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Abstract 

Section I of this thesis presents specific projects applying extracellular recordings in 

macaques. The results demonstrate a novel relative position code employed by individual neurons 

in the dorsal premotor cortex during reaches and saccades, which may be important for hand-eye 

coordination. Another project suggests low-frequency coherence between dorsal premotor and 

posterior parietal cortices participates in making internally guided decisions of where to reach. 

Section II investigates analysis of data collected with this technique. One project compares 

methodologies for computing trial-by-trial coherence among neuron ensembles, and another 

documents how the innate nonstationarity of animal behavior can affect conclusions of certain 

analyses. Section III investigates the acquisition of extracellular electrophysiological data to 

understand how these recorded voltages relate to underlying neural activity. One project verifies a 

physical model of the microelectrode recording circuit using electrodes suspended in saline. Some 

lower-input impedance head stages used in the field are shown to result in electrode impedance 

and frequency-dependent amplitude attenuations and phase shifts of recorded signals. Other 

projects present a theoretical argument that local field potentials (LFPs) recorded from in-depth 

microelectrodes should be independent of electrode impedance within the range of impedances 

typically used. A simple physical model shows that if and only if gradients of LFP coherence exist 

at a scale finer than an electrode’s recording site size, lower-impedance electrodes report higher 

coherence. However this is not expected to occur between different microelectrodes, but could 

explain differences between microelectrode and EEG recordings. The final project uses 

simultaneous extracellular and intracellular recordings in corticostriatal rat brain slices to show 

that frequency-dependent phase shifts and amplitude attenuations occur in neural tissue itself and 

characterize the transfer function between the intracellular and extracellular voltages. 

Inhomogenous microscale obstructions inherent in neural tissue are shown to differentially distort 
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current flow depending on the severity of the obstructions. This challenges existing beliefs about 

the nature of current flow in the brain, and should be considered when interpreting 

electrophysiological data. 
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Introduction 
 

How do we know what we know about the brain? Different methodologies have revealed 

many things. The advent of in vivo extracellular recording has been an important methodological 

advance in neuroscience and much knowledge of the workings of the brain has been gained from 

its application.  

I have used this technique for my doctoral thesis in several projects investigating how the 

brain coordinates hand and eye movements, and makes choices of which targets to reach to. The 

results of these projects are discussed in Section 1 of this thesis. In Chapter 1 we discover and 

describe a novel frame of spatial reference for the neural activity in dorsal premotor cortex (PMd) 

when an animal prepares a reach movement. In Chapter 2 we show that this same spatial frame of 

reference applies to neuronal activity in the same area, PMd, when the animal is preparing a 

saccade, indicating that this area and this reference frame may be important for hand-eye 

coordination. In Chapter 3 we describe how there is increased long-range neuronal coherence 

between PMd and the parietal reach region when the animal makes an internally guided choice 

about where to reach rather than following instructions. 

Following this work, to improve our understanding of the use of electrophysiology in 

awake behaving animals, I have investigated some practical issues involving analyses of this data 

(Section II). In Chapter 4 we compare various methods for per-trial correlations of neuronal 

coherence across an ensemble of simultaneously recorded spike trains with other metrics of neural 

and behavioral activity. This is a challenge because typically multiple trials are needed to obtain 

coherence estimates, which are themselves analogous to correlations across estimates. We find that 

a leave-one-trial-out method which has appeared previously in the literature performed the best. In 

addition to neural activity, behavioral data are of importance in this technique, and reaction time in 

particular has proven to be a very useful measure to provide insight on neural processes. However, 

our behavior, and indeed our neural processes, are never static over time. In Chapter 5 we 
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document the nonstationarity of response times in a stopping and a stepping task in humans and 

monkeys, and show how this can affect some analyses in surprising ways if not anticipated and 

accounted for. 

Finally, I have investigated some issues involving physical acquisition of 

electrophysiological data, in particular how recorded voltages relate to neural activity (Section III). 

In Chapter 6 we show the properties of the recording circuit, in particular the relation between the 

electrode impedance and the first amplifier input impedance, as well as any analog filters used 

during acquisition can induce distortions between the voltages recorded and the neural activity 

known to be at the electrode tip in an artificial saline recording. In Chapter 7, we describe an 

important theoretical argument that describes why the impedance of metal microelectrodes should 

not be expected to appreciably affect recorded local field potential activity. This argument follows 

from the nature of the system that we demonstrated in Chapter 6 and other quantitative data 

gleaned from various sources. We investigate this question further in Chapter 8 where we use a 

simple physical model to show that any differences in the recording of coherence relating to 

electrode size, shape or impedance requires a spatial gradient of distantly coherent activity in the 

tissue itself. When such an activity profile does exist however, the model shows that very low-

impedance electrodes are expected to report higher coherence between areas on average. 

Altogether this suggests a possible subtle difference in the types of activity signals reported 

between large scalp or cortical surface electrodes and microelectrodes, but likely not between 

microelectrodes of different impedances within the range of those typically used in extracellular 

recordings. And last, in Chapter 9, we document signal distortion that can occur within the brain 

itself by investigating the relationship between intracellular voltages and simultaneously recorded 

extracellular voltages using a novel application of existing extracellular and intracellular recording 

techniques in rat brain slice preparations. We furthermore show that the presence or absence or 
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inhomogenous microscale obstructions of current flow that are inherently present in local neural 

tissue surrounding sources of electrical activity differentially affects this signal distortion. 
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Section I: Results from awake, behaving extracellular 

recording projects— Neural activity underlying hand-eye 

coordination and reach decisions in dorsal premotor cortex 

and parietal reach region 
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Chapter 1 

 

Dorsal premotor neurons encode the relative position 

of the hand, eye and goal during reach planning 
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BACKGROUND 

Reaching to a pick up a cup often involves not only generating a pattern of muscle activity 

in the arm that will move the limb and grasp the cup, but also coordinating a movement of the eyes 

to the same place.  These visually guided movements require sensory-motor transformations to 

convert incoming visual information about target location into outgoing patterns of muscle activity 

(Andersen and Buneo, 2002; Kalaska et al., 1997; Shadmehr and Wise, 2005).  Work investigating 

reference frames has been useful for understanding the transformations needed to guide individual 

movements of the hand and eye.  In contrast, the reference frames involved in coordinating these 

movements are likely to play a major role in understanding interactions between the saccadic and 

reach systems but have received relatively little attention. 

 One reason for this dearth of investigation is that reference frames are almost always 

defined as centered on individual body parts such as the eye or hand rather than multiple body 

parts.  Eye-centered reference frames have been found in eye movement areas(Barash et al., 

1991b; Goldberg and Bruce, 1990; Mays and Sparks, 1980) and in the parietal reach region (PRR) 

of posterior parietal cortex (PPC) which is at an early stage of the reaching pathway(Batista et al., 

1999).  Reference frames centered on other body parts, such as the hand, are stable across eye 

movements and are well-suited for the motor output stage of reaches(Graziano and Gross, 1998).  

Such body-part centered reference frames are thought to be present in the dorsal 

premotor(Caminiti et al., 1990; Caminiti et al., 1991; Crammond and Kalaska, 1994; Fu et al., 

1993; Johnson et al., 1996; Shen and Alexander, 1997) (PMd) and ventral premotor(Fogassi et al., 

1992; Graziano et al., 1994; Kakei et al., 2001) (PMv) areas of frontal cortex. 

 Here, we investigate reference frames that can be centered on multiple body parts as well 

as just one body part.  For example, we can define a reference frame centered on the hand, the eye, 

and the hand with respect to the eye.   In such an encoding, the same activity is present when the 

three variables, hand, eye and target, have a particular configuration, even though they may 
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occupy different absolute positions in space.  Relative position is also useful for performing the 

sensory-motor transformations between spatial systems that are necessary for coordination because 

this reference frame can be used to go directly from an eye-centered reference frame into a hand-

centered reference frame and back again (Buneo and Andersen, 2006). 

 To see whether eye position signals in premotor cortex are combined with hand and target 

position in a relative position code, we recorded a population of neurons in the PMd cortex of two 

monkeys during a delayed reach task in which we independently varied the position of the eye, 

hand and target across a range of locations.  Another population of neurons in MIP was recorded 

under identical conditions for comparison. 

 

RESULTS 

Behavioral task and reference frame analysis 

Movement commands can be represented in two complementary spaces — an extrinsic 

space given by the endpoints of movements and an intrinsic space given by the joint angles and 

muscle activations needed to achieve the movement endpoint.  While eye and arm movements 

have distinct intrinsic spaces they can be considered to share a common extrinsic space where both 

movements can be coordinated.  Figure 1.1a shows the geometry of the extrinsic space.  The 

motor command for the saccade needs the position of the target with respect to the eye, TE, while 

the motor command for the reach needs the position of the target with respect to the hand, TH.  

These movement vectors are related to each other through another vector, the relative position of 

the hand and eye, which can equally be viewed as hand position with respect to the eye or eye 

position with respect to the hand (HE and EH).  We will refer to this vector as HE, equivalent to the 

hand in eye coordinates (Buneo and Andersen 2006).  To coordinate hand and eye movements, the 

brain needs to integrate these pieces of information so neural responses can depend on eye 

position, hand position and target position.   
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Since all three vectors may be simultaneously represented in single-cell activity, we 

developed a reference frame dissociation task (Fig 1.1b), to independently control eye, hand and 

target position and then analyzed neuronal responses to all three variables.  In this task, we 

instructed eye and hand position to one of four locations and then instructed a delayed reach 

without a saccade to a target at one of four positions above or below the starting point (see 

Methods).  Independently controlling each variable across a range of values was necessary to 

allow us to determine the spatial reference frame by distinguishing between a representation of the 

target in eye coordinates, the target in hand coordinates and the relative position of the hand and 

eye. 

 The panels of Figure 1.2 illustrate three idealized neuronal responses to the reference 

frame dissociation task each illustrating a different reference frame.  The firing rate is modeled as 

a Gaussian response field and, in Figs. 1.2a and 1.2b, multiplied by a monotonic “gain field” 

(Andersen et al., 1985).  Responses are represented as three two-dimensional matrices at the 
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response field peak consisting of the firing rate at each of four target and eye positions (target-eye, 

TE), hand and eye positions (hand-eye, HE) and target and hand positions (target-hand, TH).  The 

eye-centered cell has a reference frame centered on the eye with a gain field of hand position and 

encodes the vector TE (Fig 2a).  The hand-centered cell has a reference frame centered on the hand 

with a gain field of eye position and encodes the vector TH (Fig 2b).  The relative position cell has 

a reference frame centered on the hand and eye so that the activity encodes the relative position of 

the hand and eye and encodes three vectors, TE, TH and HE (Fig 2c). 
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 We used separability, determined from a singular value decomposition, and response field 
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orientation, determined from a gradient analysis (see Methods), of each of the three response 

matrices to differentiate between the reference frames.  Separability decides whether the variables 

are combined in a gain field.  If the response is inseparable then the response field orientation is 

useful for quantifying how much the response shifts as the variables are changed. For the idealized 

responses, the eye-centered cell has an inseparable TE response whose orientation is -90˚, a 

separable HE response whose orientation is 177˚ and a separable TH response whose orientation is 

3˚ (Fig 1.2a).  The hand-centered cell has a separable TE response whose orientation is -3˚, a 

separable HE response whose orientation is -3˚ and an inseparable TH response whose orientation 

is -90˚ (Fig 1.2b).  The relative position cell has inseparable TE, HE and TH responses all of 

whose orientations are -90˚ (Fig 1.2c).  Note that while gain fields can modulate the responses 

(see, for example, the HE plot of the eye-centered cell), they cannot make them inseparable.  In 

contrast, inseparable encoding of a pair of variables with a response field orientation of -90˚ 

indicates the encoding is a vector and not a gain field. 

 

Separable and inseparable eye-hand-target tuning 

We recorded the activity of 111 PMd neurons (73 Monkey Z, 38 Monkey E) and 48 MIP 

neurons (42 Monkey Z, 6 Monkey E) during the reference frame dissociation task to determine the 

reference frame of cells in each area (Fig 1.1b; Methods).  Figure 1.3 shows the response of an 

example PMd cell during this task.  Changing hand or eye position for a given target position 

results in a robust change in firing, visible by comparing rasters of the same color across 

neighboring panels either within rows or columns.   Similar changes in firing are also present 

when changing target position for a given hand and eye position, visible by comparing rasters of 

different colors in the same panel.   
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Figure 1.4 shows the TE, HE and TH response matrices for the example PMd cell in 

Figure 1.3 at the peak of the response field during the delay period.  Plotting the data in this way 

shows how the TE response is suppressed for the target to the right of the eye and increases as the 

target is moved further to the left of the eye.  Similar effects are present for the HE and TH 

responses.  By analyzing the TE, HE and TH response matrices we found the TE, HE and TH 

responses were inseparable for this cell (p<0.05) and the orientations were all diagonal, with a 

dominance of eye and hand position over target position (TE response field orientation: -130°, Fig 

1.4d; HE response field orientation -77°, Fig 1.4e; TH response field orientation: -146°, Fig 1.4f).  

Since all the variable pair responses are inseparable for this cell the influence of one variable on 

another is not due to a gain field modulating a response centered on one variable. Therefore, this 

cell is a relative position cell. 
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Figure 1.5 shows the response of an example MIP neuron to the reference frame 

dissociation task.  Unlike the PMd cell, large changes in firing are only present when changing eye 

position for a given target position, visible by comparing rasters of the same color across panels in 

different rows, or target position for a given eye position, visible by comparing rasters of different 

colors within a row.  Changing hand position alone does not result in a large change in firing rate.   
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The TE, TH and HE response matrices for the example MIP neuron let us analyze this 

pattern (Fig 1.6).  Similar to the PMd cell response, the TE response for the example MIP neuron 

was inseparable (Fig 1.6a) with a response field orientation of -86° (Fig 1.6d).  In contrast, the TH 

and HE responses for this cell were separable (Fig 1.6b–c).  The TH response was dominated by 

target position (TH response field orientation: 0°, Fig 1.6e) with little effect of hand position.  The 

HE response was dominated by eye position (HE response field orientation: 177°, Fig 1.6f) again 

with little effect of hand position.  Therefore, this cell is an eye-centered cell and represents target 

position with respect to eye position alone, in agreement with previously published reports(Batista 

et al., 1999; Buneo et al., 2002). 
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Analysis of the delay period responses across a population of neurons in each area 

reinforced the distinction that PMd neurons had a relative position code while MIP neurons had an 

eye-centered code (Fig 1.7).  Across the population, a majority of PMd neurons were tuned to the 

TE variable pair (63/111 (57%), p<0.05, Randomization test (see Methods)), as well as the TH 

variable pair (63/111 (57%)) and the HE variable pair (58/111 (52%)) tuning.  The number of cells 

tuned to each variable pair is different because some cells were tuned to only one of the three 

variables.  Tuned TE, TH and HE responses of PMd neurons were mostly inseparable (Fig 1.7a.  

TE: 42/63 (67%). TH: 38/63 (60%) HE: 40/58 (69%). p<0.05) indicating that a gain field 

mechanism could not account for the responses of these neurons.  Analysis of the response field 

orientation for these inseparable cells showed that the mean response field orientations pointed 

down (Fig 1.7b–d. TE: -81°. TH: -79°. HE: -98°).  This means that response fields almost 

completely shifted when either of the hand, eye or target was moved with respect one of the other 

variables. 
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Across the population of 48 MIP neurons, 33 cells showed TE tuning (69%), 41 cells 

showed TH tuning (85%), and 28 cells showed HE tuning (58%).  The distribution of separable 

and inseparable responses for these tuned MIP neurons was markedly different than that of PMd 

neurons (Fig 1.7e).  Only the TE responses were mainly inseparable (24/33; 73% inseparable) 

while the HE and TH responses were mainly separable (HE: 20/28 (71%) separable. TH: 22/41 

(54%) separable).  Similar to the example MIP cell, the average TE response field orientation for 

tuned MIP neurons was -94° indicating the response fields almost completely shifted when either 

eye or target was moved (Fig 1.7f).  HE and TH responses were largely separable and dominated 

by eye position or target position (Fig 1.7e,g,h HE: -173°. TH: -16°). 

 The population analysis of Figure 1.7 established that in PMd all three vectors TE, TH and 

HE are encoded across a population of cells.  However, individual PMd neurons will only encode 
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reach plans in a relative position code if they encode the TE, TH and HE vectors simultaneously.  To 

identify the extent to which individual PMd neurons simultaneously encode these vectors during 

reach planning, we examined the intersections of tuning properties for cells with a tuned 

inseparable response to at least one pair of variables.  We found 63 PMd cells encoded at least one 

of the three vectors.  Of these 63 cells, 23 (37%) encoded both TE and TH.  Therefore, individual 

PMd cells encode target position with respect to the hand as well as with respect to the eye.  A 

substantial fraction of these cells (16/23 (70%)) also encoded HE indicating that in PMd all three 

vectors could be encoded inseparably in individual cells.  In contrast, only 22 PMd cells (22/63 

(35%)) encoded a single vector.  This shows that, as illustrated in the example PMd neuron (Figs 

1.3 and 1.4), many individual PMd cells simultaneously encode multiple vectors in a relative 

position code. 

 In contrast to PMd, of the 31 MIP cells that were tuned to at least one vector, 24 cells 

(77%) encoded TE and a substantial proportion of these (11/24 (46%)) encoded only that single 

vector.  This reinforces the distinction that PMd cells tend to simultaneously encode multiple 

vectors while MIP cells tend to only encode one vector, target position with respect to the eye. 

 Finally, we wanted to establish whether PMd had a stronger representation of TE, TH or 

HE.  To do this, we compared the tuning strength of the response matrices using the length of the 

resultant of the gradient analysis.  We found the strength of TE tuning was not significantly 

different than TH tuning (t-test, p>0.05) indicating TE and TH are represented with equal strength.  

We also found the strength of TE tuning was not significantly different than HE tuning and also 

that the strength of TH tuning was not significantly different than HE tuning.  Therefore, PMd 

encodes all three vectors, TE, TH and HE, with equal strength. 

 

DISCUSSION 
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We found that during the delay period before a reach PMd neurons encode the target, hand 

and eye in a relative position code. Contrasting results from parietal area MIP confirmed previous 

work showing cells in this area use an eye-centered code.  We propose eye position signals in PMd 

could play a role in coordinating the hand with the eye by encoding their relative position.  Below 

we discuss this result in the context of hand-eye coordination, consider limitations of our result 

related to the specific task employed, and examine methodological differences between our study 

and other work. 

 

Relative position codes for coordination 

 Overall, temporal issues in coordination have received more attention than spatial ones.  

Work  on synchronized interlimb movements shows that relative phase, obtained by subtracting 

the phase angles of each limb, is the central concept for characterizing different behavioral 

coordination modes (Swinnen, 2002).  For example, during movements of the arms or legs, in-

phase (relative phase = 0˚) movements are more stable and accurate than any other phase 

relationship.  Our finding of an explicit neural representation of relative hand-eye position is an 

exciting spatial complement to this work as relative position codes could provide a general 

solution to the spatial problem of coordinating different body parts.   

 Experience with engineered systems shows a major problem for coordination is the 

accumulation of errors in position estimation (Olfati and Murray, 2002).  Errors in estimating 

relative position are greatest when the positions of the individual body parts are represented in 

absolute coordinates.  When absolute positions are subtracted to calculate relative position, the 

errors in position estimation can accumulate and do not cancel.  Representing body parts directly 

in terms of relative position helps solve this problem as it reduces the number of position estimates 

and cancels errors that would otherwise accumulate (Gamini Dissanayake et al., 2001).  

Computationally relative position codes are also more efficient than those based on absolute 
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positions (Csorba and Durrant-Whyte, 1997; Newman, 1999). This is because using relative 

position separates the problem of coordinating two effectors from the larger problem of controlling 

the whole body.  This is a powerful simplification.  Whether neurons also represent the relative 

position of other body parts, such as the left and right hand, and how these encodings depend on 

coordination requirements will be an interesting area for future work.  

 Spatial transformations for hand-eye coordination are the subject of a growing body of 

work (Crawford et al., 2004).  The prevailing view is to consider these as feed-forward spatial 

transformations converting visual information, which enters the brain in eye-centered coordinates, 

into hand-centered coordinates, and finally muscle commands for the arm and hand.  Recent work 

shows parietal area 5 may play a role in these transformations.  Many cells in area 5 encode targets 

in both hand and eye coordinates (Buneo et al. 2002).  In other words, they represent TE and TH 

and thus bear similarities to the findings for PMd.  In the Buneo et al. study extensive response 

maps like those in Figure 2 were made for five initial hand positions and five target positions, but 

not for a range of eye positions.  Thus, this design did not allow the determination of whether area 

5 also represents the relative position of the hand and eye, HE.  It will be interesting to determine 

whether area 5 is similar to PMd and represents all three vectors in a relative position code.  One 

potential difference between area 5 and PMd is that in PMd we find the encoding of the hand in 

eye coordinates, HE, is as strongly represented as both the reach vector, TH, and the target position 

in eye-coordinates, TE.  This may not be the case for area 5. 

 Since we find PMd encodes TE, TH and HE with equal strength, a new function for this 

area is apparent: the relative position code in PMd may be involved in invertible transformations 

between hand-centered and eye centered representations.  Figure 1.8 shows a schematic of an 

invertible transformation.  Feed-forward transformations convert visual input in eye-centered 

coordinates into hand-centered movement commands.  They can do this directly using the position 

of the hand in eye coordinates.  This transformation is invertible because a feedback 
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transformation can also be performed that converts hand-centered into eye-centered coordinates.  It 

does this using eye position in hand coordinates.  In this way, relative position codes can perform 

invertible transformations between eye- and hand-centered representations. 

 

 How does PMd construct its relative position code?  Whereas cells in MIP code targets in 

eye coordinates, some are gain modulated by limb position (Buneo et al., 2002) and this gain 

effect also appears to be encoded in eye coordinates (Buneo et al., 1998).  These gain modulated 

MIP neurons can perform the required coordinate transformation to relative position coordinates in 

PMd by convergence and appropriate weighting of inputs to PMd.  The source of this gain signal 

can be obtained directly from the vision of the hand or from a somatosensory-posture signal.  In 

the latter case this hand-in-body signal could be converted into hand-in-eye coordinates using a 

gain field related to gaze-in-body (head-in-body plus eye-in-head).   
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By similar reasoning, HE can be produced by TH response fields that are gain modulated 

by target-in-eye signals.  It seems more likely, though, that these vectors can be formed by the 

same sources as the hand-in-eye gain effects mentioned above.  In each case, cortical connections 

between PMd and other sensory-motor areas are consistent with a role in these invertible 

transformations (Matelli et al., 1998).  Moreover, TMS studies over PMd have been shown to 

induce temporary disruptions of hand-eye coordination (Van Donkelaar et al., 2002). 

 

Context-dependent reference frames 

Movements are made under different constraints and in different behavioral contexts.  At 

present, it is not clear how much the neural encoding of movements is sensitive to these factors.  

Constraining the position of the hand and eye before and during reaching to certain locations on a 

screen, as required for the reference frame dissociation task, could elicit specific strategies for 

doing the task and these strategies in turn could influence neural activity in PMd.  For the case of 

constraining eye position, this issue has been studied for neurons in area MIP by examining them 

under free-viewing conditions (Cisek and Kalaska, 2002).  The conclusion was that the eye-

centered encoding is preserved and it will be interesting to determine whether a more complex 

encoding like a relative position code is also preserved when a subject is freely viewing (see 

below). 

 Context also plays an important role as movements may be defensive, aggressive and 

made outside of a behavioral task altogether.  These movements not only differ in their parameters, 

the speed, endpoint, and trajectory, but also in the affective context in which they are made 

(Graziano and Cooke, 2006).  Recent work examining the role of the expected reward following 

movements has shown this can exert a powerful influence on neural activity during the plan period 

before the movement (Musallam et al., 2004; Platt and Glimcher, 1999; Sugrue et al., 2004).  This 

makes it very likely that other changes in context will modulate neural activity.  Although it is less 
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clear how the reference frame of an area itself will change in response to these manipulations, it is 

important to keep in mind that the class of movements presented here is restricted and overly 

general conclusions should not be drawn. 

 

Methodological issues with previous work 

 Other work has investigated eye position signals in PMd without reporting the encoding of 

relative position.  Boussaoud and colleagues (1998) reported significant eye position effects when 

eye position was varied across three locations on a screen and reaches were made with the hand 

starting at a button near the body.  It is possible these eye position effects reflect the encoding of 

relative hand-eye position but that it was difficult to observe in this experiment because, unlike our 

experiments, the hand and eye were not in a common workspace and so the relative positions of 

the hand and eye were similar across different trial conditions.  In addition, they did not 

independently vary the positions of different effectors across a range of values and apply a 

combination of SVD and gradient analyses to the resulting matrices.  Using this or a similar 

procedure is important given the potential complexity of the spatial transformations present in the 

association cortices.   The gradient analysis is similar to the cross-correlation method used to 

measure shifts, but is more sensitive as noise in the response fields cancels instead of accumulates 

and the method averages across multiple positions instead of just two. 

 Cisek and Kalaska studied eye position signals during free gaze as a monkey controlled a 

cursor using a manipulandum from one initial position to different target positions (Cisek and 

Kalaska, 2002).  They reported strong gaze-centered discharge in MIP but modest gaze-related 

discharge in PMd and argued that eye position signals in PMd, but not MIP, were strongly 

influenced by controlled fixation.  However, their analysis only took into account eye and target 

position and not initial hand (or cursor) position.  Our results indicate that gaze-related activity in 

PMd neurons depends on hand, eye and target position, not just eye and target position.  This 
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means it is inappropriate to average neuronal responses during fixation periods with, for example, 

the target above the eye and the eye to the left of the hand with periods with the target above the 

eye and the eye to the right of the hand as they could have very different firing rates.  Since 

inappropriate averaging of neuronal responses will reduce the strength of an effect, the degree to 

which eye position responses in PMd are influenced by controlled fixation remains unclear.   

  

EXPERIMENTAL PROCEDURES 

Experimental preparation 

Two male rhesus monkeys (Macaca Mulatta) participated in the experiments.  Each 

animal was first implanted with a head cap and eye coil under general anesthesia.  In a second 

surgery, recording chambers were implanted in frontal and posterior parietal cortex in the right 

hemisphere of each animal.  Structural magnetic resonance imaging was used to identify the 

position of the arcuate sulcus and intraparietal sulcus and guide placement of the recording 

chambers to give access to cortex medial to each sulcus (Fig 1.1c).  At a subset of recording sites 

in the frontal chamber of each monkey, microstimulation through the recording electrode evoked 

movements of the hand, arm and occasionally leg with a threshold > 40 uA (330 Hz 400 us 

monopolar pulse width) consistent with published reports for PMd (Crammond and Kalaska, 

1994).  At no site was a saccade elicited with a threshold below 80 uA.  Single-cell recordings 

from PPC conformed to previously published reports from MIP (functionally defined as a part of 

PRR (Calton et al., 2002; Snyder et al., 1997)).  All surgical and animal care procedures were done 

in accordance with National Institute of Health guidelines and were approved by the California 

Institute of Technology Animal Care and Use Committee.   

Neural recordings were made using multiple-electrode microdrives (3- or 5-channel, 

Thomas Recordings, Germany).   During each session neural activity from each electrode was 

passed through a head stage (x20, Thomas Recordings, Germany), filtered (1 Hz – 10 kHz; 
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custom), amplified (x500–1000; TDT Electronics, Gainesville, FL), digitized (20 kHz; National 

Instruments, TX) and continuously recorded to disk for further analysis (custom C and Matlab 

code). 

 

Behavioral Tasks 

 

Reaches were made with the left arm on a touch-sensitive screen (ELO Touch Systems, 

CA) while maintaining fixation to isolate reach-related activation from saccade-related activation.  

Behavior was controlled using custom Labview (National Instruments, TX) code running on a 

real-time PXI platform.  Eye position was monitored with a scleral search coil (CNC Engineering, 

WA).  Visual stimuli were presented on an LCD display (LG Electronics, Korea) placed behind 

the touch screen.  Red circles instructed the animal where to fixate the eye.  Green circles 

instructed the animal where to touch.  All trials began with the illumination of a red and green 

circle which the animal needed to fixate with his eye and touch with his hand, respectively, and 

hold for a baseline period (~ 1000 ms).  A second green circle was then illuminated indicating the 

target of the reach.  A delay period (~ 1000 ms) followed during which the animal had to withhold 

his response. After this the initial green circle the animal had to touch was extinguished providing 

the go signal for the animal to reach to the green target while maintaining fixation on the initial red 

circle. After the reach, the animal had to touch the second green circle while maintaining fixation 

on the red circle for 300 ms.   

The spatial configurations of the initial eye position, initial hand position and target 

position were independently varied across a range of values.  Initial eye position was varied across 

four locations spaced 10º on a horizontal line, initial hand position was varied across the same four 

locations and target position was varied across four locations spaced 10º on a horizontal line either 

above or below the initial hand and eye positions (Fig 1a).  Targets were placed above or below to 

best activate the cell(s) being recorded.   
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Data collection 

Cells were first isolated and if stable, recorded during the center-out task for both reaches 

and saccades.  After these initial experiments, if there was a significant response to either task, 

recordings proceeded to the reference frame task.  Occasionally, cells were acquired on additional 

electrodes and recorded despite the fact they had no task response, or cells were lost during a 

recording.  All cells recorded for an average of at least three trials per condition the reference 

frame task were included in the database regardless of task response. 

 

Data analysis 

Spike events were extracted and classified from the broad-band activity using custom 

Matlab code (The MathWorks, Natick, MA) during the recording session and resorted offline.  To 

account for nonstationarity in the recordings, spike classification was done on a 100s moving 

window and clusters were tracked across windows.  Occasionally there were periods when clusters 

were not isolated.  Trials during those periods were marked and this data was not subject to further 

analysis.  The delay period was defined as the 500 ms interval starting 500 ms after target onset.    

Response matrices were characterized with a combination singular value decomposition 

(SVD) and orientation analyses (Buneo et al., 2002; Pena and Konishi, 2001).  For the eye-hand-

target analysis, the response to pairs of variables was determined by holding the third variable 

constant at the response field peak and analyzing the resulting two-dimensional matrix.  The SVD 

analysis was used to see if each variable was separable or not.  Separability was defined by a 

significantly (p<0.05) large first singular value compared to the first singular value calculated 

when trial conditions were randomized (randomization test).   Thus, instead of referring to the 

strength of separability, which would be given by the magnitude of the first singular value 

compared with the others, we classified tuned responses as separable or inseparable according to 
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the p=0.05 threshold.  A mean value was subtracted from the response matrix before performing 

the SVD.  Gradient analysis was used to determine the orientation of the response field by 

computing the two-dimensional gradient of the response (estimated using the MATLAB gradient 

function), doubling the angles to account for symmetric response fields, and summing the gradient 

elements.  The response to pairs of variables was considered tuned if the resultant gradient length 

was significantly greater than the length of the resultant gradient when trial conditions were 

randomized (randomization test).  We used a two-way ANOVA to measure tuning and found it 

gave consistent results.  Analyses utilizing all three dimensions of the data simultaneously were 

carried out by estimating the orientation of the spherical gradient.  Unfortunately, symmetry 

considerations meant that when estimating the orientation of the gradient, the vertical axis had to 

be treated differently than the horizontal axes. This meant that three gradients were still needed to 

characterize the data so the more intuitive analyses based on two-dimensional gradients were used 

instead. 

 Idealized neuronal responses were created for eye-centered, hand-centered and relative 

position cells using the following formulae, where E gives eye position on the touch screen, H 

gives hand position on the touch screen and T gives target position on the touch screen. 

Eye-centered cell: 

 












 












500
exp

1000
exp1

1
2

ET

H
 

Hand-centered cell: 

 












 












500
exp

1000
exp1

1
2

HT

E
 

Relative position cell: 
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FIGURE LEGENDS 

Figure 1.1  The behavioral task and recording sites (a) Geometry of hand-eye coordination.  

Sensory-motor transformations generate movement plans in an extrinsic space and non-linear 

transformations convert these to an intrinsic space to generate accurate muscle commands.  (b) 
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The reference frame dissociation task.  A reach without a saccade is made from one of four hand 

positions on a line to one of four target positions while fixation is maintained at one of four eye 

positions.  (c)  Structural magnetic resonance images from one monkey showing recording 

chamber placement with respect to sulcul landmarks.  ‘X’  marks the mean recording location in 

each chamber. 

 

Figure 1.2  Idealized cell responses with eye-hand-target tuning for cells with three different 

reference frames.  (a) An eye-centered cell whose response is modeled as a gain field of hand 

position modulating eye-centered tuning.  (b) A hand-centered cell whose response is modeled as 

a gain field of eye position modulating hand-centered tuning.  (c) A relative position cell whose 

response is modeled as a product of eye-centered, hand-centered and relative eye-hand position 

tuning.  The separability, from the SVD, and the response field orientation, from the gradient 

analysis, (see Methods) are shown for each idealized cell.  0° points right and angles increase 

counter clockwise.  White = high firing rate.  Black = low firing rate. 

 

Figure 1.3   Example PMd cell.  Responses to the reference frame dissociation task are aligned to 

target onset (black square) as eye position is varied (rows), hand position is varied (columns) and 

target position is varied (within each panel).  Eye (E), hand (H) and target (T) positions are shown 

above each panel.  Spike rasters are shown above the panel color coded for each target position in 

that panel.  Target onset time (black square) and mean movement onset time (grey square) are 

shown on each panel.  The horizontal bar on the top left panel indicates the delay period analysis 

interval.   

 

Figure 1.4   Example PMd cell eye-hand-target response matrices. (a)  Eye-target response matrix 

during the delay period at the peak of the response field.  The hand is at 20°.  Arrows show the 
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two-dimensional gradient elements.  (b–c) Similar for hand-target and eye-hand response matrices 

with the eye at 10° and the target at -20°, respectively.  (d) Overall response field orientation for 

the TE response matrix, -130°. (e) Overall response field orientation for the TH response matrix, -

146°. (f) Overall response field orientation for the HE response matrix,      -77°.  0° points right 

and angles increase counterclockwise. 

 

Figure 1.5   Example MIP cell. Responses to the reference frame dissociation task are aligned to 

target onset (black square) as eye position is varied (rows), hand position is varied (columns) and 

target position is varied (within each panel).  Eye (E), hand (H) and target (T) positions are shown 

above each panel.  Spike rasters are shown above the panel color coded for each target position in 

that panel.  Target onset time (black square) and mean movement onset time (grey square) are 

shown on each panel.  The horizontal bar on the top left panel indicates the delay period analysis 

interval.   

 

Figure 1.6  Example MIP cell eye-hand-target response matrices. (a)  Eye-target response matrix 

during the delay period at the peak of the response field.  The hand is at -20°.  Arrows show the 

two-dimensional gradient elements.  (b–c) Similar for hand-target and eye-hand response matrices 

with the eye at 0° and the target at -10°, respectively.  (d) Overall response field orientation for the 

TE response matrix, -86°. (e) Overall response field orientation for the TH response matrix, 0°. (f) 

Overall response field orientation for the HE response matrix, 177°.  0° points right and angles 

increase counter clockwise. 

 

 

Figure 1.7  Population eye-hand-target analysis during the delay period.  (a)  Population 

separability for all PMd cells with tuned delay period responses.   The percentage of inseparable 
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cells is shown in dark grey.  The percentage of separable cells is shown in light grey.  Population 

histograms for (b)  Eye-target response field orientation (c) eye-hand response field orientation 

and (d) hand-target response field orientation for tuned PMd neurons.  Orientations for inseparable 

cells are shown in dark grey.  Orientations for separable cells are shown in light grey.  (e-h)  Same 

for tuned MIP neurons. 

 

Figure 1.8  Schematic showing how a relative position code performs invertible sensory-motor 

transformations between eye-centered and hand-centered reference frames. 
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Chapter 2 
 

A relative position code for saccades in dorsal 

premotor cortex 
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BACKGROUND 

Hand-eye coordination allows the fovea to guide skilled manual behavior by coupling two 

very different mechanical systems.  The intrinsic coordinate system of the eye, defined by the six 

oculomotor muscles, has only rotational degrees of freedom (Westheimer, 1957; Tweed and Vilis, 

1987).  In contrast, the hand is part of a multi-joint system whose intrinsic coordinates have many 

rotational and translational degrees of freedom (Soechting and Flanders, 1992; Shadmehr and 

Wise, 2005).  Directly coupling these two systems presents a formidable geometric challenge 

(Blohm and Crawford, 2007; Henriques and Crawford, 2002). Instead of using intrinsic 

representations specific to each effector, the brain may use visual representations of space for 

planning both movements (Crawford et al., 2004).  Visual space is extrinsic, defined 

independently of the musculature and so simplifies the geometry of coordination.  As a result, 

encoding hand-eye coordination in an extrinsic, visual space for both hand and eye movements 

may be more efficient than coordinating movements using the intrinsic spaces of the hand and eye, 

although this has yet to be shown and the present work does not directly address this issue.  

 Recent work investigating reaching in the dorsal premotor area (PMd) of the frontal cortex 

provides new evidence in support of a role for PMd in coordinating eye and hand movements 

(Pesaran et al., 2006).  Neurons in PMd are responsive to arm movements (Weinrich and Wise, 

1982; Weinrich et al., 1984; Caminiti, Johnson, and Urbano, 1990) and encode reach plans in a 

relative position code that is defined in a coordinate space common to both the hand and eye 

(Pesaran et al., 2006).  This relative position code is different from encodings centered on either 

the hand or gaze and may reflect an encoding of extrinsic space for both eye and hand movements.  

Activity depends on the relative position of the hand and gaze and the position of a reach target 

encoded with respect to both hand and eye position.  PMd encodes three vectors:  the vector 

connecting gaze position to the movement target, TG, the vector connecting hand position to the 

movement target, TH, and the relative position of the hand and gaze, HG.  Relative position codes 
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are evidence of cross-coupling between oculomotor and manual representations and allow direct 

visual-motor transformations between gaze-centered and hand-centered vectors (Buneo and 

Andersen, 2006).  This makes relative position codes useful for coordinating the hand and eye. 

 Gaze-related discharge has been previously observed in PMd (Boussaoud et al., 1998; 

Cisek and Kalaska, 2002; Jouffrais and Boussaoud, 1999; Lebedev and Wise, 2001; Ohbayashi et 

al., 2003; Fujii et al., 2000), but the spatial properties of saccade-related activity in PMd have not 

been determined or compared with the spatial properties of reach-related activity and the spatial 

encoding of saccade discharges in PMd have not been determined.   If PMd coordinates reaches 

with saccades, PMd should have two properties in addition to relative position coding before 

reaches.  First, PMd should be active before saccades as well as reaches.  Second, saccade-related 

activity in PMd should follow a relative position code and encode hand, gaze and target position. 

We performed two experiments to test these predictions.  First, we compared the activity of a 

population of PMd neurons during a center-out task involving a reach without a saccade and a 

center-out task involving a saccade without a reach.  To compare the strength of saccade-related 

responses in PMd with those in a reaching area of parietal cortex, we also recorded a population of 

neurons from the parietal reach region (PRR) under identical conditions.  In the second 

experiment, we determined how activity in PMd encodes saccades using a relative position coding 

task for saccades.  In this task, we varied the position of the hand across a range of positions while 

systematically instructing saccadic eye movements between several different initial and final gaze 

positions.  Analyzing the pattern of response matrices across all three spatial variables allowed us 

to identify the spatial encoding of saccade activity in PMd. 

 

METHODS 

Experimental preparation 
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Two male rhesus monkeys (Macaca Mulatta) participated in the experiments.  Recording 

chambers were implanted in frontal and posterior parietal cortex in the right hemisphere of each 

animal.  Structural magnetic resonance imaging was used to identify the position of the arcuate 

sulcus and intraparietal sulcus and guide placement of the recording chambers to give access to 

cortex medial to each sulcus.  Recording sites were the same as those presented in Pesaran et al. 

(2006).  In both animals, PMd recordings were made within the cortical gyrus within 1.5 mm of 

the cortical surface and PRR recordings were made within the medial bank of the intraparietal 

sulcus 4–9 mm below the cortical surface.  At a subset of recording sites in the frontal chamber of 

each monkey, microstimulation through the recording electrode evoked movements of the hand, 

arm and occasionally leg with a threshold > 40 uA (330 Hz, 400 us monopolar pulse width) 

consistent with published reports for PMd (Crammond and Kalaska, 1994).  Low-threshold, < 80 

uA, saccades were not evoked at any recording site, consistent with published reports for the 

caudal portion of PMd (Fujii et al., 2000).  All surgical and animal care procedures were done in 

accordance with National Institute of Health guidelines and were approved by the California 

Institute of Technology Animal Care and Use Committee.   

 Neural recordings were made using multiple-electrode microdrives (3- or 5-electrode, 

Thomas Recordings, Germany).   During each session neural activity from each electrode was 

passed through a head stage (x20, Thomas Recordings, Germany), filtered (1 Hz–10 kHz; custom), 

amplified (x500–1000; TDT Electronics, Gainesville, FL), digitized (20 kHz; National 

Instruments, TX) and continuously recorded to disk for further analysis (custom C and Matlab 

code). 

 

Behavioral Tasks 

 

For all tasks, reaches were made with the left arm on a touch-sensitive screen (ELO Touch 

Systems, CA) and eye position was monitored with a scleral search coil (CNC Engineering, WA).  

Visual stimuli were presented on an LCD display (LG Electronics, Korea) placed behind the touch 
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screen.  The eye coil signal was calibrated so that its signal corresponded to the intercept of gaze 

on the screen.  All measures and mathematics were done in screen coordinates. Since we studied 

relatively small gaze angles, < 30°, the difference between calculations in screen coordinates 

approximate calculations in gaze coordinates.  In the following we refer to all spatial coordinates 

in degrees of visual angle for the cyclopean eye of the subject. Red circles instructed the animal 

where to fixate the eyes.  Green circles instructed the animal where to touch.  All trials began with 

the illumination of a red and green circle which the animal needed to fixate with his eyes and 

touch with his hand, respectively, and hold for a baseline period (~ 1000 ms).  Saccade and reach 

trials were presented in separate blocks of trials.   

