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ABSTRACT 

Discrete-time lossless systems have been found to be of great importance in 

many signal processing applications. However, a representation for lossless transfer 

matrices that spans all such matrices with the smallest possible number of parame

ters has not been proposed earlier. Existing representations are usually for special 

cases and therefore not general enough. In this study, two general and minimal 

representations are presented for multi-input, multi-output FIR and IIR lossless 

systems. The first representation is in terms of planar rotations and it leads to 

multi-input, multi-output lattice structures. The second representation is in terms 

of unit-norm vectors and it enables shorter convergence times in optimization appli

cations. A simple modification of this representation leads to structures that remain 

lossless under quantization. The structures that follow from these representations 

share some properties such as the orthogonality of the implementations, and min-

imality of the number of parameters and scalar delays the 1 Since all lossless 

transfer matrices can be spanned by appropriately adjusting , parameters, these 

structures can be particularly useful in applications that involve optimization under 

the constraint of losslessness. Some examples of such applications are included. 
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CHAPTER 1 

INTRODUCTION 

Traditionally, lossless network functions and matrices have played a crucial role 

in classical electrical network theory. Lossless electrical networks have been exten

sively studied [BR 31], [GU 57], [VAN 64), [BELE 68), [AN 73), [TE 77), [BA 69], 

[OR 66) and many of the theoretical results on lossless systems have been applied 

to the synthesis of electrical filters, which provide prescribed attenuation charac

teristics. A complete treatment of continuous-time lossless systems can be found in 

[BELE 68). 

If we consider lossless systems from an input-output point of view, the theoret

ical properties of these systems can actually be simulated even without the use of 

electrical elements. It is in fact possible to build discrete-time systems and digital 

filters by using appropriately defined lossless building blocks [FE 75a], [FE 75b], 

[VAI 84). Pioneering contributions in this connection can be found in [FE 75a], 

[GR 80) and [DEP 80]. An independent development of the concept of losslessness 

in the discrete-time world is possible [DEP 80], [VAI 84), and results in a number 

of exciting applications in signal processing. These include low-sensitivity digital 

filter design [VAI 84], [VAI 86a], [VAI 86b], [DEP 80), limit-cycle suppression [FE 

75b], [VAI 87a], stability test procedures [DEL 81], [VAI 87d], filter tuning [MI 

85], multirate filter banks [VAI 87b], [VAI 87e) and development of new sampling 

theorems [VAI 88b). 

In the following, we will have a closer look at two of the applications listed 

above, namely, multirate filter banks and low-sensitivity digital filter design. 
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Use of lossless systems in multirate filter banks: 

A digital filter bank is a collection of M filters H1c(z) that split a signal x(n) 

into M subbands. These subbands are typically decimated (i.e., undersampled) by a 

factor of M, for transmission or storing purposes. Such a system, called a maximally 

decimated analysis bank, is commonly used in several applications such as speech 

coding, [CROI 76], [CROC 83], image coding [WO 86], short-term spectral analysis 

[CROC 83] and voice privacy systems [CO 86]. 

At some subsequent stage, it is eventually necessary to combine the subband 

signals to recover the original signal x(n) as accurately as possible. This recon

struction is done with the synthesis bank, which is a collection of M digital filters 

F1c(z). Fig. 1.1 shows a complete analysis/synthesis system which is often called the 

Quadrature Mirror Filter (QMF) bank. The downgoing arrows in Fig. 1.1 represent 

decimation by a factor of M, whereas the upgoing arrows represent the insertion of 

(M - 1) zero-valued samples between adjacent samples, in order to match up the 

sampling rates of x(n) and x(n). Details of operation of the system of Fig. 1.1 can 

be found in a number of references [SM 87], [VE 87], [VAI 87f], [VAI 88a], [VAI 

88c]. Suffice it to point out here that x(n) is a distorted version of x(n) for several 

reasons. First, there is aliasing caused by undersampling (since the filters H1c(z) 

prior to decimation are not ideal bandpass filters). It can be shown [VAI 87b] that 

aliasing is cancelled if and only if 

( 

Ho(z) 
H0 (zw- 1 ) 

Ho(zw=-(M-1)) 

HM-1(z) l ( Fo(z) l (T(z)) HM-1(zW-1) F1(z) 0 
. . - . . . . . . . 

HM-1(zw-(M-l)) FM-1(z) 0 
(1.1) 

where the M x M matrix is referred to as the alias component (AC) matrix H(z ), 

and W = e-i~. Second, assuming that aliasing is eliminated, we have a transfer 
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x(n) H0 (z) ♦M M F0 (z) 

H1(z) M fM F1 (z) 

• • • • • • • • • 

-~~M-1(Z)~ ~FM_,(z)j ► t " ► x(n) 

Fig. 1.1. An M-channel, maximally decimated QMF bank. 
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function between X(z) and X(z) equal to T(z) = it E~o1 Hk(z)Fk(z). This causes 

amplitude distortion ( unless T( z) is forced to be allpass) and phase distortion ( unless 

T(z) is forced to have linear-phase). If the filters Hk(z) and Fk(z) are chosen such 

that T(z) is a delay (i.e., T(z) = cz-"0
), then x(n) is a (delayed) replica of :z:(n), 

and the system is said to have the perfect-reconstruction property. 

As such, perfect-reconstruction may seem to be a simple task to accomplish. 

For example, if we take 

(1.2) 

then we have x(n) = :z:(n - M + 1). However, if we simultaneously insist that the 

analysis filters should have sharp cutoff and good stopband attenuation, then we 

have a nontrivial design problem. This problem can be handled by using the idea of 

lossless transfer matrices [VAI 87b], [VAI 87f]. This is one of the major applications 

of losslessness in modern signal processing. Here, we will very briefly state the basic 

ideas. 

First, any analysis filter can be represented in the form Hk(z) = Ef'!01 z-1 Ek,1(zM). 

This is done simply by classifying the impulse response sequence hk ( n) into M sub

sequences hk(l + nM) for b ~ l ~ M - 1 and defining ek,1(n) = hk(l + nM). The 

z-transform of ek,1(n) is then taken as Ek,1(z). The functions Ek,1(z), 0 ~ l ~ M - 1 

are called the polyphase components [BELL 76] of Hk(z). Once we represent the 

analysis filters in terms of Ek,1(z), we can repeat a somewhat similar process for 

the synthesis filters and obtain a representation Fk(z) = Ef'!o1 z-(M-l-/)R1,k(zM). 

Having done so, Fig. 1.1 can be redrawn as Fig. 1.2, where E(z) = [Ek,1(z )] and 

R(z) = [R1,k(z)] are M x M matrices (called the polyphase component matrices). 

It is shown in [VAI 87b], [VAI 87f] that if E(z) is a lossless transfer matrix and if 

R(z) is chosen to be E(z) (= E;(z-1
), where superscript T stands for transposition 



x(n) 
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♦M 
-1 -1 z tM z 

-1 -1 
z E(zM) R(zM) z 

• • • • • • • • • z-1L -1 z 

Fig. 1.2. Alternate representation for the M-channel, 

maximally decimated QMF bank. 

A. 
x(n) 



-6-

and subscript* stands for the complex conjugation of the coefficients), then perfect

reconstruction property is ensured. As a result, our design problem is the following: 

design the analysis filters H1c(z) to have good passband and stop band characteristics 

under the constraint that the related matrix E( z) is lossless. If E( z) is IIR lossless, 

then all the poles of R(z) = E(z) are outside the unit circle, resulting in instability. 

For this application, E( z) is therefore restricted to be FIR. Suppose now that we 

have a structural representation for FIR lossless matrices, which spans the entire 

set of such matrices by the smallest possible number of parameters. Since using 

such a representation for E(z) ensures losslessness, our design problem becomes op

timizing the parameters of this representation such that the filters H1c(z) have good 

responses. It should be emphasized here that the generality of this representation 

enables us to search for an optimum over every M x M FIR lossless system with a 

given degree. In other words, the optimization takes place over the complete set of 

suitable transfer matrices. 

Let us now consider the case of IIR QMF banks. It has been indicated in [VAI 

87b] that perfect-reconstruction IIR QMF banks are possible only under certain 

(rather stringent) conditions. More useful solutions in this case can be obtained 

if phase distortion in the reconstruction process can be tolerated. This can be 

accomplished by forcing T( z) to be a stable allpass function. One way of doing so 

based on the losslessness concept was reported in [VAI 87b], and can be summarized 

as follows. 

Consider an IIR QMF bank for which E(z) is lossless. This in turn implies that 

the AC matrix H(z) is lossless [VAI 87b]. Now, if the synthesis filters are chosen 

according to 

(1.3) 
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where Adj H(z) = detH(z) H-1 (z), it can easily be shown that the alias cancellation 

condition (1.1) is satisfied with T(z) = det H(z). Since the determinant of a lossless 

matrix is a stable allpass function [VAI 89b], we conclude that the choice (1.3) of 

the synthesis filters eliminates both aliasing and amplitude distortion. Suppose 

now that we have a general structure for IIR lossless matrices. Such a structure 

can be used to implement E(z ), and the parameters of this implementation can be 

optimized as before to obtain good analysis filters Hk(z ). Once again, this approach 

enables us to search over the complete set of lossless IIR matrices for an optimal 

solution. Both of these cases (FIR and IIR) exemplify the importance of lossless 

matrices in multirate filter bank applications. 

Use of lossless systems in low-sensitivity filter design: 

A digital filter implemented on a general-purpose computer or special-purpose 

hardware behaves differently from its idealized design because of the finite word 

length available to represent the multiplier coefficients and signal variables. A dig

ital filter structure is said to have low-sensitivity if the properties of the filter are 

relatively insensitive to incremental perturbations in the values of the multiplier 

coefficients. In other words, the behavior of an implementation by a low-sensitivity 

structure with quantized multiplier coefficients is very close to the ideal filter behav

ior with infinite precision multiplier coefficients. Such a structure has the advantage 

that the multiplier coefficients can be represented by fewer bits, thus making the 

implementation faster and/or less expensive. Thus the low-sensitivity nature of a 

digital filter structure is a very desirable property. 

The sensitivity of the passband magnitude of the frequency response is a quan

tity of interest in practice. In the following, the term low-sensitivity will be used 

synonymously with low passband sensitivity. A general theory for low-sensitivity 
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digital filter structures, based on the losslessness of certain building blocks, has been 

developed by Vaidyanathan and Mitra [VAI 84], [VAI 85c], [VAI 86a]. Here, we will 

mention some results of this theory. 

Let us consider a rational transfer function H(z) with complex valued coeffi

cients. Let us also assume that the structure implementing H(z) has the prop

erty that as long as the values of the multipliers are within a permissible range, 

I H(ei'-') I~ 1, Vw. Thus the structure imposes a kind of boundedness on the trans

fer function H ( z). If we consider the typical lowpass response shown in Fig. 1.3 

for H(z), we see that at the frequency w1c in the passband, the transfer function 

magnitude is precisely unity, for an infinite precision implementation. If one of 

the multipliers is quantized, then I H ( ei'-'•) I cannot increase because of structural 

boundedness. Therefore, I H(ei'-'t) I plotted against an internal multiplier m, has 

the form shown in Fig. 1.4 and satisfies 

(1.4) 

In other words, the structural boundedness of the implementation forces zero

sensitivity property with respect to each internal multiplier at certain frequencies 

w1c in the passband. 

Structurally lossless realizations (i.e., realizations that remain lossless in spite 

of multiplier quantization) can be used to enforce low sensitivity. As an example, 

let us consider a lossless vector 

(1.5) 

Because of losslessness, the transfer functions H1c(z) all satisfy 

(1.6) 
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1 

0 

Fig. 1.3. A typical magnitude response. 

1 

Fig. 1.4. Pertaining to equation (1.4). 

1t 

m· J 
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If H(z) is realized by structurally lossless building blocks, such a realization pre

serves the property (1.6), and thus imposes boundedness on the transfer functions 

Hk(z ). Consequently, all Hk(z) exhibit low sensitivity in their pass bands. A use

ful application of this concept is the following: Suppose that we are given M - 1 

transfer functions Gk ( z) that satisfy the property 

M-2 

L I G1i:(ei"') 1
2 :$ 1, 'r/w. (1.7) 

k=O 

A low-sensitivity realization for these is possible by forming a vector 

G(z) = ( G0 (z) (1.8) 

where GM-i(z) is chosen such that G(z) is lossless, and then by realizing G(z) in a 

structurally lossless manner. Such an application will be considered in Chapter 3. 

These two applications clearly show the importance of lossless systems, and of 

finding general structures and realization procedures for such systems. Some partial 

results that deal with the special cases have indeed been reported in the past. For 

example, [VAI 86b] considers the synthesis of M x 1 FIR lossless systems with real 

coefficients. Two different approaches to the realization of M x M real-coefficient 

FIR lossless matrices can be found in [DO 88] and [VAI 89a], [VAI 89b]. On the 

other hand, [VAI 87c], [VAI 86a] deal with a special type of 2 x 1 IIR lossless 

system with real coefficients, where each of the IIR filters H 0 (z) and H 1 (z) is a 

linear combination of two allpass functions. 

The purpose of this study is to obtain a completely general characterization of 

lossless systems such that the previously mentioned partial results are special cases. 

Even though discrete-time lossless systems have been found to be of tremendous 

importance in the previously mentioned signal-processing applications, it has not 

been possible in the past to obtain a self-contained and unified documentation of 
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discrete-time FIR and IIR lossless systems. It was mentioned earlier that an excel

lent reference on continuous-time lossless systems is the text by Belevitch [BELE 

68]. In principle, it is possible to obtain analogues of some of the results of this study, 

by carefully mapping the continuous-time developments to be found in [BELE 68]. 

We have chosen not to do so, for two reasons. First, a direct discrete-time approach 

leads to a self-contained presentation, opening up wider readership. And second, 

such a direct derivation is often simpler and leads to newer implementations. 

This study is organized as follows: In Capter 2, we review some results about 

lossless systems that are to be used in the later chapters. In Chapter 3, we in

vestigate single-input, M-output IIR lossless systems and describe two structural 

implementations for these in terms of complex planar rotations. A state-space ap

proach is taken in Chapter 4 to derive parametrizations and lattice structures for 

both FIR and IIR lossless systems. The characterization of lossless systems here is 

again in terms of complex planar rotations. The parametrizations and structural 

representations are also extended to the cases of rectangular lossless, real-coefficient 

FIR and real-coefficient IIR transfer matrices. Chapter 5 deals with a different rep

resentation of lossless matrices as a cascade of lossless building blocks. The charac

terization of these lossless building blocks are in terms of unit-norm vectors. The 

FIR and IIR cases are again considered seperately, and structural representations 

and synthesis procedures are derived for both cases. In Chapter 6, we show how the 

lossless structures of Chapters 4 and 5 are linked, and we also consider some com

mon properties of these structures such as the unitariness of the implementations 

and the minimality of the number of parameters. The Smith-McMillan form of a 

square lossless matrix is also derived in Chapter 6. Finally, possible applications 

and open research problems are pointed out in Chapter 7. 



-12-

The following notations are used in this study: Boldface letters such as A, H(z) 

etc. denote matrices and vectors. The row and column indices of matrices and vec

tors begin from zero. The (i, j) th entries of matrices U and U k,l are denoted by Vi,; 

and Ui~1
, respectively. Superscript T (as in AT) stands for transposition, whereas 

superscript t (as in At) stands for transposition followed by complex conjugation. 

A superscript asterisk (as in A*, a*) denotes complex conjugation. A subscript 

asterisk (as in H.(z), H.(z)) stands for conjugation of coefficients. For example, if 

H(z) =a+ bz-1
, then H.(z) =a*+ b* z-1 • The tilde notation is defined as follows: 

H(z) = H;'(z-1 ). It can be verified that H(ei'"') = Ht(e;'"'), i.e., on the unit circle of 

the z-plane, tilde and dagger notations are synonymous. The inner product ( a, b) 

of two vectors a and b is defined as ( a, b) = b ta. The Euclidean norm of a vector 

xis designated by the symbol II x II, so that II x 11= J(x,x). A square matrix 

B is denoted by A½ if A = BBt. The following notations are also used in this 

conjunction: A½ = Bt, A-½ = B-1 and A-½ = [BtJ-1 = [B-1Jt. The notation 

P < Q where P and Q are two Hermitian matrices means that Q - P is positive 

definite (and P $ Q means Q - P is positive semidefinite). The Kronecker delta 

{
1 i=j Ml · 

is denoted by b;; = 0 ii- j. The hat accent on a polynomial P(z) = Li=O p;z 1 

is defined such that P(z) = z(M-l)p(z). The hat accent is also used to denote the 

reconstructed signal at the output of a QMF bank, which is not to be confused 

with the first usage. The specific use intended is always clear from the context. A 

unitary matrix U is generally defined as utu = cl, where c > 0. In this study, 

however, unless otherwise specified, a unitary matrix refers to one that satisfies the 

above equality with c = 1, and a real unitary matrix is referred to as an orthogonal 

matrix. Finally, the notation a(z) J b(z) is read as a(z) divides b(z). 
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CHAPTER 2 

MATHEMATICAL PRELIMINARIES 

This chapter is intended to serve as the mathematical background for the re

maining chapters. A range of topics from lossless systems to parametrization algo

rithms will be covered with emphasis on the aspects that are relevant to the develop

ments in the coming chapters. In Section 2.1, we will review scalar and multi-input, 

multi-output lossless system properties. The discrete-time lossless lemma, which 

states an equivalent condition for losslessness in terms of state-space parameters, is 

reviewed in Section 2.2. Matrix two-pairs, matrix two-pair extraction formulae and 

the vector version of the Maximum Modulus theorem, which will all be employed in 

Section 3.2 in a synthesis procedure for lossless vectors, are reviewed in Section 2.3. 

Finally, two minimal parametrization algorithms for unitary matrices are described 

in Section 2.4. 

2.1. LOSSLESS SYSTEMS 

2.1.1. THE LOSSLESSNESS PROPERTY 

A discrete-time lossless system is a device that conserves energy so that the 

output energy Ey equals the input energy Eu, except for a real scale factor c > 0, 

which is independent of the input sequence u(n). 

Of particular interest to us are linear time-invariant (LTI) systems [OP 75) 

characterized by rational transfer functions. A very simple example of a lossless 

transfer function is H(z) = z-L, where Lis an integer. A more nontrivial example 

is a stable al/pass transfer function, which satisfies 

(2.1) 
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where d > 0 is a constant. For such a system, we have I Y(ei"') I= d I U(e;"') I for 

every (Fourier transformable) input, so that 

C > 0. (2.2) 

According to Parseval's relation [OP 75], the integrals in (2.2) are precisely the 

energies Ey and Eu, respectively, showing that an all pass function is indeed loss

less. In fact, one can also work backwards to prove that a lossless function has to 

be all pass. Even though all pass functions have several applications [RE 88], the 

usefulness of lossless systems is greatly enhanced by extending the definition to 

multi-input, multi- output (MIMO) systems. Before we do so, however, we will 

review some standard notions in the MIMO system theory. 

2.1.2. SOME STANDARD NOTIONS IN THE MIMO SYSTEM THEORY 

Fig. 2.1 shows a LTI system with M-input sequences u;(n), 0 ~ i ~ M - 1 

and P-output sequences y;(n), 0 ~ i ~ P - 1. (Single-input, single-output systems, 

which have P = M = 1, are commonly referred to as scalaT tems.) The depen-, 

dence of the kth output sequence y,.(n) on the M input sequrnces can be expressed 

in the z-domain as 

M-1 

Y,.(z) = L H1c1(z)U1(z), 0 ~ k ~ P - 1, (2.3) 
l=O 

where H,.1(z) is the transfer function from the Ith input to the kth output, and 

Y,.(z) and U1(z) are the z-transforms of y,.(n) and u1(n), respectively. The overall 

input-output relationship of the system in Fig. 2.1 can then be written as 

Y(z) = H(z)V(z), (2.4a) 

where 



-15-

.. .. - H(z) -
- .. - -

• [Hk, 1(z)] • • • • • 
- .. - -

Fig. 2.1. An M-input, P-output L Tl system. 
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U(z) = ( Uo(z) Ui(z) 

and 

H(z) = (2.4b) 

In the following, we shall restrict our attention only to those systems for which 

Hk1(z) are rational functions, i.e., of the form ~::~;~, where Nu(z) and Du(z) are 

finite-degree polynomials in the variable z-1
• After this brief introduction, we will 

review some standard notions in MIMO system theory. 

Matrix Fraction Descriptions for MIMO Systems 

An M-input, P-output system characterized by a P x M transfer matrix H(z) 

with rational entries can often be given a matrix fraction description (MFD) [KA 

80]. This description is an extension of the rational function representation for the 

scalar case. In the following, we will use the form 

H(z) = q-1 (z )P(z ), (2.6) 

known as a left MFD, where Q(z) and P(z ), respectively, are the P x P denominator 

and P x M numerator matrices. The polynomial matrices P ( z) and Q ( z) can be 

expressed as 
K K 

P(z) = L p(n)zK-n, Q(z) = L q(n)zK-n' (2.7) 
n=O n=O 

where q(n) are P x P and p(n) are P x M. Notice that only positive powers of z 

appear in (2.7). This is not a loss of generality since we can multiply the matrices 

Q(z) and P(z) with the scalar z-K to obtain equivalent representations for H(z) 

Given P(z) and Q(z ), suppose that we can write 

(2.8) 
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where L(z) is a P x P polynomial matrix. Then L(z) is said to be a left common 

divisor (LCD) of Q(z) and P(z). Note that Q11 (z)P 1 (z) is also a valid MFD for 

H(z ). An LCD L(z) of Q(z) and P(z) is said to be a Greatest LCD (GLCD) of 

Q(z) and P(z) if every other LCD L1 (z) of Q(z) and P(z) is a left-factor of L(z); 

i.e., 

(2.9) 

for some polynomial matrix W(z). Given an MFD Q-1 (z)P(z) for H(z), if we 

can identify and cancel off a GLCD, the resulting MFD for H(z) is said to be 

irreducible. Note that this results in a reduced degree for the determinant of the 

denominator matrix. Irreducible MFDs are not unique since given an irreducible 

MFD Q- 1 (z )P(z ), we can generate infinitely many others of the form Q11 (z )P1 (z) 

simply by writing 

(2.10) 

where W(z) is any P x P unimodular* matrix. The matrices Q(z) and P(z) 

describing an irreducible MFD are said to be left coprime. 

State-space Descriptions Any MFD of the form (2.6) can be implemented as an 

interconnection of scalar delays, scalar multipliers and two-input adders [OP 75). 

Let d be the number of delays used in such an implementation. If we assign the 

names XA: ( n) to the output sequences of the delay elements, with O $ k ~ d - l, 

then the system can be described by the set of state-space equations 

x(n + 1) = Ax(n) + Bu(n), 

y(n) = Cx(n) + Du(n), (2.11) 

• A •quo.re me.trix W(z) which hu detW(z) = c, where c i1 e. con1te.nt independent of z, i1 ... id to be unimodule.r. 
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Xd-i(n) f, u(n) and y(n) are the state, input 

and output vectors, respectively. The state-transition matrix A is d x d and the 

other matrices have obvious dimensions. 

Poles and Zeros of a MIMO System The transfer matrix H(z) is said to have 

a pole at zP if any of its entries has a pole at zP' If an irreducible MFD for H( z) is 

assumed, zP is a pole of H ( z) if and only if it is a zero of the polynomial det Q ( z). 

For an irreducible MFD Q-1 (z)P(z), the normal rank rn of P(z) is defined to 

be maxz [rankP(z)). We define z0 to be a zero of H(z), if rankP(z0 ) < rn. For a 

system with P = M = rn, the zeros ofH(z) coincide with the zeros of det P(z). 

