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ABSTRACT 

Neural and Behavioral Investigations of Social Reward Processing 

Alice Lin 

 

Despite an extensive literature on the neural substrates of reward, relatively little is 

known about how social interactions modify decision-making. Here I present three 

experiments that examine the neural basis of social reward processing both in 

neurotypicals and individuals with autism spectrum disorder (ASD), a neuropsychiatric 

syndrome associated with social cognition impairments. Using functional magnetic 

resonance imaging (fMRI), I recorded brain activity during a probabilistic reward 

learning task with either social (smiling/frowning faces) or monetary (gaining/losing 

money) rewards. I found substantial overlap in the neural circuitry associated with social 

and non-social reward processing, suggesting that social rewards are processed similarly 

to other types of rewards. In contrast, individuals with ASD showed behavioral 

impairments in social reward processing, both in probabilistic reward learning and in an 

ecologically valid charitable donation task. Exploratory neuroimaging in ASD showed 

hypoactivation of key reward areas during decision-making. Taken together, these 

findings support the idea of a “common neural currency” in decision-making but also 

suggest the construction of accurate social reward value signals relies on recruitment of 

additional regions known to process social information. 
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 Introduction Chapter 1:

Facebook, a social networking site, is preparing for a $100 billion IPO this year; it 

will be the biggest of any tech company in history.  Alongside Facebook is a growing 

cadre of social-media sites and mobile apps helping us to connect to one another. What 

has made companies like Facebook, Vineloop, and Simple Energy successful is their 

ability to tap into our interest in other people --- social stimuli. None of these companies 

need to pay us to click a button to find out whether the guy who lived next door to us in 

college has gotten engaged. We perform tasks like these because we are intrinsically 

motivated by social rewards, social stimuli and information that are rewarding.  

Some have argued that we are evolutionary pre-disposed to be social creatures. 

And one reason for our big brains is to accommodate our social nature (Allman, 1999). 

The work of Reader and Laland more recently has added evidence to this idea by 

suggesting the expansion of the primate cortex relates to our greater capacity for social 

learning (Reader & Laland, 2002). 

Researchers have been intrigued by social stimuli for some time. Darwin, while 

crafting his theory on evolution and natural selection, was at the same time conducting 

experiments to understand whether the expression of emotion is innate. His experiments 

were simple. He showed subjects a series of photographs of human faces, some with 

muscles artificially contracted by electric probes, and asked his subjects what emotion 

they thought the photographs conveyed (Darwin, 1872). Almost a hundred years later, 

Ekman concluded that facial expressions of emotions are not culturally determined, but 

universal across human cultures and thus biological in origin (Ekman & Sorenson, 1969).  
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Probably the best evidence that the foundations of face processing and our 

interaction with social stimuli are hardwired is the fact that within minutes after birth, 

newborns orient towards face-like stimuli, despite having no prior relevant visual 

experiences (Goren & Sarty, 1975). Clearly some aspects of our social nature are 

grounded in our biology, so a natural place to turn for study is inside the brain.  

There is now a large body of work investigating the neural basis of processing 

socially relevant stimuli such as faces (Haxby, Horwitz, & Ungerleider, 1994; N 

Kanwisher, 2006; Tsao, Freiwald, & Tootell, 2006) and body positions (Desimone, 

Albright, & Gross, 1984; Peelen & Downing, 2007). More recently, economists have 

begun studying the neural basis of more complex constructs in the social domain, like 

altruism and trust, with the dictator and ultimatum game respectively. The dictator game 

is a simple game played between two people. One player, “the dictator”, is given an 

amount of money (e.g., $10), and decides how much he wants to share with the second 

player. The second player has no input to the decision and must accept whatever the 

dictator proposes. Basic economics would predict in this scenario that the dictator would 

keep the full amount, as there are no repercussions. Experimental evidence, however, 

defies these predictions: subjects around the world give on average much more than $0 

(Henrich et al., 2005). Computations are no longer straightforward when we introduce 

other people into the situation. 

A rich history of social psychology and behavioral economics studies have 

repeatedly shown that social rewards are special and can cause people to act in 

“irrational” ways. However, few have investigated the basic reward properties and why.  
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This thesis studies some very basic questions about social rewards:  

1. What is a social reward?  

2. What makes them rewarding?  

3. How do they compare to other types of rewards? 

Along the way, we also explore what it informs us about autism spectrum disorder. 

To address these questions, the thesis uses a combination of neuroimaging and behavioral 

methods. 

In Chapter 2, I provide a working definition for social rewards in this thesis and 

review several that have been studied in the literature. I select one of these and describe 

how we verified its rewarding nature. I end the chapter with a conceptual framework for 

thinking about the stages of social reward processing. 

In Chapter 3, I use the social reward we selected in Chapter 2 to probe how the brain 

processes social rewards. I model subject behavioral choices to this social reward and 

compare it to their choices with monetary rewards.  We searched for areas of the brain 

that respond to the value of these rewards in a parametric way and found overlap with the 

reward processing network cited in the neuroimaging literature.  

In Chapter 4, I explore social reward processing in a clinical population that has 

deficits in social cognition. If social reward processing is identical to processing for other 

types of rewards, then it should be impossible to selectively knock out social reward 

processing. Yet autism spectrum disorder (ASD) is a case where this dissociation does 

seem to be present. In the first study I present, I use a charitable donation to assess 

preferences across a range of stimuli in the ASD population, and find a clear, specific 

domain impairment in social cognition. In the second study, I return to the paradigm used 
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in Chapter 3 to look at neural processing in the ASD population. People with ASD seem 

to perform comparably to neurotypicals in the monetary condition but not in the social 

condition. Yet imaging analysis reveal reduced activity in key reward areas in the social 

condition compared to the monetary condition. 

In Chapter 5, I summarize my findings and discuss the contributions of my work to 

our understanding of social rewards and decision-making. Additionally, I suggest some 

open questions for the field.  
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 What is a social reward and how is it processed? Chapter 2:

2.1 What is a social reward? 

Defining social rewards is not easy. Social rewards can take different forms, can 

involve one or more sensory modalities, and even when it has the same perceptual 

properties, it may not be a social reward in different contexts. They can be evoked by the 

most basic social stimuli (like images of eyes or smiling faces) to more complex 

constructs (social rewards, like reputation and fairness) that involve complicated 

situations and multiple social parties. 

2.1.1 Definition of social rewards 
 

There are two ways of thinking about rewards in general. There is the traditional 

behaviorist definition that describes a reward as that which reinforces behavior (Skinner, 

1935). Positive rewards induce approach behavior and negatives rewards induce 

avoidance behavior. Then there is the common sense definition, which links rewards to a 

hedonic experience and says a reward is something that one finds pleasurable.  With 

advances in neuroimaging techniques and tools, there is now an increasing corpus of 

neuroscience data that also associates rewards with a specific set of brain structures, 

together comprising a reward-processing network.  

Social rewards are no different. We can find social stimuli that reinforce, modify, 

and influence social behavior. People will also report that they find social rewards 

enjoyable. Whether social rewards activate the brain’s reward system is a hypothesis that 

I will be testing in this thesis. 
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The working definition I use in my research is: 

A social reward is a social interaction that people will seek out or work for.  

 

I have intentionally chosen not to include social stimuli and social information in 

the definition. Not because they don’t meet the criteria for rewards, but quite the 

opposite: social stimuli and social information are some of the most rewarding and salient 

stimuli.  

While there is considerable overlap between social stimuli (like faces) and social 

information, I exclude social stimuli and social information in order to narrow the focus 

of this thesis.  

 

2.1.2 Examples of social rewards 
 

Researchers have tested a broad range of social rewards: smiling attractive faces 

(O’Doherty et al., 2003), pleasant touch (E. Rolls et al., 2003), giving to others (T Hare, 

Camerer, & Knoepfle…, 2010), acceptance/inclusion (Eisenberger, Lieberman, & 

Williams, 2003), compliments signaling approval/validation (K Izuma, 2008), revenge – 

punishment of unfair partners (De Quervain, 2004), and reputation/status (Zink et al., 

2008). Researchers have found that all these examples have reward value and change 

people’s behavior from what is predicted by rational choice. 

Social rewards are impactful even when represented by simplified cues. Gold 

stars used in primary school symbolize high achievement and can confer increases in 

reputation and status. The commonly used thumbs-up sign signals social approval from 
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others. Bateson et al. (2006) found that images of eyes had a significant increase on the 

contributions to an honesty box used to collect money for drinks in a university coffee 

room compared to images of a flower (Figure 2.1).  The authors theorized that 

cooperative behavior could have been induced in the participants by the perception of 

being watched and therefore reputational concerns. This process could be mediated 

through neurons in the human perceptual system that are selectively responsive to stimuli 

involving faces and eyes (Emery, 2000; Haxby, Hoffman, & Gobbini, 2000). This is one 

of many examples of weak, automatic, subconscious cues playing at some level on our 

desire for social rewards.  

 

 

Figure 2.1 Pounds paid per liter of milk consumed as a function of week and image 
type. Study by Bateson et al. measuring effect of images of eyes on cooperation 
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In this thesis, I begin with a basic social reward –- positive, neutral, and negative 

faces with matching sound effects. What I mean by basic is that we expect it to be 

universally processed and experienced without any prior learning or context. All people 

should be spontaneously capable of experiencing this social reward.  
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2.2 How do we measure social rewards? 

An important question before we begin our research is how do we know if a social 

stimulus, or any stimulus for that matter, is rewarding?  

We must have a method for testing the reward properties of our stimulus. The key 

test is whether it motivates approach behavior for reward attainment. There are many 

different ways to behaviorally measure reward value. Aharon (2001), in a study looking 

at the reward value of aesthetic faces, used a “keypress” task to measure the amount of 

work subjects performed in order to change the relative duration they viewed different 

face images. The keypress task was able to evaluate how rewarding different categories 

of faces were (Aharon et al., 2001).  

In our study, we operationalize social rewards with performance on a simple 

instrumental learning task. We asked participants to choose among slot machines 

associated with a distribution of differently valued outcomes. On every trial, participants 

were presented with two slot machines. Once he/she selected one, they were shown the 

outcome of their choice. Some slot machines were associated with positively valenced 

outcomes. We found subjects quickly learned to select these consistently over a slot 

machine associated with negatively valenced outcomes. Consistent selection of a slot 

machine indicated high motivation and reward for the stimuli associated with that slot 

machine.  
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2.3 How are social rewards processed? 
 

Lastly I propose a framework for thinking about social rewards in decision-making 

to guide our discussion. The figure below lays out the general stages of social reward 

processing. 

 

 

Figure 2.2 General stages of social reward processing  
 
 
 
 

Social reward processing draws on many of the same brain structures involved in 

perception, cognition, and behavior more generally, but I highlight a few in each of the 

stages that consistently appear specialized in social cognition.  

 

1. Sensory	
  input	
  and	
  basic	
  perceptual	
  processing:	
  How	
  are	
  socially	
  relevant	
  stimuli	
  and	
  signals	
  

perceived?	
  

Perception of social stimuli begins with the same sensory transduction as used with 

nonsocial objects. For example, social stimuli perceived through the visual system 

proceed through the same basic edge and feature extraction as nonsocial objects. 
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2. Specialized	
  perceptual	
  processing	
  

Processing of social stimuli is already specialized at the level of perception. In the 

visual system, there is evidence that regions of higher-order visual cortex are 

disproportionately engaged by faces or by biological motion.  

fusiform face area (FFA) --- a region of ventral temporal cortex that has larger 

responses to faces than to any other visual object category (N. Kanwisher, 

McDermott, & Chun, 1997).  

 

3. Representation:	
  Interpreting	
  social	
  stimuli	
  

After creating a perception and representation of, say, a face, we go on to make 

inferences about emotions, intentions, and beliefs of the other person with 

contributions from the following regions: 

medial prefrontal cortex (mPFC) – an area consistently activated when we 

think about other people's minds (Amodio & Frith, 2006; R. Saxe, 2006) 

insula – an interoceptive somatosensory cortex involved in representing our own 

somatic states (Singer, Seymour, O'Doherty, & Kaube…, 2004) 

amygdala – a structure providing rapid and automatic emotional processing for 

social cognition (Kluver & Bucy, 1997) 

right temporal parietal junction (rTPJ) – an area implicated by many studies in 

attributing beliefs to others (R Saxe & Kanwisher, 2003) 

posterior Superior Temporal Sulcus (STS) – a region that has been associated 

with interpreting the motions of a human body in terms of the person’s goals (R. 
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Saxe, Xiao, Kovacs, Perrett, & Kanwisher, 2004; J. Schultz, Imamizu, Kawato, 

& Frith, 2004)	
  	
  

 

4. Motivational and reward processing 

A key input for social decision-making is attributing a motivational value to the social 

representation.  

ventromedial prefrontal cortex(vmPFC) – this is a key valuation area for 

rewards and punishments (Ongur & Price, 2000). In fact, vmPFC damage 

associated with impairment in social behavior has been well documented in 

patients. One example is EVR, who had most of his vMPFC lesioned in a tumor 

resection procedure. Though the surgery was successful in removing the tumor, it 

brought profound changes to his personality that manifested in inappropriate 

social conduct. Despite changed social conduct and decision-making, 

neuropsychological testing showed no change in EVR’s intellectual abilities 

(Saver & Damasio, 1991). vmPFC patients also experience diminished emotional 

arousal before making risky choices (Bechara, Tranel, Damasio, & Damasio, 

1996). These results gave rise to a theory about the role of emotion in decision-

making called the somatic marker hypothesis (Damasio, 1996), which argues that 

emotional signals guide decision-making, including those in the social domain. 

For example, damage to vMPFC appears to result in an inability to recognize 

social faux pas and reduces empathic concern for others (Shamay-Tsoory, Tomer, 

Berger, & Aharon-Peretz, 2003). 
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An important thing to keep in mind is that, while I laid out this simple 

framework linearly, in reality the flow of social information is multidirectional and 

recursive. There is extensive feedback everywhere in the brain. Interpreting social 

rewards, particularly complex ones, depends critically on context and intention. One way 

to conceptualize this is to imagine an initial feed-forward sweep driven by sensory areas 

that is rapid and automatic, followed by cycles of additional processing that progressively 

recruit additional regions of the cortex that are biased by the first information and top-

down effects incorporating controlled processing and conscious intentions (Adolphs, 

2009).  
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 Neural substrates that respond to social rewards Chapter 3:

3.1 Introduction 

In Chapter 2 we selected a basic social reward and found that behaviorally it met 

the definition of reward. We now turn our attention to the neural properties of social 

rewards in the context of learning. We build off of the vast body of work that has looked 

at learning in the brain as our starting point. 