 In the saccade tasks (Fig 2.1A,C), a second red circle was illuminated after the baseline 

period indicating the target of the saccade.  After a 1–1.5 s delay period, the red circle the animal 

was fixating was extinguished, providing the go signal for the animal to saccade to the red target 

while maintaining touch on the initial green circle. After the saccade, the animal had to fixate the 

second red circle while maintaining a touch on the green circle for 300 ms.  In the reach tasks 

(Fig 2.1B; Fig S1), a second green circle was then illuminated indicating the target of the reach.  A 

1–1.5 s delay period followed during which the animal had to withhold his response until the 

initial hand fixation green circle was extinguished, providing the go signal  to reach to the green 

target circle while maintaining eye fixation on the initial red circle. After the reach, the animal had 

to touch the second green circle while maintaining fixation on the red circle for 300 ms.  Reaches 

needed to be completed within 700 ms of the instruction to move or the trial was aborted.  The 

spatial configurations of the initial gaze position, initial hand position and target position varied 

between tasks.  In the center-out tasks the initial hand and gaze position were placed next to each 

other directly in front of the animal and eight targets were placed on a grid spaced 10º around this 

point (Fig 2.1A,B).  In the relative position coding task initial gaze position was varied across 

four locations spaced 10º on a horizontal line, initial hand position was varied across the same four 
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locations and the position of the saccade target and reach target were varied across four locations 

spaced 10º on a horizontal line either 10º above or below the initial hand and gaze positions (Fig 

1C; Fig S1).  Targets were placed above or below the initial position to best activate the cell(s) 

being recorded.  The full experimental design for the relative position coding task involved 

collecting responses during four gaze positions, four hand positions and four target positions for a 

total of 64 conditions.  We obtained a complete data set during the saccade relative position coding 

task from a total of 116 PMd neurons in two animals.  

 

 The current study forms a companion to Pesaran et al. (2006) which studied the relative 

position coding task for reaches. In Supplementary Material we present complete data sets from 

111 PMd neurons in the same animals recorded during the reach relative position coding task, 

previously reported in Pesaran et al. (2006). Since the saccade relative position coding task forms 
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the focus of this study, we present the methodological details of the reach tasks here, but postpone 

the presentation of results involving the reach tasks to Supplementary Material.  

 We employed visually guided and not memory-guided movements.  As a result, we cannot 

eliminate the role of visual signals in driving the activity of these neurons. It is worth noting 

however, that any influence of hand position on the responses we report could not be simply 

explained by visually driven activity.  Moreover, we do not believe the use of visually guided 

movements contributes to any differences we report between saccade and reach responses.  The 

reason is that we only presented analysis of activity during the delay period of each task and do not 

include analysis of activity around the time of the visual ‘go’ cue and the subsequent movement, at 

which time visual conditions between the two tasks differ.  During the delay before movement, the 

visual illumination conditions are essentially the same and differ in terms of the color of the cue, 

red for saccade and green for reach.   

We measure reach end-point time by the time when the touch screen reports a new touch.  

We measure the time of the saccade by the first time eye velocity exceeds 200°/s following the 

visual instruction to make a saccade. 

 

Data collection and analysis 

Data collection and analysis were carried out in the manner described in Pesaran et al. 

(2006).  All cells that were recorded for an average of at least 3 trials per condition in either the 

relative position coding task or center-out tasks were included in the database regardless of task 

response. Cells were first isolated and, if stable, recorded during the center-out task for both 

reaches and saccades.  Spike waveforms were extracted and classified during the recording session 

to guide recordings.  Waveforms were then resorted offline using a semi-automatic clustering 

procedure that tracked clusters across time.  The baseline period was defined as the 300 ms 
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interval ending 200 ms before target onset.  The delay period was defined as the 500 ms interval 

starting 500 ms after target onset.  Each task was recorded in consecutive separate blocks.  

 In the center-out task, tuning was significant if the trigonometric moment of the tuning 

curve was significantly greater than that when the trial conditions were randomized (Crammond 

and Kalaska, 1996) (randomization test).  The trigonometric moment was calculated by taking a 

vector element given by each movement direction multiplied by the firing rate in that direction and 

averaging all eight vectors in the tuning curve.  The preferred direction was given by the direction 

of the trigonometric moment of the tuning curve.  All randomization tests were done based on at 

least 10,000 randomizations.   

Kuiper’s test was used to test the hypothesis that the distribution of preferred directions, or 

differences, for a population of neurons recorded during the center-out tasks was uniform 

(Batschelet, 1981).  If a population of preferred directions, or differences, was significantly 

nonuniform, Rayleigh’s test was used to test the hypothesis that the distribution of preferred 

directions, or differences, for a population of neurons was unimodal. 

In the relative position coding tasks, response matrices were characterized with a 

combination singular value decomposition (SVD) and gradient-orientation analyses (Peña and 

Konishi, 2001; Buneo et al., 2002; Pesaran et al., 2006).  For the gaze-hand-target analysis, the 

response to pairs of variables was determined by holding the third variable constant at the response 

field peak and analyzing the resulting two-dimensional matrix.  This procedure only characterizes 

spatial coding at the response field peak and not in the flanks of the response field.  It is possible 

that neural coding differs in the response field flanks compared with the response field peak, but 

since reduced signal-to-noise makes it more difficult to determine the encoding we focus on 

activity around the response field peak.   

The SVD analysis was used to test whether each variable was separable from the others or 

not.  Separability was defined by a significantly (p<0.05) large first singular value compared to the 
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first singular value calculated when trial conditions were randomized (Randomization test).   Thus, 

instead of referring to the strength of separability, which would be given by the magnitude of the 

first singular value compared with the others, we classified tuned responses as separable or 

inseparable according to the p=0.05 threshold.  A mean value was subtracted from the response 

matrix before performing the SVD.  Gradient analysis was used to determine the orientation of the 

response field by computing the two-dimensional gradient of the response (estimated using the 

MATLAB gradient function), doubling the angles to account for symmetric response fields, and 

summing the gradient elements.  The response to pairs of variables was considered tuned if the 

resultant gradient length was significantly greater than the length of the resultant gradient when 

trial conditions were randomized (Randomization test).   

 

Intuition on response matrix analysis 

To provide intuition on how the matrix analyses distinguish different neural responses, we 

present activity simulated from idealized neurons encoding gaze and target position either as a 

vector or using gain fields (Fig 2.2).  Similar procedures can be used to consider any combination 

of variables, such as gaze and hand position, instead of gaze and target position. Vector encoding 

of gaze position and target position was simulated using a Gaussian response field according to the 

difference between gaze position and target position (Fig 2.2A): 

Vector encoding:  
 

2

2
, exp

2

T G
f G T



 
  

  

 

Neural firing is represented by f(G,T). Gaze position is representation by G.  Target position is 

represented by T. Altering the weighting of target and gaze position in the argument to the 

exponential function can give intermediate encodings which are represented mathematically as

   ,f G T f T G   where 1   (
1

2
  , Fig 2.2B; 2  , Fig 2.2C): 
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Intermediate encoding:  
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Gain field encoding of gaze position was simulated using a sigmoidal function of gaze 

position modulating a Gaussian response of target position (Fig 2.2D–F): 

Gain field encoding:  
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We varied the strength of the gain field by varying the amplitude of the slope of the sigmoid, k.  A 

weak gain field was simulated with a small value for k; moderate gain field was simulated with an 

intermediate value for k; strong gain field was simulated with a relatively large value for k.   
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The primary difference between the response fields is reflected in the functional 

dependence on G and T. In a vector encoding, G and T appear as arguments to the same function 

and are inseparable    ,f G T f T G  .  In a gain field, G and T appear as arguments to 

different functions and are multiplicatively separable      ,f G T g G t T .   

We captured separability using a singular value decomposition analysis.  Singular value 

decomposition decomposes the response matrix into a weighted sum of matrices each of which 

represents G and T as a separable product: 

         1 1 1 2 2 2,f G T g G t T g G t T     

The weights,  i, called singular values, mathematically capture the degree to which the 

outer product of the corresponding singular vectors (gi, ti) contribute to the total energy of the 

response matrix.  If gaze and target position are inseparable, the response matrix cannot be 

captured with one term and other separable terms are needed to model the inseparable response 

(Fig 2.2A–C). If gaze and target position are separable in the response matrix, the singular value 

for the first matrix will be large and the matrix decomposition contains only one significant term 

(Fig 2.2D–F).  Importantly, the singular value decomposition analysis does not depend on how 

strongly the response is modulated by the gain field. 

We combined the singular value decomposition with a gradient analysis that measured the 

response field orientation.  Intuitively, the response field orientation compares how much neural 

firing changes with changes in either positional variable.  This lets us measure whether neural 

firing changes more or less when the position of the target is shifted or when the position of gaze 

is shifted. If the response encodes gaze and target position as a vector with equal influences, the 

response field orientation points toward T-G (Fig 2.2A). Response field orientation also detects 

intermediate vector response fields. If a vector response field has intermediate encoding with gaze 

influencing activity less than target position 1   the response field orientation points away from 



46 
 
T-G toward T (Fig 2.2B). Similarly, if a shift of gaze influences the activity more than a shift in 

target position, 1  , the orientation points away from T-G and toward G (Fig 2.2C).   

Different gain field effects are also apparent in the response field orientation. When the 

gain field of gaze position is weak, the response field orientation is directed mainly toward target 

position (Fig 2.2D).  As the strength of the gain field increases, the orientation of the response 

field rotates toward gaze position (Fig 2.2E), and can even point near T-G similar to the response 

field orientation of the vector encoding response.  This reflects the fact that changes in gaze and 

target position have comparable effects on neural firing.  When gaze strongly modulates firing, the 

response field orientation points toward gaze (Fig 2.2F).   

As the above illustrates, gain fields and vector coding can influence response fields in 

similar but distinguishable ways.  Therefore, we used a combination of both singular value 

decomposition and gradient analyses rather than either analysis taken alone to correctly identify 

the encoding of response vectors and gain fields in neural activity. 

 

RESULTS 

The database for this study consisted of neurons recorded in two experiments.  In the first, 

effector, experiment, 298 PMd neurons (217 in Monkey E, 81 in Monkey Z) were recorded during 

the saccade and reach center-out tasks.   In the second, relative position coding, experiment, 116 

PMd neurons (62 in Monkey E, 54 in Monkey Z) were recorded during the saccade relative 

position coding task.   

In Supplementary material, we present results from an additional 140 PRR neurons (91 in 

Monkey E, 49 in Monkey Z) that were recorded during the center-out tasks under identical 

conditions as the PMd neurons. We also present results from a population of 111 PMd neurons (38 

Monkey in E, 73 in Monkey Z) recorded during the reach relative position coding task that were 

the focus of an earlier study (Pesaran et al., 2006) in Supplementary Material. 
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Saccade-related activity in PMd 

Responses to the saccade and reach center-out tasks for two example PMd cells are shown 

in Fig 2.3A,B.  These example neurons illustrate how cells in PMd responded robustly before both 

reaches and saccades to their preferred direction (p<0.05, Rank-sum test, both neurons) with delay 

period activity that was stronger for reaches than saccades (p<0.05, Rank-sum test, both neurons).  

To assess how strongly the population of neurons in each area responded to each movement, we 

calculated the firing rate for the preferred direction normalized (divided) by the baseline activity, 

aligned in time to target onset and averaged over all cells recorded from each area (Fig 2.4A,B).  

As expected, during the delay period before movement, PMd neurons responded more strongly 

before reaches than saccades (Fig 2.4A; p<0.05, Rank-sum test).  Surprisingly, PMd showed 

sustained delay activity before saccades that was nearly as strong and significantly greater than 

baseline activity (Fig 2.4A; p<<0.001, Rank-sum test) .  In comparison, saccade activity in PRR 

was weaker and barely greater than baseline (Fig 2.4B; p=0.33, Rank-sum test).  
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 The spatial tuning of the PMd response to saccades could be seen on a cell-by-cell basis.  

Across the population of 298 PMd cells, 174 cells were spatially tuned to either reaches or 

saccades. As proportions of the 174 spatially tuned cells, 71 cells (71/174; 41%) were exclusively 

tuned to reaches and not saccades, 37 cells (37/174; 21%) were exclusively tuned to saccades and 

not reaches and 66 cells (66/174; 38%) were tuned to both reaches and saccades (see Table 2.1).  

Table 2.1 

PMd neurons 

(174 tuned cells) 

PRR neurons 

(102 tuned cells) 

Reach only Saccade only 

Reach and 

Saccade 

Reach only Saccade only 

Reach and 

Saccade 

71/174  

(41%) 

37/174 

(21%) 

66/174 

(38%) 

42/102 

(41%) 

12/102 

(12%) 

48/102 

(47%) 
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We examined a population of PRR neurons recorded under identical conditions for 

comparison with the PMd neurons (see Supplementary Material). The difference between the 

proportion of tuned, saccade-only PMd neurons (37/174) and tuned, saccade-only PRR neurons 

(12/102) was highly significant (Two-sample Binomial test, p<<0.001).  Thus, PMd contains a 

larger proportion of exclusively saccade-tuned cells than PRR. 

 Saccade-related delay activity could coordinate the hand and eye by guiding the eye to the 

same location as the hand.  We examined this by testing whether cells that were tuned to both 

movements had preferred directions that pointed in the same direction.  We recorded 66 PMd 

neurons (43 in Monkey E; 23 in Monkey Z) that were spatially tuned to both reaches and saccades 

during the delay period (p<0.05).  The distribution of preferred directions for the saccade task was 

weakly nonuniform (p=0.04; Kuipers test) but not unimodal (p=0.64; Rayleigh test; Fig 5A). The 

distribution of preferred directions for the reach task was not significantly different from uniform 

(Reach p=0.065, Kuipers test. Fig 5B). The difference in preferred directions of PMd neurons to 

reaches and saccades was unimodal (Rayleigh test; p<<0.001) with a mean difference peaked 

around 19° (Fig 5C).  This result demonstrates that there is a propensity of cells whose preferred 

directions align, and that there are also cells whose preferred directions do not align.  Cells with 

responses which do not align are needed for situations where gaze and the hand are decoupled. 
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A relative position code for saccades 

Saccade-related activity in PMd during the center-out task had a similar temporal profile 

and directional tuning to reach-related activity.  This suggests it could serve to coordinate eye and 

hand movements.  To determine whether saccade-related activity could be related to eye-hand 

coordination, we measured the spatial encoding of a population of PMd neurons by recording their 

activity during the saccade relative position coding task (Fig 2.1C).  If this saccade-related activity 

is involved in spatial coordination, the spatial encoding would follow a relative position code in 

which changes in gaze position and hand position equally modulate activity.  Alternatively, if PMd 

is exclusively involved in transforming reaches between different coordinates, it would not be 

expected to represent the vector TG at all during the saccade relative position coding task. As 

another alternative, if saccade-related activity in PMd is exclusively involved in the execution of 

saccade motor plans, spatial encoding will more exclusively represent the saccade target relative to 

gaze position (vector TG) and will be relatively insensitive to changes in hand position.  

Figure 2.6 presents the hypotheses and formal models of relative position coding and 

gaze-centered coding and demonstrates how they can be distinguished using response matrix 

analysis. Response matrix analysis analyzes the spatial encoding of neural activity and was 

previously developed and applied to determine the spatial encoding of reach-related activity in 

PMd.  Responses are represented as three two-dimensional matrices at the response field peak 

consisting of the firing rate at each of four target and gaze positions (target-gaze, TG), hand and 

gaze positions (hand-gaze, HG) and target and hand positions (target-hand, TH).  Matrix 

representations let us distinguish between gaze-centered and relative position codes by assessing 

the separability, determined from a singular value decomposition, and response field orientation, 

determined from a gradient analysis, for each of the three response matrices. 

If the response follows a gaze-centered code, the TG response matrix will be inseparable 

with a response orientation directed toward T-G, while the HG and TH response matrices will be 
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separable (Fig 2.6A).  Figure 2.6A shows a gaze-centered response with relatively little hand 

position modulation.  Other cases with gain fields that modulate the activity more strongly and 

preserve the essential gaze-centered property of the response are possible (see Fig 2.2D–F).  If the 

response follows a relative position code, TG, HG and TH response matrices will all be 

inseparable (Fig 2.6B).  Figure 2.6B shows the responses as vectors in which gaze, hand and 

target position modulate the response with equal strength. Intermediate responses in which 

changes in position could affect firing differently do not alter the essential relative position coding 

property of the response (see Fig 2.2A-C). Our analyses can distinguish between alternatives like 

the gaze-centered coding model and the general form of the relative position model, in which the 

expression of a cell’s firing rate is an unspecified function of the three relative position vectors. 

For any response matrix, the possibility that it was created by gain fields alone can be ruled out by 

the separability analysis while the gradient analysis can show that the combination of the two 

variables that is encoded is the relative position between the two variables. However, to accurately 

distinguish between different forms of the general relative position model, like the additive or 

multiplicative versions shown in Figure 2.6B, would require a different analysis and data using a 

larger range of gaze, hand and target positions. 
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 Figure 2.7 shows the response of an example cell to the saccade relative position coding 

task.  This cell responded very strongly to saccades with peak firing in excess of 100 Hz.  The 

influence of changing either hand or gaze position can be seen by comparing rasters of the same 

color within either rows or columns, respectively.  The influence of changing target position can 
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be seen by comparing rasters of different colors within a panel.  Changes in all three variables 

resulted in robust changes in neural firing.   

 

 Figure 2.8A–C plots the TG, HG and TH response matrices for the example cell in Fig 7 

during the delay period.  The TG response is suppressed for the target to the right of the eye and 

increases as the target is moved further to the left of the eye.  Similar effects are present for HG 

and TH responses.  The TG, HG and TH response matrices were inseparable for this cell and their 

orientations revealed a dominance of eye and hand position over target position (TG response field 

orientation: -144°, Fig 8D; HG response field orientation -56°, Fig 8E; TH response field 

orientation: -101°, Fig 8F).   
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 We found that a relative position code was present across the population of saccade-

responsive PMd cells (Fig 2.9).   A significant number of neurons were tuned to the TG variable 

pair (36/116; 31%, p<0.05, randomization test), the HG variable pair (44/116; 38%) and the TH 

variable pair (53/116; 46%).  A majority of the tuned TG, HG and TH responses of PMd neurons 

were inseparable (Fig 2.9A.  TG: 28/36; 78%. HG: 32/44; 73%. TH: 39/53; 74%. p<0.05).  The 

response field orientation for these inseparable cells showed that the mean response field 

orientations pointed down (Fig 9B-D. TG: -118°. HG: -63°. TH: -74°).  This means that response 

fields almost completely shifted when either of the hand, gaze or target was moved with respect to 

one of the other variables.  Taken together, these findings mean that the spatial encoding of 

saccade-related activity in PMd does not just encode the target relative to gaze position. Instead, 

the population of PMd neurons simultaneously encoded the target with respect to gaze, TG, the 

target with respect to the hand, TH, and relative hand-gaze position, HG.   
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Comparing the spatial encoding for saccades and reaches 

We then examined the relative position code for saccadic activity in more detail.  

Examining the proportion of cells that encoded the different vectors in the saccade relative 

position coding task, we found that some single cells showed a mixture of inseparable tuning to 

more than one vector but the overall tendency was that individual cells encoded only one of the 

vectors (Fig 2.10A).  Of the 70 cells that encoded any single vector, 28 cells (28/70; 50%) encoded 

TG, 32 cells (32/70; 46%) encoded HG and 39 cells (39/70; 56%) encoded TH.  The sum of these 

proportions is greater than 1 because a minority of cells simultaneously coded more than one of 

these vectors.   We found 49 cells encoded either TG or HG but only 11 cells (11/49; 22%) encoded 

them both.  Similarly, we found 57 cells encoded either TH or HG but only 14 cells (14/57; 25%) 

encoded them both.  We also found 57 cells encoded either TG or TH but only 10 cells (8/57; 18%) 

encoded them both.  Of the 70 cells that encoded any one vector, only 6 cells encoded all three 

vectors (6/70; 9%). 
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 The tuning strength of the saccade response matrices, determined by the magnitude of the 

resultant vector in the gradient analysis, revealed that the representations of TG, TH and HG in PMd 

were different from each other (Fig 2.10B).  HG tuning was the greatest, followed by TH and then 

TG.  The difference between HG and TG tuning was statistically significant (Rank test; p<0.05).  

The relatively weak encoding of TG indicates that saccade-related responses may not be simply 

related to retinotopic processes.  The strength of HG tuning is consistent with a role for this activity 

in coordinating the hand with gaze. 

 Overall, these results show that at the population level saccade-related activity in PMd 

shares a similar relative position code to reach-related activity in this area, with some differences 

(see Supplementary Material and Pesaran et al. (2006) for details of the reach-related activity).  

Individual PMd cells do not combine information about TG, TH and HG before saccades to the same 

extent as they do before reaches.  Instead, PMd cells most strongly represent HG before saccades. 

 

DISCUSSION 
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In this study, we found PMd neurons respond before saccades in a strong and sustained 

manner while neurons in parietal area PRR responded transiently.  The activity of PMd and PRR 

neurons tends to have the same preferred direction for reaches and saccades.  We also found more 

exclusively saccade-tuned neurons in PMd than in PRR. Using a saccade relative position coding 

task, we then showed that saccade responses in PMd follow a relative position code in which the 

relative position of the hand and gaze, HG, is represented and the position of the target of the 

saccade is encoded with respect to both the hand, TH, and gaze, TG.  Comparison of this relative 

position code before saccades with the relative position code before reaches reported in Pesaran et 

al (2006) revealed that before saccades, all three vectors are encoded in the population and that the 

encoding is strongest for HG, intermediate for TH, and weakest for TG.  We also observe hand-gaze 

coding in PMd during a baseline hold period without movement planning (see Supplementary 

Material, Fig S4).  These results demonstrate that combined hand-gaze coding is a reliable feature 

in the response of PMd neurons.  Altogether these results provide important new evidence that 

saccade and gaze position signals in PMd provide spatial information that could link the control of 

eye and arm movements. 

  

Common representations for coordination 

We propose that a relative position code that is common to both reaches and saccades can 

guide coordinated eye-hand movements.  This code allows eye movements and reaching 

movements to be planned in the same spatial coordinate system.  An advantage of this common 

spatial coordinate system is that eye movement plans can be directly accessed to guide arm 

movement plans.  Similarly, arm movement plans can be directly accessed to guide eye movement 

plans.  Since hand and eye movements are typically directed toward the same locations during 

natural movements (Land and Hayhoe, 2001; Johansson et al., 2001), it is efficient to encode hand 

and eye movements in a common spatial representation (Gielen et al., 1984; van Donkelaar, 1997).   
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Earlier work studying neurons in frontal and parietal cortex that are involved in guiding 

eye and arm movements has shown neurons often have common tuning properties for different 

types of movements (Battaglia-Mayer et al., 2001, 2007). These ”global tuning fields” are 

consistent with the overlap in the alignment of response fields we have observed in the center-out 

reach and saccade tasks (Fig 2.4) and demonstrate the formation of common spatial 

representations for different movement modalities.  Our work complements these findings relating 

to the alignment of response fields.  We find that neurons in PMd exhibit the same spatial 

representation irrespective of whether a saccade or a reach is being prepared, by considering the 

spatial encoding of response fields with respect to both gaze and hand position.  The common 

theme that emerges is that neurons across frontal and parietal cortex can share selectivity for 

different movement modalities. 

The broad range of preferred directions that we observe for PMd neurons (Fig 5) is also 

consistent with earlier work that shows that neurons in PMd do not show a preference in response 

for arm movements to directions contralateral to the reaching arm (Caminiti, Johnson, Burnod, et 

al., 1990; Caminiti, Johnson, and Urbano, 1990).  In contrast, our finding of strong a lateralization 

of the preferred directions of PRR neurons (Supplementary Material) differs from earlier work 

studying the reach tuning of parietal neurons that shows a more uniform tiling of the workspace 

(Lacquaniti et al., 1995).  The difference in results may be due to two factors.  First, we recorded 

from PRR in the bank of the intraparietal sulcus, while earlier work has recorded from more 

superficial cortical regions on the gyrus of Brodmann’s Area 5.  Activity in the bank of the sulcus 

in the superior parietal lobule is more visual in nature than activity on the surface (Colby and 

Duhamel, 1991; Buneo et al., 2006) and appears to be similar to area LIP on the lateral bank of the 

intraparietal sulcus, which shows strong lateralization of activity before saccades (Qian-Quiroga et 

al., 2006).  Second, we made our recordings under enforced fixation while earlier recordings from 

Area 5 were done during free-gaze. The activity of parietal neurons is centered on the orientation 
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of gaze (Batista et al., 1999; Buneo et al., 2002; Pesaran et al., 2006), so changes in eye position 

during freely made eye movements affects the responses of parietal neurons (Cisek et al., 2002). 

A relative position code is a suitable representation for coordinating eye and arm 

movements because it provides a particular encoding that allows signals to be transformed 

between representations within a common extrinsic coordinate frame.  This spatial representation 

allows signals to be transformed from gaze-centered to hand-centered representations frames and 

to be transformed from hand-centered to gaze-centered representations.  This is because relative 

hand-gaze position links the representation of movement goals centered on the hand and eye.  This 

linkage means that the reference frames are invertible by treating gaze and hand position on equal 

terms and encoding them as a difference.  Visual gaze-centered coordinates can be converted into 

visual hand-centered coordinates by subtracting relative hand-gaze position.  Visual hand-centered 

coordinates can be converted into visual gaze-centered coordinates by subtracting relative gaze-

hand position (Pesaran et al., 2006; Buneo et al., 2002).  Since we observe a similar encoding 

before saccades and reaches, the same transformations may be activated by both movements.  This 

suggests that a representation of visual space linked to the hand may also be useful for saccades.  

Consistent with this idea, evidence from human psychophysical experiments shows that gaze-

centered representations may guide reaching (Henriques and Crawford, 2001; Henriques and 

Crawford 1998) and that the saccade system can transform hand-centered somatosensory signals 

into oculomotor coordinates (Ren et al., 2006). Other studies demonstrate that hand position 

modulates saccadic reaction times and FEF activity during a purely saccadic task (Thura, Hadj-

Bouziane, et al., 2008; Thura, Boussaoud, et al., 2008).   

When considering a relative position code, it is important, however, to keep in mind the 

geometry of rotations in which retinal projections at different eye positions are different for the 

same saccade vectors (Crawford and Guitton, 1997; Klier and Crawford, 1998; Blohm et al., 

2007).  Therefore, the extrinsic, visual space in which spatial computations may be performed will 
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introduce systematic errors between eye and hand positions dependent on the angle of gaze.  These 

effects are small in our experiment since we use a rather limited range of gaze and target positions.  

In order to strictly distinguish between visual and intrinsic frames of reference for relative position 

codes, one needs to use a larger range of gaze, target and hand positions and/or systematically vary 

the torsional tilt of the eye and hand.  If the nervous system does use visual coordinates, it must 

correct for the errors in visual coordinates in order to guide accurate movements.  These 

corrections may be performed by the nonlinear transformations to the corresponding intrinsic 

coordinate frames (Blohm et al., 2009; Crawford et al., 1997; Klier et al., 1998). 

 

Saccade responses in premotor cortex 

What is the relationship between saccade responses in premotor cortex and other cortical 

regions? The presence of stronger saccade planning activity in PMd than in PRR demonstrates that 

the PMd saccade response is not likely to result from input from PRR.  Saccade signals in PMd 

may originate in frontal cortex.  The frontal eye fields (FEF) and the supplementary eye fields 

(SEF) are the main oculomotor control centers in the frontal cortex (Goldberg and Bruce, 1990; 

Schlag and Schlag-Rey, 1987; Schall and Thompson, 1999; Russo and Bruce, 2000).  These areas 

have anatomical connections with nearby regions of frontal cortex involved in skeletomotor 

control, including the dorsal and ventral premotor cortices and the supplementary motor area 

(Huerta and Kaas, 1990; Huerta et al., 1987).  Consequently, input from FEF and/or SEF may be 

reflected in the PMd response to saccades. 

While the premotor cortices are principally implicated in the control of visually-guided 

limb movements (Mushiake et al., 1991; Wise et al., 1997), microstimulation elicits saccades from 

regions in both PMd and PMv and neurons in both these areas are active before saccades as well as 

reaches (Fujii et al., 1998, 2000; Mitz and Godschalk, 1989).  The functional significance of these 

saccade responses, however, has remained unclear.  Convergent evidence suggests that saccade 
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responses in PMd are not directly involved in the control of eye movements, and may link the 

control of eye movements with the control of arm movements as part of a distributed cortical 

network including SEF and FEF. 

Evidence from microstimulation suggests that the saccade responses we observe are not 

closely associated with saccade commands because we evoked muscle twitches and not saccades 

with electrical microstimulation at those sites.  In contrast, microstimulation of SEF and FEF 

elicits eye movements. In the FEF, microstimulation elicits eye movements with currents below 50 

uA and as low as 10 uA (Bruce et al., 1985).  In the SEF microstimulation also elicits saccades at 

current levels as low as 20 uA (Schlag et al., 1987), but at higher current levels than FEF (Russo 

and Bruce, 1993).   

The anatomical projections of PMd also suggest that PMd plays a direct role in reaching 

and not saccades.  PMd neurons have a relatively minor projection to the superior colliculus (Fries, 

1985) and hence to downstream oculomotor structures, and they have a much more substantial 

projection to the spinal cord (Dum and Strick, 2002; He et al., 1993). 

Single-unit recordings also show that instead of having overlapping responsibilities with 

PMd, SEF and FEF are more directly involved in saccade control and PMd is more directly 

involved in reach control. The spatial encoding of PMd neurons for saccades that we have 

demonstrated appears distinct from the encoding in SEF and FEF.  Saccade responses in PMd are 

predominantly not retinotopic and there is a strong dependence of the response on the relative 

position of the hand and gaze. Hand position influences saccade signals in FEF (Thura, Hadj-

Bouziane, et al., 2008) with a strong dependence on the orientation of eye and head.  An influence 

of hand position on saccade responses in SEF has not been previously shown although SEF 

neurons have been shown to selectively respond to reaches made with saccades (Mushiake et al., 

1996).  Additional work is needed to measure hand position signals in FEF and SEF before 

saccades to more directly compare with the representation of PMd neurons for saccades. 
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Instead of playing a direct role in saccadic eye movement generation, as has been 

proposed for FEF and SEF, we propose that saccade signals in PMd provide spatial information 

that links the control of eye and arm movements in a distributed cortical network.   

 

 

 

Sensitivity issues in reference frame analyses 

How neural activity encodes space is fundamental to understanding the relationship 

between brain and behavior.  The neural encoding of multiple spatial variables, such as the 

orientation of the arm, orbital eye position and the position of parts of the body, has been the 

subject of much work (e.g., Andersen and Mountcastle, 1983; Andersen et al., 1985; Graziano, 

2001; Graziano et al., 1994; Van Opstal et al., 1995; Stricanne et al., 1996).  When many spatial 

variables are encoded, neural response patterns are complex and individual variables typically do 

not dominate the response. Here, using an identical set of matrix analysis procedures, we have 

uncovered how activity in PMd before both reaches and saccades encodes multiple spatial 

variables in a relative position code. 

Studies have found gain fields and intermediate response fields are common coding 

schemes for multiple spatial variables (Andersen et al., 1985; Avillac et al., 2005; Stricanne et al., 

1996). In typical experimental designs, neural responses are measured for many different target 

positions but the positions of individual effectors are varied across fewer locations, typically two 

or three (Batista et al., 2007; Mullette-Gillman et al., 2009; Avillac et al., 2005).  The resulting 

response curves are then analyzed across pairs of effector positions to identify the neural code.  

While potentially effective at identifying responses that depend on one effector, pair-wise 

comparisons often cannot distinguish between gain fields and intermediate responses and may lead 

to the conclusion that the neuronal response inconsistently encodes spatial variables.   
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Consider gain-modulated responses in which gain effects vary with changes in position to 

give a gain field of response modulations.  The gain field can lead simple pair-wise comparisons, 

such as correlation measures, to the incorrect conclusion that the response curve does not shift 

with the position of that effector.  This problem is most pronounced for open response curves, 

where the peak of the response field is not sampled on both sides.  Another problem is that pair-

wise measures such as distance metrics accumulate noise across the tuning curves instead of 

cancelling noise (Batista et al., 2007).  Lack of robustness to noise reduces the sensitivity of these 

tests. 

To demonstrate a relative position code, more sophisticated matrix analyses methods are 

necessary.  Matrix analysis compares multiple spatial comparisons, and so extends approaches 

involving pair-wise comparisons, explicitly distinguishing between gain fields and vector or  

intermediate responses. There are still limitations to these analysis methods, however.  For 

example, one principal limitation of matrix analysis is that the analysis is performed collectively 

across the entire response matrix.  This could be misleading when neurons have responses that 

vary across space within the response matrix or when neurons have bimodal response fields. 
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FIGURE LEGENDS 

Figure 2.1  Behavioral tasks.  (a)  Center-out task for saccades involved the monkey touching a 

central target while making a saccade from an adjacent location to one of eight peripheral targets 

arranged on a square spaced 10°.  The lower target is not shown for clarity.  (b)  Center-out task 

for reaches involved the monkey fixating a central target while making a reach from an adjacent 

location.  (c)  Saccade relative position coding task.  A saccade is made from one of four initial 

gaze positions on a line to one of four target positions while a touch is maintained at one of four 

hand positions on a touch screen. Hand positions and reach targets are shown in green, gaze 

positions and saccade targets are shown in red. 

 

Figure 2.2  Example simulated responses and analysis.  (a) Vector response field (i.e. f(G,T)=f(T-

G) decomposed by singular value decomposition analysis and gradient analysis. The first two 

matrix responses in the singular value decomposition are shown.  The fraction of the total energy 

they capture is given beneath each matrix.  The response field orientation from the gradient 

analysis is shown on the right-most column. (b) Intermediate response field. 

 ,
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 (c) Intermediate response field.    , 2f G T f T G    (d) Weak gain 

field of eye position modulating target position coding. (e) Moderate eye position gain field.  (f)  

Strong eye position gain field. White = high firing rate.  Black = low firing rate. For the response 

field orientation, 0° points right and angles increase counter clockwise. 
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Figure 2.3  Example PMd cell responses.  (a)  Rasters and peri-stimulus time histograms for 

activity of an example cell to a reach without a saccade (blue) and a saccade without a reach 

(black).  Time of the cue onset (triangle), end of delay period (green cross) mean saccade time (red 

square) and mean reach end time () are shown.  (b)  Same as (a) for another PMd cell. 

 

Figure 2.4  Comparison of saccade- and reach-related activity during the center-out tasks.  (a) 

Population average normalized histograms aligned to target onset for reaches (black) and saccades 

(grey) to the preferred direction.  Mean time of saccade (square).  Mean time of reach endpoint 

(triangle).  (b) Same for PRR. 

 

Figure 2.5  Population histograms preferred directions of PMd neurons.  (a) Histogram of 

preferred direction of activity during delay period before saccades. (b) Histogram of preferred 

direction of activity during delay period before reaches. (c) Histogram of difference in preferred 

directions during delay periods before saccades and reaches. Asterisk marks the mean preferred 

direction difference.  Preferred directions before a reach and saccade point in similar directions.   

 

Figure 2.6  Idealized cell responses and formal models for (a) gaze-centered and (b) relative 

position coding cells.  The idealized gaze-centered cell response shown is modeled as a gain field 

of hand position modulating gaze-target vector coding. In the formal model, an additional gain 

field of gaze position can affect the cell’s firing rate as well. The idealized relative position coding 

cell response shown is modeled as hand-gaze, target-gaze and target-hand position tuning. In the 

formal model, gain fields of gaze position and hand position can also affect the cell’s firing rate as 

well.  The response field orientation from the gradient analysis (see Results and Methods) is 

shown for each idealized cell.  0° points right and angles increase counter clockwise.  White = 

high firing rate.  Black = low firing rate. 
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Figure 2.7   PMd example cell responses to the saccade relative position coding task.  Activity is 

aligned to target onset (black square) as gaze position is varied (rows), hand position is varied 

(columns) and target position is varied (within each panel).  Gaze (G), hand (H) and target (T) 

positions are shown above each panel.  Spike rasters are shown above the panel color coded for 

each target position in that panel.  Target onset time (black square) and mean saccade time (grey 

square) are shown on each panel.  Horizontal bars on the top left panel indicate the delay and 

movement period analysis intervals.   

 

Figure 2.8 PMd example cell response matrices during the saccade relative position coding task. 

(a) Target-gaze response matrix during the delay period at the peak of the response field.  The 

hand is at -20°.  Arrows show the two-dimensional gradient elements.  (b-c) Similar for hand-gaze 

and hand-target response matrices with the target at -20° and gaze at 10°, respectively.  (d) Overall 

response field orientation for the TG response matrix, -144°. (e) Overall response field orientation 

for the HG response matrix, -56°.  (f)  Overall response field orientation for the TH response 

matrix, -101°. 0° points right and angles increase counter clockwise. 

 

 Figure 2.9 Population gaze-hand-target analysis during the delay period.  (a)  Population 

separability for all PMd cells with tuned delay or movement period responses.   The percentage of 

inseparable cells is show in dark grey.  The percentage of separable cells is shown in light grey.  

(b)  Target-gaze response field orientation (c) target response field orientation and (d) eye-hand 

response field orientation for tuned PMd neurons.  Orientations for separable cells are shown in 

dark grey.  Orientations for inseparable cells are shown in light grey. 
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Figure 2.10 PMd delay period responses during the saccade relative position coding task.  (a)  

Venn diagram of the number of neurons with tuned inseparable TG, TH and HG responses during 

the saccade relative position coding task.  (b)  Tuning strength of the saccade response matrices.  * 

denotes significant difference (p<0.05). 
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Chapter 3 
 

 

Free choice activates a decision circuit between 

frontal and parietal cortex 
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We often face alternatives which we are free to choose between.  Planning movements to 

select an alternative involves a number of areas in frontal and parietal cortex
1-11

 that are 

anatomically connected into long-range circuits
12

.  These areas must coordinate their activity to 

select a common movement goal, but how neural circuits make decisions remains poorly 

understood.  Here we simultaneously record from the dorsal premotor area (PMd) in frontal cortex 

and the parietal reach region (PRR) in parietal cortex to investigate neural circuit mechanisms for 

decision making.  We find that correlations in spike and local field potential (LFP) activity 

between these areas are greater when monkeys are freely making choices than when they are 

following instructions.  We propose that a decision circuit featuring a subpopulation of cells in 

frontal and parietal cortex may exchange information to coordinate activity between these areas.  

Cells participating in this decision circuit may influence movement choices by providing a 

common bias to the selection of movement goals.   

According to theories of decision making, we make choices by selecting the alternative that 

is most valuable to us
13

.  How much we value each alternative is revealed by our choices.  If we 

value swimming as much as running, we will choose to do both instead of always choosing one 

over the other.  Although actions with similar values can lead to different choices, only one choice 

can be made at a time.  Planning a movement to select an alternative activates many areas of the 

brain.  How does the brain decide what to do?  PMd and PRR plan reaching arm movements
14

 and 

are directly connected
12

.  We therefore studied these areas to identify a neural circuit for deciding 

where to reach. 

We trained two monkeys to do a free search task and an instructed search task (Fig 3.1a,b).  

In both tasks, monkeys made a sequence of reaches to visual targets for juice rewards.  The key 

manipulation was that, in the free search task, the three targets were visually identical circles, and 

the monkey could search in any sequence (Fig. 3.1a) while in the instructed search task, the three 

targets were a circle, a square and a triangle, and the monkey had to search in a fixed sequence 

(Fig. 3.1b).  To control other sensory, motor and reward-related factors, we carefully matched the 
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two tasks by yoking the sequences presented in the instructed task to the monkey’s choices in the 

free search task (see Online Methods, Supplementary Results and Supplementary Fig 2).   

 

We designed the free search task to allow choices by simply releasing constraints.  During 

free search, each monkey’s choices varied, even for identical stimuli (Fig. 3.1c).  In contrast, 

instructed search movement sequences did not vary (Fig. 3.1d).   Overall, each monkey developed 

a free search strategy and chose between two or three different movement sequences for most 

search arrays (see Supplementary Fig. 3).  

While the tasks we studied could differ in other aspects, like reward expectancy, attention, 

or overall effort, analysis of each animal’s behavior indicates that the major difference involves 

decision making (see Supplementary Results).  Free and instructed search involve different 

decisions because the alternatives have different values.  Free search involves choosing between 

movement sequences with similar values so choices vary from trial to trial (Fig 3.1c).  Since we 

reward only one movement sequence, instructed search involves alternatives with very different 

values.  Consequently, each monkey repeatedly makes the same choices (Fig 3.1d).   
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When movement choices vary from trial to trial, PMd and PRR must coordinate their 

activity.  Analyzing spiking and LFP activity may resolve neural coordination between these areas.  

Spiking activity measures action potentials from individual neurons.  LFP activity predominantly 

measures synaptic potentials in a population of neurons near the recording electrode
15

.  Spike-field 

coherency directly relates these two signals by measuring how well LFP activity is predicted by 

action potentials.  We therefore measured spike-field coherency to characterize neural 

coordination between PMd and PRR and identify the neurons involved in this coordination. 

