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Abstract

This thesis addresses the question of whether people actually see the same visual stimuli somehow

differently, and under what conditions, if so. It is an experimental contribution to the basic un-

derstanding of visual and especially face perception, and its neural correlates, with an emphasis on

comparing patterns of neural activity driven by visual stimuli across trials and across individuals.

We make extensive use of functional magnetic resonance imaging (fMRI); all inferences about neural

activity are made via this intermediary. The thesis is organized into two parts:

In Part I, we investigate the nature of face familiarity and distinctiveness at perceptual and neural

levels. We first address the question of how the faces of those people personally familiar to a viewer

appear different than they would to an unfamiliar viewer. The main result is that they appear more

distinctive, i.e., dissimilar to and distinguishable from other faces, and more so the higher the level of

familiarity. Having established this connection between face familiarity and distinctiveness, we ask

next what is different about the perception of such faces, as compared with indistinct and unfamiliar

faces, at the level of brain activation. We find that familiar and distinctive faces are represented more

consistently: compared with indistinct faces, which evoke slightly different patterns of activity with

each new presentation, these faces evoke slightly similar patterns. Combined with the observation

that consistency can enhance memory encoding (a result reported by Xue et al. [102]), this suggests a

cyclic process for the learning of unfamiliar faces in which consistent representation and the presence

of newly formed memories mutually feedback on each other.

Whereas in Part I we focus on individual differences in neural activity, principally by experimen-

tally manipulating stimulus familiarity, in Part II, we shift our focus to similarities across individuals

and extend our investigation beyond faces to the perception of visual objects in general and moving

images. We begin with an experiment involving the perception of static images selected from 44

object categories, where we find that the distances between these categories, induced from activity in

cortical visual object areas, correlate highly between subjects, and also to distances inferred from a

behavioral clustering task, and that this correlation remains significant even among subsets of closely
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related categories. We also show that one subject’s brain activity can be accurately modeled using

another’s, and that this allows us to predict which image a subject is viewing based on his/her brain

activity. Then, in a different experiment investigating the perception of dynamic/video stimuli, we

find evidence that when watching videos with sound, visual attention is likely blurred at times and

transferred to audition; subjects relatively temporally decorrelate in visual areas compared to the

muted case, in which the patterns of neural activity correlate across subjects at an average of 78%

the level found with oneself later in time.

The findings reported in this thesis thus offer quantitative lower bounds on how similarly different

individuals neurally experience visual stimuli, and an explanation for how they perceptually and

neurally diverge when familiarity with a (face) stimulus varies, suggesting a possible mechanism

for the encoding of new visual objects into memory. We conclude with a discussion of some of the

questions raised by this work and directions for future research.
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Chapter 1

Introduction

Continually fluctuating streams of multicolored photons flow into the eye of an observer, lighting a

grid of firing patterns among photoreceptive retinal neurons, sparking a chain reaction which spreads

out into midbrain and through primary visual cortex, to higher reaches of the brain, where eventually

a belief somehow emerges about the contents and configuration of the world. In between the cryptic

and specific signals at the retina and the sweeping abstractions represented by individual neurons

at high-level regions in the brain is a vast array of organized and back-feeding neural networks of

increasingly general purpose. This thesis quantifies and compares the measurable activity of this

process of vision, across time and across individuals.

One motivation for implementing this particular research program was to come closer to un-

derstanding how visual qualia, those internal experiences of conscious visual states, e.g., how the

color red seems, compare across people. We can begin to provide some clues to the answer by

quantitatively comparing visual cognition at its various levels, starting from its behavioral output

and moving down to its cortical manifestations. To the extent that these subprocesses are similar

across individuals, it is plausible that the accompanying qualia are too, as it seems unlikely that

such similar physical processes could lead to very different mental states; however, this relates to

what David Chalmers calls the hard problem of consciousness [15], and philosophers may disagree

on whether the question is ultimately tractable, especially in this way. But if we take the practicable

view that qualia are defined by their physical or informatic relationships to other mental states, as

in Tononi’s formalism [91], this style of investigation may prove fruitful.

To this end, and also to understand how subjects perceptually and neurally diverge, in particular

when viewing faces, this thesis makes extensive use of functional magnetic resonance imaging (fMRI).

fMRI has revolutionized the conduct of modern neuroscience by providing experimentalists with a

tool to measure patterns of neural activity distributed across the entire brain in fully conscious
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MRI scanner with image projected  
onto a screen in the back of the bore MRI facility at Caltech 

Subject-carrying 
table slides in 

subject’s head 
goes here 

Figure 1.1: Photographs of the human MR scanners at Caltech

humans and other animals. It is currently the best tool for achieving such whole-brain simultaneous

coverage.

1.1 Neuroimaging with fMRI; visual cortex; faces

fMRI fMRI data are collected in MR scanners like the ones shown in Figure 1.1. An imaging

subject enters the bore of the powerful and noisy superconducting magnet in the supine position

for periods of 5 minutes to 1 hour at a time. During this time, bursts of radio-frequency energy

are transmitted from a coiled antenna around the subject’s head at a frequency resonant with the

precession of hydrogen nuclei inside the magnetic field. The energy in these bursts temporarily

excites the hydrogen nuclei out of alignment with the main magnetic field, the aggregate effect

of which is magnetic flux through the transceiver head coil, inducing currents with characteristic

relaxation time constants (such as T2*) which depend on the chemical environment (including

relative concentration of deoxygenated hemoglobin) in which the hydrogen nuclei are embedded.

Together with a systematic varying of the strength of the main magnetic field depending on the

position in the scanner, and a frequency coding scheme, this endows the induced currents with

information sufficient to reconstruct an image of the brain, one 2D slice at a time.

Although the functional MRI signal, also known as the BOLD (blood-oxygen-level-dependent)

signal, is at base an estimation of a magnetic relaxation constant (T2*), which can be used to infer

concentrations of deoxygenated hemoglobin, which change with blood flow to meet the metabolic
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demands of the brain, it has nonetheless been repeatedly shown to significantly correlate with the

actual activity of neurons, specifically their local field potentials, especially in the gamma range,

and to a lesser extent with spiking activity (see, e.g., Logothetis [62], [61] for careful explanation).

We will take this relationship between the fMRI signal and neural activity as an assumption when

interpreting our results.

For our purposes, the useful data from an fMRI scan of one subject can be summarized as a

matrix β where the rows index individual “voxels” (3D pixels), i.e. discrete points in the brain,

each of which may be assigned a regional label (such as “FFA” or “STS”), and the columns index

either stimuli (Chapters 3 and 4) or equivalently time points for a single changing/dynamic stimulus

(Chapter 5). Then βij = response to stimulus j at voxel i: a β or “beta” value is an estimate

of the hemodynamic response amplitude at a particular location (viz., a voxel) in the brain to a

particular stimulus. For this reason, beta values will also be called response amplitudes, or response

magnitudes. A column of this β matrix may be considered a spatial neural pattern, and a row may

be considered a temporal neural pattern (used only in Chapter 5).

Visual cortex For the work presented in this thesis, fMRI neuroimaging is mainly used to record

activity in visual cortex. Some of the distinct regions inside visual cortex can be organized into

a hierarchy, like the one shown in Figure 1.2. This includes primary visual cortex (V1), where an

individual neuron responds only to visual input from a very restricted part of the visual field, and

specifically to simple features within this field such as a bar or grating oriented at a specific angle

(see [45] for original work and [69] for a theoretical model of it). V2, V3, and V4 are outwardly

spread from V1 on the cortical surface, and are associated with incrementally larger and more

flexible receptive fields. In order to gain some intuition about the kinds of features represented by

intermediate-level neurons, see Figure 1.3; Gallant et al. [28] found neurons in monkey V4 highly

selective for such stimuli.

Faces are special We devote half of this thesis to just one category of visual stimulus, focusing

on differences in perceptions between people viewing exemplars from this category. This category

is faces, arguably the most important category of visual stimulus. From the moment we are born

[101, 85, 66], we begin to recognize them, and their importance in social functioning grows. Failure

to recognize an individual [19], or the failure to recognize an emotion in a face [1], can have very high

social cost. They are crucial for interpersonal interaction and communication, both verbal and not.

They are perceived both holistically [20] and categorically [4]. In the brain, faces are processed faster
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Figure 1.2: A schematic representation of the hierarchical processing stages through various regions
in the primate visual cortex (adapted from [82]). The neurons in primary/low-level visual cortex
(V1/V2) fire when simple visual features (such as oriented lines) occur in highly specific, small
regions of the visual field (their receptive field sizes are small, 0.2 − 1.1◦ of visual angle). These
combine into progressively more generalized features until somewhere high in cortex (such as the
prefrontal cortex), a specific label such as “animal” can be applied to the input.

Figure 1.3: Example stimuli (nonstandard gratings) used by Gallant et al. [27, 28] to characterize
the tuning of neurons in macaque monkey visual area V4.

than other types of stimuli [90], and they have been found to have specialized modules devoted just

to their detection and individuation. These areas include the fusiform face area (FFA) [50] (though

some view FFA as an expertise module, see [29]), and a network of face “patches” through temporal,
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FACES 

LEGEND 

NEURAL PATTERN 

ACROSS SUBJECTS GENERAL VISUAL INPUT 

static images from 
multiple categories 

moving/dynamic images 

WITHIN ONE SUBJECT 

Chap 2 
Chap 3 

Chap 4 
Chap 5 

VISUAL STIMULUS INPUT 

spatial pattern 

temporal pattern 

same stimulus, different trials 

between different stimuli 

COMPARISON 

familiar 

distinctive 

Figure 1.4: The visual stimuli and analyses used in each chapter are connected by logical arrows,
meant to aid the reader to infer relationships such as “In Chapter 4, the spatially distributed neural
patterns elicited by different static images are compared within a subject, then these differences
are compared across subjects.” or “In Chapter 2, a connection is established between familiar and
distinctive faces.”

occipital, and frontal lobes (see [93, 94, 95, 65]). A very wide range of other brain areas have been

found to be involved in the perception of faces as well [39, 31, 49, 55, 59, 60], including hippocampus

and amygdala [26, 58], and even primary auditory cortex [43]. A stronger case could not be made

for any other category of visual stimulus.

1.2 Organization of thesis

Figure 1.4 schematizes the organization of this thesis, including which kinds of neural patterns are

compared and how, in each chapter. Face perception is the focus of Part I of this, and in particular

the perception of distinctive and familiar faces. General static and moving images are investigated in

Part II. Notes about types of neural pattern similarity: In order to compare neural patterns

elicited by static images across subjects, we first compute neural distances between different stimuli

(summarized in representational dissimilarity matrices, or RDMs), and then compare those across

subjects, an approach endorsed by Kriegeskorte [56, 74]. This static image comparison is used in

Chapters 3 and 4. In Chapter 3, we perform another kind of neural pattern similarity analysis, in

which the spatially distributed response pattern to a single stimulus is compared across its different

presentation trials: this kind of neural similarity is what we term consistency. In Chapter 5, we use

moving image stimuli, which allow direct comparison of neural response patterns across subjects,
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by using one element per time point then comparing the resultant temporal patterns in analogous

brain locations.

1.2.1 Important brain regions mentioned throughout thesis

For reference, we provide a list of some important brain regions, their abbreviations, and associated

functions:

� V1, primary visual cortex, also known as striate cortex [45, 18];

� V2, prestriate cortex, adjacent to and receiving feedforward connections from V1 [84];

� V3, third visual complex, a part of early visual cortex immediately adjacent to V2 [84];

� V4, part of extrastriate visual cortex, associated with intermediate visual features including

gratings [27, 28];

� MT, originally “medial temporal” (but not in humans), an area of visual cortex associated

with the representation of visual motion [92];

� LO (or LOC), lateral occipital cortex/complex, associated with visual objects [35];

� Fusi, the fusiform gyrus, a ventral stream part of visual cortex associated with high level

object representation including faces and words [63];

� FFA, the fusiform face area, an area in fusiform gyrus which is face-selective [50];

� STS, superior temporal sulcus, associated with many functions, including audio-visual inte-

gration [5];

� IT, inferior temporal cortex, associated with face processing and other high level vision [56];

� Cuneus, associated with basic visual processing and inhibition [36];

� Precuneus, associated with self-perception and memory [14];

� PostCing, posterior cingulate cortex, associated with many functions, including awareness,

memory retrieval, and familiarity [88];

� AntCing, anterior cingulate cortex, associated with motivation and attention [12];

� IPL, inferior parietal lobe (including lobule), associated with the many functions, including

visual perception of emotion in faces [39, 72, 73].
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Part I

Face distinctiveness and neural

pattern similarity across trials
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Chapter 2

Personally familiar faces appear to be
more distinctive

Based on experiments involving ten human subjects, we conclude that faces which are familiar to

a viewer appear to look more different from other faces than they do to unfamiliar viewers: that

is, they appear more distinctive. Furthermore, we find evidence that faces which are entirely

unfamiliar, merely similar in appearance to a familiar face, can be more easily distinguished than

ones distant from any familiar face. These two effects taken together constitute a warping in the

entire perceptual space around a learned face, pushing all faces in this region away from each other.

We additionally show that the fact of familiarity with a face is predictable from performance level

on a visual distinguishability task, and provide some preliminary results characterizing how facial

features weigh differently when comparing familiar faces.

2.1 Previous work

The behavioral psychology and neuroscience literature on face perception is rich, and important

within it is the notion of two distinct types of face encoding in the brain: on one side, there is

norm-based coding, wherein faces are represented by their deviations from the average, and on the

other, exemplar-based coding, wherein faces are represented by their distances to previously learned,

i.e., familiar, faces. The most cited evidence supporting norm-based coding is the observation that

caricatures, or exaggerated renderings of a face, are recognized more rapidly and more easily than

the undistorted faces themselves [77, 57, 6]. Figure 2.1 shows an illustration of a “face space”, of

the kind imagined by the norm-based coding hypothesis, in which deviating faces are scattered in

various directions away from the origin, at which we find the average and least distinctive face. The

figure is adapted from a paper by Leopold [59], in which he presents data characterizing the response
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Figure 2.1: An illustration of a 3-dimensional “face space” (adapted from Leopold [59]), including the
origin, at which we find the most average looking face, and several faces along orthogonal directions.
Caricatures are defined as faces extrapolated beyond their true position in this space to a position
more distant from the origin but along the same direction: e.g., F2* is a caricature of F2, and F3*
is a caricature of F3.

patterns of single neurons in the anterior infero-temporal cortex of macaque monkeys, supporting

the norm-based view.

Several authors have written on the relationship between familiarity and distinctiveness. Valen-

tine and Bruce [97] wrote, in the context of an earlier hypothesis: "If judgements of distinctiveness

depend upon some mean of a large population of faces, familiarity with a particular face should

not alter its perceived distinctiveness.” However, in their study, familiarity and distinctiveness were

rated by two mutually exclusive sets of subjects respectively, so any reported relationship would

bear on only memorability as an intrinsic property of a face, not on actual familiarity: they go on

to provide data showing a positive but insignificant correlation between this independently rated

familiarity of a face and its distinctiveness. Vokey and Read [99] found that familiarity and dis-

tinctiveness were anti-correlated; however, in their study familiarity was actually entirely imagined

(subjects were misled to believe that some face stimuli were of people at the same school).

Two relevant studies have specifically examined the individual differences which arise in percep-

tion as a result of familiarity with a face. In the first, by Beale and Keil [4], in an experiment

exploring the “categorical” perception of faces, that is, their tendency to not look as though they

are from some undifferentiated continuum, the degree of familiarity with a pair of famous faces was

highly correlated with the extent to which a kind of ordering performance was peaked at the center

of the morphing continuum between them, and in the second, Ryu [79] showed that adaptation to a
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familiar face created a greater orientation after-effect than an unfamiliar face. As we shall see, these

last two studies are compatible with the findings reported in this chapter, insofar as familiar faces

are associated with a kind of heightened perceptual acuity.

Under a strictly norm-based model of face coding, one would expect little or no systematic

relationship between the distinctiveness of a face and its degree of familiarity. Perhaps as a face is

in the process of being learned, its position in face space would slowly converge on a final position

from an initially noisy estimate, but, on average, one would not expect it to end up systematically

more nor less distant from the origin, that is, different in distinctiveness, than it started. Also, its

contribution to shifting the global experiential average, and thus its effect on the perception of other

faces, would be very minor or negligible. However, under the exemplar-based coding model, after a

face is learned, it can be used to help resolve subtle differences between faces which were previously

distant from any reference, by adding a new one inside a neighborhood of comparability.

The results in this chapter show what happens to the perceptual face space around a familiar

face.

2.2 Basic experimental setup

70 75 80 85 90 95 100

1

2

3

Percent Correct (Bin)

N
u
m

b
e
r 

o
f 
S

u
b
je

ct
s

Cambridge Face Memory Test
Subject Performance Distribution

Figure 2.2: All ten participants scored in the normal range (score > 60) of face-recognition ability,
as assessed by the Cambridge Face Memory Test ([23], http://www.faceblind.org/facetests/). Note,
however, that one subject’s (S0’s) performance is a bit unusually low relative to the others.

Ten subjects viewed pairs of face stimuli, selected from a set of forty, presented in rapid temporal

succession, on a computer screen in a laboratory at Caltech, providing similarity judgments between
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them using keyboard inputs, explicitly and implicitly (see below). The subjects were all Caucasian

females, a selection intended to eliminate gender and race effects, which are known to influence face

perception and which have already been extensively studied [13, 32, 68, 96, 3].

2.2.1 Participants

Figure 2.3: Each subject (A, B, ... J) is shown in the top half, with her sister occurring somewhere
in the bottom half (1, 2, ... 10). Can you guess the 1:1 mapping between subjects and sisters? The
answer key is given in Figure 2.48.

Ten healthy Caucasian adult females (range 23 - 29, mean 25.7 ± 0.55 years) participated in the

series of experiments. All subjects had normal or corrected-to-normal vision, nine were right-handed,

and all tested in the normal face recognition ability range as assessed by the Cambridge Face Memory

test on synthetic faces (by Duchaine and Nakayama [23], http://www.faceblind.org/facetests/); see

Figure 2.2 for the distribution of scores on this test. We note that one subject’s score was unusually

low given the distribution of the others’ scores, though still in the normal range.
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Whole Face Inner Face

Figure 2.4: An example face from the dataset masked to include hair and jawline (left), and to
only reveal inner features (right). The SimRate task was performed with both kinds of masks, but
MorphDiscrim was performed only with inner faces.

2.2.2 Face stimuli

The face stimulus set consisted of forty “base” faces (the word “base” is used to distinguish these

faces from “morph” faces, blended from these base faces and used in a later experiment described in

Chapter 3). The faces were all emotionally neutral, front-facing, directly-gazing, Caucasian females

organized as follows:

� 10 of the images were of the subjects themselves,

� 10 were of their sisters (one full biological sister per subject, age range 23 - 29, mean 26.3 ±

0.67 years), and

� 20 “extra stimuli ”: eighteen were photographed in controlled conditions at Caltech1, and two

were selected from the PUT Face Database [51].

All women in the stimulus set appeared to be in their twenties or early thirties at the time of

their photograph. The pictures of the subjects’ sisters were obtained after sending them written

instructions aimed at matching the conditions of the rest of the photographs (head-leveled camera,

5-6 feet away). Figure 2.5 shows all forty base faces used in the experiment, using a preparation

hiding jaw and hairline, that is, including only inner face features (referred to later as “inner only”),

Figure 2.3 shows the 10 subjects and 10 sisters stimuli2 in a preparation including jaw and hairline

(“whole face”), and Figure 2.4 shows one stimulus in both preparations side-by-side. Importantly,

83 keypoints (e.g. left eye lateral extremity, or nose tip) were manually annotated on each face.
1
thanks to Jan Glaescher for contributing some of these

2
thanks to Prof. McEliece for suggesting the guessing game in this figure
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Figure 2.5: The forty base face stimuli, resized for equal proportions, and normalized for mean and
standard deviation in luminance. Normalization beyond this (e.g., local contrast) was not carried
out in order to allow some variability in low-level features. Subjects only viewed one face at a time at
full scale (~355 pixels tall); faces are only combined here into a single image for spatial compactness.

Together with the pixel content of an image, this allowed us to compute objective distances between

faces based on image content alone. See section 2.10.2 for additional details on stimulus preparation.

2.2.3 In this thesis, familiarity = personal familiarity

In this chapter and the next, we will refer to faces as familiar to a viewer, or reciprocally, a viewer

as familiar with a face. Without exception, familiarity will herein mean, personal familiarity : the

viewer will have had personal acquaintance with and knowledge of the person whose face they are

said to be familiar with. All stimuli in the experiments are ultimately familiar in the less strict sense

of having ever seen before in any context. The nature of the experiments was such that viewers saw

all the faces many times by the end. The number of experimental trials during which a subject saw

a face was not at all factored into level of familiarity at any point in the analysis.

Measuring degree of familiarity Because eight of the ten subjects and eighteen of the twenty

of women in the “extra stimuli” set were members of Caltech community, which is relatively small

and insular, subjects were on average familiar with a few faces in the stimulus set (2, 3.5, and 5
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for 25th, 50th, and 75th percentiles of number of familiar faces among subjects including self and

sister). The degree or level of personal familiarity each subject had with each person represented

in the stimulus set was acquired through an interview with the author. Personal familiarity was

assigned a

� 10 for self,

� 9 for sister,

� 8 for friend seen very frequently (every day),

� 7 for friend seen slightly less frequently, and so on, down to

� 1 for possibly seen around campus, and

� 0 for do not recall having ever seen before.
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Figure 2.6: Number of face stimuli, summed across subjects, at each level of familiarity. There are
54 total having level ≥ 1, 45 having level > 1, and 36 total having level ≥ 7.

In this chapter, unless otherwise specified, “familiar” as a category will mean familiarity > 1,

and unfamiliar will mean familiarity ≤ 1 (i.e., the “possibly seen around campus” condition was

considered too weak to count as familiar).

2.2.4 Experimental Tasks

Two experimental tasks were employed, each measuring the visual similarity between face pairs

as perceived by the subjects; we herein call these tasks “SimRate”, for Similarity Rating, and

“MorphDiscrim”, for Morph Discrimination.
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In SimRate, the similarity between faces was explicitly provided by subjects using a numerical

score from 1 (least) to 8 (most similar). In MorphDiscrim, the similarity between a pair of faces

was implicitly provided in the form of a confusability rate, measuring how frequently subjects

confused two distinct morphs (between a pair of faces) for two presentations of an identical face: the

task was to tell whether a pair of morph stimuli were the same or different, when in half the trials

they were actually the same. The rationale for this was that the more different the two base faces

(from which the morphs were generated) appeared to look to the viewer, the easier a same/different

discrimination between intermediate morphs would be to the subject, leading to a lower confusability

rate.

In both experiments SimRate and MorphDiscrim, face pairs were never viewed simultaneously;

instead, a base face or face morph centered on the screen was flashed for a brief interval (200 ms or

less), followed by another face stimulus after a brief intervening visual “mask” to clear the space in

between, followed by an interval during which the subject keyed in a response. See Section 2.10.4

for exact details about the trial structure used in these experiments.

Similarity scores across face pairs were Z-scored for each subject independently (that is, normal-

ized to have sample mean 0 and sample standard deviation 1; see Section 2.10.1.1), and confusability

scores were inferred from error rates in morph discrimination (see Eq. 2.2 for details). Among all

subjects and face pairs, the similarity scores ranged from a minimum of -2.10 to a maximum 2.51.

The minimum confusability score among all subjects and all face pairs was 0, and the maximum

was 1.33. Distinguishability was defined as negative confusability (i.e., ranging from a minimum of

-1.33 to a maximum 0).

All 780 unique pairs of the 40 faces received explicit similarity scores by each subject in the

SimRate task, and a subset consisting of 118 face pairs received implicit similarity (confusability)

scores in the MorphDiscrim task. Importantly, two variants of the SimRate task were employed: in

one, subjects saw whole faces, including jaw and hairline, and in the other, these outer face features

were masked out. See Figure 2.4 for an example of both kinds of faces, and refer to Section 2.10.4

for more details on this. In MorphDiscrim, only the inner face stimuli versions were employed (to

increase difficulty and range of performance results). Unless otherwise stated, the SimRate results

presented will be based on whole faces.
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2.2.5 RSMs and RDMs

The result of the SimRate and MorphDiscrim tasks can be completely summarized in what we will

refer to as representational similarity matrix, RSM, or representational dissimilarity matrix, RDM

(one for each subject, for each task). In the case of MorphDiscrim, the values are confusability for an

RSM and distinguishability for an RDM. We will use these two somewhat interchangeably in some

contexts as the only difference between them is that one is the negative of the other. The RSM is a

symmetric matrix M whose entry Mij is the similarity (or confusability) measure between stimulus

i and stimulus j.
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Figure 2.7: Each subject’s raw performance on MorphDiscrim is shown as an single line (subject
number indicated at terminus), computed as the average over face pairs. Left : Each individual
subject’s performance in the morph discrimination task is shown for the three levels used: (1)
identical (faces actually the same), (2) mid ± 10%, wherein each face was 10% removed from the
midpoint between the pair (in opposite directions), and (3) mid ± 20%, wherein each face in the
pair was 20% removed from the midpoint. Note that subject S0 appears to be an outlier in “identical
condition”; she is also the outlier in Cambridge Memory – see Figure 2.32 for another comparison
of Cambridge Memory score and experimental task performance. Right: A confusability metric is
derived by dividing by fraction of trials indicated identical under the actually identical condition.

2.3 Raw performance results

In this section, we briefly discuss some of the raw performance results from SimRate and MorphDis-

crim, and show how they compare. More basic results are provided in the supplementary results to

this chapter: Section 2.9.
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Figure 2.7 confirms that subjects can more easily distinguish between faces on a morphing con-

tinuum which are further apart. When the face morph stimuli are very similar (only 20% separated,

± 10% from the midpoint between a base pair), subjects perform at roughly chance level on av-

erage, indicating in about half the trials in which the faces are presented that they believe them

to be identical. In the right panel of the same figure, we introduce a confusability metric, which

we define as the percentage of trials indicated identical when the faces are different, divided by the

percentage indicated identical when they actually are (see Eq. 2.2). This is computed separately for

each face. We note here that when we refer to distinguishability or confusability, we will be referring

to performance in the MorphDiscrim task, and when we refer to dissimilarity or similarity, we will

be referring to performance in the SimRate task.
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Figure 2.8: Subjects are consistent across the two types of face pair similarity tasks. Left: rela-
tionship between subject-averaged similarity and confusability. Right: each point in the left panel
corresponds to an average of 10 x- and y-coordinates, one per subject; each may be assigned a
single-face-pair correlation between (i) subject variability in SimRate and (ii) subject variability in
MorphDiscrim; the population of such correlations is shown for face pairs rated more similar than
average (similarity in SimRate > 0) – it is significantly to the right of 0 by 1-sided t-test.

The left panel of Figure 2.8 shows that the subject-averaged similarity for a face pair in the

SimRate task was correlated with the subject-averaged morph confusability, across the 118 face

pairs for which both were measured, at a level of .608, with significance p < 1.9× 10−11, computed

by an empirical significance test in which each trial used to form the null distribution corresponded

to a random shuffling of the rows of the SimRate-based RSM. Empirical significance tests are
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used extensively in this chapter and in this thesis; their p-values will often be denoted pshuff . The

general method is described in Section 2.10.1.3. Figure 2.9 shows the correlation between subject-

averaged dissimilarity and subject-averaged confusability across face pairs, and compares this with

distances based on low-level stimulus features.

Figure 2.9: The relationship between different measures of inter-stimulus distance (first subject-

averaged). We show the correlation between each such measure across face stimuli pairs. Distin-

guishability and dissimilarity are most correlated (0.608), whereas pixel-based distance and keypoint-

based distance are least (0.079). See Section 2.10.6 for methodological details and Section 2.9.4 for

a comparison of distinctiveness measures.

We were also interested in whether, irrespective of the subject-averaged similarity rating of a

pair, one subject’s rating a particular face pair as more similar than another subject in SimRate

would correlate with that subject’s confusing the faces less than the other subject in MorphDiscrim.

This is what the right panel of Figure 2.8 addresses. Conceptually, one can think of each point

in the left panel as hiding a constellation of 10 constituent points, one per subject, each with its

own x-coordinate (similarity value) and y-coordinate (confusability value). The right panel assesses

the correlation between this variability in x- and y-coordinates, ignoring their average for each face

pair, which is what the left panel correlates. We find that among faces which are rated as less

similar to each other than average, that is with SimRate score < 0, there is no relationship between

individual variability similarity rating and distinguishability: performance in the distinguishability

task hits a ceiling in that regime. However, for faces which were more similar (SimRate score >

0), distinguishability performance significantly correlated with this the explicit similarity score. We
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left out of this analysis (right panel of Figure 2.8) the 10 pairs of subject-and-sister faces, due to

an “insider information” effect we shall discuss later (in Section 2.4.2.1). If subject-sister pairs are

included in the right panel of Figure 2.8, the mean inter-individual correlation drops from 0.124 to

.096, and the 1-sided t-test drops from p < 0.002 to p < 0.01.

