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Abstract

Sparse representations accurately model many real-world data sets. Some form of

sparsity is conceivable in almost every practical application, from image and video

processing, to spectral sensing in radar detection, to bio-computation and genomic

signal processing. Modern statistics and estimation theory have come up with ways for

efficiently accounting for sparsity in enhanced information retrieval systems. In partic-

ular, compressed sensing and matrix rank minimization are two newly born branches

of dimensionality reduction techniques, with very promising horizons. Compressed

sensing addresses the reconstruction of sparse signals from ill-conditioned linear mea-

surements, a mathematical problem that arises in practical applications in one of

the following forms: model fitting (regression), analog data compression, sub-Nyquist

sampling, and data privacy. Low-rank matrix estimation addresses the reconstruc-

tion of multi-dimensional data (matrices) with strong coherence properties (low rank)

under restricted sensing. This model is motivated by modern problems in machine

learning, dynamic systems, and quantum computing.

This thesis provides an in-depth study of recent developments in the fields of

compressed sensing and matrix rank minimization, and sets forth new directions for

improved sparse recovery techniques. The contributions are threefold: the design of

combinatorial structures for sparse encoding, the development of improved recovery

algorithms, and extension of sparse vector recovery techniques to other problems.

We propose combinatorial structures for the measurement matrix that facilitate

compressing sparse analog signal representations with better guarantees than any of

the currently existing architectures. Our constructions are mostly deterministic and

are based on ideas from expander graphs, LDPC error-correcting codes and combi-

natorial separators.

iv



v

We propose novel reconstruction algorithms that are amenable to the combinato-

rial structures we study, and have various advantages over the conventional convex

optimization techniques for sparse recovery. In addition, we separately study the

convex optimization Basis Pursuit method for compressed sensing, and propose reg-

ularization schemes that expand the success domain for such algorithms. Our studies

contain rigorous analysis, numerical simulations, and examples from practical appli-

cations.

Lastly, we extend some of our proposed techniques to low-rank matrix estimation

and channel coding. These generalizations lead to the development of a novel and fast

reconstruction algorithm for matrix rank minimization, and a modified regularized

linear-programming-based decoding algorithm for detecting codewords of a linear

LDPC code during an erroneous communication.
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Chapter 1

Introduction

Information theory teaches us that if data contains redundancy, it can be reliably

compressed without losing the essential information content. Claude Shannon (1916–

2001) quantified this statement by introducing the mathematical notion of informa-

tion, and proposing a model for measuring it [Sha48]. In this model, information rate

is somewhat equivalent to the measure of uncertainty in random data. Given this

mathematical model, it is possible to accurately measure the uncertainty of a data

source, or the joint information rate of data generated by various sources. Further-

more, using the same mathematical foundation, it is possible to quantify the reliability

between the input and output of a communication channel. The former led to the

development of source coding, which studies the limits and methods of reliably com-

pressing data, and leads to ways for efficiently “storing” information. The latter laid

the foundation for the field of channel coding that addresses reliable communication,

or more generally “processing” data. In both cases, redundancy in the information

content plays a major role, and information theory provides a way of quantifying and

exploiting it. In source coding, one attempts to identify or predict the redundancy

in the data and eliminate it. In channel coding, the goal is to add redundancy to

the data so that the information content can be retrieved despite errors encountered

while processing it.

1
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1.1 Sparsity Is Common

A very common form of redundancy that exists in data extracted from natural events

is “sparsity”. The information content of many real-world signals is sparsely dis-

tributed, either in the original domain, or when projected via popular transforms. A

signal can represent a database, a portfolio, a time-series function, a power spectral

density, a probability distribution function, an array of numbers or any other form of

indexed information derived from raw or processed data. The coarse definition of a

sparse signal is a vector in which most of the nonzero entries are (almost) zero, and

only a few coefficients are nonzero or significant. If the entries of a signal represent

the energy content of an object, then a sparse signal has a highly unbalanced energy

distribution. Sparse vector representations are conceivable in almost every practi-

cal application, from cosine or wavelet transforms of images and video frames, to

spectral content of radar signals, to neural records, DNA micro-array read-outs, and

fMRI images in genomic and biomedical applications. Further applications arise in

sparse covariance matrices in dynamic systems, sparse principle component analysis

(PCA) in machine learning, and portfolio representations in financial engineering and

economics.

1.2 Sparse Recovery

Knowing that in many cases the signals we are interested in estimating or process-

ing are sparse, a critical question arises. How can we benefit from this knowledge?

The answer is we can potentially design better schemes for sampling or operating

on sparse data with less complexity, larger noise margins, and looser storage require-

ments than normal methods which do not assume sparsity for the underlying signal.

This approach has led to an explosion in the development and use of dimensionality

reduction and sparse processing techniques in the past decade. In particular, the field



3

of compressed sensing has drawn a lot of recent attention and has evolved into an in-

dependent area of signal processing [ric]. Compressed sensing addresses the following

sparse linear inverse problem:

Identify a sparse vector, given a set of linear combinations of the entries.

In other words, the objective is to identify a sparse vector from a set of linear measure-

ments (observations). What makes this theory interesting is that for sparse signals,

it is possible to successfully solve the inverse problem even when the number of linear

observations is less than the number of unknowns, namely the dimension of the signal.

In other words, it is possible to solve an under-determined linear system of equations

provided that the unknown signal is sparse.

1.2.1 Mathematical Formulation

Suppose that x ∈ Rn is a vector with at most k << n nonzero coefficients. We

call such a vector k-sparse. Assume that x is not directly observable, but is rather

accessed through a succinct set of linear measurements in the form of:

ym×1 = Am×nxn×1, (1.2.1)

where the number of measurements m is smaller than the ambient dimension of x,

i.e. m < n. The measurements can be noisy, in which case, we have:

ym×1 = Am×nxn×1 + vm×1, (1.2.2)

The set of linear equations in (1.2.1) is under-determined (see Figure 1.1). Therefore,

there are many vectors x′ that satisfy the above equation. If fact if, x′ is the linear

addition of x with an arbitrary vector z in the null space of A (i.e. Az = 0), then

Ax′ = y, and x′ is a solution of (1.2.1). However, it is hoped that the “sparse”

solution of (1.2.1) is unique and can be determined. To see this, suppose that x and

x′ are two distinct vectors, both having at most k nonzero entries and satisfying:
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Figure 1.1: A pictorial demonstration of an under-determined system of linear equa-
tions acting on a sparse (compressible) vector

Ax = Ax′ = y. (1.2.3)

Then, A(x − x′) = 0. However, the vector x − x′ has at most 2k nonzero entries.

Therefore, to prevent the coexistence of two sparse solutions, it suffices to ensure that

no 2k columns of A are linearly dependent. This is not very hard to guarantee if k

is small enough. In fact, a simple dimension counting argument reveals that if the

columns of A are chosen uniformly at random on the unit sphere in Rm, then as long

as k ≤ m/2, this happens with probability 1; Every 2k columns of A are linearly

independent and thus every k-sparse solution of (1.2.1) is the only k-sparse solution.

The same argument holds when the original signal is not sparse per se, but is

known to be sparse over some linear “dictionary”. In other words, assume that x

is a vector to be estimated, which is sparse with respect to a linear dictionary (or

transformation) Dn×n. In other words, ϕ = Dx is sparse. Assuming that D is an

invertible matrix, we can write:

Ax = AD−1ϕ = Φϕ, (1.2.4)
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where Φ , AD−1. The latter is an under-determined system of equations with the

unknown ϕ being sparse, and therefore has the same structure as (1.2.1). Examples

of well-known linear dictionaries include: Fourier, cosine, wavelet, chirplet and Gabor

transforms.

A more important question than the uniqueness of a sparse solution is how to

recover it? The problem of finding the “the sparsest solution” to (1.2.1) can be

written as an optimization program:

min
Ax=y

‖x‖0, (1.2.5)

where the `0 norm of a vector ‖x‖0 is defined as the number of nonzero entries in

x, which is a non-convex function. Therefore, (1.2.5) is a non-convex optimization

problem for which no known efficient solvers exist. In fact, an exhaustive search

approach can solve this problem as follows: consider every collection of k columns

of A, and try to find an inverse solution x assuming that the nonzero entries of x

are restricted to the indices corresponding to the considered set of columns. In other

words, try every possible “support set” for the vector x. Since m > k, these systems

will be over-determined and only the correct support will yield a consistent x0. This

approach takes
(
n
k

)
operations and, unless k = O(1), is exponentially complex.

One possible way to overcome the computational intensity is try to approximate

(1.2.5) with a convex optimization. The closest convex relaxation to the `0 norm is

the `1 norm defined as the sum of absolute values of the entries of x. The resulting

optimization becomes:

min
Ax=y

‖x‖1. (1.2.6)

In fact, (1.2.6) is a linear program, and many efficient methods exist that can solve

it in time polynomial in n (O(n3) to be precise).

The theory of compressed sensing has evolved around finding efficient solutions to
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the sparse recovery problems (1.2.1) and (1.2.5), including the convex optimization of

(1.2.6). In this context, (1.2.6) is commonly known as `1 minimization, `1 regression,

or Basis Pursuit, and has been extensively studied. We will soon return to discuss

this in more details.

1.2.2 Interpretations

The linear inverse problem described in (1.2.1) can be interpreted in various ways

depending on the context and physical application. We consider the following different

outlooks.

Sub-Nyquist Sampling

Compressed sensing can be regarded as a method of sampling signals at sub-

Nyquist rates, or equivalently a technique for jointly sampling and compressing real

time analog data. The fundamental Shannon-Nyquist sampling theorem states that a

continuous-time band-limited signal can be sampled at discrete points at a frequency

rate equal to twice the bandwidth of the signal, without compromising the information

content [Mar06]. This statement is very helpful in designing analog-to-digital systems

and determines the bottleneck in storing and processing continuous real-time signals.

Compressed sensing theory provides means of achieving lower sampling rates than

the Nyquist rate. Assume the vector ϕ = (ϕ1, · · · , ϕn)T represents samples of a a

band-limited function f(t) taken at the fundamental Nyquist rate:

ϕi = f(i/T ), 1 ≤ i ≤ n, (1.2.7)

where T = 1/(2B) is the sampling period, and B is the bandwidth of f(t). The

band-limited assumption on f(t) assures that the frequency content of f(·) has a lot

of vacancy, or equivalently that the vector x = Fϕ is approximately sparse, where F

is the discrete Fourier matrix of size n × n. Therefore instead of storing samples ϕ,

one might attempt to store the linear combinations obtained by
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Figure 1.2: Schematics of a sub-Nyquist sampling system

y = AFφ = Ax, (1.2.8)

where AF is a matrix appropriated for compressed sensing with m < n rows. The

resulting sampling rate is thus m
n

1
T

. When applied to real-time signals or streams of

data, the matrix A acts as a correlation operator, and is therefore referred to as the

correlation matrix or sketches (see Figure 1.2). For more information on this subject

please refer to [ME11].

Estimation Under Ill-Conditioned Observations.

Another interpretation of the linear inverse problem (1.2.2) is linear regression

under an under-determined set of observations. In the linear regression model, x

(statisticians prefer β) refers to a set of parameters of a regression model to be esti-

mated. The entries of A are called regressors. Different rows of A are independent

realizations of independent variables, and y is the regressand vector.

The objective of regression models is usually to minimize the estimation risk.

The (co)statistics of the parameters x and the error terms v should be known, and

depending on the risk criteria chosen, different estimators can be selected. Least

square and maximum likelihood solutions are archetypes of estimation criteria. When

A does not have full column rank, the number of observations is not sufficient and
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other conditions such as sparsity must be assumed for the parameters. Sparse linear

regression models can be studied in the context of Bayesian compressed sensing [duk,

JXC08].

Source Coding Scheme

Compressed sensing can also be regarded as an analog compression scheme for

peeling off the redundancy of a sparse generating source. In this case, the matrix A

is in fact an encoding matrix, and reconstruction is a decoding algorithm. Information

theoretic bounds can be found that relate the compression rate to the information rate

of sparse sources, as well as trade-offs between the compression rate and quantization

error [FRG07] (rate distortion theory for compressed sensing).

Data Privacy

Suppose that x represents a private database, not directly accessible to outside

users. The database can however be observed through random queries in the form of

linear projections corrupted by noise, as y = Ax + v. Understanding the limits of

sparse recovery in such statistical setting helps protect private data, say by adding

the right amount of noise. This model of privacy and its connection to compressed

sensing has been studied in [DMT07].

1.2.3 History

Deconvolution of sparse signals using `1 regularized estimators dates back to the

1960s [Log65]. Starting in the 1970s, the use of such techniques became popular in

determining marine surface structures from the reflection of acoustic pulses [TBM79].

Seismological traces are the convolution of a source wavelet (acoustic wave) with the

impulse response of the marine surface which is often a sparse train of spikes [CB83].

Therefore sparse-promoting linear solvers such as `1 norm regularized least square

techniques were used to extract surface patterns. In the 1990s and with the advent

of powerful computerized solvers for linear programs, `1 regularized regressions were

revisited and studied more rigorously by statisticians. D. Donoho [CD94] studied `1
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minimization in the context of signal representation under alternative dictionaries,

and suggested the Basis Pursuit (BP) method for atomic decomposition of signals

in overcomplete dictionaries [CDS01]. Donoho’s proposed scheme was in contrast to

the rising Matching Pursuit (MP) algorithm proposed slightly earlier by Mallat and

Zhang [MZ93]. The MP method was introduced as a way of denoising signals that

are sparsely representable over redundant dictionaries. MP is a greedy algorithm

that iteratively selects a basis function that matches best (i.e. has the highest corre-

lation) with the signal projection. Tibshirani proposed the least absolute shrinkage

and selection operator (LASSO) in 1996, an `1-norm-bounded constraint least-square

minimization, and argued that LASSO is advantageous to most regression techniques

in sparse model fitting [Tib96]. LASSO was studied in the context of Bayesian es-

timation, specifically for model fitting in medical applications [Tib97]. However, to

this point, most of the results remained mainly empirical.

In the early 2000s an explosion of analytical results on sparse recovery techniques

occurred. Donoho et al. first proved that for measurement matrices (or overcomplete

dictionaries as preferred by some) with a sufficiently large mutual coherence, Basis

Pursuit has a stable recovery in the presence of noise, provided that the unknown sig-

nal is sufficiently sparse [DET06]. Following that, in a series of breakthrough papers,

Candès, Romberg, and Tao proved that `1 minimization allows exact reconstruction

of sparse vectors from random Fourier dictionaries and random Gaussian projec-

tions with an almost optimal number of measurements [CRT06b, CT06a, CT05]. In

[CRT06b, CT06a], it was shown using robust uncertainty principles that exact re-

construction of a k-sparse vector is possible with high probability using a random

set of frequency projections of size m = O(k log n). In [CT05] the notions of re-

stricted orthogonality and restricted isometry property (RIP) were introduced, and

it was shown that if the measurement matrix A satisfies these conditions, then exact

sparse decomposition is possible for all sparse signals. This result is in particu-

lar very strong for its universality. The coarse definition of RIP for a matrix A is
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that pairwise distances between sparse vectors is approximately preserved (thus the

word isometry) when projected by A. Candès and Tao further proved that random

matrices with Gaussian entries satisfy RIP, and thus recovery of sparse signals and

stable recovery of approximately sparse signals with an order-wise optimal number

of measurements is possible. Soon after that, Donoho and Tanner proved similar

universality results for BP under random projections and provided stronger guaran-

tees than the previous results. Donoho et al. defined the notion of neighborliness

for high-dimensional polytopes. k-neighborliness for a polytope implies that every

subset of k vertices form a k − 1 dimensional face, and are thus neighbors in that

sense. The object with the highest order of neighborliness in Rn is the n-dimensional

simplex. Donoho et al. proved that successful sparse reconstruction of k-sparse

vectors using BP is equivalent to the k-neighborliness of the n-dimensional simplex

projected by A [Don06b, DT05a, DT05b]. Under the assumption of asymptotically

large vector size n, and proportional system dimensions, i.e. m = Θ(n), k = Θ(n),

it is possible to analyze the neighborliness property for random projections such as

Gaussian measurements. The analysis requires advanced high-dimensional convex

geometry techniques. Under such circumstances, Donoho et al. derived tight bounds

known as recovery thresholds that accurately predict the success of `1 minimization

for large-dimensional inverse systems. The characterization of the recovery thresh-

olds presented by Donoho et al. is very involved, and does not allow for further

exploring these bounds. Later works done by Xu et al. and Stojnic et al. came

with easier characterizations and extensions of the recovery thresholds of `1 mini-

mization [SXH08, XT10b, Sto10, Sto]. Specifically, [SXH08] provided an equivalent

condition for the neighborliness property, which is expressed in terms of the null space

of the measurement matrix. These null space properties are easier to analyze and re-

sult in a so-called “Grassmann manifold” framework for the study of the properties

of `1 minimization. Using this framework, [XT10b] provided a tight analysis of the

robustness properties of Basis Pursuit, which addresses its asymptotic performance
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under the presence of noise and for approximately sparse signals. The more recent

work of Stojnic et al. is based on a technique called “escape through the mesh” and

results in much simpler and more explicit calculations for the thresholds of Basis

Pursuit under than the Grassmann manifold approach.

Interest in the theory of sparse recovery sharply increased after the fundamental

results of Donoho and Candès. Alongside the convex optimization methods, greedy

algorithms were also revisited in the hope of more rigorous analysis. The Match-

ing Pursuit technique was first refined to a more stable Orthogonal Mathing Pursuit

(OMP) algorithm [PRK93, DMA97] without presenting significance analytical guar-

antees. OMP was studied later by various researchers including Chen et al. and

Tropp et al. in the 2000s [CH06, Tro04, TGS06, TG07]. Specifically, it was shown

in [TG07] that under the assumption that A is random Gaussian, m = O(k log n)

measurements are sufficient to guarantee successful recovery of sparse k-sparse signals

with high probability, a bound which is order-wise equivalent to that of BP. Donoho

et al. introduced a more advanced version of OMP called Stagewise Orthogonal

Matching Pursuit (StOMP), and showed empirically that their proposed method has

superior performance to Basis Pursuit in the asymptotical proportional regime for

extremely under-determined systems (m
n
<< 1) [DTDS06]. Needell and Tropp pro-

posed CoSaMP, a method that has a faster running time than OMP and guaranteed

stability to noise [NT08].

Many more varieties of the described algorithms have been proposed over the past

few years, and many alternative techniques have been developed. Today, sparse re-

construction techniques are not limited to convex relaxation or greedy approaches,

and contain a vast number of alternative iterative, combinatorial, and algebraic tech-

niques. We will mention many such techniques in the later chapters of this thesis.

1.2.4 A Few Fundamental Questions

Given the sparse linear inverse problem, a number of key questions can be asked.
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What is a good reconstruction algorithm?

A good algorithm should be efficient, resilient to noise, and easy to implement. Fur-

thermore, the exact definitions of these criteria depends on the particular application

to which sparse estimation is mapped.

What are good measurement matrices A?

In addition to identifying matrices that make the reconstruction a feasible task, it is

important to design structures that are amenable to certain recovery algorithms and

vice versa.

What happens in the presence of noise?

In the presence of noise v, we are interested in the “robustness” of recovery algorithms.

Assume that x̂ is an approximation to x provided by a reconstruction algorithm. We

say that the recovery algorithm is robust if for some norm functions f, g, and a

constant c we can guarantee the following:

f(x− x̂) ≤ c · g(v). (1.2.9)

.

What is the minimum number of measurements required for successful
sparse estimation?

This question is very important, as its answer determines the performance limits of

sparse recovery algorithms.

What is the tradeoff between performance and noise/quantization error
level in sparse recovery?

This often arises in practical situations. Can we have any hope of reconstructing

denser signals if the signal-to-noise ratio (SNR) improves? Conversely, how much

information do we lose under noisier measurements or higher levels of quantization

error?
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How can an algorithm/matrix be tailored to a particular application?

As we will see, some measurement matrices and recovery algorithms are suitable for

particular applications due to the inherent nature of the application, or for simplicity

of implementation. This question has practical advantages too.

Is there an efficient method for assessing the goodness of an arbitrary
measurement matrix A?

It is very important to have deterministic guarantees for practical applications. If A

is a large measurement matrix, is it possible to determine (in a reasonable time) how

good of an encoding matrix it is? In other words, is there a performance metric for

a matrix with regards to sparse compression/decompression that can be verified in

efficient time?

These questions (or criteria based on these questions) have served as the road map

for research on sparse linear inverse problems. Below we briefly discuss the existing

methodologies and guarantees in response to the above questions.

1.2.5 Existing Methodology

Random matrix ensembles are commonly used as the measurement matrix in the

study of sparse recovery problems. The original results of compressed sensing were

based on matrices with i.i.d Gaussian matrices [CT06a, CT05, Don06b] but were soon

extended to other distributions such as Bernoulli or random ±1 entries [BDDW08,

DT10], and generally to all sub-Gaussian distributions [MPJ09, CR11]. Furthermore,

random partial sub-dictionaries of most well-known dictionaries form relatively good

measurement matrices. For instance, random selection of m rows from the n × n

Fourier matrix is a good encoding matrix with high probability [CRT06b]. It is gen-

erally easier to study random matrices in the context of compressed sensing, due to

the existence of advanced asymptotic spectral analysis tools for random matrices,
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and high dimensional convex geometry techniques. However, a number of combinato-

rial and deterministic structures have also been introduced, due to practical benefits

such as lower cost of encoding, ease of implementation, and better reconstruction

algorithms. The most common classes of such matrices are sparse binary matri-

ces, such as expander graphs [Ind08, XH07b], measurement matrices based on LDPC

error-correcting codes, Van der Monde matrices [DeV06], circulant and Toeplitz struc-

tures [Rau], measurement matrices based on algebraic error-correcting codes such as

Reed-Solomon, Reed-Muller, and p-ary codes [HCS08, PH08, AM11, AMM12], ma-

trices based on hash functions and sketches used for streaming applications [CM04,

CM05, CM06], and others (see e.g. [GSTV06, DMP11]). The diagram in Figure 1.3

summarizes these different categories of existing measurement matrices.

Amin Khajehnejad Iterative optimization for compressed sensing and coding 
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Figure 1.3: Summary of existing categories of measurement matrices for compressed
sensing with examples

Existing reconstruction algorithms for compressed sensing can be divided into

three main categories: geometric approaches, greedy methods, and combinatorial al-

gorithms. Geometric methods are mostly based on convex optimization techniques

such as linear or quadratic programming. Basis Pursuit (BP) and Basis Pursuit de-

noising (BPDN) are the most highlighted examples of reconstruction methods based
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on convex optimization. BP is the `1 minimization program described in (1.2.6).

BPDN [CDS01] is a quadratic programming which is essentially a regularized La-

grangian of the constrained `1 minimization:

BPDN min 1
2
‖Ax− y‖2

2 + λ‖x‖1. (1.2.10)

Other similar estimators have been used based on alternative forms of regularization

which are common in statistical estimation, such as the LASSO [Tib96] and Dantzig

selector [CT07]:

LASSO min 1
2
‖Ax− y‖2

2

subject to ‖x‖1 ≤ t. (1.2.11)

DS min ‖x‖1

subject to‖At(Ax− y)‖∞. (1.2.12)

Greedy algorithms are mostly based on iterative approximations to a sparse solu-

tion, such as the Matching Pursuit method and its variations (OMP [TG07, CH06,

Tro04, TGS06], StOPM [DTDS06], CoSaMP [NT08, NTV08], etc.), iterative least

square techniques [DDFG10, CY08], and iterative thresholding methods [FR08, BD08].

These methods are generally inferior to their corresponding convex program as they

require more careful regularization, but are easier to implement.

Combinatorial methods of sparse recovery are based on measurement matrices

with particular structures, often deterministic. A plethora of alternative combinato-

rial methods have been proposed in the past few years based on specially designed

forms of matrices, often resulting in simplicity of implementation, less complexity,

and better performance bounds compared to the greedy or convex optimization-

based algorithms. Selected examples are combinatorial algorithms based on expander
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graphs, such as the bit flipping decoding algorithm [XH07b], expander Matching Pur-

suit (EMP) [IR08], sparse Matching Pursuit (SMP) [BIR08], and sequential Sparse

Matching Pursuit (SSMP) [BI09], list-decoding algorithms and other reconstruction

methods for constructions based on algebraic error-correcting codes [HCS08, HSC09,

PH08], algorithms based on data streaming applications [CM05], message-passing

decoding [CSW10, LMP08], Chaining Pursuit [GSTV06], and many more. The di-

agram in Figure 1.4 summarizes these different categories of existing reconstruction

algorithm.
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Figure 1.4: Summary of existing categories of algorithms for compressed sensing with
examples

1.2.6 Applications

Research on compressed sensing in the past few years has identified many applications

for the sparse linear inverse problem. We mention a few examples, while many more

applications can be found in [ric] and other more recent references.
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Image and Video Processing

Many forms of images are approximately sparse over some well-known dictionary. For

example, natural images over the discrete cosine transform (DCT) domain are known

to be concentrated mostly on lower frequencies. Astronomical images are often sparse

in their regular spatial domain. Consecutive frames of a high-speed video have sparse

residual. In light of this, image acquisition systems based on compressed sensing have

two possible mechanisms. An original high-resolution image can be compressed using

a linear encoding matrix. Alternatively, an input image can be directly measured

and stored in the form of linear projections. The former is a compression scheme

which is helpful in maintaining large databases. The latter is in particular useful in

biomedical imaging, such as magnetic resonance imaging (MRI) [LDP07, LDSP08,

KNN09], where obtaining higher resolution images requires patients to be exposed to

stimulating signals (e.g. electromagnetic waves in an MRI scanner) for long periods

of time. Linear combinations of image components (over some dictionary, such as

wavelet) can instead be obtained by simultaneously combining different components

of the stimulating signal. A reconstruction algorithm can then be used to recover

the desired information. A similar application of this approach is in image or video

cameras that record linear combinations of pixel intensities or consecutive frames,

instead of a super-high-resolution pixel array [VRR11]. These ideas have led to the

development of prototypes for imaging devices that function based on compressive

sampling technologies, such as the single-pixel camera [DDT+08].

Radar

Many forms of modern radars function based on real-time scanning of the frequency-

time spectrum, and identifying target attributes based on the spectral content. The

resolution and speed of detection for radars thus depend on the rate and the resolution

at which they sense the spectrum. The bottleneck in high-speed spectrum sensing

is the analog-to-digital (A/D) conversion. Radars work based on transmitting and
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receiving continuous time pulses, but need to digitize data for processing. Sparse

time-frequency spectrums can be sensed at higher rates using compressive sampling.

Instead of sampling continuous time signals and digitizing the samples, we can obtain

linear projections of the input stream using high-speed correlation circuits, and then

digitize the projections [HS09]. Also, please refer to [CV08] for an alternative use of

sparse recovery in MIMO radar detection.

Beyond radar applications, achieving higher A/D rates is extremely motivated,

and numerous attempts at implementing analog-to-information compressed-sensing-

based systems have been reported over the past few years [LKD+07].

DNA Micro-Array

Micro-arrays are large sets of parallel microscopic DNA probes that can detect the

expression levels and consequently identify the absence or presence of different genes

inside a DNA genome solution. DNAs and RNAs can bind to the probes by a process

called hybridization. Conventional DNA micro-arrays work based on the principle

that every probe detects at most one target DNA sequence, and thus require a large

number of genomic probes. In addition, cross-hybridization is a common phenomenon

which degrades the performance of the sensor array. In contrast, a new micro-array

technology which is based on compressed sensing has been developed where multiple

DNA sequences can bind to each probe. The probes read-outs are thus roughly equal

to linear combinations of gene expression levels. Sparse reconstruction algorithms are

invoked to estimate the existing DNA genes and their expression levels [PVMH08,

DMSB08, MBSR07, ES05, VPMH07].

Networks

Sparsity is an inherent characteristic of many forms of network data, including com-

puter network traffic, connectivity patterns in wireless ad-hoc, and attributes of social

networks. Recent research trends have tried to apply sparse reconstruction techniques

to problems such as monitoring computer networks [CPR07], neighbor discovery in
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ad-hoc networks [ZLG], and clique identification in social networks [JYG09].

Communications

Compressive sampling has led to novel mechanisms for sparse channel estimation,

spectrum sensing, interference alignment, user detection, and design of communi-

cation protocols in wireless MIMO and ad-hoc networks over the past decade (see,

e.g. [BHRN08, BHSN10, TH08]). For a comprehensive study, we refer the interested

reader to the references provided in [ric].

More

Applications of sparse reconstruction techniques are not limited to the above exam-

ples. There are many more applications where a sparse linear inverse model accurately

fits. This includes almost all areas of signal processing from financial engineering to

astronomy. However, it is important to note that the requirements, methodology, and

existing guarantees can be very different from one application to another. We will

discuss this issue in more detail in future chapters.

1.3 Beyond Compressive Sampling

In many cases, there are other forms of common non-linear transforms that result in

sparse (or compressible) representations of certain classes of signals. For example,

if the unknown signal is a matrix Xn×n of rank k << n, then the singular value

decomposition (SVD) of X results in a sparse set of singular values consisting of only

k nonzero values. This approach can be generalized: Suppose that we have a signal

that belongs to a family of low-dimensional manifolds, but is accessible through a

small number of linear measurements. How can such a signal be estimated? This

general form of the sparse linear inverse problem was discussed in [CRPW, BW09].

In particular, the problem of low-rank matrix estimation from linear projections is
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highly motivated under the terms “rank minimization” and “matrix completion”. Re-

construction of rank-deficient matrices from ill-posed lower projections or completion

of such matrices from partially known entries is motivated by problems in covariance

estimation, dynamic systems, quantum computation, and collaborative filtering. A

great example is the well-known Netflix problem, the objective of which is to predict

ratings of different movies by a large number of users. The results of such predic-

tion would help Netflix provide targeted recommendations to its users. The table of

users/movie ratings is a two-dimensional matrix that needs to be estimated in this

case. A valid assumption often made is that by nature, such matrices are approxi-

mately low rank as many users tend to have similar or highly correlated interests. In

addition, only a fraction of the target matrix is often available in the form of random

entries, and the rest is to be estimated. The problem is therefore that of matrix rank

minimization. Similar models show up in other forms of recommendation systems

and search engines, such as the Google PageRank problem [AT05].

Matrix rank minimization and low-rank matrix completion have been the center of

attention by many in the past few years. Fazel et al. proposed using a convex heuristic

known as nuclear norm minimization (NNM) to estimate low-rank matrices. Nuclear

norm is a convex relaxation to the rank function of a matrix and thus a low-rank

promoting regularizer. This approach is very similar to the use of `1 minimization in

compressed sensing. Rigorous analysis of the NNM method has been done in [RFP10,

RXH08, OH, CR09, CT10]. However, despite significant efforts, little progress has

been made when compared to compressed sensing. For example scant work exists

on faster reconstruction algorithms or alternative forms of projections. Therefore,

matrix rank minimization is currently a very open and motivated field of research.

1.4 Contributions of This Thesis

Despite a tremendous amount of recent effort, in most cases definite answers to the

questions put forward in Section 1.2.4 remain open, and the existing answers are
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restricted to specific contexts and applications. In this dissertation, we have tried to

understand the boundaries of existing knowledge and methodology on sparse recovery

techniques, and extend them in various ways. Below is a summary of the contributions

of the current thesis and the descriptions of how they fit into the state-of-the-art

literature.

1.4.1 Compressed Sensing

The seminal results of Candès et al. and Donoho et al. [CT05, Don06a] established

that a class of convex optimization methods can solve the sparse linear inverse prob-

lem much more efficiently than exhaustive search. As discussed, these methods are

known as Basis Pursuit or `1-regression techniques, and require an order-wise optimal

number of measurements m = O(k log(n/k)) to succeed. Basis Pursuit algorithms

are popular because they have universal guarantees and computable phase transition

thresholds, and have a polynomial complexity O(n3) that allow them to be imple-

mented in regular modern computers for moderate problem dimensions (n ≤ 105).

However, they become inefficient for larger dimensions. Furthermore, because they

are solved using geometrical approaches such as interior point methods and demand

excessive memory requirements, it is difficult to implement them in parallelized plat-

forms or as embedded software for practical applications. Another challenge is that

thorough analysis of Basis Pursuit is difficult, and mostly exists for random and dense

measurement matrices A, whereas in many cases, the measurement matrix A is de-

sired to be sparse or to meet certain other restrictions. For these reasons, several

other algorithms have been developed, based on combinatorial or greedy approaches

to the sparse recovery problem, some which were mentioned in Section 1.2.5. How-

ever, most of these methods are inferior to Basis Pursuit in different ways, such as

performance or tolerance to noise. A good algorithm needs to compete with existing

recovery methods in multiple ways, and thus designing new algorithms is an impor-

tant and challenging research problem. Furthermore, many of the proposed recovery
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methods are tailored to specific measurement matrices. Designing matrix structures

that are amenable to existing or new methods of sparse reconstruction is therefore as

important as algorithm development. In light of these issues, our contributions fall

in the the following categories:

Deterministic Measurement Matrices

Although the performance of random and dense measurement matrices are easier to

analyze, they pose several practical limitations, including extensive memory require-

ments, high recovery complexity, and lack of deterministic guarantees. One of our

objectives is developing deterministic and/or sparse matrix constructions for sparse

recovery, either for the existing reconstruction algorithms (such as Basis Pursuit),

or in conjunction with novel estimation methods. In either case, providing theoret-

ical guarantees for the proposed construction/reconstruction schemes is imperative.

Three main categories of novel deterministic structures discussed in this thesis are

the following:

•Minimal expander structures. Expander graphs are combinatorial objects with

unique features that make them useful in various applications. Despite having small

vertex degree, i.e. being sparse, the overall connectivity of expander graphs is high,

and thus leads to fast mixing times, making them good candidates for Monte Carlo

methods and as error-correcting codes. Expander graphs are characterized by an

expansion coefficient 0 < ε < 11. Larger ε corresponds to better connectivity and

smaller mixing times.

A recent research trend has proposed using bipartite expander graphs as com-

pressed sensing measurement matrices, leading to a number of combinatorial al-

gorithms and methods to analyze Basis Pursuit for sparse constructions [XH07b,

BGI+08]. Results in the literature prior to the contributions of this thesis only consid-

ered high-quality expander graphs with expansion coefficients ε ≥ 3/4. It is generally

1We shall formally define “expander graph” later in this thesis.
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harder to construct expanders with higher expansion coefficients, and consequently

the required oversampling factors m/k for successful recovery of sparse signals become

extremely large. For example, when a compression ratio m/n = 0.5 is considered,

the best existing results for high-quality expanders only guarantee2 that sparsity frac-

tions k/n ≈ 10−6 can be reconstructed efficiently. This means there should only be

one nonzero coefficient in a million! In contrast, we introduce a class of minimal

expanders in Chapter 2 with much smaller ε values, that can be deterministically

constructed. We have analyzed the proposed constructions in the realm of the Basis

Pursuit algorithm [KXDH10]. The resulting guaranteed sparsity fractions can be as

high as k/n ≈ 10−2, filling the gap between the performance of dense and sparse

measurement matrices for compressive sensing. Chapter 2 of this thesis is devoted to

this subject.

• Binary structures based on graphs with logarithmic girth. Using results

from channel coding, we have developed novel constructions for the measurement

matrix A. “Good” channel coding parity check matrices form “good” measurement

matrices for compressed sensing. Using this idea, we have studied several construc-

tions of LDPC codes in the context of compressed sensing that result in even tighter

provable thresholds than minimal expanders. We show that the structure of the Tan-

ner graph of a code and some of its fundamental properties, such as the minimum

cycle length (girth) can be used to assess the goodness of a given binary matrix with

respect to Basis Pursuit algorithms. The importance of this criterion is that it can be

checked in polynomial time. Specifically, we show that LDPC codes with Ω(log(n))

girth offer very tight thresholds for the number of measurements for a robust `1/`1

approximation noise [KTDH11]. Our bounds are the tightest existing guarantees us-

ing sparse measurement matrices. These ideas are discussed in detail in Chapter 3 of

this thesis.

2Not that these are theoretical results only. In practice, the observed performance is much better.
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• Summary-based structures for very fast and sub-linear compressed sens-

ing. There are many instance of sparse recovery problems where the signal dimension

is extremely large (say n = 106–1012), and the number of significant nonzero entries

in the signal is in the range of 100–1000. Important examples where this setup arises

are neighbor discovery in ad-hoc sensor networks and efficient multi-user RF-ID. In

these cases, conventional recovery methods with recovery times polynomial in n fail in

practice, as n is very large. Therefore, algorithms with “sub-linear” complexity have

to be developed, where the complexity is logarithmic in n, i.e. O(poly(log(n))), and

polynomial in k. We have developed a new class of measurement structures with the

motivation of designing algorithms that have a sub-linear complexity in the system

dimension. These constructions will be presented in Chapter 4. The matrices that

we propose are highly structured and facilitate summarized searches over the span of

the unknown vector. Using ideas from combinatorial separators and hash functions,

we developed matrices based on binary labeling and sub-labeling of the state space.

In addition to the obvious time/memory advantages that result from the fast recon-

struction algorithms we propose for these structures, the underlying constructions

are greatly motivated by a variety of statistical inference problems such as popular

political ranking, market basket analysis, revenue maximization, graphical models,

and so on. In many cases, the regressors of the inference problem are in the form of

a matrix A similar to summary based structures (see e.g. [KKH11, JS08, JYG09]).

Chapter 4 is dedicated to these concepts.

Recovery Algorithms

In addition to designing recovery algorithms for the deterministic constructions dis-

cussed previously, in this thesis we look at the possibility of improving the Basis

Pursuit algorithm. In Basis Pursuit, the relationship between the highest recover-

able sparsity k/n and the compression ratio m/n demonstrates an asymptotic phase
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transition threshold, which is explicitly computable. However, an important open

problem is whether there exist other polynomial time algorithms that have superior

thresholds to those of Basis Pursuit. This problem is addressed in this dissertation.

A solution is provided that holds for most cases, with the exception of a restricted

class of random signals where the distribution of the nonzero entries and all its finite

derivatives vanish at the origin. For example, binary (0, 1) and ternary (0,±1) sparse

vectors are of this type.

Below is a summary of sparse recovery algorithms that will be introduced and

analyzed in this thesis:

• Two-step reweighted Basis Pursuit. In Chapter 6, we introduce a two-step

linear programming algorithm and prove that for many classes of random sparse sig-

nals, the proposed method has better phase transition thresholds than Basis Pursuit.

To our knowledge this is the only result of this kind. The proposed algorithm is based

on coarsely approximating the support set of a sparse signal with the help of Basis

Pursuit, and separating the entries based on whether we “believe” they are zero or

nonzero. Then, a second linear program is performed, in which the entries that are

believed to be zero are penalized with a larger weight. The practical improvement of

the proposed scheme is significant. For instance, for a compression ratio m/n = 0.5,

the recoverable sparsity ratio k/n can be improved by 20%.

• Reverse expansion linear inversion (REVEX) algorithm for minimal ex-

panders. We propose this algorithm in Chapter 2. In particular, this is an algorithm

designed for the minimal expander constructions which will also be explained in Chap-

ter 2. The method has O(k2n) complexity, which makes it significantly faster than

Basis Pursuit (O(n3)) for the corresponding expander codes, and has a theoretically

equivalent performance.

• Support index inference (SIR) algorithm for the summary-based struc-

tures. This is an algorithm specifically designed for the summary-based structures
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which will be explained in Chapter 4. The routine is extraordinarily fast and can han-

dle recovery of sparse sample points in extremely large dimensions. Theoretically, the

decoding complexity is O(km log(m)) and the required number of measurements is

almost optimal m = O(k log(n) log log(n)). The advantages are not limited to a the-

oretical level; the method can be of great practical value. For instance, preliminary

simulations reveal that a k = 100 sparse vector of length n = 1012 can be recon-

structed using m ≈ 5000 measurements within less than a minute on normal desktop

computers. These figures are linearly scalable to higher dimensions, and stand far

above the state-of-the-art efficient sparse recovery performances. In addition, the

noise tolerance of the SIR method is competitive with the best existing methods.

Such a combination of strong theoretical guarantees and practical evidence make

this framework an ideal candidate for many real-world high-dimensional applications,

potentially extending to hardware-level implementation.

1.4.2 Rank Minimization

Although the basic model and many heuristics in matrix rank minimization are simi-

lar to compressed sensing, the technical analysis requires far more detailed knowledge

of random matrices and linear algebra. As a result, less progress has been made than

in the vector recovery case. In particular, the majority of the results on matrix rank

minimization are limited to random Gaussian measurements or partially observed

elements [Faz02, CT10]. Similarly, reconstruction methods are mainly restricted to

semi-definite programming techniques such as trace or nuclear norm minimization

and singular-value thresholding methods. This is in contrast to compressed sens-

ing, where many other instances of random and deterministic structures are proven

to be practical, and various combinatorial and greedy algorithms have been devel-

oped. Designing deterministic structures for low-rank estimation and fast algorithms

is therefore highly motivated. In Chapter 8, we introduce matrix operator objects

that mimic expander graphs in the vector recovery case. Specifically, the proposed
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operators have two key properties: 1) They have low density, which means that the

projection of rank 1 matrices have at most rank d = O(1), and 2) despite having

low density, the operators expand the rank of low-rank inputs, and as such are called

“rank expanders”. We propose a combinatorial algorithm that allows for the recon-

struction of sufficiently low rank matrices using the proposed rank-expanders. The

algorithm resembles the REVEX method developed earlier for minimal expanders in

compressed sensing, and in a similar way is significantly faster than geometric meth-

ods based on semi-definite programming. Additionally, rank-expanders appear in a

number of applications, such as system identification and quantum computing, unlike

generic random Gaussian operators, further motivating their use.

1.4.3 LDPC Codes and Improved Channel Coding

Intuitions and ideas developed in compressed sensing can be applied to other signal-

retrieval applications, one instance of which was described earlier for low-rank esti-

mation problems. Channel coding is another possible area. Due to the maturity of

channel coding techniques, it is often easier to adopt code designs and estimation

techniques and apply them over the real numbers to the compressed sensing problem,

as has been done in a collection of recent publications. We look at the possibility of

a reverse approach, by adopting some sparse recovery techniques and using them to

improve the performance of channel codes. We introduce a reweighted LP decoding

algorithm for retrieving noisy codewords of a linear codebook from the output of

bit-flipping communications channels. This method was inspired by the reweighted

Basis Pursuit algorithm described in for sparse recovery (described in Chapter 6),

but is analyzed in quite a different framework. When compared with the existing

polynomial-time decoders for random LDPC codes, the performance curves of the

proposed algorithm (namely bit-error-rate curves) are superior to the state-of-the-

art techniques. As linear programming decoding is very close in performance to

belief-propagation algorithms such as the min-sum method, this approach can lead



28

to systematic improvements in a variety of important inference problems.

1.5 Organization

The content of this paper is presented in three main parts. In the first part which

contains Chapters 2–4, we discuss new combinatorial structures for the design of mea-

surement matrix A in compressed sensing. We study these constructions in detail and

evaluate the performance of various reconstruction algorithms based on these designs.

An overview of the use of sparse matrices for compressed sensing is given in Chapter

2, and minimal expanders are introduced. In Chapter 3, we study connections be-

tween channel coding and compressed sensing, and prove certain performance results

for bipartite graphs with logarithmic girth. In Chapter 4, sub-linear time algorithms

are motivated and discussed, and summary-based structures are introduced which

lend themselves to a very fast and practical reconstruction algorithm.

Part II has a relatively different theme, and is mostly focused on the Basis Pursuit

algorithm and random Gaussian measurements for sparse recovery. We study ways

to improve the theoretical and practical thresholds of the Basis Pursuit algorithms.

These thresholds identify the asymptotic performance of an `1 minimization algorithm

for the case of “proportional” system dimensions, i.e. k,m, and n are proportional

to each other. In Chapter 5, we show that if prior information is available about

the unknown signal in the form of non-uniform sparsity, then weighted `1 algorithms

have higher thresholds than regular Basis Pursuit. In Chapter 6, we introduce and

study a two-step reweighted `1 minimization algorithm with many of the technical

tools borrowed from Chapter 5.

Finally, in Part III we generalize some of the results of the previous chapters to

low-rank matrix estimation (Chapter 7) and channel coding (Chapter 8).

Despite the heterogeneity in the technical contents of the chapters, we have tried

to adhere to a relatively similar format for all chapters: background, motivation, and

prior work are presented at the beginning, and are followed by the main contributions
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and discussions. Simulation results (if any) are presented at the end. For simplicity

of reading, we have pushed long proofs to an appendix section at the end of each

chapter. A table of important notations is also included before the introduction in

each chapter.

1.6 Short Note on Notations

We have tried to use a consistent and simple set of notations throughout this disser-

tation. At the beginning of each chapter, notations used frequently are defined and

ambiguities are resolved. As a general rule, we denote most scalars with small letters

(e.g. a, b, c, α, β, . . . ), all vectors with small bold letters (e.g. x,y, z,v, . . . ), all matri-

ces with capital bold letters (e.g. A,H,Φ, . . . ,), and sets with capital and non-bold

letters (e.g. S, T,X, Y, . . . ). Geometrical and high-dimensional objects and operators,

such as subspaces, polytopes, and operators acting on matrices, are denoted by large

and script letters (e.g. S,P ,A(·), . . . ). There are a few exceptions where some of

these rules are violated, such as the use of capitalized letters for variables in some

cases, but these should be very clear from the context.
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Chapter 2

Sparse Minimal Expanders

A measurement matrix

n signal size

m number of measurements

k sparsity of the signal

G bipartite graph

Γ(S) set of neighbors of S

2.1 Introduction

In this chapter, we focus on the design of sparse (i.e. low density) measurement

matrices for compressed sensing. The-low density assumption for the matrices used

is crucial for numerous reasons. In several applications, the cost of each measure-

ment increases with the number of coordinates of the unknown vector x involved.

For instance, in the design of DNA micro-arrays using the CS technology in which

the pattern of micro-arrays translates directly to a suitable measurement matrix,

every nonzero entry of the matrix represents a probe [PVMH08, DSMB09]. As a

result, the overall cost of the micro-array panel is directly ruled by the density of

the corresponding matrix. There are several other applications where only a sparse

matrix assumption is close to a reasonable approximation of the underlying sketch-

ing process (see for example the motivation given in [GI10]). Sparse measurement

31



32

matrices have also made possible the design of faster decoding algorithms (e.g.,

[IR08, BIR08, XH07b, Tro04, XH07a, JXHC09]), apart from the general linear pro-

gramming types of decoder [CRT06b, GLR08] originally proposed for dense matrices.

Unlike dense and random constructions (such as i.i.d. Gaussian matrices), where

reasonably sharp bounds on the thresholds which guarantee linear programming to

recover sparse signals have been obtained [DT05a], such sharp bounds do not exist

for sparse measurements. Finding such sharp bounds for the special case where the

k-sparse vector is nonnegative is the main focus of the current chapter. Although

the nonnegativity constraint is primarily considered for ease of analysis, it represents

a large class of practical interests. Signals arising in many problems are naturally

nonnegative. Examples of positive real-world signals are natural or biomedical images,

DNA micro-array data, network monitoring data, information collected based on

hidden Markov models, and many more examples in which the actual data is of

nonnegative nature. Compressed sensing for nonnegative signals has also been studied

separately in various previous work [DT05b, BEZ08], but with different approaches.

In the remainder of this chapter, we carefully examine the connection between

linear programming recovery and the fundamental properties of the measurement

matrix, in light of the fact that the considered matrices are sparse.

2.2 Related Work

For a given measurement matrix, the success of linear programming recovery is often

certified by the restricted isometry property (RIP) of the matrix [CT05]. For random

dense matrices, these conditions have been studied to a great extent in the past few

years. For sparse matrices, however, there were only a handful of promising results

at the time when our very first results on this subject were published. Specifically,

Berinde et al. [BGI+08] showed that the adjacency matrices of suitable unbalanced

expander graphs satisfy an RIP property for `1 norm. Please see Chapter 10 for the
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definition of RIP. However, it turns out that RIP conditions are only sufficient con-

ditions for the success of linear programming decoding, and often fail to characterize

all the good measurement matrices. A complete characterization of good measure-

ment matrices is given in terms of their null spaces [SXH08, FN03, LN06, Zha05].

A necessary and sufficient condition for the success of `1 minimization is therefore

called the “null space property”1. Donoho et al. [Don06b] were the first to prove the

validity of this condition with high probability for random i.i.d. Gaussian matrices,

and were able to compute fairly tight thresholds regarding when linear-programming-

based compressed sensing works [DT05a]. The first analysis of the null space for

sparse matrices has been done by Berinde et al. [BI08], where in particular they con-

sider measurement matrices that are adjacency matrices of expander graphs. It was

shown that every (2k,ε) expander graph2 with ε ≤ 1
6

satisfies the null space property,

and therefore every k-sparse vector can be recovered from the corresponding linear

measurements. The recovery thresholds given by this result, namely the relationship

between the sparsity-to-dimension ratio k
n
, and the aspect ratio of the measurement

matrix m
n

for which reconstruction is successful, are governed by the extents at which

such suitable expander graphs exist. Expander graphs have either random or ex-

plicit construction (see, for example [GLW08] for explicit constructions of expander

graphs). In either case, the resulting thresholds of [BI08] are very small (e.g., on the

order of 10−5 for m
n

= 0.5), due to the high expansion requirement, i.e., ε ≤ 1/6. In

contrast, our analysis led to the design of sparse measurement matrices that obtained

recovery thresholds around two to three orders of magnitude higher than the bounds

of Berinde et al. (e.g., around 0.01 for m
n

= 0.5), which, however, holds only for non-

negative signals. The null space characterization and its use in compressed sensing

has also been studied in [BEZ08], from a quite different perspective. In that paper,

the authors show that a so called “coherence” measure on the measurement matrix

1Also referred to as the k-neighborly property [Don06b]
2We shall formally define (k, ε) expander graphs shortly.
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is related to the null space property. Unfortunately, when applied to sparse matrices,

this result does not yield very sharp bounds for the recovery threshold either.

Finally, there exist other related works in the literature that address the problem

of sparse signal recovery in the case of sparse matrices, but for different recovery

methods. The work of Wang et al. [WWR10] attempts to provide general information

theoretic bounds for the feasibility of successful recovery, even if it requires brute

force endeavor. The reference [ZP] provides a theoretical analysis (based on the

density evolution technique) for a message-passing algorithm for recovering sparse

signals measured by sparse measurement matrices. Another example is [LMP08],

which considers the same problem, but for nonnegative signals. A shortcoming of

the density evolution technique is that it can only determine asymptotic (infinite

blocklength) results, and relies on an asymptotic limit exchange. Furthermore, it

should be clear that, unlike these papers, we focus only on `1 minimization recovery.

A further distinction of our analysis is the provision of a strong bound for sparse

recovery, namely the bound for all nonnegative signals, which was not provided in

[LMP08]. For further readings on compressive sampling techniques and analysis using

sparse matrices, we refer the interested reader to the survey article of [GI10], which

overviews recent results, including our own work presented here.

2.3 Contributions

We introduce sparse measurement matrices that result from adding perturbations to

the adjacency matrices of expander graphs with a small critical expansion coefficient,

hereby referred to as minimal expanders. We show that when `1 minimization is used

to reconstruct nonnegative vectors, these constructions allow the recovery of sparse

signals with many more nonzero entries—almost three orders of magnitude greater—

than the existing theoretical results for sparse measurement matrices, namely the

results of [BI08] and [BEZ08]. Please refer to Figure 2.5 for details. We provide
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theoretical upper bounds for the so-called “weak” and “strong” recovery thresholds

when `1 minimization is used. These bounds are very close (order-wise) to the bounds

of Gaussian matrices for the nonnegative case (Section 2.7 and Figures 2.3 and 2.4).

Furthermore, by carefully examining `1 minimization for sparse matrices, we deduce

certain uniqueness results for the nonnegative solution of the linear equation when

constant column sum matrices are used (see Section 2.5.1). We exploit this fact later

to find faster alternatives to `1 minimization. In particular we present a novel recovery

algorithm that directly leverages the minimal expansion property, and we prove that

it is both optimal and robust to noise (Section 2.8).

One critical innovation of our work is that for expander graphs in the context of

compressed sensing, we require a much smaller expansion coefficient in order to be

effective. Throughout the literature, several sparse matrix constructions rely on adja-

cency matrices of expander graphs [BGI+08, BI08, XH07b, JXHC09, Ind08]. In these

works, the technical arguments require very large expansion coefficients, in particular,

1− ε ≥ 3/4, in order to guarantee a large number of unique neighbors [SS96] to the

expanding sets. Our analysis is the first to obtain error-correction results through

small expansion (ε > 1/2). In fact we show that the minimal expansion we use in our

constructions is actually necessary for any matrix that works for compressive sensing

(even without the nonnegativity assumption). See Section 2.6.2 for more details on

this.

2.4 Preliminaries

Recall that the goal of compressive sampling is to recover a sparse vector x from a set

of under-determined linear equations. In many real-world applications the original

data vector is nonnegative, which is the case that we will focus on in this chapter.

The original problem of compressed sensing for the nonnegative input vectors is the
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following:

min
Ax=y,x≥0

‖x‖0, (2.4.1)

where Am×n is the measurement matrix, ym×1 is called the observation vector, xn×1

is the unknown vector which is known to be k-sparse (i.e., has only k nonzero entries),

and where ‖ · ‖0 is `0 norm (i.e., the number of nonzero entries of a given vector).

(2.4.1) solves for the sparsest nonnegative solution in the constraint set {x | Ax = y}.
The typical situation is that n > m > k. Donoho and Tanner have shown in [DT05b]

that, for a class of matrices A maintaining a so-called outwardly k-neighborly property

and x being at most k-sparse, the solution to (2.4.1) is unique and an be recovered

via the following linear programming problem:

min
Ax=y,x≥0

‖x‖1. (2.4.2)

They also show that i.i.d. Gaussian random m × n matrices with m = n/2 are

outwardly m/8-neighborly with high probability, and thus allow the recovery of n/16-

sparse vectors x via linear programming. They further define a “weak” neighborly

notion, based upon which they show that the same Gaussian random matrices allow

perfect recovery of almost all 0.279n-sparse nonnegative vectors x via `1 optimization

for sufficiently large n.

Here, we primarily seek the answer to a similar question when the measurement

matrix A is sparse. In particular our analysis lead to the adjacency matrices of a

particular class of expander graphs as candidate solutions for appropriate sparse A.

An unbalanced expander graph is defined in the following paragraph. For conciseness,

we denote a bipartite graph as G = (X, Y,E), where X, Y , and E are the set of left

nodes, right nodes, and the edges of G, respectively. Also, from now on throughout

this dissertation, the set of the neighbors of any subset S of nodes is denoted by Γ(S).

Definition 1. A left regular bipartite graph G(X, Y,E) with X and Y as the set of

left and right vertices, and regular left degree d is called a (k,ε)-unbalanced expander,

if for every S ⊂ X with |S| ≤ k, the following holds: |Γ(S)| ≥ |S|d(1− ε).
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Figure 2.1: A pictorial example of a (k, ε)-expander graph

A pictorial demonstration of a (k, ε) expander graph is shown in Figure 2.1. Our aim

is to analyze the outwardly neighborly conditions for this class of matrices and come

up with sparse structures that allow the recovery of vectors with sparsity proportional

to the number of equations.

2.5 Analysis of `1 Minimization

We begin by stating an equivalent version of the outwardly neighborly condition which

is in fact similar to the null space property that was mentioned in the introduction,

but for the nonnegative case. Later we show that this has a much more mundane

interpretation for the special case of regular bipartite graphs, namely a combinatorial

null space condition. We leverage this condition to derive bounds for the successful

recovery of sparse signals when particular sparse matrices are used.