The Degree of a MIMO System 

As in the scalar case, the smallest number of scalar delay elements z-1 required 

to implement H(z) is called the degree of H(z) (also referred to as the McMillan 

degree [KA 80)). In the following, the degree is always denoted by N - l. This is 

different from K appearing in (2.7), as can be seen from the example H(z) = z- 1Ip, 

which is a system with P = M, Q(z) = zip and P(z) = Ip. This system merely 

delays each input sequence by one unit. Clearly, K = l here even though we require 

P delays for the implementation. To determine the degree of H(z), we start with 

an irreducible MFD Q-1 (z )P(z) for H(z ). It can be proved [KA 80) that with such 

an MFD, 

deg H(z) = deg detQ(z). (2.12) 

It is meaningful to consider an irreducible MFD in order to define the degree, since 

if the MFD is reducible, one can cancel off LCDs to obtain other MFDs that have 

lower-order denominator determinants. This process can be continued until an 

irreducible MFD for H(z) is reached. 
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It is in general not possible to determine the degree of a given matrix H ( z) by 

inspection. However, in the special case of an M x 1 vector, 

H(z) = ( P0 (z) Pi(z) (2.13) 

where the polynomials Pi(z), 0 ~ i ~ M - 1 and d(z) do not have any factors 

common to all of them, the degree is given by the maximum degree over all rational 

f t . P;(z) 
unc 10ns d(z) . 

2.1.3. MIMO LOSSLESS SYSTEMS 

A MIMO lossless system can be defined as one whose output energy Ey = 
I::'=-oo yt(n)y(n) equals its input energy Eu = I::'=-oo ut(n)u(n) (up to a scale 

factor c > 0). The vector version of Parseval's theorem states that for a column 

vector g(n) with the z-transform G(z), 

(2.14) 

This equality enables us to interpret losslessness in the z-domain as well. We say 

that a MIMO system with an input vector U(z) and an output vector Y(z) is 

lossless if U ( z) and Y ( z) satisfy 

(2.15) 

Hence a second definition of losslessness based on Equations (2.4a) and (2.15), can 

be stated as follows: A MIMO stable system is lossless if the system transfer matrix 

H(z) satisfies 

(2.16) 

i.e., if H(z) is unitary on the unit circle. Note that the property (2.1) satisfied 

by a scalar allpass function is simply a special case of (2.16) with P = M = 1. 

Note also that a rectangular P x M lossless matrix must satisfy P 2:: M, since if 
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p < M, Ht(i"')H(ei"') has rank~ P, and therefore, cannot possibly be equal to 

IM. Another consequence of the above definition is that the cascade of two lossless 

systems turns out to be lossless. This fact will be used repeatedly in the coming 

chapters. Note, however, that a parallel connection of two lossless systems is not 

necessarily lossless. 

Let us understand the implications of losslessness in terms of the columns of 

H(z ). Let Hi(z) denote the ith column of H(z ). Condition (2.16) can be rewritten 

as 

(2.17) 

In other words, the columns of H(i"') are mutually orthogonal, and the components 

Hk,1( ei"') of the 1th column satisfy the property 

P-1 

L I Hk,1(ei"') 1
2= c Vw. (2.18) 

k=O 

A set of P transfer functions Hk,1(z), 0 ~ k ~ P -1 satisfying (2.18) is called 

a power complementary (PC) set, and (2.18) is called the PC property. In 

particular, two scalar transfer functions H(z) and G(z) satisfying I H(ei"') 1
2 

+ I G(ei"') 12= c are said to form a PC pair and each P x 1 column vector 

Hp_ 1,1(z) f satisfying (2.18) is known as a PC vector. 

Let us now consider some examples of MIMO lossless systems: A very simple 

example is one for which H(z) = I. A less trivial example is provided by taking 

H ( z) = R, where R is a constant unitary matrix. As a specific example of this 

case, assume P = M = 2 and let 

R = ( co~f) 
-sm8 

sin8) 
cos8 ' 

(2.19) 

where 0 is real. Since R is memoryless, this example in a way is also trivial. 

However, as we shall see, (2.19) forms the building block for much more complicated 

lossless systems. 
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Note that we can rewrite Equation (2.16) as 

H(z )H(z) = c IM, (2.20) 

for z = e;..,. Since (2.20) holds for every point on the unit circle, and since H(z) and 

H(z) are analytic ( except at an isolated set of points) in the z-plane, we conclude 

by analytical continuation [AN 73] that for a lossless matrix H(z), (2.20) holds for 

all values of z. 

We can now formally define a discrete-time MIMO lossless system as follows: 

AP x M transfer matrix H(z) is said to be lossless if it is stable and is unitary on 

the unit circle, i.e., satisfies (2.16) where c is a positive scalar. A lossless H(z) is 

said to be Lossless Bounded Real (LBR) if H(z) is real for real z. 

A matrix H(z) that satisfies (2.20) for all z is said to be paraunitary. Thus a 

lossless system is stable and paraunitary. The paraunitary property of a lossless 

H(z) induces several other secondary properties on H(z). In ·he following, we will 
_. 

state some of these properties without proof (the proofs can L .ound in [VAi 89b]). 

Some of these properties will be crucially employed in the coming chapters. 

Property 1: The determinant of a lossless square matrix H(z) is a stable allpass 

function. In the special case where H(z) is FIR, the determinant is a pure delay. 

Property 2: Given a square lossless matrix H(z), a is a pole if and only if:. is a 

zero. 

Property 3: For a square lossless matrix H(z), deg H(z) = deg det H(z). 

Property 3 is a very important characteristic of lossless matrices, which will be used 

several times in the coming chapters. 

2.2. THE DISCRETE-TIME LOSSLESS LEMMA 
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The following is a straightforward complex generalization of the statement and 

proof of the DTLBR Lemma reported in [VAi 85b]. Let H(z) be a P x M rational 

transfer matrix of an M-input, P-output system. The entries of H(z) are ratios of 

polynomials in z-1 with complex-valued coefficients. Let the complex matrices (A, 

B, C, D) represent a minimal state-space description of the system; i.e., 

x(n + 1) = Ax(n) + Bu(n), 

y(n) = Cx(n) + Du(n), (2.21) 

with (A, B) completely controllable and (A, ct) completely observable. Here A 

is a (N - 1) x (N - 1) matrix where N - l is the McMillan degree of H(z). The 

input-output relationship is 

Y(z) = H(z)V(z), (2.22a) 

where 

(2.22b) 

The discrete-time lossless lemma can be stated as follows: H(z) is lossless if and 

only if there exists a positive definite Hermitian matrix P such that 

BtPB + ntn-: I, 

AtPB +ctn= 0. 

(2.23a) 

(2.23b) 

(2.23c) 

Proof of the discrete-time lossless lemma: We first show that if (2.23) holds, then 

H(z) is lossless, and then show the converse. Accordingly, assume first that (2.23) 

is true. In particular, consider (2.23a) with P = pt > 0. Since (A, B, C, D) is 

minimal, (A, ct) is completely observable and by Lyapunov's Lemma [CHE 79], 
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(2.23a) implies that all the eigenvalues of A are strictly inside the unit circle. Thus 

H(z) is asymptotically stable. 

Now, since P is positive-definite, we can decompose it as P = T-tT-1
• With 

this, (2.23) can be rewritten as 

BtT-tT-1B + ntn = 1, 

Tt A tT-tT-1B + Tt ctn = o, 

(2.24a) 

(2.24b) 

(2.24c) 

where Tis a nonsingular matrix. Thus an equivalent representation of H(z) can be 

written as 

where 

(2.25a) 

(2.25b) 

(2.25c) 

In view of (2.24), the matrices (A 1 , B 1 , C1 , Di) are such that the (P + N - 1) x 

( M + N - 1) matrix defined as 

. (2.26) 

is a unitary matrix; i.e., RJ R0 = I. Accordingly, the equation 

always holds and 

L L 

L yt (n)y(n) = Lu t (n)u(n) + xI (O)x1 (0) - xI (L + l)x1 (L + 1), (2.28) 
n=O n=O 
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for every integer L > 0. If we consider an input u(n) = 0 for n > L, then 

(2.29) 

I.e., 

by the unitariness of R0 . Therefore, 

f y t (n)y(n) = f [xI (n)x1 (n) - xI (n + l)x1 (n + 1)] = xI (L + l)x1 (L + 1). 
n=L+l n=L+l 

(2.31) 

Equations (2.28) and (2.31) imply that 

(2.32) 
n=O n=O 

for every finite-energy input u ( n) = 0 for n > L, where L is an arbitrary, finite 

integer. This implies that H(z) is indeed lossless. 

We will now prove the converse. For this, we will first assume that H(z) is 

lossless and then obtain a a state-space description (A 1 , B 1 , C1 , Di) such that R0 

defined by (2.26) is unitary. Let (A, B, C, D) represent some minimal realization 

of H(z ). Since H(z) is stable, there exists a positive-definite Hermitian matrix 

P = pt > 0 such that A tpA + etc = P. We can once again decompose P as 

P = T-tT-1 and define (A 1 , B 1 , C1 , Di) as in (2.25c). We then have 

(2.33) 

Now, by the losslessness of H(z ), we have the following equality: 

(2.34) 
n=O n=O 
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for any finite-energy input, applied under zero-input conditions. In particular, if we 

let u(n) = 0 for n > L, where Lis an arbitrary finite positive integer, (2.29) holds 

and (2.31) follows by using (2.33). Thus (2.34) can be rewritten as 

f y t (n)y(n) = fut (n)u(n) - xI (L + l)x1 (L + 1). (2.35) 
n=O n=O 

Rewriting (2.35) with L replaced by L + 1 and then subtracting from itself, we 

obtain 

(2.36) 

for L > 0. This implies that the matrix R 0 defined by (2.26) is unitary and concludes 

the proof of the lemma. 

A very simple circuit-interpretation can be attached to the discrete-time lossless 

lemma. Consider Fig. 2.2, which shows an implementation of a P x M transfer 

function H(z) with N -1 delays, where N -1 is the McMillan degree of H(z ). After 

all the delays are extracted, we are left with a (M +N-1)-input, (P+N-1)-output 

memory less system, characterized by the ( constant) transfer matrix 

(2.37) 

The discrete-time lossless lemma says that H(z) is lossless if and only if there exists 

a minimal implementation for H(z) such that R 0 is unitary, i.e., lossless. Fig. 2.2 

then represents a lossless memoryless structure, constrained at N - 1 terminals by 

delay elements. 

As a final comment, note that the discrete-time lossless lemma can be stated in 

the following equivalent way: H(z) is lossless if and only if there exists a minimal 

implementation (A, B, C, D) such that the matrix R 1 = ( ~ ~) is unitary. 

This form of the lemma will be used in the coming chapters. 
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M x(n+ 1) 
u (n) N-1 

H(z) --+ - 1 z 
N-1 

y(n) 
x(n) p 

Fig. 2.2. The circuit-interpretation. 

- -. -

- ~ - -

Fig. 2.3. A digital two-pair. 
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2.3. MATRIX TWO-PAIRS, MATRIX TWO-PAIR EXTRACTION FORMULAE 

AND THE MATRIX VERSION OF THE MAXIMUM MODULUS THEOREM 

Matrix Two-pairs and Matrix Two-pair Extractions: 

Consider the two-input, two-output system shown in Fig. 2.3. This system will 

be called a digital two-pair [MI 77), and is described by either the chain parameters 

(2.38a) 

or the transfer parameters 

(2.38b) 

where the matrices II(z) and T(z) are given by 

B(z)) 
D(z) ' 

(2.38c) 

(2.38d) 

Suppose now that we are given a scalar transfer function Gm(z) from which we 

extract a two-pair characterized by the chain parameters (2.38c). This situation 

can be depicted as in Fig. 2.4. It can be shown that Gm(z) and the remainder 

function Gm-l ( z) are related by the extraction formulae 

C-AGm 
0

m-l = BGm -D' 

G _ C+ DGm-1 
m - A+BGm-1' 

(2.39a) 

(2.39b) 

where the dependence on z is omitted for brevity. We note here that Gm-i(z) does 

not necessarily have reduced order unless A, B, C and Dare properly chosen. 

If the scalar signals X1, Y1, Y2 and X2 are replaced by vector signals X 1 , Y 1 , Y2 

and X 2 , we obtain a matrix two-pair. Accordingly, the chain and matrix pa:rameters 
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(z) .. V, -
,, 2 

) 
T(z) Gm-1(Z) ► 

- - X2( - - z) 

Fig. 2.4. Two-pair extraction. 
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of this new system become matrices ( or vectors). A lossless matrix two-pair is stable 

and satisfies the paraunitary condition 

T(z )T(z) = I, (2.40) 

which, in terms of the chain parameters, is equivalent to 

- -CC +I= AA, 

- -BB+I= DD, 

- -CD= AB. (2.41) 

The matrix two-pair extraction formulae, which are the matrix generalizations 

of (2.39a)-(2.39b), are given by 

(2.42a) 

(2.42b) 

The derivations for Equations (2.39)-(2.42) are omitted here for brevity, but can be 

found in Appendix A.6 of [VAI 85a]. 

The Matrix Form of Maximum Modulus Theorem: 

It can be shown [POT 60] that a P x M lossless matrix H(z) satisfies 

I z I< i 

I z I= I' 
I z I> i 

(2.43) 

which is known as the matrix form of the maximum modulus theorem. For the 

special case of a P x 1 lossless matrix H(z ), the inequalities in (2.43) are strict unless 

H(z) is constant. A proof of this theorem based on energy-balance arguments and 

linear-system principles can be found in [VAI 85c], and is omitted here for brevity. 
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2.4. PARAMETRIZATION ALGORITHMS FOR UNITARY MATRICES 

In this section, we will consider two parametrization algorithms to decompose 

an L x L unitary matrix U into a product of complex planar rotation matrices. 

These algorithms, although somewhat different in details, have the same general 

framework as the one reported in [MU 62]. 

An L x L complex planar rotation matrixt that operates in the kl-plane has the 

form 

0 1 

0 1 0 

1 0 1 

k 0 0 

0,.,= 
' 

l 0 0 

L - l O 0 

k 

0 

0 

c,.,, 

s,.,,eiO"t,1 

0 

l 

0 

0 

- s ,.,,e-10"•,1 

CJc,I 

0 

L-l 

0 

0 

0 

0 

1 

0 ~ k < l ~ L-l 

(2.44) 

where c1c,1 = cos01c,1, s1c,1 = sin01c,1 and -~ ~ a-1c,1 ~ ~- All the diagonal entries 

except the (k, k) th and (l, l)lh entries are equal to unity and all the nondiagonal 

entries except the (k, l) th and (l, k) th entries are zero. 

The First Parametrization Algorithm: 

Let X be any L x L matrix. Consider the product 

Y = X 0J,,, (2.45) 

t The matrix (2.44) will be ca.lied a complex planar rotation ma.trix eimply for the rea.aon that ite real apecia.l ca.se (for 
which .-,,r = 0) i1 a. planar rotation matrix. 
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where l is an integer in the range 1 ~ l ~ L - l. The L x L matrix Y has all 

columns the same as those of X, except columns numbered O and l. Columns O and 

l of Y are linear combinations of the corresponding columns of X. In particular, we 

have Yo,1 = c0,1 X 0,1 + s0,,e-i"'o,,x0,0, which can be forced to be zero by letting 

and 

{ 
t -1 1Xo 11 - an .L::..!!.i!.L 

00 I= IXo,ol I Xo,o l=r'= O, 
' ?t 

2 

u _ { arg[Xo,o] - arg[X0,1) 
0,1 - 0 

I Xo,o I= 0' 

I X 0,0 I =r'= 0' 
I Xo,o I= 0 ' 

(2.46a) 

(2.46b) 

where both 00,1 and u0,1 are unique in the range [-~, ½]- If X also happens to be 

unitary, then so is Y, because 0J I is unitary. Now suppose that we create L x L 
' 

unitary matrices U 0,1 according to the iteration U o,1 = U o,1-1 0J,,, 1 ~ l ~ L - l, 

with the initial condition U 0,0 = U ( which is the given unitary matrix) and 0 0,1 as 

in (2.44). The resulting matrix Uo,L-l = U 0J.i 0L · · · 0J.L-l then has the form 

( 

O:'o 
Uo,L-1 = b U~,l)' 

(2.47) 

where U 1,1 is (L - 1) x (L - 1) unitary. Because of the unitariness of Uo,L-l, we 

have I a 0 I= 1 and b = 0. We have thus forced the first row (and column) to be all 

zeros (but one entry). We can now proceed to the second step, which is to repeat 

the above process with U 1,1 so as to obtain 

t t (Ql U 1,L-1 = U 1,1 c)O,l ... c)O,L-2 = 0 (2.48) 

where U 2,2 is (L - 2) x (L - 2) unitary, •0,1 are (L - 1) x (L - 1) complex planar 

rotation matrices and I a 1 I= 1. If we define c) t = •J.i · · · •J.L_2, we can summarize 

the first two steps as follows: 

( 
1 0 ) ( Go U O,L-1 Q c) t = Q 0 ) 0 ' 

U2,2 

(2.49) 
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which shows that the second step does not affect the entries of the 0th row, created 

during the first step. 

Proceeding in this manner, we eventually obtain 

where I ai I= 1, 0 ~ j ~ L - l. This leads to the factorization 

~ ) [0 L-2,L-il ''' [01,L-1 ''' 01,2)[00,L-l ''' 00,200,1], (2.51) 
aL-1 

which can be represented by means of a signal flow graph (lattice structure) as in 

Fig. 2.5(a), with building blocks as in Fig. 2.5(b). (We feel it necessary to warn 

the reader here that the block labelled Tl in Fig. 2.5(b) comes in various sizes 

throughout this work.) The j1h building block, where 1 ~ j ~ L - l, has L - j 

criss-crosses, and each criss-cross is characterized by the two angles 0,,,,1 and a-1,,,1 as 

shown in Fig. 2.5(c) (It is worth noting here that all the criss-crosses in the figures 

of this study have the internal details of Fig. 2.5(c) unless otherwise specified). The 

complex unit-magnitude multipliers ai can also be expressed in terms of angles by 

writing ai = ei4'i, 0 ~ j ~ L - l. The 2 (;) angles (01,,,1, a-1c,1), and L angles <Pi thus 

completely characterize U, which therefore has a total of £ 2 degrees of freedom 

(also see Appendix A in this context). 

The second parametrization algorithm: 

As before, consider the product 

y = 0tL-1X, 
' 

(2.52) 



ao 
0 -.I I ► ••• ~o 
1 -.I step .. .[>--+ 1 - • •• 

2 -+I 1 .. step a1 - • 2 • • • • • • • • I I • • . . Q C: T 1 • • • . step L-2--.I T1 ••• :k-2 step L-2 
L-1---.I 1--..t ~•••-.I T1 

L-1 
T !_f-t1>-+ L -1 

al-1 

Fig. 2.5{a). Signal flow-graph representation for the 

first parametrization algorithm of section 2.4. 
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where X is any L x L matrix and 1 ::5: l $; L - 1. Clearly, X and Y differ only in 

the 0th and (L - l) th rows. The entry YL-l,o = -so,L-1eivo,L-1Xo,o + Co,L-,XL-1,0 can 

be made zero by letting 

I Xo,o I# 0 
I Xo,o I= 0' 

(2.53a) 

and 

_ {-(arg[XL-1,0] - arg[Xo,o]) I Xo,o I# 0 
cro,L-1 - 0 I Xo,o I= 0 . (2.53b) 

Now consider the recursion 

(2.54) 

where 1 ::5: / ::5: L - 1 and U 0,0 = U, the unitary matrix to be parametrized. At 

each step of the recursion, the angles Oo,L-I and cro,L-1 are determined such that 

ut~,.o - 0. Accordingly, Uo,L-i, which is the end result of the recursion, has the 

form 

(
ao 

Uo,L-1 = 
0 U~,l)' (2.55) 

with I a 0 I= 1, b = 0 and U 1,1 an (L - 1) x (L - 1) unitary matrix. We can use 

the same recursion (with some obvious modifications that are due to change of size, 

initialization etc.) to write 

. (2.56) 

where ~o., are (L - 1) x (L - 1) complex planar rotation matrices, I a 1 I= 1 and 

U 2,2 is unitary of size L - 2. We can summarize these two steps of the algorithm 

by writing 

( ~ :t) Uo,<-1 = ( ~ :t) ( 1• ~1 
0 ) 0 ' 

U2,2 

(2.57) 

where ~ t = ~L • • • ~t.L-2· 
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Repeating this process on columns numbered 2 through L - 2, we obtain 

(2.58) 

which is equivalent to 

(2.59) 

as shown in Fig. 2.6. Equation (2.59) then represents another parametrization for 

a unitary matrix U in terms of complex planar rotation matrices. Once again, the 

number of parameters (angles) used in this parametrization is £ 2 , which is shown 

to be minimal in Appendix A. 
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CHAPTER 3 

GENERAL STRUCTURES FOR IIR LOSSLESS VECTORS 

A filter bank is a collection of filters that can be used to separate a signal into 

a number of signals as in Fig. 3.l(a), or to combine several signals into a single 

signal as in Fig. 3.1 (b ). Depending on the application, the analysis bank filters can 

be followed by M-fold decimators and the synthesis bank filters can be preceded 

by M-fold interpolators, as shown in Fig. 1.1. After an input signal is separated 

into several subbands at the analysis bank for a specific application, the challenge 

at the synthesis bank is to choose the filters F,.(z) such that aliasing is eliminated, 

and the reconstructed signal does not have amplitude and/or phase distortion. 

Let us consider the case of an IIR analysis bank where the filters H,.(z) form a 

PC set, i.e., satisfy 
M-1 

L I H1c(eiwJ) 12= 1. (3.1) 
lc=O 

Note that the PC property and the stability of these filters imply that the vector 

H(z) = ( Ho(z) H1 (z) . .. HM-l (z) f is lossless. We will see that this choice 

for the analysis bank has important applications in filter banks with or without 

decimation. 

Application without decimation: Let the analysis bank filters be given by 

H1c(z) = ~(~i)' 0 ~ k ~ M - 1. Then, if the synthesis bank filters are chosen 

as F1c(z) = ~~i)' the overall transfer function between the input and the output 

becomes 

(3.2) 
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x(n) -~H
0

(z) ~ x0(n) 

• • • 

H1(z) xln) 

• • • 

Fig. 3.1 (a). The analysis-bank. 

- F0 (z) 

- F1 (z) ... -
0 

,. 
• • • 

Fig. 3.1 (b). The synthesis-bank. 
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This can also be writ ten as 

d(z) M-1 -

T(z) = d(z) E H,.(z)H,.(z). (3.3) 

Since H(z) is lossless, the sum in (3.3) is independent of z, and T(z) is an all

pass function, ensuring that there is no amplitude distortion in the reconstruction 

process. 

Application with decimation: Recall the QMF bank application of Chapter 

1, which led to cancellation of aliasing and amplitude distortions. The polyphase 

component matrix E(z) for that application was IIR and lossless. It was mentioned 

in Chapter 1 that the parameters of E(z) can be optimized in order to obtain 

good analysis filters. With no clue for the initialization of the parameters, this 

optimization task is formidable. However, an initial guess of one of the analysis 

filters not only reduces the parameter set for optimization but also makes it possible 

to initialize all the remaining parameters based only on that filter. 

It can be shown [VAI 88c] that the polyphase components of a spectral factor of 

an M th band filter form a PC set. Suppose now that we fix H '") as such a spectral 

factor. This completely determines the 0th row 

ef (z) = ( Eo,o(z) (3.4) 

of E(z), where E0,;(z), 0 ~ i ~ M - l, are the polyphase components of H0 (z). 

