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Abstract

We present combinatorial and probabilistic interpretations of recent results in the theory of elliptic

special functions (due to, among many others, Frenkel, Turaev, Spiridonov, and Zhedanov in the

case of univariate functions, and Rains in the multivariate case). We focus on elliptically distributed

random lozenge tilings of the hexagon which we analyze from several perspectives. We compute

the N -point function for the associated process, and show the process as a whole is determinantal

with correlation kernel given by elliptic biorthogonal functions. We furthermore compute transition

probabilities for the Markov processes involved and show they come from the multivariate elliptic

difference operators of Rains. Properties of difference operators yield an efficient sampling algorithm

for such random lozenge tilings. Simulations of said algorithm lead to new arctic circle behavior.

Finally we introduce elliptic Schur processes on bounded partitions analogous to the Schur process

of Reshetikhin and Okounkov ( and to the Macdonald processes of Vuletic, Borodin, and Corwin).

These give a somewhat different (and faster) sampling algorithm from these elliptic distributions,

but in principle should encompass more than just tilings of a hexagon.
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Chapter 1

Introduction

In this chapter we start by addressing the purpose and layout of the thesis. We give a description of

each subsequent chapter. We continue by introducing most of the notation and auxiliary functions

necessary throughout, and finish with a brief overview of the uniformization theorem for elliptic

curves.

1.1 Foreword

In this thesis we present certain combinatorial and probabilistic interpretations of recent results

in the theory of elliptic special (hypergeometric) functions. On the special functions side we are

interested in the multivariate results of Rains [Rai10], [Rai06] and on some univariate results due to

Spiridonov and Zhedanov [SZ00] and Frenkel and Turaev [FT97]. On the statistical mechanical and

probabilistic side we try to generalize results of Borodin, Gorin and Rains [BG09], [BGR10].

We mostly restrict attention to random elliptically distributed lozenge tilings of a hexagon. For

such tilings, we first study many properties of the elliptic measures and explain how they are many

parameter deformations of natural measures already studied on tilings. Tilings can be viewed as

Markov processes and we provide the N -point correlation function as well as transition probabilities

via Kasteleyn theory (equivalently, via the Lindström-Gessel-Viennot theorem). We interpret the

transition probabilities as multivariate elliptic difference operators due to Rains. Properties of such

operators also have nice probabilistic interpretations (i.e., quasi-commutation and quasi-adjointness)

and allow us to couple two “orthogonal” Markov chains using ideas of Borodin and Ferrari [BF10] and

to obtain an efficient polynomial-time sampling algorithm for random (large) elliptically distributed

tilings. We provide computer simulations of the algorithm that lead to interesting asymptotic

behavior of such tilings.

We finally introduce elliptic Schur-like processes on partitions analogous to (and a generalization

of) Reshetikhin and Okounkov’s Schur process [OR03] and the Macdonald processes of Vuletic,

Borodin and Corwin [Vul09], [BC11]. The key notions here are Rains’ elliptic skew interpolation
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functions (generalizing skew Schur functions—see [Rai11]) and more precisely the elliptic binomial

coefficients [Rai06]. Under certain specializations of the parameters such processes lead again to

the elliptic measures we considered above. Identities for binomial coefficients and elliptic skew

interpolation functions allow us to provide a second example of a polynomial-time efficient sampling

algorithm (somewhat similar to the previous one, yet somewhat faster). We do this via a different

coupling of two orthogonal Markov chains.

The layout of the thesis is as follows. For the rest of the first chapter we introduce the bulk of

the notation used in all subsequent chapters. We also give some properties for some of the functions

we introduce, restricting ourselves only to the necessary facts for our purposes. Finally we present

a succinct description of the uniformization theorem that can oftentimes be useful when thinking

about elliptic distributions. As a general note for the whole document, wherever our exposition

follows one of the references closely, we make that point at the beginning of the respective section.

In Chapter 2 we collect a few recent results on elliptic hypergeometric functions. We are interested

in univariate and multivariate evaluation formulas for integrals and summation formulas for termi-

nating hypergeometric series. The most important results for our purposes are the Frenkel-Turaev

summation formula and its multivariate analogue (see [FT97], [Rai06]) as well as a hypergeomet-

ric determinant evaluation of Warnaar [War02]. We introduce the combinatorial and probabilistic

aspects of lozenge tilings of a hexagon in Chapter 3. We briefly discuss the Kasteleyn theory of

bipartite planar dimers and then connect it to tilings of hexagons. We furthermore introduce the

elliptic measures studied for the rest of the thesis, explain how one arrives at such measures, present

some natural well-studied degenerations and study properties of the measures needed further on

(like positivity since we want probability measures in the end). We present two disguises of the

same measure: one symmetric, the other suited for Kasteleyn computations which we also perform

after inverting the elliptic Kasteleyn matrix (see [BGR10]).

The bulk of Chapters 4, 5 and 6 follow the preprint [Bet11]. In Chapter 4 we compute the

N -point correlation function and the transition probabilities for the Markov processes naturally

associated to a lozenge tiling (via the non intersecting path interpretation). We interpret the latter

as the multivariate elliptic difference operators of Rains [Rai10] and connect properties of operators

to probabilistic and combinatorial statements. Based on these properties, in Chapter 5 we present

an efficient sampling algorithm for elliptically distributed lozenge tilings of a hexagon. We follow

the idea of Markov chain coupling laid out by Borodin and Ferrari (see [BF10]; also [BG09] and

[BGR10]). We finally present computer simulations of the algorithm and sample large tilings that

clearly exhibit new arctic circle phenomena. In Chapter 6 we show how the Markov point processes

naturally associated to elliptically distributed lozenge tilings are determinantal point processes with

correlation kernels given by the univariate elliptic biorthogonal functions of Spiridonov and Zhedanov

[SZ00]. We give an integral representation for the biorthogonal functions that may be useful in
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obtaining asymptotics of the biorthogonal kernel, though we do not pursue asymptotics of the

kernel any further.

In Chapter 7 we introduce the elliptic analogues of Schur processes of [OR03] and Macdonald

processes of [Vul09], [BC11]. These are based on the elliptic skew interpolation functions of Rains

[Rai11] which in turn rely on the elliptic binomial coefficients and abelian interpolation functions

[Rai06]. We introduce the theory and then interpret the results combinatorially and probabilisti-

cally. Under certain specializations of the parameters such processes correspond to the previously

mentioned elliptic measures on tilings of a hexagon. As a byproduct we obtain another sampling

algorithm for elliptic distributions on lozenge tilings of a hexagon. This algorithm is somewhat

faster than the one in Chapter 5, but is still based on coupling two appropriate Markov chains. We

further believe the generality of the elliptic processes should be of use for covering other combina-

torial and/or statistical mechanical models, but we do not pursue these ideas further in the present

document.

1.2 Notation, θ,Γ,∆

In this section we introduce notation used throughout the thesis. We introduce the most used

functions and study some of their properties we will often use without explicit mention. Throughout

the entire document we use LHS in place of left hand side and RHS in place of right hand side.

Assume |p|, |q| < 1. On C∗ we define the theta and elliptic gamma functions (see [Rui97]) as

follows:

θp(x) :=
∏
k≥0

(1− pkx)(1− pk+1

x
),

Γp,q(x) =
∏
k,l≥0

1− pk+1ql+1/x

1− pkqlx .

We will make brief use of the following triple gamma function, which we also now define:

Γp,q,t(x) =
∏

i,j,k≥0

(1− pi+1qj+1tk+1/x)(1− piqjtkx).

Notice that θp has simple zeros in pZ while Γp,q has simple zeros in pqpNqN and simple poles in

p−Nq−N. The triple gamma function only has zeros on p−Nq−Nt−N and pqtpNqNtN. Also θ0(x) = 1−x.

The function θp just defined is indeed related to the usual Jacobi theta functions via the triple

product identity. More precisely, let τ be a complex number with positive imaginary part such that

p = e2πiτ and let x = e2πiu. Following the conventions set in [Spi08], the four Jacobi theta functions
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are defined by

θab(u) =
∑
k∈Z

eπiτ(k+a/2)e2πi(k+a/2)(u+b/2), a, b ∈ {0, 1}.

Then let θ1(u) = −θ11(u). The triple product relation is exactly

θ1(u) = ip1/8x−1/2(p; p)θp(x),

where

(z; p) =
∏
i≥0

(1− piz).

The theta-Pochhammer symbol (a generalization of the q-Pochhammer symbol to which it degener-

ates as p→ 0) is defined, for m an integer, as

θp(x; q)m =


∏

0≤i<m θp(q
ix), m > 0,

1, m = 0,∏
1≤i≤−m

1
θp(q−ix) , m < 0.

As is usual in this area, presence of multiple arguments before the semicolon (inside theta or elliptic

gamma functions) will mean multiplication. To wit:

θp(uz
±1; q)m = θp(uz; q)mθp(u/z; q)m; Γp,q(a, b) = Γp,q(a)Γp,q(b).

We have the following important identities (n ≥ 0 an integer):

θp(x) = θp(p/x),

θp(px) = θp(1/x) = −(1/x)θp(x),

Γp,q(q
nx) = θp(x; q)nΓp,q(x),

Γp,q(pq/x)Γp,q(x) = 1,

Γp,q,t(pqt/x) = Γp,q,t(x),

Γp,q,t(tx) = Γp,q(x)Γp,q,t(x).

(1.2.1)

The third identity in (1.2.1) can be extended for non integer n (via analytic continuation) to provide

generalizations of the theta-Pochhammer symbol of non integral length. These identities also extend

to the following among theta-Pochhammer symbols:
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θp(aq
n; q)k =

θp(a; q)kθp(aq
k; q)n

θp(a; q)n
=
θp(a; q)n+k

θp(a; q)n
,

θp(a; q)n = θp(q
1−n/a; q)n(−a)nq(

n
2),

θp(a; q)n−k =
θp(a; q)n

θp(q1−n/a; q)k
(− q
a

)kq(
k
2)−nk,

θp(aq
−n; q)k =

θp(a; q)kθp(q/a; q)n
θp(q1−k/a; q)n

q−nk,

θp(a; q)−n =
1

θp(aq−n; q)n
=

1

θp(q/a; q)n
(− q
a

)nq(
n
2).

(1.2.2)

We will use the above identities throughout for simplifying computations without explicitly referring

to them. Another very important identity involving theta functions is the Riemann addition formula

which takes the following form:

θ1(u± a, v ± v)− θ1(u± b, v ± a) = θ1(a± b, u± b),

or

θp(xw
±1, yz±1)− θp(xz±1, yw±1) =

y

w
θp(xy

±1, wz±1).

To prove the last equality, observe the ratio LHS/RHS is elliptic (see below) as a function of x and

has no poles (the zeros x = y±1 of LHS are annihilated by the similar zeros on RHS), and thus by

Liouville’s theorem must be constant. Plugging in x = w yields the result.

If f(x1, . . . , xn) is a function of n variables defined on (C∗)n, we call it BCn-symmetric if it is

symmetric (does not change under permutation of the variables) and invariant under xk → 1/xk

for all k. We will call it a BCn-symmetric theta function of degree m if in addition, it satisfies the

following:

f(px1, . . . , xn) = (
1

px2
1

)mf(x1, . . . , xn).

The prototypical example of a BCn-symmetric theta function of degree 1 is

f(x1, . . . , xn) =
∏

1≤k≤n

θp(ux
±1
k ).

Notationally, for a function f of n variables, we will use the abbreviation f(. . . xk . . . ) to stand

for f(x1, . . . , xn).

We now define the following function (which will play an important subsequent role):

ϕ(z, w) = z−1θp(zw, z/w). (1.2.3)
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Note ϕ is antisymmetric (ϕ(z, w) = −ϕ(w, x)) of degree 1 in each variable. It is a consequence of

the addition formula for Riemann theta functions that

ϕ(x, y) =

(
ϕ(z, x)

ϕ(w, x)
− ϕ(z, y)

ϕ(w, y)

)
ϕ(w, x)ϕ(w, y)

ϕ(z, w)
,

for arbitrary z, w. We observe that the expression in parentheses appearing above is a Vandermonde-

like factor in transcendental coordinates X = ϕ(z,x)
ϕ(w,x) , Y = ϕ(z,y)

ϕ(w,y) , so ϕ(zi, zj) is an “elliptic analogue”

of the (Vandermonde) difference zi− zj . This is indeed the case if one takes the right limit and then

a product over i < j. To wit:

lim
q→1

limp→0 ϕ(qxi , qxj )

q − q−1
= xi − xj .

Throughout, we will denote by E the elliptic curve (written as a multiplicative group) C∗/〈p〉.
This is of course isomorphic (via the exponential map) to the more familiar additive form for elliptic

curves: C/〈1, τ〉 where p = e2πiτ .

An elliptic function is a function f(x) defined on the curve E. That is, a function invariant under

x 7→ px. It is a well-known theorem (see, e.g., [Sil09]) that elliptic functions must have the same

number of poles as zeros in the fundamental domain (that is, mod p), that number must be greater

than or equal to two for a nonconstant function, and a generic elliptic function f with poles at wk

and zeros at tk is of the form

f(x) = const
∏

1≤k≤n

θp(z/tk)

θp(z/wk)
, where

∏
tk =

∏
wk.

Fix a partition λ with at most n parts (that is, a sequence λ = λ1 ≥ λ2 ≥ · · · ≥ λn, λi ∈ N).

We will write λ ⊂ mn for a partition with at most n parts such that the largest part λ1 ≤ m (and

we say such a partition is contained in the rectangle mn. Note there are
(
m+n
n

)
such partitions).

We will now define the delta symbols introduced in [Rai10] (see also [Rai06]). We need an extra

parameter t (usually taken to be of modulus less than one) for full generality. We start with

C0
λ(x; q; t; p) :=

∏
1≤i≤n

θp(t
1−ix; q)λi ,

C+
λ (x; q; t; p) :=

∏
1≤i≤j≤n

θp(t
j−ix; q)λi−λj+1

θp(tj−ix; q)λi−λj
,

C−λ (x; q; t; p) :=
∏

1≤i≤j≤n

θp(t
2−j−ix; q)λi+λj

θp(t2−j−ix; q)λi+λj+1

.
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Next let

∆0
λ(a| . . . bi . . . ; q; t; p) :=

∏
i

C0
λ(bi; q; t; p)

C0
λ(pqa/bi; q; t; p)

,

∆λ(a| . . . bi . . . ; q; t; p) := ∆0
λ(a| . . . bi . . . ; q; t; p)×

C0
2λ2(pqa; q; t; p)

C−λ (t, pq; q; t; p)C+
λ (a, pqa/t; q; t; p)

,

where the partition 2λ2 is defined by (2λ2)i = 2λdi/2e.

We list here the following transformations for ∆λ corresponding to involutions on partitions of

length at most n (for the second, we need λ ⊂ mn):

∆λ′(a| . . . bi . . . ; 1/t; 1/q; p) = ∆λ(a/qt| . . . bi . . . ; q; t; p),
∆mn−λ(a| . . . bi . . . ; q; t; p)
∆mn(a| . . . bi . . . ; q; t; p)

= ∆λ(
t2n−2

q2ma
| . . . t

n−1bi
qma

. . . , tn, q−m, pqtn−1, pq/qmt; q; t; p), (1.2.4)

where λ′ ∈ nm is the dual partition (the transpose of λ viewed as a Young diagram) and mn−λ is the

complemented partition: (mn − λ)i = m− λn−i+1. We also list the following shift transformations:

∆kn+λ(a| . . . , bi, . . . ; q; t; p)
∆kn(a| . . . , bi, . . . ; q; t; p)

= ∆λ(q2ka| . . . , qkbi, . . . , tn, pqtn−1, qkt1−na, pqqkt−na; q; t; p),

∆0
kn+λ(a| . . . , bi, . . . ; q; t; p)

∆0
kn(a| . . . , bi, . . . ; q; t; p)

= ∆0
λ(q2ka| . . . , qkbi, . . . ; q; t; p). (1.2.5)

Throughout we will mostly be interested in the above formulas when t = q. This simplifies the for-

mulas considerably. Of particular interest will be the ∆-symbol with six parameters t0, t1, t2, t3, u0, u1

satisfying the balancing condition q2n−2t0t1t2t3u0u1 = pq. The formula for ∆λ becomes

∆λ(q2n−2t20|qn, qn−1t0t1, q
n−1t0t2, q

n−1t0t3, q
n−1t0u0, q

n−1t0u1; q; p) = const ·
∏
i<j

(ϕ(zi, zj))
2

∏
1≤i

p−liql
2
i+li(2n−1)t2li0 θp(z

2
i )
θp(t

2
0, t0t1, t0t2, t0t3, t0u0, t0u1; q)li

θp(q, q
t0
t1
, q t0t2 , q

t0
t3
, q t0u0

, q t0u1
; q)li

,

where li = n− i+ λi, zi = qlit0.

Remark 1.2.1. The constant is independent of λ and present in the formula to make the ∆-symbol

elliptic in all of its arguments (the value of the constant can be computed explicitly nevertheless).

In addition to being invariant by multiplying the parameters by integer powers of p (so long as the

balancing condition is maintained), the ∆-symbol above is also invariant by shifting the parameters

by p±1/2 (as long as we shift half the parameters up and half down to maintain the balancing

condition).

Throughout this thesis we will find the presence of p in the balancing condition unnatural from

the combinatorial perspective, so we will be faced with 6 parameters multiplying to q instead. We
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then need to restore the balancing condition by multiplying one of said parameters by p (and we

choose somewhat arbitrarily for that parameter to be u1). We are then looking at

∆λ(q2n−2t20|qn, qn−1t0t1, q
n−1t0t2, q

n−1t0t3, q
n−1t0u0, q

n−1t0(pu1); q; p) = const ·
∏
i<j

(ϕ(zi, zj))
2

(1.2.6)

×
∏
1≤i

qli(2n−1)θp(z
2
i )
θp(t

2
0, t0t1, t0t2, t0t3, t0u0, t0u1; q)li

θp(q, q
t0
t1
, q t0t2 , q

t0
t3
, q t0u0

, q t0u1
; q)li

. (1.2.7)

This discrete elliptic Selberg density is the weight function for the discrete elliptic multivariate

biorthogonal functions defined in [Rai06]. Notice it can be written symmetrically in terms of the

zi’s and the elliptic gamma functions as

const ·
∏
i<j

(ϕ(zi, zj))
2 ·
∏
i

z2n−1
i θp(z

2
i )

Γp,q(t0zi, t1zi, t2zi, t3zi, u0zi, u1zi)

Γp,q(
q
t0
zi,

q
t1
zi,

q
t2
zi,

q
t3
zi,

q
u0
zi,

q
u1
zi)

.

1.3 A note on uniformization

There are two ways one can think of elliptic curves, and both ways can have advantages depending

on the context. Here we give a recipe to go from one to the other. We follow the books by Silverman

[Sil09] and Husemöller [Hus04], and the reader is referred to either for more on the theory of elliptic

curves.

One way involves complex tori (that is, lattices in the complex plane), and an elliptic curve is

then just C/〈1, τ〉 with τ having strictly positive imaginary part. This is a one-dimensional complex

Lie group with obvious addition law coming from the addition of complex numbers. It is isomorphic

via the exponential map to the multiplicative group C∗/〈p〉 where p = e2πiτ (a curve in this form is

called a Tate curve). Let us denote the lattice by Λ = 〈1, τ〉 = Z + τZ. There are a few quantities

associated to Λ. One is the Weierstrass ℘ function, a doubly periodic meromorphic function on the

complex plane with periods in Λ (that is, an elliptic function on C/Λ):

℘(z|Λ) =
1

z2
+

∑
ω∈Λ−0

(
1

(z − ω)2
− 1

ω2

)
.

We also have the associated (modular) quantities g2(Λ) = 60G4(Λ) and g3(Λ) = 140G6(Λ) where

G2k(Λ) =
∑
ω∈Λ−0 ω

−2k.

All the series above are of course convergent. It is furthermore not hard (but rather tedious) to

check that

(℘′(z))2 = 4℘(z)3 − g2℘(z)− g3. (1.3.1)
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Figure 1.1: The addition law on an elliptic curve. The real locus of a real elliptic curve
is pictured (horizontal axis is x, vertical y). In the first picture, P +Q is the
reflection of R in the horizontal x axis.

It is a well-known fact that every elliptic (doubly periodic with period lattice Λ) function on C/Λ

belongs to the field C(℘′(z), ℘(z)) (which is the field of fractions of the polynomial ring C[X,Y ]/Y 2−
X3 − g2X − g3).

Another way to think of an elliptic curve is the (complex) affine locus of points (x, y) satisfying

a cubic equation of the form y2 = x3 − Ax − B. It is often useful to projectivize and look at the

points (x : y : z) in the complex projective plane P2 := P2(C) satisfying y2z = x3 − Axz2 − Bz3.

There is a way to define an addition on such points that makes the locus into a group with identity

given by the point at infinity: (0 : 1 : 0). To wit, take any two (distinct) points (x : y : z), (u : v : w)

on the curve. Let L be the line passing through them (it is unique). Since the curve is cubic, L will

intersect it in 3 points, of which two we already know. Call the third one R. Then the group law

is defined so that (x : y : z) + (u : v : w) is −R. That is to say, if L′ is the line connecting R to

(0 : 1 : 0) then (x : y : z) + (u : v : w) is the third point of intersection of L′ and the curve (we

already know two of them: R and (0 : 1 : 0)). If the two points we started with are not distinct, we

are looking at the line L that is tangent to the curve at (x : y : z) = (u : v : w).

A corollary of the above is that three points on the curve add up to the identity if and only if

they lie on the same line. We illustrate this in Figure 1.1 for a real elliptic curve (image available at

http://en.wikipedia.org/wiki/File:ECClines.svg under the GPL license).

We can now finalize our discussion of uniformization. To go from an elliptic curve in the form

C/〈1, τ〉 to a cubic equation, we use (1.3.1). That is C/〈1, τ〉 ∼= E as complex Lie groups where E is

the elliptic curve {(℘(z), ℘′(z), 1)|(℘′(z))2 = 4℘(z)3 − g2℘(z)− g3} and the isomorphism is explicit

z 7→ (℘(z), ℘′(z), 1).

For the other way, given an elliptic curve with equation y2 = x3 − Ax−B (and A3 − 27B2 6= 0

so that the cubic in x has distinct roots), the two periods ω1, ω2 for the lattice Γ can be computed
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by the following elliptic integrals:

ω1 =

∫
α

dx√
x3 −Ax−B

,

ω2 =

∫
β

dx√
x3 −Ax−B

,

where α, β are two paths in the complex manifold E generating the first homology group H1(E,Z).

We then have C/〈ω1, ω2〉 ∼= {(x, y)|y2 = x3 −Ax−B} as elliptic curves.
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Chapter 2

Elliptic hypergeometric identities

In this chapter we state a couple of elliptic integral identities: a 6-parameter evaluation and an 8

parameter transformation under the Weyl group W (E7). We give proofs for the univariate case and

mention the multivariate analogues we will use. We discuss the discrete (series) analogues of these

identities, including the Frenkel-Turaev summation and a multivariate extension, as they will be

central for the rest of the thesis. We finish with an elliptic determinantal identity due to Warnaar.

For the proofs, we follow [Rai10], [Spi08] and [War02].

2.1 Elliptic beta integrals

We begin with the order 0 (evaluation) and order 1 (summation) elliptic beta integral identities.

For complex parameters ti, 0 ≤ i ≤ 2m+ 5,p, q such that |p|, |q|, |ti| < 1 we define

I(t0, . . . , t2m+5) =
(p; p)(q; q)

2

∫
T

∏
0≤i≤2m+5 Γp,q(tjz

±1)

Γp,q(z
±2
i )

dz

2πiz
,

where T is the positively oriented unit circle. We will mostly be interested in m = 0 or m = 1

which we will call (following [Rai10]; see also [Spi08]) the elliptic beta integrals of order 0 and 1

respectively.

We have the following evaluation formula found by Spiridonov (see, e.g., [Spi02a]), whose proof

we sketch following [Rai10].

Theorem 2.1.1. With parameters as above, one has

I(t0, . . . , t5) =
∏

0≤i<j≤5

Γp,q(titj).

Proof. We observe that the contour separates the poles of the integrand converging to zero from

those diverging to infinity (and contains all of the former), and this is in fact the only requirement

on the contour needed to prove the result.
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We divide the integral by the claimed evaluation and first show that the resulting function is

invariant under the shifts:

(t0, t1, t2, t3, t4, t5)→ (p1/2t0, p
1/2t1, p

1/2t2, p
−1/2t3, p

−1/2t4, p
−1/2t5),

(t0, t1, t2, t3, t4, t5)→ (q1/2t0, q
1/2t1, q

1/2t2, q
−1/2t3, q

−1/2t4, q
−1/2t5),

and permutations of such shifts. Let us denote the integrand by ρ(z) := ρ(z; t0, . . . , t5) and let

ρ1(z; t0, . . . , t5) =
Γp,q(pz/(t0t1t2))

∏
0≤i≤5 Γp,q(tiz)

Γp,q(z2, p/(zt0t1t2)
,

ρ′1(z; t0, . . . , t5) =
Γp,q(pz/(t

′
0t
′
1t
′
2))
∏

0≤i≤5 Γp,q(t
′
iz)

Γp,q(z2, p/(zt′0t
′
1t
′
2)

,

where

(t′0, t
′
1, t
′
2, t
′
3, t
′
4, t
′
5)→ (q−1/2t3, q

−1/2t4, q
−1/2t5, q

1/2t0, q
1/2t1, q

1/2t2).

Clearly ρ(z) = ρ1(z)ρ1(1/z). Moreover, we have

ρ′1(q1/2z)

ρ1(z)
=
θp(t0z, t1z, t2z, pz/(t0t1t2))

θp(z2)
,

ρ1(q1/2z)

ρ′1(z)
=
θp(t3z, t4z, t5z, pz/(t3t4t5))

θp(z2)
,

where in proving the above we use the balancing condition. The RHS above, after symmetrization,

satisfies

θp(uz, vz, wz, pz/(uvw))

θp(z2)
+ (z 7→ (1/z)) = θp(uv, uw, vw),

where by the term (z 7→ 1/z) we mean the previous summand with z replaced by its reciprocal. To

show this, observe the LHS of the identity is elliptic in z and a careful limit shows it has no poles

(at ±1,±√p), so it must be constant. Plugging in z = u yields the result.

Now observe

∫
T
ρ′1(q1/2z)ρ1(1/z)

dz

2πiz
=

∫
q1/2T

ρ1(q1/2z)ρ′1(1/z)
dz

2πiz
,

where to go from left to right we transform z 7→ 1/(q1/2z). First, the integral on the left is over

a contour that still separates (and contains) poles of the integrand converging to 0 from those

diverging to infinity. Likewise on the right. Moreover, we can deform the contour on the right back

into T without passing over any offending poles. Using the fact that ρ′1(q1/2z)ρ1(1/z) =
ρ′1(q1/2z)
ρ1(z) ρ(z)
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and that we can symmetrize both RHS and LHS above (since the contours are symmetrical under

z 7→ 1/z), we obtain

θp(t0t1, t0t2, t0t3)I(t0, . . . , t5) = θp(t3t4, t3t5, t4t5)I(q1/2t0, q
1/2t1, q

1/2t2, q
−1/2t3, q

−1/2t4, q
−1/2t5),

which means the integral divided by the claimed evaluation is invariant under the q shift depicted

above, and permutations thereof (by the S6 symmetry of the parameters). Since the elliptic gamma

function is symmetric in p and q, we get invariance under p shifts as well, and so we get invariance

of the quotient (integral/evaluation) under shifting any parameter by piqj for i, j half-integers. But

such shifts are dense (at least for generic p, q), which means the quotient is invariant under changing

the parameters. It must thus only depend on p and q, and to find such dependence we pass to the

limit and use the residue calculus of [vDS00] (see next section) as follows: we first force the contour

to pass over the poles of the integrand at t0 (moving from the inside to the outside) and 1/t0 (moving

from the outside to the inside). In the process we pick up two residues. We then let t0t1 → 1. The

new integral vanishes and we are left with only the two residues yielding the result.

There is a multivariable generalization of the evaluation formula for the order 0 elliptic beta

integral. The resulting integral is the elliptic Selberg integral, and the proof is very similar (essentially

follows the same steps with more complicated notation) so we will skip it (but see [Rai10]). We will

just state the result as obtained in the aforementioned reference:

Theorem 2.1.2. Let p, q, t be complex parameters of modulus less than 1, t0, . . . , t6 also complex

satisfying the balancing condition t2n−2t0t1t2t3t4t5 = pq. Let C be a positive contour around 0

invariant under reciprocation (C = C−1) containing all points in tip
NqN (for all i), excluding the

reciprocals of such points, and containing contours pNqNtC (if all |ti| < 1 we can take C = T). We

then have:

(p; p)n(q; q)nΓp,q(t)
n

2nn!
×
∫
Cn

∏
1≤i<j≤n

Γp,q(tz
±1
i z±1

j )

Γp,q(z
±1
i z±1

j )

∏
1≤i≤n

∏
0≤s≤5 Γp,q(tsz

±1
i )

Γp,q(z
±2
i )

dzi

2π
√
−1zi

=

∏
0≤j<n

Γp,q(t
j+1)

∏
0≤r<s≤5

Γp,q(t
jtrts)

 .

Clearly for n = 1 variable, the above theorem transforms into Theorem 2.1.1.

If instead ofm = 0 we look atm = 1 (in the one variable case for now), we obtain a transformation

satisfied by the integral. Under proper normalization, we obtain more: (proper) invariance under the

Weyl group W (E7). We begin with the transformation (first discovered in [Spi03]; see also [Rai10]).

Theorem 2.1.3. Let p, q, ti, 0 ≤ i ≤ 7 be complex parameters of modulus less than 1 satisfying the
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balancing condition
∏
ti = p2q2. Then we have

I(t0, . . . , t7) =

 ∏
0≤j<k≤3

Γp,q(tjtk, tj+4tk+4)

 I(s0, . . . , s7),

where

si = uti, si+4 = u−1ti+4, 0 ≤ i ≤ 3, u =

√
pq

t0t1t2t3
=

√
t4t5t6t7
pq

,

and the requirements are such that all si are of modulus less than 1 as well.

Remark 2.1.4. The requirements on the tj ’s and sj ’s can be lifted as long as we replace the

unit circle with a contour that is invariant under reciprocation, contains all poles of the integrand

converging to 0 (of the form tjp
NqN), and excludes all the poles diverging to infinity.