2.4 Familiar faces are more distinct
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Figure 2.10: A pair of faces, both familiar to a viewer, is more easily distinguished in MorphDiscrim
than it is by viewers unfamiliar with either face in the pair (i.e., data falls above y=x line on average).
The sizes of the circles correspond to the number of unfamiliar viewers averaged together for the
x-coordinate (this number varies due to the familiarity structure between subjects and stimuli).
The red colored circles correspond to the (self,sister) pairs of familiar faces, and are labeled with
the corresponding subject number. The mean displacement above the diagonal across data point is
0.266 and is reported in the title.

In this section, we show that pairs of faces are more easily confused (inside a morphing continuum)

by unfamiliar viewers than by familiar viewers. We also show that viewers explicitly rate faces as

appearing more different from each other when they are familiar with them, compared to ratings

by viewers unfamiliar with the faces. Both of these trends are true even when only one of the

faces is familiar to the viewer. Lastly, based on our limited data set, we show that pairs of entirely

unfamiliar faces are perceived to be more dissimilar and distinguishable when they are merely close

to a familiar face. These effects all point to the enhanced apparent distinctiveness of familiar faces.
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2.4.1 Effect on Morph Distinguishability

Figure 2.10 is the first in a series illustrating the enhanced distinctiveness of familiar faces. We see

that pairs of faces, when they are both familiar to a viewer, are distinguished much more easily than

when neither one of the faces if familiar to a viewer: the data lie above the y=x diagonal. In the

same figure, we see that for all but subject S7, the pair of (self face, sister face) can be more easily

distinguished by the subject viewing herself than by subjects unfamiliar with either.

Understanding the statistical significance values: The magnitude of the overall effect is

highly significant, with an empirical significance of pshuff < 7.4×10−6 (again, see Section 2.10.1.3);

the null distribution is generated by randomly shuffling the occupied entries of the RDM while

holding familiarity relationships constant. We tally the number of shuffled trials where at least as

great an effect magnitude (in this case ∆Dist24 samples= 0.266) is observed, establishing an empirical

significance measure. For such plots, we also report a “binomial” significance value, pbino, which is

the probability of observing at least as many data points with y-coordinate>x-coordinate (in this

case, distinguishability-to-familiar-viewer > distinguishability-to-unfamiliar-viewer) as we actually

do, assuming the probability of each such event were 50%.
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Figure 2.11: A pair of faces, with only one face familiar to a viewer, is more easily distinguished
in MorphDiscrim than it is by viewers unfamiliar with either face in the pair. The sizes of the
circles correspond to the number of unique combinations of unfamiliar viewers and unfamiliar faces
averaged together for the x-coordinate (each circle/point corresponds to a unique (viewer, familiar
face) pair) .
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We next investigate whether pairs of faces can be more easily distinguished even when only one

face in the pair is familiar to the viewer; this is what we will refer to as a half-familiar viewer

(or viewer only half-familiar with the pair). Figure 2.11 shows that such face pairs are indeed

more easily distinguished, though the boost in distinguishability falls from 0.266 in the case of fully

familiar pairs to 0.125 in the case of half familiar pairs. However, the effect is highly significant

under both empirical (pshuff < 2.9× 10−6 ) and binomial tests (pbino < 2.7× 10−7).
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Figure 2.12: A pair of faces, both familiar to a viewer, is rated more dissimilar than by viewers
unfamiliar with either face in the pair. The sizes of the circles correspond to the number of unfamiliar
viewers averaged together for the x-coordinate. (self,sister) pairs are excluded from this analysis due
to “insider information” bias.

2.4.2 Effect on Explicit Similarity Judgment

Having established that a face can be more easily distinguished from another by a familiar viewer,

we next test whether a face is also explicitly rated as more dissimilar by a familiar viewer. In

Figure 2.12, it is shown that pairs of faces are indeed rated as more dissimilar when they are both

familiar to a viewer than when neither of them is. The average boost in dissimilarity, relative to the

dissimilarity rated by unfamiliar viewers, is 0.294 (in Z-score range). That is, pairs of familiar faces

just look more different from each other than they would otherwise. We note that in this section,

we discuss SimRate results for ratings of whole faces, i.e. including outer features.
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2.4.2.1 Insider information: influenced by the expectation of familial similarity
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Figure 2.13: “Insider information” The similarity between a subject’s own face and her sister’s is

rated higher (to the right of 0 in the plot) than it is by entirely unfamiliar viewers likely due to

knowledge of the familial relationship not known to the unfamiliar viewers. This effect is significant

by two-sided t-test (p < 0.029).

In Figure 2.12, pairs of subject-and-sister faces are specifically excluded. Included, the average

dissimilarity boost drops from 0.294, to 0.189, although the effect remains on the whole statistically

significant. In fact, whereas pairs of faces both familiar are usually rated as more dissimilar than

they would be by unfamiliar viewers, this trend goes in exactly the opposite direction when the face

pair is the subject’s own face and her sister’s. This is what we will refer to as “insider information”:

the subjects themselves know that they are related to their sisters, and this information biases them

to report the faces as more similar looking, having knowledge that sisters typically do look alike

– they essentially know what the reporting should be. Despite this supposed perception of sibling

likeness, subjects exhibit a clear distinguishability advantage in separating their own faces from

those of their sisters (Figure 2.10); in that sense, the faces explicitly reported to look similar are

implicitly very different. Entirely unfamiliar viewers do not have knowledge of familiarity, and make

the dissimilarity judgment based on visual information alone. No other pairs of faces in our stimulus

set are affected by this bias (even if a subject is familiar with both faces in a pair, unless they are

sisters, they have no reason to believe a priori that they should look alike or not, on average).
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2.4.2.2 Half-familiar face pairs are rated as more dissimilar

Next, we see in Figure 2.14 that, just as with the distinguishability of faces, their explicitly rated

dissimilarity to others is greater even when only one of the two faces being compared is familiar to

the viewer; that is, the half-familiar viewer perceives a pair of faces to be more different looking than

an entirely unfamiliar viewer. The average dissimilarity boost is smaller, at only 0.146, than was

obtained for pairs of faces both familiar (0.294), but is highly significant: the probability of observing

so many (viewer, familiar stimulus) combinations with trend going in the same bias direction is

pbino < 0.00019. We note that for this analysis, face pairs with dissimilarity > -0.25 (as rated by

others) are excluded. As we shall discuss later in Section 2.5.2, this is because fair pairs which are

already very dissimilar looking do not become even more dissimilar looking once when of them is

familiar. However, this qualification is not necessary for the boost to be significant when considering

ratings between inner faces only. See the Supplementary Figure 2.37 for this.
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Figure 2.14: A pair of faces, with only one face familiar to a viewer, is rated as more dissimilar
(than by viewers unfamiliar with either face in the pair). The sizes of the circles correspond to
the number of unique combinations of unfamiliar viewers and unfamiliar faces averaged together for
the x-coordinate (each circle/point corresponds to a unique (viewer, familiar face) pair). Face pairs
rated greater than -0.25 in dissimilarity are excluded from analysis because they are less affected by
familiarity.
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2.4.3 Effect on neighborhood of familiar faces

familiar 
face 

d1 
d2 

d3 

Familiarity-induced expansions in face space 

unfam. 
face 

unfam. 
face 

“fam neighborhood”-type expansion 
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Figure 2.15: Illustration of changes in face space due to familiarity with a face stimulus. The

unfamiliar faces are assumed to be in the neighborhood of faces which look similar to the familiar

one, which we refer to as the “familiar anchor” of this region of face space, below.

We were interested in whether the expansion in face space around a familiar face (the perceptual

distancing, in dissimilarity judgment and distinguishability) extends measurably beyond comparisons

directly involving a familiar face. Figure 2.15 illustrates a second kind of change in face space we

might expect: that between two unfamiliar faces merely close to a familiar face (termed a “fam

neighborhood” expansion and denoted with red arrows). The problem with assessing this kind of

effect is establishing a perfect control subject, or contrasting case, because, based on the experimental

limitations, we could not know whether two faces were actually in the neighborhood of a face familiar

to a viewer, but one which was not in our stimulus set. Nonetheless, we could at least guarantee

that the control subject not have a familiar face, from our stimulus set, close to the candidate pair

of faces. We refer to this as the imperfect control condition. Below, we will refer to a viewer of

a face pair, who is unfamiliar with both faces in the pair, but familiar with a face close to the pair

(by some metric), as a quasi-familiar viewer.

We begin by examining the fam neighborhood effect on similarity judgments. Despite the imper-

fect control, Figure 2.16 confirms that, indeed, unfamiliar faces in the neighborhood of a familiar one

are perceived to look more dissimilar to one another relative to the judgments of non-quasi-familiar

viewers. In this case, non-quasi-familiar-viewers were viewers (i) unfamiliar with both faces in the

pair being compared (as was the quasi-familiar viewer), who (ii) did not have a familiar (level ≥ 7)

face stimulus in the neighborhood of either one, where the neighborhood was any face rated within
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Figure 2.16: The dissimilarity between a pair of faces is greater when rated by a quasi-familiar
viewer than by a properly selected unfamiliar control subject. The boost in dissimilarity shrinks
for increasingly loose definitions of a familiarity neighborhood, within which a viewer is said to
be quasi-familiar. The top left panel is most strict (effect size=0.261), top right less strict (effect
size=0.210), bottom least strict (effect size=0.159).



26

the top 60% of similarity, averaged across the 8 remaining subjects (not non- or quasi-familiar being

compared). The effect is most robust in the neighborhood of self face or sister’s face (effect size:

0.261), corresponding to familiarity ≥ 9, presumably because people have an especially great level

of expertise in this familial territory of face space, perhaps having other similar looking relatives

whose faces they learned. The effect size smoothly falls off to 0.210 when we include close friends

and to 0.159 when we loosen the quasi-familiarity level further.
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Figure 2.17: Distinguishability is relatively enhanced in the neighborhood of a familiar face. Left :
Faces pairs are selected for analysis if the are each close to a familiarity-level 8 or greater face, where
close means among 40% most confusable faces. Right: Faces pairs are selected for analysis if the are
each close to a familiarity-level 7 or greater face. Each data point corresponds to a unique selection
of (contrasting viewer, pair of faces being compared), but multiple data points can be produced
by the same quasi-familiar viewer’s distinguishability; points are colored by unique quasi-familiar
viewer.

Next we examine effects on distinguishability. Because subjects only performed the MorphDis-

crim task on a subset consisting of 118 face pairs, the number of qualifying comparisons available

was rather small. Nonetheless, in Figure 2.17, it is shown that when two faces are both among the

most confusable with a familiar face, the quasi-familiar viewer has an advantage in distinguishing

between them. We show that as we move from a more strict definition of familiarity neighborhood

(familiar anchor at familiarity level of at least 8), to a less strict one (anchor at familiarity level

of at least 7), this boost in distinguishability falls from 0.286 to 0.170. These effects are both di-

rectionally as we expect (having positive sign), although only weakly significant by the previously

employed RDM-shuffling empirical significance test. The limited number of face pairs for which we

have distinguishability levels and the imperfect control condition contribute to weakening the effect
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size and significance. However, we found that by holding the RDM constant and instead shuffling the

mapping between subject and stimulus familiarity, the empirical significance values improved: those

are the ones reported in Figure 2.17 (and Figure 2.16). This is likely because, compared to shuffling

the RDM, shuffling the familiarity mapping more completely disrupts the structure of distinctiveness

biases. For each pair of faces in the fam neighborhood, a non-quasi-familiar viewer (represented by

the x-coordinate in Figure 2.17) was qualified exactly as with SimRate above, except the face pair

was required to not be in the top 25%, instead of 60%, of similarity in comparison with any face

familiar to her (as rated by the other 8 subjects). The requirement was loosened in order to admit

enough data points for analysis.
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Figure 2.18: A summary of dissimilarity and distinguishability boosts for different categories of fa-
miliar (or quasi-familiar) face pairs. Standard error bars are computed over unique subject-stimulus
combinations (e.g., “unique viewer, familiar stimulus”), as described in the preceding section. Impor-
tant note: To make the comparisons across all three categories of face pairs meaningful, familiarity
was defined in each case (including quasi-familiar) to mean level ≥ 7. Note that is different from the
scatter plots shown in the preceding section, which also include faces with lower familiarity levels,
for completeness.

2.5 Factors affecting the enhanced distinctiveness of familiar

faces

2.5.1 Degree of familiarity and distinctiveness boost

To test whether the degree or level of familiarity with a face has an influence on its relatively

enhanced perceived distinctiveness, we grouped faces by type of familiarity relationship and plotted
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Figure 2.19: The degree of familiarity enhances distinguishability of faces (analysis is based on pairs
of half-familiar pairs). p-values are based on 2-sided t-tests.

the boost in distinguishability when comparing with an unfamiliar face. We find that, on average,

faces of oneself or one’s sister, or that of a good friend (familiarity 7 - 8), receive a larger boost in

distinctiveness relative to less familiar faces. The result is shown in Figure 2.19, which is essentially

the average displacement above the diagonal in Figure 2.11 by familiarity type, except leaving unique

second viewers as unique data points for more statistical power. We note that we left out face pairs

which had confusability score of less than 0.2 (33rd percentile), rated by the other 8 viewers, because,

as we shall discuss shortly, face pairs which are already easily distinguished do not gain much in

distinguishability from familiarity with one of them.

We find the same effect of greater familiarity level on face pair dissimilarity judgments. This is

shown in Figure 2.20. As with distinguishability, we find that the more a face is familiar, the more

its dissimilarity to other unfamiliar faces is enhanced. This boost is of greater magnitude for whole

faces, due likely to more complete recognition of the face, but the secondary trend of increasing

with familiarity level is weaker. One reason for this might be that, with outer features revealed,

even weakly familiar faces are easily recognized and thus perceived differently. The analysis is done

exactly analogously to the distinguishability analysis, including leaving out face pairs which are

already too dissimilar, as they are not affected by the familiarity of one of the faces (we leave out

faces below the 60th percentile of similarity judgment by the other 8 viewers).
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Whole Face (pairs others rated > 0.17)
Inner Only (all qualifying pairs)

Figure 2.20: The degree of familiarity enhances dissimilarity judgments (analysis is based on pairs
of half-familiar faces). The dissimilarity boost is generally larger for judgments between whole faces
(including outer features) than for pairs showing only inner features, possibly because faces are
recognized more readily and completely with jaw and hairline cues. p-values are based on 2-sided
t-tests.
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2.5.2 Baseline similarity/confusability and distinctiveness boost
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Figure 2.21: The extent to which a face pair becomes more distinguishable to a familiar viewer

depends on the underlying confusability of the pair.

As mentioned above, face pairs which are already very dissimilar or distinguishable, even without the

benefit of familiarity, do not gain much perceived dissimilarity or distinguishability when one of the

faces in the pair is familiar. This is reflected in the left part of Figure 2.21 and Figure 2.22, showing

a relatively smaller distinctiveness boost for the least similar face pairs. For these analyses, the

baseline similarity and confusability were established by taking the average among the 8 remaining

subjects not used to compute the difference (between the half-familiar’s and fully unfamiliar viewer’s

similarity ratings or confusability level). However, whereas the most confusable face pairs show a

relatively smaller distinctiveness boost (compared to ones in the middle of the baseline confusability

range), the most similar face pairs are the ones which show the greatest average distinctiveness

boost. We thought perhaps the difference in some of the experimental parameters (outer vs. inner

faces, different numbers of face pairs across experiments) might be responsible for this discrepancy,

but the same general trends hold, even when these differences are eliminated. One explanation

is that the MorphDiscrim task was simply too difficult for subjects near the high end of baseline
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face pair confusability, and so performance there floored, whereas face pairs near the middle of the

confusability levels just admitted a broader performance range within which the familiarity effect

could be measured: this would suggest that perhaps the most similar looking face pairs actually are

most affected by familiarity, both in terms of dissimilarity perception and distinguishability, but

that the nature of our experimental setup prevented the accurate measuring of the latter. In either

case, it is clear that the least confusable or similar face pairs are perceptually affected least from

familiarity.
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Figure 2.22: The extent to which a face pair becomes more dissimilar to a familiar viewer depends
on the underlying similarity of the pair.

2.6 Predicting familiarity from distinguishability

The results presented above suggest an interesting possibility: that from the performance of a subject

in discriminating between morphs on a continuum between a pair of faces, one could predict whether

the subject was familiar with one of the two base faces. We used a simple linear model which modeled

the binary familiarity with one of the faces in the pair (-1 for not, 1 for familiar above some threshold

level) as a combination of the confusability of the pair, as determined from unfamiliar subjects, and
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Figure 2.23: Based on the distinguishability of a pair of faces, it is possible to accurately predict,
using a linear model, whether they are familiar at or above some threshold level. The familiarity
of a pair is taken to be the maximum of the familiarity with either one of the faces in the pair.
Left: Average (across subjects) area-under ROC-curve showing the prediction performance level for
each familiarity threshold, Right: statistical significance of each performance level determined using
random shufflings of familiarity relationships.

the confusability by the test subject with possible familiarity:

M = [Cothers,mean Cothers,min Cself 1], model: Mw = F

where Cothers,mean is a column vector, one entry per face pair, containing the sample mean confus-

ability among subjects unfamiliar with the pair, Cothers,min is the minimum confusability among

these subjects, and Cself is the confusability as determined by the test subject. F is the column

vector of binarized familiarity. For each subject, we form a training data set by using data from all

the remaining subjects, left out one at a time (leaving 8 possible others), as test subjects to form

Cself , and then find the optimal w which minimizes ||F−Mw|| via standard linear regression. We

then apply this learned w vector to the left-out subject’s ratings and assess the predictiveness of

Mw as an estimate of F . The result is shown in Figure 2.23. The prediction performance associated

with the real-valued estimate Mw of the binarized familiarity F was determined by an area-under

the ROC-curve (AUROC) analysis in which, for each thresholding of Mw, a true and false positive

rate was established, yielding an ROC curve swept out by varying the threshold (Figure 2.24 shows

the individual ROC curves for the 10 subjects at threshold familiarity 7). The AUROC prediction

performance ranges from around 0.65 to 0.71, and is statistically significant as determined by trying
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to predict familiarity under a shuffled mapping of subject to stimulus familiarity. Higher levels of

familiarity are easier to predict from distinguishability performance, but prediction accuracy peaks

at separating self/sister (≥9) from all other types of familiarity (≤ 8). Separating the self face as

familiar from sister as unfamiliar, corresponding to threshold level 10, weakens prediction accuracy

slightly. As one would intuitively expect, the average weight vector w effectively subtracts the con-

fusability of the test viewer from that of unfamiliar viewers: the greater this difference, the more

likely the subject is actually familiar: the entry in w corresponding to Cothers,mean is positive on

average (0.4), and the one corresponding to Cself is negative (-0.8).
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Figure 2.24: ROC performance curves for predicting the familiarity (≥ 7) of each individual subject
from distinguishability performance. Subject S8’s familiarity level is most difficult to predict.

Predictability of familiarity from distinguishability and average familiarity effect

size: There were some individual differences in the extent to which a subject exhibited a boost in

dissimilarity judgments from familiarity with a face. If we rank subjects from most affected to least

affected, and also rank their predictability in the above analysis (AUROC) at threshold level 7, we

find a positive correlation between the two rankings (0.30), which is consistent with the positive

correlation, reported earlier and shown in Figure 2.8, between individual differences in dissimilarity

and distinguishability on single face pairs.
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2.7 Factors contributing to face similarity perception

Although stimuli were relatively small (9◦ × 12◦ of visual angle) and briefly displayed (200 ms),

thus discouraging both the need for and possibility of eye movements despite the experimental

instructions to stay fixated at the center, naturally different subjects would occasionally move their

eyes or covertly attend to different facial properties. In this section, we investigate how facial

features, both holistic and localized, weigh differently in the perception of familiar faces relative to

unfamiliar ones. We do this by modeling dissimilarity judgments between faces as driven by the

inter-stimulus distances between single features, such as eye position or attractiveness. Refer to

Section 2.10.5.2 for a detailed description of how a single feature is assigned a corrected significance

level in modeling the dissimilarity judgments.

2.7.1 Independently-rated face properties and dissimilarity

An entirely separate set of 10 healthy adult subjects (7 male) participated in an online experiment,

FaceRate, in which each of the 40 face stimuli in our data set were rated for 18 holistic and localized

features such as femininity, largeness of the eyes relative to average, and attractiveness. The face

features were rated by subjects on a computer, in their own home, taking as much time as they

wanted for each face, while being presented with the face stimulus (inner features only) on the

screen, and a sliding-bar interface like the one shown in Figure 2.25.

Figure 2.25: A snapshot of part of sliding bar interface used by subjects in FaceRate. This was
rendered in a browser and used by 10 participants to provide holistic and featural judgments about
the 40 face stimuli.

Each feature was to be rated between 0 (much less than average) and 100 (much greater than

average), and was initialized at 50. These ratings were then individually Z-scored (across stimuli)

for each rater. Finally, the 10 raters’ data were averaged together to form a single averaged Z-score
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Figure 2.26: Face dissimilarity judgments, between pairs of entirely unfamiliar faces, can be
statistically significantly modeled using distances between single features. The significance values
are written in the table and the color corresponds to −log10(p) . The values in the “All” row are
determined by modeling the subject-averaged dissimilarities.

metric for each of the face features. The rated face features are described in detail in Section 2.10.5.1,

but they have mostly self-explanatory names.

Figures 2.26 and 2.27 show the result of modeling dissimilarity judgments in SimRate using

the 18 face features provided by participants in FaceRate. Whereas in Figure 2.26 we model only

those dissimilarity judgments between pairs of unfamiliar faces, in Figure 2.27 we model only the

dissimilarity judgments between pairs in which at least one face is familiar. We see that for both

kinds of comparisons, the size of the eyes relative to the face is an important: if one face has

relatively smaller eyes, and the other relatively larger, this will on average be associated with a

higher dissimilarity. This is likely in part explained by the fact that subjects were asked to fixate

between the eyes.

The weights (−log10p) of features for the unfamiliar face pairs are on the whole positively cor-

related with the weights of features for familiar face pairs: there is an average individual subject

correlation across conditions of 0.23, and the subject-averaged weights correlate across conditions

at 0.28. However, there are also some important differences. Comparisons involving familiar faces

tend to use a broader range of face features than those involving only unfamiliar faces: this is seen
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Figure 2.27: Face dissimilarity judgments, between half- or both-familiar face pairs, can be
statistically significantly modeled using distances between single features. The significance values
are written in the table and the color corresponds to −log10(p) . The values in the “All” row are
determined by modeling the subject-averaged dissimilarities (among those who are familiar).

qualitatively by examining the relatively higher scattering of brightness values on the right side

of table showing weights for familiar comparisons. Also, whereas happiness does not significantly

model unfamiliar comparisons (p < 0.64), it does for familiar comparisons (p < 0.0002). Although

the faces were all supposed to be emotionally neutral, inevitably subtle micro-expressions leaked

through conveying some kind of nonzero emotional valence. The increased weighing of happiness in

familiar comparisons is consistent with the hypothesis that we are more sensitive to detecting the

emotional state of familiar faces.

2.7.2 Individual facial keypoints and dissimilarity

Using the locations of the annotated keypoints in the scale-normalized faces (i.e., the stimuli the sub-

jects viewed), we performed an analysis exactly analogous to the one on facial features above, except

with scalar distances replaced with Euclidean distances in 2D combining the x- and y-coordinates

of the keypoints. We used inter-stimulus distances between keypoints to model the dissimilarity

judgments of subjects. The results are shown on the average face (equally blended morph of all 40

stimuli) in Figures 2.28 and 2.29.
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Figure 2.28: Face dissimilarity judgments, between pairs of entirely unfamiliar faces, can be
statistically significantly modeled using distances between single features. The locations of keypoints
which significantly model (viz., having p ≤ 0.01) dissimilarity judgments between unfamiliar faces
are highlighted with a circular Gaussian kernel for illustration purposes. The standard deviation of
this kernel (0.5◦ of visual angle) was chosen to allow some fuzziness in the location of the underlying
driving features, and to allow overlap.
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Figure 2.29: Face dissimilarity judgments, between half- or both-familiar face pairs, can be
statistically significantly modeled using distances between single features, shown highlighted where
p ≤ 0.01. However, compared to judgments between unfamiliar faces, there are fewer significant
keypoint locations, possibly due to more holistic processing of familiar faces.
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For both comparisons involving familiar faces, and those which do not, we find individual facial

keypoints which can statistically significantly model dissimilarity judgments. However, we find

on average many more of these when modeling unfamiliar face comparisons. One possible simple

reason might be that we have fewer data samples of dissimilarity judgments involving familiar pairs,

so the average ratings are noisier and the individual ratings are sparse, making a significant fit more

difficult to achieve. However, this is unlikely because there were many examples of face features,

rated in FaceRate and shown above, which significantly modeled only the familiar comparisons,

not the unfamiliar ones, such as “nordicness” for subject S9, or “blemishedness” for subject S4, or

happiness for several others. A more plausible explanation is that familiar faces are perceived and

compared more holistically than unfamiliar faces, thereby eliminating a significant effect of any

one single keypoint location as our analysis here attempts to find for each individually. A related

finding was reported by Heisz et al. [40], in which it was found that familiar faces (though not

personally familiar) under free viewing (3 seconds, compared to our ≤ 0.2 seconds) were scanned by

eye movement less in some contexts (identity recall but not recognition of familiarity). If we suppose

that eye movements are more difficult to suppress or are otherwise more frequent for unfamiliar faces,

this might mean that locally salient visual information plays a larger role in unfamiliar faces than

for familiar faces.

The facial keypoint weightings in this subsection may be related to the independently-rated face

features weightings, shown in the previous subsection; we list here several examples of consistency

between the two: (1) subject S7 heavily weighs both nose-upturned-ness above, and nose keypoints

here, in the case of familiar face pairs, (2) subject S6 weighs “archiness” (extent to which eyebrows

are arched) heavily above, and eyebrow keypoints here, in the case of unfamiliar face pairs, (3) for

subject S0, eye size is significant in unfamiliar face pairs above, but it is not for familiar ones, and

the corresponding results are found with respect to eye keypoints here, (4) subject S8 heavily weighs

face wideness above, and here keypoints along the side of the face which would cue face wideness,

for unfamiliar face pairs, (5) the most significant rated feature above for subject S1 in the case of

familiar face pairs is eyebrow archiness, and the only keypoint location we find significance for here

is the tip of one of the eyebrows.

2.8 Discussion

In this chapter, we showed that familiarity with a face enhances its distinguishability from and

dissimilarity to others, and we found evidence that such perceptual distancing extends into the
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entire neighborhood of faces around a familiar one. We summarize these effects as a “distinctiveness

boost” given to familiar faces. We also showed that it is possible to accurately predict whether a

face is familiar based on a person’s ability to distinguish it from others. Lastly, we provided data

suggesting that familiar faces are processed more holistically and with more attention to emotion.

We began the chapter with a discussion of norm-based coding vs exemplar-based coding in the

brain. We discussed the implication that norm-based coding does not allow for familiar faces to look

progressively more distinctive as they are learned. Now, it is easy to imagine how our results are

consistent with the predictions of exemplar-based coding of faces, wherein each new face is represented

by its distances to familiar faces. If we assume that as a face is being learned its weighting in the

distances-to-references representation increases, thus adding a new and stretching dimension to this

face space, all faces would gradually push away from it, and from each other, leading to a perceptual

expansion of the face space around it, consistent with the one we experimentally observe. That

the effect should be limited to only the neighborhood of a familiar face can be accounted for if we

assume that reference faces beyond some threshold distance do not factor (e.g., one might not use an

Asian male face reference to distinguish between two Caucasian females); analogously, in the brain,

a neuron encoding a likeness to a reference face too dissimilar to the visual input may not fire at

all, thus not contributing to its representation. However, although our results are not compatible

with strictly norm-based coding of faces in visual cortex, it is our view that visual cortex likely

accommodates neurons implementing both norm-based and exemplar-based coding of faces.

It is easy to argue that the perception of familiar faces as more different looking confers an

evolutionary advantage: for example, this would make it easier to pick out a familiar face in a

crowd, thus facilitating more efficient acquisition of critical social information among competing or

cooperating animals. The relative ease of visual search for such a stimulus was demonstrated in a

classic paper by Duncan et al. [24], wherein it was shown that “[search] difficulty increases with

increased similarity of targets to nontargets”. So a target face which is perceived to look dissimilar

to nontargets would be found more easily. A related finding specific to faces was reported by Pilz

et al. [71], who found that faces which were studied in motion, rather than as still images, were

subsequently located more quickly in a visual search array.

Future directions: In defining familiarity, we did not account for number of stimulus presen-

tations. A follow-up longitudinal study could investigate the relationship between distinctiveness

and familiarity as they coevolve over the course of the experiment. Also, it may be interesting to in-

vestigate whether non-visual familiarity with a person may similarly enhance visual distinctiveness.
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For instance, in a laboratory setting it would be possible to present a subject with two face images:

both are seen for equal times; however, the subject may then have a phone conversation with one

of the two people whose faces she just saw (chosen randomly). One would then test whether the

face corresponding to the person the subject felt she talked to appeared relatively more distinctive.

Also, all the results presented in this chapter are based on adults with face recognition in the normal

range. This raises the question of whether individuals with prosopagnosia, or those at the highest

end of face recognition ability, would show a similar boost in distinctiveness perception of familiar

faces.
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2.9 Supplementary results

In this section, we provide supplementary results which test various low-importance hypotheses.

The figures and captions will be mostly self-explanatory based on the text earlier in the chapter.