The brain needs to compute several distinct signals in order for an organism to 

learn how to make sound decisions among alternatives. First, at the time of choice, values 

need to be assigned to the different stimuli associated with each choice option (which we 

refer to as stimulus values; SV); these are subsequently compared in order to choose the 

option with the highest value (Kable & Glimcher, 2009; A. Rangel, Camerer, & 

Montague, 2008; A. Rangel & Hare, 2010; Rushworth, Mars, & Summerfield, 2009; 

Wallis, 2007). Stimulus value signals have been found in ventral and medial sectors of 

the prefrontal cortex (vmPFC) in several human fMRI (Chib, Rangel, Shimojo, & 

O'Doherty, 2009; FitzGerald, Seymour, & Dolan, 2009; Todd Hare, Camerer, & Rangel, 

2009; T. A. Hare, O'Doherty, Camerer, Schultz, & Rangel, 2008; Kable & Glimcher, 

2007; Levy, Snell, Nelson, Rustichini, & Glimcher, 2010; Litt, Plassmann, Shiv, & 

Rangel, 2009; Plassmann, O'Doherty, & Rangel, 2007; Plassmann, O'Doherty, & Rangel, 

2010; Tom, Fox, Trepel, & Poldrack, 2007) and nonhuman primate electrophysiological 

studies (Kennerley, Dahmubed, Lara, & Wallis, 2009; Kennerley & Wallis, 2009; C. 

Padoa-Schioppa, 2009; Camillo Padoa-Schioppa & Assad, 2006; C. Padoa-Schioppa & 

Assad, 2008; Wallis & Miller, 2003) during choices involving non-social rewards, as 
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well as during social decisions such as donations to charities (T. A. Hare, Camerer, 

Knoepfle, & Rangel, 2010).  

Having made a choice, the brain needs to compute the reward value associated 

with the outcomes generated by the choice. These signals are often called reward 

magnitude or experienced utility (R). Several human fMRI studies have found that 

activity in medial regions of orbitofrontal cortex correlates with behavioral measures of 

experienced utility for a wide variety of social and non-social reward modalities (Blood 

& Zatorre, 2001; de Araujo, Rolls, Kringelbach, McGlone, & Phillips, 2003; 

Kringelbach, 2005; McClure, Berns, & Montague, 2003; Plassmann, O'Doherty, Shiv, & 

Rangel, 2008; Small et al., 2003; Small, Zatorre, Dagher, Evans, & Jones-Gotman, 2001; 

Smith et al., 2010). 

A third critical component is the combination of the previous two signals into a 

prediction-error signal (PE) that is used to update stimulus values (W. Schultz, Dayan, & 

Montague, 1997). The key involvement of the ventral striatum in this third component is 

borne out by a sizable and rapidly growing body of human fMRI studies of reinforcement 

learning that have used almost exclusively non-social rewards such as monetary 

payments (Berns, McClure, Pagnoni, & Montague, 2001; Delgado, Nystrom, Fissell, 

Noll, & Fiez, 2000; T. A. Hare et al., 2008; J. O'Doherty et al., 2004; J. P. O'Doherty, 

Dayan, Friston, Critchley, & Dolan, 2003; Pagnoni, Zink, Montague, & Berns, 2002; 

Pessiglione, Seymour, Flandin, Dolan, & Frith, 2006; Seymour, Daw, Dayan, Singer, & 

Dolan, 2007; Yacubian et al., 2006). 

Although the findings summarized above have been replicated across species, 

techniques, and experimental designs, the vast majority of these studies have used only 
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non-social rewards such as juice, food, or money, and only a handful have directly 

compared social and non-social rewards.  This raises a fundamental question: Do the 

same brain regions that implement reward-learning computations for non-social rewards 

also implement social?  Or might the areas that encode SV, PE, and R be different for 

social rewards, analogous to the specialized perceptual processing of social stimuli (N. 

Kanwisher & Yovel, 2006)? While a very few other studies have recently approached this 

issue (K. Izuma, Saito, & Sadato, 2008; Smith et al., 2010; Zink et al., 2008), no study to 

date has investigated the question using identical tasks across the same subjects, and in a 

task that allows comparison of the encoding of the three types of basic reward signals 

defined above.  We undertook such an investigation using model-based fMRI. 
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3.2 Methods 

3.2.1 Participants 

 Twenty-seven female participants from the Caltech community participated in the 

study (mean age = 22.4 years; range 18-28).  Five were excluded from further analysis: 

four due to excessive head movement, one due to failure to understand task instructions. 

All participants were fully right-handed, had normal or corrected-to-normal vision, had 

no history of psychiatric or neurological disease, and were not taking medications that 

might have interfered with BOLD-fMRI.  All gave informed consent under a protocol 

approved by the Caltech IRB. 

3.2.2 Task 

 Participants played two structurally identical versions of an instrumental learning 

task, one with monetary rewards, the second with social rewards (Figure 3.1A).  A trial 

began with the display of two visually distinctive slot machines, each associated with one 

of three outcome distributions: mean-positive, mean-negative, or mean-neutral (Figure 

3.1B) .  
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Figure 3.1 Task and behavioral results. A) Timeline of the monetary and social reward 
trials. Choice trials paired a neutral slot machine with a valenced slot machine.  Trials 
were identical except for the nature of the outcomes: Monetary trials had a gain/loss of 
+$1, $0, or -$1, whereas social trials revealed happy, neutral, or angry faces accompanied 
by sound effects of similar emotional valence. The experiment also included no-choice 
trials (in which a pair of identical slot machines were shown, neutral, negative, or 
positive) to help separate the learning and stimulus value signals. Specific slot machines 
were randomly assigned to specific reward outcomes at the start of the experiment for 
each subject, and distinct between monetary and social condition blocks. B) Distribution 
of outcomes for each slot machine. First row: negative machine. Second row: positive 
machine. Bottom row: neutral machine. The same distribution was used in the monetary 
and social conditions. Actual appearance of the slot machines was randomly paired with a 
reward outcome distribution, and distinct between monetary and social condition blocks.  
 
  

A) 
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All participants completed one social and one monetary block of 148 trials 

each; block order was randomized between participants. There were two types of trials in 

each block. In 100 choice trials the neutral slot machine was shown paired with either the 

positive or negative slot machine (50/50 probability with randomized order), and 

participants chose one by pressing a left or right button. We refer to these as free-choice 

trials. In 48 non-choice trials, two identical copies of one of the three slot machines were 

shown (1/3, 1/3, 1/3 probability with randomized order), and participants merely pressed 

either the left or right button in order to advance the trial. We refer to these as forced- 

choice trials. Up to 2.5 seconds were allowed for choice in both cases, followed by a 

uniformly blank screen displayed for 1-5 seconds (flat distribution), followed by the 

reward outcome displayed for 1.5 seconds, followed by an intertrial interval of a 

uniformly blank screen displayed for 1-6 seconds (flat distribution).   Note that 

participants were not told the reward probabilities associated with each slot machine and 

had to learn them by trial and error during the task. 

The forced trials provide an essential control for a potential important confound in 

the study. One potential concern is that the presentation of positive and aversive social 

outcomes might induce in the brain “correct” and “error” feedback signals at outcome 

during the social trials. This is a problem because this would suggest that the common 

locus of activity is not due to the activation of a social reward, but to the activation of 

these error feedback signals. The forced trials provide a control for this concern because 

when there is no free choice, there can be no error feedback regarding the correctness of 

the choice.  
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3.2.3 Stimuli and rewards 

 The slot machines in both conditions were represented by cartoon images of 

actual slot machines that varied in color and pattern (Figure 3.1).  In the social condition, 

reward outcomes were color photographs of unfamiliar faces from the NimStim 

collection (Tottenham et al., 2009) showing either an angry (negative outcome), neutral 

(neutral outcome), or happy (positive outcome) emotional expression, presented together 

with emotionally matched words played through headphones (normalized for volume and 

duration). Examples of positive words are “excellent”, “bravo”, and “fantastic”. 

Examples of negative words are “stupid”, “moron”, and “wrong”. Examples of neutral 

words are “desk”, “paper”, and “stapler”.  Extensive prior piloting had demonstrated the 

behavioral efficacy of these stimuli in reward learning.  

In the monetary condition, the positive outcome was a gain of one dollar (an 

image of a dollar bill), the negative condition was a loss of one dollar (image of a dollar 

bill crossed out), and the neutral condition involved no change in monetary payoff (image 

of an empty rectangle). Subjects were paid out the sum of their earnings at the end of the 

experiment.  

3.2.4 Computational model 

We computed trial- and subject-specific values for each of the three variables 

described in the Introduction.  The stimulus value (SV) for every slot machine was 

calculated as the 10-trial moving average proportion of times that the machine was 

chosen when it was shown, a continuous value between 0 and1.  Consistent with this 

coding, reward outcomes  (R) were assigned a value of 1 if they were positive; a value of 
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0.5 if they were neutral, and a value of 0 if they were negative.   Prediction errors (PE) 

at the time of outcome were calculated using a simple Rescorla-Wagner learning rule 

(Rescorla and Wagner, 1972) as the difference between the value of the reward outcome 

and the stimulus value of the machine selected for that trial: PEt = Rt – SVt. 

Note three things about the value normalizations. First, our approach deviates 

from the usual practice in neuroscience studies of reinforcement learning (T. A. Hare et 

al., 2008; Lohrenz, McCabe, Camerer, & Montague, 2007; Pessiglione et al., 2008; 

Pessiglione et al., 2006; Seymour et al., 2007; Wunderlich, Rangel, & O'Doherty, 2009), 

in which it is customary to fit the values of the SV signal based on the predictions of the 

best-fitting learning model. Here we depart from that practice because the revealed 

preference approach provides more accurate measures of the values computed at the time 

of choice (as shown in Figure 3.1D). Second, without loss of generality, we normalize the 

reward outcome signals to 0 for negative outcomes and 1 for positive outcomes. Note 

that, given the parametric nature of the general linear model specified below, this 

normalization does not affect the identification of areas that exhibit significant correlation 

with this variable. Third, we use the standard definition of prediction errors used in the 

literature.  

3.2.5 Image acquisition 

T2*-weighted gradient-echo echo-planar (EPI) images with BOLD contrast were 

collected on a Siemens 3T Trio.  To optimize signal in the orbitofrontal cortex (OFC), we 

acquired slices in an oblique orientation of 30o  to the anterior commissure-posterior 

commissure line (Deichmann et al, 2003) and used an eight-channel phased array 
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headcoil.  Each volume comprised 32 slices. Data was collected in four sessions (~12 

min each). The imaging parameters were as follows: TR= 2 s, TE= 30 ms, FOV= 192 

mm, 32 slices with 3mm thickness resulting in isotropic 3mm voxels. Whole-brain high-

resolution T1-weighted structural scans (1 x 1 x 1 mm) were co-registered with their 

mean T2*-weighted images and averaged together to permit anatomical localization of 

the functional activations at the group level. 

3.2.6 fMRI pre-processing 

The imaging data was analyzed using SPM5 (Wellcome Department of Imaging 

Neuroscience, Institute of Neurology, London, UK). Functional images were corrected 

for slice acquisition time within each volume, motion-corrected with realignment to the 

last volume, spatially normalized to the standard Montreal Neurological Institute EPI 

template, and spatially smoothed using a Gaussian kernel with a full-width at half-

maximum of 8mm. Intensity normalization and high-pass temporal filtering (filter width 

= 128s) were also applied to the data. 

3.2.7 fMRI data analysis 

 The data analysis proceeded in three steps. First, we estimated a general linear 

model with AR(1). This model was designed to identify regions in which BOLD activity 

was parametrically related to SV, R, and PE. The model included the following 

regressors:  

R1) An indicator function for the decision screen in free-choice monetary trials. 

R2) An indicator function for the decision screen in free-choice monetary trials 

multiplied by the SV of the two slot machines shown in that trial (summed SV). 
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R3) An indicator function for the decision screen in free-choice monetary trials 

multiplied by the reaction time for that trial. 

R4)-R6) Analogous indicator functions for decision screen events in free-choice social 

trials. 

R7) An indicator function for the decision screen in forced monetary trials. 

R8) An indicator function for the decision screen in forced monetary trials multiplied by 

the SV of the slot machine displayed. 

R9)-R10) Analogous indicator functions for decision screen events in forced social trials.  

R11) A delta function for the time of response in the monetary condition. 

R12) A delta function for the time of response in the social condition. 

R13) An indicator function for the outcome screen in free monetary trials (both choice 

and non-choice). 

R14) An indicator function for the outcome screen in free monetary trials multiplied by 

the PE for the trial. 

R15) An indicator function for the outcome screen in free monetary trials multiplied by 

the R for the trial. 

R16)-R18) Analogous indicator functions for outcome screen events in free social trials 

(both choice and non-choice). 

We orthogonalized the modulators for the main regressors that had more than one 

modulator (e.g., R2 and R3). The model also included six head-motion regressors, 

session constants, and missed trials as regressors of no interest. The regressors of interest 

and missed-trial regressor were convolved with a canonical HRF. 
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Second, we calculated the following first-level single-subject contrasts: 1) R2 

vs. baseline, 2) R5 vs. baseline, 3) R14 vs. baseline, 4) R15 vs. baseline, 5) R17 vs. 

baseline, and 6) R18 vs. baseline. 

Third, we calculated second-level group contrasts using a one-sample t test of the 

first-level contrast statistics. Finally, we also performed a conjunction analysis between 

the equivalent contrasts for the monetary and social conditions to identify areas involved 

in similar computations in both cases. The results are shown in Figure 3.4 and reported in 

Tables 3.1--3.3. For inference purposes we used an omnibus threshold of p<.001 

uncorrected with an extent threshold of 15 voxels. However, given the strong priors from 

the previous literature about the role of the vmPFC in encoding stimulus value and 

reward outcome signals, as well as the role of the ventral striatum in encoding prediction 

errors, we also report activity in these two areas if they survive small volume corrections 

(SVC) at p<.05. The mask for the SVC in vmPFC at choice was taken using a sphere of 

10mm radius defined around the peak activation coordinates that correlated with stimulus 

values in Rolls et al. (2008a). The mask for the vmPFC SVC at reward outcome was 

given by a sphere of 10-mm radius defined around the peak coordinates that correlated 

with the magnitude of reward outcome in O’Doherty et al. (2002).  The mask for the SVC 

in ventral striatum was taken using a sphere of 10mm radius defined around the peak 

activation coordinates that correlated with prediction errors in Pessiglione et al. (2006). 

For display purposes only activity in selected SPMs is reported at p<.005 uncorrected 

with an extent threshold of 5 voxels. Anatomical localizations were performed by 

overlaying the t maps on a normalized structural image averaged across subjects, and 

with reference to an anatomical atlas (Duvernoy, 1999). 
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3.3 Results 

3.3.1 Behavioral results 

 Participants reliably learned to select the slot machine associated with the highest 

probability of a positive-valenced outcome within a few choice trials for both social and 

non-social rewards (Figure 3.2).  The figure also reveals two additional interesting 

patterns about the learning process. First, participants were somewhat slower at learning 

to discriminate between social rewards than between monetary rewards. For example, by 

the tenth exposure, the positive monetary machine was chosen with 92% frequency 

whereas the social positive machine was chosen with 72% frequency (p<.001). Second, 

participants were slower in learning to avoid the negative slot machines than in learning 

to choose the positive ones. For example, by the tenth presentation the positive slot 

machines were chosen 85% of the time, whereas the negative ones were avoided only 

68% of the time (p<.001). Both differences were not significant on the last third of the 

learning trials, which suggests that they are related to the speed of learning, and not to the 

ability to ultimately learn the value of the stimuli. 
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Figure 3.2 Plot of group subject choices across trials. (Only the first 30 are shown.) 
 

