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Abstract

It is well-known that if one integrates a Schur function indexed by a partition A\ over the symplectic
(resp. orthogonal) group, the integral vanishes unless all parts of A have even multiplicity (resp. all
parts of A are even). In a recent work of Rains and Vazirani, Macdonald polynomial generalizations
of these identities and several others were developed and proved using Hecke algebra techniques.
However at ¢ = 0 (the Hall-Littlewood level), these approaches do not directly work; this obstruction
was the motivation for this thesis. We investigate three related projects in chapters 2—4 (the first
chapter consists of an introduction to the thesis). In the second chapter, we develop a combinatorial
technique for proving the results of Rains and Vazirani at ¢ = 0. This approach allows us to
generalize some of those results in interesting ways and leads us to a finite-dimensional analog
of a recent result of Warnaar, involving the Rogers—Szeg6 polynomials. In the third chapter, we
provide a new construction for Koornwinder polynomials at ¢ = 0, allowing these polynomials to
be viewed as Hall-Littlewood polynomials of type BC. This is a first step in building the analogy
between the Macdonald and Koornwinder families at the ¢ = 0 limit. We use this construction in
conjunction with the combinatorial technique of the previous chapter to prove some vanishing results
of Rains and Vazirani for Koornwinder polynomials at ¢ = 0. In the fourth chapter, we provide
an interpretation for vanishing results for Hall-Littlewood polynomials using p-adic representation
theory; it is an analog of the Schur case. This p-adic approach allows us to generalize our original
vanishing results. In particular, we exhibit a t-analog of a classical vanishing result for Schur
functions due to Littlewood and Weyl; our vanishing condition is in terms of Hall polynomials and

Littlewood-Richardson coefficients.
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Chapter 1

Introduction

1.1 Branching Rules for Classical Groups and Generaliza-
tions

Macdonald polynomials were first introduced by I. G. Macdonald in the late 1980s (see [14]) and
continue to make important appearances in a variety of fields such as algebraic geometry, physics,
representation theory, and combinatorics. They provide an example of a family of symmetric func-

tions, that is, they are invariant under all permutations of the variables. For example, note that
flx1, @0, w3) = 21 + 23 + T22 + T304
is not a symmetric function since f(z1,z2,x3) # f(x2,z1,23), but
g(x1, 20, 23) = 21 + To + X3 + 23T0 + TIx + 2wz + TIX) + TiT3 + TIXH

is indeed a symmetric function. Macdonald polynomials are indexed by partitions (a decreasing
string of nonnegative integers, only finitely many of which are nonzero), and have as arguments two
parameters ¢, in addition to variables x1,...,z,; they are denoted Py(z1,...,2n;q,t). These poly-
nomials contain many other important and well-studied families of symmetric functions as limiting
cases of the parameters. For example, at ¢ = ¢, one obtains the Schur functions, and at ¢ = 0
the Hall-Littlewood polynomials. Macdonald polynomials, and their degenerations, are important
examples of orthogonal polynomials. In other words, these symmetric polynomials are uniquely

determined by the following two requirements:
(i) Pr(z;q,t) = 2* + lower-order terms,

(i) (Px, Pu)g: = 0if X # p,
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where the inner product in (ii) is with respect to a certain density on the n-torus. We refer the inter-
ested reader to [16] for an excellent introduction to these polynomials, and the theory of symmetric
functions. We will now explain some connections between symmetric functions and representation
theory that served as the motivation for this thesis.

A crucial problem in representation theory can be described in the following way: let G and H
be complex algebraic groups, with an embedding H «— G. Also let V be a completely reducible
representation of G, and W an irreducible representation of H. What information can one obtain
about [V, W] := dim Homg (W, V'), the multiplicity of W in V? Here V is viewed as a representation
of H by restriction. Such branching rules, as they are called in the literature, have important
connections to physics as well as other areas of mathematics. There are often beautiful combinatorial
objects describing these multiplicities. One prototypical example is that of the symmetric groups
G =S5, and H = S,,_1: the resulting rule has a particularly nice description in terms of Young
tableaux, an important object in combinatorics.

The two motivating examples for this thesis are the restrictions of Gla, to Sp, (the compact
symplectic group) and Gly, to O, (the orthogonal group); the combinatorics of these branching rules
was first developed by D. Littlewood and continue to be a well-studied and active area at the forefront
of algebraic combinatorics and invariant theory. These pairs are also important because they are
examples of symmetric spaces. That is, G is a reductive algebraic group and H is the fixed point set of
an involution on G; S = G/ H is the resulting symmetric space. The multiplicities in these branching
rules are given in terms of Littlewood-Richardson coefficients, another important entity described
in terms of tableaux and and lattice permutations. In fact, since Schur functions are characters
of irreducible polynomial representations of Gls,,, one may rephrase these rules in terms of Schur
functions and symplectic characters (respectively, orthogonal characters). A classical restriction
rule of this flavor is the following: if one decomposes a Schur function sA(:clil, ..., 1) in terms of
symplectic characters, the coefficient on the trivial character is zero unless the indexing partition A
has all parts occurring with even multiplicity (there is a similar statement for the orthogonal group).

That is,

Theorem 1.1. [16] For any even integer n > 0, we have

1, if all parts of A\ have even multiplicity,
/ sx(9)dS =
SeSp(n) O7

otherwise

(where the integral is with respect to Haar measure on the symplectic group).
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Theorem 1.2. [16] For any integer n > 0 and partition A with at most n parts, we have

1, if all parts of A are even,

/ 52(0)dO =
0eO(n) 0,

otherwise

(where the integral is with respect to Haar measure on the orthogonal group).

Proofs of these identities may be found in [16]; they involve structure results for the Gelfand pairs
(GL,(H),U(n,H)) and (G, K) = (GL,(R),O(n)). Note that using the eigenvalue densities for the
orthogonal and symplectic groups, we may rephrase the above identities in terms of random matrix

averages. For example, the left-hand side of the symplectic integral above can be rephrased as

1
21n!

/sx(zl,zfl,zmzz_l,...,zn,zgl) H |zi — 271 H |zi+zi_1—zj—zj_1|2dT,
T

1<i<n 1<i<j<n

where

T:{(Zla”'vzn) : |Zl| == ‘Zn| = 1}7
dz;
dr =] —2—
1;[ 271'\/—12]'

are the n-torus and Haar measure, respectively.

In 2005, Rains [18] conjectured the existence of (g, t)-analogs of such restriction rules for Schur
functions. That is, he conjectured choices of densities such that when one integrates a (suitably
specialized) Macdonald polynomial against it over the n-torus, the result vanishes unless the indexing
partition satisfies some explicit condition. Moreover, the values of the integral when the condition is
satisfied are “nice,” and at ¢ = ¢ one recovers a Schur identity akin to those discussed in the previous
paragraph. In 2007, Rains and Vazirani [20] developed affine Hecke algebra techniques that allowed
them to prove almost all of these results. For example, in the symplectic case, their result is the

following:

Theorem 1.3. [20] For any integer n > 0, and partition \ with at most 2n parts, and any complex

numbers q,t with |q|,|t| < 1, the integral

+1_+1
(z509) (5727 q)
/ 1<i<n (tzz ’q) 1<i<j<n (tzz ZJ aq)

vanishes unless A = p? for some p.

To prove these results, they studied nonsymmetric versions of these integrals and showed (1) that

these are annihilated by a particular ideal of the affine Hecke algebra, and (2) that the partition cor-
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responding to any such annihilated functional satisfies the appropriate vanishing condition. However,
many of the relevant difference operators do not behave well under the specialization ¢ = 0, so this
method does not directly work in that case. This thesis originated from this particular obstruction

and tries to make a systematic study of such vanishing results for Hall-Littlewood polynomials.

1.2 A Combinatorial Technique

In the first part of this thesis, we develop a direct approach for proving the identities of [20] at the
Hall-Littlewood level; an important by-product of this approach is that it allows us to generalize
some of those results in different ways. Our method is combinatorial in nature, and relies heavily

on the structure of the Hall-Littlewood polynomial as a sum over the Weyl group:

Theorem 1.4. [16] The Macdonald polynomial Py(x1,...,2n;q,t) at ¢ =0 is given by

vAl(t) Zw(x)‘ 11 M)

XT; — X
wESy, 1<i<j<n ~* J

A

where we write x> for xi‘l --xpm and w acts on the subscripts of the x;. The normalization 1/v)(t)

has the effect of making the coefficient of > equal to unity.

In particular to prove the symplectic group result, we integrate each term directly and use induction,
noting that there are only simple poles at zero. In fact, this argument shows that each individual
term vanishes unless A has all parts occurring with even multiplicity. One can then combine terms

and use t-combinatorics to obtain the result. We state the theorem in the symplectic case:

Theorem 1.5. We have the following identity (see [23] and theorem 4.1 of [20])

- t2)
L b e AW (v, 0,007 = — 200D
Z/ )\(xl ) R ) K ( \[v ) ) (1—152)”’1)#(152)7
when X\ = u? for some p (i.e., all parts of X occur with even multiplicity) and 0 otherwise. Here Z

is a normalization which makes the integral 1 when A = 0.

The constants ¢,,(t?) and v, (t?) are as defined in [16], and Ak is the ¢ = 0 symmetric Koornwinder
density [13]. Similar arguments can be used to give a new proof of the well-known fact that the Hall-
Littlewood polynomials form an orthogonal basis with respect to the standard symmetric density,
A(S") (z;t). The orthogonal group cases are more complicated due to the existence of poles on the
torus, so one needs some extra technical arguments, although the basic idea remains the same.

As mentioned above, there are several interesting features of this method. The first is that, in
the four orthogonal group cases (one for each component, parity), we are able to introduce an extra

parameter o and obtain a nice evaluation that becomes the original vanishing result at a = 0. In
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these cases, the evaluations are in terms of Pfaffians of suitable matrices; moreover, the terms in the
expansion of the Pfaffians are exactly the individual term integrals described above. For example,

in the O (2n) case, we first show the following:

Proposition 1.6.

1

P
ol — gy 1kl

/RA (@F', .2 ) A (11 V) [[( - aaf)dT =
=1

where the 2n X 2n antisymmetric matrizc [aj,k]/\ is defined by

@} = (14 )X (i) = ek odd + 2(=0)X (=)= (\o—k) evens

for1 <j<k<2n.

In fact, this formula is a t-analog of a result obtained by Forrester and Rains [7] when studying the
Hammersley process. Their evaluation of the above Pfaffian (note the ¢-independence) enables us

to prove the following result:

Theorem 1.7. [23] Let X\ be a partition satisfying [(X\) < 2n. Then

n

1 / @n) . +1. 3 A (0) +1
- P (e AR (£1, V) (1 — axFhydT
[ AW (1, £v/pyar Jr i )E

_ U/\(t(f?f(_t)t)% [(_a)#odd parts of A + (_a)#even parts of )\]
We mention that there are analogous results for the O~ (2n), 0" (2n +1),0~ (2n + 1) cases as well,
and the ¢t = 0 versions and related Pfaffians were studied in [7]; one can find the details in the first
section of the thesis.

Another nice consequence of our technique involves a recent identity discovered by Warnaar for
Hall-Littlewood polynomials [24]. He uses the Rogers—Szegé polynomials (denoted H;(x;t)) to unify

some Littlewood summation identities for Hall-Littlewood functions:

Theorem 1.8. [2/]

ZPA(M)( [T #Zwosn ] Hmm)(,@/a;t))(—a)#odcw
A i>0 even >0 odd
_ H 1—t:cJ:1:k H l—a:cj l—ﬂxj).

o (1—zjxp) ; (1—z;)(14x;)

We find a two-parameter integral identity and, using a method of Rains [18], we show that in the
limit n — oo it becomes Warnaar’s identity. Thus, the following identity may be viewed as a

finite-dimensional analog of Warnaar’s summation result:
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Theorem 1.9. [23] Let X\ be a partition satisfying [(X\) < 2n. Then
n
7/ka1 9 ey 7:7‘,:151/‘) :I:l i\[Hl_OZx —ﬁxfl)dT
i=1

-l [( [T e (@858) TT Ho 0 (850 (=) #1)

oA(t)(1 —t 50 50

+ (H Hm2i+1(>\) (O‘ﬂ§ t) H Hm2i(>\) (ﬁ/a; t)) (a)#EUen(A)] :

i>0 i>0

where 7 = [ AW (41, +v/2)dT

Just as is the case with Warnaar’s identity, special choices of the parameters o« and [ recover
interesting integral identities. Finally, there are some identities which are not amenable to the
Hecke algebra approach of [20] or where the values of the integral (when it does not vanish) are

intractable; our method proves to be fruitful in those cases.

1.3 Koornwinder Polynomials

Motivated by the earlier work of Macdonald, in the 1990s T. Koornwinder introduced the so-called
Macdonald-Koornwinder (or Koornwinder) polynomials. These (Laurent) polynomials have four ad-
ditional parameters other than (g, t), and satisfy a slightly different type of symmetry than the Mac-
donald polynomials: they are invariant under permutations of variables, as well as taking inverses.
It was later shown by van Diejen that Macdonald polynomials can be obtained from Koornwinder
polynomials via suitable limits of the parameters (see [6]). Just as in the Macdonald polynomial case,
standard constructions via difference operators do not allow one to control the polynomials when
g = 0 (we note that the above construction in the Macdonald case is due to Hall and Littlewood,
independently).

The second part of this thesis deals with an explicit construction for these polynomials. In

particular, we prove the following result:

Theorem 1.10. [22] Let X be a partition with I(A\) < n and |t], |to], ..., |[ts| < 1. Then the Koorn-
winder ¢ = 0 polynomial Kx(z1,...,2n;t;to,...,t3) indexed by X\ is given by

1 1—tz a1 —tz7t27t
un, (2) i % i %
ua(t; to, - Z ( I ot 11 1—z'z 1=zl )

ot weB 1<i<n 1<i<j<n J



where

u).(2;) =
r(z) i (A—toz; )(A—t1z; ) (A—taz] )(1—t327 ") if A > 0.

=3
g 1—2;

One immediately notes the structural similarity to the Hall-Littlewood polynomials, namely, as a
sum over the associated Weyl group (the symmetric group in the Hall-Littlewood case, the hype-
roctahedral group in the Koornwinder case). We show that these polynomials satisfy the defining
properties of Koornwinder polynomials, namely that they are BC),-symmetric Laurent polynomials
that are triangular with respect to dominance order and orthogonal with respect to the Koorn-
winder density A%) (z;t;t0,...,t3). To prove orthogonality, we use an adaptation of the methods
used in [23] to the type BC case. We note that this construction is a first step in understanding
Hall-Littlewood polynomials in the type BC' case. We mention that when two of the parameters are
equal to zero, our family becomes Macdonald’s (BC,,, B,,) two-parameter family at ¢ = 0. Finally,
with this construction of the Koornwinder ¢ = 0 polynomials, we may prove the results of [20]

involving Koornwinder polynomials using a direct approach analogous to that of [23].

1.4 Connection to p-adic Representation Theory

The last part of the thesis deals with an interpretation of the results of [23] in terms of p-adic
representation theory. The motivation for this connection stems from [15], [16, chapter 5], which
we briefly discuss. Let G = Gl,,(Q,), and let K = Gl,(Z,) be its maximal compact subgroup.
Then G/K is the affine Grassmannian and the spherical Hecke algebra H(G, K) is the convolution
algebra of compactly supported, K-bi-invariant, complex valued functions on G; it has a basis
given by {ca}i(an)<n, Where cy is the characteristic function of the double coset Kp K and p* =
diag.(p*,...,p*). Macdonald provides a Plancherel theorem in this context, where the zonal
spherical functions are given in terms of Hall-Littlewood polynomials with ¢ = p~!. One consequence

of this is another interpretation of Hall-Littlewood orthogonality:

Proposition 1.11. [15], [16, chapter 5] For partitions A, u of length at most n, we have

/PA(zh---,zn;p_l)Pu(Zfl,---,zgl;p_l)A(sn)(Z;p_l)dT
T
= 7'_1197“”’)*“”’)/ ex(g)en(g)dy,
) GLa(Qy)
where p = %(n —1,n-=3,....,1—n) and v,(p~ 1) = (H?Zl(l —p‘i))/(l —pHn.

Here Ag is the symmetric ¢ = 0 Macdonald-Morris density [16]. Since Kp*K N Kp*K = () unless
A = u, the right hand side vanishes unless A = p. One may also compute meas.(Kp*K) using [15];
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in particular, the nonzero value of the right-hand side agrees with that obtained by integrating over
the torus. Given the structural similarity between orthogonality and the vanishing results of [23],
we were lead to search for p-adic interpretations of the latter results. In [21], we show that the
vanishing results for Hall-Littlewood polynomials have a p-adic interpretation analogous to that of
the Schur identities.

To phrase our result for the symplectic case, let ¥ be an unramified quadratic extension of
F = Qp, and let G = Gl2,(Qp) and H = GIl,(E), where p is an odd prime. Then there is an
involution on G that has H as its set of fixed points; S := G/H is a p-adic symmetric space. For
this symmetric space (and two others), relative zonal spherical functions and a Plancherel theorem
are found in [17]. The method used is that of Casselman and Shalika [3, 4], who provide another
derivation of Macdonald’s formula for zonal spherical functions (see [15] for the general reductive
group case) using the theory of admissible representations of p-adic reductive groups. We use this

work to prove the following result:

Theorem 1.12. [21] We have the following identity

1 _
Z/Pf\Qn)(szl;p*l)A(I?)(z;:I:pil/Q,O,O;pfl)dT:p7<)"p2>/ cx(h)dh,
T H

where py = (n—1/2,n—3/2,...,1/2—n) and c) € H(G, K) is the characteristic function of Kp K,
where K = Gla,(Zy) is the mazimal compact subgroup of G.

In particular, this gives an interpretation of theorem 1.5 using p-adic representation theory. Note that
we may evaluate the right-hand side by using the Cartan decompositions for G and H, along with
some measure computations. We mention that there are similar interpretations for other identities
in [23]; to prove those we use the Plancherel theorems from [17] and [9].

The method described above using integration over p-adic groups actually supports a gener-
alization of the usual vanishing identities at the Hall-Littlewood level; we briefly discuss it here.
Note first that the symmetric function interpretation of theorem 1.5 is that it gives the con-
stant coefficient in the decomposition of P)\(xlil, ...,xr¢) into Koornwinder ¢ = 0 polynomials
{K,(z;t; £V1,0, O>}u6A3§' A natural question, then, is whether there are interesting vanishing con-
ditions for the other coefficients in this expansion. We note that the ¢ = 0 version of this question

is addressed by a classical result of Weyl and Littlewood:
Theorem 1.13. Ifl(\) < n, we have the branching rule

P = 3 spu<x1,..-,xn)< > Cﬁ,ﬁ)

I(p)<n BeAS,
p=v?

where cﬁ)ﬂ are the Littlewood-Richardson coefficients and sp,, is an irreducible symplectic character.
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A consequence of this is that, for [(\) < n, the integral

/ 5x(S)sp,(S)dS
SeSp(2n)

vanishes if and only if cl’L g =0forall g = v? € AJ,. We prove that the Hall-Littlewood polynomials

satisfy the same vanishing condition:
Theorem 1.14. [21] Let A, € A}. Then the following three statements are equivalent:
(i) The integral

1
[ A (@5 £1/2,0,0; )dT

[ P R a1 VB 0,008 (52,0, 0:)aT

vanishes as a rational function of t.

(i) The Hall polynomials

gﬁ,ﬁ(t_l)
vanish as a function of t, for all B € NS, with all parts occurring with even multiplicity.
(iii) The Littlewood-Richardson coefficients
Cu,8
are equal to 0 for all B € A;‘n with all parts occurring with even multiplicity.

