
Graphene as a platform for novel nanoelectronic devices

Thesis by

Brian Standley

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2012

(Defended 14 May 2012)

ii

c⃝ 2012

Brian Standley

Except where otherwise noted, this work is licensed under the Creative Commons

Attribution-ShareAlike 3.0 Unported License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/3.0/ or send a

letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View,

California, 94041, USA.

iii

To my parents

iv

Acknowledgements

To join a nascent scientific movement shortly after its inception—in my case, the first transport

experiments on a single graphene sheet by Novoselov et al. [1] in 2004—can be exhilarating, awe-

inspiring, and, at times, deeply trying. The field of new endeavors seems endless, yet basic experi-

mental practices are in flux or yet undiscovered. One climbs onto the shoulders of giants, yet cannot

help but find the perch a bit wobbly and the view somewhat vertiginous.

Throughout this process I have been tirelessly encouraged by five individuals most of all: My

adviser Marc Bockrath, himself a giant of carbon nanotube physics, has been a model of genuine

scientific curiosity and integrity. My parents Larry Standley and Susan Blough have instilled in me a

love of science and engineering and demonstrated how to work very, very hard without complaining

(I am not sure how well the latter part of this lesson took). My brother Eric Standley has always

been an earnest friend, in spite of all my teasing of him. Finally, my wife Eve Stenson has been

a great adventure partner ever since we met (along with other positive attributes too numerous to

mention here).

I enjoyed working with and getting to know many colleagues and friends at Caltech, including

Anthony Mendez, Emma Schmidgall, Bertrand Bourlon, Henk Postma, Keisuki Shimizu, Cameron

Hughes, Marcus Teague, Peter Hung, Hsin-Ying Chiu, Jinseong Heo, Vikram Deshpande, Hareem

Maune, Isabella Kierk, and Sinchul Yeom. In particular, my (at least) weekly commutes to Riverside

were made more enjoyable by the company (and driving services) of Sinchul, Anthony, and Isabella,

and I must thank Hsin-Ying for hints on fabrication techniques.

My colleagues and friends at UC Riverside included Honest Makamba, Peng Wang, Tengfei

Miao, Bin Cheng, Oleg Martynov, Juan Aguilera Servin, Cheng Pan, Yong Wu, Hang Zhang, Wen-

zhong Bao, and Jairo Valesco Jr. I very much appreciate how the Bockrath group in Riverside

provided a positive environment in which to finish my projects and how the Lau group generously

v

offered assistance and advice (not to mention short-term loans of precious liquid helium). Special

thanks are owed to Hang, Peng, and Tengfei for their enthusiasm (and patience) for debugging and

improving Mezurit 2.

In addition to encouragement from and collaboration with outstanding people, much support

is required to complete an experimental PhD. Faculty members Julia Greer, Shuki Bruck, Sandra

Troian, Keith Schwab, and Nai-Chang Yeh provided valuable mentoring while Christy Jenstad and

Rosalie Rowe helped in ways beyond normal administrative duties. I also wish to thank Alireza

Ghaffari for maintaining the Watson cleanroom and Craig Graham for quickly fixing the supercon-

ducting magnet power supply.

My life in Southern California was greatly enriched by getting to know my housemates (and

family-away-from-home) Matthew Kelley, Neil Halelamian, and Jessie Rosenberg, along with the

multitudes of potluck dinner companions and ballroom dancers, who were uniformly warm and

welcoming. Finally, I am compelled to mention Xerion (the cat), who provided many hours of

lap-warming during late nights spent writing and programming.

Brian Standley

Pasadena, California

May 2012

vi

Abstract

Graphene’s superlative electrical and mechanical properties, combined with its compatibility with

existing planar silicon-based technology, make it an attractive platform for novel nanoelectronic de-

vices. The development of two such devices is reported—a nonvolatile memory element exploiting

the nanoscale graphene edge and a field-effect transistor using graphene for both the conducting

channel and, in oxidized form, the gate dielectric. These experiments were enabled by custom soft-

ware written to fully utilize both instrument-based and computer-based data acquisition hardware

and provide a simple measurement automation system.

Graphene break junctions were studied and found to exhibit switching behavior in response to an

electric field. This switching allows the devices to act as nonvolatile memory elements which have

demonstrated thousands of writing cycles and long retention times. A model for device operation

is proposed based on the formation and breaking of carbon-atom chains that bridge the junctions.

Information storage was demonstrated using the concept of rank coding, in which information is

stored in the relative conductance of multiple graphene switches in a memory cell.

The high mobility and two dimensional nature of graphene make it an attractive material for

field-effect transistors. Another ultrathin layered material—graphene’s insulating analogue, graphite

oxide—was studied as an alternative to bulk gate dielectric materials such as Al2O3 or HfO2. Tran-

sistors were fabricated comprising single or bilayer graphene channels, graphite oxide gate insu-

lators, and metal top-gates. Electron transport measurements reveal minimal leakage through the

graphite oxide at room temperature. Its breakdown electric field was found to be comparable to

SiO2, typically �1–3� 108 V/m, while its dielectric constant is slightly higher, κ � 4.3.

As nanoelectronics experiments and their associated instrumentation continue to grow in com-

plexity the need for powerful data acquisition software has only increased. This role has traditionally

been filled by semiconductor parameter analyzers or desktop computers running LabVIEW. Mezu-

rit 2 represents a hybrid approach, providing basic virtual instruments which can be controlled in

concert through a comprehensive scripting interface. Each virtual instrument’s model of operation

is described and an architectural overview is provided.

vii

Contents

Acknowledgements iv

Abstract vi

List of Figures xi

List of Tables xiv

1 Introduction 1

1.1 Electronic properties of graphene . 2

1.1.1 Band structure . 2

1.1.2 Density of states . 5

1.1.3 Quantum capacitance . 6

1.2 Conductance of a point contact . 7

2 Fabrication and measurement techniques 9

2.1 Introduction . 9

2.2 Graphene deposition . 9

2.3 Graphite oxidation . 12

2.4 Processing . 13

2.4.1 Electron-beam lithography . 13

2.4.2 Alignment . 15

2.5 Electron transport measurements . 17

2.6 Future work . 20

viii

3 Atomic-scale switching in graphene nanogaps 21

3.1 Introduction . 21

3.2 Device fabrication . 22

3.3 Measurements . 22

3.3.1 Electrical breakdown . 23

3.3.2 Junction conductance . 24

3.3.3 Time-resolved switching . 27

3.3.4 Switching rate . 28

3.4 Carbon chain model . 29

3.5 Application to logic circuits . 30

3.5.1 Rank coding . 31

3.5.2 Switching energy . 34

3.6 Future work . 35

4 Graphite oxide gate dielectric for field-effect transistors 36

4.1 Introduction . 36

4.2 Device fabrication . 37

4.2.1 Electrostatic force microscopy . 37

4.2.2 Low-temperature processing . 40

4.3 Dielectric characterization . 42

4.3.1 Gate leakage current . 42

4.3.2 Breakdown electric field . 44

4.3.3 Estimation of dielectric constant . 45

4.4 Carrier mobility . 47

4.5 Future work . 48

5 Data acquisition and measurement automation using Mezurit 2 49

5.1 Introduction . 49

5.2 General description . 50

5.3 Operation . 52

5.3.1 Overview . 52

ix

5.3.2 Virtual channel definition . 54

5.3.3 Logging and scanning . 57

5.3.4 Sweeping . 59

5.3.5 Synchronization . 62

5.4 Scripting . 63

5.4.1 Advanced commands . 63

5.5 Architecture . 65

5.5.1 Modularity . 65

5.5.2 Multithreading . 67

5.5.3 Callbacks and pseudoclosures . 70

5.6 Future work . 72

6 Conclusions 74

A Conversion of lithography patterns using npgsfixer 76

A.1 Introduction . 76

A.2 Operation . 77

A.3 Examples . 78

A.3.1 Normal mode . 78

A.3.2 Fracture mode . 80

A.4 Code listing . 83

B 80 V bipolar gate voltage amplifier 88

B.1 Introduction . 88

B.2 Specifications and performance . 89

B.3 Operating instructions . 91

B.4 Circuit design . 91

C Pulse train generation using awcgen 95

C.1 Introduction . 95

C.2 Operation . 95

C.3 Example . 96

x

C.4 Load impedance . 98

C.5 Code listing . 99

D Lateral transport measurements of reduced graphite oxide 102

D.1 Introduction . 102

D.2 Thermal reduction of graphite oxide . 102

D.3 Electron transport in reduced graphite oxide . 104

E Scripting and customizing Mezurit 2 105

E.1 Introduction . 105

E.2 Startup and shutdown processes . 106

E.3 Example script: mega1.py . 107

E.3.1 Code listing . 107

E.4 Example script: mega2.py . 107

E.4.1 Code listing . 108

Bibliography 110

xi

List of Figures

1.1 Graphene lattice in real and reciprocal space . 3

1.2 Energy as a function of k⃗a for electron states and hole states in graphene 4

1.3 Low-energy dispersion Epq⃗ q plotted along KK1 with Epk⃗q for comparison 5

1.4 Schematic and band diagram of a 1D channel between 2D/3D contacts 7

2.1 Micrographs of graphene on SiO2 substrate . 11

2.2 Electrode and alignment mark process flow . 15

2.3 Circuit schematic for room temperature DC measurement, in vacuum 17

2.4 Circuit schematic for low-temperature AC measurement 18

2.5 Circuit schematic for higher-speed measurement 19

3.1 Device images and nanogap formation for a single representative graphene device . . 23

3.2 Switching behavior in a representative device . 25

3.3 Repeatable programming over hundreds of cycles 26

3.4 Conductance steps and histogram of conductance during switching 27

3.5 Statistical analysis of the switching dynamics and schematic of nanogap ON and OFF

states . 29

3.6 Low-bias junction conductance measured immediately after ON and OFF pulses . . 31

3.7 Circuit diagram of rank-coded cell . 32

3.8 Demonstration of operation and retention time for the rank-coded cell described in

Figure 3.7 . 33

4.1 Graphene-graphite oxide process flow . 38

4.2 Images of graphene covered by graphite oxide . 39

4.3 Optical micrograph of graphite oxide flake contacted by metal electrodes 39

xii

4.4 Images of G-GO devices . 40

4.5 Optical micrograph under white light of a graphite oxide flake 41

4.6 Gate-source I-V characteristics for two G-GO devices 43

4.7 Gate conductance vs. temperature for two G-GO devices 43

4.8 Dielectric breakdown of the GO layer in a G-GO FET 44

4.9 Two terminal resistance as a function of top-gate voltage and back-gate voltage at

B = 0 and T = 1.4 K . 46

4.10 Schematic representation of a G-GO FET . 47

4.11 Illustration of a graphene-graphite oxide-graphene “sandwich” FET on a flexible sub-

strate . 48

5.1 Screen capture of Mezurit 2 running in setup mode 51

5.2 Screen capture of Mezurit 2 running in panel mode 52

5.3 Example illustrating the sliding binning scheme used in Mezurit 2 58

5.4 Output value and acquired/recorded points while sweeping a single virtual channel . 60

5.5 Block diagram of source code-level modularity . 66

5.6 Schematic of threads running in panel mode and the interactions between them . . . 69

5.7 Schematic representation of the registration and prototypical calling sequence for a

GTK+ callback function . 71

5.8 Schematic representation of the registration and prototypical calling sequence for a

nested pair (RPCÑMCF) of functions . 72

A.1 Example lithography pattern defining four alignment windows and one writing step . 78

A.2 NPGS screen captures while processing an example pattern 79

A.3 Example lithography pattern defining a grid with four subfields 80

A.4 X-Y stage movements required to stitch a fractured pattern 81

A.5 NPGS screen captures while writing a fractured pattern’s four subfields 82

B.1 Photo of bipolar gate voltage amplifier front panel 89

B.2 Amplifier performance . 90

xiii

B.3 Absolute supply voltages for the first and second stages of the amplifier circuit as a

function of input voltage . 92

B.4 Amplifier circuit schematics . 93

C.1 Scheme used by awcgen to describe an arbitrary piecewise-linear waveform 96

C.2 awcgen output: Image showing an example awcgen-generated waveform loaded into

AWC . 97

C.3 awcgen output: Plot of an example awcgen-generated waveform 98

C.4 Assumptions about load impedance . 98

D.1 Lateral conductivity of graphite oxide vs. cumulative annealing time for three rGO

devices . 103

D.2 Conductance vs. back-gate voltage for a rGO transistor 104

E.1 Measurement points for hypothetical non-rectangular f vs. Vg megasweep 108

xiv

List of Tables

2.1 Summary of modified Hummers method for oxidizing graphite 12

2.2 Typical electron-beam lithography process flow . 14

2.3 Initial film thickness t0 and etching rate in 10:1 buffered oxide etch for PMMA,

MAA, and SiO2 . 14

4.1 Maximum applied gate stress for several G-GO transistors 45

5.1 List of context-specific terms . 53

5.2 List of symbols . 54

5.3 Selected functions available for use in virtual channel definitions 55

5.4 Selected basic terminal commands used to access controls available in the GUI . . . 64

5.5 Selected advanced terminal commands including those which expose hidden features 65

5.6 Time scales present in the operation of Mezurit 2 68

B.1 Amplifier specifications with external filter installed 90

B.2 Absolute maximum ratings for bipolar gate voltage amplifier 91

B.3 List of amplifier components and their values . 94

D.1 Resistance per square for three rGO devices before and after annealing 103

E.1 Mezurit 2 ancillary files . 105

1

Chapter 1

Introduction

Graphene, a one-atom-thick layer of carbon arranged in a honeycomb lattice, has a long history

as a mathematical construct but a short one as a physical reality. Its parent material, graphite,

is naturally occurring and even found use in the pottery industry during the Neolithic Age [2].

Graphene, by contrast, was not isolated in a transport experiment-compatible way until the year

2004 using a simple but clever technique involving adhesive tape [1]. The electronic band theory of

both “single layer” and bulk graphite was developed in 1947 [3], effectively kicking-off the era of

graphene. Between these milestone dates, graphene was primarily used as the conceptual basis for

lower-dimensional carbon materials such as nanotubes and C60 (which can be thought of as rolled

or folded graphene sheets, respectively), although it was in fact isolated via reduced graphite oxide

and imaged by transmission electron microscopy in 1961 [4].

The distinction between the graphene as a “platonic form” and the alternative—an actual sam-

ple1 —is worth noting because it mirrors the challenges and opportunities of research. Graphene’s

superlative mechanical and electrical properties stem from its strong covalent C–C bonds and unique

electronic band structure, which provides a wealth of new physics [5]. Access to the field, however,

requires a real sheet of graphene complete with rough edges and a huge surface-to-volume ratio,

making it highly sensitive to its environment. These challenges are, in fact, also opportunities but in

disguise: The chemistry of the graphene edge is itself an emerging field and the surface of graphene

can be functionalized to make sensors and other devices. Work directed toward these practical con-

cerns advances the more fundamental side of the field as well, providing a more-complete platform

for mesoscopic physics.

1 Never is the contrast more stark than for a new student learning to deposit graphene in the lab, to whom it may seem that
the idea of graphene is indeed all that exists.

2

This thesis reports on work that demonstrates both the utility of graphene for applications—

a graphene-based nonvolatile memory technology in chapter 3 and a graphite-graphite oxide field-

effect transistor in chapter 4—and as a building block for future physics experiments in the form of

the graphene nanogap (also in chapter 3) and the graphite oxide sheet, which is a versatile nanoscale

insulating fabric (again, chapter 4).

In addition, there are two chapters devoted to engineering concerns. Chapter 2 covers fabrication

and measurement techniques for graphene-based devices. These measurement techniques involved

at times complex collections of instrumentation, which were managed and controlled by a custom

free software2 application called Mezurit 2. Chapter 5 describes the context in which the application

was conceived, its features and their models of operation, and its internal architecture. Though not

all of this information would be essential to replicate this work, it is hoped that the additional

exposition may help others who wish to extend Mezurit 2 or create similar software. In many cases,

the scientist who conceives of an experiment is most qualified to write the associated software yet

may not have a computer programming background. Thus, an account of the internal workings of

such a program written from a scientist’s perspective would seem to be uniquely valuable.

The rest of this chapter is devoted to the electronic properties of graphene, specifically its band

structure and density of states, along with the quantum correction to its capacitance. The con-

ductance quantum is also discussed, as it appears in many areas of mesoscopic physics, including

graphene-based nanoelectronics.

1.1 Electronic properties of graphene

1.1.1 Band structure

Figure 1.1a shows the real-space triangular lattice with a basis of two carbon atoms that forms

graphene. The lattice vectors are

a⃗r1,2s � a

(√
3

2
x̂�

1

2
ŷ

)
(1.1)

2 Here, free software is used to mean that not only is the source code available, but that users’ freedoms are fully respected
as defined by the GNU General Public License [6].

3

Figure 1.1: Graphene lattice in real and reciprocal space. (a) Real space triangular lattice with
constant a = 2.46 Å containing two basis atoms per unit cell. (b) Reciprocal lattice vectors with
hexagonal Brillouin zone and symmetry points Γ , K, and K1. (Adapted from Castro Neto et al. [7].)

with lattice constant a = 2.46 Å. The reciprocal lattice vectors b⃗r1,2s may be found by solving

a⃗i � b⃗j � 2πδij :

b⃗r1,2s �
4π√
3a

(
1

2
x̂�

√
3

2
ŷ

)
(1.2)

The hexagonal Brillouin zone, shown in Figure 1.1b, has two inequivalent corners K and K1 located

relative to Γ at
ÝÑ
ΓK,

ÝÑ
ΓK1 �

2π√
3a

x̂�
2π

3a
ŷ. (1.3)

Three of the four valance electrons of each carbon atom participate in the covalent sp2 C–C

bonds, while the fourth is free to roam through the 2pz orbitals [8]. The band structure of graphene

may be calculated using a tight-binding approach, following Wallace [3] and Castro Neto et al. [7].

Considering only nearest-neighbor hopping, i.e., A sites to B sites and vice versa, produces the

dispersion relation

Epk⃗q � �t

√√√√1� 4 cos

(√
3kxa

2

)
cos

(
kya

2

)
� 4 cos2

(
kya

2

)
(1.4)

where parameter t � 2.5 eV [9] is the hopping energy. It is plotted for the region of k-space encom-

passing the Brillouin zone in Figure 1.2. The upper surface represents electron states and the lower

surface, hole states. They meet at the six corners of the Brillouin zone called Dirac points.

4

Figure 1.2: Energy as a function of k⃗a for electron states (upper blue surface) and hole states (lower
purple surface) in graphene. The two meet at the six Dirac points, labeled K or K1.

A low-energy approximation may be made by expanding equation 1.4 around K or K1 which

yields3

E
(
ÝÑ
ΓK� q⃗

)
� �t

√
3

4
q2xa

2 �
3

4
q2ya

2 � �t

√
3a

2
|q⃗ | (1.5)

with group velocity v⃗ � h̄�1∇⃗qE(q⃗) � �h̄�1t
√
3a{2 q̂. Thus, the low-energy dispersion is

Epq⃗ q � �h̄vF |q⃗ | (1.6)

where h̄ is Plank’s constant divided by 2π and vF � h̄�1t
√
3a{2 is the Fermi velocity, approx-

imately 8� 105 m/s. Note that, unlike in systems with a free-electron-like parabolic dispersion

relation, vF does not depend on energy. Epq⃗ q is plotted on top of Epk⃗q along KK1 in Figure 1.3.

3 Only terms under the radical with a total order in qx and qy ¤ 2 are kept.

5

Figure 1.3: Low-energy dispersion Epq⃗ q (equation 1.6) plotted along KK1 with Epk⃗q (equation 1.4)
for comparison

1.1.2 Density of states

The density of states near the Dirac points may be calculated by adding up the states with energy ¤

E. Given the rotational symmetry of Epq⃗ q the available area of k-space is

AkpEq � π

(
E

h̄vF

)2

. (1.7)

Each k-state “occupies” p2π{Lq2 of k-space (where L is the length of the sample) and has fourfold

degeneracy due to spin and the two inequivalent Dirac points, so the number of states is

NpEq � AkpEq
4

p2π{Lq2
�

L2

π

(
E

h̄vF

)2

. (1.8)

Thus, the density of states per area of graphene is

DpEq �
1

L2

dN

dE
�

2|E|

πh̄2v2F
. (1.9)

Interestingly, the experimental minimal conductivity of graphene is finite and typically on the order

of 4e2{h [10] even though DpEF q vanishes when the Fermi level EF is tuned exactly to the Dirac

point. One possible explanation is the presence of electron and hole “puddles”, caused by disorder,

occurring even in sheets with zero average doping [11].

6

1.1.3 Quantum capacitance

The commonly used expression for charge density in graphene placed near a gate electrode at volt-

age Vg with geometrical capacitance C 1
g per unit area is

ne � C 1
gVg (1.10)

which neglects the shift in Fermi level necessitated by graphene’s finite density of states. Taking this

into account, the density is n �
∫8
0 DpEqfpEF , T qdE where fpEF , T q is Fermi-Dirac distribution

at temperature T . At T = 0, the density is

n �
2

πh̄2v2F

∫ EF

0
EdE �

1

π

(
EF

h̄vF

)2

(1.11)

meaning that

EF pnq � h̄vF
√
πn. (1.12)

As an aside, equation 1.12 may be used calculate the shift in Fermi level for a known electron

or hole concentration. Consider a graphene device equipped with a gate separated from the sheet by

300 nm of SiO2 (ϵox = 3.9 ϵ0). Applying the equation 1.10 with Vg = 14 V yields n = 1012 cm−2 and

EF = 93 meV. Comparing this energy scale to the region of overlapping curves in Figure 1.3 lends

support to the efficacy of the low-energy approximation.

The charge density may be determined in a self-consistent manner by separating the electrostatic

and kinetic energies such that

eVg � eϕ� EF (1.13)

where ϕ is the electrostatic potential of an electron on the graphene sheet. Substituting in equa-

tion 1.12 and ϕ � ne{C 1
g and solving yields an improved version of equation 1.10 [12]:

ne � C 1
gVg � nqe

(√
1� 2

C 1
gVg

nqe
� 1

) ∣∣∣∣∣ nqe �
πph̄vFC

1
gq

2

2e3
(1.14)

Using this equation for the example above results in a 0.7% decrease in charge due to this quantum

correction to the capacitance.

7

Figure 1.4: Schematic and band diagram of a 1D channel between 2D/3D contacts. (a) Circuit
schematic showing virtual currents I� and I�. The channel includes a transmission coefficient
τ . (b) Band diagram of contact conduction bands and channel states. The right-moving electrons
contribute to I� and left-movers, to I�. (c) Occupation functions for electrons injected into the
channel. (Adapted from Datta [16].)

1.2 Conductance of a point contact

The conductance quantum G0 � 2e2{h, where e is the electron charge and h is Plank’s constant,

is common in mesoscopic physics such as the study of point contacts or one-dimensional (1D) con-

ductors. Examples of the former include metallic break junctions [13] and gated constrictions in

two-dimensional electron gases [14]. The latter include carbon nanotubes which support ballistic

conduction over µm length scales and have different 1D sub-bands depending how they are “rolled-

up”. Carbon nanotubes are not the only known carbon-based 1D conductors, however, given evi-

dence for the existence of carbon-atom wires reported by Rinzler et al. in 1995 [15]. The quantized

conductance of a single, spin-degenerate channel is derived below.