Note that, after the supplementary results, there is also an Appendix (Section 2.10), which includes

experimental methods.
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2.9.1 There is consensus across subjects within tasks
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Figure 2.30: Each subject’s confusability between face pairs increases on average with the confusabil-

ity of face pairs as determined by other subjects (averaged across them), i.e., subjects are consistent

in confusing face pairs in the task MorphDiscrim.
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Figure 2.31: Each subject’s similarity judgments between face pairs increases on average with the

similarity of face pairs as judged by other subjects (averaged across them), i.e., subjects are consistent

in judging similarity between face pairs in the task SimRate.
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Figure 2.32: We tested whether a subject’s correlation to others’ ratings in SimRate (shown in the

title of each panel in Figure 2.31) was related to their performance on the Cambridge Face Memory

task, which tests face recognition ability. The two are positively correlated, even if we leave out

subject S0, who was an outlier in the Cambridge task. However, the few data points do not reach

statistical significance. For confusability, cross-subject consistency was not related to the Cambridge

performance; however, anecdotally, subject S0 who scored lowest on the Cambridge task also had

the fewest trials correct in labeling identical face pairs as such.

2.9.2 Unique subject pairs are similar across face similarity tasks

In this section, we test whether, if subjects A and B are provide more similar ratings in one exper-

imental session of SimRate than some other subject pair C and D, they will on average also have

more similar ratings in another session with entirely different face pairs. This is confirmed in Figure

2.33, and is consistent with the idea that subjects had a specific strategy when providing judgments,

possibly involving covertly attending to specific features. We also find that in the only batch shown

in the figure where the subjects’ faces themselves were not included (Extra (i.e., non-subject/non-

sister) v Sisters), consistency across subjects was the lowest. This is probably because those batches

were more boring to subjects, so their attention and performance suffered, leading to more noisy

judgments.
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Figure 2.33: Left: Correlation (across faces) between individual subjects’ ratings in individual

batches (labeled A-D) of SimRate. Right: The cross-face correlation in similarity judgments be-

tween unique pairs of subjects is correlated across batches.
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2.9.3 Siblings look alike
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Figure 2.34: As rated by unfamiliar viewers, sister pairs are more similar looking than random pairs

of faces. This histograms in gray show the distribution of similarity/confusability ratings, and the

pink lines indicate the where the similarity between a particular subject (labeled) and her sister

falls. Most of the pink lines lie to the right of the mean (shown in a dashed black line).

2.9.4 Comparison of stimulus distinctiveness measures

For this section, it is important to understand how pixel-based, keypoint-based (these last two being

governed entirely by the visual content of the stimuli and not filtered through the brain), similarity-

rating-based, and morph-distinguishability-based stimulus distances, and distinctiveness values, are

computed. For details on this, refer to Section 2.10.6. Also, see Figure 2.9 for a comparison of

stimulus distance metrics (rather than distinctiveness).
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Figure 2.35: The relationship between different measures of stimulus distinctiveness. We show

the correlation between each such measure across face stimuli. Distinguishability-based and

dissimilarity-based distinctiveness are most correlated (0.56), whereas distinguishability-based and

keypoint-based distinctiveness are least (0.011).

2.9.5 Familiarity effect on explicit similarity ratings: inner face only

The familiarity distinctiveness boost is observed on similar ratings based on inner-only face presen-

tations too.
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Figure 2.36: A pair of faces, with only inner features exposed, both familiar to a viewer, is rated
more dissimilar than by viewers unfamiliar with either face in the pair. The sizes of the circles
correspond to the number of unfamiliar viewers averaged together for the x-coordinate. (self,sister)
pairs are excluded from this analysis due to “insider information” bias.
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Figure 2.37: A pair of faces, with only inner features exposed, and with only one face familiar to a
viewer, is more rated dissimilar than by viewers unfamiliar with either face in the pair. The sizes of
the circles correspond to the number of unique combinations of unfamiliar viewers and unfamiliar
faces averaged together for the x-coordinate (each circle/point corresponds to a unique (viewer,
familiar face) pair). Note that unlike the complementary analysis in Figure 2.14, here we do not
exclude face pairs which are more dissimilar.
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2.9.6 Independently-rated face properties, orthogonalized

Figure 2.38: The top 8 principal components are illustrated above, together with the percent of

the variance they each account for (84% combined). Each component is named after its 4 highest-

weighted contributing properties (with sign in front indicating positive or negative). For instance,

the first component heavily weighs nordicness positively, and dark hair/eyes, and eyebrow bushiness

negatively. For each component, we show the 5 faces which maximize it (top row), and the 5 which

minimize it (bottom).
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We were interested in whether the contributions to dissimilarity ratings are more easily or accurately

explained by a PCA-orthogonalized version of the independently-rated face properties, rather than

the properties themselves, as many of the properties are correlated, such as femininity and attrac-

tiveness. To this end, we derived all 18 principal components (not dimensionally reduced, though

“orthogonalized” for 0 covariance), and computed, as before with the original properties, their con-

tributions to dissimilarity ratings of familiar and unfamiliar face pairs. The top 8 components are

shown in Figure 2.38, and the contributions are found in Figures 2.39 and 2.40. As with the original

analysis, information concentrated around the eyes dominates both types of face pair judgments:

the combined feature which best explains the dissimilarity ratings is “+bushiness +eyedroopiness

+noseupturnedness -eyesize”. However, unlike the previous analysis which suggested that familiar

face pairs are viewed more holistically, this one does not seem to suggest (or refute) that. The basic

result here is that the orthogonalized face properties are less scientifically informative about the

differences in perception of familiar vs unfamiliar faces than the original face property set.

Figure 2.39: The significance of the ability of the orthogonalized face properties to model dissimilarity
ratings, among unfamiliar face pairs, is shown. Color corresponds to −log10p.



52

Figure 2.40: The significance of the ability of the orthogonalized face properties to model dissimilarity

ratings, among half- or both-familiar face pairs, is shown. Color corresponds to −log10p.
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2.10 Appendix

Subjects provided informed written consent prior to the experiments. The Caltech Institutional

Review Board approved all experimental procedures.

2.10.1 Basic computational methods

2.10.1.1 Z-score

Suppose we have a set of real values {x1, x2, ... xn}. The Z-scored values x
�
i are

x
�
i =

xi − x̄

s
, where

x̄ = 1
n

�n
i=1 xi is the sample mean and s =

��n
i=1(xi−x̄)2

n−1 is the sample standard deviation.

2.10.1.2 Principal component analysis (PCA)

Suppose we have an m× n matrix A with rows summing to zero, where the columns index sample

vectors (e.g., each corresponding to one of n images), and the rows index their components (e.g.,

each corresponding to one of m pixels). The idea is that when we project A onto some subspaces of

Rm, we observe more variance among the sample vectors than when we project onto other subspaces.

Projecting A onto a dimensionally small subspace in which much of the variance is still present is

considered a reasonable means of dimensionality reduction. PCA finds an ordered list of orthogonal

directions in which the data are decreasingly variant [47]. This is done as follows:

We compute the singular value decomposition A = UΣV T (where U and V are orthonormal and

Σ is diagonal). This provides us with the principal components: the i
th column of U is the i

th most

variant direction in the data set, and for some desired number of reduced dimensions k < m, the

reduced data are in the k × n matrix Ak = (Uk)TA where Uk consists of only the first k columns of

U . In this thesis, when we refer to a q-reduced PCA representation of A, we mean Ak with k being

the minimal one such that
�k

i=1 σi ≥ q
�m

i=1 σi where σi are the diagonal components of Σ.

2.10.1.3 Empirical significance level

In many experiments, we obtain a particular experimental value whose statistical significance level,

or p-value, we wish to estimate. In order to do this without too many assumptions, we empirically

compute a null distribution by randomly perturbing some part of the computation in order to

assess the probability of obtaining the experimental value, or something even more favorable, under



54

different, “dummy” circumstances, such as a shuffling of stimulus order, but with all the rest of the

underlying structure left completely intact, together with systemic biases should they be present.

Suppose our experimental value is x and that the set of dummy values we obtain under the perturbed

settings is {d1, d2, ... dn}, and for simplicity that we wish for x to be greater than would be observed

at chance. We define an empirical p-value as follows:

pempirical �






1
n

�n
i=1(di ≥ x) if at least one diis ≥x

1− normcdf((x− d̄)/s) otherwise
(2.1)

where comparison is an operation yielding 1 if true and 0 if false, d̄ is the sample mean of the dummy

variables, s is the sample standard deviation, and normcdf() is the normal (Gaussian) cumulative

distribution function.

2.10.2 Stimulus image preparation

Figure 2.41: One of the 40 faces from the stimulus set (in a pre-normalized/pre-cropped version),

with the 83 keypoints which were manually annotated

Images were first manually annotated for facial keypoints (e.g., “left eye outer”, “left nose bridge

top”) by the author and Ronnie Bryan. We used 53 keypoints inside the face and another 30 along

the boundary of the face. Figure 2.41 shows the locations of these keypoints.

The images were then resized such that the average of the following metrics was equalized to 250

pixels across stimuli: distance between lateral extremes of eyes, distance between the tip of the nose
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and the left extremity of the mouth, distance between the ears, and distance between the top of the

forehead and bottom of the chin. The images were then centered (viz., eyes at the vertical center,

midpoint between eyes at horizontal center), converted to grayscale, normalized to have the same

mean and standard deviation of luminosity across pixels, and then pixel values less than .03 away

from black or .01 from white were set to .03 and .99, respectively. After this normalized rescaling,

the average distance between the lateral extremes of the eyes was 179 pixels.

Different elliptical masks were used to hide features outside of the facial interior: one which

revealed the face including the hair and jawline, and which which did not. Figure 2.4 shows the

result of both masking types.

2.10.3 Morphing faces

To form a blend between two faces, a linear combination between their keypoints was calculated, a

Delaunay triangulation was formed on the set of keypoints, and within each triangle, a linear trans-

formation was calculated mapping each base face’s two-dimensional coordinates to the intermediate

face’s coordinates, which was used to compute intensities for each point in the morphed face based

on the corresponding locations in each constituent base face. We used code from Ronnie Bryan for

this purpose. See Figure 2.42 to see the result of blending each subject with her sister.

2.10.4 Details of Experimental Tasks

In both experiments SimRate and MorphDiscrim, pairs of face stimuli were shown in rapid temporal

succession. Subjects were always asked to fixate on a white point in the middle of the screen, and

face stimuli quickly flashed in around this fixation point, centered between the eyes.

2.10.4.1 Experiment SimRate

The purpose of this experiment was to get explicit ratings of similarity between pairs of faces.

The subjects performed this experiment using both whole faces and just inner faces (see Figure

2.43 for comparison of results). In each case, subjects viewed pairs of different base faces in rapid

temporal succession, and were asked to key in a number between 1 and 8 (on a standard computer

keyboard) indicating how similar the presented faces in the pair were to each other (1=least similar,

8=most similar). Subjects performed several training runs first (on a separate set of faces), and

were instructed to try to use the full range of similarity values.

Trial Structure: Each face in the pair was presented for 200 ms, with a 100 ms intervening
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Figure 2.42: The ten subjects, their sisters, and 50/50 morphs between them. Each panel consists
of subject, morph, and sister in that order, respectively.
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Figure 2.43: Consistency across different types of tasks SimRate: Except for subject S3, the cor-
relation between the similarity ratings (across face pairs) was higher between (i) the subject’s own
ratings (whole-face ratings vs. inner-only), shown in blue, than between (ii) the subject’s inner-only
ratings and one other subject’s inner-only ratings; the gray bar represents the average inter-subject
correlation among 9 others for each subject.

mask matched for low-level spectral content (a “Fourier mask”). Subjects then had up to 5 seconds

to enter a response, and a random delay uniformly distributed between 0.9 and 1.5 seconds followed

that before the subsequent trial. Subjects all entered responses on all trials. See Figure 2.44 for a

graphical representation of this time-course.
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Figure 2.44: The time-course of a trial in the SimRate experiment, wherein subjects explicitly rated
the similarity between a pair of faces. A response is shown occurring randomly inside its allowable
range.

To discourage subjects from using very low-level image queues, and instead to pay more attention

to the structure of the face, independent Gaussian noise (see Figure 2.45) was added to each image

pixel with standard deviation .05. Subjects were asked to fixate on a point in the center of the



58

Figure 2.45: A face stimulus as it was seen for 200ms at a time during the SimRate task, with
Gaussian noise added.

screen; face stimuli were shown such that this point was centered between the eyes. Faces subtended

approximately 9°x12° of visual angle on the computer monitor.

Trial Blocks: All 780 unique pairs among the 40 faces were evaluated by each subject in a

series of experimental sessions occurring over several days according to subject availability. Each

experimental session was designed to last about 30 minutes (actual time depended on rate of subject

response and jittered delays), and repeated each unique pair exactly three times throughout the

session in order to assess subjects’ self-consistency with respect to this measure. The order of the

pairs, and order of faces within a pair, was randomly selected and different for each subject. Fur-

thermore, the order of experimental blocks was randomized and counter-balanced among subjects.

The 3 similarity scores in each session were averaged together, then Z-scored among all other face

pairs in that session (i.e., the sample mean was subtracted then the sample deviation was divided).

Inner and Outer SimRate batches: All 780 unique pairs of faces were ultimately rated in

SimRate, and some of them were rated using both inner-only faces and whole-faces. However, the

face pairs of (non-subject/non-sister, non-subject/non-sister) stimuli were rated only using inner-

face presentations, and the face pairs consisting of the (subject or sister, non-subject/non-sister)

stimuli were rated only using whole-face presentations. The two kinds of ratings are generally

pretty comparable, and where data from all 780 pairs is necessary (such as in modeling dissimilarity

using featural distances), these two kind of face presentations are combined into unified hybrid RDM,

which uses inner-only data where available and whole-face data elsewhere.



59

2.10.4.2 Experiment MorphDiscrim

The purpose of this experiment was to infer perceptual similarity between pairs of faces, or in other

words, to get implicit similarity judgments. To this end, subjects would see pairs of faces morphed

to various levels between a pair of base faces, in rapid temporal succession, and enter a key press

(on a standard computer keyboard), indicating whether they thought the two faces were identical

or at all different. The more poorly subjects performed at this task, the more similar the base faces

were inferred to look to the subject: equivalently, a subject who could easily distinguish between

the morphs was inferred to perceive greater differences between the base faces.

Experiments were set up such that in exactly half the trials the faces were in fact identical

(selected uniform-randomly from the four positions in the morphing continuum 10 and 20% away

from the midpoint), and in the remaining half, they were different. When face pairs were different,

they were evenly selected from one of two types: mid ± 10%, wherein each of the two morphs was

a mere 10% removed from the midpoint between the two faces (difficult trials), and mid ± 20%,

wherein each of the two morphs was 20% removed from the midpoint (less difficult trials, as these

were easier to tell apart).

Confusability and Distinguishability: For each unique pair of base faces, subjects had to

complete 10 trials in the identical condition, 5 trials in the ± 10%, and 5 trials in the ± 20%

condition. From these 20 trials, a “confusability” score between the base pair of faces was computed:

Confusbility � 1

2

(f10 + f20)

fident
, Distinguishability � −Confusability (2.2)

where fident was the fraction (out of 10) trials indicated identical (i.e., correctly) when the faces were

identical, f10 was the fraction (of 5) indicated identical (i.e, incorrectly) when the faces where in fact

± 10% away from the midpoint, and f20 was the fraction (of 5) indicated identical (also incorrectly)

when the faces where in fact ± 20% away from the midpoint. The closer this score is to 0, the more

distinguishable the faces would appear to the subject. A score of 1 would mean that the faces being

different did not lower the rate at which the subject indicated they were different, suggesting the

differences in the faces fell below some perceptual threshold. Other more sophisticated measures

(including an estimation of psychophysical thresholds) were also tried but this simple definition of

confusability and distinguishability yielded the cleanest most self-consistent results.

Trial Structure: In each trial, two faces (either identical or slightly different) were presented.

Each face was presented for 110 ms, with a 110 ms intervening mask matched for low-level spectral

content (a “Fourier mask”). Faces were presented for a relatively shorter time than in the SimRate



60

task so that performance was more variable and not perfect. Subjects then had up to 5 seconds to

enter a response, and a random delay uniformly distributed between 0.9 and 1.5 seconds followed

that before the subsequent trial. Subjects all entered responses on all trials. See figure 2.46 for a

graphical representation of this time-course.
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Figure 2.46: The time-course of a trial in the MorphDiscrim experiment, wherein subjects implicitly
provided information about the similarity between a pair of faces. A response is shown occurring
randomly inside its allowable range.

To discourage subjects from using very low-level image queues, and instead to pay more attention

to the structure of the face, pixel-wise independent Gaussian noise (see Figure 2.45) was added to

each image (independently) with standard deviation .05. Subjects were asked to fixate on a point

in the center of the screen; face stimuli were shown such that this point was centered between the

eyes. Faces subtended approximately 4.9°x6.6° of visual angle on the computer monitor. As in the

shorter trial times, faces were relatively smaller than in the SimRate task so that performance was

more variable and not perfect.

Trial Blocks: Of 780 available unique pairs among the 40 faces, only 118 were evaluated in

experimental sessions by the subjects in MorphDiscrim, with the same exact pairs for each subject,

due to practical constraints (at about 20-30 seconds per pair, subjects would get too exhausted

doing all 780). These pairs included subject-sister pairs, and 108 others selected to span a range

of similarity levels. Blocks of trials were organized into roughly 30-minute chunks, occurring over

several days according to subject availability, randomized and counter-balanced among subjects, and

within which trial order (including face order within a trial) was randomized independently for each

subject.
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2.10.5 Rated face features (FaceRate): description and modeling of dis-

similarity

2.10.5.1 Description rated face features

All ratings were asked to be made relative to the average, directly-gazing, neutral-expression

Caucasian female. The features listed above are in order of average weight, decreasing from the top,

determined by fitting to the subject-averaged dissimilarity ratings (including familiar and unfamiliar

face pairs). Many of the features were a bit difficult to infer from the grayscale, inner-only, face

stimuli used. For example, face wideness is conveyed only by subtle variations in the arrangement

of inner face features and shading.

2.10.5.2 Modeling dissimilarity using distance between facial features

Suppose we have a real-valued candidate feature fs for face stimulus s. This might be, for example,

the x-coordinate of the nose tip in the normalized face coordinates, or the Z-scored extent to which

the face features holistically appear to be close together relative to average (“pinchedness”). We

assign the candidate feature a corrected statistical significance value using a three-step procedure:

(1) We determine the p-value of the F-statistic measuring the goodness of the linear fit:

Mk =
�
||fi − fj ||2 1

�
, model: Mw = D,
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where M is a matrix having two columns (each row is Mk), the second only containing the constant

1, the first containing, for each unique pair of stimuli k = (i, j), the inter-stimulus (squared) distance

between the candidate feature values, and D is a column vector containing in each entry the corre-

sponding dissimilarity (rated in SimRate) for stimulus pair (i, j). The goal is to determine whether

the dissimilarity between faces can be significantly explained by only the differences measured in

the candidate feature, for example, differences in nose tip location. The F-statistic is the standard

textbook one comparing the explained variance to the unexplained variance.

(2) In order to further control for spurious fitting of the feature distances to dissimilarity values,

and to create a more fair comparison between features, we Z-score the negative log p-value, by

generating a large sample set of empirical ones, derived by fitting the same features, only randomly

shuffled with respect to stimulus identity, to D. We call this measure Z-score-p. This provides us

with a measure roughly telling us how unusually good the fit is relative to what we would expect at

chance given the dynamic range of the candidate feature in the stimulus set.

(3) Because we test a larger number of candidate features at once (K=18 rated face features in

one case, or K =83 annotated keypoint coordinates in the other), we finally assign the candidate

feature a significance value by determining the probability of observing a value of Z-score-p or

greater extremity in a population of K normally distributed values.

2.10.6 Computing inter-stimulus distances and distinctiveness values

See Figure 2.9 for a comparison of stimulus distance metrics, and Figure 2.35 for a comparison of

stimulus distinctiveness measures.

2.10.6.1 Computing inter-stimulus distances

Pixel-based distances: Face stimuli were first resampled (with bicubic interpolation) to 25% of

their original dimensions, yielding faces with a distance between the lateral extremes of the eyes of 45

pixels. This was intended to effectively reduce the importance of high spatial frequency information.

Then, each pixel intensity in each image was Z-scored relative to the other stimuli in the stimulus

set. We then treated each face stimulus as a vector with m pixels, one per component, and computed

an 0.8-reduced PCA representation (see above, Section 2.10.1.2) of these face vectors, yielding only

37 components per face. The Euclidean distance between these reduced vectors is what was used

as the pixel-based inter-stimulus distance. The correlation between this pixel-based metric and the

simplest possible one (mean pixel-wise square-difference between full-sized images) is 0.68. Whereas
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the simplest pixel-based metric correlates with the dissimilarity ratings at a level of 0.10, this method

correlates at a level of 0.17.

Keypoint-based distances: Using the coordinates of the annotated keypoints of each face (in

the normalized, centered, space) we Z-scored each x- and y-coordinate independently relative to the

other stimuli in the set. This yielded a matrix of dimensions 166×40, with one column per face, and

one row for each x- and y- coordinate of the annotated keypoints (83 of them). We then computed

an 0.8-reduced PCA representation of this, yielding 21 components per face. The euclidean distance

between these reduced vectors is what was used as the keypoint-based inter-stimulus distance.

2.10.6.2 Computing stimulus distinctiveness values

Pixel-based distinctiveness: The mean pixel-based distance to the other faces is used (see

above).

Keypoint-based distinctiveness: The Euclidean distance between each of the candidate face’s

keypoints and the corresponding ones, averaged across all the faces, is computed, then Z-scored

relative to the population of corresponding distances among the other stimuli. For instance, the

nose tip may be one standard deviation away from where the average nose tip is. This yields 83

Z-scored facial keypoint distinctiveness measures per face. The keypoint-distinctiveness of a face is

taken to be the average among these.

Morph-distinguishability-based (“morph dist.”) distinctiveness: The subject-averaged

distinguishability (negative confusability) to other faces (among those which were compared) is

averaged across other faces.

Dissimiliarity-ratings-based distinctiveness (“dissim. MDS”): In order to compute dis-

tinctiveness values based on dissimilarity ratings, we first used the dissimilarity RDM as the input

to MATLAB’s default multidimensional scaling (MDS) algorithm (mdscale, all parameters default),

with 2 dimensions. This finds a locally optimal assignment of 2 coordinates to each face, such

that the euclidean distance between them is tightly correlated with the dissimilarity. In general,

of course, RDMs will not lend themselves to perfect reconstruction from an underlying 2D space;

nonetheless, this is a good way of simplifying the dissimilarities between the faces. The result of

running MDS on whole-face dissimilarity ratings and inner-face dissimilarity ratings is shown in

Figure 2.47. The distinctiveness of a face is taken to be its distance from the origin in the 2D MDS
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space (the MDS algorithm’s convention is that the origin is always the average of all the x- and y-

coordinates). This turns out to correlate better with explicitly-rated stimulus distinctiveness (pro-

vided in an experiment in Chapter 3) than simply taking the mean dissimilarity to other faces as we

do with morph-distinguishability-based distinctiveness for lack of having a full set of face pairs. The

MDS-based distinctiveness values correlated with these explicit ratings of distinctiveness at a level

of 0.56 among the base 40 faces, compared with a correlation of 0.45 using the mean dissimilarity

to other faces.
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Figure 2.47: The result of reducing the subject-averaged dissimilarity judgments in SimRate to 2D,

using multidimensional scaling, and only 20 of the stimuli. Left: Based on judgments of whole faces.

Right: based on judgments of inner faces only. Sister pairs are color coded; notice that they are

close together on average. The distinctiveness of a face is taken to be its distance from (0,0) in this

space.
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Figure 2.48: Answer key to Figure 2.3: subjects are shown with their corresponding sisters.



66

Chapter 3

Distinctive and personally familiar
faces elicit more consistent patterns
of neural activity across trials

In the last chapter, we showed that faces of those personally familiar to a viewer appear to look

more distinctive than they actually are, as perceived by unfamiliar viewers. In this chapter, we

further develop this relationship between distinctiveness and familiarity. We show that, in the

brain, both are associated with increased cross-trial1 neural pattern similarity (below, “pattern

consistency”, “neural consistency” or simply “consistency”). Among familiar faces, those which are

especially distinctive to the viewer are more consistent than those which are not. Furthermore,

individuals who rated an unfamiliar face as especially distinctive in the experiments in Chapter 2

are, as found in the experiments of this chapter (which began several weeks later), more likely to

have consistent patterns of activation in response to it, in amygdala and hippocampus. Finally,

we find that the distances between faces, as induced by spatially distributed patterns of activity,

are positively correlated across subjects in visual cortex. Throughout, neural pattern consistency is

shown to be a robust measure, independent of aggregate neural activity localized to the region in

which the consistency is computed; consistency is enhanced even when local activation magnitude

is decorrelated from it, and even when the activation in a region is slightly depressed.

Many authors have previously investigated familiar and distinctive faces and their representation

in the brain. It has been shown that personally familiar faces elicit relatively enhanced neural activity

in areas including amygdala [31], inferior parietal lobule, middle frontal gyrus, middle temporal

gyrus, and supramarginal gyrus [72], that they are recognized more quickly [75], and that they

are represented more invariantly in some face-related areas of the brain, in terms of being less
1
“trial”, here, is meant to encompass both individual experimental trials and averages of them within a single

experimental session (more on this in Section 3.9.7)
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sensitive to changes in face orientation [25]. Loffler et al. [60] showed that the distinctiveness of a

synthetic/cartoon grayscale face, directly varied by computer manipulation, was positively correlated

with magnitude of activation in the fusiform face area (FFA). Relatedly, Golby et al. [32] showed in

a group of European and African American men that same-race faces are remembered more easily

and elicit a greater magnitude of response in the fusiform face area.

However, neural pattern similarity, of the kind computed in this chapter, is a relatively new

method of analysis, popularized by Kriegeskorte [56], and not many studies have employed it. Of

those which have, the most relevant for this chapter is an experiment by Xue et al. [102], in which,

using a subsequent memory paradigm developed by Brewer [11] and Wagner [100], neural pattern

consistency was linked to memory encoding strength, tested 1 to 6 hours after scanning, for both

faces and words, in areas including lateral occipital complex and inferior parietal lobule. In this

chapter, we attempt to understand the origins of neural pattern consistency, and provide several

lines of evidence suggesting that distinctiveness, neural pattern similarity/consistency, and memory

are closely related in visual cognition.

3.1 Basic experimental setup and preliminaries

3.1.1 Participants and face stimuli

Participants and stimuli were are all identical to those described in Section 2.2, except with the

addition of forty morphed faces, blended from the original forty “base” stimuli. This brings the

total number of face stimuli to 80. All results in this chapter are based on this set of 80 faces

unless otherwise noted. The motivation for introducing an additional forty faces was twofold: (1) to

increase the number of stimuli and therefore number of data points on which to perform statistical

analyses, (2) to introduce a new set of faces, interleaved randomly with the base faces, which have

lower distinctiveness on average (by construction), in order to increase the range of distinctiveness

among the stimuli. The forty morph faces were constructed as follows: (1) ten of the morphs were

50% blends between a subject and her sister, (2) twenty nine of the morphs were 50% blends between

two faces not personally familiar to any of the subjects, and chosen to range in distinctiveness, and

the remaining one face stimulus was equally blended from all forty base faces, we here call it the

“average face”. Figure 3.1 shows these additional forty faces used in this experiment (Figure 2.5

shows the other, “base” faces). We note that subjects only viewed inner faces for this experiment,

and that the familiarity level of a morph was defined for a viewer as the average familiarity among
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Figure 3.1: The forty morphed face stimuli used in the fMRI experiment (FaceView). The first ten
(left-to-right, top-to-bottom) are the subject-sister morphs, the next twenty-nine are the unfamiliar
faces morphs, and the one in the lower right is the morph of all forty base faces (“the average face”).

the constituent faces.

3.1.2 Experimental Tasks

In the main experiment, which we call FaceView here, subjects viewed faces presented one at a

time in an fMRI scanner (see Section 3.9.1 for details). After the presentation of each face, they were

instructed to enter a 1 (least) to 6 (most) distinctiveness rating using keypad controllers in both

hands (3 buttons per hand). Guidelines were given for distinctiveness prior to scanning as follows:

“What we mean by distinctiveness is: How unusual looking is this face? How much would

this face stand out to you in a crowd? How different is this face from a normal face? It

can be unusually attractive, or unattractive, or unusual in any other way. How striking

is this face? Try to base your judgment on a holistic impression of the face.”

In order to minimize the effect of eye movements, subjects were instructed to fixate, faces were only

up for 500 ms at a time, and stimuli were sufficiently small to mostly fit inside foveal and parafoveal

vision (5°×6.7°). Each face in our stimulus set was viewed in two independent scanning sessions,

occurring a median of 2.24 days apart, and multiple times (average 4) within a session, at an average
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delay of 2 minutes 47 seconds. Additionally, subjects participated in two “functional localizer” tasks,

which were used to determine the location of face-selective clusters in their brains (see Section 3.9.4).