The proof of this relies on p-adic arguments similar to those used to prove theorem 1.12, as
well as some technical arguments involving Hall polynomials and their relationship to Littlewood-
Richardson coefficients. As an interesting application of this result, consider the case where A\ has
all parts occurring with even multiplicity (and I(A\) < n), and g = (r) has exactly one nonzero part.
It is a fact that 6’5\27(” vanishes unless |\| = |3?| +r and X — 32 is a horizontal strip (see [16]). The

latter condition is equivalent to the following interlacing condition:

A > (821> A > (67)s.

but since both A and 82 have all parts occurring with even multiplicity this happens if and only if

= 2. Thus 022,(@ = 0 for all 3, so by the above theorem the integral

1
[ A (23 +V/,0,0;t)dT / B (@)K (w588, 0,0 AR (2 £v/2,0, 0 )T
72K\ » U, 05

vanishes as a rational function of ¢. In other words, if one expands P(Qn) (21 1) in terms of Koorn-

winder polynomials {KBC (z;t; £4/1,0,0)},, the polynomials KBC (x;t;£+/,0,0) for r # 0 do not
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appear in the decomposition.

One may also investigate the values of the integral
/ P>(\2") (Jc;ftl; t)Kfc" (z3t; £Vt 0, O)A(]?) (z;£V1,0,0;t)dT
T

in the case when it does not vanish; note that this would make explicit the decomposition of the spe-
cialized Hall-Littlewood polynomial in terms of the Koornwinder basis with parameters (¢; £1/%, 0, 0).
In fact, one may use the p-adic theory discussed above to provide a characterization of these values;

we discuss this in the last chapter of the thesis.

1.5 Outline of the Thesis

This thesis consists of three separate, but related, works. The beginning of each chapter contains
some relevant notation and terminology that will be used throughout the chapter. In the second
chapter, we develop a combinatorial technique for proving the results of Rains and Vazirani at ¢ = 0.
We first use this method to give another proof of Hall-Littlewood orthogonality. We then prove the
theorems mentioned in section 1.2, as well as several other results of a similar flavor. This chapter
appeared in [23]. The third chapter investigates Koornwinder polynomials at the ¢ = 0 limit, and
extends the ideas of chapter 2 to the type BC' case. In particular, we prove theorem 1.10 mentioned
in section 1.3. The fourth chapter interprets the results of chapter 2 using integration over p-adic
groups and ideas from p-adic representation theory. Alternate proofs and some generalizations of

the results of chapter 2 are given. This work relies on [3, 4, 17, 9, 15], among others.



11

Chapter 2

Vanishing Integrals for
Hall-Littlewood Polynomials

2.1 Background and Notation

We will briefly review Hall-Littlewood polynomials; we follow [16]. We also set up the required
notation.

Let A = (A\1,...,\,) be a partition, in which some of the A; may be zero. In particular, note
that Ay > Ay > -+ > X\, > 0. Let [(\), the length of A, be the number of nonzero \; and let ||, the
weight of ), be the sum of the nonzero \;. We will write A = 2 if there exists a partition p such
that Ag;—1 = A2; = p; (equivalently all parts of A occur with even multiplicity). Analogously, we
write A = 2u if there exists a partition p such that A\; = 2u; (equivalently each part of \ is even).
Also let m;(X) be the number of A; equal to ¢ for each i > 0.

Recall the t-integer [i] = [i]; = (1 —t%)/(1 —t), as well as the t-factorial [m]! = [m][m — 1]---[1],
[0]! = 1. Let

Gr(t) = (1—t)(1—¢%)---(1—1t"),

so that in particular ¢, (¢)/(1 —t)" = [r]!. Then we define

m; ()

S 115 O~ TTim0
i>0 j=1 >0
and
m; () 11—
o0 =TT TT 1= =TT 7225 = [T
i>1 j=1 i>1 i>1

so that the first takes into account the zero parts, while the second does not. The Hall-Littlewood
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polynomial Py(x1,...,2,;t) indexed by X is defined to be

1 ( N J)i—tl‘j)
wlx — ),
v (t) wgs:n H T; —

1<i<j<n ~ "

An

where we write z* for xi‘l R

and w acts on the subscripts of the x;. The normalization 1/vy(t)
has the effect of making the coefficient of #* equal to unity. (We will also write Pf\n) (z;t) and use
Py (2™ y(™):t) to denote Py(x1,...,Tm,Y1,---,Yn;t) in the final section.) We define the polyno-

mials {Rf\n) (x;t)} by Rg\n) (w5t) = U)\(t)Pf\n) (x;t). For w € S, we also define

RE\?U(IW) = w(x’\ H A txj), (2.1)

T — T
1<i<j<n " J

so that Rf\nl)u(x, t) is the term of Rf\n)(a:; t) associated to the permutation w.

There are two important degenerations of the Hall-Littlewood symmetric functions: at ¢t = 0, we
recover the Schur functions sy (z) and at ¢ = 1 the monomial symmetric functions my (). We remark
that the Macdonald polynomials Py(z;q,t) do not have poles at ¢ = 0, so there is no obstruction
to specializing ¢ to zero; in fact we obtain the Hall-Littlewood polynomials (see [16], chapter 6).
Similarly, when ¢ =t (or ¢ = 0 then ¢ = 0), P\(x;¢q,t) reduces to sy(z).

Let

ba(t) = H B (1) = vag (H)(1 = 1)1V,

i>1

Then we let Qx(x;t) be multiples of the Py(z;t):

Qx(z;t) = ba(t) Pa(z;1);

these form the adjoint basis with respect to the t-analog of the Hall inner product. With this

notation the Cauchy identity for Hall-Littlewood functions is

1 —tx;y;
Yo P@nat = [T 7— % (2.2)
Iy ig>1 Tl

G
We recall the definition of Rogers—Szegé polynomials, which appear later in this chapter. Let
m be a nonnegative integer. Then we let H,,(z;t) denote the Rogers—Szegd polynomial (see [1],

chapter 3, examples 3-9)

m

H,,(z:t) = ZZZ[TL, (2.3)
i=0
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where

[m]!

t

0, otherwise

is the t-binomial coefficient. It can be verified that the Rogers—Szegé polynomials satisfy the following

second-order recurrence:
H,(z;t) = (14 2)Hp—1(2z5t) — (1 — tmfl)sz_Q(z;t).

Also, we recall the definition of the symmetric ¢ = 0 Macdonald-Morris density [16]:

-1

< (n 1 -z
A(S)(x;t): H Ll -

1<idj<n 1-— tmim;

and the symmetric Koornwinder density [13]:

- 1 1 — p*2 1 — ptlg®t

Ag?)(x;a,b,c, d;t) = F1 ESTVaY I1 I1 e pes

27! 1§1:£n (1—ax;")(1—bx; )1 —ca;)(1 — dz;) 19115” 1 -t a;
(2.4)

where we write 1—z2 for the product (1—22)(1—z; 2) and lfxflx;d for (lfxixj)(lfxi_lxj_l)(lf
x;ta) (1 — xw;l) etc. For convenience, we will write A(Sn) and A(I?)(a, b, ¢, d) with the assumption
that these densities are in z1, ..., 2, with parameter ¢ when it is clear. We recall some notation for

hypergeometric series from [20] and [18]. We define the g-symbol

(a;q) = J[ (1 = ag),

k>0

and (a1, as, ..., a;;q) = (a1;q)(az; q) -~ (a; ). Also, let
n—1 )
(a:q)n = [ (1 - ad?),
j=0
for n > 0 and (a;¢)p = 1. We also define the C-symbols, which appear in the identities of [20]. Let

tl*iz.q)
Chwsg,t) = ] G
AR S itl—ige )

1SZ.Sl(u)(q”t 3 q)

O;(‘T; g,t) = H % H (q”ifﬂjtj*ix; q)

Hi () —ig: Hi—pji—i=1g- 0)’
1<i<i(p) (gt 7:4) 1<i<g<l(p) (gt 79)

CF(wig,t) = H (quitz_l(u)—ix; q) H (qritrat3=i=ig: q)
H y Y - 203 42—2% . it 2= =i .
1<i<i(p) (q Hit Z:Caq) 1<i<i<I(n) (qlt L t2—] ZI,q)
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We note that Cg(x; q,t) is the g, t-shifted factorial. As before, we extend this by
Cgv:t(a'h az,...,aq, t) = ng:(a/l; q, t) T 027i(al; q, t)

We note that for ¢ = 0 we have

1<i<l(p)
Cyy (0,8) = (1 — 1)/ Wu, (1),
C:(m; 0,t) =1
Finally, we explain some notation involving permutations. Let w € .S,, act on the variables z1, ..., 2,

by

w21 2n) = Zw(1) " Zwn)

as in the definition of Hall-Littlewood polynomials above. We view the permutation w as this string
of variables. For example the condition “z; is in the kth position of w” means that w(k) = i. Also

we write
“ZZ' _<w Zj’?

if i = w(i’) and j = w(j’) for some ¢’ < j’, i.e., z; appears to the left of z; in the permutation

representation Zw(1) " Zw(n)- For w € Ss5,, we use w(a:lﬂ, e xrfl)

)

to represent zy(1) - Zw(2n);

withzi:xifor1Signandzj:m;jnforn+1§j§2n.

2.2 Hall-Littlewood Orthogonality

It is a well-known result that Hall-Littlewood polynomials are orthogonal with respect to the density

Ag. We prove this result using our method below, to illustrate the technique in a simple case.
Theorem 2.1. We have the following orthogonality relation for Hall-Littlewood polynomials:

~ |
/ Py(xq,... ,a:n;t)PM(xl_l, . ,3:,:1; t)AEgn) (z;6)dT = 5M7n. .
T vu(t)

Proof. Note first that by the definition of Hall-Littlewood polynomials, the left-hand side is a sum

of (n!)? integrals in bijection with S,, x S,,. Now, since the integral is invariant under inverting all
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variables, we may restrict to the case where A > 1 in the reverse lexicographic ordering (we assume
this throughout). We will show that each of these terms vanish unless A = u, and this argument
will allow us to compute the normalization in the case A = p. By symmetry and (2.1), we have

. | -
P (@ ) PO (2 ) AT = —— / RS, (3 t) R (215 ) AV dT,
| A wore A = o 3 [ R RzE AL

PESn

Claim 2.1.1. We have the term evaluation
/ RS (o ) RE) (2~ DAL AT = 110
T

if o ---xﬁ”x;(‘ﬁ x;(’:; =1, and is otherwise equal to 0. Here i(p) is the number of inversions

-1
n -

of p with respect to the permutation xl_l S
Note that i(p) is the Coxeter length and recall the distribution of this statistic: 3 t1P) = [n]!.

To prove the claim, we use induction on n. Note first that for n = 1, the only term is [ 2}z "' dT,
which vanishes unless \; = ;. Now suppose the result is true for n — 1. With this assumption we

want to show that it holds true for n variables. One can compute, by integrating with respect to x;

in the iterated integral, that the left-hand side above is equal to

A=t 1) te; —x1  dr (n—1) (n=1)/ 1. A (n—1)
RV R HAVAN ;0)dT,
/(/T 0 s )RR @RS @ AT ()

—1 —
T =pTy

where

id = id with 1 deleted,

p = p with z7" deleted,

o~

A = X\ with Ay deleted,

1= p with Hp=1(1) deleted.

Recall that Ay > pq > p; for all 1 < ¢ < n. Thus, the inner integral in x; is zero if A} > Hp=1(1) and
is ¢ <em g A1 = fi,-1(1)- In the latter case, note that 2> 11, so we may use the induction
hypothesis on the resulting (n — 1)-dimensional integral, and combining this with the contribution
from x; gives the result of the claim.

Note that the claim implies each term is zero if A # u, so consequently the entire integral in

zero. Finally, we use the claim to compute the normalization value in the case A = . By the above
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remarks, we have

~ ! .
/ P (a5 t) P (xS A AT = — 3 £(0).
T vp(t) pESu:

A1 An . H1 —Hn _
Ty TGy T ) =1

Note that the permutations in the index of the sum are in statistic-preserving bijection with S, () x
Sy () X +++ 80, using the comment immediately following the claim, the above expression is equal

to

n! ip) _ n! . _ n!
RO VR § G )

PES g (1) X Smq () X

as desired. 0

2.3 An a-generalization

In this section, we prove the orthogonal group integrals with an extra parameter «. This gives four
identities—one for each component of O(l), depending on the parity of I. First, we use a result of

Gustafson [8] to compute some normalizations that will be used throughout the chapter.
Proposition 2.2. We have the following normalizations:
(i) (symplectic)

(1-0"

AP (2 +/1,0,0;t)dT = ———"—
B0 e 0000 = G

(i)

- 1—t)»
A (41, VA, 0,05 )T = =D
R = VeV

(iii) (OF(2n))

/TA%)(x;iLi\/i; t)dT = (Ql(t_t;ti:
(iv) (O~ (2n))
(1—t)mt

AP (g4t V6T =~
/T L ) (t3;t)2n—2
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(v) (OF(2n+1))

~ 1— n+1
/A&?)(x;t,—l,i\/i; far = L=
T (t;t)2n+1
(vi) (O~ (2n+1))
~ _ \n+1
/ A (21, —t, £vE1)dT = -y
T () 2n+1

We omit the proof, but in all cases it follows from setting ¢ = 0 and the appropriate values of

(a,b,c,d) in the integral evaluation:

(t, 2" =2 I abed; q)
(ti+1 tiab, tiac, tiad, tibe, tibd, ticd; q)’

/ Ag?) (x;a,b,¢,d;q,t)dT = H
T 0<j<n
which may be found in [8].

We remark that at ¢ = 0 the above densities have special significance. In particular, (i)
is the eigenvalue density of the symplectic group and (iii)—(vi) are the eigenvalue densities of
Ot (2n),07(2n),0"(2n + 1), and O~ (2n + 1) (in the orthogonal group case, the density depends
on the component of the orthogonal group as well as whether the dimension is odd or even). The
density in (ii) appears in corollary 2.14, and that result corresponds to a summation identity of
Kawanaka [12] in the n — oo limit (this connection is discussed in detail later in the chapter). One
should also see [19], which conjectures an elliptic version of the integral identity.

In this section, we want to use a technique similar to the one used to prove Hall-Littlewood
orthogonality. Namely, we want to break up the integral into a sum of terms, one for each permuta-
tion, and study the resulting term integral. The obstruction to this approach is that in many cases
the poles lie on the contour, i.e., occur at £1, so the pieces of the integral are not well defined. How-
ever, since the overall integral does not have singularities, we may use the principal value integral
which we denote by P.V. (see [10], section 8.3). This is basically an average of integrating along
two contours: one is obtained by shrinking the contour, and the other is obtained by enlarging the

contour (both by €, as e — 0). In other words,

dz . 1 dz dz
PV [ e = i g /Izlﬁfu)% o /wa(z)% ]

We extend this to T,, by iterating this procedure for each copy of T7. We first prove some results

involving the principal value integrals.

Lemma 2.3. Let f(z) be a function in z such that zf(z) is holomorphic in a neighborhood of the
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unit disk. Then

1 fA) + f(=1)
P.V. T =
V/Tf(z)l—z_Qd 4
Proof. We have
1 1 1 1 1 1
P.V. ———dz= lim — d
V 27'('\/—1 ‘Z‘:l f Z)l — 2_2 z o eir(glJr 2 [27‘(\/—1 |Z|:1—E Zf(Z) 22 -1 i
1 1

dz|.
N e zf(z)ZQ_ . z]

But now as zf(z) is holomorphic in a neighborhood of the disk, and the singularities of 1/(2% — 1)
lie outside of the disk, the first integral is zero by Cauchy’s theorem. Using the residue theorem for

the second integral (it has simple poles at +1) gives

1 zf(2) 2f(2) L@ fE=n) 1
lim 5 [Resms T F R e | T2 3 T oa | C O+
O
Lemma 2.4. Let p be a function in x1, ..., x, such that z;p is holomorphic in x; in a neighborhood

of the unit disk for all1 <i <mn and p(£1,...,£1) =0 for all 2™ combinations. Let A be a function
n x1,...,&, such that A(£1,...,£1,2,11,...,2,) is holomorphic in x;, 11 in a neighborhood of the

unit disk for all 0 <i <mn —1 (again for all 2° combinations). Then

1
P.V. A dl = 0.
[ra 1] ==

1<i<n i

Proof. We give a proof by induction on n. For n = 1, since x; - p- A is holomorphic in z; we may

use lemma 2.3:

P.V./Tp~A- 1_193_2de i[p(l)A(l) +p(—1)A(=1)].

But then p(1) = p(—1) = 0 by assumption, so the integral is zero as desired.
Now suppose the result holds in the case of n — 1 variables. Consider the n variable case, and
let p, A in x1,...,z, satisfy the above conditions. Integrate first with respect to z; and note that

1 - p - A is holomorphic in x; so we can apply lemma 2.3:

1 1
P.V./Tp.A. H 1_xi2dT—4P.V./T”lp(l,xg,...,xn)A(l,xg,...,xn) H

1<i<n 2<i<n i

1 1
—|—1P.V./ p(—1, 29, ..., 20)A(=1,29,...,2,) H —dT.
Tn_1

2<i<n 1 4

But now the pairs p(1,z2,...,2,), A(l, 29, ...,2,) and p(—1,22,...,2,), A(=1,z9,...,x,) satisly
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the conditions of the theorem for n — 1 variables zo, ..., z,, so by the induction hypothesis each of

the two integrals is zero, so the total integral is zero. O

For this section, we let ps, = (1,2,...,2n). We also let 1¥ = (1,1,...,1) with exactly k ones.
As above we will work with principal value integrals, as necessary. For simplicity, we will suppress

the notation P.V.

Theorem 2.5. Let [(\) < 2n. We have the following integral identity for OF(2n):

P,\a: s Ly
(AW (+1 i\f dT/ '

¢2n( ) |:(—OZ)# of odd parts of A + (—Oé)# of even parts of A

T oa()(1—t)2n

n
2 Al ili\fl_[l—aa:
=1

_ [211}' |: # of odd parts of A # of even parts of /\:|
= () (—a) + () :
Proof. We will first show the following;:
21 (n) . 1 A
/RA(CL'l gy Ly ,t)A Zt]. iJ Z:HI 17C¥l' dT— mpf[aj’k] s

where Pf denotes the Pfaffian and the 2n x 2n antisymmetric matrix [a; x]* is defined by

a5k (1 + )X()\j—j)—()\k—k) odd + 2(_a)X(Aj—j)—(Ak—k) evens

for 1 <j<k<2n.

First, note that by symmetry we can rewrite the above integral as 2"n! times the sum over all
matchings w of xlil, ..., where a matching is a permutation in S, such that x; occurs to the
left of x;l and x; occurs to the left of z; for 1 <14 < j <n. In particular, z; occurs first. Thus, we

have

/R(f")( VN GICSTESVO | (8
=1

n

= 2%!2/32’” AP (+1£v0) [[(1 - axfhydr,
i=1
where the sum is over matchings w in So,.
We introduce some notation for a matching w € Sa,. We write w = {(i1,4}),..., (in,4,)} to
indicate that x; occurs in position i, and :17,:1 occurs in position ¢, for all 1 < k < n. Clearly we

have i, < ) for all k and ¢; < iy, for all j < k.
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Claim 2.5.1. Let A = (A1,...,Aapn) with Ay > XAy > -+ > Aoy, € Z. Then we have the following

term evaluation:

n +1 :I:l (n) - e(w) A
2 n!P.V./TRA,u,(ac1 AR (£1, V1) 1:[1 (1 - azt = i I @\

o is the (iy, i) entry of the matriz [a; ). In particular, the

where e(w) is the sign of w and az i

term integral only depends on the parity of the parts A1,..., Aoy.

Let u be such that A = u + p2,. We give a proof by induction on n, the number of variables.
For n = 1, there is only one matching—in particular, xl_l must occur in position 2. The (principal

value) integral is

/ xAI_A2 (1 — thQ) (]_ — O[{El)(l — ax;l)dT _ / A1 —As ( O[xlg(]. — le )dT
T T

' (1—a7?) (1—ta?)(1 —ta7?) “ (1 —ay")( —t)
_ / x(lta %) — oz erl_l)dT
_— (1—tx2)(1—272) ’

and A\; — A2 > 0. Note that the conditions for lemma 2.3 are satisfied. Applying that result gives
that the value of the integral is 2(—a)/2(1 —t) if A\; — Ag is odd, and (1 + a?)/2(1 —t) if A} — Ay is
even, which agrees with the above claim.

