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ABSTRACT 

Nanoelectromechanical systems (NEMS) have proven an excellent test bed for exploring 

nonlinear dynamics due to short decay times, weak nonlinearities, and large quality factors.  In 

contrast to previous research in nonlinear dynamics involving driven or phase fixed NEMS, 

where time is referenced by an external source, we describe phenomena classified by phase free 

phenomena.  Here we describe NEMS embedded into feedback oscillators with weak 

nonlinearities. 

 We make measurements of this mechanical nonlinearity by developing a transduction 

scheme, the piezoelectric/piezoresistive (PZE/PZR) transduction, which emphasizes the detector 

dynamic range over absolute sensitivity.   Using these measurements, projections on quantum 

nondemolition schemes involving the mechanical nonlinearity as a detector are made.  These 

measurements also are important for understanding the detection limits of NEMS sensor 

technology, which uses a mechanical resonator as a frequency reference in a phase locked loop 

(PLL). 

 This work identifies ways to reduce noise within ‘nonlinear’ feedback oscillators, and these 

results have implications for sensing systems using nonlinear mechanical resonators embedded in 

PLLs.  Since the mechanical nonlinearity of PZE/PZR resonators can be accurately calibrated, we 

make predictions for the behavior of these dynamical systems based on the given mechanical and 

electrical parameters.  We show, theoretically, that local isochronicity above critical nonlinear 

amplitudes can create special operating points in feedback oscillators at which parametric 

fluctuations may cause less phase noise in the oscillator than in feedback oscillators driven below 

critical amplitudes.   For these predictions, we present data that show quantitative agreement for 

the amplitude and frequency, and qualitative agreement for the phase noise. 
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 Finally, we show synchronization, assisted by nonisochronicity, between two feedback 

NEMS oscillators. We develop a general theoretical framework for two saturated feedback 

oscillators which use resonators with nonlinear stiffness.  In the limit of small coupling, we show 

that the system obeys the Adler equation with analytical predictions for the oscillators’ individual 

amplitudes and net frequency difference. We develop an experiment in which the three important 

parameters of the system (detuning, nonisochronicity, and coupling) can be tuned, and show data 

that agrees with the predictions for a large range of coupling.  We include data on phase slipping 

between two oscillators in which the aperiodic frequency difference is clearly observed.  Finally, 

we present data on phase noise in synchronized oscillators. 
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Chapter 1                                  

Introduction 

In this chapter, we introduce the basic concepts and conventions for the thesis. 

These will include background and motivation for doing experiments in the 

nonlinear dynamics of oscillators, by themselves and coupled together. We 

introduce the concept of isochrones and how they are related to amplitude-

modulation to phase-modulation (AM-PM) conversion in oscillators. 
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1.1 Background and Motivation 

The modern history of mechanical timekeeping can be traced from gravity pendula, to spring-

driven mechanical clocks, to quartz-crystal oscillators [1], and finally, to present day MEMS 

oscillators. There are many figures of merit for mechanical oscillators that have improved through 

the last century (such as power consumption, cost, temperature stability, et cetera), but of special 

importance are phase noise and size [2]. Miniaturization is especially important for modern 

mobile applications [3, 4]. This miniaturization includes not only the resonant element, but the 

energy source. Oscillators must consist of a resonator and energy source (amplifier, spring, 

gravity, et cetera). This can be traced to the fact that attracting limit cycles cannot exist in 

conservative systems [5] (more on limit cycles in section 1.3). As the resonating elements have 

shrunk, so have the energy sources (and thus power consumption).  

However, a completely different paradigm for timekeeping arose which utilizes an even 

smaller object, the atom.  Timekeeping has been revolutionized by atomic clocks, which have 

recently shown total frequency uncertainty at levels of 10
-17

 [6]. Also, in order to reduce size and 

power, within the last decade, great efforts have been expended to push towards chip scale atomic 

clocks [7] (CSACs). For chip scale atomic clocks, a separate oscillator [8] is typically locked to 

the transition frequency of an atom, usually rubidium, so that long term drifts in a VCO (voltage 

controlled oscillator) are nulled by the atomic standard. This essentially means that short term 

phase noise is set by the VCO and long term phase noise by the atomic standard. In other words, 

point-to-point ‘frequency sources’ are still constructed using electromechanical resonators. Any 

receiver whose operation employs heterodyne detection (e.g. radio or GPS receivers) must have 

low phase noise at short timescales, and thus have an excellent low phase noise oscillator. Even 

for typical CSACs, the phase noise is set by the VCO at timescales shorter than 0.01 s (this 

specification will be important for looking at noise later in chapters 4 and 5). The timing 
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community hopes for smaller stable oscillators due to restrictions on power requirements for 

receivers [2]. 

To date, most research into low noise oscillators has focused on improvement of quality 

factors and insertion losses [4]. Phenomenological modeling of isochronous oscillators (no 

frequency-amplitude coupling) has been successful since additional phase noise due to amplitude 

fluctuations converting to phase fluctuations were not considered since these, in general, increase 

phase noise. Understanding the phase noise of a nonisochronous oscillators (frequency-amplitude 

coupled) [9] gives hints [10] that mechanical feedback oscillators might give lower phase noise 

than their isochronous counterparts. Here we explore the effects that mechanical nonlinearity 

(which couples frequency and amplitude together) has on oscillators.  

Besides the noise of a single oscillator, the interaction between two weakly coupled 

oscillators is explored in terms of their mutual entrainment (synchronization). The two 

oscillators’ frequency-amplitude coupling will act to shift frequencies to assist in the 

synchronization. We show that even though the noise increases in two oscillators when resonator 

frequency and amplitude are coupled (chapter 4), their chance of synchronization also increases, 

which can reduce the phase noise (chapter 5).  

1.2 Definition of an Oscillator 

Oscillators form a class of nonlinear dynamical systems which has a phase variable θ which 

is neutrally stable, or “free”[11]. Neutrally stable dynamical variables neither grow nor decay 

with perturbations, and thus retain a history of perturbations. Simply put an oscillator with 

frequency fluctuations obeys the equation 
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      ( )   (1.1) 

 

where    is a constant angular frequency, and   is a random variable in frequency. Thus,  

 ( )       ∫  ( 
 )

 

 

        (1.2) 

 

and so the phase retains the history of  . At this point, this might seem like equation (1.2) is 

obviously true for all ‘simple harmonic oscillators’. Note that a spring-mass system with external 

resonant forcing has the form 

  ̈         ̇      (   )  (1.3) 

 

where m is the mass, k the stiffness,   the damping, F the forcing amplitude, and    the 

frequency of excitation. This equation exhibits no phase freedom, in contrast with the oscillator. 

Here the phase of the resonator has a fixed relationship with the drive, 

 ( )       (
      

 

    
)       (1.4) 

 

As long as the driving frequency is constant, the spring-mass system cannot be perturbed away 

from this phase relationship, i.e. changes in phase do not grow in time. The phase is not free, it is 

completely determined by the external forcing. 

There is much confusion for the physics community between oscillators and these driven 

‘simple harmonic oscillators.’ Although this language is used between physicists, to avoid 
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confusion, in this document, resonator will be used to refer to a system that exhibits resonance 

such as the spring-mass system above, and oscillator specifically to oscillations with a free phase. 

1.3 Feedback Oscillators 

Of course there must be a way to create oscillations without an external frequency source, 

otherwise we are left with an infinite regression of driven systems. To understand how this is 

done in crystal oscillators, we will now focus on a particular class of oscillators known as 

feedback oscillators. The basic design flow of a feedback oscillator is shown in Figure 1.1. 

  

 

Figure 1.1. Feedback oscillator diagram. The energy is fed into the system through actuation. 

To feedback at the correct phase, accurate detection is important. Energy is fed into the system 

through the amplifier.  

 

The frequency control element is essentially the timekeeper here, with the amplitude being 

sustained by energy being fed back into the system through amplification. Since the energy must 

be fed back in so as to have constructive interference with the frequency control element (this is 
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the Barkhausen criterion), sometimes a phase shifting element is used. Note that an oscillator 

consists of more than just a resonator, and so its properties depend on every component of the 

system. This type of system will create ‘spontaneous’ oscillations. In the dynamics community, 

these are called limit cycle oscillations. A limit cycle is a periodic path in the phase diagram of a 

dynamical system. If surrounding points in phase space are attracted to the limit cycle, it is known 

as an attracting limit cycle. Another way of thinking about this is that the oscillator energy grows 

due to some positive energy input (from electrical gain in electrical oscillators, gravitational 

potential energy in weight-driven pendulum clocks), but cannot grow ad infinitum due to either a 

damping nonlinearity or saturation of supply from the energy source.   

A simple example of a limit cycle oscillation is a spring-mass system with linear gain and 

nonlinear dissipation. This model (also known as the van der Pol oscillator) is expressed 

mathematically 

  ̈       ̇      ̇    ̇    (1.5) 

 

where we have added a gain term   and a nonlinear damping term   to the damped harmonic 

oscillator. In Figure 1.2, the van der Pol oscillator has been simulated for long times with 

different initial conditions and parameter values. When     , a stable limit cycle arises out of 

the stable fixed point. The growth of the amplitude is bounded from below by the gain, and from 

above by the nonlinear dissipation η.  



7 

 

 

 

Figure 1.2. (Top) Simulation of the van der Pol oscillator for different values of gain. 

(Bottom) Conceptual topological change for a supercritical Hopf bifurcation in the feedback 

oscillator. 

 

This phenomenon of a stable fixed point transitioning into a stable limit cycle is known as a 

supercritical Hopf bifurcation. This bifurcation can be thought of as a heavily damped (in the 

radial direction) particle under constant torque (in the direction with angular symmetry) in a 

higher order paraboloid of the form  ( )         . As   changes sign from positive to 

negative, the minimum of the paraboloid switches from being a point in the center to a circle and 

the particle starts moving in the   direction at a constant rate. In Figure 1.2, it is easy to see that 

perturbations in the radial direction will decay back to the minimum of the paraboloid and keep 

circling around. Bifurcations represent a fundamental change in the topology of a dynamical 
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system as a parameter is varied, which, in the case of the van der Pol oscillator, is the 

gain/dissipation.  

1.4 Phase Noise in Oscillators 

As previously mentioned, oscillators have become ever smaller since their introduction. 

Quartz has been no exception, and recently academia and industry have moved past quartz into 

the realm of micromechanical resonators (MEMS). This has been due to increased availability 

and reliability of microfabrication equipment. Concurrently, solid state amplifiers have been 

decreasing in size and cost, so that the whole resonator/amplifier package can be miniaturized 

(for more information see reference [1]).  

Obviously, this miniaturization can be extended further into the realm of 

nanoelectromechanical systems (NEMS). However, there are challenges to maintaining low 

frequency noise (or phase noise) as mechanical systems shrink down to the nanoscale. Most 

NEMS devices have only been operated using flexural vibrations, thus causing the dynamic range 

of operating amplitudes to shrink significantly [12] (we will return to this point later in Chapter 

3).  

The phase noise of an oscillator is conventionally quantified by an expression due to Leeson 

[13] 

  (  )       [
         (     )

        
] (1.6) 

 

where    is the carrier frequency,           is the noise in the sideband at a frequency    away 

from the carrier frequency, and          is the carrier power.  Equation (1.6) does not elucidate 
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sources of phase noise, only phenomelogically how it is measured, much like how current and 

voltage do not elucidate the source of resistance. 

One way to understand Equation (1.6) is by applying the Ergodic theorem to the oscillator 

system [14]. That is, the average phase of one oscillator is equivalent to an average measure of 

phase of many oscillators started at the same phase at    , and measured at a later time after 

noise has diffused the ensemble.  Phase fluctuations will shift each member of the ensemble of 

oscillators into different phases, a process known as dephasing. 

With no amplitude-frequency coupling (which will cause amplitude modulation to couple to 

frequency modulation, i.e., AM-PM conversion) amplitude fluctuations will not cause phase 

fluctuations. One of the goals of this thesis is to explore the effects of AM-PM conversion on 

phase noise in NEMS oscillators. 

1.5 Isochrones and AM-PM conversion 

We define an isochrone as the set of points on in phase space which decay to the same phase 

on the limit cycle. We show the isochrones evolution under a changing nonlinearity using the 

example of the van der Pol oscillator (equation (1.5)) with nonlinear stiffness. The slow time 

dynamics (Appendix I) can be described by an amplitude    (with g and   scaled from equation 

(1.5)), 

  

  
 
 

 
(     )   (1.7) 

 

and with frequency (in the rotating frame)   defined by,  
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      (1.8) 

 

where   is the frequency at low amplitudes in the rotating frame, and   is the nonlinear stiffness. 

We diagram the solution to the amplitude and phase of this oscillator in the red circles of Figure 

1.3. 
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Figure 1.3. Isochrones for different values of nonisochronicity. Red circles are the limit cycle. 

Dotted Blue lines are the isochrones. The dark green lines are examples of two oscillations 

that start on the same isochrone. 

 

In Figure 1.3, the isochrones are the dotted blue lines. The green lines represent the oscillator 

phase trajectory under two different initial amplitudes, but starting on the same isochrone. As 

time progresses, they evolve to an isochrone different from the one they started on. However, 



12 

 

they share that isochrone. As time progresses further (but not shown) they evolve to the same 

point on the limit cycle. Thus, in the ensemble picture, different amplitude perturbations along the 

isochrones lead to no dephasing. Notice that only for the case when the nonlinear parameter 

   , there is dependence of the frequency on amplitude. 

As can be seen for these sets of isochrones, they become less orthogonal to the limit cycle as 

the parameter   is increased. This is the definition of isochronicity for oscillators. If the 

isochrones are perpendicular to the limit cycle, then it is isochronous, otherwise it is 

nonisochronous. And the amount of nonisochronicity is given by the parameter    Chapter 3 is 

dedicated to calibrating this parameter in nonlinear mechanical systems. 

From Figure 1.3, it is clear that if we take our ensemble (with only two being shown) picture 

and apply it to oscillators with     and perturbed in the radial direction (and hence not along 

the isochrones), this will lead to the dephasing that grows as the nonisochronicity increases. 

1.6 Thesis Layout 

The thesis is divided as follows. 

In chapter 2, transduction techniques are discussed, since the choice of transduction turns out 

to be extremely important for the type of measurement performed. In particular two types of 

electromechanical transduction are discussed: piezoelectricity and piezoresistivity. Comparison of 

the theoretical responsivity of these mechanisms is compared to experiment. Noise analyses are 

carried out for both types of detection, with results from piezoresistive detection. 

Next, chapter 3, we are discuss how to calibrate and quantify amplitude, and therefore, 

nonlinearity, in driven nonlinear piezoelectric/piezoresistive NEMS resonators. In particular, a 
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nonlinear stiffness tensor is extracted for a nearly ideal nanomechanical doubly clamped beam in 

order to show the agreement of the calibration technique with nonlinear Euler-Bernoulli theory. 

Non-ideal beams with an asymmetric potential are explored, with the asymmetry achieved by 

generating a static deflection. 

In chapter 4, oscillators with nonlinear nanomechanical resonators are explored. This includes 

prediction of the frequency and amplitude of such oscillations given the properties of a 

nanomechanical doubly clamped beam with a feedback function based on measurements of the 

feedback network. Phase noise for the heavily saturated oscillator will be closely examined 

theoretically and compared to experimental data taken using a piezoelectric-piezoresistive 

oscillator.  

Finally in chapter 5, an experiment on the synchronization of two nearly identical oscillators 

is presented. Quantitative calibration of system parameters is discussed in detail. Dynamical 

parameters, such as coupling and nonlinear stiffness, are varied, and their synchronized states 

discussed. Phase noise is compared between locked and unlocked states. Sign of the coupling is 

reversed, from repulsive to attractive, and differences are explored.   
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Chapter 2                            

Piezoelectric and Piezoresistive 

Transduction 

In this chapter we develop a basic understanding of the mechanisms by which we 

translate signals between the electrical and mechanical domains. We calibrate 

mechanical nonlinearity in later chapters through precise calibration of device 

amplitudes coupled with a linear electronic output. We argue that with two 

examples of strain transduction, piezoelectricity (PZE) and piezoresistivity 

(PZR), we can perform such calibration. For piezoelectrically and 

piezoresistively transduced nanoelectromechanical systems (NEMS), we develop 

theoretical models relating the currents to displacements, and verify them 

through experiments which use devices made from aluminum nitride and 

molybdenum. After presenting a noise analysis for both piezoelectric and 

piezoresistive detection, we compare the two detection schemes for use in the 

later parts of the thesis.  The theory for the transduction mechanism was 

developed by Guillermo Villanueva.  The piezoelectric material was deposited by 

collaborators at CEA-Leti, Grenoble, France. 
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2.1 Introduction 

 The realization of transduction between mechanical displacement and velocities into 

electrical voltages and currents remains a broad area of research within the MEMS and NEMS 

community [1-4]. Much of the impetus for the NEMS community to find ever more sensitive 

transducers was to increase operating frequencies of resonant devices. These efforts have led to 

the realization of room temperature detection of mechanical motion at very high frequencies [3] 

with transducer amplitude noise being much lower than mechanical domain amplitude noise, 

thereby reaching the ultimate in signal-to-noise for mechanical systems in equilibrium. These 

developments are not only important for the quantum physics community [5-9], but for the 

technological community as well [10-13], since more sensitive electromechanical transducers 

allow one to make more sensitive mechanical sensors [14]. However, for characterizing 

nonlinearities of mechanical systems, requirements other than signal-to-noise ratio (SNR) turn out 

to be important, and hence the need to develop a transduction technique not yet explored at the 

scale of NEMS devices, the piezoelectric/piezoresistive scheme.  

2.2 Requirements for Nonlinear NEMS Studies 

There is a large field of candidate transduction mechanisms from which to choose to do 

experiments in NEMS. The choice will depend on which properties of the NEMS are important 

for a particular experiment: these properties include large-scale integrability, sensitivity, linearity, 

actuation and detection bandwidth, mode/device flexibility, and ease of implementation. We now 

step through each of these properties and eliminate the transduction mechanisms which do not 

satisfy the criteria for testing the nonlinear dynamics (at least the ones of interest to us) of 

nanomechanical systems. 
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We begin with large-scale integration. One of the goals of this research was to develop a 

system in which the nonlinear dynamics of large arrays of devices could eventually be 

experimentally tested. Current technology allows for multiplexing large numbers of electronic 

signals; however, we must first translate the mechanical displacements into electronic signals. 

Also, full CMOS integration with controlled processes provides reproducibility of devices, which 

is desirable [15]. Therefore, it is not practical to develop a system with non-electronic 

transduction which is not easily to implement at large scales, e.g., using optical or magnetic 

transducers. Thus, we wish to use a system with all-electronic transduction. This narrows down 

our field of actuation methods to capacitive [16, 17], thermoelastic [18], and piezoelectric (on-

chip [19]) mechanisms, and detection methods to capacitive [16], piezoresistive [11, 20, 21], and 

tunneling [22, 23] mechanisms.  

Transduction nonlinearity can complicate tests of nonlinear mechanics when actuating the 

device. When strongly coupling to the mechanics, it is important that the electromechanical 

actuation is linear. To give an example, when using capacitive actuation with a static voltage bias, 

the overall electromechanical nonlinearity is now dominated by the electrical nonlinearity [17]. 

Therefore, we eliminate capacitive actuation from our field of potential transduction mechanisms.  

The electronic detection does not need to couple strongly to the mechanics to give a nonlinear 

output response. There are three possible mechanisms for the detected electrical signal to be 

nonlinear with linear drive: mechanical nonlinearity, electromechanical transduction nonlinearity, 

and purely electronic nonlinearity between the transducer and output port. If linearly increasing 

the power in the mechanics does not create a linear increase in the electrical output, this implies 

detector nonlinearity, which can be confused with mechanical nonlinearity. From our possible list 

of candidate transduction mechanisms, we can therefore eliminate detection mechanisms based 

on capacitive forces and electron tunneling.  
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In order to explore nonlinearity more generally, the transduction should allow for the 

exploration of a number of modes and devices in a wide range of frequencies. An example where 

this is not possible is magnetomotive transduction, which requires a closed current loop [4]. This 

method has been primarily limited to odd modes of doubly clamped beams. Although this 

requirement eliminates no candidates from our list, we point out that thermoelastic actuation, 

piezoelectric actuation, piezoresistive detection, and piezoelectric detection all satisfy this 

requirement. 

We must now choose between thermoelastic and piezoelectric actuation. The work on driven 

nonlinear NEMS (chapter 3) can be done with thermoelastic actuation; however, thermal currents 

travel through the device and reduce the signal-to-background ratio. This is detrimental to the 

construction of self-sustaining oscillators (chapters 4 and 5) since the background can interfere 

with the device output when fed back to the input. The usual method to eliminate background 

signals is to mix the mechanical signal [24] into an electronic frequency band far from the input 

signal’s frequency. This, however, introduces additional nonlinear electrical components, making 

it more difficult to model. Therefore, we are left with piezoelectric actuation as the only 

mechanism which can be used in our studies of nonlinear NEMS. 

So far, in terms of detection, both piezoelectric and piezoresistive satisfy all the requirements 

listed above. To choose between them, we theoretically and experimentally explore these two 

possibilities.  