Proof. We start with the following integral:

(p; p)(q; q)

2

∫
T2

Γp,q(cz
±1w±1)

∏
0≤j≤3 Γp,q(ajz

±1, bjw
±1)

Γp,q(z±1, w±1)

dz

2πiz

dw

2πiw
,

where aj , bj , c are complex numbers of modulus less than 1 such that c2
∏
aj = c2

∏
bj = pq. We

can compute this integral in two ways (by first integrating over w or z respectively), and the first

integration can be carried out using the evaluation formula in Theorem 2.1.1. The result follows.

Remark 2.1.5. We used the 6-parameter evaluation formula to prove the 8 parameter transforma-

tion formula. In Section 2.3, we will go the other way, using a discrete transformation to prove a

discrete evaluation formula for a certain elliptic hypergeometric series.

We make the connection with the root system of type E7 now. Let x =
∑
xiei be a vector in R8

satisfying
∑
xi = 0 where {ei} is the usual orthonormal basis of R8 under the usual inner product

〈ei, ej〉 = δi,j . The parameters tj are connected to the coordinates of x via

tj = e2πixj (pq)1/4.

The balancing condition on the tj ’s is guaranteed via the condition on the xj ’s. The root system A7

consists of vectors {ei−ej , i 6= j}. Reflections x→ Sv(x) = x− 2v〈v,x〉
〈v,v〉 in the aforementioned vectors

generate the Weyl group S8. Note these reflections act on the hyperplane in R8 perpendicular to the

space generated by
∑
ei. Adding the extra reflection in the vector w = (−∑0≤i≤3 ei+

∑
4≤i≤7 ei)/2

to the group S8 generated the Weyl group W (E7). The roots for the system E7 (a total of 126) are

those for A7 together with vectors of the form v = (
∑
εiei)/2 where ε ∈ {+,−} and 〈v,∑ ei〉 = 0.

In view of the above paragraph, it should now be clear how W (E7) acts on the parameters of

the order 1 elliptic beta integral. For example, Theorem 2.1.3 corresponds to reflecting in the root

w = (−∑0≤i≤3 ei +
∑

4≤i≤7 ei)/2.
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We list two more consequences of the integral transformation above. We follow [Rai10] where

these are proved in greater generality (in particular, as n-dimensional integrals).

Proposition 2.1.6.

(i) I(t0, . . . , t7) =

 ∏
0≤r≤3,4≤s≤7

Γp,q(trts)

× I(u/t0, u/t1, u/t2, u/t3, v/t4, v/t5, v/t6, v/t7),

where

u2 = t0t1t2t3, v
2 = t4t5t6t7.

(ii) I(t0, . . . , t7) =

 ∏
0≤r<s≤7

Γp,q(trts)

× I(u/t0, u/t1, u/t2, u/t3, u/t4, u/t5, u/t6, u/t7),

where

u2 =
√
t0t1t2t3t4t5t6t7 = pq.

2.2 Some residue theory

In this section we present two results (one univariate, one multivariate) on residue theory. That

is, we explain what happens to the elliptic beta and Selberg integrals as the contour is deformed

so that it passes over some poles of the integrand. To be more precise, we deform the contour so

that some poles that are outside move inside the contour and vice versa. The residue calculation is

necessary because we will deal with (mostly) discrete phenomena, where two different parameters

multiply in p−Nq−N. In such a case the contour does not exist anymore (it gets pinched), and the

integrals (order 0 or 1 elliptic beta or Selberg) become infinite. There is a way to make sense of this

via the following results.

The univariate result is due to van Diejen and Spiridonov (see [vDS00], [vDS01]). The multivari-

ate result, in addition to being derived in the aforementioned references from conjectural data, is

part of a more general theory of taking residues of elliptic integrals due to Rains (see [Rai10]; see also

the explicit computation in [vdBR11]). The univariate result is a consequence of the multivariate

one, but we list it separately as it will appear prominently in the next section. Also in the univariate

result, notice the balancing on the parameters: they multiply to q (for the order zero beta integral;

replace by q2 for order 1) as opposed to the more usual pq (or (pq)2). In the univariate case we are

not concerned with the exact hypotheses on the parameters, as these can mostly be lifted (see the

multivariate generalization).

Theorem 2.2.1. Choose parameters |p| < 1, |q| < 1 and t0, . . . , t5 such that t0t1t2t3t4t5 = q. Let C

be a smooth Jordan contour around 0 invariant under z 7→ 1/z such that every ray from 0 intersects
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it exactly once and such that it separates the poles of ρ at tip
NpN (which it contains inside) from

the reciprocal poles. Assume |t0| > 1, |ti| < 1, 1 ≤ i ≤ 5, and that ti are “generic” and p is small

enough (see reference for details). Then

(p; p)(q; q)

2

∫
C

Γp,q(t0z
±1, t1z

±1, t2z
±1, t3z

±1, t4z
±1, pt5z

±1)

Γp,q(z±2)

dz

2πiz
=

(p; p)(q; q)

2

∫
T

Γp,q(t0z
±1, t1z

±1, t2z
±1, t3z

±1, t4z
±1, pt5z

±1)

Γp,q(z±2)

dz

2πiz
+

A
∑

l≥0,|t0ql|>1

ql
θp(t

2
0q

2l)

θp(t20)

5∏
r=0

θp(t0tr; q)l
θp(qt0/tr; q)l

,

where A =
Γp,q(t1t

±1
0 ,t2t

±1
0 ,t3t

±1
0 ,t4t

±1
0 ,pt5t

±1
0 )

Γp,q(t
−2
0 )

.

Remark 2.2.2. This calculation also works for 8 t parameters (order 1 case) balanced so that they

multiply to (pq)2 or q2 (in which case we absorb 2 p’s into the parameters like above). In fact it

works in more generality than that, but we will only be concerned with order 0 or 1 case presently.

Remark 2.2.3. The reason for choosing parameters multiply to q instead of pq is that although

such a choice breaks symmetry, it is more natural from the combinatorial perspective we will develop

in subsequent chapters. Also, the Frenkel-Turaev summation/transformation (next section) usually

appears in the literature with this choice of balancing condition.

Remark 2.2.4. The summand that appears above in the RHS is a ∆l(t
2
0|q, t0t)1, . . . , t0t5; q) (uni-

variate) symbol as per the Introduction.

Remark 2.2.5. The importance of such a calculation is proving the Frenkel-Turaev summation

formula, whose statement we defer to the next section (and give a slightly different proof). The

main point is though that two parameters t0tj (j 6= 0) of the 6 mentioned will multiply to q−N

for N a positive integer. Then what happens is that the LHS of the equation in Theorem 2.2.1

becomes infinite as the contour gets pinched by the poles of the integrand approaching it (after all,

the integral on the LHS is generically an explicit product of elliptic gamma functions evaluated at

products of pairs of parameters), and so will A on the RHS. The integral on the RHS though will be

finite (no contour violation). Upon dividing by A and canceling poles, we observe the summation

on the RHS (without the prefactor; it contains N + 1 terms) will be equal to whatever is left on the

LHS. This is made explicit in the next section.

For the case of more than one variable (elliptic Selberg integral) things get more complicated

with taking residues. For an extended discussion see the Appendix of [Rai10]. The multivariate

theorem we state follows [vDS00]. Again, all of the conditions on the parameters (which we do not

state) can be lifted, at the cost of the conditions on both contours becoming more complicated.



17

Theorem 2.2.6. In addition to the parameters introduced already, let t be an extra complex param-

eter of modulus less than 1. Replace the balancing condition by t2n−2
∏
ti = q. Let C as before.

∫
Cn

∏
1≤i<j≤n

Γp,q(tz
±1
i z±1

j )

Γp,q(z
±1
i z±1

j )

n∏
j=1

Γp,q(t0z
±1
j , t1z

±1
j , t2z

±1
j , t3z

±1
j , t4z

±1
j , pt5z

±1
j )

Γp,q(z
±2
j )

n∏
j=1

dzj
2πizj

=

n∑
m=0

2mm!

(
n

m

) ∑
0≤λ1≤···≤λm,|τmqλm |>1

AmBm,λ

∫
Tn−m

∏
1≤i≤n−m,1≤j≤m

Γp,q(t(τjq
λj )±1z±1

i )

Γp,q((τjqλj )±1z±1
i )
×

∏
1≤i<j≤n−m

Γp,q(tz
±1
i z±1

j )

Γp,q(z
±1
i z±1

j )

n−m∏
j=1

Γp,q(t0z
±1
j , t1z

±1
j , t2z

±1
j , t3z

±1
j , t4z

±1
j , pt5z

±1
j )

Γp,q(z
±2
j )

n−m∏
j=1

dzj
2πizj

,

where τj = t0t
j−1,

Am =
∏

1≤i<j≤m

Γp,q(tτ
−1
i τ±1

j )

Γp,q(τ
−1
i τ±1

j )

∏
1≤i≤m

Γp,q(t0τ
±1
j , t1τ

±1
j , t2τ

±1
j , t3τ

±1
j , t4τ

±1
j , pt5τ

±1
j )

(p; p)(q; q)Γp,q(z
±2
j )

Bm,λ =
∏

1≤i<j≤m

θp((τiq
λi)±1τjq

λj )

θp(τ
±1
i τj)

θp(tτiτj ; q)λi+λjθp(tτ
−1
i τj ; q)λj−λi

θp(qt−1τiτj ; q)λi+λjθp(qt
−1τ−1

i τj ; q)λj−λi
×

∏
1≤j≤m

qλj t2(n−j)λj θp(τ
2
j q

2λj )

θp(τ2
j )

∏
0≤r≤5

θp(τjtr; q)λj
θp(qτj/tr; q)λj

.

Remark 2.2.7. For the rest of the paper we will be interested in the case t = q, and this will

simplify some of the terms above. Just as in the univariate case, this makes sense for more than 6

parameters as long as the balancing condition is changed appropriately.

Furthermore, this also gives rise to a multivariate (discrete elliptic Selberg) evaluation generaliz-

ing the Frenkel-Turaev summation discussed in the next section. The proof goes through a similar

analysis as in the univariate case, except extra care is needed due to the presence of multiple variables

being integrated over. We refer the reader to [vDS00] for details.

2.3 Elliptic hypergeometric series

In this section we will discuss discrete integral analogs of the elliptic hypergeometric integrals of

the previous section. That is, we will be concerned with elliptic hypergeometric series. These were

first introduced by Frenkel and Turaev [FT97] who proved most of the results in this section (using

different methods than what we will present), but we will mostly follow [Spi02b] for the notation

and [Spi08] for proofs. A textbook account of this and other q-hypergeometric identities (the limit

p→ 0) can be found in the book by Gasper and Rahman [GR04].
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A theta hypergeometric series is a formal series of the form:

rEs

 t0, . . . , tr−1

w1, .., ws
; q; p; z

 =

∞∑
k=0

θp(t0, . . . , tr−1; q)k
θp(q, w0, . . . , ws; q)k

q(
k
2)zn.

We will only be interested in r+1Er which we call balanced if the top parameters balance the

bottom parameters: ∏
0≤i≤r

ti = q
∏

1≤i≤r

wi.

We want to add two additional restrictions on the parameters to obtain what are called very-well-

poised (also balanced) series, which must also satisfy

qt0 = t1w1 = · · · = trwr,

{tr−3, tr−2} = {±t1/20 q}, {tr−3, tr−2} = {±t1/20 qp∓1/2}.

For a very-well-poised balanced elliptic hypergeometric series, the k-th summand becomes

θp(t0q
2n)

θp(t0)

∏
0≤i≤r−4

θp(tm; q)k
θp(qt0/tm; q)k

(−qz)k.

We can write this more symmetrically by reparametrizing (changing the t parameters and z 7→ −z).
We will also downsize our notation, so a very-well-poised balanced elliptic hypergeometric series is

one of the form

r+1Er(t0; t1, . . . , tr−4; q; p; z) =
∑
k≥0

θp(t
2
0q

2n)

θp(t20)

∏
0≤i≤r−4

θp(t0tm; q)k
θp(qt0/tm; q)k

(qz)k.

Remark 2.3.1. The summands above are elliptic in the parameters ti and q. Note they are also

∆k-symbols. Also, the ratio of the k+1-st summand over the kth summand is an elliptic function of

qk—hence the name elliptic hypergeometric. This is in analogy with ordinary and q-hypergeometric

series. A series
∑
ck is called hypergeometric (q-hypergeometric) if ck+1/ck is a rational function of

k (respectively qk). Then ck is a ratio of Pochhammer symbols (a)k = a(a + 1) · · · · · (a + k − 1)

(respectively q-Pochhammer symbols (a; q)k = (1 − a)(1 − aq) · · · · · (1 − aqk−1)). In the elliptic

case ck is a ratio of theta-Pochhammer symbols, and letting p → 1 degenerates such series into

q-hypergeometric ones.

In general the convergence of such infinite theta series is difficult to study because of the quasi

periodicity of theta functions, so one often imposes a termination condition. That is, if the product

of two parameters t0ti ∈ q−N the sum will only have finitely many nonzero terms due to the vanishing

of high-order theta Pochhammer symbols. We will only be concerned with such series throughout.
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Frenkel and Turaev discovered the following transformation satisfied by a very-well-poised bal-

anced 12E11 which we now state following notation in [Spi02b].

Theorem 2.3.2. Let t0, . . . , t7 be complex parameters such that
∏
ti = q2 (balancing condition) and

t0t6 = q−N (termination condition). Then

12E11(t0; t1, . . . , t7; q; p; 1) =
θp(qt

2
0, qs0/s4, qs0/s5, q/t4t5; q)N

θp(qs2
0, qt0/t4, qt0/t5, q/s4s5; q)N

× 12E11(s0; s1, . . . , s7; q; p; 1),

where

s2
0 =

qt0
t1t2t3

, si =
s0ti
t0

, 1 ≤ i ≤ 3, sj =
t0ti
s0

, 4 ≤ j ≤ 7.

Proof. Follows from the integral transformation of Theorem 2.1.3 along with the remarks of that

section and a residue calculation similar to Theorem 2.2.1 and Remark 2.2.5 (with 8 parameters

instead of 6 and the appropriate balancing condition). Note the termination condition in the t’s

(which forces the contour of 2.1.3 to blow up) is translated to a termination condition in the s’s.

We now state the following summation formula for a very-well-poised balanced 10E9, due to

Frenkel and Turaev [FT97]. The proof given here is an easy consequence of the transformation

above (see for example [Spi02b], but also remarks in [Rai10]).

Theorem 2.3.3. Let t0, . . . , t5 satisfy the balancing condition t0t1t2t3t4t5 = q and the (termination)

condition t0t4 = q−N . Then

10E9(t0; t1, . . . , t5; q; p; 1) =
θp(qt

2
0,

q
t1t2

, q
t1t3

, q
t2t3

; q)N

θp(q/t0t1t2t3, qt0/t1, qt0/t2, qt0/t3; )N
.

Proof. Plug in t2t3 = q in Theorem 2.3.2, then decrease the labels of t4, . . . , t7 by two.

Remark 2.3.4. An alternative proof of this formula can be given via Theorem 2.2.1. This is

sketched in Remark 2.2.5. Based on similar arguments (see [vDS00], [Rai10]; see also [Rai06] for an

algebraic perspective), we can formulate and prove the following multivariate generalization:

Theorem 2.3.5. For t0, . . . , t6, t, |p| < 1, |q| < 1 complex parameters satisfying the balancing condi-

tion t2n−2
∏
ti = pq and the termination condition t0t1 = q−N t1−n we have the following summation

formula:

∑
λ∈Nn

∆λ(t2n−2t20|tn, tn−1t0t1, . . . , t
n−1t0t5; q; t; p) =

∆0
Nn(tn−1t1/t4|t1/t0, pq/t4t2, pq/t4t3, pq/t4t5; q; t; p).
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2.4 An elliptic hypergeometric determinant

In this very short section we give yet another elliptic identity of the hypergeometric kind. In this

case it is a determinantal identity discovered by Warnaar in [War02], which we follow for the proof.

In fact we will not give the most general form of the identity but just a sufficiently powerful version

needed for our purposes.

Theorem 2.4.1.

det
1≤i,j≤n

(
θp(azi, ac/zi; q)n−j
θp(bzi, bc/zi; q)n−j

)
= a(n2)q(

n
3)

∏
1≤i<j≤n

zjθp(zi/zj , c/zizj)

n∏
i=0

θp(b/a, abcq
2n−2i; q)i−1

θp(bzi, bc/zi; q)n−1
.

Remark 2.4.2. If c = 1 the bivariate product appearing in the RHS is the elliptic Vandermonde-like

product discussed in Section 1.2.

Proof. First, both LHS and RHS, viewed as a function of zi, have the same multiplier (under the

shift zi 7→ pzi) via a direct computation. Thus their ratio, which we call f is an elliptic function in

zi. If we show it has no poles (or zeros), then it must be constant by Liouville’s theorem. Both the

LHS and RHS are also analytic in C∗ (because θp is), so the only poles of f come from the zeros of

the RHS, which are at zi = zj and zi = c/zj for j 6= i (mod powers of p). Plugging either into the

determinant will make two of the columns equal, and thus the determinant zero. Hence every zero

of the RHS is canceled by one on the LHS, which means f has no poles and is therefore constant.

We now specialize at zi = qi−n/a to obtain the constant. This will leave the LHS as a determinant

of an upper triangular matrix (due to the vanishing of theta Pochhammer symbols in the numerator)

which can be evaluated explicitly. This evaluation coincides with the RHS after the specialization and

simplification of the theta Pochhammer symbols (and using the fact that
∑

1≤j≤n(j−1)(n−j) =
(
n
3

)
),

so f = 1 as desired.
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Chapter 3

Elliptic lozenge tilings

In this chapter we will set up the main statistical mechanical/combinatorial model studied for the

rest of the thesis. We start with generalities on dimer coverings on bipartite graphs—for which a

good reference are the lecture notes by Kenyon [Ken09] (but we will only be interested in detail in

the honeycomb graph). We then introduce an elliptic measure on a certain class of dimer coverings

in the honeycomb lattice. We finish by deriving some properties of the measure and by making some

explicit computations.

3.1 On dimers and tilings

We start with a bipartite planar graph G = (V,E) where the vertex set V (if finite) has an even

number of elements, half of which we call black and half of which we call white: V = B ∪W (that

is, we impose that the bipartite structure on the graph leads to such half-half splitting). A dimer

covering of G is a subset of edges in G such that each vertex is covered by (belongs to) exactly one

edge and every vertex of G is covered. By the bipartite structure, every edge e in such a dimer

covering will connect a black vertex to a white one, and we will denote it e = (b, w) when we find

such notation convenient. We can also talk about dimer coverings of infinite bipartite planar graphs

(we focus on the honeycomb lattice—the dual of the triangular lattice).

In this thesis we will be concerned with dimer coverings of certain finite subsets of the honeycomb

lattice. We will call them lozenge tilings of a hexagon because if one looks at the dual picture, it is

a tiling of an a× b× c hexagon in the triangular lattice tiled by 3 types of lozenges (rhombi with 2

acute angles of π/3). There are 3 types of lozenges because there are 3 ways of making a rhombus

out of two adjacent triangles in the lattice. Such a tiling is depicted in Figure 3.1 (left), along

with its interpretation as a three-dimensional stepped surface (right). This second interpretation

will be important to us. It corresponds to packing unit cubes in a rectangular parallelepiped where

the cubes gather in the (hidden) corner of the bounding box (physically, we can think of the cubes

being acted on by gravity which points towards the origin in the perpendicular direction to the plane



22

x+y+z = 0). To see that every such tiling gives rise to a dimer cover of a portion of the honeycomb

lattice, proceed as follows: call all left-pointing triangles in the lattice black and all right-pointing

ones white, and for each rhombus present in the tiling, draw a line between the centroid of its black

triangle and the centroid of its white triangle. This will give a matching of the dual graph (whose

vertices consist of all the centroids). Each edge in this matching joins a black vertex (triangle) to a

white one. See Figure 3.2.

a = N

c = S b = T − S

Figure 3.1: A tiling of a 3× 2× 3 hexagon and the associated stepped surface.

Figure 3.2: Duality between tilings and matchings, as appears in [Ken97] (figure used
with permission).

A yet different way of viewing such tilings, important hereinafter, is as collections of nonintersect-

ing paths in the square lattice. The paths start at consecutive points on the vertical axis (counting

from the origin upwards) and end at consecutive points on a vertical line with displacement b + c

from the origin. Each path is composed of horizontal segments or diagonal (southwest to northeast,

slope 1) segments, and the paths are required not to intersect. Given any such collection of paths,

we can recover a hexagonal tiling (and hence a dimer cover) from it and vice versa. For reasons

that will become clear as we progress, we will find it more convenient to encode the hexagon via the

following three numbers:

N = a, T = b+ c, S = c.
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Figure 3.3 explains the above, and also introduces two coordinate systems useful later on: Carte-

sian coordinates (i, j) for the hexagon picture and (t, x) for the nonintersecting paths in the square

lattice picture. They are related by

(i, j) = (t, x− t/2).

j

i

j

i

j

i

x

t

Figure 3.3: Duality between tilings and nonintersecting paths.

Following the notation in [BG09], let Ω(N,S, T ) denote the set of N nonintersecting paths in the

lattice N2 starting from positions (0, 0), . . . , (0, N − 1) and ending at positions (T, S), . . . , (T, S +

N − 1). Each path has segments of slope 0 or 1 (as explained above). Set

XS,tN,T = {x ∈ Z : max(0, t+ S − T ) ≤ x ≤ min(t+N − 1, S +N − 1)},

XS,tN,T = {X = (x1, . . . , xN ) ∈ (XS,tN,T )N : x1 < x2 < · · · < xN}.

XS,tN,T is the set of all possible particle positions in a section vertical section of our hexagon with

horizontal coordinate t (in (t, x) coordinates). XS,tN,T is the set of all possible N -tuples of particles in

the same vertical section.

For X ∈ Ω(N,S, T ), we have X = (X(t))0≤t≤T and each X(t) ∈ XS,tN,T . X is a discrete time

Markov chain as it will be shown.

To any dimer cover of a planar bipartite graph one can associate a height, which is a function

from dimer covers to (usually real, often rational) numbers. While we could do this in general-

ity, we restrict attention to lozenge tilings of the hexagon (and the associated dimer covers). We

want to formalize the three-dimensional “height” one sees in Figure 3.1. We will be skipping most

homological details, trivial as they may be in the case of bipartite planar graphs.

Fixing a (bipartite planar) graph G = (V,E), we define Λ0 to be the space of (real-valued)

functions on V , and Λ1 to be the space of flows (1-forms) whereby a flow is a function on oriented

edges (each e ∈ E has two orientations) antisymmetric under changing orientation of edges. There

is a natural linear map d : Λ0 → Λ1 defined by d(f)(vv′) = f(v′) − f(v) where by vv′ we mean an

edge in E oriented from v to v′. This map has a (linear algebraic) transpose d∗ : Λ1 → Λ0 defined
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by d∗(ω)(v) =
∑
e ω(e) where ω is a flow and the sum is over all edges incident at v. This map is

called the divergence. If d∗(ω)(v) is positive (negative), we say v is a source (sink) for the flow ω.

Given a dimer cover M of G, we associate the flow ωM as follows: ωM (e = (b, w)) = 1 if (b, w)

is an (oriented black to white) edge present in the cover, and ω(e) = 0 if e is not in M . This flow

has divergence +1 (−1) at black (white) vertices. For M1,M2 dimer covers of G, ωM1
− ωM2

is

divergence free.

Given a divergence free flow ω on G and a reference (fixed) face f0, one defines a height function

h on all other faces as follows. First h(f0) = 0 (hence the name). For any other face f , pick a

path p in the dual graph from f0 to f . We define h(f) as the net (signed sum) flow of p as it

crosses the edges of G with the caveat that as p crosses an unoriented edge e, we add to the sum the

contribution w(e: oriented left to right). h is independent of the path p chosen in the dual graph

since ω is divergence free.

For G we can fix a base flow ω0 with divergence 1 (-1) at black (white) vertices. Given M a

dimer cover, we can construct the flow ωM as above. Choosing a reference face f0, we can associate

to the difference flow (which is divergence free) a height function hM as in the previous paragraph.

We call it the height of the dimer cover (equivalently, of the lozenge tiling for the case of honeycomb

dimers).

For the lozenge tilings dual to honeycomb dimers we are interested in, a natural base flow ω0 is

defined by ω0(e = (b, w)) = 1/3 where the edge (b, w) comes with black to white orientation. In this

case, for a given dimer cover M , the height hM is (up to an additive constant), when evaluated at

the center of a face, the distance between that center and the plane x+ y+ z = 0 when we interpret

M as a stepped surface. See Figure 3.4 where on the left we exhibit the height of the dimer cover

and on the right, the distance (multiplied by
√

3) from the interior vertices of the tiling to the plane

x+ y + z = 0.

3.2 Kasteleyn theory

Given a bipartite planar graph G = (V,E) that has dimer covers (in particular, if G is finite, V

needs to be even), we can attach various weights w : E → C to its edges. We can then consider the

following Boltzmann measure on dimer covers M of G:

µ(M) =
1

Z

∏
e∈M

w(E), (3.2.1)

where Z =
∑
M

∏
e∈M w(E) is the partition function. We will talk about probability measures

hereinafter, so we want µ to take positive real values between 0 and 1 (this does not mean that w

need to take such values). Because of the product nature of the Boltzmann distribution, we can
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Figure 3.4: The height function on a matching (left) and on a stepped surface/lozenge
tiling (multiplied by

√
3).

change the function w by multiplying weights of all edges incident to a single vertex u by a number

c. Then both Z and the numerator in (3.2.1) will get multiplied by c (because in the sum over

all matchings, the vertex u is going to be matched, so c will multiply every term in the partition

function, as well as the denominator). Therefore, the measure µ will not change, though we are

looking at a new Boltzmann weight w′. We call two such weights gauge equivalent if they differ by

a finite number of such multiplications.

There is a simple criterion (see, e.g.,[Ken09]) to test whether two weights w and w′ on the graph

are gauge equivalent: they are so if and only if for every face bounded by edges e1, . . . , e2k (listed

consecutively; note every face has an even number of edges due to the bipartite structure), we have

w(e1)w(e3) . . . w(e2k−1)

w(e2)w(e4) . . . w(e2k)
=
w′(e1)w′(e3) . . . w′(e2k−1)

w′(e2)w′(e4) . . . w′(e2k)
.

We will now define a Kasteleyn sign weight on the graph G. It is a choice of signs assigned to

every edge such that each face with 0 mod 4 edges around it has an odd number of − signs around

it, and each face bounded by 2 mod 4 edges has an even number of minus signs around it. Note

for dimers of the honeycomb graph (or parts of it), there is a very convenient choice of Kasteleyn

weight coming from the fact that 6 = 2 mod 4: just put a + sign on every edge. This is the only

case we will be interested in the present work, but in general one can prove existence of such weights

via spanning trees (see [Kas67] and [TF61]).

The Kasteleyn matrix K associated to a planar bipartite graph G whose vertex set V = B ∪W
consists of black and white vertices is defined by assigning to every edge (b, w) the weight of that

edge times its Kasteleyn sign. To every pair (b, w) that does not share an edge, we set K(b, w) = 0.

For the honeycomb lattice, it is just the weighted adjacency matrix since we can choose all + signs
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for the Kasteleyn sign weight.

We have the following theorem from [Kas67], [TF61] for computing the partition function Z (the

total weight of all matchings). Set G(V,E) to be a finite bipartite planar graph with an even number

of edges such that V = B ∪W .

Theorem 3.2.1.

Z = |detK|.

Proof. We will only prove this for the honeycomb lattice, in which case the proof simplifies a lot.

We follow [Ken09]. We first expand the determinant as

detK =
∑
σ∈Sn

(−1)σK(b1, wσ(1)) . . .K(bn, wσ(n)).

Notice each term in the above sum is 0 unless each vertex bi in the product is paired with an

adjacent wσi . Hence for each dimer cover we find a nonzero term in the sum and vice versa. The

summand in question is indeed the total weight of that dimer cover by definition.

So all there is to check is that all signs appearing in front of the nonzero terms are the same.

It suffices to show that given a reference cover (a choice of σ), all other covers are obtained my

multiplying σ by even permutations. But this can be translated into the tiling picture of Figure 3.1

bijectively. There, it is easy to see that we can get from any tiling to any other tiling by changing

unit cubes, one at a time, from empty to full (or vice versa). In particular we can reach any tiling

from the empty box tiling with such moves. But every such move is local, on a unit cube alone.

Such empty/full (or full/empty) swap corresponds to swapping the two dimer covers of a hexagonal

in the honeycomb lattice - a 2π/3 rotation. It corresponds to multiplying the initial permutation σ

(corresponding to the initial cover) by a 3-cycle - an even permutation. Hence all the terms in the

sum have the same sign as the term corresponding to the empty tiling (being obtained from it by

multiplying the “empty” σ by even permutations). This concludes the proof.

The next theorem, due to Kenyon [Ken97] will allow us to compute total weight of all matchings

containing certain prescribed edges. We will omit the proof but see the reference (the proof uses the

Jacobi lemma relating minors of a matrix with its inverse).

Theorem 3.2.2. The total weight of matchings containing n fixed edges (b1, w1), . . . , (bn, wn) is

equal to (
n∏
i=1

K(bi, wi)

)
det

1≤i,j≤n
K−1(wi, bj).

A version of this theorem which we find useful in computations is the following.

Theorem 3.2.3. The total weight of matchings of the graph G′ which is obtained from G by removing

n black vertices bi and n white vertices wj (not necessarily adjacent) is, up to a constant independent



27

of bi and wj:

det
1≤i,j≤n

K−1(wi, bj).

Remark 3.2.4. Theorem 3.2.2 can be deduced from 3.2.3 since fixing certain edges in a matching

is equivalent to removing the corresponding vertices, computing the total weight, and then adding

the vertices back in the matching with prescribed edges (in which case we have to multiply by the

weights of those edges).

Remark 3.2.5. Both of the previous theorems follow from the Jacobi lemma relating minors of

a matrix M with those of its inverse. Let M be nonsingular and Adj(M) (the adjugate of M)

be defined by Adj(M)i,j = (−1)i+jMĵ,̂i where Mî,ĵ is the determinant of the matrix obtained by

removing the i-th row and j-th column from M . Then M−1
i,j = 1

detMAdj(M)i,j . In fact, more

is true: any k × k minor in Adj(M) is equal to the complementary signed minor in MT (the

transpose of M) times (detM)k−1. As a corollary, if N ′ is a proper square submatrix of M−1, then

|detN ′| = |detN |/|detM | for some proper square submatrix N of M .