Now suppose the result is true for up to n — 1 variables and consider the n variable case. Note

first that ¢; = 1. One can compute, by combining terms involving x; in the iterated integral, that
n
2%!/}22" AW (1, +v7) ) []( - eaf
i=1

/ / M-Ay (1 —awy)(1— azyt) H (t —z125)
Thn-1 Ty 1 _txl)(l _xIQ) ZTj: (1 —txlx])
—1

—1
1= <ty <)

(t— xlxj_l)(t — T1%;)

I1 i dT) P, ,dT,
e (1 —taiz; ) (1 — tzrzj) '
T1=0j <) <py
where
F5p=2"""(n— D)\R; (a3, a2 ) ARV (£, 2V [J(1 - aaif
=2

and A is A with parts Ay, A, deleted; @ is w with a1, 27" deleted.
In particular, the conditions for lemma 2.3 are satisfied for the inner integral in x;. Note that

the terms
(t —zqxy) (E— xlxi_l)
(1- tmlxi) (1-— txlgzji_l)
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give 1 when evaluated at x1 = %1, so the above integral evaluates to

t—x;
2 J
F o (14 a? = 20) H 1—txj)
x5
x1<wzj<wzfl<wm;1

. t+x;
P (14+a%+2 flMM( J)dT
+ Iy 5 (L+a” +2a)(-1) 11 1+ tx,

-1
J

Ij:
-1
1 <wZj<wx; <wl

But now since (¢t — x;)/(1 — tx;) and (¢ + x;)/(1 + tz;) are power series in z;, we may apply the

inductive hypothesis to each part of the new integral: we reduce exponents on x; modulo 2. We get

Fy g (1402 —2a)( 11 (—xj))
x1<wxj<wjaz;f1—<wx;

1

+Fy - (140 +20)(-)M M ( I1 a:j) dT.

Ty
—1 -1
21 =0T <wy <w]

But now note that

_ 2 _ i1 —2

[ (1) = [ (1) [ (1) =(-1)""7,
xj: 1 1 g;j: 1 1 ‘Tj: 1 1
T1=RwTj<wT;  <wl; T1 =i <wT; <wl; T1=RwTj<wT; <wly

since #) — 2 is the number of variables between z; and xfl in the matching w. We can compute

(14 % = 20)(=1)172 + (1 + a® + 2a) (=) M

= (1+a)[(-1)% + ()M ] = 20(- 1) + (-)M T

v

2(—1)%(1+a?), if A\ — Ay +4f — 1is odd,

—4(-1)4a, if A\ — Ay 4147 — 1 is even.

Combining this with the factor 1/4(1 — ¢) and noting that

ZTjt

—1 —1
1< <w®]  <w

j
with

A= (A2 + 1a"'7)\i'1—1 +17>\i'1+1a"'a)‘2n)a
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gives that

Q”n!/R(j")( LA (£1, 1) H (1— azF

1
271—1 -1 ' . . i
= et 0 [ Rt oA D) [T - arar.
: ’ ’ i=1

Now set & = (pa, ..., Joif — 1 il 415 - - , l2n ), and note that A and Il + pan_2 have equivalent parts

modulo 2. Thus, using the induction hypothesis twice, the above is equal to

2" Y n—1)! i +1 +1 (n—1) =
gu_t)ail,ig(l)lfTprzn (T ATV (£, £V ];[1 (1—az;

A i’ ~
_ aim’l(*l) ! e(w) H JAHPeme _ e(w) H A
2(1—t) 2n=1(1—¢)n-1 ot 2n(1 —t)n ety

2<k<n 1<k<n

as desired. This proves the claim.
Note in particular this result implies that the integral of a matching w is the term in the expansion
of WPf[aﬂc]A corresponding to w.

Now using the claim, we have

/R,\ (@F', . 2t ) A (11, £V0) [[a - ez
i=1

=2l Y P.V./Rx,w(xfl,..., e AR (1, £V [](1 - axf
T =1

w a matching
in Sap
1
= ————Pfla; ]}
271(]_ _ t)n [a]ak} )

since the term integrals are in bijection with the terms of the Pfaffian.

Now we use this to prove the theorem. Using proposition 2.2(iii), we have

1 il &
fA(,;‘)(i17i\/i)dT/PA(xl s ) A (21, £V 1;[1 (1—azf
21— (1 —¢2) - (1 —7) 1
B (1—t)m ua(1)27(1 — t)»

1—-t)(1—12).-- (1 —t2") 1

- (1—1)2 v,\(t)Q"—le[aj’k}/\'

Pf[aj7k]>‘

But now by [7, 5.17]

Pf[aj#k]k — 271—1 (_Q)Z?il[)\j mod?2] + (_a) ?21[()\_7‘“1’1) rrlon]}7
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which gives the result. O

Theorem 2.6. Let I[(\) < 2n. We have the following integral identity for O~ (2n):

(1-a?) / +1 (n—1) = +1
- Py(zit, 2t L -0 AR TV (V) [ — azEhdT
[ AP (s, £/T)dT ' ' 1;[1

— ¢2n(t) |:(—Oé)# of odd parts of X _ (—Oé)# of even parts of )\:| .

uA(8)(1 — )"

Proof. We will first show the following:

n—1
n— 1+¢ 1
/RA w1 1A (V) [0 aaf)ar = | . >2n1(1_t)n1Pf[MP,
i=1

where the (2n + 2) x (2n + 2) antisymmetric matrix [M]* is defined by

M, =0,
M) = (=12 (=2 if | > 3,

M, =1, if k> 3,

M}, =a} 55 o if3<j<k<2n+2,

and the 2n x 2n matrix [a; ;)" is as in theorem 2.5.

Note first that the integral is a sum of (2n)! terms, but by symmetry we may restrict to the
“pseudomatchings”—those with +1 anywhere, but z; to the left of z; Yfor1<i<n—1andz to
the left of z; for 1 <14 < j <n — 1. There are (2n)!/2"!(n — 1)! such pseudomatchings, and each

has 2"~ !(n — 1)! permutations with identical integral.

Claim 2.6.1. Let w be a fized pseudomatching with (—1) in position j and (+1) in position k (here
1<j#k<2n). Then we have the following:

n—1

2"~ 1(n — 1)IP.V. /Rm o L) AT (1) [T (- aaitdr
=1
_ hoin . (14
:2"7,1 _1'_1)\—‘1-](‘ 2+X>k(
(n—DI(=1)" e
n—1
xP.V./R@g‘ D@ ARV (&1, v [ (1 - aaidr,
’ =1

where w is w with +1 deleted (in particular, a matching in San_2) and A is A with parts Aj, A
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deleted and all parts between \; and A, increased by 1, so that (in the case j < k, for example)
A= AN+ L e 4+ L A, -5 Aan).

We prove the claim. First, using (2.4), we have

271 (n — 1)IAPTY (£t £1)

H 1— a2 H 1-—- xiilel
= T T S T £1,_+1°
rignoy LH (L=t (L + Vi) (L= Vi) | 22 1 - tailad

Define the set X = {(zF!,2F") 11 <i# j <n— 1}, and let u", " (2;¢) be defined by

zi —tz
R)\,w(x?ﬂ, s T 17:|:1 t) (nwl)(z’t) H ZZ Z]
(Zqu)eX ¢ J
Zi <wZj
Also define p; and Ay by
(n—1) 1-— xﬂ o +1 T 1
"
U (x;t) 1-axi)=m —,
v 1 amma e s vema - vem L0 e =l =
and
H 1- xfdxjil H z; —tz; A
L<iss 1— tatlpt! Zi — Zj -
<i<j<n-—1 2 I (zi,2;)€X:
Zi<wZj
Note that
n—1 n—1 1
R>\7w(x1i1,..., x5 '+l t)A(n R (t, £V/1) H 1—ax p1A1H . —.
, — T
=1 i=1 7

Define analogously po and As using R;\’w(xlﬂ, .. ,xfﬁl;t) and Ag?_l)(il,i\/f) instead of using
R (21 £1;4) and ALY (4, £v/).

Then one can check Ay = Ay =: A and A(=£1,...,£1,2;41,...,2Z,—1) is holomorphic in z;q

(_1)Aj+k—2(142-t)

for all 0 <7 < n —2 and all 2 combinations. Also, the function p = p; — pa (resp.

pa) satisfies the conditions of lemma 2.4 if j < k (resp. j > k). So using

p=p1— (1Nt

that result, we have

1 o1+t 1
/pl'A' H 1 xfsz:(_l)/\ﬁk X 5 )/P2‘A' H ﬁdT,

1<i<n—1 i 1<i<n—1 (
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if j < k and

1 e (It 1
/pl'A' H 1_x—2dT:(—1)A’+k 1 5 )/pz'A' H =T,

1<i<n—1 i 1<i<n—1 "~ i

if 7 > k. Thus, in the case j < k we obtain

n—1
/Rx,w(ﬁﬂ,..., == t)A(" 1)(j:t +V/) H(l ~aaFydr

i=1

n—1
pea (1t n—
= (—1)NTE 2(1+1) 5 ) /nyw(xfl, aE ATV (L v T -

i=1
and analogously for the case j > k, which proves the claim.

As in theorem 2.5, we introduce notation for pseudomatchings. We will use the notation

{(.77 k)a (ilvill)7 ce (in—l’ Z.{n—l)}

for the pseudomatching with —1 in position j, 1 in position k and zy, in position i, 1:,:1 in position
i), for all 1 < k < n —1. Note that we have i, < ¢} and i; < i for | < k. We may extend this
to a matching in Sy, 11y by {(1,7 +2),(2,k +2), (i1 + 2,81 +2),..., (n—1 + 2,0, +2)} = {(j1 =
Ljl = +2), (o= 2,55 = k+2), .., (ns1s fas1)}, With ig +2 = jryo and i} +2 = j§ ., for all
1<k<n-1

Claim 2.6.2. Let w = {(j, k), (¢1,4}),. .., (in—1,i,,_1)} be a pseudomatching in Ss,, and extend it
to a matching {(j1 = 1,71 = j +2),(j2 = 2,j5 = k+2) ..., (Jnt1,Jn11)} of Sa(nt1) as discussed
above. Let A\ = (A1,...,A2n) with Ay > Ay > -+ > Ao, € Z. Then we have the following term

evaluation:

n—1
2n =1 'PV/RMU:C1 vzt 2O AYTY (v TT (- aafH)dT

i=1

_ 14+t e(w) H A

2 277,71(1 _ t)nfl JksJp”
1<k<n+1

We prove the claim. Let p be such that A = pu + pa,,. By claim 2.6.1 the above left-hand side is
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equal to

2 DCEDDTER [ Ry (0L et AR (1, AV [T5 (1 — aaF )T j <k,

sy Mn—1>

2" (n—1)!(— 1>* e 1<1+t>fR @F, . aE AT (21, 2V [0 (L — aafh)dT >k,

n—19
n— 1+t C: w
=2""(n - 1)!7( 1)1 1+Hap—1—ca( )M{\J{MQ)\JQ
n—1
’/TRAN?%---, uOARTV (=L V) [T (- awfhdr,
i=1

where co(w) is 0 if j1 > j5 (ie., (1,71) and (2,7j5) do not cross) and 1 if they do. Now we may
use claim 2.5.1 on the (n — 1)-dimensional integral: let 1z be the partition p with parts p; and py
deleted; note that A and IL + pon_2 have equivalent parts modulo 2. Using this, we find that the

above is equal to

1+t

n—1/ T+gh—1—ca(w) g s A
2" (n — 1)l ——(—1)11 1 SIMT 5 M g,
n—1
/ Rt pon s, (et t)A([?_l)(:I:l, +1/1) H (1 — azEh)dr
i=1
1+t _ e(w) i
= Jitiz—1—ca(w) jri Ao S\ H+p2n—2
9 —— =7 FUM M gy 2n=1(1 — t)n—1 H A

1<k<n-—1

_ 1+t e(w) H A\

2 277,71(1 _ t)nfl JksJp?
1<k<n+1

as desired.
Note that in particular this result shows that the integral of a matching is a term in Pf[M]*(1 +
t)/2"(1 — )"t

Now using the claim, we have

n—1
e 14t 1
/R,\ oE et LAY (v T awiﬂ)dT:( : )an(lt)anf[M]’\,
=1

since the terms of the Pfaffian are in bijection with the integrals of the pseudomatchings.

Finally, to prove the theorem, we use proposition 2.2(iv) to obtain

n—1

(1-a?) / +1 +1 A (n—1) 2 +1
- Py(z17, ..., 22,1, -1 ) A +t, +VE Il 1—ox;7)dT
[ AP (£t +v/1)dT (i ! 1A )i 1( )

(1 —a®) (1)1 —2) - (1 — ) 1
B ua(t)(1 —t)n+t 2n(1 — t)n—1

piian = ol C o pran,

Following the computation in [7, 5.21] (but noting that they are missing a factor of 2), Pf[M]*
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may be evaluated as

2" 2n o
_c (_a)zjzl[)\j mod2] (_a)zjzl[(/\j-‘rl) mod2] ’
(1—a?) [

which proves the theorem. O

Theorem 2.7. Let [(\) < 2n+ 1. We have the following integral identity for OT(2n + 1):

(1 - a) / +1 21 (n) s
_ Pz, e ) AR (-1, V0 T - axt
JAR (1, v8)dr ' B [[

o ¢2n+1(t) (701)# of odd parts of A + (701)# of even parts of A
- vA(t)(l _ t)2n+1 :

Proof. We use an argument analogous to the O~ (2n) case. We will first show the following;:

1

mpf[M]Aa

/R,\ ot et AW (8, -1, £V0) H (1 - azfh)dT =
i=1
where the 2n + 2 x 2n + 2 antisymmetric matrix [M]* is given by

My =1, ifl<k<2n+2,

M)=a} ;. f2<j<k<2n+2,
and as usual [aj7k])‘ is the 2n 4+ 1 x 2n + 1 antisymmetric matrix specified by theorem 2.5. The
integral is a sum of (2n + 1)! terms, one for each permutation in Ss,4+1. But note that by symmetry
we may restrict to pseudomatchings in So,4+1: those with 1 anywhere but z; to the left of x;l for all

1 < i <mn, and z; to the left of z; for 1 < ¢ < j <n. There are (2n+1)!/2"n! such pseudomatchings,

and for each there are exactly 2"n! other permutations with identical integral value.

Claim 2.7.1. Let w be a fixed pseudomatching with 1 in position k, for some 1 < k <2n+1. Then

we have the following:

2nn!P.v./RA,w eF et LAY (-1, v ] -
i=1

:Q”n!(—l)’“lP.V./RMU(xfl,..., e AR (1, v [ - T,
=1

where w is w with 1 deleted (in particular, a matching in Say,) and X is X with Ay, deleted and the
parts to the left of A\ increased by 1, i.e.,

5‘: ()\1 +17"~,)\k—1 +1,)‘k+17"',)‘2n+1)~
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We prove the claim; note that this proof is very similar to claim 2.6.1 for the O~ (2n) case. First,

using (2.4), we have

+2 1 — xilmil

- 1—uz;
2”n!A§?’)(t,—1,j:\/i) = H 1 1 1 1 H 1 ]11
1§i§n(1—ta:i Y(1+z7)(1 \fa: )(1—|—\fa: )1<1<J<n1—t:r

Define the set X = {(z;"",27") : 1 <i# j <n}, and let u(") * (x;t) be defined by

2 —tz;
R}Hw(fﬂ:ltl,..., %1717t) &7) (l’,t) H fzj
(zi,25)€X: ' J
2i<wZj
Also define p; and A; by
e T1 L 1 Il
“/\nw(x9t) 1 1 - 1 1 (1- =h
1<i<n (1_t$L )(1+$1 )(1_\/%‘%1 )(1—’_\/&51 ),’:1 1—$
and 1_ zilxj:l ) 1z,
H ES) ]ﬂ H L =A;.
1<idjen LT TG Sk, BT A
2i=wZj
Note that
Raw(@it, . af LAY ¢, -1, 2v0) T - azf A
A (7 ) };[1 =D 1H T

Define analogously ps and As using Rxw(mlﬂ,...,x#;t), and A(I?)(jzl,:t\/f), instead of using
R (%1, 151), and AP (¢, ~1, £VA).

Then note that A; = Ay := A. Some computation shows that A(%1,...,£1, 2;41,...,2,) I8
holomorphic in z;4; for all 0 < i < n — 1 and all 2! combinations. Further computations show that
the function p = p; — (—1)*~!p, satisfies the conditions of lemma 2.4, so we have

fraflt

—dT" =0,

or

n

which proves the claim.
In keeping with the notation of the previous two theorems, we write {(k), (i1,4}),. .., (in,4,)} for
the pseudomatching w with 1 in position k£ and x in position 7y, x,;l in position ¢}, for all 1 < k < n.

We can extend this to a matching in Sy(,41) by {(1,k+1),(ix + 1,4} +1),...,(in + 1,4, + 1)} =
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{Gr=100 =k+1) o, (ng1,dhgr)}s With i +1 = jipr,ip +1=4jh, for 1 <k <n.

Claim 2.7.2. Let w = {(k), (i1,4}), ..., (in,1,)} be a pseudomatching in San+1, and extend it to a
matching {(j1 = 1,j1 = k+1),..., (Unt1,Jn11)} as discussed above. Let X = (Ai,..., Aopy1) with

AL > Ao > > Aopy1 € Z. Then we have the following term evaluation:

2"n!P.V./ Rz, 2E LAY (¢, -1, V1) H
T i=1

_ e(w) A
- 2n(1 _ t)n H Mjku’,’c'

1<k<n+1

We prove the claim. Let p be such that A = g + pap41. By claim 2.7.1 the above left-hand side

is equal to
2%!(4)’“*1/ Ry oz, ot ) AR (21, 1) [ (1 - aaf
T i=1
n
= 2"pl(—1)%1 “hHME /TRM(J;%I,..., oL AW (£1, V1) H (1-azt
i=1

Now we use claim 2.5.1: let i be p with part u; deleted; note A—12n = i1+ p2y,. Using that result,

the above is equal to

2" n)(—1)71~ BN /RW,%,W (@F', . 22 ) A (11, £V []a - eaf
=1
o \ii—dilasA e(w) A+pan _ e(w) A
- ( 1) v Mjhj{ 2n(1 _ t)n aik,igc - 2n(1 _ t)n H JksJp?

1<k<n 1<k<n+1

as desired.
Note that in particular this result shows that the integral of a matching is a term in the expansion

of Pf[M]*.

1
on (1_t)'n.

Now using the claim, we have

1

mPf[M]*,

/le o AW (e -1 j:\/Hl—axil dT =
=1

since the terms of the Pfaffian are in bijection with the integrals of the pseudomatchings.

Finally, to prove the theorem, we use proposition 2.2(v) to obtain

1—a ) . .
M(K(Ef—lide/P ant LOAR( t—1i\/1:[11_ax
_ (1= a)¢anta(t) 1
N ’U)\(t)(]. - t)n+1 2n(1 *t)n

PEM,
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but by a change of basis [M]* is equivalent to the one defined in [7, 5.24], and that Pfaffian was

computed to be

i 2" ) ()i Dy mod2) | ()2 () modZ]}
—

which proves the theorem. O

Theorem 2.8. Let [(\) < 2n+ 1. We have the following integral identity for O~ (2n + 1):

(1+a) / +1 +1 A (n) -
- Pyt 2t 10 AR (1, —t, =V [[(1 - axf
JAR (A, —t, £vHdT 1 1;[1

_ ¢2n+1(t) {(_a)# of odd parts of X __ (_a)# of even parts of A:|
S a1 -

)

Proof. We obtain the O~ (2n + 1) integral from the O"(2n + 1) integral. See the discussion for the
O~ (2n+1) integral in the next section. The upshot is that the O~ (2n + 1) integral is (—1)1* times
the OF(2n + 1) integral with parameter —«. Using theorem 2.7, we get

(_1)|)\\ ¢27L+1(t) # of odd parts of A + Oé# of even parts of A
’U)\(t)(]. _t)2n+1 :

But note that (—1)* is —1 if A; is odd, and 1 if ); is even, so that (—1)I* = (—1)# of odd parts of A,
Also,

(_1)# of odd parts of )\(_1)# of even parts of A _ (_1)2n+1 - _1.