To begin, if we are to predict the detection efficiency of piezoelectric detection, we want to 

find the piezoelectric coupling constant,    , which converts between out-of-plane electric fields, 

and in-plane strain. We do this by measuring the piezoelectric actuation efficiency. 
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2.3 Derivation of Piezoelectric Actuation Efficiency 

Piezoelectric transducers convert energy between the electrical domain and the mechanical 

domain through strain fields. Actuation with a local piezoelectric transducer makes use of a 

material ‘sandwich’ in the device (the beam in this case) where top and bottom layers act as 

electrodes, and the middle layer, which is offset asymmetrically from the center of the material 

stack, acts as the active piezoelectric layer. This layer is a material which has an inherent 

asymmetry in the crystal unit cell’s dipole moment, and thus has an intrinsic dipole moment 

which can be excited electrically to cause strain excitations in the material. This effect is known 

as the converse piezoelectric effect.  

We wish to derive the equation for dynamic piezoelectric actuation in NEMS cantilevers and 

doubly clamped beams. We will use the result for static piezoelectric actuation (equation (2.4)) to 

derive the dynamic root-mean-square actuation (equation (2.14)).  

 It should be noted that there are two types of piezoelectricity. The type of piezoelectric 

material described above is known as an intrinsic piezoelectric, common to III/V crystalline 

materials. These materials do not need to be polarized in order to exhibit piezoelectricity. The 

other class of piezoelectric materials is known as an extrinsic piezoelectrics (e.g., PZT ceramics), 

in which different crystalline domain walls are present and can be moved by an applied voltage. 

These materials must be polarized, and hence, are inherently nonlinear at saturated polarizations.  
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Figure 2.1. Piezoelectric Actuation. The upper picture shows a cross-section of the device. A 

field E is applied across the upper teal piezoelectric layer which creates a strain in the 3 

direction which in turn creates a bending torque M. This bending torque is compensated by 

internal stresses generated by deflecting the beam in the 2 direction. 

 

A diagram of the actuation is in Figure 2.1. Here    is an electric field in the out of plane 

dimension. This causes strain to develop along the longitudinal dimension in the active 

piezoelectric layer. The teal layer is this active piezoelectric layer which must be offset from the 

central axis of the beam in order to cause deflection. This offset strain creates a torque, which 

deflects the beam. The piezoelectric static deflection can be found by noting that in the static 

case, the net torque through any differential cross-section must be zero,  

  ∫ ∫           

    

    

   

    

    (2.1) 
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where    is the axis of deflection perpendicular to the layering in the beam,     is the axis of the 

width, and    is the stress in the axis of the length. The equation for piezoelectricity gives us an 

extra term to the stress 

        
    

    
  (2.2) 

 

where     is the piezoelectric constant relating electric fields in the   -axis and strain in the    

axis,   is the Young’s modulus,      is the thickness of the piezoelectric layer in the   -axis, and 

  is the voltage applied across the piezoelectric layer. We can combine these equations (2.1) and 

(2.2) for a balance of torques, 

〈  〉    
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with       being the normal result from beam theory [25],    and    are the distances from 

neutral axis to the bottom and top of the piezoelectric layer,  and             is the distance from 

the neutral axis to the center of the piezoelectric layer. Finally, we have the result that  

    

   
  

                     
〈  〉    

  (2.4) 
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 For the dynamic case we look at the equation of motion for a flexural beam without drive or 

dissipation, which is 

   ̈    
    

   
   (2.5) 

 

and gives solutions  

  (    )  ∑(    (    )      (    )        (    )
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      ∑    (  ) 

     

 

  
(2.6) 

 

where         are dependent on boundary conditions of the beam in question,    are the 

normalized mode shapes,    are the peak amplitude at a maximum of the mode shape, and   

   √
  

  
  

 
 

  (2.7) 

 

The parameter    (and thus the frequency   ) can be found numerically once the boundary 

conditions are in place.  

 The normalized mode shapes are functions that form a vector space so that the inner product 

of any two of these functions is the Kronecker delta, 
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where   
  

 
  We now proceed to the solution for the dynamic amplitude of the piezoelectrically 

driven beam. 

 First, note that the static amplitude    can be written as a linear combination of the basis 

functions   (  ), 

  (  )  ∑    (  )

 

  (2.9) 

 

We try to find the coefficients    for each mode. These are found by projecting the static 

deflection onto one of the modes, 
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Now, we know from Equation (2.5) that 

   (    )
    

    (2.11) 

 

We put Equation (2.11) into (2.10) to get 
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with       
    

 
⁄  is the fractional length of the actuation area. We also have the result from 

equation (2.11), 
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where we have used the fact that the first and third derivatives go to zero on the boundaries (for 

beams). We put equation (2.13) into the denominator of the result of equation (2.12) and use the 

explicit form of the piezoelectric static deflection in equation (2.4), 
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(2.14) 

 

where         ∫ (    )   
 

 
 and  This gives the piezoelectric actuation efficiency for a driven 

beam. This derivation does not depend on the form of the curvature and so works for the cases of 

one or two clamps. 
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  We can simulate some actuations efficiencies for some beams given the material stacks (see 

Appendix II) used in this work. In Table 2.1, offset is defined as in Appendix II, and         . 

 

Dimensions (l x w x t) 

[nm] 

stack             Mode   
 (    )         

  (   )/Q*d23 

[unitless] 

10000x1000x210 

(beam) 

II 0.19 1 2.78 198 72.6 

8000x1000x210 

(beam) 

II 0.19 1 2.78 198 46.5 

10000x1000x210 

(beam) 

II 0.19 2 0.51 1670 1.60 

6000x1000x210 

(cantilever) 

II 0.19 1 1.37 3.09 831 

6000x1000x320 

(cantilever) 

I 0.03 1 1.37 3.09 58.7
 

 

Table 2.1. Predictions for actuation efficiencies. The first three are doubly-clamped beams (with 

        ), the second two are singly-clamped beams (with       ). We will use the last to 

predict the piezoelectric coefficient    . 

 

In these expected amplitudes one can clearly see the influence of the piezoelectric offset, mode 

number, and length of various devices. The first three geometries are used later in piezoelectric 

detection, and the last is used here to find the piezoelectric coupling constant. 
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2.4 Choice of Piezoelectric Material 

Masmanidis and Karabalin [23] first showed the potential for local piezoelectric actuation 

with GaAs PIN semiconducting layer stacks. However, GaAs is not the best choice for a 

piezoelectric material. Since GaAs is semiconducting, and not insulating, the effective electric 

fields is reduced in the piezoelectric layer. Also, the substrate must heavily doped in order to 

make contact with the bottom layer used as an electrode. This is not desirable for actuation, since 

a highly conductive substrate layer creates a ground plane beneath all the bondpads, increasing 

the parasitic capacitance, and thus decreasing overall electrical impedance at high frequencies. 

With the ground plane ~10
-7

m beneath the bondpads which have an area of ~10
-8

m
2
, this gives a 

capacitance ~10pF.  These effects become obvious as frequencies approach the VHF band. 

Besides the issue of delivering high voltage to the device, this also causes larger feedthrough 

between bondpads.  

GaAs also makes a poor mechanical material. For sensing applications, large stiffness to mass 

ratios (sonic velocity) are desirable. GaAs has a Young’s modulus of ~90GPa, while having a 

bulk density of 5300 kg/m
3
.  

Although epitaxial GaAs has poor material properties, there are other piezoelectric materials 

which mitigate the issues discussed above. For example, a very common material in use in the 

Roukes group [4] is silicon carbide (SiC), which has a large sonic velocity, but poor piezoelectric 

properties. Another interesting piezoelectric material with high sonic velocity is aluminum nitride 

(AlN) which, unlike SiC, also has the benefit of having one of the largest [26] intrinsic 

piezoelectric constants. 

Since doping of AlN is not a well-known process, unlike the GaAs material stacks discussed 

above with doped semiconductor electrodes, metal electrodes were deposited. Only certain metals 
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are known to work well with AlN, and thus far these are platinum, aluminum, and molybdenum. 

The molybdenum process was chosen since LETI had success with it at larger scales. It also turns 

out to be much has a higher stiffness to mass ratio (sonic velocity) than aluminum or platinum.  

2.5 Piezoelectric Actuation Experimental Results 

In                        Table 2.2 we show some results for the first set of devices fabricated 

(Appendix II) from stack I. Here we note that we can actuate multiple modes, with the limit in 

frequency arising from the detection efficiency of the optical interferometric setup used to read 

out the NEMS. We also fabricated doubly clamped beams, with similar lengths, but only present 

the cantilever results. 
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Cantilever 

length (μm) 

Mode 

number 

Frequency 

(MHz) 

Quality 

factor 

10 1 3.156 1030 

10 2 18.23 870 

10 3 48.68 760 

10 4 91.84 450 

8 1 4.85 1030 

8 2 27.59 910 

8 3 73.52 720 

6 1 9.161 960 

6 2 48.25 790 

6 3 121.2 600 

4 1 20.84 640 
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4 2 94.72 650 

2.5 1 40.38 390 

                       Table 2.2. Optically measured piezoelectric cantilevers from Stack I. 

 

Several different wafers with different material stacks were explored. In the beginning, for 

initial characterization of the new material, the piezoelectric stack was deposited on a silicon 

handle wafer (Appendix II, stack I). Later, in order to isolate the bondpads from each other by an 

insulator, the piezoelectric stack was deposited on a silicon oxide layer thermally grown on a high 

resistivity silicon handle wafer (Appendix II, stack II). 

To calibrate the piezoelectric constant d23 for this material, we employed two different 

methods. First, we obtained the amplitude from cantilever beams and compare to the dynamic 

actuation efficiency. This method requires equation (2.14) and the estimation of the 

thermomechanical motion from the fluctuation-dissipation theorem to calibrate the amplitude 

from detected electrical signal [14].  

By equipartition, the power spectral density of the displacement noise is given as a function 

of the stiffness. On peak, we equate the stiffness to the effective mass times the square frequency 

to get 

   
     

        
   (2.15) 

 

 Since the thermomechanical motion can be estimated by calculating the effective masses 

(which depend on densities and not Young’s moduli), it turns out to be a good calibration for 
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motion at the nanoscale. The effective masses were found using finite element modeling, which 

agree well with naïve calculations using average density. See Figure 2.2 below.  

In (Figure 2.2 (a)), the expected thermomechanical noise at the peak is 0.16pm/Hz
1/2

 and the 

voltage noise is 48nV/Hz
1/2

, so we obtain a detection efficiency of 300µV/nm.  In figure 2.3 (b), 

we give the driven response at 2mV drive. This gives a tip displacement of 0.54nm on resonance. 

Here we use the amplitude found in                        Table 2.2. For this stack, we get a piezoelectric 

coupling coefficient             , which is only slightly different from the value obtained 

from centimeter scale cantilevers from the same wafer process using a different setup [27]. The 

value we calculated from experiment is also only slightly lower than the reported bulk value [28] 

of 2.6pm/V. 

  

 

 

 

Figure 2.2. (a) Thermomechanical noise for piezoelectric beam. Left axis is voltage out of the 

photodetector, right axis is prediction from equipartition. By relating these two scales we can 

get optical detection efficiency. (b) Driven response at 2mV drive. With the result from (a) we 

can estimate the piezoelectric driving efficiency. 
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2.6 Derivation of Piezoresistive Detection Efficiency 

In mechanical sensing technology, an efficient means of measuring mechanical strain is 

through piezoresistivity. Although the principle that strain can alter resistance is very simple, the 

underlying physics is more complex. This change in resistance occurs through two general 

mechanisms: geometrical deformation and change in resistivity. 

Piezoresistive detection can be useful for increasing resonator frequency, since detecting 

strain is more advantageous at higher frequencies than detecting displacements. To give an 

example, optical interferometric detection is a method based on measuring small displacements. 

As flexural resonator frequencies scale up, displacements scale down since resonator/mode size 

shrinks. Strain scales down as well, but not as fast as displacements. To get a sense of this we can 

use a simple example, that of a cantilever vibrating in its fundamental mode. We assume a long 

thin beam, but with finite thickness. Here the displacement of the neutral axis is essentially 

parabolic along the length of the cantilever. With the assumption of large aspect ratio (l/t > 5), it 

can also be shown that planes perpendicular to the neutral plane remains perpendicular 

throughout bending [29]. Assume the beam bends towards the top surface (out of plane). This 

gives a continuous change of strain through the beam from top to bottom, reaching zero strain at 

the neutral axis. Thus, strain on the top surface is proportional to the ratio of displacement to 

length. In comparing beams of two different lengths, the amplitude ratio of the beams is less than 

the strain ratio of the beams  
  

  
 
  

  
, where beam 2 is longer than beam 1 (with 

  

  
  ). 
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We proceed to derive the equations describing the piezoresistive output signal of a beam 

under deflection (equation (2.26)). We use this equation to find the theoretical detection 

efficiency of a doubly clamped beam (Figure 2.4).  

We start with the equation for resistance of thin straight wire with resistivity    length    and 

cross-sectional area  , 

   
 

 
  (2.16) 

 

Looking at a change in resistance, 

   
 

  
    

 

  
    

 

   
    

 

   
    (2.17) 

 

and thus the fractional change in resistance is 

  

 
 
  

 
 
  

 
 
  

 
 
  

 
 
  

 
 ⟨  ⟩  ⟨  ⟩  ⟨  ⟩  (2.18) 

 

Equation (2.18) is the sum of the fractional change of resistivity and the strain in different 

dimensions. If we use Poisson’s ratio   we get  

⟨  ⟩  ⟨  ⟩      ⟨  ⟩  (2.19) 

 

and so with equation (2.18) we define,  
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(     
   ⁄

⟨  ⟩
) ⟨  ⟩   ⟨  ⟩  (2.20) 

 

where the term in parentheses is known as the gauge factor    There are two contributions to the 

gauge factor. One is the geometric contribution, which contains Poisson’s ratio, and the other is 

the fractional change in resistivity. The second contribution is dominant in semiconducting 

materials, and depends on the change in carrier mobility[30].  

The change in resistivity of materials under strain is a complicated subject, which depends 

heavily on band structure. In this thesis all of the piezoresistive materials are metallic and we 

assume no change in fractional resistivity. By using the Poisson’s ratio for molybdenum we 

expect      .  

In the Roukes group, both semiconducting [20, 21] and metallic [11, 31] piezoresistors have 

been explored for NEMS. Semiconducting piezoresistors have much larger gauge factors than 

their metallic counterparts [32]. There are four disadvantages to semiconducting piezoresistors 

that are relevant to this thesis. The first is that the resistivity (and thus resistance) of these gauges 

are ~10
4 
times higher. Therefore, it is more difficult to get signals out at high frequencies without 

impedance matching close to the device. The second disadvantage is the larger 1/f noise in 

semiconductors [33] associated with the smaller density of charge carriers. The third is that 

piezoresistors based on resistivity changes lead to detected signals which are more nonlinear than 

signals from piezoresistors based on purely geometric changes.  The fourth disadvantage is the 

large variations in resistance and piezoresistance associated with temperature fluctuations [34]. 

Thus, metallic strain gauges were chosen. Even though they are not as sensitive, they are shown 

to be sensitive enough to detect thermomechanical fluctuations, as will be shown later.  
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Figure 2.3. Deflection of a beam near the clamp. As the beam bends up the legs undergo a net 

strain proportional to the curvature. The top picture shows a top view of the clamp. 

 

 The previous derivation for an ‘ideal’ wire (equation (2.20)) can be used to help understand 

our piezoresistors. From Figure 2.3, the piezoresistor is a current loop with ‘legs’ (the area on top 

and bottom of the grey section when looking from the top) much longer than the ‘head’ (the rest 

of the piezoresistor), and assume all the change in resistance is due to the narrow ‘legs’. In the 

case of a bent Euler beam, the strain in the length dimension (3) has a linear relationship with the 

thickness dimension (2),      , where    is the offset from the neutral axis of the beam. The 

neutral plane is defined as the plane passing through length-width dimensions (1-3) which does 

not undergo longitudinal strain to first order, when subject to flexure. In the case of a beam with 

uniform Young’s modulus, the neutral axis is in the center of the beam. For the piezoresistor to 

undergo net strain when the total beam is bent, the central axis of the piezoresistive layer must 
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offset from the neutral axis. The aforementioned proportionality between strain and offset is 

related by the curvature of the neutral axis along the beam,  

  (     )     
   

 (  )

   
   (2.21) 

 

where averaging along the thickness    gives 

〈  〉  〈  〉  〈
   

 (  )

   
 
〉  〈  〉  〈  

  〉             〈  
  〉  (2.22) 

 

The separation of the averages in equation (2.22) can only be done if the neutral axis remains 

perpendicular to the cross-section throughout flexure, since shear displacements can create 

dependencies in the curvature of the neutral axis on the thickness dimension. Choosing a mode 

  we have,  

  (    )       (  )    (   )  (2.23) 

 

where    is the peak amplitude of the antinodes of the beam,    is the mode shape. Equation 

(2.23) yields  
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where we have normalized along the length of the beam. Here      is the length of the 

piezoresistor relative to the beam length. By averaging in the length dimension (3), parts of the 

piezoresistor which have little to no strain can be detrimental to detector responsivity. 

Thus, we get 

     ( )

    
  

           

  
      (   )

  
 (    )

    
  (2.25) 

 

We include the voltage bias and lead resistance to obtain the total signal 
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(2.26) 

 

where the total resistance is the sum of the lead resistance and the resistance of the piezoresistive 

loop. We introduce the fractional offset for the piezoresistor 

            
           

 
 (2.27) 

 

 Combining this with the square length in the denominator we can insert the frequency with a 

numerical constant    (found by solving for equation (2.7) with appropriate boundary conditions) 

we get  

           
    
(    )

 
              

  
      

     (   )  
  
 (    )

    
 (2.28) 
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We see that the signal is directly proportional to the frequency, which contrasts with displacement 

detection.  

 Here   
 (    )      is a geometric factor related to the fractional length of the piezoresistor. 

We find that this quantity is maximized at a factor of around 25 for a doubly clamped beam 

driven in its first mode. 

  

 

Figure 2.4. Mode shapes and piezoresistive detection efficiencies for the first three modes of a 

cantilever and doubly clamped beam. Red, Blue, Green are 1st, 2nd, 3rd modes, respectively. 

(a) Mode shapes for a singly clamped beam. (b) Geometric factor for singly clamped beam. (c) 

Mode shapes for doubly clamped beams. (d) Geometrical factors for doubly clamped beams. 

 

Note the effect that the ratio of the resistance of the piezoresistor (PZR) to the total resistance 

has on the output signal. If the PZR resistance is much smaller than the total resistance, then the 



39 

 

signal will be significantly reduced. Certainly, there are methods to make this ratio unity: by 

either making the piezoresistor resistance large compared to the leads, using differential 

signaling, or making a four terminal measurement.  

2.7 Calibration of Piezoresistive Detection Efficiency 

We can calibrate the detection efficiency by looking at the thermomechanical motion of a 

doubly clamped PZE/PZR beam. In Figure 2.5, we ground the driving electrode and measure the 

total noise coming out of the system. The noise offset (white) here is a combination of the 

Johnson noise of the resistance, and the amplifier noise referred to the input of the amplifier. The 

peak buried in the noise background is the thermomechanical noise. The right axis is found using 

equation (2.15). 

 The spectral density of the background noise (white) is √                √  . We 

measured the total resistance of the resistance from bondpad-to-bondpad to be           The 

first stage amplifier voltage and current noise were measured such that √             √    

and √             √    According to Leach [35], the spectral density for the background 

noise will be  

          (
     

          
)
 

 (                          
 )  (2.29) 

 

which for  gives √                √   for            This is lower than from the 

experimental result by ~14%. There may be additional noise in the system or a miscalibration of 

amplifier gain (which is used to get the noise referred to input).  
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The noise corresponding to the peak is fitted to a Lorentzian and gives a spectral density on 

peak √                 √  . We compare the prediction for the thermomechanical noise 

transduced into electrical noise with this number. 

Using equation (2.28) we can estimate the total noise coming from the beam into the first 

stage amplifier. This is given by  

√           
    
    

  
           

  
  
 (    )

    
√
     

      
   (2.30) 
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Figure 2.5. Thermomechanical noise from a 10um x 0.4um beam made from stack II. With 

this measurement we estimate the gauge factor. 
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The PZE/PZR beam has dimensions                    and is made from stack II 

(Appendix II). The beam has a measured frequency of            ,  quality factor       , 

an estimated gauge factor      , offset                 , geometric factor 
  
 (    )

    
   , 

and effective mass             
     . In Figure 2.6, we plot the spectral density on peak 

(equation (2.30)) against the resistance of the piezoresistor. For the experimental value of the 

noise, we get the resistance of the piezoresistor to be    , much higher than the simulated value 

of    (which uses the value for resistivity from bulk values and the dimensions of the 

piezoresistor from the design). This discrepancy arises since the dimensions of the piezoresistor 

in this beam were not as designed due to lithographic error. Also, bulk values for the resistivity 

are probably too high for the      Molybdenum film. 
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Figure 2.6. Prediction of the thermomechanical noise transduced into voltage noise at the input 

of the amplifier for the beam from Figure 2.5. The experiment predicts a resistance for the 

piezoresistor of      Red dashed line gives the level of the thermomechanical noise 

transduced into voltage from Figure 2.5. 