For the honeycomb graph, we can enumerate matchings differently. We look at the associated

tiling, and then at the associated collection of nonintersecting paths. The total weight of all noninter-

secting path collections (equivalently, all dimer covers) is then given by the Lindström-Gessel-Viennot

lemma, which we now state in more generality (see [Ste90] and references therein):

Theorem 3.2.6. For a planar weighted connected graph G, let (u1, . . . , un) be a tuple of starting

points and (v1, . . . , vn) be a tuple of ending points. Assume there are no nonintersecting path collec-

tions pairing (start-end) ui to vσi for a nontrivial σ ∈ Sn. Moreover, let T (u, v) be the total weight

of all paths from u to v in the graph (the weight of one path is the product of the edge weights over

edges in the path). Then the total weight of all nonintersecting paths from the starting tuple to the

ending one such that the i-th path starts at ui and ends at vi is:

det
1≤i≤n

T (ui, vj).

3.3 Elliptic measure on tilings and canonical coordinates

We will now define the (Boltzmann) probability measure on Ω(N,S, T ) (equivalently, on tilings of the

a×b×c hexagon) that will be the object of study. For a tiling T corresponding to an X ∈ Ω(N,S, T )

we define its weight to be

w(T) =
∏

l∈{horizontal lozenges}

w(l),
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where by a horizontal lozenge we mean a lozenge whose diagonals are parallel to the i and j axes.

The probability of such a tiling would then simply be

Prob(T) =
w(T)∑

S∈Ω(N,S,T ) w(S)
.

The weight function w on horizontal lozenges l is defined by

w(l) := w(i, j) =
(u1u2)1/2qj−1/2θp(q

2j−1u1u2)

θp(qj−3i/2−1u1, qj−3i/2u1, qj+3i/2−1u2, qj+3i/2u2)

=
(v1v2)1/2qj−S/2−1/2θp(q

2j−S−1v1v2)

θp(qj−3i/2−S−1v1, qj−3i/2−Sv1, qj+3i/2−1v2, qj+3i/2v2)
,

(3.3.1)

where (i, j) is the coordinate of the top vertex of the horizontal lozenge l, u1, u2, q, p are complex

parameters (|p| < 1) and u1 = q−Sv1, u2 = v2 (the reason for the v parameters is that this break in

symmetry will make other formulas throughout the thesis more symmetric).

Remark 3.3.1. Only considering weights of horizontal lozenges for a tiling of a hexagon is equivalent

to considering all types of lozenges but assigning the other two types weight 1 (i.e., each lozenge

that is not horizontal has weight 1). This is a break in symmetry that can easily be fixed. However,

for most computations in this Chapter and next we prefer this non-symmetric weight assignment

system as it makes some things easier. Nevertheless, we show in Section 3.8 that we can assign

weights to the 3 types of lozenges in an S3-invariant way (i.e., invariant under permuting the 3 types

of lozenges or equivalently the 3 spatial directions) by changing gauge.

This weight on dimer coverings of a hexagon was derived in [BGR10] (see also [Sch07] for the

nonintersecting paths derivation), and the derivation will be sketched in Section 3.6.

The connection with elliptic functions will now be explained. Fix a horizontal coordinate i,

denote by w(i, j) the weight of the horizontal lozenge with top vertex coordinates (i, j), and observe

that for two consecutive vertical positions we have (u1u2u3 = 1):

r(i, j) =
w(i, j + 1)

w(i, j)
=
q3θp(q

j−3i/2−1u1, q
j+3i/2−1u2, q

−2j−1u3)

θp(qj−3i/2+1u1, qj+3i/2+1u2, q−2j+1u3)

=
q3θp(q

j−3i/2−S−1v1, q
j+3i/2−1v2, q

−2j+S−1/v1v2)

θp(qj−3i/2−S+1v1, qj+3i/2+1v2, q−2j+S+1/v1v2)
.

(3.3.2)

In the three-dimensional coordinates (x, y, z) pictured in Figure 3.5 (note we only consider sur-

faces in 3 dimensions that are stepped, meaning there is a one to one correspondence between the two-

dimensional tiling picture and the three-dimensional surface picture) with i = x−y, j = z−(x+y)/2

(after shifting (i, j) so that origin is at the hidden corner of the box), the weight ratio is equal to:

r(x, y, z) =
w(full box)

w(empty box)
=
q3θp(ũ1/q, ũ2/q, ũ3/q)

θp(ũ1q, ũ2q, ũ3q)
, (3.3.3)
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i

z

y
x

Figure 3.5: Going from 3 dimensions to 2 dimensions.

Figure 3.6: A full 1× 1× 1 box (left) and an empty one (right).

where

ũ1 = qy+z−2xu1, ũ2 = qx+z−2yu2, ũ3 = qx+y−2zu3, u1u2u3 = 1,

and (x, y, z) is the three-dimensional centroid of the 1 × 1 × 1 full cube (on the left in Figure 3.6)

with top lid the horizontal lozenge having top vertex coordinate (i, j).

The word elliptic now becomes clear as r in (3.3.3) is an elliptic function of q (that is, defined

on E—see the Introduction for details). Moreover, r is the unique elliptic function of q with zeros

at ũ1, ũ2, ũ3 and poles at 1/ũ1, 1/ũ2, 1/ũ3 normalized such that r(1) = 1. Of interest is also that r

is elliptic in ũk for k = 1, 2, 3 subject to the condition that
∏3
k=1 ũk = 1.

Remark 3.3.2. The above paragraph can be restated by observing we can build everything by

choosing 3 points q, u1, u2 on the elliptic curve E.

Remark 3.3.3. The weight ratio r is invariant under the natural action of S3 permuting the ũk’s

(and of course the 3 axes: x, y, z).

We can view our tilings as stepped surfaces composed of 1×1×1 cubes bounded by the 6 planes

x = 0, y = 0, z = 0, x = b, y = c, z = a. Then the two-dimensional picture in Figure 3.1 can be

viewed as a projection of the 3 dimensional stepped surface onto the plane x+ y + z = 0.

For T a tiling, we have

wt(T) =
∏
∈ T

w(i, j),

where (i, j) are the coordinates of the top vertex of a horizontal lozenge. Grouping all 1 × 1 × 1
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cubes into columns in the z direction with fixed (x, y) coordinates (see Figure 3.5), we obtain

wt(T) = const ·
∏ w(i, j + 1)

w(i, j)
,

where the product is taken over all cubes (visible and hidden) of the boxed plane partition and (i, j)

is the top coordinate of the bounding hexagon of a 1× 1× 1 cube. Note to get to this equality we

have merely observed that wt(empty box) is a constant independent of i and j. We can further

refine this (rearranging the terms in the product and gauging away more constants—see Section 2.3

of [BGR10] and also Section 3.1 above for more details) as

wt(T) = const ·
∏
v

(
w(i, j + 1)

w(i, j)

)h(v)

= const ·
∏
v

r(i, j)h(v),

where v = (x0, y0, z0) ranges over all vertices on the border (but not on the bounding hexagon) of

the stepped surface with x0, y0, z0 integers (equivalently, v ranges over all vertices of the triangular

lattice inside the hexagon, but we view v in 3 dimensions). h(v) is the distance from v to the plane

x+ y + z = 0 divided by
√

3 : h(v) = (x0 + y0 + z0)/3.

For the remainder of the section, we will discuss the concept of canonical coordinates for the

geometry of elliptic tilings. That is, it will be convenient for various computations to express the

geometry of an elliptic lozenge tiling in terms of coordinates on a certain product of elliptic curves.

First we will introduce 6 parameters A,B,C,D,E, F depending on q, t, S, T,N, v1, v2 (note we have

listed, other than q, 6 parameters, of which 4 are discrete and dictate the geometry: t, S, T,N). t

here is a (discrete) time parameter and ranges from 0 to T . It will be explained better in Chapter 4.

It corresponds to the fact that we will be interested in distributions of particles on a certain vertical

line: that is, tilings of hexagons that have prescribed positions of particles (or holes) on the vertical

line with horizontal coordinate t.

The set of parameters of interest to us is

A = qt/2+S/2−T+1/2√v1v2, B = qt/2+S/2+T+1/2

√
v2

v1
,

C = qt/2−S/2−N+1/2 1√
v1v2

, D = q−t/2+S/2−N+1/2 1√
v1v2

, (3.3.4)

E = q−t/2−S/2+1/2

√
v1

v2
, F = q−t/2−S/2+1/2√v1v2.

Observe that they satisfy a certain balancing condition (like the one in Section 2.3):

q2N−2ABCDEF = q. (3.3.5)
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The weight function (to be more precise, the ratio of weights of a full to an empty 1×1×1 box—

see (3.3.3)) depends on the geometry of the hexagon via the three parameters ũ1, ũ2, ũ3 (
∏
ũk = 1)

which in the (i, j) coordinates are

(ũ1 = qj−3i/2−Sv1, ũ2 = qj+3i/2v2, ũ3 = q−2j+S/v1v2).

What we want is to change coordinates from (i, j) (2-dimensional) or (x, y, z) (three-dimensional)

to (ũ1, ũ2, ũ3) via the above formula. We call these new coordinates canonical. Each line of interest

in the geometry has an equation in the (i, j) plane which can then be translated in terms of the

ũk’s by solving in (3.3.4) for t, S, T,N, v1, v2 in terms of A,B,C,D,E, F . We thus find the following

equations for the relevant edges of our hexagon:

Left vertical edge (corresp. equation : i = 0) :
ũ1

ũ2
= q−Sv1/v2 =

(
ABC

DEF

)1/2

E3q−3/2,

Right vertical edge (corresp. equation : i = T ) :
ũ1

ũ2
= q−3T−Sv1/v2 =

(
ABC

DEF

)1/2

B−3q3/2,

NW edge (corresp. equation : j = i/2 +N) :
ũ3

ũ1
= q2S−3N1/v2

1v2 =

(
ABC

DEF

)1/2

D3q−3/2,

SE edge (corresp. equation : j = i/2− (T − S)) :
ũ3

ũ1
= q3T−S1/v2

1v2 =

(
ABC

DEF

)1/2

A−3q3/2,

NE edge (corresp. equation : j = −i/2 + S +N) :
ũ2

ũ3
= q2S+3Nv1v

2
2 =

(
ABC

DEF

)1/2

C−3q3/2,

SW edge (corresp. equation : j = −i/2) :
ũ2

ũ3
= q−Sv1v

2
2 =

(
ABC

DEF

)1/2

F 3q−3/2,

Vertical particle line (corresp. equation : i = t) :
ũ1

ũ2
= q−3t−Sv1/v2 =

DEF

ABC
.

(3.3.6)

Remark 3.3.4. We can see from above that there exists a bijection between the six bounding

edges of our hexagon and the 6 parameters A,B,C,D,E, F . That is, to an edge we assign the

parameter that appears to the power ±3 above. The 6 parameters are not independent (they satisfy

the balancing condition (3.3.5)), but then neither are the 6 edges (they must satisfy the condition

that the hexagon they form is tilable by the three types of rhombi, which in this case tautologically

means the edges form the 6 visible frame-edges of a rectangular parallelepiped). See Figure 3.7.

With (3.3.6) in mind we have a (local) map R2 → E2 (where E2 is isomorphic to the subvariety

of E3 with coordinates (ũ1, ũ2, ũ3) and relation
∏
ũi = 1) which embeds our hexagon in E2:

(i, j) 7→ (ũ1, ũ2, ũ3).

Note that E2 is the square of a real elliptic curve if parameters are chosen so that the weight
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E
B

D

A

C

F

Figure 3.7: Correspondence between edges and the 6 parameters.

ratio (of full to empty 1× 1× 1 box) is real (positive). Hence as E is homeomorphic to a circle or a

disjoint union of two circles, the above embeds our hexagon in a 2-dimensional real torus (base field

= R).

Remark 3.3.5. In light of the discussion in this section, we can phrase the elliptic tiling model in

such a way as to start with a (real Tate/multiplicative) elliptic curve E and points q, u1, u2, u3 on it

such that u1u2u3 = 1 (they are on a line). From there we can derive the elliptic weight ratio as the

unique function on the elliptic curve with prescribed divisor (3 poles and 3 zeros) which evaluates

to 1 at q = 1. The hexagon with discrete parameters N,S, T is then the interior of the 6 edges

described in terms of A,B,C,D,E, F (see (3.3.6)). While such an observation seems trivial at first,

it nevertheless plays a pivotal role in many arguments in what follows.

3.4 Positivity of the measure

The content of the previous section shows that in order to make the whole model well defined

as a probabilistic model, it suffices to establish positivity of the elliptic weight ratio r(i, j) =

w(i, j)/w(i, j − 1) defined in (3.3.2) (where (i, j) is the location of a given horizontal tiling and

ranges over all possible horizontal tilings inside the hexagon). Recall that

r(i, j) =
q3θp(ũ1/q, ũ2/q, ũ3/q)

θp(qũ1, qũ2, qũ3)
,

where ũ1 = qj−3i/2u1, ũ2 = qj+3i/2u2, ũ3 = q−2ju3 and u1u2u3 = 1. We recall that r is elliptic in ũk

for k = 1, 2, 3 as well as in q. In order to make r positive, we will first restrict ourselves to the case

where r is real valued. This means r is defined over a real elliptic curve, and we have −1 < p 6= 0 < 1

(a priori, p is complex of modulus less than 1; p ∈ (−1, 1) − {0} is equivalent to E being defined

over R—for more on real elliptic curves, we refer the reader to Chapter 5 of [Sil94]). We then ensure
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positivity of r by an explicit computation. We will of course have two cases: p < 0 and p > 0. We

deal with the case p > 0 throughout (and make remarks when necessary for p < 0).

Now that we have restricted ourselves to real elliptic curves E, we first note that q ∈ E (i.e., r is

elliptic as a function of q). For a chosen 0 < p < 1 there are two nonisomorphic elliptic curves defined

over R (since Gal(C/R) = Z/2Z), both homeomorphic to a disjoint union of two circles (every real

elliptic curve is topologically homeomorphic to a circle if p < 0 or with a disjoint union of two circles

if p > 0—one can just see this by plotting the Weierstrass equation in R2 and compactifying):

E ∼=R R∗/pZ, and

E ∼=R {u ∈ C∗/pZ : |u|2 ∈ {1, p}}.

We will call the first case real and the second trigonometric (abusing terminology, since both

are real elliptic curves). We will analyze the trigonometric case, but the real case is similar (via

a modular transformation). In the trigonometric case, the curve has two connected components

(circles): the identity component (it contains the points 1 and −1) and another component that

contains the other 2-torsion points: ±√p. There will be 3 cases to be analyzed which we list now

and motivate after (if p < 0 there is only one component so the 3 cases coalesce to only one—Case

2.):

• Case 1. q lies on the nonidentity component (|q| = √p).

• Case 2. q and all the uk’s (and so the ũk’s) lie on the identity component (|q| = |u1| = |u2| =
|u3| = 1).

• Case 3. q and one of the uk’s lies on the identity component, the other two uk’s lie on the

nonidentity component.

To analyze positivity at a fixed site (i, j) inside the hexagon, we note that r(q) has zeros at ũk

and poles at 1/ũk (k = 1, 2, 3). We note r = ±1 at q = ±1 so at least one uk (along with its

reciprocal/complex conjugate 1/uk) needs to be on the identity component (so that r can change

signs on the identity component). Since r = −1 at q = ±√p and u1u2u3 = 1, either exactly one or

all three of the u’s need to be on the identity component. This motivates the three choices above.

Case 1. will never lead to positivity for all four admissible sites (i, j) inside a 1× 2× 2 hexagon

(see Figure 3.8), so we can eliminate it (if a 1 × 2 × 2 hexagon is never positive, much larger ones

which are of interest to us will also never be as they contain the 1 × 2 × 2 case). For a proof, we

suppose that u1 is on the identity component, and u2, u3 are (along with q) on the nonidentity

component (the case where all three u’s are on the identity component is handled similarly). The

ũ’s differ from the u’s by integer powers of q given in the last three columns of the following table

(for the four admissible (i, j) pairs in the 1× 2× 2 hexagon):



34

j i j − 3i/2 j + 3i/2 −2j

1/2 1 -1 2 -1

1 2 -2 4 -2

0 2 -3 3 0

1/2 3 -4 5 -1

Notice mod 2 (and we only care about mod 2 as q2 is on the identity component), the four vectors

(from the last 3 columns of the table) above are (1, 0, 1), (0, 0, 0), (1, 1, 0), (0, 1, 1). The corresponding

ũk’s we get by multiplying each uk by q to the power coming from the vector (0, 1, 1), (ũ1, ũ2, ũ3) =

(q−4v1, q
5v2, q

−1v3), will all be on the identity component, which means the elliptic weight ratio will

be negative at the site (i, j) = (1/2, 3) as q is on the nonidentity component. This is a contradiction.

The other cases are handled similarly, leading to contradictions. This proves q must be on the

identity component, so only cases 2. and 3. above can lead to positive hexagons.

j

i

Figure 3.8: The admissible sites (i, j) inside a 1× 2× 2 hexagon.

1+-1 −

−

−

+

+

q

ũ1

ũ−1
1

ũ2

ũ−1
2

ũ3

ũ−1
3

Figure 3.9: The identity component of E ∼=R {u ∈ C∗/pZ : |u|2 ∈ {1, p}}. For positivity
of r throughout the hexagon (i.e., for all admissible ũk’s), q must always be
closer to 1 than any ũ±1

k as depicted.

I will next discuss the case where q and all uk are on the identity component (case 2. above;

for case 3. the reasoning is similar). For a fixed site (i, j) inside the hexagon, the 3 ũk’s and their

reciprocals (complex conjugates) break down the unit circle into 6 arcs (see Figure 3.9) and q must

be on one of the three arcs where r is positive (as depicted in the figure). If we want to ensure

positivity of the ratio for all 4 admissible sites (i, j) within a given 1× 2× 2 hexagon (Figure 3.8),
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we first observe that for |x| = 1:

θp(x) = (1− x)
∏
i≥1

|1− pix|2.

So we reduce to positivity of the corresponding four functions
∏
i=1,2,3

1−ũi/q
1−ũiq . Through standard

trigonometric manipulations we thus want positivity of each of the following functions:

sinπ(α1 − α)

sinπ(α1 + α)
· sinπ(α2 − α)

sinπ(α2 + α)
· sinπ(α3 − α)

sinπ(α3 + α)
,

sinπ(α1)

sinπ(α1 + 2α)
· sinπ(α2 − 3α)

sinπ(α2 − α)
· sinπ(α3)

sinπ(α3 + 2α)
,

sinπ(α1 − 3α)

sinπ(α1 − α)
· sinπ(α2)

sinπ(α2 + 2α)
· sinπ(α3 + α)

sinπ(α3 + 3α)
,

sinπ(α1 + α)

sinπ(α1 + 3α)
· sinπ(α2 − 2α)

sinπ(α2)
· sinπ(α3 − 2α)

sinπ(α3)
,

where 2παi = arg ui, α1 + α2 + α3 ∈ {0, 1, 2}, 2πα = arg q and (α, α1, α2) are defined on the three-

dimensional unit torus R3/Z3. If we restrict to the fundamental domain [0, 1]3 and look at all the

regions (polytopes) cut out by the planes (linear functions) in the arguments of the sines above

(divided by π), we find (by solving the appropriate linear programs via Mathematica) that there

exists only one region of positivity for all 4 functions. We can characterize the region best in terms

of Figure 3.9. That is, as (i, j) range over all 4 sites inside a 1× 2× 2 hexagon, there should not be

any ũk (k = 1, 2, 3) or any ũ−1
k on the arc subtended by 1 and q (and that does not contain -1).

Remark 3.4.1. In view of the above, for any choice of a reasonably large hexagon (say one that

contains a 1× 2× 2 hexagon) and parameters u1, u2, u3 (satisfying the balancing condition), the set

of q giving rise to nonnegative weights is a symmetric closed arc containing 1.

3.5 Degenerations of the measure

Certain degenerations of the weight have been studied before (among the relevant sources for our

purposes are [BG09], [BGR10], [Joh05], [KO07], [Gor08]) from many angles. For example, when

q = 1 the weight in (3.3.1) becomes a constant independent of the position of the horizontal lozenges,

and so we are looking at uniformly distributed tilings of the appropriate hexagon. An exact sampling

algorithm to sample from such a distribution was constructed in [BG09] and the theory behind this

(as well as behind other results for such tilings) is closely connected to the theory of discrete Hahn

orthogonal polynomials (see [Joh05], [BG09], [Gor08]). The frozen boundary phenomenon (the shape

of a “typical boxed plane partition”) was first proven in [CLP98] and then via alternate techniques

(and generalized) in [CKP01] and [KO07].
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A more general limit than the above is the following: in (3.3.1) we let v1 = v2 = κ
√
p and then

let p → 0. This is the q-Racah limit (named after the discrete orthogonal polynomials that appear

in the analysis). This limit is the most general limit that can be analyzed by orthogonal polynomials

(as q-Racah polynomials sit at the top of the q-Askey scheme—see [KS96]). Up to gauge equivalence,

we obtain the weight of a horizontal lozenge with top corner (i, j) as

w(i, j) = κqj − 1

κqj
. (3.5.1)

This weight was studied in [BGR10]. If we take κ to 0 or ∞, we see the q-Racah weight is an

interpolation between two types of weights:

w(i, j) = qj and w(i, j) = q−j .

A direct alternative limit from the elliptic level is given by v1 = v2 = p1/3, p→ 0 (and then replace

q2 by q or 1/q). These two weights give rise to tilings weighted proportional to qVolume or q-Volume

(where Volume = number of 1 × 1 × 1 cubes in the stepped surface representing a tiling). This is

the q-Hahn weight (as the analysis leads to q-Hahn orthogonal polynomials). The frozen boundary

phenomenon for this type of weight was first studied in [KO07], and then via alternative methods

in [BGR10].

Finally, the Racah weight is the limit q → 1 in (3.5.1) (we denote k = logq(κ) and need κ → 1

as q → 1). The weight function becomes linear in the vertical coordinate:

w(i, j) = k + j.

Notice in all these limits the weight of a horizontal lozenge is independent of the horizontal

coordinate of its top vertex.

Taking these limits corresponds to the hypergeometric hierarchy of special functions involved

in the analysis via the orthogonal polynomial (OP) or biorthogonal elliptic functions (down arrows

denote limits):

Elliptic hypergeometric (elliptic weights; elliptic biorthogonal ensembles)

↓
q-hypergeometric (q-weights; q-OP ensembles)

↓
Hypergeometric (uniform/Racah weight; Hahn/Racah OP ensemble)

As a final note, the most general degeneration of the weight is the top level trigonometric limit

p → 0, which gives rise to a 3 parameter family of weights (the use of the word trigonometric here

should not be confused with its usage in Section 3.4). Being more general (more parameters) than
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the q-Racah limit, its analysis requires q rational biorthogonal functions rather than orthogonal

polynomials. Taking q → 1 in this top trigonometric limit yields the top rational limit. We will not

use these limits hereinafter as we work directly with the elliptic level.

3.6 Deriving the weight

One way to derive the weight function (present in Section 3.3) is the following, obtained in [BGR10].

This section and the next are an expansion of the Appendix in the aforementioned reference and

follow the notation therein.

We start by first looking for nice weights and nice partition function. That is, we want the parti-

tion function and individual weights of lozenges to be relatively simple products of theta functions.

Second, just like in the qV olume case, we want the weights to vary in geometric progressions as we

move inside the hexagonal tiling. That is to say, we want all meaningful univariate (and multivariate)

partition functions to be of the (elliptic) hypergeometric series kind. Unlike the qV olume case, the

weights will vary in both i and j directions.

Third, we want the gauge invariant ratio of full/empty unit cube to have a reasonable group of

symmetries

Fourth, because we are dealing with a projection of a three-dimensional picture onto a 2-

dimensional plane, we want to capture that in the weight. A natural way to do that is to require,

for the gauge-invariant ratio full/empty of an unit cube, that the following relation holds:

r(x, y, z) = r(x+ 1, y + 1, z + 1),

where (x, y, z) is the centroid of that cube (in other words, multiple points in 3-dimensions corre-

sponding to the same projection should have the same weight).

Because of the first and second desiderata, we want to look at the Frenkel-Turaev hypergeometric

series as some sort of partition function. The simplest case is to consider the univariate case of course.

We can transform our three-dimensional stepped surface picture into a univariate case by looking

at tilings of a 1× 1×n box. The partition function then is a univariate sum over the number of full

cubes in the tiling (which ranges from 0 to n). Hence we want the sum

∑
0≤l≤n

∏
0≤k≤l

r(x, y, z + k)

to be hypergeometric, for any choice of half integer vector (x, y, z) (representing the centroid of the

initial cube of the “univariate” hexagon just considered. Thus we can match the above sum with the

following version of the Frenkel-Turaev summation formula (see Theorem 2.3.3 with t5 =
√
q, t20 =
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ab/q, . . . ): ∑
0≤l≤n

qlθp(q
2lab/q)

θp(ab/q)

θp(a, b, a/q, b/q)

θp(qla, qlb, qla/q, qlb/q)
=
θp(q

n+1, a, b, qnab/q)

θp(q, qna, qnb, ab/q)

(note the summands are indeed ratios of theta-Pochhammer symbols - for example, θp(a)/θp(q
la) =

θp(a; q)l/θp(qa; q)l) to obtain

r(x, y, z +m) =
qθp(q

m−1a, qm−1b, q2m+1ab)

θp(qm+1a, qm+1b, q2m−1ab)
=
q3θp(q

m−1a, qm−1b, q−2m−1/ab)

θp(qm+1a, qm+1b, q1−2m/ab)
.

Here a, b depend on (x, y, z), and we have used the simple fact that
θp(a/q;q)l
θp(aq;q)l

=
θp(a,a/q)

θp(qla,qla/q)
above.

By looking at r(x, y,m) and substituting z + m 7→ m, it follows that q−za, q−zb are independent

of z. Thus a = qza1, b = qzb1, ab = q2zc1. We can now impose the third desideratum and require

rotational invariance of r(x, y, z) (after first setting m = 0). After rotation and matching, we

find a = qy+z−2xu1, b = qx+z−2yu2, 1/ab = qx+y−2zu3 where u1, u2, u3 are complex continuous

parameters multiplying to 1. Hence we arrive at the gauge invariant weight ratio described in

Section 3.3:

r(x, y, z) = q3 θp(q
y+z−2xu1/q, q

x+z−2yu2/q, q
x+y−2zu3/q)

θp(qy+z−2xu1, qx+z−2yu2, qx+y−2zu3)
.

To aid future computations, we can choose a particularly nice gauge by breaking symmetry and

requiring all lozenges that are not horizontal to have weight 1, and horizontal lozenges to have weight

w(i, j) =
(u1u2)1/2qj−1/2θp(q

2j−1u1u2)

θp(qj−3i/2−1u1, qj−3i/2u1, qj+3i/2−1u2, qj+3i/2u2)
,

where we have switched to planar (i, j) coordinates. Note we can multiply w(i, j) by any (nonvan-

ishing) function of i alone, and it will not change the weight ratio.

3.7 Inverting the Kasteleyn matrix

In this section we compute the inverse Kasteleyn matrix in an appropriate domain and use it for

certain auxiliary computations to be used later. Like the previous section, the contents of the present

follows closely the Appendix of [BGR10].

The Kasteleyn K matrix associated to a tiling of a hexagon with these elliptic weights (equiv-

alently, to a dimer cover) can be defined as follows. We divide every lozenge into two equilateral

triangles and color the left (right) pointing triangle black (white). Then K := K(b, w)b,w has in-

dexed rows indexed by black triangles and columns indexed by white triangles. Let (i, j) be the
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coordinate of the top vertex of any such triangle. We have

K((i, j), (i, j)) =
(u1u2)1/2qj−1/2θp(q

2j−1u1u2)

θp(qj−3i/2−1u1, qj−3i/2u1, qj+3i/2−1u2, qj+3i/2u2)
,

K((i, j), (i+ 1, j + 1/2)) = 1,

K((i, j), (i+ 1, j − 1/2)) = 1,

K((i, j), (i′, j′)) = 0 if (i′, j′) /∈ {(i, j), (i+ 1, j + 1/2), (i+ 1, j − 1/2)}.

In [BGR10] the inverse of this matrix is computed in a certain domain as follows. Let P :=

P (x0 < x1, y0 < y1) be the parallelogram given by inequalities x0 ≤ i ≤ x1, y0 ≤ j + i/2 ≤ y1. In

this domain K is a square matrix and we can compute its inverse which we denote by L (note that

L := L(w, b)w,b—that is, L has rows indexed by white and columns indexed by black vertices). We

have that in P , the following is true.

Theorem 3.7.1. The inverse Kasteleyn matrix is given by

L((i0, j0), (i1, j1)) =δi0<i1(u1u2)(i1−i0−1)/2

× δj1+i1/2≤j0+i0/2(−1)j0−i0/2−j1+i1/2−1q(i1−i0−1)(i1−i0+4j1−2)/4

× θp(q
j0+i0/2−j1−i1/2+1, qj0+i0/2+j1−i1/2u1u2; q)i1−i0−1

θp(q, qj0−i0/2−i1u1, qj1−3i1/2+1u1, qj1+i0+i1/2u2, qj0+3i0/2+1u2; q)i1−i0−1
.

Proof. Up to a constant, L(w, b) must be (by Kasteleyn’s Theorem 3.2.3) the total weight of the

tilings omitting the two triangles w and b (the total weight of tilings of a hexagon with two vertical

sides of size 1). Thus L((i0, j0), (i1, j1)) vanishes if i0 ≥ i1 or j0 + i0/2 < j1 + i1/2 because no such

tilings exist. Moreover, when performing the multiplication LK, we see we are left with checking

the relation:

L((i0, j0), (i1, j1))K((i1, j1), (i1, j1)) + L((i0, j0), (i1 + 1, j1 − 1/2))+

L((i0, j0), (i1 + 1, j1 + 1/2)) = δ(i0,j0),(i1,j1).

This relation is easy to check (via the explicit formulas for L and K) in all cases except for

i0 < i1 and j1 + i1/2 < j0 + i0/2 when all three summands above are nontrivial theta functions and

the relation becomes an instance of the addition formula.

Remark 3.7.2. Computing the inverse Kasteleyn matrix is usually hard, and the above formula

was arrived at by guessing the form based on the fact that if the vertical size of the hexagon is equal

to 1 then plane partitions become ordinary partitions. The partition function for such a hexagon

(which is what we want to compute) is then a hypergeometric sum which we can hope to evaluate

using the results from Section 2.3.
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With the inverse Kasteleyn matrix in hand, we can now compute two important quantities for

future purposes. We start by cutting a hexagon in half along a vertical line with i coordinate between

0 and T = b+c and prescribing the position of horizontal lozenges on said line. We can then compute

the total weight of the left and right halves (without the cutoff line with the prescribed horizontal

lozenges). We thus have the following two lemmas.

