
Atomistic simulations of materials: Methods for
accurate potentials and realistic time scales

Thesis by

Pratyush Tiwary

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2012

(Defended May 4, 2012)



ii

c© 2012

Pratyush Tiwary

All Rights Reserved



iii

Dedicated to my dearest Nana-nani, who never stopped believing in me



iv

Acknowledgments

This thesis has been possible only because of friends, teachers, and mentors, and I

would like to thank them. Firstly, my adviser Axel van de Walle who gave me the

chance to come to this institution of my dreams. Then through the years, he stayed

patient with me through my follies and taught me how to convert knowledge into

useful algorithms.

My thesis committee members Professors Brent Fultz, Bill Goddard, Julia Greer,

and Bill Johnson are to be thanked for carefully reading through this thesis, and also

for being excellent teachers. Julia especially has been an amazing mentor for me,

helping me get into the exciting field of Nanomechanics.

To my professors from India, the ones who taught me almost everything I know:

Professors Nasim Hoda, Swapan Ghosh, Dhananjai Pandey, TA Abinandanan, GVS

Sastry, RK Mandal, NK Mukhopadhyay, BN Sarma, and Ravi Aggarwal: I hope this

thesis and the rest of my career lives up to the faith you put in me.

Chris Weinberger and Andrew Jennings helped me identify problems in Nanome-

chanics. Chris also helped a lot with Chapter 6 in this thesis. Blas Uberuaga invited

me to Los Alamos, which led to some of the most helpful and memorable discussions.

I thank Professors Niels Grønbech-Jensen and Mark Asta for several great discussions

and collaboration.

My labmates Steve, Greg, Chirru, Qijun, Ljuba and Ligen are some of the smartest

people I have ever known. It’s been a pleasure knowing you and learning things from

you. I hope we collaborate in the future too.

Caltech staff are perhaps the coolest staff anywhere on this planet. They elim-

inated red tape and were always ready with a smile; they made my transition to



v

this new country so much more pleasant - especially Daniel and Laura at ISP, Greg,

Athena, and Liz at the Y, and Rosie and Christy, at the APMS Department.

My two closest friends, Shahzada and Nisheeth, I know that you’ll love me, when

there’s no one left to blame. And to so many more friends I made at Caltech, mostly

through the common addiction of climbing and (with Patrick) a shared repulsion

for brushing teeth every night - especially Patrick, Hamik, Nick, Marc, Stephen and

Sean - thanks for taking me to the great outdoors, and for sharing a rope! Aron for

introduced me to marathons. And my old roommates Jerry, Sawyer, and Manuj: We

had some very fun times (and pranks).

MyNana−Nani, for the infinite love you gave and still give me, and for nourishing

me when I lost my mother at age 5: I dedicate this thesis to you.

I thank my Father, for showing me that Math is not really optional.

And Megan, for being my best friend, and making me a happier person.



vi

Abstract

This thesis deals with achieving more realistic atomistic simulations of materials, by

developing accurate and robust force-fields, and algorithms for practical time scales.

I develop a formalism for generating interatomic potentials for simulating atom-

istic phenomena occurring at energy scales ranging from lattice vibrations to crystal

defects to high-energy collisions. This is done by fitting against an extensive database

of ab initio results, as well as to experimental measurements for mixed oxide nuclear

fuels. The applicability of these interactions to a variety of mixed environments be-

yond the fitting domain is also assessed. The employed formalism makes these poten-

tials applicable across all interatomic distances without the need for any ambiguous

splining to the well-established short-range Ziegler-Biersack-Littmark universal pair

potential. We expect these to be reliable potentials for carrying out damage simu-

lations (and molecular dynamics simulations in general) in nuclear fuels of varying

compositions for all relevant atomic collision energies.

A hybrid stochastic and deterministic algorithm is proposed that while maintain-

ing fully atomistic resolution, allows one to achieve milliseconds and longer time scales

for several thousands of atoms. The method exploits the rare event nature of the dy-

namics like other such methods, but goes beyond them by (i) not having to pick a

scheme for biasing the energy landscape, (ii) providing control on the accuracy of the

boosted time scale, (iii) not assuming any harmonic transition state theory (HTST),

and (iv) not having to identify collective coordinates or interesting degrees of freedom.
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The method is validated by calculating diffusion constants for vacancy-mediated

diffusion in iron metal at low temperatures, and comparing against brute-force high-

temperature molecular dynamics. We also calculate diffusion constants for vacancy

diffusion in tantalum metal, where we compare against low-temperature HTST as

well. The robustness of the algorithm with respect to the only free parameter it in-

volves is ascertained.

The method is then applied to perform tensile tests on gold nanopillars on strain

rates as low as 102/s, bringing out the perils of high strain-rate molecular dynamics

calculations. We also calculate temperature and stress dependence of activation free

energy for surface nucleation of dislocations in pristine gold nanopillars under realistic

loads. While maintaining fully atomistic resolution, we reach the fraction-of-a-second

time scale regime. It is found that the activation free energy depends significantly

and nonlinearly on the driving force (stress or strain) and temperature, leading to

very high activation entropies for surface dislocation nucleation.
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Chapter 1

Introduction

1.1 Why do atomistic simulations of materials?

Computer simulations have become increasingly popular and rather ubiquitous over

the last few decades due to advances in computer power, memory and storage. How-

ever, the corresponding increase in experimental prowess has been no less striking.

Experiments now have the capability to probe materials at the finest length scales,

and even achieving femtosecond resolution in the timescale. It remains much easier,

and will probably always stay so, to measure through experiments than through sim-

ulations the tensile strength of an iron rod, or the freezing point of a bucket of water.

Thus, the question may be asked: Why do atomistic simulations of materials?

The answer is multifold. While it might be easy to measure the freezing point at

1 atmosphere pressure, it becomes prohibitively expensive to do so at high pressures.

In contrast, a computer does not self-destruct if one asks it to measure the freezing

point at 1000 atmospheres. Thus, simulations are useful when the conditions of inter-

est are difficult to achieve in laboratory. Secondly, in atomistic simulations, one has

essentially infinite control over the specific configuration and geometry of the mate-

rial. Within a relatively short time, one can synthesize and study an endless number

of materials with precisely tailored geometries and atomic arrangements, that would

be difficult and expensive to make in the laboratory. Thirdly, simulations provide

an easier and more direct way to study atomic mechanisms - in spite of the afore-
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mentioned advance in resolution in length and time scales in experiments, observing

individual atoms still remains by definition a trivial task in atomistic simulations.

To paraphrase Robert Cahn (The Coming of Materials Science, 2001), atomistic

simulations are specifically suited for the intermediate scale between the territory

of the classical mechanic (few atoms) and the statistical mechanic (on the order of

Avogadro’s number of atoms). By repeatedly solving classical equations of motion be-

tween each pair of particles, one studies the evolution of the system under an imposed

set of conditions. One can observe individual atoms, yet make predictions about the

collective behavior of a million or more atoms. Increasingly powerful parallel com-

puters are allowing one to push the limit of system sizes that can be considered by

breaking down the material into individual chunks that are treated on separate com-

puters. All that remains to be done is to keep track of the interface atoms between

these chunks - a task that is not trivial by any means but nevertheless achievable

through raw computing power.

With the size of nanoscale devices coming down further and further, there is thus

scope for much optimism - one can hope to do experiments and fully atomistic simu-

lations on materials with same number of atoms! Alas, but this is not yet routinely

possible.

1.2 Limitations of atomistic simulations

In the previous section, we mentioned the convergence of length scales between atom-

istic simulations and (nanoscale) materials science. In spite of this development, two

features (or requirements) of atomistic simulations severely restrict their usefulness:

(i) need for reliable and accurate interatomic potentials and (ii) small time-steps,

leading to very short accessible time scales.

Atomistic simulations involve solving Newton’s law of motions for pairs of parti-
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cles interacting under a given force field. Ideally, they require no other parametric

input. However, to borrow from a Computer Science parlance, "Garbage In, Garbage

Out" applies well here. If the given interatomic potential or force-field is inaccurate,

the accuracy of the entire simulation becomes highly questionable. This calls for

developing robust, transferable and accurate potentials that capture the Physics or

Chemistry of interest accurately.

The time scale problem arises because a typical atomistic simulation uses time

steps on the order of 10−15 sec, needed to (a) correctly capture the highest frequency

atomic vibrations and (b) preserve the accuracy of the numerical integration schemes

in such algorithms. Unlike in the length scale problem, time is essentially sequential

in nature and thus not as easily amenable to brute-force parallelization. Due to such

small time-steps, atomistic simulations of even a few thousand atoms are limited to

at best a few nanoseconds of total simulation time. This means, for instance, that for

10% deformation in a tensile test, the slowest strain-rate achievable in simulations is

around 107− 108/s, while experiments rarely go faster than 103/s. Similarly, if one is

interested in studying glasses, the slowest quench rate achievable through simulations

is around 1012K/s, while experiments rarely go faster than quench rates of 106K/s.

1.3 Objectives of this thesis

This thesis pertains to solving both the problems mentioned in the previous section.

We develop methods for designing accurate interatomic potentials and for achieving

realistic time scales while still maintaining fully atomistic resolution. We now provide

a brief summary of both efforts.

1.3.1 Interatomic potentials for nuclear fuels

In this thesis, we develop a methodology for generating interatomic potentials for use

in classical molecular dynamics simulations of atomistic phenomena occurring at en-
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ergy scales ranging from lattice vibrations to crystal defects to high-energy collisions.

A rigorous method to objectively determine the shape of an interatomic potential over

all length scales is introduced by building upon a charged-ion generalization of the

well-known Ziegler-Biersack-Littmark universal potential that provides the short- and

long-range limiting behavior of the potential. At intermediate ranges the potential

is smoothly adjusted by fitting to ab initio data. This is done by fitting to accurate

quantum mechanical data on equation of state, elastic constants, defect formation and

migration energies and pathways. Where available, experimental data for high tem-

peratures is also included in the fitting database. Our formalism provides a complete

description of atomic interactions that can be used at any energy scale, and, thus,

eliminates the inherent ambiguity of splining different potentials generated to study

different kinds of atomic materials behavior. We exemplify the method by developing

rigid-ion potentials for radiation damage in (U,Pu,Np)O2 under conditions ranging

from thermodynamic equilibrium to very high atomic-energy collisions relevant for

fission events.

1.3.2 Fully atomistic hybrid algorithm for realistic time scales

We propose a hybrid deterministic and stochastic approach to achieve extended time

scales in atomistic simulations that combines the strengths of molecular dynamics

(MD) and Monte Carlo (MC) simulations in a novel and easy-to-implement way. The

method exploits the rare event nature of the dynamics similar to most current ac-

celerated MD approaches but goes beyond them by providing, without any further

computational overhead, (a) rapid thermalization between infrequent events, thereby

minimizing spurious correlations and (b) control over accuracy of time scale correc-

tion, while still providing similar or higher boosts in computational efficiency. We

present two applications of the method: (a) vacancy-mediated diffusion in Fe and Ta

yields correct diffusivities over a wide range of temperatures, thereby validating the

method and (b) source-controlled plasticity and deformation behavior in Au nanopil-

lars at realistic strain rates (up to 102/sec) with excellent agreement with previous
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theoretical predictions and in situ high-resolution transmission electron microscopy

(HRTEM) observations. The method gives several orders of magnitude improvement

in computational efficiency relative to standard MD and good scalability with size of

system.

We use the proposed algorithm to calculate temperature and stress dependence of

activation free energy for surface nucleation of dislocations in pristine gold nanopil-

lars under realistic loads. While maintaining fully atomistic resolution, we achieve

the fraction of a second time scale regime. We find that the activation free energy

depends significantly and nonlinearly on the driving force (stress or strain) and tem-

perature, leading to very high activation entropies. We also perform compression tests

on gold nanopillars for strain rates varying over 7 orders of magnitudes, reaching as

low as 102/s. Our calculations bring out the perils of high strain-rate molecular dy-

namics calculations: We find that while the failure mechanism for 〈001〉 compression

of gold nanopillars remains the same across the entire strain-rate range, the elastic

limit (defined as stress for nucleation of the first dislocation) depends significantly

on the strain-rate. We also propose a new methodology that overcomes some of the

limits in our original accelerated dynamics scheme (and accelerated dynamics meth-

ods in general). We lay out our methods in sufficient detail so as to be useful for

understanding and predicting deformation mechanism under realistic driving forces

for various problems.

We also look at vacancy diffusion in body-centered cubic tantalum under low

temperatures (i.e. temperatures not directly inaccessible through MD simulations).

We perform calculations of diffusion constant for vacancy-mediated diffusion using

harmonic transition state theory, and through our method, and make a comparison

of both. For this particular application, we explore in detail the sensitivity of our

method to the choice of the only parameter that it involves.
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Chapter 2

Ab Initio construction of interatomic
potentials for uranium dioxide across
all interatomic distances

2.1 Introduction

Molecular dynamics (MD) simulations provide a convenient tool for studying the be-

havior of large atomic ensembles, provided that the dynamics of interest is not of a

duration that makes the simulation time impractical (an issue we address in detail in

the later parts of this thesis). There are many examples of beautiful applications of

how MD has been able to provide detailed insight into the dynamics and statistics of

materials behavior. One contemporary interest is the field of high-energy radiation

damage of crystalline materials, such as nuclear fuel. A core material of interest in

this context is uranium dioxide, and one of the important aspects of the interest in

this material is to understand the evolution and statistics of atomic displacement cas-

cades due to high energy radiation [1]. Classical molecular dynamics is ideally suited

for this kind of study since it strikes a fine balance between being coarse enough

to simulate the spatial scale necessary to represent the extent of a damage cascade

due to, e.g., a 100 MeV atomic collision, with being detailed enough to retain the

atomic structure of the material. However, the complexity of the true interatomic

interactions cannot be fully represented in an efficient manner by a simple classical

functional form. Thus, one needs to develop a set of essential interaction features
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that are necessary for a given application. This is a particularly challenging exer-

cise for radiation damage simulations due to the disparate scales of energies involved.

Therefore interatomic potentials suitable for this purpose are typically constructed by

smoothly joining different types of interactions. At medium to long-range distances,

a traditional potential (e.g., Buckingham, electrostatic etc.) fitted to a variety of

thermodynamic and structural data is used. At short-ranges, accurate potentials are

developed by fitting to ab initio data. The ZBL universal potential is one such very

popular pair-potential developed by Ziegler et al. in the 1980’s, as a generic function

of the atomic numbers of the species involved [2]. Although each type of interaction

is directly determined through fitting, the determination of a suitable spline that

smoothly joins these two pieces is a highly non-unique process. Splining leads to an

inherent ambiguity in the behavior of the complete potential, since the exact cutoff

distances and the spline’s algebraic form will have consequences for how large the

“cores” of the atomic interactions are and how the potential features are in the region

of transition. This, in turn, will have a significant impact on the ion trajectory and

damage production one is ultimately interested in. Such ambiguity is illustrated in

Figure 2.1.