Figure 1.4a shows a model system comprising a channel between bulk (2D or 3D) contacts, to

which a bias voltage V is applied. The energy of an electron traversing a one-dimensional channel

of length L is

E � Epkq � Ei (1.15)

8

where Epkq is the dispersion relation and Ei is the band edge, which includes the additional energy

arising from the lateral confinement of a particular mode i. Assuming the channel is a ballistic

conductor save for a transmission coefficient τ ¤ 1, the right-moving electrons produce a virtual

current

I� �
∑
�k

nevf�τ (1.16)

where ne � 2e{L is the electron density per k-state (including spin degeneracy), v � h̄�1 dE{dk is

the group velocity, and f� is the occupation function given the known chemical potential µ1 of the

left-hand contact. A simple band diagram is shown in Figure 1.4b. Integrating over k-space yields:

I� �
L

2π

∫ 8

0

2

L
e
1

h̄

dE

dk
f�τdk �

2e

h

∫ 8

Ei

f�τdE

Subtracting the equivalent expression for the left-moving electrons and dividing by V gives the

conductance:

G �
I� � I�

V
�

2e

h

e

µ1 � µ2

∫ 8

Ei

(f� � f�) τdE (1.17)

Assuming τ is independent of energy and eV ! kBT (f� and f� are shown for nonzero tem-

perature in Figure 1.4c), the integral in equation 1.17 becomes (µ1 � µ2), giving a linear response

conductance

G �
2e2

h
τ . (1.18)

Note that this predicts a finite conductance for even highly transmitting channels resulting from the

interface with the contacts [16]. This quantity is the conductance quantum G0 � 77.5 µS.

Carbon-atom wires are predicted to have a conductance which oscillates from �1–2 GQ with

the number of atoms in the chain [17]. These chains are used to model the conductance of graphene

nanogaps in chapter 3.

9

Chapter 2

Fabrication and measurement
techniques

2.1 Introduction

The graphene-based devices for this work were made using a combination of standard and propri-

etary techniques. The basic formula included random deposition of graphene and/or graphite oxide

onto silicon (covered by a layer of SiO2) substrates with predefined grids of alignment marks. Care-

fully designed source, drain, and, sometimes, top-gate electrodes were then created using electron-

beam lithography (EBL) and either thermal or electron-beam evaporation of metal followed by

liftoff. These basic steps are described in detail along with alternative approaches to provide con-

text and directions for future improvements.

2.2 Graphene deposition

The practical process of transferring a single graphene sheet from a bulk graphite source to a sub-

strate is quite simple considering the late date (2004) at which is was first definitively demon-

strated [1]. Several early methods are summarized:

Microcantelever
cleavage

Arrays of µm-scale square graphite pillars are made at the surface of highly-
oriented pyrolytic graphite (HOPG) by etching the surrounding material. Indi-
vidual pillars are then detached and affixed to silicon microcantelevers using a
precision micromanipulator. Finally, an atomic force microscope (AFM) is used
to drag the pillars across a substrate, leaving a trail of thin1 graphite layers [18].

1 This method was demonstrated to produce graphite layers as thin as 10 nm.

10

Mechanical
exfoliation

Large (20 µm–2 mm) graphite mesas prepared from HOPG via oxygen plasma
etching are immobilized in photoresist. The mesas are then repeatedly thinned
with adhesive tape before being released into an acetone suspension which is
applied to a substrate [1].

Drawing Adhesive tape is used to cleave HOPG or Kish graphite,2 exposing a fresh sur-
face which is dragged across a substrate by hand. Occasionally, graphene’s
strong interaction with the SiO2 surface [20, 21] causes sheets to be “pulled
out” of the bulk [22].

Both the drawing method and a variation of the mechanical exfoliation method (sometimes called

the modified Scotch tape method) were used in this work. The latter seems to be the most com-

monly used method at the present time: Adhesive tape removes a thick layer of graphite from the

bulk, which is repeatedly cleaved by folding and unfolding the tape. The tape, now resembling a

small, metallic-grey Rorschach test, is then placed directly on the substrate and slowly peeled off.

With practice this method can reliably produce graphene sheets, although residual adhesive is a

concern [23].

The drawing method, while cleaner than the modified Scotch tape method, can be finicky in

practice. Optimizing factors such as cleaving rate, pressure, and drawing speed can be challenging

and at times the process seems to be more art than science. There are several ways to promote the

transfer process, such as electrostatic deposition, in which a bias is applied between the substrate and

graphite source [24], or starting with expanded graphite [25]. Other improvements were explored

such as thinning flakes on-chip by pressing and peeling PDMS (polydimethylsiloxane), sometimes

leaving single sheets underneath. Low-power oxygen plasma was found to remove the top layer

from multilayer sheets, although the process was not found to be controllable and may introduce

defects.

A single- or bilayer graphene sheet deposited using the drawing method is shown in Figure 2.1a.

The sub-nanometer-thick graphene is visible in spite of its �98% light transmittance [26] due to

the change in interference color of the 290 nm oxide layer [27] used throughout this work. The

physical thickness of a graphene sheet may be measured by AFM. An example image showing both

single- and multilayer regions is shown in Figure 2.1b. Figure 2.1c shows a histogram of the height

as measured over a small region containing both bare substrate and graphene. The peak-to-peak

2 Kish graphite was originally a by-product of steel production [19].

11

Figure 2.1: Micrographs of graphene on SiO2 substrate. (a) Optical micrograph of graphene near a
metal alignment mark. (b) False color atomic force micrograph of graphene, with height scale bar
at right. (c) Height histogram (with arbitrary units) generated from the area indicated by blue marks
in (b). The peak spacing, a measure of the thickness of the sheet, is 0.9 nm.

spacing is 0.9 nm, suggesting that the graphene is a single layer. However, the measured substrate-

to-graphene step height may vary with AFM tip sharpness and environmental conditions, making

AFM an unreliable method of layer-counting. Indeed, measurements by two different tips on the

same sheet (not shown) produced values of 0.7 nm and 1.8 nm.

Recently, wafer-scale graphene sheets have been produced by chemical vapor deposition (CVD)

12

on nickel [28, 29] or copper [30]. While the carrier mobility of CVD graphene has improved, the

traditional methods described above are still used for many experiments. Ironically, even some

mobility-independent experiments benefit from starting with smaller sheets because no etching is

then required to make space for electrodes.

2.3 Graphite oxidation

Graphite oxide (GO)3 is graphene’s native oxide in the same sense that SiO2 goes with silicon. The

GO used in this work was made by oxidizing synthetic graphite powder following the method of

Hummers and Offeman [32] first reported in 1958. The process was scaled down and is summarized

in Table 2.1. Temperature control proved challenging in practice (particularly during one nearly-

disastrous early attempt), but nonetheless the resulting GO flakes had properties similar to those

reported elsewhere [31, 33].

Table 2.1: Summary of modified Hummers method for oxidizing graphite

Step Process Amount

1 Heat sulfuric acid to 66 �C. 46 mL H2SO4

2 Transfer to an beaker surrounded by an ice bath and stir in
synthetic graphite powdera and sodium nitrate.

2 g graphite,
1 g NaNO3

3 Slowly add potassium permanganate while stirring so as
to keep the temperature below 20 �C.

6 g KMnO4

4 Replace the ice bath with a water bath on a hot plate (for
added thermal mass) and maintain temperature at 35 �C
for 30 min to 3 h.

5 Slowly stir water, causing bubbling and a rise in tempera-
ture to 95 �C.

92 mL

6 Maintain temperature at 95 �C for 15 min.
7 Further dilute with water. 280 mL
8 Add hydrogen peroxide, turning solution bright yellow. 5 mL H2O2

(30%)
9 Filter and wash GO solids.

a Sigma-Aldrich, 20 µm

3 The term graphite oxide is used throughout this work because most of the layers used were significantly thicker than the
1 nm reported for a single sheet by Stankovich et al. [31]. (Graphene oxide is indeed the appropriate term for a single
oxidized sheet.)

13

2.4 Processing

Fabricating graphene-based devices using random deposition normally requires a set of custom

metallic electrodes for each sample, although there are exceptions. For example, careful application

of drawing method across a trench combined with predefined electrodes can produce a graphene

device with no additional lithography [34]. However, the common method of using electron-beam

lithography to define electrodes in reference to an alignment grid was used throughout this work:

1. Create a metallic alignment grid encompassing the majority of a �0.5 cm Si/SiO2 substrate.

2. Deposit graphene sheets using the drawing or modified Scotch tape method.

3. Locate one-to-few-layer sheets using optical microscopy and record reference micrographs.

4. Design a custom electrode pattern based on the locations of the sheets relative to the alignment
grid.

5. Deposit metallic electrodes using electron-beam lithography and thermal or electron-beam
evaporation followed by liftoff.

Steps one and two are sometimes reversed such that a only a small alignment grid is required given

known regions of graphene sheets. Fortunately, a wafer-scale electron-beam pattern generator (Le-

ica EBPG 5000) was available in the Kavli Nanoscience Institute cleanroom at Caltech, allowing

many identical large-scale grids to be made at once. Thus, the fabrication process for each sam-

ple really begins at step two, meaning that only a single additional lithography step is required.

This lithography was most often run on a Hitachi S-4100 field-emission scanning electron micro-

scope (SEM) located in Caltech’s Micro/Nano Fabrication Laboratory.

2.4.1 Electron-beam lithography

Electron-beam lithography using a converted scanning electron microscope offers rapid prototyping

of devices with scales from 100s of µm down to �50 nm with a minimum of substrate and pattern

preparation. The standard recipe used in this work is listed in Table 2.2. The procedure is surpris-

ingly tolerant of variation in its parameters with the exception of the electron exposure dose of step

six.

Polymethylmethacrylate (PMMA) masks created with EBL are then used to metallize areas

of the substrate. Thermal or electron-beam evaporation is used to deposit a uniform metal film

14

Table 2.2: Typical electron-beam lithography process flow

Step Process Parameters

1 Heat substrate on hotplate to remove adsorbed water. 115 �C, 5 min
2 Spin on first layer of resist.a 4000 r/min, 45 s
3 Briefly prebake to set first layer of resist. 170 �C, 5 min
4 Spin on second layer of resist.a 4000 r/min, 45 s
5 Finish prebaking. 170 �C, 60 min
6 Expose pattern with electron beam. 30 keV, 300 µC/cm2

7 Develop pattern in 1:3 MIBK:IPA.b 50–60 s

a MicroChem NANO, first layer: MAA EL9, second layer: PMMA 950 C2.
b Methyl isobutyl ketone : isopropyl alcohol

across the entire substrate. Typically, the metal film comprises 40 nm of gold over a relatively

thin chromium or titanium underlayer to aid adhesion. The PMMA is then dissolved in acetone to

“lift off” the excess metal leaving only the metal that was in contact with the sample. The EBL,

metallization, and liftoff processes are shown schematically in Figure 2.2a–e.

Alignment marks are made using a similar process as for electrodes. An extra isotropic etching4

of the oxide layer (Figure 2.2f) is inserted after EBL (Figure 2.2a–c) to recess the marks so they

do not interfere with the drawing method. The MAA/PMMA bilayer is not necessarily resistant to

acid-based etches, so a simple test on uniform layers was completed to verify the suitability of this

process for noncritical features. The results, listed in Table 2.3, show noticeable loss of MAA while

the PMMA is largely unaffected. As before, the metal marks are defined by shape of the PMMA

windows (Figure 2.2g–h) so the additional undercut only serves to widen the small trenches at the

edges of the marks.

Table 2.3: Initial film thickness t0 and etching rate in 10:1 buffered oxide etch for PMMA, MAA,
and SiO2

Material t0 ∆t (60 s)

PMMA 1230 Å −50 Å
MAA 3710 Å −260 Å
SiO2 2900 Å −500 Å

4 Immersion in 10:1 buffered oxide etch for 60 s

15

Figure 2.2: Electrode (a–e) and alignment mark (a–c, f–h) process flow. Vertical dimensions are to
scale. (a) Substrate covered by bilayer MAA/PMMA resist. (b) Electron-beam exposed pattern. (c)
Mask formed by development. (d) Cr/Au or Ti/Au metal film evaporated across entire substrate. (e)
Electrode after liftoff. (f) Isotropically etched well. (g) Cr/Au or Ti/Au metal film evaporated across
entire substrate. (h) Alignment mark flush with substrate surface

2.4.2 Alignment

In the context of EBL alignment refers to the process of transforming a lithography pattern such that

overlays with features already on the substrate. The commonly used Nanometer Pattern Generation

System (NPGS) [35] is capable of generating the necessary transformation matrix given four manu-

ally supplied reference points. (An example pattern and screen capture showing the process appear

in appendix A.) While alignment normally goes smoothly, producing accuracy on the order of the

16

�50 nm pixel size of the alignment windows, it is worth considering the process in more detail to be

prepared in the event that problems do arise (and perhaps to have something to contemplate while

the SEM is writing).

There are three coordinate systems—real space x-y, pattern space xp-yp, and writing space xw-

yw —which may be rotated or skewed relative to one another.5 Here the predefined alignment marks

and graphene (obviously) exist in real space while the electrode design, made in a computer-aided

design (CAD) program, exists in pattern space. The two are related by

r⃗p � Tmr⃗, (2.1)

where r⃗ is the real position of a feature and r⃗p is the equivalent location in the CAD program.

Tm differs slightly from the identity matrix depending on the calibration of the microscope used to

measure the existing features. Given a raw pattern, the SEM will reproduce it at the surface of the

sample subject to systematic distortion Ts defined by

r⃗w � Tsr⃗p, (2.2)

where r⃗w is a written feature’s physical location.

In the simplest case, the goal of alignment is to make xw-yw overlay perfectly onto x-y. NPGS

will calculate the optimal matrix Ta such that

r⃗w � TsTaTmr⃗ � r⃗ (2.3)

for the specified alignment points. The weakness of this approach may be demonstrated by consid-

ering a poor microscope with Tm � I.6 A square shape in pattern space, while still guaranteed to

match the preexisting features, will become nonsquare in writing space.

The process may be improved by splitting the alignment into two parts, effectively finding Tm

and Ts independently. T�1
m may then be applied to the pattern before loading it into NPGS such

5 Trivial origin offsets are ignored in this exposition.
6 The typical deviation of Tm from I depends on the type of microscope. One would expect optical microscopes to have

very little distortion but some uncertainty in the overall magnification. An AFM may produce significant distortion due
to drift in its piezoelectric X-Y scanner.

17

that Ta � T�1
s . In practice the first alignment is performed by using image processing software

to match alignment marks with their known locations. This assumes that the alignment grid was

written accurately to begin with, a safe assumption when using a dedicated EBPG for that step.

2.5 Electron transport measurements

Electron transport measurements must be matched to the energy scale and time scale of the phenom-

ena being probed. The thermal energy scale kBT is 26 meV at 300 K and 121 µeV at 1.4 K, such that

mV-scale DC biases are appropriate at room temperature while AC lock-in techniques are required

a liquid helium temperatures. Switching measurements, on the other hand, require volt-scale biases

with large bandwidth to capture ms- or µs-scale events. Three measurement setups common to the

experiments in this work are described. Special attention to electrostatic discharge and grounding

was paid throughout.

Current-voltage characteristics and gate voltage sweeps were recorded for many graphene de-

vices at room temperature immediately after fabrication. These measurements were conducted in

vacuum to minimize doping by adsorbed water vapor [36]. Vacuum conditions were also neces-

sary for the electrical breakdown process described in chapter 3. The schematic for a typical setup

is shown in Figure 2.3. A computer running custom software (Mezurit 2, described in detail in

chapter 5) equipped with a National Instruments (NI) data acquisition (DAQ) card supplies a bias

Figure 2.3: Circuit schematic for room temperature DC measurement, in vacuum7

7 Mezurit 2 implements virtual channels, making it easy to configure the DAQ card for any measurement. In this case, the
three channels, X0, X1, and X2, are as shown below. Note that SI prefixes are handled automatically such that current I
will be displayed in µA without needing to modify X2.

Vb (V) X0 � DACp0, 0q

Vbg (V) X1 � DACp0, 1q � 10

I (µA) X2 � ADCp0, 3q � 10�4

18

Figure 2.4: Circuit schematic for low-temperature AC measurement8

voltage Vb to a two-terminal graphene device placed within a sealed, evacuated chamber through a

junction box and electrical feed-through. The back-gate voltage Vbg is supplied in proportion to a

second analog output voltage by the custom bipolar gate voltage amplifier (BGVA) described in ap-

pendix B. Current I is measured by a DL Instruments current preamplifier which outputs a voltage

to be read on one of the DAQ card’s input ports.

Low-temperature measurements of linear response conductance were carried out in an Oxford

Instruments variable temperature insert (VTI) using low-frequency AC lock-in techniques. The

sample is such systems is cooled by evaporation of liquid helium flowing through a needle valve into

the sample space, which is pumped down to 1 mbar. The circuit schematic is shown in Figure 2.4. In

this case the Vb is necessarily supplied by the Stanford Research Systems SR830 lock-in amplifier

and the measured current response is transmitted to the DAQ card as analog voltages proportional

to its X and Y components. The DC top-gate and back-gate voltages Vtg and Vbg are supplied, as

before, by the analog outputs of the DAQ card. The lock-in output level and input sensitivity are

controlled by Mezurit 2 over a general purpose interface bus (GPIB) connection.

8 The virtual channels for this case are listed below. Note that GPIB functions SR830 SineOut and SR830 SineOut and
SR830 SensIn are bidirectional such that they may be set in Mezurit 2 or changed on the control panel of the lock-in.

Vb (µV) X0 � SR830 SineOutp0, 8q � 109{p109� 100.3� 103q

Ix (nA) X1 � ADCp0, 3q{10 � SR830 SensInp0, 8q � 10�5

Iy (nA) X2 � ADCp0, 4q{10 � SR830 SensInp0, 8q � 10�5

Vtg (V) X3 � DACp0, 0q

Vbg (V) X4 � DACp0, 1q � 10

19

Chapter 3 describes bias-induced switching in graphene nanogaps on the order of 10−4 s or faster.

Capturing the switching process therefore requires faster data acquisition than the 0.1–1 kHz used

for low-speed DC measurements. Mezurit 2 is capable of recording points up to 1 MHz in “scope-

mode” but is limited to kHz-scale waveform generation. Thus, an external instrument such as the

Stanford Research Systems DS345 function generator is needed to apply high-quality waveforms

to the device. The DS345 was chosen for its arbitrary waveform capability, which allows the user

to supply a digital description of the desired output as a function of time. Pulse trains were defined

in simple text files and converted into the necessary format using awcgen (usage instructions in

appendix C) before being programmed into the DS345 over RS-232.

The measurement setup is shown in Figure 2.5. The DS345 is configured to wait for a signal via

the TTL-compatible9 trigger input before running one cycle of the pulse train. On each run, Mezu-

rit 2 sends a 5 V trigger signal and simultaneously begins high-speed acquisition up to 100 kHz.10

The bias voltage Vb is fed back to the DAQ card along with the measured current I to produce a

synchronized dataset.

Figure 2.5: Circuit schematic for higher-speed measurement11

9 TTL (transistor-transistor logic) allows voltage range of 0–5 V with 0–0.8 V defined as 0 and 2–5 V defined as 1.
10 The NI PCI-6036e is capable of 200 kS/s, so for two channels the maximum rate is 100 kHz. The DL 1211 is also a factor

—its 3 dB bandwidth is 60 kHz at 103 V/A and falls to 4 kHz at 109 V/A [37].
11 The virtual channels for this case are listed below. Note that the trigger channel need not be saved to disk.

Vtrig (V) X0 � DACp0, 0q

Vb (V) X1 � ADCp0, 2q

I (mA) X2 � ADCp0, 3q � 10�3

20

2.6 Future work

Improvements to existing fabrication and measurement techniques are an integral part of nanoelec-

tronics research. There is a trade-off, however, between automating and parallelizing these tech-

niques and focusing on the Science, so to speak. In practice the appropriate balance can be hard to

find and may shift as new techniques become available or drop in time or monetary cost. Several

possible future directions are highlighted:

• Aligned layer transfer [38], while itself an involved process, offers more control and possibly
better yield.

• The expanded use of CVD graphene and parallel fabrication methods including photolithog-
raphy would produce a much greater number of devices per unit time. This would enable
more robust statistics and in general larger experiments. For example, a greater breadth of
functionalization methods for graphene sensors could be tested at once.

• Transport measurements could be automated to a degree approaching that of industrial para-
metric test systems. A reasonable starting point would be a computer-controlled array of me-
chanical relays to replace the standard manual junction box and preamplifiers with remotely
adjustable gain.12

12 Auto-ranging digital instruments must be used carefully to avoid endangering delicate samples.

21

Chapter 3

Atomic-scale switching in graphene
nanogaps

3.1 Introduction

The ultimate limit for the miniaturization of electronics is the atomic scale. Reaching this limit will

require novel materials as well as new paradigms for device operation and architecture. Graphene

has rapidly emerged as an exceedingly promising novel electronic material [1,10,39,40] for scaling

beyond-complementary metal oxide semiconductor (CMOS) circuitry and architecture. Compared

to silicon, graphene has far superior mobility [1, 39, 41–44], thermal conductivity [45] and current-

carrying capabilities [46], and may support room temperature ballistic transport [10]; yet like sili-

con, it has a planar geometry that enables multilayer device architecture and simplifies future inte-

gration with CMOS technology. However, the absence of a band gap poses a major challenge for

graphene electronics, as this limits the on/off ratio of digital devices. Recent progress has been made

towards fabrication of graphene nanoribbon field effect transistors with high on/off ratios [47–49];

nevertheless, this approach presents several additional challenges such as precision control of the

ribbon width and the atomic structure of the graphene edges. Switching behavior with high on/off

ratio may also be promoted via chemical modification of graphene, though improvement in cycling

capability remains to be developed [50].

This chapter describes the fabrication and operation of graphene switches, and their application

for nonvolatile information storage. Their behavior is interpreted using a model of electric field-

driven motion of atomic chains of carbon. These switches are fabricated by creating nanoscale gaps

using electrical breakdown of graphene sheets—a reliable self-limiting process that avoids the need

22

for advanced lithographic techniques, similar to that employed in metallic wires [51, 52]. Applying

appropriate bias voltage pulses switches the gap conductance between high (ON) or low (OFF)

conductance states. Remarkably, these switches are extremely robust; they have operated for many

thousands of cycles without degradation, with the conductance state easily persisting for greater than

24 hours, and perhaps indefinitely. As an example of potential applications, a prototype circuit was

built to demonstrate information storage based on the combination of two or more switches using

rank coding, in which information is stored by the relative magnitudes of device conductance in a

memory cell. Such non-volatile, robust, atomic switches based on graphene, which are suitable for

integration with CMOS as well as monolithic integration with graphene electronics, are promising

as components for atomic-scale devices.

3.2 Device fabrication

Two-terminal graphene devices are fabricated using standard techniques [22], as detailed in chap-

ter 2. Briefly, graphene sheets are transferred from a high-quality graphite source1 to a heavily p-

doped silicon substrate with a 290 nm layer of thermally grown oxide. One- or two-layer graphene

sheets are identified by color interference using optical microscopy, and then sorted by shape and

size. Sheets which are roughly rectangular in shape and have a width of less than a few µm (to

limit the required breakdown current) are made into devices by attaching metallic (Cr/Au or Ti/Au)

leads using electron-beam lithography and thermal evaporation. No etching step is required given

the prevalence of usable sheets produced by the graphene deposition process.2 Figure 3.1a shows

an electron micrograph of a completed sample containing five devices.

3.3 Measurements

The samples are placed within a vacuum chamber for room-temperature transport measurements,

which is then evacuated to �10−7 Torr. High-vacuum conditions were found to be crucial to the

breakdown process, presumably because this prevents atmospheric gases from reacting with the

graphene.
1 Highly-oriented pyrolytic graphite, NT-MDT, grade ZYA or Kish graphite, Covalent Materials
2 This work requires only a few devices per sample. An etching process would be necessary to produce many devices from

a single large graphene sheet, and is not expected to affect the behavior of the devices.

23

Figure 3.1: Device images and nanogap formation for a single representative graphene device. (a)
Electron micrograph of the sample before as-fabricated. The red markers indicate the specific device
under test. (b) Current versus voltage during the electrical breakdown process. Inset: Low-bias I-V
characteristic prior to breakdown. (c) Electron micrograph of the area indicated by the red markers
in (a), showing the device after breakdown. The red arrows indicate the ends of the nanoscale gap.

3.3.1 Electrical breakdown

For each device, a baseline current-voltage (I-V) characteristic is first obtained up to a bias of 0.1 V.