Let N - l denote the degree of the PC vector e0 (z ). It can be shown using the 

techniques of Section 3.1 that e0 (z) can be represented as 

eo(z) = U(z )Po, (3.5) 

where U(z) is an M x M IIR lossless matrix of degree N - l, and Po is an M x 1 

constant, unit-norm vector. If we augment Po to obtain the M x M unitary matrix 

P = ( Po P 1 •.• PM-l ), then the M x M IIR system 

S(z) = U(z)P (3.6) 
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is lossless with degree N - 1. We can now define the lossless polyphase matrix 

E(z) ~ ST(z), and obtain the analysis filters H1c(z). The number of freedoms that 

can be exercised in this construction of H1c(z), 1 ~ k ~ M-1, is equal to the number 

of freedoms available in constructing an M x M unitary matrix whose 0th column is 

fixed, and is given by M2 - 2M + 1. This technique reduces the number of degrees of 

freedom and results in faster convergence. However, it should be pointed out that 

in general it does not span every possible set of IIR filters H1c(z), 1 ~ k ~ M - 1, 

such that E(z) is IIR lossless. Details can be found in [VAI 89a], where an FIR 

version of this technique is reported. 

In this chapter, we will consider two general structures for implementing IIR 

lossless vectors. The first one of these was recently reported in [DO 89a], whereas 

the second one is a complex and M-dirnensional generalization of the 2 x 1 LBR 

structure reported in [VAI 85a]. The first structure has the advantage that it can 

be used to implement both FIR and IIR lossless vectors. In fact, the FIR special 

case of this structure with real coefficients reduces to the lattice structure reported 

in [VAI 86b]. The second structure, on the other hand, has the advantage that all 

the multiplier values turn out to be real when an IIR LBR vector is synthesized. 

3.1. A LATTICE STRUCTURE FOR IIR LOSSLESS VECTORS 

In this section, we introduce a completely general structure for implementing 

lossless IIR vectors. We first consider the 2-component case in Section 3.1.1, and 

then generalize the results to M-components in Section 3.1.2. The minimality of 

the structure in terms of the number of parameters is addressed in Section 3.1.3. 

3.1.1 A LATTICE STRUCTURE FOR TWO-COMPONENT LOSSLESS IIR VEC

TORS 
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Consider a lossless IIR vector of degree N - 1, which can be written as 

where 
N-1 

PN-1(z) = L PN-1,iz-i, 
i=O 

N-1 

N-1 

QN-1(z) = L qN-1,iz-i, 
i=O 

dN-1 (z) = II (1 - ZiZ-
1 
), I z; I< 1. 

i=l 

(3.7a) 

(3.7b) 

The scalars PN-i,i, qN-l,i and Zi are in general complex. We assume without loss of 

generality that PN-l (z ), QN-l (z) and dN-l (z) do not have a factor common to all 

of them, as such a factor can be determined and cancelled. Losslessness of HN-l (z) 

implies that 

Vz, (3.8a) 

or equivalently, taking the complex conjugate of both sides of (3.8a), 

Vz. (3.8b) 

We shall use this property in the synthesis procedure. 

Given HN-i(z) as in (3.7a), we would like to generate a lower-degree system 

(3.9) 

such that it is lossless (i.e., paraunitary and stable) and of degree N - 2. Re

peated application of this process then results in a structural realization for 

HN-l (z ). Each element of HN-2(z) should be generated by a linear combina

tion of the elements of HN-i(z). Consider the simplest possible linear combination 

[0:PN-1(z) + .BQN-1(z)]/dN-1(z). This has a lower degree if 0: and ,8 are chosen 



-43-

such that o:PN-i(z) + J3QN-i(z) has a factor (1- z1z-1) that can be cancelled with 

the denominator dN_ 1(z). An obvious choice for this is to let a = O, ;3 = l if 

QN-i(zi) = 0, and a = 1, ;3 = - ~N-t1 ~ otherwise. Thus we have generated one 
N-1 ZJ 

component of HN_ 2 (z), viz ~N-
2~z], where PN_2(z) and dN_ 2(z) are polynomials of 

N-2 Z 

degree less than N - l given by 

(3.10) 

We now need to find the other linear combination that would generate the second 

component ~;::((:; of HN_ 2 (z). The complete reduction process can be expressed 

as 

(3.11) 

It remains to choose a(z) and b(z) such that a(z )PN-l (z) + b(z )QN-l (z) has the 

factor (l-z1z- 1 ). In addition, we require the 2 x2 matrix in (3.11) to be paraunitary 

so that the left-hand side in (3.11), which is HN_ 2 (z), is paraunitary. One obvious 

choice of a(z ), b(z ), which makes the 2 x 2 matrix paraunitary, is 

a(z)=-/3*, b(z)=a*. 

With this, 

becomes -PN_1(z) if QN-i(zi) = 0, and 

P,;,_1(zi)PN-1(z) + QN_1(zi)QN-1(z) 
Qrv-1 (z1) 

(3.12) 

(3.13a) 

(3.13b) 

otherwise. In either case, in view of (3.8b) and the fact that dN-l (zi) = O, the linear 

combination of (3.13a) becomes zero at z
1
• rather than at z1 • We shall therefore 
I 

define 

(3.14) 
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so that 

a(z)PN-i(z) + b(z)QN-1(z) = QN-2(z), (3.
15

) 
dN-1(z) dN-2(z) 

where dN- 2( z) is the N - 2 degree polynomial defined in (3.10) and QN-2(z) is the 

N - 2 ( or lower) degree polynomial 

(3.16) 

With the choice of (3.14), we can write 

(3.17a) 

where 

(3.17b) 

is para unitary. This ensures that HN_ 2 (z) is paraunitary. Since the poles of 

HN_ 2 (z) are a subset of the poles of HN-l (z ), stability of HN_ 2 (z) is guaranteed 

so that HN_ 2 (z) is a 2 x ! lossless system of reduced degree. 

It is convenient to obtain a normalized matrix S1(z) by scaling T 1(z), by mul

tiplyi~g with the scalar c1 = Jial:+l~l2 so that S1 (z)S 1 (z) = I for all z. We would 

then have 

(3.18) 

where s1 and c1 are real numbers such that c~ + s~ = l and 01 is a real quantity. 

After such normalization, we finally arrive at 

(3.19a) 

(3.19b) 
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Since W 1 ( z) is para unitary and stable (because I z1 I< 1, z1 being a pole of 

HN-i(z)), we note that W 1 (z) is lossless. This gives us a realization for the lossless 

system HN-l (z) in terms of the lower degree lossless system HN-2(z) and the 2 x 2 

degree-one lossless system W 1 ( z), as illustrated in Fig. 3.2. 

We thus have established degree reduction by extracting the pole at z1 • Clearly, 

this step can be repeated to extract the poles at z1c, 2 $ k $ N - l, resulting in 

a reduced degree lossless vector each time, until finally a zero-degree lossless (i.e., 

unit-norm) vector is reached. This can be expressed by the recursion 

(3.20a) 

where S1c ( z) has the form 

S1c(z)= (0
1 

(3.20b) 

and H 0 (z) = H 0 is a unit-norm constant vector. The complete synthesis procedure 

can be expressed as 

Defining 

we can write HN-i(z) as 

(3.21) 

1 $ k $ N - l, 

(3.22a) 

(3.22b) 

Fig. 3.3 shows the implementation of this realization of HN-i(z). The internal 

details of W 1c (z) are as shown in Fig. 3.2 with 1 replaced by k. This gives us a 

procedure for synthesizing an arbitrary two-component lossless IIR vector of degree 
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Fig. 3.2. Pertaining to the synthesis procedure of ' Jon 3.1.1 . 
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N - 1 as a cascade of N - l lossless systems of degree one, terminated on the left 

by a constant 2 x 1 lossless vector H0 . 

3.1.2. EXTENSION OF THE SYNTHESIS PROCEDURE TOM-COMPONENT 

LOSSLESS IIR VECTORS 

The synthesis procedure described in Section 3.1.1 can be generalized to M

component lossless IIR vectors of the form 

where 

p(l) (z) 
N-1 

N-1 

P (k) ( ) '°' (k) -i k M 
N-1 z = L., PN-1,iz , 0 $ $ - 1, 

i=O 

N-1 

dN-1(z) = IJ (1 - Ziz-
1
). 

i=l 

(3.23a) 

(3.23b) 

Again, without loss of generality, it will be assumed that P1,.2 1 (z ), 0 $ k $ M - l 

and dN_ 1 (z) do not have any common factors. At a zero z, of dN-i(z), the polyno

mials P.~2 1(z) satisfy the generalized form of property (3.8b) of Section 3.1.1, which 

lS 

M-1 1 '°' (A:) )[ (A:) ( )]* . L., PN-1 (--; PN-1 z, = 0. 
l:=O Z1 

(3.24) 

Before we give the generalized synthesis procedure, let us recall from Section 

3.1.1 that given two polynomials A 0 (z) and A 1(z), we can generate two new polyno

mials B0 (z) and B 1(z) such that B0 (z) is zero at some point z1:, simply by writing 

(3.25a) 

where 
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-iB -Ao(z,.)e-iarg[A1(z.)] 

se = JI Ao(z1) 12 ·+ I A1(z1) 12 ' 

(3.25b) 

provided that A0 ( z) and A1 ( z) are not both zero at z1. If that is the case, we can 

just let c = 1 and s = 0 in (3.25a). 

Let us now consider two sets of polynomials PJ.j~ 1 (z) and Q¼~ 1(z), 0 :5 j < 

M - 1, related by 

( (0) ( ) (M-1)( ) )T U U U ( (0) ( ) QN-1 Z • • • QN-1 Z = M-2,M-1 • • • 1,2 0,1 PN-1 Z P (M-1)( ) )T 
N-1 Z , 

(3.26a) 

where UA:,Hl are M x M complex planar rotation matrices of the form 

k k+l 

1,. 0 0 0 

k 0 C1t s,.e-iB• 0 

UA:,lt+l = k+l 0 -s,.eiB• C1t 0 0 :5 k :5 M - 2. (3.26b) 

0 0 0 IM-lt-2 

It is evident from (3.266) that the kth and (k + l) th outputs of U1,Hi are linear 

combinations of the respective input polynomials and that the other outputs are 

directly passed from the input in the order they originally appear. In (3.26a), let 

UA:,Hl be determined such that its Ph output polynomial has a zero at z1 • Clearly, 

Q~~ 1(z) can be made equal to zero at z1 by determining U1t,1t+l as described, for 

0 :5 k :5 M - 2. Since U1t,Hl are unitary matrices and HN-i(z) is lossless, the 

vector ( Q~~1(z) . . . Q~~ 1\z) f /dN-1(z) is also lossless. Therefore, at z1 , the 

polynomials Q~~ 1 (z) satisfy 

El Q~~l ( ~ )[Q~~l (zi))* = 0. 
J:=O Z1 

If we substitute Q~~1(z1 ) = 0 for O :5 k :5 M - 2 in (3.27), we obtain 

Q~~l)( ~ )[Q~~l)(z1)]* = 0, 
Z1 

(3.27) 

(3.28) 
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which means that the (M - l)1h polynomial Q~~ 1)(z) has a zero either at z1 or 

at z1• Suppose that Q~~1)(zi) = 0. Then all Q~~1 (z ), and therefore, all P}:21 (z) 
I 

have a zero at z1 . This, however, cannot be true since P;;21(z) and dN-1(z) do 

not have a factor common to all, by assumption. Therefore, (3.28) can only imply 

Q~~
1

\ }. ) = 0, so that we can write 
I 

where 

and 

Q(M-1)( ) 
p(M-1)( ) _ N-1 Z 

N-2 z - -zi + z-1' 

d ( ) _ dN-1(z) 
N-2 z - l - z1z-1. 

(3.29a) 

(3.29b) 

(3.29c) 

We have thus obtained an IIR lossless vector HN_ 2(z) of degree N -2 from HN-1 (z) 

by extracting its pole at z1 . Clearly we can repeat the described step to extract the 

other poles. If we define 

0 ) (j) (j) (j) 
l-z;z- 1 U M-2,M-l · · · U 1,2 U 0,1 
-zJ+z- 1 

(

IM-1 
S;(z) = O (3.30) 

(where the superscript j is a reminder that we are working with the j1h pole z;), we 

can describe this process by the recursion 

(3.31) 

where the degree of the resultant IIR lossless vector reduces by one at each step 

until finally a zero-degree, unit-norm vector H0 is reached. Thus we can express 

, (3.32a) 
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where 

W(z) - s~1(z) - [U(j)]t[u(j)lt [U(j) it (1
M-l 

J - J - 0,1 1,2 • • · M-2,M-l Q 
0 ) • -I -z.+z , 

1-.r;.r-1 

(3.32b) 

This expression results in the complete lattice structure implementation for HN-i (z) 

shown in Fig. 3.4. The structure of Fig. 3.4 can implement only lossless vectors. It 

is also general in that the set of all lossless IIR vectors can be spanned by appropri

ately varying its parameters. This property of the structure can be advantageous 

in applications involving lossless vectors where we need to optimize some of the 

parameters, since it ensures that the search for the optimum is conducted over the 

complete set of lossless vectors and nothing else. 

Before we conclude this section, we will briefly describe an exercise that we car

ried out to demonstrate that the synthesis procedure of this section really works. 

Two 5th order elliptic filters H0 (z) = ~~f ;~ and H2 (z) = ~:~;~ were designed inde

pendently and then scaled such that I H 0 (ei"') 1
2 + I H 2 (ei"') 1

2
::; 1, Vw. A third 

filter H1 (z) = ~;~:~ was designed with D1 (z) = D0 (z )D2(z) and 

- N2(z)N2(z)Do(z)Do(z), 

so that the vector H(z) = ( Ho(z) H1(z) H2 (z) f is lossless. H(z) was then 

synthesized using the procedure described above. The lattice coefficients obtained 

as a result of the synthesis process were used to reconstruct the three filters. The 

magnitude response plots of the reconstructed filters are shown in Fig. 3.5 and 

agree completely with the responses of the original filters. This example confirms 

that the synthesis procedure of this section can be used to synthesize a given lossless 

IIR vector as the cascaded lattice structure shown in Fig. 3.4. 
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(k) 

Fig. 3.4(c). Internal details of the kt h criss-cross in wj (z). 
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3.1.3. THE MINIMALITY OF THE STRUCTURE 

The structure of Fig. 3.4 uses N - l scalar delay elements to implement a 

lossless UR vector of degree N - l; hence it is minimal. In the following, we will 

show that it is also minimal in the sense that it uses the smallest possible number of 

parameters required to implement a completely general lossless IIR vector of given 

degree and dimension. 

Consider an M x l lossless HR vector 

h(z) = ( Po(z) Pi(z) . . . PM-1(z) f /d(z), (3.33a) 

where 
N-1 

P,(z) = L p\i> z-i, 0 $ j $ M - l 
i=O 

N-1 

d(z) = IJ (1 - ziz-1
). (3.33b) 

i=l 

We will calculate the degrees of freedom that h(z) has. Note that h(z) satisfies the 

paraunitary condition 
M-1 

L P,(z )P,(z) = d(z )d(z ). (3.34) 
i=O 

Both sides of (3.34) are polynomials of order 2(N -1) displaying complex conjugate 

coefficient symmetry. If the coefficients of like terms on both sides are equated, we 

obtain N nonredundant equalities, N - l of which are complex, i.e., equivalent to 

two equations. Therefore, the total number of constraints is 2N - l. On the other 

hand, h(z) has 2M N + 2(N - l) unknowns, which are the (complex) coefficients 

p~i)' 0 $ j $ M - l and the (complex) poles zi, 1 $ i $ N - l. Subtracting the 

number of constraints from the number of unknowns, we find that h(z) has a total 

of 2M N - l degrees of freedom. 

Let us now consider the structure of Section 3.1.2. Suppose that we implement 

h( z) using this structure. The implementation will consist of N - l building blocks 
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w; ( z) ( each of which has M - 1 complex criss-crosses and an all pass section), and 

M complex multipliers r; satisfying L~o1 
I r; 1

2= 1. Each W;(z) has 2(M - 1) + 2 

parameters and the multipliers r;, 0 ~ i ~ M -1 have 2M -1 parameters, making 

a total of 2M N - 1. Hence the structure of Section 3.1.2 represents a general M x 1 

lossless IIR vector h(z) of degree N -1, by using 2M N -1 parameters which exactly 

equals the number of degrees of freedom that h(z) has. Therefore, the structure of 

Section 3.1.2 is minimal in the number of parameters it uses. 

3.2. A SECOND LATTICE STRUCTURE FOR LOSSLESS IIR VECTORS 

The advantages· of low sensitivity in realizations of transfer functions and the 

role of structural boundedness as a key to low sensitivity were mentioned in Chapter 

1. A method of realizing a transfer function in a structurally bounded manner is 

to embed it into a 2 x 1 lossless vector, and then to synthesize this vector by the 

lossless matrix two-pair extraction method mentioned in Section 2.3. This method 

is described in detail for the real-coefficient case in Section V of [VAI 85a]. In 

the following, we will consider a complex and M-dimensior:;,' · •neralization of the 

synthesis procedure described in [VAI 85a]. This not only ._Q the 2 x 1 special 

case with the advantage mentioned above, but also gives us an alternative way of 

implementing M x 1 lossless vectors. 

The formal statement of what we wish to do is as follows: Given an M x 1 IIR 

lossless vector GN_1(z) = ~N-1t'} of degree N - 1, we want to extract a constant 
N-1 z 

lossless matrix 2-pair TN-i (an (M + 1) x (M + 1) unitary matrix) such that the 

remainder is of the form z-1GN-2(z), where GN_2(z) = ~N-
2?/ is lossless and of 

N-2 z 

degree N - 2. This statement can be depicted as in Fig. 3.6. H TN-l is defined by 

the (constant) chain parameters 

(3.35) 



G (z) ---+ 
N-1 

M 
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-1 z 

M 

Fig. 3.6. Extraction of a lossless matrix two"•Peir T N-1 

from ~-iz), with remainder GN-~ · 



-59-

w here A is 1 x 1, B is 1 x M, C is M x 1 and D is M x M, it follows from the 

matrix 2-pair extraction formulae of (2.42) that 

(3.36a) 

(3.36b) 

Since a constant scale factor in the chain parameters does not affect the remainder, 

we can conveniently let A = 1. ff we also take the constant coefficients of dN-l (z) 

and dN_ 2(z) to be unity, we obtain from (3.36) that 

(3.37) 

It is clear from (3.36b) that NN_ 2(z) has order~ N-2. Therefore, it only remains 

to force an order reduction on dN_ 2 (z), which is given by 

(3.38) 

This can be accomplished by choosing B and D such that 

(3.39) 

thus cancelling off the coefficient of z-(N-l) in (3.38). Since GN-l (z) is lossless, it 

satisfies 

(3.40a) 

i.e., 

(3.40b) 

Comparing (3.38) with (3.406), we see that the choice B = Nt_1 (oo)D achieves 

order reduction in dN-2(z). The matrix D can be taken as I without affecting this 

order reduction process. Thus if the following chain matrix is extracted, 

(3.41) 
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it results in a lower-degree remainder GN_2(z). Recall, on the other hand, that the 

paraunitariness in terms of the chain parameters is equivalent to 

1 + cc = AA, I+ BB = DD, CD = AB. (3.42) 

Since II does not satisfy (3.42), it is not lossless, but it can be made so by an appro

priately chosen scaling scheme. One such possibility is to scale II by postmultiplying 

it with the diagonal matrix 

(3.43) 

This involves choosing a and b such that the paraunitary conditions 

(3.44a) 

(3.44b) 

are satisfied. It immediately follows from (3.44a) that we can take 

1 
a=--;::===== /1 -k1-1kN-l 

(3.45) 

Since the lossless vector GN-1(z) satisfies G1_ 1 (z)GN-i(z) < 1 for I z I> 1 (by the 

vector version of the maximum modulus theorem) and kN-l = GN-i(oo), we have 

k1_ 1kN-l < 1, and therefore, a is well-defined. It now remains to choose b such 

that b t (I - kN_1k1_1)b = I. For this, we note that we can write I - kN_1k1_1 = 

(I - kN-1k1_1)½(I - kN-1kt_1)f, where (I - kN-1k1_1)t is a lower triangular 

square root of I - kN-1k1_1. This specific choice for the square root has some 

advantages that will be evident in the later stages of the synthesis procedure. With 

I - kN-ik1_ 1 decomposed as such, we see that (3.44b) can be satisfied by letting 

(3.46) 
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The new chain matrix thus obtained is 

✓ l kL(I-kN-1kLi-+ 
1-kt_l kN-1 

kN-! (I - kN-1k1-1tf 
✓l-kt_1kN-l 

(3.47) 

We will next show that the remainder GN_ 2(z) obtained by extracting IlN-1,1 from 

G N-i ( z) is lossless. Since both G N-l ( z) and IlN-i,1 are lossless, we know that 

GN_2 (z) must be paraunitary. Therefore, we need only to show that GN- 2(z) is 

also stable. We will do so by assuming the converse. Let us first write GN-2 (z) as 

(3.48) 

using the extraction formulae (2.42) and the chain parameters given by (3.47). 

Suppose now that GN_ 2 (z) has a pole at z0 , such that I z0 I~ 1. This implies that 

(3.49) 

i.e., there exists a nonzero vector v such that 

(3.50) 

It follows, then, that 

· (3.51) 

Since GN-i(z) is lossless and I zo I~ 1, by the vector version of the maximum 

modulus theorem, we have Gt_1(zo)GN-1(zo) $ 1. With this, (3.51) becomes 

(3.52) 

or equivalently, 

(3.53) 
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But (3.53) contradicts the fact that I - kN-ikt_ 1 is positive definite. Hence a pole 

z0 of GN_ 2(z) can be only strictly inside the unit circle, implying that GN-2(z) is 

stable. We have thus established losslessness of GN_2(z ). 

Let us now consider the transfer matrix 

(3.54) 

corresponding to IlN-l,l • Since this matrix is unitary, it can be parametrized using 

the algorithms of Section 2.4. The advantage of choosing a lower triangular square 

root for I - kN-ikt_ 1 is now clear as reducing the number of parameters used in 

the representation for TN-l,l• Using the first algorithm of Section 2.4, we can write 

~ ) et et et et : M-1,M M-2,M-l · · · 1,2 0,1, 

0:M 

(3.55) 

where eL+i are complex planar rotation matrices described by (2.93). Schemat

ically, we can represent the extracted matrix 2-pair as shown in Fig. 3.7. The 

internal details of the j1h rectangular block in Fig. 3.7(a) are shown in Fig. 3.7(b), 

where CjJ+l = cos 0jJ+1 , s,J+l = sin 0;J+ 1 , and 0,J+i, cr;J+l are real numbers. 

This constitutes the first step of the synthesis procedure. In the second step, an

other lossless matrix 2-pair can be extracted from GN_ 2 (z) such that the remainder 

GN_3 (z) is lossless and of reduced degree. If this step is repeated a sufficient num

ber of times, one is left with a constant unit-norm vector as the final remainder. 

This marks the end of the synthesis procedure which can be depicted as in Fig. 3.8. 

In Fig. 3.8, the internal details of the building blocks are as shown in Fig. 3.7, and 

T 0,1 is a unit-norm M x 1 vector. 



(0) ( 1) (M-1) aM 
X1 ••• y2 

<l>o, 1 

ci, 1.2 I y<1) 
Clo 

0'0,1 
le!> M-1,M I x<1) r-- 2 1 

0'1,2 a, 
O'M-1,M x<2) y(2) 

2 1 

• • • J, • 
• • 

w 

X(M) 
I 

yjM) 
2 

~-1 

T. ----- -N-1,1 

Fig. 3.7(a). Implementation of the extracted matrix two-pairT N-i 1 • • 
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s .. 1e
1
~.J+1 J,J+ 

>--~ + 

-ia. -s .. 1e 1,J+1 
J,J+ 

Fig. 3.7(b). Internal details of the j th block In . :'d• 3.7(a). 