2.5.1 Null Space and Uniqueness Conditions

As mentioned in the introduction, the success of `1 minimization in recovering sparse

signals can be characterized by the null space condition. This condition has been
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previously stated for the general nondefinite sign signals in a couple of papers [SXH08,

FN03, LN06, Zha05]. We present a similar condition for the success of `1 minimization

in recovering nonnegative signals. We also show that under the assumption that the

measurement matrix has constant column sum, this condition is equivalent to the

uniqueness of any nonnegative solution to the under-determined system of linear

equations.

We present the first theorem in the same style as in [DT05b].

Theorem 2.5.1. Let A be an m×n matrix and k be a positive integer. The following

two statements are equivalent:

1. For every nonnegative vector x0 with at most k nonzero entries, x0 is the unique

solution to (2.4.2) with y = Ax0.

2. For every vector w 6= 0 in the null space of A, and every index set S ⊂
{1, 2, ..., n} with |S| = k such that wSc ≥ 0, it holds that

∑n
i=1 wi > 0.

Here Sc is the complement set of S in {1, 2, ..., n} and wS denotes the sub-vector of

w constructed by those elements indexed in S. |S| means the cardinality of the set S.

Theorem 2.5.1 is in fact the counterpart of Theorem 1 of [SXH08] for nonnegative

vectors. It gives a necessary and sufficient condition on the matrix A, such that all

the k-sparse vectors x0 can be recovered using (2.4.2). The condition is essentially

that if a nonzero vector in the null space of A happens to have n − k nonnegative

entries, then the sum of all its entries must be positive. We call this property the

nonnegative null space property.

Proof. Suppose A has the nonnegative null space property. We assume x0 is k-sparse

and show that under the mentioned null space condition, the solution to (2.4.2)

produces x0. We denote by x1 the solution to (2.4.2). Let S be the support set of x0.
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We can write:

‖x1‖1 = ‖x0 + (x1 − x0)‖1

=
n∑
i=1

(x0)i + (x1 − x0)i (2.5.1)

= ‖x0‖1 +
n∑
i=1

(x1 − x0)i, (2.5.2)

where (x0)i and (x1−x0)i are the ith entry of x0 and x1−x0, respectively. The reason

(2.5.1) and (2.5.2) are true is that x1 and x0 are both nonnegative vectors and their

`1-norm is simply the sum of their entries. Now, if x1 and x0 are not equal, since

x1 − x0 is in the null space of A and is nonnegative on Sc (because S is the support

set of x0) we can write:
n∑
i=1

(x1 − x0)i > 0, (2.5.3)

which implies

‖x1‖1 > ‖x0‖1.

But we know that ‖x1‖1 ≤ ‖x0‖1 from the construction. This means we should have

x1 = x0.

Conversely, suppose there is a nonzero vector w in the null space of A and a subset

S ⊂ {1, 2, ..., n} of size k with wSc ≥ 0 and
∑n

i=1wi ≤ 0. We construct a nonnegative

vector x0 supported on S, and show that there exists another nonnegative vector

x1 6= x0 such that Ax0 = Ax1 and ‖x1‖1 ≤ ‖x0‖1. This means that x0 is not the

unique solution to (2.4.2) with y = Ax0 and will complete the proof. For simplicity

we may assume S = {1, 2, ..., k}. We construct a nonnegative vector x0 supported on

S that cannot be recovered via `1 minimization of (2.4.2). Without loss of generality

we write

w = (−wS− wS+ wSc)
T , (2.5.4)

where wS− and wS+ are both nonnegative vectors. Now set

x0 = (wS− wS+ 0)T , x1 = (0 2wS+ wSc)
T . (2.5.5)
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2.5.2 Null Space of Adjacency Matrices

Here, we will be considering measurement matrices A with two main properties:

sparse and constant column sum. This class of matrices includes measurement matri-

ces obtained from the adjacency matrices of regular left degree bipartite graphs (i.e.,

0–1 matrices with a constant number of ones in each column), as well as the per-

turbed expanders introduced in Section 2.6.1. For this class of matrices we actually

show that the condition for the success of `1 recovery is simply equivalent to the set

{x|Ax = Ax0,x ≥ 0} having a “single” element. To this end, we prove the following

lemma and theorem.

Lemma 2.5.2. Let Am×n be a matrix with constant column sum d. For any vector

w in the null space of A, the following is true

n∑
i=1

wi = 0. (2.5.6)

Proof. Let 1 = (1, 1, ..., 1)T be the 1×m vector of all 1s. We have:

Aw = 0⇒ 1TAw = 0⇒ d
n∑
i=1

wi = 0, (2.5.7)

where d is the column sum of A.

Theorem 2.5.3. Let A ∈ Rm×n be a matrix with constant column sum. Then the

following three statements are equivalent.

1. For all nonnegative k-sparse x0 with an arbitrary (a particular) support set S,

it holds that {x|Ax = Ax0,x ≥ 0} = {x0}.

2. For every vector w 6= 0 in the null space of A, and every (a particular) index

set S ⊂ {1, 2, ..., n} with |S| = k such that wSc ≥ 0, it holds that
∑n

i=1wi > 0.

3. For every (a particular) subset S ⊂ {1, 2, ..., n} with |S| = k, there exists no

vector w 6= 0 in the null space of A such that wSc ≥ 0.
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Theorems 2.5.1 and 2.5.3 show that for the class of matrices with constant column

sum, the condition for the success of `1 recovery is simply the condition for there

being a “unique” vector in the constraint set {x|Ax = Ax0,x ≥ 0}. In this case, any

optimization problem, e.g., minx≥0,Ax=y ‖x‖2, would also recover the desired x0.

Proof. First, we show that for any matrix A, the statements 1 and 3 of Theorem 2.5.3

are equivalent. Suppose that condition 3 holds for a specific subset S ⊂ {1, 2, · · · , n}.
Consider a nonnegative n × 1 vector x0 supported on S. If there exists another

nonnegative vector x1 with the property that Ax1 = Ax0, then x1 − x0 would be a

vector in the null space of A which is also nonnegative on Sc, due to the nonnegativity

of x1 and the fact that S is the support set of x0. This contradicts the earlier

assumption of condition 3.

The proof of the converse is also straightforward. Suppose that condition 1 holds

for a specific subset S and all nonnegative vectors x0 supported on S. Let’s say one

can find a nonzero vector w in the null space of A with wSc ≥ 0 . As in the proof of

Theorem 2.5.1, we may write w as

w = (−wS− wS+ wSc)
T , (2.5.8)

where wS− and wS+ are both nonnegative vectors. Now if

x0 = (wS− wS+ 0)T , x1 = (0 2wS+ wSc)
T , (2.5.9)

then x0 and x1 are distinct nonzero vectors and belong to the set {x|Ax = Ax0,x ≥
0}. This is a contradiction to the assumption we earlier made.

So far we have shown that for any matrix A the two statements 1 and 3 are equiv-

alent. Now we show that for matrices with constant column sum the two statements

2 and 3 are equivalent. We make use of Lemma 2.5.2, that for this special class of

matrices with constant column sum, every vector in the null space has a zero sum of

entries. Therefore, statement 2 can be true only if there is no w in the null space of

A with wSc ≥ 0. Conversely if the condition in statement 3 holds, then there is no
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w ∈ N (A) \ {0} such that wSc is nonnegative and therefore statement 2 is also true.

Corollary 2.5.4 (Corollary of Theorem 2.5.3). The three conditions of Theorem 2.5.3

are equivalent to the following statement.

• Every nonzero vector w in the null space of A has at least k+1 negative entries.

Proof. Follows directly from the third statement of Theorem 2.5.3.

The results of this section show how the structure of the null space of the mea-

surement matrix is related to the recoverability of sparse vectors. Thus, to achieve

our primary goal of constructing optimal sparse measurement matrices, we need to

find appropriate bipartite graphs, the adjacency matrices of which satisfy the nonneg-

ative null space properties up to a maximal sparsity level (i.e., maximum recoverable

number of nonzero entries). In what follows, we introduce class of sparse matrices

based on a generalized notion of expander graphs, called perturbed expanders. Using

a linear algebraic view of expanders, we are able to make a probabilistic analysis of

the null space property for this class of sparse matrices.

2.6 Expander Graphs and Their Linear Algebraic

View

Before proceeding, we define the notion of complete rank that appears as an important

linear algebraic property of matrices in the analysis of sparse recovery.

Definition 2. For a matrix Am×n we define the complete rank of A (denoted by

H(A)) to be the maximum integer r0 with the property that every r0 columns of A

are linearly independent. In other words, H(A) = minw∈N (A),w 6=0(|Supp(w)| − 1),

where Supp(w) is the support set of w.
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This notion is also known in linear algebra as “Kruskal rank” (see [Kru77]). It

has also been given other names in the literature. The complete rank of a matrix

A is equivalent to the minimum Hamming distance (weight) of the null space of A

minus one [Wol83], which can also be recognized as the “spark” of the matrix minus

one [JM].

Expander graphs were defined in Section 2.4. Here, we also define generalized

bipartite graphs that allow us to consider adjacency matrices with nonunitary entries.

Definition 3. Let A be a nonnegative m×n matrix. Consider the weighted bipartite

graph G = (X, Y,E,W ) where X = {v1, v2, · · · , vn} and Y = {u1, u2, · · · , um} are

the sets of nodes, E is the set of edges, and W is the set of weights assigned to the

edges, where G has the following property: for every nonzero entry Aij of the matrix

A, vj and ui are connected together with an edge eij of weight wij = Aij. For the

zero entries of A, there is no edge connecting the corresponding nodes in G. We call

G the generalized bipartite graph of A, and refer to A as the generalized adjacency

matrix of G.

Example 1. A weighted partite graph and its corresponding generalized adjacency

matrix in Figure 2.2. Note that the labels on the edges on the graph correspond

to the entries of the adjacency matrix. If there is no edge between two nodes, the

corresponding entry is zero in the adjacency matrix.

Note that the notions of “neighbor” of a vertex and “expansion” in a weighted

bipartite graph are the same as in a unitary bipartite graph. So for instance, the

neighbors of a node v in this graph are the set of nodes to which v is connected with

an edge of nonzero weight. The following lemma connects the expansion property

of a (generalized) bipartite graph to the complete rank of its (generalized) adjacency

matrix:

Lemma 2.6.1. Let A be a nonnegative matrix with exactly d nonzero entries in each

column. The generalized bipartite graph of A is a (H(A),d−1
d

) expander.
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Figure 2.2: A weighted bipartite graph and its generalized adjacency matrix

Proof. Let G = (X, Y,E,W ) be the generalized bipartite graph of A. If S ⊂ X with

|S| ≤ H(A) then the columns of A corresponding to the elements of S are linearly

independent. So the sub-matrix AS of A, produced by only those columns indexed

in S must be of full rank. Therefore, AS must have at least |S| nonzeros rows, which

is equivalent to |Γ(S)| ≥ |S| = |S|d(1− d−1
d

).

From the above proof, it follows immediately that:

∀S ⊆ X, |Γ(S)| ≥ min(|S|,H(A)). (2.6.1)

The notion of complete rank is closely related to the expansion property, and is on

the other hand, tied in with the null space characterization we are trying to establish,

as elucidated in the following theorem.

Theorem 2.6.2. Let A be a nonnegative matrix with exactly d nonzero entries in

each column. For every nonzero vector w in the null space of A, the number of

negative elements of w is at least H(A)
d

.

Proof. Let X and Y be the sets of left and right vertices of the generalized bipartite

graph of A. Let S+
w be the set of vertices in X corresponding to the positive elements

of w, and S−w be the set of vertices corresponding to the negative elements.3 Let

3We interchangeably use S and its variations to denote a set of vertices or a support set of a
vector.
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Sw = S+
w ∪ S−w. Since Aw = 0, we must have Γ(S+

w) = Γ(S−w) = Γ(Sw), since

otherwise, there exists a vertex in Y connected to exactly one of the sets S+
w or S−w.

Therefore, the coordinate of the vector Aw corresponding to this node will not sum up

to zero. On the other hand, from the definition of H(A), we must have |Sw| > H(A).

The number of edges emanating from S−w is d|S−w|, which is at least as large as the

number of its neighbors |Γ(S−w)|. Hence:

d|S−w| ≥ |Γ(S−w)| = |Γ(Sw)| ≥ H(A),

where the last inequality is a consequence of (2.6.1).

We now turn to the task of constructing adjacency matrices with complete rank

proportional to the dimension n. Throughout this paper, all the thresholds that we

achieve are asymptotic, i.e., they hold for the regime of very large n and m.

2.6.1 Perturbed Expanders

When n and m = βn are large, we are interested in constructing 0-1 matrices Am×n

with d (constant) 1’s in each column such that H(A) is proportional to n. Further-

more, the maximum achievable value of H(A)
nd

is of significant interest, as it determines

the largest sparsity fraction that can be reconstructed using `1 minimization (see The-

orem 2.6.2). This is a very difficult question to address in full generality for the class

of binary matrices. However, it turns out to be much easier if we allow for a small

perturbation of the nonzero entries of A.

Lemma 2.6.3. For a matrix A ∈ Rm×n which is the adjacency matrix of a bipartite

left d-regular graph, if in the submatrix formed by any r0 columns of A, every r ≤ r0

columns have at least r nonzero rows, then it is possible to perturb the nonzero entries

of A and obtain another nonnegative matrix Ã through this procedure, with H(Ã) ≥
r0. Furthermore, the perturbations can be done in a way that the sum of each column

remains a constant d, and all perturbations are rational numbers representable by a

finite number of bits.
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Proof. We add a random set of perturbations ∆ = {δi,j | 1 ≤ i ≤ m, 1 ≤ j ≤
n,Ai,j 6= 0} to the nonzero elements of A, while leaving the zero elements of A

intact. We denote the perturbed matrix by Ã. The way the random perturbations

are generated is as follows. Suppose without loss of generality that we scale the

matrix up by a prime integer q before adding perturbations, so that the nonzero

entries of A are equal to q, and suppose that δi,js are integers in {0, 1, · · · , q − 1}.
For each nonzero entry Ai,j of A, we independently choose δi,j uniformly at random

from the set {0, 1, · · · , q}. We look at the submatrix Asub formed by arbitrary r0

distinct columns of A. Without loss of generality, we index these columns by the

set Nsub = {1, · · · , r0}. Then, according to a famous graph theoretic result known as

Hall’s matching theorem (see Appendix 10.2), there exists a perfect matching between

these r0 columns and some r0 rows, which we denote by the set Msub = {i1, i2, ..., ir0}
accordingly. First, we bound the probability that ∆ makes the submatrix Ãsub have

rank smaller than r0, i.e., P{rank(Ãsub) < r0}. In order for the submatrix Ãsub

to have rank smaller than r0, the determinant of the square matrix ÃMsub,Nsub must

be zero, namely det(ÃMsub,Nsub) = 0. By definition, det(ÃMsub,Nsub) is a polynomial

over the variables of ∆, say p(∆), which contains a product term δ1,i1δ2,i2 · · · δr0,ir0
which certainly has a nonzero coefficient (actually its coefficient is either 1 or −1).

Therefore, invoking the well-known Schwartz-Zippel lemma for polynomials, we can

assert that P{p(∆) = 0} ≤ r0
q

. Furthermore, the number of ways the submatrix Asub

can be chosen is
(
n
r0

)
. Applying a union bound over all possible choices of Asub, we

can write:

P{H(Ã) ≤ r0} ≤
(
n

r0

)
r0

q
. (2.6.2)

For given n and r0, we can choose a finite q large enough such that the right-hand

side of (2.6.2) is sufficiently small. Therefore, there exists a choice of perturbations

δi,j so that the resulting Ã satisfies H(Ã) ≥ r0. Furthermore, after scaling down

the perturbed matrix by q, each perturbation δi,j is a rational number of the form t
q
,
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0 ≤ t < q, and is therefore representable by a finite number of bits.

It is worth noticing that, after modifying A based on perturbations of Lemma

2.6.3, Theorems 2.5.1, 2.5.3, and 2.6.2, and Lemmas 2.5.2 and 2.6.1 all continue to

hold for this class of matrices Ã. The reason is as follows. First of all, note that

Lemma 2.5.2 and Theorem 2.5.3 require only that A be constant column sum, which

is true for Ã. Theorem 2.5.1 assumes no restriction on the matrix. Finally, Lemma

2.6.1 and Theorem 2.6.2 are valid, since they hold for nonnegative matrices with a

constant number of nonzero entries in each column, and Ã is such a matrix.

The conclusion of this section so far is that if one starts off with the adjacency

matrix A of a regular bipartite graph and perturb its nonzero entries to obtain a

nonzero constant column sum matrix Ã withH(Ã) ≥ r0, then the following guarantee

exists: `1 minimization perfectly recovers a d r0
d
− 1e-sparse nonegative vector x0 from

the measurements Ãx0. Our goal now becomes constructing (r0,d−1
d

) expanders with

the ratio r0
nd

as large as possible. In Section 2.7, we use a probabilistic method to

show that the desired (r0 = µn,d−1
d

) expanders exist and provide thresholds for µ
d
.

Before continuing, note that we are using a 1− ε ≥ 1
d

expansion coefficient for perfect

recovery, which is very small compared to other schemes that use expanders (see, e.g.,

[XH07b, BGI+08, IR08, BI08, XH07a, JXHC09]) and require expansion coefficients

at least larger than 1− ε ≥ 3
4
. The small expansion coefficient 1− ε ≥ 1

d
required in

our analysis is indeed the critical expansion coefficient needed for the suitability of a

sparse measurement matrix. We shortly digress in a subsection to discuss this a little

further.

2.6.2 Necessity of Expansion for Compressive Sensing

Consider the following definition:

Definition 4. Let G = (X, Y,E,W ) be a weighted bipartite graph and S ⊂ X be a
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set of nodes in X. Let M be a subset of edges of G. M is called a partial perfect

matching saturating S, if:

• |M | = |S|.

• each node of S is incident to exactly one edge in M .

• no node in Y is incident to more that one edge in M .

We prove that any good sparse measurement matrix corresponds to an expander

graph with a critical (minimal) expansion coefficient.

Theorem 2.6.4. Let A be a m× n nonnegative matrix, with d nonzero entries per

column, and assume that A allows the recovery of all r0-sparse vectors. Then the

generalized bipartite graph of A is an (r0,1− 1
d
) expander.

Proof. The statement holds for any recovery algorithm. In fact we show that if the

generalized bipartite graph of A is not an (r0,1− 1
d
) expander, then even a stronger

recovery algorithm that magically knows the support of the vector, fails to recover

some r0-sparse vectors. Assume that the bipartite graph is not a (r0,1− 1
d
) expander,

i.e., there exists a set of r ≤ r0 columns that is adjacent to r − 1 (or fewer) rows.

Therefore the rank of the submatrix corresponding to these r columns must be strictly

smaller than r regardless of what the nonzero entries are. By selecting an adversary

sparse signal supported exactly on these r columns, we see it is impossible for any

algorithm to recover it, even if the support is known, since there is a rank loss in the

corresponding measurement submatrix.
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2.7 Recovery Thresholds of Compressive Sensing

for Minimal Expanders

In summary of Section 2.6, if one can construct a (r0, 1− 1
d
) expander graph with left

degree d, then from the adjacency matrix of this expander, it is possible to obtain a

measurement matrix that allows the recovery of every r0
d

sparse nonnegative signals

using `1 minimization. The explicit relationship between the ratio m
n

and the relative

size, r0
dn

, of a recoverable set is not yet clear. In this section, by addressing the question

of existence of appropriate expander graphs, we find this explicit relationship known

as the strong recovery threshold. We further derive a weak recovery threshold that is

concerned with the recovery of almost all sparse vectors of a certain sparsity.

2.7.1 Strong Bound

For fixed values of n > m > r0 and d we are interested in the existence of (r0,ε = d−1
d

)

expanders with constant left degree d. There are a few previous works that address the

construction of expanders (random or deterministic), and try to find the relationships

between their parameters. In [BM01] for instance, it has been shown that for any

value of β = m
n

and 0 ≤ ε ≤ 1, there exists a left degree d bipartite (µn, ε) expander

for some 0 ≤ µ ≤ 1 and some constant (not growing with n) d. Also, an explicit

construction of constant regular left degree lossless (with 1− ε arbitrarily close to 1)

expanders is given in [CRVW02]. As a consequence of the results of the latter, for any

fixed ε it is possible to explicitly construct a (kmax,ε) expander with kmax = O(m
dε

),

and d = O( log(β)
ε

). The main reason we cannot use these results directly here is that

the relationship between the expansion factor (1− ε) and the left degree of the graph

(d) is not clear in any of the previous works (even order wise). Besides, in most of

the previous arguments, the relationship between the size of expansion set k, the left

set size m and the factor ε is expressed in terms of order functions, and the explicit

constants are omitted. Our attempt here is to derive those constants explicitly.
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We use the standard first moment method argument to prove the existence of our

expanders of interest, namely (r0,ε = d−1
d

) expanders, for appropriate n, m, r0, and

d. The main result is given as follows:

Theorem 2.7.1. For sufficiently large n, with m = βn and r0 = µn, there exists a

bipartite graph with n left vertices and m right vertices, which is a (r0,
d−1
d

) expander,

if

d >
H(µ) + βH(µ

β
)

µ log(β
µ
)

, (2.7.1)

where H(.) is the Shannon entropy function defined as H(x) = x log2
1
x

+ (1 −
x) log2

1
1−x .

More important is the question of how big the ratio µ
d

can be, since we earlier

proved that we can recover vectors with sparsity up to r0
d

= µ
d
n. A combination of

the previous derivations and Theorem 2.7.1 directly implies the following theorem,

stating the strong sparsity threshold for sparse measurement matrices.

Theorem 2.7.2 (Strong Threshold). For a fixed β = m
n

, let d∗ and µ∗ be the solutions

of the following optimization program

maximize
µ

d

s.t

{
0 ≤ µ ≤ 1, d ∈ Z+, d >

H(µ) + βH(µ
β
)

µ log(β
µ
)

}
.

For sufficiently large n, there exists a sparse measurement matrix A with d∗ nonzero

entries in each column, so that every µ∗n
d∗

-sparse nonnegative vector x can be recovered

from Ax using `1 minimization.

Figure 2.3a illustrates the strong recovery threshold for different values of β, derived

from Theorem 2.7.2.

2.7.2 Weak Bound

We are now interested in deriving conditions for recovering a specific support set S

of size k = αn, rather than obtaining a worst-case bound for matrices that work for
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Figure 2.3: Recoverable sparsity size, weak achievable bound of Section 2.7.2 and the strong
achievable threshold of (2.7.1). β is the ratio m

n .

all support sets. Recall that m = βn, left degree is d, and define γ1 := (1− e−dαβ )β.

Theorem 2.7.3 (Weak Threshold). Define the function

F (ρ1, ρ2) := αH(
ρ1

α
) + (1− α)H(

ρ2

1− α) + βH(
ρ1 + ρ2

β
) + d(ρ1 + ρ2) log(

ρ1 + ρ2

β
).

(2.7.2)

For every α such that F (ρ1, ρ2) < 0 for every ρ1, ρ2 that satisfy ρ1 < α, ρ2 < 1 −
α, ρ1 + ρ2 < γ1, a randomly selected subset of size k = αn is recoverable using `1

minimization of (2.4.2) from a random perturbed matrix Ã with probability 1− o(1).

The bound that results from Theorem 2.7.3 is plotted in Figure 2.3b and has

been compared to the strong threshold previously achieved. Also, the comparison

of these bounds with those of dense Gaussian i.i.d. matrices for the nonnegative

case that were obtained in the paper [DT05b] is illustrated in Figure 2.4. Note that

compared with the performance bounds achievable for Gaussian dense matrices, the

provable theoretical performance bounds from our derivations are generally smaller,

but they are getting closer to the performance bounds achievable for Gaussian dense

matrices (See Figure 2.4) and represent a step towards closing the gap between the

provable bounds for dense and sparse measurement matrices. Finally, to highlight the

importance of our achieved bounds, we have compared the strong threshold of this
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Figure 2.4: Comparison of weak and strong bounds for dense i.i.d. Gaussian matrices (and
nonnegative signals) from [DT05b] with those of the current paper for sparse matrices. β
here is equal to m

n .

paper with the thresholds of [BGI+08] that also uses expander graphs with ε ≤ 1/6

in Figure 2.5. Ostensibly, the use of minimal expanders has increased the theoretical

recovery thresholds by almost three orders of magnitude.

The full proof of Theorem 2.7.3 is given in Section 2.10. The key argument is a

matching condition for the recoverability of vectors supported on a specific subset S.

The condition involves looking at the two-hop graph from S and checking if all sets

of size up to |Γ(S)|+ 1 are saturated by a partial perfect matching.

Lemma 2.7.4. Given a set S, consider Γ(S) and denote S2 = Γ(Γ(S)) \ S. Let

the bipartite two-hop graph of S be denoted by BS = (S ∪ S2,Γ(S ∪ S2)). If every

subset S ′ ⊂ S ∪ S2 of size |S ′| ≤ |Γ(S)| + 1 has minimal expansion: |Γ(S ′)| ≥ |S ′|
then there is a perturbation of nonzero entries of A resulting in the matrix Ã so that

any nonnegative vector x0 supported on S can be recovered from y = Ãx0 using the

optimization formulation (2.4.2).

Proof. Consider the two-hop bipartite graph of S and let C = (S ∪ S2)c denote the

remainder of the nodes in X. Further let AS denote the submatrix of A corresponding
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Figure 2.5: Comparison of size of recoverable sparsity (strong bound) of this paper with
those from [BGI+08]. β = m

n .

to BS. By Hall’s theorem since every subset of S ∪ S2 of size up to |Γ(S)| + 1 has

expansion equal to its size, it must also be saturated by a partial perfect matching.

In other words, BS corresponds to a (|Γ(S) + 1|, 1 − 1
d
) expander. Therefore by

Lemma 2.6.3 it is possible to perturb its nonzero entries to obtain a matrix ÃS with

H(ÃS) ≥ |Γ(S)|.
To show that a set S can be recovered, it suffices to show that every nonzero

vector w in the nullspace of Ã cannot have all its negative components in S. Assume

otherwise: that some w has indeed all its negative support S−w ⊆ S. Observe now

that C cannot contain any of the positive support of w, because every equation that is

adjacent to a positive element must also be adjacent to a negative elements (since the

matrix coefficients are nonnegative) and Γ(S−w) does not intersect Γ(C). Therefore

the whole support of w must be contained in S ∪ S2.

Now we can show that |Sw| ≤ |Γ(S)|. Assume otherwise, that |Sw| > |Γ(S)|. Then

we could select a subset of K ⊆ Sw such that |K| = |Γ(S)|+1. This set K satisfies our

assumption and is contained in BS and therefore must have the minimal expansion

|Γ(K)| ≥ |K| = |Γ(S)| + 1. But since Γ(Sw) = Γ(S−w) ⊆ Γ(S) and K ⊆ Sw (recall

that S−w ⊆ S by assumption), it must hold that |Γ(K)| ≤ |Γ(S)|, which contradicts

the minimal expansion inequality.
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Therefore, |Sw| must be saturated by a partial perfect matching which means that

we can find a full rank submatrix Aw (corresponding to that partial matching) such

that AwwS = 0 (where wS means the vector w restricted to its support). Since Aw

is full rank, w must be the all-zeros vector which contradicts the assumption that S−w

can be contained in S.

2.8 Fast Algorithm

We now describe a fast algorithm for the recovery of sparse nonnegative vectors from

noiseless or noisy measurements. This algorithm relies on the minimal expansion we

described in Section 2.6.2. We employ a (kd + 1,1 − 1
d
) expander and perturb it as

Lemma (2.6.3) to obtain a sparse nonnegative matrix Ã with H(Ã) ≥ kd + 1. The

algorithm has two variations, one that works specifically for k-sparse signals with no

measurement noise, and one that also accounts for additive noise. When measurement

noise is present, the observation vector is given by the following equation:

y = Ãx + v. (2.8.1)

In either case, the sparsity k of the unknown signal is given to the algorithm.

Note that in the noiseless case, Algorithm 1 transforms the original under-determined

system of equations to an over-determined subset of equations. In Section 2.10, we

provide theoretical justification for the effectiveness of this algorithm. Also, in next

theorem we claim that Algorithm 1 is robust to measurement noise. The proof is

provided in Section 2.10.

Theorem 2.8.1. If A is the adjacency matrix of a (2k,ε) expander with ε < 0.5, x

is a k-sparse nonnegative vector and x̂ is the output of Algorithm 1 with p = 1 for

y = Ax + v, then ‖x− x̂‖1 ≤ 7−4ε
1−2ε
‖v‖1.
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Algorithm 1 —Reverse Expansion Recovery (REVEX)

1: Input: Observation vector y, measurement matrix A = [ai,j]1≤i≤m,1≤j≤n, its
corresponding generalized bipartite graph G = (X, Y,E,W ), parameter θ deter-
mining whether the observations are noiseless (θ = 0) or noisy (θ = 1), and
parameter p ≥ 1.

2: Output: Estimate x̂ of the sparse vector x.
3: Set T1 as the set of the smallest m− kd of y in magnitude, and denote them by

y1. Also set T2 as the complement of T1. Without loss of generality, assume that
y = (y1 y2)t.

4: Set S1 := Γ(T1) and S2 := Sc1.
5: Set Ã2 := [ai,j]i∈S2,j∈T2 .
6: Set x̂S1 := 0.

7: Set Ã†2 :=
(
ÃtÃ

)−1

Ãt.

8: if θ = 0 then
9: Set x̂S2 := Ã†2y2.

10: else
11: Set x̂S2 := argminz∈R|S2|×1‖A2z− y2‖p.
12: end if

2.9 Experimental Evaluation

We generated a random m × n matrix A with n = 2m = 500, and d = 3 1s in each

column. We then multiplied random sparse vectors with different sparsity levels by A,

and tried recovering them via the linear program (2.4.2). Next, we added a random

set of perturbations to the nonzero entries of A while keeping it nonnegative and

constant column sum (one way to do that is by adding a uniformly random number

in [−1, 1] to each 1 of A, and then normalizing each column) and applied the same

sparse vectors to compare the recovery percentages in the two cases. This process was

repeated for a few generations of A and the best of the improvements we obtained is

illustrated in Figure 2.6a.

In Figure 2.6b we have plotted the recovery percentage of Algorithm 1 for a

random 0 − 1 sparse matrix A of size 250 × 500 with d ones in each column. We

have compared the performance with the `1 minimization method, the count-min

algorithm of [CM04] and the sparse Matching Pursuit (SMP) method of [BIR08], all

specific to positive signals. Note that for the count-min algorithm, the measurement
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Figure 2.6: (a) Probability of successful recovery of `1 minimization for a random
0 − 1 sparse matrix of size 250 × 500 with d = 3 ones in each column, and the
same probability when the matrix is randomly perturbed in the nonzero entries.
(b) Comparison of `1 minimization nonnegative recovery, Algorithm 1, count-min
algorithm of [CM04] and SMP algorithm of [BIR08] for sparse 0 − 1 measurement
matrices with d ones in each column. ×: d = 3, ◦: d = 6, 2: d = 9. Blue: `1

minimization, Black: Algorithm 1, Red: Count-min, Green: SMP

matrix must have other properties in addition to the constant number of 1s in each

column. Please see [BIR08] for more details. Although the deterministic theoretical

bounds for the proposed algorithm and the `1 minimization are the same, as observed

in Figure 2.6b, in practice `1 minimization is more effective for less sparse signals.

However Algorithm 1 is considerably faster than linear programming and easier to

implement.

In general, the complexity of Algorithm 1 is O(nk2), which, when k is propor-

tional to n, is similar to linear programming’s O(n3). However the constants are

much smaller, which is of practical advantage. Furthermore, taking advantage of fast

matrix inversion algorithms for very sparse matrices, Algorithm 1 can be performed

in dramatically fewer operations. Figure 2.7 shows the signal-to-error ratio as a func-

tion of signal-to-noise Ratio when Algorithm 1 with p = 2 has been used to recover

noisy observations. Assuming that the output of the algorithm is x̂, signal-to-noise
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Figure 2.7: Simulation results for Algorithm 1, noisy case; signal-to-error ratio vs.
signal-to-noise ratio.

ratio (SNR) and signal-to-error ratio (SER) functions are defined as

SNR = 10 log
‖Ax‖2

2

‖v‖2
2

, SER = 10 log
‖x‖2

2

‖x− x̂‖2
2

.

Measurement matrices are the same as before.

2.10 Proof of Theorems

Proof of Theorem 2.7.1.

Assuming that we generate a random matrix A by placing d ones in each column

uniformly at random and the rest of the entries zero, it suffices to show that the

probability that A has the desired expansion property is positive. For 1 ≤ i1 < i2 <

... < ir ≤ m, we denote by Ei1,i2,...,ir the event that the columns of A corresponding

to the numbers i1,i2,...,ir have at least m− r+ 1 entire 0 rows (rows that do not have

a single nonzero element in the columns Ai1 ,Ai2 ,...,Aik). In other words Ei1,i2,...,ir is

the event that the set of nodes {i1, i2, ..., ir} in X contracts in Y .

P
(

A is a (r0,
d− 1

d
) expander

)
= 1− P

( ⋃
d≤r≤r0,1≤i1<i2<...<ir

Ei1,i2,...,ir

)

≥ 1−
r0∑
r=d

(
n

r

)
P (E1,2,...,r).
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We use the following combinatorial analysis to bound P[E1,2,...,r]. The total number

of 0 — 1 matrices of size m × r that have exactly d 1s in every column is
(
m
d

)r
. In

addition, if a matrix is to have at least m − r + 1 entirely zero columns, all of its

nonzero entries must be included in a submatrix of size r × r. There are
(
m
r

)
choices

for such a square submatrix, and for each selection, the number of matrices that can

be constructed is by the same token as before equal to
(
r
d

)r
(It should be clear that

we are multiple-counting many cases). This yields the following:

P (E1,2,...,r) ≤
(
m
r

)(
r
d

)r(
m
d

)r .

Hence

P
(
A is a (r0,

d− 1

d
) expander

)
≥ 1−

r0∑
r=d

(
n

r

)(m
r

)(
r
d

)r(
m
d

)r . (2.10.1)

We show that for certain regimes of β, µ and d, the right-hand side of (2.10.1) becomes

arbitrarily close to 1. To see this, we prove the following two lemmas.

Lemma 2.10.1. If 0 < α < e
d

2−dβ
1−d
2−d and d ≥ 3 then

∑αn
r=d

(
n
r

)(mr )(
r
d)
r

(md)
r = O(n1−d(d−2)),

as n→∞.

Proof. We can write:

αn∑
r=d

(
n

r

)(m
r

)(
r
d

)r(
m
d

)r ≤
αn∑
r=d

(
n

r

)(
m

r

)
(
r

m
)rd ≤

αn∑
r=d

(
ne

r
)r(
me

r
)r(

r

m
)rd =

αn∑
r=d

(
cr

n
)r(d−2),

(2.10.2)

where c = e
2
d−2β

1−d
d−2 , and we have used the bounds

(rd)
(md)
≤ ( r

m
)d for r < m, and(

n
k

)
≤ (ne

k
)k. It is easy to show that when α < 1

ec
, ( cr

n
)r is decreasing in r, and thus

replacing all the terms in (2.10.2) by the first term will only increase the sum. The

whole term is thus smaller than αn( cd
n

)d(d−2) = λn1−d(d−2) for some positive constant

λ.
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Lemma 2.10.2. For m = βn and r0 = µn, if d >
H(µ)+βH(µ

β
)

µ log2(β
µ

)
, then for any 0 < α < µ

the sum
∑µn

r=αn+1

(
n
r

)(mr )(
r
d)
r

(md)
r decays exponentially as n −→∞.

Proof. Using the standard bounds of (10.1.1) on binomial coefficients and the fact

that
(rd)
(md)
≤ ( r

m
)d for r < m, we can write:

µn∑
r=αn+1

(
n

r

)(m
r

)(
r
d

)r(
m
d

)r ≤ n2

µn∑
r=αn+1

2nH( r
n

)+mH( r
m

)+rd log2
r
m

+log2{(n+1)(m+1)}, (2.10.3)

where H(x) = x log( 1
x
) + (1 − x) log( 1

1−x) is the entropy function. Assuming that

µ ≤ β
2
, the largest term on the right-hand side of (2.10.3) is the one corresponding to

r = µn (since H(x) and x log2 x are both increasing for 0 ≤ x ≤ 1
2
), and therefore we

can write

µn∑
r=αn+1

(
n

r

)(m
r

)(
r
d

)r(
m
d

)r ≤ 4n52n(H(µ)+βH(µ
β

)+µd log(µ
β

)). (2.10.4)

Note that we have used the fact that (n + 1)(m + 1) < 4n2. The right hand side of

(2.10.4) vanishes as n→∞, if d >
H(µ)+βH(µ

β
)

µ log2(β
µ

)
.

Proof of Theorem 2.7.3.

For a random set S that has a linear-size cardinality (i.e., |S|
n

is not asymptotically

zero), and |S|
m

small enough, E|Γ(S)| = (1− e−d |S|m )βn =: γ1n when n→∞. We first

need to ensure that |Γ(S)| is concentrated. We can show that:

P (|Γ(S)| ≤ E|Γ(S)|+ ε1) > 1− 1

n
.

This concentration bound can be obtained by the standard Martingale concentration

arguments if |S| ≥ c1n, for ε1 = c2

√
n log n, see [SS96, BM01]. Therefore we define

the event E1 = {|Γ(S)| ≤ γ1n+ ε1}. Consider the random graph created from placing

d nonzero entries (with repetition) in every column of Ã. From the set S, form Γ(S),

the corresponding S2, and finally the bipartite graph BS = (S ∪S2,Γ(S ∪S2)). Using

the given combinatorial condition in Lemma 2.7.4, we can recover a signal supported
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on S if every subset Si ⊂ S ∪ S2 of size |Si| ≤ |Γ(S)| + 1 has sufficient expansion:

|Γ(Si)| ≥ |Si| (note that subsequently we drop the +1 term since it is negligible for

large n). First we condition on the concentration of |Γ(S)|:

P (S not recoverable) = P (S not recoverable|E1)P[E1] + P (S not recoverable|Ec
1)P (Ec

1)

≤ P (S not recoverable|E1) (1− 1

n
) +

1

n
, (2.10.5)

Therefore it suffices to bound the probability conditioned on |Γ(S)| concentrated. We

are going to do a union bound over all possible selections R1 of r1 nodes in S and R2

of r2 nodes in S2 so that r1 + r2 ≤ |Γ(S)|. Since we are conditioning on E1, it suffices

to have r1 + r2 ≤ γ1n + ε1. The second problem is that the set S2 is random and

dependent on Γ(S). We are going to avoid this conditioning by allowing the choice

of R2 to range over all the n− k nodes in Sc.

P (S not recoverable|E1) ≤
∑

r1+r2≤γ1n+ε1

(
k

r1

)(
n− k
r2

)
P (R1 ∪R2 contracts|E1) .

(2.10.6)

Now the problem is that conditioning on E1 implies that the set R1 does not

expand too much, so it is actually increasing the probability of the bad contraction

event. We can however easily show that this increase is at most a factor of 2:

P (R1 ∪R2 contracts|E1) =
P (R1 ∪R2 contracts ∩ E1)

P(E1)
≤ P (R1 ∪R2 contracts)

P(E1)
.

(2.10.7)

Now since P(E1) ≥ 1− 1/n, for sufficiently large n, 1/P(E1) ≤ 2, so

P (R1 ∪R2 contracts|E1) ≤ 2P (R1 ∪R2 contracts) . (2.10.8)

The probability that the set R1 ∪ R2 contracts can be further bounded by assuming

|Γ(R1 ∪R2)| = r1 + r2 (any smaller neighborhood will have smaller probability) so

P (R1 ∪R2 contracts) ≤
(

m

r1 + r2

)(
r1 + r2

m

)d(r1+r2)

.
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Putting everything together we obtain the bound

P (S not recoverable|E1) ≤ 2
∑

r1+r2≤γ1n+ε1

(
k

r1

)(
n− k
r2

)(
m

r1 + r2

)(
r1 + r2

m

)d(r1+r2)

.

(2.10.9)

We move everything to the exponent, assume ε1/n → 0, and use standard binomial

approximations to obtain

P (S not recoverable|E1) ≤ 2n3
∑

r1+r2≤γ1n

2kH(
r1
k

)+(n−k)H(
r2
n−k )+mH(

r1+r2
m

)+d(r1+r2) log(
r1+r2
m

).

(2.10.10)

Recall that the recoverable fraction is k = αn, m = βn, and denote ρ1 = r1/n,

ρ2 = r2/n. Define the function

F (ρ1, ρ2) := αH(
ρ1

α
) + (1− α)H(

ρ2

1− α) + βH(
ρ1 + ρ2

β
) + d(ρ1 + ρ2) log(

ρ1 + ρ2

β
),

(2.10.11)

and observe that the bound on the probability of failure (2.10.10) becomes

P (S not recoverable|E1) ≤ 2n3
∑

r1+r2≤γ1n

2nF (ρ1,ρ2).

Therefore for fixed β and γ1, we are trying to find the largest α∗ that makes F (ρ1, ρ2)

negative for every ρ1, ρ2 for which ρ1 + ρ2 ≤ γ1. For this α∗, we can recover sparse

signals with sparsity no bigger than α∗n with polynomially high probability, condi-

tioned on the fact that the sublinear sets do not contract (which has already been

established).

Proof of Validity of Algorithm 1.

Algorithm 1 identifies a big zero portion of the output and eliminates two large

sets of nodes from X and Y (Figure 2.8). Having done this, a smaller system of

linear equation remains, which turns out to be an over-determined system and can

be uniquely solved using matrix inversions. This procedure is therefore nothing but

a block diagonalization (after rearranging the rows and columns) of Ã into a lower
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Figure 2.8: Decomposition of nodes and edges by Algorithm 1

triangular matrix:

Ã =

(
Ã11 0

Ã12 Ã2

)
(2.10.12)

where Ã2 is a square or tall full-rank matrix. The following theorem certifies that

Algorithm 1 is indeed valid and it recovers any k-sparse vector without error.

Theorem 2.10.3. (Validity of Algorithm 1) If x is a k-sparse nonnegative vector

and Ã is a perturbed (kd+ 1,1− 1
d
) expander with H(Ã) ≥ kd+ 1, then x̂ = x.

Proof. First of all, note that y is kd-sparse, since every column of Ã has exactly d

nonzero entries. We also show that |S2| ≤ |T2| and therefore Ã2 is a full rank matrix.

Suppose |S2| > |T2|. We also know that |T2| ≤ kd. Select an arbitrary subset S2
′ ⊆ S2

of size |T2| + 1. Because of the fact that |S2| ≤ kd + 1 and the expansion property:

|Γ(S2
′)| ≥ |S2

′| > |T2|. But Γ(S2
′) is a subset of T2 and this is a contradiction.

Diagonalization of (2.10.12) and the fact that Ã2 is a tall matrix and H(Ã) ≥ kd+ 1

together imply that Ã2 has full column rank.

We now show that x̂ = x. If any entry in xS1 is greater than zero, then there

is at least one entry in y which is indexed in T1 and is nonzero, since S1 = Γ(T1).

This is in contradiction with the choice of T1. Therefore xS1 = 0 = x̂S1 . Also since

Ã2xS2 = y2 and Ã2x̂S2 = y2 and Ã2 is full-rank, we conclude that xS2 = x̂S2 .
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Proof of Robustness of Algorithm 1.

We first state the following lemma from [BGI+08]:

Lemma 2.10.4. Consequence of Lemma 9 of [BGI+08]: If A is the adjacency matrix

of a (k,ε) expander with ε < 0.5 and u is a k-sparse vector, then d(1 − 2ε)‖u‖1 ≤
‖Au‖ ≤ d‖u‖1.

If the original vector x is k-sparse, and each column of A has d 1s, then Ax has

at most kd 1s, i.e. Ax is kd-sparse. By rearranging the rows and columns of A, we

may assume x = (x1 x2)T , y = (y1 y2)T , v = (v1 v2)T , and A =

(
A11 0

A12 A2

)
,

where y1 and y2 are those obtained by the algorithm, x1 = xS1 , and x2 = xS2 . Also

let e = x− x̂ be the reconstruction error vector. By (2.8.1) we then have

y1 = A11x1 + v1, y2 = A12x1 + A2x2 + v2, e = (x1 x2 − x̂2)T . (2.10.13)

Hence we have:

‖x1‖1 ≤ ‖A11x1‖1 = ‖y1 − v1‖1 ≤ ‖y1‖1 + ‖v1‖1 ≤ 2‖v‖1. (2.10.14)

The first inequality holds as a result of nonnegativity of x1 and A11, and the fact that

every column of A11 has at least one 1. The last inequality holds for the following

reason. We know that Ax is kd-sparse. Let T0 be a set of m − kd zeros of Ax. We

then have

‖y1‖1 ≤ ‖yT0‖1 = ‖vT0‖1 ≤ ‖v‖1. (2.10.15)

Let us assume y2 = A2x̂2 + δ2. From the way x̂2 is driven in step 4 of the

algorithm, it follows that:

‖δ2‖1 ≤ ‖A12x1 + v2‖1. (2.10.16)

And thus

‖A2(x2−x̂2)‖1 = ‖δ2−A12x1−v2‖1 ≤ 2‖A12x1+v2‖1 ≤ 2d‖x1‖1+2‖v2‖1. (2.10.17)
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We may note that |S2| < 2k. Otherwise, since A corresponds to a (2k, ε) expander,

we can choose an arbitrary subset S2
′ ⊂ S2 of size 2k, and conclude that

|Γ(S2)| ≥ |Γ(S ′2)| ≥ 2k(1− ε)d > kd. (2.10.18)

However, from the construction of S2, we know that Γ(S2) = T2 and |T2| = kd.

Therefore the vector u = (0 x2 − x̂2)T is 2k-sparse (because the size of x2 is at most

2k), and we can apply the RIP-1 condition of Lemma 2.10.4 to it, which yields

c1‖x2 − x̂2‖1 ≤ 2d‖x1‖1 + 2‖v2‖1, (2.10.19)

where c1 = (1− 2ε)d. Equations (2.10.14) and (2.10.19) result in (assuming d ≥ 2):

‖e‖1 ≤ (2 +
4d

c1

)‖v‖1 +
2

c1

‖v2‖1 ≤
7− 4ε

1− 2ε
‖v‖1. (2.10.20)

2.11 Conclusion

We considered the recovery of a nonnegative sparse vector using a sparse measure-

ment matrix in the compressed sensing framework. We used the perturbed adjacency

matrix of a bipartite expander graph to construct the sparse measurement matrix

and proposed a novel fast algorithm. We computed recovery thresholds and showed

that for measurement matrices with nonnegative entries and constant column sum

the constraint set {x|x ≥ 0,Ax = y} is a singleton set, whenever `1 optimization

is successful (which also means that any other nontrivial optimization scheme which

can examine the feasible set would be successful). Finally, determining whether the

matrices constructed satisfy an RIP-2 property, and constructing 0 — 1 matrices

that have complete rank proportional to n are open problems that may be worthy of

further scrutiny.



Chapter 3

Bipartite Graphs with Large Girth

In the previous chapter, we introduced a class of sparse matrices that are suitable

for compressed sensing with basis pursuit recovery algorithms. The fundamental

property of the proposed matrices was expansion, through which certain balanced-

ness conditions are guaranteed for the corresponding null space, and thus certifying

the success of nonnegative constrained `1 minimization. There are, however, sev-

eral drawbacks with that proposal. First of all, the theoretical guarantees of the

previous chapter were all derived under the assumption that the unknown signal is

nonnegative. Secondly, although expander graphs can be generated deterministically,

verifying whether a given sparse matrix corresponds to an expander graph with spe-

cific parameters can be very difficult. In particular, in the linear regime where m and

k are both proportional to n, there exists (to our best knowledge) no polynomial time

algorithm that can verify whether or not a given bipartite graph with n left nodes and

m right nodes is a (k, ε)-expander, for a constant ε. Finally, as discussed, minimal

expanders need perturbation for guaranteed success. This could potentially make

their performance susceptible to noise and numerical disparities such as quantization

and limited precision in practical situations.

In this chapter, we propose another criteria for sparse matrices, under which

`1 minimization can work properly. We show that if a low-density binary matrix

corresponds to a bipartite (Tanner) graph with large girth, then certain guarantees

exist for the success of basis pursuit. The girth of a graph is defined as the length of

65
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the shortest cycle. The techniques used to derive this conclusion are based on results

for error-correcting codes. As we will explain, there is a connection between good

linear block codes for error correcting and good measurement matrices for compressed

sensing.

Unlike the previous chapter, the theoretical guarantees that result from using

large girth codes hold for indefinite sign signals (not just nonnegative signals, unlike

minimal expanders), and can also be generalized to the case of noisy observations or

approximately sparse signals, thus providing robustness for basis pursuit under these

conditions. Another critical importance of the girth criteria is that, unlike expansion,

the exact numerical value for the girth of a graph can be computed within polynomial

time.

A measurement matrix

n signal size

m number of measurements

k sparsity of the signal

N (A) null space of A

C binary linear error correcting code

HCC parity check matrix of C
CR robustness constant of `1 minimization

3.1 Introduction

As discussed previously, in compressed sensing, one tries to estimate an unknown

vector x ∈ Rn from the observation of m linear measurements in the form:

y = A · x,

where A is a real-valued measurement matrix of size m× n. When m < n this is an

underdetermined system of linear equations, and one fundamental compressed sensing

problem involves recovering x assuming that it is also k-sparse, i.e., it has k or fewer

nonzero entries. The sparse approximation problem goes beyond exactly sparse vec-

tors and requires the recovery of a k-sparse vector x̂ that is close to x, even if x is not
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exactly k-sparse itself. Recent breakthrough results [CT05, Don06a, DT05a] showed

that it is possible to construct measurement matrices with m = O(k log(n/k)) rows

that recover k-sparse signals exactly in polynomial time. This scaling is also opti-

mal, as discussed in [GI10, BIPW10]. These results rely on randomized matrix (often

dense) constructions and establish that the optimal number of measurements will

be sufficient with high probability over the choice of the matrix and/or the signal,

and rely on geometric or linear-algebraic conditions such as RIP or the null space

property to be satisfied by the measurement matrix A [CT05, DH01, SXH08]. In

addition, sparse measurement structures have also been constructed with guaran-

tees for the Basis-Pursuit-types of algorithms, mostly based on expander graphs. As

described in Chapter 2, prior to the our results for the use of minimal expanders,

the existing sparse constructions for compressed sensing were based on high-quality

expander. Unfortunately, there is no efficient way to deterministically construct ma-

trices that satisfy the RIP, null space, or high-quality expansion properties to the

same order of optimality as random constructions. In addition, given an arbitrary

matrix, there are no known ways of verifying these conditions and obtaining the exact

constants (e.g., RIP constant or specifications of the null space property). In fact,

it is even conjectured that the problem of certifying RIP for an arbitrary matrix is

non-polynomial [KZ].

There are several explicit constructions of measurement matrices (e.g., [BCJ10,

DeV07]) which, however, require a slightly sub-optimal number of measurements (m

growing super-linearly as a function of n for k = p · n). Our focus here is in the lin-

ear sparsity regime where k is a fraction of n and optimal number of measurements

will also be a fraction of n. This is a very important regime, as the performance

of the Basis Pursuit algorithm can be completely characterized in this regime for

asymptotically large dimensions. These are the so-called recovery thresholds for `1

minimization which were briefly discussed in Chapter 2, and are known to be tight

for random structures. We will get back to this issue in details in Part II of this
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dissertation. The problem we are addressing now is how much we can tighten the

gap between the thresholds of Basis Pursuit for random structures and for determin-

istic structures. The explicit construction of measurement matrices with an optimal

number of rows is a well-known open problem in compressed sensing theory (see, e.g.,

[GI10] and references therein).1 A closely related issue is that of checking or certifying

in polynomial time that a given candidate matrix has good recovery guarantees.

Minimal expanders introduced in the previous chapter are special-case near-optimal

solutions to the above open problem, for nonnegative sparse vectors. In this chapter,

we introduce a new class of sparse and binary measurements which result in very tight

thresholds for Basis Pursuit, for indefinite sign vectors. These are the class of ma-

trices that represent bipartite graphs with large girths (i.e. minimum cycle length).

The girth condition can efficiently be analyzed for a sparse matrix. Our techniques

are coding theoretic and rely on a recent connection of compressed sensing to LP

relaxations for channel decoding.

3.2 Contributions

We prove the following important results. Consider a sparse matrix A in {0, 1}m×n

that has dc ones per row and dv ones per column. If the bipartite graph corresponding

to A has Ω(log n) girth, then for k = p · n and an optimal number of measurements

m = c2 ·n, we show that A offers `1/`1 sparse approximation under the Basis Pursuit

decoding algorithm.2 Our technical requirement of girth, unlike expansion or RIP, is

easy to check, and several deterministic constructions of matrices with m = c · n and

Ω(log n) exist, starting with the early construction in Gallager’s thesis [Gal63], and

1We note that in the online draft of [DSV], p. 11, there is an incorrect comparison to prior work
that suggests that the Capalbo et al. [CRVW02] explicit construction of high-quality expanders
would give an optimal number of measurements. In fact, in the linear sparsity regime k = c · n, the
construction of [CRVW02] would require m = c2n2O(log log(n)3) measurements [BGI+08]. Therefore,
to the best of our knowledge, [DSV] has the only known construction that recovers k sparse signals
with a deterministic matrix and an optimal number of measurements.

2The `1/`1 approximation shall be defined soon.
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the progressive edge-growth Tanner graphs of [HEA05].

Our result is a weak bound, also known as a “for-every signal” guarantee [GI10].

This means that we have a fixed deterministic matrix and show the `1/`1 sparse

approximation guarantee with high probability over the support of the signal. To the

best of our knowledge, this is the first deterministic construction of matrices with an

optimal number of measurements and the strong bound (“for-all signals”) equivalent

remains open.

Our techniques are coding-theoretic and rely on recent developments that con-

nect the channel decoding LP relaxation by Feldman et al. [FWK05] to compressed

sensing [DSV]. We rely on a primal-based density evolution technique initiated by

Koetter and Vontobel [KV06] and analytically strengthened in the breakthrough pa-

per of Arora et al. [ADS09] that established the best-known finite-length threshold

results for LDPC codes under LP decoding.

To show our `1/`1 sparse approximation result, we first need to extend [DSV] for

non-sparse signals. Specifically, the first step in our analysis (Theorem 3.4.6) is to

show that `1/`1 sparse approximation corresponds to a channel decoding problem

for a perturbed symmetric channel. The second component is to extend the Arora

et al. argument for this perturbed symmetric channel, an analysis achieved in The-

orem 7.5.6. This is performed by showing how a similar tree recursion allows us to

establish robustness of the fundamental cone (FCP), i.e. every pseudocodeword in

the fundamental cone [KV06] has a nonnegative pseudoweight even if the flipped bit

likelihoods are multiplied by a factor larger than one. The FCP condition shows that

the matrix A, taken as an LDPC code, can tolerate a constant fraction of errors for

this perturbed symmetric channel under LP decoding.

We note that even though our analysis involves a rigorous density evolution argu-

ment, our decoder is always the Basis Pursuit linear relaxation, which is substantially

different from the related work on message-passing algorithms for compressed sens-

ing [DMM09, ZP].
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3.3 Preliminaries

In this section we provide a brief background for the major topics we will discuss. We

begin by introducing the noiseless compressed sensing problem and the basis pursuit.

Then, we mention the channel coding problem and its relaxation. Since the focus

of this chapter is compressed sensing, the description of the channel coding problem

is not very involved. In Chapter 7, error-correcting codes and channel decoding via

linear programming will be explained in more detail.