3.1.3 Categorical familiarity and distinctiveness

First, we note that, in the scanner, subjects rated faces which were personally familiar to them as

more distinctive, on average, than viewers unfamiliar with those faces. If we take the definition of

unfamiliar as familiarity level 0, and familiar as having familiarity > 7, the boost in distinctiveness is

+0.23 standard deviations of ratings, and the population of ratings contrasts (familiar - unfamiliar),

of which this is the mean, lies to the right of 0 by 1-sided t-test with p < 2.5 × 10−4. If we loosen

the definition of unfamiliar as having familiarity level ≤ 3, and loosen the definition of familiar to

≥ 7, we find an average boost of +0.13 standard deviations with a significance of p < 0.011. These

results from explicitly-reported distinctiveness values are in line with what we found earlier through

an analysis of face pair ratings in Chapter 2.

In this chapter, much of our analysis will depend on categorizing faces into three disjoint sets

(familiarity levels the same as defined in Chapter 2, Section 2.2.3):

1. familiar – these are defined as those faces for which the subject is familiar at a level of 7 or

greater

2. distinct (and unfamiliar) – these are defined as faces having familiarity 3 or less, and being

in the top 40% of distinctiveness ratings of all faces according to some distinctiveness metric

3. indistinct (and unfamiliar) – these are defined as faces having familiarity 3 or less, and

being in the bottom 40% of distinctiveness ratings of all faces according to some distinctiveness

metric

We modified the categorical familiarity thresholds relative to Chapter 2 (unfamiliar is ≤ 1 → ≤

3, familiar is ≥ 2 → ≥ 7) because we wanted to restrict “familiar” to mean, at a minimum, good

friend seen frequently, in order to emphasize the neural differences. Refer to Section 3.9.2 for an

explanation of different distinctiveness measures explored. We note that, unless otherwise stated, the

default distinctiveness measure used was pixel+scanner, a combination of a subject’s in-scanner

distinctiveness rating of a face, together with a pixel-based measure of distinctiveness. This measure

unifies the most high-level measure (explicitly provided rating) possible together with the most low-

level measure possible. This measure is very highly correlated (≥ 0.84) with its two constituent

components, and so results based on using one of the two base metrics are essentially the same.



70

Also, although not always stated, distinct and indistinct faces are always unfamiliar (familiarity

≤ 3) as described above.

3.1.4 Brief explanation of analyses used in this chapter

3.1.4.1 Two neural measures: magnitude and consistency

Throughout this chapter, we will extensively discuss two neural measures, each defined per subject,

per brain region, per face stimulus:

1. magnitude: the aggregate (based on median) response magnitude across voxels in the region

(see Section 3.9.6 for details)

2. consistency: a measure of similarity between the spatially distributed neural response pattern

at one time, and that to the same stimulus at another time (see Section 3.9.7 for details)

These values are residualized for experimental artifacts such as the delay between trials and the

variability in button presses. See Section 3.9.9 for details on residualization. Most importantly,

the consistency values are always magnitude-residualized. This is because, if the overall level of

activation within a region is enhanced, the SNR is higher at a constant noise level, and so measures

of consistency would naturally be expected to increase as well. To eliminate this correlation we

have in every case2 regressed out response magnitudes from consistency measures within a region.

Finally, these measures are always shown and referred to Z-scored relative to the set of 800 (subject,

stimulus) values. The consistency measure used combines both cross-session consistency, and cross-

trial consistency, which is based on estimates of face responses at individual face presentation trials

within an fMRI scan. These two types of consistencies were correlated (see Supplementary Figure

3.39 and Equation 3.3), results were similar between them, and combining them provided us with

more statistical power.

3.1.4.2 Two types of brain region exploration: ROI-wise and map-type

We perform two basic types of analyses in this chapter, which we term ROI-wise and map-type.

Both rely on identifying a specific region within the brain, meaningfully defined across all subjects,

and then pooling together magnitude and consistency values across subjects and faces in this region,

and, for example, computing their average.
2
except where noted otherwise, in a few select figures for which this was specifically undesirable



71

left lateral!

left medial!

right lateral!

right medial!

Figure 3.2: The MNI template brain (Montreal Neurological Institute, based on the work of Collins
[16]) on which results are shown throughout the chapter. For reference, occipital lobe is colored in
green, temporal lobe in blue/lavender , and frontal lobe red . The uncolored portions correspond to
parietal lobe and limbic lobes. The lateral and medial views of each hemisphere of the brain are
shown on corresponding sides of the figure. Note that in order to bring visual cortex (which extends
along the inferior surface of the temporal lobe) into better view, all brains are actually rotated along
the horizontal axis into the page by 30◦, such that the topmost part of the lateral views is actually
closer to inferior parietal lobe, and actual superior parietal lobe is tucked slightly out of view.

1. ROI-wise analyses are based on anatomically and functionally defined regions and are shown

as bar plots. Only two types of functional regions are used: FFA and Face. FFA consists of

face-selective clusters in the fusiform gyrus. “Face” consists of face-selective clusters all over the

brain and including the fusiform gyrus. See Section 3.9.4 and Figure 3.35 for more information

on these clusters and how they were localized.

2. Map-type analyses are based identifying a large collection (1078 total) of comparable regions

(“spheres” of voxels) spanning the whole brain, then combining them all together onto into

a single map, shown on a cortical surface like the one labeled in Figure 3.2.

ROI-wise analyses are advantageous because they allow us to focus on one specific region with clear

function and anatomical boundaries. Map-type analyses are advantageous because they allow us to

visualize how a particular effect varies smoothly as we move over the entire brain. Refer to Section

3.9.8 for details on how these are computed. The surface maps are always shown with the left

hemisphere on the left, and the right hemisphere on the right, and rotated around to show both the

lateral and medial surfaces.
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3.1.4.3 Two kinds of statistical significance tests: empirical and t-test

For a specific region, and a particular measure (magnitude or consistency), we will compute two types

of statistical significance values and will occasionally refer to one or the other or both depending on

the context:

1. empirical significance level (denoted below p or pshuff ): the estimated probability of

observing an effect size of equal or greater extremity, pooled across subjects, under a randomly

shuffled mapping of values (magnitude or consistency) to stimuli (with an identical shuffling

order for each subject). This is the preferred and default test used in this chapter (i.e., unless

noted p values will derive from this test) as it leverages the large number of data points driving

the trend and is suited for this style of experiment in which a very thorough analysis is carried

out on a relatively small number of subjects (10).

2. t-test significance (denoted below pt): the probability of observing an effect size of equal

or greater extremity, based on the distribution of exactly and only the 10 individual subject

values, using the standard 1-sided t-test based on sample mean and variance. Although this

type of test is more well suited for an experiment (unlike our own) with a very large number of

subjects and a relatively small number of data points per subject (as it collapses across them),

it does provide us with another view of the statistical reliability of the results.



73

3.2 Personally familiar and distinct faces elicit more consis-

tent neural patterns in visual cortex

All values are  
Z-score !100 

fusiform gyrus 

inferior 
parietal 

precuneus 

occipital & 
temporal!

Figure 3.3: All values are Z-score×100; middle of the range is zero (light blue is negative). Top left:

Familiar faces are represented very consistently all throughout the brain (especially inferior parietal,

precuneus, and fusiform gyrus); note scale bar goes to 50 (Z-score 0.5) Top right: Distinct faces are

represented more consistently than average in occipital and temporal lobe; note scale bar goes to 8

(Z-score 0.10). Bottom: Indistinct faces are less consistent than average in occipital and temporal

lobe. Note that left sensorimotor cortex (seen clearly at the boundary of parietal and frontal lobes

laterally, at the central sulcus) has high consistency for distinct faces, and right sensorimotor

cortex has high consistency for indistinct faces, because the contralateral hands were used to enter

high and low distinctiveness ratings respectively (see Section 3.9.11 for more careful explanation).

This is purely an artifact of the experimental design and scientifically unimportant.
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In this section, we focus our analysis mainly on visual cortex, namely occipital lobe as a whole, LO

(lateral occipital cortex), and V1/V2.

We begin with an analysis of the consistency of familiar faces, unfamiliar but distinct faces

(below simply “distinct” or “distinctive”), and unfamiliar indistinct faces (“indistinct”). Inspecting

Figure 3.3 reveals a simple trend: familiar > distinct > indistinct. Familiar faces are represented

most consistently, distinct faces are more consistent than average, but less so than familiar faces,

and indistinct faces are represented least consistently. It is important to understand that figures

like Figure 3.3 represent results pooled across all subjects. For instance, the color of a point in the

“Familiar Faces” brain shown in that figure represents the average consistency among the subset of

the 800 (subject, face stimulus) pairs which satisfy the familiarity condition.

The contrast between distinct and indistinct faces is clearly seen in occipital and temporal areas,

including fusiform gyrus. For a statistical map of pairwise comparisons between stimulus categories,

see Figure 3.4. Averaging consistency over all occipital voxel spheres3, we find that familiar faces

(cfam = 0.31) are more consistent than distinct faces (cdct = 0.070: cfam > cdct with p < 0.0034,

pt < 0.011) and indistinct faces (cind = −0.10, cfam > cind with p < 3.1 × 10−6, pt < 0.0022), and

distinct faces are more consistent than indistinct faces (cdct > cind with p < 8.5× 10−5, pt < 0.034).

To compare consistency types, the analogous results based on cross-session consistency alone are:

cfam > cdct with p < 0.011, cdct > cind with p < 5.0 × 10−5, and the results based on cross-trial

consistency alone are cfam > cdct with p < 0.0020 and cdct > cind with p < 0.11. These are

representative results, in the sense that the combined consistency metric provides effects which are

directionally equivalent to the cross-trial and cross-session consistencies, but often with improved

significance.

Consistency in early visual cortex in the absence of increased activation: Notably,

whereas familiar faces are considerably more consistently represented than distinct faces in the oc-

cipital lobe, they do not activate this part of cortex more than distinct faces. The average magnitude

of response across the occipital spheres for familiar faces is mfam = 0.029, compared with an aver-

age magnitude of response to distinct faces of mdct = 0.082: in fact familiar faces activate occipital

cortex less than distinct faces (though not significantly), despite being much more consistently rep-

resented there. See Supplementary Figure 3.14 for the average magnitude of response to familiar,

distinct, and indistinct faces, mapped across the entire brain. Enhancements in neural consistency

in regions where there is no enhanced aggregate activation can also been seen in Figure 3.5. In
3
voxel spheres based on (i.e., centered in or stepped from the center of) a region which is labeled by freesurfer as

being occipital. See Section 3.9.8.
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Figure 3.4: Voxels which, on average over the spheres which contain it, have significantly different
consistencies for a category of face stimulus (familiar, distinct, or indistinct) are highlighted. Note
the region of statistical significance for the comparison Distinct > Indistinct in occipital and posterior
temporal regions. We map the average empirical statistical significance values using −log10p scale.

V1/V2, distinct faces are more consistent that indistinct faces with p < 0.001, despite not having

an enhanced response magnitude there. Also in V1/V2, familiar faces are more consistent than

both distinct and indistinct faces with p < .001, and also despite showing no significant increase in

activation magnitude. The same relatively-consistent-but-not-relatively-activated trend is present

in LO, for familiar faces.

In line with Loffler’s finding [60], we do find that activation magnitude is greater for distinctive

faces in FFA, together with consistency. Interestingly, in Supplementary Figure 3.18, it is shown

that compared to indistinct faces, distinct faces are relatively activated (p < 0.01) and consistent

(p < 0.1) in hippocampus, suggesting that they may be better encoded into memory across trials or

experimental sessions.
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Figure 3.5: Average (across subjects and stimuli) response magnitude and consistency are shown for
several regions of interest (SupFront is superior frontal lobe), including FFA and the union of all face
selective clusters (“Face”). In each region, we show the average neural measure for each category
of face stimulus: familiar, distinct, and indistinct. To provide a graphical representation of the
variability across subjects, standard error bars are computed over the distribution of 10 individual
subjects. The empirical significance of pairwise comparisons is indicated according to the convention
described in Table 3.1 and used in all subsequent figures. Notice that familiar faces do not have
enhanced activation magnitude (indicated with gray bars) in V1/V2, or LO (lateral occipital cortex),
though they do have enhanced consistency in those regions. An extended version of this figure, with
more ROIs, is available as Supplementary Figure 3.18.

symbol p-value range
~ (0.05, 0.1]
* (0.01, 0.05]
** (.001, .01]
*** (.0001, .001]
**** (0, .0001]

Table 3.1: Significance values in bar plots will be denoted with the symbols above.
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Familiar faces are generally very highly consistently represented in visual cortex and throughout

the entire brain, showing a global enhancement in consistency of response but not a global enhance-

ment in magnitude of response. Three regions are conspicuously more consistent for familiar faces:

these are precuneus, inferior parietal cortex, and left fusiform gyrus. We first consider the effect in

fusiform gyrus, which contains FFA. Of course, it is not surprising that this is a region of especially

high effect size as it is a region specifically responsible for encoding faces. We find that, in left

FFA, familiar faces have an average consistency value of cfam = 0.44, whereas distinct faces have

cdct = 0.014, and indistinct faces have cind = −0.10. The average consistency values in the right

hemisphere FFA are 0.24, 0.052, and -0.067 for familiar, distinct, and indistinct faces, respectively.

The fact that familiar faces are ones which evoke memories of specific names, involving language,

and that language is a left-hemisphere-dominant function, may explain why this effect of consistency

in FFA is left-dominant: unresidualized4 consistencies for familiar faces in FFA are greater in left

than right hemisphere with pt < 0.087 over the set of 10 subject differences. Language areas may

preferentially feedback to visual areas within the same hemisphere, to reinforce a more consistent

representation. We will revisit this in Section 3.3, below. There is no clear laterality effect in

activation magnitude of familiar faces (Supplementary Figure 3.14).

Next, we consider precuneus, which is both relatively activated and relatively consistent bilater-

ally for familiar faces. The precuneus has been implicated in a wide variety of high-level processes,

including self-consciousness and episodic memory [14]. Taylor et al. [89] reported an increased ac-

tivation in precuneus for self-face and partner’s face relative to baseline neural activity. Although

we do not find that it is especially strongly activated for self-face stimuli as compared with other

types of familiar stimuli (see Supplementary Figure 3.25), familiar faces do certainly evoke more

memories and require more self-reflection (e.g., “this is my sister” or “this is my friend”) than totally

unfamiliar faces, so the strong response there is compatible with earlier studies.

Finally, we consider inferior parietal cortex (which we term IPL below for inferior parietal

lobe, and including inferior parietal lobule). As with precuneus, it is both relatively activated and

relatively consistent bilaterally for familiar faces. This brain region has long been associated with

the encoding of faces [39], including specifically familiar ones [72], and a recent study by Radua et

al. [73] found that, in normal adults, activity in IPL was significantly correlated with the emotional

state conveyed in the eyes of a face stimulus. We found in Chapter 2 that subjects are likely more

sensitive to the emotional state of familiar faces. These results are mutually self-consistent and in
4
the artifacts normally residualized out affect both hemispheres identically; residualization in this case diminishes

some signal and leaves pt < 0.19 (effect has same direction/sign).
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line with the idea that familiar face processing involves IPL in particular.

3.2.1 Non-categorical distinctiveness and consistency

Figure 3.6: The subject-averaged (excluding familiar viewers) neural pattern consistency in occipital
lobe (i.e., averaged across occipital spheres) is plotted against the corresponding subject-averaged
distinctiveness for each of the 80 face stimuli. Morphs are shaded blue and base faces are shaded red
(base faces are more distinctive). Consistency can be linearly modeled with distinctiveness, yielding
a goodness-of-fit F-test significance level of pF < 0.0059.

To test whether the greater consistency of distinct faces was a purely categorical effect, only

significant when comparing the top 40% to the bottom 40% of unfamiliar faces, as in the analyses

above, or whether it was an effect sufficiently reliable to fit in a linear relationship with individual
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distinctiveness values, we linearly modeled the subject-averaged consistency of a face, averaged across

occipital spheres, with the subject-average distinctiveness (excluding pairs of subjects and stimuli

which met the familiarity condition). The result is shown in Figure 3.6. We find that indeed, with a

regression F-test based significance level of pF < 0.0059 the average neural consistency of face can be

related to its distinctiveness. The equivalent relationship between distinctiveness and the activation

magnitude, also in occipital regions, is weaker (pF < 0.041, see Supplementary Figure 3.22). This

intermediate effect size is compatible with the results reported earlier, namely the combination of

(i) an absence of magnitude effect of distinctiveness in V1/V2, and (ii) the presence of such an effect

in LO: that is, two regions both in the occipital lobe, but with a range of sensitivities. We also find

this relationship between consistency in fusiform gyrus (i.e., averaged across spheres in the fusiform

gyrus) and distinctiveness, with pF < 0.0038 (see Supplementary Figure 3.23). However, this trend

evaporates once we exit visual cortex: e.g., in the frontal lobe, there is no positive correlation at all

and the significance drops to pF < 0.78 (see Supplementary Figure 3.24).
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3.3 Activity magnitude and occipital consistency

lateral frontal cortex 

superior/ 
middle temporal 

Where 
local activation 
correlates with  
occipital consistency 
more for familiar 
faces. 

Inflated left hemisphere 

Figure 3.7: Top left: Subject-averaged correlation between occipital consistency (averaged across

occipital spheres) and local activation magnitude among faces familiar to a viewer, corrfam. Top

right: Subject-averaged correlation between occipital consistency and local activation magnitude

among faces unfamiliar to a viewer, corrunfam. Bottom: The significance (in −log10p scale) of a

1-sided t-test, on the set of 10 individual subject value pairs, that corrfam > corrunfam; voxel

significance values are averaged over containing spheres as before.

Guided by the intuition that the enhanced consistency in visual cortex of familiar and distinctive

faces may be caused by enhanced activation magnitude in some secondary regions feeding back into

visual cortex and reinforcing previously formed representations, we created a whole brain map of the

correlation between local activation magnitude, across different regions, and occipital neural pattern

consistency (i.e., averaged across occipital spheres).
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We computed the correlation separately for each hemisphere. The result is shown in Figure 3.7.

The analysis was done twice, once over each of two disjoint sets of stimuli (including morphs) for

each subject: (1) familiar, i.e. having familiarity ≥ 7, and (2) unfamiliar, i.e. having familiarity ≤

3. The correlation was computed using each subject’s data separately, then averaged over subjects.

Finally, we compared the resulting correlation maps to see where they differed significantly. Not

shown in Figure 3.7 is the result that no areas, on average, were significantly more correlated with

occipital activity for unfamiliar faces than for familiar faces. Although it may appear that, for

instance, left temporal pole is anti-correlated among familiar faces whereas it is positively correlated

for unfamiliar faces, the average value maps do not show the variance in the data, and in fact there

is no significant difference there.

There are several regions in which the magnitude correlation with occipital consistency is greater

for familiar faces than for unfamiliar faces. These are seen in the bottom panel of Figure 3.7. In

the left hemisphere, these regions, including middle temporal gyrus, occur very close to and overlap

with the two areas of the brain associated with language: Wernicke’s area (in superior temporal

gyrus), associated with the understanding of language, and Broca’s area (in inferior lateral frontal

cortex), associated with its production and speech. Because, unlike unfamiliar faces, familiar faces

have names associated with them, the visual perception of familiar faces may evoke some language

processing, e.g., the viewer may recall the name of the person whose face they’re viewing, specific

words exchanged with that person, or otherwise have internal thoughts requiring linguistic repre-

sentation. The results suggest that when viewing a set of familiar faces, the relatively increased

linguistic thought (such as name recollection) may strengthen the consistency of the visual represen-

tation in the brain. On the right hemisphere, we find significantly greater correlations for familiar

faces in the homologous areas found in the left hemisphere, but with diminished extent. Medially,

we also find activity correlates in precuneus and middle frontal lobe.

Laterality of familiar faces: It should noted that familiar faces activate left languages areas

more than right language areas, as expected: the magnitude of activation, among familiar faces, in

Broca’s area (i.e. BA44/45, left) was greater than the activation in the right hemisphere homologue

with pt < 0.037, using the 10 subject inter-hemispheric differences 5. This left-laterality for familiar

faces activation magnitude was also found in IPL (close to Wernicke’s area), hippocampus, cingulate

cortex, precuneus, and STS, each with pt < 0.028.

For a detailed exploration of how neural pattern consistency in each parcellated anatomical region
5
based on unresidualized magnitudes, as before for the laterality of FFA, because the normally-residualized artifacts

affect both hemispheres identically.
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correlates with the consistency or magnitude of another, across faces, refer to Appendix, Section

3.8.5.

3.4 Among familiar faces, more distinct ones are represented

more consistently
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Figure 3.8: The familiarity distinctiveness boost is defined as the extent to which a face appears

more dissimilar than it does to a set of unfamiliar viewers. This can be visualized in the kind of

figures we showed in Chapter 2 (adapted from Figure 2.14).

Having established that, as category, familiar faces are represented more consistently than distinct

but unfamiliar faces, we next investigated whether, among only familiar faces (familiarity level ≥ 7,

only 36 out of 800 (subject, stimulus) pairs qualify – we ignore morphs for this section), those which

showed the largest distinctiveness boost in Chapter 2 were more consistently represented than those

which showed a smaller boost. The result is shown in Figure 3.9. The methodology for computing

familiarity distinctiveness boost is described briefly in Figure 3.8 and described at the end of this

subsection in more detail. We find that, indeed, across the 36 familiar stimuli, there is a strong

positive and empirically statistically significant correlation across a wide variety of brain regions.

In the figure, we show the results from 11 out of the 15 regions tried; we show the ones which are

significant (all positive). Not shown are IT, hippocampus, amygdala, and FFA – none of which have
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Figure 3.9: The correlation (across the 36 familiar base faces) between familiarity distinctiveness
boost and the neural measures is shown. Whereas neural consistency is highly correlated across
a variety of regions, the activation magnitude is not. Empirical significance values are provided,
based on randomly shuffling the mapping of familiar stimulus to neural measure, for each subject
independently (different faces are familiar to different viewers). Notes: 1. STS is the superior
temporal sulcus; 2. Cingulate cortex is divided into posterior and anterior portions (PostCing,
AntCing); 3. BA44/45 is also known as Broca’s area, linked to speech/language production in the
left hemisphere; 4. To provide an additional measure of the reliability of the results, the effect size
from each hemisphere is indicated in addition to their average, with < and > for left and right
respectively.

significantly positive or negative trends.

Even under the extremely conservative null hypothesis that an attempted region would have

an empirically significant effect with probability 0.1 (and ignoring the actual extent of significance

in each region beyond this level), the probability of having 11 or more significant regions out of

15 corresponds to ppooled < 9.3 × 10−9. In contrast, among the 15 regions tried, only 3 showed a

significant (p < .05) correlation between neural activation magnitude and familiarity distinctiveness

boost, and of those, only 1 was positively correlated. This is one line of evidence which suggests

that the distinctiveness of a face, at the neural level, is somehow more strongly associated with the

consistency of its representation than its relative activation level.
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Next, we tested whether this relationship between distinctiveness boost and consistency was

strong enough to survive even at the single-subject level. That is, we have already seen that across

subjects and stimuli, i.e. across all 36 familiar faces, there is a significant effect. But would the effect

hold even among the handful of familiar faces per subject? We expect the results to be weaker, since

subjects are each only familiar with a few face stimuli (25th, 50th, and 75th percentiles of number

of familiar faces per subject is 2, 3.5, and 5). We show the results in Figure 3.10. We find that,

averaged across subjects, but computed for each independently, the correlation between familiarity

distinctiveness boost and neural pattern consistency tends to be positive, but not significantly so

by 1-sided t-test among the 10 subject values in any region except IPL (inferior parietal lobe), in

which we find pt < 0.034, and in which we previously found an especially strong effect of magnitude

and consistency for familiar faces. Considering all 15 interrogated regions together (including the 11

shown in Figure 3.10), we find that the distribution of their correlations with consistency is statisti-

cally significantly positive (avecorrconsistency = 0.15 with pt < 0.0012) and so is their distribution of

correlations with activation magnitude (avecorrmagnitude = 0.12 with pt < 0.0047), though slightly

less so.

To put these results in context, it helps to describe some similar analyses which failed; we

will describe three. First, one can derive a similar familiarity distinctiveness boost based on the

in-scanner ratings: simply take the difference between the familiar viewer’s rating and the average

among the unfamiliar viewers. Using this definition fails to produce a similar result, viz., a correlation

between this in-scanner distinctiveness boost and neural pattern consistency (same for absolute in-

scanner ratings among familiar faces). Second, if we simply use level of familiarity (7, 8, 9, or 10),

instead of the familiarity distinctiveness boost, we again fail to find an effect. Lastly, if instead of

taking the familiarity distinctiveness boost, which is a comparison value between subjects, we instead

use the absolute distinctiveness value (inferred from MDS on the ratings in SimRate, see Section

3.9.2) and correlate that with consistency among the familiar faces, we fail yet again to find an

effect.

The failure of the scanner-ratings method may be related to the following observation: it may

be unusual or confusing for a subject to capture with a single number how distinctive they actually

find a face, especially a highly familiar one; in contrast, using the experiments of Chapter 2, we

can infer this from careful analysis involving comparisons with many other faces. Similarly, the

familiarity level is a single and somewhat arbitrary number (e.g., the difference between degree 7

and 8; subjects not guaranteed to see sisters (9) more frequently than friends (8), etc.), unrelated to
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Figure 3.10: The subject-averaged correlation (across the handful of familiar faces per subject)
between familiarity distinctiveness boost and the neural measures is shown, together with the stan-
dard error among the 10 subjects, and the result of a 1-sided t-test to the right of zero. We also
plot the 10 individual subject values (some are cropped off to the left for convenience), colored
by their percentile-rank for average magnitude, among familiar faces, of familiarity distinctiveness
boost (white highest; black lowest). The correlation between (a) the average distinctiveness boost
for the subject, and (b) the correlation with neural consistency, is written as a value “sc” for (subject
correlate). We find a positive correlation between this tendency to have a large distinctiveness boost
and tendency to have the boost relate to consistency in most regions (11/15 regions total, 7/10
shown here).
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any direct perceptual evidence, whereas the distinctiveness boost is based on a thorough perceptual

study, so we expect that the perceptual data correlate better with the brain data. Although we

did find in Chapter 2 that greater familiarity was associated with a greater distinctiveness boost,

this was only on average: the perceptual measurement is still a much stronger correlate of the

brain data. Lastly, the failure of the absolute distinctiveness measure may arise from the fact all

familiar faces were on average more distinctive to their viewer, and so subtle differences at the

high, compressed, end of the distinctiveness range are effectively more noisy. By using the relative,

distinctiveness boost, measurement, we add information to this measure, allowing us to distinguish

between faces which are distinctive looking to everyone and those which are especially distinctive

looking specifically to the subject – so it is a more sensitive measure.

Methods notes for this section We defined the familiarity distinctiveness boost using the Sim-

Rate ratings on whole faces, restricted to those pairs having dissimilarity less than -0.25 (as in

Chapter 2, because highly dissimilar pairs are unaffected by familiarity), and qualified unfamiliar

viewers as having familiarity ≤ 3, in line with the other analyses in this chapter. The boost was

defined as the average dissimilarity boost for a stimulus by a subject, averaged over unfamiliar face

comparisons and contrasting unfamiliar viewers (i.e., the distance from the diagonal indicated in

Figure 3.8).
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3.5 Neural pattern consistency and individual differences in

distinctiveness perception among unfamiliar faces
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Figure 3.11: We compare subjects who found an unfamiliar face more distinctive to subjects who

found the same face indistinct. The subjects who found the face more distinctive represent it

more consistently in amygdala, bilaterally, and in right hippocampus. Notes: For a particular

face, only the subject finding it most distinctive among the 10 subjects contributes neural data to

the “distinct” category here. The two subjects finding the same face least distinctive among the 10

subjects contribute neural data to the “indistinct” category. Bars represent the average and standard

error, across subjects (each computed relative to the face stimuli they were qualified for). Significance

tests are 1-sided t-tests to the right among the population of 10 subject values. Refer to Section 3.5.1

for methods details.

Whereas in the last section we focused on distinctiveness among familiar faces, we now return to

distinctiveness among unfamiliar faces. In the first main results section of this chapter, Section

3.2, the analysis was such that the selected distinct stimuli, and also the selected indistinct stimuli,

were often the same for each subject (differences due to variable scanner ratings and unfamiliarity).

We find that, averaged over unique subject pairs, the stimulus sets overlapped by 54% on average

for distinct faces (mostly base faces), and by 69% on average for indistinct faces (mostly morphs),

where we define overlap as |A ∩ B|/|A ∪ B|. Viewed from the other direction, but illustrating the

same point, we find that 66% of the stimuli were selected into the distinctive category by either 1
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or fewer, or 9 or more, subjects’ data, i.e. most stimuli were nearly unanimously distinctive or not,

and the same calculation reveals that 75% of stimuli were chosen into the indistinct category in such

near unanimity. One disadvantage of subjects’ having roughly the same (largely overlapping) sets of

stimuli in each distinctiveness category is that it hides/obscures the individual differences in neural

measures which may arise when a stimulus flips distinctiveness categorization from one subject to

another, because the effects may be dominated by the stimuli which do not (and they are).

