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ABSTRAGCT

In this thesis the operational calculus of J. Mikusihski is
utilized to study the finite part of divergent convolution integrals.

In Chapters 2 and 3 the idea of an analytic operator function is
utilized. An operator function f(z) is said to be an analytic operator
function on an open region S of the complex plane if there is an
operator a # 0 such that af(z) = {af(z, t)} has a partial derivative
with respect to z which is continuous on S %[0, ). Let f(z) be an
analytic operator function and suppose that {f(z, t)} is a continuous
function on S % [0, ©). Suppose also that for each t=0 £(z,t) is an
analytic function of z on a larger region S*D S. Let f;k(z) be an

analytic operator function on S" which is such that fq‘(z) = f(z) on

b

S. Then the operator function f (z) is called [FPf(z,t)] on S .

The relationship between the operator product g[FP f(z,t) ] and

t
{FPf g(t-u) f(z,u) du}is studied for the case when {f(z, t)} = [Qﬁ_t_)}’
)

z
t
where m is function which possesses continuous derivatives of some

order on [0, 00).

In Chapter 4 the solutions to the singular integral equation
' )
pr f(t-u)ﬂi du = g(t) all t= 0
o] u

-1
are found from considering the operators i:FP _r_n_(ﬁ:g .
t
In Chapter 5 a type of generalized wave function is discussed.



Chapter 1

1.1. This thesis consists of a study of the finite part of divergent
convolution integrals of one real variable, and some applications of
the results of that study. The use of the finite parts of divergent inte-

grals started with A. Cauchy (1) , (2) who used what he called an

. I « - . -
"integrale extraordinaire'’ to give a sense to the gamma function for

negative values of the argument. Since that time the notion has been
used and extended by various authors. J. Hadamard (3) was able to
extend the concept to multiple integrals. He and F. Bureau (4) have
used the finite part of divergent integrals as an important tool in
solving partial differential equations. More lately L. Schwartz (5) and
M. Lighthill (6) have applied the theory of Distributions to extend the
idea of the finite part of divergent integrals.

P. L. Butzer (7) has used the operational calculus of
J. Mikusinski to study the finite part of divergent convolution integrals.

He has been able to show the extension in Mikusinski's operational
t
calculus of the integral f g(t—u)uo‘du with &k = -1 to
: o
FPI g(t-u)u®du with O any real number. This extension,at least
o

to the case when o 1is not a negative integer,is a very natural one. It
is the work of Butzer which is followed up in this thesis.

In Chapter 2 we lay a foundation for what is to follow. The con-
cept of an analytic operator function, which will be necessary in

. Chapter 3, is introduced, and the useful concept of the logarithm of an

* Unless otherwise specified numbers in parentheses refer to the

bibliography at the end of the thesis.



operator is duscussed.
The operator function [FP f(z, t) ] which is associated with the
function {f(z, t)] is defined in Chapter 3, and the relationship of this

t
operator function to { FPj g(t-u) f(z, u) du} is discussed when
o
t

{f(z,t)} and g are such that {FPf g(t-u) f(z, u) du} is defined. It is
found that for many functions {f(z, t;j} and g the operator product
g[FP (=, t)] reproduces the finite part of the definite integral. The
operator product has the advantage that it exists for all operators ¢
whereas the finite part of the divergent integral exists only if g
satisfies certain smoothness conditions. Also, the operator product
is defined for certain functions {f(z, t)] for which the finite part of
the divergent integral has not been defined. |

The theory developed in Chapter 3 is applied in two ways. In

Chapter 4 a problem posed by Butzer is solved. The problem is to

solve the singular integral equation

t

I,

FP | f(t-u)—

du = g(t) all t==0
o

where JO is the Bessel function of the first kind of order zero. In

Chapter 4 a condition is given which is necessary and sufficient for the

existence of solutions, and a formula is given for calculating the

solutions when they exist. In Chapter 5 the results of Chapter 3 are

applied to partial differential equations. The application is to give

some properties of a class of generalized wave functions.



Chapter 2

2.1. Let the interval t=0 be denoted by I. The functions to be
considered in what follows will unless otherwise noted be functions on
I to the complex numbers. With the usual notion of multiplication by
scalars and pointwise addition these functions form a vector space over
the field of complex numbers. The symbols £ and {f(t)} will be used
to denote an element of this vector space; the function whose value is
one for all te I will be denoted by h, and the function whose value
is zero for all te I will be denoted by 0. f£(t) will denote the value
of the function f at the point t. The function if! is related to the
function f by the definition lfi(t) =|£(t)] for all te I. Greek letters
O(,ﬂ , £, ... will generally denote scalars; there will be certain
exceptions to this, for example, the variable of integration in Cauchy's
Integral Theorem (Theorem 4ii) is denoted by ¥ .

If a function is absolutely continuous or integrable on each
closed and bounded subinterval of 1 it will be said to be locally

absolutely continuous or locally integrable. Thus, the function

f :{tz}, although not integrable on I, 1is locally integrable.

The space of continuous functions on I will be called C*° Let
the topology of C* be defined by a countable number of semi-norms,
“f"n’ n=1, 2, ..., where thel nth norm of an element f in C*

is given by
“f“n = max [f(t) .

O=t=n

o
3%

Thus, a sequence of elements (fk) in C converges to an element f

in Cﬂ: as kee oo if fl-;"-f uniformly on every bounded subinterval of



I as k=eoo. With this topology C* is a locally convex topological
vector space. A locally convex space whose topology is given by a
countable number of semi-norms is metrisable (N. Bourbaki (8) p. 97,
Prop. 6) and thus C* is metrisable.

The topology of a topological vector space, E, definesa
uniform structure on E (N. Bourbaki (9) p. 24). E is said to be
complete if it is complete in this uniform structure (N. Bourbaki (8)
p. 10). If E has a countable basis of neighborhoods of the origin (if
for example the topology of E is defined by a countable number of
semi-norms) E is complete if every Cauchy sequence in E converges
to an element of E (N. Bourbaki (10) p. 25).

A sequence in C* .is a Cauchy sequence if for each n>»0 and

each ¢ =0 there is a pn(e) such that

ks k= pn(e)élifk - fk “ < €.
1 2%n

It is easily seen that every Cauchy sequence in C’ is convergent,
and thus C  is complete.

T

When a sequence fn is convergent in the c’ topology as n-e=co

to an element f in C  we will say f—=f (C') as n=s=co.
Besides the space C" we shall utilize the following function
spaces.

1. Ck(Ep)

Let EP be p dimensional Euclidean space. Let

where the m.,, 1=1, ..., p are non-negative integers, and



i=1 i=1
and
mi
D™ f(x) = 9 : f(x) ,
my m
0x ...0x P
1 P

The function space Ck(Ep) consists of all those complex valued
functions, f(x), on EP which are such that Dmf(x) exists and is a
continuous function on EP whenever Im| = k. The topology of

Ck(Ep) will be defined by a countable number of semi-norms as

follows:
I 60 |2 = max [D™e(x)]
" ixien
n=1, 2, ..., lml'_‘k
2. C (1)

Let I' be a closed interval in EL Ck(I') consists of those functions
all of whose derivatives with respect to x, f(m)(x), 0=m=k, exist
and are continuous on I'. By the derivative at an end point of I' is
meant the appropriate one-sided derivative at that point. If I' is a
béunded interval the topology of Ck(I') is the normed topology given

by
el = max ™y

x € I!