GN-1(z) ► 
-1 z 

-1 z 

N-2 1 '•--

••• 

••• 

Fig. 3.8. The complete Implementation of GN_1(z) 

Tf, 1 

In terms of extracted lossless matrix two-pairs. 

To, 1 

~ 
Cl1 
I 
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Note that the scaling of (3.41) leading to a lossless matrix 2-pair is not unique. 

Another possibility is to scale IIN-l by premultiplying it by (3.43). The equations 

that must be satisfied for paraunitariness, in this case, are 

kt_1btb =I a 12 kl_1, 

I+ I a 1
2 kN-1k1_ 1 = b tb. 

(3.56a) 

(3.56b) 

(3.56c) 

Using (3.56b ), we can substitute for k1_ 1 b tb in (3.56a) and I a 1
2 kN-l in (3.56c). 

This gives rise to a new set of equations which is 

(3.57a) 

(3.57b) 

Clearly, the choice 

1 
(3.58) 

satisfies (3.57). With this, the scaled chain matrix becomes 

1-kt_ 1k1V-1 (3.59) 

(I - kN-1kt_1)-½ 

and the corresponding transfer matrix is 

(3.60) 

The square root (I-kN-1kt_ 1 ) ½, which appears in (3.59)-(3.60), is as defined previ

ously for the first scaling scheme. Since TN-i,2 is also unitary, it can be parametrized 
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in terms of complex planar rotation matrices using the second algorithm of Section 

2.4. We will omit the details of this parametrization for the general case, for brevity. 

We will, however, consider the two by one special case with the low-sensitivity filter 

design application, in some more detail, in order to see how exactly the synthesis 

procedure works for both scaling schemes. 

If we define kN-l = ( k1 k2 )7 for the two by one case, we can easily show that 

a lower-triangular square-root for I - kN-ik1_ 1 is given by 

(3.61) 

becomes 

k1 Ji- I k1 /
2 0 

TN-1,1 = k2 -k;k2 l-jk1 j2-Jki 12 
(3.62) 1-JA:112 

Ji- I k1 1
2 

- I k2 /2 -k* l-jk1 j2-jk2 j2 -J.~;=-
1 l-lk11 2 , 12 ' -· 

If we apply the first parametrization algorithm of Section 2.4 to (3.62), we find out 

that TN-i,1 can be decomposed as 

(-e-;,,,, 0 

e;1 •• I ... ,)) u 0 -s,,,~-;.,,,) 
TN-1,1 = ~ -e•o-1,2 C1,2 

0 S1,2e•cr1 ,2 C1,2 (3.63) ( ~ .. -icro 1 

D· 
-so,1e · 

S0,1 ~•ere ,1 Co,1 

0 

where co,1 = - I k1 I, so,1 - J l- I k1 12 , tTo,1 = arg [ ki] and c 1,2 = ~, 
y'1-Jk11 2 

l-jkd
2
-lk2 l2 [k ] [k ] Th' d • • b d s1,2 = l-Jki 

1
2 , 0'1,2 = arg 2 - arg 1 • lS ecompos1t10n can e represente 

diagrammatically as in Fig. 3.9. 
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Y.(1) 
1 .,_-< 

Y. ( 2) 4--< ..,_ _____ +---' 

1 

y(1) 
1 

Y. (2) 
1 .,__...J 

Fig. 3.9. Factorization of T N- 1, 1 • 

Y2 

X
(1) 

.__.....______ 2 

'---------'-- x(2) 2 

Fig. 3.10. Factorization ofTN.1,2 . 
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On the other hand, the second scaling method with a = Jl-lA:
I
1

12 _
1
A:,I' and b = 

(I - kN_ 1kt_1tt gives rise to the transfer matrix 

1-IA:1 l'-IA:2!2 Ji- I k1 1
2 -k1ka 

l-lk112 
J1-IA:1l2 

TN-1,2 = A:2 0 1-11ci12 -IA:; 12 (3.64) 
~ 1-IA:112 

Ji- I k1 1
2 - I k2 1

2 -k* 1 -k; 

which can be factorized by the second parametrization algorithm of Section 2.4 as 

TN-1,2 = 0 0 0) r-0,1 -so,1e-uro,1 ~) 0 0 
-s,,,~-;., ,, ) 0 i s e'60I Co1 C1,2 0,1 

0 i 0 0 S1,2eia-1 ,2 C1,2 

0 
i 

D· 0 
0 

(3.65) 

where co,1 = Ji- I k1 12, s0,1 = - I k1 I, 0'0,1 = arg [k1], and c1,2 = 1-IA:1 l2 -11c21 2 

1-lkil2 

s1,2 = ~' u1,2 = arg [k2]. This factorization can be illustrated as in Fig. 3.io. 
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CHAPTER 4 

PARAMETRIZATIONS AND LATTICE STRUCTURES 

FOR LOSSLESS SYSTEMS 

4.1. PARAMETRIZATIONS AND LATTICE STRUCTURES FOR FIR LOSS

LESS SYSTEMS 

In the following, we take a state-space approach to derive some parametrizations 

and lattice structures that span the entire set of FIR lossless systems. In Section 

4.1.1, a specific parametrization is investigated in some detail. A family of FIR 

lossless lattice structures underlying this parametrization is derived in Section 4.1.2. 

The developments of these two sections are for lossless matrices with complex-valued 

entries. Section 4.1.3 briefly outlines the same developments for the LBR case. In 

Section 4.1.4, some useful variations of the parametrization and the resulting lattice 

structures are investigated. The state-space approach of t1 • •vious sections can 

also be applied to the class of rectangular FIR lossless m.,_u·ices. The resulting 

parametrization and structures that find applications in nonmaximally decimated 

perfect reconstruction systems are investigated in Section 4.1.5. Finally, an FIR 

design example of a 5th order QMF bank that makes use of the FIR LBR structure 

of Section 4.1.3 is presented in Section 4.1.6. 

4.1.1. A PARAMETRIZATION FOR M x M FIR LOSSLESS MATRICES 

Consider an M x M transfer matrix H(z) with the state-space representation 

x(n + 1) = A x(n) + B u(n), 

y(n) = C x(n) + D u(n). 
( 4.1) 
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In (4.1), y(n) and u(n) are M-component vectors representing the output and 

input, and x(n) is the state vector with N - I entries. We consider only minimal 

realizations; therefore, N - 1 is the McMillan degree, or simply the "degree" of 

H(z ). It follows from ( 4.1) that H(z) = D + C(zl - A)-1B. If we define the L x L 

constant matrix 

( 4.2a) 

where L = N - I+ M, we have 

[x(n + 1) y(n)f = R1 [u(n) x(n)f. ( 4.2b) 

Recall from Section 2.2 that the discrete-time lossless lemma guarantees the 

existence of a unitary matrix R 1 of smallest possible dimension whenever we deal 

with a lossless transfer matrix H(z ). Therefore the problem of parametrizing lossless 

transfer matrices becomes equivalent to parametrizing unitary matrices. It was 

shown in Section 2.4 that an L x L unitary matrix can be characterized in terms of 

L2 parameters. Furthermore, L2 is also the number of degrees of freedom that an 

L x L unitary matrix has (see Appendix A). Therefore, this kind of parametrization 

is minimal in the number of parameters it uses. 

It is well known [AN 73], [FR 68], [CHE 79], [KA 80] that the eigenvalues of 

A are the poles of the system. Since we are interested in lossless transfer matrices 

with FIR entries, we note that all eigenvalues of A must be zero (see Appendix B at 

the end, and references cited therein). We would like to make use of this property 

to simplify R1 and hence its parametrization. A possible way of doing this is to 

employ the Schur theorem [FR 68] to triangularize arbitrary square matrices. The 

theorem states that for any square matrix A, there exists a unitary matrix T such 

that Tt AT = A, where A is upper or lower triangular, as per choice. The diagonal 
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entries of A are the eigenvalues of A. Accordingly, since all eigenvalues of A are 

zero, diagonal entries of A are also zero. 

The matrix T transforms the minimal representation (A,B,C,D) with unitary 

R 1 into another minimal representation (A, TTB, CT, D), which can in turn be 

represented by the unitary matrix 

0 

1 

N-2 

N-l 

0 1 

* * 

* * 

* * 

* * 

L - l * * 

M M+l 

0 

* 

* 

* 

* 

0 

0 

* 
* 

* 

L-l 

0 

0 

0 

* 

* 

(4.3) 

where L = N - l + M. Here * denotes the entries that are not necessarily zero. In 

the following, we will work with this form of the matrix. 

Let us now recall the parametrization algorithm of Section 2.4 for unitary ma

trices, that leads to the factorization 

~ ) [0L-2,L-d ... [01,L-l ... 01,2][00,L-1 ... 00,200,il, (4.4) 
OL-1 

where U is a completely general unitary matrix of size L. The flow-graph repre

sentation for the factorization of ( 4.4) is shown in Fig. 2.5. This parametrization 

algorithm is governed by the recursion 

v.,, = v.,,-1 el.,, k < / $ L - l, ( 4.5) 
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for Os k::; L - 2, with the initialization V 0,0 = U, where U is the unitary matrix 

to be parametrized. We know from section 2.4 that 0L has the form 

(4.6) 

where~ is an (L- k) x (L- k) complex planar rotation matrix. If the (k, l) th entry 

of V 1:,,-i happens to be zero, then ~ = IL-Jc and V 1c,, = V 1c,1-1 , Suppose now that 

we let U = R. It follows then, by an obvious inductive reasoning, that since R has 

the zero entries indicated in ( 4.3), so do the matrices V 1c,,. Accordingly, the form 

(4.3) forces the angles (01c,,, u1c,1) to be restricted such that 

(Oo,M, uo,M) = (Oo,M+1, uo,M+d = · · · = (00,L-1, O"o,L-1) = (0, 0) 

. ' (4.7) 

where N = L - M + 1. More compactly, (01c,1, u1c,1) = (0, 0), 0 S k S N - 2, 

M + k S l S L - 1. Thus, out of the L2 angles appearing on the right hand side of 

(4.4), exactly 2(~) angles are zero as indicated in (4.7). The flow-graph represen

tation of Fig. 2.5 for a general unitary matrix therefore reduces to that of Fig. 4.1, 

for R. 

As a converse of this observation, it turns out that if ( 4. 7) holds; i.e., if the 

representation for a unitary matrix U is as shown in Fig. 4.1, then U has the form 

on the right-hand side of ( 4.3). As a result, the constraint ( 4. 7) ensures that U 

represents a unitary realization (A,B,C, D) of an FIR lossless transfer matrix, of 

the form on the right-hand side of ( 4.3). In order to see this converse, note that in 

Fig. 4.1, the signal s0 is not affected by r, , I~ M; and in general, s1c is not affected 



r0=u0(n) --, • • ••• 
ste.., ...... 

: I 1 ste • • 2 I • T1 • • 
rM-1 =UM_1(n) • 

T1 
rM=x0(n) ..... 

• • • 

r L-1 =XN_in) 

ao 
-------~~so=Xo(n+ 1) 

ste 

• • N 
T1 • T 

~ S1=X1(n+1) 
a1 • • • 

~SN-2=\J-2(n+ 1) 

• • • 

SN-1=Yo(n) 

a SL-1 =YM-1(n) 
L-1 

Fig. 4.1. Signal flow-graph representation for the slmplfffed 

parametrization of section 4.1.1. 

I 
~ 
I 
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by r 1 for 1 ~ k + M. Accordingly, the corresponding entries U1c,1 of U are equal to 

zero, giving rise to the form (4.3). These results are now stated as a theorem: 

Theorem 4.1: Consider an L x L unitary matrix U partitioned as 

M N-1 

N-1 ( B 
V= M D (4.8) 

with L = N - 1 + M. Then U has the form in the right-hand side of (4.3) if and 

only if the angles ( 01c,1, o-,.,1) appearing in the factorization ( 4.4) satisfy ( 4. 7). 

The importance of this theorem rests in the fact that any M x M FIR lossless 

transfer matrix can be realized with complex planar rotation matrices structured 

as in Fig. 4.1, and conversely, the matrix (4.8) with the constraint (4.7) always 

represents an FIR lossless matrix. The number of nonzero angles 01c,1 that appear 

in the parametrization is given by 

(4.9) 

4.1.2. THE COMPLETE STATE-SPACE STRUCTURE 

The purpose of this section is to derive a minimal lattice structure based on the 

parametrization of Section 4.1.1. Here minimality is used in two different senses: 

in the system-theoretic sense that the structure has the smallest number of scalar 

delays (i.e., has McMillan degree), and also in the sense that the number of param

eters used in the structure is minimum. While the first of these claims is clearly 

evident by construction, the second will be proved in Chapter 6. 

Consider Fig. 4.1 where the quantities r1 and s1c can be identified with the ap

propriate components of x(n + 1), x(n), y(n) and u(n), appearing in ( 4.1). · Because 
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of the partitioning convention for U as in ( 4.8), we see that 

{ 
u1(n), 0 $ l $ M - l 

~= ' X1-M(n), M $ l $ L - l 

0$1$N-2 
N-l$l$L-l

0 

( 4.10) 

By inserting a delay in between each state variable x1( n + l) and the corresponding 

x1( n), the complete state-space structure is obtained and, after rearrangement, has 

the appearance shown in Fig. ( 4.2a). An important detail to note here is that after 

the delays are inserted, the unit-norm multipliers O'i, 0 $ i $ N - 2 that appear 

immediately before these delays can be pushed past the delays and the criss-crosses 

all the way through the end, where they can be combined suitably with the other 

unit-norm multipliers a;, N - l $ i $ L - l. The resulting unit-norm multipliers 

at the end are denoted by /3;, 0 $ i $ M - l in Fig. 4.2(a). Such a rearrangement 

is justified by virtue of the identity 

where 

{ 

A;0i:,,(01:,1, ui:,,) i =/=- k, 
01:,1(01:,,, ui:,1)A; = A;01:,1(01:,1, 0-1:,1 + argo. 

Ai01:,1(01:,1, 0-1:,1 - arg6 

0 

A;= z 

0 

1 

0 

L- l 0 

0 

0 

L-l 

0 

0 

1 

i =j:. l, 
: = k, 

,::: l, 
(4.lla) 

(4.llb) 

Equation (4.11) simply states that the process of pushing a unit-norm multiplier 

past a criss-cross alters only the angle u of the criss-cross and leaves 0 unchanged. 

An important consequence of this is that the structural representation of Fig. 4.2(a) 



z -1 

u0(n) Y o<n) 
u1(n) stage stage •• stage stage Y1(n) 1 2 • N-1 • N • • • • • • • • • • 

UM-2(n)j T1 [A:I T1 t • • 
YM-2(n) T1 • T2 

I --, 
UM-1(n) • • • YM-1(n) 

--, 
I 

Fig. 4.2(a). The FIR lossless lattice structure of section 4.1.2. 
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Fig. 4.2(b). Internal details ofT2. 
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has exactly N - l less parameters ( corresponding to the merged multipliers oi, 0 $ 

i $ N - 2) than the flow graph representation of Fig. 4.1. This raises the question 

of whether or not it is possible to further reduce the number of parameters in Fig. 

4.2(a). Let us denote the number of parameters of the structural representation of 

Fig. 4.2(a) by Nm. We will show in Chapter 6 that each of these Nm parameters 

are relevant for representation of lossless matrices, by constructing an M x M FIR 

lossless matrix of degree N - l, which actually has Nm degrees of freedom. 

Given a general M x M FIR lossless transfer matrix H(z) of degree N -l and the 

corresponding minimal state-space description (A, B, C, D), it may seem contra

dictory at first that a minimal representation for the R matrix has Np parameters, 

whereas the representation for the transfer matrix requires only Nm. However, it 

is not surprising when one acknowledges that a transfer matrix reflects only the 

input-output relationship of a system. As a final comment, note that such a dis

crepancy does not arise for FIR lossless transfer matrices (as we will see in Section 

4.1.3), since in that case Oi can all be taken as unity so that NP = Nm. 

Reconsidering Fig. 4.2(a), we see that the stages 1 through N -l appearing here 

are special unitary matrices having only M - l complex planar rotations (rather 

than (~) complex planar rotation matrices and M unit-norm multipliers). After 

stage N - l, the number of state variables runs out in Fig. 4.1 and we are left with 

the last M - l sections, which can be lumped into one single unitary matrix with 

(~) complex planar rotations and M unit-norm multipliers (summing up to M 2 

parameters or angles). The important point is that this arrangement of parameters 

is sufficient to characterize any M x M FIR lossless matrix. Thus the total number of 

angles involved in the realization of Fig. 4.2(a) is clearly Nm= 2(M-l)(N-l)+M2
• 

A simple explanation as to why the stages numbered 1 through N - 1 in Fig. 

4.2.(a) have only M - 1 rather than (";') complex planar rotations, can be given as 
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follows: Assume, for the sake of argument, that each stage in this figure is a general 

unitary matrix with (":) complex planar rotations and M unit-norm multipliers 

as in Fig. 2.5. Since the delay elements in Fig. 4.2.(a) affect only the topmost 

line, the criss-crosses and multipliers of stage 1 that do not touch this line can be 

moved to the right and coalesced with stage 2. Having done so, stage 1 contains 

only M - l complex planar rotations. The newly formed stage 2 continues to be 

an M x M unitary matrix, and can be re-decomposed into (":) rotations and M 

multipliers as in Fig. 2.5. We can once again move (":) - (M -1) of these rotations 

and the M multipliers to the right and merge them with stage 3. If this process is 

repeated, then all the resulting stages (but the N th ) will be characterized by only 

M - 1 rotations. The N th stage, however, remains a general unitary matrix with 

M 2 parameters. 

Before concluding this section, we note that similar parametrizations that lead 

to lattice structures for P x M FIR lossless transfer matrices, where P > M, are 

possible. Such a parametrization algorithm is outlined in Section 4.1.5, and finds 

applications in nonmaximally decimated perfect reconstruction systems. 

4.1.3. THE FIR LBR STRUCTURE 

Consider an FIR LBR transfer matrix HN-i(z) of size Mand degree N-1. Since 

HN-i(z) is real for real z, we can find a minimal state-space description (A, B, C, 

D) for HN-i(z), where A, B, C and Dare all r~al matrices and R 1 = ( ~ . ~) is 

orthogonal. Once again, Schur's theorem ensures the existence of an (N-1) x (N-1) 

unitary matrix T such that A = Tt AT is lower-triangular. T and A can, in 

general, have complex entries (even though A is real); however, in our case, since 

all the eigenvalues of A are zero (and hence real), both T and A turn out to be 

real matrices so that T is orthogonal. The transformed state-space description (A, 
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TTB, CT, D) gives rise to another orthogonal matrix R, which has the form of ( 4.3). 

We will parametrize this matrix using the real version of the first parametrization 

algorithm described in Section 2.4. The main differences between the complex and 

real versions of this parametrization algorithm are as follows: In the real version, 

we have planar rotation matrices (rather than complex planar rotation matrices, 

which really cannot be physically interpreted), that are of the form 

0 1 

0 1 0 

1 0 1 

z 0 0 

0·= 1,J 

J 0 0 

L -1 O 0 

I 

0 

0 

c·. 1,J 

s· . ,,, 

0 

] 

0 

0 

-SiJ 

c·. 
I ,J 

0 

L-1 

0 

0 

0 

0 

1 

0$i<j$L-1, 

( 4.13) 

where CiJ = cos 0iJ, and SiJ = sin 0iJ· Also, the complex conjugate transposition 

operations of the complex version ( denoted by superscript t) are replaced by trans

position operations ( denoted by superscript T). The choice of angle that forces Y0,1 

to be zero becomes 

Xo,o # 0 
Xo,o = 0. 

( 4.14) 

Since each step of the algorithm gives rise to an orthogonal (rather than unitary) 

matrix, the parameters Oi can only be ±1. We will, without loss of generality, take 

Oi = 1 for O $ i $ L - 2, since we can always add 71' to 9i,L-l if necessary. However, 

we do not have such control on O'L- 1 ,which is 1 or -1 depending on whether detU is 

1 or -! ,respectively. We assume det U = 1 for simplicity hereafter ( the de·t U = -1 
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case can be handled similarly). This leads to the factorization shown in Fig. 4.1 

where a, = 1, and the criss-crosses in blocks Tl have the details shown in Fig. 2.5(c) 

with (J;.,1 = 0. Note that this parametrization has exactly (;) - (~) parameters. 

Furthermore, since each criss-cross is characterized by only one angle 9, and ai do 

not add any freedoms, the number of criss-crosses equals the number of parameters 

(angles). Using the techniques of Section 4.1.2 on this factorization for R, we obtain 

the structural representation of Fig. 4.2.(a) (where again the criss-crosses have the 

internal details in Fig. 2.5(c) with u1c,1 = 0), and the multipliers /3; in the last stage 

labelled T2 are all unity. As pointed out in Section 4.1.2, the representation for R 

and the structure that follows from this representation, both have the same number 

of parameters, which is (;) - (~). 

Before we conclude this subsection, we note that the real versions of all the 

lossless structures reported in Section 4.1 can be similarly derived. Some examples 
I 

of such LBR structures can be found in [DO 88]. 

4.1.4. OTHER PARAMETRIZATION ALGORITHMS AND LATTICE STRUC

TURES 

The lattice structure presented in Section 4.1.2 has two problems: First, the 

stages are interconnected in a rather complicated manner. Second, the criss-crosses 

do not always interconnect neighboring links. If one intends to implement this 

structure in hardware (VLSI) directly, then these are undesirable features. 

We will show in this section that the first problem can be eliminated simply 

by rearranging the rows of R, and the second one by allowing only complex pla

nar rotation matrices that operate in neighboring planes in the parametrization 

algorithm. 

Recall that in Section 4.1.1, we considered a unitary matrix R (related to a min

imal state-space representation by ( 4.3) ), parametrized it to obtain the the signal 
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flow-graph representation of Fig. 4.1, and from that representation, we obtained 

the lattice structure of Fig. 4.2. Let us now reverse this procedure and consider the 

structure of Fig. 4.3. Here, only the nearest neighbors are interconnected in each 

building block, and moreover, successive building blocks are connected in a very 

simple way. Notice also that the number of criss-crosses (i.e., the number of planar 

angles) is equal to Nm in (4.12). Suppose now that we want to find a parametriza

tion rule for FIR lossless transfer matrices that will lead to this lattice structure. 

Notice that x1(n + 1) and x1(n) are, respectively, the input and output of the 1th 

delay element in Fig. 4.3(a). We can redraw Fig. 4.3 as Fig. 4.4 by physically 

separating x1(n + 1) and x1(n), 0 $ l $ N - 2. (Note that this is exactly the reverse 

of what was done to go from Fig. 4.1 to Fig. 4.2.) Clearly, there are many ways of 

redrawing Fig. 4.3 since the choice of input-output ordering used in Fig. 4.4(a) is 

quite arbitrary. 

We can think of Fig. 4.4 as a signal flow-graph representation for a unitary 

matrix R' related to a minimal state-space representation (A, B, C, D). In this 

respect, R' is very similar to R. If we take A to be lower tr , .,1lar, the choice of 

input-output ordering used in Fig. 4.4(a) restricts R' to have the form 

0 1 M M+l L-1 

0 

1 

* * 

* * 

M-l * * 

R'= 
M * * 

L- 2 * * 

L - l * * 

0 

* 

* 

* 

* 

* 

0 0 

* * 

* * 

0 0 

* 0 

* * 

L = N - l + M. (4.15) 



x0(n+1) _1 x0(n) 

u0(n) - ~; JI ~-·· - . .. 
stage stager··· u1(n) - -1 . 2 • • • • • • • • • 

UM-in) - T3 - T3 ,.. ••• .. . 

