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Abstract

The Terahertz frequency range, often referred to as the ‘Terahertz’ gap, lies wedged between
microwave at the lower end and infrared at the higher end of the spectrum, occupying
frequencies between 0.3-3.0 THz. For a long time, applications in THz frequencies had
been limited to astronomy and chemical sciences, but with advancement in THz technology
in recent years, it has shown great promise in a wide range of applications ranging from
disease diagnostics, non-invasive early skin cancer detection, label-free DNA sequencing to
security screening for concealed weapons and contraband detection, global environmental
monitoring, nondestructive quality control and ultra-fast wireless communication. Up until
recently, the terahertz frequency range has been mostly addressed by high mobility compound
ITI-V processes, expensive nonlinear optics, or cryogenically cooled quantum cascade lasers.
A low cost, room temperature alternative can enable the development of such a wide array
of applications, not currently accessible due to cost and size limitations. In this thesis, we
will discuss our approach towards development of integrated terahertz technology in silicon-
based processes. In the spirit of academic research, we will address frequencies close to 0.3
THz as ‘Terahertz’.

In this thesis, we address both fronts of integrated THz systems in silicon: THz power
generation, radiation and transmitter systems, and THz signal detection and receiver sys-
tems. THz power generation in silicon-based integrated circuit technology is challenging
due to lower carrier mobility, lower cut-off frequencies compared to compound III-V pro-
cesses, lower breakdown voltages and lossy passives. Radiation from silicon chip is also
challenging due to lossy substrates and high dielectric constant of silicon. In this work, we

propose novel ways of combining circuit and electromagnetic techniques in a holistic design
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approach, which can overcome limitations of conventional block-by-block or partitioned de-
sign methodology, in order to generate high-frequency signals above the classical definition
of cut-off frequencies (f;/ fiax). We demonstrate this design philosophy in an active electro-
magnetic structure, which we call Distributed Active Radiator. It is inspired by an Inverse
Maxwellian approach, where instead of using classical circuit and electromagnetic blocks to
generate and radiate THz frequencies, we formulate surface (metal) currents in silicon chip
for a desired THz field profile and develop active means of controlling different harmonic
currents to perform signal generation, frequency multiplication, radiation and lossless filter-
ing, simultaneously in a compact footprint. By removing the artificial boundaries between
circuits, electromagnetics and antenna, we open ourselves to a broader design space. This
enabled us to demonstrate the first 1 mW Effective-isotropic-radiated-power(EIRP) THz
(0.29 THz) source in CMOS with total radiated power being three orders of magnitude more
than previously demonstrated. We also proposed a near-field synchronization mechanism,
which is a scalable method of realizing large arrays of synchronized autonomous radiating
sources in silicon. We also demonstrate the first THz CMOS array with digitally controlled
beam-scanning in 2D space with radiated output EIRP of nearly 10 mW at 0.28 THz.

On the receiver side, we use a similar electronics and electromagnetics co-design approach
to realize a 4x4 pixel integrated silicon Terahertz camera demonstrating to the best of our
knowledge, the most sensitive silicon THz detector array without using post-processing,
silicon lens or high-resistivity substrate options (NEP < 10 pW/v/Hz at 0.26 THz). We
put the 16 pixel silicon THz camera together with the CMOS DAR THz power generation
arrays and demonstrated, for the first time, an all silicon THz imaging system with a CMOS

source.
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Chapter 1

Introduction

Nothing, I guess. I do not think
that the wireless waves I have
discovered will have any practical

application.

