CaltechTHESIS
  A Caltech Library Service

Using Clumped Isotopes and Radiocarbon to Characterize Rapid Climate Change During the Last Glacial Cycle

Citation

Thiagarajan, Nivedita (2012) Using Clumped Isotopes and Radiocarbon to Characterize Rapid Climate Change During the Last Glacial Cycle. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/Z9CV4FR0. https://resolver.caltech.edu/CaltechTHESIS:05312012-104144486

Abstract

We generated records of carbonate clumped isotopes and radiocarbon in deep-sea corals to investigate the role of the deep ocean during rapid climate change events. First we calibrated the carbonate clumped isotope thermometer in modern deep-sea corals. We examined 11 specimens of three species of deep-sea corals and one species of a surface coral spanning a total range in growth temperature of 2–25°C. We find that skeletal carbonate from deep-sea corals shows the same relationship of Δ47 to temperature as does inorganic calcite. We explore several reasons why the clumped isotope compositions of deep-sea coral skeletons exhibit no evidence of a vital effect despite having large conventional isotopic vital effects.

We also used a new dating technique, called the reconnaissance dating method to investigate the ecological response of deep-sea coral communities in the North Atlantic and Southern Ocean to both glaciation and rapid climate change. We find that the deep-sea coral populations of D. dianthus in both the North Atlantic and the Southern Ocean expand at times of rapid climate change. The most important factors for controlling deep-sea coral distributions are likely climatically driven changes in productivity, [O2] and [CO32-].

We take 14 deep-sea corals that we had dated to the Younger Dryas (YD) and Heinrich 1 (H1), two rapid climate change events during the last deglaciation and make U-series dates and measure clumped isotopes in them. We find that temperatures during the YD and H1 are cooler than modern and that H1 exhibits warming with depth. We place our record in the context of atmospheric and marine benthic Δ14C, δ13C, and δ18O records during the deglaciation to understand the role of the deep North Atlantic during the deglaciation.

We also investigated the role of climate change in the distribution of terrestrial megafauna. To help with this, we also developed a method for compound-specific radiocarbon dating of hydroxyproline extracted from bones in the La Brea Tar Pits. We find that the radiocarbon chronologies of megafauna from several locations around the world, including the La Brea Tar Pits, exhibit an increase in abundance of megafauna during Heinrich events.

Item Type:Thesis (Dissertation (Ph.D.))
Subject Keywords:Clumped Isotopes, Radiocarbon and Deep-Sea Corals
Degree Grantor:California Institute of Technology
Division:Geological and Planetary Sciences
Major Option:Geochemistry
Thesis Availability:Public (worldwide access)
Research Advisor(s):
  • Adkins, Jess F.
Thesis Committee:
  • Eiler, John M (chair)
  • Adkins, Jess F.
  • Wennberg, Paul O.
  • Ingersoll, Andrew P.
Defense Date:18 May 2012
Non-Caltech Author Email:nithyat1983 (AT) gmail.com
Funders:
Funding AgencyGrant Number
NSFNSF-OCE-0852362
NSFNSF-ATM-0903099
NSFNSF-OCE-0929272
NOAAMIT-5710002773
DavidowGPS.00013-12-ENDOW.000075
Record Number:CaltechTHESIS:05312012-104144486
Persistent URL:https://resolver.caltech.edu/CaltechTHESIS:05312012-104144486
DOI:10.7907/Z9CV4FR0
Default Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:7106
Collection:CaltechTHESIS
Deposited By: Nithya Thiagarajan
Deposited On:04 Sep 2014 16:16
Last Modified:03 Oct 2019 23:56

Thesis Files

[img]
Preview
PDF (Entire Thesis) - Final Version
See Usage Policy.

6MB
[img]
Preview
PDF (Introductory section, Chapters 1-2) - Final Version
See Usage Policy.

911kB
[img]
Preview
PDF (Chapter 3) - Final Version
See Usage Policy.

1MB
[img]
Preview
PDF (Chapter 4) - Final Version
See Usage Policy.

2MB
[img]
Preview
PDF (Chapter 5) - Final Version
See Usage Policy.

2MB

Repository Staff Only: item control page