical measure is the autocorrelation of x(t), defined:

〈x(t)x(t+ τ)〉 = lim
T→∞

∫ T/2

−T/2
x(t)x(t+ τ)dt; x ∈ <. (2.6)

The Fourier transform of the autocorrelation of x(t) is referred to as the “double-sided power

spectral density”

Sxx(Ω) ≡
∫ ∞
−∞
〈x(t)x(t+ τ)〉e−iΩτdτ, (2.7)

and has the property

〈x2(t)〉 =

∫ ∞
−∞

Sxx(Ω)dΩ/2π. (2.8)

It can be shown that if x(t) is real-valued, then Sxx(Ω) = Sxx(−Ω). This property can be used to

define a “single-sided” power spectral density,

Sx(Ω) ≡ 2Sxx(Ω), (2.9)

on the domain of positive angular Fourier frequencies (Ω > 0), which has the property:

〈x2(t)〉 =

∫ ∞
0

Sx(Ω)dΩ/2π. (2.10)

Note again that although Sx(Ω) is here expressed an an explicit function of Ω, it is defined by

Eqs. 2.7– 2.9 to represent a density in the domain of non-angular, positive Fourier frequencies

f = Ω/2π > 0.
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An important utility of the power spectral density is that it can be used to used predict the

outcome of passing a noisy signal through a linear system. A linear system is an input-output model

of a physical system based on a linear transformation, G : x(t) 7→ y(t). Let x(t) describe the input

signal and y(t) = G(x(t)) the output signal. Functions x(t) and y(t) might represent voltages at

the input and output of an electronic filter, for example. They might also represent a driving force

x(t) applied to a damped harmonic oscillator to produce a displacement y(t). In any case, when

the system’s behavior is time-invariant, the transformation can be written as the convolution of x(t)

with a function g(t), the “step-response function” of the system (here assumed to be real):

y(t) =

∫ ∞
−∞

x(t′)g(t− t′)dt′. (2.11)

The step-response function possesses a Fourier transform, g(Ω), called the “frequency response

function” of the system. Importantly, it can be shown that [26, 27]:

y(Ω) = g(Ω)x(Ω), (2.12a)

Sy(Ω) = |g(Ω)|2Sx(Ω). (2.12b)

Function |g(Ω)|2 is called the transfer function of the system.

Eq. 2.12 suggests that if we know the response of the system to a sinusoidal input, then we

can predict the response of the system to a noisy input. Thus we will often invoke the Fourier

transform as an analytical tool to obtain g(Ω), even if the inputs and outputs of the system can only

be described by spectral densities.

2.2 Mechanical Oscillator: 1D Model

In our model system, shown in Figure 2.1, the compliant mirror is treated like a rigid plate attached

to a pendulum spring. The mirror is contrained to move along the cavity axis. b(t) represents the

time-varying displacement of the mirror face from its equilibrium position when the intracavity field

is not excited. Small displacements of the mirror along the cavity axis are modeled by the equation

of motion for a driven, velocity-damped harmonic oscillator:

mb̈(t) +mΓmḃ(t) +mΩ2
mb(t) = F (t), (2.13)

where Γm is the energy damping rate of the spring in angular units, Ωm is the mechanical resonance

frequency in angular units, and F is an external driving force. The effective mass, m, of displacement

amplitude b is defined so that the potential energy of the mass-spring system is U(t) = 1
2mΩ2

mb(t)
2.

For a massless pendulum spring, m is equivalent to the physical mass mphys.



10

The mass-spring system can be thought of as a linear system which transforms a small sinusoidal

force into small sinusoidal position change. The frequency response function (Eq. 2.12) describing

this process, χ(Ω) ≡ b(Ω)/F (Ω), is referred to as the mechanical susceptibility of the system; here

b(Ω) and F (Ω) are the Fourier transforms (Eq. 2.1) of b(t) and F (t).

An expression for χ(Ω) can be obtained by formally applying the Fourier transform to both sides

of Eq. 2.13. This gives:

−mΩ2b(Ω) + imΩΓmb(Ω) +mΩ2
mb(Ω) = F (Ω), (2.14a)

χ(Ω) ≡ b(Ω)

F (Ω)
=

m−1

Ω2
m − Ω2 + iΩΓm

. (2.14b)

Note that for most real-world resonators, velocity damping is only suitable for describing fluctuations

near resonance. Damping of internal vibrations in bulk resonators has been found to obey a more

complicated equation of motion consistent with a frequency-dependent damping term, Γm → Γm(Ω)

in Eq. 2.14a. This subject will be revisited in Chapter 7. It’s worth mentioning here a common

form of internal damping, “structural” damping, that has the property Γm(Ω) = Γm(Ωm)×Ωm/Ω.

This form of damping is characteristic of elastic bodies whose various internal modes (at different

frequencies) all share similar quality factors, where the quality factor is defined:

Qm ≡
Ωm

Γm(Ωm)
. (2.15)

In the absence of external forces, Eqs. 2.13–2.14 suggest that a damped oscillator decays to a

steady-state amplitude of zero. In reality, the mean vibrational energy of the system is non-zero,

since it is energetically coupled to an environment with a finite temperature, Tbath. The effect of

this coupling is described by introducing a random driving force with a power spectral density (Eq.

2.9) given by the Fluctuation-Dissipation Theorem [28, 29]:

SF (Ω) =
4kBTbath

Ω
Im
[
χ(Ω)−1

]
= 4kBTbathΓm(Ω)m. (2.16)

Fluctuations of b are related to fluctuations of F by the mechanical transfer function, |χ(Ω)|2:

Sb(Ω) = |χ(Ω)|2SF (Ω) =
4kBTbathΓm(Ω)

m

1

(Ω2
m − Ω2)2 + Ω2Γ2

m(Ω)
. (2.17)

For structural and velocity damping we have, using the shorthand notation Γm(Ωm) ≡ Γm:

Sb(Ω)|velocity =
4kBTbathΓm

m

1

(Ω2
m − Ω2)2 + Ω2Γ2

m

, (2.18a)

Sb(Ω)|structural =
4kBTbathΓm

m

Ωm/Ω

(Ω2
m − Ω2)2 + Ω2

mΓ2
m

. (2.18b)
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Figure 2.2: Power spectral density of displacement fluctuations for a Brownian oscillator with pa-
rameters {m,Qm,Ωm, Tbath} = {10 ng, 104, 2π×1 MHz, 300 K}. Models for velocity (Eq. 2.18a) and
internal (Eq. 2.18b) damping are compared to the Lorentzian approximation (Eq. 2.19).

In both cases, the fluctuations of a weakly damped oscillator (Γm << Ωm) near resonance are

approximated by a Lorentzian with FWHM = Γm:

Sb(Ω) ≈ 4kBTbath
mΩ2

mΓm

1

1 + 4(Ωm − Ω)2/Γ2
m

. (2.19)

One can also check that for both cases in Eq. 2.18, summing the power spectral density over all

positive Fourier frequencies gives a mean potential energy,

〈U〉 =
1

2
m

∫ ∞
0

Ω2Sb(Ω)dΩ/2π =
1

2
kBTbath, (2.20)

that is consistent with the principle of energy equipartition.

A representative plot of structural damping and velocity damping for a weakly damped system

is given in Figure 2.2. We give the plot for values which will be of relevance in the experiment:

{m,Qm,Ωm, Tbath} = {10 ng, 104, 2π × 1 MHz, 300 K}. Only a small fraction of energy (∼ 1/Qm)

is contributed by the off-resonant frequencies where the models differ. Thus we often use velocity

damping and/or the Lorentzian approximation to describe a weakly damped system.
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2.3 Optical Cavity: 1D Model

In our model (Figure 2.1) we consider an optical cavity consisting of two weakly transmissive mirrors

separated by a vacuum gap of length L. The cavity is driven by an electric field incident on the

left (input) mirror. The task is to determine the magnitude of the electric field in the cavity. As a

departure from the usual steady-state treatment (see [30]), we will allow the amplitude of all fields

to vary on a timescale ∼ 2π/Ωm, much slower than both an optical cycle and the cavity round trip

time, Trt = 2L/c. This will allow us to characterize the slow buildup and decay of the cavity field

in response to a perturbation.

For simplicity, we assume that the mirrors are flat and that the fields entering, exiting, and

circulating between the cavity mirrors are described by uniform plane waves with a single carrier

frequency, ω0, and a common polarization perpendicular to the cavity axis, z. The mirrors are

modeled as thin, lossless dielectric plates with reflection coefficients r1,2 and it1,2 (r1,2 and t1,2 are

real), where r2
1,2 + t21,2 = 1. This “transmission line” model is discussed in detail in [31, 32].

A diagram of the transmission line model is shown in Figure 2.3. Let Ein(t)eiω0t and Eref (t)eiω0t

be the complex amplitude of the incident and reflected traveling waves at the outer surface of the

left mirror. Let Eout(t)e
iω0t be the complex amplitude of the transmitted field at the outer surface

of the right mirror. The total intracavity field Ecirc(z, t)e
iω0t is given by the superposition of a plane

wave propagating in the right direction E+
circ(t)e

i(ω0t−kz) and a plane wave propogating in the left

direction, E−circ(t)e
i(ω0t+kz) = r2E

+
circ(t)e

i(ω0t+kz). Letting z = 0 be the inner surface of the left

Figure 2.3: Schematic of the “canonical” 1D optomechanical system: a planar Fabry-Perot resonator
with a compliant end-mirror. {Ein(t), Eref (t), E+

circ(t), E
−
circ(t), Eout(t)} represent the slowly vary-

ing complex amplitudes of the traveling waves incident on, reflected from, circulating inside, and
transmitted from the cavity, respectively.
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mirror, we have:

Ecirc(z, t) = E+
circ(t)e

−ikz + r2E
+
circ(t)e

ikz (2.21a)

= E+
circ(t)(e

−ikz + r2e
ikz), (2.21b)

Eout(t) = it2E
+
circ(t)e

−ikL, (2.21c)

Eref (t) = r1Ein(t) + it1r2E
+
circ(t). (2.21d)

One more equation is needed to solve for the fields. For this, note that a forward propagating

plane wave originating at z = 0 and traversing one round trip to its origin position will acquire

a complex amplitude of r1r2e
−2ikL. This property defines a recursion relation between the total

forward propagating field inside the cavity at time t and the forward propagating field at a later

time t+ Trt [31, 32]:

E+
circ(t+ Trt) ≈ it1Ein(t) + r1r2e

−2ikLE+
circ(t). (2.22)

The recursion relation can be used to obtain a differential equation for E+
circ(t):

dE+
circ(t)

dt
≈ E+

circ(t+ Trt)− E+
circ(t)

Trt
=
it1
Trt

Ein(t) +
1

Trt
(r1r2e

−2ikL − 1)E+
circ(t). (2.23)

We now consider some approximations relevant to cavities with low internal losses and highly

reflectivity mirrors, r1,2 ≈ −1. In this case we can write

r1r2 ≈ 1− t21
2
− t22

2
. (2.24)

Internal losses can be modeled as a small imaginary component added to k:

e−2ikL ≈ e−2iω0L/c(1− δL). (2.25)

Near resonance, the round trip phase becomes

e−2iω0L/c ≈ 1− i
(
ω0 − ωc
FSR

)
, (2.26)

where FSR = c/2L is the cavity free spectral range (in non-angular units) and ωc = 2π × nFSR is

one of the cavity resonance frequencies with n > 0 a positive integer.

For highly reflective mirrors (r1,2 ≈ −1), the magnitude of the forward and backward propagating
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waves are nearly equal. This gives rise to an intracavity standing wave:

Ecirc(z, t) = −2iE+
circ(t)e

iω0t sin(kz)~x (2.27a)

≡ 2Ecirc(t)e
iω0t sin(kz)~x. (2.27b)

We can now recast Eq. 2.23 in terms of the slowly varying envelope of the standing wave field,

Ecirc(t) ≡ −iE+
circ(t) (Eq. 2.27b). Near resonance and for r1,2 ≈ −1:

dEcirc(t)

dt
≈ −

(
t21/2 + t22/2 + δL

Trt
+ i(ω0 − ωc)

)
Ecirc(t) +

t1
Trt

Ein(t), (2.28a)

Eout(t) = t2Ecirc(t), (2.28b)

Eref (t) = t1Ecirc(t)− Ein(t). (2.28c)

In actuality, the fields circulating inside the cavity are not plane waves. Both of the mirrors will

have a large spherical radius of curvature, Rm >> L. In the paraxial approximation, this results

in cavity modes with a transverse profile |ψ(x, y)| and a nearly planar wavefront [31] (see Section

7.1.2):

Ecirc(x, y, z, t) ≈ 2Ecirc(t)e
iω0t|ψ(x, y)| sin(kz). (2.29)

The tranvserse profile defines an effective cross-sectional are of the beam:

∫∫
|ψ(x, y)|2dxdy ≡ A. (2.30)

In SI units, the energy in the cavity fields, the power “circulating” in the cavity, and the power

supplied by the input beam (Ein(t) now denotes that fraction which is spatially mode matched to

the cavity) each have slowly varying envelopes with magnitude:

Uc(t) =

∫∫∫ (
ε0〈Re[Ecirc(x, y, z, t)]

2〉
)
dxdydz = ε0|Ecirc(t)|2 ×AL, (2.31a)

Pcirc(t) =

∫∫ (
ε0c〈Re[E+

circ(x, y, z, t)]
2〉
)
dxdy =

1

2
ε0c|Ecirc(t)|2 ×A =

Uc(t)

Trt
, (2.31b)

Pin(t) =

∫∫ (
ε0c〈Re[Ein(x, y, z, t)]2〉

)
dxdy =

1

2
ε0c|Ein(t)|2 ×A. (2.31c)

Setting Ein(t) = 0 in (2.28), we see that the energy in the cavity decays at a rate

Uc(t) = U(0)e−(t21+t22+2δL)t/Trt ≡ U(0)e−(γ1+γ2+γL)t ≡ U(0)e−γt (2.32a)

≡ U(0)e−2(κ1+κ2+κL)t ≡ U(0)e−2κt, (2.32b)
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where {γ1, γ2, γL} ≡ {t21, t22, 2δL}/Trt are the rates of energy decay through the input mirror, output

mirror, and into internal loss channels, respectively, and γ ≡ γ1 + γ2 + γL is the total energy decay

rate. Likewise {κ1, κ2, κL} ≡ {t21/2, t22/2, δL}/Trt represent the rates of amplitude decay through

the input mirror, output mirror, and into internal loss channels, respectively, and κ ≡ κ1 + κ2 + κL

is the total amplitude decay rate.

To deal with energy and power, it is useful to rewrite Eq. 2.23 using units such that |E(t)|2 =

P (t). We can then multiply both sides of Eq. 2.23 by
√
Trt and define a new variable on the left-hand

side, a(t) =
√
TrtEcirc(t), which is normalized to give the energy in the fields: |a(t)|2 = Uc(t) =

TrtPcirc(t). Near resonance, we have:

ȧ(t) = − (κ+ i(ω0 − ωc)) a(t) +
√

2κ1Ein(t), (2.33a)

Eout(t) =
√

2κ2a(t), (2.33b)

Eref (t) =
√

2κ1a(t)− Ein(t) =

√
κ1

κ2
Eout(t)− Ein(t). (2.33c)

To solve Eq. 2.33, it is useful to rewrite each slowly varying envelope in terms of its Fourier

transform Eq. 2.1. This gives

a(Ω) =

√
2κ1

κ+ i(ω0 + Ω− ωc)
Ein(Ω)

(
=

∫ ∞
−∞

a(t)e−iΩtdt

)
, (2.34a)

Eout(Ω) =
√

2κ2a(Ω), (2.34b)

Eref (Ω) =
√

2κ1a(Ω)− Ein(Ω) =

√
κ1

κ2
Eout(Ω)− Ein(Ω). (2.34c)

Now consider the special case for which the envelope function of the input field has a constant

value, corresponding to a monochromatic input field with frequency ω0. In this case Ein(Ω) =
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E0δ(Ω) where δ(Ω) is a delta function (Eq. 2.3). The rest of the fields also take on constant values:

〈Ein〉 =

∫ ∞
−∞

E0δ(Ω)dΩ/2π = E0, (2.35a)

〈Pin〉 = |E0|2, (2.35b)

〈Eout〉 =

√
4κ1κ2

κ

1

1 + i(ω0 − ωc)/κ
〈Ein〉, (2.35c)

〈Pout〉 =
4κ1κ2

κ2

1

1 + (ω0 − ωc)2/κ2
〈Pin〉, (2.35d)

〈Eref 〉 =
2κ1 − κ− i(ω0 − ωc)

κ+ i(ω0 − ωc)
〈Ein〉, (2.35e)

〈Pref 〉 =
(2κ1 − κ)2 + (ω0 − ωc)2

κ2 + (ω0 − ωc)2
〈Pin〉. (2.35f)

We can measure {κ1, κ2, κL, κ} by slowly sweeping the detuning of the input field ωc − ω0. In

practice we do this by changing the cavity length or the laser wavelength at a rate << κ, while

monitoring {Pin, Pout, Pref} on separate photodetectors. The curve swept out in either transmission

or reflection is a Lorentzian with a HWHM of κ and a FWHM of γ.

Note also the conventional “finesse” notation:

〈Pcirc〉 =
c

2L
〈Ucirc〉 ≡

F
π

2κ1

κ

1

1 + (ω0 − ωc)2/κ2
〈Pin〉 =

F
π

κ

2κ2
〈Pout〉. (2.36)

The quantity F ≡ πc/(2κL) = FSR/(2κ/2π) = FSR/(γ/2π) is the cavity “finesse” and gives a

measure of the resonant power buildup inside the cavity.

In the next section, we will use Eq. 2.33 to treat the dynamics of a cavity with a moving

boundary.

2.4 Optomechanical Interaction: 1D Model

We now wish to couple the motion of the mirror to the amplitude of the intracavity field. This

coupling is mediated by the radiation force experienced by the mirror, which in the simple 1D model

is given by

Frad =
2Pcirc
c

=
Uc
L
. (2.37)

The dynamics of the system also depend critically on the “optomechanical coupling”, g, between

the mirror position and the cavity resonance frequency:

g ≡ dωc
db

. (2.38)
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To see this, it is useful to recast the radiation pressure force in terms of the work done on the cavity

by a small displacement of coordinate b. Using Eq. 2.31a and noting that the actual cavity length

at any particular time is L+ b:

Frad = −dUmech
db

=
dUc
db

=
dωc
db

dL

dωc

dUc
dL

= − g

ωc
Uc. (2.39)

Eq. 2.37 is reproduced by setting g = −ωc/L for a simple Fabry-Perot resonator. Note that the

negative sign of g is unconventional, and relates to the choice of sign for b. Here we equate positive

b with a longer cavity, so the average radiation pressure force is positive.

Coupled equations of motion for the cavity field and the mirror are obtained by replacing ωc in

Eq. 2.33 by ωc + gb(t) and by including a radiation pressure force as well as an additional driving

term in the equation of motion for b, Eq. 2.13. This gives:

mb̈(t) +mΓmḃ(t) +mΩ2
mb(t) = F (t) + Frad(t) = F (t)− g

ωc
|a(t)|2, (2.40a)

ȧ(t) = − (κ+ i(ω0 − ωc − gb(t))) a(t) +
√

2κ1Ein(t). (2.40b)

It’s important to note that b(t) is the real-valued amplitude of the mirror, whereas a(t) is the slowly

varying complex amplitude of the intracavity standing wave, in units such that |a(t)|2 = Uc(t).

An approximate solution to Eq. 2.40 can be obtained by linearizing each variable around its

steady-state value:

{b(t), a(t), E(t), U(t), F (t)} = {〈b〉, 〈a〉, 〈E〉, 〈U〉, 〈F 〉}+ {δb(t), δa(t), δE(t), δU(t), δF (t)}. (2.41)

If the input field is monochromatic (〈Ein〉 = E0, δEin(t) = 0) and the mirror motion only changes

the cavity resonance frequency by a small fraction of the cavity linewidth (g0δb/κ ≡ ε << 1), then

the intracavity field is modulated by only a small fraction of its average value. In this case the

coupled equations of motion become, to first order in δa/〈a〉 and δb/〈b〉:

mδb̈(t) +mΓmδḃ(t) +mΩ2
mδb(t) = δF (t) + δFrad(t) (2.42a)

δȧ(t) ≈ − (κ+ i∆) δa(t) + igδb(t)〈a〉, (2.42b)
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where ∆ ≡ ω0 − ωc − g〈b〉 is the shifted detuning between the cavity and the input field and

〈a〉 =

√
2κ1

κ+ i∆
E0, (2.43a)

〈b〉 =
〈Frad〉
mΩ2

m

(2.43b)

〈Frad〉 = −g〈Uc〉
ωc

(2.43c)

〈Uc〉 = |〈a〉|2 =
2κ1

κ2 + ∆2
|E0|2 (2.43d)

are the steady-state values obtained by taking the time average of both sides of Eqs. 2.40a–2.40b.

The fluctuating part of the radiation pressure force is given to first order in δa/〈a〉 by:

δFrad(t) = Frad(t)− 〈Frad〉 = − g

ωc
(〈a〉δa∗(t) + 〈a〉∗δa(t)) (2.44)

where δa∗(t) obeys an equation of motion given by the complex conjugate of Eq. 2.42b.

To elucidate the effect of Frad on the dynamics of b, it is useful to recast Eq. 2.42a in the Fourier

domain:

−mΩ2δb(Ω) + imΓmΩδb(Ω) +mΩ2
mδb(Ω) = δF (Ω) + δFrad(Ω). (2.45)

δFrad(Ω) can be computed by taking the Fourier transform of both sides of Eq. 2.44 and Eq.

2.42b. Letting [δa∗](Ω) represent the Fourier transform of δa∗(t), we obtain:

δFrad(Ω) = − g

ωc
(〈a〉[δa∗](Ω) + 〈a〉∗δa(Ω)) (2.46a)

= −g
2〈Uc〉
ωc

(A+(Ω)−A−(Ω)) δb(Ω), (2.46b)

where

A±(Ω) ≡ i

κ± i(∆± Ω)
(2.47)

characterizes the strength of the ±Ω sideband on the intracavity field generated by the moving

mirror.

According to Eq. 2.46, the magnitude of the radiation pressure force fluctuations, δFrad(Ω),

depends on the magnitude of the static radiation pressure force, 〈Frad〉, the magnitude of the cavity

resonance frequency fluctuations produced by the mirror, gδb(Ω), and the dynamic response of

the the intracavity energy to resonance frequency fluctuations, characterized by (A+(Ω)− A−(Ω)).

The response term contains an imaginary component related to the finite build-up time of the

intracavity field. Consequently, δFrad(Ω) contains a component oscillating in phase with mirror’s

position, ∝ b(Ω), and a component oscillating in phase with the mirror’s velocity, ∝ ḃ(Ω) = iΩb(Ω).

These correspond to an optical spring/anti-spring force and an optical damping/anti-damping force,
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respectively.

The effect of δFrad on the dynamics of δb can be expressed as an “effective” mechanical suscep-

tibility, χeff (Ω) ≡ δb(Ω)/δF (Ω), obtained by isolating the external force δF (Ω) on the right-hand

side of Eq. 2.45:

χeff (Ω)−1 = χ(Ω)−1 − δFrad(Ω)

δb(Ω)
(2.48a)

= (Ω2
m − Ω2 + iΩΓm(Ω))m+

g2〈Uc〉
ωc

(A+(Ω)−A−(Ω)) . (2.48b)

The effective susceptibility can be expressed in terms of an optical spring constant kopt(Ω) (ap-

proximated by an “optical spring shift” of the mechanical frequency ∆Ωopt(Ω) ≈ kopt(Ω)/2mΩm),

and an optical damping rate, Γopt(Ω):

χeff (Ω)−1 = (Ω2
m + kopt(Ω)/m− Ω2 + iΩ(Γm(Ω) + Γopt(Ω))m, (2.49a)

≈ ((Ωm + ∆Ωopt(Ω))2 − Ω2 + iΩ(Γm(Ω) + Γopt(Ω))m, (2.49b)

kopt(Ω) ≈ 2mΩm∆Ωopt(Ω) ≡ −Re

[
δFrad(Ω)

δb(Ω)

]
=
g2〈Uc〉
ωc

Re [A+(Ω)−A−(Ω)] , (2.49c)

mΩΓopt(Ω) ≡ −Im

[
δFrad(Ω)

δb(Ω)

]
=
g2〈Uc〉
ωc

Im [A+(Ω)−A−(Ω)] . (2.49d)

For sufficiently weak radiation pressure, i.e., ∆Ωopt � κ and Γopt � κ, the mechanical sus-

ceptibility near resonance reduces to that of a velocity-damping oscillator with a shifted resonance

frequency and damping rate:

χeff (Ω)−1 ≈ ((Ωm + ∆Ωopt(Ωm))2 − Ω2 + iΩ(Γm(Ωm) + Γopt(Ωm))m. (2.50a)

It is convenient to express the “weak” optical spring shift an damping rate in fundamental units

of intracavity photon number, 〈nc〉 ≡ 〈Uc〉/~ωc, and the zero-point displacement, b2zp ≡ ~/2mΩm:

∆Ωm(Ωm) =
g2〈Uc〉
ωc

1

2mΩm
Re[A+(Ωm)−A−(Ωm)] (2.51a)

= 〈nc〉
g2b2zp
κ

(
(∆ + Ωm)/κ

1 + (∆ + Ωm)2/κ2
+

(∆− Ωm)/κ

1 + (∆− Ωm)2/κ2

)
(2.51b)

Γopt(Ωm) =
g2〈Uc〉
ωc

1

mΩm
Im[A+(Ωm)−A−(Ωm)] (2.51c)

= 2〈nc〉
g2b2zp
κ

(
1

1 + (∆ + Ωm)2/κ2
− 1

1 + (∆− Ωm)2/κ2

)
. (2.51d)

Note that positive damping and negative spring shifts correspond to red detuning of the drive beam

from cavity resonance and vice versa.

As a result of this modified susceptibility, the mirror responds differently to the thermal force
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(Eq. 2.16). The modified power spectrum of thermal fluctuations is given by:

Sb(Ω) = |χeff (Ω)|2SF (Ω) = 4kBTbathΓm(Ω)|χeff (Ω)|2 (2.52a)

=
4kBTbathΓm(Ω)

m

1

((Ωm + ∆Ωopt(Ω))2 − Ω2)
2

+ Ω2(Γm(Ω) + Γopt(Ω))2
. (2.52b)

Note that the expression for the thermal force fluctuations, SF (Ω) = 4kBTbathΓm(Ω), is obtained

by applying the Fluctuation Dissipation Theorem (Eq. 2.16) to the intrinsic mechanical suscep-

tibility rather than the effective susceptibility. This choice reflects the fact that Γopt(Ω), the rate

of transfer of mechanical energy into the electromagnetic energy, introduces negligible thermal ex-

citation (due the low thermal occupation of optical photons at typical ambient temperatures, i.e.,

~ω0 >> kBTbath).

If the intrinsic and optical springs are weak and underdamped, the thermal noise spectrum near

resonance reduces to (using the shorthand notation Γm(Ωm) ≡ Γm and Γopt(Ωm) ≡ Γopt):

Sb(Ω) ≈ 4kBTbathΓm
m

1

((Ωm + ∆Ωopt)2 − Ω2)2 + Ω2(Γm + Γopt)2
. (2.53)

Dissipation of mechanical energy into electromagnetic energy (Γopt > 0) without added thermal

noise leads to “optical cooling”, characterized by a reduced vibrational energy. Expressed as an

effective temperature, the vibrational energy of the oscillator in the “weak” damping limit (Eq

2.53), is given by:

Teff =
m

kB

∫ ∞
0

Ω2Sb(Ω) ≈ Γm
Γm + Γopt

Tbath. (2.54)

Or in terms of the mean thermal phonon occupation number:

n̄ ≈ kBTeff
~Ωm

≈ Γm
Γm + Γopt

n̄bath, (2.55)

where n̄bath ≡ kBTbath/~Ωm is the occupation when in equilibrium with the surrounding thermal

bath.
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Chapter 3

Membrane-in-the-Middle System:
Transfer Matrix Treatment

In this chapter we investigate a compound cavity consisting of two mirrors divided by a thin dielectric

plate. The physics of compound interferometers has been studied in various modern contexts, no-

tably for gravity wave detection. Only recently was the concept extended to “micro”-optomechanical

systems by the Harris group at Yale, whose idea was to place an ultra-thin dielectric film between

two mirrors of a high finesse optical cavity [13, 7, 23]. This so-called ”membrane-in-the-middle”

(MIM) system has various attractive features, chief among them the possibility of integrating small-

Figure 3.1: Linear (plane-wave) model of the membrane-in-the-middle system. Here a thin film of
thickness dm has been placed between two mirrors comprising a Fabry-Perot cavity with length L
in the absence of the film. The equilibrium position of the membrane is displaced a distance zm
relative to the midpoint of the cavity. The membrane undergoes small displacements of amplitude
δzm � λ around this equilibrium position with frequency Ωm. In this chapter we consider only
static properties of the cavity — such as the cavity transmission, resonance frequency, and internal
losses — as a function of the membrane position and the reflection/absorption coefficients of the
membrane and mirrors.
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mass, high- mechanical-quality membrane resonators (see chapter 4) that have exceptionally low

optical loss at near-infrared wavelengths. The cavity resonance frequency shift produced by a small

displacement of the membrane’s position (the “optomechanical coupling” (Eq. 2.38), an important

figure of merit for optomechanical studies) depends on the membrane’s position with respect to the

intracavity standing wave. Remarkably, a 50 nm film with index of refraction of nm = 2.0 can

exhibit a linear optomechanical coupling strength nearly as high as the end-mirrors when positioned

appropriately with respect to the intracavity standing wave. The coupling can also be quadratic

when the membrane is positioned at a node or antinode, which has led to proposals for QND readout

of the membrane’s vibrational energy [23].

Here we focus on characterizing the steady-state linear optical properties of the MIM system.

Towards this end, another attractive feature of the MIM system is the simplicity of its geometry.

When the cavity length (L) is much shorter than the Rayleigh length (zR) set by its spot size (wc)

and operating wavelength (λ), i.e., L � zR = πw2
c/λ, then the arrangement shown in Figure 3.1

can be modeled as a plane wave propagating at normal incidence through a periodic dielectric. The

apparatus we have developed (introduced in Chapter 5) is one such system, consisting of a 50 nm

film bisecting a cavity with length L = 0.742 mm and spot-size wc = 35.6 µm, giving L/zR = 0.17. It

seems inevitable and highly desirable, furthermore, that optomechanics with thin films will move to

shorter, fiber-based cavities or fully integrated Bragg mirror cavities on a chip. In ours and especially

the latter systems, the steady-state fields may be obtained by a simple and highly extensible transfer

matrix method described in many standard optics texts [31, 30]. Solving the static boundary-value

problem gives a wealth of useful information, including the optomechanical coupling coefficient for

the membrane, the cavity eigenspectrum, transmission, reflection, linewidth, and finesse, as well the

steady-state radiation pressure at each boundary. The problem is also numerically tractable when

the refractive index of the film is made complex to include the effect of optical absorption. More

complicated systems — for instance, including a second membrane or a realistic multilayer dielectric

mirror — are also straightforward to model numerically with the transfer matrix technique. In this

chapter we show how this method has be applied to our short-cavity MIM system. The framework

for this treatment in our group was first laid out by Jeff Kimble in the fall of 2008. We will use it

to derive several of the results mentioned above in addition to basic properties of the film and the

Fabry-Perot (FP) resonator. This chapter is intended to provide a basic toolbox for the experiments

described in later sections.

3.1 Characteristic Matrix

Consider the scenario illustrated in Figure 3.2: a plane, traveling EM wave is scattered at nor-

mal incidence from a dielectric plate. The incident field is assumed to be linearly polarized and
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Continuity of       at boundaries I/II

Phase relationships

Continuity of              at boundaries I/II

Basic relationships in                 media 

Figure 3.2: Schematic of the boundary-value problem for propagation of a plane EM wave through
a dielectric plate at normal incidence. For all media we assume µ ≈ µ0. The wave enters the plate
(medium with refractive index n2) from the left medium with index n1 and exits into the right
medium with index n3. Note that the continuity relations apply to fields just to the right or left of
interfaces I and II.

monochromatic. The relationship between the total (sum of left- and right-going traveling waves)

fields EI(II) and BI(II) are obtained by solving the boundary-value problem outlined in the box at

right in Figure 3.2. Continuity relationships between the total fields immediately to the left and

right of each boundary are set by Maxwell’s equations, while traveling waves propagating in the

same direction within a common medium are related by a phase shift. The relationship between the

total fields at adjacent boundaries is described by a characteristic matrix, M . In the following we

let c = 1 and assume that materials discussed are “non-magnetic” in the sense that their magnetic

susceptibility is nearly that of vacuum (µ ≈ µ0). This gives:

 EI

BI

 ≡
 Ei,I + Er,I

Bi,I −Br,I

 = M ·

 EII

BII

 = M ·

 Et,II

Bt,II

 . (3.1)

The characteristic matrix for plane-wave propagation through vacuum, a thin dielectric mem-

brane, a planar dielectric mirror, a planar FP resonator, and a planar FP resonator divided by a

thin dielectric membrane (Figure 3.1) can all be written in the form Mtot =
∏
iMi. We can use this

basic property to derive a host of useful results. Our fundamental building block will be the charac-

teristic matrix for propagation at normal incidence through a single-layer, non-magnetic dielectric

plate with thickness d and index n2, representing the central medium in Figure 3.2. This matrix
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has the form:

M =

 cosφ2 in2
−1 sinφ2

in2 sinφ2 cosφ2

 : φ2 =
2πn2d

λ
. (3.2)

3.1.1 Reflection/Transmission Coefficient for a Dielectric Plate

Amplitude reflection (r ≡ Er,I/Ei,I) and transmission (t ≡ Et,I/Ei,I) coefficients associated with

characteristic matrix M for a dieliectric plate (Eq. 3.2) follow from the defining relation given in

Eq. 3.1 and the boundary conditions given in the box at right in Figure 3.2. Assuming that µ = µ0

gives:

t =
Et,II
Ei,I

=
2n1

n1M11 + n1n3M12 +M21 + n3M22
(3.3a)

r =
Er,I
Ei,I

=
n1M11 + n1n3M12 −M21 − n3M22

n1M11 + n1n3M12 +M21 + n3M22
. (3.3b)

In our system we will frequently be interested in the case for which the dielectric plate (e.g., the

film inside our optical cavity) is embedded in air or vacuum: n1 = n3 ≈ 1. We will also assume that

absorption in the plate is small. Following [33], we can model this loss as an imaginary component

to the index of refraction (hereafter we drop the indexed notation) n2 ≡ n ≈ |n|− i Im[n]. Using the

formula for the transfer matrix of a dielectric plate (Eq. 3.2) with φ2 ≡ φ = 2πd/λ and Im[n]� |n|,

we obtain [30]

r =

(
1− |n|2

)
sinφ

(|n|2 + 1) sinφ− 2i|n| cosφ
(3.4)

t =
−2i|n|

(|n|2 + 1) sinφ− 2i|n| cosφ
. (3.5)

The associated power transmission (T ) and reflection (R) coefficients associated with t and r are

given by:

T ≡ |Et,II |
2

|Ei,I |2
= |t|2, (3.6a)

R ≡ |Er,II |
2

|Ei,I |2
= |t|2. (3.6b)
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(nm)(nm)

nm nm

Figure 3.3: Amplitude reflectivity of a Si3N4 thin film with thickness dm and real index |nm|. For
|nm| = 2.0, the maximum reflection coefficient is achieved at dm = λ/8: |rm|max = 0.6. At 935 nm,
the amplitude reflection coefficient of a 50 nm film is |rm| = 0.42.

For Im[n]� 1, the power loss due to absorption in the plate is given by

δ ≡ 1− (R+ T ) ≈ 4Im[n]

(
(|n|2 + 1)φ+ (|n|2 − 1) sinφ cosφ

(1− |n|2)2 sin2 φ+ 4|n|2

)
. (3.7)

In the experiment we divide the cavity with a 50-nm-thick by 500-µm-square window of LPCVD

stoichiometric Si3N4. We will refer to properties of this “membrane” with index m, such as re-

fractive index nm and reflection coefficient rm. We will be interested in the optical properties of

the membrane in the near-infrared, particularly between 800 and 1064 nm, where it is assumed

that Im[nm] � 1. LPCVD Si3N4 has a real index of |nm| ≈ 2.0 at these wavelengths [34, 35] and

exceptionally low absorption consistent with Im[nm] ≈ 10−5 − 10−7 [36, 14, 13]. We have made

our own measurements of nm in Chapter 6, and found them to be consistent with |nm| = 1.98

and Im[nm] ≤ 0.8 × 10−5. For a 50-nm-thick film and λ = 935 nm, this gives |rm| = 0.42 and

δm ≤ 8 ppm . Both quantities will have important consequences when trying to incorporate such

a film into a high-finesse cavity. Here, it is worth noting that for |nm| = 2.0, the maximum value

of |rm| is obtained for a λ/4 plate (cosφm = 0), which at 935 nm is ≈ 117 nm. At this thick-

ness, |rm| = (|nm|2 − 1)/(|nm|2 + 1) = 0.6. A plot of |rm| vs. λ and film thickness dm for typical

experimental parameters is shown in Figure 3.3.

3.1.2 Reflection/Transmission Coefficient for a Dielectric Mirror Coating

The dielectric mirrors in our cavity are constructed by depositing a sequence of λ/4 (φ = π/2 at

operating wavelength) plates onto a glass substrate. The λ/4 plates have alternating “high” and

“low” index values of nH and nL, respectively (Figure 3.4), each pair behaving like a band-stop filter

for light entering from the low-index side. The glass substrate has a slightly wedged and AR-coated

face opposite the coated face; this enables us to ignore back reflections, so we instead focus on

transmission from air through the coating into the glass. At the center wavelength of the coating,
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the characteristic matrix for each mirror is given by [37, 30]

Mmirror = (MHML)qMH (3.8a)

=

 0 in−1
H

inH 0

 0 in−1
L

inL 0

q 0 inH
−1

inH 0

 (3.8b)

=

 0 in−1
eff

ineff 0

 ; neff = nH(nH/nL)q. (3.8c)

For a field which enters the dielectric stack from air and exits into the substrate (Figure 3.4),

the amplitude transmission and reflection coefficients for the stack are given by

rmirror =
n0nS − n2

eff

n0nS + n2
eff

(3.9)

tmirror =

√
nS
n0

−2in0neff
nSn0 + n2

eff

=
−2i
√
n0nSneff

nSn0 + n2
eff

, (3.10)

where n0 and nS are the index of air and the mirror substrate and the pre-factor of
√
nS/n0 accounts

for the reduced field amplitude in the mirror substrate, thus preserving the relation |rmirror|2 +

|tmirror|2 ≡ Rmirror + Tmirror = 1.

The effect of the substrate can be absorbed into the effective index by defining n′eff = neff/
√
n0nS

in Eq. 3.8. By this convention, the mirror behaves like a thin plate of birefringent material with

φ = λ/4 and an enhanced index of refraction, n′eff ≈ 2/|tmirror| = 2/
√
Tmirror � 1. Based on Eq.

3.2, the characteristic matrix of this lossless mirror coating is given by

Mmirror+no loss =

 0 i
√
Tmirror/2

2i/
√
Tmirror 0

 . (3.11)

To include the effect of small scattering/absorption loss on the mirror coatings while maintaining

the correct reflection phase shift, we can concatenate the mirror with a thin plate of material with

an index of 1 + iδloss/8π and a phase angle of φ = 0, where δloss � 1 (Figure 3.4). For a field

entering from the “air side” of the lossy plate, one obtains

Mmirror+loss ≈

 1 δloss/4

δloss/4 1

 0 i
√
Tmirror/2

2i/
√
Tmirror 0

 . (3.12)

One can verify that the amplitude reflection coefficient rmirror+loss associated with Mmirror+loss

(Eq. 3.3) introduces a phase-shift arg(rmirror+loss) ≈ π and the the power reflection coefficient

(Rmirror+loss) and transmission coefficient (Tmirror+loss) associated with Mmirror+loss (Eq. 3.6)
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(air) (Bk7 glass) (air)

mirror penetration depth (at coating center)

effective mirror matrix (at coating center)

no loss:

add loss:

wedge

(loss)

(dielectric stack)
1 2 q

Figure 3.4: Outline of the model used in Section 3.1.2 to transform a super-mirror built on a thick,
possibly lossy dielectric coating to a slightly displaced (by the coating penetration depth), infinitely
thin mirror. To simplify notation we have written {δmirror, Rmirror, Tmirror} ≡ {δ,R, T}.

give rise to a loss coefficient of 1− (Rmirror+loss + Tmirror+loss) ≈ δloss.

To further check that our assumptions are reasonable, we quickly review the details of our cavity

mirrors as described in [37]. The mirrors consist of a 35-layer stack of alternating high-index Ta2O5

(nH = 2.0411) and low-index SiO2 (nL = 1.455) deposited on a BK7 (nS = 1.5098) substrate. At

coating center, λ ≈ 852 nm, the mirror transmission is Tmirror = 4nSn0(nL)34/(nH)36 = 14.6 ppm

(tmirror = 0.0038). Scattering/absorption loss from the mirror coatings is typically δloss,SA ≈ 3

ppm, which is not an insignificant fraction. However, in the experiment, we operate near the edge

of the coating curve, 935 nm; this results in a substantially higher transmission Tmirror ≈ 300 ppm
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(tmirror ≈ 0.017) relative to SA loss.

We must also account for the finite penetration of the field into the coatings. In [38] and [37],

it was shown that near the center of the coating, the cavity length inferred from the resonance

frequencies of a Fabry-Perot cavity formed between the two mirrors is greater than the physically

measured gap (e.g., by a ruler) by an amount ∆Lcoating. On resonance, this extra cavity length is

roughly ∆Lcoating = λ/2/(nH−nL), which for our mirrors centered at 850 nm is roughly ∆Lcoating ≈

0.85× 1.63/2 = 0.67µm � L = 742 µm. The penetration away from the center of the coating curve

is even greater (at 935 nm, it and turns out to penetrate several hundred nanometer deeper for

the D1306 coating). In modeling the mirror as an infinitely thin reflector, we absorb this ∼ 1 µm

adjustment into L, so that L corresponds to the slightly larger “experimental” length associated

with cavity parameters like the free spectral range described in the next section.

3.2 Fabry-Perot Cavity

A Fabry-Perot (FP) cavity is obtained by cascading two mirrors with amplitude transmission coeffi-

cients t1 and t2 separated by a dielectric spacer with index of refraction nc and thickness L (defined

here to include the coating penetration depth). For a vacuum spacer (nc = 1), the characteristic

matrix for this system can be written

MFP =

 0 i
√
T1/2

2i/
√
T1 0

 1 δ1/4

δ1/4 1

 cosφL i sinφL

i sinφL cosφL

 1 δ2/4

δ2/4 1

 (3.13a)

×

 0 i
√
T1/2

2i/
√
T1 0

 , (3.13b)

where φL = 2πL/λ, T1,2 = |t1,2|2, and δ1,2 = 1 − R1,2 − T1,2 are the losses of mirror 1 and 2, as

defined in the previous section.

Amplitude reflection (rFP ) and transmission (tFP ) coefficients for a planar FP cavity are obtained

from Eq. 3.3. For a high-finesse cavity cavity (T1,2, δ1,2 � 1) driven from the left side of mirror 1:

tFP =
2
√
T1T2

(T1 + T2 + δ1 + δ2) cosφL + 4i sinφL
. (3.14)

FP cavity resonances occur at frequencies ωc for which tFP is maximum. Absorbing mirror

penetration depth into the cavity length, the condition for resonance is given by φL = ωcL/c = mπ

or ωc/2π = mFSR, where m is an integer and FSR = c/2L is the free-spectral range of the cavity
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in non-angular units. Near resonance, we can write

tFP ≈
tmax

1 + i∆c/κ
, (3.15a)

tmax =
2
√
T1T2

T1 + T2 + δ1 + δ2
, κ = FSR× T1 + T2 + δ1 + δ2

2
, (3.15b)

where ∆c = ω − ωc is the cavity detuning from the input field with frequency ω/2π = c/λ and κ is

the cavity linewidth (intensity HWHM) in angular units.

The transmission coefficient of the cavity plays a central role in various aspects of the experiment.

We often measure the power transmission TFP = |tFP |2 = t2max/(1 + ∆2
c/κ

2) vs. detuning in order

to obtain information about the dynamics of the intracavity field. We will also often use the quantity

known as the “finesse”, F to describe the cavity:

F ≡ FSR

2(κ/2π)
=

2π

T1 + T2 + δ1 + δ2
. (3.16)

The finesse is a measure of frequency and length resolving power of the resonator. To see the

latter, we can express the free spectral range and linewidth of the cavity in units of equivalent cavity

length change: FSRL = λ/2 and κL ≡ λ/4F (HWHM), respectively. By definition, the finesse

also gives information about internal losses δ1,2 if T1 and T2 are known. We will use this notion to

characterize the membrane absorption coefficient in Section 3.3.2. The finesse is also a measure of

the resonant build-up of the circulating power in the cavity. On resonance:

Pcirc
Pin

(∆ = 0) =
|tmax|2

T2
=

2T1

T1 + T2 + δ1 + δ2
× F
π
. (3.17)

3.3 Dielectric Film inside a Fabry-Perot Cavity

The MIM system is achieved by placing a thin dielectric film (our Si3N4 “membrane”) into the gap

between two FP end-mirrors, as pictured in Figure 3.1. We will be interested in the case of a nearly

lossless (|t1,2|2 = T1,2 >> δ1,2), symmetric (t1 = t2 ≡ tmirror) cavity. This system is described by

the characteristic matrix:

Mmim =

 0 i|tmirror|/2

i2/|tmirror| 0

 cosφ1 i sinφ1

i sinφ1 cosφ1

 cosφm i sinφm/nm

inm sinφm cosφm


(3.18a)

×

 cosφ2 i sinφ2

i sinφ2 cosφ2

 0 i|tmirror|/2

i2/|tmirror| 0

 , (3.18b)
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where φ1 = π(L+ 2zm−dm)/λ, φ2 = π(L−2zm−dm)/λ and φm = 2πdm/λ. L, dm, and zm are the

cavity length, membrane thickness, and the membrane position, respectively. zm is defined as the

position of the center of the membrane relative to midpoint between the two mirrors. We assume

for this analysis that the membrane is stationary (δzm = 0 in Figure 3.1).

Intuitively, the system behaves like a FP with one end-mirror (say, the exit mirror) replaced by an

etalon formed between that end-mirror and the membrane. Because the transmission coefficient of

the mirror is much smaller than that of the membrane, the etalon is nearly one-sided, and the main

effect of the membrane is to alter the phase shift of the reflected light. A traveling wave that traverses

from zm = 0 to the end-mirror and back experiences an extra phase shift due to multiple reflections

from the membrane. The magnitude of the phase shift depends on the position of the membrane

with respect to both the antinode and the end-mirror in a non-linear fashion. Minimum/maximum

phase shifts occur when the membrane is at a node/antinode of the intracavity standing wave. This

non-linear phase-shift gives rise to a dispersive optomechanical coupling between the membrane

position and the resonance frequency of the compound cavity.

Several properties of the MIM cavity are straightforward to measure in the lab, in particular:

the MIM cavity resonance frequency, transmission coefficient, and linewidth. We can use the matrix

method to compute these variables as functions of the position, zm, of the membrane. Impor-

tantly, this gives information about the optomechanical coupling of the membrane and the effect of

membrane absorption on cavity finesse.

3.3.1 MIM Cavity Resonance Condition, Optomechanical Coupling

A standard Fabry-Perot resonator possesses resonance frequencies corresponding to a round-trip

phase of mπ or fc = ωc/2π = mc/2L, where m = 0, 1, 2.... We can determine this condition

analytically by using the fact that on resonance, the phase of the transmitted field is a multiple of

π. The resonance condition then becomes

Im[M11 +M12 +M21 +M22] = 0. (3.19)

Applying this condition to the characteristic matrix for a FP cavity (Eq. 3.2), we can check that

resonance condition is indeed sin(φL) = 0→ φL = mπ.

The resonance condition for the membrane-in-the-middle cavity is more complicated to derive

by this algebraic method. With some effort, and assuming all refractive indexes are purely real (no

absorption), that the effective index of each mirror is much larger than that of the membrane, and
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Figure 3.5: Resonance frequency structure of the “membrane-in-the-middle” system. Plotted on the
left are resonance frequencies (in units of the bare cavity FSR) vs. membrane position for |nm| =
2, dm (nm) = {0 (lightest), 30, 50, 100, 200 (darkest)}, and assuming that the membrane is located
near cavity center (zm ≈ 0). Differentiating with respect to zm gives the optomechanical coupling,
gm = dωc/dzm, as shown on the right. Extrema of gm correspond to 2|rm|g0, where g0 = ωc/L
is the optomechanical coupling of the bare cavity operating at frequency fc = ωc/2π and rm is
the reflection coefficient of the membrane. For membrane index |nm| = 2 and thicknesses dm as
above, the corresponding set of reflection coefficients are |rm| = {0, 0.15, 0.24, 0.42, 0.59} (lightest to
darkest).

calling |rm| the reflectivity of the membrane with thickness dm, we obtain, in agreement with [23],

|rm| cos[2kczm] = cos(kc(L− dm)− arg(rm)) (3.20)

where kc = 2πfc/c denotes a resonant wave vector. To solve this transcendental equation, we can

first assume that the membrane is near the center of the cavity, zm = 0. In this case the argument

2kczm remains approximately constant while kc is varied by π/L (a free spectral range of the bare

cavity). To find an approximate solution, we can let kc → k0 = 2π/λ0 on the left-hand side, where

k0 is the resonant wave vector when zm = 0, and absorb dm into the cavity length, i.e., L+dm → L.

We then obtain

kcL = 2πfc/FSR = cos−1 (|rm| cos(2k0zm)) + arg(rm), (3.21)

where fc is now the resonance frequency of the MIM cavity.

Eq. 3.21 describes how the resonance frequency of the cavity depends on the reflectivity of the

membrane and its position with respect to the intracavity standing wave. A plot of fc/FSR vs. zm

is shown in Figure 3.5. Two features stand out. First, the optomechanical coupling of the membrane,

gm ≡ dωc/dzm, is non-linear. At a node (2k0zm = mπ) or antinode (2k0zm = (2m + 1)π) of the

intracavity field, the optomechanical coupling vanishes. Second, the magnitude of the coupling scales
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Eq. 3.21

numerical Eq. 3.21

Figure 3.6: Optomechanical coupling of the membrane, gm ≡ dωc/dzm, vs. membrane position
relative to cavity center, zm. Upper plot shows the range of values taken by gm/g0 for zm ranging
from the position of mirror 1 (zm = −L/2) to the position of mirror 2 (zm = L/2), calulated using
the approximate analytical expression, Eq. 3.22. Lower plots show the detailed variation of gm/g0

vs. zm as the membrane is translated along the intracavity standing wave (with periodicity λ/2).
We show the detailed variation for three starting positions relative to the midpoint of the cavity,
zm = {−0.75L/2, 0, 0.75L/2}. Solid lines correspond to a numerical calculation of gm/g0. Dashed
lines correspond to the values given by Eq. 3.22.

linearly with membrane reflectivity. Maximum coupling occurs at positions halfway between a node

and an antinode, in which case dωc/dzm = 2|rm|g0, where g0 = ωc/L is the optomechanical coupling

of an end-mirror. These features are summarized in the following formula for the optomechanical

coupling [23]:

dωc
dzm

≡ gm(zm) = −g0
2|rm| sin(2k0zm)√

1− |rm|2 cos2(2k0zm)
≡ −2|rm|g0ξ(k0, zm). (3.22)

A plot of gm(zm)/g0 = 2|rm|ξ(k0, zm) vs. zm for various values of |rm| is also given in Figure 3.5.

