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Abstract

In this thesis, we study the 4d/2d correspondence of Alday-Gaiotto-Tachikawa, which re-

lates the class of 4-dimensionalN “ 2 gauge theories (theories of class S) to a 2-dimensional

conformal field theory. The 4d gauge theories are obtained by compactifying 6-dimensional

N “ p2, 0q theory of type Γ “ A, D, E on a Riemann surface C. On the 2-dimensional side,

we have Toda theory on the surface C withW-algebra symmetry, which is an extension of

the Virasoro symmetry. In particular, the instanton partition function of the 4d gauge the-

ory is reproduced by a conformal/chiral block of Virasoro/W-algebra. We develop tech-

niques to compute the partition functions on 4d and 2d sides, for various gauge groups

and matter fields.

We generalize the Alday-Gaiotto-Tachikawa 4d/2d correspondence to various cases.

First, we study N “ 2 pure Yang-Mills theory with arbitrary gauge groups, including the

exceptional groups. We explicitly construct the corresponding W-algebra currents, and

confirm the correspondence holds at 1-instanton level. Second, we study the conformal

quiver theory with Spp1q ´ SOp4q gauge group. Finally, we study Sicilian gauge theories

with trifundamental half-hypermultiplets. We also find that the conformal theories with

Spp1q gauge group and SUp2q gauge group have different instanton partition functions in

terms of bare gauge couplings. We show this is an artifact of the renormalization scheme,

by explicitly constructing a map between the bare couplings and studying its geometrical

interpretations. This demonstrates the scheme independence of renormalization at the

non-perturbative level. This thesis is mainly based on publications [1, 2, 3].
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Chapter 1

Introduction

Supersymmetry has been a great source for understanding the strong dynamics of quan-

tum field theory. Ordinary field theory without supersymmetries, such as Yang-Mills the-

ory, is known to be notoriously difficult to understand its low-energy behavior. It is be-

lieved to have a mass gap and to exhibit confinement. Yang-Mills theory is the basic build-

ing block of our current understanding of nature, but we do not have a proper analytic

tool to understand its low energy or strong coupling phenomena. Supersymmetric gauge

theories on the other hand, are much more tractable to analyze. Especially, the power of

holomorphy [4] and duality [5] enables us to obtain exact results.

Generally, one can ‘supersymmetrize’ a given field theory with different numbers of

supersymmetries. The number of supersymmetry usually refers to the number of con-

served fermions. For example, in 4-dimensions, a single fermion has 4 real components,

and N supersymmetry means having 4N conserved fermionic charges or supercharges.

In d “ 4, one can get up to N “ 4 supersymmetry. The N “ 1 supersymmetry is the only

phenomenologically viable extension for the Standard Model, since extended supersym-

metries cannot have a chiral fermion, which is the crucial feature of the Standard Model.

The N “ 1 extension of the Standard Model, has been a primary object of study beyond

the Standard Model physics. It not only gives a natural cure to the instability of the Stan-

dard Model under the quantum loop corrections, but also contains a natural candidate for

the dark matter.

On the other hand,N “ 4 supersymmetric theories have been a great source of theoret-

ical studies. Most notably,N “ 4 Super-Yang-Mills theory [6] has vanishing beta function,

and conformal. It is dual to the type IIB superstring theory on AdS5 ˆ S5, which provides

the prototype of the gauge/gravity duality [7, 8, 9, 10]. Also, there is extensive evidence
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that this theory in planar limit is quantum integrable [11]. Also the theory is believed to

be S-dual to itself. It enjoys beautiful yet very non-trivial aspects of the conformal field

theory. 1

The N “ 2 supersymmetric gauge theories are in the middle. They are still not ap-

plicable to phenomenology since one cannot have a chiral theory.2 Even though they are

not immediately useful for building realistic models, N “ 2 theories are mathematically

much more tractable than N “ 1 but sufficiently richer than N “ 4 theory. They can be

asymptotically free, so that low-energy dynamics can be strongly coupled. Nevertheless,

the power of holomorphy is greater than that of N “ 1 theories so that one can determine

exact low-energy effective action including the Kahler potential. This is due to the seminal

work by Seiberg and Witten [15, 16], which we will review in the later chapters. N “ 2 the-

ory has also applications to mathematics of 4-manifolds. The topologically twisted theory

on a curved 4-manifold computes topological invariants known as Donaldson invariants

[17] or equivalently Seiberg-Witten invariants [18].

1.1 4d/2d correspondence: Instantons and W-algebras

The main topic we want to discuss in this thesis is a class of 4-dimensional N “ 2 su-

persymmetric gauge theories and its relation to 2-dimensional conformal field theory. It

can be understood in terms of multiple M5-branes wrapped on a Riemann surface C. The

world-volume theory of N M5-branes is described by N “ p2, 0q theory of AN´1 type.

Heuristically, the 4d/2d correspondence can be understood as a result of the path-integral

version of the ‘Fubuni theorem’. Let us put the N “ p2, 0q theory of type Γ “ A, D, E on

M4 ˆ C. We choose the spacetime 4-manifold M4 as a spin manifold in order to preserve

supersymmetry. First we integrate along the C direction. The theory is partially topolog-

ically twisted along the C direction in order to preserve supersymmetry in 4-dimension.

This ’integration’ yields 4dN “ 2 gauge theory on M4. Let’s denote this theory as TrΓ, Cs.

If we do further integration, we get a number, namely the partition function Z4d
TrΓ,CspM4q

of the gauge theory. On the other hand, we can integrate out the M4 direction first to ob-

1The only known N “ 4 supersymmetric field theory is the maximally supersymmetric Yang-Mills theory
with semi-simple gauge group G. It would be interesting to find a proof of the uniqueness or find another
example of N “ 4 supersymmetric field theory. (J. Maldacena, ”N “ 4 SYM, 35 Years After” conference)

2It is still possible to have a hidden sector with N “ 2 coupled to a N “ 1 visible sector. Such a model has
been studied in, for example, [12, 13, 14].
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6d (2, 0) theory

4d N=2 theory

2d CFT

Z

C 4
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M

Figure 1.1: The 4d/2d correspondence as a Fubini theorem

tain a 2-dimensional theory on C. Now, the theory on C is determined by M4. Let’s call

this 2-dimensional theory T rΓ, M4s. We can path-integrate this theory to obtain a parti-

tion function (or correlation function) Z2d
T rΓ,M4s

pCq. Since the order of integrations does not

affect the end result, we get

Z4d
TrΓ,CspM4q “ Z2d

T rΓ,M4s
pCq. (1.1)

This is the 4d/2d correspondence; quantity in 4d gauge theory is given by another quantity

in 2d theory. It also indicates that the 4d/2d correspondence depends on the choice of the

spacetime manifold M4.

The prototype of 4d/2d relation is the case when C “ T2. In this case, the 4d gauge

theory is nothing butN “ 4 super Yang-Mills theory. The 4-dimensional gauge theory has

S-duality, which means that the theory remains the same under the S-duality transforma-

tion, which sends the gauge coupling τ “ θ
2π `

4πi
g2 to

τ Ñ ´
1
τ

, τ Ñ τ` 1, (1.2)
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and changes the gauge group G to its Langlands dual group LG. The action on τ generates

the well-known modular group SLp2, Zq. It generates the symmetry of the complex struc-

ture of a torus. So we can interpret the S-duality of the N “ 4 SYM as the equivalence of

Figure 1.2: Modular transformation on a torus with complex structure τ

the geometric parameter τ under the modular group. The S-duality puts strong constraint

on the 4-dimensional theory that the partition function has to be a modular form with cer-

tain weight. This is identified as a character of the affine Lie algebra ĝ [19, 20, 21], and it is

understood as free bosons living on the 2-dimensional surface C [22, 23, 24].

If we choose C to be generic and curved, the theory is no longer supersymmetric unless

we do the partial topological twist along the surface C. Once this is done, we obtainN “ 2

supersymmetry in 4-dimensions. One can put number of punctures on the surface, change

the topology to obtain various gauge theories [25]. One can generalize the notion of S-

duality from this picture by looking at various degeneration limits of the same surface.

If we choose the 4-manifold M4 as S4, and the Riemann surface C as generic, the 2d

theory turns out to be the Γ-type Toda theory. If Γ “ A1, then it is well-known Liouville

theory. This is the case studied by Alday-Gaiotto-Tachikawa (AGT) [26]. The 4d side of the

partition function was computed by Pestun [27], which has the following form

ZrS4spτ, miq “

ż

rdas |ZNekpτ,~a, mi; ε1 “ 1{r, ε2 “ 1{rq|2 (1.3)

where~a is the Coulomb branch parameter and mi are the masses of the hypermultiplets in

the theory. ZNek is the Nekrasov partition function [28] on R4 in the Omega background

[29, 23, 30], which we will discuss in the later chapters. The Nekrasov partition function is
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decomposed into 3 pieces

ZNek “ ZtreeZ1´loopZinst. (1.4)

where each piece corresponds to the partition function coming from the tree-level and 1-

loop and the last one is the instanton contribution to the partition function. We call Zinst

the instanton partition function. The AGT correspondence not only holds at the level of

the integral (1.3) but also at the level of integrands. The 2d side of the correspondence is

given by a correlation function of the Liouville/Toda theory, which can be schematically

written as

xVphm1q ¨ ¨ ¨VphmnqyC “

ż

rdasCph~a, hmiq |Fph~a, hmi ; bq|2 , (1.5)

where Vphmiq is a W-primary operator with conformal (or W) weight determined by mi

and F is the n-point conformal block with external weights given by mis and internal

momentum given by h~a. The parameter b determines the central charge of the CFT and it

is mapped to the Omega deformation parameters ε1, ε2. The function Cpa, miq is the 3-point

function of the CFT. The AGT correspondence states that the 1-loop part of the partition

function is given by the 3-point function of CFT and the instanton partition function is

given by the conformal block.

In this thesis, we will study the relation between instanton partition function and the

conformal block:

Zinstp~a, mi; ε1, ε2q “ Fpha, hm; bq. (1.6)

Note that the conformal block doesn’t depend on the dynamics of the underlying confor-

mal field theory. In other words, it is completely determined by the representation of the

Virasoro or W-algebra. This is rather surprising from the 4d point of view, since the 4d

gauge theory instanton partition function is given by an integral over the moduli space of

instantons that depends on the geometry of the gauge theory. We will build language and

techniques to study this relation in the following chapters.
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1.2 Outline

In Chapter 2, we review N “ 2 supersymmetric gauge theories and the Seiberg-Witten

solution. We will review the construction of N “ 2 theories obtained from M5-branes on

a Riemann surface called the theories of class S or generalized quiver theories. We use the

geometric language in terms of Hitchin systems, following [31, 25].

In Chapter 3, we study Seiberg-Witten theory microscopically. The method is devel-

oped by Nekrasov, using the idea of equivariant localization. Using the technique, we

evaluate the integral over the moduli space of instantons with various matter content. Es-

pecially, we derive the contour integral formula with half-hypermultiplets such as Sp´ SO

bifundamental [1, 2]. One of the surprising results we obtain is that the instanton partition

function for conformal Spp1q gauge theory and SUp2q gauge theory differs. We will show

that this is an artifact of the renormalization scheme and show that physically they are

indeed the same [1].

In Chapter 4, we focus on the 2d side of the correspondence. We will review W-

algebras and methods to compute the chiral block or correlation function of the given

conformal field theory. Especially, we explicitly construct the W-algebras corresponding

to various Lie groups using free-field realizations, and study their representations [3].

Chapter 5 is the main part of the thesis. We will present the correspondence for ar-

bitrary gauge groups including the exceptional groups [3]. In particular, we will show

that gauge theories with non-simply-laced gauge groups are mapped into simply-laced

W-algebras, but in the twisted representations [1]. We will study the correspondence for

non-linear quiver theories, called Sicilian or generalized quiver gauge theories [2]. We

focus on A1 theories, and verify that the correspondence between instanton partition func-

tion and Virasoro conformal block indeed works.

In Chapter 6, we make a remark on omitted topics including the other choice of the

spacetime 4-manifold M4 in (1.1), and conclude with summary and future directions.



7

Chapter 2

N “ 2 Supersymmetric Gauge
Theories in 4-dimensions

2.1 N “ 2 Supersymmetry in general

There are two different types of N “ 2 SUSY multiplets, namely vector multiplet and

hypermultiplet. An N “ 2 vector multiplet consists of a vector field Aµ, and two Weyl

fermions ψα, λα, and a complex scalar field φ. In terms of N “ 1 multiplets, it consists of a

N “ 1 vectorWα containing Aµ, λ and a chiral multiplet Φ containing φ, ψ.

Aµ

λ ψ

φ

(2.1)

All of the fields are in the adjoint representation of the gauge group.

A hypermultiplet consists of 2 Weyl fermions ψq, ψq̃ and 2 complex scalars q, q̃. In

N “ 1 language, it has 2 chiral multiplets Q containing q, ψq, and Q̃ containing q̃, ψq̃.

ψq

q q̃:

ψ:q̃

(2.2)

Every N “ 2 theories has SUp2qR global symmetry which rotates the set of super-

charges. We have arranged (2.1) and (2.2) in such a way that the SUp2qR rotates the hor-

izontal components. That is pλ, ψq and pq, q̃:q form doublets and all the other component

fields are singlets under SUp2qR. In addition, one has Up1qR symmetry, which is anoma-
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lous for asymptotically free theory. Under the R-symmetries, the components in a vector

multiplet have charges RpAµq “ 0, Rpλq “ 1, Rpψq “ 1, Rpφq “ 2, and the components

in a hypermultiplet have charge Rpqq “ 0, Rpψqq “ 1, Rpq̃q “ 0, Rpψ̃qq “ 1. In terms of

superfields, we can write as

Wα ÑWαpe´iαθq, (2.3)

Φ Ñ e2iαΦpe´iαθq, (2.4)

Q Ñ Qpe´iαθq, (2.5)

Q̃ Ñ Q̃pe´iαθq. (2.6)

The Lagrangian of N “ 2 theory in terms of N “ 1 superfields when we have both

vector and hypermultiplets, is written as

L “
1

4π
Im

„
ż

d4θ
´

TrΦ:e´2VΦ`Q:e´2VQ` Q̃e2VQ̃:
¯

`

ż

d2θTr
1
2

τWαWα



`

ż

d2θ
´?

2Q̃ΦQ`mQ̃Q
¯

` pc.cq, (2.7)

where the complexified gauge coupling is given by

τ “
θ

2π
`

4πi
g2 , (2.8)

and m is a mass of the hypermultiplet.

When there is no hypermultiplet, the potential of N “ 2 Yang-Mills theory is given by

V “
1
g2 Trrφ, φ:s2. (2.9)

The flat direction is simply given by rφ, φ:s “ 0. Generically, the vacuum moduli space is

given by non-zero vacuum expectation value of the scalar field φ in the vector multiplet,

and gauge group is broken down to Up1qr where r is the rank of gauge group. For the

unitary gauge group SUpNq, one can parametrize the flat direction by Casimir operators

trφ2, trφ3, ¨ ¨ ¨ trφn up to a gauge transformation.

In general, the classical moduli space of N “ 2 theories has two different branches,

namely Coulomb branch and Higgs branch. In the Higgs branch, the vev of adjoint scalar
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field is zero xφy “ 0 but the ‘squarks’ q gets a vev, and the gauge symmetry is completely

broken. The Higgs branch of the moduli space is a hyper-Kahler manifold and does not

receive any quantum corrections.

The Coulomb branch is given by xφy ‰ 0, and xqy “ 0, and in this case the low-energy

theory is given by Up1qr gauge theory. By the virtue of N “ 2 supersymmetry, the Low-

energy effective action can be written in terms of the single holomorphic function Fpaq

called the prepotential

Le f f “
1

4π
Im

„
ż

d4θ
BFpAq
BA

Ā`
ż

d2θ
1
2
B2FpAq
BA2 WαWα



, (2.10)

where A is the chiral superfield in theN “ 2 vector multiplet. Classically, the prepotential

is given by

Fclaspaq “
1
2

τa2. (2.11)

Of course it receives a quantum correction but N “ 2 supersymmetry restricts the form of

the prepotential to be [32]

Fp~aq “ i
2π

a2 log
a2

Λ2 `

8
ÿ

k“1

Fk

ˆ

Λ
a

˙b0k

a2, (2.12)

where b0 is the coefficient of the beta-function. For example, it is given by 2Nc ´N f for the

SUpNcq gauge theory with N f fundamental hypermultiplets. The first term of the above

equation comes from 1-loop correction, which is exact in perturbation theory. The second

term comes from non-perturbative effects, namely instanton corrections. We will discuss a

systematic way to obtain instanton corrections to the prepotential from now.

2.2 Seiberg-Witten solution

In the seminal paper by Seiberg and Witten [15, 16], they solved the problem of obtaining

the prepotential Fpaq in terms of a family of auxiliary Riemann surface ΣSW . If such curve

is given, the prepotential can be obtained by evaluating certain period integrals. Suppose
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we have a basis of 1-cycles tα1, β1, ¨ ¨ ¨ , αr, βru on ΣSW so that

αi X β j “ δi
j, αi X αj “ βi X β j “ 0. (2.13)

Then, the instanton part of the prepotential

Finstp~aq “ ai
Dai (2.14)

is determined by the period integrals

ai “

¿

αi

λSW , ai
D “

¿

βi

λSW , (2.15)

where λSW is certain meromorphic 1-form on the Seiberg-Witten curve ΣSW . The Seiberg-

Witten curve is a genus r curve parametrized by the Coulomb branch parameters. In

the case of SUpNq theory, the Coulomb branch is parametrized by un “ trφn with n “

2, 3, ¨ ¨ ¨ , N.

Originally, the Seiberg-Witten curve was obtained by an educated guess based on the

electric-magnetic duality and the singularity structure of the moduli space. For example,

the SUp2q gauge theory with no hypermultiplet has the curve of the form

y2 “ xpx´ 1qpx´ uq (2.16)

and the Seiberg-Witten form is given by

λSW “
dx
y

. (2.17)

Of course, this is not the unique form satisfying the desired properties. We will use slightly

different form in the next section based on M-theoretic construction of the Seiberg-Witten

theory.
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2.3 N “ 2 gauge theory from M5-branes on a Riemann surface

In this section we start by reviewing the construction of Gaiotto curves (or UV-curves)

for N “ 2 gauge theories with a classical gauge group. We explain how the N “ 2

geometry is encoded in a ramified Hitchin system whose base is the Gaiotto curve. It

can be understood as a six-dimensional theory compactified on the UV-curve. We will in

particular write down the solutions for pureN “ 2 Yang-Mills theory with arbitrary gauge

group.

2.3.1 UV-curves and Hitchin systems

Let us start this section with reviewing the constructions of Gaiotto curves for SUpNq and

SppNq{SOpNq gauge groups and their embedding in a ramified Hitchin system. We then

explain how to compare them in specific cases.

2.3.1.1 Unitary gauge group

Figure 2.1: Illustrated on the left is an example of a D4/NS5 brane construction realizing
the SUp2q quiver gauge theory illustrated on the right. The Coulomb and mass parameters
of the SUp2q gauge theory parametrize the separation of the D4-branes, while the separa-
tion of the NS5-branes determines the microscopic coupling τUV. The Seiberg-Witten curve
for this SUp2q gauge theory is a torus with complex structure parameter τIR.

A special unitary quiver gauge theory can be realized in type IIA string theory using a

D4/NS5 brane embedding [33]. See Figure 2.1 for the brane embedding of the SUp2q gauge

theory coupled to four hypermultiplets. From such a brane embedding one can read off

the Seiberg-Witten curve Σ of the quiver gauge theory. It is, roughly speaking, a fattening

of the D4/NS5 graph, as it is, for instance, illustrated in Figure 2.1.
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The D4/NS5 brane embedding can be lifted to an M5-brane embedding in M-theory.

The resulting ten-dimensional M-theory background is

R4 ˆ T˚C̃ˆR2 ˆ S1, (2.18)

where we introduced a possibly punctured Riemann surface C̃ and its cotangent bundle

T˚C̃. We insert a stack of N M5-branes that wraps the six-dimensional manifold R4 ˆ C̃.

The positions of these M5-branes in the cotangent bundle determine the Seiberg-Witten

curve Σ as a subspace of T˚C̃. In this perspective the Seiberg-Witten curve is given [25]

0 “ detpw´φUq “ wN `wN´2φ2 `wN´3φ3 ` . . .` φN (2.19)

as a branched degree N covering over the so-called Gaiotto curve C̃. The holomorphic

differential w parametrizes the fiber direction of the cotangent bundle T˚C̃, whereas φU is

an SUpNq-valued differential on the curve C̃ of degree 1.

The degree d differentials φd “ Trpφd
Uq encode the classical vev’s of the SUpNqCoulomb

branch operators of dimension d. They are allowed to have poles at the punctures of the

Gaiotto curve. The coefficients at these poles encode the bare mass parameters of the gauge

theory. To take care of these boundary conditions in the M-theory set-up, we need to in-

sert additional M5-branes at the punctures of the Gaiotto curve. These M5-branes should

intersect the Gaiotto curve transversally, and thus locally wrap the fiber of the cotangent

bundle at the puncture [31].

Equation (2.19) determines the Seiberg-Witten curve Σ as an N-fold branched covering

over the Gaiotto curve C̃. The Seiberg-Witten differential is simply

λ “ w. (2.20)

The N “ 2 geometry for unitary gauge groups is thus encoded in a ramified AN Hitchin

system on the punctured Gaiotto curve C̃, whose spectral curve is the Seiberg-Witten

curve Σ and whose canonical 1-form is equal to the Seiberg-Witten differential [34].1

The topology of the Gaiotto curve is fully determined by the corresponding quiver

1A detailed discussion of boundary conditions for this Hitchin system can be found in [31] and references
therein.



13

Figure 2.2: The left Figure illustrates the Gaiotto curve C̃ of the conformal SUp2q quiver
gauge theory that is illustrated on the right. The Gaiotto curve is a four-punctured sphere
with complex structure parameter qUp2q. The differential φ2 has second order poles at the
four punctures. The SUp2q flavor symmetries are encoded in the coefficients of the differ-
ential φ2 at these poles.

diagram. A gauge group translates into a tube of the Gaiotto curve, whereas a flavor

group turns into a puncture. This is illustrated in Figure 2.2 for the SUp2q gauge theory

coupled to four flavors. The poles of the differentials φd determine the branch points of the

fibration (2.19). Their coefficients encode the flavor symmetry of the quiver gauge theory.

For gauge group SUpNq the degree of the poles is integer. As we will see shortly this is not

true for SppNq and SOpNq gauge theories.

2.3.1.2 Symplectic/orthogonal gauge group

Figure 2.3: Illustrated on the left is an example of a D4/NS5 brane construction with O4˘

orientifold branes realizing the Spp1q quiver gauge theory illustrated on the right. The O4´

branes (in yellow) ensure that both flavor symmetry groups are SOp4q, whereas the O4`

brane (in blue) ensures that the gauge symmetry group is Spp1q. The brane embedding of
the conformal SOp4q gauge theory is found by swapping the inner and the outer D4 and
O4 branes.

For symplectic or orthogonal gauge theories a similar description exists. Engineering
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these gauge theories in type IIA requires orientifold O4-branes in addition to the D4 and

NS5-branes [35, 36, 37]. The orientifold branes are parallel to the D4 branes. They act on the

string background as a combination of a worldsheet parity Ω and a spacetime reflection in

the five dimensions transverse to it. The space-time reflection introduces a mirror brane for

each D4-brane, whereas the worldsheet parity breaks the space-time gauge group. More

precisely, there are two kinds of O4-branes, distinguished by the sign of Ω2 “ ˘1. The

O4´ brane breaks the SUpNq gauge symmetry to SOpNq, whereas the O4` brane breaks

it to SppN{2q. The brane construction that engineers the conformal Spp1q gauge theory is

schematically shown in Figure 2.3.2 Notice that there are two hidden D4-branes on top of

the O4` brane, so that the number of D4-branes is equal at each point over the base.

From these brane setups we can extract the Seiberg-Witten curve for the SppN ´ 1q

and SOp2Nq gauge theories coupled to matter. To find the Gaiotto curve we rewrite the

Seiberg-Witten curve in the form [38]

0 “ v2N ` ϕ2v2N´2 ` ϕ4v2N´4 ` . . .` ϕ2N , (2.21)

where the differentials ϕk encode the Coulomb parameters and the bare masses. Equa-

tion (2.21) defines the Seiberg-Witten curve as a branched covering over the Sp{SO Gaiotto

curve. More precisely, the Seiberg-Witten curve is embedded in the cotangent bundle T˚C

of the Gaiotto curve C with holomorphic differential v. The Seiberg-Witten differential is

simply

λ “ v, (2.22)

the canonical 1-form in the cotangent bundle T˚C.

Whereas for the SppN ´ 1q gauge theory there is an extra condition saying that the ze-

roes at v “ 0 of the right-hand-side should be double zeroes, the SOp2Nq gauge theory

requires these zeroes to be simple zeroes. These conditions come up somewhat ad-hoc in

the type IIA description, but can be explained from first principles in an M-theory per-

spective [39]. The orientifold brane construction lifts in M-theory to a stack of M5-branes

in a Z2-orbifold background. The orbifold acts on the five dimensions transverse to the

2The Sp and SO brane constructions illustrated here can be naturally extended to linear Sp{SO quivers. We
will come back to this in section 5.4.
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M5-branes, and in particular maps v ÞÑ ´v.

For the pure SppN´ 1q-theory the differential ϕ2N vanishes, so that a factor v2 in equa-

tion (2.21) drops out. The resulting Seiberg-Witten curve can be written in the form

0 “ detpv´ϕSpq, (2.23)

where ϕSp is a SppN ´ 1q-valued differential. The non-vanishing differentials ϕ2k can thus

be obtained from the Casimirs of the Lie algebra sppN´ 1q. If we include massive matter to

the SppN´ 1q gauge theory, however, or consider an SOp2Nq gauge theory, equation (2.21)

can be reformulated as

0 “ detpv´ϕSOq (2.24)

where the differential ϕSO is SOp2Nq-valued. This equation is clearly characterized by the

Casimirs of the Lie algebra sop2Nq. More precisely, we recognize the DN-invariants TrpΦ2kq

and PfaffpΦq in the differentials ϕ2k and ϕÑ “
?

ϕ2N , respectively. In general, the N “ 2

geometry for symplectic and orthogonal gauge groups is thus encoded in a ramified DN

Hitchin system based on the Sp{SO Gaiotto curve C, whose spectral curve is the Seiberg-

Witten curve (2.21).

The Lie algebra DN has a Z2 automorphism under which the invariants with exponent

2, . . . , 2N´ 2 are even and the invariant of degree N is odd. On the level of the differentials

φk this translates into possible half-integer poles for the invariant ϕÑ . Going around such

a pole the differential ϕÑ has a Z2 monodromy. We will see explicitly in the examples.

We call the puncture corresponding to such a pole a half-puncture. The half-punctures

introduce Z2 twist-lines on the Gaiotto curve [38]. This is illustrated for the Spp1q and

SOp4q Gaiotto curve in Figure 2.4 and Figure 2.5.

Lastly, let us make a few remarks on the worldvolume theory on a stack of M5-branes.

In the low energy limit this theory is thought to be described by a six-dimensional con-

formal p2, 0q theory of type ADE. For the M-theory background (2.18) it is of type A,

whereas for the Z2-orbifolded M-theory background it is of type D. The p2, 0q theory has a

“Coulomb branch” parametrized by the vev’s of a subset of chiral operators whose confor-

mal weights are given by the exponents d of the Lie algebra g. These operators parametrize
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Figure 2.4: The left Figure illustrates the Gaiotto curve C of the conformal Spp1q quiver
gauge theory that is illustrated on the right. The Spp1q Gaiotto curve differs from the
SUp2q Gaiotto curve by the Z2 twist-line that runs parallel to the tube. We will discuss the
precise relation between the Spp1q and the SUp2q Gaiotto curve in section 3.5.2.

Figure 2.5: The left Figure illustrates the Gaiotto curve C of the conformal SOp4q quiver
gauge theory that is illustrated on the right. The SOp4q Gaiotto curve differs from the
Spp1q Gaiotto curve by a different configuration of Z2 twist-lines. In particular, the twist
lines don’t run through the tube.

the configurations of M5-branes in the M-theory background. In the Hitchin system they

appear as the degree d differentials. Boundary conditions at the punctures of the Gaiotto

curve are expected to lift to defect operators in the M5-brane worldvolume theory. We

refer to [31] for a more detailed description.

G h_ wi G h_ wi Γprq

An´1 n 2, 3, . . . , n Bn 2n´ 1 2, 4, . . . , 2n Ap2q2n´1

Dn 2n´ 2 2, 4, . . . , 2n´ 2; n Cn n` 1 2, 4, . . . , 2n Dp2qn`1

E6 12 2, 5, 6, 8, 9, 12 F4 9 2, 6, 8, 12 Ep2q6

E7 18 2, 6, 8, 10, 12, 14, 18 G2 4 2, 6 Dp3q4
E8 30 2, 8, 12, 14, 18, 20, 24, 30

Table 2.1: The dual Coxeter number h_ and the dimensions wi of the Casimir invariants for
all simple Lie groups G. Recall An´1 “ SUpnq, Bn “ SOp2n` 1q, Cn “ Sppnq, Dn “ SOp2nq.
For non-simply-laced G, the Langlands dual pGp1qq_ “ Γprq of the affine G algebra is also
shown.
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˝ ˝ ¨ ¨ ¨ ˝ ˝

Γ “ A2n´1 Ù Ù Ù ˝ Γ “ Dn`1 ˝ ˝ ¨ ¨ ¨ ˝ Ù

˝ ˝ ¨ ¨ ¨ ˝ ˝

G “ Bn ˝ ˝ ¨ ¨ ¨ ˝ñ ˝ G “ Cn ˝ ˝ ¨ ¨ ¨ ˝ð ˝

˝ ˝ ˝

Γ “ E6 ˝ ˝ Ù Ù Γ “ D4 ˝ ˝

˝ ˝ ˝

G “ F4 ˝ ˝ ð ˝ ˝ G “ G2 ˝ W ˝

Figure 2.6: The relation between a non-simply-laced Lie algebra G, its associated simply-
laced algebra Γ, and the outer automorphism used to fold Γ to obtain G.

2.3.2 Martinec-Warner solution of N “ 2 pure theory:

The Seiberg-Witten curve of pure N “ 2 gauge theory for arbitrary G was constructed

in [40] as the spectral curve of a Toda lattice. (See also [41, 42, 43, 44].) From a modern

perspective [45, 25, 31], their construction reads as follows. Let us first consider the case

when G is simply-laced. Take 6d N “ p2, 0q theory of type G, and compactify this theory

on C “ CP1 parametrized by z, with two codimension 2 defects at z “ 0 and z “ 8.

The 6d theory has world-volume fields φpwiqpzq on C, transforming as degree wi multi-

differentials, where wi is the degree of the Casimir invariants of G given in Table 2.1. We

then set

φpwiqpzq “ upwiq pdz{zqwi , pwi ‰ h_q; (2.25)

φph
_qpzq “

ˆ

Λh_z` uph
_q `

Λh_

z

˙

pdz{zqh
_

pwi “ h_q. (2.26)

Here upwiq is the vev of the dimension wi Coulomb branch operator, and Λ is the holo-

morphic dynamical scale of the gauge theory. From this data one can then construct

the Seiberg-Witten curve Σ [46], or equivalently the fibration of the ALE space of type

G [44, 47]. In the following we label the degrees wi so that h_ “ wn.

When G is non simply-laced, we take a pair pΓ, Zrq such that the twisted affine Lie

algebra Γprq is the Langlands dual to Gp1q, the untwisted affine algebra of G. In other

words, the Dynkin diagram of G is obtained by folding the Dynkin diagram of Γ as in

Fig. 2.6.3 For example, when G “ G2, Γ “ SOp8q and r “ 3. We then put 6d theory of type

3 Γ is called the associated simply-laced algebra of G [48]. G is also known as the orbit Lie algebra of the
pair pΓ, Zrq, see [49]. Note that G is not the Zr-invariant part of Γ in general, as explained in Appendix A.2.
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6d Γ theory

Ó

5d G theory

2d W-algebra xG| Λ2h_rL0 |Gy

Figure 2.7: Top: the Seiberg-Witten solution of pure N “ 2 super Yang-Mills theory with
gauge group G in terms of 6d N “ p2, 0q theory of type Γ on C “ CP1 with the Zr twist
line from z “ 0 to z “ 8. Middle: the S1 reduction to the 5d maximally supersymmetric
Yang-Mills theory with gauge group G on a segment, with a suitable half-BPS boundary
condition on both ends. Bottom: In the 2d description, the coherent state xG| is produced
by the BPS boundary condition. It is then propagated along the horizontal direction and
annihilated by |Gy.

Γ on C “ CP1, with a twist by Zr around two singularities at z “ 0,8. The fields of the 6d

theory are divided into two sets, φpŵiqpzqwhich are invariant under Zr action, and φpw̃iqpzq

which transform nontrivially under Zr. We then take

φpŵiqpzq “ upŵiq pdz{zqŵi , (2.27)

φpw̃iqpzq “ 0, pw̃i ‰ h_q, (2.28)

φpw̃iqpzq “
ˆ

Λw̃i z1{r `
Λw̃i

z1{r

˙

pdz{zqw̃i pw̃i “ h_q. (2.29)

Here, Λ is the dynamical scale and upŵiq is the vev of the degree-ŵi Coulomb branch opera-

tor; note that the degrees of Casimirs of G are exactly the degrees of Casimirs of Γ invariant

under Zr. Note also that the dual Coxeter number of G are exactly the highest degree of

Casimirs of Γ not invariant under Zr.

The construction is summarized in Fig. 5.2: the 6d N “ p2, 0q theory of type Γ on

a circle with Zr twist gives maximally supersymmetric 5d Yang-Mills theory of gauge

group G. To obtain pure N “ 2 Yang-Mills theory, we need to put the 5d Yang-Mills

theory on a segment with an appropriate half-BPS boundary condition on both ends. The

boundary condition then becomes the prescribed singularity of the worldvolume fields

φpwiqpzq. When G is classical, the 5d Yang-Mills theory can be realized on coincident D4-

branes, possibly on top of an O4-plane. Then the BPS boundary condition comes from

ending them on an NS5-brane [33, 35, 36, 37].
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2.4 S-duality

The Gaiotto construction of N “ 2 superconformal field theories gives a nice geometric

interpretation of the S-duality of N “ 2 gauge theories. One of the prime examples of the

theories exhibit S-duality is SUp2q gauge theory with 4 fundamental hypermultiplets. It

has vanishing beta function, and believed to be exactly conformal. It can be obtained from

2 M5-branes wrapped on the 4-punctured sphere.

------------>
x

xx

x

x

Figure 2.8: A weakly coupled description of the corresponding theory can be read off from
going to a degenerate limit. Once this is done, a hhin tube corresponds to a gauge group,
and punctures correspond to hypermultiplets. This gives SUp2q gauge theory with N f “ 4
hypermultiplets

Figure 2.9: The quiver diagram corresponding to the 4-punctured sphere UV-curve. It can
be easily read from considering the degenerate limit of the curve.

Note that any punctured Riemann surface can be constructed by gluing pair of pants.

The basic building block is the three-punctured sphere. It has a trifundamental hypermul-

x

x

x x

x

x

Figure 2.10: Obtaining a new curve from gluing pair of pants
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tiplet which transform as p2, 2, 2q under the flavor symmetry SUp2q1 ˆ SUp2q2 ˆ SUp2q3.

Connecting two punctures corresponds to gauging the flavor symmetry. S-dualities can be

2

2

2 2

2

2

Figure 2.11: Gauging the flavor symmetry group can be thought of as gluing the pair of
pants

understood as different choices of the degeneration limit coming from the single Riemann

surface C.

------------>
x

xx

x

x

xxx

xx

a

b

c

d

a c

b d

Figure 2.12: S-duality on the SUp2q theory with 4 hypermultiplets. It can be understood as
taking different degenerate limit. Since the both curves on the left and right are the same
but rotated, the effective 4-dimensional theory has to be the same.

Since the S-duality can be concisely understood as an operation on the Riemann sur-

face, it is natural to expect that S-duality is reflected in the 4d/2d correspondence as well.

In the 2d side, the partition function of 4d gauge theory is given by a correlation function

on 2d theory. Indeed, the S-duality of the theory on the 4-punctured sphere is reflected

as the channel duality of the correlation function. The theory corresponding to the one-

punctured torus is N “ 2˚ theory. When the mass of adjoint hypermultiplet is set to zero,

it is nothing butN “ 4 theory. The S-duality can be thought as a modular invariance of the

2d CFT. In practice, it is very hard to evaluate the correlation function of 2d theory exactly.

Therefore the direct check of S-duality from 4d/2d correspondence is still difficult, but we



21

can argue the duality on a more general ground.
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Chapter 3

ABCDEFG of Instanton counting

In this chapter, we study methods of instanton counting to solve 4-dimensional gauge the-

ories with N “ 2 supersymmetry for various gauge groups and matter fields. Especially

in this chapter

• we find a uniform expression of 1-instanton partition function for arbitrary gauge

groups in terms of root lattice [3],

• we find renormalization scheme dependence of N “ 2 SCFT and interpret it geo-

metrically in terms of a map between two Gaiotto curves [1],

• we derive the contour integral formula for the half-hypermultiplets [1, 2].

3.1 Nekrasov’s solution to N “ 2 gauge theory

Nekrasov partition function was introduced in [28], as a culmination of a long series of

works, e.g.,[50, 51, 52] on the instanton calculation of the non-perturbative effects inN “ 2

gauge theory.

At low energies the four-dimensional N “ 2 gauge theory is governed by the pre-

potential F0, which determines the metric on the Coulomb branch of the gauge theory.

Classically, the metric on the Coulomb branch is flat and the prepotential

F clas
0 “ 2πi τUV~a ¨~a, (3.1)

is proportional to the microscopic coupling constant τUV. At the quantum level the pre-

potential receives both one-loop and non-perturbative instanton corrections, which give
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corrections to the metric on the Coulomb moduli space. The instanton corrections to the

prepotential can be computed as equivariant integrals over the instanton moduli space

[28]. Let us briefly sketch how this comes about. We will discuss in much more detail in

section 3.2.

Instantons on R4 are solutions of the self-dual instanton equation

F`A “ 0. (3.2)

The instanton moduli spaceMG parametrizes these solutions up to gauge transformations

that leave the fiber at infinity fixed. The componentsMG
k of the instanton moduli space are

labeled by the topological instanton number k “ 1{8π2 ş FA^ FA. The instanton corrections

to the prepotential for the pureN “ 2 gauge theory are captured by the instanton partition

function

Zinst “
ÿ

k

qk
¿

MG
k

1, (3.3)

where
ű

1 formally computes the volume of the moduli space. The parameter q can be

considered as a formal parameter which counts the number of instantons. Physically, it is

identified with a power q “ Λb0 of the dynamically generated scale Λ, when the gauge

theory is asymptotically free. The power b0 is determined by the one-loop β-function. It

is identified with an exponent q “ expp2πiτUVq of the microscopic coupling τUV when the

beta-function of the gauge theory vanishes.

If we introduce hypermultiplets to the pure N “ 2 gauge theory, the instanton correc-

tion to the prepotential are instead determined by solutions of the monopole equations

F`A,µν `
i
2

qαΓ α
µν βqβ “ 0, (3.4)

ÿ

µ

Γµ
9ααDA,µqα “ 0.

In these equations Γµ are the Clifford matrices and
ř

µ ΓµDA,µ is the Dirac operator in

the instanton background for the gauge field A. Although there are no positive chiral-

ity solutions to the Dirac equation, the vector space of negative chirality solutions is k-

dimensional. Because this vector space depends on the gauge background A, it is useful
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to view it as a k-dimensional vector bundle over the instanton moduli spaceMG
k . We will

call this vector bundle V . More precisely, since the solutions to the Dirac equations are

naturally twisted by the half-canonical line bundle L over R4 we will denote it by V bL.

Instanton corrections to theN “ 2 gauge theory, with N f hypermultiplets in the funda-

mental representation of the gauge group, are computed by the instanton partition func-

tion

Zinst “
ÿ

k

qk
¿

MG
k

epV bLbMq, (3.5)

which is the integral of the Euler class of the vector bundle V bL of solutions to the Dirac

equation over the moduli spaceMG
k . The flavor vector space M “ CN f encodes the num-

ber of hypermultiplets in the gauge theory.

A difficulty in the evaluation of the instanton partition functions (3.3) and (3.5) is that

the instanton moduli space MG
k both suffers from an UV and an IR non-compactness.

Instantons can become arbitrary small, as well as move away to infinity in R4. The IR non-

compactness can be solved by introducing the Ω-background, which refers to the action of

the torus

T2
ε1,ε2

“ Up1qε1 ˆUp1qε2 (3.6)

on R4 “ C‘C by a rotation pz1, z2q ÞÑ peiε1 z1, eiε2 z2q around the origin with parameters

ε1, ε2 P C. If we localize the instanton partition function equivariantly with respect to the

T2
ε1,ε2

-action, only instantons at the fixed origin will contribute, so that we can ignore the

instantons that run off to infinity. The UV non-compactness can be cured for gauge group

UpNq by turning on an FI parameter. For Sp and SO gauge groups it is shown in [53]

how to evaluate the instanton integrals, while implicitly curing the UV non-compactness

of the instanton moduli space. Note that this effectively means that we have introduced a

renormalization scheme.

Apart from the torus T2
ε1,ε2

there are a few other groups that act on the instanton moduli

spaceMG
k . Their actions can be understood best from the famous ADHM construction of

the instanton moduli space [54]. This construction gives the moduli space as the quotient of

the solutions of the ADHM equations by the so-called dual group GD
k with Cartan torus Tk

φi
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whose weights we will call φi. There is a also natural action of the Cartan torus TN
~a of the

framing group G on the ADHM solution space, whose weights are given by the Coulomb

branch parameters ~a. Last, if the theory contains hypermultiplets, there is furthermore

an action of the Cartan T
N f

~m of the flavor symmetry group acting on M, whose weights

correspond to the masses ~m of the hypers.

In total, we want to compute the partition function equivariantly with respect to the

torus

T “ T2
ε1,ε2

ˆ TN
~a ˆ Tk

φi
ˆ T

N f

~m , (3.7)

which comes down to computing the equivariant character of the action of those four tori.

This results in a rational function zkpφi,~a, ~m, ε1, ε2q of the weights. From the construction of

the Dirac bundle it is clear that zk factorizes if there are multiple hypers. Finally, we need

to take into account the ADHM quotient. This we do by integrating over the dual group

GD
k . In total the instanton partition function is given by the integral

Zinst
k “

ż

ź

i

dφi zk
gaugepφi,~a, ε1, ε2q zk

matterpφi,~a, ~m, ε1, ε2q, (3.8)

where all the N “ 2 multiplets in the gauge theory give a separate contribution. The

instanton partition function of in principle any N “ 2 gauge theory with a Lagrangian

prescription can be computed in this way. We will derive the explicit expressions in section

3.2

The integrand of (3.8) will have poles on the real axis. To cure this we will introduce

small positive imaginary parts for the equivariance parameters. At least for asymptotically

free theories we can then convert (3.8) into a contour integral, so that the problem reduces

to enumerating poles and evaluating their residues. For UpNq theory the poles are labeled

by N Young diagrams with in total k boxes [28, 55, 56]: one way of phrasing this is that the

UpNq instanton splits into N non-commutative Up1q instantons.

For the SppNq or SOpNq theory it is not that simple to enumerate the poles of the con-

tour integrals. Furthermore, not only the fixed points of the gauge multiplet are more com-

plicated, but (in contrast to the UpNq theory) also matter multiplets contribute additional

poles. As an example, in appendix B we devise a technique to enumerate all the poles for
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an SppNq gauge multiplet. Each pole can still be expressed as a generalized diagram with

signs, but the prescription is much more involved than in the UpNq case.

The instanton partition function Zinst in the Ω-background obviously depends on the

equivariant parameters ε1 and ε2. In fact, it is rather easy to see that the series expansion

of logpZinstq starts out with a term proportional to 1
ε1ε2

, which is the regularized volume of

the Ω-background. Even better, Zinst has a series expansion1

Zinst “ expF inst “ exp

¨

˝

8
ÿ

g“0

h̄2g´2F inst
g pβq

˛

‚, (3.9)

in terms of the parameter h̄2
“ ´ε1ε2 and β “ ´ ε1

ε2
. We call the exponent of the instanton

partition function the instanton free energy F inst. As our notation suggests, we recover the

non-perturbative instanton contribution to the prepotential F0 from the leading contribu-

tion of the exponent when h̄ Ñ 0. This has been showed in [23, 55, 60]. Let us emphasize

that the prepotential F0 does not depend on the parameter β. The higher genus free en-

ergies Fgě1pβq compute gravitational couplings to the N “ 2 gauge theory, and play an

important role in, for example, (refined) topological string theory.

To recover the full prepotential, we need to add classical and 1-loop contributions to

the instanton partition function. We call the complete partition function

ZNek “ ZclasZ1´loopZinst (3.10)

the Nekrasov partition function.

3.2 Instanton counting

In this section we discuss a method to derive the instanton counting formulae for general

gauge groups and matters in various representations. 2

1To find this expansion in merely even powers of h̄ it is crucial to study the twisted kernel of the Dirac
operator, in contrast to the kernel of the Dolbeault operator. This twist is ubiquitous in the theory of integrable
systems. Mathematically, it has been emphasized in this setting in [57]. Physically, it corresponds to a mass
shift m Ñ m` ε1`ε2

2 . This mass shift was studied in several related contexts, see [58, 59]. An exception to the
above expansion is the UpNq theory which has a non-vanishing contribution 1

h̄F
inst
1{2 pβq.

2 Additional explanations about the ADHM moduli space can for instance be found in [54, 61, 62], about
instanton counting in the physics literature [63, 64, 28, 23, 30], and in the mathematics literature in [56, 65, 55,
66, 60, 67, 57], and about Sp{SO instanton counting in specific in [53, 68, 69, 70, 71].
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3.2.1 ADHM construction

Let E be a rank N complex vector bundle on R4 with a connection A and a framing at

infinity. The framing is an isomorphism of the fiber at infinity with CN . The ADHM

construction studies the moduli space Mk of connections A on the bundle E that satisfy

the self-dual instanton equation F`pAq “ 0, up to gauge transformations that are trivial

at infinity. It turns out that this moduli space can be realized as a hyperkähler quotient of

linear data.

UpNq gauge group

Figure 3.1: Quiver representation of the UpNq ADHM quiver. The vector spaces V and W
are k and N-dimensional, respectively, with a natural action of the dual group Upkq and
the framing group UpNq. The maps B1, B2, I and J are linear.

For the gauge group G “ UpNq the linear data consists of four linear maps

pB1, B2, I, Jq P X “ HompV, Vq ‘HompV, Vq ‘HompW, Vq ‘HompV, Wq, (3.11)

where V and W are two complex vector spaces of dimension k and N, respectively. This

linear data is summarized in an ADHM quiver diagram in Figure 3.1. The vector space W

is isomorphic to the fiber of E (which in our case is of rank N). It is best thought of as the

fiber at infinity, as there is a natural action of the framing group UpNq on it, which physi-

cally can be thought of as the large gauge transformations at infinity. The tensor product of

the vector space V with the half canonical bundle K1{2
C2 on C2 – R4, on the other hand, can

be identified with the space of normalizable solutions to the Dirac equation in the back-

ground of the instanton gauge field A. Since the instanton number k “ 1{8π2 ş FA ^ FA is

given by the second Chern class of E, it follows from index theorems that this space has

dimension k, as we advertised above. In particular it carries in a natural way the action

of the dual group Upkq. More algebraically, the vector space V itself is isomorphic to the
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cohomology group H1pEq.