Lemma 3.7.3. The total weight to tile the left half-hexagon in Figure 3.10 is, up to a constant

independent of the prescribed lozenges on the cutoff line

∏
1≤l≤c

(−1)xlθp(q
I+1, qI−j0+3i0/2/u1, q

−I+2−j0−3i0/2/u2, q
I+1−2j0/u1u2; q)xl

θp(q, q2I−j0+3i0/2/u1, q2−j0−3i0/2/u2, q1−2j0/u1u2; q)xl

×
∏

1≤k<l≤c q
−xkθp(q

xk−xl , qxk+xl+I−2j0+1/u1u2)∏
1≤l≤c θp(q

1−I+j0−3i0/2−xlu1, qxl−j0−3i0/2+2/u2; q)c−1
.

(i0 − c, j0 − a− c
2)

(i0 − c, j0 − c
2)

(i0, j0)

(i0 + I, j0 − I
2)

(i0 + I, j0 − I
2 − a− c)

{(i0 + I, j0 − I
2 − xk)}k=1...c

Figure 3.10: Tiling a left half-hexagon with prescribed triangles removed (corresponding
to the prescribed lozenges on the cutoff line).

Proof. Tiling the domain in question is equivalent to tiling a parallelogram from where we removed

an equal number of black (corresponding to lozenges) and white triangles as in Figure 3.11 since

nonhorizontal lozenges have weight 1.

We can use Kasteleyn’s Theorem 3.2.3 to reduce to computing the following determinant:

det
1≤l,k≤c

L((i0 − k, j0 − k/2 + 1), (i0 + I, j0 − I/2− xl)).

We can factor

L((i0 − k, j0 − k/2 + 1), (i0 + I, j0 − I/2− xl))
L((i0 − 1, j0 + 1/2), (i0 + I, j0 − I/2))

=

L((i0 − 1, j0 + 1/2), (i0 + I, j0 − I/2− xl))
L((i0 − 1, j0 + 1/2), (i0 + I, j0 − I/2))

× L((i0 − k, j0 − k/2 + 1), (i0 + I, j0 − I/2− xl))
L((i0 − 1, j0 + 1/2), (i0 + I, j0 − I/2− xl))

,
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(i0 − c, j0 − a− c
2)

(i0 − c, j0 − c
2)

(i0, j0)

(i0 + I, j0 − I
2)

(i0 + I, j0 − I
2 − a− c)

Figure 3.11: Tiling the left half-hexagon is equivalent to tiling the parallelogram with
black and white triangles removed.

where the denominators are nonzero for generic values of the parameters. By multiplying the quotient

L((i0 − 1, j0 + 1/2), (i0 + I, j0 − I/2− xl − 1))

L((i0 − 1, j0 + 1/2), (i0 + I, j0 − I/2− xl))

= −θp(q
xlqI+1, qxlqI−j0+3i0/2/u1, q

xlq−I+2−j0−3i0/2/u2, q
xlqI+1−2j0/u1u2)

θp(qxlq, qxlq2I−j0+3i0/2/u1, qxlq2−j0−3i0/2/u2, qxlq1−2j0/u1u2)
,

xl times each time increasing the second j coordinate inside L(·, ·), we find

L((i0 − 1, j0 + 1/2), (i0 + I, j0 − I/2− xl))
L((i0 − 1, j0 + 1/2), (i0 + I, j0 − I/2))

= (−1)xl
θp(q

I+1, qI−j0+3i0/2/u1, q
−I+2−j0−3i0/2/u2, q

I+1−2j0/u1u2; q)xl
θp(q, q2I−j0+3i0/2/u1, q2−j0−3i0/2/u2, q1−2j0/u1u2; q)xl

.

Note inside the determinant, this factor depends only on l and thus factors out to give the necessary

univariate factor in the lemma. For the other factor, we similarly have

L((i0 − k, j0 − k/2 + 1), (i0 + I, j0 − I/2− xl))
L((i0 − 1, j0 + 1/2), (i0 + I, j0 − I/2− xl))

∝ θp(q
−xl , q1+xl−2j0+I/u1u2; q)k−1

θp(q1−I+j0−3i0/2−xlu1, qxl−j0−3i0/2+2/u2; q)k−1
,

with the proportionality constant independent of xl. We can now apply Warnaar’s determinant

(Theorem 2.4.1) with zl = qxl+I/2−j0+1/2/
√
u1u2 to obtain the interaction term:

det
1≤k,l≤c

(
L((i0 − k, j0 − k/2 + 1), (i0 + I, j0 − I/2− xl))
L((i0 − 1, j0 + 1/2), (i0 + I, j0 − I/2− xl))

)
∝

∏
1≤k<l≤c q

−xkθp(q
xk−xl , qxk+xl+I−2j0+1/u1u2)∏

1≤l≤c θp(q
1−I+j0−3i0/2−xlu1, qxl−j0−3i0/2+2/u2; q)c−1

.

Lemma 3.7.4. The total weight to tile the right half-hexagon in Figure 3.12 is, up to a constant
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independent of the prescribed lozenges on the cutoff line

∏
1≤k≤c

(−1)xkθp(q
1−a−c, q2I−j0+2+3i0/2/u1, q

−b+c−j0−3i0/2/u2, q
−2j0+a+b+1/u1u2; q)xk

θp(qI−a−b+1, qI+2−j0+3i0/2+b−c/u1, q−I−j0−3i0/2/u2, qI−2j0+a+c+1/u1u2; q)xk

×
∏

1≤k<l≤c q
−xkθp(q

xk−xl , qxk+xl+I−2j0+1/u1u2)∏
1≤k≤c θp(q

xk+I−j0+3i0/2+2+b−c/u1, qj0+3i0/2+b+1−c−xku2; q)c−1
.

(i0 + I, j0 − I
2 − a− c)

(i0 + I, j0 − I
2)

(i0 + b, j0 − b
2)

(i0 + b, j0 − b
2 − a)

(i0 + b− c, j0 − b
2 − a− c

2)

{(i0 + I, j0 − I
2 − xk)}k=1...c

Figure 3.12: Tiling a right half-hexagon with prescribed triangles removed (correspond-
ing to the prescribed lozenges on the cutoff line).

Proof. As in the previous lemma, we need to compute the number of ways to tile the domain in

Figure 3.13 (with white and black triangles removed). Again we use Kasteleyn’s theorem to equate

this with the determinant:

det
1≤k,l≤c

L((i0 + I, j0 − I/2− xk), (i0 + b− c+ l, j0 − a− b/2− c/2 + l/2)).

We proceed as before, by factoring:

L((i0 + I, j0 − I/2− xk), (i0 + b− c+ l, j0 − a− b/2− c/2 + l/2))

L((i0 + I, j0 − I/2), (i0 + b− c+ 1, j0 − a− b/2− c/2 + 1/2))
=

L((i0 + I, j0 − I/2− xk), (i0 + b− c+ 1, j0 − a− b/2− c/2 + 1/2))

L((i0 + I, j0 − I/2), (i0 + b− c+ 1, j0 − a− b/2− c/2 + 1/2))
×

L((i0 + I, j0 − I/2− xk), (i0 + b− c+ l, j0 − a− b/2− c/2 + l/2))

L((i0 + I, j0 − I/2− xk), (i0 + b− c+ 1, j0 − a− b/2− c/2 + 1/2))
∝

θp(q
xk−a−c+1, q2j0−I−a−c−xku1u2; q)l−1

θp(qI−j0+3i0/2+2+b−c/u1, qj0+3i0/2+b+1−c−xku2; q)l−1
×

(−1)xk
θp(q

1−a−c, q2I−j0+2+3i0/2/u1, q
−b+c−j0−3i0/2/u2, q

−2j0+a+b+1/u1u2; q)xk
θp(qI−a−b+1, qI+2−j0+3i0/2+b−c/u1, q−I−j0−3i0/2/u2, qI−2j0+a+c+1/u1u2; q)xk

.

Finishing the argument as in the case of the left half-hexagon yields the result.
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(i0 + I, j0 − I
2 − a− c)

(i0 + I, j0 − I
2)

(i0 + b, j0 − b
2)

(i0 + b, j0 − b
2 − a)

(i0 + b− c, j0 − b
2 − a− c

2)

Figure 3.13: Tiling the right half-hexagon is equivalent to tiling the parallelogram with
black and white triangles removed.

We can also compute the total partition function for tilings of the hexagon with such weights.

That is, we have the following elliptic Macmahon identity.

Theorem 3.7.5. Given an a× b× c hexagon and |p| < 1, q, u1, u2, u3 complex with u1u2u3 = 1, we

have ∑
T wt(T)

wt(0)
= qabc

∏
(1,1,1)≤(i,j,k)≤(a,b,c)

θp(q
i+j+k−1, qj+k−i−1u1, q

i+k−j−1u2, q
i+j−k−1u3)

θp(qi+j+k−2, qj+k−iu1, qi+k−ju2, qi+j−ku3)
,

where 0 denotes the empty-box tiling and the sum is over all tilings T.

Remark 3.7.6. When p → 0 such that all theta functions containing any of the ui tend to 1 (in

essence, we are in the q-Hahn limit described in Section 3.5), we recover the usual q-Macmahon

formula. That is, the partition function for qV olume-type weights is equal to

∏
(1,1,1)≤(i,j,k)≤(a,b,c)

1− qi+j+k−1

1− qi+j+k−2
,

which becomes the usual Macmahon partition function when q → 1. This formula counts the number

of tilings of such a hexagon: ∏
(1,1,1)≤(i,j,k)≤(a,b,c)

i+ j + k − 1

i+ j + k − 2
.

Proof. We are looking at tiling Figure 3.11 glued to Figure 3.13 where we have removed the restriction

of having prescribed lozenges on the gluing line. The total weight of such tilings is, by Kasteleyn’s
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theorem, the following determinant:

det
1≤l,k≤c

L((i0 − k, j0 − k/2 + 1), (i0 + b− c+ l, j0 − a− b/2− c/2 + l/2)).

We can compute this determinant using the same method (Warnaar’s determinant) used in the

previous two lemmas. This yields a gauge-dependent weight, which, after dividing by the weight of

the empty tiling, gives the result.

3.8 S3-symmetric weight

In this section we show how one can assign S3-invariant weights to the three types of rhombi

(lozenges) that make up a tiling of a hexagon. We start with the 2 × 2 × 2 triangle (inside the

triangular lattice) depicted in Figure 3.14 that contains an overlapping of the 3 types of rhombi

considered for our tilings.

Figure 3.14: 3 overlapping lozenges of each type.

To each such type of rhombus we assign a label from the set {ũ1, ũ2, ũ3} (see Figure 3.15) such

that if the rhombi are as described overlapping inside a 2× 2× 2 triangle we have

ũ1ũ2ũ3 = 1.

ũ1 ũ2
ũ3

Figure 3.15: The 3 types of rhombi (lozenges) and their labels.

Each ũi will eventually be a power of q times ui (see Section 3.3). First, we can obviously shift

any of such rhombi along the directions given by their edges, either upwards or downwards. If we

shift the horizontal lozenge labeled ũ3 upwards-right or upwards-left, the label of the new lozenges
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will be multiplied by q−1. If we shift it downwards-right/left, the label will get multiplied by q.

Naturally, if we shift directly upwards, the label will be multiplied by q−2 as a composite of an

upwards-right and and upwards-left shift. A similar rule is used for lozenges with labels ũ2 and

ũ3. The process is depicted in Figure 3.16, with the caveat that for labels ũ1 and ũ2 we only show

the directions in which the label gets multiplied by q (it gets multiplied by q−1 in the opposite two

directions than the ones depicted). Clearly translating any lozenge along its long diagonal does not

change its label.

ũ1

·q

·q
ũ2

·q

·q ũ3
·q−1 ·q−1

·q ·q

Figure 3.16: Shifting lozenges in the triangular lattice, we shift the labels by q or q−1 as
depicted.

To a lozenge with label ũi (i = 1, 2, 3) we assign the following weight:

wt(lozenge with label ũi) = ũ
−1/2
i θp(ũi), i = 1, 2, 3,

where

ũ1 = qy+z−2xu1, ũ2 = qx+z−2yu2, ũ3 = qx+y−2zu3, u1u2u3 = 1,

u1, u2, u3 are three complex numbers that multiply to 1 and (x, y, z) is the three-dimensional co-

ordinate of the center (intersection of the diagonals) of a lozenge. At this point we need to fix a

choice of square roots:
√
q,
√
u1,
√
u2,
√
u3 such that

√
u1
√
u2
√
u3 = 1. Note the three-dimensional

coordinates are only defined up to the diagonal action of Z. Figure 3.17 depicts the 3 lozenges with

labels ui (x = y = z = 0) in the chosen coordinate system.

This way of assigning weights is manifestly S3-invariant. To recover the same probability distri-

bution as in Section 3.3 (i.e., a gauge-equivalent weight for tilings) we again require that the weight

of a tiling of a hexagon is the product of weights of lozenges inside it. To check this, one can simply

check the weight ratio of a full 1 × 1 × 1 box to an empty 1 × 1 × 1 box (this is a gauge-invariant

quantity) under the present assumptions and observe the result is the same as in (3.3.2).

The S3 invariance can be viewed at the level of the partition function (the sum of weights of all

tilings in a hexagon written in this gauge) as follows. We start with an α × β × γ hexagon. The

origin is at the hidden corner of the three-dimensional box. In the canonical coordinates,

(ũ1 = qy+z−2xu1, ũ2 = qx+z−2yu2, ũ3 = qx+y−2zu3),
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xy

z

Figure 3.17: The 3 lozenges corresponding to u1, u2, u3.

the six bounding edges have the following equations (see Figure 3.18 for correspondence between

edges and Li’s):

ũ1/ũ2 := L0 := q3βu1/u2,

ũ3/ũ1 := L1 := q−3γu3/u1,

ũ2/ũ3 := L2 := q3γu2/u3,

ũ1/ũ2 := L3 := q−3αu1/u2,

ũ3/ũ1 := L4 := q3αu3/u1,

ũ2/ũ3 := L5 := q−3βu2/u3.

(3.8.1)

xy

z
L0 γ

L3

L1

β

L4

L2

α

L5

Figure 3.18: An α×β×γ hexagon with canonical coordinates of the edges on the outside
and edge lengths on the inside.

We then have the following proposition. Throughout, the S3-invariant weights are assumed.
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Proposition 3.8.1. The partition function for an α× β × γ hexagon is equal to

P × lim
ρ→1

Γp,q,q(q
1+α+β+γρ, q1+αρ, q1+βρ, q1+γρ)

Γp,q,q(qρ, q1+α+βρ, q1+α+γρ, q1+β+γρ)
×

Γp,q,q(q
1−α+β+γu1, q

1−αu1, q
1−β+α+γu2, q

1−βu2, q
1−γ+α+βu3, q

1−γu3)

Γp,q,q(q1−α+βu1, q1−α+γu1), q1−β+αu2, q1−β+γu2, q1−γ+αu3, q1−γ+βu3)
=

P × lim
ρ→1

Γp,q,q(q(L0L2L4)1/3ρ, q(L0L4L5)1/3ρ, q(L0L1L2)1/3ρ, q(L2L3L4)1/3ρ)

Γp,q,q(qρ, q(L0/L3)1/3ρ, q(L4/L1)1/3ρ, q(L2/L5)1/3ρ)
×

Γp,q,q(q(L0L2L3)1/3, q(L0L3L5)1/3, q(L2L4L5)1/3, q(L1L2L5)1/3, q(L0L1L4)1/3, q(L1L3L4)1/3)

Γp,q,q(q(L0/L4)1/3, q(L3/L1)1/3, q(L5/L3)1/3, q(L2/L0)1/3, q(L4/L2)1/3, q(L1/L5)1/3)
,

where

P = qαβγ−
αβ2+βα2+αγ2+γα2+βγ2+γβ2

4 u
− βγ2
1 u

−αγ2
2 u

−αβ2
3 .

It is left invariant by S3 permuting the coordinates ũi; equivalently, the tuple

((x, α, u1), (y, β, u2), (z, γ, u3)).

Furthermore, this invariance can be expanded to the group W (G2) = S3×Z2 = Dih6 (the symmetry

group of a regular hexagon) with the missing involution being the transformation:

(u1, u2, u3)→ (
1

qAu1
,

1

qBu2
,

1

qCu3
),

where A = −2α+ β + γ,B = α− 2β + γ,C = α+ β − 2γ.

Proof. We start with the elliptic Macmahon identity derived in the Appendix of [BGR10] and in

Section 3.7:∑
tilings T wt(T,G)

wt(0, G)
= qαβγ

∏
1≤x≤α,1≤y≤β,1≤z≤γ

θp(q
x+y+z−1, qy+z−x−1u1, q

x+z−y−1u2, q
x+y−z−1u3)

θp(qx+y+z−2, qy+z−xu1, qx+z−yu2, qx+y−zu3)
,

where 0 denotes the empty tiling (box) and G is any gauge equivalent to the ones used in this paper

(that is to say, both sides are gauge-independent). For G the S3 invariant gauge herein discussed,

the formula for the empty tiling multiplied by the RHS above simplifies the partition function via

straightforward computations. We arrive at the desired result using the following transformations

for Γ functions:

Γp,q(qx) = θp(x)Γp,q(x),

Γp,q,t(tx) = Γp,q(x)Γp,q,t(x).



48

The limit ρ→ 1 is needed for technical reasons to avoid zeros of triple Γ functions.

For the S3-invariance, it suffices to show how the edges transform under the 3-cycle (ũ1, ũ2, ũ3)→
(ũ2, ũ3, ũ1) (a 120◦ clockwise rotation) and the transposition ũ1 ↔ ũ2 (a reflection in the z axis).

For the 3-cycle, the new edges (denoted with primes) have equations:

L′i = Li+2,

where +2 is taken modulo 6, while for the transposition we have

L′0 = 1/L3, L
′
1 = 1/L2, L

′
2 = 1/L1, L

′
3 = 1/L0, L

′
4 = 1/L5, L

′
5 = 1/L4.

Both these transformations leave the partition function invariant. The extra involution giving

the group W (G2) is a reflection through the centroid of the hexagon having coordinates:

(qA/2u1, q
B/2u2, q

C/2u3).

The edges transform as

L′i = 1/Li+3,

where addition is mod 6. We look at the first form of the partition function written in the statement.

We use the following two difference equations to simplify the calculations and arrive at the original

form:

Γp,q,q(q/x) = Γp,q,q(pqx) = Γq,q(qx)Γp,q,q(qx),

Γq,q(q
lqmx, x)

Γq,q(qlx, qmx)
= (−x)mlq−(l(m2 )+m(l2)).
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Chapter 4

Relevant distributions

In this chapter we compute probabilistic quantities of interest which follow from the application of

Kasteleyn’s theorem in Section 3.7. The N -point distribution is a (discrete elliptic) generalization

of many distributions appearing in random matrix theory (i.e., the GUE N -point distribution) and

interacting particle systems. We then introduce the elliptic difference operators of Rains [Rai10]

and show how they capture the dynamics of the particle system under certain specializations. This

allows us to sample exactly from such elliptic distributions as described in Chapter 5.

4.1 Stationary and transitional distributions

In the present section we compute theN -point correlation function (an instance of the discrete elliptic

Selberg density) and transitional probabilities for the model under study. We refer the reader to

Section 3.7 and references therein for the relevant application of Kasteleyn’s theorem which makes

these computations possible.

Take a collection of N nonintersecting lattice paths in Ω(N,S, T ). Fix a vertical line inside the

hexagon with horizontal integer coordinate t (0 ≤ t ≤ T ). This vertical line will contain N particles

X = (x1 < · · · < xN ) ∈ XS,tN,T . Depending on the geometry of our hexagon, there are four ways in

which we can fix a vertical line with horizontal coordinate t inside a collection of N nonintersecting

paths in Ω(N,S, T ). They are described below (see also Figure 4.1 in which the four cases are

depicted—we only depict the outside bounding hexagon and the middle vertical line that is the

desired particle line).

Case 1. t < S, t < T − S, 0 ≤ xk ≤ t+N − 1,

Case 2. S ≤ t ≤ T − S, 0 ≤ xk ≤ S +N − 1,

Case 3. T − S ≤ t < S, t+ S − T ≤ xk ≤ t+N − 1,

Case 4. t ≥ T − S, t ≥ S, t+ S − T ≤ xk ≤ S +N − 1.

(4.1.1)
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(1.) (2.) (3.) (4.)

Figure 4.1: The four ways of choosing a vertical particle line (dotted) inside a hexagon.
In all cases N = 5 particles, T = 8, S ∈ {3, 5}. The middle vertical line in
any hexagon is the particle line.

We make use of the following notations:

Lt(X) = sum of products of weights corresponding to holes (horizontal lozenges) to the left of

the vertical line with coordinate t. The sum is taken over all possible ways of tiling the

region to the left of this line. Equivalently, it is taken over all families of paths starting at

((0, 0), . . . , (0, N − 1)) and ending at ((t, x1), . . . , (t, xN )).

Rt(X) = sum of products of weights corresponding to holes to the right of the vertical line with

coordinate t. The sum is taken over all possible ways of tiling the region to the right of this

line. Equivalently, it is taken over all families of paths starting at ((t, x1), . . . , (t, xN )) and

ending at ((T, S), . . . , (T, S +N − 1)).

Ct(X) = product of weights corresponding to the holes on this vertical line.

Let

ϕt,S(xk, xl) = q−xkθp(q
xk−xl , qxk+xl+1−t−Sv1v2). (4.1.2)

Remark 4.1.1. As observed in Section 1.2, ϕt,S(x, y) = −ϕt,S(y, x) so the product
∏
k<l ϕt,S(xk, xl)

is the “elliptic” analogue of the Vandermonde product
∏
k<l(xk − xl) (to which it tends in the limit

p→ 0, q → 1 as explained in Section 1.2).

Proposition 4.1.2. We have

Lt(X = (x1, . . . , xN )) = const ·
∏
k<l

ϕt,S(xk, xl)×

∏
1≤k≤N

qNxlθp(q
2xl+1−t−Sv1v2)

θp(q
1−N−t, q1−t−Sv1, q

tv2, q
1−t−Sv1v2; q)xl

θp(q, q2−2t−Sv1, qv2, q1+N−Sv1v2; q)xl
.
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Proof. This follows from an elaborate calculation and Lemma 3.7.3.

First, as is in the case of the aforementioned lemma, we restrict ourselves to the case S < t < T−S
(Case 2. in (4.1.1); computations are similar for the other 3 cases). Note in such a case we have

N particles and S holes on the line with abscissa t. We then apply the particle-hole involution (as

the weight in Lemma 3.7.3 is given in terms of the positions of the holes = horizontal lozenges on

the t-line). There are two types of products appearing in the total weight in question: a univariate

one over the holes and a bivariate Vandermonde-like (again over the holes). For the first product,

we just reciprocate to turn it into a product over particles (as the total product over holes and

particles of the functions involved is a constant dependent only on t, S, T,N, q, p, v1, v2). For the

Vandermonde-like product, we note for a function f satisfying f(yi, yj) = −f(yj , yi) we have (up to

a possible sign not depending on holes or particles):

∏
1≤i<j≤S

f(yi, yj) =
∏

1≤i<j≤N

f(xi, xj)×
∏

0≤u<v≤S+N−1

f(u, v)×

∏
1≤i≤N

1∏
0≤u<xi f(xi, u)

∏
xi<u≤S+N−1 f(u, xi)

, (4.1.3)

where y’s represent locations of holes (top vertices of horizontal lozenges) and x’s locations of par-

ticles. We take f = ϕt,S as defined in (4.1.2). Finally, in Section 3.7 the convention is that particles

and holes are counted from the top going down. For convenience, we count from the bottom up, so

we substitute xl 7→ S +N − 1− xl. After standard manipulations with theta-Pochhammer symbols

we arrive at the desired result.

Proposition 4.1.3. We have

Rt(X = (x1, . . ., xN )) = const ·
∏
k<l

ϕt,S(xk, xl)×

∏
1≤k≤N

qNxlθp(q
2xl+1−t−Sv1v2)

θp(q
1−N−S , q−2t−Sv1, q

1+T v2, q
1−T v1v2; q)xl

θp(q1−S−t+T , q1−t−S−T v1, q2+tv2, q1+N−tv1v2; q)xl
.

Proof. Similar to the previous proof except we use Lemma 3.7.4.

Proposition 4.1.4. We have

Ct(X = (x1, . . . , xN )) = const ·
∏

1≤k≤N

θp(q
xl−2t−Sv1, q

xl−2t−S+1v1, q
xl+tv2, q

xl+t+1v2)

qxlθp(q2xl+1−t−Sv1v2)
.

Proof. This weight is (up to a constant not depending on holes or particles) the reciprocal of the

total weight of the S holes (horizontal lozenges) on the t line and the latter is readily computed from

the definition (3.3.1) of the weight function.



52

Theorem 4.1.5.

Prob(X(t) = (x1, . . . , xN )) = const ·
∏
k<l

(ϕt,S(xk, xl))
2 ×

∏
1≤k≤N

q(2N−1)xkθp(q
2xk+1−t−Sv1v2)×

∏
1≤k≤N

θp(q
1−N−t, q1−N−S , q1−t−Sv1, q

1+T v2, q
1−T v1v2, q

1−t−Sv1v2; q)xk
θp(q, q1−S−t+T , q1−t−T−Sv1, qv2, q1+N−Sv1v2, q1+N−tv1v2; q)xk

= const ·
∏
k<l

(ϕt,S(xk, xl))
2 ×

∏
1≤k≤N

q(2N−1)xkθp(q
2xkF 2)

θp(AF,BF,CF,DF,EF, F
2; q)xk

θp(q, q
A
F , q

B
F , q

C
F , q

D
F , q

E
F ; q)xk

.

(4.1.4)

Proof.

Prob(X(t) = (x1, . . . , xN )) ∝ Lt(X)Ct(X)Rt(X).

Remark 4.1.6. The above distribution is what was called in Section 1.2 the discrete elliptic Selberg

density. That is to say,

Prob(X(t) = (x1, . . . , xN )) ∝ ∆λ(q2N−2F 2|qN , qN−1AF, qN−1(pB)F, qN−1CF, qN−1DF, qN−1EF ),

(4.1.5)

where λ ∈ mN (m = S+N−1) and λi+N−i = xN+1−i (to account for the fact that x1 < x2 < · · · <
xN whereas partitions are always listed in nonincreasing order). The constant of proportionality is

given by Theorem 2.3.5. The particle-hole involution invoked in Proposition 4.1.2 then takes the

following form. If λp is the partition associated to the particle positions (at time t) via the above

equation and λh is the partition associated to the whole positions at the same time (in the case

above, there are S holes), then

λh = (mn − λp)′,

where we recall from Section 1.2 mn − λ denotes the complemented partition corresponding to

λ ∈ mn ((mn − λ)i = m− λn+1−i) and λ′ denotes the dual (transposed) partition (λ′i = number of

parts of λ that are ≥ i). The fact that both probabilities (in terms of holes and in terms of particles)

are ∆-symbols can be observed directly as shown in Proposition 4.1.2 or using the following relations

mentioned in Section 1.2:

∆λ′(a| . . . bi . . . ; 1/q) = ∆λ(a/q2| . . . bi . . . ; q),
∆mn−λ(a| . . . bi . . . ; q)
∆mn(a| . . . bi . . . ; q)

= ∆λ(
q2m−2

q2na
| . . . q

n−1bi
qma

. . . , qn, pqn, q−m, pq−m; q).

We will for brevity denote the measure described in Theorem (4.1.5) by ρS,t (note it also depends

on N,T, v1, v2, p, q, but it is the dependence on S and t that will be of most interest to us). Observe
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we can transform the factor

qxq(2N−2)x θp(q
1−t−Sv1, q

1+T v2)

θp(q1−t−S−T v1, qv2)

appearing in the univariate product of the above probability into something proportional to

qx
θp(q

N−t−Sv1, q
N+T v2)

θp(q2−N−t−S−T v1, q2−Nv2)
· 1

θp(qx+1−t−Sv1, q−x+t+S+T /v1, qx+1+T v2, q−x/v2)N−1

by using

θp(Aq
N−1; q)x =

θp(A; q)xθp(Aq
x; q)N−1

θp(A; q)N−1
and θp(Aq

1−N ; q)x =
q(1−N)xθp(A; q)xθp(q/A; q)N−1

θp(q1−x/A; q)N−1

and absorbing into the initial constant anything independent of x (of the particle positions xk).

After using (3.3.4) our probability distribution becomes

Prob(X(t) = (x1, . . . , xN )) =

const ·
∏
k<l

(ϕt,S(xk, xl))
2 ×

∏
1≤k≤N

1

θp(B(Fqxk)±1, E(Fqxk)±1; q)N−1
×

∏
1≤k≤N

w(xk),
(4.1.6)

where

w(x) =
qxθp(q

2x+1−t−Sv1v2)θp(q
1−N−t, q1−N−S , qN−t−Sv1, q

N+T v2, q
1−T v1v2, q

1−t−Sv1v2; q)x
θp(q1−t−Sv1v2)θp(q, q1−S−t+T , q2−N−t−T−Sv1, q2−Nv2, q1+N−Sv1v2, q1+N−tv1v2; q)x

=
qxθp(F

2q2x)θp(AF,BF
(

q
ABCDEF

) 1
2 , CF,DF,EF

(
q

ABCDEF

) 1
2 , F 2; q)x

θp(F 2)θp(
F
Aq,

F
B q
(
ABCDEF

q

) 1
2

, FC q,
F
D q,

F
E q
(
ABCDEF

q

) 1
2

, q; q)x

.

We have that w is the weight function for the discrete elliptic univariate biorthogonal functions

discovered by Spiridonov and Zhedanov (see [SZ00], [SZ01]). It is of course also the discrete elliptic

Selberg density for N = 1 (hence a ∆-symbol in n = 1 variable as seen in (1.2.6)). Notice in (4.1.6)

above B and E play a special role, as does F . This will become more transparent in Section 6.3.

Note w is elliptic in q, v1, v2 and q{t,S,T,N} (or, analogously, in A,B,C,D,E, F, q).