3.3.1 Compressed Sensing Preliminaries

The simplest noiseless compressed sensing (CS) problem for exactly sparse signals

consists of recovering the sparsest real vector x of a given length n, from a set of m

real-valued measurements y, given by A · x = y; namely

CS-OPT: minimize ‖x‖0

subject to A · x = y.

Since `0 minimization is NP-hard, one can relax CS-OPT by replacing the `0 norm

with `1, specifically

CS-LPD: minimize ‖x‖1

subject to A · x = y.

This LP relaxation is also known as Basis Pursuit. A central question in compressed

sensing is under what conditions the solution given by CS-LPD equals (or is very

close to, especially in the case of approximately sparse signals) the solution given by

CS-OPT, i.e., the LP relaxation is tight. There has been a substantial amount of

work in this area, see, e.g., [CT05, Don06a, DT05a, DH01, DT05a, GI10].

One sufficient way to certify that a given measurement matrix is “good” is through

the well-known restricted isometry property (RIP), which guarantees that the LP
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relaxation will be tight for all k-sparse vectors e, and further that the recovery will

be robust to approximate sparsity [CT05, Don06a]. However, RIP condition is not a

complete characterization of the LP relaxation of “good” measurement matrices (see,

e.g., [BCT10]). An alternative is to look at the null space characterization (see, e.g.,

[XH08, SXH08]) instead, which gives a necessary and sufficient condition for a matrix

to be “good”. In the previous chapter, the null space conditions were defined for the

case where the nonzero entries of the vector x are known to be positive. The general

form of the null space property that helps analyze Basis Pursuit is the following:

Definition 5. Let S ⊂ {1, . . . , n} and let CR ≥ 0. We say that A has the null space

property NSP≤R (S, CR), and write A ∈ NSP≤R (S, CR), if

CR.‖νS‖1 ≤ ‖νS‖1, for all ν ∈ N (A).

We say that A has the strict null space property NSP<
R (S, CR), and write A ∈

NSP<
R (S, CR), if

CR.‖νS‖1 < ‖νS‖1, for all ν ∈ N (A) \ {0}.

The next performance metric (see, e.g., [BGI+08, CDD08]) for CS involves re-

covering approximations to signals that are not exactly k-sparse. This is the main

performance metric we use in this paper:

Definition 6. An `1/`1 approximation guarantee means that the Basis Pursuit LP

relaxation outputs an estimate x̂ that is within a constant factor from the best k-sparse

approximation for x, i.e.,

‖x− x̂‖1 ≤ 2
CR + 1

CR − 1
· min
x′∈Σ

(k)
Rn

‖x− x′‖1, (3.3.1)

where Σ
(k)
Rn = {w ∈ Rn | |supp(w)| ≤ k}. The null space condition is a necessary and

sufficient for a measurement matrix to yield `1/`1 approximation guarantees [XH08,

DSV].



72

3.3.2 Channel Coding Preliminaries

A linear binary code C of length n is defined by a m × n parity-check matrix HCC

with operations over the binary vector field Fn2 , i.e., C , {x ∈ Fn2 |HCC · x = 0}.
These vectors x are called the codewords of C. The bipartite graph G that represents

HCC is called the Tanner graph of HCC, which has n variable and m check nodes.

We define the set of variable indices I , I(HCC) , {1, . . . , n}, the set of check

indices J , J (HCC) , {1, . . . ,m}, the set of check indices that involves the i-th bit

position Ji , Ji(HCC) , {j ∈ J |[HCC]j,i = 1}, and the set of codeword positions

that are involved in the j-th check Ij , Ij(HCC) , {i ∈ I|[H]j,i = 1}. For a regular

code, the degrees of the codeword adjacency |Ji| and the size of check equations |Ij|
are denoted by dv and dc, respectively. If a codeword x ∈ C is transmitted through a

channel and an output sequence y is received, then one can potentially decode x by

solving for the maximum likelihood codeword in C, namely

CC-MLD: minimize λTx′

subject to x′ ∈ conv(C),

where λ is the likelihood vector defined by λi = log(P(yi|xi=0)
P(yi|xi=1)

), and conv(C) is the

convex hull of all codewords of C in Rn. CC-MLD solves the ML decoding problem

by the virtue of the fact that the objective λTx is minimized on a corner point

of conv(C), which is a codeword. CC-MLD is NP-hard and therefore an efficient

description of the exact codeword polytope is very unlikely to exist.

The well-known channel decoding LP relaxation is:

CC-LPD: minimize λTx′

subject to x′ ∈ P(HCC),

where P = P(HCC) is known as the fundamental polytope [FWK05, KV06]. The

fundamental polytope is compactly described as follows: If hTj is the j-th row of HCC,
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then

P = ∩1≤j≤mconv(Cj), (3.3.2)

where Cj = {x ∈ Fn | hTj x = 0 mod 2}. Due to the symmetries of the fundamental

polytope [FWK05] we can focus on the cone around the all-zeros codeword without

loss of generality. Given the parity check matrix HCC, its fundamental cone K(HCC)

is defined as the smallest cone in Rn that encompasses P(HCC), and can be formally

defined as follows.

Definition 7. The fundamental cone K , K(HCC) of HCC is the set of all vectors

w ∈ Rn that satisfy

wi ≥ 0, for all i ∈ I, (3.3.3)

wi ≤
∑

i′∈Ij wi′ , for all i ∈ Ij, j ∈ J . (3.3.4)

Given the fundamental cone of a code C, we define the following property.

Definition 8. Let S ⊂ {1, 2, · · · , n} and CR ≥ 1 be fixed. A code C with parity check

matrix HCC is said to have the fundamental cone property FCP(S, CR) if for every

w ∈ K(HCC) the following holds:

CR‖wS‖1 < ‖wS‖1. (3.3.5)

We introduce the perturbed symmetric channel (PSC) shown in Figure 3.1, where

each bit +1 (−1)3 is flipped into −CR (+CR) with probability p and remains un-

changed with probability (1 − p). For CR = 1, the perturbed symmetric channel is

the same as the binary symmetric channel (BSC). Note that the data can be received

error free through the perturbed channel. Through solving CC-LPD, however, it is

apparent that the recovery probability of the perturbed channel with CR > 1 is less

than BSC.

3Note that the bits 0,1 are mapped to +1,-1, respectively.
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Figure 3.1: Perturbed symmetric channel model

Performance
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by Arora et al.

HCC ∈ FCP (S, CR)
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error pattern S
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R (S, CR)
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Thm. 2 Lemma 3
Thm. 3

&

Lemma 4
(CC-CS bridge)

Figure 3.2: The procedure of importing the performance guarantee from LP decoding
into compressed sensing

3.4 `1/`1 Guarantee for Ω(log n)-Girth Matrices

We start by stating the main theorem.

Theorem 3.4.1. Let A be an m×n 0-1 measurement matrix with girth g = Ω(log(n)),

and column and row densities dv and dc, respectively. There exists a fraction p∗(dc, dv),

solely a function of dc and dv, so that for every 0 ≤ p ≤ p∗(dc, dv), there exists some

CR > 1 such that A provides `1/`1 guarantee (with parameter CR) for the CS-LPD

and for a randomly chosen support set S of size p · n, with probability higher than

1−O(e−αn) for some α > 0.

The function p∗(dc, dv) and CR are deterministic functions computed from a recur-

sion on a tree (see Theorem 7.5.6). For example, for dc = 6, dv = 3, we can numerically

conclude that p∗ ≥ 0.045, and therefore we can recover almost all k = 0.045n-sparse

signals. To the best of our knowledge, this is the best provable recovery threshold

for sparse compressed sensing measurement matrices. Furthermore, for p = 0.04 we

obtain CR ≥ 1.08, which means that for compressible signals, `1 minimization gives

`1/`1 error bound, given by the constant 2CR+1
CR−1

= 52, i.e., the `1 norm of the recovery
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error is bounded by a factor 52 of the `1 norm of the smallest (1− 0.04)n coefficient

of the signal (see (3.3.1)).

Proof. To prove this theorem, we take the steps shown in Figure 3.2. We import the

best performance guarantees for LDPC code C from LP decoding [ADS09] through the

bridge established in [DSV]. First through Theorem 7.5.6, we show that the code C
has the fundamental cone property FCP(S, CR) with probability at least 1−O(e−αn).

Next, through Lemma 3.4.4, we demonstrate that C corrects the error configuration

S at the output of the perturbed symmetric channel. Finally, by Theorem 3.4.6,

we establish a connection between the properties of HCC as parity check matrix

(i.e., FCP condition) and its null space properties as a measurement matrix in com-

pressed sensing. Consequently, we show that the solution of CS-LPD satisfies the

`1/`1 condition.

Note that, if the girth is g = Ω(log log(n)), then HCC has `1/`1 guarantee with

probability higher than 1 − O(1/n). Theorem 3.4.1 is our main result and we will

build the blocks necessary to complete the proof in the remainder of this chapter.

3.4.1 Extension of CC-LPD

The work of Arora et al. [ADS09] provides the best existing guarantees for the per-

formance of LP decoding. For a fixed code rate, the probabilistic analysis of [ADS09]

yields a (weak) threshold p∗ for the probability of bit flip, below which CC-LPD

can recover the output of a binary bit flipping channel, with high probability, pro-

vided that the code has a girth at least doubly logarithmic in the size of the code.

The resulting threshold is significantly tighter than the previously achieved bounds,

namely those obtained in [DDKW08], which were established for expander-graph-

based codes. To the best of our knowledge, the thresholds of [ADS09] are the highest

proven thresholds for LP decoding, and, as mentioned, hold for codes that retain

large girths, rather than expander codes.
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Building upon the work of Arora et al., we further prove that codes with optimal

girth maintain the FCP property in a weak notion. In other words, we prove that

if the probability of bit flip p is sufficiently small, there is a finite CR > 1 such that

with high probability, the output of the perturbed symmetric channel in Figure 3.1

with CR can be recovered by CC-LPD. The parameter CR surely depends on p. We

compute an upper bound on the achievable robustness factor CR as a function of

p, which approaches 1 as p approaches the recoverable threshold p∗ of LP decoding

based on the analysis of [ADS09]. Using the connection between the CS-LPD and

CC-LPD, this result will allow us to explicitly find the relationship between the

`1/`1 robustness factor CR and the fraction p when the results are translated to the

context of compressed sensing. In order to state the main theorem of this section,

first we define η to be a random variable that takes the value −CR with probability p

and value 1 with probability 1− p, i.e., the output of the PSC when 0 is transmitted.

Also, let the sequences of random variables Xi, Yi, i ≥ 0 be defined in the following

way:

Y0 = η,

Xi = min{Y (1)
i , . . . , Y

(dc−1)
i } ∀i > 0,

Yi = 2iη +X
(1)
i−1 + · · ·+X

(dv−1)
i−1 ∀i > 0, (3.4.1)

where X(j)s are independent copies of a random variable X.

Theorem 3.4.2. Let C be a regular (dv, dc)-LDPC code with girth equal to g, and

0 ≤ p ≤ 1/2 be the probability of bit flip, and S be the random set of flipped bits. If

for some j ∈ N,

c = γ1/(dv−2) min
t≥0

Ee−tXj < 1

where γ = (dc − 1)CR+1
CR

(CR·p
1−p )1/(CR+1)(1 − p) < 1, then with probability at least 1 −

O(n)cdv(dv−1)T−1
, the code C has the FCP(S, CR), where T is any integer with j ≤

T < g/4.
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Note that the value c can be derived for specific values of p, dv, dc, and CR. The

proof of the above theorem falls along the same lines as the arguments of [ADS09].

The bottom line is the existence of a certificate in the primal LP problem for the

success of LP decoding, which can be extended to the case of the perturbed channel.

In order to define the certificate, we first bring the following definitions from [ADS09].

In the sequel, we denote the bipartite graph that corresponds to A by G.

Definition 9. A tree T of height 2T is called a skinny subtree of G, if it is rooted

at some variable node vi0, for every variable node v in T all the neighboring check

nodes of v in G are also present in T , and for every check node c in T exactly two

neighboring variable nodes of c in G are present in T .

Definition 10. Let w ∈ [0, 1]T be a fixed vector. A vector β(w) is called a minimal

T -local deviation, if there is a skinny subtree of G of height 2T , say T , so that for

every variable node vi 1 ≤ i ≤ n,

β
(w)
i =

 wh(i) if vi ∈ T \ {vi0}
0 otherwise

,

where hi = 1
2
d(vi0 , vi).

The key to the derivation of a certificate for LP decoding is the following lemma:

Lemma 3.4.3 (Lemma 1 of [ADS09]). For any vector z ∈ P, and any positive vector

w ∈ [0, 1]T , there exists a distribution on the minimal T -local deviations β(w), such

that

Eβ(w) = αz,

where 0 < α ≤ 1.

Lemma 7.5.5 has the following interpretation: If a linear property holds for all minimal

T -local deviations ( f(β(w)) ≥ 0, where f(.) is a linear function), then it also holds

for all pseudo-codewords (f(z) ≥ 0 ∀z ∈ P). Interestingly enough, the success of LP
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decoding over the perturbed symmetric channel of Figure 3.1 for a given set of bit

flips S has a linear certificate, namely FCP(S, CR). In other words, if we define:

f
(S)
C (x) =

∑
i∈S

xi − CR
∑
i∈S

xi, (3.4.2)

then LP decoder is successful, if and only if f
(S)
CR

(z) ≥ 0 for every pseudocodeword

z ∈ P . Therefore, according to Lemma 7.5.5, it suffices that the condition be true

for all T -local deviations, which is equivalent to FCP(S, CR).

Proof of Theorem 7.5.6. We denote the set of variable nodes and check nodes by Xv

and Xc, respectively. For a fixed w ∈ [0, 1]T , let B be the set of all minimal T -local

deviations, and Bi be the set of minimal T -local deviations defined over a skinny

tree rooted at the variable node vi. Also, assume S is the random set of flipped

bits, when the flip probability is p. Interchangeably, we also use S to refer to the

set of variable nodes corresponding to the flipped bits indices. We are interested in

the probability that for all β(w) ∈ B, f
(S)
C (β(w)) ≥ 0. For simplicity we denote this

event by f
(S)
C (B) ≥ 0. Since the bits are flipped independently and with the same

probability, we have the following union bound

P
(
f

(S)
C (B) ≥ 0

)
≥ 1− nP

(
f

(S)
C (B1) ≥ 0

)
. (3.4.3)

Now consider the full tree of height 2T, that is rooted at the node v0, and contains

every node u in G that is no more than 2T distant from v, i.e., d(v0, u) ≤ 2T .

We denote this tree by B(v0, 2T ). To every variable node u of B(v0, 2T ), we assign

a label, I(u), which is equal to −CRωh(u) if u ∈ S, and is ωh(u) if u ∈ Sc, where

(ω0, ω2, · · · , ω2T−2) = w. We can now see that the event f
(S)
C (B1) ≥ 0 is equivalent

to the event that for all skinny subtrees T of B(v0, 2T ) of height 2T , the sum of the

labels on the variable nodes of T is positive. In other words, if Γ1 is the set of all

skinny trees of height 2T that are rooted at v0, then f
(S)
C (B1) ≥ 0 is equivalent to:
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min
T ∈Γ1

∑
v∈T ∩Xv

I(v) ≥ 0. (3.4.4)

We assign to each node u (either check or variable node) of B(v0, 2T ) a random

variable Zu, which is equal to the contribution to the quantity minT ∈Γ1

∑
v∈T ∩Xv I(v)

by the offspring of the node u in the tree B(v0, 2T ), and the node u itself. The

value of Zu can be determined recursively from all of its children. Furthermore, the

distribution of Zu only depends on the height of u in B(v0, 2T ). Therefore, to find

the distribution of Zu, we use X0, X1, · · · , XT−1 as random variables with the same

distribution as Zu when u is a variable node (X0 is assigned to the lowest-level variable

node) and likewise Y1, Y2, · · · , YT−1 for the check nodes. It then follows that:

Y0 = ω0ηC ,

Xi = min{Y (1)
i , . . . , Y

(dc−1)
i } ∀i > 0,

Yi = ωiηC +X
(1)
i−1 + · · ·+X

(dv−1)
i−1 ∀i > 0, (3.4.5)

where X(j)s are independent copies of a random variable X, and ηC is a random

variable that takes the value −CR with probability p and value 1 with probability

1− p. It follows that

P
(
f

(S)
C (B1) ≤ 0

)
= P

(
X

(1)
T−1 + · · ·+X

(dv)
T−1 ≤ 0

)
≤ (E(e−tXT−1))dv . (3.4.6)

The last inequality is by Markov inequality and is true for all t > 0. The rest of the

proof is modifications to the proof of Lemma 8 in [ADS09], for the Laplace transform

evolution of the variables Xis and Yis, to account for a non-unitary robustness factor

CR. By upper bounding the Laplace transform of the variables recursively, it is

possible to show that (see Lemma 8 of [ADS09], the argument is exactly the same for

our case)
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Ee−tXi ≤
(
Ee−tXj

)(dv−1)i−j∏
0≤k≤i−j−1

(
(dc − 1)Ee−twi−kη

)(dv−1)k
, (3.4.7)

for all 1 ≤ j ≤ i < T . If we take the weight vector as w = (1, 2, · · · , 2j, ρ, ρ, · · · , ρ)

for some integer 1 ≤ j < T , and use (7.9.13) for i = T − 1, we obtain:

Ee−tXT−1 ≤ (Ee−tXj)(dv−1)T−j−1

·
(
(dc − 1)Ee−tρη

) (dv−1)T−j−1−1
dv−2 .

ρ and t can be chosen to jointly minimize Ee−tXj and Ee−tρη in the above, which

along with (7.9.12) results in

P(fSC (B1 ≤ 0)) ≤ (Ee−tXT−1)dv

≤ γ−dv/(dv−2) × cdv(dv−1)T−j−1

,

where γ = (dc− 1)CR+1
CR

(1− p)(CR.p
1−p )1/(CR+1) and c = γ1/(dv−2) mint≥0 Ee−tXj . If c < 1,

then probability of error tends to zero as stated in Theorem 7.5.6.

In the next lemma, we show that if a code C has the fundamental cone prop-

erty FCP(S, CR), then CC-LPD can correct the perturbed symmetric channel error

configuration S.

Lemma 3.4.4. Let HCC be a parity-check matrix of a code C and let S ⊂ I(HCC)

be a particular set of coordinate indices that are flipped by a perturbed channel with

cross-over probability p > 0. If and only if HCC has the FCP(S, CR), then the solution

of CC-LPD equals the codeword that was sent.

Proof. Without loss of generality, we can assume that the all-zero codeword is trans-

mitted. We begin by proving the sufficiency. Let +1 be the log-likelihood ratio
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associated with a received 0, and let −CR < −1 be the log-likelihood ratio associated

with a received 1. Therefore,

λi =


+1 if i ∈ S

−CR if i ∈ S
.

Then it follows from the assumptions in the lemma statement that for any w ∈
K(HCC) \ {0}

λTw =
∑
i∈S

(+1).wi +
∑
i∈S

(−CR).wi

(a)
= +1.‖wS‖1 − CR.‖wS‖1 > 0

(b)
= λT · 0,

where step (a) follows from the fact that |wi| = wi for all i ∈ I(HCC), and where

step (b) follows from (3.3.5). Therefore, under CC-LPD the all-zero codeword has

the lowest cost function value when compared to all nonzero pseudo-codewords in the

fundamental cone, and therefore also compared to all nonzero pseudo-codewords in

the fundamental polytope.

Note that the proof of the converse is direct and can easily be derived by taking

the sufficiency proof steps, backward.

3.4.2 Establishing the Connection

In this section, through Lemma 3.4.5 (taken from [SV09]), we will establish a bridge

between LP decoding and compressed sensing. Specifically, using this bridge, we will

import performance results from LP-decoding context into compressed sensing.

Lemma 3.4.5. (Lemma 6 in [SV09]): Let HCC be a zero-one measurement matrix.

Then

ν ∈ N (HCC)⇒ |ν| ∈ K(HCC).

Proof. Let w , |ν|. To show that such a vector w is indeed in the fundamental

cone of HCC, we need to verify (3.3.3) and (3.3.4). It is apparent that w satisfies



82

(3.3.3). Therefore, let us focus on the proof that w satisfies (3.3.4). Namely, from

ν ∈ N (HCC) it follows that for all j ∈ J ,
∑

i∈I hj,iνi = 0, i.e., for all j ∈ J ,∑
i∈Ij νi = 0. This implies

wi = |νi| =

∣∣∣∣∣∣−
∑

i′∈Ij\{i}

νi′

∣∣∣∣∣∣ ≤
∑

i′∈Ij\{i}

|νi′| =
∑

i′∈Ij\{i}

wi′ ,

for all j ∈ J and all i ∈ Ij, showing that w indeed satisfies (3.3.4).

From here on, we deal with HCC as a zero-one measurement matrix. Note that

the bridge established in [DSV] and through Lemma 3.4.5 connects CC-LPD of the

binary linear channel code and CS- LPD based on a zero-one measurement matrix

over reals by viewing this binary parity-check matrix as a measurement matrix. This

connection allows the translation of performance guarantees from one setup to the

other. Using this bridge, we can show that parity-check matrices of “good” channel

codes can be used as provably “good” measurement matrices under basis pursuit.

Using the bridge of Lemma 3.4.5, we show in the next theorem that the parity-

check matrix HCC, as a measurement matrix, has the null space property, and as a

result satisfies the `1/`1 guarantee.

Theorem 3.4.6. Let HCC ∈ {0, 1}m×n be a parity-check matrix of the code C and

let k be a nonnegative integer. Further assume that code C can correct the error

configuration S over the perturbed symmetric channel where |S| ≤ k. Additionally,

assume that s = HCC · e. Then HCC as a measurement matrix satisfies

HCC ∈ NSP<
R (S, CR).

Furthermore, the solution ê produced by CS-LPD will satisfy

‖e− ê‖1 ≤ 2.
CR + 1

CR − 1
.‖eS‖1.

Proof. We begin by proving the null space property. Since the code C corrects the

configuration S, from Lemma 3.4.4, for any point in the fundamental cone K(HCC)
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including w and any set S ⊂ {1, . . . , n}, with |S| ≤ k, we have

CR‖wS‖1 < ‖wS‖1. (3.4.8)

We prove by contradiction. Assume HCC does not have the strict null space

property NSP<
R (S, CR), i.e., there exists a point ν ∈ N (HCC) such that

CR‖νS‖1 ≥ ‖νS‖1.

Further, from Lemma 3.4.5, we know there exists w = |ν| in K(HCC). And

CR‖wS‖1 = CR‖|νS |‖1

= CR‖νS‖1

≥ ‖νS‖1

= ‖|νS |‖1

= ‖wS‖1,

which contradicts the assumption and shows that no such a point ν exists.

We showed that HCC has the claimed null space property. Since HCC · e = s and

HCC · ê = s, it easily follows that ν , e− ê is in the null space of HCC. So

‖eS‖1 + ‖eS‖1 = ‖e‖1

(a)

≥ ‖ê‖1

= ‖e− ν‖1

= ‖eS − νS‖1 + ‖eS − νS‖1

(b)

≥ ‖eS‖1 − ‖νS‖1 + ‖νS‖1 − ‖eS‖1

(c)

≥ ‖eS‖1 −
CR − 1

CR + 1
.‖ν‖1 − ‖eS‖1,

(3.4.9)

where step (a) follows from the fact that the solution of CS-LPD satisfies ‖e‖1 ≤
‖ê‖1, where step (b) follows from applying the triangle inequality property of the
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`1-norm twice, where step (c) follows from

(CR + 1). (−‖νS‖1 + ‖νS‖1)

= −CR.‖νS‖1 − ‖νS‖1 + CR.‖νS‖1 + ‖νS‖1

(d)

≥ −‖νS‖1 − ‖νS‖1 + CR.‖νS‖1 + CR.‖νS‖1

= (CR − 1).‖νS‖1 + (CR − 1).‖νS‖1

= (CR − 1)‖ν‖1,

and where step (d) follows from applying twice the fact that ν ∈ N (HCC) and the

assumption that HCC ∈ NSP≤R (S, CR). Subtracting the term ‖eS‖1 on both sides of

(3.4.9), and solving for ‖ν‖1 = ‖e− ê‖1 yields the promised result.

This theorem was the last piece in the proof of Theorem 3.4.1, and, with it, the

proof is complete.

Note that it is easy to obtain deterministic constructions of measurement ma-

trices that are regular, have the optimal order of measurements, and have Ω(log n)

girth. Therefore, a byproduct of our result is the explicit construction of measure-

ment matrices with m = cn rows which can recover almost all sparse signals with

sparsity k = p · n. These will be parity-check matrices of codes with girth Ω(log n).

To explicitly obtain such codes, we can use one of the known deterministic matrix

constructions such as the progressive edge-growth (PEG) Tanner graphs [HEA05] or

the deterministic construction suggested by Gallager [Gal63].



Chapter 4

Summary-Based Structures

The combinatorial structures based on minimal expanders and large girth graphs

given in the last two chapters were designed in particular to be congruent with the

basis pursuit recovery algorithms, and were analyzed in the “linear” regime, where the

number of measurements M and the signal sparsity k are both linear in the ambient

dimension N (i.e., M = Θ(N) and k = Θ(N)).1 In contrast, when the design criterion

or the regime of interest in the problem dimensions varies, other factors come into play

that determine the suitability of a particular matrix. Depending on how a CS-based

system is implemented or what the underlying signal model is, the optimal choice

of measurements change. For example, when compressed sensing is considered for

spectrum-sensing applications or enhancement of analog-to-digital converters, mea-

surements are applied as real-time sketches, often realized by a high-speed correlation

circuit. In this case, the implementation of (pseudo)-random sketches is more difficult

than certain structured measurements, whereas the density of the matrix is somewhat

irrelevant. Similar constrains exist for real-time compressed sensing encoders that are

based on other forms of physical integration or temporal modulation, such as the pho-

tonic strobing method used in [VRR11], or single-pixel imaging [DDT+08]. On the

other hand, there are several other applications where the measurement matrix is a

1Only in this chapter we use N for the signal dimension and M for the number of measurements,
as n,m are reserved for other parameters.

85



86

pre-built construction and is applied in other physical forms, such as in integrated

pixel arrays, or CS-based DNA micro-arrays. As discussed in the previous chapter, in

most of these cases the density of the matrix dictates the design cost, thus the desire

to optimize it.

The decoder complexity is another governing factor that affects the choice of

the measurement matrix. When decoding (i.e., reconstructing) is an off-line pro-

cess happening independently of encoding, and the signal dimension is not extensive,

reconstructing methods based on geometrical approaches such as Basis Pursuit or

Matching Pursuit algorithms are ideal, and the measurement matrix can be assigned

accordingly. The complexity of such decoding algorithms is polynomial in the signal

dimension. In contrast, for real-time decoding in applications like streaming or hard-

ware embedded systems, or for the cases where the signal size is extremely large (say

exponentially), efficiency of the decoding is a bottleneck. In these cases, even the

most efficient polynomial time algorithms are impractical, and combinatorial meth-

ods with complexity sublinear in the dimension of the signal are preferred, obviously

limiting the choice of the measurement matrix.

In this chapter, we present the design of a new class of very structured combinato-

rial matrices called “summary-based structures” that lead to very efficient decoding

algorithms, namely with complexities that grow logarithmically in the signal dimen-

sion. In addition, due to the particular structure of the proposed matrices and their

minimal storage requirements, we believe that they are ideal candidates for real-time

streaming encoding applications, in addition to some specific statistical inference

problems.

Φ measurement matrix

N signal size

M number of measurements

k sparsity of the signal

n, d parameters of a summary, n = log2N

C summary codebook
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4.1 Introduction

Compressed sensing facilitates the joint sampling and linear compression of high-

dimensional sparse signals, based on the premises of which the information content

of a large data set which is known to be sparsely representable in some linear domain

(a.k.a dictionary) can be retrieved from linear projections of the data onto a lower-

dimensional space. The simplicity of the encoding mechanism, universal performance

guarantees, and the existence of reconstruction methods that do not rely on thorough

understanding of the underlying signal model has made compressive sampling a major

subject of interest in research on dimensionality reduction methods and high-speed

analog signal acquisition. Upon proper implementation, sampling of signal streams

at sub-Nyquist rates becomes feasible, and obvious advantages to real-time systems

are introduced in terms of memory usage, time efficiency, and power consumption.

Stemming from the seminal work of Donoho et al. [Don06a] and Candès et al. [CT05],

linear-programming-decoding based methods (a.k.a Basis Pursuit) and their varia-

tions were the first proposals for polynomial-time recovery techniques with provable

universal performance bounds for perfect sparse reconstruction, and were shown to

be robust against noise in performance [CRT06a, XH08, CWB08, CY08, KXAH10,

DDFG10]. Linear programming decoding has O(N3) complexity, when N is the

signal dimension, and presumably attains its best performance for random matrix

ensembles Φ. In contrast, a plethora of alternative recovery schemes were proposed

having their roots in combinatorical/greedy perspectives of the sparse reconstruc-

tion problem, rather than the original high-dimensional geometrical approaches, as

discussed to some extent in the previous chapters. These recovery methods are

advantages to Basis Pursuit in different aspects such as simplicity of implemen-

tation, less complexity, and better performance bounds, and are often based on
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deterministic choices of measurement matrices. Selected examples of such meth-

ods are Matching Pursuit and its variations [TG07, DTDS06, NV07], CoSamp al-

gorithm [NT08], iterative thresholding methods [FR08, BD08], combinatorial algo-

rithms based on expander graphs [BI09, BGI+08, JXHC09, KXDH10], list-decoding

algorithms for constructions based on algebraic error-correcting codes (Reed-Solomon

or Reed-Muller codes) [PH08, HCS08], algorithms based on data-streaming applica-

tions [CM05, CM04], message-passing types of algorithms [CSW10, DMP11, LMP08],

Chaining Pursuit [GSTV06], and many more.

Despite significant advances in compressed sensing and sparse recovery meth-

ods, certain aspects of this field remain relatively immature. Thus far, CS has been

viewed primarily as a data-acquisition technique. As a result, the applicability of

CS to other computational applications has not enjoyed commensurate investiga-

tion. In addition, to the best of the authors’ knowledge, there is no implemen-

tation of a unified CS system for practical real-time applications. A few recent

works have addressed the former by applying sparse reconstruction ideas to cer-

tain inference problems, including learning and adaptive computational schemes (e.g.,

[JS08, JYG09, Cev09, XMT11, KKH11]). Several other works have addressed the lat-

ter by designing hardware, which exploits the fact that CS enables the monitoring

of a given bandwidth at a much lower sampling rate than traditional Nyquist-based

methods (see, e.g., [Eld09]). The motivating factor behind these works is that for

a given maximum sampling rate achievable by digitizing hardware (limited by the

poor power consumption scaling with sampling rate), it is possible to either acquire

signals over a much greater bandwidth, or with much less power for a given band-

width. Recent work, inspired by this line of thought, has led to the development of

hardware CS encoders (see, e.g., [LKD+07, ME10, LLP08]). However, none of the

previous works address the problem of real-time signal decoding, which is a critical

requirement in many applications.

Although variant by the nature of the problem and physical constraints, perhaps
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two bottlenecks in the practical implementation of CS are the following:

• Construction of measurement matrices that are provably good, certifiable, and

inexpensive to implement. Many fundamental results of compressed sensing are

limited to asymptotically large signal sizes and random ensembles, and are not

optimally designed for practical purposes.

• Time-efficient and robust recovery algorithms. For real-time systems with very

large signal spaces, most polynomial time algorithms are inefficient, given the

excessive time and memory requirements. Recovery algorithms with sublinear

complexity are more desirable for practical systems and hardware implementa-

tion.

The aim of this chapter is to introduce and provide an analysis for a sparse re-

construction system that addresses the aforementioned problems, and to allude to

the extensions of CS in the less-explored directions. This is done by introducing a

new class of combinatorial matrices that have two main advantages: 1)they are very

structured and easily implementable with minimum memory requirements, 2)they

lead to very efficient sublinear reconstruction algorithms. In addition, the proposed

structures have practical motivations in certain statistical inference problems.

4.2 Related Work

The construction of deterministic matrices with provable guarantees for CS is an

active ongoing field of research, discussed to some extent in previous chapters. Ex-

amples of recent work along this line can be found in [PH08, DeV07, CHJ10, KTDH11,

Ind08, AM11] and the references therein. The results are, however, far from a con-

sensus on optimal choices of measurement matrices for difference regimes of problem

dimensions, signal-to-noise ratio, and other physical constraints.
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There are also a handful of results on sublinear sparse recovery in the litera-

ture, mostly leveraging combinatorial structures. Most of the previous work can be

found in [HCS08, BGI+08, DMP11, GSTV06, GSTV07, SBB06, CM06]. Cormode

at al. [CM06] proposed a class of combinatorial structures and corresponding recon-

struction methods based on group testing techniques which in the best case have a

running time complexity of Ω(k6 log6N), and guarantee that M = Ω(k4 log4 k) mea-

surements are sufficient. The method developed by Gilbert et al. [GSTV06] is called

Chaining Pursuit (CP), which is based on structured matrices with M = O(k log2N)

rows, and has a complexity of O(k log2 k log2N). In addition, it provides a weak `1/`1

robustness to noise. In practice, however, the performance of the algorithm suffers

from a large oversampling overhead which makes it impractical except for extremely

large dimensions. In addition, the storage requirement for the method is proportional

to signal dimension N . The chirp reconstruction method of Howard et al. [HCS08] is

based on the second-order Reed-Muller codes originally designed for channel coding.

The complexity of this algorithm is O(kM logM) [HSC09]. Experimental evidence

indicates that the method has a superior performance bound (in terms of recover-

ability region) to the method of Cormode et al. and the Chaining Pursuit, and is

more resilient to relatively higher levels of observation noise for small sparsity levels k.

However, for large signal dimensions and moderate values of sparsity k (say beyond

60), the running time is extremely high, and thus inefficient for practical purposes.

To the best of our knowledge, there is no rigorous analysis of the performance of this

method. A belief-propagation algorithm was introduced in [DMP11] based on dense

structured matrices with high column coherence resulting in good RIP coefficients.

The sublinear algorithm has O(k2 logN) complexity per iteration, and an indefinite

convergence time and lacks theoretical guarantee (and existing empirical evidence)

for robustness to noise. In contrast, the sublinear algorithm proposed in this pa-

per is highly scalable to large system dimensions and moderate to large values of k.
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The suggested algorithm retains a superior performance bound and empirical run-

ning time compared to most existing methods. In the presence of noise, our method

is comparable to the chirp reconstruction method of [HCS08]. A limitation of the

proposed algorithm is that the existing theoretical guarantees are only for the sparse

signals where the disjoint subsets of entries have different sums of values, referred to

as distinguishable vectors throughout the paper.

4.3 Contributions

We introduce a new class of measurement matrices for sparse recovery that are de-

terministic, structured, and highly scalable. The constructions are based on labeling

the ambient state space with binary sequences of length n = log2N , and summing

up entries of x that share the same pattern (up to a fixed length) at various locations

in their labeling sequences. Unlike most existing deterministic structures, the class of

corresponding matrices of this paper do not maintain high column coherence, and, as

such, are RIP-less. However, we propose recovery guarantees for a particular instance

of `1 minimization when these constructions are used, and thus prove that, despite

lacking RIP, our matrices are congruent with Basis Pursuit. In addition, we provide

two efficient combinatorial algorithms along with theoretical guarantees for the de-

fined structures. The proposed algorithms are sublinear in the ambient dimension of

the signal. In particular, we propose a summarized index recovery (SIR) algorithm

with a running time of O(kM logM)) that requires M = O(k logN log logN) mea-

surements to recover k-sparse vectors, and has an empirical oversampling factor signif-

icantly better than the existing sublinear methods. Due to the structure of the mea-

surements and the advantages of decoding algorithms, we believe that the proposed

compression/decompression framework is amenable to real-time CS implementation,

and offers substantial simplification in the design of existing CS encoder/decoders.

Furthermore, observations collected based on the proposed constructions appear as
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low-order statistics or “summaries” in a number of practical situations in which a

similar intrinsic labeling of the state space exists. This includes certain inference and

discrete optimization problems such as market basket (commodity bundle) analysis,

advertising, online recommendation systems, genomic feature selection, social net-

works, neighbor discovery in ad-hoc networks, etc. Some of these applications will be

elaborated in more detail in the remainder of the paper.

4.4 Preliminaries

A vector x is called “k-sparse”, if it has at most k nonzero entries. The support set

of a sparse vector is the index set of its nonzero coefficients. A vector x is called

“distinguishable” if no two disjoint subsets of the entries of x have the exact same

sum of values. The following definitions will be useful in describing the proposed

measurement structures:

Definition 11. Let m, n, and d be integers. A (n, d) summary is a pair X = (S, c),

where S is a subset of {1, 2, · · · , n} of size d, and c is a binary label (sequence) of

length d. A (m,n, d) summary codebook is a collection C = {(Si, cj) | 1 ≤ i ≤ m, 0 ≤
j ≤ 2d − 1} of (n, d) summaries, where Sis are distinct subsets, and cj is the length

d binary representation of the integer j. If m =
(
n
d

)
, C is called the complete (n, d)

summary codebook.

We also set the following conventions. We say that a binary label b of length n

“conforms” to a (n, d) summary (S, c), or interchangeably that the summary (S, c)

“appears” in b iff b(S) = c, where b(S) is the subsequence of b indexed by the

elements of the set S in the same order that they appear in b. In addition, two

(n, d) summaries (S, c) and (S ′, c′) are said to conform, if there is a binary label b

of length n that conforms to both of them. We use the operators ‖ and ∦ to denote

conformity and its complement, respectively. For a binary sequence b, we denote its
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decimal numerical value by ∆(b). The following definition will also be useful later in

the technical discussions.

Definition 12. For a set S and a number x, I(S, x) indicates the number of elements

of S that are less or equal than x. Consequently, if the elements of S are listed in

increasing order as s1 < s2 < · · · < sd, then I(S, si) = i ∀1 ≤ i ≤ d.

4.5 Proposed Measurement Structures

To a given (m,n, d) summary codebook C (Definition 11), we associate a binary

matrix Φ of size M × N where M = 2d ×m and N = 2n, in the following way. For

every (S, c) ∈ C, there is a row φ = (ϕ1, . . . , ϕN) in Φ that satisfies:

ϕj =

{
1 bj(S) = c

0 else
1 ≤ j ≤ N, (4.5.1)

where bj is the n-bit binary representation of j, and b(S) is the subsequence of the

binary sequence b, indexed by the elements of the set S in increasing order. In other

words, φ has a 1 in the jth coordinate if the binary representation of j − 1 conforms

to (S, c). Note that every column of Φ has exactly m ones, and each row has exactly

2n−d ones.

Example 2. Consider a (n = 4, d = 2) summary (S, d) defined by S = {1, 2} and

c = 10. This summary conforms to every binary label of length 4 in which the first

two leftmost bits are 1 and 0, respectively. A simpler characterization of this summary

(or equivalently all binary labels that conform to it) is in terms of a ternary label

10××, where the × symbols can be replaced by either 1 or 0. All such binary labels

are listed in Figure 4.1. If these labels are converted to decimal values and increased

by 1, they provide the indices of the columns where there is a 1 in the considered

row, namely 9, 10, 11, and 12. The full row φ of length 16 is displayed in Figure 4.1

as well.
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1 0 0 0 
1 0 0 1 
1 0 1 0 
1 0 1 1     

1 0 x x 

Figure 4.1: An example (4, 2) summary and the corresponding row of the structured
measurement matrix

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
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11010
11011
11100
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11110
11111

00XXX
01XXX
10XXX
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X0X1X
X1X0X
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Figure 4.2: An example of a measurement matrix constructed based on a (5, 2) sum-
mary codebook. Black is 1 and white is 0

Example 3. A 12× 32 binary matrix is shown in Figure 4.2 which corresponds to a

(5, 2) summary codebook with 12 summaries. The rows of the displayed matrix are

labeled with corresponding summaries and the columns are labeled by distinct binary

sequences of length 5. Entries colored in black represent 1, and white represents 0.

Example 4. Another sample matrix of size 40×32768 which is based on a randomly

generated (15, 2) summary codebook is depicted in Figure 4.3.

4.6 Practical Motivations

The primary constraints and considerations that are used when designing CS matrices

often require tailoring the structure to be more amenable to one or more sets of

analysis techniques. For example, the original proposed matrices used for CS used

entries that were completely randomly generated from either a Gaussian or Bernoulli

distribution, or randomly sampled from some structured sets of functions such as

Fourier basis. In contrast, the matrices defined in this paper were designed based on

a very structured labeling of the ambient space (a binary vector field), which results in
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Figure 4.3: An example of a measurement matrix of size 40×32768 constructed based
on a random (15, 2) summary codebook of size 40

a number of advantages not present in the previous forms of measurement structures.

For any application in which compressed sensing is used to analyze sets of data which

are typically organized by several parameters, this organization is implicitly mapped

to the indexing of the input vector. The indexing is almost always used as a method

of classifying different types of data. Thus, this strategy of designing a CS matrix

with a structure that exploits relationships of the matrix entries to the inference

vector entries has an intuitive appeal in applications where analysis of organized

data sets is being conducted. This is the case in problems such as market basket

analysis or feature optimization, DNA micro-arrays, etc., as will be elaborated in

the remainder of this section. In addition, the logarithmic indexing of the column

space of the matrix facilitates an efficient storing mechanism and sublinear column

space search techniques, eventually leading to sublinear reconstruction algorithms

described later in this paper. These features, along with simplicity of description and

real-time implementation of the matrices as the output of a high-speed correlation

circuit, makes the proposed structures of this paper ideal candidates for large-scale

implementation of several CS-related frameworks. In the current paper, we focus on

two particular instances where the proposed constructions are useful.

4.6.1 Market Basket Analysis

This example stresses the usefulness of the proposed structures in problems where

the given signal space retains an intrinsic structured labeling similar to those used
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for defining the measurement matrix. The problem of market basket analysis is to

learn and predict the popular shopping trends of customers given limited available

training samples, which can be described in a more general setup as the following

feature optimization problem: Assume that a set F = {F1, F2, · · · , Fn} of features (or

commodities) is available, and assume that certain accumulations (baskets) of features

form lucrative profiles (or popular baskets). In particular, a lucrative profile can be a

subset of features which is representable by a binary sequence b = b1b2 . . . bn, where

bi determines the presence of the ith feature in the profile. A practical assumption

is that lucrative profiles are limited and weighted, meaning that their profitabilities

are different. The vector x = (p1, p2, . . . , p2n)T formed by the respective profits of

all feature collections is thus an approximately sparse vector. Furthermore, in most

real-world situations, the available information about the profitability of profiles is

often derived from a pool of observations (e.g., surveys), and is mostly limited to

some forms of summaries. More specifically, it might be assumed that the average

profitability of a certain configuration of d features is learnable. For example, the

average profit of a profile in which F1 and F2 are present and F3 is absent (regardless

of all other features) can be estimated as p. The collection of such summaries form an

observation vector y, which is related to the desired x through a set of linear equations

y = Φx. A careful examination reveals that Φ has a form similar to those obtained by

using summary codebooks. Similar settings arise in many practical applications, such

as market basket (commodity bundle) analysis, where the objective is to configure the

structure of a market that complies the best with the needs and the behaviors of the

customers. To that end, it is essential to understand which market configurations are

lucrative and what packages of features (e.g., commodities, pricing options, interest

rates, etc.) should be offered to customers, and with what percentages.
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4.6.2 Wireless Ad-Hoc Networks

A particular instance of compressed sampling and reconstruction can be exploited in

wireless ad-hoc networks for an important network discovery problem [ZLG]. Con-

sider a large ad-hoc network where nodes are assigned unique IP addresses of length

n. A critical feature in such networks is the ability of individual nodes to identify

their neighbors, namely the nodes that are within an effective communication range.

In lieu of centralized data aggregation and hand-shaking protocols, a random access

protocol is often implemented by individual nodes, whereby every node accesses the

channel and transmits its messages at random time slots. This way, with high prob-

ability, every node can transmit messages (IP address for instance) to the neighbors

without interfering with others, provided that enough number of time intervals have

elapsed. An alternative method based on CS is to map every IP address to a unique

signature of length M , and then have every node simultaneously transmit its signa-

ture. The signal received at every node is therefore a complex linear combination of

the signatures of neighboring nodes. Since every node has a few neighbors (far smaller

than the total number of available IP addresses), this problem can be cast as a sparse

reconstruction problem. The corresponding measurement matrix is of size M × 2n,

where columns are indexed by IP addresses, and the numerical value of each column

is equal to the signature of its corresponding IP. This scheme is illustrated in Figure

4.4, where it is assumed that only users A1, A3, A5, A6 are active and transmitting.

The resulting time series vector at the receiver is thus a sparse linear combination

of the columns of the matrix Φ with coefficients given by channel gains h1, h3, h5, h6,

plus additive noise v.

This model was proposed by Guo et al. in [ZLG], where it was shown that

the described CS-based protocol can significantly reduce the number of transmission

time slots required for neighbor discovery compared with the random access protocol

ALOHA. Due to the enormous IP space size, a sublinear recovery algorithm is the

only practical solution to the CS decoding for this problem at the present time.



98

A1 

A3 

A5 

A6 

h1 

h3 
h5 

h6 

+  v y =  

Figure 4.4: Demonstration of a CS-based communication protocol in an ad-hoc net-
work

In [ZLG] the authors have used the Reed-Muller-based measurement matrices and

the chirp reconstruction algorithm of [HCS08] as a candidate solution which allows

neighbor discovery with up to 30 neighboring nodes. However, experiments reveal

that the running time of the chirp reconstruction algorithm severely increases for

k ≥ 60 nonzero coefficients, and becomes practically intractable. Considering that

a limited amount of processing resources and time is often dedicated to learning the

configuration and initial setup of the network, this approach might not be of practical

use for denser and larger networks. In contrast, the sublinear recovery algorithm that

we propose for the summary-based constructions is highly scalable with respect to

very large state space sizes and sparsity levels k.
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4.7 Proposed Recovery Algorithms

For the measurement matrices described in the previous section we propose three

reconstruction algorithms and provide success guarantees. These algorithms include

the Basis Pursuit (a.k.a `1 minimization), as well as two fast algorithms that can

recover sparse vectors from a sublinear number of measurements and using a sublinear

number of operations.

4.7.1 Basis Pursuit

`1 minimization is the closest convex optimization relaxation to the problem of finding

the sparsest signal x that satisfies the set of linear inequalities y = Φx. In the case

of Basis Pursuit, we restrict our attention to nonnegative signals, and the following

version of the `1 minimization algorithm:

minimize ‖x‖1 (4.7.1)

subject to Φx = y, x ≥ 0.

The complexity of (4.7.1) is generally polynomial in the ambient dimension of

the signal. Specifically, one can implement (4.7.1) in O(N3) operations, without

exploiting any of the available structural information of the measurement matrix.

Although there are some advantages to Basis Pursuit compared with other sparse

recovery algorithms, such as higher robustness to noise and universal performance

bounds, its complexity is impractical for problems where N scales exponentially. In

these situations, sublinear time algorithms are preferred.

The success of the basis pursuit algorithm for recovering sparse signals is certified

by several conditions, two major classes of which are the restricted isometry property

(RIP) [CT05] and the null space condition [CT05, SXH08]. It is provable that the

measurement structures defined in this paper do not maintain the RIP properties,
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due to the existence of columns with fairly large coherence. This however does not

discard the suitability of these constructions for `1 minimization, since RIP is known

to provide a sufficient condition (see, e.g., [BCT10]). Instead, we refer to the anal-

ysis presented in Chapter 2 for the nonnegative constrained `1 minimization, and

prove that certain null space conditions hold for the considered class of matrices, and

therefore provide a sparse signal recovery bound.

4.7.2 Summarized Index Recovery

The summarized index recovery (SIR) algorithm is based on iteratively inferring the

nonzero entries of the signal based on one of the distinct values of y and its various

occurrences. In every iteration of the algorithm, one support index label is identified.

The main loop thus contains the following subroutines:

1) The value classification subroutine scans through the entries of y and groups

together the nonzero coefficients with (almost) equal values. In the presence of obser-

vation noise, in all likelihood, no two values of the vector y are identical. To cancel

out the effect of the noise on the value identification, some sort of quantization (bin-

ing) is used: Two coefficients of y are considered almost equal if they are within a

pre-assigned bin size q distant.

2) The coarse index identification subroutine cycles through all the occurrences of

a particular coefficient of the vector y grouped together by the value identification

subroutine. For each group, the corresponding summaries are identified, and the

subroutine attempts to identify a binary label that conforms to all of them. More

specifically, suppose that a nonzero value of y is chosen which has t occurrences, say

without loss of generality, y1 = y2 = · · · = yt. Also, let the (n, d) summary which

corresponds to the ith row of Φ be denoted by (Si, ci). The subroutine explores the

possibility that y1, y2, . . . , yt are all equal to a single nonzero entry of x, by trying

to build a binary sequence b that conforms to the summaries {(Si, ci)}ti=1, i.e., by
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setting:

b(Si) := ci, ∀1 ≤ i ≤ t. (4.7.2)

In the presence of noise, this subroutine settles for finding a label that conforms

to as many summaries as possible among {(Si, ci)}ti=1. There are a number of ways

to do this efficiently. A possible formulation is through an equivalent max-clique

solution. Consider an undirected graph G = (V,E), in which there is a node vi for

every summary (Si, ci), for 1 ≤ i ≤ t. Two nodes vi and vj are connected in G, if and

only if (Si, ci)||(Sj, cj). The problem of finding a binary label b that conforms to as

many summaries as possible is equivalent to finding the maximum size clique in G.

3) In the case that the enforced label is not unique and contains a few undetermined

bits (identified by −1 in Algorithm 2), the fine index identification subroutine tries to

estimate the remaining bits by a series of simple value counting rules. In the presence

of noise, this turns into a set of hypothesis tests on particular subsets of coefficients

of y.

4) Finally, the rejection step verifies whether the estimated label is actually in the

support set or not. If a certain statistical criteria for the measurements containing

the estimated index is not satisfied, the label is rejected and the search continues.

Specifically, if b is the binary label of a support index of a distinguishable x, then we

expect all of the coefficients of y that correspond to summaries conforming with b to

be (almost) nonzero. If otherwise is observed, the inferred label is rejected.

A block diagram describing these fundamental steps and their interconnections

is depicted in Figure 4.5. Also, the details are described in Algorithm 2. The pro-

posed method can be implemented very efficiently, with O(max(poly(M), k logN))

operations, which is sublinear in the dimension of the signal. To avoid exponentially

long computations, the maximum clique solution of the coarse index identification

subroutine can be approximated via polynomial time algorithms (see, e.g., [PX94]
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Algorithm 2 —Summarized Index Recovery

1: Input: Vector y = (y1, y2, . . . , yM)T and corresponding summaries (Sj, cj), 1 ≤
j ≤M .

2: Output: Estimate x̂ of the sparse vector x.
3: Initialize: Set x̂ := 0.
4: Set S := {Sj |1 ≤ j ≤M}
5: Identify Γ := {yj |1 ≤ j ≤M yj 6≈ 0}
6: for γ ∈ Γ do
7: Set J := {j|yj = γ}
8: if @j′, j′′ ∈ J s.t. (Sj′ , cj′) ∦ (Sj′′ , cj′′) then
9: Set b := −1n×1.

10: for j ∈ J do b(Sj) := cj end for
11: end if
12: Set S1 := {1 ≤ i ≤ n | b(i) 6= −1} and S2 := {1, 2, . . . , n} \ S1.
13: if S2 = ∅ then
14: Set V := {yi|1 ≤ i ≤M,b||(Si, ci)}.
15: if 0 6∈ V then Set t := ∆(b) + 1, x̂t := γ, y := y − Φx̂, goto 5 end if
16: else
17: for S ∈ P (S) and l ∈ S2 ∩ S do
18: R0 := {yj|Sj = S,b‖(Sj, cj), cj(I(S, l)) = 0}
19: R1 := {yj|Sj = S,b‖(Sj, cj), cj(I(S, l)) = 1}
20: if R0 ≈ {0} then b(l) := 1, goto 12. end if
21: if R1 ≈ {0} then b(l) := 0, goto 12. end if
22: end for
23: end if
24: end for

for a survey of different approaches). Here, we suggest using a greedy-based maxi-

mum degree selection strategy which has a linear complexity in the graph size. The

remaining computational advantage of the SIR algorithm is owed for the most part

to the structured form of the measurement matrix which facilitates sublinear search

over its column space. In addition, the memory requirements for decoding are min-

imal (i.e., are not exponential in n), since the information about Φ and the current

inferred indices of the unknown vector at each stage can be retained by only storing

the corresponding binary indices.
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Figure 4.5: Block diagram describing the subroutines of Algorithm 2

4.7.3 Mix and Match Algorithm

We describe a third recovery method, which is along the lines of the algorithm pro-

posed in [JS08], with slight modifications. The algorithm consists of two subroutines:

a value identification phase in which the nonzero values of the unknown signal are

determined, and a second phase for identifying the support set of x. The method is

based on measurements given by y = (y(1)T ,y(2)T )T = (ΦT
1 ,Φ

T
2 )Tx, where only y(1)

is used for the first phase, and y(2) and Φ2 are used in the second phase. Details are

described in Algorithm 3. We analyze this algorithm for the proposed measurement

structures of this paper, which is different from the analysis of [JS08]. The complexity

of Algorithm 3 is O(max(poly(M), 2k)), and thus explodes when k grows. Therefore,

this method is only practical for very small sparsity levels k.

4.8 Analysis

For the sake of the theoretical arguments that appear in the remainder of this section,

we need to define the following notions:

Definition 13. Let n and l be integers with l < n. Define fs(n, d), fw(n, d, p, ε) and

f ′w(n, d, p, ε) to be the largest integer k such that when k binary sequences of length n

are selected at random, the following happens respectively:
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Algorithm 3 —Mix and Match

1: Input: Vector y = (y1, y2, . . . , yM)T and corresponding summaries (Sj, cj), 1 ≤
j ≤M .

2: Output: A set X of nonzero values of x, and binary sequences bx, x ∈ X of
length n, representing the indices of the support set of x.

3: Initialize: Set V := ∅, S := ∅, X := ∅ and a mapping E : R → 2R with
E(r) = ∅,∀r ∈ R.

4: Identify Γ := {γ | γ 6= 0, ∃1 ≤ i ≤M s.t. γ = yi}.
5: while γ * S do
6: Find γ∗ := min{γ | γ ∈ Γ, γ 6∈ S}.
7: Set X := X ∪ {γ}, E(γ + s) := E(s) ∪ {γ},∀s ∈ S.
8: Set S := X ∪ {γ + s | s ∈ S}.
9: end while

10: Set bx = −1n,∀x ∈ X.
11: for j = 1 : M do
12: if yj 6= 0 then
13: for x ∈ E(yj) do
14: bx(Sj) := cj.
15: end for
16: end if
17: end for

1. With probability 1, there exists a (n, d) summary that appears in exactly one of

the sequences.

2. With probability at least p, for each of the binary sequences, at least a fraction

ε of its appearing (n, d) summaries are unique.

3. With probability at least p, for each of the binary sequences, at least a fraction

ε of its appearing (n, d) summaries that include the first bit are unique.

4.8.1 `1 Minimization

The general performance of the recovery algorithm (4.7.1) for binary matrices was

studied in Chapter 1, which was based on the results published in [KXDH10]. We

prove that a nonnegative vector x can be recovered from (4.7.1), if and only if it is

the unique nonnegative solution of the given system of equations. For simplicity, we

repeat the statement here:
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Lemma 4.8.1 (Corollary of Theorem 2.5.3). Suppose Φ ∈ Rm×n is a matrix with

constant column sum, and x0 ∈ Rn×1 is a nonnegative vector. x0 is the unique

solution to (4.7.1) if and only if x0 is the unique nonnegative solution to Φx = Φx0.