The framing group UpNq and the dual group Upkq thus act naturally on the linear

ADHM data. Setting the three real moment maps

µR “ rB1, B:1s ` rB2, B:2s ` I I: ´ J: J (3.12)

µC “ rB1, B2s ` I J, (3.13)

to zero gives the so-called ADHM equations. The ADHM construction identifies the in-

stanton moduli space MUpNq
k with the hyperkähler quotient of the solutions X to those

equations by the dual group,

MUpkq
k “ X{{Upkq ” µ´1p0q{Upkq. (3.14)

From a physical perspective the ADHM construction can be most natural understood

using D-branes. We can engineer the moduli space of k instantons in the four-dimensional

UpNq theory by putting k Dpp ´ 4q-branes on top of N Dp-branes. The Dpp ´ 4q-branes

appear as zero-dimensional instantons on the transverse four-dimensional manifold. The

maps pB1, B2, I, Jq can be understood as the zero-modes of Dpp´ 4q´Dpp´ 4q), Dp´Dpp´

4q and Dpp´ 4q´Dp open strings, respectively, and the ADHM equations are the D-term

conditions. The ADHM quotient can thus be identified with the moduli space of the Higgs

branch of the Upkq gauge theory on the Dpp´ 4q-branes.

Since the above quotient is highly singular due to small instantons, we change it by

giving non-zero value to the Fayet-Illiopolous term ζ. This is equivalent to turning on NS

2-form field on the Dp-branes, and the resulting desingularized quotient can be interpreted

as a moduli space of non-commutative instantons [72].

To perform our computations another, equivalent way of representing the ADHM con-

struction will be useful. Let us introduce the spinor bundles S˘ of positive and negative

chirality on R4, and for brevity denote the half canonical bundle by L “ K1{2
C2 . Consider
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the sequence

V b L´1 Ñσ

V b S´

‘

W

Ñτ V b L , (3.15)

where S´ and L are the fibers of the bundles S´ and L, respectively. Although these can

all be trivialized, they are non-trivial equivariantly. We thus need to keep track of them for

later. The mappings σ and τ are defined by

σ “

¨

˚

˚

˚

˝

z1 ´ B1

z2 ´ B2

J

˛

‹

‹

‹

‚

, τ “
´

´z2 ` B2, z1 ´ B1, I
¯

, (3.16)

where pz1, z2q are coordinates on C2. From the ADHM equations it follows that τ ˝ σ “ 0,

so that the sequence (3.15) is a chain complex. Since σ is injective and τ surjective, it is a

so-called monad.

Notice that the vector space V b L´1 at the first position of the sequence (3.15) fixes the

vector spaces at the remainder of the sequence. The fields B1 and B2 are coordinates on C2

and thus map V b L´1 Ñ V b S´. The fields I and J are the two scalar components of an

N “ 2 hypermultiplet, that properly speaking transform as sections of the line bundle L.

To recover the vector bundle E, we vary the cohomology space pKer øq{pIm œq over

C2, which gives indeed a vector bundle whose fiber at infinity is equal to W. One can also

show that the curvature of this bundle is self-dual and that it has instanton number k. Even

better, every solution of the self-dual instanton equations can be found in this way.

We are now ready to construct the main tool in our computation. This is the universal

bundle E over the instanton moduli spaceMUpNq
k ˆR4. The universal bundle is obtained

by varying the ADHM-parameters of the maps in the complex (3.15). It has the property

that

EA,z “ Ez, (3.17)

i.e., its fiber over an element A P MUpNq
k is the total space of the bundle E with connec-
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tion A. Remember that the bundle E has fiber W at infinity in R4 and that the vector space

V of solutions to the Dirac equations is related to its first cohomology H1pEq. The vector

spaces V and W can be extended to bundles V andW over the instanton moduli space. We

can then easily compute the Chern character of the universal bundle E from its defining

complex (3.15) as

ChpEq “ ChpWq `ChpVq
´

ChpS´q ´ChpLq ´ChpL´1q

¯

. (3.18)

SO{Sp gauge groups

The construction for SOpNq and SppNq gauge groups is very similar. We define SppNq to

be the special unitary transformations on C2N that preserve its symplectic structure Φs,

and SOpNq the special unitary transformations on CN that preserve its real structure Φr.

Figure 3.2: Quiver representation of the SppNq ADHM quiver. The vector spaces V and W
are k and 2N-dimensional, respectively. V has a real structure Φr and a natural action of
the dual group SOpkq, whereas W has a symplectic structure Φs and a natural action of the
framing group SppNq. The maps B1, B2 and J are linear.

For SppNq the linear data that is needed to define the ADHM complex consists of

pB1, B2, Jq P Y “ HompV, Vq ‘HompV, Vq ‘HompV, Wq, (3.19)

where V and W are a complex k and 2N-dimensional vector space, resp., together with a

real structure Φr on V and a symplectic structure Φs on W. This is illustrated as a quiver

diagram in Figure 3.2. The dual group is given by Opkq, so that the moduli space of SppNq

instantons is given by

MSppNq
k “ tpB1, B2, Jq |ΦrB1, ΦrB2 P S2V˚, ΦrrB1, B2s ´ J˚Φs J “ 0u{Opkq. (3.20)

For SOpNqwe just need to replace V and W by a complex 2k and N-dimensional vector

space, resp., as well as change the role of symplectic structure and the real structure. This
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Figure 3.3: Quiver representation of the SOpNq ADHM quiver. The vector spaces V and
W are 2k and N-dimensional, respectively. V has a symplectic structure Φs and a natural
action of the dual group Sppkq, whereas W has a real structure Φr and a natural action of
the framing group SOpNq. The maps B1, B2 and J are linear.

is illustrated as a quiver diagram in Figure 3.3. The dual group is given by Sppkq, so that

the moduli space of SOpNq instantons is given by

MSOpNq
k “ tpB1, B2, Jq |ΦsB1, ΦsB P ^2V˚, ΦsrB1, B2s ´ J˚Φr J “ 0u{Sppkq. (3.21)

A subtle issue for the above moduli spaces is that there is no appropriate Gieseker

desingularization which resolves the singularity due to the zero-sized instantons (as in

the case of UpNq). One way to understand this is by considering the string theory em-

bedding. The above ADHM constructions can be obtained by considering Dp-Dpp ´ 4q

system and also adding an O˘p plane on the top of the Dp branes. In the case of UpNq,

the non-commutativity parameter that we introduce is coming from the NS 2-form field

on the Dp-brane. But, the orientifold makes it impossible to turn on the background NS

2-form field. So we cannot resolve the singularity in the same way. An alternative way

to resolve the singularity was studied by [73], but a physical understanding of this proce-

dure is still lacking. Nevertheless, we will see that the equivariant volume of the moduli

space can be obtained without explicitly resolving the singularity [53]. This formula is ver-

ified mathematically using Kirwan’s formula of the equivariant volume of the symplectic

quotient [69].

We can then again represent any SppNq instanton solution E as the cohomology bundle

of the sequence

V b L´1 ÝÑσ

V b S´

‘

W

ÝÑσ˚β˚ V˚ b L, (3.22)
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where the mappings σ and β are defined by

σ “

¨

˚

˚

˚

˝

z1 ´ B1

z2 ´ B2

J

˛

‹

‹

‹

‚

, β “

¨

˚

˚

˚

˝

0 Φr 0

´Φr 0 0

0 0 Φs

˛

‹

‹

‹

‚

. (3.23)

The ADHM equations ensure that σ˚β˚σ “ 0, and the sequence (3.22) is another monad.

Analogously to the UpNq example, when varying the ADHM-parameters in the com-

plex (3.22) we find the universal bundle ESppNq. V is the k-dimensional solution space

of the SppNq Dirac operator on C2, which carries a real structure, and W is the fiber of E at

infinity, and hence carries a symplectic structure.

Similarly, any SOpNq instanton solution E can be represented as the cohomology bun-

dle of the complex (3.22) as well, once we exchange Φr with Φs in the definition of the map

β. The resulting complex is a short exact sequence, since according to the ADHM equa-

tions σ˚β˚σ “ 0. By varying the ADHM-parameters we find the SOpNq universal bundle

ESOpNq. Note that V is the 2k-dimensional solution space of the SOpNq Dirac operator on

C2, which carries a symplectic structure, whereas W is the fiber of E at infinity, and hence

carries a real structure.

3.2.2 Ω-background and equivariant integration

Let us start with a supersymmetric N “ 2 gauge theory without matter. This theory can

be topologically twisted (using the so-called Donaldson twist), so that its BPS equation is

the instanton equation F`A “ 0. The instanton partition function is given by an integral

over the moduli spaceMinst
k ,

Zinst “
ÿ

k

qk
¿

Minst
k

1 , (3.24)

where
ű

1 indicates the formal volume of the hyperkähler quotient.

If we add matter multiplets to the gauge theory, say a singleN “ 2 hypermultiplet, the
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BPS equations turn into the monopole equations

F`A,µν `
i
2

qαΓ α
µν βqβ “ 0, (3.25)

ÿ

µ

Γµ
9ααDA,µqα “ 0.

Here, Γµ are the Clifford matrices and
ř

µ ΓµDA,µ is the Dirac operator in the instanton

background for the connection A. Furthermore, qα is the lowest component of the twisted

hypermultiplet. The representation of the connection A in the connection DA is deter-

mined by the representation of the gauge group that the hypermultiplet is in. As is argued

in section 3.4 of [68], it is possible to deform the action in a Q-exact way such that the first

equation gets an extra factor

F`A,µν `
i

2t
qαΓ α

µν βqβ “ 0, ,

for an arbitrary value of t. Taking the limit t Ñ8 reduces this BPS equation to the selfdual

instanton equation. Given an instanton solution A, the remainder of the action is forced

to localize onto solutions of the Dirac equation in the background of A. The kernel of the

Dirac operator thus forms a fiber over the instanton moduli spaceMinst.

Let us start out by adding a single hypermultiplet in the fundamental representation

of the gauge group. Remember that the corresponding kernel was already encoded in the

vector bundle V bL in the original ADHM construction. N f hypers are simply described

by the tensor product of N f vector bundles V . Each individual factor then carries the

usual action of the dual group. Moreover, there is now also a natural action of the flavor

symmetry group. By general arguments (see, for example, [74]) this partition function then

localizes to the integral3

Zinst “
ÿ

k

qk
¿

Minst
k

epV bLbMq (3.26)

of the Euler class of the vector bundle V b L of solutions to the Dirac equation over the

3Here (and elsewhere in the paper) L is really just the fiber of the half-canonical bundle L at the origin of
R4. More formally, we take the cup product of the bundle V bLbM overMinst

k ˆR4 with the push-forward
i˚ of the fundamental class rMinst

k s, where i embeds the moduli spaceMinst
k in the productMinst

k ˆR4 at the
origin of R4.
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moduli spaceMinst. The vector space M “ CN f encodes the number of flavors.

Let us now discuss how to compute this partition function. First, however, note that

(3.26) diverges. We will implicitly take care of the UV divergence in the next steps by

computing a holomorphic character [53], but we also need to deal with IR divergences:

the instanton moduli space has flat directions where the instantons move off to infinity.

One way to regularize the instanton partition function is to introduce the so-called Ω-

background, where we use equivariant integration with respect to the torus

T2
ε1,ε2

“ Up1qε1 ˆUp1qε2 , (3.27)

that acts on R4 “ C ‘ C by a rotation pz1, z2q Ñ peiε1 z1, eiε2 z2q around the origin. This

forces the instantons to be localized at the origin of R4. The resulting Ω-background is

denoted by R4
ε1,ε2

. The partition function in the Ω-background is defined by equivariantly

integrating with respect to the T2
ε1,ε2

–action.

We have already introduced the other components of the equivariance group: The torus

TN
a of the gauge group G acting on the fiber W with weights al , the torus Tk

φi
of the dual

group acting on V with weights φi, and lastly the torus T
N f
m of the flavor symmetry group

acting on the flavor vector space M with weights mj. In total, we perform the equivariant

integration with respect to the torus

T “ T2
ε1,ε2

ˆ TN
a ˆ Tk

φ ˆ T
N f
m . (3.28)

The instanton partition function in the Ω-background is thus defined as the equivariant

integral

Zpa, m, ε1, ε2q “
ÿ

k

qk
¿

Mk

eTpV bLbMq , (3.29)

where eT is the equivariant Euler class with respect to the torus T. We will evaluate (3.29) in

two steps, using the fact thatMk is given by the solutions µ´1p0q to the ADHM equations

quotiented by the dual group GD
k . We will thus first perform the equivariant integral over

µ´1p0q, and then take care of the quotient by integrating out GD
k , which gives a multiple

integral over φi.
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To perform the first part of the above integral, we apply the famous equivariant local-

ization theorem, which tells us that the integral only depends on the fixed points of the

equivariant group and its weights at those points. This then leads to a rational function in

all the weights.

More precisely, suppose that the action of the element t P t on the integration spaceM

(which is represented by a vector field Vt) has a discrete number of fixed points f . Then

the equivariant localization theorem says that

ż

M
α “

ÿ

f

ι˚α
ś

k wkrtsp f q
, (3.30)

where ι embeds the fixed point locus in M and where wkrtsp f q are the weights of the

action of the vector field Vt on the tangent space to the fixed point f P M. If we apply

the localization theorem to the integral (3.29), the denominator of the resulting expression

contains a product of weights of the torus action on the tangent bundle to the instanton

moduli space. Its numerator is given by another product of weight of the torus action on

the bundle V bLbM of Dirac zero modes.

Let us start with computing the weights in the numerator, and for convenience restrict

the matter content to a single hypermultiplet in the fundamental representation of the

gauge group. Since the bundle in the numerator is the kernel of the Dirac operator, we can

equally well obtain these weights from the equivariant index IndT “
ř

k nkeiwk of the Dirac

operator. For the purpose of (3.30), the sum over weights can be translated into a product

by the formula

ÿ

k

nkeiwk Ñ
ź

i

pwkq
nk . (3.31)

To compute the equivariant index IndT of the Dirac operator coupled to the instanton

background, we make use of the equivariant version of Atiyah-Singer index theorem. It is

given by

IndT “

ż

C2
ChTpE bLqTdTpC

2q “
ChTpE bLq|z1“z2“0

peiε1 ´ 1qpeiε2 ´ 1q
, (3.32)

where E is the universal bundle over the instanton moduli spaceMk that we constructed
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in the previous section. Remember that the fiber of E over an element A in the instanton

moduli space is given by the total space of the instanton bundle E with connection A. The

second equality is obtained by applying the equivariant localization theorem and using

the equivariant Todd class of C2 equals

TdTpC
2q “

ε1ε2

peiε1 ´ 1qpeiε2 ´ 1q
, (3.33)

where the weights of the action of Tε1,ε2 on C2 are ε1 and ε2.

The purpose of all of this was to reduce everything to the equivariant Chern character

of the universal bundle E , for which have found the simple expression (3.18) in terms

of the Chern characters of the vector bundles W , V , L and S . We can easily obtain the

weights of the torus T on these bundles, so that we can compute the contribution of a

fundamental hypermultiplet. We will write down explicit expressions in a moment, but

let us first explain how to obtain the weights for other representations.

If we instead wish to extract the weights for an anti-fundamental hyper we just need re-

place the equivariant character for universal bundle E by its complex conjugate E˚. Other

representations that are tensor products of fundamentals and anti-fundamentals (or sym-

metric or antisymmetric combinations thereof) can be obtained similarly. For instance, the

adjoint representation for a classical gauge group can be expressed as some product of the

fundamental and the anti-fundamental representation. This product is the tensor product

for UpNq, the anti-symmetric product for SOpNq and the symmetric product for SppNq.

Note that in those cases we also obtain the representations of the dual groups. We thus

obtain the weights for an adjoint hypermultiplet by computing the character of the ap-

propriate product of the universal bundle and its complex conjugate. The weights for the

gauge multiplet are the same as for an adjoint hypermultiplet, but end up in the denomina-

tor of the contour integral instead of the numerator. This is consistent with the localization

formula (3.29), as the tangent space to the instanton moduli space can be expressed as the

same product of the universal bundle and its dual.

Once we obtain the index, we can extract the equivariant weights from it by using the

rule (3.31). Finally, we need to integrate out the dual group GD
k . This leads to a multiple

integral over dφi along the real axis. We will absorb factors appearing from this integration

such as the Vandermonde determinant of the Haar measure and the volume of the dual
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group into the contribution of the gauge multiplet zk
gauge. The resulting integrand actually

has poles on the real axis, which we cure by giving small imaginary parts to the equivari-

ance parameters. We will describe this in more detail once we turn to the actual evaluation

of such integrals. Since the integrand obtained is a rational function in the parameters of

GD
k , we can convert the integral into a contour integral around the poles of the integrand.

In total the equivariant integral (3.29) over the moduli space thus reduces to

Zkpa, m, ε1, ε2q “

¿

ź

i

dφi
ź

R

zk
Rpφi, a, m, ε1, ε2q, (3.34)

where zk
R are the integrands that represent the matter content of the gauge theory and

where the φi’s parametrize the dual group. We will discuss which poles (3.34) is integrated

around shortly.

Equivariant index for UpNq theories

Let us see how this works out explicitly for gauge group UpNq. We first have a look at

the weights of the torus T2
ε1,ε2

at the fibers of the half-canonical bundle L and the spinor

bundles S˘ at the origin of R4. Remember that the torus T2
ε1,ε2

acts on the coordinates

z1 and z2 with weights ε1 and ε2, respectively. It thus acts on local sections s of the half-

canonical bundle as

s P L : s ÞÑ eiε`s ,

with ε˘ “
e1˘e2

2 . Local sections of the four-dimensional spinor bundles S˘ can be written

in terms of those of the two-dimensional spinor bundles on R2. Since the weights of the

torus T1
εj

on the local sections of the two spinor bundles on R2 are ˘ εj
2 , the torus T2

ε1,ε2
acts

on local sections ψ˘ of the four-dimensional spinor bundle as

ψ˘ P S˘ : ψ˘ ÞÑ diagpeiε˘ , e´iε˘qψ˘ .

Let us continue with the weights of the equivariant torus TN
a ˆ Tk

φ. The equivariant
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torus then acts on the linear ADHM data as

v P V : v ÞÑ diag peiφ1 , ¨ ¨ ¨ , eiφkq v ,

w P W : w ÞÑ diag peia1 , ¨ ¨ ¨ , eiaNqw .

Combining all weights and using the formula (3.18), we find that the equivariant Chern

character of the universal bundle EUpNq is given by

ChTpEUpNqq|z1“z2“0 “

n
ÿ

l“1

eial ´ peiε1 ´ 1qpeiε2 ´ 1q
k
ÿ

i“1

eiφi´iε` . (3.35)

Using the index formula (3.32) we have now computed the contribution for a fundamental

massless hypermultiplet. As we explained before we can easily generalize this to other

representations. In particular, we can give the hypermultiplet a mass by introducing a

weight m for the flavor torus T1
m. This will act on the linear ADHM data as

v P V : v ÞÑ diag peim, ¨ ¨ ¨ , eimq v ,

w P W : w ÞÑ diag peim, ¨ ¨ ¨ , eimqw .

For gauge group UpNq the poles of the resulting contour integral (3.34) can be labeled

by a set of colored Young diagrams Y “ pY1, Y2, ¨ ¨ ¨YNq [28, 55, 56]. Therefore, the partition

function can be written as

Zpa, m, ε1, ε2q “
ÿ

Y

q|Y|
ź

R

zR,|Y|pY; a, m, ε1, ε2q . (3.36)

When the gauge group is a product of M factors, the instanton partition function can be

written as a sum over M colored Young diagrams Y. For SO{Sp gauge groups, we will

see that the structure of the contour integral is similar. However, the poles are no longer

labeled by a simple set of colored Young diagrams.
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Equivariant index for SO{Sp gauge theories

For SppNq the weights of the equivariant torus action on the vector spaces V and W are

given by

v P V : v ÞÑ diag peiφ1 , ¨ ¨ ¨ , eiφn , p1q , e´iφ1 , ¨ ¨ ¨ , e´iφnq v

w P W : w ÞÑ diag peia1 , ¨ ¨ ¨ , eiaN , e´ia1 , ¨ ¨ ¨ , e´iaNqw ,

where k “ 2n` χ, with n “ rk{2s and χ ” k pmod 2q. The p1q is inserted when χ “ 1 and

omitted when χ “ 0. The equivariant character of the universal bundle is thus given by

ChTpESpq|z1“z2“0 “

N
ÿ

l“1

´

eial ` e´ial

¯

(3.37)

´peiε1 ´ 1qpeiε2 ´ 1q

˜

n
ÿ

i“1

´

eiφi´iε` ` e´iφi´iε`
¯

` χ e´iε`

¸

.

For SOpNq the weights are given by

v P V : v ÞÑ diag peiφ1 , ¨ ¨ ¨ , eiφk , e´iφ1 , ¨ ¨ ¨ , e´iφkq v

w P W : w ÞÑ diag peia1 , ¨ ¨ ¨ , eian , p1q , e´ia1 , ¨ ¨ ¨ , e´ianqw ,

where N “ 2n` χ, such that n “ rN{2s and χ ” N pmod 2q. Again, p1q is inserted when

χ “ 1 and omitted when χ “ 0. The equivariant character of the universal bundle is

therefore equal to

ChTpESOq|z1“z2“0 “

n
ÿ

l“1

´

eial ` e´ial

¯

` χ (3.38)

´peiε1 ´ 1qpeiε2 ´ 1q
k
ÿ

i“1

´

eiφi´iε` ` e´iφi´iε`
¯

.

Building from these expressions we can obtain the instanton partition functions of quiver

gauge theories containing matter fields in various representations.

3.2.3 Contour integrals for various matter fields with different gauge groups

Let us collect various contour integrands for the instanton counting.
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Fundamental of UpNq

The equivariant index for a fundamental UpNq hypermultiplet of mass m is given by

IndT “

ż

C2
ChTpEU bLbMqTdTpC

2q

“

řN
l“1 eipal`ε``mq

peiε1 ´ 1qpeiε2 ´ 1q
´

k
ÿ

i“1

eipφi`mq. (3.39)

The first term corresponds to the 1-loop factor. We read the matter contribution to the

contour integral as

zN
k “

k
ź

i“1

pφi `mq. (3.40)

The anti-fundamental matter can be obtained similarly:

IndT “

ż

C2
ChTpE˚U bLbMqTdTpC

2q

“

řN
l“1 e´ipal´ε`´mq

peiε1 ´ 1qpeiε2 ´ 1q
´

k
ÿ

i“1

e´ipφi`ε`´mq (3.41)

so that

zN̄
k “

k
ź

i“1

pφi ´mq. (3.42)

Note that zN
k pφi,´m, ε1, ε2q “ zN̄

k pφ, m, ε1, ε2q.

Adjoint of UpNq

The equivariant index is

IndT “

ż

C2
ChTpE b E˚ bLbMqTdTpC

2q

“

řN
l,m“1 eipal´am`ε``mq

peiε1 ´ 1qpeiε2 ´ 1q
´

k,N
ÿ

i,l“1

eipφi´al`mq ´

k,N
ÿ

i,l“1

e´ipφi´al´mq

` peiε1 ´ 1qpeiε2 ´ 1q
k
ÿ

i,j“1

eipφi´φj´ε``mq, (3.43)
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and the integrand is given by

zadj
k “

k,N
ź

i,l“1

pφi ´ al `mq
k,N
ź

i,l“1

pφi ´ al ´mq
k
ź

i,j“1

pφij `m´ ε´qpφij `m` ε´q

pφij `m` ε`qpφij `m´ ε`q
, (3.44)

where φij “ φi ´ φj and ε˘ “
ε1˘ε2

2 .

UpNq gauge multiplet

In general, the equivariant index of a gauge multiplet is given by the character of the

tangent space of the moduli space [30],

IndTpTpMq “ ´IndTpE b E˚q. (3.45)

Therefore,

IndT “ ´

ż

C2
ChTpE b E˚qTdTpC

2q

“ ´

řN,N
l,m“1 eipal´amq

peiε1 ´ 1qpeiε2 ´ 1q
`

k,N
ÿ

i,m“1

eipφi´ε`´amq `

k,N
ÿ

j,l“1

e´ipφj`ε`´alq

´ peiε1 ´ 1qpeiε2 ´ 1q
k,k
ÿ

i,j“1

eipφi´φj´εq. (3.46)

The resulting contour integral is given by

Zk “
1
k!

ˆ

ε

ε1ε2

˙k ¿
˜

k
ź

i“1

dφi

2πi

¸

(3.47)

ˆ
1

śk,N
i,m“1pφi ´ amq

śk,N
j,l“1pφj ´ al ` ε1 ` ε2q

ź

1ďiăjďk

φ2
ijpφ

2
ij ´ ε2q

pφ2
ij ´ ε2

1qpφ
2
ij ´ ε2

2q
.

where φij “ φi ´ φj. The poles of the contour integral can be classified in terms of N-

colored Young diagrams with k boxes. In the case of UpNq linear quiver theory, there

is no additional pole besides coming from the gauge multiplet. Therefore, the instanton

partition function for the UpNq theories can be simply written in terms of sum over colored

Young diagrams ~Y “ pY1, ¨ ¨ ¨ , YNq.



42

Bifundamental pN1, N̄2q of UpN1q ˆUpN2q

The index is

IndT “

ż

C2
ChTpE1 b E˚2 bLbMqTdTpC

2q

“

řN1,N2
l,m“1 eipal´bm`m`ε`q

peiε1 ´ 1qpeiε2 ´ 1q
´

k1,N2
ÿ

i,l“1

eipφ1,i´bm`mq ´

k2,N1
ÿ

i,l“1

e´ipφ2,j´al´mq

` peiε1 ´ 1qpeiε2 ´ 1q
k1,k2
ÿ

i,j“1

eipφ1,i´φ2,j´ε``mq. (3.48)

The corresponding integral is

zpN1,N̄2q

k1,k2
“

k1,N2
ź

i,l“1

pφ1,i ´ bl `mq
k2,N1
ź

i,l“1

pφ2,i ´ al ´mq

ˆ

k1,k2
ź

i,j“1

pφ1,i ´ φ2,j `m´ ε´qpφ1,i ´ φ2,j `m` ε´q

pφ1,i ´ φ2,j `m` ε`qpφ1,i ´ φ2,j `m´ ε`q
. (3.49)

We can obtain N2 fundamental matter contributions (3.40) with masses m´ bl by setting

k1 “ k, k2 “ 0. Also, by setting φ1,i “ φ2,i “ φi and ai “ bi, we obtain adjoint matter (3.43).

Fundamental of SppNq

The equivariant index for a fund. SppNq hypermultiplet of mass m is given by

IndT “

ż

C2
ChTpESp bLbMqTdTpC

2q (3.50)

“
1

peiε1 ´ 1qpeiε2 ´ 1q

N
ÿ

l“1

´

eial`im`iε` ` e´ial`im`iε`
¯

´

n
ÿ

i“1

´

eiφi`im ` e´iφi`im ` χeim
¯

,

where k “ 2n ` χ and ε` “
ε1`ε2

2 . Here, we tensored the universal bundle ESp by the

vector space M – C on whose elements the flavor symmetry Up1qm acts by v ÞÑ eimv.

Since the first term in the index computes perturbative terms in the free energy, the contour
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integrand for the instanton contribution to the free energy is

zN
k “ mχ

n
ź

i“1

pφi `mqpφi ´mq. (3.51)

SppNq gauge multiplet

The equivariant index for an SppNq gauge multiplet is given by

IndT “ ´

ż

C2
ChTpSym2ESppNqqTdTpC

2q (3.52)

The resulting contour integral is

Zk “
p´1qn

2nn!

ˆ

ε

ε1ε2

˙n „
´1

2ε1ε2Ppε`q

χ

(3.53)

ˆ

¿

˜

n
ź

i“1

dφi

2πi

¸

∆p0q∆pεq
∆pε1q∆pε2q

n
ź

i“1

1
p2φ2

i ´ ε2
1qp2φ2

i ´ ε2
2qPpφi ` ε`qPpφi ´ ε`q

with ε “ ε1 ` ε2 and

Ppxq “

N
ź

l“1

px2 ´ a2
l q ,

∆pxq “

«

n
ź

i“1

pφ2
i ´ x2q

ffχ
ź

iăj

`

pφi ` φjq
2 ´ x2˘ `pφi ´ φjq

2 ´ x2˘ .

We describe a way to enumerate the poles of the above contour integral in appendix B,

using what we call generalized Young diagrams.4

Bifundamental of SppN1q ˆ SppN2q

The equivariant index of a bifund. SppN1q ˆ SppN2q hyper with mass m is given by

IndT “

ż

C2
ChTpE1

Sp b E2
Sp bLbMqTdTpC

2q. (3.54)

where M – C is acted upon by the flavor symmetry group Up1qm. Here we extended the

universal bundles E1
Sp and E2

Sp over the product MSppN1q,k1
ˆMSppN2q,k2 ˆR4 by pulling

4The cases where ε1 “ ´ε2 were derived and discussed in [70, 71]. But their derivation can not be easily
generalized to the general ε1, ε2.
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them back using the respective projection maps πi : MSppN1q,k1
ˆMSppN2q,k2 ÑMSppNiq,ki

.

Define

P1px, aq “
N1
ź

l

px2 ´ a2
l q,

P2px, bq “
N2
ź

m
px2 ´ b2

mq,

∆pxq “
n1,n2
ź

i,j“1

ppφi ` φ̃jq
2 ´ x2qppφi ´ φ̃jq

2 ´ x2q,

∆1pxq “
ź

i

pφ2
i ´ x2q,

∆2pxq “
ź

i

pφ̃2
i ´ x2q,

where ki “ 2ni ` χi. Then the instanton contour integrand is given by

zN1,N2
k1,k2

“

n1
ź

i

P2pφi `mqP2pφi `m` εq
n2
ź

j

P1pφ̃j `mqP1pφ̃j `m` εq (3.55)

ˆ

N1
ź

l

pa2
l ´m2qχ2

N2
ź

k

pb2
k ´m2qχ1

ˆ

ˆ

∆pm´ ε´q∆pm` ε´q

∆pm´ ε`q∆pm` ε`q

˙ˆ

∆pm´ ε´q∆pm` ε´q

∆pm´ ε`q∆pm` ε`q

˙χ2

ˆ

ˆ

∆pm´ ε´q∆pm` ε´q

∆pm´ ε`q∆pm` ε`q

˙χ1
ˆ

pm´ ε´qpm` ε´q

pm´ ε`qpm` ε`q

˙χ1χ2

,

where ε “ ε1` ε2. Note that there are additional poles that involve the mass parameter m.

The contour prescription is to assume ε3 “ ´m´ ε` and ε4 “ m´ ε` to have a positive

imaginary value. This is the same prescription as for the massive adjoint hypermultiplet

in the N “ 2˚ theory [75].
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Fundamental of SOpNq

The equivariant index of a fund. SOpNq hypermultiplet of mass m is given by

IndT “

ż

C2
ChTpESO bLbMqTdTpC

2q (3.56)

“
1

peiε1 ´ 1qpeiε2 ´ 1q

˜

χeiε` `

n
ÿ

l“1

´

eial`im`iε` ` e´ial`im`iε`
¯

¸

´

k
ÿ

i“1

´

eiψi`im ` e´iψi`im
¯

,

where N “ 2n` χ. The corresponding instanton integrand is

zN
k “

k
ź

i“1

pψi `mqpψi ´mq. (3.57)

SOpNq gauge multiplet

The equivariant index for an SOpNq gauge multiplet is given by

IndT “ ´

ż

C2
ChTp^

2ESOpNqqTdTpC
2q (3.58)

The resulting contour integral is

Zk “
p´1qkpN`1q

2kk!

ˆ

ε

ε1ε2

˙k ¿
˜

k
ź

i“1

dψi

2πi

¸

∆p0q∆pεq
∆pε1q∆pε2q

ψ2
i pψ

2
i ´ ε2

`q

Ppψi ` ε`qPpψi ´ ε`q
(3.59)

where ε “ ε1 ` ε2 and

Ppxq “ xχ
n
ź

l“1

`

x2 ´ a2
l
˘

,

∆pxq “
ź

iăj

`

pψi ´ ψjq
2 ´ x2˘ `pψi ` ψjq

2 ´ x2˘ .

When ε1 “ ´ε2 the pole structure is simplified and described by a set of N-colored Young

diagrams like for the gauge group UpNq.5

5The cases where ε1 “ ´ε2 were derived and discussed in [70, 71]. But their derivation can not be easily
generalized to the general ε1, ε2.
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3.3 One-instanton contribution for arbitrary gauge group

In this section, we study the 1-instanton partition function for arbitrary gauge group. We

follow the presentation of [53] in this section. Consider the partition function of the 5d

supersymmetric field theory with the same matter content on the spacetime of the form

C2 ˆR parameterized by pz1, z2, x5q, with the identification

pz1, z2, x5q „ pz1eε1β, z2eε2β, x5 ` βq, (3.60)

together with an appropriate SUp2qR symmetry rotation to preserve supersymmetry. The

vev of the 4d scalar field can be included either via the vev of the 5d scalar field, or via

the Wilson line of the gauge field around x5. Here we use the latter. Then the partition

function is

Z5d “ trp´1qF exp
”

iβH ` βpε1 J1 ` ε2 J2 ` ai Hiq
ı

(3.61)

where H is the Hamiltonian, J1,2 are the rotations of z1,2-planes corrected with an appro-

priate amount of the SUp2q R-symmetry to commute with the supercharge, and Hi are the

generators of the Cartan of the gauge group. Here the trace is taken in the field theory

Hilbert space.6

Using the localization, the partition function can be written as the product of the one-

loop contribution and the instanton contribution. The contribution Zk from k-instanton

configurations is

Zk,5d “ trHk,BPS exp βpε1 J1 ` ε2 J2 ` ai Hiq (3.62)

where Hk,BPS is the BPS subspace of the Hilbert space of the supersymmetric quantum

mechanics from the k-instanton configurations. For the pure gauge theory, this is just the

supersymmetric sigma model whose target space is the k-instanton moduli spaceMG,k of

gauge group G. Then the BPS subspace Hk,BPS is the space of holomorphic functions on

MG,k. Therefore Zk,5d is just the character of the holomorphic functions on MG,k under

the action of the spacetime rotation Up1q2 and the gauge rotation G. This quantity is also

known as the Hilbert series.
6Physically, it would be more natural to take ε1,2 and ai to be purely imaginary, but supersymmetry guar-

antees that Z is holomorphic with respect to them. For convenience we regard ε1,2 as real and ai as purely
imaginary.
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In the β Ñ 0 limit, Zk,5d is known to behave as

Zk,5d „ β´2kh_Zkp~a; ε1,2q (3.63)

and then the 4d instanton partition function is given by

Zinst “
ÿ

k

Λ2kh_Zkp~a; ε1,2q. (3.64)

Then the instanton part of the prepotential is given by

Finst “ lim
ε1,ε2Ñ0

ε1ε2 log Zinst. (3.65)

3.3.1 One-instanton contribution

Let us calculate the one-instanton contribution for arbitrary G. When G is classical, we

can use the ADHM description of the instanton moduli space to obtain the contribution

[53, 70, 1]. Here, we use a more direct approach.

The one-instanton configuration of arbitrary gauge group G is obtained by embedding

an SUp2q BPST instanton into G via a map SUp2q ãÑ G associated to the long root of G

[76, 77, 78, 79, 80]. Therefore the one-instanton moduli space has a decomposition

MG,1 “ C2 ˆ M̃G,1 (3.66)

where the factor C2 stands for the center of the instanton, and M̃G,1 stands for the size

and the gauge direction of the instanton. MG,1 is a hyperkähler cone of real dimension

4ph_ ´ 1q.

Holomorphic functions on C2 are just polynomials of the coordinates z1 and z2, and the

character under the rotations Up1q2 Ă SOp4q is just p1´ eβε1q´1p1´ eβε2q´1. The space of

holomorphic functions on M̃G,1 was known to mathematicians, e.g., [81, 82] using the fact

that M̃G,1 is the orbit of the highest weight vector in gC under GC. The same space was also

studied from a physical point of view by [83]. The conclusion is that as the representation

of Up1q2 ˆ G, the space of the holomorphic functions onMG,1 is decomposed as

à

m
pT1T2q

bm bVp´m~α0q (3.67)
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|W| |∆l| G0 |W| |∆l| G0

An pn` 1q! n2 ` n An´2 Bn 2nn! 2npn´ 1q A1 ˆ Bn´2
Dn 2n´1n! 2npn´ 1q A1 ˆDn´2 Cn 2nn! 2n Cn´2
E6 72 ¨ 6! 72 A5 F4 1152 24 C3
E7 72 ¨ 8! 126 D6 G2 12 6 A1
E8 192 ¨ 10! 240 E7

Table 3.1: Additional data of groups, required for the analysis in Appendix 3.3.2.

where Ti is the 1-dimensional representation of Up1q with character eβεi , Vp~wq is the irre-

ducible representation of G of the highest weight ~w, and ~́α0 is the highest root of the root

system of G. The factor pT1T2q
bm arises from the fact that the radial direction is generated

by epε1`ε2q{2 under the same Up1q2 Ă SOp4q.

Using the Weyl character formula, the character of this representation can be expressed

as a summation over Weyl group elements, which can then be simplified as a summation

over long roots, as we derive in 3.3.2. The end result is that the 4d 1-instanton contribution,

including the contribution from the centre of mass, is given by

Zk“1 “ ´
1

ε1ε2

ÿ

~γP∆l

1
pε1 ` ε2 `~γ ¨~aqp~γ ¨~aq

ś

~γ_ ~̈α“1, ~αP∆p~α ¨~aq
, (3.68)

where ∆ and ∆l are the sets of the roots and the long roots, respectively. The one-instanton

contribution to the prepotential via (3.65) reproduces the instanton calculation by Ito and

Sasakura [84]. Explicit results for individual G will be discussed in Sec. 5.2.3.

3.3.2 Hilbert series of the one-instanton moduli space

In this section we derive expression (3.68) by computing the Hilbert series of the one-

instanton moduli space. Let Vp~wq be the highest weight representation of G of highest

weight ~w. As is conventional, we denote the highest root by ~́α0, so that Vp ~́α0q is the

adjoint representation. As explained in Sec. 3.3.1, the holomorphic function on the centered

1-instanton moduli space M̃G,1 has the irreducible decomposition

V “

8
à

m“0
Vp´m~α0q b Tbm , (3.69)
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under the action of Up1q ˆ G, where T is a one-dimensional representation of Up1q. The

character, or equivalently the Hilbert series is then

Z “ trVe~φeµ (3.70)

where ~φ is an element of the Cartan subalgebra of G, and eµ is the Up1q action. We will

abbreviate e~α¨~φ as e~α. The Weyl character formula then gives

Z “
8
ÿ

m“0

emµ

ř

wPW spwqe´wm~α0`w~ρ
ś

~αP∆`pe~α{2 ´ e ~́α{2q
“

ř

wPW spwqew~ρ{p1´ eµ´w~α0q
ś

~αP∆`pe~α{2 ´ e ~́α{2q

“
ÿ

~γP∆l

1
p1´ eµ`~γq

ś

~αP∆`pe~α{2 ´ e ~́α{2q

ÿ

wPW
´w~α0“~γ

spwqew~ρ. (3.71)

Here, ∆ is the set of roots, ∆l is the set of long roots, ∆` is the set of positive roots, ~ρ is the

Weyl vector, and spwq is the sign of an element w of the Weyl group W.

Now, consider a subgroup G0 of G, whose Dynkin diagram is formed by the nodes of

the Dynkin diagram of G which is not connected to the extended node of the affine Dynkin

diagram, see Figure A.1 and Table 3.1. The Weyl group of G0 fixes ~́α0 by construction.

Furthermore, |WpGq| “ |∆l| ¨ |WpG0q|. Therefore, WpG0q is exactly the subgroup of WpGq

which fixes ~́α0.

The difference ~ρpGq ´~ρpG0q of the Weyl vectors of G and G0 is perpendicular to all~αi

of G0, and therefore is proportional to ~́α0. Therefore there is a constant c such that

~ρpGq “ ´c~α0 `~ρpG0q. (3.72)

To fix c, take the inner product with respect to ~́α0, using the expansion ~́α_0 “
ř

n_i α_i

where n_i are the comarks shown in Figure A.1. We find

2c “ ~́α_0 ¨~ρpGq “
ÿ

n_i ~α
_
i ¨~ρpGq “

ÿ

n_i “ h_ ´ 1. (3.73)

Here we used that the sum of the comarks is h_ ´ 1.

For a long root ~γ, we pick a Weyl group element w~γ such that ´w~γ~α0 “ ~γ. The set of w
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such that ´w~α0 “ ~γ is then simply w~γWpG0q. Therefore,

ÿ

´w~α0“~γ

spwqewρ “
ÿ

wPWpG0q

spw~γwqew~γwρ “ e´ph
_´1qw~γ~α0{2spw~γq

ÿ

wPWpG0q

spwqew~γwρpG0q

“ eph
_´1q~γ{2spw~γq

ź

~αP∆`pG0q

pew~γ~α{2 ´ e´w~γ~α{2q . (3.74)

Plugging it in to (3.71), we have

Z “
ÿ

~γP∆l

eph
_´1q~γ{2spw~γq

ś

~αP∆`pG0q
pew~γ~α{2 ´ e´w~γ~α{2q

p1´ eµ`~γq
ś

~αP∆`pe~α{2 ´ e ~́α{2q

“
ÿ

~γP∆l

eph
_´1q~γ{2spw~γq

ś

~αP∆`pG0q
pew~γ~α{2 ´ e´w~γ~α{2q

p1´ eµ`~γqspw~γq
ś

~αP∆`pe
w~γ~α{2 ´ e´w~γ~α{2q

“
ÿ

~γP∆l

eph
_´1q~γ{2

p1´ eµ`~γq
ś

~αP∆`z∆`pG0q
pew~γ~α{2 ´ e´w~γ~α{2q

. (3.75)

Recall that the inner product ~́α_0 ¨~α is

• 2 if and only if~α “ ~́α0,

• 1 if and only if~α P ∆`z∆`pG0q and~α ‰ ~́α0,

so that (3.75) can be further written as

“
ÿ

~γP∆l

eph
_´1q~γ{2

p1´ eµ`~γqpe´w~γ~α0{2 ´ ew~γ~α0{2q
ś

~́α_0 ~̈α“1pe
w~γ~α{2 ´ e´w~γ~α{2q

“
ÿ

~γP∆l

eph
_´1q~γ{2

p1´ eµ`~γqpe~γ{2 ´ e´~γ{2q
ś

~γ_ ~̈α“1pe~α{2 ´ e ~́α{2q
. (3.76)

Now the elements w~γ is gone.

Note that |t~α |~γ_ ¨~α “ 1u| is 2h_´4, so that (3.76) has 2h_´2 terms in the denominator,

which is the expected number for the centered instanton moduli space. To get the explicit

expressions, we let

e~α ” e~α¨φ “ eβ~α ~̈a, eµ “ eβpε1`ε2q. (3.77)

In the papers on Hilbert series, e.g., [83], the variables xi “ eai were used instead. The 4d
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version is obtained by taking the β Ñ 0 limit, giving

β2h_´2Z Ñ
ÿ

~γP∆l

´1
pε1 ` ε2 `~γ ¨~aqp~γ ¨~aq

ś

~γ_ ~̈α“1p~α ¨~aq
. (3.78)

Together with the contribution of C2 we indeed get (3.68).

3.4 N “ 2 SCFT and renormalization scheme

3.4.1 Infrared versus ultraviolet

In this section, we will compare the Nekrasov partition functions for gauge theories whose

gauge group can be represented in two ways, possibly differing by a Up1q factor. Think,

for instance, of Spp1q versus Up2q or SOp4q versus Up2qˆUp2q. We are particularly keen on

comparing Spp1q and Up2q partition functions for conformally invariant theories. Naively,

we would expect that the difference simply reproduces the “Up1q factor”. As we report in

subsection 3.4.2, however, the Nekrasov partition functions of the Spp1q and Up2q gauge

theory coupled to four hypermultiplets are not at all related in such a simple way.

To find a resolution of this disagreement, we should keep in mind the difference be-

tween infrared and ultraviolet quantities. Whereas the Nekrasov partition function ZNekpqq

computes low-energy quantities, such as the prepotential F0, it is defined in terms of a se-

ries expansion in the exponentiated microscopic gauge coupling q “ expp2πiτUVq. The

gauge coupling τUV , however, is sensitive to the choice of the renormalization scheme

and therefore cannot be assigned a physical (low-energy) meaning. It turns out that the

renormalization schemes in the two instanton computations indeed differ. This means in

particular that we should not identify the microscopic gauge couplings for the Up2q and

the Spp1q gauge theory. Instead, we should only expect to find agreement between the

Spp1q and Up2q Nekrasov partition functions when we express them in terms of physical

low energy variables.

What are such low energy variables? Recall that in the low energy limit of the N “ 2

gauge theory the Coulomb branch opens up, which is classically parametrized by the

Casimirs of the gauge group. The prepotential F0 of the N “ 2 gauge theory deter-

mines the corrections to the metric on the Coulomb branch, whose imaginary part in

turn prescribes the period matrix τIR of the so-called Seiberg-Witten curve [15, 16]. As
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Figure 3.4: The period matrix τIR,ij of the Seiberg-Witten curve is equal to the second deriva-
tive BaiBajF0 of the prepotential with respect to the Coulomb parameter a. The imaginary
part of τIR determines the metric on the Coulomb branch.

the Seiberg-Witten curve changes along with the Coulomb moduli a, its Jacobian defines

a torus-fibration over the Coulomb branch (see Figure 3.4). Whereas for asymptotically

free gauge theories the Seiberg-Witten curve depends on the dynamically generated scale

Λ, for conformally invariant gauge theories the Seiberg-Witten curve is dependent on the

value of the microscopic gauge couplings τUV . Conformally invariant theories are char-

acterized by a moduli space for the UV gauge couplings, from each element of which a

Coulomb moduli space emanates in the low energy limit.

Since the Seiberg-Witten curve determines the masses of BPS particles in the low-

energy limit of the N “ 2 gauge theory, its period matrix τIR is a physical quantity that

should be independent of the chosen renormalization scheme. In contrast, the microscopic

gauge couplings τUV are characteristics of the chosen renormalization scheme.

To be more concrete, we can use the prepotential F0 computed from the Nekrasov

partition function to find the relation between τIR and τUV by

2πiτIR “
1
2
B2

aF0pτUV, aq “
1
2
B2

apF0,pert `F0,instqpτUV, aq . (3.79)

Here F0,pert contains the classical as well as 1-loop contribution to the prepotential, which,

for instance, can be found in [68]7. In particular, if two prepotentials that are computed

using two different schemes differ by an a-dependent term, then the corresponding rela-

7 Note that there is a typo in the expression for the gauge contribution in [68].
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tions between τIR and τUV differ as well. If we invert the relation (3.79), and express both

Nekrasov partition functions ZNek in terms of the period matrix τIR, we expect that they

should agree up to a possible spurious factor that doesn’t depend on the Coulomb pa-

rameters. This says that the two ways of instanton counting correspond to two distinct

renormalization schemes.