O-em-:k

If I'= [a,c0) the topology is given by the countable number of semi-

norme “f”n = max ,f(m)(x)i n=a.

xe [a,r}]

O:m-:k

If I' = (-o0, b] there is an analogous definition of the topology.
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3.

If f and g are locally Lebesque integrable functions f is said to be

equivalent to g if f(t) = g(t) almost everywhere on I. L"~ denotes
the space of equivalence classes of locally integrable functions. If f
is contained in an equivalence class which is contained in L it will

be said, for brevity, that f is in L. A topology is given to L by

the countable number of semi-norms
n

Hanz [£(t) at n=1, 2, ...

o

sk E
4. Ck(Ep)C, C (IMC

If f(x) ={f(x, t)} is a function on EP ® I which is such that all the
derivatives Dmf(x), Im| =k, with respectto x are continuous on

EPx I, f(x) is said to belong to C,_(EP)C". A topology on Ck(Ep)C:F

is defined by the countable number of semi-norms

m m
”f(x) ”n = max [D £(x)|
ixl=n
O<ten
where |m| <k and n=1, 2, ... . The space Ck(I')Cq: consists

of those functions on I' ® I to the complex numbers which possess k

derivatives with respect to x, each continuous on 1'% I. The countable

number of semi-norms on Ck(I')C. are found by taking the maximum
over 0=t=n of the Ck(I‘) norm (or semi-norms, according to

whether or not I' is bounded) for n=1, 2, ... .
Z 3k 2 sk

Let S be an open connected region in the complex plane.

f(z) = {f(z,t) ] is said to be in CZ(S)C’F if {f(z,t)} is continuous in



)

S ®I. f(z) is in C}i( S)CBF if each of the first k partial derivatives of
{f(z,t)} with respect to =z are in CZ(S)C*, Convergence in C (S)C*
means uniform convergence on every compact subset of S % I. Con-
vergence in Cf(( S)C>1< means uniform convergence of each of the
partials of f(z) with respect to z on each compact subset of S x I,
Each of the spaces described in 1, 2, 3, and 4 are seen to be

metrisable and complete.

We shall make use of the closed graph theorem in Chapter 5.

Theorem 1. Let E and F be two metrisable and com-
plete vector spaces. In order for a linear mapping T
of E into F to be continuous it is necessary and sufficient

that the set {(X, TX)I xe E } be closed in E % F.

Proof. N. Bourbaki (8), p. 37.

2.2. We will give a brief survey of the foundations of Mikusifiski's
operational calculus. Most of what is in this section can be found in

Mikusifiski's Operational Calculus (11) and also in Erdélyi's

Operational Calculus and Generalized Functions (12).

I.et f and g be locally integrable. The function

k(t) = f(t-u)g(u)du almost all t=0

is called the finite convolution of f and g. Itis very well known that
the finite convolution of two locally integrable functions is a locally
integrable function and the finite convolution of two continuous

functions is a continuous function. The finite convolution defines a



multiplication which makes I and Ca< into commutative rings.
This multiplication will be denoted by juxtaposition, thus the above
equation will be written

k=1g.
It is a corollary to a theorem of Titchmarsh that L* and C* have
no divisors of zero. The ring C::< can be extended to a field F, its
quotient field, whose elements %, a, be C*, b # 0 are called
Mikusinski operators or just operators. The ring L::< is iso-~-
morphically imbedded in F under the mapping f“% where
fe L>:< and a ¢ Cﬂ< and a # 0. The field of complex numbers is
isomorphically imbedded in F by the mapping &« ®s=0ol: 1 where 1
is the unit element of F. The unit element of F will be written as
1; the zero element of F, like the function {0}, will be written as

0, and in general,operators of the form ®-1 where o is a scalar

will be denoted merely by o,

Definition 1. Take fne F, n=1, 2, ..o . Then

fn""f(F) as n-e= oo if and only if thereisa b # 0 in

KR
e

C” such that bi_ e c” for n=1, 2, ... and

bf —=b f(C*) as nes= 0.

The F limit, when it exists, is unique.

f(x) is said to be an operator function if f(x) is a function whose
range is in F. The space Ck(Ep)F consists of all those operator
functions baving the property that there is an a # 0 in C* such that

st
3

af(x) ¢« C, (EP)C A sequence of operator functions fn(x) € Ck(Ep)F,

n=1, 2, ... , 1is said to converge to f(x) as n=e=co if there is an
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B

a fO in C* such that afn(x) e C EP)C and afn(x) converges to

i, k(
af(x) in ck(Ep)c*.

Definition 2. Let f(x) bein C, (EP)F and suppose a #0
i b3 P %k

is an element of C such that af(x) ¢ Ck(E )JC . We
define

D i(x) = L{D™ (a ()}

when |ml| = k.

There are spaces Ck(l‘)F, CZ(S)F, and C]i(S)F which are defined

in analogy to Ck(Ep)F. The derivative of an element of Cf‘((S)F or

Ck(S)F is defined in analogy to Definition 2.

Definition 3. Let M be a bounded measurable region in
EP. Suppose the operator function f(x) to be in C(EP)F
(or C(I')F where I'> M). Let the scalar function ¢(x)

be integrable over M. If a # 0 is such that af(x) is

in CEP)C™ (C(I1)C™) the integral of D (x)£(x) is defined by

(x) f(x) dx = 51-: f¢(x}af(x,t) dx Y . (1)
M

The surface integral over a sphere M' is defined by the equation
analogous to equation (1) in which the volume integral is replaced by a
surface integral over M'. If f(z) ¢ CZ(S)F where S is a region in
the complex plane and J is a rectifiable curve contained in S, the
line integral over J 1is defined by

ff(z) ax = + jaf(z.,t) dz (11

J J
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sk

where a # 0 is such that af(z) ¢ CZ(S)C‘
When EP = E1 the parameter will usually be denoted by A

instead of x. Let the scalar function ¢(/\) be locally integrable

and let the operator function f(A) be in C(0 < l-z 00)F, The integral

of f(A)gj)(A) on the infinite interval (0, o) is defined by

T
f BN A= 1im | D) aA
T==c0
0 0
when the limit on the right exists. The limit on the right hand side is
taken in the sense of Definition 1.
The values of the integrals defined above and the derivative
defined in Definition 2 do not depend on which particular element a is

chosen to make af(x) a continuous function.

Definition 4. Suppose o =0=g8, f(A) e C,[x,8]F,

d
weF, gr £f()) = wi(\) for Ae (o,8) and £(0) = 1. In
such a case w is said to be a logarithm on [o(, 'B] and

f(/l) = eAw on [O(,ﬂ] .

It is known (A. Erdélyi (12) p. 68) that an operator w which is
a logarithm on an interval & f).f B is in fact a logarithm on each
finite interval [O(l’ ﬁl] where D(l< ®, ﬁ = ,51, and the extension
for f(A) from [N,ﬁ] to (-oo, @) is unique.

Every function in L" isa logarithm. An example of a loga-

. . . . 1
rithm which is not a function is the operator s = 4

Example. Let H(l) be the operator function given by



11

&
&
1f

when ttA‘,

G when t= A

g
>
i

The operator function SH(A) has the property that

4 ) = an h°H(L) = -s(sHA)).

p

Thus sH(A) = e
The operators of Mikusinski are closely related to the Laplace

transform. The relationship between the Laplace transform and that

subspace of F which consists of all operators of the form sna,

where ae C , a(t) = O(ekt)

as t=e==o00 and n and k are positive
numbers, has been investigated by J. D. Weston (see (13) and (14)).