Remark 4.1.7. Note that in the definition of w above, the first line is given in terms of the

geometry of the hexagon and the choice of the particular particle line (Case 2. in (4.1.1) as previously

discussed), while the second line is intrinsic and the geometry of the hexagon only comes in after

using (3.3.4). We can also define the equivalent of (3.3.4) in the other 3 cases described in (4.1.1)

(and the three other choices of 6 parameters differ from (3.3.4) by (a): interchanging S ant t, (b):

shifting the 6 parameters in (3.3.4) by q±(t+S−T )), or (c): a combination of both (a) and (b)). We

will not use this any further, as all calculations will be done in Case 2. from (4.1.1).
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Remark 4.1.8. The limit v1 = v2 = κ
√
p, p→ 0 gives the distributions present in [BGR10] at the

q-Racah level. Also, as will be seen in Section 6.3, such probabilities are structurally a product of

a “Vandermonde-like” determinant squared (the first two products in (4.1.6)) and a product over

the particles of univariate weights of elliptic biorthogonal functions. Indeed, under the appropriate

limits, one can arrive from (4.1.6) to a much simpler (prototypical) such N -point function: the joint

density of the N eigenvalues of a GUE N ×N random matrix.

The transition and co-transition probabilities for the Markov chain X(t) are given by the next

two statements.

Theorem 4.1.9. If Y = (y1, . . . , yN ) and X = (x1, . . . , xN ) such that yk − xk ∈ {0, 1} ∀k, then

Prob(X(t+ 1) = Y |X(t) = X) = const ·
∏
k<l

ϕt+1,S(yk, yl)

ϕt,S(xk, xl)
×

∏
k:yk=xk+1

w1(xk)
∏

k:yk=xk

w0(xk),

where

w0(x) =
q−x−N+1θp(q

x+T−t−S , qx−T−t−Sv1, q
x+t+1v2, q

x+N−tv1v2)

θp(q2x+1−t−Sv1v2)

w1(x) = −q
−xθp(q

x+1−N−S , qx−2t−Sv1, q
x+T+1v2, q

x−T+1v1v2)

θp(q2x+1−t−Sv1v2)
.

Proof. The formula

Prob(X(t+ 1) = Y |X(t) = X) =
Lt(X)Ct(X)Ct+1(Y )Rt+1(Y )

Lt(X)Ct(X)Rt(X)

=
Ct+1(Y )Rt+1(Y )

Rt(X)
,

along with the formulas for L,R and C yield the result.

Theorem 4.1.10. If Y = (y1, . . . , yN ) and X = (x1, . . . , xN ) such that yk − xk ∈ {0,−1} ∀k, then

Prob(X(t− 1) = Y |X(t) = X) = const ·
∏
k<l

ϕt−1,S(yk, yl)

ϕt,S(xk, xl)
×

∏
k:yk=xk−1

w′1(xk)
∏

k:yk=xk

w′0(xk),

where

w′0(x) = −q
−xθp(q

x−N−t+1, qx−t−S+1v1, q
x+tv2, q

x−t−S+1v1v2)

θp(q2x+1−t−Sv1v2)
,

w′1(x) =
q−x−N+1θp(q

x, qx−2t−S+1v1, q
xv2, q

x+N−Sv1v2)

θp(q2x+1−t−Sv1v2)
.
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Proof.

Prob(X(t− 1) = Y |X(t) = X) =
Lt−1(X)Ct−1(X)Ct(Y )Rt(Y )

Lt(X)Ct(X)Rt(X)

=
Lt−1(Y )Ct−1(Y )

Lt(X)
.

We are now in a position to define six stochastic matrices (Markov chains) needed in what

follows. Their stochasticity along with other properties will be proven in Section 4.2 (the first two

are already stochastic as they represent the transition probabilities obtained in this section). To

condense notation, we denote zk = Fqxk . Let

PS,tt± : XS,t × XS,t±1 → [0, 1],

t+P
S,t
S± : XS,t × XS±1,t → [0, 1],

t−P
S,t
S± : XS,t × XS±1,t → [0, 1],

be defined by

PS,tt+ (X,Y ) =


const ·∏k<l

ϕt+1,S(yk,yl)
ϕt,S(xk,xl)

·∏k:yk=xk+1−
q−xkθp(Azk,Bzk,Czk,q

1−Nzk/ABC)

θp(z2k)
×∏

k:yk=xk

q−xk−N+1θp(zk/A,zk/B,zk/C,q
N−1zkABC)

θp(z2k)
if yk − xk ∈ {0, 1} ∀k

0, otherwise.

(4.1.7)

PS,tt− (X,Y ) =


const ·∏k<l

ϕt−1,S(yk,yl)
ϕt,S(xk,xl)

·∏k:yk=xk−1
q−xk−N+1θp(zk/D,zk/E,zk/F,q

N−1zkDEF )

θp(z2k)
×∏

k:yk=xk
− q
−xkθp(Dzk,Ezk,Fzk,q

1−Nzk/DEF )

θp(z2k)
if yk − xk ∈ {0,−1} ∀k

0, otherwise.

(4.1.8)

t+P
S,t
S+(X,Y ) =


const ·∏k<l

ϕt,S+1(yk,yl)
ϕt,S(xk,xl)

·∏k:yk=xk+1−
q−xkθp(Azk,Bzk,Dzk,q

1−Nzk/ABD)

θp(z2k)
×∏

k:yk=xk

q−xk−N+1θp(zk/A,zk/B,zk/D,q
N−1zkABD)

θp(z2k)
if yk − xk ∈ {0, 1} ∀k

0, otherwise.

(4.1.9)
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t+P
S,t
S−(X,Y ) =


const ·∏k<l

ϕt,S−1(yk,yl)
ϕt,S(xk,xl)

·∏k:yk=xk+1−
q−xkθp(Bzk,Czk,Fzk,q

1−Nzk/BCF )

θp(z2k)
×∏

k:yk=xk

q−xk−N+1θp(zk/B,zk/C,zk/F,q
N−1zkBCF )

θp(z2k)
if yk − xk ∈ {0,−1} ∀k

0, otherwise.

(4.1.10)

t−P
S,t
S+(X,Y ) =


const ·∏k<l

ϕt,S+1(yk,yl)
ϕt,S(xk,xl)

·∏k:yk=xk−1
q−xk−N+1θp(zk/D,zk/E,zk/A,q

N−1zkDEA)

θp(z2k)
×∏

k:yk=xk
− q
−xkθp(Dzk,Ezk,Azk,q

1−Nzk/DEA)

θp(z2k)
if yk − xk ∈ {0, 1} ∀k

0, otherwise.

(4.1.11)

t−P
S,t
S−(X,Y ) =


const ·∏k<l

ϕt,S−1(yk,yl)
ϕt,S(xk,xl)

·∏k:yk=xk−1
q−xk−N+1θp(zk/E,zk/F,zk/C,q

N−1zkEFC)

θp(z2k)
×∏

k:yk=xk
− q
−xkθp(Ezk,Fzk,Czk,q

1−Nzk/EFC)

θp(z2k)
if yk − xk ∈ {0,−1} ∀k

0, otherwise.

(4.1.12)

The normalizing constants are independent of the xk’s and the yk’s. They will become explicit

in Section 4.2.

Note that t−P
S,t
S−, under interchanging t and S, becomes PS,tt− . Under the same procedure t+P

S,t
S+

becomes PS,tt+ . We can think of PS,tt+ (PS,tt− ) as a Markov chain that increases (decreases) t, while

t±P
S,t
S+ (t±P

S,t
S−) increases (decreases) S.

Remark 4.1.11. In the q-Racah limit v1 = v2 = κ
√
p, p → 0, the chains t±P

S,t
S+ coalesce into one

(PS,tS+ in [BGR10]). Likewise for t±P
S,t
S−.

4.2 Elliptic difference operators

In the next two sections we explain how recent results on elliptic special functions and elliptic dif-

ference operators intrinsically capture the model we described thus far. In the present section we

introduce certain multivariate elliptic difference operators. We give the probabilistic and combina-

torial interpretations of the difference operators in the next section. The main two references are

[Rai10] and [Rai06] and we will state results from these without going into the proofs (with a few ex-

ceptions where the proofs are short and revealing of common techniques employed in the area). The

focus will be on certain normalization, quasi-commutation and quasi-adjointness relations satisfied

by the difference operators. A univariate version of these difference operators has already appeared
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in the proof of Theorem 2.1.1.

In [Rai10] (see also [Rai06] for an algebraic description) Rains has introduced a family of difference

operators acting nicely on various classes of BCn-symmetric functions. To define them, we start

with r0, r1, r2, r3 ∈ C∗ satisfy qnr0r1r2r3 = pq. Following [Rai10], let An(r0) be the space of BCn-

symmetric abelian functions f such that

∏
1≤i≤n

θp(pqz
±1
i /r0; q)mf(. . . zi . . . )

is analytic for m large enough, and at the points (ql/r0)±1, 1 ≤ l ≤ m (and p shifts thereof) it has at

most simple poles. Then define D(r0, r1, r2, r3) : An(
√
qr0)→ An(r0) by (note also the dependence

on q, p, n) by

(D(r0, r1, r2, r3)f)(. . . zk . . . ) =∑
σ∈{±1}n

∏
1≤k≤n

∏
0≤s≤3 θp(rsz

σk
k )

θp(z
2σk
k )

∏
1≤k<l≤n

θp(qz
σk
k zσll )

θp(z
σk
k zσll )

f(. . . qσk/2zk . . . ). (4.2.1)

Remark 4.2.1. The difference operator above described is the special case t = q of the more general

elliptic (q, t) elliptic difference operator introduced in the references.

In view of the balancing condition qnr0r1r2r3 = pq we break symmetry and denote the difference

operator by D(r0, r1, r2), the fourth parameter being implied.

By letting D act on the function f ≡ 1, we obtain the following important lemma, whose proof

we sketch following [Rai10].

Lemma 4.2.2. For r0r1r2r3 = pq1−n we have

∑
σ∈{±1}n

∏
1≤k≤n

∏
0≤s≤3 θp(rsz

σk
k )

θp(z
2σk
k )

∏
1≤k<l≤n

θp(qz
σk
k zσll )

θp(z
σk
k zσll )

=
∏

0≤k<n

θp(q
kr0r1, q

kr0r2, q
kr1r2).

Proof. By direct computation the LHS above is invariant under zk → pzk for all k (this is insured

by the fact r0r1r2r3 = pq1−n). It is also BCn-symmetric (invariant under permutations of zk’s and

under zk → 1/zk). Finally, by multiplying LHS by R =
∏
k z
−1
k θp(z

2
k)
∏
k<l ϕ(zk, zl) we will have

cleared potential poles of the LHS. Because R is BCn-antisymmetric the result will end up being

a multiple of R: R · LHS = const · R showing LHS has no singularities in the variables and is thus

independent of the zi’s. Evaluating then at zi = r0q
n−i yields the result. Observe the main point

here was to prove the LHS is elliptic and has no poles in the variables, and indeed any analysis that

shows this will prove the result.

Hereinafter we will use D for the “normalized” difference operator (so that D(r0, r1, r2)1 = 1)

following Lemma 4.2.2.
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The difference operators described above satisfy a number of identities, including a series of

quasi-commutation relations. For an elegant proof which relies on the action of such operators on a

suitably large space of functions (more precisely, on BCn-symmetric interpolation abelian functions),

see [Rai10] or [Rai06]. We will not give a proof of quasi-commutation here, but rather postpone it

to Chapter 7 where the proof will fit in more naturally (more precisely see Remark 7.2.4). Note

nevertheless that the univariate instance can be proven by a direct computation.

Lemma 4.2.3. If U, V,W,Z are 4 parameters, then

D(U, V,W )D(q1/2U, q1/2V, q−1/2Z) = D(U, V, Z)D(q1/2U, q1/2V, q−1/2W ).

Next we look at the action of the difference operators on special classes of functions. For λ ∈ mn

a partition, let

dλ(. . . xk . . . ) =
∏

1≤k≤n

∏
1≤l≤m+n θp(uq

l−1x±1
k )∏

1≤l≤n θp(uq
λl+n−lx±1

k )
.

By direct computation, we see that dλ(. . . uqµk+n−k . . . ) = δλ,µcλ.

Remark 4.2.4. dλ is a special version of the interpolation theta functions,

P
∗(m,n)
λ (. . . xk . . . ; a, b; q; p),

defined in [Rai06] (matching the notation in the reference with ours, a = u, b = q−m−n+1/a). They

are defined (up to normalization) by two properties: being BCn-symmetric of degree m (which

happens for dλ’s) and vanishing at µ 6= λ (which trivially happens in our case). We will return to

interpolation (theta) functions in Chapter 7.

If we now define dλ = dλ
cλ

we see that

dλ(. . . uqµk+n−k . . . ) = δλ,µ, (4.2.2)

so in a precise way, dλ is an interpolation Kronecker-delta theta-function. We then immediately

have the following proposition.

Proposition 4.2.5. Fix τ ∈ {±1}n. Let zk = uqλk+n−k. Then

(D(r0, r1, r2)dλ)(. . . q−τk/2zk . . . ) =
∏
k

θp(r0z
τk
k , r1z

τk
k , r2z

τk
k , (pq

1−n/r0r1r2)zτkk )

θp(z
2τk
k )

∏
k<l

θp(qz
τk
k z

τl
l )

θp(z
τk
k z

τl
l )

.

Proof. Immediate by substituting into equation (4.2.1). For any σ 6= τ , qσk/2−τk/2zk will be of the

form uqµk+n−k with µ 6= λ and the corresponding summand will be 0.
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A useful final property of the difference operators is their quasi-adjointness. It was shown in

[Rai10] that the D’s satisfy a certain “adjointness” relation that we will need in the next section. We

start with 6 parameters t0, t1, t2, t3, u0, u1 satisfying the balancing condition q2n−2t0t1t2t3u0u1 = pq.

We fix the number of variables at n and λ a partition in mn. As in the introduction, we denote

li = λi + n − i. We define the discrete Selberg inner product 〈, 〉 (depending on p, q and the six

parameters) by

〈f, g〉 =
1

Z

∑
λ⊆mn

f(. . . t0q
li . . . )g(. . . t0q

li . . . )×

∆λ(q2n−2t20|qn, qn−1t0t1, q
n−1t0t2, q

n−1t0t3, q
n−1t0u0, q

n−1t0u1; q), (4.2.3)

where f, g belong to the appropriate spaces of BCn symmetric functions (the spaces will become

obvious below) and Z is given in Theorem 2.3.5 (it makes 〈1, 1〉 = 1). This is a discrete analogue of

the continuous inner product introduced in [Rai10]:

〈f, g〉 =
1

Z ′

∫
Cn

f(. . . zk . . . )g(. . . zk . . . )
∏

1≤k<l≤n

Γp,q(tz
±1
k z±1

l )

Γp,q(z
±1
k z±1

l

×

∏
1≤k≤n

Γp,q(t0z
±1
k , t1z

±1
k , t2z

±1
k , t3z

±1
k , u0z

±1
k , u1z

±1
k )

Γp,q(z
±2
k )

dzk
2πizk

,

and can be obtained from that by residue calculus (Z ′ can be obtained from Theorem 2.1.2; we refer

the reader to Section 2.1 and [Rai10] for the contour conditions). We have the following proposition,

which we only prove for the discrete (also t = q) inner product.

Proposition 4.2.6.

〈D(u0, t0, t1)f, g〉 = 〈f,D(u′1, t
′
2, t
′
3)g〉′, (4.2.4)

where

(t′0, t
′
1, t
′
2, t
′
3, u
′
0, u
′
1) = (q1/2t0, q

1/2t1, q
−1/2t2, q

−1/2t3, q
1/2u0, q

−1/2u1),

and 〈, 〉′ is the inner product defined in (4.2.3) with primed parameters inserted throughout.

Proof. The LHS is a double sum. Interchanging the order of summation and a change of variables

yields the RHS.

4.3 Interpreting difference operators

We show in this section how the difference operators and their properties discussed in the previous

section can be given probabilistic interpretations.
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Remark 4.3.1. Observe from (3.3.4) that q2n−3ABCDEF = 1.

In what follows hk (h′k) is the location of the k-th particle on the vertical line i = t (i = t + 1)

in the (i, j) frame (note according to the t → t + 1 dynamics the particles move either up or down

by 1/2). We can prove the following proposition.

Proposition 4.3.2. For A,B,C,D,E, F and zk = Fqhk given by (3.3.4), the summands in

(D(A,B,C)1)(. . . zk . . . )

(see (4.2.1)), appropriately normalized using (4.2.2), are equal to the transition probabilities (entries

in the stochastic matrix) PS,tt+ (H,H ′) defined in (4.1.7) (after switching coordinates from (x, y) back

to (i, j)). This statement also holds for

D(D,E, F ) and PS,tt− ,

D(A,B,D) and t+P
S,t
S+,

D(B,C, F ) and t+P
S,t
S−,

D(D,E,A) and t−P
S,t
S+,

D(E,F,C) and t−P
S,t
S−.

Proof. We will only prove the statement for D(A,B,C) and the t+ Markov chain. The other cases

are similar. The proof is immediate in view of (3.3.4), the change of variables (X,Y ) 7→ (H,H ′) in

(4.1.7) (from (t, x) to (i, j) coordinates) and the following observations.

First, a choice of σk ∈ {±1} for all k in the definition of D(A,B,C) is equivalent to a choice of

which particles move up/down from the position vector H (at vertical line t) to the position vector

H ′ (at vertical line t+1). If σk = 1, the corresponding k-th particle at vertical position hk moves up

to h′k = hk + 1/2 (and if σk = −1, the k-th particle moves down). Next observe that in the univari-

ate product appearing in any term of (D(A,B,C)1)(. . . zk . . . ), we can change θp(uz
−b
i ) (b = 1, 2)

to θp(z
b
i /u) by the reflection formula for theta functions and it will now match with the univariate

product appearing in PS,tt+ . The product
∏
k:yk=xk+1(. . . )

∏
yk=xk

(. . . ) now indeed is identical (mod-

ulo constants independent of the particle positions) to
∏
k:h′k=hk+1/2(. . . )

∏
k:h′k=hk−1/2(. . . ) which

is nothing more than
∏
k:σk=1(. . . )

∏
k:σk=−1( dots) in (4.2.1).

The elliptic Vandermonde product
∏
k<l appearing in (4.1.7) is the same product (modulo con-

stants independent of the particles) as the Vandermonde-like product in any term of

(D(A,B,C)1)(. . . zk . . . )

once we have transformed (in the latter product) θp(zl/zk) into θp(zk/zl) and θp(1/zkzl) into θp(zkzl)
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(picking up appropriate multipliers in front that will be powers of q appearing the Vandermonde-like

product in (4.1.7)). The extra powers of q appearing in (4.1.7) will also surface in the difference

operator once we have performed the aforementioned transformations. Finally observe that the ratio

ϕt+1,S(h′k,h
′
l)

ϕt,S(hk,hl)
reduces (modulo the power of q up front already accounted for) to a ratio of only 2

theta functions (of the 4 initially present) because either h′k − h′l = hk − hl or h′k + h′l = hk + hl

(depending whether particles k and l moved both in the same or in different directions).

Remark 4.3.3. We describe how the difference operators capture the particle interpretation of the

model intrinsically. In their definition specialized appropriately as in the statement of the above

proposition, if two consecutive particles k, k + 1 are 1 unit apart (hk+1 − hk = 1), the bottom one

cannot move up and the top one down to collide because the summand in the difference operator is

0 (indeed θp(qzkz
−1
k+1) = θp(1) = 0 in the cross terms). Thus, the nonintersecting condition on the

paths is intrinsically built into the difference operator. A similar reasoning shows that top-most and

bottom-most particles are not allowed to leave the bounding hexagon either. To exemplify, for the

difference operator D(A,B,C) corresponding to the t→ t+ 1 transition (particles moving from left

most vertical line to the right), we observe that the restriction on top (bottom) particle is not to

cross the NE (SE) edge labeled C (A) in Figure 3.7 (or indeed not to “walk too far” to the right by

crossing the B edge). However A and C are two of the parameters of the difference operator, and the

corresponding terms in the univariate product in the appropriate summand in (4.2.1) become 0 once

the top (bottom) particle tries to leave the hexagon. Similar reasoning applies to the particles not

being able to “walk too far right”. Hence the difference operators intrinsically capture the boundary

constraints of our model.

Remark 4.3.4. Proposition 4.3.2 is even more general, as we obtain
(

6
3

)
= 20 different stochastic

matrices (Markov chains) from the 20 different difference operators (six of them already described).

We are now in a position to prove that the 6 matrices defined in Section 4.1 are indeed stochastic

and measure preserving.

Theorem 4.3.5.

∑
Y

PS,tt± (X,Y ) = 1,

∑
Y

t±P
S,t
S±(X,Y ) = 1,

ρS,t±1(Y ) =
∑
X

PS,tt± (X,Y ) · ρS,t(X),

ρS±1,t(Y ) =
∑
X

t±P
S,t
S±(X,Y ) · ρS,t(X).
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Proof. There is one way to prove these statements which works for 4 of the 6 matrices. Observe that

the results for t± follow from Theorems 4.1.9 and 4.1.10, and then to observe that under t↔ S, we

have

XS,t = X t,S , and ρS,t = ρt,S

and then under interchanging S and t, PS,tt+ becomes t+P
S,t
S+ (and PS,tt− becomes t−P

S,t
S−, respectively).

This idea worked both at the q-Racah level and Hahn level (see [BGR10] and [BG09]).

Alternatively we can observe that the first two equalities are, by using (3.3.4) and Proposition

4.3.2, restatements of Lemma 4.2.2 for difference operators corresponding to parameters (A,B,C)

(for PS,tt+ ), (D,E, F ) (for PS,tt− ), (A,B,D) (for t+P
S,t
S+), (B,C, F ) (for t+P

S,t
S−), (D,E,A) (for t−P

S,t
S+),

(E,F,C) (for t−P
S,t
S−). Moreover, the normalizing constants that we omitted in defining the transition

matrices can be recovered easily from Proposition 4.3.2.

The last two statements are a special case of the adjointness relation. We will prove the third

statement for the t+ operator. Similar results exist for the other 5 operators. We recall that ρS,t(X)

is nothing more than the discrete elliptic Selberg density,

∆λX (q2N−2F 2|qN , qN−1AF, qN−1(pB)F, qN−1CF, qN−1DF, qN−1EF ),

defined in the Introduction, with λX,k + n− k = xn+1−k. We also define the partition λY to be the

one corresponding to vertical line t + 1 and particle positions given by Y : λY,k + n − k = yn+1−k.

Then one sees ρS,t+1(Y ) =
∑
X P

S,t
t+ (X,Y ) · ρS,t(X) is equivalent to

〈D(A,B,C)dλY , 1〉 = 〈dλY ,D(D′, E′, F ′)1〉′, (4.3.1)

where the prime parameters and 〈, 〉′ are defined in the previous section. The above equality (4.3.1)

is only “morally correct” as we encounter the following issue: the (summands in the) difference

operators D correspond to transitional probabilities in the (i, j) coordinates where particles move

up or down by 1/2 from the t vertical line to the t+ 1 vertical line (from Proposition 4.3.2). dλ, ∆λ

as well as the definition of the inner product (4.2.3) correspond to coordinates (t, x) where particles

either move horizontally 1 step to the right or diagonally up by 1 from vertical line t to vertical line

t+ 1 (see the previous subsection and recall λk +n−k = xn+1−k). But this can be easily fixed since

(i, j) = (t, x− t/2).

With the previous comment in mind, the RHS in (4.3.1) equals

∑
µ

dλY (. . . F qµk+n−k . . . )∆′µ = ∆′λY = ρS,t+1(Y )

(observe ∆′ = ∆ with prime parameters corresponds to the distribution of particles at the line t+1),
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while the LHS equals
∑
λX

Prob(λY |λX) ·∆λX =
∑
X P

S,t
t+ (Y |X) · ρS,t(X). The result follows.

We finish this section with a graphical description of the 6 Markov processes described thus far.

The key is to look at the domain and codomain of the difference operators in canonical coordinates.

We will exemplify with the difference operator D(A,B,D), corresponding to Markov chain t+P
S,t
S+.

Recall this Markov chain quasi-commutes with the t→ t+ 1 chain. The key is the following relation

(a restatement of Theorem 4.3.5):

∑
X

Prob(Y |X;A,B,D)Prob(X;A,B,C,D,E, F ) = Prob(Y ;A′, B′, C ′, D′, E′, F ′) where

(A′, B′, C ′, D′, E′, F ′) = (q
1
2A, q

1
2B, q−

1
2C, q

1
2D, q−

1
2E, q−

1
2F ).

Figure 4.2: Action of the difference operator D(A,B,D) on a tiling of a N = 2, S =
4, T = 7 hexagon drawn in canonical coordinates. The source is marked 1
and the destination 2. Only edges relevant to the model are considered: the
6 bordering edges and the particle line at horizontal displacement t from the
leftmost vertical edge. Note the slight shifting, the increase in S by 1, and
the fact that the particle line’s displacement from the left vertical edge (= t)
is kept constant (though particle positions are shifted by a third step).

We note t+P
S,t
S+ corresponding to difference operator D(A,B,D) maps marked random tilings of

hexagons determined by parameters (A,B,C,D,E, F ) to random tilings of hexagons determined by

parameters (A′, B′, C ′, D′, E′, F ′) (marked here refers to the particle line corresponding to parameter

t). We figure what happens to the edges of such hexagons when parameters get shifted by q±1/2 by

using (3.3.6) (canonical coordinates). Figure 4.2 is a graphical description. In particular, we observe

t+P
S,t
S+ increases S by 1. Similarly for the other difference operators: they increase (decrease) S or

t by 1 while leaving the other constant.
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Chapter 5

Exact sampling algorithms

In this chapter we describe a polynomial-time algorithm for exact sampling of elliptically distributed

lozenge tilings of a hexagon. It is a generalization of the shuffling algorithm for boxed plane partitions

introduced in [BG09] and based on formalism from [BF10] (which formalism we introduce first).

We finish by providing computer simulations (in JAVA) of our algorithm showing an arctic circle

phenomenon for large tilings with features that are new to the elliptic level (and can be partially

explained through the multitude of parameters we have at our disposal).

5.1 Intertwining two Markov chains

In this section we briefly discuss two ways to obtain a new Markov chain out of two quasi-commuting

ones following (almost verbatum) Section 2.2 of [BF10]. A similar coupling (though not as general)

between Markov chains was introduced in [DF90]. We will not provide the proofs, as we will prove

the needed results in Section 5.2 (and this will really be without loss of generality). We will further

aim for simplicity rather than full generality in stating the facts. The notation follows [BF10] closely.

This formalism will come into play again in Chapter 7.

We start with (for simplicity finite) state spaces S1, . . . , Sn, and stochastic matrices P1, . . . , Pn

defining Markov chains on them: Pk : Sk×Sk → [0, 1]. We identify as before P (x, y) with Prob(y|x).

We also assume the existence of Markov links Λ2
1, . . . ,Λ

n
n−1. These are stochastic matrices changing

the state space: Λkk−1 : Sk × Sk−1 → [0, 1].

We further assume the following quasi-commutation relations between the Λ’s and the P ’s:

∆k
k−1 := Λkk−1Pk−1 = PkΛkk−1, k = 2, . . . , n.

We define a new state space

S
(n)
Λ =

{
(x1, . . . , xn) ∈ S1 × · · · × Sn |

n∏
k=2

Λkk−1(xk, xk−1) 6= 0
}
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on which we define a Markov chain given by transition probabilities P
(n)
Λ (X,Y ) (where X =

(x1, . . . , xn), Y = (y1, . . . , yn))

P
(n)
Λ (Xn, Yn) =


P1(x1, y1)

n∏
k=2

Pk(xk, yk)Λkk−1(yk, yk−1)

∆k
k−1(xk, yk−1)

,
n∏
k=2

∆k
k−1(xk, yk−1) > 0,

0, otherwise.

The fact that P
(n)
Λ is a stochastic matrix is not apriori obvious and will be given a proof in the

next section (though in the case n = 2 the proof is quite simple).

We can think of P
(n)
Λ in the following way. Starting from X = (x1, . . . , xn), we choose Y =

(y1, . . . , yn) sequentially. We first choose y1 according to the transition matrix P1(x1, y1), then we

choose y2 sampling from
P2(x2,y2)Λ2

1(y2,y1)

∆2
1(x2,y1)

. This is the the conditional distribution of the middle

point in the successive application of P2 and Λ2
1 provided that we start at x2 and finish at y1. We

then choose y3 based on y2 and x3 as above and so on. We call this procedure a sequential update.

The next theorem (quoting from [BF10]) describes an important projection property of P
(n)
Λ .

Theorem 5.1.1. Let mn(xn) be a probability measure on Sn. Consider the evolution of the measure

mn(xn)Λnn−1(xn, xn−1) · · ·Λ2
1(x2, x1)

on S
(n)
Λ under the Markov chain P

(n)
Λ , and denote by (x1(j), . . . , xn(j)) the result after j = 0, 1, 2, . . .

steps. Then for any k1 ≥ k2 ≥ · · · ≥ kn ≥ 0 the joint distribution of

(xn(0), . . . , xn(kn), xn−1(kn), xn−1(kn + 1), . . . , xn−1(kn−1),

xn−2(kn−1), . . . , x2(k2), x1(k2), . . . , x1(k1))

coincides with the stochastic evolution of mn under transition matrices

(Pn, . . . , Pn︸ ︷︷ ︸
kn

,Λnn−1, Pn−1, . . . , Pn−1︸ ︷︷ ︸
kn−1−kn

,Λn−1
n−2, . . . ,Λ

2
1, P1, . . . , P1︸ ︷︷ ︸

k1−k2

).

Remark 5.1.2. So far there is an obvious asymmetry between the Λ chains and the P chains: the

source and target for the P chains is the same, while for the Λ chains it is not. This can be remedied

by making the state spaces S depend on an additional (time) parameter t. Then the P ’s can be

made to change t and the Λ’s to (still) change k and symmetry is restored. Theorem 5.1.1 still

applies in this time-inhomogeneous setting. This will be the approach pursued (along with proofs)

in the next section where we apply the formalism to exact sampling of lozenge tilings distributed

according to the elliptic measure.
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5.2 Exact sampling: S 7→ S + 1

In this section, which follows closely the notation and proofs of [BG09] (see also [BGR10]), we will

define a stochastic matrix

PSS 7→S+1 : Ω(N,S, T )× Ω(N,S + 1, T )→ [0, 1]

that preserves the elliptic measure µ(N,S, T )—by definition, the total mass of a hexagon tiling

(collection of N nonintersecting lattice paths) in Ω(N,S, T ). Recall µ is defined (after fixing a

gauge) as a product of the weights of the individual horizontal lozenges inside the hexagon. This

stochastic matrix is defined by coupling two quasi-commuting existing stochastic matrices. We then

show how this coupling leads to an algorithm for sampling the measure µ(N,S, T ) in polynomial

time.