Figure 3.5: The marginal coupling τUV in the Nekrasov partition function defines a local co-
ordinate on the moduli space of the N “ 2 conformal gauge theory near a weak-coupling
point where τUV Ñ8.

In fact, it is not quite obvious that the full Nekrasov partition functions, in contrast

to just the prepotential, should agree when expressed in the period matrix τIR. It would

have been possible that the relation between the prepotential τIR and the microscopic cou-

plings τUV gets quantum corrections in terms of the deformation parameters ε1 and ε2,

in such a way that only when expressed in terms of a quantum period matrix τIRpε1, ε2q

the Nekrasov partition functions do agree. In subsection 3.4.2 we will find however that

this is not the case. The Nekrasov partition function agree when expressed in terms of the

classical period matrix τIR. One possible argument for this is that the higher genus free en-

ergies Fgě1 are uniquely determined given the prepotential F0. In other words, that when

the prepotentials (and thus Seiberg-Witten curves plus differentials) for two gauge theo-

ries agree we also expect the higher genus free energies to match up. This is reasonable to

expect from several points of view, i.e., the interpretation of the Fgs as free energies in an

integrable hierarchy [85, 86].

The Nekrasov partition function is computed as a series expansion in q “ expp2πiτUVq.

The microscopic coupling τUV thus corresponds to a choice of local coordinate on the mod-
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uli space of microscopic gauge couplings near a weak-coupling point (see Figure 3.5). An

inequivalent renormalization scheme corresponds to a different choice of coordinate in that

neighborhood. In particular, given two different renormalization schemes, by combining

their respective IR-UV relations, we can obtain the relation between the two different mi-

croscopic couplings, and thus find the explicit coordinate transformation on the moduli

space. Explicitly, we identify the infra-red couplings of two related theories by

τIR “
1
2
B2

aF A
0 pτ

A
UV, aq “

1
2
B2

aF B
0 pτ

B
UV, aq. (3.80)

By inverting the IR-UV relation for the gauge theory characterized by the microscopic

coupling τA
UV, we find the relation between the microscopic couplings τA

UV and τB
UV of both

gauge theories. Since this is a relation between quantities in the ultra-violet, we expect it to

be independent of infra-red parameters such as the masses and Coulomb branch parame-

ters. Indeed, in all examples that we study in subsection 3.4.2, we will find that the moduli-

independent UV-UV relation that follows from equation (3.80) relates the Nekrasov parti-

tion functions up to a spurious factor that is independent of the Coulomb parameters.8

We will often consider gauge theories as being embedded in string theories. Different

models of the same gauge theory give different embeddings in string theory, which means

that the results will differ when expressed in terms of UV variables, even though the IR

results agree.

Take as an example the string theory realization of a supersymmetric N “ 2 SUp2q

gauge theory. The unitary point of view leads to a construction of D4, NS5 and D6-branes

in type IIA theory [33], whereas the symplectic point of view introduces an orientifold in

this picture and mirror images for all D4-branes [35, 36, 37]. Clearly, these are different

realizations of the SUp2q gauge theory. Nevertheless, both descriptions should give the

same result in the infra-red.

Indeed, the two aforementioned string theory embeddings, based on either a Up2q or a

Spp1q gauge group, determine a physically equivalent Seiberg-Witten curve. For instance,

8Yet another example of a renormalization scheme for the four-dimensional Spp1q gauge theory with four
flavors is found by counting string instantons in a system of D3 and D7 branes in Type I’ [87, 88, 89].
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the brane embedding of the pure Spp1q gauge theory determines the curve [36]

s2 ´ s
´

v2pv2 ` uq ` 2Λ4
¯

`Λ8 “ 0, (3.81)

in terms of the covering space variables s P C˚, v P C and the gauge invariant coordinate

u “ TrpΦ2q on the Coulomb branch. This is merely a double cover [90] of the more familiar

parametrization of the SUp2q Seiberg-Witten curve

Λ2t2 ´ t
`

w2 ` u
˘

`Λ2 “ 0, (3.82)

with t P C˚ and w P C, which follows from the unitary brane construction [33].

In fact, the choice for an instanton renormalization scheme is closely related to the

choice for a brane embedding, as the precise parametrizations of the Seiberg-Witten curves

(3.81) and (3.82) can be recovered in a thermodynamic (classical) limit by a saddle-point

approximation of the Spp1q and the Up2qNekrasov partition functions respectively [23, 53].

3.4.2 Examples

Let us illustrate the above theory by a selection of examples. We start with comparing

Spp1q{SOp4q and Up2q partition functions in gauge theories with a single gauge group, and

extend this to partition functions for more general linear and cyclic quivers. In particular,

we find the identification of Spp1q{SOp4q and Up2q instanton partition functions expressed

in low-energy moduli and the relation between the Spp1q{SOp4q and Up2q microscopic

gauge couplings.

3.4.2.1 Spp1q versus Up2q : the asymptotically free case

First of all, let us consider the Spp1q theory with a single gauge group coupled to N f mas-

sive hypermultiplets, where N f runs from 1 to 4. In the asymptotically free theories, with

N f ď 3, we find that the Spp1q Nekrasov partition function equals the Up2q Nekrasov par-

tition function – with Coulomb parameters pa,´aq – up to a factor that doesn’t depend on

the Coulomb parameter and only contributes to the low genus refined free energies F0, 1
2 ,1.

In the following we will call a factor with these two properties a spurious factor.
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More precisely, we compute that 9

Z
N f“0
Up2q pqq “ Z

N f“0
Spp1q pqq (3.83)

Z
N f“1
Up2q pqq “ Z

N f“1
Spp1q pqq (3.84)

Z
N f“2
Up2q pqq “ Z

N f“2
Spp1q pqqrZ

Ñ f“0
Up1q pqqs

1{2 (3.85)

Z
N f“3
Up2q pqq “ Z

N f“3
Spp1q pqqrZ

Ñ f“1
Up1q pqqs

1{2 exp
ˆ

´
q2

32ε1ε2

˙

, (3.86)

up to degree six in the q “ Λ4´N f expansion, where Z
Ñ f

Up1q is the instanton partition func-

tion of the Up1q gauge theory coupled to Ñ f hypermultiplets with masses m1 up to mÑ f
.

Explicitly,

Z
Ñ f“0
Up1q pqq “ exp

ˆ

´
q

ε1ε2

˙

, (3.87)

Z
Ñ f“1
Up1q pqq “ exp

ˆ

´
mq
ε1ε2

˙

, (3.88)

with q “ Λ2´Ñ f , m “ µ1 ` µ2 ` µ3 ` ε1 ` ε2 where µi being the masses of the fundamental

hypermultiplets in equation (3.86). Note that the equalities (3.83)–(3.86) can equally well

be written down for any combination of hypers in the fundamental and anti-fundamental

representation of the Up2q gauge group. The contribution of a fundamental hypermultiplet

just differs from that of an anti-fundamental hypermultiplet by mapping µ ÞÑ ´µ.

Let us make two more remarks about the formulas (3.83)–(3.86). First, the form of the

spurious factor in the equalities (3.83)–(3.86) is close to what is called the Up1q factor in the

AGT correspondence: they agree for N f “ 2 and differ slightly for the N f “ 3 theory. In

particular, both factors don’t depend on the Coulomb parameters and only contribute to

the lowest genus contributions F0, 1
2 ,1 of the refined free energy. Second, since the Up2q and

Spp1qNekrasov partition functions coincide up to moduli-independent terms, the relation

between IR and UV couplings is the same. It follows that they will agree up to spurious

factors even when written in terms of IR couplings.
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Figure 3.6: On the left: Quiver of the Spp1q gauge theory coupled to two fundamental
and two anti-fundamental hypermultiplet. Since the (anti-)fundamental representation
of Spp1q is pseudo-real, the flavor symmetry group of two hypermultiplets enhances to
SOp4q. On the right: Quiver of the SUp2q gauge theory coupled to two fundamental and
two anti-fundamental hypermultiplets. The flavor symmetries of the hypermultiplets is
enhanced to SUp2q.

3.4.2.2 Spp1q versus Up2q : the conformal case

Comparing the Nekrasov partition functions for conformal Spp1q and the Up2q gauge theo-

ries, both coupled to four hypermultiplets, yields a substantially different result.10,11 (The

quivers of the respective gauge theories are illustrated in Figure 3.6 for later reference.)

The Spp1q Nekrasov partition function does not agree with the Up2q Nekrasov partition

function up to a spurious factor, when expressed in the UV gauge couplings with the iden-

tification qSpp1q “ qUp2q. In particular, the prepotentials F0 differ, leading to a different

relation between τIR and qSpp1q than between τIR and qUp2q.

When all the hypers are massless, or equivalently when sending the Coulomb param-

eter a Ñ 8, we find that the map between UV gauge couplings and the period matrix τIR

does not depend on a and is given by 12,13

q2
Spp1q “ 16

θ2pq2
IRq

4

θ3pq2
IRq

4
(3.89)

qUp2q “
θ2pqIRq

4

θ3pqIRq
4 , (3.90)

where we define qIR “ expp2πiτIRq.14 The Spp1q and Up2qmappings just differ by doubling

9In this section we denote the Nekrasov partition function ZNek by Z. In the equations (3.83)-(3.86) there is
an agreement for the instanton partition functions as well.

10The four flavor partition function is nevertheless perfectly consistent with the partition functions for fewer
flavors. When we send the masses of the hypermultiplets to infinity, we do find the corresponding N f ă 4
partition functions.

11The expression for the ratio proposed in [91] does not hold beyond instanton number k “ 1.
12All Spp1q results in this subsection have been checked up to order 6 in the Spp1q instanton parameter.
13Equation (3.90) was first found in [92].
14Here we use a convention different from appendix B of [26].
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the value of the microscopic gauge coupling as well as the infra-red period matrix.

If we express the massless partition functions in terms of the low-energy variables by

using (3.89) and (3.90), they agree up to a spurious factor (which is independent of the

Coulomb parameter a and only contributes to the lower genus refined free energies F0, 1
2 ,1).

In fact, it turns out that even if we reexpress the massive partition functions using the mass-

less UV-IR mappings (3.89) and (3.90), we still find agreement up to a spurious factor.

On the other hand, even if we use the massive Spp1q and Up2q IR-UV mappings which

do depend on the Coulomb parameter a and the masses of the hypers, we find that the

Spp1q and Up2q renormalization scheme are related by the transformation

qUp2q “ qSpp1q

ˆ

1`
qSpp1q

4

˙´2

, (3.91)

which as expected is not dependent on the Coulomb branch moduli.

For completeness let us give the expression for the spurious factor once we express

both full partition functions in terms of qSpp1q. For the unrefined case h̄ “ ε1 “ ´ε2 we find

ZUp2qpqUp2qpqSpp1qqq

ZSpp1qpqSpp1qq
“

ˆ

1`
qSpp1q

4

˙M`N ˆ

1´
qSpp1q

4

˙N´M

, (3.92)

where M “ 1
h̄2

ř

iăj µiµj and N “ ´ 1
2h̄2

ř

i µ2
i `

1
8 . Here, we emphasize that this relation

is between the full Nekrasov partition functions including the perturbative pieces and not

just between the instanton parts. Notice that this spurious factor is quite close to, yet more

complicated than the square-root of the unrefined Up1q partition function

Z
N f“2
Up1q pqq “ p1´ qq´

m1m2
h̄2 ,

of the Up1q gauge theory coupled to two hypermultiplets with masses m1 and m2, the

square of which entered the AGT correspondence as the “Up1q factor”. Similarly, we inter-

pret the spurious factor (3.92) as a decoupled Up1q factor.
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3.4.2.3 SOp4q versus Up2q ˆUp2q instantons

The instanton partition function for the pure SOp4q gauge theory agrees with that of the

pure Up2q ˆUp2q theory 15

Z
N f“0
SOp4qpqq “ ZNb“0

Up2qˆUp2qpqq , (3.93)

if we make the identifications

qUp2q,1 “ qUp2q,2 “ 16 qSOp4q and pb1, b2q “ pa1 ` a2, a1 ´ a2q . (3.94)

Here, b1,2 are the Coulomb parameters of the SOp4q gauge theory and a1.2 those of the

Up2q ˆ Up2q gauge theory. The second relation follows simply from the embedding of

sup2q ˆ sup2q in sop4q.

When we couple the SOp4q theory to a single massive hypermultiplet, its instanton

partition function matches with that of the Up2qˆUp2q theory coupled to a massive bifun-

damental up to a spurious factor

Z
N f“1
SOp4qpqq “ ZNb“1

Up2qˆUp2qpqq exp
ˆ

´
4q
h̄2

˙

, (3.95)

for the unrefined case under the same identification (3.94).

Figure 3.7: On the left: Quiver representation of the SOp4q gauge theory coupled to one
fundamental and one anti-fundamental hypermultiplet. Since the (anti-)fundamental rep-
resentation of SOp4q is real, the flavor symmetry group of each hypermultiplet enhances
to Spp1q. On the right: Quiver representation of the SUp2q ˆ SUp2q gauge theory coupled
to two bi-fundamental hypermultiplets. The flavor symmetry of the bifundamental field
is enhanced to SUp2q.

Now, let us consider the conformal case. Naively comparing the Nekrasov partition

15We checked the SOp4q results in this subsection up to order 2 for the refined SOp4q partition functions and
up to order 6 for the unrefined ones.
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function of the conformal SOp4q gauge theory coupled to two massive hypermultiplets

with that of the Up2q ˆUp2q theory coupled by two massive bifundamentals shows a seri-

ous disagreement. (Their quivers are illustrated in Figure 3.7.) However, if we follow the

same strategy as explained in the conformal Spp1q example, we see that it is once more sim-

ply a matter of different renormalization schemes. The SOp4q and the Up2q gauge theory

are related by the change of marginal couplings

qSOp4q “
θ2pqUp2qq

4

θ3pqUp2qq
4 , (3.96)

when we identify qUp2q “ qUp2q,1 “ qUp2q,2. Using this UV-UV relation and the relation

between the Coulomb branch parameters (3.94), the SOp4q and Up2qˆUp2qNekrasov par-

tition functions agree up to a spurious factor

ZUp2qˆUp2qpqUp2qpqSOp4qqq

ZSOp4qpqSOp4qq
“ 1´

4M
h̄2 q`

8M2 ` 2Nh̄2

h̄4 q2 ` . . . (3.97)

that is similar to the Spp1q ´Up2q spurious factor in equation (3.92), with now M “ m2
1 ´

m1m2 `m2
2 and N “ 3m2

1 `m1m2 ` 3m2
2.

3.4.2.4 Spp1q ˆ Spp1q versus Up2q ˆUp2q instantons

Next, we analyze Spp1q ˆ Spp1q quiver gauge theories coupled to at most 4 massive hy-

permultiplets. The bifundamental multiplet, that couples the two Spp1q gauge groups,

introduces new poles in the theory, similar to the adjoint multiplet in the N “ 2˚ gauge

theory.

As expected, we find immediate agreement between the Spp1q and Up2q instanton par-

tition functions up to a spurious factor, when we couple fewer than two hypers to each

multiplet.

If more than two hypers are coupled to one of the gauge groups, we need to express the

partition function in terms of the physical period matrix τIR. Notice that the Spp1q (as well

as Up2q) instanton partition function is a function of two UV gauge couplings, whereas the

period matrix is a symmetric 3ˆ 3 matrix. It is nevertheless easy to find a bijective relation

between the two diagonal entries of the period matrix and the two UV gauge couplings.

The off-diagonal entry in the period matrix represents a mixing of the two gauge groups,
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and can be expressed in terms of the diagonal entries.

Let us consider the conformal linear quiver with two Spp1q gauge groups as an exam-

ple. We couple the two Spp1q’s by a bifundamental and add two extra hypermultiplets to

the first and to the second gauge group. The moduli-independent UV-IR relation for Spp1q

has a series expansion 16

qSpp1q,i “ qIR,ii ´
1

64
q3

IR,ii `
1

32
qIR,iiq2

IR,jj `Opq4
IRq, (3.98)

whereas the one for Up2q has the form

qUp2q,i “ qIR,ii ´
1
2

q2
IR,ii `

1
2

qIR,iiqIR,jj `
11
64

q3
IR,ii

´
1
2

q2
IR,iiqIR,jj `

3
32

qIR,iiq2
IR,jj `Opq4

IRq, (3.99)

for i P t1, 2u and i ‰ j.

As before we use the moduli-independent UV-IR mappings (3.98) and (3.99) to evaluate

the massive partition function as a function of the physical IR moduli τIR,11 and τIR,22. Again

this shows agreement of the Spp1q and Up2q partition functions up to a spurious factor in

the lower genus free energies.

Composing the moduli-dependent mappings between UV-couplings and the period ma-

trix, we find that the two renormalization schemes are related by

qSpp1q,i “ qUp2q,i `
1
2

q2
Up2q,i ´

1
2

qUp2q,iqUp2q,j `
5

16
q3

Up2q,i

´
1
16

qUp2q,iq2
Up2q,j `Opq

4
Up2qq, (3.100)

for i P t1, 2u and i ‰ j. Note that this mapping is independent of the Coulomb branch

moduli and the mass parameters, as it should be. Notice as well that a mixing amongst

the two gauge groups takes places, so that we cannot simply use the UV-UV mapping

for a single gauge group twice. Substituting this relation into the Spp1q partition function

indeed turns brings it into the form of the Up2q partition function up to a spurious AGT-

like factor.

The above procedure can be applied to any linear or cyclic quiver.17 Most importantly,

16Here we have rescaled qIR Ñ qIR{16.
17For example, we also tested it for the N “ 2˚ Spp1q gauge theory.
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the Spp1q and Up2q partition function agree (up to a spurious factor) when expressed in

IR coordinates, and, the mapping between Spp1q and Up2q renormalization schemes is

independent of the moduli in the gauge theory and mixes the gauge groups. Moreover,

the spurious factors that we find are more complicated than the “Up1q-factors” that appear

in the AGT correspondence.

3.5 UV-IR relation and N “ 2 geometry

In section 3.4 we found in which way Nekrasov partition functions for different models of

the same underlying physical gauge theory are related, i.e., comparing the Up2q versus the

Spp1q method of instanton counting. The N “ 2 instanton counting defines a renormal-

ization scheme for each model, such that, when expressed in terms of physical infra-red

variables, the Nekrasov partition functions of two such models agree up to a spurious

factor. When expressed in terms of the microscopic couplings, however, the Nekrasov par-

tition functions are related by a non-trivial mapping. Our goal in this section is to explain

this mapping geometrically.

In [25] the complex structure moduli of the Gaiotto curve are identified with the exactly

marginal couplings of the conformal N “ 2 gauge theory. The Gaiotto curve therefore

not only captures the infra-red data of the gauge theory, but also information about the

chosen renormalization scheme. Different renormalization schemes are related by non-

trivial mappings of exactly marginal couplings. Geometrically, it was argued that a choice

of renormalization scheme corresponds to a choice of local coordinates on the complex

structure moduli space of the Gaiotto curve.

A given physical gauge theory of course admits a countless number of renormalization

schemes. On the other hand, our focus here is only to find a geometric interpretation of

a small subset of such choices. We expect to find such an interpretation when different

models can both be embedded by a brane construction in string theory. In such examples

we can construct the corresponding Gaiotto curves and a mapping between them. This

mapping geometrizes the mapping between the exactly marginal couplings.

Most of the examples we considered in the previous section are of this type. However,

one of them is not. This is the comparison of the SUp2q ˆ SUp2q gauge theory with the
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Spp1q ˆ Spp1q gauge theory.18 Since we are not aware of a brane embedding of the latter

theory, there is no immediate reason to expect an (obvious) geometric interpretation of the

mapping between exactly marginal couplings in that example. In the other examples, for

which brane constructions are well known, we do expect to find a geometric explanation

for the UV-UV mappings.

As a last comment, let us emphasize that the validity of the mappings between exactly

marginal couplings extends beyond the prepotential F0. As we found in the last section,

the full Nekrasov partition functions ZNek are related by the mapping between UV cou-

plings, which does not receive corrections in the deformation parameters ε1 and ε2. Geo-

metrically, this implies that there are no quantum corrections to the mappings between the

Gaiotto curves for different models of the same physical gauge theory.

3.5.1 SO{Sp versus U geometries

Suppose that we have two models for the same physical gauge theory, who both can be

embedded as a ramified Hitchin system in M-theory. How are these models related geo-

metrically?

First of all, we expect that the mapping between the exactly marginal couplings is

reflected as a mapping between the complex structure parameters of the corresponding

Gaiotto curves. Also, there should be an isomorphism between the spectral curves of

the respective Hitchin systems, as these correspond to the Seiberg-Witten curves. More-

over, the boundary conditions of the Hitchin differentials at the punctures of both models

should be related by the mapping that identifies the corresponding matter representations.

In particular, this relates the eigenvalues of the Seiberg-Witten differential at the punctures

of both models. In total we should thus find a bijective mapping between the complete

ramified Hitchin system, including the Gaiotto curve as well as the Hitchin differentials.

As we will see in detail in the next subsection, it is easy to come up with such a mapping

for Spp1q{SOp4q versus SUp2q gauge theories [38]. We just interpret the Z2-twist lines on

the Spp1q{SOp4q Gaiotto curve as branch-cuts, and its double cover as the SUp2q Gaiotto

curve. The latter curve is thus equipped with an involution that interchanges the two

sheets of the cover. We can recover the Hitchin differentials on the Spp1q{SOp4q Gaiotto

curve by splitting the Hitchin differential on its cover into even and odd parts under the
18The same holds for the comparison of the N “ 2˚ theory with gauge group Spp1q versus Up2q.
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involution. Indeed, recall that the SUp2q Seiberg-Witten curve is determined by a single

differential φ2 of degree 2, whereas the Spp1q{SOp4q Seiberg-Witten curve is defined by

two degree 2 differentials ϕ2 and ϕ2̃, the first one being even under the Z2-automorphism

and the second one odd.

Notice that this double construction doesn’t work for any Sp{SO theory, as the differ-

entials on the cover generically do not have a simple interpretation in terms of a set of

differentials of a unitary theory. Two theories can only be related by a double covering if

the Lie algebra underlying the Hitchin system of one of them splits into two copies of the

Lie algebra underlying the Hitchin system of the other. Nonetheless, for any two models of

the same gauge theory there should be a corresponding isomorphism of Hitchin systems.

Before going into the example-subsection, let us note that in the previous section we

also encountered a gauge theory without an obvious brane embedding. This is the Spp1qˆ

Spp1q gauge theory. It is not possible to realize this theory in the standard manner us-

ing NS5-branes, as the type of the orientifold has to differ on either side of the NS5-

brane. Geometrically, this is reflected in the fact that there doesn’t exist an involution

on the SUp2q ˆ SUp2q Gaiotto curve with the right properties. It would be interesting to

find whether there exists a geometric interpretation of the mapping between the exactly

marginal couplings of the SUp2q ˆ SUp2q and the Spp1q ˆ Spp1q gauge theory anyway.

3.5.2 Examples

Let us now return to the results of section 3.4. First of all, we can explain the appearance

of the modular lambda function

λ “
θ4

2

θ4
3

: H Ñ P1zt0, 1,8u (3.101)

as the relation (3.90) between the infra-red coupling τIR and the exactly marginal coupling

qUp2q in the conformal SUp2q gauge theory. This modular function gives an explicit iso-

morphism between the quotient H{Γp2q of the upper half plane H by the modular group

Γp2q and P1zt0, 1,8u. Whereas the complex structure modulus τIR of the SUp2q Seiberg-

Witten curve takes values in H{Γp2q, the complex structure modulus qUp2q of the SUp2q

Gaiotto curve (which is the cross-ratio of the four punctures on the UV-curve) takes val-

ues in P1zt0, 1,8u. The modular lambda function thus determines the double cover map
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between the Seiberg-Witten curve and the Gaiotto curve for the conformal SUp2q gauge

theory [26].

We continue with studying the Spp1q and SOp4q geometry in detail. In appendix C we

have summarized various existing descriptions of the SUp2q geometry, and their relation

to the Gaiotto geometry.

3.5.2.1 Spp1q versus Up2q geometry

The Spp1q Seiberg-Witten curve can be derived from the orientifold brane construction that

is illustrated in Figure 2.3. In Gaiotto form it reads

v4 “ ϕ2psqv2 ` ϕ4psq (3.102)

with

ϕ2psq “
pµ2

1 ` µ2
2qs

2 ` up1` q̃Spp1qqs` pµ2
3 ` µ2

4qq̃Spp1q

ps´ 1q
`

s´ q̃Spp1q
˘

ˆ

ds
s

˙2

ϕ4psq “ ´
µ2

1µ2
2s2 ` 2

ś4
i“1 µi

a

q̃Spp1qs` µ2
3µ2

4q̃Spp1q

ps´ 1q
`

s´ q̃Spp1q
˘

ˆ

ds
s

˙4

,

where µi are the bare masses of the hypermultiplets, and u is the classical vev of the adjoint

scalar Φ in the gauge multiplet. We also introduced a new parameter q̃Spp1q that we will re-

late to the coupling qSpp1q in a moment. The differential ϕ2 corresponds to the D2-invariant

TrpΦ2q, whereas the square-root ϕ2̃ “
?

ϕ4 corresponds to the D2-invariant Pfaffp q. Note

that the differential ϕ4 vanishes if the masses are set to zero.

It follows that the Spp1q Seiberg-Witten curve is a branched fourfold cover over the

UV-curve P1 with coordinate s. The UV-curve has four branch points at the positions

s P t0, q̃Spp1q, 1,8u, (3.103)

The complex structure of the Spp1q Gaiotto curve is parametrized by q̃Spp1q. Since the dif-

ferential ϕ2̃ has a pole of order half at the punctures at s “ 1 and s “ q̃Spp1q, these are

half-punctures. There is a Z2-twist line running between the two half-punctures, as the

differential ϕ2̃ experiences a Z2 monodromy around them. In contrast, the punctures at

s “ 0 and s “ 8 are full punctures.
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The Seiberg-Witten differential λ is a SOp4, Cq-valued differential. It has nonzero residues

at the poles s “ 0 and s “ 8 only. This implies that the SOp4q flavor symmetry is asso-

ciated with these punctures. Indeed, the residues of the differential λ at s “ 8 are given

by ˘µ1 and ˘µ2, whereas at s “ 0 they are ˘µ3 and ˘µ4. So both at s “ 0 and s “ 8 the

residues parametrize the Cartan of sup2q ˆ sup2q “ sop4q.

Summarizing, we have found that the Spp1q UV-curve is a four-punctured two-sphere

with two half-punctures and two full punctures. The two SOp4q-flavor symmetry groups

can be associated to the two full punctures. This is illustrated in the left picture in Fig-

ure 2.4.

Viewing the Z2-twist lines as branch-cuts, and the half-punctures as branch-points, it

is natural to consider the double cover of the UV-curve. Let us use the SLp2, Cq freedom

of the Spp1q theory to interchange the full-punctures with the half-punctures. Call the

complex structure coordinate of the Spp1q UV-curve q̃Spp1q “ q2. The branched covering

map is then simply given by

t2 “ s,

where s is the coordinate on the Spp1q UV-curve and t the coordinate on the double cover.

The pre-images of the full punctures on the base are at ˘1,˘q on the cover, and there is a

SUp2q-flavor symmetry attached to them. The total flavor symmetry at both full-punctures

adds up to SOp4q. This is illustrated in Figure 3.8.

Note that this double cover of the Spp1q UV-curve has exactly the same structure as

the SUp2q UV-curve. The only difference is that the punctures are at different positions,

something which can be taken care of by a Möbius transformation. Since this leaves the

complex structure of the UV-curve invariant, the gauge theory is invariant under such

transformations. In particular the masses of the hypermultiplets, which are the residues of

the Seiberg-Witten differential at its poles, remain the same. We can use the fact that the

cross-ratios of the two configurations have to be equal to read off the relation between the

Up2q and Spp1q exactly marginal couplings,

qUp2q “ 4q p1` qq´2 . (3.104)
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Figure 3.8: The UV-curve of the SUp2q gauge theory coupled to 4 hypers is a double cover
over the UV-curve of the Spp1q gauge theory with 4 hypers. We denote the complex struc-
ture parameter on the Spp1q Gaiotto curve by q̃Spp1q “ q2.

Explicitly, the Möbius transformation that relates the SUp2qUV-curve and the double cover

of the Spp1q UV-curve is given by the mapping

γpzq “ ´
z p1` qq ´ 2q
z p1` qq ´ 2

, (3.105)

that sends the four punctures at positions t0, 1, qUp2q,8u to four punctures at the positions

t˘q,˘1u.

We can now make contact between the geometry of the SUp2q and Spp1qGaiotto curves

and the relation between their exactly marginal couplings. Indeed, we recover the UV-UV

mapping (3.91) from the identification of cross-ratios in equation (3.104), when we identify

q2 “ q̃Spp1q “

ˆ

qSpp1q

4

˙2

. (3.106)

We should therefore choose the complex structure parameter q̃Spp1q of the Spp1q Gaiotto-

curve proportional to the square q2
Spp1q of the Spp1q instanton parameter. The square is

related to the Z2-twist line along the Spp1q Gaiotto curve. The proportionality constant

is merely determined by requiring that qUp2q “ qSpp1q ` . . . , which is needed to make the

classical contributions to the Nekrasov partition function agree.
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3.5.2.2 SOp4q versus Up2q ˆUp2q geometry

The SOp4q Seiberg-Witten curve in Gaiotto form reads

v4 “ ϕ2psqv2 ` ϕ4psq (3.107)

with

ϕ2psq “
µ2

1s2 ´ pu1 ` u2qp1` q̃SOp4qqs` µ2
2q̃SOp4q

ps´ 1q
`

s´ q̃SOp4q
˘

ˆ

ds
s

˙2

ϕ4psq “
u1u2s

ps´ 1q
`

s´ q̃SOp4q
˘

ˆ

ds
s

˙4

,

The Seiberg-Witten curve is a fourfold cover of the four-punctured sphere with complex

structure parameter q̃SOp4q. This time there are four half-punctures. The differential ϕ2̃ not

only has poles of order 1{2 at s “ 1 and s “ q̃SOp4q, but also poles of order 3{2 at s “ 0 and

s “ 8. The residue of the Seiberg-Witten differential is only nonzero at s “ 0 and s “ 8.

Since its nonzero residues equal ˘µ1 at s “ 8 and ˘µ2 at s “ 0, the Spp1q flavor symmetry

is associated to these punctures.

Summarizing, the UV-curve corresponding to the conformal SOp4q theory is a four-

punctured sphere with four half-punctures, and Z2 twist-lines running between two pairs

of half-punctures. This is illustrated on the left in Figure 2.5.

Figure 3.9: The UV-curve of the SUp2q ˆ SUp2q gauge theory coupled by two bifunda-
mentals is a double cover over the UV-curve of the SOp4q gauge theory coupled to four
hypers.
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Let us again interpret the Z2 twist-lines as branch-cuts. As illustrated in Figure 3.9, this

time the branched double cover of the UV-curve is a torus with two punctures. The punc-

tures on the torus project to two of the four branch-points of the double covering, which

means that there must be a SUp2q-flavor symmetry attached to them. This is precisely the

the same structure as that of the Gaiotto curve of the SUp2q ˆ SUp2q gauge theory coupled

to two bifundamentals.

However, note that the SUp2q ˆ SUp2q UV-curve has two complex structure parame-

ters corresponding to the two marginal couplings qUp2q,1 and qUp2q,2, whereas the SOp4q

UV-curve has only a single complex structure parameter corresponding to the marginal

coupling qSOp4q of the SOp4q theory. The Z2-symmetry on the cover curve implies that we

should identify qUp2q “ qUp2q,1 “ qUp2q,2 in order to relate the SUp2q ˆ SUp2q Gaiotto curve

to the SOp4q Gaiotto curve.

In equation (3.96) we found that the relation between the marginal couplings of the

SOp4q and the SUp2q ˆ SUp2q-theory is given by the modular lambda mapping

qSOp4q “ λp2τUp2qq . (3.108)

The above covering relation between their Gaiotto curve explains the appearing of this

lambda mapping geometrically, as it relates the complex structure parameter of the torus to

the complex structure parameter of the four-punctured sphere, when we identify q̃SOp4q “

qSOp4q.

Mainly for future convenience, let us make the covering map explicitly. Take a torus T2

with half-periods ω1 and ω2 and consider the map T2 Ñ CP2 given by

p℘pzq : ℘1pzq : 1q,

where ℘pzq is the Weierstrass ℘-function. Since the Weierstrass ℘-function satisfies

℘1pzq2 “ 4℘pzq3 ´ g2℘pzq ´ g3,

it defines a branched double cover over the sphere P1. The branch points are determined

by the zeroes and poles t0, ω1, ω2, ω3 “ ω1 `ω2u of the derivative ℘1pzq of the Weierstrass
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℘-function. The double covering is thus given by the equation

t2 “ 4ps´ e1qps´ e2qps´ e3q

with ei “ ℘pωiq. The points ω3 “ τ and 2τ on the torus T2 map onto the two branch

points e3 and8 on the sphere P1. Let us call qSOp4q the cross-ratio of the four branch points

0, e1, e2, e3. By the shift s ÞÑ s` p1`qSOp4qq

3 we simply bring the curve into the form

t2 “ 4sps´ 1qps´ qSOp4qq.

The mapping between the SUp2q ˆ SUp2q Gaiotto curve and the SOp4q Gaiotto curve is

thus a combination of the Weierstrass map ℘ and a simple Möbius transformation. This

indeed determines (3.108) as the mapping between the respective complex structure pa-

rameters.

3.6 Instanton counting for half-hypermultiplets

The trifundamental fields that appear in Sicilian quiver gauge theories of type A1 form

half-hypermultiplet representations of the N “ 2 SUSY algebra, in contrast to the more

common (full) hypermultiplets. In this section we review the basic properties of Sicilian

quivers with trifundamental half-hypermultiplets and show that they preserve N “ 2 su-

persymmetry. Subsequently, we develop the tools for counting instantons in quiver gauge

theories with half-hypermultiplets. We apply these tools in section 5.5.3 to compute the in-

stanton partition functions of Sicilian quivers and compare them with CFT computations.

3.6.1 Half-hypermultiplets

There are two types of N “ 2 supersymmetry multiplets: the N “ 2 vector multiplet and

the hypermultiplet. The former consists of a vector field Aµ, two Weyl fermions λα and

ψα, and one complex scalar B. All of them transform in the adjoint representation of the

gauge group. In N “ 1 language such an N “ 2 vector multiplet consists of one N “ 1

vector multiplet with component fields pAµ, λαq and one chiral multiplet with components

pB, ψαq. A hypermultiplet requires a choice of representation R of the gauge group. In

N “ 1 language it consists of two chiral multiplets Q and Q̃, the former transforming in
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the representation R and the latter in its complex conjugate R˚. The chiral multiplet Q has

component fields pφ, χαq, and the anti-chiral multiplet Q̃ has components pφ̃, χ̃αq. We call

both Q and Q̃ half-hypermultiplets.

The half-hypermultiplets Q and Q̃ form massless representations of the N “ 2 SUSY

algebra. However, even though the helicities of the states in a half-hypermultiplet form

a CPT complete distribution, the half-hypermultiplet does not transform as a real repre-

sentation of the SUSY algebra. Indeed, notice that the massless N “ 2 SUSY algebra is

equal to the Clifford algebra Cl4,0 with invariance group SOp4q. The four-dimensional rep-

resentation of the Clifford algebra Cl4,0, under which the half-hypermultiplet transforms,

is pseudo-real instead of (strictly) real. A generic half-hypermultiplet will therefore not be

invariant under CPT.

It is possible though to circumvent this constraint. More precisely, an N “ 2 multiplet

is CPT invariant if it transforms under a real representation of the product of the SUSY

algebra, the gauge group and possible flavor groups. So, apart from the obvious possibility

of combining a chiral and an anti-chiral multiplet into a full hypermultiplet, we can also

consider a single half-hypermultiplet in a pseudo-real representation of the gauge group

G.

Nevertheless, there is an additional requirement. Even when a single half-hyper-multiplet

transforms in a real representation of Cl4,0 ˆ G, such a theory may still be anomalous due

to Witten’s anomaly argument [93]. According to this argument, for example, a single

half-hypermultiplet in the fundamental representation of SUp2q is anomalous (its partition

function vanishes) since it contains an odd number of chiral fermions. On the contrary, a

single half-hypermultiplet in the fundamental representation of SUp2q3 contains four chi-

ral fermions in each SUp2q-representation. Therefore, quiver gauge theories with SUp2q

trifundamental half-hypermultiplets are free of Witten’s SUp2q anomaly as well as CPT

invariant.

Other examples of consistent theories with half-hypermultiplets occur when we con-

sider massless bifundamental couplings between SO and Sp gauge groups. A half-hypermultiplet

transforming under the bifundamental of SOˆ Sp is in a pseudo-real representation of the

gauge group G “ SOˆ Sp and is free of the Witten anomaly as well.
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Half-hypermultiplet as a constrained hypermultiplet

Since working with full hypermultiplets is often much more efficient than with half-hypermultiplets,

in what follows we find an alternative method to deal with half-hypers. Instead of consid-

ering a half-hypermultiplet by itself, we start with a full hypermultiplet (consisting of two

half-hypermultiplets) and impose a constraint on it which only leaves a half-hypermultiplet.

A full hypermultiplet can be thought of as a multiplet formed out of two N “ 1 chiral

multiplets Q and Q̃. The chiral multiplet Q transforms in representation R and the anti-

chiral multiplet Q̃ in its complex conjugate R˚. By the remarks above, for the theory of

a single half-hyper to make sense, R needs to be a pseudoreal. Let σG be the anti-linear

involution that maps the representation R to its complex conjugate R˚. Since the repre-

sentation R is pseudo-real, it obeys σ2
G “ ´1. For example, in the case of the fundamental

representation of SUp2q, the involution σG is given by the ε-tensor iσ2. For the trifunda-

mental representation of SUp2q it is given by the product of three ε-tensors, one for each

SUp2q gauge group.

To impose our constraint, we need a map τ that relates Q to Q̃ and vice versa. Since Q̃

appears in the complex conjugate, τ needs to be anti-linear. Moreover, it needs to preserve

the representation, which means that it must involve σG. Let us write a full hypermultiplet

as Qa whose two half-hypermultiplet components are given by Q1 “ Q and Q2 “ Q̃˚. The

involution τ is then defined by

Qa ÞÑ τpQaq “ σG b σIpQaq˚ , (3.109)

where

σI

¨

˝

Q1

Q2

˛

‚“

¨

˝

´Q2

Q1

˛

‚ . (3.110)

It is straightforward to check that indeed τ2 “ 1. We can describe a half-hypermultiplet

as a hypermultiplet that stays (anti-)invariant under τ, i.e., that is an eigenvector of τ of

eigenvalue ˘1. More explicitly, such a hyper is given by pQ,˘σGQ˚q.

This description of a half-hypermultiplet is, for instance, convenient to find the La-

grangian for a half-hyper Q starting from the Lagrangian of a full hyper. Recall that the
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Lagrangian for the hypermultiplet Qa “ pQ, Q̃˚q coupled to a vector multiplet pV, Φq is

given by

Lfh “

ż

d2θ d2θ̄
´

Q:eVQ` Q̃te´VQ̃˚
¯

` 2
?

2 Re
ż

d2θ
`

Q̃t Φ Q
˘

.

For pseudo-real representations we can apply the constraint Q̃ “ ˘σGQ to recover the

Lagrangian

Lhh “

ż

d2θ d2θ̄
´

Q:eVQ
¯

˘
?

2 Re
ż

d2θ
`

Qtσt
G Φ Q

˘

for a single half-hypermultiplet. Here we rescaled Q Ñ 1?
2
Q to give the kinetic term in the

Lagrangian a canonical coefficient. We also used

Q̃te´VQ̃˚ “ Qtσt
Ge´VσGQ˚ “ QteVt

Q˚ “ Q:eVQ ,

since σ´1
G TσG “ ´Tt for T P g. Since we found the Lagrangian Lhh by starting out with the

Lagrangian Lfh for a full hypermultiplet and then applying the constraint Q̃ “ ˘σGQ, it is

automatically invariant under N “ 2 supersymmetry.

Let us spell this out in some more detail. Substituting the constraint Q̃ “ ˘σGQ in

the N “ 2 supersymmetry equations yields two identical copies of the supersymmetry

variations for the components of Q, which depend on all of the N “ 2 supersymmetry

parameters. The LagrangianLhh is obviously invariant under these variations. The SUp2qR

symmetry now acts on the vector of complex scalars pq,˘σGq˚qt.

As an example, the Lagrangian for the trifundamental SUp2q half-hypermultiplet reads

in components

Ltrif “

ż

d2θ d2θ̄
´

Q˚abcepV1q
a
a1Qa1bc `Q˚abcepV2q

b
b1Qab1c `Q˚abcepV3q

c
c1Qabc1

¯

(3.111)

˘
?

2 Re
ż

d2θ
´

εbb1εcc1Qabc Φaa1 Qa1b1c1 ` εaa1εcc1Qabc Φbb1 Qa1b1c1 ` εaa1εbb1Qabc Φcc1 Qa1b1c1
¯

.

We can obtain the bifundamental hyper by demoting one of gauge groups to a flavor

group. From this perspective it is clear that the bifundamental has an enhanced SUp2q

flavor symmetry, as we already knew from general principles. We discuss these and other

aspects of the SUp2q trifundamental in detail in appendix D.
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3.6.2 Instanton counting for half-hypermultiplets

We now turn to instanton counting for half-hypermultiplets. Also for this purpose it is

convenient to use the description of a half-hypermultiplet as a constrained full hypermul-

tiplet. Instanton counting for any N “ 2 gauge theory with full hypermultiplets is devel-

oped in [28, 53] and spelled out in more detail in, for example, [68] which we reviewed

in this chapter. It is performed by topologically twisting the N “ 2 gauge theory. The

resulting instanton partition function is given by the integral

Zinst “
ÿ

k

qk
UV

¿

MG
k

epVq (3.112)

over the ADHM moduli space of instantons MG
k for the gauge group G and instanton

number k, where the Euler class epVq encodes the matter content of the gauge theory. More

precisely, the vector bundle V is equal to the space of solutions to the Dirac equation for

the chosen matter representation in the self-dual instanton background.

Let us emphasize that the SUp2qR-symmetry is essential for performing the topological

twist. We identify the new Lorentz group of the twisted N “ 2 theory as

L1 “ SUp2qL ˆ diagpSUp2qR ˆ SUp2qIq ,

where we denoted the R-symmetry group by SUp2qI to avoid confusion. After twisting

the two complex scalars of a full hypermultiplet combine into a Weyl spinor

Ψ “ pψ1, ψ2q “ pq, q̃˚q ,

i.e., the R-symmetry index turns into a spinor index. The matter part of the theory localizes

to solutions of the Dirac equation 19

piσµBµ ` σµ AµqΨ “ 0 (3.113)

in the self-dual instanton background determined by the gauge field A, with σµ “ p1, iσiq

19Although we write down an explicit form of the Dirac equation for a spinor transforming in the funda-
mental representation of a single gauge group, equation (3.113), as well as the following equations, should be
read abstractly and can easily be adapted to hold in a generic setting.
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(note that we are in Euclidean signature). These solutions form a vector bundle over

the moduli space of self-dual instantons, localizing the path-integral to the integral over

the moduli space of instantons (3.112). Actually computing the instanton partition func-

tion (3.112) can then be reduced to evaluating the equivariant index of the Dirac operator

with respect to a torus action on the ADHM moduli space.

For half-hypermultiplets the twisting works similar, since we have established the R-

symmetry invariance of the half-hypermultiplet Lagrangian. Let us start with a twisted

full hypermultiplet. Since the R-symmetry indices of the scalars in the full hypermultiplet

turn into spinor indices, we can again define the map

Ψ ÞÑ τpΨq “ σG b σIΨ˚ . (3.114)

As before, the matrices σG and σI act on the gauge and spinor indices, respectively. In

particular,

σI

¨

˝

ψ1

ψ2

˛

‚“

¨

˝

´ψ2

ψ1

˛

‚

The path integral of the half-hypermultiplet theory localizes onto solutions of the Dirac

equation (3.113) that are invariant under τ.

The involution τ indeed maps solutions of the Dirac equation (3.113) to solutions, as

can be seen from

piσµBµ ` σµ AµqτpΨq “ ´σG b σIppiσµBµ ` σµ AµqΨq˚ “ 0 , (3.115)

where we have used σ´1
I σµσI “ pσ

µq˚ and σ´1
G AµσG “ ´A˚µ. We can thus find a basis of the

space of solutions to the Dirac equation on which τ acts with eigenvalue ˘1. The relevant

solutions for the single half-hypermultiplet are given by those basis elements which all

have eigenvalue `1 (or all eigenvalue ´1) under τ, and form a half-dimensional vector

bundle over the moduli spaceMk
G of self-dual instantons.

As an intermezzo, remember that the space of fermionic solutions to the Dirac equation

in a pseudo-real representation always admits a real structure. It is not hard to see that the

anti-linear involution τ in fact defines this real structure. So let us consider a basis of



76

Figure 3.10: The solutions to the Dirac equation in a given representation of the gauge
group form a vector bundle V over the ADHM moduli space M. A pseudo-real repre-
sentation induces a real structure τ on the vector bundle V that splits it into two copies
V “ VR‘ iVR. The relevant solutions for a half-hypermultiplet are either parametrized by
VR or iVR.

solutions on which τ acts with eigenvalues ˘1. Whereas for a theory with a hyper all

solutions with eigenvalue `1 or ´1 need to be taken into account, the theory with a half-

hyper enforces a restriction to the solutions with eigenvalues either all `1 or all ´1.

Let us name V the total vector space of solutions to the Dirac equation in a given in-

stanton background. Then the real structure τ induces a splitting

V “ VR ‘ iVR . (3.116)

The vector space VR (called the real form of τ) consists of solutions with eigenvalue `1,

whereas iVR consists of solutions with eigenvalue ´1. Indeed, since τ is anti-linear, mul-

tiplying a solution Ψ P VR by i yields a solution with eigenvalue ´1. The real structure τ

reduces the group of basis transformations acting on V from Updq to SOpdq, where d is the

dimension of V. The action of SOpdq leaves VR invariant.

The two half-hypermultiplets that make up a hypermultiplet are defined by the two

constraints Q̃ “ ˘σGQ. One half-hypermultiplet singles out the subspace VR Ă V, and the

other the subspace iVR Ă V. So multiplying the solutions of the Dirac equation by i brings

us from one half-hypermultiplet to the other.
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Instanton partition functions for half-hypermultiplets

Let us summarize the above. Consider anN “ 2 gauge theory coupled to a full hypermul-

tiplet in a pseudo-real representation of the gauge group. Its instanton partition function

is given by equation (3.112). This is in fact equal to

Zinst
fh “

ÿ

k

qk
UV

¿

MG
k

epVR ‘ iVRq, (3.117)

since the pseudo-real representation defines a real structure on the complex vector bundle

V of solutions to the Dirac equation. The bundle VR is an oriented real bundle, whose

Euler class is defined as the Pfaffian (this is only non-trivial when the rank of the bundle

is even). The Euler class of its complexification V “ VR ‘ iVR can then be expressed as the

square of the Euler class of VR,

epVR ‘ iVRq “ epVRq
2. (3.118)

This equality continues to hold for the equivariant Euler classes eTpVq and eTpVRq, with

respect to the torus action T “ Tak ˆ Tφi ˆUp1qε1,ε2 on the ADHM moduli space, where Tak

is the torus of the gauge group, Tφi the torus of the dual group, and the action of Up1qε1,ε2

on R4 defines the Omega-background.