Combining these facts gives the result. O

We briefly mention some existing results related to theorems 2.5, 2.6, 2.7, and 2.8. First, note
that these four results are t-analogs of the results of proposition 2 of [7]. For example, in the O (2n)

case, that result states

(det(Lan + al)sy(U))veot (am) = gy Pllaga] = a¥ials mod2) 4 q3mlle ) mod,

where (-) o+ (2,) denotes the integral with respect to the eigenvalue density of the group O™ (2n).
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Also, note that the a = 0 case of these identities gives that the four integrals

—/P,\ ot et AW (1, £VE)dT

1 n—
E/Pk(g;fl,..., w1 )ATTY (£, 22T
1 n
E/Pk(ﬁl,..., o 10)AW (1, -1, £V dT
1 _
E/PA(xfl,...,xfl,fl;t)A%)(l,ft,ﬁ:\/f)dT

vanish unless all 2n or 2n + 1 (as appropriate) parts of A have the same parity (see theorem 4.1 of

[20]). Here Z is the normalization: it makes the integral equal to unity when X is the zero partition.

2.4 An «, f-generalization

In this section, we further generalize the identities of the previous section by using the Pieri rule to

add an extra parameter 5. The values are given in terms of Rogers—Szegé polynomials (2.3).

Theorem 2.9. We have the following integral identities:

(i) for O(2n)

1 +1 il . +1
f&?)(il,i\/i)dT/P”(xl o)A (11, £V0) ];[1 — BxE)dT +
2 92 -
fA(% 10)‘()(1 \ﬂ[)) /P#(xfcl,..., et 1) ATTY (£, 20 H (1—azF")(1—Bai)dT
2T (&, £/t)dT .
K )

= m [(HHmm(u (ap;t H Hopyo o0 (B i t) ) # of odd parts of u}

>0
(i) for O(2n +1)
(1-a)(1-p) +1 +1 A () - +1
Pu(aE', . aE 1AW -1, & (1- Eyar
J A&?)(t,l,i\/%)dT/ o : v 1:1 1 = )

(1+a)(1+5) P (pE! T Iy n RN
IA%)(l,—t i\[)dT/ u(xl sy, ) ) K ( ’ s \[)’L];[l( ax; )( ﬁxz )

— 2¢2n+1 o o s of
- W[(HH"L% (af;1) I;[)Hmzzﬂ(ﬂ) (B/ast) ) p #]

Proof. The proof follows Warnaar’s argument (see theorem 1.1 of [24]), with the only difference
being that we take into account zero parts in the computation, whereas Warnaar’s infinite version

is concerned only with nonzero parts. The basic method is to use the Pieri rule for P,(z;t)e,(x)
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in combination with the results of the previous section (the sum of the results of theorems 2.5, 2.6
for O(2n) and similarly theorems 2.7, 2.8 for O(2n + 1)). Note that Warnaar starts with the case
a = b = 0 in his notation (the orthogonal group case) and successively applies the Pieri rule two
times, introducing a parameter each time. Because we proved the « case in the previous section, we

need only use the Pieri rule once. O

Theorem 2.10. Write A = 070N 1m1(N) 9m2(N) Lo ith total number of parts 2n or 2n + 1 as

necessary. Then we have the following integral identities for the components of the orthogonal group:
(i) for O (2n)
7/&%,m7fﬁ ithH1_w (1 - BrtY)dT
=1
¢2n . "
= W{(H mas () (@B l_lewrl(A B/ t))( a)# of odd parts of A
120

>0

o (T Honar a0 @85) T Hoany (8/51) ) (—aa)# of even varts o1 ],

i>0 i>0
(i1) for O~ (2n)
n—1
(1_0‘2)2(1_52)/3@1 v 2t 1, LAY (&, £V [T (1 - aafh) (1 - Bait)dT

i=1

= (?(2;( t 2n [(HHmzz \) aﬁ t) HHmQ'rFl()\ ( /a§t))(_a)# of odd parts of A

>0

— (T Hose 0 (3 0) TT H ) (85 ) (e of evem parts of 2]

i>0 i>0

(iii) for OT(2n + 1)

W/ﬂm B LOAD (1 1, £V 1;[1 (1 — agF)(1 — BeF)dT

= 1}/\(;;)(2;4-_151;)2"“ |:( H ma;(X) O‘ﬂa H H’rn21+1(/\) (ﬂ/OL t))( ) of odd parts of A

>0 >0

(T Hos 0 @) TT Ho ) (8 1) ) (=) f evem st of A,

i>0 i>0



(iv) for O-(2n+1)

1+a)1 ) 0
(“‘—W/PA (@t 2~ AP (1, —t, ) []( - ezt — BaFh)dT
i=1
_ ¢2n+1( of odd parts of A
~antoit ot (LA 000 T a0/t oyt 7o
(H macn ) (@B50) [T Homao (ﬁ/a;t))(—a)# of even parts of A} ,
>0 i>0

where Z is the normalization at o« = 0,8 =0 and X = 02*,0*"t! as appropriate.

Proof. Note that the Hall-Littlewood polynomials satisfy the following property:

!
(H%)P)\(Zl, s 2nt) = Pagqi(z1, .., 25 t).

So in the case O(2n), for example, we have

P (zt, . aEht) = Pyypea (a2t
P, (:z:fl,...,xfil,l,—l;t) = —PH+12n(zf1,...,foil,l,—l;t).
Thus,
1 n i
TAUG jEﬁ)dT/Pﬂ(ﬁl,..., e AR (1, V0 ] - aafh)(1 - Baft)dr
K ) =1
(1 )(1 - ﬁQ) / +1 (n—1) = +1 +1
- P, (a7, 1 O)AR TV (1, £V [ (1= axf)(1 - BaEhydT
JARD (et +iyar ) = 1;[1
1 / +1 il & +1
=— Py (2, 2z ) AW (£1, £V7) V] = (1 = BafyaT +
[ AR (1, +/48)dT palet
1— 2 1— 2 -
~( o’)(1 = 57) Py (2t 2 1, -1 )A(n D (£t, £/1) H (1—azifh)(1—BxFh)dT
[APD ()T S " " palet ’

2¢2ﬂ( ) o arts o 2n
|:(H ma; (pu+12m) Oéﬁ, HHmzwl(lH‘lQ"( /Oé;t))(fa)# dd parts of pu+1 :|,

- Uu+12n (t)(l _t 2n >0

where the last equality follows from theorem 2.9(i). Now note that v, 12n (£) = v, (t), m;(p+12") =

m;_1(u) for all i > 1, and the number of odd parts in u + 12" is the same as the number of even
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parts in p. Thus the above is equal to

s [ (T v (@650) TT Ho 3/ i0)) (- o e o o],

U“( i>0 i>0

Then, taking the sum/difference of this equation and theorem 2.9(i), we obtain

2 / +1 2EL A - +1
_ P, (xF, .. aE ) AR (1, +V1) — BaFhydr
[AW 1, +vDar ) 1:[1

= (f)qzinftzn {( H H'rnzl()\) aﬁ t) H 7712¢+1(/\)(6/a; t)) (704)# of odd parts of A

>0 >0

- (TT Honaros 0 (@85 8) TT Ho ) (813 ) () # of e pasts of ]

i>0 i>0

and

2(1 — a?)(1 - B?) L ) ) n—1 1 1
fA(I?_l)(:tt,:t\f)/P/\(z% ,...,x}L 5, 1,-1 )A( (it i\[)llj[l(l_axi )(l—ﬁxii )ar

2¢2n ) of o arts o
_q]}\(t;zz21(|:(HHm2 A) O‘ﬂt DHJHWQL+1(A)( /Oé t))(ia)# Fodd parts of A

— (TT Honaor (@85 8) TT Hoa ) (85 1) ) (=) of vem posts of 2]

i>0 i>0

as desired. The O(2n + 1) result is analogous; use instead theorem 2.9(ii). Note alternatively that
as in the « case, we can obtain the O~ (2n + 1) integral directly from the O*(2n + 1) integral, since

the change of variables x; — —x; gives

n
/P,\(a:l s a1 AR (1, £V [ (1 - a1 - pat)dT
=1
:/P,\( aft, =t 1) AW (<1, £VE) H (14 azt(1 + BathydT
=1
:(—1)“‘/&(@:1,..., e AP (<16, £V []( + azfh) (1 + faih)dT,
i=1

and [ AW (1, —t, £v0)dT = [ Al (~1,t, £/1)dT, so that

(14 a)(1+5) +1 +1 R (n) - +1

_ P s 1L O)AR (1, —t, V1) Fyar
JAPa, t,iwdT/ M e e

(~)MA+a)(1+ ) +1 L (n) & 1y +1
= P s AR (L v ] (1 T,

fA&?(—l,t,i\/i)dT/ M ) 1;[1 For )
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which is (—1)1* times the Ot (2n + 1) integral with parameters —a, —f3. O

We remark that theorem 2.10(i) may be obtained using the direct method of the previous section.
One ultimately obtains a recursive formula, for which the Rogers—Szeg6 polynomials are a solution.
However, this argument does not easily work for O~ (2n), 0" (2n + 1) and O~ (2n + 1). Thus, it is
more practical to use the Pieri rule to obtain the O(l) (I odd or even) integrals, and then solve for

the components.

2.5 Special Cases

We will use the results of the previous section to prove some identities that correspond to particular

values of o and 3.

Corollary 2.11. (o= —1) We have the following identity:

1 2n) n) s 2¢2"
=1

where the normalization Z = ng?)(:tl, +/1)dT
Proof. Just put @ = —1 into theorem 2.10(i). O

Corollary 2.12. (o = —(3) We have the following identity:

—/ (@ L ) AP (21, £V [ (1 - o2af?)d
i=1

Oonl) (T Honn (=02 8) TT Hi (138 (—a)# o ot ot o6

o) (1 —t)2n g =6

+ (H ngi+1(>\)(_a2; t) H Hin()\)(—l;t))(—OZ)# of even parts of /\:|,

i>0 i>0

where the normalization Z = fA(I?)(j:L:I:\/i)dT. In particular, this vanishes unless all odd parts

of A have even multiplicity, or all even parts of A have even multiplicity.

Proof. Just put &« = —f into theorem 2.10(i). For the second part, we use [24, 1.10b]: H,,(—1;¢)

vanishes unless m is even, in which case it is (%), = (1 —)(1 — %) (1 —¢™71). O

Corollary 2.13. Symplectic integral (see theorem 4.1 of [20]). We have the following identity:

= pEL (n) o (t?) _ Cp(t*;0,t%)
/pA ot e AR (£VE,0,0)dT T =2 (2) Cl:I(t2;0,t2)’

when X\ = p? for some p and O otherwise (here the normalization Z = fA(I?)(:t\/f,O, 0)dT).
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Proof. Use the computation

AR (V10,00 = AP (21,40 [ (- ez - paih)]

and corollary 2.11 with 8 = 1. The result then follows from [24, 1.10b]: H,,,(x)(—1;t) vanishes
unless m;()\) is even, in which case it is (1 —¢)(1 —¢3)--- (1 — ™M=, O

We remark that this integral identity may also be proved directly, using techniques similar to
those used for the orthogonal group integrals of section 4. In fact, in this case, there are no poles

on the unit circle so the analysis is much more straightforward.

Corollary 2.14. We have the following identity (see [19] for a conjectured elliptic version, [11],

[12)):

1 + (n) P2n (V) O OY(t™;0,v1)
/PA eE e A (1,V1,0,0) = TN C)\:\(\/%;O,\/E)

(here the normalization Z = [ A%)(l, V1,0,0)dT).

Proof. Use the computation

AR (1,v4,0,0) = AP (1, V1) T (1= a2 =Bz, o s

and corollary 2.11 with 3 = —/t. The result then follows from [24, 1.10d]: H,,(vt;t) = H;nzl(l +
(ViY). O

2.6 Limit n — oo

In this section, we show that the n — oo limit of theorem 2.10(i) in conjunction with the Cauchy
identity gives Warnaar’s identity ([24, theorem 1.1]). Thus, theorem 2.10(i) may be viewed as a

finite dimensional analog of that particular generalized Littlewood identity.

Proposition 2.15. (Gaussian result for OT(2n)) For any symmetric function f,

/f EOAW (438 £1, b, t5)dT
lim_ = Ic(f;m;s),
/Ag?)(x;t;:tl,tz,tg)dT
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where [t], |t2],t3] <1 and m and s are defined as follows:

2k—1 2k—1
2Rl g 2k
mokg—1 = 75571

1 — ¢2k—1
t5F +13F +1 - 1F
mag = 1 _ 2k )
_k
Sk_il—tk.

Here Ig(;m;s) is the Gaussian functional on symmetric functions defined by
deg(f)

—1/2,—(p;—m;)? /255 1
/]Rdeg(.f)f H 27rs e dp;-

Proof. This is formally a special case of [18, theorem 7.17]. That proof relies on theorem 6 of [5]
and section 8 of [2]. The fact that two of the parameters ({o,...,t3) are +1 makes that argument

fail: however, replacing the symplectic group with O%(2n) resolves that issue. O

Note that a similar argument would work for the components O~ (2n), Ot (2n+1) and O~ (2n+1).

Proposition 2.16. We have the following:

—tx n
/H Jyk (1—ay?fl)( — By YA (y; t; 1, b, t3)dT

1-— a:Jy
lim -
e /A(I?)(y;t;il,tg,tg)dT
_ (taa, t30, 123,13 53; 1) H 1 —tajuy H (1 —ta?)(1 — ax;)(1 — Bz;)
(a2t 3%t;12)(aB;t) 1—xjzy (1 —tox;)(1 — taz;)(1 — xj) (1 4+ ;)
Proof. Put

T 4k oF & gk
f= H tjyk (1 — ayEh)(1 — By —exp(zpk pk )X —=t%)  pr(y)( +5))

x]yk & 1<k k

(see [16] for more details). Then use the previous result, and complete the square in the Gaussian

integral. O

Corollary 2.17. We have the following identity in the limit:

/ H Lo tagt (1—ay,fl>< — YA (gt £1, £VD)dT

nee /Aﬁ?)(y;t;il, £V1)dT

1 1 —tx;xy (1—ax;)(1 - Bz;)
-~ (aBst) l_lk 1—zjmy H (1—z;)(1+x;)
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Proof. Put ty,t3 = £/t in the previous result. Also note that
(Vta;t)(—Vtast) = (ta?;t?),

so that

(Vta, —vita, VI8, —V13;t)

=1.
(a?t, B2t 1)

Theorem 2.18. We have the following formal identity ([24] theorem 1.1):

7 Pa(@it) | ( T Huas ) (@858) T] Hu ) (8 ) ) (=) oF o merts o7
A

i>0 i>0

_ H 1 —taxjzy H (1—ax;)(1- ﬁxj).

o 1—zjxp (1—z;)(1+=x;)

Proof. We prove the result for ||, |3] < 1, then use analytic continuation to obtain it for all «, 3.
We start with the Cauchy identity for Hall-Littlewood polynomials (2.2). Using this in the left-hand

side of corollary 2.17, and multiplying both sides by («a/3;t) gives

[bA(t) Py O T — ayfh) (L - Byt AR (vt £1, i\/i)dT]
[ AW (ys t; 1, £v/1)dT
_ H 1 —tajzy H (1—ax;)(1- ﬁx]—).

1—zjxp (1—z;)(1+=x;)

(aB;t) Y Pa(a;t) lim
A

j<k

Now note that the quantity within the limit is the «, 8 version of the O7(2n) integral, see theorem

2.10(i). Using that result, the above equation becomes

b)\ (t)(bZn (tln [( H Hmzi()\) (Oéﬁ; t) H Hm2i+1()\) (6/0&; t)) (_a)#Odd parts of A

i>0 i>0

(aB;t) ; Pa(z:t) lim G =0

+ (H Hm2i+1(>\) (ap; t) H Hmzl-(A) (ﬁ/a; t)) (—a)# of even parts of A}

>0 i>0

1—tzjz 1—oaz;)(1— Bz,
1 [ (a1 = )

ik L%k (1 —z;) (1 + ;)

But note that

bat)  (1—1t)*

v)\(t) B ¢m0()\) (t),
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so that

ba(t)pan(t) — ¢an(t)

= = (1 — tmo()\)'i'l (1 = t2n ,
U t)(]- - t)2n (bmo()\) (t) ( ) ( )

which goes to 1 as mg(\),n — oco. Moreover, as mg(A) — oo, we have

mo(>\)

Hppo 0y (aBst) [ } (aB) =
t

Jj=0

mo(X)
Gy () (F) i
jz:;) 05 () Do ()~ () (o)

mo(A) ) _ 00 ;
_ (1— tmo(X) J+1)(1 — ¢mo(N) J+2) (1 - tmo(A)) p (aB)’
> 002 (1) @8 =2 G,

Jj=0 Jj=0

But for |af8| < 1, it is an identity that this is 1/(«f;1t).
Finally, we show that the second term in the sum vanishes. We must look at

Hm ()" Hyn)(B/ast),

mo(A),k—o0

where k is the number of even parts, so in particular k > mg(A). We have the following upper

bound:

mg()\)

lim ™M) Z l—t

A)
mo(X\)—o0 s

j

the sum is geometric with ratio §/a(1 — t). Thus, this is equal to

3 mo(A)+1 mo(M) gmo(3)+1
: mo(\) (a(l t>) : @ _ a(l=t)mo™IFT
lim o™ 3 = lim 3 .
mo(A)—oo 1— ] mo(A)—o0 1— YD)
But since «, 3 are sufficiently small (take |3] < |1 — t|), this is zero, giving the result. O

2.7 Other Vanishing Results

We introduce notation for dominant weights with negative parts: if u, v are partitions with I(u) +
I(v) < nthen uv is the dominant weight vector of GLy,, u = (g1, - - (), 05 -+, 0, =1y, - o oy —11).
Often, we will use A for a dominant weight with negative parts, i.e., A = ub.

In this section, we prove four other vanishing identities from [20] and [18]. In all four cases, the
structure of the partition that produces a nonvanishing integral is the same: opposite parts must
add to zero (\; + Njx1—; = 0 for all 1 < i <[, where [ is the total number of parts). Note that an
equivalent condition is that there exists a partition p such that A = up.

We comment that the technique is similar to that of previous sections: we first use symmetries
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of the integrand to restrict to the term integrals associated to specific permutations. Then, we
obtain an inductive evaluation for the term integral, and use this to give a combinatorial formula

for the total integral. We mention that the first result corresponds to the symmetric space (U(m +

n),U(m) x U(n)) in the Schur case t = 0.

Theorem 2.19. (see [18, conjecture 3]) Let m and n be integers with 0 < m < n. Then for a

dominant weight A\ = uv of U(n +m),

1 1 1— ;! 1—yy; !
ELppﬁ(mla"'axmayla"'ayn;t)m H — H 731de03

1 -
T 1<i#j<m 1 —taz; 1<i#j<n L —tyiy;

unless p=v and l(u) < m, in which case the integral is

Cot™,tm;0,t)
Cpu (£0,8)Cyf (tm+n=24,0,1)

Here the normalization Z is the integral for p = v = 0.

Proof. Note first that the integral is a sum of (n+m)! terms, one for each element in S, {,,. But by
the symmetry of the integrand, we may restrict to the permutations with z; (resp. y;) to the left of
xj (resp. y;) for 1 <i < j <m (resp. 1 <i < j <mn). Moreover, by symmetry we can deform the

torus to

T={lyl=1+¢lz| =1},

and preserve the integral. Thus, we have

1 1 -zt 1—yiy; !
/ Rup(@™ gyt —— [ —— ]I ijfldT
T T cidiem LT e L Y,
1—az; 1—yiy; !
_ 3 / Rupaa™ yi) [ iy [ —2% ar,
T ’ L1 1 —txx 1 —tyy;
WESh4m 1<i#j<m J 1<i#j<n J

r;<wx; for 1<i<j<m
Yi<wyj for 1<i<j<n

We first compute the normalization.

Claim 2.19.1. We have

-1

1 1*%1'1‘ 1— i 4_1 1—¢ m+n
7= / Py @yt [ 5 1 AT : t : ne
T WM e LT o, L =ty Gn(t)dm (t)
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Since

1 (1—¢t)ymtn

vortm) () Gmn(t)

this is equivalent to showing

1 1— gzt 1 — gyt n
/ROM, oyt T e ] 2 ar - %%n()t
n:m: 1<itj<m 1-— t(Eiitj 1<izj<n 1-— tyzy] ¢7l( )¢7n( )
We may use the above discussion to rewrite the left-hand side as a sum over suitable permutations.