Remark 5.2.1. PSS 7→S+1 corresponds to P
(n)
Λ of the previous section. The P and the Λ chains of

the previous section correspond (in this and the next section) to (one of each) PS,tt± and PS,tS± defined

in Section 4.1.

Viewed as a Markov chain, the input for PSS 7→S+1 is a hexagon of size a× b× c (N,S, T ) and the

output a hexagon of size a× (b− 1)× (c+ 1) (N,S + 1, T ). If the input is distributed with measure

µ(N,S, T ), then the output will be distributed with measure µ(N,S + 1, T ).

Given a collection of nonintersecting paths X = (X(0), . . . , X(T )) ∈ Ω(N,S, T ), we will construct

a (random) new collection Y = (Y (0), . . . , Y (T )) ∈ Ω(N,S+1, T ) by defining a stochastic transition

matrix PSS 7→S+1(X,Y ). Observe that Y (0) ∈ XS+1,0 = (0, . . . , N − 1) is unambiguously defined.

Next we perform the sequential (inductive) update. That is, the procedure which produces a random

Y (t+ 1) given knowledge of Y (0), . . . , Y (t) and X which we assume to have already been obtained.

Y (t+ 1) will be defined according to the distribution

Prob(Y (t+ 1) = Z) =
PS+1,t
t+ (Y (t), Z) · t+PS+1,t+1

S− (Z,X(t+ 1))

(PS+1,t
t+ · t+PS+1,t+1

S− )(Y (t), X(t+ 1))

=
t−P

S,t+1
S+ (X(t+ 1), Z) · PS+1,t+1

t− (Z, Y (t))

(t−P
S,t+1
S+ · PS+1,t+1

t− )(X(t+ 1), Y (t))
,

(5.2.1)

where the last equality follows from the fact that

ρS+1,t+1(A)PS+1,t+1
t− (A,B) = ρS+1,t(B)PS+1,t

t+ (B,A)

(this is nothing more than the equality Prob(A ∩B) = Prob(A)Prob(B|A) = Prob(B)Prob(A|B)).
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We define the matrix PS 7→S+1 : Ω(N,S, T )× Ω(N,S + 1, T )→ [0, 1] by

PS 7→S+1 =


∏T−1
t=0

PS+1,t
t+ (Y (t),Y (t+1))·t+PS+1,t+1

S− (Y (t+1),X(t+1))

(PS+1,t
t+ ·t+PS+1,t+1

S− )(Y (t),X(t+1))
,

if
∏T−1
t=0 (PS+1,t

t+ · t+PS+1,t+1
S− )(Y (t), X(t+ 1)) > 0,

0, otherwise.

(5.2.2)

Theorem 5.2.2. The matrix PS 7→S+1 is stochastic and µ-measure preserving, in the sense that

µ(N,S + 1, T )(Y ) =
∑

X∈Ω(N,S,T )

PS 7→S+1(X,Y )µ(N,S, T )(X). (5.2.3)

Proof. (following [BG09]) We want to show that

∑
Y

PS 7→S+1(X,Y ) =
∑
Y

T−1∏
t=0

PS+1,t
t+ (Y (t), Y (t+ 1)) · t+PS+1,t+1

S− (Y (t+ 1), X(t+ 1))

(PS+1,t
t+ · t+PS+1,t+1

S− )(Y (t), X(t+ 1))
= 1,

where the sum is taken over all Y = (Y (0), . . . , Y (T )) ∈ Ω(N,S + 1, T ) such that

T−1∏
t=0

(PS+1,t
t+ · t+PS+1,t+1

S− )(Y (t), X(t+ 1)) > 0. (5.2.4)

We first sum over Y (T ) and because Y (T ) is distributed according to a singleton measure, the

respective sum is 1. Next we deal with the sum

∑
Y (T−1)

PS+1,T−2
t+ (Y (T − 2), Y (T − 1)) · t+PS+1,T−1

S− (Y (T − 1), X(T − 1))

(PS+1,T−2
t+ · t+PS+1,T−1

S− )(Y (T − 2), X(T − 1))

over Y (T − 1) satisfying (PS+1,T−1
t+ · t+PS+1,T

S− )(Y (T − 1), X(T )) > 0 (because of (5.2.4)). Because

of the quasi-commutation relations from Theorem 4.2.3, we have

(PS+1,T−1
t+ · t+PS+1,T

S− )(Y (T − 1), X(T )) = (PS+1,T−1
S− · t+PS,T−1

S− )(Y (T − 1), X(T ))

≥ PS+1,T−1
S− (Y (T − 1), X(T − 1))PS,T−1

t+ (X(T − 1), X(T )).

We are summing over Y (T − 1) such that the LHS above is nonvanishing, but if it vanishes, then by

the above inequality so does t+P
S+1,T−1
S− (Y (T − 1), X(T )) (one of the numerator terms in the sum

over Y (T −1) considered). This means we can drop the condition that (PS+1,T−1
t+ · t+PS+1,T

S− )(Y (T −
1), X(T )) > 0 and sum over all Y (T −1). We obtain 1 for this sum (the denominator is independent

of the summation variable, and summing the numerator over Y (T − 1) we obtain the denominator).

We next sum inductively over Y (T − 2) and so on until we are left over with a sum over Y (0). This

sum only has 1 term, so we obtain the desired result.
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To show PS 7→S+1 preserves the measure µ, observe first that

µ(N,S, T )(X) = m0(X(0)) · PS,0t+ (X(0), X(1)) . . . PS,T−1
t+ (X(T − 1), X(T )),

where m0 is the unique probability measure on any singleton set (in this case XS,0). Then the RHS

of (5.2.3) becomes

∑
X

m0(X(0))

T−1∏
t=0

PS,tt+ (X(t), X(t+ 1))

T−1∏
t=0

PS+1,t
t+ (Y (t), Y (t+ 1)) · t+PS+1,t+1

S− (Y (t+ 1), X(t+ 1))

(PS+1,t
t+ · t+PS+1,t+1

S− )(Y (t), X(t+ 1))
.

(5.2.5)

Pulling out factors independent of the summation variables, replacing 1 = m0(X(0)) with 1 =

m0(Y (0)), using t+P
S+1,T
S− (Y (T ), X(T )) = t+P

S+1,0
S− (Y (0), X(0)) = 1 and PS,tt+ · t+PS,t+1

S− = t+P
S,t
S− ·

PS−1,t
t+ , we transform (5.2.5) into

m0(Y (0))

T−1∏
t=0

PS+1,t
t+ (Y (t), Y (t+ 1))

∑
X

T−1∏
t=0

t+P
S+1,t
S− (Y (t), X(t)) · PS,tt+ (X(t), X(t+ 1))

(t+P
S,t
S− · PS+1,t

t+ )(Y (t), X(t+ 1))
.

Now we sum first over X(T ), then over X(T − 1) and so on like in the previous argument to finally

obtain on the LHS the desired result:

m0(Y (0))

T−1∏
t=0

PS+1,t
t+ (Y (t), Y (t+ 1)) = µ(N,S + 1, T )(Y ).

We now explain the sampling algorithm. For x ∈ N we define

p(x) =
qθp(q

x−t−S+T−1, qx−t−T−1v1, q
x+t+1v2, q

x−t−S−1v1v2)

θp(qx+1, qx−2t−S−1v1, qx−S+T+1v2, qx−T+1v1v2)
× θp(q

2x−t−S+1v1v2)

θp(q2x−t−S−1v1v2)
.

Note p also depends on S, T, v1, v2, q, p, but we omit these for simplicity of notation. Also note p is

an elliptic function of q, qS , qT , qt, v1, v2, q
x. Consider (again omitting most parameter dependence)

P (x; s) =

s∏
i=1

p(x+ i− 1).

P is just a ratio of 5 length s theta-Pochhammer symbols over 5 others (multiplied by qs−1 to

make everything elliptic). We define the following probability distribution on the set {0, 1, . . . , n}:

Prob(s) = D(x;n)(s) =
P (x; s)∑n
j=0 P (x; j)

. (5.2.6)
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For the exact sampling algorithm, given X = (X(0), . . . , X(T )) ∈ Ω(N,S, T ), we construct

Y = (Y (0), . . . , Y (T )) ∈ Ω(N,S + 1, T ) by first observing that Y (0) = (0, . . . , N − 1) is uniquely

defined. We then perform T sequential updates. At step t+ 1 we obtain Y (t+ 1) based on Y (t) and

X(t + 1). Suppose X(t + 1) = (x1, . . . , xN ) ∈ XS,t+1 and Y (t) = (y1, . . . , yN ) ∈ XS+1,t. We want

to define/sample Y (t+ 1) = (z1, . . . , zN ) ∈ XS+1,t+1. Y (t) and X(t+ 1) satisfy xi − yi ∈ {0,−1, 1}
(follows by construction from (PS+1,t

t+ · t+PS+1,t+1
S− )(Y (t), X(t+ 1)) > 0). We thus have three cases,

and we describe how to choose zi in each:

• Case 1. Consider all i such that xi − yi = 1. Then zi = xi is forced.

• Case 2. Consider all i such that xi − yi = −1. Then zi = yi is forced.

• Case 3. For the remaining indices, group them in blocks and consider one such called a (k, l)

block (where k is the smallest particle location in the block, and l is the number of particles

in the block). That is, we have yi−1 < k − 1, yi+l > k + l and the block consists of

xi = yi = k, xi+1 = yi+1 = k + 1, . . . , xi+l−1 = yi+l−1 = k + l − 1.

For each such block independently, we sample a random variable ξ according to the distribution

D(k; l). We set zi = xi for the first ξ consecutive positions in the block, and we set zi = xi + 1

for the remainder of the l − ξ positions. We provide an example in Figure 5.1 below.

(k, l)-block

S S + 1

X(t) X(t + 1) Y (t) Y (t + 1)

could not jump (first case)

split point determined (third case)

forced to jump (second case)

Figure 5.1: Sample block split. See also [BG09].
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Theorem 5.2.3. By constructing Y this way, we have simulated a S 7→ S + 1 step of the Markov

chain PS 7→S+1.

Proof. We perform the following computation (and are interested in Case 3. described above, that

is on how to split a (k, l) block; note xi = yi in the case of interest):

Prob(Y (t+ 1) = Z) =
PS+1,t
t+ (Y (t), Z) · t+PS+1,t+1

S− (Z,X(t+ 1))

(PS+1,t
t+ · t+PS+1,t+1

S− )(Y (t), X(t+ 1))
= (factors independent ofZ)

×
∏

i:zi=yi

q−yi−N+1 θp(q
yi+T−S−t−1, qyi−T−S−t−1v1, q

yi+t+1v2, q
yi+N−tv1v2)

θp(q2yi−t−Sv1v2)

×
∏

i:zi=yi+1

q−yi
θp(q

yi−S−N , qyi−2t−S−1v1, q
yi+T+1v2, q

yi−T+1v1v2)

θp(q2yi−t−Sv1v2)

×
∏

i:zi=xi

q−xi
θp(q

xi−S−N , qxi−t−T−1v1, q
xi+T+1v2, q

xi−t−S−1v1v2)

θp(q2xi−t−S−1v1v2)

×
∏

i:zi=xi+1

q−xi−N
θp(q

xi+1, qxi−T−S−t−1v1, q
xi−S+T+1v2, q

xi+N−tv1v2)

θp(q2xi−t−S+1v1v2)
.

(5.2.7)

We thus see the blocks split independently. The probability that the first j particles in a (k, l)

block stay put from Y (t) to Y (t+1) (and the rest of l− j jump by 1) is, by using the above formula:

j−1∏
i=0

qθp(q
k+i−t−S+T−1, qk+i−t−T−1v1, q

k+i+t+1v2, q
k+i−t−S−1v1v2)

θp(q2k+2i−t−S−1v1v2)

×
l−1∏
i=j

θp(q
k+i+1, qk+i−2t−S−1v1, q

k+i−S+T+1v2, q
k+i−T+1v1v2)

θp(q2k+2i−t−S+1v1v2)
× (factors independent of j),

where in (5.2.7) we have gauged away everything independent of the split position j. This probability

is nothing more than the distribution D we defined in (5.2.6). This finishes the proof.

5.3 Exact sampling: S 7→ S − 1

Similar to the PS 7→S+1 matrix described in the previous two sections, we can construct a PS 7→S−1

measure preserving Markov chain that takes random tilings in Ω(N,S, T ) and maps them to random

tilings in Ω(N,S−1, T ). We proceed exactly as in Section 5.2 and will omit most details and theorems

as they transfer verbatim from Section 5.2 and the previous section. Given X ∈ Ω(N,S, T ) and

Y (0), Y (1), . . . , Y (t) already defined inductively, we choose Y (t+ 1) from the distribution:

Prob(Y (t+ 1) = Z) =
PS−1,t
t+ (Y (t), Z) · t+PS−1,t+1

S+ (Z,X(t+ 1))

(PS−1,t
t+ · t+PS−1,t+1

S+ )(Y (t), X(t+ 1))
. (5.3.1)
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We define

PS 7→S−1 =


∏T−1
t=0

PS−1,t
t+ (Y (t),Y (t+1))·t+PS−1,t+1

S+ (Y (t+1),X(t+1))

(PS−1,t
t+ ·t+PS−1,t+1

S+ )(Y (t),X(t+1))
,

if
∏T−1
t=0 (PS−1,t

t+ · t+PS−1,t+1
S+ )(Y (t), X(t+ 1)) > 0,

0, otherwise.

(5.3.2)

We will also sketch the algorithm for sampling using PS 7→S−1. We need to define the equivalent

for p from the previous section. For x ∈ N we define

p′(x) =
qθp(q

x−t−N−1, qx−t−2Sv1, q
x+tv2, q

x−t+N−1v1v2)

θp(qx−S−N+1, qx−2t−Sv1, qx+Sv2, qx−S+N+1v1v2)
× θp(q

2x−t−S+1v1v2)

θp(q2x−t−S−1v1v2)
.

As before, p′ is an elliptic in q, qS , qN , qt, v1, v2, q
x. We also have P ′(x; s) =

∏s
i=1 p′(x + i − 1)

and the following distribution on {0, 1, . . . , n}:

Prob(s) = D′(x;n)(s) =
P ′(x; s)∑n
j=0 P

′(x; j)
. (5.3.3)

Assuming we have X ∈ Ω(N,S, T ) with X(t + 1) = (x1 < · · · < xN ) and inductively Y (0),

. . . , Y (t) = (y1 < · · · < yN )), we sample Y (t + 1) = (z1 < · · · < zN ) by first observing that

xi−yi ∈ {0, 1, 2} (because (PS−1,t
t+ ·t+PS−1,t+1

S+ )(Y (t), X(t+1)) > 0) and then performing appropriate

updates for the following three simple cases:

• Case 1. For all i with xi − yi = 0 we set zi = xi.

• Case 2. For all i with xi − yi = 2 we set zi = yi + 1.

• Case 3. For the remaining indices (for which xi − yi = 1), group them in blocks and consider

one such called a (k, l) block (where k is the smallest particle location in the block, and l is

the number of particles in the block). That is, we have yi−1 < k − 1, yi+l > k + l and the

block consists of

xi = yi + 1 = k, xi+1 = yi+1 + 1 = k + 1, . . . , xi+l−1 = yi+l−1 + 1 = k + l − 1.

For each such block independently, we sample a random variable ξ according to the distribution

D′(k; l). We set zi = yi for the first ξ consecutive positions in the block, and we set zi = yi+ 1

for the remainder of the l − ξ positions. See Figure 5.1.

An analogue of Theorem 5.2.3 exists and is proved in a similar way to show the above 3 steps

are all that is necessary to simulate the Markov chain PS 7→S−1.
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5.4 Computer simulations

In this section we present computer simulations of the exact sampling algorithm from Section 5.2.

We are (with one exception) looking at 200× 200× 200 hexagons, and parameters are chosen so the

elliptic measure sampled is positive throughout the range of the algorithm (recall that the algorithm

starts with a 200× 400× 0 box and increases c while decreasing b by 1, until it reaches the desired

size—after 200 iterations in our case). Under each figure we list the values of the four parameters

p, q, v1, v2. Computations and simulations are done using double precision, the S 7→ S+ 1 algorithm

polynomial algorithm described above, and a custom program written in Java and that can handle

large hexagons (in excess of N = 1000 particles) fast enough on modern CPUs.

In Figure 5.2 we observe that the sample looks like one from the uniform measure with the arctic

ellipse theoretically predicted in [CLP98] clearly visible.

Figure 5.2: p = 10−7, q = 0.999999995, v1 = 0.0000214, v2 = 1.00675. 400 × 400 × 400.
Because q is very close to 1, the limit shape looks uniform (recall that q = 1
gives rise to the uniform measure).

Figures 5.3 and 5.4 exhibit a new behavior for the arctic circle: the curve seems to acquire 3

nodes at the 3 vertices of the hexagon seen in the pictures. To obtain these shapes, the parameters

have been tweaked so that the elliptic weight ratio vanishes (or = ∞) at the respective corners (in

other words, the weight ratio (3.3.2) is “barely positive” as described in Section 3.4). To be more

precise, we have

q = e
2πi
T−1 ,

v1 = q2T−1,

v2 = 1/q.

This fixes 3 of the 4 parameters of the measure and we have the extra degree of freedom p

and so we obtain a 1-parameter family of trinodal arctic boundaries. All simulations are taken
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from the trigonometric positivity case (q, v1, v2 are of unit modulus—see Section 3.4). While the

first arctic boundary looks like an equilateral “flat” triangle, the second looks like an equilateral

“thin/hyperbolic” triangle. The change from Figure 5.3 to 5.4 is an increase in p (and indeed if we

increase p further the triangle will get thinner and thinner, until it will degenerate into a union of

the 3 coordinate axes as p → 1). The limit p → 0 yields the same “thinning behavior” in the real

positivity case.

Figure 5.3: An instance of a trinodal arctic boundary. p = 0.00186743, arg q =
0.000835422, arg v1 = 0.667502, arg v2 = −0.000835422.

Figure 5.4: Another instance of a trinodal arctic boundary. p = 0.2, arg q =
0.000835422, arg v1 = 0.667502, arg v2 = −0.000835422. Note p is larger
in this case than in the previous.

Finally in Figure 5.5 we exhibit a trinodal case in the top level trigonometric case p = 0 when

q, v1, v2 are of unit modulus (in the case q and vi are real, the arctic boundary is the union of the

coordinate axes as stated above).
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Figure 5.5: Top level trigonometric p = 0 case. As above, arg q = 0.000835422, arg v1 =
0.667502, arg v2 = −0.000835422.
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Chapter 6

Correlation kernel

In this chapter we look at the Markov process(es) coming from any elliptically distributed random

lozenge tiling of a hexagon and show it is a determinantal point process with correlation kernel given

by the univariate elliptic biorthogonal functions of Spiridonov and Zhedanov [SZ00]. We recall some

facts about determinantal point processes and elliptic biorthogonal functions in the first and second

sections respectively, and devote the rest to the specific case of lozenge tilings.

6.1 Determinantal point processes

In this section we define determinantal point processes and state the Eynard-Mehta theorem. We

follow the exposition and quote the necessary results for our purposes from [BR05] and [Bor11] (the

latter is a broad review of the subject).

Let S be a finite set. Subsets of S will be called point configurations. A random point process on

S is a probability measure on 2S. Such a process is called determinantal if there exists a |S| × |S|
matrix K with rows and columns indexed by elements of S (called a correlation kernel) such that

the following functions (called correlation functions):

ρ(Y ) = Prob(X ∈ 2S|Y ⊆ X)

are determinantal for all Y ∈ S. To wit: ρ(Y ) = detKY where KY is the submatrix of K with

rows and columns indexed by elements of Y . We note the correlation kernel K is not unique. We

can conjugate the matrix by any diagonal matrix on either side and obtain the same determinantal

point process.

An example of such a process is given by any |S| × |S| positive definite matrix J (which we

consider indexed by elements of S). For X ∈ 2S we can consider the probability distribution given

by

Prob(X) =
det JX

det (Id+ L)
.
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It turns out (see for example [DVJ88]) that this random point process is a determinantal point

process with kernel given by K = J(Id+ J)−1.

We now aim at stating the Eynard-Mehta theorem (see [EM98]; also see [BR05] for an elementary

proof). We follow the narrative of [Bor11] and use the notation therein. We start with finite sets

S1, . . . , Sm and we denote S = S1 t · · · t Sm. We fix a positive integer N and consider functions

Fi : S1 → C, Gi : Sm → C, 1 ≤ i ≤ N,

Tj,j+1 : Sj × Sj+1 → C, 1 ≤ j ≤ m− 1.

To any X ∈ 2S we assign probability 0 if the number of points in the intersection with at least one

of the Si is not equal to N . Otherwise, let us denote X ∩Si = {xi1, . . . , xiN}. To such a configuration

we assign a probability proportional to

det
i,j

(Fi(x
1
j )) det

i,j
(T1,2(x1

i , x
2
j )) . . . det

i,j
(Tm−1,m(xm−1

i , xmj )) det
i,j

(Gi(x
m
j )), (6.1.1)

where all indices in all determinants range from 1 to N . The partition function for this weighting

of configurations is equal to detM where

M = FT1,2 . . . Tm−1,mG,

a fact that follows from the Cauchy-Binet identity for determinants

∑
Z=(...,zi,... )

det
1≤i,j≤N

P (xi, zj) det
1≤i,j≤N

Q(zi, yj) = det
1≤i,j≤N

(PQ)(xi, yj).

We are of course interested in the case detM 6= 0 but can otherwise allow complex probabilities.

We denote by ? the following product operation (a combination of matrix and scalar product):

(f ? g)(x, y) =
∑
z

f(x, z)g(z, y), h ? k =
∑
z

h(z)k(z),

(h ? f)(y) =
∑
z

h(z)f(z, y), (g ? k)(x) =
∑
z

g(x, z)k(z).

The following theorem is the main result of this section (we follow [Bor11] for the statement):

Theorem 6.1.1. The point process defined in (6.1.1) is determinantal with correlation kernel Kk,l :
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Sk × Sl → C (for any 1 ≤ k, l ≤ N) given by

Kk,l(x
k, yl) =− δk>l(Tl,l+1 ? · · · ? Tk−1,k)(yl, xk)+

N∑
i,j=1

(W−t)i,j(Fi ? T1,2 ? · · · ? Tk−1,k)(xk)(Tl,l+1 ? · · · ? Tm−1,m ? Gj)(y
l),

where the matrix W is defined by Wi,j = Fi ? T1,2 ? · · · ? Tm−1,m ? Gj.

Suppose now that we have a biorthonormal basis {F j
i ,Gji }i≥1 for each L2(Sj) (such a set is called

a biorthonormal basis if {F j
i }i≥1 and {Gji }i≥1 are both bases of L2(Sj) and 〈F j

k ,Gjl 〉 = δk,l for the

inner product 〈·, ·〉 on L2(Sj)). Furthermore suppose that

Tj,j+1(x, y) =
∑
i≥1

cj,j+1F j
i (x)Gj+1

i (y), 1 ≤ j ≤ m− 1,

and that

Span{F 1
1 , . . . ,F 1

N} = Span{F1, . . . , FN},

Span{Gm1 , . . . ,GmN } = Span{G1, . . . , GN}.

If we then denote ck,l;i :=
∏l−k−1
j ck+j,k+j+1;i we then obtain the following form for the kernel

on Sk × Sl:

Kk,l(x
k, yl) =


∑N
i=1 c

−1
k,l;iF

k
i (xk)G li(y

l), k ≤ l,
−∑i>N cl,k;iF k

i (xk)G li(y
l), k > l.

6.2 Elliptic biorthogonal functions

In this section we gather together a few results about univariate discrete elliptic biorthogonal func-

tions. The notation and exposition will mostly be following [Rai06].

We need to make brief use of univariate interpolation abelian functions. Such functions will be

introduced in more detail (and in the multivariate case) in Chapter 7. The multivariate analogues

first appeared in [Rai10] (see also [Rai06] for a description closer to our purposes). Univariately

they are, for a fixed integer l, BC1-symmetric (i.e., symmetric under x 7→ 1/x) ratios of BC1-

symmetric theta functions of degree l with prescribed poles and zeros. To wit the univariate abelian

interpolation function of degree l is defined by

R∗l (x; a, b) =
θp(ax

±1; q)l
θp(bq−lx±1; q)l

,

where a, b are parameters (for brevity, we omit the q, p dependence for all functions present in this
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section). Observe R∗l has zeros at finitely many q-shifts of a and poles at finitely many q-shifts of b

(up to taking reciprocals and shifting by p).

The univariate elliptic biorthogonal functions Rl(x; t0 : t1, t2, t3;u0, u1) discovered by Spiridonov

and Zhedanov [SZ00] (see also [Rai10] and [Rai06] for multivariate analogues) can be defined in terms

of the interpolation functions as follows (see [Rai06]). Fix |p| < 1, q as well as six complex parameters

t0, t1, t2, t3, u0, u1 satisfying the balancing condition t0t1t2t3u0u1 = pq (the same condition as for

the order 0 elliptic beta integral of Chapter 2). Then we define

Rl(x; t0 : t1, t2, t3;u0, u1) =
∑

0≤k≤l

dkR
∗
k(x; t0, u0) = dlR

∗
l (x; t0, u0) + lower-order terms,

where

dk =

(
l
k

)
[1/u0u1,1/t0u1]

∆0
k(t0/u0|t0t1, t0t2, t0t3, t0u1)

,

and we have used
(
l
k

)
[a,b]

:= ∆k(a/b|q, 1/b)R∗k(
√
aql;
√
a, b/
√
a) to denote the univariate elliptic

binomial coefficient (we will not use elliptic binomial coefficients anymore in this section; we postpone

their study to Chapter 7).

By simplifying everything in the definition of Rl to ratios of theta Pochhammer symbols, we can

express Rl as the following explicit terminating order 1 elliptic hypergeometric series:

Rl(x; t0 : t1, t2, t3;u0, u1) = 12E11

(
t0
u0

;
pql

u0u1
,
q

t1u0
,
q

t2u0
,
q

t3u0
, t0x, t0/x, q

−l; 1

)
.

Remark 6.2.1. Rl(x; t0 : t1, t2, t3;u0, u1) has poles at shifts of u±1
0 (we will say u0 controls the poles).

Moreover, we have the following special value (immediate from the terminating series representation):

Rl(t0; t0 : t1, t2, t3;u0, u1) = 1,

and we say parameter t0 is used for normalization.

The biorthogonal functions are elliptic in the six parameters (provided the balancing condition

is satisfied) as well as in the variable x. Following [Rai10], we have the following theorem.

Theorem 6.2.2.

Rl(p
1/2z; p1/2t0 : p1/2t1, p

−1/2t2, p
−1/2t3; p1/2u0, p

−1/2u1) = Rl(z; t0 : t1, t2, t3;u0, u1),

Rl(z; p
k0t0 : pk1t1, p

k2t2, p
k3t3; pl0u0, p

l1u1) = Rl(z; t0 : t1, t2, t3;u0, u1),

where the ki’s and the lj’s are integers respecting the balancing condition: k0+k1+k2+k3+l0+l1 = 0.
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One of the main results of [SZ00] (but also of [Rai10], [Rai06] in the multivariate case) is that

the elliptic biorthogonal functions with poles controlled by u0 and those with poles controled by u1

are biorthogonal.

Theorem 6.2.3. If in addition to the balancing condition on the parameters we also have t0t1 = q−m

(for some m > 0 an integer), the functions with poles controlled by u0 and those with poles controlled

by u1 are biorthogonal on {0, . . . ,m}:

∑
0≤s≤m

Rl(t0q
s; t0 : t1, t2, t3;u0, u1)Rk(t0q

s; t0 : t1, t2, t3;u1, u0)∆s(t
2
0|q, t0t1, t0t2, t0t3, t0u0, t0u1)

vanishes unless k = l in which case it is equal to

cl :=
∆0
m(t1/u0|t1/t0, pq/u0t2, pt/u0t3, pq/u0u1)

∆l(1/u0u1|q, t0t1, t0t2, t0t3, 1/t0u0, 1/t0u1)
∝ ∆(t̂20|q, t̂0t̂1, t̂0t̂2, t̂0t̂3, t̂0û0, t̂0û1)−1, (6.2.1)

where

t̂0 =

√
t0t1t2t3
pq

, t̂0t̂i = t0ti, i ∈ {1, 2, 3},
ûj

t̂0
=
uj
t0
, j ∈ {0, 1}. (6.2.2)

The “hat” is an involution. Also the hat parameters satisfy the same balancing conditions the

original parameters satisfy. They are important because by hatting we can exchange the variable

and the index of the biorthogonal functions as follows (see [Rai06]):

Rl(t0q
s; t0 : t1, t2, t3;u0, u1) = Rs(t̂0q

l; t̂0 : t̂1, t̂2, t̂3; û0, û1). (6.2.3)

The normalized (in this case univariate) difference operators of Section 4.2 act on the biorthogonal

functions as follows (note u0 is special—it controls the poles, and t0 is also special as the choice of

normalization):

D(u0, t0, t1)Rl((q
1/2t0)qs; q1/2t0 : q1/2t1, q

−1/2t2, q
−1/2t3; q1/2u0, q

−1/2u1)

= Rl(t0q
s; t0 : t1, t2, t3;u0, u1).

(6.2.4)

We can renormalize and exchange t0 with another tj at the choice of picking up a factor:

Rl(x; t1 : t0, t2, t3;u0, u1) =
Rl(x; t0 : t1, t2, t3;u0, u1)

Rl(t1; t0 : t1, t2, t3;u0, u1)
. (6.2.5)

We finish by providing an integral representation for univariate biorthogonal functions following

[Rai10].
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Theorem 6.2.4. For parameters t1, t2, t3, u0, u1 multiplying to pq we have

1

Z

∫
C

R∗l (z; t0v, u0)R∗k(z; t0, u1)
Γp,q(t0z

±1, t1z
±1, t2z

±1, t3z
±1, u0z

±1, u1z
±1)

Γp,q(z±2)

dz

2πiz
=

∆0
l (t0v/u0|vt0t1, vt0t2, vt0t3, t0u1; q)∆0

k(t0/u1|t0t1, t0t2, t0t3, t0u0; q)Rl(t
′
0q
k; t′0v : t′1, t

′
2, t
′
3;u′0, u

′
1/v)

where Z =
2
∏

0≤i<j≤7 Γp,q(titj)

(p;p)(q;q) , t4 = u0, t5 = u1, v is a parameter and the primed parameters are

defined by:

t′0t
′
i = t0ti, 1 ≤ i ≤ 3, t′0u

′
0 = t0u0, t

′
0u
′
1 = 1/t0u1, t

′2
0 = t0/u1.