2.8  Piezoelectric-Piezoresistive Motional Resistance 

We can now match up the piezoelectric actuation with the piezoresistive detection to give the 

overall electromechanical (motional) resistance. In an all-electrical transduction scheme, 

electromechanical resistance represents the conversion from input signal voltage to output 

current. That is 

          ( ) 
    

    
                        

 
  

  
   (   )

  
 (    )

    

      
        

〈  〉    

  
 (    )

       
    

(2.31) 

 

When we assume that the piezoelectric young’s modulus is the same as the rest of the beam 

(which is a good approximation for our beams), and putting in a rectangular beam’s areal moment 

of inertia, 
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                          (2.32) 

 

We divide the input voltage by equation (2.32) to get the motional resistance  
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   (2.33) 

 

We make some observations about equation (2.33). The only parameters that can be changed 

by modifying the fabrication and materials are the offsets, thickness, and the resistance of the 

piezoresistor. This means that if thickness if fixed, the motional resistance of the device is 

constant against changing the length, and hence the frequency. However, if aspect ratio (     ) is 

fixed, the resistance       Thus, higher frequencies actually have lower motional resistance. 

This surprising result implies that the piezoelectric/piezoresistive transduction scheme is optimal 

for moving to higher frequencies.  

The model which describes the piezoelectric-piezoresistive transduction is really only is valid 

in the small signal approximation since it assumes passive components. However, the 

piezoresistor is in fact an active device requiring a bias. A more accurate model for the 

transduction would use a three port active device (such as a transistor). Given a large gauge factor 

and a thin piezoelectric stack, it may be possible to create negative motional resistance, giving a 

circuit gain larger than 1. 
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Figure 2.7. Circuit setup and electromechanical model for a piezoelectric resonator. The 

power splitter and adjustable attenuators create a differential signal at the output of just the 

resonator. 

  

To characterize these devices, we typically have a system setup shown in Figure 2.7. Here, a 

differential signaling technique (as opposed to applying a single ended voltage to the 

piezoelectric input) is used to reduce feedthrough signals. The bias tee is used to bias and detect 

the resonance. The beam can be viewed from an electrical perspective as a series LRC circuit 

(Figure 2.7), with the motional resistance determining the total output current. A typical sweep is 

shown in Figure 2.8 (a). The sweep with lowest drive (black line) is Lorentzian. The Duffing 

nonlinearity for a doubly clamped beam becomes appreciable at amplitudes ~1nm as shown at 

higher values of drive. For the beam whose thermomechanical noise was shown in Figure 2.5, 
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based on the voltage-in compared to the voltage-out, we estimate the motional resistance to be 

150kΩ. The theoretical prediction of equation (2.33) gives          using parameters found 

from sections 2.3, 2.5, and 2.7.  Thus we see good agreement between experiment and theory. 

The PZE-PZR detection scheme is not limited to doubly clamped beams or cantilevers. Two 

other structures were explored, including free-free beams and circular membranes (drumheads) 

shown in Figure 2.8 (b,c), respectively. This demonstrates the ability to explore multiple types of 

resonators and modes since the actuation and detection mechanisms are intrinsically local 

phenomena, which can be made smaller than the actual device.  

 

Figure 2.8. Different types of piezoelectric/piezoresistive resonators made from Mo/AlN 

stacks and their driven response. (a) Doubly clamped beam. (b) Free-free beam. (c) Circular 

membrane where the nearly degenerate drum mode (1,2) is driven. 

 

The argument for the use of piezoresistive detection is buffeted when we consider the 

heating of the device. Even though use of a larger bias voltage would increase the output signal as 

shown in Figure 2.9 (a), there are restrictions. For example, we estimate that the piezoresistor in 

our beams may heat up as much as 100K at voltages ~500mV. This causes the frequency to shift 

and the quality factor to decrease. Since molybdenum and aluminum nitride are known to be 
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‘tough’ materials with high melting temperatures, the devices can survive, but frequencies and 

quality factors will decrease. Figure 2.9 (b) shows that for a doubly clamped beam, the frequency 

and quality factor decrease for an increasing bias.   

 

Figure 2.9. Varying piezoresistive bias (with fixed drive) in a piezoelectric-piezoresistive 

beam shows (a) an increase in detected signal and  (b) a decrease in frequency and quality 

factor. 

 

 Since the piezoresistive detection strongly tunes frequency, small temperature fluctuations 

can cause large frequency fluctuations. Mechanical sensors and oscillators depend on stable 

frequencies; parametric fluctuations arising from temperature variations in the devices are 

devastating to performance [36]. Joule heating is proportional to the square of the voltage, and 

hence, low frequency noise coming from the output port cause low frequency fluctuations in 

resonant frequency, which will not average out at long integration times. 
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2.9 All Piezoelectric Transduction Theory 

Piezoelectric detection has several advantages over piezoresistive detection. It is a passive 

detection technique. Therefore, it does not inherently increase the amount of noise in the 

detection (in resistors, Johnson and 1/f noise appear due to motion of the charge carriers). Also, it 

does not cause heating of the device, which decreases both the quality factor and the resonant 

frequency. 

The challenge for implementing piezoelectric detection is the high motional impedances. A 

beam of dimensions 10µm x 1µm with a layer of aluminum nitride 50nm thick will have an 

electrical impedance ~1/ωC. Assuming a parallel plate capacitor, this gives a capacitance of 

~10fF. The beam (stack II) used in this section has a frequency of 12MHz. Thus we get an 

electrical impedance of ~800kΩ at this frequency. It turns out the motional resistance is ~10x this 

electrical impedance (equation (2.41)). Also, the electrical and motional impedances will be 

dominated by parasitic capacitances when using surface mount technology to amplify the signal, 

which are usually ~pF, thus giving a 10 kΩ shunt. Even using an isolating 2 µm SiO2 buffer layer 

on the chip will give a capacitance of ~1pF for a bondpad with dimensions 100 µm x 100 µm. In 

order to fully appreciate this detection technique, impedance matching, by either cancelling the 

parasitic capacitance off chip (through the use of an inductance which can eliminate both the 

device’s electrical capacitance and parasitic capacitance of the chip) or amplifying on chip (which 

eliminates only the parasitic capacitance of the chip), is necessary. In our piezoelectric detection 

calibration, we do neither, but only compare input to output signal. In order to quickly calibrate 

the detection efficiency around multiple frequencies, we use a transformer in order to find the 

driven signal.  
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We start by calculating the piezoelectric detection efficiency for beams. The ability to 

produce a dipole moment under strain is known as the direct piezoelectric effect. Here we can 

relate the total current density out to the displacement current   by 

 ⃑    
  ⃑⃑⃑

  
  (2.34) 

 

Since the piezoelectric sensing electrode is separate from the piezoelectric driving electrode and 

the current is all in the out-of-plane dimension, along the thickness we get 
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where the polarization   is equal to the piezoelectric coupling constant     multiplied by the 

average stress (this is the direct piezoelectric effect). The strain must be averaged in the thickness 

dimension since it varies across the thickness, just as in the piezoresistive case. This gives 
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Integrating we get 
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Note that if the aspect ratio is fixed (length   to thickness  ), the motional current increases as 

frequency increases.  

 To obtain the motional resistance we put the result from Equation (2.14) into (2.37) (and 

noting that the quality factor pumps amplitude by a factor of Q)  
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(2.38) 

 

where we have grouped the terms into circuit parameters, material parameters, dimensional 

parameters, and device design parameters.   

 We start with the material parameters. For intrinsic piezoelectrics, aluminum nitride has one 

of the highest reported piezoelectric constants. Also, the Young’s modulus is extremely high 

among materials (~400GPa). Thus, with the exception of boron nitride, this is probably the best 

that can be expected for intrinsic nanoscale piezoelectric materials.  

 For the a doubly clamped beam, the ‘device design’ parameters in equation (2.38) can be 

optimized to give ~10
-3

, with the piezoelectric element being the upper half of the beam. Thus for 

a quality factor ~1000, we get 
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So the motional resistance becomes 
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)  (2.40) 

 

We put the motional resistance in terms of the device’s electrical capacitance     

           with         , 

       
  
    

     
 

  

     
  (2.41) 

 

2.10 All Piezoelectric Transduction Results 

 We now present some results for piezoelectric detection. An inductive RF transformer was 

placed close to the board in an attempt to match impedances. While this may not be the way to 

completely match the device as in the case of an LC tank, since it is broadband (at least up until 

30 MHz), several devices can be measured using the same circuit.  

 In Figure 2.10 we show the piezoelectric detection circuit and sample devices. Figure 2.10 (c) 

shows a typical sweep of input drive. Notice that the background level is higher than the 

piezoresistive detection because signals due to the feedthrough capacitance are more effectively 

transferred to the load due to the matching network. 
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Figure 2.10. All-piezoelectric transduction. (a) Circuit of the device with actuation bridge. (b) 

Physical devices measured. (c) Open loop drive sweep of total circuit for device 10um in 

length. 

 

The parasitic capacitance (      and    ) will be dominated by bonding and board capacitances, 

and not by the device’s electrical capacitance    . Assuming that this is on the order ~1pF, we can 

treat this as a voltage divider against the output signal. We confirm that it is indeed the case and 

that parasitic capacitance is approximately 3pF by using a PSPICE simulator. In Table 2.5, we 

compare those simulations against the collected data for two beams. The longer beam is driven 

into two different modes to compare the influence of mode number. Also, noting that the device 

under test (shown in Figure 2.10 (b)) has been modified from an ideal beam, since the top 

electrode has been removed from the middle third of the beam (which significantly alters the 



52 

 

areal moment and mode shape). Simulations were run in Mathematica in order to accurately 

integrate the mode shapes. 

L x w x t (µm) Mode f 0 (MHz) S21,est S21,exp 

10 x 1 x 0.21 1 12 -81dB -82dB 

8x 1 x 0.21 1 20 -81dB -83dB 

10 x 1 x 0.21 2 35 -101dB -100dB 

Table 2.3: Results for the piezoelectric detection using a transformer. The power transmission 

was estimated using a 3pF capacitor. 

 

The model gives results within a factor of 2dB for these three measurements. Note that the 

second mode decreases in transmitted power since the beam electrodes are optimized for the first 

mode, and that the increase in frequency causes a decrease in the impedance across the parasitic 

capacitance. 

Using an off-chip LC tank [16], matching a     (estimated from the dimensions of the beam 

in Figure 2.7) impedance at a frequency             with a shunt capacitance          

would need a series inductance of       . We desire a quality factor for the tank to be around 

      This would give an impedance             into the tank from the resonator 

(assuming    resistance in the inductor and capacitor coming from the bonds). This gives a 

power transmission coefficient          , ~     better than the transformer matching.  

The power spectral density for the noise voltage coming from the device’s thermomechanical 

fluctuations (equation (2.15)) is given by current in equation (2.37) loaded into the tank 

impedance. This gives              √  , which is around 5-6x that of the piezoresistive 
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output noise. Also, there would be no Johnson noise from the resistance of the piezoresistor, 

which would give a much better ratio of thermomechanical noise to background noise. 

2.11 Choosing Piezoresistive Detection 

Using off chip methods at a frequency ~10MHz, it seems clear that if we want to observe the 

thermomechanical motion, piezoelectric detection is superior to piezoresistive detection. 

However, as frequency increases, matching off-chip methods are limited due to the parasitic 

capacitance set at    . We only need a method that is sensitive enough to find the 

thermomechanical motion.   

The piezoresistor also gives us a method to control the frequency (through thermoelastic 

forces) in the range       , which is much better than the piezoelectric tuning range          

We can also use this thermoelastic effect to create large static deflections (as shown in the next 

chapter). 

Also, by attempting to match to the motional resistance, we also match to the feedthrough 

impedances between input and output, increasing background. This will be problematic for 

making oscillators (chapters 4 and 5) since feedthrough signals interfere with the oscillation of 

the mechanical resonator.  

Therefore, although piezoelectric sensing has definite advantages in terms of absolute noise, 

the flexibility and ease of piezoresistive sensing (coupled with its high signal-to-background 

ratio) make it the preferred candidate.  
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2.12 Future Work 

Integrating semiconductor piezoresistive materials with piezoelectrics could prove an 

interesting topic of research [26]. Semiconducting piezoresistors not only have larger gauge 

factors (and therefore higher responsivity), but could also be gated by piezoelectrics, increasing 

the effective gauge factor. If the gauge factor gets large enough, then the motional resistance 

could become negative, making a negative resistance mechanical oscillator, which would 

simplify the task of making oscillator arrays. Embedding a semiconducting piezoresistor could be 

accomplished through the use of epitaxial doped aluminum nitride, much like the GaAs systems 

used by Masmanidis and Karabalin [19].  

Piezoelectric detection of the small NEMS in the preceding sections proved to be 

promising using LC tank off-chip. However, as frequencies approach the microwave band, on-

chip matching methods would have to be used, and maybe better than piezoresistive sensing. For 

fixed aspect ratio, the motional resistance of the device does not change, making on-chip 

matching networks easier to design. 

Since this transduction scheme allows many kinds of devices and modes, predicting and 

measuring the motional resistance of these devices could lead to optimal device designs for 

applications such as sensing and clocks. 
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Chapter 3                                  

Nonlinear Mechanics 

In order to measure the nonlinear dynamics of NEMS, we have narrowed down 

our choice of transduction to piezoelectric actuation and piezoresistive detection. 

We show that the sensitivity and linearity (dynamic range) is sufficient to make 

accurate measurements of the first order nonlinear stiffness and cross coupling 

coefficients for three different modes in a nanomechanical beam. We use the 

measured mode-mode cross-coupling coefficients to make estimates of the 

viability in measuring quantum transitions of a quantized mechanical state using 

the tensile interaction in a quantum nondemolition scheme. Finally, using the 

heating from piezoresistor, we modify the nonlinear stiffness of a doubly 

clamped beam through deflection.  This work was done in collaboration with 

Guillermo Villenueva. The theory for mode cross coupling was adapted from 

work by John Sader.  The predictions for nonlinear stiffness changes were also 

carried out by John Sader. 
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3.1 Introduction 

In order to implement nonisochronicity in mechanical oscillators, we use the nonlinearity 

of a doubly clamped beam. This mechanical structure is well-studied and has simple analytical 

predictions for the first order corrections of the nonlinear stiffness. This nonlinearity has been 

exploited in several interesting nonlinear studies [1, 2] and applications [3, 4]. Also, since the 

predicted minimum frequency noise in mechanical resonators is limited by the amount of 

nonlinear stiffness [5], its quantitative understanding is crucial for any application [6]. There are 

also several new ideas [7-9] for using nonlinear tensile coupling between different mechanical 

modes of the same resonator in order to perform quantum nondemolition (QND) experiments, 

which was originally proposed for two different resonators with mechanical coupling [10]. Here 

we attempt to accurately calibrate and find the nonlinear stiffness tensor for the first three modes 

of a doubly clamped beam. After we have done this, we make predictions for the applicability of 

this device for QND experiments. Finally, we use the developed methods to explore a quadratic 

nonlinearity arising in deflected beams. These methods will be useful for the following chapters 

in which the nonlinear stiffness sets the scale of the nonisochronicity of our feedback oscillators. 

3.2 Analytical Prediction for Nonlinear Stiffness in a 

Doubly Clamped Beam 

The flexural motion of a doubly clamped beam causes strain to develop, since the ends 

are clamped. This additional strain induces tensile stress (through stress-strain relations), which 

tunes the frequency. This tuning due to amplitude can be modeled as a nonlinear stiffness (for 

self-tuning) and nonlinear mode coupling (for cross-tuning). 
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We start by solving for the normal modes of a doubly clamped beam. The mode solutions are 

given by (more detail on how to find this solution can be found in Chapter 2 or reference [11]) 

  ( )    (               
            
            

[              ])  (3.1) 

where   is normalized distance along the beam, and    is the nth mode’s amplitude  

normalization constant, and    is defined in equation (2.7). We now move to Euler-Bernoulli 

equation under tensile stress. This is 
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where µ is the linear mass density in the direction of the beam, and the other variable are the 

same as in chapter two. The middle term is the correction for stress within the beam. Here   is the 

static part to the stress. The other term in the brackets is the stress due to extension along the 

length of the beam.  

For a beam we know we can decompose the motion into the normal modes with  
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For two modes this gives 
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The resonant frequency is modified by the intrinsic stress,  
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According to reference [12], the modified frequency from only the dynamic resonant tensile 

terms is 
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with coupling coefficients 
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Thus, the change in frequency for mode k is 

   
  

          
   (3.9) 

assuming that only mode j is driven to high amplitudes. These coefficients     form the nonlinear 

stiffness tensor which relates change in frequency and amplitude of resonant motion. The 
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diagonal components are well-known “Duffing” terms. The off-diagonal components are 

coupling between two different modes.  

3.3 Transduction Nonlinearity 

In order to accurately measure the nonlinear stiffness of beams, the mechanical amplitudes 

must be accurately calibrated. Other studies [7, 9] use actuation efficiencies in order calibrate the 

mechanical amplitudes. These, however, depend on the ability to accurately model the actuation 

(including the actuation nonlinearities), which can vary widely from device to device. Here we 

use the extreme linearity and moderate sensitivity of the metallic piezoresistive sensing from the 

last chapter in order to measure the nonlinearity.  In Figure 3.1, we sketch the basic idea. The 

beam measured in this experiment is shown in Figure 3.1 (a). In Figure 3.1 (b), we show a 

diagram for how the thermomechanical motion is measured (with a background noise set by the 

transducer noise and amplifier noise while the switch is set to a     resistor). After this, the 

device is driven with the output signal measured (with the switch set to a signal source). The 

thermomechanical motion is Brownian motion of a particle in harmonic potential (a well 

understood physical phenomena with a simple mathematical expression), giving the calibration a 

firm foundation. However, the electronic output can only be calibrated to this mechanical motion 

given that both the transducer and amplifier stages stay linear. The transducer here can be 

electronic, optical, mechanical, etc.  
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Figure 3.1. (a) An SEM image of the doubly clamped beam used in the experiment. Most of 

the beam is covered by molybdenum in order to make a nearly straight flat beam. Scale bar is 

1um. (b) A sketch of the basic experiment. First, in purple, the transducer acts as an amplifier 

with a noise source. The amplifier in red is the electronic amplifier used after the piezoresistor, 

which has some added noise referred to the input. 

 

We show the difference between a linear and nonlinear transducer in Figure 3.2, in which we 

take the same beam and measure both optically and piezoresistively under the same drive 

conditions. We divide the output signals by the drive (total gain) and normalize them to the 50mV 

drive level. The insets show the peak height versus the drive level. In both cases, the amplitude 

should be the same. However, there is a clear loss of detection efficiency in the optical case. In 

this optical case, it might be impossible to distinguish intrinsic from detection nonlinearity when 

using optical interferometry 



65 

 

9.00 9.02 9.04 9.06 9.08
0.0

0.2

0.4

0.6

0.8

1.0 Drive:

 50mV

 100mV

 150mV

 200mV

 250mV

 

Optical Detection

N
o

rm
a

liz
e

d
 G

a
in

Frequency (MHz)

0 50 100 150 200 250
0.8

0.9

1.0

1.1

1.2

 

 

N
o

rm
a

liz
e

d
 G

a
in

Drive Voltage (mV)

9.00 9.02 9.04 9.06 9.08
0.0

0.2

0.4

0.6

0.8

1.0 Drive:

 50mV

 100mV

 150mV

 200mV

 250mV

 

 Piezoresistive detection

N
o

rm
a

liz
e

d
 G

a
in

Frequency (MHz)

0 100 200
0.8

0.9

1.0

1.1

1.2

 

 

N
o

rm
a

liz
e

d
 G

a
in

Drive Voltage (mV)

 
 

Figure 3.2. Comparison of amplitude sweeps of optical detection and piezoresistive detection 

using the same beam under the same conditions. Each sweep is normalized to the input drive. 

Note that the peak amplitude under optical detection decreases as a function of drive, a sign of 

transducer nonlinearity. In the piezoresistive case the peak amplitude is constant with the 

drive. The two insets show the peak amplitudes as a function of the drive.  

 

We therefore use the piezoelectric/piezoresistive transduction scheme to measure the 

geometric nonlinear effects in a nearly ideal doubly clamped beam (shown in Figure 3.1 (a)), with 

dimensions length x width x thickness = 9µm x 470nm x 210nm (Stack II, Appendix II). We use 

FEM simulation to find the effective masses for the first three out-of-plane modes, which slightly 

differ from the theoretically derived effective masses for a perfectly clamped, rectangular beam, 

primarily due to a 500 nm ledge originating from the fabrication process. We first observe the 

spectral response in a narrow range around the resonant frequency given an applied piezoresistive 

bias voltage of 100mV. We observe a flat white noise in addition to a small Lorentzian peak 

centered at the resonance frequency Figure 3.3 (a, bottom) and fit as described in the last chapter. 