The optomechanical coupling reaches a maximum when the membrane is located halfway between

a node and antinode of the intracavity field. This is consistent with the picture in which round-trip

phase acquired by the circulating field varies roughly sinusoidally with membrane position (maximum

and minimum at an antinode and node, respectively).
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The above formula is valid when the membrane is near the cavity center. For our short cavity,

however, we have found that the result is qualitatively different for zm/L > 0. This might be

predicted in the limit that |rm| → 1, in which case the system driven from the left behaves like

a cavity with length L/2 + zm . For zm � L, the optomechanical coupling of this cavity is 2g0,

as predicted by Eq. 3.22. In general, however, the optomechanical coupling for this extreme case

goes as 2g0/(1 − 2zm/L). To include the effect of |rm| < 1, we differentiate both sides of Eq. 3.21

with respect to zm while leaving k0 → kc(zm) a function of zm on the right-hand side (resonance

frequency of the cavity changes as the membrane moves). This gives

gm(zm) = g0
−2|rm|ξ(kc(zm), zm)

1− 2|rm|ξ(kc(zm), zm)× (zm/L)
≈ g0

−2|rm|ξ(k0, zm)

1− 2|rm|ξ(k0, zm)× (zm/L)
. (3.23)

For |rm| < 1, the extrema of gm(zm) varies within the envelope 1/(1 − 2|rm|(zm/L)). In Figure

3.6, we check this result against the solution obtained by numerically solving arg[tmim] = 0 as a

function of frequency using Eqs. 3.18 and 3.3. The computation is made for the parameters used in

the experiment (L = 742 µm, λ = 935 nm). The envelope is seen to match. The discrepancy in the

sub-structure is explained by the the fact that (kc(zm) − k0)zm ∼ |rm|πzm/L is non-negligible for

zm ∼ L.

3.3.2 Linewidth and “Finesse” of the MIM Cavity

An analytical formula for the linewidth of the MIM cavity may be obtained by linearizing Tmim =

|tmim|2 (where tmim is the amplitude transmission coefficient associated with Mmim) around solu-

tions to the resonance condition, Eq. 3.20. We have not identified a simple expression for the case in

which the absorption of the membrane is finite (Im[nm] > 0). In this case we have found it useful to

numerically calculate |tmim|2 via the characteristic matrix given in Eq. 3.18. Results are discussed

below.

First we can try to predict an expression for the linewidth of the MIM cavity for the case of

negligible membrane absorption (Im[nm] = 0) using the results obtained in the previous section.

For |rm| → 1 and Im[nm] = 0, the left-driven cavity has an effective length of L/2 + zm and a

vanishing transmission (since tm → 0). The circulating field is shielded from the exit mirror and

experiences only half of the internal losses; it also traverses the cavity in less time due to the reduced

cavity length. This results in a cavity decay rate of κ = κ0/(1 + 2zm/L), where κ0 is the linewidth

(HWHM) of the cavity with membrane removed. For |rm| < 1 and Im[nm] = 0, we draw an analogy
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Figure 3.7: Finesse of the of the MIM cavity, F ≡ πc/2Lκ (κ is the amplitude decay rate of the
cavity in angular units) vs. membrane position with respect to cavity center, zm. Upper plot
shows the range of values taken by F/F0 (F0 corresponds to the cavity finesse with the membrane
removed) for zm ranging from the position of mirror 1 (zm = −L/2) to the position of mirror 2
(zm = L/2). In the upper plot, the solid curve is obtained using the analytical expression for a
lossless membrane, Eq. 3.24, and the dotted curves correspond to numerically computed values
for {F0,Im[nm]} ={104, 10−5} (green) and {105, 10−5} (dark green). Lower plots show the detailed
variation of F/F0 vs. zm as the membrane is translated along the intracavity standing wave (with
periodicity λ/2). We show the detailed variation for three starting positions relative to the midpoint
of the cavity, zm = {−0.75L/2, 0, 0.75L/2}. Solid lines correspond to numerically computed values
for {F0,Im[nm]} = {104, 0} (light green), and {104, 10−5} (green), {105, 10−5} (dark green). The
single, dashed, light green line corresponds to the analytical expression for a lossless membrane (Eq.
3.24). This line overlaps well with light green solid line, and is difficult to see.

to the expression obtained for gm (Eq. 3.23) to predict:

κ = κ0
1

1− ξ(kc(zm), zm)× (zm/L)
≈ κ0

1

1− ξ(kc(zm), zm)× (zm/L)
(3.24a)

F ≡ πc

2Lκ
= F0(1− ξ(kc(zm), zm)× (zm/L)) ≈ F0(1− ξ(k0, zm)× (zm/L)). (3.24b)

In Figure 3.7 we compare Eq. 3.24 to the solution obtained by numerically computing |tmim|2 vs.
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fc using Eqs. 3.3 and 3.18 and fitting the solution near arg[tmim] = 0 to a Lorentzian to obtain κ.

The computation is made for parameters relevant to the experiment: L = 742 µm and λ = 935 nm.

Two bare cavity finesse values, F0 = 104 and 105, and two membrane absorption values, Im[nmem]

= 10−5 and 0, are compared. We find that in the absence of absorption, the cavity finesse is indeed

modulated according to the envelope function predicted in Eq. 3.24b. The effect of absorption is

an increased cavity linewidth and therefore a drop in finesse compared to the lossless case. The

reduction is most pronounced when the membrane is positioned near an antinode of the intracavity

field. When the membrane is positioned near the center of the cavity, the variation in finesse is

purely due to absorption. The fractional change in finesse when the membrane is positioned at an

antinode is ≈ 6% and 38%, respectively, for the case of F0 = 104 and 105 (Tmirror ≈ 310 and 31

ppm) and Im[nm] = 10−5. Though not necessarily obvious, the same result is obtained by using

a round-trip loss of 2δm = 20 ppm predicted by Eq. 3.7 along with the following formula for the

fractional change in finesse: ∆F/F0 ≈ 2δm/(2δm + Tmirror).

3.4 Power Transmission/Reflection for the MIM Cavity

We conclude by numerically computing the resonant values of Rmim, Tmim, and 1-(Rmim+Tmim)

as a function of zm for a symmetric cavity (t1=t2). Cavity length, wavelength, bare cavity finesse,

and Im[nm] values are chosen as in the Figure 3.7. Results of the computation are shown in Figure

8.6.

A number of interesting features are apparent. First of all, the resonant transmission of the MIM

cavity varies as a function of membrane position relative to the intracavity standing wave (denoted

zm/λ in the figure) even in the absence of absorption. We may understand this in the limit of

Im[nm]=0, dm � λ, and zm � L by first placing the membrane at a node near cavity center. In this

case the intracavity field is unaffected and the cavity transmission is the same as the bare symmetric

cavity (transmission = 1 on resonance). If the membrane is then translated away from the node,

each subcavity becomes detuned with opposite sign from the resonance frequency of the bare cavity.

The detuning is equal in magnitude from the bare cavity resonance but unequal in magnitude from

the resonance frequency of the MIM cavity (shifted lower because of the finite storage time of the

mirror-membrane etalon). As a consequence, the power build-up in the two subcavities is different.

A second feature is that the extrema of Rmim and Tmim for local translation of membrane

position relative to the intracavity standing wave does not vary as a function the membrane’s coarse

positioning relative to the end-mirror (denoted zm/L in the figure). This can be reasoned from the

limit rm → 1, in which case — unlike the optomechanical coupling and the cavity linewidth — the

transmission and reflection coefficient of the cavity does not vary as a function of coarse positioning

relative to the cavity end-mirror.
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Figure 3.8: Resonant power transmission (T , blue), reflection (R, cyan), and absorption loss (1−(R+
T ), purple) of the MIM cavity vs. membrane position, zm, calculated numerically. Light, medium,
and dark lines correspond to {F0,Im[nm]} = {104, 0}, {104, 10−5}, and {105, 10−5}, respectively.
Variation occurs as the membrane is translated along the intracavity standing wave (with periodicity
λ/2). We show this detailed variation with the membrane placed at three starting positions relative
to the midpoint of the cavity, zm = {−0.75L/2, 0, 0.75L/2}

A third, important feature pertains to the effect of membrane absorption. As expected, ab-

sorption decreases the transmission of the cavity when the membrane is positioned away from

a cavity node. The effect is most pronounced when the membrane is positioned near an antin-

ode of the intracavity field. We may compare the reduction in this case to the reduction in

power transmission observed for a symmetric Fabry-Perot with round-trip internal losses δRT :

Pout/Pin = T 2
mirror/(Tmirror + δRT )2 (3.15). For the case of F0 = {104, 105} and δRT = 2δm

= 20ppm, we obtain Pout/Pin = {39%, 89%}, in agreement with the numerical results. In analogy

to the lossy symmetric Fabry-Perot, we can also compare the round-trip losses to the the expression

1 − (RFP + TFP ) = 1 − T 2
mirror/(Tmirror + δRT )2 [31]. We obtain {11%, 61%}, which agrees with

the numerical result. For the membrane located near an antinode, therefore, we may conveniently
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ignore Re[nm] when computing the effect of absorption on cavity transmission and linewidth.

3.5 Conclusion

The purpose of this chapter was to establish some basic steady-state optical properties of dielectric

films, dielectric mirrors, two-mirror optical cavities, and the compound “membrane-in-the-middle”

cavity. We have alluded to an apparatus described in Chapter 5, in which a short, high-finesse

cavity (F = 103 − 104) is integrated with a thin (50 nm) dielectric film with low optical loss

(Im[nm] ∼ 10−5). In the next chapter we will discuss the mechanical properties of these films. In

Chapters 5 and 6 we’ll describe design/construction of the apparatus and its characterization using

the numerical models developed above.
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Chapter 4

Mechanical Properties of
High-Stress Silicon Nitride
Membranes

Mechanical dissipation poses a critical impediment to observing quantum behavior in optomechani-

cal systems. The task is made more challenging by confining the parameter space to MEMS/NEMS

structures which can be coupled strongly to a light field while introducing minimal optical loss. A

significant breakthrough was introduced by the Harris group at Yale [23]. In their optomechani-

cal system, a flexible, ∼ nanogram mass, commercially available SiN membrane with exceptional

mechanical properties is coupled to a standard high-finesse Fabry-Perot cavity [13, 7, 23], thereby

separating the task of fabricating the oscillator from integrating it into an optical system. Our

group’s point of entry into the field in 2008 was a demonstration that these SiN membranes could be

optimized to realize one of the key minimum requirements for optomechanical cooling to the ground

state from room temperature, namely a mechanical quality factor Qm larger than the number of room

temperature thermal phonons: Qm > n̄m = kBTroom/~Ωm [14, 24]. In this chapter I elaborate on

those results, providing an overview of the membrane resonator and its mechanical description as

well as a detailed description of the apparatus for characterizing mechanical quality factors. I will

also summarize an ongoing investigation into clamping-related losses, which we believe limit the

mechanical quality of the resonators we’ve studied.

Broadly speaking, the approach we’ve taken is to extend the work done at Yale [23] to include

films with high tensile stress. SiN under tensile stress has been recognized for some time for its

unusually low mechanical dissipation, particularly among amorphous materials [7, 39, 40, 41]. Initial

optomechanical experiments with SiN membranes used the fundamental mode of a 1-mm-square film

with Qm = 1.1 × 106 at Ωm/2π = 130 kHz [7], corresponding to a relatively low tensile stress of

T ≈ 100 MPa . In our experiments [14] we use a SiN film in its stoichiometric form, Si3N4, which

when deposited by low-pressure chemical vapor deposition (LPCVD) on silicon has a large tensile
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Figure 4.1: Overview of the mechanical element: a membrane resonator constructed from a thin
film of silicon nitride deposited a silicon wafer. Basic fabrication procedure is shown at left. At
top right, we show a photograph of a “membrane chip” purchased commercially from Norcada, Inc.
Dimensions of this device are shown at bottom left. This particular membrane chip consists of a 50
nm layer of stoichiometric Si3N4 deposited on a square silicon substrate with dimensions 5 mm ×
5 mm × 200 µm. A 500-µm-square window of thin film is exposed. This window is what we refer
to as the “membrane” — it exhibits transverse (drum) vibrations, a subset of which are shown at
bottom right.

stress of T ∼ 1 GPa. In addition, we use sub-mm membranes and focus on the high-order modes

(as illustrated in Figure 4.1); this along with the increased tension has allowed us to increase the

resonant frequency of our mechanical mode by more than an order of magnitude over the mode cooled

in [7], while simultaneously realizing improved room-temperature quality factors. The method of

using tension to increase the frequency of mechanical modes while maintaining low dissipation has

been recognized as an important tool for seeing quantum effects in a variety of mechanical systems

[7, 39, 42, 43].

4.1 SiN Membranes: Architecture and Material Properties

The mechanical element in our optomechanical system is a silicon nitride membrane. As pictured in

Figure 4.1, each membrane consists of a square “window” of thin-film silicon nitride deposited on a



40

silicon wafer (a.k.a. “chip”). The thickness d and width w of the window and chip shown in the figure

are {dm, wm} = {50 nm, 0.5 mm} and {dchip, wchip} = {200µm, 5 mm}, respectively. We purchase

these devices commercially from a Canadian MEMs company — Norcada, Inc. [34] — which develops

them for use as sample holders for transmission electron microscopy and as vacuum windows for

X-ray spectroscopy. Their utility for these applications inherits from the exceptional surface quality

of LPCVD SiN thin films and because these films offer unparalleled optical transparency in the soft

X-ray band. Typically SiN membranes are manufactured with low tensile stress (T ∼ 100 MPa) to

improve yield and overall mechanical robustness. Our focus has been on high-stress films (T ∼ 1

GPa), the product of a slightly modified fabrication process.

4.1.1 Fabrication

The mechanical properties of silicon nitride films are closely related to the LPCVD process [35, 41].

LPCVD occurs at high temperature (700 – 800 K) and low pressure (∼ 200 mTorr); under these

conditions, the procedure consists of exposing a combination of volatile compounds — ammonia and

dichlorosilane — to a bare silicon wafer. The volatiles react to create a thin film of silicon nitride

on the wafer. Upon cooling the device to room temperature, the film acquires tensile stress due to

the thermal expansion mismatch between silicon and silicon nitride. The absolute magnitude of the

tension can be controlled via the deposition temperature and the ratio and flow rate of the volatile

chemicals. Low stress is desirable for many commercial applications. This is accomplished by using a

LPCVD recipe which dopes the film with extra nitride. High-stress silicon nitride is produced using

a slightly modified recipe [41] which results in a stoichiometric Si3N4 chemistry. Whereas low-stress

films exhibit a tensile stress of T ∼ 100 MPa, high-stress stoichiometric films obtain a tensile stress

as high as T ≈ 1.2 GPa. This has been routinely achieved in the academic NEMs community, for

instance in the context of high-stress nano-strings [41, 40]. By contrast, the included stress in our

commercial high-stress films is closer to T ≈ 900 MPa. To date, we have not been able to find a

vendor for higher stress films.

To expose the membrane window, a standard sequence of e-beam, plasma, and chemical etching is

followed. We usually have Norcada perform this procedure, but have recently had success developing

our own membranes in the KNI facility at Caltech using raw LPCVD-coated wafers (also purchased

from Norcada). Oskar Painter’s graduate student Richard Norte and our post-doc Kang-Kuen Ni

have helmed this effort. As illustrated in Figure 4.1, the procedure consists of (1) depositing an

e-beam resist atop the silicon nitride film (the substrate is coated on both sides but polished on only

one; we operate on the unpolished surface); (2) using the e-beam to write square holes in the resist

(oriented along the (111) crystal planes of the silicon wafer), thus exposing square regions of Si3N4;

(3) plasma-etching through the exposed Si3N4 until the underlying Si is exposed; (4) washing away

the excess resist; and (5) dipping the wafer into KOH, which etches away at the exposed Si at an
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Material Property LPCVD Si3N4 Silicon (111 crystal)
Young’s Modulus, E (GPa) 270-290 (210 [39]) 160-190
Poisson Ratio, ν 0.27 0.26 (|| to 111 plane)

0.18 (⊥ to 111 plane)
density, ρ (kg/m3) 2700-3200 2330
specific heat per unit volume, cV (J/kg/K) 540-700 700
thermal conductivity, κc (W/m/K) 3-35 14
thermal expansion coefficient, α (m/K) 2.3×10−6 @ 300K 2.6×10−6 @ 300K

Table 4.1: Table of material properties for high stress LPCVD Si3N4 film and the underlying silicon
(111 crystal) substrate. Spread reflects a survey of values cited in [35, 44, 39, 45, 46, 47] and [35, 44],
respectively.

angle of 54.7o with respect to both crystal planes, until it reaches the opposite Si3N4 surface. The

wafer is then dried, cleaned, and diced into the square chips pictured.

4.1.2 Material Properties

As a quick reference for this chapter, in Table 4.1 we present a collection of material properties

for high-stress LPCVD silicon nitride films and the silicon wafer substrate. Values for LPCVD

silicon nitride films do not generally coincide with bulk properties; nor do values for low-stress and

high-stress LPCVD films coincide with one another. Properties such as the thermal conductivity

appear to vary substantially between these three cases and depend on the detail of the fabrication

process or geometry (e.g., film thickness) and measurement procedure. As comprehensive resources,

we’ve found the textbooks [35, 44] and the website www.memsnet.org to be useful. For comparative

purposes, we often assume the properties cited in [39].

4.2 SiN Membranes: Mechanical Description

4.2.1 Transverse Vibrational Modes

A thin, flexible membrane under high tensile stress is the two-dimensional analog of thin, flexible

string under high tensile stress. “Thin” means that the thickness dm of the membrane is much

smaller than the square dimensions wm×wm, so that the volume change associated with transverse

vibration contributes negligibly to the potential energy. “High tension” refers to the situation in

which the work done to deform the surface of the membrane is dominated by tensile rather than

internal elastic stress. In general, the transverse vibrations of a thin plate [48, 49, 50] under tension

satisfy an elastic wave equation of the form

−D
d
∇4u+ T ∇2u = ρ

∂2

∂t2
u (4.1)
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where u(x, y, t) describes the transverse (z) displacement of mass element ρ(x, y)dxdy on the surface

of the plate residing in the x− y plane, d is the plate thickness, T is the in-plane tension, ∇ is the

two-dimensional gradient operator ∂2

∂x2 + ∂2

∂y2 , and D ≡ Ed3/12(1 − σ2) is the flexural rigidity of

the plate with Young’s modulus E and Poisson ratio σ. The right- and left-hand sides of the elastic

wave equation (Eq. 4.1) compare the kinetic energy to the potential energy of deformation due to

flexural rigidity and tension, respectively. Solutions to the wave equation may be obtained by the

method of separation of variables. We assume that the tension and density are uniformly distributed

across the square region {x ∈ [−dm, dm], y ∈ [−dm, dm]} and that at the boundary the membrane is

simply supported: u = ∂2u/∂n2 = 0, where n is the coordinate normal the boundary. In this case,

a set of solutions of the form

uij(x, y, t) = bij(t) sin (kxx) sin (kyy) (4.2a)

bij(t) = b0 sin(Ωijt+ φ) (4.2b)

{kx, ky} = {iπ/wm, jπ/wm}, {i, j} ∈ {Z+,Z+} (4.2c)

satisfies (4.1). These vibrational modes of a square drum are given by the product of two sinusoids

with an overall amplitude that fluctuates harmonically in the absence of dissipation. The first several

vibrational modeshapes of this form shown in the bottom right of Figure 4.1.

To compare the roles of tension and elasticity, we can examine the dispersion relation for the

mechanical frequency Ωij in the case of D = 0 and T = 0. For the membrane with thickness dm

and square width wm, they are

Ωij |T =0 =

√
D

dmρ

(
k2
x + k2

y

)
=

√
D

dmρ

(
π
√

2

wm

)2(
i2 + j2

2

)
(4.3a)

Ωij |D=0 =

√
T
ρ

√
k2
x + k2

y =

√
T
ρ

(
π
√

2

wm

)√
i2 + j2

2
. (4.3b)

For a high-stress LPCVD silicon nitride membrane with density ρ = 2.7 g/cm3, Young’s modulus

E = 270 GPa, Poisson ratio σ = 0.27, tension T = 900 MPa, thickness dm = 50 nm, and square width

wm = 500µm, the fundamenal frequency (i = j = 1) in these two extremes is Ω1,1|T =0 = 1.9 kHz

and Ω1,1|D=0 = 816.5 kHz. For these dimensions, the tension at which the fundamental frequencies

would be equal is T = D × (2π2/w2
mdm) = 4.8 kPa. Owing to this large disparity, we use the

frequency and dispersion relation for D = 0 in our description of both “low-stress” (∼ 100 MPa)

and “high-stress” (∼ 1 GPa) membranes. Measurements made on our samples from Norcada are in

good agreement with this model, as shown in Section 4.6.1.
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4.2.2 Dynamical Equation of Motion

Near resonance, forced vibrations of a single membrane mode (i, j) can be modeled by letting the

generalized amplitude bij(t) obey the equation of motion for a damped harmonic oscillator [50]

b̈ij(t) + Γij ḃij(t) + Ω2
ijbij(t) = F extij (t)/mij . (4.4)

The physical magnitude of the amplitude, damping rate Γij , effective mass mijm and driving

force F extij depends on the distribution of the force relative to the mechanical mode and the choice

of definition for the amplitude (e.g., the maximum amplitude or the rms average of uij(x, y)). A

description of mij and bij which is germane to the radiation pressure force applied in an optical

cavity is discussed in Chapter 6. For a thorough description in this context, we also refer the reader

to [51] and [52].

By defining bij as the maximum amplitude of the vibrational mode (i.e., the amplitude of an

antinode for a square drum mode) and noting that the potential energy of the vibrational mode

is Uij(t) = (1/2)
∫
S
u2
ij(x, y, t)Ω

2
ijρdxdydz = (1/2)Ω2

ijρd
2
memtfilmbij(t)

2/2 (the sum of the potential

energy of each mass element in the vibrating film), we are led to identify mij = mphysical/4 for all

modes in order to retain the form Uij(t) = (1/2)mijΩ
2
ijb

2
ij(t) of a harmonic oscillator [52]. Hereafter,

we drop the subscripts and implicitly refer {b,Γm,Ωm,m, Fext} to the amplitude, damping rate,

frequency, effective mass, and generalized driving force for a single vibrational mode:

b̈(t) + Γmḃ(t) + Ω2
mb(t) = Fext(t)/m. (4.5)

4.3 Characterizing Mechanical Dissipation: Concept of Q

Dissipation in oscillatory mechanical systems is frequently characterized by a dimensionless “quality

factor”, Qm. For an under-damped system, Qm is defined as the cycle-averaged energy Wm of the

oscillator divided by the energy dissipated over a cycle ∆Wm,

Qm = 2π × Wm

∆Wm
. (4.6)

For an under-damped harmonic oscillator obeying 4.5 (Γm << Ωm) one can show that Qm is

equivalent to the ratio of the mechanical frequency and the damping rate as defined in the equation

of motion (4.4). To see this, we assume that amplitude b(t) describes harmonic motion, b(t) =

b0 sin(Ωmt+ φm), and identify ∆Wm as the work done by the oscillator on the environment over a

single cycle:

∆Wm =

∮
mΓmḃ db = mΓm

∫ 2π/Ωm

0

ḃ2dt =
2π

Ωm
Γm ×

1

2
mΩ2

m = 2π
Γm
Ωm

Wm (4.7)
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→ Qm =
Ωm
Γm

. (4.8)

Note that Γm is the rate of mechanical energy dissipation in angular units.

We now consider two approaches to characterizing Qm in the lab. The first approach consists

of measuring the steady-state response of the system to an external driving force. The second, a

transient (“ringdown”) approach, consists of perturbing the system out of equilibrium and directly

monitoring its decay back to steady state.

4.3.1 Steady-State Approach

4.3.1.1 Driven Vibration

Mechanical quality may be inferred by monitoring the steady-state response of the system to an

applied external force. A simple case to consider is that of a sinusoidal drive force Fext(t) =

F0 sin(Ω0t), which may, for example, be applied by a piezo shaker attached to the membrane chip.

For an under-damped (Γm << Ωm) harmonic oscillator driven near resonance, the steady-state

solution to Eq. 4.5 is a vibration b(t) = b0 sin(Ω0t+φ0) with an amplitude b0 well-approximated by

a Lorentzian function of the drive detuning Ωm − Ω0 (see Section 2.2):

b20 =
F 2

0 /m

(Ω2
m − Ω2

0)2 + Ω2
0Ω2

m/Q
2
m

≈ (Ωm/2Qm)2

(Ωm − Ω0)2 + (Ωm/2Qm)2

F 2
0Q

2
m

mΩ4
m

. (4.9)

Since in practice it is often difficult to measure F0 or b0 directly, it is customary to sweep Ω0 (for

example using a network analyzer to drive the piezo shaker) and fit the response curve to a Lorentzian

to obtain Qm.

4.3.1.2 Brownian Vibration

We can also directly monitor Brownian vibration [29] of the membrane (the steady-state response to

thermal force fluctuations). This is a viable option because of the low mass of the membrane. To wit,

a silicon nitride membrane with dimensions {dm, wm} = {50 nm, 500 µm} and a tension of T = 900

MPa has an effective mass of m = mphys/4 ≈ 8.4 ng, a fundamental vibrational frequency of ≈ 800

kHz, and an rms thermal amplitude fluctuation of
√
〈b2〉 =

√
kBTroom/mΩ2

m ≈ 4.4 pm. Amplitude

fluctuations of this magnitude are straightforward to measure by integrating the membrane into a

low-finesse interferometer, as discussed in the next section.

Thermal fluctuations of the membrane are characterized by their power spectral density (Eq.

2.7), as described in Section 2.2 (see also [29]). Using the convention of a single-sided power spectral

density and making the Lorentzian approximation near resonance gives:

Sb(Ω) ≈ 4kBTroom
mΩ2

m

Qm
Ωm

(Ωm/2Qm)2

(Ωm − Ω)2 + (Ωm/2Qm)2

m2

Hz
; Ω = 2πf, (4.10)
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Please note that although Sb is always expressed in this thesis as an explicit function of Ω, it is

defined to represent a density function in the domain of non-angular Fourier frequencies, f = Ω/2π.

By this convention, we have
∫∞

0
Sb(Ω)dΩ/2π = 〈b2〉 = kBTroom

mΩ2
m

.

The power spectral density can be measured with a spectrum analyzer and fit to a Lorentzian,

which requires that the resolution bandwidth of the analyzer be smaller than Γm. As discussed below,

we’ve found this method difficult for high-quality mechanical resonances (Qm > 106, Ωm > 2π · 1

MHz) because of slow drift of the mechanical frequency.

4.3.2 Transient Approach: Ringdown Technique

It’s possible to directly monitor energy dissipation by perturbing the system and watching it evolve

back to equilibrium. For a weakly damped harmonic oscillator, this evolution is characterized by

a cycle-averaged energy that decays like an exponential. The slope of this “ringdown” decay curve

gives a direct measure of Qm.

Consider again a damped harmonic oscillator (4.5) driven by external force F0 sin(Ω0t) until a

steady energy W0 = (1/2)mb20 is reached, as in (4.9). The force is then instantaneously shut off

at time t0. For an underdamped oscillator (Γm << Ωm) the time evolution of the cycle averaged

energy is directly related to the work done on the environment (4.7) over an oscillatory period,

τm = 2π/Ωm:

dWm

dt
≈ ∆Wm

τm
= ΓmWm (4.11a)

→Wm = W0e
−Γm(t−t0) = W0e

−Ωm(t−t0)/Q. (4.11b)

In the lab we perform an interferometric measurement that records the membrane’s amplitude

rather than its energy. An expression for the amplitude ringdown can be obtained by solving (4.5)

with Fext = 0 and initial condition b(t = 0) = b0 with the assumption Γm << Ωm. The solution is

a sinusoid with a slowly varying envelope that decays with time constant is 2Qm/Ωm:

b(t) = b0 cos(Ωmt+ φ0)e−Γm(t−t0)/2 = b0 cos(Ωmt+ φ0)e−Ωm(t−t0)/2Qm . (4.12)

We can measure the envelope function using a network analyzer in zero-span mode, as described

below.
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Figure 4.2: Schematic of the apparatus for displacement readout. A low-finesse etalon is formed
between the membrane and a partially reflecting mirror. The amplitude of the transmitted and/or
reflected field is monitored on a photodetector.

4.4 Displacement Readout

The geometry of the membrane and membrane chip enables an exceptionally simple device for

displacement readout. As illustrated in Figure 4.2, we brace the chip against a partially reflecting

mirror to form a low-finesse etalon between the membrane (reflectivity rm) and mirror (reflectivity

r0) surface. The etalon is probed with a focused laser beam. Both the amplitude and phase of the

reflected and transmitted field depend on the etalon spacing, L, which depends on the amplitude of

the vibrating membrane surface.

The steady-state power transmitted and reflected from a lossless, asymmetric etalon may be

found in many standard optics texts [30], with a particularly thorough treatment given in Chapter

3 of [31]. The relevant formulas are given by

Pout =
Tmax

1 + (2F/π)2 sin2(2πL/λ)
× Pin (4.13a)

Pref = Pin − Pout (4.13b)

Tmax =

(
tmt0

1− rmr0

)2

(4.13c)

F ≡
π
√
rmr0

1− rmr0
, (4.13d)

where L is the etalon spacing and F is the etalon “finesse”.

For the 50-nm-thick membrane and the probe wavelength of ≈ 850 nm used for the bulk of our

studies, the membrane’s reflection coefficient is rm = 0.42 (corresponding to a real index of ≈ 2.0).
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We typically use a r2
0 ≈ 50% beamsplitter as the reflector. The finesse F of an etalon thus formed

is F ≈ 2.4, producing (ideally) a fringe with a visibility of V (F) ≡ (Pmax−Pmin)/(Pmax +Pmin) =

F2/(π2/2 + F2) ≈ 0.54. The maximum transmission in this case is Tmax ≈ 0.99.

To measure small displacements, we monitor either the power transmitted or reflected from the

etalon while positioned on the slope of this fringe. The length-to-power transduction provided by

the fringe, dP/dL, can be estimated by differentiating the expression for the transmitted power (Eq.

4.13a) at the position half-way between the maximum and minimum value of the fringe. In this case

it can be shown that

dPout
dL

= −Pout ×
4F
λ
CT (F) (4.14a)

dPref
dL

= −Pref ×
4F
λ
CR(F) (4.14b)

where Pout and Pref are the average transmitted and reflected power half-way up the fringe and the

correction factors CT,R(F) are O(1) for Tmax ≈ 1 and F > 1. For Tmax = 1 and F = 2.4, we have

CT (F) =
√
F2/(π2/4 + F2) = 0.76 and CR(F) ≈ CT (F)/V (F) = 1.41.

4.4.1 Measurement Sensitivity

The optical field is collected on a photodiode, which produces a photocurrent i(t) = RPout, where

R is the responsivity of the detector. To quantify the sensitivity of the displacement measurement,

we can compare the power spectral density Si(Ω) of photocurrent fluctuations produced by etalon

length fluctuations SL(Ω) to the spectral density of photocurrent shot noise fluctuations Sshoti (Ω)

[53, 54]. For the transmitted field:

Si(Ω) =

(
RdPout

dL

)2

SL(Ω) = R2

(
4F
λ

)2

P 2
outC

2
T (F)SL(Ω)

A2

Hz
(4.15a)

Sshoti (Ω) = 2e〈i〉 = 2eRPout
A2

Hz
. (4.15b)

Comparison of Eq. 4.15a and Eq. 4.15b gives the shot-noise-limited length sensitivity of the

interferometer, SshotL , defined as the displacement power spectral density necessary to give a signal-

to-shot-noise of one. In amplitude units:

√
SshotL ≡ λ

4F

√
2e

R

√
1

Pout

1

CT (F)
(4.16a)

≈ 7
fm√
Hz
×

√(
λ

850 nm

)(
0.5 A/W

R

)(
100µW

Pout

)(
2.4

F

)
1

CT (F)
. (4.16b)
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As an example, consider the expected thermal displacement amplitude of the fundamental vi-

bration mode of a membrane with typical values {dm, wm, ρ,Ωm/2π,Qm} = {50 nm, 500 µm, 2.7

g/cm3, 800 kHz, 106}. The effective mass of the membrane is m = ρtfilmd
2
mem/4 ≈ 8.4 ng. The rms

vibrational amplitude due to thermal agitation with energy kBTroom is
√
kBTroom/mΩ2

m = 4.4 pm

for Troom = 298 K. Half of this displacement is contained in a bandwidth of Ωm/Qm/2π = 0.8 Hz,

corresponding to a noise amplitude of ≈ 4.9 pm/
√
Hz. Equation 4.16 suggests that the necessary

probe power to achieve shot-noise-limited sensitivity at this level would be < 1 µW. In practice we

use a commercial photodetector, New Focus 1801, with a shot noise equivalent power of ≈ 100 µW

at 850 nm. Operating at this power, the signal-to-noise in a bandwidth of 1 Hz should ideally

be > 50 dB (in power units). The best we’ve achieved is ∼ 30 dB, which we attribute mainly to

imperfections in alignment, fringe detuning, and mode-overlap between the optical beam and the

membrane. We are however tolerant of less sensitivity when the membrane is driven resonantly to

amplitudes >> pm.

4.5 Apparatus for Characterizing Membrane Mechanics

An overview of the experimental apparatus is given in Figure 4.3. The low-finesse etalon described in

the previous section resides in a vacuum chamber operating at < 10−6 Torr. A piezoelectric shaker

is added either behind the mirror or between the mirror and the chip in order to excite vibrational

modes of the membrane. The etalon is probed with a laser beam that has been focused to a spot size

small enough to transect the local displacement of higher order vibrational modes of the membrane.

Vibrations are monitored by directing the reflection from the etalon to a photodetector. The output

of the photodetector’s transimpedance amplifier is directed to a spectrum and a network analyzer,

the latter of which is used for ringdown measurements using the piezo as a vibration transducer.

We elaborate on these components below.

4.5.1 Etalon

Displacement readout is performed by interrogating an etalon formed by securing the membrane

chip face-up against a partially reflecting mirror. A reflection based setup is depicted in Figure 4.3.

We place a piezo-electric shaker either below the mirror or between the mirror and chip, depending

on the manner in which the chip is secured. The piezo we typically use is a 1-mm-thick plate of

“Pz27” material from Ferroperm, Inc. (similar to Navy II), which has a unloaded resonance of ∼ 1

MHz and a static response of ∼ 0.1 nm/V. The specifics of how the chip is secured to the mirror has

varied widely in practice, because we have found that the quality factor of the membrane vibrational

modes depend sensitively on the manner in which the chip is secured. We have tried a large variety

of adhesives and mechanical fasteners to secure the chip, some of which are outlined in Section 4.7.1.
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Figure 4.3: Overview of the apparatus used to characterize membrane mechanics. A low-finesse
etalon is formed between the membrane and a partially reflecting mirror. The etalon resides in
a vacuum chamber at < 10−6 mbar. A laser beam is focused onto the membrane and the reflec-
tion from the etalon is directed to a photodetector. The resulting photocurrent is processed on a
network/spectrum analyzer

However, to minimize “clamping losses” we have found no better solution than to simply rest the

chip on the device under its own gravity. To reduce the contact area, we often rest the chip on a

curved mirror substrate or on a washer with inner diameter just smaller than the diagonal size of

the chip. A design we frequently use is shown in the main photo at left in Figure 4.3. It consists of a

1” plano partial reflector (a Thorlabs near-infrared 50/50 beamsplitter), a 1-mm-thick piezoelectric

spacer (Ferroperm Pz27), and a Macor washer to prevent the membrane chip from sliding. The jig

shown is made to accommodate 10 mm chips. The piezo-electric spacer has been machined on a

diamond band saw to remove a rectangular area slightly smaller than the chip dimensions so that

it may rest on its edges. Three small dabs of Krazy Glue secure the piezo to the mirror. To achieve

good sensitivity to thermal noise, on the other hand, the simplified arrangement shown in the upper

left inset is preferred. In this case a piezo is placed beneath the mirror — usually in this case it

must be driven significantly harder to drive the membrane.
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4.5.2 Vacuum Chamber

The etalon sits in a vacuum chamber which has been evacuated to < 10−6 mbar. The chamber

inherits from an retired CQED experiment in our lab [55] and consists of a 6” stainless steel octagon

from Kimball Physics with Conflat fittings, as shown in Figure 4.3. The chamber is supplied with

AR-coated viewports from Larson Electronics, nominally centered at 852 nm with ∼ 0.1% reflectivity

at that wavelength. A dedicated vibration isolation system sits inside the chamber; however, we

have found that this is not critical. The chamber in fact sits on a table in rigid contact with the

floor inside of a clean hood.

It is important to evacuate the chamber to high vacuum to eliminate air damping (Eq. 4.21);

however, at the same time we desire the ability to cycle the chamber rapidly, so some effort was

made to minimize conduction paths. The chamber is attached to a 55 liter/sec turbo pump station

(Varian Turbo-V60) which can be used to rough the apparatus to ∼ 10−6 mbar in approximately 15

minutes. This would be sufficient, however, vibration of the turbo pump tends to place a 70 kRPM

ripple on the time domain ringdown measurement, so for this measurement we transfer the vacuum

load to a 55 liter/sec ion pump (Varian Diode 55 Starcell). The vacuum pressure is inferred from

the ion pump current. Fully recycling the chamber to atmosphere, replacing the membrane(s), and

pumping back down to ∼ 10−6 mbar with the load transferred to the ion pump takes roughly 30

minutes.

4.5.3 Optical Layout

The optics used to probe the etalon can be seen in the upper-right-hand corner of Figure 4.3. A

clean Gaussian beam is provided by a 5µm-core single-mode optical fiber (Oz Optics, not shown).

The field radiating from the fiber is expanded and re-focused onto a focal plane coinciding with the

membrane using a pair of achromatic lenses. A knife-edge measurement was used to determine a

1/e2 waist size of ≈ 50 µm. The beam passes through a half waveplate (HWP), a polarization beam

splitter (PBS), and a quarter wave plate (QWP) enroute to the etalon. The HWP/PBS pair enables

power adjustments. The QWP is oriented at ≈ 22.5 degrees to the polarization axis so as to direct

the light reflected from the etalon onto a path terminating in a low-noise photodetector (New Focus

model 1801).

To facilitate alignment of the etalon, the input/output optics described in the preceding para-

graph are placed on a small breadboard secured to a three-axis translation stage. The fiber coupler

is also affixed to a kinematic mirror mount for small tip/tilt adjustments. Retro-reflection from the

etalon is fine tuned by iterating between these five degrees of freedom. Rough transverse alignment

is achieved by monitoring scatter from the chip surface on a CCD camera mounted to the side of

the chamber. The retro-reflection may be fine tuned by symmetrizing the airy rings on the retro-
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reflected beam. These rings are formed because the focused laser beam diffracts slightly over the gap

between the membrane and mirror surface. For small membranes, one also observes a Fraunhaufer

diffraction pattern formed by the hard square aperture. The central lobe of the Airy/Fraunhaufer

diffraction pattern should be isolated with an aperture for improved signal to noise.

The reflected beam is directed to a New Focus 1801 photodetector with a responsivity of ≈ 0.5

A/W. The internal transmipedance amplifier has a bandwidth of 100 MHz and gain of of 20V/mW

into a load of 50 Ohm.

4.5.4 Spectrum/Network Analyzer

The output of the photodetector’s transimpedance amplifier is directed to one of two devices: an

analog network analyzer (HP 4395A) and/or an FFT-based spectrum analyzer (Tektronix 5103A).

The network analyzer (NA) is used for swept response (Section 4.3.1.1) and ringdown (Section 4.3.2)

measurements. The spectrum analyzer (SA) is used for measuring thermal noise power spectra

(Section 4.3.1.2). We will not review here the details of how network and spectrum analyzers work

but rather provide an operational description.

4.5.4.1 Spectrum Analyzer Measurement

Operationally, the spectrum analyzer takes as its input a voltage V (t) and outputs a voltage power

spectrum. The power spectrum is defined as the integral of the voltage power spectral density,

SV (Ω), over an effective bandwidth B (defined in non-angular frequency units):

〈V 2(Ω)〉B ≡
∫ Ω+(2π)B/2

Ω−(2π)B/2

SV (Ω′)dΩ′/2π. (4.17)

The effective bandwidth of the spectrum analyzer can be defined relative to its output when

supplied with a signal having a known, constant power spectral density SV (Ω) = C0. In this special

case:

B = 〈V 2(Ω)〉B/SV (Ω). (4.18)

The SA is used to approximate power spectral densities by normalizing the measured power

spectrum by its effective bandwidth. We denote this approximate power spectral density as SBV (Ω):

SBV (Ω) ≡ 〈V 2(Ω)〉B/B ≈ SV (Ω). (4.19)

This approximation is valid when the power spectral density of the underlying signal varies slowly

on a scale set by B. If, on the other hand, the signal V (t) has all of its spectral content inside the
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window Ω0 ± (2π)B/2, then the analyzer produces a value:

SBV (Ω0) = 〈V 2〉/B (4.20)

where 〈V 2〉 =
∫∞

0
SV (Ω)dΩ/2π, is the rms2 amplitude of the signal.

We have verified that when operating the Tektronix 5103A in the “PSD units” mode, the ef-

fective bandwidth is indeed given by Eq. 4.18. This was done by supplying the RSA input with

calibrated white noise generated by a SRS DS345 function generator in “noise” mode. To obtain

the effective bandwidth directly, we have the analyzer compute the power spectral density of a cali-

brated sinusoidal input signal V (t) = V0 sin(Ω0t), which gives the value SBV (Ω0) = V 2
0 /(2B). A last

issue worth noting is that for noisy signals, a consistent outcome for SBV (Ω0) is only obtained after

averaging numerous measurements; this averaging must take place in power units (a setting that

must be specified — some analyzers by default average the logarithm of the power [56, 57]).

4.5.4.2 Network Analyzer Measurement

The HP 4395A network analyzer is based on a superheterodyne architecture. Internal to the network

analyzer is a tunable local oscillator which produces a reference sinusoidal voltage (the “source

signal”) at angular frequency Ωs, i.e., Vs(t) = V 0
s sin(Ωst). The source signal Vs(t) is used to drive a

piezo shaker coupled to the membrane. The signal produced by the etalon reflection photodetector’s

transimpedance amplifier is V (t) = V0 sin(Ωst + φ0). If the piezo is shaken near the resonance

frequency of the membrane (Ωs ≈ Ωm) and then abruptly shot off, the resulting “ringdown” signal is

predicted to have the form V (t) = V0e
−Ωmt/2Qm sin(Ωmt+φ0) according to Eq. 4.12. We denote the

slowly varying envelope at carrier frequency Ω by VΩ(t). For the ringdown, VΩm
(t) = V0e

−Ωmt/2Qm .

The network analyzer is simultaneously used to measure VΩs
(t), the slowly varying amplitude of

V (t) in the frame rotating at Ωs. It does this by mixing V (t) against a local oscillator VLO(t) =

V 0
LO sin(ΩLOt) into the passband of a narrow bandpass (IF) filter centered at intermediate frequency

Ωs − ΩLO, and then passing the output of this filter to an rms detector (digitally implemented by

the HP4395A). If V (t) = V0 sin(Ωst + φ0), then the output of the rms detector is proportional to

VΩs
(t) = V0. If V (t) = V0e

−Ωmt/2Qm sin(Ωmt + φ0), and if the bandwith of the IF filter (BIF )

satisfies Ωm/Qm << 2πBIF << |Ωm − Ωs|, then the output of the rms detector for sufficiently

short times (set by 2π/(Ωm − Ωs)) is proportional to VΩm(t) ≈ V0e
−Ωmt/2Qm . We use the network

analyzer in this single frequency (“zero span”) mode to perform ringdown measurements.
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Figure 4.4: Thermally induced vibrations of a membrane with dimensions {dm, wm} =
{50 nm, 500µm}. Lower plot: broadband thermal noise power spectrum obtained using an ef-
fective bandwidth of B = 500 Hz >> Γm/2π. Units are in logarithmic power dissipated by the
output of the photodetector transimpedance amplifier into 50 Ohm: 10Log[SBV (Ω)/50Ohm/mW]
dBm/Hz. Noise peaks are located at eigenfrequencies of a the square membrane resonator, with
vertical lines representing the model Ωij = Ω11

√
(i2 + j2)/2. Diagonal modes are highlighted in

pink. From the value of the fundamental frequency, Ω11/2π = 823.5 kHz, we infer a film tension
of T =935 MPa. Upper plot: a high-resolution measurement of the fundamental mode. For this
measurement, an effective bandwidth of B = 0.2 Hz is used and 3 scans are averaged. Becuase in
this case B < Γm/2π, the shape of the power spectrum is proportional to the underlying thermal
noise power spectral density, given by Eq. 4.10. A Lorentzian fit is shown, where the linewidth is
constrained to the value obtained from a separate ringdown measurement, shown in Figure 4.6, for
which Qm = Ωm/Γm = 1.4× 106.
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4.6 Measurements

4.6.1 Thermal Noise Spectrum: Static Mechanical Properties

An example of a thermal noise measurement in shown in Figure 4.4. For this measurement we use

the arrangement shown at upper left in Figure 4.3, in which the membrane chip rests flush atop

a r2
0 ≈ 50% reflector. The membrane used has dimensions {dm, wm} = {50 nm, 0.5 mm} and a

factory specified tension of T ≈ 900 MPa. The etalon is probed with a beam focused to a spot

size of ≈ 50 µm. Approximately 120µW of the light reflected from the etalon is collected onto the

reflection photodetector (New Focus 1801). The output of its transimpedance amplifier is directed

to the spectrum analyzer (Section 4.5.4).

On the bottom half of Figure 4.4 we display the power spectral density of the photodetector

signal in logarithmic power units: 10Log[SBV (Ω)/50 Ohm/mW] dBm/Hz. An effective bandwidth of

B = 500� Γm/2π Hz is used and a range from Ω/2π = 100 kHz to 5 MHz is displayed. With this

span and bandwidth, a broad spectrum of thermal noise peaks are apparent, but none are resolved.

For the fundamental mode near 820 kHz, we observe a signal to noise of ≈ 20 dB relative to the -125

dBm/Hz noise floor produced by a combination of shot noise and detector noise. This compares

favorably to the signal to noise of 10log[(kBTroom/mΩ2
m)/〈L2(Ωm)〉shotB=500 Hz] ≈ 22 dB predicted by

comparing the predicted rms2 displacement of the fundamental mode, kBTroom/mΩ2
m = 4.4 pm2, to

the effective length noise SshotL associated with shot noise integrated over a bandwidth of B = 500Hz,

according to Eq. 4.16: i.e., 〈L2(Ωm)〉shotB=500 Hz ≈ 2.5× 10−2 pm2.

Information about static mechanical properties of the membrane can be inferred from this mul-

timode thermal noise spectrum. The measured value of the fundamental frequency, Ω11/2π = 0.823

MHz, can be used to estimate the tension. Using a value for the density supplied by Norcada and

literature on LPCVD SiN films, ρ = 2.7 g/cm3 [39], and assuming window dimensions of wm = 500

µm , (which have been independently verified to within 1% using an SEM), the tension inferred from

the eigenfrequency formula, Ω11/2π =
√
T /(2ρw2

m), is T = 935 MPa. This value is within 5% of

the factory specified value of 900 MPa. We have found the tension as inferred from the fundamental

frequency (assuming fixed dimensions) to vary by a few % between chips in the same processing run

from Norcada and by as much as 5% from order to order with identical specifications.

To gauge the precision of the chip geometry and/or uniformity of the tensile stress, we can

examine the deviation of the multimode vibrational spectrum from the model dispersion relation:

Ωi,j = Ω1,1

√
(i2 + j2)/2. A plot of the difference between the measured and predicted values

∆(i, j) ≡ (Ωij − Ωmeasij )/2π for all modes with frequencies Ωij/2π < 5 MHz is shown in Figure 4.5.

We observe that the spectrum does not deviate by more than 0.1% from the model prediction. In the

figure, we compare the measured deviation to a model in which the membrane is allowed a small rect-
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Figure 4.5: Difference ∆(i, j) ≡ (Ωi,j − Ωmeasi,j )/2π between the measured frequency spectrum in

Figure 4.4 and the ideal model Ωij = Ω11

√
(i2 + j2)/2, where Ω11 is the measured value. The trend

is roughly consistent with a toy model in which the membrane is allowed to be rectangular with one
dimension ≈ 0.077% larger than the other (model shown in light gray).

angularity, in which case the model dispersion relation becomes Ωi,j = 2π

√
T
2ρ

((
i
dx

)2

+
(
j
dy

)2
)

.

From this model we infer an effective rectangularity of |1− dy/dx| ≈ 8× 10−4.

In the upper frame of Figure 4.4, we hone in on the fundamental drum mode of the membrane.

An effective bandwidth of B = 200 mHz is used and three measurements are averaged. We have

found it difficult to obtain a good linear least-squares fit of this peak to a Lorentzian because the sub-

Hz-wide feature tends to drift by more than a linewidth during the coarse of a single measurement

(taking ∆t = 2/B = 10 seconds). In the figure we show a fit to a Lorentzian whose linewidth is

obtained using a ringdown measurement, as described in the next section.

4.6.2 Ringdown Measurement of Qm

An example of a ringdown measurement is shown in Figure 4.6. This measurement was made with

the same membrane, optical probe, and etalon configuration described in the previous section. For

ringdown measurements, however, the photodetector signal is directed to the input of the HP 4395A

network analyzer (Section 4.5.4.2).

The ringdown procedure begins by exciting the membrane. To do this, the network analyzer

source is connected to the piezo beneath the etalon mirror and the source frequency is centered at

the mechanical frequency, Ωs ≈ Ωm. The resulting vibration of the piezo resonantly excites the

membrane to an energy W0 >> kBTroom. After a steady-state amplitude is reached (in practice this
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Figure 4.6: Example of a ringdown measurement for the (1,1) mode of the {dm, wm} =
{50 nm, 500µm} membrane characterized in Figure 4.4. Here we use a piezo shaker to excite the
fundamental mode of the membrane to an energy W0 >> kBTroom. After switching off the resonant
drive, we monitor the amplitude of the oscillator decay. The amplitude inferred from the power re-
flected from the etalon incorporating the membrane, producing a photodetector signal V (t). VΩm

(t),
the slowly varying amplitude of V at carrier frequency Ωm/2π = 823 kHz, is monitored using a net-
work analyzer in zero span mode. The measurement is fit to a decaying exponential (black curve).
Amplitude residuals are shown in pink. A value of Qm ≈ 1.38 × 106 is obtained from the formula
Qm = Ωm/2τm, where τm is the amplitude e-folding time inferred from the fit.

involves patiently tuning Ωs to track slow drift in Ωm), we abruptly disconnect the network analyzer

source from the piezo. We monitor VΩm
(t), the slowly decaying envelope of the oscillation at carrier

frequency Ωm, using the network analyzer in “zero-span” mode, as described in Section 4.5.4.2. To

obtain a sufficiently sampled decay curve, we choose an IF bandwidth 2πBIF ∼ 100×Ωm/Qm, with

typical values between ∼ 100−−1000Hz for the measurements discussed here and in later sections.

A ringdown measurement of the 823 kHz fundamental mode corresponding to the thermal noise

peak in Figure 4.4 is shown in Figure 4.6. We use an IF bandwidth of BIF = 300 Hz. The decaying

magnitude of VΩm(t) is fit by linear least-squares to an exponential. Residuals of this fit (defined

as the difference between the measured and fitted values) are shown in the lower, pink trace, and

are less than 1% of the starting value of the decay curve. From the fit, we infer a quality factor

of Qm = 1.380± 0.005× 106, where the error bar is computed from the chi-square value of the fit.

The repeatability of this measurement, however, is closer to 10%, for reasons we don’t understand.

The noise in the measurement at long times is due to Brownian motion of the membrane. For this

measurement, the initial amplitude of the membrane is ∼ 100 times larger than thermally driven

amplitude, corresponding to an initial amplitude of ∼ 1 nm. Because the starting energy for the
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Figure 4.7: Set of ringdown measurements for all membrane modes (i, j) such that Ωij/2π < 4.6
MHz, using the same membrane with dimensions {dm, wm} = {50 nm, 500µm} as in Figure 4.4.
The reduced mechanical quality for the fundamental mode relative to Figure 4.4 is due to a slight
modification of the chip mounting. For higher order membrane modes, the value of Qm is roughly
constant at ∼ 4×106, corresponding to a monotonically increasing Q×f product (f = Ω/2π) which
surpasses the critical value of 6× 1012 Hz (shaded gray).

ringdown is substantially larger than the thermal energy, it is worth comparing the result to a more

careful measurement of the linewidth of the thermal response. This is done in the next section.