Next, electrical breakdown is performed by gradually increasing the bias voltage while monitoring

the current. A standard DC measurement setup (detailed in chapter 2) is used for both measure-

ments; bias voltage is supplied by a computer-based data acquisition card which also records the

24

current as measured by a DL Instruments 1211 current preamplifier.3 Figure 3.1 demonstrates the

process for a single, representative device (identified by the red markers in part a). The baseline I-V

(Figure 3.1b, inset) demonstrates a before-breakdown conductance of �250 µS. The breakdown I-

V is shown in Figure 3.1b. Starting from 0 V, the voltage is ramped up at a uniform rate of 50 mV/s.

At a critical sheet current density of approximately 1.6 mA/µm, the measured current drops precip-

itously, indicating breakdown of the graphene sheet. Interestingly, the conductance I{V increases

before breakdown, possibly due to current-driven annealing [53]. Figure 3.1c shows an electron mi-

crograph of the device after breakdown, containing an distinct break across the graphene channel.

Atomic force microscopy (AFM) confirms that a physical gap forms in the graphene. In the most

narrow segments the gap’s width is typically less than 10 nm, although the precise location of the

closest approach is difficult to determine due to the finite resolution of AFM. Thus, the device after

breakdown includes a nanoscale junction between two physically separated sheets of graphene.

3.3.2 Junction conductance

Following the breakdown step, the low-bias device conductance is much lower, ranging from�0.1 nS

to �20 µS. Remarkably, this conductance can be reproducibly increased or decreased using addi-

tional voltage pulses. Figure 3.2 illustrates a single cycle of such conductance modification applied

to the same device. These data were obtained using a function generator to supply the voltage pulses

combined with “scope-mode” data acquisition as described in chapter 2. The upper trace displays

the applied source-drain bias V , which is quickly ramped up as a function of time, and the lower

trace displays the current response. When V 2 V, the current is very low; when it reaches �2.5–

4 V, the current abruptly increases, reaching a maximum of 0.65 mA up to �5 V. At still larger

voltages, the device returns to its initial low-conductance state. The conductance exhibits little or

no gate voltage dependence in either state. Thus, by applying voltages of different magnitudes,

the graphene devices can be switched between relatively high-conductance, defined as “ON”, and

low-conductance, defined as “OFF”, states, thereby functioning as voltage-programmable bistable

switches or memory elements.

3 This technique has a bandwidth of approximately 1 kHz.

25

Figure 3.2: Switching behavior in a representative device. Applied junction voltage (upper trace)
and junction current (lower trace) versus time for the device shown in Figure 3.1 after electrical
breakdown, showing conductance recovery and subsequent reduction

Similar conductance switching has been observed in a number of systems, such as molecules [54],

titanium oxides [55], and Ag/Ag2S nanowires [56]. What sets these graphene switches apart are

their unique combination of reproducibility, nonvolatility, and integrability with graphene electron-

ics. The conductance state has been cycled up to 105 times without degradation. Once the devices

switch, they remain in either ON or OFF states for greater than 24 hours at room temperature,

without external maintenance voltages. Although a systematic study of continuous monitoring for

longer time periods has yet to be performed, device conductance values have remained similar to

their last written states after several weeks.

Figure 3.3 demonstrates repeated operation of the devices. The upper trace shows the program-

ming and readout voltage versus time. A ramped pulse that reaches 4 V corresponds to a turn-on

pulse that increases the device conductance, while a pulse with a maximum of 6 V corresponds to a

turn-off pulse that decreases the device conductance. In between the ON and OFF pulses, low-bias

readout pulses are applied. The lower trace shows the current response to the applied voltage versus

time. Note that a large difference in current is observed during the readout pulses of the ON and OFF

26

Figure 3.3: Repeatable programming over hundreds of cycles. Upper trace: Voltage applied to the
junction versus time. A ramp with a peak value of�4 V corresponds to a turn-on pulse, while a ramp
with a peak value of �6 V corresponds to a turn-off pulse. A small, sawtooth-shaped readout pulse
is applied after each write to determine the low-bias junction conductance. Lower trace: Current
flow through the junction, with the extracted low-bias conductance labeled above each readout pulse

states, although similar current levels flow during the writing process. The ON state conductance

is typically �100 µS, while the OFF state conductance is typically �5 µS. The right-hand section

of the plot shows data from the end of the measurement, which comprised �500 switching cycles.

The device behavior is virtually identical to that shown on the first cycle, demonstrating exceptional

reproducibility.

The observed switching behavior of graphene devices that have been electrically broken-down

is quite surprising, especially given the robustness and reproducibility of this phenomenon. One

possibility is that the conductance occurs along a small graphene ribbon that bridges the contacts.

However, small ribbons are expected to have a band gap [47–49], with a strong gate voltage depen-

dence in conductance, which is not observed. The absence of a gate voltage effect also excludes

switching mechanisms arising from the storage of charge in traps in the oxide layer, or from forma-

tion of a small metallic island that may function as a quantum dot.

27

3.3.3 Time-resolved switching

To gain further insight into the switching mechanism, the time-resolved transition from the OFF to

ON state was captured, again using a function generator and “scope-mode” data acquisition. The

voltage V was quickly increased while monitoring the current, as in Figure 3.2. In this case, the

conductance I{V is plotted versus V for the voltage range where switching normally occurs (Fig-

ure 3.4a). The plot shows well-defined steps in I{V , with magnitude � G0. These characteristic

step sizes, which include a series resistance from the graphene sheets, can vary by factor of order

unity from device to device. Here G0 � 2e2{h, the conductance quantum, where e is the electron

charge, and h is Planck’s constant. Since G0 is the conductance of a spin-degenerate one dimen-

sional conductor, e.g., a linear chain of gold atoms [13], observation of these steps suggests that the

device conductance states are likely multiples of highly transmitting quantum channels.

These data were recorded using a 10 kHz sampling rate to attempt to capture the switching pro-

cess. Although for technical reasons4 it is difficult to visualize the time scale of the switching in

Figure 3.4a, careful inspection of the raw data (not shown) reveals that the conductance value tran-

sitions between the step plateaus in no longer than 2–3� 10−4 s. The actual transition is probably

Figure 3.4: Conductance steps and histogram of conductance during switching. (a) Conductance
I{V versus bias V recorded while the device switches from the OFF to ON state. A sequence of
steps of magnitude� 2e2{h are observed. (b) Histogram of conductance values showing two major
peaks at approximately integer multiples of 2e2{h

4 Both the voltage and current are recorded as a function of time. When a transition occurs, the increased current causes a
small decrease in the voltage measured across the device due to series output resistance of the function generator. Thus,
the voltage scale of the plot is not perfectly linearly related to the time scale.

28

faster still; the time resolution of this measurement is limited by the bandwidth of the hardware.

To further investigate this phenomenon, a histogram of the conductance was assembled from

1000 cycles, shown in Figure 3.4b. The histogram exhibits two main peaks, separated by � 2e2{h.

These well-defined peaks, as well as the conductance steps, strongly resemble those found in the

breaking process of mechanically controlled break junctions [13, 57], in which a linear chain of

atoms forms between two closely spaced metallic electrodes. These results strongly suggest that the

conducting pathway bridging the graphene edges is atomic in scale.

3.3.4 Switching rate

Additional information about the switching mechanism is provided by the voltage dependence of

the switching rate. A square pulse with a given voltage magnitude is applied to the device in the OFF

state, and waiting time t, defined as the time elapsed before the first sharp increase in conductance,

is recorded. Because of the stochastic nature of the switching, t follows a statistical distribution.

Data from approximately 800 switching cycles were compiled into histograms. The upper panel in

Figure 3.5a shows a histogram of the measured t at V = 2.8 V. The peak at t �200 ms indicates the

most probable time scale at which switching occurs. The lower panel shows similar data, but with

a larger bias V = 3.4 V. The peak in probability distribution visibly shifts towards zero, indicating

the high probability of switching at relatively short time scales. Moreover, these observed switching

rates are found to be strongly temperature dependent, increasing by a factor of �3 for every 10 K

increase in temperature.

The strong temperature and voltage dependence indicates a thermally activated process. In the

simplest picture, such a process can be described by a single rate

Γ � νe�∆pV q{kBT , (3.1)

where ∆pV q is the bias-dependent energy barrier, kB is Boltzmann’s constant, T is the temperature,

and ν is an attempt frequency. At fixed temperature and bias, the rate is a constant, hence the

waiting time would follow Poisson statistics, yielding a waiting probability per unit time P ptq �

Γ expr�Γts. While this could account for the behavior shown in the lower panel, it cannot account

for the maximum observed at finite waiting time in the upper panel.

29

Figure 3.5: Statistical analysis of the switching dynamics and schematic of nanogap ON and OFF
states. (a) Histograms of waiting times for the first conductance-increase step for two different bias
voltages. (b) Proposed schematic atomic configurations in the ON and OFF states

3.4 Carbon chain model

Given the results above, the conductance switching is proposed to occur by formation of linear

chains of carbon atoms that bridge the gap under a strong electric field (Figure 3.5b). The formation

of such chains was reported earlier to account for the strong field emission current from the open end

of multiwalled nanotubes [15], and the associated unraveling process was studied theoretically [58].

Theoretical calculations predict that these chains are metallic without significant Pierls distortion,

and have the cumulene structure where each carbon atom in the chain is double-bonded to its neigh-

bor [59]. Their expected conductance is � 2e2{h [17]. If multiple chains bridge the gap as the

turn-on pulses are applied, this would be expected to produce � 2e2{h steps in the conductance, as

observed. Moreover, calculations show [17, 60] that the conductance of these wires is expected to

be approximately independent of the Fermi level, therefore accounting for the lack of an observed

gate voltage effect. Finally, the voltage dependence of the distribution in t (Figure 3.5a) can be

readily explained by considering a two-step process—the first step consists of n unlinking events,

each of which corresponds to a carbon atom being “unzipped” from the graphene sheet, and has a

30

rate Γ1; the second step is the binding of the chain which extends all the way across the gap, with

rate Γ2. Both these rates should have a similar form to equation 3.1. The distribution P ptq for the

total waiting time would then be given by the convolution of the waiting time for an n-step Poisson

process with rate Γ1, known as the Erlang distribution, and a Poisson process with rate Γ2. Thus,

P ptq �
Γn
1Γ2

pΓ1 � Γ2qn
e�Γ2t �

n∑
m�1

Γn
1Γ2

pm� 1q!
tm�1e�Γ1t

1

pΓ1 � Γ2qn�m�1
. (3.2)

Fitting equation 3.2 to the data shown in Figure 3.5a gives Γ1 = 51 s−1, Γ2 = 3.6 s−1 for the upper

panel, and Γ1 = 4300 s−1, Γ2 = 13 s−1 for the lower panel. A value of n = 5 was assumed based on

the nm-scale gaps observed, which corresponds to a �1 nm long carbon chain. The quality of the

fit was not sensitive to the precise value of n, which indicates considerable uncertainty in the value

of Γ1. Nevertheless, the time constants observed are consistent with eV-scale energy barriers.

This model of extending carbon chains coherently and comprehensively accounts for all the ex-

perimental observations: the lack of gate dependence on conductance, the 2e2{h conductance steps,

as well as the voltage and temperature dependence of waiting time distribution. Taken together, the

results strongly suggest that the devices switch by the formation and breaking of chains of carbon

atoms; the conductance state of the device therefore changes by the motion of atoms rather than by

electric charge. In addition, since the initial publication of these results [61] other workers5 have

demonstrated similar switching behavior in nanogaps made from suspended graphene devices [62].

Although their results differ in some ways from those presented here, they do indicate that a nearby

substrate is not an essential feature of a graphene-based switch.

3.5 Application to logic circuits

The properties of these junctions can be exploited to make logic gates and store information. How-

ever, one potential obstacle is the relatively modest on/off ratio (100), while 105–106 is typically

achieved in CMOS devices. The distributions of conductance for the OFF and ON states was mea-

sured by applying 4000 8 V square OFF pulses and 4000 4 V square ON pulses, each 100 ms long,

5 This work was carried out by H. Zhang et al. at the University of California, Riverside with collaboration from B. Standley.

31

Figure 3.6: Low-bias junction conductance measured immediately after ON and OFF pulses. The
left-hand axis applies to the OFF state distribution and the right-hand axis applies to the ON state
distribution. The relative scales are adjusted for clarity given the different bin sizes of the two
histograms (area as probability density is not directly comparable).

to a device in an alternating fashion. The low-bias conductance was measured after each writing

pulse, and the results were compiled into histograms, shown in Figure 3.6. The maximum values of

the two distributions lie 66 µS apart, but there is no significant separation between the tails. Thus, a

graphene switch as a single memory element would have little noise margin. In addition, there is a

small overlap in the 15 µS region which corresponds to a 0.5 % error rate.

3.5.1 Rank coding

One alternative approach is to utilize a novel memory cell based on rank coding [63]. A bit is stored

not by the absolute value of the device conductance but by the comparison of the conductance of

two or more devices in a cell. The information capacity for an N device cell is therefore log2pN !q

bits, which, for large N , exceeds even that of a conventional memory cell.

As a first demonstration of this concept, a rank-coded cell (RCC) was built using N = 2 graphene

devices to store one bit. The two graphene devices, G1 and G2, are each connected in series to a

200 kΩ bias resistor to created two branches. A single readout voltage source VR is connected

to both branches in parallel, and each branch includes an individual write line and readout line

connected between the device and bias resistor. During the writing phase, VR is held at 0 V while

32

Figure 3.7: Circuit diagram of rank-coded cell

one of the write lines is connected through a multiplexer6 to a voltage source, labeled Vw1 or Vw2

depending on the selected device. During the readout phase, write lines are left floating6 while

voltages Vo1 and Vo2 on the readout lines are recorded. In this way, the conductance states of the two

devices can be inferred from their respective readout voltages Vor1,2s = VRRr1,2s{pRr1,2s�200 kΩq,

where R1 is the resistance of G1 and R2 is the resistance of G2, without the need for complex

current-measuring circuitry. A schematic of the device circuit is shown in Figure 3.7.

The logical value X of the cell is defined by the relative conductance of the two devices:

X �


0 if Vo1 Vo2

1 if Vo1 ¡ Vo2

undef. else

(3.3)

The readout voltages may be sent to a comparator to encode X as a digital logic-compatible voltage,

or, as in this proof-of-concept demonstration, plotted and compared visually.

Figure 3.8a demonstrates the operation of the memory cell. The top three traces plot input

voltages Vw1, Vw2, and VR versus time, while the bottom panel shows the readout voltages for both

devices. The RCC demonstration begins with G2 in a more conductive state than G1 such that Vo2 is

“pulled” lower than Vo1, corresponding to X = 1. Voltage VR is then decreased to zero, after which

6 For this preliminary demonstration, the multiplexers and external switches were simulated using a junction box containing
mechanical switches.

33

Figure 3.8: Demonstration of operation and retention time for the rank-coded cell described in
Figure 3.7. (a) Write and read-out voltages versus time. Top two traces: Voltages applied to the
write lines of device G1 and G2. Third trace: Readout excitation voltage. Bottom traces: Readout
voltage for devices G1 (blue) and G2 (green). The logical state X is indicated above each readout.
(b) Readout voltage versus time over a 24 hour period with no write voltages applied

a turn-on pulse is applied to G1, increasing its conductance such that Vo1 Vo2, flipping value of

the memory bit. After another readout cycle to confirm the state of the RCC, a turn-on pulse is then

applied to G2, which increases its conductance beyond that of G1,7 switching X back to 1. Thus,

the logical state of the RCC has been switched from 1 to 0 and back to 1 again.

7 A slightly larger turn-on pulse is applied to G2 to promote increased conductance, ensuring that its conductance “leap-
frogs” that of G1. In practice, this means the switches are not guaranteed to follow this pattern, so additional write pulses
may be required.

34

In principle, the sequence above could be continued indefinitely by applying turn-off write

pulses to reset G1 and G2 to their original low-conductance states. This could be completed one

device at a time such that X either retains its value or not, depending on the desired outcome. Given

the stochastic nature of the switching in graphene nanogaps, a more-robust RCC may require a

controller circuit that reads X after each write to confirm that the turn-on or turn-off pulse had the

intended effect. The stability of the stored information is demonstrated in Figure 3.8b, which shows

the voltage on the two outputs read continuously for 24 hours, without voltages applied on the write

lines. The voltage rank is maintained during the observation time, indicating the stability of the

stored bit for extended time periods.

3.5.2 Switching energy

One important metric of a digital memory technology is the switching energy Qsw required to flip

one bit. This value can be roughly estimated by assuming a square writing pulse of height Vsw and

width γtsw, where tsw is the characteristic time before switching and γ is a safety factor. The safety

factor is necessary to accommodate the tail of the distribution of tsw given the stochastic nature of

the process, as illustrated for the OFF to ON transition in section 3.3.4. Given known preswitching

current I1 and postswitching current I2, the switching energy is

Qsw � Vswtsw [I1 � pγ � 1qI2] . (3.4)

Using typical values observed in the data used to generate Figure 3.6 and γ = 5 yields 70 µJ

(3 µJ for γ = 1) when switching from OFF to ON8 and 6 µJ (3 µJ for γ = 1) when switching from

ON to OFF.9 These values are significantly higher than for other recent architectures, for example

0.7 pJ in TiO2 resistive memory [64], but may be greatly reduced in future work. Possible avenues of

exploration include high-frequency ON pulses, higher-voltage OFF pulses, and intelligent controller

circuits which adapt the writing voltage pulse to the device.

8 OFFÑON: Vsw = 4 V, tsw = 10 ms, I1 = 80 µA, I2 = 400 µA.
9 ONÑOFF: Vsw = 6 V, tsw = 1.0 ms, I1 = 550 µA, I2 = 100 µA.

35

3.6 Future work

These results open the door for a number of directions of future research. Apart from forming the ba-

sis for nonvolatile, robust and CMOS-compatible memory devices, reconfigurable circuits and logic

gates, these devices may enable detailed transport studies of individual carbon atomic chains. More

generally, a simple, bottom-up method has been demonstrated to realize a novel nanoscale system:

the graphene nanogap, which may be useful for a variety of scientific studies such as making single

molecule transistors [65] or combined transport and scanned probe experiments. Although these

graphene switches’ writing speed is presently relatively slow (up to 100 ms), a dramatic increase in

switching speed was found at elevated temperatures, indicating substantial potential for improve-

ment. Furthermore, the devices could in principle be imprinted in dense arrays that are suitable

for readout by scanned probe arrays [66], yielding a basis for large-capacity long-term information

storage.

36

Chapter 4

Graphite oxide gate dielectric for
field-effect transistors

4.1 Introduction

Graphene’s excellent electronic, thermal, and mechanical properties make it an exciting novel ma-

terial for many applications. Finding a compatible dielectric material remains a challenge due to

graphene’s sensitivity to environmental conditions, including doping and charge disorder. While

significant progress has been made in adapting bulk insulators including Al2O3 [67,68], HfO2 [69–

71], and lead zirconate titanate (PZT) [72], the use of layered materials is just beginning to be ex-

plored, for example, in carbon nanotube-graphite oxide-metal transistors [73] and graphene-boron

nitride-metal transistors [74, 75]. Graphite oxide (GO) is of particular interest because it is com-

patible with solution-based processing and deposition [31, 76]. In addition, compared to boron

nitride, GO has the added benefit of being graphene’s native oxide, analogous to to silicon’s na-

tive oxide, SiO2. Like SiO2, GO can be made from its parent material via oxidation [31], or by

local oxidation [77], and is an electrical insulator. This correspondence suggests the possibility of

a novel all-graphene-based field-effect transistor built with a graphene channel, graphite oxide gate

dielectric, and graphene top-gate.

This chapter describes the fabrication and operation of capacitors and field-effect transistors (FETs)

built using one-to-few layer graphene channels and 4–35 nm stacks of graphite oxide sheets as the

gate dielectric layer. The carrier density in the graphene channel can be tuned by both a doped-Si

back-gate and a local metal top-gate. Using a low-temperature fabrication process (with temper-

ature T maintained below 120 �C), these devices show minimal gate leakage at room temperature

37

and breakdown electric field comparable to SiO2, typically �1–3� 108 V/m. Comparing the gate

efficiency of the back and top-gates gives an estimated relative dielectric constant approximately

equal to SiO2, κ � 4.3. The successful operation of these devices demonstrates graphite oxide’s

utility as a layered insulator for graphene circuits which could be used in a multitude of configura-

tions. This shows the promise of GO for use in future all-carbon circuits, which could be used for

flexible electronics.

4.2 Device fabrication

Graphene-graphite oxide field-effect transistors (G-GO FETs) are fabricated by random deposition,

as illustrated in Figure 4.1, using the techniques described in chapter 2. First, graphene sheets are

deposited by mechanical exfoliation [22] onto a heavily p-doped silicon substrate capped with a

290 nm layer of thermally grown oxide. Next, graphite oxide flakes are made by oxidizing graphite

powder,1 following the Hummers method [32] as described in section 2.3. The graphite oxide

flakes are then mixed with deionized water to form a suspension with concentration �1 mg/mL,

which is stirred for at least one day to exfoliate the flakes into thin sheets. Stirring produces larger,

thicker sheets than ultrasonication. The graphite oxide sheets are then deposited randomly onto the

substrates [31, 33, 78] using a “drop-and-dry” method.

Overlapping regions of one-to-few-layer graphene and one-to-multilayer graphite oxide sheets

are identified using optical microscopy. An example region is shown in Figure 4.2a. Note the purple

color of the underlying graphene, which can be seen through the green-tinted graphite oxide.

4.2.1 Electrostatic force microscopy

The geometry can be confirmed using electrostatic force microscopy (EFM) [79–81], which gives a

qualitative measure of the local conductivity at the surface of a sample [82, 83]. EFM is performed

by scanning a mechanically oscillating probe tip over the sample at constant (time) average height2

while a constant voltage bias is applied between the tip and sample. When the tip is located over a

conductive region of the sample, the charge on the tip causes an image charge to form at the surface

1 Sigma-Aldrich graphite powder, 20 µm, synthetic
2 Knowledge of the local topography is needed to maintain a constant height. This information is determined by conven-

tional atomic force microscopy (AFM), immediately before each “line” of the EFM image is recorded. (The voltage bias
is turned off during AFM to avoid damaging the sample.)

38

Figure 4.1: Graphene-graphite oxide process flow (not to scale). (a) Graphene is deposited onto an
oxidized Si wafer (violet). (b) Graphite oxide is then deposited from an aqueous solution. (c) Metal
source, drain, and top-gate contacts are then deposited using electron beam lithography and electron
beam evaporation. In practice, bilayer resist (not shown for clarity) is used to promote metal liftoff.
(d) Schematic diagram of completed device

of the sample. This creates an electrostatic force on the cantilever, producing a phase shift in the

mechanical oscillation. The phase shift versus tip position for the region shown in Figure 4.2a is

shown in Figure 4.2b. The region covered by graphite oxide, outlined by a white dashed line, shows

little or no phase shift compared with the substrate except for the parts covering graphene, which

are darker. This indicates that as-deposited graphite oxide is much less conductive than graphene.

Separate transport measurements on as-prepared GO flakes typically showed little or no measurable

lateral conductance. One such device is shown in Figure 4.3. No signal was measured by a current

amplifier configured for nA sensitivity for a voltage bias of 0.5 V, indicating that the resistance is at

least 10–100 GΩ.

39

Figure 4.2: Images of graphene covered by graphite oxide. (a) Optical micrograph under white light
of several graphene sheets partially covered by graphite oxide. Graphene appears violet, graphite
oxide light blue-green. (b) EFM phase image of the site shown in (a), with the graphite oxide region
outlined in white

Figure 4.3: Optical micrograph of graphite oxide flake contacted by metal electrodes

Overlapping G-GO regions must be suitable for making a FET, typically with a uniform µm-

scale graphene strip covered by a continuous graphite oxide sheet but with uncovered ends for the

source and drain contacts. In practice, such sites can take up to several hours to locate. To complete

a device, metallic (Ti/Au) source, drain, and top-gate electrodes are created using electron-beam

lithography and electron-beam evaporation. A finished device with capacitor geometry is shown

in the electron micrograph in Figure 4.4a and an atomic force micrograph of a FET is shown in

Figure 4.4b.