-1 xN_Jn+ 1) -1 ~-2(n) 
z i" z - - ~ -= ~ - - stage - - stage -- N-1 - N • • • - T3 - T4 ~ -

UM-1(n) .., I .., ...... - -- -

Fig. 4.3(a). The desired structure. 
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• • • .. -
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Y0 (n) 
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YM-2(n) : 
YM-in) ' 
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Fig. 4.3(b). Desired internal details of T3 and T 4. 
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Fig. 4.4(a). Alternate representation for the desired structure. 
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• T3 • • • • • 

• • • 

step I, 2 !: i ~ N-1 

• • • 

• • • 

• • • 

L-1 _____ .....,.__._ ______ _,. ••• ---[>---+-

Po 

.---------TS--------~ 

Cascade of steps N to L-1 

Fig. 4.4(b). Internal details of the boxes in Fig. 4.4(a). 
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One immediate observation that follows from Fig. 4.4 is that z1(n + 1) is not 

affected by z1(n), k 5 I 5 N - 2. This reflects in R' as the zero entries shown 

in ( 4.15 ). Fig. 4.4, therefore, represents only unitary matrices of the form ( 4.15 ). 

Notice that the above form of (4.15) is precisely a permutation of the form (4.3). 

The permutation corresponds, clearly, to the rearrangement of the variables z1(n), 

z1(n + 1), Ym(n) and um(n), for 0 5 k 5 N - 2, 0 5 m 5 M - 1 (compare Fig. 

4.4(a) with Fig. 4.1). Because of this relation between (4.15) and (4.3), we obtain 

the following conclusion: 

Lemma 4, 1: Every M x M FIR lossless matrix E( z) of degree N -1 is representable 

by a unitary matrix of the form (4.15) and conversely, a unitary matrix of the form 

(4.15) always represents an M x M FIR lossless matrix E(z) of degree N - 1. 

The relation between R' and the lossless matrix E(z) which it represents is as in 

Fig. 4.4(a). More specifically, if a delay is inserted between z1,:(n + 1) and z1,:(n), 

0 5 k 5 N - 2, then Y(z) = E(z)V(z), with Y(z) = [Yo(z) Yi.(z) ... YM-i(z)f 

and U(z) = [U0 (z) U1(z) ... UM-1(z)JT. 

The next step is to show that all unitary matrices of · orm ( 4.15) can be 

represented as in Fig. 4.4. This can be done by constructing a parametrization 

rule for unitary matrices that will always yield a representation as in Fig. 4.4 when 

applied to matrices of the form ( 4.15 ). Such an algorithm is described in Appendix 

C. 

Now, since Fig. 4.4 is obtained by a rearrangement of the "desired structure" 

shown in Fig. 4.3, we conclude, with the help of Lemma 4.1, the following: 

Lemma 4.2: Any M x M FIR lossless matrix of degree N -1 can be realized as in 

Fig. 4.3(a) with building blocks as in Fig. 4.3(b), with each criss-cross representing 

a complex planar rotation. Conversely, Fig. 4.3 always represents an M x M FIR 

lossless matrix. 
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Before concluding this section, we note that the possibilities for other lattice 

structures are several. Consider, for example, R arranged as in (4.3) with a lower 

triangular choice of A and the parametrization algorithm governed by the recursion 

O $ m $ L-2, l<l<L-l-m - - ' k = L -1, ( 4.16) 

where 0L 1,1: are determined such that u;;:;! = 0. If we let U 0 ,0 = R, we have 

the structure of Fig. 4.5. Note that this structure also has nearest-neighbor link 

interconnections only. 

As a slightly different example, consider R as 

(4.17) 

with an upper triangular A. If we apply the second parametrization algorithm 

described in Section 2.4 to this form of R matrix, we obtain a parametrization, 

which after rearranging, gives rise to the structure shown in Fig. 4.6. Note that 

this structure has a special first stage with (1;') complex planar rotations rather 

than a special last stage. Detailed derivations of the structures are omitted for 

brevity. In any case, the structure of Fig. 4.3 seems to be the most attractive one 

from an implementation viewpoint. 

4.1.5. NON-MAXIMALLY DECIMATED FIR PERFECT-RECONSTRUCTION 

SYSTEMS 

Consider a QMF bank as in Fig. 1.1, with the modification that there are P 

channels, which is greater than the decimation ratio M. Such systems are said to be 

non-maximally decimated. For a given P, consider the case when M = p; Assume 



u (n)~ P{l ~-·· stage Y 0(n) 
u ~ (n) st~ge : st?e ••• stage 

N-1 N Y1 (n) 
• • • • • 

UM_2(n~ T3 I.J:I T3 l-~- T3 T4 M-2(n) I 
~ 

UM-1(n) 
0 

yM_/n) 
I 

Fig. 4.5. An alternate FIR lattice structure. 



uo(n)~ ["R r··· - y 0(n) 
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• • • 
• T1 • T1 YM-2(n) * 

I 

u M-1 (n) --+f.__J--' 4l_____J-.· ••--' 4I___J-1 '-+f___J-+y M-1(n) 

Fig. 4.6(a). An alternate FIR lattice structure. 
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that H,.(z), F1:(z) are designed such that there is perfect reconstruction. If we use 

the same set of filters H,. ( z), F,. ( z), 0 ~ k ~ P - l, and reduce the decimation 

ratio M such that Mis now a submultiple of P (i.e., M = P/m, m =some integer 

factor of P), then x ( n) is not altered by this choice of M. This can be verified by 

referring to the alias-cancellation equations [VAI 87a, Eqn. (1 b )] and replacing W 

with wm, which yields a subset of the set of equations for P = M. In this section, 

we will consider the more general case where M < P and M is not necessarily a 

submultiple of P. 

The applications of non-maximally decimated structures are not very clear at 

this time. Such systems may be of interest in short-time spectral-analysis [POR 

80] and even in certain new types of subband coding [SM]. Regardless of the pos

sible applications, the main purpose of this section, however, is to show how a 

perfect-reconstruction QMF bank can be designed by a simple extension of the 

ideas presented earlier in this chapter and in [VAI 87a]. 

The basic procedure is again to express the analysis and synthesis filters in terms 

of their polyphase components, giving rise to the representation of Fig. 1.2, where 

E(z) is now P x M and R(z) is M x P. With the decimators and interpolators 

moved past E(zM) and R(zM) respectively, we obtain the representation of Fig. 

4.7, where P(z) = R(z) E(z) is M x M. 

A sufficient condition for perfect-reconstruction is to force P(z) = z-1:1M, which 

can be done by forcing E( z) to be a P x M lossless FIR matrix and taking R( z) to be 

R(z) = z-lcE(z) so that P(z) = R(z) E(z) = z-lcE(z )E(z) = z-A:JM, The problem 

therefore reduces to one of constructing P x M FIR lossless transfer matrices. In the 

following, we will derive a structural representation for such matrices, once again 

characterized by complex planar rotation angles. 



x(n) ~+M 
z 

-1 t z-1 

tM P(z)= R(z)E(z) tM 
-1 ♦ + z-1 z • • • • I • • «> 

z-1 f ~ 
I 

tM I\ 

tM x(n) 

Fig. 4.7. A redrawing of Fig. 1.2. 
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For a K x L matrix U to be unitary, it is necessary to have K ~ L. Such a matrix 

has 2K L unknowns, 2(;) constraints that are due to orthogonality conditions and 

L unity-norm constraints, resulting in a total of 2K L - L2 degrees of freedom. 

The discrete-time lossless lemma states that the problem of representing P x M 

FIR lossless transfer matrices is equivalent to that of representing K x L unitary 

matrices, where K = N -1 + P, L = N -1 + M, and N -1 is the McMillan degree. 

Our next step, therefore, is to give a parametrization algorithm for K x L unitary 

matrices. 

Suppose that we are given a K x L unitary matrix U with column vectors u 0 , 

u 1, • · ·, liL-l· We can find column vectors v 0 , v 1 , · • ·, VK-L-l, each of size K, such 

that the K x K matrix 

( 4.18) 

is unitary. Now suppose that we apply the first algorithm described in Section 2.4 

to W. If we ignore the first K - L inputs in the representation thus obtained, what 

remains is clearly a representation for the K x L matrix U, as shown in Fig. 4.8. 

Note that ignoring the first K - L inputs leads to the complete removal of (K;L) 
and partial removal of (K - L) criss-crosses from the representation for W. The 

partially removed criss-crosses are shown with two branches ( corresponding to the 

multipliers c and -se-i') in Fig. 4.8. In every such partially removed criss-cross, 

one can split the multiplier -se-i, into two multipliers -s and e-itr and move the 

latter to the right, past the criss-crosses to the farthest right end, where it can be 

merged with the unit-norm multipliers ai. The justification for such a move was 

given in Section 4.1.2. This tells us that the angles u of the (K - L) partially 

removed criss-crosses should not be counted as freedoms in the 
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Step 1 

i-1 

K-L 

K-1 

Step i, 2 ~ i ~ K-L 

Step i, K-L+1 $ i $ K-1 

Fig. 4.S(b). Internal details of the boxes in Fig. 4.S(a). 
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representation for U. With this observation, we see that the representation of Fig. 

4.8 has K 2 -2(K;L)- (K -L) = 2KL- L2 parameters showing that it is minimal. 

It is also possible to formulate parametrization algorithms that are directly 

applicable to K x L unitary matrices. One such algorithm is governed by the 

recurs10n 

U;..;+1 = 0J.K-l-i U;,;, 0 5 j 5 K - 2 - i, {4.19) 

for O 5 i 5 L - l. Here, U;,o = U;-i,K-2-i for 1 5 i 5 L - l. 0J.K-i-i are 

determined such that uf,{~~-i = 0. The resulting representation is shown in Fig. 

4.9. The number of parameters used is 2'Ef= 1{K-i)+L = 2KL-L2
, which shows 

that this representation is also minimal. 

Now suppose that R is a K x L unitary matrix related to a minimal state-space 

description (A, B, C, D) of an M-input, P-output FIR lossless system as in Section 

4.1.1; i.e., 

0 

1 

0 1 

* * 

* * 

R=N-2 * * 

* * 

K- l * * 

M 

0 0 

* 0 

* * ... 

* * ... 

* * ... 

L-l 

0 

0 

0 

* 

* 

{ 4.20) 
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Fig. 4.9(b). Internal details of the boxes in Fig. 4.9(a). 
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H we apply the algorithm just described to parametrize R, we have 

(80,K-1, 0-0,K-1) = (81,K-1, 0-1,K-d = · · · = (BK-P-1,K-1, O"K-P-1,x-d =(0, 0) 

(80,K-2, 0-0,K-2) = · · · = ((}K-P-2,K-2, O"K-P-2,x-2) =(0, 0) 

(80,P, O"o,P) =(0, 0) 

( 4.21) 

and the parametrization of Fig. 4.9 simplifies to that of Fig. 4.10. It is also clear 

from Fig. 4.10 that such a parametrization necessarily belongs to a K x L unitary 

matrix R with RiJ = 0 for O $ i $ N - 2, M + i $ j $ L - l. Therefore we 

can claim that we have a complete parametrization for M-input, P-output FIR 

lossless transfer functions. If the inputs and outputs are labelled appropriately by 

the state-space variables, Fig. 4.10 can be redrawn as the M-input, P-output lattice 

structure shown in Fig. 4.11. 

4.1.6. A DESIGN EXAMPLE 

In this section, we will consider a design example in which we will use the FIR 

LBR structure derived in Section 4.1.3. In particular, we will consider a 5-band 

perfect reconstruction QMF bank, with LBR E(z ). Our aim is to optimize the 

angles 8.,,, so as to minimize the sum of the stop band energies of H1r.(z ). We shall 

impose a constraint on the analysis-bank structure such that the 5 filters H1c(z) 

satisfy the following pairwise symmetry property: 

( 4.22) 

This condition implies that the magnitude response I H1c(ei"') I is the image of 

I H4_1c(ei"') I with respect to i· Such a constraint reduces the number of parameters 
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Fig. 4.10. Signal flow-graph representation for the simplified direct parametrization. 
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(angles) in the optimization program by a factor of 2, thereby reducing the design 

time enormously. 

Consider the structure of Fig. 4.12 where E'(z) is a 5 x 5 lossless matrix, r(z) 

is a diagonal matrix of the form 

1 0 0 0 0 

0 1 0 0 0 

r(z) = 0 0 1 0 0 (4.23) 
0 0 0 z-1 0 

0 0 0 0 z-1 

and R is an orthogonal matrix of a specific form mentioned in [NG 88). This form 

1S 
a b C cos0 sin 0 

1 
d e f sin 0 -cos0 

R = v'2 v'2p y'2q v'2r 0 0 (4.24a) 
d e f - sin0 cos0 
a b C - cos0 -sin0 

where the matrix 

G 
b n e ( 4.24b) 
q 

is an orthogonal matrix with 3 degrees of freedom. It is shown in [NG 88] that such 

a system satisfies the condition (4.22) automatically. The effective E(z) in Fig. 4.12 

is E(z) = Rr(z)E'(z 2). For a given set of analysis-filter lengths the order of E'(z) 

is less than the order of E(z) (by more than a factor of 2), so that the number of 

angles representing E'(z) and R is fewer, cutting down the size of the parameter 

space. 

The proof that the structure of Fig. 4.12 forces ( 4.22) and other details per

taining to R can be found in [NG 88], and are not relevant here. The main point is 

that the design of the analysis bank has now been reduced to the design of the FIR 

LBR system E'(z), which in turn can be done, based on the methods described in 

Section 4.1.3. The objective function to be minimized is 

<P = r I Ho(ei"') 1
2 dw + (f-e I Hi(ei"') 1

2 dw + r I H1(ei"') 1
2 -dw 

Jf+e Jo Jaf+e 
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+ lo¥-~ I H2(eiw) 12 dw, ( 4.25) 

which, along with the automatic structural constraint of ( 4.22), ensures a good 

stopband. The lossless nature of E(z) induces the condition Et=o I H'lc(eiw) 1
2= 1, 

which ensures good passbands for H'lc(z) (see (NG 88]). 

In the design example, the quantity N - 1 representing the size of the A matrix 

for E'(z) is equal to 3, so that the analysis filters have length 8+ (N - 1) x 10+5 = 

43. Details can be found in (NG 88]. The quantity L defined in Section 4.1.1 is 

L = N-l+M = 8. Theparametertusedin the objective function (4.25) ist = 0.05. 

An IMSL software package (ZXMWD, [IM]) was used to optimize the angles 0,.,1 of 

E'(z) and the angles 0 in R, so as to minimize ( 4.25). The resulting analysis filter 

responses for H 0 (z ), H 1 (z) and H 2 (z) are shown in Fig. 4.13 (responses for H 3 (z) 

and H4 (z) are omitted because of the symmetry property (4.22)). 

4.2. STATE-SPACE APPROACH APPLIED TO IIR LOSSLESS SYSTEMS 

In Section 4.1, we saw in some detail how the state-space approach can be used 

to obtain representations and structures for FIR lossless systems. We will apply the 

same approach to IIR lossless systems in Section 4.2.1. The developments in the 

IIR and FIR cases are quite similar; therefore, in the following, we will derive only 

one structural representation for IIR lossless systems. We note, however, that all 

the FIR lossless structures of Section 4.1 can be generalized quite straightforwardly 

for IIR lossless systems. The IIR LBR case, on the other hand, requires some 

modifications of the state-space approach, and is dealt with in Section 4.2.2. 

4.2.1. STATE-SPACE APPROACH APPLIED TO IIR LOSSLESS MATRICES 

Suppose that we are given an M x M IIR lossless transfer matrix HN-l (z) of 

degree N -1. Let (A, B, C, D) be a minimal state-space description for ·HN_ 1(z) 
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such that the matrix ( ~ ~) is unitary. There exists an (N -1) x (N -1) unitary 

matrix T that transforms A into a lower triangular matrix A, while simultaneously 

transforming the description (A, B, C, D) into another minimal description (A, 

TTB, CT, D). Because of the nature of this transformation, the matrix R = 
( T~B CAT) is unitary. The main theoretical difference between the FIR and IIR 

cases is that in the latter the diagonal entries of A are not zeros, but rather complex 

numbers corresponding to the poles of HN-i(z). Therefore, R has the form 

R= 

0 

1 

0 

* 

* 

* 

N-2 * 

L -1 * 

M M+l M+2 

* 

* 

* 

* 

* 

0 

* 

* 

* 

* 

0 

0 

* 

* 

* 

* 

* 

* 

L-l 

0 

0 

0 

* 

* 

(4.26) 

If we apply the first parametrization algorithm described in Section 2.4 to R, we 

obtain the representation for R shown in Fig. 4.14, where Tl is again as in Fig. 

2.5(b). Notice that this representation differs from the one for the FIR case (shown 

in Fig. 4.1), by one extra criss-cross in the first N - l steps, corresponding to the 

nonzero diagonal entries of A. Accordingly, the structure that results by connecting 

Xi(n + 1) to x1(n), 0 ::;; k ::;; N - l, and rearranging, has exactly N - 1 first-order 

allpass sections, as shown in Fig. 4.15. The angles () and u corresponding to the ith 

allpass section come from the ith extra criss-cross. These allpass sections that 
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replace the delays in the FIR case, therefore, represent the poles of the system. The 

total number of degrees of freedom that the structure has is 

( 4.27) 

where Nm is as in (4.12). This number will be shown to be minimal in Chapter 6. 

The same discrepancy of N - 1 between the degree-of-freedom counts of the repre

sentation for R, and the structure for HN-i(z) that we have observed in the FIR 

case also arises here, due to previously explained reasons. Although not elaborated 

here, note that one can argue, using Fig. 4.14, that this representation necessarily 

belongs to a unitary matrix of the form ( 4.26). The structure that follows from this 

representation, by construction, can implement only lossless systems. Furthermore, 

given any M x M IIR lossless transfer matrix, one can find the corresponding rep

resentation and use it to obtain a structure implementing the given transfer matrix. 

This, although not very practical to apply, constitutes a conceptual synthesis algo

rithm, showing that the structure of Fig. 4.15 spans all M x M IIR lossless transfer 

matrices. 

4.2.2. MODIFIED STATE-SPACE APPROACH FOR IIR LBR MATRICES 

It is sometimes possible to take advantage of certain properties of a given class 

of systems in order to obtain structural representations ( that apply only to that 

specific class of systems). Although such structures are not general in the sense of 

the structure of Fig. 4.15, they may prove to be more useful in many applications, 

usually because they have simpler structure or involve a smaller number of parame

ters. In this section, we will consider IIR LBR systems, which are characterized by 

real coefficients, and poles that are either real or in complex conjugate pairs. These 

properties of IIR LBR systems suggest the possibility of a representation in terms 

of real parameters only. Such a representation is indeed possible as we shall see. 
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Let us consider an M x M LBR transfer matrix HN-i(z) of degree N - l with 

rational entries. Let (A, B, C, D) be a real and minimal state-space representation 

for HN-x(z) such that the L x L matrix R 1 = ( ~ ~) is orthogonal. Since A 

is real, its eigenvalues (system poles) are either real or in complex conjugate pairs. 

Accordingly, let A have n complex conjugate eigenvalue pairs (>.i, >.:-), 1 $ i $ n, 

and l real eigenvalues -Yi, 1 $ i $ 1, where 1 = N - l - 2n. With this setting, it can 

be shown (see Appendix D) that A can be written as 

( 4.28a) 

where T is a ( N - l) x ( N - l) real orthogonal matrix and Wis a block upper 

triangular matrix of the form 

a1 0 0 0 

* an 0 0 
( 4.28b) W= 

* * "/1 0 

* * * "/I 

In ( 4.28b), each ai is a real 2 x 2 matrix with eigenvalues ).i and >.:. The entries below 

the block diagonal denoted by asterisks are real and in general nonzero, whereas 

the entries above are all zero. A proof of this statement can also be found in [GO 

85]. In the following, we will use this decomposition to find a real parametrization 

algorithm for R, which will lead us to a real lattice structure for IIR LBR systems. 

Clearly, the orthogonal matrix T that transforms A into W also transforms the 

minimal state-space representation (A, B, C, D) into another minimal representa

tion, which is (W, TTB, CT, D). The matrix 

( 4.29) 
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for this case is also orthogonal and has the form 

0 M M+l 

0 * X X 0 0 0 0 0 0 0 

1 * X X 0 0 0 0 0 0 0 

* * * X X 0 0 0 0 0 

* * * X X 0 0 0 0 0 

* * * * * X X O 0 

2n - 1 * * * * * X X O 0 

2n * * * * * * * X 0 

* * * * * * * * 

N-2 * * * * * * * * 

L-1 * * * * * * * * 

0 

0 

0 

0 

X 

* 

L-l 

0 

0 

0 

0 

0 

0 

0 

0 

X 

* 

, (4.30) 

where n is the number of complex conjugate eigenvalue pai, A, and the entries 

denoted by x belong to the block diagonal of W. If we apply the first parametriza

tion algorithm described in Section 2.4 to R, we obtain the parametrization that 

can best be described by the diagram in Fig. 4.16. The building blocks Tl in Fig. 

4.16 have the general form depicted in Fig. 2.5(b) with varying sizes. If we identify 

the inputs and the outputs of this diagram by the appropriate state variables and 

rearrange, we obtain the lattice structure shown in Fig. 4.17(a). This structure has 

n second-order stages corresponding to the n complex conjugate pole pairs, and l 

first-order stages corresponding to the l real poles of HN-l ( z). The building block 

T12 in Fig. 4.17(a) has the form shown in Fig. 4.2(b) with /3; = 1, O $ i $ M - l. 

The multipliers for all building blocks are real. In particular, all the criss-crosses 
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have the internal details shown in Fig. 2.5(c) with u1c,1 = O, and the two-input, 

two-output connection blocks for the second-order stages have the internal details 

in Fig. 4.17 (b). The transfer function for these connection blocks is given by 

( 4.31) 



0 

M+1 

M+2 

M+3 

M+2n-1 

M+2n 

l-1 

• • • 
••• 
••• 
••• 

.,., 
2n•1 I • • • 

I 

• • • : 

0 

1 

2 

2n-2 

2n-1 ..r--,. _______________ ....,.2n 

• • • 
I ... ... 
~ 
I 

_,.. I •2n+l·1 

••• 
• • • 

.,., .......--,____. 

2n+I : 

1 
t•••~ I T1 I. . . ... ~L-1 •L.:..:.J • T1 =---- _, 

Rg. 4.16. The flow-graph representation of the parametrization of section 4.2.2. 



u.,(n) 

U.._,(n)-e1.._---J....,..- - u 

First second-order stage n'th second-order stage stage n+ 1 stage n+I 

Fig. 4.17(a). A real lattice structure for HR LBR systems. 

,, A ii-+ J,(n) 

~ '11-1(n) 
I .... .... 
1 



St 

-1 z 

-118-

-1 z 

..-----T10----~ 

◄ T11-__. .. 

Fig. 4.17(b}. Internal details of T1 o and T11. 



-119-

CHAPTER 5 

A DIFFERENT APPROACH TO CHARACTERIZATION 

OF LOSSLESS SYSTEMS 

We saw in Chapter 4 that lossless transfer matrices can be parametrized in terms 

of angles by a state-space approach. This approach gives rise to lattice structures 

where the multiplier values are given by sines and cosines. The computation of 

a sine (cosine) takes considerably more time than, say, a multiplication operation 

on most general-purpose computers. Therefore, if the structures of Chapter 4 are 

used in applications which require the optimization of the multiplier values, then 

they may lead to long convergence times. Also, these structures, in general, do not 

remain lossless when the multipliers are quantized. 