For the first mode, we find a flat noise background referred to input of about 0.86nV/Hz
1/2

 as 

shown in green (Figure 3.3 (a, bottom), green line). Its level is consistent with the Johnson white 

noise generated by the finite resistance of the 70 Ohm piezoresistive loop combined with noise 

from the first stage amplifier (see section 2.7). We note that even though our background noise is 
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more than an order of magnitude higher than our thermomechanical noise, we are still able to 

measure the thermomechanical noise. With infinite averaging time any size background white 

noise does not pose a problem for this measurement. However, due to system and device 

parameter drifts, the available averaging time is limited. Therefore, the detection scheme must be 

sensitive enough to measure the noise within the timescale of the drift of the overall system.  
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Figure 3.3. (a, Bottom) Noise referred to the input of the first stage electronic amplifier. Black 

is the raw data. Light green line is the fitted Johnson noise background, red the Lorentzian fit 

for the thermomechanical noise. (a, Top) Driven response of the system above critical 

amplitude. Black line is sweeping frequency up, blue is sweeping frequency down. Red line is 

theoretical simulation using resonant frequency and quality factor from thermomechanical 

noise data and nonlinear stiffening from Euler-Bernoulli equation. (b) Overall dynamic range 

for the system. The left axis is the power referred to the input of the amplifier. The right axis is 

the maximum square displacement of the device. The area below the noise floor of the system 

is shown in grey. Black line separating grey area from green area is total output noise. Dotted 

line is the thermomechanical noise after flat white noise background subtraction. Green area is 

real dynamic range of nanomechanical system, with the noise floor set by the 

electromechanical transduction and the amplifier noise floor, and the ceiling set by the critical 

amplitude of the device. Blue area represents the range where kinetic (inertial) nonlinearities 

should arise. Purple represents the region where material nonlinearities become important. 

Red is region where amplifier nonlinearity becomes important. Note that the piezoresistive 

(PZR) dynamic range is much larger than the NEMS DR. 

 

With the noise measurement, we correlate the voltage from the open loop driven response to 

the RMS temporal mean displacement of the beam as long as the electromechanical transduction 

and amplification in the detection circuit are linear. Shown in Figure 3.3 (b) are the relevant 

dynamic ranges for this nanomechanical system. The left axis is the power referred to the input of 

the amplifier, and the right axis is the maximum square displacement of the NEMS device. The 

geometric-stiffness dynamic range (green region) is limited as the amplitude approaches the 

thickness dimension (divided by √ ) for the beam. If we were to use a singly clamped beam, 

then typically a kinetic (inertial) nonlinearity is the limit of the dynamic range [13], when the 

amplitude approaches the length dimension of the beam (teal region). If this resonator was driven 

in a bulk mode, material nonlinearity (taken from the transition from elasticity to plasticity 

      )can be the limit (purple region). The piezoresistive detection is typically an effect 

induced by linear stress-strain relations, and is therefore limited by material nonlinearity. This 

sets the limit for our transduction linearity. In our measurement, we use electronic amplifiers with 

compression amplitudes well above material nonlinearity (red region). This graph clearly shows 
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that the nonlinear compression point of our transduction (found from estimates on the breakdown 

of stress-strain relations, i.e., material nonlinearity) and amplification circuitry (found from the 

amplifier power compression) is 4-5 orders of magnitude above the mechanical nonlinearity of 

interest. Also, if we wish to explore inertial nonlinearities dominant in other geometries, it should 

still be possible using this setup.  

Before proceeding further, we present our method for determining the intrinsic stress in the 

beam (‘T’ in equation (3.6)), since the nonlinearity has a stress dependence. We estimate the 

average tension in the beam by comparing the measured mode frequencies to the simulated 

values. These must be simulated since the mode frequencies are highly sensitive to the size of the 

ledge (which comes from surface micromachining, suspending the NEMS). Since multiple modes 

can be actuated through the piezoelectric mechanism, both in-plane modes and out-of-plane 

modes are found. The mode frequencies are listed in Table 3.1. Based on this analysis, we 

estimate an average beam tensile stress of 67.5±2.5MPa.  

1
st
 out of 

plane 

1
st
 in plane 2

nd
 out of 

plane 

3
rd

 out of 

plane 

2
nd

 in plane 4
th

 out of 

plane 

14.26 MHz 31.9 MHz 37.9 MHz 71.5 MHz 86.9 MHz 116 MHz 

Table 3.1. Frequencies of the first 4 out-of-plane and first 2 in-plane modes of the 10µm 

beam. 

 

Given that we can now estimate the nonlinear coefficients, care must be taken that the 

transduction does not perturb or obfuscate the mechanical system, as in the case of capacitive 

detection. For example, in the study by Kacem et al.[14], the electromechanical nonlinear 

response was altered due to the capacitive nonlinearity. In Figure 3.3 (a,top), we compare the 
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theoretical estimate for the frequency sweep with geometric tensile nonlinearity to the 

experimental result for mode 1. The vertical lines indicate unstable points where the amplitude 

from the upper solution jumps to a lower solution, or vice versa. It is obvious from the plot that 

for this mode and drive level, the theoretical value for the mechanical nonlinearity accurately 

predicts the behavior of the system.  

3.4 Measurement of the Nonlinear Stiffness Tensor  

In order to extract the experimental values for the nonlinear stiffness tensor, we perform two 

experiments. We first extract the diagonal elements (   ). Then, by monitoring frequency shifts in 

one mode due the tension induced by large amplitudes in other modes, we find the nonlinear 

coupling between modes in terms of frequency shifts such that 

   
  

    ̃
   

  
  (3.10) 

where    ̃ is the coupling coefficient in terms of relative frequency shift. We can apply 

equation (3.9) for mode j (using    ) to obtain    . 

To determine the diagonal coefficients, we sweep the drive frequency and step the amplitude 

using the experimental setup in Figure 3.4 (a), using only the network analyzer (without external 

source fd) and no phase locked loop control. The peak amplitudes fit according to equation 

(2.5)(linear fit of Figure 3.4 (b,top)). We then check frequency shifts of the other modes. In this 

example, we use an external drive to excite the second resonant mode, and measure the frequency 

shift of the third resonant mode with a software phase locked loop implemented in the network 

analyzer. Figure 3.4 (b,bottom) shows the shift of the third mode when the second mode is driven 

at high amplitudes, giving us behavior described by equation (3.3). We keep the amplitude of the 
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third mode well below the critical amplitude so that tension from mode three does not affect the 

result. By comparing the slopes of the fits in Figure 3.4 (b) we extract the off-diagonal element 

   .  
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Figure 3.4. (a) Circuit diagram for measurement of nonlinear stiffness coefficients. Two 

different experiments are conducted. First, the PID loop and the source fd are not used and the 

system is swept with frequency and amplitude, with the response measured (b, top). 

Afterwards, the original frequency used for the first experiment is swept using external source 

at fd and the network analyzer is locked to the phase response of a different mode (b, bottom). 

Measuring the slopes of the linear fits of the upper graph gives in this case gives λ22. Using the 

slopes from both graphs gives λ23. 

 

The nonlinear stiffness tensor is presented below in Table 3.2. Uncertainties for the 

theoretical results (shown in parenthesis) taken from error in the tension are much smaller than 

uncertainties those from the experimental fitting error. Uncertainties in experimental results are 

determined using the linear fits similar to the example in figure 3 (b).  

 (10
-5

nm
-2

) Driven 1 Driven 2 Driven 3 

Sensed 1 
0.53±0.01 

(0.53) 

1.76±0.36 

(1.45) 

3.51±0.47 

(3.59) 

Sensed 2 
0.18±0.01 

(0.186) 

1.16±0.03 

(1.16) 

1.77±0.13 

(1.65) 

Sensed 3 
0.13±0.01 

(0.124) 

0.35±0.06 

(0.445) 

1.43±.07 

(1.43) 

Table 3.2. Measured (Simulated) nonlinear stiffness coefficients for the first three modes of 

the beam. Uncertainties are found from a combination of the uncertainty of linear fits in 

Figure 3.4 (b) and from uncertainties in amplitude conversions from thermomechanical noise 

fits (Figure 3.3 (b, bottom)). 

 

  The uncertainty is larger in the off-diagonal modes, due to large amounts of noise in the 

experiment. In order to reduce the SNR in Figure 3.4 (b,bottom), the experiments for the off-

diagonal components take much longer than the amplitude sweeps, since the measurement is 

taken through a phase locked loop with an integration time ~100ms. Thus each point on a curve 



72 

 

in (4.5)(b,bottom) takes on the order of a couple seconds to take. For these reasons a 

measurement for a single mode can take ~hours, through which the frequency of both the sensed 

and driven mode can drift. If we try to reduce the drift by taking the measurements in a shorter 

time period, frequency noise of the ‘detected mode’ becomes large compared to the signal from 

the sensed mode. The SNR of the mode-mode coupling method is smaller than the simple 

“Duffing” measurements since the mode coupling is relatively weak. There is a careful balance of 

noise and drift at work.  

The deviation of the measured     coefficient from the theoretical value is outside the 

uncertainty. The uncertainty of     is also very large, so agreement between theory and 

experiment is not very convincing. The middle column of Table 3.2 is for sweeps where mode 2 

is driven to large amplitudes. It is possible that mode interactions (which hinges on the premise 

that mode shapes can be predicted precisely by equation (3.1)) cannot be accurately modeled for 

mode 2. The presented theory is for an ideal beam without clamps, and therefore, still achieves 

excellent agreement. This validates both the measurement technique and Euler-Bernoulli beam 

theory for beams ~100nm. 

3.5 Quantum Nondemolition Predictions  

We can make some predictions for quantum nondemolition (QND) experiments for this 

beam. The basic idea of QND measurements is to measure quantum signatures using detection 

operator that commutes with the Hamiltonian of the system (in this case a harmonic oscillator). 

The square of the amplitude satisfies this property. This beam frequency is low, so it is assumed 

that cavity backaction cooling will have to be employed in order to detect quantum states with 

      . We assume that the rest of the system is at a bath temperature of 20mK. For this we 
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construct Table 3.3 based on these predictions. Here the amplitude       
  is the integrated 

amplitude around the mode at       . 

Mode number T (mK)   (  ) 
   

  
  

   

  
  

   

  
  

  

 
  

1 0.7 4.0x10
-28 

 7.2x10
-16 

5.2x10
-16

 5.9x10
-9

 

2 1.8 1.4x10
-28 

2.5x10
-15

  4.9x10
-16

 2.3x10
-9

 

3 3.5 8.3x10
-29

 2.9x10
-15

 1.4x10
-15 

 1.4x10
-9

 

Table 3.3. Predictions for QND experiments using this beam. The second column is the 

temperature the mode has to be in order to reach the ground state. The next column is the 

square amplitude of the device at peak at that temperature in the previous column. The next 

three columns show how much fractional frequency deviation will this mode cause in other 

modes. The rightmost column in the minimum observable frequency resolution taken from 

reference [6] with a bath temperature of 20mK. Detecting quantum states in this manner is not 

possible since the last column is 6 orders of magnitude larger than the previous three columns. 

 

Note that this theoretical measurement favors sensing lower mode frequencies and seeing the 

quantum jumps of higher modes. Practically speaking, this is also favored, since detection of 

lower frequencies is in general easier, and higher modes have less extreme requirements on 

temperature. In fact, if we used beam with a frequency a mode at ~1GHz, cryogenic cooling 

would be sufficient to reach quantum ground states. We also compare these values to the 

minimum observable frequency resolution [6]. The level of frequency noise required to measure 

quantum ‘jumps’ is six orders of magnitude lower than what is possible with this beam. 

These are extremely low signals to detect, even for systems at low temperatures. We estimate 

that, assuming this theory scales to ~1nm of thickness for the beam, quantum jump 
  

 
 would be at 

best ~10
-9

. On a beam of this thickness, the dynamic range decreases to almost zero, so we cannot 

make estimates on the frequency noise. However, atomically thin structures lose their areal 

moments (become string-like) and the nonlinearity decreases from ~thickness to ~length. As 
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such, both ‘frequency noise’ and nonlinearity experiments will have to be performed on these 

kinds of devices before estimates can be made at the truly ‘nano’ level.  

3.6 Nonlinearity Tuning through Beam Deflection 

Controlling nonlinearity in mechanical structures could be important for sensing and 

applications, as mentioned in the introduction to the chapter. In Figure 3.2, the data is not 

accurately predicted by the beam theory described in sections 3.2, since the nonlinear stiffness 

coefficient is negative.  

This change of nonlinearity is induced by a static deflection of the beam. If we introduce a 

static force into the equation of motion, it is the same as adding a linear term to the harmonic 

oscillator potential. This term breaks the symmetry of the potential well, and thus the restoring 

force prefers to push only one way, and on average reduces the effective nonlinearity[15].  

In Figure 3.5, we offer a diagram of this effect. An undeflected beam will sit at the bottom of 

the well (green ball). The frequency is determined by the integral of the curvature within the span 

of the motion (green arrow). As the beam is deflected, it moves up the nonlinear potential well 

(black line) of the resonator (which has fourth order term due to the tensile nonlinearity). At 

higher points in the potential well, the symmetry of restoring force acting back on the resonator 

will be broken (arrow length for left and right directions in Figure 3.5). Also, at these higher 

points, since the well is nonlinear, the resonant frequency will be higher (the ‘linear’ potential 

well is shown with the red dotted line), since the curvature has a term which depends on position. 

As the resonant drive is increased for a given deflection (i.e., for the red ball in figure 3.5), the 

integrated curvature includes larger spans tending toward the bottom of the well (bottom red 

arrow), effectively reducing the frequency. This causes a ‘softening’ effect on the nonlinearity, 
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since this is an amplitude dependent reduction in frequency.  Hence, it is the hardening tensile 

nonlinearity itself (the fourth order term in the well) which causes this softening nonlinear term to 

appear. In cantilevers (singly-clamped beams), this effect is not as pronounced, since the 

amplitude-frequency nonlinearities are much smaller in those systems.  

  

 

Figure 3.5. Diagram of the softening effect due to a static deflection. As the beam is deflected, 

it moves up the nonlinear potential well and resonant frequency increases. As drive level 

increases (determined by the length of the arrows), the resonator sees an asymmetric restoring 

force which causes integrated curvature in the span of the motion to include increasingly 

lower RMS amplitudes, decreasing the resonant frequency. This is the origin of the softening 

effect. 

 

In our wafers, the stress in the piezoelectric stack is compensated, such that the aluminum 

nitride and molybdenum have no net stress across the thickness of the beam. However, when the 

top layer of molybdenum of the wafer stack on the beam is completely or partially removed, the 
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stress is no longer compensated. As a result, a net torque, which statically deflects the beam, is 

developed. In Figure 3.6 (left), the beam is essentially uncut, and remains straight. In the image 

(Figure 3.6 (right)), the middle third of the top layer is removed, causing the deflection of the 

beam. We can increase the deflection of the beam by thermal heating through the piezoresistive 

bias since the coefficient of thermal expansion is different for the two materials. 

  

 

Figure 3.6. Two 30µm long beams. (Left) The beam’s upper layer is uncut and is very straight. 

(Right) The beam’s upper molybdenum layer is etched away in the middle third of the beam 

causing the stress to be compensated by static deflection. 

 

We use the same method for calibrating the nonlinearity of a deflected beam as described in 

section 3.3. In this case, since we modify the temperature of the piezoresistor, we change the 

nonlinearity through deflection. FEM is used to simulate how much the temperature would 

increase under the applied voltage bias, since it is important for calculating thermomechanical 

rms amplitudes. In Figure 3.7, we show how the average temperature across a beam of 

dimensions 12µm x 0.5µm x 0.21µm (Stack II, Appendix II), with the middle section of top 

molybdenum cut, depends on applied voltage bias.  
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Figure 3.7. Temperature dependence on applied piezoresistive bias voltage. The vertical axis 

is the average temperature across the beam shown in the inset, where the colors represent 

temperature.   

 

The experimental data is shown in Figure 3.8 (a). Here the nonlinearity is relatively constant 

for lower values and then drastically decreases in a small range of temperatures. If we assume the 

deflection is linear in temperature in this range, then the change in nonlinearity has basically the 

same functional form. In Figure 3.8 (b), we show the prediction from reference [16]. It is difficult 

to quantitatively compare the theory to the experiment since we do not know static beam 

deflection in situ. Also, it is challenging to simulate the deflection since the thermal expansion 

coefficients for these thin film materials might deviate from reported bulk values. 
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Figure 3.8. (a) Experimental result of the softening due to static deflection of a beam, where 

the temperature has been found from (2.37). (b) Theoretical prediction for the nonlinearity 

from reference [16]. The bottom axis is the deflection divided by the thickness of the beam. 

 

For drive levels with resonant amplitudes much larger than the static deflection, the integrated 

curvature of the potential well will effectively be the same as an undeflected beam, and thus this 

effect is destroyed.   

In Figure 3.9 we show three sweeps of amplitude at different effective temperatures. Take 

note of the vertical scale of these plots, since it increases from left to right. In the first one 

(297K), the nonlinearity is close to what is expected from beam theory. The second (309K) shows 

a reduced nonlinearity at low amplitudes. The third (311K) shows a true softening nonlinearity at 

low amplitudes followed by a flip to hardening nonlinearity at larger values of amplitude. 
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Figure 3.9. Frequency amplitude sweeps for three different values of temperature for the same 

device. The nonlinearity at low values becomes negative, but at high values becomes positive 

again. 

 

3.7  Future Work 

This chapter is important in determining the nonlinear coefficient for fundamental limits on 

sensing [6],[17],[18, 19] and for QND [20] experiments, especially since the rise of atomically 

thin [21, 22] mechanical devices. Also, new applications can be imagined, using the nonlinear 

coupling between different modes as a transducer. In section 3.3, we showed detection of one 

mode using another mode. This could be used to detect modes that are electrically (or optically) 

inaccessible, but coupled mechanically [23] to other modes which are electrically accessible. This 

could have applications in sensing technology, since high frequency modes can be difficult to 

detect (see chapter 2). Also, nonlinearities that are not predicted theoretically such as nonlinear 

damping, or nonlinear stiffness from complex mechanical structures, could be found with the 

methods presented.  
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Chapter 4                                         

Feedback Oscillators 

After having laid out the methods for understanding the frequency control 

element of our oscillators, namely, the piezoelectric/piezoresistive (PZE/PZR) 

Duffing resonator, we proceed to understand their dynamics when inserted into 

feedback loops. We begin by modeling the feedback loop within the amplitude 

equation, after which, we validate this modeling through measurements on the 

amplitude and frequency of the feedback oscillator as loop phase shift is swept. 

We also measure the phase noise in the feedback oscillator with the amplifier 

well saturated and provide arguments based on the isochrone formalism as to 

how parametric noise couples into the oscillator phase. Excellent qualitative 

agreement between the theory and experiment is shown, proving that the system 

dynamic range outlined in chapter 3 does not set strict limits on phase noise.  The 

theory for the parametric noise (with numerical simulations) was primarily 

developed by Eyal Kenig.  The data for the phase noise was taken in 

collaboration with Guillermo Villanueva. 
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4.1 Introduction 

Electromechanical feedback oscillators have been miniaturized from quartz crystal oscillators 

[1], to MEMS oscillators [2], and finally, to NEMS oscillators [3]. Phase noise for these 

mechanical oscillators is projected from the loaded quality factor, the ratio of transmitted output 

power to input power through the resonator (S21), and system dynamic range (DR) (as discussed 

in chapter 3). The purpose of the following chapter is to understand oscillator dynamics using 

devices taken beyond their dynamic range into the nonlinear regime, where the amplitude couples 

to the frequency. Such oscillators are defined as nonisochronous oscillators [4]. 

As the geometric tensile nonlinearity increases in flexural beams, the quality factor decreases.  

We can understand this as follows. Although sources of dissipation are not well understood in 

nanomechanical resonators, reference [5] notes that from thermodynamic arguments the upper 

bound of Q-f product for these resonators is estimated to be ~10
14

 for bulk silicon or aluminum 

nitride.  For fixed aspect ratio of a flexural doubly-clamped beam, as size decreases, frequency 

and nonlinearity increases.  Thus, if all non-thermoelastic sources of dissipation are removed, 

then at a fixed aspect ratio, by increasing nonlinearity we necessarily decrease the quality factor. 

The transmitted power through the device is another key characteristic which contributes to 

phase noise.  Transmitted power through the resonator (S21) is understood to decrease as size 

decreases [5] from theoretical arguments [6].  High values of amplification within the feedback 

loop are needed to satisfy the Barkhausen criterion for self-sustained oscillations,  causing 

amplifier noise to be significantly amplified before being fed back to the resonator.  In the case of 

a saturated feedback, this noise affects only the phase component of the actuation signal (at least 
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for amplifier noise being transduced into the resonator through the piezoelectric port).  The 

amplifier noise converted into phase noise through this mechanism was shown to be reduced for a 

special set of system parameters at a ‘critical’ amplitude [7].  At that special point in parameter 

space, there is no dependence of the oscillator frequency on the loop phase shift. In this work, we 

extend this research into amplitudes beyond the critical amplitude. 

In order to understand experiments related to oscillator phase noise above critical amplitudes, 

in the next section we next model the feedback loop within the amplitude equation. These results 

are also important for the modeling of coupled feedback oscillators in chapter 5.   