The following theorem of Mikusinski suggests the existence of some

relationship.

Theorem 2. Let f be locally integrable, then,

e’S/\f(/\) dA = 1.
0

Proof. J. Mikusinski (11) pp. 337 and 377.

This theorem will be extended in Chapter 3 to the case in which the

integral exists only as a 'finite part''.
2.4. Mikusinski ((11) p. 412) makes the following definition.

Definition 5.

i) A function a e C" is called real if a(t) is a real
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number for each t= 0.
ii) an operator w ¢ F 1is called real if there are real

a, be Ca: such that w = %.

o w :fg is a real operator where e, f ¢ C’F then e and f have a

f
common factor ¢ ¢ ¥ such that a :—i— and b = o are real elements
of C'. Thus any expression of a real operator in terms of elements

of C>:< is, except for common factors in the numerator and denomi-
nator, in terms of real functions. Every element w e F has a
unique decomposition w, + Wzi where W and w, are real. The
real operators form a subfield of F. The following Lemma is due to

Mikusinski ((4) p. 192).
Aa
= e

where k 1is an integer.

Lemma 1. Let F(A) and F(1) =1 then a = 2rki

Proof. Since x =1 has only n possible solutions it must be that
a ZTrkni

elze U where kn is an integer and 0 fkn-_z_ n-1. Thus when

m ra 2rmk_1i
r=_ is rational e = e . Letting 1‘-—>A it is seen that

¢ % is a scalar, A(/l), times the unit element of F. Since
A.'(/{) = aA(/{), a is itself a scalar multiple of the unit element and
finally, since A(0) = A(1) =1, itis seen that a = 2nki where k is

an integer.

Definition 6. ILet w be a real logarithm and suppose

eV = a, then w is called the logarithm of a (i.e.

In a = w).
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A

In this case the operator function e Vs alternatively denoted by =&
It is seen by Lemma 1 that the logarithm of an operator, if it exists,
is uniquely defined. If Ol is a positive scalar the operator

In(X*1) =(Ing) - 1 where 1 is the unit element of F and In& is
the principal value of the logarithm of & . In (&- 1) will be written
as just In®. The logarithm obeys most of the rules expected of a
function with this name. The following statements are easily proved

by referring to Definition 6.

Lemma 2.
i) Ina+Inb=Inab
i) O=0; Ina+In&=1Inda
iii) o real; In a® = o(lna

iv) Ini= -ina.
a

Statements i) and ii) are true in the sense that if any two of the quanti-
ties involved exist the third quantity exists and is given by the formula
shown. Statements iii) and iv) are true in the sense that if one side of
the equation exists the other does and is given by the formula shown.
Thus the function given by f(a) =lna 1is an isomorphism between the
multiplicative group of operators which have logarithms and the additive

group of real logarithms.

n-1
Example. When n is a positive integer h' = . For lb 0
b g (n)

-1
1
define h :{‘TGJ} and for A =0 let hA =X With this definition,
and taking n° = it is seen by means of Euler's integral of the

A ﬂi /\+# for all real A:‘u'

second kind that h h The real operator

w = s{ln t} is a logarithm and (Mikusifiski (15))
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hA - eA,(s{ln t} + C)

where )\ is real and C = .577... is Euler's constant. By definition

of Inh
Inh = s{lnt} + C
C
Ins = -s {lnt} - lnvy where vy = e
or
Inh = s{ln\/t}
Ins = ~-s {lnyt}.

Thus it results that {111 t} = ll-PSLS»— It is interesting to note that the
Laplace transform of {ln 1:} is _:_l_n_zlg_ .

Lemma 3. If l>—1 then (:})—’0 as n-e 0 and

é'a-i—(é)‘oﬂ as n=e .,

Proof.
A) = rZA-!‘l) _ sin (n—i) R-‘A-i-l) R‘n-A) (2)
n iTrH—l) m-rﬁ-l) k) K‘n-}—l) ‘

Stirling's formula shows that

Ay = o (n-d) A1) < oA

n
as n=-e 00,

Differentiating Equation (2) and utilizing Stirling's formula again

yields
8 (A) - O (n_l)‘(kﬂ)) +'Q(r_-‘_!(£1_‘_k_l)
8A n C(ntl1) ’
To see that the second term on the right is ©(1) it may be noted that

%ﬁ% = In (n—l) +O(;11-), Thus
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2 () = o (- Ay 1 o) A 1A = o)

as === 0.

Lemma 4. Take a ¢ C” and take (O(H) to be a sequence

of complex numbers such that 'O(nl< M o0 for all n.

sl
3%

m
Then the sequence bm = Z— lD(n an’ is convergent (C )
as Ne—s= 0.

-1
Proof. Take T=0. |a(t))=B on [0,T] implies |o(nan[(t)‘=BMTn

=TT

q
uniformly on [0,T]. Thus for q>p =1 and 0=<t=<T, Zlanani(t)

p-1
f% eT which tends to zero as p-e 00.

Lemma 5. If A>—1 then

ga'x(;\) - n;: m (n—m)°

o0
Proocf. By Lemma 3 the series Z (é) %' can be differentiated
n=0

term by term with respect to A when -le x= 1 and A =-1 to get

3A 1+xl = (1+X)A' In(1+x) = Z /\ (}' (3)

n=0

The series expansionsfor (i+x)"  and for In(l+x) can be multiplied

together term by term when -l= x<1 and A> -1 to get

(3+X)A1n(1+x)= L Zl('ﬁl (nf\m) < (4)

Equating the coefficients of like powers of x in Equations (3) and (4)

gives the result.
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S (-1 n
Theorem 3. If ae C 1is real then w = z —f-a’ is
_Laeorem 2 n
n=1
a logarithm and In (l+a) = w.
o
Proof. Let f(k) = Z (3}) a" when A>—]; then f(0) = 1. Let

n=0
N -aid) = T e A=-1.

By Lemmas 3 and 4

gax g(\) = ZO ;?I(é) Mo a () A=-1.

Thus on any interval I° :[Ao’ll]’ where —l<)ko< O<Al < 00,
f(A) € Cl(I')F, By Lemmas 3 and 4 term by term multiplication is

justified in the product

Waf(.k) = Z_l '_1%1 - a” ZO (%) an-i—l lﬁ I':’

and the resulting absolutely convergent series can by L.emma 5 be

rearranged to get

wa f = Y —8—-A an+1=af‘/1 /le '
D= % ax @) A 1

fA) = eAW A

Since f(l) =1 +a we have

In (1+a) = w.

Corollary 1. If f is any continuously differentiable function

on the interval t=0 and f(0) = =0 then Inf exists.
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Proof. In fact, f:olh-i-lf f‘(u)du}= dh+f'h=o€h(l+%) so that
o

1
Inf =1n(l+ %) +Inh +In«.
It is not necessary that f(t) be positive for every or almost
every t > 0 in order for f to possessa (real) logarithm. For

example

In {cos t} = Inh + In(1 - {sin t}) = s{ln\{t}+ n%j} —{s—lpp—t—}-r—l

2.5.
Definition 7. Let S be a region in the complex plane.
f(z) is said to be an analytic operator function in S if

{(z) « C2(S)F.

Examples.

i) Let S = EZ

Rez = —n}. f(z) = h” is analytic in Sn for
every integer n.

ii) Let R :{z Rez=-n, z # -1, -2, ..., n—l}.[“(z%—l)hz

n

is analytic in Rn for every integer n.