We made 314 PMd spike-PRR field and 187 PRR spike-PMd field recordings in two 

animals during both free and instructed search tasks (see Supplementary Materials).  We estimated 

spike-field coherency between spiking in PMd and LFP activity in PRR using a ±150 ms analysis 

window that was stepped through the trial every 10 ms from before the onset of the search array to 

the time of the first reach.  A highly significant, transient increase in 15 Hz coherence following 

search array onset was clearly present in an example recording (Fig 3.2a).  Coherence was 

significant during both tasks but stronger during free search (Fig. 3.2b; p<0.05, t-test).  Similarly, 

coherence between spiking in PRR and LFP activity in PMd was weaker but revealed the same 

pattern (Fig. 3.2c,d).   In this recording, coherence was only significant during free search and not 

during instructed search (Fig. 3.2d). 
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Significant coherence at 15 Hz implies that the timing of action potentials is correlated with 

fluctuations in LFP activity.  Analyzing the relative phase of activity in PMd and PRR supported 

this and revealed correlations in the timing of activity in each area that were not simply time-

locked to search array onset (see Supplementary Results and Supplementary Fig 4).  Interestingly, 

the amplitude of spike and LFP activity, as opposed to their relative timing, did not predict PMd-

PRR coherence.  We correlated the strength of the coherence immediately following search array 

onset with LFP power and did not observe a significant correlation (p=0.45; F-test).  Linear 

regression of spike-field coherence against the change in firing rate immediately following search 

array onset revealed that coherence was not simply related to the firing rate as well (r
2
=0.06, 
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p=0.14).  Cells with an increase in firing rate generally had the greatest coherence.  However, 

coherence also increased for some cells whose firing rate decreased or did not change.   

Spike-field correlations were present only between select pairs of recording sites.  Across 

the population, 74 PMd spike-PRR field recordings (74/314, 24%) contained statistically 

significant coherence at 15 Hz following search array onset during either task (p<0.05; t-test. see 

Table 3.1).  A similar proportion of PRR spike-PMd field recordings (43/187 23%; p<0.05) were 

significant (see Table 3.2).  In both cases, spike-field coherence was most prevalent during free 

search.  The fraction of correlated recordings significantly increased between sites with 

overlapping (< 20°) response fields (p<0.05; Binomial test; 54 % of PMd spike – PRR field 

recordings, 45% of PRR spike - PMd field recordings).   

Table 3.1:  Population PMd spike-PRR field coherence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.2:  Population PRR spike-PMd field coherence 

PMd Spike-PRR Field Coherence 

Center-out Free or Instructed  

23/221 (10%) 74/314 (24%) 

 Free 

only 

Instructed 

only 

Free and 

instructed 

 31/74 

(42%) 

20/74 

(27%) 

22/74 

(22%) 
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To test whether spike-field coherence between PMd and PRR is specific to decision making, 

we measured coherence during two control experiments.  First, we measured spike-field coherence 

during a single target center-out task instructing monkeys to move to a single peripheral target.  In 

this task, the monkey did not choose between targets.  The proportions of recordings with 

significant spike-field coherence fell dramatically (see Tables 3.1 and 3.2).  Only 10% (23/221) of 

PMd spike-PRR field recordings and 9% (13/138) of PRR spike-PMd field recordings had 

significant coherence.   Second, during both search tasks, we found that saccades are reliably made 

following search array onset (see Supplementary Results).  To test whether spike-field coherence 

was due to these eye movements, we measured coherence in one animal during a variant of the 

search tasks that involved enforced fixation.  Even during fixation, spike-field coherence was 

significant following search array onset and was strongest during free search (see Supplementary 

Results, Supplementary Fig. 5 and Supplementary Tables 1 and 2).  The population average spike-

field coherence across all cells recorded during each task reinforced the selectivity for the search 

tasks (see Supplementary Fig. 6).  These control experiments demonstrate that spike-field 

coherence between PMd and PRR is associated with making a decision. 

PRR Spike-PMd Field Coherence 

Center-out Free or Instructed  

13/138 (9%) 43/187 (23%) 

 Free 

only 

Instructed 

only 

Free and 

instructed 

 21/43 

(49%) 

12/43 

(28%) 

9/43 (21%) 
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LFP activity was not only correlated with spiking activity in the other area.  Within-area 

spike-field coherence was also significant (see Supplementary Results and Supplementary Figs 7 

and 8).  Since spiking was coherent with locally recorded LFP activity, LFP activity may capture 

the correlation we observe between areas.  Partial spike-field coherence analysis
16

 addresses this 

concern (see Supplementary Methods and Supplementary Fig. 9).  In each example case, partial 

spike-field coherence remained significant after accounting for local LFP activity (p<0.05, t-test).  

Significant partial spike-field coherence was also present across the population (74% of PMd 

spike-PRR field partial coherence and 70% of PRR spike-PMd field partial coherence; see 

Supplementary Results).  Therefore, spike-field coherence between PMd and PRR directly relates 

correlations across the circuit to the activity of individual neurons. 

Spike-field coherence gives two independent measures of the neuronal coordination 

between PRR and PMd.  This may indicate how activity flows across the circuit.  We estimated 

the population average coherence for each of the populations that showed coherence at 15 Hz in 

either search task and compared them (Fig. 3.2e).  Across each population, PMd-PRR spike-field 

z-score coherence (see Methods and Supplementary Methods) was stronger during free search than 

during instructed search (p<0.01, Bonferroni-corrected t-test).  Importantly, PMd spike-PRR field 

coherence started ~30 ms earlier than PRR spike-PMd field coherence.   

Assuming that LFP activity is predominantly synaptic, this suggests that PMd is activated 

before PRR during search and that PMd spiking is reflected in PRR LFP activity before PRR 

spiking is reflected in PMd LFP activity (see Supplementary Discussion).  The activity is at a 

relatively low frequency, ~ 15 Hz, and is transient, ~ 350 ms.  Our time resolution is limited, but 

the correlation can involve only a few 15 Hz cycles.  Since action potentials are propagated 

between areas, one attractive possibility is that spike-field coherence measures signals in a 

subpopulation of neurons that travel across this circuit first from PMd to PRR and then back from 

PRR to PMd in a “handshake”.  Consistent with this, the 30 ms latency between the spike-field 

coherence measurements (Fig 3.2e) is a half-cycle at 15 Hz. 
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PMd and PRR spiking activity let us examine when each area becomes active.  We recorded 

115 PMd and 39 PRR neurons responsive to search array onset to measure response latency in 

each area.  PMd spiking responded significantly earlier than PRR spiking in both tasks (PMd 

instructed search = 64±6 ms; Free search = 79±5 ms.  PRR instructed search = 90±10 ms; Free 

search = 109±11 ms.  Mean±s.e.m.; Fig 3.3).  We then estimated response latency for 110 PMd 

neurons and 120 PRR neurons recorded in both animals during the center-out task.  PRR cue 

response latencies were significantly shorter in this task than in either of the search tasks (p<0.05; 

Permutation test) and PMd and PRR response latencies did not differ (PMd = 63±5 ms; PRR = 

70±6 ms; p=0.51, Wilcoxon test; Fig 3.3e).  This suggests that the response latency difference 

between PRR and PMd is specific to making a decision. 
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Since spike-field correlations are strongest during decision making, the sub-population of 

coherent neurons may encode the upcoming movement choice.  If so, cells with significant spike-

field correlations should predict the movement choice earlier than cells which do not.  We 

investigated this with a receiver-operating characteristic (ROC) analysis of the firing rate during 

free search (see Supplementary Methods).  We calculated the average choice probability separately 

for correlated and uncorrelated PRR and PMd neurons.  In both areas, correlated neurons predict 

the movement choice after search array onset during the period of greatest spike-field coherence 

(Fig. 3.4a,b, see also Fig 3.2e).  Later in the trial, uncorrelated cells predict the movement choice 
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as accurately as correlated cells.  Neurons with long-range correlations may, therefore, exchange 

information about movement choice between PMd and PRR. 

 

In summary, correlations between PMd and PRR are activated by decision making.  

Coherence is strongest during free search and is weaker during instructed search.  Far less 

coherence is present during a simpler center-out task, and the pattern of coherence is unaffected by 

freely made eye movements.  This shows that decision making is distributed across a frontal-

parietal circuit and that top-down signals from PMd influence decisions in this circuit.  

Why is coherence stronger during free search?  This could be due to the nature of the 

decision.  Choices were variable during free search.  In contrast, the same choices were made 

repeatedly during instructed search (Fig 3.1).  Decision making can be modelled by races 

underlying the selection of each alternative
17

.   These races must be closer during free search 

because choices are more variable.  Therefore, the difficulty of the decision may underlie 

coherence between PMd and PRR.  Cognitive control mechanisms are activated to select between 

alternative actions.  Prefrontal, medial frontal and cingulated cortex are involved in these 

mechanisms
18–20

 and could modulate frontal-parietal coherence during decision making.   

During search, the flow of activity across frontal and parietal cortex may reflect the process 

of deciding.  Information rises fastest in PMd (Fig 3.3f),  so it cannot be driven by PRR
14

, and 

must take alternative routes possibly through the thalamus, superior colliculus and frontal eye 
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fields
21

.  Information may go from frontal to parietal cortex
22

 and then back in a “hand shake” of 

increased communication (Fig 3.2e) that reflects the decision.  This transient coordination may 

reflect how long the decision takes.  Subsequent activity may reflect movement planning following 

the decision (see Supplementary Discussion).  Oscillations and synchronization in frontal and 

parietal cortex exist during attention and movement preparation
2, 23–28

.  Correlations at specific 

frequencies could be a signature of these cognitive processes
29

.  We have identified a decision 

circuit in which frontal-parietal communication occurs at relatively low frequencies.  The neurons 

participating in this circuit predict the movement choice earliest and could play an important role 

in deciding where to reach. 

 

METHODS SUMMARY 

Two male rhesus monkeys (Macaca Mulatta) participated in the experiments.  We 

recorded single-unit and LFP activity from PMd and PRR using Pt/Ir electrodes controlled by 

multiple-electrode microdrives (Thomas Recordings, Germany).   Each monkey was trained to 

perform a reach search for juice rewards either by freely making choices or by following 

instructions.  Correlations between spiking and LFP activity within and between PMd and PRR 

were estimated using multitaper spectral methods 
2, 30

.  All surgical and animal care procedures 

were done in accordance with National Institute of Health guidelines and were approved by the 

California Institute of Technology Animal Care and Use Committee.   
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FIGURE LEGENDS 

Figure 3.1:  Task and behavior.  a,  Free search task.  Three circular targets presented at eight 

potential locations spaced 10° apart around the central hand position, H.  b,  Instructed search task.  

Targets in the instructed search task were a circle, square and triangle and the monkey had to reach 

to them in that order.  Each target had an equal, 1/3, probability of being the rewarded target.  c,  

The most frequent movement sequences made in response to an example configuration during the 

free search task.  The same configuration elicits three different sequences.  d,  Instructed search 

configurations elicit the same sequence.  Probability shown above each arrow  

 

Figure 3.2:  PMd-PRR spike-field coherence.  a–b,  Example PMd spike-PRR field coherence:  a)  

Time-frequency coherence every 50 ms during free and instructed search.  Amplitude is color 

coded.  Activity is aligned to search array onset (First vertical white bar).  Average time of the 1
st
 

reach (Second vertical white bar).  White horizontal bar shows analysis window for b.  b,  

Coherence line plot for free (black) and instructed (red) search tasks.  Coherence is z-transformed.    

Significant difference at 15 Hz (**, p<0.05; t-test).  c–d,  Example PRR spike-PMd field 

coherence.  e .Population average 15 Hz PMd-PRR spike-field coherence every 10 ms.  PMd 

spike-PRR field coherence (solid).  PRR spike-PMd field coherence (dashed).  Free search (black).  
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Instructed search (red).  Coherence is z-transformed before averaging.  95% confidence intervals, 

Bonferroni corrected, (shaded).   

 

Figure 3.3:  Spike response latencies.  a,  Example PMd neuron response to free search (black) 

and instructed search (red).  Activity is aligned to search array onset.  Movement to the cell’s 

preferred direction.  b,  Population average PMd spike response for cells.  Activity is baseline 

subtracted.  Standard error of the mean (shaded).  c, Example PRR neuron.  d,  Population average 

PRR spike response.  e,  Population average PRR and PMd spike responses during center-out task 

to the preferred direction.  f,  Population response latencies for PMd and PRR during free search, 

instructed search and the centre-out task.  Error bars indicate 95% confidence intervals. 

 

Figure 3.4:  ROC choice probability estimated from the firing rate for neurons with and without 

significant PMd-PRR spike-field coherence. a,  Population average choice probability for 

correlated (solid) and uncorrelated (dashed) PMd neurons.  95% confidence intervals (shaded).  b  

Same for PRR neurons  
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ONLINE METHODS 

Experimental preparation 

Two male rhesus monkeys (Macaca Mulatta) participated in the experiments.  Each 

animal was first implanted with a head cap and eye coil under general anaesthesia.  In a second 

surgery, recording chambers were implanted in frontal and posterior parietal cortex in the right 

hemisphere of each animal.  Structural magnetic resonance imaging was used to identify the 

position of the arcuate sulcus and intraparietal sulcus and guide placement of the recording 

chambers to give access to cortex medial to each sulcus.  In both animals, PMd recordings were 
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made within the cortical gyrus within 1.5 mm of the cortical surface and PRR recordings were 

made within the intraparietal sulcus 4 – 9 mm below the cortical surface.   

 

Behavioral Tasks 

For all tasks, reaches were made with the left arm on a touch-sensitive screen (ELO Touch 

Systems, CA).  Visual stimuli were presented on an LCD display (LG Electronics, Korea) placed 

behind the touch screen.  All trials began with the illumination of a central circle which the animal 

needed to touch with his hand and hold for a baseline period (~ 500 ms).   

In the search tasks, after a baseline hold period (0.5–1 s), three targets were presented on 

a 3x3 grid (spaced 10°) of eight possible locations around the start point.  After a delay period (1–

1.5 s) the monkey was given a go signal to reach to one of the three targets.  Only one of the three 

targets triggered a juice reward when touched.  If the monkey did not reach to the target that gave 

the reward, he was allowed to make additional reaches to targets following subsequent hold 

periods (0.5–1 s).  Additional reaches were permitted until the reward was received.  Targets were 

extinguished once they were touched.  An auditory tone signalled the go signal for each reach.  A 

different set of three targets from the eight possible locations appeared each trial, and the target 

that gave the reward was chosen from these three targets with equal probability.  This stimulus-

reward configuration set ensured that the monkey didn’t repeatedly perform the same stereotyped 

sequence of movements.  This elicited choices by releasing constraints instead of intensively 

training the subject to overcome biases and avoid stereotyped choices.  If the animal reached to the 

wrong shape in the instructed search task, the trial was aborted.  The animal first knew it was in a 

free search or instructed search trial when the search array was illuminated. 

The free and instructed search tasks were yoked in an interleaved design to match the 

sensory-, motor- and reward-related contingencies.  We did this by initially requiring the monkey 

to perform an initial set of free search trials in a block (typically 50).  The search array 
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configurations were selected at random from the set of 56 possible configurations.  We counted the 

number of times each search array configuration was presented and the number of times each 

possible movement sequence was made during the free search task.  After the initial set of free 

search trials was performed, we began to randomly interleave instructed search trials.  During this 

phase of the session, the probability of a given trial being a free search or instructed search task 

was balanced so that after 200 total trials an equal number of trials from each task would be 

successfully completed.  Search array configurations for the free search task continued to be 

selected at random.  Search array configurations for the instructed search task were drawn from the 

probability distribution defined by the set of search configurations presented in the preceding free 

search trials that were successfully completed.  To match the motor contingencies in the instructed 

search trials to the free search trials, the order of the movement sequences instructed by the search 

array was drawn from a probability distribution defined by the set of movement choices made in 

the preceding free search trials.  To reduce the number of trials needed to estimate these movement 

sequence probabilities and to prevent the generation of stereotyped movement sequences, we 

matched only the first element of the instructed movement sequence with the monkey’s choices 

and allowed potential mismatch for the second and third elements of the instructed movement 

sequence.  All probability distributions were updated after each successful trial.  Eye movements 

were unconstrained and, on a subset of experimental sessions (53 sessions in Monkey E, 15 

sessions in Monkey Z), were monitored using a scleral search coil (CNC Engineering, WA). 

A variant of the search tasks with enforced fixation was also tested in one animal 

(Monkey E).  In this variant, the search tasks were identical except that the monkey needed to 

maintain fixation at the current touch location throughout the trial.  As a result, the only eye 

movements that were allowed were made at the time of a reach movement. 

In the center-out task, a single target was presented at one of eight peripheral locations on 

a 3x3 grid (spaced 10°) of eight possible locations around the start point.  After a delay period (1–
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1.5 s) the monkey reached to the target and was then given a juice reward.  Fixation was enforced 

during the period following acquisition of the start point through the end of the delay period.  At 

this time gaze was unconstrained and both monkeys made a coordinated saccade to the target of 

the reach movement. 
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Section II: Investigations of analytical methodology for 

awake, behaving extracellular recording data 
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Chapter 4 

 

Analysis of per-trial correlations of ensemble spike-

spike coherence 
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BACKGROUND 

Comparisons of the means of neural and behavioral data across repeated trials in different 

experimental conditions have proven useful in furthering our understanding of cognition and other 

functions of the brain. But merely demonstrating simultaneous effects on the central tendency of 

two or more measured quantities when the experimental condition changes only demonstrates each 

quantity’s relation to the changed experimental condition. Going beyond this to investigate trial-

by-trial correlations can be a useful tool to validly draw stronger conclusions of some direct 

relationship between the two measured quantities. For most data metrics these correlations can be 

investigated in a straightforward manner. However, trial-by-trial correlations can present a 

challenge for an estimate such as neural coherence, which typically requires multiple trials for the 

estimate itself to be made.  

Neural coherence has been a metric of particular interest in neuroscience in the past 

decade, being used as a measure of neural synchronization in a range of studies (for example, 

Buschman and Miller 2007; Chalk et al., 2010; Fries et al., 2001, 2008; Gregoriou et al., 2009; 

Pesaran et al., 2002, 2008; Rutishauser et al., 2010; Scherberger, 2005). These investigations rely 

on the mean coherence over trials, typically being compared between different experimental 

conditions. One notable study that did look at the correlation of coherence with other parameters 

across trials was Womelsdorf, et al. (2006). Here the authors devised and applied a novel leave-

one-trial-out method for estimating the coherence for each individual trial, which they then 

correlated with behavioral reaction times to conclude that increased gamma coherence during the 

trial predicted faster reaction times. This clearly presented a solution to the problem, although 

there are other viable methods to accomplish this correlation that were not explored in this study, 

such as using groups of multiple trial estimates or multiple taper estimates within a single trial 

(Thompson and Chave, 1991; Jarvis and Mitra, 2001). Additionally, this per-trial analysis has only 

been applied to single pairs of spikes and fields, but in the literature has not to our knowledge yet 
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been extended to an ensemble of multiple simultaneously recorded signals. It is of interest to know 

to what extent analysis of these ensembles holds a potential for revealing possible increased and 

synergistic information beyond what is present in individual signal pairs.  

Here we compare these different methods of measuring per-trial neural coherence for the 

purpose of comparing neural coherence correlations with other data metrics. Investigating these 

correlations is of interest as they could identify possible direct functional roles of coherent neural 

activity during the performance of behavioral tasks. We investigated this for individual pairs of 

recorded spike trains as well as for entire ensembles of simultaneously recorded spike trains using 

data recorded from granular and supragranular layers of rat barrel cortex in response to a paired 

auditory and whisker stimulus. All of the techniques we describe here apply to analyses of 

continuous data series as well, including LFP, EEG and MEG data.  

 

MATERIALS AND METHODS 

Data collection:  

All of the experiments in this report were approved by the Vanderbilt University Animal 

Care Committee (IACUC), carried out in an AAALAC approved animal facility, and were in 

accordance with the guidelines of the NIH and the Society for Neuroscience. 5 Long-Evans rats (2 

males and 3 females; 250–350 g, 2–3 months old at the time of recording) were used for this study. 

Each rat was anesthetized with urethane (1.5 g/kg, 30% aqueous solution, i.p.) and the 

surgical procedure to expose the barrel cortex was performed as previously described (Popescu 

and Ebner 2010). Commercial quartz glass insulated, platinum/iridium microelectrodes were used, 

having 2–6 M resistance (Thomas Recording, Giessen, Germany). The electrodes were advanced 

into the brain using an Eckhorn microdrive system (Thomas Recordings, Giessen, Germany).  

Analog waveform signals were amplified by Thomas preamps and collected by a Plexon MAP 

system (Plexon Inc., Texas) in which the waveforms were digitized at 40 kHz. Multiunit activity 
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viewed online using Sort Client and PeriEvent Client software (Plexon Inc., Texas) was used to 

identify the whisker that evoked the largest amplitude response in a multi-unit poststimulus time 

histogram (PSTH), which was designated as the “principal whisker” (PW). Principal component 

analysis and template matching were used in Offline Sorter (Plexon Inc.) for assigning spike 

waveforms to separate single units from the multiunit stream. Typically 2–3 units per electrode 

could be isolated for further analysis from each electrode recording position. Further data analysis 

was then carried out in Matlab (MathWorks). 

Three blocks of stimuli consisting of 100 trials each (ISI of 1 or 0.5 Hz within each block) 

were presented in the following order: first, a block of 4-ms-duration principal whisker deflections 

(Wi); second, a block of condition-test stimuli in which an auditory click stimulus (10 ms duration) 

preceded a 4 ms whisker stimulus by 10 ms (Au+Wi); and finally, a block of auditory click stimuli 

alone (Au) (Fig. 1a). For the novel analyses of this article, we only analyze the Au+Wi condition-

test condition, though for background information we present some results from the other 

conditions that were part of the analysis of the original study.  Multiple recording sessions at 

different depths traversing S1 were made for each rat. The dataset included a total of 27 recording 

sessions with 86 isolated cells, and 97 spike pairs. 

Prior to recording, the whiskers were trimmed to 5 mm beyond the fur to keep the whisker 

angle of deflection uniform. During the recordings, whiskers were stimulated using a piezoelectric 

bimetal wafer as described in Popescu and Ebner (2010). The piezo stimulator delivered 100 

stimuli to a whisker in a caudal direction (1 Hz, 600 µm amplitude, 4 ms duration, 2 ms rise time). 

The auditory stimulus was generated by a second channel on an 8 channel DS8000 stimulator, 

which was controlled by a Spike 2 script to activate a speaker (Kenwood, 20–20,000 Hz response 

range).  The speaker was positioned 20 mm away from the ear of the rat on the same side as the 

whisker stimulus (both right side).  Auditory stimuli were delivered at 1 Hz (75 db spl, 10 ms 

duration square wave either alone or 10 ms prior to a whisker stimulus in the Au+Wi condition). 
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The Au+Wi stimulus was presented at 0.5 Hz. The onset of the Wi stimulus was considered to be 

the onset time of the trial.   

   

Spike timing metrics: 

 We analyzed two direct measures of the spiking response to the stimulus. To measure the 

spike latency for a given spike train, we took the average time of the first spikes in each trial 

appearing within a time window from 3 to 150 ms. To measure the spike latency mean standard 

error (MSE), we average the square of the deviation of these first spike times of each trial from the 

average spike latency.  

 

Spike-spike Coherence: 

We analyzed spectral coherency between pairs of spike trains using procedures described 

in Jarvis and Mitra (2001). Spike trains were converted into a continuous signal discretely sampled 

at 1 kHz with values of 1 or 0 depending on whether or not a spike was present in the 

corresponding 1 ms time bin for the given trial. In addition, we applied the point process finite 

sample size correction for spike spectral estimators described in Jarvis and Mitra (2001).  

 

To construct the coherograms shown in Figure 4.1, we used a 200 ms time window sliding 

across the time during a trial with a 10 ms step size. Data were windowed with the first in the 

series of discrete prolate spheroidal sequences (Jarvis and Mitra, 2001; Slepian, 1983), which 

provides optimum frequency localization for a finite temporal window. A frequency bandwidth of 

5 Hz was used. Further analyses of coherence were conducted on two specific individual time 

periods: a poststimulus period spanning from 0 to 150 milliseconds after stimulus delivery that we 

refer to as the response period, and a longer period spanning from 150 to 1000 milliseconds after 

the stimulus that we refer to as the baseline period. Before further analyses, coherence values were 
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z-transformed to an unbiased and approximately Gaussian distribution using the procedure 

following from Thompson and Chave (1991) and described in Bokil et al. (2007).   

 

In order to investigate to what extent the coherence observed results from the consistent 

response of both neurons to the stimulus rather than from their unique relationship to each other, 

for Figure 1B we calculated the coherence of Fourier residuals, which we refer to as the partial 

coherence, following the terminology of Srinivasan (2004). Specifically, the Fourier coefficient for 

each trial ( )(ˆ fxn ) is transformed into a residual Fourier coefficient ( )(ˆ fxp n ) by subtracting the 

mean Fourier coefficient across trials. Partial spectra, partial cross spectra, and partial coherence 

are then calculated using these residual Fourier coefficient in the same manner that their ordinary 

values are calculated using the original Fourier coefficients.   

 

  ift

nn etxthfx 2)()()(ˆ  

 

Above,  denotes the Fourier component of trial n for a given frequency f , )(txn denotes 

the signal for that trial as function of time 



t  (i.e., a sequence of 0s and 1s representing the presence 
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or absence of a spike in every millisecond bin), and 

 

h(t) describes the windowing function used 

as a function of time. Then, 
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Above, )( fpCxy
 denotes the partial coherence, TN denotes the number of spectral estimates, and 

* denotes the complex conjugate. 

 

Methods of measuring coherence per trial: 

As described in the equations above, multiple spectral estimates are necessary for the 

calculation of coherence or partial coherence. In neuroscience experiments, these multiple 

estimates can commonly be acquired through repeated trials of a stimulus or a behavior. 

Additionally, multi-taper spectral analysis allows for the use of multiple orthogonal data windows, 
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or tapers, to provide independent estimates of spectra and coherence from a single period of time 

during a trial (Thompson and Chave, 1991). For a given window length duration of N seconds, as 

a rule of thumb, 2*N*W - 1 tapers provide reliable estimates of the spectrum (Slepian, 1983; 

Thompson and Chave, 1991), where W is the desired frequency bandwidth of the estimate. Thus 

for a given fixed window duration, a tradeoff exists between the number of tapers used, and the 

specificity of the frequency resolution desired. For all methods we describe below, the results that 

we present in this article were generally robust across a range of values for parameters such as the 

number of tapers, the value for W or the particular frequencies averaged. 

 

 5 Trials method. Here the sample of trials was broken down into groups of 5 trials, with 

the coherence calculated in each group across those 5 trials and 1 taper used for each trial. To 

correlate other measures with these coherence estimates, the other measures were averaged across 

the same 5 trial groups with the correlation performed across the resulting 20 groups. Any number 

of trials per group could be used in this procedure. However we did not find that the results were 

particularly sensitive to the precise number used and chose 5 to provide a reasonable balance 

between the size of the group and the number of groups. The resulting frequency resolution was 

6.7 Hz for the response window analysis, and 1.2 Hz for the baseline period. Before further 

analyses, we averaged the resulting response period coherence estimates between 0 to 6.7 Hz and 

the resulting baseline coherence estimates between 0 and 4 Hz. We found that the results were not 

appreciably changed when we averaged the response period from 0 to 20 Hz as was done in the 

other methods. 

 

 5 Tapers method. In this method, we utilized the ability of the multi-taper methods to 

provide multiple spectral estimates for a single trial to calculate coherence within each trial. 

Because the coherence result that we were investigating is present over a wide frequency range (0 
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to 20 Hz, see Figure 1), even the short window lengths that we applied here allowed for the use of 

multiple tapers to estimate the coherence, as described above. The resulting frequency resolution 

was 20 Hz for the response window analysis, and 3.5 Hz for the baseline analysis. Before further 

analyses, we averaged the resulting response period coherence estimates between 0 to 20 Hz and 

the resulting baseline coherence estimates between 0 and 4 Hz. 

 

Leave-One-Trial-Out method. We calculated the coherence for each trial following 

procedures described in Womelsdorf et al. (2006) which we refer to as the Leave-One-Trial-Out 

method.  To briefly reiterate the procedure here: The z-transformed coherence is first calculated 

across all trials (below: )(SC ). Then for each trial i, the z-transformed coherence is calculated 

across all trials but with that trial left out (below: )( )(iSC ). The coherence for trial i ( iC ) is then 

estimated according to the equation:  

 

)(*)1()(* )(ii SCNSCNC   

 

where N is the number of trials. For further details, see Womelsdorf et al. (2006). All parameters 

for the individual coherence calculations were set to the same as those used in the 5 Tapers method 

described above.   

 

Correlations: 

 Correlations involving the per-trial coherence estimates were carried out using matlab’s 

corrcoef.m function. The p-values we report have been Bonferroni-corrected within each family of 

hypothesis tested, which we defined as the 3 pairwise comparisons between the 3 methods for each 

test (i.e. the p-values we report have been multiplied by 3 from their single comparison values). 
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Correlations between coherence and spike-metrics were performed once for each spike in the pair 

(which we refer to as spike-pairs), and thus twice for each pair of spikes overall. 

 

 

 

Canonical correlation: 

 We performed a canonical correlation analysis to determine the relationship between 

baseline coherence and the combination of behavioral coherence and stimulus response properties 

of all spikes and pairs of spikes simultaneously recorded in each session. For each per-trial 

coherence estimate method, the trial-by-trial (or group-by-group) coherence estimates for all 

possible pairs of simultaneously recorded neurons during the baseline period were used as the set 

of independent variables. The set of dependent variables was comprised of the response window 

coherence for each pair, as well as the spike latency and spike latency MSE for each individual 

neuron recorded. Trials with no spikes in a given spike train during any of the windows analyzed 

result in an undefined coherence for pairs involving that trial, and those trials were removed from 

the canonical correlation analysis. We used the canoncorr.m function in the Matlab stats toolbox to 

carry out the analyses. The p-values used to assess significance of the first canonical correlation 

for each session reflect Lawley’s modification to Bartlett’s chi-squared statistic. For more details 

about the canonical correlation analyses and hypothesis testing, see Krzanowski (1988) and Seber 

(1984). 

 

RESULTS 

Pattern of coherence: 

In this dataset, we had previously observed that the whisker stimulus elicits strong low-

frequency-coherent neural activity among pairs of neurons (Figure 4.1A). This coherence could 
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result from both neurons in each pair coherently responding to the same stimuli rather than from a 

direct coherent relationship between the neurons themselves at that time. To investigate this, we 

looked at a partial coherence estimate that measures the coherence among residual Fourier 

components (Figure 4.1B). Here the low-frequency coherence is conspicuously absent, and 

actually decreases following the stimulus. This indicates that the coherence shown in Figure 4.1A 

resulted from the timing of the spikes of both neurons in each pair that were time-locked to the 

same stimulus. The timing of the first spike might be of particular importance to this coherence. 

To investigate this we plotted the ordinary coherence after removing the first spike in the response 

to the stimulus from each spike train (Figure 4.1C). Though much of the coherence during the 

response to the stimulus remains, the coherence does decrease considerably when the first spike in 

the response is removed, indicating some importance for the timing of the first spike in 

contributing to this coherence.   

  

Comparing the 3 methods: 

While this pattern of partial coherence and coherence could prove troubling for 

conclusions about the importance of interactions between neurons at the time of the stimulus, it 

does provide a unique opportunity to test parameters of this data that would be expected to 

correlate with the ordinary coherence but not partial coherence that we observe. The coherence 

patterns suggest that the response period coherence results from a pair of spike trains that are time-

locked to the stimulus and not each other. Given this and the importance of the first spike in 

contributing to this coherence, the consistency of the timing of the first spike would be expected to 

correlate with this coherence. Moreover, shorter first spike latencies would also be expected to 

correlate with this coherence, in part because of the correlation between shorter latencies and  

more consistent timing and in part because of the steep shape of the mean spike rate response 

increase (Figure 4.3B). Thus, the performance of the various techniques used for estimating trial-
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by-trial coherence that we investigate here (see Materials and Methods) can be reasonably 

compared through the trial-by-trial correlation of the response period coherence with these metrics. 

Figure 4.2 shows histograms of the correlation coefficients across spike-pairs for each 

method, measuring the trial-by-trial correlation of the response period coherence with the spike 

latency (Figure 4.2A) and the spike latency MSE (Figure 4.2B). As expected, there is an overall 

negative correlation in both cases. For the correlation between the coherence and the latency of the 

first spike, the mean coefficient for the 5 tapers method was significantly less than the leave-one-

trial-out method (t-test, p<0.05), while other differences were not significant. For the correlation 

with the spike latency MSE, the mean coefficient for the 5 trials method was significantly less than 

the 5 tapers method (t-test, p<0.05), while other differences were not significant.  
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Visually apparent from Figure 2 is that the 5 trials method was much less consistent, with 

much more spread-out distributions than either the 5 tapers or leave-one-trial-out methods. This 

was confirmed statistically (Levene’s test of variances, p<0.001 for both spike latency and spike 

latency MSE), while the 5 tapers and leave-one-trial-out methods’ variances were not different 

from each other. The larger variance resulting from the 5 trials method is likely a result of the 

smaller number of points entered into the correlation, which is inherent to the 5 trials method that 

breaks up the data up into groups of trials. The leave-one-trial-out method appeared to be the most 

consistent and robust method of the 3, as reflected by the number and sign of the correlation 

coefficients that were individually significant at the uncorrected 0.05 threshold within each spike-
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pair. The leave-one-trial-out method had a significantly larger proportion of negative to positive 

significant correlation coefficients than the 5 trials method with respect to spike latency and spike 

latency MSE (Pearson’s chi-squared test, p<0.001 and p<0.01, respectively), and than the 5 tapers 

method with respect to spike latency MSE (Pearson’s chi-squared test, p<0.05). The 5 tapers 

method also had a proportion of negative to positive significant correlation coefficients that was 

significantly larger than that of the 5 trials method with respect to spike latency only (Pearson’s 

chi-squared test, p<0.001) .        

 

Example application: Absence of an anticipated trial-by-trial correlation 

In other work (Ghoshal et al., submitted) we had found that when comparing across 

conditions, the mean-low frequency coherence during a baseline period preceding each stimulus 

increased with the introduction of an auditory stimulus (Au) as compared to a whisker only 

stimulus (Wi) (Figure 4.3A). This occurred in the absence of a stimulus-locked change in firing 

rate (Figure 4.3B,C). Additionally, the paired auditory and whisker stimulus (Au+Wi) elicited a 

response with decreased latency and variability of the first spike time as compared to the Wi 

stimulus (Figure 4.3C).  
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Taken alone, these results are consistent with the conclusion that the increase in baseline 

coherence caused by the auditory stimulus “primed” the neural network in S1 to respond more 

quickly and regularly to the whisker stimulus. However, if this conclusion were true, a trial-by-

trial positive correlation between baseline and response period coherence, and a negative 
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correlation between baseline coherence and spike latency and variability would be observed. We 

investigated this using all 3 per-trial coherence estimation methods. As shown in Figure 4.4, the 

mean correlations in all cases are near zero. Thus, this trial-by-trial analysis indicates that one 

cannot reach the stronger conclusion about baseline coherence directly leading to a less variable 

stimulus response, and this apparent conclusion from an analysis of the mean coherence alone 

(Figure 4.3) may have been misleading. 

 

 

 

Canonical correlation across an ensemble of all simultaneously recorded spikes 
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 In addition to exploring single-pair trial-by-trial coherence analyses, we investigated a 

framework for their application to an ensemble of simultaneously recorded neurons. Specifically, 

we wanted to see to what extent the coherence of all recorded neurons in an ensemble during the 

baseline period of a trial could predict their coherence and the spike timing characteristics of their 

stimulus responses later in the trial. To investigate this, we performed a canonical correlation 

analysis with the baseline coherence of all simultaneously recorded pairs of spikes as independent 

variables, and the response period coherence for the same pairs, as well as the spike latency and 

the spike latency MSE for all neurons as dependent variables. The histograms of the resulting first 

canonical variant correlation coefficients across sessions are shown in Figure 4.5. If this 

coefficient is significant, it suggests that there is indeed significant explanatory power between the 

independent and dependent variables. Significant portions of sessions had significant first 

canonical variants at the 0.05 level for the 5 trials and 5 tapers method (9/27 and 7/27 respectively, 

binomial test, p<0.001 in both cases), but not the leave-one-trial-out method (3/27, binomial test, 

p>0.05). Thus, it appears that there may be some predictive power between the coherence and 

spike timing metrics at different points in time during the trial, although this is not completely 

clear given the disagreement between the methods. 

 

 Average absolute value per pair or neuron 

 5 Trials 5 Tapers Leave-One-Trial-Out 



111 
 

Baseline coherence 0.5081 0.5074 0.4816 

Response coherence 0.2660 0.2598 0.2698 

Spike Latency 0.2571 0.2589 0.2576 

Spike Latency MSE 0.2368 0.2659 0.2486 

    

 Average absolute value per session 

 

5 Trials 5 Tapers 

Leave-One-Trial-

Out 

Baseline coherence 0.3571 0.3995 0.3846 

Response coherence 0.1622 0.1407 0.1876 

Spike Latency 0.1482 0.1646 0.1502 

Spike Latency MSE 0.1266 0.1973 0.1278 

 

Table 4.1. Mean correlation coefficients between the first canonical variate and various estimates 

across simultaneously recorded pairs and spikes. For the upper table, we took the absolute value of 

each correlation for every spike or every pair of spikes within each session before averaging across 

sessions. For the lower table, we took the raw average within each individual session and then the 

absolute value when averaging across sessions. 

 

Interpretation of the canonical variants themselves can prove challenging, though one 

noticeable pattern in particular emerges when investigating them across our sample of sessions. 

Table 1 shows the average correlation coefficients between the first canonical variant and the 

corresponding dependent or independent variables. The average is calculated in 2 different ways: 

by taking the absolute value of the correlation coefficient for each pair or individual neuron within 

each session before averaging across sessions, or by taking the raw average of the correlation 



112 
 
coefficients within each session before taking the absolute value and averaging across all sessions. 

Between sessions, the sign of a variable’s correlation with a canonical variant is arbitrary and 

meaningless, and thus we take the absolute value before averaging across sessions in both cases. 

However, within a session the sign difference between, for example, the correlation with the 

baseline coherence of one pair and the baseline coherence of another pair with the canonical 

variant is meaningful. If, for example, the only meaningful information from the baseline 

coherence that was being exploited in the canonical correlation for a given session was the mean 

across all the pairs, the signs for all pairs within that session would be the same. Taking the 

absolute value before or after averaging across sessions in this case would not affect the resulting 

average. Instead, we find that when taking the absolute value for each pair or spike within a 

session, the average correlation coefficients are noticeably higher for all metrics. This suggests that 

the signs of the correlation coefficients tend to differ within a session, and suggests that there may 

be information available in the idiosyncrasies of each neuron or pair or spikes in the ensemble, 

beyond just their mean values.  

 

 

Discussion 

We found that the leave-one-trial-out method for calculating spike-spike coherence on a 

per-trial basis more consistently and robustly showed a negative correlation with measures of 

spike timing variability. Other multi-taper estimates however also perform reasonably well and 

tend to yield roughly similar conclusions, if with less precision. We provided an example use of 

these techniques in investigating the relationship between spike-spike coherence and other spike 

metrics at different times during a trial. We found an absence of an otherwise anticipated 

correlation of coherence, which highlights the need for performing trial-by-trial coherence 

analyses. We then presented a framework for the analysis of trial-by-trial coherence and other 
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metrics in an ensemble of simultaneously recorded spike trains. The application of this framework 

in our data and suggested that predictive power between these values at different times during a 

trial may exist in a manner that makes use of the information beyond just the mean values across 

pairs and cells. 

 Our primary comparison between the different methods for estimating per-trial coherence 

used a short 150 ms time window with coherent activity that was known to be stimulus locked and 

not uniquely phase-locked between the neurons in the pair. Though it may seem unusual to use 5 

tapers in time windows as short as this, it is possible to do so when averaging across a large 

frequency band as we do here. Perhaps one surprise in our results is how well this 5 tapers method 

performs and how similar its results are to the other methods we tested through all of the analyses 

that we compared. That being said, the leave-one-trial-out method may perform slightly better for 

the reasons of consistence and robustness as we’ve stated above. The basic principle behind the 

leave-one-trial-out method of calculating a per-trial estimate based on the difference from the 

estimate when using all trials and the estimate when the given trial is left out could likely also be 

fruitfully applied to other metrics that like coherence typically require multiple trials, such as 

JPSTH measures of synchrony, for example. 

 From our results alone, which use time-locked activity within the short time period 

window, it may not be entirely certain that the higher consistency of the leave-one-trial-out method 

carries over to nonstimulus locked coherence, or coherence in longer time windows. That being 

said, there is no reason to expect that the leave-one-trial-out method should perform any worse 

than other methods in those different situations, and we have at least suggested that it performs 

better in the specific situation we tested. Additionally, Figure 4.4 does suggest that when 

comparing non-stimulus locked coherence in a longer time window, the leave-one-trial-out method 

gives similar overall results and still with slightly better precision than the other metrics, further 

suggesting that it performs better under those circumstances as well. In this situation though, it is 
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not as clear what the “correct” answer should be in terms of what we should expect the mean of 

this correlation to be. Since we are correlating the coherence with spike timing metrics completely 

outside the window used to calculate the coherence, the results are not constrained by anything but 

the true pattern in the data itself. This pattern can’t be known a priori and unlike our other tests is 

unrelated to the mathematical determination of coherence. For these reasons, simulations where 

the underlying trial-by-trial coherence is manipulated would indeed be the best manner for 

comparing these three metrics. To address this, one would have to face the challenge of creating 

data with coherence that changes on a trial by trial basis, which we are not attempting to address in 

this study. 

 The contribution of our canonical correlation analyses is primarily to lay out a framework 

in which one could investigate this in other datasets. Canonical correlations have been more 

commonly used in psychological research, though we show here their applicability to neural data. 