4.2 Oscillators with Nonlinear Stiffness 

We insert the feedback loop modeling directly into the amplitude equation that we derived in 

Appendix I.  This gives  

  ̃

  
 
 ̃

 
      | ̃|

 
 ̃    

 ̃( ̃)

 
       ( )  

(4.1) 

 

where we take  ̃   ̃   . Recall that  ̃ is the amplitude which varies at timescales on the order of 

the decay time.  Here  ( ) is the phase of the slow time oscillation such that 
  

  
     , 

which is the difference of the oscillator frequency and natural frequency of the resonator (with 

zero nonlinear stiffness). It is written as a function of the slow time T in order to emphasize its 

dependence on time, as opposed to  , which is a time-independent phase shift in the feedback 

loop. We consider only the first term in the nonlinear stiffness for resonator mode i (    from 

chapter 3), and drop any nonlinear dissipation. The nonlinear dissipation can only be seen at 

extremely high amplitudes, which none of these experiments are able to access. Therefore, all the 
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nonlinearity in the real (dissipative) part is due to amplifier feedback compression, which is 

inserted into the feedback function  ̃( ̃)  

 We will scale equation (4.1) in order to obtain the unitless slow time amplitude such that 

  √     ̃.  Then equation (4.1) becomes 

  

  
 
 

 
  | |     

 ( )

 
       ( )  (4.2) 

 

where we have divided by a factor of √    .  Also note that the feedback function has been 

normalized by the same factor. 

To solve equation (4.2), we note that                  . For steady state oscillations on 

a nearly circular limit cycle, slow time amplitude does not change in time, i.e.,       Splitting 

this between the real and imaginary parts we are left with two algebraic equations, given by  

      
 ( )

  
     | |   

(4.3) 

  

and 

      
 

 
 
 ( )

 
        ( )       

(4.4) 

 

We can reduce equations (4.3) and (4.4) to give 

   
    

 
 | |   

(4.5) 

 



87 

 

and 

 ( )

 
       

(4.6) 

 

We can first acquire the amplitude by solving equation (4.4) and use this amplitude to find the 

frequency shift  .  

At this point, it is impossible to proceed further without explicitly identifying the feedback 

function  ( ). Here we use a specific model for which equations (4.5) and (4.6) can be explicitly 

solved, which is generally not possible. 

4.3 Feedback Oscillators with the Rapp Saturation Model 

We consider a common model for solid state amplifiers with saturation, the Rapp model [8]. 

This model is 

 ( )  
  

[  (
 
  )

 
]

 
 

 (4.7) 

 

where k is a rational number (known as the ‘knee’),   is the unitless gain, and s is the saturation 

of this amplifier.  

This feedback function behaves like a linear amplifier with gain   for low amplitudes. From 

equation (4.4) we can see that a non-zero steady state amplitude first becomes possible for 

increasing gain at             .  This is the Barkhausen criterion for oscillation. This 

‘gain’   is therefore the total gain of the loop including signal losses associated with signal 
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transduction, but excluding the loss associated with device damping.  It is not the gain of the 

amplifiers, which has to be very large (10
3
 – 10

4
) in order to counteract the signal loss associated 

with the NEMS device.  

Equation (4.7) is plotted in Figure 4.1 for three different values of  , with        . As   

increases, the knee moves up closer to the crossing of the unsaturated gain (orange dashed line) 

and the saturation (purple dashed line). 

  

 

Figure 4.1. Amplifier saturation function given by equation (4.7) for        , and 

       (blue line), 2 (red line), 3 (green line). The orange dashed line is the linear gain. The 

purple dashed line is the saturation level. Here by changing k, the ‘knee’ is moved, so that the 

saturation becomes ‘harder’. 

 

If we solve equation (4.4) using equation (4.7) we get 
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[(     )   ]

 
    

(4.8) 

 

4.4 Experimental Validation of Feedback Loop Modeling 

We validate the feedback loop modeling that we have proposed in equations (4.5) and (4.6) 

with a PZE/PZR NEMS device using the Rapp formula in equation (4.7). In Figure 4.2, we show 

the circuit diagram for the feedback oscillator experiment with a PZE/PZR NEMS device. The 

device is actuated through an impedance bridge (as in chapters 2 and 3). The signal out of the 

NEMS is fed through a low pass filter to remove stray harmonics above the device’s fundamental 

frequency. The signal phase shift can be adjusted with the voltage controlled phase shifter (VC-

PS, blue box). Then the signal is fed through an electronic limiter (Mini-circuits part #VLM-52) 

that has a limiting component made from a semiconducting diode. After the signal passes through 

this element, it can be attenuated using the voltage controlled attenuator (VCA, red box).  
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Figure 4.2. Feedback oscillator diagram using piezoelectric/piezoresistive device. The phase 

shift   is swept using a voltage controlled phase shifter. Saturation and gain is controlled 

through a voltage controlled attenuator, which is used after an electronic limiter. The 

saturation curve is found by sweeping the drive amplitude and measuring the total transfer 

function from point II to point I. Total gain is found by breaking the loop at either point I or 

point II and measuring the open loop resonance at low amplitudes around the loop back to the 

same point.  

 

We can make predictions based on equations (4.5) and (4.8) by using values of gain and 

saturation found by examining the oscillator loop. First, we measure the gain by doing an open 

loop frequency sweep (by breaking the loop at point I and measuring the response back around to 

I) of the oscillator at low values of drive (taking the value at the resonance peak), so as not to 

saturate the electronic components. Again, this gain is not only the amplifier gain, but includes 

losses associated with signal transduction and the electronic components of the loop. Next, by 

measuring the transfer function of the electronic components (in amplitude) between points II and 

I, we find the saturation curve. We then scale this saturation curve so that the linear region of the 
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curve gives the values for gain we obtain from the open loop frequency sweep.  We can then fit 

the saturation curve to equation (4.7) using     in order to find the values of   and  . In Figure 

4.3 we show one such fit. The saturation and gain are plotted in the inset using this fit for several 

values of the attenuator control voltage in Figure 4.2 (“VCA”, red box). The amplitudes plotted in 

Figure 4.3 are unitless according to equation (4.4).   
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Figure 4.3. Saturation curve for a given oscillator feedback function with control voltage on 

the VCA from Figure 4.2 set to 2.9 V. Fit was done using the Rapp formula (equation (4.7)) 

with    . (Inset) The values of gain and saturation found from fitting the saturation curve 

for various values of the control voltage.  

 

Next, we compare simulations of the oscillator amplitude and frequency using the values of 

gain and saturation found in Figure 4.3 to experimental data. In Table 4.1, we show the NEMS 

device properties relevant to these experiments on feedback oscillators. We measure the nonlinear 
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stiffness     as laid out in chapter 3, with piezoresistive bias voltage set to 128mV. The 

oscillator’s electronic signal at point II is measured as in Figure 4.2. The mechanical amplitudes 

are calibrated, at this same point, by measuring thermomechanical noise. 

 

Device dimensions 
Resonant 

frequency, f1 

Quality Factor 
Nonlinear stiffness, 

    

10µm x 400nm x 

210nm 
12.6 MHz 1590 1.55 x 10

13
 m

-2 

Table 4.1. Relevant NEMS device properties for the feedback oscillator 

experiments. 

  

In Figure 4.4 we show the data for the frequencies of the oscillator measured as a function of 

the phase shifter voltage. This raw data coming in to the signal analyzer must be corrected since 

there is substantial frequency dependent phase shift associated finite signal path lengths and 

filtering.   
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Figure 4.4. Raw data for the frequency of oscillation versus phase shifter voltage.   

 

In Figure 4.5, we show the results of this measurement against the prediction from using the 

values of gain and saturation found in Figure 4.3. We calibrate the loop phase against the phase 

shifter voltage and convert the plots in Figure 4.4 to Figure 4.5. The data agrees well with the 

prediction in amplitude and frequency.  Slight differences between the data and predictions are 

probably due to the variation of attenuation within the phase shift for different values of phase 

shifter control voltage. With the agreement shown in Figure 4.5, we are confident in the ability of 

the feedback modeling to accurately describe the dynamics in feedback oscillators.   
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Figure 4.5. Measured amplitude and frequency (black spheres) against the predicted results 

using gain and saturation from the fits of the inset in Figure 4.3 (red lines). The ‘real’ phase 

shift plotted here is found by measuring the phase shift against frequency for a given values of 

phase shifter voltage.  
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4.5 Unsaturated and Saturated Oscillators 

The previous discussion showed that changing the variable attenuator’s control voltage (red 

box Figure 4.2) changes gain and saturation values, which alter steady state oscillator amplitude. 

However, from Figure 4.3 we can see that for large input amplitudes, output amplitudes would be 

immune to variations in the input.  This is a limiting case for the feedback oscillator described 

above, which we will call the ‘heavily saturated’ or ‘saturated’ oscillator. If the oscillator is not 

saturated, we say it is ‘unsaturated’.  

For the case of the saturated oscillator we can write the feedback function in equation (4.7) as 

 ( )   

 
  

[  (
 
  )

 
]

 
 

   (4.9) 

 

to give in the limit of     , 

 ( )   

 
  

[  (
 
  )

 
]

 
 

 

  

 
   

→       (4.10) 

 

so that the feedback function does not depend on the amplitude.  Doing this will simplify the 

analysis of noise in feedback oscillators. 
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4.6 Noise in Saturated Oscillators 

Since oscillator research has important implications in the timing and sensing communities, it 

is important to understand the lower limit of phase noise for nanomechanical resonator and 

oscillator systems. In equation (1.6), the ratio of thermal noise to oscillator carrier power gives 

the oscillator phase noise. One strategy for reducing phase noise would be to increase carrier 

power. The upper limit to this increase is conventionally understood to be the critical amplitude 

[9-12] (the point in driven nonlinear resonator systems where two stable solutions of amplitude 

exist for fixed frequency), since amplitude fluctuations couple into frequency fluctuations through 

the Duffing nonlinearity. Coupling of these fluctuations is known as amplitude-modulation to 

phase-modulation (AM-PM) conversion.  

Reference [6] gives the limit on phase noise for a nanomechanical flexural beam  

  (  )       
 √      
       

 

 

(  ) 
   (4.11) 

 

where    is the offset from carrier frequency   ,      is the effective mass, and   is the 

thickness in the dimension of vibration. Equation (4.11) is related to equation (1.6) by inserting 

the thermomechanical noise for the sideband power, and the power at critical amplitude for the 

carrier power. In other words, we have inserted the dynamic range for a NEMS device. This limit 

assumes two things: first, there is always AM-PM conversion above this limit, and second, 

thermomechanical noise is the only source of noise.  However, in the case of most NEMS, these 

assumptions are false.  
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 The first assumption is false in feedback oscillators, as will be shown later.  This is due to the 

fact that there exists special feedback loop phase shift points where the system becomes 

isochronous within a small region of oscillator amplitudes.  This will mean that if the system is 

thermomechanically limited, the system can be taken to larger amplitudes without any AM-PM 

conversion. 

 The second assumption is false since transducer/amplifier noise is dominant over 

thermomechanical noise in most flexural mechanical oscillators above a frequency of ~10MHz 

(although recent developments within the optomechanics community [13, 14] have shown 

impressive results in thermomechanically-limited NEMS detection with excellent signal-to-

background ratios). This means that when fed back to the resonator, the signal is noisier than if it 

were just thermomechanically noise limited.  This assumption also does not account for other 

sources of noise such as temperature fluctuations[12] or surface absorbates [15] which can cause 

fluctuations in resonator frequency. 

This amplifier noise-induced phase noise was shown to be reduced in the work by Greywall, 

et. al. [7] by saturating the feedback, stabilizing the oscillator at the critical amplitude, and 

shifting the loop phase to      ⁄ . For these special conditions, the derivative of oscillator 

frequency with respect to loop phase shift becomes zero (
  

  
  )  so that there was no 

dependence of the frequency to fluctuations in the loop phase shift.  We will show how this 

occurs in saturated oscillators and extend these ideas to include nonisochronicity. 

For a saturated oscillator we can write equation (4.2) with the feedback given by equation 

(4.10) 

  

  
 ( 

 

 
  | | )   

 

 
  (   )  

(4.12) 
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This amplitude equation is complex and yields two real equations 

  

  
  

 

 
 
 

 
         

(4.13) 

 

and  

  

  
    

 

  
         

(4.14) 

 

Just as before the limit cycle oscillations are given by     , so that 

          
(4.15) 

 

and 

    (  )    
  

 

   
             

    

 
  

(4.16) 

 

With equations (4.15) and (4.16) we can examine how different noise sources will influence 

phase noise. We write equations (4.13) and (4.14) and include thermomechanical fluctuations and 

phase shift fluctuations (to first order).  This gives 
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       (   )    

 

 
       

(4.17) 

 

and 

  

  
    

  

  
     

  (   )

 
   

 

  
       

(4.18) 

 

If we consider each noise source (  {    }) to be white and have noise intensity In we can 

define 

⟨  ( )   ( 
 )⟩     (   

 ) 
(4.19) 

 

Although we use a white noise source here, we can include colored noise sources without 

affecting the qualitative nature of the discussion.  Equation (4.19) will change along with the 

spectral shape if colored noise sources are used.   

Going into the rotating frame, the oscillator phase is defined 

       
(4.20) 

 

For large time delays white noise leads to diffusion[16] so that 

⟨[ (   )   ( )] ⟩  (                              )| | 
(4.21) 
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where the constants    are the susceptibilities of the oscillator phase. The noise susceptibility, 

together with the noise intensity, will give the amount of phase noise diffusion of the oscillator 

phase.   

From references [16, 17], for white noise sources the spectral density of the oscillator 

displacement is Lorentzian with a spectral width given by the product of the phase diffusion and 

the resonator half-width, so that 

   ( )  
 

(
∑        
  )

 

 (    )
 

   
(4.22) 

 

We can remove the diffusion dependence in the denominator for |    |  |    |
  
  ⁄ .  The 

diffusion term here is usually much smaller than 1, so for |    |  
  
  ⁄  we get  

   ( )  
 

(    )
 
   (4.23) 

 

Thus the noise intensity outside the spectral half-width of the resonator is goes as     . 

 The phase noise is conventionally defined by the logarithm of the ratio of the sideband 

spectral density to the total power [18], 

  (  )         [
   (    )

    
]   (4.24) 

 

which, using equation (4.22) gives 
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   (4.25) 

 

and using equation (4.23) gives  

  (  )         [
 

   

∑        
(  ) 

]   (4.26) 

 

Thus we have a simple expression for the phase noise in equation (4.26). The phase diffusion 

terms in the numerator set the phase noise, and for frequencies outside the width, we have       

dependence as expected [18]. The only thing left to do is calculate the phase diffusion terms due 

to the susceptibility to the thermal and loop phase fluctuations.
 

As mentioned in Chapter 1, the susceptibility of the oscillator phase in equations (4.20) to 

noise is intricately related to two topological sets: the limit cycle, and the isochrones. Since the 

limit cycle is approximately circular for weak nonlinearity, we only have to examine the 

isochrones. 

4.7 Isochrones and Noise Diffusion Constants 

We find the isochrones for the heavily saturated oscillator by the method described by 

Reference [19]. Since the limit cycle is rotationally symmetric, the isochrones are also 

rotationally symmetric  



102 

 

 (   )     ( )  
(4.27) 

 

where   is a function to be determined. We can take the derivative of equation (4.27) to get 

  

  
  

  
  
 
  
  

  
  

  
(4.28) 

 

We also know that the isochrones rotate at the rotational velocity of the limit cycle, i.e. 

  

  
           

 

 
       

(4.29) 

 

and so after putting equations (4.13), (4.14) , and (4.29) into (4.28) and integrating we get 

 (   )                          (4.30) 

 

We plot an isochrones set for         and     in Figure 4.6. The red line is the limit 

cycle, the blue dashed lines are the isochrones, and the green lines are flow of the oscillator under 

two different perturbations along the limit cycle.  

We diagram the oscillator dynamics in Figure 4.6 (inset) to understand how noise forces in 

phase space influence the oscillator’s phase noise. The eigenvectors (     )  of the Jacobian 

matrix of equations (4.13) and (4.14) along with the eigenvector (   ) of the transposed Jacobian 

are the black arrows. The transposed Jacobian eigenvector corresponding to the radial direction is 

not necessary for understanding the noise susceptibility, and has been left out. The eigenvector 
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pointing along the isochrones    has eigenvalue      , meaning that perturbations along this 

direction will decay in time since negative eigenvalues correspond to stable solutions. This is the 

maximum rate of decay available according to equation (4.13). Along this direction, noise will 

have no long term effect on the oscillator.  Therefore, it is perturbations perpendicular to this 

vector, in the direction of    , that create maximum phase deviation. For a more detailed 

explanation, see references [17, 19].  

The eigenvectors of the Jacobian vectors are 

   { 
        

              
  }     {   }  

(4.31) 

 

The noise vector, vn, whose components are the noise terms from equations (4.17) and (4.18), is 

represented by the red arrow, and is projected along     to find its contribution to the phase. The 

transposed Jacobian eigenvector is  

    {       
     

        
  }  (4.32) 

 

Note that when the amplitude component of     is zero, the vector points along the oscillator 

phase and the oscillator is isochronous. 

 The susceptibility to noise from a noise vector is given by  

   |      |
 
   

  
(4.33) 

 

which was used in equation (4.21). 
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Figure 4.6. Phase space for the saturated oscillator for   
 

 
      The red line represents 

the limit cycle. The blue dashed lines are isochrones for this oscillator. Green lines show the 

evolution of the oscillator with two different perturbations along the isochrones. (Inset) 

Zooming in, for a given noise vector   , by projecting this vector along the maximal phase 

change direction     (found from the transposed Jacobian matrix of equations (4.13) and 

(4.14)), we can find the diffusion constant for that noise source. 

4.8 Phase Noise Due to Fluctuating Phase Shift 

We can directly calculate the phase noise susceptibility due to a fluctuating phase shift. 

According to equations (4.17) and (4.18) we have for the noise vector for the phase fluctuations, 

     {
 

 
      

 

 
}   (4.34) 

 

By using equation (4.33) with (4.34) and (4.32) we get 

   (
 

 
     (       

     

        
)  

 

 
       )

 

  (4.35) 

  

For equation (4.35) there exists a solution in saturation   and phase shift   for which the term 

inside the parentheses is zero thereby nulling the noise susceptibility from a fluctuating phase 

shift. We know this zero solution exists for         from Greywall et. al. [7] which is 

equivalent to finding where the derivative of the oscillator relative to the phase shift is zero, 
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4.9 Phase Noise Due to Thermomechanical Noise 

We apply the same reasoning to the phase noise due to thermomechanical fluctuations. From 

equations (4.17) and (4.18) we get two noise vectors 

       {   }        {  
 

     
}  (4.36) 

 

which, together with equation (4.32) yields 

       (       
     

        
)
 

        (
 

     
)
 

  (4.37) 

 

Note that the real part of the thermal noise projects onto the amplitude term of the transposed 

Jacobian vector, and thus, for isochronous oscillators,        is zero. In other words, finding a 

solution for saturation   and phase shift   which gives zero inside the parentheses gives no AM-

PM conversion. There exists solutions of this type for     and 
 

 
    . The result for the 

imaginary component        is the standard result [12] which comes from increasing the SNR, 

where the signal here is given by        . 

 In Figure 4.7 we show the isochrones for two different values of loop phase shift   and 

saturation    . For a special value of loop phase shift        the isochrones are 

perpendicular to the limit cycle. Hence, the oscillator is isochronous, eliminating the AM-PM 

conversion. This is not limited to amplitude fluctuations arising from thermomechanical 

fluctuations, but includes amplitude fluctuations due to other sources, such as fluctuations in 

damping rate[20].  
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Figure 4.7. Isochrones for two different phase shift values for s=6.  The brown isochrone 

shows  operation of the oscillator so that it is isochronous.   

 

4.10  Optimizing Phase Noise for Both Phase Shift and 

Thermomechanical Fluctuations 

To bring the phase shift fluctuations into the picture, we plot both the oscillator frequency as 

a function of phase shift and the oscillator amplitude against frequency as a function of phase 
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shift.  In Figure 4.8 (a), we show the oscillator frequency as a function of loop phase shift for 

different values of saturation (blue, green, brown, and red solid lines). The purple and orange 

lines are the points where the susceptibility in equation (4.35) is zero, which eliminates the 

conversion from loop phase shift fluctuations to oscillator phase fluctuations. Operating the 

oscillator at these points eliminates the conversion of amplifier noise on the phase noise of a 

saturated oscillator. 

In (b), we plot amplitude against frequency while changing phase shift and saturation.  The 

same points from (a) are plotted in purple and orange on this plot.  In cyan, we show points where 

the oscillator is isochronous, as in Figure 4.7 (brown line) where the isochrones are perpendicular 

to the limit cycle.  Note that in (b) the orange line is very close to the cyan line, which, we claim, 

corresponds to the minimums in the experimental data of Figure 4.10.   
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Figure 4.8. (a) Frequency plotted against loop phase shift for four different saturations  The 

points given by equation (4.35) are shown in purple and orange. The black line is the points 

with minimum phase shift slope. (b) The purple and orange lines correspond to the purple and 

orange lines in (a). The isochronous points are shown in cyan. 