In other words, when the rank of VR is even (i.e., when the complex Dirac index of

the pseudo-real representation is even), the instanton partition function for a half-hyper

theory localizes as

Zinst
hh “

ÿ

k

qk
UV

¿

MG
k

epVRq. (3.119)

Since the involution τ commutes with the torus T, we can compute the contribution of a

half-hypermultiplet equivariantly by just taking the square-root of the product of weights

for the full hypermultiplet theory.

In this manner we can compute the instanton partition function for the Spp1q trifun-

damental half-hypermultiplet and the Spp1q ´ SOp4q bifundamental half-hypermultiplet.

Notice that in both examples the Dirac index is even for any instanton number k. In the
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following, we apply this scheme to evaluate instanton partition functions corresponding

to Sp´ SO quiver gauge theories.

3.6.3 Instanton contribution for the Spˆ SO bifundamental

We continue with finding a contour integrand prescription for the contribution of the Spˆ

SO bifundamental matter multiplet. In general, the instanton partition function for a linear

quiver gauge theory with gauge group G “ G1ˆ ¨ ¨ ¨ ˆGP can be formulated schematically

as

Zinst
k “

ż

ź

dφi zk
gaugepφp,i,~apq zk

bifundpφp,i, φq,j,~ap,~aq, µq zk
fundpφp,i,~apq, (3.120)

where the three z’s in the integrand refer to the contribution of gauge multiplets, bifunda-

mental and fundamental matter fields, respectively. The only missing ingredient needed

to compute the instanton partition function for a linear D2-quiver is the contribution of the

Spˆ SO bifundamental half-hypermultiplet.

Figure 3.11: On the left: the quiver diagram for a cyclic Spp1q{SOp4q quiver gauge theory
coupled to two Spp1q ˆ SOp4q bifundamentals. The bifundamentals do not have a flavor
symmetry group. On the right: the corresponding generalized SUp2q quiver including two
SUp2q3-trifundamentals.

Let us therefore consider the simplest gauge theory with two Spp1q ˆ SOp4q bifunda-

mental half-hypermultiplets. This theory is illustrated on the left in Figure 3.11. As is

illustrated on the bottom of Figure 3.12, the corresponding UV-curve is a two-punctured

torus with a Z2-twist line running between the punctures. The corresponding A1 theory is

a generalized quiver theory with genus 2.

Let us define the vector bundles VSp and VSO of solutions to the Dirac equation in the
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Figure 3.12: The cover and base Gaiotto-curve corresponding to the Spp1q ˆ SOp4q and
SUp2q quiver gauge theories illustrated in Figure 3.11.

fundamental representation of the Sp and SO gauge group, respectively. Since the double

copy of a bifundamental half-hypermultiplet is a full bifundamental hypermultiplet, its

contribution to the instanton partition function is given by the usual integral

¿

MSpˆMSO

epVSp b VSO bLbMq. (3.121)

The integrand is the Euler class of the tensor product VSp b VSO bLbM over the product

MSp ˆMSO of the instanton moduli spaces.20 In this expression, M – C is the flavor

vector space and L the half-canonical line bundle over R4.

Following the same strategy as we did for a usual hypermultiplet, we obtain a contour

integrand

zSp,SO
k1,k2,dbpφ, ψ,~a,~b, mq

corresponding to the double copy of the bifundamental half-hypermultiplet. The param-

eters ~a and ~b are the Coulomb parameters of the Sp and the SO gauge theory, respec-

20Originally, VSp is a vector bundle over the instanton moduli space MSp and VSO a vector bundle over
the instanton moduli space MSO. However, we define both bundles as vector bundles over the product
MSp ˆMSO, by pulling them back using the projection maps πSp{SO :MSp ˆMSO ÑMSp{SO.
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tively, whereas m is the mass parameter for the double copy. Since the half-hypermultiplets

should be massless we substitute m “ 0. For precisely this value of the mass, the resulting

expression indeed turns out to be a complete square

zSp,SO
k1,k2,dbpφ, ψ,~a,~b, m “ 0, ε1, ε2q “

´

zSp,SO
k1,k2,hbpφ, ψ,~a,~bq

¯2
. (3.122)

It is thus natural to identify the square-root zhb of the double bifundamental with the

contribution coming from a Sp ˆ SO-bifundamental half-hypermultiplet. We derive the

corresponding contour integrands in the following.

Double Sp´ SO half-bifundamental

Let us consider the equivariant index

IndT “

ż

C2
ChTpESp b ESO bLbMqTdTpC

2q “
ChTpESp b ESO bLbMq

peiε1 ´ 1qpeiε2 ´ 1q
. (3.123)

Suppose that we add this contribution to the instanton partition function for a quiver with

an SppN1q and an SOpN2q node, which quiver gauge theory do we describe? The contour

integrand corresponding to the above equivariant index equals

zk1,k2 “

n2
ź

l“1

∆1pm˘ blq

N1
ź

k“1

∆2pm˘ akq (3.124)

ˆ

ˆ

∆pm´ ε´q∆pm` ε´q

∆pm´ ε`q∆pm` ε`q

˙ˆ

∆2pm´ ε´q∆2pm` ε´q

∆2pm´ ε`q∆2pm` ε`q

˙χφ

ˆ∆1pmqχb P2pmqχφpmqχbχφ ,
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where ˘ is again an abbreviation for a product over both terms. Here k1 “ 2n1 ` χφ and

N2 “ 2n2 ` χb, whereas

∆1pxq “
n1
ź

i“1

pφ2
i ´ x2q

∆2pxq “
k2
ź

j“1

pψ2
j ´ x2q

∆pxq “
n1,k2
ź

i,j“1

`

pφi ` ψjq
2 ´ x2˘ `pφi ´ ψjq

2 ´ x2˘

P1px, aq “
N1
ź

k“1

pa2
k ´ x2q

P2px, bq “
n2
ź

l“1

pb2
l ´ x2q.

What information can we extract from the terms in equation (3.124)? Notice that if we

decouple the SOpN2q gauge group, the contour integrand (3.124) reduces to that for 2n2

fundamental SppN1q hypers with masses m˘ bl . If we instead decouple the SppN1q gauge

group, the contour integrand reduces that for 2N1 fundamental SOpN2q hypers with masses

m˘ ak. In other words, the equivariant index (3.123) contains twice the degrees of freedom

of a half-bifundamental coupling between the SppN1q and the SOpN2q gauge group.

Furthermore, adding this contour integral to the contribution for a pure SppN ´ 1q

and a pure SOp2Nq theory, yields a total contour integral with as many terms in the nu-

merator as in the denominator. The corresponding quiver gauge theory is therefore con-

formal. This implies that equation (3.123) describes two copies of the SppN1q ´ SOpN2q

half-bifundamental.

If we specify to the Spp1q ´ SOp4q interaction we have χb “ 0, N1 “ 1 and n2 “ 2.

Coupling this to a Spp1q and SOp4q gauge group gives a quiver with two Spp1q ´ SOp4q
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half-bifundamentals. Explicitly, the instanton integrand is given by

zSpp1q,SOp4q
k1,k2,db “

n1
ź

i“1

2
ź

l“1

`

φ2
i ´ pm` blq

2˘ `φ2
i ´ pm´ blq

2˘ (3.125)

ˆ

k2
ź

j“1

´

ψ2
j ´ pm` aq2

¯´

ψ2
j ´ pm´ aq2

¯

ˆ

ˆ

∆pm´ ε´q∆pm` ε´q

∆pm´ ε`q∆pm` ε`q

˙

ˆ

˜

2
ź

l“1

`

b2
l ´m2˘ ∆2pm´ ε´q∆2pm` ε´q

∆2pm´ ε`q∆2pm` ε`q

¸χφ

.

Notice that there are additional poles that involve mass parameter m just like in the case

of the SppN1q ˆ SppN2q bifundamental.

Spp1q ´ SOp4q half-bifundamental

The Sp´SO double bifundamental contribution (3.124) turns into a complete square when

we choose the mass to be m “ 0. We therefore identify the square-root of this double

half-bifundamental contribution for m “ 0 with the contour integral contribution of the

half-bifundamental hypermultiplet:

zSppN1q,SOpN2q

k1,k2,db pφ, ψ, a, b, m “ 0, ε1, ε2q “

´

zSppN1q,SOpN2q

k1,k2,hb pφ, ψ, a, bq
¯2

. (3.126)

For the Spp1q ´ SOp4q gauge theory the half-bifundamental contour integrand is explicitly

given by

zSpp1q,SOp4q
k1,k2,hb “

n1
ź

i“1

`

φ2
i ´ b2

1
˘ `

φ2
i ´ b2

2
˘

k2
ź

j“1

´

a2 ´ ψ2
j

¯ ∆pε´q
∆pε`q

ˆ

b1b2
∆2pε´q

∆2pε`q

˙χφ

,(3.127)

where k1 “ 2n1 ` χ. There’re many different choices of ˘ signs for each of the parenthesis

in the expression, but we can fix the signs by studying the decoupling limit of one of the

gauge groups and compare them with single gauge group computation.
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Chapter 4

ADE ofW-algebras

In this chapter we discuss the 2d side of the correspondence, namely 2-dimensional confor-

mal field theory withW-algebra symmetry. Conformal symmetry is a powerful symmetry

that includes usual Poincare spacetime symmetry and also scale symmetry. Critical phe-

nomena in statistical mechanics are described by conformal field theory. Conformal field

theory is absolutely crucial in the study of string theory since the world sheet theory of

strings are given as a 2-dimensional conformal field theory. W-algebra is an extension of

the Virasoro algebra, which is the underlying symmetry of the 2-dimensional conformal

field theory. In the following, we review conformal and W-symmetries in 2 dimensions,

especially focusing on the computation of the chiral blocks. For the readers who are inter-

ested in learning the subject in depth, we refer to the review paper [94].

4.1 Conformal symmetry in 2 dimensions and Virasoro algebra

In this section, we will review some of the basic properties of 2-dimensional conformal

field theory. We refer to [95, 96] for the details. Conformal symmetries are generated by

the following action

x Ñ x1 “ x` a, (4.1)

x Ñ x1 “ Λx Λ P SOp1, d´ 1q or SOpdq, (4.2)

x Ñ x1 “ λx λ P R´ t0u, (4.3)

x Ñ x1 “
x` bx2

1` 2b ¨ x` b2x2 , (4.4)
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where the first two generate the Poincare group and the latter two are scale transformations

and special conformal transformation, respectively. In d-dimensional Euclidean space-

time, the conformal group is SOp1, d ` 1q and in Lorentzian spacetime, it is SOp2, dq. In

2-dimensions, the conformal group becomes infinite dimensional, since any holomorphic

function defines a conformal map in 2-dimensions. If we write the coordinates as complex

variables z “ x1 ` ix2, z̄ “ x1 ´ ix2, for a given analytic function f pzq on C,

z Ñ f pzq , z̄ Ñ f̄ pz̄q. (4.5)

defines a conformal transformation so that the two-dimensional metric transforms as

ds2 “ dzdz̄ “
ˇ

ˇ

ˇ

ˇ

d f
dz

ˇ

ˇ

ˇ

ˇ

2

dzdz̄. (4.6)

The basis of such transformation are of the form z Ñ z ` εnpzq where εnpzq “ ´zn`1

and also its anti-holomorphic pieces with n P Z. The infinitesimal generators of such

transformations are of the form ln “ ´zn`1Bz and l̄n “ ´z̄n`1Bz̄. It is easy to check that the

generators satisfy

rlm, lns “ pm´ nqlm`n, rl̄m, l̄ns “ pm´ nql̄m`n, rlm, l̄ns “ 0. (4.7)

We will see that the above relation is subject to quantum corrections by a central piece. A

subalgebra spanned by tl´1, l0, l1u and tl̄´1, l̄0, l̄1u generates a group of global conformal

transformation SLp2, Cq.

Suppose there is a field φpz, z̄q in a conformal field theory which transform under the

conformal transformations z Ñ f pzq, z̄ Ñ f̄ qpz̄q as

φpz, z̄q Ñ
ˆ

d f
dz

˙h ˆd f̄
dz̄

˙h̄

φpz, z̄q. (4.8)

Then it is called a primary field of weight ph, h̄q. When it transforms in a same way under

the global conformal transformation, it is called a quasi-primary field.

Any field theory has a conserved stress-energy tensor Tµνpxq satisfying

∇µTµνpxq “ 0. (4.9)
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When the theory is scale invariant1, from the conservation of the dilatation current jµ “

Tµνxν, we get

Tµ
µ pxq “ 0. (4.10)

In the complex coordinates, z, z̄, one can show that the only non-vanishing components of

the stress energy tensor are Tpzq ” Tzz and T̄pz̄q ” Tz̄z̄ and they are functions of z and z̄,

respectively. The holomorphic component describes the left-moving modes and the anti-

holomorphic component describes the right-moving modes. Since they are identical, we

will focus on the holomorphic piece from now.

The operator product expansion (OPE) of the stress-energy tensor with other fields tells

you how the fields transform under the conformal group. The primary fields of conformal

dimension ph, h̄q has the property that OPE with stress-energy tensor is given as

Tpzqφhpwq “
hφhpwq
pz´wq2

`
Bφhpwq
z´w

` . . . , (4.11)

where we suppressed the right-moving coordinates here. We will frequently suppress

right-moving coordinates.

The OPE of the stress-energy tensor with itself is given by

TpzqTpwq “
c{2

pz´wq4
`

2Tpwq
pz´wq2

`
BTpwq
z´w

` . . . , (4.12)

which shows that Tpzq is a quasi-primary field of weight 2. The constant c is called the

central charge of a CFT. When evaluating OPE, one should keep in mind that we have to

keep track of the ordering. Whenever we use operators, we will use the radial ordering for

the time ordering, that is time flows in the |z| direction.

It is useful to expand the stress-energy tensor in terms of Laurent modes Ln. We write

the mode expansion as

Tpzq “
ÿ

nPZ

Lnz´n´2, Ln “

¿

C0

dz
2πi

zn`1Tpzq (4.13)

1In 2-dimensions, it has been proved that scale invariance implies conformal invariance. [97] In higher
dimensions, it is strongly believed that scale invariance implies the conformal invariance, but there is no proof
or counter-example.
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where C0 is the contour around the origin in counterclockwise direction. Now, one can

work out the commutation relation among the modes using the OPE (4.12) to obtain

rLm, Lns “ pm´ nqLm`n `
c

12
mpm2 ´ 1qδm`n,0. (4.14)

This is the Virasoro algebra. We see that when the central charge c is zero, it reduces to the

classical algebra of conformal transformations (4.7).

4.1.1 Representations of Virasoro Algebra

A physical state of conformal field theory has to be in the representation of the Virasoro

algebra. One can construct a highest weight module starting from the highest weight state

satisfying

L0|h, cy “ h|h, cy, Ln|h, cy “ 0. (4.15)

There is a one-to-one correspondence between the highest weight state |h, cy and a primary

operator φpzq of conformal weight h

|h, cy “ lim
zÑ0

φpzq|0y, (4.16)

where the vacuum state |0y is defined to be the state with Lm|0y “ 0 for m ě ´1. Hermic-

ity of the stress-energy tensor Tpzq requires that L:m “ L´m. The highest weight module

consists of the descendant states

L´k1 L´k2 ¨ ¨ ¨ L´km |h, cy, ki ą 0, (4.17)

which is called the Verma module Mph, cq. The Verma module can be decomposed in terms

of L0´eigenspace

Mph, cq “
à

Ně0
Mph, cqpNq, (4.18)
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where

Mph, cqpNq “ tv P Mph, cq|L0v “ ph` Nqvu. (4.19)

This means that the states in Mph, cqpNq are of the form

L´k1 ¨ ¨ ¨ L´km |h, cy,
m
ÿ

i“1

ki “ N, k1 ě k2 ě ¨ ¨ ¨ ě km ą 0. (4.20)

The dimension of the space Mph, cqpNq is given by the Euler function ppNq which counts

the number of partitions of N. The number of partition function is given in arms of the

generating function

1
ś8

n“1p1´ qnq
“

8
ÿ

N“0

ppNqqN . (4.21)

The positivity of the norm of physical states puts certain constraint. Let’s consider a

ppNq ˆ ppNqmatrixMph, cqN of inner products of the vectors in Mph, cqpNq

xh, c|Lim ¨ ¨ ¨ Li1 L´j1 ¨ ¨ ¨ L´jn |h, cy, (4.22)

where i1 ` ¨ ¨ ¨ im “ j1 ` ¨ ¨ ¨ ` jn “ N. This matrix is called the Kac matrix and its determi-

nant is given by

detMph, cqN “
ź

rsďN

ph´ hr,spmqqppN´rsq (4.23)

where the central charge is given by a parameter m satisfying

c “ 1´
6

mpm` 1q
or m “ ´

1
2
˘

1
2

c

25´ c
1´ c

, (4.24)

and hr,spmq is given by

hr,spmq “
rpm` 1qr´mss2 ´ 1

4mpm` 1q
, r, s P Zě0. (4.25)

In general, the Verma module Mph, cq is not irreducible. There may be a set of null

vectors in the Verma module, which are orthogonal to all the states in Mph, cq. The physical
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states should correspond to the quotients of the Verma module by the set of null vectors.

When the highest weight of a Verma module is h “ hr,s, then there is a null vector at level

rs. An operator with conformal weight h “ hr,s is called a degenerate operator.

The positivity of the norm (or unitarity) restricts the value of central charge and highest

weight to be

c ě 1, h ě 0 (4.26)

or

c “ 1´
6

mpm` 1q
, h “ hr,spmq, m “ 2, 3, 4, ¨ ¨ ¨ , 1 ď r ď m´ 1, 1 ď s ď m. (4.27)

Note that in the latter case, only finite number of highest weights allowed.

4.1.2 Free Field Theory

Here, we discuss the conformal field theory with single free boson to illustrate the free

field construction of the simplestW-algebra, namely the Virasoro algebra. One can write

a mode expansion of the free boson by

iBϕpzq “
ÿ

nPZ

αnz´n´1, (4.28)

with OPE given by

BϕpzqBϕpwq „
´1

pz´wq2
. (4.29)

One can derive the commutation relation of modes from above OPE to get

rαm, αns “ mδm`n,0. (4.30)

This defines the Up1q affine Lie algebra. The stress energy tensor of the theory is given by

Tpzq “ ´
1
2
pBϕq2, (4.31)
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in terms of the free field. In terms of modes, we get in particular

L0 “
1
2

α2
0 `

ÿ

ně1

α´nαn. (4.32)

We also see that the free boson theory has central charge c “ 1. One can easily write down

a Verma module of the theory. Let’s define the highest weight vector |ay as

α0|ay “ a|ay, αn|ay “ 0, n ą 0, (4.33)

and the highest weight module is spanned by the states of the form

α´k1 ¨ ¨ ¨ α´kn |ay, k1 ě k2 ě ¨ ¨ ¨ ě kn ą 0. (4.34)

It is easy to see from (4.32) that the highest weight vector |ay has conformal weight 1
2 a2.

The corresponding vertex operator is given by Vapzq “ eiaϕpzq.

So far, the central charge was fixed to be c “ 1. We can modify the theory slightly by

adding a background charge Q at z “ 8. This is due to Feigin-Fuchs [98]. It does not

change the OPE of the fields, but changes the stress-energy tensor to

Tpzq “ ´
1
2
pBϕq2 ` iQB2ϕ. (4.35)

Now, the central charge becomes c “ 1´ 12Q2 so that it screens the central charge of the

original system. It also changes the conformal weight of the vertex operators Vapzq by

hpaq “ a
´ a

2
´Q

¯

. (4.36)

We will use analogous construction to realize theW-algebras of various types. One advan-

tage of free boson construction in the 4d/2d correspondence is that the relation between

the Coulomb branch parameters of 4d gauge theory is directly given by the zero modes of

the free bosons. It gives much simpler and direct relation between the two without using

indirect map of parameters between the Coulomb branch parameters and the weights of

theW-primary states.
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4.1.3 Conformal Block

Another powerful consequence of the conformal symmetry is that n-point correlation func-

tion of a CFT is fully determined by the set of 3-point functions of primary fields and the

n-point conformal block [99, 100]. Conformal blocks are fully determined by the represen-

tation of Virasoro algebra. For example, 4-point function can be written as

xV1p8qV2p1qV3pqqV4p0qy “
ÿ

i

C12hi Chi34F1,2,3,4;ipqqF̄1,2,3,4;ipq̄q, (4.37)

where Cabc is the 3-point function of the vertex operators a, b, c located at z “ 0, 1,8, and

we are summing over the primary fields labeled by i with weights hi. The conformal block

F is given by

F “
ř

~I,~JxV1p8qV2p1qL ~́IVhp0qyK´1
I J xL ~́JVhp8qV3pqqV4p0qy

xV1p8qV2p1qVhp0qyxVhp8qV3p1qV4p0qy
(4.38)

where L ~́I “ L´i1 L´i2 ¨ ¨ ¨ L´im for ~I “ pi1, i2, ¨ ¨ ¨ , imq and K~I,~J is the Kac matrix. Note that

this definition differs slightly from the usual definition, as we have not divided out a factor

qh´h3´h4 . Our definition will be slightly more convenient to work with when we compare

with the instanton partition function.

p
0

1

q

8

Figure 4.1: The 4-point conformal block.

One can obtain arbitrary n-point conformal block from sewing the elementary building

blocks. The building blocks are 3-point functions of the form

RMph1, h2, h3q “
xV1V2L´~mV3y

xV1V2V3y
, (4.39)

SM,Nph1, h2, h3q “
xL´~mV1V2L ~́nV3y

xV1V2V3y
. (4.40)

One can glue two vertices by putting the propagator which is given by the inverse of Kac
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matrix K´1. For example, the 4-point function given as above can be written as

RMph1, h2, hqK´1phqRMph, h3, h4q. (4.41)

One can also have a building block with all three vertices being descendant states. We

will discuss this in section 5.5.1 where we relate it to the trifundamental half-hypermultiplet

appears in Sicilian gauge theories. We will also see that it is possible to generalize the con-

cept of conformal block toW-algebras in the next section.

4.2 W-algebras

A W-algebra is an extension of the Virasoro algebra, with additional conserved currents

Wpsiqpzq which are the quasi-primaries of conformal dimensions si. It includes Wp2qpzq “

Tpzq and the OPE of W-currents has be closed, which means that every terms should be

written in terms of Wpsiqpzq and their derivatives. One can make a formal definition of the

W-algebras using the notion of meromorphic conformal field theory [94].

The simplest example of the W-algebra called W3 is first written by Zamolodchikov

[101]. It consists of two currents Tpzq and Wpzq which are quasi-primaries of dimension 2

and 3. The OPE of dimension 3 currents are

WpzqWpwq „
c{3

pz´wq6
`

2Tpwq
pz´wq4

`
BTpwq
pz´wq3

`
1

pz´wq2

ˆ

2βΛpwq `
3

10
B2Tpwq

˙

(4.42)

`
1

pz´wq2

ˆ

βΛpwq `
1
15
B2Tpwq

˙

,

where

Λpwq “ pTTqpwq ´
3

10
B2Tpwq, β “

16
22` 5c

. (4.43)

The form of OPE is fixed by requiring the crossing symmetry of the correlation function.

In terms of Laurent modes

Tpzq “
ÿ

nPZ

Ln

zn`2 , Wpzq “
ÿ

nPZ

Wn

zn`3 , (4.44)
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the commutation relations are given by

rLm, Wns “ p2m´ nqWm`n (4.45)

and

rWm, Wns “
c

360
mpm2 ´ 1qpm2 ´ 4qδm`n,0

` pm´ nq
„

1
15
pm` n` 3qpm` n` 2q ´

1
6
pm` 2qpn` 2q



Lm`n (4.46)

` βpm´ nqΛm`n

where

Λm “
ÿ

nPZ

pLm´nLnq ´
3
10
pm` 3qpm` 2qLm. (4.47)

One can use these commutation relations and construct the Verma module corresponding

to the primary states with respect to both Tpzq and Wpzq. One can start with a state with

L0|h, wy “ h|h, wy, W0|h, wy “ w|h, wy, Ln|h, wy “ Wn|h, wy “ 0, pn ą 0q (4.48)

and then form a W-descendeant states by applying W´k or L´k1 successively

W´k1 ¨ ¨ ¨ L´k11
¨ ¨ ¨ |h, wy, ki, k1j P N. (4.49)

These states form the highest weight module of theW3-algebra.

Even though it is possible to directly construct ofW-algebra by starting with currents

with higher conformal dimension and try to make the algebra close, it is very hard to

construct the W-algebra with many high-dimensional currents. The direct construction

has been done only up to the case with 3 generators [102, 103], but not beyond.

There is no complete classification allW algebras, but many examples are known and

have been studied. One particular family of examples are the the so-called Casimir alge-

bras, which are based on simply laced Lie algebras. Its generators are constructed from

the g-invariant contractions of the current field Jpzq of the affine Lie algebra g. The series

of WN-algebras, for instance, is related to the AN Lie algebras. In [91] WN-blocks have
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been related to the instanton partition functions corresponding to UpNq gauge theories.

It is natural to expect that also the other Casimir algebras appear as dual descriptions of

instanton counting.

There is a more systematic method of obtaining the W-algberas called the quantum

Drinfeld-Sokolov (DS) reduction [104, 105, 106]. It starts from an affine Lie algebra ĝ and

impose some constraints on the generators by the BRST procedure. The reduced algebra

Wpgq is given by the BRST cohomology.

4.2.1 Chiral Blocks and Twisted Representations

Since the spectrum of the CFT decomposes into representations of theW algebra, we can

use generalized Ward identities to relate correlation functions of (W-)descendant fields to

correlation functions of (W-)primary fields. In the case of the Virasoro algebra, we can

always reduce them to functions of primary fields only. For general W-algebras this is

only possible if one restricts to primary fields on which theW-fields satisfy additional null

relations.

We can make use of this property by computing chiral blocks. For a given configuration

of a punctured Riemann surface, we define the chiral block by picking a representation φ

for every tube, inserting the projector on the representation PHφ
at that point in the corre-

lator, and dividing by the product of all three point functions of the primary fields. By the

above remarks the result is then independent of the three-point functions of the theory, i.e.,

it only depends on the kinematics of the theory.

In the simplest configuration, the sphere with four punctures, the chiral block is thus

given by

F “
xV1p8qV2p1qPHφ

V3pqqV4p0qy
xV1p8qV2p1q|φyxφ|V3p1qV4p0qy

. (4.50)

On the gauge theory side it corresponds to the partition function including the perturba-

tive contribution. Also, let us take the convention in what follows that whenever we write

a correlator, we assume that it is divided by the appropriate primary three point functions.

The projector is usually written as

PHφ
“

ÿ

I,J

|φIyxφJ|pK´1qI,J (4.51)
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where I “ pi1, i2, . . .q denotes the W descendants, such that φI “ W´i1W´i2 ¨ ¨ ¨ φ is a W

descendant. K is the inner product matrix and the sum runs over allW descendants of φ.

A representation φ ofW is called untwisted if it is local with respect toW , so that one

can freely moveW-fields around it. TheW-fields then have integer mode representations

around that representation.

More generally, the W-fields can pick up phases when circling around φ, so that the

correlation function has a branch cut extending from φ. Such φ are called twisted repre-

sentations. Because of the phase α picked up by the W-fields, their modes are no longer

integer, but given by r P Z` α.

A particular case of twisted representations can appear when theW has an outer auto-

morphism such as a ZN-symmetry. Let us say that by circling around a twisted represen-

tation the algebraW gets mapped to an image under ZN , such as

Wk ÞÑ Wk`1 , k “ 1, . . . N . (4.52)

By choosing linear combinations Wpkq of the modes Wk that are eigenvectors under the

automorphisms, the Wpkq indeed pick up phases 2πik{N. For N “ 2, the case that we are

interested in below, the W-algebra thus decomposes into generators W`, W´ of integer

and half-integer modes, respectively.

Let us finally note that in the case of Liouville theory the W-algebra is simply the

Virasoro algebra. Example of conformal field theories with bigger W-algebras are Toda

theories.

4.3 Free field realization ofW-algebras

We will construct our W-algebras of type Γ “ An, Dn and En from free fields using the

quantum version of the Drinfeld-Sokolov reduction. For our purpose this boils down to the

following steps: We introduce the free bosons ~ϕ living in the weight space of the semisim-

ple Lie group Γ of rank n. We normalize the OPE of the free bosons so that Jk “ iBϕi

satisfies

JkpzqJlpwq „
δkl

pz´wq2
. (4.53)
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We assume Γ is simply-laced, and normalize the roots to have squared length 2. The W-

algebra is then given by the centralizer of the screening charges Q˘i defined as follows: For

each simple root~αi there are charges

Q˘i “
¿

s̃˘i dz , s̃˘i “ exppb˘1~αi ¨ ~ϕq . (4.54)

Then we find the operators constructed from the bosons ~ϕ which commute with all the

screening charges. It is known that there are n independent generators with weights wi,

tabulated in Table. 2.1. The weight 2 operator is the energy-momentum tensor given by

Tpzq “ Wp2qpzq “ ´
1
2
pB~ϕ ¨ B~ϕqpzq `Q~ρ ¨ B2~ϕpzq , (4.55)

where ~ρ is the Weyl vector and Q “ b` 1{b.

Our computations were all done in Mathematica using the package OPEdefs.m devel-

oped by K. Thielemans [107]. In the following, all composite operators are understood to

be OPE-normal ordered.

4.3.1 Simply laced W-algebras

4.3.1.1 An

For An we make use of the quantum Miura transform [108, 109]. Let~ei, i “ 1, . . . n` 1 be

the weights of the fundamental n` 1 dimensional representation of An, as in Appendix A.

We then construct a set of generators Upkqpzq from

Rpn`1qpzq “ ´
n`1
ÿ

k“0

UpkqpzqpQBqn`1´k “ pQB ´~e1 ¨ B~ϕpzqq ¨ ¨ ¨ pQB ´~en`1 ¨ B~ϕpzqq . (4.56)

One can show that the singular part of the OPE of Rpn`1q with s̃˘i is a total derivative,

which means that the Upkqpzq are indeed in the centralizer of the screening charges. Since

Up1qpzq vanishes, the remaining set of generators has the correct dimensions wi. One can

also show that they are independent, from which we conclude that we have a full set of

generators. Note however that these generators are certainly not unique, as we can always

add suitable products and derivatives of lower order generators.
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4.3.1.2 Dn

For Dn we introduce ~ei, i “ 1, . . . n such that ~̆ei form the weights of the fundamental 2n

dimensional representation. We repeat the construction of Rpnqpzq as

Rpnqpzq “ ´
n
ÿ

k“0

VpkqpzqpQBqn´k “ pQB ´~e1 ¨ iB~ϕpzqq ¨ ¨ ¨ pQB ´~en ¨ iB~ϕpzqq . (4.57)

In this case however it turns out that only Vpnqpzq commutes with the screening charges.

To obtain the rest of the generators, we can take the OPE of Vpnq with itself,

VpnqpzqVpnqpwq “
an

pz´wq2n `

n´1
ÿ

k“1

an´k

pz´wq2pn´kq

´

Up2kqpzq `Up2kqpwq
¯

, (4.58)

where we choose the normalization ak “
śk´1

j“1 p1´ 2jp2j` 1qQ2q. Once again one can show

that Vpnq and the Up2kq are independent, which gives us a set of n generators of the correct

weights [110, 111].

4.3.1.3 E6

For W-algebra of type E6, the concise Miura transforms such as (4.56) for type An and

(4.57) for type Dn are not known. Thus, one is forced to construct the commutants of the

screening operators (4.54) directly. Note that an operator Opzq commute with the screening

charge Qi if and only if it has the form

Opzq “
ÿ

a
XapTjqpzqYapBϕ1, . . . , Bϕi´1, Bϕi`1, . . . , Bϕnqpzq (4.59)

where

• Xa and Ya stand for normal-ordered polynomials, possibly with derivatives, con-

structed from their respective arguments,

• Ti is the energy momentum tensor for the boson ϕi “~αi ¨~ϕ along the root~αi, i.e. Tipzq “

´BϕiBϕipzq `QB2ϕi{2 with central charge 1` 6Q2,

• and ϕi “ ~wi ¨ ~ϕ where ~wi are the fundamental weights, so that Ya are constructed

from bosons perpendicular to the root~αi.
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Therefore, Opzq is in the W-algebra of type En if and only if Opzq has the decomposition

(4.59) for each simple root~αj. Details of the construction of the WpE6q algebra are presented

in Appendix G.

4.3.2 Twisted sectors of the simply-laced W-algebras

We need to consider the sectors of the simply-laced algebras twisted by their outer auto-

morphisms to compare with the instanton partition function for non-simply-laced gauge

groups.2

The Zr outer automorphism acts on the simple roots as shown in Fig. 2.6. This induces

an action on the free bosons ~ϕ. Since this is also a symmetry of the W-algebra, and we

can consider a Zr-twisted state. In practice we pick new linear combinations of bosons ϕ̃j

which are eigenstates of the Zr action:

B ϕ̃j ÞÑ e2πik j{rB ϕ̃j , k j “ 0, . . . r´ 1 . (4.60)

Their modes are therefore in Z` k j{r. The set of generators Wpwiq therefore decompose into

generators Wpŵiq with integer modes, and generators Wpw̃iq with non-integer modes. The

former correspond to the invariants of the non-simply-laced gauge group that we want to

construct, and the states of the lowest level in the twisted Verma module is generated by

Wpw̃iq

´1{r.

The actions on the W-generators are given explicitly as follows:

• The Z2 action on WpAnqmaps Ũpkq Ñ p´1qkŨpkq where Ũpkq is a suitable redefinition

of Upkq defined in (4.56). For example, in the case of WpA5q,

Ũp2q “ Up2q, Ũp3q “ Up3q ´ 2QBŨp2q,

Ũp4q “ Up4q ´
3
2

QBŨp3q, Ũp5q “ Up5q ´QBŨp4q `Q3B3 ˜Up2q,

Ũp6q “ Up6q ´
1
2

QBŨp5q `
1
4

Q3B3Ũp3q. (4.61)

The redefined currents are determined by requiring W-generators to have definite Z2

eigenvalues.

2The W-algebras for non-simply-laced groups Bn, Cn, G2, F4 can also be determined via Drinfeld-Sokolov
reduction, see e.g., [112], but that is not what we use.
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• The Z2 action on WpDnqmaps Vpnq Ñ ´Vpnq, Up2kq Ñ Up2kq where Vpnq and Up2kq are

defined in (4.57), (4.58).

• The Z2 action on WpE6q maps Wpnq Ñ p´1qnWpnq, where Wpnq is defined in Ap-

pendix G.

• The Z3 action on WpD4q is given is induced from the Z3 action on the four free bosons

(4.60). Explicitly, we first define Wp2,4,6q and W̃p4q by

Wp2q “ Up2q, Wp4q “ Up4q `
1
4
B2Wp2q ´

1
2

Up4qWp2q `
9Q2p1´ 4Q2q

2´ 12Q2 B2Wp2q,

W̃p4q “
?

3Vp4q, Wp6q “ Up6q `
1
2
B2Wp4q ´

1
3

Wp4qWp2q `
5
6

Q2B2Wp4q . (4.62)

where Vp4q and Up2,4,6q are defined in (4.57), (4.58). Then Wp2,6q is invariant and Wp4q`

iW̃p4q Ñ e2πi{3pWp4q ` iW̃p4qq under the Z3 action.

4.3.3 Basic properties of the Verma module

Before continuing, we recall two basic features of the untwisted and twisted Verma mod-

ule. The first is their Weyl invariance. The zero modes of the W-generators are given in

terms of the zero modes~J0 of the free bosons ~ϕ. If we define~a by

~a “ ~J0 ´Q~ρ (4.63)

then the zero modes of W-generators are Weyl-invariant polynomials of~a. For twisted sec-

tors, the twisted bosons do not have zero modes. Correspondingly,~a and ~J0 are invariant

under the twist; ~ρ is automatically invariant.

The second is the Kac determinant at the lowest level, which we detail in Appendix F.

Here we just quote the result, which is given by

(Kac determinant at level ´1{r)9
ź

~γP∆l

p~γ ¨~a`Qq (4.64)

where

∆l “

$

’

’

’

&

’

’

’

%

∆, pr “ 1q

t~α` op~αqu, pr “ 2q

t~α` op~αq ` o2p~αqu. pr “ 3q

(4.65)
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Here~α runs over roots with~α ‰ op~αq. As explained in Appendix A.2, ∆l can be identified

with the set of long roots of G, which is the S-dual of the Zr invariant subgroup of Γ.
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Chapter 5

ABCDEFG of Instantons and ADE of
W-algebras

5.1 Introduction

It has been almost twenty years since it was realized that the quantum dynamics of 4d

N “ 2 gauge theory is encoded in the classical geometry of a two-dimensional Riemann

surface Σ, called the Seiberg-Witten curve [15, 16]. The curve Σ was originally introduced

as an auxiliary construct, but it was later recognized [45, 33, 25, 31] that Σ is a branched

covering of another two-dimensional surface C called Gaiotto curve or UV-curve on which

a 6d N “ p2, 0q theory is compactified to obtain the 4d N “ 2 theory.

From this point of view, it is not surprising that the 2d quantum dynamics on Σ or

C have some bearing on the 4d gauge dynamics. Indeed the role of 2d free bosons in

this setup has long been recognized: see e.g. [113, 114, 115] for the identification of the

gravitational factor on the u-plane [116, 117] as the one-loop determinant of a free boson

on Σ, and [22, 23, 24] for a more general analysis.

Compactifying the six-dimensional superconformal p2, 0q theory of type ADE on either

a two-dimensional Riemann surface or a four-manifold, suggests that there should be a

correspondence between the following two systems. The first system is a four-dimensional

superconformalN “ 2 gauge theory with ADE gauge group and whose UV-curve is equal

to the Riemann surface. The second system is a two-dimensional field theory that lives on

the Riemann surface and should be characterized by an ADE type.

Remember that the tubes of the UV-curve are associated to the ADE gauge group of

the N “ 2 gauge theory, and the punctures on the UV-curve to matter. Decomposing the
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UV-curve into pairs of pants suggests that the marginal gauge couplings τUV should be

identified with the sewing parameters q “ expp2πiτUVq of the curve. The symmetry of the

two-dimensional theory should be related to the ADE gauge group. Furthermore, two-

dimensional operators that are inserted at punctures of the UV-curve should encode the

flavor symmetries of the corresponding matter multiplets.

A particular instance of such a 4d–2d connection was discovered in [26]. It was found

that instanton partition functions in the Ω-background R4
ε1,ε2

for linear and cyclic Up2q

quiver gauge theories are closely related to Virasoro conformal blocks of the pair of pants

decomposition of the corresponding UV-curves. In this so-called AGT correspondence the

central charge of the Virasoro algebra is determined by the value of the two deformation

parameters ε1 and ε2 as

c “ 1`
6pε1 ` ε2q

2

ε1ε2
. (5.1)

The conformal weights of the vertex operators at the punctures of the UV-curve are speci-

fied by the masses of the hypermultiplets in the quiver theory, and the conformal weights

of the fields in the internal channels are related in the same way to the Coulomb branch

parameters.

Figure 5.1: The AGT correspondence relates the instanton partition function of the Up2q
gauge theory coupled to four hypermultiplets to a Virasoro conformal blocks on the four-
punctured sphere with vertex operator insertions at the four punctures.

More precisely, the instanton partition function can be written as the product of the

Virasoro conformal block times a factor that resembles a Up1q partition function. The in-

terpretation for this is that the single Casimir of degree 2 of the subgroup SUp2q Ă Up2q

corresponds to the energy-stress tensor of the CFT, and the overall Up1q factorizes. This

picture was made more explicit in [118].

For general gauge groups with more Casimirs we expect the CFT to have a bigger

symmetry group. Since the symmetries of a CFT are captured by its so-calledW or chiral
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algebra, we expect that the Nekrasov partition functions should be identified with W-

blocks instead of Virasoro blocks. For SUpNq, this picture was proposed and checked in

[91]. The relation between Hitchin systems andW-algebras was also discussed in [119].

In this chapter, we will study the correspondence for every gauge groups for the pure

Yang-Mills case, and for the Sp´ SO linear quivers, and finally to the SUp2q non-linear or

Sicilian quiver gauge theories.

5.2 Pure YM case

The essence of the 4d/2d correspondence is that the correlator of the 2d Toda theory equals

the Nekrasov partition function of the 4d theory with Ω deformation parameters ε1,2, and

that the vevs of its W-currents Wpwiqpzq become the world-volume fields φpwiq determining

the Seiberg-Witten curve:

lim
ε1,2Ñ0

xWpwiqpzqypdzqwi Ñ φpwiqpzq . (5.2)

In particular, the instanton contribution to Nekrasov’s partition function should equal the

conformal block of the W-algebra. With the help of (5.2) we translate the conditions on

the singularities of φpwiqpzq at z “ 0,8 into conditions on the state |Gy, which we call the

Gaiotto-Whittaker state, inserted at z “ 0,8. This state turns out to be a certain coherent

state in the Verma module of the untwisted sector of the WpGq-algebra when G is simply-

laced, and in the Zr-twisted sector of the WpΓq-algebra when G is non-simply-laced. We

come back to the details in Sec. 5.2.1. The most important relation is

Wph_q
1{r |Gy “ Λh_ |Gy. (5.3)

Under a suitable identification of parameters we should then have the equality

Zinstp~a; ε1,2q “ xG|Gy “ xG|Λ2h_rL0 |Gy . (5.4)

On the right hand side, |Gy is the coherent state (5.3) defined by setting Λ “ 1. The relation

can be understood as in Fig. 5.2: the boundary condition creates the state xG|, which is

then propagated by the distance 9 log Λ, then is annihilated by |Gy. Indeed, log Λ is the
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6d Γ theory

Ó

5d G theory

2d W-algebra xG| Λ2h_rL0 |Gy

Figure 5.2: Top: the Seiberg-Witten solution of pure N “ 2 super Yang-Mills theory with
gauge group G in terms of 6d N “ p2, 0q theory of type Γ on C “ CP1 with the Zr twist
line from z “ 0 to z “ 8. Middle: the S1 reduction to the 5d maximally supersymmetric
Yang-Mills theory with gauge group G on a segment, with a suitable half-BPS boundary
condition on both ends. Bottom: In the 2d description, the coherent state xG| is produced
by the BPS boundary condition. It is then propagated along the horizontal direction and
annihilated by |Gy.

UV coupling, and is proportional to the length of the fifth direction.

This relation was first considered for SUp2q in [120], and its calculation was later stream-

lined in [121]. The check for SUp3q was performed in [122] using the known explicit com-

mutation relation of the W3-algebra.

In this section we will check (5.4) at the one-instanton level uniformly for all G. We

will use the free-field realization of the W-algebra, without explicitly writing down the

complicated commutation relation of the modes of its modes. Before proceeding, it is to be

noted that relation (5.4) when we have a full surface operator has already been rigorously

proved for all groups to all order in [66, 60].

5.2.1 Identification of the coherent state

Under the correspondence of Nekrasov’s partition functions and conformal blocks of W-

algebras, the key relation is that the vev of the W-currents should become the fields φpwiqpzq

in the limit ε1,2 ! a:

lim
ε1,2Ñ0

xWpwiqpzqypdzqwi Ñ φpwiqpzq. (5.5)

The fields φpwiqpzq have two singularities z “ 0,8, which means that there is a state xG| at

z “ 8 and a state |Gy at z “ 0. The behavior of φpwiqpzq at z “ 8 has the same form as the

behavior at z “ 0 by the map w “ 1{z. Therefore the state xG| is a conjugate of the state

|Gy.

When G is simply-laced, the conditions (2.25) and (2.26) imply that |Gy is in the Verma
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module of WpGq-algebra generated from the highest weight state |~wywith

Wpwiq
0 |~wy “ wpwiq|~wy (5.6)

where the eigenvalues wpwiq should equal the vev upwiq up to some quantization error in-

volving ε1,2. The condition (2.26) then tells us that

Wpwiq

` |Gy “ 0 for ` ą 0 unless Wph_q
1 |Gy “ Λh_ |Gy. (5.7)

When G is non-simply-laced, the conditions (2.27) through (2.29) imply that |Gy is in

the Verma module generated by the Zr-twisted vacuum |~wy of WpΓq-algebra determined

by

Wpŵiq
0 |~wy “ wpŵiq|~wy (5.8)

where the eigenvalues wpŵiq should equal the vev upŵiq up to the quantization error involv-

ing ε1,2. The condition (2.29) then says

Wpwiq

` |Gy “ 0 for ` ą 0 unless Wph_q
1{r |Gy “ Λh_ |Gy. (5.9)

Then we should have the relation

Zp~a, ε1,2q “ xG|Gy. (5.10)

Both sides are power series; the k-instanton contribution on the left hand side corresponds

to the level-k{r contribution on the right hand side.

Note that the norm of |Gy does not change if we change the definition of Wph_q by

adding products and derivatives of lower degree generators, since Wph_q
´` only changes by

negative modes of lower generators, which annihilate |Gy anyway.

5.2.2 Coherent state at the lowest level

Here, we discuss the procedure to compute the norm of the Gaiotto-Whittaker vector xG|Gy

using the free-bosons representation of the W-algebras. The method is the same as in

[121, 122]. We stick to the untwisted representations of the W-algebras for the moment.
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Let us expand |Gy in terms of levels of descendants

|Gy “ |~wy `Λh_ |G1y ` pΛh_q2|G2y ` ¨ ¨ ¨ (5.11)

so that |G`y has conformal weight `. The condition (5.9) is now

Wpwiq

` |G`y “ 0 for n ą 0 except for Wph_q
1 |G`y “ |G`´1y (5.12)

with |G0y “ |~wy. In what follows, we will compute xG1|G1y and compare against the 1-

instanton computations. Expressed in terms of descendants at level 1 |G1y is

|G1y “
ÿ

i

AiW
pwiq

´1 |~wy. (5.13)

Now, use (5.12) to get

0 “ x~w|Wpwiq

1 |G1y “
ÿ

j

Ajx~w|W
pwiq

1 W
pwjq

´1 |~wy “
ÿ

j

Kp1qij Aj for wi ‰ h_, (5.14)

1 “ x~w|~wy “ x~w|Wph_q
1 |G1y“

ÿ

j

Ajx~w|W
ph_q
1 W

pwjq

´1 |~wy “
ÿ

j

Kp1qnj Aj (5.15)

where Kp`q is the Kac-Shapovalov matrix at level `. We can solve for A so that Ai “

pKp1qq´1
in , and the norm is given by

xG1|G1y “
ÿ

i,j

AiK
p1q
ij Aj “ pKp1qq´1

nn . (5.16)

It can be easily generalized to arbitrary level to get xG`|G`y “ pKpnqq´1
n`,n` where the index

n` means we pick the element corresponds to pWpwnq

´1 q`|~wy. In order to get the norm of the

Gaiotto states for the Zr twisted sector, we simply look for the descendants of level-1{r,

and take the corresponding element of the Kac-Shapovalov matrix.