Heinrich Hertz, 1886-87

Today, the influence of electromagnetism in our daily lives cannot be over-emphasized.
While Maxwell laid out the general theory of electromagnetism, over the years following
many new discoveries and inventions, the field branched into separate disciplines of study.
The split happened essentially on frequency lines, and the spectrum broke into radio waves,
microwaves, mm-waves, terahertz, infrared, optics and so on. Each of them became inde-
pendent and matured field of research in their own right, influencing our lives significantly
but in different ways. Radio waves became the carrier for wireless radio communication,
microwave frequencies became a major field of research for radars and defense applications,
terahertz and infrared for chemistry and spectroscopy, optics for vision, microscopy, lasers,
wireline communication in and among other things. Almost century and half after Hertz’s
famous misjudgement, we see a re-unification of electromagnetism, unlike ever before, to
create cutting-technology for the next-generation systems. Maxwell’s equations are the com-
mon underlying principles, but the ability to harness, control and use, in an integrated

environment, such a large portion of the electromagnetic spectrum with such diverse prop-



erties in their interaction with matter, can lead to the development of a wide range of novel
applications with far-reaching impact.

I believe, in the next few years we will see a similar re-unification at a higher level
of abstraction, where a wide range of allied fields such as electrical engineering, applied
physics and mathematics, material science, chemistry and biology will grow organically, in a
mutually synergetic environment, to transform the landscape for the next-generation cutting-
edge technology. We are seeing a slight hint of this trend already; silicon integrated circuits
are now operable to a wide range of the spectrum from radio waves, microwaves to mm-Wave,
sub-THz and THz frequencies; optics, circuits and material science are contributing to opto-
electronics and silicon photonics; biology, chemistry and integrated electronics are jointly
innovating for future personalized health care. In near future, a host of highly impactful
technological innovations will come through this close alliance of multiple scientific disciplines
in a holistic collaborative environment. This will not be achieved thorough a mastery of
one discipline and a ‘black-box understanding’ of the allied fields, but through a broader
understanding of multiple disciplines and end-to-end design processes.

While human inventions have presided over a major portion of the electromagnetic spec-
trum, some parts are still less explored, technology less developed and influence in our daily
lives, less noticed. One such spectral range is called the Terahertz frequency range, often
referred to as the ‘Terahertz’ gap !. It lies wedged between microwave at the lower end and
infrared at the higher end of the spectrum, as shown in Fig. 1.1. While the exact frequency
range it covers is a matter of semantics and personal opinion, the community generally refers
to the frequency spectrum between 0.3-3 THz, as the Terahertz frequency range. In this the-
sis, in the spirit of scientific research, we use the term ‘THz’ to refer to frequencies near 0.3
THz.

We see the first references of Terahertz in [1], which called it the ‘heat rays of great wave-
length’. The ‘THz" wavelength ranges from 1 mm-100 pm, which corresponds to photon

energies between 1.2-12.4 meV and equivalent blackbody radiation temperatures of 14-140

I'THz is synonymously referred to as the sub-millimeter wave band, as the wavelength ranges from 1
mm-100 pm



K [2]. Approximately 98% of all photons emitted since Big Bang fall within the THz-far IR
band [2]. This explains why in the last hundred years, terahertz has built up a niche place
in scientific community for the study of astronomical studies, high resolution spectroscopy,
remote sensing as well as chemical sciences and molecular spectroscopy. However, lack of ad-
equate and cost-effective instrumentation development in this spectral region has contributed
to it being called the ‘THz’ gap, which has also adversely affected the development of its
application space. However, with new developments in nanotechnology, material science and
optics, there has been a resurgence of active research interest in this frequency range and
the research community are approaching the technology development from a abroad range of
scientific disciplines [3]. Terahertz technology has shown great promise in disease diagnostics
such as non-invasive early skin cancer detection [13], [23], [25], [39], label-free DNA sequenc-
ing [32], security screening for concealed weapons and contraband detection [27]- [30], global
environmental monitoring, nondestructive quality control and ultra-fast wireless communi-
cation [3]. In this thesis, we discuss our approach towards development of miniaturizing

terahertz technology into silicon-based integrated chipsets.

Microwaves Visible X-ray y-ray
MF, HF, VHF, UHF, SHF, EHF

100 108 108 10° 1012 101° 1018 1021 1024
kilo mega giga tera peta exa zetta yotta
Example Radio Radar Optical Medical Astrophysics
industries: communications communications imaging

Figure 1.1: The electromagnetic spectral range from low-frequency radio waves to high energy gamma-
rays [7].