 

In Figure 4.9 we present Matlab calculations for the phase noise at 1kHz offset as a function 

of loop phase shift for different values of saturation, using equation (4.25) with noise intensities 

              
   

  
           and    

 

  
      This noise intensity is scaleless (coming 

from the amplitude equation) and so we must scale out the displacement from the thermal noise 

using the same factor of nonlinear stiffness. Therefore, the value for the thermomechanical noise 

intensity is the ratio of the thermal noise energy to the energy at critical amplitude. We assume 

equality (at unit amplitude) between phase shift noise intensity and thermal noise fluctuation 

intensity based on agreement between predicted values and data (to be presented in the next 

section). We also assume the origin of the phase shift fluctuations come from amplifier noise fed 

into the saturation element and so depends on the SNR of the oscillator (which increases as noise 

is amplifier noise is held constant and signal increases). The saturation values are chosen to be the 

same as the saturation values taken from the experimental data presented in the next section.  
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Figure 4.9. Simulations of the phase noise against loop phase shift for different values of 

saturation. The noise intensity values are calculated from thermomechanical noise and 

experimental values for the critical amplitude. 

 

4.11 Experimental Results for Noise in a Saturated 

Oscillator 

We measure the phase noise (at point II in Figure 4.2) and present this data in Figure 4.10.  

We show the phase noise for the oscillator at 1kHz offset as the phase shifter is adjusted, with the 

saturation stepped for different colors.  Notice that the qualitative behavior of the curves is 
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strikingly similar to the simulations presented in Figure 4.9.  However, the scale seems to be 

shifted by ~10dB between the two plots. This probably signifies an additional source of noise. 

It should be noted that the minimum noise in the experiment near the isochronous point for 

       is limited at -70dBc/Hz, whereas in theory it should keep decreasing with increasing 

saturation (Figure 4.9). The origin of this limit is unclear, but we note that it corresponds to the 

limit found from Allen deviation measurements in phased locked loops [21], implying that this is 

related to direct frequency fluctuations in the resonant device [22]. 

 

Figure 4.10. Experimental results for the phase noise as a function of the feedback phase for 

the saturated oscillator. These data should be compared against the simulation shown in Figure 

4.9.  

 



113 

 

In summary, we have shown theoretically that there exists a special feedback phase shift   

and saturation   which causes the oscillator to be isochronous, eliminating AM-PM conversion. 

These isochronous points are shown to exist above critical amplitudes. Therefore, in 

thermomechanically noise limited oscillators (where thermomechanical noise dominates amplifier 

noise), the oscillator amplitude is not limited to values below the critical amplitude. Since 

increasing oscillator power decreases oscillator phase noise for zero AM-PM conversion, phase 

noise also decreases. In addition, this point of isochronicity is predicted to exist near a point of 

minimum conversion of loop phase shift noise to phase noise. Most importantly, we have 

confirmed these theoretical predictions, at least qualitatively, with experimental data on a NEMS 

oscillator. These results show that feedback oscillator phase noise is not limited to estimates 

based on the dynamic range (as described in equation (4.11)).  This should lead to a phase noise 

limit lower than predicted by the theory published for NEMS sensors [23, 24] if the direct device 

frequency noise is eliminated. 

If there are more noise sources than just thermomechanical noise, such as loop phase shift 

noise, then one can use the nonisochronicity to reduce the influence of the noise sources on the 

phase noise by changing the loop phase shift, as was shown in equation (4.35) and in reference 

[7]. This gives more flexibility in design for oscillators than suggested by Leeson’s formula, 

where the phase noise strongly depends on amplifier noise (and therefore insertion loss) and 

quality factor. 

4.12 Future Work 

These results can be extended to the more general case of the Rapp model.  We expect 

regions in the parameter space of the oscillator (damping, saturation, nonlinear stiffness, phase 
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shift, and gain) which will give similar results.  These results will include gain which complicates 

the analysis since amplitude fluctuations can be fed back to the oscillator, and thus be converted 

to phase noise through nonisochronicity. 

Even though the phase noise data only qualitatively agree with calculations, they hint at 

strategies to reduce the noise further. For example, if direct frequency noise [22] or nonlinear 

stiffness fluctuations set the limit on phase noise, since the parametric fluctuations probably have 

a single source (such as temperature, charge, etc), they can be used to ‘beat’ against each other.  

This would be important since this would be a method for reducing fundamental device frequency 

noise (which is correlated) by employing feedback. 

Since quality factor may play no role for an oscillator at a point of zero phase shift 

susceptibility (since Q will be eliminated for equation (4.26) with           ), we can 

explore non-mechanical types of oscillators that have not been implemented before, which were 

rejected due to high damping rates.  These can include electronic oscillators which are easier to 

integrate and have a long history of application outside the scope of stable frequency sources [5, 

25, 26]. 

Finally, this research opens up new ways of understanding nonisochronous oscillators of all 

types, and can be used to examine more exotic oscillators [27] to find proper bias point to reduce 

the noise.  

  



115 

 

Bibliography 

1. A History of the Quartz Crystal Industry in the USA 

 V.E. Bottom 

 in Thirty Fifth Annual Frequency Control Symposium. 1981, 1981. 
2. A review of the recent development of MEMS and crystal oscillators and their impacts on the 

frequency control products industry 

 C.S. Lam 

 in Ultrasonics Symposium, 2008. IUS 2008. IEEE, 2008. 
3. A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator 

 X.L. Feng, C.J. White, A. Hajimiri and M.L. Roukes 

 Nature Nanotechnology, 2008, 3(6), 342-346. 
4. A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization : a universal concept in nonlinear sciences. 

The Cambridge nonlinear science series. 2001, Cambridge: Cambridge University Press. xix, 411 
p. 

5. A review of MEMS oscillators for frequency reference and timing applications 

 J.T.M.v. Beek and R. Puers 

 Journal of Micromechanics and Microengineering, 2012, 22(1), 013001. 
6. X.L. Feng, Ultra-High Frequency Nanoelectromechanical Systems with Low-Noise Technologies for Single-

Molecule Mass Sensing, in Electrical Engineering. 2006, California Institute of Technology: Pasadena, 
California. 

7. Evading amplifier noise in nonlinear oscillators 

 D.S. Greywall, B. Yurke, P.A. Busch, A.N. Pargellis and R.L. Willett 

 Physical Review Letters, 1994, 72(19), 2992-2995. 
8. Pattern selection in parametrically driven arrays of nonlinear resonators 

 E. Kenig, R. Lifshitz and M.C. Cross 

 Physical Review E, 2009, 79(2), -. 
9. Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators 

 I. Kozinsky, H.W.C. Postma, I. Bargatin and M.L. Roukes 

 Applied Physics Letters, 2006, 88(25). 
10. H.W.C. Postma, I. Kozinsky, A. Husain and M.L. Roukes, Dynamic range of nanotube- and nanowire-

based electromechanical systems. Vol. 86. 2005: AIP. 223105. 
11. Fundamental limits on the frequency stabilities of crystal oscillators 

 F.L. Walls and J.R. Vig 

 Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 1995, 42(4), 
576-589. 



116 

 
12. Noise processes in nanomechanical resonators 

 A.N. Cleland and M.L. Roukes 

 Journal of Applied Physics, 2002, 92(5), 2758-2769. 
13. Harnessing optical forces in integrated photonic circuits 

 M. Li, W.H.P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg and H.X. Tang 

 Nature, 2008, 456(7221), 480-484. 
14. Near-field cavity optomechanics with nanomechanical oscillators 

 G. Anetsberger, O. Arcizet, Q.P. Unterreithmeier, R. Riviere, A. Schliesser, E.M. Weig, J.P. 
Kotthaus and T.J. Kippenberg 

 Nature Physics, 2009, 5(12), 909-914. 
15. Surface Adsorbate Fluctuations and Noise in Nanoelectromechanical Systems 

 Y.T. Yang, C. Callegari, X.L. Feng and M.L. Roukes 

 Nano Letters, 2011, 11(4), 1753-1759. 
16. Classical Noise. V. Noise in Self-Sustained Oscillators 

 M. Lax 

 Physical Review, 1967, 160(2), 290-307. 
17. Phase noise in oscillators: a unifying theory and numerical methods for characterization 

 A. Demir, A. Mehrotra and J. Roychowdhury 

 Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on, 
2000, 47(5), 655-674. 

18. A simple model of feedback oscillator noise spectrum 

 D.B. Leeson 

 Proceedings of the IEEE, 1966, 54(2), 329-330. 
19. Oscillator Phase Noise: A Geometrical Approach 

 T. Djurhuus, V. Krozer, J. Vidkjaer and T.K. Johansen 

 Ieee Transactions on Circuits and Systems I-Regular Papers, 2009, 56(7), 1373-1382. 
20. E. Kenig, Minimizing phase noise in duffing oscillators above critical amplitude. 2012. 
21. Towards single-molecule nanomechanical mass spectrometry 

 A.K. Naik, M.S. Hanay, W.K. Hiebert, X.L. Feng and M.L. Roukes 

 Nature Nanotechnology, 2009, 4(7), 445-450. 
22. Detecting and characterizing frequency fluctuations of vibrational modes 

 Z.A. Maizelis, M.L. Roukes and M.I. Dykman 

 Physical Review B, 2011, 84(14), 144301. 
23. Ultrasensitive nanoelectromechanical mass detection 

 K.L. Ekinci, X.M.H. Huang and M.L. Roukes 



117 

 
 Applied Physics Letters, 2004, 84(22), 4469-4471. 
24. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency 

applications 

 M. Li, H.X. Tang and M.L. Roukes 

 Nature Nanotechnology, 2007, 2(2), 114-120. 
25. A history of the development of CMOS oscillators: The dark horse in frequency control 

 M.S. McCorquodale and V. Gupta 

 in Frequency Control and the European Frequency and Time Forum (FCS), 2011 Joint Conference of the IEEE 
International, 2011. 

26. A study of phase noise in CMOS oscillators 

 B. Razavi 

 Solid-State Circuits, IEEE Journal of, 1996, 31(3), 331-343. 
27. A Nanoscale Parametric Feedback Oscillator 

 L.G. Villanueva, R.B. Karabalin, M.H. Matheny, E. Kenig, M.C. Cross and M.L. Roukes 

 Nano Letters, 2011, 11(11), 5054-5059. 

 

 



118 

 

Chapter 5                                         

Synchronization 

In the previous chapter we demonstrated the effect that nonisochronicity has 

upon a single feedback oscillator; here we will show the effects nonisochronicity 

has upon the interaction of two feedback oscillators. We show synchronization of 

two feedback oscillators when their mutual reactive weak coupling colludes with 

their nonisochronicity. In our system, we perform careful calibration of the 

relevant synchronization parameters used in the theoretical predictions. In the 

case of small coupling, this calibration gives analytical predictions which show 

close agreement with the experimental results. For large coupling, our predictions 

from numerical simulations show excellent agreement with experiment. In 

addition to phase locking behavior, phase slipping between two oscillators is 

observed in the time domain. Finally, data are presented showing an 

improvement in the oscillators’ frequency precision between synchronized and 

unsynchronized states.  
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5.1 Introduction 

The mutual entrainment of coupled self-sustained oscillators, the phenomenon known as 

synchronization, was observed as early as 1665 [1]. This phenomenon is not commonly observed 

in natural nonbiological oscillatory systems, since they, primarily, are quasi-conservative (e.g., 

astronomical phenomena), or driven (e.g., the ocean tides). However, in natural biological 

systems, synchronization is ubiquitous, ranging from ecological scales [2] to microscopic scales 

[3]. It is also known to play a key role in neural networks [4]. 

Since synchronization is so prevalent in natural systems, candidate systems are sought in 

which to observe and control this phenomenon. One well-understood candidate system is 

Josephson junction arrays [5], which exhibits dynamics described by the Kuramoto model [6].  

Implementing these arrays is relatively easy, since a single voltage can be applied to many 

devices, whereby they oscillate. Oscillations in Josephson junctions reside in a one-dimensional 

phase space; they can be mapped by a single phase variable (they lack an amplitude component, 

as in equation (4.13)). Thus, these arrays are excellent at mapping out the phase dynamics of 

coupled oscillators. However, since Josephson junctions are one-dimensional, much of the 

dynamics displayed by self-sustained oscillators (which reside in two-dimensional phase space) 

will not be seen, such as Hopf bifurcations [7]. Other candidate systems which display more 

complex dynamics (involving both amplitude and phase) are currently under investigation. 

For example, in spin-torque systems, nonisochronous oscillators [8] have been show to lock 

[9, 10], but these studies do not show results for a wide range of the system parameters. 

Synchronization is especially important for frequency sources constructed from spin-torque 

oscillators, since they currently exhibit large phase noise [11]. 
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In nanomechanical systems, there has been theoretical work [12] for large arrays of NEMS. 

However, there has not been much experimental work in nanomechanical systems. Much of the 

difficulty for doing a well-controlled experiment comes from not being able to set up self-

sustained oscillators using these extremely small and lossy resonators. In 2005, the first self-

sustained NEMS oscillator was developed [13] and studied in detail. It was constructed from a 

magnetomotively actuated and detected resonator solving the major challenge of achieving 

enough signal to background ratio, which was accomplished through a resistance bridge. In that 

study, the NEMS was immersed in a high magnetic field through the use of helium cooled 

superconducting magnets. Making arrays of these type of feedback oscillators is not simple since 

each device needs signal lines, increasing the number of ports into the low temperature system. 

Also, since coupling between two adjacent magnetomotively transduced NEMS devices is 

capacitive in nature, experiments are limited to attractive coupling. 

One advantage of piezoelectrically actuated NEMS [14] over monopolar NEMS (with a 

single electrode, such as capacitively [15], magnetomotively [16], and thermoelastically [17] 

actuated NEMS) is the dipolar nature of the coupling mechanism, which can be tuned to be both 

positive or negative. Also, tuning parameters such as frequency [18] and nonlinearity [19] is 

relatively simple. To the author’s knowledge, we present the first study where careful control and 

analysis of the phase locking of two nonisochronous oscillators has been performed. This is also 

the first study where synchronization has been shown in NEMS. 
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5.2 Feedback Oscillators with Multiple Feedback Loops 

Since this study of synchronization of two oscillators uses coupling through additional 

feedback loops off chip, we present a brief description of oscillators with multiple feedback 

loops.  

As laid out in sections 4.2 and 4.3, a limit cycle will occur when the right side of equation 

(4.4) is positive. Notice that the phase   determines how much energy is fed back per cycle into 

the resonator. Here, an overall phase shift of 
 

 
 gives maximum amplitude.  

Instead of just one feedback loop, suppose we add another feedback loop with different 

amplitude and phase. This can be represented by the amplitude equation 

   
 

 
  | |    

 ( )

 
         

 ( )

 
          

(5.1) 

 

where  ( ) is a feedback function in general different from  ( ), with its own phase  . In 

equation (5.1) the second feedback is assumed to have the same frequency as the oscillator, but 

the feedback could be at integer multiples of the oscillator frequency, which can lead to new 

types of oscillators [19].  

If the amplitude of oscillation is set by the saturation of the feedback  , so that the second 

loop is always linear, this feedback function is linear with  ( )     . With steady oscillation 

    , we get 
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and 

    ( )               
(5.3) 

 

We may now use the first feedback loop  ( ) to tune the damping and cause self-sustained 

oscillations, and use the second feedback loop   to tune the stiffness. This gives two control 

knobs: one to control the amplitude of oscillation ( ), and one to control the frequency of 

oscillation ( ).  

5.3 Synchronization Equations for Two Oscillators 

We start the synchronization discussion with the equations for two coupled nearly identical 

oscillators each described by the equations developed in chapter 4 for saturated oscillators. The 

quality factors, oscillator saturations, and nonlinear tuning parameters are the same for these two 

oscillators, with the difference being the resonant frequency of the NEMS device (given by    

and   ) and coupling between the two oscillators (given by  ). We therefore get 
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where     is the nonlinear frequency tuning coefficient from chapter 3,    is the phase of 

oscillator  , and   is the saturation level. This term, in the uncoupled case, gives the amplitude of 

oscillation in the steady state (equation (4.15)). We will assume   is a real number, resulting in 

what is known as reactive coupling. This can be either repulsive (   ) which is the tendency 

for two nearby resonators to repel, much like two positive charges, or attractive (   ), which is 

the tendency for two nearby resonators to attract, as in the case of two unlike charges (or two 

capacitor plates with one plate charged). In the absence of feedback (   )  and nonlinear 

stiffness (   ) , Equations (5.4) and (5.5) represent two coupled, damped resonators: the 

solution for a driven resonator can be found in any undergraduate textbook on mechanics[20]. For 

the case of externally driven coupled resonators with nonlinear stiffness see reference [21]. 

To analyze equations (5.4) and (5.5) we first normalize the amplitude by the saturation 

(   ̃   ) to get equations similar to the form found in references [7, 22, 23]. Equations (5.4) 

and (5.5) can be simplified by separating the complex amplitude into a real magnitude and phase 

(with       
            

 ) to get 
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and 
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where the prime is the derivative with respect to slow time, T. 

Phase locked solutions can be found by looking at the phase difference,        , which 

we find by subtracting equation (5.9) from equation (5.8). Together with equations (5.6) and (5.7) 

we get 
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and for the phase difference 
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Equation (5.12) can be simplified as 
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where the parameter    
  

 
 
  

 
. Notice that    is the beat frequency of the two oscillators, or 

the rate of advance of one oscillator in the rotating frame of the other oscillator frequency. 

Equations (5.10), (5.11), and (5.13) completely describe the synchronization dynamics of two 

heavily saturated oscillators in the slow time scale.  

Let us note what the three parameters mean for these equations. The parameter    is the 

resonator frequency difference (called ‘detuning’) in units of the resonator’s open loop response 

spectral width (   
     

 ̅  
 with  ̅  

 

 
(     ) ), which is unitless. The parameter   is the 

nonisochronicity, or ‘shear,’ again in terms of the width, i.e.,        
   

    
 ̃   (where 

   

  
 is 

the quantity measured in Figure 3.4 (b,top), and  ̃  is the level of saturation in units of the 

resonator amplitude  ̃. Finally,   is the coupling between the two resonators. This parameter can 

be found by observing the splitting of the in-phase and anti-phase mode frequencies when the 

uncoupled resonator frequencies are the same.  

The locking mechanism comes from two different sources. The oscillators can lock due to an 

amplitude difference combined with shear (the first term in the second parentheses in equation 

(5.13)), or from amplitude difference without the shear (the second term in the second 

parentheses in equation (5.13)). We call these “shear-induced coupling” and “direct coupling”, 

respectively. Obviously, the shear-induced coupling is of particular interest for us since this is the 

locking mechanism which arises from the nonisochronicity. 

5.4 Synchronization in the Limit of Small Coupling 

In the limit of small coupling, the amplitudes do not deviate far from unity in equations (5.10) 

and (5.11). The fixed points of the amplitude are therefore 
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            (5.14) 

 

and 

            (5.15) 

 

which gives for the phase equation 

               (5.16) 

 

known as the Adler Equation [24]. Thus, with zero coupling we get   =   , i.e., the oscillator 

beat frequency is simply the resonator frequency difference.  Here upon exchange of oscillator 

one with oscillator two, the equations remain the same. Hence, an inherent symmetry between the 

oscillators occurs.  

It should be noted that in the case of small dissipative coupling (where in the original 

amplitude equation, the coefficient of the coupling term is real and the coupling affects the 

equation for phases directly), shear neither hinders nor helps the synchronization. For the more 

general solution with both reactive and dissipative coupling we get [7] 

      (    ( )    ( ))      (5.17) 

 

Therefore, since it is the goal of this study to understand the role of nonisochronicity, dissipative 

coupling is ignored. 
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To get a basic understanding of phase dynamics implied by (5.16), we map it onto an easily 

understandable physical system, a heavily damped rotating pendulum under constant torque (see 

Figure 5.1). Although this picture is not immediately intuitive (since we ignore the inertia), it can 

provide some insight. In the heavily damped pendulum without the inertial term we get 

                        (5.18) 

 

with the meanings of   and   being obvious. When the torque term   is much greater than the 

gravitational term  , the pendulum will smoothly rotate with uniform motion. As we turn down 

the torque (in the coupled oscillators this is the detuning), the gravitational term (in the oscillator 

system the coupling term) will slow the pendulum around the bottom of the cycle (   ), the 

stable fixed point. Also , at the top, at the unstable fixed point, the gravitational potential speeds 

up the pendulum as it moves down. This motion will no longer be uniform and smooth; it exhibits 

periodic skips in phase.  As the torque decreases further, the system eventually cannot escape 

from the potential well and relaxes to the bottom of the rotation.  

In the coupled oscillators near the onset of synchronization, the motion also becomes non-

uniform, like a ball skipping down a washboard potential (see section 5.11). The non-uniformity 

in the motion will cause frequency modulation of the two oscillator signals, which increases as 

the system gets closer to the synchronization regime. At the border of synchronization, there 

exists long periods of time where the motion appears steady and then suddenly jumps to the next 

cycle. This is known as phase slipping. 
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Figure 5.1. Approximate dynamics of two synchronized oscillators in the limit of small 

coupling. The frequency detuning acts as a constant torque on an overdamped pendulum. The 

coupling term acts as a restoring force, where the synchronized states occupy the space from –

π/2 to π/2.  