Let w € S, 4 be a permutation with the z, y variables in order and consider

-1

1—z;x 1— gyt
/ R0n+m,w(x(m)’ y(n); t) H 771 H AdT.
T

- 1
\<igjm LT o Lty

Integrating with respect to Z1,...,Zm,Y1,...,Yyn in order shows that this is t#inversions of w here
inversions are in the sense of the multiset M = {0",1™}, and we define y; - - - Y21 - - - T, to have 0

inversions. But now by an identity of MacMahon

# inversions of w __ m+ ’I’L:| — ¢m+n(t)
2 t " e

multiset permutations w of {0™,1™}

which proves the claim. Note that we could also prove the claim by observing that

1 1 -zt — iyt
/P07L+11L (x(m),y(");t)il ' H — H Y y]_ldT
T nlm! L<igj<m 1-— txia:j 1<idj<n 1— tyiyj
1 m "
- | AP @A inar

and using the results of theorem 2.1.

For convenience, from now on we will write

1— it 11—yt ~(m < (n
Ay = ] T II T T =AYV (2 )AL (1),
1<izj<m © PTG cidicn + T Wil

for the density function.

Claim 2.19.2. Let w € Sy, be a permutation of {z(™, 3™} with x; <., zj foralll <i<j<m

and Y; <w yj for all 1 <9 < j <n. Suppose

/ Ry (™) 5™ 1) A2y )T 0.
T
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Then w has yy ...y in first I(u) positions, and Ty _y)41 - - - Tm in the last [(v) positions. Con-

sequently 1(v) < m, l(u) <n.

We prove the claim. We will first show that if, in w(z,y)"*”, z; has exponent a strictly positive

part, the integral is zero. Indeed, one can compute that the integral restricted to the terms in x; is

i yj — itz 1 —tY; o
/Tlgv1 H *tiﬂl H y]*1171 H de 7

1<i§m Yj<wT 1 =<wYj

since by assumption p; > 0.

2%

Dually if in w(z, y)*”, y, has exponent a strictly negative part, we can show the integral is zero.

The integral restricted to the terms in y, is

/ H Yn — Vi H LL'] — tyn H Yn — tmg dT
T

- — T
1<1,<n y xj-<wyn Yn Yn<wTj Yn J
5 Yi — Yn — LT 5 —tyn
- / = e | s
. — —x; T —
T:|z|>|y| 1<i<n Yi Yn Zj<wYn Yn<wy I Yn

where in the second step we have inverted all variables which preserves the integral. But now by
assumption 7; < 0, so integrating with respect to y,, gives that the above integral is zero. This gives

the desired structure of w to have nonvanishing associated integral.

Claim 2.19.3. Let w € Sy4m be a permutation of {x(m), y(")} with x; <y xj foralll <i<j<m
and y; <w yj for all 1 <i < j <n. Suppose also that yi, ...,y ) are in the first [(u) positions and
T () +1s - - - » T are 0 the last [(v) positions.

Let () > 0. Then we have the following formula for the term integral associated to w:

/ Ryup (2™, y™ ) A2y ™ 1) dT
T

—(1—1¢ tn+m—i R~ x(m—1)7y(n—1);t A x(m—l);y(n—l);t dT,
A, W

i
A1+A;=0

where W is w with y1,x,, deleted and N is A with A1 and N; deleted (where index i is such that
A+ N = 0)
Similarly, if 1(v) > 0, we have

/ Rup (2™ y ™ ) A (2™ 4™ 1)dT
T

:(1—t)( Z ti—l)/Rx@(x(m—l)7y(n—1);t)A(x(m—l);y(n—l);t)dT’

2
Ait+An4+m=0
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where W is w with y1, T, deleted and X is A\ with Ai and Ay deleted (where index i is such that

Ai + Agm = 0).

For the first statement, integrate with respect to y;. We have the following integral restricted to

the terms involving y;:

/ Y Yi — Y1 y1 — tx; dT,
T

St — 1.
1<i<n Yi Y1 1<j<m Y1 J

with Ay = p1 > 0. Evaluating gives a sum of m terms, one for each residue y; = z;. We consider

one of these residues: suppose z; is in position 4, then the resulting integral in x; is

(1_t) /x>_\l+)\i Yi — Ty ij —tx; m
J o - —
n 1<i<n ¥ tz; g T3 Ty ey YT
YiFY1
< 1T Z—-11 11 T
wy<wys T3 T Y2y T T G T L
; Tj —tyi xj — ta;
=(1- t)/ AT (—1) =L —LTT(-1)=L—=ar,
T ! x]l—:!yi Yi — tl'j E XT; — tzj

where we may assume \; < 0, by the structure of w. Note first that if \; + A\; > 0, the integral is
zero. One can similarly argue that the term integral is zero if A\ + A; < 0 (use Aptm + A < 0 for
any 1 < k < n+ m and integrate with respect to x,,, and take the residue at any x,, = y;). Thus
for a nonvanishing residue term we must have \; = —)\;, and in this case one can verify that the

above integral evaluates to
(1 . t)t\{z:wj<wz}\ _ (1 _ t)thrmfi’

as desired.
The second statement is analogous, except integrate with respect to x,, instead of y;, and invert
all variables. This proves the claim.

Thus,
/ Ry (@™, y ™5 ) A(a™ 5y ™ 0)dT = 0,
T

unless p = v and I(p) < m, which gives the vanishing part of the theorem. For the second part,
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suppose p = v and (1) < m. Then by the above claims,

/ Ry (2, g™ ) A (@™ 5™ 1)dT
T
=(1- t)l(“)vu+(t) / Ro(nfz(u)wmfz(,,))75(m(m_l(”)),y(”_l(“));t)A(x(m_l(”));y(”_l(“));t)dT,
if w=y1...91)0%m—i()41 - Tm for some permutation § of {yy()41:- -+ Yns L1, Tin—y)}, and

0 otherwise.

By claim 2.19.1, we have

A(z(m=Ur)) g (n=l(1) 1) m+n — 21(u)
Rttt oy (2100 (0100 » ) g - { }
J Rov-sonsincion D o G~ ) =i,
So we have
1 1 m+n — 20(p)
P () . L A () ). T — )
\/1: u,u(x Y 7t) nlm! (Z‘ ) 7t)d U,uﬁ(t) ( t) UH-‘r(t) n— l(ﬂ) .

Noting that v,;(t) = U#+(t)2v(0m+n—2l(u))(t) and multiplying by the reciprocal of the normaliza-

tion gives

1 1
1 / Pun(a™, g™ ) — A2 g™ a7
T

Z n!m!
_ Pn(t)Pm(t) (1 — )i m +n — 2(u)
(=)™ v (v (gmen—2i0) (1) { n—1(p) L
= (1 — LY (1 gy (1 — gLy (g Prmtn—21(u) (1)

(1-— t)ernfl(M)vu+(t)v(0m+",21(u))(t)
(1 — ¢y (1 — gt +2) (1 — ) (1 — ¢ HH) (1 — gl 42) (1 — )
(1= )", (1) ’

where the last equality follows from the definition of V(gm+n—21(n)).- One can check from the definition

of the C-symbols that

m+n—24,
Cr{E™ ™ 240,) = 1,
C; (t’ 07 t) - 'Up‘_;'_(t)(]_ —_ t)l(/"'),

Cg(tnv tm; 07 t) = H (1 - tn+17i)(1 - tm+17i)7
1<i<i(p)

so that our formula gives

Cp(t™,t™;0,1)
Cy (t0,6)CiF (tm+n=2¢:0,¢)’
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as desired. ]

Theorem 2.20. (see [18, conjecture 5]) Let n > 0 be an integer and A = pv a dominant weight of
U(2n). Then

1 1
E/TP,U,D(Z‘D"'axn7y17"'ayn;t)w

X H ! H (1- xile)(l - yiyjfl)dT,

1 1
1<i,j<n (1- tzy; )1 - tyiz; ) 1<i#j<n

is equal to 0 unless p = v, in which case the integral s

Ch(t™, —t™;0,t)
Ci (£0,6)Cit (127 =24;0,1)°

Here the normalization Z is the integral for p =v = 0.

Proof. Note first that the integral is a sum of (2n)! terms, one for each element in Sy,,. But by the
symmetry of the integrand, we may restrict to the permutations with x; (resp. y;) to the left of x;

(resp. y;) for 1 <i < j <n. By symmetry, we can deform the torus to
T={lyl=1+¢lz| =1}

For convenience, we will write A(z(™);();¢) for the density

1 . o
11 (1 —twiy; (1 — tysz; ") [I (- -y,

1<ij<n 1<i#j<n
We first compute the normalization.

Claim 2.20.1. We have

1 1
Z:/P n m(")7 (");t ——A x("); (");t dT = .
B e 7 L )
By the definition of v(y2n)(t), this is equivalent to showing
Reon (20 ™) — A(2™. ™). T = — 720\
/T 02 (‘T 7y I )(n|)2 (Z' 7y ) ) (1 _ t)2n¢n(t2)

We prove this statement by induction on n. For n = 1, we have

T1Y1
T =0,
/T (1 —y1)(y1 — tzy)
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and

T1Y1 1 P2 (t)
/T (y1 — 1) (21 — tyl)dT Cl—t (1—1)2¢u(82)

as desired. Now suppose the claim holds for n — 1; with this assumption we show that it holds for n.
Consider permutations w with z; first. We claim [, Ryupao (2™ g™ ) A (2™ (M) 1)dT = 0.

Indeed, we have the following integral restricting to the terms in xy:

ry —
Al H 1 —Yi

1<i<n

X1 —tl‘i a:lyj (xj —xl)(l‘l —xj)
H X1 — Iy H ( 1 ) H xlxj dr

—txr1)(x1 —t
1<i<n 1<j<n \Yi V(@1 — ty; 1<j<n

:/ 1Y, 11 (21 — tay) (25 —21) \on

11<j<n (1 = y;)(y; — ta1) 1<j<n 1Ty

1
/T1 o Ny ) H (1 —ta;)(xj — x1)dT = 0.

1<5<n V1T vi)(yj =ty 1<j<n

Thus, we may suppose y; occurs first in w. A similar calculation for the integral restricting to terms

in gy yields:

/Tyl I —twwi—v) ] ( . dr.

1<j<n 1<i<n WL T i) (@i —tyr)

We may evaluate this as the sum of n residues, one for each y; = z; for 1 < ¢ < n. We compute the

residue at y; = x;, and look at the resulting integral in x;:

1
—ty;)(y; — =) [ [ [[@ —tw) (@ — i)
/T1 1<J<n i (@i — @) (g — i) oo
1 1
] @i =t @ —2) ] 11 dT
i< ZTi<wyYj ( —Yi )(y i ) Yj<wi (yj B 171)(% B tyj)
yj?'éyl
/ t.’Ei// — :EZ) H (tyj — xl)dT
1 —t Ty i<l l‘zu — txi) i<y, (yj — t.l?i)

But, letting 2 < k < 2n be the position of x; in w, this evaluates to

Thus, varying over all such permutations with y; first gives a factor of

1
E(t27l_2+t2n_3+"'+t+1):

(1 _ t2n—1)
(11—

Note that permutations of {y1,...,yn,x1,...,2,} With y; in position 1 and z; in position k are in
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bijection with permutations of {y2,...,yn,21,...,Zs, ..., Zn}. So using the induction hypothesis,

the total integral evaluates to

(1 -2t Pa(n—1)() P2n (1)

(1=1)? Q=120 D ()  (1-1)n(t?)

as desired.
Note that the density is not of a standard form (i.e., as a product of Koornwinder or Macdonald-

Morris densities), so we cannot appeal to an earlier result (compare with claim 2.19.1).

Claim 2.20.2. Let w € S, a permutation of {x™,y™} with x; <, x; for all 1 <i < j <n and

Yi <w Yj for all 1 <1 < j <n. Suppose
/ Ry (™, g™ ) A (2™ y ™M 4)dT # 0.
T

Then w has yy ... Yy in the first [(p) coordinates, and xy,_;(,)41 - - - Tn in the last [(v) coordinates.

Consequently l(v) < n,l(pn) < n.
The proof is analogous to claim 2.19.2 of the previous theorem.

Claim 2.20.3. Let w € Sy, be a permutation of {x(”),y(”)} with ©; <w xj for all1 <i<j<n
and y; < y; for all 1 < i < j < n. Suppose also that yi, ...,y are in the first [(u) coordinates,
and Tp_j(y)41 - - - Tn @0 the last [(v) coordinates.

Let I(i) > 0. Then we have the following formula for the term integral associated to w:

/ Ry (@™ y™ ) A (2™ 4™ t)dT
T

1 n—1 n— n— n— n—
( Z t° )/Rx,@(fv( Dy ) A(a Yy (= ydT,

1t
1:
A1+ =0

where W is w with y1,x, deleted and X is \ with A1 and \; deleted (where the index i is such that

Similarly, if I(v) > 0, we have

/ Ry (2™, y "5 t) A2y 1)dT
T
1

- l—t( > tH)/Ri,w(x("fl)vy(”*l);t)A(x(”’”;y("’”;t)dT,

2
Ait+A2n=0

where W is w with y1,x, deleted and X is \ with Ai and Mg, deleted (where the index i is such that

Ai + Aoy, =0).
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The proof is analogous to the proof of claim 2.19.3 of the previous theorem.

Thus,
/ Ry (2™, y ™5 6) A(a™; 4™ 4)dT = 0,
T

unless p = v. Moreover, if yu = v, the integral is

1
mv”Jr(t) / ROQn_mw)’é(gj(n*l(#))’ y (1) A (2 (1) s g (=L g
if w=y1...Yw0Tn—i(v)41 - Tn for some permutation & of {y(u)41,---Yn,T1,. -, Tn_iy} and 0
otherwise.

By claim 2.20.1, we have

Ry (X100 (n—l(u)),t)A(x("_l(”));y(”_l(”))§t)dT: Ban—21(u) (1)
g : (= 07200610 ()
((2n = 20())!) neiln
Thus,
l/p (@, g ) Ay g
7 - 1295 ’ ’ (TL')Q ) )
¢n(t2) Up+ (t) ¢2n72l(;¢) (t)

Oyt (D20t (0) (1 — 1) (L= 82020 . ()
(= () (1= (1)) faneai(f) (L= ()T (1 (1))

Oy (£) (1 — £)2n =t U(02n72l<u>)(t) B Vg (8) (1 = £)Hm) ’

where the last equality follows from the definition of v(g2n-21(,)(t). Finally, one can check from the

definition of the C-symbols that

+(42n—24. _
CH (#27721,0,1) = 1,

oo —m0,0 = [ (- petD),

1<i<i(n)

Gy (5:0,8) = (1= )W, (1),

so that our formula gives

Co(t™, —t™;0,t)
Cr (£0,1)CiF (t2n=2;0, )

as desired. O

Theorem 2.21. (see [20, theorem 4.4]) Let \ be a weight of the double cover of GLay, i.e., a
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half-integer vector such that \; — A\j € Z for all i,5. Then

1 on 1 (1= 2zi/2)(1 — z;/z)
Z/PA( )(-~-ti1/22i~--;t)g I1 J J dr =0,

C1<i<j<n (]. — tZZl/ZJ)(]. — tQZj/zl-)

unless A\ = pfi. In this case, the nonzero value is

o (t?) B Co(t", —t™;0,t)

1=, ()L + )L +82)--- (1 + W) Cp(t;0,6)Cif (1272¢;0,¢)

Proof. As usual, note that P;Qn) (- tFY/22; .- ;1) is a sum of (2n)! terms, one for each permutation

in So,. We first note that many of these have vanishing integrals:

Claim 2.21.1. Let w € Sa, be a permutation 0f(ti1/2zl, e ,til/an), such that for some1 <i<n

Vtz; appears to the left of \Z/E i w. Then

‘/Rﬁﬂ~¢ﬂ“%~wOA$NaFMT=0

To prove the claim note that RE\QZ)C < tF1/2, ... 1) = 0 in this case. Indeed, we have the term

\/7;22,‘ — tZi/\/E - tZi — tZi

\/I?Zz—Zz/\/?E B zi(t —1) =0

appearing in the product defining the Hall-Littlewood polynomial.
Thus, we may restrict our attention to those permutations w with z;/v/f to the left of /tz; for
all 1 < i < n. Moreover, we may order the variables so that z;/v/t appears to the left of z]/\/i for

all 1 <1i < j <n. We compute the normalization first.

Claim 2.21.2. We have

1 5 1 (17t2)n
Z=[ PEVF 2 — A (2 2)dT = = :
L~W* s GO = S ey S e - (-

The proof follows by noting that Péfff J(--#%1/22, ... 1) = 1 and applying theorem 2.1.

Claim 2.21.3. Let w € Sa, be a permutation with zl/\/f to the left of \/tz; for all 1 < i < n and
z;/\/t to the left of zj/\/f for all1 <i < j <mn, and \/tz, in position k for some 2 < k < 2n. Then

/ R (- 4322 ) AQY (25 42)dT
T

= X>\1+>\k:0(]‘ + t)tznik/

i REUTI 512 ) ALY (2542,
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where W is the permutation w with z1/\/t and \/tz deleted, and X is the partition X with parts A\

and i deleted.

To prove the claim, integrate with respect to z;. Note that if A\; + Ax > 0, the integral vanishes.
If Ay + A < 0, note that Ay, + A; < 0 for all 1 < j < 2n — 1. Integrate with respect to the last
variable in w, and invert all variables to find the integral vanishes, as desired.

The above claim implies that the integral [, Rg\z:;)( 2 t)A(Sn)(z; t2)dT vanishes unless

A = pp for some p. Moreover, if A = ufi, the term integral vanishes unless

w(...til/in...)/\

is a constant in ¢ (i.e., independent of z;). Thus, in the case A = pfi, a computation gives that the

total integral

n L3 n
/Rg\z V(o2 ;t)fA‘(g)(z;ﬁ)dT
T

1 < (n—
-1 l(u /R(2n Up LS V: st Al U(p)) ;t2 dT
( +t 02(n l(u)) z )(n—l(u))' S (Z )
(1- t2)n*l(u)

- U(p)
- (1 + t) UH+(t) (1 _ t2)(1 _ t4) L (1 — tQ(n—l(,u)))v(OQ(n_l(“)))(t)'

Multiplying this by 1/Zvx(t) = 1/Zv, (t)*v(g2t-10:))(t) and simplifying gives the result. O

Theorem 2.22. (see [20, corollary 4.7(ii)]) Let X be a partition with [(X) < n. Then the integral
— — 1 A (n
/P)\(xl, e T3 ) P (27 ,znl;t)aA(S )(x;t)dT

vanishes unless A = (2m)™ — .

Note that the above integral gives the coefficient of P, (x;t) in the expansion of Py(z;t?) as

Hall-Littlewood polynomials with parameter t.