In this chapter we introduce a rigorous method to unambiguously determine the

form of the potential over all distances using ab initio data. Although our approach

is applicable to any material system, we illustrate it using the important example

of the nuclear fuel UO2, which has been the focus of several detailed computational

investigations, both through ab initio [4] and MD [5, 6] methods, due to its critical

importance in the nuclear industry.
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Figure 2.1: (a) ZBL screened potential (solid line) and the popular Morelon et al.
potential (dashes) [3], joined together by a 5th order polynomial (open circles), for
the case of two oxygen atoms. (b) First derivative of the net potential resulting from
the same. (c) Second derivative of the potential. Since the spline was not fit to any
data, one can not decide whether the resulting behavior in (b) and (c) is correct or
spurious.
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2.2 Interatomic potential form valid for all inter-

atomic distances

Our approach is to first generalize the universal ZBL potential to include charged ions

that behaves correctly in both short-range and long-range limits. This generalized po-

tential smoothly interpolates between these two regimes over a physically-motivated

length scale that is based on atomic orbital sizes instead of necessitating a user-

specified transition radius for the electrostatic interactions at short ranges to prevent

double-counting. The only component that remains to be determined by fitting is

then the medium-range energy contribution associated with chemical bonding. As

this contribution is only significant over a relatively small range of distances it is

possible to introduce lower and upper cutoffs, where this contribution must smoothly

vanish. Importantly, these physically motivated cutoffs can be fitted to ab initio data

and are therefore no longer arbitrary; unlike in the current practice.

2.2.1 ZBL potential

The ZBL potential [2], which properly accounts for the screening of nuclear charge by

the electronic clouds as a function of interatomic distances, is built on considering two

interacting spherically symmetric rigid electron clouds. In this spirit, we also consider

two interacting spherically symmetric rigid electron clouds with electron densities

determined ab initio and fitted to a sum of Slater functions [7]. This approximation

is valid beyond distances where electron clouds overlap and chemical bonds form. For

short distances (i.e., distances less than chemical bond lengths) we obtain the energy

as a function of distance between any two atoms through first order perturbation

theory. It was demonstrated by Ziegler et al. that more sophisticated self-consistent

field calculations incorporating the distortion of electronic clouds did not lead to any

significant differences in the resulting interatomic potential at short distances [2].

Thus, since we employ the same electronic density and the same screening function

(ratio of the actual atomic potential at some radius to the potential caused by an
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unscreened nucleus) as used by Ziegler et al., we recover the ZBL potential at these

short distances, as we will show later.

2.2.2 Generalization of ZBL potential

We consider two spherically symmetric charge densities per unit volume ρ1(r) and

ρ2(r), with central point charges of Z1e and Z2e respectively, ρ1(r) and ρ2(r) being

normalized to equal -(Z1 + q1)e and -(Z2 + q2)e respectively. We further think of the

point charge Z1e as being made of two point charges, (Z1 + q1)e and (−q1)e; Z2e is

similarly decomposed into (Z2 + q2)e and (−q2)e. q1e and q2e here denote the net

ionic charges on atoms 1 and 2 respectively. We make this decomposition so that the

Coulombic interaction term naturally arises in the expression for the net interaction

potential V (r),

V (r) = ZBLZ1+q1,Z2+q2(r) +
q1q2e

2

4πε0r
+ t1 + t2 , (2.1)

where ZBLZ1+q1,Z2+q2(r) denotes the ZBL form of interaction between two neutral

atoms having atomic numbers Z1 + q1 and Z2 + q2. t1 denotes the interaction between

the point charge −q1e and the (Z2 + q2)e point charge plus electron cloud system of

the atom 2, and is given by

t1(r) =
−q1e

2

4πε0
[
Z2 + q2

r
− 1

r

∫ r

0

4πs2ρ2(s)ds−
∫ ∞
r

4πsρ2(s)ds] , (2.2)

while t2 is the converse remaining point-atom interaction, expressed similarly. Eq.

(2.1) is correct for atomic separations smaller than the chemical bond length, and for

very large atomic separations as well. In the latter case, only the 2nd term in Eq.

(2.1) survives as we show below.

2.2.3 Determination of relevant charge densities

The task now is the determination of ρO(r) and ρU(r). It is here important to notice

that the potential for very small interatomic separations is only as good as the ZBL
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Figure 2.2: Decomposition of spherically symmetric charges to facilitate generaliza-
tion of ZBL potential.

form (see Eq. (2.1)). Thus, we use the charge densities employed for ZBL, which

are primarily Hartree-Fock-Slater atomic distributions for most of the atomic pairs.

We fit the numerical data for charge density used by Ziegler et al. to a sum of

Slater functions. While the density ρ(r) is known through numerical evidence (we

are not aware of a rigorous proof) to be a monotonic decreasing function of radial

distance for all atoms, the graph of 4πr2ρ(r) exhibits a number of peaks (see Figure

2.3) corresponding to atomic shells. To ensure the best possible accuracy, we fit to

4πr2ρ(r) because this is the quantity entering Eq. (2.1). We find that 2 and 4 Slater

functions are sufficient to capture the behavior of 4πr2ρ(r) for neutral oxygen and

uranium atoms (see Figure 2.3), i.e.,

ρO(r) = a1e
−k1r + a2re

−k2r (2.3)

ρU(r) = b1e
−l1r + b2re

−l2r + b3r
2e−l3r + b4r

3e−l4r . (2.4)
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The Slater function fits needed a slight modification in their pre-factors, since the

areas under the curves for the fitted functions for uxygen and uranium do not exactly

equal 8 and 92, respectively. In addition, the pre-factors in the above two equations as

reported in Table 2.1 have been multiplied by 10/8 for oxygen and 88/92 for uranium

because we are interested in the electronic cloud of the ionic species and not of the

neutral atoms. We also experimented with more sophisticated corrections (e.g., using

noble gas densities instead) but this did not change the results by more than the

intrinsic accuracy of the ZBL potential.

Table 2.1: Values of coefficients in Slater functions in Eqs. (2.3) and (2.4)
a1 = 2239.70 eÅ−3 a2 = 168.83 eÅ−4 k1 = 30.76 Å−1

k2 = 6.77 Å−1 b1 = 3232265.1 eÅ−3 b2 = 13855550.9 eÅ−4

b3 = 5207885.3 eÅ−5 b4 = 141768.5 eÅ−6 l1 = 309.92 Å−1

l2 = 87.23 Å−1 l3 = 32.98 Å−1 l4 = 13.80 Å−1

2.2.4 Final form of the general interatomic potential

By using Eqs. (2.3) and (2.4) in Eq. (2.1) and performing the integrations, we

obtain the following pair potentials for oxygen-oxygen, uranium-uranium and oxygen-

uranium respectively:

VOO(r) = ZBL10,10(r) +
(−2)(−2)e2

4πε0r
− 4e2

4πε0
[
10

r
− 4πfOO(r)] (2.5)

VUU(r) = ZBL88,88(r) +
(4)(4)e2

4πε0r
+

8e2

4πε0
[
88

r
− 4πfUU(r)] (2.6)

VOU(r) = ZBL88,10(r)+
(4)(−2)e2

4πε0r
− 2e2

4πε0
[
88

r
−4πfUU(r)]+

4e2

4πε0
[
10

r
−4πfOO(r)] (2.7)

where we have,

fOO(r) =
6a2

rk4
2

− a2e
−k2r

rk4
2

[6 + 4k2r + k2r
2] +

a1

rk3
1

[2− 2e−k1r − k1re
−k1r] (2.8)
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Figure 2.3: Charge density times 4πr2 fitted to sum of Slater functions for (a) oxygen
and (b) uranium. Open circles denote values used by Ziegler et al., [2] while the
solid lines indicate our fit using sum of Slater functions. The resultant error in the
short-range interatomic potential as compared to ZBL’s original potential was well
within the latter’s standard deviation for both (a) and (b). Thus trying to capture
more peaks for uranium, by introducing more Slater functions, was not necessary.
The coefficients used here are provided in Table 2.1.
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fUU(r) =
120b4

rl64
− b4e

−l4r

rl64
[120 + 96l4r + 36l24r

2 + 8l34r
3 + l44r

4]+

24b3

rl53
− b3e

−l3r

rl53
[24 + 18l3r + 6l23r

2 + l33r
3]+

6b2

rl42
− b2e

−l2r

rl42
[6 + 4l2r + l2r

2] +
b1

rl31
[2− 2e−l1r − l1re−l1r] (2.9)

We illustrate in Figure 2.4 how closely the potentials given in Eqs. (2.5-2.7) match,

for small r, the neutral atom ZBL, and for large r, the relevant Coulombic interaction.

Figure 2.4: Comparison of our analytical potential form (dashed line) with (a) the
currently used neutral atom ZBL interaction (solid line) for small distances, and (b)
the ionic Coulombic interaction (solid line) between two (-2e)point charges for large
distances for the case of two oxygen atoms.
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2.3 Ab initio calculations to fine-tune potential in

intermediate distance range

As for any empirical potential, there is an intermediate distance range for which the

interactions follow neither a ZBL nor a purely Coulombic form. A correction term is

thus needed for this regime. We find this correction term by fitting to an extensive

database of GGA+U ab initio calculations on UO2.

2.3.1 Ab initio GGA+U calculations

GGA+U is known to provide electronic and magnetic behaviors of UO2 that are con-

sistent with experiments [8], and a correct treatment of the localized and strongly

correlated 5f electrons of uranium [9,10]. Our ab initio calculations also take into ac-

count the experimentally observed noncollinear antiferromagnetic magnetic moment

ordering and the oxygen cage distortion in UO2 [11]. Therefore, in addition to captur-

ing correct elastic and defect properties, our potential also covers a much more vast

energy landscape in the material due to the richness of the ab initio data used. We fit

to a database obtained by GGA+U calculations with the projector-augmented-wave

method implemented in the VASP [12] package. In the GGA+U approximation, the

spin-polarized GGA potential is supplemented by a Hubbard-like term to account for

the strongly correlated 5f orbitals [13]. We use the rotationally invariant approach

to GGA+U due to Dudarev et al. [14], wherein the parameter U-J is set to 3.99 eV.

This is the generally accepted value for this parameter to reproduce the correct band

structure for UO2 [15].

2.3.2 Ab initio database details

The ab initio database we use in fitting comprises:

• Isochoric relaxed runs on a 12 atom unit cell which was isometrically contracted

and expanded by various amounts (i.e., equation of state calculations), and for

which an energy cutoff of 500 eV and a 8×8×8 k-point grid were taken; k-point
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convergence was ascertained before choosing this value for the k-point grid. The

cell was allowed to relax in shape but not in size. Ionic relaxations were carried

out until residual forces were less than 0.01 eV/Å.

• Static (i.e., no ionic relaxation) runs on 96 atom 2×2×2 supercell in which one

atom at a time (i.e., oxygen or uranium) was perturbed from its equilibrium

position by varying distances in different directions. Energy cutoff was 500 eV.

Gamma point only version of VASP was used for this. Note that any interactions

between atoms and their periodic images do not systematically bias the fit of

the potential because the same supercell geometry is used in both the ab initio

and the empirical potential energy calculations.

• 96 atom 2×2×2 supercell for the formation energies of three kinds of stoichio-

metric defects, namely oxygen Frenkel pair, uranium Frenkel pair and Schottky

trio. The vacancies and the interstitials were taken as far from each other as

the supercell would allow. The details of the calculations are the same as that

for case (ii) above. Correct prediction of defect energies has been given great

importance in generating interatomic potentials for cascade simulations.

• first-order transition states in a 2×2×2 supercell for the migration energy of

oxygen vacancy and oxygen interstitial. Nudged elastic band (NEB) method

in conjunction with the climbing image method [16] for determination of sad-

dle point energy, as implemented in VASP, was used for this. We did not fit

to corresponding migration energies for uranium defects since uranium defect

diffusion processes are known from experiments to be very insignificant com-

pared to diffusion of oxygen defects: The diffusivity of oxygen at 1400◦C in

UO2 is more than five orders of magnitude larger than that of uranium [17].

Also, uranium vacancies and interstitials are minority defects in UO2 since their

formation energies are very high (see Table 2.2).
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Table 2.2: Comparison of defect formation and migration energies (all in eV), between
our values and best values as per previous potentials [3, 5], compared with ab initio
values from this work and with experimental values [18].

Exptl.(E)/ ab initio(AI) This work Previous potentials
O Frenkel Pair Formation 3.5 +/- 0.5(E), 3.9 (AI) 3.3 3.17
U Frenkel Pair Formation 9.5 -12(E),10.1 (AI) 15.5 12.6
Schottky Trio Formation 6.5+/- 0.5(E),7.4 (AI) 7.1 6.68
O Interstitial Migration 0.9-1.3(E) 1.4 0.65
O Vacancy Migration 0.5(E) 0.5 0.33

2.4 Final potential form and details of the fitting

procedure

2.4.1 Potential form with intermediate distance correction

With the ab initio database so generated, we now fit the final potential forms as

follows.

VUU(r) = ZBL88,88(r) +
(4)(4)e2

4πε0r
+

8e2

4πε0
[
88

r
− 4πfUU(r)] ∀ 0 < r < 12Å (2.10)

VOO(r) =
(−2)(−2)e2

4πε0r
+



ZBL10,10(r)− 4e2

4πε0
[10
r
− 4πfOO(r)] 0 < r ≤ 1.17Å

5th order polynomial 1.17Å < r ≤ 2.28Å

3rd order polynomial 2.28Å < r ≤ 2.84Å

−603.268eV6/r6 2.84Å < r < 12Å

VOU(r) =
(−2)(4)e2

4πε0r

+


ZBL88,10(r) + 4e2

4πε0
[10
r
− 4πfOO(r)]− 2e2

4πε0
[88
r
− 4πfUU(r)] 0 < r ≤ 1.42Å

5th order polynomial 1.42Å < r ≤ 1.70Å

394.391eV exp(−r/0.534)− 1.5eV6/r6 1.70Å < r < 10Å

As seen from Eq. (2.10) we now have absolutely no splines for the U+4-U+4
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interaction, reflecting the fact that no chemical bonding takes place. There are splines

in the other two interactions but these are now unambiguously determined since the

respective cut-offs are not imposed but instead determined through fitting. The

splines maintain continuity through the second derivatives of the potential and the

specific form of the splines can be uniquely recovered from these conditions. For the

interaction between two oxygen ions, the potential has one (and only one) minimum at

rmin = 2.28Å, as may be seen from Figure 2.5. We have thus removed all unaccounted

behaviors in the potentials, which were demonstrated for the case of oxygen-oxygen

interaction in Figure 2.1.

2.4.2 Details of the fitting procedure

The downhill simplex method of Nelder-Mead was used to carry out the fitting [19].

The fitting involved minimizing the sum of the squares of the differences between

the ab initio energies and the energies predicted by the potential for classes (i) and

(ii) of data points as detailed above, and the sum of the squares of the differences

between the ab initio/experimental and predicted values of the various defect forma-

tion/migration energies respectively. The package GULP [20] was used for energy

calculations and for atomic positions optimization. The quality of fit for the equa-

tion of state data and the perturbed atom data can be seen in Figure 2.6. The ab

initio/experimental and predicted defect formation/migration energies are compared

in Table 2.2, while Table 2.3 lists the predicted ground-state lattice parameter and

other elastic properties as compared with the corresponding experimental values [18]

(extrapolated accordingly) and with values obtained with the Morelon et al. poten-

tial [3]. The agreement is very satisfactory.
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Figure 2.5: (a) The interatomic potential for oxygen-oxygen as per current work (Eq.
10). (b) First derivative of the net potential resulting from the same. (c) Second
derivative of the potential. These are to be compared with Figure 2.1.
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Table 2.3: Comparison of various ground- state elastic properties, between our values
and best values as per previous potentials [3], compared with (extrapolated) experi-
mental values [18]. N.B. These are predicted and not fitted values.