In this section, we examine the neural correlates of such individual differences in the perception of

unfamiliar faces by performing an analysis which eliminates this overlap. Each stimulus contributes

in a balanced way to the distinct and indistinct categories: the subject who found it most distinctive

has her neural data contribute to the distinctive measure bar, and the two subjects who found it

least distinctive have their data contribute to the indistinct bar. We found this method gave us

most statistical power, by excluding subjects who were nearer the consensus/average judgment of

distinctiveness. We note that distinctiveness here is based on the dissimilarity ratings of Chapter 2,

and normalized, in the way distinctiveness boost was, by the distinctiveness ratings of others, and

only using the 40 “base” faces studied in Chapter 2. Refer to Section 3.5.1 below for more methods

details. The results are shown in Figure 3.11. The result is that, of 30 regions tried (the same 15 as

before interrogated independently by hemisphere), 5 showed a significant increase in neural measure

(magnitude or consistency), with all 5 showing a significant increase in consistency, and one of those

(right amygdala) also showing an increase in magnitude. The pooled significance of having 5 out

of 30 comparisons yield significance pt < .05 is ppooled < 0.016. Only 1 area showed a significantly

lower signal, but this does not survive the multiple comparisons correction. We find a significant

increase in consistency in amygdala bilaterally, right hippocampus, right anterior cingulate cortex,

and left FFA. We will summarize this as limbic areas and left FFA.

To understand this result, we must recall that the distinctiveness measure used here is based

on data collected in experiments described in Chapter 2, and which were conducted several weeks

prior to subjects’ brain scans. So, the proper interpretation is that a subject who finds a stimulus

distinctive over a series of experiments at time t0 will have more consistent responses in time t1,

several weeks after t in these limbic areas and left FFA. It will also help our understanding to

quickly review some of the functions of these limbic areas: It is well known that the hippocampus

is heavily involved in memory formation [86]. It has also been shown to be specifically involved

in the recognition of faces [26] and similar high-level visual categories [54]. The amygdala has

been implicated in a wide variety of functions including face recognition [44, 58], the recognition
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of emotion in facial expressions [1], the visual recognition of fear [2], and memory consolidation

following emotionally charged events [81]. The anterior cingulate cortex has also been found to be

involved in the processing of faces [39]. Taken together, a reasonable interpretation is that consistent

representation in these limbic areas at t1 for those who found a face distinctive at t0 may result from

an enhanced memory of the face from the earlier psychophysical experiments of Chapter 2. At t1,

those faces may be in the early stages of being transferred to the subject’s long-term memory.

Repeating the exact same analysis methodology, except with the simultaneously recorded in-

scanner distinctiveness ratings, reveals that, compared to subjects who found a face indistinct, those

who found it especially distinctive in-scanner have significantly greater activation magnitude in

17/30 regions (with all individual pt < 0.1, the pooled significance is ppooled < 3.3 × 10−10), and

decreased activation or consistency nowhere (0/30). We see a minor consistency enhancement in

left hippocampus (pt < 0.075), but it is weak and so possibly spurious. We can conclude that, in

the scanner, the instantaneous perception of greater distinctiveness than other unfamiliar viewers

resulted from greater global brain activation, probably with increased attention.

3.5.1 Methods notes for this section

Separating “distinct” from “indistinct” while balancing subjects in each category for each stimulus:

A (subject, stimulus) pair qualified for the distinct condition if the subject was unfamiliar (≤ 3) and

found the stimulus more distinctive than the other 9 subjects. A (subject, stimulus) pair qualified

for the indistinct condition if the subject was unfamiliar and found the stimulus less distinctive than

8 or 9 of the other subjects. Of the 40 possible pairs which could have satisfied the distinct condition,

ignoring familiarity, 30 qualified. Of the 80 possible pairs which could have satisfied the indistinct

condition, ignoring familiarity, 75 qualified. The number of stimuli used per subject in the distinct

case was [ 2 5 1 2 2 3 3 3 3 6 ] and the number per subject in the indistinct case was [ 14 7 9 6 8 8

4 4 8 7 ].

Distinctiveness in this case was based on subtracting, from the individual’s psychophys.-based

distinctiveness (see Section 3.9.2) , the mean of the other 9 subjects’ (hence residual in “psychophys.-

distinctiveness residual” in the title of Figure 3.11), to find out how much more less distinctive they

found the stimulus than the others. This is analogous to the subtraction performed in computing

the familiarity distinctiveness boost in the last section. Finally, we Z-score each subject’s residual

relative to the other stimuli.
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3.6 Inter-subject neural pattern similarity in face representa-

tion

Figure 3.12: Left: Values are correlation×100 (so value 8 is correlation .08) The distances (equiva-

lently here, neural pattern similarities) between faces induced from neural activity correlate weakly

but significantly across subjects in parts of visual cortex. Notice red and yellow streaks of posi-

tive correlation across parts of temporal and occipital cortex. Right: Average significance values

of correlation (null hypothesis: correlation is among independent normal variates). Neural RSMs

are first averaged over 5 random subjects, and then over the 5 remaining. The resulting two RSMs

have a peak average correlation of 0.11 in lateral occipital cortex, and 0.095 in fusiform gyrus (both

right hemisphere). Note that sensorimotor cortex correlates highly across subjects because subjects

tended to rate faces on the same half of the distinctiveness scale, so with the same hand (see 3.6.1

for details) .

Although we have so far focused on ways in which subjects are different in their perception of and

neural responses to faces, when they vary in familiarity or distinctiveness, subjects are nonetheless

more alike than they are different in these behavioral and neural measures. In the first section of

the supplement to Chapter 2 (Section 2.9.1), we found that subjects are remarkably consistent in

rating the differences between faces: any one subject’s behavior in a task was shown to be very

well modeled by the average of the others’. In the beginning of this chapter, we reported that in-

scanner distinctiveness ratings diverge for familiar faces; however, subjects are very consistent in their
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distinctiveness judgments otherwise. The average correlation among subject-pair-wise in-scanner

distinctiveness ratings is 0.57 ± 0.03 (standard error); if we exclude morphs, subjects correlate at

0.48 ± 0.02; the average one-subject-against-others correlation of in-scanner distinctiveness ratings

is 0.73 ± 0.04 (individual one-subject-against-others values can be seen in the top row of Figure

3.32).

At the neural level, the perception of faces is also quite similar across subjects. For instance, all

10 of our subjects have face-selective clusters within fusiform gyrus (see Figure 3.35). Here, we take

that a step further and test how similar the distances between individual faces are, as inferred from

neural patterns of activity alone. We note that, although relative to the space of all visual stimuli,

our stimulus set was extremely restricted, having only grayscale, static, images, of equal spatial

extent, shaped like an oval and having low contrast (when projected onto the back of a screen in

the MR room), containing only one kind of visual object, faces, of the same gender and race, and

always wearing approximately the same neutral expression and gazing straight ahead, there were

nonetheless some discernible and reliable differences between the representations of individual faces

in the brain, differences which served as the basis for the consistency calculation used all throughout

this chapter.

We find a weak but positive correlation between the neural-based RSMs across subjects. To gain

statistical power, we compare the average among 5 subjects to the average among the remaining

5 (100 trials). The RSMs have a peak correlation of 0.11 in lateral occipital cortex and 0.095 in

fusiform gyrus.

3.6.1 Methods and notes

RSMs are only computed over sets of faces viewed within the same scanning session to eliminate the

artifact of same-scan faces being more correlated than different-scan faces (as faces were partitioned

into scans equally for all subjects). Cross-subject correlations are then averaged across scans. For

each set of faces (one per scan), subjects are partitioned into two sets of 5 randomly in 100 trials. In

each trial, the correlation between the two RSMs, and the significance of the correlation (under the

null hypothesis that the unique/symmetric RSM entries are normally distributed and independent

of each other), is computed. Results are averaged together over trials (with p values averaging in

−log10p scale).

Sensorimotor artifact: We find a very high correlation in sensorimotor cortex because, there,

the distances between faces rated by button controllers in opposite hands are very large relative
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to the distances between faces rated by controllers in the same hand; therefore, any similarity in

the behavioral ratings task gives rise to a sensorimotor RSM correlation by experimental artifact

(namely, that subjects all used the same button layout).

3.7 Discussion and interpretation of results

The relationship between distinctiveness and memory, which gives rise to familiarity, is subjectively

clear: our feeling that an unfamiliar face is more memorable is coincident with the feeling that

it is more distinctive. The results in this chapter may provide a novel framework within which

to understand how memories of faces, or perhaps even memories in visual objects in general, are

formed, as a result of distinctiveness, and how these two relate to neural pattern consistency. The

framework is summarized in the three interrelated experimentally-supported claims below:

!"#$%&'()'&$*'+&(,$-(.'&/$01/232)'/45$67$8'.'&$9':1&5$;/41<3/=$>?&1:$@+'A$

!B#$%&'()'&$9':1&5$C22143(D1/$*')E1&F$67$91&'$*'+&(,$-(.'&/$01/232)'/45$

!G#$%&'()'&$81.1:HIJ$K32D/4DL'/'22$67$91&'$*'+&(,$-(.'&/$01/232)'/45$

Claim (1) is supported by our finding that distinctive faces are associated with greater neural

pattern consistency in early visual cortex. Suppose we begin with a face which, for some reason,

is perceived to be more distinctive to its viewer. We found that such a face is likely to enhance

activation in secondary visual areas, including LO, IT, and FFA, but not primary visual cortex (see

Figure 3.5). However, the response to the face is on average more consistent in primary visual cortex.

It may be that distinct stimuli are ones which significantly activate intermediate or high-level visual

features, such as those found in secondary visual areas, more strongly, and that this activity feeds

back into primary visual cortex, enforcing a consistent pattern of activity there, without enhancing

aggregate activity magnitude. Figure 3.13, adapted from Douglas and Martin [22], illustrates a

simple recurrent neural network model compatible with this idea: a soft winner-takes-all (soft-

WTA) network. If we suppose that the activity in V1 depends in part on feedback input from

secondary visual areas, and if some of its networks implement a soft-WTA functionality, then the

overall output activity level (e.g., the area under the solid curve in Figure 3.13) may be relatively

constant irrespective of the feedback profile. This may explain why we find no significant difference

in overall activation magnitude between distinct and indistinct faces in V1/V2. However, if the

feedback profile is more consistent under one stimulus condition, the soft-WTA output would be
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Figure 3.13: A soft winner-takes-all (soft-WTA) neural network, adapted from Douglas and Martin
[22]. There is a network of neurons (indexed along the x-axis), whose activity is shown in the solid
line, and which receive input indicated by the dotted line.

more consistent under that condition as well, picking the same winner more often.

Claim (2) is supported by our finding that familiar faces are associated with greater neural pattern

consistency, in visual cortex and well beyond. Familiar faces are by definition ones which involve a

greater network of associated memories than unfamiliar faces, which are associated with zero or few

memories. The same feedback mechanism described above may explain why familiar faces are more

consistently represented in V1/V2, despite not increasing activation there, except with the feedback

signals originating, not only in secondary visual areas, but also from frontal cortex and language

areas.

Claim (3) is based on a result from Xue et al. [102]. They showed that greater neural pattern

consistency in response to faces in an fMRI scan was associated with better recognition and recall 1

to 6 hours after scanning.

Main interpretation: Claims 1-3 suggest that there may be a cyclic process for the learning of

unfamiliar faces in which consistent representation and the presence of newly formed memories mu-

tually feedback on each other, with distinctiveness progressively increasing, as described in Chapter

2. To further interpret the results, a distinctive face may feel more memorable because, every time

it is seen, activity in V1/V2 may be in a state more similar to the one visited the last time the face

was seen (than it would be for an indistinct face), giving an impression at the lowest neural level of

a familiar state. This may be related to (i) top-down/guided covert attention to the same features

on the face, (ii) the same cells within redundant subpopulations of neurons firing, which would be

a form of sensory memory, or, alternatively or complementarily, (iii) more temporally similar firing

patterns. This result may also be connected to the finding of Goard and Dan [30]: basal forebrain

activation, related to arousal and increased attention, increased the reliability of firing patterns in
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response to movies of natural scenes in rat visual cortex.

It should be noted that another possible source of neural pattern consistency in V1/V2 to fa-

miliar and distinctive faces is more consistent eye-movement patterns for these faces. Although we

instructed subjects to try not to move their eyes, and ensured that they were fixated at stimulus

onset by employing a detection task at the fixation point, and the stimuli were only briefly displayed

(500ms), and small enough (5◦×7◦) to discourage large saccades, it is nonetheless possible that these

faces are explored, and more consistently across trials than unfamiliar faces and indistinct faces. In

Chapter 2, Section 2.7.2, we found that familiar faces are compared more holistically, and briefly

discussed the possibility that familiar faces are in fact explored less (thus more consistently), based

on a free viewing (3 seconds) memory experiment by Heisz et al. [40]. However, van Belle et al. [98]

found no significant differences in either the number of fixations or duration of fixations to familiar

faces compared to unfamiliar faces. One further reason to discount this as the explanation is that we

find enhanced consistency in regions far beyond V1/V2, regions which should be insensitive to exact

eye position on such a small stimulus: for instance, familiar faces are relatively more consistent in

LO (see Figure 3.5), and the consistency boost among especially distinctive familiar faces seems to

span the whole brain (see Figure 3.9).

Possible application: The primary scientific value of this chapter is in its contribution to

the basic understanding of face perception and memory. However, Section 3.5 suggests a possible

application for the methods used here. It was shown that, although an insignificant number of

brain regions exhibited an activation magnitude boost at time t1 in individuals who found a face

especially distinctive at time t0 several weeks before t1, a significant number of regions did show

a consistency boost. We hypothesized that the enhanced consistency, especially in amygdala and

hippocampus, was likely due to early memory formation – the distinctive faces being the ones

more likely remembered by the subjects. If so, this suggests a kind of neural lie detector test, one

which could help build a case for the memory of a face only briefly seen. Conventional activation-

magnitude-only analysis methods would potentially fail to find a signal in such cases. It is clear,

however, that such applications are ethically dubious and would need to be applied only sparingly

and prudently if at all. Furthermore, the relationship between short exposures to people and the

hippocampal and amygdala consistencies in response to photographs of their faces would need to be

more rigorously characterized than was done for the purposes of this study.
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3.8 Supplementary results

As with the supplementary results presented in Chapter 2, these results are less important and are

mostly explained by their figure captions. Also, as with Chapter 2, after the supplementary results,

there is also an Appendix (Section 3.9), which includes experimental methods.

3.8.1 Main effects: other parameters

3.8.1.1 Magnitude effects mapped across the brain

In the main text of the chapter, we presented map-types results showing how consistency varied

across the brain by category of stimulus (familiar, distinct, indistinct). Below, we show how magni-

tude of response varies with these categories of stimuli.
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Figure 3.14: All values are Z-score×100; middle of the range is zero (light blue is negative). Top

left: Familiar faces activate regions throughout the brain, including inferior parietal, frontal, and

middle temporal cortex, and precuneus, but excluding occipital cortex ; whereas familiar faces were

more consistent in left hemisphere FFA, such laterality is not observed for activation magnitude

shown above; note scale bar goes to 50 (Z-score 0.5) Top right: Distinct faces activate many regions

of the brain, including parts of occipital and temporal lobes; note scale bar goes to 8 (Z-score 0.08).

Bottom: The brain is relatively inactive during presentations of indistinct faces. However (aside

from the sensorimotor artifact along the central sulcus), cuneus is slightly activated for indistinct

faces, but we find that it fails to reach a statistically significant difference from either familiar or

distinct faces by 1-sided t-test.
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Figure 3.15: Regions in which voxel spheres, on average, have significantly different magnitudes of

activation for a category of face stimulus (familiar, distinct, or indistinct) are highlighted. Note that

familiar faces do not significantly activate much of occipital lobe relative to distinct or indistinct

faces. We map the average empirical statistical significance values using −log10p scale.

3.8.1.2 Consistency mapped with 100-voxel spheres

In the main text of the chapter, we presented map-types results showing how consistency varied

across the brain by category of stimulus (familiar, distinct, indistinct) with voxel spheres containing

300 voxels each. Here, we show results with 100-voxel spheres.
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Figure 3.16: All values are Z-score×100; middle of the range is zero. Familiar > Distinct >

Indistinct Face consistency for 100-voxel spheres map-type analysis; results are similar to 300-voxel

spheres analysis shown in Figure 3.3, but less smooth. Top left: Familiar faces are represented very

consistently all throughout the brain (especially inferior parietal, precuneus, and fusiform gyrus);

note scale bar goes to 50 (Z-score 0.5) Top right: Distinct faces are represented more consistently

than average in occipital and temporal lobe; note scale bar goes to 8 (Z-score 0.08). Bottom:

Indistinct faces are less consistent than average in occipital and temporal lobe.
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Figure 3.17: Map of average empirical significance value (−log10p) for 100-voxel spheres map-type

analysis. Regions in which voxel spheres, on average, have significantly different neural pattern

consistencies for a category of face stimulus (familiar, distinct, or indistinct) are highlighted. As

seen with the results for 300 voxels, FFA is more consistent for familiar faces only in left hemisphere.

3.8.1.3 Effects in particular ROIs

In this section, we extend the results shown in Figure 3.5 to more regions, and to in-scanner and pixel-

based distinctiveness measures (for which the results are essentially equivalent to the pixel+scanner

measure, only less robust).

Here, we will list some of the regions which have significant effects (using pixel+scanner distinc-

tiveness) but which were not shown in Figure 3.5: inferior temporal cortex (IT), part of the ventral

stream of visual cortex, shows the familiar > distinct > indistinct trend both for consistency and

magnitude. Hippocampus shows a significant increase in both consistency and activation for distinct
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faces compared to indistinct faces. This is presumably because they are remembered from previous

trials and experiments. Familiar faces are significantly more activated and consistent throughout

many regions of the brain, including cuneus, precuneus, cingulate cortex, inferior parietal (IPL), and

BA44/45 (equivalent to Broca’s area in left hemisphere).
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using pixel+scanner distinctiveness

Figure 3.18: Average response magnitude and consistency are shown for an expanded set of regions

of interest (expanded form of Figure 3.5). Notice that in V1/V2 and LO familiar faces are not

relatively activated (gray bars corresponding to “fam.”). Also note a slight effect in the hippocampus

for distinct vs. indistinct faces.
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Figure 3.19: Average response magnitude and consistency are shown for several regions of interest
(modified form of Figure 3.5), except with distinctiveness modified to be based on only pixel values.
Compared to the pixel+scanner distinctiveness results shown in Figure 3.5, the pixel-based distinct
faces are slightly less consistent in V1/V2 and LO, but still significantly more so than indistinct
faces; however, results are directionally equivalent and meet significance in the same places (except
here there is no magnitude difference in SupFront between distinct and indistinct faces).
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Figure 3.20: Average response magnitude and consistency are shown for several regions of interest
(modified form of Figure 3.5), except with distinctiveness modified to be based on only in-scanner
ratings of each subject. Compared to the pixel+scanner distinctiveness results shown in Figure
3.5, the scanner-based indistinct faces are slightly more consistent; however, results are direction-
ally equivalent and meet significance in all the same places (except, here, there is no significant
difference between distinct and indistinct faces in FFA whereas there is for pixel+scanner based
distinctiveness).
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3.8.2 Familiarity and distinctiveness in inverted (upside-down) faces

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

   FFA  

  Face  

SupFront

   LO   

  V1/V2 

ind.

dct.

fam.

ind.

dct.

fam.
**

***

ind.

dct.

fam.

*~

ind.

dct.

fam.

ind.

dct.

fam.

ind.

dct.

fam.

ind.

dct.

fam.

ind.

dct.

fam. ~

ind.

dct.

fam.

ind.

dct.

fam. ~

Average Z−score

xtrial consistency

magnitude

Familiarity & Distinctiveness Effects
using pixel+scanner distinctiveness (inverted faces)

Figure 3.21: In two scans of experiment FaceView, subjects viewed upside-down (inverted) faces.

Because each face was only viewed in one such scan, only cross-trial (not cross-session or hybrid)

consistency could be calculated. The only highly significant (p < 0.01) effect is that familiar faces

activate face-selective clusters more than distinct or indistinct faces. The equivalent analysis (base

faces, cross-trial), but with upright faces, yields a highly statistically significant effect (p < 0.01)

of consistency and activation magnitude (p < 0.001) for familiar faces in superior frontal lobe

(SupFront). We infer that superior frontal is less activated for familiar faces when they are inverted.

3.18.

3.8.3 Non-categorical distinctiveness vs. consistency and magnitude: follow-

ups

In this section, we follow up on the results shown in Section 3.2.1 and Figure 3.6. The point of that

section was to test whether the greater consistency of distinct faces is a purely categorical effect or

one sufficiently reliable to fit in a linear relationship with individual distinctiveness values. We found

in that section that consistency linearly increased with distinctiveness with statistical significance

in occipital cortex. Below, we show that the same is true in fusiform gyrus, and for activation

magnitude in occipital cortex. We also show that, in non-visual-cortex, namely frontal lobe, such
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trends do not hold.

Figure 3.22: The subject-averaged (excluding familiar viewers) activation magnitude in occipital

lobe (i.e., averaged across occipital spheres) is plotted against the corresponding subject-averaged

distinctiveness for each of the 80 face stimuli. Morphs are shaded blue. Magnitude can be linearly

modeled with distinctiveness, yielding a goodness-of-fit F-test significance level of pF < 0.041, which

is weaker than what was found with the consistency (pF < 0.0059, see Figure 3.6).
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Figure 3.23: The subject-averaged (excluding familiar viewers) neural pattern consistency in fusiform
gyrus (i.e., averaged across spheres centered in, or stepped from the center of, fusiform regions) is
plotted against the corresponding subject-averaged distinctiveness for each of the 80 face stimuli.
Morphs are shaded blue. Neural pattern consistency can be linearly modeled with distinctiveness,
yielding a goodness-of-fit F-test significance level of pF < 0.0038. The same analysis, except with
magnitude of activation (instead of consistency) in fusiform gyrus, also yields a positive correlation
and a fit of pF < 0.00028.
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Figure 3.24: The subject-averaged (excluding familiar viewers) neural pattern consistency in frontal

lobe (i.e., averaged across spheres centered in, or stepped from the center of, regions in frontal lobe)

is plotted against the corresponding subject-averaged distinctiveness for each of the 80 face stimuli.

Morphs are shaded blue. In contrast to the results shown above in visual cortex (occipital lobe and

fusiform gyrus), there is no significant relationship between the two here. Similarly, distinctiveness

cannot be used to model activation magnitude in frontal lobe either (pF < 0.6).
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3.8.4 Type of personal familiarity and neural consistency

Refer to Figure 3.25. The self face is highly activated, but inconsistent in visual cortex; however,

the morph between self and sister is most consistent among familiar face types in visual cortex,

including IT, and LO, and almost V1/V2 as well. The self-face is known to be processed differently

than other familiar faces [21, 72], so its specialness here is not surprising.
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Figure 3.25: Consistency and activation magnitude by type of familiarity relationship. Notice spe-

cialness (e.g., relatively lower consistency in V1/V2) of the self-face relative to the other types.

Friend here is defined as having familiarity 7 or 8, and sis+self is the morph stimulus which is the

50/50 between the two.
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3.8.5 Pairwise relationship between consistency and amplitude across

brain regions

For all the figures in this section, consistency and activation magnitude are raw, unresidualized, un-

Z-scored. Correlations are computed per subject across face stimuli, then averaged across subjects.

Results are also averaged across hemispheres (and only intra-hemispheric correlations are computed).

Each matrix has rows and columns indexing each of the 77 regions in the Destrieux Atlas, called

“aparc a2009s” by freesurfer. Results are averaged across the 7 spheres per region (though center

spheres are only compared to center spheres, posterior to posterior, etc.). The regions are ordered

in a smooth, spatially contiguous way, from V1 (calcarine sulcus), to temporal lobe, to parietal lobe,

and terminating in the frontal pole.
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Figure 3.26: The average correlation between the consistency of a region (indexed by columns) and

the magnitude (indexed by rows), in the same hemisphere, across all faces. “x”s mark the diagonal

entries. The two bright squares of interrelationship between correlation and magnitude correspond to

occipital lobe and sensorimotor cortex. The set of leftmost columns (up to the end of occipital lobe)

of the matrix correspond approximately to the top right panel of Figure 3.7: very little correlation

with magnitude outside of occipital areas.
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Figure 3.27: The average correlation between the consistency of a region (indexed by columns)
and the magnitude (indexed by rows), in the same hemisphere, across only familiar faces. “x”s
mark the diagonal entries. The set of leftmost columns (up to the end of occipital lobe) of the
matrix correspond approximately to the top left panel of Figure 3.7: we find high correlations with
magnitude in higher brain regions outside of the occipital lobe.
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Figure 3.28: The correlation between activation magnitude in one region and activation magnitude
in another, across all faces. The activation magnitudes of neighboring regions are very highly
correlated, especially within the same cortical lobe.
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Figure 3.29: The correlation between neural pattern consistency in one region and neural pattern
consistency in another, across all faces. The correlation with neighbors is present but to much lesser
extent than found in the equivalent analysis of activation magnitude.
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3.9 Appendix

Subjects provided informed written consent prior to the experiments. The Caltech Institutional

Review Board approved all experimental procedures.

3.9.1 Details of task performed in MRI scanner (Experiment FaceView)

This experiment consisted of showing subjects faces one a time, after which they would enter a num-

ber (1=least distinctive to 6=most distinctive) with a keypad controller indicating how distinctive

they found the face. Numbers 1-3 could be entered with a controller in the right hand and numbers

4-6 with the left.

Images in the scanner were presented such that faces subtended approximately 5°x6.7° visual

degrees. This size was intended to fit an entire face mostly inside foveal and para-foveal vision while

maintaining sufficient detail. Guidelines for face “distinctiveness” were provided to the subjects prior

to scanning (see above, Section 3.1.2).

Trial Structure: Each face presentation trial consisted of a face that flashed on-off-on, 500 ms

each (total 1.5 s), followed by 2.75 seconds during which the subject had to enter a distinctiveness

rating, followed by a uniform random delay of 1 to 6.25 seconds. See Figure 3.30 for a graphical

representation of this. (The delay and jitter were introduced for robust estimation of the laggy

hemodynamic response to each image.) Throughout the entire run between face presentations, a

white fixation dot was presented at the center of the screen, and centered between where the eyes

would occur on face stimuli. Subjects were instructed to fixate on it. On 7 random catch trials, the

fixation dot would turn blue 300 ms before stimulus onset, instead of remaining white right up to

stimulus onset. Because of the long delay between trials (introduced for better response estimates),

such a change was difficult to notice unless attention was maintained. Subjects were instructed to

withhold their distinctiveness rating following the face presentation if they noticed this. Failure to

notice these catch trials together with excessive head motion was taken as an indication of too much

inattention. Scans in which the subject was too determined to be too inattentive were repeated up

to several weeks later (“make up scans”); out of 100 individual scans, 9 were repeated for this reason.
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Figure 3.30: The time-course of a single trial in the FaceView experiment (taking place in an fMRI

scanner), wherein subjects explicitly rated the distinctiveness of faces viewed one at a time. The

bottom panel shows the beginning of a catch trial, indicated by a fixation point color change.

Scan Structure: Each fMRI scan for the FaceView experiment lasted 12 minutes, 11.25 seconds.

The first 15 and last 8 seconds were blank except for the fixation point. The jittered delay times after

each trial were pseudo-randomly computed once, and then frozen for all subjects and all sessions.

Each scan consisted of 20 unique faces, presented an average of 4 times, randomly permuted (different

permutation for each subject, for each scan) for a total of 80 trials, not including 7 catch trials. The

minimum delay between identical faces ranged from 1 (consecutive) to 81 trials. Averaged across

subjects and minimized across stimuli, the closest two identical faces appeared in a single session

was 13.03 ± 0.21 trials. The average delay between identical faces was 21.2 ± 0.17 trials. The

partitioning/batching of the 80 faces into four disjoint sets of 20 for single scan presentation was

identical for all ten subjects.
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Repeated Face Batches: Each of the four batches of 20 unique faces was seen in exactly two

separate fMRI scans. Thus, there were 8 FaceView scans per subject (so far accounted; see below).

The order in which the eight batches were shown was counter-balanced among subjects. Each face

was viewed on an average of 8 trials, averaging 4 per scan. The absolute minimum delay among

all subjects between two scans consisting of the same face set (same-batch scans – notably, never

consisting of trials in the same order) was 3 hours, and the average minimum delay between such

scans among subjects was 27 hours. The median delay between same-batch scans was 2.24 days.

The single longest delay between two same-batch scans among all subjects was 31 days, due to a

make-up scan in which the first was too poor in quality. The median delay between the two most

temporally distant same-batch scans among subjects was 4.77 days.

Inverted Face Batches: Finally, subjects viewed the 40 non-morph/base stimuli upside down

in two 20 disjoint batches of inverted face runs of experiment FaceView, with the exactly the same

trial and instructions as before. Unlike the upright faces, each unique face was only seen in one

such batch, so neural pattern consistency could only be established across trials, not sessions, for

these inverted faces. Together with the 8 upright FaceView runs, this brings the total number of

FaceView scans per subject to 10, for an experimental total of 100 scans (10 subjects × 10 scans),

not including the functional localizer runs (see below).
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3.9.2 Defining distinctiveness measures

Figure 3.31: The correlations (across 80 face stimuli) between different distinctiveness measures are

shown. Scanner ratings are averaged across subjects. The psychophys.-based distinctiveness values

are are based on an MDS of the explicit dissimilarity ratings provided in the psychophysics exper-

iments of Chapter 2 (called “dissim. MDS” there). Note that pixel-based distinctiveness correlates

more strongly with the in-scanner distinctiveness than the psychophys.-based distinctiveness; one

reason for this may be that Gaussian noise was added to stimuli in the experiments of Chapter 2 to

discourage subjects from using low-level pixel-based features to compare faces (see Section 2.10.4).