Proof. Since Py (xyt, ... 2;5t) = (x7' - 2, 1)™, an equivalent statement is the following:

y Ly 3

Let A be a weight of GL,, with possibly negative parts. Then the integral
1 1 <m
7 /Px(xl, . .,xn;tQ)aAg )(a:;t)dT

vanishes unless A = pji, and in this case it is

(1 — =2+ (1 — gnyglel
(1— ), ()
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We first compute the normalization Z = -4 fPéf) (x;tQ)Ag")(x;t)dT. Note that Py (x;t?) = 1,

so we have

1 n 1l
Z = /A()xth_—/P )Pz ) A = = — 1
n'v(on)()

- (1—t)n
(1=t —t2)--- (1 —tn)

using theorem 2.1.
Now we look at X [ Ra(z1,. .., &n; tQ)Agn) (x;t)dT, which is a sum of n! integrals—one for each
w € S,. By symmetry we have

1

1 R(An)(fﬂsz)A(sn)(%t)dT:/Rf\nili(x%ﬁ)A(sn)(x?t)dT’
n! '

so we may restrict to the case w = id. We assume A; > 0: note that if Ay < 0 we have A\, < 0
(we are assuming A is not the zero partition) and we can invert all variables and make a change of

variables to reduce to the case A\; > 0. Then the integral restricted to terms in x is
/ Alnxl_tIJH (z1 —j)(zj — x1) dzry
T o O (x1 —tzj)(x; —tx1) 2mv/— 11
:/ 17)\1 H (.’El —t xj)(xj 7%1) dxl
n g (@ tag) (@ — ta) 2my/ Ty

1(1—t)? ta:j—txl (w; —txy) th(1—1)% 4, (xj —ta;)(z; — tzy)
_Z 1—t2 H € — 21 )_Z 1-12) T H ’

i (tz; — tx;)( = oty (xj — z;)(x; — t2x)

where the second line follows by evaluating the residues at x; = tx; for j > 1. For each j > 1, we

can combine this with the terms in x; from the original integrand. The integral restricted to terms

n xj;1s

- tQJCi

t>\1 1-—- t / A H txZ Ti — txg) xA H T; — thj H T;
- Jr ; x —t2x;) 7 AL gy —a; AL oxy—

1 i£1, ] 1#£4i<j Joj<i Y
I (@i — x;)(; —xz') de; —_ tM(1-t)? /x51+x yoi H v =t dy;
i£1,5 ( Ti — tl'])({L‘J - t-T;) 27/ _133_] (1 - t2) -rz _ t2$j o /_1x]

Now, this is 0 if Ay + A; > 0 and

t)\l (1 _ t)(tQ)n—i
(1+1) ’

if Ay +A; = 0. Finally, if A; + ); < 0 note that A\, + A; < 0 for all 1 <4 < n. We can invert all

variables and make a change of variables to arrive at the case A\; +A; > 0, so the integral is zero by
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the above argument.
Iterating this argument shows that the partition A must satisfy A; + A,+1-; = 0 for the integral

to be nonvanishing. Thus A = pji for some p. In this case, we compute from the above remarks:

1 n n n
7 [P LA @0dr = 2 [ RO AL @t

On(t) tlul (1—1t) L) / 1 (n)
= n—21(n t A t)dT.
(1 _ t)n Uu+(t2)2v(0n—2l(u))( ) (1 + t () UH+ RO I ) xZ; )( — 2l( )) ( )

Using the computation of Z, this is equal to

A (z;t)dT

bn(t el 1 — )i 2l 1
T ) (T | P e ) gy
0 el (1 ,t)l(u) (11—t~ 20(p) e 0) el
A=) (82) U+ gy (t) i () (1= 2)1 0, (2)
(1 — =2+ (1 — ¢t
(1= )0, ()

as desired. O
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Chapter 3

Hall-Littlewood Polynomials of
Type BC

3.1 Background and Notation

In this section, we set up notation that will be used throughout the chapter. We also define the
relevant polynomials that are the subject of this chapter.

Let A = (A\1,...,\,) be a partition, in which some of the A\; may be zero. In particular, note
that Ay > Ay > -+ > X, > 0. Let {(\) < n be the number of nonzero parts of A (the “length”), and

“

|A| the sum of the nonzero parts (the “weight”).

Let m;(A) be the number of \; equal to ¢ for each ¢ > 0. Then we define

mi () 1—¢ my(X) . mo(X)
oa(tia,bito, ... ts <H 1T 1_t>< 11 1—t0t1t2t3t11+2m°(’\>< H 1—abt~ 1), (3.1)

>0 g=1 i=1

and

m;(\) ma ()
1—tJ _
oag(tito, ...t <| [ 11 = ) ( [T @ —totltztgt”“mo(*)). (3.2)

i>1 j=1 i=1
Note the comparison with the factors making the Hall-Littlewood polynomials monic in [16, chapter
3.

Also, we define the symmetric Koornwinder density [13]:

A (st tg, 1, t, t3)

+2 oAl 1
= H 1 11[1_ - +1 1 H — ilxjil (3-3)
2nn)! (1—tox; ") (1 — t1z ") (1 — tox; ) (1 — tgz] ) 1L 11—tz

1<i<n 1<i<j<n J

where we write (1 — 2;°2) for the product (1 — 2?)(1 — ;%) and (1 xilxﬂ) for (1 — zz;)(1 —

x; b )(1—1‘ xj)(l—xx

; 1), ete. For convenience we will write A(K)(to, ..., t3) with the assump-

J
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tion that the density is in variables x1,...,x, with parameter ¢ when it is clear. We define the
g-symbol

(asq) = [L (1 - ad®),

k>0
and let (a1, aq,...,a;;q) denote (ay;q)(az;q)- - (ai;q).

For simplicity of notation, we will write m(t)7v>\+(t),N>\,Ag?), etc. when the parameters
(a,b;to,. .., t3) are clear.

Finally, put

1 ~ A

N)\(t;to, N ,t3) = U)\+(t) /TA(I?O( ))(Z;t;t(), N 7t3)dT
1 H (t, 22 tgt 1 tat3; 0) (3.4)
Cooae(0) 2o o B oty Ploty, Ulots, Utita, Ui ls, Fials 0)

where the explicit evaluation for the integral is a result of Gustafson [8].
Finally, we explain some notation involving elements of the hyperoctahedral group, B,. An
element in B, is determined by specifying a permutation p € S,, as well as a sign choice €,(i), for

each 1 < i <n. Thus, p acts on the subscripts of the variables, for example by

ep(1 ep(n
If p(i) = 1, we will say that z; occurs in position i of p. We also write

“Zi < Zj ” ,

if i = p(i') and j = p(j’) for some ¢ < j’, i.e., z; appears to the left of z; in the permutation
Ep(l). . €p(n)

Zy(1) " Zp(ny - We also define €p(2i) to be €,(4') if i = p(i'), i.e., it is the exponent (£1) on z; in
59(1) 59(")
o) 7 )

We now define the Koornwinder polynomials at ¢ = 0.

Definition 3.1. Let A be a partition with I(\) < n and [¢], |to], .- ., |t3] < 1. Then Kx(z1,..., zn;t;a,
b;tg, ..., ts), indexed by A, is defined by

1
’U)\(t;a,b; t(), . ,tg) Z

weB,

1tz te 1=tz 2t
w( H uy, (i) H L2 T .11 , (3.5)

1 -
1<i<n 1<i<j<n L—z;7z) =2z
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where

(1—az; ") (1-bz ")

_ 1—2;2 ’
(i) = i (140;*1)(14151)(17t2z?1)(17t3z?1) .

; o P 2 if Ay > 0.

if \; =0,

Remarks. We note that the K are actually independent of a, b—this is a scaling factor accounted for
in vy. In particular, the arguments below for showing this is indeed the Koornwinder polynomial at
g = 0 work for any choice of a,b. However, we leave in arbitrary a,b (as opposed to the choice £1)

because the resulting form is useful for proving the vanishing identities.

We will also write Kgn)(z; t;a,b;to,...,t3) for convenience. Also define
Rf\n)(z; t;a,b;to, ..., t3) = vA(t)Kf\")(z; t;a,bito, ..., t3), (3.6)

and for w € B, let

1 7tz._12- 1 —tZiilZ-il
R&Z)U(z;t;a,b;to,...,tg)w( H up, (%) H =) J — 11

1<i<n 1<icjen VT F 4 1720

be the associated term in the summand.

Remarks. When (g, t1,t2,t3) = (a,b,0,0), we obtain

Kx(z1,...,2n;t;a,b)

1 n(L—az7 (1 —bz ) 1—tz7 21—tz 2
:w(t)zw(Hzi 1—272 H 1— 1, 1 -1 ,—1),

weB,  1<i<n I<icj<n + i Fi Zi 7

which gets rid of the difference in zero and nonzero parts in the univariate terms. In particular, this

is Macdonald’s 2-parameter family (BC,, B,) = (BC,, Cy,) polynomials at ¢ = 0.

3.2 Main Results

In this section, we will show that the Kg") (we write this for Kin)(z;t;a,b;to, ...,t3) when the

parameter values are clear) satisfy the defining properties for Koornwinder polynomials.

Theorem 3.2. The function K&n) (z;t;a,b;to, ..., t3) is a BCy-symmetric Laurent polynomial (i.e.,

. . . . . . . -1
invariant under permuting variables z1, ..., z, and inverting variables z; — z; "~ ).
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Proof. Recall the fully BC),-antisymmetric Laurent polynomials:

ABC< H zlzl_l>< H zi_lzjzj_1+zi>
1<i<n 1<i<j<n
22 — — 2%
:< EE 1)( I I%(Zj—zi)>. (3.7)

z z
1<i<n g 1<i<j<n ¥

Then we have

n 1 1
K; )(z;a,b;to,...,tg,;t).ABC: Z 6(w)w( H (%) H (1—tz; lzj 1)(zi—tzj)>,
weB, 1<i<n 1<i<j<n

(3.8)

where

() zi(1—az; M)(1 = bz h), if \; =0,
U}\i Zi) =
Zi)\z:-i-l(l_toz;l)...(]_—tg,z;l)’ if A; > 0.

Notice that Kin) - Apc is a BCj,-antisymmetric Laurent polynomial, so in particular Agc divides
K /(\") -Apc as polynomials. Consequently, K i") is a BCy,-symmetric Laurent polynomial, as desired.

O
Theorem 3.3. The functions K/(\n)(z;t;a,b; to,...,t3) are triangular with respect to dominance

ordering:

Kin)(z;t;a,b; to,---,t3) = my + Z Cﬁmu-
p<A

Remarks. Here {my}, is the monomial basis with respect to Weyl group of type BC"

= 3 (.

weEB,

Proof. We show that when Kgn) is expressed in the monomial basis, the top degree term in my;

moreover, it is monic. First note that from (3.7) in the previous proof, we have
Apc =m, + (dominated terms),

where p = (nn—1 .-+ 2 1). We compute the dominating monomial in K/(\") - Apc; see (3.8) in
the previous proof for the formula. Note that if A\; = 0, we have highest degree A; + 1 in “/M (2i)-
Similarly, if A; > 0, we note that A\; +1 > —\; + 3 (with equality if and only if A; = 1) so we have
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highest degree \; + 1 in u)\ (z;). Moreover,

[T -tz —tz) = [ (s—te;' =tz + 4727

1<i<j<n 1<i<j<n

has highest degree term z°~!. Thus, the dominating monomial in Ki") - Apc is 22P, so that the

dominating monomial in Kg\n) is 2.

We now show that the coefficient on 2**# in Rg\n) - Apc (see (3.6) for the definition of RE\")) is
v (t), so that K E\") is indeed monic. Note first that by the above argument the only contributing w are

those such that (1) 2 --- 2} = zi‘}l(l) e zf‘UT(‘n) and (2) €,(z;) =1forall 1 <i<n—mgo(A)—mi(N);

let the set of these special permutations be denoted by Py ,. Now fix w € P),, we compute the

coefficient on zi\ﬁ'". Using (3.8) and the arguments of the previous paragraph, one can check that

the coefficient is
(i) It > 1:

t#{zi<wzl}'

(i) If Ay = 1:

t#lzizwa} if €,(21) =1,

—t() s t3(t2)#{z1<wzi}t#{zi<wzl}, if €w (Zl) = —1.
(iii) If A; = 0:

t#lzi<wa} if €,(21) =1,

—ab(tQ)#{zl<wzi}t#{zi<wzl}, if €4(21) = —1.

Note that we have used the contribution of (—1) factors from e(w) in Ki") -Apc.

Now define the following subsets of the variables z1, ..., z,:

N&M ={zi:n—mo(A) —m1(A) <i<n—mo(N) and €,(z;) = —1},
NS;,A ={z;:n—mp(A) <i<nand €,(z)=—1},

Ny = Nl)/\ +N37A.

w
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Finally, define the following statistics of w:

n(w) = [{(i,5) : 1 <i<j <nand zj <y 2},

ex(w)={(4,7) : 1 <i<j<nandz <y z; and z; € Ny 2}

Then by iterating the coefficient argument above, we get that the coefficient on 2217 is given by

2: gr(w)g2ex() (g )Nl (—gb)Nual,

’LUEP)Mn

Since Py n = Bio(x) B, () HiZZ Smi(n), it is enough to show the following three cases:

m )
1-%
n(w) _
2 =115
WESm j=1
T l—t
Z tn(w $2c1m (w)+2m0()\ | 1m| H ¢ (]_ — g tgtjflJerO()\))’
WEBy, j=1 "~

Z tn(w)t2c0m (w) (—ab) |N3’0'm,

weEB, 7j=1

To show (3.9), we note that the left-hand side is exactly enumerated by the terms of

(AFt+t2 4+t At + 2+t (1 1)(D),

(3.9)

(3.10)

(3.11)

which is equal to the right-hand side. Also refer to [16, chapter 3, proof of (1.2) and (1.3)]. We

now show (3.10); (3.11) is analogous. One can verify that the left-hand side of (3.10) is exactly

enumerated by the terms of
m k
H {Z tz 1 tz 1 t2)mo(>\)+k z( tO"'t3))}-
k=1 i=1
But we also have
k

k
Z (tz 1y il t2)m0()\)+k i(- to-~-t3)) _ Z(ti—l _to_._tstk+2m0()\)—1tk—i>

=1 =1

— (1 —tg- --t3tk+2m0()‘)_1)(1 4 ~tk_1) _ (1 —tg---t3 tk+2mo()\) l)ﬁ

substituting this into (3.12) gives the right-hand side of (3.10) as desired.

Multiplying these functions together for each distinct part ¢ of A (put m = m; () in

(3.12)

tk

(3.9), (3.10),

and (3.11), depending on whether ¢ > 2,4 = 1, or i = 0, respectively), and using (3.1) shows that
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the coefficient on z*** in R&n) - Apc is indeed vy (t), as desired. O

Theorem 3.4. The family of polynomials {Kin)(z; a,byto, ..., t3;t)}x satisfy the following orthog-

onality result:
/ Kx(z1,- o Zns 0y bito, .t ) K (21, 2ni 4, bito, . s VAN (2380, . 3 8)dT = Naba,
T

(refer to (3.83) and (8.4) for the definitions of A(I?)(z;to, ..., t3;t) and Ny, respectively).

Proof. By symmetry of A, u, we may restrict to the case where A\ > u in the reverse lexicographic
ordering. We assume A\; > 0, so we are not in the situation where both partitions are trivial; these

(”)(

assumptions hold throughout the proof. By definition of K" (z;a,b;to,...,t3;t) as a sum over By,

the above integral is equal to

Z /K Z a, b to,...,t3;t)Kl(:Lg(Z;a,b;t0,...,tg;t)Ag?)(Z;to,...,tg;t)dT.
w,pE B,
Consider an arbitrary term in this sum over B,, X B,, indexed by (w, p). Note that using a change
of variables in the integral and inverting variables (which preserves the integral), we may assume w

is the identity permutation, and all sign choices are 1 (and p is arbitrary). That is, we have

/K,\(zl,...,zn;a,b;to,...,tg;t)KM(zl,...,zn;a,b;to,...,tg;t)A(I?)(z;to,...,tg;t)dT
T
= 2"n! Z /K)\ (7 a,b;to,...,tggt)KL?g(z;a,b;to,.. t3,t)A( )(z to, ..., t3;t)dT
pGB
=2l Z /R&"fd %0,bto, -t )R (23,5 to, - b3 ) AW (230, . ta; 1)dT,

/IeB

where RE\") is as defined in (3.6).
We study an arbitrary term in this sum. In particular, we give an iterative formula that shows

that each of these terms vanishes unless A = p.

Claim 3.4.1. Fiz an arbitrary p € B, and let p(i) = 1 for some 1 < i < n. Then we have the

following formula:

2"n'/ RA (25 a,b;to,...,tggt)R,(”),(z a,b; to,...,t3;t)A§?)dT=

712 — D)L R JAVar, pi = A1 €p(21) = —1,

IRt
u p
tifl(tQ)mo(p)%»ml(u)fz( )2n 1 TL _ 1 IR n— I)R(AnA I)A(n 1) dT =\ = 1761)(21) —1,

0, otherwise,
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where \ and I are the partitions A and p with parts Ay and p; deleted (respectively), and id and 0

are the permutations id and p with z, deleted (respectively) and signs preserved.

To prove the claim, we integrate with respect to z; in the iterated integral, using the definition
of R&ni)d, Rf}},), and A(I?)

First suppose p; > 0. The univariate terms in z; are

a (L=tozr D)o (L—tazr ) L (L—tozg ) (1 —tzzyh) (1—2F2)
! (1-277) ' (1-277) (1—tozi") -+ (1 —tgef)
At (—23)(1 —toz ) (1 —tazy ')

1 (1—t021)~-(1—t321)

if €,(21) =1, and

A (1—tozy ") (1= t321_1)2—m (1 —toz1)--- (1 —t321) (1—27?)
' (1-27?) ! (1—27) (1—tozi") - (1 —t32i)
— ZlAl—lLi,
if e,(z1) = —1.

Now suppose p; = 0. The univariate terms in z; are

o =toz ) (L= tazy 1) (- az (1= bz ) (12

' (1-27) (1-27) (1—toz") - (1= ts27")
_ D a1 b

b —toz) - (1—taz)

if €,(z1) =1, and

Y (1 —tozyt) - (1 —t327 ) (1 —az)(1 — bz) (1— 2%

! (1-27?) (1—27) (1—toz1 ") -+ (1 —tazi)
n, (I—az)(1—bz)

! (1715021)"'(17&321)7

if 6p(21) =—1.

Notice that for the cross terms in z; (those involving z; for j # 1), we have

-1, -1 - +1 41

Hlim1 % 1_tzllzjxnliz1 &
—1_-1 —1 ESPES

i1 L—z27 1 =2z j>11 tzy %

from the corresponding terms in z; of Rj;q and the density. Combining this with the cross terms
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of R, , in z; (and taking into account the various sign possibilities for p), we obtain

_ —1

H t— 212 H t— 212, 1 H (t—lej )(t—zlzj)

1 —tz12; _ -1 _ -1 — N

zi<p21 1< 2i=p21 1 tlez 21=p2; (1 tZlZJ )(1 tzlz])
sign 1 for z; sign —1 for z;

if €,(z1) =1, and

H t—lei H t—Zl,Z;l

1—tz12 — -1’
2i=p21 1< 2i=p21 1 tle,L
sign 1 for z; sign —1 for z;

if e,(21) = —1.

Thus, the integral in z; is

f S ith (=2D)(I—tozy ) (1—tsz ")
T, “1 (1—tpz1)---(1—t321)

t— 2% t— 2zt t— 2z ")t — 21z
II # 11 kL ( {1)( ) dl' p; >0, €p(21) = 1,
oy Lotz 2 1—tz12, o2 (1- tz12; J(1 —tz12))
ep(zr)=1 ep(zr)==1

A (=2D)(—azH(A-bz Y
O e v rery e erery

t— 212 t— 2121 (t — 2127 1) (t — 212;)
I = II /=1 ’ CdT =0, ep(21) = 1,

- -1

o=yt 1—tz12 Zh<p21 1— tzlzk H<pzs (1 — tzlzj )(1 — tzlzj)
€p(2r)=1 €p(zr)=—1 1

A —pi t— z121 t—z12), -
o2 I = I =t i >0, ep(z1) = 1,

1 et 1 —tz12g B~z 1 —tz12,
ep(z1)=1 ep(zr)=—1 1

M (1—az)(1—bz) t— 212k t— 212, B B
f 1 U—toz1)-(1—tsz1) I ——=dT wi =0, € (21) =-1.
oo ) zkgzl 1 —tz1zp Zkl:!zl 1—tzz ! ' P

€p(zr)=1 ep(zr)=—1

In particular, the first integral vanishes unless Ay = p; = 1; the second integral always vanishes;
the third integral vanishes unless A\; = p;; the fourth integral always vanishes. Thus, we obtain
the vanishing conditions of the claim. To obtain the nonzero values, use the residue theorem and
evaluate at the simple pole z; = 0 in the cases \; = y; = 1 and A1 = y;. Finally, combine with the
original integrand involving terms in 23, ..., 2, to obtain the result of the claim.

Note that in particular the claim implies that if A # p, each term vanishes and consequently the
total integral is zero. This proves the vanishing part of the orthogonality statement.

Next, we compute the norm when A = pu. The claim shows that only certain p € B, give
nonvanishing term integrals. Such permutations must satisfy

Al .« .. A‘”’ _>\1 DY _A/n, =
A A ) ) T L

and €,(z;) = —1 for all 1 <i < n—my(A) —mi(X). For simplicity of notation, define B ,, to be the
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set of such permutations p € B,,. Then we have

n . 97 .
/Kg")(z;a,b;to,...,tg;t)K§ V(zia,bito, ...ty ) A dr = = 3 /R&".LRE\”)AE,?)dT
T ua(t)? eyt AP

2"n! (n) pn) & (n)
0 (1)2 Z RA,idRA,pAK drT,
A pEBA,n

since only these permutations give nonvanishing terms.

