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Abstract 

Cells integrate extracellular information via native signaling pathways to spatially 

and temporally coordinate complex tasks such as development and the immune response. 

Cellular programming holds the potential of harnessing the sophisticated and complex 

biological processes of living cells for diverse applications. In the last decade, cellular 

reprogramming has emerged as a viable therapeutic strategy. In large, reprogramming 

strategies have relied on statically programmed levels of gene expression to alter cellular 

behaviors. To construct more sophisticated programs requires dynamic control of 

expression and strategies for the facile construction of complex control architectures. 

Additionally, the application of synthetic programs to the control of native regulatory 

pathways requires the development of tools for interfacing with these pathways, as well 

as the construction of stringent controllers. Further, control systems composed of 

modular and tunable elements will facilitate the expansion of synthetic circuitry to a wide 

array of natural networks with varying system properties.  

Here we describe the development of RNA-based control systems to regulate 

signaling and dictate cell fate in a model mitogen-activated protein kinase (MAPK) 

pathway. We construct networks of RNA-based control systems that interface with the 

Saccharomyces cerevisiae mating pathway to dictate entry into one of three programmed 

alternative fates dependent on environmental stimuli. We present a readily translatable 

method for identifying control points within natural networks that enable the construction 

of a modular interface between synthetic circuitry and native networks. In building these 

networks, we demonstrate the rational tuning of circuit performance via the exchange of 

well-defined parts to compose networks capable of actuating changes in cellular behavior 
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in response to environmental cues. Further, we construct network architectures which 

facilitate reduced interference from simultaneously integrated opposing programs and 

identified sensitive parameters for engineering robust circuit performance. Finally, we 

present the development of a novel RNA-based control element for the regulation of both 

synthetic and endogenous transcripts. This work provides a model for engineering 

systems that regulate signaling and direct cell fate which may be applied to additional 

decision-making pathways to advance tissue engineering strategies, treat diseases, and 

study the behavior of natural regulatory networks.  
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