Theorem 4. Let f(z) be an analytic operator function on
S. Then
i) if f(z) = 0 on a set which has an accumulation
point in S, f(z) = 0 everywhere on S;
ii) if J is a simple, closed, rectifiable curve in S

and z is in the bounded region enclosed by J
1
then f(n)(z) = ZI:TIi [ f(rzl
J (B-z)
iii) if K(zo,p) = {Z ]|z—zol<p} € S then for =z e K(zo,p)

= dg%;
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we have

The series is convergent (F) to f(z).

Proof. The proofs follow directly from the analogous theorems in

complex variable theory. For example, to prove ii) it is noted that

for a #0 and af(z)ﬁ{g(z,t)} ] C%(S)C*

n
g _ |t g(8,t)
{an (2, t)} = 2mTi (T _Z)n-l—} ds (5)
Since =z 1is not on J,
n
2 (z,1)
oz

is continuous at (z,t) € S % I. Since each point z ¢ S can be enclosed

by a simple closed curve which does not pass through =z it is seen

that
8ngéz) - 8211 (af(Z)) € CZ(S)C
0z 0z
and
(n) 1 9" n. f(5)
f z) = — —— (af dz.
@ =5 ow i) =g [
J

It is seen from Equation (5) that an analytic operator function has
the property that if af(z) ¢ C%(S)C* then, in fact, af(n)(z) € CZ(S)C
for n=0, 1,

Since hz is analytic in every half plane Rez = -n it follows
from Theorem 4 iii) that

A %O ln Xti An

n=0
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for each real A Furthermore, if a = h1+e we have

+e d }\ .. *

h is in C

a)’ )=0

st

ah” ¢ C%(Rez = -¢)C , and it must be that .

for each n > 0. That is
h¢ sn_l {1n \(t} e Ca< n=290, 1, 2,

If f(z) is analytic in a region which includes the origin and

f(&) = ¢V when =z =A is real the power series expansion,

A oo n

W % n

= T AN
n!

n=0

converges for sufficiently small A It is not true that every expo-
nential e’ is the restriction to the real axis of an analytic operator

function.

. a(t-A) t= A .
Example. For a=0C, aeAS: - If f(A)zae

o t=Al

is the restriction of an analytic function that function must be identically

As

zero since f(}\,t) is zero for all /\ = t. This implies a = 0. Since

As *

there is no non-zero a ¢ C  such that ae € Ci’(S)C , and thus

eMAS 4 C%(S)F for any region S which intersects the axis of reals.

ES

Theorem 5. Suppose that w and iw are both logarithms.

Then e~V = e(k+ﬂ)w

is analytic in evéry bounded region
of the complex plane.
Proof. Let z = /\+ ild, (z) = V. Then of(z) _ . i 8 £(z) . Take
v 0 8u
a # 0 and so that af(z) is in both Cl(-n:/\f_n)c"‘ and Cl(—n:u:n)Cﬂ\,

Let g(z) = «{g(z,t)} =af(z). g(z+hz,t) - gz, t) = g/gi(zf t) AA + gflAu
+ 0('Az|).
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Since 9 f{z —1M we have
0 94
9f(z) _ dglz) _ 9 g(z) _ 9 f(z)
= =3 -

Thus

as Jpz]==0. Thus f(z)} is analytic in every bounded region of the
complex plane.
Theorem 5 together with the last example demonstrates that 1 s

is not a logarithm.

Definition 8. Let Sl and S2 be non-empty regions in the

complex plane and let §;=S,. If fl(z) is an analytic
operator function on Sl and fz(z) is an analytic operator

function on SZ such that

whenever =z € SZ’ fl(z) is said to be the analytic continu-

ation of fz(z) to Sy.
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Chapter 3

3.1. For certain functions {f(z, t)} the finite part of the convolution
integral j' t g(t-u) f(z, u) du has been defined by Hadamard (3) and
Bureau (4)Oeven though for some values of z the function {f(z., t)}

is not a Lebesgue integrable function. The definition is applicable
only if g satisfies sufficient smoothness conditions. Butzer (7) has
found an operator function [FP t” ] which is such that under certain
assumptions on g, g[FP tZ] = {FPj t

o
of this chapter to define operator functions [FP (=, t)] by a more or

g(t-u) f(z, u) du}e It is the purpose
less general method. These operator functions will each be associated
with a possibly non-integrable function {f(z, t)} The purpose of
introducing these operator functions is three-fold. First, the relation-
ship between the integral {FP—}' i g(t-u) £(z, u) du} and the operator
product g[FP f(z, t)} is shown ion Theorem 6 and its corollaries to be
quite close in the cases in which g and {f(z, t)} are such that the
finite part of the convolution integral is defined. In these cases the
operator product g{:FP (z, t)] is a convenient method of calculating
the finite part of the divergent convolution integral. Secondly, the
operator product g[FP f(z, t) ] exists as an operator for all locally
integrable functions g and indeed for all operators g. The operator
product may be used as an alternative to the finite part of the convo-
lution integral and thus the smoothness condition on g can be elimi-
nated. The third point in introducing these operator functions is that
the operator function [FP f(z, t) ] is defined in the case of many
functions {f(z, t)} for which the finite part of the convolution integral

has not previously been defined. In these cases the operator product
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provides a definition of the finite part of the convolution integral.

Definition 9. Let S1 and S2 be non-empty regions in the

ale
<

complex plane such that S,25,. Let g(z) be in cf(sl)c
and suppose that g(z) can be continued analytically as an

operator function to all of S,. Suppose also that {g(z, t)}

can be continued analytically in z for each t=0 soas

to be defined on all of SZ' Denote these two continuations
by f(z) and {f(z,t)} respectively. The operator function

[FPf(z,t)} is then defined on S, by

[FPi(z0] = 1(2).

The operator function [FP f(z, t)] , when it exists, is unique.
To see this, let f(z) = [FPf(z,t)] on S, and fz(z) = [FPf(z,t)} on
S,. Then fl(z) = g(z) = fz(z) on S, and by Theorem 4 i) it is seen
that fl(z) - fz(z) =0 onall of S,.

An example of a function whose finite part can be defined is

z
{g(z,t)} :{F(tm)_} where S :{leez>O}° For each positive t

tZ

the function {f(=z,t) ¢ = is analytic in the entire =z plane and
r"iz+li y p
the operator function f(Z):——hZ+1 is equal on S, to {g(z,t)}. Since
h” is an analytic operator function in every half-plane Rez = -n,
Definition 9 gives
tZ z+1
{FP PZZ'I'li} = h
in any half-plane Rez s -n.

It should be noted that a particular non-integrable function
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-3/2
{k(t)}, for example {k(t)} :{—E————-—} does not define a unique

m(-1/2)
operator [FP k(t)] having the property that [FP (=, 1:)] = [FPk(t)]

Z:Zl

whenever f(zl,t) = k(t) for all positive t. For example

2 z+1/2 Yy
(241 +F"(z+3/2) z:-s/z—h /20

FP

and

Z

t -1/2
FP ———————] =h
[ F(Z-HL) z= - 3/2

however { t” + tZ+1/2 } ___{ t_3/2 } :{ t” .