Figure 3.3 shows the psychometric choice curves for the social and monetary 

conditions based on their SV. Note several things about the curves: First, when the values 

of valenced and neutral slot machines were identical, participants exhibited no choice 

bias (0.5 on the y-axis corresponds to 0.0 on the x-axis). Second, the choice curves are 

not significantly different from each other (greatest difference at x=0.25 had p=.32 with 

Bonferroni correction). Third, the choice curve is asymmetric: whereas participants chose 

the valenced slot machine over the neutral slot machine with probability close to one 

when its relative stimulus value was sufficiently positive (far-right side of curve), 
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subjects chose the neutral slot machine only 80% of the time even when it was the 

most favorable (far-left side of curve). 

 

 

 

 

 

 

 

 

Figure 3.3 Psychometric choice curve for monetary and social conditions. Bars 
denote standard error measures computed across subjects. 
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3.3.2 Neural correlates of stimulus values (SV) 
 
We estimated a parametric general linear model of the BOLD signal to identify areas in 

which activation correlated with SV at the time of choice, and with PE and R at outcome 

during free-choice trials (see Methods for details).   In the free-choice monetary task, 

activation in the vmPFC correlated with SV of the slot machines. SV signals were 

additionally found in the mid-cingulum, the superior frontal gyrus, and the angular gyrus 

(Table 3.1 and Figure 3.4). In the free-choice social task, activation correlating with SV 

was also found in a similar region of vmPFC.  A conjunction analysis showed that 

activation in a common area of vmPFC correlated with SV in both social and monetary 

conditions. 
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Figure 3.4 Basic neuroimaging results. Top) Activation in the vmPFC correlated with 
SV at the time of free choice in both monetary and social conditions.   Middle) Activation 
in the vStr correlated with PE at the time of outcome in both monetary and social free 
choice conditions (albeit the conjunction did not survive our omnibus threshold).  
Bottom) Activation in the vmPFC correlated with R in both monetary and social free-
choice conditions. For illustration purposes only, all images are thresholded at p<.005 
uncorrected with an extent threshold of 15 voxels, except for the conjunction of PE 
which is p<0.005 with an extent threshold of 5 voxels (see Tables 3.1--3.3 for details). 
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Table 3.1 Regions correlating with stimulus value at cue 
 
Areas correlating with SV in monetary choice trials  (R2 vs. 
baseline) 

Region 
# 

Voxels 
Z 

score x y z 
Medial Orbitofrontal Cortex 214 4.53† 0 27 -21 
Frontal Superior 52 4.19 -18 42 51 
Mid Cingulum 46 4.01 0 -30 45 
Angular Gyrus 61 3.91 -57 -66 30 
Middle Temporal Gyrus 24 3.85 60 -15 -6 
Areas correlating with SVs in social choice trials (R5 vs. baseline) 
Medial Orbitofrontal Cortex 40 3.16† 6 27 -15 
Areas correlating with SVs in both monetary and social choice trials  
Medial Orbitofrontal Cortex 37 3.16† 6 27 -15 

 
 
Regions are significant at p<0.001 uncorrected and 15 voxels extent threshold.  
†Survives p<0.05 small volume correction. Coordinates reported in MNI space. 
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3.3.3 Neural correlates of prediction errors (PE) 

In the free-choice monetary task, PE correlated with activation in the caudate and 

putamen (Table 3.2, Figure 3.4). In the free choice social task, PE did not exhibit any 

correlations at our omnibus threshold (p<.001 uncorrected, 15 voxels). However, for 

completeness we show areas of the striatum that correlate with PE in the social free-

choice condition at  p<.005 uncorrected, as well as the resulting conjunction results using 

this lower threshold. 

 

 

 

 

 

Table 3.2 Regions correlating with prediction error at outcome 
 
Areas correlating with PE in monetary choice trials (R13 vs. 
baseline) 

Region 
# 

Voxels 
Z 

score x y z 
Putamen 25 4.07† -15 6 -12 
Caudate 22 3.75 9 9 -3 
Precuneus 15 3.49 -18 -51 33 
Areas correlating with PE in social choice trials   (R16 vs. baseline) 
- - - - - - 
Areas correlating with PE in both monetary and social choice trials  
- - - - - - 

 
 
Regions are significant at p<0.001 uncorrected and 15 voxels extent threshold.  
†Survives p<0.05 small volume correction. Coordinates reported in MNI space. 
 



 38 
3.3.4 Neural correlates of reward magnitude (R) 

In the free-choice monetary task, reward outcome correlated with activation in vmPFC, 

insula, occipital cortex, cingulate gyrus, and superior frontal gyrus (Table 3.3, Figure 

3.4).  In the free-choice social task, reward outcome correlated with activation in vmPFC. 

A conjunction analysis revealed that activation in a common area of the vmPFC 

correlated with reward magnitude in the social and non-social conditions.  

 

Table 3.3 Regions correlating with reward at outcome 
 
Areas correlating with R in monetary choice trials  (R14 vs. 
baseline) 

Region 
# 

Voxels 
Z 

score x y z 
Occipital 124 4.74 21 -75 15 
Insula 125 4.68 -33 3 12 
Inferior Parietal 116 4.43 -51 -36 27 
Occipital 59 4.29 -6 87 18 
Insula 33 4.23 39 -18 18 
Cingulum 52 3.99 -6 9 36 
Medial Frontal Gyrus 86 3.96 -15 -6 57 
Inferior Parietal 78 3.95 51 -33 30 
Medial Orbitofrontal Cortex 136 3.88† 6 33 -12 
Superior Frontal Gyrus 26 3.84 -18 27 57 
Superior Frontal Gyrus 20 3.66 -30 36 33 
Rolandic Operculum 18 3.66 57 0 12 
Heschl Gyrus 21 3.63 -39 -24 3 
Inferior Parietal 21 3.61 -36 -27 24 
Calcarine 15 3.42 -18 -72 9 
Areas correlating with R in social choice trials      (R17 vs. baseline) 
Medial Orbitofrontal Cortex 29 4.16† -6 36 -15 
Areas correlating with R in both monetary and social choice trials  
Medial Orbitofrontal Cortex 129 4.16† -6 36 -15 

 
 
Regions are significant at p<0.001 uncorrected and 15 voxels extent threshold.  
†Survives p<0.05 small volume correction. Coordinates reported in MNI space. 
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3.3.5 Ruling out a potential confound 

A non-trivial potential confound is that the happy and angry faces might activate 

“correct” and “error” feedback signals in the brain regarding the adequacy of choice, and 

that the areas of co-activation might be due to the presence of these error signals, and not 

the computation of social rewards. In fact, these types of stimuli have previously been 

used just for that purpose (Cools, Lewis, Clark, Barker, & Robbins, 2007). Fortunately, 

the forced-choice trials provide a control that allows us to test if the previous results are 

driven by this potential confound. Figure 3.5 describes the strength of the correlation 

between outcome reward signals and BOLD activity in the area of vmPFC identified by 

the conjunction of outcome rewards in both conditions. It shows that the strength of the 

correlation in the social and monetary trials is of similar magnitude and not statistically 

different (p=0.91, two-sided paired t-test) even in the absence of error feedback. This 

implies that the signal in the vmPFC during social outcomes cannot be attributed to error 

feedback, and that the concern about the potential confound in this task was unfounded. 
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Figure 3.5 ROI analysis of outcome reward signals in vmPFC during forced-choice 
trials. Average beta plots for activity during reward outcome in forced-choice trials. The 
functional mask of vmPFC is given by the area that exhibits correlation with reward 
outcomes in social and monetary free-choice trials at p<.05 SVC. The p-values inside the 
bars are for t-tests versus zero. 
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3.4 Discussion 
 
 A fundamental open question in behavioral and social neuroscience is whether the 

brain utilizes a common representation of valuation, and whether this representation 

includes social rewards in learning how to make sound decisions. Prior evidence 

suggested that there might be an overlap in how the brain encodes value signals for social 

and non-social rewards. In the case of stimulus values, a recent paper found that the 

values of charities at the time of decision making were encoded in areas of the vmPFC 

that overlap with those that have been found for private rewards (T. A. Hare et al., 2010). 

In the case of experienced utility for social rewards, several studies found that activity in 

the orbitofrontal cortex correlates with the perceived attractiveness of faces (Aharon et 

al., 2001; Cloutier, Heatherton, Whalen, & Kelley, 2008; J. O'Doherty et al., 2003; Smith 

et al., 2010). Finally, in the case of prediction errors, studies have found that activity in 

the ventral striatum correlates with prediction error-like signals in a task involving the 

receipt of anticipated social rewards (Spreckelmeyer et al., 2009) and in tasks involving 

social reputation and status (K. Izuma et al., 2008; Zink et al., 2008).   These latter two 

studies in particular compared both social and monetary rewards, as we did in the present 

study, and provided strong initial evidence for the idea that neural representations for 

these two types of rewards are at least partly overlapping. What has been missing to date 

is a study that compares social and non-social rewards across tasks whose basic structure 

and reward probabilities are matched for the two types of rewards, and in which the three 

basic computations associated with reward learning (SV, PE, and R) are at work. 
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We addressed this open question by asking subjects to perform an otherwise 

identical simple probabilistic-learning decision-making task in which stimuli were 

associated with either monetary or social rewards. We found evidence for common 

signals in all cases:  a common area of vmPFC correlated with SV, a common area of 

vmPFC correlated with R, and common areas of ventral striatum correlated with PE, 

albeit in the later case only at a relatively low threshold of p<.005 unc.  Together with 

other recent findings (Chib et al., 2009; T. A. Hare et al., 2010; K. Izuma et al., 2008; 

Zink et al., 2008), our results provide increasing support that overlapping areas of vmPFC 

and ventral striatum encode value signals for both types of rewards (Montague & Berns, 

2002; A Rangel, 2008). 

Behaviorally, our subjects were slower to learn the value of social and negative 

stimuli. Since the type of reinforcement learning models that have been successfully used 

to account for the behavioral data do not predict such asymmetries (Montague & Berns, 

2002; Niv & Montague, 2008; Rescola & Wagner, 1972; Sutton & Barto, 1998), this 

raises an apparent puzzle. However, there are two potential explanations for this aspect of 

the findings. First, the reward magnitude of both types of stimuli might not have been 

perfectly matched in our population (so that, for example, subjects found the $1 outcome 

more rewarding than the positive social stimuli). Second, individuals stop selecting the 

negative slot machine after a while, which means that learning stops and subjects might 

not get sufficient negative reinforcement to learn the full extent of the negative outcomes 

associated with these machines. 
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We emphasize that the existence of areas involved in the encoding of reward in 

social and non-social situations does not mean that the full network involved in 

processing both types of rewards is identical. For example, it is known that areas 

involved in theory of mind computations are more likely to become active during social 

decisions than during choices among non-social rewards (Krach, Paulus, Bodden, & 

Kircher, 2010; R. Saxe, 2006; R. Saxe & Kanswisher, 2003).  

It is important to highlight two limitations of our results. First, given the limited 

spatial resolution of fMRI we cannot rule out the possibility that there might be neuronal 

subpopulations within the vmPFC and ventral striatum specialized in valuing certain 

types of rewards. Future studies using fMRI adaptation designs, or direct 

electrophysiological recordings within these regions, will have to address this issue 

before the existence of a common valuation currency can be definitely established. 

Second, previous experiments suggest that males and females process some types of 

social rewards differently (Spreckelmeyer et al., 2009), which opens the possibility that 

there might be a gender difference in the extent to which common circuitry is used in the 

social and non-social domains to carry out basic reward computations. Unfortunately, we 

cannot resolve this issue with this dataset since only females participated in the 

experiment. 

 

  



 44 
References 
 
Aharon, I., Etcoff, N., Ariely, D., Chabris, C.F., O'Connor, E., and Breiter, H.C. (2001). 

Beautiful faces have variable reward value: fMRI and behavioral evidence. 

Neuron 32, 537-551. 

Berns, G.S., McClure, S.M., Pagnoni, G., and Montague, P.R. (2001). Predictability 

modulates human brain response to reward. J Neurosci 21, 2793-2798. 

Blood, A.J., and Zatorre, R.J. (2001). Intensely pleasurable responses to music correlate 

with activity in brain regions implicated in reward and emotion. Proc Natl Acad 

Sci U S A 98, 11818-11823. 

Chib, V.S., Rangel, A., Shimojo, S., and O'Doherty, J.P. (2009). Evidence for a common 

representation of decision values for dissimilar goods in human ventromedial 

prefrontal cortex. J Neurosci 29, 12315-12320. 

Cloutier, J., Heatherton, T.F., Whalen, P.J., and Kelley, W.M. (2008). Are attractive 

people rewarding? Sex differences in the neural substrates of facial 

attractiveness. J Cogn Neurosci 20, 941-951. 

Cools, R., Lewis, S.J., Clark, L., Barker, R.A., and Robbins, T.W. (2007). L-DOPA 

disrupts activity in the nucleus accumbens during reversal learning in Parkinson's 

disease. Neuropsychopharmacology 32, 180-189. 

de Araujo, I.E., Rolls, E.T., Kringelbach, M.L., McGlone, F., and Phillips, N. (2003). 

Taste-olfactory convergence, and the representation of the pleasantness of 

flavour, in the human brain. Eur J Neurosci 18, 2059-2068. 

Delgado, M.R., Nystrom, L.E., Fissell, C., Noll, D.C., and Fiez, J.A. (2000). Tracking the 

hemodynamic responses to reward and punishment in the striatum. J 

Neurophysiol 84, 3072-3077. 

Duvernoy, H.M. (1999). The Human Brain: Surface, Three-Dimensional Sectional 

Anatomy with MRI, and Blood Supply (Berlin, Springer). 

FitzGerald, T.H., Seymour, B., and Dolan, R.J. (2009). The role of human orbitofrontal 

cortex in value comparison for incommensurable objects. J Neurosci 29, 8388-

8395. 



 45 
Hare, T., Camerer, C., and Rangel, A. (2009). Self-control in decision-making involves 

modulation of the vMPFC valuation system. Science 324, 646-648. 

Hare, T.A., Camerer, C.F., Knoepfle, D.T., and Rangel, A. (2010). Value computations in 

ventral medial prefrontal cortex during charitable decision making incorporate 

input from regions involved in social cognition. J Neurosci 30, 583-590. 

Hare, T.A., O'Doherty, J., Camerer, C.F., Schultz, W., and Rangel, A. (2008). 

Dissociating the role of the orbitofrontal cortex and the striatum in the 

computation of goal values and prediction errors. J Neurosci 28, 5623-5630. 

Izuma, K., Saito, D.N., and Sadato, N. (2008). Processing of social and monetary rewards 

in the human striatum. Neuron 58, 284-294. 

Kable, J.W., and Glimcher, P.W. (2007). The neural correlates of subjective value during 

intertemporal choice. Nat Neurosci 10, 1625-1633. 

Kable, J.W., and Glimcher, P.W. (2009). The neurobiology of decision: consensus and 

controversy. Neuron 63, 733-745. 

Kanwisher, N., and Yovel, G. (2006). The fusiform face area: a cortical region 

specialized for the perception of faces. Philos Trans R Soc Lond B Biol Sci 361, 

2109-2128. 

Kennerley, S.W., Dahmubed, A.F., Lara, A.H., and Wallis, J.D. (2009). Neurons in the 

frontal lobe encode the value of multiple decision variables. J Cogn Neurosci 21, 

1162-1178. 