(1) pixel-based distinctiveness This was computed exactly as in Chapter 2 (Section 2.10.6),

but extended to all 80 faces (including the 40 morphs), and then Z-scored across stimuli, so that

the average pixel-based distinctiveness among all faces was 0. Also see Figure 2.9 for a comparison

of stimulus distance metrics among the base 40 faces, and Figure 2.35 for a comparison of stimulus

distinctiveness measures among the 40 base faces.

(2) in-scanner distinctiveness 1-6 distinctiveness ratings provided in the scanner by each sub-

ject were Z-scored within each scan, so that the average distinctiveness of a face seen by a particular

subject in one particular fMRI scan was 0. This value was then averaged together across all unique

presentations of the face.

(3) pixel+scanner distinctiveness (default measure used, i.e., unless otherwise stated)

In order to simultaneously capture distinctiveness as perceived instantaneously by each subject
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entering distinctiveness ratings in the scanner, and also distinctiveness as determined solely by the

stimulus content, we added together the across the extended set of 80 faces, and the subjects’

distinctiveness ratings (which were also Z-scored), into a combined pixel+scanner distinctiveness.

This combined metric correlated very highly with both the scanner ratings (0.84) and the pixel-based

ratings (0.94), so results based on either one of those two constituent metrics alone were very nearly

identical to the ones obtained with the combined pixel+scanner metric (See Figure 3.31).

(4) psychophysics-based distinctiveness (a.k.a. “psychophys.-based” or “psych.-based”)

This distinctiveness measure is based on the measure called Dissimiliarity-ratings-based distinctive-

ness (“dissim. MDS”) in Chapter 2 (Section 2.10.6.2). It is based on the psychophysics experiments

in that chapter, wherein subjects explicitly provided similarity (equivalently, dissimilarity) ratings:

experiment SimRate. To extend this distinctiveness measure to the morphed faces (which were not

compared in Chapter 2), the x- and y- MDS coordinates of each constituent face were summed

together, and the resulting face’s distance from the origin was taken to be its distinctiveness. There-

fore, the average face was given a psychophys.-based distinctiveness of 0. Note that this can be done

averaged across subjects (that is, dissimilarity ratings are first averaged then the MDS is performed),

or on each individual subject’s ratings.

Figure 3.32: The correlation between each individual subject’s in-scanner distinctiveness ratings

and another metric is shown. The top row corresponds to the average in-scanner distinctiveness

rating among the 9 other subjects.
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Figure 3.33: The correlation between in-scanner distinctiveness (averaged across subjects) and pixel-

based distinctiveness is 0.6 (each is Z-scored). This corresponds to one (symmetric) matrix entry

in Figure 3.31. Morphs are shown shaded blue, and base faces are shown shaded red. The morphs

have lower distinctiveness values in both metrics.

3.9.3 MRI data acquisition and preprocessing steps

MRI data were collected using a Siemens (Erlang, Germany) 3T Trio. BOLD functional (T2*-

weighted) images consisting of 42 slices with 3×3×3 mm voxels were collected with a TR (repetition
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time) of 2.25 seconds using a 12-channel Head coil (acquisition matrix 64×64, flip angle 80°, echo time

30 ms). Slices were obliquely oriented at 30° for near whole-brain coverage; occipital and temporal

lobes were always fully inside the imaged volume. High-resolution (1 mm isotropic) anatomical

images were acquired using a T1-weighted MPRAGE (magnetization-prepared rapid gradient echo)

sequence. All visual stimuli were projected onto a rear-projection screen visible from within the

MRI scanner via an angled mirror.

Functional volumes were slice-time-corrected, self-motion corrected (under rigid-body transfor-

mation), and then aligned to a single reference scan for each subject independently. Alignment to

reference scans was done in two steps: first using a 12-dimensional affine transformation, then using

a highly regularized nonlinear adjustment to slightly improve the fit. These steps were carried out

using the FSL software suite (version 4.1.3, http://www.fmrib.ox.ac.uk/fsl/).

3.9.3.1 Siemens Physiologic Monitoring Unit (PMU)

A pulse oxymeter attached to end of one of the subject’s fingers and a respiratory belt wrapped

around the subject’s midsection were employed simultaneously with every fMRI scan. Data from

each were recorded at 50 Hz. Because the oxymeter kept moving around on subjects’ fingers, the

data from it were too unreliable and thus completely discarded.

3.9.3.2 Regressors used by SPM in the general linear model in order to obtain “be-

tas”/response estimates

Beta estimates under the general linear model were calculated using the Statistical Parametric

Mapping toolbox for MATLAB (SPM8 version 4010, 21-Jul-10, http://www.fil.ion.ucl.ac.uk/spm/)

with standard settings (HRF 32.2 seconds long, convolution order 1). Notably, we did not spatially

smooth functional values for these estimates. We ran two versions of the general linear model for each

fMRI scan volume sequence: one which provided beta (response) estimates for each individual face

trial, and one which provided estimates only for each unique face (of which there were multiple trials

in a scan, using information from all them). Catch trial betas were estimated, but were subsequently

completely ignored in the scientific analysis. In the case of the functional localizer scans, instead

of one estimate per face, we obtained one beta estimate per condition (e.g., “houses” or “faces” or

“objects”), of which there were only two per scan.

For each scan, we used the following 15 regressors: (1) two self-motion regressors, based on the

head motion parameters estimated within each scan, (2) three slightly time-shifted versions of curve
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traced out by interpolating the local maxima of the respiratory series (see [7, 8] for a justification of

this technique), (3) six time courses computed from within the same brain scan, five of them from

CSF (ventricles) or white matter (individually hand-selected locations), and the remaining one was

the sum of all of these, (4) two polynomial drift regressors: linear and quadratic Legendre regressors,

(5) one “start anomaly” regressor, consisting of 1s for the first two volumes, and 0s thereafter, (6)

one “end anomaly” regressor, consisting of 1s for the last two volumes, and 0s before.

3.9.4 Function-based region localization

3.9.4.1 Stimuli and task

Figure 3.34: Example stimuli from the functional localizers. Left : example face from the PUT face

database [51]. Center : example house from the Pasadena Houses database [41]. Right : fire hydrant,

from the collection of 40 object images.

Subjects each participated in two functional localizer scans in addition to the FaceView scans: (1)

Faces vs. Houses, and (2) Faces vs. Objects. A block-design was employed. Each localizer scan

consisted of 12 alternating stimulus blocks, each with either only face stimuli, or only stimuli from

the other visual category. Blocks were presented in alternating order starting with faces. Each

block consisted of 20 trials, during which a stimulus was presented for 300 ms, followed by a 450

ms fixation-square pause; thus, each block lasted 15 seconds. Before the first block, in between

blocks, and after the last block, there was 15 seconds of no-stimulus, fixation-square time to allow

for hemodynamic rest. Either 5 or 6 times in each such localizer run, a subject would see a stimulus

presented twice consecutively, the only such times this would occur. Subject were instructed to key

in a button on their controller when they noticed this happen to ensure that their attention was kept

high. Based on their response accuracies, subjects were all sufficiently alert for all localizer scans.
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Forty emotionally neutral face images were selected from the PUT Face Database [51], forty

house images were selected from the Pasadena Houses 2000 database [41], and 40 images of household

objects were collected by the author from Google Images6. All images were converted to grayscale,

normalized to have equal mean and standard deviation in luminance, then pixel values less than .01

away from black or white were set to .01 away from black or white, respectively, then the image was

masked with an ellipse (same for all images), approximating the shape of a face. Luminance values

outside the mask were set to 0.5. Images were 300 pixels in width and 400 pixels in height, and

centered on a 1024×768 display, with all background pixels colored in at gray 0.5. Images subtended

approximately 6°×8° of visual angle as viewed by participants in the scanner.

3.9.4.2 Determining Face-Selective Clusters

After alignment to the reference functional volume, functional images from the localizer scans were

smoothed with a spatial Gaussian kernel having FWHM 3.0 mm. SPM was used to obtain a t-

statistic and p-value at each voxel associated with the hypothesis that sum of the face responses

was equal to the sum of the house(/object) responses at that voxel. Spatially contiguous clusters of

voxels, for which the t-statistic was positive (corresponding to a greater response to faces), and with

significant p-value, were estimated, such that no cluster contained more than 1000 voxels nor fewer

than 12. This strategy reliably identified clusters in regions such as fusiform gyrus, and LOC. FFA

was taken to be the union of face-selective clusters overlapping with the fusiform gyrus of either

hemisphere. The face-selective clusters for each subject, including those defined as FFA, are shown

in Figure 3.35.

3.9.5 Anatomy-based region localization

Each subject’s anatomical (MPRAGE) scans (typically 1 per imaging session) were aligned with

each other (rigid body) and averaged together to produce a single high-fidelity anatomical image

per subject. This image was then parcelled into distinct cortical and subcortical regions, each

given a descriptive label, using the FreeSurfer automated surface reconstruction software7. Using

an affine transformation and regularized nonlinear adjustment (with FSL tools), anatomical images

were registered with the reference functional image for each subject. This transformation was used

to create masks for FreeSurfer-labeled anatomical regions in the reference-functional space of each

subject. An example of FreeSurfer’s output is shown in Figure 3.36.
6
http://images.google.com, Google Inc. (Mountain View, CA)

7
http://surfer.nmr.mgh.harvard.edu/
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Figure 3.35: The face-selective clusters for each subject are shown (the fusiform face areas, FFAs, are
indicated with red circles). Clusters were computed in each subject’s native anatomical space. They
are shown here projected, via nonlinear warp, onto the MNI standard cortical surface for illustrative
purposes only. This warping of subjects’ functional data into MNI space was used nowhere else
except to make this figure.
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Figure 3.36: A colored-coded output of FreeSurfer’s cortical parcellation for one subject, represented

on an inflated left hemisphere. V1 is located in the calcarine sulcus and FFA is located in the fusiform

gyrus.

3.9.6 How we compute the activity magnitude in a region

We begin with an estimate, at each voxel, of an activity magnitude (which we sometimes refer to as

an amplitude, a name due to associations with a hemodynamic response fluctuation) for a particular

stimulus. These are the raw “beta” estimates computed by the SPM software. The median value

in the voxel set is then computed (to reduce the effect of outliers), and then the series of median

values within a single fMRI scan is Z-scored (so the mean activity magnitude, across stimuli or

presentations, is set to 0 within a scan for a particular region). The Z-scoring was done to better

facilitate comparison across brain regions, which may have different underlying imaging signal-to-

noise levels or hemodynamic properties independent of functional selectivity.

3.9.7 How we compute the consistency value in a region

The neural pattern consistency of a particular face stimulus was computed between two sessions

(median 2.24 days apart), within which each face was seen on an average of 4 trials, and within each

session across these trials. When computing cross-session consistency, the response estimates used
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were the ones in which there was only one estimate per unique face in a scan. Because such estimates

pool information across multiple trials, they are relatively higher in fidelity. When computing cross-

trial consistency, the beta estimates used were the ones in which each individual face trial was

assigned a unique beta value; these are relatively lower in fidelity.

We represent a brain response pattern to a particular stimulus s at session/trial t as a vector

vt,s. It has one entry per voxel in the target region, containing the raw beta estimate of the response

at that voxel. The unidirectional neural consistency of the response pattern to a face stimulus f

between two times A and B was calculated as follows:

CA→B(f) =
1

|F |
�

g∈F

corr(vA,f , vB,f ) ≥ corr(vA,f , vB,g) (3.1)

where ≥ is an operating yielding one if the condition is satisfied and zero otherwise, and corr(x, y) is

the Pearson correlation coefficient between vectors x and y. F is a set of “distractor” faces (possibly

with repetitions, in the case of cross-trial consistency) shown at some other time B, and including

exactly one unique presentation of f . Thus, the consistency CA→B(f) is the fraction of distractor

faces at B less neurally correlated with the response of f shown at A than f itself is at B. This is

illustrated graphically in Figure 3.37. This raw consistency value can thus take on values in [0, 1].

It is logically equivalent to a scaled rank-correlation metric. This calculation is also carried out the

in other direction in time, and the consistency of a face f between times A and B is given by:

C(f) =
1

2
(CA→B(f) + CB→A(f)) (3.2)

Note on cross-trial consistency: To compute the consistency across single trials within a

session, all unique pairs of trials of the same face within each session were used to compute a

consistency score as defined in 3.2 (with all single trial responses to other faces as distractors), and

finally the single-trial consistency was given as the average across all such pairs, then averaged again

across the two sessions. An important technical note is that in computing the single-trial consistency,

the set F in Eq. 3.1 was modified to exclude those faces presentations within 5 or fewer trials (out of

87) off . That is because the neural response pattern to faces within a small window of time (roughly

+/- 45 s) was self-correlated (due to, e.g., more similar head position, related hemodynamic state,

more similar cognitive state, etc.); thus, trials within this window were discarded so that consistency

was computed relative to only those distractor trials sufficiently far away in time.

Unified consistency (x-sess+x-trial): Finally, for each face in the stimulus set, and for each
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subject, we combined the cross-session (“xsess”) and cross-trial (“xtrial”, within a single session)

consistency measures into a single unified pattern consistency as follows:

Consistency =
1

2
(Cxsess + Cxtrial) (3.3)

This final unified consistency metric thus reflected the neural pattern consistency across both

days and minutes, with equal weighting for each category of delay. However, due to the empirical

distribution of these values, as we discuss below in Section 3.9.10, the cross-session data actually

weighed more heavily in practice.

1st presentations 2nd presentations 

corr. c1 

c2 

c3 

c4 

c5 

Consistency1 = Fraction of { c1, c2, c3, c4, c5 }  ! c1 

voxels: 

Figure 3.37: An illustration of the unidirectional consistency calculation for Face 1 from first to
second presentations, in an example with only 4 other/distractor faces. The response patterns to
each face over the voxels are illustrated as colored plots, and the correlation between these across
voxels is labeled as c1, c2, ... c5.

3.9.8 ROI-wise and Map-type comparisons: comparable regions across

subjects and the MNI surface maps

We compared both magnitude and consistency in regions across subjects. We did this in two ways:

1. ROI-wise comparisons: Using comparable regions of interest (e.g., as shown in Figure 3.5)

2. Map-type comparisons: Using comparable clusters of voxels (e.g., as shown in Figure 3.3)
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ROI-wise comparisons These are facilitated simply by using voxel sets defined via anatomical

parcellation or functional localization as described above. They are computed in each hemisphere

independently then averaged together. So, for instance, a consistency value of 0.3 in LO means

that the consistency in left occipital cortex, averaged together with the consistency in right occipital

cortex, was 0.3 standard deviations above average (as all reported values are Z-scored). This per-

hemisphere-then-average strategy is also used for functionally defined ROIs: FFA, and “Face” (the

union of face selective clusters).

Map-type comparisons To facilitate local cross-brain comparisons smoothly across the whole

brain, while still carrying out all magnitude and consistency computations in the subjects’ native,

unwarped, unsmoothed functional spaces, we developed a technique for obtaining anatomically simi-

lar sets of voxels spanning the entire brain. First, for each brain hemisphere, we define a set of 77×7

“spheres” of N voxels each in each subject’s native functional space (by default we used N = 300,

though we also tried N = 100 and N = 200 with similar results). The spheres are not actually

spatially “spherical”, but have a sphere-like property: they consist of the N nearest cortical voxels

to a reference center voxel, restricted to lie in the same hemisphere as the reference. The first 77

centers, inducing 77 spheres, were defined simply: one per parcellated anatomical region8. The x-,

y-, and z-coordinates of these centers were taken to be the median in each direction among voxels in

the region. The next 6 sets of 77 were defined by, for each region, stepping 1
4 its diameter (distance

between its two most distant constituent voxels) in each of the 6 cardinal brain directions: left, right,

inferior, superior, anterior, and posterior. These direction vectors were calculated for each subject’s

reference functional volume taking into account their exact head position in the scanner. Thus, for

each of the 77 parcellated anatomical regions, we obtained 7 overlapping spheres for each hemi-

sphere. An illustration of this overlapping is shown in Figure 3.38. We also parcellated the MNI152

template brain (Montreal Neurological Institute atlas, originally based on the work of Collins [16]),

and computed the 77× 7× 2 (2 for hemispheres) spheres for it as well.

The 77 × 7 × 2 (1078) spheres become comparable ROIs: Just as with ordinary ROIs,

we could then, within each one of these spheres, perform calculations across sets of subjects pooled

together. For instance, we could compute the average consistency for familiar faces among all

subjects in one such sphere (e.g., “calcarine sulcus, step anterior”). This allows us to assign a value

to each such sphere which is based on data from all 10 subjects.

Value at voxel is average among spheres which contain it: Given a subject-pooled value
8
in the Destrieux Atlas, called “aparc a2009s” by freesurfer
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Figure 3.38: Illustration of the overlapping set of 7 spheres per brain region with one in the center
and 6 for each of the cardinal brain directions: (L) left, (R) right, (I) inferior, (S) superior, (A)
anterior, (P) posterior. Actual voxel “spheres” were not geometrically spherical as in the illustration.

at each of the 77 × 7 × 2 spheres, we could color a whole brain with data. We do this, without

exception, in the MNI152 template space. The spheres span the whole brain, covering all cortical

voxels, and so each voxel could take on a value. The value at that voxel is the average among the

spheres which contain it. Not only are spheres within a region overlapping, but neighboring regions

have overlapping spheres, so the data at each point is based on multiple estimates: for N = 300,

the 25th, 50th, and 75th percentile of number of spheres per voxel are 4, 7, and 10. The maximum

number of estimates per voxel among all voxels is 32. For comparison, for N = 100, the 25th, 50th,

and 75th percentiles are 1, 2, and 4 estimates, and the maximum is 16. Most of our analysis is based

on N = 300.

p-values are averaged in log space: When the value at each sphere is a p-value, we average

together the −log10p values and map those.

MNI surface maps: Having a value for each voxel in the MNI template space, as computed

with overlapping spheres, we project that data onto the MNI cortical surface, using freesurfer. This

results in images like the those in Figure 3.3. We computed both pial (used in this chapter) and

inflated surface maps (shown in Figure 3.36, but not used to show actual data). While pial maps

have immediately recognizable locations due to their textbook-like appearance, they technically hide

information from deep within sulci. The inflated maps contain more information, because they reveal

the sulci, but they are also harder to read due to lack of easily recognizable anatomical landmarks.

After examining results in both views, we concluded that the pial surfaces were better suited for

illustration, especially when complemented by text and ROI-wise figures.
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3.9.9 Residualized and Z-scored magnitude and consistency measures

The magnitude and consistency measures described above suffered from dependence on artifactual

experimental factors of no scientific value. Therefore, to minimize the influence of these on the

results, these factors were residualized out, as follows:

w
∗ = minw||[M 1]w − v||

where v is the column-vector of experimental values in an ROI (for example, one consistency per

face, per subject), and M is the matrix of regressors, one per face, per subject. The minimization

is carried out via standard linear regression. Then the residualized values were defined as:

v
� = v − [M 1]w∗

Finally, the values in v
� were Z-scored relative to all the other values in v

�.

For map-type comparisons of magnitude, the following 9 regressors were used for each

subject for each face: (1) the standard deviation of in-scanner distinctiveness ratings, with one

value per session, (2) the standard deviation of the in-scanner distinctiveness ratings, within a single

session, then averaged across the two, (3) the number of presentations of the face in the first session,

(4) the number of presentations of the face in the second session, (5) the minimum delay between

two presentations of the face in the first session, (6) the minimum delay between two presentations

of the face in the second session (both in terms of number of trials), (7) the time between the first

session and the second session (in days), (8) the average instantaneous head motion (absolute sum

of parameters) while the face was being presented in the first session, (9) the average instantaneous

head motion during the second session.

For map-type comparisons of consistency, the magnitude of response was also regressed

out (see below).

For ROI-wise comparisons, the regressors for magnitude and consistency were the same as

above, with the addition of the number of voxels in the region (since that varies for ROI-wise type

comparisons, but not for map-type where N = 300 for all spheres).

The reasoning behind this selection of regressions was that we wanted to minimize the effect

of subjects simply being more consistent in their button presses on the consistency of the brain

responses (though in sensorimotor cortex, the neural similarity observed between any two button

press movements using the same hand is high independently of this, see Section 3.9.11), and we
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also wanted to account for the fact that faces which were seen more times or more closely together

in time would be more consistent, and also attempt to minimize the influence of changes in neural

measures due simply to head motion at the moments the face was being presented.

NOTE – Consistency is magnitude-residualized: Unless otherwise stated, the consistency

measures presented everywhere in this chapter are magnitude-residualized, meaning that the boost

in or depression of consistency due to simply more or less aggregate activation in a region (due to

more or less SNR, assuming constant noise level) is accounted for in this way and subtracted out.
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3.9.10 Comparison of consistency measures
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Figure 3.39: Averaged across voxel spheres in occipital cortex, the raw (unresidualized) cross-session

consistency values correlate with the raw (unresidualized) cross-trial consistency values at a level of

0.29. They correlate with the raw (unresidualized) combined (x-sess + x-trial) consistency values

at a level of 0.94, and 0.59, respectively. We show one data point per face (80), per subject (10),

for a total of 800 points. Note that in terms of raw consistency values, on average (bigger circles):

Indistinct Faces < Distinct Faces < Familiar Faces.

Because the results using cross-trial and cross-session consistency values were similar, we simply

combined them to gain statistical power in our analyses, by averaging them together (before resid-

ualization + Z-scoring), see Equation 3.3. Because the cross-session consistency values were on

average much higher (due to being based on multiple trials rather than just one, hence much less

noise), the sum was dominated by the cross-session consistency: whereas averaged across all voxel

spheres (not just occipital), the residualized combined consistencies correlate (across subjects & faces
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= 800 points) with the residualized cross-session consistencies at a level of 0.95, they only correlate

with the residualized cross-trial consistencies at a level of 0.40. This relatively higher weighting of

the cross-session data which emerges naturally is desirable as it is more reliable and based on more

data points per consistency calculation.

3.9.11 Neural pattern consistency in sensorimotor cortex

Suppose a face is rated for distinctiveness, across two presentations, by the same hand of a subject

(which would occur if they are rated in {1,2,3} or {4,5,6} but not across these). Consider the pattern

of activity in sensorimotor cortex in the contralateral hemisphere (the one controlling the hand).

Due to the hand sensorimotor neurons being relatively activated compared to other motor neurons

(e.g., foot, leg), and in relatively the same way (subject makes a button press – irrespective of which

button they press, the motor action is nearly the same relative to the available space of motor

actions), the pattern of activity across this sensorimotor cortex will be highly correlated across these

two presentations. Now consider the neural pattern correlation in this sensorimotor cortex (same

hemisphere), except across two presentations of a face rated by the other hand. Because the hand

this part of cortex controls is not moving, and the subject is relatively still, this part of cortex is

simply in some kind of baseline activity, which is not at all correlated across trials. Thus, if we

Z-score the neural pattern consistency across different faces in this hemisphere, we will find a clear

trend: faces rated by the hand it controls are above average, faces rated by the hand it does not

control are below average. Furthermore, this is more or less independent of the variability in the

actual ratings because a hand movement compared to no hand movement is a much greater difference

than two different types of hand movements.

Due to the fact that buttons corresponding to distinctiveness ratings {1,2,3} were pressed with

the left hand, indistinct faces had above-average consistency in sensorimotor cortex in the right

hemisphere, and because buttons corresponding to distinctiveness ratings {4,5,6} were pressed with

the right hand, distinct faces had above-average consistency in sensorimotor cortex in the left hemi-

sphere.
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Part II

Neural pattern similarity across

individuals
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Chapter 4

Different individuals exhibit similar
neural pattern distance between
visual objects

In this first part of the thesis, we focused on individual differences in the perception of just one

category of visual stimuli, faces. In this chapter, we extend our investigation beyond this one cate-

gory, and present experimental results aimed at quantifying inter-subject neural pattern similarity

in response to a very broad range of visual object categories. Subjects in an fMRI scanner were

shown static images, selected from 44 categories (spanning life (including faces), artifacts, food, and

places), one at a time. We find that the distances between these categories, induced from activity

in cortical visual object areas, correlate highly between subjects, and also to distances inferred from

a behavioral clustering task, and that this correlation remains significant even among subsets of

closely related categories. We also show that one subject’s brain activity can be accurately mod-

eled using another’s, and that this allows us to predict which image a subject is viewing based on

his/her brain activity. We conclude with a discussion of the possibility of using brain-based features

to aid in computer vision, with a small experiment demonstrating an enhancement in recognition

performance using these.

4.1 Previous work

The approach we take to comparing subjects’ associations between categories, using representational

dissimilarity matrices, was also used by Kriegeskorte, in a paper published in the journal Neuron

[56] in 2008, for a different purpose. He compared object representations in humans to those in

monkeys. The most closely related work to our own on modeling subjects’ responses to individual
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images was carried out by Shinkareva et al., reported in PLoS One in 2008 [83]. In her study,

subjects viewed five distinct images (line-drawings) from each of two high-level categories: tools

and dwellings. Responses in each subject’s brain were predicted using models built on all the other

subjects’ responses across the whole brain. In this way, it was possible to decode which image a

subject was viewing based on his/her brain activity. The results were provided in rank accuracy: a

value of 1 means the predicted image was always the first in the list of candidates, 0.5 means it was

halfway down on average. Among 10 subjects, the average performance in this metric ranged from

0.6 to 0.94. We will present results on using a similar approach to decode both image and category

identity, and discuss the information content of voxels which are well-modeled across subjects.

Although decoding information based on cross-brain models is quite novel, decoding fMRI re-

sponses based on stimulus features has been a very active area of research in the last decade. Some

of the most important studies include Cox and Savoy in 2003 [17], Kamitani and Tong in 2006 [48],

Kay et al. in 2008 [53], Mitchell et al. in 2008 [64], and Reddy et al. in 2009 [76]. Cox and Savoy

were able to decode which of 10 image categories were being viewed very high accuracy, Kamitani

extended this to decoding which stimulus a subject was attending to among simultaneous candidates,

Kay greatly improved decoding accuracy using a mixed Gabor model of voxels, Mitchell presented

decoding results based on a semantic feature approach, and Reddy found above-chance decoding of

imagined visual stimuli.

4.2 Basic experimental setup

Three healthy adult subjects, KJS, JSB, and XH (1 female, ages 25-31), viewed 440 unique images

(repeated non-successively 2 or 4 times), 10 from each of 44 varied categories spanning life forms,

artifacts, foods, and places in an fMRI scanner, while instructed to fixate on a central point and key

in category information with a controller. See Figures 4.1 and 4.2 for details about the stimuli.

4.2.1 Five regions of interest in the brain: EV1, EV2, LOC, VO, Fusi

Five regions in the occipital and temporal visual cortex of each brain were selected for investiga-

tion: (1) “EV1”, for early visual 1, consisting roughly of primary visual cortex and regions close

to it (approximately V1-V2 ), believed to represent elementary visual features such as edges [45],

(2) “EV2”, for early visual 2, regions higher in the visual pathway and immediately adjacent to

EV1 (approximately V3-V4 ), associated with intermediate visual features such as shape [70], (3)
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Example Stimulus (12.9o x 12.9o) Examples From Each Of 44 Object Categories

Figure 4.1: The image stimuli: the subject of each image was generally not perfectly centered,
and set against a natural nonuniform background. No schematics or line drawings were used, only
pictures of actual items. Some of the images were selected from the Caltech 256 database [34], and
the rest were selected from flickr (http://www.flickr.com). Images occupied roughly 12.9◦× 12.9◦ of
visual angle. Each image was 500 px × 500 px, and circularly faded into a uniform gray background
as seen in the left panel. The background had gray value equal to the average brightness of all the
images. The circular fading consisted of linearly scaling the last 10% radially to background. Images
were contrast normalized such that the lowest 0.1st percentile and highest 99.9th percentile of their
brightness values were stretched to absolute black and white respectively. Left : Example stimulus
from “horse” category. Right : Example stimuli from each of the 44 categories.

life artifact food place
butterfly camera cupcake golden gate bridge
centipede car side fried egg iron gate

dog car tire hamburger skyscraper
duck chessboard pupusa smokestack
face fire hydrant sushi sydney opera house

flamingo grand piano victorian house
goat helicopter

grasshopper microscope
horse nail clipper

killer whale pliers
ostrich rocking chair

palm tree rolling pin
pine cone sextant
scorpion violin
sea star

snail
squirrel

tulip
zebra

Figure 4.2: The 44 categories in the static images experiment could be roughly categorized into four
super-categories: life, artifact, food, and place.
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“LOC” (lateral occipital complex), associated with high-level object category representation [35], (4)

“VO” (ventral occipital) areas associated with a range of mid-to-high-level representations [10], and

(5) “Fusi” (fusiform gyrus), associated with high-level category representations such as faces [50].

Additional details concerning the stimulus preparation, MR scanning, the estimation of a response

magnitude to each image in each voxel of each brain, and the region of interest (ROI) localization

(See Section 4.6.3) are provided in the Appendix to this chapter.