The conclusions specific to our dataset are not entirely clear as in this situation the procedure using 

the leave-one-trial-out method disagrees with the procedures using the other methods. It is worth 

noting that the leave-one-trial-out method is moderately close to significance (Binomial test of 

0.05 significance level across sessions, 3/27, p=0.15), so perhaps with more data or in other 

datasets the results from the different methods would agree. Still, the results with the other 

methods as well as the differences in the signs of the correlations with the first canonical variants 

for each individual variable within a session for all methods are suggestive that additional 

predictive information is added by the idiosyncratic directions of trial-by-trial fluctuations of 

coherence in each pair in an ensemble. 
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FIGURE LEGENDS 

Figure 4.1. Coherence patterns averaged across all spike pairs in the sample. (A) Coherence. (B) 

Partial coherence. (C) Coherence with the first spike following the stimulus removed 

 

Figure 4.2. Histograms of correlation coefficients between response period coherence and direct 

measures of spike timing for all spike-pairs. Left column: 5 trials method; middle column: 5 tapers 

method; right column: leave-one-trial-out method. Correlations that are individually significant at 

the 0.05 level are filled in on the histogram. (A) Response period coherence vs. spike latency. (B) 

Response period coherence vs. spike latency MSE 

 

Figure 4.3. Mean coherence, firing rate and latency effects across conditions. Wi = whisker only 

stimulus; Au = Auditory-only stimulus; Au + Wi = Auditory and whisker stimulus. Reproduced 

from Ghoshal et al. (Submitted). (A) Coherence during the response period (left) and baseline 

period (right). Colored vertical dashed lines denote the extent of frequency bands extending from 0 
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Hz that were found to be significantly different than the Wi stimulus alone for the corresponding 

stimulus type as indicated in the figure. (B) Raster plots of a single neuron (upper row) and the 

population PSTHs (lower row), with the period from 0 to 100 ms expanded to the right. (C) First 

spike raster plots (see Materials and Methods) of the same single neuron as in B (upper row) and 

population first spike latency histograms (lower row) for the Wi and Au+Wi conditions. Raster 

plots show that this neuron has earlier and more consistent first spike times across trials to Au+Wi 

stimuli, while the latency histogram shows an increased number of average first spike times in the 

population in the first 15 ms. The bar graph shows that the overall mean onset latency is 

significantly shorter in Au+Wi than the Wi alone. 

 

Figure 4.4. Histograms of correlation coefficients with baseline period coherence. Left column: 5 

trials method; middle column: 5 tapers method; right column: leave-one-trial-out method. 

Correlations that are individually significant at the 0.05 level are filled in on the histogram. Top 

row: Baseline period coherence vs. response period coherence. Middle row: Baseline period 

coherence vs. spike latency. Bottom row: Baseline period coherence vs. spike latency MSE 

 

Figure 4.5. Histograms of the first canonical variate correlation coefficient across sessions. Left 

column: 5 trials method; middle column: 5 tapers method; right column: leave-one-trial-out 

method. Correlations that are individually significant at the 0.05 level are filled in on the 

histogram. 
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Chapter 5 

 

Nonindependent and nonstationary response times in 

stopping stepping saccade tasks 
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BACKGROUND 

 Cognitive control is revealed in experiments that require subjects to change their 

performance in response to changes in their environment (e.g., Logan, 1985). The stop-signal task 

(Logan, 1994; Verbruggen & Logan, 2008b) and the target-step task (Camalier et al., 2007; 

Murthy, Ray, Shorter, Schall, & Thompson, 2009) have been used to examine executive control of 

saccadic eye movements in humans and macaque monkeys (Camalier et al., 2007; Hanes & Schall, 

1995). These tasks present a target for an eye movement and then present either a stop signal, 

which indicates that the eye movement should be withheld, or a “stepped” target, which indicates 

that the eye movement should be directed to a new location. Performance on these tasks can be 

understood as the outcome of a race between a GO process that makes the initial saccade and a 

STOP process that inhibits the initial saccade to maintain fixation or to allow a new saccade to the 

new location (Camalier et al., 2007; Logan & Cowan, 1984; see also Boucher, Palmeri, Logan, & 

Schall, 2007). The race model assumes that the finish times for the GO and STOP processes as a 

function of trial number are stationary stochastic processes with independence between trials. This 

article reports data that challenge those assumptions and explores the consequences of those 

violations for analyses based on the race model. Our goal is not to evaluate the causes of 

nonindependence and nonstationarity but rather to document them in stopping and stepping tasks, 

and evaluate their effects on race-model and trial history analyses. 

Nonstationarity refers to a stochastic process described by a mean or variance that changes 

over time.  Response times (RTs) gradually becoming slower from the beginning to the end of an 

experimental session is one example of nonstationarity. Nonindependence refers to statistical 

dependence across samples in a time series. A correlation in RT between successive trials is one 

example of nonindependence. A time series that is nonstationary must be nonindependent, but the 

reverse is not necessarily true (e.g., autoregressive and moving average models, Wagenmakers, 

Farrell, & Ratcliff, 2004).  



121 
 

The fact that RTs are often nonstationary and nonindependent is well established (e.g., 

Gilden, 2001; Wagenmakers et al., 2004). For instance, RT on a given trial can vary with the 

stimulus and response that occurred on the preceding trial (e.g., Fecteau & Munoz, 2003; Luce, 

1986). Furthermore, RT can change with arousal, fatigue, learning, and motivation throughout a 

session (Broadbent, 1971; Freeman, 1933; Welford, 1968, 1980). Several investigators have 

documented apparently systematic changes in RT during performance of the stop signal task 

(Cabel, Armstrong, Reingold & Munoz, 2000; Emeric et al., 2007; Kornylo, Dill, Saenz, & 

Krauelis, 2003; Li, Krystal, & Mathalon, 2005; Özyurt, Colonius, & Arndt, 2003; Rieger & 

Gauggel, 1999; Schachar et al., 2004; Verbruggen & Logan, 2008b; Verbruggen , Logan, 

Liefooghe & Vandierendonck, 2008). For example, the RT decreases after no stop signal trials and 

increases after stop signal trials.  

Race-model analyses of stopping and stepping tasks focus on two measures of 

performance. First is the inhibition function, the probability of failing to cancel the response to the 

initial stimulus on a stop or step trial as a function of the interval between the onset of the initial 

stimulus and the stop or step signal (stop-signal delay, SSD, or target-step delay, TSD). Second is 

the RT on trials with and without a stop (step) signal. From these quantities can be derived a 

measure of the time needed to interrupt the initial response. This measure is referred to as the stop-

signal RT (SSRT) in stopping tasks and the target-step RT (TSRT) in stepping tasks.   

Here we first explore whether RT is nonindependent and nonstationary, and how this 

impacts estimates of SSRT and TSRT derived from the race model. We also explore how 

nonindependence and nonstationarity might impact measures of trials-to-trial adaptations of RT. 

To address these issues, we measured the extent to which RTs were nonindependent and 

nonstationary across trials during performance of saccade stopping and stepping tasks by humans 

and macaque monkeys, and assessed the impact of this on conventional analyses of these data.  
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METHODS 

With the exception of search step data from monkey T, all the data presented here have 

formed the basis of previous publications (Boucher, Palmeri, Logan & Schall, 2007; Boucher, 

Stuphorn, Logan, Schall & Palmeri, 2007; Camalier et al., 2007; Hanes, Patterson, & Schall, 1998; 

Paré & Hanes, 2003). Here we reanalyze these data with a focus on the magnitude and impact of 

nonindependence and nonstationarity of RT.  

 

Stop-signal task 

In the stop-signal task, no-signal and stop-signal trials were randomly interleaved (Figure 

5.1). On no-signal trials, subjects fixated a central point until it disappeared whereupon a 

peripheral target appeared without any distractors. Subjects were then required to shift gaze to that 

location. On stop-signal trials, the central fixation point reappeared following a variable delay after 

the appearance of the target. We refer to this variable delay as the stop-signal delay (SSD). On 

these trials, subjects were instructed to cancel any impending saccade and maintain fixation on the 

initial fixation position. We refer to these trials as cancelled trials (they are also called “signal-

inhibit” trials in the literature). Monkeys were rewarded following both the cancelled stop-signal 

trials and correct no-signal trials. Because the occurrence and timing of the stop signal was 

unpredictable, on some trials subjects could not cancel their movement but instead made a saccade 

to the target. We refer to these error trials as noncancelled trials (they are also called “signal-

respond” trials in the literature). Monkeys were not rewarded following these trials. 
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In this paper, we consider data collected for this task from five monkeys (Macaca mulatta 

and Macaca radiata) (Hanes et al., 1998; Paré & Hanes, 2003) and five human participants 

(Boucher, Stuphorn, et al., 2007). For the monkeys, the target could appear in one of two 

locations: either to the left or the right of the fixation point, positioned in the receptive field or 

movement field of a neuron.  

For the human participants, the target could appear in one of four locations: in the upper or 

lower left, or the upper and lower right, relative to the fixation point. The proportion of stop trials 

varied from 10 to 70% for monkeys (typically 25%), and was 30% for humans. The mean elapsed 

time between the start of consecutive trials was ~ 4 seconds for monkeys and humans. Target 

eccentricities were 8.5 degrees for humans, and varied between 4 and 16 degrees for monkeys, 

according to receptive field location for the neuron recorded as part of the neurophysiological 

experiment. More task details are available in the cited publications.  
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Search-step task 

In the search-step task, no-signal and target-step trials were randomly interleaved (Figure 

5.1). On no-signal trials, subjects were required to shift gaze to a color singleton, either a red target 

among green distractors or a green target among red distractors. The color of the singleton varied 

across sessions. On target-step trials, the target stepped to a different location in the array after a 

variable delay after its appearance in its initial location. We refer to this variable delay as the 

target-step delay (TSD). On these trials subjects were instructed to cancel their response to the 

initial location and shift their gaze directly to the new location (i.e., to compensate for the target 

step). We refer to these trials as compensated trials. Monkeys were rewarded following both 

compensated target-step trials and correct no-signal trials. Because the occurrence, timing, and 

location of the steps were unpredictable, on some trials subjects could not compensate for the step 

but instead made a saccade to the initial target location. We refer to these error trials as 

noncompensated trials. Monkeys were not rewarded following these trials.  

In this paper, we consider data collected for this task from four monkeys (Murthy et al., 

2007; Murthy et al., 2009) and three human participants (Camalier et al., 2007). For the majority 

of the sessions in which the monkey data were collected, the target appeared with 7 distractors (set 

size of 8). The target and distractors were evenly spaced in a circle around the central fixation 

point at the eccentricity of the receptive field of the neurons (4–16 degrees). For the human data, 1, 

3, or 7 distractors appeared with the target randomly from trial to trial for most sessions at a fixed 

eccentricity of 9.5 degrees. On a subset of sessions with monkeys and a subset of blocks within 

sessions with humans, the target appeared without any distractors. This condition is equivalent to 

the familiar double-step task (e.g., Becker & Jürgens, 1979). For both humans and monkeys, the 

effects described here did not vary between the double-step and search-step tasks with different set 

sizes, so we combined data from the two tasks. The proportion of step trials varied from 25 to 50% 
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for monkeys and was 40% for humans. The mean elapsed time between the start of consecutive 

trials was ~ 3 seconds for monkeys and ~ 5 seconds for humans.   

 

 Manipulation of stop signal or target step delay 

In the stopping and stepping tasks, SSD and TSD are independent variables. When the 

delay is short, subjects are more likely to cancel the impending saccade. When the delay is long, 

subjects are more likely to make a saccade to the initial target location. For some sessions 

presented here, the values of SSD (TSD) were predetermined and presented randomly throughout 

the session independent of the subject’s behavior. We refer to these as randomized SSD (TSDs). In 

other sessions, a 1-up/1-down staircase was used to adjust SSD (TSD) on each trial based on the 

subject’s behavior. In this procedure, the delay was increased by a predetermined amount (50 ms 

for humans in both tasks, 17 to 50 ms in monkeys) following each cancelled or compensated trial 

and was decreased by the same amount following each noncancelled or noncompensated trial. The 

goal of this procedure is to ensure that subjects respond successfully to the stop signal or target 

step on around 50% of the trials (Logan, Schachar, & Tannock, 1997; Osman, Kornblum, & 

Meyer, 1990). We refer to these as stair-cased SSDs (TSDs). Most of the data for the stopping 

task were recorded using randomized SSDs, with the exception of data from monkeys H and N, 

which was primarily recorded using a staircase procedure. All of the search step data were 

recorded using the staircase procedure. For certain analyses pertinent to the manner of SSD or 

TSD selection, subsets of data are grouped and analyzed based on whether or not the staircase 

procedure was used.  

Stop task SSDs ranged from 25 to 275 ms for humans, and 25 to 450 ms for monkeys for 

both stair-cased and non-staircased data. Step task TSDs ranged from 50 to 250 ms for humans 

and from 33 to 250 ms for monkeys. Monitor refresh rates varied between subjects and tasks but 

were either 60 or 80 Hz, depending on the experimental equipment used.  
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Race model accounts of performance in stopping and stepping 

Performance in the stop-signal task can be understood as the outcome of a race between 

two stochastic processes, a GO process and a STOP process (Logan, 1994; Logan & Cowan, 1984; 

see also Boucher, Palmeri et al., 2007). The process that finishes first determines which behavior 

is produced. Recently this model has been extended to the search-step and double-step task with 

the addition of a second GO process to produce the compensated saccade (Camalier et al., 2007; 

see also Verbruggen, Schneider, & Logan, 2008). The race model formulation affords the ability to 

calculate the correct time needed to interrupt preparation of the initial movement (Logan & 

Cowan, 1984). This time is referred to as stop signal reaction time (SSRT) for the stop-signal task 

and target step reaction time (TSRT) for the search-step task.  

We used two methods to estimate SSRT and TSRT (Figure 5.2). With the integration 

method, SSRT or TSRT can be calculated for each SSD or TSD by integrating the no-signal RT 

distribution until the proportion of RTs is equal to the proportion of noncancelled or 

noncompensation trials on the inhibition or compensation function for a particular SSD or TSD.  

The SSRT or TSRT is then given by that point in time minus the SSD or TSD. Using this method, 

an estimate of SSRT or TSRT is determined for each SSD or TSD, with the overall measure 

typically averaged across SSDS or TSDs. With the difference method, the mean of the inhibition 

(compensation) function is calculated by treating the function as a cumulative distribution 

function. The SSRT or TSRT is then equal to the mean of the no-signal RT distribution minus this 

value. SSRTs and TSRTs we report in this article are the average of the values from these two 

methods. 
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Response time spectra 

Power spectra quantify trial-by-trial nonindependence in RT data (Gilden, 2001; 

Wagenmakers et al., 2004). If the processes producing RTs in a time series are independent across 

trials (which also requires stationarity), the spectrum of the data series will be flat, like the 

spectrum of white noise sampled with the same frequency. To test whether RT data deviate from 

this prediction, we estimated the power spectra of RT series and averaged them across sessions for 

each subject. Power spectra of RTs on no-signal trials were estimated using the Lomb-Scargle 

method for unevenly sampled data (Lomb, 1976; Scargle, 1982) with stop or step trials treated as 

missing data. For each session, this produced a spectral estimate with frequency step sizes equal to 

the reciprocal of the number of trials in the session. The resulting frequencies ranged from one 

such step up to the Nyquist limit. Adjacent frequency components were averaged into bins spaced 

evenly on a logarithmic scale, and then averaged across each session to give a spectral estimate for 
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each subject. Confidence intervals were calculated using the assumption that the spectral density 

estimates follow a chi-square distribution with degrees of freedom equal to twice the number of 

averaged estimates (Jarvis & Mitra, 2001). We considered this to be the number of sessions for 

each subject. For comparison, we randomly permuted the trial order once for each session and 

estimated the trial-shuffled spectrum by the same procedure used for the original data. For more 

details on these methods, please see Appendix C. 

 

RESULTS 

Data were obtained from humans and macaque monkeys performing a stop signal task and 

a search-step task with saccadic eye movements. All statistical tests were performed at a 0.05 

significance level.  

 

Nonindependent and nonstationary response times 

We observed fluctuations in RT during the course of a session occurring on immediate (1 

trial), local (~ 10 to 100 trials), and global (~ 1000 trials) time scales. Fluctuations on all of these 

scales can be seen in Figure 5.3, which shows a representative session of a monkey performing the 

step task. The raw RTs are presented in the top panel and the 100-trial running averages of RT, 

TSD, and percentage of step trials are shown in the middle and lower panels. Immediate variability 

can be attributed to the irreducible randomness of RT or adaptive control across successive trials. 

Local variation of RT often coincided with gradual changes of the running fraction of step trials or 

average target step delay (see also Emeric et al., 2007). Global variation could be expressed as a 

gradual slowing (or speeding) of RT across a session, probably resulting from extraneous factors 

not controlled or manipulated by the experiment such as fatigue or motivation fluctuations.   
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A gradual increase of RT mean and variance is evident in Figure 5.3. To assess this for all 

of the sessions, we divided each session into thirds by trial number and compared the mean and 
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variance between the initial and final thirds of each session. Table 5.1 summarizes the trends, 

indicating the numbers and percentages of sessions with significant increases or decreases of RT 

mean and variance (ranksum for mean, Levene’s nonparametric test for variance, both two tailed; 

the expected chance level is 2.5% for each cell in the table). More sessions than would be expected 

by chance had significant changes in RT mean and variance, although across subjects and sessions 

both decreases and increases of RT mean and variance were observed. Thus, RTs were 

nonstationary.   

To quantify the degree of independence of RTs across trials, we calculated the frequency 

spectrum of RTs for each subject. Figure 5.4 shows the power spectra for the successive RTs 

produced by each subject with confidence intervals compared to the power spectra derived from a 

shuffled sequence of the same RTs. For both humans and monkeys in both the stepping and 

stopping tasks, spectral power was elevated at low frequencies. Across subjects, the power at the 

lowest frequency was at least twice the power at the highest frequencies. We observed the same 

pattern when calculating the RT spectra after removing any linear trends from the data. Thus, RTs 

show significant slow fluctuations beyond a linear trend occur during performance of these tasks. 

The higher power at low trial frequencies indicates that RTs within immediate and local time 

scales are expected to be positively correlated. We verified that this was the case for pairs of 

consecutive no-signal trials.  
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Impact of nonindependent and nonstationary RTs on inhibition functions 

Performance in stopping or stepping tasks is characterized by the probability of failing to 

cancel the initial movement as a function of the delay of the stop or step signal. The relationship of 

this inhibition (or compensation) function to the distribution of RTs is used to calculate SSRT (or 

TSRT). Having already demonstrated the nonindependence and nonstationarity of RT, in this 

section we consider the impact these have on the form of the inhibition (or compensation) 

function.  

We plotted inhibition functions from different chronological epochs within sessions. 

Figure 5.5 displays data from a representative session in which a monkey performed the stop-

signal task with the SSD adjusted through the staircase procedure. Figure 5.5A shows that RT 

increased gradually over the course of the session, coincident with a gradual increase in SSD. 

Figure 5.5B compares the inhibition function derived over the entire session to inhibition functions 

derived from an early epoch (during which RT and SSD were shorter) and a later epoch (during 

which RT and SSD were longer). The inhibition function over the entire session had a shallower 

slope than the inhibition functions from either epoch. Many sessions across species and tasks 

showed similar differences between session-level and epoch-level inhibition functions or 

compensation functions.  
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To compare inhibition functions across sessions, it has been shown previously that the 

abscissa of the inhibition function can be transformed to represent the relative finishing time of the 



134 
 
STOP and GO processes by subtracting SSD and SSRT from the mean RT for each epoch (Logan 

& Cowan, 1984). The logic of this transformation follows from the race model claim that the 

probability of inhibiting depends on the relative finishing time of these processes, not on the 

absolute finishing time of either process alone. Specifically, as illustrated in Figure 5.5C, we 

produced a transformed SSD (referred to as SSD’) by subtracting the difference between the mean 

RT in each epoch and the mean RT over the entire session from the original SSD:  

                                         . 

This translates the inhibition functions from an epoch when a subject responds more quickly to 

higher values of SSD’ and translates the inhibition function from an epoch when a subject 

responds more slowly to lower values of SSD’. The transformed inhibition functions overlap each 

other as well as the inhibition function from the entire session. Note that this procedure does not 

change the slopes. We extended this epoch-by-epoch transformation procedure to a trial-by-trail 

transformation according to  

                                  . 

The SSDi (TSDi) for the ith stop (step) trial was transformed to SSDi’ (or TSDi’) by 

subtracting the difference between the average RT on no-signal trials in the 101-trial interval 

centered on that trial (represented by           above) and the session average RT (       above). 

The length of the averaging window was truncated as necessary near the start or end of a session. 

Resulting SSD’ (TSD’) values were binned, and the proportion of stop (step) trials in which the 

subject failed to cancel the initial responses in each bin was determined. The transformed 

inhibition (compensation) functions, which plot this proportion against the SSD’ (TSD’) values, 

allows us to probe the impact of nonindependence and nonstationarity on inhibition functions by 

providing an example of what the data would look like if fluctuations of mean RT were removed. 

The forms of these transformed inhibition (compensation) functions were characterized by 

cumulative Weibull function fits to the values. The slopes of the transformed inhibition 
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(compensation) function were tested statistically as follows. We performed a permutation test 

comparing the median slopes of the transformed inhibition function to the slopes when trial order 

was randomly permuted 1000 times before applying the transformation procedure. 

The left panel of Figure 5.5D shows the fitted cumulative Weibull distributions for the 

original and transformed inhibition functions for this sample session. The number and proportion 

of sessions in which the transformed inhibition function was significantly steeper than the original 

inhibition function is shown in the first column of Table 5.2. Across the population, the 

transformed inhibition function is significantly steeper in most sessions. In the human search step 

data this effect was less prevalent.  

The foregoing analyses focused on data from sessions in which SSD (TSD) was adjusted 

on a staircase according to subjects’ performance. With the stair-case procedure, a different range 

of SSD (TSD) values is presented within different epochs of an experimental session due to 

differences in RTs across epochs. To determine if the underestimation of the inhibition function 

slope is specific to the use of stair-casing, we performed the same analyses on data from a monkey 

performing the stop-signal task with a set of SSD’s randomly presented with equal probability. 

Figure 5.6A shows a 100-trial running mean of the RTs and the probability of not canceling on 

stop trials, with two epochs highlighted. Clearly, the probability of not canceling varied inversely 

with RT. For the same SSD values, subjects are more likely to inhibit the initial movement during 

an epoch of slower responding.  
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Figure 5.6B compares the inhibition functions from each epoch with that from the entire 

session.  We compared the heights and slopes of these inhibition functions. The inhibition function 
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from the epoch when the subject was responding more quickly lies above that from the epoch 

when the subject was responding more slowly. The inhibition function slopes between these 

particular epochs and the overall session were not noticeably different. However, when the same 

transformation applied to staircased sessions was applied to this session, the transformed inhibition 

function was again found to be significantly steeper than the original. This procedure was applied 

to each session with fixed SSD (TSD). The number and proportion of sessions of non-stair-cased 

data for each subject in which the transformed inhibition function was significantly steeper than 

the original is shown in the first column of Table 5.3. Across the population this was significant 

for many non-stair-cased sessions. Thus a shallower slope of the inhibition function from an entire 

session seems to be a general consequence of nonindependence and not due to adapting SSD 

(TSD) to performance via stair-casing. 

 

Estimating SSRT or TSRT 

The transformation procedure was also used to calculate a transformed SSRT (TSRT) 

(designated SSRT’ (TSRT’)). To do so, RTs were transformed as follows:  

                             . 

The RTi for the ith trial with no stop (step) signal was transformed to RTi’ by subtracting the 

difference between the local average RT and the session average RT as described above.    

Naturally, the distribution of RT’ is centered on the session mean but with less variance, as 

shown in the right panel of Figure 5.5D. Although modest, the significance of the reduction of 

variance for this session was verified statistically using another 1000 shuffle permutation test 

comparing the standard deviation of the RT’ distribution. For the session illustrated in Figure 6, 

the reduction of no-signal RT variance by the transformation approached significance (p = 0.055). 

For each subject, the number and proportion of sessions in which the transformation significantly 

reduced the RT standard deviation is shown in the second column of Tables 5.1 and 5.2 for stair-
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cased and non-stair-cased data, respectively. Adjusting for RT nonindependence and 

nonstationarity by this transformation procedure significantly reduced the variance of no-signal 

RT distributions in many sessions for all subjects.  

Using the SSD’ (TSD’) and RT’ values from which slow fluctuations in RT have been 

removed, we obtained a transformed SSRT’ (TSRT’). SSRT’ and SSRT values were not 

significantly different for the session illustrated in Figure 5 (SSRT = 141 ms, SSRT’ = 136 ms, 

permutation test) or Figure 5.6 (SSRT = 153 ms, SSRT’ = 152 ms, permutation test). The 

distributions of differences of SSRT’ (TSRT’) and SSRT (TSRT) across subjects and conditions 

are illustrated in Figure 5.7. Overall, accounting for the nonindependence and nonstationarity of 

RT had very little effect on the estimate of stop process duration SSRT (TSRT). The third columns 

of Tables 5.1 and 5.2 display for each subject the numbers and proportions of sessions in which 

SSRT’ (TSRT’) was significantly different from SSRT (TSRT). Adjusting for RT 

nonindependence and nonstationarity by this transformation rarely changed significantly the SSRT 

(TSRT). The only exception was monkey T performing the search step task, for whom 14 of 42 

sessions showed a significant difference between TSRT and TSRT’.  
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Furthermore, we found no systematic bias in the distributions of SSRT’ (TSRT’) relative 

to SSRT (TSRT) (paired t-tests). Only subject CC performing the step task exhibited a significant 

difference between TSRT’ than TSRT (12.5 ms slower, t(37) = 3.3, p < 0.05). In spite of these 

idiosyncrasies we conclude that the estimation of SSRT (TSRT) is robust against nonstationarity 

or nonindependence of RT. Moreover, in Appendix A we show mathematically that with 

fluctuating GO and STOP process finish time distributions, one method of measuring SSRT 

(TSRT) provides a time-weighted average of the SSRT (TSRT) value over the entire session. This 

suggests that even as a subject’s RT fluctuates, the value of SSRT remains stable. 

 

Trial-by-trial RT adjustments during stopping and stepping  

A hallmark of executive control is the ability to change behavior based on past stimuli, 

responses, and outcomes. Many studies have shown that subjects adjust their RT based on the 
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previous trial’s stimulus parameters (e.g., Verbruggen & Logan, 2008a) or their behavior on the 

previous trial (e.g., Emeric et al., 2007). These and related studies implicitly assume independence 

and stationarity in RT when examining RTs on trial n+1 based on the stimuli or responses in trial 

n. However, if the occurrence of the stop (step) response on trial n varies with fluctuations of RT 

alone, then conclusions drawn from an examination of RTs on trial n+1 alone may be misleading. 

 A change in RT on trial n+1 could be due to an executive control signal influencing 

behavior based on the outcome of trial n. Alternatively, relationships between performance on 

trials n and n+1 could simply be consequence of nonindependence and nonstationarity of RT. 

Hence, a change in RT on trial n+1 may not be due to an executive control signal. One way to 

account for the effects of nonindependence and nonstationarity is to consider what happened on 

the n-1 trial.  

Figure 5.8 shows the RTs on no-signal trials before (n-1) and after (n+1) all three trial 

types for the stop task (no-signal, cancelled, and noncancelled) and the step task (no-signal, 

compensated, and noncompensated). Colors for each subject are indicated, and the horizontal 

dotted lines denote the grand mean no signal RT for each subject for comparison. We restricted 

this analysis to 3-trial sequences for noncancelled and cancelled trial types to those triplets in 

which the n-1 and n+1 trial were both no-signal trials. For the no-signal trial type we just required 

that the n-1 trial type was a no-signal trial. As shown previously, RTs appear slower following 

cancelled trials as opposed to noncancelled trials (e.g., Emeric et al., 2007). The current analysis 

shows that RT was also slower before noncancelled trials. Appendix B demonstrates 

mathematically that these differences in RT with trial history are a simple consequence of 

fluctuations in RT. The proof relies on the fact that for a given SSD more cancelled trials will tend 

to occur when the subject is responding slowly, while more noncancelled trials will tend to occur 

when the subject is responding quickly. Thus, the incidence of successful or unsuccessful 
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inhibition varies with RT fluctuations, which is manifest in the RTs of trials before and after the 

alternative responses. 

 

To determine if the variation of RT after different types of trials exceeds what can be 

explained by nonindependence and nonstationarity of RT, we performed a pair of planned 

interaction contrasts of RT for each combination of species and task in a 3x2 design with trial type 

(no-signal, canceled/compenstated, noncanceled/noncompensated) and trial sequence (RT before 

or after the target trial type) as within-subject factors. An interaction in this design will reveal trial 

history effects independent of effects of RT fluctuations. A repeated measures omnibus ANOVA 

using Greenhouse-Geisser adjusted degrees of freedom revealed a significant interaction of trial 
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type and sequence in the stop task for both humans (F(1.3, 5.2) = 11.7) and monkeys (F(1.5,6.0) = 

7.1) but not in the step task (humans: F(2.0,4.0) = 1.7; monkeys: F(2.0,6.0) = 2.5).  

We investigated the omnibus interaction in the stop task further. To determine if the 

magnitude of RT changes following cancelled trials differs from that following noncancelled 

trials, we performed a paired t-test of the differences in RTs before and after cancelled trials to the 

differences in RTs before and after noncancelled trials. No significant difference was found for 

either humans (t(4) = -0.5) or monkeys (t(4) = 0.8). To investigate whether subjects slow their 

responses following cancelled or noncancelled stop signal trials relative to responses following a 

no-signal trial, we performed paired t-test of the differences in RTs of consecutive no-signal trials 

compared to the average difference in RTs before and after cancelled or noncancelled trials. RTs 

were significantly faster following a no-signal trial as compared to following a cancelled or 

noncancelled trial (humans - 21.7 ms, t(4) = -11.0; monkeys - 6.0 ms, t(4) = -3.6). Taken together, 

these results show that both humans and monkeys are slower following a stop trial as opposed to 

following a no-signal trial, but the amount of slowing is comparable between cancelled and 

noncancelled trials. In the step task, generalized slowing following step trials was not observed. 

 

 

 

DISCUSSION 

We have shown that RTs in humans and monkeys performing the saccade stop-signal and 

search-step tasks are nonindependent and nonstationary across trials. However, we have shown 

empirically and mathematically that methods used to estimate SSRT (TSRT) are robust to such RT 

fluctuations. Nevertheless, nonindependence and nonstationarity of RT can result in an 

underestimate of the slope of the inhibition (compensation) function across a session. We have 

also shown how nonindependence and nonstationarity of RT influences analyses of trial history. 
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We propose that examining the RT on trials both before and after a trial of interest can help 

account for changes in RT due only to nonindependence and nonstationarity. We found that RT 

was relatively slower both before and after cancelled stop signal trials compared to before and 

after noncancelled trials and RT was not specifically slowed after cancelled as compared to 

noncancelled trials.  

 

Nonstationarity of the STOP process 

 We have shown that no-signal RTs in the saccade stop-signal and target-step tasks are 

nonindependent and nonstationary. Within the race model, this would be modeled as a GO process 

that slowly varies throughout a session and that is subject to trial-to-trial correlations. The stop 

process also could vary throughout a session (see Appendix A). However, because measurement 

of the SSRT (TSRT) requires 100 or more trials to produce a stable estimate, it is difficult to 

demonstrate the nonstationarity of SSRT (TSRT). Thus, we have not explicitly shown the 

nonstationarity of the stop process.  

 

Race model implications 

An important contribution of this work has been to show that the calculations of SSRT 

(TSRT) are largely unaffected by RT fluctuations. Calculations using the mean difference method 

will yield a time-weighted average of the SSRT (TSRT) over the session. Validating the 

measurement of SSRT (TSRT) is important because of its utility as a measure of impulsivity in 

clinical and developmental studies (e.g., Schachar et al., 2004). 

While fluctuations in RT do not affect SSRT or TSRT calculations, we did demonstrate 

that it results in shallower inhibition functions. Because the slope of the inhibition function can be 

used to derive a measure of the variability of SSRT (Band et al., 2003; Colonius, 1990; Logan & 
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Cowan, 1984), these new results suggest that fluctuations in RT can result in an overestimate of 

the variability of SSRT.  

 

Choice of staircased or versus randomized SSDs 

A subject of methodological interest for investigators using stopping or stepping tasks is 

whether to adjust the SSD (TSD) by a staircase procedure or randomly select from preset values. 

RT fluctuations occur in both staircased and nonstaircased sessions, but as we have shown, 

fluctuating RTs manifest some of their effects differently depending on how the SSDs are selected. 

For example, whether SSDs are staircased or randomized will affect how strongly RT fluctuations 

impact the trial history analyses. As RT varies during a session, a greater concentration of 

noncancelled trials will occur when a subject is responding quickly, while a greater concentration 

of cancelled trials will occur when a subject is responding slowly. This imbalance will be 

particularly prevalent when the SSDs are randomized. When using the staircase procedure, 

however, the proportion of canceled stop trials will be stabilized over global RT fluctuations, 

though there will still be some remaining bias because of local fluctuations in RT. All of the 

human and most of the monkey stopping data analyzed here and in Emeric et al. (2007) used 

randomized SSDs, which likely contributed to the magnitude of the RT shifts between the trials 

before cancelled and noncancelled trials.  

Additionally, when staircasing is used, SSDs fluctuate in response to RT fluctuations, 

which creates a correlation of RT with SSD. We have found this correlation to be significant in 

most individual staircased sessions across species and tasks. One practical consequence of this is 

that this correlation should be taken into account when comparing noncancelled RTs to no-signal 

RTs. To verify that behavior conforms to the race model, investigators often compare the 

distribution of noncancelled RTs at each SSD to the distribution of no-signal RTs over the whole 

session. If at any SSD the noncancelled distribution exceeds the no-signal distribution, this is seen 
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as a violation of the independence premise of the race model. However, when staircasing is used, 

this may not be a valid comparison because this correlation dictates that the overall no-signal RT 

distribution will be different from the RT distribution at each SSD, (TSD) particularly at the 

highest and lowest SSD (TSD). Instead it may be preferable to compare the noncancelled RT 

distribution at each SSD (TSD) to the RT distribution on no-signal trials when that same SSD 

(TSD) was expected.  

In contrast to when staircased, when randomized SSD (TSD) is used, the values remain 

constant despite the RT fluctuations. Instead of a positive correlation between SSD (TSD) and RT 

there is a negative correlation between the probability of responding on a stop (step) trial and RT, 

as one would expect from the race model.  

 

 

 

Stopping trial history 

We have shown that inferences about the effect that events on trial n has on performance 

on trial n+1 must control for the nonindependence and nonstationarity of RT. We suggest using the 

no-signal trials on trial n-1 as a simple control comparison (since events on trial n cannot affect 

events on prior trial n-1). Of course, one could argue that trial n-1 is preceded by other trial types 

that would influence its RT, which in turn are influenced by other preceding trials, and so on. 

However, in practice, the numbers of equivalent trials preceding n-1 or following n+1 and beyond 

in these tasks are too few for sufficient statistical power. 

Cabel et al. (2000) and Emeric et al. (2007) found greater slowing of RTs following 

canceled as compared to following noncancelled trials. Emeric et al. (2007) also reported no 

systematic slowing of RTs following noncancelled trials. This apparent lack of post-error slowing 

following a missed stop signal was surprising given the apparent ubiquity of post-error slowing in 
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a range of tasks (e.g., Hajcak, McDonald & Simons, 2003; Rabbit, 1966). However, when we 

accounted for RT nonindependence and nonstationarity by examining trial n-1, we found that 

subjects are indeed slower to respond on trials following noncancelled (error) trials. Of note, 

however, subjects slowed their RTs to the same degree following cancelled (correct) trials. Thus, 

current results indicate a general slowing of RT following any stop signal trial. Clearly, accounting 

for RT nonindependence and nonstationarity has important implications for understanding 

alternative mechanisms whereby trial history affects performance (e.g., Botvinick, Braver, Barch, 

Carter, & Cohen, 2001; Schall & Boucher, 2007; Verbruggen, Logan, et al. 2008).  
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FIGURE LEGENDS 

Figure 5.1. The experimental tasks. A: Stopping. The dotted circle indicates the subject’s gaze 

within each frame. A one-sided arrow indicates a saccade. A majority of trials are no-signal trials 
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in which the subject fixates centrally and responds to a peripheral target that appears by making a 

saccade to it. A minority of trials are stop trials in which following some delay after the 

presentation of the target, the central fixation point reappears, directing the subject to maintain 

central fixation. If they are able to successfully withhold the impending saccade, the trial is labeled 

as a cancelled trial. If the subject errantly makes a saccade to the target, the trial is labeled as a 

noncancelled trial. B: Search-step. A one-sided arrow indicates a saccade the subject makes. A 

majority of trials are no-signal trials in which the subject fixates centrally and responds to an array 

of stimuli that appears by making a saccade to the oddball target. A minority of trials are step trials 

in which following some delay after the presentation of the target, the location of the oddball 

singleton moves to a different location on the array through two isoluminant color changes, 

directing the subject to make a saccade to the new location of the target. If they are able to 

successfully make a saccade to the new target location, the trial is labeled as a compensated trial. If 

the subject errantly makes a saccade to the target, the trial is labeled as a noncompensated trial. 

 

Figure 5.2. Illustration of how SSRT and TSRT are calculated according to the race model. A: 

Probability density of response times in trials with no stop signal. Mean of distribution indicated 

by vertical dashed line. Duration of SSD (TSD) and of SSRT (TSRT) indicated by horizontal 

arrows. Shaded portion of the function indicates proportion of trials in which response would have 

occurred before the critical time of SSD + SSRT (TSD + TSRT) for a given SSD (TSD). B: 

Inhibition function plots the probability of responding on trials calling for a stop (step) response as 

a function of SSD (TSD). Lower horizontal arrow highlights the fraction of failures for the shortest 

SSD (TSD) which corresponds to shaded area in A. SSRT (TSRT) determined from difference 

between mean RT on no-signal trials and the midpoint of the inhibition function indicated by 

upper horizontal arrow 
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Figure 5.3. Immediate, local, and global variation of RT, TSD and the percentage of step trials in 

a sample session of a monkey performing the search-step task with TSDs determined by a 1-up/1-

down stair-case procedure. The top plot shows unfiltered no-signal RTs. Arrows indicate two trials 

with RTs that exceeded the scale of the plot (left 431 ms, right 556 ms). The middle plot shows 

100 trial running average of the RT (black), TSD (blue) and the percentage of step trials (red) for 

the same set of trials. The lower plot shows the same for a portion of the session.  

 

Figure 5.4. Spectrum of RTs. The panels show RT mean-square power spectra plotted against 

frequency in units of cycles per trial, averaged across sessions for each subject. For each panel, the 

solid black line shows the power spectrum, with 95% confidence intervals shown in the dashed 

lines. The grey line in each panel shows the spectral estimate of the same data when the trial order 

within each session is randomly permuted. Plots are collected in each column based on the species 

and task for each subject as indicated. Across species and tasks RT spectra are significantly not flat 

for most subjects, with increased power at low frequencies and decreased power at high 

frequencies compared to that of the independent trial-shuffled spectrum. 

 

Figure 5.5. Effects of nonindependent and nonstationary RTs on inhibition functions for staircased 

data. A: 100 trial running average of the RT (black), SSD (blue) and the percentage of step trials 

(red) for a sample session of a monkey performing the stopping task. SSDs for this session were 

determined by a 1-up/1-down stair-case procedure. B: Comparison of inhibition function for an 

entire session with inhibition functions within two epochs. C: Transformation of inhibition 

functions by subtracting from the SSD the difference between the mean no-signal RT in an epoch 

and the mean no-signal RT over the entire session. D: Transformation of the inhibition function 

and of no-signal RT distribution resulting from subtracting from each SSD and RT the difference 

between the mean local RT and the mean overall RT. Left panel shows original and transformed 
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inhibition functions. Right panel shows original and transformed no-signal RT distributions. SSRT 

calculated from original and transformed distributions were 141 and 136 ms, respectively.  

 

Figure 5.6. Effects of nonindependent and nonstationary RTs on inhibition functions when SSD is 

not adaptively staircased. Conventions are as in Figure 5.   

 

Figure 5.7. Effects of nonindependent and nonstationary RTs on estimations of SSRT or TSRT. 

Each panel show histograms of the original SSRT or TSRT values minus the transformed value 

(SSRT’ or TSRT’) for each session for a given subject, with plots arranged by species, task, and 

stair-case condition as indicated. 

 

Figure 5.8.  Trial triplet analysis. As indicated in the schematics below panels C and D, the data 

included here are taken from occurrences of sequences of (from left to right) two consecutive no-

signal trials, a cancelled (compensated) trial with a no-signal trial before and after it, and a 

noncancelled (noncompensated) trial with a no-signal trial before and after it during the stop (step) 

task. The mean RT on the no-signal trials from each sequence are plotted as indicated for each 

subject with colors corresponding to each subject as indicated beside each plot. The horizontal 

dotted lines show the overall mean no-signal RT for each subject. The thick dashed lines in A and 

C show for one human participant and one monkey the comparison that was made in Emeric et al. 

(2007) with these data. A and C show data for human participants and monkeys, respectively, 

performing the stop task, and panels B and D show data for human subjects and monkeys 

respectively performing the step task. For each condition, the monkey data in C and D plot the 

mean of all the session mean values for each subject, and the human data in A and B plot the 

aggregate mean value for all the trials pooled from all sessions. 
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Table 5.1.  

Numbers and proportions of sessions for each subject with significant increases and decreases 

to the mean and standard deviation of RT when comparing the first and last of three evenly 

sized epochs in a session.  Means were tested using a nonparametric rank sum test, and 

variances were tested using Levene’s nonparametric test. Both tests were two-tailed. The 

expected chance level is 2.5% for each cell in the table. 