Silicon-based integrated circuit technology has had a major influence in our lives partic-
ularly in the three broad areas of communication, computation and information technology,
and health-care. In my lifetime, I have witnessed the sheer force of technology, ushering

in the information age in developing countries like India, where the cell-phone market is



expanding at a rate of 40% with a current user base of 919 million users, as of 2012 [4]. The
wireless revolution can be felt not just by the fact that every few other miles a new cell-phone
tower pops up, one can notice a major change in quality of lives of people in the middle and
lower incomes levels. Low-cost technology, implemented in a piece of wireless device, informs
farmers the about real-time rates in the nearby marketplace and also availability of necessary
health practitioners at the nearest health-care centers. Silicon technology allows this possi-
bility of integrating complex systems into low-cost, single chip solutions. While silicon has
almost completely replaced any competing technology in the computational space, due its
capability of high integration, excellent process control and unparallel performance of digital
CMOS logic, in the realm of wireless communication and RF systems, other technologies
such GaAs do co-exist, specially in power generation blocks, where efficiency can offset the
extra cost of superior technology. At higher frequencies, such microwave and mm-Wave,
other compound III-V devices such InP HBTs and HEMTs have technologically superior
performances and almost completely dominate the market. At even higher frequencies such
as in the Terahertz band, technology is ‘sparse’ with only a few compound III-V solid-state
electronics and optics-based systems existing. Fig. 1.2 shows a typical femtosecond-laser
based broadband Terahertz system (from Teraview [5]), which costs upwards of $200,000.
Our vision is to pack the entire functionality into a small silicon chip, which has orders of

magnitude smaller form factor and lower cost.

Figure 1.2: A femtosecond-laser based broadband Terahertz system [5]. The photo on the right hand side is
the first THz CMOS beam-scanning power generator. [59]



In the last few years, device scaling with increasing cut-off frequencies (f;, finaz) has
pushed silicon technologies into the microwave and mm-Wave frequencies. However, as we
approach scaling lengths with atomic dimensions focusses on increasing transistor density
and improved digital performances, high frequency performances often suffer due to increased
gate resistance, short-channel effects, low-resistivity substrates and passive losses in metal
structures and therefore the classical cut-off frequencies (f;, fiax) i not guaranteed to in-
crease linearly with scaling. Therefore, new techniques, architectures and topologies need
to be invented which can overcome these technological challenges and push performances
beyond what conventional design methodologies can achieve. As an example, while the first
77 GHz phased-array was demonstrated in 0.13 pm SiGe BiCMOS process [54], we discuss
techniques with which we can push the frequency to a factor of 4x in a technology with
lower f,... and lower breakdown. In this thesis, we demonstrate the first near-THz CMOS

beam-scanning array [59], as shown in Fig. 1.2.

1.1 Contributions

In this work, we propose novel ways of combining circuits and electromagnetics in a holistic
design approach which can overcome limitations of conventional block-by-block or parti-
tioned design approach for high-frequency power generation above f,,,.. We demonstrate
this design philosophy in an active electromagnetic structure, which we call Distributed Ac-
tive Radiator. It is inspired by Inverse Maxwellian approach, where we remove the artificial
boundaries between circuits, electromagnetics and antenna. Instead of using classical circuit
and electromagnetic blocks to generate and radiate THz frequencies, we formulate surface
(metal) currents in silicon chip for a desired THz field profile and develop active means of con-
trolling different harmonic currents to perform signal generation, frequency multiplication,

radiation and lossless filtering in a compact footprint. This enables us to demonstrate

e The first 1 mW Effective-isotropic-radiated-power(EIRP) THz (0.29 THz) source in

CMOS with total radiated power being three orders of magnitude more than previously



demonstrated.

e Demonstration of integrated beam-scanning near 0.2 THz using a proposed near-field
synchronization mechanism, which is a scalable method of realizing large arrays of

synchronized autonomous radiating sources.

e The first THz CMOS array (4x4 element at 0.28 THz) with digitally controlled beam-
scanning in 2D space with nearly 10 mW of EIRP.