Exptl. This work Previous potentials
Lattice Parameter (Å) 5.46 5.46 5.46
Bulk Modulus (GPa) 207 210 125

Elastic Constant C11 (GPa) 389.3 401.8 216.9
Elastic Constant C12 (GPa) 118.7 114.1 79.1
Elastic Constant C44 (GPa) 59.7 107.8 78.5

Figure 2.6: Quality of fit from our fitted potential for various ab initio energies: (a)
expansion/contraction (open circles), (b) oxygen atom perturbation (plus signs), (c)
uranium atom perturbation (cross signs). Asterisks denote experimental data. For
each of oxygen and uranium, the first four perturbations are along < 100 > direction
while the second four are along < 110 > direction.
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2.5 Validation of the potential through MD simula-

tions

As a final validation of the developed potential we considered various dynamic prop-

erties by performing MD simulations in a constant number, pressure and temperature

(NPT) ensemble comprising 6×6×6 unit cells. The system was equilibrated for 10.0

ps, while production runs were carried out for 100.0 ps, with a time step of 0.001 ps

and sampling every 0.05 ps. The fluorite structure remained stable during all the runs

we performed, up to temperatures of 2500 K. The properties we considered are the

variation in the lattice parameter and the enthalpy as functions of the temperature.

These are compared in Figure 2.7 with the corresponding experimental data. [18] The

quality is similar to what is given by the previous potentials [3, 21, 22], as tabulated

in the work by Morelon et al. [3].

2.6 Summary

To summarize, we have shown a methodology for developing an interatomic pair po-

tential such that it is appropriate for all relevant interatomic separations, without the

need for any ambiguous splines. Splining between regions of different characteristics

is not just an inconvenience in the implementation of a potential in MD simulations,

but also introduces an uncertainty regarding which distances, and by which functions,

one realizes the splines.
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Figure 2.7: (a) Relative lattice parameter variation using potential from current work
(open circles) compared with corresponding experimental values (dashed line). [18]
The scatter in the experimental values is also shown (solid lines). (b) Enthalpy vari-
ation using potential from current work (open circles) compared with corresponding
experimental values (solid line). [18] The scatter in the experimental values was less
than 1 percent and is thus not shown.
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Chapter 3

Interatomic potentials for mixed
oxide (MOX) nuclear fuels

3.1 Motivation

This chapter continues with developing accurate and robust interatomic potentials

for use in classical molecular dynamics simulations of atomistic phenomena occurring

at energy scales ranging from lattice vibrations to crystal defects to high-energy col-

lisions.

The interest in using mixed oxide (MOX) fuels comprising (U,Pu,MA)O2 (where

MA = Np, Am and Cm) in fast breeder and transmutation reactors is ever increas-

ing. Since this complex fuel experiences a high burn-up ratio with large quantities of

fission products and materials defects, it becomes crucial to understand the evolution

and statistics of atomic displacement cascades due to high-energy radiation that the

material faces [23]. Classical molecular dynamics (MD) with its ability to simulate

fairly long length scales, though still retaining the fine atomic structure of the ma-

terial, is ideally suited for such studies. Classical MD is limited though by the time

scale problem, an issue we will be tackling in later parts of this thesis.

In this chapter we continue to address the issue that the complexity of the in-

teratomic interactions for radiation damage simulations cannot be fully represented
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by simple classical forms due to the disparate scales of energies involved. Interac-

tions corresponding to equilibrium conditions are traditionally found by fitting to a

variety of thermodynamic data; while for description of the short-range behavior, the

Ziegler-Biersack-Littmark (ZBL) universal pair potential [2] developed in the 1980s is

well-accepted. These two “pieces” then need to be smoothly connected via somewhat

arbitrarily applied splines. In Chapter 2 we proposed a methodology for developing

interatomic potentials that is valid for all interatomic separations, without the need

for any ambiguous splines [24]. We used the formalism to develop force-fields for the

nuclear fuel UO2 that captured a wide range of properties, as described in Chapter

2. In this chapter, we extend the formalism to a more general case of MOX nuclear

fuels of varying composition. In addition to capturing high-temperature thermody-

namic properties, as done by available potentials [25–27], we also incorporate correct

treatment of point defects. Created due to irradiation, these are critical for the un-

derstanding of a variety of phenomena such as fuel swelling, fission gas release and

burn-up structure formation [1, 3].

3.2 Details of calculations

A key test of any developed energy surface lies in its ability to adequately represent

systems/configurations that were not included in the fitting procedure [28]. In this

chapter we fit the potential parameters to ab initio and experimental data for the ox-

ides PuO2 and NpO2, and then check for their transferability by comparing against ab

initio data for (UxPu1−x)O2 and (UxNp1−x)O2 configurations that were not included

in the fit.

3.2.1 Ab initio GGA+U calculations

In the present chapter we employ the generalized potential formalism [24] that be-

haves correctly in both short-range and long-range limits. The only component in

this potential that remains to be determined is a correction term for intermediate

distances associated with chemical bonding. We find this correction term by fitting
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to an extensive database of generalized gradient approximation GGA+U ab initio

calculations [13] on PuO2 and NpO2. The potential’s applicability in a mixed envi-

ronment pertinent to MOX fuels is further verified by testing against GGA+U data

for (UxPu1−x)O2 and (UxNp1−x)O2.

GGA+U is known to provide electronic and magnetic behaviors of the actinide

oxides [9] that are consistent with experiments. In this approximation, the spin-

polarized GGA potential is supplemented by a Hubbard-type term to account for

the localized and strongly correlated 5f electrons. Our database comprises results

obtained from GGA+U calculations with the projector augmented-wave method and

collinear antiferromagnetic moments as implemented in the VASP package [12]. Du-

darev’s rotationally invariant approach [14, 15] to GGA+U is employed wherein the

parameter U-J is set to 3.99, 3.25 and 3.40 for U, Pu and Np respectively [4, 10, 29].

These are the generally accepted values for reproducing the correct band structures of

the corresponding oxides. Energy cutoff for the plane waves was kept at 400 eV. Since

GGA+U overestimates the lattice parameter, a common scaling factor (same as that

used [24] for UO2) was employed to get experimentally correct lattice parameters.

3.2.2 Ab initio database details

3.2.2.1 Ab initio database used in fitting the potential

The ab initio database so obtained for fitting comprises:

1. Isochoric relaxed runs on a 12 atom unit cell, which was isometrically contracted

and expanded by various amounts (i.e., equation of state calculations wherein

each data point was calculated under the constraint of constant cell volume)

and for which an 8×8×8 k -point grid was taken after ascertaining k -point con-

vergence. Ionic relaxations were carried out until residual forces were less than

0.01 eV/Å.

2. Static (i.e., no ionic relaxation) runs on a 96 atom 2×2×2 supercell in which
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one atom at a time (O or Pu or Np) was perturbed from its equilibrium position

by varying distances (on the order of 1 Å or less from the equilibrium positions)

in different directions. Sampling of the gamma point only was found to be

satisfactorily accurate for this.

3. A 96 atom 2×2×2 supercell for the formation energies of stoichiometric defects,

namely, oxygen Frenkel pair, neptunium Frenkel pair and plutonium Frenkel

pair. Several vacancy-interstitial distances were considered to ascertain the

separation between these corresponding to the minimum defect formation en-

ergy (excluding the case of nearest neighbor distances, which was found to lead

to vacancy-interstitial recombination). Correct prediction of these energies has

been given great importance in generating interatomic potentials for cascade

simulations in UO2 [1, 3, 5, 6, 23,30].

A total of approximately 50 ab initio configurations were thus used in the fitting.

Note that in the above calculations, any interactions between atoms and their periodic

images do not systematically bias the fit of the potentials because the same supercell

geometry is used in both the ab initio and the empirical potential energy calculations.

3.2.2.2 Ab initio database used in validating the potential

The ab initio database employed for validation and for testing transferability includes

equation of state runs similar to those in the fitting database, for oxides of U31Pu,

U30Pu2, U31Np and U30Np2, each with 64 oxygens. These data points were not

included in the fit itself and were used only after the fitting was complete for checking

the robustness of the potentials with respect to use in mixed environments.

3.2.3 Experimental data used in fitting

In addition to the ab initio data, we also included experimental thermal expansion

behavior [31] of PuO2 and NpO2 in the fit. We found that including experimental

thermal expansion data (which is readily available) is a very effective way to ensure

reasonable thermal expansion behavior in this system. To make the calculation of
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high-temperature lattice parameters computationally tractable during the fitting pro-

cedure, we employed the quasiharmonic approximation (QHA) [32], in which atoms

are treated as pure harmonic oscillators whose frequencies depend on the cell volume.

The so-called zero static internal stress approximation (ZSISA) [33] to QHA, as im-

plemented in the package GULP, was used [20]. QHA involves a full relaxation with

respect to external (cell parameters) and internal (atom positions within the cell)

coordinates. ZSISA ignores the dependence on internal coordinates of the vibrational

part of the free energy. We found that for the materials studied and potential forms

used in this chapter, the lattice parameter through NPT (constant number, pressure,

temperature) MD was slightly lower than that through ZSISA. As such, an empirical

adjustment to the ZSISA lattice parameter had to be included in the fitting. Thus,

several independent fits were done using ZSISA lattice parameter values equal to the

experimental lattice parameter multiplied by η, with η varying between 1 and 1.01.

NPT MD was carried out with these potentials (details of MD provided later) to find

the η that led to MD values matching the experimental data the best. We found that

η equals 1.0006 and 1.0008 for PuO2 and NpO2 respectively, for a best match in the

least squares sense between experimental and NPT MD lattice parameters.

3.3 Form of the developed potential

The potential forms thus used for fitting to the ab initio and experimental data are

similar to that proposed previously [24], and are summarized below for Pu-Pu and

Pu-O interactions (with similar forms for other interactions):

VPuPu(r) = ZBL90,90(r) +
(4)(4)e2

4πε0r
+

8e2

4πε0
[
90

r
− 4π

e
fPuPu(r)] ∀ 0 < r (3.1)
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VOPu(r) =
(−2)(4)e2

4πε0r
+

ZBL90,10(r) +
4e2

4πε0
[
10

r
− 4π

e
fOO(r)]− 2e2

4πε0
[
90

r
− 4π

e
fPuPu(r)] ∀0 < r ≤ r1

5th order polynomial ∀r1 < r ≤ r2

A exp(−r/ρ)−B/r6 + (r − r3)2(Cr3 +Dr2) ∀r2 < r ≤ r3

A exp(−r/ρ)−B/r6 ∀r > r3 (3.2)

The UO2 family of interactions is kept the same as in Chapter 2. In the above

equation ZBLZ1+q1,Z2+q2(r) denotes the ZBL form of interaction between two neutral

atoms having atomic numbers Z1 + q1 and Z2 + q2, but using the screening length for

Z1 and Z2, as explained in Chapter 2. The functions f in the above are related to the

charge densities of the respective atoms. Detailed coefficients of fOO and fUU can be

found in Chapter 2, while fPuPu and fNpNp can be calculated from the relations fPuPu

= (90/88)fUU and fNpNp = (89/88)fUU . This was needed since Np+4 and Pu+4 charge

densities ρ(r) are not available in Ref. [2].
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Figure 3.1: Test of approximation-validity of fPuPu = (90/88)fUU and fNpNp =
(89/88)fUU by looking at the applicability of similar relations for cations of mem-
bers of the previous row of the periodic table with similar shell structure namely Pm
and Nd. Dashed line denotes the result from this approximation while solid line is
the actual charge density [2] for Nd+4 .
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We tested this approximation using cations of elements in the previous row of

the periodic table where actual ZBL charge densities are available, namely Nd, Pm

and Sm. As can be seen from Figure 2.2, the approximation satisfactorily captures

the electronic shell structure of 4πr2ρ(r), which is the quantity of interest to us.

Note that we have removed altogether any splines for cation-cation interactions. The

downhill simplex method of Nelder-Mead was then used to carry out the potential

fitting [19]. The fitting involved minimizing an objective function equal to the sum

of the squares of the differences between the ab initio/experimental data (weighted

since they denote different quantities) and that predicted by the potential for all the

classes of data as detailed above. GULP was used for energy calculations and for

atomic-positions optimization [20].

3.4 Quality of fit

Figure 3.2 shows the quality of fit for the PuO2 equation of states and single atom

perturbation data, while Figure 3.3 shows the same for NpO2. Table 3.1 shows the

defect formation energies as obtained by us in the GGA+U calculations, along with

the corresponding values from the current potential and from the previous potentials

published for these systems. We excluded the cation defect formation energies entirely

from the fitting objective function. This can be justified by considering that (i) these

energies as per ab initio are already very high - upwards of 12 eV; (ii) from the case [24]

of UO2, it is expected that ab initio actually underestimates these energies, and thus

they are even less likely to form; and (iii) these (Pu and Np) are the minority cations.

It has been argued [34] though that uranium Frenkel pairs and Schottky trios might

play an important role in the diffusion of noble gas impurities formed after fission -

as such, our library of potentials does provide a much better match for the uranium

Frenkel pair and Schottky trio formation energy since it is based on the potentials for

UO2 in Chapter 2.

The potentials so obtained are plotted in Figure 3.4, while the fitted coefficients

are detailed in Table 3.2. Note that since there was no spline in any cation-cation



30

Table 3.1: Defect energy comparisons (in eV)
ab initio Potential Previous potentials [5]

O Frenkel pair in PuO2 3.9 4.9 7.0
O Frenkel pair in NpO2 4.5 5.8 10.0

Pu Frenkel pair 11.9 24 17
Np Frenkel pair 12.2 26.7 17.5
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Figure 3.2: Quality of fit from our fitted potential (asterisks) for various ab initio
energies (circles) for PuO2 :(a) equation of state (b) oxygen atom perturbation (c)
plutonium atom perturbation. For each of oxygen and plutonium, the first four
perturbations are along 〈100〉 direction while the second four are along 〈110〉 direction.
The perturbations are on the order of 1 Å or lower from the equilibrium positions.
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Figure 3.3: Quality of fit from our fitted potential (asterisks) for various ab initio
energies (circles) for NpO2 :(a) equation of state (b) oxygen atom perturbation (c)
neptunium atom perturbation. For each of oxygen and neptunium, the first four
perturbations are along 〈100〉 direction while the second four are along 〈110〉 direction.
The perturbations are on the order of 1 Å or lower from the equilibrium positions.

interaction (see Equation (3.1)), they do not find a mention in the above list. The

aforementioned 5th order polynomial is uniquely determined by the provided cutoffs

and potentials. The detailed potentials are available from NIST-CTCMS as a GULP

library file [20] .

Table 3.2: Coefficients of fitted potentials
PuO2 NpO2

A (eV) 597.304 597.605
ρ (Å) 0.475712 0.484948

B (eVÅ6) 0.31187 0.31187
C (eV/Å5) 0.0003375 -0.0735556
D (eV/Å4) 0.029085 0.048972
r1 (Å) 1.42 1.17
r2 (Å) 1.7 1.7
r3 (Å) 2.85 2.94
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Figure 3.4: (a) fitted O-Pu interaction (b) fitted O-Np interaction
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Figure 3.5: Equation of state for (a) U31PuO64 and (b) U30Pu2O64. Circles denote ab
initio data while asterisks are the values predicted (not fitted) with current potential.
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Figure 3.6: Equation of state for (a) U31NpO64 and (b) U30Np2O64. Circles denote ab
initio data while asterisks are the values predicted (not fitted) with current potential.
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Figure 3.7: Lattice parameter at various temperatures for (a) PuO2 and (b) NpO2.
Straight lines are the experimental values [31] valid between 400 and 1000 K, while
circles denote values obtained from MD simulations using current potentials. Plus
signs represent (1/η) times the experimental values actually used in fitting to account
for the observation that ZSISA slightly overestimates the MD lattice parameters.
Details of calculation of this adjustment factor η (equaling 1.0006 and 1.0008 for
PuO2 and NpO2 respectively) can be found in the text.
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Figure 3.8: Enthalpy at various temperatures (relative to room temperature enthalpy)
for (a) PuO2 and (b) NpO2. The circles denote values from NPT MD (predicted and
not fitted values) while the asterisks are the known experimental values [35].
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3.5 Validation and transferability to different envi-

ronments

The performance of the potential against the validation data, i.e., equation of states

for oxides of U31Pu, U30Pu2, U31Np and U30Np2 that were not included in the fitting

procedure, can be seen from Figures 3.5 and 3.6. The match is satisfactory and in-

terestingly it improves with more Pu or Np content in respective cases.