Human stop 

Subject Mean increase Mean decrease 

Standard 

deviation 

increase 

Standard 

deviation 

decrease 

SN 1/10 (10%) 1/10 (10%) 0/10 (0%) 1/10 (10%) 

JB 2/6 (33%) 0/6 (0%) 0/6 (0%) 0/6 (0%) 

KW 3/9 (33%) 1/9 (11%) 0/9 (0%) 0/9 (0%) 

EF 2/9 (22%) 1/9 (11%) 0/9 (0%) 0/9 (0%) 

EL 1/7 (14%) 1/7 (14%) 1/7 (14%) 0/7 (0%) 

 

Human step 

CC 9/38 (24%) 24/38 (63%) 2/38 (5%) 5/38 (13%) 

LB 5/40 (13%) 16/40 (40%) 0/40 (0%) 3/40 (8%) 

SS 14/40 (35%) 15/40 (38%) 4/40 (10%) 2/40 (5%) 

 

Monkey stop 

A 4/89 (4%) 3/89 (3%) 10/89 (11%) 3/89 (3%) 

C 2/17 (12%) 2/17 (12%) 1/17 (6%) 2/17 (12%) 

F 1/24 (4%) 3/24 (13%) 2/24 (8%) 1/24 (4%) 
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H 8/67 (12%) 6/67 (9%) 3/67 (4%) 1/67 (1%) 

N 50/269 (19%) 45/269 (17%) 30/269 (11%) 21/269 (8%) 

 

Monkey step 

C 12/34 (35%) 2/34 (6%) 12/34 (35%) 1/34 (3%) 

F 13/41 (32%) 8/41 (20%) 4/41 (10%) 5/41 (12%) 

L 21/47 (45%) 3/47 (6%) 9/47 (19%) 4/47 (9%) 

T 42/42 (100%) 0/42 (0%) 28/42 (67%) 1/42 (2%) 
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Table 5.2.   

Numbers and proportions of stair-cased sessions for each subject in which a transformation to 

remove RT fluctuations significantly affected indicated values at a p < 0.05 level 

Human step 

Subject 

Inhibition 

function slope 

No-signal RT 

standard 

deviation 

TSRT 

CC 2/38 (5%) 31/38 (82%) 0/38 (0%) 

LB 0/40 (0%) 34/40 (85%) 0/40 (0%) 

SS 1/40 (3%) 28/40 (70%) 0/40 (0%) 

Monkey stop (stair-case) 

H 34/67 (51%) 18/67 (27%) 0/67 (0%) 

N 25/56 (45%) 20/56 (36%) 0/56 (0%) 

Monkey step 

C 28/34 (82%) 16/34 (47%) 2/34 (6%) 

F 30/41 (73%) 18/41 (44%) 0/41 (0%) 

L 38/47 (81%) 22/47 (47%) 0/47 (0%) 

T 27/42 (64%) 42/42 (100%) 14/42 (33%) 
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Table 5.3. 

Numbers and proportions of non-stair-cased sessions for each subject in which a transformation 

to remove RT fluctuations significantly affected indicated values at a p < 0.05 level  

Subject 

Inhibition 

function slope 

No-signal RT 

standard 

deviation 

SSRT 

A 25/89 (28%) 31/89 (35%) 1/89 (1%) 

C 2/17 (12%) 6/17 (35%) 0/17 (0%) 

F 12/24 (50%) 13/24 (54%) 1/24 (4%) 

N 43/213 (20%) 106/213 (50%) 0/213 (0%) 
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APPENDIX A 

Effect of nonindependence and nonstationarity on SSRT calculation with the mean-

difference method 

 Here we will show that one common measurement of SSRT is robust to the nonindependent 

and nonstationary fluctuations that we have shown to exist in RT data. This holds provided that the 

proportion of stop trials presented to the subject remains constant through the RT changes. In 

particular, here we consider SSRT calculation using the mean-difference method (see Methods, 

Logan & Cowan, 1984). 

For simplification, in the following formulation we consider the STOP and GO processes in 

discrete epochs of arbitrary numbers of trials with each process being stationary within an epoch. 

In the extreme case these epochs of stationarity can be as short as one trial, which makes no 

assumption of stationarity between any trials. The logic of the formulation would remain the same 

in this case, with two minor differences. The epoch means we describe would instead be 

considered to be the expected value of a single trial’s RT rather than the mean RT across an epoch, 

and the value of wi for all i could be simplified to 1/N where N is the number of trials in the 

session. 

Using conventions from Logan and Cowan (1984), let      denote the probability density 

function of the distribution of GO process finish times as measured by the RTs on no-signal trials 

over the entire session. Let    denote the proportion of the total number of no-signal trials over the 

entire session that is contained within epoch i, and let       denote the distribution of GO process 

finish times within that epoch. Thus we define that 

 

                       (1) 

 

The mean GO process finish time    is thus 



159 
 
 

                          
 

  

 

  
           

 

               
 

     (2) 

 

where   
   is the mean GO process finish time for epoch i. 

 

As described in Logan and Cowan (1984) the inhibition function, which is the probability of not 

canceling an initial saccade on a stop trial with a given SSD, can be treated as the cumulative 

distribution of some random function   . Let    be distributed as the function       such that 

 

       
       

  
    (3) 

 

Where        is the probability of responding on a stop trial with an SSD of   . For simplicity, we 

will assume that the duration of the ballistic component of the movement is zero, although that can 

be added to the model for completeness without affecting these results. Let        denote the 

distribution of STOP process finish times within each epoch. Thus for epoch i, the distribution of 

   is given by 

 

              
 

  
                      (4) 

 

For the entire session, 

 

                              
 

  
            (5) 
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Importantly, if the ratio of stop trials is identical in each epoch, then each    here will correspond 

to the    for the no-signal distribution in equation 1 as the weight of each epoch’s contribution to 

the entire session’s inhibition function and the no-signal distribution will be the same.  

We can then calculate the mean of this distribution as 

 

                

 

  

             
 

  

                 

 

  

   

 

    

 

With the observation that           
 

  
             

 

  
            , where      is the mean 

STOP process finish time for epoch I, equation 6 can be rewritten as 

 

                        
          

   

              

 

The difference-of-means method presented in Logan and Cowan (1984) suggests that one method 

to estimate SSRT for a given dataset is to subtract the mean of the inhibition function from the 

mean of the no-signal RT distribution for the entire session. Applying equations 2 and 7 we see 

that if the distributions of the GO and STOP process that vary across epochs within a session, this 

measurement would still amount to a weighted average of the SSRT in each epoch. 

 

              
 

             

 

This would be the measurement of interest in most cases even if the SSRT distribution does vary 

within a session, and so this measurement of SSRT is robust to fluctuations in RT and SSRT 

during a session, given that the assumptions in the analysis hold. 
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 One assumption that would not hold strictly true is that the fraction of stop trials is constant 

in every epoch simply due to randomness in the determination of stop trials and the timing of 

changes in RT. If this happens, it would bias the measurement of SSRT to some extent. For 

example, if during a given epoch in which the subject is responding faster than normal the subject 

was also presented with more stop trials than normal, that epoch would have a disproportionate 

effect in determining the inhibition function for the overall session than it would in determining 

the no-signal RT distribution for the entire session. This would shift the inhibition function earlier 

in time so that the no-signal RT distribution and resulting measurements of SSRT for the entire 

session would overestimate SSRT.  

It is also worth noting that a change in the proportion of stop trials arising by chance can 

induce changes in RT (Emeric et al., 2007). This would suggest that these spontaneously occurring 

epochs could serve to bias the calculation of SSRT, resulting in some degree of underestimation of 

SSRT following the logic described above. For this reason it may be wise for experimenters to 

follow the common practice of pseudorandomizing the presentation of stop trials to prevent long 

stretches of too few or too many stop trials locally to mitigate this effect. 

 This would also suggest that a session with rapidly fluctuating RTs would result in more 

noise being added to the estimation of SSRT, but that measurements made from longer sessions 

should be more robust to the effects of this noise. 
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APPENDIX B 

Effect of RT nonindependence and nonstationarity during stopping or stepping tasks on 

measurements of response times before and after cancelled and noncancelled trials 

 Here we will show that fluctuations in RT will cause the mean RT on no-signal trials before 

and after cancelled trials to be higher than the mean RT on no-signal trials before and after 

noncancelled trials even when the presence of a cancelled or noncancelled trial does not have any 

effect on the distribution of no-signal RTs on any trial. The proof below explicitly shows this for 

trials following a cancelled or noncancelled trial, but the same logic applies to trials preceding a 

cancelled or noncancelled trial. 

 For the sake of simplicity, we will consider the case in which an experimental session 

consists of two epochs of equal size and the SSDs are randomized such that each SSD is presented 

with the same probability in the two epochs. In epoch 1, suppose that the cumulative distribution 

function of the GO process finish times are given by some function F(t) with an expected value of 

  , and that the finish time distribution in epoch 2 is the same but slowed by a constant amount, 

     . Thus, in epoch 2 the cumulative distribution function of GO finish times is given by 

            with an expected value of    +      .  

 Let        and        denote the ith RT on a no-signal trial following a noncancelled trial 

in the first and second epochs, respectively, and likewise let       and        denote the ith RT on 

a no-signal trial following a cancelled trial in the first and second epochs, respectively. Let the 

mean RT on no-signal trials following noncancelled and cancelled trials be given by      and    , 

respectively. Then,  
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Where      and      are the total numbers of no-signal trials following noncancelled trials in the 

first and second epochs, respectively, and     and     are the total numbers of no-signal trials 

following cancelled trials in the first and second epochs, respectively. Focusing on noncancelled 

trials, because        and        are determined from independent identically distributed samples 

of the GO process’s finish time distribution, this means that: 

 

        
                             

               
             

      

For the sake of simplicity, let SSRT be the same constant value between epochs,    . Let the 

variable      denote the number of stop trials in an epoch at a given SSD value    . By the logic of 

the race model, 

 

                           

 

               

  

                                 

 

 

 

Note that when a staircase procedure is not used and the SSD is randomized as we consider here, 

the expectation of      is the same for both epochs. Similarly, for cancelled trials: 
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The function     is a monotonically increasing cumulative distribution, so for any    : 

                                         

where the limit of equality is reached only if the value of     does not change anywhere in the 

range from               to        . Thus: 

 

                        (6) and                     (7) 

 

Equation 2 can be rewritten as: 

 

                                                          (8) 

 

where       
       

                
 

 

Similarly, it can be shown that:                               (9) 

 

where     
      

              
 

 

Using equations 6 and 7, we see that                and thus 

                     (10) 
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even though there is no direct effect of any cancelled or noncancelled trial slowing the response on 

the following trial.  
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APPENDIX C 

Spectral Methods 

 Here we provide background to the spectral analyses we used to test whether our RT data 

display power spectra that deviate from the flat spectrum associated with an independent time 

series. 

 For a given discretely sampled time series      with a constant interval between samples, a 

direct estimate of its power spectrum can be obtained through the conventional periodogram. As 

shown below, the periodogram reflects a normalized square of a correlation of the time series with 

sinusoidal signals at a given frequency across all time points in the sample.   

       
 

  
             

  

   

 

 

 

or equivalently 

       
 

  
                

  

   

 

 

                 

  

   

 

 

  

where   refers to the number of time points in the sample. 

Such computations are often performed on signals that are digital samples over time of 

some underlying temporally continuous value. Examples from electrophysiology research include 

a local field potential or an electroencephalogram channel. Here we consider RT spectra analyses 

that are analogous to these signals, but with differences in the underlying implications. The unit of 

‘time’ in these analyses is an ultimately discrete unit of trial numbers rather than a precise unit of 

time like seconds or ms. We thus consider frequency in units of inverse trial numbers rather than 

Hertz. However, in this analysis the concept of frequency may be more easily conceptualized by 

considering the corresponding period of a given frequency, which has units of trials. For the 

dependent variable of the time series, instead of volts (or indeed microvolts) we measure RT in 

units of ms and measure power in units of ms
2
. The maximum possible sampling rate is fixed at 1 
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sample per trial, which results in a Nyquist frequency limit of 0.5 inverse trials that we can 

meaningfully consider.  

The spectral analysis associated with the stopping and stepping tasks we consider in this 

paper come with an additional caveat. We are interested in the spectrum of the GO process, which 

can be directly measured from the RTs of no-signal trials only (Logan & Cowan, 1984). This 

means that we can only include these trials’ RTs in our spectral analysis which results in a missing 

datum for every stop or step trial. Importantly, it would be incorrect to ignore these missing data 

and analyze the sequence of no-signal trials only using techniques that assume regularly spaced 

data samples. Instead to accurately measure the RT power spectra, we must take into account the 

specific trial position of every no-signal RT. To do so we used techniques described in Lomb 

(1976) and Scargle (1982) for the spectral analysis of irregularly spaced data which we briefly 

review below.   

Scargle (1982) presents the use of a modified periodogram: 

 

      
 

 
  

                           

                 
  

                           

                 
  

where   is defined as: 

 

  
 

     
       

               

               
  

Using the details described in Lomb (1976), Scargle (1982) demonstrates that this is the equivalent 

of a least-squares fit of sine waves to irregularly spaced data. Indeed regularly spaced data can be 

seen as a special case of this more-general measure, as Scargle shows that in this case these 

expressions reduce to the conventional expressions for periodograms. The effect of the parameter 

  is to maintain the invariance of the estimate to a time-shift in the input time series, as well as to 

preserve the accurate relative phases between different frequencies. For the special case of 
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regularly spaced data,   will equal zero. As Scargle shows, the other modifications of the 

periodogram serve to produce resulting estimates of spectral power that have the same statistical 

properties as the conventional periodogram with regularly spaced data. Based on this, we use 

statistical techniques that are described in Jarvis & Mitra (2001), and developed in Percival & 

Walden(1993). Specifically, a 95% confidence interval for the population spectral power at a given 

frequency,        , given the estimated spectral power,     , is given by: 

      

  
         

      

  
 

   and   , respectively, refer to the 2.5th and 97.5th percentiles of the chi-square distribution with 

degrees of freedom of   . In our case the degrees of freedom are equal to twice the number of 

sessions averaged across. Before averaging across sessions, we also averaged spectral estimates in 

adjacent frequency bins within each session, but we did not add these estimates to our total 

degrees of freedom since some of these adjacent estimates would not be totally independent. 
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Section III: Investigations of the acquisition of extracellular 

recordings in awake behaving animals: Understanding how 

the recorded voltage relates to neural activity 
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Chapter 6 

 

Review of signal distortion through metal 

microelectrode recording circuits and filters 
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BACKGROUND 

 Various metal microelectrodes have been designed to isolate spikes (Green, 1958; Hubel, 

1957; Levick and Cleland, 1974; Merrill and Ainsworth, 1972; Wolbarsht et al., 1960; reviewed 

by Lemon, 1984), and different metals and insulations are in use today.  An equivalent circuit 

model of a metal microelectrode in tissue has been proposed that has important theoretical 

implications about frequency-dependent amplitude attenuation (Lemon, 1984; Robinson, 1968) 

and phase shifts (Geddes, 1972) of recorded signals.  Such consideration in past 

neurophysiological literature has been primarily given only to the recording of spiking activity.  

Filtering applied during data acquisition or offline further distorts recorded signals (Oppenheim 

and Schaefer, 1998). If not prevented or accounted for, such distortions can introduce uncertainty 

into analyses of LFPs or spike shapes. Many recent studies have described LFP phase (Bragin et 

al., 1995; Haslinger et al., 2006; Lee et al., 2005; Lin et al., 2006; Murthy and Fetz, 1996; O’Keefe 

and Recce, 1993; Skaggs et al., 1996), spike-field phase relationships (Haslinger et al., 2006; Lee 

et al., 2005; Lin et al., 2006; Murthy and Fetz, 1996; O’Keefe and Recce, 1993; Skaggs et al., 

1996), event-triggered potentials (Krieman et al., 2006; Fries et al., 2001a,b) and LFP power or 

coherence comparisons across frequencies (Fries et al. 2001a,b; Liu and Newsome, 2006; Rickert 

et al., 2005; Womelsdorf et al., 2006).  However, phase distortion caused by the recording system 

is rarely considered (but see O’Keefe and Recce, 1993) and electrode-induced effects have been 

overlooked.  Therefore, we performed systematic measurements to verify that the equivalent 

circuit model applies to commercial electrodes (FHC) and a data acquisition system (Plexon) in 

common use by neurophysiologists, and to demonstrate the signal distortions that can occur.   

 

 

MATERIALS AND METHODS 

Equivalent circuit model 
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Figure 6.1 illustrates a modified version of a commonly cited equivalent circuit model of a 

metal microelectrode recording in the brain (Robinson, 1968).  The effective electrode impedance 

(Ze') is the sum of impedances due to the resistance of the electrolyte (Rs), the resistance of the 

electrode metal (Rm) and, most importantly, the resistance and capacitance at the double layer that 

forms at the electrode/electrolyte interface at the uninsulated electrode tip (Re and Ce). The 

effective amplifier input impedance (Za') is the total impedance to ground past the electrode; this 

includes a path through the first amplifier, or head stage (Za), and shunting routes to ground 

outside the amplifier (Rsh and Csh) which are typically capacitive.  This shunt capacitance arises 

mainly from the capacitance across the insulation between the electrode shaft and the surrounding 

electrolyte as well as the cumulative capacitance along cables and connectors between the 

electrode and head stage amplifier (Robinson, 1968). These routes to ground parallel to the 

amplifier reduce the effective amplifier impedance, and being capacitive, this effect increases with 

signal frequency.  
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Signals at the tip of the electrode (Vsig) generate currents (I) that flow to ground through 

the series combination of the effective electrode impedance and the effective amplifier input 

impedance: 
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The voltage at the input of the amplifier (Vin) is given by  
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Equation 2 shows that Za' and Ze' form a voltage divider so that when Za' is not 

substantially  larger than Ze', Vin will be less than Vsig.  This signal attenuation will be 

accompanied by a phase shift between Vsig and Vin because Za' and Ze' are complex values with 

phases and magnitudes.  When multiplying and dividing complex numbers, phases are, 

respectively, added and subtracted independently of the numbers’ magnitudes, while the phase of a 

complex sum is the phase of the separately summed real and imaginary fractions weighted by the 

magnitudes of each number, so that larger numbers contribute more to the phase of the resulting 

sum.  Therefore the phase difference between Vsig and Vin equals the phase of the effective input 

impedance Za' minus the phase of the combined impedance Za' + Ze'.  When Za' is much larger than 

Ze' the phase of the combined impedance is dominated by the phase of Za', so the resulting phase 

shift will be negligible.  When this is not the case, potentially noticeable phase shifts will occur 

and will increase in size as both the relative magnitude of Ze' to Za' increases and the overall phase 

difference between Ze' and Za' increases.  The direction of the phase shift will depend on whether 

Ze' is more or less capacitive than Za', resulting in positive or negative going phase shifts, 

respectively.  For example, if Ze' were purely capacitive (phase = -90) and Za' were purely resistive 

(phase = 0), then when the magnitudes of Za' and Ze' are approximately equal, the phase of Vin 

relative to Vsig would be about 45 degrees, indicating that Vin would lead Vsig by this amount.  This 

phase shift would increase towards an asymptote of 90 degrees as Ze' becomes larger than Za'.  

Note that because Za' and Ze' are functions of frequency, the magnitude and phase relationship 

between Vsig  and Vin will be frequency dependent.   
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It is worth noting that only the first amplifier’s input impedance is critical for the 

measurement, as this is the only amplifier that interacts with the electrode and affects the possibly 

considerable voltage drop that may occur across it.  At this stage, the initial amplifier sets its 

voltage using its electrical power source based on its gain and the signal input to it, with the 

limitation that it cannot set a voltage larger than the voltage of its power source.  That signal is 

then sent to following amplifiers and/or recording equipment, and at each stage an additional 

possible voltage divider is created involving the output impedance of the preceding stage and the 

input impedance of the following stage. However, no further signal distortion typically occurs at 

these stages as the input impedance of these stages can usually easily be set well above the output 

impedance of the preceding stage. 

 

Filtering effects  

Physiological data acquisition systems include filters that will affect signals in a manner 

described by the transfer function of the system (H( )) such that: 
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Any filter, analog or digital, that could be applied in real time during data acquisition 

would necessarily introduce some frequency-dependent phase shifts that become large near the 

filter’s pass-band edges. However, once data acquisition has stopped it becomes possible to re-

apply the same filter to time reversed data which imposes exactly the same phase shifts introduced 

during acquisition but in the opposite direction, thus correcting the phase shifts applied during 

acquisition.  This forms the basis for phase-shift free filters that may be applied in post-acquisition 

processing (Mitra 2001). 
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Data collection procedures 

Signals were recorded using a MAP system (Plexon Inc., Dallas, TX) in which signals 

were passed through a first and second amplifier, which we refer to as a head stage and a 

preamplifier, respectively, following the convention of the company that constructed it.  After the 

amplifiers, signals are passed to a multichannel acquisition processor (MAP) for A to D 

conversion and recording.  At the stage of the preamplifier, each input channel is separated into 

two output channels that undergo different analog filtering, with one channel designed to record 

higher frequency spikes and one designed to record lower frequency field potentials, which we 

refer to as the spike and LFP channels, respectively.  In this article, when the outputs from both 

channels are not overlaid, values shown in plots at and below 175 Hz were obtained from the LFP 

channel data, and values at and above that were obtained from spike channel data as indicated on 

the plots.  Taken together, the two outputs enabled us to perform measurements across the entire 

frequency range of interest, and for those frequencies that could be measured through either 

channel (~ 80 Hz to 300 Hz), the results from each channel were the same. 

Most of the data presented in this study was recorded with a HST/8 o50-G20 (Rev 3.0) 

head stage (Plexon Inc., Dallas, TX) with a gain of 20, which we refer to as the low-input 

impedance head stage (38 MΩ input resistance with 3 pF of parallel capacitance and 10 pF of 

series capacitance acting on the input before amplification). This was used with a following 

preamplifier with a gain of 50 (Plexon Inc., Dallas, TX).  The preamplifier was configured as a 

PBX2/16sp/16fp preamplifier with two cascaded 1-pole low-cut Butterworth filters and a 4-pole 

high-cut Butterworth filter for each of 16 spike channels (100 Hz – 8 kHz) and 16 field potential 

channels (0.7 Hz – 170 Hz). Additional filtering by the MAP system’s SIG board causes the 

effective low-cut frequency of the recorded spike channels to be ~ 250 Hz.  Unless otherwise 

specified, all data presented in this study was recorded with this equipment. 
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Different head-stages and preamps were used in some recordings to determine the effects 

of different equipment.  We tested a second head stage (Plexon Inc., Dallas, TX) with a gain of 1, 

HST/8o50-G1-GR, which we refer to as the high input impedance head-stage (> 1 G  input 

resistance with ~ 2 pF of parallel input capacitance and no series capacitance).  This was primarily 

used with a PBX2/16 sp/16 fp preamplifier (Plexon Inc., Dallas, TX) with a gain of 1000 but with 

the same LFP and spike channel filters as the primary preamplifier mentioned above.  We also 

obtained the phase response of the LFP channel of a second preamplifier for signals up to 300 Hz 

passed directly to the high input impedance head stage across no resistance.  This preamplifier was 

configured as a PBX/16sp-r-G50/16fp-G50 preamplifier (Plexon Inc., Dallas, TX) with 16 spike 

channels (spike data not shown) and 16 field potential channels (1-pole Butterworth filters, cutoffs 

of 3.3 – 88 Hz).  Because this configuration resulted in an overall gain of 50 between the head-

stage and preamp instead of an overall gain of 1000 that occurred with all other recordings, larger 

voltage signals were tested with this combination of equipment to compensate, though all other 

equipment and procedures were kept the same.  The resulting data from this test is shown in the 

grey line in Figure 6.7. 

The MAP unit can also record additional analog signals via BNC inputs on a separate card 

(National Instruments, TX).  This was used to record the actual non-attenuated voltage signal as 

well as the spike channel data as a continuous signal using the OUT board of the MAP unit.  The 

LFP channel was automatically recorded by this same equipment, and thus all three signals for 

analysis in this study (actual signal, spike channel, and LFP channel) were time-stamped and 

recorded simultaneously by the same equipment.  The sampling rate used for all recordings was 20 

kHz.  Channel 1 was used for all recordings, and the inputs to unused channels were grounded.   

Most voltage signals used in this study were generated by clipping onto the audio output 

pin of a computer playing Matlab-generated .wav files.  This allowed us to present arbitrary 

signals to the system and to reproduce with ease precisely the same signal at many frequencies 
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across different conditions.  Distortions introduced by the audio card of the computer qualitatively 

seemed small for most signals, and were unimportant to the conclusions of the study as we were 

able to record the actual output signal in all cases.  In order to generate signals of the appropriate 

amplitudes for use with the neural recording equipment, signals were first attenuated by a factor of 

about 100 by being passed through a voltage divider constructed by connecting a 100 Ω and 1 Ω 

resistor in series, with the exception of the few tests that were performed with the secondary 

preamplifier using larger and unattenuated voltages.  Some later tests were performed using 

sinusoidal signals created by a function generator (33220A function/arbitrary waveform generator, 

Agilent Technologies, Santa Clara, CA).  Output signals from this were still initially routed 

through the same voltage divider. 

To verify amplifier input impedance, the attenuated signal was passed directly to the head-

stage connector or passed across resistors with impedances varying from 11.5 to 88 MΩ for the 

low-input impedance head stage.  For the high-input impedance head stage, low-frequency signals 

were passed across very high metallic resistances ranging from .5 to 2.5 GΩ, while moderate-to-

higher-frequency signals were passed across moderate resistances ranging from 1.2 to 66.0 MΩ. 

See the impedance calculations subsection in this methods section for a description of how the 

amplifier input impedance was assessed using this data. 

For the electrode data, an apparatus was constructed consisting of two square 7 x 7 inch 

aluminum plates connected together by two plastic supporting rods causing a plate separation of 7 

inches.  A coarse schematic of the apparatus can be seen in Figure 6.1B.  The plates were 

connected with their broad sides facing each other and they stood on their thin edge in a large 

plastic tub filled with either dilute saline with a concentration of 0.225% by weight or 

physiological saline with a concentration of 0.9% by weight.  By passing current between the 

plates, a one-dimensional voltage gradient was created in the dimension normal to the plates’ 

broad sides.  Voltage changed with the horizontal position between the two plates but was 
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approximately uniform in the two directions orthogonal to this: the vertical direction and the 

horizontal direction parallel to the plates.  The dilute saline was initially chosen as its higher 

resistivity allowed for a better control of this gradient.  Later recordings were made with both 

saline concentrations to investigate potential effects of saline concentration on the electrode tip 

impedance.    

To provide a verification of the equivalent circuit model, data was collected under two 

configurations.  In the parallel configuration, the attenuated signal was connected to one plate, 

which we define as the signal plate, with the other plate connected to ground, which we call the 

ground plate.  In this case, when the electrode tip is immersed in the saline it provides a high 

impedance route to ground from the signal plate that is parallel to a lower impedance route through 

the ground plate.  The actual voltage gradient in the saline will primarily be unaffected by the 

presence or the position of the electrode.  This is generally analogous to the case of neural 

recording.  In the series configuration, the ground plate is disconnected from everything, so that 

the electrode would be the only series connection between the signal plate and ground and thus all 

current in the signal passing through the aluminum plate must pass through the electrode and 

amplifier circuit as well.  Resistance between the two plates was measured before and after each 

recording session and found to be around 100 to 200 Ω.  At the start of a session the resistance was 

occasionally larger than this, in which case we sanded down both plates’ surfaces which served to 

lower the impedance to the appropriate level, most likely by removing aluminum oxide or possibly 

solid sodium chloride that had formed on the plates. 

 The electrodes used for data collection solely in the dilute saline with the low input 

impedance head-stage were 5 tungsten microelectrodes, (FHC, Bowdoinham, ME) 3 insulated 

with glass and 2 with epoxylite, with varying impedances ranging from .5 to 9.8 MΩ at 1 kHz per 

the manufacturer specifications.  We tested an additional epoxylite insulated electrode with a 

manufacturer specified impedance of 8.4 MΩ at 1 kHz using only the high-input impedance head 
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stage in dilute saline.  The FHC catalog numbers for the 5 electrodes used with the low-input 

impedance head stage were: UEWLGASEBN1E, UEWLGASEFN1E, UEWLGASGBN4E, 

UEWLGASGDN4E, and UEWLGASGFN4E, and the catalog number for the electrode used with 

only the high-input impedance head stage in dilute saline was UEWLGASEFN1E.  We later tested 

3 additional epoxylite insulated electrodes with manufacturer specified 1 kHz impedances ranging 

from .5 to 10 MΩ with both head-stages and in dilute and/or physiological saline. The catalog 

numbers for these electrodes are: UEWLGASEBN1E, UEWLGASEDN1E and 

UEWLGASEFN1E.  The order in which the tests were performed for both head-stages and saline 

concentrations was varied for each of these electrodes.  Through the course of the experiment the 

impedance of each electrode was independently measured (see Figures 6.3C, 6.4C, and 6.6B), and 

the tests conducted in physiological saline matched reasonably well with the manufacturer 

specified values (see Figure 6.6B). The tip geometry was not varied across electrodes. 

Using a surgical micromanipulator clamping onto a single-channel microdrive, (FHC, 

Bowdoinham, ME) electrodes were suspended from above and lowered to a vertical position 100 

microns below the saline surface at a horizontal position between the two plates 3 mm away from 

the signal plate.  The horizontal distance from the signal plate was set by using the surgical 

micromanipulator to very carefully touch the side of the electrode to the plate as determined by 

careful visual inspection, then advancing it 3 mm away from the plate.  The depth of the saline 

surface was determined through online viewing of the signals recorded by the amplifier while 

adjusting the electrode depth with the microdrive to determine when electrical contact was 

consistently first made between the electrode and the saline.  The electrode was then lowered with 

the microdrive 100 microns beyond that point for data collection.  We compared the data recorded 

from each electrode to data recorded from a specially constructed steel pin reference electrode 

with 0.5 mms of uninsulated tip and negligible tip impedance.  This reference electrode was 

suspended 600 microns below the saline surface, with the horizontal position and other conditions 
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kept the same to obtain an estimate of the actual voltage presented to each electrode, accounting 

for any effects of the aluminum plates and saline.  Data was collected close to the signal plate so 

that the recorded voltages would be as large as possible while maintaining a small voltage gradient 

which resulted from the small output voltages used along with the large horizontal separation 

between the plates.  The small voltage gradients were desired to help diminish the effects of 

variables that could not be reproduced between electrodes with exact precision, such as the 

orientation and horizontal position of the electrode.  Recordings of sinusoidal voltages at a few 

frequencies were conducted after each recording session for each electrode to ensure that the 

electrode’s impedance was not affected by the signals applied during the session.  Only small 

apparent impedance drops were noticed on occasion.  

During data collection with the electrodes and the low-impedance head stage, Za' was 

manipulated by clipping onto the connection between the electrode and the head stage and 

connecting that to ground through different metallic resistors with known impedances (Rsh in 

Figure 6.1A).  This created an additional parallel route to ground downstream of the electrode tip 

and lowered Za' by a known amount. This was done in both the parallel and series configurations 

to create the additional 10 Hz Za' values of approximately 2, 8, and 14 MΩ, in addition to the 

unmanipulated value of 38 MΩ.  

For the electrodes tested in both concentrations of saline, additional impedance 

measurements were made using a commercially available LCR meter (E4980A, Agilent 

Technologies, Santa Clara, CA), which is an instrument that can measure inductance (L), 

capacitance (C) and resistance (R).  Measurements were made in the 4 terminal paired 

configuration with the high potential and current leads ultimately connected to the plate near the 

electrode, and the low potential and current leads ultimately connected to the top of the electrode.  

All other leads to the aluminum plates were disconnected while this measurement was made. In 
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addition to these tests, a corroborating impedance measurement at 1 kHz was made using a 1 kHz 

metal electrode impedance tester (Model Imp-1, Bak Electronics, Mount Airy, MD) 

 

Signals used 

 The bulk of the data for this study was gathered using sinusoidal voltages with frequencies 

varying from 0.5 Hz to 9 kHz.  The exact frequencies (in Hz) tested that underly the data shown in 

each figure are: .5, 1, 2.5, 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 

250, 300, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 6000, 7000, 8000 and 

9000.  The amplitudes of most of the un-attenuated signals were kept approximately constant with 

a peak amplitude of ~ 320 mV for the metallic resistor data and ~ 200 mV for the electrode data.  

For situations in which the resulting signals were too small to record reliably because of the 

combined effects of filters and resistors or electrodes, signal amplitudes were increased to improve 

the signal-to-noise ratio in order to better determine the recorded phases and amplitudes. Every 

data point analyzed however was considered only in terms of the gain relative to the applied 

voltage which was also recorded, so the absolute voltage of the signals was unimportant. 

 The amplitudes used to record electrode data thus corresponded to voltages of less than 2 

mV at the electrode tip. Evoked potentials recorded in cortex with microelectrodes have been 

published with maxima that exceed this (Kandel and Buzsaki, 1997), although physiological 

values at higher frequencies resulting from action potentials typically do not reach this level. 

Current density is known to affect electrode impedance when the current density exceeds a certain 

level (Geddes et al., 1971), but our estimations suggest that with the equipment and signals we 

used, current densities were well below this level.  Additionally, we verified at a few frequencies 

that electrode and amplifier impedance do not appreciably change with current amplitude for the 

signals and equipment we used (data not shown).  This suggests that for physiological recordings 



183 
 
with any reasonable equipment, any distortions that occur will not depend on signal amplitude 

appreciably. 

 The amplitude and phase of the digitized recorded signals were measured in two ways, 

each using 50 cycles of the data.  For most recordings, the nlinfit function in Matlab (MathWorks, 

v. 2007b) was used to find the best sine-wave fit given the known frequency of the sinusoid.  In 

some cases the Hilbert transform was used instead, defining the amplitude as the average 

magnitude of the Hilbert transform and defining the phase as the phase of the first sample resulting 

from a linear fit of the complex phase of the Hilbert transform.  The code used for each method is 

provided in the Supplementary Materials. Amplitude ratios and phase comparisons between the 

recorded and actual signals were always made using the same method for each signal.  For more 

details, see the Supplementary Methods online. 

 For the verification of group delay with data, passband filtered pulse signals with different 

center frequencies were used, similar to what is shown in example 5.1 of (Oppenheim and 

Schaefer, 1998).  A few examples of signals used are shown in Figure 6.9 (see Supplementary 

Materials online). The center frequencies of the filters used also varied from 0.5 to 9 kHz while the 

duration of the signal itself decreased with frequency to allow for more-precise temporal 

localization of the smaller group delays at higher frequencies.  The filter and duration 

specifications were determined to provide the best frequency localization for each signal, given 

that the amplitude envelope varied sharply enough over time to determine the delay between the 

two envelopes at each frequency.  The filtered pulses used were obtained by windowing sinusoids 

of the given carrier frequency with the first of the discrete prolate spheroidal sequences with a 

time-bandwidth product of 1 for a given duration. The maximum voltages of the filtered pulses 

used for each recording session approximately matched the voltage amplitude of the sinusoidal 

signal used for each frequency in the same session.  For these signals, we used the magnitude of 

the Hilbert transform, which can be thought of as the instantaneous amplitude of a time series 
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(Marple 1999a), as an estimation of the amplitude envelope for both the recorded and actual 

signal.  We then determined the amplitude envelope delay to be the time delay at which the cross-

correlation between the actual and recorded envelope estimates was maximal.  For our data this 

gave the exact same results to a previously published method of estimating group delay that we 

later found (Marple 1999b) in which the order in which the cross-correlation and Hilbert transform 

were applied was reversed from what we have presented here.   

 For the shape distortion data, we used a voltage shape obtained from a single neuron’s 

recorded waveform, as well as a frequency-modulated version of the same waveform with signal 

power concentrated in the LFP frequency ranges. The original waveform had a duration of 1 ms, 

which was temporally modulated to have a duration of about 25 ms in the lower-frequency 

version. Properties of the computer’s audio card did distort the lower-frequency waveform 

somewhat, but, again, because we were able to record the actual voltage applied this was 

unimportant as to our purpose of demonstrating shape distortion by the recording equipment.  The 

insets of Figure 6.10 A and B show an estimate of the power spectral density of the actual signals 

sent using a Fourier Transform windowed with the first of the discrete prolate spheroidal 

sequences with a time-bandwidth product of 1 for the duration of the signal. Also, to demonstrate a 

recording of high-frequency spikes recorded simultaneously with lower-frequency field potentials, 

we also used the same passband filtered pulse signals that were used to verify the group delay, but 

with the high-frequency spike waveform added at the highest central peak of the signal.  These 

signals were recorded using one electrode with a 1 kHz impedance verified to be 3.3 MΩ using the 

1 kHz metal electrode impedance tester.  For the presentation of this recorded data, the system’s 

LFP channel output is displayed with the Spike channel added to it around the time of the spike.   

The variance of all the measurements performed in this study was negligible, provided that 

all electrical connections were adequately made and left undisturbed between measurements and 

that the signal amplitudes used for measurements with electrodes were kept sufficiently low to 
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avoid affecting electrode impedance. To estimate the variance that occurs while changing 

electrical connections, we performed measurements with one low impedance electrode at 50 Hz 

several times while alternating connections between the low- and high-input impedance head 

stages and the corresponding following amplifiers between each measurement. There was 

somewhat more variance in the high-input impedance head stage measurements than the low-input 

impedance head stage.  High-input impedance head stage measurements had a range of the raw 

gain spanning 5.3% of the maximal value, while the low-input impedance head stage 

measurements had a range of the raw gain spanning only .3% of the maximal value.  There was no 

systematic trend in the value of the impedance across these measurements, suggesting the 

electrode impedance was not altered by them. 

 

Impedance calculations 

 To determine the effective amplifier input impedance, calculations were made using the 

amplitude ratio (Vrec/Vsig), which we refer to as the gain, observed in the metallic resistor data 

across all frequencies.  To remove the effects of analog filters, the gain for each recording was 

divided by the same signal’s gain in the reference recording where the signal was applied directly 

to the head stage using no resistors at all. We refer to this value as the normalized gain, or here as 

Vrat'.  Vrat' along with the magnitude of the known metallic resistance the signal was sent across, 

which in this case is Ze', can be used to calculate the effective input impedance of the head-stage as 

Za' = (Vrat' · Ze')/(1- Vrat').  This is a rewritten version of equation 2 using Vrat' in place of Vrec/Vsig, 

and considering Vrec and Vsig to be the raw gain of the metallic resistor and reference recording 

respectively. 

 To determine the effective electrode impedance, this same procedure was followed with 

electrode recordings to obtain Vrat', using the gain of the steel pin recordings as the reference 

recording to remove any effects caused by the saline or aluminum plates in addition to removing 
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effects caused by the analog filtering. This along with the known magnitude of Za' was used to 

calculate the effective electrode impedance at each frequency as Ze' = Za' · (1/Vrat' - 1), which is 

again a rewritten version of equation 2 and the equation above.  

We report the value calculated for all the individual Za' values tested for one electrode, 

(Figure 6.3) in addition to the averages for the parallel and series configurations across the 4 tested 

values of Za' for several electrodes (Figure 6.4). In reporting averages of electrode impedance 

measurements in each configuration, a few outlying recordings were discounted for some 

electrodes.   

 

Phase calculations 

 The measured phase shift for each recording was defined as the phase of the recorded 

signal minus the phase of the actual signal, so that a positive phase referred to the recorded signal 

leading the actual signal. The phases were plotted using the unwrap function in matlab to provide a 

seemingly continuous phase response across frequencies. Since the precise value of the phase is 

ambiguous since a phase curve is equivalent to the same curve shifted by any multiple of 360 

degrees, 0 degrees was defined so that the phases for the most frequencies within the passband of 

each channel’s filters were closest to 0 degrees.  For the presentation of electrode-amplifier circuit 

induced phase shifts in Figure 6.5 and 6.6, the filter-induced reference phase shown in black in 

Figure 6.7 was subtracted from the raw recorded phase shift with each electrode to remove the 

common filter-induced phase effects and leave only the phase shifts resulting from the electrode-

amplifier circuit. The filter-induced reference phase was obtained from the recorded phase shifts of 

signals sent directly into the head stage and was comprised of data collected from both the low- 

and high-input impedance head stages as both were used with following preamplifiers with 

identical specified filter properties.  The data above 10 Hz were recorded using the low impedance 

head stage, and the data at and below 10 Hz were recorded with the high impedance head stage 
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which has no series capacitance acting before amplification that introduces additional phase shifts 

in this frequency band.  For the electrode data collected with the high-input impedance head stage, 

the high-input impedance reference phase data was subtracted over the entire frequency range 

recorded to produce the orange curves in Figure 6.5. 

 To calculate group delay, the derivative of the phase with respect to frequency is 

approximated using the change in phase and frequency between each pair of consecutive 

frequency points explicitly measured. Group delay was then calculated according to the equation 

below: 

 

f
Phff

DelayGroup 















 

3602

21
   (4) 

 

Ph is the difference in phase between adjacent frequencies measured in units of degrees, f is 

the difference in frequency in units of Hz, f1 and f2 are the frequencies of the consecutive 

measurements used in the calculation, and group delay is given in units of seconds. The group 

delay measurement using each pair of consecutive frequencies is defined as pertaining to the group 

delay observed at the mean of the two frequencies.   

 

 

 

 

RESULTS 

Determination of amplifier input impedance  

To verify that the equivalent circuit model applies to microelectrode recordings, we 

measured the input impedance for two head stages, one with lower- and one with higher- input 
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impedance.  To do this we measured Vrec with Vsig consisting of sine wave voltages (0.5 to 9 kHz) 

applied to the head stage across different metallic resistances.  Figure 6.2 plots measurements 

made with the lower-input impedance head stage through a range of metallic resistors.  The 

variation of gain (Vrec/Vsig) through the LFP and spike channels as a function of frequency and 

resistance is clear (Figure 6.2A).  By normalizing the gain for each resistor by the gain for signals 

applied directly to the head stage, the filter properties of the system were removed (Figure 6.2B).  

The normalized gain allows us to calculate the effective input impedance of the head stage for 

each resistor (Figure 6.2C).  The input impedance we measured corresponds to the specifications 

of this head stage.  The parallel input capacitance of the head stage causes the input impedance to 

decrease at high frequencies; the series capacitance causes it to rise at very low frequencies.  The 

impedance measurements are largely independent of the resistive load and match well with the 

specified values, except at high frequencies where our measurements are consistently low, 

suggesting an added voltage drop across these resistors.  However, this is expected given the 

presence of the capacitance shunting the amplifier, Csh.  These deviations from the specified input 

impedance at high frequency permit an estimation of Csh which measured ~ 2.7 pF in our recording 

setup.  It is important to note that this value can change for the same equipment according to its 

physical arrangement.  
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 We also tested a head stage with a higher-input impedance which we empirically verified 

in a similar fashion.  Due to the very high input resistance, the effective input impedance for this 
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head stage was largely determined by the capacitance within and outside the amplifier for most 

frequencies.  For low frequencies, we verified there was little voltage drop over very high metallic 

resistances, while for moderate to higher frequencies we verified that there was little voltage drop 

over moderate resistances. 