We use a similar electronics and electromagnetics co-design approach to realize a 4x4

pixel integrated silicon Terahertz camera demonstrating

e Most sensitive silicon THz detector array without using post-processing, silicon lens or

high-resistivity substrate options (NEP<10 pWv/ Hz)

e The first demonstration of an all silicon THz imaging system with a CMOS source.

1.2 Organization

The thesis is organized as follows. Chapter 2 reviews the ever-increasing and diverse THz
application space and existing THz technology for signal generation and detection, discussing
both solid-state and optics-based approaches. Chapter 3 discusses the challenges of THz
frequency generation in silicon-based processes, and extraction of the generated power from
the silicon die to the outside world. We argue that the classical partitioned approach, that
builds up a system using a cascaded series of standard circuit blocks and interfaces with a
classical antenna to radiate out the THz waves, is a sub-optimal approach. We introduce the
concept of Distributed Active Radiation (DAR), which combines signal generation, frequency
multiplication, radiation and lossless filtering, all simultaneously in an actively controlled
electromagnetic structure.

Chapter 4 discusses the theory of DAR from an electromagnetic field perspective. We
study in details power lost as surface waves for various kinds of surface current configurations

and fundamental limitations of on-chip radiating structures.
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Chapters 5-6 discusses arrays of DARs and how many autonomous radiating DARs can
be either mutually synchronized or locked to a common sub-harmonic frequency source to
achieve power combination in free-space for higher EIRP and electronic beam-scanning. We
corroborate our theory with measurement results.

While Chapters 3-6 cover our work on THz power generation in silicon, Chapter 7 dis-
cusses THz power detection in silicon-based processes. We demonstrate a 4x4 pixel THz
camera in silicon and show imaging results with an all silicon THz imaging system.

Chapter 8 covers my contribution on our collaborative work on robust and self-healing
high frequency systems and Chapter 9 discusses my work on CMOS power amplification at

mm-Wave frequencies.



Chapter 2

The Terahertz Gap: Current THz
Technology

In this Chapter, we will briefly review the ever-developing THz application landscape, cur-
rently existing THz source and detector technologies. Comprehensive review articles on this

subject can be found in [2], [3], [7], [8], [9], [10], [13], [18], [19].

2.1 THz Application Space

For a long time, THz application space was literally limited to ‘space’ sciences. However, in
the last twenty years, with new developments in THz technology and access to (relatively) in-
creasingly lower-cost technology, there has been extensive research in the application space.
Astronomy and space sciences have been drivers for THz technology since vast amounts
of spectroscopic information are found in this frequency range. THz-based spectroscopy
is purported to have a wide range of applications from carrier concentrations to mobility
in doped semiconductors, high temperature superconductor characterization to biomedical
applications, facilitated by the fact that collective vibrational modes of many proteins and
DNA molecules are expected occur in this range [7]. Many intermolecular vibrational sig-
natures are expected to be present in the THz frequency range, while most intramolecular
modes fall in the infrared range [3] (Fig. 2.1). THz waves can also predict conformational

states of bio-molecules and polymorphs, which has great potential in pharmaceutical indus-



tries. There has been active research in label-free DNA detection for low cost DNA chips
using THz spectroscopy, which can detect the differences between presence and absence of

hybridization due to changes in refractive index [32], [33].
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Figure 2.1: Molecular transitions in the THz spectrum [13].