Using the above lemma and noting that the matrices constructed based on summary

codebooks are constant column sum, we can evaluate the performance of the Basis

Pursuit algorithm when used with the presented measurement matrices. The following

theorem is fundamental to this analysis, and its proof appears in Section 4.10.

Theorem 4.8.2 (Strong Recovery for Basis Pursuit). Let k ≤ fs(n, d − 1) be an

integer, and let Φ correspond to a complete (n, d) summary codebook. Then every

k-sparse nonnegative vector x is perfectly recovered by (4.7.1).

4.8.2 SIR Algorithm

The following two theorems are also proved in Section 4.10.

Theorem 4.8.3 (Strong Recovery for SIR). Let k ≤ fs(n, d − 1) be an integer,

and let Φ correspond to a complete (n, d) summary codebook. Then every k-sparse

distinguishable vector x is perfectly recovered by Algorithm 2.

Theorem 4.8.4 (Weak Recovery for SIR). Let k ≤ f ′w(n, d, p, ε) be an integer,

and let Φ correspond to a random (n,m, d) summary codebook. Then, a random

k-sparse distinguishable vector x is recovered by Algorithm 2 with probability at least

1− kn
(
1− p+ p(1− εd

n
)m
)
.

The explicit recovery bounds given by the above theorems are calculated in Section

4.8.4.

4.8.3 M&M Algorithm

We prove the following weak recovery guarantee for the M&M algorithm.
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Theorem 4.8.5 (Weak Recovery for M&M). Let k ≤ fw(n, d, p, ε) be an integer, and

Φ =
(
ΦT

1 ΦT
2

)T
, where Φ1 and Φ2 correspond to a random (m,n, d) summary codebook,

and a complete (n, 1) summary codebook, respectively. Then, a random nonnegative

k-sparse distinguishable vector x is recovered by Algorithm 3 with probability at least

p (1− k(1− ε)m).

4.8.4 Recovery Bounds

We derive recovery bounds for (4.7.1) and Algorithms 2 and 3 by obtaining explicit

bounds on the terms of Definition 13 and replacing them in the recovery guarantees

of Section 4.8, namely Theorems 4.8.2–4.8.5. The proof of the following lemma is

based on combinatorial techniques and Chernoff concentration bounds (see Section

4.10).

Lemma 4.8.6. Let n,d, and k be integers, and 0 < α < 1/2. Also, let ε = 1 −
k
(n

2
(1+
√

2α)

d

)
/
(
n
d

)
, and p = 1− k2e−αn. Then,

1. fs(n, d) ≥ 2d.

2. fw(n, d, p, ε) ≥ k.

3. f ′w(n, d, p, ε) ≥ fw(n− 1, d− 1, p, ε).

By exploiting the expressions of the above lemma in Theorems 4.8.2–4.8.5, we

obtain the following bounds for different methods:

Basis Pursuit

If a complete (n, d) summary codebook is used to build Φ, then the number of mea-

surements is M = 2d
(
n
d

)
, and every sparsity k ≤ 2d−1 is guaranteed to be recovered.

When put together (recall that n = log2N), an upper bound on the the required

number of measurements for recoverable sparsity k is given by:
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M = 2k

(
logN

log k

)
. (4.8.1)

In particular, for small values of k, the above bound is comparable with the M =

2k logN bound of `1 minimization for random Gaussian matrices [CRPW].

SIR Algorithm

We focus on the weak bound, namely the one obtained from Theorem 4.8.4. The gen-

eral strategy is to take the values of p and ε according to Lemma 4.8.6, and choose k

and m in such a way that firstly, ε is bounded away from zero, and secondly the prob-

ability of recovery failure approaches zero as n→∞. We take k = λ2
−d log2

(√
α/2+1/2

)

for some constant 0 < λ < 1, ε = 1 − k
(n

2
(1+
√

2α)

d

)
/
(
n
d

)
, and p = 1 − k2e−αn. From

Lemma 4.8.6, we conclude that:

k ≤ fw(n, d, p, ε) ≤ f ′w(n+ 1, d+ 1, p, ε). (4.8.2)

Therefore, from Theorem 4.8.4, the probability of failure in the reconstruction of a

random vector x by the SIR algorithm is at most:

P (failure) ≤ kn

(
1− p+ p

(
1− ε d+ 1

n+ 1

)m)
(4.8.3)

= kn

(
k2e−αn + p

(
1−

(
1− k

(n
2

(1+
√

2α)

d

)(
n
d

) )
d+ 1

n+ 1

)m)
. (4.8.4)

Define β =
√
α/2 + 1/2. Then replacing k with λ2−d log2 β, and p with the trivial

upper bound 1 on the right-hand side of (4.8.4), it follows that:

P (failure) ≤ kn

(
k2e−αn +

(
1−

(
1− λ2−d log2 β

(
βn
d

)(
n
d

) ) d+ 1

n+ 1

)m)
. (4.8.5)

Note that for 1/2 < β < 1 we have:

2−d log2 β

(
βn
d

)(
n
d

) = β−d × βn

n
× βn− 1

n− 1
× · · · × βn− d+ 1

n− d+ 1
(4.8.6)

≤ β−d × βd = 1, (4.8.7)
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and as a result, we may write:

P (failure) ≤ k3ne−αn + kn

(
1− (1− λ)

d

n

)m
. (4.8.8)

Note that in deriving the above inequality we have used the fact that d
n
< d+1

n+1
. The

right-hand side of (4.8.10) goes to zero for large n, if m = Ω(n log n). To see this,

assume that m > cn log n for some c > 0. Then we have:

P (failure) ≤ k3ne−αn + kn

(
1− (1− λ)

d

n

)m
(4.8.9)

≤ k3ne−αn + kn

(
1− 1− λ

n

)cn logn

→ kn1−c(1−λ), as n→∞, (4.8.10)

which is asymptotically zero for c > 2
1−λ . Therefore, it follows that an upper bound

on the required number of measurements for successful recovery with high probability

is given by:

M = O(k logN log logN). (4.8.11)

M&M Algorithm

We take k = λ2
−d log2

(√
α/2+1/2

)
for some 0 < λ < 1, ε = 1 − k

(n
2

(1+
√

2α)

d

)
/
(
n
d

)
, and

p = 1− k2e−αn. From Lemma 4.8.6, we conclude that:

k ≤ fw(n, d, p, ε). (4.8.12)

Therefore from Theorem 4.8.5, we conclude that the probability of recovery failure

for the M&M algorithm satisfies:

P (failure) ≤ k2e−αn + kλm, (4.8.13)

which asymptotically vanishes if m = Ω(log k). Recall that the number of measure-

ments in this case is determined by the matrix Φ =
(
ΦT

1 ,Φ
T
2

)T
described in Theorem
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Table 4.1: Comparison of different sublinear compressed sensing algorithms. Red
color indicates that the guarantee is only empirical.

Method M Complexity Storage Robust

CP [GSTV06] O(k log2N) O(k log2 k log2N) Ω(N) Y
[CM06] Ω(k4 log4N) Ω(k4 log4N) Ω(MN) Y
RM [HCS08] —— Ω(kM logM) O(M logN) Y
[DMP11] —— O(k2 logN) per iteration O(M logN) ——
M&M O(logN + k log k) O(M logM +M2k) O(M logN) N
SIR O(k logN log logN) O(kM logM) O(M logN) Y

4.8.5, which is equal to M = 2 logN + m × 2d. Therefore, it follows that an upper

bound on the required number of measurements for successful recovery with high

probability is given by:

M = 2 logN +O(k log k). (4.8.14)

In particular, when k = o(log logN), it follows that only O(logN) measurements are

required, and the running time of the algorithm is O(logN) (see Section 4.7), both

of which are almost optimal.

Table 4.1 provides a more comprehensive comparison between the measurement

matrix structure and the sublinear time algorithms proposed here with the ones that

exist in the literature. We have enumerated the following factors in each case: min-

imum number of required measurements, running time complexity, storage require-

ment for the measurement matrix, and whether or not reconstruction is robust to

noise. It is evident that the SIR algorithm is superior in most of these attributed to

the other methods.

4.9 Simulations

Since Algorithm 3 is only efficient for very small values of k, we present the em-

pirical performance of Algorithm 2 here and compare it with the existing sublinear

algorithms in the literature. Due to the efficiency of the method, it is possible to
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perform simulations for very large values of N . In Figure 4.6, the empirical required

over-sampling rate for Algorithm 2 and the proposed constructions is plotted versus

the signal dimension N , for various sparsity levels k. The required criteria here is

that the probability of successful recovery be larger than 90%. Note that when N

is increased by 3 orders of magnitude, the required number of measurements is in-

creased by a factor of 3, which is an indication of the logarithmic dependence of M

to N . Furthermore, as the signal becomes less sparse (i.e., k increases), the required

oversampling factor decreases. For k = 100 this ratio is only about 5 for N = 1024

and about 25 for N ≈ 1012. This is significantly better than existing sublinear recov-

ery algorithms. Note that the optimal value of d for constructing the measurement

matrices for every k,N is found empirically.
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Figure 4.6: Required oversampling rate for successful recovery of Algorithm 2 on
proposed constructions versus signal dimension for various sparsity levels.

In Table 4.2, we have compared the oversampling factor of the SIR algorithm with

the Chaining Pursuit method and the chirp reconstruction method of [HCS08] for a

few cases. Note that in most cases, our method is notably advantageous.

In Figure 4.7, the probability of successful recovery is plotted against the sparsity

level k for N = 32768 and M = 192, 240, 320, 448. We can see that although the

number of measurements has only increased by a factor of 2.3, the recoverable sparsity

(given a fixed probability of success) has improved by almost a factor of 6 in some

cases. Also, numerical evaluations reveal that these curves are comparable with the

performance of `1 minimization over dense matrices (i.i.d. Gaussian), with the same
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Table 4.2: Comparison of empirical minimum required over-sampling ratios for 90%
recoverability guarantee for SIR, Reed-Muller (RM) decoding of [HCS08], and the
Chaining Pursuit (CP) method of [GSTV06]

k N M/k (SIR) M/k (RM) M/k (CP)

10 220 22.4 25.6 420
10 225 28.8 51.2 520
50 220 12.16 10.24 > 850
50 225 16 40.96 > 1000

number of measurements but with N = 3000, which is an indication of the strong

performance of the proposed scheme.
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Figure 4.7: Probability of successful recovery of Algorithm 2 versus sparsity level k,
for N = 32768 and M = 192, 240, 320, 448

Figure 4.8 shows a comparison the SIR algorithm with the chirp reconstruction

method of [HCS08] for Reed-Muller-based matrices. For fixed values of M,N , we

have compared successful recovery percentage and the running time of the algorithms

for different sparsity levels. Note that in this case our proposed method has both

higher recovery percentage and significantly faster execution time.

Finally, we also evaluate the performance of the SIR algorithm in the presence of

noise. In this case, the observation vector y is assumed to be:

y = Φx + v, (4.9.1)
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Figure 4.8: Comparison of the performance (a) and average running time (b) for
the Reed-Muller decoding of [HCS08] and SIR (this thesis) for N = 1048576 and
M = 1024. The SIR is based on a random (20, 7) summary codebook.

where v is the noise vector with i.i.d. entries drawn from N (0, σ2
v). Also, we assume

that the nonzero entries of x are i.i.d. Gaussian with zero mean and a fixed variance

σ2
x. The average signal-to-noise ratio is therefore defined as:

SNR = E10 log10

xTx

vTv
= 20 log10

kσx
Mσv

. (4.9.2)

We also define the signal-to-error ratio for the approximate solution x̂ to the sparse

vector x as follows:

SER = 20 log10

‖x‖2

‖x̂− x‖2

. (4.9.3)

Given these definitions, we plot the average SER against the average SNR for three

sublinear reconstruction algorithms: The SIR algorithm proposed in the current pa-

per, the Reed-Muller decoding of [HCS08], and the Chaining Pursuit method. The

results are shown in Figure 4.9. Note that despite being significantly faster, the per-

formance curve of our proposed method is comparable to the Reed-Muller decoding

algorithm (about 3dB less) and significantly better than Chaining Pursuit.

4.10 Proof of Theorems

Proof of Theorem 4.8.2

Let k ≤ fs(n, d−1) and let x0 be a nonnegative k-sparse vector. Also, let the support

set of x0 be the indices represented by the n-bit binary labels b1,b2, . . . ,bk. We show
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Figure 4.9: Average signal-to-recovery-error ratio (SER) versus average signal-to-
noise-ratio (SNR) for different sublinear algorithms. The parameters are N = 220

and M = 1024 for the Reed-Muller and SIR algorithms, and N = 220 and M = 3780
for the Chaining Pursuit method. The sparsity is k = 10.

that if Φ corresponds to a complete (n, d) summary codebook, then x0 is the unique

nonnegative solution to Φx = Φx0. Therefore, from Lemma 4.8.1, it follows that x0

can be recovered via (4.7.1). We prove this by contradiction. Suppose that there

is another nonnegative vector x 6= x0 with Φx = Φx0. Due to the nonnegativity

assumption, we may assume that the support sets of x and x0 do not overlap. Let

the n-bit labels of the support set of x be the binary sequences b′1,b
′
2, . . . ,b

′
`, with

1 ≤ ` ≤ N . From the definition of fs(·), it follows that there is a (n, d− 1) summary

that appears in exactly one of the sequences b1, . . . ,bk. Let us assume without the

loss of generality that the first d− 1 bits of b1 are unique, and that b1 is the all-zero

binary sequence. Therefore, there are at least n− d+ 1 coefficients in y = Φx0 that

are equal to the entry of x0 indexed by ∆(b1) + 1. These measurements are those

that correspond to the summaries

({1, 2, . . . , d− 1, i},01×d) , d ≤ i ≤ n. (4.10.1)

Since Φx = Φx0, there must be nonzero entries in x with labeling indices that satisfy

the above summaries. In particular, without loss of generality assume that the first

d bits of some label b′1 are all zero. On the other hand, since the support sets of x

and x0 do not overlap, b′1 is different from b1 in at least one bit, say b1(j) 6= b′1(j)

for some j > d. Now consider the summary (S, c) = ({1, 2, . . . , d− 1, j}, 00 . . . 01),
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which conforms to all binary sequences that are zero in the first d − 1 bits, and one

on the jth bit. Because Φ corresponds to a complete (n, d) codebook, there is a

row of Φ that corresponds to (S, c), and for which the corresponding coefficient in

y is nonzero, because b′1 conforms to (S, c). On the other hand this cannot be true

when considering the equations y = Φx, since it entails one of the labels b1, . . . ,bk

to conform to (S, c), which cannot be b1 (recall that b1 is the all-zero codeword,

whereas c includes a 1). The existence of such a label contradicts the assumption

that b1 is the only label whose d− 1 first bits are all zero.

Proof of Theorem 4.8.3

Let k ≤ fs(n, d− 1) and let x be a k-sparse vector. Also, let the n-bit binary labels

associated to the support set of x be b1,b2, . . . ,bk. We show that at least one of

these labels can be inferred from one of the nonzero values of the vector y = Φx,

by solving (4.7.2). From the definition, there is a (n, d − 1) summary that appears

in exactly one of the labels b1,b2, . . . ,bk. Without loss of generality, let’s assume

that the first d− 1 bits of b1 are unique, and that b1 is the all-zero binary sequence.

Also, let the nonzero value of x in the position given by b1 be γ. Now consider all

summaries (S, c) for which the value of the corresponding entry in y is equal to γ.

Let these summaries be denoted by {(Si, ci)}ti=1, where t is the number of occurrences

of γ in y. We show that there is a unique binary sequence b′ that conforms to all of

these summaries. In other words, we prove that equation (4.7.2) has a unique solution

which is equal to b′ = b1.

Due to the distinguishability assumption on the nonzero values of x, the set

{(Si, ci)}ti=1 should include the following summaries:

({1, 2, . . . , d− 1, i},0) , d ≤ i ≤ n. (4.10.2)

Where 0 indicates the all-zero bit sequence of length d. Clearly the only length-n

binary sequence that conforms to all of the above summaries is the all-zero binary
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sequence, namely b1. Thus, we only need to show that b1(Si) = ci for all other sum-

maries (Si, ci), 1 ≤ i ≤ t. This also follows immediately from the distinguishability

assumption on x, and the fact that every instance of γ in the vector y is only the

result of the nonzero value in x labeled by b1 (i.e., it is not the direct sum of another

subset of the entries of x).

Proof of Theorem 4.8.4

We define an event E which is stronger than the success event of Algorithm 2, and

thus provides a sufficient condition for the success of SIR. Let the n-bit binary labels

associated to the support set of x be b1,b2, . . . ,bk, and let C be the (n,m, d) summary

codebook corresponding to Φ. We define E to be the event that for every 1 ≤ i ≤ k,

and every bit 1 ≤ j ≤ n, there exists a summary (S, c) in C such that j ∈ S,

bi(S) = c, and b` 6= c ∀` 6= i. In other words, for each of the k labels corresponding

to the support of x and each of the n bits, there is a summary in the codebook that

includes the considered bit and only conforms to that particular label.

We find a lower bound on the probability of the complementary event Ec by

using union bounds. Note that there are m distinct subsets in the summaries of the

codebook C, which are chosen randomly. We assume that the subsets are chosen

independently at random, and allow repetition. In case of repetition, the repeated

subset is excluded, which is only a worst case and does not hurt the analysis. Consider

a label b1. The probability that a randomly chosen length d subset of bits includes

the first bit is d
n
. Furthermore, assume that at least a fraction ε′ of the summaries

that conform to b1 and include the first bit, does not conform to the remaining bis

(i.e., only appear in b1). Then, when a random subset S is chosen, with probability

at least ε′d
n

, the following happens:

1 ∈ S and bi(S) 6= b1(S) ∀1 < i ≤ k. (4.10.3)
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Therefore, the probability that the above event does not happen for any of m ran-

domly chosen subsets S is at most (1 − ε′d
n

)m. From the definition of f ′w(·) and the

fact that k ≤ f ′w(n, d, p, ε), we know that with probability at least p, ε′ ≥ ε, and there-

fore, the probability that (4.10.3) does not happen for any set S in the codebook C
is at most 1 − p + p

(
1− εd

n

)m
. If we union bound the probability of such event for

all possible k labels and all possible n bits, we conclude that the probability of the

undesirable event Ec is bounded by:

P(Ec) ≤ nk

(
1− p+ p

(
1− εd

n

)m)
. (4.10.4)

Which concludes the proof of the theorem.

Proof of Theorem 4.8.5

Let the n-bit binary labels associated to the support set of x be b1,b2, . . . ,bk, and

let C1 be the (n,m, d) summary codebook corresponding to Φ1. It can be shown that

the value identification subroutine of Algorithm 3 identifies all nonzero values of the

nonnegative vector x correctly, if in the observation vector y, every nonzero value of

x appears at least once. We find the probability that this condition holds when the

m subsets of the random coodbook C1 are chosen at random. For every 1 ≤ i ≤ k,

we define the following set of subsets of {1, 2, . . . , n}:

Ui = {S | |S| = d, bj(S) 6= bi(S) ∀j 6= i} . (4.10.5)

If a subset S in the codebook C1 belongs to Ui, then the nonzero entry γi that cor-

responds to the label bi appears in the observation vector y. Therefore, we are

interested in finding the probability that the set of m subsets of C1 has a nonempty

overlap with all Uis. Let us assume that for some ε′ > 0, the following holds:

|Ui| ≥ ε′
(
n

d

)
, ∀1 ≤ i ≤ k. (4.10.6)

When a subset S is chosen at random, the probability that it belongs to Ui is at least

ε′. Therefore the probability that Ui does not overlap with the set of all subsets S
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appearing in C1 is at most (1 − ε′)m. Using a union bound over all 1 ≤ i ≤ k, we

conclude that the probability that this undesirable event happens for at least one of

the sets Ui is at most k(1 − ε′)m, which means that the probability of success is at

least 1 − k(1 − ε′)m. However, we know from the definition of fw(·), and the fact

that k ≤ fw(n, d, p, ε), that with probability at least p, we have ε′ > ε. Therefore the

overall probability of success is at least:

1− p+ p(1− k(1− ε)m) ≥ p(1− k(1− ε)m). (4.10.7)

Proof of Lemma 4.8.6

For the first statement, we use induction to prove that fs(n, d) ≥ 2fs(n−1, d−1). Let

k = fs(n, d) and suppose that b1, . . . ,bk are distinct binary sequences of length n, so

that no (n, d) summary uniquely appears in exactly one of the sequences. Without

loss of generality, assume that the sequences b1, . . . ,bt start with 0 (i.e., the leftmost

bit is zero), and bt+1, . . . ,bk start with 1. we can assume that 1 < t < k, since

otherwise, we simply take a bit that has both 0 and 1 values in bis and consider

that bit instead. Also, let b′i be the n − 1 length sequence that is obtained from bi

by removing the first bit. Knowing that bis are unique, we conclude that the set of

sequences b′i, 1 ≤ i ≤ t are distinct, and so are b′j, t + 1 ≤ j ≤ k. Furthermore, no

(n−1, d−1) summary (S ′, c′) appears in exactly one b′i, for 1 ≤ i ≤ t, since otherwise,

the (n, d) summary (S ′ ∪ {1},0c) shows up only in bi, which contradicts the earlier

assumption. The same is true for the sequences bj, t + 1 ≤ j ≤ k. Therefore, from

the definition, we can conclude that t ≥ fs(n− 1, d− 1) and k− t ≥ fs(n− 1, d− 1),

which concludes that k ≥ 2fs(n−1, d−1), and proves the main step of the induction.

It is easy to see that for l = 1, f(n, 1) = 2, which is the base of the induction. This

completes the proof of the first statement.

Now we prove the second statement. Let b1, . . . ,bk be k independent random
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binary sequences of length n. From Chernoff bound, we can say that with probability

at least 1 − e−αn, b2 has at most n
2
(1 +

√
2α) bits in common with b1. We can

therefore use a union bound to conclude that with probability at least 1 − ke−αn,

every bi, i > 1 has less than n
2
(1 +

√
2α) bits in common with b1. Therefore, every

bi can result in at most
(n

2
(1+
√

2α)

d

)
of the (n, d) summaries of b1 not being unique.

Therefore, with probability 1− ke−αn, a fraction ε = 1−
(n

2
(1+
√

2α)

d

)
/
(
n
d

)
of the (n, d)

summaries of b1 are unique (i.e., are not present in any bi, i > 1). Using another

union bound, we conclude that the same condition holds simultaneously for all of

bis with probability at least 1 − k2e−αn, therefore proving the second statement of

Lemma 4.8.6.

The proof of the third statement is straightforward from the definition of fw and

f ′w. Every (n, d) summary that includes the first bit includes a (n−1, d−1) summary

over the remaining n− 1 bits, and if this reduced summary is unique in b1, so is the

original (n, d) summary.

4.11 Conclusion

We proposed very structured binary matrices for sparse estimation, along with a

fast and robust recovery algorithm that has a running time only logarithmic in the

dimension of the unknown signal. The method allows reconstruction of sparse signal

of very large ambient dimensions in efficient time, and is thus useful for statistical

inference problems with very large state spaces or when real time decoding is needed.
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Chapter 5

Compressed Sensing with Prior

Information

The previous three chapters were focused on the design of combinatorial/deterministic

matrices for sparse recovery, with the motivation that they often result in several

advantages over random (e.g., Gaussian) ensembles. In particular, we discussed com-

binatorial algorithms that can be faster or easier to implement that geometrical ap-

proaches such as Basis Pursuit. In this part however, we solely focus on the Basis

Pursuit algorithm, namely `1 minimization and its variations, and study them more

closely for i.i.d. Gaussian matrices. The linear programming reconstruction methods

have been extensively studied in the past couple of years following the breakthrough

results of Donoho and Tanner, and Candes and Tao. In particular, a well-known

property of this type of recovery method is the existence of a phase transition in

the asymptotic proportional region of system dimensions in which the ratios k
n

and

m
n

are constant. Recall that n,m, and k represent the signal dimension, number of

measurements, and the sparsity of the unknown signal, respectively. Despite the reck-

less choice of the Gaussian measurement ensembles, and the seemingly limited choice

of the reconstruction method, empirical evidence reveals that the phase transition

curve of `1 minimization is a very fundamental limit. Firstly, no alternative choice

120
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of measurement matrix (whether deterministic or random) exhibits a better transi-

tion curve for `1 minimization than the Gaussian sketches. In addition, with random

structures, there is no existing polynomial time algorithm with universally better

bounds than `1 minimization. Not to mention that the universality of the results of

`1 minimization (namely that the performance is independent of the unknown signal

distribution) is another fundamental property. For all the above reasons, the phase

transition curve of linear programming decoding has somewhat been established as a

milestone in analyzing the performance of sparse information retrieval. As a result,

there is ongoing research trying to identify these bounds more explicitly or generalize

the results to other forms of sparse reconstruction problems using atomic norms (see,

e.g., [RXH08, Sto10]).

The focus of this chapter and the next one is to analyze the phase transition curve

of `1 minimization, and investigate the possibility of improving it. In particular, we

first consider the performance linear programming decoding under the presence of

additional information about the signal sparsity pattern, or as will be referred to,

under nonuniform sparsity assumptions. This will be studied in this chapter, where we

show that an appropriate adjustment to `1 norm can tune the linear program to locate

less-sparse vectors under nonuniform sparsity constraints. In Chapter 6, we explore

ways of directly improving `1 minimization in lieu of any additional information.

A measurement matrix

n signal size

m number of measurements

k sparsity of the signal

δ aspect ratio of A, m/n

µ sparsity ratio k/n

δc weak threshold of regularized `1 minimization
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5.1 Introduction

The conventional approach to compressed sensing assumes no prior information on the

unknown signal other than the fact that it is sufficiently sparse over a particular basis.

In many applications, however, additional prior information is available in one or other

forms, such in natural or biomedical images, genomic data processing, network mon-

itoring, machine vision, etc. In fact, in many cases the signal recovery problem that

compressed sensing addresses is a detection or estimation problem in some statistical

setting. Some recent work along these lines can be found in [DWB06], which considers

compressed detection and estimation, [JXC08], which studies Bayesian compressed

sensing, and [BCDH10] which introduces model-based compressed sensing allowing

for model-based recovery algorithms. In a more general setting, compressed sensing

may be the inner loop of a larger estimation problem that feeds prior information

on the sparse signal (e.g., its sparsity pattern) to the compressed sensing algorithm

[CWB08, KXAH10].

We consider a particular model for the sparse signal where the entries of the

unknown vector fall into a number u of classes, with each class having a specific

fraction of nonzero entries. The standard compressed sensing model is therefore a

special case where there is only one class. As mentioned above, there are many

situations where such prior information may be available, such as in natural images,

medical imaging, or in DNA micro-arrays. In the DNA micro-arrays applications, for

instance, signals are often block sparse, i.e., the signal is more likely to be nonzero in

certain blocks than in others [SPH09]. While it is possible (albeit cumbersome) to

study this model in full generality, for now, we focus on the case where the entries

of the unknown signal fall into a fixed number u of categories; in the ith set Ki with

cardinality ni, the fraction of nonzero entries is pi. This model is rich enough to

capture many of the salient features regarding prior information. We refer to the

signals generated based on this model as nonuniform sparse signals.
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A signal generated based on this model could resemble the vector representation

of a natural image in the domain of some linear transform (e.g. discrete Fourier

transform, discrete cosine transform, discrete wavelet transform, ...) or the spatial

representation of some biomedical image (e.g., a brain fMRI image; see [LV09] for

an application of model-based compressed sensing and modified sparsity models for

MRI images). Although a brain fMRI image is not necessarily sparse, the subtraction

of the brain image at any moment during an experiment from an initial background

image of inactive brain mode is indeed a sparse signal which demonstrates the addi-

tional brain activity during the specific course of experiment. Moreover, depending

on the assigned task, the experimenter might have some prior information. For exam-

ple it might be known that some regions of the brain are more likely to be entangled

with the decision making process than the others. This can be captured in the above

nonuniform sparse model by considering a higher value pi for the more active re-

gion. Similarly, this model is applicable to other problems like network monitoring

(see [CPR07] for an application of compressed sensing and nonlinear estimation in

compressed network monitoring), DNA microarrays [MBSR07, ES05, VPMH07], as-

tronomy, satellite imaging, and many more practical examples. In particular, we will

provide one example in satellite imaging with details where such a model is applica-

ble for real data. In general, achieving such a probabilistic prior in practice requires

comprehensive knowledge of the model from which the sparse signal is generated, or

detailed analysis of some post-processing. We will elaborate on the latter later in this

chapter.

We first study this model for the case where there are u ≥ 2 categories of entries,

and demonstrate through rigorous analysis and simulations that the recovery perfor-

mance using basis pursuit can be significantly boosted by exploiting the additional

information. We then generalize the results to an arbitrary class of entries. A further

interesting question to be addressed in future work would be to characterize the gain

in recovery percentage as a function of the number of distinguishable classes u.
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5.2 Related Work

A somewhat similar model for prior information has been considered in [VL10] under

the title of modified compressed sensing, almost concurrently with our initial results.

There it has been assumed that part of the support is completely known a priori or

due to previous processing, and consequently the signal recovery is performed under

a partially known support condition. A modification of the regular `1 minimiza-

tion based on the given information is proven to achieve significantly better recovery

guarantees, mostly in terms of tightening the reconstruction error bound and RIP

coefficients. Explicit derivations of recovery threshold improvements are thus missing

in [VL10]. A variation of the modified CS algorithm for noisy recovery under partially

known support is also considered in [LV10]. As will be discussed, this model can be

cast as a special case of the nonuniform sparse model, where the sparsity fraction is

equal to unity in one of the classes. Therefore, using the generalized tools of this

work, we can explicitly find the recovery thresholds (improvement) for the method

proposed in [VL10]. Our method of analyzing weigh `1 minimization is based on null

space characterization, which is in contrast to the recovery guarantees of [VL10] given

in terms of the restricted isometry property (RIP).

Another related method that uses weighted `1 optimization is by Candès et al.

[CWB08]. The main difference is that in [CWB08], no prior information is assumed

about the unknown vector, and as a result the weights are not fixed and depend on a

preliminary estimate of the signal obtained by an initial `1 minimization. The method

is thus an iterative approach, where at each step the `1 optimization is re-weighted

using the estimate of the signal obtained in the last minimization step. This approach

is studied separately in the next section when we discuss a re-weighted Basis Pursuit

algorithm.

There are also a collection of papers on model-based compressive sampling which

are mostly focused on a Bayesian approach to the sparse reconstruction problem,
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which in some cases significantly eases the incorporation of additional or prior infor-

mation into the reconstruction analysis. This approach falls outside the main scope

of the current thesis. More information can be found in [DWB06, JXC08, BCDH10],

the references therein, and the extensions build upon those works.

5.3 Contributions

We propose a weighted `1 minimization approach for sparse recovery where the `1

norms of different classes (Kis) are assigned different weights wKi (1 ≤ i ≤ u). In-

tuitively, one would want to give a larger weight to the entries with a higher chance

of being zero and thus further force them to be zero. The second contribution is

that we explicitly compute the relationship between pi, wKi ,
ni
n

, 1 ≤ i ≤ u, and the

number of measurements so that the unknown signal can be recovered with over-

whelming probability as n → ∞ (the so-called “weak” and “strong” thresholds) for

measurement matrices drawn from an i.i.d. Gaussian ensemble. The analysis uses

the high-dimensional geometry techniques first introduced by Donoho and Tanner

[Don06b, DT05a] (e.g., Grassmann angles) to obtain sharp thresholds for compressed

sensing. However, rather than the neighborliness condition used in [Don06b, DT05a],

we find it more convenient to use the null space characterization of Xu and Hassibi

[XH08, SXH08]. The resulting Grassmannian manifold approach is a general frame-

work for incorporating additional factors into compressed sensing: in [XH08] it was

used to incorporate approximately sparse signals; here it is used to incorporate prior

information and weighted `1 optimization. The techniques for computing the proba-

bility decay exponents are adapted from the works of [Don06b, DT05a]. Our analytic

results allow us to precisely compute the optimal weights for any pi,ni, 1 ≤ i ≤ u. We

also provide certain robustness conditions for the recovery scheme for compressible sig-

nals or under model mismatch. We present simulation results to show the advantages

of the weighted method over standard `1 minimization. Furthermore, our results for
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the case of two classes (u = 2) builds a rigid framework for analyzing certain classes

of re-weighted `1 minimization algorithms. In a re-weighted `1 minimization algo-

rithm, the post-processing information from the estimate of the signal at each step

can be viewed as additional prior information about the signal, and can be incorpo-

rated into the next step as appropriate weights. Building upon the current subject,

we have been able to analytically prove the threshold improvement in a reweighted

`1 minimization using this framework, as is reported in [HKXA09, KXAH10]. These

contributions will be discussed in the next chapter. It is worth mentioning that we

have prepared a software package based on the results of this chapter for threshold

computation using weighted `1 minimization, and it is available in [Sof].

5.4 Preliminaries

First consider the following definition:

Definition 14. A random variable Y is said to have a half-normal distribution

HN(0, σ2) if Y = |X| where X is a zero mean normal variable X ∼ N (0, σ2).

5.4.1 Nonuniform Sparsity Model

We first define the signal model. For completeness, we present a general definition.

Definition 15. Let K = {K1, K2, ..., Ku} be a partition of {1, 2, · · · , n}, i.e. (Ki ∩
Kj = ∅ for i 6= j, and

⋃u
i=1 Ki = {1, 2, ..., n}), and p = {p1, p2, · · · , pu} be a vector of

positive numbers in [0, 1]. A n×1 vector x = (x1, x2, · · · , xn)T is said to be a “random

nonuniformly sparse” vector with sparsity fraction pi over the set Ki for 1 ≤ i ≤ u,

if x is generated from the following random procedure:

• Over each set Ki, 1 ≤ i ≤ u, the set of nonzero entries of x is a random subset

of size pi|Ki|. In other words, a fraction pi of the entries are nonzero in Ki.

pi is called the sparsity fraction over Ki. The values of the nonzero entries of
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Figure 5.1: Illustration of a nonuniformly sparse signal

x can arbitrarily be selected from any distribution. We can choose N (0, 1) for

simplicity.

Example 5. In Figure 5.1, a sample nonuniformly sparse signal with Gaussian dis-

tribution for nonzero entries is plotted. The number of sets is considered to be u = 2

and both classes have the same size n
2
, with n = 1000. The sparsity fraction for the

first class K1 is p1 = 0.3, and for the second class K2 is p2 = 0.05. In fact, the signal

is much sparser in the second half than it is in the first half.

This model is motivated by many practical applications in which the underlying

unknown signal is both sparse and the energy content is non-uniformly distributed

among different known classes of entries.

Example 6. The energy content of natural images follows some form of nonuniform

sparsity. The DCT transform of natural images is of significance importance to signal

processing, as it forms the domain for compression schemes such as JPEG. In fact,

the DCT representation of a natural images is often sparse and concentrated on the

low-frequency end of the spectrum. In Figure 5.2, a random natural image and its

real DCT transform is shown, where this fact can be clearly verified.1

1Image downloaded from http://thetravelerpost.com/2011/08/persepolis-persian-capital-city-
518b-c/
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Figure 5.2: A natural image (left) and the amplitude of its two-dimensional DCT
transform (right)

 

 

Figure 5.3: An overlay of satellite images showing the Earth at night

Example 7. Astronautical and satellite images are another class of signals with

both sparsity and nonuniform distribution of energy content. In particular, we have

depicted an overlay of satellite images of the Earth at night in Figure 5.3.2 It would

have been easy to guess that most of the significant brightness of the picture is

concentrated on urban areas.

One of the advantageous features of the above model is that all the resulting com-

putations are independent of the actual distribution on the amplitude of the nonzero

entries. However, as expected, it is not independent of the properties of the measure-

ment matrix. We assume that the measurement matrix A is a m×n matrix with i.i.d.

standard Gaussian distributed N (0, 1) entries, with m
n

= δ < 1. As in the previous

chapters, the measurement vector y obeys the following:

y = Ax. (5.4.1)

2Image downloaded from http://geology.com/articles/satellite-photo-earth-at-night.shtml
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As we concentrate on variations of `1 minimization for recovery, it is useful to

formally define some relevant concepts more formally in advance. As mentioned

in previous chapters, `1 minimization can recover a randomly selected vector x with

k = µn nonzero entries with high probability, provided µ is less than a known function

of δ. `1 minimization has the following form:

min
Ax=y

‖x‖1. (5.4.2)

As previously discussed, the work of David Donoho [Don06b] provides an explicit

relationship between µ and the minimum δ that guarantees success of `1 minimiza-

tion recovery in the case of Gaussian measurements, and provides the corresponding

numerical curve, generally known as the phase transition curves of `1 minimization.

The optimization in (5.4.2) is a linear program and can be solved polynomially fast

(O(n3)). However, it fails to encapsulate additional prior information of the signal

nature, might there be any such information available. In the case of additional in-

formation about the signal model, one can simply think of modifying (5.4.2) to a

weighted `1 minimization as follows:

min
Ax=y

‖x‖w,1 = min
Ax=y

n∑
i=1

wi|xi|. (5.4.3)

The index, w, on the norm is an indication of the n× 1 positive weight vector. Now

the questions are i) what is the optimal set of weights for a certain set of available prior

information? and ii) can one improve the recovery threshold using the weighted `1

minimization of (6.5.2) by choosing a set of optimal weights? We have to be more clear

with our objective at this point and clarify what we mean by improving the recovery

threshold. Generally speaking, if a recovery method can reconstruct all signals of a

certain model with certainty, then that method is said to be strongly successful on that

signal model. If we have a class of models that can be identified with a parameter θ,

and if for all models corresponding to θ < θ0 a recovery scheme is strongly successful,

then the threshold θ0 is called a strong recovery threshold for the parameter θ. For
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example, for fixed m
n

, if k < n is sufficiently small, then `1 minimization can provably

recover all k-sparse signals, provided that appropriate linear measurements have been

made from the signal. The maximum such k is called the strong recovery threshold of

the sparsity for the success of `1 minimization. Likewise, for a fixed ratio µ = k
n
, the

minimum ratio of measurements to ambient dimension m
n

for which `1 minimization

always recovers k-sparse signals from the given m linear measurements is called the

strong recovery threshold for the number of measurements for `1 minimization. In

contrast, one can also look into the weak recovery threshold , defined as the threshold

below which, with very high probability, a random vector generated from the model

is recoverable. For the nonuniformly sparse model, the quantity of interest is the

overall sparsity fraction of the model defined as (
∑u
i=1 pini
n

). The question we ask

is whether by adjusting wis according to pis one can extend the strong or weak

recovery threshold for sparsity fraction to a value above the known threshold of `1

minimization. Equivalently, for given classes K1, · · · , Ku and sparsity fractions pis,

how much can the strong or weak threshold be improved for the minimum number

of required measurements, as opposed to the case of uniform sparsity with the same

overall sparsity fraction.

5.5 Summary of Main Results

We state the two problems more formally using the notion of recovery thresholds that

we defined in the previous section. We only consider the case of u = 2.

• Problem 1. Consider the random nonuniformly sparse model with two classes

K1, K2 of cardinalities n1 = γ1n and n2 = γ2n, respectively, and given sparsity

fractions p1 and p2. Let w be a given weight vector. As n → ∞, what is the

weak (strong) recovery threshold for δ = m
n

so that a randomly chosen vector

(all vectors) x0 selected from the nonuniformly sparse model is successfully

recovered by the weighted `1 minimization of (6.5.2) with high probability?
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Upon solving Problem 1, one can exhaustively search for the weight vector w that

results in the minimum recovery threshold for δ. This is what we recognize as the

optimum set of weights. So the second problem can be stated as:

• Problem 2. Consider the random nonuniformly sparse model defined by classes

K1, K2 of cardinalities n1 and n2, respectively, with γ1 = n1

n
and γ2 = n2

n
, and

given sparsity fractions p1 and p2. What is the optimum weight vector w in

(6.5.2) that results in the minimum number of measurements for almost-sure

recovery of signals generated from the given random nonuniformly sparse model?

• Problem 3. When optimal weights are used to reconstruct signals of a nonuni-

formly spare model, how much improvement (in the number of required mea-

surements, say) is achieved compared with regular `1 minimization?

We have fully solved these problems. We first connect the misdetection event to

the properties of the measurement matrix. For the non-weighted case, this has been

considered in [SXH08] and is known as the null space property. We generalize this

result to the case of weighted `1 minimization, and mention a necessary and sufficient

condition for (6.5.2) to recover the original signal of interest. The theorem is as

follows.

Theorem 5.5.1. For all n × 1 vectors x∗ supported on the set K ⊆ {1, 2, ..., n}, x∗

is the unique solution to the linear program minAx=y

∑n
i=1 wi|xi| with y = Ax∗, if

and only if for every nonzero vector z = (z1, z2, · · · , zn)T in the null space of A, the

following holds:
∑

i∈K wi|zi| <
∑

i∈K wi|zi|.

This theorem will be proved in Section 5.6. Note that if the null space condition

given in the above theorem is weaker than the null space condition for regular `1

minimization, then it immediately implies that the weighted `1 minimization is better

than `1 minimization. To clarify this, consider the following example: Suppose that a

subset K ′ of the support set K is known a priori. If we assign weights wi = 0 to i ∈ K ′
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and wi = 1 to i ∈ K, then whenever the null space condition
∑

i∈K |zi| <
∑

i∈K |zi|
holds for regular `1 minimization, the condition

∑
i∈K wi|zi| <

∑
i∈K wi|zi| also holds

(since the left-hand size decreases and the right-hand size is untouched). Therefore

the weighted `1 scheme is at least as good as `1 minimization (in the strong recovery

sense).

As will be explained in Section 5.6.1, Theorem 5.5.1, along with known facts

about the null space of random Gaussian matrices, helps us interpret the probabil-

ity of recovery error in terms of a high-dimensional geometrical object called the

complementary Grassmann angle; namely the probability that a uniformly chosen

(n − m)-dimensional subspace Z shifted by a point x of unity weighted `1-norm,∑n
i=1 wixi = 1, intersects the weighted `1-ball Pw = {y ∈ Rn |∑n

i=1wi|yi| ≤ 1}
nontrivially at some other point besides x. The shifted subspace is denoted by Z+x.

What we can take for granted without explicitly proving is that, due to the identical

marginal distribution of the entries of x in each of the sets K1 and K2, the entries of

the optimal weight vector take at most two (or in the general case u) distinct values,

wK1 and wK2 , depending on their index. In other words

∀i ∈ {1, 2, · · · , n} wi =

{
wK1 if i ∈ K1

wK2 if i ∈ K2

. (5.5.1)

Leveraging on the existing techniques for computing the complementary Grassmann

angle [San52, McM75], we will be able to state and prove the following theorem along

the same lines, which upper bounds the probability that the weighted `1 minimization

does not recover the signal. Please note that in the following theorem, the rigorous

mathematical definitions to some of the terms (internal angle and external angle)

is not presented, due to the extent of descriptions. They will, however, be defined

rigorously later in the derivations of the main results in Section 5.6.

Theorem 5.5.2. Let K1 and K2 be two disjoint subsets of {1, 2, · · · , n} such that

|K1| = n1, |K2| = n2, and p1 and p2 be real numbers in [0, 1]. Also, let k1 = p1n1, k2 =

p2n2, and E be the event that a random nonuniformly sparse vector x0 (Definition 15)
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with sparsity fractions p1 and p2 over the sets K1 and K2, respectively, is recovered

via the weighted `1 minimization of (6.5.2) with y = Ax0. Also, let Ec denote the

complement event of E. Then

P{Ec} ≤
∑

Qñ1,ñ2,m̃

2t1+t2+1

(
n1 − k1

t1

)(
n2 − k2

t2

)
β(k1, k2|t1, t2)ζ(t1 + k1, t2 + k2),

(5.5.2)

where

ñ1 = n1 − k1, ñ2 = n2 − k2, m̃ = m− k1 − k2 + 1,

Qñ1,ñ2,m̃ = {t1, t2 ∈ Z | 0 ≤ t1 ≤ ñ1, 0 ≤ t2 ≤ ñ2, t1 + t2 > m̃} .

β(k1, k2|t1, t2) is the internal angle between a (k1 + k2 − 1)-dimensional face F of the

weighted `1-ball Pw = {y ∈ Rn|∑n
i=1wi|yi| ≤ 1} with k1 vertices supported on K1 and

k2 vertices supported on K2, and another (k1 +k2 +t1 +t2−1)-dimensional face G that

encompasses F and has t1 + k1 vertices supported on K1 and the remaining t2 + k2

vertices supported on K2. ζ(d1, d2) is the external angle between a face G supported

on set L with |L ∩ K1| = d1 and |L ∩ K2| = d2 and the weighted `1-ball Pw. See

Section 5.6.1 for the definitions of integral and external angles.

The proof of this theorem will be given in Section 5.6.2. We are interested in the

regimes that make the above upper bound decay to zero as n → ∞, which requires

the cumulative exponent in (5.5.2) to be negative. We are able to calculate sharp

upper bounds on the exponents of the terms in (5.5.2) by using large deviations of

sums of normal and half-normal variables. More precisely, if we assume that the sum

of the terms corresponding to particular indices t1 and t2 in (5.5.2) is denoted by

F (t1, t2), and define τ1 = t1
n

and τ2 = t2
n

, then using the angle exponent method from

[Don06b, DT05a], we are able to find and compute an exponent function ψtot(τ1, τ2) =

ψcom(τ1, τ2) − ψint(τ1, τ2) − ψext(τ1, τ2) so that 1
n

logF (t1, t2) ∼ ψtot(τ1, τ2) as n →
∞. The terms ψcom(·, ·), ψint(·, ·), and ψext(·, ·) are contributions to the cumulative
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exponent ψtot by the so-called combinatorial, internal angle and external angle terms,

respectively, existing in the upper bound (5.5.2). The derivations of these terms will

be elaborated upon in Section 5.6.2. Consequently, we state a key theorem that is

the implicit answer to Problem 1.

Theorem 5.5.3. Let δ = m
n

be the ratio of the number of measurements to the signal

dimension, γ1 = n1

n
and γ2 = n2

n
. For fixed values of γ1, γ2, p1, p2, ω =

wK2

wK1
,

define E to be the event that a random nonuniformly sparse vector x0 (Definition

15) with sparsity fractions p1 and p2 over the sets K1 and K2, respectively, with

|K1| = γ1n and |K2| = γ2n, is recovered via the weighted `1 minimization of (5.4.2)

with y = Ax0. There exists a critical threshold δc = δc ((γ1, γ2), (p1, p2), (1, ω))3 such

that if δ = m
n
≥ δc, then P{Ec} decays exponentially to zero as n→∞. Furthermore,

δc is given by

δc = min{δ | ψcom(τ1, τ2)− ψint(τ1, τ2)− ψext(τ1, τ2) < 0 ∀ 0 ≤ τ1 ≤ γ1(1− p1),

0 ≤ τ2 ≤ γ2(1− p2), τ1 + τ2 > δ − γ1p1 − γ2p2}

where ψcom, ψint, and ψext are obtained from the following expressions:

Define g(x) = 2√
π
e−x

2
, G(x) = 2√

π

∫ x
0
e−y

2
dy, and let ϕ(.) and Φ(.) be the standard

Gaussian pdf and cdf functions, respectively.

1. (Combinatorial exponent)

ψcom(τ1, τ2) =

(
γ1(1− p1)H(

τ1

γ1(1− p1)
) + γ2(1− p2)H(

τ2

γ2(1− p2)
) + τ1 + τ2

)
log 2

(5.5.3)

where H(·) is the entropy function defined by H(x) = −x log x−(1−x) log(1−x).

2. (External angle exponent) Define c = (τ1 + γ1p1) + ω2(τ2 + γ2p2), α1 = γ1(1 −
p1) − τ1 and α2 = γ2(1 − p2) − τ2. Let x0 be the unique solution to x of the

3δc(·, ·, ·) has three arguments: a vector of the ratios of partition sizes, a vector of sparsity frac-
tions, and a weight vector.
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following:

2c− g(x)α1

xG(x)
− ωg(ωx)α2

xG(ωx)
= 0.

Then

ψext(τ1, τ2) = cx2
0 − α1 logG(x0)− α2 logG(ωx0). (5.5.4)

3. (Internal angle exponent) Let b = τ1+ω2τ2
τ1+τ2

, Ω′ = γ1p1 + ω2γ2p2, and Q(s) =

τ1ϕ(s)
(τ1+τ2)Φ(s)

+ ωτ2ϕ(ωs)
(τ1+τ2)Φ(ωs)

. Define the function M̂(s) = − s
Q(s)

and solve for s in

M̂(s) = τ1+τ2
(τ1+τ2)b+Ω′

. Let the unique solution be s∗ and set y = s∗(b − 1

M̂(s∗)
).

Compute the rate function Λ∗(y) = sy − τ1
τ1+τ2

Λ1(s) − τ2
τ1+τ2

Λ1(ωs) at the point

s = s∗, where Λ1(s) = s2

2
+ log(2Φ(s)). The internal angle exponent is then

given by:

ψint(τ1, τ2) = (Λ∗(y) +
τ1 + τ2

2Ω′
y2 + log 2)(τ1 + τ2). (5.5.5)

Theorem 5.5.3 is a powerful result, since it allows us to find (numerically) the optimal

set of weights for which the fewest possible measurements are needed to recover the

signals almost surely. To this end, for fixed values of γ1, γ2, p1, and p2, one should

find the ratio
wK2

wK1
for which the critical threshold δc ((γ1, γ2), (p1, p2), (wK1 , wK2)) from

Theorem 5.5.3 is minimum. We discuss this by some examples in Section 5.7. A

generalization of Theorem 5.5.3 for a nonuniform model with an arbitrary number of

classes (u ≥ 2) will be given in Section 5.6.3.

As mentioned earlier, using Theorem 5.5.3, it is possible to find the optimal ratio

wK2

wK1
. It however requires an exhaustive search over the δc threshold for all possible

values of ω. For γ1 = γ2 = 0.5, p1 = 0.3, and p2 = 0.05, we have numerically computed

δc ((γ1, γ2), (p1, p2), (wK1 , wK2)) as a function of
wK2

wK1
and depicted the resulting curve

in Figure 5.4a. This suggests that
wK2

wK1
≈ 2.5 is the optimal ratio that one can choose.

Later we will confirm this using simulations. The value of δc for another choice of

p1, p2 is shown in Figure 5.4b. Note that for given class sizes γ1, γ2 the optimal value

of ω does not solely depend on p2
P1

. To see this, we have obtained the numerical value

of the optimal ω for a fixed ratio p1
p2

= 5, for various values of p2 using exhaustive
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Figure 5.4: δc as a function of ω =
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for γ1 = γ2 = 0.5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

5

10

15

20

25

30

35

40

p
2
 = p

1
/5

ω
op

t

(a)

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1

10

20

30

40

50

60

p
1
/p

2

ω
op

t

(b)

Figure 5.5: (a) Optimum value of weight ω =
wK2

wK1
vs. p2 = p1/5, γ1 = γ2 = 0.5. (b)

Optimum value of weight ω =
wK2

wK1
vs. p1

p2
, for γ1 = γ2 = 0.5, p1γ1 + p2γ2 = 0.5.

search and the result of Theorem 5.5.3. The result is displayed in Figure 5.5a. As

can be seen, although p2
P1

is fixed, as p1 approaches 1, the optimal value of weight

becomes very large (in fact for the case of p1 = 1, we later prove that the optimal ω

is indeed ωopt =∞). In Figure 5.5b, the optimal weight is plotted as a function of p1
p2

for a situation where the overall sparsity, i.e., γ1p1 + γ2p2, is constant.

Note that δc given in Theorem 5.5.3 is a weak bound on the ratio δ = m
n

. In

other words, it determines the minimum number of measurements so that for a ran-

dom sparse signal from the nonuniform sparse model and a random support set, the

recovery is successful with high probability. It is possible to obtain a strong bound

for δ, using a union bound on all possible support sets in the model, and all possible
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sign patterns of the sparse vector. Similarly, a sectional bound can be defined which

accounts for all possible support sets but almost all sign patterns. Therefore, the

expressions for the strong and sectional thresholds (see [Don06b, DT05a] for defini-

tions), which we denote by δ
(S)
c and δ

(T )
c , are very similar to δc in Theorem 5.5.3,

except for a slight modification in the combinatorial exponent term ψcom. This will

be elaborated upon in Section 5.6.2.

It is worthwhile to consider some asymptotic cases of the presented nonuniform

model and some of their implications. First of all, when one of the subclasses is empty,

e.g., γ1 = 0, then the obtained weak and strong thresholds are equal to the corre-

sponding thresholds of `1 minimization for a sparsity fraction p = p2. Furthermore, if

the sparsity fractions p1 and p2 over the two classes are equal, and a unitary weight

ω = 1 is used, then the weak threshold δc is equal to the threshold of `1 minimization

for a sparsity fraction p = p1 = p2. In other words:

δc ((γ1, γ2), (p, p), (1, 1)) = δc(1, p, 1), (5.5.6)

where the right-hand side is simply the threshold of `1 minimization for sparsity

fraction p. This follows immediately from the derivations of the exponents in Theorem

5.5.3. However, the latter is not necessarily true for the strong threshold. In fact

the computation of the strong threshold for regular `1 minimization involves a union

bound over a larger set of possible supports, and therefore the combinatorial exponent

becomes larger. Therefore:

δ(S)
c ((γ1, γ2), (p, p), (1, 1)) ≤ δ(S)

c (1, p, 1). (5.5.7)

A very important asymptotic case is when the unknown signal is fully dense over

one of the subclasses, e.g., p1 = 1, which accounts for a partially known support. This

model is considered in the work of Vaswani et al. [VL10], with the motivation that in

some applications (or due to previous processing steps), part of the support set can

be fully identified (p1 = 1), or can be approximated very well, which corresponds to



138

p1 < 1. If the dense subclass is K1 and K2 = Kc
1, then [VL10] suggests solving the

following minimization program:

min
Ax=y

‖xK2‖1. (5.5.8)

It is possible to find exact thresholds for the above problem using the weighted `1

minimization machinery presented in this chapter. First, note that (5.5.8) is the

asymptotic solution of the following weighted `1 minimization, when ω →∞,

min
Ax=y

‖xK1‖1 + ω‖xK2‖1. (5.5.9)

Therefore the recovery threshold for (5.5.8) can be given by δc ((γ1, γ2), (1, p2), (1, ω))

for ω →∞. We prove the following theorem about the latter threshold:

Theorem 5.5.4. If ω →∞, then δc ((γ1, γ2), (1, p2), (1, ω))→ γ1 + γ2δc(1, p2, 1).

The interpretation of the above theorem is that when a subset of entries of size γ1n

are known to be nonzero, the minimum number of measurements that is required for

successful recovery with high probability using (5.5.8) is equal to the total number of

measurements needed if we were allowed to independently measure everything in the

first subclass (i.e., the known subset of the support), plus the number of measurements

we needed for recovering the remaining entries using `1 minimization. The proof of

this theorem is given in Section 5.8, which is based on exact computations of the

threshold function δc. However, this result can be generalized to all nonuniform

sparsity patterns and its proof does not require knowledge of the numerical values

of δc and is based on a recent duality between phase transition thresholds in convex

atomic norm minimization problems and the de-noising problem discussed in [DJM11,

OKH12]. The generalization of the above theorem that we can prove is as follows:

Theorem 5.5.5. Let ω∗ be the optimal weight value of ω > 0 that minimizes the

recovery thresholds δc, namely:

ω∗ = argminω>0δc ((γ1, γ2), (p1, p2), (1, ω)) .
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Then:

δc ((γ1, γ2), (p1, p2), (1, ω∗)) = γ1δc(1, p1, 1) + γ2δc(1, p2, 1). (5.5.10)

More generally, for a nonuniform sparse model with class size ratios γ = (γ1, γ2, . . . , γu)

and sparsity fractions p = (p1, p2, . . . , pu), if w∗ is the optimal weight vector for re-

construction using weighted `1 minimization, then:

δc(γ,p,w
∗) =

u∑
i=1

γiδc(1, pi, 1). (5.5.11)

This is a nice separation theorem with the following interpretations: If an opti-

mal regularization (weighting) scheme is used, then for successful reconstruction, we

would need as many measurements as if the different classes were compressed and

reconstructed separately. In other words, in terms of the required number of mea-

surements, this is equivalent to using a block diagonal compression matrix with i.i.d.