40

Figure 4.4: Images of G-GO devices. (a) False-color electron micrograph of G-GO capacitor. The
lower graphene electrode (shaded blue) is contacted on the right by a metal electrode. The graphite
oxide layer (shaded green) is sandwiched between the graphene and the metal electrode at left. (b)
False-color atomic force micrograph of a G-GO FET

4.2.2 Low-temperature processing

Thermal reduction of graphite oxide results in at least partial recovery of graphite’s electrical con-

ductivity [33]. Lateral transport measurements on GO devices undergoing heat treatment (420 �C

for up to 10 minutes) are detailed in appendix D. The resulting material, termed reduced-graphite

oxide (rGO), was several orders of magnitude more conductive than the starting material, clearly

demonstrating the sensitivity of GO to heat. Such reduction of GO is known to occur at temperatures

as low as 100 �C [84], imposing a limit on the thermal processing steps used during fabrication. In

particular, the polymethylmethacrylate (PMMA) electron-beam resist is typically baked at approxi-

41

Figure 4.5: Optical micrograph under white light of a graphite oxide flake (a) immediately after
deposition and (b) after a simulated electron-beam lithography process

mately 170 �C before exposure.

To further investigate the effect, graphite oxide flakes were deposited on several Si/SiO2 sub-

strates, which were then subjected to varying prebaking temperature and time before simulated

electron-beam lithography. Optical micrographs of the flakes were recorded before and after us-

ing identical illumination, aperture, exposure, and color-balance settings. The observed color was

then used as a qualitative measure of the resistivity [27,85] and remaining oxidation of the partially

reduced GO.

Images of a sample baked using the “standard” recipe, 170 �C for 15 minutes are shown in

Figure 4.5. The graphite oxide flake changed color from blue-green to purple, indicating significant

reduction. A subsequent test using 150 �C for 25 minutes showed less color change, while another

at 120 �C for 25 minutes showed no detectable color change at all. Thus, special care was taken

by using a “safe” recipe during fabrication of the G-GO FET samples to be measured. Given the

results above, 115 �C for 15 minutes is considered to meet this requirement.

Another test was performed to determine whether the resolution of patterns created using the

“safe” recipe would be significantly degraded. A 0.5 µm-scale test pattern was written at a range

of electron doses and then metallized using thermal evaporation and liftoff. The best results were

obtained when the dose was reduced approximately 10% (270 vs. 300 µC/cm2 in this case) and were

similar in quality to patterns made using the “standard” recipe.

42

4.3 Dielectric characterization

A gate dielectric material can be assessed in three main areas: insulation (leakage current), strength

(breakdown electric field), and polarizability (relative dielectric constant κ). To measure these prop-

erties, G-GO capacitors and FETs were electrically characterized at room temperature in high-

vacuum conditions and at low temperature in helium atmosphere using an Oxford variable temper-

ature cryostat. Low-speed (DC) measurement techniques were used in both cases, as described in

chapter 2. The samples tested were made using the “safe” low-temperature recipe described above

unless otherwise noted.

4.3.1 Gate leakage current

First, a DC top-gate voltage Vtg was applied to the top-gates while measuring the leakage cur-

rent Itg collected by the graphene channels. Results for a relatively thin dielectric layer (thickness

tgo = 4 nm) are shown in Figure 4.6a.3 The gate current-voltage (I-V) curve is nonlinear, with

a “knee” occurring at approximately 0.5 V in this particular device. Other devices with thicker

graphite oxide layers show proportionally less current and wider flat regions, such that gate leakage

is negligible in the thickest devices. In this device, the gate current became unstable when Vtg ex-

ceeded 0.5 V, indicating damage to the graphite oxide. At low temperature, the gate I-V is similar

in shape and actually with slightly greater current, which can be attributed to minor additional dam-

age caused by intervening measurements. Devices made with the low-temperature process typically

show little change in gate leakage with temperature.

The effect of the processing parameters on gate leakage was investigated by fabricating G-GO

capacitors using the “standard” recipe for PMMA-based electron-beam lithography. The low-bias

gate leakage for such a device (tgo � 4 nm) is shown in Figure 4.6b. Indeed, at room temperature the

gate resistance was only �500 kΩ, normalized to a 1 µm2 area, which is approximately 100 times

smaller than the resistance obtained using low-temperature processing. Interestingly, unlike the

low-temperature-process devices, the gate leakage for this device strongly decreases with ambient

temperature T , shown by the dashed line in Figure 4.6b, suggesting that transport through the gate

3 At room temperature, the gate current density is significantly greater than for a typical SiO2 film of similar thickness [86],
but still below the threshold required to achieve transistor operation. The leakage could potentially be reduced further by
using an improved synthesis recipe [87] to increase the oxidation level of the starting material or even-lower-temperature
processing.

43

Figure 4.6: Gate-source I-V characteristics for two G-GO devices. (a) Data from a G-GO FET
(tgo = 4 nm) recorded in helium atmosphere at room temperature (solid line) and 1.4 K (dashed line).
The device was fabricated using a low-temperature process to bake the PMMA used for electron
beam lithography. (b) Data from a G-GO capacitor (tgo � 4 nm) recorded at room temperature
(solid line) and 4.2 K (dashed line). The latter curve has been multiplied by 100 for visibility. The
device was fabricated using the “standard” recipe for PMMA-based electron-beam lithography.

Figure 4.7: Gate conductance vs. temperature for two G-GO devices. Both devices were made
using the “standard” recipe.

44

oxide occurs via a thermally activated process.

Gate conductance for two “standard”-recipe devices is plotted on a log scale against T�1{4 in

Figure 4.7. The linear decrease of lnpGtgq down to 10 K is consistent with a variable-range hopping

model. The leakage current in this case is therefore unlikely to be related to the theoretical band

gap [88] of GO in a straightforward way.

4.3.2 Breakdown electric field

Graphite oxide’s breakdown electric field was measured by slowly increasing Vtg until Itg showed a

sharp jump, indicating irreversible damage. Data from a relatively thick device (tgo � 35 nm) mea-

sured at T = 10 K are shown in Figure 4.8. At 3.5 V the gate conductance became unstable, finally

showing a large jump at 3.8 V. Thereafter the gate current followed a higher curve, identified by

the downward pointing arrow, indicating dielectric breakdown. G-GO FETs can typically withstand

stresses of greater than �1–3� 108 V/m at room temperature, compared with �109 V/m for bulk

SiO2 (e.g., [89]). With experience, one is able establish safe limits for the top-gate voltage for each

device based on only the measured thickness (using atomic force microscopy) of the graphite oxide.

Approximately 10 devices were fabricated using the “standard” process and 20 devices using

the low-temperature process. A significant fraction were found to have top-gate shorts, possibly

caused by errors in lithography alignment or undetected pin-holes in the graphite oxide. Adopting

Figure 4.8: Dielectric breakdown of the GO layer in a G-GO FET

45

Table 4.1: Maximum applied gate stress for several G-GO transistors

tgo (nm) Vmax (V) Emax (V/m)

4 1.3 3.1� 108

�10 1.0 1.0� 108

18 4.2 2.3� 108

35 3.5 1.0� 108

a layer-transfer process to obtain more uniform graphite oxide or a self-aligned top-gate would

probably improve the yield. Safe top-gate voltage limits were established as part of measuring each

fully functional FET, and are listed in Table 4.1. The actual breakdown electric field is likely to be

slightly higher than these values.

4.3.3 Estimation of dielectric constant

After establishing a safe range of top-gate voltage, the source-drain resistance of each G-GO FET

was measured using low-frequency lock-in techniques while sweeping Vtg and back-gate voltage

Vbg. The resulting resistance versus Vtg and Vbg data for a device with tgo = 18 nm, taken at T = 1.4 K

with zero magnetic field, is shown in as a color-scale plot in Figure 4.9a. There is a pronounced

resistance peak along the diagonal of the plot combined with a nearly horizontally oriented peak at

approximately Vbg = 35 V, similar to that found in previous reports [67,90–97]. These peaks can be

understood by considering the schematic representation of the device shown in Figure 4.10. Regions

1 and 3 are not covered by the local top-gate and are therefore doped by only the back-gate. Region

2, however, couples significantly to both gates. A simple model for the resistance is given as

R � µ�1

(
L2{W

C 1
bgVbg � C 1

tgVtg

�
L1�3{W

C 1
bgVbg

)
(4.1)

where L2 is the length of region 2, L1�3 is the combined length of regions 1 and 3, W is the sample

width, and C 1
bg, C 1

tg are the back and top-gate capacitances per unit area, respectively; the mobility

µ is assumed to be constant across all three regions and Vbg and Vtg are defined relative to the charge

neutrality condition where all regions have zero doping.

Thus, sweeps at constant Vbg, shown in Figure 4.9b, have a single peak (attributable to the first

term in equation 4.1) which shifts position with Vbg. Sweeps at constant Vtg, shown in Figure 4.9c,

46

Figure 4.9: Two terminal resistance as a function of top-gate voltage and back-gate voltage at B = 0
and T = 1.4 K. (a) Color plot showing independent doping of channel regions 1–3 and 2. (b) Hor-
izontal data slices at constant back-gate voltage, with Vbg indicated by color-coded arrows placed
at the upper edge of (a). (c) Vertical data slices at constant top-gate voltage, with Vtg indicated by
color-coded arrows placed at the right edge of (a)

have one main peak corresponding to the Dirac point of regions 1 and 3 plus another peak which

may occur above, below, or at the same value of Vbg depending on the contribution of the top-gate.

The relative capacitance of the top and back-gates can be calculated by considering the denominator

of the first term of equation 4.1, which is equal to the charge density in region 2. When R is at a

local maximum, as on the diagonal resistance peak in in Figure 4.9a, this charge density approaches

zero, yielding the relationship
C 1
tg

C 1
bg

� �
Vbg

Vtg
. (4.2)

47

Figure 4.10: Schematic representation of a G-GO FET. The graphene channel, contacted at one end
by source bias Vs and by drain bias Vd, is divided into three numbered regions defined by the edges
of the top-gate.

Given tox = 290 nm, ϵox = 3.9 ϵ0, and tgo = 18 nm, the slope of this peak indicates graphite

oxide’s relative dielectric constant κ � 4.3. Thus, the top-gate may generate a carrier density

of 5� 1012 cm−2 while remaining below the breakdown field of graphite oxide mentioned above,

which is sufficient for applications such as analog electronics [98]. Note that the quantum correc-

tions to C 1
tg and C 1

bg were not included in this analysis.4

4.4 Carrier mobility

The carrier mobility of a FET may be estimated as follows: Consider the condition where Vtg

is tuned give a uniform doping across the device, which is approximately the case for the red

(Vtg = 1.5 V) curve in Figure 4.9c. In this case the mobility can be computed by fitting Rs �

L{W pµC 1
bgVbgq

�1 to the data, where Rs is the total series resistance and L is the total length.

This device yields a value of approximately 700 cm2/(V s)—comparable to, but somewhat less

than the minimum mobilities observed in other studies of substrate-supported graphene devices:

�1400 cm2/(V s) by Moser et al. [46] and 2000 cm2/(V s) by Tan et al. [99]. The origin of this

relatively low value is not currently known.5 One factor is that no postfabrication annealing step

was done, which is typically required to achieve high mobility on SiO2 substrates (see, for example,

Morozov et al. [100] and Ishigami et al. [101]). Mobility might therefore be improved in future

work by annealing the graphene in H2 prior to GO deposition as an alternative to postfabrication

4 Including the quantum capacitances would change the estimated κ by no more than a few percent. (It would increase
because a smaller fraction of Vtg than Vbg contributes toward the electrostatic potential.)

5 Control samples fabricated using the same process but lacking overlapping GO layers or top-gates showed similar mobil-
ity, suggesting that GO is not necessarily the limiting factor. Future experiments such as measuring the mobility before
and after GO deposition will be necessary to clarify this issue.

48

annealing, which could compromise the GO dielectric. The conductance fluctuations visible in

Figure 4.9 likely originate from a combination of disorder and phase-coherent transport within the

graphene [102].

4.5 Future work

This work [103] demonstrates that graphite oxide shows promise as a layered dielectric, particu-

larly because it is graphene’s native oxide. Future work may improve the yield and reliability of

the devices by using a layer transfer method [75] rather than random deposition to align GO with

graphene sheets, or by using spray coating [33] to produce a continuous layer of GO flakes. Both

approaches could be combined with oxygen plasma etching of windows in the GO accommodate

source and drain contacts. While oxygen plasma is known to etch graphene, GO was found to

be more vulnerable, suggesting that the process could be tuned to remove GO without damaging

graphene.

It may be also be possible to selectively oxidize [77, 104–107] few-layer graphene to form an

ultrathin insulating layer which is self-aligned to the underlying graphene, greatly simplifying the

fabrication of graphene FETs. Graphite oxide may be used in novel nontransistor devices as well:

It forms a versatile “insulating fabric” which could potentially be used as a tunnel barrier in both

graphene and nongraphene devices. It might also enable the creation of ultrasharp p-n junctions

with reduced fringing electric fields by allowing a local gate to be placed only a few nm away

from graphene. Furthermore, it may be possible to replace the metal gate with yet another layer of

graphene to form a thin, flexible, transparent all-carbon transistor, as illustrated in Figure 4.11.

Figure 4.11: Illustration of a graphene-graphite oxide-graphene “sandwich” FET on a flexible sub-
strate

49

Chapter 5

Data acquisition and measurement
automation using Mezurit 2

5.1 Introduction

Automated test and measurement is an important area of development across fields from biol-

ogy [108] to integrated circuit manufacturing [109]. “Big science” has evolved into “big data” [110],

which necessarily entails “big measurement”. In research the problem is amplified by the experi-

mental nature of measurements; the worker often does not know a priori what region of param-

eter space is of interest. Instrumentation which offers immediate feedback may be ill-suited for

repetitive, automated measurements. On the other hand, comprehensive hardware and software

ecosystems such as National Instruments (NI) LabVIEW [111] or the MATLAB Instrument Control

Toolbox [112] support automation but can require significant one-time programming investments.

Mezurit 2 is a software application designed to support electrical transport measurements com-

mon in the nanoscale electronics and low-temperature physics fields, similar in some ways to exist-

ing systems, both vendor-supplied [113] and user-generated [114,115]. It strikes a balance between

the above goals by providing simple channel definition, easy-to-use virtual instruments for com-

mon tasks, and immediate feedback in the form of real-time plotting. It supports automation by

including a comprehensive scripting interface, which is accessible in real-time through a command-

line terminal to facilitate the transition from manual to fully scripted operation. Mezurit 2 is free

software such that, unlike proprietary software, it can be freely used, copied, distributed, studied,

and improved. These freedoms not only enhance productivity and promote collaboration; they are

fundamental to good science [116].

50

5.2 General description

Mezurit 2 is a software application which sends commands to and receives data from data acqui-

sition (DAQ) and general purpose interface bus (GPIB) hardware devices. The sequence of com-

mands depends upon real-time inputs to its graphical user interface (GUI) or arbitrary scripts used

for unattended experiments. The data received are converted, scaled, and combined according to

a set of virtual channels.1 The accumulated data are stored in memory, plotted for user inspection,

and optionally saved to disk.

Mezurit 2 explicitly supports several common experimental paradigms through virtual instru-

ments1 called tools1 (listed below). Each tool implements an algorithm for controlling or acquiring

data from an experiment. Each algorithm depends on a collection of settings and controls which are

exposed in a dedicated subsection of the GUI.

Acquisition Records points1 in real-time at speeds up to �1 kHz.

Scope Records points for a finite time period at speeds up to �1 MHz.

Sweep Linearly varies an output over a given range at a given ramp rate.

Trigger Quickly responds to predefined events.

Terminal Accepts commands to programmatically operate the other four tools.

Together, the first four tools cover the majority of common nanoelectronics experiments. The fifth

tool—the terminal —is provided to cover the remainder. It runs the Python interpreter parallel to

the main program to offer a set of text-based commands in the context of a full-featured program-

ming language. The command set covers all controls and settings present in the GUI, plus several

advanced “hidden” features. Commands may be typed-in directly or read from a script.

Up to 16 virtual channels can be defined using a flexible function-based entry system, enabling

nonlinear scaling and arbitrary “channel math”. The acquisition, scope, and trigger tools can access

the full set of virtual channels, while each sweep tool associates with a single channel.

The GUI comprises a menu bar and a set of pages, only one of which is visible at a time. The

menu bar contains controls to switch pages, save and load configuration profiles, view documen-

tation, and access other miscellaneous features. There are three pages: one “Setup” page, which

1 See Table 5.1 on page 53 for context-specific definition.

51

Figure 5.1: Screen capture of Mezurit 2 running in setup mode

allows the user to define virtual channels and configure hardware, and two “Panel” pages, which

expose the four main tools and a plot window.

Mezurit 2 operates in setup mode2 while the “Setup” page is selected and in panel mode2 while

one of the “Panel” pages is selected. Screen captures showing the GUI running a demonstration

experiment in these two states are shown in Figures 5.1 and 5.2, respectively. The terminal works

in both modes and is therefore present on every page, though not all commands are available in both

modes.

Mezurit 2 was inspired by a program called Mezurit3 and as such the concepts of virtual chan-

nels, logging, and sweeps are present in both. The two applications share no code, however—

Mezurit 2 was written entirely from scratch by Brian Standley in consultation with Marc Bockrath.

It comprises 10 854 lines of C and 323 lines of Python, not including comments and whitespace. It

runs on GNU/Linux, Microsoft Windows XP, and Microsoft Windows 7 systems. The source code

is online4 and is released under the GNU General Public License [6].

A number of generic words and phrases are used in this chapter to describe concepts in the

context of Mezurit 2. They are noted on first use and defined in Table 5.1.

2 See Table 5.1 on page 53 for context-specific definition.
3 Written by Marc Bockrath and David Cobden
4 Available: http://www.ugcs.caltech.edu/˜mezurit2/

52

Figure 5.2: Screen capture of Mezurit 2 running in panel mode

5.3 Operation

The operation of Mezurit 2 is described in general and again in more detail as it relates to the problem

of data acquisition.5 A number of mathematical symbols are used in this chapter to describe the

general (and subtle) behavior of the functionality provided. They are listed and defined in Table 5.2.

5.3.1 Overview

In a typical scenario, the user begins in setup mode by defining several virtual channels as func-

tions of available physical channels6 such as input and outputs provided by DAQ devices or GPIB-

connected external instrument parameters. Switching to panel mode, the user chooses tool settings

and then operates the measurement through their controls. Incoming data is saved to a buffer and

plotted in real-time. The final dataset may then be saved to disk in a text-based format and loaded

into many of the thousands of available data analysis programs.

As a shortcut, the user may also choose to load a previously saved configuration profile. Such

profiles encompass every available setting—the program will be in the same state as the instant the

5 Where it makes a difference, this section refers to version 0.91, released on 11 April 2012.
6 See Table 5.1 for context-specific definition.

53

Table 5.1: List of context-specific terms

Term Definition

virtual channel A quantity defined by an arbitrary function of zero or more physical
channels or other parameters, often corresponding to a physical quan-
tity present in the device under test or elsewhere in the experiment

virtual instrument A software-defined instrument which controls modular hardware in-
strumentation to accomplish a specific task

tool A virtual instrument implemented in Mezurit 2, comprising a subsec-
tion of the GUI and an underlying model of operation

point A set of real numbers corresponding to the values of the active virtual
channels at a particular time

setup mode The internal state of the application when the “Setup” page is selected,
in which no acquisition loop is running

panel mode The internal state of the application when a “Panel” page is selected,
in which all tools are active

physical channel An input or output port on a DAQ device or a quantity present in an
external instrument

channel function A Python function callable by a user-defined virtual channel function
parsing phase The method of evaluation used to take an inventory of which channel

functions are associated with a virtual channel
evaluation phase The normal method of evaluated a virtual channel function purely to

obtain a result
invertible channel A virtual channel which meets certain requirements and can therefore

be associated with a sweep tool
terminal command A command, implemented as a Python function, used to effect some

change in the operation of the measurement
trigger test A Boolean Python expression used to determine when a trigger shall

be executed
trigger command A command similar to a terminal command executed in response to

an predefined event

profile was saved, notwithstanding the contents of the data buffers and tool activity. Mezurit 2 uses

a text-based format called MCF (Mezurit 2 configuration format) to store profiles.

The “Setup” page includes subsections to configure hardware along with the set of virtual chan-

nels. Up to two DAQ devices and two GPIB controllers can be connected at one time. Mezu-

rit 2 supports most NI DAQ devices and many others covered by the COMEDI open-source driver

project [117]. NI GPIB controllers are supported along with others via the Linux-GPIB project.7 In

7 Website: http://linux-gpib.sourceforge.net/

54

Table 5.2: List of symbols

m Index of a hardware unit, such as a DAQ device or GPIB controller
n, p Generic channel indices; used for both virtual and physical channels
a Primary address of a GPIB-enabled instrument
i Index of a specific page, sweep tool, or trigger tool
ϕ Text string such as a GPIB message or filename
fn Defining function of virtual channel n
Xn Value of virtual channel n
X 1

n Target value to be impressed upon virtual channel n
tl, tu Times of last acquired point and last sweep update, respectively
Bn Sliding bin size setting for virtual channel n
ϕn Python expression defining the body of virtual channel function fn

ζvc The set of valid virtual channel indices
Ti Test expression for trigger i

addition, one virtual device of each class is always available for testing or other purposes.

Panel mode operation involves two main loops running in parallel. The “acquisition” loop is

responsible for the low-level, time-sensitive tasks while the “interface” loop handles user input and

output. Settings, control state, and data buffers are shared between the loops in a well-defined

fashion, as described in section 5.5.

5.3.2 Virtual channel definition

Virtual channels correspond to quantities to be measured and include a description of how they are

to be computed. The set of virtual channels defines the core of a Mezurit 2 configuration profile, and

their interpretation and evaluation is Mezurit 2’s primary concern. Each virtual channel (with index

n) comprises a name, International System of Units (SI) prefix, unit, bin size Bn,8 and expression

ϕn. The expression must be one line of Python code defining the function fn used to compute the

value of the virtual channel

Xn � fn (ip, tp, svc,n, Sdac, Sadc, Sgpib) , (5.1)

8 The bin size parameter is described in section 5.3.3.

55

Table 5.3: Selected functions available for use in virtual channel definitions. The second column
indicates the direction of information flow: Ð for an input function, Ñ for an output function, and
Ø for a bidirectional function.

Function Description

panelpq Ð Index of current panel ip, e.g., 0 for “Panel 0”. (Returns

−1 in setup mode.)
timepq Ð Time in seconds since the current panel was first started

or its timer was reset
chpnq Ð Current value of virtual channel n, without SI prefix. For

example, if X2 = 3.4 mV, chp2q would return 0.0034.
DACpm,nq Ñ Value of analog output channel n on DAQ device m

ADCpm,nq Ð Value of analog input channel n on DAQ device m

A8648 Freqpm, aq Ø Agilent 8648 signal generator (with address a) fre-
quency in Hz via GPIB controller m

A8648 Amplpm, aq Ø Agilent 8648 signal generator (with address a) ampli-
tude in dBmW via GPIB controller m

SR830 SineOutpm, aq Ø SRS SR830 lock-in amplifier (with address a) output
amplitude in V via GPIB controller m

SR830 SensInpm, aq Ø SRS SR830 lock-in amplifier (with address a) input sen-
sitivity in V/V via GPIB controller m

where ip is the index of the current panel, tp is the current panel’s elapsed time, and svc,n �

{Xp} | p P ζx X ζvc where ζx � {0, 1, . . . , n � 1} and ζvc is the set of valid virtual channel

indices.9 Sets Sdac, Sadc, and Sgpib contain the current values of all accessible physical channels

of the output, input, or GPIB types, respectively. In practice, the details of fetching, converting,

and scaling the arguments of fn are abstracted away by channel functions.10 There are 34 built-in

channel functions, a selection of which are listed in Table 5.3. Additional functions may defined

using the information in appendix E.