 

Equivalent circuit verification and signal attenuation 

 After determining the input impedance of the amplifier (Za'), we determined whether the 

equivalent circuit describes signals recorded through metal microelectrodes immersed in dilute 

saline, using the apparatus depicted in Figure 6.1B.  This was done in a parallel configuration and 

a series configuration (Figure 6.1C, see Methods).  If the equivalent circuit model is correct, then 

measurements of electrode impedance should be independent of both the configuration and the 

value of Za'.   

Figure 6.3 plots measurements made with the lower-input impedance head-stage through a 

representative high-impedance, glass-insulated electrode.  Systematic variation of raw (Figure 

6.3A) and normalized (Figure 6.3B) gain (Vrec/Vsig) through the LFP and spike channels was 

observed as a function of frequency and Za' with slightly higher gain in the series than in the 

parallel configuration.  This is to be expected because more total current travels through the saline 

in the parallel configuration, resulting in a larger voltage drop from the signal plate to the electrode 

tip.  The normalized gain at the various values of Za' afforded calculation of the effective electrode 

impedance as a function of frequency (Figure 6.3C).  Electrode impedance measured across signal 

frequencies did not vary with Za' for either parallel or series configurations.  This constancy was 

found for all electrodes tested.  Thus, the equivalent circuit was verified. 
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 The same pattern of results was obtained for electrodes spanning impedance values from 

.5 to 9.8 MΩ (manufacturer specified at 1 kHz) (Figure 6.4).  Beyond extending the verification of 

the equivalent circuit, it is also clear that electrode impedance increased substantially with 
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decreasing frequency, and was 10 to 45 times higher at 10 Hz than 1 KHz, consistent with 

previous reports (Merrill and Ainsworth, 1972; Lemon, 1984).  Note that the rise in electrode 

impedance at low frequencies is not just a result of a constant capacitance across frequencies since 

Re and Ce are generally considered to be frequency dependent themselves (Robinson, 1968; Ferris 

1974), which is supported by our calculations of Re and Ce (Figure S1, see Supplementary Results 

online) that rely on the recorded amplitudes and phase shifts with each electrode and our 

estimation of Za'.  As a consequence of the frequency dependence of the electrode impedance, the 

effective amplifier gain was much less at the lower frequencies.  We have also confirmed this in 

the brain with simultaneous recordings of electrodes with different impedances in the same 

approximate brain location (Nelson et al., 2006).  Tungsten microelectrodes commonly used for 

isolating single spikes are typically 2 to 3 M  at 1 KHz.  Thus, considerable attenuation of LFP 

frequency signals can occur when such electrodes are used with this lower impedance head stage.   

The orange lines in Figure 6.4 show results using the higher impedance head-stage with 

one high-impedance electrode, with a manufacturer specified impedance of 8.4 M .  We can see 

that no considerable attenuation occurs with this electrode, as the normalized gain (Figure 6.4B) is 

close to one over the entire frequency range tested. 
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Electrode-amplifier circuit induced phase shifts  

Besides amplitude attenuation, the equivalent circuit of microelectrode recordings shows 

that signals will also be distorted through frequency-dependent phase shifts.  We measured the 

phase of Vin relative to the phase of Vsig as a function of frequency for signals sent across 

electrodes of different impedances by subtracting the phase-shifts induced by the acquisition 

system’s filters alone from the phase shifts of the same sinusoidal signals recorded with electrodes 

(Figure 6.5A).  Marked phase shifts occurred when using the lower impedance head stage for 

signals below 100 Hz where electrode impedance was higher, and were greater overall for higher 

impedance electrodes.  These phase shifts are positive in direction at lower frequencies and exceed 

80 degrees in our data, which in conjunction with the estimated electrode impedance magnitudes 

suggest that the phase angle of the electrode impedances are nearly a full -90 degrees over these 

frequencies for some electrodes (Figure S1).  At higher frequencies the phase shifts shown in 

Figure 6.5 reverse in direction, becoming slightly negative, suggesting that Za' is more capacitive 

than Ze' at these frequencies because of the shunt and parallel amplifier input capacitance.  The 

phase shifts recorded with the steel pin reference electrode shown by the dashed grey line for this 

head stage are sizeable below 10 Hz, primarily resulting from the series capacitance within the 

head stage acting on the input before amplification. This would thus partly contribute to the phase 

shifts recorded with other electrodes at those frequencies, though for most electrodes these phase 

shifts would be large even without this contribution. The phase shifts also increase in magnitude as 

Za' decreases (Figure 6.6B) as described above, following the predictions of the equivalent circuit.   
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The orange lines in Figure 6.5A again shows results using the higher impedance head 

stage with one high-impedance electrode, demonstrating that like the attenuation, no electrode-

amplifier circuit induced phase shifts occur with this head stage. 
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Saline concentration effects  

After recording data in dilute saline, we were interested in determining if the effects we 

have shown are qualitatively or quantitatively different in physiological (0.9 % by weight) saline.  

From a careful inspection of Figures 6.3 and 6.4, it is apparent that though our measurements are 

consistent with each other, they are noticeably higher than the manufacturer specified impedance 

values. To reconcile this, we made independent impedance measurements using a commercially 

available LCR meter and a 1 kHz metal electrode impedance tester (see Methods) for several 

electrodes in both saline concentrations.  This was done in addition to performing the same 

sinusoidal recordings with both head-stages as we had done before, but without the additional 

manipulations of the value of Za'.  

The results are shown in Figure 6.6. The resulting normalized gains (Figure 6.6A) show 

that there was less voltage attenuation in the physiological saline for both head-stages, though 

considerable low-frequency voltage drops still occurred with the low impedance head stage for all 

tests performed. Interestingly, at high frequencies some attenuation does consistently occur for the 

high-input impedance head stage, and the gains are similar to what is observed with the low-input 

impedance head stage for the same electrodes and saline conditions. This suggests that effects 

from shunt capacitance (Csh) in this recording setup dominate the value of Za' over this frequency 

range and demonstrates that even when using a high input impedance head-stage, investigators 

may want to take care to minimize this capacitance to avoid minor to moderate spiking signal loss 

and shape distortion.  The electrode-amplifier circuit induced phase shifts for the same conditions 

are shown in Figure 6.6C.  This again shows that the phase shifts co-occur with amplitude 

attenuation which can both be quite large at low frequencies with the low impedance head stage in 

either saline concentration. This also shows high frequency phase shifts that are largely 

independent of the head stage, as was found with the high frequency amplitude effects. 
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Figure 6.6B shows the resulting electrode impedances predicted by the model based on the 

low impedance amplifier data in addition to other corroborating measurements. As before, we see 

that the impedance values resulting from the normalized gains in dilute saline are consistently 

larger than the value specified by the manufacturer. However, when performed in physiological 

saline, we see that there is a decrease in impedance measurements that is roughly twofold across 

all frequencies.  This occurred in both the sinusoidal recordings and the measurements of the 

Agilent LCR meter.  The resulting impedance measurements in physiological saline values match 

well with the manufacturer specified impedances, suggesting the saline concentration was the 



198 
 
primary cause of the mismatch between the manufacturer specified impedance values and our 

earlier recordings. 

It is important to note that this change in impedance across different saline concentrations 

is not a result of the changed resistance through the solution itself, but instead reflects an effect on 

the impedance across the electrode/electrolyte interface at the electrode tip. First, the data in each 

case is compared to the steel pin reference electrode data recorded under the same conditions to 

account for changes in the actual voltage at the tip between conditions. The change in saline 

concentration would however affect the value of Rs resulting from the resistance encountered to 

reach the small electrode tip. This has been estimated before to be largely negligible in 

physiological saline compared to the impedance across the electrode tip (Robinson, 1968).  The 

dilute saline would be expected to have a fourfold increase in resistivity compared to physiological 

saline (Grimnes and Martinsen, 2000), but the value of Rs would still remain largely neglible. 

Finally, the value of Rs would not change with frequency.  Since the absolute impedance 

differences between saline concentrations are clearly frequency dependent, it further suggests that 

this results from a change in the impedance across the electrode tip (Re and Ce).   

 

Filter-induced phase shifts  

 

between Vin and Vrec that would add to the phase shifts induced by the electrode-amplifier circuit.  

To isolate this, we measured directly the phase of Vrec relative to the phase of Vsig as a function of 

frequency for signals sent directly to the head stage (Vin = Vsig), shown in black (Figure 6.7) for the 

filters used in the rest of this study with both head stages.  These phase shifts become large near 

the edges of the filters’ passbands, although the raw phase shift within the passbands of these 

filters is considerable as well.   
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 Figure 6.7 shows another characteristic of filter-induced phase shifts.  Over the narrow 

frequency range where a given signal can be recorded simultaneously through both the spike and 

the LFP channels, the outputs of the two channels are out of phase with each other.  While 

expected, this result clearly demonstrates that different phase shifts arise from the different filter 

properties of the two channels. To further illustrate this, we used a second LFP preamplifier with 

different filter properties to record signals up to 300 Hz, with results shown in grey on Figure 6.7.  

Even in the region where the passbands of the two LFP amplifiers overlap, considerable 

differences in the phase response occurs, with each LFP preamplifier inducing characteristic shifts 

from the phase of the input signal. We have also found that phase shifts near the filter passband 

edges can vary from channel to channel for a given preamplifier (Figure S2).  Thus, equipment-

specific filtering properties must be accounted for to report accurately the phase of LFP data, 

especially at frequencies near the passband edges of analog filters. 

 

Group delay 

The phase shift at a given frequency can be translated into a time delay for a pure sinusoid 

at that frequency. If the phase shift were constant across frequencies, this would correspond to a 

progressively decreasing time shift as the frequency increases.  On the other hand, if the phase 

shifts of a system were the result of a pure time delay of the signal, then the phase response would 
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be a linear function of frequency, with the magnitude of the slope reflecting the magnitude of the 

delay.  The negative derivative of the phase with respect to frequency, called the group delay, is a 

useful measure of delay even when the phase response is nonlinear.  For a narrow bandwidth 

around a given frequency where the variation of phase with frequency is approximately linear, the 

group delay measures the delay of the amplitude envelope for all components of signals within this 

narrowband “group” of sinusoids
 
(Oppenheim and Schaefer 1998; Smith 2006).  Note that at any 

particular frequency, the group delay need not equal the time shift calculated directly from the 

phase shift (i.e., the phase shift in fractions of a cycle divided by the frequency), which is called 

the phase delay. The two delays will differ over at least some part of the spectrum if the system’s 

phase response is not entirely linear. When the group delay and phase delay are not equal, the 

system will necessarily distort the shapes of signals in the time-domain (Smith 2006).  

 Figure 6.8A shows the group delay for the electrode data; this is just the negative 

derivative of the low-input impedance head stage phase data from Figure 6.5 (in units of cycles) 

with respect to frequency (see Equation 4, Methods) without the subtraction of the filter-induced 

reference phase.  Group delay varies modestly with electrode impedance and generally decreases 

with increasing frequency.  For comparison, the group delay calculated from the filter-induced 

phase shifts of the black line in Figure 6.7 is shown here, and the group delay for the metallic 

resistor data is shown in Figure 6.8B.  The filter-induced group delay through the LFP channel is 

relatively constant from 25 to 85 Hz at ~ 3 ms, and the group delay through the spike channel 

above 1 kHz is constant at ~ 0.15 ms. The electrode-amplifier-circuit-induced phase shifts in the 

microelectrode data resulted in added delays in the LFP frequency range that varied on average 

from an additional 0.35 ms at 85 Hz to 1.10 ms at 35 Hz.  Over lower frequencies, the additional 

delays were even larger for some electrodes, with the series capacitance within the low impedance 

head stage partly contributing to this.  Recall that the purely filter-induced group delays from 

either head stage will be the same as both use the same filters with the same phase response.  To 
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summarize, the group delay in the spike-related frequency range will not distort spike timing 

appreciably, but the group delay in the LFP frequency range will introduce a systematic delay that 

can become quite large at lower frequencies.   

 

 These conclusions depend on the quality of the group delay function derived from the 

phase shift measurements.  To obtain a more direct measurement of group delay, we sent 

narrowband filtered pulses (see Methods for description, Figure 6.9 for examples) and measured 

the time delay at which the cross-correlation between the actual and recorded envelope estimates 

was maximal.  The dotted traces in Figure 6.8A show the results for two of the electrodes color-

coded for the electrode’s impedance. Each of these traces matches very well the electrode’s 
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calculated group delay. Other electrodes tested in this manner also showed good matches with 

their group delays, as did the metallic resistor data (Figure 6.8B).  This confirms that the group 

delay measured for this system actually measures the delay of the amplitude envelope of a signal 

at a given frequency, which differs from the phase delay of the signal directly calculated from the 

phase shift of the carrier frequency.  
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Distortion of field potential and spike waveforms 

 Because the group delay and phase delay are not equal over many frequencies, and 

because of the amplitude attenuation by analog filters and the electrode itself, we expect distortion 

of recorded waveform shapes in the time domain to occur. To view this, we recorded with and 

without microelectrodes a voltage shape obtained from a single neuron’s recorded waveform as 

well as a frequency-modulated version of the same waveform with the signal power concentrated 

in the LFP frequency ranges (Figure 6.10).  Figure 6.10A shows the results for the LFP frequency 

range waveform, in which the delay in the recorded signal of about 3 to 4 ms can be clearly seen, 

matching the group delay for the relevant frequency ranges comprising this waveform. Electrode-

impedance-dependent distortion of the recorded shapes can also clearly be seen, probably resulting 

largely from the amplitude attenuation properties of the electrode, with more of the lower 

frequencies of the signal being filtered out as electrode impedance increases.  
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 Figure 6.10B shows the results for the raw waveform in the spike frequency range, in 

which the shorter (~ 0.1 ms) delay can also clearly be seen. The effect of electrode impedance can 

be seen in the progressive attenuation of the amplitude of the recorded waveform, with a tendency 

for both the electrode and non electrode data to attenuate the first large negative trough more so 

than the following large positive peak. The most conspicuous shape distortion though, is the 

phantom after-hyperpolarization that is not present in the input signal. Of course the sub-ms delay 

in the overall timing of the spike will have little appreciable impact since the precision of spike 

timing is rarely important to that degree.  However, the amplitude attenuation of the spikes could 

potentially make it more difficult to record and isolate spikes among noise, particularly with 

higher impedance electrodes. As we showed earlier, this cannot be avoided with higher impedance 

amplifiers since Za' in this frequency range is dominated by the shunt capacitance, at least for our 

experimental setup.  The filter-induced phantom after-hyperpolarization suggests that any 

inferences made about this portion of the action potential in particular without adjusting for the 

distortion would be misleading. 

Finally, to demonstrate the effects of these distortions on simultaneously recorded spikes 

and LFPs, we used frequency pulses with the high-frequency spike from Figure 6.10B added to the 

signal at the maximum of the highest central peak.  The results from one medium impedance 

electrode in physiological saline using either head-stage are shown in Figure 6.10C and D. For the 

10 Hz signal, the filter-induced phase shift happens to be near zero at this frequency (see Figure 

6.8), resulting in a near-zero phase shift observed with the high impedance head stage. However, 

electrode-amplifier-circuit-induced phase shifts with the low impedance amplifier cause the carrier 

wave of the recorded signal to lead the actual signal causing the recorded spike to appear on the 

falling edge of the recorded LFP oscillation instead of at its true position at the peak. For the 80 Hz 

signal, the direction of the filter-induced and electrode-amplifier-circuit-induced phase shifts 

counteract each other, with the filter-induced phase shifts dominating and causing the recorded 
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spike to appear well on the rising edge of the recorded LFP oscillation instead of at its true 

position at the peak. It is worth noting that this considerable filter-induced phase shift occurs at 

this frequency even though based solely on the high-frequency cutoff of 170 Hz one might 

superficially expect the phase shift to be negligible at 80 Hz. 

 

DISCUSSION 

Summary 

We have shown that signals recorded with tungsten microelectrodes and an acquisition 

system commonly used in neurophysiology can be distorted substantially from the actual signals at 

the electrode tip.  This distortion consists of frequency-dependent phase shifts and amplitude 

attenuation. The system filters imposed noticeable phase shifts even within their passbands.  The 

observed phase shifts were dependent on the exact specifications of the pre-amplifier selected for 

use in a given system. When the electrode impedance was high with respect to the effective input 

impedance of the head stage amplifier, both attenuation and additional phase shifts of the recorded 

signal occurred.  Of the two head stages we tested, this occurred with the lower input impedance 

head stage and primarily at lower frequencies because of the oft-overlooked fact that 

microelectrode impedance becomes much higher as frequency decreases.  As such, equipment 

designed primarily to record spiking activity may not be able to record LFP activity without 

distorting the signal.  We demonstrated that the distortions decrease with increasing saline 

concentration, but are still considerable with the low-input impedance headstage in physiological 

saline.  Thus, these effects are of particular importance when gathering and interpreting LFP data. 

We showed that phase effects from both sources lead to amplitude envelope delays that differ from 

the direct time equivalent of the phase shift at a given frequency. We have also demonstrated 

shape distortion effects on recorded lower-frequency event-triggered potentials and spike shapes. 
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Impact of distortions 

 If the distortions demonstrated in this study occur and are not accounted for, any analysis 

using such LFP or spike shape data would be affected, and in certain cases this may lead to 

incorrect conclusions. Negative results at lower frequencies in LFP power or coherence (Fries et 

al., 2001a; Liu and Newsome, 2006), particularly at subgamma frequencies (<40 Hz) become 

difficult to interpret as are direct comparisons of these measures across frequencies (Fries et al., 

2001b; Rickert et al., 2005; Womelsdorf et al., 2006).  Measures of absolute LFP phase in relation 

to an event or spikes will be shifted (Bragin et al., 1995; Haslinger et al., 2006; Lee et al., 2005; 

Lin et al., 2006; Murthy and Fetz, 1996; Skaggs et al., 1996) meaning that any mappings of 

potentials onto the times when neurons locally are excited and inhibited (Fries et al., 2001a; 

Haslinger et al., 2006; Lin et al., 2006) will be incorrect. Because of the amplitude envelope 

delays, there will be subtle delays imposed on the timing of changes in frequency power or 

coherence (Womelsdorf et al., 2006). And finally, theoretical interpretations of spike shapes 

(Barthó et al., 2004; Gold et al., 2006; Nowak et al., 2003, Mitchell et. al., 2007) and event-

triggered LFPs (Fries et al., 2001a,b; Krieman et al., 2006) may be incorrect, and techniques using 

waveforms as classification data (Fries et al., 2001a, Krieman et al., 2006) will be affected as well. 

 We would like to clearly indicate that we are not claiming that the results of any of the 

articles we mention above are necessarily distorted or that all of their conclusions should be 

questioned even if some signal distortion did occur.  Indeed different equipment than what we 

have tested was often used, and such studies may or may not be susceptible to such distortions to a 

similar degree. However, due to past and current standards in the literature regarding 

methodological documentation it is not possible for a reader to determine the extent to which LFP 

data in a given publication may have been affected or to be certain that such distortions are 

negligible. In a qualitative review of the LFP literature, we found that though cutoff frequencies 

for filter passbands are usually mentioned, the filter phase response is rarely mentioned.  The filter 
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specifications that are given are typically insufficient for the reader to be sure that the phase 

response will be near zero for the frequency ranges in question, even in cases where this would 

affect some of the conclusions of the article.  Electrode impedance ranges measured at 1 kHz are 

only occasionally mentioned.  The names of companies providing the amplification and recording 

equipment are also occasionally mentioned, but importantly, specific model numbers or relevant 

input impedances of amplifiers are never mentioned.  This additional information should be 

included as well, as we have shown that different products provided by the same company can be 

susceptible to different levels of distortions.  Indication of accounting for all the signal distortions 

we have shown is also never given.   

Additionally, though some conclusions from analyses we have mentioned may be rendered 

incorrect as result of distortions that were not considered, this will not be true of conclusions from 

all analyses of such data. Most notably, comparisons within a given frequency band across 

different conditions using the same equipment should remain valid, though such comparisons at 

lower frequencies may be subject to a lower signal-to-noise ratio. While it is possible that rigorous 

statistical testing like bootstrapping and other methods could alleviate this to a certain extent, if 

potential distortions are a problem for a given data set, uncertainty regarding negative results at 

low frequencies would inevitably remain regardless of the statistical procedures employed on the 

distorted data.  If the signal is analyzed in the time domain which combines LFP activity from all 

frequencies, then if the underlying neural activity between the two conditions differs at all then 

their frequency content must differ and the distortions will affect the recorded activity under each 

condition differently.  As we have shown, the time-domain waveform shape of the signal can be 

distorted, which would thus affect such comparisons across conditions, most notably for results 

involving the precise timing of activity. 

However, an impact of unaccounted signal distortion that is much more important than 

whether or not it may render a given specific analysis to be strictly wrong is that it leads to an 
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overall distorted view of the underlying neural activity and the state of the brain during 

experiments.  With LFPs in particular, though some progress can be made using recorded activity 

merely as an arbitrary signal with which to determine when activity in a brain area generally 

differs between conditions, of critical importance to truly understanding the brain will be to 

determine what the underlying brain states are that give rise to the recorded neural activity.  Signal 

distortions that are not accounted for will lead such mappings to be incorrect.  For example, in one 

recent study (Lin et al., 2006) the authors note that basal forebrain tonic neurons (BFTNs) 

synchronize spiking activity just before the troughs of recorded prefrontal cortex (PFC) LFP theta 

oscillations of about 10 Hz. They interpret this as suggesting that the BFTN synchronization leads 

and probably contributes to a cortical activity increase that results in the LFP trough.  Inferences 

like these are potentially the most fruitful uses of LFP activity to improve our understanding of the 

brain.  However, if their recordings were distorted, which a reader cannot ascertain, then their 

general finding that BFTN synchronization occurs phase locked with PFC theta activity would 

likely still be true, but the reported phase at which this occurs and the theoretical interpretation of 

this relative to the timing of cortical excitation may need to be adjusted.  

Because the distortions we have shown can implicate different underlying neural activity 

as giving rise to recorded data and can also potentially alter certain direct conclusions, they should 

be kept in mind when interpreting any LFP result, though we cannot quantify their extent in any 

given existing article.  Our results also emphasize the importance of including methodological 

details in publications.  Of course not every trivial detail of an experiment can be mentioned so a 

proper balance must be found, but our work illustrates some of the problems that can result from 

reporting too little.  In particular, the mindset that a reader should assume that methodological 

details not mentioned in the article were done correctly by the experimenters without any 

verification of that has obvious negative consequences for the advancement of science.  

Particularly with the advent of web-based supplemental materials there is ample room to put full 
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details of the experimental apparatus in publications.  We also encourage instrument providers to 

post more complete information on their web sites.  However, we feel it is most appropriate for the 

specific equipment used in a study to be documented in the article text or supplemental 

information, rather than solely in an external source like a lab website. This avoids confusion as 

the equipment used often varies between projects in a lab and it allows the reader to more easily 

find the information they need. 

While we hope that our results will lead readers to view existing LFP literature in a 

somewhat different light, our primary concern is that those performing future neurophysiology 

experiments will be more aware of these distortions and either avoid them entirely or account for 

them properly.  Additionally, it is important for authors themselves to understand how this 

recording circuit works, which reveals in what instances and in what ways electrode characteristics 

like impedance will affect recorded signals.  Investigators should not solely rely on equipment 

providers to ensure that their recordings are done correctly.  Among other reasons, the way that 

equipment is arranged in a particular experiment independently of how it is built affects the shunt 

capacitance.  We have shown that even with the best of equipment, this could lead to degradation 

of recorded spiking activity, making isolating single-cell activity in the brain more difficult.   

With regards to electrode-amplifier circuit induced distortions, while our results indicate 

that this will be a problem for a low impedance head stage that has been in use by some for 

recording LFPs, this is not true of all available amplifiers as we have demonstrated with a higher 

impedance head stage.  Indeed, amplifiers with very high input impedances have been easily 

obtainable for some time (Purves, 1981).  It cannot be our place to test all the equipment used in 

neurophysiology today, but we hope that in light of what we have shown, prudent labs will 

determine what distortions arise in their experiments, particularly if their work involves recording 

 stage that we tested in this study 

is, but we do know that some other labs have been using it for recording LFPs with 
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microelectrodes.  Additionally, it seems likely to us that other equipment providers may have 

additionally distributed equipment that results in at least some degree of low-frequency signal 

distortion, as problems could easily result from overlooking or being unaware of the large 

increases in electrode impedance at low frequencies.  Considering electrode impedances at 1 kHz 

as they are often labeled, amplifier input impedances of several tens of M  easily seem 

sufficiently high, though we have shown that indeed they are not for the recording of LFPs. 

 With regards to filter-induced distortions, provided that analog filters are used before 

digitizing and recording potentials, which is for all practical purposes a requirement for most 

recording systems, phase distortions will necessarily occur as they are a property of any causal 

filter.  These distortions are therefore far more prevalent, though they are seldom accounted for in 

existing LFP studies.  Sensitivity to this issue should also be present when considering the use of 

postrecording digital filters, as many of these may introduce phase shifts as well but carefully 

implemented ones may not.  Potential filter-induced phase shifts should always be kept in mind 

when interpreting existing and future results reporting the absolute phases of field potentials 

(Bragin et al., 1995; Haslinger et al., 2006; Lee et al., 2005; Lin et al., 2006; Murthy and Fetz, 

1996; Skaggs et al., 1996), shapes of spikes (Barthó et al., 2004; Gold et al., 2006; Nowak et al., 

2003, Mitchell et al., 2007) and evoked potentials (Fries et al., 2001a,b; Krieman et al., 2006). 

 

 

 

Correction techniques 

An easy way to avoid the electrode-amplifier-circuit-induced portion of the effects that we 

have shown is through hardware adjustments with the use of a head-stage with a much higher 

input impedance than the 38 M  head stage tested for most of this study.  As we have shown, 

amplifiers with low frequency input impedances of 1 G  are sufficient to eliminate this distortion 
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for all practical purposes with the use of most metal microelectrodes under reasonable conditions.  

It should also be noted that shunt capacitance can compromise even the highest amplifier input 

impedances, so care must always be taken to minimize this, for example with the use of minimal-

length cables between the electrode and head stage, negative capacitance injection, driven shield 

arrangements or other techniques (Purves, 1981 pp. 45–49).   

Care should also be taken to select filter properties appropriate for the intended analyses, 

another useful hardware adjustment. Passband edges should be placed as far off as possible from 

the frequency ranges of interest since the region of negligible phase shift is somewhat narrower 

than the region of negligible amplitude attenuation. The number of poles and type of filter can be 

selected to achieve the proper balance between phase distortions and amplitude response 

fluctuations in the passband, both of which form tradeoffs with each other.  

For any of the effects we have shown that could not be avoided during data acquisition, 

software adjustments involving ex post facto correction routines using de-convolutions are 

possible to account for them once the transfer function of all the elements in the circuit are known.  

This is easily obtainable for the recording system itself by recording sine wave voltages spanning 

the frequency spectrum of interest with a desired resolution as we have done in this study, though 

other techniques like the use of a chirp signal may be possible, which would only require the use 

of one test signal.  Signals can be generated using a function generator or a computer’s audio 

output as was done in this study.  If additional electrode-amplifier-circuit-induced effects could not 

be sufficiently mitigated with an appropriate head-stage, measurements of the system transfer 

function including the electrode would need to be performed as well.  Preferably, this should be 

done within the brain before and after a recording session to get the best estimate of the transfer 

function resulting from the electrode’s impedance at the time of recording. Available online in the 

Supplementary Note is a text file containing Matlab code to generate .wav files for signal 

generation, interpret the recorded data to obtain the transfer function, and apply the correction 
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techniques given the empirically obtained transfer function. For Plexon users, a software tool 

provided by Plexon for correcting preamplifier phase distortions can be downloaded from 

www.plexoninc.com/support/phase.html.  

 

Other electrode variables 

There is no indication that the nature of the equivalent circuit described in this article will 

depend on electrode characteristics, though the value of specific model parameters may.  For 

example, insulation material may affect the shunt capacitance to ground, as glass insulation for 

example has been known to be more capacitive than epoxylite (Robinson, 1968), but with 

recordings at a negligible depth we found that results with different insulation materials were not 

qualitatively different. The physical properties of an electrode, which we have not investigated 

here, may also considerably affect the signals recorded by an electrode in a complicated physical 

environment like the brain (Lemon, 1984). 

The basic equivalent circuit we present applies to other types of microelectrodes as well, 

including glass micropipette, carbon fiber and microwire electrodes.  These typically have much 

higher impedances than metal microelectrodes and it has been suggested that with such electrodes 

experimenters have typically used appropriately high-input impedance amplifiers (Geddes et al., 

1967), though we feel documentation of this is still warranted in articles presenting such data. 

 

SUPPLEMENTARY MATERIALS 

Supplementary materials for this article can be found online. 
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FIGURE LEGENDS 

Figure 6.1.  Equivalent circuit model and methods. A: Equivalent circuit model of a metal 

microelectrode in the brain adapted from Robinson 1968.  The entire circuit is comprised of the 

electrode in the brain and the amplifier with a filter.  The effective impedance of the electrode (Ze') 

is comprised of the resistance of the electrolyte solution (Rs), the resistance and capacitance at the 

double layer interface of the electrolyte and the uninsulated electrode tip (Re and Ce) and the 

(negligible) resistance of the metal electrode (Rm).  The effective input impedance of the amplifier 

(Za') is comprised of the input impedance of the head-stage amplifier (Za) and the shunt resistance 

and capacitance to ground from the tip of the electrode to the input of the amplifier (Rsh and Csh).  

http://ccrma.stanford.edu/~jos/filters06/
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The triangle represents an ideal amplifier that draws no current. The nonideal aspects of the 

amplifier have been accounted for in Za.  Given the frequency-dependent potential at the electrode 

tip (Vsig(ω)), a current (I(w)) is drawn towards ground through the electrode and effective 

amplifier circuit, creating the potential (Vin(ω)) at the input of the amplifier which is subject to the 

frequency response of analog filters (H(w)) before being recorded (Vrec(ω)), all according to the 

equation: Vrec(ω) = H(ω)[(Vsig(ω)· Za'(ω))/( Ze'(ω) + Za'(ω))].  Thus, the microelectrode recording 

circuit corresponds to a voltage divider with a frequency-dependent gain due to the filtering of 

H(ω) and the frequency dependence of the impedances Ze' and Za'.  B: diagram of microelectrode 

testing apparatus.  Two aluminum plates were connected and separated from each by 

nonconducting plastic supports, shown here from a top and side view.  The apparatus was 

immersed in dilute saline with voltage signals applied to the signal plate with an electrode 

suspended from above 3 mm away. See the Methods section for more details.  C: equivalent 

circuits for the parallel and series configuration. Rsal1 is the resistance for current to travel from the 

signal plate to the electrode tip in the saline, and Rsal2 is the remaining resistance for current to 

reach the ground plate.  

 

Figure 6.2.  Measurement of effective amplifier input impedance. Plots show amplitude data from 

signals sent directly to the low-input impedance head stage across different metallic resistors (Rm).  

Line colors are coded from grey to red based on the magnitude of Rm, with the precise values for 

each line indicated in A. Spike and LFP channel data (see Methods) are shown overlapping in A, 

but in B and C the vertical dashed line denotes the point where data to the left corresponds to the 

LFP channel data only, and data to the right corresponds to the spike channel data only.  

Frequency is shown on a log scale.  For a list of the exact frequencies tested, please see the Signals 

used subsection in the Methods section.  A: raw gain of the recorded over the actual signal. B: 

normalized gain showing the voltage attenuation across the resistor. This plot shows the raw gains 
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in A for each recording with a greater than zero resistance divided by the raw gain of the reference 

recording, which was the recording in which Rm was zero. C: effective amplifier input impedance 

calculations derived from the above data for each trace. The green dashed line represents the 

reported value of the amplifier alone. 

 

Figure 6.3.  Measurement of effective electrode impedance for one electrode.  Plots show 

amplitude data from signals recorded with one high impedance glass-insulated electrode in dilute 

saline using different manipulated values of Za' with the low-input impedance head stage.  Line 

colors are coded from grey to blue based on the value of Za' at 10 Hz, with the precise values for 

each line indicated in A. Parallel configuration data is shown with solid lines, series configuration 

data is shown with dashed lines. Spike and LFP channel data (see Methods) are shown overlapping 

in A, but in B and C the vertical dashed line denotes the point where data to the left corresponds to 

the LFP channel data only, and data to the right corresponds to the spike channel data only. 

Frequency is shown on a log scale. For a list of the exact frequencies tested, please see the Signals 

used subsection in the Methods section.  A: raw gain of the recorded over the actual signal. B: 

normalized gain showing the voltage attenuation across the electrode, given by the value in A for 

each recording divided by the raw gain of the reference recording, which was done with a steel pin 

with negligible impedance. C: effective electrode impedance (Ze') calculations derived from the 

above data for each trace. Ze' is shown on a log scale. 

 

Figure 6.4.  Voltage attenuation and impedance measurements for several electrodes.  Plots show 

amplitude data from signals recorded with electrodes in dilute saline.  Grey-to-blue lines show 

data recorded using the low-input impedance head stage for electrodes with low-to-high measured 

impedance values at 10 Hz.  The manufacturer specified 1 kHz impedance value for each electrode 

is indicated in A. Values in italics and followed by an asterisk denote data from a glass insulated 
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electrode. Orange lines show data recorded with the higher-input impedance head stage for one 

electrode with a large specified 1 kHz impedance of 8.4 M .  Parallel configuration data is shown 

with solid lines, series configuration data is shown with dashed lines. A and B denote parallel 

confugration recordings with no Za' manipulations, and C shows the average parallel and series 

configuration values across 4 different values of Za'. Spike and LFP channel data (see Methods) 

are shown overlapping in A, but in B and C the vertical dashed line denotes the point where data to 

the left corresponds to the LFP channel data only, and data to the right corresponds to the spike 

channel data only.  Frequency is shown on a log scale. For a list of the exact frequencies tested, 

please see the Signals used subsection in the Methods section.  A: raw gain of the recorded over 

the actual signal. B normalized gain showing voltage attenuation across the electrode, given by the 

value in A for each recording divided by the raw gain of the reference recording, which was done 

with a steel pin with negligible impedance. C:  Effective electrode impedance (Ze') calculations 

derived from the above data for each trace.  Ze' is shown on a log scale. 

 

Figure 6.5.  Electrode-amplifier-circuit-induced phase shifts using electrodes.  All phase shifts are 

shown after subtracting the phase shifts induced by the system filters (see Figure 6.8).  A positive 

phase means that the recorded signal leads the actual signal.  Frequency is shown on a log scale.  

For a list of the exact frequencies tested, please see the Signals used subsection in the Methods 

section. The vertical dashed lines denote the points on each plot where data to the left corresponds 

to the LFP channel data and data to the right corresponds to the spike channel data.  A:  phase 

shifts for signals recorded using different electrodes in the parallel configuration in dilute saline.  

Grey-to-blue lines show data recorded using the low-input impedance head stage for electrodes 

with low-to-high measured impedance values at 10 Hz.  The manufacturer specified 1 kHz 

impedance value for each electrode is indicated.  Values in italics and followed by an asterisk 

denote data from a glass insulated electrode.  Orange lines show data recorded with the higher-
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input impedance head stage for one electrode with large high-frequency impedance.  The dashed 

lines in grey and orange show the phase shifts for the steel pin reference electrode used with the 

low and high impedance headstages, respectively.  B:  phase shifts for signals recorded with a low 

impedance epoxylite-insulated electrode in the parallel configuration in dilute saline with the low 

impedance head stage while manipulating Za'.  Line colors are coded from grey to blue based on 

the manipulated value of Za' at 10 Hz, with the precise values indicated. 

 

Figure 6.6.  Voltage attenuation, phase shifts and impedance measurements with different saline 

concentrations.  In all plots and colors, data recorded in physiological saline is shown with dashed 

lines, and data recorded in dilute saline is shown in solid lines. The saturation level of all colors 

reflects electrode impedance, with the strongest colors showing data collected with the highest 

impedance electrodes. The manufacturer specified 1 kHz impedance value for each electrode is 

indicated in A. All electrodes were epoxylite insulated.  Blue lines show data recorded with the 

low-input impedance head stage in the parallel configuration, orange lines show data recorded 

with the high-input impedance head stage in the parallel configuration, and green lines show 

impedance measurements made with the Agilent LCR meter. Frequency is shown on a log scale 

for all plots.  For a list of the exact frequencies tested, please see the Signals used subsection in the 

Methods section.  A:  the normalized gain showing voltage attenuation across the electrode, as in 

figures 6.3B and 6.4B.  B:  the effective electrode impedance (Ze') calculations, derived from the 

low-input impedance head stage data only in A as well as the measurements made by the Agilent 

LCR meter.  A + denotes an electrode’s manufacturer specified value at 1 kHz, and a x denotes the 

value from the Bak metal electrode impedance tester at 1 kHz made in dilute saline.  

Measurements with the Bak tester in physiological saline were always somewhat lower than the 

dilute saline values, but these are not shown for clarity. Ze' is shown on a log scale.  C: electrode-

amplifier-circuit-induced phase shifts. 
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Figure 6.7.  Filter-induced phase shifts.  The recorded phase shifts of signals sent directly into 

head-stages used with different analog filters are shown, with spike and LFP channel data 

overlapping. A positive phase means that the recorded signal leads the actual signal.  Frequency is 

shown on a log scale.  For a list of the exact frequencies tested, please see the Signals used 

subsection in the Methods section.  Both head-stages were used throughout this study with 

following preamplifiers with identical specified filter properties, which had resulting phase shifts 

shown here in black.  The data above 10 Hz were recorded using the low-input impedance head 

stage, and the data at and below 10 Hz were recorded with the high-input impedance head stage 

which has no series capacitance that introduces additional phase shifts in this frequency band (see 

Figure 10). This black line was used as the purely filter-induced reference phase and subtracted 

from other data recorded with this equipment to determine the phase shifts introduced by other 

sources.  The grey line shows the LFP channel phase shifts recorded for a second preamplifier 

with the high-input impedance head stage.  The dotted vertical lines show the cutoff frequencies 

for the LFP channel filter with its phase response shown in the corresponding color. 

 

Figure 6.8.  Group delays.  Spike and LFP channel data are shown overlapping. Frequency is 

shown on a log scale.  For a list of the exact frequencies tested, please see the Signals used 

subsection in the Methods section. The filter-induced phase shifts were not subtracted from any 

data shown here.  A:  group delay for electrode data.  Grey-to-blue lines show data recorded in 

dilute saline in the parallel configuration using the low-input impedance head stage for electrodes 

with low-to-high measured impedance values at 10 Hz.  Solid lines show group delays calculated 

from equation 4 (see methods) using the recorded phase shifts of sine waves at different 

frequencies, while dotted lines show the measured amplitude envelope delay using narrowband 

filtered pulse signals recorded with two electrodes.  The manufacturer specified values at 1 kHz 
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are indicated in the color legend above the plot.  Values in italics and followed by an asterisk 

denote data from a glass insulated electrode.  The group delays from the filter-induced reference 

phase response (the black lines from Figure 8) are shown by the black line for comparison.  B:  

group delay for metallic resistor data.  Line colors are coded from grey to red based on the value of 

Rm, with the precise values for each line indicated above the plot.  The dotted black line shows the 

measured amplitude envelope delay using narrowband filtered pulse signals sent directly to the 

head-stage with no resistors, which corresponds well with the calculated group delay.  The dotted 

vertical lines show the cut-off frequencies for the LFP channel filter used. 

 

Figure 6.9.  Examples of filtered frequency pulses used for amplitude envelope and group delay 

measurements.  Actual signals presented directly to the head-stage are shown in green, recorded 

signals are shown in red.  For each signal, the raw values are shown with solid lines and the 

Hilbert-magnitude estimations of the amplitude envelope with local average smoothing applied are 

shown with dotted lines.  The maximum point of each estimated envelope is shown with vertical 

dashed lines.  Data are presented for bandpass filtered pulses centered around frequencies of A: 1 

Hz, B: 50 Hz, and C: 1 kHz. LFP channel data are shown in A and B, spike channel are data 

shown in C. 

 

Figure 6.10.  Recorded waveform shapes.  Grey-to-blue lines show waveforms recorded in the 

parallel configuration in the low-input impedance head stage for electrodes with low-to-high 

measured impedance values at 10 Hz.  The manufacturer specified value at 1 kHz indicated in the 

color legend above the plot.  Values in italics and followed by an asterisk denote data from a glass 

insulated electrode.  The thin grey line shows the actual voltage presented, and the thick black line 

shows the voltage recorded with the signal voltage applied directly to the same head-stage.  Dilute 

saline was used for the electrode recordings in A and B, and physiological saline was used for the 
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data in C and D. A: LFP channel data only for a lower-frequency version of the waveform. B: 

Spike channel data only for a higher-frequency version of the waveform.  Beneath each plot is a 

power-spectral density (PSD) estimation of the actual voltage waveform in each plot, obtained 

with a windowed Fourier transform. C and D: 10 and 80 Hz frequency pulse waveforms additively 

combined with the high-frequency spike from B.  LFP channel data is displayed with the Spike 

channel data additively combined to it at the time of the recorded spike. 
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Chapter 7 

 

Do electrode properties create a problem in 

interpreting local field potential recordings? 
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 Local field potential (LFP) recordings within the brain have become an important tool 

used by neuroscientists to make inferences about the activity of a population of cells near an 

electrode. Each passing year analysis of LFPs in neuroscience seems to bring important new 

insights on the possible workings of networks in the brain to produce behavior (Buschman and 

Miller, 2007; Canolty, et al., 2006; Gregoriou et al., 2009; Liu and Newsome, 2006; Lubenov and 

Siapas, 2009; Pesaran et al., 2008; Womelsdorf et al., 2006). Indeed LFPs have become a near-

ubiquitous tool in neurophysiology seemingly in use anywhere extracellular spikes are also 

recorded.  