Kennerley, S.W., and Wallis, J.D. (2009). Evaluating choices by single neurons in the 

frontal lobe: outcome value encoded across multiple decision variables. Eur J 

Neurosci 29, 2061-2073. 

Krach, S., Paulus, F.M., Bodden, M., and Kircher, T. (2010). The rewarding nature of 

social interactions. Front Behav Neurosci 4, 22. 

Kringelbach, M.L. (2005). The human orbitofrontal cortex: linking reward to hedonic 

experience. Nat Rev Neurosci 6, 691-702. 

Levy, I., Snell, J., Nelson, A.J., Rustichini, A., and Glimcher, P.W. (2010). The neural 

representation of subjective value under risk and ambiguity. Journal of 

Neurophysiology (forthcoming). 



 46 
Litt, A., Plassmann, H., Shiv, B., and Rangel, A. (2009). Dissociating goal value and 

attention signals during simple decision making. Cereb Cortex (in press). 

Lohrenz, T., McCabe, K., Camerer, C.F., and Montague, P.R. (2007). Neural signature of 

fictive learning signals in a sequential investment task. Proc Natl Acad Sci U S A 

104, 9493-9498. 

McClure, S.M., Berns, G.S., and Montague, P.R. (2003). Temporal prediction errors in a 

passive learning task activate human striatum. Neuron 38, 339-346. 

Montague, P.R., and Berns, G.S. (2002). Neural economics and the biological substrates 

of valuation. Neuron 36, 265-284. 

Niv, Y., and Montague, P.R. (2008). Theoretical and empirical studies of learning. In 

Neuroeconomics: Decision-Making and the Brain, P.W. Glimcher, E. Fehr, C. 

Camerer, and R.A. Poldrack, eds. (New York, Elsevier). 

O'Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K., and Dolan, R.J. (2004). 

Dissociable roles of ventral and dorsal striatum in instrumental conditioning. 

Science 304, 452-454. 

O'Doherty, J., Winston, J., Critchley, H., Perrett, D., Burt, D.M., and Dolan, R.J. (2003a). 

Beauty in a smile: the role of medial orbitofrontal cortex in facial attractiveness. 

Neuropsychologia 41, 147-155. 

O'Doherty, J.P., Dayan, P., Friston, K., Critchley, H., and Dolan, R.J. (2003b). Temporal 

difference models and reward-related learning in the human brain. Neuron 38, 

329-337. 

O'Doherty, J.P., Deichmann, R., Critchley, H., and Dolan, R.J. (2002). Neural Responses 

During Anticipation of a Primary Taste Reward. Neuron 33, 815-826. 

Padoa-Schioppa, C. (2009). Range-adapting representation of economic value in the 

orbitofrontal cortex. J Neurosci 29, 14004-14014. 

Padoa-Schioppa, C., and Assad, J.A. (2006). Neurons in the orbitofrontal cortex encode 

economic value. Nature 441, 223-226. 

Padoa-Schioppa, C., and Assad, J.A. (2008). The representation of economic value in the 

orbitofrontal cortex is invariant for changes of menu. Nat Neurosci 11, 95-102. 



 47 
Pagnoni, G., Zink, C.F., Montague, P.R., and Berns, G.S. (2002). Activity in human 

ventral striatum locked to errors of reward prediction. Nat Neurosci 5, 97-98. 

Pessiglione, M., Petrovic, P., Daunizeau, J., Palminteri, S., Dolan, R.J., and Frith, C.D. 

(2008). Subliminal instrumental conditioning demonstrated in the human brain. 

Neuron 59, 561-567. 

Pessiglione, M., Seymour, B., Flandin, G., Dolan, R.J., and Frith, C.D. (2006). 

Dopamine-dependent prediction errors underpin reward-seeking behaviour in 

humans. Nature 442, 1042-1045. 

Plassmann, H., O'Doherty, J., and Rangel, A. (2007). Orbitofrontal cortex encodes 

willingness to pay in everyday economic transactions. J Neurosci 27, 9984-9988. 

Plassmann, H., O'Doherty, J., and Rangel, A. (2010). Aversive goal values are negatively 

encoded in the medial orbitofrontal cortex at the time of decision making. 

Journal of Neuroscience (forthcoming). 

Plassmann, H., O'Doherty, J., Shiv, B., and Rangel, A. (2008). Marketing actions can 

modulate neural representations of experienced pleasantness. Proc Natl Acad Sci 

U S A 105, 1050-1054. 

Rangel, A. (2008). The computation and comparison of value in goal-directed choice. In 

Neuroeconomics: Decision Making and the Brain, P.W. Glimcher, C.F. Camerer, 

E. Fehr, and R.A. Poldrack, eds. (New York, Elsevier). 

Rangel, A., Camerer, C., and Montague, P.R. (2008). A framework for studying the 

neurobiology of value-based decision making. Nat Rev Neurosci 9, 545-556. 

Rangel, A., and Hare, T. (2010). Neural computations associated with goal-directed 

choice. Curr Opin Neurobiol 20, 262-270. 

Rescola, R.A., and Wagner, A.R. (1972). A theory of Pavlovian conditioning: variations 

in the effectiveness of reinforcement and non-reinforcement. In Classical 

Conditioning II: Current Research and Theory, A.H. Black and W.F. Prokasy, 

eds. (New York, N.Y., Appleton Century Crofts), pp. 406-412. 

Rolls, E.T., McCabe, C., and Redoute, J. (2008). Expected Value, Reward Outcome, and 

Temporal Difference Error Representations in a Probabilistic Decision Task. 

Cereb Cortex 18, 652-663. 



 48 
Rushworth, M.F., Mars, R.B., and Summerfield, C. (2009). General mechanisms for 

making decisions? Curr Opin Neurobiol 19, 75-83. 

Saxe, R. (2006). Uniquely human social cognition. Curr Opin Neurobiol 16, 235-239. 

Saxe, R., and Kanswisher, N. (2003). People thinking about thinking people: The role of 

the temporo-parietal junction in “theory of mind". Neuroimage 19, 1835-1842. 

Schultz, W., Dayan, P., and Montague, P.R. (1997). A neural substrate of prediction and 

reward. Science 275, 1593-1599. 

Seymour, B., Daw, N., Dayan, P., Singer, T., and Dolan, R. (2007). Differential encoding 

of losses and gains in the human striatum. J Neurosci 27, 4826-4831. 

Small, D.M., Gregory, M.D., Mak, Y.E., Gitelman, D., Mesulam, M.M., and Parrish, T. 

(2003). Dissociation of neural representation of intensity and affective valuation 

in human gustation. Neuron 39, 701-711. 

Small, D.M., Zatorre, R.J., Dagher, A., Evans, A.C., and Jones-Gotman, M. (2001). 

Changes in brain activity related to eating chocolate: from pleasure to aversion. 

Brain 124, 1720-1733. 

Smith, D.V., Hayden, B.Y., Truong, T.K., Song, A.W., Platt, M.L., and Huettel, S.A. 

(2010). Distinct value signals in anterior and posterior ventromedial prefrontal 

cortex. J Neurosci 30, 2490-2495. 

Spreckelmeyer, K.N., Krach, S., Kohls, G., Rademacher, L., Irmak, A., Konrad, K., 

Kircher, T., and Grunder, G. (2009). Anticipation of monetary and social reward 

differently activates mesolimbic brain structures in men and women. Soc Cogn 

Affect Neurosci 4, 158-165. 

Sutton, R.S., and Barto, A.G. (1998). Reinforcement Learning: An Introduction 

(Cambridge, MIT Press). 

Tom, S.M., Fox, C.R., Trepel, C., and Poldrack, R.A. (2007). The Neural Basis of Loss 

Aversion in Decision-Making Under Risk. Science 315, 515-518. 

Tottenham, N., Tanaka, J.W., Leon, A.C., McCarry, T., Nurse, M., Hare, T.A., Marcus, 

D.J., Westerlund, A., Casey, B.J., and Nelson, C. (2009). The NimStim set of 

facial expressions: judgments from untrained research participants. Psychiatry 

Res 168, 242-249. 



 49 
Wallis, J.D. (2007). Orbitofrontal cortex and its contribution to decision-making. Annu 

Rev Neurosci 30, 31-56. 

Wallis, J.D., and Miller, E.K. (2003). Neuronal activity in primate dorsolateral and orbital 

prefrontal cortex during performance of a reward preference task. Eur J Neurosci 

18, 2069-2081. 

Wunderlich, K., Rangel, A., and O'Doherty, J.P. (2009). Neural computations underlying 

action-based decision making in the human brain. Proc Natl Acad Sci U S A 106, 

17199-17204. 

Yacubian, J., Glascher, J., Schroeder, K., Sommer, T., Braus, D.F., and Buchel, C. 

(2006). Dissociable systems for gain- and loss-related value predictions and 

errors of prediction in the human brain. J Neurosci 26, 9530-9537. 

Zink, C.F., Tong, Y., Chen, Q., Bassett, D.S., Stein, J.L., and Meyer-Lindenberg, A. 

(2008). Know your place: neural processing of social hierarchy in humans. 

Neuron 58, 273-283. 

 

  



 50 
 

 

 

 

 

 

CHAPTER FOUR 

Social Rewards in Autism 



 51 

 Social Rewards in Autism Chapter 4:

4.1 Motivation for testing in people with autism 

 In Chapter 3, we found that social and monetary rewards processing engage 

overlapping neural circuitry. Here we look at social rewards in the autism spectrum 

disorder (ASD) population, a group selectively impaired in social cognition. Autism has 

been characterized by dysfunction in social cognition along with deficits in 

communication and language skills and restricted interests and repetitive behaviors 

(Kanner, 1968; Rogers, Ozonoff, & Maslin-Cole, 1991). 

The deficits in social behavior and communication in people with autism make 

them a particularly attractive population in which to study social rewards. Differences 

between neurotypicals and a population with impaired social cognition could provide 

insight into what makes social reward processing unique. Additionally, identified deficits 

in processing in the ASD population could lead to development of therapeutic 

interventions for individuals with ASD. 

 As laid out in Chapter 2, there are several stages of processing in social reward 

valuation and decision making. For the ASD population, impairments could arise in 

several different stages --- from motivational, attentional, sensory, to more complex 

cognitive processing abnormalities.  One theory consistent with observations in ASD and 

our current framework for understanding reward learning in cognitive neuroscience is 

that a lack of motivation and attention for social stimuli early in development could result 

in later impairments in perceptual and cognitive processing of social stimuli that might 

depend on normal social input during development (Dawson et al., 2002; Dawson, 
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Meltzoff, Osterling, Rinaldi, & Brown, 1998; Grelotti, Gauthier, & Schultz, 2002).  

For instance, it is known that neural and behavioral specializations for face processing 

depend in part on expertise with faces traceable to early domain-specific processing, so 

one plausible scenario could be that an early lack of motivation to orient towards faces 

results in reduced sensory input about faces and later reduced ability to process faces.  In 

support of a developmental role for such altered preferences, it is known that children 

with autism fail to orient normally to social stimuli (Dawson et al., 1998). One study 

found that a person with autism showed activation of the fusiform face area not to real 

faces, but faces of preferred cartoon characters (Grelotti et al., 2002). 

We present two studies with the ASD population in this chapter that further 

probes our understanding of social reward processing.  

The first study addresses whether ASD involves a domain-specific impairment for 

the valuation of social stimuli. To assess preferences across a range of stimuli, we 

measured real monetary donations to 50 charities spanning categories pertaining to 

people, mental health, animals, or the environment. Whereas basic preferences for stimuli 

can be investigated using measures such as eye tracking in infants, complex real-world 

preferences in adults are more difficult to assess.  We wanted to capture possible 

impairments at any stage of processing during complex decisions based on relative 

preferences, and thus chose to measure anonymous charitable donations involving real 

money.  While charitable donations no doubt are based on preferences for the charities, 

the on-line computation of such preferences likely draws on multiple processes ranging 

from empathic and altruistic considerations to reward processing.  A recent fMRI study 

(T. A. Hare et al., 2010) demonstrated that charitable donations activate regions within 
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the ventromedial prefrontal cortex thought to encode a common reward currency (Chib 

et al., 2009; Lin, Adolphs, & Rangel, 2011), as well as regions in the insula and superior 

temporal sulcus likely involved in empathy, social attention, and altruistic thinking (Frith, 

2007; T. Singer et al., 2004).  A model motivated by this and related studies is that social 

preferences during charitable giving are constructed via inputs to the ventromedial 

prefrontal cortex from regions concerned with processing information about the benefits 

to others (T. A. Hare et al., 2010), just as this region of the prefrontal cortex constructs 

values from sensory representations in more posterior cortices in general (Harris, 

Adolphs, Camerer, & Rangel, 2011). While several of these putative processing stages 

are thought to be impaired in people with autism --- both basic social reward processing 

and more complex evaluations of social stimuli that depend on context, mentalizing, or 

empathy have been reported to be abnormal in autism --- the primary goal in this study 

was not to dissect these processing components, but rather to provide an inventory across 

different types of stimuli, some social and others not.   

The second study in this chapter investigates the neural basis of this impairment in 

basic social reward processing. We re-use the basic experiment paradigm we introduced 

in Chapter 3 but now test it in the ASD population. Findings that show reduced reward 

processing in the ASD group compared to neurotypicals would lend support to the social 

motivation hypothesis which explains the social dysfunction in people with autism by 

attributing it to a deficit in reward processing and motivation specifically for social 

stimuli.  

Together these two studies shed light on the unique aspects of social reward 

processing and the social dysfunction found in people with autism.  
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4.2 Charitable donation task 

4.2.1 Introduction 

People with autism spectrum disorder (ASD) show behaviors suggesting 

abnormal preferences for stimuli. For instance, certain sensory stimuli or unfamiliar 

situations appear to be highly aversive, whereas other stimuli and familiar or repetitive 

situations appear to be desired; often, idiosyncratic objects can elicit abnormal attention 

and interest (Klin, Danovitch, Merz & Volkmar, 2007; Sasson, Turner-Brown, 

Holtzclaw, Lam & Bodfish, 2008).  Together with these sometimes exaggerated 

preferences restricted to a specific set of unusual stimuli, there is a reduction in 

preferences for other people (Sasson et al., 2008; Dawson et al., 1998).  These findings 

have motivated the hypothesis that ASD involves a domain-specific impairment for the 

valuation of social stimuli (Frith, 2001; Baron-Cohen, 1997). Nevertheless, the extent to 

which these impairments in ASD are confined to the domain of social processing remains 

an open question. 