Then, using the formula of the claim, we have

2l > [ RULRVIAY AT
PEBA n
C&anmkl()\) (Tl —my, (}\))' Z / R;n.;mkl(A))R;nfmz\l(k))Ag?;*mn()\))dT )\1 > 1’
) T ”
peB/\,n—m)\l()\)

022"_mh()‘) (n — my, ()\))! Z / Rinldmxl (A))R(np ma, (A))A(I?—mxl (A))dT A =1,
T

peBS\JLan)\l (X)

where

)k

mkl()\

= 1T (7).

k=1 i=1

ml(/\) k

H [Z tz 1 t’L 1 t2)mo(>\)+k z( totltgtg))},

i=1

and X is the partition A with all ma, (A) occurrences of Ay deleted. Iterating this argument gives

that
2t 3 / R REIAD T

: m;(A) m1(X)
(T ) (T o)

351 k=1 i=1 k=1 i=1
v 2mo(>\)m0()\)! Z R(()”ig((i‘)))ldRé:g((i\))) A%no(/\))dT;
pEBmo(%)

note that the expression on the final line is exactly [ Réﬁfg((;\)) A mo()‘))dT
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Thus,

2"n! (n) p(n) & ()
INGE Z R,\,idR;,LpAK dr
A PEBX

mi(A) -k mi(\) k
= (H H (Zﬂl))( Z(tl I S t0~~t3))>

i>1 k=1 =1 k=1 i=1
1 (mo(A))? R (ma(N))
x RO TAT N ar,
Vgmon (£)? / 0o

since by (3.1) and (3.2) we have vay(t) - vymon) (£) = vA(f). Now using

: 1tk
i—1
(Zt >_ H 1—t’
k=1 i=1 k=1
and
E E
Z(tl 1y 4i-l t2)mo(>\)+k i(—tg-- ) Z tz 1 ,tSthero()\)*ltkfi)
=1 i=1
= (1 —tg---tgt?F2moN=1y (1 pgp 4okl
1—tk
— ]._t t tk-‘rQTno(k) 1
(1=to- T
the above expression can be simplified to
1 mj () 1_ ¢k my(X) N \
- (t)Q(H I1 1_t> I1 (1_t0...t3tk+2mo(x\)*l)/K(()Z’(()J((M) Almo) g
At i>1 k=1 k=1
1 A (Mo (V)
= ALY AT = Ny(to, ..., t3;t
'U)\_;,_(t)/ K )\( 0 5 U3y )a

since K (()Zfé’((f))) =1, by theorem 3.3. O

3.3 Application

In this section, we use the closed formula (3.5) for the Koornwinder polynomials at ¢ = 0 to prove a
result from [20] in this special case. The idea is the same as in [23]: we use the structure of K/(\") as
a sum over the Weyl group and the symmetry of the integral to restrict to one particular term. We
obtain an explicit formula for the integral of this particular term by sequentially integrating with

respect to one variable at a time.
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Theorem 3.5. [20, theorem 4.10] For partitions A with [(\) < n, the integral
/ Kx(z1,...,2n;t%a,b; a,b, ta,tb)A%)(z;t; +v/t,a,b)dT
T

vanishes if X is not an even partition (i.e., X # 2u for any w). If X is an even partition, the integral

is equal to
(\/i)l/\‘ N)\(t;:l:\/iaavb)v)\Jr(t; :l:\/%v a, b)
(1 + )N vy (t2;a, b, ta, tb) '

Proof. We have

/ Kx(z1,...,2n;t%a,b;a,b, ta, tb)A(I?)(z; t;£Vt, a,b)dT
T

1 -
= ) Z / Rf\nz}(z, t2:a,b:a,b, ta, tb)Ag?)(z; t; £V't, a,b)dT
wEB, T

~ uA(t%;a,b;a,b, ta, tb

2"n! (n) (.. ,2 A (n)
= Ry, (z;t%; a,b;a,b, ta, th)A it =Vt a,b)dT,
ua(t%; a,b;a, b, ta, tb) /T ia(zi 175 a,0;a,b, ta, D) A (2 Vt,a,b)

where in the last equation we have used the symmetry of the integral. We assume A; > 0 so that
A #£ 0™. Next, we restrict to terms involving z; in the integrand, and integrate with respect to zi.

Doing this computation gives the following:

/ A (1- azfl)(l — bzfl)(l — tazfl)(l — tbzfl) (1- zfd)
! (I—27) (I + Ve (1 — Vi )(1— az)(1 — beih)

(1— 227 2) (1 — 22y 27 (1—zFtzE

")
J J dT
" E (1= 21'2) (L - 21 '%) E )
_ 1 il (21 — ta)(z1 — tb)(1 — 2%)
270 Jo 7' (1 t2) (21 + VE) (21 — V(1 — azi)(1 - bzy)

2 2,-1 ~1
1 (21— 22j) (21 — 1225 ) (1 = 212) (1 = 2125 ) .

prie (z1 —tz;) (=1 — tz;l)(l —tz12)(1 — tzlzj*l)
Note that this integral has poles at z; = ++vt and z; = tz;, tzj_l for each j > 1.
We first compute the residue at z; = v/¢. It is equal to

(Wit ta)(VE—th) (1 - 1) 11 (VE=2) (V=227 )1 = Vizy)(1 = Viz; )
(1 - )2V — avt)(1 = bVE) i) (VE—t2)(VE — tz; (1 —tViz) (1 — tv/tz; )

i L U Vi) Vi

2(1+1) sor (1= Vizj) (1 = Viz; ) (1 = tv/iz) (1 — tv/tz; ) C2(1+1t)°




65

Similarly, we can compute the residue at z; = —v/t. It is equal to

(_\/%)/\171 (_\/E_ta)(_\/%_tb)(l_t)
(1 —2)(=2v)(1 + av/1)(1 + bv/1)
<11 (—VE = 822)) (=t — 227 ) (1 + Viz) (1 + Viz; )
(—VE—tz)(—VE—tz; (1 + tv/tz) (1 + tviz )
_ (—\/i)’\l 1 H J J _

(L4 tV/1z) (1 + tvVE; (L + Vi) L+ Vizr ) (—y/Dh
200+1) 0 L+ Vi) L+ Vizy L+ tviz) L+ vz ) 2(1L+1)

The residues at tzj,tzj_l can be computed in a similar manner. One can then combine these
residues (at tz;, tzj_l) with the terms from the original integrand and integrate with respect to z;.
Some computations show the resulting integral is zero; the argument is similar that used in [23,
theorem 23].

Finally, we add the residues at z; = £/t to get

(V)M (=M %, if \1 is even,
21+ 20+ |, if Ay s odd.

Thus,

2"n'/ RA 1d (2t a,b;a,b, ta,tb)A%)(z;t;iﬁ,a,b)dT

((‘ﬁgt) 2 —1)! [, R(n 1)(2 t2;a,b;a,b, ta, th) AV (z;t; /1, a,b)dT,  if Ay is even,

0, otherwise,

where \ is the partition A\ with the part A\; deleted, and id is the permutation id with z; deleted
and signs preserved.

Consequently, the entire integral vanishes if any part is odd and if X is even, it is equal to

2"n!
ua(t?;a,b;a, b, ta,tb

)/RQ}i)d(z;tQ;a,b;a,b,ta,tb)&?)(z;t;i\/i,a,b)dT
T

B 27—t (n — 1(\)! (VI

ung (825 a, b, ta, th)vgn—i (£2; a, b; a, b, ta, tb) (1 + )1

/ RO (8% a,550,b, ta, ) AR (258 £/, 0, b)dT

where, by abuse of notation in the last line, we use id to denote the identity element in B,,_;.y). By

(3.6), the last line is equal to
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2”7“)‘)(’)7, - l()\)! (\/E)‘Al —I()\ X (n—I(\
oy (P 0, b, ta, 1) (1 4 )10 | Bt a st AR stV 0, by

1 (V) n—I(A K (n—1(x
= oxs (rab ta th) (11 1 /TKén,l((”))(z;t%a,b;a,b,ta,tb)AEK ( ))(z;t;:t\/f,a,b)dT

1 Dk <
- (V) /A(K ") (2t V1, 0, b)dT
T

vt (125 0,0, ta, tb) (1 + )1
(VOIN Ny (t; £V, a, b)osy (8 £V1, a,b)
(1+t)™ ux+ (1% a, b, ta, th) ’

since Kéf)(z; t;a,b;to, ..., t3) = 1 by theorem 3.3 and n — I(\) = mg ().
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Chapter 4

An Interpretation Using p-adic
Representation Theory

4.1 Background and Notation

Let F' be a non-archimedean local field with residue field of odd characteristic. Let E be an unram-
ified quadratic extension of F. We will refer to the following cases throughout this chapter:

Case 1: G = Gla,(F), H = Gl,,(E).

Case 2: G = Glan(E), H = Gla, (F).

Case 3: G = Gl (F), H = Span(F).

For simplicity, from now on we will assume F' = Q,, and E = Q,(1/a), for p an odd prime and a
prime to p and without a square root. However, the argument applies to any F, F as described above.
Note that the number of elements in the residue field of F is p, and for E it is p?>. Throughout, we
will use K to denote the maximal compact subgroup of G (for example K = Gla,,(Z,) C Gl2,(Q)))
and K’ the maximal compact subgroup of H.

Define

AF={A=A1, .., ) €Z" A > - >\, >0},

and

Ap={A=(1.. ) €EZ"AL > - > M),

so that A} is the set of partitions with length at most n, while A € A,, is allowed to have negative
parts.

We set up some notation following [17], [9]. Let g — g* denote the involution on G given by
Case 1: g* =g 1.
Case 2: g* =g~ L.

Case 3: g* = ¢'.
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Fix the element sg € G to be

0 W,
, Case 1,
aw, 0
So =
Iy, Case 2,
Ins Case 3,

where J,, = ( _(} Ig ) and w;, is the n X n matrix with ones on the antidiagonal and zeroes everywhere
n

else. Define S = G - sg, where the action is g - sg = gsgg™®. Let H be the stabilizer of sg in G; then

In Case 1:
i J .
H= ' ' € Gli,j € Gl,(Qp) p = Gl,,(Qp(Va)).
AWpjWy  WpiWwy,
In Case 2:
H = GLy,(F).
In Case 3:

Note that in case 1, the maximal compact subgroup K’ = Gl,,(Z,(v/a)) C Gl,,(Q,(v/a)) maps to
K N H. In the other two cases, K' = Gla,(Z,) and Spay(Z,), respectively. The map 6 : G — S
defined by 0(g) = gsog™ = g - so induces a bijection between G/H and S.

Now let H(G, K) be the Hecke algebra of G with respect to K, i.e., the convolution algebra of
compactly supported, K-bi-invariant, complex valued functions on G. Let C*°(K \ S) be the space
of K-invariant complex valued functions on S. Put a H(G, K)-module structure on C*°(K \ S) via

the convolution:

£ d(s) = /G F(@)blg" - )dg,

where f € H(G,K) and ¢ € C°°(K \ S) and dg is the Haar measure on G normalized so [, dg = 1.
Then a relative spherical function on S is an eigenfunction Q € C*°(K \ S) of H(G, K) under
this convolution, normalized so that Q(sg) = 1. Also define S(K \ S) to be the H(G, K)-submodule
of K-invariant functions on S with compact support.

Define the elements dy in G as follows:
Case 1:

dy = antidiag.(p™,...,p M, ap~ ™, ... ap™™).



69

Case 2:

dy = antidiag.(p™,...,p ., p~ ., ...,p

Case 3:
dy = antidiag.(p™,...,p

In particular, we have dg = so in each case. By [17, proposition 3.1], [9] the K-orbits of S are given
by the disjoint union

S =UK - dy,

varying over [(A) < n, and A has all nonnegative parts. Let chy denote the characteristic function
for the K-orbit K - d, then the space S(K \ S) is spanned by the functions {ch|\ € A,/ }.

By the Cartan decomposition for G, we have
G =UKp K,

disjoint union varying over A € Ag,. Throughout this chapter, we use the notation p* to refer to
the diagonal matrix diag.(p*,p*2,...,p**"). Let cy, with A\ € A, be the characteristic function
for the double coset Kp*K inside G. These functions form a basis for H(G, K).

Let the constant V) (for any [(\) < n) be the following constants:

In Case 1: it is the reciprocal of the normsquared of Kfc” (z;p 1 +p~1/2,0, 0), i.e.,

1 o ) )
7:/Kfcn(x;pfl?ipﬂ/zvovo)%%)(fmip 1/2.0,0;p~1)dT.
Vi 7
In Case 2:
1 o B )
7:/Kfcn(x;p_2?1779_17070)%%)(56;29 2:1,p71,0,0)dT.
Vi T
In Case 3:
1 L i
VZ/PA( s p )PV (2= p~2) AL (25 p72)dT.
A T

In particular, Vj is the reciprocal of the integral of the density function in each of the three cases.
Note that for the first two cases, the V) are determined explicitly in [22] for general parameters
to, ..., ts of the Koornwinder ¢ = 0 polynomials and in [15] for these choices of parameters. In the
third case, the norm is computed in [23], for example.

Also let m;(\) be the number of \; equal to ¢ for each i > 0. Let

6r(t) = (L= D)1~ 12) - (1 1").
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Then we define

mi(A)
1t O,
= 1;[ U H 1 _ é)\m?()\) ’

>0

this is the factor that makes the Hall-Littlewood polynomials monic. Also, let

Finally, for z = (21,...,2,) € C" and f € H(G, K), define (for case 1 and case 2)

F2) = flz1, -y zm, =21, —2),
where " denotes the Satake transform on H(G, K). For case 3, define
F(2) = flz14+1/2,20 = 1/2, .. 2 +1/2, 2, — 1/2).
In fact by [17, lemma 4.2] and [9, lemma 2.1], f — f(2) is the eigenvalue map, that is
(f x)(s) = F(2)Q(s),

where Q,(s), z € C™ are the relative spherical functions, as determined in [17] and [9].

Also for f € H(G,K),g € G put f(g) := f(g~).

4.2 Main Results

Proposition 4.1. Let [(A\) < 2n and [(1) < n. Then we have

/ (ex % cho)(s)chy(s)ds
S

MIT 2n)<xi1 )KBC (z;p~ Y £p~1/2,0, O)A( )(x p~L4p~1/2.0,0)dT,

Z
= § R P (o ;p*Q)KBC"(z;p*Q;l,p’l,Oyﬂ)A(n)(x;p*Q;l,p’l,O,O)dT,
(,p3)+(X,p2) n n X —
P [ PEY 0 2 p ) B (@Y pm ) AYY (s p2)dT,

in cases 1, 2 and 3, respectively, where p; = (n —1/2,n —3/2,...,1/2) € C*, po = (n — 1/2,n —
3/2,...,1/2—n) € C*™, p3 = (n—1,n—3,...,1—n) € C" and the normalization Z is the evaluation

of the integral at A = p = 0.

Proof.
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Case 1. We use the spherical Fourier transform on S(K \ S):

Lﬁ@E@%ZAﬁ@ﬁ@%@;

here d,,(z) is the Plancherel measure on S(K \ S). We apply this to

/ (ex % cho)(s)ch,(s)ds.
s

Note that the spherical Fourier transform satisfies (by lemma 4.4 [17])
(ex * cho)(2) = éx(2)cho(2) = &x(2),
since chg(s) = 1. Here
C)\(Z) = CA)\(Zla R 2 TR 72”)7

where ¢ denotes here the usual Satake transform on H(Gla,(Qp), Glan(Z,)). But [16, chapter 5] ,
this is equal to

p<)\,pz)P>(\2”)(p—z17 tee ap_zn>pZ]v-' . 7PZn§p_1)-

Also, using [17] theorem 1.2 and proposition 5.15, we have

. % \ o _
ch,(z) = {/Kd ds}Qz(du) - {p2<u7p1>?0}p*(u,p1>V;Kfcn(pzz;p Ly 1/27070)
w

= plUP KO (p*pT s £pT12,0,0).
Finally, by [17] theorem 1.3 the Plancherel density is

AP (pr;p=1; +p=1/2,0,0)
S AW (e =15 £p=1/2,0,0)dT

Combining these, and putting z; = p* gives the result.
Case 2. The argument is the same as case 1, but the Plancherel measure and zonal spherical
functions are different. We indicate the differences (see the above references of [17] but for case 2,

and [16, chapter 5] for the group Gls,(F)):

ex(2) =A(21, oy 2ny =21,y —2n) = pQ(’\”’2>P§2n)(p_2Z1,. L p B pPa

PP PP pTR).
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We also have
h — — 1 4p.p1) Vo —2(p,p1) Vi BCh ()22, ,—2. -1
ch#(z) - { J dS}QZ(d#) - {p 7}]9 7K,u (p Y ,]-ap 7030)
K

Vi Vo

Y

= p2<M7P1>Kfcn (p2zi;p—2; 1,]9_17 0, 0).

Finally, the Plancherel density is

AP (% p%1,p7,0,0)
S AP (9223 p=2;1,p=1,0,0)dT

Combining these, and putting z; = p>*

gives the result.
Case 3. The argument is the same as in the above cases, but the Plancherel measure and zonal

spherical functions are different. We indicate the differences (see [9]):

ex(z)=A(z14+1/2,20 —1/2, .. 20+ 1/2,2, — 1/2)

2 - _ e . _
:p<)\7p2>P>(\ ")(p A=1/2 pmmtl/2 e 1/2 s tl)2, 1y,

We also have

V,

~ V — A z Z. —
chy(z) = {/Kd dS}QZ(du) = {p”“”)”vo}p <“”’3>7;Pu(p LT
dy i

Finally, the Plancherel density is
AL (r3p72)
Jy BS (p7e:p=2)dT

Combining these, and putting z; = p* gives the result.

Proposition 4.2. We have

p2<u,p1)%fH ex(guh)dh, in case 1,
/S(é)\ *cho)(s)ch#(s)ds = p4<H:P1>% fH c,\(guh)dh, m case 2,

p2<”’p3>\%fH ex(guh)dh, in case 3,

where g, = diag.(1,...,1,p7#, ... ,p7H) € C?". In particular, when p = 0, the right-hand side is
fH (&Y (g)dg
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Proof. We have

/(C)\ * cho)(s)chy(s)ds = / (ex * cho)(s) = meas.(K - d,)(cx x cho)(dy),
s

K'du,

where the first equality follows since ch,(s) vanishes off of K - d,, and the second follows since

(ca * chg) is K-invariant. Now by definition of the convolution action, we have

(ex * cho)(dy) = / ex(gY)eholg - dy)dg.
G
Letting H, = {g € G|g-do = d,,}, we have
g-dy € K-dy & (kg)-d, =do forsome k€ K & gec KH, .

Now one can check that g, - dy = d,,, so that H, = g,H (clearly g,H C H,, for the other direction
let g € Hy, then g-do = d, = g, - do, s0 g, 'g € H) and so KH,;' = KHg,'. Thus, the above

integral can be rewritten as

/ 16A(g’1)dg:/ c-x(9g,")dg.
KHgy KH

Finally, write

KH =UKx;,

a disjoint union and x; € H. Then we claim H = UK'z;, again a disjoint union. That the union is
contained inside H is clear, suppose next that h € H. But then h = kz; for some k € K and z;.
But since h,z; € H we have k € H, i.e., k € K'. Clearly the union is disjoint, since K'z; C Kx; for
all 7. Thus,

/KH e g9, )dg =" | coxlggy g = coa(wig,)dg

Kx; xT;
:Z/ C—/\(xig;:l)dg:/ c-x(hg,")dh.
T; K’I,’, H

Finally, we have to multiply this by meas.(K - d,), see the previous proof for these values in each

case. O

Proposition 4.3. We have the following:
Case 1:

/ (h)dh 0, if X # i for any p,
C) =
H p2lps) n @) EP‘?

) if \ = p? for some p.
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Case 2: -
Van pi
/H cxlmydn = 0 220
Case 3:
/ ea(h)dh = 0 if A # pii for any u,
H p2<mpL> %7”#)(p,z)?l",(Z:jglmvﬁ SOk if A= up for some p.
Proof.