4.6.2.1 Q-factors of Higher-Harmonics — A Single Trial

In Figure 4.7, we have carried out the ringdown measurement for all internal modes of a {dm, wm} =

{50 nm, 0.5 mm} Norcada membrane from 800 kHz to 4.6 MHz, using the etalon configuration shown

in the upper left inset of Figure 4.3. We separate vibrational resonances of the piezo and membrane

chip (some of which have quality factors in excess of 104) from vibrations of the membrane by

examining the thermal noise spectrum, as shown in the lower plot. Remarkably, for higher harmonics

the Q × f product exceeds 1.5 × 1013 > kBTroom/h (several years ago this was believed to be

unique among NEM/MEMs oscillators at room temperature [14]). Roughly a factor of two variation

in quality factor is observed between higher order drum modes. We have yet to systematically

investigate the role of mode order in determining of mechanical Qm, but note that a recent study
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has been performed at Cornell in which it was found that different mode shapes may experience

different support-related clamping losses [58]. What we have found is that the result shown in Figure

4.7 varies widely depending on the details of the membrane window and membrane chip geometry,

as well as the way that the chip is attached to the etalon. A large collection of measurements of

the sort shown in Figure 4.7 was taken in order to sort out this behavior phenomenologically. We

discuss this study in the next section.

4.7 Compilation of Mechanical Q Measurements

Over the course of three years, we have compiled a large database of Qm measurements for chips

and membranes of various geometries. We have varied the chip dimensions, membrane dimensions,

and the manner in which the membrane is secured to the chip. More recently, we have also begun

developing our own membranes along with Richard Norte (graduate student from the Painter group)

and Kang-Kuen Ni (our postdoc) using the facilities at the Painter group clean room and the

Caltech KNI—these include circular membranes and more exotic, tethered structures. It has long

been appreciated in the nanomechanics community that the size of the resonator and its substrate

and their mechanical attachment plays a critical role in determining mechanical dissipation. In

particular, smaller structures tend to have smaller Qm, and structures with high aspect ratios exhibit

Qm-dependence on the thin dimension, which may be attributed to surface-related, thermo-elastic,

and “clamping”-type loss mechanisms. “Clamping” loss, which pertains to acoustic coupling to the

mechanical support, has been extensively studied for cantilever type structures [59] and also depends

on the “large” dimensions of the resonator. A recent treatment of clamping loss in high-stress films

has also been carried out, in which it has been shown both experimentally and theoretically that

the geometry of the mechanical mode can enhance or suppress coupling to the support structure

[58]. Variations on this subject abound. In order to limit our search space, we have focused on

measuring the mechanical quality of square Norcada membranes with stoichiometric chemistry and

tension T ≈ 900 MPa. We have varied the thickness of the membrane from 30 nm to 100 nm and the

square dimensions of the membrane from 250 µm to 1 mm. Likewise, we have varied the thickness

of the membrane chip from 200 µm to 500 µm and the square dimensions from 5 mm to 10 mm. We

have also tried various methods of mounting the membrane chip, including adhesive bonding, rigid

mechanical clamping, and resting under its own gravity. Results vary widely, but show a definite

trend towards improved Q with smaller membrane thickness, larger window size, larger substrate

dimensions, and minimal clamping of the membrane chip. We summarize these results below.
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Figure 4.8: Compilation of mechanical Q measurements for different chip mounting methods.
Here we have fixed the chip and membrane dimension at {dm, wmem} = {50 nm, 500µm} and
{dchip, wchip} = {0.2 mm, 5 mm}, respectively. A variety of methods were investigated, including
adhesive bonding and rigid mechanical clamping, denoted as open or closed black circles. Three
examples are illustrated with black lines. These consist of adhesively bonding the entire chip surface
to a planar surface, bonding three corners, and bonding two corners, respectively. We compare these
results to the case for which the membrane rests “free standing” under its own weight on a planar
surface, corresponding to red points.

4.7.1 Influence of Chip Mounting

Practically speaking, we must somehow attach the membrane chip to a separate device (e.g., a mir-

ror) in order to conduct simple tests or to perform the more complicated optomechanics experiment

described in the rest of this dissertation. We at first did not anticipate that this would have a

substantial effect on the membrane mechanics. We were wrong. For the measurements described

in this chapter, we had to somehow attach the chip to the etalon mirror substrate. Originally the

entire setup was oriented vertically rather than horizontally (membrane surface normal to gravity);

for these earlier iterations we used a small dab of glue or carbon sticky tape to secure the membrane

chip against the mirror. Those initial trials were performed on large (1 mm), low-stress (∼ 100

MPa) films, which exhibited Qm ∼ 105 −−106, as large as we expected from the work done at Yale

and Cornell [13, 40]. When we started studying high-stress Norcada films of nominal dimensions

{dm, wmem} = {50 nm, 500µm}, we discovered a trend whereby the lower order membrane modes,

particularly the fundamental, exhibited significantly deteriorated Q-values relative to higher order

membrane modes, and that the quality factor of the lower order modes varied widely from chip
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to chip. We made various attempts at alleviating the problem. We tried varying the type of glue

from soft silicon adhesive (VacSeal, RTV) to hard epoxy (Masterbond EPLTE-LO) to hard-ceramic

(Ceramabond 835). We tried bonding the chip rigidly over its entire surface using a flowable UV

epoxy (Norland 81). We tried using minuscule dabs of cyanoacrylic adhesive (Krazy Glue) at the

corners. We also tried mechanically clamping the chip between two flat metal surfaces. More re-

cently, we’ve investigated optical contacting of the chip to the mirror. Without exception, the best

results we’ve observed are for a vertically oriented setup in which the chip simply rests under its own

gravity (“free-standing”) on the surface of a smooth mirror, or on three points provided by resting

on a curved mirror or a washer ring (see left side of Figure 4.3, each geometry gives similar results).

We’ve found the “next best” alternative to be a single dab of adhesive at one corner, then two

corners, three corners, and so on. The extent to which the Q is affected depends on the size of the

chip and the membrane, being more sensitive for thin membranes and chips. In Figure 4.8, we focus

on the results of testing a batch of chips with the nominal membrane/substrate dimensions given

above for different mounting techniques. These results illustrate the qualitative behavior described

in this paragraph.

4.7.2 Influence of Membrane Thickness and Substrate Thickness

We have purchased chips from Norcada with varying film thickness (dm = 30 nm, 50 nm, and 100

nm) and chip thickness (dchip = 200 µm and 500 µm). By fixing the square dimensions of the

membrane (wm = 500 µm) and chip (wchip = 5 mm), we were able to study the role of dm and dchip

on Qm. An exhaustive set of measurements was carried out by one of our SURF students, Jetson-

Leder-Louis, in the summer of 2010. Those results are shown in Figure 4.9. For each measurement,

the membrane was allowed to rest on four corners under its own weight atop a piezo-electric spacer,

as shown at top left in Figure 4.3. Jetson’s results suggest that the quality factors of low-order

membrane modes increase roughly linearly with decreasing membrane thickness, and that for each

membrane thickness, the Qs obtained for a 500− µm-thick substrate are ∼ 25−−50% better than

the results obtained for a 200− µm-thick substrate.

4.7.3 Influence of Membrane Window Size

We have for some time been interested in using smaller membranes with larger fundamental reso-

nance frequencies, lower effective masses, and larger thermal displacement amplitudes for our op-

tomechanics experiment. To date, we have tested high-stress membranes with square dimensions

varying from 1 mm to 200 µm, the latter having been developed at the KNI facility at Caltech by

Richard Norte and Kang-Kuen Ni. When all other membrane and chip dimensions are fixed, we have

found evidence that suggests that membranes with smaller square dimensions exhibit lower Q × f
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Figure 4.9: Compilation of Q measurements for different membrane and chip thicknesses. Here
we have fixed the square chip and membrane dimensions at wm = 500µm and wchip = 5 mm,
respectively. The thickness of the film is varied between dm = 30 nm, 50 nm, and 100 nm. The
thickness of the chip is varied between dchip = 200 µm and 500 µm. For a given membrane mode,
the quality factor scales roughly inversely with membrane thickness. Marginal improvement is also
seen for thicker chips. In all cases, the membrane is mounted by resting on a planar surface under
its own weight.

products. For free-standing chips, most of our study as been limited to wm = 0.25 mm and 0.5 mm

membrane windows. We have found that at similar mechanical frequencies, Qm for the modes of

the wm = 0.25 mm membrane are roughly half that of the wm = 0.5 mm membrane. A subset of

results for dm = 50 nm membranes in which the chip dimensions has been fixed at dchip = 0.2 mm

thick and wchip = 5 mm wide is shown in Figure 4.10.

4.8 Summary of Q Measurements, Comparison to Clamping

Models

A summary of results culled from three years of measurements on high-stress Norcada membranes

of various geometries is shown in Figure 4.11. Here we have plotted the results in terms of the

Q × f product, which may be compared to the critical value of kBTroom/h = 6 × 1012 Hz denoted

by gray shading. The results are categorized in terms of membrane thickness dm, membrane square

dimensions wm, and chip thickness dchip (though we have also varied chip size wchip from 5 mm to

10 mm, we have noticed only a marginal improvement from this change). The manner in which the

chip has been secured is broadly categorized as “clamped” (e.g., using adhesive at the boundary)
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Figure 4.10: Compilation of Q measurements for different membrane sizes. Here we have membrane
thickness at at dm = 50 nm and the chip dimensions at{dchip, wchip} = {0.2 mm, 5 mm}. The
width wm of the square membrane is varied between 0.25 mm, 0.5 mm, and 1 mm. As an important
caveat, for 1 mm membranes we have only made measurements for rigidly mounted chips— we
believe this explains the discrepancy from the trend inferred from the 250 µm and 500 µm trials.
For these two cases the membrane chip was allowed to rest on a planar surface under its own weight.

vs. “free-standing” under its own weight. Note that the best results are obtained for the thinnest

(30 nm) membranes deposited on the thickest (500 µm) chips. The scatter in measured Qm values

extends two orders of magnitude and is predominantly associated with lower order modes of rigidly

mounted membrane chips. This scatter is diminished for higher order membrane modes, which we

may interpret as having weaker coupling to the substrate. At high frequencies, these quality factors

appear to asymptotically approach a Q× f product of several 1013 Hz. Higher frequencies were not

measured for lack of ability to drive them with the piezo.

It is interesting to compare these qualitative trends to loss mechanisms often quoted in NEMs and

MEMs literature. A tremendous amount of work has been dedicated to this subject, so we confine

ourselves to the loss mechanisms that have been suggested for transverse vibrations of structures

based on thin films. Surprisingly little is understood physically about the role of tensile stress in

these types of resonators [41]. For doubly clamped nano-beam type geometries at room temperature,

for example, it has been suggested that primary loss mechanisms include viscous air damping,

thermoelastic loss, and external (clamping) loss due to surface layers and acoustic coupling to the

support [39, 59]. We touch on these subjects below.
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Figure 4.11: Summary of Q measurements. Here we highlight the results for differing membrane
thickness dm, membrane size wm, and mounting technique (“clamped” vs. free-standing). Different
chip size and thicknesses are lumped together, though we note that moderately improved quality
factors are recorded for thicker chips. The highest Q × f products were obtained for dm =30-nm-
thick, wm = 500-µm-wide membranes on a dchip = 500-µm-thick, wchip = 5-mm-wide chip resting
on three corners under its own weight. Membranes with different dimensions appear to exhibit Q×f
with scaling roughly wm/dm.

4.8.1 Clamping Mechanisms

Air damping for a thin beam of thickness t obeys a relation [40]

Qair =
ρtΩm

4

√
π

2

√
RT

M

1

P
≈ 6× 108 ×

(
t

50 nm

)(
Ωm/2π

1 MHz

)(
10−6 mbar

P

)√
T

298 K
(4.21)

in the molecular flow regime, characterized by a mean free path ` between gas particles (with

diameter d0) that is greater than the largest dimension of the oscillator. For an ideal gas, ` =

kBTroom/
√

2πd2
0P > 1 mm implies P < 6 × 10−2 mbar for this condition to hold for 50-nm-thick

films at room temperature with d0 ≈ 0.4 (typical for gas particles in air). For our operating pressure

of P ∼ 10−6 mbar neither the absolute value nor the thickness dependence associated with air

damping seems to match the measured Qm data.

A second candidate is thermoelastic loss, which arises when elastic strain produced by vibration

induces local temperature gradients. Equilibration of these gradients draws energy from the vibra-

tion. This form of loss can dominate in room temperature NEMS/MEMs systems, where the small

dimension of the oscillator can lead to thermal relaxation rates as fast or faster than the vibrational
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frequency. A formula which is often applied to resonators under tensile stress but which is derived

for purely bending-type resonators in is [60]

QTED =
cv

Eα2T

(
6

ξ2
− 6

ξ3

sinhξ + sin ξ

coshξ + cos ξ

)−1

; ξ = d

√
Ωmρcm

2κc
(4.22)

where d is the thickness of the structure. cv is the specific heat per unit volume, E is the Young’s

modulus, α is the linear thermal expansion coefficient, cm is the specific heat per unit mass, κc is

the thermal conductivity, and T is the ambient temperature. For parameters {d, ρ, E, κc, α, cm, cv}

= {50 nm, 2.7g/cm
3
, 210 GPa, 30 W/m/K, 2.3 × 10−6 m/K, 710.6 J/kg/K}, one predicts Q × f ≈

6× 1013 Hz (the second term in (4.22) is negligible in our case, since ξ � 1). The main uncertainty

in this number comes from the value of κc, which varies by as much as a factor of ten in the literature

(see [39] and references in Table 4.1). This result suggests that thermoelastic losses may explain the

highest Q× f products we’ve achieved. However, we have several reasons to believe that this is not

the case. First of all, ξ � 1 suggests QTED ∝ d−2
m ; if this were the case and 30 nm membranes were

thought to be limited by thermoelastic losses, then results for our 100-nm-thick membranes would

exceed the predicted thermoelastic limit. More importantly, our resonators are decidedly far from

“bending”-type resonators. The derivation of QTED in [60] assumes a relationship between internal

strain and mechanical frequency which significantly overestimates the curvature of the transverse

vibrations associated with a given mechanical frequency (it is this curvature which leads to volume

change and thermoelastic heating for a thick 1D or 2D string). A more rigorous calculation which

takes into account tension has been carried out by our colleague Darrick Chang. He predicts that

the thermoelastic QTED × f limit for our square drum resonators can be as high as ∼ 1019 Hz.

This prediction is in qualitative agreement with the results of a calculation we’ve been told has been

independently carried out by the Yale group [61].

We have yet to identify a smoking gun from among the various clamping loss mechanisms nor-

mally cited for NEMs structures. Phenomenologically, what we observe is a quality factor that scales

roughly inversely with membrane thickness dm, roughly linearly with membrane square dimensions

wm, roughly linearly with chip thickness dchip, and roughly independent of frequency for higher

harmonics. By contrast, models for surface loss [59] in planar resonators predict that thicker films

should exhibit higher Qm, since fractionally less of the vibrational energy is shared with the lossy

surface layer. Models for acoustic coupling of doubly clamped beams and cantilevers to their support

substrates generally predict that Q should scale as a power law greater than or equal to linear in

the length of the resonator, depending on the geometry of the substrate [39]. These models assume,

however, that T = 0, that the beam width is much smaller than its length (in our case the two

are equal), and that the wavelength of an acoustic phonon propagating in the substrate material

at the vibrational frequency of the resonator is much different than relevant dimensions of either
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the resonator or the substrate. In our case, a 1–10 MHz frequency phonon propagating in silicon

with elastic wave speed ≈ 5000 m/s has a wavelength of 0.5 - 5 mm, which is of the same order

as the square dimensions of the membrane (wm = 0.25–1 mm), the thickness of the chip (dchip =

0.2–0.5 mm), and the square dimensions of the chip (wchip = 5 mm–10 mm)! Recent work by the

Cornell group with Ignacio Wilson-Rae [58] has taken some of these considerations into account.

They predict that for square and circular membrane geometries similar to ours, the quality factor

limit due to acoustic coupling to the support should indeed scale as wm/dm. They compare their

prediction to measurements made on dm = 112.5 nm, wm = 250-µm-square membranes developed

in-house with T = 1200 MPa and using a somewhat different processing method than Norcada.

Their Q prediction is a factor 10–100 higher than measured. Accounting for this discrepancy by

adding an ad-hoc internal loss term, they are able to predict to within factor of ∼ 2 the differences in

the quality factors of different higher harmonics for the same square membrane. It is interesting to

note that the quality factors they observe agree to within a factor of ∼ 2 with the value of Q ≈ 106

that our results would phenomenologically predict for a membrane of their dimensions.

4.9 Concluding Remarks

Extending the work begun at Yale [13], we have found that commercial high-stress Si3N4 membranes

can exhibit exceptionally high quality factors at room temperature, even exceeding the basic condi-

tion for ground-state optomechanical cooling from room temperature (Q×f > kBTroom/h > 6×1012

Hz) for higher harmonics of sub-mm membranes. We have characterized the static and dynamic

mechanical properties of these films using a simple optical setup. This setup allows for the study

of both the steady state response to thermal excitation and the ringdown response to a resonant

piezo-electric driving force. A comprehensive set of measurements has been made with regards to

what we believe to be predominantly clamping-type losses. We have found that thinner, larger

membranes on thicker substrates produce the best results, and that straining the substrate can have

substantial effects on the measured Qm. In our case the effect of adding strain is deleterious, in

contrast for example to [62] . Our findings suggests that a compromise must still be made to keep

the resonator “small” and at the same time of high quality. A metric for the “smallness” of the

resonator may be given in terms of the product of its quality factor and its surface-to-volume ratio

(R). It has been noted in the past [13] that silicon nitride membranes exhibit a marked advantage

over other geometries in this respect. In our case, Q×R = 3×105 nm−1 and Q×f > 2×1013Hz for

the higher order mode of a 30-nm-thick square membrane with sum-mm dimension. Both numbers

currently appear to be among the best achieved at room-temperature for mescoscopic oscillators

used in opto/electromechanical studies, as well as in the broader MEMs/NEMS community.



66

Chapter 5

Membrane-in-the-Middle
Apparatus

In this chapter I present a top-down description of our first-generation “membrane-in-the-middle”

apparatus, including the cavity, nanopositioning system, vacuum chamber, vibration isolation, and

optical layout. The description herein is intended to furnish the backdrop for the experiments

described in later chapters. Most of the hardware in the system described here was developed in

the autumn and winter of 2008. At the time, the “mechanics” project in the Kimble group was

unfunded but heavily resourced, having recently decommissioned two laboratories (“lab 11” and

“lab 9”) dedicated to our Fabry-Perot-based CQED project. By dint of my familiarity with those

projects, Cindy Regal, Scott Papp, and I were able to carve out an exclusive claim to a hodge-podge

of valuable equipment. In particular, we decided to construct the new experiment around in-house

diode and titanium-sapphire lasers operating at NIR (800 – 950 nm) wavelengths, along with a

warehouse of optics at those wavelengths, including the supermirrors used for the optical cavity.

We also gathered vacuum components, a nanopositioning stage, vibration isolation material, servo

electronics, RF synthesizers and spectrum analyzers, computers — you name it. Much of the lore

and technology that has been inherited, particularly with regards to the development of high-finesse

Fabry-Perot cavities (a craft with a long history in the Kimble group), will be lifted out of historical

context here. I begin, rather, where the dust has settled, referring to former theses as needed.

5.1 Design Criteria

In the previous chapter it was shown that high-stress, stoichiometric Si3N4 membranes could exhibit

exceptionally high quality factors. They also have small mass (∼ 10 ng) and a geometry that en-

ables them to be integrated into an an optical cavity [7], making them an attractive candidates for

optomechanical studies [13]. Coupled with preliminary data (Section 6.4) and documented evidence

[36, 13] that Si3N4 could exhibit low optical absorption in the NIR, and drawing from the seminal
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Figure 5.1: Initial nanopositioning of the membrane between the cavity mirrors (the cameraman is
holding his breath). In this chapter we explain the architecture and operation of the “membrane-
in-the-middle” apparatus pictured here.

work of the Harris group [7], we set about constructing our own “membrane-in-the-middle” (MIM)

cavity apparatus in October of 2008. Our design criteria deviated in some respects from the Harris

group’s, and can be summarized as follows:

1. The cavity mirrors should support a finesse of F > 105, as we anticipated the extinction

coefficient for our films to be < 10−5 in the NIR. To provide some leeway, we also anticipated

the need to “tune” the cavity finesse by operating on the side of the mirror coating curve.

2. The cavity length should be long enough to enable operation in the good cavity limit, but

short enough to support a spot size smaller than the (6,6) mode of a 500-µm-square membrane

(deemed a sweet spot based on our mechanical Q measurements at the time, see Chapter 4).

To obtain κ(HWHM) ∼ 1 MHz, this compromise would require a L ∼ 1 mm cavity with the

smallest radius of curvature mirror substrates we had available at the time, Rc = 5 cm.

3. The cavity length must be tunable to enable referencing/locking to the laser. This would be

necessary since, for a ∼ 1 mm cavity, the free spectral range, FSR ≡ c/2L ∼ 100 GHz, is

much larger than the mode-hop free range of our diode and ti-sapph lasers.

4. The membrane should be separate from the cavity and attached to a nanopositioning stage

with five alignment degrees of freedom. We had little idea how difficult alignment would be, so

we required a positioning system with both fine and coarse tuning capability. Fine resolution

along the cavity (z) axis should be sub-nm (<< λ). Fine resolution along perpendicular (x, y)

axes should be sub-µm (much smaller than the nodal spacing for the 6,6 mode of a 500-

µm-square membrane). Fine tip/tilt resolution should be << L/(Rc · F) ∼ 1 µrad. Coarse
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resolution along the cavity axis should be longer than the cavity length, > 1 mm. Coarse

resolution in the x and y direction should enable complete removal of the membrane from the

cavity, and hence be larger than the 5 mm chip dimensions.

5. The membrane should be attached to a stiff, short-range piezo shaker for ringdown measure-

ments and in order to provide a dither at the mechanical frequency for displacement calibration.

6. The membrane chip should be mounted in a fashion which does not appreciably reduce the

quality factor of the membrane.

7. The MIM cavity should be supplied with dedicated vibration isolation. Isolation should ideally

limit vibration of the membrane with respect to the cavity mirrors to ∼ λ/F ∼ 100 pm at

seismic frequencies (< 100 Hz).

8. The MIM cavity should be enclosed inside a vacuum chamber. It must be large enough to

accommodate the cavity, membrane nanopositioning system, and a vibration-isolation stack.

It must also be able to achieve a moderately high vacuum of ∼ 10−6 mbar in order to eliminate

the possibility of air damping on mechanical quality of the membrane.

We now discuss how these challenges were met by the various components.

5.2 Cavity Design

Short, small-waist, high-finesse Fabry-Perot cavities are the mainstay of a decades-old CQED project

in the Kimble group [63, 64]. Consequently, we have borrowed a great deal from the design of our

CQED system in the development of the cavity for our MIM system. The marriage has been fruitful

because, as it turns out, the task of loading into and trapping an atom inside of a short Fabry-Perot

cavity places similar geometric constraints on the system as the criteria listed above. In particular,

both systems benefit from a design which permits optical axis to the volume between the two cavity

mirrors over a large solid angle. In the atomic physics experiment, this optical access has enabled

us to efficiently load and interrogate a trapped atom using laser beams transverse to the cavity axis.

In the optomechanics experiment, we take advantage of this optical axis to maneuver a dielectric

thin film between the mirrors. In both cases, a large solid angle requires that the ratio of the mirror

diameter to the cavity length be small. The design therefore centers around a pair of dielectric

supermirrors with ∼ mm dimensions [37].

A schematic of the cavity is shown in Figure 5.2, corresponding to the photo in Figure 5.1 and

the schematic in Figure 5.3. Its design represents the culmination of many years of meticulous

tweaking, and includes only several minor modifications specific to my own prejudices and the (for

the most part relaxed) demands of the optomechanics project. Basic elements of the design have been
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Figure 5.2: Schematic of the optical cavity, including mounting components and mirror substrates

described in detail in the dissertations of no less than seven generations of CQED experimentalists

in the Kimble group, includeing Russ Miller [63], Tracy Northup [65], Andreea Boca [66], Kevin

Birnbaum [67], Jason McKeever [68], Joe Buck [69], Teresa Lynn [70], Christina Hood [71], Dave

Vernooy [72], and Quentin Turchette [73]. In particular, we refer the reader to Tracy and Christina’s

theses for a detailed description of the mirrors, to Kevin and Christina’s thesis for a manual to cavity

construction, and to Joe Buck’s thesis for an in-depth discussion of the mirror substrates.

We here elaborate on the mirrors, the cavity assembly, and choice of cavity parameters:

5.2.1 Mirrors: Coating and Substrate

The mirror coatings used in this experiment are described analytically in Chapter 3 and characterized

experimentally in Chapter 6. They were drawn from a batch of dielectric “supermirrors” developed

by Advanced Thin Films in 2005 for use in our Cesium CQED experiment [37, 65]. At the center of

the coating curve, roughly λc ≈ 850 nm, the reflectivity of the mirrors is Rmirror ≈ 0.999985. The

scattering/absorption probability δSA for a photon incident upon the mirror is designed to be better

than δSA = 1 − Rmirror − Tmirror = 3 ppm. However, as is typical, handling of the mirrors has

resulted in a marginally higher loss of ≈ 5 ppm. For a symmetric cavity, this enables a loss limited

finesse of F = π/(Tmirror + δSA) ≈ 1.5 × 105 at coating center. The mirrors were also designed so

that a reasonably high-finesse may still be obtained at the “magic” trapping wavelength for cesium,

935 nm. For this particular batch of mirrors, the transmission at 935 nm is ≈ 300 ppm, allowing
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for a relatively less lossy symmetric cavity with a finesse of ≈ 104. We have taken advantage of the

wavelength dependence of the coating curve to operate the MIM cavity at a variety of finesse values.

Physically, each mirror consists of a 35-layer dielectric stack deposited on a superpolished BK7

glass substrate. The substrates arrive from the factory with cylindrical dimensions of {Ds, Ls} =

{7.75 mm, 4 mm}. The superpolished face has been ground against a convex blank with a spherical

radius of Rc = 2.5 cm - ∞(plano). In our case the radius is Rc = 5 cm. The other, plano face

of the substrate has a slight wedge to prevent back-reflection; this surface has received an AR

coating (< 0.1%) centered at a wavelength of 850 nm. After coating, the substrates used in our

experiment were honed to dimensions of {Ds, Ls} = {3 mm, 4 mm} on a glass lathe. The edge of

the superpolished face was then chamfered at 45 degrees to reduce the diameter of the mirror face

to 1 mm.

5.2.2 Cavity Construction

To form a cavity, two mirrors are placed face to face and aligned in the customary fashion — so that

the coated surfaces are pierced by the line joining their centers of curvature (see [37] for a thorough

description). A geometrically stable, horizontal orientation is achieved by first securing each mirror

with a small dab of high vacuum-compatible, thermally matched UV optical adhesive (Dymax OP-

67) to a BK7 glass v-block of similar dimensions. The v-blocks rest on a pair of shear mode piezos

for cavity length adjustment. In this case we have used a pair of 0.5-mm-thick shear piezos from

Ferroperm (Pz27), with a resolution of ≈ 1 nm/V. The first resonance of the “input” and “output”

mirror piezos when loaded with the v-block and mirror substrates is 10 and 35 kHz, respectively. To

address the need to displace the cavity with respect to the membrane, we have also added a third

“common mode” shear piezo below the v-blocks, as shown (unfortunately, this “common” piezo was

later found to exhibit ≈ 1 nm/V expansion along the cavity axis in addition to shear displacement,

rendering it useless for the prescribed purpose). Where necessary, conductive surfaces and leads

were bonded using a UHV compatible silver epoxy (Epotek H21). Mirrors, v-blocks, and piezos

were assembled vertically atop a common metal platform. Our platform is made of stainless steel

and is secured mechanically to the vibration isolation platform.

5.2.2.1 Cavity Parameters

The cavity length was chosen in order to strike a compromise between cavity spotsize requirements,

wc << wm, and sideband resolution, κ/2π = c/4L/F > Ωm/2π (where wm is the width of the

membrane window (Fig. 4.1) and Ωm is the mechanical frequency of the membrane). A small

spot size is necessary to address a single anti-node of a high-order membrane vibration (otherwise

the optomechanical coupling is reduced, as discussed in Section 7.1.3). Our target was the (6, 6)

mode of a 500 µm membrane, for which we require 2wc ∼ 500/6 ≈ 80 µm. For a symmetric
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cavity made of two mirrors of identical radius of curvature Rc, this requires L ≈ 2πw4
c/λ

2/Rc ≈ 1

mm×(wc/40 µm)4(1 µm/λ)2(Rc/5 cm) (see [31]). On the other hand, to achieve sideband resolution,

we require L = c/2/F/(Ωm/2π) ≈ 0.15 mm×(105/F)(Ωm/2π/5 MHz). Another practical constraint

is the thickness tchip = 200 µm of the membrane chip, which requires L > 2tchip > 400 µm in order

to place the membrane at cavity center. To meet these three requirements, we chose the smallest

radius of curvature mirror we had available (rmirror = 5 cm) and constructed a cavity with a nominal

length of 750 µm. The actual cavity length was inferred by measuring the ∼ 10 GHz frequency

difference (transverse mode splitting) between the TEM00 and TEM01 modes of the cavity, given

by f00 − f01 = arccos (1− L/Rc) × c/L/2π [31] (the ∼ 200 GHz free spectral range for this short

cavity is harder to access experimentally). The measurement was made by simultaneously exciting

both cavity modes using sidebands generated by a broadband electro-optic modulator. We measure

f00−f01 = 11.1 GHz (error set by the ≈ 10 MHz cavity linewidth), giving L = 743 ± 1 µm assuming

Rc = 5 cm. An operating wavelength of 935.5 nm was used for many of the measurements discussed

in this thesis, in which case the cavity waist is 35.7 µm. A more moderate cavity finesse of ≈ 104 is

obtained at this wavelength (the precise value of F varies by ∼ 10% depending on the last digit in

λ, ∼ 0.1 nm). This results in a linewidth (HWHM) of κ/2π = 10.1 MHz × (F/104).

5.2.3 Nanopositioning System

There are many ways to conceive of positioning a thin film between two FP mirrors (at least as many

late nights for an obsessive fourth-year graduate student, I assure you). To constrain ourselves, and to

manage uncertainties about the alignment challenge, we adopted the following pragmatic approach:

we would build the nanopositioning system around the traditional cavity with minimal change to its

design, and in a manner which would allow us to insert and remove, in situ, the membrane from the

cavity, thereby enabling us to perform upgrades to the chip and chip holder in a “plug-and-play”

fashion. In return, we were willing to sacrifice some compactness, vibrational stability, vacuum

compatibility, and cavity finesse.

The design that we ultimately settled on is pictured in Figure 5.3. It represents a compromise

between flexibility, stability, and some insistence on integrating standard, commercially available

optomechanics and nanopositioning hardware (as opposed to a custom nanopositioning system).

It also represents a natural extension of the standardized setup in our lab for the construction

of short, high-finesse cavities, in which one of the mirrors — now replaced by the membrane —

is manipulated in the arm of a 5-axis stage designed for fiber alignment. Generally speaking, a

commercially available nanopositioning system with our coarse and fine resolution requirements

consists of either a piezo/microstepper motor-actuated translation stage or else one of the now

standard slip-stick nanopositioning systems pioneered by Attocube [74]. Although less elegant, we

chose the former approach because it is considerably less expensive and more extensible. From
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Figure 5.3: Schematic of the MIM apparatus including nanopositioning system.
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among the growing family of motorized actuators available, we chose the New Focus Picomotor

because of its good reputation with our NIST colleagues. For the translation stage, we chose the

561 fiber positioning stage from Newport, as this stage was both compact and had been used

with success for cavity construction and in a project to pull fiber tapers for our group’s toriod-

based CQED experiment [75]. To incorporate tip/tilt, we fixed the stiffest available kinematic

mount from Newport (Suprema SN100) to the top of the translation stage. The resulting fine

resolution for each axis is set by the nominal 30 nm stepsize of the Picomotor: {x, y, z, tip, tilt} ≈

{30 nm, 30 nm, 30 nm, 0.8µ rad, 0.8µ rad}. The coarse range is set by the range of the stage and

kinematic mount: {12.5 mm, 12.5 nm, 12.5 nm, > 10 deg, > 10 deg}.

The final ingredient that needed to be developed was a jig to adapt the membrane — which

must be suspended between the cavity mirrors — to the kinematic mount without sacrificing optical

access to the cavity, and without diminishing the mechanical properties of the membrane. This was

achieved by judicious lathe-working of a 1” cylindrical steel blank, as shown in Figure 5.4 (a recent

upgrade uses Macor and an additional long-range piezo, as shown alongside). A brief digression into

details of the Picomotors and the “membrane holder” is provided below.

5.2.3.1 Picomotors

All three axes of the translation stage as well as the tip/tilt axes of the kinematic mount are

fitted with standard open-loop, high-vacuum-compatible New Focus Picomotors (model 8302V).

The operating principle of the Picomotor is common to all resonant piezo motors — a piezo-electric

element at the interface of two frictionally contacted surfaces is vibrated in such as way as to

shimmy the two surfaces away from each other. In this case the two surfaces are a screw and its

shaft separated by a piezo-electric sleeve, and the action of the piezo vibration is a small advance

of the screw inside of its thread. By this “squiggle motor” mechanism, Picomotor actuators are

capable of advancing a ball-tip screw over a range of centimeters in microsteps of approximate

(but repeatable) magnitude ∼ 30 nm. Aside from having a smaller step size, their advantages over

standard DC servo motors or stepper motor actuators are true “set it and forget it” operation

(de-powering the Picomotor does not result in any micromotion), small backlash (typically 1–2

microsteps), compactness, vacuum compatibility, and economic pricing/availability. Their main

disadvantage is a load-dependent step size, which greatly diminishes their utility as bi-directional

scanning devices. Closed-loop Picomotors are available which compensate for this deficiency, but

are less compact and a great deal more expensive.

Our Picomotors have performed well for us as unidirectional scanners in the axial (z) direction

and as coarse positioners in the transverse (x, y) and tip/tilt directions. Indeed, contrary to our

original intention, we have relied heavily on the use of a Picomotor to translate the membrane in

fine steps along the cavity axis. In doing so, we have become well acquainted with the load hysteresis
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of these devices. We have found, in particular, that the step size for our stage varies between 20–26

nm and is typically ∼ 20% different between the backward and forward directions. A HeNe fringe

formed between the membrane chip and the back surface of one of the cavity mirrors (see Figure 5.7)

has been used to verify the unidirectional step repeatability of the Picomotor over several fringes.

For an example of this measurement, see Figure 6.4 in Chapter 5.

5.2.3.2 Membrane Holder

The concept for the membrane holder pictured in Figures 5.3 and 5.4 and derives from considerable

trial and error in the process of learning to mount chips containing high-Q suspended films, as

discussed in Section 4.7. As discussed in that section, we found that rigidly attaching the chip to

a surface tended to reduce (in some cases significantly) the mechanical quality of the membrane,

and that this reduction could be minimized by making the attachment points small and as far from

membrane as as possible. Aside from minimizing contact area with the chip, the membrane holder

needed to provide optical access, convenient integration into the nanopositioning system, and a piezo

for fine positioning or resonant driving of the piezo. Two iterations of the design are shown in Figure

5.4. The currently used jig consists of a 1” x 1” stainless steel cylinder machined to slide over the

cavity mirrors as pictured. The rear of the 1” cylinder secures into the kinematic mount. The front

end is fitted with a 1-mm-thick monolithic piezoelectric plate (Ferroperm Pz27), which has been

slotted on a diamond band saw to provide three-point contact with a 5 mm membrane chip. The

chip is secured with three small dabs of commercial-grade Krazy Glue (low viscosity cyanoacrylic

adhesives allow for rigid bonds with small contact area), which we found to reduce the quality factor

of a 50 nm×500µm×500µm membrane by ∼ 30% (see Section 4.7.1). The piezo plate has an

unloaded resonance frequency of ∼ 1 MHz and a travel range of ∼1 nm/(10 V). We unfortunately

lost the ground electrical lead on this jig while opening the chamber, rendering it useless for long-

range displacement or for applying a calibrated high-frequency dither to the membrane position

(in the latter case due to capacitive pickup). However, it is still useful for ring-down excitation.

A second-generation design, which has very recently been integrated, replaces the stainless steel

with Macor for better electrical isolation and incorporates an additional ultra-compact, long-range

piezoelectric ring stack from Noliac (20 nm/V, model CMAR05).
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Figure 5.4: Schematic of the membrane chip holder.

5.3 Hardware: Vibration Isolation, Vacuum System, and

Optical Layout

5.3.1 Vibration Isolation

The cavity and nanopositioning system sit on top of a dedicated single-stage vibration isolation stack

(single rigid platform, single tier of rubber pads) within the vacuum chamber. This is an important

component, because the relatively large (compared to the cavity) nanopositioning system results in

substantial vibration of the membrane with respect to the end-mirrors. This vibration was as large

as ∼ 5 nm at seismic frequencies (< 100 Hz) in the first iteration of the experiment, which forced us

to operate at a moderate finesse of 104 (where we still operate) in order to lock the cavity. The VIS

was carefully redesigned and characterized in December of 2008, after an accidental collision between

the membrane and one of the end-mirrors (a runaway for-loop in our Picomotor software) led to

our re-opening the vacuum chamber. Upon opening the chamber, we verified that low-frequency

vibration noise in our cavity lock agreed qualitatively well with the result of a vertical accelerometer

measurement on top of the VIS. We then found that, although the entire vacuum chamber sits

atop a floating optical table, this vibration was in fact little improved over the seismic acceleration

of the laboratory floor. The reasons for this were two-fold: (1) the table felt and sounded like it

was floating, but in fact was still picking up seismic noise due to friction between the shaft and

housing of one of the pneumatic legs, and that (2) our first VIS, which was designed to eliminate

acoustic pickup from the chamber walls, exhibited a broad ∼ 100 Hz resonance in the undiminished

seismic band. We fixed the first problem by carefully re-balancing the table while monitoring the

accelerometer. The second problem was improved upon by increasing the mass of the VIS plate
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and by replacing our Viton isolation pads with a combination of soft, under-damped RTV rubber

in series with stiff, highly over-damped “NewDamp” elastomer from Newport. The end result was a

transfer function with a corner frequency of 20 Hz and a quality factor of ∼ 3. We refer the reader

to [76] for a useful discussion of the merits of dynamically damped compound springs in the context

of vibration isolation. A sketch of our VIS and an illustrative compilation of accelerometer traces

is shown in Figure 5.5. Gray, black, pink, red, and green traces correspond to acceleration atop

the laboratory floor, optical table before re-balancing, optical table after re-balancing, original VIS

(after re-balancing), and new VIS, respectively.

Figure 5.5: VIS and compilation of accelerometer data. Gray, black, pink, red, and green traces
correspond to acceleration atop the laboratory floor, optical table before re-balancing, optical table
after re-balancing, original VIS (after rebalancing), and new VIS, respectively.
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5.3.2 Vacuum System

The primary functions of the vacuum system in this experiment are, in order of importance (1) HV

compatibility (< 10−6 mbar), (2) large enough size to accommodate our nanopositioning system

and VIS, but small enough to permit a vibration-free pump system, and (3) anti-reflective optical

access for a NIR laser beam used to interrogate the cavity. To meet these goals, we again borrowed

equipment from our atomic physics experiment, which has much more demanding vacuum require-

ments. While perusing the lab, we discovered lying in the basement a large, cylindrical, stainless

steel vacuum chamber with Conflat fittings, formerly built for an atomic beam imaging experiment

in the mid 1990s [77]. The chamber, pictured in Figure 5.6, was in pristine condition despite its long

hiatus, so we decided to give it a try. We were initially concerned by its size — the 12” (diameter)

x 8” (height) inner dimensions are in fact overkill for our requirements — however, the large surface

area (A ≈ 0.3 m2) is compensated for by the ability to directly mate a S = 55 liter/s ion pump

(Varian VacIon Plus Starcell) to one of the 6” side flanges, thereby minimizing conduction loss.

Using a conservative stainless steel outgassing rate of q = 10−9 mbar liters/s/cm2, we estimate a

rough base pressure of Pf = qA/S ≈ 5× 10−8 mbar for the chamber alone [78].

Before assembly, the main body of the chamber was prepped by serially hand wiping with acetone

and methanol. The same procedure was followed for the translation stage (which is not rated as

HV compatible) and the Picomotors. Cavity, vibration isolation, and flange components, including

feedthroughs and viewports, were cleaned according to the thorough description provided in Kevin

Birnbaum’s thesis [67]. The chamber was first closed in November of 2008. After roughing overnight

with a turbopump and approximately one week under the ion-pump, we achieved a pressure of

< 10−6 mbar in the vicinity of the ion pump as inferred from the pump current. The chamber was

re-cycled several times in December 2008 and January 2009, and has been closed until only recently

(June 2011). The base pressure that had been achieved over that period was ∼ 8 × 10−7 mbar, as

inferred from the ion pump current.

Please note that the viewports used on this chamber were also borrowed from our CQED exper-

iment; they have an AR coating from Advanced Thin Films that extends from 800–950 nm (< 1%)

and is centered at 850 nm (∼ 0.1%), corresponding to the D2 transition of cesium.

5.3.3 Optical Layout: Locking and Probing the Cavity at Variable De-

tuning

The optical layout for the experiments described in Chapters 6-9 has evolved substantially over the

last two and a half years. Its basic architecture remains unchanged, however, and can be summarized

in terms of its primary functions. First, to interrogate the optical cavity, we need to mode-match it

with the output of a laser operating at a wavelength near the coating center of the cavity mirrors.
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Figure 5.6: Vacuum system for the first-generation optomechanics experiment. A base pressure of ≈
10−7 has been achieved using a 55 liter/sec ion pump. The chamber is large enough to accommodate
a 11 kg, 9” diameter x 1.5” thickness steel plate for vibration isolation of the nanopositioning system.
Cavity, membrane holder, and kinematic mount are dimly visible through the 6” top viewport in
the right photo.

The cavity resonance frequency must be then be referenced to the laser (or vice-versa) by a means

which allows us to precisely control the detuning and power of the drive field. Finally, in order

to generate the lock signal and to make measurements of the membrane’s motion, the phase and

amplitude of the fields reflected and/or transmitted from the cavity must be monitored using a

set of photodetectors. Because the details of the layout have changed, I here focus on the scheme

used to obtain the initial cooling results described in Chapter 9. Modifications made for the noise

subtraction experiment discussed in Chapter 10 are referred to that chapter.

5.3.3.1 Two-Probe Scheme

A sketch of the basic optical layout is shown in Figure 5.7. For the experiments described in

Chapters 6–9, we use a simple two-probe scheme wherein a weak (< 100 nW) “locking” beam

is used as a reference to stabilize the cavity length and a second, stronger (1–100 µW) “science”

beam is used to drive the cavity at a variable detuning. Both beams are derived a from a single

laser using a broadband NIR polarization beamsplitter. For the laser source, we have primarily

iterated between a homebrew external cavity diode laser operating at 935 nm (diode from Toptica)

and a titanium-sapphire laser operating at 810 nm (kit laser from Schwarz-Electro Optics). After

frequency manipulation as described below, both beams are mode-cleaned by passing though a 5

µm PM fiber-based broadband EOM (EOSpace). Each beam then passes through a telescope before

being recombined at the input of the optical cavity using a second PBS. A broadband-AR-coated,

300 mm singlet lens is used to focus the beams into the cavity. A mode-matching efficiency as

high as ∼ 70% has been achieved for the TEM00 cavity mode with the membrane in the middle.

By rotating the input beam polarizations onto the polarization eigenmodes of the cavity, we can
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Figure 5.7: Schematic of the optical layout for experiments described in Chapters 6–9. A single
laser is split into two beams propagating along separate paths. One of the beams (“locking” beam,
green) is modulated using an EOM in order to generate a Pound-Drever-Hall-type error signal in
transmission. 10–100 nW of locking light are transmitted from the (symmetric) cavity on resonance,
and the error signal is used as a reference to lock the cavity via feedback to one of the end-mirror
piezos. The second beam (“science” beam, red) is detuned from the locking beam using an AOM
in series with an EOM. This beam enters the cavity at variable detuning and is used as both the
cooling beam and the displacement probe, as elaborated in Chapter 8 and Chapter 9. The two
beams are isolated by polarization and aligned along orthogonal polarization axes of the cavity.

separate these two beams with an extinction ratio of better than 1% using a PBS at the output of

the cavity (in practice, this requires a sequence of λ/2, λ/4 plates before the output PBS). Beyond

the output PBS, each beam is directed to a fast, low-noise commercial photodetector (New Focus

1801).

Detuning between the science and locking beam is achieved using a sequence of acousto- and

electro-optic modulators, as shown in Figure 5.7. The science beam first receives a nominal red

detuning of ΩAO/2π = 300 − −400 MHz ggκ/2π by sending it though a free-space AOM (Isomet)

in a double-pass configuration. The beam then passes through a broadband fiber EOM (EOSpace),

which generates sidebands with a frequency spacing of ΩAO − ∆. The first-order blue sideband

is detuned by −∆ from the locking beam, to which the cavity resonance frequency is locked as

described below. The rest of the sidebands are far detuned from the cavity by mΩAO ± ∆ >> κ

(m = 1,2...). We use the near-detuned sideband of the science beam to perform the cooling and
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displacement measurement described in Chapter 8. The utility of this technique is that it allows us

to independently control the detuning and the input power via the EO modulation frequency and

depth, respectively, without adjusting the cavity length. The main disadvantage is that the majority

of the input field is directly reflected from the cavity.

5.3.3.2 Lock Error Signal and Displacement Measurement

Generating a cavity lock error signal and monitoring the motion of the membrane are essentially

equivalent tasks; both are obtained from a measurement of the fluctuating cavity detuning. In

the layout as pictured, we use two techniques to monitor the cavity detuning: (1) we monitor the

transmission of the detuned science beam; (2) we monitor the phase of the transmitted locking beam.

Technique (1) is used to measure the displacement of the membrane and the end-mirrors as

described in Chapter 8, and consists of directly monitoring the power of the detuned science beam

on the science photodetector. To calibrate the resulting photocurrent signal, the science beam is

phase modulated with a single tone at a calibrated modulation depth. This is done by adding a

second tone (via a power splitter) to the driver of the EO in the science beam path.

Technique (2) is used to generate the lock error signal. This signal is obtained by a self-heterodyne

technique: the locking beam is phase modulated with sidebands Ωlock ∼ 2κ and the photosignal

produced on the locking photodetector is demodulated at the same frequency using an RF mixer

(Minicircuits ZSC-2-1). The signal produced at the IF port of the mixer is similar to the PDH error

signal [54], and has the advantage over reflection PDH of being free from excess background due to

light that is not mode-matched to the cavity. We have used this technique to successfully lock the

F ∼ 4× 105 cavity in our CQED experiment with as little as 8 nW of transmitted power [72]. For

the MIM cavity operated at F ∼ 104, we have found it necessary to use larger optical powers to

maintain a stable lock. Typical values of power on the locking photodetector and the modulation

depth of the locking EO are ∼ 50 nW and βlock ∼ 1, respectively. More details on the locking

scheme are provided below.

5.3.3.3 Stabilizing the MIM System

For the standard Fabry-Perot cavity, changing the absolute frequency of the input laser ω0 (used

to generate the science and locking beams) by a multiple of the cavity FSR does not affect the

optomechanical coupling strength of the end-mirror as long as ∆ω0/2π << FSR. Rather (because

the optomechanical interaction is a Raman process), the dynamics are only sensitive to the relative

detuning ∆ between science beam and the cavity resonance frequency, ωc/2π = m × FSR. For a

fixed input power, the task of stabilizing the system consists of just adjusting the cavity length or

the laser frequency in order to maintain a stable detuning. The MIM system, however, has an extra

degree of freedom that must be accounted for, since the optomechanical coupling of the membrane
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g varies as a function of its position zm with respect to one of the end-mirrors (see Figure 3.1).

Because of this extra degree of freedom, we ideally must stabilize all three variables {∆, L, zm}

to maintain a constant value for g. Equivalently, we must stabilize both ∆ and the phase of the

intracavity standing wave at the position of the membrane: θ = 2ω0zm/c = ω0/FSR × zm/L. For

a short cavity, it turns out that we can meet these two requirements using a simplified scheme.

First, we lock the cavity length to the laser frequency, ω0. This is the preferred method for a

short cavity, since the cavity FSR = 202 GHz is much larger than the ∼ 10 GHz mode-hop free

range of the lasers used in the experiment. In the experiments described in Chapters 6-9, we use the

error signal derived from the transmitted locking field to apply feedback to the piezo beneath one

of the end mirrors. The feedback signal is obtained by passing the raw error signal (mixer IF port)

through an inverted pre-amplifier (Stanford Research Systems SR560), a simple op-amp integrator,

and a single-pole 3 kHz low-pass filter (to reduce the servo gain at the first piezo resonance, ≈ 10

kHz). The unity gain of the feedback loop is ∼ 100 Hz. Stabilizing the laser-cavity detuning of the

cavity to within 10% of the linewidth (FWHM) requires that the effective length noise of the cavity

be reduced to δL = 10% × λ/2F ≈ 5 pm × (104/F), which is within an order of magnitude of the

room-temperature Brownian displacement (rms) for the fundamental mode of the 50 nm x 500 µm x

500 µm membrane used in the initial cooling experiment (Chapter 9). This represents an interesting

challenge that must be addressed in the future if a higher finesse cavity is used.

The second task is to stabilize θ. Here, we can make use of the fact that because the cavity

is short, drift in laser frequency δω0 (typically � GHz) is passively much smaller than the cavity

FSR. By locking the cavity resonance to the laser frequency, the change in phase at position zm

then becomes δθ = δω0/FSR × zm/L + ω0/FSR × δzm/2L ≈ 4πδzm/λ. For a thin membrane

(|rm|2 � 1), the fractional change in the optomechanical coupling gm ≈ 2|rm|g0 sin(θ) is given

by δgm/gm ≈ cot(θ)δθ, so that at the position of maximal (gm = 2|rm|g0) and minimal (gm = 0)

coupling the first-order sensitivity is δgm/gm = 0 and 4πδzm/λ, respectively. For many applications,

particularly where we operate at gmax, we have found it sufficient to allow the absolute frequency

of the laser to drift while the cavity is locked, and to make measurements on a timescale for which

δzm/λ � 1 (∼ 10 minutes to an hour when the membrane is at a point of maximal coupling,

depending on temperature stability in the lab). This is the approach that has been taken thus far.

We have also set up a HeNe fringe at the exit mirror substrate and the membrane chip in order

to calibrate the Picomotors (see Figure 6.4) and to monitor drift of the membrane position. We

hoped to use this fringe to perform a slow feedback loop to stabilize the membrane position to within

∼ 10 nm. However, currently this application will have to wait until the damaged piezo lead on our

membrane chip holder is replaced.
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Chapter 6

Linear Optical Properties of the
MIM System: Measurements

In this chapter I discuss how steady-state optical properties of our MIM system have been char-

acterized in the lab, drawing heavily from the 1D formalism provided in the Chapter 3. With the

exception of the first section (in which real index of the membrane is determined), all of the mea-

surements described below were carried out in the autumn of 2008 through the summer of 2009,

in preparation for the optomechanical cooling experiment described in Chapter 9. The ordering of

the measurements is altered to follow the structure of chapter 3. In particular, I describe (1) the

real index of refraction and thickness of the film, (2) the transmission and absorption losses of the

cavity end-mirrors (via the finesse of the bare Fabry-Perot resonator), (3) optomechanical coupling

of a membrane placed within the Fabry-Perot, and (4) reflectivity and absorption of the membrane

as inferred from the linewidth and transmission of the MIM cavity.