In this study, we addressed this open question by investigating how the 

preferences of participants with ASD compare to those of matched controls in a real 

charitable donation task. We chose a large number (N  =  25) of charities benefitting 

people (for example, American Red Cross), but also nine charities that would benefit 

mental health (for example, Autism Research Institute), ten charities benefitting animals 

(for example, African Wildlife Foundation), and six charities benefitting the environment 

(for example, Heal the Bay). Participants were given pictorial and descriptive information 

about each charity, asked to choose an amount to donate to that charity, and asked to rate 
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each charity on a number of attributes. The charitable task is an interesting framework 

with which to address this issue because it involves the valuation of complex stimuli in 

more naturalistic behavioral settings than those used in previous experiments (Lin et al., 

2011; O’Doherty et al., 2003; Chib et al. 2009).  
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4.2.2 Methods 

Subjects.  We recruited 16 high-functioning adults with a Diagnostic and Statistical 

Manual, Fourth Edition diagnosis of autism or Asperger’s syndrome (four female) and 16 

age- and education-matched controls (three female; see Table 1 for details). All 

participants with ASD met cutoff scores for autism or Asperger syndrome on the Autism 

Diagnostic Observation Schedule (ADOS) Module 4 (Lord, et al., 2000), and 13 out of 13 

subjects assessed also met criteria on the Autism Diagnostic Interview-Revised (ADI-R) 

(Lord, Rutter & Le Couteur, 1994 All participants had an intelligence quotient (IQ) in the 

normal range, as assessed with the Wechsler Adult Intelligence Scale (Wechsler, 1981) 

and gave informed consent to participate in the studies under a protocol approved by the 

Institutional Review Board of the California Institute of Technology.  

 

Table 4.1 Summary of demographic and background information about the 
participants.   
 
 n Gender Age Full-scale 

IQa 
Education 
(years) 

IRIb (EC + 
PT) 

With ASD 16 12 males 
4 females 

31.4 
(12.3) 
[19-57] 

110 (12.7) 
[93-133] 

15.8 (2.1) 
[9-18] 

24 (11.7) 
[6-42] 

Matched 
controls 

16 13 males 
3 females 

31.1 
(12.7) 
[19-56] 

114 (13.6) 
[94-133] 

16.1 (1.4) 
[13-18] 

37 (5.4) 
[27-43] 

 ADI ADOS SRS    
With ASD 45 (10.5) 

[27-61] 
17 (5.7)  
[11-25] 

91 (26) 
[43-126] 

   

aThe full-scale IQ from the Wechsler Adults Intelligence Test [18]; bIRI is the sum of the 
empathic concern and perspective taking sub-scores from the Davis Interpersonal 
Reactivity Index [19]. ADI: Autism Diagnostic Interview; ADOS: Autism Diagnostic 
Observation Schedule; ASD: autism spectrum disorder; SRS: Social Responsiveness 
Scale. Data are presented as the mean with the standard error in parentheses and the range 
in brackets below 
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Experimental Tasks. Subjects participated in the following three sessions in fixed 

order. 

In the first session, they were familiarized with all the charities through a series of 

simple tasks. First, they were asked to indicate how familiar they were with the charity 

name. Next, participants were presented with a picture and asked to read a description of 

the charity’s mission. Last, they were asked to place the charity in the best category 

among the following choices: environment, animal, people, and mental health. While 

participants were encouraged to provide single assignments, dual categories were allowed 

in exceptions (for example, charities like Canine Assistants that benefited both animal 

and people). 

Participants’ classifications were not used to derive the assignment of charities to 

categories used in our analyses, but rather as a check to our pre-assigned categorizations. 

Participant classifications were nearly identical to ours across all categories and none of 

the results presented below differ significantly if we use participant categorization of the 

charities. We assigned charity categories by using a filtering method. If the charities 

included mention of animals, the environment or mental illness, they were classified in 

their respective category; otherwise they were labeled a people charity. The list of 

charities used and their categorizations are presented in Additional file 1: Table S1. 

In the second session, participants performed the charitable donation task. On 

every trial, the participant chose how much of $60 they wanted to donate to the charity 

presented (Figure 1). Participants kept 20 % of whatever amount they chose not to 

donate. Participants made donation choices for all 50 charities, one at a time, in 

randomized order. They were told that at the end of the experiment one of their actual 
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choice trials would be randomly selected and implemented, at which point an actual 

donation would be made to the selected charity and they would keep any remaining cash. 

Note that because only one trial was selected to count, the participants could treat each 

decision as being the only decision made, and did not have to worry about spreading their 

money across the different charities. 

 

 

 

 

Figure 4.1 Schematic of the donation task.  Participants carried out three sessions: first, 
they were presented with a picture and description of the charity in question, then they 
decided on their donation (one charity at a time), and finally they provided evaluations of 
the charity descriptions and pictures through explicit ratings. 
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In the third and final session, after the donation task, participants rated questions 

that measured how much the charity would benefit them (e.g., “How much do you think a 

$500,000 donation to this charity would help you personally?”), close friends and family, 

other people, and the world. They also rated the impact of the picture and descriptions 

they had been given for each of the 50 charities in terms of how effective they felt the 

charities were in promoting donations (“To what extent does the charity 

picture/description increase your willingness to give?”). This session thus provided us 

with an inventory of explicit knowledge about and evaluations of the charities. The 

complete set of questions asked is provided in Appendix 2. 

After completing the above sessions, subjects also completed the Interpersonal 

Reactivity Index (Davis, 1983) personality questionnaire, which measures an individual’s 

dispositional empathy, and a post-task questionnaire that collected demographic 

background information and free-response questions about their motivations to give.  

All significant values reported are two-tailed unless stated otherwise. 
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4.2.3 Results 

We first tested the hypothesis that the group of participants with ASD would 

donate less to people charities. Compared to the control group, the group with ASD 

donated less often to people charities (37 % versus 65 %; t(30)  =  −1.97, p <0.03, one-

tailed) and their mean donations to people charities were lower ($8.69 versus $21.82; 

t(25)  =  −2.18, p <0.02, one-tailed), but so was the frequency of donations and mean 

donations to all charities on average, although this effect did not reach significance 

($10.01 versus $17.97; t(29)  =  −1.44, p <0.16, Figure 2A,B). Even when excluding any 

zero donations to a charity, mean donations across all charities from the group with ASD 

were lower, although again this group difference was not significant ($17.04 versus 

$28.11, t(23)  =  1.89, p  =  0.07). 

 
Figure 4.2 Mean and frequency of donations across all four categories (A) Raw 
donations (mean and standard error of the mean (SEM); not normalized), for the four 
charity categories, as well as across all charities (Grand Mean). (B) Probability of 
donating to a charity in a particular category, means and SEM. Shown is the probability 
of making any donation, regardless of its magnitude. *P  <  0.05 
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To account better for differences in mean donations between individuals within 

a group, we normalized each participant’s donation by the mean number of dollars he or 

she donated in the experiment. This revealed a specific abnormality in mean normalized 

donations specific to the people charities (Figure 3; t(28)  =  −3.10, p <0.002; all other 

charity categories not significant). A similar result was obtained for median donations per 

category (t(24)=-2.34, p <0.02).  

 

Figure 4.3 Normalized mean donations (mean and SEM), shown for the 4 charity 
categories.  Donation amounts were divided for each participant by that participant’s 
mean donation across all charities.  This revealed a disproportionately lower amount 
donated to people charities than to any other category of charity. **p<0.01 
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While our hypothesis specifically concerned social preferences, we also carried 

out a confirmatory mixed analysis of variance (ANOVA) with two levels of group (ASD, 

control) and two levels of charity category (people, other). This revealed a significant 

interaction between group and category (F(1,1)  =  8.3094, p <0.005) and no significant 

main effects of category or group. Post-hoc t-tests showed that this result was driven by 

the significant difference between ASD and controls normalized donations to people 

charities mentioned above. We verified these results with a resampling permutation test. 

We generated 10,000 random permutation samples and found that fewer than 2 % of 

resampled differences in mean donation to people charities were higher than what was 

observed in our data set. In contrast, none of the other charity categories were close to 

statistical significance (Environment: p<0.39, Animal: p<0.36, Mental: p<0.25; one-

tailed).  

We next examined individual charities, rank-ordering them by the mean donations 

within each category separately for each group (Figure 4). This analysis showed two 

components to the abnormal donations from the group with ASD. First, it confirmed that 

the group with ASD donated disproportionately less to the people charities. Second, it 

revealed a lack of discrimination amongst the people charities: whereas both the ASD 

and control groups showed a similar spread in donations across individual charities 

within each category, this was notably absent for the group with ASD in the case of the 

people charities. An exploratory analysis showed that the slope of a linear regression 

estimated through the people charity donation points was lower for the group with ASD 

(m  =  0.24) than control group (m  =  0.58). A few charities stood out as particularly 

preferred by the group with ASD. All of these fell into the animal or environment 
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category. Two of these in particular, Canine Assistants and Pineland Preservation 

Alliance, were remarkable because more than half of the participants with ASD donated 

to these (whereas most charities only elicited five or six donations from those with ASD). 
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Figure 4.4 Mean donations to individual charities, rank-ordered by the donations 
given by each participant group.  Charities indicated by colored data points correspond to 
those where the ASD group showed particularly large differences in their donations 
compared with donations to the same charity by the control group. ASD donations are 
indicated in solid colors and control donations in fainter colors.  “Pinelands”: Pinelands 
Preservation Alliance (an environmental charity); “Canine”: Canine Assistants (an animal 
charity); “cancer”: National Childhood Cancer Foundation, and “Red Cross”: American 
Red Cross (both people charities); “autism”: Autism Research Institute (a mental health 
charity) 

 

 

Across all charities, both groups generally gave very similar explicit ratings (Figure 
4.5).  However, in the people category, the control group gave significantly higher 
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ratings of impact both to the pictures and the narrative associated with the people 
charities, a pattern not seen for the descriptions of any of the other categories of 
( 

 
Figure 4.6). Specifically, we found a significant group difference for the impact of 

the picture (ASD:2.0 vs. NT: 2.7; t(27) = 2.72, p<0.01) and narrative (ASD: 2.4 vs. NT: 

3.2; t(23) = -2.59, p<0.02) associated with people charities.  

 
Figure 4.5 Ratings given to the charities.  Mean (and SEM) explicit ratings given to the 
charities, after all donations had been made.  See Methods and Appendix 2 for detailed 
description of the ratings. 
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Figure 4.6 Ratings broken down by charity category.  The ASD group gave 
significantly lower ratings to the impact of the picture and description just for the people 
charities. *p<0.05, **p<0.01 
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Regressing ratings onto donation on an individual-by-individual basis resulted in no 

statistically significant differences between the group means of the regression coefficients 

(Figure 4.7). This suggests that while both explicit ratings of the people charities as well 

as the donations made to them were abnormally low in the group with ASD, the link 

between evaluations of the descriptions of the charities and donation behavior was 

unaltered. In the mental health category, participants with ASD gave significantly higher 

ratings for impact on self (1.9 vs. 1.3; t(27) = 2.92, p<0.007) and friends (2.1 vs 1.5; t(25) 

= 2.17, p<0.04). 

 

 

 

 

Figure 4.7 Regressions: Group mean regression coefficients.  We carried out 
regressions of subjects’ ratings onto their donations individually for each participant.  
There were no significant differences between groups on any of the regressions. 
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Finally, we carried out exploratory correlations across participants between 

their mean donation to people charities and several questionnaire-based and diagnostic 

measures. We did not find any meaningful correlations between mean donation to people 

charities and age, IQ, income, or the perspective taking and empathic concern scale of the 

IRI. However, there was a negative correlation (r  =  −0.33) between the ADOS-B subscale 

(reciprocal social interactions) and mean donation to people charities. 
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4.2.4 Discussion 

 
 Using a simple charitable donation task, we tested the hypothesis that people with 

ASD would show reduced social preferences. We found a significant reduction in the 

frequency and magnitude of donations made to charities benefitting other people 

compared with those benefitting mental health, animals or the environment. In addition, 

the group with ASD was less sensitive to specific information that discriminated amongst 

people charities, donating the same (abnormally low) amount to all of them. Control 

participants rated the impact of pictures and text descriptions on their donation amount 

particularly highly for people charities, whereas those with ASD gave significantly lower 

ratings to their impacts. This suggests that higher donations to people charities may 

normally be driven by the high social salience that they have, a component that is lacking 

in people with ASD. Taken together, this pattern of findings supports the hypothesis of 

abnormal social preferences in ASD and suggests specific reasons for it. The abnormally 

low ratings of the impact of visual and descriptive information provided for each charity 

given by the group with ASD argues that socially relevant empathy-evoking information 

was not incorporated into normal valuation for the charity. Consequently, there was little 

discrimination among the people charities, and the entire category of charities benefitting 

people was devalued in terms of the actual donations made. While ratings given by 

people with ASD for the impact of pictures on donations was low for people charities, we 

did find the group with ASD rated the impact of pictures as high as the control group for 

animal charities. This is interesting to note because studies have reported people with 

autism having an easier time connecting with animals than with people. 
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 Across studies, the specific processes and neural structures that have been found 

abnormal in reward processing in autism are always a subset of those now well-

documented to process the value of stimuli, actions, and outcomes in healthy participants.  

These include regions such as the ventral striatum, as well as ventral and medial parts of 

the prefrontal cortex (Rangel et al., 2008; Wallis, 2007; Rangel & Hare, 2010), and there 

is good evidence by now that these regions process reward value from all different types 

of stimuli (such as money, juice, or social stimuli), conveyed to these regions through 

convergent inputs from various sensory association cortices (Lin et al., 2011; Harris et 

al., 2011; Grabenhorst et al., 2010; Izuma et al., 2008; O’Doherty et al., 2002, 2003; Chib 

et al., 2009; Janowski et al., 2012).  In particular, there is evidence that additional 

processing is required in order to interpret the value of socially relevant stimuli, 

originating in part from regions known to process social information, such as cortices in 

the superior temporal gyrus (Hare et al., 2010).   

 Impairments in such additional processing of socially relevant stimuli have been 

reported in high-functioning people with autism.  One study found a remarkably selective 

impairment in combining outcomes with intentions to evaluate moral actions as good or 

bad in high-functioning people with autism (Moran et al., 2011), suggesting that the 

ability to incorporate multiple sources of social information is particularly compromised.  

Another study in the Adolphs lab reported that people with autism do not show the 

normal modulation of pro-social behavior (donations to a charity) when they are observed 

by another person, suggesting that they are insensitive to social reputation effects (Izuma 

et al., 2011).  Yet even here there was a concomitant more general impairment: Izuma et 

al., (2011) found that people with autism were insensitive to social reputation effects on 
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charitable donations, and they also observed that overall donations were considerably 

less than in the control group.  

 In our present study, we found a similar effect: people with ASD donated less on 

average, across all stimuli, but in addition to this general difference they also showed a 

disproportionate reduction in donations specifically to charities benefitting other people. 

One caveat worth mentioning here is while there was no explicit monitoring in our study, 

as in the Izuma study, we concede that subjects could have been thinking about the 

analysis at the end of the experiment and how in principle we could trace who gave to 

what and how much. This could have created an observer effect that would partly explain 

the lower average donation amount in people with autism compared with controls. One 

could also argue that social reputation concerns might disproportionately weigh on 

people charities in controls. It may be that the often-present requirement to integrate 

multiple sources of complex information in order to synthesize a single reward 

representation is particularly acute for social stimuli, and accounts for a good part of the 

basis for the impairment seen in people with ASD when they process social rewards. 