The generated potentials were verified through NPT MD simulations on 3×3×3

unit cells (324 ions). The system was equilibrated for 10 ps while production runs

were carried out for 100 ps with time steps between 0.001 and 0.0005 ps (depending

on temperature). Apart from the lattice parameter, we also considered the enthalpy

as a function of the temperature.

Figure 3.7 compares the lattice parameter as obtained from the MD simulations

with experimental values for PuO2 and NpO2 [31]. Figure 3.7 also shows the corre-

sponding ZSISA values as obtained from the potentials. The over-estimation adjust-

ment factor η used on the ZSISA values can be seen here. After this adjustment to

ZSISA, the match for the lattice parameters between NPT MD and experiments is

excellent. The quality of the enthalpy values compared between experiments [35] and

those predicted from NPT MD with current potential is also very good (see Figure

3.8).

3.6 Summary and outlook

To summarize, we have developed interatomic potentials for the Mixed Oxide fuel

system (U,Pu,Np)O2 by fitting to an extensive ab initio database and to available

experimental observations using a formalism that has been shown to be capable of

dealing in a self-contained manner with conditions ranging from thermodynamic equi-

librium to very high-energy collisions relevant for fission events. The potentials cap-
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ture known experimental measurements on these oxides as well as a rich database

of ab initio GGA+U results. The applicability of these potentials in scenarios not

included in the fitting is also explicitly demonstrated.

Even with the accurate and robust potentials as developed in these last two chap-

ters, their applicability stays somewhat limited because of the restricted time scales

accessible in MD simulations. For instance in nuclear fuels, there is great need to

study long term annealing of defects produced during damage, but this is a task

current-day MD can not challenge due to the limited time issue.

As such, in the remaining parts of this thesis we will now take on the challenge of

developing and designing algorithms that can achieve realistic time scales while still

maintaining fully atomistic resolution.
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Chapter 4

Hybrid deterministic and stochastic
approach for efficient long time scale
atomistic simulations

4.1 Motivation: Time scale problem in MD

With vast improvements in the quality of available interatomic force-fields and com-

puter power, the classical MD simulation has seen a dramatic increase in its use across

a variety of fields over the past few decades [36–39]. In the previous two chapters we

developed such force-fields that capture accurate quantum mechanics derived prop-

erties, and also capture high-temperature experimental observations.

In addition to the availability of good potentials, one of the features that has

made MD so appealing is its ability to actually follow the dynamical evolution of the

system, thus giving insight into the microscopic behavior of the material. However,

this is where the major limitation of MD comes into light too: most of the interest-

ing dynamics occurs as the system moves from one energy basin to another through

infrequent rare events, while the system remains stuck in some energy basin for ex-

tended periods of time (see Figure 4.1). This non-ergodicity, coupled with the small

time steps (on the order of femtoseconds) needed for total energy staying conserved,

severely restricts the timescales accessible in MD simulations and also leads to limited

phase space exploration.
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In this chapter, we propose a hybrid deterministic and stochastic approach to

achieve extended time scales in atomistic simulations that combines the strengths

of MD and Monte Carlo (MC) simulations in a novel and easy-to-implement way.

The method exploits the rare event nature of the dynamics similar to most current

accelerated MD approaches but goes beyond them by providing, without any further

computational overhead, (a) rapid thermalization between infrequent events, thereby

minimizing spurious correlations and (b) control over accuracy of time scale correc-

tion, while still providing similar or higher boosts in computational efficiency.

Figure 4.1: Most of the simulation time in a MD simulation gets spent near the bottom
of energy wells, and transition from one well to another thus becomes a so-called rare
event.

We present two applications of the method: (a) vacancy-mediated diffusion in Fe

yields correct diffusivities over a wide range of temperatures and (b) source-controlled

plasticity and deformation behavior in Au nanopillars at realistic strain rates (as low

as 102/sec in this thesis) with excellent agreement with previous theoretical predic-

tions and in situ high-resolution transmission electron microscopy (HRTEM) observa-
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tions. The method gives several orders of magnitude improvements in computational

efficiency relative to standard MD and good scalability with size of system.

4.2 Some previous approaches to address the time-

scale problem

There have been many attempts at addressing this time-scale problem in MD - ex-

amples include hyperdynamics [40, 41], metadynamics [42], the activation relaxation

technique [43], parallel replica dynamics [44], temperature accelerated dynamics [45],

κ-dynamics [46] and several others [40]. In this section we provide a brief survey of

some of these methods. There are several excellent reviews such as Ref. [40] available

on the subject and the reader is referred to those for a more detailed critique. Here

we restrict the discussion to algorithms that maintain a fully atomistic resolution.

4.2.1 Hyperdynamics

The hyperdynamics method [41] is a very popular and well-established method that

offers an elegant and practical way to increase the rate of infrequent events. It consists

of adding a potential energy bias that makes the potential wells, in which the system

normally remains trapped for extended periods, less deep (see Figure 4.2). A time-

scale correction is also evaluated in terms of the bias potential. The hyperdynamics

method, especially with the advent of a variety of easy to implement biasing forms [47],

has seen several compelling applications over the past years [47–51].

4.2.2 Kinetic Monte Carlo

The kinetic Monte Carlo (or KMC) method [40] assumes that one knows (a) all the

elementary processes or transitions (typically escape pathways from energy wells)

that could occur in a system, (b) the rates at which they occur, and (c) that these

processes are of the Poisson process type and (d) these processes are independent and

uncorrelated. Given these assumptions, KMC comes up with a Markov chain that
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Figure 4.2: A schematic illustration of the key idea in Hyperdynamics [41]: lifting
the potential energy landscape without affecting the saddle surfaces.

Figure 4.3: Increased biasing (inherently sought for speed-up of simulation) leads
to incorrect time-scales. Figure from Miron and Fichthorn using their bond-boost
scheme [52] of biasing the potential.
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simulates thermodynamic equilibrium, executing transitions with the correct transfer

rates, only that one needs to know-before hand what these transitions are. KMC

can not actually predict these transitions (something for which we rely on MD), and

their a priori knowledge (typically through ab initio calculations) is necessary. The

reliance on pre-knowledge of transitions can become rather prohibitive in many cases,

such as highly disordered solids. On this note, several workers have been recently

making effort to design algorithms that can predict transition pathways on-the-fly as

the simulation progresses, such as the on-the-fly KMC method [53].

4.2.3 Parallel replica dynamics

This involves running several replicas of the system in parallel while waiting for tran-

sition from one energy well to another to happen [44]. Each replica runs on a different

processor. Once transition is recorded on some processor P, all the processors are

stopped, and the run is restarted by creating replicas of the state one obtained after

transition on the processor P. Theoretically the algorithm achieves an enhancement

in the time-scale that is linearly proportional to the number of replicas used. There

are however problems in using this technique for large systems (more than a few

hundred atoms) where transitions start becoming too frequent, thereby leading to

prohibitively large overhead time.

4.2.4 Temperature accelerated dynamics

This approach does not require a biasing potential as in Hyperdynamics, but it makes

the additional approximation of harmonic transition state theory [45]. The central

idea is to let the system evolve at a higher temperature, causing transitions to occur

more rapidly. The rates so-obtained are however incorrect (or correct only at the

elevated temperature), and they are extrapolated back to the temperature of interest

by assuming that the rates follow an Arrhenius dependence on the temperature. No

prior information on possible mechanism is needed. But one has to be careful that

the transition found to be occurring at high temperatures might not be the preferred
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transition or might not even occur at low temperatures, and hence a whole catalog

of prospective transitions (that could happen at low temperature) needs to be built.

Once the escape events at higher temperature are identified, the algorithm involves

doing nudged elastic band calculations to find the saddle point energy for each escape

event [16]. This knowledge is needed for the correct extrapolation of the rates.

4.2.5 Metadynamics and related methods

Metadynamics [42] assumes that the transitions in a system can be described by a few

collective coordinates - for instance, bond length in a chemical reaction. The energy

wells in this collective coordinate space are identified, and positive Gaussian poten-

tials are added to these, thereby discouraging the system to revert back to these wells.

One obvious criticism of Metadynamics is that it is difficult to come up with obvi-

ous collective coordinates in solid state systems, and as such the related Autonomous

Basin Climbing method involves filling up the free energy wells in configuration space

itself [54]. Much recent effort has also gone into defining correct collective coordinates

for complicated systems, for example glasses. for instance, it has been pointed out

in Ref. [55] that trying to describe the system in terms of such collective coordinates

can be perilous, and the dynamics can be sensitive to the exact choice of collective

coordinates.

4.2.6 κ-dynamics

κ-dynamics is another recently proposed accelerated dynamics method [46] that in-

volves following trajectories beginning from an energy well (using forward flux sam-

pling) until the first successful trajectory is found that has crossed a transition surface

and thus per definition reached another well (but without recrossing the transition

surface). Once such a transition is identified, the simulation is restarted from the new

state. One key limitation of this method is the need to identify a reaction coordinate

that separates reactants from products. The transition state surface also needs to be
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well defined.

4.3 Hybrid deterministic and stochastic approach for

long time scale MD simulations

We now propose a hybrid method that combines the strengths of MD and MC sim-

ulations in a novel way (refer to Figure 4.4). Our approach builds upon the crucial

insights of Voter and co-workers while seeking improvements along two important

dimensions:

• First, it bypasses a fundamental trade-off present in hyperdynamics: A shallower

potential well provides faster dynamics but, at the same time, reduces the ability

of the modified potential to properly thermalize the system in between the

infrequent events, resulting in artificial correlation between these events.

• Second, our method provides better independent control over the accuracy of

the time scale correction, while the hyperdynamics time scale estimates can

remain noisy up to long simulation times, especially for large system sizes (see

Ref. [52] for a discussion on this, also see Figure 4.3).

Let the state of the system be characterized by position x and velocity v, each being

a 3N -dimensional vector for a system of N atoms. When the system potential energy

goes below V0, we allow MD to continue until the system has lost memory of how it

entered this well W (defined as all points x such that V (x) ≤ V0). We found that

a simple and appropriate criterion to check for this memory loss is when the energy

reaches the system’s mean energy at that temperature (although other choices are

possible, such as letting MD continue for a sufficiently long, user-specified, time or

for a random length of time drawn from a user-specified exponential distribution).

During this thermalization time, the system may escape the well, in which case the

system simply keeps evolving via MD. Most likely, however, the system will not escape

the well during that time. When the mean energy is reached, we stop MD and launch
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the first MC simulation (called MC a) on the same processor as on which MD was

running, and on parallel processors, a second MC simulation (denoted MC b).

4.3.1 2 kinds of MC simulations

As described above, once we know that the MD routine has entered the well W, we

stop MD and launch two kinds of MC simulations. We now describe the details of

these two MC simulations.

4.3.1.1 MC simulation a: For thermalizing the system

MC a is the first type of MC simulation. It runs with a perfectly uniform potential

inside the well, rejecting all moves that lead to V (x) > V0. The purpose of MC

simulation a is to generate a new, properly thermalized, starting point for MD. MD

resumes with positions drawn from the last MC a step that visited the boundary

of the well (defined rigorously in Eq. (4.2)), and velocities drawn from a Maxwell-

Boltzmann distribution in the half space pointing outward of the well. V0 can be

picked high or low depending on the speed-up relative to MD we seek for a particular

application. The method is formally correct for any choice of V0; a higher choice of

V0 limits our ability to monitor the detailed dynamics of some events. In Chapter 6

we do a detailed analysis of the dependence on particular choice of V0.

Simulation a is run until the system is well thermalized and has lost memory of

how it entered the well (this takes a few MC passes, an insignificant amount of wall

clock time). MD then resumes with positions drawn from the last MC state that

visited the boundary of the potential well. The vector v of the velocities of all atoms

for restarting MD is drawn from a Maxwell-Boltzmann distribution corresponding to

the temperature T of interest, conditional on v · ∇V (x) > 0 (i.e. we only consider

velocities in the half-space pointing outwards of the well).

MC simulation a is first of the crucial differences between our approach and hyper-
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dynamics: It ensures proper thermalization of the system between rare events even

when using a completely flat potential in the well. Even though it is done with a

uniform potential, it does not lead to the molecular structure being completely lost

since we rule out all moves that lead to energy higher than V0.

4.3.1.2 MC simulation b: For estimating time-scale correction

In parallel to simulation a, another MC simulation b is launched to estimate the mean

time the system should have spent in the well W. Akin to simulation a, b also rejects

all moves that land outside the well W. The mean time spent in W is given by the

reciprocal of the flux exiting [56] the well W:

tW = lim
w→0

(〈 v
w

1(x ∈ Sw)〉)−1 (4.1)

where the average 〈· · · 〉 is taken over x drawn from the well W with a probability

density proportional to e−V (x)/(kBT ), where kB is Boltzmann’s constant and the fol-

lowing definitions hold: 1(A) equals 1 if the event A is true and 0 otherwise, Sw is a

shell of width w at the boundary of the well W (see Figure 4.5), which can be defined

in the limit of small w as

Sw = {x : |V (x)− V0| ≤ w|∇V (x)|/2} (4.2)

and v denotes the mean projection of a Maxwell-Boltzmann-distributed velocity along

the unit vector u parallel to ∇V (x), conditional on v · u > 0. The latter is given by

v =

√√√√kBT

2π

N∑
i=1

|ui|2
mi

(4.3)

where mi is the mass of atom i and |ui| denotes length of the 3 dimensional subvector

of u associated with atom i. Note that the Eq. (4.3) reduces to the familiar expres-

sion [56] v =
√
kBT/2πm when all atoms have the same mass, in which case v factors

out of the average in (4.1).
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4.4 Refinements to the basic algorithm

The times tW obtained via MC simulations b can be directly added to the physical

time spent doing MD simulations to yield the overall physical time of the simulation.

Note: What is actually added to the clock is an exponentially distributed random

number with mean tW given by:

t = ln(1/r)× tW (4.4)

where r is a random number drawn from a uniform distribution on (0,1].

However, more refinements of the method can yield further improvement in ef-

ficiency. We describe some such refinements now. Some more not − so − obvious

refinements will be described in the next chapter.

4.4.1 Biasing the energy landscape for faster estimation of

time-scale correction

Since Eq. (4.1) involves an average, it can be approximated by MC simulations.

However, the most straightforward implementation of this approach would be very

inefficient because x would rarely visits the boundary Sw of the well. The efficiency

can be considerably improved by using a biased potential V ∗(x) which is the same

as the real potential in the high-energy regions (i.e. regions outside well W with

V (x) ≥ V0), but lifted up in the deep energy basins (as in Figure 4.2). With this Eq.

(4.1) becomes

tW = lim
w→0

〈e−β(V (x)−V ∗(x))〉∗

〈 v
w
e−β(V (x)−V ∗(x))1(x ∈ Sw)〉∗

(4.5)

where the averages 〈· · · 〉∗ are taken over x drawn from the well W with a probability

density proportional to e−V ∗(x)/(kBT ) and β = 1/kBT . MC simulation b is the second
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main difference with hyperdynamics: It provides separate control over the accuracy

of the speed up factor since the length of the MC simulation b can be adjusted

independently of the length of the whole simulation.

Figure 4.5: Illustration of the energy shell Sw as defined in Eq. (4.2). By defining the
shell this way we ensure that it contains similar number of points in the configuration
space irrespective of the gradient of the potential energy landscape.