Gaussian distribution for nonzero entries. In addition Theorem 5.5.5 allows us to

answer problem 3 stated earlier, namely to quantify the improvement that we achieve

by using an optimal regularization compared with standard `1 minimization. The

answer is the “curvature” of the recovery threshold of `1 minimization. To see this,

consider the recovery threshold of `1 minimization plotted in the form of δ = m/n

versus the sparsity fraction µ = k/n in Figure 5.6. Suppose that a vector has a

known nonuniform sparsity model (p1, p2), (γ1, γ2). The improvement in the recovery

threshold obtained by using the optimal weighted `1 scheme is equal to the difference

between the thresholds of `1 minimization at the actual sparsity fraction γ1p1 + γ2p2,

and the linear interpolation of the thresholds at the values p1, p2, as shown in Figure

5.6.

A very important factor regarding the performance of any recovery method is its

robustness. In other words, it is important to understand how resilient the recovery

is in the case of compressible signals or in the presence of noise or model mismatch

(i.e., incorrect knowledge of the the sets or sparsity factors). We address this in the

following theorem.
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Figure 5.6: Illustration of the improvement in the recovery threshold of Basis Pursuit
for nonuniformly sparse models using the optimal regularization

Theorem 5.5.6. Let K1 and K2 be two disjoint subsets of {1, 2, · · · , n}, with |K1| =
γ1n,|K2| = γ2n and γ1 +γ2 = 1. Also suppose that the dimensions of the measurement

matrix A satisfy δ = m
n
≥ δ

(S)
c (γ1, γ2, p1, p2, ω) for positive real numbers p1 and p2 in

[0, 1] and ω > 0. For positive ε1, ε2, assume that L1 and L2 are arbitrary subsets of

K1 and K2 with cardinalities (1− ε1)γ1p1n and (1− ε2)γ2p2n, respectively. With high

probability for every vector x0, if x̂ is the solution to the following linear program:

min
Ax=Ax0

‖xK1‖1 + ω‖xK2‖1, (5.5.12)

then the following holds:

‖(x0 − x̂)K1‖1 + ω‖(x0 − x̂)K2‖1 ≤ Cε1,ε2
(
‖(x0)L1∩K1

‖1 + ω‖(x0)L2∩K2
‖1

)
, (5.5.13)

where

Cε1,ε2 =
1 + min( ε1p1

1−p1 ,
ε2p2
1−p2 )

1−min( ε1p1
1−p1 ,

ε2p2
1−p2 )

.

The above theorem has the following implications. First, if x0 is a (compressible)

vector, such that its “significant” entries follow a nonuniform sparse model, then

the recovery error of the corresponding weighted `1 minimization can be bounded in

terms of the `1 norm of the “insignificant” part of x0 (i.e., the part where a negligible

fraction of the energy of the signal is located or most entries have significantly small

values, compared to the other part that has an overall large norm). Theorem 5.5.6 can
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also be interpreted as the robustness of weighted `1 scheme to the model mismatch. If

K1, K2, p1, p2 are the estimates of an actual nonuniform decomposition for x0 (based

on which the minimum number of required measurements have been estimated), then

the recovery error can be relatively small if the model estimation error is slight.

Theorem 5.5.6 will be proved in Section 6.6.

5.6 Derivation of the Results

In this section we provide detailed proofs to the claims of Section 5.5. We mention

that, for better readability of the current thesis, and also due to the similarity of

some proof techniques to those of [Don06b, DT05a, XH08], we have skipped proofs

of some of the claims or the details of derivation. Those details can be found in

[KXAH11]. Let x0 be a random nonuniformly sparse signal with sparsity fractions

p1 and p2 over the index subsets K1 and K2, respectively (Definition 15), and let

|K1| = n1 and |K2| = n2 . Also let K be the support of x. Let E be the event that x

is recovered exactly by (6.5.2), and Ec be its complimentary event. In order to bound

the conditional error probability P{Ec} we adopt the idea of [SXH08] to interpret the

failure recovery event (Ec) in terms of the null space of the measurement matrix A.

This is stated in Theorem 5.5.1, which we prove here.

Proof of Theorem 5.5.1.

Suppose the mentioned null space condition holds and define x̂ = argminAx=y

∑n
i=1wi|xi|.

Let W = diag(w1, w2, · · · , wn). If x̂ 6= x, then by triangular inequality, we have:

‖Wx̂‖1 = ‖(Wx̂)K‖1 + ‖(Wx̂)K‖1

= ‖(Wx∗ + Wx̂−Wx∗)K‖1 + ‖(Wx̂)K‖1,

≥ ‖(Wx∗)K‖1 − ‖(Wx̂−Wx∗)K‖1 + ‖(Wx̂−Wx∗)K‖1,

> ‖Wx∗‖1,
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where the last inequality is a result of the fact that x̂ − x∗ is a nonzero vector in

the null space of A and satisfies the mentioned null space condition. However, by

assumption, if x̂ 6= x∗ then ‖Wx̂‖1 ≤ ‖Wx∗‖1. This is a contradiction, and hence

we should have x̂ = x∗. Conversely, suppose there is some vector z in N (A) such

that ‖(Wz)K‖1 ≥ ‖(Wz)K‖1. Taking define x∗ = (zK 0)T and x̂ = (0 zK)T implies

that Ax∗ = Ax̂ and ‖Wx∗‖1 ≥ ‖Wx̂‖1. Therefore, x∗ cannot be recovered from the

weighted `1 minimization.

From this point on, we follow closely the steps towards calculating the upper

bound on the failure probability from [XH08], but with appropriate modifications.

The key to our derivations is the following lemma, the proof of which is skipped and

can be found in [KXAH11].

Lemma 5.6.1. For a certain subset K ⊆ {1, 2, ..., n} with |K| = k, the event that

the null-space N (A) satisfies

∑
i∈K

wi|zi| ≤
∑
i∈K

wi|zi|,∀z ∈ N (A), (5.6.1)

is equivalent to the event that for each x supported on the set K (or a subset of K)

∑
i∈K

wi|xi + zi|+
∑
i∈K

wi|zi| ≥
∑
i∈K

wi|xi|,∀z ∈ N (A). (5.6.2)

5.6.1 Upper Bound on the Failure Probability

Knowing Lemma 5.6.1, we are now in a position to derive the probability that con-

dition (5.6.1) holds for a support set K with |K| = k, if we randomly choose an i.i.d.

Gaussian matrix A. In the case of a random i.i.d. Gaussian matrix, the distribution

of null space of A is right-rotationally invariant, and sampling from this distribution

is equivalent to uniformly sampling a random (n−m)-dimensional subspace Z from

the Grassmann manifold Gr(n−m)(n). The Grassmann manifold Gr(n−m)(n) is defined
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as the set of all (n−m)-dimensional subspaces of Rn. We need to upper bound the

complementary probability P = P{Ec}, namely the probability that the (random)

support set K of x (of random sign pattern) fails the null space condition (5.6.2). We

denote the null space of A by Z. Because Z is a linear space, for every vector z ∈ Z,

αz is also in Z for all α ∈ R. Therefore, if for a z ∈ Z and x condition (5.6.2) fails,

by a simple re-scaling of the vectors, we may assume without loss of generality that x

lies on the surface of any convex ball that surrounds the origin. Therefore we restrict

our attention to those vectors x from the weighted `1-sphere:

{x ∈ Rn |
n∑
i=1

wi|xi| = 1}

that are only supported on the set K, or a subset of it. Due to the similarity of the

above weighted `1 balls in all orthants, we can write:

P = PK,− (5.6.3)

where PK,− is the probability that for a specific support set K, there exists a k-sparse

vector x of a specific sign pattern which fails the condition (5.6.2). By symmetry,

without loss of generality, we assume the signs of the elements of x to be non-positive.

Now we can focus on deriving the probability PK,−. Since x is a non-positive k-

sparse vector supported on the set K and can be restricted to the weighted `1-sphere

{x ∈ Rn | ∑n
i=1 wi|xi| = 1}, x is also on a (k − 1)-dimensional face, denoted by F ,

of the weighted `1-ball Pw:

Pw = {y ∈ Rn |
n∑
i=1

wi|yi| ≤ 1}. (5.6.4)

The subscript w in Pw is an indication of the weight vector w = (w1, w2, · · · , wn)T .

Figure 5.7a shows Pw in R3 for some nontrivial weight vector w. Now the probability

PK,− is equal to the probability that there exists an x ∈ F , and there exists a z ∈ Z
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(a) (b)

Figure 5.7: A weighted `1-ball, Pw, in R3 (a), and a linear hyperplane Z passing
through a point x in the interior of a one-dimensional face of Pw (b)

(z 6= 0) such that

∑
i∈K

wi|xi + zi|+
∑
i∈K̄

wi|zi| ≤
∑
i∈K

wi|xi| = 1. (5.6.5)

We start by studying the case for a specific point x ∈ F and, without loss of

generality, we assume x is in the relative interior of this (k − 1)-dimensional face F .

For this particular x on F , the probability, denoted by P ′x, that there exists a z ∈ Z
(z 6= 0) such that

∑
i∈K

wi|xi + zi|+
∑
i∈K̄

wi|zi| ≤
∑
i∈K

wi|xi| = 1. (5.6.6)

is essentially the probability that a uniformly chosen (n −m)-dimensional subspace

Z shifted by the point x, namely (Z + x), intersects the weighted `1-ball Pw non-

trivially, namely, at some other point besides x (Figure 5.7b). From the fact that Z
is a linear subspace, the event that (Z + x) intersects Pw is equivalent to the event

that Z intersects nontrivially with the cone Cw(x) obtained by observing the weighted

`1-ball Pw from the point x. (Namely, Cw(x) is conic hull of the point set (Pw − x)

and of course Cw(x) has the origin of the coordinate system as its apex.) However,

as noticed in the geometry for convex polytopes [Gru68, Gru03], the cones Cw(x) are
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identical for any x lying in the relative interior of the face F . This means that the

probability PK,− is equal to P ′x, regardless of the fact that x is only a single point in

the relative interior of the face F . There are some singularities here because x ∈ F
may not be in the relative interior of F , but it turns out that the Cw(x) in this case

is only a subset of the cone we get when x is in the relative interior of F . So we do

not lose anything if we restrict x to be in the relative interior of the face F , namely

we have

PK,− = P ′x.

Now we only need to determine P ′x. From its definition, P ′x is exactly the complemen-

tary Grassmann angle [Gru68] for the face F with respect to the polytope Pw under

the Grassmann manifold Gr(n−m)(n): a uniformly distributed (n − m)-dimensional

subspace Z from the Grassmannian manifold Gr(n−m)(n) intersecting non-trivially

with the cone Cw(x) formed by observing the weighted `1-ball Pw from the relative

interior point x ∈ F .

Building on the works by L.A. Santalö [San52] and P. McMullen [McM75] in high

dimensional geometry and convex polytopes, the complementary Grassmann angle

for the (k− 1)-dimensional face F can be explicitly expressed as the sum of products

of internal angles and external angles [AS92, McM75]:

2×
∑
s≥0

∑
G∈=m+1+2s(Pw)

β(F ,G)ζ(G,Pw), (5.6.7)

where s is any nonnegative integer, G is any (m+ 1 + 2s)-dimensional face of the Pw

(=m+1+2s(Pw) is the set of all such faces), β(·, ·) stands for the internal angle and

ζ(·, ·) stands for the external angle, and are defined as follows [Gru03, McM75]:

• An internal angle β(F1,F2) is the fraction of the hypersphere S covered by

the cone obtained by observing the face F2 from the face F1.4 The internal

4Note the dimension of the hypersphere S here matches the dimension of the corresponding cone
discussed. Also, the center of the hypersphere is the apex of the corresponding cone. All these
defaults also apply to the definition of the external angles.
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angle β(F1,F2) is defined to be zero when F1 * F2 and is defined to be one if

F1 = F2.

• An external angle ζ(F3,F4) is the fraction of the hypersphere S covered by the

cone of outward normals to the hyperplanes supporting the face F4 at the face

F3. The external angle ζ(F3,F4) is defined to be zero when F3 * F4 and is

defined to be one if F3 = F4.

The formula (5.6.7) comes from [McM75], based on the nonlinear angle sum of

relations for polyhedral cones. In order to calculate the internal and external angles,

it is important to use the symmetrical properties of the weighted cross-polytope Pw.

First of all, Pw is nothing but the convex hull of the following set of 2n vertices in Rn

Pw = conv{± ei
wi
| 1 ≤ i ≤ n} (5.6.8)

where ei 1 ≤ i ≤ n is the standard unit vector in Rn with the ith entry equal to 1.

Every (k− 1)-dimensional face F of Pw is simply the convex hull of k of the linearly

independent vertices of Pw. In that case we say that F is supported on the index set

K of the k indices corresponding to the nonzero coordinates of the vertices of F in Rn.

More precisely, if F = conv{j1
ei1
wi1
, j2

ei2
wi2
, · · · , jk eik

wik
} with ji ∈ {−1,+1} ∀1 ≤ i ≤ k,

then F is said to be supported on the set K = {i1, i2, · · · , ik}.

5.6.2 Special Case of Two Classes

The derivations of the previous section were for a general weight vector w. We now

restrict ourselves to the case of two classes, i.e., u = 2, namely K1 and K2 with

|K1| = n1 and |K2| = n2. For this case, we may assume that wis have the following

particular form

∀i ∈ {1, 2, · · · , n} wi =

{
wK1 if i ∈ K1

wK2 if i ∈ K2

. (5.6.9)

Proof of Theorem 5.5.2. The choice of w as in (5.6.9) results in Pw having two classes

of geometrically identical vertices, and many of faces of Pw being isomorphic. In fact,
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two faces F and F ′ of Pw that are, respectively, supported on the sets K and K ′,

are geometrically isomorphic5 if |K ∩K1| = |K ′ ∩K1| and |K ∩K2| = |K ′ ∩K2|.6 In

other words, the only thing that distinguishes the morphology of the faces of Pw is

the proportion of their support sets that is located in K1 or K2. Therefore for two

faces F and G, with F supported on K and G supported on L (K ⊆ L), β(F ,G) is

only a function of the parameters k1 = |K ∩K1|, k2 = |K ∩K2|, k1 + t1 = |L ∩K1|,
and k2 + t1 = |K∩K2|. So, instead of β(F ,G) we may write β(k1, k2|t1, t2) to indicate

the internal angle between a (k1 + k2 − 1)-dimensional face F of Pw with k1 vertices

supported on K1 and k2 vertices supported on K2, and a (k1 + k2 + t1 + t2 − 1)-

dimensional face G that encompasses F and has t1 +k1 vertices supported on K1 and

the remaining t2 + k2 vertices supported on K2. Similarly, instead of ζ(G,Pw) we

write ζ(t1 + k1, t2 + k2) to denote the external angle between a face G supported on

set L with |L ∩K1| = d1 and |L ∩K2| = d2, and the weighted `1-ball Pw. Using this

notation and recalling the formula (5.6.7) we can write:

PK,− = 2
∑
s≥0

∑
G∈=m+1+2s(Pw)

β(F ,G)ζ(G,Pw)

=
∑
Qe

2t1+t2+1

(
n1 − k1

t1

)(
n2 − k2

t2

)
β(k1, k2|t1, t2)ζ(t1 + k1, t2 + k2),

(5.6.10)

where

Qe = {t1, t2 ∈ Z≥0 | t1 ≤ n1 − k1, t2 ≤ n2 − k2, t1 + t2 + k1 + k2 −m ∈ E}.

where E is the set of positive even integers. Note that in (5.6.10) we have used the

fact that the number of faces G of Pw of dimension k1 +k2 +t1 +t2−1 that encompass

F and have k1 + t1 vertices supported on K1 and its remaining k2 + t2 are vertices

5This means that there exists a rotation matrix Θ ∈ Rn×n which is unitary (i.e., ΘT Θ = I), and
maps F isometrically to F ′ (i.e., F ′ = ΘF).

6Remember that K1 and K2 are the same sets as defined in the model description of Section
5.4.1.
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supported on K2 is 2t1+t2
(
n1−k1
t1

)(
n2−k2
t2

)
. In fact G has k1+k2+t1+t2 vertices including

the k1 +k2 vertices of F . The remaining t1 + t2 vertices can each be independently in

the positive or negative orthant, therefore resulting in the term 2t1+t2 . The two other

combinatorial terms are the number of ways one can choose t1 vertices supported on

the set K1 −K and t2 vertices supported on K2 −K. From (5.6.10) and (5.6.3) we

can conclude theorem 5.5.2.

In the following sub-sections we will derive the internal and external angles for a

face F , and a face G containing F , and will provide closed-form upper bounds for

them. We combine the terms together and compute the exponents using the Laplace

method in Section 5.6.2, and derive thresholds for the negativity of the cumulative

exponent.

Computation of Internal and External Angles

Theorem 5.6.2. Let Z be a random variable defined as

Z = (k1w
2
K1

+ k2w
2
K2

)X1 − w2
K1

t1∑
i=1

X ′1 − w2
K2

t2∑
i=1

X ′′1 ,

where X1 ∼ N(0, 1
2(k1w2

K1
+k2w2

K2
)
) is a normal distributed random variable, and X ′i ∼

HN(0, 1
2w2

K1

) 1 ≤ i ≤ t1, and X ′′i ∼ HN(0, 1
2w2

K2

) 1 ≤ i ≤ t2 are independent (from

each other and from X1) half-normal distributed random variables. Let pZ(·) denote

the probability distribution function of Z and c0 =
√
π

2l−k

(
(k1 + t1)w2

K1
+ (k2 + t2)w2

K2

)1/2
.

Then

β(k1, k2|t1, t2) = c0pZ(0). (5.6.11)

Theorem 5.6.3. The external angle ζ(G,Pw) = ζ(d1, d2) between the face G and Pw,

where G is supported on the set L with |L ∩K1| = d1 and |L ∩K2| = d2 is given by:

ζ(d1, d2) = π−
n−l+1

2 2n−l
∫ ∞

0

e−x
2

(∫ wK1
x

ξ(d1,d2)

0

e−y
2

dy

)r1 (∫ wK2
x

ξ(d1,d2)

0

e−y
2

dy

)r2

dx,

(5.6.12)

where ξ2(d1, d2) =
∑

i∈Lw
2
i = d1w

2
K1

+ d2w
2
K2

, r1 = n1 − d1, and r2 = n2 − d2.
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The detailed proofs of these theorems, which are generalizations of similar Theorems

in [XH08], are given in [KXAH11].

Derivation of the Critical Weak and Strong δc Threshold

So far we have proved that the probability of the failure event is bounded by the

formula

P{Ec} ≤
∑

0 ≤ t1 ≤ n1 − k1

0 ≤ t2 ≤ n2 − k2

t1 + t2 > m− k1 − k2 + 1

2t1+t2+1

(
n1 − k1

t1

)(
n2 − k2

t2

)
β(k1, k2|t1, t2)ζ(t1 + k1, t2 + k2),

(5.6.13)

where we gave expressions for β(t1, t2|k1, k2) and ζ(t1 + k1, t2, k2) in Section 5.6.2.

Now our objective is to show that the R.H.S of (5.6.13) will exponentially decay to 0

as n→∞, provided that δ = m
n

is greater than a critical threshold δc, which we are

trying to evaluate. To this end we bound the exponents of the combinatorial, internal

angle and external angle terms in (5.6.13), and find the values of δ for which the net

exponent is strictly negative. The maximum such δ will give us δc. Starting with

the combinatorial term, we use Stirling approximating on the binomial coefficients to

achieve the following as n→∞ and ε→ 0

1

n
log

(
2t1+t2+1

(
n1 − k1

t1

)(
n2 − k2

t2

))
→(

γ1(1− p1)H(
τ1

γ1(1− p1)
) + γ2(1− p2)H(

τ2

γ2(1− p2)
) + τ1 + τ2

)
log 2, (5.6.14)

where τ1 = t1
n

and τ2 = t2
n

.

For the external angle and internal angle terms we prove the following two expo-

nents:

1. Let g(x) = 2√
π
e−x

2
, G(x) = 2√

π

∫ x
0
e−y

2
dy. Also define c = (τ1 + γ1p1) + ω2(τ2 +

γ2p2), α1 = γ1(1 − p1) − τ1, and α2 = γ2(1 − p2) − τ2. Let x0 be the unique
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solution to x of the following:

2c− g(x)α1

xG(x)
− ωg(ωx)α2

xG(ωx)
= 0.

Define

ψext(τ1, τ2) = cx2
0 − α1 logG(x0)− α2 logG(ωx0). (5.6.15)

2. Let b = τ1+ω2τ2
τ1+τ2

, and ϕ(.) and Φ(.) be the standard Gaussian pdf and cdf

functions, respectively. Also let Ω′ = γ1p1 + ω2γ2p2 and Q(s) = τ1ϕ(s)
(τ1+τ2)Φ(s)

+

ωτ2ϕ(ωs)
(τ1+τ2)Φ(ωs)

. Define the function M̂(s) = − s
Q(s)

and solve for s in M̂(s) =

τ1+τ2
(τ1+τ2)b+Ω′

. Let the unique solution be s∗ and set y = s∗(b − 1

M̂(s∗)
). Compute

the rate function Λ∗(y) = sy − τ1
τ1+τ2

Λ1(s) − τ2
τ1+τ2

Λ1(ωs) at the point s = s∗,

where Λ1(s) = s2

2
+ log(2Φ(s)). The internal angle exponent is then given by:

ψint(τ1, τ2) = (Λ∗(y) +
τ1 + τ2

2Ω′
y2 + log 2)(τ1 + τ2). (5.6.16)

We now state the following lemmas, the proof techniques of which are very similar

to similar arguments in [Don06b, DT05a]. The details of the proof can be found in

[KXAH11].

Lemma 5.6.4. Fix δ, ε > 0. There exists a finite number n0(δ, ε) such that

1

n
log(ζ(t1 + k1, t2 + k2)) < −ψext(τ1, τ2) + ε, (5.6.17)

uniformly in 0 ≤ t1 ≤ n1 − k1, 0 ≤ t2 ≤ n2 − k2, and t1 + t2 ≥ m − k1 − k2 + 1,

n ≥ n0(δ, ε).

Lemma 5.6.5. Fix δ, ε > 0. There exists a finite number n1(δ, ε) such that

1

n
log(β(t1, t2|k1, k2)) < −ψint(τ1, τ2) + ε, (5.6.18)

uniformly in 0 ≤ t1 ≤ n1 − k1, 0 ≤ t2 ≤ n2 − k2, and t1 + t2 ≥ m − k1 − k2 + 1,

n ≥ n1(δ, ε).
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Combining Lemmas 5.6.4 and 5.6.5, (5.6.14), and the bound in (5.6.13), we readily

get the critical bound for δc, as in the Theorem 5.5.3.

Derivation of the strong and sectional threshold can be easily done using union

bounds to account for all possible support sets and/or all sign patterns. The cor-

responding upper bound on the failure probability for the strong threshold is given

by: (
n1

k1

)(
n2

k2

)
2kPK,−. (5.6.19)

It then follows that the strong threshold of δ is given by δc in Theorem 5.5.3, except

that the combinatorial exponent ψcom(·, ·) must be corrected by adding a term

(γ1p1 + γ2p2 + γ1H(p1) + γ2H(p2)) log 2, (5.6.20)

to the RHS of (5.5.3). Similarly, for the sectional threshold, which deals with all pos-

sible support sets but almost all sign patterns, the modification in the combinatorial

exponent term is as follows:

(γ1H(p1) + γ2H(p2)) log 2. (5.6.21)

5.6.3 Generalizations

Except for some subtlety in the large deviation calculations, the generalization of the

results of the previous section to an arbitrary u ≥ 2 classes of entries is straight-

forward. Consider a nonuniform sparse model with u classes K1, · · · , Ku where

|Ki| = ni = γin and the sparsity fraction over the set Ki is pi, and a recovery

scheme based on weighted `1 minimization with weight ωi for the set Ki. The bound

in (5.6.7) is general and can always be used. Due to isomorphism, the internal and

external angles β(F ,G) and ζ(G,Pw) only depend on the number of vertices that the

supports of F and G have in common with each Ki. Therefore, a generalization to
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(5.5.2) would be:

P{Ec} ≤ 2
∑

0 ≤ t ≤ n− k

1T t > m− 1Tk + 1

Π1≤i≤u2ti
(
ni − ki
ti

)
β(k|t)ζ(t + k), (5.6.22)

where t = (t1, . . . , tu)
T , k = (k1, . . . , ku)

T , and 1 is a vector of all ones. Invoking

generalized forms of Theorems 5.6.3 and 5.6.2 to approximate the terms β(k|t) and

ζ(k + t), we conclude the following theorem.

Theorem 5.6.6. Consider a nonuniform sparse model with u classes K1, . . . , Ku,

with |Ki| = ni = γin and sparsity fractions p1, p2, . . . , pu, where n is the signal di-

mension. Also, let the functions g(.), G(.), ψ(.),Ψ(.) be defined as in Theorem 5.5.3.

For positive values {ωi}ui=1, the recovery thresholds (weak, sectional, and strong) of

the weighted `1 minimization program:

min
Ax=y

u∑
i=1

ωi‖xKi‖1,

is given by the following expression:

δc = min{δ | ψcom(τ)− ψint(τ)− ψext(τ) < 0 ∀τ = (τ1, · · · , τu)T :

0 ≤ τi ≤ γi(1− pi) ∀1 ≤ i ≤ u,
u∑
i=1

τi > δ −
u∑
i=1

γipi}

where ψcom, ψint, and ψext are obtained from the following expressions:

1. ψcom(τ) = log 2
∑u

i=1 γi(1 − pi)H( τi
γi(1−pi)) + τi, for the weak threshold. For

sectional threshold this must be modified by adding a term log 2
∑u

i=1 γiH(pi).

For strong threshold,
∑u

i=1 γipi must also be added with.

2. ψext(τ) = cx2
0 −

∑u
i=1 αi logG(ωix0), where c =

∑u
i=1 ω

2
i (τi + γipi), αi = γi(1−

pi)− τi, and x0 is the unique solution of 2c =
∑u

i=1 ωi
g(ωix0)αi
x0G(ωx0)

.
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3. ψint(τ) = λ(Λ∗(y) + λy2

2
∑u
i=1 ω

2
i γipi

+ log 2), where λ =
∑u

i=1 τi, and y and Λ∗(y)

are obtained as follows. Let b =
∑u
i=1 ω

2
i τi

λ
, Q(s) =

∑u
i=1

τiϕ(s)
λΦ(s)

. Let s∗ be the

solution to s in −Q(s)
s

= b +
∑u
i=1 ω

2
i γipi

λ
, and y = s∗(b − 1

M̂(s∗)
). Then Λ∗(y) =

s∗y − 1/λ
∑u

i=1 τi

(
ω2
i s
∗2

2
+ log(2Φ(ωis

∗))
)

.

5.6.4 Robustness To Noise

Proof of Theorem 5.5.6. We first state the following lemma, which is very similar to

Theorem 2 of [XH08]. We skip its proof for brevity.

Lemma 5.6.7. Let K ⊂ {1, 2 · · · , n} and the weight vector w = (w1, w2, · · · , wn)T

be fixed. Define W = diag(w1, w2, · · · , wn) and suppose C > 1 is given. For every

vector x0 ∈ Rn×1, the solution x̂ of (6.5.2) satisfies

‖W(x0 − x̂)‖1 ≤ 2
C + 1

C − 1

∑
i∈K

wi|(x0)i|, (5.6.23)

if and only if for every z ∈ N (A) the following holds:

C
∑
i∈K

wi|zi| ≤
∑
i∈K

wi|zi|. (5.6.24)

Let z = (z1, · · · , zn)T be a vector in the null space of A, and assume that

C ′
∑

i∈L1∪L2

wi|zi| =
∑

i∈L1∩L2

wi|zi|. (5.6.25)

Let Kε1 and Kε2 be the solutions of the following problems

Kε1 : max
Kε1⊂K1∩L1,|Kε1 |=ε1γ1p1n

∑
i∈Kε1

wi|zi|, (5.6.26)

Kε2 : max
Kε2⊂K2∩L2,|Kε2 |=ε2γ2p2n

∑
i∈Kε2

wi|zi|. (5.6.27)

Let L′1 = L1 ∪Kε1 and L′2 = L2 ∪Kε2 . From the definition of Kε1 and Kε2 , it follows
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that

∑
i∈Kε1

wi|zi| ≥
ε1p1

1− p1

∑
i∈L′1∩K1

wi|zi|, (5.6.28)

∑
j∈Kε2

wj|zj| ≥
ε2p2

1− p2

∑
j∈L′2∩K2

wj|zj|. (5.6.29)

Adding C ′
(∑

i∈Kε1
wi|zi|+

∑
j∈Kε2

wj|zj|
)

to both sides of (5.6.25) and using (5.6.28)

and (5.6.29), we can write:

C ′
∑

i∈L′1∪L′2

wi|zi| ≥
∑

i∈L1∩L2

wi|zi|+ C ′

 ε1p1

1− p1

∑
i∈L′1∩K1

wi|zi|+
ε2p2

1− p2

∑
i∈L′2∩K2

wi|zi|


≥

(
1 + (C ′ + 1) min(

ε1p1

1− p1

,
ε2p2

1− p2

)

) ∑
i∈L′1∩L′2

wi|zi|. (5.6.30)

Note that |L′1| = γ1p1n and |L′2| = γ2p2n. Therefore, since δ = m
n
≥ δ

(S)
c (γ1, γ2, p1, p2, ω),

we know that
∑

i∈L′1∪L′2
wi|zi| ≤

∑
i∈L′1∩L′2

wi|zi|. From this and (5.6.30) we conclude

that

C ′ ≥
(

1 + (C ′ + 1) min(
ε1p1

1− p1

,
ε2p2

1− p2

)

)
, (5.6.31)

or equivalently

C ′ ≥
1 + min( ε1p1

1−p1 ,
ε2p2
1−p2 )

1−min( ε1p1
1−p1 ,

ε2p2
1−p2 )

. (5.6.32)

Using Lemma 5.6.7 and the above inequality, we conclude (7.4.4).

5.7 Simulation Results

We demonstrate by some examples that appropriate weights can boost the recovery

percentage. In Figure 5.8 we have shown the empirical recovery threshold of weighted

`1 minimization for different values of the weight ω =
wK1

wK2
for two particular nonuni-

form sparse models. Note that the empirical threshold is somewhat identifiable with

the naked eye and is very similar to the theoretical curve of Figure 5.4 for similar
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(a) γ1 = γ2 = 0.5, p1 = 0.4 and p2 = 0.05. (b) γ1 = γ2 = 0.5, p1 = 0.65 and p2 = 0.1.

Figure 5.8: Empirical recovery percentage of weighed `1 minimization for different
weight values ω, and different number of measurements δ = m

n
and n = 200. Sig-

nals have been selected from a nonuniform sparse models. White indicates perfect
recovery..

settings. In another experiment, we fix p2 and n = 2m = 200, and try `1 and weighted

`1 minimization for various values of p1. We choose n1 = n2 = n
2
. Figure 5.9a shows

one such comparison for p2 = 0.05 and different values of wK2 . Note that the optimal

value of wK2 varies as p1 changes. Figure 5.9b illustrates how the optimal weighted `1

minimization surpasses the ordinary `1 minimization. The optimal curve is basically

achieved by selecting the best weight of Figure 5.9a for each single value of p1. Figure

5.10 shows the result of simulations in another setting where p2 = 0.1 and m = 0.75n

(similar to the setting of Section 5.5). Note that these results match very well the

theoretical results of Figures 5.4a and 5.4b.

Another nonuniform model with γ1 = 0.25, γ2 = 0.75 was considered for simu-

lations. We fixed δ = 0.45, and the overall sparsity fraction γ1p1 + γ2p2 = 0.3. For

random vectors of size n = 200, the probability of successful recovery as a function

of the sparsity of the second subclass, i.e., p2, for various weights ω was obtained,

and is depicted in Figure 5.11. As displayed, although `1 minimization fails in all of

the cases to recover the sparse vectors, various weighted `1 approaches have higher

chances of success, especially when the first subclass is very dense and a high weight
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Figure 5.9: Empirical probability of successful recovery for weighted `1 minimization
with different weights (unitary weight for the first subclass and ω for the second one)
and suboptimal weights in a nonuniform sparse setting. p2 = 0.05, γ1 = γ2 = 0.5, and
m = 0.5n = 100. ω∗ in (b) is the optimum value of ω for each p1 among the values
shown in (a).
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Figure 5.10: Empirical probability of successful recovery for different weights. p2 =
0.1,γ1 = γ2 = 0.5 and m = 0.75n = 150

is used ( p1 ≈ 1, ω >> 1).

In Figure 5.12, we have displayed the performance of weighted `1 minimization

in the presence of noise. The original signal is a nonuniformly sparse vector with

sparsity fractions p1 = 0.4, p2 = 0.05 over two subclasses γ1 = γ2 = 0.5, with n = 200.

However, a white Gaussian noise vector is added before compression, i.e., y = Ax+v,

where v (0, is an i.i.d. Gaussian vector. Figure 5.12 shows a scatter plot of all output

signal-to-recovery-error ratios as a function of the input SNR, for all simulations.

The input SNR in dB is defined as 10 log10
‖x‖22
‖v‖22

, and output signal-to-recovery-error

in dB is defined as 10 log10
‖x‖22
‖x̂−x‖22

. The fact that the signal-to-recovery-error does

not drop drastically in small SNR regimes, and is mostly concentrated around the
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Figure 5.11: Probability of successful recovery (empirical) of nonuniform sparse sig-
nals with γ1 = 0.25, γ2 = 0.75, p1γ1+p2γ2 = 0.3 vs. the sparsity of the second subclass
p2. δ = 0.45.

average values, indicates the robustness of the weighted `1 algorithm in the presence

of moderate-level noise. In Figure 5.13 the average curves are compared for different

values of weight ω. We can see that in the high-input SNR regime, a non-unit weight

ω = 3 is advantageous over the regular `1 minimization. However, for stronger noise

variances, `1 minimization seems to be more robust and yields better performance.

We have done some experiments with regular `1 and weighted `1 minimization

recovery on some real-world data. We have chosen a pair of satellite images (Figure

5.14) taken in two different years, 1989 (left) and 2000 (right), from the New Britain

rainforest in Papua New Guinea. The Images belong to the Royal Society for the

Protection of Birds and were taken from an article on deforestation in the Guardian

archive. These images are generally recorded to evaluate environmental effects such

as deforestation. The difference between images taken at different times is generally

not very significant, and thus can be thought of as compressible. In addition, the

difference is usually more substantial over certain areas, e.g., forests, therefore, it can

be cast in a nonuniform sparse model. We have applied `1 minimization to recover

the difference image over the subframe (subset of the original images), identified by

the red rectangles in Figure 5.14. In addition, recovery by weighted `1 minimization

was also implemented. To assign weights, we divided the pixels of each frame into two

classes of equal sizes, where the concentration of the forested area is larger over one
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(a) ω = 1.
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(b) ω = 3.
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(c) ω = 5.

Figure 5.12: Signal-to-recovery-error ratio for weighted `1 minimization with weight
ω vs. input SNR for nonuniform sparse signals with γ1 = γ2 = 0.5, p1 = 0.4, p2 = 0.05
superimposed with Gaussian noise

of the classes, and hence the difference image is less sparse. This class is identified

by the union of two rectangles with green frames on the left and bottom right of

the image. The justification for such a decomposition is the concentration of green

area. In other words, with the knowledge that the environmental changes are more

apparent over forests in large scale, the difference image is expected to be denser over

those regions. The original size of the image is 275× 227. We reduced the resolution

by roughly a factor of 0.05 for more tractability of `1 solver in MATLAB. In addition,

only the gray-scale version of the difference image was taken into account, and was

normalized so that the maximum intensity is 1. Furthermore, prior to compression,

the difference image was further sparsified by rounding the intensities less than 0.1

to zero. We picked the weight value ω = 2 for the weighted `1 recovery. We defined

the normalized recovery error to be the sum square of the intensity differences in

the recovered and the original image, divided by the sum square of the original image
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Figure 5.13: Average signal-to-recovery error ratio for weighted `1 minimization with
weight ω vs. input SNR for nonuniform sparse signals with γ1 = γ2 = 0.5, p1 =
0.4, p2 = 0.05 superimposed with Gaussian noise

Figure 5.14: Satellite images taken from the New Britain rainforest in Papua Guina at
1989 (left) and 2000 (right). Red boxes identify the subframe used for the experiment,
and green boxes identify the regions with higher associated weight in the weighted
`1 recovery. Image belongs to the Royal Society for the Protection of Birds and was
taken from an article on deforestation in the Guardian archive [sta].

intensity, i.e.,
∑

i∈frame(Ii− Îi)2/
∑

i∈frame I
2
i . The average normalized error for the two

different recovery methods, namely `1 and weighted `1, is displayed in Figure 5.14 as a

function of δ. The average is taken over 50 realizations of i.i.d. Gaussian measurement

matrices for each δ. As can be seen, the recovery improvement is significant in the

weighted `1 minimization.

Another experiment was done on a pair of brain fMRI images taken at two dif-

ferent instances of time, shown in Figure 5.15. Similar to the satellite images, the

objective is recover the difference image from a set of compressed measurements. The

significant portion of the difference image in fMRI lies on the regions where the brain

is identified as most active. Depending on the particular task that the patient un-

dertakes, these regions can be (roughly) known a priori. The original image size is
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Figure 5.15: Functional MRI images of the brain at two different instances
illustrating the brain activity. Green boxes identify the region with higher
associated weight in the weighted `1 recovery. Image is adopted from
https://sites.google.com/site/psychopharmacology2010/student-wiki-for-quiz-9.
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Figure 5.16: Average normalized recovery error for `1 and weighted `1 minimization
recovery of the difference between the subframes of (a) a pair of satellite images shown
in Figure 5.14, and (b) the pair of brain fMRI images shown in Figure 5.15. Data is
averaged over different realizations of measurement matrices for each δ.

271 × 271, and similar preprocessing steps as for the satellite images were followed

before compression. We used `1 minimization and weighted `1 minimization with a

higher weight ω = 1.3 on the regions identified by the green boxes. This choice of ω

resulted in a slightly better performance in weighted `1 algorithm than ω = 2. The

average normalized recovery errors are displayed in Figure 5.15, from which we can

infer similar conclusions, as in the case of the satellite images.

5.8 Proof of Theorems

Proof of Theorem 5.5.4.

Let δ′ = δc(γ1, γ2, 1, p2, ω) and δ′′ = δc(0, 1, 0, p2, 1). From Theorem 5.5.3 we know
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that:

δ′ = min{δ | ψ′com(0, τ2)− ψ′int(0, τ2)− ψ′ext(0, τ2) < 0 ∀ 0 ≤ τ2 ≤ γ2(1− p2),

τ2 > δ − γ1 − γ2p2}

=γ2 min{δ | ψ′com(0, γ2τ2)− ψ′int(0, γ2τ2)− ψ′ext(0, γ2τ2) < 0 ∀ 0 ≤ τ2 ≤ 1− p2,

τ2 > δ − p2}+ γ1, (5.8.1)

δ′′ = min{δ | ψ′′com(0, τ2)− ψ′′int(0, τ2)− ψ′′ext(0, τ2) < 0 ∀ 0 ≤ τ2 ≤ 1− p2, τ2 > δ − p2},
(5.8.2)

where the exponents ψ′com,ψ′int,ψ
′
ext,ψ

′′
com,ψ′′int, and ψ′′ext can be found using Theorem

5.5.3. From the definition of ψcom in (5.5.3) it immediately follows that ψ′com(0, γ2τ2) =

γ2ψ
′′
com(0, τ2). From (5.5.4) for ω →∞ we know that ψ′ext(0, γ2τ2) = c′x′0

2−α′2 logG(ωx′0)

and ψ′′ext(0, τ2) = c′′x′′0
2 − α′′2 logG(x′′0). Following the details of derivations as in

Theorem 5.5.3, we realize that: c′ = γ2ω
2c′′, ωx′0 = x′′0, α

′
2 = γ2α

′′
2,, which im-

plies ψ′ext(0, γ2τ2) = γ2ψ
′′
ext(0, τ2). Finally, from (5.5.5), we know that ψ′int(0, γ2τ2) =

(Λ∗(y′) + γ2τ2
2Ω′

y′2 + log 2)γ2τ2, ψ
′′
int(0, τ2) = (Λ∗(y′′) + τ2

2Ω′′
y′′2 + log 2)τ2. Following

the details of derivations as in Theorem 5.5.3, we realize that if ω → ∞, then

y′ = y′′, Ω′ = γ2Ω′′, which implies that ψ′int(0, γ2τ2) = γ2ψ
′′
int(0, τ2). From (6.6.3),

(6.6.8), and the above conclusions, it follows that δ′ = γ2δ
′′ + γ1.

Proof of Theorem 5.5.5.

The proof is based on a recently found connection between the phase transition thresh-

olds of atomic norm minimizations and robustness of de-noising problems stated for-

mally in the following lemma:

Lemma 5.8.1 (Deduced from [DJM11, OKH12]). Let x be a random signal of size

n randomly selected from a sparse family F , A be a random i.i.d. Gaussian matrix

of size m × n, y = Ax0, and w be a weight vector. Let δ(F,w) = m/n be the

weak threshold that guarantees successful recovery of x0 with high probability using
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the following optimization:

min
Ax=y

‖wTx‖1. (5.8.3)

Also, let v be a vector of length n (noise vector) with i.i.d entries with distribution

N (0, σ2
v), and z = x0 + v, and x̂(λ) = arg minx ‖wx‖1 + λ‖x− z‖2

2. Then:

Emin
λ>0
‖x0 − x̂(λ)‖2

2 = nδ(F,w)σ2
v . (5.8.4)

Now let x = (x1,x2)T be a nonuniformly sparse signal with sparsity fractions

(p1, p2) and class size ratios (γ1, γ2), and let ω > 0 be a weight constant. According

to the above theorem, if

z = x + v =

 x1

x2

+

 v1

v2

 ,

where the entries of v are i.i.d. N (0, σ2
v), and if x̂(λ,ω) = (x̂

(λ,ω)
1 , x̂

(λ,ω)
2 )T is the de-

noising solution:

(x̂
(λ,ω)
1 , x̂

(λ,ω)
2 ) = arg min

x1,x2

‖x1‖1 + ω‖x2‖1 + λ‖x1 − z1‖2
2 + λ‖x2 − z2‖2

2, (5.8.5)

then we have:

Emin
λ>0

(
‖x̂(λ,ω)

1 − z1‖2
2 + ‖x̂(λ,ω)

2 − z2‖2
2

)
= nδc((p1, p2), (γ1, γ2), (1, ω))σ2

v . (5.8.6)

Therefore:

E min
λ>0,ω>0

(
‖x̂(λ,ω)

1 − z1‖2
2 + ‖x̂(λ,ω)

2 − z2‖2
2

)
= nδc((p1, p2), (γ1, γ2), (1, ω∗))σ2

v , (5.8.7)

where ω∗ is the best possible weight. However, it is not hard to see that for the

optimal de-noising and `1 regularization factors λ∗, ω∗, the error term is decomposed

into the sum of errors of two independent de-noising problems. Specifically, if x̃
(λ1)
1 =

arg minx1 ‖x1‖1 + λ‖x1 − z1‖2
2, x̃

(λ2)
2 = arg minx2 ‖x2‖1 + λ‖x2 − z2‖2

2, and λ∗,λ∗1, and

λ∗2 are the optimal values of regularization parameters in (5.8.7) and the two latter

equations, respectively, then:

x̂
(λ∗,ω∗)
1 = x̃

(λ∗1)
1 , x̂

(λ∗,ω∗)
2 = x̃

(λ∗2)
2 . (5.8.8)
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The reason for this is that minimizing the right-hand side of (5.8.5) is equivalent to

minimizing the terms for x1 and x2 separately when λ and ω can independently take

arbitrary values. Therefore, we have:

E
(
‖x̂(λ∗,ω∗)

1 − z1‖2
2 + ‖x̂(λ∗,ω∗)

2 − z2‖2
2

)
= E‖x̃(λ∗1)

1 − z1‖2
2 + E‖x̃(λ∗2)

2 − z2‖2
2, (5.8.9)

which by the discussions above means:

nδ((p1, p2), (γ1, γ2), (1, ω∗))σ2
v = n1δ(1, p1, 1)σ2

v + n2δ(1, p2, 1)σ2
v , (5.8.10)

where n1 = γ1n and n2 = γ2n are the lengths of x1 and x2, respectively. Therefore:

δ((p1, p2), (γ1, γ2), (1, ω∗)) = γ1δ(1, p1, 1) + γ2δ(1, p2, 1). (5.8.11)

5.9 Conclusion

We analyzed the performance of the weighted `1 minimization for nonuniform sparse

models. We computed explicitly the phase transition curves for the weighted `1 mini-

mization, and showed that with proper weighting, the recovery threshold for weighted

`1 minimization can be higher than that of regular `1 minimization. We provided sim-

ulation results to verify this, both in the noiseless and the noisy situation. Some of our

simulations were performed on real-world data of satellite images, where the nonuni-

form sparse model is a valid assumption. Future work shall address generalizing the

results of this paper to other measurement matrices with different distributions than

i.i.d Gaussian. In particular, by using a similar idea as [Don04], one might be able

to assert that for a class of distributions of measurement matrices including random

Fourier ensembles, random Bernoulli, etc., similar sharp thresholds can be obtained

for the weighted `1 minimization. A further interesting research topic to be addressed

in future work would be to characterize the gain in recovery percentage as a function

of the number of distinguishable classes u in the nonuniform model. In addition, we
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have used the results presented in this chapter to build iterative reweighted `1 mini-

mization algorithms that are provably strictly better than `1 minimization, when the

nonzero entries of the sparse signals are known to come from certain distributions (in

particular Gaussian distributions) [KXAH10, HKXA09]. The basic idea there is that

a simple post-processing procedure on the output of `1 minimization results, with

high probability, in a hypothetical nonuniform sparsity model for the unknown sig-

nal, which can be exploited for improved recovery. This approach will be elaborated

upon in full detail in the next chapter.



Chapter 6

Reweighted Basis Pursuit

In the previous chapter, we studied the performance of weighted linear programming

under the assumption of nonuniform sparsity, and showed that the phase transition

thresholds of regular `1 minimization can be improved upon an appropriate choice of

the weight vector. In this chapter, we concentrate on improving the phase transition

curve (a.k.a recovery threshold) of linear programming, when no prior information

about the signal sparsity model (such as the nonuniform sparse model previously

discussed) exists. The idea is to use an iterative scheme that uses the results of a

preliminary linear program to obtain post-processing reliability information about

the sparsity structure of the unknown signal. This information is in the form of a

hypothetic nonuniform sparsity assumption, and can then be utilized by an additional

weighted `1 minimization step to improve the recovery performance. The analysis of

the previous chapter is a solid prerequisite for the derivations of this chapter.
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A measurement matrix

n signal size

m number of measurements

k sparsity of the signal

δ aspect ratio of A, m/n

µW (δ) weak recovery threshold of `1 minimization for k/n

CS robustness parameter for `1 minimization

supp(x) support set of vector x

6.1 Introduction

The initial results that established the fundamental phase transition thresholds for sig-

nal recovery using `1 minimization are due to Donoho and Tanner [DT05a, Don06b],

where it is shown that if the measurement matrix is i.i.d. Gaussian, for a given ratio

of δ = m
n

, `1 minimization can successfully recover every k-sparse signal, provided

that µ = k
n

is smaller than a certain threshold. This statement is true asymptotically

as n → ∞ and with high probability. This threshold guarantees the recovery of all

sufficiently sparse signals and, as discussed before, is therefore referred to as a strong

threshold. It thus does not depend on the actual distribution of the nonzero entries

of the sparse signal and as such is a universal result. However, at this point, it is not

known whether there exist other polynomial-time algorithms with strong thresholds

superior to those of `1 minimization.

Another notion introduced and computed in [DT05a, Don06b] is that of a weak

threshold where signal recovery is guaranteed for almost all support sets and almost all

sign patterns of the sparse signal, with high probability as n→∞. The weak thresh-

old is the one that can be observed in simulations of `1 minimization and allows for

signal recovery beyond the strong threshold. The weak threshold of `1 minimization

is also universal from the vantage point of signal distribution; the amplitudes of the

nonzero entries of a sparse signal do not affect its recoverability via `1 minimization.

In other words, if a sparse signal with a support set S and a particular sign pattern is
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recoverable using `1 minimization, so is every other signal with the same support and

sign pattern. It is worth noting that the weak thresholds of `1 minimization can be

generalized to a broader class of random measurement matrices, including those with

null spaces that are random orthant symmetric and generic subspaces (e.g., matrices

with i.i.d. Bernoulli or uniform (-1,1) entries, etc.) [DT10]. Finally, similar to the

strong thresholds, it is not known whether there exist other polynomial-time algo-

rithms with weak thresholds superior to `1 minimization. Therefore, the problem of

extending the phase transition thresholds of `1 minimization using polynomial time

algorithms is a very interesting and well-motivated open problem.

6.2 Contributions

In this chapter, we prove that a certain two-step reweighted `1 algorithm indeed has

higher weak recovery guarantees than ordinary `1 minimization for particular classes

of sparse signals, including sparse Gaussian signals. We initially introduced the algo-

rithm in [HKXA09], and proved that for a very restricted class of polynomially decay-

ing sparse signals it outperforms standard `1 minimization. Later on, we extended

this result to a much wider and more reasonable class of sparse signals [KXAH10].

The key to our result is the fact that for these classes of signals, `1 minimization has

an approximate support recovery property which can be exploited in a reweighted `1

algorithm to obtain a provably superior weak threshold. In particular, we consider

Gaussian sparse signals, namely sparse signals in which the nonzero entries are i.i.d.

Gaussian. Our analysis of Gaussian sparse signals relies on concentration bounds

on the partial sum of their order statistics. Furthermore, we show that for continu-

ous distributions with sufficiently fast decaying tails and nonzero value at the origin,

similar improvements for the weak threshold can be postulated. More generally, we

show that as long as the nonzero entries of the sparse signal are independently drawn

from a continuous distribution f(·) that has a nonzero finite-order derivative at the
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origin, the weak recovery threshold of our proposed two-step reweighted `1 algorithm

is strictly larger than that of `1 minimization. Although not specifically derived, our

analysis suggests that the improvement rate is a function of the smallest integer r

for which f (r)(0) 6= 0; the smaller such r is, the larger the improvement is. The

derivations are supported by empirical evidence, as shall be demonstrated in this

chapter.

6.3 Related Work

Different variations of reweighted `1 algorithms have been recently introduced in the

literature and have shown experimental improvement over ordinary `1 minimization

[Nee09, CWB08]. In [Nee09], approximately sparse signals have been considered,

where perfect recovery is often not achieved. The question is therefore not that of

an explicit extension of phase transition curves. Instead, it has been shown that the

reconstruction error can be reduced using an iterative scheme. In [CWB08], a similar

algorithm is suggested and is empirically shown to outperform `1 minimization for

exactly sparse signals with certain continuous distributions. In particular, it was em-

pirically witnessed that the proposed algorithm does not improve the signal recovery

for sparse vectors with constant amplitude nonzero entries (i.e., a nonzero entry is ei-

ther 1 or -1). Unfortunately, [CWB08] provides no theoretical analysis or performance

guarantees for the success or failure of the method. The particular reweighted `1 min-

imization algorithm that we propose and analyze is of significantly less computational

complexity than the earlier ones (it only solves two linear programs). Furthermore,

experimental results confirm that it exhibits much better performance than previous

reweighted methods.
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6.4 Preliminaries

We denote the support (set) of a vector x by supp(x). For a vector x that is not

necessarily k-sparse, we define the k-support of x to be the index set of the largest

k entries of x in amplitude, and denote it by suppk(x). Finally, max |x| and min |x|
mean the absolute value of the maximum and minimum entry of x in magnitude,

respectively.

Although more general than this, the analysis of this chapter is for sparse random

signals with i.i.d. nonzero coefficients drawn from a given continuous distribution

(in particular Gaussian). In other words, we assume that the unknown sparse signal

is an n × 1 vector x with exactly k nonzero entries, where each nonzero entry is

independently derived from a distribution f(·) (e.g., standard normal distribution

N (0, 1)). When f(·) is a normal distribution, we refer to the resulting signals as

“Gaussian sparse” vectors. As before, we denote the measurement matrix by A which

is assumed to be an m×n matrix with i.i.d. Gaussian entries with an aspect ratio δ =

m
n

. The strong and weak recovery thresholds of the required number of measurements

for `1 minimization were previously defined as functions of the sparsity level. In this

chapter, we find it easier to work with the thresholds of sparsity level as a function

of the matrix aspect ratio. More formally, we define the strong threshold µS(δ) to

be the largest fraction µ such that with high probability, every µn sparse signal can

be recovered from m = δn i.i.d Gaussian measurements using `1 optimization as

n→∞. Similarly, the weak threshold µW (δ) is the largest fraction µ such that with

high probability, almost all µn-sparse signals can be recovered from m = δn i.i.d

Gaussian measurements using `1-optimization, as n → ∞. Note that the functions

µS(·) and µW (·) are inverse functions of the thresholds δS(·) and δW (·) for the number

of measurements defined in the previous chapter, which, in addition, were extended

to the case of weighted `1 minimization. The sectional threshold µT (·) which deals

with the reconstruction of signals with all support sets and almost all sign patterns
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can be characterized in a similar way. In fact, tight and easy computation for the

function µW (·) is available from the derivations of [Sto10] which conform to the less

explicit formulations of [Don06b]. For strong and sectional thresholds, only lower

bound approximations exist. The plot of µW (·) is shown in Figure 6.1.
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Figure 6.1: Plot of the weak recovery threshold µW (δ) for `1 minimization, calculated
based on the formulation of [Sto10]

Since we are interested in extending the phase transition thresholds of `1 mini-

mization, we consider sparse signals that fall outside the recoverability regime of `1

minimization. In other words, we assume that the support size of x, namely k, is

slightly larger than the weak phase transition threshold of `1 minimization. In other

words, k = (1 + ε0)µW (δ)n for some ε0 > 0. This means that if we use `1 minimiza-

tion, a randomly chosen µW (δ)n-sparse signal will be recovered perfectly with very

high probability, whereas a randomly selected k-sparse signal will not. We would like

to show that for a strictly positive ε0, our proposed two-step reweighted `1 algorithm

(presented in the sequel) can indeed recover a randomly selected k-sparse signal with

high probability, implying that the proposed method has a superior weak threshold.
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Figure 6.2: A pictorial example of a sparse signal and its `1 minimization approxi-
mation

6.5 Two-Step Weighted `1 Algorithm

We propose the following method outlined in Algorithm 4, consisting of two linear

programming steps: a standard `1 minimization and a weighted one. The input to

the algorithm is the vector y = Ax, where x is the unknown k-sparse signal with

k = (1 + ε0)µW (δ)n, and the output is an approximation x∗ to the unknown vector

x. We assume that the sparsity k (or an upper bound on it) is known. However,

the algorithm assumes no knowledge of the distribution of the nonzero entries of the

unknown signal. Also ω > 1 is a predetermined weight.