In this chapter, we will derive a second representation for lossless systems. This 

representation not only shares most of the desirable properties of the representa

tion of Chapter 4, but it also offers the advantage of shorter convergence times in 

applications involving optimization, and paves the way to structures that remain 

lossless under quantization. We should point out, however, that the representation 

and structures of this chapter are mainly for M-input, M-output lossless systems, 

and can not be generalized for rectangular lossless systems ( except for the special 

case of single-input, M-output lossless systems), whereas the state-space approach 

of Chapter 4 gives rise to structural representations for both square and rectangular 

lossless transfer matrices. 

5.1. FACTORIZATION OF UNITARY MATRICES IN TERMS OF UNIT-NORM 

VECTORS 

We saw in Section 2.4 that unitary matrices can be factorized in terms of com

plex planar rotation matrices. This characterization, which is basically in· terms of 
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angles, was used in Chapters 3 and 4 to obtain structural representations for lossless 

systems. The disadvantage of such a characterization was pointed out earlier. We 

will see that unitary matrices come up in the derivations for the lossless represen

tations of this chapter as well. The purpose of this section is, therefore, to give a 

characterization for unitary matrices, which does not involve angles. Interestingly 

enough, the building blocks of this characterization are special cases of the basic 

building blocks of the lossless representations of this chapter. This is a consequence 

of the fact that lossless matrices are unitary on the unit circle. 

The main result of this section can be stated as follows: 

Result 5.1: An M x M unitary matrix A can be factorized as 

where 

are M x M unitary matrices, 

0 

uJ = (0 
J 

0 * 

0 

M-1 

* 

are M x 1 constant vectors, and 9; are real numbers. 

) 

(5.la) 

(5.lb) 

(5.lc) 

Proof of Result 5.1: Let v = ( vo v1 VM-1 f be any nonzero vector, 

where v0 =I v0 I ei9
• If a= ( 1 0 0 f and u = v- 11 v II ei8a (see [ST 88) in 

connection with this choice of u), then it can easily be verified that 

uut ·11 
[IM - 2-t-]v =II v II e' a. 

u u 
(5.2) 
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Suppose that we are given an M x M unitary matrix A with unit-norm column 

vectors Aj, 0 ~ j ~ M - l. If we let v = Ao and choose u = llo accordingly, we 

can write 

llo uj ( eQiBo 
[IM - 2-t-]A = 

Uo llo 
(5.3) 

where T is an (M - l) x (M - l) unitary matrix. Clearly, the same step can be 

repeated on T to write it as 

(5.4) 

where R is again unitary, and w is an (M -1) x 1 column vector. Combining (5.3) 

and (5.4), we can write 

(5.5) 

where u1 = ( ! ) . Proceeding in this way, we obtain 

(5.6) 

where Vi are as defined by (5.lb)-(5.lc). Since U, are both unitary and Hermitian, 

U,;-1 = U,. Using this fact, (5.6) can be written as (5.1). The existence of such a 

factorization for unitary matrices is also mentioned in [GO 85]. 

Note that this result is very similar to the second parametrization algorithm 

of Section 2.4. The only difference is that each step in Fig. 2.6 is now expressed 

in unit-norm vectors rather than rotations. The connection between these two 

representations will be addressed in Section 6.3. 

Let us now count the number of degrees of freedom involved in this characteri

zation. The vector -f;-- has 2(M - j) unknowns (which are its nonzero complex 

v~~ . 
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entries), and one unit-norm constraint, which means that it has 2M - 2j -1 degrees 

u·u t 
of freedom. The product T, on the other hand, has only 2(M - j - 1) degrees 

u. u; 

of freedom since the comm~n phase factor of the vector u; cancels off in the prod-

uct. This is also the number of degrees of freedom that U; has. In (5.6), we have 

M - 1 matrices U; and an M x M diagonal matrix which has exactly M degrees of 

freedom, yielding M + Li02 2(M - j - 1) = M 2 degrees of freedom, as expected. 

The process described above can be easily modified for real matrices and then 

be used to find a characterization for orthogonal matrices in terms of real unit-norm 

matrices and a diagonal matrix with only ±1 on the diagonal. The total number of 

degrees of freedom involved in this case can be easily shown to be (1':). 

5.2. REPRESENTATIONS AND STRUCTURES FOR FIR LOSSLESS SYSTEMS 

In this section, we consider FIR lossless systems. In Section 5.2.1, an algebraic 

form for degree-one FIR lossless matrices is derived. This form is then used in 

Section 5.2.2 to obtain a general algebraic form and structural representation for 

arbitrary-degree FIR lossless matrices. Section 5.2.3 deals with the same issues for 

arbitrary-degree FIR lossless vectors. These results have also appeared in [VAI 89a] 

and [VAI 89b]. 

5.2.1. A GENERAL FORM FOR DEGREE-ONE FIR LOSSLESS MATRICES 

Let us consider an M x M lossless transfer matrix H 1(z) with FIR entries. If 

we restrict the degree to be unity, H 1 (z) takes the form 

(5.7) 

Here h0 and h1 are nonzero, M x M constant matrices with complex-valued entries. 

There are some restrictions on h0 and h1 imposed by the losslessness and degree 

constraints. For example, since H 1 (z) is paraunitary, hth1 = O, which implies that 
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neither h 0 nor h 1 can be full-rank. It can furthermore be shown that h1 has unity 

rank. To see this, note that being FIR of degree one, H 1 ( z) has a single pole at 

z = 0. Therefore, the A matrix in the state-space description for H1(z) is a scalar 

equal to zero and H 1 (z) can be written as 

(5.8) 

Comparing (5.7) with (5.8), we see that h 1 = CB, where C is M x 1 and B is 

1 x M. Hence h1 has rank equal to, at most, unity. Since the h1 = 0 case is ruled 

out, we conclude that h1 is of unity rank. 

Let us now recall that H 1 ( z) is unitary at any frequency w0 on the unit circle. 

We can therefore express H 1 ( z) in the form 

(5.9) 

where Sis M x Mand R is M x M unitary. If we impose the paraunitary condition 

on (5.9), we find after some simplifications and collecting like powers of z that 

This implies that 

2sst + sRt + Rst = o, 

sst + sRt = o, 

sst + Rst = o. 

(5.lla) 

(5.llb) 

(5.12c) 

Since sst is Hermitian, (5.llb) automatically restricts SRt to be Hermitian. With 

this observation both (5.lla) and (5.llc) become equivalent to (5.llb). Hence the 

paraunitary condition can be met simply by forcing (5.llb). Using (5.llb), we can 

rewrite (5.9) as 

(5.12) 
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Comparing (5.7) and (5.12), we see that h1 = eiwosstR. But R is full-rank and h1 

has rank one; therefore sst must also have rank one. Since sst is Hermitian with 

rank one, we can always write 

(5.13) 

where v is an appropriate M x 1 vector. With this, (5.12) becomes 

(5.14) 

It can further be shown that vis unit-norm. For this, observe that H1 (z)Rt must 

be lossless for H1(z) to be lossless. This implies that H1(z)Rt is unitary on the 

unit circle and in particular at z = -eiwo, where it becomes I - 2vv t. Being both 

unitary and Hermitian, I - 2vv t can have only ±1 as eigenvalues. However, we 

can see by inspection that 1 - 2 II v 112 is an eigenvalue. Therefore, II v II= 0 or 

[ I v 11 = 1. Since v = 0 case is ruled OU t as trivial, we conclude that II v II= 1 for 

H 1 (z) to be lossless. 

Note also that the form (5.14), where v is unit-norm anc. H. is unitary, indeed 

represents a lossless matrix as can be easily checked by applying the paraunitary 

condition. These results can be summarized as the following theorem: 

Theorem 5.1: If H 1(z) is a causal, M x M FIR lossless matrix of degree one, then 

for any arbitrary real w0, it can be expressed in the form (5.14), where v is. M x 1 

with unit-norm and R is M x M unitary. Conversely, any FIR matrix of the form 

(5.14) where v and R satisfy these conditions is necessarily lossless of degree one. 

5.2.2. A GENERAL FORM FOR HIGHER DEGREE FIR LOSSLESS MATRICES 

In Section 5.2.1, we saw a general form for M x M degree-one FIR lossless 

transfer matrices. In the following, we will see how this form can be used to represent 
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FIR lossless matrices of arbitrary degree. Specifically, we will prove the following 

theorem: 

Theorem 5.2: An M x M FIR matrix HN-i(z) is lossless of degree N - l if and 

only if it can be written in the form 

(5.15a) 

where H0 is a constant M x M unitary matrix and V.(z) are M x M degree-one 

FIR lossless matrices of the form 

(5.15b) 

with M x l unit-norm vectors v •. (Note that (5.15b) is a special case of (5.14) 

obtained by letting w0 = 0 and R = I.) 

Proof of Theorem 5.2: The if part of the theorem follows almost trivially by 

recalling from Chapter 2 that a product of lossless matrices is lossless and that the 

degree of a product of N - l degree-one lossless matrices is N - l. For the only if 

part, suppose that HA:(z) is an M x M lossless matrix of degree k. Let the impulse 

response coefficients be hA:(n) so that HA:(z) = L~:::o hk(n)z-". (Notice that hA:(k) 

can be null even though HA:(z) has degree k.) We claim that HA:(z) can be written 

as 

(5.16) 

i.e., as in Fig. 5.1, where V 1 (z) is as in (5.15b), with v1 an appropriate.M x 1 

unit-norm vector, and HA:-i(z) is an M x M FIR lossless matrix of degree k - l. 

Clearly, this step is equivalent to extracting a lossless matrix V 1 ( z) from HA: ( z) 

in order to obtain a reduced-degree lossless matrix H._1(z). In (5.16), H._1(z) 

will be called the remainder of the extraction process. Since the matrix V 1 ( z) is 

determined completely by specifying v1 , the task of proving our claim reduces to 

that of giving 
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a rule with which to choose a unit-norm M x l vector Vi, such that the remainder 

of the extraction process is indeed lossless of degree k - 1. Suppose for now that we 

know how to do so. If we begin with HN-i ( z) and repeat the extraction step a finite 

number of times, we obtain the representation of (5.15a) for HN-i (z ). The final 

remainder H0 (z) is a zero-degree lossless system (i.e., a constant unitary matrix), 

and is therefore denoted by H 0 • This can be illustrated as in Fig. 5.2, where the 

internal details of the blocks V;(z) are as shown in Fig. 5.1, with 1 replaced by i. 

Given an M x M FIR lossless matrix Hi ( z) = I:!=o hi ( n) z -n, it remains only 

to show how to choose Vi such that Hi-i(z) is lossless and of degree k- l. With Vi 

restricted to have unit-norm, Vi(z) in (5.15b) is clearly lossless, so that V1i(z) = 

V1 (z). Therefore, (5.16) can be rewritten as 

(5.17) 

From (5.17), we see that Hi-i (z) is guaranteed to be FIR and paraunitary since 

both V 1 ( z) and Hi ( z) are FIR and para unitary. On the other hand, in order to 

ensure causality, we must impose the condition 

(5.18) 

on v1 . Losslessness of Hi(z) implies that h!(k)hi(O) = 0. Therefore, hi(0) is 

singular and there exists a unit-norm M x l vector v 1 satisfying (5.18). Let v 1 be 

so chosen. With this choice of v 1 , we know that H1:-i(z) is a causal FIR lossless 

system. All that remains to be shown now is that the degree is actually reduced 

in the process. For this, we invoke the property of lossless matrices, which says 

that the degree is equal to the degree of the determinant. Accordingly, we have 

detHi(z) = c1 z-A: and detV1 (z) = c2 z-1
, where c1 and c2 are complex, unit-norm 

scalars. Taking the determinant of both sides of (5.16), we immediately see that 
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••• 

Fig. 5.2. The structural implementation of section 5.2.2. 
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detHk-1 (z) = cz-(k-I), so that the degree of Hk-i (z) is k-1 indeed. This completes 

the proof of Theorem 5.2. 

Notice that the choice of v 1 in (5.18) is not unique unless hA:(O) has rank M -1. 

However, we see from (5.15a) that HN-i(l) = Ho is unique. This, in turn, implies 

that 

(5.19) 

is umque. Summarizing, an M x M causal FIR lossless matrix HN-i(z) of degree 

N - 1 can be factorized as HN-i(z) = V(z)Ho, where V(z) and Ho are unique, 

even though the building blocks VA:(z) may not be unique. 

5.2.3. A GENERAL FORM FORM x 1 FIR LOSSLESS VECTORS 

We can give a general form and structural representation for M x 1 FIR loss

less vectors, based on the representation of Section 5.2.2 for FIR lossless matrices. 

Consider an M x 1 column vector PN-1(z) of the form 

N-1 
PN-1(z) = L PN-1(n)z-", (5.20) 

n=O 

where PN-I (n) are M x 1 constant vectors, with PN-l (N -1) i= 0. Clearly, P N-I (z) 

can be implemented with N -1 delays so that its degree is N -1. With this setting, 

we can state the following: 

Theorem 5.3: An M x 1 FIR vector PN-i(z) is lossless if and only if it can be 

written in the form 

(5.21) 

where Vk(z) are as in (5.15b) with unit-norm vectors VA: and P0 is an M x 1 constant 

vector of unit-norm. 
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The proof of this theorem is again based on repeated applications of the degree

reduction step described in Section 5.2.2. There is, however, a fundamental differ

ence because the determinants are not meaningful anymore. Given an M x 1 FIR 

lossless system P 1 (z) of degree k # O, the degree-reduction step seeks to generate 

a remainder P k-i ( z) such that it is a lower-degree M x l FIR lossless system. This 

is done by attempting to express P 1 ( z) as 

(5.22) 

The choice of Vi is crucial in the degree-reduction process. Since Vi is unit-norm, 

V 1 ( z) is lossless and it is possible to write 

(5.23) 

The remainder function is causal if and only if vl p1 (0) = 0. Since PA:(O) is a 

column vector, there exist many unit-norm vectors Vi satisfying this condition. In 

particular, the choice 

(5.24) 

workssincepI(k)pA:(O) = 0 because of the losslessnessof PA:(z). With v1 so chosen, 

the coefficient of z-A: in (5.18) becomes 

(5.25) 

which proves that P1-i (z) has degree k-1. Thus, the choice of Vi in (5.19) ensures 

that P 1_ 1 ( z) is a lossless causal vector of degree k - 1. Repeated applications of 

this step results in the form (5.21), proving the theorem. 

Note that (5.24) is the only choice (except for a scale factor of unit-norm) 

that results in a reduced degree causal lossless matrix P 1_i (z ). This follows since 

[I-v1vf] has rank M-1 so that, its null space contains precisely one vector (except 



-131-

for a scale factor). Clearly, Vi belongs to that null space. Therefore, Vi as given by 

(5.24), must be the unique solution to the equation [I - vivJ]v = 0 except for a 

scale factor. Recall, on the other hand, that the implicit choice of Vi in (5.18) for 

the FIR lossless matrix case is not unique unless h,(O) has rank M - 1. 

5.3. REPRESENTATIONS AND STRUCTURES FOR IIR LOSSLESS SYSTEMS 

In the following, we will consider new representations and structures for IIR 

lossless systems. In Section 5.3.1, a general form for degree-one UR lossless ma

trices is presented. In Section 5.3.2, this form is shown to give rise to a general 

structure and a synthesis procedure with which all square IIR lossless matrices can 

be characterized. Similar results are derived in Section 5.3.3 for IIR lossless vec

tors. Finally, Section 5.3.4 deals with a modified synthesis procedure in terms of 

real sections for LBR matrices. These results can also be found in [DO 89b], and in 

part in [DO 89a]. 

5.3.1. A GENERAL FORM FOR DEGREE-ONE IIR LOSSLESS TRANSFER 

MATRICES 

In this section, we will prove a Lemma that shows that a general form for 

degree-one IIR lossless matrices can be obtained by modifying the general form for 

degree-one FIR lossless matrices derived in Section 5.2.1. 

Lemma 5.1: Any M x M, degree-one lossless matrix Hi(z) with rational entries 

can be written as 

t . -a•+ z-i t 
Hi(z) = [I- vv + e'"'0---vv ]R 

1 - az-1 ' 
(5.26) 

where v is an M x 1 vector of unit-norm, w0 is a real number, a (I a I< 1) is a 

complex number representing the system pole, and R is an M x M constan·t unitary 
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matrix. Conversely, (5.26) always represents a degree-one IIR lossless matrix with 

a system-pole at z = a. 

Proof of Lemma 5.1 Let us consider an M x M lossless matrix of degree one with 

rational entries. Such a matrix can be represented by the general form 

(5.27) 

where h0 and h1 are M x M constant matrices with complex-valued entries and a 

is a complex scalar that represents the pole of the system. Since H 1 ( z) is stable, 

I a I< 1. 

It can easily be verified that H 1(z) can also be represented as 

-a•+ z-1 • 
H (z) = ---e1 

... 
0 U + V 

1 1 -1 ' - az 
(5.28) 

where U and V are M x M constant matrices with complex entries. If we apply 

the paraunitary condition to (5.28), we obtain (after simplifications and collecting 

of like powers of z), the following conditions: 

(5.29a) 

(5.29b) 

(5.29c) 

Note that if we take the t of both sides of (5.29c), we obtain (5.29b). Therefore, 

we will consider only (5.29a) and (5.29b) as necessary conditions. Now if we scale 

(5.29a) by 1+j012 and (5.29b) by -:, we obtain 

t 2ae-iwovut + 2a•eiwouvt t 
VV - 1+ I a 12 + UU = I, 

vvt - ae-iwovut - !eiwouvt + uut = I. 
a 

(5.30a) 

(5.30b) 
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Subtracting (5.30b) from (5.30a) and simplifying yield 

(5.31) 

Since I a !# 1, the term inside the paranthesis in (5.31) must be zero; i.e., we must 

have 

(5.32) 

If we take the t of both sides of (5.32), and substitute the expression thus found for 

uvt back into (5.32), we obtain 

vut = - 1-vut I a 14 , (5.33) 

which can be satisfied if and only if I a 14= 1 or vut = 0. Since I a I< 1 for stability 

reasons, (5.33) implies that vut = uvt = 0. Now this result can be substituted 

in (5.30a) and (5.30b) to get a simpler set of necessary conditions, which is 

vvt + uut = o, vut = o. (5.34) 

But (5.34) is exactly the set of conditions that we would obtain if we imposed 

paraunitariness on the FIR form V + z-1ei"' 0 U, where V and U are constant M x M 

matrices. This result enables us to obtain a general form for degree-one IIR lossless 

matrices simply by substituting -;_<:_fz:~ 1 
for z-1 in the general form that was derived 

for degree-one FIR lossless matrices in Section 5.2.1. This general form, therefore, 

is given by 

(5.35) 

where v is an M x 1 unit-norm, complex-valued vector, R is an M x M unitary 

matrix, 0 ~ wo < 2,r and I a I< 1. The converse statement that (5.35) indeed 

represents a lossless matrix follows since it was obtained by a lossless transformation 

from the lossless FIR form (5.14) [OP 75]. 
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5.3.2. A GENERAL FORM FOR M x M IIR LOSSLESS MATRICES WITH 

ARBITRARY DEGREE 

Consider the product 

(5.36a) 

where 

(5.36b) 

(Note that (5.36b) is simply (5.35) with R = I and w0 = 0.) Clearly, such a matrix 

is lossless. Furthermore, its determinant has the form cTI~11 
~:::;:/, (with I c I= 1) 

showing that its degree is N - l. In this way, nontrivial examples of lossless IIR 

systems of degree N - l can be obtained. However, it is not obvious that such 

a representation is sufficiently general. In this section, we will show that any IIR 

lossless matrix of degree N -l can be expressed as a product of the form (5.36a) and 

a constant unitary matrix. Our first step in this direction is to prove the following 

theorem. 

Theorem 5.4: An M x M IIR lossless matrix HN-i(z) of degree N - l with poles 

z;, 1 ~ i ~ N - l can always be written as 

(5.37) 

where V 1 (z) is as in (5.36b ), and HN-2(z) is an M x M IIR lossless matrix of degree 

N-2. 

We will give an assignment rule for v1 and a 1 such that HN_2 (z) is indeed 

lossless and of degree N - 2. Recall that det HN-l ( z) has the form 

_
6 

N-1 -z'!' + z-1 

det HN-i(z) =e' I] 1 
_

1
• 

._1 1 - ZjZ 
1-

(5.38) 
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Note that }~, 1 $ i $ N -1 are the determinant zeros of HN-1(z). Therefore, there 
. I 

exist unit-norm vectors Ui such that 

(5.39) 

We now propose the following assignment: Let a 1 = z1 and choose Vi such that 

(5.40) 

Note that the existence of such v 1 is justified by (5.39). With this assignment, 

HN-2(z) becomes 

Observe that that since both HN-i(z) and V 1(z) are paraunitary, HN_ 2 (z) is guar

anteed to be paraunitary by construction. 

We will address the stability of HN_ 2 (z) next. HN_ 2 (z), as given by (5.41) 

seems to have a pole at~- Since I~ I> 1, such a pole would cause HN_ 2(z) to be 
zl zl 

unstable. We claim that this apparent pole is automatically cancelled by the above 

choice of v 1 . To see this, observe that since HN-l (z) is analytic outside the unit 

circle, it can be expanded into a Taylor series around z = ~; i.e., it can be written 
zl 

as 

(5.42) 

where P = HN-1(~), Q = ! HN-1(z) l.1=-¼ and R = ::,HN-i(z) lz=-¼· Ifwe 
'"1 .I •1 •1 

substitute (5.42) in (5.41), we obtain 

-Z1 + Z t 1 1 1 
HN- 2(z) = [I - (1 - • )v1 v 1 ][P + (z - -; )Q + -(z - -; )2 R + ... ], (5.43) 

1- Z1Z Z1 2 Z1 

or, after some arrangement, 
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where a(z, zi) = J.. (l+zi l-j_l+zj). It is clear from (5.44) that the only problem-
z1 :i- •i 

causing term is a(z, zi)vi vt p. Recall, however, that p = HN-1 e.) and that Vi 
I 

was chosen to satisfy (5.40). With these, (5.44) simplifies to 

which is analytic at z = J... 
%1 

Having thus established stability of HN_ 2(z), we next adress the issue of degree 

reduction. If we take the determinant of both sides of (5.37), we obtain 

(5.46) 

Since there are no cancellations on the right-hand side of (5.46), we can write 

deg det HN-i(z) = 1 + deg det HN_ 2 (z). (5.47) 

HN-l (z) and HN_ 2 (z) are both lossless; therefore, invoking the result of Section 

2.1 which says that the degree of a square lossless matrix is equal to the degree of 

its determinant, we can write 

(5.48) 

It follows then that since HN-i(z) has degree N - l, HN_ 2 (z) must have degree 

N - 2 as claimed. 

We have thus proved that given any M x M IIR lossless matrix HN-i(z) of 

degree N - l with poles Zi, 1 :s; i :s; N - l, we can factorize HN-i(z) as in (5.37), 

where HN_ 2 (z) is another M x M IIR lossless matrix of degree N - 2, by choosing 

a unit-norm vector Vi that satisfies (5.40). This step can be repeated until a factor

ization of HN-i (z) in terms of degree-one IIR sections is obtained. This observation 

can be formalized as the following Lemma: 
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Lemma 5.2: A general M x M IIR lossless matrix HN-i(z) of degree N - 1 can 

be written as 

(5.49) 

where H 0 is a unitary matrix and Vi(z) are given by (5.36b). In (5.36b), Vi are 

unit-norm vectors chosen such that v! HN-i( J..) = 0, and ai = zi, which are the 
Z; 

system poles. 

The corresponding structural implementation is as shown in Fig. 5.2 with the 

internal details shown in Fig. 5.3. 