To evaluate the Kac-Shapovalov matrix write the W generators in terms of free bosons

and expand as

Jkpzq “ iBϕkpzq “
ÿ

mPZ

Jk
mz´m´1 (5.17)
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with the usual commutation relation

rJk
m, Jl

ns “ mδk,lδm`n,0. (5.18)

Then the W-algebra vacuum |~wy is represented by the free-boson vacuum |~ay where ~a “

~J0´Q~ρ is the shifted zero mode of the free bosons. Note that the bra x~w| then corresponds

to x ~́a| due to the background charge Q~ρ and the shift.

Let us first discuss the simply-laced case. As we are dealing with normal ordered

products, the descendant states at level one can be expressed as

Wpwiq

´1 |~ay “
ÿ

j

Mijp~aqJ
j
´1|~ay, x ~́a|Wpwiq

1 “
ÿ

j

x ~́a|Ji
1Mijp ~́aq. (5.19)

The coefficient Mijp~aq is a polynomial in~a and Q. The Kac-Shapovalov matrix is given by

Kijp~aq “
ÿ

k

Mikp ~́aqMkjp~aq. (5.20)

The twisted case is slightly more involved. Again we know that the lowest descendant

states can be written as

Wpw̃iq

´1{r|~ay “
ÿ

j

M̃ijp~aqJ
j
´1{r|~ay, (5.21)

where M̃ijp~aq is again a polynomial in the zero modes of the untwisted bosons. To com-

pute it, we need to find modes of the form : pJ jqm :´1{r, which can be found from the

original prescription of OPE-normal ordering, that is by subtracting the singular part of

the correlator of the m bosons. For instance, to obtain the constant C2m`1 of the state

: pJ jq2m`1 :´1{2 |~ay “ C2m`1 J´1{2|~aywe extract the regular part of the correlator

lim
ziÑz1

x ~́a|J j
1{2 J jpz2m`1qJ jpz2mq ¨ ¨ ¨ J jpz1q|~ay

ˇ

ˇ

ˇ

reg
“

C2m`1

2z2m`1{2
1

, (5.22)

and similarly for the zero modes of even powers of J.
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5.2.3 Comparison

After all these preparations, now we can compare the norm of the Gaiotto-Whittaker vector

and the one-instanton partition function. Obviously, the norm of the Gaiotto-Whittaker

vector can have poles only at the zero of the Kac determinant, (4.64), i.e. when ~β ¨~aboson `

Q “ 0 for a long root β. We also have the formula of the one-instanton expression in the

gauge theory side, (3.68), which has apparent poles when ~β ¨~agauge “ ε1 ` ε2 for a long

root β, or when ~γ ¨~agauge “ 0 for an arbitrary root γ. In order for them to have any chance

of agreement, we need to identify

~aboson “
~agauge
?

ε1ε2
, Q “

ε1 ` ε2
?

ε1ε2
. (5.23)

Using the procedure outlined above, we have checked the agreement between the

norm of the coherent state and instanton partition function at 1-instanton level

• for simply-laced algebras A1,2,3,4,5,6, D4, and E6,

• and for non-simply-laced algebras B2,3, Cn, F4 and G2.

In general, the agreement comes with a multiplicative ambiguity due to the normalization

of W-currents. It can be easily absorbed into the redefinition of the expansion parameter

Λ.1 For higher rank algebras, such as A5, A6, F4 and E6, due to the computational com-

plexity, we checked the agreement by plugging in several set of test numbers for the zero

modes and Q parameter instead of leaving it as a symbolic expression. Let us now discuss

the cases An, Dn, Bn, Cn, G2 and F4 in this order.

5.2.3.1 An

The W-algebra calculation leads to the following explicit form of the Gaiotto-Whittaker

vector at level one:

|G1y “
ÿ

i

vip~aqJi,´1|~ay (5.24)

where

vip~aq “
ÿ

j

Cijp~aqwjp~aq, wip~aq “
1

ś

xăipax ´ aiq
ś

iăxpQ´ ai ` axq
(5.25)

1When the underlying gauge theory is conformal, one may encounter much more intricate map between
expansion parameters as we will see in the later sections.
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where

Cijp~aq “ 0, pi ă jq (5.26)

Cijp~aq “ 1, pi “ jq (5.27)

Cijp~aq “ p´1qi´jQ

ś

jăkăipQ´ aj ` akq
ś

jăkďipaj ´ akq
. pi ą jq (5.28)

Here ai “~ei ¨~a. We checked the validity for small n; we believe it is true in general.

The corresponding bra is given by

xG1| “
ÿ

i

x ~́a|Ji,1vip ~́aq. (5.29)

Now, it can be checked that

vip ~́aq “
ÿ

j

w̃jp~aqpC´1p~aqqji, with w̃ip~aq “
1

ś

xăipQ´ ax ` aiq
ś

iăxpai ´ axq
. (5.30)

Therefore,

xG1|G1y “
ÿ

i

ź

i‰j

1
pai ´ ajqpQ´ ai ` ajq

(5.31)

which is indeed the one-instanton contribution of Nekrasov’s partition function [75, 55,

122] calculated from the geometry of the one-instanton moduli space. For example,

ZSUp2q,1 “ ´
2

4a2 ´Q2 , (5.32)

ZSUp3q,1 “
6
`

a2
1 ` a1a2 ` a2

2 ´Q2
˘

rp2a1 ` a2q2 ´Q2srpa1 ` 2a2q2 ´Q2srpa1 ´ a2q2 ´Q2s
. (5.33)

Two comments are in order. First, note that the uniform formula (3.68) instead gives

the following form

Zk“1 “
ÿ

i‰j

1
pai ´ ajqpQ´ aj ´ aiq

ź

k‰i

1
ai ´ ak

. (5.34)

The agreement of (5.31) and (5.34) are not easy to see, but they are equal nonetheless. Sec-

ond, recall that each summand in the formula (5.31) comes from the contribution of a fixed

point in the resolution of the one-instanton moduli space. Then the relation (5.25) means

that the free boson basis Ji
´1|~ay is an upper-triangular redefinition of the basis formed by
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the fixed points, explicitly confirming the results of Maulik and Okounkov [123].

5.2.3.2 Dn

The WpDnq contains W-generators of dimension 2, 4, ¨ ¨ ¨ , 2n ´ 2 and additionally of di-

mension n. The Nekrasov partition function for Dn “ SOp2nq can be obtained easily by

evaluating the contour integral expression in [53]. We have,

ZSOp2nq,1 “ ´

n
ÿ

i“1

»

–

pai ˘Qqp2ai ˘Qq
ś

j‰ipa
2
i ´ a2

j q
´

pai ˘Qq2 ´ a2
j

¯

fi

fl , (5.35)

where˘means we sum over both signs and ai “~ei ¨~a. We have checked the agreement up

to D4.

5.2.3.3 Bn

To get the coherent state for Bn, we start from WpA2n´1q. We need to evaluate the n-

dimensional Kac-Shapovalov matrix, since all the odd-dimensional W-currents are twisted

by Z2 automorphism. The Z2 action maps ϕi to ´ϕ2n`1´i. Then the eigenstates are

ϕ̃`i “ ϕi ´ ϕ2n`1´i and ϕ̃´i “ ϕi ` ϕ2n`1´i . (5.36)

Then, the twisted W-currents can be written as

Ũpmq
´1{2|~ay “

ÿ

i

Bm,ip~aqJ
´,i
´1{2|~ay, (5.37)

where Bm,i is a function of zero modes of the untwisted free bosons. Now, we evaluate the

Kac-Shapovalov matrix to obtain the norm of the coherent state. For example, when n “ 3,

KB3 “

¨

˝

x ~́a|Ũp3q
1{2Ũp3q

´1{2|~ay x ~́a|Ũp3q
1{2Ũp5q

´1{2|~ay

x ~́a|Ũp5q
1{2Ũp3q

´1{2|~ay x ~́a|Ũp5q
1{2Ũp5q

´1{2|~ay

˛

‚ (5.38)

and take the inverse of KB3 and read off the p2, 2q component of it.
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On the instanton side, we have,

ZSOp2n`1q,1 “

n
ÿ

i“1

»

–

p2ai ˘Qq

ai
ś

j‰ipa
2
i ´ a2

j q
´

pai ˘Qq2 ´ a2
j

¯

fi

fl , (5.39)

where ˘ means that we sum over both signs and ai “ ~εi ¨~a{
?

2. We find that they agree

with the norm of the corresponding coherent states up to numeric constants.

5.2.3.4 Cn

The Gaiotto-Whittaker vector corresponds to Cn can be obtained from the WpDn`1q-algebra.

We can just follow the same procedure as Bn case, but in this case we can do much easily.

There is only one WpDnq-generator that is not invariant under Z2 which is Vpnq. In terms of

free bosons, it only shifts the sign of one of the bosons. Therefore, the Kac-Shapovalov ma-

trix is just a number, we can simply use (4.64). We get the norm of the Gaiotto-Whittaker

vector to be

xG1|G1y9
1

śn
i“1pQ2 ´ 4a2

i q
. (5.40)

It is known that the moduli space (neglecting the center of mass contribution) of one

Sppnq instanton is C2n{Z2, and the corresponding Hilbert series is given by (3.32) of [83],

whose β Ñ 0 limit can be easily taken. Or, equivalently, note that Up1q2 ˆ Sppnq acts on

C2n with the eigenvalues pε1 ` ε2q{2˘ ai. Therefore the integral is just

ZSppnq,1 “
1
2

1
śn

i“1pQ2{4´ a2
i q

(5.41)

where ai “ ~ei ¨~a and the factor 1{2 comes from the orbifolding. This expression can, of

course, also be obtained from Formula (3.78). We see that they agree completely up to a

multiplicative constant.
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5.2.3.5 G2

There is only one W-generator that has a´1{3 mode: Wp4, 2
3 q “ Wp4q` iW̃p4q. Therefore, the

Kac-Shapovalov matrix is one-dimensional, which is given by

x~a|Wp4, 2
3 q

1{3 Wp4, 2
3 q

´1{3 |~ay9
1
4
`

Q2 ´ 6a2
2
˘

”

4Q4 ´ 12Q2 `3a2
1 ` a2

2
˘

` 9
`

3a2
1 ´ a2

2
˘2
ı

. (5.42)

We can use the formula (4.64) for this example as well. The norm of Gaiotto-Whittaker

state is given as the inverse of the the above expression.

The Hilbert series was given in (5.48) and (5.49) of [83]. Taking the limit β Ñ 0, we

obtain

ZG2,1 “
72

`

Q2 ´ 6a2
2

˘

”

4Q4 ´ 12Q2
`

3a2
1 ` a2

2

˘

` 9
`

3a2
1 ´ a2

2

˘2
ı (5.43)

in our variables.2 Here, ai “ ~εi ¨~a. This expression can also be obtained from Formula

(3.78). See the section A.2 for G2 for explicit expression for the roots and their basis. We see

that the Hilbert series result completely agrees with the norm of Gaiotto-Whittaker state

up to a multiplicative constant.

5.2.3.6 F4

The Kac-Shapovalov matrix we need to compute is

KF4 “

¨

˝

x ~́a|Wp5q
1{2Wp5q

´1{2|~ay x ~́a|Wp5q
1{2Wp9q

´1{2|~ay

x ~́a|Wp9q
1{2Wp5q

´1{2|~ay x ~́a|Wp9q
1{2Wp9q

´1{2|~ay

˛

‚. (5.44)

Honest computation of this matrix is too time consuming for a desktop computer of

2011, due to the complication in the evaluation of the normal ordering of twisted bosons

in the expressions involving Wp9q as in (5.22). Thankfully, the Kac determinant is known

in closed form in (4.64). Therefore we find

xG1|G1y “ x ~́a|Wp5q
1{2Wp5q

´1{2|~ay{pKac determinantq, (5.45)

which is fairly straightforward to compute. It was checked that it agrees with the instanton

2Here~aours “
?

3~atheirs
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expression (3.68). The explicit results for E6 and F4 are too lengthy to put here.

5.3 SO´ Sp quiver

5.3.1 The SOp4q and Spp1q AGT correspondence

Remember that the N “ 2 geometry is characterized by a ramified Hitchin system on the

UV-curve. For conformal SOp2Nq and SppN ´ 1q gauge theories the Hitchin system is de-

scribed in terms of the differentials φ2k (for k “ 1, . . . , N´ 1) and φ̃N that can be constructed

out of the DN-invariants Tr
`

Φ2k
˘

and PfaffpΦq, respectively. In the six-dimensional p2, 0q

theory these differentials appear as a set of chiral operators whose conformal weights are

equal to the exponents of the Lie algebra. When we reduce the six-dimensional theory

over a four-manifold we expect these operators to turn into the Casimir operators W p2kq

and W̃ pNq of theWpDNq-algebra. The Z2-automorphism of the DN-algebra translates to an

additional Z2-symmetry on the level of the CFT, and we thus expect a relation to a twisted

WpDNq-algebra. In other words, we expect that the Lie algebra underlying the Hitchin

system is precisely reflected in the Casimir operators of the correspondingW-algebra on

the UV-curve.

Let us now put all the pieces together and formulate the AGT correspondence for SOp4q

and Spp1q. Since the definition of the UV-curve for both theories involves the SOp4q-

invariants φ2 and φ̃2 of degree two, we expect this CFT to have an underlying WpD2q-

algebra. We will denote this algebra by Wp2, 2q, as it contains two Casimir operators of

weight two. In fact those operators correspond to two copies TA and TB of the Virasoro

algebra.

Similar to the correspondence between Up2q instanton partition function and Virasoro

conformal blocks, the new correspondence is between SOp4q{Spp1q instanton partition

functions and twisted Wp2, 2q-algebra blocks. The configuration of the block is given in

the following way: At the full punctures of the SOp4q{Spp1q UV-curve insert untwisted

vertex operators, whose weights correspond to the masses of the Spp1q fundamental hy-

pers. At the half punctures, insert twisted vertex operators. Whenever a half-puncture lifts

to a regular point on the cover, we should insert the vacuum of the twist sector σ, which we

will describe later on. For any half-puncture that lifts to a puncture on the cover we may

insert a general twisted field, whose single weight corresponds to the mass of the SOp4q
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N=2 gauge theory CFT

SOp4q{Spp1q quiver SOp4q{Spp1q UV-curve

Spp1q fund. hyper pµ1, µ2q untwistedWp2, 2q representation phµ1 , hµ2q

SOp4q fund. hyper µ twistedWp2, 2q representation hµ

Spp1q ´ SOp4q bifund. hyper twist vacuum σ

Spp1q Coulomb par. a weight of twisted int. channel ha

SOp4q Coulomb pars. pa1, a2q weights of untwisted int. channel pha1 , ha2q

Table 5.1: The AGT correspondence for SOp4q{Spp1q.

fundamental hyper.

Figure 5.3: TwistedWp2, 2q-algebra blocks can be computed by decomposing the Riemann
surface into pairs of pants. Internal tubes that have a Z2 twist line (blue) correspond to an
Spp1q gauge group and carry twisted representations ofWp2, 2q. Internal tubes without a
twist line (yellow) correspond to SOp4q and carry two copies of the Virasoro algebra.

When decomposing the UV-curve into pair of pants, we cut tubes with or without twist

lines (see Figure 5.3). A tube with a twist line corresponds to a Spp1q gauge group, and the

weight of the twisted primary in the channel corresponds to its single Coulomb branch

parameter a. A tube without a twist line corresponds to a SOp4q gauge group, and the two

weights of the untwisted primary in the channel correspond to the two Coulomb branch

parameters a1 and a2. All of this is summarized in table 5.1.

The detailed identification of parameters can be found in the examples we will work

out. These examples will show that Spp1q{SOp4q instanton partition functions agree with

the twistedWp2, 2q up to a spurious factor that is independent of the Coulomb and mass

parameters of the gauge theory. Note in particular that, unlike in the original Up2q case,

no Up1q prefactor appears, which is exactly what one would expect.
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We can also use this correspondence to explain the relation between Spp1q{SOp4q and

Up2q theories. More precisely, given an Spp1q{SOp4q UV-curve, we first map the corre-

sponding chiral block to its double cover. This is in fact a well-known method to compute

twisted correlators. The resulting configuration can then be mapped to a Up2q configura-

tion by a suitable conformal coordinate transformation. We will argue below that such a

coordinate transformation only introduces a spurious factor. It thus follows that the par-

tition function of the Up2q configuration agrees up to a spurious factor with the partition

function of the Spp1q{SOp4q configuration once expressed in terms of the same coupling

constants. To put it another way, the difference between Up2q and Spp1q{SOp4q partition

functions is indeed only a reparametrization of the moduli space caused by choosing a

different renormalization scheme.

5.3.2 Correlators for theWp2, 2q algebra and the cover trick

As mentioned above, the algebra Wp2, 2q contains two Casimir operators of weight two.

These operators can be identified with two Virasoro tensors TApzq and TBpzq. The W-

algebra thus decomposes into two copies of the Virasoro algebra. This reflects the decom-

position of the Lie algebra sop4q – sup2qA ˆ sup2qB. Geometrically, the fact that we find

two copies of the Virasoro algebra follows simply from the double covering that relates

the Up2q and the Spp1q{SOp4q UV-curves. A single copy of the Virasoro algebra associated

to the cover Up2q UV-curve descends to two copies of the Virasoro algebra on the base

Spp1q{SOp4q UV-curve.

As illustrated on the left in Figure 5.4, this is in particular the case for an internal tubular

neighborhood of the SOp4q Gaiotto curve. The single copy of the Virasoro algebra on its

inverse image descends to two copies of the Virasoro algebra on the tubular neighborhood

itself. The SOp4q{Spp1q UV-curves additionally contain Z2 twist-lines. When crossing

such a twist-line the two copies of the Virasoro algebra get interchanged. We thus propose

an underlying twisted Wp2, 2q-algebra. The actual energy-stress tensor T`pzq “ TApzq `

TBpzq is of course invariant, whereas T´pzq “ TApzq ´ TBpzq picks up a minus sign.

To compute the corresponding chiral blocks, we decompose the Gaiotto curves into

pair of pants and sum over all W-descendants of a given channel. The only difference

with Virasoro correlators is that there are now two types of tubes to cut, those with Z2
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Figure 5.4: On the left (right): Illustration of the branched double covering of the SUp2q
UV-curve over the SOp4q UV-curve (Spp1q UV-curve). The yellow (blue) tubular neighbor-
hoods W and W̃ on the base curves are part of internal tubes without (with) a Z2 twist
line. On the cover the yellow (blue) patches illustrate their respective inverse images. The
W-algebra modes associated to both base tubes lift to a single copy of the Virasoro algebra
on their inverse images.

twist-lines and those without. This is illustrated in Figure 5.3.

When cutting open a tube without a Z2 twist-line, the intermediate fields are given

by LA and LB-descendants of an untwisted representation, characterized by the conformal

weights pDA, DBq under LA
0 and LB

0 . We can therefore associate the Hilbert space

HSOp4q “ tLA
´m1

¨ ¨ ¨ |φAy b LB
´n1

¨ ¨ ¨ |φBy : mi P N, ni P Nu, (5.46)

where |φA{By has weight DA{B, to a tube without a Z2 twist-line. On the other hand, if we

cut a tube with a Z2 twist-line, the intermediate fields are in a twisted representation of

theW-algebra. It is then most convenient to describe them in terms of descendants of L`

and L´,

H
ĂSpp1q “ tL

`
´m1

¨ ¨ ¨ L´´r1
¨ ¨ ¨ |φCy : mi P N, ri P

1
2
`Nu . (5.47)

Note that since L´ has no zero mode, the representation φC is characterized by just a single

weight.

To actually compute three point functions with twist fields, we can use the well-known

cover trick, which is nicely explained in, e.g., [124, 125] : We find a function that maps
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the punctured Riemann surface with branch cuts to a cover surface which does not have

any branch cuts. Since the theory is conformal, we know how the correlation functions

transform under this map. On the cover we can then evaluate a correlation function with

no twisted fields and no branch cuts in the usual way. In order for this to work, we need

to find a cover map that has branch points where the twist fields are inserted. The precise

map from the base to the cover thus depends on the positions of the branch cuts. On the

cover there is then only a single copy of the Virasoro algebra.

To illustrate all of this, let us take the following simple model as a map from the cover

to the base:

z̃ ÞÑ z “ z̃2 . (5.48)

This particular map has branch cuts at 0 and8, and is thus suitable to deal with correlation

functions that have twist fields at those two points. We can relate the stress-energy tensor

on the cover Tpz̃q to the two copies on the base in the following manner. The stress-energy

tensor on the cover transforms to

Tpz̃q “
ˆ

dz̃
dz

˙´2
”

Tpzq ´
c

12
tz̃; zu

ı

, (5.49)

where the Schwarzian derivative given by

tz̃; zu “
z̃3

z̃
´

3
2

ˆ

z̃2

z̃1

˙2

(5.50)

appears because T is not a primary field. Around the branch point 0 on the base we can

then define twoW-fields T` and T´ by picking out the even and odd modes of T,

L`n “ 2
¿

dz
zn´1 Tpzq “

1
2

L2n `
3c
48

δn,0 pfor n P Zq, (5.51)

L´r “ 2
¿

dz
zr´1 Tpzq “

1
2

L2r pfor r P
1
2
`Zq. (5.52)

The L` then form a Virasoro algebra with central charge 2c, and T´ is a primary field of

weight 2. As discussed above, the twisted field φ at the point 0 is a twisted representation

of T´ and T` which has only one weight, namely the eigenvalue of L`0 . This means that

on the cover point there sits a field φ which is an untwisted representation of the Virasoro
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algebra of the corresponding weight, and its L` and L´ descendants are given by even

and odd L descendants.

There is one special twist field σ which has the property that its lift to the cover gives

the vacuum. It has the lowest possible conformal weight for a twist field and serves in

some sense as the vacuum of this particular twist sector.

Around any other puncture on the base that is not a branch point, we simply obtain two

independent copies LA and LB of the Virasoro algebra, coming from the two pre-images

of the punctures on the cover. As long as we stay away from branch points, the Virasoro

tensor Tpz̃q on the cover is given by TApz̃q on the first and by TBpz̃q on the second sheet of

the cover. Since TA and TB commute on the base, a field φA,B on the base factorizes into

representations of TA and TB, φA,B “ φA b φB with conformal weights pDA, DBq under

both copies. On the cover this leads to two untwisted fields φA and φB sitting at the two

images of the cover map, both of which are again untwisted representations of the Virasoro

algebra.

Let us now to turn to some more technical points. The map from the base to the cover

in general introduces corrections to the three point functions. In particular since one or

more of those fields are descendants, they will exhibit more complicated transformation

properties than we are used to from primary fields. Let us therefore briefly discuss how

conformal blocks behave under coordinate transformations.

When dealing with descendants fields, it will be useful to use the notation φpzq “

Vpφ, zq, which we shorten to Vipzq if φipzq is a primary field. The transformation of a gen-

eral descendant field φ under a general coordinate transformation z ÞÑ f pzq is given by

[126]

D f Vpφ, zqD´1
f “ V

˜

f 1pzqL0

8
ź

n“1

eTnpzqLn φ, f pzq

¸

, (5.53)

where the operator D f is given by

D f “ e f p0qL´1 f 1p0qL0

8
ź

n“1

eTp0qn Ln . (5.54)

Here we take all products to go from left to right. The functions Tnpzq are defined recur-
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sively. The first two are given by

T1pzq “
f 2pzq

2 f 1pzq
, T2pzq “

1
3!

˜

f3pzq
f 1pzq

´
3
2

ˆ

f 2pzq
f 1pzq

˙2
¸

. (5.55)

First note that if φ is a primary field, (5.117) reduces to the standard expression φ ÞÑ

p f 1pzqqhφ. For general descendants however, the result will be a linear combination of

correlators of lower descendant fields. Also note that T2pzq is in fact a multiple of the

Schwarzian derivative. It is actually true that all higher Tnpzq are sums of products of

derivatives of the Schwarzian derivative. Since the Schwarzian derivative of a Möbius

transformation vanishes, those transformations lead to much simpler expressions.

In some cases however we can avoid having to transform descendant fields. Assume

that we want to compute the chiral block of a configuration for which we know the base

to cover map f . When we go to the cover, we can use the fact that D f is a function of the

Virasoro modes Ln only. This means that it does not mix different representations, so that,

more formally,

D´1
f PHφ

D f “ PHφ
. (5.56)

From this it follows that conformal block has the same transformation properties as the

underlying correlation function, as can be seen, e.g., in the simplest case

xV1pz1qV2pz2qPHφ
V3pz3qV4pz4qy (5.57)

“

4
ź

i“1

p f pziqq
hixV1p f pz1qqV2p f pz2qqPHφ

V3p f pz3qqV4p f pz4qqy .

Note that what we have said here is strictly speaking true only for global coordinate trans-

formations f , i.e., for Möbius transformations

z ÞÑ γpzq “
az` b
cz` d

, a, b, c, d P C . (5.58)

Other transformations, in particular also cover maps, must be treated with more caution,

as they can introduce new singularities. On a technical level this means that at some points

f is no longer locally invertible and D f does no longer annihilate the vacuum.
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From these remarks it follows that conformal blocks exhibit the same behavior as corre-

lation functions under coordinate transformations. This does not mean, however, that their

behavior under channel crossing is the same. In particular, the full partition function must

be crossing symmetric, whereas individual conformal blocks will transform into each oth-

ers in a very complicated manner. More precisely, if we expand the analytic continuation

of the full partition function around 0 or8, then the resulting power series has essentially

the same form as the original expansion. This is simply a consequence of covariance un-

der Möbius transformations and the fact that we can change the order of operators in the

correlation function, as they are mutually local. In contrast, even though the conformal

block still transforms nicely under coordinate changes, the projector in it is not local, so

that we cannot change the order of the fields at will, which means that expansions around

different points will look different.

Coming back to the computation of the conformal block, if we do not know the full

cover map, then we need to decompose the conformal block into three point functions

with twist fields. We then evaluate these three point functions by mapping them to their

appropriate covers. Note that in that case the cover maps are different for the individual

three point functions, and no longer defined for the entire configuration. This means that

the above arguments no longer apply, and that we must take into account the transforma-

tion properties of the descendant fields.

Let us make one more remark concerning prefactors in the AGT correspondence. From

(5.57) we see that any coordinate transformation on the UV-curve leads to a product of

prefactors of the form p f 1qh. From the way h is related to the gauge theory masses, it

follows that this factor does not depend on the Coulomb branch parameters, and that it

only contributes to F0 and F1. Nevertheless the structure of the exponent of the Up1q

prefactor found in [26] is different, so that it cannot be transformed away in this way,

which is in line with what was expected on physical grounds.

5.3.3 Examples

We proceed to verify the correspondence in detail in a few examples, the Spp1q gauge

theory coupled to four hypermultiplets and the SOp4q gauge theory coupled to two hyper-

multiplets.
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5.3.3.1 Spp1q versus Up2q correlators

Figure 5.5: On the left, the UV-curve of the Spp1q gauge theory coupled to 4 hypers and
its double cover. The Möbius transformation γ relates the double cover to the SUp2q UV-
curve.

Recall that the UV-curve for the Spp1q gauge theory coupled to four massive hypers is

given by a four-punctured sphere, as illustrated on the bottom left of Figure 5.5. The two

half-punctures at 1 and q2 are connected by a branch cut. As we have found in section 3.5,

the cross-ratio q2 of the four punctures can be expressed in terms of the Spp1q instanton

coupling qSpp1q as

q2 “

ˆ

qSpp1q

4

˙2

. (5.59)

The chiral block we need to evaluate is obtained by cutting the tube with the twist line,

so that

FSpp1qpqq “ xV
A,B

1 p8qσp1qPHφ
σpq2qVA,B

2 p0qy (5.60)

where the vertex operators VA,B
1,2 factorize into representations of TA and TB of weight

ph1, h2q and ph3, h4q,

VA,B
1 “ VA

1 VB
1

VA,B
2 “ VA

2 VB
2 .

Here we identified the half-integral mode L´
´ 1

2
of the twistedWp2, 2q algebra with the one-

instanton modulus qSpp1q of the Spp1q theory.



121

To evaluate the correlator with twist fields, we want to go to the double cover. The base

has half-punctures at 1 and q2, so that we map it to the double cover by

z ÞÑ z̃ “ ˘

d

z´ q2

z´ 1
. (5.61)

This maps has indeed branch points at 1 and q2, and it maps the fields at 0 and8 to˘q and

˘1. The block (5.60) on the base thus becomes the block on the cover (up to some constant

prefactor)

FSpp1qpqq “
`

1´ q2˘
ř

i hi
xVB

1 p´1qVA
1 p1qPHφ

VA
2 pqqV

B
2 pqqyC . (5.62)

Note that since we know the full base-cover map, we were able to make use of (5.57)

without worrying about descendant fields. To evaluate (5.62), we write it as a sum over

three point functions in the usual manner. Let us therefore define three point coefficients

on the cover by

C̃h1,h2;h3
I1,I2,I3

“ xV1
I1
p1qV2

I2
p´1qV3

I3
p0qy

where Ii gives the Virasoro descendants acting on Vi, which we will usually denote by

Young diagrams. The conformal block can then be evaluated as

FSpp1qpqq “
`

1´ q2˘
ř

i hi
ÿ

Ia,Ja

C̃h1,h2;ha
‚,‚,Ia

C̃h3,h4;ha
‚,‚,Ja

pxVa
Ia
|Va

Ja
yq´1qha`|Ia|

“ qha

ˆ

1`
2ph1 ´ h2qph3 ´ h4q

ha
q` . . .

˙

. (5.63)

Using the identification of parameters

hi “
1

ε1ε2

ˆ

Q2

4
´m2

i

˙

,

ha “
1

ε1ε2

ˆ

Q2

4
´ a2

˙

,
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where Q “ ε1 ` ε2 and the momenta mi are related to the mass parameters µi as

m1 “
µ1`µ2

2 m3 “
µ3`µ4

2

m2 “
µ1´µ2

2 m4 “
µ3´µ4

2 ,

we find that equation (5.62) is indeed equal to the Spp1q instanton partition function up to

a spurious factor independent of a and µi,3

ZSpp1qpqSpp1qq “

˜

1´
ˆ

qSpp1q

4

˙2
¸´ 1

16 pc`1q

FSpp1qpqSpp1qq . (5.64)

Note in particular that this spurious factor is independent of the masses of the hypermul-

tiplets, in contrast to the spurious factor in the AGT correspondence for unitary gauge

groups. This is indeed as expected, as the latter should come from the decoupled Up1q in

the Up2q, whereas there is no such Up1q in the Spp1q setup. This fact will also be important

for extending the Spp1q-correspondence to linear Spp1q ´ SOp4q quivers.

Relation to the Up2q correlator

We already knew that the full Spp1q and Up2q Nekrasov partition function are related by

the change of parameters (5.59). To understand this better from the conformal field theory

perspective, let us study the relation between the Spp1q conformal block (5.60) and the

Up2q conformal block.

We have used the fact that the conformal block on the base (5.60) can be related to the

block on the cover (5.62). The block on the cover is obviously very closely related to the

original Up2q configuration depicted on the right of Figure 3.8. We can map one to the

other using the Möbius transformation γ given by equation (3.105). This is of course only

possible provided that we make their cross ratios agree by identifying

qUp2q “
qSpp1q

´

1`
qSpp1q

4

¯2 ,

which is exactly the relation found on the gauge theory side.

From equation (5.57) we also know that this transformation only introduces an overall

3We checked this result up to order 6 in the instanton parameter.
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prefactor which does not depend on the weight of the intermediate channel, so that it is an

a-independent prefactor. If we were interested in the relation between instanton partition

functions without the perturbative part, we would need to divide both (5.62) and the Up2q

block by qha´h1´h4 . The a-dependent part of the ratio of the two is then

˜

qUp2q

qSpp1q

¸ha

.

On the gauge theory side, this factor originates from the difference in the instanton part of

F0. By construction, Finst
0 ´ F̃inst

0 “ ´a2plog qUp2q ´ log qSpp1qq, which agrees with the above

factor (for Q “ 0).

5.3.3.2 SOp4q versus Up2q ˆUp2q correlators

Figure 5.6: The UV-curve for the SOp4q coupled to two hypermultiplets and its double
cover. The left picture illustrates the global mapping between the SOp4q UV-curve and
its double cover, whereas the right picture illustrates the local mappings that we use to
compute the twistedWp2, 2q conformal block on the SOp4q UV-curve.

Let us now turn to the SOp4q case. The UV-curve for the SOp4q theory with two hypers

in the fundamental is given in the lower left of Figure 5.6. The chiral block we need to

evaluate is

FSOp4qpqSOp4qq “ xV̂1p8qσp1qPHφ
σpqSOp4qqV̂2p0qy . (5.65)

Note that we identified the integral modes LA{B
´1 with the one-instanton parameter qSOp4q.

Similarly to the Spp1q example that we discussed previously, there is an elegant way of

obtaining the chiral block that makes use of the fact that we know the double cover map
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of the full configuration (5.65). This double covering was described in section 3.5.2.2. In

particular it maps the punctures

p8, 1, qSOp4q, 0q ÞÑ p1{2, 0, τ{2, p1` τq{2q .

The configuration on the cover is a torus with two punctures at 0 and qUp2q. The conformal

block for this configuration has been computed in [26] and agrees with the Up2q ˆUp2q

instanton partition function. Up to spurious prefactors introduced by the mapping to the

cover, (5.65) is thus given by the conformal block of the two punctured torus expressed in

terms of qSOp4q.

However, in more general examples (i.e.the ones that we encounter in section 5.4) it will

be much harder to find the global mapping between the SO{Sp UV-curve and its double

cover. We thus need to develop a method that doesn’t require this global information, and

computes the twisted Wp2, 2q block from a simple decomposition of the UV-curve into

pairs of pants. Let us exemplify this for the SOp4q UV-curve.

Evaluating the SOp4q-block (5.65) is more complicated than the Spp1q-block we consid-

ered previously. Since it has two branch cuts, there is no longer a simple square root map

that maps the block (5.65) to its double cover, the torus. What we will do instead is to first

decompose the block into three point functions, and then map those three point functions

individually to their covers, as depicted on the right side of Figure 5.6.

Let us also define twisted three point coefficients on the base as

ChA,hB;h1
IA,IB,‚ :“ xV̂1p8qσp1qVA,B

IA,IB
p0qy, (5.66)

so that

FSOp4qpqSOp4qq “
ÿ

IA,JA,IB,JB

ChA,hB;h1
IA,IB,‚ ChA,hB;h2

JA,JB,‚ pxV
2,3
IA,IB

|V2,3
JA,JB

yq´1qhA`|IA|`hB`|IB|

SOp4q .

Note that we have used that σp1q is a primary field, so that we can exchange the fields at 0

and 8 at will. Our task is now to evaluate (5.66). This we do by mapping to it the double

cover. Since 1 and8 are branch points, we use the map

z ÞÑ z̃ “ ˘p1´ zq´1{2 , (5.67)
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which maps (5.66) to three point functions on the cover of the form

xVA
IA
p1qVB

IB
p´1qV̂1p0qy . (5.68)

To find the precise relation between (5.66) and (5.68) however we need to take into ac-

count the transformation properties of all the fields under the map from the transforma-

tion (5.67). This is no issue for σ and V̂1, since those fields are always primary fields, so

that any overall prefactors will always be cancelled once we divide by the primary three

point function. In what follows, we will always omit these factors. It is however an issue

for VA and VB, since those fields are descendants. Using (5.117) we can thus express the

field on the base by the field on the cover as

VA,Bp0q “ (5.69)

“ V

˜

ˆ

1
2

˙L0

e3L1{4eL2{16 ¨ ¨ ¨ φA
IA

, 1

¸

V

˜

ˆ

´
1
2

˙L0

e3L1{4eL2{16 ¨ ¨ ¨ φB
IB

,´1

¸

where we have only included terms that are relevant up to second level descendants.

Let us show how to compute the first order term of the chiral block. To fix the normal-

ization, we use that the primary three point function transforms as

ChA,hB;h1
‚,‚,‚ “

ˆ

1
2

˙hA
ˆ

´
1
2

˙hB

C̃hA,hB;h1
‚,‚,‚ .

The normalized coefficients for the first level descendants can then be computed to be

ChA,hB;h1
˝,‚,‚ “

1
2

C̃hA,hB;h1
˝,‚,‚ `

3hA

2

ChA,hB;h1
‚,˝,‚ “ ´

1
2

C̃hA,hB;h1
‚,˝,‚ `

3hB

2

Using

C̃hA,hB;h1
˝,‚,‚ “

1
2
p´h1 ´ 3hA ` hBq , C̃hA,hB;h1

‚,˝,‚ “
1
2
ph1 ´ hA ` 3hBq ,
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we obtain

FSOp4q “ qhA`hB
SOp4q

´

1`
´

p3hA ` hB ´ h1qp3hA ` hB ´ h2q

2hA
`

p3hB ` hA ´ h1qp3hB ` hA ´ h2q

2hB

¯qSOp4q

16
` . . .

¯

. (5.70)

Using the identification of parameters

hi “
1

ε1ε2

ˆ

Q2

4
´ µ2

i

˙

,

hA{B “
1

ε1ε2

ˆ

Q2

4
´ β2

A{B

˙

,

where βA{B “
b1˘b2

2 , we have indeed checked up to order 2 that (5.65) agrees with the

SOp4q partition function up to a spurious prefactor given by

Zsp “ p1´ qq
3
8 Q2

. (5.71)

5.4 Linear Sp{SO quivers

In this section we discuss the generalization of the correspondence for single Sp and SO

gauge groups to linear quiver gauge theories involving both Sp and SO gauge groups.

This process will involve new elements from the instanton counting perspective, which

we introduce in this section.

The SO{Sp correspondence that we studied in the previous sections can be naturally

extended to linear quiver gauge theories with alternating Sp and SO gauge groups. The

reason for requiring the SO and Sp gauge groups to alternate is that only such gauge theo-

ries can be engineered using an orientifold D4/NS5-brane set-up. These configurations are

natural from the gauge theory perspective as well. Remember that the flavor symmetry

for an SppN ´ 1q-fundamental hyper enhances to SOp2Nq, while the flavor symmetry for

SOpNq-fundamental hyper enhances to SppN ´ 1q. So, for general N, only linear quivers

with alternating gauge groups SppN ´ 1q and SOp2Nq correctly reproduce the flavor sym-

metry of the bifundamental fields. An example of a linear Sp{SO quiver is illustrated in

Figure 5.7.

Special about linear Sp{SO quivers is that the bifundamental fields are not full hyper-
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Figure 5.7: Example of a linear Spp1q{SOp4q quiver gauge theory with a single Spp1q and
SOp4q gauge group, one SOp4q-fundamental hyper, two Spp1q-fundamental hypers and
one SOp4q ˆ Spp1q-bifundamental hyper (consisting of eight half-hypermultiplets).

multiplets, but half-hypermultiplets. Let us discuss this briefly. Usually, a hypermultiplet

of representation R of a gauge group G consists of two N “ 1 chiral multiplets: one chiral

multiplet in the representation R and the other in the complex conjugate representation

R̄ of G. When the representation R is pseudoreal, however, a single chiral superfield al-

ready forms an N “ 2 hypermultiplet. This is called a half-hypermultiplet in R. The

half-hypermultiplets must be massless, as it is not possible to construct a gauge invariant

mass-term in the Lagrangian for a half-hypermultiplet.

Even though a half-hypermultiplet is CPT invariant, it is not always possible to add

them to an N “ 2 gauge theory due to the Witten anomaly [93]. Because an Sp ˆ SO

bifundamental multiplet contains an even number of half-hypermultiplet components, we

can circumvent the anomaly. Indeed, the SppNq ˆ SOpMq bifundamental is the tensor

product of 2N half-hypermultiplets corresponding to the (anti-)fundamental SppNq flavor

symmetry, and M half-hypermultiplets corresponding to the fundamental SOpMq flavor

symmetry. In total this gives 2NM half-hypermultiplets.

Our goal in this section is to write down Nekrasov contour integrands for linear SO{Sp

quivers and verify the correspondence with chiral blocks of theW-algebra. Before getting

there, let us first discuss some of the geometry of linear SO{Sp quivers.

5.4.1 UV-curves for linear Sp{SO quivers

As illustrated in Figure 5.8, the orientifold D4/NS5 brane constructions for Sp and SO

gauge theories can be naturally extended to any linear quiver theory with alternating

SppN ´ 1q and SOp2Nq gauge groups by introducing an extra NS5-brane for every bifun-

damental field. For this construction to work it is necessary that the gauge groups alternate

as crossing an NS5-brane exchanges one type of orientifold brane with the other. From this

string theory embedding we can simply read off the Seiberg-Witten curve.

The Seiberg-Witten curve corresponding to a linear quiver with SppN ´ 1q as well as
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Figure 5.8: Orientifold D4/NS5-brane embedding of the linear Sp{SO quiver theory of
Figure 5.7.

SOp2Nq gauge groups can be written in the Hitchin-form [38]

0 “ detpv´ϕSp{SOq “ v2N ` ϕ2v2N´2 ` ϕ4v2N´4 ` . . .` ϕ2N . (5.72)

As before, this equation determines the Seiberg-Witten curve as a degree 2N covering over

the UV-curve. The Hitchin differentials ϕ2k (for 1 ď k ď N ´ 1) are of degree 2k and

encode the vev’s of the Coulomb branch operators TrpΦ2kq of the adjoint scalar Φ for all

gauge groups in the linear quiver. On the other hand, the degree N differential ϕÑ “
?

ϕ2N

encodes the vev’s of the operators Pfaffp q for the SO gauge groups in the quiver only. All

differentials are also functions of the exactly marginal coupling constants τUV and the bare

mass parameters, in such a way that the residue of the matrix-valued differential ϕSp{SO at

each puncture encodes the flavor symmetry of the corresponding matter multiplet.

Figure 5.9: The Riemann surface on top is the UV-curve corresponding to the linear
Spp1q{SOp4q quiver at the bottom.
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It follows from equation (5.72) that the UV-curve for a linear SppN´ 1q{SOp2Nq quiver

theory is a genus zero Riemann surface with punctures. For the Spp1q{SOp4q theory these

punctures can be of two types. Either the differential ϕ2̃ “
?

ϕ4 experiences a Z2-monodromy

when going around the puncture, or it does not. As before, we call these punctures half-

punctures and full punctures, respectively. The puncture representing a bifundamental

matter field is a half-puncture. One way to understand this, is to compare the gauge the-

ory quiver to the corresponding UV-curve. As is illustrated in Figure 5.9 each Spp1q gauge

group corresponds to a tube with a Z2-twist line on the UV-curve, whereas each SOp4q

gauge group corresponds to a tube without a Z2-twist line. This implies that at each punc-

ture corresponding to a bifundamental field a Z2-twist line has to end. Notice that the

differential ϕSp{SO should have a vanishing residue at this half-puncture, since the bifun-

damental is forced to have zero mass.

Figure 5.10: The generalized SUp2q quiver theory, depicted at the top, has isomorphic
gauge and flavor symmetries to the linear SOp4q{Spp1q quiver gauge theory, depicted
on the bottom. This picture in particular relates the SOp4q ˆ Spp1q bifundamental to the
SUp2q3 trifundamental.

A remarkable feature of linear Spp1q{SOp4q quivers is that they are closely related to

generalized SUp2q quiver theories [38]. We have already seen that an Spp1q-fundamental can

be equivalently represented by an SUp2q-fundamental, and an SOp4q-fundamental by an

SUp2q2-bifundamental, as their representations are isomorphic. Even more interestingly,

by the same argument an Spp1qˆ SOp4q-bifundamental is closely related to a matter multi-

plet with flavor symmetry group SUp2q3. The elementary field with this property is known

as the SUp2q3-trifundamental, and it consists of eight free half-hypermultiplets in the fun-

damental representation of the three SUp2q gauge groups [25]. Since the Spp1q ˆ SOp4q
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bifundamental contains eight half-hypermultiplets as well, we expect it to be equivalent

to the SUp2q3-trifundamental. One example of the relation between linear Spp1q{SOp4q

quivers and generalized SUp2q quiver theories is illustrated in Figure 5.10.

Similar to our discussion in section 3.5, we can interpret the Z2-twist lines on the Sp{SO

UV-curve as branch cuts. As is illustrated in Figure 5.11, we find that the UV-curve for

the generalized A1 quiver theory is a double cover of the UV-curve for the corresponding

linear D2 quiver theory. This is consistent with the fact that the bifundamental fields cannot

carry a mass. Indeed, each half-puncture corresponding to a Spp1q ˆ SOp4q bifundamental

field lifts to a regular point on the SUp2q UV-curve. Its flavor symmetry had thus better be

trivial.

Figure 5.11: The top picture represents the UV-curve of a generalized SUp2q quiver theory.
It is a branched double cover over the UV-curve of the linear SOp4q{Spp1q quiver theory
illustrated in the bottom.

Let us stress that, according to the arguments of section 3.6.1, the instanton partition

function of a linear quiver theory that contains the Spp1q ˆ SOp4q bifundamental will be

related to the instanton partition function containing the SUp2q3-trifundamental by a non-

trivial mapping of marginal gauge couplings. This mapping has a geometric interpreta-

tion, according to section 3.5, as it will relate the complex moduli of the corresponding

UV-curves. Studying the instanton partition function of linear D2 quiver theories thus

sheds light on the understanding of non-linear A1 quiver theories. We will discuss it in

section 5.5
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5.4.2 Spˆ SO bifundamental

In analogy to [118], we can view the bifundamental half-hypermultiplet as a mapping

Φa,b1,b2 : pH
ĂSpp1q Ñ

pHSOp4q (5.73)

between two vector spaces pH
ĂSpp1q and pHSOp4q, whose bases are parametrized by the poles

of the respective gauge multiplet integrands. It is natural to expect that these vector spaces

are related to the W-representation spaces H
ĂSpp1q and HSOp4q that we encountered in the

previous section. Note that for Sp and SO gauge groups we expect the spaces to be related

without any additional Up1q factors. For the original Up2q AGT correspondence this was

recently made precise [127]. The structure of the Spp1q poles is more complicated, however,

and it would be interesting to find the exact mapping between the two spaces.

Figure 5.12: The instanton contribution for the Up2q3 trifundamental can be represented as
a linear map Zinst : HUp2q Ñ HUp2q ˆHUp2q. Similarly, and correspondingly, the Spp1q ˆ
SOp4q bifundamental field defines a linear map Zinst : pH

ĂSpp1q Ñ
pHSOp4q.

5.4.3 Test of the Spp1q ˆ SOp4q AGT correspondence

Since we know the UV-curve corresponding to alternating SO{Sp quiver theories, we can

extend the correspondence between SO{Sp gauge groups andW blocks. We are now ready

to check this correspondence. At the same time this will also serve as an additional check

that our expression for the half-hypermultiplet is correct. Consider thus the SO{Sp theory

illustrated in Figure 5.7, with a single bifundamental half-hypermultiplet, two fundamen-
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tal Spp1q-hypermultiplets and one fundamental SOp4q-hypermultiplet.