There have been several studies on the diagnosis of cancer, particulary non-invasive early
detection of skin cancer, based on dielectric property differences between healthy and can-
cerous tissues at these frequencies(Fig. 2.2). THz waves, with their low photon energy, are
non-ionizing and therefore, safe for medical diagnostics (atleast much safer than X-rays).
Due to longer wavelengths, it has higher penetration depth and lower scattering (though
higher absorption) than optics , and therefore may have applications in monitoring of tu-
mor boundaries in surgical procedures [24]. This has motivated studies on both pulse-based
and CW wave reflection imaging from skin and excised breast tissues. Strong correlation
has been observed in THz images and histology results (Fig. 2.3) [25], [13], [23], [25] and
research is progressing towards real-time THz image acquisition from ex-vivo samples. THz
lends itself amenable to both amplitude and phase detection during image acquisition and
therefore, can give depth information and render a three dimensional topographical recon-
struction of specimen under test. Fig. 2.4 demonstrates a quasi-three-dimensional image of

a transverse slice of a human tooth, showing an example where THz imaging has potential
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to be an alternative low-cost and non-ionizing technology against the standard X-rays.

o (mm™) a@mm™) n n

0.5THz 1 THz 05THz 1THz
Normal skin 11.0 16.8 2.20 2.06
BCC 13.1 19.3 2.26 2.09
Normal breast 10.5 16.4 2.01 1.90
Breast carcinoma  12.5 18.6 2.23 2.08
Breast adipose 1.3 2.2 1.56 1.54
Water 16.3 23.0 2.28 2.09

Figure 2.2: Absorption («) and refractive indices (n) of tissues at 0.5 and 1 THz [13].
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Figure 2.3: Reflection-based THz image showing strong correlation between acquired image and histological
results. The images show tumor tissues with surrounding adipose tissues [24].

THz waves can penetrate through clothing, paper, and wood, has higher resolution (~
10x) than microwaves and therefore, has great potential in homeland security and defense
applications. Potential of stand-off concealed weapon detection with high-enough resolution
and contraband detection with THz spectroscopy have been demonstrated [30], [31]. Re-
cently, a 675 GHz solid-state electronic system with mechanical scanning was demonstrated
for explosive detection at a stand-off distance of 25 m [28]. Extensive research has gone into
various modes of contraband detection from far-off distance, using transmission, reflection,
diffuse reflection modes [31]. Due to its see-through properties, it also has tremendous ap-
plication potential in industrial quality control, electronics, food and agricultural industry
which have currently working prototypes based on expensive optics-based THz-TDS systems.

Due to the availability of larger bandwidths at these frequencies, there are applications in

development for ultra-fast wireless communication. High-performance point-to-point wireless
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Figure 2.4: A quasi-three-dimensional image of a transverse slice of a human tooth constructed using depth
information from time of flight. Labels E, D and P represent the enamel, dentine and pulp, respectively [13].
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Figure 2.5: THz absorption spectra of RDX, TNT, HMX. and PETN obtained with THz-TDS [31].
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connections can be beneficial for communication in rural areas, communication between
buildings during disasters, high-data rate delivery for uncompressed video [3]. 120 GHz
point-to-point links have already been developed and were used during the Beijing Olympics
in China in 2008.

The development of most of these applications depend on the availability of low-cost,
high yield technology. Integrated silicon technology, which enabled such explosive growth in
computational power in computer chips and cell-phone chipsets at such low-cost, can provide
unparalleled signal processing power with billions of transistors and realize complex systems
with ultra-small form factors, high reliability, and low cost. Through the technology has
matured and developed for digital and lower radio frequencies for cell-phone applications,
we have developed new techniques to push silicon beyond its cut-off frequencies into the THz
frequency spectrum. Still in the early path of its growth, it will not be entirely surprising
if a completely new frontier opens up and grabs the market, however it can be speculated
with some confidence that atleast a significant chunk of THz, the ‘last’ frontier in high-speed

electronics, will go the silicon way.

2.2 Current THz Technology

Among the existing THz technology, there is a lack of a high-power, low-cost, portable
room-temperature THz source and low-cost, integrated room-temperature detector suitable
for video-rate imaging. Current state of the art THz systems are based on expensive optics-
based equipment such as femtosecond lasers, electro-optic samplers, nonlinear crystals, and
custom photoconductive antennas or discrete module-based solid-state electronic components
realized with compound III-V technology or quantum-cascade laser based technology which
currently require cryogenic cooling. Fig. 2.6 shows the range of technologies with their typical
output power. Silicon-based technology, as reported in [64], [65], [66], have shown generation
of tens of nanoWatts of power near 0.3 and 0.4 THz, far too small to be of much practical

use.
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Figure 2.6: Solid-state electronics and optics-based THz sources and their typical power output [3].