5.3.3. A REPRESENTATION AND SYNTHESIS PROCEDURE FOR IIR LOSS

LESS VECTORS 

Clearly, a product of matrices of the form (5.36a) postmultiplied by a constant 

unit-norm vector represents an IIR lossless vector. To demonstrate that this is a 

general form for such vectors, we need to show that any IIR lossless vector can be 

synthesized as such a cascade. As we will see in the following theorem, the synthesis 

procedure described in Section 5.3.2 can easily be modified for IIR lossless vectors. 

Theorem 5.5: Consider an M x 1 IIR lossless vector GN-i(z) of degree N - 1 

given by (3.18), where the polynomials P}j2 1 (z ), 0 $ j $ M -1 and dN-l (z) do not 

have any common factors. The vector GN-i(z) can always be written as 

(5.50a) 

where GN-2(z) has the form 

(M-1)( ) )TI ( PN_ 2 z dN_2 z), 

N-2 
p<i) (z) = "' p(j) .z-i 

N-2 L., N-2,a , 0 $ j $ M- l, (5.50b) 
i=O 
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-1 

* -1 -a.+z I v. 
I 

► 

Fig. 5.3. Internal details of V i(z) in the IIR lossless structure. 
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and V 1(z) is as in (5.36b). Proof of Theorem 5.5: We define the FIR vector 

NN-i(z) A dN-i(z)GN-i(z), and then propose to let a 1 = zi and to choose Vi such 

that 

t 1 
V1NN-1(-) = 0. z; (5.51) 

Recall that we made a similar choice for v 1 in the M x M lossless matrix case. For 

the case in hand, however, we can be more specific and give a closed-form expression 

for v 1 . Furthermore, it can be shown that this choice is unique. We see from (5.50) 

that GN_2 (z) can be written as 

(5.52a) 

(5.52b) 

Let us consider the second term of (5.52b) first. It follows from (5.51) that 

v!NN-i(z) = (1 - -!_.z- 1 )>,(z), where the order of A(z) is strictly less than that 
zl 

of the highest-order polynomial in NN-i(z). With this, the second term of (5.52b) 

can be written as 

(5.53) 

which is analytic at z = -1.-. Note that in (5.53), the order of the denominator 
zl 

polynomial and the maximum order of the numerator polynomials are both reduced. 

Let us now consider the first term of (5.52b). In order to cancel the pole at zi, 

we must have 

(5.54) 

Note that [I- VivI] has rank M - l. Therefore, there is a unique vector u (except 

for a scale factor) such that [I- v1vIJu = 0. By inspection, u = v1 works. In view 

of this, (5.54) implies that the unique choice for v 1 is 

(5.55) 
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Note that (5.55) agrees with (5.51) since 

(5.56) 

because of the paraunitary property of GN-i(z). With this choice for Vi, the first 

term of (5.52b) becomes 

(5.57) 

where again the order of the denominator polynomial and the maximum order of 

the numerator polynomials are both reduced. 

Putting these results together, we conclude that GN-i(z) = ~N-
1?} can indeed 

N-1 Z 

be factorized as in (5.50) into a lossless matrix Vi(z) and a reduced degree PC IIR 

vector GN_ 2 (z), by appropriately choosing Vi and ai, The vector GN_2(z) can in 

turn be expressed as GN_2 (z) = ~N-
2?( Repeatedly applying the described step, 

N-2 z 

we can synthesize GN-i(z) as a cascade of V;(z). This result is now stated as a 

Lemma: 

Lemma 5.3: An IIR lossless vector GN-i(z) of degree N - l can be written as 

(5.58) 

where G0 is a unit-norm constant vector, V;(z) are as described by (5.36b) and z; 

is the ith pole of GN-i (z ). In this decomposition, 

(5.59a) 

and the vectors v; in ( 5 .36b) are determined such that 

(5.59b) 

5.3.4. A SYNTHESIS PROCEDURE FOR IIR LBR MATRICES 
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If the matrix HN-l ( z) is LBR, then the poles are either real, or occur in complex 

conjugate pairs, which can be characterized by two real numbers. This suggests 

the possibility of obtaining a synthesis procedure (hence, a representation) for IIR 

LBR matrices in terms of degree-one and degree-two lossless matrices with real 

coefficients, corresponding to real and complex conjugate pole pairs, respectively. 

Such a synthesis procedure will be outlined in this section for M x M IIR LBR 

matrices. The procedure can be straightforwardly extended to the synthesis of 

M x 1 IIR LBR vectors. The main advantage of this representation over the one 

described in Section 4.2.2 is that it does not involve angles. On the other hand, as 

we shall see, the representation of this section does not lend itself to a structurally 

lossless implementation. 

Let us first consider the real pole case. Let HN-i(z) be an IIR LBR matrix 

with a real pole a. It follows from Section 5.3.2 that v must be chosen such that 

vtHN-i(¼) = 0. Since HN-i(¼) is a real matrix, v turns out to be real and 

therefore the extracted degree-one factor 

(5.60) 

is also real for real z. 

Let us now consider the complex conjugate poles case. For this case, for our 

later convenience, we will adopt a slightly more general building block, which is 

t 1 + ai -a'!' + z-1 t 
G·(z) = I- v·V· - -- 1 v·v-

• I I 1 + a'!' 1 - a· z-1 I I • 
I I 

(5.61) 

The added factor - :t:; will be used later to make the overall degree-two matrix 
I 

real for real z. Note that (5.61) fits the most general form described by (5.35) with 

eiwo = - ;:;; and R = I. It can easily be verified that this does not change the 
I 

choice of Vi and ai used in the synthesis procedure described in Section 5.3.2. 
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Consider an IIR LBR matrix HN-l (z) with the complex conjugate pole pair 

(z;, z;). Our strategy here will be first to determine the unit-norm vector v; corre

sponding to the pole at z; as described in Section 5.3.2. Then u;, the unit-vector 

corresponding to the pole at z; will be expressed as an appropriate function of v;, 

and it will be shown that the product of the two degree-one lossless matrices thus 

obtained has real coefficients. (This development is analogous to the one reported 

in Chapter 11 of [BELE 68] for the case of continuous-time real-coefficient systems.) 

Accordingly, we let a; = z; and choose v; such that 

(5.62) 

The first degree-one matrix is 

(5.63) 

and the reduced-degree matrix that results is given by 

(5.64) 

Now, to extract the pole at z = z;, we have to choose u; such that 

(5.65) 

On the other hand, taking the complex conjugate of both sides of (5.62) and using 

the fact that HN-i(z) is LBR, we obtain 

(5.66) 

(5.67) 



-143-

Comparing (5.65) and (5.67), we conclude that we can choose 

Gt(l.)v! 1 z· I u•- I 
1 

- II Gt(t)v; II 
(5.68) 

Note that u; =I= 0 since it would imply that v; = 0. Let us now consider Gt ( t )v;. 

Substituting for Gt ( f) and simplifying, we obtain 
I 

G t( 1 ) * * * 1 - V; = V; - 1/ V;, 
z· I 

(5.69a) 

where 

1- I z; 12 
T 

1/ = ( I 12) . / [ l V; V;. 1- Zj - z2 m Zj 
(5.69b) 

Using (5.63), (5.69b), and the fact that vJv; -

G{(t)v; II= ✓l-I111 2 • With this, u; becomes 

1, we find that 11 

(5.70) 

with 1/ as defined in ( 5.69b). The degree-one matrix associat, J with z; is now fully 

specified as 

(5.71) 

We now consider the product G 1(z)G 2 (z). After equating denominators, multiply

ing out and suitably combining terms, we obtain 

G ( ) G ( )G ( ) I 2(1 - z;)(l - z;) 
c z = 2 z 1 z = + (1- I . 12)[1- I T 12 4 Jmfz;J2 J 

z, V V + (1-lz;l2P 

Re[b;] + z-1 Re[-z;b;] 
(5.72a) 

1 - z-12Re[z;] + z-2 I z; 12 

where 

b; = (1 + z;)v;uj. (5.72b) 

The term in brackets in the denominator of (5.72a) can not be zero since it can easily 

be shown that it would lead to 11 u; 112= 1- I 1/ 12= 0, which is a cont;adiction. 
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Hence, (5. 72) is well-defined and all the coefficients are real as claimed. Details in 

the derivation of (5.72) are omitted since they can easily be carried out. 

5.4. A NOTE ON THE QUANTIZATION OF LOSSLESS STRUCTURES 

In all the practical situations, the filter parameters have to be represented with 

finite accuracy. When the ideal values for the parameters are quantized, some prop

erties of the ideal design are irrecoverably lost. A good example for such a situation 

is the lossless structural representation of this chapter, for which losslessness prop

erty depends critically on the unit-norm nature of the vectors v;. In general, it 

is not possible to quantize v; such that it remains unit-norm. Thus, although the 

ideal structures of this chapter are lossless, their quantized versions in general are 

not. This is a drawback when one recalls the numerous advantages induced by the 

losslessness of a structure. However, a minor modification of the basic degree-one 

building block of this chapter does actually lead to structural representations that 

remain lossless under quantization. Consider 

(5.73) 

where a(z) is a delay for the FIR case and an allpass section for the IIR case, and 

u is a completely general M x l vector. Equation (5.73) can be rewritten as 

_ t u ut u ut 
U(z)-u u[I- ~ ~+a(z) ~ ~], 

yutuyutu yutuyutu 
(5.74) 

where the vector -f;:= is clearly unit-norm. Hence, the term inside the brackets is 
vutu 

exactly the basic degree-one building block of this chapter, and U ( z) satisfies 

(5.75) 

The structures where (5. 73) is used as the building block ( together with an appro

priate scaling of the output to offset the factors u tu coming from these building 

blocks), do remain lossless under quantization since there are no additional restric

tions (like preservation of unit-norm) for losslessness. 
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CHAPTER 6 

SOME PROPERTIES OF LOSSLESS SYSTEMS 

AND THE STRUCTURES OF CHAPTERS 4 AND 5 

In this chapter, we investigate two independent topics on lossless systems. In 

Section 6.1, we reconsider the structural representations of chapters 4 and 5 on 

the basis of the common properties they have, and in Section 6.2, we derive the 

Smith-McMillan form of a square lossless transfer matrix. 

6.1. THE STRUCTURES OF CHAPTERS 4 AND 5 REVISITED 

In the following, we establish the link between the lossless structures of Chapters 

4 and 5, and investigate some properties common to both, such as the unitary nature 

of the implementations and the minimality of the number of parameters. 

6.1.1. UNITARINESS OF THE R-MATRIX 

An interesting property shared by the structures described in Chapters 4 and 5 

is that they are unitary implementations; i.e., the corresponding state-space descrip

tion (A,B,C,D) in both cases is such that the matrix R = ( ~ ~) is unitary. 

These structures, therefore, have all the advantages of unitary implementations, 

elaborated in [VAi 85a] and [DEP 80]. As a consequence of the discrete-time lossless 

lemma, this property also implies that both structures are minimal in the number 

of delays used. The fact that the structure of Chapter 4 is a unitary implementation 

follows obviously by construction. To establish the unitary nature of the implemen

tation of Chapter 5, on the other hand, requires some work, as we will see in the 

following. 



-146-

Theorem 6.1: The matrix R = ( ~ ~) corresponding to the state-space rep

resentation (A, B, C, D) of the structure shown in Fig. 6.1 is unitary. 

Proof of Theorem 6.1: We will give a proof based on an energy-balance argument. 

Let us first consider the building block V; ( z) shown in Fig. 6 .1 (b), where the 

state-variable is denoted by x;(n). If we denote the input and output matrices 

corresponding to this block by u;(n) and y;(n) respectively, and the state-space 

matrix by Ri, we can write 

(6.1) 

The state-space equations for this block are 

x;(n + 1) = a; xi(n) + Ji- / a; /2 vj u;(n), 

y;(n) = Ji- I a; /2 v; x;(n) + [I - (1 + a:)v;vj]u;(n). (6.2) 

Therefore, R; is given by 

R·- I I I 

( 
a· Ji- / a· /2 vt ) 

1 

- Ji- / a; 1
2 v; [I - (1 + a:)v;vj] ' 

(6.3) 

and can easily be verified to be unitary using the fact that v; is unit-norm. It follows 

from the unitariness of R; and Equation (6.1) that 

(6.4) 

for V;(z ). 

Let us now consider the structure of Fig. 6.l(a), with internal details as in Fig. 

6.l(b). Using (6.4), we can write 

/ x1(n + 1) /2 + I/ Y1(n) 11 2 =/ x1(n) /2 + I/ Hou(n) J/2, 

I x2(n + 1) /2 + II Y2(n) 11 2 =I x2(n) /2 + II Y1(n) 112, 

(6.5) 



X1(n) ~ X2(n) - XN _ 1(n) 

u(n) _ ~_, V1(Z) V2(z) ••• VN-1(2)~ 
I 

Ho Y1(n) Y 2 (n) YN-2(n) Y (n) = YN -in) ~ 

Fig. 6.1 (a). The IIR lossless structure of chapter 5. 



xi (n+1)_i
2

_11 xj(n) 

2· 
ai ..lJ1 -I ai I '11-la.121 

I 

Ui(n) * -ai 

-1 

Fig. 6.1 (b). Internal details of V i(z). 

y.(n) 
I 

I .... ,,,. 
OIi 
I 
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If we add both sides of the equalities in (6.5) and make the necessary cancellations, 

we obtain 

N-1 N-1 

L I Xi(n + 1) 12 + II y(n) 112= L I Xi(n) 12 + II n(n) 112, (6.6) 
i=l i=l 

where we have made use of the facts that 11 YN-1(n) 112=11 y(n) 11 2
, and II 

H0u(n) 112=11 u(n) 11 2
• If we define a = ( x(n) u(n) ?, we can rewrite (6.6) 

as 

(6.7) 

or equivalently, 

(6.8) 

where B = RtR-I. Now it remains only to show that (6.8) implies B = 0. Suppose 

that B # 0. Then there exists a nonzero eigenvalue A of B and a corresponding 

eigenvector u. If we let a= u, the left-hand side of (6.8) becomes 

(6.9) 

which is a contradiction. Therefore, B = 0, or equivalently, R is unitary. This 

proves that the general IIR lossless structure of Section 5.3.2 (also shown in Fig. 

6.1) is a unitary implementation. 

Note that the same proof holds for the case when H 0 is a unit-norm vector 

instead of a unitary matrix. Hence the structure of Section 5.3.3 for IIR lossless 

vectors is also a unitary implementation. 

As a final remark, note that the general FIR lossless structures described in 

Sections 5.2.2 and 5.2.3 can be thought of as special cases of the IIR structures of 

Sections 5.3.2 and 5.3.3, respectively, obtained by letting all poles Zi be zero. The 

proof given above for the unitariness of the IIR structure can therefore be easily 
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modified (by letting ai = 0 in all the equations it appears), in order to show that 

these FIR structures are also unitary implementations. 

6.1.2. MINIMALITY OF THE NUMBER OF PARAMETERS 

We claimed in Chapters 4 and 5 that the structures presented in these chapters 

were minimal in the sense that they used the smallest number of parameters required 

to represent lossless matrices of given size and degree. In the following, we will prove 

this claim. 

Let us first recall that the parameter counts for the FIR and UR lossless 

structures of Chapter 4 were found to be Nm = 2(M - l)(N - 1) + M 2 and 

Nm= 2M(N -1) + M 2
, respectively. 

On the other hand, in Chapter 5, we showed that any M x M lossless ma

trix H(z) of degree N - l can be represented by an M x M unitary matrix H0 , 

premultiplied by a cascade of N - l lossless matrices of the form 

t t [I - v;v; + a;(z)v;vi ], (6.10) 

where a;(z) is simply z-1 if H(z) is FIR, and ~~:~zz:/, if H(z) is UR. In the following, 

we will calculate the number of degrees of freedom involved in such a structural 

representation. Let us first consider the number of degrees of freedom that a matrix 

of the form (6.10) has. The vector Vi has M complex-valued entries that give rise to 

2M unknowns. The unit-norm condition v j v; = 1 is equivalent to one constraint. 

Hence v; has 2M - 1 degrees of freedom. However, we see from (6.10) that V; 

always appears as the product v;vj. Suppose that we factor out a common phase 

term from v; such that one of its entries becomes real. Clearly, this phase term will 

not appear in the product v;v}; hence it can not be counted as a freedom. With 

this, the total number of degrees of freedom that v;v l has becomes 2( M - '1). Also, 
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the complex pole ai (which is subject only to the inequality constraint I ai I< 1), 

contributes 2 degrees of freedom. Thus (6.10) has a total of 2(M - 1) degrees of 

freedom if it is FIR, and 2M degrees of freedom if it is IIR. The M x M unitary 

matrix H0 has M2 degrees of freedom. Combining these, we conclude that any 

M x M lossless matrix H(z) of degree N - l can be represented by the structures 

of chapter 5 using 

Nm = 2( M - l) ( N - l) + M2 (6.lla) 

parameters if it is FIR, and 

Nm = 2M(N - l) + M2 (6.llb) 

parameters if it is IIR. Note that these values are the same as those for the structures 

of Chapter 4. 

We will now show that these structures are indeed minimal. The proof we will 

give is for the IIR case; however, it can easily be modified for the FIR case. Such 

a modification for the FIR LBR case can be found in [DO 88]. Let N, denote the 

smallest possible number of parameters required to represent an M x M IIR lossless 

matrix of degree N - l. Clearly, N, ~ Nm. To show the equality, all we need to do 

is to prove the following theorem. 

Theorem 6.2: There exists an IIR lossless matrix of degree N - l that has Nm 

degrees of freedom. 

Proof of Theorem 6.2: We will show the existence of such a matrix by actually 

constructing it. Recall from Section 3.1.3 that an M x 1 IIR lossless vector h 0 (z) of 

degree N - l has 2M N - l degrees of freedom. Such a vector can be implemented 

by the lattice structure of Section 3.1.2. Therefore, we can write 

ho(z) = S(z)vo, (6.12) 
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where S(z) = W 1 (z)W2 (z) ... W N-i(z) is an M x M IIR lossless matrix and v0 is 

a unit-norm vector. Now consider an M x M unitary matrix V given by 

(6.13) 

If we define 

H(z)..:lS(z)V, (6.14) 

then clearly H(z) has h0 (z) as its first column. Also H(z) is lossless by construction 

and has degree N - l by the results of Section 3.1.2. Let us now count the degrees 

of freedom that we could exercise in the construction of such a matrix. Since an 

arbitrary M x M unitary matrix has M 2 degrees of freedom and V has its first 

column v0 already fixed, it has M 2 
- (2M - 1) degrees of freedom left. The total 

number of degrees of freedom that we could exercise in the construction of H ( z) is 

therefore the sum of the number of degrees of freedom of h 0 (z) and v 1 , v 2 , ... VM-l• 

This number is (2M N - l) + (M2 
- 2M + 1), which can easily be simplified to Nm 

in (6.llb). This concludes the proof. 

Since we have established the existence of an M x M IIR lossless matrix of 

degree N - l with Nm degrees of freedom, we can write N, = Nm, which shows the 

minimality of the structures of Sections 4.2.1 and 5.3.2 in terms of the number of 

parameters used. 

Note also that the structures of Sections 5.2.3 and 5.3.3 for FIR and IIR lossless 

vectors have 2(M - l)(N - 1) + 2M - 1 and 2M(N - 1) + 2M - 1) parameters 

respectively. These numbers simplify to 2(M - l)N + l and 2M N - l, which are 

the numbers of degrees of freedom that M x 1 FIR and IIR lossless vectors of degree 

N - l have, respectively. Therefore, these structures are also minimal. 

6.1.3. THE LINK BETWEEN THE STRUCTURES OF 



-153-

CHAPTER 4 AND CHAPTER 5 

In Chapters 4 and 5, some representations for lossless matrices that lead to two 

classes of structures were derived. These structures, in spite of properties such as 

minimality and generality shared by both, offer substantially different characteri

zations for lossless systems. Therefore, it is of interest to know how the structures 

of Chapter 4 are related to those described in Chapter 5. This will be considered 

next. The link between the IIR structures is considered first, since once that is 

accomplished, the link between the FIR structures follows readily as a special case. 

Let us consider the building block V;(z) described by (5.36b). Given v;, we can 

use the Gram-Schmidt orthogonalization procedure [FR 68] to generate the set of 

vectors v;, u1 , u2 , .•. uM-l satisfying 

(6.15) 

Note that 

(6.16a) 

and 

V;(z)u,=u, 1:::;j:::;M-1. (6.16b) 

Hence V;(z) can be expressed as 

V·(z) = U·A·(z)Ut I I I I l (6.17a) 

llM-1) is a unitary matrix and A;(z) is given by 

(6.17b) 
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If we substitute (6.17a) in (5.49) for 1 ::; i ::; N - l and simplify, we obtain 

(6.18) 

where Li are unitary matrices. Hence, (6.18) can be depicted as in Fig. 4.15, where 

the ith stage corresponds to the unitary block LN-i+1· Since a general M x M 

unitary matrix can be characterized by (~) complex planar rotations and M unit

norm multipliers, each stage in Fig. 4.15 should be thought of as having the internal 

details of Fig. 2.5. Note that the M complex multipliers of LN can be moved to the 

right of the first allpass block :::N~~::i (denoted by T9 in Fig. 4.15(a)), without 

altering the input-output relationship. Also, since this allpass block affects only 

the topmost line, the (M;-1) complex criss-crosses of LN that do not touch this line 

can be moved to the right and coalesced with LN-i to form a new unitary matrix. 

With this, the first stage is left with only M - l complex planar rotations ( criss

crosses) that are structured exactly as in Tl. The newly formed unitary matrix 

of the second stage can be redecomposed as shown in Fig. 2.5. We can then once 

again move the M multipliers and (M2-1) criss-crosses to the right and merge them 

with LN-2• If this process is repeated, then the first N - l stages have M - l 

complex planar rotations ( of the form T 1), and the last stage remains a general 

unitary matrix with (";) complex planar rotations and M complex multipliers ( of 

the form T2). With these, the representation for M x M IIR lossless matrices 

described in Section 5.3.2 becomes equivalent to the one of Section 4.2.1. To relate 

the FIR lossless structures of Sections 5.2.2 and 4.1.2, the same reasoning can be 

used, simply by letting ai = 0, for O ::; i ::; N - l. 

6.2. THE SMITH-MCMILLAN FORM OF AN M x M LOSSLESS MATRIX 

In the following, we will focus on the Smith-McMillan form [BELE 68), [KA 80] 

of an M x M lossless matrix H ( z). This result is a discrete-time version of the one 
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to be found in the classical text on Network Theory by Belevitch [BELE 68]. The 

Smith-McMillan form of a square lossless matrix has an interesting structure to it 

that conveys most of the lossless matrix properties that we saw previously, and it 

deserves to be considered here even on this account. 

Let us first consider an M x M matrix G(z) with rational entries in z that are 

in reduced form. G(z) can be written as 

N(z) 
G(z) = d(z) ' (6.19) 

where N(z) is an M x M polynomial matrix and d(z) is the monic-least common 

multiple of the denominators of the entries of G(z ). It can be shown [GA 77] that 

N ( z) can be expressed as 

N(z) = U(z)A(z)V(z), (6.20a) 

where U(z) and V(z) are M x M unimodular matrices and A(z) is the Smith form 

[KA 80] of N(z), given by 

A(z) = 
r (diag[-\;(z)] 

M-r O r: rank of N(z), (6.20b) 

with the polynomials A; ( z) satisfying the divisibility property 

(6.20c) 

Let us now consider 

u-1(z)G(z)V-1(z) = !((:], (6.21a) 

and reduce the entries of ~e;; to lowest terms; i.e., write 

-\;(z) ~;(z) -- = --, 0 :::;; i :::;; r - 1, 
d(z) </>;(z) 

(6.21b) 
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such that fi(z) and <Pi(z) are relatively prime. With this, G(z) can be expressed as 

G(z) = V(z )M(z )V(z ), (6.22a) 

where the matrix M(z) given by 

M(z) = 
r ( diag[;:~:)] 0) 
M-r O O ' 

(6.22b) 

is known as the Smith-McMillan form [MC 52] of G(z) and the polynomials fi(z), 

<Pi( z) satisfy the obvious divisibility properties 

(6.22c) 

(6.22d) 

for O ~ i ~ r - 2. The poles and zeros of G( z) can alternatively be defined as the 

roots of the denominator polynomials <Pi( z) and the numerator polynomials fi ( z), 

respectively, of the Smith-McMillan form M(z ). The polynomial matrices U(z) 

and V(z) in (6.22a) are highly nonunique [GA 77], whereas the Smith-McMillan 

form A(z) of G(z) is unique except for the ordering of entries and scale factors. 