Virtual channels are called in two separate contexts, called the parsing10 and evaluation10 phases,

and the behavior of their constituent channel functions depends on the current phase. The parsing

phase occurs once each time the user switches from setup to panel mode (or between panels). Each

expression ϕn is evaluated while channel function calls are analyzed to generate subsets sdac, sadc,

9 Because the set of virtual channel values is computed in order on each iteration of the acquisition loop, a virtual channel
function should refer only to other channels of lesser index.

10 See Table 5.1 on page 53 for context-specific definition.

56

and sgpib containing the mentioned elements of their respective full sets.11 This information is used

to generate virtual channel metadata for display in the GUI and for other internal purposes. The

expressions then compiled into Python function objects to speed up repeated computation. The

evaluation phase occurs during each iteration of the acquisition loop when functions {fn} are called

as needed to compute a new point {Xn}. Note that from here on it is implied that sets such as {Xn}

contain only members with indices n P ζvc, i.e., undefined virtual channels are simply ignored in

panel mode.

Channel functions may be split into three categories according to the direction of information

flow: input, output, and bidirectional. Input functions are the simplest to understand—when the

function is called a value is fetched from internal variables (ip or tp) or the analog input buffer

(sadc), which are updated continuously in panel mode. Output functions are more complicated

—they behave like input functions during the evaluation phase by returning the last known value

of the physical channel in question. In addition, during the parsing phase they flag the calling

virtual channel as potentially usable by the sweep tool. Such virtual channels may be considered

invertible,12 and are described in more detail below. Finally, bidirectional functions are similar to

output functions, but the known value is periodically queried from an external instrument. Many

functions encapsulating GPIB commands fall into this category.

Virtual channels defined by a linear function fn of exactly one output or bidirectional channel

function are considered invertible, meaning they can be controlled by sweep tools or updated by

a terminal command.12 When a new target value X 1
n is set, the inverse of fn is used to compute

the necessary output x1n � f�1
n pX 1

nq. The result is then immediately impressed upon the applicable

analog output (DAC) channel or transferred to the appropriate instrument over GPIB. While it would

be possible to use an iterative algorithm such as Newton’s method to find x1n given an arbitrary (but

well-behaved) fn, Mezurit 2 is currently limited to linear fn where inversion is concerned. This

restriction enables f�1
n to be worked-out during the parsing phase and efficiently computed during

the evaluation phase.

11 Subsets may change during the evaluation phase for certain, exotic, fn, which is technically supported but not recom-
mended. Typically, the arguments of channel functions are constant or depend on only ip.

12 See Table 5.1 on page 53 for context-specific definition.

57

5.3.3 Logging and scanning

Mezurit 2 acquires data in two modes: logging and scanning. The former mode is controlled by the

acquisition tool and the latter by the scope tool. In logging mode points are acquired continuously

at a variable rate and recorded to a data buffer only if certain conditions are met. Scanning, by

contrast, configures the DAQ hardware to acquire points at a constant rate for a limited time and

records every point.

The acquisition tool includes several settings which affect logging mode operation plus a read-

out which displays the set of virtual channels and their current values. The fmax setting specifies

the maximum acquisition rate, subject to the limits of the hardware and operating system.13 Under

normal circumstances a new point will be acquired every 1{fmax-time period. Machines equipped

with older single-core processors may experience occasional longer delays due to the overhead of

updating the GUI. In practice, rates of 0.6–1.0 kHz (typically limited by DAQ hardware) are achiev-

able on most systems.14 The Nave setting specifies the number of raw points used to generate a

moving average. While the same filtering can be applied offline, it can be useful to prefilter noisy

inputs to enhance the clarity of plots or make triggering more reliable.

At this stage it is important to emphasize the distinction between acquired and recorded points:

An acquired point is the raw {Xn} generated on each iteration of the acquisition loop.15 In becomes

a recorded point when it is saved to the data buffer, which occurs only when the point meets the

binning criterion. Mezurit 2 implements a sliding binning scheme as follows: An acquired point

may be recorded when decision variable d is true, as defined by

d̄ � |Xn �Xn0| Bn @ n P ζvc, (5.2)

where Xn0 is the last recorded value. Thus, a point will be recorded when any virtual channel’s

value excurs more than its bin size away from the last recorded value. Setting any Bn to zero causes

Mezurit 2 to recored every acquired point. Leaving a bin size undefined is equivalent to setting Bn

to 8 such that virtual channel n will never trigger a recorded point.

13 Some Microsoft Windows-based computers lack the ability to generate accurate sub-1 ms time delays. In those cases,
Mezurit 2 falls back on a less efficient loop-based timing system.

14 3–4 kHz has been demonstrated using simulated DAQ hardware.
15 Averaging is applied between the computation of {fn} and the updating of {Xn}, such that the acquisition tool readout

and results of trigger tests (see section 5.3.5) reflect the averaging.

58

Figure 5.3: Example illustrating the sliding binning scheme used in Mezurit 2. The numbered red
arrows indicate binning events.

Several examples of binning events (marked by red arrows) are illustrated in Figure 5.3. The

values X0 and X1 remain within their respective bins through the first three acquired points after

the initial recorded point, at which point the overall decrease of X0 exceeds B0 (event i). A new

point is recorded and the bins for both virtual channels are adjusted. Event ii occurs when X1 rises

sharply out of its bin, demonstrating that if a channel rises quickly relative to characteristic slope

Bnfmax, then the difference between successive recorded values may be noticeably larger than Bn.

Events ii and iv show how a smooth rise generates a smooth staircase of recorded values. The

binning system’s primary function is to limit the quantity of data taken when the experiment is idle

or noisy. If desired, a perfectly regular sequence of Xn may be generated in some circumstances

using the sweep tool, described in the next section.

The scope tool provides an interface for the scanning mode of acquisition. When a scan begins

the DAQ hardware is instructed to take samples at a fixed rate fDAQ for a fixed length of time

tsample, transferring the raw ADC data to a temporary buffer. The samples are then converted,

scaled, and used to compute {Xn}j at each time index j P {0, 1, . . . , tsample fDAQ � 1}. A virtual

channel must meet certain conditions to be part of a scan: 1) fn must depend on only ip, tp, and/or

sadc and 2) if multiple ADC channels are referenced, they must belong to the same DAQ device.16

16 Because scans are timed by the DAQ device’s internal clock, samples from different devices cannot be reliably “matched-
up” to compute Xn even when the fDAQ are nominally equal.

59

Unscannable channels will be computed once based on conditions immediately after the scan and

then copied to every point as constants.

The advantages of scanning mode are potentially much faster acquisition (up to 1 MHz depend-

ing on DAQ hardware) and periodic sample times. Scans can be started and stopped using GUI

controls or commands sent from the trigger or terminal tools. The command method enables pre-

cise synchronization with external hardware using the fire scope pulsepn,X 1
nq terminal command,

which sends a pulse on virtual channel n immediately before the scan.

5.3.4 Sweeping

Electronics experiments, unlike, e.g., seismic monitoring, rarely require only passive data acqui-

sition. Characterizing a time-independent system depends on recording its response over a region

of N -dimensional parameter space. Assuming the response varies smoothly as a function of each

parameter, one might divide the space into discrete volume elements and then devise a path pass-

ing through every element’s location. Mezurit 2 provides multiple sweep tools to accommodate

any such path, provided the parameters can be expressed as invertible virtual channels. One di-

mensional paths are sometimes called sweeps (hence the name of the tool), two dimensional paths,

megasweeps, and three dimensional paths, gigasweeps. Megasweeps and gigasweeps can be auto-

mated using the terminal, as described in section 5.4.1.

Each sweep tool associates with a single invertible virtual channel, ramping its value linearly

up or down at a constant rate. Upper and lower limits can be set in terms of Xn or the equivalent

physical output value xn. The ramp rate rsweep is expressed in the units of Xn and can be set

independently for each direction. Upon reaching a limit, the sweep either stops or changes direction

after a configurable hold time. The sweep can also be set to automatically stop at zero.

Measurements of even time-independent systems can themselves be time-dependent due to par-

asitic capacitance, inductance, and/or other factors. For this reason it is useful to consider how,

exactly, parameters vary with time between recorded points. The sweeping operation is therefore

described in detail for both the simplest case where step size ∆Xn � 0 and the more-complicated

“stepping mode” where ∆Xn ¡ 0.

Sweep tools operate during only logging-mode operation (all active sweeps are automatically

60

Figure 5.4: Output value and acquired/recorded points while sweeping a single virtual channel.
(a) The simplest case in which ∆Xn � 0 and Bn " rsweep{fmax. (b) “Stepping” mode, where
0 Bn ∆Xn and tdwell " 1{fmax. In both cases it is implied that Nave � 0 and the respective
bin sizes of the other virtual channels are not a factor during the sweep.

stopped before scanning) and are therefore subject to the uncertainties of the acquisition loop. Thus,

in the simplest case the actual sweep output

Xnptq � ptl � t0qrsweep �Xn,0, (5.3)

where pt0, Xn,0q is the initial coordinate, tl is the time of the most recent iteration of the acquisition

loop, and rsweep is the direction-dependent rate set for the sweep tool associated with virtual channel

n. Under optimal conditions, the plot of tl vs. t therefore resembles a regular staircase with an

average slope of unity and Xnptq resembles a similar staircase, but with average slope rsweep, shown

in Figure 5.4a. The bin size Bn of a swept channel affects how often an updated Xn triggers

a recorded point. In the example shown in Figure 5.4a Bn is between two and three times the

characteristic step size rsweep{fmax, so every third point is recorded.

Given that the time between updates may vary slightly from 1{fmax, the step height must vary

as well to maintain the requested rate. The form of equation 5.3, however, guarantees that variance

in the step heights does not cause any long-term error. If desired, however, the step size can be fixed

by setting ∆Xn to a nonzero value, putting the sweep tool in “stepping” mode. The step height is

61

then converted into an equivalent dwell time

tdwell � ∆Xn{rsweep. (5.4)

The GUI provides settings for both ∆Xn and tdwell, updating both simultaneously based on equa-

tion 5.4. Sweep updates prioritize ∆Xn over tdwell, however, such that the following conditions are

true:

Xn � kp∆Xnq �Xn,0 | k � ⌊ptl � t0q{tdwell⌋ (5.5)

lim
fmaxÑ8

∆tu � tdwell (5.6)

Thus, the time between updates ∆tu merely approaches tdwell. The difference between the two can

be minimized, however, by setting fmax " 1{tdwell.

One example of a time-dependent measurement effect is the settling time some instruments

require to readjust to a new equilibrium state of the system. A settling period can be accommodated

using the tblack setting, which suspends recording (but not acquisition) after each sweep update for a

specified length of time up to tdwell.17 Stepping mode with finite tblack is illustrated in Figure 5.4b.

A new point is recorded near the middle of each plateau of Xnptq, not at the leading edge as would

normally be the case. The actual time delay between sweep updates and recorded points may be

slightly longer than tblack —up to tblack�1{fmax. In general, sweep tools run more smoothly when

fmax is significantly faster than other time scales of the system, such as rsweep, tdwell, and tblack,

and the recording rate is controlled through binning.

Note that for both cases shown in Figure 5.4, it is implied that none of the other virtual chan-

nels’ bin sizes is relevant. A bin size Bn is considered relevant if it is defined and smaller than

the expected variation of Xn over the course of the sweep, which depends on the details of the

experiment.

Finally, some experiments require simultaneously varying two or more parameters, effectively

plotting an angled path through the parameter space. For example, the out-of-plane electric field in

a dual-gated field-effect transistor may be tuned at constant doping by sweeping one gate voltage

17 In the GUI, the blackout time is expressed as a percentage of tdwell, but is defined here as a time variable: tblack �
tdwell � [% blackout].

62

up and the other down. This can be accomplished by referencing one invertible virtual channel to

another using the set followerpnl, nf , ϕq terminal command. The “follower” (channel nf) will then

be set any time the “leader” (channel nl) is set, according to

X 1
nf
� fpX 1

nl
q, (5.7)

where X 1
nl

and X 1
nf

are the target values of the leader and follower, respectively, and f is an arbitrary

function defined by Python expression ϕ.18

5.3.5 Synchronization

Mezurit 2 provides several mechanisms to synchronize internal and external events. The most gen-

eral are the trigger tools, which execute a sequence of commands in response to an arbitrary event.

For example, a trigger can automatically start a scan when a 5 V TTL-compatible sync signal is

received from an external function generator. Each trigger tool i contains a Boolean expression

Ti called a trigger test19 which is evaluated on every iteration of the acquisition loop, provided the

trigger has been “armed”. The test expression shares the same namespace with the virtual chan-

nels and can therefore access all the same functions (most commonly timepq and chpnq). If and

when Ti evaluates to true an arbitrary sequence of trigger commands19 is executed and the trigger

is disarmed. The available commands are a subset of the terminal commands, described below.20

The terminal provides other synchronization mechanisms such as sweep events, scan events, and

trigger signals. Sweep events allow a script to wait for a sweep tool to reach an end or zero point

18 This approach can be taken one step further by expressing two or more follower channels as a function of a
free parameter represented by a “dummy” channel. For example, to trace a three dimensional path (illustration
below) configure four virtual channels

X0 � DACp2, 0q

X1 � f1p . . . q X 1

1 � fαpX
1

0q

X2 � f2p . . . q X 1

2 � fβpX
1

0q

X3 � f3p . . . q X 1

3 � fγpX
1

0q

and then linearly sweep virtual channel 0, which has no physical significance, to acquire data along the path specified by
the follower functions fα, fβ , and fγ .

19 See Table 5.1 on page 53 for context-specific definition.
20 Though nearly all trigger commands are syntactically identical to equivalent terminal commands, they are implemented

internally in different ways. Most crucially, they execute directly inside the acquisition loop and therefore must return
promptly.

63

using the catch sweeppϕ, nq command, which blocks until a certain event to occurs while sweeping

virtual channel n. A similar pair of functions exist for the scope tool: catch scan startpq and

catch scan finishpq. Finally, trigger signals allow trigger tools to communicate with the terminal.

A trigger may send a signal with the emit signalpϕq command, which is “caught” by the terminal

command catch signalpϕq.

5.4 Scripting

The comprehensive scripting interface available through the terminal closely mirrors the set of

virtual instruments found in the GUI. This makes transitioning from manual to automated operation

as straightforward as possible. Mezurit 2 includes many features which fall into three categories:

1) controls exposed by buttons and menu items, 2) settings, and 3) hidden functions. Every control

that is logically scriptable has a dedicated counterpart terminal command. In contrast, settings are

read and/or written using a generalized pair of advanced commands, described below.

Commands may be directly typed into the terminal or placed into scripts to be called from the

terminal. The terminal is implemented as an embedded display running a Python interpreter in

a separate process from the main program. This design protects the integrity of the time-sensitive

data acquisition process from untested scripts, which may hang or fail. The interpreter automatically

restarts after a crash and can be manually restarted in the GUI.

There are 45 built-in terminal commands covering all three categories. A representative selec-

tion of those which directly correspond to “clickable” controls in the GUI is given in Table 5.4.

Additional commands may be defined using the information in appendix E.

5.4.1 Advanced commands

A selection of advanced commands used to read or write settings or access “hidden” features is given

in Table 5.5. The commands get varpϕq and set varpϕq refer to settings using the same key-value

pairs used in MCF files. Thus, finding the appropriate string ϕ is as simple as visually inspecting

any MCF file. Changing a setting from the terminal activates the same internal update procedure

as the manual method, meaning that the new value cannot create any internal inconsistency in the

operation of the tools.

64

Table 5.4: Selected basic terminal commands used to access controls available in the GUI. Com-
mands marked with ‘S’ are usable in setup mode, ‘P’ in panel mode. Those also usable as trigger
commands are marked ‘Tr.’

Function Description

load config filepϕq S Load MCF file ϕ

save config filepϕq S/P Save current configuration to file ϕ

set recordingpbq P/Tr Turn recording on or off according to b

save datapϕq P/Tr Save the data buffer to file ϕ

clear bufferpb, cq P Clear the data buffer after confirmation from the
user (if b � 1) and reset the time (if c � 1)

set dacpn,X 1
nq P/Tr Set (invertible) virtual channel n to target value X 1

n

sweep uppnq,
sweep downpnq,
sweep stoppnq

P/Tr Control the sweep tool associated with virtual chan-
nel na

fire scopepq,
cancel scopepq

P/Tr Start or stop a scan

arm triggerpiq,
disarm triggerpiq

P/Trb Arm or disarm trigger tool with index ia

a Note that the sweep-based commands take virtual channel numbers n as arguments while trigger-based
commands require tool index i. A utility function get sweep idpnq is provided to find sweep index i given
virtual channel n when needed.

b Setting a trigger to arm a trigger can be useful for multistage events, or to automatically re-arm.

The gpibpm, a, ϕq command is of particular importance because it allows arbitrary messages

to be sent over GPIB without interfering with any GPIB-based virtual channels. Message ϕ is

transferred to the main program and then inserted into the ongoing sequence of messages sent and

received.

One common application of the scripting interface is the automation of megasweeps and gi-

gasweeps. The former takes the form of a loop in which each iteration increments one param-

eter using set dacpp,X 1
pq and then sweeps another parameter using sweep upppq followed by

catch sweepp‘max’, pq. The data may be saved after each sweep using save datapϕq or simply

saved manually at the end of the megasweep. While composing and calling a script may be more

time-consuming than simply configuring a hypothetical megasweep tool, there is much more flexi-

bility in this approach. In addition, it allows a separation of mechanism, i.e., basic tools and terminal

commands, from policy, which would necessarily be imposed by such a tool’s model of operation.

A more involved example script is given in appendix E.

65

Table 5.5: Selected advanced terminal commands including those which expose hidden features.
Commands marked with ‘S’ can be used in setup mode, ‘P’ in panel mode.

Function Description

set followerpnl, nf , ϕq P Defines a leader-follower relationship between virtual chan-
nels nl and nf defined by Python expression ϕ

catch sweeppϕ, nq P Waits for event ϕ to occur while sweeping virtual channel n
catch signalpϕq P Waits for signal ϕ to be emitted by a trigger command
gpibpm, a, ϕq S/P Sends message ϕ to GPIB address a via controller m, returns

reply
set varpϕq S/P Sets configurable variable according to line ϕ of the form

“key=value”
get varpϕq S/P Returns the value of variable ϕ as a string

5.5 Architecture

This section is intended to give an overview of Mezurit 2’s architecture. First, the overall structure

of the source code is described, followed by an account of how the acquisition and interface loops

are implemented as separate threads for performance. Several advanced programming concepts

including remote procedure calls (RPCs) and callback functions with pseudoclosures are employed

to make the source code amenable to further development while allowing the necessary complexity

of the design. These are described briefly, with examples, in the final section.

5.5.1 Modularity

Mezurit 2 is designed to be as easy as possible to understand at the source-code level given the

complex nature of its task. Toward this end, its functionality is divided into modules, which were

refactored continuously during development. Modularity in any given computer program can take

multiple forms. For example, functions may be divided by level of abstraction or practical features.

These two approaches in particular are incompatible for Mezurit 2, given that each tool (a practical

feature) encompasses GUI controls, configuration settings, and real-time logic to implement its

model of operation. Thus, a hybrid approach, diagrammed in Figure 5.5, was taken where higher-

level functions are organized by tool (including pseudotools such as the message window, data

buffer, and plot display). All lower-level functions, however, are grouped together given their highly

interrelated nature.

66

Figure 5.5: Block diagram of source code-level modularity. Blocks are grouped by abstraction level
—from the user interface at the top to hardware access at the bottom. Here, the “tools” group
includes the acquisition, scope, sweep, and trigger tools, as well as pseudotools such as the mes-
sage window, data buffer, and plot display. System libraries are color-coded by platform: red for
GNU/Linux, blue for Microsoft Windows.

The four main tools—acquisition, scope, sweep, and trigger —are straightforward to under-

stand. Each is built around a set of configuration settings and GUI controls (implemented as GTK+

widgets21) along with logic to handle updates and events. Pseudotools are similar at the source code

level, but are typically shared between the main tools. For example, the acquisition and scope tools

share access to the data buffer.

The code required to implement any single tool is reduced by the presence of several subsystems.

One such system is the GTK+ event loop which can be instructed to connect user input events, such

as clicking on a button or updating a setting, with callback functions. This way tool logic may be

encapsulated and placed near the tool’s data structures rather than in the acquisition or interface

loops directly.

A similar scheme is used in the MCF subsystem used to save and load settings and to implement

terminal and trigger commands as RPCs. Each configuration setting is associated with an MCF node

comprising a key string, type, default value, and callback function. When an MCF file is loaded,

21 The GIMP Toolkit, available: http://www.gtk.org/

67

each line is matched to a unique node using the key string and a value is extracted according to the

specified type. The callback function is then called to safely update the variable and perform needed

housekeeping tasks. The RPC system is similar but uses text-based commands which are received

over a socket from the terminal process. Each command is matched with a callback, effectively

allowing scripts to remotely “call” functions in the main process. Trigger commands are processed

by a separate instance of the same RPC system, even though they actually originate in the main

process.

5.5.2 Multithreading

In the data acquisition system, the users are represented by two separate but equally
important threads: DAQ, which records the points, and GUI, which plots the curves.
These are their stories.

Multithreaded applications are qualitatively more difficult to compose and debug [118]. In the case

of Mezurit 2, however, the advantages greatly outweigh the disadvantages, especially given the

range of time scales involved (Table 5.6). When running on multicore machines, it can acquire data,

communicate over GPIB, and process user input simultaneously. The acquisition loop may thus run

unimpeded by other computational or input/output (I/O) tasks. Single-core machines, too, benefit

from multithreading in the form of simplified integration of blocking I/O operations. For example,

GPIB communication is relegated to a separate thread where slow-to-respond instruments may be

accommodated without resorting to complex asynchronous I/O.

The main process comprises three threads, though only one (GUI) runs in setup mode: “DAQ”,

which runs the acquisition loop; “GPIB”, which sends GPIB messages, waits, and receives replies;

and “GUI”, which runs the interface loop. Upon switching to panel mode, the GUI thread initializes

and forks a new DAQ thread to handle time-sensitive operation, which in turn initializes and forks

a new GPIB thread. All three threads run simultaneously from that point until the user leaves

the current panel. Configuration settings and data buffers are safely shared between threads using

mutex-style locks. Choosing the appropriate level of granularity for the locking scheme can be

challenging. For the most part, Mezurit 2 protects data at the tool level. For example, while the

DAQ thread running a critical section to update the sweeps, the sweep tools are protected but the

trigger tools remain available for configuration.

68

Table 5.6: Time scales present in the operation of Mezurit 2

DAQ THREAD
Default sampling period in logging mode (fmax) 1.25 ms
Typical sampling period in scanning mode 10 µs
Polling period for terminal commands 2.5 ms

GPIB THREAD
Minimum time between sending of messages 20 ms

GUI THREAD
Polling period for GTK+ events 8.3 ms
Time between updates to the virtual channel readout 14 ms
Time between updates to the data buffer status 24 ms
Time between updates to the scope progress bar 91 ms

The terminal is implemented by as separate process embedded in the main GUI using VTE.22

VTE transmits keystrokes to its child process and displays output received. If the child process

should crash, it may be automatically restarted without negatively affecting the main process.

A full account of the shared data and synchronized interactions between threads is not given

here, but a schematic of the general structure is shown in Figure 5.6. Branching points are shaded

grey, actions are blue, and data buffers are white with black outlines. Control flow is indicated by

solid lines and data flows are dashed lines, whether the endpoints are branching points, actions, or

buffers. Protected transfers to or from shared buffers are marked with a padlock symbol. A few key

areas are highlighted:

• Both the DAQ and GUI threads maintain private buffers to hold recently acquired points. A
third, shared buffer is used to facilitate the propagation of data between the two with minimal
overlap. Thus, the DAQ thread never needs to wait to update Xn and almost never waits
to transfer a point to the shared buffer, because the GUI thread keeps a copy for use in the
potentially slow process of updating the acquisition tool readout.

• The RPC system is shared between threads even though all RPC commands come into the
system through the DAQ thread. This minimizes the response time of acquisition-related
commands while dispatching slower, interface-related commands to the GUI thread.