6.1 Membrane Reflectivity and Thickness

Si3N4 membranes supplied to us by Norcada (see Chapter 4) are specified according to square

dimensions (width wm = 0.25, 0.5, and 1 mm) and thickness (dm = 30, 50, and 100 nm). For some

time we have relied on these factory specifications, along with standard ellipsometric measurements

of the real index of LPCVD Si3N4, to infer their mass and reflectivity [34]. The latter is important for

estimating the optomechanical coupling. The former is important for understanding the mechanical

properties of the system (e.g., the spectrum of vibrational frequencies). Whereas SEM images have

confirmed that wm is consistent with the factory specification at the ∼ 1% level, a simple reflectivity

measurement suggests that the actual thickness of the films can differ from the factory specified

value by as much as 30%. This realization, coupled with substantial efforts to process our own

films in the clean-room facility at the Caltech KNI and in Oskar Painter’s laboratory (efforts led by

Painter graduate student Richard Norte and our post-doc Kang-Kuen Ni), have reinforced the need



83

Figure 6.1: Reflectivity of Si3N4 membranes from Norcada for three nominal thicknesses (gray = 30
nm, orange = 50 nm, blue = 100 nm). The maximum value, |rm|max ≈ 0.593 is consistent with a
refractive index of |nm| = 1.98. Assuming a constant index for measurement wavelengths λ = {672
nm, 813 nm, 935 nm, 1064 nm} gives a result consistent with dm = {26 nm, 37 nm, 91 nm}. The
curves at left are a qualitative fit to data for different dm using |rm| vs. λ from Eq. 3.4 with fixed
|nm|. The curves at right are a qualitative fit to data for different dm using |rm| vs. dm from Eq.
3.4 with constant |nm| and the four different λ.

to characterize their optical properties from scratch.

Fortunately, there are variety of simple ways to measure the thickness and refractive index of a

thin film. If the index of refraction, nm of the film is known precisely at a specific wavelength, then

a direct measurement of reflectivity at this wavelength gives the film thickness, and vice-versa. If

neither is known exactly, then one can vary both, and use the fact that at a given wavelength the

maximum reflectivity is independent of film thickness for negligible loss. For a low-loss (Im[nm] <<

1) film embedded in air/vacuum, this value is |rm|max = |nm|2−1
|nm|2+1 (see Section 3.1.1). This is the

basic principle behind ellipsometry.

We have conducted our own thickness/index measurements by directly measuring power trans-

mission Tm through the film at normal incidence. The measurement is made by focusing a laser

beam through a membrane and onto a photodetector (Thorlabs PDA55). The membrane chip is

secured to a flipper mirror mount so that measurements of input and transmitted power can be iter-

ated. The laser source is switched between 670 nm (Oz Optics box diode), 813 nm (Schwarz-Optics

Ti-Sapph), 935 nm (Toptica diode), and 1064 nm (Innolight YAG). Each measurement is repeated

for three membranes with different nominal thicknesses: 30, 50, and 100 nm.

Results for this sequence of measurements are shown in Figure 6.1. Solid circles correspond to

measured reflectivity, |rm| =
√

1− Tm. Lines correspond to a model which assumes a constant real

index from 670 nm –1064 nm (2% variation is expected from standard ellipsometric data [34]). From

the reflectivity data for the thickest film, we obtain a maximum value of |rm|max ≈ 0.593 near 750

nm. This is consistent a real index of 1.98. We fix this value and the thickness in the formula for |rm|

(Eq. 3.4) to obtain the qualitative fits shown. The model is consistent with membrane thicknesses

of 26 nm, 37 nm, and 91 nm, respectively. An independent measurement of the “50 nm” membrane
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using the Filmetrix machine at the Caltech KNI obtains a thickness value of 38 nm. The Filmetrix

measurement appears to be repeatable to within ±3 nm for several membranes drawn from the same

batch sent from Norcada.

6.2 Characterizing the End-Mirrors: Cavity Linewidth and

Finesse

A description of the end-mirror dielectric coating was given in the preceding chapter (Section 3.8).

In the group these mirrors are commonly referred to as D1306, in reference to a particular class of

“supermirror” coatings that were developed for our CQED project [65] first by Research Electro-

Optics, Inc. (REO), and later by Advanced Thin Films, Inc. (ATF). Each D1306 mirror consists of

35 bi-layers of alternating high-index nH and low-index nL material deposited on a superpolished Bk7

glass substrate. Each coating layer has a thickness of λ/4nH,L for a common “center” wavelength

of ≈ 850 nm. Based on a decade-long history of measurements in the Kimble group, we expect

these coatings to have maximum reflectivity of Rmirror ≈ 99.9985% (T ≈ 15 ppm) at their center

wavelength. As reported in [37], the measured reflectivity is in close agreement with the design

value predicted using the transfer matrix approach. Two discrepancies are of importance for our

MIM system. First of all, the D1306 center wavelength has been observed to vary by as much as 10

nm between coating runs. This has a large impact on the reflectivity obtained at wavelengths away

from the coating center, where we presently operate. Second — as is true for all supermirrors —

minute scattering/absorption loss can dominate over mirror transmission unless care is taken while

handling the mirrors. Measured loss depends on the details of the reflected laser beam, including its

size and location on the mirror. For the D1306 run, the factory target loss was < 3 ppm (associated

with coating absorption and imperfections in the supermirror polish). With care and a little luck,

this level of absorption has been observed in the lab. However, for most cavities built with D1306

mirrors, including the one in this experiment, the loss is closer to 5 ppm, associated with minor dust

particles and scratches on the mirror surface.

We have characterized the mirrors used in our MIM cavity using a standard technique: with the

membrane removed, we measure the finesse of the cavity as a function of wavelength. The finesse

is inferred from the ratio of the cavity free spectral range FSR = c/2L to the linewidth γ = 2κ

(FWHM) of the cavity transmission function, |tFP |2 (see Eq. 3.14). For our symmetric cavity

(T1 = T2 ≡ Tmirror), the finesse is related to the mirror transmission and loss (see Eq. 3.16):

F =
FSR

γ/2π
=

2π

Tmirror + δ1 + δ2
. (6.1)

The cavity FSR is obtained from the cavity length. We infer a value of {L,FSR} = {742 µm, 202 GHz}
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Figure 6.2: Cavity linewidth measurement: the intensity of the transmitted field is measured as a
function of time while slowly (<< 1/γ) translating the end-mirror through resonance. FM sidebands
generated by an EOM are used to calibrate the time trace. Data is fit to a triple Lorentzian
with FWHM = γ/2π ≡ (c/2L)/F . Each point in Figure 6.6 corresponds to a the average of a
set linewidth measurements made as pictured above. In this figure, ΩEOM/2π = 150 MHz and
γ/2π = 17 MHz.

from the factory-specified radius of curvature of the mirror substrate, Rs = 5.0 cm, the measured

11.0 GHz difference between the resonance frequency of the TEM01 and TEM00 cavity modes, and

the formula for transverse mode splitting provided in [31] (see also Section 5.2.2.1):

ω00
c − ω01

c = cos−1

(
1− L

Rs

)
× c

L
, (6.2)

where ω00
c and ω01

c are the resonance frequencies of the TEM00 and TEM01 cavity modes, respec-

tively.

To measure the cavity linewidth, we monitor the transmitted power of the cavity while sweeping

the cavity length across resonance for the TEM00 cavity mode. An example of the linewidth mea-

surement is shown in Figure 6.2. Here the cavity was driven with an input power of ∼ 1 µW and

the transmission was monitored using a fast photodiode (NF 1801, see layout in Figure 5.7) located

after the exit mirror. The probe is slowly swept through resonance (∼1 ms � 1/γ) by applying a

sinusoidal voltage to the shear piezo beneath one of the end-mirrors (Figure 5.2). A broadband fiber

EOM (EOSpace) is used to generate frequency sidebands on the probe at ±150 MHz; this provides

a convenient ruler against which the time axis of the photosignal can be calibrated. The calibrated
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Figure 6.3: D1306 coating curve measurement. Cavity finesse measurements at four wavelengths
are here compared to a model in which each mirror has an identical D1306 coating. Coating center
wavelength and SA loss are used as free parameters to obtain a qualitative match. Results are
consistent with λ = 862.8 nm and δ1 + δ2 = 10 ppm. Solid and dashed curves correspond to models
with and without loss, respectively.

time trace is fit to a symmetric triple Lorentzian in order to extract the linewidth.

By comparing the finesse obtained at various wavelengths, we can generate a model of the coating

curve which includes both losses and a shifted coating center. A plot of data and model is shown

in Figure 6.3. Here we have measured F vs. λ for four well-separated wavelengths accessible with a

diode laser (910 nm, 935 nm) and a ti-sapphire laser (810 nm, 850 nm). To generate the model, we

assume the coating matrix model described in Section 3.8 but allow the coating thickness to deviate

from λ/4 (retaining the full form for Mplate in Eq. 3.2). The result is consistent with a coating center

of 862.8 nm and an average mirror loss of (δ1 + δ2)/2 = 5 ppm. At 862.8 nm, the calculated D1306

transmission is 14.6 ppm, enabling a loss-limited finesse of F ≈ 1.6× 105. At the wavelengths used

in the experiment, 810 nm and 935 nm, the mirror transmission is substantially larger Tmirror ∼ 300

ppm, corresponding to F ∼ 104. In particular at 935.5 nm, we obtain F = 9200. At this wavelength

we usually ignore the mirror losses when characterizing the MIM system.

6.3 Optomechanical Coupling of the Membrane

The procedure for directly measuring gm = dωc/dzm, the optomechanical coupling of the membrane

(see Section 3.3.1), consists of translating the membrane through a distance of λ/2 while monitoring
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the cavity resonance frequency. Our initial efforts at this measurement were frustrated by the

realization that (1) a lead on the piezo located behind the membrane chip had been dislodged and

that (2) its backup, a single shear piezo placed beneath both the cavity end-mirrors, produced a

substantial cavity length change in addition to cavity displacement when driven (there’s no such

thing as a purely shear-mode piezo!). After some deliberation, we decided to sacrifice continuous

membrane position tunability rather than reopen the vacuum chamber. Since then, we have resorted

to using a Picomotor on the nano-positioning stage to translate the membrane along the cavity axis.

Large Picomotor step size (≈ 30 nm) and small cavity length (large FSR ≈ 200 GHz) make a

direct measurement of gm challenging in the current experiment: to wit, for a 50 nm film with

|nm| = 2.0 (|rm| = 0.42), one predicts gmaxm /2π = 2|rm|FSR/(λ/2) ≈ 11 GHz/(30nm), which is on

the order of the mode-hop-free range of our tunable external cavity diode laser (ECDL). The change

in resonance frequency when the membrane is placed at an antinode compared to a node is ≈ 56

GHz, which must currently be accessed by a separate laser.

Nevertheless, we have occasionally and laboriously measured gm by stepping the membrane along

the cavity axis and following the cavity resonance by manually tuning the wavelength of the ECDL.

A modified procedure is necessary to keep the frequency excursion within the mode-hop free range

of the laser. The procedure consists of (1) recording the nominal (cavity resonant) laser frequency,

(2) displacing the membrane by a single Picomotor step, ∆zpm, (3) manually adjusting the laser

frequency in order to bring the cavity back into resonance (via drive current and cavity length of

the ECDL), recording the laser frequenct shift, ∆ωc, and then returning the laser frequency to its

original, now off-resonant value, (4) translating the input mirror to bring the cavity into resonance,

(5) repeat. By means of this stroboscopic technique, we can trace gm ≈ ∆ωc/∆zpm vs. zpm through

its minimum and maximum value, which can be compared to the expected value of 2|rm|g0.

The results of one such measurement are shown in Figure 6.4. The frequency of the laser was

monitored using a commercial optical spectrometer with 100 MHz resolution (Burleigh WA-1600).

The step size, ∆zpm, of the Picomotor is independently calibrated by monitoring a HeNe fringe

formed between the exit mirror and the silicon membrane chip (inset). The measured dependence

of gm on zm can be modeled directly using the matrix methods described in Section 3.3.1. The data

is qualitatively consistent with the model shown (dashed red curve). The model assumes that the

membrane is at the center of a 742 µm cavity, has a real index value of |nm| = 2.0, and is 50 nm

thick (|rm| = 0.42).

6.4 Characterization of Membrane Optical Absorption

Optical absorption in the membrane sets a fundamental limit on the achievable finesse and a practical

limit on the intracavity power achievable in the MIM system. Consequently, considerable effort has
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Figure 6.4: Measurement of optomechanical coupling. The membrane is translated along the cavity
axis using a piezo motor with a step size of ∆zpm ≈ 21.1 nm (calibrated with HeNe as shown in
inset). After each step, the frequency of a tunable probe laser is adjusted by ∆f in order to keep it in
resonance with the cavity. ∆f is measured using an optical spectrometer, giving gm/2π ≈ ∆f/∆zpm.
The laser frequency then is returned to its original value, the cavity length is adjusted to return
the cavity to resonance, and the procedure is repeated. Results are normalized to the bare cavity
coupling, g0/2π = FSR/(λ/2) = 0.432 GHz/nm. They are consistent with a numerical model for
gm(zm)/g0 (dotted red line) which assumes a 50-nm-thick film with |nm| = 2.0 has been placed at
the center of a 742-µm-long cavity. In this case, gmaxm = 2|rm|g0 = 0.843g0 (dashed black line).

been made to measure this value in our experiment. The task was anticipated to be difficult at the

outset, because stoichiometric silicon nitride (Si3N4) is known to possess ultra-low optical absorption

at telecom wavelengths. Less is known about the absorptive properties of Si3N4 in the near infrared

and for micro structures, however, where impurities associated with the fabrication process can

play a dominant role and the small volume of material makes loss measurements challenging. In

[36], Si3N4 microdisk cavities were shown to have losses consistent with Im[nm] ∼ 10−7 at 850 nm.

Recent measurements in the Harris group [79] have placed a similar bound on Si3N4 membranes
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Figure 6.5: Ringdown measurement. A bound on the membrane absorption was first obtained by
inserting the film into an ultra-high finesse Fabry-Perot cavity with a long, unstabilized length.
Vibration of the membrane/mirrors occasionally pulls the cavity into resonance, whereupon the
drive field is quickly shuttered off. The diminished cavity ringdown time is consistent with an added
round-trip loss of ≈ 7 × 10−6. For a 50 nm membrane positioned at the center of the cavity near
a node of the intracavity standing wave, this is consistent with an imaginary index of refraction of
Im[nm] ≈ 0.8× 10−4 at 850 nm. Lines are a qualitative fit to guide the eye.

purchased from Norcada, by placing the membrane near an antinode of a high-finesse Fabry-Perot

cavity operating at 1064 nm. At the time we entered the field, it was known that low-stress Si-

doped SiN membranes could exhibit absorption at the level of Im[nm] ∼ 10−4 at 1064 nm. We

expected an improvement for our high-stress stoichiometric films, but had to wait until the stabilized

cavity apparatus was finalized before making our first serious measurement. Below I describe that

measurement as well as a preliminary measurement which informed the current cavity design.

6.4.1 Ringdown Measurement in a Long Cavity with High Finesse

A first estimate of the high-stress film losses was obtained by inserting the film into an open-air,

unstabilized, high-finesse Fabry-Perot. This would seem a difficult — if not inevitable — first

approach, for in order to measure the predicted round-trip loss introduced by the film, δm < 10−5,

one would have to use a cavity with a finesse of F ∼ 105. In length units, the linewidth of this

cavity at optical wavelengths is λ/F ∼ 10 pm, a nontrivial task to align and stabilize even in the

absence of a membrane. An attractive feature of ringdown measurements, however, is that they



90

don’t require a cavity that is locked to a stable reference. One simply waits for the cavity to swing

— via length vibrations — into resonance with the probe laser. The light is then rapidly shuttered

off, in our case with an AOM. The subsequent ringdown decay of the intracavity field is insensitive

to length fluctuations. This robust feature makes the ringdown technique rather simple to execute.

The rate at which residual circulating power decays through the exit mirror after the input field is

turned off is directly related to the cavity finesse (see 2.32b)

Pout(t) = Pout(0)e−γt = Pout(0)e−πct/2LF (6.3)

where γ = 2κ is the FWHM intensity linewidth of the cavity in angular units.

The mirrors for this particular experiment were mounted in standard kinematic mounts (Newport

Ultima) on a breadboard located in a clean hood without vibration isolation. The cavity length was

chosen to permit a spot size of < 100 µm and easily accessible ringdown times (∼ 100 µs) for

the predicted loss level. The membrane was fixed to a kinematic mount (Newport Ultima) on an

independent 3-axis stage (LineTool). Care was taken to center the window between the mirrors and

to roughly align the window normal to the cavity mode by monitoring the retro-reflection of a HeNe

laser beam collinear with the an 850 nm probe beam.

For the measurement shown in Figure 6.5, a (fortunate) error in the selection of cavity mirrors

resulted in our constructing a cavity with a remarkable finesse of F ≈ 7× 105 at 850 nm, enabling

a loss sensitivity of 2π/F ≈ 9 ppm. Ringdown measurements were made with the membrane

repeatedly translated into and out of the cavity mode. We observed a marked lack of variation in

the reduced ringdown times obtained with the membrane inserted and interpreted these as events

for which the membrane was located near a node when the cavity swung through resonance.

Ringdowns were fit with good qualitative agreement to an exponential decay and are consistent

with an added round-trip loss of of ≈ 7 ppm. For the case of a 50-nm-thick membrane positioned at

the anti-node of the intracavity field, this is consistent with an imaginary index of 0.8× 10−4 at 850

nm, a number which compares favorably with the low-stress results obtained by the Harris group at

the time, but higher than we anticipated for the stoichiometric chemistry. The loss-limited finesse

obtainable for a membrane with Im[nm] = 0.8 × 10−4 is ≈ 1.4 × 104 when located at an antinode.

With this inference and the expectation that our preliminary results were limited by alignment-

related losses, we decided to go ahead and build a stable cavity with coating curves centered at λ =

850 nm, F ≈ 2× 105. A more careful measurement was eventually made in this cavity, as described

in the following section.
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Figure 6.6: Variation of the cavity “finesse” as a function of membrane position. Finesse is defined
as the free spectral range of the bare cavity (c/2L) divided by the measured linewidth of the MIM
cavity, γ = 2κ (FWHM): F = πc/Lγ (here γ is in angular units). Variation occurs on two scales.
The fine scale (insets) corresponds to translating the membrane between successive nodes of the
intracavity field. The coarse scale corresponds to displacement by a significant fraction of the cavity
length, L (here in increments of ∼ 0.05 L). Modulation at cavity center is attributed to absorption
and misalignment-related loss. Away from cavity center, modulation also results from an imbalance
in the power residing in the two subcavities, each of different length. The model is generated using
the transfer matrix method described in Section 3.3.2. “Droop” of the envelope is consistent with
an absorption/alignment loss characterized by Im[nm] = 0.8× 10−5.

6.4.2 Linewidth Measurement in a Short Cavity with Moderate Finesse

A less ambiguous measurement of absorption requires the ability to translate the film in increments

δzm << λ along the wavefront of the intracavity standing wave while monitoring the linewidth of

the MIM cavity, γ. We are capable of doing this with the high-finesse MIM system described in

Chapter 5. However, as was detailed in Section 3.3.2, considerable care must be taken in accounting

for various parameters in the model of the MIM system which give rise to modulation of γ. These

include the real and imaginary index of the membrane, the membrane thickness dm, position relative

to the intracavity field, and coarse position relative to cavity center. The latter effect has been

found to dominate in our system because the cavity is short and because for vibrational stability



92

we currently operate at a moderate bare cavity finesse, F0 = 104; at this finesse we have found

that Tmirror = π/F0 >> δm, the round-trip loss introduced by the membrane. Moreover, at this

moderate finesse, the short length of the cavity makes it difficult to measure finesse via the ringdown

method (2π/γ ∼ 100 ns). We instead measure the cavity linewidth (γ/2π ∼ 10 MHz) using a swept

probe, as discussed in Section 6.2.

The procedure we have developed is as follows: (1) the membrane is translated in increments of

∆zpm ∼ 20 − −30 nm along the cavity axis using the Picomotor driven translation stage, (2) after

each step, the cavity is tuned into resonance with fixed frequency probe laser by translating one of

the cavity end-mirrors, (3) the linewidth of the resonance is measured by dithering the cavity length

and monitoring the transmission of the cavity, as discussed in Section 6.2, (4) steps 1–3 are repeated

until the membrane has been translated through several periods of the intracavity standing wave,

(5) steps 1–4 are repeated for several well-separated coarse changes of zm.

The result of one such set of measurements is shown in Figure 6.6. Here the linewidth has been

referred to a finesse value relative to the bare cavity free spectral range: F ≡ πc/Lγ (note that γ is

in angular units). It is worth noting that shortly before this particular measurement was taken, we

had not yet developed the model discussed in 3.3.2, and were rather puzzled by the discovery that

for some membrane positions, as shown, the MIM cavity linewidth was smaller than the intrinsic

cavity linewidth. The membrane was removed and reinserted multiple times to recheck the bare

cavity finesse, and each time we had to carefully realign all five degrees of freedom of the membrane

— particularly tip/tilt — with respect to the cavity (by minimizing γ). In the meantime, Jeff was

independently working on the transfer matrix model and was also puzzled by the same “artifact” in

his numerical results. We now understand this to be a real effect by which the etalon formed between

the membrane and the end-mirror can alter the photon storage time. After accounting for the fact

that we tune the cavity length rather than the laser probe to maintain cavity resonance, we have

found that model and data agree well quantitatively. The “envelope” is consistent with a model

for a symmetric cavity with {Im[nm],Re[nm], dm, L,F0} = {0.8 × 10−5, 2.0, 50 nm, 742µm, 9200}

where nm. The variation in cavity finesse near cavity center, however, is more consistent with

Im[nm] = 0.6 × 10−6. The latter would enable a loss limited cavity finesse of ≈ 2 × 105 with the

membrane positioned at an antinode. We currently believe this result to represent an upper bound on

the actual losses, since it remains sensitive to ∼ µrad tip/tilt alignment of the membrane. Moreover,

the linewidth inferred losses appear to misrepresent the measured variation in cavity transmission

versus membrane position, as discussed in the next section.
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Figure 6.7: Measurement of cavity “finesse” (pink) and peak transmission (gray) as functions of
membrane position. Transmission data is normalized to peak transmission when the membrane is at
an antinode. Picomotor step size is inferred from the λ/2 periodicity of the measurement data. Solid
pink and gray correspond to the extrema for a model which assumes {Im[nm],Re[nm], dm, L,F0}
= {0.6 × 10−5, 2.0, 50 nm, 742µm, 9200}, where nm is the index of the membrane. In the upper
plot, transmission data corresponding to the membrane near cavity center is compared to the model
inferred from the finesse data and to the model for a lossless and slightly asymmetric cavity. Black
and gray lines correspond to different choices of loss. Dashed and solid black lines correspond to
different choice for T2/T1. The data is found to agree best with a lossless (Im[nm] = 0) model for
which T2/T1 = 1.06.

6.5 MIM Cavity Transmission Vs. Membrane Position

The inferred values of {Im[nm],Re[nm], dm, L,F0} can be cross-checked against a measurement of the

resonant power transmission of the MIM cavity vs. membrane position. In particular, we have found

that this measurement is consistent with a lower absorption loss than the value Im[nm] = 0.8×10−5

obtained for the membrane in the the previous section.

In Figure 6.7, we record resonant transmitted power and linewidth of the cavity as a function of
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the membrane position. Each data point is obtained from a fit to a curve as shown in Figure 6.2.

Each pink/gray block corresponds to a sequence of measurements as the membrane is translated

in ∼ 25 nm steps along the intracavity standing wave. Adjacent blocks are separated by 1000

Picomotor steps ∼ 25 nm. The set of data points for each block is normalized to the average of the

extrema in that block. The extrema are taken to correspond to when membrane is positioned at a

node of the intracavity field. For comparison to the model, we assume a transmission value of unity

when the membrane is located at an node.

Results for the linewidth measurement (referred to a finesse value as in the previous section)

are consistent with the “envelope” function for a model assuming {Im[nm],Re[nm], dm, L,F0} =

{0.6×10−5, 2.0, 50 nm, 742µm, 9200}. However, to obtain agreement with the transmission data for

F0 = 9200 and Re[nm] = 2.0, we have assumed vanishingly small membrane loss (Im[nm] = 0), a

slight asymmetry in the cavity end-mirrors transmission (T1/T2 ≈ 1.06) and a membrane thickness

of dm ≈ 47 nm. Note that the model assumes, in accordance with the measurement procedure, that

after each membrane position the end-mirror is translated to bring the cavity into resonance, while

the laser frequency remains fixed.

6.6 Concluding Remarks

We have performed a series of measurements to characterize the linear optical properties of our

“membrane-in-the-middle” system, described in Chapter 5. To model these measurements, we’ve

applied the steady-state transfer matrix model described in Chapter 3. We have verified that the

optomechanical coupling when the membrane is located near the center of the cavity agrees with

the “dispersive coupling” formula (Eq. 3.22,[23]), obtaining a maximum value of gmaxm = 2|rm|g0 ≈

0.843g0 = 2π × 0.432 GHz/nm at 935 nm for a nominally dm =50-nm-thick film coupled to a cavity

of length L = 742 µm and finesse F0 = 9200. We find that the MIM cavity linewidth/finesse varies in

a complicated fashion depending on both the reflectivity/loss of the membrane, its position relative

to the intracavity standing wave, and its overall distance from the center of the cavity. This variation

is consistent with an optical absorption characterized by an imaginary index of Im[nm] = 0.8×10−5

at 935 nm. Modeling a measurement of the resonant transmitted power vs. membrane position

suggests that the absorption may be significantly lower. A value Im[nm] = 0.8× 10−5 and dm = 50

nm would enable a loss-limited cavity finesse of F ≈ 1.5× 105 with the membrane positioned at an

antinode. This cavity finesse is within the envelope of the measured mirror coating curve, shown

in Figure 6.3. For our cavity length of 742 µm, a finesse of 9200 corresponds to a linewidth of

κ/2π = 12 MHz (HWHM), which puts us just inside “bad cavity limit” (κ > Ωm) with respect to

a nominal value of Ωm/2π = 5 MHz for the mechanical frequency of the membrane (in particular,

the 4.8 MHz (6,6) mode of a {dm, wm} = {50 nm, 500µm} membrane, around which we built our
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apparatus). To achieve sideband resolution, we could operate at a slightly different wavelength on

the coating curve. For the optomechanical cooling experiment described in Chapter 9, we operate

at a finesse of F0 ≈ 104 to mitigate vibration isolation problems. We have has some recent success

with a titanium-sapphire laser operating on the opposite side of the coating curve (812–813 nm,

where we have not yet carefully measured the membrane absorption coefficient) with a finesse of

F0 ≈ 3× 104.
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Chapter 7

Thermal Noise in a Multimode
MIM Sytem

In the next two chapters we elaborate on the task of characterizing displacement noise in the

“membrane-in-the-middle” system. The tools we have found necessary to develop are: (1) a way

to understand optomechanical coupling between higher-dimensional spatial modes of the membrane

and the optical cavity, (2) a model for how multimode Brownian vibration of the membrane is written

onto the intensity of the intracavity field, (3) methods to measure and calibrate these fluctuations,

and (4) an accounting of competing sources of noise in the measurement, especially mirror substrate

thermal noise. The first two subjects are treated in this chapter. It is hoped that, in addition to

clarifying subsequent results, the discussion herein provides insight into ways in which the simplicity

of the MIM system can be further enhanced.

7.1 Optomechanical Coupling Between Transverse Optical

and Mechanical Modes

Until now our treatment of optomechanical coupling has been one-dimensional. In the transfer

matrix model developed in Chapter 3, we assumed that the cavity mode was a plane wave and that

the membrane was a rigid plate (Figure 7.1). We then studied the effect of translating the equilibrium

position zm of membrane along the cavity axis, obtaining a maximum linear optomechanical coupling

of gmaxm = 2|rm|ωc/L when the membrane is located halfway between a node and an antinode of

the intracavity field near the midpoint of the cavity (see Section 3.3.1). Here |rm| is the reflectivity

of the membrane, L is the length of the cavity, and gm(zm) ≡ δωc/δzm gives the cavity resonance

frequency shift δωc resulting from a small displacement δzm of the membrane’s equilibrium position.

To model vibration of the membrane, we can attach the plate to a pendulum spring that produces

small amplitude fluctuations δzm(t) << λ along the cavity axis.

As illustrated in Figure 7.1, the 1D spring model is only an approximation when applied to
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Figure 7.1: Sketch of the problem: the amplitude of the intracavity field and the displacement of the
membrane surface both exhibit spatial variation perpendicular to the cavity axis. The intracavity
field is described by a Hermite-Gauss mode, ~ψ(x, y, z). Displacement of the membrane surface is

described by a vibrational mode b(t)~φ(x, y, z). Vibration of the membrane surface produces a cavity
resonance frequency shift δωc = gm(zm)ηb ≡ gm(zm)δzm. The “effective” equilibrium displacement
of the membrane, δzm, is equal to the weighted average of the displaced membrane surface over the
normalized intensity profile of the intracavity field.

an internal vibrational mode of the membrane, characterized by mode shape function ~φ(x, y, z)

(Section 7.1.1), which does not produce a uniform translation of the membrane, but rather a local

displacement that varies sinusoidally across its surface. Nor is the intracavity field a plane wave.

In a Fabry-Perot resonator with spherically curved mirrors, the intracavity field amplitude takes

the form of a Hermite-Gauss mode, characterized by mode shape function ~ψ(x, y, z) [31] (Section

7.1.2). The lowest order (“TEM00”) mode is characterized by an intensity profile that decays like

a Gaussian in the radial direction. In our cavity with length L = 742 µm and mirror radius of

curvature Rc = 5 cm, the diameter of this Gaussian is 2wc = 71.4 µm (Section 5.2.2.1). By design,

this dimension is comparable to the spacing between adjacent nodes for the (6,6) vibrational mode

of the {dm, wm} = {50 nm, 0.5 mm} membrane coupled to the cavity (i.e., 500 µm/6 = 83.3 µm).

In this more complicated setting, we can express the cavity resonance frequency shift produced

by vibration of the membrane surface (in a single mode) as δωc = gm(zm)ηb ≡ gm(zm)δzm; here b

denotes the amplitude of the vibrational mode, δzm the “effective” equilibrium displacement of the

membrane and η a “spatial overlap” factor proportional to the weighted average of the vibrating

membrane surface over the intensity profile of the intracavity field. In the following sections we will

substantiate this claim. Although for simplicity we will focus on internal vibrations of membranes,
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Figure 7.2: Vibrational modes ~uij(x, y, z, t) = bij(t)φij(x, y, z)ẑ of a square membrane. Mode-
shape functions φij(x, y, z) are normalized to φij = 1 at an antinode. bij(t), the generalized
amplitude of mode (i, j), represents the amplitude at an antinode. The effective mass of bij is
mij = 〈Eij〉/〈b2ij〉Ω2

ij = mphys/4, where 〈Eij〉 is the average energy of the oscillator.

the treatment used applies equally well to internal vibrations of the end-mirror substrates. Substrate

thermal noise will play an important role in Chapter 10; the concept is introduced here as a case

study in Section 7.3.2.

7.1.1 Internal Modes of an Elastic Body: Displacement and Effective

Mass

The internal modes of a three-dimensional elastic body are obtained by solving the elastic wave-

equation (for example, see Section 4.2.1). Eigensolutions to the wave equation (“modes”) are vector

fields, ~uk(x, y, z, t) which describe the displacement of each point in the body from its equilibrium

position (x, y, z) at time t. We will use index k to denote a mode of a generic 3-dimensional body

(like the membrane or mirror substrates) and indices (i, j) when referring specifically to a square

membrane vibrational mode. We assume solutions of the form:

~uk(x, y, z, t) = bk(t)~φk(x, y, z). (7.1)

Here ~φk(x, y, z) is a real-valued, unitless mode-shape function and bk(t) is a function of time with

units of length, representing the generalized amplitude of φk. Hereafter will refer to the bk as the

amplitude of “mode φk”, to emphasize that the magnitude of bk depends on the normalization of

the mode-shape function. bk(t) is assumed to obey the equation of motion for an internally damped

harmonic oscillator (see Section 2.2). In the Fourier domain (bk(Ω) =
∫∞
−∞ bk(t)e−iΩtdt):

(−Ω2 + iΓk(Ω)Ω + Ω2
k)bk(Ω) = Fk(Ω)/mk (7.2)
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where Fk is a generalized external force and mk is the “effective mass” of coordinate bk, to be defined

below.

We will also assume that the eigenmodes comprise a complete, orthogonal set, so that any

vibration of the elastic body can be written in the form ~u(x, y, z, t) =
∑
k bk(t)~φk(x, y, z) and

∫
V

~φk(x, y, z) · ~φk′(x, y, z)dxdydz = Nδk,k′ , (7.3)

where δk,k′ is the Kronecker-delta function, N is a normalization factor, and V is the volume of the

body.

In the absence of dissipation (Γk = 0) each infinitesimal mass element in the body, ρ(x, y, z)dV ,

describes 1D harmonic motion around its equilibrium position with amplitude bk(t)~φk(x, y, z), fre-

quency Ωk, and potential energy 1
2ρ(x, y, z)dV b2k(t)|~φk(x, y, z)|2Ω2

k. The total energy Ek of the mode

is given by summing the energy of each mass element. For a thermally excited damped harmonic

oscillator, the average energy of mode φk is given by equipartition:

〈Ek〉 = 〈b2k〉Ω2
k

∫
V

ρ(x, y, z)|~φk(x, y, z)|2dV = kBT, (7.4)

where 〈 〉 signifies the time average and |~φ|2 ≡ ~φ∗ · ~φ for vector quantities (for scalar quantities it

means the square modulus).

The integral in Eq. 7.4 has units of mass and can be identified as the effective mass mk of the

generalized amplitude bk relative to the energy normalization condition 〈Ek〉 = mkΩ2
k〈b2k〉. The

effective mass is related to the physical mass mphys ≡
∫
V
ρ(x, y, z)dxdydz by a purely geometric

“effective mass coefficient”, αk ≡ mk/mphys. In the simple case of uniform density, ρ(x, y, z) = ρ,

we find

αk ≡
mk

mphys
=

1

V

∫
V

|~φk(x, y, z)|2dV =
N

V
(7.5a)

〈b2k〉 =
〈Ek〉

αkmphysΩ2
k

. (7.5b)

Note that there remains an essential ambiguity in the definition of bk andmk until a normalization

N for ~φk(x, y, z) is chosen. This choice is completely arbitrary, and the game is to make a convenient

choice depending on the physical process being modeled. We will ultimately be interested in the

displacement of a small patch of the membrane surface, defined by the size and location of the

cavity mode piercing the membrane. Towards this end, it is convenient to normalize the mode-

shape function by setting its maximum value to unity, i.e., max
(
|~φk|

)
= 1. bk then describes the

amplitude of the point of maximum displacement in mode φk.
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For a square membrane with mode indices (i, j), this normalization gives |~φij | = 1 at each

antinode. bij then represents the displacement of an antinode from the equilibrium position of the

membrane. The vibrational mode shapes and eigenfrequencies of a square membrane with width

wm are given by (see Section 4.2.1):

~φij(x, y, z) = sin

(
i πx

wm

)
sin

(
j πy

wm

)
ẑ; {i, j} ∈ {1, 2, 3...} (7.6a)

Ωij =
1

wm

√
T

2ρ

√
i2 + j2

2
. (7.6b)

The effective mass of bij turns out to be the same for all modes of a square membrane:

mij = ρ t

∫ wm

0

∫ wm

0

sin2

(
i πx

wm

)
sin2

(
j πy

wm

)
dxdy (7.7a)

=
1

4
ρ tw2

m =
1

4
mphys. (7.7b)

It’s interesting to contrast this against the case of a circular drum of diameter wm, whose modes

are described by Bessel functions Jm(r) [49]. Using the same normalization convention:

~φij(r, θ, z) =
Jj(2xijr/wm) cos(jθ)

max (|Jj(2xijr/wm)|)
ẑ (7.8a)

i ∈ {1, 2, 3...}, j ∈ {0, 1, 2, ...};xij ≡ ith zero of Jj(r) (7.8b)

Ωij/2π =
1

wm

√
T

2ρ

2xij
π

. (7.8c)

In contrast to square membrane modes, the effective mass of circular membrane modes varies

widely with mode order. Of particular interest are the mode-shape functions of axisymmetric (j =

0,max (|J0(2xi0r/wm)|) = 1) modes. This subset of “confined” modes can have significantly reduced

effective masses because most of their displacement is localized to a reduced diameter ∼ wm/xi0:

mi0 = ρ t

∫ 2π

0

∫ wm/2

0

J2
0 (2xi0 r/wm)rdrdθ = mphysJ

2
1 (xi0). (7.9)

In Figure 7.20, the inverse effective mass coefficient (mphys/mij) of square and circular drum

modes is compared. In particular, we compare the subset of odd-ordered square modes (φi,j ; i =

1, 3, 5...; j = 1, 3, 5...) and axisymmetric circular (φi0; i = 1, 2, 3...) modes. These are modes

that have an antinode at the geometric center of the membrane. Their significance is as follows:

if the cavity waist were infinitesimally small and located at the center of the membrane, then

δωc = ωc − 〈ωc〉 = gmbij would be the cavity resonance frequency shift induced by vibrational

amplitude bij . Circular membranes may indeed be an attractive alternative in the future, owing

to their small effective mass and the reduced density of modes which have non-zero amplitude at
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Figure 7.3: Inverse effective mass coefficient of odd-ordered square membrane modes (φi,j ; i =
1, 3, 5...; j = 1, 3, 5...) and axisymmetric circular membrane modes (φi0, i = 1, 2, 3...) as a function
of frequency for membrane diameter wm = 500µm and tension T = 900 MPa. The choice of modes
is relevant to the situation where the membrane is probed at its center by a TEM00 cavity mode.
In this case — as explained in Section 7.1.3 — all square and non-axisymmetric circular membrane
modes have vanishing optomechanical coupling.

cavity center. At the time of this writing, collaboration with Richard Norte in the Painter group

has produced some high quality preliminary devices (wm = 200−−300 µm, Q10 ∼ 106).

In the next two subsections we derive the effective optomechanical coupling for a cavity spatial

mode with finite size and arbitrary location with respect to cavity center.

7.1.2 Internal Modes of a Fabry-Perot Cavity: Hermite-Gaussian Modes

In Chapters 2 and 3 we modeled the intracavity field as a superposition of plane waves traveling

normal to the cavity axis. Here we consider a more realistic model of our Fabry-Perot cavity, in

which the circulating field is allowed to diffract. Our cavity is composed of two highly reflective

end-mirrors each having the same radius of curvature Rc = 5 cm and separated by a distance L =

0.743 mm. The electric field in this cavity can be written as a superposition of spatial modes ~ψn

with generic index n:

~E(x, y, z, t) =
∑
k

En(t)~ψn(x, y, z), (7.10)
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which are a solution to the Helmholtz equation

(~∇2 + k2
n)~ψn(x, y, z) = 0 (7.11)

subject to the boundary condition ~ψn(x, y, z) ≈ 0 at the (high reflective) mirror surface.

When L < 2Rc (as in our case), the mirror surfaces coincide with the wavefront of a Hermite-

Gaussian beam[31]. This reflects the fact that solutions to (7.11) in the paraxial approximation —

“Hermite-Gauss Modes” — can be written as the superposition of forward and backward propagating

Hermite-Gaussian beams, ψ± [31]. Hereafter we will approximate the Gaussian beam as planar, so

that the polarization vector is perpendicular to the cavity axes. We will use indices (m,n) to

represent Hermite-Gaussian mode “TEMmn”, which has mode shape function:

ψmn(x, y, z) = ψ+
mn(x, y, z)− ψ−mn(x, y, z) (7.12a)

ψ±mn(x, y, z) = i|Nmn|e
− x2+y2

w(z)2 Hm

[√
2x

w(z)

]
Hn

[ √
2

w(z)

]
e∓i(kmnqz+φ(x,y,x)) (7.12b)

φ(x, y, z) = φG(z) +
π(x2 + y2)

λR(z)2
. (7.12c)

Here z is the position along the cavity axis with z = 0 at cavity center (assuming that the two

mirrors have the same radius of curvature), Hm is the mth Hermite polynomial, w(z) is the 1/e2

radius of the transverse intensity profile, R(z) is the radius of curvature of the diffracting wave-front,

φG is the “Guoy” phase, kmnq is the cavity resonance frequency in wavenumber units, and |Nmn| is

a normalization factor. For our cavity length (L = 0.742 µm) and mirror radius (Rc = 5 cm), these

various components take on the values:

zR =
πw2

c

λ
=
L

2

√
2Rc
L
− 1 ≈ 5.8L (7.13a)

w(z) = wc

√
1 +

(
z

zR

)2

≈ wc = 35.8 µm @ 935 nm (7.13b)

R(z) = z + z2
R/z ≈ 33.5L/z (7.13c)

φG(z) = tan−1(z/zR) ≈ z/zR (7.13d)

fmnq =
ωnmq

2π
=
knmqc

2π
=

c

2L

(
q + (n+m+ 1)

cos−1 (1− L/Rc)
π

)
(7.13e)

≈ q × 202 GHz + (n+m+ 1)× 11 GHz, (7.13f)

where zR is the “Rayleigh length” of the cavity, and fmnq the cavity resonance frequency. Our cavity

has a nominal free spectral range of ≈ 202 GHz and “transverse mode splitting” ≈ 11 GHz.

For most of the experiments we have performed in the lab we use lowest order cavity mode,
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TEM00, which has a Gaussian transverse profile:

ψ00(x, y, z) = |N00|e
− x2+y2

w(z)2 sin(k00qz + θ(x, y, z)). (7.14)

Also note that by construction the Hermite-Gauss beams obey the orthogonality relations:

∫ ∞
−∞

ψ±∗nm(x, y, z)ψ±n′m′(x, y, z)dx ∝ δn,n′ (7.15a)∫ ∞
−∞

ψ±∗nm(x, y, z)ψ±n′m′(x, y, z)dy ∝ δm,m′ (7.15b)∫
Vc

ψ∗nm(x, y, z)ψn′m′(x, y, z)dxdydz ∝ δm,m′δn,n′ , (7.15c)

where the last integral is over the cavity volume, Vc .

7.1.3 Optomechanical Coupling, “Effective Displacement”, and “Spatial

Overlap”

We now consider the situation illustrated at the top of Figure 7.4: a compliant end-mirror vibrating

in mode φk(x, y, z) with amplitude bk is coupled to a Hermite-Gauss mode, ψmn(x, y, z), of a Fabry-

Perot cavity.

Note: for notational simplicity we hereafter drop the longitudinal and transverse indices, qmn,

in the parameterization of the optomechanical system. This is justified by the fact that in practice

usually only one cavity mode is excited.

When bk = 0, the resonance frequency of the cavity is 〈ωc〉. When bk > 0, then the cavity

resonance frequency is displaced by an amount

δωc = ωc − 〈ωc〉 = g0ηkbk ≡ g0δz
k
0 . (7.16)

Factor g0 = 〈ωc〉/L here corresponds to the optomechanical coupling for a rigid mirror in a

two-mirror cavity, factor ηk depends on the spatial overlap between of the mechanical and optical

spatial modes and will be referred to as the “spatial overlap factor”, and δzk0 ≡ ηcbk is referred to

as the “effective displacement” of mode φk.

We ask: how is ηk related to the spatial profile of the mechanical mode and the cavity mode?

To get a handle on the situation, we can compute the phase shift experienced by the circulating

Hermite-Gaussian beam upon reflection from the vibrating mirror (relative to the mirror in its

equilibrium position bk = 0). To simplify the problem, we assume that the intracavity wavefront is

nearly planar (k̂ ≈ ẑ) at the mirror surface. We then follow closely the arguments of Gillespie and
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Raab [52], who express the phase shift upon reflection as:

ψ+
mn(x, y, z)→ ψ−mn(x, y, z)e2ikmnbk~φk(x,y,z)·ẑ (7.17a)

≈ ψ−mn(x, y, z)(1 + 2ikmnbk~φk(x, y, z) · ẑ) (7.17b)

=
∑
m′n′

cm′n′ψ
−
m′n′(x, y, z) (7.17c)

≈ ψ−mn(x, y, z)

(
1 + 2ikmnbk ·

∫
S
|ψ−mn(x, y, z)|2~φk(x, y, z) · ẑdσ∫

S
|ψ−mn(x, y, z)|2dσ

)
(7.17d)

= ψ−mn(x, y, z)

(
1 + 2ikmnbk ·

∫
S
|ψmn(x, y, z)|2~φk(x, y, z) · ẑdσ∫

S
|ψmn(x, y, z)|2dσ

)
. (7.17e)

Here |ψ|2 here indicates ψ∗ψ for scalar quantities and S denotes the integral over the surface of

the miror. The assumptions behind each step are: (7.17b) bk is much smaller than λmnq, (7.17d)

the Hermite-Gauss modes form a complete set, (7.17d) the Hermite-Gauss modes are orthogonal

according to (7.15) and only the original unperturbed mode of the cavity is resonant with the

incoming laser. Eq. 7.17d is obtained by applying Eq. 7.15 to both sides of Eq. 7.17c. Eq. 7.17e

follows from the relationship between Hermite-Gaussian beams and modes given in Eqs. 7.12a and

7.12b.

Eq. 7.17e suggests that displacing vibrational mode φk from equilibrium by an amount bk is

equivalent to displacing the entire mirror by an “effective displacement” magnitude:

δzk0 =

∫
S
|ψmn(x, y, z)|2~φk(x, y, z) · ẑdσ∫

S
|ψmn(x, y, z)|2dσ

· bk ≡ ηkbk (7.18)

such that the cavity resonance frequency shift is given by δωc = g0δz
k
0 . The spatial overlap factor,

ηk, is the weighted averaged of spatial mode function φk(x, y, z) over the normalized intensity profile

of the cavity mode, |ψmn(x, y, z)|2/
∫
S
|ψmn(x, y, z)|2dσ, where S indicates evaluation at the surface

of the mirror.

By direct analogy, we infer that a membrane in the “membrane-in-the-middle” system, vibrating

in a single mode φij with amplitude bij , will produce a cavity resonance frequency shift given by

δωc = gm(zm)ηijbij where

ηij =

∫
S
|ψmn(x, y, z)|2~φij(x, y, z) · ẑdσ∫

S
|ψmn(x, y, z)|2dσ

. (7.19)

Mode φij is then described by an effective displacement δzijm ≡ ηijbij ; δz
ij
m corresponds to the

displacement of the membrane’s equilibrum position required to shift the cavity resonance frequency

by gm(zm)ηijbij . ηij is referred to as the spatial overlap factor for membrane mode φij . The

main assumption made in drawing the above analogy is that, to first order, the phase of the field
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Figure 7.4: Reducing the optomechanical system to one dimension. Upper plot: in a typical situa-
tion, Hermite-Gaussian mode ψ00(x, y, z) (TEM00) is coupled to a vibrational mode of one of the end-
mirror substrates, characterized by the product of mode-shape function φk(x, y, z) and generalized
amplitude bk << λ. Amplitude bk gives rise to a shift in the cavity resonance frequency δωc = g0ηkbk,
where g0 = ωc,mn/L is the canonical end-mirror optomechanical coupling and ηk is the weighted
average of φk(x, y, z0) over the normalized intensity profile |ψ00(x, y, z0)|2/

∫
S
|ψ00(x, y, z0)|2dσ, eval-

uated at the position of the mirror surface, z0. This is equivalent to displacing the entire mirror by
“effective” magnitude δzk0 = ηkδbk. Lower plot: the same set of reasoning applies to the “membrane-
in-the-middle”. Here we have represented the (6,6) mechanical mode of a square membrane as the
product of mode shape function φ66(x, y, z) and generalized amplitude b66. Vibration amplitude
b66 gives rise to a resonance frequency shift δωc = gmη66b66, where gm is the 1D dispersive op-
tomechanical coupling for the MIM system derived in Section 3.3.1 and η66 is defined as above.
This is equivalent to a displacement of the equilibrium position of the membrane by an amount
δz66
m = η66b66.
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transmitted through the membrane is Arg[tm] for all modes φij (doesn’t depend on the vibrational

mode-shape).

Note that we can also define an effective mass of the effective displacement — a useful expres-

sion for more complicated structures like the end-mirrors, discussed in Section 7.3.2. For generic

vibrational modes with index k (representing either the mirror or the membrane), this quantity is

defined:

mk
eff ≡

mk

η2
k

=
〈Ek〉

Ω2
k〈δzkm2〉

(7.20a)

=
1
V

∫
V
|~φk(x, y, z)|2dxdydz ×

∫
S
|ψmn(x, y, z)|2dxdydz∫

S
ẑ · ~φk(x, y, z)|ψ(x, y, z)|2dxdydz

·mphys, (7.20b)

where recall |~φ|2 = ~φ∗ · ~φ for vectors and |ψ|2 = ψ∗ψ for scalars. The expression for mk
eff is useful

because it does not depend on the choice of normalization for either ψmn or φk.

The common thread between all of these expressions is the spatial overlap factor, ηk. We now

consider a relevant example of its computation.

7.1.3.1 Example: TEM00 and Square Membrane

We will usually be concerned with the spatial overlap between a square membrane (width wm) and

a TEM00 cavity mode (waist wc). Assume that the membrane is located near the geometric center

of the cavity (zm << L/2) and displaced by (x0, y0) from the cavity axis. In this case the expression

for the spatial overlap at the equilibrium position of the membrane (z = zm) simplifies to:

~φij(x, y, zm) = sin

(
iπ(x+ wm

2 )

wm

)
sin

(
jπ(y + wm

2 )

wm

)
ẑ (7.21a)

ψ+
mn(x, y, zm) ≈ i|N00|e

−(x−x0)2−(y−y0)2

w2
c eikmnzm (7.21b)

ηij ≈
2

πw2
m

∫ wm
2

−wm
2

∫ wm
2

−wm
2

sin

(
iπ(x+ wm

2 )

wm

)
sin

(
jπ(y + wm

2 )

wm

)
e
−2(x−x0)2−2(y−y0)2

w2
c dxdy. (7.21c)

In Figure 7.5 we compute the spatial overlap between a square membrane mode and a TEM00

optical mode for two sets of parameters, {wc, wm, x0, y0} = {35.7 µm, 500 µm, 0 µm, 0 µm} and

{35.7µ m, 500 µ m, 45 µm, 120 µm}, the latter corresponding to the position used in the optome-

chanical cooling experiment in Chapter 9. Note that in the first case, only odd-ordered modes are

coupled to the cavity. In the latter case, the (6,6) mode that we would like to address has reduced

optomechanical coupling characterized by a spatial overlap factor of η66 = 0.64.
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Figure 7.5: Spatial overlap factor between the TEM00 cavity mode (wc = 35.7 µm) and the first 100
modes of a square membrane with dimensions {dm, wm} = {50 nm, 0.5 mm}. Red points correspond
to the membrane centered on the optical mode, {x0, y0} = {0µm, 0µm}. Blue points correspond
to an offset of {x0, y0} = {45µm, 120µm}. Circles indicate “diagonal” modes φii. Contours for
φ11,33,66(x, y, zm) = ±1/2 are shown in the upper- and lower-right plots, with a density plot of the
optical mode ψ00(x− x0, y − y0, zm) overlaid. zm is the the equilibrium position of the membrane.

7.2 Multimode Vibration of the MIM Cavity and “Effective

Displacement”

In general, cavity resonance frequency fluctuations will arise due to multi-mode vibration of both

the mirrors and the membrane. We can express the sum effect in terms of the vibrational modes of

mirror 1 (index k1), mirror 2 (index k2), and the membrane (index (i, j)), respectively, as

δωc = g1

∑
k1

ηk1bk1 + gm
∑
ij

ηijbij + g2

∑
k2

ηk2bk2 (7.22a)

= g1

∑
k1

δzk11 + gm
∑
ij

δzijm + g2

∑
k2

δzk22 (7.22b)

where g1,2,m denote the frequency shift per unit rigid axial displacement of mirror 1, mirror 2, and

the membrane, respectively, η represents the spatial overlap factors defined by Eq. 7.18, and δz ≡ ηb

is the effective displacement associated with η (Eq. 7.18). All three of g1,2,m will depend on the

membrane’s position, as discussed in Section 7.3.2.3.