5.4.3.1 Spp1q ˆ SOp4q instantons

Let us first compute the instanton partition function of this linear quiver theory. The first

non-trivial term comes from pk1, k2q “ p1, 1q. In the unrefined case ε1 “ ´ε2 “ h̄, it is given

by

Zinst
1,1 “ ´

m1m2b1b2

´

`

m2
3 ´ b2

1

˘ `

´a2 ` b2
1

˘

´

´h̄2
` b2

1

¯

`
`

a2 ´ b2
2

˘ `

´m2
3 ` b2

2

˘

´

´h̄2
` b2

2

¯¯

8a2h̄4 `b2
1 ´ b2

2

˘2

where m1, m2 are the masses of the Spp1q-fundamentals, m3 is the mass of the SOp4q-

fundamental and a, bi are the Coulomb branch parameters of Spp1q and SOp4q, respec-

tively.

Figure 5.13: Decomposition of the Spp1qˆ SOp4qUV-curve that we used for computing the
correspondingWp2, 2q-block.

5.4.3.2 Spp1q ˆ SOp4q correlators

The correlator that corresponds to the (mirror of the) quiver illustrated in Figure 5.7 is the

following:

xV1p8qσp1qσpq2
1qσpq

2
1q2qV̂2p0qy (5.74)

For notational simplicity we have introduced the variables q1 “ qSpp1q{4 and q2 “ qSOp4q.

A single term in the chiral block is then expanded as (see Figure 5.13)

xV1p8qσp1qσpq1qVA,Bp0qyxVA,Bp8qσpq2
1q2qV̂2p0qy

“ xV1p8qσp1qσpq2
1qV

A,Bp0qypq2
1q2q

hA`nA`hB`nBxVA,Bp8qσp1qV̂2p0qy (5.75)
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To compute the rightmost correlator, we can proceed as in subsection 5.3.3.2 and map it to

a cover correlator of the form (5.68). Due to the corrections we will get something of the

form

xVA,Bp8qσp1qV̂2p0qy “
ˆ

1
2

˙nA`nB

C̃hA,hB;h1
IA,IB,‚ ` lower descendant corrections . (5.76)

The correlator is thus the same as the one we computed in the section on SOp4q.

The four point correlator on the left we treat as in the Spp1q case, i.e., we apply the

cover map (5.61). The only difference is then that VA,B is a descendant field, and thus, as

in the SOp4q computation, picks up corrections from the map:

VA,Bp0q “ V

˜

ˆ

´1` q2
1

2q1

˙L0

exp
„ˆ

3
4
`

1
4q2

1

˙

L1



exp
„

p´1` q2
1q

2

16q4
1

L2



¨ ¨ ¨ φA, q1

¸

ˆV

˜

ˆ

´
´1` q2

1
2q1

˙L0

exp
„ˆ

3
4
`

1
4q2

1

˙

L1



exp
„

p´1` q2
1q

2

16q4
1

L2



¨ ¨ ¨ φB,´q1

¸

(5.77)

This expression is however different in two ways from the corresponding SOp4q expres-

sion (5.69). First, the vertex operators are at the positions ˘q1. We decompose the four

punctured correlator on the cover in usual way, and move them to the standard positions

˘1 using the map z ÞÑ zq´1
1 . This simply leads to an additional prefactor q´L0

1 in equa-

tion (5.77). To pull out the standard prefactor qhA,B
1 , it is useful to commute this prefactor

all the way to the left, which we can do by using the identity

xL0 Ln “
Ln

xn xL0 . (5.78)

This leads to the expression

ˆ

´1` q2
1

2q2
1

˙hA`nA`hB`nB

ˆ (5.79)

xφ|V
ˆ

exp
„

1` 3q2
1

2p´1` q2
1q

L1



eL2{4 ¨ ¨ ¨ φA, 1
˙

V
ˆ

exp
„

´
1` 3q2

1

2p´1` q2
1q

L1



eL2{4 ¨ ¨ ¨ φB,´1
˙

y .

Note that the q2phA`nA`hB`nBq

1 in the denominator of the prefactor exactly cancels the corre-

sponding factor of q1 in equation (5.75). The numerator of the prefactor on the other hand

is the same prefactor that we already found in the Spp1q computation.
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Let us now actually compute the first few terms of the chiral block. The terms where

of order zero in either qSpp1q or qSOp4q are are simply the same as in the SOp4q and Spp1q

computation. We therefore consider the simplest new term, qSpp1qqSOp4q. This means in

particular that we can neglect all terms of order q2
1 in the expression (5.79), so that the

vertex operators no longer depend on q1. Since we would like to rewrite this expression in

terms of the three point coefficients C̃ defined above, we need move the field φ from 8 to

0 by applying the map z ÞÑ z´1. Note that we pick up some additional corrections due to

the fact that the fields at ˘1 are descendant fields. In total (5.79) thus becomes

p2´nA´nBqxV
´

e3L1{2eL2{4 ¨ ¨ ¨ φA, 1
¯

V
´

e´3L1{2eL2{4 ¨ ¨ ¨ φB,´1
¯

|φy . (5.80)

Not surprisingly, this is the same expression that we had found in the SOp4q case. From

this, the term of order qSpp1qqSOp4q is

C̃h1,h2;ha
‚,‚,˝

2ha

1
4

´

pC̃hA,hB;ha
˝,‚,˝ ` 3hAC̃hA,hB;ha

‚,‚,˝ qpC̃hA,hB;h3
˝,‚,‚ ` 3hAq

2hA
(5.81)

`
pC̃hA,hB;ha
‚,˝,˝ ´ 3hBC̃hA,hB;ha

‚,‚,˝ qpC̃hA,hB;h3
‚,˝,‚ ´ 3hBq

2hB

¯

.

Similar computations lead to higher order terms. We have checked that the instanton

partition function and the chiral block agrees up to order pk1, k2q “ p1, 2q up to a moduli

independent spurious factor, using the same identifications of the previous examples.

5.5 Sicilian quivers

5.5.1 CFT building blocks for Sicilian quivers

Let us now discuss the building blocks that are needed for the AGT correspondence. In the

correspondence for conformal SUp2q quiver gauge theories hypermultiplets are given by

punctures on the UV-curve. Gluing the neighborhoods of two punctures to create a tube

gauges the flavor symmetry group of the two hypermultiplets into an SUp2q gauge group.

The masses of the two hypermultiplets have to be opposite to perform the gluing, since

they correspond to the residue of the Seiberg-Witten 1-form at the puncture. The masses

then turn into the Coulomb parameters ˘a of the SUp2q gauge group after the gluing.

On the CFT side, hypermultiplets correspond to insertions of primary fields φi whose
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conformal weights are related to the masses of the hypermultiplets. A gauge group corre-

sponds to inserting a complete set of descendants of a given primary field. We recall that an

arbitrary Virasoro descendant φI at level N is given by a partition I of N by φI “
ś

j L´Ij φ.

For ease of notation we will also just write I for N. The projector on a particular represen-

tation that we insert can thus be written as

PHφ
“

ÿ

I,J

K´1
I J |φJyxφI | , (5.82)

where K´1 is the inverse of the Kac matrix pKqI J “ xφI |φJy. The modulus of the tube

corresponds to the coupling of the gauge group. From this it is clear that if we decouple the

gauge group by sending q Ñ 0 we recover the original expression for the ungauged theory,

since the contributions of the descendants vanish and only the primary field survives.

The complete instanton partition function can thus be obtained from a pair of pants

decomposition of the UV-curve. Its building blocks are given by three-point functions

containing one or more descendant fields, and the total expression is obtained by summing

over all descendant fields in the channels. This sum corresponds to the sum over the fixed

points in the instanton counting. For linear and cyclic quivers, the only building blocks

needed are hypermultiplets in the fundamental and hypermultiplets in the bifundamental.

The corresponding CFT expressions are three-point functions with one or two descendant

fields.

For Sicilian quivers such as in figure 5.14, however, we also need hypers in the fun-

damental of three different gauge groups. The corresponding CFT building block should

then be described by the three-point function with three descendant fields inserted,

xVpφ1
I1

, z1qVpφ2
I2

, z2qVpφ3
I3

, z3qy . (5.83)

Here we have used the notation Vpφ, zq for the the vertex operator corresponding to the

field φ inserted at z. The weights of the fields φi are related to the Coulomb branch param-

eters a1,2,3 of the three SUp2q gauge groups involved. Choosing the insertion points zi is

quite subtle and affects the outcome, as we will now discuss.
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Figure 5.14: Decomposition of the sphere with six punctures into three-punctured spheres
and tubes, and the corresponding conformal blocks

5.5.1.1 Three-point functions

Let us start with a reminder about three-point functions and some of their properties. For

three primary fields the three-point function is fixed up to a constant C123. The coordinate

dependence itself is fixed covariance under by Möbius transformations, i.e., the global

conformal symmetry.

Local conformal symmetry allows us to compute three-point functions of arbitrary de-

scendants of those primary fields as well. In principle, this is straightforward: the only

thing needed is the OPE of the stress energy tensor Tpzqwith the primary fields with itself.

We can then use

xVpL´nφ, zq . . .y “
¿

z

dw pw´ zq´n`1xTpwqVpφ, zq ¨ ¨ ¨ y (5.84)

to reduce the three-point function to contour integrals of the correlator of three primary

fields and several energy stress tensors. This correlator is a meromorphic function on a

Riemann surface and thus determined by its poles. We can thus consecutively eliminate

the Tpzq by summing their OPEs with the other Tpwq and the primary fields, until we

are left with just the three-point function of the primary fields. We can then evaluate the

contour integral.
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Though conceptually simple, in practice this procedure is quite cumbersome. Since

most of the time we are interested in very specific values of zi only, it can be more effi-

cient to phrase the computation in terms of operators on the Hilbert space of a Virasoro

representation. The operator-state correspondence tells us that

lim
zÑ0

φpzq|0y “ |φy . (5.85)

The corresponding bra state is given by the operator at infinity. More precisely, it is ob-

tained from the ket state using the Möbius transformation z ÞÑ 1{z:

lim
zÑ0
x0|Vpz´2L0 e´

1
z L1 φ, 1{zq “ xφ| . (5.86)

The three-point function with primary fields at 0,1,8 can then be computed as 4

xφ1|Vpφ2, 1q|φ3y “ xφ1|φ2
h3´h1

|φ3y “ C123 . (5.87)

We can compute such three-point functions with descendant bra and ket states by com-

muting through all Virasoro operators using

rLn, φms “ pnph´ 1q ´mqφm`n (5.88)

for primary fields φ2. If φ2 is a descendant, then we first need to express it in terms of

Virasoro operators and modes of the primary field, which we do by using the following

expression for the ´N1 mode of a VpL´N2 φ, zq [128]

V´N1pL´N2 φq “
ÿ

lě0

ˆ

N2 ´ 2´ l
l

˙

L´N2´lV´N1`N2`lpφq

` p´1qN2
ÿ

lě0

ˆ

N2 ´ 2´ l
l

˙

V´N1´l`1pφqLl´1 . (5.89)

Note that even though the sums are infinite, they reduce to finite sums when acting on any

particular state.

Consider a theory with several identical gauge groups. One would expect that the par-
4Strictly speaking we can only do this for h3´ h1 P Z. From general arguments we know however that the

coefficients of the conformal block are given by rational functions in hi and c. The expressions we obtain thus
continue to be valid for arbitrary values of h.
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tition function should be symmetric under suitable permutations of the gauge group. On

the CFT side this means that the three-point function should be symmetric under permu-

tations of the insertion points.

For instance, if a theory contains a hypermultiplet in the fundamental of two SUp2q

groups, then the three-point function must be symmetric under exchanging the two. This

is indeed the case, as follows from

xφ1
I1
|Vpφ2, 1q|φ3

I3
y “ xφ3

I3
|Vpφ2, 1q|φ1

I1
y . (5.90)

To see that (5.90) indeed holds we can use the Möbius transformation z ÞÑ 1{z. A general

field transforms under a Möbius transformation γ as

Vpφ, zq ÞÑ V
ˆ

pγpzq1qL0 e
γ2

2γ1
L1 φ, γpzq

˙

. (5.91)

From this we see that as long as φ2 is a primary field, it does not pick up any correction

terms from this transformation.

On the other hand, if we consider the case of a hyper in the fundamental of three gauge

groups, we need to insert three descendants, and Vpφ2, 1qwill no longer transform in such

a simple way. The usual vertex is then no longer symmetric under permutations, as the

Möbius transformations that exchange punctures introduce corrections. This means that

the standard CFT vertex must correspond to a regularization scheme of the gauge theory

which treats the gauge groups differently.

More generally, if we use any Möbius transformation to change the insertion points of

a three-point function with descendants, then due to (5.91) we will pick up corrections.

This means that the detailed expression for the three-point function greatly depends on

the choice of insertion points zi in (5.83). It turns out that these issues are less severe for

asymptotically free theories. Let us therefore turn to those cases.

5.5.1.2 Partition function for the trifundamental coupling

Conformal blocks a priori correspond to conformal gauge theories, as the flavor symme-

tries always work out in such a way that there are four fundamental hypers per SUp2q

gauge group. We can however obtain asymptotically free theories by sending the mass of
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hypers to infinity and so decoupling them. More precisely, to decouple a hyper of mass m

in the fundamental of a gauge group of coupling q we take

q Ñ Λ{m , m Ñ8 . (5.92)

Here Λ is the scale of the newly asymptotically free theory. In this way we can obtain any

asymptotically free partition function from a conformal block.

Let us use the procedure outlined above to compute the partition function of a half-

hypermultiplet in the trifundamental of SUp2q. We start out with conformal theory which

corresponds to a sphere with six punctures (see figure 5.14), but decompose it in a sym-

metric (i.e., non-linear) way:

Z “
ÿ

I1,I2,I3

ÿ

J1,J2,J3

xφm1 |Vpφm2 , 1q|φa1
I1
yxφm3 |Vpφm4 , 1q|φa2

I2
yxφm5 |Vpφm6 , 1q|φa3

I3
y

ˆ K´1
I1 J1

K´1
I2 J2

K´1
I3 J3
xφa1

J1
|Vpφa2

J2
, 1q|φa3

J3
y qI1

1 qI2
2 qI3

3 . (5.93)

Note that we have chosen more or less by fiat that the trifundamental vertex, i.e., the three-

punctured sphere in the center of the decomposition, is given by the sphere with punctures

at 0, 1,8. In view of the remarks in the previous section the result is certainly not symmet-

ric under permutation of the gauge groups. To obtain the asymptotically free theory, that

is the result for a single half-hyper in the trifundamental, we apply (5.92). It turns out that

the resulting expression is symmetric under permutations up to spurious terms (which

we explain in a moment). It is moreover independent on the choice of punctures of the

three-punctured sphere in the center of the decomposition, up to a simple rescaling of the

couplings q.

This rather surprising result can be better understood when computing asymptotically

free theories using Gaiotto states [120]. Such a state |h, Λy is an eigenstate of the Virasoro

mode L1 with eigenvalue Λ,

L1|h, Λy “ Λ|h, Λy Ln|h, Λy “ 0 n ě 2 . (5.94)
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More concretely such as state can be written as a power series in Λ

|h, Λy “
8
ÿ

n“0

Λn|vny , (5.95)

where |v0y “ |hy and |vny is a specific linear combination of Virasoro descendants of |hy at

level n. These states can then be used to compute instanton partition functions for asymp-

totically free SUp2q theories. The norm of such a state, for instance, gives the instanton

partition function of pure SUp2q gauge theory. Both states in this norm originate from de-

coupling a pair of hypermultiplets in the conformal SUp2q gauge theory. The conditions

(5.94) come from the poles of the quadratic differential φ2pzq on the UV-curve. (See [121]

for a proof that this is equivalent to the infinite mass limit.)

It is natural to use the same strategy also for multiple gauge groups. The SUp2q tri-

fundamental can be obtained by decoupling three pairs of hypers in the conformal SUp2q

gauge theory corresponding to the six-punctured sphere. We thus compute the three-point

function

ZCFT “ xh1, Λ1|Vp|h2, Λ2y, 1q|h3, Λ3y . (5.96)

This gives indeed the same expression as the one we obtained above. Now we can also

explain why (5.96) is invariant under permutation of the three gauge groups (up to some

trivial factors). As usual we use a Möbius transformation γ to exchange the three insertion

points. From (5.91) and (5.94) it follows that the Gaiotto state |h, Λy transforms to

e
γ2

2γ1
Λ
pγ1qh|h, γ1Λy , (5.97)

so that after a redefinition of Λ the two three-point functions only differ by a spurious pref-

actor. Since this holds for any Möbius transformation, the result is essentially independent

of the insertion points.

We propose that (5.96) is equal to the instanton partition function of a half-hyper in the

trifundamental representation of SUp2q (up to a spurious factor 5). Even though we did

not compute this partition function directly, we can perform several consistency checks on

5In the following we define a spurious factor as a factor that does not depend on the Coulomb branch
parameters and only contributes to the first terms of the genus expansion of the free energy.
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(5.96). First note that it has indeed a proper Fg expansion, i.e., that it can be written

Z “ exp

¨

˝

ÿ

gě0

h̄2g´2Fg

˛

‚, (5.98)

with no higher negative powers of h̄ appearing. Second, (5.96) reduces correctly to the

SUp2q bifundamental when we decouple one of the gauge groups. Finally, when setting

Λ2 “ Λ3 it agrees with the partition function of a Spp1q´ SOp4q gauge theory with a single

hyper in the bifundamental (details of this check can be found in section 5.5.3).

5.5.2 Towards a 4d/2d correspondence for Sicilian quivers

The simplest way to define a conformal N “ 2 Sicilian SUp2q quiver gauge theory is

through its M-theory construction. Wrap two M5 branes on a Riemann surface with punc-

tures C. The quiver theory corresponding to a particular duality frame is obtained from a

decomposition of C into pairs of pants. The punctures of C correspond to hypermultiplets,

and the tubes connecting the different pants correspond to SUp2q gauge groups whose

microscopic coupling constants are given by the complex structure moduli of the tubes.

ÐÑ

Figure 5.15: Illustration of the correspondence between instanton partition functions of
Sicilian SUp2q quiver gauge theories and Virasoro conformal blocks on the corresponding
UV-curve for the six-punctured sphere. Each SUp2q gauge group in the quiver is mapped
to a tube in the UV-curve, whereas SUp2q matter is represented by three-punctured
spheres.

The building blocks are thus spheres with three punctures or tubes. There are three
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different configurations. The sphere with two punctures and one tube corresponds to two

hypermultiplets in the fundamental. The sphere with one puncture and two tubes corre-

sponds to a hyper in the bifundamental of the two SUp2q. Finally, as a new element, there

is the the sphere with three tubes. It corresponds to a half-hyper in the trifundamental.

Since the half-hyper is massless, it is natural not to have a puncture for it in this building

block. See figure 5.15 for an example.

Quivers with asymptotically free gauge groups can always be obtained from conformal

theories by sending the mass of one of the hypers to infinity.

We can then compute the conformal block for this quiver in the following way. First, at

every puncture insert a primary field whose conformal weight is given by the mass of the

hyper in the usual way. Second, for every tube insert a projector

PHφ
“

ÿ

I,J

K´1
I J |φJyxφI |

onto the channel that corresponds to the Coulomb branch parameter of the SUp2q gauge

group. The bra and ket state of that projector are inserted in the respective building blocks.

The problem thus reduces to computing various three point functions

xVpφ1
I1

, z1qVpφ2
I2

, z2qVpφ3
I3

, z3qy ,

of primary or descendant fields. As pointed out above, the subtlety lies in the choice of

insertion the points zi. For linear and cyclic quivers, all the building blocks have only one

or two descendant fields inserted. Using the usual coordinates on the sphere or torus, the

descendant fields are always inserted at 0 or 8, that is as bra and ket states, and there is

always a primary field inserted at 1. Using this prescription the conformal block agrees

with the SUp2q instanton partition function.

For trifundamental hypers the situation is more subtle. We can insert three descen-

dant fields at the points 0, 1,8, but in general the result will not agree with the instanton

computation, since we are using a different parametrization of the moduli space. Once

expressed in IR variables, the results will agree. To put it another way, there will be a

map between the moduli space coordinates and the microscopic gauge coupling that will

make them agree. Or more geometrically, the CFT correlators define a unique object on the
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Seiberg-Witten curve, that is independent on the chosen parametrization of the complex

structure moduli space of the UV-curve.

The situation is much simpler for asymptotically free gauge groups. In this case the

conformal block will agree with the instanton partition function immediately, and will be

essentially independent of the choice of insertion points.

Comparison with Nekrasov partition function: one-loop factor

As we consider theories with N “ 2 supersymmetry, the full Nekrasov partition function

has tree-level, one-loop and instanton contributions,

ZNek “ ZclaspτUVqZ1-loop ZinstpτUVq . (5.99)

The 4d/2d correspondence relates the purely representation-dependent piece of the Li-

ouville correlator on the Gaiotto curve, that is the the conformal block, to the instanton

partition function of the corresponding gauge theory in the Omega-background. Adding

the classical contributions to the instanton partition function is crucial for finding good

properties under coordinate changes on the complex structure moduli space of the Gaiotto

curve (we spell this out explicitly in section 5.5.3). The one-loop factor can be identified

with the three point function of Liouville theory. More properly, the full conformal block

on the Gaiotto curve should be identified with the Nekrasov partition function on S4 [26].

Let us check that this agreement continues to hold for Sicilian quivers. The one-loop

factor can be found as a four-dimensional boson-fermion determinant in the Omega-background.

Equivalently, it may be obtained from the equivariant index of the Dirac operator in the

instanton background (see appendix E). The resulting contribution for the (full) SUp2q tri-

fundamental hypermultiplet is

Z2trif
1-loop “

8
ź

n,m“1

2
ź

i,j,k“1

ˆ

ai ` bj ` ck `
Q
2
` nε1 `mε2

˙´1

9

2
ź

i,j,k“1

Γ2

ˆ

ai ` bj ` ck `
Q
2

ˇ

ˇ

ˇ
ε1, ε2

˙

, (5.100)

where we take the Coulomb branch parameters ai “ ˘a, bj “ ˘b and ck “ ˘c of the three

SUp2q gauge groups and Q “ ε1` ε2. The Barnes’ double gamma function Γ2px|ε1, ε2q reg-
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ularizes the infinite product. The one-loop partition function for the SUp2q trifundamental

half-hypermultiplet is given by a square-root of the above expression.

Agreement with the three-point function of Liouville theory follows by the same ar-

gument as for linear quivers [26]. Namely, the numerator of the DOZZ formula for the

Liouville three-point function contains the product

2
ź

i,j,k“1

Γ2
`

ai ` bj ` ck `Q{2
˘

, (5.101)

which equals the double trifundamental contribution in equation (5.100). Remember that

the product (5.101) corresponds to the one-loop contribution of the Nekrasov partition

function on S4, which splits into a chiral and anti-chiral contribution on R4. Indeed, it is

equal to the absolute value squared of the one-loop contribution for the SUp2q trifunda-

mental half-hyper, which, for example, can be written as

Ztrif
1-loop “ Γ2pa` b` c`Q{2qΓ2pa` b´ c`Q{2qΓ2pa´ b` c`Q{2qΓ2p´a` b` c`Q{2q.

5.5.3 Examples

In this section we test our proposal for extending the 4d/2d AGT correspondence to Sicil-

ian quivers in the two examples illustrated in figure 5.16 and figure 5.17.

Figure 5.16: From a gauge theory perspective the Spp1q ´ SOp4q bifundamental, which is
illustrated on the left, is equivalent to the SUp2q trifundamental, which is illustrated on the
right, once we identify two of the SUp2q gauge couplings.

The quiver on the left in figure 5.16 consists of a single Spp1q gauge group and a single

SOp4q gauge group coupled by a bifundamental Spp1q ´ SOp4q half-hypermultiplet. It

is equivalent to an SUp2q Sicilian quiver gauge theory consisting of three SUp2q gauge

groups coupled by an SUp2q trifundamental half-hypermultiplet, illustrated on the right

in figure 5.16. The gauge couplings of both quivers are asymptotically free, so that the
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Figure 5.17: From a gauge theory perspective the cyclic Spp1q ´ SOp4q quiver, which is
illustrated on the left, is equivalent to the genus 2 SUp2q quiver, which is illustrated on the
right, once we identify two of the SUp2q gauge couplings.

instanton partition function should agree directly with the CFT block (5.96) without any

subtleties involving a choice of coordinates. We check that this is indeed the case up to

order 3.

The quiver in figure 5.17 is a conformal Spp1q ´ SOp4q gauge theory with two bifunda-

mental Spp1q ´ SOp4q half-hypermultiplets, which is equivalent to a conformal SUp2q Si-

cilian quiver gauge theory with three SUp2q gauge groups coupled by two trifundamental

SUp2q half-hypermultiplets. Since the gauge theory is conformal, the results will depend

on the choice of complex structure on the Gaiotto curve, and on the instanton counting

scheme. Our proposal tells us which CFT configuration to choose to give direct agreement

with the Spp1q ´ SOp4q instanton partition function, and we check that this indeed works

up to order 3.

The conformal SUp2q gauge theory can alternatively be described in terms of a mass-

less full SUp2q trifundamental hyper. So we can find its instanton partition function as

well using the more conventional Up2q instanton counting scheme. 6 We check that if we

use the Up2q trifundamental instanton counting scheme or choose different coordinates in

the conformal block the results do agree in the IR. This confirms the general philosophy

outlined above.

We have the instanton counting formulae for the Spp1q ´ SOp4q quiver gauge theories

in chapter 3. They are given by a multiple contour integral of a meromorphic integrand.

6Notice that when we turn on the mass of this hypermultiplet, the theory does not have a string embedding
anymore. This implies that we cannot find a Gaiotto curve. The Seiberg-Witten curve does exist, nevertheless,
and can, for example, be found through a semi-classical approximation of the instanton partition function. See
[129] for a related discussion.
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This integrand consists of building blocks, each piece coming from a component of the

quiver gauge theory. Especially, we find the contribution for the Spp1q ´ SOp4q bifunda-

mental half-hypermultiplet as outlined in section 3.6.1. We also make a proposal the inte-

grand for the full SUp2q trifundamental hypermultiplet in appendix E. To actually evaluate

these contour integrands, that is to find which of the poles contribute and to compute their

residues, is an elaborate process, which we will describe later on.

5.5.3.1 The SUp2q trifundamental as a Spp1q ´ SOp4q bifundamental

In this section we compute the instanton partition function of the Spp1q ´ SOp4q quiver

gauge theory with a single bifundamental half-hypermultiplet. The quiver diagram is

given in figure 5.16 and the corresponding Gaiotto curve is illustrated in figure 5.18.

Figure 5.18: The UV-curve for the SUp2q trifundamental is a double covering of the Gaiotto
curve for the Spp1q ´ SOp4q bifundamental. (The corresponding quiver diagrams are illus-
trated in figure 5.16.)

Computing the instanton partition function

The instanton partition function of this theory is given by

Zinstpq1, q2q “
ÿ

k1,k2

qk1
1 qk2

2 Zk1,k2 (5.102)

with

Zk1,k2 “

¿ n1
ź

i“1

dφi

k2
ź

j“1

dψj zSpp1q
vec,k1

pφq zSOp4q
vec,k2

pψq zSpp1q´SOp4q
bifund,k1,k2

pφ, ψq. (5.103)
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Here q1 and q2 correspond to the exponentiated gauge couplings of the Spp1q and SOp4q

gauge group, respectively, and k1 “ 2n1 ` χ1. As mentioned above, the main problem

is to find the correct prescription for the contour integral, and to evaluate the residues of

the poles in question. In the case of ordinary SUpNq quiver gauge theories, the poles of

the integrand only come from the vector multiplet contribution, and can be labeled by

colored Young diagrams. In the case at hand, however, the Spp1q ´ SOp4q bifundamental

does introduce additional poles, so that evaluating the contour integral becomes much

more complicated. More precisely, besides the poles coming from the Spp1q and the SOp4q

vector multiplet, there are also poles

ψj “ ˘ε` (when k2 is odd) (5.104)

φi “ ˘ψj ˘ ε` (5.105)

from the Spp1q ´ SOp4q bifundamental. Note that these poles intertwine Spp1q poles and

SOp4q poles.

A priori the integrals in (5.103) are over the real axis. We need to make a choice in mov-

ing the poles away from the real axis and the closing the contour. The usual prescription

is to move ε1,2 ÞÑ ε1,2 ` i0 and then close the contour in the upper-half plane. We use this

convention to deal with the vector multiplet poles. For the bifundamental poles, however,

we need to choose the opposite prescription ε` ÞÑ ε` ´ i0. This recipe originates from

the description of the poles for the massive full bifundamental hypermultiplet. Similarly

to the pole prescription in the N “ 4 ADHM construction, we introduce two additional

equivariant parameters ε3 “ ´µ´ ε` and ε4 “ µ´ ε`, which we assume to have positive

imaginary parts. 7 To find the pole prescription for the bifundamental half-hypermultiplet,

we just set the mass µ to zero (which identifies ε3 “ ε4). We furthermore encounter poles of

the form nε1 ´mε3 with n P 1
2 N, m P N, which we also need to include. Our prescription

is to take Impεα ´ εβq " 0 if α ą β as in the reference [64].

With this recipe we are set to evaluate the integral as the sum of pole residues. For

each integration variable φi or ψj we have a precise prescription, so that we can proceed

integral by integral. In practice it is useful to replace ε` ÞÑ ´ε3 in the equations (5.104)

and (5.105) to avoid any source of confusion. After identifying the additional poles coming

7See, for example, [75] for a detailed discussion of the N “ 4 ADHM construction.
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from the bifundamental, we substitute back ε3 ÞÑ ´ε` to evaluate the integral. Note that

the unrefined partition function can only be obtained by setting ε1 ` ε2 “ 0 after we have

performed the integration.

For the quiver gauge theory with a single Spp1q´ SOp4q bifundamental half-hyper (see

figure 5.16) the additional bifundamental poles start to contribute at instanton number k “

pk1, k2q “ p2, 1q. There are 12 new poles at this order. To get agreement with the conformal

block (5.96) it is essential to include these extra poles. Interestingly, in the unrefined limit

their contribution happens to vanish, so that instanton counting becomes much simpler.

Comparison with the three-point function (5.96)

We identify the parameters of the conformal field theory and gauge theory to be

Λ1 “ ´
q1

ε1ε2
, Λ2 “ ´

q2

16ε1ε2
, Λ3 “

q2

16ε1ε2

h1 “
1

ε1ε2

ˆ

Q2

4
´ a2

˙

, (5.106)

h2 “
1

ε1ε2

˜

Q2

4
´

ˆ

b1 ` b2

2

˙2
¸

,

h3 “
1

ε1ε2

˜

Q2

4
´

ˆ

b1 ´ b2

2

˙2
¸

,

c “ 1`
6pε1 ` ε2q

2

ε1ε2
,

where c is the central charge and hi are the conformal weights of the vertex operators.

Comparing this with the three-point function (5.96) we find

Zinstpq1, q2q “ ZCFTpq1, q2qZ
p1q
spur , (5.107)

up to k “ pk1, k2q “ p2, 2q, with the spurious factor

Zp1qspur “ exp
ˆ

q1

2ε1ε2

˙

exp
ˆ

q2

8ε1ε2

˙

.

5.5.3.2 Genus two quiver through Spp1q ´ SOp4q instanton counting

The Sicilian quiver theory for genus two Gaiotto curve is an SUp2q3 theory with two tri-

fundamental half-hypers. We can also view it as a Spp1q ´ SOp4q theory with two bifun-
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damental half-hypers (see figure 5.17). As illustrated in figure 5.19, the corresponding

Gaiotto curve is a torus with two punctures. The genus two curve is the double cover of

the genus one curve with two branch points.

Figure 5.19: The UV-curve for the SUp2q genus 2 quiver is a double covering of the Gaiotto
curve for the Spp1q ´ SOp4q cyclic quiver. (The quiver diagrams are illustrated in fig-
ure 5.17.)

The partition functions will depend on the choice of coordinates of the Riemann sur-

face, because the gauge theory is conformal. Using our proposal for the Spp1q´SOp4qAGT

correspondence, we can find a choice of coordinates on the complex moduli space of the

genus two Gaiotto curve that matches the instanton partition function with the conformal

block directly, without a UV-UV map.

Computing the instanton partition function

Since a single full hypermultiplet can be obtained by combining two half-hypermultiplets,

there are two different ways to compute the instanton partition function: either as a single

full bifundamental hyper or as two bifundamental half-hypers. Using the first method we

start from the massive full hyper. The term at order pk1, k2q is given by

Zp1qk1,k2
“

¿ n1
ź

i“1

dφi

k2
ź

j“1

dψj zSpp1q
vec,k1

pφ, aq zSOp4q
vec,k2

pψ, bq zSpp1q,SOp4q
2bif,k1,k2

pφ, ψ, µq. (5.108)

where the explicit form of the integrand is given in appendix E.
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We can evaluate the contour integral using the two equivariant parameters, ε3 “ ´µ´

ε` and ε4 “ µ´ ε`. The massive full bifundamental introduces the additional poles

ψj “ ˘ε3,˘ε4 (when k2 is odd) (5.109)

φi “ ˘ψj ˘ ε3 (5.110)

φi “ ˘ψj ˘ ε4. (5.111)

Compared to the single bifundamental half-hyper in the previous example the additional

parameter ε4 introduces extra poles. For example, there are in total 28 new poles with non-

vanishing residues at k “ p1, 2q. Again the contribution from these new poles happens to

vanish in the unrefined limit, whereas it is crucial to include them in the refined setup.

Using the second method we start with the contour integral corresponding to two

massless bifundamental half-hypers

Zp2qk1,k2
“

¿ n1
ź

i“1

dφi

k2
ź

j“1

dψj zSpp1q
vec,k1

pφ, aq zSOp4q
vec,k2

pψ, bq
´

zSpp1q,SOp4q
bif,k1,k2

pφ, ψq
¯2

, (5.112)

where the explicit form of each of the building blocks is given in appendix E. The poles of

this integral are simpler to enumerate, since there is just one new equivariant parameter

ε3 “ ´ε`. There are 10 new poles with non-vanishing residues at k “ p1, 2q. As they

should, both computations indeed give the same result once we set the mass µ “ 0.

CFT computation

Let us now compute the conformal block for the genus two surface. The most straightfor-

ward guess is to imitate (5.93) by taking

Z “
ÿ

I1,I2,I3

ÿ

J1,J2,J3

K´1
I1 J1

K´1
I2 J2

K´1
I3 J3
xφa1

I1
|Vpφa2

I2
, 1q|φa3

I3
yxφa1

J1
|Vpφa2

J2
, 1q|φa3

J3
y qI1

1 qI2
2 qI3

3 . (5.113)

By the general remarks above, this expression corresponds to a particular parametrization

of the moduli space of the genus two surface. Presumably there should be a corresponding

regularization scheme on the gauge theory side. In particular, the conformal block (5.113)

should agree with any instanton computation in the IR.

We want to do a bit better than that however: we want to find an expression which
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agrees with our instanton computation of the genus two surface as a cyclic Spp1q ´ SOp4q

quiver in the UV. The AGT correspondence for Sp{SO quivers was worked out in the

previous section. Let us briefly summarize the relevant facts.

The Gaiotto curve of the cyclic Sp{SO theory is a torus with a Z2 branch cut running

between two branch points. The double cover of this curve is the genus two curve where

two of the moduli are equal, see figure 5.19. TheW-algebra of the theory is a double copy

of the Virasoro algebra, where the Z2-twist exchanges the two copies. The conformal block

of this configuration on the torus with total modulus q2
1q2 is given by

Tr
”

σp1qPa1 σpq2
1qPa2,a3pq

2
1q2q

L0
ı

. (5.114)

Here σ is the Z2-twist vacuum, and we take the branch cut to go from σp1q through Pa1 to

σpq2
1q. Pa1 is the projector onto the twisted representation coming from the primary field φ1.

As the primary field φ1 transforms in a twisted representation, it is indeed characterized

by a single parameter a1. On the other hand, Pa2,a3 is the projector onto the untwisted

representation characterized by two parameters a2 and a3.

Figure 5.20: The map γpzq relates theW-block on the twice punctured torus (which com-
putes the double Spp1q ´ SOp4q instanton partition function) to a Virasoro block on its
double cover, a genus two curve. More precisely, we first cut open the torus along the
SOp4q tube and insert a complete basis of states Va2,a3

I2,I3
in the untwisted representation la-

beled by a2 and a3. Then we map this onto a genus two surface using the map γ, and insert
a complete basis of states Va1

I1
in the Virasoro representation labeled by a1.
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xVa2,a3
I2,I3

p8qσp1qPa1 σpq2
1qV

a2,a3
J2,J3

p0qy

Ó z ÞÑ γpzq

xṼa2
I2
p1qṼa3

I3
p´1q|Va1

I1
yxVa1

J1
|Ṽa2

J2
pq1qṼ

a3
J3
p´q1qy

Ö Œ z ÞÑ q1{z

xṼa2
I2
p1qṼa3

I3
p´1q|Va1

I1
y xṼa2

J2
p1qṼa3

J3
p´1q|Va1

J1
y

Table 5.2: Sequence of maps used for computing the cyclic Spp1q ´ SOp4q quiver
.

Computing correlators of twisted representations can be done by going to the cover of

the surface. Here, theW-algebra on the cover is a single copy of the Virasoro algebra, and

the problem reduces to the computation of the standard conformal block on the genus two

surface. Although conceptually straightforward, this procedure leads to some technical

subtleties. The main problem is that we apply the cover map to compute correlators with

Virasoro descendants, which leads to correction terms. Let us therefore spell out precisely

the cover map and the ensuing correlation functions.

To map the four point function (5.114) to the cover, we use the map γ

z ÞÑ γpzq “ ˘

d

z´ q2
1

z´ 1
, (5.115)

where the sign determines the branch of the cover. This map indeed has branch points at

z “ 1 and z “ q2
1, and it maps the operators at 0 and 8 to ˘q1 and ˘1. This is illustrated

in figure 5.20. In a second step, we want to reduce everything to standard building blocks,

that is, three-point functions on the sphere with operators inserted at 1,´1, and 0.

The total sequence of maps is shown in table 5.2. 8 Introducing the notation

Ca2,a3;a1
I2,I3,I1

pq1q “ xṼ
a2
J2
p1qṼa3

J3
p´1q|Va1

J1
y q

2pha2`ha3`I2`I3q

1 ,

8The Ṽp˘q1qs in the second line of table 5.2 are slightly different from the Ṽp˘1qs, which are defined in
equation (5.118).
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the conformal block is given by

ZCFT “
ÿ

Ii ,Ji

K´1
I1 J1

K´1
I2 J2

K´1
I3 J3

Ca2,a3;a1
I2,I3,I1

pq1qC
a2,a3;a1
J2,J3,J1

pq1qq
I1
1 qI2`I3

2 . (5.116)

Note that the three-point functions Cpq1q depends on q1 in a non-trivial way. They are

obtained by acting with q1-dependent coordinate transformations, so that the vertex oper-

ators Ṽ depend on q1. Since (5.115) is not a Möbius transformation, we need the following

generalization [126] of (5.91):

Vpφ, zq ÞÑ V

˜«

8
ź

n“1

exp
ˆ

Tnpzq
f 1pzqn

Ln

˙

ff

f 1pzqL0 φ, f pzq

¸

, (5.117)

which holds for z away from singular points. Here we take all products to go from left to

right. The functions Tnpzq are defined recursively. The first two are given by

T1pzq “
f 2pzq

2 f 1pzq
, T2pzq “

1
3!

˜

f3pzq
f 1pzq

´
3
2

ˆ

f 2pzq
f 1pzq

˙2
¸

.

For the transformations in (5.116) the new vertex operators are given by

Ṽa
I p˘1q “

ˆ

˘
1´ q2

1

2q2
1

˙ha`I

V
ˆ

exp
„

˘
3` q2

1

2p1´ q2
1q

L1



exp
„

1
4

L2



¨ ¨ ¨ φa
I ,˘1

˙

, (5.118)

where the dots signify exponential factors involving higher Ln.

When we compare the genus two conformal block (5.116) with the instanton counting

result, we find that they indeed agree up to order k “ p1, 2q:

Zinstpq1, q2q “ ZCFTpq1, q2qZ
p2q
spur , (5.119)

where the spurious factor

Zp2qspur “ 1´
3 pε1 ` ε2q

2

8 pε1ε2q
q2 `

3 pε1 ` ε2q
2
`

3ε2
1 ´ 2ε1ε2 ` 3ε2

2

˘

128ε2
1ε2

2
q2

2 ` . . .

does not depend on physical parameters.
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5.5.3.3 Alternative prescriptions for the genus two quiver

In the previous example we chose the coordinates of the genus two Gaiotto curve in such a

way that we obtained direct agreement between the conformal block and the Spp1q´SOp4q

instanton counting. If we choose different coordinates, or if we use a different instanton

counting scheme, then the result will be different. In the infrared, however, all versions

should agree. Put differently, we should be able to find a map between the UV couplings

that make two results agree. Let us show that this philosophy is correct in two examples.

Comparison using a different conformal block

First, we can use the “naive” conformal block (5.113) to compute the genus two correlator. 9

We indeed find agreement between the Spp1q´ SOp4q instanton partition function and this

genus two conformal block using the UV-UV map

q̃1 “ q1 ´
1
4

q1q2 ´
1
2

q2
1 ´

1
16

q1q2
2 `

1
4

q2
1q2 `

3
16

q3
1 `Opq4q,

q̃2 “
1

16
q2 ´

1
16

q1q2 `
3

128
q2

2 ´
1

128
q1q2

2 `
3

128
q2

1q2 `
55

4096
q3

2 `Opq4q, (5.120)

q̃3 “
1

16
q2 `

1
16

q1q2 `
3

128
q2

2 `
1

128
q1q2

2 `
3

128
q2

1q2 `
55

4096
q3

2 `Opq4q.

To compare the instanton partition functions with different parametrization of cou-

plings, it is important to include tree-level pieces.10 Similarly we also need to include the

tree-level piece of the conformal block. In the case at hand we have

ZSp´SO
tree pqq “ q

´ a2
ε1ε2

1

´ q2

16

¯´ 1
2ε1ε2

pb2
1`b2

2q

and ZCFT
tree pq̃q “ q̃

´
a2
1

ε1ε2
1 q̃

´
a2
2

ε1ε2
2 q̃

´
a2
3

ε1ε2
3 .

Note that these two factors are related by the identifications (5.106) and the mappings

a2 Ñ
1
2pb1 ` b2q and a3 Ñ

1
2pb1 ´ b2q. Using the UV-UV mapping (5.120) and the above

identification of Coulomb parameters, we find that the ratio of ZNek and ZCFT is given by

the spurious factor

Zp3qspur “ 1´
pε1 ` ε2q

2

8ε1ε2
q1 ´

pε1 ` ε2q
2

4ε1ε2
q2 `

pε1 ` ε2q
2pε2

1 ` 3ε1ε2 ` ε2
2q

32ε2
1ε2

2
q1q2 ` ¨ ¨ ¨ .

9We additionally checked that genus two correlator is independent on the choice of internal punctures up
to a UV-UV mapping.

10One-loop factors are not relevant since they do not involve the gauge couplings.
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Comparison using a different method of instanton counting

As another test of this philosophy on the gauge theory side, we can compute the instanton

using the Up2q instanton counting scheme. This is possible since two SUp2q trifundamen-

tal half-hypers combine into a single massless SUp2q full trifundamental hyper. Apart

from a non-trivial UV-UV mapping, we expect the Up2q instanton and the CFT computa-

tion to differ by a non-trivial Up1q factor. This Up1q factor should not depend on any of

the Coulomb parameters, after we enforce the tracelessness condition on all three gauge

groups.

Since the trifundamental hyper is in the fundamental representation of the three gauge

groups SUp2qA b SUp2qB b SUp2qC, we find the contour integrand by considering the ten-

sor product

EA b EB b EC bL

of the three Up2q universal bundles EA{B{C over the product of ADHM moduli spaces

MUp2qA ˆMUp2qB ˆMUp2qC ˆR4 with the half-canonical bundle L over R4. Recall that

the restriction of each universal bundle to a self-dual connection A is just the correspond-

ing instanton bundle E |A “ E over R4 The equivariant weights contributing to the Euler

class eTpVq of the bundle V of Dirac zero modes can then be found from the equivariant

Dirac index

IndTp {Dq
g“2
Up2q3 “

ż

C2
ChTpEA b EB b EC bLqTdTpC

2q. (5.121)

The resulting contour integrand can be found in appendix E. For up to two instantons,

it reproduces the partition functions for the bifundamental. For three non-zero instanton

numbers the evaluation of the contour integral becomes tricky, because, unlike for Up2q

bifundamentals, many additional poles appear. It would be interesting to find an elegant

prescription for the additional poles that yields agreement with the CFT.

We can still compare the instanton partition function up to second order. We find that
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up to this order it agrees with the conformal block (5.113), when we use the map

q̃A “ qA ` 2q2
AqB ` 6qAqBqC `Opq4q

q̃B “ qB ` 2qAqB ` 2qBqC ` 8qAqBqC ` 3q2
AqB ´ 2qAq2

B ` 2q2
BqC ` 3qBq2

C `Opq4q

q̃C “ qC ` 2qBqC ` 6qAqBqC ` 3q2
BqC ` 2qBq2

C `Opq4q

between gauge coupling constants q̃A{B{C and complex structure parameters qA{B{C, and

up to a (unrefined) Up1q factor

ZUp1q “ 1` qAqB ` qBqC ` qCqA ` ¨ ¨ ¨ (5.122)

Again, we need to include the classical contributions here. The non-trivial UV-UV map-

ping is expected since the conformal three-point function only reduces directly to a bifun-

damental contribution when two of its punctures are set at the positions 0 and 8, and the

primary vertex operator is inserted at 1.



157

Chapter 6

Conclusion

In this thesis, we studied the relation between instanton moduli space and W-algebras.

We studied the theories of class S , which arises from M5-branes wrapped on a UV-curve

and showed that the partition functions of such theories are reproduced by the appropri-

ate chiral blocks of theW-algebra. We have done the direct microscopic calculation of the

instanton partition functions using the equivariant localization techniques for many dif-

ferent examples. In particular, we carefully studied the effect of renormalization scheme at

non-perturbative level and showed that it admits a nice geometric interpretation. We have

also confirmed that 4d/2d correspondence holds for all the choice of Γ “ A, D, E.

We haven’t yet completed the story for all the possible theories that comes from Γ “

A, D, E. On the 4d side, the gauge theory coming from En type N “ p2, 0q theory has not

been studied. Also, the instanton moduli spaces of the exceptional gauge groups are not

known in general.1 In the 2d side, the 3-point function of Toda theory is not fully known.

There are many other approaches to 4d/2d correspondence, for example, using the

matrix model [133, 134], and geometric engineering using the refined topological strings

[135]. There is also a correspondence between 5d version of the instanton partition function

to the q-deformed version of the Virasoro algebra [136, 137]. There are proofs of certain

special cases by showing that the same recursion relation holds on the both side of the

correspondence [138, 139].

One of the biggest things we have omitted in this thesis is the study of the non-local

BPS operators such as line operator [140, 141, 142] and surface operator [140, 143, 118,

144], and domain wall [145, 146]. Such non-local operators arise when we consider the

1Very recently, there has been some progress in this direction recently using string duality [130]. It has been
checked by a direct computation of the partition function [131] using the recursive structure of the instanton
partition function [55, 132].
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M4 C operator
2 0 minimal surface operator

M2 1 1 line operator
0 2 local operator, change 2d theory
4 0 change 4d theory

M5 3 1 domain wall
2 2 surface operator, change 2d theory

Table 6.1: Various types of defect on M5-branes. When M2 ends on M5, they share 2 di-
mensions so that M5 brane theory has 2-dimensional defect. When M5 and M5 intersects,
we have 4-dimensional defect.

configurations of M2-branes ending on M5-branes, or intersecting M5-branes.