[ (z+1) i—'(z+1/2) 2= -3 M(-12) r(z+1) = -3
Thus when speaking of the finite part of a particular function care must
be used to show how it was calculated. In spite of this the notation
[FP (e, t)] will frequently be used in place of the more cumbersome
[FP (=, ‘t)] - when there is no possibility of confusion.

Definition 10, Let n be a positive integer and suppose

that 0= B =1,
i) Let o= -n-A and let the integrable function f be n
times differentiable at the point t. The quantities I_(f,t)

t
and FPI f(t—u)ud du are defined by the equation
o}

t t
Iu(f’ t) = FP[ f(t-u)u®du = lim [ f(t-w)yu® du + Q(e) (6)
(o) €

=0
where Q(e) is that unique linear combination of In e and

negative powers of ¢ which causes the limit on the right

hand side to exist.
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ii) Let the function m possess n derivatives each
continuous on [O,t]. Then for some continuous function g

m(u) _

n
u

i1
g/'\
oz
=)
5
]
o

t

on [O,t]. The quantity FPJ f(t-u @_L% du is defined
o

by the equation

ijtf(t_u) m(u) 4o :j tf(t-u) gﬁ%)du . Z ——JJFPJ' f(t-u)du

un+ﬁ n-kt+p8
whenever f is such that the integrals on the right exist.

The continuous function {tz } is an analytic operator function in the
. . . . 4 z+1 .
region Rez=> 0 and in this region } t™ } =["(z+1)h™ ~. The function

+1 . . . . :
r‘(z+1)hZ is an analytic operator function in any region

S :{z
n

Rez=-n, =z ;c/ —1, -2, oo, —n—l}. Thus, by Definition ¢,
rP tz] :l_'(erl)hZ+1 in any such region. In order to investigate the

relationship between the finite part of the convolution integral,

FPft f(t~u)u°‘udu, and the operator function [FP tzj , it is convenient

to in(’)troduce two new vector spaces. Denote by L>:< EFP tZ} that linear

subspace of F obtained by adjoining finite linear combinations of

r'(z+1)hz+1, z # -1, -2, ... , to that subspace of F which consists

of all locally integrable functions. Every element of L*[FP tz] is of
b z, +1

the form [g] =gt kzoﬁkr'(zk%-l)h k where g, is locally inte -~

grable, the 7, are distinct complex numbers, Re Zk< -1 for

k=0,1, ..., p, and none of the z, are negative integers. The ﬁk’s

are complex numbers. The value of p and of course the complex

numbers 'Bk and z), may be different for different elements of
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L*[FP tz] . The second linear space to be considered is the linear
space over the complex numbers of equivalence classes of functions
on (0, ) obtained by adjoining to Lﬂ< finite linear combinations of
{tz} with z # -1, -2, ... . This space will be denoted by L. (t%).

sk 1% 21
Each element of L (tZ) can be representedas g =g, + z )B {t 1\.}
1 =0 k

where g, ¢ L" and the restrictions on the z, areas in

L¥[rp 7.
It is easy to see that an element of La:[FP tz] )
P Zk+l
{g] =g + kZO ﬁkr(zk+l)h , is zero only if g, is zero and if
5k =0, k=0, ... p. Thus each element of L*[FP tz] has a unique

representation. Again, it is easy to show that an element of L (t%)

is zero only if g, = G anc'l‘lBk =0, 1, ..., p. Thus each element of

L (‘EZ) has a unique representation. It follows that the mapping of
L* [FP tz] onto L*(tz) defined by g==g, andr(z+l)hz+l*‘> t? is
a vector space isomorphism. In what follows the fact that a function
g is the image of an operator {g] under this isomorphism will
frequently be recognized by writing g = [g] .

Let f have n-1 absolutely continuous derivatives on [O,t]

and suppose ,5 # 0. Then Equation (6) can be transformed by inte-

gration by parts to yield

n-1 (k) t
L(6.1) = ¥ Fr(~°‘(;]+)1£+z)(ol ¢ Akl +ﬁf%§n—j%j ) (o) Pau. (1)

k=0

If each f(k) is locally absolutely continuous for k=0, 1, ..., n-1
and the isomorphism between L"‘{FP tZ] and L’P(tz) is utilized

Equation (7) can be written -
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1
1,(6) [ (at1) f(l<)(0)ho(+k+2 . f(n) pototl

filng

0

or

{ijt £(t-u)u® du} = £ (et +1)n®* T

{prt f(t-u)u® du} = f[FP t“] . (8)

Definition 9 does not yield a value for the operator function
[FP tzj when z = -n. In analogy to what has been done by Hadamard
(16) the value of the operator [FP tz] at z = -n will be defined by
means of residues. The operator function [FP tZ] has a simple p‘ole
at z = -n and the residue at z = -n is given by

lim (z+n)[FP tz] = Res[FP tz]

Z=w =13 Zi=-n

where the limit is taken in the sense of convergence in F. It is seen

that

n-1,-n
Res [FPtZ]: L — h
Z=-1n IS
The operators [FP tz] I will now be defined by the equation
Res EFPtZ]
Z . z zZ=-n
[FPt]Z:_n—llm [FPt ] - pr . (9)
zre -11
Evaluating this limit gives
_ -1 n-1 n
[FPtn]:i——l—— s {1nt+y } n=1, 2, (10)
[—'(n) n-1

1
where yO=O and Yn—1:1+%+'” +-;1-:1— when n=1. The
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operator function [FP £% ] as defined by Definition 9 and Equation (9)
is the same as that arrived at by Butzer although he utilized quite
different considerations.

If £ has n-1 absolutely continuous derivatives on [O,t] and
g=o, Equation (6) can be transformed by a rather lengthy integration
by parts to obtain

)k+1 1 n-1

n-2
_ [C(n-k-1)(-1
falfet) = }2;0 [ (n) (=)
(n-1)

n-1 pt
+ %_,—%15—[0 f(n)(t—u)lnudu + g—ri")(T)— Yn-1

f(k)(ﬁ) geonl g

f(n'l)(o) Int

oDy

where the Y,.1 are the same as those given in Equation (10).
To the space Lﬂ\(tz) adjoin all finite linear combinations of

(7] -

i, 2, ... and to L"‘[FP tz] adjoin the finite linear combi-
nations of [FP t-n] , n=1, 2, ..« . The cononical mapping which is
defined by gesg; for g, locally integrable and { £ }"""‘ [FP tZ]
for all z defines an isomorphism between these two vector spaces.

If in Equation (11) f and its first n-1 derivatives are locally abso-

. . . k-n+1 .

lutely continuous and if the functions § t are replaced by their

images [FP tk—nH" }

I__(f) = T};; fR) o) 75T 4 g g Lr—_,lg)—l {1 t}

Equation (11) can be written in operator notation

as

£)
-
il ,
O N
=
o}
1
.
]
[ g%
i
<
jm}
]
o
—
=
>
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Since for n= 2
Yn-k-2 " Yn-1 70

for any k=90, 1, ... , n-2, it follows that

-1
I__(f) = f[FPt ]
if and only if 5@y =0, k=0, 1,

«s , n-2. The results of

Equations (8) and (12) are summarized in the following theorem.

Theorem 6. Let &= -n-f8 where n>1 is an integer
(k) :

and 0= /-3 =}, Let f be locally absolutely continuous

for k=0, 1, ..., n-1, and let the functions {tz},

Rez= -1, be identified with the operators [FP tz] . Then

i) if B#£0

{prtf(t-u)u"‘du}z f[FPt‘*J

ii) if B =0

{prt f(t-u)u " du} = f{FP t'n]

if and only if f<k)(0) =0 when k=0, 1,
A restatement of Theorem 6 ii) is given by

Corollary 1. Let the conditions of Theorem 6 hold and

suppose that

t
g = FP] f(t-u) u M dul
o
then g = f[FP t_n] if and only if g is locally integrable.