 

The transition of moving from the unsynchronized to the synchronized states creates fixed 

points in the system through a saddle-node bifurcation. This is diagrammed in Figure 5.2 with 

attractive coupling (   ). We plot oscillator frequency difference    (given by equation (5.16)) 

against the phase difference  . As we change the frequency detuning    we shift the whole 

curve down, and eventually create solutions where the oscillator frequency difference    can be 

zero. There are two solutions, a stable and an unstable one; the stability is given by the slope of 

the curve at those points. For the point in the region with a negative slope, the fixed point is 

stable, since small perturbations cause the phase to decay. In the region with a positive slope sits 

the unstable fixed point, since perturbations grow in time. Note that as we flip the sign of this 

curve by inverting the sign of the coupling, the stable point flips to the unstable fixed point.  This 
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analysis of fixed points can be generalized to include higher dimensions with than one variable; 

this is known as linear stability analysis (LSA). 

 

Figure 5.2. Fixed point analysis of the small coupling dynamics. The detuning is decreased 

from left to right. The stable branch is the blue solid region, and the unstable branch is the red 

dashed region. The fixed point is the filled in circle, while the open circle is the unstable fixed 

point. 

 

Assuming that the shear is always positive, we have different states depending on the sign of 

    For repulsive coupling (   ) we get a stable fixed point when 
 

 
   

  

 
, which we call 

the antiphase solution, since near      the stable fixed point for the ‘anti-phase’ state gives 

   . The other state can be found with attractive coupling (   ), which gives the ‘in-phase’ 

state, 
 

 
   

 

 
. 

Note that changing the sign of    is equivalent to reversing time. To understand this, say we 

take      in the in-phase solution at the bifurcation,   
 

 
, then       

 

 
, and so 

oscillator 2 ‘leads’ oscillator 1. In the anti-phase solution,   
  

 
 and so oscillator 1 leads 

oscillator 2, but this could be viewed such that time is just reversed with oscillator 2 leading 

oscillator 1 in the other direction.  

Even though equation (5.16) is nonlinear, it can be explicitly solved. The beat frequency in 

the unsynchronized region is  
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       (∫
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  (5.19) 

 

which gives 

  √    (   )   (5.20) 

 

Equation (5.20) gives a square root cusp in the beat frequency   around the regime of 

synchronization. The regime of synchronization is                   with 

              (5.21) 

 

As the detuning is increased from zero, the sine of the phase difference between the 

oscillators in the synchronized state becomes non-zero and the amplitudes change. We solve 

(5.14) and (5.15) in the synchronization region, 

|
   
  
|         

  

  
  (5.22) 

 

where the solution for the phase equation (5.16) for      has been inserted. As   becomes 

larger, the approximation for small changes in amplitude no longer holds, and we have to take 

into account the nonlinear changes in the amplitudes as a function of the detuning.  
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5.5 Amplitude Limitations 

The equations for amplitude ((5.10) and (5.11)) for large coupling cannot be as easily 

analyzed as in the case of small coupling. The fixed points of the amplitude equations in the 

synchronization region give 

              (5.23) 

 

and 

              (5.24) 

 

Eliminating the phase from these equations yields 

  (    )     (    )    
    

           (5.25) 

 

which gives solutions 

     
 

 
 √

 

 
     (      )   

(5.26) 

 

Physically, as oscillator 1 amplitude   increases, oscillator 2 amplitude     decreases. Only 

positive solutions are physical.  
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Note that for a real solution of equation (5.26)       
  √ 

 
. For     , we get     , as 

expected. For     
  √ 

 
,    

 

 
, which means the ‘exchange’ of amplitudes is not generally 

symmetric. The reason for this symmetry breaking lies in the fact that no longer can we do the 

same exchange of oscillator number (as we did before in the small coupling case). Here, equation 

(5.13) flips sign if we exchange oscillator 1 and oscillator: the oscillators have ‘identity’ specified 

by the sign of the frequency detuning. We plot the solution curve for the oscillator amplitudes in 

Figure 5.3.  
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Figure 5.3. Amplitude space for the two oscillators. The solid blue and dashed red sections are 

the regions where the sign of equation (5.26) is positive and negative, respectively. 

 

To know which values of amplitude are stable for fixed shear and coupling, we do a linear 

stability analysis (LSA) [25] of the system by finding the eigenvalues of the Jacobian of 

equations (5.10), (5.11), and (5.13). In Figure 5.4 we show the eigenvalues, both real (solid) and 

imaginary (parts) for       and       . For stability, all three real parts must be negative. 

This occurs for            , which is the region where stable amplitudes can occur. 

 

 

Figure 5.4. Eigenvalues for the Jacobian of equations (5.10), (5.11), and (5.13) with        
      . The real and imaginary parts of the eigenvalues are given by solid and dashed lines, 

respectively. The solution is unstable at        since two of the real parts of the eigenvalues 

become positive at this point. 
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Since the amplitude difference is limited to this region, there exists a limit of the amount of 

coupling available in the phase equation (since both the shear and direct coupling terms from 

equation (5.13) require an amplitude difference to cause frequency locking). Once these limits are 

reached, the solution becomes unstable and unsynchronizes. 

5.6 Simulations of Synchronization with Large Coupling 

There is no analytic expression for a general solution to the full set of equations (5.10), 

(5.11), and (5.13), but we can simulate their behavior using Mathematica and Matlab.  

In Figure 5.5 is a plot of a sweep of    from -3.5 to 3.5 for different values of coupling 

  with shear    .  
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Figure 5.5. Simulation of the frequency difference of the two oscillators as detuning is swept 

for different values of coupling, with shear    . Hysteretic response is modeled by running 

two sweeps, one with the oscillators initially synchronized, and one with them initially 

unsynchronized. 

 

As the coupling   increases, we note the bifurcation to the synchronized state shows 

hysteresis on changing the direction of sweep. In Figure 5.6, we show another example of this 

hysteresis but with a Q factor difference between the two oscillators of 10%. Here the symmetry 

is broken between positive and negative values of   . This will also occur in two oscillators with 

different saturation values.  
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Figure 5.6. Detuning sweep with a resonator Q difference of 10% which displays an obvious 

asymmetry in both synchronized regime and hysteretic region size between negative and 

positive values of detuning. 

5.7 Realization of Two Coupled Oscillators 

It is possible to achieve the coupling described by equations (5.4) and (5.5) through an 

electrostatic mechanism, as in reference [26]. However, in piezoelectrics, by using this coupling 

mechanism, we would also be changing frequency. We would then have two parameters in our 

experiment changing at the same time, increasing experimental complexity. Also, since we use 

impedance bridge in order to create a differential signal at the output of each oscillator, 

feedthrough signals between the oscillators would not be nulled since each oscillator’s impedance 

bridge is tuned in a different way.  Thus, eliminating cross coupling would be impossible unless 

parasitic capacitances between the bonding pads could be significantly reduced. Finally, finding 
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two devices that are exactly the same (in terms of frequency, quality factor, nonlinearity, tuning 

range, and insertion loss) is difficult given our fabrication capabilities.  

Here we develop a method by which experimental verification of the synchronization 

phenomena described in equations (5.10), (5.11) and (5.13) can be carried out without the 

complications described in the previous paragraph. In this work we employ an additional 

feedback loop to couple the oscillators together (similar to the methods describe in section 5.2). 

Although there is time delay between the amplitude of the resonator and the feedback signal, it 

can be ignored for delays smaller than the decay time (   )  since the feedback signal is 

effectively instantaneous on the slow timescale. Therefore, we do not have to include it into 

equations (5.4) and (5.5).  

In Figure 5.7, we show the experimental setup with a “coupling loop,” which creates an 

effective coupling through feedback in the amplitude equation. We will show how this coupling 

is calibrated in the next section. All of the data except phase slipping and noise data, was taken 

using two separate spectrum analyzers.  The amplitudes are monitored for several reasons: to 

verify equation (5.22), to calibrate the shear parameter    and also to ensure that our oscillators 

are identical. 
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Figure 5.7. Experimental setup for oscillator synchronization using a feedback loop (blue 

dashed box) to form an effective coupling. We can modify the detuning by applying a DC 

voltage on the piezoelectric actuation electrodes of the resonator embedded in oscillator B 

(blue box), shear by tuning saturation (red boxes), and coupling by attenuating the feedback 

loop (green box). 
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5.8 Calibration of Parameters 

Extracting the three parameters which set the dynamics (    ,  ) from the setup requires 

care if we wish to compare theoretical predictions to the experimental results. Before calibrating 

the parameters, each closed loop oscillator feedback phase was varied using voltage controlled 

phase shifters PS-A and PS-B so that the loop phase shift was set for maximum oscillation 

amplitude (  
 

 
 in equation (5.2)). This was done to ensure the feedback loops used to cause 

oscillation (Figure 5.7, dashed purple boxes) altered only the oscillator amplitude (equations (5.6) 

and (5.7)), and not oscillator phase (equations (5.8) and (5.9)). Frequency and amplitude of one of 

the oscillators is shown in Figure 5.8 as the phase shifter PS-A is tuned (which shifts the feedback 

loop phase   in equation (5.1)).  

In Figure 5.8 saturation is low, so the curve traced out is Lorentzian. This is predicted to 

occur in saturated oscillators with no nonlinear stiffness, since the signal fed back into the 

resonator is constant for any given frequency. Combining equations (4.15) and (4.16) with no 

nonlinear stiffness (ignoring the    term in the equation (4.16)) gives 

   
  

     
  (5.27) 

 

for slow time deviation frequency  . When   
 

 
    , giving the maximum of equation 

(5.27). 
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Figure 5.8. Amplitude for nearly isochronous oscillator as loop phase being tuned (equation 

(5.27)). The center gives the phase shift value   for saturation being fed only into the 

amplitude. 

 

Calibration of the shear is straightforward and is related to the work described in chapters 3 

and 4. By tuning the attenuators after the limiter (red in Figure 5.7) we can change the saturation 

level and gain. Given that the gain is sufficiently high, such that the signal is strongly saturated, 

the change in gain can be ignored. We can therefore measure the saturation level by measuring 

the peak output amplitude (when the oscillators are far outside the synchronization regime) and 

dividing by the quality factor found in open loop resonance. We calibrate the oscillator amplitude, 

in units of displacement, at point II of Figure 5.7 by the methods outlined in chapters 2 and 3, 
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whereby we can also calibrate the nonlinear tuning coefficient    Recall that the shear is 

combination of saturation and nonlinear stiffness, i.e.,       . Thus, alpha can be tuned either 

by causing beam deflection, which changes   (such as in section 3.6), or by simply changing the 

saturation level  . This parameter   can be understood as the amount of frequency change the 

oscillator undergoes under unit change in the square amplitude (according to the second term in 

equations (5.8) and (5.9)). So, for example,     means that if the oscillator doubles in 

amplitude, the frequency shifts by 4 times the open loop width. 

We present two different ways of measuring the detuning    for the experiments below, 

depending on which parameter is swept.  

When the coupling is swept, the difference in frequency is found by simply looking at the 

frequency difference in the uncoupled case. Since the two oscillators are not interacting, they 

should be identical in all variables except frequency, which are completely determined by shear 

and open loop frequency. Since amplitude and shear are the same for both oscillators, the 

difference in oscillator frequency is the difference in resonator frequency. 
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Figure 5.9. (a) Raw data of the two oscillators as one of the oscillators is tuned in frequency, 

for two different coupling strengths. (b) The same sweeps but plotting the difference 

frequency. The end of this plot gives a straight line to which detuning can be calibrated. 

 

When the frequency difference is swept (through the use of a dc voltage coupled to the input 

electrode of the resonator embedded in oscillator B in Figure 5.7 (blue box)) we fit the outer 5% 

of data points of tuning voltage versus    (at detunings very far from zero) in the sweep to a 

straight line, since the two oscillators are approximately noninteracting at those points. The 

resonator frequencies are linear in piezoelectric tuning voltage [14], so we can replace the voltage 

with the resonator frequency difference. The detuning is the ratio of resonator frequency 

difference to the width    
  

   
. In Figure 5.9 (a), we show the raw data for frequency of the 

two oscillator from two sweeps with different coupling. The synchronized regime can be seen as 

the points where the frequency difference is zero. One pair of curves has a very small 

synchronization regime, due to small coupling; the other pair has a much larger regime since its 

coupling is larger. Note that near the ends of the data, the frequencies are essentially linear with 

the tuning voltage. The linear relationship between voltage and resonator frequency difference is 

given by the slope of the line fitted to the data points far away from the synchronization regime. 

We can thus scale the of x-axis of these plots to give the detuning   . 

In Figure 5.9 (b), we show the frequency difference of the two sets of curves. Note that for 

the two curves in (b) the frequency difference is different for the same piezoelectric tuning 

voltage far outside the synchronization regime. The time between these measurements is on the 

order of a couple hours, thus allowing frequency drifts to set in. We take the y-axis intercept of 

the linear fits of the previous paragraph and subtract it from the data.  
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Finally, we must explain the calibration of the coupling parameter. There are many ways to 

calibrate this parameter. Here we will show two such methods, and that these measurements 

agree.  

For the first method, by measuring the open loop gain (with       ) of the coupling loop 

(breaking the circuit at point III in Figure 5.7 and measuring gain ‘round trip’ through the circuit), 

we can measure this parameter directly. In this method the phase shift in the coupling loop is 

adjusted before taking data to ensure that the signal acts only as a reactive coupling, and not a 

dissipative one.  

Another way of measuring the coupling which does not break the circuit (which can change 

the circuit impedances) is to measure oscillator frequency shifts when they are not interacting 

with each other. With only one oscillator turned on, the oscillator can be modeled by equation 

(5.2) and exhibits a frequency shift of -   , where   has been substituted by    By making sure 

the amplitude does not change (the phase shift is set by tuning PS-C and PS-C’ to yield reactive 

coupling with the correct sign), we measure the frequency (in units of resonator width) as we 

change the voltage on the attenuator in the coupling loop. Below, in Figure 5.10 are the results of 

one such set of measurements.  
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Figure 5.10. Coupling calibration curve for the two oscillators. The blue (green) points are 

found using tuning data from oscillator A (B). The red curve is found by measuring loop gain 

around the feedback branch through one of the resonators.  

 

In Figure 5.10, data from that both methods are within 10%. We choose to use the ‘gain’ 

method since we have more data points in that sweep. Additionally, the large frequency drifts of 

the oscillators in closed loop tend to cause larger systematic error in the results for   than what is 

caused by amplitude drifts in the driven ‘gain’ method.   
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5.9 Experimental Resonator Parameters 

In the experiment, devices were selected such that the parameters were nearly identical. In 

Table 5.1 we show the experimental parameters of the two resonators. Note that the devices came 

from the same fabrication run and design. 

Parameter Device “A” Device “B” 

Frequency, f0 
13.073 MHz 

(@128mV) 

13.066 MHz 

(@124mV) 

Q factor 1590 1700 

Nonlinear stiffness,   1.55x10
13

 m
-2 

1.35x10
13

 m
-2

 

Insertion Loss, S21 -63dB -66dB 

Table 5.1. Relevant properties of the resonators used to 

make oscillators A and B. 

 

In chapter 4, it was pointed out that loop gain includes insertion loss of the resonator. In our 

experiment, differences in the insertion loss (as defined in chapter 4) could cause a problem with 

the synchronization dynamics, since the coupling loop (as opposed to the heavily saturated 

feedback loops which determine the oscillation amplitude) depends on loop gain. If the insertion 

loss is different for each oscillator going through the coupling loop, then a symmetric coupling   

in equations (5.4) and (5.5) would not be possible. A more general case would have to be 

examined with a coupling matrix. The matrix would have indices given by     which describes 

the linear feedback due to the coupling loop from resonator   into resonator   (with        ). In 

order to simplify our analysis and model a system with symmetric coupling, we correct for the 

difference in insertion loss by attenuating each loop so that the open loop gains from point III 

back around to point III are the same.  
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From Table 5.1, we see that the resonator frequencies are extremely close (within 1 open loop 

spectral line width), and the nonlinear stiffnesses are within 10%. The difference in nonlinear 

stiffness can be compensated by changing the saturation (since shear   depends both on the 

saturation and the nonlinear stiffness). The quality factor, however, cannot be tuned, and is 

critical when looking at the symmetry between negative and positive frequency detuning (as 

pointed out in section 5.5).  

The electronic parts of the two oscillators were built with identical elements (amplifiers, 

phase shifters, couplers, splitters, attenuators), so that the oscillators would be as similar as 

possible.  The slight differences in attenuation, used to correct for the differences in nonlinear 

stiffness and insertion losses, were small. 

5.10 Frequency Sweeps in the Limit of Weak Coupling 

Keeping the coupling low we can test the predictions of the Adler equation (5.20). In Figure 

5.11, we plot the frequency difference of the two oscillators as detuning is swept for several small 

values of  , keeping the saturation fixed at a value giving       .  
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Figure 5.11. Data for frequency difference of the two oscillators when detuning is swept for 

three different couplings (0.012, 0.044, 0.068) for a shear       . The predictions of the 

Adler equation (equation (5.20)) are shown in red. 

 

In black is the data, where each point is averaged over 1 second. The data has been shifted 

(not scaled) so that the synchronization region is symmetric about zero detuning. The values for 

the coupling parameter  in the experimental data are 0.012, 0.044, and 0.068. The red lines are 

predictions using the Adler equation (5.20). We see excellent agreement between the predictions 

and the experimental data, implying that our approximation for low coupling describes the 

experiment well. 

We now look at the oscillator amplitudes. Within the synchronization regime, in the small 

coupling limit, equation (5.22) makes predictions for the slope of amplitude   versus detuning 
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  , which depends on shear, but not on coupling. In Figure 5.12, we show one sweep at   

=0.068. The prediction here also agrees well with experiment.  

The results presented in Figure 5.11 and Figure 5.12 verify our calibration. The beat 

frequency in Figure 5.11 is predicted from the detuning, coupling, and shear, while the 

predictions of slope of the lines in Figure 5.12 need only be predicted from the detuning and 

shear. If we believe the scaling for the detuning is valid, then the shear must also be correct from 

Figure 5.12. Then if we trust our values for the detuning and shear, then from  Figure 5.11 the 

value for the coupling must also be correct. 
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Figure 5.12. The amplitudes of the two oscillators at a coupling         and a shear 

      . Inside the synchronization regime the amplitudes change at a rate of ∆ω/4α. 

Outside this regime, frequency modulation reduces the size of the signal until the detuning 

becomes great enough for the oscillators to be noninteracting. 

  

Both the amplitude and beat frequency results are impressive since it is extremely difficult to 

make quantitative predictions that agree so well with experiment in synchronization dynamics. 

Other studies in reactively coupled oscillators have shown frequency locking [9], but have not 

been able to so clearly match those to analytical theory. No results have been published on 

synchronized oscillator amplitudes before this study, and here we have excellent agreement 

between the quantitative predictions and the experiment.  
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However, these results encompass only the average or steady state dynamics of the system 

and not the full behavior for two coupled oscillators in the low coupling limit. Next, we discuss 

an aspect of the time domain phenomena at the border of synchronization, phase slipping.  

5.11 Phase Slipping on the Border of Synchronization 

We investigated the phenomena of phase slipping by mixing the oscillator signals through a 

circuit with calibrated output, which is set so that small deviations of phase give units of 2π, i.e., 

          [(     ) ]       [ 
  ]. In Figure 5.13 (a), we show the mixed signal versus 

time as the detuning is stepped, with coupling        . From the bottom (dark green) of Figure 

5.13 (a), we start at large values of positive detuning, and see an approximately sinusoidal signal. 

As the detuning is reduced, the frequency starts to decrease. The slips become more aperiodic 

until the oscillators lock (dark red flat line). As the detuning is taken to negative values, the slips 

start up again, but switch polarity. In Figure 5.13 (b), we plot the average number of slips per unit 

time divided by the open loop resonance line width versus detuning.  

We can explain this behavior by treating right side of equation (5.16) as a force, so that 

    ( )  
  

  
  (5.28) 

 

with potential   defined by 

               (5.29) 
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This gives a washboard potential with the average slope defined by the detuning and the trapping 

component given by the coupling. We diagram equation (5.29) in Figure 5.13 (c). As detuning 

decreases, we can see that the particle goes from skipping periodically down each well until 

finally it gets trapped into a potential minimum. If we introduce a noisy force, then the particle 

has a chance to bounce out of the well, and thus create aperiodic behavior. 
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5.12 Frequency Sweeps at Larger Coupling 

As we increase the coupling, hysteresis sets in (as in the simulation shown in Figure 5.6). In 

Figure 5.14, we show a frequency sweep at a coupling value of   = 0.9. The top panel shows the 

oscillator frequency difference, and the bottom panel shows the amplitude of one of the 

oscillators in forward and backward sweeps. The red, green, and blue lines represent the values of 

amplitude           and     , respectively. As discussed in section 5.4, the LSA (Figure 5.4) 

predicts that the synchronized oscillators are limited to amplitudes between      and     . At 

these values of amplitude, if the magnitude of detuning increases, no more amplitude difference is 

available to assist the coupling mechanism (either shear-induced or direct) to stay frequency 

locked.  