Especially, there has been a lot of work regarding the surface operator. The quantum

Drinfeld-Sokolov reduction provides many construction of various types of W-algebras,

which does not belong to Γ “ A, D, E type. If we start with an affine Lie algebra of type ĝ,

we not only can get theWpgq, but also other types. It is determined by embedding of slp2q

to g, which has one-to-one correspondence with the Levi subgroup of Γ. It is exactly the

subgroup which parametrizes the type of surface operator in a gauge theory with gauge

group Γ and therefore there must be a corresponding 2d CFT interpretation. It has been

studied in the papers [147, 148, 149, 150]. It would be interesting to extend these analyses

of non-local BPS operators to non-unitary gauge groups.

As we have discussed in the introduction, one way to under the 4d/2d correspondence

is through the M5-branes wrapped on M4 ˆ C. We have been exclusively focused on the

case where M4 is either R4 or S4. But what happens for other choices? Since we have

Z4d
TrΓ,CspM4q “ Z2d

T rΓ,M4s
pCq, (6.1)

we should find some appropriate relations for other choices as well. Not many examples

are known, but there has been some study for the following cases: When M4 “ S1ˆ S3, the

4d partition function computes the superconformal index and the corresponding 2d side is

the topological field theory [151, 152, 153], where in certain limit reduces to the q-deformed

Yang-Mills theory [154]. When M4 “ R4{Zp or S4{Zp and Γ “ A1, it is conjectured to be

dual to para-Liouville theory [155]. The special case p “ 2 is (accidentally) the super-

Liouville theory [156, 157].
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Mathematically, the AGT conjecture can be formalized as follows: Let G be the compact

Lie group, andMG
k be some appropriate compactification of the G-instanton moduli space

with second Chern number (instanton number) k. Let g be the associated simply-laced Lie

algebra of G andWpgq be the correspondingW-algebra. Let T “ T2
ε1,ε2

ˆ Tr
~a where r is the

rank of G. Then (pure YM version of) the AGT conjecture says that there is a naturalWpgq

action on the direct sum of the (intersection) equivariant cohomology ofMG
k :

Wpgq ý

8
à

k“1
H˚

TpMG
k q. (6.2)

It is known to us that the above statement has been proved by Maulik and Okounkov

[123]2. Even though we have a mathematical proof that this version of AGT conjecture is

true, we are still left with many questions both in physics and mathematics. Especially, it

is unclear how to form the correspondence for general non-linear quiver gauge theories.

In general, the quiver gauge theories of class S do not admit Lagrangian descriptions. In

these cases, it is unclear how to define the corresponding chiral block of W-algebras for

non-Lagrangian SCFT. It would be interesting to formulate the conjecture appropriately

which will shed light on both 4d superconformal field theories theories and 2d conformal

field theory withW-algebra symmetry.

More recently, there has been growing work on 3d/3d correspondence. We can replace

M4 by M3 by reducing the dimension by one and also replace C by M1
3 by increasing the

dimension by one. When M3 is given by (Ω-deformed) S3, the correspondence has been

studied by [146, 159, 160, 161, 162, 163]. The superconformal index on the theory given by

compactifying M5-branes on a 3-manifold is studied in [164].

Perhaps one of the most interesting directions for the 4d/2d relation is to use it to un-

derstand the dynamics of the M5-brane theory. Even though the 4d/2d relation itself is

independent of the details of the M5-branes, but it does show interesting aspects of M5-

branes. What we have been studying can be rephrased as the study of partially topologi-

cally twisted version of the multiple M5-brane theory. In general, the topological version

of a quantum field theory encodes the vacuum sector of the untwisted theory. It is not

unreasonable to expect that the detailed study of the theory reveal some aspects of the

mysterious M5-brane theory.

2There is also a recent proof [158] for the A-series
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Appendix A

Roots of simple Lie algebras

Here we list the roots for all Lie algebras, emphasizing how to embed the root space of

a non-simply-laced algebra G to that of a simply-laced algebra Γ. First let us present the

simply-laced ones in detail. Note that the simple roots are named as in Figure A.1.

A.1 Simply-laced algebras

Roots of An “ SUpn ` 1q. We let t~ei : 1 ď i ď n ` 1u be an orthonormal basis. The

positive roots are

∆` “ t~ei ´~ej : 1 ď i ă j ď n` 1u . (A.1)

Note that the span of roots is only n-dimensional. The simple roots are

~α1 “~e1 ´~e2, ~α2 “~e2 ´~e3, . . . , ~αn “~en ´~en`1 . (A.2)

Roots of Dn “ SOp2nq. The positive roots are

∆` “ t~ei ˘~ej : 1 ď i ă j ď nu . (A.3)

The simple roots are

~α1 “~e1 ´~e2, ~α2 “~e2 ´~e3, . . . , ~αn´1 “~en´1 ´~en, ~αn “~en´1 `~en. (A.4)
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Roots of E6. The 36 positive roots are

∆` “ t~ei `~ej,~ei ´~ejuiăjď5 Y

"

1
2
p ~̆e1 ˘~e2 ˘~e3 ˘~e4 ˘~e5 `

?
3~e6q

*

# minus signs even
.(A.5)

The simple roots are

~α1 “
1
2

´

~e1 ´~e2 ´~e3 ´~e4 ´~e5 `
?

3e6

¯

,

~αi “~ei ´~ei´1 pi “ 2, 3, 4, 5q, ~α6 “~e1 `~e2 . (A.6)

Roots of E7. The 63 positive roots are

∆` “ t~ei `~ej,~ei ´~ejuiăjď6 Y t
?

2~e7u Y

"

1
2
p ~̆e1 ˘ . . .˘~e6 `

?
2~e7q

*

# minus signs odd
, (A.7)

Roots of E8. The 120 positive roots are

∆` “ t~ei `~ejuiăjď8 Y t~ei ´~ejuiăjď8 Y

"

1
2
p ~̆e1 ˘ . . .˘~e7 `~e8q

*

# minus signs even
. (A.8)

A.2 Non-simply-laced algebras

Let Γ be a simply-laced algebra which is not A2n, and let o be a symmetry of the Dynkin

diagram. Note that o can be viewed as an outer-automorphism acting on the Lie algebra

of type Γ. It can be checked that α and opαq are perpendicular when α ‰ opαq. Let us take

∆s “ t~α :~α P ∆, ~α “ op~αqu , (A.9)

∆l “ t~α` op~αq :~α P ∆, ~α ‰ op~αqu when r “ 2 , (A.10)

∆l “ t~α` op~αq ` o2p~αq :~α P ∆, ~α ‰ op~αqu when r “ 3 . (A.11)

Then, ∆1 “ ∆s \ ∆l is a non-simply-laced root system, with ∆s and ∆l short and long

roots, respectively. In this normalization, the short root has length
?

2. Possible outer-

automorphisms of simply-laced algebras that can be used are depicted in Figure 2.6. Every

non-simply-laced algebra arises in this manner.

Note that one can also take the averages 1
2 r~α` op~αqs and 1

3 r~α` op~αq ` o2p~αqs in (A.10)
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An ˝
α1
´ ˝

α2
´ ¨ ¨ ¨ ´ ˝

αn´1
´ ˝

αn
´́
´
‚
1
´́
´

˝
1
´ ˝

1
´ ¨ ¨ ¨ ´ ˝

1

Bn ˝
α1
´ ˝

α2
´ ¨ ¨ ¨ ´ ˝

αn´1
ñ ˝

αn
˝
1
´

‚ 1
|
˝
2
´ ˝

2
´ ¨ ¨ ¨ ´ ˝

2
ñ ˝

1
Cn ˝

α1
´ ˝

α2
´ ¨ ¨ ¨ ´ ˝

αn´1
ð ˝

αn
‚
1
ñ ˝

1
´ ¨ ¨ ¨ ´ ˝

1
ð ˝

1

Dn ˝
α1
´ ˝

α2
´ ¨ ¨ ¨ ´

˝ αn
|
˝

αn´2
´ ˝

αn´1
˝
1
´

‚ 1
|
˝
2
´ ˝

2
´ ¨ ¨ ¨ ´

˝ 1
|
˝
2
´ ˝

1

E6 ˝
α1
´ ˝

α2
´

˝ α6
|
˝
α3
´ ˝

α4
´ ˝

α5
˝
1
´ ˝

2
´

‚ 1
|

˝ 2
|
˝
3
´ ˝

2
´ ˝

1

E7 ˝
α1
´ ˝

α2
´

˝ α7
|
˝
α3
´ ˝

α4
´ ˝

α5
´ ˝

α6
‚
1
´ ˝

2
´ ˝

3
´

˝ 2
|
˝
4
´ ˝

3
´ ˝

2
´ ˝

1

E8 ˝
α1
´ ˝

α2
´ ˝

α3
´ ˝

α4
´

˝ α8
|
˝
α5
´ ˝

α6
´ ˝

α7
‚
1
´ ˝

2
´ ˝

3
´ ˝

4
´ ˝

5
´

˝ 3
|
˝
6
´ ˝

4
´ ˝

2
F4 ˝

α1
´ ˝

α2
ñ ˝

α3
´ ˝

α4
‚
1
´ ˝

2
´ ˝

3
ñ ˝

2
´ ˝

1
G2 ˝

α1
V ˝

α2
‚
1
´ ˝

2
V ˝

1

Figure A.1: Dynkin diagrams of simple Lie algebras, our labeling of the simple roots, and
the comarks. The extended node is shown by a black blob.

and (A.11), respectively. A root system obtained this way corresponds to the subalgebra of

Γ invariant under the Zr action, and is Langlands dual to the one obtained via (A.9)–(A.11).

It is natural in this latter convention for the long roots to have length
?

2. Even when the

resulting root system is the same in two ways of folding, as in G “ G2 and Γ “ SOp8q, the

embedding of the root space of G into the root space of Γ is different in the two cases. In

this paper, we adhere to the former convention of folding. This convention is more natural

in the context of singularity theory, see, e.g., [48, 165]. Let us now go over the root systems

of the non-simply-laced algebras one by one.

Roots of Bn “ SOp2n` 1q. The short positive roots and the long positive roots are

∆`s “ t~εi, : 1 ď i ď nu, ∆`l “ t~εi ˘~εj : 1 ď i ă j ď nu . (A.12)

where~εi ¨~εj “ 2δij so that the lengths of the short roots are
?

2.

This root system comes from a Z2 outer-automorphism o of the root system of A2n´1 “

SUp2nqwith the action mapping the simple root´αi to´α2n´i. The short and long positive
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roots of Bn are then respectively

∆`s “ t ~́ei `~e2n`1´i : i “ 1, . . . , nu , (A.13)

∆`l “ tp ~́ei `~e2n`1´iq ˘ p ~́ej `~e2n`1´jq : 1 ď i ă j ď nu. (A.14)

Setting

~εi “ ~́ei `~e2n`1´i, i “ 1, . . . , n , (A.15)

the positive roots (A.13) and (A.14) become (A.12) as required.

Roots of Cn “ Sppnq. The short positive roots and the long positive roots are

∆`s “ t~ei ˘~ej : 1 ď i ă j ď nu, ∆`l “ t2~ei : 1 ď i ď nu , (A.16)

where~ei ¨~ej “ δij so that the lengths of the short roots are
?

2.

This root system is obtained by applying a Z2 outer-automorphism to the root system

of Dn`1 “ SOp2n` 2q, which acts as follows:

o : ´αn´1 ÞÑ ´αn, ´αn ÞÑ ´αn´1, ´αi ÞÑ ´αi for i ‰ n, n´ 1 . (A.17)

From (A.4), it is clear that o maps ~en to ~́en and leaves other ei invariant. Following the

procedure, we easily get (A.16).

Roots of F4. The short positive roots are

∆`s “ t~εiuiď4 Y

"

1
2
p~ε1 ˘~ε2 ˘~ε3 ˘~ε4q

*

, (A.18)

and the long positive roots are

∆`l “ t~εi `~εjuiăjď4 Y t~εi ´~εjuiăjď4 , (A.19)

where~εi ¨~εj “ 2δij so that the length of the short roots is
?

2.

This root system can be obtained by applying a Z2 outer-automorphism to the root
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system of E6 which maps p´α1,´α2,´α3,´α4,´α5,´α6q to p´α5,´α4,´α3,´α2,´α1,´α6q.

Therefore the simple roots of F4 are given by

p~α1 “ ´α1 `´α5, p~α2 “ ´α2 `´α4, p~α3 “ ´α3, p~α4 “ ´α6. (A.20)

We then introduce new basis ε1,2,3,4 via

y´α1 “ ε2 ´ ε3 , y´α2 “ ε3 ´ ε4 , y´α3 “ ε4 , y´α4 “
1
2
pε1 ´ ε2 ´ ε3 ´ ε4q . (A.21)

These simple roots give rise to the positive roots listed in (A.18) and (A.19).

Roots of G2. The short positive roots and long positive roots are

∆`s “

#

?
2~ε1, ˘

1
?

2
~ε1 `

c

3
2
~ε2

+

, ∆`l “

#

˘
3
?

2
~ε1 `

c

3
2
~ε2,

?
6~ε2

+

, (A.22)

where~εi ¨~εj “ δij so that the length of the short roots is
?

2.

This root system is obtained by applying a Z3 outer-automorphism to the root system

of D4, which maps the set of simple roots p´α1,´α2,´α3,´α4q to p´α3,´α2,´α4,´α1q. The

simple roots of G2 is then

pα1 “ ´α1 `´α3 `´α4, pα2 “ ´α2. (A.23)

We then let

~ε1 “
1
?

2
p~e1 ´~e3q, ~ε2 “

1
?

6
p~e1 ` 2~e2 ´~e3q, (A.24)

resulting in (A.22).
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Appendix B

Evaluating contour integrals

In this appendix we explain in more detail how to evaluate contour integrals for the Spp1q

gauge group. (Evaluating SOp4q contour integrals works similarly. It is somewhat simpler

because there are no fractional instantons.) In the case of UpNq gauge groups, [28, 55, 56]

found closed expressions for the contribution of k instantons in terms of sums over Young

diagrams.

Unfortunately the pole structure of SppNq gauge groups is much more complicated. In

the literature it has mostly only been evaluated up to three instantons, which only requires

to perform one contour integral [68, 71].1 It is possible to describe SppNq instantons in

terms of orientifolding the UpNq setup. In general, there are poles involving Coulomb

branch parameters, as well as poles that just involve the deformation parameters ε1, ε2. The

former regular poles are similar to the UpNq instantons, while the latter fractional are new.

In the brane engineering picture, the former can be thought of as an instanton bound to

D4-branes that are separated from the center at positions˘an. The latter can be understood

as an instanton stuck at the orientifold brane at the center. When we specialize to the case

of ε1 ` ε2 “ 0, the analysis of the poles become simpler, and it reduces to the ordinary

colored Young diagrams plus fractional instantons as in [70, 71]. However, this method

does not work for general ε1, ε2.

For our analysis we will use the expressions obtained for the Spp1q gauge multiplet

in [53, 68]. The k instanton contribution is given by the integral over the real axis of the

variables φi of the integrand zk. Let n “ t k
2 u, χ “ k mod 2 such that k “ 2n` χ. It is useful

1[70] computed up to four instantons, but could only give an ad-hoc prescription for which poles to include.
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to define ε “ ε1 ` ε2 and ε` “ ε{2. Define

∆pxq “
ź

iăjďn

ppφi ` φjq
2 ´ x2qppφi ´ φjq

2 ´ x2q , (B.1)

Ppxq “ x2 ´ a2 . (B.2)

Then zk is given by

zkpa, φ, ε1, ε2q “
p´1qn

2n`χn!
εn

εn
1 εn

2

«

1
ε1ε2pε2

` ´ a2q

n
ź

i“1

φ2
i pφ

2
i ´ ε2q

pφ2
i ´ ε2

1qpφ
2
i ´ ε2

2q

ffχ

ˆ
∆p0q∆pεq

∆pε1q∆pε2q

n
ź

i“1

1
Ppφi ´ ε`qPpφi ` ε`qp4φ2

i ´ ε2
1qp4φ2

i ´ ε2
2q

(B.3)

The contribution is obtained by integrating the φi along the real axis.

Hypermultiplets in the fundamental representation never contribute any new poles.

As pointed out above, hypers in the adjoint representation of SppNq do introduce new

poles. This will not be covered here.

B.1 The ε prescription

To render this integral well-defined, we specify that ε1,2 P R` i0. We can then close the

integrals in the upper half plane and simply evaluate all residues. This prescription can

be obtained by e.g.going to the five-dimensional theory, and requiring that the original

integral converge.

At first sight one may be worried that we need additional information on the imaginary

part of the ε if we want to evaluate the integral. More precisely, the following situation

might arise: Let us take the residue of φ1 around the pole φ2 ` a where a is some linear

combination of ε1,2. If the original integrand had a pole pφ3 ` φ1 ´ bq´1, then the resulting

expression seems to have a pole at φ2 “ ´φ3 ` b´ a, which would not longer have clearly
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defined imaginary part. To see that this situation never occurs, note that

¿

´φ3`b´a

dφ2

¿

φ2`a

dφ1
1

pφ1 ´ φ2 ´ aqpφ1 ` φ3 ´ bq
Fpφ1, φ2, φ3q (B.4)

“ Fp´φ3 ` b,´φ3 ` b´ a, φ3q

“ ´

¿

´φ3`b´a

dφ2

¿

´φ3`b

dφ1
1

pφ1 ´ φ2 ´ aqpφ1 ` φ3 ´ bq
Fpφ1, φ2, φ3q ,

i.e.when evaluating the poles in both ways (as we must) the contributions cancel. Note that

this argument is also valid if φ3 is a constant or zero. Also note that this does not imply

that all residues vanish. The point is that if either a or b has negative imaginary part, then

by our ε prescription we only evaluate one residue, which is therefore not cancelled. The

upshot of this discussion is thus that whenever we evaluate the residues, we only need to

include poles which have clearly defined positive imaginary part.

The k instanton contribution Zk is thus a sum over positive poles pφ̃iqi“1,...,n

Zk “
ÿ

pφ̃iqi“1,...,k

¿

φk“φ̃n

dφn . . .
¿

φ1“φ̃1

dφ1 zkpa, φ, ε1, ε2q , (B.5)

where φ̃i is a linear combination of b, ε1, ε2 and possibly φj, j ą i with positive imaginary

part. Note that different poles can give the same contribution. In what follows we give an

algorithm to obtain those poles and their combinatorial weight.

B.2 Chains

If k is even, then χ “ 0. The possible poles for φi are

φi “ ˘ε1{2 , φi “ ˘ε2{2 (B.6)

φi “ a˘ ε` φi “ ´a˘ ε` (B.7)

φi “ φj ˘ ε1,2 φi “ ´φj ˘ ε1,2 (B.8)

We will call poles as in (B.6) and (B.7) ‘roots’. Due to poles of the form (B.8), the φi will

take values in chains, just as in the UpNq case. If a chain contains a root, we will call it an

anchored chain. Note that unlike the UpNq case there can also be chains that have no roots.
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If k is odd, then there are the additional poles

φi “ ˘ε1 , φi “ ˘ε2 (B.9)

Note that the numerator has a double zero for φi “ φj and φi “ ´φj.

For a more uniform treatment in the spirit of the Up2q analysis, we define the set of

roots bl

bl P ta` ε`,´a` ε`, ε1{2, ε2{2u (B.10)

for n even, and similarly for n odd. A general pole can consist of multiple chains that

are independent of each other. It is thus possible to describe our algorithm by using the

following toy model which only contains one root,

zk “
∆p0q∆pεq

∆pε1q∆pε2q

n
ź

i“1

1
φ2

i ´ b2
. (B.11)

When going back to the full Spp1q integrand, one sums over all decompositions of k into

chains with different roots. Note that not all roots can appear as anchors for a given pole.

In particular, due to the numerator in (B.3) there cannot be two chains with roots a` ε`

and ´a ` ε` in the same pole. Also note that one has to be somewhat careful when to

exactly specialize the values bl . To get the correct result, one has to take the residue of the

expression with general bl , and only afterward specialize to (B.10).

Anchored poles

Anchored poles can be described in the following way: First, pick a ‘generalized Young

diagram’ with n boxes. A generalized Young diagram is a set of connected boxes, one of

them marked by ˆ, which we take to be the origin. The upper and lower edge of such a

diagram must be monotonically decreasing, i.e.must slope from the upper left to the lower
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right. To illustrate this, here are some examples:

allowed : ˆ

ˆ

ˆ

not allowed :
ˆ ˆ ˆ

This is due to the zeros of ∆p0q and ∆pεq in the numerators, which can only be cancelled by

double poles. To obtain the actual pole corresponding to a diagram, we consider signed

diagrams, i.e.diagrams where each box comes with a sign. Let us denotes the signed dia-

grams corresponding to Y by Ỹ, and let Ỹ0 be the diagram with all plus signs. The value of

a variable φi for a box with sign ˘ is then

φi “ ˘pb`mε1 ` nε2q , (B.12)

where m and n are the horizontal and vertical positions of the box, respectively. The ad-

vantage of this description is that the even though a given signed diagram can arise from

many different poles, the numerical values of the φi are determined by it. Moreover, be-

cause the integrand is invariant under φi Ø ´φi, the contribution of a signed diagram is

the same of the unsigned diagram, up to an overall sign.

More precisely, each signed diagram contribues with a certain combinatorial weight,

given by the (signed) number of the poles that contribute, so that the total contribution of

Y is

IY “ IỸ0
nY “ IỸ0

ÿ

Ỹ

nỸ . (B.13)

It remains to compute the nỸ. To do this, write down all n! numbered diagrams corre-

sponding to Ỹ, and check which ones give a contribution, i.e.are obtained during the eval-

uation of the contour integrals. The number i in each box indicates which φi takes this

value. We then perform the contour integral consecutively, starting from φ1. For a given

φi, three things can happen: If it is at the origin, then it can take the value of the root b.

This simply means that we the pole comes from the factorφi ´ b. If it is not at the origin,

we can connect it to one of its neighbors. If this neighbor has not been evaluated yet, then
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the pole comes from the factor pφi ˘ φj ´ ε1,2q, i ă j. If j ă i, then the pole comes from the

same factor, but we have already plugged in the value φ̃j for φj. Finally, if it has already

been connected to other boxes, we can also connect it to neighbors of those boxes.

All this is obviously subject to the constraint that the relative signs of the two boxes

are correct, and that the imaginary part of the pole be positive. We can thus deduce some

rules on evaluating numbered diagrams. In the following, an arrow over the boxes shows

which way we can connect them.

• The highest number n must always appear in a box of positive sign in the upper right

quadrant.

• We can only connect boxes in the following way:
ÝÝÝÑ
´ ´ ,

ÐÝÝÝ
` ` ,

ÐÝÑ
´ ` .

• We can never connect the boxes ` ´ .

• If there is a single rightmost box, its sign must be positive.

• If there is a single leftmost box in the negative quadrant, its sign must be negative.

The last four rules were stated for horizontally connected boxes. Of course equivalent rules

also hold for vertically connected ones.

Cycles

A cycle is a chain that contains no root. Let us concentrate for the moment on its ‘circular

part’ of length n. We start by integrating out φ1, φ2, and so on, and for φi we pick the pole

φi “ σiφi`1 ` δi , i “ 1, . . . , n´ 1 , (B.14)

where periodicity φn`1 “ φ1 is implied, and σi “ ˘1, δi “ ε1,2. For φn we then pick the

pole whose numerical value is determined in such a way that φn “ σnφ1 ` δn. This value

can be determined by noting that the variable φl then takes the value

φl “

˜

l´1
ź

i“1

σi

¸

φ1 ´

l´1
ÿ

j“1

¨

˝

l´1
ź

i“j

σi

˛

‚δj (B.15)

so that the cycle only gives a contribution if
śn

i“1 σi “ ´1, as otherwise there is either no

solution, or there is a double pole which gives no contribution. The total pole is thus given
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by

pφ̃q “ pσ1φ2 ` δ1, ¨ ¨ ¨ , σn´1φn ` δn´1,´
1
2

n´1
ÿ

j“1

¨

˝

n´1
ź

i“j

σi

˛

‚δj `
1
2

δnq . (B.16)

Again, this only contributes if the value of the last entry has a well-defined positive imag-

inary part.

B.3 Some examples

Let us now explain this more explicitly for the first low lying terms. For k “ 0 and k “ 1

there are no integrals. For k “ 2 and k “ 3 there is just one integral, so that one can simply

sum over all poles. This has been treated in [68, 70, 71].

Four and five instantons: n “ 2

Let us consider the case n “ 2. There are four unsigned diagrams,

pφ̃1, φ̃2q nY

ˆ pb, b` ε2q 3

ˆ pb, b` ε1q 3

ˆ

pb, b´ ε2q ´1

ˆ pb, b´ ε1q ´1

To arrive at the combinatorial weights, we first write down all signed versions of e.g.the

first diagram:

`

`

`

´

´

`

´

´ (B.17)
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For each signed diagram we then write down all possible numbered diagrams and see if

they are allowed. From the rules given above it is straightforward to see that only

`

`

1
2 ,

2
1 pφ2 ` ε2, bq, pb, b` ε2q (B.18)

`

´

2
1 p´φ2 ` ε2, b` ε2q (B.19)

are allowed. It is clear that the first diagram in the first line gives the same contribution

as pb, b ` ε2q. The diagram can be reduced to p´b, b ` ε2q by the same procedure as in

(B.4). Since we pick up a minus sign in this process, the total combinatorial weight is

nY “ 2` 1 “ 3. Similarly, for the third diagram we obtain

`

´

2
1 p´φ2 ` ε2, bq

This time we do not pick up a sign, so that nY “ ´1. Let us turn to the cyclic chains. If we

choose σ1 “ 1, then φ2 “
1
2pδ1´ δ2q, which we know does not contribute. The contributions

thus come from σ1 “ ´1, σ2 “ 1 and are given by

p´φ2 ` ε1, ε1q p´φ2 ` ε2, ε2q p´φ2 ` ε1,
1
2
pε1 ` ε2qq p´φ2 ` ε2,

1
2
pε1 ` ε2qq

´ `

`

´ ´ `

`

´

where we have represented the first two cycles by signed diagrams with root 0, and the

second two by diagrams with root ˘1
2pε1 ´ ε2q.

Six instantons: n “ 3

Let us turn to n “ 3 now. For completeness, we have listed all generalized Young dia-

grams, their values of the φ and the combinatorial weights in table B.1.

As an example, let us explain how to obtain the combinatorial weight for some of those

cases. Take, for instance, the diagram ˆ and write down all signed diagrams. By

the rules given above can immediately exclude all diagrams that have a minus sign in the

rightmost box. The diagram Ỹ0 gives the same contribution as in the UpNq case and has
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Diagram pφ1, φ2, φ3q nY

ˆ pb, b` ε2, b` 2ε2q 15

ˆ pb, b` ε2, b` ε1q 10

ˆ pb, b` ε1 ` 2ε1q 15

ˆ

pb, b` ε2, b´ ε2q ´6

ˆ pb, b` ε1, b´ ε1q ´6

ˆ

pb, b´ ε2, b´ 2ε2q 3

ˆ pb, b´ ε1, b´ 2ε1q 3

ˆ

pb, b´ ε2, b` ε1 ´ ε2q ´1

ˆ pb, b´ ε1, b´ ε1 ` ε2q ´1

ˆ

pb, b´ ε1, b´ ε2q 2

ˆ

pb, b` ε1, b` ε1 ´ ε2q ´5

ˆ pb, b` ε2, b` ε2 ´ ε1q ´5

Table B.1: Generalized Young diagrams, values of φ, and combinatorial weights
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weight 6. The remaining three diagrams are

´ ` ` 4 1 2 3 p´φ2 ` ε1, b` ε1, b` 2ε1q

2 1 3 p´φ2 ` ε1,´φ3 ` 2ε1, b` 2ε1q

1 3 2 p´φ3 ` ε1, φ3 ` ε1, b` ε1q

2 3 1 pφ3 ` ε1,´φ3 ` ε1, b` ε1q

´ ´ ` 2 1 2 3 pφ2 ` ε1,´φ3 ` ε1, b` 2ε1q

2 1 3 p´φ3 ` ε1,´φ3 ` 2ε1, b` 2ε1q

` ´ ` 3 1 2 3 pb,´φ3 ` ε1, b` 2ε1q

2 1 3 p´φ3 ` ε1, b, b` 2ε1q

3 1 2 p´φ2 ` ε1, φ3 ` 2ε1, bq

The top diagram is exactly as in the UpNq case, so its combinatorial weight is 6. For the

other diagrams, we have listed all numbered diagrams that contribute together with the

precise pole they correspond to. Note that when converting the poles to the form of the

table, it turns out that minus signs appear in such a fashion that all diagrams give positive

contribution. The total combinatorial weight of ˆ is thus 15.

Another example is ˆ . The rightmost box must have a positive sign, and the

leftmost box is in a negative quadrant and must therefore have a negative sign. This leaves

just two possibilities,

´ ` ` 1 2 1 3 p´φ` ε1,´φ3 ` 2ε1, bq

´ ´ ` 2 1 2 3 pφ2 ` ε1,´φ3 ` ε1, bq

2 1 3 p´φ3 ` ε1,´φ3 ` 2ε1, bq

which give combinatorial weight 3.

Let us briefly describe the cycles now. For 3-cycles we get

pφ̃1, φ̃2, φ̃3q “ pσ1φ2 ` δ1, σ2φ3 ` δ2,´
1
2
pσ1σ2δ1 ` σ2δ2q `

1
2

δ3q (B.20)
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A priori, the allowed solutions are

σ1 “ ´1, σ2 “ 1, σ3 “ 1, δ2 “ δ3

σ1 “ 1, σ2 “ ´1, σ3 “ 1, δi “ ε1,2

σ1 “ ´1, σ2 “ ´1, σ3 “ ´1, δ1 “ δ3

A closer analysis reveals however that all such solutions lead to zeros in the numerator

due to the factor ∆p0q∆pεq.

The only contribution thus comes from poles corresponding to 2-cycles with one at-

tached arm. This means take the diagrams of the 2-cycles with root 0 and ˘1
2pε1 ´ ε2q and

attach one box to it. Again, we want to compute the combinatorial weight of these config-

urations. Note however that in this case φ̃ cannot be reduced to its numerical values.

For the extra root 0, note that the diagram ˆ gives a vanishing contribution. We

thus consider only ˆ . We have

´ ` ` 4 1 2 3 p´φ2 ` ε1, ε1, 2ε1q

2 1 3 p´φ2 ` ε1,´φ3 ` 2ε1, 2ε1q

2 3 1 pφ3 ` ε1,´φ3 ` ε1, ε1q

1 3 2 p´φ3 ` ε1, φ3 ` ε1, ε1q

´ ´ ` 2 1 2 3 pφ2 ` ε1,´φ3 ` ε1, 2ε1q

2 1 3 p´φ3 ` ε1,´φ3 ` 2ε1, 2ε1q

For ˆ , the only signed diagram is
`

´ ` , which has weight 4,

3
1 2

3
2 1

2
1 3

1
2 3

p´φ2 ` ε1,ε1, ε2q p´φ2 ` ε1,´φ3 ` ε2, ε2q p´φ2 ` ε2, ε2, ε1q p´φ2 ` ε2,´φ3 ` ε1, ε1q
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and for
ˆ

the only signed diagram
´ `

´ has weight 2:

1 3
2

2 3
1

p´φ3 ` ε1,´φ3 ` ε2, ε1q p´φ3 ` ε2,´φ3 ` ε1, ε1q

All other configurations can be obtained by exchanging ε1 Ø ε2.

For the root ˘1
2pε1 ´ ε2q, note that no box can be attached to the box ε1`ε2

2 because of

the zeros in the numerator. This leaves just three configurations

´ ´ ` 2 1 2 3 pφ2 ` ε1,´φ3 ` ε1,
ε1 ` ε2

2
q

2 1 3 p´φ3 ` ε1,´φ3 ` 2ε1,
ε1 ` ε2

2
q

´ ` ` 1 2 1 3 p´φ2 ` ε1,´φ3 ` 2ε1,
ε1 ` ε2

2
q

`

´ ` 1
1
2 3 p´φ2 ` ε2,´φ3 ` ε1,

ε1 ` ε2

2
q

and similarly for their mirror images under ε1 Ø ε2.

To obtain the full contribution for the toy model (B.11) we also need to include all poles

that consist of a 2-cycle and the root b. In total there are thus 112 poles.



177

Appendix C

SUp2q Seiberg-Witten curves

Since the discovery of Seiberg-Witten theory a few different (yet physically equivalent)

parametrizations for the SUp2q “ Spp1q Seiberg-Witten curve have appeared in the litera-

ture. Let us summarize these different approaches here.

First of all, the Seiberg-Witten curve for the SUp2q theory coupled to four hypermulti-

plets can be witten in the hyperelliptic form [166]

y2 “ PUp2qpwq2 ´ f Q, (C.1)

where

PUp2qpwq “ w2 ´ ũ, f “
4qUp2q

p1` qUp2qq
2 , qUp2q “

θ4
2pτIRq

θ4
3pτIRq

, Q “

4
ź

j“1

pw´ m̃jq.

We should be careful that the mass parameters m̃j are not exactly the hypermultiplet masses

µ̃j. Instead, they are related to the hypermultiplet masses µ̃j as

m̃j “ ´µ̃j `
qUp2q

2p1` qUp2qq

ÿ

k

µ̃k. (C.2)

Indeed, the meromorphic Seiberg-Witten differential

λ “
´w` qUp2q

2p1`qUp2qq

ř

k µ̃k

2πi
d log

ˆ

PUp2qpwq ´ y
PUp2qpwq ` y

˙

(C.3)

has residues ˘µ̃j at the position w “ µ̃j, so that the parameters µ̃j are the hypermultiplet

masses. These are also the parameters that appear in the Nekrasov formalism.
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Another parametrization is found by D4/NS5 brane engineering in type IIA. The Seiberg-

Witten curve (C.1) can be rewritten in the MQCD form [33]

pw´ m̃1qpw´ m̃2qt2 ´ p1` qUp2qqpw2 ´ uqt` qUp2qpw´ m̃3qpw´ m̃4q “ 0 (C.4)

by the coordinate transformation

t “ ´
p1` qUp2qqpy´ Ppwqq
2pw´ m̃1qpw´ m̃2q

.

In this parametrization the meromorphic Seiberg-Witten 1-form can simply be taken to be

λ “ w
dt
t

. (C.5)

This differential differs from the one in equation (C.3) by an exact 1-form. It has first order

poles at the positions t P t0, qUp2q, 1,8u. At t “ 8 and t “ 0 the residues are given by the

mass parameters tm̃1, m̃2u and tm̃3, m̃4u respectively, whereas at t “ 1 and t “ qUp2q there is

only a single nonzero residue. The mass-parameters at t “ 0,8 parametrize the Cartan of

the flavor symmetry group SUp2q, whereas the single residue at the other two punctures

is an artifact of the chosen parametrization (that only sees a Up1q Ă SUp2q).

To restore the SUp2q flavor symmetry at each of the four punctures, Gaiotto introduced

the parametrization [25]

w̃2 “

˜

pm̃1 ` m̃2qt2 ` qUp2qpm̃3 ` m̃4q

4tpt´ 1qpt´ qUp2qq

¸2

`
m̃1m̃2t2 ` p1` qUp2qqũt` qUp2qm̃3m̃4

t2pt´ 1qpt´ qUp2qq
. (C.6)

This is found from equation (C.4) by eliminating the linear term in w and mapping w ÞÑ

w̃ “ tw. By writing equation (C.6) in the form

w̃2 “ ϕ2ptq, (C.7)

it is clear that the Seiberg-Witten curve is a branched double cover over a two-sphere P1
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with punctures at t “ 0, qUp2q, 1,8. The coefficients of ϕ2 at the punctures are given by

t “ 0 : ϕ2 „
pµ̃3 ´ µ̃4q

2

4
dt2

t2 (C.8)

t “ qUp2q : ϕ2 „
pµ̃3 ` µ̃4q

2

4
dt2

pt´ qUp2qq
2

t “ 1 : ϕ2 „
pµ̃1 ` µ̃2q

2

4
dt2

pt´ 1q2

t “ 8 : ϕ2 „
pµ̃1 ´ µ̃2q

2

4
dt2

t2 .

So if we keep

λ “ w̃
dt
t

(C.9)

as the Seiberg-Witten differential (which is allowed since it only differs from (C.5) by a

shift of the flavor current by a multiple of the gauge current), we find that its residues are

given by the square-roots of the coefficients of ϕ2 in equation (C.8).

The Seiberg-Witten curve in the Gaiotto parametrization (C.7) is invariant under Möbius

transformations, and therefore completely symmetric in all four punctures. This follows

automatically as λ and ϕ2 are respectively a 1-form and a 2-form on the two-sphere P1.

Furthermore, an Spp1q parametrization of the Seiberg-Witten curve is given by [90]

xy2 “ PSpp1qpxq2 ´ g2
ź

px´ µ2
j q, (C.10)

where

PSpp1qpxq “ xpx´ uq ` g
ź

µj, g2 “
4q̃Spp1q

`

1` q̃Spp1q
˘2 ,

Since Spp1q “ SUp2q, the parametrization (C.10) should be equivalent to the curve defined

by (C.1). Indeed, comparing the discriminants of these two curves yields non-trivial rela-

tions between the Coulomb parameters and the masses, that become trivial in the weak-

coupling limit [90].

In fact, there is a simple relation between the Spp1q parametrization (C.10) and the

SUp2q curve that Seiberg and Witten originally proposed [16]. By expanding equation (C.10)



180

and dividing out the constant term in x, we find an equation of the form y2 “ x3` . . .. After

some redefinitions this gives the original SUp2q parametrization [90].

Let us finally mention that by the coordinate transformation x “ v2, y “ ỹ{v and

2s
`

1` q̃Spp1q
˘ “ ´

ỹ´ PSpp1qpv2q

pv2 ´ µ2
1qpv2 ´ µ2

2q
,

the Spp1q Seiberg-Witten curve (C.10) can be written in the Witten-form

pv2 ´ µ2
1qpv

2 ´ µ2
2qs

2 ´ p1` q̃Spp1qqPSpp1qpv2qs` q̃Spp1qpv2 ´ µ2
3qpv

2 ´ µ2
4q “ 0. (C.11)

This representation of the Spp1q SW curve is a double cover over the original Spp1q SW

curve (C.10), because of the coordinate transformation x “ v2.

The above curve describes the embedding of the Spp1q gauge theory in string theory

using a D4/NS5 brane construction including orientifold branes [36]. It should be viewed

as being embedded in the covering space of the orientifold. For each D4-brane at position

v “ v˚ there is a mirror brane at position v “ ´v˚. The extra factor v2 in the polynomial P

can be identified with two extra D4-branes that are forced to sit at the orientifold at v “ 0.
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Appendix D

More about the trifundamental
half-hypermultiplet

In this appendix we explicitly show the reduction of the Lagrangian for the SUp2q trifunda-

mental half-hypermultiplet to bifundamental and fundamental hypermultiplets when we

Higgs one or more of the SUp2q gauge groups. Before starting this argument, let us quickly

remind ourselves about flavor symmetry enhancement for (pseudo-)real representations.

Flavor symmetry enhancement

Let us briefly explain a way to understand the enhancement of flavor symmetries for mat-

ter transforming in a (pseudo-)real representation. Although this is not of direct impor-

tance for this paper, it will be useful as background and in the following.

First of all, recall the familiar statement of flavor symmetry enhancement. The flavor

symmetry group of N hypers in a real representation of the gauge group is enhanced from

Up1qN to SppNq, whereas the flavor symmetry of N hypers in a pseudo-real representation

is enhanced to SOp2Nq. The cases that are important for us is the single hyper in the

bifundamental of SUp2q which has enhanced flavor symmetry Spp1q “ SUp2q, and two

hypers in the fundamental which enhance to SOp4q “ SUp2q ˆ SUp2q.

A pseudoreal representation is characterized by an antilinear map σG such that σ2
G “

´1. This map corresponds to the complex conjugation, so that in case of the fundamental

or adjoint representation σ´1
G TσG “ T˚ “ ´Tt for T P g. For real representations the only

difference is that σ2
G “ 1. Note that σG is automatically unitary.

The basic idea behind the enhancement is that the N-dimensional ‘flavor vector’ Qi is

enlarged to a 2N-dimensional vector pQi, σGQ̃iq (which still is in the representation R of the
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gauge group). What needs to be shown is that the terms in the Lagrangian are invariants

of SOp2Nq or SppNq.

For a single hypermultiplet in the fundamental representation of SUp2q, which is pseudo-

real, the kinetic term in the Lagrangian Lfh can be rewritten as

Q:eVQ` Q̃te´VQ̃˚ “ Q:eVQ` Q̃:e´Vt
Q̃

“ Q:eVQ` Q̃:σ´1
G eVσGQ̃

“

´

Q:, Q̃:σ:G

¯

eV

¨

˝

Q

σGQ̃

˛

‚ . (D.1)

The Yukawa coupling in the Lagrangian Lfh is proportional to

2 Q̃tΦQ “ QtΦtQ̃` Q̃tΦQ

“ QtσGΦσGQ̃` Q̃tΦQ

“

´

Qt, Q̃tσt
G

¯

σGΦ

¨

˝

0 1

1 0

˛

‚

¨

˝

Q

σGQ̃

˛

‚. (D.2)

In both cases we used the fact σ´1
G TσG “ ´Tt for T P g.

To see that (D.2) is an SOp2q invariant, we can make a change of basis to Q˘ “ Q ˘

iσGQ̃. The enhanced flavor group SOp2q then acts in the fundamental on this new basis,

and both (D.1) and (D.2) are the standard diagonal invariants. This argument generalizes

in a straightforward way to an arbitrary number of hypers Qi.

A similar argument works for real representations, such as for the bifundamental in

SUp2qA ˆ SUp2qB. In this case the kinetic term can written exactly in the form (D.1) as

well. The Yukawa term picks up a minus sign, due to the fact that now σ2
G “ 1, so that the

invariant is found by replacing

¨

˝

0 1

1 0

˛

‚ ÞÑ

¨

˝

0 1N

´1N 0

˛

‚

in (D.2). The Lagrangian is thus indeed invariant under SppNq. (Note that by SppNq we

actually mean USppNq “ Up2Nq X Spp2N, Cq here.)
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Reduction of the SUp2q trifundamental half-hypermultiplet

We first show that the Lagrangian for the SUp2q trifundamental half-hyper reduces to that

of a massive SUp2q bifundamental hyper when one of the three SUp2q gauge groups is

Higgsed. Start with the Yukawa terms

W “ εbb1εcc1QabcΦaa1
1 Qa1b1c1 ` εaa1εcc1QabcΦbb1

2 Qa1b1c1 ` εaa1εbb1QabcΦcc1
3 Qa1b1c1 (D.3)

in the Lagrangian of the SUp2q trifundamental half-hyper (as derived in section 3.6.1). The

first gauge group is Higgsed by setting pΦ1q
a
a1 “ m1pσ3q

a
a1 , so that the superpotential W

reduces to

W “ m1pσ3q
a1
aQabcQa1bc ´ εcc1Qa

bcΦbb1
2 Qab1c1 ´ εbb1Qa

bcΦcc1
3 Qab1c1 . (D.4)

When identifying

Qbc ” Q1bc “ ´Q2
bc (D.5)

Q̃bc ” Q2bc “ Q1
bc

in equation (D.4), we indeed recover the Yukawa terms

W “ 2m1Q̃bcQbc ´ 2εcc1Q̃bcΦbb1
2 Qb1c1 ´ 2εbb1Q̃bcΦcc1

3 Qb1c1 (D.6)

of the bifundamental hyper of mass m1. Here we made use of the identity σ´1
G TσG “ ´Tt.

Remark that the identifications in equation (D.5) reduce the SUp2q R-symmetry for the

trifund to that of the bifund, while identifying the gauge symmetry of the first SUp2q gauge

group with the enhanced flavor symmetry of the bifund. Also notice that the mass-term

breaks the enhanced flavor symmetry of the bifund.

Let us continue by Higgsing the second gauge group by setting pΦ2q
b
b1 “ m2pσ3q

b
b1 . The

single bifundamental hyper turns into two fundamental hypers

Qpkqc ” Qkc (D.7)

Q̃pkqc ” Q̃kc,
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where a subscript p.q refer to a flavor index. The Yukawa terms can be repackaged as

W “ m1 pσ3q
g
f δl

k Qp f qpkqcQpgqplqc `m2 δ
g
f pσ3q

l
k Qp f qpkqcQpgqplqc (D.8)

` ε f g εklQp f qpkqcΦcc1
3 Qpgqplqc1 ,

if we furthermore make the identifications Q “ Qp f“1q and Q̃ “ Qp f“2q. This superpoten-

tial describes two fundamental hypers whose flavor symmetry enhances to SOp4q when

the masses are turned off.

As a consistency check let us Higgs both bifundamental gauge groups by setting pΦ2q
b
b1 “

m2pσ3q
b
b1 and pΦ3q

c
c1 “ m3pσ3q

c
c1 in equation (D.6). This results in the Yukawa terms

W “ m1 δl
k δn

m pσ3q
g
f Qp f qpkqpmqQpgqplqpnq `m2 pσ3q

l
k δn

m δ
g
f Qp f qpkqpmqQpgqplqpnq (D.9)

`m3 δl
k pσ3q

n
m δ

g
f Qp f qpkqpmqQpgqplqpnq,

corresponding to the superpotential of eight half-hypers with a diagonal mass matrix with

eigenvalues ˘m1 ˘m2 ˘m3, as expected.
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Appendix E

Contour integrands for Sicilian
quivers

In this appendix we summarize the contour integrand formulae for the Sicilian quiver

gauge theories.

Spp1q ´ SOp4q bifundamental full hypermultiplet

The contour integrand for the massive full Spp1q ´ SOp4q bifundamental hyper is

zSpp1q´SOp4q
2bif,k1,k2

pφ, ψ, µ, a, b1, b2q “

˜

2
ź

l“1

∆1pµ˘ blq

¸

∆2pµ˘ aqP2pµq
χφ (E.1)

ˆ

ˆ

∆pµ´ ε´q∆pµ` ε´q

∆pµ` ε`q∆pµ´ ε`q

˙ˆ

∆2pµ´ ε´q∆2pµ` ε´q

∆2pµ` ε`q∆2pµ´ ε`q

˙χφ

,

where the Spp1q instanton parameter k1 “ 2n1 ` χφ, the deformation parameters ε˘ “

ε1˘ε2
2 and˘ is an abbreviation for a product over both terms. Furthermore, µ is the physical

mass parameter and

∆1pxq “
n1
ź

i“1

pφ2
i ´ x2q

∆2pxq “
k2
ź

j“1

pψ2
j ´ x2q

∆pxq “
n1,k2
ź

i,j“1

`

pφi ` ψjq
2 ´ x2˘ `pφi ´ ψjq

2 ´ x2˘

P2px, bq “
n2
ź

l“1

pb2
l ´ x2q.
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Spp1q ´ SOp4q single bifundamental half-hypermultiplet

The Spp1q´SOp4q double bifundamental integrand (E.1) becomes a complete square when

the bifundamental mass vanishes. The integrand for the bifundamental half-hyper is thus

simply

zSpp1q´SOp4q
bif,k1,k2

pφ, ψ, a, b1, b2q “

n1
ź

i“1

`

φ2
i ´ b2

1
˘ `

φ2
i ´ b2

2
˘

k2
ź

j“1

´

a2 ´ ψ2
j

¯ ∆pε´q
∆pε`q

ˆ

b1b2
∆2pε´q

∆2pε`q

˙χφ

.