We can express multimode displacement of mirror 1, mirror 2, and the membrane in the shorthand

notation

δωc = g1δz1 + gmδzm + g2δz2, (7.23)
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δzm,1,2 are obtained by summing over the corresponding set of vibrational for the membrane, mirror

1, and mirror 2 in Eq. 7.22. We refer to δzm,1,2 as the (total) effective displacement of the membrane,

mirror 1, and mirror 2, respectively.

Finally, we can associate with δωc an effective cavity length change

δL ≡ δωc/g0 (7.24)

defined as the cavity length change necessary to produce δωc in a standard two-mirror resonator

(with no membrane).

For stochastic changes, the power spectral density of each of these variables are related accord-

ingly:

Sωc
(Ω) = SL(Ω)/g2

0 (7.25a)

= g2
1Sz1 + g2

mSzm + g2
2Sz2 (7.25b)

= g2
1

∑
k1

S
z
k1
1

+ g2
m

∑
ij

Szijm + g2
2

∑
k2

S
z
k2
2

(7.25c)

= g2
1

∑
k1

η2
k1Sbk1

+ g2
m

∑
ij

η2
ijSbij + g2

2

∑
k2

η2
k2Sbk2

. (7.25d)

We now consider multimode thermal motion as an example.

7.3 Multimode Thermal Noise Spectrum

We are now in a position to describe multimode vibration of the “membrane-in-the-middle” (as

well as the multimode vibration of our end-mirror substrates). We first consider only membrane

motion. A single internal mode of the membrane is described by generalized amplitude bij and

obeys the equation of motion for a damped harmonic oscillator given in Eq. 7.2. This equation is

characterized by effective mass mij , undamped resonance frequency Ωij , and damping coefficient

Γij(Ω). Applying the Fluctuation Dissipation Theorem as described in Section 2.2, the power

spectral density of thermal fluctuations of bij , Sbij (Ω), is given by (Eq. 2.17):

Sbij (Ω) = |χij(Ω)|24kBTbΓij(Ω) (7.26a)

=
4kBTbathΓij(Ω)

mij

1

(Ω2
ij − Ω2)2 + Ω2Γ2

ij(Ω)

m2

Hz
, (7.26b)

where χij(Ω) = Fij(Ω)/bij(Ω) is the mechanical susceptibility as determined from Eq. 7.2 and

4kBTbathΓij(Ω) is the spectral density of thermal force fluctuations experienced by bij . Note that

the generic frequency-dependent damping term reduces to a constant Γij(Ω) → Γij for velocity
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damping and Γij(Ω)→ Γij(Ωij) · Ωij/Ω for structural damping, as discussed in Section 2.2.

In the limit that all of the modes are decoupled, the total thermal noise spectrum is given by an

incoherent sum according to Eq. 7.25. Expressed as effective length fluctuations, the total spectrum

of cavity resonance frequency fluctuations produced by thermal motion of the membrane is thus

given by:

SL(Ω)|mem = g−2
0 Sωc

(Ω)|mem =
∑
ij

g2
m

g2
0

η2
ij

4kBTbathΓij(Ω)

mij

1

(Ω2
ij − Ω2)2 + Ω2Γij(Ω)2

. (7.27)

With optical spring/damping forces included (Section 2.4, Eqs. 2.52), we can model the multi-

mode thermal noise spectrum as:

SL(Ω)|mem ≈
∑
ij

g2
m

g2
0

η2
ij

4kBTbathΓij
mij

1

((Ωij + ∆Ωijopt(Ω))2 − Ω2)2 + Ω2(Γij(Ω) + Γijopt(Ω))2
. (7.28)

Expressions for optical spring shift Ωijopt and damping rate Γijopt will depend on {mij ,Ωij , ηij}. We

review these expressions in detail in Section 9.1.

For weak intrinsic and optical damping (Eq. 2.52), we can approximate the noise spectrum as a

a superposition of velocity damped oscillators (this is a good approximation near each thermal noise

peak)

SL(Ω)|mem ≈
∑
ij

g2
m

g2
0

η2
ij

4kBTbathΓij
mij

1

((Ωij + ∆Ωijopt)
2 − Ω2)2 + Ω2(Γij + Γijopt)

2
, (7.29)

where Γij(Ωij) ≡ Γij , ∆Ωij(Ωij) ≡ ∆Ωijopt, and Γijopt(Ωij) ≡ Γijopt.

When the noise peaks are well resolved, the effective temperature of each mode, T ijeff ≡ mij〈b2ij〉/kB ,

is obtained by integrating the total noise spectrum over the noise peak centered at Ωij .

T ijeff ≈
g2

0

g2
m

1

η2
ij

mijΩ
2
ij

kB

∫
Ωij

SL(Ω)dΩ/2π ≈ Γij

Γij + Γijopt
Tbath, (7.30)

where
∫

Ωij
denotes an integral over the noise peak centered at Ωij .

7.3.1 Membrane Thermal Noise: Examples

7.3.1.1 Role of Spatial Overlap and Mechanical Quality.

An example of broadband thermal noise for a {dm, wm} = {50 nm, 0.5 mm} square membrane is

shown in Figure 7.6. Here we use a physical mass of mphys = 33.75 ng, a tension of T = 900 MPa,

and a uniform mechanical quality factor of Qij = 1 × 106 for all modes, consistent with structural

damping of the form Γij(Ω) = Ω2
ij/(ΩQij) (Section 7.3.1.2). The point we’d like to illustrate with

this plot is the role that optomechanical overlap plays in determining the effective displacement noise
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Figure 7.6: Illustration of the role of spatial mode overlap. Here we model the effective
cavity length noise produced by Brownian vibration of a square membrane with dimensions
{dm, wmmphys, T , Qij} = {50 nm, 0.5 mm, 33.75 ng, 900 MPa, 106} coupled to a TEM00 cavity
mode with wc = 35.7 µm. The cavity mode pierces the membrane at two different positions cor-
responding to Figure 7.5: (x0, y0) = (0µm, 0µm) (red) and (45µm, 120µm) (blue). These two
positions give rise to different spatial overlap factors ηij , hence the difference between the noise
spectra. Dashed lines corresponds to an individual (3,3) vibrational mode. Gray and black lines
correspond to measured and modeled internal vibrations of the cavity end-mirror substrates, de-
scribed in Section 7.3.2. Note that the origin of the frequency axis is 10 kHz.

spectrum. We plot SL(Ω) (Eq. 7.27) for the two locations of the TEM00 mode as shown in Figure

7.5. Significantly, we observe that the noise floor is dominated by the off-resonant contribution from

neighboring peaks, and that this structure, which is is due to the effective motion of multiple internal

modes, depends on the spectrum of overlap coefficients. Thermal noise of the mirror substrates can

be treated in a similar way, and we show for comparison the modeled and measured thermal noise

of the cavity mirrors, discussed below (Section 7.3.2).

7.3.1.2 Structural Vs. Velocity Damping

As discussed in [29], velocity damping does not accurately describe the internal dynamics of most

elastic bodies far from resonance. A more accurate description is obtained by allowing the phase lag ϕ

of the elastic restoring force (modeled by a complex spring constant) to depend on the oscillation fre-

quency in a generic fashion, kijbij(Ω)→ kij(1 + iϕij(Ω))bij(Ω). The result is a frequency-dependent

damping term, Γij(ω) = Ω2
ijϕij(Ω)/Ω. Two forms of damping are common. “Velocity” damping cor-

responds to the canonical dashpot system, for which the time lag of the restoring force is linearly pro-
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Figure 7.7: Comparison of structural and velocity damping. Here we re-calculate the effective cavity
length noise spectrum shown in blue in figure 7.6 (gm = g0 and {dm, wmmphys, T , Qij wc, x0, y0} =
{50 nm, 0.5 mm, 33.75 ng, 900 MPa, 106, 35.7µm, 45µm, 120µm}) using two different mechanical
damping models. Solid dark blue corresponds to structural damping, Γij(Ω) = Ω2

ij/QijΩ with

Qij = 106. Dashed dark green corresponds to velocity damping, Γij(Ω) = Γij = Ωij/Qij , with
Qij = 106. Solid and dashed light green lines correspond to an individual (3,3) membrane peak for
structural and velocity damping, respectively. Gray and black lines correspond to measured and
modeled internal vibrations of the cavity end-mirror substrates, described in Section 7.3.2. Note
that the origin of the frequency axis is 10 kHz.

portional to the oscillation frequency, ϕij(Ω) = Ω/QijΩij . This gives rise a frequency-independent

damping Γij(Ω) = Γij = Ωij/Qij . “Structural” damping is common to many vibrating elastic solids

and corresponds to the case for which the time lag is frequency independent, ϕij(Ω) = 1/Qij . The

resulting damping rate depends linearly on frequency Γij(Ω) = Γij Ωij/Ω, and manifests itself as a

frequency-independent quality factor — roughly consistent, for example, with the membrane quality

factor measurements made in Chapter 4.

For our current system, {dm, wmmphys, T , Qij wc} = {50 nm, 0.5 mm, 33.75 ng, 900 MPa,∼ 106,

35.7µm} the effect of internal damping is only significant at frequencies below. This point is illus-

trated in Figure 7.7.

7.3.2 Mirror Substrate Thermal Noise

The mirror substrates forming our MIM cavity were described in detail in Chapter 3. Their dimen-

sions are recapped in Figure 7.8. The internal vibration of these substrates was once the subject of
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Figure 7.8: Effective mass of our mirror vibrational modes: here we plot the inverse effective mass
coefficient of the effective displacement for each mirror mode, mphys/m

k
eff , as defined by Eq. 7.20b

and Eq. 7.31. To compute these values, we assume a TEM00 cavity mode with waist of 35.7 µm
that is centered on the axis of the cylindrical mirror substrate. Only axisymmetric modes have finite
effective mass.

vigorous investigation in our lab. Originally designed for short, L ∼ 10µm, cavities for our CQED

project, it was thought that their displacement might produce enough intensity noise to limit the

lifetime of an atom trapped by the cavity field (for details, we refer the reader to Joe Buck’s thesis

[69]). An analogous set of concerns is addressed in Chapter 10, as we anticipate the same intensity

noise to limit the base temperature of a laser-cooled membrane mode. In light of this concern and

because a body of historical data was available [69], we have found it important to sanity check our

thermal noise model against the more complicated internal vibration of the mirror substrates.

7.3.2.1 Effective Mass Coefficients

The spatial overlap factors and effective masses of the mirror substrates are difficult to obtain

analytically. Our post-doc, Kang-Kuen Ni, was able to solve for the vibrational mode shape functions

numerically using the finite element software available from COMSOL[80]. A description of the
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“Structural Mechanics” module she used is provided in [81]. In the model, we have made the

following assumptions: (a) we assume that the substrate is a homogeneous block of Bk7 glass, (b)

we assume that the mirror is “free”, i.e., we ignore the fact that a fraction of its surface is bound with

adhesive to a Bk7 glass v-block (see Figure 5.2), (c) we ignore the ≈ 10−µm-thick dielectric coating

deposited on the polished mirror face, and (d) we ignore the 5 cm radius of curvature of the mirror

face. We also assume the following density, Young’s modulus, and Poisson’s ratio associated with Bk7

glass: {ρ,E, ν} = {2.51 g/cm
3
, 81 GPa, 0.208}. With these assumptions and the dimensions given in

Figure 7.8, COMSOL is used to find solutions to the 3D elastic wave equation. This produces a set

of eigenmodes and their eigenfrequencies {~φk(x, y, z),Ωk}. From among these modes, we restrict our

attention to those which are axisymmetric. We do this under the assumption that the cavity mode

is centered on the mirror, in which case the non-axisymmetric modes are expected to have small

optomechanical overlap. The remaining modes correspond roughly to longitudinal cylinder modes

(mk
eff ≈ mphys/2) mixed with thick circular plate modes. The mass of the cylinder is ≈ 61 mg and

the length is Ls = 4 mm; the latter predicts a fundamental frequency of roughly
√
E/ρ/2Ls ∼ 710

kHz. Comsol predicts 785 kHz, which is coincidentally near the ∼ 800 kHz fundamental of our

{dm, wm, T } = {50 nm, 0.5 mm, 900 MPa} square membranes.

In Figure 7.8, we plot the effective mass coefficients of the effective mirror displacement, mk
eff ,

as defined in Eq. 7.20. We assume a TEM00 mode with waist wc = 35.7µm that is centered on the

axis of the cylindrical mirror substrate, and which therefore is only coupled to axially symmetric

vibration modes of the substrate. As noted earlier, the definition of mk
eff does not depend on the

overall normalization of φk or ψmn. The algorithm we use is

mk
eff

mphys
=

1
V

∫
V
||~φk(r, θ, z)||2rdrdθdz(

2
πw2

m

∫ 2π

0

∫ 0.5 mm

0
φk(r, θ, z0)e

−2r2

w2
c rdrdθ

)2 , (7.31)

where V is the volume of the mirror substrate and z0 is the position of the mirror face.

7.3.2.2 Mirror Substrate Noise

The spectrum of eigenfrequencies and effective masses can be used to predict the effective cavity

length noise produced by thermal motion of the mirror substrates. With no membrane in the middle,

the effective cavity length noise is given by the incoherent sum of the effective displacement of each

mirror:

SL(Ω)|sub = Sz1(Ω) + Sz2(Ω) (7.32a)

Sz(1,2)(Ω) =
∑
k

4kBTbathΓk,(1,2)(Ω)

m
k,(1,2)
eff

1

(Ω2
k,(1,2) − Ω2)2 + Ω2Γ2

k,(1,2)(Ω)
; (7.32b)
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Figure 7.9: Model and measurement of the effective cavity length noise due to thermal excitation of
both end-mirror substrates (Eq. 7.32). Solid and dashed correspond to internal and velocity damping
models, respectively. Black and gray correspond to the full multimode spectrum noise spectrum and
the thermal noise spectrum of a single peak, respectively. Pink corresponds to a measurement made
using a detuned probe, as discussed in the following section. A qualitative match was achieved by
assuming a uniform quality factor of 650 for the mirror modes and by an ad hoc adjustment of the
eigenfrequencies of mirrors 1 and 2 by a factor of 0.995 and 0.998, respectively.

where “1” and “2” indicate the input and output mirrors, respectively. Note we have used the fact

that the optomechanical coupling of each mirror position is g0 in a normal FP cavity.

This model is as shown in Figure 7.9 alongside a measurement performed with the membrane

removed, as explained in the next chapter. In the figure we compare the prediction for velocity

and internal damping models. The discrepancy is small, and both models are found to be in good

qualitative agreement with the measurement. To achieve this qualitative match, we assume that all

of the mirror modes have a quality factor of Qk = 650, consistent with the internal damping model.

We also make an ad hoc adjustment of the eigenfrequencies by a factor of 0.995 and 0.998 from the

model prediction, respectively, to match the splitting of each peak in the measured noise spectra –

believed to correspond to small dimensional differences in the two mirrors.

7.3.2.3 End-Mirror Coupling in a MIM Cavity

It’s important to mention that taking an incoherent sum of the effective displacement noise of each

end-mirror substrate does not describe the effective cavity length noise due to the substrates when
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Figure 7.10: Plots of membrane and single end-mirror coupling in the MIM cavity as a function of
position of the membrane. Red, purple, and cyan curves correspond to the optomechanical coupling
of the membrane, mirror 1, and mirror 2, respectively, for the 1-dimensional system sketched at the
top. The left column and the right column correspond to the equilibrium membrane position, zm
located near cavity center and near mirror 2, respectively.

the membrane is present. This is because unlike a normal Fabry-Perot cavity, the MIM cavity

is sensitive to common-mode translation of the two mirrors (indeed, translating the two mirrors

in tandem is indistinguishable from translating the the membrane). To include this effect, we

first numerically compute the optomechanical coupling of the entry (mirror 1) and exit (mirror 2)

end mirrors in the MIM cavity as a function of membrane position, using the plane-wave model

discussed in Section 3.3.1. The results are shown in Figure 7.10, with gm/g0, g1/g0, and g2/g0

representing the optomechanical coupling of the membrane (effective displacement δzm), mirror 1

(effective displacement δz1), and mirror 2 (effective displacement δz2) relative to the canonical end-
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mirror coupling, g0 = ωc/L. All three couplings are functions of the membrane’s equilibrum position,

zm. By numerically adding and subtracting the curves shown in Figure 7.10, it can be shown that:

δωc = g1δz1 + g2δz2 + gmδzm (7.33a)

2g0 = g1

(
1 +

2zm
L

)
− g2

(
1− 2zm

L

)
(7.33b)

−gm = g1 + g2. (7.33c)

There are at least two interesting ways to write (7.33a): in terms of end mirror displacements δz1,2,

and in terms of symmetric/antisymmetric displacement: δz± = (δz1 ± δz2)/2. Combining (7.33b)

and (7.33c), we find:

δωc = g1δz1 + g2δz2 + gmδzm = g+δz+ + g−δz− + gmδzm (7.34a)

g1 = g0 −
gm
2

(
1− 2zm

L

)
(7.34b)

g2 = −g0 −
gm
2

(
1 +

2zm
L

)
(7.34c)

g+ = g1 + g2 = −gm (7.34d)

g− = g1 − g2 = 2
(
g0 + gm

zm
L

)
. (7.34e)

Evidently the optomechanical coupling of δz1 and δz2 are both functions of the membrane position

zm. As expected, the optomechanical coupling (g+) to symmetric displacement (δz+) is equivalent

to the optomechanical coupling of the membrane (gm) and vanishes when the membrane is at a

node or an antinode of the intracavity field. The optomechanical coupling (g−) to antisymmetric

(cavity-length-changing) displacement of the mirrors (δz−) is a complicated function of membrane

position, but reduces to twice the canonical coupling (2g0) when the membrane is located at the

midpoint of the cavity.

Finally, using expressions for g1 and g2 and assuming zm = 0, we can write down the total

effective displacement noise of MIM cavity as:

SL(Ω) =

(
1− gm

2g0

)2

Sz1(Ω) +

(
1 +

gm
2g0

)2

Sz2(Ω) +

(
gm
g0

)2

Szm(Ω), (7.35a)

where superscripts {1, 2,m} indicate displacement noise of mirror 1, mirror 2, and the membrane,

respectively.
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Chapter 8

Cavity-Based Thermal Noise
Measurement

In the previous chapter we described the optomechanical coupling of an internally vibrating mirror

or membrane in the MIM system. We then developed a model for the multimode thermal noise of the

composite system. In this chapter we discuss the task of measuring thermal noise in lab, developing

in detail several subjects that have been points of concern. In overview: (1) we describe an input-

output model for the MIM cavity based on the canonical two-mirror optomechanical system. (2) We

derive transfer function characterizing two techniques used to map membrane/mirror fluctuations

into photocurrent fluctuations. The first technique consists of driving the cavity with a detuned

input field and monitoring the transmitted power. The second technique consists of driving the

cavity with a resonant input field and monitoring the phase of the reflected field, using the “Pound-

Drever-Hall” method. (3) We predict the shot noise limited sensitivity of these measurements and

compare to the predicted thermal noise of the membrane. (4) We detail a technique for calibration

of the displacement measurement by phase modulating of the input field. (5) We walk through three

important examples: (a) measurement of the temperature of a single membrane mode, (b) calibration

of the spectrum of “spatial overlap” factors, {ηij} (Section 7.1.3) using a multimode thermal noise

measurement, and (c) characterization of the broadband displacement noise background due to laser

frequency noise and thermal motion of the end-mirror substrates.

8.1 Basic Approach: Measurement Response Function

To treat mirror and membrane motion on equal footing, we will use the fact that in any optome-

chanical system, displacement of the mechanical element manifests itself as a displacement of the

cavity resonance frequency, δωc(t) = gδz(t), where the definition of displacement coordinate δz(t)

and optomechanical coupling g depends on the geometry of the system (see, e.g., Section 7.1.3). In

the lab, with help of the cavity transfer function, we transform cavity frequency fluctuations into
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photocurrent fluctuations, δi(t) = i(t) − 〈i〉, by directing the field leaking out of the cavity onto a

photodiode. The transformation constitutes a “measurement”, and we will assume that it is linear

and described by a response function Gi,ωc
(Ω) (Section 2.1):

Gi,ωc(Ω) =
δi(Ω)

δωc(Ω)
A/Hz; {δi(Ω), δωc(Ω)} =

∫ ∞
−∞
{δi(t), δωc(t)}e−iΩtdt. (8.1)

In the framework of linear response theory, measurement of noisy signals can be described using

the transfer function |Gi,ωc
(Ω)|2 (Eq. 2.12). By noise, we will mean a random signal, e.g., a noisy

photocurrent i(t), described by a single-sided power spectral density, Si(Ω) (Eq. 2.9), with units of

A2/Hz, normalized such that
∫
Si(Ω)dΩ/2π = 〈i2(t)〉. The mapping of cavity resonance frequency

noise into photocurrent noise is characterized by:

Si(Ω) = |Gi,ωc
(Ω)|2Sωc

(Ω). (8.2)

Using the nomenclature from Section 7.1.3, the generic relationship between photocurrent noise,

cavity resonance frequency noise, and effective/actual displacement noise for multimode vibration

of the membrane can be summarized as follows:

Si(Ω) = |Gi,ωc
(Ω)|2Sωc

(Ω) = |Gi,ωc
(Ω)|2g2

mSzm(Ω) = |Gi,ωc
(Ω)|2g2

m

∑
ij

η2
ijSbij (Ω). (8.3a)

Here Szm(Ω) is the spectral density of effective membrane displacement, and Sbij (Ω) is spectral

density of fluctuations in physical vibrational mode amplitude bij .

8.2 Input-Output Model of the MIM Cavity

8.2.1 Two-Mirror Model

Our treatment of the MIM system will be based on the input-output formalism of a canonical two-

mirror optomechanical system, borrowing heavily from the description given in Sections 2.3–2.4. In

that setting, the “equation of motion” for a single mode of the intracavity field is given by (Eq.
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2.33):

ȧ(t) = − (κ+ i(∆− δωc(t))) a(t) +
√

2κ1Ein(t) (8.4a)

δωc(t) = g0δz1(t) + g0δz2(t) (8.4b)

Eout(t) =
√

2κ2a(t) (8.4c)

Eref (t) =
√

2κ1a(t)− Ein(t) (8.4d)

{Pin(t), Pout(t), Pref (t)} ≡ {|Ein(t)|2, |Eout(t)|2, |Eref (t)|2}. (8.4e)

The variables in this formula are as follows:

• ∆ ≡ ω0 − 〈ωc〉 is the mean detuning between the monochromatic input field (frequency ω0)

and the cavity (resonance frequency ωc(t) = 〈ωc〉+ δωc(t)).

• {Ein(t), Eout(t), Eref (t)} are the complex amplitudes of the fields incident, transmitted, and

reflected from the cavity, respectively, in the frame rotating at the frequency of the in-

put laser, ω0, normalized so that their square modulus gives optical power in the beam

{Pin(t), Pout(t), Pref (t)}. The incident field is assumed to be perfectly mode-matched to the

cavity.

• a(t) is the complex amplitude of the intracavity mode ψ(x, y, z) in the frame rotating at ω0,

normalized so that |a(t)|2 is the intracavity energy.

• κ is the total amplitude decay rate of the cavity. {κ1, κ2} are the amplitude decay rates

through the input mirror (mirror 1) and output mirror (mirror 2). For a lossless, high-finesse

cavity, κ = κ1 + κ2.

• {δz1(t), δz2(t)} are the effective displacements of mirrors 1 and 2 (see Section 7.3).

• g0 ≡ ωc/L is the “canonical” optomechanical coupling for an end-mirror in an idealized planar

two-mirror resonator.

For a stationary cavity (δωc = 0) and a monochromatic input field, Ein(t) = 〈Ein〉, detuned from

resonance by ∆ ≡ ω0 − 〈ωc〉, the amplitude reflection and transmission coefficients of the cavity are

given by:

FR(∆) ≡ 〈Eref 〉
〈Ein〉

=
2κ1

κ+ i∆
− 1 (8.5a)

FT (∆) ≡ 〈Eout〉
〈Ein〉

=
2
√
κ1κ2

κ+ i∆
(8.5b)

|FR(∆)|2 + |FT (∆)|2 = 1 for no internal losses. (8.5c)
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8.2.2 Extension of Two-Mirror Model to MIM System

We will use the canonical system as a model for the MIM system with a weakly reflective membrane.

Several modifications are necessary. The first is the replacement of end-mirror coupling g0 with

functions {g1(zm), g2(zm), gm(zm)} describing the zm-dependent optomechanical coupling of mirror

1, mirror 2, and in the MIM system, as described in Section 7.3.2.3:

δωc(t) = g1(zm)δz1(t) + g2(zm)δz2(t) + gm(zm)δzm(t). (8.6)

Two other differences are important to note: the interpretation of ψ(x, y, z) and {γ1, γ2} for the

MIM system. For a regular Fabry-Perot cavity, ψ(x, y, z) is a TEMmn mode. For the MIM system,

ψ(x, y, z) approximates a TEMnm mode in the transverse direction but has a different amplitude on

the left- and right-hand side of the membrane. We will assume, moreover, that membrane reflectivity

is weak enough that ratio of the field amplitude on the left and right side of the membrane reaches

steady state much faster than the cavity decay time, so that ψ(x, y, z) can be treated as a time-

independent mode shape with amplitude a(t) normalized so that |a(t)|2 is the sum of the energies

on the left- and right-hand sides of the cavity.

As a result of the power mismatch on the left and right hand sides of the cavity, we must be

careful interpreting {κ1, κ2}, which are in general functions of the membrane’s position. When losses

from the mirrors and the membrane are negligible, it’s still the case that κ1 + κ2 = κ and that κ

is the HWHM linewidth of the cavity power transmission function. One more equation relating the

three rates can be obtained by considering the steady-state cavity transmission on resonance. Using

Eq. 8.4 and assuming that the input field is monochromatic, we find:

FT (∆ = 0) =

√
4κ1κ2

κ2
≡ FT,max(zm) (8.7a)

FR(∆ = 0) =
2κ1 − κ

κ
≡ FR,min(zm). (8.7b)

The resonant transmission FT,max(zm) and reflection FR,min(zm) are both functions of membrane

position zm as well as membrane/mirror reflectivities {rm, r1, r2}. They can be obtained numerically

by the method discussed in Section 3.4. Our symmetric MIM cavity (r1 ≈ r2) behaves approximately

like a regular symmetric cavity with 0.8 . FT,max(zm) . 1; this is shown numerically in Figure 8.6

and by a measurement in Figure 6.7.
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Figure 8.1: Block diagram of the detuned probe measurement

8.3 Response Function of the Detuned Probe (DP) Trans-

mission Measurement

8.3.1 Slow Modulation: Steady-State Treatment

As illustrated in Figure 8.1, for this method we drive the cavity with a monochromatic input field,

Ein(t) = E0, and monitor the transmitted power. The steady-state cavity transmission as a function

of detuning ∆ ≡ ω0 − 〈ωc〉 is obtained by solving (8.4) with ȧ = 0 and δωc = 0:

|FT (∆)|2 =
1

1 + ∆2/κ2
|FT,max|2. (8.8)

Directing the output field to a photodetector produces a photocurrent proportional to its respon-

sivity R (A/W):

i(t) = R|Eout(t)|2 = R|FT (∆)|2|E0|2. (8.9)
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When ωc is modulated slowly compared to the cavity linewidth κ, the resulting photocurrent

modulation is approximated by differentiating the steady-state expression (Eq. 8.8), which gives

Gi,ωc(Ω << κ) ≈ d i

d ωc
= R|E0|2

d|FT (∆)|2

dωc
= 〈i〉

(
2∆

κ2

)(
1

1 + ∆2/κ2

)
, (8.10)

where 〈i〉 = R〈|Eout(t)|2〉 denotes the time-averaged (DC) value of the photocurrent. The response

function in this case is independent of Ω, since the intracavity cavity field was assumed to instanta-

neously respond to cavity resonance frequency change. Note that this equation is true for both the

standard Fabry-Perot cavity and the MIM cavity in the “slow modulation” limit.

8.3.2 Fast Modulation: Perturbative Treatment

To determine the measurement transfer function at frequencies comparable to the cavity decay time,

one must conduct a more careful analysis based on the equation of motion of the cavity field (8.4).

In this equation we allow the resonance frequency of the cavity to undergo a small fluctuations

δωc(t) << κ. We can simplify Eq. 8.4a by expressing variables as small fluctuations about their

mean value, i.e.,

{δa(t), δa∗(t), δEin(t), δEref (t), δEout(t)} = {〈a〉, 〈a∗〉, 〈Ein〉, 〈Eref 〉, 〈Eout〉} (8.11a)

− {a(t), a∗(t), Ein(t), Eref (t), Eout(t)}. (8.11b)

If the input field is static (δEin(t) = 0), the fluctuating part of the intracavity field obeys

δȧ(t) ≈ − (κ+ i∆) δa(t) + iδωc(t)〈a〉, (8.12)

where 〈a〉 =
√

2κ1〈Ein〉/(κ+ i∆).

The photocurrent derived from the output field is given by:

i(t) = R|Eout(t)|2 = 2κ2R(|〈a〉|2 + 〈a〉δa∗(t) + 〈a〉∗δa(t)). (8.13)

Formally applying the Fourier transform (Eq. 2.1) to both sides of Eqs. 8.12–8.13 gives:

δa(Ω) =
iδωc(Ω)

κ+ i(∆ + Ω)
〈a〉 (8.14a)

[δa∗](Ω) =
−iδωc(Ω)

κ− i(∆− Ω)
〈a〉∗ (8.14b)

δi(Ω) = 2κ2R (〈a〉[δa∗](Ω) + 〈a〉∗δa(Ω)) (8.14c)

= 〈i〉δωc(Ω)

(
i

κ+ i(∆ + Ω)
− i

κ− i(∆− Ω)

)
(8.14d)
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where [δa∗](Ω) is the Fourier transform of δa∗(t).

The response function Gi,ωc
(Ω) ≡ δi(Ω)/δωc(Ω) inferred from Eq. 8.14 can be expanded as the

product of the slow modulation solution (8.10) and a correction factor due to the finite response

time of the cavity:

Gi,ωc
(Ω) ≡ δi(Ω)

δωc(Ω)
= 〈i〉

(
i

κ+ i(∆ + Ω)
− i

κ− i(∆− Ω)

)
(8.15a)

|Gi,ωc(Ω)| = 〈i〉
(

2∆

κ2

)(
1

1 + ∆2/κ2

)√
(κ2 + ∆2)

2

(κ2 + ∆2)
2

+ 2(κ−∆)(κ+ ∆)Ω2 + Ω4
(8.15b)

Arg[Gi,ωc
(Ω)] = − tan−1

[
∆2 + κ2 − Ω2

2Ωκ

]
. (8.15c)

For a typical setting of ∆ = −κ used to implement optical damping in later chapters, the transfer

function for the detuned probe measurement is given by:

|Gi,ωc
(Ω)|2(∆ = −κ) =

〈i〉2

κ2
× 1

1 + Ω4/4κ4
. (8.16)

8.4 Response Function of the Pound-Drever-Hall (PDH) Mea-

surement

The Pound-Drever-Hall (PDH) method is a “self-heterodyne” technique used to measure the phase

of the field reflected from the cavity [82, 54]. In PDH, a local oscillator (LO) is generated by phase

modulating the input field at a frequency Ω0 much larger than the cavity linewidth; the resulting

“PDH” sidebands are directly reflected from the cavity. The remaining carrier portion of the input

field is tuned into resonance with the cavity (∆ = 0). A fraction gets into the cavity and leaks

back out with a phase shift that is proportional to δωc(t). When combined on a photodetector,

the beat between the reflection of far-detuned sidebands and the near-resonant carrier produces a

rapidly fluctuating photocurrent fluctuation δi(t) = ε(t) sin(Ω0t+ φ) whose slowly varying envelope

ε(t) is proportional to δωc(t). The PDH “error signal”, ε(t), is extracted using a mixer. Important

advantages of the PDH technique are (1) Ω0 is typically an RF frequency, near which technical

noise (e.g., noise produced by photodetector electronics) can be significantly reduced, and (2) the

photosignal is produced without modulating — to first order — the intensity of the intracavity field,

hence significantly reducing radiation pressure effects.

8.4.1 Fast Modulation

We here carry out a derivation of the response function for the PDH method that is appropriate for

modulation frequencies much smaller than the PDH sideband frequency, Ω0 which is much larger
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Figure 8.2: Block diagram of the Pound-Drever-Hall measurement

than the cavity linewidth Ω0 >> κ. We first expand the slowly varying envelope of the phase

modulated input field using the Jacobi-Anger Expansion:

Ein(t) = E0e
iα sin(Ω0t) = E0

∑
n

Jn(α)einΩ0t, (8.17)

where α is the phase modulation depth, Jn is the nth-order Bessel function of the first kind, and the

sum is understood to extend over all integers from −∞ to ∞.

Letting a(t) = 〈a〉 + δa(t), we can express the equation of motion for the field to first order in
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δa/〈a〉 as:

ȧ(t) = −(κ+ i∆)a(t) + iδωc(t)〈a〉+
√

2κ1Ein(t) (8.18a)

Ein(t) = E0

∑
n

Jn(α)einΩ0t (8.18b)

Eout(t) =
√

2κ2a(t) (8.18c)

Eref (t) = −Ein(t) +
√

2κ1a(t), (8.18d)

where 〈a〉 =
√

2κ1E0J0(α)/(κ+ i∆).

Inserting the expression for 〈a〉 into (8.18) and applying the Fourier transform to both sides gives

a(Ω) =

√
2κ1

κ+ i(∆ + Ω)

(∑
n

Jn(α)δ(Ω− nΩ0)− iδωc(Ω)

κ+ i∆

)
E0 (8.19a)

Eref (Ω) =
√

2κ1a(Ω)− Ein(Ω). (8.19b)

For PDH, the input field carrier frequency is usually on resonance (∆ = 0) and the phase modulation

frequency is large Ω0 >> κ. In this case we can simplify (8.19c) to include only the directly reflected

field and the sidebands generated on the carrier inside the cavity:

Eref (Ω) ≈
(

2κ1

κ+ iΩ
− 1

)
E0

∑
n

Jn(α)δ(Ω− nΩ0)− i

κ+ iΩ

2κ1

κ
δωc(Ω)J0(α)E0. (8.20)

It’s instructive at this point to move back into the time domain and consider a sinusoidal frequency

modulation, δωc(t) = δωc,0 cos(Ωmt) << κ. In this case:

Eref (t) =
∑
n

(
2κ1

κ+ inΩ0
− 1

)
E0Jn(α)einΩ0t − i2κ1

κ
δωc,0J0(α)

1

2

(
eiΩmt

κ+ iΩm
+ c.c.

)
E0. (8.21)

The average power in the reflected beam is approximately

〈|Eref (t)|2〉 ≈ |E0|2
(
1− (4κ1κ2/κ

2)J2
0 (α))

)
. (8.22)

The relevant fluctuating part of the reflected power is contributed by terms which are oscillating

at frequencies ±Ω0±Ωm. Using Ω0 >> κ, J1(α) = −J−1(α), keeping only terms linear in δωc/κ <<



126

1, and ignoring terms oscillating at 2Ω0, we obtain

δ|Eref (t)|2 ≡ |Eref (t)|2 − 〈|Eref (t)|2〉 (8.23a)

=

∣∣∣∣−J1(α)eiΩ0t − J−1(α)e−iΩ0t − iδωc,0J0(α)
2κ1

κ

1

2

(
eiΩmt

κ+ iΩm
+ c.c.

)∣∣∣∣2 |E0|2 (8.23b)

=

(
2J1(α) sin(Ωt) + δωc,0J0(α)

2κ1

κ
Re

[
eiΩmt

κ+ iΩm

])2

|E0|2 (8.23c)

≈ 4J0(α)J1(α)|E0|2
δωc,0
κ

2κ1

κ

√
1

1 + (Ωm/κ)2
cos

(
Ωmt− tan−1

(
Ωm
κ

))
sin(Ω0t).

(8.23d)

The PDH error signal is obtained by passing i(t) = R|Eref (t)|2 through a mixer to extract the

slowly varying envelope of the sin(Ω0t) quadrature. For an ideal mixer with no conversion loss, the

resulting photocurrent is:

ε(t) = 4J0(α)J1(α)R|E0|2
δωc,0
κ

2κ1

κ

√
1

1 + (Ωm/κ)2
cos
(
Ωmt− tan−1(Ωm/κ)

)
(8.24a)

= 4J0(α)J1(α)
〈i〉

1− (4κ1κ2/κ2)J2
0 (α)

δωc,0
κ

2κ1

κ

√
1

1 + (Ωm/κ)2
cos

(
Ωmt− tan−1

(
Ωm
κ

))
.

(8.24b)

The relationship between the error signal and the cavity resonance frequency fluctuations is given

by the response function Gε,ωc
(Ω):

Gε,ωc(Ω) ≡ ε(Ω)

δωc(Ω)
=

8(κ1/κ)J0(α)J1(α)

1− (4κ1κ2/κ2)J0(α)2
〈i〉 1
κ

√
1

1 + (Ω/κ)2
e−i tan−1(Ω/κ). (8.25)

In the limit that the reflectivity of the membrane is small, our symmetric (r1 = r2) MIM cavity

is described by κ1 ≈ κ2 ≈ κ/2 and α ≈ 1, which gives the transfer function:

|Gε,ωc(Ω)|2 ≈ 10× 1

κ2

(
1

1− Ω2/κ2

)
〈i〉2. (8.26)

8.4.2 The Effect of Mode-Mismatch

In general the input field is not perfectly mode-matched to the cavity, and we must account for this

effect on the measurement response function. Mode-mismatch may be due to the polarization or

spatial profile of the input beam. To obtain a simple model, we ignore the former by assuming that

the input field is linearly polarized along one of the birefringent axes of the cavity. We then divide

the input beam into two non-interfering spatial modes, one which interacts with the cavity, ~Eain, and
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one which is directly reflected, ~Ebin:

~Ein(t) = ~Eain(t) + ~Ebin(t). (8.27)

Vector notation is here used to represent the fact that modes a and b are spatially orthogonal over

the transverse plane, and as such do not interfere. The orthogonality rule is ~Eain(t) · ~Ea∗in(t) =

|Eain(t)|2, ~Eain(t) · ~Eb∗in(t) = 0. The power in the beam is then expressed as:

Pin(t) = ~Ein(t) · ~E∗in(t) = |Eain(t)|2 + |Ebin(t)|2. (8.28)

Field ~Eain couples to the cavity according to Eq. 8.4, but field ~Ebin is directly reflected. The

reflected and transmitted fields can be written

~Eref (t) = ~Earef (t) + ~Ebref (t) (8.29a)

= ~Earef (t)− ~Ebin(t) (8.29b)

~Eout(t) = ~Eaout(t). (8.29c)

Since the two spatial modes don’t interfere, the total transmitted and reflected power is

Pref (t) = |Earef (t)|2 + |Ebin(t)|2 (8.30a)

Pout(t) = |Eaout(t)|2. (8.30b)

We now define the mode-matching efficiency ξ2 as the ratio of the average power in field “a” to

the total average power in the field:

ξ2 ≡ 〈|Eain(t)|2〉
〈|Eain(t)|2〉+ 〈|Ebin(t)|2〉

=
〈P ain〉
〈Pin〉

. (8.31)

For the detuned probe measurement, only light that is coupled to the cavity passes through to

the transmission photodetector. Importantly, this means that the transfer function |Gi,ωc
(Ω)|2 does

not depend on the mode matching efficiency.

More care must be taken with the PDH measurement (in reflection). In this case the input field

can be modeled

~Ein(t) = ~Ea0 e
iαa sin(Ω0t) + ~Eb0e

iαb sin(Ω0t) (8.32)

where the subscripts on the modulation depth indicate a possibly different phase-modulation depth

for the two spatial modes.
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The mean photocurrent and the error signal for the PDH measurement become:

〈i〉 = R|Ea0 |2
(
1− (4κ1κ2/κ

2)J0(α)2
)

+R|Eb0|2 (8.33a)

ε(t) ≈ 4J0(α)J1(α)R|Ea0 |2
δωc,0
κ

2κ1

κ

√
1

1 + (Ωm/κ)2
cos

(
Ωmt− tan−1

(
Ωm
κ

))
(8.33b)

which gives the following modified PDH response function:

Gε,ωc
(Ω) =

8(κ1/κ)J0(α)J1(α)

1− (4κ1κ2/κ2)J0(α)2 + (1− ξ2)/ξ2
〈i〉 1
κ

√
1

1 + (Ω/κ)2
e−i tan−1(Ω/κ). (8.34)

8.5 Shot Noise Sensitivity: What to Expect

The sensitivity of the detuned probe and PDH measurements are ultimately limited by shot noise

on the photocurrent. To quantify this sensitivity, we can compare the power spectral density of shot

noise to the power spectral density of the fluctuations generated by the cavity displacement noise.

To derive the photocurrent shot noise, recall that the power spectral density of i(t) can be written

as the Fourier transform of the autocorrelation of i(t) (the Wiener-Khintchine Theorem, Eq. 2.7).

Here we use the convention for a single-sided power spectral density (Eq. 2.9):

Si(Ω) ≡ 2

∫ ∞
−∞
〈i(τ)i(t+ τ)〉e−iΩtdt (8.35a)

〈i(τ)i(t+ τ)〉 ≡ lim
T→∞

1

T

∫ T/2

−T/2
i(τ)i(t+ τ)dτ, (8.35b)

with the normalization
∫∞

0
Si(Ω)dΩ/2π = 〈i2〉.

Shot noise is a consequence of the corpuscular nature of photoelectrons. For an infinitely fast

photodetector, the underlying random arrival of photons gives rise to a rapidly pulsed photocurrent

of the form i(t) =
∑
k eδ(t − tk). The autocorrelation of i(t) is also described by a delta function

〈i(τ)i(t+ τ)〉 = e〈i〉δ(t), which gives rise to a white-noise power spectral density:

Sshoti (Ω) = 2e〈i〉 A2/Hz. (8.36)

The white shot noise approximation is valid for frequencies much smaller than the detector band-

width, Bdet. Beyond this frequency the actual shot noise spectrum is diminished.

For the detuned probe measurement with power mode-matching efficiency of ξ2, the shot noise

on the transmission photodetector is:

Sshoti (Ω) = 2e〈i〉 = 2eR〈Pout〉 = 2eR|FT (∆)|2ξ2〈Pin〉. (8.37)
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For the Pound-Drever-Hall (PDH) measurement with a power mode-matching efficiency of ξ2,

the shot noise on the PDH error signal can be modeled as:

Sshotε (Ω) = 2e〈i〉 = 2eR〈Pref 〉 = 2eRξ2〈Pin〉
((

1− J0(α)2(4κ1κ2/κ
2)
)

+ (1− ξ2)/ξ2
)
. (8.38)

We can use Eqs. 8.37–8.38 to compute the expected shot-noise-limited sensitivity of the detuned

probe and PDH measurements to thermal motion. We express this sensitivity in terms of the “shot

noise equivalent” cavity resonance frequency noise, Sshotωc
(Ω), and the “shot noise equivalent” cavity

length noise, SshotL (Ω) = Sshotωc
(Ω)/g2

0 . Sshotωc
(Ω) is the cavity resonance frequency noise necessary

to achieve a signal-to-shot noise of one at Fourier frequency f = Ω/2π, and SshotL (Ω) is the length

noise necessary to achieve a signal to noise of one in a standard Fabry-Perot.

For the detuned probe (DP) measurement:

√
Sshot,DPL (Ω) =

1

g0

√
Sshot,DPωc (Ω) =

1

g0

√
Sshoti (Ω)

|Gi,ωc(Ω)|
(8.39a)

=

(
κ2 + ∆2

2∆

)√
2e

R〈Pout〉

√
(κ2 + ∆2)

2
+ 2(κ−∆)(κ+ ∆)Ω2 + Ω4

(κ2 + ∆2)
2 . (8.39b)

For the PDH measurement with a mode-matching efficiency of ξ:

√
Sshot,PDHL (Ω) =

1

g0

√
Sshot,PDHωc (Ω) =

1

g0

√
Sshotε (Ω)

|Gε,ωc
(Ω)|

(8.40a)

=
κ

4

√
2e

R〈Pref 〉
√

1 + Ω2/κ2

(
1− J0(α)2(4κ1κ2/κ

2) + (1− ξ2)/ξ2

(2κ1/κ)J0(α)J1(α)

)
. (8.40b)

Now consider the “science” cavity and the science membrane with nominal parameters:

{L,FSR,F , κ} = {0.742 mm, 202 GHz, 104, 10 MHz} (8.41a)

{Ωm, dm, wm,m,Qm} = {2π × 1MHz, 50 nm, 500µm, 10 ng, 106}. (8.41b)

The shot noise sensitivity of the DP measurement to cavity resonance frequency and effective
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cavity length noise are:

√
SDP,shotωc (Ω) = 2π × 0.76

Hz√
Hz
× κ/2π

10 MHz
×

√
100µW

〈Pout〉
(8.42a)

×
√

0.55 A/W

R
×
(
κ2 + ∆2

2∆κ

)√
(κ2 + ∆2)

2
+ 2(κ−∆)(κ+ ∆)Ω2 + Ω4

(κ2 + ∆2)
2 (8.42b)

√
SDP,shotL (Ω) = 1.8× 10−18 m√

Hz
× L

0.742 mm
× 935 nm

λ
× κ/2π

10 MHz
×

√
100 µW

〈Pout〉
(8.42c)

×
√

0.55 A/W

R
×
(
κ2 + ∆2

2∆

)√
(κ2 + ∆2)

2
+ 2(κ−∆)(κ+ ∆)Ω2 + Ω4

(κ2 + ∆2)
2 . (8.42d)

And for PDH:

√
SPDH,shotωc (Ω) = 2π × 0.19

Hz√
Hz
× κ/2π

10 MHz
×

√
100 µW

〈Pref 〉
(8.43a)

×
√

0.55 A/W

R
×

√
1 +

(
Ω

κ

)2(
1− J0(α)2(4κ1κ2/κ

2) + (1− ξ2)/ξ2

(2κ1/κ)J0(α)J1(α)

)
(8.43b)√

SPDH,shotL (Ω) = 4.4× 10−19 m√
Hz
× L

0.742 mm
× 935 nm

λ
× κ/2π

10 MHz
×

√
100µW

〈Pref 〉
(8.43c)

×
√

0.55 A/W

R
×

√
1 +

(
Ω

κ

)2(
1− J0(α)2(4κ1κ2/κ

2) + (1− ξ2)/ξ2

(2κ1/κ)J0(α)J1(α)

)
.

(8.43d)

The last factor on the RHS of Eq. 8.43d is ≈ 1.2 for perfect mode matching (ξ2 = 1), a symmetric,

lossless cavity (κ1 = κ2 = κ/2), and a typical PDH modulation depth of α = 1.

We can compare the shot noise equivalent cavity length noise to the predicted effective cavity

length noise arising from thermal motion of the of the membrane, using the expression for weak

optical damping given in Eq. 7.29:

√
SL(Ωijeff ) = ηij

gm
g0

√
Sbij (Ωijeff ) = ηij

gm
g0

√
4kBTbathQij
mijΩ3

ij

Ωij

Ωijeff

n̄effij

n̄bathij

(8.44a)

= 2.3× 10−13 m√
Hz
× ηij ×

gm
g0
×
√
Tbath
298K

×

√
10 ng

mij
×
√
Qij
106
×
(

5 MHz

Ωij/2π

)3/2

× Ωij

Ωijeff
× n̄ij
n̄bathij

.

(8.44b)

Here Ωijeff = Ωij + ∆Ωijopt (≈ Ωij for weak optical spring/damping) is the mechanical frequency

shifted by the optical spring, and n̄ij ≈ kBT
ij
eff/~Ωijeff is the thermal occupation number after

optomechanical cooling (see Section 2.4).



131

Expressed in terms of cavity resonance frequency noise:

√
Sωc

(Ωijeff ) = g0

√
SL(Ωijeff ) (8.45a)

= 2π × 0.98 × 106 Hz√
Hz
× ηij ×

gm
g0
× 0.742 mm

L
× λ

935 nm
×
√
Tbath
298K

×

√
10 ng

mij
(8.45b)

×
√
Qij
106
×
(

5 MHz

Ωij/2π

)3/2

× Ωij

Ωijeff
× n̄ij
n̄bathij

. (8.45c)

For Ω66/2π = 4.8 MHz (the (6,6) mode or our “science” membrane), the room-temperature

thermal occupation number is n̄bath66 = 1.3 × 106, the spatial overlap factor for the TEM00 mode is

η66 . 0.64, and gmaxm /g0 ≈ 0.84 at 935 nm. For an initial value of Q66 = 4× 106, the peak thermal

noise at n̄66 = 1 would be {
√
SL(Ω66

eff ),
√
Sωc

(Ω66
eff ) } ≈ {2× 10−19 m/

√
Hz, 0.09 Hz/

√
Hz}. Eq.

8.43 implies that a PDH measurement should be able to sense this noise with ∼ 1 mW of power

incident on the detector (assuming good mode-matching efficiency).

8.6 Calibration of the Measurement Response Function by

Phase Modulating the Input Field

From the standpoint of the detuned probe and PDH measurements, a small sinusoidal modulation of

the cavity resonance frequency by an amount δωc(t) = α cos(Ω0t) is equivalent to a small sinusoidal

modulation of the instantaneous frequency of the input field by an amount φ̇(t) = −α cos(Ω0t).

(Here we express the instantaneous frequency as the derivative of the instantaneous phase, φ.)

Using this property, we can determine the measurement response functions Gi,ωc(Ω0) and Gε,ωc(Ω0)

by applying a calibrated sinusoidal phase modulation to the input field. This is an important result

that will be used extensively in the rest of this chapter and also in Chapter 10. Its proof is given

below.

8.6.1 Detuned Probe Measurement: Response to PM of the Input Field

Phase modulation of the input field can be introduced as Ein(t)→ Ein(t)eiφ(t). We here assume that

the field before phase modulation is monochromatic, Ein(t) = E0, and that the phase modulation is

small, eiφ(t) ≈ 1 + iφ(t). The fields transmitted and circulating in a stationary cavity (δωc(t) = 0)

driven by a phase-modulated input field are then given by (linearizing about small displacements
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δa(t) = a(t)− 〈a〉 as in Section 8.3.2):

〈a〉 =

√
2κ1

κ+ i(∆ + Ω)
E0 (8.46a)

δȧ(t) = − (κ+ i∆) δa(t) +
√

2κ1E0iφ(t) (8.46b)

i(t) = R|Eout(t)|2 = 2κ2R(|〈a〉|2 + 〈a〉δ∗a(t) + 〈a〉∗δa(t)). (8.46c)

Applying the Fourier transform to both sides of Eq. 8.46 and doing some algebraic manipulation,

we obtain the following solution to first order in the small parameter φ:

δa(Ω) =

√
2κ1

κ+ i(∆ + Ω)
E0iφ(Ω) (8.47a)

[δa∗](Ω) =

√
−2κ1

κ− i(∆− Ω)
E0iφ(Ω) (8.47b)

δi(Ω) = 2κ2R(〈a〉[δ∗a](Ω) + 〈a〉∗δa(Ω)) (8.47c)

= 〈i〉
(

(κ+ i∆)

κ+ i(∆ + Ω)
− (κ− i∆)

κ− i(∆− Ω)

)
iφ(Ω), (8.47d)

where [δa∗](Ω) is the Fourier transform of δa∗(t) and δi(Ω) is the Fourier transform δi(t) = i(t)−〈i〉.

The detuned probe response function for phase modulation is remarkably similar to that for

cavity resonance frequency modulation:

Gi,φ(Ω) ≡ δi(Ω)

φ(Ω)
= i

(
(κ+ i∆)

κ+ i(∆ + Ω)
− (κ− i∆)

κ− i(∆− Ω)

)
〈i〉 (8.48a)

= ΩGi,ωc
(Ω)eiπ/2. (8.48b)

Indeed, the DP response function for intantanteous frequency modulation and cavity resonance

frequency modulation are equivalent in the small modulation limit:

Gi,φ̇(Ω) ≡ δi(Ω)

φ̇(Ω)
= Gi,ωc(Ω). (8.49)

Thus to determine Gi,ωc
(Ω0), we can apply a calibrated phase modulation φ(t) = β0 sin(Ω0t)

and measure i(t) = i0 cos(Ω0t+ θ) = β0Ω0|Gi,ωc
(Ω)| cos(Ω0t+ Arg[Gi,ωc

(Ω0)]).