 An ANOVA comparing non-people (collapsing animal and environment charities) 

versus people (collapsing people and mental health charities) also showed no significant 

interaction effects and only a main effect of non-people versus people. This suggests that 

people with autism treat charities in the mental health category (specifically those 

benefiting autism) in a special manner, different from their usual donation pattern for 

other people charities. Indeed the group with ASD gave these charities higher ratings for 

‘benefit to self’ and ‘benefit to friends’ than did the control group, as shown in Figure 

4.6. One interpretation of this pattern in the results could be that thinking about charities 
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benefiting people in general requires some empathy. For the control group, this may be 

one factor driving their donations to the people charities; for the group with ASD, it may 

be one lacking factor accounting for their low donations to people charities. In the mental 

health category, however, empathy may not have been required for the participants with 

ASD to recognize the value, since several of these charities were closely related to their 

own condition. 

 The phenotype of ASD shows a complex pattern of impairments, typically 

diagnosed as falling into three classes that together constitute the criteria for clinical 

diagnosis: language development, reciprocal social interactions, and repetitive behaviors 

and restricted interests. Arguably, the present findings may contribute to both of the last 

two, in that they suggest that people with autism have reduced interests in, or preferences 

for, charities benefitting people as compared to charities benefitting other categories. 

Moreover, we found a few charities that elicited unusually high donations from the group 

with ASD, a finding that should be followed up in future studies to better understand 

what it is about these particular charities that makes them preferable to people with 

autism. It is also interesting that we found a negative correlation between the amounts 

that participants with ASD donated to the people charities and the ADOS-B subscale. 

This subscale comprises items assessing unusual eye contact, facial expression directed to 

others, empathy and comments on others’ emotions, responsibility, quality of social 

overtures, quality of social response, and amount of reciprocal social communication. 

While exploratory, this finding provides preliminary evidence that the abnormal social 

preferences revealed in our task may relate to abnormal social interactions in people with 

autism. 
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Appendix 1: Complete list of charities 
 
Charity	
  Name Category 
Achievement	
  Centers	
  for	
  Children mental 
African	
  Wildlife	
  Foundation animal 
American	
  Bird	
  Conservancy animal 
American	
  Kennel	
  Club animal 
American	
  Red	
  Cross people 
Animal	
  Haven animal 
Animal	
  Rescue animal 
Anxiety	
  Disorders	
  Association	
  of	
  America mental 
Autism	
  Research	
  Institute mental 
Blue	
  Card people 
Brain	
  Tumor	
  Society people 
Camphill	
  Village	
  Kimberton	
  Hills mental 
Canine	
  Assistants animal 
CARE people 
Chicago	
  Foundation	
  for	
  Women people 
Child	
  Abuse	
  Prevention	
  Center people 
Direct	
  Relief	
  International people 
Dogs	
  for	
  the	
  Deaf animal 
Fisher	
  Center	
  for	
  Alzheimer's	
  Research	
  Foundation people 
Global	
  Fund	
  for	
  Women people 
Heal	
  the	
  Bay environmental 
Horizons	
  for	
  Homeless	
  Children people 
Infant	
  Crisis	
  Services people 
International	
  Eye	
  Foundation people 
International	
  Rett	
  Syndrome	
  Foundation mental 
Make-­‐A-­‐Wish	
  Foundation	
  International people 
Mercy	
  Medical	
  Airlift people 
National	
  Breast	
  Cancer	
  Foundation people 
National	
  Center	
  for	
  Missing	
  and	
  Exploited	
  Children people 
National	
  Childhood	
  Cancer	
  Foundation people 
National	
  Inclusion	
  Project mental 
National	
  Ovarian	
  Cancer	
  Coalition people 
National	
  Spinal	
  Cord	
  Injury	
  Association people 
National	
  Transplant	
  Assistance	
  Fund people 
Oprah's	
  Angel	
  Network people 
Organization	
  for	
  Autism	
  Research mental 
Parkinson's	
  Disease	
  Foundation people 
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Pasadena	
  Humane	
  Society	
  and	
  SPCA animal 
Pine	
  Tree	
  Society mental 
Pinelands	
  Preservation	
  Alliance environmental 
Save	
  the	
  Children people 
Society	
  for	
  the	
  Protection	
  of	
  New	
  Hampshire	
  
Forests environmental 
Southeast	
  Alaska	
  Conservation	
  Council environmental 
Spinal	
  Bifida	
  Association people 
The	
  American	
  Chestnut	
  Foundation environmental 
The	
  Children's	
  Clinic people 
The	
  Churchill	
  School	
  and	
  Center mental 
The	
  WILD	
  Foundation animal 
Thoroughbred	
  Retirement	
  Foundation animal 
Upper	
  Raritan	
  Watershed	
  Association environmental 
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Appendix 2: Complete list of questions (ratings) asked 
 

• How much do you think a $500,000 donation to this charity would help you 
personally? 

• How much do you think a $500,000 donation to this charity would help others 
you care about? 

• How much do you think a $500,000 donation to this charity would help other 
people? 

• How much do you think a $500,000 donation to this charity would help the 
world? 

• To what extent does the charity picture increase your willingness to give? 
• To what extent does the charity description increase your willingness to give? 
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4.3 Neuroimaging social rewards 

4.3.1 Introduction 

Underlying the abnormal social behavior of autism may be a difference in neural 

reward processing of social stimuli specifically or a reflection of a more general deficit in 

stimulus-reward association. Answers to this question would provide important support 

for the social motivation hypothesis of autism, and provide a mechanism to explain the 

patent social dysfunction in everyday life that is a key component of the diagnosis.  Are 

social difficulties derivative to general processing difficulties (perhaps because social 

stimuli are simply more complex and difficult to process), or is there evidence for a 

specific impairment in social processing with relative sparing of other domains of 

cognition? A couple of neuroimaging studies have looked at social vs. non-social reward 

processing in ASD but findings have not been entirely consistent (Dichter, Richey, 

Rittenberg, Sabatino, & Bodfish, 2012; Scott-Van Zeeland, Dapretto, Ghahremani, 

Poldrack, & Bookheimer, 2010).  

We re-visit the instrumental reward learning task that contrasted learning with 

social rewards against learning with monetary reward described in Chapter 3. We showed 

then that there is overlap in social and non-social reward neural processing in 

neurotypicals. If there is a deficit in reward processing and motivation specifically for 

social rewards as the social motivation hypothesis suggest, we would expect to find 

differences between the two groups at a neural level in learning with social rewards but 

not monetary rewards.   
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I tested ten high-functioning people with ASD (7M, 3F) and ten healthy 

controls who were matched on gender, age, and education.  BOLD-fMRI was collected 

on a 3T scanner while participants had to learn to choose among slot machines associated 

with differently valued outcomes.  In the social version of the task, outcomes were 

smiling, neutral, or angry faces accompanied by matching sound effects (happy, neutral, 

or angry voices).  In the monetary version, outcomes were variable gain or loss of money.  

The two tasks were structurally identical except for the type of reward, permitting direct 

comparisons.   
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4.3.2 Methods 
 

 
 
Table 4.2 Summary of demographic and background information about the 
participants. FSIQ is full-scale IQ from the Wechsler Adults Intelligence Test 
(Wechsler, 1981). 
 

Participants.  Twenty-seven subjects participated in the study (mean age = 22.4 years; 

range 18-28).  Seven ASD subjects were excluded from the analyses: six due to failure to 

understand task instructions (e.g., slot machine choices were based on favorite colors) 

and one who rated the social stimuli abnormally. Behavioral analyses reported is based 

on 20 subjects: 10 subjects with ASD (3 female) and 10 age- and education-matched 

controls (3 female) (Table 4.2). One ASD subject and his matched control were dropped 

from the neuroimaging analysis because of excessive head movement. Neuroimaging 

results reported are based on the 18 remaining subjects. This did not materially change 

subject demographic composition (Table 4.3). All ASD participants met the Diagnostic 

and Statistical Manual of Mental Disorders, Revised 4th Edition diagnostic criteria for 

autism or Asperger’s syndrome and met the cutoff scores for autism or Asperger’s 

n= Gender Age FSIQ Education 
(in years)

SRS

ASD 10 7M3F 28 (3.1)

[18-45]

113 (4.7)

[93-133]

15 (0.7)

[10-18]

76 (9.7)

[24-113]

Matched 
Controls

10 7M3F 27 (3.1)

[17-44]

114(13.4)

[104-123]

15 (0.6)

[12-18]

56 (15.6)

[41-72]

ADI-A ADI-B ADI-C ADI-D ADOS-A ADOS-B ADOS-C ADOS-D

ASD 20 (1.8)

[12-28]

17 (1.5)

[11-24]

6 (0.9)

[2-12]

3 (0.5)

[0-5]

4.9 (0.5)

[3-7]

10.2 (1.4)

[4-17]

1 (0.2)

[0-2]

1.4 (0.4)

[0-3]
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syndrome on the Autism Diagnostic Observation Schedule, Module 4 (Lord et al., 

2000) and Autism Diagnostic Interview-Revised (Lord, Rutter, & Le Couteur, 1994) 

(Table 4.2). All participants had normal or corrected-to-normal vision, had no history of 

psychiatric or neurological disease, and were not taking medications that might have 

interfered with BOLD-fMRI.  Participants gave informed consent to participate in this 

study under a protocol approved by the Caltech IRB. 

 

Table 4.3 Summary of demographic and background information of only 
participants included in imaging analysis. FSIQ is full-scale IQ from the Wechsler 
Adults Intelligence Test (Wechsler, 1981). 
 
 

Task. Participants played two structurally identical versions of an instrumental learning 

task, one with monetary rewards, the second with social rewards (Figure 4.8A).  A trial 

began with the display of two visually distinctive slot machines, each associated with one 

of three outcome distributions: mean-positive, mean-negative, and mean-neutral (Figure 

4.8B). 

 

n= Gender Age FSIQ Education 
(in years)

SRS

ASD 9 6M3F 26 (3.1)

[18-45]

115 (4.4)

[101-133]

15 (0.8)

[10-18]

76 (9.7)

[24-113]
Matched 
Controls

9 6M3F 26 (2.9)

[17-44]

114(13.4)

[104-123]

15 (0.6)

[12-18]

56 (11.0)

[41-72]

ADI-A ADI-B ADI-C ADI-D ADOS-A ADOS-B ADOS-C ADOS-D

ASD 21 (1.8)

[12-28]

17 (1.7)

[11-24]

6 (1.1)

[2-12]

3 (0.6)

[0-5]

4.8 (0.5)

[3-7]

9.8 (1.5)

[4-17]

0.9 (0.1)

[0-1]

pa
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Figure 4.8 A) Timeline of the monetary and social reward trials. Choice trials 
paired a neutral slot machine with a valenced slot machine.  Trials were identical except 
for the nature of the outcomes: Monetary trials had a gain/loss of +$1, $0, or -$1, whereas 
social trials revealed happy, neutral, or angry faces accompanied by sound effects of 
similar emotional valence. Specific slot machines were randomly assigned to specific 
reward outcomes at the start of the experiment for each subject, and distinct between 
monetary and social condition blocks. B) Distribution of outcomes for each slot 
machine. First row: negative machine. Second row: positive machine. Bottom row: 
neutral machine. The same distribution was used in the monetary and social conditions. 
Actual appearance of the slot machines was randomly paired with a reward outcome 
distribution, and distinct between monetary and social condition blocks.   
 
 

 

  



 84 
 All participants completed one social and one monetary block of 100 trials each; 

block order was randomized between participants. At the beginning of each trial, 

participants were shown a neutral slot machine paired with either the positive or negative 

slot machine (50/50 probability with randomized order). Participants chose one by 

pressing a left or right button. Up to 2.5 seconds were allowed for choice, followed by a 

uniformly blank screen displayed for 1-5 seconds (flat distribution), followed by the 

reward outcome displayed for 1.5 seconds, followed by an inter-trial interval of a 

uniformly blank screen displayed for 1-6 seconds (flat distribution).   Note that 

participants were not told the reward probabilities associated with each slot machine and 

had to learn them by trial and error during the task. 

 

Stimuli and Rewards. The slot machines in both conditions were represented by cartoon 

images of actual slot machines that varied in color and pattern (Figure 4.8).  In the social 

condition, reward outcomes were color photographs of unfamiliar faces from the 

NimStim collection (Tottenham et al., 2009) showing either an angry (negative outcome), 

neutral (neutral outcome), or happy (positive outcome) emotional expression, presented 

together with emotionally matched words played through headphones (normalized for 

volume and duration). Examples of positive words are “excellent”, “bravo”, and 

“fantastic”. Examples of negative words are “stupid”, “moron”, and “wrong”. Examples 

of neutral words are “desk”, “paper”, and “stapler”.  Extensive prior piloting had 

demonstrated the behavioral efficacy of these stimuli in reward learning.  

 In the monetary condition, the positive outcome was a gain of one dollar (an image 

of a dollar bill), the negative condition was a loss of one dollar (image of a dollar bill 
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crossed out), and the neutral condition involved no change in monetary payoff (image 

of an empty rectangle). Subjects were paid out the sum of their earnings at the end of the 

experiment.  

 

Face ratings and other post-task activities. At the end of the experiment, we asked 

subjects to rate the pleasantness of each of the faces and matching sound effects. We 

were interested in whether the two groups experienced the stimuli similarly. Lastly, 

subjects also completed the Interpersonal Reactivity Index (Davis, 1983) personality 

questionnaire, which measures an individual’s dispositional empathy. 

 

Computational model. We computed trial- and subject-specific values for stimulus 

value (SV), prediction error (PE), and reward (R) consistent with the methods of our 

previous study (Lin et al., 2011).  The stimulus value (SV) for every slot machine was 

calculated as the 10-trial moving average proportion of times that the machine was 

chosen when it was shown, a continuous value between 0 and1.  Consistent with this 

coding, reward outcomes  (R) were assigned a value of 1 if they were positive; a value of 

0.5 if they were neutral, and a value of 0 if they were negative.   Prediction errors (PE) at 

the time of outcome were calculated using a simple Rescorla-Wagner learning rule 

(Rescorla and Wagner, 1972) as the difference between the value of the reward outcome 

and the stimulus value of the machine selected for that trial: PEt = Rt – SVt. 

 

Image acquisition. T2*-weighted gradient-echo echo-planar (EPI) images with BOLD 

contrast were collected on a Siemens 3T Trio.  To optimize signal in the orbitofrontal 
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cortex (OFC), we acquired slices in an oblique orientation of 30o  to the anterior 

commissure-posterior commissure line (Deichmann, Gottfried, Hutton, & Turner, 2003) 

and used an eight-channel phased array headcoil.  Each volume comprised 32 slices. Data 

was collected in two sessions, ~15 min each. The imaging parameters were as follows: 

TR= 2 s, TE= 30 ms, FOV= 192 mm, 32 slices with 3mm thickness resulting in isotropic 

3mm voxels. Whole-brain high-resolution T1-weighted structural scans (1 x 1 x 1 mm) 

were co-registered with their mean T2*-weighted images and averaged together to permit 

anatomical localization of the functional activations at the group level. 

 

fMRI pre-processing. The imaging data was analyzed using SPM8 (Wellcome 

Department of Imaging Neuroscience, Institute of Neurology, London, UK). Functional 

images were corrected for slice acquisition time within each volume, motion-corrected 

with realignment to the last volume, spatially normalized to the standard Montreal 

Neurological Institute EPI template, and spatially smoothed using a Gaussian kernel with 

a full-width at half-maximum of 8mm. Intensity normalization and high-pass temporal 

filtering (filter width = 128s) were also applied to the data. 