The factor ∆pε`q in the denominator cannot be canceled by a contribution from the gauge

multiplets, and therefore brings in additional poles.

Up2q3 trifundamental full hypermultiplet

Starting from the equivariant index

IndT “

ż

C2
ChTpEUpN1q

b EUpN2q b EUpN3q bLbMqTdTpC
2q , (E.2)

we obtain the contour integrand

zpN1,N2,N3q

k1,k2,k3
“

k1,N2,N3
ź

i,m,n

pφ1,i ` bm ` cn ` µq
k2,N1,N3
ź

j,l,n

pφ2,j ` al ` cn ` µq
k3,N1,N2
ź

k,l,m

pφ3,k ` al ` bm ` µq

ˆ

k1,k2,N3
ź

i,j,n

pφ1,i ` φ2,j ` cn ´ ε´ ` µqpφ1,i ` φ2,j ` cn ` ε´ ` µq

pφ1,i ` φ2,j ` cn ` µ` ε`qpφ1,i ` φ2,j ` cn ` µ´ ε`q

ˆ

k2,k3,N1
ź

i,k,m

pφ1,i ` φ3,k ` bm ´ ε´ ` µqpφ1,i ` φ3,k ` bm ` ε´ ` µq

pφ1,i ` φ3,k ` bm ` µ` ε`qpφ1,i ` φ3,k ` bm ` µ´ ε`q
(E.3)

ˆ

k2,k3,N1
ź

j,k,l

pφ2,j ` φ3,k ` al ´ ε´ ` µqpφ2,j ` φ3,k ` al ` ε´ ` µq

pφ2,j ` φ3,k ` al ` µ` ε`qpφ2,j ` φ3,k ` al ` µ´ ε`q

ˆ

k1,k2,k3
ź

i,j,k

pφ123
ijk ` ε` µqpφ123

ijk ` ε1 ´ ε2 ` µqpφ123
ijk ´ ε1 ` ε2 ` µqpφ123

ijk ` µq4pφ123
ijk ` µ´ εq

pφ123
ijk ` ε1 ` µq2pφ123

ijk ` ε2 ` µq2pφ123
ijk ´ ε1 ` µq2pφ123

ijk ´ ε2 ` µq2

where φ123
ijk “ φ1,i ` φ2,j ` φ3,k and ε “ ε1 ` ε2 and ε˘ “

ε1˘ε2
2 . The contour integrand for

the massive full SUp2q trifundamental hypermultiplet is found by setting N1{2{3 “ 2. If we

set the instanton parameter k3 “ 0, we recover the contour integrand for two copies of the

bifundamental of mass ˘c.
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The one-loop contribution to the Nekrasov partition function

Z2trif
1-loop “

8
ź

i,j“1

2
ź

l,m,n“1

pal ` bm ` cn ` µ` ε` ` iε1 ` jε2q
´1

is obtained from the perturbative contribution to the equivariant index (E.2).

Spp1q3 trifundamental full hypermultiplet

The equivariant index of the Dirac operator for the Spp1q3 trifundamental full hyper is

IndT “

ż

C2
ChTpE1

Spp1q b E
2
Spp1q b E

3
Spp1q bLbMqTdTpC

2q. (E.4)

Denote the instanton numbers to be pk1, k2, k3q and write kα “ 2nα ` χα for α “ 1, 2, 3. The

corresponding contour integrand is given by

zk1,k2,k3
2trif p~φ,~a, mq “ H1;23pmqH2;31pmqH3;12pmq (E.5)

ˆ
H12;3pm´ ε´qH12;3pm` ε´qH23;1pm´ ε´q

H12;3pm´ ε`qH12;3pm´ ε`qH23;1pm` ε`q

ˆ
H23;1pm` ε´q

H23;1pm´ ε`q

H31;2pm´ ε´qH31;2pm` ε´q

H31;2pm` ε`qH31;2pm´ ε´q

ˆ
Hpm´ εqHpm` ε1 ´ ε2qHpm´ ε1 ` ε2qHpmq4Hpm` εq

Hpm´ ε1q
2Hpm´ ε2q2Hpm` ε1q

2Hpm` ε2q2
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where

Pαpxq “ px2 ´ aαq
2

Pαβpxq “ ppaα ` aβq
2 ´ x2qppaα ´ aβq

2 ´ x2q

∆αpxq “
nα
ź

i“1

pφ2
α,i ´ x2q

∆αβpxq “
nα,nβ
ź

i,j“1

`

pφα,i ` φβ,jq
2 ´ x2˘ `pφα,i ´ φβ,jq

2 ´ x2˘

∆123pxq “
ź

i,j,k

`

x2 ´ pφ1,i ` φ2,j ` φ3,kq
2˘ `x2 ´ pφ1,i ` φ2,j ´ φ3,kq

2˘

ˆ
`

x2 ´ pφ1,i ´ φ2,j ´ φ3,kq
2˘ `x2 ´ pφ1,i ´ φ2,j ` φ3,kq

2˘

Hα;βγpxq “

˜

nα
ź

i“1

Pβγpφα,i ´ xqPβγpφα,i ` xq

¸

`

Pβγpxq
˘χα

Hαβ;γpxq “ ∆αβpaγ ` xq∆αβpaγ ´ xq∆αpaγ ` xqχβ ∆αpaγ ´ xqχβ

ˆ ∆βpaγ ` xqχα ∆βpaγ ´ xqχα
`

Pγpxq
˘χαχβ

Hpxq “ ∆123pxq∆12pxqχ3 ∆13pxqχ2 ∆23pxqχ1

ˆ ∆1pxqχ2χ3 ∆2pxqχ3χ1 ∆3pxqχ1χ2 xχ1χ2χ3 .

Spp1q trifundamental half-hypermultiplet

Setting the mass m to zero in (E.5), we find a complete square. The contour integrand for

the massless Spp1q trifundamental half-hyper is its square-root

zk1,k2,k3
trif p~φ,~aq “ P23pφ1qP31pφ2qP12pφ3qpa2

1 ´ a2
2q

χ3pa2
2 ´ a2

3q
χ1pa2

3 ´ a2
1q

χ2 (E.6)

ˆ

ˆ

H23;1pε´qH31;2pε´qH12;3pε´q

H23;1pε`qH31;2pε`qH12;3pε`q

˙ˆ

Hp0q2Hpε1 ` ε2qHpε1 ´ ε2q

Hpε1q
2Hpε2q2

˙

,

up to a sign ambiguity. This expression does not yield a physical result, however, since

Hp0q contains a vanishing contribution when χ1{2{3 “ 1.
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Appendix F

Kac determinant at the lowest level

Here we consider the Kac determinant at the lowest level. The result for the untwisted

case is well known, see e.g. [167, 94]. The twisted case also follows straightforwardly by

modifying the derivation for the untwisted case. For example, the Kac determinant for the

Drinfeld-Sokolov reduction with respect to the minimal nilpotent was determined in [168].

Here we need to perform it with respect to the principal nilpotent.

First, consider the untwisted Verma module. Let the zero modes of the free bosons be

~J0. Pick a simple root~αi, and let ϕi “ ~αi ¨ ~ϕ. As explained in Sec. 4.3.1.3, elements in the

W-algebra can be expanded in terms of the energy-momentum tensor Ti for ϕi and the free

bosons perpendicular to ϕi. At level one, pTiq´1 “ p~αi ¨~J0qJi,´1, and similarly, the p´1q-

mode of any operator constructed out of Ti comes with a factor of~αi ¨~J0. Thus, there is a

null state in the W-algebra Verma module when~αi ¨~J0 “ 0. Therefore the Kac determinant

at level one is divisible by ~αi ¨~J0 “ ~αi ¨~a ` Q. Due to the shifted Weyl invariance, the

Kac determinant is divisible by~α ¨~a` Q for all roots α. The Kac determinant has degree

2
ř

pwi ´ 1q in~a, which equals the number of roots. It follows that

(Kac determinant at level 1)9
ź

~αP∆

p~α ¨~a`Qq . (F.1)

Next, consider the states at level ´1{r of the Zr-twisted Verma module. Denote by o

the Zr action, under which the zero mode ~J0 is invariant. We regard it as in the Cartan of

G, the S-dual of the Zr-invariant subalgebra of Γ. Recall that the long simple roots γi of G

are given by γi “~αi `~αopiq when r “ 2 and similarly for r “ 3, (A.10), (A.11).

Take a simple root such that ~αi ‰ ~αopiq. Assuming Γ ‰ A2n, we have ~αi ¨~αopiq “ 0.

Therefore the operators in the W-algebra can be written in terms of the energy-momentum
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tensors Ti, Topiq (and To2piq if r “ 3) for the free bosons ϕi, ϕopiq (and ϕo2piq) and free bosons

perpendicular to ϕi, ϕopiq (and ϕo2piq). Now, the level ´p1{rq states arise from Ti ´ Topiq

when r “ 2, and from Ti ` e2πi{3Topiq ` e4πi{3To2piq when r “ 3. Recall that Ti9´ pBϕiBϕiq `

QB2 ϕi{2. Therefore the p´1{rq-mode always arises with the combination

p~αi ¨~J0 ´Qp1´ 1{rqqJi,´1{r. (F.2)

It follows the Kac determinant has a zero when ~αi ¨~J0 “ Qp1´ 1{rq for a non-invariant

simple root~αi, or in other words ~γi ¨~a`Q “ 0 for a long root ~γi and the shifted zero mode

~a. From Weyl invariance, the Kac determinant has a factor ~γ ¨~a ` Q for each long root

γ. The Kac determinant has degree 2
ř

ipwi ´ 1q where the sum is over the degrees wi of

WpΓq-generators not invariant under Zr. This equals the number of long roots of G. We

thus conclude that

(Kac determinant at level 1{r)9
ź

~γP∆l

p~γ ¨~a`Qq. (F.3)
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Appendix G

Construction of the W-algebra of type
E6

We provide some more details on the construction of the WpE6q-algebra. We first construct

the two lowest generators Wp2q and Wp5q utilizing WpA5q subalgebra. The higher genera-

tors Wp6,8,9,12q we then obtain from suitable OPEs of Wp5q.

Let J1,...,6 “ iBϕ1,...,6 be six orthonormal free bosons. Take the A2 ˆ A2 ˆ A1 subalgebra

of E6, corresponding to the nodes of the Dynkin diagram except the central node. We can

then choose the bosons in such a way that J1,2, J3,4 span the Cartan of the two A2, and J6

spans the Cartan of the A1 respectively. Note that the Z2 outer automorphism exchanges

the two A2 subalgebras.

Consider now the A5 subalgebra of E6. It contains A2 ˆ A2, but not the A1 described

above. Construct the generators U2,...,5pzq of the WpA5q algebra via (4.56), and obtain the

Z2 eigenstates (4.61). We introduce the boson

Kpzq “ p
?

3J5 ` J6q{2
?

2 , (G.1)

which is perpendicular to the Cartan of A5. The most general ansatz for Wp2q and Wp5q

compatible with Z2 is then

Wp2q “ Up2q ` c1K2 ` c2BK, (G.2)

Wp5q “ Ũp5q ` c3Ũp3qUp2q ` c4Ũp3qK2 ` c5B
2Ũp3q ` c6BŨp3qK` c7Ũp3qBK . (G.3)

The constants c1,...,7 can be determined by the method explained in section 4.3.1.3: we

expand (G.3) in the Ji, and require that J6 only appears in the form of its energy momentum
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tensor

Tpzq “ ´pJ6q2{2` pQ{
?

2qB J6 . (G.4)

This fixes the constants to be

c1 “ 1, c2 “ ´11Q, c3 “ 0, c4 “ 1, c5 “
3
2

Q2, c6 “ ´3Q, c7 “ 2Q. (G.5)

The higher generators can now be obtained by repeatedly taking the OPEs of Wp5q. Let

rO1O2sppwq be the coefficient of pz´wq´p of the OPE O1pzqO2pwq. We let

Wp6q “ p1` 12Q2q´1rWp5qWp5qs4, Wp8q “ rWp5qWp5qs2, (G.6)

Wp9q “ rWp5qWp6qs2, Wp12q “ rWp6qWp8qs2. (G.7)

These OPEs a priori are not guaranteed to generate independent fields, but could contain

just products of lower lying fields, possibly with derivatives. Independence can be con-

firmed as follows. Let Ppdq be the terms in Wpdq which do not contain derivatives, regarded

as polynomials in Ji. It then suffices to check that they are algebraically independent, for

which we can compute the Jacobian detpBPpdq{B Jiq and check that it is non-zero. Note that

W-generators constructed in this manner automatically have definite parity under Z2.

Unfortunately these OPE calculations, when expressed in terms of six free bosons, are

too much for a laptop computer of 2011. It is thus necessary to use the A2 ˆ A2 ˆ A1

subalgebra to organize the computation. The generator of WpA1q is Tpzq in (G.4). Let Up2,3q

be the generators of the first WpA2q, and Ũp2,3q be those of the second, as defined in (4.56).

Then, we can rewrite Wp2q and Wp5q determined in (G.3) in terms of Up2,3q, Ũp2,3q, J5, and

T. Now the OPEs in (G.7) can be and were performed using the known OPEs of WpA2q ˆ

WpA2q ˆWpA1q in about three hours on a 2 GHz machine with 3 Gbytes of memory; the

independence of the resulting generators can be and was checked. The denominator p1`

12Q2q for Wp6q in (G.7) is inserted because the OPE turns out to be divisible by this factor.
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eds. Birkhäuser, 2006. arXiv:math/0409441.

[61] E. Corrigan and P. Goddard, “Construction of Instanton and Monopole Solutions

and Reciprocity,” Ann. Phys. 154 (1984) 253.

[62] J. Bryan and M. Sanders, “Instantons on S4 and CP2, rank stabilization, and Bott

periodicity,” Topology 39 no. 2, (2000) 331–352.

[63] A. Losev, N. Nekrasov, and S. L. Shatashvili, “Issues in topological gauge theory,”

Nucl. Phys. B534 (1998) 549–611, arXiv:hep-th/9711108.

[64] G. W. Moore, N. Nekrasov, and S. Shatashvili, “D-particle bound states and

generalized instantons,” Commun. Math. Phys. 209 (2000) 77–95,

arXiv:hep-th/9803265.

[65] H. Nakajima and K. Yoshioka, “Lectures on instanton counting,” in Algebraic

structures and moduli spaces, vol. 38 of CRM Proc. Lecture Notes, pp. 31–101. Amer.

Math. Soc., Providence, RI, 2004. arXiv:math/0311058.

[66] A. Braverman, “Instanton Counting via Affine Lie Algebras I: Equivariant

J-Functions of (Affine) Flag Manifolds and Whittaker Vectors,” in Workshop on

algebraic structures and moduli spaces: CRM Workshop, J. Hurturbise and E. Markman,

eds. AMS, July, 2003. arXiv:math/0401409.

http://arxiv.org/abs/1001.5024
http://dx.doi.org/10.1007/JHEP03(2012)017
http://arxiv.org/abs/1004.1222
http://arxiv.org/abs/1010.2635
http://arxiv.org/abs/math/0409441
http://dx.doi.org/10.1016/0003-4916(84)90145-3
http://dx.doi.org/10.1016/S0040-9383(99)00019-1
http://dx.doi.org/10.1016/S0550-3213(98)00628-2
http://arxiv.org/abs/hep-th/9711108
http://dx.doi.org/10.1007/s002200050016
http://arxiv.org/abs/hep-th/9803265
http://arxiv.org/abs/math/0311058
http://arxiv.org/abs/math/0401409


199

[67] A. Licata and A. Savage, “Vertex operators and the geometry of moduli spaces of

framed torsion-free sheaves,” Selecta Math. (N.S.) 16 no. 2, (2010) 201–240.

[68] S. Shadchin, “On certain aspects of string theory / gauge theory correspondence,”

arXiv:hep-th/0502180.

[69] J. Martens, “Equivariant volumes of non-compact quotients and instanton

counting,” Comm. Math. Phys. 281 no. 3, (2008) 827–857.

[70] M. Marino and N. Wyllard, “A note on instanton counting for N = 2 gauge theories

with classical gauge groups,” JHEP 05 (2004) 021, arXiv:hep-th/0404125.

[71] F. Fucito, J. F. Morales, and R. Poghossian, “Instantons on quivers and orientifolds,”

JHEP 10 (2004) 037, arXiv:hep-th/0408090.

[72] N. Nekrasov and A. S. Schwarz, “Instantons on noncommutative R**4 and (2,0)

superconformal six dimensional theory,” Commun. Math. Phys. 198 (1998) 689–703,

arXiv:hep-th/9802068.

[73] F. C. Kirwan, “Partial desingularisations of quotients of nonsingular varieties and

their Betti numbers,” Ann. of Math. (2) 122 no. 1, (1985) 41–85.

[74] S. Cordes, G. W. Moore, and S. Ramgoolam, “Lectures on 2-d Yang-Mills theory,

equivariant cohomology and topological field theories,” Nucl. Phys. Proc. Suppl. 41

(1995) 184–244, arXiv:hep-th/9411210.

[75] U. Bruzzo, F. Fucito, J. F. Morales, and A. Tanzini, “Multi-instanton calculus and

equivariant cohomology,” JHEP 05 (2003) 054, arXiv:hep-th/0211108.

[76] C. W. Bernard, N. H. Christ, A. H. Guth, and E. J. Weinberg, “Pseudoparticle

Parameters for Arbitrary Gauge Groups,” Phys. Rev. D16 (1977) 2967.

[77] A. I. Vainshtein, V. I. Zakharov, V. A. Novikov, and M. A. Shifman, “ABC of

Instantons,” Sov. Phys. Usp. 25 (1982) 195.

[78] P. B. Kronheimer, “Instantons and the geometry of the nilpotent variety,” J. Diff.

Geom. 32 (1990) 473.

http://dx.doi.org/10.1007/s00029-009-0015-1
http://arxiv.org/abs/hep-th/0502180
http://dx.doi.org/10.1007/s00220-008-0501-x
http://dx.doi.org/10.1088/1126-6708/2004/05/021
http://arxiv.org/abs/hep-th/0404125
http://dx.doi.org/10.1088/1126-6708/2004/10/037
http://arxiv.org/abs/hep-th/0408090
http://dx.doi.org/10.1007/s002200050490
http://arxiv.org/abs/hep-th/9802068
http://dx.doi.org/10.2307/1971369
http://dx.doi.org/10.1016/0920-5632(95)00434-B
http://dx.doi.org/10.1016/0920-5632(95)00434-B
http://arxiv.org/abs/hep-th/9411210
http://arxiv.org/abs/hep-th/0211108
http://dx.doi.org/10.1103/PhysRevD.16.2967


200

[79] R. Brylinski, “Instantons and Kähler geometry of nilpotent orbits,” in Representation

theories and algebraic geometry, vol. 514 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.,

pp. 85–125. Kluwer, 1998. math.SG/9811032.

[80] P. Kobak and A. Swann, “The hyperkähler geometry associated to Wolf spaces,”

Boll. Unione Mat. Ital. Serie 8, Sez. B Artic. Ric. Mat. 4 (2001) 587, math.DG/0001025.

[81] E. B. Vinberg and V. L. Popov, “On a class of quasihomogeneous affine varieties,”

Math. USSR-Izv. 6 (1972) 743.

[82] quoted in Chap. III of D. Garfinkle, A new construction of the Joseph ideal. PhD thesis,

MIT, 1982.

[83] S. Benvenuti, A. Hanany, and N. Mekareeya, “The Hilbert Series of the One

Instanton Moduli Space,” JHEP 06 (2010) 100, arXiv:1005.3026 [hep-th].

[84] K. Ito and N. Sasakura, “Exact and Microscopic One-Instanton Calculations in

N “ 2 Supersymmetric Yang-Mills Theories,” Nucl. Phys. B484 (1997) 141–166,

arXiv:hep-th/9608054.

[85] M. Aganagic, R. Dijkgraaf, A. Klemm, M. Marino, and C. Vafa, “Topological strings

and integrable hierarchies,” Commun. Math. Phys. 261 (2006) 451–516,

arXiv:hep-th/0312085.

[86] B. Eynard and N. Orantin, “Invariants of algebraic curves and topological

expansion,” Commun. Number Theory Phys. 1 no. 2, (2007) 347–452.

[87] M. Billo, L. Gallot, A. Lerda, and I. Pesando, “F-theoretic vs microscopic description

of a conformal N=2 SYM theory,” JHEP 11 (2010) 041, arXiv:1008.5240 [hep-th].

[88] M. Billo, M. Frau, F. Fucito, A. Lerda, J. F. Morales, and R. Poghossian, “Stringy

instanton corrections to N=2 gauge couplings,” JHEP 05 (2010) 107,

arXiv:1002.4322 [hep-th].

[89] M. Billo, L. Ferro, M. Frau, L. Gallot, A. Lerda, and I. Pesando, “Exotic instanton

counting and heterotic/type I-prime duality,” JHEP 0907 (2009) 092,

arXiv:0905.4586 [hep-th].

http://arxiv.org/abs/math.SG/9811032
http://arxiv.org/abs/math.DG/0001025
http://dx.doi.org/10.1070/IM1972v006n04ABEH001898
http://dx.doi.org/10.1007/JHEP06(2010)100
http://arxiv.org/abs/1005.3026
http://dx.doi.org/10.1016/S0550-3213(96)00598-6
http://arxiv.org/abs/hep-th/9608054
http://dx.doi.org/10.1007/s00220-005-1448-9
http://arxiv.org/abs/hep-th/0312085
http://dx.doi.org/10.1007/JHEP11(2010)041
http://arxiv.org/abs/1008.5240
http://dx.doi.org/10.1007/JHEP05(2010)107
http://arxiv.org/abs/1002.4322
http://dx.doi.org/10.1088/1126-6708/2009/07/092
http://arxiv.org/abs/0905.4586


201

[90] P. C. Argyres and A. D. Shapere, “The Vacuum Structure of N=2 SuperQCD with

Classical Gauge Groups,” Nucl. Phys. B461 (1996) 437–459, arXiv:hep-th/9509175.

[91] N. Wyllard, “AN´1 Conformal Toda Field Theory Correlation Functions from

Conformal N “ 2 SUpNq Quiver Gauge Theories,” JHEP 11 (2009) 002,

arXiv:0907.2189 [hep-th].

[92] T. W. Grimm, A. Klemm, M. Marino, and M. Weiss, “Direct integration of the

topological string,” JHEP 08 (2007) 058, arXiv:hep-th/0702187.

[93] E. Witten, “An SU(2) anomaly,” Phys. Lett. B117 (1982) 324–328.

[94] P. Bouwknegt and K. Schoutens, “W symmetry in conformal field theory,” Phys.

Rept. 223 (1993) 183–276, arXiv:hep-th/9210010.

[95] P. H. Ginsparg, “Applied Conformal Field Theory,” arXiv:hep-th/9108028

[hep-th].

[96] P. Di Francesco, P. Mathieu, and D. Senechal, Conformal field theory. New York, USA:

Springer, 1997.

[97] J. Polchinski, “Scale and conformal invariance in quantum field theory,” Nucl. Phys.

B303 (1988) 226.

[98] B. Feigin and D. Fuchs, “Verma Modules over the Virasoro Algebra,” PREPRINT -

FEIGIN, B.L. (REC.OCT.88) (1988) 16.

[99] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, “Infinite conformal

symmetry in two-dimensional quantum field theory,” Nucl. Phys. B241 (1984)

333–380.

[100] A. B. Zamolodchikov and A. B. Zamolodchikov, “Structure constants and

conformal bootstrap in Liouville field theory,” Nucl. Phys. B477 (1996) 577–605,

arXiv:hep-th/9506136.

[101] A. B. Zamolodchikov, “Infinite Additional Symmetries in Two-Dimensional

Conformal Quantum Field Theory,” Theor. Math. Phys. 65 (1985) 1205–1213.

http://dx.doi.org/10.1016/0550-3213(95)00661-3
http://arxiv.org/abs/hep-th/9509175
http://dx.doi.org/10.1088/1126-6708/2009/11/002
http://arxiv.org/abs/0907.2189
http://dx.doi.org/10.1088/1126-6708/2007/08/058
http://arxiv.org/abs/hep-th/0702187
http://dx.doi.org/10.1016/0370-2693(82)90728-6
http://dx.doi.org/10.1016/0370-1573(93)90111-P
http://dx.doi.org/10.1016/0370-1573(93)90111-P
http://arxiv.org/abs/hep-th/9210010
http://arxiv.org/abs/hep-th/9108028
http://arxiv.org/abs/hep-th/9108028
http://dx.doi.org/10.1016/0550-3213(88)90179-4
http://dx.doi.org/10.1016/0550-3213(88)90179-4
http://dx.doi.org/10.1016/0550-3213(84)90052-X
http://dx.doi.org/10.1016/0550-3213(84)90052-X
http://dx.doi.org/10.1016/0550-3213(96)00351-3
http://arxiv.org/abs/hep-th/9506136
http://dx.doi.org/10.1007/BF01036128


202

[102] R. Blumenhagen, M. Flohr, A. Kliem, W. Nahm, A. Recknagel, and R. Varnhagen,

“W algebras with two and three generators,” Nucl. Phys. B361 (1991) 255–289.

[103] H. G. Kausch and G. M. T. Watts, “A Study of W algebras using Jacobi identities,”

Nucl. Phys. B354 (1991) 740–768.

[104] M. Bershadsky and H. Ooguri, “Hidden SLpNq Symmetry in Conformal Field

Theories,” Commun. Math. Phys. 126 (1989) 49.

[105] B. Feigin and E. Frenkel, “Quantization of the Drinfeld-Sokolov Reduction,” Phys.

Lett. B246 (1990) 75–81.

[106] V. G. Drinfeld and V. V. Sokolov, “Lie algebras and equations of Korteweg-de Vries

type,” J. Sov. Math. 30 (1984) 1975–2036.

[107] K. Thielemans, “A Mathematica Package for Computing Operator Product

Expansions,” Int. J. Mod. Phys. C2 (1991) 787–798.

[108] V. A. Fateev and S. L. Lukyanov, “The Models of Two-Dimensional Conformal

Quantum Field Theory with ZN Symmetry,” Int. J. Mod. Phys. A3 (1988) 507.

[109] S. L. Lukyanov and V. A. Fateev, “Conformally invariant models of

two-dimensional QFT with ZN symmetry,” Sov. Phys. JETP 67 (1988) 447.

[110] S. L. Lukyanov and V. A. Fateev, “Exactly solvable models of conformal quantum

theory associated with the simple Lie algebra DN ,” Sov. J. Nucl. Phys. 49 (1989)

925–932. [Yad.Fiz.49:1491-1504,1989].

[111] S. L. Lukyanov and V. A. Fateev, “Physics reviews: Additional symmetries and

exactly soluble models in two-dimensional conformal field theory,”. Chur,

Switzerland: Harwood (1990) 117 p. (Soviet Scientific Reviews A, Physics: 15.2).

[112] K. Ito and S. Terashima, “Free Field Realization of WBCN and WG2 Algebras,” Phys.

Lett. B354 (1995) 220–231, arXiv:hep-th/9503165.

[113] A. Klemm, M. Mariño, and S. Theisen, “Gravitational Corrections in

Supersymmetric Gauge Theory and Matrix Models,” JHEP 03 (2003) 051,

arXiv:hep-th/0211216.

http://dx.doi.org/10.1016/0550-3213(91)90624-7
http://dx.doi.org/10.1016/0550-3213(91)90375-8
http://dx.doi.org/10.1007/BF02124331
http://dx.doi.org/10.1016/0370-2693(90)91310-8
http://dx.doi.org/10.1016/0370-2693(90)91310-8
http://dx.doi.org/10.1007/BF02105860
http://dx.doi.org/10.1142/S0129183191001001
http://dx.doi.org/10.1142/S0217751X88000205
http://dx.doi.org/10.1016/0370-2693(95)00667-A
http://dx.doi.org/10.1016/0370-2693(95)00667-A
http://arxiv.org/abs/hep-th/9503165
http://arxiv.org/abs/hep-th/0211216


203

[114] R. Dijkgraaf, A. Sinkovics, and M. Temurhan, “Matrix Models and Gravitational

Corrections,” Adv. Theor. Math. Phys. 7 (2004) 1155–1176, arXiv:hep-th/0211241.

[115] H. Fuji and S. Mizoguchi, “Gravitational Corrections for Supersymmetric Gauge

Theories with Flavors via Matrix Models,” Nucl. Phys. B698 (2004) 53–91,

arXiv:hep-th/0405128.

[116] E. Witten, “On S-Duality in Abelian Gauge Theory,” Selecta Math. 1 (1995) 383,

arXiv:hep-th/9505186.

[117] G. W. Moore and E. Witten, “Integration over the u-plane in Donaldson Theory,”

Adv. Theor. Math. Phys. 1 (1998) 298–387, arXiv:hep-th/9709193.

[118] L. F. Alday and Y. Tachikawa, “Affine SLp2q Conformal Blocks from 4D Gauge

Theories,” Lett. Math. Phys. 94 (2010) 87–114, arXiv:1005.4469 [hep-th].

[119] G. Bonelli and A. Tanzini, “Hitchin systems, N=2 gauge theories and W-gravity,”

Phys. Lett. B691 (2010) 111–115, arXiv:0909.4031 [hep-th].

[120] D. Gaiotto, “Asymptotically Free N “ 2 Theories and Irregular Conformal Blocks,”

arXiv:0908.0307 [hep-th].

[121] A. Marshakov, A. Mironov, and A. Morozov, “On Non-Conformal Limit of the AGT

Relations,” Phys. Lett. B682 (2009) 125–129, arXiv:0909.2052 [hep-th].

[122] M. Taki, “On AGT Conjecture for Pure Super Yang-Mills and W- algebra,” JHEP 05

(2011) 038, arXiv:0912.4789 [hep-th].

[123] D. Maulik and A. Okounkov , in preparation.

[124] L. J. Dixon, D. Friedan, E. J. Martinec, and S. H. Shenker, “The Conformal Field

Theory of Orbifolds,” Nucl. Phys. B282 (1987) 13–73.

[125] J. L. Cardy, O. A. Castro-Alvaredo, and B. Doyon, “Form factors of branch-point

twist fields in quantum integrable models and entanglement entropy,” J. Stat. Phys.

130 (2008) 129–168, arXiv:0706.3384 [hep-th].

[126] M. Gaberdiel, “A General transformation formula for conformal fields,” Phys. Lett.

B325 (1994) 366–370, arXiv:hep-th/9401166.

http://arxiv.org/abs/hep-th/0211241
http://dx.doi.org/10.1016/j.nuclphysb.2004.07.039
http://arxiv.org/abs/hep-th/0405128
http://arxiv.org/abs/hep-th/9505186
http://arxiv.org/abs/hep-th/9709193
http://dx.doi.org/10.1007/s11005-010-0422-4
http://arxiv.org/abs/1005.4469
http://dx.doi.org/10.1016/j.physletb.2010.06.027
http://arxiv.org/abs/0909.4031
http://arxiv.org/abs/0908.0307
http://dx.doi.org/10.1016/j.physletb.2009.10.077
http://arxiv.org/abs/0909.2052
http://dx.doi.org/10.1007/JHEP05(2011)038
http://dx.doi.org/10.1007/JHEP05(2011)038
http://arxiv.org/abs/0912.4789
http://dx.doi.org/10.1016/0550-3213(87)90676-6
http://arxiv.org/abs/0706.3384
http://dx.doi.org/10.1016/0370-2693(94)90026-4
http://dx.doi.org/10.1016/0370-2693(94)90026-4
http://arxiv.org/abs/hep-th/9401166


204

[127] V. A. Alba, V. A. Fateev, A. V. Litvinov, and G. M. Tarnopolskiy, “On combinatorial

expansion of the conformal blocks arising from AGT conjecture,” Lett. Math. Phys.

98 (2011) 33–64, arXiv:1012.1312 [hep-th].

[128] M. R. Gaberdiel and A. Neitzke, “Rationality, quasirationality and finite

W-algebras,” Commun. Math. Phys. 238 (2003) 305–331, arXiv:hep-th/0009235.

[129] S. Cecotti and C. Vafa, “Classification of complete N=2 supersymmetric theories in

4 dimensions,” arXiv:1103.5832 [hep-th].

[130] D. Gaiotto and S. S. Razamat, “Exceptional Indices,” arXiv:1203.5517 [hep-th].

[131] C. A. Keller and J. Song, “Counting Exceptional Instantons,” arXiv:1205.4722

[hep-th].

[132] H. Nakajima and K. Yoshioka, “Instanton counting on blowup. II. K-theoretic

partition function,” Transform. Groups 10 no. 3-4, (2005) 489–519,

arXiv:math/0505553 [math-ag].

[133] R. Dijkgraaf and C. Vafa, “Toda Theories, Matrix Models, Topological Strings, and

N “ 2 Gauge Systems,” arXiv:0909.2453 [hep-th].

[134] A. Morozov, “Challenges of beta-deformation,” arXiv:1201.4595 [hep-th].

[135] A. Iqbal, C. Kozcaz, and C. Vafa, “The refined topological vertex,” JHEP 10 (2009)

069, arXiv:hep-th/0701156.

[136] H. Awata and Y. Yamada, “Five-dimensional AGT Conjecture and the Deformed

Virasoro Algebra,” JHEP 01 (2010) 125, arXiv:0910.4431 [hep-th].

[137] H. Awata and Y. Yamada, “Five-Dimensional AGT Relation and the Deformed

β-Ensemble,” Prog. Theor. Phys. 124 (2010) 227–262, arXiv:1004.5122 [hep-th].

[138] V. Fateev and A. Litvinov, “On AGT conjecture,” JHEP 1002 (2010) 014,

arXiv:0912.0504 [hep-th].

[139] L. Hadasz, Z. Jaskolski, and P. Suchanek, “Proving the AGT relation for N f “ 0, 1, 2

antifundamentals,” JHEP 1006 (2010) 046, arXiv:1004.1841 [hep-th].

http://dx.doi.org/10.1007/s11005-011-0503-z
http://dx.doi.org/10.1007/s11005-011-0503-z
http://arxiv.org/abs/1012.1312
http://arxiv.org/abs/hep-th/0009235
http://arxiv.org/abs/1103.5832
http://arxiv.org/abs/1203.5517
http://arxiv.org/abs/1205.4722
http://arxiv.org/abs/1205.4722
http://dx.doi.org/10.1007/s00031-005-0406-0
http://arxiv.org/abs/math/0505553
http://arxiv.org/abs/0909.2453
http://arxiv.org/abs/1201.4595
http://dx.doi.org/10.1088/1126-6708/2009/10/069
http://dx.doi.org/10.1088/1126-6708/2009/10/069
http://arxiv.org/abs/hep-th/0701156
http://dx.doi.org/10.1007/JHEP01(2010)125
http://arxiv.org/abs/0910.4431
http://dx.doi.org/10.1143/PTP.124.227
http://arxiv.org/abs/1004.5122
http://dx.doi.org/10.1007/JHEP02(2010)014
http://arxiv.org/abs/0912.0504
http://dx.doi.org/10.1007/JHEP06(2010)046
http://arxiv.org/abs/1004.1841


205

[140] L. F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa, and H. Verlinde, “Loop and surface

operators in N=2 gauge theory and Liouville modular geometry,” JHEP 01 (2010)

113, arXiv:0909.0945 [hep-th].

[141] N. Drukker, J. Gomis, T. Okuda, and J. Teschner, “Gauge Theory Loop Operators

and Liouville Theory,” JHEP 1002 (2010) 057, arXiv:0909.1105 [hep-th].

[142] J. Gomis, T. Okuda, and V. Pestun, “Exact Results for ’t Hooft Loops in Gauge

Theories on S4,” arXiv:1105.2568 [hep-th].

[143] C. Kozcaz, S. Pasquetti, and N. Wyllard, “A & B model approaches to surface

operators and Toda theories,” JHEP 08 (2010) 042, arXiv:1004.2025 [hep-th].

[144] T. Dimofte, S. Gukov, and L. Hollands, “Vortex Counting and Lagrangian

3-manifolds,” Lett. Math. Phys. 98 (2011) 225–287, arXiv:1006.0977 [hep-th].

[145] N. Drukker, D. Gaiotto, and J. Gomis, “The Virtue of Defects in 4D Gauge Theories

and 2D CFTs,” JHEP 1106 (2011) 025, arXiv:1003.1112 [hep-th].

[146] K. Hosomichi, S. Lee, and J. Park, “AGT on the S-duality Wall,” JHEP 1012 (2010)

079, arXiv:1009.0340 [hep-th].

[147] C. Kozcaz, S. Pasquetti, F. Passerini, and N. Wyllard, “Affine sl(N) conformal blocks

from N=2 SU(N) gauge theories,” JHEP 01 (2011) 045, arXiv:1008.1412 [hep-th].

[148] N. Wyllard, “W-algebras and surface operators in N=2 gauge theories,” J.Phys.A

A44 (2011) 155401, arXiv:1011.0289 [hep-th].

[149] N. Wyllard, “Instanton partition functions in N=2 SU(N) gauge theories with a

general surface operator, and their W-algebra duals,” JHEP 02 (2011) 114,

arXiv:1012.1355 [hep-th].

[150] H. Kanno and Y. Tachikawa, “Instanton counting with a surface operator and the

chain-saw quiver,” JHEP 1106 (2011) 119, arXiv:1105.0357 [hep-th].

[151] A. Gadde, E. Pomoni, L. Rastelli, and S. S. Razamat, “S-duality and 2d Topological

QFT,” JHEP 03 (2010) 032, arXiv:0910.2225 [hep-th].

http://dx.doi.org/10.1007/JHEP01(2010)113
http://dx.doi.org/10.1007/JHEP01(2010)113
http://arxiv.org/abs/0909.0945
http://dx.doi.org/10.1007/JHEP02(2010)057
http://arxiv.org/abs/0909.1105
http://arxiv.org/abs/1105.2568
http://dx.doi.org/10.1007/JHEP08(2010)042
http://arxiv.org/abs/1004.2025
http://dx.doi.org/10.1007/s11005-011-0531-8
http://arxiv.org/abs/1006.0977
http://dx.doi.org/10.1007/JHEP06(2011)025
http://arxiv.org/abs/1003.1112
http://dx.doi.org/10.1007/JHEP12(2010)079
http://dx.doi.org/10.1007/JHEP12(2010)079
http://arxiv.org/abs/1009.0340
http://dx.doi.org/10.1007/JHEP01(2011)045
http://arxiv.org/abs/1008.1412
http://dx.doi.org/10.1088/1751-8113/44/15/155401
http://dx.doi.org/10.1088/1751-8113/44/15/155401
http://arxiv.org/abs/1011.0289
http://dx.doi.org/10.1007/JHEP02(2011)114
http://arxiv.org/abs/1012.1355
http://dx.doi.org/10.1007/JHEP06(2011)119
http://arxiv.org/abs/1105.0357
http://dx.doi.org/10.1007/JHEP03(2010)032
http://arxiv.org/abs/0910.2225


206

[152] A. Gadde, L. Rastelli, S. S. Razamat, and W. Yan, “The Superconformal Index of the

E6 SCFT,” JHEP 08 (2010) 107, arXiv:1003.4244 [hep-th].

[153] A. Gadde, L. Rastelli, S. S. Razamat, and W. Yan, “Gauge Theories and Macdonald

Polynomials,” arXiv:1110.3740 [hep-th].

[154] A. Gadde, L. Rastelli, S. S. Razamat, and W. Yan, “The 4d Superconformal Index

from q-deformed 2d Yang- Mills,” Phys. Rev. Lett. 106 (2011) 241602,

arXiv:1104.3850 [hep-th].

[155] T. Nishioka and Y. Tachikawa, “Para-Liouville/Toda central charges from

M5-branes,” Phys. Rev. D84 (2011) 046009, arXiv:1106.1172 [hep-th].

[156] V. Belavin and B. Feigin, “Super Liouville conformal blocks from N=2 SU(2) quiver

gauge theories,” JHEP 07 (2011) 079, arXiv:1105.5800 [hep-th].

[157] G. Bonelli, K. Maruyoshi, and A. Tanzini, “Gauge Theories on ALE Space and

Super Liouville Correlation Functions,” arXiv:1107.4609 [hep-th].

[158] O. Schiffmann and E. Vasserot, “Cherednik algebras, W algebras and the

equivariant cohomology of the moduli space of instantons on Aˆ2,”

arXiv:1202.2756 [math.QA].

[159] N. Hama, K. Hosomichi, and S. Lee, “SUSY Gauge Theories on Squashed

Three-Spheres,” JHEP 05 (2011) 014, arXiv:1102.4716 [hep-th].

[160] T. Dimofte and S. Gukov, “Chern-Simons Theory and S-duality,” arXiv:1106.4550

[hep-th].

[161] T. Dimofte, D. Gaiotto, and S. Gukov, “Gauge Theories Labelled by

Three-Manifolds,” arXiv:1108.4389 [hep-th].

[162] S. Cecotti, C. Cordova, and C. Vafa, “Braids, Walls, and Mirrors,” arXiv:1110.2115

[hep-th].

[163] Y. Terashima and M. Yamazaki, “SL(2,R) Chern-Simons, Liouville, and Gauge

Theory on Duality Walls,” JHEP 08 (2011) 135, arXiv:1103.5748 [hep-th].

http://dx.doi.org/10.1007/JHEP08(2010)107
http://arxiv.org/abs/1003.4244
http://arxiv.org/abs/1110.3740
http://dx.doi.org/10.1103/PhysRevLett.106.241602
http://arxiv.org/abs/1104.3850
http://dx.doi.org/10.1103/PhysRevD.84.046009
http://arxiv.org/abs/1106.1172
http://dx.doi.org/10.1007/JHEP07(2011)079
http://arxiv.org/abs/1105.5800
http://arxiv.org/abs/1107.4609
http://arxiv.org/abs/1202.2756
http://dx.doi.org/10.1007/JHEP05(2011)014
http://arxiv.org/abs/1102.4716
http://arxiv.org/abs/1106.4550
http://arxiv.org/abs/1106.4550
http://arxiv.org/abs/1108.4389
http://arxiv.org/abs/1110.2115
http://arxiv.org/abs/1110.2115
http://dx.doi.org/10.1007/JHEP08(2011)135
http://arxiv.org/abs/1103.5748


207

[164] T. Dimofte, D. Gaiotto, and S. Gukov, “3-Manifolds and 3d Indices,”

arXiv:1112.5179 [hep-th].

[165] V. I. Arnol’d, “Critical points of functions on a manifold with boundary, the simple

Lie groups Bk, Ck, F4 and singularities of evolutes,” Uspekhi Mat. Nauk 33 no. 5(203),

(1978) 91.

[166] P. C. Argyres, M. R. Plesser, and A. D. Shapere, “The Coulomb phase of N=2

supersymmetric QCD,” Phys. Rev. Lett. 75 (1995) 1699–1702,

arXiv:hep-th/9505100.

[167] S. Mizoguchi, “Determinant Formula and Unitarity for the W3 Algebra,” Phys. Lett.

B222 (1989) 226.

[168] V. G. Kac and M. Wakimoto, “Quantum reduction in the twisted case,”

arXiv:math-ph/0404049.

http://arxiv.org/abs/1112.5179
http://dx.doi.org/10.1103/PhysRevLett.75.1699
http://arxiv.org/abs/hep-th/9505100
http://dx.doi.org/10.1016/0370-2693(89)91256-2
http://dx.doi.org/10.1016/0370-2693(89)91256-2
http://arxiv.org/abs/math-ph/0404049

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	4d/2d correspondence: Instantons and W-algebras
	Outline

	N=2 Supersymmetric Gauge Theories in 4-dimensions
	N=2 Supersymmetry in general
	Seiberg-Witten solution
	N=2 gauge theory from M5-branes on a Riemann surface
	UV-curves and Hitchin systems
	Unitary gauge group
	Symplectic/orthogonal gauge group

	Martinec-Warner solution of N=2 pure theory:

	S-duality

	ABCDEFG of Instanton counting
	Nekrasov's solution to N=2 gauge theory
	Instanton counting
	ADHM construction
	-background and equivariant integration
	Contour integrals for various matter fields with different gauge groups

	One-instanton contribution for arbitrary gauge group
	One-instanton contribution
	Hilbert series of the one-instanton moduli space

	N=2 SCFT and renormalization scheme
	Infrared versus ultraviolet
	Examples
	Sp(1) versus U(2) : the asymptotically free case
	Sp(1) versus U(2) : the conformal case
	SO(4) versus U(2) U(2) instantons
	Sp(1) Sp(1) versus U(2) U(2) instantons


	UV-IR relation and N=2 geometry
	SO/Sp versus U geometries
	Examples
	Sp(1) versus U(2) geometry
	SO(4) versus U(2) U(2) geometry


	Instanton counting for half-hypermultiplets
	Half-hypermultiplets
	Instanton counting for half-hypermultiplets
	Instanton contribution for the Sp SO bifundamental


	ADE of W-algebras
	Conformal symmetry in 2 dimensions and Virasoro algebra
	Representations of Virasoro Algebra
	Free Field Theory
	Conformal Block

	W-algebras
	Chiral Blocks and Twisted Representations

	Free field realization of W-algebras
	Simply laced W-algebras
	An
	Dn
	E6

	Twisted sectors of the simply-laced W-algebras
	Basic properties of the Verma module


	ABCDEFG of Instantons and ADE of W-algebras
	Introduction
	Pure YM case
	Identification of the coherent state
	Coherent state at the lowest level
	Comparison
	An
	Dn
	Bn
	Cn
	G2
	F4


	SO-Sp quiver
	The SO(4) and Sp(1) AGT correspondence
	Correlators for the W(2,2) algebra and the cover trick
	Examples
	Sp(1) versus U(2) correlators
	SO(4) versus U(2) U(2) correlators


	Linear Sp/SO quivers
	UV-curves for linear Sp/SO quivers
	Sp SO bifundamental
	Test of the Sp(1) SO(4) AGT correspondence
	Sp(1) SO(4) instantons
	Sp(1) SO(4) correlators


	Sicilian quivers
	CFT building blocks for Sicilian quivers
	Three-point functions
	Partition function for the trifundamental coupling

	Towards a 4d/2d correspondence for Sicilian quivers
	Examples
	The SU(2) trifundamental as a Sp(1)-SO(4) bifundamental
	Genus two quiver through Sp(1)-SO(4) instanton counting
	Alternative prescriptions for the genus two quiver



	Conclusion
	Roots of simple Lie algebras
	Simply-laced algebras
	Non-simply-laced algebras

	Evaluating contour integrals
	The  prescription
	Chains
	Some examples

	SU(2) Seiberg-Witten curves
	More about the trifundamental half-hypermultiplet
	Contour integrands for Sicilian quivers
	Kac determinant at the lowest level
	Construction of the W-algebra of type E6
	Bibliography