8.6.2 PDH Measurement: Response to PM of the Input Field

We now consider the effect of adding a small phase modulation φ to the input field in addition to

the high-frequency sidebands used to generate a PDH error signal (Eq. 8.17). Here we consider

a sinusoidal modulation of the form φ(t) = β sin(Ωmt) << 2π. The equation of motion for the
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circulating and reflected field for a stationary cavity (δωc(t) = 0) is given by:

ȧ(t) = −(κ+ i∆)a(t) +
√

2κ1Ein(t) (8.50a)

Ein(t) = E0

(
1 +

β

2

(
eiΩmt − e−iΩmt

))∑
n

Jn(α)einΩ0t (8.50b)

Eref (t) = −Ein(t) +
√

2κ1a(t), (8.50c)

where α and Ω0 are the PDH phase modulation depth and sideband frequency; the latter is assumed

to be much larger than frequencies of interest in φ.

On resonance (∆ = 0), the field reflected from the cavity is given by:

Eref (t)

E0
=
∑
n

(
FR(nΩ0) +

β

2
FR(nΩ0 + Ωm)eiΩmt − β

2
FR(nΩ0 − Ωm)e−iΩmt

)
Jn(α)einΩ0t. (8.51)

As in the case for which ωc is modulated, the average reflected power is approximated by

〈|Eref (t)|2〉 ≈ |E0|2
(
1− (4κ1κ2/κ

2)J0(α)2
)
. (8.52)

The relevant fluctuating part of the reflected power is contributed by terms which are oscillating

at frequencies ±Ω0 ± Ωm. Using Ω0 >> κ, J1(α) = −J−1(α), FR(Ω0 ± Ωm) ≈ FR(Ω0) ≈ −1, and

ignoring terms oscillating at 2Ω0, we find

δ|Eref (t)|2 = |Eref (t)|2 − 〈|Eref (t)|2〉 (8.53a)

≈ −β
2
J0(α)J1(α)|E0|2(FR(Ωm)ei(Ω0+Ωm)t − FR(Ωm)ei(−Ω0+Ωm)t (8.53b)

− FR(−Ωm)ei(Ω0−Ωm)t + FR(−Ωm)ei(−Ω0−Ωm)t + FR(0)ei(Ω0+Ωm)t (8.53c)

− FR(0)ei(Ω0−Ωm)t + FR(0)ei(−Ω0−Ωm)t − FR(0)ei(−Ω0+Ωm)t + c.c.). (8.53d)

Collecting terms and using FR(−Ωm)∗ = FR(Ωm)∗ gives

δ|Eref (t)|2

|E0|2
≈ 4βJ0(α)J1(α)

(
Im [FR(Ωm)] cos(Ωmt) +

(
Re [FR(Ωm)] +

2κ1 − κ
κ

)
sin(Ωmt)

)
sin(Ω0t).

(8.54)

Though not obvious, the slowly varying envelope and resulting PDH error signal reduce to the



134

same functional form as Eqs. 8.23–8.24:

δ|Eref (t)|2

|E0|2
= 4J0(α)J1(α)

βΩm
κ

2κ1

κ

√
1

1 + Ω2
m/κ

2
cos
(
Ωmt− tan−1(Ωm/κ)

)
sin(Ω0t) (8.55a)

ε(t) = 4J0(α)J1(α)
〈i〉

1− J2
0 (α)(4κ1κ2/κ2)

βΩm
κ

2κ1

κ

√
1

1 + Ω2
m/κ

2
cos
(
Ωmt− tan−1(Ωm/κ)

)
,

(8.55b)

which gives the following PDH response function to phase modulation and instantaneous frequency

modulation (in the small modulation limit):

Gε,φ(Ω) = ΩGε,ωc
(Ω)e−iπ/2 (8.56a)

Gε,φ̇(Ω) = Gε,ωc
(Ω). (8.56b)

Thus to determine Gε,ωc(Ω0), we can apply a calibrated phase modulation φ(t) = β0 sin(Ω0t)

and measure ε(t) = ε0 cos(Ω0t+ θ) = β0Ω0|Gi,ωc
(Ω)| cos(Ω0t+ Arg[Gi,ωc

(Ω0)]).

8.7 Experimental Walk-Through: Temperature Measurement

Using the Detuned Probe Method

In this section we walk through a “bread-and-butter” displacement noise measurement using the

detuned probe method. The goal is determine the effective temperature, T ijeff , of a specific membrane

vibrational mode, (i, j), using the relations:

T ijeff =
mij〈b2ij〉
kB

=
mij

kB

∫
Ωij

Sbijbij (Ω)dΩ/2π =
mij

kB

1

g2
mη

2
ij

∫
Ωij

Sωc
(Ω)dΩ/2π (8.57a)

Si(Ω) = |Gi,ωc
(Ω)|2Sωc

(Ω) (8.57b)

where the
∫

Ωij
indicates an integral over the noise peak centered at Ωij . In this example we con-

sider the (i, j) = (6, 6) mode of the {dm, wm} = {50 nm, 500µm} “science” membrane coupled to

the TEM00 mode of the “science” MIM cavity described in Chapters 5 and 6, having properties

{L,FSR,F , κ/(2π)} = {0.742 mm, 202 GHz,≈ 104, ≈ 10 MHz}. We carry out the measurement in

the limit of negligible optical damping (T 66
eff ≈ Tbath ≈ 298 K), but the method also applies in the

case of weak damping (Section 2.4).

Specifics of the DP procedure are as follows: we drive the cavity with a input field at a red

detuning ∆/(2π) ≈ 100 MHz and with ≈ 1 µW optical power using light from a λ = 935 nm

diode laser (Eagleyard). Light exiting the transmission port of the cavity is collected on a fast
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photodiode (New Focus 1801). The resulting photocurrent is processed by a sequence of electronics

before software-based spectral analysis. The sequence consists of: (1) transforming the current into

a voltage using a transimpedance amplifier (gain GT ≈ 20 V/mA, internal to the photodetector),

(2) mixing the voltage signal down to ∼ 10 kHz (Minicircuits ZAD-6), (3) pre-amplifying/filtering

the mixed-down signal (SR560 pre-amp, gain =×1000, filter = 30 kHz LP with 6 dB/decade rolloff),

and then (4) digitizing the pre-amplified voltage (National Instruments PCI-6259, sample rate = 500

kHz). The power spectral density of the digitized voltage signal is obtained using Labview software

[83]. It is related to the photocurrent by the transfer function |Gi,V (Ω)|2 of the electronic processing

chain:

SV (Ω) = |Gi,V (Ω)|2(Si(ΩLO + Ω) + Si(ΩLO − Ω)) (8.58)

where ΩLO is the local oscillator of the mixer. We choose ΩLO so that the signal of interest is near

ΩLO + Ω, at the cost of introducing some extra noise (e.g., off-resonant thermal noise, shot noise)

due to the ΩLO − Ω signal component.

To trace SV (Ω) back to Si(Ω) back to Sbij (Ω), we use both the phase modulation technique

described in Section 8.6, as well as a “direct” calibration based on individually determining the free

parameters entering Eqs. 8.57–8.58. We elaborate below on several important experimental details.

8.7.1 Spectrum Analyzer: Effective Noise Bandwidth

In the preceding discussion we envision an ideal spectrum analyzer for computing SV (Ω0). This can

be achieved by passing the voltage through a Delta function notch filter centered at Ω0 followed

by an rms voltmeter. Normalizing the measred rms2 power by the bandwidth of the filter would

give SV (Ω0) =
∫∞

0
SV (Ω)δ(Ω − Ω0)dΩ/2π/

∫∞
0
δ(Ω − Ω0)dΩ/2π A2/Hz. A laboratory spectrum

analyzer has a finite filter bandwidth, however, and since we’re dealing with narrow spectral features

(Γm/2π ∼ 1 Hz for {Ωm/(2π), Qm} ∼ {106, 106}) we must be careful in our interpretation of

the measured SV (Ω). When the appropriate settings are chosen, most spectrum analyzers display

noise power units by computing a weighted average over an effective filter function, i.e., SV (Ω0) =∫∞
0
SV (Ω)W (Ω−Ω0)dΩ/2π/

∫∞
0
W (Ω−Ω0)dΩ/2π, where for instance W (Ω) may be a 1-Hz-FWHM

Gaussian centered at 0 Hz [56, 84]. If the signal is a coherent sinusoidal tone with frequency Ω0

and amplitude A, i.e., SV (Ω) = A2/2δ(Ω − Ω0), then the inferred spectral density is SV (Ω0) =

(A2/2) · (W (0)/
∫∞

0
W (Ω−Ω0)dΩ/2π). Factor ENBW ≡ (

∫∞
0
W (Ω−Ω0)dΩ/2π)/W (0) is referred

to as the “effective noise bandwidth” of the filter. For a digital spectrum analyzer, W (Ω) describes

the effect of windowing the finite time trace [83]. We customarily use a Hanning window, in which

case the theoretical effective noise bandwidth for a 1-Hz-wide filter is 1.33 Hz. We have checked that

this is the case for our FFT software by analyzing a tone generated by a calibrated RF synthesizer.

We have also checked that when the filter is wider than the spectral feature, the PSD is normalized
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Figure 8.3: Calibration of PM modulation: the phase-modulated field is coupled to an optical cavity
with a linewidth smaller than the modulation frequency, κref << Ω0. Power transmitted through
the cavity is monitored as a function of detuning, which is varied by sweeping the length of the
cavity. The resulting transmission curve (Eq. 8.59) is fit to a multiple-Lorentzian weighted by
Bessel functions, which reveals the modulation depth. For data shown in (a) the fit values are
Ω0/(2π) = 4.83 MHz, β = 1.15, κref/(2π) = 280 kHz. In (b) the response of the phase modulator
— in this case the diode laser current — is measured as a function of drive amplitude (voltage
applied to the current controller). A linear fit is used to estimate β for small drive.

so that the integral gives the mean-squared amplitude. To do this, we send the signal from a

filtered white-noise source into the digitizer and check that the integral over the PSD gives the

same result as power displayed by an RMS voltmeter. Whenever a fit to a spectral feature is made

(e.g., a Lorentzian thermal noise peak), one must ensure that the effective noise bandwidth is much

narrower than the linewidth of that feature.
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8.7.2 Calibrating the Phase Modulation Depth

The input field is phase modulated in order to calibrate the photocurrent signal. Rather than use

an EOM, for the measurement described here we modulate the diode laser drive current, id(t) =

〈id〉 + δid,0 cos(Ω0t), where Ω0 ≈ Ω66. This results in direct FM modulation of the the laser field

(and some residual AM, which we found to be negligible for the results below), characterized by

an instantaneous frequency: φ̇(t) = βfm cos(Ω0t + θ0). For single-frequency modulation this is

equivalent to phase modulation by an amount φ(t) = β sin(Ω0t+ θ0) = (βfm/Ω0) sin(Ω0t+ θ0).

To calibrate the modulation depth, we couple a fraction of the input field into an independent

reference cavity with a linewidth κref � Ω0. This cavity has the following optical properties at

λ = 935 nm: {L,FSR,F , κ/(2π)} ≈ {10 cm, 3 GHz,≈ 104,≈ 300 kHz}. Transmission of frequency

modulated light through this “resolved” cavity assumes the simplified form:

|Eout(∆)|2 = |Ein|2
∞∑

n=−∞
|FT (∆ + nΩ0)|2J2

n(β), (8.59)

a multiple-Lorentzian vs. ∆ with peak heights J2
n(β) at frequencies ±nΩ0.

Phase modulation depth β is determined by comparing the relative heights of peak values

|Eout(nΩ0)|2. |Eout(∆)|2 is measured by sweeping the cavity length across resonance with a triangle

wave and monitoring the voltage produced by a photodetector monitoring the power transmitted

from the cavity. An oscilloscope trace for one half-period is shown in Figure 8.3a, where the time

scale has been normalized to the linewidth obtained by fitting to Eq. 8.59. A multiple-Lorentzian fit

to the curve shown in Figure 8.3a gives β = 1.16. To extrapolate the modulator’s response to lower

β, we measure β vs. id,0 for different id,0, and verify that the trend is linear. For large values of

β, this is done using the reference cavity measurement. For small β, we send the laser through the

science cavity at a fixed detuning and monitor
√
Si(Ω0) = |Gi,ωc

(Ω0)|Ω0β/
√

2 vs. id,0. An example

response curve is shown in Figure 8.3b (only large β measurements are shown).

For the thermal noise measurement, we use a modulation depth of β = 0.03 at Ω0/(2π) =

4.83 MHz, corresponding to an rms FM deviation of
√
Sφ̇(Ω0) = βΩ0/

√
2 = 2π × 102 kHz. The

equivalent cavity length noise for the science cavity at λ = 935 nm is given by
√
Sφ̇(Ω0)/g0 ≈ 0.23

pm/
√
Hz. This small level is chosen to be on the order of the peak effective cavity length noise (Eq.

7.24) associated with the (6,6) membrane mode with Ω66/(2π) = 4.8 MHz and Q66 ∼ 1.5 × 106:√
SL(Ω66) = (gm/g0)η66

√
kBT/m66Ω2

66

√
2πQ66/Ω66 ≈ (gm/g0)η66 × 0.21 pm/

√
Hz, where η66 .

0.65 is the “spatial overlap” factor described in Section 7.3.1.1 and gm is the optomechanical coupling

of the membrane (Section 3.3.1).
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Figure 8.4: Characterization of transduction factor Gi,ωc
(Ω66). The point here is to verify the

functional form given in Eq. 8.60c and to determine {∆, κ} from the fit. Toward this end, phase
modulation with small modulation depth β << 2π at frequency Ω0 ≈ Ω66 ≈ 2π ·4.84 MHz is applied
to of the cavity input field (“probe” field). Fluctuations on the transmitted power are monitored
via the power spectral density of the transimpedance-amplified photocurrent produced by the cavity
transmission photodetector, SV (Ω0). This value is monitored as a function of the detuning between
the probe and a secondary field to which the cavity is locked on resonance (this field is polarized
along the opposite birefringent axis of the cavity). Fitting to a scaled Eq. 8.60 gives the detuning
of the probe field from cavity resonance, the cavity birefringent splitting, and the cavity linewidth.
It also verifies the functional form of the detuned probe transfer function.

8.7.3 Characterizing the Transfer Function

We can verify the functional dependence of |Gi,ωc(Ω66)|2 on ∆ and κ by applying a small phase mod-

ulation to the input (“probe”) field at Ω0 ≈ Ω66 = 4.84 MHz and monitoring the transimpedance-

amplified photocurrent of the transmission photodetector SV (Ω0) vs. detuning, which should obey

the relations:

SV (Ω0) = |GT (Ω0)|2Si(Ω0) (8.60a)

Si(Ω0) =
Ω2

0β
2

2
|Gi,ωc

(Ω0)|2 (8.60b)

|Gi,ωc(Ω0)|2 = 〈i〉2
(

2∆

κ2

)2(
1

1 + ∆2/κ2

)2 (
κ2 + ∆2

)2
(κ2 + ∆2)

2
+ 2(κ−∆)(κ+ ∆)Ω2

0 + Ω4
0

(8.60c)

〈i(∆)〉 =
〈i(∆ = 0)〉
1 + ∆2/κ2

(8.60d)
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where GT (Ω0) V/A is the photodetector transimpedance gain.

The method for adjusting the cavity detuning is described in Section 5.3.3.1; it consists of locking

the cavity to a second beam with a tunable frequency difference from the probe beam. Though the

frequency difference is precisely controlled by an EOM driven by an RF synthesizer, the absolute

detuning of the probe from the cavity is obscured by the fact that the locking and probing beams enter

the cavity along orthogonal polarization eigenmodes, which exhibit a birefringent splitting ∆brf . The

resonance frequency splitting between these eigenmodes depends on the membrane position.

A plot of SV (Ω0) vs. ∆ + ∆brf is shown in Figure 8.4. |GT (Ω0 < 2π×100 MHz)| = 2×104 V/A

is the factory-specified transimpedance gain of the New Focus 1801 photodetector used. We use the

full expression in Eq. 8.60 for the fit. The fit gives a cavity linewidth κ/(2π) =12.9 MHz (HWHM),

which depends weakly on membrane position as discussed in Section 6.4. The fit also reveals that the

birefringent spitting in this case is ∆brf/(2π) = 6.9 MHz (also a function of membrane position). The

factial difference between the full expression for |Gi,ωc
(Ω0)|2 and approximate expression obtained by

setting Ω0 = 0 in (8.60c) is ≈ Ω4
0/4κ

4 << 1% at ∆ = −κ. We believe that the discrepancy between

data and fit at large detuning is due to residual amplitude modulation due to current modulation of

the diode laser (for the results here we operate the diode current near saturation to reduce residual

AM).

8.7.4 Uncertainties

To obtain the temperature of the membrane from Si(Ω) and Gi,ωc(Ω), we must assign values to

membrane optomechanical coupling gm, “spatial overlap factor” η00
66 , and effective mass m66. Un-

certainties are described below.

Optomechanical Coupling, gm: To obtain gm, we have measured the shift in ωc resulting from

a calibrated displacement of the equilibrium membrane position, zm, using the definition gm ≡

dωc/dzm. An example of this measurement is shown in Section 6.3. The measurement agrees with

the model for a dm = 50-nm-thick membrane with n = 2.0 (Section 3.3.1), which gives a maximum

value of gm = 2|rm|g0 = 2π · 2 · 0.42 · 202 GHz/(935 nm/2) = 0.36 MHz/pm when the membrane is

located halfway between a node and the antinode of the intracavity field. This result does not agree

with the values of nm = 1.98 and dm = 37 nm inferred from a Filmetrics thin-film measurement

and a direct measurement of the membrane reflectivity (Section 6.1), which suggest that |rm| = 0.36

and gmaxm = 2π · 0.31 MHz/pm. For the temperature measurement, we position the membrane at

a location zm where gm = gmaxm by maximizing the photocurrent response. At this location, gm is

insensitive to first order in small drifts of the membrane position. We therefore estimate that gm

lies somewhere between 2π·0.31 MHz/pm and 2π·0.36 MHz/pm.
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Spatial Overlap Factor, η66: To determine the “spatial overlap factor”, η66, between the (6,6)

membrane vibrational mode and the TEM00 mode of the cavity (Section 7.1.3), we measure the

“apparent” temperatures of various modes of the membrane η2
ijT

ij
eff in order to constrain the trans-

verse (x0, y0) position of the membrane with respect to the cavity axis. This method is described

in Section 8.7.7 of this chapter. Uncertainty in the determination of η66 depends on the uncertainty

in the inferred position (x0, y0) and in the value used for the waist size wc of the cavity mode. The

position uncertainty alone gives a range of values for η66 between 0.57 and 0.64, and is believed to

dominate over the uncertainty due to the value of wc.

Effective Mass, m66: The effective mass for all vibrational modes of a high-stress square mem-

brane is mphys/4, as discussed in Section 7.1.1. mphys depends on the dimensions and density of

the membrane. Literature values for the density ρ of stoichiometric Si3N3 density vary between 2.7

g/cm3 and 3.1 g/cm3, with the higher density corresponding to bulk material and lower density

corresponding to high-stress LPCVD (Table 4.1). Eigenfrequencies of the drum modes are consis-

tent with the value of 2.7 g/cm3 if the transverse dimensions and tension are assumed to agree with

the values specified by Norcada (wm = 500µm and T = 900 MPa, respectively). We nevertheless

assume a possible range of values between 2.7 and 3.1 g/cm3 for the measurement. The transverse

dimensions of the membrane, {wm,x, wm,y}, have been shown to be precise to < 1% from the design

value of {500 µm, 500µm} by SEM imaging. The thickness, dm, based on a reflectivity measurement

lies between 37 nm and the factory design value of 50 nm. The combined uncertainty gives a range

of effective mass values m66 = ρwm,xwm,ydm/4 between 6.1 and 9.7 ng.

8.7.5 Calibrating the Electronics Downstream of the Photodetector

To “directly” calibrate the displacement noise spectrum according to Eqs. 8.57–8.58, we must deter-

mine the transfer function |GV,i(Ω)|2 which maps Si(Ω) to SV (Ω). This depends on the details of the

transimpedance amplifier, mixer, pre-amplifer, and digitizer. To determine this transfer function we

replace the output of the photodetector with a calibrated voltage source V (t) = V0 cos(Ω0t), making

sure to match the 50 Ohm output impedance of the photodetector. Using a 1 Hz BW Hanning win-

dow (ENBW = 1.33 Hz) we obtain |GV,i(Ω0)|2 = GT (Ω0)2∗1.33∗SV (Ω0)/(V 2
0 /2) = (R(Ω0)∗0.0045)2,

where GT (Ω0) ≈ 2 × 104 V/A is the factory-specified transimpedance gain of the photodetector.

This correction factor is already included in the upper plot in Figure 8.5, so that SV (Ω) refers to

the noise at the output of the transimpedance amplifier. GT (Ω) is approximately constant for fre-

quencies much less than the 100 MHz bandwidth of the photodetector (including DC for this model,

New Focus 1801), so we assume that SV (Ω)/〈V 〉2 = Si(Ω)/〈i〉2. We complete the measurement by

simultaneously recording the small value 〈V 〉, carefully subtracting any DC voltage offsets at the

output of the transimpedance amplifier.
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8.7.6 Measurement Result

Results of a single thermal noise measurement are summarized in Figure 8.5. The upper plot displays

the raw power spectral density of the digitized voltage signal after the pre-amp, SV (Ω), averaging

in V2/Hz units over ∼ 10 trials. The ENBW of the FFT is 1.33 Hz and the Fourier frequency

scale has been shifted by the 4.82 MHz mixer LO frequency to represent the physical photocurrent

noise frequency. The span shown contains two significant contributions. The Lorentzian feature at

Ω66/(2π) ≈ 4.828 MHz is proportional to the actual displacement noise spectrum Sb66(Ω) (Eq. 2.17)

of the (6,6) membrane mode and gives a fitted linewidth of Γ66/(2π) = 3.0 Hz (FWHM), which is

consistent with a quality factor of Q66 = 1.6×106. The narrow feature corresponds to the calibrated

phase modulation.

Using the methods described in Sections 8.7.1–8.7.5, we can directly trace SV (Ω) back to Sb66(Ω)

and compare this to the PM calibration technique (Section 8.6). To simplify notation, we here

introduce the useful “normalized” response function coefficient, Hi,ωc(Ω):

Hi,ωc(Ω) ≡ Gi,ωc
(Ω)

〈i〉2
≈ 1

κ2

(
2∆κ

∆2 + κ2

)2

. (8.61)

The following three equations relate the raw data and the desired noise spectrum (the last

equation is not independent from the first two):

Sb66(Ω)Direct =
1

g2
mη

2
66

1

|Hi,ωc(Ω)|2
Si(Ω)

〈i〉2
≈ 1

g2
mη

2
66

1

|Hi,ωc(Ω)|2
SV (Ω)

〈V 〉2
(8.62a)

Sb66(Ω)PM =
SV (Ω)

1.33× SV (Ω0)

Ω2
0Sφ(Ω0)

g2
mη

2
66

(8.62b)

Sφ(Ω0) =
β2

2
=

1.33× SV (Ω0)

Ω2
0|Hi,ωc(Ω0)|2

. (8.62c)

The first two equations correspond to the “direct” and PM-calibrated thermal noise spectra, respec-

tively. The third relation allows us to compare the two calibrations by computing β in two ways.

The resolved cavity technique gives β = 0.03, as discussed above. Using experimental values of

{η66, gm/(2π),m66, κ/(2π),Ω66/(2π),∆/(2π)}

≈ {0.64, 0.35 MHz/pm, 8.44 ng, 14 MHz, 4.82 MHz, 97 MHz}
(8.63)

with Eq. 8.62c gives β = 0.026.

We use β = 0.03 and the PM calibration technique to obtain the lower plot in Figure 8.5.
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Figure 8.5: Calibration of the photocurrent noise spectrum to obtain the effective tempera-
ture of the (6,6) mode of the “science” membrane: T 66

eff . Raw data (upper plot) corresponds
to the power spectral density of voltage fluctuations at the output of the photocurrent tran-
simpedance amplifier with gain GT (Ω) V/A. The span shown contains a Lorentzian feature
proportional to the power spectrum of displacement of a single membrane vibrational mode
SV (Ω) = |GT (Ω66)|2g2

mη
2
66|Gi,ωc(Ω66)|6Sb66(Ω) and a narrow feature (delta-function convoluted

with a Hanning windowing function) corresponding to phase modulation of the laser SV (Ω0) =
|GT (Ω66)|2|Gi,ωc

(Ω0)|2β2Ω2
0/2ENBW . Normalizing by SV (Ω0) enables mapping from SV (Ω) to

Sb66(Ω), as shown in the lower plot. Integrating over the processed spectrum determines the effec-
tive temperature of the mode (Eq. 8.57).
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Subtracting the background and integrating over the resulting noise spectrum gives:

T 66
eff |PM =

m66Ω2
66

kB

∫
Ωij

Sb66(Ω)dΩ/2π =
(8.44ng)× (2π × 4.82 MHz)2

1.38× 10−23 J/K
× (0.64 pm)2 (8.64a)

= 232 K + {0, 60}η66 + {−64, 37}m66
+ {−13, 64}gm = 232 K + {−74, 196} (8.64b)

T 66
eff |“direct” = 232 K× (0.026/0.03)2 = 174K + {−55, 147} (8.64c)

where the error bars are due to the uncertainties described in Section 8.7.4: {gm/(2π),m66, η66} =

{0.31−−0.36 MHz/pm, 6.1−−9.7 ng, 0.57−−0.64}

For the ∼ 1 µW power and ∆/(2π) = 100 MHz detuning used, we expect negligible reduction

in effective temperature due to radiation pressure back-action (we elaborate on this in Chapter 9).

Hence the above result is consistent with an expected value of T ijeff ≈ Troom ≈ 298 K.

8.7.7 Thermal Noise “Spectroscopy” to Determine the Spatial Overlap

Coefficients

An important free variable in the thermal noise calibration is the spatial overlap between the mem-

brane and cavity mode, ηij (Section 7.1.3). To compute the spectrum of spatial overlap factors, we

need to know the shape of the membrane vibrational mode, the shape of the TEMmn cavity mode,

and the position (x0, y0) of the cavity mode relative to the center of the membrane. The first two

can be determined a priori from the membrane and cavity dimensions. We can determine (x0, y0)

experimentally by using the multimode effective length noise spectrum, SLL(Ω), as a spectroscopic

tool. To do this, we note that the ratio of the areas beneath different noise peaks is proportional to

the ratio of spatial overlap factors:∫
Ωij

SL(Ω)dΩ/2π∫
Ωi′j′

SL(Ω)dΩ/2π
=

η2
ij

∫
Ωij

Sbij (Ω)dΩ/2π

η2
i′j′

∫
Ωi′j′

Sbi′j′ (Ω)dΩ/2π
=

η2
ijT

ij
eff/mijΩ

2
ij

η2
i′j′T

i′j′

eff/mi′j′Ω2
′ij′

Γopt=0−−−−→
η2
ij

η2
i′j′

Ω2
i′j′

Ω2
ij

. (8.65)

Here the effective mass mij = mphys/4 has dropped out because of how we’ve defined it for a square

membrane vibration (relative to the displacement at an antinode, see Section 7.1.1). The effective

temperatures cancel in the absence of optical damping, T ijeff = Tbath (Section 7.3).

Importantly, it is not necessary to absolutely calibrate the effective length noise spectrum in

order to measure these ratios. It is however necessary to account for the detector and cavity response

functions at different frequencies. In the example below we make a PDH measurement. Integrating

the the raw transimpedance amplified error signal gives:∫
Ωij

SV (Ω)dΩ/2π∫
Ωi′j′

SV (Ω)dΩ/2π

Γopt=0−−−−→ |GT (Ωij)|2

|GT (Ωi′j′)|2
|Gε,ωc

(Ωij)|2

|Gε,ωc
(Ωi′j′)|2

η2
ij

η2
i′j′

Ω2
i′j′

Ω2
ij

≈
η2
ij

η2
i′j′

Ω2
i′j′

Ω2
ij

. (8.66)
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The final approximation is appropriate when (1) the transimpedance gain is nearly flat, as in the

example below (we use a DC coupled detector with bandwith 150 MHz � Ωij/2π), and (2) for

Ωij . κ, in which case the cavity response |Gε,ωc
(Ω)| is also nearly flat.

To determine the “likelihood” that the optical mode is at position (x0, y0), we perform a linear

chi-square analysis [85]. The chi variable χij,i′j′(x0, y0) is the difference between the measured ratio

and the predicted ratio based on the mode shape of the membrane and the cavity, as described in

Section 7.1.3.1. The chi-square probability (likelihood) distribution is defined:

χij,i′j′(x0, y0) =

√√√√ ∫
Ωij

SV (Ω)dΩ/2π∫
Ωi′j′

SV (Ω)dΩ/2π
− Ωi′j′ |Gε,ωc

(Ωij)||ηij |(x0, y0)

Ωij |Gε,ωc(Ωi′j′)||ηi′j′ |(x0, y0)
(8.67a)

P (x0, y0) =
e−(χ2

66,11+χ2
33,11+χ2

22,11+...)/N∫
S
e−(χ2

66,11+χ2
33,11+χ2

22,11+...)/Ndxdy
, (8.67b)

where the integral
∫
S

is over the surface of the membrane and N is the number of independent

ratios measured.

The spectrum of overlap coefficients {ηij} is determined from P (x0, y0) by either evaluating at

the position of highest likelihood (maximum P ) or by computing moments of the distribution:

〈ηij〉 =

∫
ηij(x0, y0)P (x0, y0)dxdy (8.68a)

SD(ηij) =

∫
(ηij,00(x0, y0)2 − 〈ηij〉2)P (x0, y0)dxdy. (8.68b)

An example of “thermal noise spectroscopy” is outlined in Figure 8.6. Here we have probed

the TEM00 mode of the cavity using the PDH method (the details are not crucial for this ra-

tiometric measurement). A small optical power is used (〈Pout〉 < 1 µW) in order to minimize

optical heating/damping (we find that this is still an important consideration for the resonant PDH

probe). The power spectral density of the transimpedance amplified error signal is processed with

a commercial spectrum analyzer (HP 4395A). In power spectrum mode, the analyzer records values

〈V 2(Ω)〉 ≡
∫ Ω+(2π)B/2

Ω−(2π)B/2
SV (Ω′)dΩ′/2π, where B is the effective noise bandwidth (ENBW, Section

8.7.1) in non-angular units. We use ENBW = 100 Hz, much larger than the mechanical linewidth

Γij/2π, so that 〈V 2(Ωij)〉 ∝ η2
ij

∫
Ωij

Sbij (Ω)dΩ/2π as in Eq. 8.65. In order to avoid systematic error

due to creep of the membrane position zm and other parameters, we perform a nonlinear sweep

which quickly scans the analyzer center frequency over the range of interest: in this case a set of 10

kHz windows centered on frequencies {Ω11,Ω22,Ω33,Ω44,Ω26,Ω62,Ω66}.

Figure 8.6 corresponds to an effort to center the optical beam at one of the (6,6) antinodes. We

are typically able to constrain the position to within several microns based on the standard deviation

(SD) of the chi-square value. Near an antinode of the (6,6) mode, we have been able to constrain



145

(Raw) Thermal Noise Power Spectrum

10
-13

10
-12

10
-11

54321

-200

-100

0

100

200
y

(m
ic

ro
n)

-200 -100 0 100 200

x (micron)

-110

-100

-90

-80

5

4

3

2

1

0

frequency
(M

H
z)

(1,1)

(2,2)

(3,3)

(4,4)
(2,6)

(6,6)

Power Spectrum, Nonlinear Sweep

(6,2)

likelihood function
TEM00 position

10
-10

most likelyleast likely

(a)

(b)

(c)

(1,1)

(2,2)

(3,3)

(4,4) (2,6)
(6,6)(6,2)

Contours of (1,1), (3,3),
and (6,6) modes

Figure 8.6: Schematic of the “thermal noise spectroscopy” technique for determining the membrane
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proportional to the cavity length noise spectrum. To avoid systematics, the spectrum analyzer
is rapidly swept in “list frequency” mode across a subset of noise peaks, using a bandwidth B
>> Γij . The result is shown in plot (b). Each peak is proportional to the total effective displacement

η2
ijT

ij
eff/mijΩ

2
ij . Ratios of the peaks determine the position-dependent quantity η2

ijΩ
2
i′j′/η

2
i′j′Ω

2
ij ,

provided that the probe is weak enough that T ijeff ≈ Tbath for each mode. For each possible location
of the optical mode, the measured ratios are compared to the predicted ratios based on independent
knowledge of the membrane size and cavity waist (Section 7.1.3.1). A linear chi-square analysis
gives the position probability (“chi-square likelihood”) distribution shown in plot (c), which in turn
predicts the set of spatial overlap factors {ηij}
.

the overlap coefficient to within 10% of its maximum theoretical value, η66 = 0.64 for the science

cavity (Section 7.1.3).
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8.8 Substrate and Laser Noise Measurements

Laser phase/frequency noise and thermal vibration of the end-mirror substrates — “substrate noise”

in Section 7.3.2 — both limit sensitivity to membrane thermal motion in the MIM system. The

effective cavity length noise due to substrate motion is given by Eq. 7.25:

SL(Ω)|sub = g−2
0 Sωc

(Ω)|sub =

(
g1

g0

)2

Sz1(Ω) +

(
g1

g0

)2

Sz2(Ω). (8.69)

Here {Sz1(Ω), Sz2(Ω)} are the spectral density of effective displacement for mirrors {1, 2} (Eq. 7.32)

and {g1, g2} are the optomechanical coupling of mirrors {1, 2}. Recall that g1,2 6= g0 when the

membrane is placed between the mirrors, as described in Section 7.3.2.3.

Small fluctuations of the instantaneous frequency of the incident laser field produce a similar

effect on the intracavity field as cavity resonance frequency fluctuations. This was shown in Section

8.6, and is discussed in greater rigor in a later chapter (Section 10.8). The effective cavity length

noise associated with fluctuations of the instantaneous laser frequency ω0 will be defined:

S0
L(Ω) ≡ g−2

0 Sω0
(Ω). (8.70)

In overview, the frequency noise on our home-brew external-cavity diode laser (Eagleyard) op-

erating at 935 nm is roughly
√
Sω0

(Ω) ∼ 2π × 10 Hz/
√

Hz at Ω/2π ∼ 1 MHz, corresponding to an

effective length noise of
√
S0
L(Ω) ∼ 2π×10/g0 ∼ 10−17 m/

√
Hz. We have since moved to a titanium-

sapphire laser (Schwarz Electro-Optics) operating at ∼ 810 nm. We have found the frequency noise

on this laser to be < 2π×1 Hz/
√

Hz at Ω/2π ∼ 1 MHz, corresponding to an effective length noise of

. 10−18 m/
√

Hz. By contrast, the effective length noise produced by the end-mirror substrates has

been found to vary between SL(Ω) ∼ 5× 10−18 and 5× 10−17 m/
√

Hz. This noise is commensurate

with Brownian vibration of our “science” membrane when optically damped to ∼ 10 phonons, as

expressed in Eqs. 8.44–8.45 and further elaborated in Chapter 10.

To measure this extraneous noise, we remove the membrane from the cavity. In this case g1,2 = g0.

We then perform the detuned probe measurement as described in Section 8.3 using the TEM00 mode

of the cavity. The power spectral density of cavity resonance frequency fluctuations, Sωc
(Ω), laser

frequency fluctuations, Sω0(Ω), and transimpedance amplified photocurrent fluctuations, SV (Ω), are

related by:

SV (Ω) = |GT (Ω)|2|Gi,ωc
(Ω)|2(Sωc

(Ω)|sub + Sω0
(Ω)) (8.71)

where GT (Ω) is the transimpedance gain of the photodetector.

We calibrate this noise spectrum as discussed in Section 8.6: by phase modulating the input field
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at frequency Ω0 with a modulation depth β. This results in a reference peak:

SV (Ω0) = |GT (Ω0)|2|Gi,ωc
(Ω0)|2 Ω2

0β
2

2

1

ENBW
. (8.72)

Assuming that the transimpedance gain is flat over the frequency range of interest gives

Sωc(Ω)|sub + Sω0(Ω) = SV (Ω) · 1

SV (Ω0)

Ω2
0β

2

2

1

ENBW

|Gi,ωc(Ω0)|2

|Gi,ωc
(Ω)|2

. (8.73)

This expression includes measured variables {SV (Ω), SV (Ω0),Ω0, β,∆, κ, g0}, and a complicated

“filter” function |Gi,ωc
(Ω0)|2/|Gi,ωc

(Ω)|2 {Ω,Ω0}�κ−−−−−−−→ 1, which is due to the finite response time of

the cavity.

The measurements described below were made with an Agilent 4395A spectrum analyzer in

“noise” mode (for further description, see Section 4.5.4 and [56]). The photodetector used was a

New Focus 1801 with a transimpedance gain of |GT (Ω < 2π · 100 MHz)| ≈ 2× 104 V/A.

8.8.1 Laser Frequency Noise

8.8.1.1 Diode Laser

Diode laser frequency noise dominates over substrate noise in our science cavity, i.e., Sω0
(Ω)|diode >>

Sωc
(Ω)|sub. We have measured Sω0

(Ω)|diode directly from the transmission of a detuned probe as

described above, using Eq. 8.73. For the measurement shown in Figure 8.7, the operating wavelength

is λ ≈ 935 nm, the power on the transmission photodetector is 〈Pout〉 ≈ 90µW, and the cavity

linewidth was measured to be κ ≈ 10.8 MHz. A spectrum analyzer bandwidth of ENBW ≈ 100 Hz

was used.

Figure 8.7 shows three contributions to the measured noise: detector noise (black), shot noise

(green), and laser FM noise (red). Detector noise is obtained with the laser blocked. Shot noise

plus detector noise is obtained by directly coupling ≈ 90µW from the diode laser onto the detector

without passing through the cavity. Subtracting the detector noise gives the shot noise spectrum

shown in green (we have determined that this is not laser intensity noise by verifying a
√
〈P 〉 scaling

with power incident on the detector). Laser FM noise is obtained by coupling ≈ 90µW through the

cavity and onto the photodetector at a detuning ∆ ≈ −κ. Subtracting laser + shot noise gives the

red curve shown. All curves are multiplied by the PM calibration factor given on the RHS of Eq.

8.73 (calibration peak not shown in figure).

The measured diode laser FM noise in the range Ω/(2π) = 500 kHz to 5 MHz appears to be

structureless and has a magnitude of Sω0
(Ω) = 30−−40 Hz/

√
Hz (S0

L(Ω) = 6−−8×10−17 m/
√

Hz).

The peak near 800 kHz is the fundamental vibration of the mirror substrates, as discussed in the next

subsection. Note that the inferred shot-noise sensitivity of 1–2 Hz/
√

Hz (green curve) is consistent
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Figure 8.7: Measurement of frequency noise on our λ = 935 nm external-cavity diode laser. The
measurement was made by passing ≈ 90µW through the science cavity at a detuning ∆ = κ ≈
2π · 10.8 MHz and monitoring the transmitted intensity fluctuations. Detector noise and shot noise
are shown in black and green for comparison. These contributions are independently measured
and subtracted from the raw signal in order to obtain the red curve shown. All three curves are
multiplied by a calibration factor obtained from a known phase modulation of the input beam (not
shown). The right-hand scale expresses the noise as an effective cavity length displacement.

with the value of 0.9 Hz/
√

Hz predicted by incorporating the above measurement parameters into

Eq. 8.42.

8.8.1.2 Titanium-Sapphire Laser

The frequency noise exhibited by our titanium-sapphire (ti-sapph) laser is small compared to the

substrate noise in our science cavity, i.e., Sω0
(Ω)|TiS << Sωc

(Ω)|sub). It was therefore not practical

to use the science cavity for its measurement. We have instead used a fiber-based interferometer as

described in [86]. The basic idea is to send the light through a long-baseline, imbalanced Mach-Zender

(MZ) interferometer. The effective path length of the long arm is sensitive to small fluctuations in

the instantaneous frequency of the laser. Consequently, laser phase noise produces intensity noise

on the output of the MZ. This noise can be calibrated by applying a known phase modulation to the

input field. In Figure 8.8 we show the result of one such measurement without giving experimental

details. This measurement was performed with great care by our post-doc, Yi Zhao. The broad

peak at ∼ 600 kHz is believed to correspond to relaxation-oscillation of the ti-sapph crystal. The
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Figure 8.8: Comparison of diode laser frequency noise (red) and ti-sapph laser frequency noise
(blue). The right-hand scale expresses the noise in units of effective cavity length displacement.
Diode laser noise was measured by coupling radiation through the science cavity at a detuning
∆ = −κ and monitoring the transmitted intensity fluctuations. Ti-Sapph noise was measured using
an imbalanced fiber-based Mach-Zender interferemoter, using the method described in [86].

narrow peak at 1.2 MHz is a calibration peak. The FM noise spectrum from 1 MHz to 5 MHz is

at the level of 0.1–0.2 Hz/
√

Hz, or effectively 3–6×10−19 m/
√

Hz in cavity length units. This low

noise is at the level of the zero-point displacement of our science membrane were it to be optically

damped to the ground state, as expressed in Eq. 8.42. The ti-sapph laser’s low noise also enables

the substrate noise measurement discussed in the following subsection.

8.8.2 Substrate Noise

To measure the substrate noise, we remove the membrane from the cavity and perform the detuned

probe measurement using the low noise ti-sapph laser (in this case SL(Ω)|sub >> S0
L(Ω)|TiS). For

this measurement, the operating wavelength was λ ≈ 805 nm, the power on the transmission pho-

todetector was 〈Pout〉 ≈ 100µW, and the cavity linewidth was measured to be κ ≈ 9 MHz. A

spectrum analyzer bandwidth of ENBW ≈ 30 kHz was used. The inferred substrate noise is shown

in Figure 8.9. Three major contributions to the measurement noise spectrum are shown: detector

noise, shot noise, and the desired substrate thermal noise. Detector noise is recorded with the laser

field blocked and shot noise is estimated by directly coupling 100 µW into the photodetector (by-
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Figure 8.9: Measurement of substrate thermal noise and comparison to laser frequency noise. Sub-
strate noise was measured by coupling ≈ 100µW of radiation from the low noise Ti-Sapph laser
through the science cavity (TEM00 mode) at detuning ∆ = −κ ≈ 2π · 9 MHz and monitoring the
transmitted intensity fluctuations. In the upper plot we compare the relative contributions of detec-
tor noise (black) and shot noise (green), which have been subtracted from the raw signal to obtain
the red curve shown. In the lower plot we compare the measured substrate noise to the measured
frequency noise of our diode (red) and ti-sapph (blue) laser. We also compare the substrate noise
to a numerical finite element model, shown in pink.
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passing the cavity). The shot noise curve shown in green has been corrected by subtracting the

measured detector noise (black). For the detuned probe measurement we coupled 〈Pout〉 = 100 µW

through the science cavity at a detuning of ∆ ≈ −κ. The resulting spectrum shown in red is cor-

rected by subtracting both the black and green curves. All shown curves are calibrated using the

phase modulation method summarized in Eq. 8.73.

The substrate noise measurement reveals a dense spectrum of vibrational peaks with the lowest

order peak occuring at 785 kHz. The vibrational peaks between 785 kHz and 5 MHz are spaced by

∼ 10–100 kHz and appear to have a common quality factor of roughly Qm = 650. The off-resonant

noise is at a level of 1–2×10−18 m/
√

Hz. The noise peaks reach a level of 1–4×10−17 m/
√

Hz. The

peaks shown here are slightly smoothed by the large bandwidth of 30 kHz used. In Figure 8.9 we

compare the substrate noise to the diode laser and ti-sapph laser noise as well as a numerical finite

element model developed by our post-doc Kang-Kuen Ni. This model — which is in remarkable

agreement — is discussed in detail in Section 7.3.2. Also note that the inferred shot noise sensitivity

of 1–1.5 m/
√

Hz is a factor of two larger than the predicted sensitivity of 0.7 m/
√

Hz based on

incorporating the above parameters into Eq. 8.42 (using a photodetector responsivity of R ≈ 0.5 at

805 nm).
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Chapter 9

Optomechanical Cooling

In Chapter 2 we derived the optical spring and damping rates experienced by a compliant end-mirror

in a Fabry-Perot cavity. In this chapter we apply that model to our “membrane-in-the-middle”

apparatus (Figure 9.1), consisting of a short, high-finesse (F ≈ 104) Fabry-Perot cavity coupled to

a stiff, high mechanical quality (Ωm/2π > 106, Qm > 106) Si3N4 membrane. We anticipate that

our system can be used to realize significant optomechanical cooling rates, possibily even to access

the quantum regime from room temperature [14]. In the lab, however, we are presently limited to

n̄ > 100, owing to various technical challenges described below. Significantly, we note that as of

the time of this writing several groups have managed to prepare the quantum mechanical ground

state of a NEMS-scale mechanical oscillator using a combination of cryogenic and optomechanical

cooling [15, 6, 10], while the Yale group’s efforts with SiN membranes in a cryogenic version of [23]

is currently limited by laser phase noise [61].

To help summarize the reasoning leading up to this experiment, this chapter begins with a

review of optical spring and damping forces, with an emphasis on extending the canonical two-mirror

system described in Section 2.4 to the MIM system. We carefully step through the application of

a simple “weak damping” model to our system, showing that significant optomechanical cooling

can be observed for only microwatts of input optical power. We then present measurements we

have performed to validate the weak damping model. Operationally, the experiment consists of

measuring the membrane’s displacement using a strong red-detuned probe (Section 8.3). In our

main example we demonstrate that with ∼ 1 W of power circulating in the cavity, the mean-

squared Brownian vibration amplitude of a higher-order membrane mode (the (6,6) mode, with

frequency Ω66/2π = 4.83 MHz and mechancial quality Q66 = 1.5 × 106) can be suppressed by a

factor ≈ 3 × 103. This corresponds to a reduction in temperature from Troom ≈ 300 K to an

effective value of T 66
eff ≈ 100 mK, or equivalently, a reduction in mean thermal occupation from

n̄room66 = kBTroom/~Ω66 ≈ 1.3× 106 to n̄66 ≈ 500 phonons. The amount of “refrigeration” we have

achieved is limited by the amount of power we can couple into the cavity for technical reasons and —

we anticipate — the background intracavity intensity fluctuations associated with thermal motion
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Figure 9.1: (a) Experimental overview: membrane window (thickness dm = 50 nm, square dimension
wm = 500 µm) in a short cavity (lenth L = 742 µm, finesse (F ) ≈ 104). (b) Illustration of (3,3)
membrane mode amplitude with b33φ33(x, y). (c) Intensity profile of TEM00 optical mode |ψ00|2
(red solid line) compared to amplitude of membrane modes (2,2) (top) and (6,6) (bottom) with a
cavity spot size of wc = 35.6 µm.

of the end-mirror substrates, which we address in the next chapter.

9.1 Radiation Pressure Back-Action: Compressed Review

and Extension to MIM System

9.1.1 Compressed Review

In Chapter 2 we described the effect of radiation pressure on a compliant end-mirror in a Fabry-Perot

cavity. The end-mirror in this — the “canonical” — optomechanical system (Figure 2.1) is envisioned

as a rigid plate with effective (= physical) mass m attached to a massless pendulum spring. The

mass-spring system is modeled as a driven, damped harmonic oscillator with displacement amplitude

b (coinciding with the position of the mirror surface), resonance frequency Ωm, and energy damping

rate, Γm. The driving force has two contributions: a Langevin force FL, which describes Brownian

motion of b, and a radiation pressure Frad = 2Pcirc/c, where Pcirc is the optical power circulating

between the cavity end-mirrors. Crucially, optomechanical coupling between the position of the

mirror and the resonance frequency of the cavity implies that the circulating power is a function of
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mirror position b(t):

mb̈(t) + Γmmḃ(t) +mΩ2
mb(t) = FL(t) + Frad(b(t), t). (9.1)

For sufficiently weak optomechanical coupling, the position-dependent radiation pressure force can

be described as the sum of a force proportional to the position and the velocity of the mirror; these

correspond to the the “optical spring” and “optical damping” forces, respectively:

Frad(b(t), t) ≈ −koptb(t)−mΓoptḃ(t). (9.2)

From the standpoint of linear response theory (Section 2.1), the optical spring and damping forces

manifest themselves as a modification to the mechanical susceptibility, χ(Ω), defined as follows:

χ(Ω) ≡ b(Ω)

F (Ω)
; {b(Ω), F (Ω)} =

∫ ∞
−∞
{b(t), F (t)}e−iΩtdt. (9.3)

In the presence of the position-dependent radiation pressure force,

Frad(Ω) = −kopt(Ω)b(Ω)− imΓopt(Ω)b(Ω), (9.4)

the susceptibility of the mirror to the Langevin force becomes:

χeff (Ω) =
b(Ω)

FL(Ω)
=

1/m

Ω2
m − Ω2 + kopt(Ω)/m− i(Γm(Ω) + Γopt(Ω))Ω

. (9.5a)

The frequency dependence of {Γm(Ω),Γopt(Ω), kopt(Ω)} is a consequence of the fact that a lossy

mechanical resonator does not have a well-defined frequency. When both the intrinsic and optical

spring are underdamped, then this frequency dependence can be approximately neglected. We will

refer to this as the “weak damping” approximation

{Γm(Ω),Γopt(Ω), kopt(Ω)} ≈ {Γm(Ωm),Γopt(Ωm), kopt(Ωm)} ≡ {Γm,Γopt, kopt}, (9.6)

and we will approximate the optical spring as a small frequency shift:

χeff (Ω) ≈ 1/m

(Ωm + ∆Ωopt)2 − Ω2 − i(Γm + Γopt)Ω
(9.7a)

∆Ωopt ≡ kopt(Ωm)/(2m). (9.7b)

Thermal flucutuations of b are described by the mechanical transfer function |χeff (Ω)|2 acting
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on the power spectral density of Langevin force fluctuations, SFL
(Ω).

Sb(Ω) = |χeff (Ω)|2SFL
(Ω) (9.8a)

SFL
(Ω) =

4kBTbath
Ω

Im
[
χ0(Ω)−1

]
= 4kBTbathΓm(Ω), (9.8b)

where χ0(Ω) is the natural susceptibility of the system (Frad = 0). The latter expression is a

consequence of the Fluctuation-Dissipation Theorem, as described in Section 2.2.

In the weak damping limit, the thermal fluctuations are described by a Lorentzian with a shifted

frequency (due to the optical spring) and linewidth (due to the optical damping):

Sb(Ω) = |χeff (Ω)|2 × 4kBTbathΓmm ≈
4kBTbathΓm/m

((Ωm + ∆Ωopt)2 − Ω2)2 + (Γm + Γopt)2Ω2
. (9.9)

An important consequence of the modified mechanical response is the phenomenon of optical

cooling/heating, which corresponds to a reduction/enhancement of the effective temperature of b.

For weak damping:

Teff =
m

kB

∫ ∞
0

Ω2Sbb(Ω)
dΩ

2π
≈ Tbath

Γm
Γm + Γopt

, (9.10)

or in terms of thermal occupation number:

n̄ ≡ kBTeff
~(Ωm + ∆Ωopt)

≈ kBTeff
~Ωm

= n̄bath
Γm

Γm + Γopt
. (9.11)

The sign of Γopt depends on the sign of the correlations between the mirror position and the radiation

pressure force. For positive optical damping Γopt > 0, the effective temperature of the oscillator

is reduced. This is analagous to the suppression of noise in an electronic circuit using negative

feedback.