• The green-shaded actions may invoke callback functions which affect the operation of multi-
ple threads (while holding the appropriate locks, of course). For clarity, such interactions are
not shown in the figure and are in fact not explicitly mentioned in the acquisition loop’s code.
Some of the subtleties of these events are explained via examples in the next section.

22 The Virtual Terminal Emulator library, documentation: http://developer.gnome.org/vte/0.30/

69

Figure 5.6: Schematic of threads running in panel mode and the interactions between them

70

5.5.3 Callbacks and pseudoclosures

Each tool contains unique logic to handle updates to its controls and settings, which is expressed

as a collection of callback functions. Callbacks are implemented in the C language using function

pointers [119], which lack the advanced features of truly functional languages such as lambdas and

closures. Closures in particular would be useful to have because they allow a callback to access

nonlocal variables without resorting to global variables. Toward that end, a limited pseudoclosure

construct was implemented to augment the GTK+ callback registration process. When a callback

function is registered, a set of additional values and variable references is captured and stored. Later,

when the pseudoclosure is invoked, the function is called with access to the captured data. The same

construct is used in the MCF and RPC subsystems.

An example of a pseudoclosure in action is shown in Figure 5.7. Each sweep tool includes a

ramp rate setting (actually, two) which affects how the acquisition loop updates its associated virtual

channel during sweeping. This setting is stored as an internal variable “rate var” and exposed to the

user as the rsweep GTK+ widget. A callback function “setvar cb” is defined to handle changes

to the sweep tool’s settings. At program startup, a pseudoclosure is created (step 1) comprising

an event name and references to the callback, variable, and widget. When the user updates the

setting in the GUI (step 2), an event is queued which is then matched to the pseudoclosure by the

“gtk main iteration” function (step 3, corresponding to the extreme upper left corner of Figure 5.6).

The pseudoclosure is invoked (step 4), fetching the value from the appropriate widget (step 5) and

safely updating the variable (steps 6–8). The DAQ thread will now sweep at the new rate (step 9).

The scenario introduced above is extended to show how the MCF and RPC subsystems function

similarly in Figure 5.8. Each sweep tool also includes a MCF node with key “sweep rate” which

lets the MCF system know about the internal variable “rate var”. The terminal command set varpϕq

provides remote access to the MCF subsystem through the RPC subsystem, such that a script can

update the ramp rate in much the same way the user did using the rsweep widget. A callback func-

tion “setvar mcf” is defined to handle such updates to the sweep tool’s settings, which is similar but

not identical to function “setvar cb”. There is also a generic callback “setvar rpc” which receives

line ϕ sent from the terminal and passes it to the MCF subsystem. At program startup, two pseu-

doclosures are created (steps 1–2), one comprising a command code and a reference to “setvar rpc”

71

Figure 5.7: Schematic representation of the registration and prototypical calling sequence of a
GTK+ callback function. The sequence of data transfers, indicated by thin solid lines, and function
calls, indicated be thick dashed lines, is overlaid on the relevant sections of Mezurit 2 (expressed as
pseudocode for clarity). Partial data structures are represented as tables.

(with no additional captured data, in this case) and another comprising the MCF key and references

to “setvar mcf”, the variable, and the widget. When the user (or a script) executes the terminal

command (step 3), it is received by the DAQ thread (not shown) and queued for the GUI thread,

which handles the command by invoking the matching RPC pseudoclosure (steps 4–5). Line ϕ is

then parsed and the resulting MCF key is matched to the pseudoclosure (step 6), which is invoked

(step 7), safely updating the variable (steps 8–10). The DAQ thread will now sweep at the new rate

(step 11). Finally, the appropriate widget is updated to reflect the change (step 12).

Pseudoclosures can be thought of as the way disparate parts of Mezurit 2 are connected together,

defining its large-scale structure. The collection of settings, GTK+ widgets, MCF nodes, RPC

commands, and associated callback functions for each tool and pseudotool makes up the bulk of

Mezurit 2’s data and programming. Implementing a new feature or setting simply requires adding

one of each object to the source code and creating the appropriate pseudoclosures to insert the logic

into the acquisition and interface loops.

72

Figure 5.8: Schematic representation of the registration and prototypical calling sequence of a
nested pair (RPCÑMCF) of functions. The sequence of data transfers, indicated by thin solid lines,
and function calls, indicated be thick dashed lines, is overlaid on the relevant sections of Mezurit 2
(expressed as pseudocode for clarity). Partial data structures are represented as tables.

5.6 Future work

At present Mezurit 2 meets the requirements of many common device characterization tasks. Once

the (limited) selection channel of functions are memorized, the user can quickly and conveniently

define virtual channels. It can sweep multiple outputs in a carefully controlled fashion and record

a system’s response with fine time resolution. A comprehensive scripting interface is provided for

measurement automation, which is made easier to learn by embedding a command-line interface

directly in the GUI.

The application may be extended in the future, especially if the number of users continues to

73

grow.23 While it is hoped that the availability of the source code and its modular design will en-

courage others to contribute to its development, there are other architectural changes which could

open up the process to non-C programmers. One possibility would be to enable pure Python-based

(rather than terminal -based) extensions with the same GUI integration as the built-in tools. Taking

this idea even further, the tools and pseudotools could be reimplemented in Python where per-

formance considerations allow. Thus, the lower-level C code would become a library to support

user-generated virtual instruments. Apart from these hypotheticals, it is hoped that more users will

find that Mezurit 2 helps them do science and perhaps share their scripts and MCF files with others.

23 As of April 2012 Mezurit 2 is being used in 3–4 research labs and evaluated in two more.

74

Chapter 6

Conclusions

The electronic and mechanical properties of graphene have been studied intensely over the last

�8 years by researchers in many fields, from chemistry to mechanical engineering to, of course,

physics. The myriad results of these studies lend support to the idea that graphene has many ap-

plications both inside and outside science. Apart from graphene’s intrinsic scientific value as a

two-dimensional electronic material with an unusual band structure, one might describe it as a plat-

form for nanoscience and nanotechnology in general. Two examples of the latter were presented in

this work—one focusing on the edge of graphene as an intrinsically nanoscale object and interface

to atomic-scale carbon structures and another demonstrating that oxidized graphene is useful as a

layered insulator.

Chapter 2 described graphene device fabrication techniques, which have themselves evolved

considerably in recent years. While traditional graphene deposition methods were used extensively

in this work, future devices will surely be mass produced from wafer-scale sheets of graphene,

bringing additional experiments into the realm of possibility. Most, if not all, practitioners of the

“Scotch tape” method will welcome that development.

The technique of electrical breakdown was applied to two-terminal graphene devices, as re-

ported in chapter 3, and found to reliably create nanometer-scale gaps, or junctions. These junctions

showed switching behavior when subjected to voltage pulses such that they can be programmed to

be OFF, i.e., in a low-conductance state, or ON, i.e., in a high-conductance state. The devices have

been operated for hundreds of thousands of switching cycles without degradation and the conduc-

tance state persists for over 24 hours. A model of electric field-driven motion of atomic chains of

carbon was proposed to as a possible switching mechanism. According to this model, in the ON

75

state, electrons flow through carbon-atom wires bridging the nanogap. Thus, the edge of graphene

serves as a connection point for a molecular electronic device.

Chapter 4 reported on the fabrication and characterization of top-gated graphene field-effect

transistors made with graphite oxide as the gate dielectric. Working with graphite oxide presented

a challenge to the standard processing recipes due to its temperature sensitivity. A low-temperature

electron-beam lithography process was developed which maintained the integrity of the graphite

oxide as measured by color contrast and transport measurements. Measurements of the channel

conductance as a function of both the top-gate and doped silicon back-gate showed that graphite

oxide’s dielectric constant, κ, is about 4.3. Its breakdown electric field was found to be comparable

to SiO2. This work demonstrates the utility of graphite oxide as a general-purpose layered insulator

compatible with graphene and probably other materials.

The final chapter described a comprehensive software application—Mezurit 2—which sup-

ported the measurements described above. It implements virtual instruments covering many basic

electronics experiments and has a comprehensive Python-based scripting interface for customization

and automation. The virtual instruments’ operational models and the application’s overall design

were detailed.

These results will hopefully enable further progress toward the realization of graphene as a

general-purpose platform for nanoscale electronics (complete with data acquisition software).

76

Appendix A

Conversion of lithography patterns
using npgsfixer

A.1 Introduction

The Nanometer Pattern Generation System (NPGS) [35] is used for direct-write lithography using

scanning electron or focused ion beam microscopes. In a typical usage scenario, NPGS is used

to read one or more patterns created in DesignCAD into memory. A “runfile” is then generated

based on their contents combined with user-supplied information about location, alignment, and

dosage. Finally, NPGS “writes” the pattern to the sample by rapidly modulating beam deflection

over high-speed X-Y inputs.

Though DesignCAD is integrated with NPGS and is itself a powerful computer-aided design (CAD)

package, some prefer a work flow based on AutoCAD or compatible programs, such as QCAD [120],

which read and write in the widely used Drawing Exchange Format (DXF). While DesignCAD is

capable of importing DXF files, the resulting patterns are not directly usable by NPGS because

DesignCAD has no way of knowing which shapes are physical features and which are ancillary

markings, such as those used for registration or alignment.

npgsfixer is a Perl script which converts a generic DesignCAD file into one which is compatible

with NPGS. Color is used to encode role information about each shape, which is then translated

into the embedded flags NPGS expects. The script is also capable of fracturing large patterns into

subfields based on user-defined bounding boxes and generating a list of X-Y stage movements for

stitching the subfields back together during writing.1

1 NPGS is capable of automating this process, but using npgsfixer offers more control.

77

A.2 Operation

Usage instructions can be printed using the ‘--help’ option:

>> npgsfixer --help

Usage: npgsfixer [input file] [output file] [arguments]

Arguments: --fieldbase [file] Specify base filename of subfields,
if applicable. Default: "field"

--runfile [file] Specify filename of runfile snippet,
if applicable. Default: "runfile.txt"

The input file should be a DesignCAD file containing color-coded shapes that comprise the pattern

to be written. Physical shapes must be closed “polylines” of one of six (to accommodate dose

ranges) predefined colors.2 npgsfixer runs in one of two modes, depending on the contents of the

pattern:

Normal mode Sets the appropriate flags on the shapes in the pattern according to color-based
encoding. Unmatched shapes are passed through unchanged.

Fracture mode Automatically activated when at least one layer containing a yellow bounding
box is detected, the pattern is fractured into separate files, one per boxed layer.
Coordinates are adjusted to place the origin of each subfield in the center of its
bounding box and a list of stage movements for stitching is generated.

The same translation of color-coding to embedded flags occurs in both normal mode and fracture

mode. In the latter case, shapes in unboxed layers are simply written to the main output file.

Fracturing is often used to take advantage of the higher resolution offered by writing at a larger

magnification without changing the overall dimensions of the pattern. The quality of the stitching

depends on the accuracy of the motorized stage fitted on the microscope and the center-to-center

distance D between subfields. The manual control over the bounding boxes offered by npgsfixer can

be exploited to reduce ⟨D⟩ or ensure that critical areas fall within the same subfield. In addition,

overlapping subfields can be used to separate interspersed fine and course features into separate

writing steps.

2 Light blue, medium blue, dark blue, light green, medium green, and dark green. Their exact definitions can be found in
the script itself, where additional options may easily be added.

78

Figure A.1: Example lithography pattern defining four alignment windows (layers “0” through “3”)
and one writing step (layer “write”)

A.3 Examples

A.3.1 Normal mode

Normal mode operation is illustrated using the test pattern shown in Figure A.1, which defines four

alignment windows with target markers and several features to be written. Given that no bounding

boxes are to be found, the blue shapes are flagged as physical shapes and the red marks are passed

through unchanged:

>> npgsfixer example_normal_in.DC2 example_normal_out.DC2
...
SECOND PASS:
Processing layer 1 "0":

Fixed filled polyline. Vertices: 4 Color: (0,0,255)
Skipped nonfilled polyline. Vertices: 12 Color: (255,0,0)

...
Processing layer 5 "write":

Fixed filled polyline. Vertices: 12 Color: (0,0,255)

79

Fixed filled polyline. Vertices: 12 Color: (0,0,255)
Fixed filled polyline. Vertices: 20 Color: (0,0,255)
Fixed filled polyline. Vertices: 63 Color: (0,0,255)

...

The output file (example normal out.DC2) can then be loaded into NPGS via a runfile specifying

one manual alignment3 step, using layers 1–4, and one writing step, using layer 5. Screen captures

of the alignment and writing processes are shown in Figure A.2.

Figure A.2: NPGS screen captures while processing an example pattern. (a) Alignment step with
four windows. (b) Writing step

3 Alignment windows are a special case of physical shapes which define a subsection of the field to image during the
alignment process. They are typically not filled during writing.

80

Figure A.3: Example lithography pattern defining a grid with four subfields

A.3.2 Fracture mode

Fracture mode operation is illustrated using the test pattern shown in Figure A.3, which contains

a sparse grid of alignment marks. npgsfixer will detect the yellow bounding boxes and split the

pattern into four subfields:

>> npgsfixer example_fracture_in.DC2 example_fracture_out.DC2 \
--fieldbase exfield --runfile exrun.txt
...
FIRST PASS:
Scanning layer 1 "0":

Found bounding box. Vertices: 4, Center: (220.0, 220.0)

81

Scanning layer 2 "1":
Found bounding box. Vertices: 4, Center: (780.0, 220.0)

Scanning layer 3 "2":
Found bounding box. Vertices: 4, Center: (780.0, 780.0)

Scanning layer 4 "3":
Found bounding box. Vertices: 4, Center: (220.0, 780.0)

SECOND PASS:
Processing layer 1 "0":

Fixed filled polyline. Vertices: 12 Color: (0,0,255)
Fixed filled polyline. Vertices: 12 Color: (0,0,255)
...
Deleted bounding box.

...

The subfields are written as separate files (exfield-0.DC2, exfield-1.DC2, exfield-2.DC2, and

exfield-3.DC2). Given that all four layers include bounding boxes, the main output file contains

no shapes and can be discarded. In addition, a list of X-Y stage movements is saved as a runfile

snippet (exrun.txt) describing the stitching scheme for the overall pattern, shown in Figure A.4. A

full-fledged runfile can then be created from the snippet which writes field “0” centered at location

r0, field “1” at r1, field “2” at r2, and field “3” at r3. Screen captures of the writing processes are

shown in Figure A.5.

Figure A.4: X-Y stage movements required to stitch a fractured pattern. The stage moves from
position rorigin to r0 before the first writing step, then to r1 for the second step, and so on. After the
final step, the stage returns to rorigin.

82

Figure A.5: NPGS screen captures (rotated 90�) while writing a fractured pattern’s four subfields:
(a) field “0”, (b) field “1”, (c) field “2”, and (d) field “3”

83

A.4 Code listing

#!/usr/bin/perl

Copyright (C) 2012 Brian Standley
#
This program is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
#
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.
#
You should have received a copy of the GNU General Public License along
with this program. If not, see <http://www.gnu.org/licenses/>.

npgsfixer v1.1t

$infilename = shift @ARGV;
$mainfilename = shift @ARGV;
$fieldname = "field";
$runfilename = "runfile.txt";

while (@ARGV > 0)
{

$arg = shift @ARGV;
if ($arg =˜ "--fieldbase" && @ARGV > 0) { $fieldname = shift @ARGV; }
elsif ($arg =˜ "--runfile" && @ARGV > 0) { $runfilename = shift @ARGV; }

}

if ($infilename eq "--help" || $infilename eq "-h")
{

print "\nUsage: npgsfixer [input file] [output file] [arguments]\n\n";
print " Arguments: --fieldbase [file] Specifiy base filename of" .

" subfields,\n " .
" if applicable. Default: \"field\"\n";

print " --runfile [file] Specifiy filename of runfile" .
" snippet,\n " .
" if applicable. Default: \"runfile.txt\"\n\n";

exit 0;
}

print "\nConverting input file to UNIX format:\n";
system "dos2unix --verbose --d2u $infilename";

sub die2
{

printf "\nConverting input file back to DOS format:\n";
system "dos2unix --verbose --u2d $infilename";
$msg = shift @_;
die $msg;

}

!($infilename =˜ $mainfilename) || die2("Input and output files must be" .
" different.\n");

84

open(INFILE, "< $infilename") || die2("Cannot open file: $infilename.\n");

print "\nFIRST PASS:\n";

$header = "";
while (my $line = <INFILE>)
{

if ($line =˜ /23 (.+) 0 0 0 0/)
{

for (my $L = 0; $L < $1; $L++)
{

$chop[$L] = 0;
$name[$L] = <INFILE>;
chomp($name[$L]);

}
last;

}
$header = $header . $line;

}

@YELLOW = (255, 255, 0); # QCAD: (255, 255, 0)
@BLUE = (0, 0, 255); # QCAD: (0, 0, 255)
@GREEN = (0, 255, 0); # QCAD: (0, 255, 0)
@LIGHT_BLUE = (128, 191, 255); # QCAD: (175, 175, 255)
@LIGHT_GREEN = (191, 255, 128); # QCAD: (175, 255, 175)
@DARK_BLUE = (0, 0, 166); # QCAD: (0, 0, 150)
@DARK_GREEN = (0, 166, 0); # QCAD: (0, 150, 0)

sub MatchColor
{

my ($c1, $c2) = @_;
return ($$c1[0] == $$c2[0] && $$c1[1] == $$c2[1] && $$c1[2] == $$c2[2]);

}

$N_field = 0;
while (my $line = <INFILE>)
{

if ($line =˜ /21 (.+) 0 0 0 0/)
{

$L = $1;
print "Scanning layer $L \"$name[$L]\":\n";

}
elsif ($line =˜ /1 (.+) [68] .+ 0 (.+) (.+) (.+) 10 1/)
{

my @color = ($2, $3, $4);
if (MatchColor(\@color, \@YELLOW))
{

my ($x0, $x1, $y0, $y1);
for (my $i = 0; $i < $1; $i++)
{

my ($x, $y, $z) = split(’ ’, <INFILE>);

if ($i == 0 || $x < $x0) { $x0 = $x; }
if ($i == 0 || $x > $x1) { $x1 = $x; }
if ($i == 0 || $y < $y0) { $y0 = $y; }
if ($i == 0 || $y > $y1) { $y1 = $y; }

}

85

$N_field++;
$chop[$L] = 1;
$xc[$L] = ($x1 + $x0) / 2.0;
$yc[$L] = ($y1 + $y0) / 2.0;

printf " Found bounding box. Vertices: %d,", $1 - 1;
printf " Center: (%1.1f, %1.1f)\n", $xc[$L] / 8.0, $yc[$L] / 8.0;

}
}

}

if ($N_field > 0)
{

open(RUNFILE, "> $runfilename") || die2("Cannot open file: $runfilename.\n");

my ($xs, $yx) = (0.0, 0.0);
for (my $L = 0; $L < @name; $L++)
{

if ($chop[$L])
{

printf RUNFILE "$fieldname-$name[$L]\n1\n%d,%d\n",
($xc[$L] - $xs) / 8.0, ($yc[$L] - $ys) / 8.0;

$xs = $xc[$L];
$ys = $yc[$L];

}
}
printf RUNFILE "MoveOnly M\n%d,%d\n", $xs / -8.0, $ys / -8.0;

close(RUNFILE);
system "dos2unix --u2d $runfilename";

}

open(MAINFILE, "> $mainfilename") || die2("Cannot open file: $mainfilename.\n");

print MAINFILE $header;
printf MAINFILE "23 %d 0 0 0 0\n", @name - $N_field;
for (my $L = 0; $L < @name; $L++)
{

if ($chop[$L] == 0) { print MAINFILE "$name[$L]\n"; }
}

printf "SECOND PASS:\n";

seek(INFILE, 0, 0);

$vertex_mode = 0;
$chopped_so_far = 0;
while (my $line = <INFILE>)
{

if ($line =˜ /21 (.+) 0 0 0 0/)
{

$L = $1;
print "Processing layer $L \"$name[$L]\":\n";

if ($chop[$L])
{

if ($chopped_so_far > 0)
{

86

close(CHOPFILE);
system "dos2unix --u2d $chop_filename";

}

$chop_filename = "$fieldname-$name[$L].DC2\n";
open(CHOPFILE, "> $chop_filename") || die2("Cannot open file:" .

" $chop_filename.\n");

print CHOPFILE $header;
print CHOPFILE "23 2 0 0 0 0\n";
print CHOPFILE "$name[0]\n";
print CHOPFILE "$name[$L]\n";
print CHOPFILE "21 1 0 0 0 0\n";

$chopped_so_far++;
}
else { printf MAINFILE "21 %d 0 0 0 0\n", $L - $chopped_so_far; }

$vertex_mode = 0;
}
elsif ($line =˜ /1 (.+) [68] .+ 0 (.+) (.+) (.+) 10 1/)
{

my @color = ($2, $3, $4);
if (MatchColor(\@color, \@YELLOW))
{

$vertex_mode = 0;
print " Deleted bounding box.\n";

}
elsif (MatchColor(\@color, \@BLUE) ||

MatchColor(\@color, \@GREEN) ||
MatchColor(\@color, \@LIGHT_BLUE) ||
MatchColor(\@color, \@LIGHT_GREEN) ||
MatchColor(\@color, \@DARK_BLUE) ||
MatchColor(\@color, \@DARK_GREEN))

{
my $fixed = "1 $1 16 0 1 12 0 0 0 $2 $3 $4 10 1\n";
if ($chop[$L]) { printf CHOPFILE $fixed; }
else { printf MAINFILE $fixed; }

$vertex_mode = 1;
printf " Fixed filled polyline. Vertices: %d Color: ($2,$3,$4)\n",

$1 - 1;
}
else
{

if ($chop[$L]) { printf CHOPFILE $line; }
else { printf MAINFILE $line; }

$vertex_mode = 1;
printf " Skipped nonfilled polyline. Vertices: %d Color: ($2,$3,$4)\n",

$1 - 1;
}

}
elsif ($line =˜ /1 (.+) 16 0 1 12 0 0 0 (.+) (.+) (.+) 10 1/)
{

if ($chop[$L]) { printf CHOPFILE $line; }
else { printf MAINFILE $line; }

87

$vertex_mode = 1;
printf " Skipped filled polyline. Vertices: %d Color: ($2,$3,$4)\n",

$1 - 1;
}
elsif ($vertex_mode)
{

if ($chop[$L])
{

my ($x, $y, $z) = split(’ ’, $line);
printf CHOPFILE "%d %d 0\n", $x - $xc[$L], $y - $yc[$L];

}
else { print MAINFILE $line; }

}
}

close(INFILE);
close(MAINFILE);
system "dos2unix --u2d $mainfilename";

if ($chopped_so_far > 0)
{

close(CHOPFILE);
system "dos2unix --u2d $chop_filename";

}

printf "\nConverting input file back to DOS format:\n";
system "dos2unix --verbose --u2d $infilename";

exit 0;

88

Appendix B

80 V bipolar gate voltage amplifier

B.1 Introduction

Nanoscale electronics experiments are often conducted using devices built on top of degenerately-

doped silicon wafers covered by a thin layer of oxide. In many graphene-based devices, the bulk

Si is used as an electrostatic gate by applying a voltage via a backside contact. Achieving adequate

electric field, however, can be a challenge due to SiO2’s modest permittivity (3.9 ϵ0) and constraints

on its thickness imposed by the mechanically exfoliation process [1, 27].1 For example, the device

featured in section 4.3.3 required 71 V on the back-gate to effect the same doping as applying just

4 V to the top-gate. Other dual-gated devices with similar oxide thickness have been measured with

Vbg ¡ 150 V [121].

The digital-to-analog converters (DACs) provided by the computer-based data acquisition cards

used in many electrical measurement systems are typically limited to �10 V. Instruments such

as the Keithley 2400-series SourceMeters meet the voltage requirements, but can be difficult to

integrate into an analog system. Given these considerations, a custom bipolar gate voltage ampli-

fier (BGVA) was designed and constructed to convert a DAC-sized signal into a graphene-scale

back-gate voltage. It is capable of smoothly sweeping from −80 V to 80 V with 1% accuracy and

has a nominal DC voltage gain AV of 10 V/V such that the required input voltage is limited to�8 V.