Observe the prime transformation on the parameters is involutive much like the hat transforma-

tion (6.2.2).

6.3 Biorthogonal correlation kernel

In this section we will show the processes t 7→ t± 1 of Section 4.1 are determinantal point processes.

We do the calculation for the t 7→ t− 1 Markov process as it leads to less complicated formulas, but

analogous results hold for t 7→ t+ 1.

For the remainder, it is now convenient to relabel and rescale the parameter set {A,B,C,D,E, F}
from equation (3.3.4) as {t0, t1, t2, t3, u0, u1} in order for certain symmetries to become more promi-

nent (and in doing so, we will use the notation set forth in the previous section). To wit:

A = t2, q
N−1B = u1, C = t3, D = t1, q

N−1E = u0, F = t0. (6.3.1)

Note these parameters depend on t (the time parameter), and such dependence will be made more

explicit when it becomes important. Notation is as in the previous section. Note u0u1t0t1t2t3 = q.

Since the balancing condition for the biorthogonal functions requires a pq on the right hand side,

we will again multiply u1 by p. These are the parameters of the univariate biorthogonal functions

discussed in the previous section. Parameters u0 and u1 control the poles of the pair of biorthogonal

functions.

At the core of the computations is the Eynard-Mehta 6.1.1, which we now state in a “decreasing-

time” form convenient for our purposes.

Theorem 6.3.1. Assume we are given the following:

• a discrete biorthonormal system (f tl , g
t
l )l≥0 on l2({0, 1, . . . , L}) for each time t = 0, . . . , T,
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• a matrix

vt→t−1(x, y) =
∑
l≥0

f t−1
l (tt−1

0 qx)gtl (t
t
0q
y),

for n ≥ 0, t = 1, . . . , T and a parameter t0 changing with time,

• a discrete time Markov chain X(t) (with time decreasing from T to 0) taking values in state

spaces X t (set of possible particle positions at time t) with one-dimensional distributions pro-

portional to

det
1≤k,l≤N

(f tk−1(tt0q
xl)) det

1≤k,l≤N
(gtk−1(tt0q

xl)),

and transition probabilities proportional to

det1≤k,l≤N (vt→t−1(xk, yl)) det1≤k,l≤N (f t−1
k−1(tt−1

0 qyl))

det1≤k,l≤N (f tk−1(tt0q
xl))

.

Then

Prob(x1 ∈ X(τ1), . . . , xs ∈ X(τs)) = det
1≤k,l≤s

(K(τk, xk; τl, xl)),

where

K(τ1, x1; τ2, x2) =


∑
s≥0 f

τ1
s (tτ10 q

x1)gτ2s (tτ20 q
x2), if τ1 ≥ τ2,

−∑s≥N f
τ1
s (tτ10 q

x1)gτ2s (tτ20 q
x2), if τ1 < τ2.

The first step in showing the required determinantal formulas needed to apply the Eynard-Mehta

theorem is the following determinantal formula, a version of which was already stated and proved

in Section 2.4.

Lemma 6.3.2.

det
1≤k,l≤n

Rl−1(zk; t0 : t1, t2, t3;u0, pu1) = const ·
∏
k<l

ϕ(zk, zl)
∏
k

1

θp(q1−nu0z
±1
k ; q)n−1

,

where zk = t0q
xk , the constant is independent of the zk’s and nonzero.

Proof. This proof is essentially the same as that of Lemma 5.3 in [War02] (also proved as Theorem

2.4.1), so we only make a few observations and refer the reader to the proof of 2.4.1. If we denote

the LHS by L and the right hand side by R, we notice both L and R are elliptic in the zk’s.

Fixing a variable zk, we see poles for L/R come from the zeros of R or the poles of L. For the
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latter, the poles are controlled by u0 but are exactly canceled by the zeros of 1/R appearing in

the univariate product (one can see this from the definition of biorthogonal functions in terms of

abelian interpolation functions). For the former the zeros of R are zk = zl, zk = 1/zl for l 6= k

(and p shifts thereof). Plugging in zk = zl into L makes two columns the same, so L vanishes.

Since univariate biorthogonal functions are BC1-symmetric in the variable (a fact made explicit in

the previous section), L also vanishes if zkzl = 1 for some l nek. Hence all the poles of L/R are

removable, and so L/R is constant. We are not interested in the constant explicitly (which makes

this lemma easier to prove) but we show it is nonzero by noticing that the functions inside the

determinant are linearly independent, so the columns of the determinant are linearly independent.

This concludes the proof.

Remark 6.3.3. A more convoluted way to arrive at such determinantal representations (but the way

that nevertheless suggested the formula above) would be to take the RHS of the above formula and

observe that it appears in Waarnar’s determinant (Theorem 2.4.1). What appear in the determinant

on the left are the abelian interpolation functions R∗l discussed in the previous section. The above

formula in fact allows us to compute the constant explicitly by expanding the biorthogonal functions

in terms of abelian interpolation functions (only leading coefficient is of interest for the determinant).

To simplify notation hereinafter we let

Φtl(t0q
s) := Rl(t0q

s; t0 : t1, t2, t3;u0, pu1),

Ψt
l(t0q

s) := Rl(t0q
s; t0 : t1, t2, t3; pu1, u0).

The t superscript for these functions stands for the fact their arguments, as it will become

apparent in the next proposition, are essentially locations of the particles at time t. Likewise the

parameters depend on t (ti and uj are implicit for tti, u
t
j respectively; see (6.3.1) and (3.3.4)). We

will also denote

Ψ̃l(t0q
s) = Ψl(t0q

s)∆s(t
2
0|q, t0t1, t0t2, t0t3, t0u0, pt0u1)/cl, so that∑

s≥0

Φk(t0q
s)Ψ̃l(t0q

s) = δk,l. (6.3.2)

Thus Lemma 6.3.2 along with (4.1.6) and (6.3.1) yields the following proposition.

Proposition 6.3.4.

Prob(X(t) = (x1, . . . , xN )) = const · det
1≤k,l≤n

Φtl−1(t0q
xk) · det

1≤k,l≤n
Ψt
l−1(t0q

xk) ·
∏
k

∆xk

= const · det
1≤k,l≤n

Φtl−1(t0q
xk) · det

1≤k,l≤n
Ψ̃t
l−1(t0q

xk),
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where ∆xk := ∆xk(t20|q, t0t1, t0t2t0t3, t0u0, pt0u1).

Proposition 6.3.5. We have

vt→t−1(k, l) :=
∑
s≥0

Φt−1
s (tt−1

0 qk)Ψ̃t
s(t

t
0q
l) =

1

Z
(w′0δk,l + w′1δk+1,l), (6.3.3)

with w′0 and w′1 as in Theorem 4.1.10 and Z = 1
θp(ut−1

0 tt−1
0 ,ut−1

0 tt−1
1 ,tt−1

0 tt−1
1 )

.

Proof. We observe that

∑
s≥0

Φts(t
t
0q
k)Ψ̃t

s(t
t
0q
l) = δk,l,

which expresses the relation BA = 1 where A(k, l) = Φtk(t0q
l), B(k, l) = Ψ̃t

l(t0q
k) and we know

AB = 1 from biorthogonality (see (6.3.2)). We now apply the difference operator D(ut−1
0 , tt−1

0 , tt−1
1 )

(corresponding to the Markov transition t 7→ t − 1) to both sides and observe the parameters at

time t are the required q shifts of the parameters at time t− 1 (see (6.2.4)). Finally on the RHS we

have a delta function which is acted upon by the difference operator to produce the desired result

(see Proposition 4.2.5).

Remark 6.3.6. In [BGR10] and [BG09] formulas like the one in the above proposition are written

in terms of discrete orthogonal polynomials (q-Racah and Hahn respectively) and are proven via

the three-term recurrence relation satisfied by these polynomials (which is an identity between

hypergeometric or q-hypergeometric series). Such a relation exists for biorthogonal functions as well

(we refer the reader to [SZ00] for an explicit form, though with different notation) and can be used

to prove the above proposition, but the computations are more involved.

Remark 6.3.7. A similar result holds if we apply the transition t 7→ t + 1 which corresponds to

the operator D(u1, t2, t3). For that though, we have to renormalize the biorthogonal functions at

either t2 or t3 (see (6.2.4) and (6.2.5)), so the bidiagonal matrix that appears on the RHS will be of

the above form conjugated by two diagonal matrices (coming from the renormalization coefficients).

This is an artifact of our choice of coordinates (we are counting particles going up from the bottom

left edge of the hexagon).

Finally, in applying Theorem 6.3.1 to the t → t − 1 Markov chain X(t) we need to check that

the transition probabilities have the required determinantal form. This is a consequence of Theorem

4.1.10, Lemma 6.3.2 and the following computation (the proof of which is immediate from Theorem

4.1.10 and Proposition 6.3.5; we use the notation from 4.1.10 for w′0, w
′
1, X, Y ):

det
1≤k,l≤N

(vt→t−1(xk, yl)) = const ·
∏

k:yk=xk−1

w′1(xk)
∏

k:yk=xk

w′0(xk). (6.3.4)
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We thus obtain the following.

Proposition 6.3.8.

Prob(X(t− 1) = Y |X(t) = X) = const · det1≤k,l≤N (vt→t−1(xk, yl)) det1≤k,l≤N (Φt−1
k−1(tt−1

0 qyl))

det1≤k,l≤N (Φtk−1(tt0q
xl))

.

(6.3.5)

Theorem 6.3.9. The Markov processes t 7→ t ± 1 discussed in Section 4.1 meet the assumptions

of Theorem 6.3.1 and are therefore determinantal with correlation kernels given in terms of elliptic

biorthogonal functions.

Proof. This follows from all the results gathered in this Section for the t− Markov chain with f = Φ

and g = Ψ̃ in the notation of Theorem 6.3.1. For t+ see Remark 6.3.7.

Remark 6.3.10. For obtaining quantitative results about the artic boundary, one can try to look

at the asymptotics of the diagonal of the correlation kernel of the process (which is of course the

probability that a particle is present at that site):

K(x, x) =

S+N−1∑
i=0

Rti(t0q
x|t0 : t1, t2, t3;u0, pu1)Rti(t0q

x|t0 : t1, t2, t3; pu1, u0)×

∆x(t20|q, t0t1, t0t2, t0t3, t0u0, pt0u1)∆i(1/(pu0u1)|q, t0t1, t0t2, t0t3, 1/(t0u0), 1/(pt0u1)).

Obtaining a good integral representation of this term can allow for complex analytic asymptotic

methods to be used (such as steepest descent). We have the following partial result.

Proposition 6.3.11.

c1Rl(t0q
x; t0 : t1, t2, t3;u0, pu1) = c1Rl(p

1/2t0q
x; p1/2t0 : p1/2t1, p

1/2t2, p
1/2t3; p−1/2u0, p

−1/2u1) =

c2I(p
√
qql/2qxt0,

1

t0

√
qql/2q−x,

1

t0

√
qq−l/2,

1

t1

√
qq−l/2,

1

t2

√
qq−l/2,

1

t3

√
qq−l/2,

1

u0
p
√
qql/2,

1

u1
√
q
ql/2)

where c1, c2 are constants such that both sides are holomorphic and I is the order 1 elliptic beta

integral of Section 2.1.

Proof. Follows from 6.2.2, 6.2.4, and the W (E7) symmetry of the order 1 elliptic beta integral 2.1.3.

The constants can be computed by setting the argument of the biorthogonal function to t0 so that

it evaluates to 1 (x = 0) and clearing the poles on the LHS.

Remark 6.3.12. The important feature of such an integral representation is that the eight param-

eters of the above order 1 elliptic beta integral have the property that no two distinct ones multiply

in p−Nq−N, and hence the integral (the contour for it) exists and is finite. Thus the integral does
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not degenerate to a sum of residues. The disadvantage is that the kernel itself is a sum of many

such double integrals (arising from each biorthogonal function in the kernel), so one would need to

control all of them at once.
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Chapter 7

Elliptic processes

In this chapter we present the elliptic tilings of the hexagon discussed so far in a new light. The

motivation comes from the Schur process introduced by Okounkov and Reshetikhin in [OR03].

This is a process on partitions where transition probabilities are given by skew Schur functions

(or polynomials). The authors of that paper realized that using this formalism (along with some

representation theory) they can explicitly compute correlation kernels and asymptotics. A different

approach to the same calculation, sidestepping the representation theory, was given in [BR05].

The Schur process was also studied in [Bor10] where sampling algorithms were discussed at length

in connection to Schur functions and intertwined Markov chains. A generalization to Macdonald

polynomials (replacing the Schur functions) was introduced by Vuletic in [Vul09] and discussed at

length with applications in [BC11]. Here we give a generalization of Macdonald processes where

elliptic skew interpolation functions replace skew Macdonald polynomials (to which they degenerate

in the right limit—see [Rai06], [Rai11]). We call them elliptic processes. With the appropriate

specialization of parameters, such processes encompass the lozenge tilings of a hexagon discussed so

far. The first three sections of this chapter present some results obtained by Rains in [Rai06] and

[Rai11] that we will use in later sections. We follow the notation of the cited references for the most

part. We mostly present the necessary definitions and collect the appropriate results without proofs,

and without striving for the greatest generality. The list of results is far from comprehensive. The

main identities will be a transfer and two Cauchy-type identities for skew interpolation functions

generalizing identities well-known for Schur functions. We refer the reader to [Rai06], [Rai11], and

[Rai10] for more details. In the fourth section we define elliptic processes. Lastly, we specialize

the elliptic processes to the case of elliptic tilings of a hexagon. We also present a different (yet

somewhat similar) sampling algorithm for such tilings based on the quasi-commutation relations

satisfied by two “orthogonal” (quasi-commuting) Markov processes.
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7.1 Abelian interpolation functions

In this section we introduce a class of functions which generalize Okounkov’s interpolation polyno-

mials [Oko98] as well as Macdonald polynomials (see. e.g., [Mac95]) to the elliptic level. They were

introduced by Rains in two different papers from two different perspectives. In [Rai10] they were

introduced in a continuous (integral) setting as special cases of the multivariate elliptic biorthogonal

functions. In [Rai06] they were introduced via the notion of interpolation theta functions (which are

certain functions associated to elliptic bigrids in the plane) as ratios of two such interpolation theta

functions. We will pursue here the exposition in [Rai06] without going into the details of elliptic

bigrids and refer the reader to op. cit. for proofs and more details.

We begin with a theorem about the existence and uniqueness of a certain class of functions which

we call interpolation theta functions. We fix positive integers m,n and a partition λ ⊂ mn. We also

fix a, b, q, t, v nonzero complex.

Theorem 7.1.1. There exists a unique n-variable (defined on (C∗)n) function

P
∗(m,n)
λ (x1, . . . , xn; a, b; q; t; p)

(also depending on a, b, q, t) with the following properties:

• (symmetry) P
∗(m,n)
λ is a holomorphic BCn-symmetric theta function of degree m in each vari-

able xi.

• (vanishing) For any partition µ ⊂ mn, µ 6= λ, let l0 be the largest index such that µl 6= λl,

let l1 be the largest index such that µl = m (0 if none exists). If µl0 < λl0 , then set l = l1,

otherwise set l = l0. Then

P
∗(m,n)
λ (bqm−µ1 , . . . , bqm−µltl−1, aqµl+1tn−l−1, . . . , aqµn ; a, b; q; t; p) = 0.

• (normalization)

P
∗(m,n)
λ (. . . vtn−i . . . ; a, b; q; t; p) = C0

λ(tn−1av, a/v; q; t; p)C0
mn−λ(tn−1bv, b/v; q; t; p).

The interpolation theta functions are holomorphic and independent of v. A version of these

functions was already introduced in Section 4.2. Among the key properties these functions exhibit,

we mention the following extra vanishing result.



91

Proposition 7.1.2. For parameters satisfying the balancing qmtn−1ab = 1 we have

P
∗(m,n)
λ ( . . . aqµitn−i . . . ; a, b; q; t; p)

= δλµC
0
mn−λ(pqtn−1; q; t; p)C+

mn−λ(
1

q2ma2
; q; t; p)

C−λ (pq, t; q; t; p)C+
λ (t2n−2a2; q; t; p)

C0
λ(tn; q; t; p)

.

When λ = 0, the value of the theta interpolation function is very nice:

P
∗(m,n)
0 (. . . xi . . . ; a, b; q; t; p) =

∏
1≤i≤n

θp(bx
±1
i ; q)m.

We now define the abelian interpolation functions (abelian here will stand for elliptic in the

variables cf. [Rai06]) as renormalized theta interpolation functions:

R
∗(n)
λ (; a, b; q; t; p) =

P
∗(m,n)
λ (; a, q−mb; q; t; p)

P
∗(m,n)
0 (; a, q−mb; q; t; p)

,

for m ≥ λ1.

Remark 7.1.3. These functions are elliptic in the variables. It can be shown the formula given

above is independent of m (hence the notation; see [Rai06]). Moreover, they functions have poles

whenever the denominator has zeros: at points of the form xi = b±1. ever the denominator has

zeros: at points of the form xi = b±1.

Remark 7.1.4. For n = 1, the abelian interpolation functions are just explicit ratios of theta

Pochhammer symbols, and were introduced in Section 6.2. To wit:

R
∗(1)
l (x; a, b; q; p) =

θp(ax
±1; q)l

θp(bq−lx±1; q)l
.

7.2 Binomial coefficients and skew interpolation functions

In this section we introduce elliptic binomial coefficients (multivariate partition-based elliptic gen-

eralizations of regular binomial coefficients, and also elliptic analogues of q-binomial coefficients

appearing in the theory of Macdonald and Koornwinder polynomials). Based on them we define

elliptic skew interpolation functions necessary for transition probabilities in what will become the

elliptic processes. These are elliptic generalizations of skew Schur functions. Finally we discuss van-

ishing conditions for such functions, which are important for the termination of multivariate elliptic

hypergeometric sums.
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We begin with the elliptic binomial coefficients. They are defined as follows:

(
λ

µ

)
[a,b];q;t;p

:= ∆µ(
a

b
|tn, 1/b; q; t; p)R∗(n)

µ (. . .
√
aqλit1−i . . . ; t1−n

√
a, b/
√
a; q; t; p), (7.2.1)

for any integer n ≥ `(λ), `(µ).

Remark 7.2.1. The binomial coefficient thus described is elliptic in a and b, as well as symmetric

under (a, b, t, q) 7→ (1/a, 1/b, 1/t, 1/q).

We list the following evaluations (and transformation) we will find useful:

(
λ

0

)
[a,b];q;t;p

= 1,(
λ

λ

)
[a,b];q;t;p

=
C+
λ (a; q; t; p)∆0

λ(a/b|1/b; q; t; p)
C+
λ (ab ; q; t; p)∆0

λ(a|b; q; t; p) ,(
mn

λ

)
[a,b];q;t;p

= ∆λ(
a

b
|tn, q−m, t1−nqma, 1/b; q; t; p),(

mn+λ
mn+µ

)
[a,b];q;t;p(

mn

mn

)
[a,b];q;t;p

=
∆0
λ(q2ma|b, pqaqm/b, pqtn−1qm, t1−nq2ma; q; t; p)

∆0
µ(q2ma/b|1/b, pqaqm, pqtn−1qm, t1−nq2ma/b; q; t; p)

(
λ

µ

)
[q2ma,b];q;t;p

.

(7.2.2)

Because we want to specialize b at negative powers of q (b = 1/q) and the round parenthe-

ses binomial coefficients just described have poles there, we will need the following angle bracket

renormalization of the binomial coefficients:

〈
λ

µ

〉
[a,b](v1,...,vk);q;t;p

:=
∆0
λ(a|b, v1, . . . , vk; q; t; p)

∆0
µ(a/b|1/b, v1, . . . , vk; q; t; p)

(
λ

µ

)
[a,b];q;t;p

.

If both λ = l and µ = m consist of only one part, we have the following expression for the

generalized angle-bracket binomial coefficient:

〈
l

m

〉
[a,b];q;p

:=
Γp,q(

b
aq
−l−m, qma

b , aq
l+m, bql−m)

Γp,q(
b
aq
−2m, q2ma

b , aq
l, b)

m∏
j=1

θp(q
j−l−1)

θp(q−j)
.

The last product of theta functions can be written as

m∏
j=1

θp(q
j−l−1)

θp(q−j)
= qm(m−l) θp(q; q)l

θp(q; q)l−mθp(q; q)m
.

Taking the limit p → 0, this degenerates to a version of the q-binomial coefficient qm(m−l)( l
m

)
q
.

Taking q → 1 yields the usual binomial coefficient.

When b = 1, the binomial angle-bracket coefficients reduce to Kronecker delta symbols. We also

have the following important proposition (see [Rai06]).



93

Proposition 7.2.2. If b = 1/q, the binomial coefficient
〈
λ
µ

〉
[a,1/q];q;t;p

vanishes unless λi− 1 ≤ µi ≤
λi (µ is obtained from λ by removing a vertical strip).

When t = q the formula for the renormalized (angle bracket) binomial coefficient becomes deter-

minantal by an application of Warnaar’s formula from Section 2.4 and using the fact that interpo-

lation functions can themselves be written as determinants.

Proposition 7.2.3.

〈
λ

µ

〉
[a,b];q;p

=
∏

1≤i<j≤n

q−µiθ(qµi−i−µj+j , qµi+µj+2−i−ja/b; p)

q−λiθ(qλi−i−λj+j , qλi+λj+2−i−ja; p)
det

1≤i,j≤n

〈λi + n− i
µj + n− j

〉
[ a

q2n−2 ,b];q;p

 .

Remark 7.2.4. The reader should compare the above formula with the formula for transition prob-

abilities for the Markov chains introduced in Chapter 4. To be more precise, the binomial coefficient

with t = q and b-parameter 1/q is indeed a transition probability like the ones defined in Section

4.1. That is, such a binomial coefficient is a coefficient of an appropriate difference operator from

Section 4.2 where zi ∝ qµi+n−i. We discuss the appropriate specializations of parameters corre-

sponding to the transition probabilities of Section 4.1 in Theorems 7.5.1 and 7.5.5. This observation

allows us to prove the quasi-commutation for difference operators (Lemma 4.2.3) in the following

way. In 4.2.3 we first specialize the zi’s to be proportional to qλi+n−i. We express the coefficients

of difference operators as determinants and sum everything using the Cauchy-Binet determinantal

identity (written for M,N arbitrary square matrices we can compose):

∑
Z=(...,zi,... )

det
1≤i,j≤n

M(xi, zj) det
1≤i,j≤n

N(zi, yj) = det
1≤i,j≤n

(MN)(xi, yj).

The multivariate quasi-commutation relation reduces then to the univariate commutation which is

proven directly. This proves it for zi ∝ qλi+n−i but for generic q this is sufficient as all such powers

are dense (in other words, we analytically continue in qλi+n−i).

Remark 7.2.5. If b = 1/q then λi − νi ∈ {0, 1} and the determinant is of a block diagonal matrix

with each block either upper or lower triangular (2-diagonal even). Hence in this case the determinant

evaluates to the product of the diagonal elements.

The following identity allows us to flip the top and bottom of binomial coefficients when λ is of

length at most n. It is also useful in computing binomial coefficients explicitly.

〈
1n + λ

µ

〉
[a,q−1];q;t;p

=
C0

1n(q−1; q; t; p)

C0
1n(pqaq; q; t; p)

∆µ(qa|tn, t1−nqa; q; t; p)

∆λ(q2a|tn, t1−nqa; q; t; p)

〈
µ

λ

〉
[qa,q−1];q;t;p

. (7.2.3)

We are now in a position to introduce the elliptic skew interpolation functions. They are defined
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by the following hypergeometric formula:

R∗λ/κ([v0, . . . , v2n−1]; a, b; q; t; p) :=
∑

κ⊂µ⊂λ

〈
λ

µ

〉
[a/b,ab/pq];q;t;p

〈
µ

κ

〉
[pq/b2,pq

∏
0≤r<2n vr/ab];q;t;p

∆0
µ(pq/b2|pq/bv0, pq/bv1, . . . , pq/bv2n−1; q; t; p). (7.2.4)

Remark 7.2.6. The skew interpolation functions are invariant under permutations of the vi’s as

well as under insertion/deletion of (v′, 1/v′) pairs among the v parameters.

With 0, 2 and 4 v arguments, the interpolation functions have the following simple expressions:

R∗λ/κ([]; a, b; q; t; p) = δλκ,

R∗λ/κ([v0, v1]; a, b; q; t; p) =

〈
λ

κ

〉
[a/b,v0v1](a/v0,a/v1);q;t;p

,

R∗λ/κ([v0, v1, v2, v3]; a, b; q; t; p) =∑
µ

〈
λ

µ

〉
[a/b,v0v1](a/v0,a/v1);q;t;p

〈
µ

κ

〉
[a/v0v1b,v2v3](a/v0v1v2,a/v0v1v3);q;t;p

.

We will, in some sense, only make use of such interpolation functions, though at first they will

appear with an arbitrary number of v parameters. When the bottom partition is equal to 0, the skew

interpolation functions are indeed a version of the usual interpolation functions defined in Section

7.1:

R
∗(n)
λ (z1, . . . , zn; a, b; q; t; p) =

∆0
λ(tn−1a/b|pqa/tb; q; t; p)R∗λ/0([t1/2z±1

1 , . . . , t1/2z±1
n ]; tn−1/2a, t1/2b; q; t; p).

We can combine the last equality of (7.2.2) with (7.2.3) and rewrite in terms of skew interpolation

functions to obtain (following [Rai11]):

Lemma 7.2.7. Let v0, . . . , v2k−1 be such that v2rv2r+1 = q−mr with mr nonnegative integers, for

0 ≤ r < k. Assume m, m′, n are also nonnegative integers satisfying m′ = m+
∑
rmr and let λ, κ

be partitions of length at most n. Then

∆0
mn+κ(a/b

∏
0≤r<2k vr|ab/pq

∏
0≤r<2k vr; q; t; p)

∆0
m′n+λ(a/b|ab/pq; q; t; p) R∗m′n+λ/mn+κ([v0, . . . , v2k−1]; a, b; q; t; p)∏

0≤r<k ∆0
mnr

(Q′a/Qrb|Q′a/Qrv2r, Q
′a/Qrv2r+1; q; t; p)

∆0
m′−mn(Qa/b|ab/pq, pqQQ′a/b; q; t; p)

× ∆κ(aQQ′/b|tn, atQ′/tnb, abQ′/pq, pqQ/Q′ab; q; t; p)
∆λ(aQ′2/b|tn, atQ′/tnb, abQ′/pq, pq/ab; q; t; p)

×
∆0
κ(a′/b′

∏
0≤r<2k vr|a′b′/pq

∏
0≤r<2k vr; q; t; p)

∆0
λ(a′/b′|a′b′/pq; q; t; p) R∗κ/λ([v0, . . . , v2k−1]; a′, b′; q; t; p),
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where a′ = pqQ/b, b′ = pq/Q′b and Q = qm, Q′ = qm
′
.

We end this section by listing a couple of vanishing properties of skew interpolation functions fol-

lowing [Rai11]. They will be used in the next section to ensure termination of certain hypergeometric

sums. We first list the general results and then specialize in the case of interest to us.

Theorem 7.2.8. If the 2k v parameters of the skew interpolation functions can be arranged in such

a way that v2iv2i+1 = tniq−mi for positive integers mi, ni0 and 0 ≤ i < k then for any partition κ,

R∗λ/κ([v0, v1, . . . , v2k−1]; a, b; q; t; p) = 0,

unless

κi ≤ λi ≤ κi−N +M,

where M =
∑
imi, N =

∑
i ni and by definition κi = 0 for i ≤ 0.

Remark 7.2.9. This result is of interest to us for κ = 0. Note for N = 0, κ = 0 we have that all

parts of λ for which the function is nonzero are bounded by M . Alternatively, for M = 0 we have

that partitions λ for which the function is nonzero have at most N parts.

Theorem 7.2.10. Fix notation as in Theorem 7.2.8 and assume that the v parameters have the

property that v2iv2i+1 = tniq−mi for 1 ≤ i < k and that

a/
∏

1≤i<2k

vi = tn0q−m0 .

If κn0+1 ≤ m0, then

R∗λ/κ([v0, v1, . . . , v2k−1]; a, b; q; t; p) = 0,

unless λN+1 ≤M .

Remark 7.2.11. For κ = 0 (our interest), this coincides with Theorem 7.2.8. The reason for stating

both is that we will use both when κ = 0 (or rather use the common version twice). If in one we

take M = 0, in the other N = 0 (and in both κ = 0), then skew interpolation functions will vanish

unless λ ∈MN .

7.3 Transfer and Cauchy identities

In this section we state three important identities involving skew interpolation functions and gen-

eralizing known identities for Schur and skew Schur functions. We call these elliptic transfer and

Cauchy identities. They were proven in [Rai11] which we follow for the rest of the section and to

which we refer the reader for the proofs (though they appear in some detail also in [Rai06]).
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We start with the transfer identity (the name transfer is not standard in the literature even at

the level of Schur functions).

Theorem 7.3.1.

R∗λ/κ([v0, . . . , v2k−1, w0, . . . , w2l−1]; a, b; q; t; p) =
∑
µ

R∗λ/µ([v0, . . . , v2k−1]; a, b; q; t; p)

R∗µ/κ([w0, . . . , w2l−1]; a/v0 · · · v2k−1, b; q; t; p).

Remark 7.3.2. This identity will mostly be used when both interpolation functions in the sum

have only two parameters (hence each is a binomial coefficient).

Remark 7.3.3. The above transfer identity is the skew interpolation analogue of a well-known

transfer identity involving skew Schur functions (see, e.g., [Mac95])):

sλ/κ(x, y) =
∑
µ

sλ/µ(x)sµ/κ(y),

where x = (x1, . . . ), y = (y1, . . . ) are specializations of the algebra of symmetric functions.

We now state the Cauchy and skew Cauchy identities for interpolation functions. The nonskew

version allow us to compute certain partition functions explicitly. To state the results, we need to

make sure certain sums only contain a finite number of nonzero terms (due to convergence problems

for infinite elliptic hypergeometric series—both univariate and multivariate).

Theorem 7.3.4.

∑
µ

∆µ(a/b|; q; t; p)R∗µ/0([v0, . . . , v2n−1]; a, b; q; t; p)

R∗µ/0([w0, . . . , w2m−1];
√
pqt/b,

√
pqt/a; q; t; p) =

∏
0≤i<2n+2
0≤j<2m+2

Γp,q,t((pqt)
1/2vi/wj)

Γp,q,t((pqt)1/2viwj)
,

where

v2n = a/
∏

0≤r<2n

vr, v2n+1 = 1/a, w2m = (pqt)1/2/b
∏

0≤r<2m

wr, w2m+1 = b/(pqt)1/2,

and the parameters are subject to technical termination conditions.