9.1.2 Model for Radiation Pressure Damping

9.1.2.1 Two-Mirror Resonator

In the canonical system, the parametric coupling between displacement amplitude b and the ampli-

tude a of the intracavity standing wave is described by the following pair of differential equations

(Section 2.3–2.4),

mb̈(t) +mΓmḃ(t) +mΩ2
mb(t) = FL(t) + Frad(t) (9.12a)

ȧ(t) = − (κ+ i(ω0 − ωc − g0b(t))) a(t) +
√

2κ1Ein(t) (9.12b)

Eout(t) =
√
κ2a(t) (9.12c)

Eref (t) =
√
κ1a(t)− Ein(t). (9.12d)
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Variables {g0, a(t), Ein(t), Eout(t), Eref (t), κ, κ1, κ2, ωc, ω0} correspond to the end-mirror optome-

chanical coupling, the amplitude of the intracavity standing wave, the amplitude of the input/output/reflected

electric field, the total amplitude decay rate of the intracavity field, the amplitude decay rate of the

intracavity field through the input (mirror 1) and output (mirror 2) mirror, the resonance frequency

of the cavity, and the frequency of the input field, respectively. a(t) and Ein(t) are complex am-

plitudes expressed in the frame rotating at ω0 and normalized so that |a(t)|2 = Uc(t) is the slowly

varying envelope of the intracavity energy and |Ein(t)|2 is the slowly varying envelope of the power

coupled to the cavity.

The radiation pressure force Frad(t) can be computed from the gradient of the intracavity energy,

with respect to the mirror position. For a low-loss cavity: Frad = dUc/db ≈ −(dωc/db) · Uc/ωc (Eq.

2.39). In the canonical two-mirror system, this reduces to the familar expression in terms of the

circulating power (Eq. 2.37):

Frad(t) = −g0Uc(t)/ωc = 2Pcirc(t)/c. (9.13)

(Sign convention discussed in Section 2.4.)

Solving Eq. 9.12 to first order in the small parameter g0b/κ gives the following expressions for

the optical spring shift and damping rates in the “weak damping” approximation (see derivation in

Section 2.4, Eq. 2.51):

Γopt = 2〈nc〉
g2

0b
2
zp

κ

(
1

1 + (∆ + Ωm)2/κ2
− 1

1 + (∆− Ωm)2/κ2

)
(9.14a)

∆Ωopt = 〈nc〉
g2

0b
2
zp

κ

(
(∆ + Ωm)/κ

1 + (∆ + Ωm)2/κ2
+

(∆− Ωm)/κ

1 + (∆− Ωm)2/κ2

)
, (9.14b)

where ∆ = ω0 − ωc is the detuning of the input field, 〈nc〉 ≡ 〈|a|2〉/~ωc is the intracavity photon

number and xzp =
√

~/2mΩm is the zero-point displacement.

The optical damping rate is proportional to the difference in the strength of the red and blue

sidebands generated by modulation of the cavity resonance frequency. When the input field is red-

detuned (∆ < 0), the damping rate is positive, Γopt > 0. Microscopically, this corresponds to a

situation in which photons scattered from the mirror surface preferentially receive a blue shift before

exiting the cavity.

9.1.2.2 Extension to the MIM System

The optomechanical interaction between the amplitude bij of a membrane vibrational mode and the

amplitude a of a single mode of the intracavity field is described by the following pair of coupled



157

differential equations in the limit that the membrane reflection coefficient is “small” (Section 8.2):

mij b̈ij(t) +mijΓij ḃij(t) +mijΩ
2
ijbij(t) = F ijL (t) + F ijrad(t) (9.15a)

ȧ(t) = −

κ+ i(ω0 − ωc −
∑
ij

gijbij(t))

 a(t) +
√

2κ1Ein(t); gij ≡ gmηij (9.15b)

Eout(t) =
√

2κ2a(t) (9.15c)

Eref (t) =
√

2κ1a(t)− Ein(t). (9.15d)

These formulas are a formally equivalent to the coupled equations of motion for the canonical two-

mirror optomechanical system, Eq. 9.12. The generalizations that have been made are as follows:

• Generalized displacement amplitude bij(t) is the amplitude of the displacement vector field

~φij(x, y, zm) = ẑ sin(iπx/wm) sin(jπx/wm) describing drum vibrations of the wm×wm square

membrane surface (Section 7.1.1).

• For vibrational modes of the membrane, effective mass mij is defined relative to the energy

normalization condition mij = 〈Uij〉/Ω2
ij〈b2ij〉 =

∫
V
ρ~φij · ~φijdV = mphys/4 (Section 7.1.1).

• For the membrane resonator, Ωij is the eigenfrequency of the (i, j) vibrational mode and

Γij = Ωij/Qij is the energy damping rate of the of the (i, j) vibrational mode, characterized

by mechanical quality Qij – Γij and Qij may in general depend on the vibrational frequency

(Section 7.3.1.2).

• Brownian motion of generalized amplitude bij(t) is described by a thermal force with spec-

tral density SF ij
L

(Ω) = 4kBTbathmijΓij(Ω). The frequency dependence of the damping term

accounts for the “structural” damping behavior in bulk elastic resonators (Section 7.3.1.2).

• In the MIM cavity, {a,Ein, Eout, Eref , κ, κ1, κ2, ωc, ω0} have the same interpretation as in Eq.

9.12 with two important subtleties: (a) the intracavity mode is a more complicated mode-

shape that has different amplitudes on the left and right of the membrane (the sum of the

energy on both sides is |a|2); (b) the total amplitude decay rate, κ, and the amplitude decay

rate through the input mirror κ1 and output mirror κ2 are all functions of the equilibrium

membrane position, zm (See discussion in Section 8.2).

• In the MIM system, the optomechanical coupling for a single mode (i, j) is described by

δωc = gijbij = ηijgm(zm)bij . gm(zm) gives the resonance frequency shift resulting from a

small displacement of the membrane equilibrium position δzm, and in general depends on the

absolute membrane position relative to the intracavity standing wave (Section 3.3.1). Fac-

tor ηij accounts for the spatial overlap between the TEMmn cavity mode and membrane
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vibrational mode, and is given by the ratio of the antinode displacement and the displace-

ment of the membrane surface S averaged over the intensity profile of the cavity mode:

ηij ≡
∫
S
|ψmn(x, y, z)|2~φ(x, y, z) · ẑdσ/

∫
S
|ψmn(x, y, z)|2dσ (see Section 7.1.3).

In the MIM system, the generalized radiation force experienced by coordinate bij is given by:

F ijrad(t) = −gijUc(t)/ωc = ηijgm(zm)Uc(t)/ωc. (9.16)

By direct analogy to the two mirror system, the thermal noise spectrum for a single, underdamped

vibration of the membrane in the presence of a weak optical spring is given by (assuming the

membrane mode in question is well isolated in frequency from other modes):

Sbij (Ω) ≈ 4kBTbΓij(Ω)

mij

1

((Ωij + ∆Ωijopt)
2 − Ω2)2 + Ω2(Γij(Ω) + Γijopt)

2
(9.17a)

Γijopt = 2〈nc〉
(gijb

ij
zp)

2

κ

(
1

1 + (∆ + Ωij)2/κ2
− 1

1 + (∆− Ωij)2/κ2

)
(9.17b)

∆Ωijopt ≡ = 〈nc〉
(gijb

ij
zp)

2

κ

(
(∆ + Ωij)/κ

1 + (∆ + Ωij)2/κ2
+

(∆− Ωij)/κ

1 + (∆− Ωij)2/κ2

)
(9.17c)

T ijeff ≈
mij

kB

∫ ∞
0

Ω2Sbijbij (Ω)dΩ/2π ≈ Γij

Γij + Γijopt
Tbath, (9.17d)

where 〈nc〉 ≡ 〈|a|2〉/~ωc is the generalized intracavity photon number and bijzp =
√

~/2mijΩij is

the zero-point displacement. To deal with multimode thermal noise, we here retain the frequency

dependence of the Γij(Ω) associated with structural damping: Γij(Ω) = Γij(Ωij)Ωij/Ω = Ω2
ij/QijΩ

(Section 7.3.1.2). The integration
∫

Ωij
is here understood to exclude off-resonant displacement of

other vibrational modes for the multimode resonator.

9.1.3 Experimental Parameters: What to Expect

We now compute the optical spring shift and damping force (Eq. 9.17) for experimental parameters

relevant to our membrane-in-the-middle apparatus (Chapters 5 and 6):

{L,FSR, λ,F , κ, κ1, κ2} = {0.742 mm, 202 GHz, 935 nm, 104, 2π · 20 MHz, 2π · 10 MHz, 2π · 10 MHz}

(9.18a)

{Ωm, Qm, dm, wm, T ρ} = {2π · 5 MHz, 106, 50 nm, 500µm, 900 MPa, 2.7 g/cm3}. (9.18b)

Variables {L,FSR, λ} are the actual length and free spectral range of the optical cavity in the

absence of the membrane at an operating wavelength of λ. {F , κ, κ1, κ2} are the approximate

finesse, total amplitude decay rate (HWHM linewidth), input mirror amplitude decay rate, and

output mirror amplitude decay rate for the optical cavity in the absence of the membrane (these
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values very with the exact position of λ on the mirror coating curve). Variables {Ωm, Qm} are

the typical frequency and mechanical quality of a higher-order mode of the membrane, which has

material properties {dm, wm, T , ρ}, corresponding to thickness, square width, tension, and density.

9.1.3.1 Intracavity Photon Number

We first compute the intracavity photon number, which depends on the steady-state input and output

power, {〈Pin〉, 〈Pout〉 = {〈|Ein|2〉, 〈|Eout|2〉} (we here assume that the input field is monochromatic),

and the magnitude of cavity decay rates {κ, κ1, κ2}. With the membrane removed, our Fabry-Perot

cavity is nearly symmetric and lossless: κ1 ≈ κ2 ≈ κ/2 (Section 6.2). However, with the membrane

in the cavity, decay rates {κ, κ1, κ2} are all functions of the membrane position. The steady-state

intracavity photon number in this more generic case is given by solving Eq. 9.15 with ȧ = 0 and

bij = 0 (Eq. 8.5):

〈nc〉 =
〈|a|2〉
~ωc

=
〈Pout〉
~ωcκ

κ

2κ2
=
〈Pin〉
~ωcκ

2κ1

κ

1

1 + ∆2/κ2
(9.19a)

〈Pout〉 =
〈Pout(∆ = 0)〉

1 + ∆2/κ2
. (9.19b)

The ratio 2κ1/κ can be determined from the resonant transmission/reflection of the MIM cavity

(Eq. 8.5). Assuming negligible internal loss, so that κ1 + κ2 = κ:

〈Pref (∆ = 0)〉
〈Pin〉

=
〈Pin〉 − 〈Pout(∆ = 0)〉

〈Pin〉
=

(
2κ1

κ
− 1

)2

(9.20a)

→ 2κ1

κ
= 2− 2κ2

κ
=

√
1− 〈Pout(∆ = 0)〉

〈Pin〉
+ 1. (9.20b)

The magnitude of 〈Pout(∆ = 0)〉/〈Pin〉 depends on the position of the membrane in the cavity. It

can be computed numerically by the method discussed in Section 3.4, and has been measured for our

“science” cavity as discussed in Section 6.5. For our low-loss, 50-nm-thick membrane with reflectivity

rm = 0.42 at 935 nm, the magnitude of 〈Pout(∆ = 0)〉/〈Pin〉 varies between 0.8 and 1.0 and has a

magnitude of ≈ 0.9 when the membrane is positioned halfway between a node and an antinode of

the intracavity field. At this position, for which gm = 2rmg0, we find 2κ1/κ ≈ (gm/g0)2 ≈ 0.7 and

2κ2/κ ≈ 2− (gm/g0)2 ≈ 1.3.

For relevant cavity parameters, we have:

〈nc〉 = 0.750× 106 ×
(
〈Pin〉
10µW

)(
λ

935 nm

)(
10 MHz

κ/2π

)(
2κ1

κ

)(
1

1 + ∆2/κ2

)
(9.21a)

= 0.750× 106 ×
(
〈Pout(∆ = 0)〉

10µW

)(
λ

935 nm

)(
10 MHz

κ/2π

)(
κ

2κ2

)(
1

1 + ∆2/κ2

)
. (9.21b)

It’s useful to use the quantity 〈Pout(∆ = 0)〉 because in the lab we can measure this number
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without worrying about input mode-matching. Also, for a perfectly mode-matched, symmetric

cavity, 〈Pout(∆ = 0)〉 = 〈Pin〉.

9.1.3.2 Effective Mass and Zero-Point Amplitude

The vibrational modes of the membrane were discussed in detail in Sections 4.2 and 7.1.1. The

effective mass of generalized displacement amplitude bij coinciding with the displacement of an

antinode on the membrane surface is given by mij = mphys/4. Thus we have, for the effective mass

and the zero-point amplitude:

mij = 8.44 ng×

(
ρ

2.7 g/cm
2

)(
dm

50 nm

)(
wm

500µm

)2

(9.22a)

bijzp =

√
~

2mijΩij
= 4.45× 10−16 m×

(
8.44 ng

mij

)1/2(
5 MHz

Ωij/2π

)1/2

. (9.22b)

9.1.3.3 Optomechanical Coupling and Spatial Overlap

For a nearly lossless 50-nm-thick film at 935 nm, the reflection coefficient is rm = 0.42. Using Eq.

3.22 derived for gm(zm) and defining the vibrational amplitude b as the amplitude of an antinode,

we have for a single membrane mode (dropping the indices i and j):

gijm ≡
δωc
bij

= ηijgm(zm) = ηij ×
−2|rm| sin(2kz)√
1− |rm|2 cos2(2kz)

× g0 ≤ ηij × 2rm ×
ωc
L

(9.23a)

= 2π × 0.363
MHz

pm
×
(ηij

1

)( rm
0.42

)(743µm

L

)(
935 nm

λ

)
. (9.23b)

9.1.3.4 Optical Damping and Spring Shift

The full expressions for “weak” optical damping and spring rates given in 9.17 can be expressed:

Γijopt = 2π × 3.92 kHz×
(
〈Pout(∆ = 0)〉

10µW

)(
10 MHz

κ/2π

)2(
743µm

L

)2 ( rm
0.42

)2 (ηij
1

)2

(9.24a)

×
(

935 nm

λ

)(
5 MHz

Ωij/2π

)(
8.44 ng

mij

)(
κ

2κ2

)(
1

1 + ∆2/κ2

)(
κ2

(Ωij + ∆)2 + κ2
− κ2

(Ωij −∆)2 + κ2

)
(9.24b)

and

∆Ωijopt = 2π × 1.96 kHz×
(
〈Pout(∆ = 0)〉

10µW

)(
10 MHz

κ/2π

)2(
743µm

L

)2 ( rm
0.42

)2 (ηij
1

)2

(9.25a)

×
(

935 nm

λ

)(
5 MHz

Ωij/2π

)(
8.44 ng

mij

)(
κ

2κ2

)(
1

1 + ∆2/κ2

)(
κ(Ωij + ∆)

(Ωij + ∆)2 + κ2
− κ(Ωij −∆)

(Ωij −∆)2 + (κ)2

)
.

(9.25b)
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Two important limits exist for the unitless terms at the far right, corresponding to the difference

of the strength of the blue sideband and the red sideband generated on the intracavity field by the

vibrating membrane. In the sideband unresolved or “bad” cavity limit (Ωij << κ), they reduce to

κ2

(Ωij + ∆)2 + κ2
− κ2

(Ωij −∆)2 + κ2

Ωij<<κ−−−−−→ 4Ωij
κ

∆/κ

(1 + (∆/κ)2)2
=
±Ωij
κ

for ∆ = ±κ (9.26a)

κ(Ωij + ∆)

(Ωij + ∆)2 + κ2
− κ(Ωij −∆)

(Ωij −∆)2 + (κ)2

Ωij<<κ−−−−−→ 2∆/κ

1 + (∆/κ)2
≤ ±1 for ∆ = ±κ. (9.26b)

In the sideband resolved or “good cavity” limit, Ωij >> κ, with ∆ = ±Ωij (in which case only one

sideband is resonant), the prefactors reduce to

κ2

(Ωij + ∆)2 + κ2
− κ2

(Ωij −∆)2 + κ2

Ωij>>κ−−−−−→ ±1 for ∆ = ±Ωij (9.27a)

κ(Ωij + ∆)

(Ωij + ∆)2 + κ2
− κ(Ωij −∆)

(Ωij −∆)2 + κ2

Ωij>>κ−−−−−→ ± κ

2Ωij
for ∆ = ±Ωij . (9.27b)

In practice, we currently operate the cavity in between the “good” and “bad” cavity limit, using the

(6,6) mode with Ω66/2π ≈ 5 MHz and the cavity at a wavelength for which κ/2π ≈ 10 MHz. In this

case the unitless factors (Eqs. 9.27a and 9.27b) are roughly 0.5 for both the spring and damping

rates.

9.1.3.5 Effective Temperature and Thermal Occupation Number

For parameters used in the previous section, we expect substantial radiation pressure damping rate

for ∼ 10 microwatts of power coupled into the cavity. For damping rates much smaller than the

mechanical frequency or the cavity linewidth, we can naively apply T ijeff = Tbath × Γij/(Γij + Γijopt)

(Eq. 9.17d) to predict the effective temperature and occupation number n̄ij = kBT
ij
eff/~Ωij of the

damped mode. In the limit Γijopt >> Γij :

T ijeff = 0.38 K ·
(

10µW

〈Pout(∆ = 0)〉

)(
κ/2π

10MHz

)2(
L

743µm

)2(
0.42

rm

)2(
1

ηij

)2(
λ

935 nm

)
(9.28a)

·
(

106

Qij

)(
Ωij/2π

5 MHz

)2(
mij

8.44 ng

)(
2κ2

κ

)(
1

1 + ∆2/κ2

)−1(
κ2

(Ωij + ∆)2 + κ2
− κ2

(Ωij −∆)2 + κ2

)−1

(9.28b)

n̄ij = 1590 ·
(

10µW

〈Pout(∆ = 0)〉

)(
κ/2π

10MHz

)2(
L

743µm

)2(
0.42

rm

)2(
1

ηij

)2(
λ

935 nm

)(
106

Qij

)
(9.28c)

·
(

Ωij/2π

5 MHz

)(
Tbath
300 K

)(
mij

8.44 ng

)(
2κ2

κ

)(
1

1 + ∆2/κ2

)−1(
κ2

(Ωij + ∆)2 + κ2
− κ2

(Ωij −∆)2 + κ2

)−1

.

(9.28d)
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For cavity and membrane parameters used in the measurements below, {κ/2π, L,∆, λ,Ω66/2π,

Q66,m66, rm, η} ≈ {10 MHz, 742 µm, 5 MHz, 935 nm, 5 MHz, 1.5×106, 8.44 ng, 0.42, 0.64}, the

full expression for weak optical damping (Eq. 9.24) gives Γ66
opt/2π ≈ 4.0(κ/2κ2) kHz for 〈Pout〉 =

100µW . The resulting effective temperature is and T 66
eff ≈ 0.25(2κ2/κ) K, corresponding to a

thermal occupation number n̄66 ≈ 1.0 × 103(2κ2/κ), which represents significant optomechanical

cooling for moderate circulating powers of ∼ 1 W. We now test these predictions.

9.2 Measurements of Optomechanical Cooling

We have carried out a sequence of measurements to confirm the simple model for weak optome-

chanical cooling (Eq. 9.17), using the apparatus described in Chapter 5 and 6. For these experi-

ments, we focus on the TEM00 mode of the cavity and the (6,6) vibrational mode of a {dm, wm} =

{50 nm, 500µm} membrane with intrinsic mechanical frequency Ω66 = 4.82 MHz. Below we list how

parameters {m66, κ,Γ66, gm, η66} entering the formula for the spring and damping forces (9.17) were

determined prior to this optomechanical cooling experiment. The uncertainties of the measurements

are listed in Section (8.7.4).

• We assume mij = mphys/4 = 8.44 ng, based on the factory-specified dimensions and a density

of 2700 kg/m3 [39].

• A value of rm = 0.42 at λ = 935 nm is inferred from an estimated real index value of 2.0 (see

section 6.1).

• The intrinsic mechanical damping rate Γ66 = Ω66/Q66 ≈ 4.83 MHz/1.5 × 106 ≈ 3.2 Hz is

determined from a ringdown measurement (section 4.6.2) using a HeNe in place of the probing

beam and exciting the membrane using a piezo shaker located behind the membrane (Section

5.2.3.2).

• The cavity linewidth κ varies with membrane position and is determined by sweeping the

cavity with an FM modulated probe (Section 6.2). A value of κ ≈ 13.5 MHz is obtained when

the membrane is positioned for maximal coupling and λ = 935 nm.

• Optomechanical coupling rate gm(zm) is fixed to its maximum value 2rmg0 = 0.84g0 at λ = 935

nm by maneuvering the membrane axially until the optical spring frequency shift at a fixed

input power is maximized (see Sections 6.3 and 5.3.3.3 for further discussion).

• To determine is the spatial overlap ηij (Section 7.1.3.1), we use the known membrane dimen-

sions, the cavity spot size, and the location of the cavity mode on the membrane surface as

inferred from the “thermal noise spectroscopy” technique described in Section 8.7.7. For the

(6,6) vibrational mode coupled to the TEM00 mode of the cavity, we estimate η66 = 0.64; this
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is based on spot-size estimate of wc = 35.6 µm (1/e2 intensity waist) and an estimate that the

optical mode has been displaced by {x0, y0} = {45µm, 120µm} from cavity center.

In the experiment we vary the power and detuning of the input (“cooling”) field while monitoring

the transmitted intensity fluctuations. From these fluctuations we infer the apparent cavity length

noise (ignoring mirror substrate noise): SL(Ω)|mem =
∑
ij(g

2
ij/g

2
0)Sbij (Ω) (see Eq. 7.28). Details

of the method for cavity stabilization and control over detuning for this experiment are described

in Section 5.3.3. A description of the “detuned probe” measurement is given in Section 8.3. Data

acquisition details are described in Section 8.7. We here use the “direct” temperature calibration

procedure described in that section, wherein the detuning, transmitted power, and cavity linewidth

are used to infer the transfer function between membrane vibration and transimpedance-amplified

photocurrent V (t) on the transmission photodetector (responsivity R, transimpedance gain GT (Ω)).

In summary:

SV (Ω)

SL(Ω)
= R2GT (Ω)2〈Pout〉2

(g0

κ

)2
(

2∆/κ

1 + ∆2/κ2

)2 (
κ2 + ∆2

)2
(κ2 + ∆2)

2
+ 2(κ−∆)(κ+ ∆)Ω2 + Ω4

(9.29a)

〈Pout〉 = 〈Pout(∆ = 0)〉 1

1 + ∆2/κ2
(9.29b)

SL(Ω ≈ Ω66) ≈
(
g0

g66

)2
4kBTbathΓ66

m66

1

((Ω66 + ∆Ω66
opt)

2 − Ω2)2 + Ω2(Γ66 + Γ66
opt)

2
, (9.29c)

where g66 = η66 · gm(zm).

9.2.1 Optomechanical Cooling with a Diode Laser

A measurement of the thermal noise of the (6,6) mode with a “strong” red-detuned input field

provided by a 935 nm diode laser is shown in Figure 9.2. The input power has been set so that

〈Pout〉 ≈ 23µW at ∆ = 0. The detuning is then progressively changed from ∆/2π = -93 MHz to

∆/2π = −6 MHz. All other parameters are fixed.

At ∆/2π = -93 MHz, the back-action from the cavity field is weak, and the effective damping rate

inferred from the linewidth of a Lorentzian fit is Γ66 +Γ66
opt ≈ 2π×4.3 Hz. This is comparable to the

intrinsic mechanical linewidth Γ66 ≈ 2π× 3.4 Hz and suggests an effective temperature (Eq. 9.17d) of

T 66
eff = 298 K×3.2 Hz/4.3 Hz = 249 K. By contrast, the value for Γ66

opt estimated from Eq. (9.17b) is

Γ66
opt ≈ 2π×0.1 Hz. Persistently larger-than-expected Γ66

opt at large detuning appears to be due to the

fact that the peak frequency drifts during the time period for measurement (∼ 1 minute in this case

for 40 averages of an FFT with 1 Hz resolution bandwidth). On the other hand, the area underneath

the Lorentzian fit suggests an effective temperature of T 66
eff ≈ k

−1
B m66(g0/gm)2Ω2

66

∫
Ω66

SL(Ω)dΩ/2π

= 176 K. The discrepancy of this value from room temperature is believed to reflect the ∼ 2×

uncertainty in the values entering the measurement transfer function (9.29), as detailed in Section
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Figure 9.2: Brownian motion of the (6,6) drum mode in the presence of a strong detuned probe. Here
we plot the apparent cavity length noise SL(Ω) (Eq. 9.29) of the MIM cavity near Ω66. The input
power is fixed so that 〈Pout(∆ = 0)〉 ≈ 23 µW and the detuning is varied from ∆/2π = -93 MHz to
-6 MHz. As the detuning is decreased, a modified mechanical susceptibility to the thermal force is
observed, manifesting as a lowered frequency (optical anti-spring, δΩ66

opt < 0), an increased damping
rate (optical damping, Γ66

opt > 0), and a lowering of the mean-squared vibration amplitude, 〈b66
2〉,

corresponding to optomechanical cooling (T 66
eff < Tbath). At a detuning of -6 MHz, optomechanical

cooling from room temperature to ≈ 1 K is observed, coinciding with an increased damping rate and
negative frequency shift both of ≈ 1 kHz. Temperature is inferred from the mean-squared effective
cavity length noise 〈L2〉 =

∫
Ω66

SL(Ω)dΩ/2π using the formula shown in the figure. Comparison to

the model (Eq. 9.17) for a similar measurement is shown in the next figure.

8.7.4.

Optomechanical cooling is observed by changing the detuning from −∆ = 2π× 96 MHz >> κ to

−∆ = 2π × 6 MHz ∼ Ω66. This increases both the circulating power and the ratio of blue and red

sidebands in the cavity. For ∆ < 0, and the modified mechanical susceptibility is manifest as a si-

multaneous lowering of the peak response frequency, δΩ66
opt(∆ = −2π×6 MHz) ≈ 2π×−650 Hz < 0,

increasing of the mechanical damping rate, Γ66
opt(∆ = −2π×6 MHz) ≈ 2π×940 Hz >> Γ66, and low-

ering of the mean-squared displacement (area beneath the Lorentzian), characterized by T 66
eff (∆ =

−2π × 6 MHz) ≈ 0.76 K << 298 K. The area and linewidth inferred occupation number are n̄66 ≈

3300 and 4400, respectively. The values estimated from Eq. 9.28 are {Γ66
opt/(2π),∆Γ66

opt/(2π), n̄66} ≈

{670(κ/2κ2) Hz,−255(κ/2κ2) Hz, 6100(2κ2/κ)}. For κ/2κ2 ≈ 1.3 (Eq. 9.20) the damping rate and
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temperature compare favorably with the measured values. A factor of two discrepancy is apparent

for the frequency shift, which we do not yet understand.

Also note the apparent reduction in the thermal displacement background. This is due to the

increased magnitude of the measurement transfer function (9.29a) for smaller ∆. The detector used

for this measurement is shot noise limited at an incident power of ≈ 100 µW. For the measurements

shown, 〈Pout〉 . 23µW, so rather than shot noise, the progressively lowering noise floor here reflects

the apparent displacement of the constant output noise of the photodetector transimpedance am-

plifier. Using Eq. 8.42, the estimated shot noise sensitivity of ∆ = −2π × 6 MHz measurement is

≈ 1.2× 10−17 m/
√

Hz; here we are far from this sensitivity. This may in part be due to laser noise.

Indeed, as shown in Figure 8.9, our 935 nm diode laser exhibits an effective cavity length noise of

≈ 7× 10−16 m/
√

Hz at 5 MHz. This background suggests a practical limit to cooling with the diode

laser using current parameters at the level of n̄66 ∼ 1000.

9.2.2 Multimode Cooling: Comparison to Model

In Figure 9.3 we compare the theoretical model (Eq. 9.17) to a measurement of {Γopt, Teff} vs. ∆

for both the (6,6) mode (Ω66 = 4.83 MHz) and the (1,1) mode (Ω11 = 4.83 MHz) of the membrane.

The input power is set so that 〈Pout(∆ = 0)〉 ≈ 10µW, and the membrane is positioned axially

so that gm ≈ 2rmg0. At the measured position (Section 8.7.7), (x0, y0) ≈ (45µm, 120µm), we

estimate that the spatial overlap factors for these two modes are {η11, η66} ' {0.69, 0.64} with an

uncertainty of 10%. The quality factors for these two modes are also different. Independent ringdown

measuremeents give {Q11, Q66} = {5.8 × 104, 1.5 × 106}. Representative error bars are applied to

the large detuning measurement of {T 11
eff , T

66
eff}, which are expected to coincide with Tbath ≈ 298 K.

The discrepancy is believed to reflect the net ∼ 2× uncertainty in the measurement transfer function

(Eq. 9.29) based on uncertainties in {gm, ηij ,mij}, as detailed in Section 8.7.4.

9.2.3 Cooling to ∼ 100 mK with a Low-Noise Titanium-Sapphire Laser

The preceding measurements were performed using λ = 935 nm radiation from a low power diode

laser. After propagating through the optical beam path (Section 5.3.3), we were restricted in the

power available from this laser to moderate input powers of several tens of microwatts. We also

observed that cooling to an occupation number of n̄66 < 104 with this laser resulted in a distorted

thermal noise peak, as evidenced in the blue peak in figure 9.2. As discussed above, we suspect that

this behavior is due to the relatively high frequency noise spectral density of the diode laser at 5

MHz (∼ 10−16 m/
√

Hz when expressed as apparent cavity length noise; Section 8.8.1.1).

As soon as the preliminary results in [14] were finalized, we switched to a high-power, low-

noise titanium-sapphire laser (ti-sapph). The measured frequency noise on this laser at 5 MHz is
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Figure 9.3: Demonstration of cavity cooling [14] of the (6, 6) (red circles) and (1, 1) (grey squares)
modes with frequencies {Ω11/2π,Ω66/2π} = {0.80 MHz, 4.83 MHz} and initial quality factors
{Q11, Q66} = {5.8 × 104, 1.5 × 106}, where Qij is measured via ringdown. For these data the
cavity input power is fixed so that 〈Pout(∆ = 0)〉 ≈ 10 µW. The representative error bars show
the uncertainty due to our knowledge of {gm, ηij ,mij} (Section 8.7.4). Panel (a): measured mode
temperature (points) and theoretically expected cooling (lines) as a function of detuning ∆ from the
cavity resonance. Panel (b): Corresponding measured effective mechanical linewidth and theoretical
expectation. In both models, we assume κ/2κ2 = 1 when computing the intracavity photon number
(Eq. 9.19b).

∼ 10−19 m/
√

Hz (expressed as an apparent cavity length noise) (Section 8.8.1.2). We maneuvered

the wavelength of this laser to the opposite side of the mirror coating curve (Figure 6.3), λ ≈ 810

nm, to maintain a moderate finesse of F ≈ 104 at which the cavity length could be stabilized.

For the following measurements, the cavity linewidth was measured to be κ ≈ 8.5 MHz (HWHM)

when the membrane was positioned to maximize gm. The absolute value of gm also changes at this

wavelength for two reasons: because of the tighter intracavity standing wave spacing (g0 ∝ λ−1)

and because of the increased reflectivity of the film. (According to Eq. 3.3 the reflectivity of a 50

nm film changes from 0.423 to 0.465 for an index of 2.0.) The net increase in the optomechanical

coupling over the λ = 935 nm field is (935/810) × (0.465/0.423) = 1.27. The intracavity photon

number for a given input power also decreases by a factor of λ (Eq. 9.19b). The optical damping

rate for a given input power (Eq. 9.24) then changes fractionally by a factor ∼ λ−1g2
mκ
−1 of
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Figure 9.4: Stronger damping of the (6,6) mode with a low noise Ti-Sapph laser operating at 810
nm. Here the detuning has been fixed at ∆/(2π) = −κ/(2π) = −8.5 MHz. The effective damping
rate is obtained from a Lorentzian fit to the apparent cavity length noise spectrum SL (Eq. 9.29).
The points at higher power have been obtained from a fit to multiple Lorentzian, including the
off-resonant displacement of nearby vibrational modes, as shown in Figure 9.6. Note that the model
assumes κ/(2κ2) = 1.

(935/810)× (0.465/0.423)2 × (13.75/8.5) ≈ 2.2.

In Figure 9.4, we fix the input field detuning at ∆ = −κ and change the optical power from

〈Pout(∆ = −κ)〉 = 0.1µW to 100 µW, beyond which the cavity length servo is unstable (a problem

that we have yet to solve). We then compare the measured damping rate of the (6,6) mode to

the weak cooling model (Eq. 9.4), using κ/2κ2 = 1. We observe a systematic discrepancy of

≈ 50% consistent with our uncertainties in {gm, η66,m6} and the predicted value of κ/2κ2 = 1.3

(Eq. 9.20). At large optical powers the off-resonant displacement noise of the (6,6) mode begins to

overlap significantly with neighboring vibrational modes. We then had to fit to multiple Lorentzians

to estimate the linewidth, an example of which is shown in Figure 9.6. At the highest power,

the observed optical damping rate is Γ66
opt ≈ 10 kHz, which suggests a final occupation number of

n̄66 ≈ 1.3× 106 ∗ 3.2/104 ≈ 410 phonons.

In Figure 9.5, we vary both the the detuning and power in order to minimize and maximize

damping of the (6,6) mode. As a consistency check on the calibration of Sb66b66(Ω), we plot both the

damping rate inferred from the width of a Lorentzian fit against the effective temperature inferred

the area beneath the Lorentzian fit. We also compare these measurements to the weak cooling
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Figure 9.5: Demonstration of optomechanical cooling of the (6,6) vibrational membrane mode
(Ωm/2π = 4.83 MHz) from room temperature to approximately 100 mK, corresponding to a re-
duction in occupation number from 1.3×106 to ≈ 500. Input power has been varied so that the
transmitted power on resonance, 〈Pout(∆ = 0)〉, ranges from 0.1 µW to 100 µW. Detuning is also
varied from ∆ > 100 MHz to ∆ ≈ Ω66 in order to minimize and maximize the damping rate. We
plot the measure damping rate vs. the measured effective temperature (green points) and compare
to the model (red curve) T 66

eff = 298 K × Γ66/(Γ66 + Γ66
opt), using Γ66/2π = 3.2 Hz. Data points

at low temperature were fit to multiple Lorentzians to include off-resonant displacement of nearby
vibrational modes, as shown in Figure 9.6.

model (red line) for which T 66
eff = 298K × Γ66/(Γ66 + Γ66

opt), with Γ66 = 3.2 Hz. High-temperature

measurements are omitted because of the difficulty in obtaining the narrow natural linewidth of

the oscillator — this appears to be due to thermal drift of the peak frequency. For temperatures

T 66
eff . 100 K, the discrepancy between the linewidth- and area-inferred temperature is < 50%, with

the lowest measured temperatures coinciding with n̄66 ≈ 400 − −500. The growing discrepancy at

occupation numbers n̄66 < 1000 is believed to be due to the encroachment of off-resonant vibration

from neighboring thermal noise peaks, as discussed in the next paragraph.

When optically damping the (6,6) mode to Γ66
opt ∼ 10 kHz, we begin to observe an elevated

displacement noise background due to the off-resonant vibration of neighboring modes. For the low

temperature point in Figure 9.5, the optical damping rate and effective temperature were obtained

from a multiple-Lorentzian fit including vibrational modes (6,6), (3,8):(8:3), and (5,7):(7,5). An

example is shown in Figure 9.6. Here we plot the multimode spectrum in terms the apparent



169

10
-17

2

4

6

8
10

-16

2

4

6

measurement
lorentzian fit
model for        = 430 

4.884.864.844.824.804.78

(6,6)

(3,8):(8,3)

(5,7):(7,5)

Figure 9.6: Multimode cooling: neighboring thermal noise peaks begin to overlap when Γopt is on
the order of the mode frequency splitting. Here we show the thermal noise in the vicinity of the (6, 6)
mode when an optical damping rate of Γ66

opt ≈ 10 kHz has been applied. We express the noise in terms
of apparent cavity length displacement, SL(Ω) (Eq. 9.29). The dotted line is a multiple-Lorentzian
fit to modes {(6, 6), (3, 8), (8, 3), (5, 7), (7, 5)} which assumes that their noise adds incoherently. This
fit is used to obtain the the value of Γ66

opt and T 66
eff for one of the bottom-right points in Figure 9.4.

As a consistency check, we use the weak cooling model (9.17) with input power as a free parameter
to generate the solid black curve. The model is constrained to give an occupation number of of n̄66 =
430 for the (6, 6) mode, corresponding to the temperature inferred from the measured values of Γ66

opt

and Γ66. Quality factors and overlap factors for each mode have been independently determined for
the model.

cavity length displacement SL(Ω) =
∑
ij η

2
ij(g

2
m/g

2
0)Sbij (Ω) (see Eq. 7.28). In the figure, the dotted

line corresponds to a five-Lorentzian fit with the linewidth and area left as free variables for each

peak. This line is used to estimate the linewidth and temperature of a point in Figures 9.4 and

9.5. Also shown is a model for multimode cooling based on an incoherent sum of five noise peaks,

all damped according to Eq. 9.17. To generate this model, we separately measure the intrinsic

mechanical quality factor of each mode using a HeNe and a piezo shaker (Section 5.2.3.2); this

gives {Q66, Q38, Q83, Q57, Q75} = {1.5, 1.5, 1.4, 0.84, 0.71} × 106. From the transverse position of

the optical beam, which was remeasured at a position (x0, y0) = (40.5µm, 120µm) we determine

the different overlap factors for each mode as {η66, η38, η83, η57, η75} = {0.63, 0.11, 0.36, 0.10, 0.11}.

In the model we also assume that each mode is decoupled, so the displacement noise peaks add

incoherently. The model is constrained so that n̄66 = 430, corresponding to the upper bound for the

temperature estimate obtained from the linewidth measurement in Figure 9.6.

Finally, in Figure 9.7 we provide a global perspective by plotting the measured cavity length
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Figure 9.7: Measurement (green) and model (red) of multimode cooling of the membrane compared
to measurement (black) and model (gray) of end-mirror substrate noise. Noise is expressed as
apparent cavity length displacement, SL(Ω) (Eq. 9.29). Measured cooling data corresponds to
the data in Figure 9.6. Modeled cooling data represents an extension of the model in Figure 9.6,
which is bootstrapped to n̄66 ≈ 430 based on the linewidth inferred from a experimental fit to the
measurement. Substrate noise curves correspond to measurement and model with the membrane
removed, as discussed in Section 8.8.2. Note that substrate noise and off-resonant vibration of the
membrane both provide a broadband displacement noise background of ∼ 10−17 −−10−18 m/

√
Hz.

This is significantly higher than the off-resonant background of just the (6,6) mode, shown in dashed
red. The broadband noise background is expected to match the thermal noise of (6,6) mode if cooled
to n̄66 < 100 using current parameters.

displacement noise (green) against the same multimode model (red) extending to a span from 100

kHz to 5 MHz. For the extended model we assume that Qij = 1.5 × 106 for all modes other than

those characterized specifically, {(6, 6), (3, 8), (8, 3), (5, 7), (7, 5)}. Natural frequencies are extrapo-

lated from Ω66/2π = 4.83 MHz and overlap factors are inferred from (x0, y0) = (40.5µm, 120µm).

The dashed red line shows the contribution from only the (6,6) mode to highlight the fact that the

background is dominated by the off-resonant contribution from other membrane modes. In the next

chapter, we argue that placing the optical mode near the center of the membrane can significantly

reduce this “off-resonant” background because in this case ηij vanishes for all even-ordered modes

(e.g., (2,2) and (2,3)). The remaining displacement noise background is anticipated to be the ther-

mal noise of the end-mirror substrates, as discussed in Section 8.8.2. To illustrate this point, in

Figure 9.7 we have added the measurement (black) and model (gray) of the end-mirror substrate

noise for the bare cavity, as discussed in Section 8.8.2. We note that this background is significant
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Figure 9.8: (a) Calculated achievable phonon number as a function of coupling strength geff for
parameters described in the text. The solid line is for a cavity with κ = 2π× 5 MHz and the dashed
line for κ = 2π × 1 MHz. The green line would result for κ = 2π × 5 MHz upon increasing Qm
to 4 × 107, which may be possible for a thinner SiN film. (b) Emergence of normal-mode splitting
as the cavity linewidth is varied for fixed mechanical frequency ωm = 2π × 5 MHz and coupling
geff = 2π × 1 MHz. The exact spectrum Sb(ω) is displayed in this density plot where zero weight
corresponds to the blue shading and white to maximum mechanical response. The lines mark the
position of the parameters used in (a).

for occupation numbers of < 100 for the (6,6) mode. Ways around this problem include using a

smaller or higher mechanical quality membrane, cryogenic pre-cooling of the apparatus, or active

feedback. We address this subject in detail in the next chapter.

9.3 Limits to Optomechanical Cooling in our System

At the time it was being designed, our post-doc Cindy Regal put serious thought into what the

fundamental limits of optomechanical cooling would be in our system. Importantly, optical damping

can no longer be treated as “weak” for the rates Γopt/(2π) >100 kHz necessary to cool a Ωm/(2π) ∼ 1

MHz oscillator with mechanical quality Qm ∼ 106 to an occupation of less than 10 from room

temperature. In this case the optical damping rate becomes comparable to the mechanical frequency

and/or the cavity linewidth. There are a number of tradeoffs that must be considered in this

situation. Strictly, full ground-state cooling requires n̄Γm � 2κ� Ωm, i.e., fully resolved sidebands

and an oscillator with a large enough Qm to allow the required damping. For our results it is most

relevant to consider instead the case n̄Γm . 2κ ∼ Ωm and track the results into a regime of strong

cooling, characterized by geff = ηijgmb
ij
zp〈nc〉 > 2κ [5, 87, 16]. For completeness, I here present

Cindy’s calculation of the expected final phonon occupation number n̄ based on an exact solution

to the coupled equations of motion discussed in [87].
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Figure 9.8a shows the calculated phonon number as a function of the cooling strength for the

realistic parameters: Qm = 4×106, Ωm/2π = 5 MHz, ∆ = −ωm, n̄room = kbTroom/~Ωm = 1.2×106,

and κ = 2π × 2.5 and 0.5 MHz (see caption). Note κ = 2π × 2.5 MHz corresponds to F = 40, 000

for a L = 0.74 mm cavity, and smaller values of κ can be achieved either by increasing the finesse or

using a longer cavity. Figure 9.8a shows that reaching n̄ ∼ 1 from room temperature is theoretically

achievable for demonstrated parameters before reaching the static bistability point (geff = Ωm/2

for 2κ << Ωm) [88]. Another outstanding goal is achieving strong coupling between a ground-state

mechanical resonator and the cavity field [5, 87, 16]. Figure 9.8b illustrates the spectral function

Sb(Ω) as a function of the cavity linewidth for geff = 2π × 1 MHz. The normal-mode splitting

indicative of strong coupling appears for phonon occupancies near unity.

9.4 Concluding Remarks

Observing quantum effects of a mesoscopic oscillator coupled to an ambient thermal bath would

be a significant advance. Future work should address experimental challenges to achieving the

occupations shown in Figure 9.8, such as reducing laser phase noise and mitigating the thermal

noise of the Fabry-Perot cavity substrates (see Chapter 10). However, to implement a full range

of quantum protocols with these oscillators one must achieve occupations n̄ � 1. This will require

higher Q-frequency products or lower initial thermal occupation, as illustrated by the green line in

Figure 9.8a. Realizing even higher room temperature Q-frequency products than those shown in

Figure 4.11 is a subject of ongoing investigation in our lab. Further, while our work here focuses

on room temperature, we note that recent results in [41] indicate that, unlike amorphous SiO2, the

dissipation in silicon nitride films decreases monotonically from room temperature down to ∼ 100

K. This makes operating at liquid nitrogen temperature a viable option for decreasing the initial

occupation number and increasing the mechanical quality factor (enabling lower optical cooling base

temperatures), while maintaining a simple cryogenic system more compatible with atom experiments

than helium refrigeration.
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Chapter 10

Suppression of Extraneous
Thermal Noise in a
Cavity-Optomechanical System

This chapter describes work performed by Post-doc Yi Zhao and me to understand and address the

end-mirror thermal noise shown in black in Figure 9.7. It was realized that this extraneous thermal

noise — an issue exacerbated by the fact that our experiment takes place at room temperature —

would limit sensitivity to membrane displacement and thereby the efficacy of attempts to optically

damp its motion. Inspired by a discussion with visiting Professors Jun Ye and Peter Zoller in the

autumn of 2010, we developed a technique to independently sense the extraneous thermal motion

by simultaneously monitoring the resonance frequency of two distinct spatial modes of the cavity.

We then devised an open-loop feedback technique to suppress its effect on the intracavity field. This

technique involved electro-optically mapping the extraneous noise onto the frequency of the incident

field, with gain chosen in order to cancel the associated fluctuations on the laser-cavity detuning

(in effect this is the same as “locking” the cavity length to a precision finer than the thermal

displacement amplitude of the mirrors). Our approach reduces the intracavity radiation pressure

fluctuations associated with extraneous thermal motion, which otherwise may lead to noise heating

of the membrane. Importantly, our approach also has the capacity to modify those radiation pressure

force fluctuations which are produced by the membrane itself, if the feedback signal is correlated

with the membrane’s motion. The effect of this electro-optic “back-action” is analogous to “colding-

damping” [89], and can either suppress or enhance “intrinsic” cavity back-action forces [24] used to

damp the membrane (Chapter 9). We had to contend with this effect because the extraneous noise

measurement contained some residual sensitivity to the membrane’s motion. As a consequence, we

found that extraneous noise suppression came at the cost of moderately diminished optical cooling

rates. This sacrifice is not required, however. Remarkably, it should be possible to simultaneously

suppress extraneous thermal noise and enhance optical damping with small modifications to the
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membrane or cavity geometry. I elaborate on all of these points below. The chapter is adapted from

a manuscript written for a more general optomechanics audience, and contains some rehashing of

details explained in earlier chapters.

10.1 Introduction

The field of cavity opto-mechanics [90] has experienced remarkable progress in recent years [1, 91, 3,

18], owing much to the integration of micro- and nano-resonator technology. Using a combination of

cryogenic pre-cooling [8, 9, 10] and improved fabrication techniques [11, 12, 13, 92], it is now possible

to realize systems wherein the mechanical frequency of the resonator is larger than both the cavity

decay rate and the mechanical re-thermalization rate [4, 14, 15, 6, 61]. These represent two basic

requirements for ground-state cooling using cavity back-action [17, 16, 24], a milestone which has

recently been realized in several systems [10, 15, 6], signaling the emergence of a new field of cavity

“quantum” opto-mechanics [18].

Reasons why only a few systems have successfully reached the quantum regime [10, 15, 6] relate

to additional fundamental as well as technical sources of noise. Optical absorption, for example, can

lead to thermal path length changes giving rise to mechanical instabilities [9, 93]. In cryogenically

pre-cooled systems, absorption can also introduce mechanical dissipation by the excitation of two-

level fluctuators [9, 4]. Both effects depend on the material properties of the resonator. Another

common issue is laser frequency noise, which can produce random intra-cavity intensity fluctuations.

The radiation pressure associated with these intensity fluctuations can lead to mechanical heating

sufficient to prevent ground-state cooling [29, 94, 95]. A fully quantum treatment of laser frequency

noise heating in this context was recently given in [96].

In this chapter we address an additional, ubiquitous source of extraneous noise — thermal mo-

tion of the cavity apparatus (including substrate and supports) — which can dominate in systems

operating at room temperature. Thermal noise is well understood to pose a fundamental limit on

mechanics-based measurements [29] spanning a broad spectrum of applications, including gravita-

tional interferometry [52, 97], atomic force microscopy [98], ultra-stable laser reference cavities [99],

and NEMS/MEMS-based sensing [100, 101]. Conventional approaches to its reduction involve the

use of low-loss construction materials [102, 103] and cryogenic operation temperatures [10, 15, 6], as

well as various forms of feedback [104, 89, 105, 106, 107]. Indeed, schemes for optomechanical cooling

[3, 108] were developed to address this very problem, with the focus on suppression of thermal noise

associated with a single oscillatory mode of the system.

Here we are concerned specifically with extraneous thermal motion of the apparatus. In a cavity

optomechanical system, this corresponds to structural vibrations other than the mode under study,

which lead to extraneous fluctuations of the cavity resonance frequency. Like laser frequency noise
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Figure 10.1: Conceptual diagram of the noise suppression scheme. M1/2: cavity mirrors. DP/S:
photodetector for the probe field and the science field, respectively. SW: switch. FM: electro-optic
frequency modulator.

[95, 96], these extraneous fluctuations can lead to noise heating as well as limit the precision of

displacement measurement. To combat this challenge, we here propose and experimentally demon-

strate a novel technique to actively suppress extraneous thermal noise in a cavity opto-mechanical

system. A crucial requirement in this setting is the ability to sense and differentiate extraneous

noise from intrinsic fluctuations produced by the oscillator’s motion. To accomplish this, our strat-

egy is to monitor the resonance frequency of multiple spatial modes of the cavity, each with different

sensitivity to the oscillator’s motion but comparable sensitivity to extraneous thermal motion [109].

We show how this information can be used to electro-optically imprint “anti-noise” onto the fre-

quency of the incident laser field, resulting in suppression of noise on the instantaneous cavity-laser

detuning. In the context of our particular system, based on a nano-mechanical membrane coupled

to a Fabry-Pérot cavity, simulation and experimental results show that extraneous noise can be sub-

stantially suppressed without diminishing back action forces on the oscillator, thus enabling lower

optical cooling base temperatures.

This chapter is organized as follows: in Section 10.2 we present an example of extraneous thermal

noise in a cavity opto-mechanical system. In Sections 10.3 and 10.4 we propose and implement a

method to suppress this noise using multiple cavity modes in conjunction with feedback to the laser

frequency. In Section 10.5 we analyze how this feedback affects cavity back-action. Related issues

are discussed in Section 10.6 and a summary is presented in Section 10.7. Details relevant to each

section are presented in the appendix.
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10.2 Extraneous Thermal Noise: Illustrative Example

Our experimental system is the same as reported in [14]. It consists of a high-Q nano-mechanical

membrane (Chapter 4) coupled to a Fabry-Pérot cavity (Chapter 5, Figure 10.1) with a finesse of

F ∼ 104 (using the techniques pioneered in [23, 7, 79]). Owing to the short length (〈L〉 ' 0.74 mm)

and mode waist (wc ' 33µm) of our cavity, thermal motion of the end-mirror substrates gives rise

to large fluctuations of the cavity resonance frequency, ωc.

To measure this “substrate noise”, we monitor the detuning, ∆, between the cavity (with mem-

brane removed) and a stable input field with frequency ω0 = ωc + ∆. This can be done using the

Pound-Drever-Hall technique ([54], Section 8.4), for instance, or by monitoring the power transmit-

ted through the cavity off-resonance (Section 8.3). A plot of S∆(Ω), the single-sided power spectral

density of detuning fluctuations (Eq. 2.9), is shown in red in Figure 10.2. For illustrative purposes,

we also express the noise as “effective cavity length” fluctuations S∆
L (Ω) = (〈L〉/〈ωc〉)2S∆(Ω). The

measured noise between 500 kHz and 5 MHz consists of a dense superposition of Q ∼ 700 thermal

noise peaks at the level of
√
S∆(Ω) ∼ 2π×10 Hz/

√
Hz (

√
S∆
L (Ω) ∼ 10−17 m/

√
Hz), consistent with

the noise predicted from a finite element model of the substrate vibrational modes (Section 7.3.2),

shown in blue.

The light source used for this measurement and all of the following reported in this chapter was a

titanium-sapphire laser (Schwarz Electro-Optics) operating at a wavelength of λ0 = c/ω0 ≈ 810 nm.

In the Fourier domain shown in Figure 10.2, an independent measurement of the power spectral

density of ω0 gives an upper bound of
√
Sω0

(Ω) ≤ 2π × 0.1 Hz/
√

Hz (Section 8.8.1.2), suggesting

that laser frequency noise is not a major contributor to the inferred S∆(Ω).