A photo of its front panel is shown in Figure B.1.

1 Blake et al. [27] report that graphene is most visible on 80 nm and 280 nm SiO2 layers, while Novoselov et al. [1]
(Supporting Online Material) chose a thicker, 300 nm layer to avoid damage during fabrication.

89

Figure B.1: Photo of bipolar gate voltage amplifier front panel, including input and output BNCs
and LEDs indicating the status of the power supply and stage rail voltages. The back panel (not
shown) includes “banana” jacks for the power supply and a fuse holder.

B.2 Specifications and performance

The BGVA requires a single 15 V external power supply, which is electrically isolated from the

input and output connections to eliminate a potential ground loop. When paired with the (included)

external filter, the amplifier produces no more than �1 mVrms output noise while maintaining more

than 1 kHz of bandwidth. Although the BGVA is a prototype, it offers standard safety features such

as limited short circuit protection and a fused supply connection. In the event that the power supply

polarity is reversed, included protection diodes should prevent damage to the amplifier. Complete

specifications are given in Table B.1.

The BGVA’s performance exceeds the requirements of simple DC gate sweep measurements.

The voltage gain AV for a sinusoidal input signal Vi is plotted as a function of frequency f in

Figure B.2a. The amplified signal Vo (measured the output of the external filter) falls to 1% of its

DC value at 1.2 kHz and is reduced by 3 dB at 12.3 kHz. The step response rises to 99% of its final

value in 156 µs with no ringing or overshoot, as shown in Figure B.2b. (Without the external filter,

rise time is 58 µs with a 0.3% overshoot.)

90

Table B.1: Amplifier specifications with external filter installed

Min. Nominal Max. Unit
GAIN

Voltage gain, DC 9.9 10.0 10.1 V/V
Bandwidth (1%) 1.2a kHz
Bandwidth (−3 dB) 12.3a kHz

INPUT
Positive input voltage 8.0 8.3 V
Negative input voltage −8.3 −8.0 V
Input resistance - 1 - MΩ

OUTPUT
Positive output voltage 80 83 V
Negative output voltage −83 −80 V
Output resistance - 17.4b - kΩ

POWER SUPPLY
Power supply voltage 14.5 15 15.5 V
Power supply current 130 160 180 mA
Power supply fuse - 0.5 - A

a The bandwidth is slightly greater without the external filter.
b The output resistance is 8 kΩ without the external filter.

Figure B.2: Amplifier performance. (a) Voltage gain vs. frequency for a sinusoidal input signal,
with external filter installed. (b) Output voltage for a 0.5 V square input signal, demonstrating over-
damped response

91

B.3 Operating instructions

Table B.2: Absolute maximum ratings for bipolar gate voltage amplifier

Power supply voltage 17 V
Input voltage, unpowered �3 V
Input voltage, powered �10 V

The BGVA should be powered-up using a “soft start” procedure, as follows:

1. Switch on a DC power supply, set the output to 0 V, and the current compliance to approxi-
mately 250 mA.

2. Connect the power supply to the amplifier using “banana connector” leads.

3. Ramp the voltage to 15 V. The current compliance indicator on the power supply may flicker
when passing through 4 V as the DC/DC converters come online.

4. Make the input and output connections.

The input should be disconnected or held at 0 V when the amplifier is not powered. The ratings

given in Table B.2 should never be exceeded to avoid causing permanent damage to the device.

B.4 Circuit design

The BGVA comprises two noninverting, op-amp-based stages in series (AV,1 = 5 V/V, AV,2 = 2 V/V).

This design reduces the required per-stage voltage swing to�40 V, enabling the use of widely avail-

able Texas Instruments (TI) OPA445 op-amps. Each stage is powered by three TI DCP011515DB

isolated DC/DC converters connected in series to provide �45–47 V, which is then regulated down

to �43 V by a pair of LM317/LM337 voltage regulators. The second stage’s power supply is ref-

erenced to the output of the first stage itself, effectively level-shifting its supply rails V2� and V2�

to match the required range. For example, given Vi = 7 V, the interstage voltage Vo will be 35 V

and V2� and V2� will be −8 V and 78 V, respectively. Thus, the 75 V output will fall safely within

the second stage voltage rails. Both stages’ supply voltages along with Vo and Vx are shown as a

function of Vi in Figure B.3.

Apart from the unusual supply rail shifting feature, standard techniques were employed in the

BGVA design. The complete circuit schematics are shown in Figure B.4 and the components are

92

Figure B.3: Absolute supply voltages (dashed lines) for the first (V1�, V1�) and second (V2�, V2�)
stages of the amplifier circuit as a function of input voltage. Interstage voltage Vx and output voltage
Vo are also plotted (solid lines). The second stage’s power supply is referenced to Vx.

listed in Table B.3. Power supply noise is controlled by 1 µF bypass capacitors (C11–C28) placed

near the inputs and outputs of the DC/DC converters. In addition, large 4.7 µF tantalum capacitors

(C1–C4) are placed near the supply terminals of the op-amps. Given that the input terminals of the

DC/DC converters are isolated from their output terminals, the input power negative lead was delib-

erately not connected to amplifier ground to eliminate a potential ground loop in the measurement

setup.

The TI DCP011515DB provides isolation by using an 800 kHz oscillator driving a integrated

transformer, which is connected to a rectifier at the output. Inevitably, the transformers inductively

couple to the circuit traces, generating high-frequency noise.2 This noise was significantly reduced,

however, by a 15 kHz low-pass filter enclosed in a separate aluminum box. This approach reduces

the root-mean-square output noise from over 5 mV to approximately 1 mV.

2 Batteries were considered as a low-noise alternative, but ultimately rejected in favor of a design that allowed indefinite
operation.

93

Figure B.4: Amplifier circuit schematics. (a) Main circuit. (b) External low-pass filter connected
to the output of (a). The schematics are color coded for clarity: passive components are green,
integrated circuits are blue, input power rails are red, and internal power rails are orange. Connection
points are indicated by black dots; wire crossings lacking dots are not physically connected.

94

Table B.3: List of amplifier components and their values

Qty. Type Label Value Unit Rating
2 OPA445AP IC1,IC2 - -
2 LM317T IC3,IC4 - -
2 LM337T IC5,IC6 - -
6 DCP011515DB IC7-IC12 - -
6 1N4002 D1-D6 - 1 A, 100 V
4 LED (green) D7-D10 - -
1 LED (red) D11 - -
1 fuse F1 0.5 A 250 V
4 tantalum capacitor C1-C4 4.7 µF 50 V
1 ceramic disc capacitor C5 18 pF 1 kV
1 ceramic disc capacitor C6 27 pF 1 kV
4 tantalum capacitor C7-C10 1.0 µF 50 V

18 ceramic bypass capacitor C11-C28 1.0 µF 50 V
1 ceramic disc capacitor C29 47 pF 1 kV
1 ceramic disc capacitor C30 560 pF 1 kV
1 ceramic disc capacitor C101 688a pF 1 kV
1 ceramic disc capacitor C102 815a pF 1 kV
1 resistor R1 80.5a kΩ -
1 resistor R2 118.6a kΩ -
1 resistor R3 100.2a kΩ -
1 resistor R4 244.0a kΩ -
1 resistor R5 402a kΩ -
1 resistor R6 243.2a kΩ -
2 trimming potentiometer R7,R8 100 kΩ -
1 resistor R9 32.40a kΩ -
1 resistor R10 32.12a kΩ -
1 resistor R11 472a kΩ -
1 resistor R12 465a kΩ -
1 resistor R13 24.29a kΩ -
1 resistor R14 24.30a kΩ -
1 resistor R15 356.0a kΩ -
1 resistor R16 356.2a kΩ -
4 resistor R17-R20 2 kΩ -
1 resistor R21 10 kΩ -
1 resistor R22 1 MΩ -
1 resistor R23 8 kΩ -
1 resistor R101 5.51a kΩ -
1 resistor R102 3.875a kΩ -

a This value is critical to the operation of the circuit and should be replaced within the tolerance
indicated number of significant figures provided.

95

Appendix C

Pulse train generation using awcgen

C.1 Introduction

The SRS DS345 Function Generator can output arbitrary waveforms defined by a sequence of up to

16 300 points with a maximum 40 MHz timebase. The manufacturer provides a Windows program

called Arbitrary Waveform Composer (AWC) [122] to generate compatible waveforms and transfer

them to the instrument over a serial port or general purpose interface bus (GPIB). Unfortunately,

the waveform-creation interface can be a bit cumbersome to use. awcgen is a Perl script which

transforms a simple text file defining a piecewise-linear function into a discrete-time waveform

which can then be loaded into AWC and transferred to the instrument.

C.2 Operation

Usage instructions can be printed using the ‘--help’ option:

>> awcgen --help

Usage: awcgen [input file] [output file] [flags]

Flags: t ’Test mode’ Produce two-column output for easy plotting.
m ’More points’ Attempt to use ˜16000 points instead of ˜1600.
f ’Full scale’ Produce a full-size waveform when driving a

50 Ohm load.

The input file should be a list of time periods τi in seconds and target values Vi in volts, separated

by whitespace, one line per point. awcgen sets the initial value to 0 V, then ramps linearly to each

Vi over τi in succession, as illustrated in Figure C.1. Abrupt jumps can be made by setting τi = 0.

96

Figure C.1: Scheme used by awcgen to describe an arbitrary piecewise-linear waveform

In preparing the waveform, awcgen attempts to choose a sample rate fsamp that meets three

goals, listed below in order of importance:

1. Satisfies: fsamp = (40 MHz){N where 1 ¤ N ¤234 � 1

2. Produces about 1600 points (to reduce transfer time).

3. Is a round number.

Complex waveforms, particularly those containing both large and small τi, may require more points

to be faithfully reproduced. Supplying the ‘m’ flag will maximize the number points available at the

cost of a much longer transfer time. The output will be an AWC-compatible text file containing sev-

eral lines of header information followed by a list of voltages Vj at times tj � {0, tsamp, 2tsamp, ...}

where tsamp � 1{fsamp.

C.3 Example

Program operation is illustrated using an example input file (example pwl.txt) as follows:

>> cat example_pwl.txt

100e-3 0
0 0.8
100e-3 0.8
0 0
200e-3 0
0 -0.05
50e-3 0.05
0 0
100e-3 0

97

Figure C.2: awcgen output: Image showing an example awcgen-generated waveform loaded into
AWC

>> awcgen example_pwl.txt example_awc.txt

Request Actual
------------ ------------

Divider: 13750.000 15625
Frequency: 2.909e+03 2.560e+03
N_points: 1600 1409

Total time: 5.500e-01
Output: AWC-compatible

The output file (example awc.txt) can then be opened in AWC, and would look similar to Figure C.2.

The waveform time scale may be verified by generating a continuous function V ptq instead of Vj

using the ‘t’ flag:

>> awcgen example_pwl.txt example_test.txt t
...
Output: Plot-compatible

This output file (example test.txt) can then be easily loaded by plotting software, as shown in Fig-

ure C.3.

98

Figure C.3: awcgen output: Plot of an example awcgen-generated waveform

C.4 Load impedance

Note that the amplitude of the example waveform appears to be half of that specified in the input

file. The reason is related to assumptions about load impedance: The instrument provides a 50Ω

output, and expects a 50Ω load, so it scales the internal source voltage Vs to produce the expected

output voltage in that situation, illustrated in Figure C.4a. In contrast, awcgen was written with

a high-impedance load in mind (i.e., Figure C.4b), so by default it divides all voltages by two to

compensate for the instrument’s assumption. To drive a 50Ω load, simply supply the ‘f’ flag as

mentioned in the usage instructions.

Figure C.4: Assumptions about load impedance. (a) Matched 50Ω load. (b) High-impedance load

99

C.5 Code listing

#!/usr/bin/perl
use POSIX qw(ceil);

Copyright (C) 2012 Brian Standley
#
This program is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
#
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.
#
You should have received a copy of the GNU General Public License along
with this program. If not, see <http://www.gnu.org/licenses/>.

awcgen v1.1t

$infilename = shift @ARGV;
$outfilename = shift @ARGV;
$flags = shift @ARGV;

$test_mode = ($flags =˜ /t/);
$N_request = ($flags =˜ /m/) ? 16000 : 1600;
$gain = ($flags =˜ /f/) ? 1.0 : 0.5;

if ($infilename eq "--help" || $infilename eq "-h")
{

print "\nUsage: awcgen [input file] [output file] [flags]\n\n";
print " Flags: t \’Test mode\’ Produce two-column output for easy" .

" plotting.\n";
print " m \’More points\’ Attempt to use ˜16000 points instead" .

" of ˜1600.\n";
print " f \’Full scale\’ Produce a full-size waveform when" .

" driving a\n 50 Ohm load.\n\n";
exit 0;

}

!($infilename =˜ $outfilename) || die "Input and output files must be" .
" different.\n";

open(INFILE, "< $infilename") || die "Cannot open file: $infilename.\n";
open(OUTFILE, "> $outfilename") || die "Cannot open file: $outfilename.\n";

sub ReadLine
{

my $line = shift(@_);

if ($line =˜ /#/) { return (0, 0, 1); }
elsif ($line =˜ /(.+) (.+)/) { return ($1, $2, 0); }
else { die "Bad syntax.\n"; }

}

$t_total = 0.0;
while ($line = <INFILE>)

100

{
($dt, $v, $comment) = ReadLine($line);
if (!$comment) { $t_total += $dt; }

}

sub IsUgly
{

my ($num, $decimal_places) = @_;

sprintf("%e", $num) =˜ /(.+)e(.+)/;
my $scaled_mantissa = $1 * (10.0**$decimal_places);
return ceil($scaled_mantissa) - $scaled_mantissa > 1e-9;

}

$freq_request = $N_request/$t_total;
$div_request = 40e6/$freq_request;
$div_max = 2**34 - 1;
for ($div = ceil($div_request); IsUgly(40e6/$div, 2); $div++)
{

if ($div > $div_max) { die "Pulse too long to handle. Try the ’m’ option" .
" if you aren’t already.\n"; }

}
$freq = 40e6/$div;
$N = int($t_total*$freq + 0.5) + 1;

printf "\n Request Actual\n";
printf " ------------ ------------\n";
printf "Divider: %-12.3f %1.0f\n", $div_request, $div;
printf "Frequency: %-12.3e %1.3e\n", $freq_request, $freq;
printf "N_points: %-12d %d\n\n", $N_request, $N;
printf "Total time: %1.3e\n", $t_total;
printf "Output: %s-commpatible\n", $test_mode ? "Plot":"AWC";

if ($N < 8) { die "Pulse too short to handle.\n"; }

if (!$test_mode)
{

printf OUTFILE "%d\n", $N;
printf OUTFILE "%0.6e\n", $freq;
printf OUTFILE "1\n";
printf OUTFILE "1000.000000\n";

}

sub PrintPoint
{

my ($t, $v) = @_;

if ($test_mode) { printf OUTFILE "%1.6e\t%0.6f\n", $t, $v; }
else { printf OUTFILE "%0.6f\n", $v; }

}

($t, $v_x) = (0.0, 0.0);
PrintPoint($t, $v_x);

seek(INFILE, 0, 0);
while ($line = <INFILE>)
{

($dt, $v_f, $comment) = ReadLine($line);

101

if (!$comment)
{

$v_f *= $gain;

if ($dt < 1e-9) { $v_x = $v_f; }
else
{

$slope = ($v_f - $v_x)/$dt;
for ($i = 0; $i < $dt*$freq; $i++)
{

$t += 1.0/$freq;
$v_x += $slope/$freq;
PrintPoint($t, $v_x);

}
}

}
}

close(INFILE);
close(OUTFILE);

exit 0;

102

Appendix D

Lateral transport measurements of
reduced graphite oxide

D.1 Introduction

Graphite oxide (GO) is of interest to nanoscience both as an insulator [73] and as a precursor to

a graphene [33]. In the latter case, GO’s is dispersed in water [31] (taking advantage of its hy-

drophilicity) and then deposited onto a substrate. The GO flakes may then be reduced by chemi-

cal [33] or heat treatment [84]. Graphene prepared this way is sometimes called reduced graphite

oxide (rGO), and exhibits some of the properties of pristine graphene [76].

D.2 Thermal reduction of graphite oxide

Heat treatment as a method of reducing graphite oxide was demonstrated by fabricating two termi-

nal GO devices using the standard techniques described in chapter 2. The Hummers method [32]

was used to prepare the starting material, which was then deposited onto a Si/SiO2 substrate and an-

nealed at 420 �C for 60 seconds in H2/Ar atmosphere.1 From that starting point, the conductance of

three individual devices was measured using a probe station before and after additional annealing.

The corresponding lateral conductivity is plotted as a function of the cumulative annealing time in

Figure D.1. Resistance per square before and after the additional annealing is shown in Table D.1.

Two of the three devices showed at least an order of magnitude increase in conductivity while the

1 The sample was quickly inserted into a 1-in-diameter quartz tube furnace and quickly removed after the specified time
interval. The tube was continuously flushed with 0.4–2.0 slm H2 and 0.4 slm Ar. (1 slm = 1 L/min at standard temperature
and pressure.)

103

Figure D.1: Lateral conductivity of graphite oxide vs. cumulative annealing time for three rGO
devices

Table D.1: Resistance per square for three rGO devices before and after annealing

Dev. Before After Improvement

AB 123 MΩ 10.4 MΩ 11.8�
CD 7.23 GΩ 425 MΩ 17.0�
CE 39.4 MΩ 16.4 MΩ 2.4�

third changed only slightly. Given the nearly insulating nature of unreduced graphite oxide, it seems

likely that at much larger change in conductivity occurred during the first 60 seconds of annealing.

Although this experiment used a higher temperature than the typical�170 �C polymethylmethacry-

late (PMMA) prebaking step, it does illustrate GO’s sensitivity to heat.

104

D.3 Electron transport in reduced graphite oxide

The rGO devices described above were subjected to electron transport measurements after 140 s of

accumulated annealing time. The I-V characteristic and back-gate sweep, shown for device CE in

Figure D.2, are similar to those reported by Gilje et al. [33] and Gómez-Navarro et al. [78], which

describes the structure of rGO as “nanometer-sized graphitic domains separated by defect clusters,

which results in hopping conduction as the dominant charge-transport mechanism.”

Figure D.2: Conductance vs. back-gate voltage for a rGO transistor (device CE). Inset: I-V char-
acteristic at Vbg = 0 V

105

Appendix E

Scripting and customizing Mezurit 2

E.1 Introduction

Mezurit 2 can be customized in many ways, even without modifying the source code, by editing

the per-user and system-wide ancillary files listed in Table E.1 or writing scripts (see sections E.3

and E.4 for examples) to control it through its terminal tool. The system-wide files are included

with the installation package and the per-user files are created automatically the first time the pro-

gram runs. (If a per-user file already exists, it will not be overwritten so as to preserve the user’s

modifications.) The files “compute.py” and “terminal.py” must be edited manually, while (per-user)

file “default.mcf” may be updated to match the current configuration using a menu option and file

“last.mcf” is automatically written immediately before the program closes.

Table E.1: Mezurit 2 ancillary files. The second column specifies the typical location when installed
on a GNU/Linux-based system, with ‘˜’ being the user’s home directory.

Filename Typical location Description

PER-USER
default.mcf ˜/.config/mezurit2/ Default configuration
last.mcf ˜/.config/mezurit2/ Last configuration
compute.py ˜/.config/mezurit2/ Custom channel functions and trigger commands
terminal.py ˜/.config/mezurit2/ Custom terminal commands
history ˜/.config/mezurit2/ Terminal command history

SYSTEM-WIDE
default.mcf /usr/share/mezurit2/ Default configuration
mezurit2compute.py /usr/lib/mezurit2/ Built-in channel functions and trigger commands
mezurit2control.py /usr/lib/mezurit2/ Built-in terminal commands
terminal startup.py /usr/share/mezurit2/ Terminal configuration

106

E.2 Startup and shutdown processes

The sequence in which the ancillary files are verified and loaded is listed below. This information

is relevant when adding material to compute.py or terminal.py and when migrating older MCF

(Mezurit 2 configuration format) files to a newer version of the program.

1. Verify per-user files.

ë Verify that the user configuration directory exists. If not, create an empty directory.

ë Verify that file “compute.py” exists. If not, create a blank file.

ë Verify that file “terminal.py” exists. If not, create a blank file.

2. Initialize the Python environment needed to evaluate channel and trigger functions.

ë Import the functions defined in file “mezurit2compute.py”.1

ë Execute file “compute.py”, which may extend the built-in functions.

3. Load initial configuration.

ë Load internal defaults.2

ë If it exists, load (per-user) file “default.mcf” and then skip to step 4. Otherwise:

ë Load (system-wide) file “default.mcf”.

ë Save to (per-user) file “default.mcf” for future use.

4. Launch the separate terminal process running the Python interpreter.

ë Execute file “terminal startup.py”.

ë Load the user’s command history into memory.

ë Import the functions defined in file “mezurit2control.py”.3

ë Execute file “terminal.py”, which may extend the built-in functions.

ë Process commands until shudown.

ë Save to file “history”.

5. Process for input via the GUI and process commands sent from the terminal until shutdown.

6. Save configuration to file “last.mcf”.
1 This module, in turn, loads an internal module (mezurit2compute) enabling low-level communication with the main

process.
2 Every MCF node has an internal default, which ensures complete initialization in the event that the default MCF file is

incomplete.
3 This module, in turn, loads another module (mezurit2control) implementing socket-based communication with the main

process.

107

E.3 Example script: mega1.py

The first example script “mega1.py” implements a very simple megasweep. A bias voltage Vb (X1)

is swept up and down at each gate voltage Vg (X2) from −8 V to 8 V in 0.125 V increments.4 Data

from “up” and “down” sweeps are appended to separate files at the end of each cycle. The initial

setup is left to the user, including turning on recording and configuring the sweep parameters for

X1. At completion Vg will be left at 8 V and Vb will remain at its lower limit.

E.3.1 Code listing
bias_ch = 1
for Vg in make_range(-8, 8, 128) :

set_dac(2, Vg)

clear_buffer(0, 0)
sweep_up(bias_ch)
catch_sweep(’max_posthold’, bias_ch)
save_data(’DevX_RunY_up.dat’)

clear_buffer(0, 0)
sweep_down(bias_ch)
catch_sweep(’min_posthold’, bias_ch)
save_data(’DevX_RunY_down.dat’)

E.4 Example script: mega2.py

The second example script “mega2.py” takes over much of the responsibility for the megasweep

from the user. Parameters for the sweep, such as destination filename, step sizes, sweep limits, etc.,

appear at the top of the script. These values are then programmed into the sweep tool automatically

before the beginning of the loop. In addition, the megasweep itself is non-rectangular so as to track

a hypothetical mechanical resonance which shifts in frequency f (X1) as a quadratic function of

gate voltage Vg (X2) [123, 124]. The collection of measured points is shown in Figure E.1. At the

end, recording is turned off and Vg is returned to zero. Two key features of the script are highlighted:

• The step size in f (∆X1) is set to 0.1 MHz while the limits of the sweep are rounded to
the nearest 0.1 MHz. This ensures that every measured point falls on a regular grid for easy
plotting.

• A settling time is included to allow external instruments to readjust after each frequency step.
Equation 5.4 is then used to find the optimal sweep rate given the fixed step size.

4 Note that there will actually be 129 sweeps in each direction to cover both endpoints of the range.

108

Figure E.1: Measurement points for hypothetical non-rectangular f vs. Vg megasweep. For clarity,
only every second point is shown.