The skew elliptic Cauchy identity is the following result.
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Theorem 7.3.5.

∑
µ

∆µ(ab |; q; t; p)
∆λ( a

bV |; q; t; p)
R∗µ/λ([v0, . . . , v2n−1]; a, b; q; t; p)R∗µ/κ([w0, . . . , w2m−1];

√
pqt

b
,

√
pqt

a
; q; t; p) ∝

∑
µ

R∗λ/µ([w0, . . . , w2m−1];

√
pqt

b
,

√
pqtV

a
; q; t; p)

∆κ( a
bW |; q; t; p)

∆µ( a
bVW |; q; t; p)

R∗κ/µ([v0, . . . , v2n−1]; a, bW ; q; t; p),

where V =
∏
vr, W =

∏
wr, and the parameters are such that the RHS terminates. The constant

of proportionality is independent of λ and κ, and is thus equal to the RHS of Theorem 7.3.4.

Remark 7.3.6. Of the three theorems mentioned in this section, 7.3.4 and 7.3.5 may involve

nonterminating hypergeometric sums. One way to ensure termination in Theorem 7.3.4 is to use

Theorems 7.2.8 and 7.2.8 to bound the partitions in the summation both vertically and horizontally

(bound the number of parts and the magnitude of the first part). We argue similarly for the LHS

appearing in Theorem 7.3.5 (assuming the constant of proportionality is already terminating). In

Section 7.5 we will be more explicit with such conditions.

We again find it convenient to use the version of the above Cauchy identity where all 4 skew

interpolation functions are binomial coefficients. We thus have the following corollary:

Corollary 7.3.7. Assuming the LHS sum terminates and the balancing condition b0b1v0v1v2v3 =

pqta2, one has

∑
µ

∆µ(a|v0, v1, v2, v3; q; t; p)

∆λ(a/b0|v0, v1, v2, v3; q; t; p)

〈
µ

λ

〉
[a,b0];q;t;p

〈
µ

κ

〉
[a,b1];q;t;p

∝

∑
µ

∆κ(a/b1|v0, v1, v2, v3; q; t; p)

∆µ(a/b0b1|v0, v1, v2, v3; q; t; p)

〈
λ

µ

〉
[a/b0,b1];q;t;p

〈
κ

µ

〉
[a/b1,b0];q;t;p

.

The constant of proportionality is given by

∑
µ

∆µ(a|b0, b1, v0, v1, v2, v3; q; t; p).

Remark 7.3.8. We can use two of the 6 parameters in the ∆-symbol in the sum

∑
µ

∆µ(a|b0, b1, v0, v1, v2, v3; q; t; p)

for termination. If one of the parameters is equal to tN for N ∈ N then ∆µ(a|tn, . . . ; q; t; p) = 0

unless µ has at most N parts. If another is equal to q−M for M ∈ N then ∆µ(a|q−M , . . . ; q; t; p) = 0

unless µ1 ≤M . Enforcing both conditions makes the sum finite since then it is a sum over partitions

in MN . If we use b0 and b1 to enforce termination, it is also the case that the sum on the LHS in

the corollary terminates due to the vanishing of binomial coefficients with upper partition µ. With
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this in mind, Theorem 7.3.5 can be proved by an inductive application of MN instances of the

above corollary. The termination conditions stated therein are exactly conditions needed for each

successive application of the corollary.

Remark 7.3.9. The constant of proportionality in the above corollary is a multivariate discrete

elliptic Selberg sum if parameters are specialized appropriately (see Section 2.3). Hence it has an

evaluation.

Remark 7.3.10. These elliptic Cauchy identities are analogues of the well known Cauchy identities

for Schur functions (see, e.g., [Mac95]):

∑
µ

sµ(x)sµ(y) =
∏
i,j

1

1− xiyj
,

∑
µ

sµ/λ(x)sµ/κ(y) =
∏
i,j

1

1− xiyj
∑
µ

sκ/µ(x)sλ/µ(y),

where x = (x1, . . . ), y = (y1, . . . ) are specializations as before.

7.4 Elliptic Schur processes

In this section we define elliptic processes analogous to the Schur processes of Okounkov and

Reshetikhin (see [OR03]). We specialize parameters appropriately and recover some of the results

of Chapter 4 from a different perspective.

We begin by choosing a, b, t, q, p, v0, . . . , w0, . . . complex numbers with |p| < 1. Define

ak := a
∏

0≤i<2k

vi,

bk := b/
∏

0≤i<2k

wi.

Let us denote

Zk,l(v, w; a, b) :=∑
λ

R∗λ/0([v0, . . . , v2k−1]; ak, bl; q; t; p)∆λ(
ak
bl
|; q; t; p)R∗λ/0([w0, . . . , w2l−1];

√
pqt

bl
,

√
pqt

ak
; q; t; p),

(7.4.1)

assuming the sum terminates (we will deal with the termination condition when we specialize the

parameters).

The elliptic processes, much like the Schur processes, are processes on partitions. For now,

unless explicitly otherwise specified, the probabilities involved are allowed to be complex. We fix a
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bounded region R in N2 such that the closure is a (Russian-style) Young diagram (that is, the region

is bounded by the two axis and a path consisting of vertical-up and horizontal-left steps joining from

the horizontal axis to the vertical axis)—though in principle a finite initial segment of the horizontal

axis union a similar segment of the vertical axis is also allowed. Assuming termination conditions

so that necessary sums are finite, there is a process that to every pair of nonnegative integers (k, l)

inside R associates a random partition λ(k,l) with the following properties:

(i) The marginal distribution of λ(k,l) is

Prob(λ(k,l)) =
1

Zk,l(v, w; a, b)
R∗λ(k,l)/0([v0, . . . , v2k−1]; ak, bl; q; t; p)∆λ(k,l)(ak/bl|; q; t; p)×

R∗λ(k,l)/0([w0, . . . , w2l−1];
√
pqt/bl,

√
pqt/ak; q; t; p).

(7.4.2)

This is clearly a probability measure on partitions and it generalizes Okounkov’s Schur measure

[Oko01].

(ii) If k1 ≤ k2, then the conditional probability of λ(k1,l) given λ(k2,l) is

Pk−,k2→k1(λ(k2,l), λ(k1,l)) = Prob(λ(k1,l)|λ(k2,l)) =

R∗
λ(k2,l)/λ(k1,l)

([v2k1 , . . . , v2k2−1]; ak2 , bl; q; t; p)R
∗
λ(k1,l)/0

([v0, . . . , v2k1−1]; ak1 , bl; q; t; p)

R∗
λ(k2,l)/0

([v0, . . . , v2k2−1]; ak2 , bl; q; t; p)
.

(7.4.3)

(ii’) We can also increase k:

Pk+,k1→k2(λ(k1,l), λ(k2,l)) = Prob(λ(k2,l)|λ(k1,l)) =
∆λ(k2,l)(ak2/bl|; q; t; p)
∆λ(k1,l)(ak1/bl|; q; t; p)

×

R∗
λ(k2,l)/λ(k1,l)

([v2k1 , . . . , v2k2−1]; ak2 , bl; q; t; p)R
∗
λ(k2,l)/0

([w0, . . . , w2l−1];
√
pqt/bl,

√
pqt/ak2 ; q; t; p)

R∗
λ(k1,l)/0

([w0, . . . , w2l−1];
√
pqt/bl,

√
pqt/ak1 ; q; t; p)

.

(7.4.4)

(iii) If l1 ≤ l2, then the conditional probability of λ(k,l1) given λ(k,l2) is

Pl−,l2→l1(λ(k,l2), λ(k,l1)) = Prob(λ(k,l1)|λ(k,l2)) =

R∗λ(k,l2)/λ(k,l1)([w2l1 , . . . , w2l2−1];
√
pqt/bl2 ,

√
pqt/ak; q; t; p)×

R∗
λ(k,l1)/0

([w0, . . . , w2l1−1];
√
pqt/bl1 ,

√
pqt/ak; q; t; p)

R∗
λ(k,l2)/0

([w0, . . . , w2l2−1];
√
pqt/bl2 ,

√
pqt/ak; q; t; p)

.

(7.4.5)



100

(iii’) We can also increase l:

Pl+,l1→l2(λ(k,l1), λ(k,l2)) = Prob(λ(k,l2)|λ(k,l1)) =
∆λ(k,l2)(ak/bl2 |; q; t; p)
∆λ(k,l1)(ak/bl1 |; q; t; p)

×

R∗
λ(k,l2)/λ(k,l1)([w2l1 , . . . , w2l2−1];

√
pqt/bl2 ,

√
pqt/ak; q; t; p)R∗

λ(k,l2)/0
([v0, . . . , v2k−1]; ak, bl2 ; q; t; p)

R∗
λ(k,l1)/0

([v0, . . . , v2k−1]; ak, bl1 ; q; t; p)
.

(7.4.6)

(iv) The marginal process along any path with k nonincreasing and l nondecreasing (we call such

a path an anti-diagonal path) is Markov in either direction.

(v) λ(k,0) = λ(0,l) = 0 for k, l ≥ 0.

Remark 7.4.1. Any anti-diagonal path in any instantiation of such a process (the 5 conditions

above do not uniquely determine a process) will be called an elliptic process, but we may abuse

verbiage and use the term for the process as a whole (not just an anti-diagonal path) if we find it

convenient. The main feature of an elliptic process is that the transitional probabilities are given by

skew interpolation functions, while the stationary (marginal) ones by interpolation functions (which

often simplify to ∆-symbols).

Remark 7.4.2. As k (respectively l) increases and l (respectively k) stays fixed, our partitions

increase.

Theorem 7.4.3. Let l1 < l2, k1 < k2 be integers. Assuming all elliptic hypergeometric sums involved

are finite, we have that Pk−,k2→k1 , Pk+,k1→k2 , Pl−,l2→l1 , Pl+,l1→l2 are stochastic matrices compatible

with the marginals given by the elliptic Schur measures defined in (i) above.

Proof. If we expand the sums
∑
λ Prob(λ|µ) and

∑
µ Prob(λ|µ)Prob(µ) arising in the calculation

and appeal to Theorems 7.3.5 and 7.3.1 we immediately obtain the result.

Such a process may still not exist due to condition (iv), because given two anti-diagonal points

with integral coordinates in the first quadrant (k2, l1) and (k1, l2) (l1 < l2, k1 < k2), there are many

anti-diagonal paths from one to the other, and the probabilities along each have to coincide. However,

the following proposition assures us this is the case on every 1×1 square (that is, k2−k1 = l2−l1 = 1).

Proposition 7.4.4. Assuming termination conditions for the hypergeometric series involved, we

have the following quasi-commutation relation:

Pk−,k2→k1(λ(k2,l2), λ(k1,l2))Pl+,l1→l2(λ(k2,l1), λ(k2,l2)) =

Pl+,l1→l2(λ(k1,l1), λ(k1,l2))Pk−,k2→k1(λ(k2,l1), λ(k1,l1)).

Remark 7.4.5. This is an elliptic process version of the quasi-commutation of elliptic difference

operators.
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Proof. Direct application of Theorem 7.3.5.

This leads to the following consistency condition.

Proposition 7.4.6. Given any two points (k1, l1) and (k2, l2) in the allowable region between which

there is an anti-diagonal path, the probabilities on all anti-diagonal paths between the two points are

the same.

Proof. Follows immediately from Proposition 7.4.4 and the transfer identity of Theorem 7.3.1 (only

the latter is needed if k1 = k2 or l1 = l2).

Remark 7.4.7. Note an anti-diagonal path in the proposition need not be comprised of only length

1 steps.

This leads to the following 2-sided Markov property.

Theorem 7.4.8. Given any anti-diagonal path in the allowed region for the elliptic process comprised

of vertices vi and a nonterminal vertex vI on the path, the probability of λvI given the rest of the

path only depends on the two (nearest) neighbors of vI on the path. In the case vI is an endpoint on

the path, the mentioned probability only depends on the nearest predecessor/successor on the path.

Proof. The result follows by construction of the elliptic process together with the fact that the

conditional probability of λvI given any one of its two neighbors is well defined by Proposition 7.4.6

(same argument applies if vI is an endpoint). Note that, as before, the distance (number of lattice

edges) between two neighbors need not necessarily be 1.

One way to construct an elliptic process is to inductively sample λ(k,l) given the distributions

of λ(k−1,l) and λ(k,l−1) much like the construction in Section 5.2. We thus define the following

conditional distribution:

Prob(λ(k,l)|λ(k−1,l), λ(k,l−1)) =
Pk+,k−1→k(λ(k−1,l), λ(k,l))Pl−,l→l−1(λ(k,l), λ(k,l−1))

(Pl−,l→l−1Pk+,k→k+1)(λ(k−1,l), λ(k,l−1))
=

1

Z
R∗λ(k,l)/λ(k−1,l)([v2k−2, v2k−1]; ak, bl; q; t; p)∆λ(k,l)(ak/bl|; q; t; p)×

R∗λ(k,l)/λ(k,l−1)([w2l−2, w2l−1];
√
pqt/bl,

√
pqt/ak; q; t; p),

(7.4.7)

where Z is the partition function (a complicated elliptic hypergeometric sum, assumed terminating).

We list the following theorem for completeness. The proof is immediate in view of the discussion in

this section up to this point.

Theorem 7.4.9. If we proceed inductively and sample λ(k,l) based on λ(k,l−1) and λ(k−1,l) as in

7.4.7, we will have sampled from an elliptic process satisfying (i) through (v).
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7.5 A different sampling algorithm

In this section we apply the formalism of Section 7.4 to lozenge tilings of a hexagon. We describe how

elliptic distributions on tilings can be viewed through skew interpolation functions in two equivalent

ways. One way is based on Section 7.4 and leads to an efficient sampling algorithm for lozenge tilings

similar to that of Section 5.2, though slightly faster.

We fix K,L,N positive integers. Throughout N will be used to denote the maximum length of

a partition or the number of particles on a given vertical slice of a hexagonal tiling (as depicted in

Figure 3.3). Moreover, we fix t = q throughout (so all binomial coefficients are determinants) and

suppress t altogether from the notation.

We start with a sequence of K + L+ 1 partitions

Π = (0 = λ0, λ1, . . . , λK+L−1,KN = λK+L)

x

time
λ0, λ1, . . . , λs, . . . , λK+L−1, λK+L = KN

Figure 7.1: K + L + 1 partitions forming a tiling of a hexagon. K = 3, L = 5, N = 3.
For example, λ1 = (1, 1), λ7 = (2, 2, 2).

corresponding to a tiling of a hexagon as in Figure 7.1 where the partitions correspond to particle

positions via

{particle positions} = {λi +N − i},

and we count particles from the bottom horizontal edge up.
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Set the probability of such a sequence to

Prob(Π) =

∏K+L
s=0 R∗λs+1/λs([W2s,W2s+1]; cs+1, d; q; p)

R∗
KN/0

([W0, . . . ,W2(K+L)−1]; cK+L, d; q; p)
, (7.5.1)

where

cs = c1
∏

1<i<2s

Wi.

The fact that the numerator, summed over all partitions, yields the denominator is a consequence

of Theorem 7.3.1. As the partitions in Π correspond to a tiling of a hexagon, we must have that

each differs from the previous by a vertical strip. This forces the following condition on the W ’s:

W2iW2i+1 =
1

q
, 0 ≤ i ≤ 2(K + L).

Moreover, we wish to make the denominator in 7.5.1 as simple as possible so we impose an

additional constraint:

W2i+1W2i+2 = 1, 1 ≤ i ≤ 2(K + L− 1),

so that R∗KN/0([W0, . . . ,W2(K+L)−1]; cK+L, d; q; p) = R∗KN/0([W0,W2(K+L)−1]; cK+L, d; q; p). This

immediately leads to the following:

W2i = qiW0, W2i−1 =
1

qiW0
, (7.5.2)

cs = qcs+1 = q1−sc1. (7.5.3)

With parameters specialized as above, we have the following result:

Theorem 7.5.1. The probability measure in 7.5.1, viewed as a measure on tilings of a N ×K × L
hexagon, is the same as the one introduced in Section 3.3.

Proof. For the proof it suffices to look at the ratio of a full unit box to an empty one in the bulk

(inside the hexagon) and compare it to equation (3.3.2). We thus fix a time slice τ (0 < τ < K +L)

and take the ratio of Prob(Π′) to Prob(Π) where Π′ differs from Π by a single square. That is,

all partitions in Π′ are the same as in Π with the exception of position τ , where we replace λτ

by λτ,0 with λτ,0i = λτi for all i 6= I and for I we have λτ,0I = λτI − 1 (for some index I ≤ N).

All skew interpolation functions involved are elliptic binomial coefficients that can be expressed as

determinants via Proposition 7.2.3. Remark 7.2.5 also helps simplify the calculations. If we denote

λτI +N − I = x (x is the particle position corresponding to the part of λτ that changes), the ratio
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can be expressed as

q3θp(q
x−2τ c1

qNw0
, qx+τ w0

qNd
, q−2x+τ−3 q

2Nd
c1

)

θp(qx−2τ+2 c1
qNw0

, qx+τ+2 w0

qNd
, q−2x+τ−1 q

2Nd
c1

)
.

This is nothing more than the weight ratio of (3.3.2) (after switching from (i, j) coordinates to

(τ, x) coordinates as in Figure 3.3) where we identify (in the notation of Section 3.3):

u1 =
c1

qN−1W0
, u2 =

W0

qN−1d
.

Fix l, k such that 0 ≤ l ≤ L− 1 and 0 ≤ k ≤ K − 1. Let k′ = L+K − k. The partitions λk
′

and

λk
′+1 in the above process have all parts at least K − k and K − k+ 1 respectively. That is, we can

write λk
′

= (K − k)N +µk, λk
′+1 = (K − k+ 1)N +µk−1 for appropriate partitions µk, µk−1 ⊆ KN .

We have the following lemma.

Lemma 7.5.2. For parameters defined in (7.5.2), 0 ≤ k ≤ K − 1, 0 ≤ l ≤ L+K − 1 we have

Prob(λl+1|λl) =
R∗λl+1/λl([W2l,W2l+1]; cl+1, d; q; p)R∗KN/λl+1([W2l+2,W2(K+L)−1]; cK+L, d; q; p)

R∗
KN/λl

([W2l,W2(K+L)−1]; cK+L, d; q; p)
∝

∆λl+1(q−lc1/d|qN , q−K , q2−N−Lc1/d, q
−2lc1/W0, pq

1+K+LW0/d; q; p)

∆λl(q1−lc1/d|qN , q−K , q2−N−Lc1/d, q−2lc1/W0, pq1+K+LW0/d; q; p)
×
〈
λl+1

λl

〉
[q1−lc1/d,1/q]

,

P rob(λk
′+1|λk′) ∝

∆0
µk(q1−k+K−Lc1/d|pq2−2k+2K+LW0/d, pq

1−L/dW0; q; p)

∆0
µk−1(q2−k+K−Lc1/d|pq2−2k+2K+LW0/d, pq1−L/dW0; q; p)

×

∆0
µk−1(q2−k+K−Lc1/d|pq2−k+2K+LW0/d, q

−k+1; q; p)

∆0
µk

(q1−k+K−Lc1/d|pq2−k+2K+LW0/d, q−k1; q; p)
×
〈
µk

µk−1

〉
[q1−k+K−Lc1/d,1/q]

,

P rob(λl) =
R∗λl/0([W0,W2l−1]; cl, d; q; p)

R∗
KN/λl

([W2l,W2(K+L)−1]; cK+L, d; q; p)
∝

∆λl(q
1−lc1/d|qN , q−K , q−l, q2−N−Lc1/d, q

1−lc1/W0, pq
1+K+LW0/d; q; p).

Proof. The first and third equalities follow by direct computation when expanding the skew inter-

polation functions as binomial coefficients and simplifying the remaining ∆-symbols. For the first

equality we also use equation (7.2.2). The second equality follows from equation (7.2.7) (or again

from a combination of equations (7.2.2) and (7.2.3)).

Remark 7.5.3. The first equality gives rise to the same transitional probability derived in Section

4.1 via alternative methods. This follows of course from Theorem 7.5.1.
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We now connect the process described above with the elliptic Schur process of Section 7.4. To

do that we first isolate the necessary features of the elliptic Schur process first.

Fix v0, w0, a, b and let

v2i = qiv0, v2i+1 = q−i−1/v0,

w2j = qjw0, w2j+1 = q−j−1/w0, so that

ak = q−ka, bl = qlb.

These are the parameters of our elliptic Schur process as described in Section 7.4. We are

interested in the K ×L positive quadrant. That is we are interested in random partitions λ(k,l), 0 ≤
k ≤ K, 0 ≤ l ≤ L satisfying the conditions (i) through (v) of sec. cit. See Figure 7.2.

Since as before v2i−1v2i = 1, w2j−1w2j = 1, most parameters disappear from the interpolation

functions. To wit R∗
λ(k,l)/0

([v0, . . . , v2k−1]; ak, bl; q; p) = R∗
λ(k,l)/0

([v0, v2k−1]; ak, bl; q; p) and similarly

for the w’s.

For all the necessary sums which we assumed terminating in Sections 7.4 and 7.3 to actually

terminate, we use Theorem 7.2.10: R∗λ/0([v, a/qN ]; a, b; q; p) vanishes unless λN+1 ≤ 0 (that is,

unless λ has at most N parts). We call this the vertical termination condition (partitions can

be no larger than N rows vertically). There are four ways this can be accomplished and each

leads to a different efficient sampling algorithm. They come from the fact that we are interested

in R∗
λ(K,L)/0

([v0, v2k−1]; aK , bL; q; p) or R∗
λ(K,L)/0

([w0, w2L−1];
√
pq/bL,

√
pq/aK ; q; p) to vanish at the

point (K,L) if λ has more than N parts. We thus have the following four choices:

aK/q
N = v0,

aK/q
N = v2K−1,

√
pq

bLqN
= w0,

√
pq

bLqN
= w2L−1.

To simplify things, we will only discuss the choice aK/q
N = v2K−1 in detail. That is, we set

av0 = qN .

We now describe the sampling algorithm we alluded to at the beginning of the section. Based on

the above discussion, we start with the empty partitions at positions (k, l) with k = 0, 0 ≤ l ≤ L or

l = 0, 0 ≤ k ≤ K and we inductively sample new partitions at every (k, l) until we have constructed

the whole K × L rectangle. Then if we look at the path Λ described above, it corresponds to a

random hexagon tiling of the kind we are after. As described in Section 7.4, we build λ(k,l) based
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l

k
λ(K,0)λ(0,0)

λ(0,L)

λ(K,L)

Figure 7.2: The partitions (dots) on the red bolded line correspond to a tiling of an
N ×K × L hexagon. The partitions on the axes are all 0.

on (given the fact that we already have samples for) λ(k−1,l) and λ(k,l−1) by sampling from the

distribution given in 7.4.7. We sample vertical slices from bottom to top, one slice at the time from

left to right. That is, we first sample λ(1,1), then λ(1,2), . . . until λ(1,L). Next we sample λ(2,1),

λ(2,2), . . . , λ(2,L) in this order and so on. The reader should consult Section 5.2 to compare the two

sampling algorithms.

To make the things clearer in describing an atomic step, let us use the following shorthand

notation for the three partitions involved:

λ := λ(k,l), µ := λ(k−1,l), ν := λ(k,l−1).

We are interested how to sample λ based on µ and ν. Following Section 5.2, let us define the

following function:

p(j) = X−1q−(j+2) θp(q
2j+2X)

θp(q2j+4X)
× θp(q

j+1V1, q
j+1V2, q

j+1W1, q
j+1W2)

θp(pqj+2 X
V1
, pqj+2 X

V2
, pqj+2 X

W1
, pqj+2 X

W2
)
,

where

X =
ak
bl
,

V1 =
ak

v2k−2
, V2 =

ak
v2k−1

,

W1 =

√
pq

blw2l−2
, W2 =

√
pq

blw2l−1
.

As before, we omit parameter dependence in this notation to keep it simple. Note though the above
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parameters depend on (k, l) as well as on a, b, v0, w0, p, q. Moreover we define

P (k , j ; s) =

s∏
i=1

p(k − (j + i− 1)).

On the set {0, 1, . . . , n} we define the following discrete distribution:

Prob(s) = D(k , j ;n)(s) =
P (k , j ; s)∑n

s′=0 P (k , j ; s′)
.

Because λ must differ from both ν and µ by a vertical strip, we have the three cases given below.

Only one leads to nontrivial sampling, much like in Section 5.2.

• Case 1. For all i with νi − µi = 1 we set λi = νi.

• Case 2. For all i with νi − µi = −1 we set λi = µi.

• Case 3. For the remaining indices, we have νi = µi. Group the indices into blocks (such

that the parts in each block are adjacent) and consider one such called a (k , j , l ) block. Here

k := νi = µi (for all indices i within this block), j is the first index in the block, and l is the

number of parts in the (length of the) block. That is, we have

µj = νj = µj+1 = νj+1 = · · · = µj+l−1 = νj+l−1 = k

and µj−1 6= νj−1, µl 6= νl . For each such block independently, we sample a random variable ξ

according to the distribution D(k , j ; l ). We set λi = k + 1 for the first ξ consecutive positions

in the block, and we set λi = k for the remainder of the l − ξ positions.

Similar to Theorem 5.2.3, we have the following theorem that makes the 3 cases described above

necessary and sufficient for sampling λ based on µ and ν.

Theorem 7.5.4. By using the procedure described in Cases 1., 2., and 3. above, we have con-

structed a random partition λ := λ(k,l) from an elliptic Schur process with appropriately specialized

parameters.

Proof. The proof is essentially the same as that of Theorem 5.2.3, the difference being in the com-
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plexity of computations. Using the results of Section 7.2 and 1.2, we make the following computation:

Prob(λ|µ, ν) ∝ (factors independent of

R∗λ/µ([v2k−2, v2k−1]; ak, bl; q; p)∆λ(ak/bl|; q; p)R∗λ/ν([w2l−2, w2l−1];
√
pq/bl,

√
pq/ak; q; p) =〈

λ

µ

〉
[X,1/q](V1,V2)

〈
λ

ν

〉
[X,1/q](W1,W2)

∆λ(X|; q; p) = (factors independent of λ)×

∏
i

q−2λ2
i+λi(−7+2N+4i)X−3λiθp(q

2λi−2i+2X; q)2λi

(
θp(q

2−N−iX; q)λi
θp(qN−i+1; q)λi

)2

×

∆0
λ(X|V1,V2,W1,W2; q; p)× det

1≤i,j≤N

〈
λi +N − i
µj +N − j

〉
[X0,1/q]

× det
1≤i,j≤N

〈
λi +N − i
νj +N − j

〉
[X0,1/q]

=

(factors indep. of λ)×
∏
i

q−2λ2
i+λi(−7+2n+4i)X−3λiθp(q

2λi−2i+2X; q)2λi

(
θp(q

2−i−nX; q)λi
θp(qn−i+1; q)λi

)2

×
∏
i

θp(q
1−iV1, q

1−iV2, q
1−iW1, q

1−iW2; q)λi
θp(pq2−i X

V1
, pq2−i X

V2
, pq2−i X

W1
, pq2−i X

W2
; q)λi

×

∏
i:λi=µi

〈
µi +N − i
µi +N − i

〉
[X0,1/q]

×
∏

i:λi=µi+1

〈
µi +N − i+ 1

µi +N − i

〉
[X0,1/q]

×

∏
i:λi=νi

〈
νi +N − i
νi +N − i

〉
[X0,1/q]

×
∏

i:λi=νi+1

〈
νi +N − i+ 1

νi +N − i

〉
[X0,1/q]

,

where X0 = X/q2N−2. The fact that the determinants evaluate to the stated products follows from

Remark 7.2.5. The product nature of this probability shows that blocks (which recall are groups of

adjacent indices i for which νi = µi := k ) split independently. The probability for a split in a block

of length l is then obtained much like in the proof of Theorem 5.2.3. That is, for j the first index in

such a block, we take the above formula evaluated at partition λ0 (where λ0 agrees with λ except

λ0
j = λj + 1) and divide it by the formula evaluated at λ. This leads us to the formula for p which

in turn leads us to the distribution D(k , j ; l ). This finishes the proof.

We finally can state how partitions sampled using this algorithm on the K×L positive quadrant

grid indeed correspond to elliptically distributed lozenge tilings of a hexagon. We fix W0, c1, d. We

furthermore assume av0 = qN (for termination) and set

a =
pq1+K

d
,

b =
p

c1
,

v0 =
1

qL+KW0
,

w0 =
W0√
p
.

(7.5.4)



109

Theorem 7.5.5. Let W0, c1, d be parameters and Π be the sequence of partitions

Π = (0 = ν0, ν1, . . . , νK+L−1,KN = νK+L)

distributed according to (7.5.1) corresponding to an elliptically distributed lozenge tiling of an N ×
K ×L hexagon with weight given in Section 3.3 and parameters u1 = c1

qN−1W0
, u2 = W0

qN−1d
. Assume

parameters a, b, v0, w0 are nspecialized according to (7.5.4). Let

Λ = (0 = λ(K,0), λ(K,1), . . . , λ(K,L−1), λ(K,L), λ(K−1,L), . . . , λ(0,L) = 0)

be a sequence of partitions corresponding to the east and north boundary partitions of an elliptic

Schur process with parameters a, b, v0, w0 in the rectangular region 0 ≤ k ≤ K, 0 ≤ l ≤ L. Π and Λ

have the same distribution via the measure preserving bijection

νl 7→ λ(K,l), 0 ≤ l ≤ L,

νK+L−k 7→ (K − k)N + λ(k,L), 0 ≤ k ≤ K − 1.

Remark 7.5.6. The theorem can be summarized as follows: given a sequence Λ as in the statement

(the red bolded line in Figure 7.2), we can shift the lastK partitions up (shift λk,L → (K−k)N+λk,L)

to obtain a sequence Π corresponding to an elliptically distributed lozenge tiling of an N ×K × L
hexagon (see Figure 7.1). Conversely, shifting the last K partitions of such a tiling down yields the

NE boundary of an elliptic Schur process on the K × L grid subject to termination conditions.

Proof. In the first step we check that the marginals agree under the parameter specializations. The

proof is then completed by checking the transitional probabilities. That is, we use Lemma 7.5.2 and

expand the “decrease k” and “increase l” transitional probabilities of the elliptic Schur process of

Section 7.4 (equations 7.4.3 and 7.4.6). We find that under the parameter specializations everything

matches.
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