The form of biasing we use in this chapter is a well established and easy to im-

plement biasing potential used in several implementations of Voter’s hyperdynamics

method, originally proposed by Hamelberg et al. [47]:

V ∗(x) = V (x) +

 0 V (x) ≥ V0

(V0−V (x))2

α+V0−V (x)
V (x) < V0

(4.6)

4.4.2 Averaging time over all wells without distinguishing be-

tween the types of wells

Instead of computing tW for each well W, one may keep a running average

tW =
1

nb

∑
W

tW (4.7)
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of the time spend in the nb wells sampled via MC simulation b (na, the number of

wells actually visited, may well far exceed nb). Once this average is converged, there

is no need to initiate MC simulation b anymore. The overall time spent in all the

wells will simply be tW ∗ na/nb. Note that there is no need to keep separate averages

for different types of wells, which would have been difficult to implement. Although

MC simulations a still need to be performed for all wells, the quantity in Eq. 4.7

converges much more rapidly.

4.4.3 Quick and dirty evaluation of the time-scale correction

Other efficiency improvements can be obtained by not performing fully converged MC

simulations b and exploiting the fact that errors will average out over wells in Eq.

(4.7). Also, given the embarrassingly parallel nature of the algorithm, the Ergodic

Hypothesis can be invoked and the simulation MC b can be launched on as many

processors as available thereby improving the quality of estimate without having to

wait for long simulation times. Note that this scheme must be used while ensuring

that the biasing potential is sufficiently strong so that most of the random errors

in Eq. (4.5) are concentrated in the numerator, to avoid a systematic bias due to

nonlinearity of the ratio.

4.4.4 Optimum extent of biasing

To minimize the wall-clock time needed for calculation of time in Eq. (4.5) via

simulation b, we use an optimal extent of biasing as suggested in Ref. [47]. This

involves setting α ' V0 − Vmin which allows the biased potential to capture the

shape of the potential wells [47]. α smaller than this would improve sampling of the

numerator in Eq. (4.5) but deteriorate that of the denominator.
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4.5 Some comments and comparison with Hyperdy-

namics

We would like to point out that only the parameter w is additional to those in any

typical hypderdynamics scheme (Hamelberg et al. [47]’s in this case), the choice of

which does not effect the result since we extrapolate tW to the limit of small w [56].

Our approach compares favorably with hyperdynamics [41] where one does not have

control over the accuracy of the accelerated time (hyperdynamics relies on this error

cancelling out over time but does not provide an estimate of how much it is [41,52]),

and one is obliged to keep performing dynamics with the biased potential at all stages

of the calculation. Thus our method offers boosts as high as those that one could

get from setting α = 0 in Eq. (4.6) (akin to the flooding scheme [57, 58]), but still

avoiding the slow convergence in time and problems with discontinuous forces that

one encounters in implementing flooding based hyperdynamics. In addition we avoid

errors from sampling the system in the state when it is not thermalized between two

rare events - once MD is relaunched in our scheme, the system is well thermalized by

virtue of simulation a.

The main advantages of this new method over existing accelerated MD techniques

(see, for e.g., [40,41,46,59]) are that (i) it provides a statistically more accurate “real”

time scale (which is important when determining the actual strain rate in a simula-

tion and time-dependent forces in general), (ii) it does not rely on transition state

theory (which is important when the object of interest is the entropy of activation

or migration), (iii) it does not require the specification of the degrees of freedom of

interest or specific reaction coordinates as in Ref. [42, 46] (which is crucial when the

mechanisms are complex and involve the movement of many atoms) and (iv) the ef-

ficiency of estimating the “real” time scale (as in (i)) improves linearly with number

of computer processors employed for the calculation.

One possible source of inefficiency (from the perspective of computational time)
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in our method is the waiting period allowing the mean energy of the system to be

attained before relaunching MC simulation a. This however is not a very long period

of time (few picoseconds or less), and it helps us ensure that the transition (if it

happened) if not undone by recrossing.

4.6 Validation of the method

We picked two problems to demonstrate that our method yields correct dynamics:

(a) vacancy -mediated diffusion in BCC Fe at room temperature, and (b) deformation

behavior in Au nanopillars at realistic strain rates.

4.6.1 Lattice diffusion in BCC iron at low temperatures: Is

the speeded time correct?

Lattice diffusion at low temperatures is beyond the time scales one can access in cur-

rent MD simulations, with most investigations [60] only beyond 700 K. The system we

consider is 249 Fe atoms (5x5x5 BCC supercell with 1 vacancy) interacting through

the Embedded Atom Method (EAM) potential [60]. For the MD part here and in

deformation behavior problem, we performed NVT (constant number, volume, tem-

perature) simulations using time step of 2x10−15 sec and a Langevin thermostat with

coupling constant 1x10−11 sec−1. The biasing parameter α was 50 eV. The V0 values

we used at 500 and 300 K were -975.5 eV and -984 eV resp. (4 and 2.5 eV more than

the mean energy at 500 and 300K resp.). We took the equilibrium concentration of

defects [60] to convert our effective diffusivity into equilibrium diffusivity. In Figure

4.6 we plot the equilibrium diffusivity as obtained from (a) MD simulations [60],(b)

our proposed approach, and (c) experimental measurements [61] that include contri-

butions from interstitial migrations also and hence are only slightly higher than both

ours and MD values. We obtain around 5 orders of magnitude boost, with similar

speed up factors for system sizes up to 30000 atoms.
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Figure 4.6: Diffusivity at various temperatures. (a) Straight lines denote Mendelev
et al.’s [60] MD calculations. These are valid only until 700 K. (b) Asterisks denote
diffusivity measurements per our approach. (c) The dashed line shows experimental
measurements [61] valid between 1000 and 1200 K.
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4.6.2 Compression tests on nanopillars under low strain-rates:

Are correct deformation mechanisms predicted?

For our second problem (see Figure 4.7), we looked at deformation behavior of Au

nanopillars. With advent of excellent in situ TEM and HRTEM tools, there are

many elegant experiments on sub-10-nm sized crystals [62–64]. Deformation in such

small sizes is controlled by dislocation nucleation, and has been phenomenologically

predicted [65] and experimentally found [62–64] to have small activation volumes and

strong strain-rate sensitivity. However there is no direct MD based confirmation of

this strong strain-rate sensitivity due to inability of MD to reach strain rates lower

than 107/sec.

Using our method we were able to reach 103/sec strain-rate regime with only

around 48 hours of computer time. We could also obtain several correct qualitative

and quantitative aspects of the deformation dynamics, without assuming anything

about the nature of deformation. In this section we provide a brief summary of the

key results.

4.6.2.1 Specifications of the system

The system we consider is 2016 Au atoms (cylinder with height 7.4 nm and diameter

2.5 nm) interacting through EAM potential [68]. The biasing parameter α was 1500

eV while the starting V0 value used was -7266 eV(8 eV more than the mean energy at

300K), adjusted every 1000 MD steps to take into account the pressure-volume work

contribution from the stress. The cylinder was initially carved out from perfect FCC

lattice (Figure 4.7(a)). Periodic boundary conditions were imposed only along the

cylinder axis z which is the same as the compression axis 〈001〉. The cylinder was

first equilibrated for 500 ps before beginning the compression carried out by uniformly

re-scaling the z-coordinates of all atoms. The atomic virial stress [69] was used to

obtain the Cauchy stress.
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Figure 4.7: (a) and (b) illustrate simulation cell for stress-strain calculations. Coloring
is as per bond order parameter Q6 [66,67], with blue denoting FCC, and perfect HCP
atoms removed for clarity. Other colors denote non-12 coordinated atoms. (a) Prior
to application of any strain, (b) after yielding (strain = 12%) with strain rate =
103/sec. In (b) the leading partial has nucleated on {111} slip plane leaving behind
the 2-layer thick HCP region denoting an intrinsic stacking fault. Failure is thus
through slip and not twinning, in agreement with HRTEM experiments as shown in
(c) taken from Ref. [62].
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4.6.2.2 Results

In this chapter, 4 different strain rates ε̇ were considered: 5x106/sec, 2.5x106/sec,

5x105/sec and 5x104/sec (we present results for 103/sec strain-rate in Chapter 5).

We present the resulting stress(σ)-strain(ε) plots in Figure 4.8(a). Several conclusions

can be drawn from Figs. 4.7 and 4.8 that prove our algorithm capable of predicting

correct dynamics in complicated systems. The yielding occurs around 10% strain, and

is through slip and not twinning or elastic instabilities: a leading partial nucleates

on a {111} slip plane at lower stresses than a trailing partial. This can be seen in

Figure 4.7(b) where the leading partial nucleated from the surface and left behind a

2-layer thick HCP region which again changes back to FCC after the trailing partial

also nucleates at higher stresses and recombines with the leading partial. Figure

4.7(b) is identical to HRTEM images for 〈001〉 loading of Au nanowires [62]. The

strain rate sensitivity m in the relation σ = σ0ε̇
m (derived by looking at stress at

11% strain) is around 0.14±0.07 (see Figure 4.8(b), while Ref. [64] reports it to be

around 0.11 for 75 nm diameter pillars. The activation volume Ω for the deformation

as calculated through [64] Ω =
√

3kBT∂(lgε̇)/∂σis around 1b3 (b=burgers vector) in

excellent agreement with experiments observations [64,65].

4.7 Summary

To summarize, we have proposed a hybrid deterministic and stochastic approach that

combines the strengths of MC and MD simulations in a unique yet easy to implement

scheme, thus offering boosts of several orders of magnitudes with good system size

scaling. We have applied the method to study lattice diffusion in BCC Fe at low

temperatures and deformation of Au nanopillars at strain rates hitherto unachievable

and found it to work really well in both cases, predicting correct dynamics and ex-

hibiting good scaling with increase in system size from 249 to 2016 atoms. We thus

expect the method to be useful in a variety of situations. In the next chapter we will

introduce more algorithms that build upon the efficiency of the basic idea presented



58

0 0.05 0.1 0.15

−2

−1

0

strain

s
tr

e
s
s
 (

G
P

a
) (a)

11 12 13 14 15

0.8

1

1.2

1.4

log
e

(strainrate (s
−1

))

lo
g

e
(s

tr
e

s
s
(G

P
a

))

 

 

(b)

Figure 4.8: (a)Stress-strain plots for 2.5 nm diameter Au nanopillar at 3 different
strain rates: 2.5x106/sec (open circles), 5x105/sec (asterisks), 5x104/sec (pluses).
The initial stress corresponding to zero-strain is non-zero due to surface effects [69].
(b) log-log plot of stress at 11% strain (relative to surface stress at zero strain) versus
strain rate.
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in this chapter. We then also provide a more detailed application of the method.
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Chapter 5

Realistic time-scale fully atomistic
simulations of surface nucleation of
dislocations in pristine nanopillars

5.1 Motivation

In the previous chapter we proposed a hybrid MC-MD algorithm to achieve real-

istic time-scales while still maintaining fully atomistic resolutions. The algorithm

was validated for vacancy assisted diffusion and for low-strain rate tensile tests. In

this chapter, we address a limitation fundamental to our algorithm as proposed in

the previous chapter and in fact to all related accelerated dynamics algorithms. We

also apply the method to investigate surface nucleation of dislocations in pristine

nanowires. We thus demonstrate that our method is capable of achieving extended

time-scales, while still predicting correct mechanisms involving concerted motion of

several atoms (nucleation of partial stacking fault in this chapter).

Forming a correct picture of dislocation nucleation is central to our understanding

of deformation mechanisms at the nanoscale. The initial discoveries by Uchic and

subsequent work by various groups [63, 64, 70–76] have now established that there is

a marked increase of yield strength as the specimen size decreases, with significant

strain-rate dependence as well. These observations have generally been attributed to

the scarcity of dislocation sources (such as Frank-Read sources) in nano-sized samples,
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and having to nucleate dislocations in a perfect crystal (perfect apart from presence

of surfaces) [77–80]. As such there have been numerous attempts to link simulations

of dislocation nucleation processes to experimentally observed mechanical behavior -

in fact a lot of crucial insight has come from simulations [65,81–87]. Nanoindentation

experiments [88–90], Scanning Electron Microscopy combined with Nanoindentation

[91], and High Resolution Transmission Electron Microscopy (HRTEM) [62] are now

sufficiently advanced for one to hope for a direct match between simulations and

experiments [62, 92–94]. However, the time-scale disparity between experiments and

simulations is a pressing limitation here and that is the concern we address in this

chapter.

5.2 Introduction

5.2.1 Methods for modeling nanomechanics

There are three broad classes of techniques for such simulations, often used in con-

junction with each other and along with approaches such as Transition State Theory:

Classical molecular dynamics, continuum based methods and ab initio techniques. Ab

initio simulations, though they often provide insight into mechanical behavior [95–99],

are still restricted to very small sizes, less than a hundred atoms typically (although

there are several promising attempts at bridging this length-scale gap for ab initio

calculations [100–103]). The achievable time-scales are also typically restricted to less

than a few picoseconds. Continuum based methods are another elegant option capa-

ble of dealing with a variety of length and time scales, though they suffer from not

providing atomic scale resolution and assuming elastic behavior even at dislocation

cores [104–106]. Classical molecular dynamics can be helpful in gaining quantitative

insight into mechanical behavior at various length scales (nanometers to microns or

larger) [69,76,107–110]. MD does not assume much apart from the form of interatomic

interaction, which is typically developed by fitting to first principles or experimental

data. The availability of quality interatomic force-fields [68,69,111,112] and increase
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in computer power has led to a tremendous increase in the popularity of MD over the

last decade.

5.2.2 Time-scale problem

However, most of the interesting dynamics happens only as the system moves from

one energy basin to another through infrequent, rare events. Most of the simulation

time gets spent with the system staying stuck in some energy basin [42]. This behav-

ior, combined with the femtosecond timestep required for total energy conservation,

gives rise to a major limitation of MD: The time-scale problem [40, 113, 114]. Even

with the advent of powerful super-computers, MD simulations are unable to reach

more than a few nanoseconds of time if the system size is more than a few hundred

atoms. Thus while laboratory strain-rates are typically in the range 10−5-103/sec,

with corresponding activation free energies being around 30kBT , MD is unable to

go slower than 107/sec strain-rate, corresponding to free energies of around 5kBT or

lower [65,87,115,116]. One approach to get around this shortcoming is to perform 0

temperature Nudged Elastic Band calculation [16] of the activation free energy and

how it varies with applied stress, and then either assume it to be temperature indepen-

dent, or assume a phenomenological model for its variation with temperature (such as

multiplying it with an empirical temperature dependent scaling factor) [106]. These

approaches can sometimes work well, but as shown by [87, 115] and in this current

work, can sometimes lead to significant inaccuracies in the predictions, such as errors

of several orders of magnitude in the nucleation rate, or even qualitatively incorrect

phase transitions [117].
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5.2.3 Temperature dependence of activation free energies of

dislocation nucleation under realistic loads

It has remained an unsolved problem so far to design and perform fully atomistic simu-

lations that could provide a picture of temperature dependent activation free energies

of dislocation nucleation from surfaces at realistic loads and loading rates. Such a

picture is key to linking experimental results with simulation predictions [87,106,117].

The critical nucleus for surface nucleation can be as small as a few atomic planes,

thus questioning the applicability of continuum methods. As for classical MD, the

time-scale achievable is several orders of magnitude smaller than experiments, thus

limiting MD simulations to regimes of extremely high nucleation rates. With our

recently proposed hybrid MC-MD method that allows us to achieve extended time-

scales while still maintaining atomistic resolution, we are able to study the temper-

ature dependence of activation parameters for surface nucleation of dislocations in

pristine nanowires and obtain several significant results in an activation regime actu-

ally achievable in laboratory experiments. The specific problem we consider pertains

to several nano-indentation experiments where it was found that even if the applied

stress on a sample is in the elastic regime, yielding could occur after a certain statis-

tically distributed waiting time [118–120]. We perform fully atomistic simulations of

this time-dependent incipient plasticity behavior in gold nanowires, reaching hundreds

of milliseconds time-scales for several thousand atoms. After collecting statistics for

various temperatures and applied stresses, we then derive the full picture of stress

and temperature dependence of the activation free energy.