E.4.1 Code listing

basefile = ’DevX_RunY’
freq_ch = 1
f_step = 0.1
t_set = 0.4
f_min = lambda Vg : round(100 + Vg**2 / 1.6, 1)
f_max = lambda Vg : round(110 + Vg**2 / 1.6, 1)
gate_ch = 2
gate_range = make_range(-4, 4, 80)

def set_pair (node, down_val, up_val) :
(p, i) = (get_panel(), get_sweep_id(freq_ch))
set_var(’panel{0}_sweep{1}_{2}_down={3}’.format(p, i, node, down_val))
set_var(’panel{0}_sweep{1}_{2}_up={3}’.format(p, i, node, up_val))

if (arg(clear_buffer(1, 0), 0) == ’1’) :
set_recording(1)

set_pair(’step’, f_step, f_step)
set_pair(’rate’, f_step / t_set * 0.8, f_step / t_set * 0.8)
set_pair(’blackout’, 80, 80)
set_pair(’endstop’, 1, 1)

109

for Vg in gate_range :

set_pair(’scaled’, f_min(Vg), f_max(Vg))
set_pair(’scaled’, f_min(Vg), f_max(Vg)) # repeat to be sure
set_dac(freq_ch, f_min(Vg))
set_dac(gate_ch, Vg)

clear_buffer(0, 0)
sweep_up(freq_ch)
catch_sweep(’max_posthold’, freq_ch)
save_data(basefile + ’_up.dat’)

clear_buffer(0, 0)
sweep_down(freq_ch)
catch_sweep(’min_posthold’, freq_ch)
save_data(basefile + ’_down.dat’)

set_recording(False)
set_dac(gate_ch, 0)

110

Bibliography

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V.

Grigorieva, and A. A. Firsov. Electric Field Effect in Atomically Thin Carbon Films. Science,

306(5696):666–669, 2004.

[2] J. Boardman, I. E. S. Edwards, N. G. L. Hammond, and E. Sollberger, editors. The Cambridge

Ancient History, volume 3. Cambridge University Press, second edition, 1982.

[3] P. R. Wallace. The Band Theory of Graphite. Physical Review, 71:622–634, 1947.

[4] H. P. Boehm, A. Clauss, G. O. Fischer, and U. Hofmann. Das adsorptionsverhalten sehr

dünner Kohlenstoff-Folien. Zeitschrift für anorganische und allgemeine Chemie, 316(3–

4):119–127, 1962.

[5] A. K. Geim and A. H. MacDonald. Graphene: Exploring Carbon Flatland. Physics Today,

60(8):35–41, 2007.

[6] Free Software Foundation, Inc. GNU General Public License (Version 3), 2007.

Available: http://www.gnu.org/licenses/gpl.html.

[7] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim. The

electronic properties of graphene. Reviews of Modern Physics, 81:109–162, 2009.

[8] J. Heo. Probing Electronic Properties of Carbon Nanotubes. PhD thesis, California Institute

of Technology, 2008.

[9] S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi. Electronic transport in two-dimensional

graphene. Reviews of Modern Physics, 83:407–470, 2011.

111

[10] A. K. Geim and K. S. Novoselov. The rise of graphene. Nature Materials, 6(3):183–191,

2007.

[11] J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klitzing, and A. Yacoby.

Observation of electron-hole puddles in graphene using a scanning single-electron transistor.

Nature Physics, 4(2):144–148, 2008.

[12] T. Fang, A. Konar, H. Xing, and D. Jena. Carrier statistics and quantum capacitance of

graphene sheets and ribbons. Applied Physics Letters, 91(9):092109, 2007.

[13] N. Agraı̈t, A. L. Yeyati, and J. M. van Ruitenbeek. Quantum properties of atomic-sized

conductors. Physics Reports, 377(2–3):81–279, 2003.

[14] B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven,

D. van der Marel, and C. T. Foxon. Quantized Conductance of Point Contacts in a Two-

Dimensional Electron Gas. Physical Review Letters, 60:848–850, 1988.

[15] A. G. Rinzler, J. H. Hafner, P. Nikolaev, P. Nordlander, D. T. Colbert, R. E. Smalley, L. Lou,

S. G. Kim, and D. Tománek. Unraveling Nanotubes: Field Emission from an Atomic Wire.

Science, 269(5230):1550–1553, 1995.

[16] S. Datta. Electronic Transport in Mesoscopic Systems. Cambridge University Press, 1997.

[17] N. D. Lang and Ph. Avouris. Oscillatory Conductance of Carbon-Atom Wires. Physical

Review Letters, 81:3515–3518, 1998.

[18] Y. Zhang, J. P. Small, W. V. Pontius, and P. Kim. Fabrication and electric-field-

dependent transport measurements of mesoscopic graphite devices. Applied Physics Letters,

86(7):073104, 2005.

[19] S. Liu and C. R. Loper Jr. The formation of kish graphite. Carbon, 29:547–555, 1991.

[20] J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead,

and P. L. McEuen. Impermeable Atomic Membranes from Graphene Sheets. Nano Letters,

8(8):2458–2462, 2008.

112

[21] S. P. Koenig, N. G. Boddeti, M. L. Dunn, and J. S. Bunch. Ultrastrong adhesion of graphene

membranes. Nature Nanotechnology, 6(9):543–546, 2011.

[22] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and

A. K. Geim. Two-dimensional atomic crystals. Proceedings of the National Academy of

Sciences of the United States of America, 102(30):10451–10453, 2005.

[23] J.-E. Song, T.-Y. Ko, and S.-M. Ryu. Raman Spectroscopy Study of Annealing-Induced Ef-

fects on Graphene Prepared by Micromechanical Exfoliation. Bulletin of the Korean Chemi-

cal Society, 31(9):2679–2682, 2010.

[24] A. N. Sidorov, M. M. Yazdanpanah, R. Jalilian, P. J. Ouseph, R. W. Cohn, and G. U.

Sumanasekera. Electrostatic deposition of graphene. Nanotechnology, 18(13):135301, 2007.

[25] S. F. McKay. Expansion of Annealed Pyrolytic Graphite. Journal of Applied Physics,

35(6):1992–1993, 1964.

[26] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R.

Peres, and A. K. Geim. Fine Structure Constant Defines Visual Transparency of Graphene.

Science, 320(5881):1308, 2008.

[27] P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and

A. K. Geim. Making graphene visible. Applied Physics Letters, 91(6):063124, 2007.

[28] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong. Large

Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition.

Nano Letters, 9(1):30–35, 2009.

[29] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi,

and B. H. Hong. Large-scale pattern growth of graphene films for stretchable transparent

electrodes. Nature, 457(7230):706–710, 2009.

[30] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc,

S. K. Banerjee, L. Colombo, and R. S. Ruoff. Large-Area Synthesis of High-Quality and

Uniform Graphene Films on Copper Foils. Science, 324(5932):1312–1314, 2009.

113

[31] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach,

R. D. Piner, S.-B. T. Nguyen, and R. S. Ruoff. Graphene-based composite materials. Nature,

442(7100):282–286, 2006.

[32] W. S. Hummers and R. E. Offeman. Preparation of Graphitic Oxide. Journal of the American

Chemical Society, 80(6):1339–1339, 1958.

[33] S. Gilje, S. Han, M. Wang, K. L. Wang, and R. B. Kaner. A Chemical Route to Graphene for

Device Applications. Nano Letters, 7(11):3394–3398, 2007.

[34] J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M.

Parpia, H. G. Craighead, and P. L. McEuen. Electromechanical Resonators from Graphene

Sheets. Science, 315(5811):490–493, 2007.

[35] J. C. Nabity. Nanometer Pattern Generation System (Version 9.0), 2002.

Website: http://www.jcnabity.com/.

[36] J. Moser, A. Verdaguer, D. Jimenez, A. Barreiro, and A. Bachtold. The environment of

graphene probed by electrostatic force microscopy. Applied Physics Letters, 92(12):123507,

2008.

[37] DL Instruments LLC. Model 1211 Current Preamplifier Datasheet, 2008.

Available: http://www.dlinstruments.com/products/.

[38] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi,

P. Kim, K. L. Shepard, and J. Hone. Boron nitride substrates for high-quality graphene

electronics. Nature Nanotechnology, 5(10):722–726, 2010.

[39] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim. Experimental observation of the quantum

Hall effect and Berry’s phase in graphene. Nature, 438(7065):201–204, 2005.

[40] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N.

Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer. Electronic Confinement and

Coherence in Patterned Epitaxial Graphene. Science, 312(5777):1191–1196, 2006.

114

[41] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer. Intrinsic and extrinsic perfor-

mance limits of graphene devices on SiO2. Nature Nanotechnology, 3(4):206–209, 2008.

[42] F. Miao, S. Wijeratne, Y. Zhang, U. C. Coskun, W. Bao, and C. N. Lau. Phase-Coherent

Transport in Graphene Quantum Billiards. Science, 317(5844):1530–1533, 2007.

[43] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva,

S. V. Dubonos, and A. A. Firsov. Two-dimensional gas of massless Dirac fermions in

graphene. Nature, 438(7065):197–200, 2005.

[44] X. Du, I. Skachko, A. Barker, and E. Y. Andrei. Approaching ballistic transport in suspended

graphene. Nature Nanotechnology, 3(8):491–495, 2008.

[45] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau. Su-

perior Thermal Conductivity of Single-Layer Graphene. Nano Letters, 8(3):902–907, 2008.

[46] J. Moser, A. Barreiro, and A. Bachtold. Current-induced cleaning of graphene. Applied

Physics Letters, 91(16):163513, 2007.

[47] M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim. Energy Band-Gap Engineering of Graphene

Nanoribbons. Physical Review Letters, 98:206805, 2007.

[48] Z. Chen, Y.-M. Lin, M. J. Rooks, and Ph. Avouris. Graphene nano-ribbon electronics. Phys-

ica E, 40:228–232, 2007.

[49] X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai. Chemically Derived, Ultrasmooth Graphene

Nanoribbon Semiconductors. Science, 319(5867):1229–1232, 2008.

[50] T. J. Echtermeyer, M. C. Lemme, M. Baus, B. N. Szafranek, A. K. Geim, and H. Kurz.

Nonvolatile Switching in Graphene Field-Effect Devices. IEEE Electron Device Letters,

29(8):952–954, 2008.

[51] H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen. Fabrication of metal-

lic electrodes with nanometer separation by electromigration. Applied Physics Letters,

75(2):301–303, 1999.

115

[52] S. I. Khondaker and Z. Yao. Fabrication of nanometer-spaced electrodes using gold nanopar-

ticles. Applied Physics Letters, 81(24):4613–4615, 2002.

[53] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L.

Stormer. Ultrahigh electron mobility in suspended graphene. Solid State Communications,

146(9–10):351–355, 2008.

[54] C. P. Collier, E. W. Wong, M. Belohradsk, F. M. Raymo, J. F. Stoddart, P. J. Kuekes, R. S.

Williams, and J. R. Heath. Electronically Configurable Molecular-Based Logic Gates. Sci-

ence, 285(5426):391–394, 1999.

[55] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams. The missing memristor found.

Nature, 453(7191):80–83, 2008.

[56] K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono. Quantized conductance atomic switch.

Nature, 433(7021):47–50, 2005.

[57] R. H. M. Smit, Y. Noat, C. Untiedt, N. D. Lang, M. C. van Hemert, and J. M. van Ruitenbeek.

Measurement of the conductance of a hydrogen molecule. Nature, 419(6910):906–909, 2002.

[58] Y. H. Lee, S. G. Kim, and D. Tománek. Field-induced unraveling of carbon nanotubes.

Chemical Physics Letters, 265(6):667–672, 1997.

[59] K. Raghavachari and J. S. Binkley. Structure, stability, and fragmentation of small carbon

clusters. Journal of Chemical Physics, 87(4):2191–2197, 1987.

[60] N. D. Lang and Ph. Avouris. Carbon-Atom Wires: Charge-Transfer Doping, Voltage Drop,

and the Effect of Distortions. Physical Review Letters, 84:358–361, 2000.

[61] B. Standley, W. Bao, H. Zhang, J. Bruck, C. N. Lau, and M. Bockrath. Graphene-Based

Atomic-Scale Switches. Nano Letters, 8(10):3345–3349, 2008.

[62] H. Zhang, W. Bao, Z. Zhao, J.-W. Huang, B. Standley, G. Liu, F. Wang, P. Kratz, L. Jing,

M. Bockrath, and C. N. Lau. Visualizing Electrical Breakdown and ON/OFF States in Electri-

cally Switchable Suspended Graphene Break Junctions. Nano Letters, 12:1772–1775, 2012.

116

[63] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck. Rank Modulation for Flash Memories.

IEEE Transactions on Information Theory, 55(6):2659–2673, 2009.

[64] C.H. Cheng, P.C. Chen, Y.H. Wu, F.S. Yeh, and A. Chin. Long-Endurance Nanocrystal TIO2

Resistive Memory Using a TaON Buffer Layer. IEEE Electron Device Letters, 32(12):1749–

1751, 2011.

[65] H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos, and P. L. McEuen. Nanome-

chanical oscillations in a single-C60 transistor. Nature, 407(6800):57–60, 2000.

[66] P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Durig, B. Gotsmann, W. Haberle, M. A.

Lantz, H. E. Rothuizen, R. Stutz, and G. K. Binnig. The “Millipede”—Nanotechnology

entering data storage. IEEE Transactions on Nanotechnology, 1(1):39–55, 2002.

[67] J. R. Williams, L. DiCarlo, and C. M. Marcus. Quantum Hall Effect in a Gate-Controlled p-n

Junction of Graphene. Science, 317(5838):638–641, 2007.

[68] S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. K. Banerjee. Real-

ization of a high mobility dual-gated graphene field-effect transistor with AL2O3 dielectric.

Applied Physics Letters, 94(6):062107, 2009.

[69] I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard. Current satu-

ration in zero-bandgap, top-gated graphene field-effect transistors. Nature Nanotechnology,

3(11):654–659, 2008.

[70] D. B. Farmer, H.-Y. Chiu, Y.-M. Lin, K. A. Jenkins, F. Xia, and Ph. Avouris. Utilization of a

Buffered Dielectric to Achieve High Field-Effect Carrier Mobility in Graphene Transistors.

Nano Letters, 9(12):4474–4478, 2009.

[71] K. Zou, X. Hong, D. Keefer, and J. Zhu. Deposition of High-Quality HfO2 on Graphene and

the Effect of Remote Oxide Phonon Scattering. Physical Review Letters, 105:126601, 2010.

[72] X. Hong, A. Posadas, K. Zou, C. H. Ahn, and J. Zhu. High-Mobility Few-Layer Graphene

Field Effect Transistors Fabricated on Epitaxial Ferroelectric Gate Oxides. Physical Review

Letters, 102:136808, 2009.

117

[73] W.-Y. Fu, L. Liu, W.-L. Wang, M.-H. Wu, Z. Xu, X.-D. Bai, and E.-G. Wang. Carbon

nanotube transistors with graphene oxide films as gate dielectrics. SCIENCE CHINA Physics,

Mechanics & Astronomy, 53:828–833, 2010.

[74] A. F. Young, C. R. Dean, I. Meric, S. Sorgenfrei, H. Ren, K. Watanabe, T. Taniguchi,

J. Hone, K. L. Shepard, and P. Kim. Electronic compressibility of gapped bilayer graphene.

ArXiv:1004.5556v2, pages 1–4, 2010.

[75] I. Meric, C. Dean, A. Young, J. Hone, P. Kim, and K. L. Shepard. Graphene field-effect tran-

sistors based on boron nitride gate dielectrics. IEEE IEDM Technical Digest, pages 23.2.1–

23.2.4, 2010.

[76] X. Wu, M. Sprinkle, X. Li, F. Ming, C. Berger, and W. A. de Heer. Epitaxial-

Graphene/Graphene-Oxide Junction: An Essential Step towards Epitaxial Graphene Elec-

tronics. Physical Review Letters, 101:026801, 2008.

[77] K. Kumar, S. Strauf, and E. H. Yang. A Systematic Study of Graphite Local Oxidation

Lithography Parameters Using an Atomic Force Microscope. Nanoscience and Nanotech-

nology Letters, 2(2):185–188, 2010.

[78] C. Gómez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, and

K. Kern. Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide

Sheets. Nano Letters, 7(11):3499–3503, 2007.

[79] Y. Martin, D. W. Abraham, and H. K. Wickramasinghe. High-resolution capacitance mea-

surement and potentiometry by force microscopy. Applied Physics Letters, 52(13):1103–

1105, 1988.

[80] C. Schönenberger and S. F. Alvarado. Observation of single charge carriers by force mi-

croscopy. Physical Review Letters, 65:3162–3164, 1990.

[81] J. E. Stern, B. D. Terris, H. J. Mamin, and D. Rugar. Deposition and imaging of localized

charge on insulator surfaces using a force microscope. Applied Physics Letters, 53(26):2717–

2719, 1988.

118

[82] M. Bockrath, N. Markovic, A. Shepard, M. Tinkham, L. Gurevich, L. P. Kouwenhoven,

M. W. Wu, and L. L. Sohn. Scanned Conductance Microscopy of Carbon Nanotubes and

λ-DNA. Nano Letters, 2(3):187–190, 2002.

[83] C. Staii, A. T. Johnson, and N. J. Pinto. Quantitative Analysis of Scanning Conductance

Microscopy. Nano Letters, 4(5):859–862, 2004.

[84] Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. Dai, S. R.

Marder, C. Berger, W. P. King, W. A. de Heer, P. E. Sheehan, and E. Riedo. Nanoscale

Tunable Reduction of Graphene Oxide for Graphene Electronics. Science, 328(5984):1373–

1376, 2010.

[85] S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, and F. Beltram. The Optical Visibility of

Graphene: interference Colors of Ultrathin Graphite on SiO2. Nano Letters, 7(9):2707–2710,

2007.

[86] A. I. Kingon, J.-P. Maria, and S. K. Streiffer. Alternative dielectrics to silicon dioxide for

memory and logic devices. Nature, 406(6799):1032–1038, 2000.

[87] D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany,

W. Lu, and J. M. Tour. Improved Synthesis of Graphene Oxide. ACS Nano, 4(8):4806–4814,

2010.

[88] R. J. W. E. Lahaye, H. K. Jeong, C. Y. Park, and Y. H. Lee. Density functional theory study

of graphite oxide for different oxidation levels. Physical Review B, 79:125435, 2009.

[89] C. M. Osburn and D. W. Ormond. Dielectric Breakdown in Silicon Dioxide Films on Silicon.

Journal of the Electrochemical Society, 119(5):597–603, 1972.

[90] B. Özyilmaz, P. Jarillo-Herrero, D. Efetov, D. A. Abanin, L. S. Levitov, and P. Kim. Elec-

tronic Transport and Quantum Hall Effect in Bipolar Graphene p-n-p Junctions. Physical

Review Letters, 99:166804, 2007.

[91] J. Velasco Jr., G. Liu, W. Bao, and C. N. Lau. Electrical transport in high-quality graphene

pnp junctions. New Journal of Physics, 11(9):095008, 2009.

119

[92] B. Huard, J. A. Sulpizio, N. Stander, K. Todd, B. Yang, and D. Goldhaber-Gordon. Transport

Measurements Across a Tunable Potential Barrier in Graphene. Physical Review Letters,

98:236803, 2007.

[93] J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L. M. K. Vandersypen. Gate-

induced insulating state in bilayer graphene devices. Nature Materials, 7(2):151–157, 2008.

[94] G. Liu, J. Velasco Jr., W. Bao, and C. N. Lau. Fabrication of graphene p-n-p junctions with

contactless top gates. Applied Physics Letters, 92(20):203103, 2008.

[95] R. V. Gorbachev, A. S. Mayorov, A. K. Savchenko, D. W. Horsell, and F. Guinea. Conduc-

tance of p-n-p Graphene Structures with “Air-Bridge” Top Gates. Nano Letters, 8(7):1995–

1999, 2008.

[96] T. Lohmann, K. von Klitzing, and J. H. Smet. Four-Terminal Magneto-Transport in Graphene

p-n Junctions Created by Spatially Selective Doping. Nano Letters, 9(5):1973–1979, 2009.

[97] A. F. Young and P. Kim. Quantum interference and Klein tunnelling in graphene heterojunc-

tions. Nature Physics, 5(3):222–226, 2009.

[98] Y.-M. Lin, A. Valdes-Garcia, S.-J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dim-

itrakopoulos, A. Grill, Ph. Avouris, and K. A. Jenkins. Wafer-Scale Graphene Integrated

Circuit. Science, 332(6035):1294–1297, 2011.

[99] Y.-W. Tan, Y. Zhang, H. L. Stormer, and P. Kim. Temperature dependent electron transport

in graphene. The European Physical Journal—Special Topics, 148:15–18, 2007.

[100] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak,

and A. K. Geim. Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Physical

Review Letters, 100:016602, 2008.

[101] M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, and E. D. Williams. Atomic Structure

of Graphene on SiO2. Nano Letters, 7(6):1643–1648, 2007.

[102] D.W. Horsell, A.K. Savchenko, F.V. Tikhonenko, K. Kechedzhi, I.V. Lerner, and V.I. Fal’ko.

Mesoscopic conductance fluctuations in graphene. Solid State Communications, 149(27–

28):1041–1045, 2009.

120

[103] B. Standley, A. Mendez, E. Schmidgall, and M. Bockrath. Graphene-Graphite Oxide Field-

Effect Transistors. Nano Letters, 12(3):1165–1169, 2012.

[104] A. J. M. Giesbers, U. Zeitler, S. Neubeck, F. Freitag, K. S. Novoselov, and J. C. Maan.

Nanolithography and manipulation of graphene using an atomic force microscope. Solid

State Communications, 147(9–10):366–369, 2008.

[105] L. Weng, L. Zhang, Y. P. Chen, and L. P. Rokhinson. Atomic force microscope local oxidation

nanolithography of graphene. Applied Physics Letters, 93(9):093107, 2008.

[106] S. Masubuchi, M. Ono, K. Yoshida, K. Hirakawa, and T. Machida. Fabrication of graphene

nanoribbon by local anodic oxidation lithography using atomic force microscope. Applied

Physics Letters, 94(8):082107, 2009.

[107] R. K. Puddy, P. H. Scard, D. Tyndall, M. R. Connolly, C. G. Smith, G. A. C. Jones,

A. Lombardo, A. C. Ferrari, and M. R. Buitelaar. Atomic force microscope nanolithogra-

phy of graphene: Cuts, pseudocuts, and tip current measurements. Applied Physics Letters,

98(13):133120, 2011.

[108] V. Ananthanarayanan and W. Thies. Biocoder: A programming language for standardizing

and automating biology protocols. Journal of Biological Engineering, 4(1):13, 2010.

[109] International Technology Roadmap for Semiconductors, 2011.

Available: http://www.itrs.net/.

[110] Community cleverness required. Nature, 455(7209):1–1, 2008.

[111] National Instruments Corporation. LabVIEW (Version 2011), 2011.

[112] Mathworks, Inc. Instrument Control Toolbox (Version 3.1), 2012.

[113] Keithly Instruments, Inc. Automated Characterization Suite Basic Edition (Version 901-01),

2011.

[114] V. A. Sazonova. A Tunable Carbon Nanotube Resonator. PhD thesis, Cornell University,

2006.

121

[115] H. W. Ch. Postma. DAQ: Data Aquisition (Version 12.02), 2012.

Available: http://www.csun.edu/˜hpostma/.

[116] D. C. Ince, L. Hatton, and J. Graham-Cumming. The case for open computer programs.

Nature, 482(7386):485–488, 2012.

[117] C. Tennis. Data acquisition with comedi. Linux Journal, 2004(124), 2004.

[118] E. A. Lee. The Problem with Threads. Computer, 39:33–42, 2006.

[119] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice Hall, 2nd

edition, 1988.

[120] RibbonSoft GmbH. QCAD (Version 2.2.2.0), 2008.

Website: http://www.ribbonsoft.com/en/qcad.

[121] T. Taychatanapat and P. Jarillo-Herrero. Electronic Transport in Dual-Gated Bilayer

Graphene at Large Displacement Fields. Physical Review Letters, 105:166601, 2010.

[122] Stanford Research Systems, Inc. Arbitrary Waveform Composer (Version 1.0.5), 2006.

Available: http://www.thinksrs.com/downloads/soft.htm.

[123] V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias, and P. L. McEuen. A tunable

carbon nanotube electromechanical oscillator. Nature, 431(7006):284–287, 2004.

[124] H.-Y. Chiu, P. Hung, H. W. Ch. Postma, and M. Bockrath. Atomic-Scale Mass Sensing Using

Carbon Nanotube Resonators. Nano Letters, 8(12):4342–4346, 2008.