4.3 Inter-subject similarities in object category distances
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Figure 4.3: Inter-object distances, induced from responses high in the visual pathway (LOC, VO,
and Fusi together), are very similar across subjects.

We know that, if directly asked, different people will provide more or less consistent accounts of

which objects appear similar to them, and which look more different. It is not obvious how such

similarity values are computed. One simple strategy might be that each object type elicits a unique

response pattern in the brain, and that somehow it is possible to facilitate a comparison between

different response patterns and ultimately report which are more similar. This strategy allows the

comparison of two objects never before seen, between which a relationship has never been learned.

It also implies that if two people explicitly report similar distances between objects, then somewhere

in their brains we should find response patterns which give rise to similar inter-object distances.

And, indeed we do.

We perform the same kind of analysis we did in Chapter 3, Section 3.6, comparing the neural

distances between individual faces across subjects, except here we compare RDMs among entirely

different object categories. Let xs,R(cati) be the vector of response amplitudes in the region R of

subject s to category i. Each component of the vector corresponds to a unique voxel in region R. We
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formed a representational dissimilarity matrix (RDM) between object categories i and j in region

R of subject s as follows1:

RDMs,R(i, j) = 1− corr(xs,R(cati), xs,R(catj))

where corr() the Pearson correlation coefficient between the two vectors. If the two response patterns

are perfectly correlated across voxels in R, then the dissimilarity value is 0, and if they are perfectly

anti-correlated, the value is maximized at 2. Fig. 4.3 shows that these RDMs were very similar

across subjects when formed on the region of visual cortex consisting of all LOC, VO, and Fusi

voxels. In fact, their unique entries (RDMs are symmetric) correlated at a level of 0.713, averaged

across subject pairs. This number is very highly statistically significant, by an empirical significance

test based on shuffling the rows of one of the RDMs. The correlation drops to 0.528 when using

regions EV1 and EV2, likely due to less category-specific information represented there, but remains

significant.

To rule out the possibility that these inter-category correlations were driven only by the batching

of categories into fMRI scans, we considered relationships among category pairs in sets of only 4

categories at a time, comparing only categories shown within the same fMRI scan, and we still found

a significantly positive correlation: the mean among these, averaging across category subsets and

subject pairs is 0.31, and the 70th percentile is 0.69; the population of such correlations among

4×4 RDMs is significantly to the right of zero with 1 sided t-test (p<0.0011). Of course, we expect

these values to be lower not only because they control for stimulus batching but also because they

compare a much smaller number of category pairs. We also ran the complementary test, where

only one random category from every scan was used, and again found significantly correlated RDMs

(mean=0.55, to the right of zero with t-test p < 9× 10−8).

We note that these RDM correlations are much higher than what we observed among individual

faces in Chapter 3 (peak of around 0.1 in visual cortex); several reasons for this may include: 1.

the neural distances between different object categories are much greater than the neural distances

between individual faces due to more distributed representation detectable at the fMRI level; 2. the

number of trials per category is higher in this experiment (20 or 40, see Appendix to this chapter)

than the number of trials per face in the last experiment (average 8), so the individual responses here

have higher fidelity; 3. in this experiment, the individual exemplars in each category are different,

possibly leading to more robust estimates, whereas in the last experiment the different trials of a
1
we actually discard the 30% of voxels in R with lowest SNR
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particular face consisted of identical stimuli; 4. here we compare representations using the bilateral

set of voxels in a wide swath of visual cortex including LOC, VO, and Fusi, whereas in Chapter 3

we compare only 300 voxels from the same hemisphere at a time; 5. here stimulus order is the same

for each subject whereas in Chapter 3 it was not.
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Figure 4.4: Visual relationships between object categories inferred from brain responses are similar.
The dissimilarities between categories are approximated in two dimensions using MDS for each sub-
ject. Top-left: coordinates of objects based on explicit human clustering with a computer interface.
Rest: coordinates of objects based on similarities between response patterns in higher visual cortex
(LOC, VO, and Fusi together), for each of the three subjects. Notice that the four super-categories
tend to cluster in roughly the same way, and that within each super-cluster, some structure is similar
across subjects (e.g., skyscraper is always extremal).

We compared the RDMs formed from the cortical responses, as above, to an RDM between

objects based on explicit human report. The three subjects in the fMRI experiment above, together

with four more healthy adults, were asked to cluster the 44 categories into two groups recursively,

forming a hierarchical binary tree, until either they felt no reason to separate subsets of categories
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Figure 4.5: A subtree of one subject’s hierarchical clustering of object cate-
gories using the web interface is shown. The full tree may be browsed at:
http://www.klab.caltech.edu/~harel/res/fmri/stimuli/gui/seeallclusters.php?subj=kjs
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further, or until they ended up with just a pair of categories. This task was carried out online, at

home by the subjects on their own computers, using an interface like that which is shown in Fig.

4.5. They were asked to make similarity judgments based on the appearance of the categories, and

could use the interface to explore the 10 exemplars in each category. Although they were asked to do

this based on appearance alone, subjects uniformly created hierarchies adhering to logical, semantic

relationships (e.g., “a dog and a goat are both four-legged mammals”). Then, each cluster at each

level of the hierarchy of each subject was encoded as a binary column vector with 1s at indices

corresponding to categories in the cluster, and 0s outside: we call such a vector a cluster inclusion

feature. The collected set of all these vectors yields a matrix (we actually discard equivalent columns),

the rows of which are feature vectors, one per category, which can be used to form an “explicit-report”

RDM, based on the collective clustering of all subjects (no meaningful inter-subject differences in

the clustering were found). Matlab’s multidimensional scaling (MDS) algorithm, mdscale, was used

with default parameters to obtain a set of 2-dimensional coordinates for each category based on this

RDM, approximately preserving the distance relationships. That is shown in Fig. 4.4, top-left.

The correlation between this explicit-report RDM and the RDMs formed on higher visual regions

(LOC, VO, Fusi together) was 0.32, averaged across subjects, and highly significant (by shuffle

test). This correlation dropped to .05 and was not significant in lower visual areas (EV1 and EV2).

However, the lower visual areas did yield RDMs correlating at 0.528 among subjects, meaning that

somehow the structure of the similarity between object categories was very similar across subjects

in these areas, but was totally unrelated to the high-level semantic relationships revealed in the

clustering task: as we move higher up the visual pathway, the relationships between object categories

became more consistent across subjects, and much more closely related to semantic relationships.

We investigated whether the inter-subject similarity in RDMs was governed mostly by the dis-

similarity among super-categories. We found that even restricted to each super-category alone,

the relationships between object categories were highly correlated among subjects, and passed sig-

nificance tests except where there were very few data points available. Fig. 4.6 illustrates these

inter-subject correlations among subsets of objects belonging to just one super-category.
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Figure 4.6: RDMs on subsets of related categories are also similar across subjects. Each row of

panels corresponds to a unique super-category, and each column to a unique subject pair.



144

4.4 Inter-subject similarities at the single-voxel level
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Figure 4.7: Illustration of the linear cross-brain model of a single destination voxel based on a

combination of support voxels in the same region of another brain. For visual convenience, the

response in brain A is shown as a scalar, but in the actual model it is a vector with a component

for each support voxel.

We were also interested to find out whether individual voxels had responses to images which were

similar to those of voxels in other subjects’ brains. To address this question, we built cross-brain

models as illustrated in Fig. 4.7. Each voxel in region R (each of the 5 regions considered separately)

was linearly modeled based on all of the voxels in the same region R of one other subject (the “support

voxels”). That is, we found a weight vector w relating the image responses of a single voxel i in

region R in subject s, xs,i, to the matrix of responses xs�,R in the same region of another subject s�

as follows:

xs,i(imagej) = w0 +
�

k∈R(s�)

xs�,k(imagej)wk

xs,i = [1 xs�,R]w

where xs,i is an ntrain × 1 vector image responses, ntrain is the number of training images, xs�,R is

an ntrain × |R(s�)| matrix of responses, R(s�) is the set of voxels in region R of subject s
� and | · |
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Figure 4.8: The correlation between predicted and observed responses to images and categories in
single voxels, based on cross-brain models. All histograms are over voxels in the modeled subject’s
brain, in a given region. The correlation for each voxel is computed over the entire set of images
or categories, but each individual estimate is based on a prediction from a model trained on images
shown in different MR scans. Results are only shown for predicting the responses of JSB with the
responses of KJS. Left panels correspond to models trained with category responses; right panels
correspond to models trained with individual image responses. In order to test which voxels were
significantly modeled, training was also performed based on a shuffled image order, and the results
from that control model are shown in red. Voxels modeled above the 99th percentile of correlations
observed under shuffled training are considered significant. Note that the correlation when modeling
category responses (left) is higher than when modeling image responses (right), because the estimates
per-category are much higher in fidelity (10 or 20× data per response estimate). However, the shuffled
model on categories also spuriously produces voxels at higher correlations, because the correlations
are computed over much shorter vectors. Note: it is not surprising that the shuffled distribution
on images lies to the right of zero, because a random shuffling in general preserves some nonzero
amount of the structure in the original image order.
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is the cardinality operator, and w is a (1 + |R(s�)|) × 1 vector of weights. To estimate the weight

vector w relating one subjects’ responses to another’s, we set up a linear regression problem with

ntrain training images, selected from all but one scan (e.g., if the left-out scan contained 40 unique

images, ntrain = 400). However, the number of voxels over which we wanted to estimate weights

was greater than ntrain in general, and so we employed Tikhonov regularization2 in order to force

the minimization problem to have a unique solution.

We trained the model using both responses to individual object exemplars/images, and entire-

categories (for which the number of responses per voxel is decreased an order of magnitude). We

then tested how well this model extrapolated to the left-out scan (iterated over each of 12 scans), by

comparing the responses predicted by the cross-subject model to those actually observed. Because

no two scans featured the same object category, and the amplitude estimations from each scan were

computed independently (e.g., they do not share a drift term), the extrapolation required non-trivial

generalization.
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Figure 4.9: Left: The correlation between observed and predicted responses is greater in the higher
visual pathway (LOC, VO, and Fusi) when training is based on entire categories. When training
is based on individual images, the best-modeled voxels tend to fall in early visual cortex (EV1 and
EV2), where information distinguishing between them is likely represented. Right: The correlation
between observed and predicted responses for the 99th percentile of voxels, for each subject, in EV1.
The category correlations are higher both due to higher fidelity response estimates (more trials per
response), and a higher likelihood of spurious correlations because they are computed over shorter
vectors (number of categories < number of images).

The results are that such models do convincingly extrapolate and are able to statistically signif-

icantly predict the responses in another brain. Fig. 4.8 shows a histogram over voxels in subject

JSB, where each voxel is assigned a value according to how well it is modeled. This value is equal
2
with parameter α = 0.1 when training with entire-category responses, and α = 50 when training with individual

image responses. The results are not terribly sensitive to these parameters.
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to the correlation between the predicted responses and the observed responses, over all images in

the stimulus set. The correlations for a single voxel often exceed the 99th percentile of those corre-

lations obtained by shuffled training. Results obtained for other subjects are qualitatively similar.

Fig. 4.9 shows that predicting the response to an object category is more easily done in higher

visual cortex (esp. LOC and Fusi) than in lower visual cortex (EV1 and EV2). However, predicting

the response to an individual image is more easily done in lower visual cortex. This is presumably

because neurons in lower visual cortex have response properties which allow them to distinguish be-

tween individual images, whereas those higher in the visual pathway may only be able to distinguish

between categories.
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Figure 4.10: It is possible to accurately predict which image in a set a subject was viewing based

on his/her brain data. The image predicted is that for which the observed brain activity most

closely matches what would be expected given another subject’s brain data in response to the same

image. All decoding curves lie significantly above chance level. Left: decoding based training

models to predict responses to individual images. Right: decoding based on training models to

predict responses to object categories.

The strength of the cross-brain models for all subject pairs and modeling directions is summarized

in Fig. 4.10. It is possible to accurately predict which image in a set a subject was viewing based on

his/her brain data, and a cross-brain model which predicts what the brain data should be for each

stimulus in the set. To get these results, we only used the best 30% of voxels in each region, ranked

by the fidelity of the training estimates. Those voxels which were well modeled on the training set
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of images tended to extrapolate more accurately to the test set. Note that generally the models

involving subject XH are worse, probably because the MRI set-up was slightly different for this

subject, as discussed in the MRI methods (Section 4.6.2). Strikingly, in the case of the best models,

we found it possible to predict exactly which category out of 44 a subject was viewing in roughly

35% of cases (compared to 1/44=2.3% chance level).

4.4.1 Voxels well-modeled across brains are category selective

Given the way our experiment was structured, namely, that subjects all viewed the image stimuli

in exactly the same order, it is in principle possible that the cross-subject models are predictive

because subjects simply synchronize over the course of the scan in a way which is independent of

object category/stimulus information. For instance, perhaps subjects become relatively inattentive

and attentive in the same temporal pattern, driving a common pattern of blood flow to visual cortical

areas, without any relation to the object category being shown. If that were the case, then the voxels

which are best modeled across subjects (based on individual image responses) would not contain any

more category information than those which are poorly modeled. For instance, the best modeled

voxel could simply be one at a critical point in the vascular network which fluctuates in a very

stereotypical way among subjects over the course of each scan, but it is no more likely to respond at

one level for one set of categories and at another for the complement than a voxel which is poorly

modeled, because its responses are by supposition independent of category information. However,

we find that this is in fact not the case, for at least two reasons: (1) Fig. 4.11 shows that those voxels

which are best modeled, based on responses to individual images, have a strong preference for images

with life forms. They are more active for those images than for images without life forms. (2) We

find a strong correlation between the “cluster inclusion features”, provided from human annotation,

and encoding the identity of subsets of strongly related categories, and the best modeled voxels in

LOC and Fusiform gyrus. Assigning each voxels two values: (1) cross-brain-likeness, the average

correlation between its predicted image responses based on cross-brain models and those observed

(indicating how well modeled it is), and (2) category-likeness, the average correlation between its

responses and the cluster inclusion features (indicating how category-selective it is), we find a mean

correlation of .474 between these two values across voxels in LOC, and 0.471 in Fusiform gyrus.

The value of cross-brain-likeness is significantly explained by value category-likeness according to

an F-test in all cases (all 3 subjects, both ROIs), with all p-values less than 1.6× 10−5.



149

  life  artifact   food    place 

0.8

0.9

1

1.1

1.2

1.3

p
ttest

 < 0.03 not sig. p
ttest

 < 0.01 not sig.

Image Type

M
e
a
n
 N

o
rm

a
liz

e
d
 R

e
sp

o
n
se

Subject JSB ROI LOC

 

 
among best 3% of x−subj voxels
among all voxels

  life  artifact   food    place 

0.8

0.9

1

1.1

1.2

1.3

p
ttest

 < 0.02 not sig. not sig. not sig.

Image Type

M
e
a
n
 N

o
rm

a
liz

e
d
 R

e
sp

o
n
se

Subject JSB ROI Fusi

 

 
among best 3% of x−subj voxels
among all voxels

  life  artifact   food    place 

0.8

0.9

1

1.1

1.2

1.3

p
ttest

 < 0.004 not sig. p
ttest

 < 0.04 p
ttest

 < 7e−06

Image Type

M
e
a
n
 N

o
rm

a
liz

e
d
 R

e
sp

o
n
se

Subject KJS ROI LOC

 

 
among best 3% of x−subj voxels
among all voxels

  life  artifact   food    place 

0.8

0.9

1

1.1

1.2

1.3

p
ttest

 < 0.006 not sig. p
ttest

 < 0.02 p
ttest

 < 0.002

Image Type

M
e
a
n
 N

o
rm

a
liz

e
d
 R

e
sp

o
n
se

Subject KJS ROI Fusi

 

 
among best 3% of x−subj voxels
among all voxels

  life  artifact   food    place 

0.8

0.9

1

1.1

1.2

1.3

p
ttest

 < 0.003 not sig. not sig. p
ttest

 < 4e−05

Image Type

M
e
a
n
 N

o
rm

a
liz

e
d
 R

e
sp

o
n
se

Subject XH ROI LOC

 

 
among best 3% of x−subj voxels
among all voxels

  life  artifact   food    place 

0.8

0.9

1

1.1

1.2

1.3

p
ttest

 < 0.02 not sig. p
ttest

 < 0.02 p
ttest

 < 0.004

Image Type

M
e
a
n
 N

o
rm

a
liz

e
d
 R

e
sp

o
n
se

Subject XH ROI Fusi

 

 
among best 3% of x−subj voxels
among all voxels

Figure 4.11: The voxels in each brain which are best modeled based on cross-brain models exhibit
a preference for images with life forms. Voxels are ranked according to how well their predicted
responses to each image (using image-based decoding) are to the observed ones (averaged over the
two other subjects used to form the model). Image responses are normalized such that in any single
scan, the mean response is 1.0. Among all voxels, the mean response to each category is around 1,
however among the 3% which are modeled best across subjects, there is a strong preference for life
forms and against places, both in LOC and Fusiform gyrus, in all 3 subjects. p-values are shown
in each plot above each pair of corresponding bars. They are computed from a t-test on the list of
paired comparisons, one per category in the super-category set.



150

4.5 Discussion and future directions

First, on the section comparing object category distances and finding high correlation (correlation

0.55 using pairs of categories from different scans): by showing that different subjects have similar

inter-category neural pattern distances, we have introduced some quantitative constraints on the

extent to which people may differ in visual experience. If the quale associated with the percept of

a visual object category is defined or constrained by its similarity at the neural level to other visual

percepts, we can say some with degree of certainty that such visual qualia are not totally different

among different people.

The section on modeling single-voxel responses also has potential utility. A vital assumption in

systems neuroscience is that the receptive field properties of neurons are generally similar across

individuals. Very little, however, is understood about how the physical configurations of such func-

tionally similar neurons might correspond across brains, and what patterns govern such mappings

if any. The usefulness of having such functional mapping was demonstrated in an experiment by

Sabuncu et al. [80], in which standard fMRI analyses could gain significance by applying a smooth

“functional” (i.e., based on the function of the brain) mapping, learned beforehand based on a movie

presentation, to align subjects’ brains. The approach we took in the single-voxel mapping section

of this chapter has similar application. One could bring subject brain B into “functional” alignment

with brain A by reconstituting every voxel in reference space A using the model learned during

training.

Fig. 4.12 suggests another possible application for the kind of analysis presented in this chapter,

of the brain’s activity under visual stimulation. Brain responses to images are added to features

automatically extracted from image content (namely, C2 features from the “hmax” model [78, 67]),

and their addition improves object support-vector-machine (SVM-)based object categorization per-

formance without maximizing it to perfect level. This suggests that the information in the brain

responses is (1) not identical to object category labels and (2) not redundant relative to hmax

features.

These features could potentially just be extremely noisy category labels. However, it is inter-

esting to speculate that, to the extent that they are not perfect object labels, they are meaningful

mid-level features computed by the brain in the visual pathway as part of its object recognition

processing stream. If so, they could be trained against as part of a computer vision architecture

which uses as ground-truth not only image labels, but also these intermediate labels supplied by

the brain. Such intermediate features could help bridge the vast gap between low-level features
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Figure 4.12: Brain-based features enhance image categorization performance. Categorization is
based on training a support vector machine with 9 examples per category, and testing it with the
example image left out. Error bars are standard errors over 25 trials, each corresponding to a
different subset of categories. Features consist of 2000 hmax C2 elements, and 362 voxel responses
from LOC and Fusiform gyrus (311 from LOC), corresponding to the 15% of voxels best-modeled
in those ROIs across subjects (136 from JSB, 158 from KJS, and 68 from XH).

extracted automatically and high-level labels supplied manually by human annotators. We predict

that, performed at a sufficiently large scale (e.g., with 5 monkeys, and thousands of images), mid-

level image features could be learned from brain responses. Machine learning techniques could then

be applied to automatically construct these for new images, hopefully aiding in object recognition.

Technical notes on categorization experiment: For each number of categories (5,10,..., 25),

we performed 25 trials. In each trial, a different subset of the 44 categories of visual objects described

in this chapter was selected. In each case, the 10 exemplar images per category were partitioned

into 9 training and 1 testing image. The features describing each image (hmax and/or brain) were

Z-scored relative to the training set, and the mean and standard deviation of each feature in this

training set were then used to normalize the test features. A multiclass support vector machine

(using highest rank in pool spanning all unique one-vs-one classifiers) was trained using MATLAB’s

Statistical Pattern Recognition Toolbox (“stprtool”), with default parameters, linear kernel function,

and a regularization constant C = 100. The 50% of features having the lowest absolute weight in

the SVM training were thrown out, and the training was repeated. This was done one more time,

so that the final SVM was only trained on 25% of the features (hmax, brain, or hmax+brain). This

final SVM was used to predict a category for each test image. This hmax feature creation and
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pruning techniques were based on a public code library by Jim Mutch3. To provide the reader with

some idea of how the pruning divided hmax and brain features, in one randomly selected trial in an

experiment predicting among 25 categories, of the original 2000 hmax features, 549 were selected

(27.5%), and of the original 362 brain-based features, 42 were selected (11.6%), of which 17 were

from KJS, 17 from JSB, and 8 from XH.
3
see http://www.mit.edu/~jmutch/fhlib/, [67]
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4.6 Appendix

Subjects provided informed written consent prior to the experiments. The Caltech Institutional

Review Board approved all experimental procedures.

4.6.1 Visual stimulation paradigm

The 440 images were shown over a series of 12 individual functional imaging scans, each one lasting

7 minutes, 57 seconds (7:57), and consisting of 80 image presentation trials, from either 2 or 4

categories (2 scans with 2 categories, and 10 with 4 categories). A white fixation dot appeared in

the center of the image display throughout the entirety of each scan; subjects were instructed to keep

their eyes fixated on the dot the entire time, as images centered on it would appear in sequence. Each

of the 10 exemplar images from each of the categories was shown either 4 times (in scans with only

2 categories), or 2 times (in scans with 4 categories), non-successively and distributed non-regularly

over the 80 trials. The images were randomly permuted with respect to category, but the exact

image order was the same for all three subjects. In each presentation trial, an image flashed at 2.5

Hz for 1 s, followed by a 3.5 or 8 s (exactly once ever 4 images, regularly) delay, during which the

subject pressed a button on a controller indicating which object category (among 2 or 4 candidates)

he/she thought the just-presented image belonged to. Additionally, there were 13.5 and 21 seconds

of lead-time and end-time before and after all the image presentations, respectively, during which

the screen was a uniform gray except for the fixation dot. All visual stimuli were projected onto a

rear-projection screen visible from within the MRI scanner via an angled mirror.

4.6.2 MRI data acquisition and preprocessing steps

MRI data were collected using a Siemens (Erlangen, Germany) 3T TRIO. All functional images

(blood oxygenation level dependent (BOLD) T2*-weighted) were acquired using a gradient-echo

echo-planar (EPI) sequence. For two of the subjects (KJS and JSB), functional images consisting

of 20 slices with 2.23 × 2.23 × 2.5 mm voxels were acquired with a TR (repetition time) of 1.5

seconds using a Nova Medical occipital coil (acquisition matrix 64 × 64, flip angle 80◦, echo time

31 ms). For the remaining subject (XH), an 8-channel head coil was used to acquire the functional

images, with 20 slices and 3× 3× 3 mm voxels (TR of 1.5 seconds, acquisition matrix 64× 64, flip

angle 70◦, echo time 31 ms). Slices were obliquely oriented for coverage of occipital and temporal

visual areas. Anatomical images for all three subjects were acquired using a T1-weighted MPRAGE

(magnetization-prepared rapid gradient echo) sequence with the 8-channel head coil. Functional
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volumes were slice-time-corrected, then registered with a single 12-parameter 3-dimensional affine

transformation to a reference scan for each subject (this transformation incorporated self-motion

correction). Images were then resampled into a 3 × 3 × 3 mm voxel space, and smoothed with a

spatial Gaussian kernel with standard deviation 1.5 mm. Anatomical images were co-registered with

functional images using a 12-parameter affine transformation as well.

4.6.3 Defining regions of interest (ROIs) in the brain using Freesurfer

The regions of interest in this chapter were defined relative to the cortical segmentation com-

puted automatically by FreeSurfer (http://surfer.nmr.mgh.harvard.edu/). Because they were de-

fined anatomically, and not based on a functional experiment, these region labels are approximate.

EV1 was taken as the cortical matter inside calcarine sulcus and the closest part of the occipital

pole, and EV2 was defined as regions adjacent to and immediately dorsal and ventral from that.

VO (ventral-occipital) was here taken as a posterior portion of the medial occipito-temporal and

lingual sulcus. Here, Fusi (fusiform gyrus) was simply taken as the 60% most posterior portion of

all fusiform gyrus, since that’s where some visual object areas (e.g., FFA) tend to concentrate. LOC

(lateral occipital complex) here simply consisted of lateral voxels in occipital cortex. Fig. 4.13 shows

the calcarine sulcus in an anatomical scan of subject KJS.

Figure 4.13: The calcarine sulcus, which contains primary visual cortex (V1), is shown highlighted
in red in subject KJS in one sagittal slice.
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4.6.4 Estimating a response to each image in each voxel of each brain

Fundamentally, we assume that each image presentation trial induces some amount of neural activity

in each little chunk of brain tissue, and that this induces an increase in blood flow, which we would

like to estimate at each location independently given the imaging data. The approach we took to

modeling the response in each discrete voxel (the 3-dimensional analog of a pixel) in the imaging

data was based on the linear systems approach first described by Boynton [9] in 1996. At each such

voxel, over the course of the scan, we observed a time-course vector t (of dimension n × 1 where n

is the number of 3D volume acquisitions, which in our case n = 318 for a single 7:57 scan) of image

intensities. We modeled the time-course as the sum of three components:

t = r + d+ n,

where r is the “response” component of the signal due to increased blood flow induced by stimulation,

d is a “drift” component, which is taken to be very slowly changing (e.g., < 0.02 Hz), and resulting

from the baseline intensity of the imaged tissue plus slowly varying changes in the scanner (e.g.

heating up), and n is random zero-mean noise resulting from measurement near the physical limits

of the system (and independent at each time point). We assume a simple relationship between the

vector of stimulus onsets s (a vector of ones at times corresponding to stimulus onset, and zeros

elsewhere) and the observed response r, viz.:

r = h ∗ a, i.e.,

r(j) =
n−1�

i=0

h(j − i)a(i) for j = 0, 1, ..., n− 1

where a = As is the n × 1 vector of response amplitudes (a vector with positive values at times

corresponding to stimulus onset, and zeros elsewhere; A is a square matrix appropriately scaling s

to the response of each stimulus), and h is a characteristic hemodynamic response function (HRF),

which usually peaks about 5 seconds after stimulus onset (see Fig. 4.15 bottom for an example). We

assume h(j) = 0 for j < 0 and j > tmax where tmax is usually around 12 seconds, although in some

cases it is as high as 32. Essentially, the model assumes each discrete stimulation event induced a

characteristic impulse response of increased blood flow, mostly lasting 10-12 seconds, and that these

were additive in sequence.

The challenge was to estimate the response amplitudes a induced by each stimulus given, in
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'[H       D]  x = t 
Figure 4.14: The linear model of blood-flow response to stimuli: the matrix on the left consists of
HRFs shifted to each event onset, H, concatenated with the matrix of slowly changing drift terms,
D. T is the observed time-course.

general, only the slowly-changing nature of d, the times of stimulus onsets s, and the observed

output t. To make the problem simpler, we assumed that the HRF h took a known form. HRFs

have been studied extensively in visual cortex (see e.g. [52]) and their basic characteristics are well

understood. Then, we estimated the non-zero entries in a by obtaining the least-squares solution x̂

to the following equation:

[H D]x = t

where r̂ = Hx̂m is the estimated response, and d̂ = Dx̂o is the estimated drift, and ŷ = r̂+ d̂ is the

reconstructed signal. m is the number of stimulus onsets, x̂m is a vector of the first m components

of x̂, o is the order of the drift term, and x̂o is a vector of the last o components of x̂. D is an

n× o matrix of slowly-changing basis functions up to order o (we use o = 9 and the first 9 Legendre

polynomials interpolated between -1 and 1 [52]), and

H(j, i) = h(j − onset(i)), for i = 1, 2, ...,m

where onset(i) is the time of the i
th stimulus onset. Fig. 4.14 and Fig. 4.15 illustrate the model

and provide an example of its estimations on a real data sample. For better results, we carried this

estimation out for 5 different candidate HRFs in each brain region in each subject and, for each one

independently, used the estimates corresponding to the HRF where the reconstructed signal was

closest to the observed signal in the least-squares sense.
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To account for variability between scans, the response amplitudes were normalized by the mean

across all image trials in the scan at which they occurred. Finally, the response to each image was

taken as the mean of these normalized values over its 2 or 4 presentations, and the response to each

image category was taken as the mean of the normalized values over its 20 or 40 presentations. In

each voxel, there was some variability in the response to each image across presentation trials, and

the mean variance of this value over images was taken as its inverse “SNR”: voxels which consistently

yielded the same response across trials of the exact same image had very high SNR. Voxels with low

SNR were likely to be outside of visual areas.
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Figure 4.15: Model estimation on a single voxel in the LOC region of subject KJS: Top: The
observed time-course is shown in black, together with the reconstructed signal in red. Notice that
the raw image intensities are in this case around 1240 - 1280; most of this intensity is simply due to
the magnetic properties of the imaged tissue, which are not changing over the course of the scan. It
is the small fluctuations at the top of the signal which carry information about the extent to which
blood flow increased with each image onset. The image onsets are shown as vertical dashed lines.
Bottom: the shape of the HRF which yielded the best reconstruction for the time-course.