Case 1: Note first that the integral of the left-hand side is the measure of the intersection
H N Kp*K. We recall the Cartan decomposition of G = Gla,, (Q,):

Glon(Qp) = UKp K (disjoint union),

where p* is the element diag.(p*!,...,p*2") in G. Similarly, we have the Cartan decomposition for

Gln(Qp(Va)):
Gl,(Qp(va)) = UK'p" K’ (disjoint union),

where p* is the element diag.(p',...,p"") in Gl,,(Q,(v/a)) and K’ = Gl,(Z,(\/a)). Note that
under the isomorphism Gl,(Q,(v/a)) — H, K’ is mapped to K N H, which is contained in K.
Also note that the element diag.(p**,...,p"") € Gi,,(Qp(y/a)) is mapped to the diagonal matrix
diag.(ptt,... pt ptn ... pt), which is an element of Kp K, where X\ = ju1jt1taft2 - - . finfbn. Thus,
H may be realized inside G as the disjoint union of the double cosets {(K N H)p(Htstnstnsba) (KN
H)}, where p is a partition of length at most n.

This implies H N Kp*K is empty unless A = p? for some partition j, which gives the vanishing
part of the claim. If A = 2, the integral is equal to meas.((K N H)pW#:tnstins i) (K 0 H)), which
is equivalent to meas.(K'p"*K') inside GI,,(Qp(v/a)). We can compute this last quantity using [16,
chapter 5]. Applying that result to the group Gl,(Q,(1/a)), and noting that p? is the size of the
residue field of Q,(v/a) gives

(o -p)/a-r )

[K'p K| = (7)) o
(Mo I (= p720)) /(1 = p2)

Case 2: Note that we have the following Cartan decompositions:

G = Gln(@(Va) = | (Clan(Zp(Va)P*Glan(Z,(Va)) ),

AEA2,
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and

H=Glan(@,) = | (Glan(Zy)p*Glan(2,)).

AEA2,

where in both cases the unions are disjoint. Note also that Glo,(Z,) = K' C K = Glay(Zy(V/a)).
Thus, the intersection Kp* K N H is exactly K’p*K’. Finally, from [16, chapter 5 (2.9)], we have

2(\,p2) van(p~?) 2(X,p2) ban(p™?)

measure of K'p K’ =p =p ,
ua(p~2) HiZO ¢mi(>\)(p_2)

as desired.

Case 3: Note that we have the following Cartan decompositions:

G =Glon(@) = | (Glon(Zy)*Glan(Z,)),

A€A2,

and

H= San(Qp) = U <5p2n(Zp)p)‘Sp2n(Zp))a

A=pp
in A2n

where in both cases the unions are disjoint. This implies that the intersection Kp* K N H is zero if

\ # pfi for some p giving the vanishing part of the result. If A = pji, the intersection is K'p*K’.

We use [15] (which deals with the general reductive p-adic group case) to compute

bn(p™2)

measure of K'ptAK’ = p{mru) )
Gr—1(wy (P~ (1 —p~ )Wy, 1 (p~1)

as desired. ]

We are now prepared to provide p-adic proofs of the following theorems (recall the combinatorial

proofs provided in chapter 2):

Theorem 4.4. Symplectic identity (see [20], [23]). Let X\ be a partition of length at most 2n. Then

we have

0, if X# u? for any p,

Un (t2)

1 n A(n
E/ PEY () A (231, £/1,0,0)dT =
T o) if A= u? for some

(here the normalization Z = [, Ag?) (x;t;£+/1,0,0)dT ).
Theorem 4.5. We have the following identity (see [19], [11], [12]):

UQn(\/i)
oA (V1)

1 n
/PA(Q:1 st ) A (241,v2,0,0) =
Z Jr
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(here the normalization Z = [, Ag?) (z;t;1,/1,0,0)dT).

Theorem 4.6. (see [20, theorem 4.4]) Let X be a weight of the double cover of GLay, i.e., a half-
integer vector such that \; — \; € Z for all i,j. Then

1 / (2n) +1/2 1 (1- Zi/Zj)(l - Zj/Zi)
— | PPt Zioo g t)— dl' =0,
Z Jp n! 1§g§n (1 —1t22;/2;)(1 — 22/ 2;)

unless X\ = pp. In this case, the nonzero value is

n (%)
(1= t) 0, (8)(L+ t)(1+t2) -~ (1 + tn=1)

(here the normalization Z = [, Ag(z;t2)dT).

Proof of theorem 4.4. Using propositions 4.1, 4.2 with u = 0™ gives

()\,p2> ~
P - /PA(Q”)(Ifl;p’l)Aﬁ?)(x; ip“”?O,O;p“)dT:/ ex(h)dh,
T H

and by proposition 4.3 this is equal to

0, if X\ # p? for any pu,

pzw,ps)%, if A = p? for some p.

To obtain the nonzero value, let A = 2. Then we can compute

2(u, p3) = 2((n = Dpr+(n=3)p2+--+ (1 - n)un)
= (n—=1)(u1 +p1) + (n=3)(p2 + p2) + -+ (1 —n)(un + pn)
== +X)+n-=3)(Az+ )+ + (1L —n)(Azn—1+ A2n)
=A(n—1/2) 4+ Xa(n —3/2) + -+ Aan(1/2 = n) = (A, p2).

Thus, we obtain

1 - 0, if A # p? for any p,
5/ PP (s p AR (s p1/2,0,0:p71)dT = ,
T v (™)

T if A = u? for some u.

Thus the equation in the statement of theorem 4.4 holds for all t = p~!, for p an odd prime. This
provides an infinite sequence of values for ¢ for which the equation holds, so in particular it holds

for all values of ¢ as desired. ]

Proof of theorem 4.5. The identity follows from case 2 of propositions 4.1, 4.2, and 4.3, as in the
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proof of theorem 4.4 above. Note that these arguments show that the theorem holds for all ¢t = p~*.

This provides an infinite sequence of values for ¢ for which the equation holds, so in particular it

holds for all values of ¢ as desired. O

Proof of theorem 4.6. The identity follows from case 3 of propositions 4.1, 4.2, and 4.3, as in the
proof of theorem 4.4 above. If A = up for some u, the integral is non vanishing. The evaluation
follows by noting that 2{(u, p1) = (A, p2). Note that these arguments show that the theorem holds
for all t = p~'. This provides an infinite sequence of values for ¢ for which the equation holds, so in

particular it holds for all values of ¢ as desired. O

Remarks. In case 1, the involution is g — ¢g* = g~!

and the action is g - * = gxg*. Then H is the
stabilizer in G of sp under this action. But H = {g € G|gsog* = so} = {9 € Glg = sog*flsgl}. So
H is the set of fixed points of the order 2 homomorphism g — sog*flso_ ! This provides an analog
of theorem (1.1), where one restricts sy to the subgroup of fixed points of a suitable involution. The
other two cases are analogous.

Note that theorem 4.5 is not a vanishing identity. As described in Chapter 2, this identity is a
finite-dimensional analog of a result of Kawanaka (see [12], [11], [23]). Kawanaka’s identity has an

interesting representation-theoretic significance for general linear groups over finite fields: it encodes

the fact that the symmetric space Gl,,(F,2)/Gl,(F,) is multiplicity free.

4.3 A p-adic Generalization

In this section, we deal only with the symplectic case, case 1; the notation is as in that case. We
will prove some stronger results by extending the methods above.

Let I(A) < 2n and I(p) < n. Then, by the first two propositions, we have

1 n — — — A (n — —
5/ PP (aF L p Y KB (ap~ s 27 Y2,0,0) A% (a5 £p~1/2,0,0,p~1)dT
T

1 Vi
- - G — {tp1)=(A,p2) YO -1
= ST /S(c)\ * chg)(s)chyu(s)ds = p'° 2 v /HC/\(th \dh.

Using the Cartan decomposition for (Gl,,(Q,(v/a)), Gl (Z,(v/a))) and the embedding into Glz, (Q,),

we have

/ ex(hg,t)dh = > / ex(hg,, t)dh;
H BEAan 'pPK’

B=v1..UnVn...l1
for some v

also note that

/ cx(hg}jl)dh = meas.(Kp*Kg, N K'p’K'),
K’pﬁK’
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where the measure is with respect to the measure on H. Thus,

1 -
5/ PP (L p KB (ap~ Y £p72,0,0) A% (25 £p~1/2,0,0,p~1)dT
T
v
:p<u7p1)—(>\,p2>70 Z meas.(KpAKgHﬁK/pﬁK’). (4.1)
m BEA2n

B=v1...UnVn...V1
for some v

Lemma 4.7. Let = vy ...vpvy ... 1 € Aoy, have at least one negative part. Then meas.(KpAKgHﬂ

K'pPK') = 0.

Proof. Note that if Kp*K N K’pﬁK’g;1 # 0, then Kp*K ﬂpﬁK’glj1 # (). We will show that
Kp*K Np°K'g;" = 0, which proves the claim.

Note first that g;l = diag.(1,...,1,p*", ..., p*). We will write i = (tn,...,p1). Suppose for
contradiction that
k= ' J

AW JWy  WniWy

is an element in K’ such that p°k’ g;l € Kp*K. By a direct computation we have

DR = p’ 0 i J 1o\ pYi pYipt
g 0

p” AWpJWyn — WylWy 0 pt pYawpjw,  pYwpiw,pt

Now noting that p”w,, = w,p”, the above becomes

pYi pYjp"

vV 5 174
awnp’ jwy  wep”ipPwy

Since pﬂk’g;1 € Kp*K C Ms,(Z,), it follows that pi and p”j are in M,(Z,). Since v, < 0, it
follows that the nth row of &’ has entries all of which are divisible by p in Z,. Let B be the matrix
obtained from &’ by dividing the nth row by p; note that B € Ms,(Z,). Then

det(k') = pdet(B) € p- Zy,

which contradicts | det(k’)| = 1. O
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Thus, using the previous lemma, (4.1) now becomes

1 -
Z/ P (@ p K PO (@i p™t A2, 0,0)A% (; 4p72,0,0,p71)dT
T
Vi
= plrp1)=(hp2) 70 Z meas.(Kp*Kg, N K'p’K'). (4.2)
"
ﬁeAg—n

B=vi...UunVp... V1
for some v

We briefly recall the Hall-polynomials g;,,(p) [16, chapters 2 and 5]: they are the structure

constants for the ring H(G*, K). In other words, for u,v € A, we have

CukCy = Z g;‘,j(p)cA. (4.3)
Aers,

Note that, in particular,

Ip (D) = (curc)(P) = / cu(Py ™" ew(y)dy = meas.(p* Kp~" K N KpK).
G

Lemma 4.8. Let A\, u, 3 € Ag,,. Then we have

/GC-,L(Q')/GCﬁ(g)cx(gg’)dgdg’=mea&(Kp’“K)/Gc—x(p“g’l)Cﬁ(g)dg-

Proof. Write Kp~* K as the disjoint union Uk;p~* K, where k; € K. Then

/G c—u(g’) /G cs(9)ea(gy’)dgdg’ = /G ca(g9)ea(gg’)dgdy’

Kp—+rK

- A/Gcﬁ(g)ck(gk"piﬂk)dgdk: 2 /G%(Q)CA(gkip*“)dg

kip—# kip~#

= k;ﬂ /G ca(yk; ealyp™)dy = k;ﬂ /G ca(y)ea(yp™")dy

= meas.(Kp*“K)/Gc[g(g)@\(gp*“)dg = meas.(K]f“K)/GCfA(Pﬂgil)Cﬁ(g)dgo

O

Proposition 4.9. Let A\ € AJ,, and u € A} and fix a prime p # 2. Suppose gz‘,ﬁ(p) =0 for all

08 € A;rn with all parts occurring with even multiplicity. Then the integral
1 2n — — — A (n — _
E/TP)(\ M@ p ™)K PO (™ £p71/%,0,0)A%) (a; £p~1/2,0,05p7 )T,

with Z = fT Ag?) (z;4£p~1/2,0,0;p~1)dT, vanishes.
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Proof. The starting point is (4.2) from the discussion above, recall that we have

1 )
7 / P (@ p K PO (@i p~t A2, 0,0) A% (5 4p712,0,0;,p71)dT
T

— p<M7P1>—(A7P2>¥ Z meas,(Kp/\Kg# N KlpﬁK/).
" peng,

B=vi..upVp...V1
for some v

Now if we write

(Kp*Kg, N K'p°K') = UK'x;,
a disjoint union and x; € p? K’, then the above measure is the number of z;’s. But we also have
UKz; C (Kp*Kg, N Kp’K),

and the union is disjoint (kixz; = kex; implies k;lk‘lxi = x;, but z;,x; € H so k;lk‘l € K’ a

contradiction to the definition of the z,’s). Thus,
meas.(Kp*Kg, N K'p°K') = #{z;} = meas.(UKz;) < meas.(Kp*Kg, N Kp"K),
so that
/K/pBK/ ex(hg, H)dh < /KPBK ex(gg,, dg = /G cp(g)ea(gg, dg = /GC—A(gug’l)Cﬁ(g)dg-

Recall that g, = p0"=#n=r1) By lemma (4.8), we have

1
_ -t d:—/ n’/ "dgdg'.
/Gc Maug ™ )es(g)dg meas (Kp K J,, 0 (9) GCB(Q)CA(QQ) gdg

But, using a change of variables, we have

/G cuon (9) /G cs(g9)ea(gg’)dgdg’ = /G cuon (9") /G cs(yg' " Healy)dydg'
= /G cuon (9) /G ey~ g e y)dydg' = /G c-x(y) /G cuon (9')e—p(g'y)dg' dy

= meas.(KpK) [ eaos™)epon (9)dg = meas-(Kp )9} 00 ().
where 93, Lon (p) is the Hall polynomial for H(G, K), see [16, chapter 2 section 4]. Thus,

1 meas.(Kp~*K) meas.(Kp~?K)
_ d R S " — "
/G c k(g,U«g )Cﬁ(g) g meas.(Kp/‘OnK) 93,10 (p) meas.(Kp“O"'K) 9u0 ,B(p)a

where the last equality follows by [16, chapter 2, (4.3)(iv)].
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To summarize, we have

-2
. B N By meas.(Kp~K)
/HC)\(th )dh = Z meas.(Kp"Kg, N K'p"K') < Z —meas.(KpHO"K)g“on’ﬁ(p)'
BEAZ, BEAZ,
B=vi...UpVn...1 B:VQ
for some v for some v
Since by assumption gli‘ﬁ(p) =0 for all B =v? € AJ, the result follows. O

Theorem 4.10. Let A, pp € Af. Then the integral

1 X (n
S AR (250,0,0,0 t)d:rASﬁQ”)<x?1)spﬂ<x1,.-.,xnm&é)(m;o,o,o,o;t)dT
T—"K x;U,U, 0,05

vanishes if and only if the integral

1
Jr A(I?) (73 £/,0,0;t)dT

/ PEY (L ) KB (a1 12,0, 0)AW (2 /7,0, 05 4)dT
T

vanishes as a rational function of t.

Proof. The “if” direction follows by setting ¢ = 0 in the Hall-polynomial integral to obtain the Schur
case. We consider the other direction: suppose the integral involving Schur polynomials vanishes.
We will show the integral involving the Hall-polynomial vanishes.

Fix an odd prime p. We recall the classical branching rule of Littlewood and Weyl:

ngn)(xil): Z spM(xl,...,CCn)< Z cﬁ”@>,

l(p)<n BEAS,,
3 has even columns

where 027 5 are the Littlewood-Richardson coefficients (note: this requires I(A) < n). Thus, since the
above Schur integral vanishes, we must have cﬁy g =0forall g€ A3, with all parts occurring with
even multiplicity.

By [16, chapter 2, (4.3)(i)], this implies gz‘ﬁ(p) =0 for all 8 € A}, with all parts occurring with

even multiplicity. Thus, by the previous proposition, the following integral is zero:
1 ~
E /T P)(\Qn) (miil;p—l)Kfcn (.’L‘,p_l’ ip_l/Q7 O7 O)A([?) (.’177 ip_1/27 0’ O,p_l)dT7

where Z = [ A%)(z; +p~1/2,0,0; p~1)dT. This shows that the integral in question vanishes for all

values t = p~ !, p an odd prime. Thus it vanishes for all values of t. O

Corollary 4.11. Let A\, € Af. Then the following are equivalent:
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(i) The integral

1 n A(n
T A aivio t)dT/TP)(\Q @ ) KB (254, £v/1,0,0) A% (2 £v/,0,0; 1)dT
T K €T; y Uy, U

vanishes as a rational function of t.

(i) The Hall polynomials

A (-1
gp.,ﬁ(t )
vanish as a function of t, for all B € A;n with all parts occurring with even multiplicity.

(#ii) The Littlewood-Richardson coefficients
Cl)l\«,ﬁ = 07

for all B € A3, with all parts occurring with even multiplicity.

Example. Let A have all parts occurring with even multiplicity, and p = () only one part (assume
r # 0). Let 8 have all parts occurring with even multiplicity. We have g/’a\,(r)(t_l) =0 unless A — 3
is a horizontal r-strip [16]. But A — 3 is a horizontal strip if and only if Ay > 81 > A2 > B2+~
(interlaced), so A = 3. Thus gf‘m ﬂ(t’l) = 0 for all § with all parts occurring with even multiplicity.

So for these conditions on A, u, the integral of the above corollary vanishes.

Finally, we provide a characterization of the measures
/ ex(hgy, t)dh = meas.(Kp*K g, N K'p’K') (4.4)
K/pﬁ K’

appearing in (4.2) in terms of modified Hall polynomials. Recall 5 = (v1,...,vp,Vp,..., V1) = VD €
AL

We will use the following pairing on lattices obtained by the theory of elementary divisors:

Definition 4.12. Let FE be a local field and let o be its ring of integers. Also let ¢ denote the
number of elements in the residue field of 0. Let L, M be rank n o-lattices in E™. Denote by {L; M}
the set of elementary divisors of M in L. That is, if {L; M} = {p*,...,p*} this means there exists

an o-basis {ey,...,e,} of L so that {p*ey,...,p*e,} is an o-basis of M.

We will use {L; M} = X to denote the above situation. We will restrict to the case £ = Q) and
will write o' for the ring of integers of Q,(y/a).

In (4.3), we have defined Hall polynomials as structure constants for a particular ring; one notes
that they also have a more combinatorial description in terms of modules. We briefly recall this

interpretation, see [16, chapter 2| for the relevant notation, and more information. Let M be a finite
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o-module of type A. Then the Hall polynomial gﬁ‘ﬂ,,(q) is the number o-submodules N of M which
have type v and cotype p.

To relate Hall polynomials to our measure (4.4), we first rewrite the latter as follows
meas(Kp* K N K'p""K'g,") = / ex(hgy errprr e (h)dh.
H

Now we choose 7 sufficiently large such that vZ — 2™ has all parts negative. Then one notes that

the above measure is equal to

n

meas(Kp K N K’p’”—’"%K'gljlp’“Q ) = /Hc,\(hponﬁwzn)CK,pW,Tan,(h)dh.

Now consider the following right coset decompositions

K/puﬂ—rz" K = UK’yj

Kp*K = UKz,

(here y; € p” "K' and z; € p*K respectively). Then we can rewrite the above integral as
§ / CA(/f/yjpoan_rzn)dh = E Cx (yjpon’ﬂrzn),
- K’ -
J J

which is the number of pairs (7, j) such that

, Onﬂ+’l"2n

yjp = in,

for some k € K. Let L denote the lattice o™ in the vector space Qj. Then, in terms of lattices, this

is equivalent to counting the number of lattices M = Ly; such that
{Lp= P+ MY = {L; MpP T =
Rephrasing, this is the number of o-modules L’'/L such that
L'JL C Lp—(O”/iJrTQ")/L - Lp_(“ﬁ‘*‘Tz")/L

with the additional conditions that (1) L’/L is an o’-module of type ™ — v (o-type is 72" —v’) inside
the ambient o-module Lp~##+"" /L and (2) it has cotype A with respect to Lp~(©"#+"") /. Note

that without the extra o’-condition, this is the Hall polynomial

472" -
gf2n7;,/177)\(q) = g’r’2"71/17,7,u,7'r‘2” (Q) = gi\l’/“u(Q)'
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