Algorithm 4 —Two-Step Reweighted `1 minimization.

1: Input: Measurement matrix Am×n, measurement vector ym×1, integer k < n,
predetermined real valued weight ω > 1.

2: Output: Sparse vector x with Ax = y.
3: Solve the `1 minimization problem:

x̂ = arg min ‖z‖1 subject to Az = y. (6.5.1)

4: Obtain an approximation for the support set of x: find the index set L ⊂
{1, 2, ..., n} which corresponds to the largest k elements of x̂ in magnitude.

5: Solve the following weighted `1 minimization problem and declare the solution as
output:

x∗ = arg min ‖zL‖1 + ω‖zL‖1 subject to Az = y. (6.5.2)
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The intuition behind the algorithm is as follows. In the first step, a standard `1

minimization is performed. If the sparsity of the signal is beyond the weak threshold

µW (δ)n, then `1 minimization is most probably not capable of recovering the signal.

However, we use the output of the `1 minimization to identify an index set, L, which

we “hope” contains most of the nonzero entries of x (see Figure 6.2). We finally

perform a weighted `1 minimization by penalizing those entries of x that are not in

L (ostensibly because they have a lower chance of being nonzero). Consequently,

Algorithm 4 is capable of recovering less sparse signals, or, equivalently has a higher

weak threshold than that of `1 minimization. This intuition is formalized in the

following theorem.

Theorem 6.5.1 (Weak threshold of Algorithm 4). Let A be an m×n i.i.d. Gaussian

matrix with m
n

= δ. There exist ε0 > 0 and ω > 0 so that Algorithm 4 perfectly

recovers a random (1+ ε0)µW (δ)n-sparse vector with i.i.d. Gaussian entries with high

probability as n grows to infinity.

The interpretation of the above theorem is that for sparse signals whose nonzero

entries follow a Gaussian distribution, Algorithm 4 has a recovery threshold beyond

that of standard `1 minimization. We have empirically computed the recovery thresh-

olds of Algorithm 4 for sparse random Gaussian signals, and plotted them along with

the thresholds of regular `1 minimization in Figure 6.3. Notice the improvement in

the recoverable fraction of nonzero coefficient µ.

The proof is provided in the following sections as follows. In Section 6.6, we prove

that there is a large overlap between the index set L, found in step 2 of the algorithm,

and the support set of the unknown signal x denoted by K (see Theorem 6.6.3 and

Figure 6.2). Then in Section 6.7, we show that the large overlap between K and L can

result in perfect recovery of x, beyond the standard weak threshold, when a weighted

`1 minimization is used in step 3. The formal proof of Theorem 6.5.1 appears in

Section 6.7.
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Figure 6.3: Comparison of the weak thresholds of `1 minimization with that of Algo-
rithm 4 computed empirically for Gaussian sparse signals

6.6 Approximate Support Recovery, Steps 1 and

2 of the Algorithm

In this section, we carefully study the first two steps of Algorithm 4. The unknown

signal x is assumed to be a Gaussian k-sparse vector with support set K, where

k = |K| = (1 + ε0)µW (δ)n, for some ε0 > 0. By a Gaussian k-sparse vector, we

mean one where the nonzero entries are i.i.d. Gaussian (e.g., zero-mean and unit-

variance). It should be noted that the Gaussian distribution is only considered as

a canonical choice. We later extend our analysis to other signal distributions. The

solution x̂ to the `1 minimization obtained in step 1 of Algorithm 4 is in all likelihood

a dense vector. The set L, as defined in the algorithm, is the k-support set of x̂ (i.e.,

L = suppk(x̂)). We show that for small enough ε0, the intersection of L and K is

with high probability very large, so that L can be counted as a good approximation

of K (Figure 6.2).

In order to find a decent lower bound on |L ∩ K|, we point out three separate

facts and establish a connection between them. First, we prove a general lemma that

provides a lower bound on the quantity |L ∩K| as a function of ‖x− x̂‖1. Then, we
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discuss a critical property of `1 minimization known as weak robustness which helps

provide an upper bound on the quantity ‖x− x̂‖1. The robustness result is due to Xu

et al. and was first proved in [XH09]. However, we provide explicit scaling laws for

the robustness of `1 minimization beyond the implicit results of [XH09]. Finally, we

leverage some concentration results for order statistics to derive explicit formulae for

the obtained bounds. These steps will be elaborated in the remainder of this section.

Definition 16. For a k-sparse signal x, we define W (x, λ) to be the size of the largest

subset of nonzero entries of x that has a `1 norm less than or equal to λ, i.e.,

W (x, λ) , max{|S| | S ⊆ supp(x), ‖xS‖1 ≤ λ}.

Note that W (x, λ) is increasing in λ.

Lemma 6.6.1. Let x be a k-sparse vector and x̂ be another vector. Also, let K be

the support set of x and L be the k-support set of x̂. Then

|K ∩ L| ≥ k −W (x, ‖x− x̂‖1). (6.6.1)

Proof. Let xi be the ith entry of x and e∗ = (e1, e2, . . . , en)T be the solution to the

following minimization problem:

minimize ‖e‖1

s.t.max |(x + e)K\L| ≤ min |(x + e)L|, (6.6.2)

where K \ L denotes the subset of the entries of K that are not in L. Note that

the vector x̂ − x satisfies the constraint of the minimization problem (6.6.2). This

is because x + (x̂ − x) = x̂ and L is the k-support of x̂. Therefore every entry of x̂

outside the set L is smaller in amplitude than every entry inside L. Therefore, since

e∗ is the optimal solution of (6.6.2), we must have:

‖e∗‖1 ≤ ‖x̂− x‖1. (6.6.3)
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Let a = max |(x + e∗)K\L|. Then for each i ∈ K \ L, using the triangular inequality

we have:

|xi| − |ei| ≤ |xi + ei| ≤ a, ∀i ∈ K \ L, (6.6.4)

and so:

|ei| ≥ max(|xi| − a, 0), ∀i ∈ K \ L. (6.6.5)

Therefore, by summing up the inequalities in (6.6.5) for i ∈ K \ L, we have:

‖e∗K\L‖1 ≥
∑

i∈K\L,|xi|>a

(|xi| − a). (6.6.6)

On the other hand, for all i ∈ L \K we have |ei| > a, and therefore:

‖e∗L\K‖1 ≥ a|L \K|. (6.6.7)

But |L \K| = |K \ L| and hence it follows that

‖e∗‖1 ≥ ‖e∗L\K‖1 + ‖e∗K\L‖1

≥ a|K \ L|+
∑

i∈K\L,|xi|>a

(|xi| − a)

≥
∑
i∈K\L

|xi| = ‖xK\L‖1. (6.6.8)

(6.6.3) and (6.6.8) together imply that ‖x−x̂‖1 ≥ ‖xK\L‖1, which by definition means

that W (x, ‖x− x̂‖1) ≥ |K \ L|.

We now introduce the notion of weak robustness, which allows us to bound ‖x−
x̂‖1, and has the following formal definition [XH09].

Definition 17. Let the set S ⊂ {1, 2, · · · , n} and the subvector xS be fixed. An

approximation x̂ to x is called weakly robust with respect to the set S if, for some

CS > 1, it holds that

‖(x− x̂)S‖1 ≤
2CS
CS − 1

‖xS‖1, (6.6.9)

and

‖xS‖ − ‖x̂S‖ ≤
2

CS − 1
‖xS‖1. (6.6.10)

CS is called the robustness parameter of the considered approximation for the set S.
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The weak robustness notion allows us to bound the error in ‖x− x̂‖1 in the following

way. If x̂ is a weakly robust approximation to x with respect to the set S and

parameter CS > 1, such that Ax = Ax̂, and if the matrix AS obtained by retaining

only those columns of A that are indexed by S has full column rank, then the quantity

κ = max
Aw=0,w 6=0

‖wS‖1

‖wS‖1

,

must be finite, and one can conclude that

‖x− x̂‖1 ≤
2CS(1 + κ)

CS − 1
‖xS‖1. (6.6.11)

This result is due to [XH09], where, in addition, it has been shown that for Gaussian

i.i.d. measurement matrices A, the solution of `1 minimization provides a weakly

robust approximation with high probability. In other words, for a randomly chosen

subset S with |S|
n
< µW (δ), there exists a robustness factor CS > 1 as a function of

|S|
n

for which (6.6.9) and (6.6.10) hold with high probability for an arbitrary vector x,

where x̂ is the solution obtained by `1 minimization. Now let k1 = (1− ε1)µW (δ)n for

some small ε1 > 0, and K1 be the k1-support set of x, namely, the set of the largest

k1 entries of x in magnitude. Based on equation (7.4.4) we may write

‖x− x̂‖1 ≤
2C(ε1)(1 + κ)

C(ε1)− 1
‖xK1

‖1, (6.6.12)

where for a fixed value of δ, we have emphasized that the constant C for the set K1

is a function of ε1. Furthermore, C(ε1) becomes arbitrarily close to 1 as ε1 → 0. κ is

also a bounded function of ε1, and therefore we may replace it with an upper bound

κ∗. This provides a bound on ‖x− x̂‖1. To explore this inequality and understand its

asymptotic behavior, we apply a third result, which is a certain concentration bound

on the order statistics of Gaussian random variables.

Lemma 6.6.2. Suppose X1, X2, · · · , XN are N i.i.d. N (0, 1) random variables. Let

SN =
∑N

i=1 |Xi| and let SM be the sum of the largest M numbers among the |Xi|s,

for each 1 ≤M < N . Then for every ε > 0 sufficiently small, as N →∞, if the ratio
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M/N is kept constant, we have

P

(∣∣∣∣∣SNN −
√

2

π

∣∣∣∣∣ > ε

)
→ 0, (6.6.13)

P

(∣∣∣∣∣SMSN − exp(−Ψ2( M
2N

)

2
)

∣∣∣∣∣ > ε

)
→ 0, (6.6.14)

where Ψ(x) = Q−1(x) with Q(x) = 1√
2π

∫∞
x
e−

y2

2 dy.

To make the content of the chapter more fluent, we mention the general idea of

the proof of the above lemma very coarsely here. The detailed proof is outlined in

Section 6.10. For a particular instance of X1, . . . , XN , if 0 < a < 1 is such that

exactly a fraction M/N of |Xi|s are larger than a, then every |Xi| which is larger

than a contributes to the sum SM . Therefore SM can be thought of as those |Xi|s
that are larger than a. This can be expressed in another way: Let X̂i be a random

variable which is equal to |Xi| if |Xi| > a, and is 0 otherwise. We therefore conclude

that SM is equal to the sum of
∑n

i=1 X̂i. Furthermore, when N is large, it can be

shown using concentration lemmas that a will be arbitrarily close to the fixed number

Ψ( M
2N

), and thus the distributions of X̂is converge to the same distribution, namely the

truncated absolute value of a normal distribution. Besides, when a is constant, X̂is

are independent, and therefore one can apply the law of large numbers to conclude

that SM/SN ≈ EX̂1/E|X1|, which is the desired conclusion. These arguments are

rigorously outlined in Section 6.10.

Recall that we assumed x is a k-sparse random Gaussian signal with k = (1 +

ε0)µW (δ)n, and defined K1 to be the k1-support of x, where k1 = (1− ε1)µW (δ)n. We

denoted by K the support set of x. Also, if x̂ is the approximation to x obtained by

`1 minimization, we denoted by L the k-support set of x̂. As a direct consequence of

Lemma 6.6.2 we can write:

P
(∣∣∣∣‖xK1

‖1

‖x‖1

− (1− e−0.5Ψ2(0.5
1−ε1
1+ε0

)
)

∣∣∣∣ > ε

)
→ 0, (6.6.15)
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for ε > 0 sufficiently small as n→∞. Define

ζ(ε0) , inf
ε1>0

2C(ε1)(1 + κ∗)

C(ε1)− 1
(1− e−0.5Ψ2(0.5

1−ε1
1+ε0

)
). (6.6.16)

Incorporating (6.6.12) into (6.6.15) we may write

P
(‖x− x̂‖1

‖x‖1

− ζ(ε0) < ε

)
→ 1, (6.6.17)

for ε > 0 sufficiently small as n→∞.

Let us summarize our conclusions so far. First, we were able to show that |K∩L| ≥
k − W (x, ‖x − x̂‖1). The weak robustness of `1 minimization and the Gaussian

nature of the signal then led us to the fact that for large n with high probability,

‖x − x̂‖1 ≤ ζ(ε0)‖x‖1. These results build up the next key theorem, which is the

conclusion of this section.

Theorem 6.6.3 (Approximate Support Recovery). Let A be an i.i.d. Gaussian

m × n measurement matrix with m
n

= δ. Let k = (1 + ε0)µW (δ) and x be an n × 1

random Gaussian k-sparse signal. Suppose that x̂ is the approximation to x given by

`1 minimization, i.e., x̂ = argminAz=Ax‖z‖1. Then, as n→∞, for all ε > 0,

P
( |supp(x) ∩ suppk(x̂)|

k
− 2Q(

√
−2 log(1− ζ(ε0))) > −ε

)
→ 1, (6.6.18)

where ζ(·) is defined in (6.6.16).

Before proving the above theorem, we mention the following useful lemma, the

proof of which will be given in Section 6.10.

Lemma 6.6.4. Let x be a random k-sparse Gaussian vector of size n, and 0 < α < 1.

For any positive ε, the following happens with high probability as n, k →∞:

W (x, α‖x‖1)

k
< (1− 2Q(

√
−2 log(1− α))) + ε. (6.6.19)
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Proof of Theorem 6.6.3. From equation (6.8.3), for every ε′ > 0 and large enough n,

with high probability we have ‖x − x̂‖1 < (ζ(ε0) + ε′)‖x‖1. Therefore, from Lemma

6.6.1 and the fact that W (x, λ) is increasing in λ, |K∩L| ≥ k−W (x, (ζ(ε0)+ε′)‖x‖1)

with high probability. Replacing W (x, (ζ(ε0) + ε′)) with the upper bound given by

Lemma 6.6.4, it follows that with very high probability |K∩L|
k
≥ 2Q(

√
−2 log(1− ζ(ε0)− ε′))−

ε′′. We can now let ε′ go to zero and the proof is completed.

Note that if limε0→0 ζ(ε0) = 0, then Theorem 6.6.3 implies that |K∩L|
k

becomes arbi-

trarily close to 1, which means that, using `1 minimization, it is possible to closely

estimate the support set of x. We show in the sequel that this is in fact the case.

6.6.1 Scaling Law of `1 Minimization

In order to show that the robust approximation of the sparse signal at step 1 of

Algorithm 4 leads to perfect recovery at step 3, we need to obtain an explicit bound

for the term ζ(ε0). This in turn requires calculating a solid relationship between the

robustness parameter C(ε1), and the back-off fraction ε1. For i.i.d. Gaussian matrices,

we derive an explicit lower bound on C(ε1) as a function of ε1 through the following

theorem.

Theorem 6.6.5 (Scaling law of `1 minimization for Gaussians). Let A be an m× n
i.i.d. Gaussian matrix with m = δn, and µW (δ) be the weak recovery threshold of `1

minimization for A. For sufficiently large n, the (weak) robustness parameter C(ε1)

for a randomly chosen k1-support K1 of size k1 = (1−ε1)µW (δ)n (see equation 6.6.12)

satisfies:

C(ε1) ≥ 1√
1− ε1

. (6.6.20)

The proof of of the above theorem which we have presented in [KWYH12] is

common for the most part with the technical details of [XH09], which are based on
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Grassman manifold techniques for the performance analysis of compressed sensing.

The method is basically the extension of the high-dimensional techniques of Donoho

et al. [DT05a, DT06] for incorporating noise into the performance bounds of `1

minimization.

We now derive an asymptotic upper bound on the term ζ(ε0) using the above

relationship. Replacing the bound of (6.6.20) in the definition of ζ(ε0), we obtain:

ζ(ε0) = inf
ε1>0

2C(ε1)(1 + κ∗)

C(ε1)− 1

(
1− e−0.5Ψ2(0.5

1−ε1
1+ε0

)
)

≤ inf
ε1>0

2(1 + κ∗)

1−√1− ε1

(
1− e−0.5Ψ2(0.5

1−ε1
1+ε0

)
)

(6.6.21)

≤ 4(1 + κ∗)

ε0

(
1− e−0.5Ψ2(0.5

1−ε0
1+ε0

)
)
, (6.6.22)

where (6.6.22) is obtained by simply taking ε1 = ε0, and using the fact that 1
1−
√

1−ε0
≤

2/ε0. We use the Taylor approximation of the inverse error function to bound the

right-hand side of (6.6.22). Note that:

Ψ(0.5
1− ε0
1 + ε0

) =
√

2 · erf−1

(
2ε0

1 + ε0

)
(6.6.23)

=
√

2π · ε0 + o(ε20). (6.6.24)

It follows that:

ζ(ε0) ≤ 4π(1 + κ∗)ε0 +O(ε20), (6.6.25)

as ε0 → 0. Therefore, we can immediately see that limε0→0 ζ(ε0) = 0.

6.7 Perfect Recovery, Step 3 of the Algorithm

In Section 6.6 we showed that if ε0 is small, the k-support of x̂, namely L = suppk(x̂),

has a significant overlap with the true support of x. We even found a quantitative

lower bound on the size of this overlap in Theorem 6.6.3. In step 3 of Algorithm 4,

weighted `1 minimization is used, where the entries in L are assigned a higher weight

than those in L. Interestingly, this fits into the model described in Chapter 5. Recall
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that in Chapter 5, we were able to analyze the performance of such weighted `1 min-

imization algorithms in the presence of a nonuniform sparsity assumption. The idea

was that if a sparse vector x can be partitioned into two sets L and L, where the frac-

tion p1 of nonzero entries in L is much larger than the fraction p2 of nonzero entries

in L, then (6.5.2) can potentially recover x with an appropriate choice of the weight

ω > 1, even though `1 minimization cannot. Recall the notion of sectional thresh-

old δ
(T )
c (γ1, γ2, p1, p2, ω) from Chapter 5. If x is a vector with nonuniform sparsity

fractions p1 and p2 over the classes of entries L and L, respectively, when |L1| = γ1n

and |L| = γ2n then the weighted `1 minimization of (6.5.2) will recover x with high

probability. The choice of “sectional” threshold here dictates that the successful re-

covery is guaranteed for all possible support sets for x (and not just a randomly

chosen set), but for almost all sign patterns (i.e., for a randomly chosen pattern).

This is consistent with the reliability information extracted from the preliminary `1

minimization in the first stage of the algorithm; Despite the fact that the support set

of x was chosen randomly, given the classification of entries L,L provided by the `1

approximation, and assuming sparsity fractions p1 and p2, the support set of x is not

uniformly distributed over all possible index sets K that share an overlap fraction p1

with L and an overlap fraction p2 with L. Therefore, to analyze the success of the

weighted `1 minimization, a worst-case study over all possible support sets has to be

done, which is accounted for in the definition of sectional threshold. Consequently,

when the sparsity fractions p1 and p2 are known to be bounded by:

p1 ≥ f1, p2 ≤ f2, (6.7.1)

the required number of measurements that guarantees successful recovery of the signal

in the last stage is given by:

δ ≥ λc(
k

n
, 1− k

n
, f1, f2, ω), (6.7.2)
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where

λc(γ1, γ2, f1, f2, ω) , max
f ′1≥f1,f ′1γ1+f ′2γ2=f1γ1+f2γ2

δ(T )
c (γ1, γ2, f

′
1, f

′
2, ω). (6.7.3)

Consequently, the following theorem can be deduced:

Theorem 6.7.1. Let L ⊂ {1, 2, · · · , n} , ω > 1, and the fractions f1, f2 ∈ [0, 1] be

given. Let γ1 = |L|
n

and γ2 = 1− γ1. There exists a threshold λc(γ1, γ2, f1, f2, ω) given

by equation (6.7.3) such that with high probability, almost all random sparse vectors x

with at least f1γ1n nonzero entries over the set L, and at most f2γ2n nonzero entries

over the set L can be perfectly recovered using minAz=Ax ‖zL‖1 + ω‖zL‖1, where A is

a λcn× n matrix with i.i.d. Gaussian entries.

We are now in a position to state the full proof of Theorem 6.5.1.

Proof of Theorem 6.5.1. Recall that the solution of `1 minimization in the first stage

of Algorithm 4 is the vector x̂. We denoted by L the k-support set of x̂, and by Lc its

complement set. The last stage of the algorithm is a weighted `1 minimization that

puts more weight on the entries of x outside the set L. The justification for this is

the fact that the fraction of the nonzero entries of the target signal x over the set L

is supposedly larger than the fraction of the nonzero entries over Lc. Let us denote

these fractions by p1 and p2, respectively, namely p1 = |L∩K|
|L| and p2 = |L∩K|

|L| , where

K is the support of the target signal, unknown to the algorithm before running the

weighted `1 minimization of the last stage. Suppose we know the bounds:

p1 ≥ f1, p2 ≤ f2. (6.7.4)

Since we are using a weighted `1 minimization, x will be recovered perfectly with high

probability if the number of measurements is larger than the threshold of weighted

`1 minimization for the nonuniform sparsity model of the target signal, namely if:

λc(
k

n
, 1− k

n
, f1, f2, ω) ≤ δ, (6.7.5)
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where λc is defined as in (6.7.3). This is directly implied by Theorem 6.7.1. On

the other hand, through Theorem 6.6.3, we provided a explicit value for the lower

bound f1 (and consequently the upper bound f2), and we showed that as ε0 → 0,

f1 converges to 1 (and consequently f2 approaches zero). The asymptotic value of

λc(
k
n
, 1− k

n
, f1, f2, ω) will therefore be equal to λc(µW (δ), 1− µW (δ), 1, 0, ω), as ε→ 0

(recall that k = (1 + ε0)µW (δ)n). Furthermore, from the computations of Chapter 5,

it can be shown that λc(µW (δ), 1 − µW (δ), 1, 0, ω) < δ for an appropriate choice of

ω > 1, and that for a fixed ω the function λc(γ1, γ2, f1, f2) is a continuous function

of γ1, f1, and f2. Furthermore, k, f1, and f2 obtained from Theorem 6.6.3 are all

continuous functions of ε0 in this case. Therefore, we can conclude that for a strictly

positive ε0 and corresponding overlap fractions f1 and f2, λc((1 + ε0)µW (δ), 1− (1 +

ε0)µW (δ), f1, f2, ω) < δ. This means that for some strictly positive ε0 the number of

measurements that is required to reconstruct the signal precisely in the last stage of

the algorithm is less than the number of measurements in A, i.e., x will be recovered

with high probability, despite the fact that it has more nonzero entries than the weak

threshold of `1 minimization. This completes the proof.

6.8 Generalization to Beyond Gaussians

The theoretical threshold improvement of the proposed iterative `1 minimization al-

gorithm was demonstrated for the case of i.i.d. Gaussian matrices, and sparse vectors

with independent Gaussian nonzero entries. It is reasonable to ask if we can extend

these results to sparse signals with other distributions. We address this problem in

this section. In summary, we prove that the theoretical threshold improvement can

be generalized to sparse signals whose nonzero entries obey a more general class of

distributions, namely continuous symmetric distributions with a non-vanishing finite

order derivative at the origin. This is outlined in the following section.



184

6.8.1 Arbitrary Distributions

The attentive reader will note that the only step where we used the Gaussian nature

of the signal in the proof of threshold improvement was in the the order statistics

results of Lemma 6.6.2. This result has the following interpretation: For N i.i.d.

random variables, the ratio SM
SN

can be approximated by a known function of M
N

. In

the Gaussian case, this function behaves as 1 − (1 − M
N

)2 as M → N . For constant

magnitude signals (say BPSK), the function behaves as 1 − M
N

, for M → N , which

predicts that the reweighted method yields no improvement. A more careful analysis

reveals that the improvement over `1 minimization depends on the behavior of SM
SN

,

as M → N , which in turn depends on the smallest order n for which f (n)(0) 6= 0,

i.e., the smallest n such that the n-th derivative of the distribution at the origin is

nonzero. We formalize these results by generalizing the arguments of the previous

section. First, we present a generalization of Lemma 6.6.2 for arbitrary symmetric

distributions.

Lemma 6.8.1. Suppose X,X1, X2, · · · , Xn are N i.i.d. random variables, drawn

from a symmetric distribution f(·). Let SN =
∑N

i=1 |Xi| and let SM be the sum of the

largest M numbers among |Xi|s, for each 1 ≤M < N . If f(·) is integrable, and if for

every finite a > 0, the integral
∫∞
a
x2f(x)dx is finite, then for every ε > 0 sufficiently

small, as N →∞ and the ratio M/N is kept constant, the following holds

P

(∣∣∣∣∣SMSN − (1− 2

∫ Ψf ( M
2N

)

0
x · f(x)dx

Ef(·)|X|
)

∣∣∣∣∣ > ε

)
→ 0, (6.8.1)

where Ψf (x) = Q−1
f (x) with Qf (x) =

∫∞
x
f(y)dy.

Using the above lemma, we can modify the concentration term of equation (6.6.15)

for the term
‖xK1

‖1
‖x‖1 , where the distribution of the nonzero entries of x is f(·). The

resulting concentration thus becomes:

P

∣∣∣∣∣∣‖xK1
‖1

‖x‖1

− 2

∫ Ψf (
(1−ε1)
2(1+ε0)

)

0 x · f(x)dx

Ef(·)|X|

∣∣∣∣∣∣ > ε

→ 0, (6.8.2)
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which, when put together with the bound of (6.6.12), results in:1

P
(‖x− x̂‖1

‖x‖1

− ζf (ε0) < ε

)
→ 1, (6.8.3)

for every ε > 0. Here ζf (ε0) is defined by:

ζf (ε0) , inf
ε1>0

2C(ε1)(1 + κ∗)

C(ε1)− 1
× 2

∫ Ψf (
(1−ε1)
2(1+ε0)

)

0 x · f(x)dx

Ef(·)|X|
. (6.8.4)

Consequently, following similar arguments as in the proofs of Theorem 6.6.3, we can

state the following theorem as a generalization of the approximate support recovery

of `1 minimization for arbitrary distributions, the proof of which is immediate.

Theorem 6.8.2 (Approximate Support Recovery/Generalization). Let A be an i.i.d.

Gaussian m × n measurement matrix with m
n

= δ. Let k = (1 + ε0)µW (δ)n and x

be an n × 1 k-sparse signal whose nonzero entries are independently drawn from a

distribution f(·) which satisfies the conditions of Lemma 6.8.1. Suppose that x̂ is the

approximation to x given by the `1 minimization, i.e., x̂ = argminAz=Ax‖z‖1. Then,

as n→∞, for ε > 0 sufficiently small, we have

P
( |supp(x) ∩ suppk(x̂)|

k
− 2Qf (

√
−2 log(1− ζf (ε0))) > −ε

)
→ 1, (6.8.5)

where ζf (·) is defined in (6.8.4).

Note that Qf (·) is always a decreasing function which is equal to zero at the origin

for symmetric distributions. Therefore, the overlap fraction given by Theorem 6.8.2

can be arbitrarily close to 1, provided that ζf (ε0) is sufficiently small. Therefore, the

key in further conclusions on the above bound is to derive a bound on the term ζf (ε0),

and show that it becomes arbitrarily small. We prove that this is in fact the case for

distributions f(·) for which one of the finite order derivatives at the origin is nonzero,

stated formally in the following lemma:

1Note that the bound in (6.6.12) is independent from the distribution of x
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Lemma 6.8.3. Let f(·) be a symmetric distribution which satisfies the conditions

of Lemma 6.8.1. If for some integer r ≥ 0, the r’th order derivative of f(·) at

origin exists and does not vanish, i.e., f (r)(0) 6= 0, then ζf (ε0) = O(ε
1/(r+1)
0 ) as ε0 →

0. Consequently, the support set approximation of `1 minimization is asymptotically

perfect with high probability as ε0 → 0.

Proof. For simplicity, we take ε1 in the definition of ζf (ε0) to be equal to ε0, which

only provides an upper bound. Since f (r)(0) > 0 and f(·) is continuous, we conclude

that for some constant c > 0, and sufficiently small x, f(x) ≥ c× xr. Therefore,

1/2−Qf (x) =

∫ x

0

f(t)dt ≥ c

r + 1
xr+1, (6.8.6)

and thus

x ≥ Ψf (1/2−
c

r + 1
xr+1), (6.8.7)

for sufficiently small x. Note that we have used the fact that Ψf (·) is a decreasing

function. Equivalently, (6.8.7) means that

Ψf (1/2− x) = O(x1/(r+1)) (6.8.8)

as x→ 0. On the other hand, note that 1−ε0
2(1+ε0)

≥ 1/2− ε0, and thus

Ψf (
1− ε0

2(1 + ε0)
) ≤ Ψf (1/2− ε0). (6.8.9)

It follows from the above, (6.8.8), and the fact that f(x) = O(xr) as x→ 0 that

∫ Ψf (
(1−ε0)
2(1+ε0)

)

0

x · f(x)dx = O(ε
1+1/(r+1)
0 ), (6.8.10)

as ε0 → 0. Furthermore, from Theorem 6.6.5, we know that C(ε1) ≥ 1/
√

1− ε0 (note

that ε1 = ε0), and therefore 2C(ε1)(1+κ∗)
C(ε1)−1

= O(1/ε0) as ε0 → 0. Also, Ef(·)|X| > 0 is

constant. Therefore, from these conclusions and the definition of ζf (·), it follows that

ζf (ε0) = O(ε
1/(r+1)
0 ) as ε0 → 0.
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Figure 6.4: Theoretical lower bound on the correct support estimation of `1 minimiza-
tion, as a function of the weak threshold exceeding fraction ε0. The plots are based
on the theoretical results of Theorem 6.8.2, and are derived for Gaussian, uniform,
and two-sided Rayleigh distributions.

As a numerical example, we compute a theoretical bound for the approximate

support recovery of `1 minimization and threshold improvement in the case of δ =

0.5555. It is easy to verify numerically that the conditions of Theorem 6.5.1 hold.

The value of κ∗ is no more than
√

3 in this case. A theoretical bound on the overlap

fraction between the k-support set of x̂ and the support set of the k-sparse x for

an arbitrary distribution is provided by Theorem 6.8.2, where k = (1 + ε0)µW (δ)n.

We have computed this bound for three different distributions: Gaussian, uniform

(-1,1), and a two-sided Rayleigh distribution. The value of r, namely the smallest

nonzero derivative order, is 0 for Gaussian and uniform distributions, and 1 for the

Rayleigh distribution. The computed bounds are plotted in Figure 6.4. Furthermore,

using a value of ω = 10, and based on the premise of Theorem 6.5.1 and the computed

bounds, we can certify an improvement of ε0 = 5×10−4 in the weak recovery threshold

in the case of Gaussian distribution. For the uniform and Rayleigh distributions, the

theoretical predictions in the improvement of recovery thresholds are smaller than

the case of Gaussian, but are still strictly positive. These improvement guarantees

are of course much smaller than the practical values we would observe in practice, as

will be illustrated in the following section.
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6.9 Simulations

We demonstrate the validity of the theoretical results of the previous sections, and

the performance of Algorithm 4 by a few numerical simulations. The purpose of

the simulations of this section is both to evaluate the performance of the proposed

reweighted `1 algorithm in practice, and to verify its distribution-dependent behavior.

Figure 6.5 shows the empirical performance of Algorithm 4 for sparse signals with

various distributions. Here the signal dimension is n = 200, and the number of

measurements is m = 112, which corresponds to a value of δ = 0.5555. We generated

random sparse signals with i.i.d. entries coming from certain distributions, namely

Gaussian, uniform, Rayleigh, square root of χ-square with 4 degrees of freedom,

and square root of χ-square with 6 degrees of freedom. All of these distributions

are continuous and have some finite-order non-vanishing derivative at the origin. In

fact, in an increasing order of the mentioned distributions, the smallest order of

nonzero derivative at the origin varies from 0 to 3. In other words, the pdf of a

Gaussian and a uniform (−1, 1) distribution is nonzero at 0. The pdf of the Rayleigh

distribution is zero at the origin, but has a nonzero derivative. Finally, the pdfs of

square root of a χ-square with 4 and 6 degrees of freedom have second and third

nonzero derivatives at the origin, respectively. In Figure 6.5, solid lines represent the

simulation results for ordinary `1 minimization, and different colors indicate different

distributions. Dashed lines are used to show the results for Algorithm 4. Notice that

the more derivatives that vanish at the origin, the less significant improvement over

`1 minimization is observed, which is consistent with the analysis of Section 6.8. The

Gaussian and uniform distributions are flat and nonzero at the origin and show an

impressive improvement (more than 20%) in the weak threshold (from 45 to 55 in

this case).

In Figure 6.6, the overlap between the support set of a k-sparse signal x and the

k-support set of the approximation x̂ given by `1 minimization averaged over 400
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Figure 6.5: Empirical recovery percentage for n = 200 and δ = 0.5555
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Figure 6.6: Empirical overlap between the support set of a k-sparse vector and the
k-support set of the `1 optimum, for n = 200 and δ = 0.5555. Nonzero coefficients
of signal are drawn from five different distributions (displayed). The average is over
400 samples.

random samples is plotted. Again, five different distributions were considered. It

is apparent that overlap fraction is a decreasing function of k, and depends on the

smoothness of the probability distribution at origin.

We also report experimental results using regular `1 and reweighted `1 minimiza-

tion recovery algorithms over real-world data. We have chosen a pair of satellite

images (Figure 6.7) taken in two different years, 1989 (left) and 2000 (right), from

the New Britain rainforest in Papua New Guinea. The images belong to the Royal

Society for the Protection of Birds and were taken from an article on deforestation in

the Guardian archive. These images are generally recorded to evaluate environmental

effects such as deforestation. The difference between images taken at different times

is generally not very significant, and thus can be thought of as compressible. We have
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Figure 6.7: Satellite images taken from the New Britain rainforest in Papua Guina at
1989 (left) and 2000 (right). Red boxes identify the subframe used for the experiment,
and green boxes identify the regions with higher associated weight in the weighted
`1 recovery. Image belongs to the Royal Society for the Protection of Birds and was
taken from an article on deforestation in the Guardian archive [sta].

applied `1 minimization to recover the difference image over the subframe (subset of

the original images) identified by the red rectangles in Figure 6.7. In addition, we

also implemented the reweighted `1 minimization of Algorithm 4, with k = 0.1n (n

being the total number of frame pixels), which assumed no prior knowledge about

the structural sparsity of the signal or the nonzero coefficients. This value of k was

chosen heuristically, and is close to the actual support size of the signal. The original

size of the image is 275 × 227. We reduced the resolution by roughly a factor of

0.05 for more tractability of `1 solver in MATLAB. In addition, only the gray-scale

version of the difference image was taken into account, and was normalized so that

the maximum intensity is 1. Furthermore, prior to compression, the difference image

was further sparsified by rounding the intensities less than 0.1 to zero. We picked

the weight value ω = 2 for the weighting stage of the reweighted `1 algorithms. The

normalized recovery error is defined to be the sum square of the intensity differences

in the recovered and the original image, divided by the sum square of the original

image intensity, i.e.,
∑

i∈frame(Ii− Îi)2/
∑

i∈frame I
2
i . The average normalized error for

`1 minimization and reweighted `1 minimization is displayed in Figure 6.9a as a func-

tion of δ. The average is taken over 50 realizations of i.i.d. Gaussian measurement

matrices for each δ. As can be seen, the recovery improvement is significant in the

reweighted `1 minimization.
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Figure 6.8: Functional MRI images of the brain at two different instances il-
lustrating the brain activity. Green boxes identify the region with higher
associated weight in the weighted `1 recovery. Image is adopted from
https://sites.google.com/site/psychopharmacology2010/student-wiki-for-quiz-9.
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Figure 6.9: Average normalized recovery error for `1, and reweighted `1 minimization
recovery of the difference between the subframes of (a) a pair of satellite images shown
in Figure 6.7, and (b) the pair of brain fMRI images shown in Figure 6.8. Data is
averaged over different realizations of measurement matrices for each δ.

Another experiment was done on a pair of brain fMRI images taken at two dif-

ferent instances of time, shown in Figure 6.8. Similar to the satellite images, the

objective is to recover the difference image from a succinct set measurements. The

original image size is 271 × 271, and similar preprocessing steps as for the satellite

images were followed before compression. We used `1 minimization and Algorithm 4

with no presumed prior information, with k = 0.1n and ω = 1.3. The average nor-

malized recovery errors are displayed in Figure 6.9b, from which we can infer similar

conclusions as in the case of the satellite images.

6.10 Proof of Theorems

Proof of Lemma 6.6.2

Let a = Ψ( M
2N

). We consider random variables X̂i = |Xi| · 1 (|Xi| > a) for each



192

1 ≤ i ≤ N , where 1 (|Xi| > a) is equal to 1 if |Xi| > a, and is 0 otherwise. Also, let

Ŝ = X̂1 + X̂2 + · · ·+ X̂N . We first note that the empirical average of the X̂is converge

to its expectation. More formally, an application of the Bernstein concentration

inequality (see, e.g., [Mas03]) implies that for every ε′ > 0 and for some c1 > 0, the

following holds:

P
(
|Ŝ/N − E(Ŝ/N)| > ε′

)
< exp(−c1Nε

′). (6.10.1)

On the other hand:

E(Ŝ/N) = EX̂1 = P(|X1| > a) =
√

2/πe−
a2

2 . (6.10.2)

Similarly, for the random variable SN = X1+X2+· · ·+XN , we can write the following

concentration inequality using Chernoff bound for some c2 > 0:

P (|SN/N − E(SN/N)| > ε′) < exp(−c2Nε
′). (6.10.3)

Since E(SN/N) =
√

2/π, this establishes (6.6.13).

Let the random variable M ′ be the number of nonzero X̂is. First of all, note that

Ŝ = SM ′ . The rest of the proof includes the following steps. We prove that SM ′/SN is

concentrated around ESM ′/ESN with high probability. Then we use the fact that M ′

also converges to its expected values, M , to show that SM/SN becomes arbitrarily

close to SM ′/SN . As a result, SM/SN will be concentrated around ESM ′/ESN with

high probability, which is the desired result.

Concentration of SM ′/SN/ is shown by using equations (6.10.2) and (6.10.3) si-

multaneously. Combining the two inequalities, we conclude that:

P

(∣∣∣∣SM ′N
−
√

2/πe−
a2

2

∣∣∣∣ ≤ ε′ and

∣∣∣∣∣SNN −
√

2

π

∣∣∣∣∣ ≤ ε′

)
≥ 1−e−c1Nε′−e−c2Nε′ , (6.10.4)

and thus:

P

(√
2/πe−

a2

2 − ε′√
2/π + ε′

≤ SM ′

SN
≤
√

2/πe−
a2

2 + ε′√
2/π − ε′

)
≥ 1− e−c1Nε′ − e−c2Nε′ , (6.10.5)
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and consequently:

P

(∣∣∣∣SM ′SN
− e−a

2

2

∣∣∣∣ ≤ 2
√

2/π(e−
a2

2 + 1)ε′

2/π − ε′2

)
≥ 1− e−c1Nε′ − e−c2Nε′ . (6.10.6)

If ε′ is sufficiently small, then
2
√

2/π(e−
a2

2 +1)ε′

2/π−ε′2 ≤ αε′, for some constant α > 0. Taking

ε′′ = αε′, α1 = c1/α, and α2 = c2/α, we can say that for sufficiently small ε′′ the

following holds:

P
(∣∣∣∣SM ′SN

− e−a
2

2

∣∣∣∣ ≤ ε′′
)
≥ 1− e−α1Nε′′ − e−α2Nε′′ . (6.10.7)

Now we show that the quantity
|SM−SM′ |

SN
will be arbitrarily small for large N . To

do so, assume without loss of generality that |X1| ≥ |X2| ≥ · · · ≥ |XN |, and that

M1 = min(M,M ′), and M2 = max(M,M ′). We then have:

|SM − SM ′| = |XM1+1|+ |XM1+2|+ · · ·+ |XM2|, (6.10.8)

and

|SN | = |X1|+ |X2|+ · · ·+ |XN |

≥ |X1|+ |X2|+ · · · |XM1|

≥ (N −M1)|XM1|

≥ N −M1

M2 −M1

|SM2 − SM1| (6.10.9)

≥ N −M
|M −M ′| |SM − SM ′|. (6.10.10)

Note that equation (6.10.9) holds because |XM1| is larger than all the values |XM1+1|,|XM1+2|,. . . ,|XM2|,
and is therefore larger than their mean. It directly follows from (6.10.10) that:

|SM − SM ′ |
SN

≤ |M
′ −M |

N −M . (6.10.11)

Therefore, to show the concentration of the left-hand side in the above inequality,

it suffices to show that |M
′−M |

N−M concentrates. Since the variables X ′i = 1 (|Xi| > a)



194

are independent Bernoulli random variables with probability 2Q(a) = M
N

of being

nonzero, a Chernoff concentration bound on their empirical average implies that

P(

∣∣∣∣∑n
i=1X

′
i

N
− EX ′

∣∣∣∣ ≤ ε′′′) ≥ 1− e−c3ε′′′N , (6.10.12)

for some c3 > 0, and for every ε′′′ > 0, where X ′ has the same distribution as all X ′is.

Noting that
∑n

i=1X
′
i = M ′ and EX ′ = M/N , the above implies that:

P(
|M −M ′|

N
≤ ε′′′) = P(

|M −M ′|
N −M ≤ 1

1−M/N
ε′′′) ≥ 1− e−c3ε′′′N . (6.10.13)

If the ratio M/N is kept constant, the quantity ε′′′

1−M/N
will be smaller than any ε̃ > 0

as ε′′′ becomes arbitrarily small, which shows the concentration of |M−M
′|

N−M . Using this

and the inequality of (6.10.11) we can conclude that
|SM−SM′ |

SN
≤ ε̃ with probability

1− e−α3ε̃N for some constant α3 > 0. Combining this latter conclusion with (6.10.7),

it follows that:

P
(∣∣∣∣SMSN − e−a22

∣∣∣∣ ≤ ε′′ + ε′′′
)
≥ 1− e−α1Nε′′ − e−α2Nε′′ − e−α3Nε̃. (6.10.14)

Consequently, we conclude that if ε is sufficiently small, the following holds:

P
(∣∣∣∣SMSN − e−a22

∣∣∣∣ ≤ ε

)
≥ 1− 3e−cNε, (6.10.15)

for some c > 0, which concludes the proof of (6.6.14).

Proof of Lemma 6.6.4

Let β = 1 − 2Q(
√
−2 log(1− α)), and without loss of generality assume that the k

nonzero values of x are x1, x2, . . . , xk, with |x1| ≤ |x2| ≤ · · · ≤ xk. In order to show

that W (x, α‖x‖1) < k(β+ ε), it suffices to show that
∑k(β+ε)

i=1 |xi| > α‖x‖1. Applying

the order statistic result of Lemma 6.6.2, we have that with high probability:∑k(β+ε)
i=1 |xi|∑k
i=1 |xi|

≈ 1− exp(−Ψ(1−β−ε
2

)

2
) > 1− exp(−Ψ(1−β

2
)

2
) = f, (6.10.16)

which concludes the proof.
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6.11 Conclusion

We introduced a new two-step reweighted `1 minimization for the recovery of linearly

compressed sparse signals. We proved that for sparse signals, the nonzero entries of

which are drawn from a broad class of continuous distributions, the proposed algo-

rithm achieves a recovery threshold strictly better than that of `1 minimization. Our

theoretical analysis predicts that the performance improvement strongly depends on

the distribution of the nonzero entries, and should be better for distributions with a

smaller non-vanishing order of derivative at the origin. This was very closely verified

by our numerical simulations. For distributions with no finite order non-vanishing

derivative at origin, our analysis does not predict any improvement in the perfor-

mance. This is also the case in practice: For ternary signals with nonzero values

equal to ±1, no improvement is observed in the empirical recovery threshold over the

regular `1 minimization. Our analysis was based on random Gaussian measurement

matrices, and the robustness results of `1 minimization. Possible related future re-

search could address other measurement matrix ensembles, and the development of

reweighted algorithms that can universally improve the recovery performance of linear

programming. On the other hand, the improvement predictions using our theoretical

tools are not tight, due to upper bounding techniques and worst-case considerations

in various parts of our proofs, especially in predicting the approximate support re-

covery potential of `1 minimization. Future work can concentrate on tightening these

bounds through more clever techniques, and consequently achieving more promising

performance guarantees for reweighted linear programming.
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Chapter 7

LP Decoding for Error-Correction

Codes

The last part of this dissertation addresses extensions and connections of the methods

of the previous chapters to problems beyond sparse vector recovery. Specifically,

in this chapter, we study channel coding using LDPC codes, and discuss a novel

iterative LP decoding algorithm, the basic idea for which is driven by similar ideas in

compressed sensing discussed in Chapter 6. In doing so, we introduce the concept of

robustness for LP decoding and, in a very similar fashion to the standard `1 regression

for compressed sensing, we prove that LP decoding can provide approximate error set

estimation for an unknown binary codewords. In the next chapter, we study the low-

rank matrix recovery problem, and show that there is a natural extension of expander

graphs to linear operators that act on matrices. We call the resulting measurements

subspace expanders. We show that in the first place such objects exist, and that

they lend themselves to combinatorial-type recovery algorithms for low-rank matrix

recovery, in very much the same way that expander graphs do in compressed sensing.

197
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Encoder 
m x y x,m ^ ^ 

Decoder Channel 

Figure 7.1: Schematics of a channel coding scheme

C binary linear error correcting code

n codeword length

R code rate

H parity check matrix of C
G Tanner graph of C
P fundamental (marginal) polytope of C
γ log-likelihood ratio vector

x(c) codeword of C
x(r) output vector of the channel

x(p) pseudo-codeword solution of LP decoding

Γ(S) set of the neighbors of S

7.1 Introduction

Error control coding was introduced in 1940s (presumably pioneered by Hamming)

and, along with the invention of information theory, was recognized as a means of

achieving the information theoretic capacity of communication channels (a.k.a. chan-

nel coding) and increasing the reliability of information processing systems. Today,

error detection and correction codes are used in almost every digital system from

cellular transceivers to Blu-ray discs and flash memories. The schematic of an error

correcting system used at the front ends of a communication channel is shown in

Figure 7.1. The idea is that the “message” m that contains information is “encoded”

to form x, possibly by adding redundancy to protect it against error that is caused

by the channel. If the encoding scheme is good enough, the decoder’s approximation,

x̂, would be equal to x, and thus the message can be retrieved perfectly.

Error correcting codes are of two main types: Block codes and convolutional (tree)

codes. Block codes consist of blocks of symbols called “codewords” the collection
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of which form a “codebook”. Examples of block codes are Hamming, Hadamard,

BCH, Reed-Solomon, LDPC codes, etc. On the other hand, convolutional codes are

generated based on sequential encoding of the message by convolving it with an input

impulse response. The most highlighted example of convolutional codes is the family

of turbo codes [BGT93], used widely in wireless and satellite communications.

Block codes can be linear or nonlinear. Codewords of linear block codes are

defined over finite fields. Every codeword is a vector of length n that belongs to

a finite (Galios) field Fn (such as the binary field), and is closed under the addition

operator (i.e., the linear addition of every two codewords in the codebook form another

codeword). n is called the code length. In contrast, nonlinear codes can have variable

block lengths. BCH (Bose Chaudhuri Hocquenghem) codes, Reed-Solomon codes,

and low density parity check (LDPC) codes are all binary linear codes, and examples

of interesting nonlinear codes are the Levenshtein and Delsarte-Goethals codes.

In particular, LDPC codes are a family of linear block codes that have become very

popular because of their asymptotic near-Shannon-capacity-achieving property1 and

modern non-algebraic decoding schemes. These codes were introduced by Galager in

his thesis in the 1960s [Gal63], but were revisited with a great deal of interest in the

late 1990s [MN99], when they were shown to have a performance very competitive

with the convolutional Turbo codes.

Unlike analytic codes and similar to Turbo codes, most efficient decoders for LDPC

codes are iterative, and are based on message-passing algorithms such as the bit

flipping algorithm [Gal63], or belief-propagation-type algorithms such as the min-sum

or sum-product methods [Wym07]. Exact analysis of belief propagation algorithms for

LDPC codes is cumbersome. Many efforts have been taken with this aim, including

the density evolution technique of [LMSS98, RU01]. However, in most cases, the

analysis is limited to asymptotically large block lengths and is valid with the condition

1It is now known that Polar codes can achieve the capacity of binary symmetric memory-less
channels [Ari09].
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of some simplifying assumptions such as cycle-free Tanner graphs. It is worthwhile to

mention that belief-propagation decoding techniques are now widely used and studied

outside the context of error-correcting in other statistical inference problems, hidden

Markov and graphical models, and by researchers of particle physics and statistical

mechanics (see, e.g., [Fre98]).

A more systematic treatment of LDPC decoding became available with the intro-

duction of linear programming (LP) decoding techniques by Feldman, Karger, and

Wainwright [Fel03, FWK05]. The method is based on solving a linear-programming

relaxation of an integer program that corresponds to finding the codeword of maxi-

mum likelihood, i.e., maximum-likelihood (ML) decoding. LP decoding is connected

(but not equivalent) to message-passing decoding [FKW02, WJW02] and graph cov-

ers [KV03, VK06], and has received substantial recent attention (see, e.g., [VK06],

and [TS06]). The practical performance of LP decoding is roughly comparable to min-

sum decoding and slightly inferior to sum-product decoding. In contrast to message-

passing decoding, however, the LP decoder either concedes failure on a problem,

or returns a codeword along with a guarantee that it is the ML codeword, thereby

eliminating any undetected decoding errors.

A related line of work has studied various improvements to either standard itera-

tive decoding [Fos01, PNF04] or to LP decoding via nonlinear extensions [YFW06] or

loop corrections [CC06], or via heuristics such as facet guessing [DGW09] or mixed

integer iteration [DYW07]. Understanding the dynamics of LP decoding for LDPC

codes and improving upon them is, therefore, a highly motivated task.

In this chapter, we consider the possibility of improving upon the LP decoding for

binary-input-binary-output channels, by using ideas from compressed sensing. This

is a somewhat reverse path (and not intuitive!), as most results in the literature

have focused on adopting channel coding methodology and using it over the real

numbers to sparse recovery. We elaborated on this point in Chapter 3, where we

showed that LDPC matrices of large girth can be used as measurement matrices for
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sparse recovery, and proved near-optimal recovery thresholds using the Basis Pursuit

algorithm. However, the focus of this chapter is on the channel coding problem itself.

7.2 Contributions

We introduce a novel algorithm for decoding binary linear codes by linear program-

ming. The algorithm is build upon the LP decoding algorithm of Feldman et al.,

with additional post-processing steps. If the LP decoder fails to retrieve a valid inte-

ger codeword, a second linear program is used with a reweighted objective function

based on the outcome of the original LP decoder. It might sound trivial to the astute

reader at this point that the idea for this method was inspired by the reweighted Basis

Pursuit method introduced in Chapter 6 in the context of compressed sensing. Our

analysis shows that for some LDPC ensembles we can improve the provable threshold

guarantees compared to standard LP decoding. We also show significant empirical

performance gains for the reweighted LP decoding algorithm with very small addi-

tional computational complexity.

The main idea of the technique is to add a second LP as a post-processing step

when original LP decoding fails and outputs a fractional pseudo-codeword. We use

the difference between the input channel likelihood and the pseudo-codeword coor-

dinate to find a measure of disagreement or unreliability for each bit. We subse-

quently use this unreliability to bias the objective function and re-run the LP with

the reweighted objective function. The reweighting increases the cost of changing

reliable bits and decreases the cost for unreliable bits. We present an analysis that

the provable recovery thresholds for binary bit-flipping channels improve for certain

families of LDPC codes. We stress that the actual thresholds, even for the original

LP decoding algorithm, remain unknown. Our analysis only establishes that the ob-

tainable lower bounds on the fraction of recoverable errors are improved compared to

the corresponding bounds for LP decoding. It is possible, however, that this is just
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an artifact of the lower bounding techniques and that the true threshold is identical

for both algorithms. In any case, the empirical performance gains we observe in our

preliminary experimental analysis seem quite substantial.

A central idea in our analysis is the notion of robustness to changes in the bi-

nary channel bit-flipping probability. As with the proposed algorithm itself, this

concept was inspired by a similar notion in compressive sensing [CWB08, KXAH10],

elaborated and used in Chapter 6. We note that the reweighting idea discussed in

this chapter involves changing the objective function of the linear program from the

reweighted max-product algorithm [WJW05].

7.3 Preliminaries

The rate of a linear binary code C is denoted by R, and is defined as the ratio of

the codeword length to the message length. More specifically, if the parity check

matrix of C is H ∈ Fm×n2 , then n is the length of each codeword in C, m is the length

of the message mapped to a codeword, and R = m
n

. The Tanner (factor) graph

corresponding to C is denoted by G = (Xv, Xc, E), where Xv and Xc are the sets of

variable nodes and check nodes, respectively, and E is the set of edges. The parity

check matrix H of a code C is in fact the adjacency matrix of the bipartite Tanner

graph G. For a variable node v ∈ Xv, the set of the neighbors of v in Xc is denoted

by Γ(v). Similarly, for a check node c ∈ Xc, the set of the neighbors of c in Xv

is denoted by Γ(c). Furthermore, for a subset F of the nodes of a Tanner graph G
(either variable or check nodes), Γ(F ) denotes the set of the neighbors of the nodes

in F . For regular Tanner graphs, dv and dc denote the degree of variable and check

nodes, respectively. The girth of a graph G, denoted by girth(G), is defined to be the

size of the smallest cycle in G.

A memoryless channel C is one that acts on every bit of the input sequence

individually. For a channel with binary input and an output alphabet Y , a set of
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transition probabilities PY |X(y|x) are defined that determine the probability of the

input symbol getting mapped to different output symbols. For a received symbol y,

we can define a log likelihood ratio as log(
PY |X(y|x=0)

PY |X(y|x=1)
), where x is the transmitted

symbol. If a codeword x(c) of length n from the linear code C is transmitted through

the channel, and an output vector x(r) is received, a maximum likelihood decoder can

be used to estimate the transmitted codeword by finding the most likely transmitted

input codeword. Let γi be the likelihood ratio assigned to the ith received bit in x
(r)
i ,

and γ be the likelihood vector γ = (γ1, · · · , γn)T . The ML decoder can be formalized

as follows [Fel03]:

ML decoder: minimize γTx

subject to x ∈ conv(C), (7.3.1)

where conv(C) is the convex hull of all the codewords of C in Rn. The linear program

(7.3.1) solves the ML decoding problem by the virtue of the fact that the objective

γTx is minimized at a corner point (a.k.a. vertex) of conv(C), which is necessarily a

codeword. In fact, the set of vertices of conv(C) is equal to set of the codewords of C.
Since decoding for general linear codes is NP hard, it is unlikely that conv(C) can be

efficiently described through a polynomial number of linear (or convex) inequalities.

Feldman et al. introduced a relaxation of (7.3.1) by replacing the polytope conv(C)
with a new polytope P that has much fewer facets, contains conv(C), and retains the

codewords of C as its vertices [Fel03]. One way to construct P is the following. If the

parity check matrix of C is the m× n matrix H and if hTj is the jth row of H, then

P = ∩1≤j≤mconv(Cj), (7.3.2)

where Cj = {x ∈ Fn | hTj x = 0 mod 2}. P is called the LP polytope or the marginal

polytope for the code C, and its vertices are called “pseudo-codewords”, including all

of the codewords in C. In addition, P has other redundant vertices with fractional
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coefficients in [0, 1]n. Moreover, if a pseudo-codeword is integral, i.e., if it has 0 or

1 coefficients, then it is definitely a codeword. The LP relaxation of (7.3.1) over the

marginal polytope is as follows:

LP decoder: minimize γTx

subject to x ∈ P . (7.3.3)

The number of facets of P is exponential in the maximum Hamming weight of

a row of H, and polynomial in m. Therefore, for LDPC codes with constant row

density, P has a polynomial number of facets. Consequently, (7.3.3) is solvable in

polynomial time.