One issue that often comes up among those who interpret LFP data is uncertainty about 

how electrode impedance and other electrode parameters affect LFP recordings, which presents a 

potential problem in their interpretation. Indeed this is a complex question, as current flow in the 

brain depends on a multitude of factors and extracellular recordings cannot uncover the precise 

neural events giving rise to a specific LFP voltage. Amidst this uncertainty, one commonly 

mentioned idea that exists today is the notion that microelectrodes of different impedances or 

geometries might integrate signals across space differently which could lead to differing results 

between experiments that use electrodes of different impedances to collect LFP data. This notion 

has been frequently expressed verbally by many, though direct discussions of it in the literature 

(Pesaran, 2009) have been more rare. Literature discussing how these electrode parameters affect 

spike recordings (Andersen et al. 2010; Moxon, 1999; Paik et al., 2003; Ward et al., 2009) is more 

commonly found however. Despite the relative prevalence of this question in the field, research 

investigating it has been lacking and no definitive answer to it has been proposed. However, we 

believe that the answer to this question can be found from information gleaned from a range of 

existing literature and published data, though most in the field are not presently aware of this. The 

uncertainty surrounding this issue is important to address as it creates a potential barrier for the 

comparison of LFP data across experiments and laboratories. Furthermore, as the interpretation of 



227 
 
LFPs continues to move beyond its infancy further into the territory of a standard neuroscience 

technique, such comparisons will be increasingly common and important for building consensuses 

in the field.  

As we will describe here, we believe this issue presents one of the rare cases in 

neuroscience in which the answer that would make the work of trying to understand the brain 

easier also happens to be true. That is to say, provided that the proper recording equipment is used, 

the impedance and geometry of microelectrode recording sites in the ranges typically used in 

extracellular experiments do not appreciably affect LFP recordings. Scientists in fact do not need 

to attend to this issue when interpreting LFP data or comparing such results across experiments 

and laboratories. 

 To defend this claim, the first point to a priori clarify is that an electrode can be 

considered to report the average voltage present at its uninsulated tip or recording site (Nunez and 

Srinivasan, 2006; Robinson, 1968). Indeed using metal microelectrodes suspended in saline, we 

have verified that this was the case and that this model presented years ago by David Robinson 

does hold true (Nelson et al., 2008). Thus, the only sense in which an electrode integrates a signal 

across space is by determining this average voltage. The shape and size of an electrode’s recording 

site will not, for example, affect the way in which it responds to distant as opposed to nearby 

voltage sources. 

Second, if the proper recording equipment is used, the voltage that is ultimately amplified 

and recorded will not be appreciably electrically affected by the electrode’s impedance. Indeed in 

previous work we demonstrated this to be the case (Nelson et al., 2008). Recorded voltages in 

saline using electrode impedances spanning the range typically used in extracellular experiments 

were independent of the electrode’s impedance when using a head stage with a high (> 1 GΩ) 

input impedance.  This does require some attention from neurophysiologists though, as another 

commercially available head stage we tested had a lower input impedance which led to electrode 
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impedance-dependent signal distortions. Fortunately, when they occur these distortions can be 

corrected post hoc (Nelson et al., 2008) as has been done for several recent publications 

(Gregoriou et al., 2009; Siegel et al., 2009). 

A separate question from whether the impedance of an electrode electrically impacts the 

recorded voltage is the question of whether the size and geometry of the recording site impacts the 

recorded LFPs. Within the framework that we have described here, one can conceive how during a 

recording these parameters could affect the average voltage present over the whole uninsulated 

site, and thus affect the recorded values.  

An electrode’s impedance is of course highly dependent on the size of its uninsulated 

surface area. Indeed impedance, which is more easily measured, is essentially used only as a proxy 

to describe an electrode’s uninsulated surface area, which is of more interest to neuroscientists. For 

spike recordings, for example, the general viewpoints in the field tend to be that larger recording 

sites spanning more of the extracellular space will record more neurons at a given time (Andersen 

et al., 2010; Moxon, 1999; Paik et al., 2003; Ward et al., 2009) while smaller recording sites will 

have more specificity and record individual neurons that are better isolated (Moxon, 1999; Paik et 

al., 2003). These views are not established facts however, and there is at least some contrary 

evidence in the literature (Suner et al., 2005). 

The impact on spike recording set aside, it may be tempting for one to make the claim that 

LFPs are affected by recording site size and geometry. However a closer look reveals that current 

estimates of the spread of LFP signals suggest that these potentials in the brain vary on a spatial 

scale larger than the size of uninsulated electrode recording sites used in extracellular recordings. 

For instance, Katzner and colleagues (Katzner et al., 2009) recently showed that LFPs are more 

local than previously thought, but even their newly lowered estimate still suggests that LFPs 

primarily originate from sources within 100 µm of a given point with noticeable contributions 

coming from up to within 250 µm. Meanwhile, even a 300 kΩ at 1 kHz tungsten electrode, which 
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is a very low impedance by extracellular recording standards and thus has a very large recording 

site, corresponds to a surface area of only 1850 µm
2
 (Yaeli et al., 2009). For a conical electrode at 

even an extreme angle of 10 degrees, this would result in an uninsulated height near 80 µm, as 

illustrated in Figure 7.1. Similar data published for platinum-iridium electrodes (Lemon, 1984; 

Tielen et al., 1971) ultimately yields the same conclusion and further suggests that this will hold 

true for other metals as well. Changing the size and shape of a recording site within this range 

would not likely appreciably affect the average potential found over the site based on current 

estimates of the spread of LFPs. 

 

Thus we feel that evidence available in the literature suggests that the impedance, size and 

shape of the recording sites of microelectrodes will not affect the recording of LFPs. This holds for 

microelectrodes spanning the range of impedances typically used in extracellular recording 

experiments, provided that head stages of the proper input impedance are used (Nelson et al., 

2008). Of course it would be possible to produce an extremely low impedance microelectrode that 

may indeed report different voltages than typical microelectrodes, but it is not clear that anything 

would be gained by the use of such an electrode. Indeed larger electrode recording sites essentially 

only serve as low-pass spatial filter (Nunez and Srinivasan, 2006), and it would seem that the 

more-precise spatial measurement provided by microelectrodes currently in use would be preferred 

in any reasonable scientific application.  
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Those who might disagree with the claim we have presented here should be clear in their 

reasons for doing so. The framework that we have presented describing the circuit properties of 

microelectrode recordings is generally accepted, though many neuroscientists may be unaware of 

it. Assuming one then does not disagree with this framework, disagreeing with our claim amounts 

to the counterclaim that LFP voltage profiles in the brain change appreciably on a spatial scale 

smaller than a few tens of microns, which is the scale of microelectrode recording sites in use 

today. Thus, for this counterclaim to be true, it is important to note that current beliefs about the 

spread of LFPs must then be wrong. Even if hypothetically LFPs did vary on such a small spatial 

scale, the very precise placement of an electrode within the brain would then likely be of more 

importance than the size and geometry of its recording sites. In such a case it is unclear that it 

would even be possible or desirable to attempt to capitalize on such a fine spatial structure of the 

local field potential. 

Although the electrode parameters of impedance and recording site size likely have no 

effect on the recorded LFP, this says nothing about the effects of the mechanical disruption 

introduced by the electrode. Such effects would likely be dependent on electrode parameters such 

as size and taper angle, though an electrode’s impedance or the size of its uninsulated region 

should not directly influence this. Additional caveats to consider are the effects of increased 

thermal noise and loss of signal due to shunt capacitance, both of which affect recorded voltages 

more as electrode impedance increases
22

. However, we believe that again the evidence suggests 

these will not have large enough effects on LFP recordings to be of notable concern for recordings 

made within typical ranges of parameters. With regards to thermal noise: its magnitude is 

dependent on signal bandwidth as well as electrode impedance, and LFP recordings typically take 

place over a limited bandwidth. Using electrode impedance spectra data from our previous work
15

 

and the well-established formula for thermal noise (Johnson, 1928; Nyquist, 1928) we can derive 

estimates of the amount of thermal noise theoretically expected for different microelectrodes in the 
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frequency band from 0 to 150 Hz given their average impedance in this frequency band, which is a 

generous bandwidth for LFPs. The expected RMS value of this thermal noise was 7.7 µV for an 

electrode with a 3.3 MΩ impedance at 1 kHz and 4.2 µV for an electrode with a 500 kΩ 

impedance at 1 kHz. The different amount of noise between these electrodes, which approximately 

span the range of electrode impedances in use today, is all but negligible in comparison to the size 

of most LFP results of interest. With regards to signal loss through shunt pathways: the impact of 

shunt capacitance in recordings serves to effectively compromise the input impedance of the head 

stage at high frequencies (Cogan, 2008; Nelson et al., 2008; Robinson, 1968), which results in 

electrode impedance-dependent signal loss and distortions at those frequencies. However, this 

impact declines as frequency decreases. Indeed during test recordings with metallic resistors and 

electrodes suspended in saline, we found that as frequency decreased, shunt capacitance ceased to 

impact recordings starting in the 300 to 400 Hz range (Nelson et al., 2008), well above the LFP 

frequency ranges of interest. We should be clear however that shunt capacitance does depend on 

how the recording equipment is arranged and the impacts could be different in some recording 

configurations. However this has yet to be tested in the literature, and the available evidence we 

mentioned suggests this will not be a problem for LFP frequencies.  

There is still a great deal of interesting future research that is needed to better understand 

the details of what can be inferred about neural activity from a given LFP trace. Indeed there are 

many curiosities and unknowns related to this. But we hope that neuroscientists interpreting LFP 

data can more freely compare results and continue the important work of using field potentials to 

understand the brain without worrying about the possible effect of electrode impedance and 

recording site geometry as one more unknown for concern.  
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FIGURE LEGENDS 

Figure 1.  Electrode recording site sizes relative to the spread of LFPs. Even for a low impedance 

(300 kΩ) electrode with an extremely fine taper angle (10 degrees), the uninsulated recording site 

length is smaller than current estimates of the standard deviation of the spread of LFP signals. 

Larger taper angles or higher impedances correspond to even smaller recording site lengths. The 

average potential across the electrode’s tip should thus not be appreciably affected by variations of 

recording site size within the range of electrodes used for extracellular recordings. Data for the 

spread of LFPs comes from Katzner et al. (2009), while data for electrode recording site sizes can 

be found in Lemon (1984), Tielen et al., (1971) and Yaeli et al. (2009).  
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Chapter 8 

 

Physical model of coherent potentials measured with 

different electrode recording site sizes 
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BACKGROUND 

 For many years, local field potentials (LFPs) have proven to be an important data source 

for improving our understanding of the brain. Despite this, questions surrounding their 

interpretation still remain unanswered, but have been a recent topic of renewed interest in the 

literature (Bedard, et al. 2010; Katzner et al. 2009; Logothetis et al. 2007; Xing, et al. 2009). 

One such question that often arises is: what effect do properties like electrode impedance 

and shape have on recorded LFPs? We argued previously (Nelson and Pouget 2010) that when 

interpreting LFP recordings from microelectrodes, neurophysiologists can ignore for all practical 

purposes the particular size and shape of recording sites provided that they are within the ranges 

normally used for extracellular recordings. The basis for this argument originates from a physical 

model of microelectrode recording circuits (Robinson 1968) that we confirmed experimentally in 

our previous work (Nelson et al. 2008). There we explicitly showed that when using an amplifier 

of appropriately high input impedance, which is available in some but not all commercially 

available recording equipment, the impact on recorded signals of the electrical impedance of the 

microelectrode/tissue interface is negligible. The voltage recorded by a microelectrode in this case 

will equal the average voltage present across its uninsulated tip. Yet recording site size could still 

potentially influence recordings on a physical basis by affecting what that average voltage at the 

electrode’s tip is. This could occur if the underlying voltage being measured varies spatially on a 

scale finer than an electrode’s recording site size. However, current estimates of the spatial extent 

of the LFP suggest that 95% of the signals recorded at a given point in space originate from within 

a 250 micron radius (Katzner et al. 2009), which well exceeds the size of microelectrode recording 

sites for the ranges of microelectrodes typically used by neurophysiologists (Yaeli et al. 2009; 

Lemon 1984; Tielen et al. 1971). Thus, the particular size of these recording sites should not affect 

the LFP signals they record. 
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Claims that electrode size and shape should affect recorded LFPs have been made in the 

literature (e.g., Berens et al. 2008; Pesaran 2009, Kay and Lazarra 2010) without mention or 

apparent consideration of this generally accepted theoretical basis of the nature of microelectrode 

recordings (Robinson, 1968). Many neurophysiologists do have some familiarity with a notion that 

larger electrodes record signals from more distant sources, and that this results in differences 

between the signals recorded by electrodes of different sizes. But the separation of the discussion 

in the literature from the basic physical nature of the recordings may obscure to many in the field 

the fact that electrodes average only the signals that exist over the spatial extent of their recording 

site surface areas. Surprisingly, though electrode size has been modeled in different aspects before 

(e.g., Ollikainen et al. 2000, Moffitt & McIntyre 2005, Lempka et al 2011), models of how this 

simple spatial averaging directly affects recorded signals have not appeared in the literature to our 

knowledge. This is the case despite the existence of strong claims that, for example, this spatial 

averaging property should cause different microelectrode sizes within the brain to reveal 

fundamentally different voltage signals (Nunez and Srinivasan, 2006). 

There have been some empirical investigations of the effect of electrode size on the 

coherence of recorded LFPs with unclear results. Bullock and McClune (1989) reported finding no 

difference in coherence when comparing electrode recording sites with 1 micron diameters to 

those with 50 micron diameters, nor when comparing those with 25 micron diameters to those with 

to 250 micron diameters. Kay and Lazzara (2010) later compared coherence between electrodes of 

very different sizes (200 µm vs. 2–3 µm diameters). They found that the much larger electrodes 

reported slightly more coherence, although the spectral power was the same between the different 

electrode sizes. Despite the very large difference in the size of the electrodes they compared, the 

effects that they report were very small, thus their results are not per se incompatible with our 

earlier claim. But if these effects do hold true for large electrode differences, it raises a question as 

to whether this should be considered when comparing LFPs to electroencephalogram (EEG) data 
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recorded from the scalp or electrocorticogram (ECoG) data recorded from the cortical surface, 

both of which are typically done with much larger electrodes.  

In addition to the empirical ambiguity surrounding the question, the theoretical prediction 

of how averaging signals across larger regions of space should be expected to affect the coherence 

of recorded signals is unclear a priori. Competing effects are present as some effects would cause 

larger electrodes to tend to report more coherence, while some effects would cause smaller 

electrodes to tend to report more coherence. Thus, we sought to test what the expected overall 

effect is through quantitative simulations based on the theoretical basis of microelectrode 

recordings. 

Here we explicitly describe a simple physical model to clearly illustrate the theoretical 

basis through which claims about the effect of electrode size and shape on recorded potentials 

should be considered. Importantly, this model highlights that for any differences between 

recording sites to occur, the underlying voltage profile must vary appreciably over the extent of the 

larger recording site’s surface. We then use quantitative simulations of the model using simulated 

and real LFP traces to test the non-obvious result of whether larger electrodes should report higher 

levels of coherence. We find that the modeled low impedance electrodes do indeed report larger 

coherences between areas than the modeled high impedance electrodes. We show that this effect 

continuously increases as the voltage profile is increasingly nonuniform over the extent of the 

larger electrode’s recording site, and that it is robust with respect to the strength of the coherence 

gradient along the voltage profile. We then quantitatively compare coherence reported in LFP, 

ECoG and EEG data across several studies and lab groups, and find evidence for a possible 

modest effect of electrode size in ECoG data only. We extend our simulations to quantify the 

effect on recorded coherence of any given ratio of electrode size to the spatial frequency of the 

underlying neural activity. Combining this with published estimates of the spatial frequencies 

present in each neurophysiological data type confirms the trends we observed in the literature.  
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MATERIALS AND METHODS 

The model. It is trivial to conclude but bears mentioning a priori that the LFP signal must 

vary appreciably over the size of the lower impedance electrode tip for the electrode impedance to 

have the possibility to make any difference at all in the resulting recorded value (Nelson and 

Pouget, 2010). This point should be further obvious if one considers the extreme opposite case in 

which the LFP signal is spatially uniform. It is clear that in this case, the particular locations over 

which the voltage is averaged by electrodes of different sizes would not matter.  

Figure 8.1A shows the most basic version of a physical model of how differences in 

coherence could be observed between electrodes of different sizes. In this model, some subregions 

are highly coherent between two distant locations while some are not. Potentials recorded in the 

subregions with high distant coherence are highly coherent with each other, while potentials in the 

subregions with low distant coherence are not coherent with either subregion. Very low impedance 

electrodes that are large relative to the size of the subregions would extend across the subregions 

(Figure 8.1B, left) and would thus always report the average activity between the subregions. In 

contrast, microelectrodes that are small relative to the size of the subregions would tend to fall into 

a single subregion and would thus reflect the activity of one or the other subregion by chance 

depending on the random precise placement of the electrode (Figure 8.1B, right). In this situation, 

the low impedance electrodes would reliably have moderate coherence as the voltage they record 

would always include that of the high distant coherence subregion, but this activity would also 

always be averaged with that of the less coherent low distant coherence subregion. In contrast, the 

microelectrodes would occasionally record very low coherence on some recordings when they 

happen to be in low distant coherence subregions, but they would also occasionally record very 

high coherences when both electrodes happened to be in high coherence subregions. Competing 

effects would thus be present in determining which electrode type would be expected to have the 
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higher coherence on average, with the result depending on the properties of signal averaging 

before calculating coherence.  

 

The basic model described above can be extended to make quantitative predictions for the 

expected effects of electrodes of particular sizes relative to the spatial variation of underlying 

neural activity. This can be done in the most general sense by modeling the underlying voltage 

profile as a spatial sine wave (Figure 8.6A), since any spatial variation of voltage can be described 

by the contributions of sine wave components at different spatial frequencies. In this version of the 

model, the voltage varies continuously by oscillating sinusoidally between high-and low-distant 
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coherence activity instead of having each type of activity separately confined to distinct subregions 

as in the basic model. Electrode recording sites are modeled to be of precise sizes in relation to the 

spatial wavelength of the sinusoidal voltage profile and placed at random phases of the voltage 

profile, averaging the activity present along their lengths. Using these results, the effects for any 

particular voltage profile and electrode size could then be predicted. 

 

Simulating high-and low-distant coherent activity. To produce testable data that captures 

the key points of the above models, we created 4 LFP traces. Each of the two simulated electrode 

locations in the basic model was comprised of two traces: one corresponding to a high-distant 

coherence subregion and one corresponding to a low-distant coherence subregion. We did this 

both with purely simulated data and real LFP traces, following procedures described below. The 

goal in creating and selecting these traces for the primary simulations was to obtain two LFP traces 

that were highly coherent with each other, which represent the high-distant coherence subregions 

in each location, and two LFP traces that were neither coherent with each other nor the previous 

traces, which represent the low-distant coherence subregions in each location (see Figure 8.1A). 

 

 Using simulated data. We generated simulated LFP signals in Matlab (Natick, 

MA) by adding white noise to sinusoids with a simulated sampling rate of 1 kHz. The period of 

the sinusoid was set to 50.234 samples per cycle in order to avoid the unrealistic situation where 

this was exactly a multiple of the sampling period. This resulted in a signal frequency of just under 

20 Hz. 200 trials of 4 seconds each were simulated for each session. The amplitudes and phases of 

the four signals across trials were determined by sampling from a multivariate normal distribution 

using the mvnrnd function in matlab. For the primary simulations, we set the correlation 

coefficient for both amplitudes and phases to 0.8 between the pair of high-distant coherence 

signals and 0.2 between all other signal pairs. For all signals, the mean amplitude was set to 10 
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arbitrary units with a variance of 2 and the arbitrary mean phase was set to 180 degrees with a 

standard deviation of 60 degrees. The standard deviation of the independent white noise added to 

the sinusoids was set to 1 for the two high-distant coherence traces, and 3 for the low-distant 

coherence traces.  

We performed two additional sets of simulations in order to investigate the effects when 

the coherence differences between the individual traces are smaller. To generate traces with a 

moderate coherence difference, we set the amplitude and phase correlation coefficients to 0.65 

between the high-coherence traces and 0.35 between all other traces. To generate traces with no 

coherence differences between them, we set the amplitude and phase correlation coefficients to 0.5 

between all traces and we set the standard deviation of the independent white noise added to all 

traces to 1. All other parameters were identical parameters to those described above for the 

primary simulations. 

For the primary simulations, the left panel of Figure 8.2A shows the 4 traces used from 

one sample trial using simulated data. The low-coherence pair shows more white noise and 

uncorrelated deviation in their phases and amplitudes than the high-coherence pair. The left panel 

of Figure 8.2B shows for one sample session the coherence of the 4 possible trace pairings 

between locations. This shows that the desired coherence pattern of a high-coherence between the 

two high-distant coherence traces, but a low coherence between all other pairings of traces was 

indeed achieved. For one of the additional simulations to generate traces with no coherence 

differences between pairings, the left panel of Figure 8.4A shows for one sample session the 

coherence of the 4 possible trace pairings between locations. This shows that the desired coherence 

pattern for this simulation of an equally moderate coherence between all pairings of traces across 

locations was again achieved, with some small random differences occurring each session by 

chance. 
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We also tested two other methods of simulating LFP traces with the desired coherence 

patterns. For one method the signal amplitudes were determined as described previously, but the 

relative phases of trace pairs rather than the absolute phases of each trace were determined 

according to independent normal distributions. In this method the relative phase between the traces 

of the higher coherence pair was selected to have a lower standard deviation than the relative 

phase between the traces of the lower coherence pair. In another method, both pairs were 

generated with the same phase distribution, but much more white noise was added to the lower 

coherence pair (100 arbitrary units), which served to sufficiently reduce the coherence involving 
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those signals. Both of these alternative simulation methods yielded identical conclusions to the 

data we present here, so we thus decided to omit the results using these methods for presentation 

clarity and simplicity. 

 

 Using real data. Data were collected from one adult monkey (Macaca mulatta). 

The animal was cared for in compliance with the Guide for the Care and Use of Laboratory 

Animals and the guidelines of the Vanderbilt Animal Care and Use Committee. Two recording 

chambers (RC-1, Gray Matter Research; Bozeman, MT) were surgically implanted into the 

animal’s skull, targeting the frontal eye fields in each area. An 8-Channel acute microdrive system 

(AC8-1, Gray Matter Research) was placed in each chamber. Recordings were subsequently made 

with glass-insulated tungsten microelectrodes (1–2 MΩ, Alpha Omega Engineering, Nazareth, 

Israel) from 1 to 2 millimeters below the depth at which spiking activity was first observed on 

each electrode. LFPs were measured relative to an externally grounded reference which was 

connected to the chamber and the microdrive casing. Voltage signals were amplified (x 1) by a 

high impedance HST/8050-G1 head stage (Plexon Inc., Dallas TX), filtered from 0.2 to 300 Hz 

using a custom built analog filter (Plexon Inc.), further amplified (x 1000), then digitally sampled 

at 1 kHz using a Plexon MAP system (Plexon, Inc.). The transfer function of the entire recording 

system was estimated and adjusted for using procedures described previously (Nelson et al., 2008). 

We performed a deconvolution using an inverse filter restricted to the bandwidth spanning from 

0.5 Hz to 450 Hz. Data from frequencies outside this range were attenuated too strongly to recover 

a stable estimate.  

Neural data was recorded while the monkey performed a search-step task, similar to that 

reported in Murthy et al. (2001). Analyses were performed on data within a time window spanning 

from 50 to 650 ms following the target presentation, during which the recorded LFPs exhibited 20 

Hz activity. 342 correct trials across all target locations were used. 4 out of 15 simultaneously 
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recorded LFP traces were selected from a single recording session. The traces were selected 

manually upon inspection of coherence between the channels. For the primary simulations, the 

traces were selected such that the coherence was high between one pair (designated to be the high-

distant coherence traces) and moderate to low between all other pairs. For an additional simulation 

performed in order to investigate the effects when coherence differences between the individual 

traces were smaller, a separate group of 4 traces was selected such that the coherence between all 

trace pairings was approximately equally moderate.  

For the primary simulations, the right panel of Figure 8.2A shows the 4 traces used from 

one sample trial using real LFP data. The right panel of Figure 8.2B shows for one sample session 

the coherence of the 4 possible trace pairings between locations after assigning each trace to a 

location. Again, the desired coherence pattern was achieved in which the coherence was high 

between the two high-distant coherence traces but low between all other pairings of traces. For the 

additional simulation using traces with approximately equally moderate coherence between all 

trace pairings, the right panel of Figure 8.4A shows for one sample simulated session the 

coherence of the 4 possible trace pairings between locations. Again, the desired coherence pattern 

for this simulation of an approximately equally moderate coherence between all pairings of traces 

across locations was achieved. 

 

Simulating electrode recordings-basic model. Using the 4 LFP traces generated from 

simulated or real data, for 500 simulated sessions we calculated the coherence between the 

locations for two simulated very low impedance electrodes and two simulated microelectrodes. To 

simulate the very low impedance electrodes, we calculated a weighted average of the activity of 

the high- and low-distant coherence traces for each location for each session (Figure 8.1B, left). To 

simulate the microelectrodes, the voltage for each electrode was independently randomly selected 

to be either the high- or low-distant coherence trace for each session (Figure 8.1B, right). To 
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simulate different proportions of subregion space having high- or low- distant coherence, we 

adjusted what we refer to as the high-distant coherent fraction. For the very low impedance 

electrodes, this fraction determined the relative weights of the high- and low-distant coherence 

traces when calculating the average between them. For microelectrodes, this fraction determined 

the probability that a high- or low-distant coherence trace would be selected each session. 

Simulations were run with this parameter set to 0.1, 0.25, 0.50, 0.75 and 0.9. Note that when using 

real data, the individual traces themselves were the same between each session. Thus the same 

precise values were used for the simulated very low impedance electrodes for every session, 

although the simulated microelectrode coherence values using the real data changed randomly 

between sessions. 

 

Simulating electrode recordings-spatial sine-wave model. Using 4 simulated LFP traces, 

for 500 simulated sessions we calculated the coherence between locations for electrodes with 

different recording site lengths while the underlying voltage profile varied continuously between 

the high- and low-distant coherence traces for each location along a spatial sine wave. At the peak 

of the sine wave the voltage was set to the high-distant coherence activity for that location, at the 

trough of the sine wave the voltage was set to the low-distant coherence activity for that location, 

and in between the voltage was set to a continuously varying weighted average of the two. For 

example at the midway point of the sine wave, the voltage was the exact average of the two traces. 

Thus this weighted average precisely corresponds to the high-distant coherence fraction of the 

basic model described above. The individual traces were generated using the same parameters as 

the primary simulations of the basic model, which were the parameters used to generate the results 

shown in Figures 8.2 and 8.3. Electrode recording sites of different sizes were then modeled by 

averaging across different lengths of the sinusoid while randomly determining the phase each 

session according to a uniform distribution spanning from 0 to 360 degrees. Recording site lengths 
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were specified in units of the number of wavelengths of the underlying spatial sinusoid to allow 

for the generalization of the results to any voltage profile spatial frequency. The average activity 

along the recording site length was determined analytically through integration of the sinusoid.  

 

Measuring coherence. We calculated the coherence across locations for each simulated 

session and electrode type, and report for all simulations the average coherence across sessions. 

We calculated the coherence using techniques described in Jarvis and Mitra (2001). For the 

simulated data, we used one large window with a length equal to that of the entire 4 seconds of the 

simulated trial. For the real data, we used a 200 ms window sliding in time across a trial with a 10 

ms step size. We then report the average coherence across time windows for the period of the trial 

used for the analysis, with the center of the window spanning from 150 to 550 ms after the initial 

appearance of the target. In both cases, the first in the series of discrete prolate spheroidal 

sequences were used to window the data, which provided optimal frequency localization for each 

finite temporal window (Slepian, 1983). This provided a frequency bandwidth of ±0.25 Hz and ±5 

Hz for the simulated and real data, respectively. We also investigated the results using the Fisher 

transformed and bias corrected z-scores of coherence as described in Bokil et al. (2007) and found 

no differences in the pattern of results. 

 

RESULTS 

Basic model 

 Figure 8.2C shows the resulting coherence between simulated very low impedance 

electrodes and microelectrodes based on the basic model (Figure 8.1A and B). The simulated very 

low impedance electrodes had higher coherence than the simulated microelectrodes using both 

simulated (left column) and real (right column) LFP traces.  
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 The basic result of Figure 8.2C assumes a balance of subregion space corresponding to 

high and low distant coherence activity. If on the other hand a location is completely comprised of 

a single subregion, a trivial consequence of the model is that the high- and low-impedance 

electrodes will record the same values. To further elucidate the entire relationship of these results 

to the spatial inhomogeneity of the underlying voltage coherence profile, we manipulated the high-

distant coherence fraction of the basic model (see Materials and Methods) across a range of values 

(Figure 8.3). As expected, when this fraction is near the limits of 0 and 1, smaller differences 

between the electrode types are observed. But at even modest departures from uniformity, 

considerable differences between the electrodes appear. These differences peak when the voltage 

coherence profile is farthest from uniform. 
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The results of Figure 8.3 show that when there is a relatively large difference in distant 

coherence between two subregions, averaging across them serves to increase the distant coherence 

reported. To what extent does this still occur when the voltages in the subregions are distinct, but 

with smaller or no differences in distant coherence between them? To investigate this, we 

simulated additional sessions using both simulated and real LFP traces with smaller or no 

coherence differences between the pairs of traces (see Materials and Methods). Figure 8.4 shows 
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that the increase in coherence for low impedance electrodes remained relatively strong for these 

simulations. Moreover, the increase continues to peak at a high-distant coherence fraction of 0.5. 

Thus, the inhomogeneity of an underlying voltage profile regardless of its overall distant 

coherence gradient appears to be the key factor driving this effect. These results were also 

consistent across further simulations we performed at different overall levels of coherence while 

varying the coherence differences between the trace pairs (results not shown). This further 

indicates the generality and robustness of this effect. 

 

LFP, ECoG and EEG comparisons 
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Given the effect shown by the basic model, one might expect electrode size differences to 

play a role when comparing coherences between EEG, ECoG and LFP data which are typically 

recorded with electrodes of very different sizes. EEG electrodes are typically 5 to 10 mm in 

diameter (Nunez and Srinivasan, 2006), ECoG electrodes tend to be about 2 to 5 mm in diameter 

for human studies (e.g. Canolty et al. 2006) or smaller for animal studies (e.g., Sharott et al, 2006; 

Taylor et al. 2005), whereas the recording sites for LFP electrodes can have lengths on the order of 

tens of microns or even smaller (Yaeli et al. 2009).  

However, it is important to first note that the very nature of the underlying voltages 

themselves differs between these different sources of data. Cortical surface voltages underlying 

ECoG data are thought to be more spatially spread than intracranial voltages underlying LFP data 

(Nunez and Srinivasan, 2006, 2010). Scalp voltages underlying EEG data are in turn thought to be 

more spatially spread than cortical surface voltages underlying ECoG data (Nunez and Srinivasan, 

2006, 2010). Thus, electrode sizes cannot be directly compared between the data types as the 

important factor described in the theoretical model that can lead to an effect of electrode size on 

recordings is the size of the electrode in relation to the spatial variation of the underlying voltage 

being measured. For example, the electrode size-related coherence effect that might result from 

one particular size of electrode when recording potentials at the cortical surface would be different 

than what would occur for the same electrode recording potentials either within the brain or on the 

scalp. However, within each data type one can directly compare more moderate electrode size 

differences. 

To demonstrate these differences between the data types and investigate if any effects of 

electrode size on coherence within any of the data types might be subtly visible across published 

studies, we performed a quantitative literature search of published coherence values. Coherence 

will depend on a number of factors, including frequency and behavioral state among others, 

though the effects of such factors can be difficult to predict (Bullock et al, 1995). However, 
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coherence shows a direct and consistent dependence on electrode separation for all three data 

types, resulting largely from the volume conduction of electrical signals. Thus it is important to 

consider the inter-electrode distance when comparing coherence across studies, and in particular 

across data types. In Figure 8.5 we plot available data in the literature for the coherence of 

different data types as a function of inter-electrode distance, documenting the electrode size and 

signal types for each data series. When possible, we selected the highest frequency data available 

in each study. We note the behavioral state of the subjects in each study in the figure caption.  

 

The differing spatial spread of the voltages underlying each data type is immediately 

apparent in Figure 8.5. Similar coherences tend to be found at increased inter-electrode distances 

for ECoG data relative to LFP data, and for EEG data relative to both ECoG and LFP data. For 

EEG data, scalp voltages are spatially spread out enough that recordings have been previously 

shown to be independent of electrode size for all practical purposes (Nunez and Srinivasan, 2006). 

For ECoG data however, further inspection of Figure 8.5 reveals that a modest trend may exist for 

larger electrodes to report higher coherence. Notably, this was investigated directly in one study 
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(Wang et al., 2009) that found that 3-mm-diameter electrodes showed higher coherence at the 

same inter-electrode distances than 1.5-mm-diameter electrodes recorded from simultaneously in 

the same patient. This agrees with the qualitative prediction of the basic model described above. 

For LFP data, there is insufficient published coherence results at multiple electrode distances to 

allow us to come to an empirically based conclusion of the presence or absence of a noticeable 

effect of electrode size on typical recordings of that data type. 

 

Spatial sine-wave model 

We used the spatial sine wave version of our model (Figure 8.6A) to quantify when and to 

what extent the effect of electrode size found in the basic model is expected to occur, and further 

to test if this agrees with the trends in the literature data shown in Figure 8.5. Figure 8.6B shows 

the resulting coherence for any ratio of an electrode’s recording site length to the wavelength of 

the underlying spatial sine wave of activity in the model. This ratio captures the amount that the 

voltage profile changes over the extent of a recording site, which is the key factor described by the 

physical model as leading to possible effects of electrode size on recorded voltages. Moreover this 

ratio provides a “common currency” to compare expected electrode-size-related effects between 

data types, even as the nature of the underlying neural signals indeed varies between them. As 

anticipated given the results from the basic model, coherence generally increases as this ratio 

increases. However at both very low and very high values of this ratio, the coherence asymptotes 

and is generally insensitive to the precise electrode size. The results quantify a range between 

values of about 0.8 to about 8 where the ratio is more sensitive to the particular electrode size. 
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 Quantitative predictions can be made from the information in Figure 8.6B by specifying 

one of the two variables in the ratio. For example, the corresponding wavelength of the highest 

spatial frequency present above noise levels in the human cortical surface potential has been 

estimated to be 2.5 mm per cycle (Freeman et al., 2000). For this spatial frequency, this ratio for 

typical ECoG electrodes would range between 0.8 and 2.0, as indicated on the figure. Modest 

effects of electrode size on coherence are indeed expected within this range, which is consistent 

with Wang et al. (2009) and the other ECoG studies shown in Figure 8.5. In contrast, the 
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corresponding wavelength of the highest spatial frequency present above noise levels in the human 

scalp potential has been estimated to be 2.5 cm per cycle (Freeman et al., 2003). For this spatial 

frequency, this ratio for typical EEG electrodes would range between 0.2 and 0.4, as indicated on 

the figure. No appreciable effects of electrode size are expected within this range, which confirms 

previous evidence that EEG data is independent of electrode size for the electrodes typically used 

to record it. For LFP data, the highest spatial frequency present above noise level within the brain 

has not yet directly been shown. However, while it is not a simple step to convert the estimates of 

the point spread function from Katzner et al. (2009) and Xing et al. (2009) into a maximum spatial 

frequency, a wavelength on the order of 250 microns per cycle might provide a reasonable 

educated guess. At this voltage profile wavelength, it seems reasonable that a 200-micron-diameter 

electrode (with a corresponding ratio of 0.8) might show subtle increases in coherence in some 

studies (Kay and Lazarra, 2010) but not others (Bullock et al., 1989). This would also suggest, 

however, that differences among the smaller sizes of microelectrodes typically used during depth 

recordings would not occur. More evidence of this spatial frequency limit in intracranial voltage is 

needed however to draw firmer conclusions about the model’s prediction. 

 

DISCUSSION 

 We developed and tested a simple physical model for LFP recordings of electrodes with 

large differences in recording site sizes. The model predicts that low impedance electrodes tend to 

report higher coherence than higher impedance microelectrodes. However, intrinsic to the model is 

that voltages must vary on a spatial scale smaller than the size of the larger electrode recording site 

for the electrode size to make a difference. Moreover, this difference between electrode sizes 

continuously increases as the voltage profile over the length of the electrode’s recording site is 

increasingly inhomogenous. This effect is robust with respect to the strength of the coherence 

gradient along the spatial voltage profile. We compared previously published reports in the 
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literature for the coherence of LFP, ECoG and EEG data and found evidence for a modest effect of 

electrode size in ECoG data, but not in EEG or LFP data. We further developed the model to 

quantify at what electrode sizes relative to a given voltage profile spatial frequency the electrode 

size is expected to impact recorded coherence. Combining this with estimates in the literature for 

the spatial frequencies present in all these data types confirms the suggestions of the literature 

data.   

As the model points out, the suggestion that a pair of lower impedance electrodes favors 

distantly coherent activity relies upon the spatial voltage profiles at the two recording locations. 

For the extreme example of spatially uniform voltages, the model trivially shows that there would 

be no expected effect of recording site size. But as the voltage profiles increasingly depart from 

uniform, both the basic model and the spatial sine wave model confirm that the electrode size 

effect continuously increases. In the basic model this can be observed as the high-distant 

coherence fraction changes (Figure 8.3 and 8.4). In the spatial sine wave model this can be 

observed as the coherence increases continuously as the number of voltage profile cycles along a 

recording site’s length increases (Figure 8.6), excluding the plateaus observed for relatively very 

small or very large electrodes. The additional simulations varying the coherence gradient (Figure 

8.4) further show that this effect is general to any voltage gradient, regardless of the amount that 

the distant coherence changes along it. It should be emphasized that though there were little to no 

coherence differences between the combinations of trace pairs used for these additional 

simulations, the individual traces were still distinct and sufficiently independent of each other, 

which is required for the effect to occur. 

As we mentioned, the results of the spatial sine wave version of the model shown in 

Figure 8.6 can be used to estimate effects for LFP, ECoG or EEG data. The precision of any 

practical implication of the model however is limited by the accuracy of the knowledge of the 

spatial frequencies present in the underlying voltages. For LFPs, the scale of this spatial variation 
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has yet to be sufficiently quantified. Still, the estimates of Katzner et al. (2009) and Xing et al. 

(2009) do clearly suggest that LFP voltages will not appreciably vary on a scale of tens of microns, 

which is the lengths of electrode recording sites in typical use by neurophysiologists (Yaeli et al., 

2009). Thus the effects of microelectrode sizes for recording LFPs should be negligible, as we 

have argued (Nelson and Pouget, 2010).  

For ECoG data, further empirical evidence may be needed to corroborate the putative 

effect that we have shown in literature data and our simulations. This evidence would be useful 

either in the form of further direct tests similar to the study of Wang et al. (2009), or corroboration 

of the estimates of Freeman et al. (2000) of the spatial frequencies present in cortical surface 

potentials. If it holds true, the effect for ECoG data would not suggest per se that data from larger 

electrodes is faulty. Rather it would just be an effect that must be kept in mind when interpreting 

that data, particularly when considering coherence.  

The model we present implies that once the electrode size is small enough relative to the 

spatial variation of the underlying voltages being measured, recorded data should be independent 

of electrode size. This together with well understood sampling theory dictates that using such 

sufficiently small electrodes with inter-electrode spacing that is small enough to avoid spatial 

aliasing of the signal guarantees the ability to recover all of the information present in the 

underlying voltages. Thus, it may be advisable to attempt to accomplish this during EEG, ECOG 

or LFP electrode array design, though it is conceivable that some tradeoffs and limitations 

surrounding this may exist for some applications. Still, knowledge of the physical model of 

electrode recordings and the nature of the underlying signals one is trying to record should prove 

helpful for the choice and design of arrays for any application. 

It should also be noted that multiple spatial frequencies are present in LFP, ECoG and 

EEG data. Our results show that the effect of electrode size, to the extent that it exists at all for a 

given data type, should be increasingly larger for the higher spatial frequency signals present. The 
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ranges shown in Figure 8.6 for EEG and ECoG data correspond to the most affected spatial 

frequencies for these data types. Each data type also includes contributions from lower spatial 

frequency signals as well, which would correspond to regions to the left of these indicated ranges 

on the plot.  

The model we present also suggests that the variance of coherence across sessions for 

different electrode sizes would be an interesting quantity to investigate empirically, with the 

prediction that this should be higher for smaller electrodes whenever the coherence is dependent 

on electrode size. 

The model that we present is an intentionally simple model targeted at the electrodes 

themselves and exploring the theoretical physical nature of how and under what circumstances the 

sizes of their recording sites might affect their performance. Biological sources of signals could 

certainly be modeled, but the implications resulting from this would be tangential to our focus on 

electrodes and would come at a cost of undesirable added complexity. The basic model we tested 

applies the most extreme version of a spatial voltage gradient, essentially a step function, to 

demonstrate whether or not the effect could be a possibility for less extreme, more realistic 

profiles. This does not reflect a presumption that voltages in the brain would actually change as a 

step function between boundaries. Beyond this, the spatial sine wave model allows us to generalize 

to the expected effect for any spatial frequency present in the voltage profile. More complicated 

profiles could of course be modeled, but as Fourier analysis dictates, these would be identical to a 

summation of spatial sinusoids of different frequencies.  

Existing studies have modeled electrode size under different contexts than what we have 

done here. Ollikainen et al. (2000) considers the electrical shunting effect of covering the scalp 

with conductive EEG electrodes. A notable pair of studies (Moffitt and McIntyre 2005, Lempka et 

al 2011) modeled the effect of electrode recording site size on recording spiking activity within the 

brain using a more complex finite element model with realistic biological sources of both the 
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signals being measured and the noise occluding it. Recording site sizes affect their model by 

changing the conductivity on the particular locations of an electrode between the much lower 

value for that of recording sites and the much higher value for that of the insulated shank. Thus the 

model they present did not directly look at the effects of simple spatial averaging of potentials as 

the model we present does. A further inspection of their model might reveal a near equivalence to 

that of the simple model we present here. However, it is not immediately clear that this is the case. 