 

fMRI data analysis. The data analysis proceeded in three steps. First, we estimated a 

general linear model with AR(1). This model was designed to identify regions in which 

BOLD activity was parametrically related to SV, R, and PE. The model included the 

following regressors:  

R1) An indicator function for the decision screen in free-choice monetary trials. 

R2) An indicator function for the decision screen in free choice monetary trials multiplied 
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by the SV of the two slot machines shown in that trial (summed SV). 

R3) An indicator function for the decision screen in free choice monetary trials multiplied 

by the reaction time for that trial. 

R4)-R6) Analogous indicator functions for decision screen events in free choice social 

trials. 

R7) An indicator function for the decision screen in forced monetary trials. 

R8) An indicator function for the decision screen in forced monetary trials multiplied by 

the SV of the slot machine displayed. 

R9)-R10) Analogous indicator functions for decision screen events in forced social trials.  

R11) A delta function for the time of response in the monetary condition. 

R12) A delta function for the time of response in the social condition. 

R13) An indicator function for the outcome screen in free monetary trials (both choice 

and non-choice). 

R14) An indicator function for the outcome screen in free monetary trials multiplied by 

the PE for the trial. 

R15) An indicator function for the outcome screen in free monetary trials multiplied by 

the R for the trial. 

R16)-R18) Analogous indicator functions for outcome screen events in free social trials 

(both choice and non-choice). 

We orthogonalized the modulators for the main regressors that had more than one 

modulator (e.g., R2 and R3). The model also included six head-motion regressors, 

session constants, and missed trials as regressors of no interest. The regressors of interest 

and missed trial regressor were convolved with a canonical HRF. 
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 Second, we calculated the following first-level single-subject contrasts: 1) R2 vs. 

baseline, 2) R5 vs. baseline, 3) R14 vs. baseline, 4) R15 vs. baseline, 5) R17 vs. baseline, 

and 6) R18 vs. baseline. 

 Third, we calculated second-level group average beta plots using a novel leave-one-

out method to avoid concerns of non-independence selection (Vul, Harris, Winkielman, 

& Pashler, 2009). For each contrast, we extracted the mean signal from a group of voxels 

customized for each subject by our novel leave-one-out method. These voxels were 

selected through the following procedure: 

1)  Excluding the subject, second-level group contrasts for the rest of the subjects, 

from both this study and the study in Chapter 3 were computed 

2)   Voxels surviving a threshold of p<0.005 were intersected with an anatomical 

mask selected based on results from the study in Chapter 3. The anatomical mask 

for the vmPFC at choice was taken using a sphere of 10-mm radius defined 

around the peak activation coordinates that correlated with stimulus values in 

Rolls et al. (E. T. Rolls, McCabe, & Redoute, 2008b). The anatomical mask for 

the vmPFC at reward outcome was given by a sphere of 10-mm radius defined 

around the peak coordinates that correlated with the magnitude of reward 

outcome in O’Doherty et al. (J. P. O'Doherty, R. Deichmann, H. D. Critchley, & 

R. J. Dolan, 2002).  The anatomical mask for the ventral striatum was taken using 

a sphere of 10-mm radius defined around the peak activation coordinates that 

correlated with prediction errors in Pessiglione et al. (Pessiglione et al., 2006).  

3)  The intersection of the second-level group contrast and the anatomical mask 

defined the ROI we extracted the mean signal for each subject.   
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4.3.3 Results 
 
Behavioral Results 
 
I compared a group of 10 high-functioning adults with ASD with 10 healthy controls 

matched on age, sex, and education (Table 4.2).  

 

 

 

 

Figure 4.9 Pleasantness ratings of the happy, neutral, and angry social stimuli. There 
were no significant differences between groups on any of the categories. 
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My first check was to confirm the two subject groups had similar subjective 

experiences of the face stimuli. Figure 4.9 plots the pleasantness ratings for angry, happy, 

or neutral social stimuli for each group. There were no statistically significant differences 

in any of the valence categories. Neither were there any meaningful differences in 

reaction times (Figure 4.10). 

 

 

Figure 4.10 A) Distribution of mean reaction-times between ASD and NT B) 
Distribution of SD of reaction-times between ASD and NT  
 

 

 

 

Turning to the choice data from the main task, I found that both groups reliably 

learned to select the slot machine associated with the highest probability of a positive-

valenced outcome for both social and non-social rewards (Figure 4.11).   
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Figure 4.11 Plot of group subjects choices across trials. Both groups reliably learned 
to select the slot machine associated with the highest probability of a positive valenced 
outcome and avoid the slot machine associated with the highest probability of a negative 
valenced outcome in both monetary and social conditions. 
 

 

 

I then plotted the cumulative number of optimal choices trial by trial. What was 

particularly interesting was that when social and monetary trials were collapsed, both 

ASD and NT lines lay essentially on top of one another (Figure 4.12). However, when I 

separated out social and monetary trials, I found a double dissociation: ASD subjects 

were better than NT on the monetary condition, but NT subjects were better than ASD on 

the social condition (Figure 4.13). A t-test for differences of the slopes of the best-fit line 

for cumulative positive trials revealed that slopes for the NT group were significantly 

higher than those for the ASD group in the social condition (ASD: 0.86 vs NT: 0.97; 
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t(10)=-2.35, p<0.04). The same analysis did not result in any significant differences 

between the groups on the negative trials for the social condition or any of the monetary 

conditions. 
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Figure 4.12 Plot of cumulative optimal responses across trials combining 
monetary and social trials 
 

            
 
Figure 4.13 A) Plot of cumulative optimal responses across trials in monetary 
condition. B) Plot of cumulative optimal responses across trials in social condition 
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Figure 4.14 Total percentage of optimal slot machine selection (mean and SEM) for 
positive trials in social and monetary condition 

 

 

I found a similar result when I looked at total percentage of optimal slot machine 

selection at the end of the experiment (Figure 4.14). There was a significant difference 

between ASD and NT on positive trials in the social condition (ASD: 0.85 vs NT: 0.96; 

t(10)= -2.27, p<0.05) but not in any of the other conditions. A 2 by 2 ANOVA of subject 

group (ASD or NT, a between-subject factor) and condition (monetary and social) 

collapsing positive and negative trials (a within-subject factor) had no significant main 

effects of category or group (all F’s <1, all p-values > .4) but revealed a significant group 

by condition interaction effect (F(1,1)=4.20, p<0.05). 
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Lastly, a qualitative look at individual subject data seemed to show differing rates 

of learning. To capture this in a quantitative manner, I modeled each subject’s choice data 

with a probit regression. The slope estimate of the probit regression was thought to be a 

good metric for learning rate. I fit a probit regression through each subject’s raw data 

appended with 10 alternating left and right trials at the beginning. I padded the start to 

give the model enough learning trials, since some subjects were able to identify the high 

value slot machine within 1 or 2 trials. Visual inspection confirmed this resulted in the 

best estimates. 

I also checked whether the probit regression differentially modeled one group’s 

data better than the other’s by comparing Akaike Information Criteria (AIC) scores 

between the two subject groups. The answer in this case was no (all p-values >0.05). The 

probit regression did not fit NT data any better or worse than ASD data. After these 

checks, I felt confident that the slope estimate from each subject’s probit regression was 

an accurate reflection of learning rate. 

Figure 4.15 plots the difference between the probit slope coefficient for positive 

trials in the monetary and social condition for each subject. This showed an interesting 

group split. I quantified these findings with a Fischer’s exact test on the distribution of 

greater monetary vs social probit slope coefficient in ASD and control subjects. I found 

there was a significant contingency between subject group (ASD vs. Controls) and a 

faster learning rate in the monetary over the social condition (p = .032).  A greater 

proportion of participants in the ASD group, than participants in the control group, had 

learning rates that were faster for the monetary than the social condition. 
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Figure 4.15 Difference between monetary and social probit regression coefficients 
(positive trials only). We fit probit regressions to each subject’s choices on the positive 
trials in each condition. We then plotted the difference between the fitted monetary and 
social coefficient for each subject.  
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Exploratory neuroimaging results 
 

At the writing of this thesis, neuroimaging analysis for this project was still 

ongoing. I present very exploratory results here to give a flavor for the data.  

Figure 4.16 shows the average beta plots between groups for each of the main 

contrasts. The first nice thing to notice is the replication of the results from study 1. In all 

contrasts the average beta plots are non-zero and positive for the NT group (all p-values 

<0.05).  

 

 

 

 

 

Figure 4.16 Average beta plots for activity during the 1) time of decision modulated by 
SV, 2) time of outcome modulated by PE, and 3) time of outcome modulated by reward 
in both social and monetary trials for both group types. The functional masks were given 
by the intersection of leave-one-out analysis described in the methods and anatomical 
masks vmPFC for SV and R and VStr for PE. 
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While ASD results are not as easy to interpret, they do show that activity for 

monetary PE (0.53, t(8)=3.08, p<0.02) and rewards (1.48, t(8)=4.98, p<0.001) at the time 

of outcome are significantly different from zero. And vmPFC encoding of SV at the time 

of decision is significantly lower than the NT group in both the social (ASD: -0.213 vs 

NT: 0.466; t(15)=-3.09, p<0.01 ) and monetary (ASD: -0.133 vs NT: 0.623; t(21)=-3.98, 

p<0.001) condition. There were no other significant differences between groups in the 

other contrasts. 

Although not significant, I also found a trend of higher levels of activation in the 

monetary condition over the social condition in the ASD group. There were no significant 

differences between corresponding contrasts in the social and monetary conditions for the 

NT group. 

Lastly, I found hippocampus activity modulated by SV at the time of decision in 

social trials in ASD subjects at an uncorrected threshold of p<0.005. I also found 

hippocampus activity at an uncorrected threshold of p<0.005 at the time of outcome 

modulated by PE in monetary trials for ASD subjects. There was no hippocampus 

activity in any of the contrasts for the NT group. 
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4.3.4 Discussion 

  
 In terms of overall ability behaviorally to discriminate positive from negative slot 

machines in their choice behavior, reaction-times, and valence ratings, both groups 

performed remarkably similarly. Both groups learned to choose in favor of the slot 

machine associated with positive outcomes, and to choose so as to avoid the slot machine 

with negative outcomes; and both groups learned to do so for either the monetary or the 

social condition.  The fact that both groups showed such similar choice behavior and 

gave essentially identical valence ratings to the social stimuli provides strong evidence 

that our ASD group did not have a basic perceptual impairment in recognizing the value 

of the social stimuli (the emotional faces we used), nor did they have a basic impairment 

in understanding the task or in showing motivated behavior to obtain rewards.  The 

highly similar overall behaviors and ratings in the two well-matched groups provide a 

starting point for discovering more specific dissociations, to which we turn next. 

 When looking in more detail at the cumulative choices made, and at the rate at 

which participants learned to choose optimally, we found a disproportionate impairment 

in the ASD group in learning to choose social rewards, compared to monetary rewards.  

Over time, the ASD group selected significantly fewer of the most rewarding social slot 

machine compared to the monetary slot machine, and also had a significantly slower 

initial learning rate for the socially rewarding slot machine, compared to the monetary 

slot machine.  This pattern of findings was particularly compelling because it went in the 

opposite direction to what we found in the controls.  Whereas controls cumulatively made 

a greater number of optimal choices in the social than the monetary condition, the ASD 
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group showed the converse pattern.  Whereas controls generally learned faster in the 

social than the monetary condition, the ASD group again showed the converse pattern.  

These dissociations argue that the impairments in social reward processing found here in 

the ASD group cannot be attributed simply to an overall greater difficulty on the social 

than the monetary task.  Rather, they appear to reflect a disproportionate impairment 

showing some domain-specificity for social rewards in people with autism. 

One thing to note here is that initially an overt view of the data showed no 

differences on various task mastery metrics such as total correct and optimal switching 

between the groups – a finding that has been reported in other behavioral studies with 

ASD subjects (Kohls et al., 2011). However, once I moved beyond first-order measures, I 

was able to uncover subtle but robust differences in behavior towards social rewards.  

Albeit very preliminary, the neuroimaging data can provide insight into the 

differences in neural processes that underlay these behavioral differences found between 

ASD and controls. In Chapter 3, I showed activation in ventromedial prefrontal cortex 

(vmPFC) coding value at the time of choice, activation in the ventral striatum (vStr) 

coding the discrepancy between obtained and expected outcome (PE), and activation in 

vmPFC coding outcome value. Moreover, these regions were activated jointly by 

monetary and social reward. In this present study, we found controls showed robust 

activation to both social and monetary rewards at the time of choice and at the time of 

outcome in a vmPFC ROI, as well as activation to PE in both social and monetary trials 

at the time of outcome in a VStr ROI. This was a nice replication of the results in Chapter 

3. In contrast, while I did find activity for monetary PE and rewards at the time of 

outcome, I did not find the same activity in social PE and rewards for the ASD group. 
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This is consistent with the results of the study by Scott-Van Zeeland (2010), who 

found diminished vmPFC and VStr response during social but not monetary reward 

learning. They also reported that activity within the VStr predicted social reciprocity 

within the control group, but not the ASD group. My data offers some evidence for the 

theory of a social-domain specific deficit for processing social rewards, however the 

story is incomplete because I did not find vmPFC encoding of decision cues at value in 

the monetary condition.  

What is even more puzzling is the fact that I did not find vmPFC activity 

encoding SV for either the monetary or the social condition. These results suggest that 

both monetary and social SV construction is abnormal in ASD. This is not inconsistent 

with the ideas of Dichter et al. (2012), who suggested that the decreased nucleus 

accumbens and vmPFC activity that they observed was suggestive of general reward 

system dysfunction in ASD during anticipation. Collectively, my data seem to suggest 

that reward experience is specifically impaired for social rewards, but that the 

construction of value signals at the time of choice is abnormal for general rewards.  

Perhaps one compensatory mechanism for people with ASD is to circumvent the 

construction of value signals at the time of choice in the vmPFC and to rely instead on a 

hippocampus-mediated memory route. In a whole-brain exploratory analysis, I found 

hippocampus activation that was modulated by SV at the time of decision in social 

reward trials that seem to support such a theory.  Dichter et al. in their study also noted an 

unexpected finding of hippocampus hyperactivation in the ASD group during monetary 

anticipation (Dichter, Richey, et al., 2012). 
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These findings demonstrate a subtle but specific behavioral insensitivity to 

social rewards in ASD, consistent with prior hypotheses, and are suggestive of an 

abnormal representation of reward values at the time of choice and potential specific 

impairment in processing social rewards at the time of outcome from fMRI. The 

behavioral results imply that even with abnormal processing, people with autism can 

employ compensatory behavioral mechanisms that from a first order look make them 

difficult to distinguish from controls. 

  These results begin to help us understand why people with autism may avoid 

other people and may not be motivated normally by social stimuli. Eventually, it will lead 

to a detailed and quantitative picture of the brain processes that underlie social rewards, 

and that are responsible for social motivation. 
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4.4 Summary and outlook 
 

Several other recent studies have investigated reward processing in people with 

autism, and have suggested disproportionate impairments in social reward processing, as 

well as more general impairments in processing rewards across multiple stimulus types.  