For channels with binary outputs, (7.3.3) can be expressed in a more intuitive way.

In this case, minimizing the log-likelihood objective γTx is equivalent to minimizing

the Hamming distance between the codeword x and the output of the channel, x(r).

Furthermore, since the coefficients of pseudo-codewords in the marginal polytope

are in [0, 1], we may replace the Hamming distance dH(x,x(r))with the `1 distance

‖x− x(r)‖1. This implies that the decoder (7.3.3) is equivalent to

BSC-LP decoder: minimize ‖x− x(r)‖1

subject to x ∈ P . (7.3.4)

The above formulation can be interpreted as follows: For a received output binary

vector x(r), the solution to the LP decoder is essentially the closest (in `1 norm)

pseudo-codeword to x(r).

Linear programming decoding was first introduced by Feldman et al. [Fel03,

FWK05]. Subsequently [FMS+07] it was shown that if the parity check matrix is

chosen to be the adjacency matrix of a high-quality expander, LP decoding can correct

a constant fraction of errors. A fundamental lemma in [FWK05] and used in the



205

results therein, is that the marginal polytope P has the same topology seen from

every codeword. Consequently, for the analysis of LP decoding, it can be assumed

without loss of generality that the transmitted codeword is the all-zero codeword.

The theoretical results of [FMS+07] were based on a dual witness argument, i.e.,

a feasible set of variables which set the dual of LP equal to zero, and thus guaran-

tees that the original codeword is the minimizer of the objective function over the

entire marginal polytope. However, the bounds on success threshold of LP decod-

ing achieved by this technique are considerably smaller than the empirical recovery

thresholds of LP decoder in practice. A later analysis of LP decoding by Daskalakis

et al. [DDKW08] improved upon those bounds for random expander codes, through

employing a different dual witness argument, and considering a “weak” notion of LP

success rather than the “strong” notion of [FMS+07]. A strong threshold means that

every set of errors of up to a certain size can be corrected, whereas a weak threshold

implies that almost all error sets of a certain size are recoverable. Note that there

is a gap of about one order of magnitude between the error-correcting thresholds of

[DDKW08] and those observed in practice.

The arguments of [FMS+07] and [DDKW08] are based on the existence of dual

certificates that guarantee the success of the LP decoder and require codes that are

based on bipartite expander graphs. A more recent work of Arora et al. uses a quite

different certificate based on the primal LP problem [ADS09]. This approach results

in fairly easier computations and significantly better thresholds for LP decoding.

However, the underlying codes discussed in [ADS09] are based on factor graphs with

a large girth (at least doubly logarithmic in the length of the codewords, n), rather

than unbalanced expanders considered in previous arguments. Note that similar to

[DDKW08], the bounds of [ADS09] are weak bounds, certifying that for a random set

of errors up to a fraction of code length, LP decoding succeeds with high probability,

for sufficiently large n. The largest such fraction is called the weak recovery threshold.

The arguments of this chapter are based on the systematic connections between
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the problems of channel-coding LP and compressed sensing `1 relaxation developed

in [DV09, DSV]. We build on those bridges to improve LP decoding, and further

extend the ideas of robustness and reweighted `1 minimization in compressed sensing

to channel-coding LP.

7.4 Extended Certificate and Robustness of LP

Decoder

The success of LP decoder is often certified by the existence of a “dual witness”

[FMS+07, DDKW08]. Similarly, for `1 minimization in the context of CS, a dual

witness certificate can guarantee that the recovery of sparse signals is successful

[CT05]. However, it has proven more promising to express the success condition

of `1 minimization in terms of the properties of the null space of the measurement

matrix [DH01, SXH08, CDD08]. The condition is called the “null space property”,

through which it is possible to characterize one class of “good” measurement ma-

trices for CS, namely matrices that are congruent with `1 minimization decoding.

The advantage of the null space interpretation, apart from the fact that it results in

sharper analytical bounds, is that with proper parametrization it can also be used to

evaluate the performance of `1 minimization in the presence of noise. This is known

as the “robustness” of `1 minimization. A consequence of the robustness property

is that when `1 minimization fails to recover a sparse signal, it often gives a decent

approximation to it [KXAH10]. To the best of our knowledge, a similar certificate has

not been introduced in the context of channel-coding linear programming. In other

words, when LP decoding fails to return an integral solution, it is not known how

close the resulting pseudo-codeword is to the original codeword. We answer this ques-

tion in the following way: We introduce a property of arbitrary linear codes C called

fundamental cone property (FCP), and show that for communication channels with

binary outputs, FCP is related to the robustness of the solution of the LP decoder
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over the marginal polytope of the considered code. The robustness of LP decoding

has two consequences. First, it implies that the linear program is tolerant to limited

mismatch in implementation. Second, it implies that the pseudo-codeword obtained

by LP decoding provides additional probabilistic information about the structure of

the bit errors in the form of additional bit-flip reliability. This information can be

utilized in further processing steps, such as reweighted linear program to improve the

overall performance of the decoder. We discuss these issues in the following sections.

Definition 18. Let H be a parity check matrix. Define J and I to be the set of

rows and columns of H. Also, for each j ∈ J , define Ij = {i ∈ I | H(j, i) = 0}.
The fundamental cone, K(H), of H is the set of all vectors ω = (ω1, ω2, . . . , ωn)T that

satisfy

ωi ≥ 0, ∀1 ≤ i ≤ n, (7.4.1)

ωi ≤
∑
i′∈Ij\i

ωi′ , ∀j ∈ J ∀i ∈ Ij. (7.4.2)

K(H) is the smallest cone in Rn that encompasses the polytope P . If a vector lies on

an edge of K, it is called a “minimal pseudo-codeword”. For simplicity, in the sequel,

we use K instead of K(H) whenever there is no ambiguity.

Definition 19. Let S ⊂ {1, 2, · · · , n} and C ≥ 1 be fixed. A code C with parity

check matrix H is said to have the fundamental cone property FCP(S,C) if for every

nonzero vector ω ∈ K(H), the following holds:

C‖ωS‖1 < ‖ωSc‖1. (7.4.3)

If for every index set S of size k, C has the FCP(S,C), then we say that C has the

fundamental cone property FCP(k, C).

In the next lemma we show how the FCP can be used to evaluate the performance

of an LP decoder, even when it fails to recover the true codeword. The key assumption
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here is that the channel is a bit-flipping channel, i.e., the channel output has binary

format.

Lemma 7.4.1. Let C be a code that has the FCP(S,C) for some subset S of bits and

some C ≥ 1. Suppose that a codeword x(c) from C is transmitted through a bit-flipping

channel, and the received codeword is x(r). If the nonzero pseudo-codeword x(p) is the

output of the LP decoder for the received codeword x(r), then the following holds:

‖x(p) − x(c)‖1 < 2
C + 1

C − 1
‖(x(r) − x(c))Sc‖1. (7.4.4)

Proof. Without loss of generality, we may assume that the all-zero codeword was

transmitted, i.e., x(c) = 0. We have

‖x(r)
S ‖1 + ‖x(r)

Sc ‖1 = ‖x(r)‖1

(a)

≥ ‖x(p) − x(r)‖1

= ‖(x(p) − x(r))S‖1 + ‖(x(p) − x(r))Sc‖1

(b)

≥ ‖x(r)
S ‖1 − ‖x(p)

S ‖1 + ‖x(p)
Sc ‖1 − ‖x(r)

Sc ‖1. (7.4.5)

(a) is true because from (7.3.4), ‖x(p)− x(r)‖1 ≤ ‖x(c)− x(r)‖1. Also (b) holds by the

triangular inequality. Note that x(p) ∈ K(H), so by definition, C‖x(p)
S ‖1 < ‖x(p)

Sc ‖1.

This implies that

‖x(p)
Sc ‖1 − ‖x(p)

S ‖1 >
C − 1

C + 1
‖x(p)‖1. (7.4.6)

Applying this to the left-hand side of (7.4.5) we obtain

2
C + 1

C − 1
‖x(r)

Sc ‖1 > ‖x(p)‖1, (7.4.7)

which is the desired result.
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Note that Lemma 7.4.1 can serve as a certificate for the success of LP decoder. More

specifically, let S be the index set of the flipped bits in the transmitted codeword,

i.e., the set of bits that differ in x(r) and x(c). If FCP(S,C) holds for some C > 1,

then Lemma 7.4.1 implies that LP decoding can successfully recover the original

codeword. Now suppose that the error set (i.e., the set of flipped bits) is a superset

of S, with cardinality slightly larger than |S|. Then the vector (x(r) − x(c))Sc has a

few (but not too many) nonzero entries. Therefore, even if the LP decoder output

x(p) is not equal to the actual codeword, it is still possible to obtain an upper bound

on its `1 distance to the unknown codeword. We recognize this as the robustness

of LP decoder, and characterize it by FCP(S,C) for C > 1. We define two notions

of robustness here. Strong robustness means that for every set S of up to some

cardinality k, the FCP(S,C) holds. Equivalently, this means that FCP(k, S) holds.

Weak robustness on the other hand, is an almost all notion, meaning that for a

random set S of up to a certain size k, the FCP(S,C) holds with high probability. In

the next section we present a thorough analysis of LP robustness for two categories

of codes: expander codes and codes with Ω(log log n) girth. For these two classes

of codes, rigorous analysis has been done on the performance of LP decoders in

[FMS+07, DDKW08, ADS09]. We build on the existing arguments to incorporate

the robustness condition and analyze the fundamental cone property.

7.5 Sufficient Conditions for LP Robustness

In most cases, if there exists a certificate for the success of LP decoder, it can be often

extended to guarantee that the LP decoder is robust, namely that the FCP condition

is satisfied for some C > 1. By carefully re-examining the analysis of LP decoder,

one might be able to make such a generalization. This is the main focus of this

section. We consider three major methods that exist in the literature for analyzing

the performance of LP decoders. The first one is due to Feldman et al. [FMS+07],
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and is based on using a dual-witness type of argument to certify the success of LP

decoder for expander graphs. The second one is due to Daskalakis et al. [DDKW08],

which also considers linear programming decoding in expander codes. Specifically,

[DDKW08] analyzes the dual of LP and finds a simple combinatorial condition for

the dual value to be zero (implying that the LP decoder is successful). The condition

is essentially equivalent to the existence of a so-called “hyperflow” from the set of

nodes corresponding to flipped bits to the set of nodes corresponding to unflipped

bits in the Tanner graph of the code. The existence of a valid hyperflow can be

secured by the presence of so-called (p, q)-matchings. It then follows from a detailed

series of probabilistic calculations that (p, q)-matchings of interest exist for certain

expander codes. The main difference between this analysis and that of [FMS+07] is

the probabilistic nature of the arguments in [DDKW08], which account for the weak

recovery threshold.

A third analysis of the LP decoder was done by Arora et al., [ADS09], which

is based on factor graphs with a doubly logarithmic girth. Unlike previous dual

feasibility arguments, the authors in [ADS09] introduce a certificate in the primal

domain which is of the following form: If, in the primal LP problem, the value of the

objective function for the original codeword is smaller than its value for all vectors

within a local deviation from the original codeword, then LP decoder succeeds. Local

deviations are defined by weighted minimal local trees whose induced subgraphs are

cycle-free. These concepts are explained in detailed in the sequel.

7.5.1 Strong LP Robustness for Expander Codes

Strong thresholds of LP decoding for expander codes are derived in [FMS+07], through

the use of the dual of the linear program (7.3.3). Assuming that the all-zero codeword

was transmitted, showing that it is the optimal solution to the LP decoding is equiv-

alent to the log-likelihood vector γ being an internal point of the dual of the cone K.

This can be easily verified by the definition of the dual cone and the formulation of
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(7.3.3). In [FMS+07] it is shown that the existence of a set of dual feasible variables is

a sufficient condition for γ being an internal point of the dual of K. Here, we take the

notion of dual feasible variables and relate it to robustness of LP decoding through

the FCP property. Recall that the factor graph of C is denoted by G = (Xv, Xc, E).

A dual feasible set is defined as follows.

Definition 20. For a given log likelihood vector γ = (γ1, γ2, . . . , γn)T , a set of dual

feasible variables is a labeling of the edges of the factor graph G, e.g., {τij | vi ∈
Xv cj ∈ Xc}, where the following two conditions are satisfied:

i) For every check node cj ∈ Xc and every two disjoint neighbors of cj, e.g.,

vi, vi′ ∈ Γ(cj), we have τij + τi′j ≥ 0.

ii) For every variable node vi ∈ Xv, we have
∑

cj∈Γ(vi)
τij < γi.

We now show how a set of dual feasible variables can certify FCP properties for a

code. The key is the following lemma, which will be proved in Section 7.9.

Lemma 7.5.1. Suppose that a set of dual variables satisfy the feasibility conditions

(Definition 20) for some log-likelihood vector γ. Then for every vector ω ∈ K(C), the

following holds ∑
1≤i≤n

γiωi > 0. (7.5.1)

Now consider a subset S of the bits and a constant C > 1, and let the vector γ(S,C) =

(γ
(S,C)
1 , γ

(S,C)
2 , . . . , γ

(S,C)
n )T be defined as follows:

γ
(S,C)
i =

{
−C i ∈ S
1 i ∈ Sc

, 1 ≤ i ≤ n. (7.5.2)

Then it follows immediately from Lemma 7.5.1 and the definition of FCP that:

Corollary 7.5.2. If a set of dual feasible variables exists for γ(S,C), then FCP(S,C)

holds.



212

Consequently, whenever an appropriate set of dual feasible variables exist, certain

robustness conditions can be asserted for LP decoding. The existence of dual feasible

sets were originally (and only, to the best of the authors’ knowledge) proposed for the

family of expander codes in [FMS+07]. Pursuing similar techniques, we can generalize

the arguments for construction of dual feasible variables and obtain FCP properties

for expander codes as follows. For the consistency and completeness of the discussions,

we first mention the definition of expander graphs (codes).

Definition 21. Let G = (Xv, Xc, E) be a bipartite Tanner graph with regular variable

degree dv. G is called a (k, εdv)-expander for 1 ≤ k < |Xv| and 0 < ε < 1 if for every

subset F ⊂ Xv of size less than or equal to k, |Γ(F )| ≥ εdv|F |.

The following theorem is proved in Section 7.9.

Theorem 7.5.3 (Strong Robustness of LP for Expanders). Let G be the factor graph

of a code C of length n and rate R = m
n

. If G is a bipartite (αn, δdv)-expander graph

for some δ > 2/3 + 1/(3dv), then for t = 3δ−2
2δ−1

α and 1 ≤ C < 2δ−1
2δ−1−1/dv

, FCP(S,C)

holds.

7.5.2 Weak LP Robustness for Expander Codes

We show that for random expander codes a probabilistic analysis similar to the dual

witness analysis of [DDKW08] can be used to find the extents of the fundamental cone

property for expander codes, in a weak sense. We rely on the matching arguments

of [DDKW08], with appropriate adjustments. The following definition is given in

[DDKW08].

Definition 22. For nonnegative integers p and q, and a set F of variable nodes, a

(p, q)-matching on F is defined by the following conditions:

(a) Every variable node vi ∈ F must be matched with p distinct check nodes, and
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(b) Every variable node vi′ ∈ F c must be matched with

Xi′ := max{q − dv + Zi′ , 0} (7.5.3)

check nodes in the set Γ(F ) which are different from the check nodes that the

nodes in F are matched to, where Zi′ is defined as Zi′ := |Γ(vi′) ∩ Γ(F )|.

We prove the following theorem that relates the existence of a (p, q)-matching to

the fundamental cone property of a code C. This theorem is proved in Section 7.9.

Theorem 7.5.4 (Weak Robustness of LP for Expanders). Let C be a code of rate R

with a bipartite factor graph G = (Xv, Xc, E) where every variable node has degree dv.

Let S be a subset of the variable nodes. If a (p, q)-matching on S exists in G, then C
has the FCP(S, 2p−dv

dv−q ).

7.5.3 Weak LP Robustness for Codes with Ω(log log(n)) Girth

Recall that G = (Xv, Xc, E) is used to denote the factor graph of the parity check

matrix H (or of code C), where Xv and Xc are the sets of variable and check nodes,

respectively, and E is the set of edges. Also recall that the girth of G is defined

as the size of the shortest cycle in G. Without loss of generality, we assume that

Xv = {v1, v2, · · · , vn}, where vi is the variable node corresponding to the ith bit of the

codeword. Let T ≤ 1
4
girth(G) be fixed. The following notions are defined in [ADS09].

Definition 23. A tree T of height 2T is called a skinny subtree of G if: it is rooted

at some variable node vi0, for every variable node v in T all the neighboring check

nodes of v in G are also present in T , and for every check node c in T exactly two

neighboring variable nodes of c in G are present in T .

Definition 24. Let w ∈ [0, 1]T be a fixed vector. A vector β(w) is called a minimal

T -local deviation if there exists a skinny subtree of G of height 2T (e.g., T ), such that
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for every variable node vi, 1 ≤ i ≤ n,

β
(w)
i =

 whi if vi ∈ T \ {vi0}
0 otherwise

,

where hi = 1
2
d(vi0 , vi).

The key to the derivations of [ADS09] is the following lemma.

Lemma 7.5.5 (Lemma 1 of [ADS09]). For any vector z in the marginal polytope P,

and any positive vector w ∈ [0, 1]T , there exists a distribution on the minimal T -local

deviations β(w) such that

Eβ(w) = αz

where 0 < α ≤ 1.

Lemma 7.5.5 has the following interpretation. If a linear property holds for all minimal

T -local deviations (e.g., f(β(w)) > 0, where f(·) is a linear operator), then it also

holds for all pseudo-codewords of the marginal polytope (i.e., f(z) > 0 ∀z ∈ P).

Interestingly enough, the robustness of LP decoding over a subset S of entries has a

linear certificate, namely FCP(S,C).2 In other words, if we define:

f
(S)
C (x) =

∑
i∈Sc

xi − C
∑
i∈S

xi,

then FCP(S,C) holds if and only if f
(S)
1 (z) > 0 for every pseudo-codeword z ∈ P .

On the other hand, based on Lemma 7.5.5, in order to show that this condition holds,

it suffices to show that it is true for all minimal T -local deviations. In other words,

one has to prove that f
(S)
C (β(w)) > 0 for all minimal T -local deviations β(w). This

simple observation helps us extend the probabilistic analysis of [ADS09] to robustness

results for LP decoding. The key theorem is mentioned below while its proof can be

found in Section 7.9. First we define ηC to be a random variable that takes the value

2Note that this is only true for bit-flipping channels, where the output alphabet is F2.
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−C with probability p and value 1 with probability 1− p. Also, define the sequences

of random variables Xi, Yi, i ≥ 0, in the following way:

Y0 = ηC ,

Xi = min{Y (1)
i , . . . , Y

(dc−1)
i } ∀i > 0,

Yi = 2iηC +X
(1)
i−1 + · · ·+X

(dv−1)
i−1 ∀i > 0,

(7.5.4)

where X(j)s are independent random variables with the same distribution as X.

Theorem 7.5.6 (Weak Robustness of LP for High Girth Codes). Let C be an LDPC

code with length n, Tanner graph G, and regular check and variable degrees dc and dv,

respectively. Also Let 0 ≤ p ≤ 1/2, and S be a random subset of bits of size pn. If

for some j ∈ N,

c = ζ1/(dv−2) min
t≥0

Ee−tXj < 1,

where ζ = (dc − 1)C+1
C

( p·C
1−p)1/(C+1)(1 − p) < 1, then with probability at least 1 −

O(n)cdv(dv−1)T−1
the code C has the FCP(S,C), where T is any integer with j ≤ T <

1/4girth(G).

For dc = 6 and dv = 3, a lower bound on the robustness parameter C that results

from Theorem 7.5.6 is plotted against the probability of bit flip p, in Figure 7.2.

7.6 Implications of LP Robustness

7.6.1 Mismatch Tolerance

One of the direct consequences of the robustness of LP decoding is that if there is

a slight mismatch in the implementation of the LP decoder, its performance does

not degrade significantly. More formally, suppose that, due to noise, quantization,
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or some other factor, a mismatched log-likelihood vector γ′ = γ + ∆γ is used to

solve the linear program (7.3.3). In other words, despite the fact that the true log-

likelihood vector γ is given to the decoder, an uncontrolled mismatch ∆γ is introduced

when LP is implemented. This situation can happen, for instance, when a hardware

implementation of the decoder is considered. In that case, ∆γ can be a stochastic

vector resulting from physical imperfections, and is only introduced after the true

log-likelihood vector is given as the input to the decoder. We refer to such decoder as

a “mismatched LP decoder”. Since the channel output is binary, the entries of γ all

have the same amplitude g. We also define δ = maxi |∆γi|, and assume that δ < g.

We can prove the following theorem.

Theorem 7.6.1 (Mismatch Tolerance of LP Decoder). Suppose that S is the set of bit

errors. Let C = g+δ
g−δ . If C has FCP(S,C), then the mismatched LP decoder corrects

all errors and recovers the original codeword.

Proof. We assume without loss of generality that the all-zero codeword is transmitted.

We show that if FCP(S,C) holds, then the all-zero codeword is the minimum cost

vector in the polytope P . Suppose ω is a nonzero vector in the fundamental code K.

We begin with the definition of FCP(S,C) and write

−C
∑
i∈S

ωi +
∑
i∈Sc

ωi > 0. (7.6.1)

Multiply both sides by (g − δ):

−
∑
i∈S

(g + δ)ωi +
∑
i∈Sc

(g − δ)ωi > 0. (7.6.2)

We also know from the definition of δ that γ′i > (g − δ) for i ∈ Sc, and γ′i > −g − δ
for i ∈ Sc, and that ω ≥ 0. Therefore

−
∑

i∈S∪Sc
γ′iωi > 0, (7.6.3)
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which proves that the all-zero codeword is the unique minimum cost solution of the

mismatched LP.

7.6.2 Pseudo-codewords and High-Error-Rate Subsets

We showed in Section 7.4 that for an appropriate code C satisfying FCP, even when LP

decoder fails to recover an actual codeword from the output of a bit-flipping channel,

the reconstruction error can be bounded (see equation (7.4.4)). We now show that this

property allows us to use the output of LP decoder to find a “high-error-rate” subset

of the bits, namely a subset of bits over which the fraction of errors is significantly

larger than the fraction of errors in the entire received codeword. We show that the

size of such subset can be up to a constant fraction of the code length. Obtaining such

importance subset is very crucial, since it provides additional reliability information

about a significant proportion of the bits. Consequently, one can use this reliability

information to bias the objective function and re-run a reweighted LP, or one with

additional soft/hard constraints. This forms the idea for the proposed iterative LP

decoding algorithm which will be outlined in Section 7.7. In this section, we focus

on the derivation of the high-error-rate subset using the robustness results of LP

decoding.

Theorem 7.6.2 (Error Set Approximation of LP). Suppose that a codeword x(c) is

transmitted through a bit-flipping channel, and the output x(r) differs from the input in

a set K of the bits with |K| = p∗(1+ε)n, for some 0 < p∗ < 1 and ε > 0. Also, suppose

that for a subset K1 ⊂ K of size p∗n, FCP(K1, C) holds for the considered code, for

some C > 1, and that the optimal LP solution is the nonzero pseudo-codeword x(p).

If L is the set of the p∗(1 + ε)n largest entries of the vector x(r) − x(p) in magnitude,

then:

|L ∩K|
|L| ≥ 1− 2

C + 1

C − 1
ε. (7.6.4)
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Figure 7.2: Approximate upper bound for the robustness factor C as a function of
error probability p for dc = 6 and dv = 3, based on Theorem 7.5.6

Note that the above theorem provides a lower bound on the the fraction of errors in

the received vector x(r) over the set L. Consequently, if the resulting lower bound

is large enough, the set L can be thought of as a high-error-rate subset of the bits.

Also, note that the size of L is a constant fraction of the code length. Theorem 7.6.2

is proved using the following definition and lemma, as follows.

Definition 25. Let x ∈ Rn be a k-sparse vector. For λ > 0, We define W (x, λ) to

be the size of the largest subset of nonzero entries of x that has `1 norm less than or

equal to λ, i.e.,

W (x, λ) := max{|S| | S ⊆ supp(x), ‖xS‖1 ≤ λ}. (7.6.5)

Here we use Lemma 6.6.1 proved in Chapter 6 which for completeness, we repeat

here.

Lemma 7.6.3 (proved in Chapter 6). Let x be a k-sparse vector and x̂ be another

vector. Also, let K be the support set of x and L be the k-support set of x̂, namely
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the set of k largest entries of x̂. If d = ‖x− x̂‖1, then

|K ∩ L| ≥ k −W (x, d). (7.6.6)

Proof of Theorem 7.6.2. Define k = p∗(1 + ε)n, and apply Lemma 6.6.1 to the k-

sparse vector x(c)−x(r), and the vector x(p)−x(r). If L is the index set of the largest

k entries of x(p) − x(r) in magnitude, then from Lemma 6.6.1 we have

|K ∩ L| ≥ k −W (x(c) − x(r),∆), (7.6.7)

where ∆ = ‖x(c)−x(p)‖1. Since ‖x(r)−x(c)‖ has only ±1 nonzero entries, (7.6.7) can

be written as

|K ∩ L| ≥ k − ‖x(c) − x(p)‖1. (7.6.8)

We use the inequality in (7.4.4) to further lower bound the right-hand side of (7.6.8).

Recall that K1 ⊂ K is such that C has FCP(K1, C). Therefore, we can write:

|K ∩ L| ≥ k − 2
C + 1

C − 1
‖(x(r) − x(c))Kc

1
‖1 (7.6.9)

= k − 2
C + 1

C − 1
(k − p∗n). (7.6.10)

Dividing both sides by k = |L| = |K|, we conclude that at least a fraction 1−2C+1
C−1

ε

of the set L are errors.

7.7 Iterative Reweighted LP Algorithm and Im-

proved Threshold

As stated in Theorem 7.6.2, by examining the deviation of the LP optimal (pseudo-

codeword) and the received vector, it is possible to identify a high-error-rate (HER)
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subset of bits in which the fraction of bit errors is higher than the overall probability

of error. In other words, the code block can be divided into two regions L and Lc,

one with a large fraction of errors, and the other one with a small fraction of errors.

One way this imbalance can be exploited is by using a weighted LP scheme. This is

outlined in the following iterative algorithm.

Algorithm 5 —Reweighted LP Decoding.

1: Input: Marginal polytope P , received binary vector x(r), fixed parameters
λ1 > 0 and λ2 < 0.

2: Output: Approximation x̂ to x(r).
3: Run LP decoding:

min
x∈P
‖x− x(r)‖1 (7.7.1)

4: If the output x(p) is integral terminate, otherwise proceed.
5: Set x(d) := x(r) − x(p).
6: Sort the entries of x(d) in terms of absolute value, and denote by L the index set

of the largest pn entries.
7: Solve the following weighted LP and return the solution as the output:

min
x∈P

λ1‖(x− x(r))L‖1 + λ2‖(x− x(r))Lc‖1. (7.7.2)

Algorithm 5 is only twice as complex as LP decoding. Recall that the subset L

obtained in step 6 of the algorithm is an approximation for the original error set K.

The intuition behind the final reweighted LP decoding step and the choice of λ1, λ2

is as follows. If the majority of the bits in L are believed to be errors, one possible

approach to error correction is to flip all of those bits in the received vector x(r), in

which case the number of the errors will be reduced. If by doing so, the number

of errors in the new vector becomes significantly smaller (namely, if the fraction of

the errors in L is significantly larger than 1/2), it is more likely that LP decoding

can correct all errors. Note that flipping a subset of the bits and re-running LP is

equivalent to negating the log-likelihood ratio assigned with those bits and running

the reweighted LP decoding, which is essentially equivalent to a special case of the

last step of Algorithm 5 with λ1 = −1 and λ2 = 1. However, one might be able to do
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better by selecting the weights more optimally. To see how that might be, one should

consider decoding codewords under non-uniform error rate models. In this case, the

code block can be divided into two regions L and Lc, with respective error fractions

p1 and p2, where, from the previous discussions we assume that p1 >> p2. A similar,

more intuitive model to describe such non-uniformity in the error structure is follows:

suppose that every bit in the set L is an error with probability p1, and every bit in

Lc is an error with probability p2. If we write the maximum likelihood estimation of

the codeword, it will be as equation (7.3.1), except that the vector γ does not just

consist of ±1 entries. The value of γi will be ± log p1
1−p1 if i ∈ L, and ± log p2

1−p2 if

i ∈ Lc. Now if p1 is very close to 1 and p2 is very close to 0, the log likelihood ratio

for a received bit will have opposite signs whether or not it is in the set L. That is

the basic motivation for the choice of negative signs for λ1 and λ2. In practice, one

might have to to try a range of different values for λ1, λ2 depending on the available

estimations on the fractions p1, p2.

In the remainder of this section, we provide preliminary analysis on the perfor-

mance of the proposed method. Ideally, one would be tempted to show that error

correction thresholds of the reweighted scheme are higher than those of regular LP

decoding. We could not show this at this point. Instead, we prove that the recovery

threshold of the proposed reweighted scheme is strictly higher than any “provable

robust” threshold that exists for LP decoding. To formalize the discussion, we first

define the recovery thresholds of LP decoding as follows.

Definition 26 (Recovery thresholds). For a given code C of sufficiently large code

length, “strong recovery threshold” of LP decoding is denoted by p∗s, and is defined as

the largest fraction such that every set of bit errors of size p∗sn is recoverable via LP

decoding. “Weak recovery threshold” is denoted by p∗w, and is defined by the largest

fraction such that almost all sets of bit errors size p∗wn are recoverable via LP. In

contrast, a fraction 0 ≤ p∗sr ≤ 1 is called a “robust strong threshold” of LP decoding,

if for some constant C > 1, and for every subset S of bits of size p∗srn, FCP(S,C)
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holds. Similarly, 0 ≤ p∗wr ≤ 1 is a “robust weak threshold” of LP decoding, if for some

constant C > 1, and for almost all subsets S of bits of size p∗wrn, FCP(S,C) holds.

Our next theorem states that the recovery thresholds of the proposed iterative

method are higher than every robust threshold that one can prove for LP decoding.

Theorem 7.7.1 (Threshold Improvement of Algorithm 5). Let p∗sr and p∗wr be, respec-

tively, a robust strong and a robust weak threshold for a code C. There exist ε1 > 0,

ε2 > 0, λ1 < 0, and λ2 > 0 so that every error set of size (1 + ε1)p∗sd, and almost all

error sets of size (1 + ε2)p∗wd can be corrected by Algorithm 5.

To prove this theorem, we first consider decoding codewords under non-uniform error

rate conditions. Suppose that we somehow know that the code block can be divided

into two regions with different error rates. The following lemma shows that when there

is such additional information about the distribution of bit errors in a codeword, a

biased linear programming decoding can be used.

Lemma 7.7.2. Suppose a codeword x(c) is transmitted through a binary channel. Also

suppose that the bits of x(c) can be divided into two sets L and Lc, so that at least a

fraction p1 of the bits in L are flipped, and at most a fraction p2 of the bits in Lc are

flipped. Then the following optimization program:

min
x∈P
−‖(x− x(r))L‖1 + ‖(x− x(r))Lc‖1, (7.7.3)

can recover x(c), provided that

(1− p1)|L|+ p2|Lc| ≤ p∗sr, (7.7.4)

when 0 < p∗sr < 1 is a robust strong threshold of LP decoding.

Proof. We assume without loss of generality that the all-zero codeword has been

transmitted. We show that if the condition of (7.7.4) holds, then for every nonzero



223

pseudo-codeword x, the objective function in (7.7.3) is larger than that of the all-zero

vector, namely that:

−‖(x− x(r))L‖1 + ‖(x− x(r))Lc‖1 > −‖(x(r))L‖1 + ‖(xr)Lc‖1. (7.7.5)

To see this, suppose that the set of flipped bits is denoted by K. Then (7.7.5) is

equivalent to

−
∑
i∈K∩L

(1−xi)−
∑

i∈Kc∩L

(xi)+
∑

i∈K∩Lc
(1−xi)+

∑
i∈Kc∩Lc

(xi) > −|L∩K|+|Lc∩K|, (7.7.6)

or equivalently: ∑
i∈S

xi >
∑
i∈Sc

xi, (7.7.7)

where S = (K ∩ L) ∪ (Kc ∩ Lc). However, note that if FCP(S,C) holds for some

C > 1, then (7.7.7) is certainly true. On the other hand, since the cardinality of S is

at most (1− p1)|L|+ p2|Lc|, which, by assumption, is less than or equal to p∗sr, then

by definition, for some C > 1, FCP(S,C) holds. This completes the proof.

Proof of Theorem 7.7.1. We set λ1 = −1 and λ2 = 1. Suppose without loss of gener-

ality that the all-zero codeword has been transmitted, and the received binary vector

x(r) has pn errors, where p = (1 + ε0)p∗sr. By definition, FCP(p∗sr, C) holds for some

C > 1. Therefore, if we apply Theorem 7.6.2 to the output of LP, namely x(p), we

conclude that the set L of most pn deviated bits in x(p) with respect to x(r), and

the set S of the errors in x(r), have at least a fraction 1 − 2C+1
C−1

ε1 overlap. Define

p1 = |L∩S|
|L| and p2 = |Lc∩S|

|Lc| . We must have

p1 ≥ 1− 2
C + 1

C − 1
ε0, (7.7.8)

p1|L|+ p2|Lc| = p. (7.7.9)

Therefore, as ε0 → 0, p1 → 1, and p2 → 0. So, for some small enough ε0, the following

will eventually hold

(1− p1)|L|+ p2|Lc| ≤ p∗sr. (7.7.10)
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Thus, according to Lemma 7.7.2, the weighted LP step of Algorithm 5 corrects all

errors. Similarly, if a random set of pn bits are flipped, then when p = (1 + ε2)p∗wr

by definition we can say that with high probability there exists a C > 1 so that

FCP(S1, C) holds for a random subset S1 of the bit errors of size p∗wrn. Therefore,

using Theorem 7.6.2, it follows that the set L of most pn deviated bits in x(p) with

respect to x(r), and the set of errors in x(r), have at least an overlap fraction of

1 − 2C+1
C−1

ε2. The remainder of the proof is completed as the previous case, i.e., by

applying Lemma 7.7.2.

Note that provable robust thresholds for a given family of codes (i.e., p∗sr and p∗wr)

might be smaller than the actual thresholds of LP decoding (i.e., p∗s and p∗w). There-

fore, the threshold improvement result of Theorem 7.7.1 does not directly translate to

practical threshold improvement guarantees for any arbitrary code. Instead, it only

proves that certain provable thresholds can be improved, as long as those thresholds

are within robustness conditions for LP decoding. This is, for instance, the case

for expander codes and their best existing thresholds of LP decoding, obtained in

[FMS+07, DDKW08]. Note that according to Theorems 7.5.3 and 7.5.4, the recov-

ery thresholds of LP decoding for expander codes proved in [FMS+07, DDKW08]

are robust thresholds (see Definition 26). Therefore, according to Theorem 7.7.1, we

can guarantee that our proposed algorithm has strong and weak recovery thresholds

higher than those proved for LP decoding in the case of expander codes in previous

works. In any case, in our preliminary simulation results, the proposed iterative algo-

rithm shows empirical improvement over the regular LP decoding for certain families

of random LDPC codes, as will be demonstrated in the next section.

7.8 Simulations

We have implemented Algorithm 5 on a random LPDC code of size n = 1000 and rate

R = 3/4, and have compared the results with other existing methods. The variable
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node degree is dv = 3, and thus dc = 4. The algorithm is compared with the mixed-

integer method of Draper and Yedidia [DYW07], and the random facet-guessing algo-

rithm of [DGW09]. The mixed-integer algorithm re-runs the LP decoding by setting

integer constraints on a small subset of “least certain” bits, namely the positions

where the LP minimal pseudo-codeword entries are closest to 0.5. We have taken the

size of the constrained subset to be M = 5, which means the number of extra itera-

tions is 32 for the mixed-integer method. We also choose to execute 20 more random

iterations for facet guessing. In random facet guessing, a face (facet) of the polytope P
is selected at random, among all the faces on which the LP minimal pseudo-codeword

does not reside. Then, LP decoder is re-run with the additional constraint that the

solution is on the selected face. In contrast, Algorithm 5 has only one extra iteration.

All methods are simulated in MATLAB where LP decoder is implemented via the

cvx toolbox [cvx]. We have plotted the BER curves versus the probability of error p

in Figure 7.3. For Algorithm 5, for each p, we have experimentally found the optimal

λ1 and λ2 by choosing the values that, on average, result in the best performance.

For most of the cases the chosen values were in the ranges −3 ≤ λ1 ≤ −0.5 and

1 ≤ λ2 ≤ 3. Observe the superior BER performance of Algorithm 5, which becomes

more significant for smaller values of p. For p = 0.11, the BER improvement in the

reweighted LP method is at least one order of magnitude. In our preliminary experi-

mental evaluation we observe that the BER curves eventually collapse into the same

curve as the LP curve, except for the reweighted LP algorithm, which is an indication

of the fact that the empirical thresholds of Algorithm 5 are better than those of LP

decoder and existing polynomial time post-processing methods.

7.9 Proof of Theorems

Proof of Lemma7.5.1

We first prove the following lemma.
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Figure 7.3: BER curves as a function of channel flip probability p, for LP decoding
and different iterative schemes; random facet guessing of [DGW09], mixed integer
method of [DYW07], and the suggested iterative reweighted LP of Algorithm 5. The
code is a random LDPC(3,4) of length n = 1000.

Lemma 7.9.1. Suppose {τij | 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a set of dual feasible variables

on the edges of the factor graph G of the code C for some arbitrary log-likelihood vector

γ. Then for every vector w ∈ K(C) and every check node cj, the following holds

∑
vi∈Γ(cj)

wiτij ≥ 0. (7.9.1)

Proof. We only use condition (i) of a feasible set of dual variables. Note that among

the variable nodes in Γ(cj), there can be at most one node vi with τij < 0. Let vi be

such a variable node. From the definition of K we can write

wi ≤
∑

i′∈Γ(j)\i

wi′ ,

or equivalently:

τijwi +
∑

vi′∈Γ(vj)\i

|τij|wi′ ≥ 0. (7.9.2)
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Moreover, by the definition of vi and condition (i) of the dual feasibility, we have

τi′j ≥ −τij = |τij| for i′ 6= i. Therefore, replacing τi′j with |τij| for each i′ 6= i does

not decrease the left hand side of (7.9.2), and thus

∑
vi∈Γ(cj)

wiτij ≥ 0.

We now invoke Lemma 7.9.1, that for every check node cj,
∑

vi∈Γ(cj)
wiτij ≥ 0. If

we sum these inequalities for all check nodes cj we obtain:

∑
cj∈Xc

∑
vi∈Γ(cj)

wiτij =
∑
vi∈Xv

wi
∑

cj∈Γ(vi)

τij ≥ 0,

when Xv and Xc are the sets of variable and check nodes, respectively. Since τijs

are feasible variables, from condition (ii) of feasibility (Definition 20), we must have∑
cj∈Γ(vi)

τij < γi. It then follows that

∑
vi∈Xv

γiwi > 0.

Proof of Theorem 7.5.3

We basically repeat the argument of [FMS+07] with some slight adjustments. Let

S be the set of flipped bits, or, interchangeably, the set of corresponding variable

nodes in the factor graph G (we use vi to refer to the variable node corresponding to

the ith bit).

Definition 27 ((δ, λ) matching from [FMS+07]). A (δ, λ) matching of the set S is a

set M of edges of the factor graph G, so that no two edges are connected to the same

check node, every node in S is connected to at least δdv edges of M , and every node

in S ′ is connected to at least λdv edges of M . Here S ′ is the set of variable nodes that

are connected to at least (1− λ)dv + 1 check nodes in Γ(S).
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If there is a (δ, λ) matching on the set S, then we consider the following labeling of

the edges of G. For a check node vj, if it is adjacent to an edge τij in M , then set

τij = −x and τi′j = x for every other variable node v′i ∈ Γ(vj) i
′ 6= i. Otherwise, label

all of the edges adjacent to j by 0. It can be seen that for this labeling {τij} satisfies

condition (i) of dual feasibility (Definition 20), and furthermore:

∑
j∈Γ(i)

τij ≤
{

(1− 2δ)dvx i ∈ S
(1− λ)dvx i ∈ Sc

. (7.9.3)

We now take λ = 2− 2δ + 1/dv. Let us define a new likelihood vector γ′ by

γ′ =

{
−C i ∈ S
1 i ∈ Sc

. (7.9.4)

If a dual feasible set exists that satisfies the feasibility condition for the vector γ′,

then this implies that the FCP(S,C) holds. Now, since C < 2δ−1
1−λ , if we choose x to

be

x =
1

(1− λ)dv
, (7.9.5)

then it is clear that (1− 2δ)dvx < −C. So the dual feasibility condition is satisfied, if

we can construct the required (δ, λ) matching for S. From [FMS+07], if |S| ≤ 3δ−2
2δ−1

α,

and G is a bipartite (αn, δdv) expander, the desired matching exists. This proves that

FCP(S,C) holds. Since this argument holds for every set S of size t = 3δ−2
2δ−1

α, we

conclude that C has FCP(t, C).

Proof of Theorem 7.5.4

Consider a vector ω in the fundamental cone K = K(H) of the parity check

matrix H. Without loss of generality, we may assume that S = {1, 2, · · · , t}. For

each 1 ≤ i ≤ t, let the neighbors of the variable node vi in the (p, q)-matching on S

be denoted by ci1, c
i
2, · · · , cip. The check nodes cij are p × t distinct nodes. From the

definition of K, if ω ∈ K, then for each cij we may write:

ωi ≤
∑

l∈Γ(cij)\vi

ωl, ∀1 ≤ i ≤ t 1 ≤ j ≤ p. (7.9.6)
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We add all inequalities of (7.9.6) for 1 ≤ i ≤ t and 1 ≤ j ≤ p. For i ≤ t, ωi appears

exactly p times on the left-hand side of the sum, and at most dv − p times on the

right. For i > t, ωi appears in at most dv − q inequalities and on the right-hand side.

This comes directly from the definition of a (p, q)-matching on the set S. Therefore

p
∑
i∈S

ωi ≤ (dv − p)
∑
i∈S

ωi + (dv − q)
∑
i∈Sc

ωi, (7.9.7)

and thus,

2p− dv
dv − q

∑
i∈S

ωi ≤
∑
i∈Sc

ωi, (7.9.8)

which proves that C has the desired fundamental cone property.

Proof of Theorem 7.5.6

We denote the set of variable nodes and check nodes by Xv and Xc, respectively.

For a fixed w ∈ [0, 1]T , let B be the set of all minimal T -local deviations, and Bi
be the set of minimal T -local deviations that result from a skinny tree rooted at the

variable node vi. Also, assume S is the random set of flipped bits, when the flip

probability is p. Interchangeably, we also use S to refer to the set of variable nodes

corresponding to the indices of the flipped bits . We are interested in the probability

that for all β(w) ∈ B, f
(S)
C (β(w)) > 0. Recall that

f
(S)
C (x) :=

∑
i∈Sc

xi − C
∑
i∈S

xi.

For simplicity we denote this event by {f (S)
C (B) > 0}. Since the bits are flipped

independently and with the same probability, we have the following union bound

P{f (S)
C (B) > 0} = 1− P

(
n⋃
i=1

{f (S)
C (Bi) ≤ 0}

)
≥ 1− nP

(
f

(S)
C (B1) ≤ 0

)
. (7.9.9)

Now consider the full tree of height 2T, that is rooted at the node v1, and contains

every node u in G that is no more than 2T distant from v, i.e., d(v1, u) ≤ 2T . We

denote this tree by B(v1, 2T ). To every variable node u of B(v1, 2T ), we assign
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a label, I(u), which is equal to −Cωh(u) if u ∈ S, and is ωh(u) if u ∈ Sc, where

(ω0, ω2, · · · , ω2T−2) = w. We can now see that the event f
(S)
C (B1) ≥ 0 is equivalent

to the event that for all skinny subtrees T of B(v1, 2T ) of height 2T , the sum of the

labels on the variable nodes of T is positive. In other words, if Γ1 is the set of all

skinny trees of height 2T that are rooted at v1, then f
(S)
C (B1) ≤ 0 is equivalent to:

min
T ∈Γ1

∑
v∈T ∩Xv

I(v) ≤ 0, (7.9.10)

where T ∩ Xv denotes the set of nodes of T that are in Xv. We assign to each

node u (either check or variable node) of B(v1, 2T ) a random variable Zu, which is

equal to the contribution to the quantity minT ∈Γ1

∑
v∈T ∩Xv I(v) by the offspring of

the node u in the tree B(v1, 2T ), and the node u itself. The value of Zu can be

determined recursively from all of its children. Furthermore, the distribution of Zu

only depends on the height of u in B(v1, 2T ). Therefore, to find the distribution

of Zu, we use X0, X1, · · · , XT−1 as random variables with the same distribution as

Zu when u is a variable node (X0 is assigned to the lowest-level variable node) and

likewise Y1, Y2, · · · , YT−1 for the check nodes. It then follows that:

Y0 = ω0ηC ,

Xi = min{Y (1)
i , . . . , Y

(dc−1)
i } ∀i > 0,

Yi = ωiηC +X
(1)
i−1 + · · ·+X

(dv−1)
i−1 ∀i > 0,

(7.9.11)

where X(j)s are independent copies of a random variable X, and ηC is a random

variable that takes the value −C with probability p and value 1 with probability

1− p. It follows that
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P
(
f

(S)
C (B1) ≤ 0

)
= P

(
X

(1)
T−1 + · · ·+X

(dv)
T−1 ≤ 0

)
≤ (E(e−tXT−1))dv . (7.9.12)

The last inequality is by Markov inequality and is true for all t > 0. The rest of

the proof we bring here is basically appropriate modifications of the derivations of

[ADS09] for the Laplace transform evolution of the variables Xis and Yis, to account

for a non-unitary robustness factor C. By upper bounding the Laplace transform of

the variables recursively it is possible to show that:3

Ee−tXi ≤
(
Ee−tXj

)(dv−1)i−j∏
0≤k≤i−j−1

(
(dc − 1)Ee−tωi−kηC

)(dv−1)k
, (7.9.13)

for all 1 ≤ j ≤ i < T .

If we take the weight vector as ω = (1, 2, · · · , 2j, ρ, ρ, · · · , ρ) for some integer

1 ≤ j < T , and use equation (7.9.13), we obtain:

Ee−tXT−1 ≤ (Ee−tXj)(dv−1)T−j−1

·
(
(dc − 1)Ee−tρηC

) (dv−1)T−j−1−1
dv−2 .

ρ and t can be chosen to jointly minimize Ee−tXj and Ee−tρηC in the above, which

along with (7.9.12) results in

P(fSC (B1 ≤ 0)) ≤ (Ee−tXT−1)dv

≤ ζ−dv/(dv−2) × cdv(dv−1)T−j−1

,

where ζ = (dc − 1)C+1
C

(1 − p)( C.p
1−p)1/(C+1) and c = ζ1/(dv−2) mint≥0 Ee−tXj . If c < 1,

then probability of error tends to zero as stated in Theorem 7.5.6.

3See Lemma 8 of [ADS09], our argument is the same.
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7.10 Conclusion

In this chapter, we studied post-processing techniques for detecting codewords of

a linear code transmitted through a bit-flipping channel using LP decoding. We

studied the output of LP decoder, and proved that, aside from the known fact that

LP decoding solution is equal to the true codeword when the number of errors is

less than a constant fraction of code length, it is not far from the actual codeword

in other cases. This is known as the robustness of LP decoding. We characterized

LP robustness for two families of LDPC codes, namely expander codes and codes

with Ω(log log n) girth. The robustness has two implications. Firstly, if LP decoding

is implemented with mismatched values of log-likelihood ratios, such as what might

happen in a hardware implementation, then the solution is tolerant to certain levels

of mismatch. Secondly, even when the LP decoder output is a non-integral pseudo-

codeword, it can be used to derive critical information about the structure of the

errors in the code block. We showed that it is possible to separate the code block into

two regions with high and low error rates based on this premise. The unreliability

information obtained in this way can then be used to bias the LP decoder, motivating

a following weighted LP decoder. We described the whole procedure in a two-step

reweighted LP decoding algorithm. We proved that for certain families of (expander)

codes, the recovery thresholds of the proposed method are strictly higher than the

existing thresholds for LP decoding. The exact bounds on the improvement levels are

not explicit at this point and are probably loose. Future work shall address tightening

those bounds, and deriving explicit numerical values for them, as well as the actual

thresholds of LP decoding.



Chapter 8

Matrix Rank Minimization

X low-rank matrix

A(·) linear operator

n number of rows and columns of X

m number of rows and columns of A(X)

δ aspect ratio of A, m/n

µW (δ) weak recovery threshold of `1 minimization for k/n

CS robustness parameter for `1 minimization

supp(x) support set of vector x

8.1 Introduction

In this chapter, we consider the problem of low-rank matrix estimation, and apply

some of the techniques developed in previous chapters to the recovery of matrices.

Low-rank matrix recovery addresses the problem of estimating a high dimensional

matrix of (approximately) low-rank from under-determined linear measurements. In

other words, the objective is find a matrix X with the lowest possible rank that

satisfies a set of linear constraints Y = A(X), often of smaller size than the number

of matrix entries. This problem is of high practical importance, as it arises in many

situations such as system identification and collaborating filtering (such as the Netflix

problem).
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The rank minimization (RM) problem in its full generality is NP-hard. However,

a number of recent papers have demonstrated that under certain circumstances, and

when the unknown matrix is sufficiently low rank, RM can be solved via convex op-

timization programs, mainly the nuclear norm minimization (NNM) method [Faz02,

RFP10, RXH08, OH]. NNM is a natural generalization of the Basis Pursuit method

from sparse vectors to low-rank matrices, and is formulated as follows:

min ‖X‖∗

subject to A(X) = Y, (8.1.1)

where ‖ · ‖∗ denotes the nuclear norm operation which will be defined soon. As with

compressed sensing, original results on RM were focused on random linear operators,

and often in the literature Gaussian measurements are considered as a standard choice

for A(·), for which certain recovery guarantees can be asymptotic when the recon-

struction method is the NNM. Interestingly, conditions similar to compressed sensing

conditions exist that guarantee the tightness of NNM approach. Two main conditions

that certify the success of NNM are the restricted isometry property (RIP) [RFP10]

and null space conditions [RXH08], which, in the case of RM, are more advanced and

obviously harder to analyze. Very recently, based on the analysis initially developed

by Stojnic for sparse recovery, tight analytical thresholds for NNM have been found

by Oymak et al. and Chandrasekaran et al. using an “escape through the mesh”

analysis of the null space conditions when measurement operators are i.i.d. Gaus-

sian [OH, CRPW, Sto10, Sto]. In parallel, there have also been promising results on

the matrix completion problem as well, whereby one observes a subset of the entries

of a low-rank matrix, rather than linear combinations [CR09, CT10]. These results

are mostly based on RIP conditions and the typicality of the observation set.

As mentioned, the RM problem is often regarded as a generalization of compressed

sensing, both of which are instances of the general form of linear inverse problems.
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As emphasized in the first part of this dissertation, it is now well understood that,

although certain random ensembles of measurement matrices (e.g., Gaussian, partial

Fourier, etc.) are legitimate choices for compressed sensing, carefully designed matri-

ces can lead to additional benefits for the sparse compression/recovery. To name a few,

we discussed faster encoding time and recovery algorithms for sparse matrices using

expander graphs in Chapter 2 (see also [XH07b, BI08, BI09, KXDH10]), and using

other deterministic structures in Chapter 4. In addition, as pointed out in Chapters

4 and 3, higher recovery thresholds for sparse recovery can be achived using algebraic

coding/decoding methods inspired by error-correcting codes (see also [PH08, AT08]).

To the best of our knowledge, this point has not been fully appreciated in the RM

problem, where only random measurement ensembles (mostly Gaussian) have been

studied. The techniques and constructions used for low-rank estimation are far less

progressed and computationally more intense. In particular, the following important

question has been left unanswered:

Question. Do alternative recovery algorithms for RM problem exist with success

guarantees on certain classes of carefully designed linear measurement operators?

8.2 Contributions

In this chapter, we introduce a new class of measurement operators for the RM prob-

lem, along with a novel recovery algorithm that is provably successful for the proposed

operators, and is faster than NNM. The proposed recovery algorithm assumed that

the measurement operator A(·) : Rn×n → Rm×m has three key properties: Hermitian,

low-density, and rank expansion. The low-density property means that A(X) can be

described as the linear combination of d linear operators A(X) =
∑d

i=1Ai(X), where

d is a constant, and for each 1 ≤ i ≤ d, the rank of Ai(X) is not larger than the rank

of X. In fact, the low-density operators that we introduce are characterized by only
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O(mn) variables, as opposed to full i.i.d Gaussian linear measurements that require

(mn)2 variables. The interpretation of expansion is that A(·) maps a sufficiently

low-dimensional subspace to a higher-dimensional subspace, which is equivalent to

mapping every positive semi-definite matrix X to a positive semi-definite matrix

A(X) with rank greater than c · rank(X), where c > 1 is a constant.

Our contributions are thus threefold. We first prove that low-density rank ex-

pander operators exist. The operators are very similar in functionality to the min-

imal expanders introduced in Chapter 2. We then provide a uniqueness result, in

the sense that a sufficiently low-rank positive definite (PSD) matrix X is the unique

PSD solution of the equations given by a high-quality rank expander. We further

propose a new recovery algorithm and provide theoretical recovery guarantees when

the suggested rank expander measurement operators are exploited. This algorithm is

an extension of the REVEX algorithm proposed in Chapter 2 for sparse nonnegative

recovery, and is therefore named M-REVEX (“M” for Matrix).

We stress that although most of the results presented in this chapter hold for the

case of PSD matrices, we also present a generalization of our results to the case of

Hermitian matrices. This includes both the existence of high-quality expanders oper-

ating on Hermitian matrices, and the validity of the M-REVEX algorithm. Numerical

simulations presented at the end further validate the theoretical guarantees.

8.3 Preliminaries

Let Sn denote the space of Hermitian matrices of size n×n, and Sn+ denote the set of

positive semi-definite (PSD) matrices. An orthogonal projection is a matrix P ∈ Sn+

with P 2 = P . We say that U ∈ Rn1×n2 is a partial unitary matrix if UTU = I,

i.e., the columns of U form an orthonormal set. Notice that UUT is an orthogonal

projection. Let η+(X), η−(X), η0(X) denote the number of positive, negative, and

zero eigenvalues of X, respectively. Also for a Hermitian matrix X, let X− and
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X+ denote the PSD matrices induced by the negative and positive eigenvalues of X

respectively (i.e., X = X+ −X−).

For a given matrix X ∈ Rn1×n2 , λi(X) and σi(X) denotes the ith largest eigen-

value and the ith largest singular value, respectively. The nuclear norm, spec-

tral norm and Frobenius norm operators are denoted by ‖ · ‖?, ‖ · ‖, and ‖ · ‖F ,

respectively, and are defined by ‖X‖? =
∑min{n1,n2}

i=1 σi(X), ‖X‖ = σ1(X), and

‖X‖? =
(∑min{n1,n2}

i=1 σ2
i (X)

)1/2

. In addition, we define SpanC(X), SpanR(X) to be

the linear spaces spanned by the columns and rows of X, respectively.