Notably, in their description of their model or their results, the authors never explicitly mention 

this property of spatial averaging, which is inherent to the physical model of electrode recordings 

espoused by Robinson (1968). Further inspection of this in the model they present could be of 

theoretical interest. Interestingly, the model they present produces results for spiking activity 

amplitude that are similar to what we show here for LFP, ECoG and EEG coherence. Specifically, 

they suggest that spike recording is fairly independent of recording site size over the range of 

contact sizes typically employed by neurophysiologists (177 to 1250 µm
2
, the tungsten 

microelectrode equivalent of about 2.4 to 0.5 Mohm impedances (Yaeli et al., 2009)), but they did 

find decreased amplitudes for a very large electrode that they simulated (10,000 µm
2
, the tungsten 

microelectrode equivalent of at least < 0.1 Mohm impedance (Yaeli et al., 2009)). 

In contrast, the model we present is macroscopic and considerably simple. We believe this 

is the appropriate level of complication for the aim of this study, which is to provide a simple 

intuitive model for members of the field to understand and apply. This is in contrast to more 

complicated models which may be treated too often as a “black box” by many readers rather than 

engendering an intuitive understanding of their underlying function.  

We believe more adherence to and understanding of the physical nature of electrode 

recordings in the field and in the literature will aid the discussion of the putative effects of 

recording site shape and size on recorded potentials. Too many previous claims in the literature 

that these properties are important to account for while interpreting LFP data (Berens et al. 2008; 
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Pesaran 2009; Kay and Lazarra 2010) do not appear to adhere to any theoretical basis or provide 

any explanations as to precisely how or why effects of these properties would come about. The 

simple model we explore in our simulations provides a more solid theoretical basis on which to 

judge these claims. The results for LFP data indicate to the contrary, that these properties likely do 

not have a substantial effect for the electrodes typically employed by neurophysiologists. Data 

comparing microelectrodes of different impedances within this range of typical use will clearly be 

important to draw firmer conclusions.  
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Figure 8.1. Simple model of an LFP activity profile to produce a difference in recorded coherence 

between electrode types. A: Diagram of discrete subregions in two distant locations with different 

patterns of coherent activity. The subregions between the locations with high-distant coherence are 

highly coherent with each other, while those subregions with low-distant coherence are neither 

coherent with each other, nor with the high-distant coherence subregions. B: Basic model of 

different electrode types within the two locations. Very low impedance electrodes span both 

subregion types and are modeled to average the activity between them for each session. 

Microelectrodes are located in only one subregion at a time and are modeled to report the activity 

of a single randomly selected subregion for each session.  

 

Figure 8.2. Simulated coherence patterns using simulated and real LFP traces. The left column 

corresponds to results using simulated LFP traces and the right column corresponds to results 

using real LFP traces. A: Sample individual signals for the signals with high-distant coherence 

(red and blue) and the signals with low-distant coherence (green and magenta). B: Direct inter-sub-

region coherence across two locations as labeled on the figure for the four subregion combinations. 

The high-high (blue) trace shows the direct coherence between the high-distant coherence 

subregions in each location (see Figure 1A); the high-low (green) trace shows the direct coherence 

between the high-distant coherence subregion in location 1 and the low-distant coherence sub-

region in location 2; the low-high (red) trace shows the direct coherence between the low distant 

coherence subregion in location 1 and the high-distant coherence subregion in location 2; and the 

low-low (magenta) trace shows the direct coherence between the low-distant coherence sub-

regions in each location. C: Average coherence across 500 sessions for simulated very low 

impedance electrodes (black lines) and simulated microelectrodes (gray lines). The high-distant 

coherence fraction was set to the default value of 0.5. 
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Figure 8.3. Simulated coherence patterns of the basic model while varying the high-distant 

coherence fraction. A: Average coherence across 500 sessions for simulated very low impedance 

electrodes and simulated microelectrodes while setting the high-distant coherence fraction to 0.25 

(top row), 0.5 (middle row), and 0.75 (bottom row). The left column corresponds to results using 

simulated LFP traces and the right column corresponds to results using real LFP traces. B: 

Average 20 Hz coherence while varying the high-distant coherence fraction. The left panel shows 

the very low impedance electrode (black) and microelectrode (grey) average 20 Hz coherence 

across 500 simulated sessions using simulated (dashed) and real (solid) LFP traces at different 

values of the high-distant coherence fraction. The right panel shows for the same data the 

difference between the simulated very low impedance electrodes and microelectrodes. 

 

Figure 8.4. Simulated coherence patterns of the basic model while varying the amount of 

coherence difference between subregions. The left column corresponds to results using simulated 

LFP traces and the right column corresponds to results using real LFP traces. A: Direct inter-sub-

region coherence across two locations as labeled on the figure for the four sub-region 

combinations. The left panel reflects an example session of the simulations with no coherence 

difference between the individual traces (corresponding results shown in light grey in panels B and 

C). The right panel reflects an example session of real LFP traces selected to have approximately 

equally moderate coherence. Conventions are the same as in Figure 8.2B. B: Average 20 Hz 

coherence while varying the sub-region coherence difference and the high-distant coherence 

fraction. Both panels show the very low impedance electrode (thick) and microelectrode (thin) 

average 20 Hz coherence across 500 simulated sessions. Results where the underlying traces had 

high, moderate or no coherence differences are shown in black, dark grey and light grey, 

respectively. The high coherence difference results are duplicated from Figure 8.3B, and shown 

here for comparison. C: Difference in coherence between simulated very low impedance 
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electrodes and microelectrodes for the data in panel B. Plotting conventions are the same as in 

panel B. 

 

Figure 5. Coherence against inter-electrode distance data in the literature for LFP, ECoG and EEG 

data. The referring article as well as the data type and the approximate electrode diameter for each 

data series is shown in the legend. Bullock et al. (1990) data are from their Figure 8.2B, 20–40 Hz, 

collected during slow-wave sleep and paradoxical sleep. We report the average across these two. 

This study lists the electrode shank diameter to be 50 µm, suggesting the diameter across the 

uninsulated tip is at least less than this. Jia et al. (2011) data are from their Figure 8D, 30–50 Hz, 

showing spontaneous activity with the subject under anesthesia. This study indicates the electrodes 

used had impedances of 0.4 MΩ. Given the geometrical constraints and the relation between 

impedance and surface area described in Yaeli et al. (2009), this likely suggests a tip size less than 

50 µm. Bullock and McClune (1989) data are from their Figure 4 lower panel, 35–40 Hz, collected 

with the subject under light anesthesia. Wang et al. (2009) data are from their Figure 2B, 60–120 

Hz, collected with the subject awake and relaxed with their eyes open. Bullock et al. (1995) data 

reflect averages of data shown in their Figures 3, 4 and 5, corresponding to frequency ranges 

spanning from 20 to 80 Hz, collected during slow wave sleep, alert or sedated behavioral states. 

Barry et al. (2005) data are from the regression line in their Figure 1 top panel, 1.5–25 Hz, 

collected with the subject in an awake resting state with their eyes closed. 

 

Figure 8.6. Spatial sine-wave model and results A: Model illustration. In this version of the 

model, the amount of distant coherence at each point in space is varied continuously following a 

sine wave. Different sizes of electrode recording sites are modeled to average the underlying 

activity along their lengths with a randomly selected initial phase for each simulated session. B: 

Simulated coherence against the ratio of electrode recording site length to the wavelength of the 
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sinusoidal voltage profile. The average 20 Hz coherence across sessions using simulated data is 

shown. The putative ranges corresponding to typical EEG and ECoG electrodes at the 

corresponding highest spatial frequency of the voltage underlying each data type are indicated. For 

LFP recordings this spatial frequency is presently not clearly known. 
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Chapter 9 
 

Electrical signal distortion in neural tissue on a 

microscale 
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BACKGROUND 

 The extracellular environment in the brain is typically considered to be and modeled as a 

homogenous conductive milieu (e.g., Gold et al., 2006; Nunez and Srinivasan, 2006; Linden et al., 

2011).  However, on a microscale, extracellular space is unequivocally not homogenous (Bedard et 

al., 2006); a point which quickly becomes apparent upon viewing brain tissue in a slice preparation 

under a microscope. Very little of the extracellular space is actual “space”; rather it is mostly 

comprised of neural structures such as glial cells, neuronal cell bodies, axonal fibers, dendritic 

structures, blood vessels, and other inhomogeneities. Indeed extracellular fluid is thought to 

comprise only 12–25% of the brain’s volume (Peters et al., 1991; Braitenberg and Schuez, 1998).  

This homogeneity assumption shapes the interpretation of extracellularly recorded data, 

particularly local field potentials (LFPs). Under this assumption, electrical current and potentials 

are viewed as propagating freely in all directions from all neural sources, as would happen if the 

neural sources were suspended in saline at the same positions. The LFP at a given point in space 

then would be considered to represent a ‘democratic’ summation of the electrical potential 

contributions resulting geometrically from sources and sinks everywhere in the brain. However, if 

the microscale inhomogeneities inherent to neural tissue had an appreciable effect on the 

propagation of electrical signals, this would not be the case. If, for example, the presence or 

absence of a nearby bundle of axonal fibers were shown to affect the contribution of a given 

source or sink to the potential at other locations in the extracellular space, it would reject this 

assumption and change this view of the nature of LFPs.  

Recently in the field there has been a marked interest in understanding the origin and the 

underlying nature of the LFP (Logothetis et al., 2007; Katzner et al., 2009; Xing et al., 2009; 

Kajikawa and Schroeder, 2011; Linden et al., 2011), as well as in knowing the reverse effect that 

LFPs can have on the membrane voltages of individual cells (Frohlich and McCormick, 2010; 

Anastassiou et al., 2011;). All of these authors, however, do not consider or address the potential 
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impact of microscale tissue inhomogeneities. In an older work, David A. Robinson (1968) 

described how such inhomogeneities, specifically the ubiquitous presence of glial cells in brain 

tissue, would be expected to considerably impact the extracellular recording of spiking activity. 

Robinson, however, provides only anecdotal evidence to support his claim, and the effect of 

microscale inhomogeneities has until now never been directly tested experimentally.  

It bears mentioning that it is already known in certain regards that LFPs are not a 

‘democratic’ representation of the average activity of all cells in region (Linden et al., 2011). For 

example, it has been known that a cell type’s morphology determines the geometric distribution of 

sources and sinks that exist when the cell receives synaptic input, which affects how that cell will 

contribute to the extracellular potential at more distant locations (Leung, 1990; Nunez and 

Srinivasan, 2006). A cortical basket cell, for example, has a roughly spherical dendritic structure 

and comprises what has been called a closed field when the cell receives synaptic input (Leung, 

1990; Nunez and Srinivasan, 2006). This is a field in which an equal amount of current sources, in 

this case the cell’s dendritic structure, surrounds the same amount of current sinks, in this case the 

central cell body, in a structure roughly mimicking concentric spheres (Lorente de Nó, 1947; 

Nicholson, 1979; Nunez and Srinivasan, 2006). Because of the geometric cancelation of current 

sources and sinks, such fields do not appreciably contribute to the extracellular potential beyond 

the extent of the dendritic structure of the cell itself (Lorente de Nó, 1947; Nicholson, 1979; Nunez 

and Srinivasan, 2006). The present work seeks to address whether the variations in the microscale 

inhomogeneities of neural tissue surrounding cells presents another ‘undemocratic’ factor that 

should be considered when contemplating the nature of LFP activity and interpreting LFP data. 

We also extend these implications to the ranges of frequencies comprising spiking activity as well. 

 

 

RESULTS 
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 We characterized the effect of microscale inhomogeneities on the transmission of 

electrical signals in the brain using a novel application of existing extracellular and intracellular 

recording techniques in rat brain slice preparations. Using 3 glass pipette electrodes in 

corticostriatal slices, we manipulated the intracellular voltage of an individual cell using the patch 

clamp technique while simultaneously recording extracellularly from two different locations- one 

with an obstructed path from the cell being patched and one with an unobstructed path. Sufficient 

recordings to warrant further analysis were performed for two different primary obstruction types- 

cell bodies, including glial cells and other neurons (n=33), and bundles of axonal fibers (n=18). 

These obstructions were readily visible during the experiment via a microscope, which was used to 

guide the placement of the extracellular pipettes, with the intent of maximizing the difference in 

the severity of obstructions between the obstructed and unobstructed pipettes. The patched cell’s 

membrane voltage was manipulated using sine wave currents with frequencies spanning from the 

slow range of LFPs (< 10 Hz) to frequencies comprising action potential waveforms (~ 1 kHz) and 

higher. Images of example recordings for cell and fiber obstructions, and a diagram of the 

experiment performed are shown in Figure 9.1. The basic results here have been presented 

previously in abstract form (Nelson, Bosch, Venance and Pouget, 2010 Soc Neurosci Abstr).  
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Figure 9.2 plots the average across experiments of the obstructed extracellular pipette 

amplitude minus the unobstructed pipette amplitude within each experiment, normalized so that 
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the resulting values are in units of the fraction of the average recording’s amplitude (see 

Experimental Procedures). The resulting values thus reflect the fraction of the recorded signal that 

is changed based on the obstruction status of an extracellular measurement. Negative (positive) 

values on the plots reflect a relative decrease (increase) in amplitude for obstructed channels. 

Figure 9.2A shows that along an extracellular path, the presence of axonal fibers that could be seen 

online under the microscope led to deleterious amplitude effects over both low frequencies 

(defined as 6 to 926 Hz; n=181 across experiments and frequencies; mean: -0.140 (p<0.001); 

median: -0.109 (p<0.001)) and high frequencies (defined as 1282 Hz to 16.7 kHz; n=124 across 

experiments and frequencies; mean: -0.417 (p<0.001); median: -0.527 (p <0.01)). Figure 9.2B 

shows that the presence of cell bodies led to deleterious amplitude effects over low frequencies 

(n=262; mean: -0.156 (p<0.001); median: -0.054 (p<0.01) but facilitative effects at high 

frequencies (n=148; mean: 0.328 (p<0.05); median: 0.271 (p<0.05).  
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If these obstructions truly impose a deleterious or facilitative effect on the propagation of 

signals as suggested in Figure 9.2, the magnitude of the amplitude effects imposed by a given 
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obstruction should correlate with the severity of the obstruction. For example, when an electrical 

signal traverses a very large and dense bundle of axonal fibers, a larger-amplitude drop should be 

observed than when the same signal traverses a smaller, sparser bundle. Across experiments and 

frequencies, we correlated the differences between the obstructed and unobstructed pipette’s 

amplitudes with our estimation of the degree of the difference in severity of obstructions between 

the two pipettes for each experiment. The later was determined offline from inspection of 

microscope images taken at a series of depths during the experiment. A separate estimate for each 

experiment was used for cell and fiber obstructions individually. Axonal fiber obstruction severity 

correlated with deleterious amplitude effects for both low frequencies (Figure 9.3A upper panel, 

Spearman's rho: -0.097, p<0.05, n=419) and high frequencies (Figure 9.3A lower panel, 

Spearman's rho: -0.331, p<0.001, n=260). Cell body obstruction severity was not correlated with 

any amplitude effects for low frequencies (Figure 9.3B upper panel, Spearman's rho: 0.081, 

p=0.096, n=419), and was correlated with facilitative amplitude effects at high frequencies (Figure 

9.3B lower panel, Spearman's rho: 0.134, p<0.05, n=260). Taken altogether, the correlations of 

amplitude effects with obstruction severity across experiments are consistent with and primarily 

supportive of the obstructions observed in Figure 9.2.  
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Amplitude changes imposed by the obstructions might be accompanied by concomitant 

phase shifts if the phase angle of the impedance across the obstruction differs from the phase angle 
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of the impedance of the extracellular space (for further explanation, see the Supplementary Note). 

Figure 9.4 plots the average across experiments of the obstructed extracellular pipette phase minus 

the unobstructed extracellular pipette phase within each experiment, normalized so that the 

resulting values reflect the change in phase of the extracellularly recorded voltage based on the 

obstruction status of an extracellular measurement (see Experimental Procedures). Positive 

(negative) values on the plots reflect the obstruction having a more capacitive (resistive) nature 

than the rest of the extracellular space. A phase near zero corresponds to no difference in the 

recorded phase between the obstructed and unobstructed channels. For both obstruction types and 

frequency ranges, we did not observe any phase effects in either direction (for fibers (Figure 

9.4A): Low frequencies: n=181; mean: 2.17 degrees (p=0.181); median: 1.421 degrees (p =0.747); 

High frequencies: n=124; mean: -2.10 degrees (p=0.053); median: -1.68 degrees (p =0.530); for 

cells (Figure 9.4B): Low frequencies: n=262; mean: -3.39 degrees (p=0.070); median: 0.442 

degrees (p =0.951). High frequencies: n=148; mean: 4.34 degrees (p=0.275); median: 2.67 degrees 

(p =0.217)). The phases also did not correlate with the differences in obstruction severity (for 

fibers: Low frequencies: Circular-linear correlation coefficient: 0.053, p=0.154, n=419; High 

Frequencies: Circular-linear correlation coefficient: 0.057, p=0.240, n=260; for cells: Low 

frequencies: Circular-linear correlation coefficient: -0.015, p=0.697, n=419; High frequencies: 

Circular-linear correlation coefficient: 0.020, p=0.685, n=260). This null result suggests that the 

impedance across the obstructions was on average the same phase as the impedance across an 

unobstructed extracellular path, though the amplitude results show that the impedance magnitudes 

are indeed affected by the presence of the obstructions.  
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DISCUSSION 

 We used simultaneous extracellular measurements of sinusoidal stimuli that we introduced 

intracellularly to determine if the presence of microscale inhomogeneities that are inherent to 

neural tissue affects the propagation of electrical signals originating from a single cell. Axonal 

fibers imposed deleterious amplitude effects at both high and low frequencies, both of which 

correlated with the severity of the axonal fiber obstruction. Cell bodies imposed deleterious 

amplitude effects at low frequencies and facilitative effects at high frequencies that correlated with 

the severity of the obstruction. However, no significant phase shifts were imposed by either 

obstruction, suggesting that the impedance across the obstructions had a similar phase angle, 

though a different magnitude, to that of the rest of the extracellular space. 

The most important implications of our data are for the interpretation of measurements of 

extracellular potentials, specifically for LFPs. LFPs have had a wide impact on neuroscience 

(O’Keefe and Reece, 1993; Schroeder et al., 1998; Fries et al., 2001; Buzsaki et al., 2002; Peseran 

et al., 2002; Krieman et al., 2006; Womelsdorf et al., 2006; Peseran et al., 2008; Gregoriou et al., 

2009), and there has been recent interest with recent strides made in improving our interpretation 

of them (Logothetis et al., 2007; Katzner et al., 2009; Xing et al., 2009; Kajikawa and Schroeder, 

2011; Linden et al., 2011). This work provides an important piece of that puzzle. These results 

show that for the range of frequencies corresponding to LFP activity, microscale obstructions 

impose deleterious amplitude effects to signals propagating across them. Such effects provide a 

novel sense in which LFPs are not a ‘democratic’ representation of the average activity of all the 

cells in a region, in addition to others that have already been shown, though non-experimentally 

(Lorente de Nó, 1947; Nicholson, 1979; Nunez and Srinivasan, 2006; Linden et al., 2011). Instead, 

because of the cellular organization of the brain, certain neurons or neuron types would thus likely 

contribute more to the recorded LFPs than others based on differential presence of obstructions 

that tend to surround them. For similar reasons, these same effects may contribute to causing the 
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spiking activity of certain neuron types to be recorded less often than others, as we also observed 

obstruction effects over the range of spiking frequencies.  

Our result suggesting that no considerable phase shifts are imposed across both cell body 

and fiber obstructions likewise has important consequences, which in this case does simplify the 

consideration of these effects for the interpretation of LFP data. It is worth clarifying that this 

result however does not imply that there are no phase shifts at all observed in the extracellular 

space, just that the phase of the signal does not depend on the presence or absence of these 

obstructions.  

 Additionally, this work will also be important to biophysicists and computational 

neuroscientists who model electrical signal propagation in the brain. Typically this has been 

modeled as being electrically homogonous (Gold et al., 2006; Nunez and Srinivasan, 2006; Linden 

et al., 2011), although the effect of the inhomogeneity of the extracellular space has been 

considered by some (Bedard et al., 2004, 2006). This work provides the first experimental proof of 

effects specifically related to these inhomogeneities. We show that electrically as well as 

physically, extracellular space in the brain indeed is not homogonous. 

It should be noted that here we investigate the effect of obstructions on a microscale, 

specifically on the scale of tens of microns and the width of individual cells. The effects of such 

obstructions are simply untestable with larger electrode surface areas or large inter-electrode 

separations, for example with the 3 mm interelectrode separation of Logothetis et al. (2007). With 

such large separation, microscale inhomogeneities of the kind we investigate here would average 

out across measurements and in all directions tested. This would give the appearance of 

homogeneity and isotropy, which when considered on the scale of millimeters may indeed be 

reasonably accurate. It is important to note however that all neural electrical sinks and sources 

result from the activity of individual cells, on the scale that we investigate here. Thus, even if their 

effect cannot be studied with larger electrodes and electrode separations, microscale obstructions 
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should affect how each individual source and sink throughout the brain contributes to the LFP at 

other locations. 

 Our results suggest that cell bodies are more obstructive to electrical signals at low 

frequencies than at high frequencies, which is consistent with existing expectations for the flow of 

current through biological tissue, including neural tissue (Grimnes and Martinsen, 2000). It should 

be kept in mind though when comparing between low and very high frequencies in our data that 

lower stimulus amplitudes were applied at higher frequencies as a result of high-cut filters in the 

equipment (see Experimental Procedures). 

 The types of cells comprising the cell body obstructions in our experiments generally 

could not be distinguished, and likely include all neuronal and glial cell types. Earlier claims by 

David Robinson (1968) were that microscale inhomogeneities, and specifically the ubiquitous 

presence of glial cells, were responsible for obstructing the spatial propagation of extracellular 

action potential waveforms in the brain, and thereby affecting the ability of extracellular electrodes 

to record spiking activity. Our data is supportive of Robinson’s overall claim, showing that axonal 

fibers are obstructive at the frequencies corresponding to action potential waveforms, and extends 

his claim further to demonstrate the obstruction of the propagation of LFP activity. However his 

specific claim that glial cells were the primary culprit hindering the extracellular propagation of 

action potentials appears not to be the case based on our data with cell body obstructions at high 

frequencies. Regardless of the specific source of the obstructions, our own anecdotal experience 

from performing awake behaving monkey extracellular recordings, and perhaps that of other 

neurophysiologists, agrees with the picture Robinson describes. Notably, this disagrees with the 

picture of an electrically homogonous space, which is explicitly portrayed best by Gold et al. 

(2006). If extracellular space were effectively homogenous, then as a recording electrode changes 

position, every neurons’ action potential waveform would vary continuously in size and shape as 

the neuron moves closer to or further away from the electrode tip (Gold, et. al, 2006). In our 
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experience this does occur at times, but instead a majority of action potential waveforms often 

suddenly appear with a small advance of an electrode of a few microns. 

 The effects of axonal fiber obstructions were stronger, more straightforward and consistent 

across frequencies as compared to the effect of cell body obstructions. It seems likely that this 

effect may result from the myelination itself around the axonal fibers given the electrical 

properties of myelin (Weiss, 1997), which are known to be present in the striatum at the age of the 

rats we used. We did not attempt to specifically adjust the level of myelination of axonal fibers, 

either by large differences in the age of the rats or through the use of demyelination agents, though 

this could be an interesting manipulation to perform in future studies. A positive result might 

suggest that the use of electrical impedance measurements could perhaps be assistive for the 

diagnosis and assessment of clinical treatments for multiple sclerosis, for example. 

 

Caveats and limitations 

In our experiment, there are a number of variables across sessions that we could not 

control for with this methodology that could conceivably influence the results of any given 

recording session in any given direction. Importantly though, such effects would cancel out over 

the balance of our experiments. For example, other obstructions to current flow that are not visible 

with this methodology are certainly also present in the slice during these experiments, and these 

could bias the propagation of signals in any particular direction over another. Another example of 

such an effect is the morphology of the patched cells and their dendritic structures, which may 

favorably transfer current in particular directions. But such effects would be expected to occur 

equally as often in favor of a particular result as they occur against it. The net effect should be that 

these are just sources of random inter-experiment noise that effectively cancel out over the course 

of enough experiments. Our ability to effectively manage these sources of inter-experiment 
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variability is aided by the within experiment comparisons of our experimental design, and the 

balancing of any conditions that we could control. 

 The data we present here was recorded from the striatum, but there is no particular reason 

to think that the nature of these effects should differ from one brain area to another. Even if the 

packing densities of cells and the density and types of membrane channels differs between 

locations in the brain, the basic nature of cell bodies and axonal fibers as extracellular obstructions 

to electrical signal transmission in relation to brain extracellular fluid should be similar through-

out the brain. At the very least, our demonstration of the effects of these obstructions in the 

striatum should call into doubt any claims of the effect not existing in other areas. Thus we feel 

our results apply to extracellularly record potentials everywhere in the brain. 

 We were limited to performing these experiments in brain slices in order to easily image 

the extracellular environment for placement of the extracellular pipettes into obstructed and 

unobstructed locations. However we believe our demonstration of these effects in an ex-vivo brain 

slice strongly indicates that the same basic effects would be present in the intact brain, even if 

there may be some quantitative differences in the magnitude of the effects. In fact it is possible 

that the effects would be even larger in an in-tact brain, given that in our slice preparation, current 

can easily travel out of the slice and through the bath and avoid obstructions and the tissue 

altogether, while in an intact brain, obstructions have the possibility to encapsulate electrical 

sources and sinks in all 3 dimensions. Further experiments in an intact brain however would of 

course be necessary to know the extent of these effects in that domain. 

 

 

EXPERIMENTAL PROCEDURES 

Recording procedures 
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All experiments were performed in accordance with local animal welfare committee 

(Center for Interdisciplinary Research in Biology) and EU guidelines (directive 86/609/EEC). 

Every precaution was taken to minimize stress and the number of animals used in each series of 

experiments. 

Patch-clamp recordings of striatal neurons were performed in horizontal brain slices (330μm) from 

Oncins France Strain A (OFA) rats (Charles River, L’Arbresle, France) (postnatal days P17–25), 

using procedures described previously (Fino et al., 2005). We chose to perform these recordings in 

the striatum because it is generally a silent structure in a slice preparation. This aided the signal-to-

noise ratio of the detection of the small extracellular sinusoidal signals necessary for the 

experiment. Additionally, the less structured organization of the extracellular space within the 

striatum provided an opportunity to find a variety of obstruction types and environments for 

testing. Using a temperature control system (Bathcontroller V, Luigs & Neumann, Ratingen, 

Germany) most recordings were performed at 34°C, with several recordings performed at 26°C to 

ease the patching of target cells. Slices were bathed in and continuously superfused at 2–3 ml/min 

with an extracellular solution similar to artificial cerebro-spinal fluid (mM): 125 NaCl, 2.5 KCl, 25 

glucose, 25 NaHCO3, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2. Three borosilicate glass pipettes of 9–15 

MΩ impedance were used during the expriment, one to patch an individual cell and two to perform 

simultaneous extracellular voltage recordings at nearby locations in the slice. The intracellular 

pipette was filled with (mM): 105 K-gluconate, 30 KCl, 10 HEPES, 10 phosphocreatine, 4 ATP-

Mg, 0.3 GTP-Na, 0.3 EGTA (adjusted to pH 7.35 with KOH). The extracellular pipettes were 

filled with the same solution used to bathe the slice. Recordings were made with EPC 10-3 

amplifiers (HEKA Elektronik; Lambrecht, Germany) with a very high input impedance (~ 1 TΩ). 

The series resistance for all pipettes were compensated at 75–80%. For all experiments, a circular 

reference electrode surrounding the slice was used to avoid biasing current travel in any direction.  
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During the experiment, individual neurons and the microscale local composition of the 

extracellular space were identified using infrared-differential interference contrast microscopy 

with a CCD camera (Optronis VX45; Kehl, Germany). A target cell was first chosen based on 

apparent cell health and the availability of two adequate extracellular recording locations relative 

to the cell. The extracellular locations were chosen to provide, at approximately the same absolute 

distances from the patched cell, a sufficiently large contrast between the two locations in the 

severity of obstructions that were visible in the microscope images along their extracellular paths 

from the target cell. The two extracellular pipettes were positioned in these locations, and the 

target cell was then patched with the intracellular pipette. Sinusoidal stimuli were then introduced 

intracellularly to the patched cell while simultaneously recording the voltages extracellularly in the 

two locations. The median distance between the patched cell and the extracellular pipettes was 65 

microns, and the median absolute difference of this distance to the patched cell between the two 

extracellular pipettes within each recording was 10 microns.  

Immediately following the experiment, microscope images were digitally recorded every 

5–10 microns above and below the patched cell to verify offline the visible obstructions along the 

extracellular path between the patched cell and each extracellular pipette. Visible obstructions 

typically included cell bodies and clusters of cell bodies, axonal fibers and blood vessels. We 

focused on axonal fiber and cell body obstructions, performing 18 recordings with axonal fibers as 

the most prominent obstruction, and 33 recordings with cell bodies as the most prominent 

obstruction. For the image correlation analyses (see below) we included data from one recording 

with a blood vessel as the primary obstruction. The same hardware channel was always used to 

perform the intracellular patch. The obstructed and unobstructed status of the two extracellular 

hardware channels were balanced across experiments individually within both the group of axonal 

fiber obstruction recordings and the group of cell body obstruction recordings.  
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Stimuli 

Recordings were performed while introducing electrical sinusoidal waveforms 

intracellularly. 20 different frequencies were tested, varying approximately evenly on a 

logarithmic scale ranging from 6 Hz to 16.7 kHz. The specific frequencies tested were: 6, 12, 24, 

40, 80, 113, 160, 225, 321, 450, 641, 926, 1282, 1786, 2500, 3571, 6250, 8333, 12500, and 16667 

Hz. Stimuli from 6 Hz to 1282 Hz were sampled at 16.7 kHz; stimuli above 1282 Hz were 

sampled at 50 kHz. Due to the occasional loss of the patch during the course of the experiment, not 

all frequencies were collected for every recording. Extracellularly recorded traces were weak and 

were typically not visibly apparent in single traces, but they could be detected after averaging 

multiple traces. 100 to 300 traces of 100 to 1500 ms in length were averaged before recording the 

data to disk for offline analyses. Longer stimulus lengths and more traces were necessary for the 

low frequency stimuli. For some recordings, the stimuli were presented in order of increasing 

frequency, but for the majority of the recordings the order of the presentation of the frequencies 

was randomized. Results were similar for each order of frequency presentation.  

Stimuli were introduced with the intracellular electrode in current clamp mode for most 

experiments, and in voltage clamp mode for several recordings. Results between the two methods 

were similar and the data are thus pooled together. The injected current amplitudes ranged from 

200 to 300 pA. At stimulus frequencies of 2.5 kHz and above, current amplitudes were 

progressively lower as a result of high-cut filters with a cutoff frequency of 10 kHz applied to the 

stimulus. Importantly, the extracellularly recorded voltages were unfiltered before their recording. 

Before conducting experiments, we verified that any amplitude changes or phase shifts in the 

recordings across frequencies were negligible, via control recordings with an external signal 

generator in the bath without a slice (Nelson et al., 2008).  
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Analyses 

Offline analyses were conducted in Matlab (Natick, MA).  We determined the amplitude 

and phase of each recorded digitized signal by first averaging the waveform across all the cycle 

lengths of the known input frequency corresponding to that recording. The amplitude was then 

taken as    times the root mean square of the resulting waveform. The phase was determined by 

taking the four quadrant inverse tangent of a 2 dimensional projection of the resulting waveform. 

The x coordinate of the projection was the correlation (in the signal processing sense) of the 

resulting waveform with a cosine waveform, and the y coordinate was the correlation with a cosine 

waveform shifted forward by 90 degrees. As indicated by the Fourier transform of a sample 

recording in Figure 9.1, the amplitude of the recorded extracellular signals at the frequency 

corresponding to the input stimulus was typically well-separated from the noise. We tested several 

other methods to measure the amplitude and phase of the digitized signals, including a normalized 

Fourier transform, all of which yielded near-identical results. 

To view the effect of the obstructions, we normalized each recording as follows. 

Extracellular values were first normalized by the recorded estimates of the intracellular current in 

each experiment. We then computed the average normalized voltages recorded for each 

extracellular hardware channel across all the experiments in each analysis, which included an 

equal number of recordings when the hardware channel was obstructed or unobstructed. Each 

individual extracellular recording was then normalized relative to this mean for its channel, and 

within experiment comparisons were then performed across the extracellular channels using these 

normalized values. Normalization refers to dividing the original amplitude by the normalizing 

amplitude, and subtracting the normalizing phase from the original phase. For the within 

experiment comparison for the amplitude results, the unobstructed channel’s amplitude was 

subtracted from the obstructed channel’s amplitude. Thus the amplitude results can be interpreted 

as the fraction of the average recording amplitude represented by each signal that was changed 
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with the addition of the corresponding obstruction to the extracellular path. Negative (positive) 

values indicate that the amplitude was lower (higher) because of the presence of the obstruction. 

For the within experiment comparison for the phase results, the unobstructed channel’s phase was 

subtracted from the obstructed channel’s phase. Thus the phase can be interpreted as the voltage 

phase shifts imposed by the obstruction. Positive (negative) values indicate that the extracellular 

current paths to the obstructed pipette locations was more capacitive (resistive) than the 

unobstructed paths through the extracellular space itself. Note that a phase value of 0 would reflect 

that no additional phase shifts were imposed by the obstructions, and does not reflect that the 

intracellular current and the extracellular voltage were in phase with each other overall.  

We also investigated using a separate normalization procedure in which we compared the 

values from each channel to the corresponding values from a nonpatch control recording in which 

the two extracellular pipettes were placed in a slice within a few microns of the normal 

intracellular pipette without a cell being patched. The results using this normalization were similar 

to the results we present here. 

 

Statistics— mean and median effects 

 To test the mean and median differences, we pooled the data across low (6 to 926 Hz) and 

high (1282 Hz to 16.7 kHz) frequencies and tested each group separately. Note that none of the 

results are critically dependent on the specific divisions between high and low frequencies. For 

amplitudes, we tested the significance of the mean differences with paired t-tests between 

obstructed and unobstructed channels across frequencies and experiments, and we tested the 

significance of the median differences with signed rank tests. For phases, we tested the 

significance of mean differences following procedures described in Fisher (1993), and we tested 

the significance of median differences using code taken from the circular statistics toolbox in 

Matlab (Berens, 2009). 
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Image analysis 

The microscope images recorded during each session were analyzed offline to verify that 

the effects of the obstructions on the recorded signals correlated with the severity of the 

obstructions. The offline image scoring was done blindly, with the same experimenter scoring all 

of the sessions. Each extracellular pipette from each session received two scores from 0 to 9 

reflecting the severity of the corresponding obstruction type along the extracellular path from the 

cell to the pipette. One score was given for the severity cell body obstructions present, and one 

score was given for the severity of axonal fiber obstructions present.  

The within experiment differences between the extracellular pipettes for the given 

obstruction type score was then correlated across sessions with the within experiment normalized 

amplitude and phase differences between the channels (see above). For the amplitudes, a 

nonparametric spearman correlation was used. A negative correlation corresponds to more 

deleterious amplitude effects as the difference in the severity of the obstructions between the two 

pipettes becomes larger. For the phases, a circular-linear correlation was performed, following 

procedures described in Fisher (1993, p. 161). A negative correlation corresponds to an 

increasingly more capacitive phase shift imposed by the obstruction as the difference in the 

severity of the obstructions between the two pipettes becomes larger. Values were pooled across 

frequencies into the same low and high frequency groups used to test the mean and median 

differences. There were 3 sessions for which the images could not be scored, and these were 

excluded from the analysis.  

We also investigated other methods to score the images offline, including using a simple 

overall impression of the obstruction differences between the channels for each session, or by 
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focusing on just the obstructions near the patched cell or near each extracellular pipette. All of 

these methods yielded similar results.  
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FIGURE LEGENDS 

Figure 9.1. Diagram of Experiment. Microscope image taken during a sample experiment. The top 

panel shows an experiment with a fiber obstruction, and the bottom panel shows an experiment 

with a group of cell bodies obstruction. Black bars indicate the location of the pipettes. The 

patched cell in each panel has been shaded green. In the upper panel the fiber obstruction 

traversing the entire image has been indicated with a white arrow. In the lower panel, the 

extracellular obstruction cell bodies have been shaded red. Sine wave stimuli were introduced 

intracellularly, then simultaneously measured extracellularly at the two locations in the slice. As 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WSS-4FWMF05-H&_user=501045&_coverDate=04%2F07%2F2005&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000022659&_version=1&_urlVersion=0&_userid=501045&md5=c87b9faeddd27144c1b426a97ac7f987
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WSS-4FWMF05-H&_user=501045&_coverDate=04%2F07%2F2005&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000022659&_version=1&_urlVersion=0&_userid=501045&md5=c87b9faeddd27144c1b426a97ac7f987
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indicated in the example, the amplitude of the extracellular voltage signal at the frequency of the 

input signal was well separated from the surrounding noise. 

 

Figure 9.2. Amplitude effects. The mean change in the extracellular signal amplitude imposed by 

the presence of the corresponding obstruction type, taken as the mean across experiments of the 

obstructed channel’s amplitude minus the unobstructed channel’s amplitude. Errorbars show the 

standard error of the mean. Data is normalized to be in units of the proportion relative to the 

overall average signal amplitude. A. Axonal fiber obstructions. B. Cell body obstructions 

 

Figure 9.3. Correlations with obstruction severity. For each experiment and frequency, the 

normalized difference between the obstructed and unobstructed channel amplitudes is plotted 

against the difference between the two channels in the severity of the corresponding obstruction 

type, as assessed offline from inspection of the microscope images of each experiment. A. Axonal 

fiber obstructions. B. Cell body obstructions. The upper panels of A and B correspond to low 

frequency data, while the lower panels correspond to high frequency data. Linear regression lines 

are included. Some data exist outside the y-axis limits shown here.  

 

Figure 9.4. Phase effects. The mean change in the extracellular signal phase imposed by the 

presence of the corresponding obstruction type, taken as the circular mean across experiments of 

the obstructed channel’s phase minus the unobstructed channel’s phase. Errorbars show the 

circular standard error of the mean. Phases above 6 kHz were more variable and are not shown. A. 

Axonal fiber obstructions. B. Cell body obstructions. 



298 
 

Supplementary Note for: Electrical signal distortion in neural tissue 

on a microscale 

Matthew J. Nelson, Clémentine Bosch, Laurent Venance, Pierre Pouget 

 

A simplified model of the electrical circuit for this experiment is shown below. 

 

 

      corresponds to the voltage on the outer surface of the patched cell, which we indirectly 

manipulate with input intracellular sinusoidal stimuli. For simplification, this basic model assumes 

that that voltage is the same everywhere on the outer surface of the cell. The implications of the 

model that we discuss here hold whether considering voltage source or current source stimuli. 

       and      correspond to the voltages measured at the unobstructed and obstructed 

pipette locations, respectively.       and       correspond to the impedance of over different 

portions of the ‘typical’ extracellular space.       corresponds to the length from the cell to the 

pipettes, and       corresponds to the length following the pipettes before reaching the ground or 

the reference electrode. On average, each      term on one side of the model circuit is expected 

to be equal to the same term on the other side of the circuit.      is the impedance of a given 

obstacle. Note that all of these values may be frequency dependent. 

 

Modeling the experiment in this way, the only difference between what determines      and 

       is the added effect of      in determining     . Recognizing that this circuit amounts 
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to a voltage divider on either side of      , the outputs      and        are expressed by 

this model as: 

 

             
     

            
                             

     

                 
 

 (1) 

 

All voltage (V) and impedance (Z) variables are complex values that have magnitudes and phases. 

For the voltages, the magnitude and phase determine the amplitude and phase, respectively, of the 

resulting sinusoidal waveform. The differences between      and        and the input       

will be determined by the resulting phase and magnitude of the right-hand term involving all of the 

impedance components.  

 

If the magnitude of      is appreciable relative to              i.e. the entire impedance 

through the typical extracellular path, then the amplitude of      will be lower than the 

amplitude of       .  

 

The phase effect of      is determined by both its magnitude and phase relative to       and 

     . When multiplying and dividing complex numbers, phases are, respectively, added and 

subtracted independently of the numbers’ magnitudes. When adding and subtracting complex 

numbers, the resulting phase is the phase of the separately summed real and imaginary fractions, 

which means that larger numbers contribute more to the phase of the resulting sum. This results in: 

 

                                                  (2) 

                                                             (3) 
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where ∠  (X) refers to the phase of X.  

 

A purely resistive impedance has a phase of 0, while a purely capacitive impedance has a phase of 

-90. The phases of       and       are equal as the both result from the same typical 

extracellular path. Thus,                 would be the same as         , and the phase of 

       would be the same as       in this model.  

 

If the magnitude of      approaches zero, then its phase is irrelevant in determining        

    1+     2. However, if the magnitude of      is appreciable relative to the 

magnitude of             , and the amplitude results of Figures 9.2 and 9.3 show that this is 

indeed the case for some obstructions, then the phase of      will affect the phase of     . This 

phase shift of the voltage will occur to the extent that the phase of      is different than the 

phase of       and      . However if the phase of      is the same as       and      , 

then regardless of its magnitude, the phase of                      would be the 

weighted average phase of three terms that all have the same phase. The resulting phase would 

thus be the same as         , and as suggested by equation 3, there would be no resulting phase 

shift in     . The pattern of results in the data we present where there are considerable amplitude 

attenuations but no significant phase shifts is suggestive that this is the case with the obstructions 

that we have tested.  

 

More generally, any phase shift in the extracellular space would have to be brought about by 

changes in the phase of the individual components impeding current flow.  
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