Figure 5.13. (a) Phase slips as a function of time with         and        as before in 

Figure 5.11. Going up the curves shows the detuning decreasing until aperiodic jumps are 

seen, after which phase locking is observed (dark red, third line from top). At more negative 

detuning, the jumps continue with opposite polarity. (b) Curve traced using phase slip data by 

averaging the number of slips in time and dividing by the open loop spectral resonator width. 

The overall curve matches well with the Adler prediction in 5.11. (c) Diagram of the system 

on the washboard potential given by equation (5.29). 
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Figure 5.14. (a) Oscillator frequency difference as a function of detuning with coupling of 0.9. 

The purple curve is the forward sweep, and the orange is the backward sweep. It closely 

resembles the simulation predicted in figure 5.5. (b) Amplitude of a single oscillator in 

forward and backward sweeps. The blue, green, and red lines give the minimum, uncoupled, 

and maximum value for the oscillator, respectively as predicted by the LSA of Figure 5.4. 

 

Next, we show (Figure 5.15) the synchronization regions as a function of the detuning and 

coupling parameters      with a fixed value of shear       , for both “attractive” and 

“repulsive” coupling. The data is found by sweeping the detuning forward and backward and 

recording where the frequency difference is less than 0.1. The blue areas are regions in parameter 
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space where the oscillators are synchronized for both backwards and forwards sweeps. The green 

are regions of synchronization going backwards (toward negative detuning), and the red are 

regions of synchronization going forwards (toward positive detuning). The orange lines are the 

overlay of experimental data for synchronized states with       (low shear). Thus, we can see 

that nonisochronicity increases the size of the synchronization region. The synchronization region 

for attractive coupling is smaller than the region for repulsive coupling as predicted by equation 

(5.13) due to a competition between the direct coupling effect, and the shear induced coupling. 

Also note that in low coupling (      ), there is essentially no hysteresis (red and green 

regions shrink to zero), and the synchronization region grows linearly with coupling, as predicted 

by the Adler approximation. The growth of the synchronization region becomes nonlinear in 

coupling for large | | due to the fact that amplitude differences we described in equation (5.26).  
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Figure 5.15. Synchronization region for shear 1.25. The white is unsynchronized states. The 

green is synchronized only in reverse sweeps. The red is synchronized only in forward 

sweeps. The blue is synchronized in both. The orange line shows the border of the 

synchronization region at a shear of 0.1. The influence of shear to increase the synchronization 

region is clear. Also, the attractive region is smaller due to competition between direct 

coupling and shear induced coupling. The criterion for synchronization was taken to be a 

frequency difference of less than 0.1: this causes inaccuracy in the size of the region at low 

coupling. The sizes of the green and red regions are different due to a difference in quality 

factor and oscillator amplitude. 

5.13 Synchronized States at Fixed Detuning 

We proceed to show (Figure 5.16) the regions of synchronized states in the     plane at 

fixed detuning. In order to do this, we sweep the coupling and step the shear, and correct for 

frequency drifts between steps by piezoelectrically tuning one of the resonators. This can only be 

done if the shear of the two oscillators is very similar so that as the saturation is changed, there is 

no ‘extra’ detuning creeping in due to differing shears. These data are taken from low magnitudes 

of coupling to higher magnitudes of coupling. Hysteresis appears if we include sweeps from high 

magnitudes to low magnitudes, but is not presented here. We treat the case of attractive coupling 

as negative values of the parameter  . The blue regions are regions where the oscillators are 

synchronized, and the white are unsynchronized states. The red lines are boundaries for the 

synchronized regions found from simulations of equations (5.10), (5.11), and (5.13) run in 

Matlab. We see excellent agreement between simulation and experiment at lower values of 

detuning. At higher values, there is a larger disagreement probably due to the slight differences in 

quality factor and amplitude that breaks the symmetry of the hysteresis in the data of detuning 

sweeps (Figure 5.6). At the lowest detuning       , the simulations predict a ‘kink’ in the 

boundary of the synchronized region at values of negative coupling. This shows up in the data as 
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well. This is where the direct coupling term in equation (5.13) crosses the shear induced coupling 

term.  

 

Figure 5.16. Synchronization space for shear and coupling at fixed detuning. Negative 

coupling is the attractive states. Blue represents synchronized states. The red is the border of 

synchronization found from Matlab simulation of equations (5.10), (5.11), and (5.13). The 

attractive regions are smaller due to competitive effects between direct coupling and shear 

induced coupling which can be seen directly in the lowest detuning value of 0.6, at low shear. 

5.14 Phase Noise in Two Synchronized Oscillators 

Finally, we look at the phase noise in synchronized oscillators.  First, we start with equation 

(5.8) and (5.9) and add noise terms 

  
  

  
 
    

  
  
  

 

 
         (5.30) 

 

and 

  
  

  
 
    

  
  
  

 

 
         (5.31) 
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where the noise terms    are assumed to be uncorrelated white noise. This gives equations in the 

limit of small coupling, 

  
  

  
 
  (        )      (5.32) 

 

and 

  
  

  
 
  (        )      (5.33) 

 

where the approximate amplitude changes have been made as before. The difference of phases 

will give the Adler equation (5.16) with noise.  

However, since the sum of the phases yields  

  

 
 
  
 
 
  
 
   

     
 

  (5.34) 

 

We can compare the noise induced perturbations of this quantity (noting that it is equivalent to 

the perturbations of a single oscillator when there is a phase locked solution,     ),  

 
  

 
      

  
     
 

  (5.35) 

 

 to the perturbations from equations (5.32) and (5.33) for unsynchronized oscillators,  

     
      (5.36) 
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The variance of equation (5.35) is given by 

〈(     
 )

 
〉  〈(

     
 

)
 

〉  
〈  
 〉  〈  

 〉

 
  (5.37) 

 

with the last equality true only when the two noise terms are uncorrelated. If the noise terms have 

equal intensity we can drop the subscript 

〈(     
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〉  
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〉

 
  (5.38) 

 

This phenomenon can be understood another way if we look at the total phase diffusion 

mapped onto the torus, where the outer ring radius describes the phase difference, and the tube 

radius describes the sum phase. In Figure 5.17, we show a random walk of both oscillators as a 

single variable on this torus. Figure 5.17 (a) shows an unsynchronized walk, while Figure 5.17 (b) 

shows the walk when synchronized. Essentially, the noise decreases since the diffusion is 

constrained to one dimension, and the random walk of both oscillators decreases due to a single 

diffusion variable. 
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Figure 5.17. Topology for the phase variables of the two oscillators. Tube angle is the sum 

phase,  , and ring angle is difference phase,  . The red path represents the oscillator sum and 

difference phase in the rotating frame (rotating in both). When the oscillators are 

unsynchronized (a) the phase diffuses in both phase dimensions. When synchronized (b) the 

oscillator only diffuses in the sum phase dimension, reducing the dimension of the random 

walk.  
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Experimentally, we can explore this phenomenon by measuring the phase noise of each 

oscillator as we change coupling. The data is taken using a phase noise module in the spectrum 

analyzer. This phase noise measurement system has been validated using known frequency 

sources. In Figure 5.18, we show phase noise for the oscillator at three different couplings. 

 

Figure 5.18. Phase noise plot for oscillator A at three different values of coupling. The black 

line shows the oscillator phase noise when there is very small coupling. The red shows the 

frequency modulation outside the border of synchronization. The blue line shows the phase 

noise of the synchronized state. The phase noise decreases below 2 kHZ. The close-in noise is 

the same for all three, which implicates a correlated noise source.  

 

The highest coupling (blue line) is when the oscillators are locked and shows a reduced phase 

noise for offset frequencies smaller than 2 kHz. The 2 kHz limit is possibly due to the loop 

bandwidth. In order to see the effects of synchronization on the phase noise we chose an offset of 
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1kHz, which is a region where the phase noise is significantly reduced. Also, phase noise at 1kHz 

offset is a key figure of merit in MEMS oscillators[27].  

Note that the phase noise increases when approaching the synchronization regime due to the 

appearance of the peaks in Figure 5.18 (red line). These peaks are a signature of frequency 

modulation caused by interaction between the two oscillators (as noted by reference [7]).  

There does not seem to be a difference in phase noise below 500 Hz offset between the 

synchronized and unsynchronized states, which would be consistent with correlated noise sources 

between the two oscillators. Recall that equation (5.38) depends on uncorrelated sources of noise, 

so that the variance of phase for the sum of the two oscillators could be separated into the 

variances coming from the two noise sources. To account for correlated noise, cross-terms would 

have to be included in equation (5.38). 

We plot the noise at 1kHz as a function of coupling in Figure 5.19 with         and 

   . The noise starts off at       for both oscillators and initially increases with the coupling, 

before suddenly jumping to a value of      , indicating a 3dB noise improvement, or about a 

2x decrease in phase noise intensity, as indicated by equation (5.35). The inset shows the 

frequencies of the two oscillators as a function of the coupling parameter. The synchronization 

occurs at        according to the frequency difference data.  



162 

 

 

Figure 5.19. Phase noise at 1kHz offset as a function of coupling for both oscillators. The 

noise increases due the peaks that appear in Figure 5.18. The noise suddenly drops as the 

oscillators synchronize (inset) to a value 3dB lower than at uncoupled values. 

5.15 Future Work 

This work explored the simplest case of synchronization between reactively coupled 

nonisochronous oscillators. Obviously, more complex systems can be imagined with large arrays 

of feedback oscillators. By coupling them through a local mechanism (e.g., through the substrate), 

1-dimensional arrays with either a nearest neighbor interaction or a power law interaction are 

possible. This type of coupling could also be used to make 2-dimensional arrays with different 

configurations of coupling, depending on how many connections are made to nearest neighbors. 
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If coupling through feedback loops, then arrays of arbitrary dimension can be constructed. Rich 

dynamics can be explored in these arrays. 

 To construct oscillator arrays that are modeled by reference [28], a feedback loop is required 

for each NEMS resonator. This would require integration between NEMS and CMOS for large 

arrays. NEMS-CMOS integration has been demonstrated [29], clearing the way for implementing 

coupled NEMS arrays with CMOS circuitry.  

 There are obvious applications for making frequency sources out of synchronized oscillator 

arrays. Here, we used the shear to help synchronize two oscillators. However, we know from 

chapter 4 that, in general, nonzero shear increases phase noise. Therefore, when making 

frequency sources from synchronized oscillator arrays, the shear must be kept to a minimum so 

that the phase noise (arising from AM-PM conversion) for each oscillator is likewise kept to a 

minimum. 

 Finally, NEMS oscillator arrays could improve the performance of sensing technology. In the 

study by Li, et. al. [30], chemical vapors were detected using NEMS resonators with an accuracy 

of ~0.6 ppb. If, instead of one resonator embedded in a phase locked loop, many resonators 

embedded in an oscillator array are used, then phase noise would decrease for uncorrelated noise 

sources by the number of oscillators (as indicated by equation (5.38)). If equal parts of a chemical 

vapor are absorbed into each resonator in an oscillator array, then the single array frequency 

would shift by the same amount as the single device. Hence, with lower phase noise (leading to 

lower frequency noise), and the same frequency shift (being our signal of interest), then the 

overall signal-to-noise ratio for the gas absorption would improve by the number of oscillators 

used in the array. 
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Appendix I -                                 

Secular Perturbation Theory 

 We begin using a typical example of secular perturbation theory and explain the method as 

we go along.  We begin with the equation of motion for a simple damped spring-mass system 

with nonlinear spring stiffness and nonlinear damping.  We will assume symmetry in the 

displacement, i.e. that the spring potential is an even function of the displacement We will also 

assume symmetry in the damping so that the equation of motion for this system becomes  

  ̈      (   
      )     ̇     

   ̇  (A-I.1)  

 

where all the intrinsic forces in the system to the conservative forces have been lumped together. 

For now, it is easier to assume the first order corrections to the linear problem 

  ̈          
     ̇     

  ̇  (A-I.2)  

 

with the stiffness coefficients   , and damping coefficients   .  At this point, the only stable 

fixed point for this system is at zero displacement and velocity, so we add a gain term to the 

system, 
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  ̇  
 ̃̃

 
  ̇  

(A-I.3)  

 

where we have divided through by the mass in order to put the equation in terms of the 

acceleration.  We represent the resonant frequency of the device as slightly offset from another 

‘close’ frequency.  Although this seems awkward to introduce this other frequency, it helps to put 

multiple oscillations in separate resonators on the same timescale.  Note that this is the van der 

Pol equation and that the quality factor has been substituted for the linear damping as this is the 

quantity usually measured.  To make the equation easier to understand, we typically scale out the 

frequency by setting  ̃      and then return to the original notation which gives  

  
  ̈    

 (   ̃̃)    ̃̃   (     
  

 ̃̃  
 
) ̇     ̃̃ 

  ̇      (A-I.4)  

 

Now at this point, the particular scaling used for the amplitude is up to preference.  For the driven 

Duffing system presented here, the frequency is divided out, and the other coefficients are 

renormalized 

 ̈  (   ̃̃)    ̃    ̃ ̇   ̃   ̇      (A-I.5)  

In order to solve this equation we proceed to use secular perturbation theory. 

 The procedure starts with making the assumption that there exists multiple timescales.   For 

weakly nonlinear systems two timescales are assumed: one for the motion of the spring mass 

system’s instantaneous displacement and velocity, and one for the slow change of the overall 
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amplitude of the system.  For weakly nonlinear systems, the steady state dynamics occurs at the 

slow timescale.  We quantify this by stating 

 ( )

  
 
   ( )   
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(A-I.6)  

where   is a small number, and  ̃ is in general complex.  Also, since the nonlinear terms are 

small, and the quality factor is typically larger than 1000 for NEMS, we let this small number be 

the inverse quality factor.  We note that the frequency shift   is on the order of the quality factor.  

Thus the EOM becomes 

 ̈  (    ̅)   ̃     ̅ ̇   ̃   ̇     (A-I.7)  

 

The derivatives of equation I.6 are 
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(A-I.9)  

  

Thus, using these derivatives and writing out equation I.7, we get 



170 

 

 

 
 
 

 
([   ̃       ̃   ̃]        )   

 
  ̈ ( )

 (    ̅)(
 
 
 

 
( ̃         )   

 
   ( ))

 
 
 
 

 
 ̃ ( ̃        | ̃|

 
 ̃         )

  
 
 
 

 
 ̅([  ̃    ̃]        )

 
 
 
 

 
 ̃ ((  ̃  ̃    ̃ )       | ̃|

 
 ̃         )

  ( 
 
 )  

(A-I.10)  

 

Collecting in powers of   we get, 
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(A-I.12)  

  

Now, the terms proportional to     are called the secular terms.  These terms must be null, 

otherwise this first order perturbation would diverge at long times (and thus not be a periodic 

solution for the l.h.s.).  This is trivial to see for the zeroth order solution.  For the first order 

solution this gives the so-called amplitude equation 

    (   | | )   (  | | )                √  ̃, 
(A-I.13)  

 

where we have rescaled the frequency shift, nonlinear stiffness, gain, and amplitude.  We can 

further reduce this equation, by resetting the timescale by the gain or the frequency splitting. 
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Appendix II -                           

Fabrication Methods 

AI.1 Introduction 

 A key part to this thesis work was the ability to fabricate mechanical devices out of a 

relatively new material for the group, piezoelectric aluminum nitride (AlN).  It turns out that to be 

able to achieve strong actuation and low feedthrough with all electrical signals, an island of 

aluminum nitride must be cut out of the bare wafer in order to reduce parasitic capacitance.  Also, 

having all-electrical transduction requires more electrical leads on the die. We make low 

resistance contacts between the bondpads made from gold and the electrodes of the devices made 

of molybdenum (Mo). 

AI.2 Piezoelectric Wafer Stacks 

Two major wafer stacks were explored in this thesis. The first (Stack I) consisted of 100nm 

Mo/100nm AlN/ 100nm Mo/ 20nm Aluminum Nitride/ Bulk Silicon wafer.  The second was 

made to improve transduction efficiency through offsetting the central AlN layer.  This stack 
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(Stack II) consisted of 40nm Mo/ 50nm AlN/ 100nm Mo/ 20nm AlN/ 2µm SiO2/ High Resistance 

Silicon wafer. 

 

AI.3 Fabrication of Piezoelectric AlN  

Developing a fabrication process for aluminum nitride required a more complex 

fabrication process than is typically found in NEMS.  The wafers tested typically have the same 

primary stacking.  First, on thermally grown SiO2 on Si, a ‘seed’ AlN nitride layer was deposited 

to properly align crystal orientation in the subsequent layers.  This, according to our 

collaborators, was always necessary to achieve good thin film piezoelectrics.  This was not 

necessarily bad, since offset of both the piezoelectric and piezoresistive layers are crucial for 

transduction.  The seed material also has very high sonic velocity, thus keeping the average sonic 

velocity for the mechanical structures tested high.  Next, a Mo layer was deposited to serve as a 

ground plane for the piezoelectric AlN layer.  Next, the piezoelectric AlN layer is deposited under 

an applied external field so as to orient the polycrystalline material perpendicular to the wafer.  
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Finally, a top Mo layer was deposited to serve as a layer to both actuate the piezoelectric material 

and as a piezoresistive material.  There are very few metals that adhere well to AlN, with 

aluminum, platinum, and molybdenum reported.   

Molybdenum is quite suitable since it has a very large Young’s modulus, and serves well 

as a piezoresistive material.  Platinum and aluminum will both work, but aluminum is not that 

‘orthogonal’ in etch processes.  In other words, most of the things that etch AlN etch Al as well, 

with the bare exception that we know of being hydrofluoric acid, which is incompatible with the 

SiO2 underneath.  Platinum is not easily etched chemically, and is in general frowned upon in 

industrial processes.  Also, platinum has a low sonic velocity.  Molybdenum etches well in 

fluorine plasmas (NF3, SF6), but does not etch (or more accurately etches much more slowly than 

the other materials) in HF and HCl.  Note that these fluorine plasmas will etch AlN very slowly, 

thus serving as effective ‘etch stop’. 

So the fabrication process is as follows.   
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The bare wafer consists, as outline above, of four layers deposited on a thermally grown 

oxide layer.  First, a liftoff process is used to define what we call the mesa.  The mechanical 

device will be located in the mesa area, and the bondpads and leads will sit outside the mesa so 

that parasitic capacitances are significantly reduced.  The active piezoelectric layer should be as 

thin as possible, for both reasons of size and actuation efficiency, which means the capacitance is 

as very large per unit area.  This mesa comes at a cost.  We must ‘bridge’ the leads over the 

bottom molybdenum layer in order to isolate the top and bottom electrodes, which is outlined 

later.   

Continuing, we next etch the top molybdenum in all areas not inside the mesa using a 

fluorine plasma.  The next step requires removal of the piezoelectric aluminum nitride not inside 

the mesa, and is done with KOH, which conveniently removes both the Al and AlN.  It is seen 

that the AlN etches anisotropically in the KOH due to the inherent average perpendicular crystal 

orientation.  Next, a ZEP mask is written using EBL to cut away parts of the top and bottom 

electrodes.  The top electrode on the mesa is cut in order to define both the piezoresistive loop 

and isolate actuation and detection from each other.  The Mo is then cut using the same fluorine 

plasma as before.  The bottom electrode is cut in order to isolate different parts of the Mo bottom 

electrode.  It was found that the bondpads stick better with the Mo still underneath, so it is used in 

conjunction with a thermally evaporated gold layer.   
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 After the ZEP is removed, a SrF2 layer is deposited using a PMMA bilayer liftoff process. 

This defines the mechanical device and protects the electrodes from the chlorine plasma of the 

next step.  SrF2 acts as very good mask for the chlorine plasma etch.  Other masks for this step 

were tried.  Hydrogen silsesquioxane (HSQ) was also shown to work in our processes, but did 

turned out to be not as robust as the SrF2 mask.  HSQ, however, can be removed easily in HF, 

while residue of SrF2 remains in all of the wet etch processes found.  The HSQ process was 

therefore much cleaner, and was deposited in the last step.  Since weeks could be wasted if the 

HSQ mask failed, SrF2 was almost always chosen.  The most efficient method for etching AlN 

anisotropically was found to be an Ar/Cl2 plasma.  KOH, as noted, will also etch it, but 

unfortunately sidewall profiles are typically rougher when etched with KOH, since crystal grains 

become apparent.   With the chlorine plasma, we can etch both AlN and Mo, which is done to 

reach the oxide underneath.  This removes undesirable parts of the molybdenum bottom layer 

loitering outside the mesa area.  
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 After the SrF2 is removed in hydrochloric acid, an isolation layer is deposited covering the 

bottom electrode so that an electrical lead can step or bridge onto the mesa.  The isolation layer 

used was also SrF2, since it was the only available insulator easily deposited and not etched in 

hydrofluoric acid.  The bondpads and bridge are deposited simultaneously in order to avoid 

additionally contact resistance.  Finally, with no more masks to be written, the device is 

suspended using hydrofluoric acid. 



178 

 

 

 