For instance, it was reported that children with autism showed generally impaired 

implicit reward learning to both money and social stimuli, although the neural response to 

such stimuli measured with fMRI also showed a disproportionate abnormality for the 

social stimuli in particular (Scott-Van Zeeland et al., 2010).  Another study (Dichter, 

Felder, et al., 2012) found that the neural response to monetary reward learning was 

abnormal in people with ASD, but that this abnormality disappeared during processing of 

interesting objects, possibly corresponding to the restricted-interests aspect of the autism 

phenotype.  These studies are broadly consistent with the results of the two studies in this 

chapter. In the charitable donation task, people with ASD donated less overall (a domain-

general impairment in reward processing); donated disproportionately less to people 

charities (a domain-specific impairment in social reward processing); and donated a lot to 

a few idiosyncratic non-social charities (intact or even exaggerated reward processing for 

a few unusual stimuli). In the neuroimaging study, we found again there was a domain-

specific impairment of social reward learning exemplified by the relative ease ASD 

subjects had learning with monetary rewards over social rewards, while we found the 

exact opposite learning pattern in neurotypicals. These patterns show that high-

functioning people with ASD are not altogether incapable of evaluating stimuli and 

making reward-based decisions about them--- but that how they evaluate particular 

categories of stimuli is abnormal. 
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The ratings data in the charitable donation tasks alludes to stages of processing 

that may be abnormal in people with ASD. While neurotypicals in the charitable donation 

task rated the impact of pictures and text descriptions on their donation amounts 

particularly high for people charities; the ASD group did not. One consistency among the 

picture and text descriptions of all people charities was the presence and mention of other 

people. For neurotypicals, it seems, the socially salient images and descriptions of other 

people, perhaps by recruiting pathways for empathy and theory of mind, contributed to 

the construction of a higher value signal at the time of donation, which lead ultimately to 

higher donations to people charities. This suggests in ASD subjects an impairment not 

with action selection but recruitment of additional social processing regions for the 

construction of accurate social reward value signals at the time of decision (A. Rangel et 

al., 2008).  

Unfortunately, because of the small sample size in our neuroimaging study we were 

unable to do a PPI connectivity analysis similar to the one performed by Hare et al. in 

their charitable giving study. In their study, they found that value computations in 

vmPFC during charitable decision-making incorporated inputs from the pSTS and 

anterior insula, both areas involved in social cognition (T. A. Hare et al., 2010). My 

hypothesis for a PPI connectivity analysis with our neuroimaging data is activity in 

regions involved in social cognition modulate the inputs to vmPFC in the neurotypical 

group but not the ASD group. 

One highly speculative idea is that the phenotype of autism is a consequence of 

compensatory mechanisms to cover heterogeneous injuries in the brain. There is 

compounding evidence that ASD may not be a single disorder with a single cause but the 
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phenotypic manifestation of many. This may explain why finding ASD-susceptibility 

genes has been so elusive, and why the few candidate genes that have been identified 

have been difficult to replicate between studies and populations (Alarcon et al., 2008; 

Basu, Kollu, & Banerjee-Basu, 2009; Geschwind, 2008). Higher cognition thought is not 

as crucial to life as lower brainstem functioning. Social cognition is disproportionately 

affected because, compared to the physical environment in general, the social 

environment is more complex and difficult to process and model. The processing 

demands for the social environment may be higher, with requirements to manage the 

dynamic recursive flow of information from multiple areas like pSTS and anterior insula. 

While this theory would not explain characteristics of autism such as restricted 

repetitive behavior, it would help tie the results of Scott-Van Zeeland et al. (2010) and 

Dichter et al. (2012) to a unified theory. In both studies, they found generally lower levels 

of neural reward activity in both the monetary and social conditions in the ASD 

population compared to matched controls, yet we often observe only a behavioral deficit 

in social reward processing. Perhaps the social domain-specific deficits we observe in 

behavior are simply a reflection of the added complexity of social reward processing; for 

non-social reward processing, compensatory mechanisms such as hippocampus-mediated 

memory could be sufficient.  

 Returning to the social motivation hypothesis of autism (Dawson et al., 2002; 

Dawson et al., 1998; Grelotti et al., 2002), it remains an intriguing question how precisely 

the pattern of impairments we report here emerges during development.  One possibility 

is that early domain-general impairments in reward processing, in a developmental 

context, give rise to impairments disproportionate for social stimuli (Triesch, Teuscher, 
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Deak, & Carlson, 2006).  Similarly, early domain-general impairments in integrating 

complex contextual information may result in impairments particularly acute for social 

stimuli, simply because these draw more upon integrating multiple sources of 

information.  An important future task will be to map out the abilities, and the 

concomitant brain responses, of people with ASD to process and evaluate a broad range 

of stimuli. 

 
 
  



 109 
References 
 
Alarcon, M., Abrahams, B. S., Stone, J. L., Duvall, J. A., Perederiy, J. V., Bomar, J. M., 

et al. (2008). Linkage, association, and gene-expression analyses identify 

CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet, 82(1), 150-159. 

Basu, S. N., Kollu, R., and Banerjee-Basu, S. (2009). AutDB: a gene reference resource 

for autism research. Nucleic Acids Res, 37(Database issue), D832-836. 

Chib, V. S., Rangel, A., Shimojo, S., and O'Doherty, J. P. (2009). Evidence for a 

common representation of decision values for dissimilar goods in human 

ventromedial prefrontal cortex. J Neurosci, 29(39), 12315-12320. 

Dawson, G., Carver, L., Meltzoff, A. N., Panagiotides, H., McPartland, J., and Webb, S. 

J. (2002). Neural correlates of face and object recognition in young children with 

autism spectrum disorder, developmental delay, and typical development. Child 

Dev, 73(3), 700-717. 

Dawson, G., Meltzoff, A. N., Osterling, J., Rinaldi, J., and Brown, E. (1998). Children 

with autism fail to orient to naturally occurring social stimuli. J Autism Dev 

Disord, 28(6), 479-485. 

Dichter, G. S., Felder, J. N., Green, S. R., Rittenberg, A. M., Sasson, N. J., and Bodfish, 

J. W. (2012). Reward circuitry function in autism spectrum disorders. Soc Cogn 

Affect Neurosci, 7(2), 160-172. 

Dichter, G. S., Richey, J. A., Rittenberg, A. M., Sabatino, A., and Bodfish, J. W. (2012). 

Reward circuitry function in autism during face anticipation and outcomes. J 

Autism Dev Disord, 42(2), 147-160. 

Frith, C. D. (2007). The social brain? Philos Trans R Soc Lond B Biol Sci, 362(1480), 

671-678. 

Geschwind, D. H. (2008). Autism: many genes, common pathways? Cell, 135(3), 391-

395. 

Grelotti, D. J., Gauthier, I., and Schultz, R. T. (2002). Social interest and the development 

of cortical face specialization: what autism teaches us about face processing. Dev 

Psychobiol, 40(3), 213-225. 



 110 
Hare, T. A., Camerer, C. F., Knoepfle, D. T., and Rangel, A. (2010). Value 

computations in ventral medial prefrontal cortex during charitable decision 

making incorporate input from regions involved in social cognition. J Neurosci, 

30(2), 583-590. 

Harris, A., Adolphs, R., Camerer, C., and Rangel, A. (2011). Dynamic construction of 

stimulus values in the ventromedial prefrontal cortex. PLoS One, 6(6), e21074. 

Kanner, L. (1968). Autistic disturbances of affective contact. Acta Paedopsychiatr, 35(4), 

100-136. 

Lin, A., Adolphs, R., and Rangel, A. (2011). Social and monetary reward learning engage 

overlapping neural substrates. Soc Cogn Affect Neurosci. 

Rangel, A., Camerer, C., and Montague, P. R. (2008). A framework for studying the 

neurobiology of value-based decision making. Nat Rev Neurosci, 9(7), 545-556. 

Rogers, S. J., Ozonoff, S., and Maslin-Cole, C. (1991). A comparative study of 

attachment behavior in young children with autism or other psychiatric disorders. 

J Am Acad Child Adolesc Psychiatry, 30(3), 483-488. 

Scott-Van Zeeland, A. A., Dapretto, M., Ghahremani, D. G., Poldrack, R. A., and 

Bookheimer, S. Y. (2010). Reward processing in autism. Autism Res, 3(2), 53-67. 

Singer, T., Seymour, B., O'Doherty, J., Kaube, H., Dolan, R. J., and Frith, C. D. (2004). 

Empathy for pain involves the affective but not sensory components of pain. 

Science, 303(5661), 1157-1162. 

Triesch, J., Teuscher, C., Deak, G. O., and Carlson, E. (2006). Gaze following: why (not) 

learn it? Dev Sci, 9(2), 125-147. 

  



 111 
 
 

 

 

 

 

 

 

 

CHAPTER FIVE 

Conclusion and Final Words 



 112 

 Conclusions Chapter 5:

At the beginning of this thesis, I laid out some basic questions about social 

rewards. I answered these through a series of investigations with simple experiments. I 

summarize the findings and their significance here. 

 

What is a social reward?  

A social reward is a social interaction that individuals will seek out or modify 

their behavior to obtain. With a simple instrumental learning task, I was able to 

demonstrate that social rewards fit this behaviorist definition of a reward. I found that 

people will consistently pick cues that are associated with positive-valenced faces and 

matching sound effects.  

What makes social rewards rewarding? 

Social rewards are rewarding because they engage key areas of the reward 

circuitry like the vmPFC and vStr – the same overlapping areas that other types of 

rewards also engage.  My results, as well as other studies (Chib et al. 2009), provide 

increasing support for the common neural currency theory.   

How do they compare to other types of rewards?  

Despite the high degree of overlap, there are unique aspects of social reward 

processing. In people with autism, I was able to demonstrate a domain-specific 

impairment with social cognition. They were found to have reduced preference and 

sensitivity towards social rewards. Furthermore, there was suggestive evidence for 
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deficits in the construction of value signals on which preferences regarding other 

people are based, despite otherwise intact social knowledge. 

My neuroimaging data is also suggestive of deficits in general reward processing, 

particularly the construction of value signals at the time of decision, but these deficits are 

perhaps disproportionately worse for social reward processing. This is consistent with the 

findings of Dichter (2012) and Scott-Van Zeeland (2010), who also found hypoactivation 

of key reward areas in ASD subjects. Scott-Van Zeeland showed generally impaired 

implicit reward learning to both money and social stimuli, although the neural response to 

such stimuli measured with fMRI also showed a disproportionate abnormality for the 

social stimuli in particular. 

Social processing may be differentially affected because the social world is more 

complex than other stimuli in our external world and requires drawing more upon 

integrating multiple sources of information. In particular, there is evidence that additional 

processing is required in order to interpret the value of socially relevant stimuli, 

originating in part from regions in the brain that social neuroscience has identified as 

coming disproportionately into play when we think about other people (Hare et al., 2010).   

While my research suggests general reward processing is abnormal in ASD, it still 

lends support to the social motivation theory since it is social rewards that are the most 

greatly affected. As such, if social cognition deficits in ASD are a result of limited social 

learning because of decreased social motivational value, one obvious behavioral 

therapeutic intervention is to find ways to boost the motivational value of social stimuli 

early in development, perhaps by linking to extrinsic rewards. 
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Two other interesting research directions that are raised by my findings are a 

better understanding of how stimulus value signals are constructed at the time of 

decision, and whether in ASD one compensatory mechanism is to circumvent the 

construction of value signals at the time of choice in the vmPFC by relying instead on a 

hippocampus-mediated memory route. A PPI connectivity model with ASD fMRI data 

would be able to inform us about both questions.  

One experimental challenge for these types of studies though is how do we know 

subjects are actually experiencing stimuli similarly. In my studies, I asked subjects for a 

self-report on pleasantness ratings of the stimuli to compare subjective experience 

between the two subject groups. I reported no differences between the two groups and 

concluded that both groups experience the social stimuli equally. However, it could be 

the case, that ASD subjects do not actually experience the stimuli similarly but they have 

been consciously taught to assign positive valence to smiling faces. A better way to 

assess subjective experience would be through an implicit measure such as reaction time 

or amount of work willing to perform. One of my colleagues in the lab ran such an 

experiment with individuals with autism. She showed subjects a vast set of stimuli 

including some social stimuli. The amount of time a stimulus stayed onscreen was 

determined by the number of key presses a subject exerted. At the end of the experiment, 

she also asked subjects to assess all the stimuli on a self-report liking rating. She found 

high correlation between the self-report and the work task.  

And then even if we are able to perfectly match the subjective experience of the 

stimuli at outcome, a remaining challenge is how do we estimate accurate value signals at 

the time of choice for each subject. Many studies estimate the decision value by fitting a 



 115 
computational learning model like Rescorla-Wagner to the data. Again, an intrinsic 

measure like reaction-time on a trial-by-trial level may be a close proxy but is often times 

very messy. Considering these challenges in future studies may help clean up the data 

and allow us to better model how decision values are constructed in the brain at the time 

of decision.  

A related question is whether identical neurons code for both decision stimulus 

value and experienced reward. In the study in Chapter 3, it appeared that similar areas in 

vmPFC encoded both stimulus value and reward outcome, however, because we are 

limited by the spatial resolution of fMRI, we cannot rule out the possibility that there 

might be neuronal subpopulations within the vmPFC. Future studies using fMRI 

adaptation designs or direct electrophysiological recordings within these regions will be 

better able to address this issue. They may be able to elucidate the unusual result we 

found in the ASD population where the reward at outcome signal seemed to be preserved, 

while the value signal at the time of decision was absent.  

Preserved outcome signal but absent anticipation signal is reminiscent of the 

findings from Bechara’s study on patients with prefrontal damage. Bechara (1997) 

showed while patients with prefrontal damage had normal skin conductance responses 

(SCR) to winnings and loses at outcome, they did not generate the same anticipatory 

SCRs that guide neurotypical behavior before decisions. A natural follow-up to test 

whether the same case is true in individuals with ASD would be simply to measure 

electrophysiological responses during the instrumental learning task with both social and 

monetary rewards in Chapter 3.  
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Lastly, beyond evaluation of social stimuli in isolation, can social evaluation 

bleed into neighboring non-social objects? Marketing firms have already honed in our 

interests in social stimuli; commercials are replete with celebrities and other salient social 

stimuli. An area of personal interest to me is studying how our valuation of objects is 

influenced by social rewards. Jamil Zaki has already begun to explore this area. A study 

of his looks at how social influence modifies stimulus value construction in the vmPFC 

with a norm compliance task. First, he asked subjects to rate the attractiveness of a series 

of faces and then he showed them ostensibly how a previous group of participants had 

rated the faces. Then he had subjects re-rate the faces. He found changes in subject’s 

ratings assigned to faces that were inconsistent with the group’s ratings, accompanied 

with changes in value signal in the vMPFC as a result of social influence (Zaki et al. 

2011).  While it leaves as an open question how these signals are integrated, it provides 

the first evidence that leakage of social rewards does happen. 

If the valuation of objects can be highly influenced by social interactions, we may 

continue to see higher and higher IPOs for social media companies like Facebook in the 

future. As Facebook and Twitter become household names, businesses are quickly 

realizing the influence of social rewards. Simple Energy, the company I mentioned at the 

beginning of my thesis, is harnessing the social reward of reputation and comparison to 

change consumer behavior to use energy more efficiently. What is novel about their 

business model is it does not require monetarily incentivizing people; they rely 

completely on the pull of social rewards.  
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