In this Chapter we apply our algorithm from Chapter 4 to study in detail the

problem of dislocation nucleation under realistic driving forces. We also propose a

new adiabatic switching technique that significantly reduces the number of input pa-

rameters in our hybrid MC-MD approach and eliminates some of the fundamental

limitations of our earlier implementation (that were shared by related algorithms [41]).

The algorithms employed here make it possible to achieve linear scaling in efficiency
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of estimating the accelerated time as the number of parallel processors employed is

increased. We describe our algorithm and its implementation in sufficient detail for

researchers to be able to use it for their problem of interest, and hope that it will be

found helpful for modeling a variety of mechanical behavior problems.

5.3 Details of calculations

5.3.1 Choice of interatomic potential

There are several good potentials available for modeling mechanical behavior of

gold [68, 111, 121, 122]. The embedded atom method potential proposed in Ref. [68]

gives very realistic values for the surface energy and the stacking fault energy [69]:

The stacking fault energy from the potential by [68] is 42 mJ/m2 while the exper-

imental value for it is in the range 32-46 mJ/m2. Since the current chapter deals

with nucleation of dislocations from surfaces, we choose the Grochola potential. This

potential was also used and found to perform very well in a recently published joint

computational and experimental work studying dislocation behavior in sub-10nm gold

nanowires [62]. Ref. [69] provide a critical comparison of this potential with other

available potentials for various physical properties relevant to the current work.

5.3.2 Hybrid stochastic and deterministic technique for achiev-

ing realistic time-scales

5.3.2.1 Summary of ideas

In Chapter 4 we proposed using a combination of MD and MC techniques for achiev-

ing long time scales [116]. Our approach is built upon minimizing the MD time spent

in low-lying energy basins, and instead using 2 kinds of MC simulations. One (a)

seeks to properly thermalize the system between infrequent events, thereby minimiz-

ing artificial correlations, and the other (b) provides independent control over the
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accuracy of the time-scale correction. When the potential energy V (x) of the system

(where x is a point in the 3-N dimensional configuration space for a system with N

particles) is above a certain V0, the system evolves as per regular MD (see Figure 4.4).

This high-energy region of the phase space is the one containing the interesting but

infrequent events. When the system potential energy goes below V0, we allow MD to

continue until the system has lost memory of how it entered this well (defined as all

points x such that V (x) ≤ V0). In Chapter 4 we proposed a simple and appropriate

criterion to check for this memory loss: When the energy reaches the system’s mean

energy at that temperature .

We also need to estimate the expected value of the time the system would have

spent in the energy well W, which can be calculated as the reciprocal of the flux

exiting the well:

tW = lim
w→0

(〈 v
w

1(x ∈ Sw)〉)−1 (5.1)

We discussed details of the terms in the above equation in Chapter 4.

Since Eq. (5.1) involves an average, it can be approximated using MC simulations.

We make use of the system’s ergodicity, replacing the time average (that would require

us to wait for long times for it to converge) by an ensemble average. Thus in parallel

to MC a, we launch several instances (as many as number of available processors) of a

second kind of MC simulation, called MC b, to estimate the time-scale correction. A

most straightforward implementation of this still won’t be as effective in estimating

the average in Eq. (5.1) because the shell Sw would be visited very rarely. Thus,

to improve the efficiency in estimating Eq. (5.1), we proposed in Chapter 4 using

a biased potential V ∗(x), which is the same as the true potential V (x) in the high-

energy regions but lifted up in the energy basins [40, 41]. Several lifting (or biasing)

schemes are available for use in this [40]. A simple importance sampling expression

(as detailed in Chapter 4) can thus give us the following time-correction:
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tW = lim
w→0

〈e−β(V (x)−V ∗(x))〉∗

〈 v
w
e−β(V (x)−V ∗(x))1(x ∈ Sw)〉∗

(5.2)

where 〈· · · 〉∗ denote expectations taken under a density proportional to e−βV ∗(x),

in which β is 1/(kBT ).

This approach works well, but there is a fundamental trade-off that limits its

usefulness. Lifting the biased potential more and more leads to the energy shell Sw

being visited more frequently and should lead to greater computational efficiency in

estimating Eq. (5.1). However a compensating effect leads to a decrease in efficiency

beyond a certain amount of biasing. This is because increased biasing of the po-

tential leads to noisier statistical averaging of the time in Eqs.(5.1) and (5.2) - as

biasing increases, (V (x) − V ∗(x)) becomes a large number causing e−β(V (x)−V ∗(x)) to

dramatically increase. This point has been discussed in detail in [59,115,116].

5.3.2.2 Adiabatic switching technique

We now propose a technique that bears some resemblance to adiabatic switching

methods that helps us deal with the trade-off discussed above, and also eliminates

the need for picking a particular biasing scheme. The motivation here is to avoid

the statistical noise in Eq. (5.2) that arises as the biased potential V ∗(x) becomes

increasingly different from the true potential V (x). To avoid this noise in sampling,

the system is continuously, adiabatically switched from V (x) (the true potential) to

V0 (a flat potential within the well, identical to the potential used in MC simulation

a for thermalization). We now formally derive the method.

Let V̂ (x, α) smoothly interpolate between V̂ (x, 0) ≡ V (x) and V̂ (x, 1) ≡ V0.

Then we can express the ensemble average in Eq. (5.1) as below (working in terms
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of rate = 1/time):

rate = lim
w→0

∫
v̄
w

1 (x ∈ Sw) e−βV̂ (x,0)dx∫
e−βV̂ (x,0)dx

= lim
w→0

∫
v̄
w

1 (x ∈ Sw) e−β(V̂ (x,0)−V̂ (x,1))e−βV̂ (x,1)dx∫
e−βV̂ (x,1)dx

(∫
e−βV̂ (x,1)dx∫
e−βV̂ (x,0)dx

)

≡ lim
w→0

〈
v̄1 (x ∈ Sw)

w
e−β(V̂ (x,0)−V̂ (x,1))

〉
1

R (5.3)

where dx denotes a differential volume in 3-N dimensional configuration space for N

particles, the integration being performed over entire configuration space within the

well W and the expected value 〈· · · 〉α in Eq. (5.3) is defined by

〈· · · 〉α =

∫
(· · · ) e−βV̂ (x,α)dx∫
e−βV̂ (x,α)dx

(5.4)

Below we define the term R in Eq. (5.3) and re-express it in a computationally

tractable form:

R =

∫
e−βV̂ (x,1)dx∫
e−βV̂ (x,0)dx

= exp

(
ln

∫
e−βV̂ (x,1)dx− ln

∫
e−βV̂ (x,0)dx

)
= exp

(∫ 1

0

(
∂

∂α
ln

∫
e−βV̂ (x,α)dx

)
dα

)
= exp

(
−β
∫ 1

0

∫ ∂V̂ (x,α)
∂α

e−βV̂ (x,α)dx∫
e−βV̂ (x,α)dx

dα

)

= exp

(
−β
∫ 1

0

〈
∂V̂ (x, α)

∂α

〉
α

dα

)
(5.5)

With this we can now write the rate in Eq. (5.3) as

rate = lim
w→0

v̄

〈
1 (x ∈ Sw)

w
e−β(V̂ (x,0)−V̂ (x,1))

〉
1

exp

(
−β
∫ 1

0

〈
∂V̂ (x, α)

∂α

〉
α

dα

)
(5.6)

We now make a few observations regarding the above expression. It involves 3
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Figure 5.1: (a) The 2nd part in Eq. (5.6), i.e.
〈

1(x∈Sw)
w

e−β(V̂ (x,0)−V̂ (x,1))
〉

1
, can be

evaluated in a very small number of MC passes as explained in the text. (b) Calcu-
lating limw→0

〈
1(x∈Sw)

w
e−β(V̂ (x,0)−V̂ (x,1))

〉
1
using linear extrapolation. Calculations are

for a Au nanowire with 2016 atoms, 2.5nm in diameter and 7.5nm in height, at 300
K.
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independent parts. The first is v̄, which we already know as
√
kBT/2πm for iden-

tical atoms. We could keep v̄ inside the ensemble average to cover the general case

of unequal masses in which v̄ may depend on x. The second part in Eq. (5.6)

is limw→0

〈
1(x∈Sw)

w
e−β(V̂ (x,0)−V̂ (x,1))

〉
1
. This is non-0 only when x ∈ Sw, and when-

ever it is non-0, the difference V̂ (x, 0) − V̂ (x, 1) is a very small number (see Eq.

(4.2))). Since this average is calculated with a flat potential V̂ (x, 1), the boundary

x ∈ Sw is visited frequently, and thus the second term in Eq. (5.6) can be eval-

uated very quickly - in a few MC passes as shown in Figure 5.1(a). We calculate

M ≡
〈

1(x∈Sw)
w

e−β(V̂ (x,0)−V̂ (x,1))
〉

1
for a few values of w, and simple linear extrapola-

tion gives the desired limit, as shown in Figure 5.1(b). The third part in Eq. (5.6) is

exp
(
−β
∫ 1

0

〈
∂V̂ (x,α)
∂α

〉
α
dα
)
. Here, the average 〈∂V̂ (x,α)

∂α
〉α does not contain any expo-

nentials, and thus no terms that could blow-up and lead to noisy estimates and slow

convergence.

We now need to pick up a switching scheme for V̂ (x, α), i.e. an interpolation

scheme between V̂ (x, 0) and V̂ (x, 1). We picked the simplest scheme - a linear switch-

ing model - and found it to work very well:

V̂ (x, α) = (1− α)V (x) + αV0 (5.7)

With this, Eq. (5.6) for the rate of escaping energy basins bounded by V (x) < V0

becomes

rate = lim
w→0

v̄

〈
1 (x ∈ Sw)

w
e−β(V̂ (x,0)−V̂ (x,1))

〉
1

exp

(
β

∫ 1

0

〈V (x)− V0〉αdα
)

(5.8)

Thus to summarize till this point, to calculate Eq. (5.8):

• we first do a quick MC simulation using a flat potential to get the quantity

limw→0

〈
1(x∈Sw)

w
e−β(V̂ (x,0)−V̂ (x,1))

〉
1
, as shown in Figure 5.1.

• We then vary α adiabatically during the simulation, going from α = 0 to α = 1.

We perform a series of MC simulations, with the Hamiltonian of the system
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evolving as per Eq. (5.7) as the simulation time progresses.

A typical evaluation of Eq. (5.8) done as per this scheme is shown in Figure 5.2,

where we show the change in the following two as a function of α:

(a)
(
−β
∫ 1

0

〈
∂V̂ (x,α)
∂α

〉
α
dα
)
, related to the 3rd part in Eq. (5.8), and

(b) the expected value of the time spent in the energy well W.

It may be useful to re-emphasize one point: The reason we do not immediately

start MC as soon as V (x) falls below V0 is because the rate expression (Eq. (5.1))

is only valid conditional on the system being initialized at a Boltzmann-distributed

random position within the well. If we start MC at the boundary of the well, this

assumption is violated. Although it may seem that, by running MD within the well

for some time before calculating the escape rate, we slightly overestimate the time

spent in the well, this is not the case. The distribution of escape time from the well

is independent of the time already spent in the well (since it follows an exponential

distribution). Another way to see that there is no time over-counting is to observe

that, during this MD trajectory in the well, there is also a small probability that the

system escapes the well, so we are not artificially constraining the system to remain

in the well for a longer time. The above scheme is a new, yet formally correct, way to

deal with so-called re-crossing events that typically affect the accuracy of transition-

theory based estimates of escape times [40,46].

5.3.3 Simulation setup and compression testing

We first report the stress-strain plots for 〈001〉 compression of pristine cylindrical Au

nanowires. The cylinder was initially carved out from perfect FCC lattice and before

compression, it was 2.5nm in diameter and 7.5nm in height, comprising 2016 atoms

(see Figure 5.3) with periodic boundary conditions imposed along all three directions.

The cylinder axis z is also the compression axis 〈001〉. Thus all sites along the length

of the wire are now equivalent sites for nucleation. For the other two directions, we

do not strictly need periodic boundary conditions, but we nevertheless apply it for
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Figure 5.2: (a) Change in
(
−β
∫ 1

0

〈
∂V̂ (x,α)
∂α

〉
α
dα
)
as a function of α as the simulation

progresses (see Eq. (5.6)). (b) Expected value of the time spent in the energy wellW.
Calculations are for a Au nanowire with 2016 atoms, 2.5nm in diameter and 7.5nm
in height, at 300 K.
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Figure 5.3: Perspective view of the nanopillar (a) before application of strain and
(b) after application of strain when partial dislocation has nucleated. Coloring is as
per Common Neighbor Analysis [123], where green denotes FCC, red denotes HCP.
In (b), the surface atoms (identified as atoms that are neither FCC nor HCP) have
been removed to bring the slip plane into clarity. Visualization was carried using the
package OVITO [124].

computational ease. The dimensions of the supercell in the x and y directions are

both around 75Å, which is much larger than the range of the EAM potential employed

(5.5Å) [68]. As such there is no artifact from the pillar interacting with its images in

these two directions. The cylinder was first equilibrated for 500 ps before beginning

the compression, which was carried out by uniformly re-scaling the z-coordinates of

all atoms. The atomic virial stress was used to obtain the Cauchy stress [69]. The

stress at zero nominal strain is non-zero and tensile, and arises from the surface stress

(see [69,106] for a more detailed explanation). We adjust for this, and as such Figure

5.4 provides the stress span, i.e. the stress at a strain ε relative to the stress at 0

strain. We present the resulting stress(σ) versus nominal strain(ε) plots for 2 different

strain rates ε̇: 5x107/sec, a strain rate value used in current day state-of-the-art MD

simulations, and 103/sec. To the best of our knowledge, the latter is a strain rate

several orders of magnitude slower than any reported calculation for a nanowire, and

is a value that can actually be achieved in laboratory experiments on nanowires.
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Figure 5.4: The stress versus nominal strain curve of Au nanowire under 〈001〉 com-
pression (with inverted sign of stress). The data represents stress relative to surface
stress at 0 strain as explained in text. The stress-strain plots are shown for two
different strain rates. The green line denotes our calculations for a strain rate of
5x107/sec, which is a commonly used strain rate in current-day MD. The red line
shows our calculations for a strain rate of 103/sec.
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accordingly in V0 indicates that a nucleation event has occurred.
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For the strain rate of 5x107/sec, it was sufficient to perform ordinary NVT MD

simulations using a time step of 2x10−15 sec and a Langevin thermostat with a cou-

pling constant 1x10−11/sec. For the strain rate of 103/sec which can not be achieved

through plain MD, we used our hybrid MC-MD algorithm as described in the preced-

ing section and in [116]. The time-step and thermostat were same as for the strain

rate of 5x107/sec. All the calculations were performed on our in-house parallel MD

package. Starting value of V0 was picked such that it gave a rough tW of around 1

nanosecond (see table 5.1). This was a value high enough for our current application.

As the temperature/driving force (stress or strain) decrease, one would pick a higher

V0 that would accordingly lead to a larger tW. During compression as work is being

performed on the system, there is a change in the potential energy, and as such the

value of V0 was updated every few thousand MD steps by an amount equaling the

change in the mean potential energy over these many MD steps. A sharp drop in the

potential energy indicates that a (partial) dislocation nucleation event has occurred

in the system (see Figure 5.5). Table 5.1 provides values of the various parameters

used in the compression testing experiment.