A function f : Rn → R is called L-Lipschitz if |f(x)−f(y)| ≤ L‖x−y‖`2 , for every

x, y. For Hermitian matrices A,B, A � B means that A−B is positive semi-definite.

For a linear operator A(·) acting on a linear space, we denote the null space of A
by N (A), i.e., W ∈ N (A) iff A(W ) = 0. We denote by G(d1, d2) the ensemble of

real d1 × d2 matrices in which the entries are i.i.d. N (0, 1) (zero-mean, unit variance

Gaussian).

The following lemmas are crucial to the technical discussions given in the remain-

der of this chaper.

Lemma 8.3.1. Let f(X) be a function on matrices in the following form: f(X) =∑m
i=1 aiσi(X) for some real constants {ai}mi=1. Then f(X) is a

√∑m
i=1 a

2
i Lipschitz

function of X.

Lemma 8.3.2 (A Gaussian concentration inequality [LT91]). Let x be drawn from

G(n, 1) and f : Rn → R be a function with Lipschitz constant L. Then, we have the

following concentration inequality

P(|f(x)− Ef(x)| ≥ t) ≤ 2 exp(− t2

2L2
). (8.3.1)

Lemma 8.3.3 (Weyl’s Inequalities, [Bha96]). Let A,B ∈ Sn. Then:

λj(A+B) ≤ λi(A) + λj−i+1(B) ∀ i ≤ j (8.3.2)

λj(A+B) ≥ λi(A) + λj−i+n(B) ∀ j ≤ i. (8.3.3)
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8.4 Rank Expanders and Proposed Operators

Definition 28. Let A : Rn×n → Rm×m be a linear operator with m < n. For

d > 0, 0 ≤ ε < 1, 1 ≤ r0 ≤ n, we say that A is an unbalanced (ε, d, r0, n)-rank

expander, if it satisfies the following conditions:

1. For every X ∈ Sn+, A(X) ∈ Sm+ .

2. For every X ∈ Sn, rank(A(X)) ≤ d · rank(X).

3. For all orthogonal projections P with rank(P ) = r ≤ r0, rd ≥ rank(A(P )) >

(1− ε)rd.

This definition is inspired by the definition of unbalanced expander graphs that

maintain similar properties with respect to positive vectors (instead of PSD matrices)

and with `0-norm (instead of rank). An unbalanced d-regular (k, ε)-expander graph

is a bipartite graph with n nodes on the left and m nodes on the right, and regular

degree d for left-hand side nodes, such that every subset S of left nodes with |S| ≤ r0

has a neighborhood Γ(S) of size at least |Γ(S)| ≥ (1− ε)|S|d. Unbalanced expander

graphs have been proven to have elegant properties that make them suitable for sparse

vector recovery (i.e., compressed sensing), in addition to being useful as parity check

matrices for error-correcting codes. With that in mind, one might be inspired to

generalize the notion of expander graphs to subspace (rank) expanders, in order to

obtain operators that can be used in low-rank-matrix recovery. The following lemma

is immediate.

Lemma 8.4.1. If A(.) is an (ε, d, r0, n)-rank expander then, for every X ∈ Sn+ with

rank r ≤ r0, we have rd ≥ rank(A(X)) ≥ (1− ε)rd.

We now move on to describe the proposed measurement structures. Afterwards,

we prove that these constructions indeed result in rank expanders and that the ex-

pansion property allows us to find alternative fast reconstruction algorithms for the

RM problem.
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8.4.1 Proposed Measurement Operator

Let G1, . . . Gd ∈ Rm×n be matrices to be specified later. The proposed measurement

operator A(·) has the following low-density form:

A(X) =
d∑
i=1

GiXG
T
i , (8.4.1)

where X ∈ Rn×n. We will prove that upon appropriate choices of Gis, A(·) is an

unbalanced rank expander. It is easy to check that with this choice of A(.), conditions

1 and 2 of Definition 28 are immediately satisfied. Furthermore, as long as the

GiXG
T
i s are almost incoherent, one would expect their ranks to add up. In particular,

it is easy to show that when X is fixed and {Gi}di=1 are drawn i.i.d. from G(m,n),

we have

P(rank(A(X)) = min{d× rank(X),m}) = 1. (8.4.2)

However, the challenge of condition 3 is in the fact that the rank expansion property

must hold for every sufficiently low-rank X. Let X ∈ Sn+ and X1/2 denote an arbitrary

square root of X (i.e., X = X1/2XT/2). Note that A(X) can be written in the

following form:

A(X) =
(
G1X

1/2 . . . GdX
1/2
) (
G1X

1/2 . . . GdX
1/2
)T
. (8.4.3)

It then follows that

rank(A(X)) = rank
(
G1X

1/2 G2X
1/2 . . . GdX

1/2
)
. (8.4.4)

For analyzing the rank expansion property, we can thus limit ourselves to the form

(8.4.4).

8.4.2 Existence of Rank Expanders

Our goal is to prove the existence of high-quality (small ε) rank-expanders for certain

regimes of d, ε, r0, and n. Based on Lemma 8.4.1, we can restrict our attention to X
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being an orthogonal projection of rank at most r0. Our analysis is for the case when

Gis are chosen i.i.d. from G(m,n).1 The main existence theorem is the following:

Theorem 8.4.2 (Existence of Rank Expander). For any 0 < ε < 1 there are con-

stants C1 and C2 so that for any n and r0 ≤ n, whenever m =
√
C1C2nr0 and

d =
√

C2n
C1r0

and {Gi}di=1s are independent instances of G(m,n), the operator A(X) =∑d
i=1 GiXG

T
i is an (ε, d, r0, n) expander with probability at least 1− exp(−Ω(n)).

Before explaining the technicalities involved in the proof of the above theorem,

consider the following argument. Given A : Rn×n → Rm×m, suppose for all X ∈
Sn+ with rank(X) ≤ r∗, X can be uniquely decoded from A(X), for example, by

exhaustive search. It then follows that A has to be injective on the restricted domain

{X ∈ Sn+ : rank(X) ≤ r∗}. It will soon become apparent in the sequel that given an

(ε, d, r0, n) expander, for r∗ = r0/2 this condition holds. A simple argument counting

the degrees of freedom of the low-rank domain and the corresponding range of A

reveals that the problem parameters should satisfy the following relationship:

m = Ω(
√
nr0), md = Ω(n), dr0 = O(m). (8.4.5)

In fact, it turns out that Theorem 8.4.2 is true as long as (8.4.5) holds asymptoti-

cally, which implies the optimality of the number of measurements in the suggested

expander operators. For the proof, we set m = C1dr0 and dm = C2n where C1 > 1,

C2 > 1 will be the constants in Theorem 8.4.2.

Proof sketch of Theorem 8.4.2. The proof is based on three major technical steps:

Step 1: We consider an ε0 cover with operator norm ‖ · ‖ over the set of orthogonal

projections of rank r ≤ r0. From [Sza97], we know that there is such a cover of size

at most M = (C0/ε0)nr, which we denote by {UiUT
i }Mi=1 ∈ Sn+, with Ui ∈ Rn×r. Also,

we first focus on a particular rank r ≤ r0, and later union bound the undesirable

probability over all values of r ≤ r0.

1Existence of expanders using other ensembles of matrices G, and in particular sparse matrices,
shall remain as an interesting open problem.
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Step 2: Now consider a Ui from the ε0 cover. Denote B(Ui) = [G1Ui . . . GdUi] ∈
Rm×dr. Since rank(A(UiU

T
i )) = rank(B(Ui)), we can focus on B(Ui). Note that

since Ui is a fixed partial unitary, due to the unitary invariance of i.i.d. Gaussian

matrices, B(Ui) has i.i.d. Gaussian distribution. Now define the function f(X) =∑dr
i=(1−ε)dr+1 σi(X) for X ∈ Rm×rd. Notice that f(X) > 0 implies rank(f(X)) >

(1−ε)dr, because it means some of the smallest εdr singular values of X are nonzero.

On the other hand, f(X) is a linear function of the singular values of X, and thus

it satisfies the Lipschitz condition of Lemma 8.3.1. Since B(Ui) is Gaussian, we can

apply Lemma 8.3.2 to get the following concentration bound

P(f(B(Ui)) < δ
e√
m

) < exp(−(C3 − δ)2e

2
) (8.4.6)

where C3 = 1−
√

1/C1 and e = εdrm. Here δ serves as a safety margin, in order to ac-

count for the perturbation P−UiUT
i , when we consider a certain orthogonal projection

P which we know is the proximity of some UiU
T
i of the cover, i.e., ‖P −UiUT

i ‖ < ε0.

In other words, as will be shown in the next step, lower bounding f(B(Ui)) certi-

fies that rank(A(P )) will also be large, and thus (8.4.6) basically determines a lower

bound on the probability of failure. The exponent of the right-hand side of (8.4.6)

is e = εdrm = εC2rn, which is proportional to the exponent of the size of the cover

log(M) = O(rn). Consequently, with careful choices of parameters, using a union

bound on failures, we can make sure f(B(U)) ≥ δ e√
m

for all U ∈ {Ui} w.h.p. In

particular we need:

(C3 − δ)2εC2 > (logC0 − log ε0). (8.4.7)

Step 3: Now it remains to show that if E = P − Pi is a perturbation on Pi, which

makes rank(P ) ≤ (1 − ε)dr, then ‖E‖ has to be large because f(B(Ui)) is large. In

particular, showing ‖E‖ > ε0 will finish the proof, since we know that ‖P −Pi‖ ≤ ε0.

In order to show this step, we make use of Lemma 8.3.3 to find λi+(1−ε)dr(A(Pi)) ≤
λi(A(E)), and hence to deduce that ‖B(E

1/2
+ )‖? ≥ f(B(Ui)). We carry out some more
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arguments to upper bound ‖B(E
1/2
+ )‖? in terms of ‖E‖ to get a contradiction as long

as δ
√
ε > 2

√
ε0 (∗) holds. Finally, we conclude that whenever (∗) and the condition

(8.4.7) are satisfied, with high probability f(B(
√
P )) > 0 for all projections P with

rank r, which implies rank(A(P )) > (1 − ε)dr, as desired. In particular, sufficiently

large values of C1, C2 will do the job. Also, inequalities (8.4.5) will similarly work

since increasing C1, C2 only improves the conditions.

8.5 Fast Recovery Algorithm

Before presenting the main algorithm, we will provide some results about low-rank

positive-semi-definite matrix recovery. Specifically, we emphasize a uniqueness result

concerning PDS matrices and the rank expander operators. Suppose a matrix X0 ∈
Sn+ and a linear operator A(·) are given, and we ask under what conditions X0 is the

unique (PSD) inverse image of A(X0)—i.e., is it possible to recover X0 by simply

characterizing the set {X | X � 0,A(X) = A(X0)}? The following lemma, which is

adopted from [XT10a, OH], provides an answer to this question.

Lemma 8.5.1. Any PSD matrix X of rank at most r is the unique PSD inverse

image of A(X), if and only if every nonzero Hermitian W ∈ N (A) has at least r+ 1

negative eigenvalues.

Now, we explain how rank expanders can facilitate the existence of the condition

in Lemma 8.5.1.

Lemma 8.5.2. Let A(.) be an (ε, d, r0, n)-rank expander with ε < 1/2. Then for

every nonzero Hermitian W ∈ N (A) we have that η−(W ) > r0/2.

Proof. For any W ∈ N (A), we write W = W+ −W−. Since A(W ) = 0, we have

B = A(W+) = A(W−). Assume η−(W ) ≤ r0/2. Let r = min{η−(W ), η+(W )}.
Then dr ≥ rank(B). On the other hand rank(W+ +W−) = rank(W+) + rank(W−) ≥
2r, hence we have rank(A(W+ + W−)) ≥ 2(1 − ε)dr, since 2r ≤ r0. Note that
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Algorithm 6 —M-REVEX: Reconstruct a low-rank PSD matrix X from under-
determined linear measurements Y =

∑d
i=1AiXA

∗
i .

1: Input:
2: Constant integer d ≥ 1.
3: Matrices Ai ∈ Rm×n, 1 ≤ i ≤ d, and Y ∈ Rm×m.
4: Output:
5: Low-rank PSD matrix X.
6: Initialize
7: Compute Y = SΣS∗, with S full column rank (SVD).
8: Set P = I − SS∗.
9: Set Q := Null

(
(PA1)T , . . . , (PAd)

T
)T

.

10: Compute Bi = AiQ, and set M =
∑d

i=1 Bi ⊗Bi.
11: Find X ∈ Rn×n with vec(X) = (Q⊗Q)M †vec(Y ).

A(W+ +W−) = A(W+) +A(W−) = 2B. It follows that dr ≥ rank(B) = rank(2B) ≥
2(1− ε)dr =⇒ 1 ≥ 2(1− ε) ⇐⇒ ε ≥ 1/2, which is a contradiction.

The combination of Lemmas 8.5.1 and 8.5.2 suggests that by using an (ε, d, r0, n)-

rank expander with ε < 1/2 as a measurement operator, one can guarantee that every

PSD matrix X0 of rank at most r0/2 is the unique PSD solution to the measurements

A(X0). Therefore, every program (e.g., SDP) that can identify a point in the feasible

set {X | X � 0,A(X) = A(X0)} successfully returns X0. Quite interestingly, for

the case of high-quality expanders (small ε), we propose an alternative method for

identifying one feasible point, which by the token of the aforementioned uniqueness

argument can successfully recover low-rank PSD matrices. The algorithm is based on

using the expansion property of the suggested linear operator, and the fact that the

original matrix is low-rank. The key point is that for rank expanders, the original

under-determined system can be equivalently transformed to an over-determined lin-

ear system after a few simple processing steps, which mostly involve taking SVD and

finding null spaces. The new system of linear equation can then be solved by matrix

inversion. This routine is described in Algorithm 6, and is in fact the generalization

of a positive sparse vector recovery algorithm elaborated upon in [KXDH10]. The

next theorem provides a guarantee for the success of the proposed algorithm.
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Theorem 8.5.3 (PSD Recovery). If the operator A(X) =
∑d

i=1AiXA
T
i is a (ε, d, r0, n)-

rank expander with ε < 1/2, then for every k ≤ r0(1 − ε), every PSD matrix X of

rank k can be perfectly recovered from A(X) using Algorithm 6.

In order to prove Theorem 8.5.3, we first prove the following lemma.

Lemma 8.5.4. Suppose that the operator A(X) =
∑d

i=1 AiXA
T
i is an unbalanced

(ε, d, r0, n)-rank expander with k/(1−ε) < m < n, where Ais are m×n. Also suppose

that X ∈ Sn has rank k ≤ r0(1− ε)/2. Further, let S be the linear space of all n× 1

vectors u such that SpanC{A(uuT )} ∈ SpanC{A(X)}. Then dim(S) < k/(1− ε).

Proof. If dim(S) ≥ k/(1− ε), then we can find an orthonormal matrix U of size n×
k/(1−ε) such that all of its columns are in S. Therefore, by definition, SpanC{A(UUT )} ∈
SpanC{A(X)}, and thus rank(A(UUT )) ≤ rank(A(X)) ≤ k · d. However, since

k/(1− ε) < r0, from the definition of rank expander, we must have rank(A(UUT )) >

d(1− ε)rank(UUT ) = k · d, which is a contradiction.

Proof of Theorem 8.5.3. Let S be as defined in Lemma 8.5.4 with dim(S) = r, and

Qn×r be a basis for S, and let X = X1/2XT/2. It is easy to check that the columns

of X1/2 are all in S, and thus X1/2 = QV 1/2, for some unknown V 1/2 of size r × k.

Therefore, we can write:

Y = A(X) =
d∑
i=1

AiQV
1/2V T/2QTATi (8.5.1)

or equivalently

vec(Y ) =

(
d∑
i=1

Bi ⊗BT
i

)
vec(V ) (8.5.2)

where Bi = AiQ. (8.5.2) is a linear system of equations with m2 equations and r2

unknowns. Moreover, from Lemma 8.5.4, we know that r < k/(1 − ε) < m. In

addition, from Lemma 8.5.2, the solution to the system of linear equations in (8.5.2)

is unique and must be V = X, since otherwise X − V is in the null space of A(·) and
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has at most r < r0/2 negative eigenvalues. Therefore, (8.5.2) is an over-determined

linear system and can be solved by matrix inversion, as given in line 11 of Algorithm

6.

8.6 Extension to Hermitians

In this section, we briefly extend the results of the previous sections to the case of

Hermitian matrices. Specifically, we prove the existence of expanders for Hermitian

matrices (rather than only PSD matrices, as was the case discussed previously), and

then state a theorem certifying the success of Algorithm 6 for these classes of low-rank

matrices.

8.6.1 Expansion

Lemma 8.6.1 (Expansion for Hermitians). Assume A is a (ε, d, r0, n) expander and

let X be Hermitian with rank(X) ≤ r0. Then, rank(A(X)) ≥ (1− 4ε)d · rank(X).

The formal proof of the above lemma is skipped, but it is mostly based on dimension-

counting arguments and the fact that rank(A+B) = rank(A)+rank(B) is equivalent

to SpanC(A) ∩ SpanC(B) = ∅ and SpanR(A) ∩ SpanR(B) = ∅ (see, e.g., [Cal98]).

8.6.2 Recovery

Assume X ∈ S with rank(X) = r ≤ r0. With Gaussian measurements, rank(A(X)) =

rd almost surely, due to (8.4.2) and the result of [Cal98]. Notice that if the eigenvalue

decomposition of X is X =
∑r

i=1 λiuiu
T
i , then A(X) = λi

∑r
i=1A(uiu

T
i ), and using

rank(A(X)) = r × d and rank(A(uiu
T
i )) ≤ d, it follows that SpanC(A(uiu

T
i )) ⊂

SpanC(A(X)) for all i ≤ r. Consequently, similar to the case of PSD matrices, we

need to find the space of u such that SpanC(A(uuT )) ⊂ SpanC(A(X)). All technical

steps follow identically and similar to the PDS case, and we can assert that sufficiently
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low-rank Hermitian solutions to (8.5.2) are unique, as follows.

Theorem 8.6.2 (Hermitian Recovery). Let X0 ∈ S with rank(X0) ≤ r0(1− ε). Sup-

pose A(·) is as described in Theorem 8.4.2. With probability at least 1− exp(−Ω(n)),

X0 can be perfectly recovered from A(X0) by Algorithm 6.

Note that although the same algorithm works for both cases of PSD and Hermi-

tian matrices, there is a significant difference. In Theorem 8.5.3, all X ∈ Sn+ with

sufficiently low ranks are recoverable, whereas a similar fact is true for almost all Her-

mitian matrices of low rank. These notions are often distinguished in the literature

by the terms “strong” recovery and “weak” recovery, respectively. Furthermore, note

that for the case of PSD recovery, one can alternatively use convex optimization to

find the unique PSD solution. However for the recovery of Hermitians, we do not

know of any other method but our proposed Algorithm 6.

8.7 Simulation Results

Numerical simulations were performed to verify the validity of Algorithm 6. We used

n = 50, linear measurement operators in the form of (8.4.1) with d = 2, 3, 4, and two

types of distributions for Gis: 1) i.i.d Gaussian matrices, and 2) sparse matrices where

every row of each Gi has exactly one 1 in a random location. We did not explicitly

prove that the sparse constructions are also rank expanders. However, such low-

density structures are of high practical interests. The resulting curves of successful

recovery thresholds are given in Figure 8.1. In all of our simulations for Gaussian

matrices, the transition between successful recovery and failure was very sharp, i.e.,

either failed all times or succeeded, depending on the number of measurements and

the rank of X. Figure 8.1 illustrates the empirical transition phase or the recovery

threshold of Algorithm 6. The corresponding curves for sparse matrices are also

shown in Figure 8.1. The transition for sparse matrices was not as sharp as for

Gaussians. On the same curves, the performance of the standard trace minimization
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with nonnegativity (PSD) constraint is also displayed. Observe that the performance

of the proposed algorithm is very comparable to the convex relaxation method. In

addition, the curves for sparse measurements collapse into the same curves as the

dense measurements for sufficiently large m. In practice, Algorithm 6 is much faster

than NNM. To give an example, for simulations in MATLAB on a 2.4 GHz Intel Core

i5 with 4 GB RAM, and for the case of d = 2,m = 39, k = 10 with Gaussian Gis, each

reconstruction took on average 34s for the NNN, but only about 0.05s for Algorithm

6. For sparse structures, each reconstruction took on average about 1.8s for NNM

and 0.05s for Algorithm 6. NNM was solved via the SEDUMI toolbox.

Figure 8.1: Empirical recovery thresholds of Algorithm 6 and NNM for 50 × 50
matrices with linear operators. Measurements are m×m, and k is the rank.



Chapter 9

Future Work

A few questions related to the results of this thesis that are worth further explorations

are as follows:

Minimal expander-graphs discussed in Chapter 2 are based on random pertur-

bations. Constructing binary matrices that have complete rank proportional to

the signal dimension is an open problem. Binary matrices are easier to store and

implement than structures with perturbation. Furthermore, determining whether

expander-graph based structures or their perturbed variations satisfy RIP-2 is an

interesting theoretical problem.

Summary-based structures and the SIR algorithm discussed in Chapter 4 are very

suitable for sparse regression problems with extremely large dimensions. Therefore,

it is of high practical value to come up with ways for making the proposed sub-

linear time algorithms more robust to noise, and providing theoretical justifications.

Furthermore, numerical simulations that verify the usefulness of the algorithm for

model selection and statistical inference problems are in order. In [KKH11], we have

reported a preliminary application of this approach to identifying a hypothetical tree

mixture model from restricted queries. More practical applications, such as partial

political ranking and estimation of graphical models (such as Markov random fields),

can be immediately investigated.

248
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Model-based sparse reconstruction algorithms are very powerful, and are becom-

ing subjects of more inspection, thanks to the availability of more advanced statistical

signal models. Extensions and applications of our proposed regularized Basis Pursuit

algorithm have already been reported (see, e.g., [KOH12, LV, OKH11] for theoreti-

cal results, and [LLAV11, Das10] for applications in fMRI and particle filtering for

machine vision). The results are further improvable.

Designing iterative algorithms that can universally improve upon Basis Pursuit

remains an open problem. In our analysis of iterative BP given in Chapter 6, exact

threshold improvements are missing. In a more recent work, we have addressed this

issue and have found explicit upper bounds that closely estimate the exact threshold

improvements [KTH12]. Stronger results and tighter approximations are in order. In

general, precise characterization of the dynamics of `1 regression beyond the recovery

threshold results of [Don04] and robustness analysis of Weiyu [XH09] is a cumbersome

and highly motivated problem. Recent work that has addressed this includes [CRPW,

XT10b, BM].

Exact threshold computations for the proposed reweighted LP algorithm for error-

correcting code is even more challenging than the reweighted Basis Pursuit analysis.

For the subspace expander operators proposed in Chapter 8, we did not prove the

existence of such structures with sparse matrix multipliers (Gi). However simulations

verified that the REVEX algorithm is successful for sparse operators as well. Further,

it would be very interesting to design greedy low-rank-matrix estimation algorithms

that resemble other types of combinatorial methods, such as the bit-flipping algorithm

or message-passing methods for expander graphs. Such reconstruction schemes would

be highly efficient and preferable to SDP type methods for rank minimization.

Developing ways to efficiently verify the success conditions, such as null space

property or RIP for given matrices, is a high-profile research direction. We suggested

that girth can be used as a deterministic and efficiently verifiable guarantee (see

Chapter 3). However, this criterion is only applicable to sparse LDPC matrices.
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Furthermore, it does not provide a sufficient condition for successful regression using

Basis Pursuit. As a first step to find more universal measures, perhaps it is worthwhile

to look into the model-based sparse recovery problems and identify easily verifiable

goodness measures for the measurement matrix in those contexts. Furthermore, as

the goodness of a matrix for Basis Pursuit is completely characterized by its null

space, there might be ways for designing elegant measurement matrices by specifying

the null space directly. A paper of Stojnic et al. has studied this to a limited extent

by considering random matrix ensembles with Bernoulli null spaces [Sto09]. Again,

pursuing such a direction is perhaps easier for model-based sparsity problems.

Finally, new applications for sparse estimation always lead to new research direc-

tions for compressed sensing, both from experimental and theoretical points of view.

New applications introduce new constraints, requiring novel encoding/decoding tech-

nologies.



Chapter 10

Appendix

10.1 Elementary Bounds on Binomial Coefficients

For each β ∈ (0, 1), define the binomial entropy H(β) = −β log2 β−(1−β) log2(1−β)

(and H(0) = H(1) = 0 by continuity). We make use of the following standard bounds

on the binomial coefficients from [CT06b]:

n

[
H

(
k

n

)
− log2(n+ 1)

n

]
≤ log2

(
n

k

)
≤ n

[
H

(
k

n

)
+

log2(n+ 1)

n

]
. (10.1.1)

10.2 Hall’s Matching Theorem

Hall’s matching (marriage) theorem gives a necessary and sufficient condition for the

existence of a perfect matching in a bipartite graph. Suppose (X, Y, E) is a bipartite

graph with sets of right and left nodes X, Y with |X| ≤ |Y |. A perfect matching from

X to Y is a one-to-one mapping from X to Y using the edges in E . According to

Hall’s theorem (see, e.g. [HV50]):

A perfect matching from X to Y exists ⇐⇒ ∀S ⊆ X,Γ(S) ≥ |S|

where Γ(S) is the neighborhood set of S in Y . This theorem can be generalized. A

perfect c-matching is an invertible one-to-c mapping from X to Y using the edges in

251
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E , meaning that every node in X is mapped to exactly c neighboring nodes in Y , and

no two nodes of X have a common node in their mappings. A generalization of Hall’s

theorem states that:

A perfect c-matching from X to Y exists ⇐⇒ ∀S ⊆ X,Γ(S) ≥ c|S|.

10.3 Restricted Isometry Property(RIP)

A matrix Am×n satisfies the RIP(p, k, δ) for integer k, p > 0 and 0 < δ < 1, if for all

k-sparse vectors x, the following holds:

(1− δ)‖x‖pp ≤ ‖Ax‖pp ≤ (1 + δ)‖x‖pp. (10.3.1)

In other words, RIP condition for A means that the (`p) topology of the set of sparse

vectors in Rn is approximately preserved under the projection to Rm by A. Therefore,

it should be easier to invert mappings that satisfy stronger isometry properties, and

equivalently find the sparse solution of a linear equation. The RIP condition is often

only referred to by the norm parameter p, when clear from the context. Sparse

recovery using Basis Pursuit is mostly related to RIP-2, as Candés et al. proved

that it ensures exact recovery of sparse signals and stable recovery in the present of

noise [CT05, CRT06c]. RIP-(2, k, δ) is related to the coherence measure of A and is

equivalent to all singular values of all of the m× k sub-matrices of A being bounded

away from zero, i.e.,

min
S⊂{1,2,...,n},|S|=k

σmin(AS) ≥ δ. (10.3.2)

10.4 RIP-1 for Expanders

We present a simple argument to show that the adjacency matrix A of a (k, ε) ex-

pander graph with ε < 1/2 has RIP-1 property, which means that for every k-sparse
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vector x and suitable constants c1, c2, the `1 norm of ‖Ax‖1 is close to the norm of

x:

(1− c1)‖x‖1 ≤ ‖Ax‖1 ≤ (1 + c2)‖x‖1, (10.4.1)

where c1 and c2 are two constants depending on the expansion coefficient.

It should be acknowledged that Berinde et al. [BGI+08] already prove this prop-

erty, generally for p norms where p ≤ 1− 1/ log n. The argument we present here is

arguably simpler and easily extends to the case where the matrix is perturbed in the

nonzero entries.

Consider A to be the adjacency matrix of a (k, ε) unbalanced expander for ε < 1/2.

Consider S the support set of a k-sparse x. By Hall’s theorem, since every set S of

size up to k has d(1 − ε)|S| neighbors, there must exist a partial d(1 − ε)-matching,

i.e., one in which every node in S can be matched to d(1 − ε) unique neighbors.

Decompose the measurement matrix

A = AM + AC , (10.4.2)

where AM is supported on the partial d(1 − ε)-matching (i.e., every row has one

nonzero entry and every column has d(1− ε) nonzero entries). The remainder matrix

AC has εd nonzero entries in each column; notice that the decomposition is adapted

to the support of the vector x. By the triangle inequality:

‖Ax‖1 ≥ ‖AMx‖1 − ‖ACx‖1. (10.4.3)

It is easy to see that

‖AMx‖1 ≥ d(1− ε)‖x‖1, (10.4.4)

since AMx is a vector that contains d(1− ε) copies of each entry of x. Also since each

column of AC contains εd nonzero entries,

‖ACx‖1 ≤ εd‖x‖1, (10.4.5)

since each entry of ACx is a summation of the coefficients of x, and ‖AMx‖1 is also

a summation in which each entry of x appears dε times. A similar argument implies
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the upper bound:

‖Ax‖1 ≤ d‖x‖1. (10.4.6)

Therefore, putting these together, we obtain:

(1− 2ε)‖x‖1 ≤ ‖Ax‖1 ≤ d‖x‖1. (10.4.7)



Bibliography

[ADS09] S. Arora, C. Daskalakis, and D. Steurer. Message-passing algorithms and

improved LP decoding. In Proceedings of 41st Annual ACM Symposium

on Theory of Computing, Bethesda, MD, USA, May 31–June 2, 2009.

[AM11] A. Amini and F. Marvasti. Deterministic construction of binary, bipolar

and ternary compressed sensing matrices. IEEE Transactions on Infor-

mation Theory, 57(4):2360–2370, 2011.

[AMM12] A. Amini, V. Montazerhodjat, and F. Marvast. Matrices with small co-

herence using p-ary block codes. IEEE Transactions on Signal Processing,

60(1):172–181, 2012.

[Ari09] E. Arikan. Channel polarization: A method for constructing capacity-

achieving codes for symmetric binary-input memoryless channels. IEEE

Transactions on Information Theory, 55:3051–3073, 2009.

[AS92] F. Affentranger and R. Schneider. Random projections of regular sim-

plices. Discrete and Computational Geometry, 7:219–226, 1992.

[AT05] A. Altman and M. Tennenholtz. Ranking systems: The pagerank axioms.

In Proceedings of the 6th ACM Conference on Electronic Commerce, Van-

couver, BC,Canade, 2005.

[AT08] M. Akcakaya and V. Tarokh. A frame construction and a universal dis-

tortion bound for sparse representations. IEEE Transactions on Signal

Processing, 56(6):2443–2450, 2008.

255



256

[BCDH10] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde. Model-

based compressive sensing. IEEE Transactions on Information Theory,

56(4):1982–2001, 2010.

[BCJ10] W. U. Bajwa, R. Calderbank, and S. Jafarpour. Why Gabor frames?

Two fundamental measures of coherence and their role in model selection.

(Preprint), 2010.

[BCT10] J. Blanchard, C. Cartis, and J. Tanner. Compressed sensing: How sharp

is the restricted isometry property? SIAM Review 53:105–125, 2010.

[BD08] T. Blumensath and M. E. Davies. Iterative thresholding for sparse

approximations. The Journal of Fourier Analysis and Applications,

14(5):629–654, December 2008.

[BDDW08] R. G. Baraniuk, M. Davenport, R. A. DeVore, and M. Wakin. A simple

proof of the restricted isometry property for random matrices. Construc-

tive Approximation, 28:253–263, 2008.

[BEZ08] A. M. Bruckstein, M. Elad, and M. Zibulevsky. A nonnegative and sparse

enough solution of an underdetermined linear system of equations is

unique. IEEE Transactions on Information Theory, 54(11):4813–4820,

November 2008.

[BGI+08] R. Berinde, A. Gilbert, P. Indyk, H. Karloff, and M. Strauss. Combin-

ing geometry and combinatorics: A unified approach to sparse signal

recovery. In 46th Annual Allerton Conference, September 23–26, 2008.

[BGT93] C. Berrou, A. Glavieux, and P. Thitimajshima. Near shannon limit error-

correcting coding and decoding: Turbo-codes. 1. In IEEE International

Conference on Communications, ICC 93, Geneva, Switzerland, 1993.

[Bha96] R. Bhatia. Matrix Analysis (Graduate Texts in Mathematics). Springer,

1996.



257

[BHRN08] W. U. Bajwa, J. Haupt, G. Raz, and R. Nowak. Compressed channel

sensing. In 42nd Annual Conference on Information Sciences and Sys-

tems, CISS, 2008.

[BHSN10] W. U. Bajwa, J. Haupt, A. M. Sayeed, and R. Nowak. Compressed

channel sensing: A new approach to estimating sparse multipath chan-

nels. Proceedings of the IEEE, 98(6):1058 – 1076, 2010.

[BI08] R. Berinde and P. Indyk. Sparse recovery using sparse matrices. Technical

report, Computer Science and Artificial Intelligence Laboratory (MIT-

CSAIL-TR), January 10, 2008.

[BI09] R. Berinde and P. Indyk. Sequential sparse matching pursuit. In Allerton

Conference, 2009.

[BIPW10] K. Do Ba, P. Indyk, E. Price, and D. Woodruff. Lower bounds for sparse

recovery. In Proceedings of ACM-SIAM Symposium on Discrete Algo-

rithms (SODA), 2010.

[BIR08] R. Berinde, P. Indyk, and M. Ruzic. Practical near-optimal sparse recov-

ery in the l1 norm. In Proceedings of 46th Annual Alletron Conference,

2008.

[BM] M. Bayati and A. Montanari. The LASSO risk for Gaussian matrices.

arXiv:1008.2581.

[BM01] D. Burshtein and G. Miller. Expander graph arguments for message

passing algorithms. IEEE Transactions on Information Theory, 47:782–

790, February 2001.

[BW09] R. G. Baraniuk and M. B. Wakin. Random projections of smooth mani-

folds. Journal of Foundations of Computational Mathematics, 9(1), 2009.

[Cal98] D. Callan. When is ‘rank’ additive? The College Mathematics Journal,

29(2):145–147, 1998.



258

[CB83] N. R. Chapman and I. Barrodale. Deconvolution of marine seismic data

using the `1 norm. Geophysics Journal of the Royal Astronomical Society,

72:93–100, 1983.

[CC06] M. Chertkov and V. Y. Chernyak. Loop calculus helps to improve be-

lief propagation and linear programming decoding of LDPC codes. In

Allerton Conference on Communications, Control and Computing, 2006.

[CD94] S. Chen and D. Donoho. Basis pursuit. In Twenty-Eighth Asilomar

Conference on Signals, Systems and Computers, 1994.

[CDD08] A. Cohen, W. Dahmen, and R. DeVore. Compressed sensing and best k-

term approximation. Journal of American Mathematical Society, 22:211–

231, 2008.

[CDS01] S. Chen, D. Donoho, and M. A. Saunders. Atomic decomposition by

basis pursuit. SIAM Review, 43(1):129–159, 2001.

[Cev09] V. Cevher. Learning with compressible priors. In Neural Information

Processing Systems (NIPS), 2009.

[CH06] J. Chen and X. Huo. Theoretical results on sparse representations of

multiple-measurement vectors. IEEE Transactions on Signal Processing,

54(12):4634–4643, 2006.

[CHJ10] R. Calderbank, S. Howard, and S. Jafarpour. Construction of a large

class of deterministic sensing matrices that satisfy a statistical isometry

property. IEEE Journal of Selected Topics in Signal Processing, Special

Issue on Compressed Sensing, 4(2):358–374, 2010.

[CM04] G. Cormode and S. Muthukrishnan. Improved data stream summaries:

The count-min sketch and its applications. In Annual Conference on

Foundations of Software Technology and Theoretical Computer Science

(FSTTCS), 2004.



259

[CM05] G. Cormode and S. Muthukrishnan. Towards an algorithmic theory of

compressed sensing. Technical report, 2005.

[CM06] G. Cormode and S. Muthukrishnan. Combinatorial algorithms for com-

pressed sensing. In Conference on Information Sciences and Systems

(CISS), 2006.

[CPR07] J. Coates, Y. Pointurier, and M. Rabbat. Compressed network monitor-

ing. In Proceedings of IEEE Workshop on Statistical Signal Processing,

Madison, WI, USA, August, 2007.

[CR09] E. J. Candès and B. Recht. Exact matrix completion via convex op-

timization. Foundations of Computational Mathematics, 9(6):717–772,

2009.

[CR11] E. J. Candès and B. Recht. Simple bounds for low-complexity model

reconstruction. (Preprint), 2011.

[CRPW] V. Chandrasekaran, B. Recht, P. Parrilo, and A. Willsky. The convex

geometry of linear inverse problems. arXiv:1012.0621v1.

[CRT06a] E. Candès, J. Romberg, and T. Tao. Stable signal recovery from in-

complete and inaccurate measurements. Communications on Pure and

Applied Mathematics, 59(8):1207–1223, August 2006.

[CRT06b] E. Candès, J. Romberg, and T. Tao. Robust uncertainty principles:

Exact signal reconstruction from highly incomplete frequency informa-

tion. IEEE Transactions on Information Theory, 52(2):489–509, Febru-

ary 2006.

[CRT06c] E. J. Cands̀, J. Romberg, and T. Tao. Stable signal recovery from in-

complete and inaccurate measurements. Communications on Pure and

Applied Mathematics, 59 (8):1207–1223, 2006.



260

[CRVW02] M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson. Randomness

conductors and constant-degree lossless expanders. In Proceedings of 34th

Annual ACM Symposium on Theory of Computing (STOC), 2002.

[CSW10] V. Chandar, D. Shah, and G. W. Wornell. A simple message-passing

algorithm for compressed sensing. In IEEE International Symposium on

Information Theory (ISIT), 2010.

[CT05] E. J. Candès and T. Tao. Decoding by linear programming. IEEE Trans-

actions on Information Theory, 51(12):4203–4215, 2005.

[CT06a] E. J. Candès and T. Tao. Near-optimal signal recovery from random

projections: universal encoding strategies. IEEE Transactions on Infor-

mation Theory, 52(12):5406–5425, 2006.

[CT06b] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley,

2006.

[CT07] E. J. Candès and T. Tao. The Dantzig selector: Statistical estimation

when p is much larger than n. Annals of Statistics, 35:2313–2351, 2007.

[CT10] E. J. Candès and T. Tao. The power of convex relaxation: Near-

optimal matrix completion. IEEE Transactions on Information Theory,

56(5):2053–2080, 2010.

[CV08] C. Chen and P. P. Vaidyanathan. Compressed sensing in MIMO radar.

In Asilomar Conference on Signal, Systems, and Computers, 2008.

[cvx] cvx toolbox webpage: http://cvxr.com/cvx/.

[CWB08] E. Candès, M. Wakin, and S. Boyd. Enhancing sparsity by reweighted l1

minimization. Journal of Fourier Analysis and Applications, 14:877–905,

2008.

[CY08] R. Chartrand and W. Yin. Iteratively reweighted algorithms for compres-

sive sensing. In IEEE International Conference on Acoustics, Speech, and

Signal Processing (ICASSP), Las Vegas, NV, USA, April 2008.



261

[Das10] S. Das. Particle Filtering on Large Dimensional State Spaces and Appli-

cations in Computer Vision. PhD thesis, Iowa State University, 2010.

[DDFG10] I. Daubechies, R. DeVore, M. Fornasier, and C. S. Gntrk. Iteratively re-

weighted least squares minimization for sparse recovery. Communications

on Pure and Applied Mathematics, 63(1):1–38, 2010.

[DDKW08] C. Daskalakis, A. G. Dimakis, R. M. Karp, and M. J. Wainwright. Prob-

abilistic analysis of linear programming decoding. IEEE Transactions on

Information Theory, 54(8), 2008.

[DDT+08] M. F. Duarte, M. A Davenport, D. Takhar, J. N. Laska, T. Sun, K. F.

Kelly, and R. G. Baraniuk. Single-pixel imaging via compressive sam-

pling. IEEE Signal Processing Magazine, 25(2):83–91, 2008.

[DET06] D. Donoho, M. Elad, and V.N. Temlyakov. Stable recovery of sparse

overcomplete representations in the presence of noise. IEEE Transactions

on Information Theory, 52(1):6–18, 2006.

[DeV06] R. A. DeVore. Optimal computation. In Proceedings of the International

Congress of Mathematicians, Madrid, Spain, 2006.

[DeV07] R. A. DeVore. Deterministic constructions of compressed sensing matri-

ces. Journal of Complexity, 23(4–6), 2007.

[DGW09] A. G. Dimakis, A. A. Gohari, and M. Wainwright. Guessing facets:

Polytope structure and improved LP decoder. IEEE Transactions on

Information Theory, 55(8):1369–1373, 2009.

[DH01] D. L. Donoho and X. Huo. Uncertainty principles and ideal atomic de-

composition. IEEE Transactions on Information Theory, 47(7):2845–

2862, 2001.

[DJM11] D. Donoho, I. Johnstone, and A. Montanari. Accurate prediction of phase

transitions in compressed sensing via a connection to minimax denoising.

(Preprint), 2011.



262

[DMA97] G. Davis, S. Mallat, and M. Avellaneda. Adaptive greedy approxima-

tions. Journal of Constructive Approximation, 13:57–98, 1997.

[DMM09] D. L. Donoho, A. Maleki, and A. Montanari. Message passing algorithms

for compressed sensing. In Proceedings of the National Academy of Sci-

ence, 2009.

[DMP11] W. Dai, O. Milenkovic, and H. Pham. Structured sublinear compressive

sensing via dense belief propagation. (Preprint), 2011.

[DMSB08] W. Dai, O. Milenkovi, M. A. Sheikh, and R. G. Baraniuk. Probe de-

sign for compressive sensing DNA microarrays. In IEEE International

Conference on Bioinformatics and Biomedicine (BIBM), 2008.

[DMT07] C. Dwork, F. McSherry, and K. Talwar. The price of privacy and the

limits of LP decoding. In Symposium on Theory of Computing (STOC),

San Diego, CA, USA, June, 2007.

[Don04] D. Donoho. For most large underdetermined systems of linear equations

the minimal l1-norm solution is also the sparsest solution. In Communi-

cations on Pure and Applied Mathematics, 2004.

[Don06a] D. Donoho. Compressed sensing. IEEE Transactions on Information

Theory, 52(4):1289–1306, 2006.

[Don06b] D. Donoho. High-dimensional centrally symmetric polytopes with neigh-

borliness proportional to dimension. Discrete and Computational Geom-

etry, 102(27):617–652, 2006.

[DSMB09] W. Dai, M. Sheikh, O. Milenkovic, and R. Baraniuk. Compressive sensing

DNA microarrays. EURASIP Journal on Bioinformatics and Systems

Biology (available online at http://www-ece.rice.edu), 2009.

[DSV] A. G. Dimakis, R. Smarandache, and P. O. Vontobel. LDPC codes for

compressed sensing. arXiv:1012.0602.



263

[DT05a] D. Donoho and J. Tanner. Neighborlyness of randomly-projected sim-

plices in high dimensions. Proceedings of the National Academy of Sci-

ences, 102(27):9452–9457, 2005.

[DT05b] D. Donoho and J. Tanner. Sparse nonnegative solution of underdeter-

mined linear equations by linear programming. Proceedings of the Na-

tional Academy of Sciences, 102(27):9446–9451, 2005.

[DT06] D. Donoho and J. Tanner. Thresholds for the recovery of sparse solutions

via l1 minimization. In Proceedings of the Conference on Information

Sciences and Systems, 2006.

[DT10] D. Donoho and J. Tanner. Counting the faces of randomly-projected

hypercubes and orthants, with applications. Discrete and Computational

Geometry, 43(3):522–541, 2010.

[DTDS06] D.. Donoho, Y. Tsaig, I. Drori, and J. Starck. Sparse solution of under-

determined linear equations by stagewise orthogonal matching pursuit.

Technical report, Stanford University, 2006.

[duk] Bayesian compressed sensing online resources:.

http://people.ee.duke.edu/̃lcarin/BCS.html.

[DV09] A. G. Dimakis and P. O. Vontobel. LP decoding meets LP decoding: A

connection between channel coding and compressed sensing. In Allerton

Conference on Communications, Control and Computing, 2009.

[DWB06] M. Davenport, M. Wakin, and R. Baraniuk. Detection and estimation

with compressive measurements. Technical report, Rice ECE Depart-

ment, November 2006.

[DYW07] S. C. Draper, J. S. Yedidia, and Y. Wang. ML decoding via mixed-

integer adaptive linear programming. In IEEE International Symposium

on Information Theory (ISIT), 2007.



264

[Eld09] Y. C. Eldar. Compressed sensing of analog signals in shift-invariant

spaces. IEEE Transactions on Signal Processing, 57(8):2986–2997, 2009.

[ES05] S. Erickson and C. Sabatti. Empirical Bayes estimation of a sparse vector

of gene expression. In Statistical Applications in Genetics and Molecular

Biology, 2005.

[Faz02] M. Fazel. Matrix Rank Minimization with Applications. PhD thesis,

Stanford University, 2002.

[Fel03] J. Feldman. Decoding Error-Correcting Codes via Linear Programming.

PhD thesis, Massachusetts Institute of Technology, 2003.

[FKW02] J. Feldman, D. R. Karger, and M. J. Wainwright. Linear programming-

based decoding of Turbo-like codes and its relation to iterative ap-

proaches. In Proceedings of the 40th Annual Allerton Conference on

Communication, Control, and Computing, 2002.

[FMS+07] J. Feldman, T. Malkin, R. A. Servedio, C. Stein, and M. J. Wainwright.

LP decoding corrects a constant fraction of errors. IEEE Transactions

on Information Theory, 53(1):82–89, 2007.

[FN03] A. Feuer and A. Nemirovski. On sparse representation in pairs of bases.

IEEE Transactions on Information Theory, 49(6):1579–1581, 2003.

[Fos01] M. P. C. Fossorier. Iterative reliability-based decoding of low-density par-

ity check codes. IEEE Transactions on Information Theory, 19(5):908–

917, 2001.

[FR08] M. Fornasier and H. Rauhut. Iterative thresholding algorithms. Applied

and Computational Harmonic Analysis, 25(2):187–208, 2008.

[Fre98] B. J. Frey. Graphical Models for Machine Learning and Digital Commu-

nication. M.I.T Press, Cambridge, MA, 1998.

[FRG07] A. K. Fletcher, S. Rangan, and V. K. Goyal. On the rate-distortion

performance of compressed sensing. In IEEE International Conference on



265

Acoustics, Speech, and Signal Processing (ICASSP), Honolulu, Hawaii,

USA, April 2007.

[FWK05] J. Feldman, M. J. Wainwright, and D. R. Karger. Using linear program-

ming to decode binary linear codes. IEEE Transactions on Information

Theory, 51(3):954–972, 2005.

[Gal63] R. G. Gallager. Low-Density Parity-Check Codes. M.I.T. Press, Cam-

bridge, MA, 1963.

[GI10] A. Gilbert and P. Indyk. Sparse recovery using sparse matrices. Proceed-

ings of the IEEE, 98(6):937–947, 2010.

[GLR08] V. Guruswami, J. R. Lee, and A. Razborov. Almost Euclidean subspaces

of ln1 via expander codes. In Proceedings of Symposium on Discrete Al-

gorithms (SODA), 2008.

[GLW08] V. Guruswami, J. R. Lee, and A. Wigderson. Euclidean sections of ln1 with

sublinear randomness and error-correction over the reals. In Proceedings

of Randomization and Approximation Techniques in Computer Science

Conference (RANDOM), 2008.

[Gru68] B. Grunbaum. Grassmann angles of convex polytopes. Acta Mathemat-

ica, 121:293–302, 1968.

[Gru03] B. Grunbaum. Convex polytopes (volume 221 of Graduate Texts in Math-

ematics). Springer-Verlag, New York, second edition, 2003.

[GSTV06] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vershynin. Algorithmic

linear dimension reduction in the `1 norm for sparse vectors. Proceedings

of the Allerton Conference, 2006.

[GSTV07] A. Gilbert, M. Strauss, J. Tropp, and R. Vershynin. One sketch for all:

Fast algorithms for compressed sensing. In ACM Symposium on Theory

of Computing (STOC), 2007.



266

[HCS08] S. D. Howard, A. R. Calderbank, and S. J. Searle. A fast reconstruction

algorithm for deterministic compressive sensing using second order Reed-

Muller codes. In Proceedings of Conference on Information Sciences &

Systems, 2008.

[HEA05] X. Y. Hu, E. Eleftheriou, and D. M. Arnold. Regular and irregular pro-

gressive edge-growth Tanner graphs. IEEE Transactions on Information

Theory, 51(1):386–398, 2005.

[HKXA09] B. Hassibi, A. Khajehnejad, W. Xu, and S. Avestimehr. Breaking the `1

recovery thresholds with reweighted `1 optimization. In Proceedings of

Allerton Conference, 2009.

[HS09] M. A. Herman and T. Strohmer. High-resolution radar via compressed

sensing. IEEE Transactions on Signal Processing, 57(6):2275–2284, 2009.

[HSC09] S. Howard, S. Searle, and R. Calderbank. Chirp sensing codes: Deter-

ministic compressed sensing measurements for fast recovery. Applied and

Computational Harmonic Analysis, 2009.

[HV50] P. R. Halmos and H. E. Vaughan. The marriage problem. American

Journal of Mathematics, 72(1):214–215, 1950.

[Ind08] P. Indyk. Explicit constructions for compressed sensing of sparse sig-

nals. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms

(SODA), 2008.

[IR08] P. Indyk and M. Ruzic. Near-optimal sparse recovery in the l1 norm’.

In Proceedings of 49th Symposium on Foundations of Computer Science

(FOCS), 2008.

[JM] S. Jokar and V. Mehrmann. Sparse representation of solutions of Kro-

necker product of systems. arXiv:0902.4587.



267

[JS08] S. Jagabathula and D. Shah. Inferring popular rankings under con-

strained sensing. In Neural Information Processing Systems Conference

(NIPS), 2008.

[JXC08] S. Ji, Y. Xue, and L. Carin. Bayesian compressive sensing. IEEE Trans-

actions on Signal Processing, 56(6):2346–2356, 2008.

[JXHC09] S. Jafarpour, W. Xu, B. Hassibi, and R. Calderbank. Efficient and robust

compressed sensing using high-quality expander graphs. IEEE Transac-

tions on Information Theory, 55(9):4299–4308, 2009.

[JYG09] X. Jiang, Y. Yao, and L. Guibas. Stable identification of cliques with

restricted sensing. In Neural Information Processing Systems Conference

(NIPS), 2009.

[KKH11] A. Khajehnejad, A. Khojastepour, and B. Hassibi. Compressed network

tomography for probabilistic tree mixture models. In Globecomm Con-

ference, 2011.

[KNN09] Y. Kim, S. S. Narayanan, and K. S. Nayak. Accelerated three-dimensional

upper airway MRI using compressed sensing. Magnetic Resonance in

Medicine, 61:1434–1440, 2009.

[KOH12] A. K. Krishnaswamy, S. Oymak, and B. Hassibi. A simpler approach

to weighted `1 minimization. In International Conference on Acoustics,

Speach and Signal Processing (ICASSP), 2012.

[Kru77] J.B. Kruskal. Three-way arrays: Rank and uniqueness of trilinear de-

compositions, with application to arithmetic complexity and statistics.

Linear Algebra Applications, 18, 1977.

[KTDH11] A. Khajehnejad, A. Saber Tehrani, A. G. Dimakis, and B. Hassibi. Ex-

plicit matrices for sparse approximation. In IEEE International Sympo-

sium on Information Theory (ISIT), 2011.



268

[KTH12] A. Khajehnejad, M. Thill, and B. Hassibi. Projected `1 minimization

for compressed sensing. In International Conference on Acoustic, Speech

and Signal Processing, 2012.

[KV03] R. Koetter and P. O. Vontobel. Graph-covers and iterative decoding of

finite length codes. In Proceedings of 3rd International Symposium on

Turbo Codes, 2003.

[KV06] R. Koetter and P. O. Vontobel. On the block error probability of LP

decoding of LDPC codes. In Proceedings of the Inaugural Workshop of

the Center for Information Theory and Applications, UC San Diego, La

Jolla, CA, USA, February 6-10, 2006.

[KWYH12] A. Khajehnejad, A. S. Avestimehr W. Yu, and B. Hassibi. Improving the

thresholds of sparse recovery: An analysis of a rwo-step reweighted ba-

sis pursuit algorithm. (Submitted to IEEE Transactions on Information

Theory), 2012. arXiv:1111.1396.

[KXAH10] A. Khajehnejad, W. Xu, S. Avestimehr, and B. Hassibi. Improved sparse

recovery thresholds with two step reweighted `1 minimization. In IEEE

International Symposium on Information Theory (ISIT), 2010.

[KXAH11] A. Khajehnejad, W. Xu, S. Avestimehr, and B. Hassibi. Analyzing

weighted `1 minimization for sparse recovery with nonuniform sparse

models. IEEE Transactions on Signal Processing, 59(5):1985–2001, 2011.

[KXDH10] A. Khajehnejad, W. Xu, A. G. Dimakis, and B. Hassibi. Sparse recovery

of nonnegative signals with minimal expansion. IEEE Transactions on

Signal Processing, 59(1):196–208, 2010.

[KZ] P. Koiran and A. Zouzias. On the certification of the restricted isometry

property. arXiv:1103.4984.

[LDP07] M. Lustig, D. Donoho, and J. M. Paul. Sparse MRI: The application

of compressed sensing for rapid MR imaging. Magnetic Resonance in

Medicine, 58(6):1182–95, 2007.



269

[LDSP08] M. Lustig, D. Donoho, J.M. Santos, and J.M. Pauly. Compressed sensing

MRI. IEEE Signal Processing Magazine, 25(2):72 – 82, 2008.

[LKD+07] J. Laska, S. Kirolos, M. Duarte, T. Ragheb, R. Baraniuk, and Y. Mas-

soud. Theory and implementation of an analog-to-information converter

using random demodulation. In IEEE International Symposium on Cir-

cuits and Systems (ISCAS), 2007.

[LLAV11] W. Lu, T. Li, I. Atkinson, and N. Vaswani. Modified-CS-residual for re-

cursive reconstruction of highly undersampled functional MRI sequences.

In IEEE International Conference on Image Processing (ICIP), 2011.

[LLP08] J. Luo, Y. Lu, and B. Prabhaka. Prototyping counter braids on NetF-

PGA. Technical report, 2008.

[LMP08] Y. Lu, A. Montanari, and B. Parabhakar. Counter braids: Asymptotic

optimality of the message passing decoding algorithm. In Proceedings of

the Allerton Conference, September 2008.

[LMSS98] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman. Analysis

of low density codes and improved designs using irregular graphs. In

Proceedings of 30th Annual ACM Symposium on Theory of Computing,

1998.

[LN06] N. Linial and I. Novik. How neighborly can a centrally symmetric poly-

tope be? Discrete and Computational Geometry, pages 273–281, 2006.

[Log65] B. F. Logan. Properties of high-pass signals. PhD thesis, Columbia

University, 1965.

[LT91] M. Ledoux and M. Talagrand. Probability in Banach spaces. Springer-

Verlag, 1991.

[LV] W. Lu and N. Vaswani. Exact reconstruction conditions for regularized

modified basis pursuit. arXiv:1108.3350.



270

[LV09] W. Lu and N. Vaswani. Modified compressive sensing for real-time dy-

namic MR imaging. In IEEE International Conference image Processing

(ICIP), 2009.

[LV10] W. Lu and N. Vaswani. Regularized modified-BPDN for compressive

sensing with partially known support. (Preprint), 2010.

[Mar06] R. Marks. Introduction to Shannon Sampling and Interpolation Theory.

Springer, 2006.

[Mas03] P. Massart. Concentration inequalities and model selection. Lecture Notes
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