2.2.1 Optics-based Technology

Broadband and narrowband continuous-wave THz power generation, based on optical meth-
ods, rely on photo-Dember effect and optical rectification effects respectively. When an
ultrafast laser pulse shines on a photo-conductive material, electron-hole pairs are gener-
ated. The free carries, then accelerate under a static bias field and the transients lead to a
broadband pulse which can radiate out. This is explained in Fig. 2.7. Various parameters
such as decay times, carrier mass, drift velocity affect power output and bandwidth of the
generated pulse [7].

CW-wave sources can be generated by beating two CW lasers, whose frequency difference
lies in the THz frequency regime. The lasers are passed through a nonlinear medium and
the down-converted signal is extracted. Methods, based on similar nonlinear phenomenon,
are optical parametric amplification and Difference Frequency Generation. The nonlinear
materials under investigation are GaAs grown at low temperature, GaSe, ZnTe and several
others. Tunable THz sources, using parametric amplification, have been demonstrated to
produce peak power in excess of 1 W (pulsed) [3]. Quantum-cascade-lasers, which exploits
electron relaxation between sub-bands of coupled quantum wells, have demonstrated opera-

tion in the infrared as well as in the THz frequency regime from 1-4 THz, but they require
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Figure 2.7: Photoconductive-based broadband pulse generation using ultrafast lasers [13].

cooling for their operation, even though recent results have demonstrated their operation

near 178 K [34].
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Figure 2.8: CW-wave sources can be generated by beating two CW lasers in nonlinear medium. The right
part of the figure shows quantum-cascade-lasers which are powerful narrowband sources but require cryogenic
cooling. [3].

The detector technology for pulsed optical systems are either based on photoconductive
sampling or electro-optic sampling. FElectro-optic samplers use birefringent crystals whose
dielectric properties are modulated by the incoming THz pulse, which is translated to po-

larization modulation in a propagating light wave through the crystal.

2.2.2 Solid-State Electronic and Custom Technologies

Solid-state electronic technology, existing in the THz frequency range, are almost completely

based on compound III-V sources. Frequency multiplication based approaches employ a
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Figure 2.9: THz broadband time-domain spectroscopy based on photoconductive generation and detec-
tion [7].

higher power microwave source which drives a chain of frequency multipliers, with ampli-
fiers inserted as per requirements. It is difficult to achieve full system integration even in
solid-state MMIC technology and most of the systems are module-based waveguide coupled
arrangement. A typical 300 GHz Tx-Rx system from Virginia Diodes, Inc. has been shown
in Fig. 2.10 [35]. Each multiplier is generally based on planar GaAs based Schottky diodes
and frequencies as high as 2.7 THz with few pnW of power has been reached. Higher output
power require gas lasers and free-electron lasers, which have shown output powers as high
as 30 mW [7]. Until recently, integrated silicon technology did not exist in this frequency
range.

Solid-state device based detection system allows for phase detection using down-conversion
mixers and GaAs-based Schottky diodes and have reached frequencies of 2.5 THz [7]. Cryo-
genic cooling is often required for low-noise operation, and super-conducting SIS mixers are
often the technology of choice, specially for space-borne applications. Thermal absorption
based broadband detectors such as golay cells, pyro-electrical detectors, bolometers are often
used as standards for power measurements at these frequencies and they will be compared

with our work in Chapter 7. Comprehensive treatise on this subject can be found in [118]
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Figure 2.10: A 300 GHz transmitter and a 300 GHz receiver system from Virginia Diodes, Inc. [35]

and [119]. Until recently, there were no silicon-based THz detectors at these frequency
ranges.