Proof. Equation (11) shows that g e L if and only if {50y = 0 for

k=0,1, ..., n-2,
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3.4. Let {m(t)} be such that m(K) ¢ C for k=0, 1, ..., n. The

z

function {m is in Czl"(Sl)Cq: where S1 :{leez>-0}. Let
t

n-
g (t) =
o 1?50

then the operator function F(z) defined by

is such that

»)

z # -1, =2, ..., ~(n—1)}., Since for each t= 0, En——éi is an
t

when z e S; and F(z) ¢ C%(S F where Szz{leez>—n,

it follows by Definition § that

analytic function of z in SZ’

[Fp—l—)—J { r%— @E()J@[Fptkz] (13)
t k=0

7
¢ k

in SZ' When z = -1, -2, ... , ~(n-1) let[FP LB_QZ_IE)_} be defined by

means of residues. The following corollary to Theorem 6 is obtained

immediately.

Corollary 2. Let ®&=n+f where n® 1 is an integer and
O<,3<1. Let m(k) be in C* for k=0, ..o , n and

(k)
suppose that m(0) # 0. Let f be locally absolutely
continuous for k=0, 1, ... , n-1. If the functions
{tz } Rez= -1, are identified with the operators[FP tzj

then
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i) if B#0
t
pr f(t-w)m(u)u® dul = £ [FP 9%1} (14)
o t

whenever the lefthand side of the equation is defined
by Definition 8,

ii) if = 0 Equation (14) holds if and only if
%) =0, k=0, 1, ..., n-2. These deriva-

tives are zero at the origin if and only if the function

t
FPj f(t-u) M2 au b ois locally integrable.
o

Proof. From Definition 10 it is seen that

t g (t) n-1 (k) t )
pr £(t-u) m(w) g t-e{Z Ly Y m—,—@) FP| f(t-u)u %u |
ol o k!
o u t k=0 o]
Applying Theorem 6 to the above equation proves the corollary.

We specify m(0) # 0 in order to know the proper number of

derivatives to specify for m and f£.

3.4. Definition 3 tells how to form the integral with respect to a
parameter of an operator function. In order to get an analogue of

Theorem 2 in the case of divergent integrals we need the following

definition.
Definition 11. Suppose f(i C_ [O,L(_]F Take an
element a in c™ such that af(/x {O ] The

A
o X

integer, and O fﬁ =] is defined by

integral FP d/\ where d=n+@B, n=1 isan
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If the limit in the sense of convergence in F exists as

pr’u—fdl dA =§{pru—a-ﬁfl—’ﬂd ]

H—;oo then ‘u
FPJ’O i}‘dl"u}iooFPo AA‘*dA
We must show that FP[ —a—'—j—sa&;—(——l dl But

{af(/\,t)}e c_ [o,/l]c"‘ so that for each t= 0

n-1 k)
ath g = § o CIHEE 3 Ee gy A"
k=0
Where g is defined by the equation. But { C*,

k=0, 1, ..., n-1 and {g(k,t }e c[ Mc*. Thus

ijui—fﬁ—’—t—) aA = nil {(af)?:_,)@’il} pr T A U g, )a A

o

:a(igsi%@ypj; /\“k) {f‘ﬁ?d/\‘]

sk

and this is in C since (af)(k)(()) eC, k=0,1, ..., n-1 and

{g(l,t)}e C[O,,U]C*. Also, since

u 7Y ot f(k)'(o) K
ifo g/%i)d)t}:afo Wk A aA,

Aﬂ

where the last integral is defined by Definition 3, it is seen that the

value of

ij z&_ldxi

does not depend on a .

|
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The integral we have defined is linear in f(/\), that is, for

complex ,6 and /52

FP] ﬂlfl(k) o FP] Bat z(k f ﬂlfl(/\ + Boi ) aX

—FP Ao(

whenever two of the three integrals exist.

Theorem 7. Let o= z!:1+;ﬂ where n>1 is an integer and
Ofﬂ<1. Suppose that m(k)e Cﬂ‘ for k=0, 1, ... , n
then

FPL /\S—%‘)d)t [FP m—t%}]

Proof. Let {m(t)]= h. Suppose ﬂ = 0. Then

u -AS n -N\S n
FP] eli aA = s7t} pru%%—&—dlzr—?zn—i%lﬂ)

where
FPI“L———)—d/\ when u<t
FPI E—A—)-I—l— dA. when LL>t.
Thus,
n n-k-1
1fdy) = (-1)n'1(nt1nt+t kz_:z i‘—lr{%l—-(i)) U=t

which after some computation is seen to be

I(H,‘,t)::(-l)n'l n{tlnt “tEy gt ) L=t

%k 1’1—1
so that Ifl) ¢ C  for each u>0 and IfL)=e=(-1) nh{lnt+\(n_l} (F)

asu-boo. Thus
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FPLOO -e-k—-ﬂ—sdk =%—1-(L:);1— sn{lnt—t—yn_l}

which proves the theorem in the case m = h, ﬂ = 0.

When m = h, ,B # 0 the proof is similar. Since

m(& _ gn(l) + Iil m(k)'(O} Ak—O(
Ad Aﬂ =0 k!

g,(t)
where { na is locally integrable, Theorem 2 together with the
t

special case of Theorem 7 just proved shows that

FPfOOe_AS—r—n—j& dA = ) + El mo) [FPtk'“]

2 ¢ o K

and this is the statement of Theorem 7.

3.5. We give a short table of some operator functions which are

finite parts.
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TABLE CF FINITE PARTS OF FUNCTIONS

Region of
{f(z,t)J [FPe(z, 1) ] Validity
tZ_l Z
2] h all =z
& % [ (z+1)n2t! z # -1, -2,
-n (—l)n—1 s z = -n
{t =Ty {1nt+yn_1]
o n=1,2,
{tzlnt} (Y/(z+1)+s{1nyt})[FPtZ] z # -1, -2,
i -n } -n z = -n
t Ilnt (v, + s{lnt}) [FPt
n=1, 2,
1)n 2n
Jo(t) n=0 (n! )
t” tZ
n
1 n 2n-z
+ z (-1) [FPt ] Re(2n,-z)=> -3
Zn 2 1
n=0 277 (nt)
-Z2/4:t /‘
| ol o
t3;2 Z
1 1
Yo =0 yn_1=1+7+---+;1-fl— when n=> 1.
v = eC C=.577 is Euler's constant.
t
Vi - Cz)
=) = =y

Table 1
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The first entry in table one has been discussed in Section 3. 2.
The second entry has been discussed at length in Section 3.3. The
third entry consists of two cases. It is not difficult to verify that for
Rez >-1
{tz lnt} = (Y(z+1) + s{lny t})["‘(z+1)hz+1.
An application of Definition 10 gives the operator function [FP t*1n t]
everywhere except where 2z is a negative integer. Where z = -n

let the operators be defined by residues as follows

BR:e_sn [FP ‘cg lnt]

Z+n

- Z
[FPt nlnt] = lim [Fpt lnt] +

z*-1n
The entry in the table for [FP t Min t] gives the value of this limit.
It is shown in Mikusinski's book ((11) chapter VIII) that both
i\/; and ‘/-; are logarithms. Thus by Theorem 5 we know that
ezﬁ = eX‘/; e’ i\/; is an analytic operator function in every bounded

-zfs

function in every bounded region which does not contain the origin.