For both of these strain rates, the yielding is through slip and not twinning or

elastic instabilities: a leading Shockley partial nucleates on a {111} slip plane at lower

stresses than a trailing partial. This can be seen in Figure 5.3(b) where the leading

partial nucleated from the surface and left behind a 2-layer thick HCP region. The

trailing and leading partials are in agreement with what one expects by calculating

relative Schmid factors: for 〈001〉 compression, (a/6)[112] and (a/6)[211] were found

to be the leading and trailing partials corresponding to Schmid factors of 0.47 and

0.24 respectively [106].

Figure 5.4 brings out the perils of using unrealistic strain-rate MD calculations

as a tool for insight and discovery. We find that though the failure mechanism stays

same for both the strain-rates, there is a significant difference in the strain at which

slip occurs. At the high strain-rate of 5x107/sec, the wire withstands strain of as high
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Table 5.1: Starting value of V0 and eventually expected value of tW, for unstrained
samples at various temperatures. For strained samples, the change in potential energy
during the process of straining was calculated, and V0 was changed by this amount.
For the temperatures between 350K to 425 K, ordinary MD was sufficient for the
stress range considered in this work and hence the parameters below are only for
temperatures till 325 K.

T(K) V0 (eV) tW (ps)
275 -7275.00 1400
300 -7267.75 1700
325 -7260.25 30

as almost 10% before the first partial dislocation is emitted (corresponding to a stress

span of around 2.6 GPa). However at the more realistic strain rate of 103/sec, the

partial is emitted around 8.6% only (corresponding to a stress span of around 2.35

GPa). For both the strain-rates, there is a distribution of the strain at which slip

occurs and the values in 5.3) denote mean values.

This strong difference is in accordance with the strain-rate sensitivity in true

nanowires (i.e. wires less than 100nm in diameter) as predicted by [65] and observed

in real experiments on small nanowires by [64]. To understand and motivate this

dependence, we look at the rate of nucleation of leading partial dislocation, as given

by Eq. (5.9) below [65]:

R = Nν(ε).exp(
−F (ε, T )

kBT
) (5.9)

Here F is the Helmholtz free energy of activation as a function of temperature T

and strain ε (since our experimental setup is a constant strain situation), kBT is the

thermal energy, N is the number of equivalent surface nucleation sites and ν(ε) is an

athermal strain-dependent attempt frequency. Eq. (5.9) thus has two contributions:

An athermal part related to the elastic limit (which we defined as stress for nucleation

of the first dislocation) of the surface at which nucleation would occur spontaneously

without any thermal contributions, and an activated part that takes into account the

role of thermal fluctuations in causing nucleation to happen even below the athermal
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strain (which is the minimum strain at which nucleation would occur at absolute zero

temperature).

5.3.4 Activation parameters

5.3.4.1 Activation volume

The activation volume Ω is defined as the derivative of the activation free energy

with respect to stress, i.e. Ω(σ, T ) ≡ −(∂F
∂σ

)
T
. As reported through experimental

measurements as well as TST based calculations, the activation volume for surface

nucleation remains in a characteristic range of few b3 (where b is the burgers vector).

In comparison, for a typical bulk dislocation source the activation volume is upwards

of 100b3 and can be as high as 1000b3 [64]. The activation volume in turn determines

whether a process will be strain-rate sensitive or insensitive. This can be reasoned

as follows. Assuming a simple case where the activation energy depends linearly on

stress (see [65] for detailed derivation), one can show that the most probable estimate

of the nucleation stress is given by

σ = σathermal −
kBT

Ω
ln
kBTNν

Eε̇Ω
(5.10)

where E is the Young’s modulus and σathermal is the athermal nucleation stress

causing instantaneous dislocation nucleation. As can be seen in Eq. (5.10), a high

activation volume (as in the case of bulk dislocation source) masks out the effect of

strain-rate. As the activation volume decreases towards values relevant for surface

nucleation, the effect of strain rate should become very significant. Figure 5.4 pro-

vides the first direct MD based evidence of this.
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Figure 5.6: Strain and temperature dependence of the dislocation nucleation rate
R(ε, T ), converted here to R(σ, T ) by assuming a linear dependence of stress on
strain. Each data point was calculated by averaging over 16 samples. The size of the
individual markers corresponds to the 90% confidence interval in the measurement.

5.3.4.2 Activation free energy

We now report detailed calculations of the activation terms in Eq. (5.9). To do

so, we performed the compression testing at a strain-rate of 103/sec at 7 different

temperatures from 275 K to 425 K at intervals of 25 K. These compression tests

were stopped at various values of the nominal strain from 8% to 8.5% (the athermal

strain at 0 Kelvin for nanowire of these dimensions was found to be around 13.5%).

The wisdom behind choosing this particular range of strain will be clear soon when

we provide estimates of the nucleation rate. For each of these strains, the wire is

still in the elastic regime. As described in the introduction, we are interested in

collecting statistics of the waiting time before nucleation of the first dislocation as

the nanowire is held at this strain [118, 119]. The structures from the compression

tests stopped at varying strains served as samples for our waiting time statistics tests.

For each of these structures (corresponding to a combination of imposed strain
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and temperature), 16 different runs were carried out where the nanowire was held at

a particular strain and temperature. Each of the runs was carried out until nucleation

of the first dislocation, marked by appearance of a 2-layer thick HCP region, as well

as sudden dips in the potential energy and the stress (see Figure 5.5). The average

rate of nucleation was then calculated as

R(ε, T ) =
1

τaverage
(5.11)

where τaverage is the time for nucleation averaged over the 16 samples.

Figure 5.6 provides the value for nucleation rate for various strain and tempera-

ture combinations. In this figure we have converted strain to stress by assuming a

roughly constant Young’s Modulus of around 26 GPa as we obtained in Figure 5.4 for

〈001〉 compression of gold nanowire, in order to facilitate comparison with published

literature, even though in Figure 5.4 we see a softening in the tangent modulus as the

strain increases. This plot clarifies our choice of imposed strains - with 8% strain (or

2.08 GPa stress), the nucleation rate is already slower than one every few milliseconds

at 275K. The other end of 8.5% was picked because as illustrated in Figure 5.4, the

wire slips at high temperatures around 8.6%. The lengthiest of these calculations

took around a few CPU days. With a slightly more aggressive choice of V0, it should

be possible to reach the one per second or still slower regime.

For each strain ε, we picked a sufficiently high value of reference temperature

T0 such that the rate R(ε, T0) did not any longer depend on the choice of temper-

ature. We can then make the approximation that F (ε, T ) � F (ε, T0), and express

Eq. (5.9) as Eq. (5.12) below, to factor out the athermal frequency term. Given

this approximation, the entropy of activation we calculate subsequently is effectively

measured relative to the high-temperature limit (since the activation entropy at high

temperature could still be nonzero).
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F (ε, T ) ≈ −kBT ln(
R(ε, T )

R(ε, T0)
) (5.12)

From Eq. (5.12) we directly calculate the Activation free energy F(ε, T ) (Figure

5.7). Our values are in the rough benchmark of the 0.3 eV value found in Copper

nano-indentation experiments where one expects homogeneous nucleation to be the

mechanism at work [89]. Figure 5.7 also provides the only published values of ac-

tivation free energy at 0 Kelvin temperature for Au nanowires [106]. Ref. [106]’s

calculations are for a 5nm diameter nanowire (thus 4 times as many atoms as in our

nanowire) using a chain of states methodology at 0 Kelvin. A comparison between

our and their free energies is thus not really justified due to differing system sizes -

this can be understood by looking at Eq. (5.10). In a larger sample the number of

nucleation sites (surface atoms) N is higher. As such the nucleation stress goes down,

increasing the probability of nucleation for the same driving force (stress/strain and

temperature). This in turn leads to a lower free energy of activation. Some qualitative

differences between these two calculations may will also arise because of difference

in interatomic potentials. Even though a direct comparison between Ref. [106]’s and

our results is not justified due to these reasons, we still provide their results in Figure

5.7) since viewed together our results give a full picture of how the activation free

energy varies with stress, temperature and specimen size.

Our calculations demonstrate how strongly and rather nonlinearly the free energy

of activation depends on the temperature. It has been a common practice, mostly

arising from lack of methods capable of providing high temperature activation energy

barriers calculations, to assume the same temperature dependence for activation free

energy across temperatures. Many workers have found direct and indirect evidence

suggesting this is incorrect for studying deformation in materials. For example, Ref.

[117] reported that in Al, a temperature dependent activation barrier can lead to a

transition from twinning to full dislocation emission back to twinning with increasing

temperature. We believe our algorithm should now provide researchers with a tool to
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calculate such barriers at various temperatures under realistic loading rates for the

first time.

5.3.4.3 Activation entropy

From the variation of activation free energy with stress and temperature in Figure

5.7, we calculated the stress dependent activation entropy. To obtain this quantity,

we do a linear fit between the activation energy and the temperature at each stress

value. The entropy is then the slope of this linear fit (with a negative sign), reported

in Figure 5.8. Such a calculation has rarely been performed for dislocation nucleation

or for other problems - the two instances of such calculations we could find were

Ref. [115]’s recent adaptive strain-boost hyperdynamics (ASBHD) where the authors

calculate the stress dependent entropy for corner nucleation in Copper nanowires,

and Ref. [87]’s Umbrella Sampling based calculations (in Copper as well). We find

that the entropy decreases as the driving force (stress or strain) increases, and is

typically in the range 20-30kB. This is roughly in the benchmark of values reported

through previous simulations. We avoid making detailed comparisons here between

our values and these previously published values, given that we differ in elements

(gold versus copper), geometries (circular versus square with sharp cross-sections),

size and ensemble (constant stress versus constant strain, see Ref. [87]).

5.4 Discussion

5.4.1 Key results

5.4.1.1 Tensile tests

Our compressive tests on Au nanopillars show that the mechanism of deformation

stays same for strain rates from 108/s to 102/s, i.e., slip through nucleation of a

leading Shockley partial dislocation on a {111} slip plane. However, the elastic limit

(defined as stress for nucleation of the first dislocation) changes significantly as the

strain-rate is changed. This is in qualitative agreement with the strain-rate depen-
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Figure 5.8: Activation entropy as a function of stress for surface nucleation of dislo-
cations.

dence in nanopillars as observed in experiments [64] and also predicted by the phe-

nomenological models of [65]. We believe ours is the first fully atomistic calculation

reported across 6 orders of magnitudes in the strain-rate and reaching a realistic strain

rate of 102/s.

5.4.1.2 Activation entropy and free energy

The origin of activation entropy in dislocation nucleation, and related to it the rapid

drop of activation free energy with temperature, can be attributed to thermal expan-

sion in the material [87]. As the temperature increases the expansion causes atoms

to move away from each other making it easier for planes to shear and thus reduc-

ing the free energy barrier for nucleation. Our high activation entropy values show

that not considering the temperature dependence of the activation energy can lead

to nucleation rate being erroneous by as much as 8-12 orders of magnitude. This has

been emphasized in the very recent literature by [87]. We also found that the entropy

decreases as the driving force for nucleation (stress or strain) increases, leading to a

significant and nonlinear dependence of the activation free energy on driving force
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and temperature. Our method now provides an easy-to-implement way to calculate

this dependence under realistic driving forces for any general sample geometry.

5.4.2 Comparison of our algorithm with other algorithms for

extended time-scales

It is also instructive to compare our algorithm with other realistic time-scale algo-

rithms for studying dislocation nucleation. Two algorithms that have been recently

used to model temperature-dependence of the dislocation nucleation process include

the Umbrella Sampling method (proposed in Ref. [87]) and the Adaptive Strain Boost

Hyperdynamics (ASBHD) method (proposed in Ref. [115]). Both are excellent meth-

ods, but have their respective limitations. The former needs to define an order param-

eter (or a reaction coordinate) for the system, in terms of which the biasing potential

is then imposed on a certain sub-set of atoms. Picking such an order parameter might

be a non-trivial task in complicated sample geometries and can have its pitfalls [55].

Also, while this method is excellent for computing free energy barriers - it does not

perform any actual dynamics. ASBHD does away with the need to pick up an or-

der parameter. However the speed-up in ASBHD relative to ordinary MD becomes

significant (i.e. 4-5 orders of magnitude or more) only as the temperature of the

system falls below 100K or so. The method is a local boost scheme, thus specific

atoms are lifted out of the low-lying energy basins, making them preferential sites for

nucleation to happen. Such a local boost scheme works well for specific geometries

(such as a square nano-rod with sharp corners), but might not be very well suited

for studying more homogeneous nucleation as we considered in the current chapter.

Since our method does not require the specification of the degrees of freedom of in-

terest (which is crucial when the mechanisms are complex and involve the movement

of many atoms), it is well suited for studying homogeneous nucleation.

By providing a time-scale correction independent to the main simulation, our
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algorithm also provides the ability to implement time-dependent boundary conditions

(relevant to a tensile test for e.g.) and in general time-dependent forces. To do this,

we can launch a set of adiabatic switching jobs prior to the main simulation, that give

a good starting value for the quantity tW and thus for the boosted time-scale. This

is to be contrasted with ASBHD [115] and Hyperdynamics methods in general [41]

where time-scale estimates remain noisy and non-converged for long simulation times,

especially as one tries to increase the speed-up relative to ordinary MD [59,116].

5.5 Conclusions

In this and the previous chapters we have derived and demonstrated a hybrid MC-MD

algorithm that can be used to achieve realistic time-scales in fully atomistic simula-

tions of materials while still predicting correct deformation physics. The algorithm is

especially designed to be suited for massive parallelization. By using this algorithm,

we obtained compression testing stress-strain plots at strain rates several orders of

magnitude lower than ever previously reported for MD simulations. We showed that

high strain-rates in simulations, which have been common due to lack of methods

capable of implementing low strain-rates, can lead to a significant error in the elastic

limit of the material. We also derived the full stress and temperature dependence of

the activation free energy for surface nucleation of dislocations in gold nanowires. The

algorithm was described in sufficient detail to be useful to the mechanics community

for different applications.
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Chapter 6

Vacancy diffusion in tantalum

6.1 Introduction

This chapter builds up ground for future work involving multiple vacancies and their

collective dynamics in BCC tantalum metal, under conditions of strain and tempera-

ture. As these vacancies diffuse through the lattice, they agglomerate to form voids,

which can continue to grow and eventually result in fracture. Often the time-scales

for such migration processes are in the seconds to still longer time regime, thus pro-

hibiting the direct application of MD simulations. The traditional approach of dealing

with such problems involves severe approximations such as harmonic transition state

theory (HTST), which, as we showed in the case of surface nucleation of dislocations

in the previous chapter, can be rather misleading.

In this chapter, we also scrutinize the robustness of our algorithm with respect

to the only free parameter in it: The energy lid V0 which denotes the exit point

of the thermalization Monte Carlo (see Figure 4.4 in Chapter 4). Vacancy diffusion

in tantalum is has a relatively low barrier (around 1eV as per experiments [125]).

One would thus expect this to be a source of error in several current day accelerated

dynamics algorithms. We demonstrate that our algorithm as proposed in this thesis

performs well even for such a (relatively) low barrier. The algorithm has other inter-

nal parameters too, however they are well-determined as explained in the previous

chapters and do not require tinkering with on part of the algorithm’s user.
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We calculate the diffusion rate for vacancy diffusion in tantalum for different val-

ues of the parameter V0 at different temperatures, and it is verified that the diffusion

constant is rather insensitive to the exact choice of V0, thereby minimizing the need

for clever human intervention in getting the algorithm to work.