This uniqueness property of the Smith-McMillan form will be evident later when 

we consider the concept of valuations [FO 75]. 

We will consider the Smith-McMillan form of an FIR lossless matrix first. 

Lemma 6.1: The Smith-McMillan form M(z) of an M x M FIR lossless matrix 

H(z) of degree N - l has the form M(z) = diag[z-"i], where ni are nonnegative 

integers such that O ~ no ~ n1 ~ ... ~ nM-1 and :E~ci1 n1c = N - l. 

Proof of Lemma 6.1: Since H(z) is FIR, it follows from (2.31) that 

(6.23) 
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where c1 is a nonzero complex constant, and N - 1 is the McMillan degree of H(z ). 

On the other hand, since H(z) = V(z)M(z)V(z), 

det H(z) = c2det M(z), (6.24) 

where c2 = det U(z)det V(z) is a complex constant. The result then follows from 

the diagonal nature of the Smith-McMillan form M(z), and a comparison of (6.23) 

and (6.24). 

The next thing to consider is the case of an M x M lossless matrix with rational 

entries in z. Before we do so, however, we will look into the concept of valuations 

[KA 80], [FO 75], which will be useful later in obtaining the Smith-McMillan form of 

such a matrix. Suppose that we write a rational function g(z) as g(z) = ~(z-a')v", 

where p(z) and q(z) are relatively prime and not divisible by (z - a), and a is a 

finite pole or zero of g(z ). The integer v0 is called the valuation of g(z) at a. This 

definition can be generalized for rational matrices in the following way [FO 75]. 

Given a matrix G(z) with rational entries, the ith valuation of G(z) at a is defined 

as 

(6.25) 

where a ranges over the set of all finite poles and zeros of G(z), and the minimum 

is taken over all i x i minors I G l(i) of G(z ). 

Now suppose that we write the nontrivial part of the Smith-McMillan form of 

G(z) as 

M(z) = II Ma(z), (6.26a) 
a 

where a ranges over the set of poles and zeros of G(z ), and M
0

(z) has the form 

r ( diag[(z - a )"";(a)] 

M-r O (6.26b) 
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In (6.26b), the integers ui(a) have a positive sign if a appears as a zero on the ith 

diagonal entry of M(z) and a negative sign if it appears as a pole. As a consequence 

of the divisibility properties stated in (6.22c)-(6.22d), ui(a) satisfy uo(a) ~ u1(a) ~ 

... ur_1 (a). Because of the special form of Ma(z), it follows that 

( ) _ (r)(M ) (r-l)(M ) 
O"r-1 a - Va a - Va a ' (6.27) 

where a is a finite pole or zero of G(z). However, it can be shown [KA 80], using 

(6.22a), unimodularity of the matrices U(z), V(z) and the Cauchy-Binet Theorem 

[KA 80], [FR 68] that 

(6.28) 

This gives us a direct way of constructing the Smith-McMillan form M(z) of G(z) 

based entirely on the valuations of G( z). The method also demonstrates the unique

ness of the Smith-McMillan form. We are now in a position to state the following 

theorem: 

Theorem 6.3: The polynomials E";(z) in the Smith-McMillan form M(z) = 

diag[;t)J of an M x M IIR lossless matrix H(z) satisfy E";(z) = azb<PM-i-;(z), 

0 ~ j ~ M - l, where a is a complex scalar and bis an integer. 

Proof of Theorem 6.3: Let us consider an M x M lossless matrix H(z) with 

rational entries in z and write 

(6.29) 
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where U 1(z) and V 1(z) are unimodular matrices and M1(z) = diag[;t~J is the 

Smith-McMillan form of H(z ). In (6.29), all the matrices have entries that are 

functions of z. Let us now rewrite H ( z) as a function of z-1 rather than z. This 

results in a new rational matrix G(z-1
) such that 

(6.30) 

The matrix G(z-1 ) can be written as 

(6.31) 

where U 2(z-1 ) and V 2(z-1 ) are unimodular matrices in z- 1 and M 2(z-1 ) = 

diag[~;f;=:~]. We should note here, however, that since G(z- 1
) has entries in z- 1 

rather than in z, the matrix M 2(z- 1 ) does not necessarily reflect the behavior of 

G(z-1 ) at z = 0. Furthermore, M 2 (z- 1) is not a regular Smith-McMillan form 

in the sense that the sum of the degrees of the denominator polynomials ry;(z- 1 ) 

does not necessarily equal the degree of G(z-1 
). It follov, • '.'Il (6.30) and the 

constructability of M 1(z) and M 2(z-1 ) from the valuations of H(z) and G(z-1 ) 

respectively, that 

(6.32) 

where c,; is a complex constant, di; is an integer and j 0 , ••• , iM-l represents a 

permutation of the integers O, •.• , M - 1. On the other hand, since H(z) is lossless, 

(6.33) 

If we substitute (6.29) and (6.31) for H(z) and G(z-1 ) in (6.33), we obtain 

(6.34) 
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Since U1 (z), U 2 (z), U2,;(z) and V 2}(z) are all unimodular matrices in z, M 1 (z) 

and M 2,!(z) must both be Smith-McMillan forms for the same matrix H(z). It 

follows from the uniqueness of the Smith-McMillan form that M1 ( z) and M2,! ( z) 

are the same except for scale factors, delays and a possible relabeling of entries; i.e., 

f;(z) d •. TJ1,i,*(z) --=c,..z, . 
<P;(z) ' ~,.i,*(z) 

(6.35) 

If we substitute for ~:;::~:~ in (6.35) using (6.32), we obtain 

f;(z) d,.¢,iz) -- = c,.z J--, 
</J;(z) ' i1i(z) 

(6.36) 

where c,i is a complex constant, d,i is an integer and 10 , ••• , lM-l is a permutation of 

the integers 0, ... ,M - 1. Since f;(z) and ¢>;(z) are relatively prime, (6.36) implies 

that 

(6.37) 

where b,i is an integer and a1i is complex. It is intuitively clear (and is proved in 

Appendix E) that (6.37) together with the divisibility properties stated in (6.22c)

(6.22d) fix the permutation 10 , ••• , lM-l as l; = M -1- j, for O::; j:::; M - 1. With 

this, (6.37) becomes 

(6.38) 

which is the required result. 

A direct consequence of this theorem can be stated as follows: 

The Smith-McMillan form M(z) = diag[;:1:1] of an M x M IIR lossless matrix H(z) 

has the form 

(6.39) 

Note that some properties of lossless matrices stated in Section 2.1.3, such as 

the allpass nature of the determinant and the existence of a pole at ;. for every 

zero at a (and vice versa), follow as corollaries of this result. 



-161-

CHAPTER 7 

CONCLUDING REMARKS 

The main purpose in this study has been to obtain general structural represen

tations for FIR and IIR lossless matrices. These representations span the entire 

set of such matrices. They are minimal in both the number of scalar delays and 

parameters used in order to implement a general lossless matrix of given degree and 

dimensions. It should be kept in mind, however, that there are computationally 

more efficient implementation methods (as far as the number of operations is con

cerned) if the generality of the implementation is not the main concern. Examples 

of such less general and more efficient implementations can be found in [VAI 86a] 

and [VAI 87b]. 

The structural representations of this study can be classified broadly into two 

groups according to the type of parameters that they use. first group are the 

representations in terms of complex planar rotation matrices, while in the second are 

the ones in terms of unit-norm vectors. The presence of angles in the representations 

of the first group makes it necessary to compute several sines and cosines, especially 

in applications that require optimization of parameters. On most general-purpose 

computers, the computation of a sine (cosine) is about twenty times slower than a 

multiplication operation. This makes the representations of the second group more 

desirable in applications that involve optimization of the parameters. The structures 

of the first group, on the other hand, offer a more comprehensive characterization 

of lossless systems since they can also be used to implement rectangular lossless 

matrices. 
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The lossless structures derived in this study can be used in implementing the 

polyphase-component matrix E(z) that arises in the QMF problem stated in Chap

ter 1. The generality of these structures enable the search for an optimum to be 

conducted over the complete set of lossless matrices. 

These structures may also have some applications in adaptive filtering. A well

known method for improving the convergence speed of adaptive filters is the use 

of transform-domain techniques [WI 85], [NA 83]. The transversal structure used 

in [NA 83], for example, uses an orthogonal transformation on the signal prior to 

adaptation. A comparison of Fig. 2 in [NA 83] with the analysis bank in Fig. 1.2 of 

this study reveals the striking structural similarity between the two systems. Indeed, 

both systems have a chain of delays followed by a unitary matrix transformation. 

In Fig. 1.2, the lossless transformation E(zM) is dynamic, i.e., is a function of the 

frequency variable, even though it is unitary on the unit circle. The transformation 

in [NA 83] is, in principle, a special case with E(z) replaced by a constant unitary 

system. If we attach adaptive tap gains at the M outputs of E(z), the analogy 

with the system in [WI 85] is complete (Fig. 7.1). The use of constant unitary 

matrices in improving the convergence of the adaptive algorithm is well understood 

[NA 83], but the additional advantages of using a dynamic unitary E(z) remain to 

be explored. 

Another closely related adaptive filtering technique is the subband adaptation 

technique proposed in [BI 81], [GI 88]. Here the signal is split into subbands by use 

of an analysis bank, and the subband signals are used for adaptation. Notice again 

that if the unitary matrix in [NA 83] is taken to be the DFT matrix, the system 

is identical to the subband adaptation scheme with analysis filters H1c(z) that are 

uniformly shifted versions of a prototype H0 ( z) = I:~1j1 z-k. The analysis filters 

used in [BI 81] are essentially a frequency sampling type of filters [OP 75f 
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Fig. 7.1. Pertaining to applications in adaptive filtering. 
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The use of a general lossless E(z) in place of such constant unitary matrices clearly 

permits the benefits of unitary transformations to be combined with the advantage 

of having sharper-cutoff-filters with higher attenuation. One advantage of splitting 

a signal into subbands before adaptation is that the spectral dynamic range in each 

subband is typically smaller than the corresponding dynamic range for the entire 

signal, resulting in a small eigenvalue spread of the covariance matrices, and hence 

faster adaptation [WI 85], [NA 83]. 

Finally, we would like to point out some unsolved problems related to the lossless 

representations presented in this study. A lattice structure for M x 1 IIR lossless 

vectors was described in Section 3.1. However, a modification of this structure 

for IIR LBR vectors is not known yet. Clearly, one can derive lattice structures 

for lossless vectors using the state-space approach of Chapter 4. Furthermore, the 

techniques of Chapter 4 make it possible to derive structures similar to the one 

described in Section 4.2.2 for IIR LBR vectors. The advantage of the structure 

described in Section 3.1, however, is that it has a very straightforward synthesis 

procedure when compared to the structures of Chapter 4. Therefore, finding an IIR 

LBR modification of this structure is an important unsolved problem. 

It was emphasized earlier, too, that the representation of Chapter 5 could not 

be generalized for rectangular lossless matrices. Because of the advantages of this 

representation over the one of Chapter 4, this also is an important open problem. 

Also, the synthesis procedure described in Section 5.3.4 for IIR LBR matrices does 

not give rise to a structurally lossless implementation. A synthesis procedure for 

IIR LBR matrices that does lead to a lossless structure, while at the same time 

preserving the advantages of the representation of Chapter 5, remains to be found. 

Finally, it is not clear if the IIR LBR structure of Section 4.2.2 is minimal in 

the number of parameters since the number of degrees of freedom that an IIR LBR 

matrix of given size, degree and number of complex conjugate pole pairs is not 

known. 
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Appendix A: The number of degrees of freedom of a square unitary matrix 

Let U = [u0 u1 ... UL-i] be an L x L unitary matrix. The column vectors of 

U must satisfy 

(Al) 

uJ Uo = u! U1 = , , , = ut_l llL-1 = l, (A2) 

It is easy to see that the 2(~) orthogonality-constraints of (Al) (where the factor 

2 arises because of the complex nature of the equalities), and the L normalization 

constraints of (A2) are all independent. On the other hand, U has L2 complex 

entries, hence 2£2 unknowns. It follows then that an L x L unitary matrix has a 

total of 2£2 
- [L + 2(~)] = £ 2 degrees of freedom. The parametrizations of Section 

2.4, which use £ 2 angles are therefore minimal. 
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Appendix B: State-space descriptions for p x r FIR systems 

Let H(z) = :E~:i h(n)z-n be any causal p x r FIR system, so that h(n) are 

constant p x r matrices. Fig. B shows a direct-form realization of H(z). Let the 

outputs of the delay elements in Fig. B be denoted x1c(n), 0 ::; k ,::; J - 2. Each 

x1c(n) is an r-component vector. Defining x(n) = [x~(n) xf(n) ... x3'_2(n)f, we 

can obtain a state-space description as in (2.11) with 
0 0 0 0 0 
Ir O O O O 

A= O Ir O O O 

0 

C = ( h(l) 
0 0 

h(2) 
Ir O 
h(J - 1)), D = h(0), (Bl) 

so that A is (J - l)r x (J - l)r, Bis (J - l)r x r, C is p x (J - l)r and Dis p x r. 

Since A is lower-triangular with all diagonal entries equal to zero, all its eigen

values are zero [FR 68]. The above implementation is, however, not necessarily 

minimal; i.e., the number of delays (or equivalently, the size of A) is not the small

est. It is well-known that an implementation is minimal if it is both controllable and 

observable [CHE 79]. There exist well-known techniques f, • raining a minimal 

implementation from an arbitrary nonminimal implementation (see Theorems 5-16, 

5-17 and 5-18 in [CHE 79]). It can further be shown that the eigenvalues of the 

A-matrix of such a minimal system form a subset of the eigenvalues of the matrix 

A for the original nonminimal realization. 

As a conclusion, given any p x r FIR system, it is possible to obtain a minimal 

realization with all eigenvalues of A equal to zero. Since any two minimal real

izations of a particular transfer matrix are related by a similarity transformation 

(Theorem 5-20 in [CHE 79]), they have the same set of eigenvalues. As a result, 

every minimal implementation of an FIR transfer matrix is such that all the eigen

values of the A-matrix are zero. These results are also obtainable from the fact 

that the poles of the entries of H(z) (being also the eigenvalues of the A-matrix in 

any minimal realization of H(z), ([JA 86], page 40 and 36) are all located at z = 0. 
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Appendix C: A parametrization algorithm for unitary matrices 

The purpose of the algorithm to be described here is to give a constructive proof 

that all unitary matrices of the form (4.15) can be represented as in Fig. 4.4. 

Let us consider an arbitrary unitary matrix U. In the first step, we define 

U U 0 t 
0,1 = 0,1-1 k-1,/tl 1 ~ / ~ L - l, k = L - l (Cl) 

with u 0,0 = u. 0 L1,1t are determined such that ui:! = 0. This step yields an 

intermediate unitary matrix Uo,L-l as in (2.47) with I no I= 1 and b = 0. 

In the next step, instead of operating on the next row, we proceed to the M th 

row and define 

(C2a) 

where 0L1 ,1t are determined such that uJ:::! = 0. Next, we define 

UM,/= UM,1-1 0L1,1t, L - M ~ l ~ L - 3, k = L - 1- l. (C2b) 

Here again 0L1 ,1t are determined such that UJ::,i = 0. Finally, we write 

UM L-2 = UM L-3 0ltM, 
' ' ' 

(C2c) 

and determine 0t,M such that UJ::,{-2 = 0. This step is aimed at creating zero 

entries along the M th row, thereby forcing a unit-norm entry, which will be denoted 

by O::M at the (M, M)ih position. While doing so, previously created zeros are 

preserved since this step does not have rotations involving the Oth plane. At the 



end of this step, we have 

0 

1 

UM,L-2 = M 

0 1 

0 * 

0 * 

0 0 

0 * 

L-1 O * 
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M 

0 0 0 

* 0 * 

* 0 * 

* 0 * 

* 0 * 

L-1 

0 

* 

* 
0 

* 

* 

(C3) 

For the next N - 2 steps, we repeat this procedure for rows M + 1 through 

L - 1. Recursions related to the (M + i) th row, 1 ::; i ::; N - 2, can be obtained 

simply by substituting M + i for Min (C2a), (C2b) and (C2c). As we proceed, 

previously created zeros are not disturbed since while dealing with the j'h row, 

M + 1 ::; j ::; L - 1, we do not use operations involving planes O and M through 

j -1. At the end of the N th step, we have 

ao 0 0 0 
0 V 0 0 

UL-1,M-1 = 0 0 aM 0 (C4) 

0 0 0 aL-1 

We now parametrize the (M - 1) x (M - 1) nontrivial unitary block V that 

appears in (C4), using the first algorithm of Section 2.4, by (M - 1)2 angles. Since 

this process involves operations in planes 1 through M - l only, previously created 

zeros are not altered. The complete parametrization is shown in Fig. C. 

It can easily be verified now that if we parametrize a unitary matrix of the form 

( 4.15) using this algorithm, we obtain the representation of Fig. 4.4. 



ro - So -

r1 ... 
step 1 • •• S1 - cascade 

r2 step 2 step 3 
of S2 - ••• - T3 steps 

• • • N tol-1 • • • • • • • • • I 

TS ... 
r L-1 SL-1 

--! . ••• 7' -

Fig. C(a). Signal flow-graph representation of the new factorization of u . 
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1 

• T3 • • 

M-1 
• • • 

M-2+i 
- .. . -
- .. . . 

• T3 • • • • • - .. . -
L-1 - ... ... . 

Step i, 2 '5.i ~N-1 

Fig. C(b). Some internal details of Fig. C(a). 
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Appendix D: The real Schur decomposition of square matrices 

We will show that an (N - l) x (N - l) real matrix A with complex conjugate 

eigenvalue pairs (A.i, .X;), 1 ~ i ~ n, and real eigenvalues ii, 1 ~ i ~ l where 

l = N - 1 - 2n, can be decomposed as in ( 4.28). A sketch of a proof can also be 

found in [GO 85]. 

Nate that for A with only real eigenvalues, this statement becomes a simple 

special case of the well-known Schur Theorem. Here we will consider the more 

interesting case of a real matrix A with n complex conjugate eigenvalue pairs, 

where 1 ~ n ~ lN;1 j. Let .X1 = o-1 + iw1 be a complex eigenvalue of A, and 

u = Ur+ iu; the corresponding eigenvector. The real vectors Ur and Ui are assumed 

to be linearly independent to avoid trivial situations. Suppose that we take the 

vectors 
11
::

11 
and 

11
:!

11
, and add to these other real vectors YA: to form the set [y1 = 

11:: 11 , Y2 = 11:; 11 , YJ, ... , YN-d, which is linearly independent. We can feed this set 

of vectors to the Gram-Schmidt orthogonalization procedure [FR 68] to obtain an 

orthonormal set of vectors [zk]f=-/ such that zf z, = hkl · Each vector ZA: in this set 

is generated according to the recursion 

Yk - (Yk I ZA:-1)Zk-l 
Zk = -------- 2 ~ k ~ N - l. 

11 YA: - (YA:, ZA:-1)Zk-l 11' 
(Dl) 

Since A 
11
:.

11 
= .X111;, 11

, equating real and imaginary parts, and substituting y 1 

11:: 11 
and Y2 = 

11
:!

11 
in the two equations thus obtained, we can write 

(D2) 

Now, it follows from (Dl) that y 2 can be written as 

(D3) 
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Substituting (D3) in (D2) and arranging, we obtain 

where 

£l'1,1 = 0-1 - w1(Y2, z1), G2,1 = W1 II Y2 - (Y2, z1)z1 II, 

wi[l + (Y2, z1)2] 
G12 = -----=---'----'--'--, G2,2 = 0-1 +w1(Y2,z1). 

1 II Y2 - (Y2, Z1)Z1 II 

(D4a) 

(D5) 

Let us now define the real orthogonal matrix T 1 ~ ( z 1 z2 ZN-l ), which, in 

view of (D4a), satisfies 

(D6a) 

and 

(D6b) 

where 

(D6c) 

and B is a (N - 3) x (N - 3) real matrix. Note that the matrix a 1 has eigenvalues 

..\ 1 and >.i. Note also that since S and A are related by a similarity transformation, 

they have the same set of eigenvalues. It follows, then, that B has exactly n - l 

complex conjugate eigenvalue pairs. 

If n = l, i.e., all the eigenvalues are real, then there exists an (N - 3) x (N - 3) 

orthogonal matrix U such that B = UEUT, where E is real and lower triangular. 

Thus, the real orthogonal matrix 

(D7) 



-174-

transforms A into ( : 1 
~), which is already in the required form. 

On the other hand, if n 2:: 2 or equivalently B has at least one complex conjugate 

eigenvalue pair, say (.\2 , ,\2), we repeat the procedure described above for complex 

conjugate eigenvalues, on B, so that we can write 

VTBV = (a2 0) 
* y ' 

(DB) 

where Vis (N-3) x (N-3) orthogonal, Y is (N-5) x (N-5), and a2 = (!1
•
1 !1

•
2

) 
/J2,1 /J2,2 

is related to the complex conjugate eigenvalue pair ( ,\2 , .\2) as explained above. In 

this case, the matrix T 2 = T 1 ( ~ ~) transforms A into 

0 
(D9) 

where a1 and a2 are as defined above. 

This process can be repeated n times until all the complex conjugate eigenvalue 

pairs of A are exhausted. This inductive reasoning shows that the resulting matrix 

is indeed in the form described by ( 4.28), and the overall transforming matrix T is 

orthogonal. 
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Appendix E: Pertaining to the Smith-McMillan form of a square lossless 

matrix 

While investigating the Smith-McMillan form of a lossless matrix H ( z) in section 

6.2, we saw that the matrices M 1(z) and M 2;!(z) must coincide except for a possible 

relabeling of entries. We will now show exactly how this relabeling takes place. From 

equation (6.37), we can write 

(El) 

By (6.22d), 

(E2) 

a 
If we define ao(z )=10 (z) ... 'YM-2-10 (z ), fo(z) becomes 

(E3) 

By the same reasoning, we can write 

(E4) 

where a 1(z) a,0(z) .. •'YM- 2-11 (z). On the other hand, by (6.- .. ;, 

(E5) 

If we substitute (E3) and (E4) in (E5), cancel common terms from both sides and 

rewrite, we obtain 

a( ) _ da1(z) 
fJ Z - C Z ( .) , a 0 z 

(E6) 

where d is an integer and c is a complex constant. Since (3(z) is a polynomial, the 

nontrivial polynomial a0 (z) must divide a1 (z), i.e., we must have 10 2:: /1 • This 

argument can be used repeatedly in conjunction with the polynomials fi ( z) and 

fi+l ( z) to show that l; 2:: 1;+1 • As a result, we find that l; are related by 10 2:: /1 2:: 

••• 2:: lM-l • Since lo ... , lM-i represents a permutation of the integers O, ... , M - l, 

the only possibility is to have l; = M - l - j. 
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