. 1 . .
region of the complex plane and thus 2 © is an analytic operator

In Mikusinski ((11) pp.221-2) it is shown that

e—zJ’s- e-x\/z- 1 —x2/4t2
= = e

z x \/Trt3

when z = x> 0. The function

{ 1 . —zz/4t2

3

™

for an

"Z\’S
e
Z

is in C% (Jarg z|= %) C" and since it is equal to

infinite number of z (all positive z) we know by Theorem 4i) that
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e—Z\/‘S_ B 1 e—zz/4t2
z B \/_1;-'(3

for larg z|<-4—.
1 —zz/4t2
is an entire function of =z;

For each t> 0, 3 e
Vn‘t

thus, by Definition 9 we have

s 2,2
e _ _lFp 1 oz /4t
T t3

in every bounded region of the complex plane which does not include

the origin, and this is the last statement in the table.
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Chapter 4

4.1. The inverses of several of the operators which represent finite
parts have been found by Butzer (7). If &= -n-8, 0= B=<1 and n

is a positive integer the operator

hn+ﬂ -1

- By (15)

[FPt“]_l

is a locally integrable function. The inverse of [FP t_l] = s{lnt} is

o ,u-l
f t dufwhich is also a locally integrable function. For n=>1
o

v T ()
n-1

-n] 1 n-1 @ tu_1
FPt = (1) [(n) ———— dup h n=1,2, ... (16)
[ ] '[O r'(u)dn_l

where ()(n_1 =vye n_l, and for n=1 these functions are locally

absolutely continuous. These facts enable one to find the inverse of
[Fp M]
A
t
(k) . o* -
Lemma 6. Suppose m e C when k=0,1, ..., n,
«=n+pB where 0= ﬁ < 1. Suppose that at least one of

the quantities m(k)(O), k=0,1, ... , n-1 is not zero.

-1
Then {FP r_n_‘(xﬂ] is a locally integrable function.
t

Proof. Let k, be the first integer such that m(kl)(O) # 0. From

1

section 3.4 we know that
n-1 (k)
oot - =B

where g, ¢ C . Let
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n-1 (k) -1
- m' '(0) k- 1
£ = (g + k=zl-'<1+l by [FPt ) )[FPt }
and

16 k [O}

Then f ¢ C>'< and B8 #0 is a scalar. We have
- -1
kl D(]

.

rp m(t) -1 _|FPt
¢ o - t+p8

o) ooy
The inverse of f +B is % ‘ZO (-1)" (—5 _ Z Llr?l-—l—

Since f € Ca< the last sum is likewise in C . Thus,

- - - -%11 © n mn
[Fp%%l] : =% [FPtkl “] 1+ [FPtkl ] g f-ﬁ—%l—

is locally integrable since it is the sum of a locally integrable function
and a continuous function.

The knowledge of the inverse operator functions allows one to
solve singular integral equations involving the finite part of the convo-

lution integral.

Lemma 7. Suppose o= -n-8, n is a positive integer,
0= P =<1, t=0, and f possesses n derivatives at the

point t.. Then

i) if /3710

t n t
o _Meoe+1) d u u—ﬁ u
FP—[O f(t-u) u” du = & 1'/5) ——-—dtn _[O f(t-u) du, (17)

ii) if B=0

FP]tf(t ) U%—r f (t-u)(y,_ +lnu)du. (18)
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Proof. The proof of this is given by Bureau in reference (6).

In certain cases an operator function which is not a function can
be said to be equal to a function on a particular subinterval of [O, 00).
For the following definition see Erdélyi (12), Appendix, or Mikusifiski

(11) Part VI, Chapter III.

sk
Definition 12. Let there be an n such that WfecC .

Suppose that g = nf is locally integrable and the function
g is n times differentiable on the open interval (a,b).
Then the operator f is said to be equal on (a,b) to g(n).

This is written

t1) = ¢ ™y) on (a,b).

The following lemma in the case of non-integer K is an exercise in

Erdélyi (12) p. 133. For & a negative integer the proof follows

easily from Lemma 7 ii).

Lemma 8. Suppose that

FPI[t f(t-u) u® du = gl(t) : on (0, m)
o
and
f[FPt“] = g,
In the sense of Definition 12

gz(t) = gl(t) on (O,OO)'

It can now be seen how to use operators in order to solve singu-

lar integral equations.
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Theorem 8. Let &= -n-pB8, where 0= ﬂ<1, and n is
a positive integer. A necessary and sufficient condition that

there exist a function f such that
t
FPJ' f(t-u) u® du = g(t) all t= 0 (19)
0

is that both of the following conditions be satisfied:
i} g 1is the n™® derivative on (0,00) of afunction k
which is locally integrable;
ii) the operator snk[FPtd] -1 is a locally integrable
function which is n times differentiable at each point of
the interval (0, 00).

If conditions i) and ii) are satisfied all of the solutions

to Equation (19) are given by

f=f +£ (20)
where

6 = "K[FPe*] (o) on (0, o)

and fo is any function such that

f(0) = ((a + s+ -+ s H[FPeX] 0 on(0,m) (21)

o

where the o(i's are complex numbers. The functions are

equal to the operators in the sense of Definition 12.

Proof. First we show that the set of all solutions to the homogeneous

equation t
FPJ’ f(t-u)u®du = 0 all t=> 0
(o]

is given by Equation (21).
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Let f be a solution to the homogeneous equation. By Lemma 8
the operator f[FP t“] is zero on the interval (0, ) and thus is a
polynomial in s. We have

£ = [Fpt‘*]_l | f 4 )
k=

for some integer p. f must be at least locally integrable in order
that FP]t f(t-u) u® du exist according to Definition 10. If f is
locally in‘?egrable it must be that p=<n-1. Thus every solution to the
homogeneous equation must be of the form given in Equation (21).

From Equations (15) and (16) it is seen that the operator specified
in Equation (21) is indeed a locally integrable function which is infi-
nitely differentiable for each positive t. Thus FP] tfo(t—u) u® du

o

is defined by Definition 10 for each positive t. The operator function
a] ! i
fO[FPt ] = Z O(i s is equal to zero on (0, c0) in the sense of
0

Definition 12. Thus by Lemma 8
t
FPj fo(t-u) u® du = 0 all t= 0.
o

Thus we have proved that the set of all solutions to the homoge-
nous equation is given by Equation (21). Let f be any solution to
Equation (19). A function f is then a solution to Equation (19) if and
only if f=7f+ fo where fo is a solution to the homogeneous equation.
Thus, if there is one solution we can find all the solutions. We will
now show that conditions i) and ii) together are necessary and suf-
ficient‘conditions in order that there exist one solution to Equation (19).

Suppose that i) and ii) are satisfied. Let f; = snk[FPt“]‘l.

t

Since fl is n times differentiable the integral FPI fl(t-u)u“du
o
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exists for each t= 0. Define g by

t
pr £,(t-u) u® du = g, (t) all t=> 0.
(o]
Since

fl[FPtq ] = s"k,

it is seen by Lemma 8 that s k(t) = gl(t) on (0, ) in the sense of
Definition 12. But s k(t) = g(t) on (0, ) so that
gt) = g (1) all t=0.
Thus f1 is a solution to Equation (19).
On the other hand if Equation (19) has a solution, Lemma 7 shows

that i) is satisfied, that is g(t) = k(n)(t) for each t=>0 for some

locally integrable function k; this solution f is such that

f[FPtd] =g,

for some operator g, and
n
g,(6) = k™))
on (0,00) in the sense of Definition 12. Thus

4 @wh g = kP
dt

at each point of (0, ). Solving this differential equation we get

n
n r
hgz—k+z o(n_rh.