We can gauge the importance of the noise shown in Figure 10.2 by considering the cavity reso-

nance frequency fluctuations produced by thermal motion of the intra-cavity mechanical oscillator:

in our case a 0.5 mm × 0.5 mm × 50 nm high-stress (≈ 900 MPa) Si3N4 membrane with a physical

mass of mp = 33.6 ng [14]. The magnitude of S∆(Ω) produced by a single vibrational mode of

the membrane depends sensitively the spatial overlap between the vibrational mode-shape and the

intensity profile of the cavity mode (Section 7.1.3).

In Figure 10.3 we show a numerical model of the multimode thermal noise produced by an opti-

cally damped membrane (using Eq. 7.28). In the model we assume that each vibrational mode (i, j)

has a mechanical quality factor Qij = 5 × 106 and that the optical mode is centered on the mem-

brane, so that only odd-ordered vibrational modes (i = 1, 3, 5...; j = 1, 3, 5...) are opto-mechanically

coupled to the cavity (Section 7.1.3.1). The power and detuning of the incident field have been

chosen so that the (i, j) = (3, 3) vibrational mode, with mechanical frequency of Ω33/2π = 2.32

MHz, is damped to a thermal phonon occupation number of n33 = 50. Under these experimen-

tally feasible conditions, we predict that the magnitude of S∆(Ω) produced by membrane thermal
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Figure 10.2: Measured spectrum of detuning fluctuations,
√
S∆(Ω) (also expressed as effective cavity

length fluctuations,
√
S∆
L (Ω)) for the Fabry-Pérot cavity described in Section 10.2 . The observed

noise (red trace) arises from thermal motion of the end-mirror substrates, in agreement with the
finite element model shown in blue. This “substrate noise” constitutes an extraneous background
for the “membrane-in-the-middle” system conceptualized in Figure 10.1 and detailed in [14].

motion (blue curve) would be commensurate with the noise produced by substrate thermal motion

(red curve). Substrate thermal motion therefore constitutes an important a roadblock to observing

quantum behavior in our system [14].

10.3 Strategy to Suppress Extraneous Thermal Noise

Extraneous thermal motion manifests itself as fluctuations in the cavity resonance frequency, and

therefore the detuning of an incident laser field. We now consider a method to suppress these

detuning fluctuations using feedback. Our strategy is to electro-optically imprint an independent

measurement of the extraneous cavity resonance frequency fluctuations onto the frequency of the

incident field, with gain set so that this added “anti-noise” cancels the thermal fluctuations. To

measure the extraneous noise, we monitor the resonance frequency of an auxiliary cavity mode which

has nearly equal sensitivity to extraneous thermal motion but reduced (ideally no) sensitivity to

thermal motion of the intracavity oscillator (further information could be obtained by simultaneously

monitoring multiple cavity modes). The basis for this “differential sensitivity” is the spatial overlap

between the cavity modes and the vibrational modes of the optomechanical system (as described

in Section 7.1.3). We hereafter specialize our treatment to the experimental system described in

Section 10.2, in which case extraneous thermal motion corresponds to mirror “substrate motion”

and motion of the intracavity oscillator to “membrane motion”, respectively.

A conceptual diagram of the feedback scheme is shown in Figure 10.1. The field used for mea-
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Figure 10.3: Model spectrum of detuning fluctuations arising from mirror substrate (blue trace) and
membrane motion (red trace) for the system described in Section 10.2. The power and detuning
of the cavity field are chosen so that the (3,3) membrane mode is optically damped to a thermal
phonon occupation number of n33 = 50. The substrates vibrate at room temperature.

surement of extraneous thermal noise is referred to as the “probe field”. The incident field to which

feedback is applied, and which is to serve the primary functions of the experiment, is referred to as

the “science field”. The frequencies of the probe and science fields are ωp,s0 = 〈ωp,s0 〉+ δωp,s0 , respec-

tively. Each field is coupled to a single spatial mode of the cavity, referred to as the “probe mode”

and the “science mode”, respectively. Resonance frequencies of the probe mode, ωpc , and science

mode, ωsc , both fluctuate in time as a consequence of substrate motion and membrane motion. We

can represent these fluctuations, δωp,sc ≡ ωp,sc − 〈ωp,sc 〉, as (Section 7.3)

δωpc = g1δz
p
1 + g2δz

p
2 + gmδz

p
m

δωsc = g1δz
s
1 + g2δz

s
2 + gmδz

s
m.

(10.1)

Here δzp,s1,2,m denotes the “effective displacement” of mirror substrate M1 (“1”), mirror substrate M2

(“2”), and the membrane (“m”) with respect to the probe (“p”) and science (“s”) cavity modes,

and g1,2,m denotes the “optomechanical coupling” of M1, M2, and the membrane, respectively.

Effective displacement refers to the axial (along the cavity axis) displacement of the mirror or

membrane surface averaged over the transverse intensity profile of the cavity mode (Section 7.3).

Opto-mechanical coupling refers to the frequency shift per unit axial displacement if the entire

surface were translated rigidly (Section 7.3.2.3). In the simple case for which the membrane is

removed (gm = 0), couplings g1,2 take on the familiar values: g1 = −g2 = 〈ωpc 〉/〈L〉 ' 〈ωsc〉/〈L〉.

Otherwise, all three are functions of the membrane’s axial position relative to the intracavity standing
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Figure 10.4: Location of the TEM00 (red) and TEM01 (blue) cavity modes relative to the membrane
surface for experiments reported in Sections 10.4.2 – 10.4.4. Density plots of the intra-cavity intensity
are displayed on top of a black contour plot representing the axial displacement of the (2,6) membrane
mode. Averaging the displacement of the surface weighted by the intensity profile gives the “effective
displacement” δzm for membrane motion; in this case the effective displacement of the (2,6) mode
is greater for the TEM00 mode than it is for TEM01 mode.

wave (Eq. 7.34).

To simplify the discussion of differential sensitivity, we confine our attention to a single vibrational

mode of the membrane with generalized amplitude b (Section 7.1.1) and undamped mechanical

frequency Ωm. We will assume that cavity resonance frequencies ωpc and ωsc have different sensitivities

to b but are equally sensitive to substrate motion at Fourier frequencies Ω near Ωm. We can express

these two conditions in terms of the Fourier transforms (Eq. 2.1) of the effective displacements as:

δzp,sm (Ω) = ηp,sb(Ω); ηp 6= ηs

δzp1,2(Ω) ' δzs1,2(Ω) ≡ δz1,2(Ω).
(10.2)

Factors ηp,s characterize the “spatial overlap” between the vibrational mode and cavity modes p and

s (Section 7.1.3). When referring to a specific vibrational mode (i, j), we will adopt the notation

{bij ,Ωij , ηp,sij } for the mode amplitude, frequency, and spatial overlap, respectively.

The first assumption of Eq. 10.2 is valid if the vibrational mode shape of the membrane varies

rapidly on a spatial scale set by the cavity waist size, wc. The latter assumption is valid if the opposite

is true, i.e., we confine our attention to low-order substrate vibrational modes, whose shape varies

slowly on a scale set by wc. The substrate noise shown in Figure 10.2 fits this description, provided
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that the cavity mode is also of low order, e.g., cavity modes TEM00 and TEM01 (Section 7.1.2).

To visualize the differential sensitivity of TEM00 and TEM01, in Figure 10.4 we plot the transverse

intensity profile of each mode (Eq. 7.21b) atop contours representing the amplitude of the (2,6) drum

vibration of the membrane (Eq. 7.21a), with waist size and position and the membrane dimensions

representing the experimental conditions discussed in Section 10.4.2. Choosing TEM01 for the probe

mode and TEM00 for the science mode gives ηp26/η
s
26 ≈ 0.6 for this example.

To implement feedback, a measurement of the probe field detuning fluctuations δ∆p ≡ δωp0−δωpc
is electro-optically mapped onto the frequency of the science field with gain G. Combining Eqs.

10.1 and 10.2 and assuming that the laser source has negligible phase noise (i.e., δωp0(Ω) = 0 and

δωc0(Ω) = −G(Ω)δ∆p(Ω)), we can express the fluctuations in the detuning of the science field,

δ∆s ≡ δωs0 − δωsc , as

δ∆s(Ω) = −δωsc(Ω)−G(Ω)δ∆p(Ω)

= − (g1δz1(Ω) + g2δz2(Ω)) (1 +G(Ω))− gmηsb(Ω) (1 + (ηp/ηs)G(Ω)) .
(10.3)

Here we have ignored the effect of feedback on the physical amplitude, b (we consider this effect in

Section 10.5).

The science field detuning in Eq. 10.3 is characterized by two components, an extraneous com-

ponent proportional to (1 +G(Ω)) and an intrinsic component proportional to (1 + (ηp/ηs)G(Ω)).

To suppress extraneous fluctuations, we can set the open loop gain to G(Ω) = −1. The selectivity

of this suppression is set by the “differential sensing factor” ηp/ηs. In the ideal case for which the

probe measurement only contains information about the extraneous noise, i.e., ηp/ηs � 1, Eq. 10.3

predicts that only extraneous noise is suppressed.

For our open-loop architecture, noise suppression depends critically on the phase delay of the

feedback. To emphasize this fact, we can express the open-loop gain as

G(Ω) = |G(Ω)|eiΩτ(Ω), (10.4)

where |G(Ω)| is the magnitude and τ(Ω) ≡ Arg[G(Ω)]/Ω is the phase delay of the open loop gain

at Fourier frequency Ω. Phase delay arises from the cavity lifetime and latencies in detection and

feedback, and becomes important at Fourier frequencies for which τ(Ω) & π/Ω. Since in practice we

are only interested in fluctuations near the mechanical frequency of a single membrane mode, Ωm,

it is sufficient to achieve G(Ωm) = −1 by manually setting |G(Ωm)| = 1 (using an amplifier) and

τ(Ωm) = πn/Ωm (using a delay cable), where n is an odd integer.

Two additional issues conspire to limit noise suppression. First, because substrate thermal

motion is only partially coherent, noise suppression requires that τ(Ωm) � Q/Ωm, where Q ∼ 700

is the quality of the noise peaks shown in Figure 10.2. We achieve this by setting τ(Ωm) ∼ π/Ωm.
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Figure 10.5: Predicted suppression of substrate detuning noise (dark blue) for the science field
based on a feedback with ideal differential sensing, ηp/ηs = 0, for all modes, gain G(Ω) = eiπΩ/Ω33 ,
and measurement noise SωN

p
(Ω) = 2π × 1 Hz2/Hz, where Ω33 = 2π × 2.32 MHz is the mechanical

frequency of the (3,3) membrane mode. Unsuppressed substrate (light blue) and membrane noise
(red) for the science field is taken from the model in Figure 10.3.

Another issue is that any noise process not entering the measurement of δ∆p via Eq. 10.1 will be

added onto the detuning of the science field via Eq. 10.3. The remaining extraneous contribution

to δ∆s will thus be non-zero even if G(Ω) = −1. Expressing this measurement noise as an effective

resonance frequency fluctuation δωNc , we can model the power spectrum of detuning fluctuations in

the vicinity of Ωm as

S∆s(Ω) =|1 +G(Ω)|2 · (g1
2Sx1(Ω) + g2

2Sx2(Ω))

+ |1 + (ηp/ηs)2G(Ω)|2 · g2
m(ηp)2Sb(Ω) + |G(Ω)|2 · SωN

c
(Ω).

(10.5)

In Figure 10.5 we present an idealized model of our noise suppression strategy applied to the

system described in Section 10.2. We assume an ideal differential sensing factor of ηp/ηs = 0 for all

modes, a uniform gain magnitude of |G(Ω)| = 1, and a uniform phase delay τ(Ω) = π/Ω33, where

Ω33/2π = 2.32 MHz is the oscillation frequency of the (3,3) membrane mode. As in Figure 10.3, the

detuning and power of the science field are chosen in order to optically damp the (3, 3) membrane
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Figure 10.6: Experimental setup: λ/2: half wave plate. λ/4: quarter wave plate. PBS: polariz-
ing beam splitter. EOM0,P,S : electro-optical modulators for calibration and probe/science beams.
CWP: split-π wave plate. OFR: optical Faraday rotator. M1,2: cavity entry/exit mirrors. DP,S :
photodetectors for probe/science beams. SYN0,P,S : synthesizers for driving EOM0,P,S .

mode to a thermal phonon occupation of n33 = 50. The probe measurement is also assumed to

include extra noise at the level of SωN
c

(Ω) = (2π)2 × 1 Hz2/Hz. Incorporating these assumptions

into Eqs. 10.4 and 10.5 produces the science field detuning spectrum shown in Figure 10.5. In this

idealized scenario, substrate noise near the (3, 3) membrane mode is reduced to a level more than

an order of magnitude below the peak amplitude of the (3,3) membrane mode.

10.4 Experiment

We have experimentally implemented the noise suppression scheme proposed in Section 10.3. Core

elements of the optical and electronic set-up are illustrated in Figure 10.6. As indicated, the probe

and the science fields are both derived from a common titanium-sapphire (ti-sapph) laser, which

operates at a wavelength of λ0 ≈ 810 nm. The science field is coupled to the TEM00 cavity mode.

The probe field is coupled to either the TEM00 or the TEM01 mode of the cavity. The frequencies of

the science and probe fields are controlled by a pair of broadband electro-optic modulators (EOMP,S

in Figure 10.6).

To monitor the frequency of the probe mode, ωpc , the reflected probe field is directed to pho-
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todetector “DP ” and analyzed using the Pound-Drever-Hall (PDH) technique (Section 8.4). The

low-frequency (< 1 kHz) portion of the PDH signal is used to stabilize slow drift of ωp via piezo-

electric feedback to one of the end-mirrors. The high-frequency portion of the PDH signal is used

to generate the electro-optic (EO) feedback signal (Eq. 10.3). Feedback gain G(Ω) (Eq. 10.4) is

controlled by passing the PDH signal through a control box (“Amp/Delay” in Figure 10.6) contain-

ing an amplifier and a delay line. The output of the control box, voltage Vcon, is used to modulate

the frequency of the science field using one of two methods. The first method involves coupling

Vcon to the frequency-modulation (FM) port of the synthesizer (SYNS) driving EOMS . The second

method, not shown in Figure 10.6, involves passing the science beam through an AOM driven by

a voltage-controlled-oscillator (VCO), which is modulated by Vcon. Feedback modifies the instanta-

neous detuning of the science field, ∆s, which we infer from the intensity of the transmitted field on

photodetector “DS”.

We now develop several key aspects of the noise suppression scheme. In Section 10.4.1, we em-

phasize the performance of the feedback network by suppressing substrate noise with the membrane

removed from the cavity. In Section 10.4.2, we introduce the membrane and study the combined

noise produced by membrane and substrate motion. In Section 10.4.3, we demonstrate the con-

cept of differential sensing by electronically subtracting dual measurements of the probe and science

mode resonance frequencies. In Section 10.4.4, we combine these results to realize substrate noise

suppression in the presence of the membrane. We use a detuned science field for this study, and

record a significant effect on the radiation pressure pressure damping experienced by the membrane.

This effect is explored in detail in Section 10.5.

10.4.1 Substrate Noise Suppression with the Membrane Removed

The performance of the feedback network is studied by first removing the membrane from the cavity,

corresponding to gm = 0 in Eqs. 10.1, 10.3, and 10.5. The feedback objective is to suppress the

detuning noise on a science field coupled to the TEM00 cavity mode, shown for example in Figure

10.2. Absent the membrane, it is not necessary to employ a different probe mode to monitor the

substrate motion. For this example, both the science and probe field are coupled to the TEM00

cavity mode. The science field is coupled to one of the (nearly linear) polarization eigen-modes of

TEM00 at a mean detuning 〈∆s〉 = −κ, where κ ≈ 2π × 4 MHz is the cavity amplitude decay rate

at 810 nm. The probe field is resonantly coupled to the remaining (orthogonal) polarization eigen-

mode of TEM00. Detuning fluctuations δ∆s are monitored via the transmitted intensity fluctuations

on detector DS . Resonance frequency fluctuations δωpc are monitored via the PDH technique on

detector DP .

Feedback is implemented by directing the measurement of δωpc to a VCO-controlled AOM in the

science beam path (not shown in Figure 10.6). The feedback gain G(Ω) is tuned so that S∆s(Ω)
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Figure 10.7: Substrate noise suppression implemented with the membrane removed. Gain is man-
ually set to G(Ω0 = 2π × 3.8 MHz) ≈ −1 using an RF amplifier and a delay line. The ratio of the
noise spectrum with (dark blue trace) and without (light blue trace) feedback is compared to the
“suppression factor” |1 +G(Ω)|2 (red trace, right axis) with G(Ω) = eiπΩ/Ω0 .

(Eq. 10.5) is minimized at Ω = Ω0 ≈ 2π × 3.8 MHz, corresponding in this case to |G(Ω0)| ≈ 1 and

τ(Ω0) = π/(Ω0). The magnitude of S∆s
(Ω) over a broad domain with (dark blue) and without (light

blue) feedback is shown in Figure 10.7. The observed suppression of S∆sΩ may be compared to the

predicted value of |1 +G(Ω)|2 based on a uniform gain amplitude and phase delay: i.e. |G(Ω)| ≈ 1

and τ(Ω) = π/Ω0 (Eq. 10.4). In qualitative agreement with this model (red trace in Figure 10.7),

noise suppression is observed over a 3 dB bandwidth of ∼ 500 kHz. Noise suppression at target

frequency Ω0 is limited by shot noise in the measurement of δωpc , corresponding to SωN
c

(Ω) ≈ 2π× 1

Hz2/Hz in Eq. 10.5; this value was used for the model in Figure 10.5.

10.4.2 Combined Substrate and Membrane Thermal Noise

With the science field coupled to the TEM00 cavity mode at 〈∆s〉 = −κ, we now introduce the

membrane oscillator (described in Section 10.2). We focus our attention on thermal noise in the

vicinity of Ω26 = 2π × 3.56 MHz, the undamped frequency of the (2,6) vibrational mode of the

membrane. To emphasize the dual contribution of membrane motion and substrate motion to

fluctuations of ωsc , we axially position the membrane so that gm ∼ 0.04 · g1,2. This reduces the

detuning fluctuations due to membrane motion, gmδz
s
m = gmη

sb to near the level of the substrate

noise g1δz1 + g2δz2. The location of the cavity mode relative to the displacement profile of the

(2,6) mode has been separately determined, and is shown in Figure 10.4. For b coinciding with an

antinode of the (2,6) vibrational node and the science mode coinciding with TEM00, this location

predicts a spatial overlap factor (Section 7.1.3.1) of ηs26 ≈ 0.4.

A measurement of the science field detuning noise, S∆s
(Ω) made with feedback turned off
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Figure 10.8: Combined membrane and substrate thermal noise (blue trace) in the vicinity of Ω26 =
2π × 3.56 MHz, the frequency of the (2,6) vibrational mode of the membrane. gm has been set to
approximately 4% of g1,2 in order to emphasize the substrate noise component. For comparison, a
measurement of the substrate noise with the membrane removed from the cavity is shown in red.

(G(Ω) = 0) is shown in Figure 10.8. The blue trace shows the combined contribution of sub-

strate and membrane thermal noise. Note that the noise peaks associated with membrane motion

are broadened and suppressed due to optical damping/cooling by the cavity field (Section 10.5). For

comparison, we show an independent measurement made with the membrane removed (red trace).

Both traces were calibrated by adding a small phase modulation to the science field (EOM0 in Fig-

ure 10.6). We observe that the noise in the vicinity of Ω26 contains contributions from multiple

membrane modes and substrate modes. The latter component contributes equally in both the blue

and red traces, suggesting that substrate thermal motion indeed gives rise to the broad extraneous

component in the blue trace. From the red curve, we infer that the magnitude of the extraneous

noise at Ω26 is S∆s,e(Ω26) ≈ (2π)2×80 Hz2/Hz (hereafter subscript “e” signifies “extraneous”). The

influence of this background on the vibrational amplitude b26 is discussed in Section 10.5.

10.4.3 Differential Sensing of Membrane and Substrate Motion

To “differentially sense” the noise shown in Figure 10.8, we use the probe field to monitor the

resonance frequency of the TEM01 mode. Coupling the science field to the TEM00 mode (ωs) and

Table 10.1: Differential sensing factor, ηp/ηs, for the (2,6) and (6,2) membrane modes, with TEM00

and TEM01 forming the science and probe modes, respectively. The values in this table are inferred
from Figure 10.9 and the model discussed in the appendix.

Membrane mode (2,6) (6,2)
Determined from Figure 10.9 0.59 0.98
Calculated from Figure 10.4 0.61 0.96
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Figure 10.9: Characterizing differential sensitivity of the TEM00 (science) and TEM01 (probe) mode
to membrane motion. Green and blue traces correspond the noise spectrum of electronically added
(green) and subtracted (blue) measurements of δωpc and δωsc . Electronic gain G0(Ω) has been set so
that subtraction coherently cancels the contribution from the (2,6) mode at the mechanical frequency
of the (2,6) mode, Ω26 ≈ 2π × 3.568 MHz. The magnitude of the gain implies that ηp26/η

s
26 ≈ 0.59

for the (2,6) mode. The relatively small concommitant suppression of the nearby (6,2) noise peak at
Ω62 ≈ 2π× 3.572 MHz indicates that ηp62/η

s
62 ≈ 0.98 for this mode. For comparison to earlier plots,

on the right axis we convert the combined electronic noise, S∆cmb
(Ω), as an effective cavity length

noise, S∆cmb

L (Ω) ≡ g−2
0 S∆cmb

(Ω).

the probe field to the TEM01 mode (ωp) requires displacing their frequencies by the transverse mode-

splitting of the cavity, ∆tms = 〈ωpc 〉 − 〈ωsc〉 ≈ 2π × 11 GHz (∆tms is set by the cavity length and

the 5 cm radius of curvature of the mirrors). This is done by modulating EOMS at frequency ∆tms,

generating a sideband (constituting the science field) which is coupled to the TEM00 mode when

the probe field at the carrier frequency is coupled to the TEM01 mode. To spatially mode-match

the incident Gaussian beam to the TEM01 mode, the probe beam is passed through a split π wave

plate (CWP in Figure 10.6. (This plate was provided by Prof. Jun Ye’s group.) This enables a

mode-matching efficiency of ≈ 30%.

We can experimentally test the differential sensitivity (Eq. 10.2) of modes TEM00 and TEM01

by electronically adding and subtracting simultaneous measurements of δ∆p and δ∆s. For this test,
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both measurements were performed using the PDH technique (detection hardware for the science

beam is not shown in Figure 10.6). PDH signals were combined on a RF combiner after passing the

science signal through a RF attenuator and a delay line. The combined signal may be expressed as

∆cmb(Ω) ≡ G0(Ω)δ∆s(Ω) + δ∆p(Ω), where G0(Ω) represents the differential electronic gain.

The power spectral density of the combined electronic signal, S∆cmb
(Ω), is shown in Figure 10.9,

again focusing on Fourier frequencies near Ω26. In the blue (“subtraction”) trace, G0(Ω26) has been

tuned in order to minimize the contribution from membrane motion, i.e., G0(Ω26) ≈ −ηp26/η
s
26. In

the green (“addition”) trace, we invert this gain value. Also shown (red) is a scaled measurement

of the substrate noise made with the membrane removed, corresponding to the red trace in Figure

10.8 (note that the elevated noise floor in the green and blue traces is due to shot noise in the

PDH measurements, which combine incoherently). From the magnitude of the electronic gain, we

can directly infer a differential sensing factor of ηp26/η
s
26 = 0.59 for the (2,6) membrane mode. By

contrast, it is evident from the ratio of peak values in the subtraction and addition traces that

neighboring membrane modes (6,2), (4,5), and (5,4) each have different differential sensing factors.

For instance, the relative peak heights in Figure 10.9(b) suggest that ηp62/η
s
62 = 0.98. This difference

relates to the strong correlation between ηp,s and the location of the cavity mode on the membrane.

In Table 10.1, we compare the inferred differential sensing factor for (2,6) and (6,2) to the predicted

value based on the cavity mode location shown in Figure 10.4. These values agree to within a few

percent.

10.4.4 Substrate Noise suppression With the Membrane Inside the Cav-

ity

Building upon Sections 10.4.1– 10.4.3, we now implement substrate noise suppression with the

membrane inside the cavity, which is the principal experimental result of this chapter. The science

field is coupled to the TEM00 cavity mode with 〈∆s〉 = −κ, and δ∆s is monitored via the transmitted

intensity fluctuations on DS . The probe field is coupled to the TEM01 cavity mode, and δ∆p is

monitored via PDH on detector DP . Feedback is implemented by mapping the measurement of δ∆p

onto the frequency of the science field; this is done by modulating the frequency of the ≈ 11 GHz

sideband generated by EOMS (via the FM modulation port of synthesizer SYNS in Figure 10.6).

The feedback objective is to selectively suppress the substrate noise component of S∆s
(Ω) near Ω26

— i.e., to subtract the red curve from the blue curve in Figure 10.8. To do this, the open-loop gain

of the feedback is set to G(Ω26) ≈ −1 (Eq. 10.5).

The magnitude of S∆s
(Ω) with feedback on (orange) and off (blue) is shown in Figure 10.10.

Comparing Figures 10.10 and 10.8, we infer that feedback enables reduction of the substrate noise

component at Ω26 by a factor of S∆s,e(Ω26)|OFF/S∆s,e(Ω26)|ON ≈ 16. The actual suppression is
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Figure 10.10: Substrate noise suppression with the membrane inside the cavity. Orange and blue
traces correspond to the spectrum of science field detuning fluctuations with and without feedback,
respectively. The open-loop gain of the feedback has been set to G(Ω26 ≈ 2π × 3.56 MHz) = −1 in
order to suppress the substrate noise contribution near Ω26. A common modulation on probe and
science fields at 3.565 MHz (“calibration peak”) is suppressed by 15.8 dB in amplitude with the
feedback.

limited by two factors: drift in the open-loop gain and shot noise in the PDH measurement of δ∆p.

The first effect was studied by applying a common FM tone to both the probe and science field (via

EOM0 in Figure 10.6; this modulation is also used to calibrate the measurements). Suppression of

the FM tone, seen as a noise spike at frequency Ω0 = 2π × 3.565 MHz in Fig. 10.10(b), indicates

that the limit to noise suppression due to drift in G(Ω) is S∆s,e(Ω0)|OFF/S∆s,e(Ω0)|ON ≈ 1.4× 103.

The observed suppression of ≈ 16 is thus limited by shot noise in the measurement of δ∆p. This is

confirmed by a small increase (∼ 10%) in S∆(Ω) around Ω = 2π × 3.52 MHz, and corresponds to

SωN
c

(Ω) ∼ (2π)2×1 Hz2/Hz in Eq. 10.5. Note that the actual noise suppression factor is also partly

obscured by shot noise in the measurement of δ∆s; this background is roughly ∼ (2π)2× 4 Hz2/Hz,

coinciding with the level S∆s
(Ω)|OFF (blue trace) at Ω ≈ 2π × 3.52 MHz in Figure 10.10(a).

In the following section, we consider the effect of electro-optic feedback on the membrane thermal

noise component in Figure 10.10.
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10.5 Extraneous Noise Suppression and Optical Damping:

An Application

We now consider using a detuned science beam (as in Section 10.4.4) to optically damp the mem-

brane. Optical damping here takes place as a consequence of the natural interplay between physical

amplitude fluctuations, b(Ω), detuning fluctuations −gmηsb(Ω), and intracavity intensity fluctua-

tions, which produce a radiation pressure force δFrad(Ω) = −ϕ(Ω) · gmηsb(Ω) that “acts back” on

b(Ω) (Section 10.8). The characteristic gain of this “back-action”, ϕ(Ω), possesses an imaginary

component due to the finite response time of the cavity; this results in a viscous radiation pres-

sure force characterized by a mechanical damping rate Γopt ≈ −Im[δFrad(Ωm)/b(Ωm)]/(mΩm) (See

Section 9.1), where m is the effective mass of the b (Eq. 7.20).

In our noise suppression scheme, electro-optic feedback replaces the intrinsic detuning fluctu-

ations, −gmηsb(Ω), with the modified detuning fluctuations, −(1 + (ηp/ηs)G(Ω))gmη
pb(Ω) (Eq.

10.3). The radiation pressure force experience by the membrane is thus modified by a factor of

(1 + (ηp/ηs)G(Ω)) (this reasoning is analytically substantiated in Section 10.8). Here we define a

differential gain parameter µ ≡ (ηp/ηs)G(Ωm) (note that µ = 0 corresponds to the absence of feed-

back). For purely real G(Ωm), the modified optical damping rate as a function of µ has the relation

(Eq. 10.23),
Γopt(µ)

Γopt(µ = 0)
≈ 1 + µ. (10.6)

Associated with optical damping is “optical cooling”, corresponding to a reduction of the vibra-

tional energy (expressed as an amplitude variance 〈b2〉) from its equilibrium thermal value. 〈b2〉 is

also as a function of µ. Following Section 9.1:

〈b2〉(µ) =
Γm

Γm + Γopt(µ)

kBTb
mΩ2

m

=
Γm

Γeff(µ)

kBTb
mΩ2

m

, (10.7)

where kB is the Boltzmann constant and Tb is the temperature of the thermal bath. Here Γeff(µ) ≡

Γm + Γopt(µ) is the effective mechanical damping rate.

From Eqs. 10.6 and 10.7, we predict that if the probe is insensitive to membrane motion (ηp =

0 → µ = 0), then optical damping/cooling is unaffected by electro-optic feedback. In a realistic

scenario for which ηp/ηs > 0 (e.q., Section 10.4), feedback with G(Ωm) = −1 (to suppress extraneous

noise) results in a reduction of the optical damping rate and an increase in the vibrational energy

of the oscillator. Remarkably, when ηp/ηs < 0, extraneous noise suppression can coincide with an

increased optical damping rate and therefore a reduced vibrational energy. We elaborate on this

subject in Section 10.6.2.

It is worth emphasizing that the effect described in Eq. 10.6 has much in common with active

radiation pressure feedback damping, a.k.a “cold-damping”, as pioneered in [89]. In the experiment
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described in [89], feedback is applied to the position of a micro-mirror (in a Fabry-Pérot cavity)

by modulating the intensity of an auxiliary laser beam reflected from the mirror’s surface. This

beam imparts a fluctuating radiation pressure force, which may be purely damping (or purely anti-

damping) if the delay of the feedback is set so that the intensity modulation is in phase (or π out of

phase) with the oscillator’s velocity.

Our scheme differs from [89] in several important ways. In [89], the “probe” field is coupled to

the cavity, but the intensity-modulated “science” field does not drive a cavity mode. By contrast,

in our scheme, both the probe and science fields are coupled to independent spatial modes of the

cavity. Moreover, instead of directly modifying the intensity of the incident science field, in our

scheme we modify its detuning from the cavity, which indirectly modifies the intra-cavity intensity.

The resulting radiation pressure fluctuations produce damping (or anti-damping) of the oscillator

(in our case a membrane mode) if the detuning modulation is in phase (or π out of phase) with the

oscillator’s velocity. For the extraneous noise suppression result shown in Figure 10.10, the phase

of the electro-optic feedback results in anti-damping of the membrane’s motion. The reason why

this is tolerable, and another crucial difference between our scheme and the “cold-damping” scheme

of [89], is that the feedback force is super-imposed onto a strong cavity “back-action” force. In

Figure 10.10, for example, the small amount of feedback anti-damping is negated by larger, positive

back-action damping. The relative magnitude of these two effects depends on the differential sensing

factor (ηp/ηs) for the two cavity modes.

To investigate the interplay of electro-optic feedback and optical damping, we now reanalyze

the experiment described in Section 10.4.4. In that experiment, the science field was red-detuned

by 〈∆s〉 ≈ −κ ≈ −2π × 4 MHz, resulting in significant damping of the membrane motion. This

damping is evident in a careful analysis of the width Γeff (FWHM in Hz2/Hz units) and area

〈δ∆2
s〉 ≡

∫
Ωm

S∆s(Ω)dΩ/2π of the thermal noise peak centered near Ωm = Ω26 in Figure 10.10.

We have investigated the influence of electro-optic feedback on optical damping by varying the

magnitude of the feedback gain, G(Ω26), while monitoring S∆s
(Ω) in addition to S∆p

(Ω) (inferred

from the probe PDH measurement). From the basic relations given in Eqs. 10.6 and 10.7, the ratio

of the effective damping rate with and without electro-optic feedback is predicted to scale linearly

with µ, i.e.,

RΓeff
(µ) ≡ Γeff(µ)

Γeff(µ = 0)
= 1 +

Γeff(µ = 0)− Γm
Γeff(µ = 0)

µ. (10.8)

Similarly, combining Eqs. 10.1 and 10.7 and ignoring substrate noise, we expect the mean-

squared probe field detuning noise associated with the thermal peak centered at Ωm, i.e., 〈(δ∆p)
2〉 =∫

Ωm
S∆p(Ω)dΩ/2π, to have the property

R∆p
(µ) ≡ 〈(δ∆p)

2〉(µ = 0)

〈(δ∆p)2〉(µ)
= RΓeff

(µ). (10.9)
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Figure 10.11: Lorentzian fits of the thermal noise peak near Ω26 in Figure 10.10, here plotted on
a linear scale. Solid blue and orange traces correspond to science field detuning noise with noise
suppression off and on, respectively. Dashed traces correspond to Lorentzian fits.

Finally, using Eq. 10.5, we expect the mean-squared science field detuning noise associated with

the thermal peak centered at Ωm, i.e., 〈(δ∆s)
2〉 =

∫
Ωm

Sωp
c
(Ω)dΩ/2π, to have the property

R∆s
(µ) ≡ 〈δ∆

2
s〉(µ = 0)

〈δ∆2
s〉(µ)

=
RΓeff

(µ)

(1− µ)2
. (10.10)

To obtain values for Γeff, 〈δ∆2
p〉, and 〈δ∆2

s〉, we fit the noise peak near Ω26 in measurements

of S∆p(Ω) and S∆s(Ω) to a Lorentzian line profile (Eq. 9.9). Two examples, corresponding to

the noise peaks in Figure 10.10(b), are highlighted in Figure 10.11. The blue curve corresponds to

S∆s
(Ω) with µ = 0 (G(Ω26) = 0) and the orange curve with µ = −ηp26/η

s
26 (G(Ω26) = −1). Values

for Γeff and 〈δ∆2
s〉 inferred from these two fits are summarized in Table 10.2. Using these values

and a separate measurement of Γm = 2π × 4.5 Hz for the (2, 6) mode, we can test the model by

comparing the differential sensing factor inferred from Eq. 10.8 and Eq. 10.10. From Eq. 10.8 we

infer ηp26/η
s
26 = 0.54 and from Eq. 10.10 we infer ηp26/η

s
26 ≈ 0.61. These values agree to within 10%

of each other and the values listed in Table 10.1.

In Figure 10.12 we show measurements of RΓeff
(yellow circles) and R∆p (blue squares) for

several values of µ, varied by changing the magnitude of G(Ω26). The horizontal scale is calibrated

by assuming ηs26/η
p
26 = 0.6. Both measured ratios have an approximately linear dependence on µ

Table 10.2: Parameters from Figures 10.8 and 10.11. µ = 0 and µ = −ηp26/η
s
26 represents the noise

suppression is off and on, respectively. Γeff and
√
〈δ∆2

s〉 are inferred from the Lorentzian fits in
Figure 10.11. S∆s,e(Ω26) with µ = 0 and µ = −ηp26/η

s
26 are inferred from the red curve in Figure

10.8 and the orange curve in Figure 10.10, respectively.

µ Γeff/2π (Hz)
√
〈δ∆2

s〉/2π (Hz) S∆s,e(Ω26)/(2π)2 (Hz2/Hz)
0 21 3.8× 103 80

−ηp26/η
s
26 12 2.1× 103 5
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Figure 10.12: The impact of electro-optic feedback on optical damping/cooling of the (2,6) membrane
mode with a red-detuned science field, as reflected in measured ratios RΓeff

(yellow circles, Eq. 10.8)
and R∆p (blue squares, Eq. 10.9), as a function of feedback gain parameter µ. The model shown
(black line) is for ηs26/η

p
26 = 0.6.

with a common slope that agrees with the prediction based on Eqs. 10.8 and 10.9 (black line).

10.6 Discussion

10.6.1 Optical Cooling Limits

Taking into account the reduction of extraneous noise (Section 10.4.4) and the effect of electro-optic

feedback on optical damping (Section 10.5), we now estimate the base temperature achievable with

optical cooling in our system. We base our estimate on the laser frequency noise heating model

developed in [96], in which it was shown that the minimum thermal phonon occupation achievable

in the presence of laser frequency noise with magnitude Sω0(Ω) is given by

nmin '
2
√

Γ0Sω0(Ωm)

gδzzp
+

κ2

Ω2
m

, (10.11)

where Γ0 = kBTb/~Ωm is the re-thermalization rate with the environment at temperature Tb and

gδzzp is the cavity resonance frequency fluctuation associated with the zero-point motion of the

oscillator.

We apply Eq. 10.11 to our system by replacing Sω0(Ωm) with extraneous detuning noise,

S∆s,e(Ωm), and gδzzp with feedback-modified zero-point fluctuations gm(1 − ηp/ηs)ηsbzp, where

bzp =
√
~/(mΩm) and m are the zero-point amplitude and effective mass of amplitude coordinate

b, respectively. We also assume that the membrane can be positioned so as to increase the opto-

mechanical coupling to its maximal value gmax
m = 2|rm|〈ωsc〉/〈L〉 (rm is the membrane reflectively

without effecting the magnitude of the suppressed substrate noise. Values for S∆s,e(Ω26) with feed-
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back on and off are drawn from Table 10.2: (2π)2 × 5 Hz2/Hz and (2π)2 × 80 Hz2/Hz, respectively.

Other parameters used are κ = 2π × 4 MHz, Ωm = Ω26 = 2π × 3.56 MHz, m = mp/4 = 8.4

ng, |rm| = 0.465 ([23]), gmax
m = 2π × 4.6 × 105 MHz/µm (for 〈L〉 = 0.74 mm), ηp26 = 0.24, and

ηs26 = 0.4 (from Figure 10.4). With and without feedback, we obtain values of n
(2,6)
min = 128 and 206,

respectively, for the (2, 6) vibrational mode.

The improvement from n
(2,6)
min = 206 to 128 is modest and derives from the use of a relatively

large and positive differential sensing factor, ηp26/η
s
26 ≈ 0.6, as well as shot noise in the probe

measurement, which sets a lower bound for the extraneous detuning fluctuations (S∆s,e(Ω26) ≈

SωN
c

(Ω26) ≈ (2π)2 × 5 Hz2/Hz in Figure 10.10). Paths to reduce or even change the sign of the

differential sensing factor are discussed in Section 10.6.2. Reduction of shot noise requires increasing

the technically accessible probe power; as indicated in Section 10.4.4, we suspect that significant

reduction of S∆s,e(Ω26) can be had if this improvement were made.

Note that the above values of n
(2,6)
min are based on an estimate of the maximum obtainable opto-

mechanical coupling gmax
m . For the experiment in Section 10.4, however, we have set the opto-

mechanical coupling coefficient gm � gmax
m in order to emphasize the substrate noise. From the data

in Figure 10.10, we infer gm to be

gm =
2πΩ26

√
〈δ∆2

s〉
ηs26

√
mΓeff

kBTbΓm
= 2π × 2.1× 104 MHz/µm, (10.12)

which is ≈ 4.6% of gmax
m . Thus for experimental parameters specific to Figure 10.10, the cooling

limit is closer to n
(2,6)
min = 2800.

10.6.2 “Negative” Differential Sensing

It is interesting to consider the consequences of realizing a negative differential sensing factor, ηp/ηs <

0. Eq. 10.3 implies that in this case electro-optic feedback can be used to suppress extraneous noise

(G(Ωm) < 0) without diminishing sensitivity to intrinsic motion (i.e., (ηp/ηs)G(Ωm) > 0). As

a remarkable corollary, Eqs. 10.5 and 10.6 imply that extraneous noise suppression can coincide

with enhanced optical damping, i.e., µ = (ηp/ηs)G(Ωm) > 0, if ηp/ηs < 0. Using electro-optic

feedback in this fashion to simultaneously enhance back-action while suppressing extraneous noise

seems appealing from the standpoint of optical cooling.

Achieving ηp/ηs < 0 requires an appropriate choice of cavity and mechanical mode shapes and

their relative orientation. In the context of the “membrane-in-the-middle” geometry, we can identify

two ways of achieving a negative differential sensing factor. The first involves selecting a mechanical

mode with a nodal spacing comparable to the cavity waist. Consider the arrangement shown in

Figure 10.13, in which the TEM00 and TEM01 cavity modes are centered on the central antinode

of the (1,5) membrane mode (a 1D slice through the midline of the membrane is shown). The ratio
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Figure 10.13: Visualization of “negative” differential sensing. The transverse displacement profile
of the (1,5) membrane mode is shown in black (a 1D slice along the midline of the membrane is
shown). Red and blue curves represent the transverse intensity profile of TEM00 and TEM01 cavity
modes, both centered on the membrane. The cavity waist size is adjusted so that the displacement
averaged over the intensity profile is negative for TEM01 and positive for TEM00.

of the (1/e2 intensity) cavity waist, wc, and the nodal spacing, wnode, has been adjusted so that

the distance between antinodes of the TEM01 cavity mode roughly matches wnode; in this case,

wc/wnode = 0.88. It is intuitive to see that the displacement profile averaged over the blue (TEM01)

and red (TEM00) intensity profiles is negative in the first case and positive in the second. Using

TEM01 as the probe mode and TEM00 as the science mode in this case gives ηp15 = −0.34, ηs15 = 0.37,

and ηp15/η
s
15 = −0.92.

Another possibility is to center the cavity mode near a vibrational node of the membrane. In

this situation, numerical calculation shows that rotating the TEM01 (probe) mode at an appropriate

angle with respect to the membrane can give ηp/ηs < 0 (with TEM00 as the science mode), albeit

at the cost of reducing the absolute magnitudes of ηp and ηs. We have experimentally observed this

effect in our system by positioning the cavity modes near the geometric center of the membrane,

which is a node for all of the even-order vibrational modes (modes (i, j) with i or j even). As in

Section 10.4.3, we electronically added and subtracted simultaneous measurements of δωpc and δωsc

in order to assess their differential sensitivity. A measurement of the noise near the mechanical

frequencies of the (2, 3) and (3, 2) membrane modes is shown in Figure 10.14. We found for this

configuration that adding the signal with the appropriate gain (black trace) leads to enhancement

of the (2,3) mode (left peak) and suppression of the (3,2) mode (right peak), in contrast to the

results in Figure 10.9, for which all modes are either suppressed or enhanced. This suggests that

ηp23/η
s
32 < 0.
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Figure 10.14: Realization of “negative” differential sensing for the (3,2) membrane mode. The
TEM00 (science) and TEM01 (probe) modes are positioned near the center of the membrane. Mea-
surements of δωpc (blue) and δωsc (red) are combined electronically on an RF splitter with positive
gain, G0 = ηp32/η

s
32, as discussed in Section 10.4.3. The power spectrum of the electronic signal

before (blue and red) and after (black) the splitter (here in raw units of dBm/Hz) is shown. The
(2,3) noise peak in the combined signal is amplified while the (3,2) noise peak is supressed, indicating
that ηp23/η

s
23 > 0 and ηp32/η

s
32 < 0.

10.7 Summary and Conclusions

We have proposed and experimentally demonstrated a technique to suppress extraneous thermal

noise in a cavity optomechanical system. Our technique (Section 10.3) involves mapping a measure-

ment of the extraneous noise onto the frequency of the incident laser field, delayed and amplified

so as to stabilize the associated laser-cavity detuning. To obtain an independent measurement of

the extraneous noise, we have proposed monitoring the resonance frequency of an auxiliary cavity

mode with reduced sensitivity to the intracavity oscillator but similar sensitivity to the extraneous

thermal motion.

To demonstrate the viability of this strategy, we have applied it to an experimental system

consisting of a nanomechanical membrane coupled to a short Fabry-Pèrot cavity (Sections 10.2 and

10.4). We have shown that in this system, operating at room temperature, thermal motion of the

end-mirror substrates can give rise to large laser-cavity detuning noise (Figure 10.2). Using the

above technique, with primary (“science”) and auxiliary (“probe”) cavity modes corresponding to

TEM00 and TEM01, we have been been able to reduce this “substrate” detuning noise by more than

an order of magnitude (Figures 10.7 and 10.10). We’ve also investigated how this noise suppression

scheme can be used to “purify” a red-detuned field used to optically damp the membrane (Section

10.5). We found that optical damping is effected by residual coupling of the auxiliary cavity mode

to the membrane, producing feedback which modifies the intrinsic cavity “back-action” (Figure

10.12). We argued that this effect is akin to “cold-damping” [89], and that it need not significantly
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limit, and could even enhance, the optical cooling, if an appropriate auxiliary cavity mode is used

(Section 10.6.2). Current challenges include increasing the shot noise sensitivity of the auxiliary

probe measurement and reducing or changing the “sign” (Section 10.6.2) of the coupling beteen the

auxiliary cavity mode and the membrane.

It is worth noting that our technique is applicable to a broader class of extraneous fluctuations

that manifest themselves in the laser-cavity detuning, including laser phase noise, radial oscillation

of optical fibers, and seismic/acoustic vibration of the cavity structure. The concept of “differential

sensitivity” (Eq. 10.2) central to our technique is also applicable to a wide variety of optomechanical

geometries.

10.8 Appendix: Radiation Pressure Stiffening/Damping with

Electro-Optic Feedback

Here we consider a simple model for the dynamics of a vibrating membrane (or equivalently, a

vibrating mirror) linearly coupled to an optical cavity driven by a frequency-modulated laser. We

focus on a single vibrational mode of the membrane with amplitude b(t). The cavity exhibits a

fluctuating resonance frequency δωc(t) = gmη
sb(t), where gm is the optomechanical coupling and

ηs the spatial overlap factor between the cavity mode and the vibrational mode (Section 10.3).

Fluctuations δωc(t) give rise to intracavity intensity fluctuations, which alter the dynamics of b(t)

through the radiation pressure force. Superimposed onto this back-action is the effect of electro-optic

feedback, which we model by assuming a definite phase relationship between b(t) and the modulated

frequency of the incident field.

Following Section 9.1.2.2, we adopt the following coupled differential equations to describe vi-

brational amplitude b(t) and intracavity field amplitude, a(t) (here expressed in the frame rotating

at the frequency of the drive field, 〈ω0〉 = 〈ωc〉+ 〈∆〉, and normalized so that |a(t)|2 = Uc(t) is the

intracavity energy):

b̈(t) + Γmḃ(t) + Ω2
mb(t) = Fext(t) + δFrad(t) (10.13a)

ȧ(t) + κ+ i(〈∆〉 − δωc(t)))a(t) =
√

2κ1E0e
2iφ(t). (10.13b)

Eq. 10.13a describes the motion of a velocity-damped harmonic oscillator driven by an external

force Fext(t) in addition to a radiation pressure force Frad(t) = 〈Frad〉+δFrad(t). We define b relative

to its equilibrium position with the cavity field excited, thus we ignore the static part of the radiation

pressure force. We adopt the following expression for the radiation pressure force based on energy

conservation (Section 2.4): Frad = −∂Uc/∂b = −gmηUc/〈ωc〉.

Eq. 10.13b is based on the standard input-output model for a low-loss, two-mirror resonator [110].
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Here E0 and |E0|2 represent the amplitude and power of the incident field, φ(t) the instantaneous

phase of the incident field, and κ = κ1 + κ2 + κL the total cavity (amplitude) decay rate, expressed

as the sum of the decay rates through mirror 1, mirror 2, and due to internal losses, respectively.

Recall that in the “membrane-in-the-middle” system, κ1,2,L all depend on the membrane’s axial

position with respect to the intracavity standing wave (Section 8.2).

Using this notation, the instantaneous frequency and detuning of the input field are given by:

δω0(t) = φ̇(t) (10.14a)

δ∆(t) = φ̇(t)− δωc(t) = φ̇(t)− gmηsb(t). (10.14b)

We seek solutions to Eq. 10.13 by expressing a(t) as a small fluctuation around its respective

steady-state solution, a(t) = 〈a〉+ δa(t). In this case the radiation pressure force is given by

δFrad(t) = −gmη
ωc

(〈a〉∗δa(t) + 〈a〉δa∗(t)). (10.15)

An equation of motion for δa(t) is obtained from Eq. 10.13 with the assuption that δa(t)� 〈a〉,

φ(t)� 1, and δωc(t)� 〈∆〉. This approximation gives

δȧ(t) + (κ+ i(〈∆〉)δa(t)− κδωc(t)〈a〉 = i
√

2κ1E0φ(t), (10.16)

where

〈a〉 = E0

√
2κ1

κ+ i〈∆〉
. (10.17)

Applying the Fourier transform (Eq. 2.1) to both sides of Eq. 10.16, we obtain the following

expression for the spectrum of intracavity amplitude fluctuations:

δa(Ω) =
i〈a〉

κ+ i(〈∆〉+ Ω)
(δωc(Ω) + (κ+ i〈∆〉)φ(Ω)) . (10.18)

Combining expressions for δa(Ω) and [δa∗](Ω) (the Fourier transform of δa∗(t), which obeys the

complex conjugate of Eq. 10.16), we obtain the following expression for the spectrum of radiation

pressure force fluctuations:

δFrad(Ω) = −gmη|〈a〉|
2

ωc

(
i

κ+ i(〈∆〉+ Ω)
− i

κ− i(〈∆〉 − Ω)

)
(δωc(Ω)− iφ(Ω)/Ω). (10.19)

Using Eq. 10.17 and identifying δωc(Ω)− iφ(Ω)/Ω = −δ∆(Ω) as the instantaneous laser-cavity

detuning, we infer the following relationship between detuning and the radiation pressure force
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fluctuations:

δFrad(Ω) =
gmη

〈ωc〉
|E0|2

2κ1

κ2 + 〈∆〉2

(
i

κ+ i(〈∆〉+ Ω)
− i

κ− i(〈∆〉 − Ω)

)
δ∆(Ω) (10.20a)

≡ ϕ(Ω)δ∆(Ω) = −ϕ(Ω)gmη
sb(Ω)(1 + µ(Ω)) (10.20b)

where µ(Ω) = −(ηp/ηs)G(Ω) is the electro-optic feedback gain as defined in Eq. 10.3.

Eq. 10.20 suggests that radiation pressure force fluctuations associated with thermal motion

can be suppressed by using electro-optic feedback to stabilize the associated laser-cavity detuning

fluctuations. The effect of δFrad on the dynamics of b in Eq. 10.16a may be expressed as a modified

mechanical susceptibility, χeff(Ω) ≡ b(Ω)/Fext(Ω). Applying the Fourier transform to both sides of

Eq. 10.13a and using Eq. 10.20 gives:

χeff(Ω)−1 = χm(Ω)−1 − δFrad(Ω)/b(Ω) (10.21a)

=
(
Ω2
m − Ω2 + iΩΓm

)
m+ ϕ(Ω)gmη

s(1 + µ(Ω)). (10.21b)

For sufficiently weak radiation pressure, the mechanical susceptibility near resonance can be

approximated

χeff(Ω)−1 ≈
(
(Ωm + ∆Ωopt)

2 − Ω2 + iΩ(Γm + Γopt)
)
m (10.22)

where

Γopt ≡ −
1

Ωmm
Im

(
Frad(Ωm)

b(Ωm)

)
=
gmη

s

Ωmm
Im ((1 + µ(Ωm))ϕ(Ωm)) (10.23a)

∆Ωopt ≡ −
1

2Ωmm
Re

(
Frad(Ωm)

b(Ωm)

)
=

gmη
s

2Ωmm
Re ((1 + µ(Ωm))ϕ(Ωm)) . (10.23b)

From this expression and the Fluctuation-Dissipation theorem (Eq. 9.8b) we infer the modified

membrane thermal noise spectrum (equivalent to 9.9 but in this case expressions for {Γopt,∆Ωopt}

are both modified by electro-optic feedback):

Sb(Ω) = |χeff(Ω)|2 · 4kBTbΓmΩ =
4kBTbathΓm/m

((Ωm + ∆Ωopt)2 − Ω2)2 + Ω2(Γm + Γopt)2
. (10.24)
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