We study as a starting point the case of 1 vacancy in a periodic supercell. We

calculate the diffusion rates for this using

• brute-force MD at high temperatures (upwards of 1500K)

• Zero temperature saddle point search calculations combined with HTST. This

is the standard way to access diffusion rates when the time-scales are excruci-

atingly slow for fully atomistic MD simulations

• the accelerated dynamics approach proposed in this thesis which allows us to

reach milliseconds or longer for few thousand atoms

We compare the 3 sets of calculations with each other, and critically ascertain the

applicability and performance of HTST across the temperatures.

6.2 Harmonic transition state theory for vacancy

migration

6.2.1 Migration energy and pathway calculation

According to TST (not necessarily harmonic TST), the rate constant for escape from

a state A is given by Equation 6.1 [56]

ν =
1

2
〈δ(x− q)|ẋ|〉A (6.1)

Here x is the reaction coordinate, x = q gives the location of the TST dividing

surface bounding state A, and ẋ is the time-derivative of x. If one assumes that the
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potential energies near the energy basin minima and near the saddle point are well

described by a harmonic (i.e. second order) expansion of the energy, then the TST

rate as in the above equation becomes the flux through the saddle plane and is given

by

ν = νo exp

(
−E
kBT

)
(6.2)

where E is the energy barrier associated with the process, T is the temperature and

νo is the frequency prefactor. For vacancy migration, the energy barrier is the bar-

rier associated with the motion of a vacancy from one lattice site to the next. This

can be computed, at 0K, using a variety of methods to determine saddle points in N

dimensional space including the nudged elastic band [16] and the string method [126].

For the problem of vacancy migration in tantalum, as modeled with the Ackland-

Thetford-Finnis-Sinclair (ATFS) potential [127], the vacancy formation energy and

migration are shown in Figure 6.1 as a function of the number of atoms as calculated

using the software package LAMMPS. From this figure, we can see that the vacancy

formation energy and migration energy are converged within reasonable values at

∼ 250 atoms. This gives numerically a vacancy formation energy of 2.91 eV and a

migration energy of 1.13 eV, in fair agreement with experimental measurements [125].

The number of atoms is critical because it determines if νo can easily be evaluated

using harmonic transition state theory. Using N dimensional harmonic transition

state theory, the frequency prefactor νo can be determined by analyzing the modes

of the equilibrium and transition state as:

νo =
ΠN
i=1ν

ES
i

ΠN−1
i=1 ν

TS
i

(6.3)

where νESi denotes the frequencies of the system in the equilibrium state and νTSi

represent the frequencies in the transition state. The reduced product over the tran-
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Figure 6.1: The vacancy formation energy and migration energy as a function of the
number of atoms in the system.

sition state effectively removes the lowest frequency (theoretically zero or negative)

of the transition state.

For the migration of vacancies as modeled by the ATFS potential, the migration

barrier has a unusual shape as shown in Figure 6.2. This transition state pathway

shows a very shallow minima midway through the energy pathway. To evaluate νo,

we take the transition state as the local maxima. It is worth noting that, however,

the prefactor determined in this way is not particularly sensitive to the exact location

of the maxima as using a nearby state produced similar results to within 5%.

To determine the frequency prefactor νo, all the frequencies are determined for

both the equilibrium and transition state, latter being as identified in the saddle

state search. This is done by computing the Hessian matrix of each system of atoms.
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Figure 6.2: The vacancy migration energy as a function of the replica number for
tantalum as modeled by the ATFS potential.

The Hessian matrix is a tangent stiffness matrix, i.e.

Hij =
∂V

∂xi∂xj
(6.4)

where i and j run over all the degrees of freedom of the system, which is 3 × n

where n is the number of atoms and V is the potential energy of the system. The

frequencies are computed from solving the eigenvalue problem associated with the

free vibration of the system. This means the square of the frequencies of the system

can be determined from the eigenvalues of the system

(H−mI) · v = 0 (6.5)

where m are the atomic masses and I is the N ×N identity matrix. However, for the

free vibration problem, one will always end up with the lowest three modes, which

correspond to rigid body translation, having zero frequency and must be automati-



91

cally removed. The frequencies needed, νi, can be determined from the eigenvalues

of the above eigenvalue problem, λi, according to:

νi =
1

2π

√
λi (6.6)

where the factor 2π converts from rad/s to Hz (cycles per second). Practically speak-

ing, the Hessian matrix is determined from numerical differentiation of the potential

energy of the system in which each atom is displaced a very small amount from its

current position in all three directions. For the vacancy migration problem in Ta

using the ATFS potential, we thus find that the frequency νo = 5.25× 109 Hz.

6.2.2 Diffusion constant from HTST

Now that we have calculated all the coefficients in Equation 6.2 (i.e. the frequency

prefactor and the energy barrier), we can derive an expression for the temperature

dependent diffusion constant for vacancy diffusion in BCC materials (see Kinetics of

Materials by Balluffi, Allen and Carter, section 8.2 for related discussion). In general

the diffusion constant is given by Equation (6.7) below:

D =
T〈r2〉

6
(6.7)

where the jump rate T equals 8ν, since each vacancy is surrounded by 8 neighboring

atoms in BCC lattice. ν is the temperature dependent jump frequency we obtained

in previous section. r is the jump distance and is half the body-diagonal in BCC unit

cell. We thus have 〈r2〉 = 3a2/4, a being the lattice parameter. With this we finally

obtain

D = νa2 = ν0a
2exp

− E
kBT (6.8)
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respectively the diffusion constants as per HTST at 1000, 1100 and 1200 Kelvins.

6.3 Diffusion constant using our accelerated dynam-

ics algorithm

6.3.1 Choice of the parameter V0

In order to use the accelerated dynamics algorithm proposed in this thesis, the only

free parameter that needs to be fixed is the value of the energy lid V0 that decides

the switching of the algorithm between MC and MD (see Figure 4.4).

For high speed-ups, we would ideally seek a high V0. But that can lead to incorrect

transition rates, as often we will end up missing low-lying saddle points. A low V0

would exponentially decrease the speed-up that we gain. Another problem that could

arise from low V0 is that the rate of escape from states bounded by V0 would be so

fast, as to break down the rare event hypothesis that is one of the central tenets of

our algorithm.
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Before proceeding with detailed calculations of diffusion constant at various tem-

peratures, we first check at different temperatures as to how sensitive is our algorithm

to the exact choice of V0. 249 Ta atoms (1 vacancy in a 5x5x5 supercell) were con-

sidered, interacting through the ATFS potential [127] in a NVT (constant number,

volume and temperature) ensemble. Langevin thermostat was used here as well, simi-

lar to the case of iron in Chapter 4. Fully periodic boundary conditions were used. At

1000,1100 and 1200 Kelvins, we performed the simulation at 4 V0 values each within

a range of more than 1 eV variation. Figure 6.3 illustrates that the algorithm is fairly

robust with respect to the choice of V0. As V0 is varied by as much as an eV, it can be

seen that the diffusivity remains well within a fraction of an order of magnitude error.

The speed-up in simulation time with relative to ordinary MD is between 5 to 3 or-

ders of magnitude as the parameter V0 is changed. As V0 value is further reduced, the

simulation needs to be run for much longer time to get a converged diffusion constant,

since the speed-up decreases exponentially with decrease in V0. From this figure it

also appears that the robustness further improves with decrease in temperature (the

scatter at 1000K is less than the other two temperatures).

This thus proves that our algorithm can obtain several orders of magnitude speed-

up in simulation while still maintaining a time-scale that is accurate well within an

order of magnitude.

6.3.2 Diffusion constants and critical comparison with HTST

values

We now provide in Figure 6.4 the diffusion constants using (a) our accelerated al-

gorithm, (b) brute-force MD at high temperatures, and (c) HTST across the tem-

peratures. The activation energies through atomistic simulation and HTST are 1.30

(+/- 0.07) eV and 1.13 eV respectively, which are fairly close to each other. We now

do a critical analysis of the differences between HTST diffusion constants and those
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Figure 6.4: Diffusion constant versus inverse temperature using (a) brute force MD
(open circles), (b) accelerated dynamics (filled circles), (c) HTST (black line). The
red line denotes a best fit using Equation 6.2 to the joint MD and accelerated MD
data. 95% confidence interval in the data points is illustrated.

through actual dynamics.

A key assumption in TST or HTST is the existence of a critical transition surface

between two neighboring energy minima (called the reactant and the product), such

that if this surface is crossed, transition from reactant to product always occurs. TST

does not account for cases in which an atom that has crossed the surface from the

reactant side, might come back to the reactant state instead of going to product state.

As per this reasoning, TST would overestimate the actual rate. Given the shallow

nature of the saddle surface as we show in Figure 6.2, an atom could jump back and

forth quite a few times before actually making a transition, while TST would recognize

each of these jumps as a separate transition, and thus TST diffusion constant would

be larger than the actual diffusion constant. This is indeed the case at lower tem-

peratures as can be seen in Figure 6.4, where the TST diffusion constant (black line)

is roughly larger than the (best-fit) diffusion constant from actual dynamics (red line).
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But however, we also find, as shown in Figure 6.4, that at higher temperatures

the TST diffusion constant is slightly LOWER than the actual diffusion constant

(i.e. measured through dynamics). To explain this, we have to take into account an

additional competing effect. At higher temperatures, bounce back recrossings are not

the only factor corrupting the TST values. There is an additional assumption of TST

that now gets violated: As per TST, no two transitions (i.e. not just recrossings but

actual transitions) are correlated. Correlated here means that the second transition

happens before the system has lost memory of the first transition. As the temperature

increases, the probability of two successive and correlated vacancy hops increases.

This in turn affects the diffusion constant. At higher temperatures, a particle that

has just hopped can have enough excess energy to make another quick hop before it

settles down. Since there is no scope for such correlated jumps happening in TST

per formulation, the slope of the TST Arrhenius plot stays less steep than that for

the actual dynamics at higher temperatures. Figure 6.5 follows the averaged squared

displacement in the system as a function of time at 1800 K, and one can clearly see

such correlated hops happening.

6.4 Outlook

In this chapter we have demonstrated the applicability of our algorithm to study va-

cancy diffusion in BCC tantalum. We are currently looking at the problem of more

than 1 vacancy in the system, as to how they interact, what are their migration path-

ways, and eventually what is the vacancy clustering kinetics. We are studying all

these as a function of imposed strain and temperature. Many very interesting ques-

tions can be asked here. To give an example, it would be useful and interesting to

check if the vacancy clustering follows an Ostwald ripening mechanism, wherein large

clusters grow at the expense of smaller ones. Due to the time-scale problem, these

questions have not yet seen any atomistic simulations being applied under realistic

driving forces.



96

0 0.5 1 1.5 2 2.5
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

time (nanoseconds)

<
(∆

x
(t

))
2
>

/6
  

(A
2
)

Figure 6.5: The averaged squared displacement (averaged over particles but not over
time) in 5x5x5 supercell of tantalum with 1 vacancy at 1800 K. One can clearly see
several vacancy hops that are separated only by a few picoseconds.

We also used 0 temperature saddle point calculations combined with HTST to

calculate diffusion constants - a common strategy to model such problems. Such a

saddle point approach is simple and elegant, but only when it works. It requires

one to have an estimate for the initial and final configurations. Guessing the final

configuration can be extremely non-trivial and misleading in complicated microstruc-

tures involving multiple vacancies, dislocations or grain boundaries. Also, similar to

how HTST was found inaccurate at higher temperatures, one would expect it to be

inaccurate when the strain is higher (since strain and temperature both are basically

driving forces).

In contrast to HTST, one would expect our algorithm to only improve in perfor-

mance as the mechanism involved become more concerted (i.e. involving not just one

atom) and arise from the intrinsic anharmonicity of the potential energy surface, thus

further restricting the notion of a saddle surface.
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Chapter 7

Retrospect and prospects

In this thesis we looked at two crucial aspects of atomistic simulations - interatomic

potentials and the time-scale problem. For both we proposed techniques that we be-

lieve extend the capabilities of current day simulations. All algorithms were well val-

idated and applied to different materials specific problems of current interest: Mixed

oxide nuclear fuels, vacancy diffusion at low temperatures in iron and tantalum, and

realistic strain-rate simulations of dislocation nucleation in nanopillars.

7.1 Interatomic potentials

In Chapters 2 and 3, we developed a methodology for generating interatomic po-

tentials that is appropriate for all interatomic separations and energy scales. The

potential we have focused on in this thesis, the nuclear fuel system (U,Pu,Np)O2, is

just one example of a model material in which very relevant materials physics de-

pends on accurate and reliable interactions over many orders of magnitude, and we

have obtained the first complete description that allows for direct simulations of dam-

age cascades due to high-energy radiation effects. The potential has been generated

based on a slight revision of the ZBL universal potential to account for ionic materials

with the intermediate interatomic distances fitted to a broad database of ab initio

structural energies and available experimental data. Transferability of the potential

was also checked by applying it to structures, compositions and configurations not

included in the fitting. In view of these qualities, we expect it to be a very reliable
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potential for studying displacement cascades in (U,Pu,Np)O2. A natural extension

of this work now involves including other minor actinides and fission products in

the fitting database, so that potentials for a yet more general system can be devel-

oped. The potentials from this thesis are now being used by several groups across the

world [128–130].

7.2 Algorithm for realistic time-scales

We developed and validated a hybrid stochastic and deterministic approach that al-

lows us to achieve practical time-scales for at least several thousand atoms. The

method that we develop is inherently parallel in nature, and is very well suited for

use on massively parallel super computers.

The accuracy of the method for more than several thousand atoms is yet to be

verified - however we must point out that the system sizes we have are already supe-

rior to what most or all accelerated dynamics methods can deal with without being

overly inaccurate. Also, the algorithm in this thesis can be expected to perform very

well irrespective of system size for mechanisms that involve not just one atom. This

can be reasoned as follows. As the system size N increases, the probability (per unit

time) of a rare event roughly gets multiplied by N. So what is a rare event in a small

system eventually becomes a common event in a big system. The only way to keep

the event probability constant with increasing system size is to start focusing on rarer

events (e.g. multiple nearly simultaneous jumps). By focusing on multiple simulta-

neous jumps as the rare events, the algorithm identifies more important and more

irreversible events, as system size grows. To put this another way, expect our algo-

rithm to be specifically suited for predicting long-time scale dynamics of mechanisms

involving concerted motions of several atoms.

We demonstrated that the algorithm is robust with respect to choice of the only

free parameter and that the boosted time-scale is correct. While the algorithm can
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achieve milliseconds and longer, it also has the resolution to capture fast and con-

certed events (like surface nucleation of a leading Shockley partial) that take less than

picoseconds to happen.

To the best of our knowledge, this thesis and the related publications are the first

to report molecular dynamics simulations of tensile testing at 100/s strain rate - a

rate which laboratories can actually achieve. In a related problem, we also looked at

the activation parameters for surface nucleation of dislocations. We found very high

values of the activation entropy here, which shows that the traditional approach,

wherein 0 temperature activation energies are assumed at all temperatures, can be

very incorrect.

7.3 Future work

In future work, we are applying the accelerated dynamics algorithm to explore de-

formation mechanisms in BCC nanopillars. The specific question we are trying to

answer is if the strain-rate influences a transition in deformation mechanism from

deformation twinning to slip.

The last chapter of this thesis also lays the foundation for work on vacancy ag-

glomeration in BCC tantalum. Through this we eventually want to understand the

kinetics of vacancy clustering under varied temperature and strain, and what role do

vacancies play in failure of these metals.

An open-source software named SISYPHUS (Stochastic Iterations to Stimulate

Yield of Path Hopping over Upper States), implementing the ideas detailed in this

thesis will be released shortly and made available for use by everyone (expected July

2012).
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