158

Chapter 5

Different individuals exhibit
temporally similar neural patterns
under dynamic video stimulation

Whereas in the last chapter we compared patterns of neural activity across voxels in space, in this

chapter, we present experimental results aimed at quantifying inter-subject similarities in neural

patterns across time, as they occur in response to videos both with and without sound. Subjects

in an fMRI scanner were shown three categories of videos, each with and without an accompanying

audio track. Two of the categories of videos were semantically meaningful whereas the third was

more abstract. We find that subjects’ brain responses to the same videos correlate in corresponding

brain regions to a high degree (71 - 78% compared to correlations with self later in time). We also

find evidence that when watching videos with sound, visual attention is likely blurred at times and

transferred to audition, as subjects relatively decorrelate in visual areas compared to the muted

case. Lastly we show that about 34% of the observed variance in inter-subject response similarity

can be explained by similarities in the parcellation and/or structure of their brain anatomies.

5.1 Previous work

The most relevant reference for the work in this chapter is an important paper published in Science

in March 2004 [37], wherein Hasson and colleagues showed that individual subjects exhibited a

very strong tendency to go through similar temporal patterns of relative high and low fMRI BOLD

activation during natural audiovisual stimulation. Subjects viewed a 30 minute continuous block of

the feature film The Good, The Bad, and the Ugly (1966, Metro-Goldwyn-Mayer) while in an MR

scanner, and then individual points in their brains were compared to corresponding ones in the other
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subjects. Strong correlations were found in early and intermediate visual areas, including V1, V2,

V3, V4, collateral sulcus, the fusiform face area (FFA), the parahippocampal place area (PPA), as

well regions associated with auditory processing: A1, superior temporal sulcus (STS), and lateral

sulcus (LS), and also the post-central sulcus (PCS), associated with hand movements. Hasson later

reported, in the Journal of Neuroscience in 2008 [38], that the correlation in early sensory areas

(e.g., primary visual cortex) was preserved even for much shorter presentation times, but that the

correlation in areas higher in the sensory pathway (e.g., STS, precuneus) depended on information

being accumulated over larger time windows. In another paper published in 2008 [46], Jääskeläinen

and colleagues showed that it was also possible for subjects to correlate in frontal cortex (especially

right frontal cortex), an area in which Hasson et al. did not find significant correlations. They

achieved this by having subjects watch the first 72 minutes of the feature film Crash (2005, Lions

Gate Films) outside of the scanner, then watch the last 36 minutes in the scanner. Presumably, the

synchronization of high-level emotional events drove this previously unreported signal. Golland et al.

[33] report significant decrease in auditory region correlation for movies without sound, and find a

pattern of intra-subject correlation (same subject, later in time) similar to the inter-subject pattern

reported originally reported by Hasson in [37]. Finally, in a slightly different experiment, Stephens et

al. show that the pattern of neural activity a speaker of a story experiences is significantly correlated

with the pattern a listener to that story experiences [87].

5.2 Basic experimental setup

Seven healthy1 adult subjects (4 female, ages 21-33) freely viewed three videos in each of two

conditions: visual stimulation only (i.e., without sound), and auditory & visual stimulation. The

videos in the first and second conditions were not identical, but very similar in nature. Three of the

subjects were brought back in more than a month after their original scans and repeated the entire

experiment. Below, we report similarities between subjects in cortical responses, how they depend

on the nature of the stimuli, and how they compare to same-subject similarity across time.

5.2.1 Stimulation paradigm

Subjects participated in two MR scans, lasting 22 minutes, 12 seconds each. In each scan, subjects

viewed (1) a 14 minute video, followed by (2) a 4 minute video, followed by (3) another 4 minute
1
We note that 3 of the subjects (not those brought back for repeat scans) were initially recruited for having self-

reported visual-to-auditory synesthesia. However, no significant difference with respect to this was found in the results

presented in this chapter.
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video, with 4 seconds in between videos and 2 seconds at the very beginning and end of the scan.

Subjects were not required to fixate and were only instructed to pay attention. The videos in the

first scan had no sound (visual only, “V-only”), and the videos in the second scan all did have sound

(auditory and visual stimulation, “AV”). Auditory stimuli were delivered via MRI-compatible stereo

headphones. All visual stimuli were projected onto a rear-projection screen visible from within the

MRI scanner via an angled mirror. Stimuli subtended roughly 16◦×12◦ of visual angle, and occupied

640× 480 pixels on 800× 600 pixel display.

(1) The first video in each condition contained a continuous segment of the feature film Back

to the Future (1985, Universal Pictures). In the visual-only condition, the clip was from near the

beginning of the film, and in the audio & visual condition, the clip was was from near the end of the

film. These were intended to fully engage the subjects in a plot, and involve all levels of cognition

from simple sensory perception to high-level emotional and theory-of-mind processes.

!"#$%&'()*#$'()*+$(
,-'+%&'(.+/01(23456(7/.'+(

!"#$%&'()*#$'()*+$(
,-289:'.'&/96(7/.'+(

Figure 5.1: Samples from the videos shown in the dynamic images experiment.

(2) The second clip in each condition featured “People Doing Stuff”, taken in part from the

artistic film “Everything is Everything” by Koki Tanaka2. It consisted of various household objects

being manipulated or moved in seemingly meaningless and random manners. Fig. 5.1 shows an

example frame from this video. The original video from collegehumor is only about 6 minutes long,

so it was divided into two 2:52 segments, each of which was then concatenated with an additional

1:08 of very similar video content, filmed by the author, in order to produce two full 4 minute clips.

These videos featured concrete recognizable objects, but did not form a coherent plot.

(3) The third clip in each condition featured “psychedelic” videos found on YouTube3. These
2
http://www.collegehumor.com/video:1924307

3
http://www.youtube.com, YouTube, LLC (San Bruno, CA)
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videos contained very colorful, undulating, abstract shapes and forms. In the video with sound, a

trance music soundtrack was played, which did clearly involve human vocals, although only with

very vague and difficult-to-decipher words without any clear message.

Thus, a variety of video content was shown ranging from the most concrete to increasingly

abstract. All subjects viewed the videos in exactly the same order, and always with the visual-only

condition first.

5.2.2 Two kinds of inter-subject correlations

!"#$!%&'()*&"#(

+,&-*(.$#",-(/%&0+1(

#"2+&$%&(0+'2%&,-(#"-/"#(

3&+,#(%!(4%1+-56$#+(7+'2%&,-(8%&&+-,9%:(;+06++:(<=>(,:?(3@3(

":?+&(,"?$0%&*(A(.$#",-(#9'"-,9%:(

":?+&(.$#",-(#9'"-,9%:(%:-*(

Figure 5.2: The spatial extent of inter-subject correlations extends into auditory regions only under
auditory & visual stimulation. Correlations are cut off below 0.3 (do not appear as a colored patch),
are computed from the entire 3-video presentation, and are voxel-wise on the functional images
spatially smoothed with a 5mm Gaussian kernel. The underlying anatomical image is the MNI152
standard brain in the 3.3 mm space.

Below, two kinds of comparisons are made between subjects’ functional responses: (1) voxel-

wise: in these comparisons, an exact MNI52 coordinate is compared to the same one in another

subject. When this kind of comparison is made, an ROI is taken to be only the intersection of all

subjects’ ROIs in the normalized space, (2) ROI-wise: in these comparisons, the average activity
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across a whole spatial region of voxels is taken before comparison to another subject is made. When

this kind of comparison is made, an ROI is taken to the be the entire ROI for the subject (not

only the sub-ROI overlapping with the others’). For voxel-wise comparisons, the imaging data is

also spatially smoothed with a Gaussian kernel before drift removal and low-pass filtering. Unless

otherwise specified, the smoothing was with a kernel of standard deviation 2 mm. Details concerning

the MR scanning and localization of brain regions is provided in the Appendix to this chapter.

5.3 Broad correlations across cortex
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Figure 5.3: ROI-wise functional correlation across subjects is shown for each of the eight regions.
For each ROI, the mean same-subject correlation (across the three subjects which came in for a
repeat scan more than a month later) is shown as a horizontal line. The inter-subject correlations
are about 71% as high as the same-subject correlations in the auditory & visual (AV) case, and 78%
in the visual-only (V) case, excluding region A1, which correlates across subjects to only 15% the
same-subject extent. All correlations are significantly above zero.

Replicating the finding originally reported by Hasson et al. [37], we find “synchronization” of brain

activity among subjects which is extensive, going well beyond just primary sensory cortices. Fig. 5.2

shows the voxel-wise correlation between two subjects (MEL and ASA). Some things are immediately

clear: for example, under auditory & visual stimulation, subjects’ responses in the superior temporal
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sulcus (STS) correlated, but much less so when stimuli were soundless. The posterior portion of

STS (pSTS) has been implicated in the integration of auditory and visual information into a single

unified representation [42]. Fig. 5.3 summarizes the inter-subject correlations found in each of the

ROIs: all correlated significantly positively, even region A1 under visual-only stimulation, although

only with p-value 0.011 according to a two-sided t-test on the set of subject pairs. Fig. 5.4 shows

how the voxel-wise correlations are spread out within each ROI.
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Figure 5.4: The histogram of inter-subject correlations across voxels. The dashed line corresponds
to the 95th percentile of inter-subject correlations found in voxels outside of cortex.
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Figure 5.5: The histogram of same-subject correlations across voxels. The dashed line corresponds
to the 95th percentile of same-subject correlations found in voxels outside of cortex. Correlations
are greater than the analogous inter-subject comparisons, shown in Fig. 5.4.
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To understand how strong the inter-subject correlations were, we compared them to the corre-

lations between a subject and him/herself later in time. Three subjects (ASA, CW, and JH) came

back more than a month after their initial scans for a repeat of the exact same experiment. The

resulting voxel-wise same-subject correlations are shown in Fig. 5.5. The mean same-subject cor-

relations (among the three subjects for which we had data) are also indicated in Fig. 5.3, for each

ROI. We find that, averaged across ROIs, subjects correlated with others to 71% the same-subject

extent in the AV case, with a standard deviation of 8%. In the V-only case, subjects correlated at

78% the same-subject extent, with a standard deviation of 6% among ROIs, if we exclude A1.

A1 under visual-only stimulation correlated much less between subjects than within. Whereas

subjects only correlated at a level of 0.023 (standard deviation 0.052) with others, the same subject

correlation averaged at 0.15 (standard deviation 0.097). The inter-subject distribution fell nowhere

near the same-subject distribution (pt−test < 7 × 10−6). The relative magnitude of this difference

is so much greater in A1 than in other regions that it is likely that some additional source of

variability, relating to A1 but not the other regions, contributed to degrading the A1 correlations

between subjects, but not within subjects. One good explanation relates to proximity to sensory

input and functional coupling. The activity in visual regions, close to the main source of sensory

input (retinal), mostly followed the temporal structure of the visual stimulus, with STS not far

behind. However, the primary auditory cortex, A1, was far from the main source of sensory input

(although the MR scanner made noise throughout the scan, it was nearly perfectly uniform averaged

a 2 or 3 second window). Thus, it is arguable that the temporal structure of its activity was mostly

driven by functional coupling to other regions, including the stimulus-driven visual regions4, and

overall level of attentional arousal. To the extent that functional coupling arises from underlying

anatomical connectivity, inter-subject variability in anatomy would relatively degrade inter-subject

correlations compared to same-subject correlations. Also, it is expected that subjects would be more

consistent with themselves (later in time) than with others about which visual stimuli were most

suggestive of sound and also which were most attention-grabbing. Consistency in both of these

dimensions could have relatively enhanced same-subject synchronization in A1 more than in other

regions, where activity was less dependent on these factors.
4
even in visual-only stimulation, there is weak functional coupling between early visual (EV) cortex and A1. A

spectral coherence analysis revealed many EV-A1 voxel pairs with coherence above chance level for all subjects.
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5.4 Effect of stimulus on inter-subject correlation

We found two interesting trends relating the stimulus type to the inter-subject correlations: (1) a de-

crease in visual region correlations under AV stimulation compared to V-only, (2) higher correlations

in primary auditory cortex under V-only stimulation for the “People Doing Stuff” video.

5.4.1 Less attention to vision likely when audio is introduced

Fig. 5.6 summarizes the trend of generally lower visual correlation under AV stimulation compared

to V-only. In early visual cortex, superior occipital cortex, fusiform gyrus, and collateral sulcus,

inter-subject correlations were significantly lower. Averaged across these regions, a subject pair

correlated 29% less when stimuli were audiovisual. At first, we found this result to be counter-

intuitive. Subjects informally reported feeling more alert and interested in the videos when they

included sound. Thus, it might be expected that subjects’ brain activity would be more locked to

the stimuli globally, and that inter-subject correlations would not only appear in auditory regions

(compared to the V-only case), but also be enhanced in visual regions. Instead, the opposite was

found.

Because subjects always viewed the silent videos first, in a nearly hour-long stretch in the MR

scanner, it could be argued that they were simply more tired during the AV videos, and that is why

synchronization then was relatively attenuated. However, several observations suggest otherwise.

First, as already mentioned above, audiovisual stimuli are simply more engaging to subjects, and

thus increase attention, possibly enough to compensate for AV videos being presented after V-only.

Second, early visual cortex, fusiform gyrus, and collateral sulcus were significantly less correlated

between subjects in the AV case even just in the first two minutes (all p < 8 × 10−4 by two-sided

t-test) and just the first five minutes (all p < 4 × 10−3) of stimulus presentation, when subjects

were most alert in both cases. Third, if we compare inter-subject correlations during the second 7

minutes of the Back to the Future video in the V-only case to inter-subject correlations during the

first half in the AV case, we might expect the trend to reverse or disappear, since correlations right

after stimulus onset might be higher than those 7 minutes in. However, we find that the direction

of the trend remained the same, both in terms of number of subject pairs for which correlation

was lower in AV case, and mean effect size, with AV correlations lower in early visual cortex, MT,

fusiform gyrus and collateral sulcus; in this most strict test, however, statistical significance was

only achieved in fusiform gyrus (p < 2× 10−3).

The simplest interpretation of subjects’ decreased synchronization under AV stimulation is that,
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Figure 5.6: The ROI-wise inter-subject correlations are observed to be higher in visual cortex in the
visual-only stimulation condition than in the auditory & visual stimulation condition. Correlations
in A1 and STS are clearly higher under auditory & visual stimulation. All p-values are computed
from a two-sided t-test, with one data point per subject pair.
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although they felt more engaged, visual attention itself might have been blurred as subjects could

occasionally gain relevant information (e.g. dialogue) from listening alone. Put another way, shutting

down auditory processing heightened subjects’ sense of visual perception.

5.4.2 Synchronization in A1 under visual-only stimulation
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Figure 5.7: Median inter-subject correlations (ROI-wise) in A1 under visual-only stimulation are
above zero for the first two videos. Box plots indicate median, 25th, 75th percentiles, minimum and
maximum values over the set consisting of both brain sides in each of 21 subject pairs. Back to the
Future and “People Doing Stuff” are both higher than the psychedelic video (p < 2×10−4, one-sided
t-test) and “People Doing Stuff” is slightly higher than Back to the Future (p < .15, one-sided t-test).

Fig. 5.7 shows the distribution of inter-subject correlations in A1 under visual-only stimulation,

for each of the 3 videos separately. Subjects correlated during Back to the Future and during “People

Doing Stuff”, significantly above zero (p < 7×10−3, one-sided t-test), but not during the psychedelic

video. Furthermore, the mean inter-subject correlations were slightly higher during “People Doing

Stuff” than during Back to the Future (.069 and .047 in left and right hemispheres, averaged across

subject pairs, compared to 0.036 and 0.027), although the difference was not enough to establish

significance given the variance of the data.

We looked for times in the “Stuff” video at which group activity (ROI-averaged in each hemi-

sphere of each subject, then averaged across subjects) was most above baseline, and significantly so

according to a one-sided t-test (p < 10−3) on the set of unique time-courses (one per hemisphere

per subject). The two times at which subjects were most synchronized in this way with positive
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activation closely coincided with the two longest segments in the video (of 57): the first involving

toilet paper unraveling by the wind of a box fan (lasting about 20 seconds), and the second involv-

ing water filling a glass container with plastic bottle caps inside (lasting about 16 seconds). That

is, as these clips were being shown, activity in A1 ramped up across subjects, peaking at 151 and

219 seconds into the video (total length: 240 seconds), thus contributing positively to inter-subject

correlation.

Again, because subjects all viewed videos in the same order, there is the possibility that corre-

lations in A1 were higher in the first two videos only because they came first, and subjects became

bored later, thus decorrelating relative to each other. However, this possibility is weakened by the

observation that the correlations during “Stuff”, which came second, were stronger than those during

Back to the Future, despite the latter being shown first, and lasting longer, both of which increase

opportunity for synchronization.

Although it is surprising that subjects do correlate even in A1 without auditory stimulation,

it is not surprising that among the three videos shown, correlations during “Stuff” were highest.

Compared to the psychedelic video, “Stuff” had clear temporal structure; it was comprised of dozens

of individual segments, each with a clear beginning and end. Furthermore, many of the segments

featured visual stimuli, such as objects dropping and colliding, which, in the natural world, would

be accompanied by very salient and identifiable sounds. Viewing these clips without sound elicits

auditory imagery, which can modulate the input to A1 and contribute to an increased fMRI signal,

even in the absence of spiking activity there [62]. Similarly, “Stuff” had more clear temporal structure

and featured more aurally suggestive content than Back to the Future, the constituent scenes of which

lasted considerably longer than the segments in “Stuff”. However, Back to the Future did contain

some scenes which would be expected to elicit auditory imagery (e.g., a car accelerating, people

talking), just not as many as “Stuff”, and so it is makes sense that synchronization was intermediate

for this video.

5.5 Individual differences in cortical parcellation of anatomy

We investigated whether individual differences in brain anatomy, as determined by automatic par-

cellation, could explain any of the variability in inter-subject functional correlations. To address this

question, we first assessed whether inter-subject correlations were at all stable over time or stimulus

conditions. The results of this analysis are shown in Fig. 5.8. We find that the more a pair of sub-

ject synchronized under AV stimulation, the more they generally did under V-only stimulation. The
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correlation between these two values was measured at 0.71, and was significant by a non-parametric

shuffle test.
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Figure 5.8: Functional similarity between a particular pair of subjects remains consistent across
stimulus conditions. Correlations in both stimulus conditions are taken as the average ROI-wise
correlations across regions, excluding A1 under V-only stimulation. Shuffling the identity of the
subject pairs under AV stimulation results in a correlation as high as the one actually observed in
only 0.78% of trials. We also performed a standard F-test to test whether the variability in AV
correlations significantly explained the variance in V correlations: the result was that it explained
50% of the variance (p < 3.4× 10−4 ).

Next, we developed a measure of anatomical similarity between subjects, based on the relative

volumes of certain cortical areas, as provided by FreeSurfer. Fig. 5.9 illustrates the kind of variability

we find among different individuals. For instance, whereas subject JP has only 18% of cortex in
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exclusively frontal regions (inferior frontal gyrus and sulcus, middle frontal gyrus and sulcus, superior

frontal gyrus and sulcus, frontomarginal gyrus and sulcus, transverse frontopolar gyrus and sulcus),

this fraction is 21% in subject MEL.
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Figure 5.9: Small differences in the distribution of gray matter to different cortical regions are
observed between subjects. The red lines in front of each bar show the volume profile over the
corresponding sub-regions for each subject. The order of the indices (from left to right in front of
each bar) is not meaningful, but the order is the same for all subjects in each region.

We tried a number of methods to encode the anatomical properties of each subject. Every method

involved encoding each subject’s anatomy as a single anatomy descriptor vector, with an entry for

each cortical region, with value equal to the volume that region filled expressed as a fraction of

total cortical volume. We also tried absolute volumes, but the results predicted functional similarity

slightly worse than the normalized volumes. The anatomical similarity between subjects was defined

as the correlation between their anatomy descriptors.

The method which worked best is shown in Fig. 5.10. In that method, the anatomy descriptor had

a component for each sub-region in temporal, occipital, and frontal cortices. The correlation between

anatomical similarity and functional similarity (defined as the maximum inter-subject functional

correlation over the two stimulus conditions, V and AV) was 0.586 (ρ2 = 0.34). Shuffling the

true order of the subjects and computing their faked anatomical similarity, then comparing to the

unshuffled functional similarity, yielded an anatomical-functional correlation as high as the true one

observed in only 0.1% of trials, suggesting that we did not arrive at this high a correlation by chance.

Something about the cortical allocation did truly relate to the inter-subject functional similarity.

A radically simpler method for computing anatomical similarity yielded similar results: we used

descriptor vectors with only three values, one for each of occipital, temporal, and frontal cortex (vol-

umes summed across sub-regions). In that case, we found a correlation of 0.64 between anatomical
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and functional similarity, although the shuffle test revealed a significance of only 0.032 (compared

with 0.001 for the descriptor based on sub-regional volumes).

Notably, some anatomy descriptors did not yield similarities close to the functional ones. For

instance, a descriptor based on all sub-regions outside of frontal, temporal, and occipital cortices

yielded an anatomical-functional correlation of 0.079, with p < 0.38 by the shuffle test. Perhaps

more intriguingly, a descriptor based on sub-regions only in occipital cortex was also not significant

(p < 0.56). This is somewhat surprising since several of the regions in which we measured functional

similarity were in occipital cortex. A descriptor based on sub-regions in frontal cortex alone was

slightly better (p < 0.17), but still not significant. Sub-regions in temporal cortex alone did somewhat

significantly correlate with functional similarity, however (correlation=0.35, p < 0.036 by shuffle

test).

The best explanation for the observed relationship between anatomical and functional similarity

is that, because ROIs were defined anatomically, subjects with more similar anatomical parcellation

were more likely to have more similar functional specialization within the ROIs relative to those

with less similar anatomy. For instance, early visual cortex may have consisted of 95% of V1 and V2

for one subject, and 90% for another. This explanation agrees with the observation that temporal

regions were most predictive of functional similarity, since most of the ROIs were in or directly

adjacent to temporal cortex. The fact that frontal cortex was slightly more predictive than occipital

cortex could be meaningless, as neither individually achieved significance, or, most speculatively,

it might mean that synchronization between a pair of subjects is actually related to similarities in

high-level cognitive functions arising from similarity in frontal cortex anatomy.

5.6 Discussion and future directions

In this chapter, we further quantitatively constrained the extent to which people differ in visual

experience. The temporal patterns elicited in visual cortex in response to a video stimulus correlate

across subjects at an average of 78% the same-subject level; the fact that subjects exhibit such a high

degree of temporal synchronization at the neural level during visual experience provides additional

evidence that the cortical manifestations of visual experience are not divergent among different

people; rather, they are surprisingly similar, suggesting that the associated qualia may be as well, if

we take the view that more similar physical processes likely give rise to more similar qualia.

We found that anatomical similarity (or anatomical label similarity) could significantly model

neural pattern similarity. This result suggests that identical twins should have very similar neural
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patterns in time, and possibly distributed in space as well, even if their life experiences are different,

for instance due to being separated at birth, though this last condition would be hard to meet

experimentally at a large scale. Also, based on our experimental procedures, it is impossible to know

whether functional similarities correlated with anatomical parcellation or anatomy itself (though

these two should be closely related); to address this, one would require an expert anatomist to

annotate each brain.

We also found evidence that subjects neurally diverge in visual cortex when an audio track is

introduced to a video. One possible cause for this is that eye movement patterns also diverge relative

to watching a clip without sound: a possibility which could be confirmed with a simple and elegant

follow-up experiment. The result of gaze decorrelation in the presence of audio may be especially

surprising if one supposes that an audio track introduces high-level, semantic information which

would not only engage the overall alertness of the viewer but also direct their spatial attention

towards topic-relevant visual locations.

In Chapter 3, we found that familiarity with a face enhanced its consistency: out in the real world,

most of visual experience is full of motion. Therefore, we predict this result should generalize to

moving stimuli as well. In particular, we would predict that the temporal neural pattern consistency

of a video stimulus increases with its extent of familiarity. One could test this by measuring whether

people who have seen a video more times are more self-correlated than those who have not. Further,

one could test whether familiarity, not with the video itself, but rather the elements it contains –

such as faces, voices, places, etc. – also increases self-correlation/consistency.
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5.7 Appendix

Subjects provided informed written consent prior to the experiments. The Caltech Institutional

Review Board approved all experimental procedures.

5.7.1 MRI data acquisition and preprocessing steps

MRI data were collected using a Siemens (Erlangen, Germany) MAGNETOM Trio, A Tim System

3T, and a 12-channel head coil. All functional images (blood oxygenation level dependent (BOLD)

T2*-weighted) were acquired using a gradient-echo echo-planar (EPI) sequence. Functional images

consisting of 30 slices with 3 × 3 × 4mm voxels were acquired with a TR of 2 seconds (acquisition

matrix 64x64, flip angle 80◦, echo time 30 ms). Anatomical images were acquired using at T1-

weighted MPRAGE sequence with the same 12-channel head coil. Functional volumes were slice-time

corrected, then normalized to the standard MNI152 (Montreal Neurological Institute atlas) space

using a single 12-parameter 3-dimensional affine transformation (this transformation incorporated

self-motion correction), and resampled to 3.3× 3.3× 3.3 mm. Anatomical images were co-registered

with the functional images using a 12-parameter affine transformation as well. Finally, to reduce

contributions to the imaging data not due to functional activation, from the time-course at each

voxel was subtracted the best fit to it from the first 21 Legendre polynomials (interpolated between

-1 and 1), comprising a “drift” estimate, and then a low-pass filter (cut-off frequency of 0.12 Hz) was

applied.

5.7.2 Defining regions of interest (ROIs) in the brain

Short Name Full Name Associated with Volume (mm3)

EV early visual cortex (including V1) simple visual feature detection 23544

MT (originally) middle temporal visual motion detection 7870

SOcc superior occipital high-level visual object detection 10843

Fusi fusiform gyrus high-level visual object detection, face detection 13271

CoS collateral sulcus intermediate & peripheral visual feature detection 2562

PCS post-central sulcus proprioception, viewing hands 13112

A1 primary auditory cortex simple audition 6371

STS superior temporal sulcus audio-visual integration 10838

Figure 5.11: Brain regions of interest for the dynamic image experiment. Volumes are bilateral, and

based on averages across subjects, in the MNI152 space.
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Based on the published experiments similar to this one [37, 38], eight regions of interest were selected

for investigation. They are summarized in Fig. 5.11. Regions were all defined relative to the

cortical segmentation computed automatically by FreeSurfer (http://surfer.nmr.mgh.harvard.edu/).

Because they were defined anatomically, and not based on a functional experiment, these region

labels are approximate. Each subject’s anatomical-based ROI labels were projected into the MNI152

space separately, landing in sightly different locations for each subject.
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Chapter 6

Conclusions

In Part I of the thesis, we showed that distinctive and familiar faces have more consistent repre-

sentation in early visual cortex, even without any enhanced activation magnitude there: that is,

the perception of such faces at the low neural level is relatively fixed compared to the perception

of unfamiliar faces. Based on our results, we proposed a framework within which to understand

the learning of new faces: faces initially distinctive are more consistent in neural representation;

such consistency may preferentially cause memories to form, the presence of which creates feedback

into early visual cortex which further consolidates representational consistency, thus completing the

cycle. Simultaneously, at the perceptual level, as a face becomes more familiar, all those around it

become more dissimilar looking from each other, possibly due to a process in which neurons learn

to a likeness function to the face, in what can be termed an exemplar-based coding system.

Whereas in Part I we focused on what makes a visual stimulus appear to look different to

different individuals, in Part II we studied the extent of similarity in the perception of general visual

stimuli. We showed that different subjects have similar inter-category neural pattern distances (mean

correlation 0.55 among category pairs selected from different scans), and that they exhibit similar

patterns of neural activity in time in response to videos (in visual cortex, 78% the same-subject

level). One may think of these as introducing some quantitative constraints on the extent to which

people may differ in visual experience, assuming for practical reasons that more similar physical

processes give rise to more similar qualia.

Throughout Part I of this thesis, we developed a connection between memory/familiarity and

distinctiveness. However, such memory was assessed by a single interview, and not updated nor lon-

gitudinally varied over the course of the experiment. A follow-up study to both the psychophysical

experiments in Chapter 2 and the fMRI experiments of Chapter 3 could investigate how distinctive-

ness and neural pattern consistency coevolve during the gradual learning of a new face.
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Finally, to further strengthen the findings we reported on neural pattern consistency in response

to familiar and distinctive faces, it would be desirable to investigate such patterns using other

modalities of neuroscientific investigation, such as EEG, or intracranial recordings. We hypothesize

that, in V1, one would find that familiarity and distinctiveness correlate better with measures of

consistency among populations of neurons than with their median spiking rate or other measures of

sheer activation magnitude. Furthermore, if this consistency were to be found, it would be possible

to test whether it is something which arises immediately following stimulus onset, or only following

some latency, after which signals from higher areas have time to feed back. If it is discovered that

feedback is in fact not necessary for neural pattern consistency in V1, that might evidence of a form

of sensory memory, in which the same cells within redundant subpopulations fire in response to a

stimulus.
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