Ir=

et

Thus

and
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n-1
gZ[FPt"‘] L. snk[FPt“]‘l = f - snk[FPt“] (Y drsr)[FPt“]‘l,
0
f satisfies Equation (20) and the right hand side of the above equation
satisfies the homogeneous equation, thus the operator snk[FP 1:"(]_1
satisfies condition ii) and Equation (19). This completes the proof of
the theorem.

These same methods may be used to solve singular convolution

mit
tn+,B

equations where the convolution involves {——-ﬁ—l} rather than i nJlrﬁ] .
t
The fact that the operator {FP @%t-)-] can be expressed in terms of
t

k—d‘] by the representation

the operators [ FPt¢

n-1 ‘
[FP —%t-)—] =g, kZO _YE(_k_)lQl [Fptk'd‘] (22)

k!

allows us to state a lemma analogous to Lemmas 7 and 8 but involving

[FP r_n_g;l] rather than [FP t“],
t

Lemma 9. Let X=n+ B where n isa positive integer
and 0= B=<1. Let m have n derivatives each of which
is in C*. Suppose m(0) 7—‘ 0. Then if the locally integrable
function f is n times differentiable on (0, o)
t
FP] £(t-u) ‘—nlﬁ) du = k(n)(t) t>0
o

u

where k is a locally integrable function. The operator
f Fpm =g
t
is such that
e(t) = K%y) on (0, )

in the sense of Definition 12.
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Proof. Express [FP g}] in the form (22) and apply Lemmas 7 and 8.
t

The requirement that m(0) be non-zero is made only in order to

know the number of derivatives to require of m.

Theorem 9. Let & and the function m be as in Lemma 9.
A necessary and sufficient condition that there exist a solution

f to the equation
t m(t)
FPf f(t-u) du = g(t) all t=0
o

is that both of the following conditions be satisfied:
i) g is the nth derivative on (0, ®) of a locally integrable

function k;

ok

-1
ii) the operator s k[FP M] is a locally integrable
t

function which is n times differentiable on (0, co).

Every solution is of the form
f = £, + fo
-1 :
where fl(t) = (snk[FP—@—%)] )(t) on (0,00) and f, isa
t .

solution to the homogeneous equation

t
FP] £(t-u) m(t) 4, -0 all t=0.
o t“

Proof. The proof is essentially the same as the proof of Theorem 7

and will not be given again.

t
times differentiable on (0, 00) there will be non-zero solutions to the

-1
By Lemma 6 | FP _n’_%.%l] is locally integrable and if itis n

-1
homogeneous equation. The functions f = Q(O[FP M] with O(O
t
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a complex number are such that

f[FP@t—(&Q] =«

(o]

and the operator o(o is equal to zero on (0, ) in the sense of Defi-
nition 12. Thus by Lemma 9 these functions satisfy the homogeneous
equation. The dimension of the vector space of solutions to the homoge-
neous equation in dependent on the order to which m' vanishes at the
origin. If m'(0) # 0 the dimension will be one. As we have seen
(n—l)(o)

when m =h (i.e. m'0), ... , m = 0) the dimension is n.

4.2. The results discussed in the preceding section will be applied in

this section to solve the particular singular integral equation

t Jo(u)
FPI f(t-u) —— du = g(t) all t=> 0.
o

Here JO is the Bessel function of the first kind and of order zero.
The operator r = 52+1 is defined by the power series ex-

pansion of (sz-l- 1)1/2, and from Mikusifiski (11) p. 456 it is known that

(r - )% :{ZTH Jzn(t)} n=1l, 2, .4

where JZn is the Bessel function of order 2n. In the remainder of
this section we shall use the symbol r to denote sz+ 1 and the

2 . .
symbol P to denote z +1 where z isa complex number. If a is

a locally integrable function which has a Laplace transform we shall

©
denote its Laplace transform, f e 2t a(t) dt, by a(z).
o

Lemma 10,
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ii) Let a be the locally integrable function

Jo(t) -1
FP 3 . We have

when Rez > 0

Proof.

i) It is shown in Erdélyi (17) p. 26 that

Thus

¥*

x)
and the series is convergent (C ) since (r-s) ¢ C . Thus

Jo(t)—l 2
{ " =1ln(l -(r-s)7) =1n2s (r-s)

T (t) J -1
[FP —‘Z——] = {—Oﬁ?———} + [FPt‘l]

In 2s (r-s) - Inys

i

2
In = (r -
nl (o)
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which proves i).
proves 5 (6] T () -
ii) Let a = [ 2 ] , ={—-—T——-— , and

b
c = [FPt { f r't } From the proof of Lemma 6

we know that

c n n
a=1+cb-c+cz )(cb)

n=1

The function c possesses a Laplace transform (Erdélyi (18) p. 251,
Eq. (11)); thus if the sum on the right (which represents a continuous
function) is exponentially bounded a possesses a Laplace transform.
We will first show this sum to be exponentially bounded.

Since lJO(t) l < 1 forall t and be C* there is a constant B
such that |b|(t) < B for all t> 0. Since c(t) is positive for t=> 0

t ‘ t
leb|(t) = Bj c(§)dg = B[ f __g__ du d&.
- o oJo [(u)y

0 gu—l
du converges uniformly on each interval

The integralf "
o [Mwy

0=<f=t so that

ff l_' S _auat fjrg(zl dgdu_f l“(u+1 —t 4u.

This is a well known function U(%), and from Erdélyi (19) p. 219

¢ o) u
Ofy(v) =f ———t——uduf_et/Y t=> 0.
o [M(u)y
Thus
leb () < B Y, >0

and
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1
foe) n n-1 YB+ t

Bt et/\/___Bey

Y feb (t) = P W

n=1

Thus the function a possesses a Laplace transform.

In order to evaluate a(z) we note that To(z = /-é- and the Laplace

11 J (t) -1
transform of {Jo(t) - 1} is "z Since b = —

J (t
Thus the transform of h[FP——O—] = hb + {lnt} is

T
T,0E) 1 . 2z  layz _ 1. 2
h[FP 2 ] (z) = = In 235 - 12 - z s (p-a)
Now
B T (0 T () _ !
a(z)h[FP T }(z) = ah [FP T ](z) = h(z) = —~ Rez=>0
and we have
a(z) = ——2—1—— Rez=> 0
ln—Y— (Io-z)

which proves ii).

J (t) ] -1
A more explcit representation of [FP Ot ] can be obtained
from the inversion formula for Laplace transforms. To get con-

vergence of the integral which occurs we will use the representation

J (t) ] -1
for hZ[FP ° } . Thus

t
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whenever c= 0.
We already know that a necessary and sufficient condition that

the equation

t J (u)
FPf £(t-u) ?1 du = g(t) all t=>0 (23)

possess a solution is that both the following conditions hold: i) there is

a locally integrable function k which is differentiable on (0, ) and

Jo(t)7-!
is such that k(t) = g(t) for all t=> 0, andii) s [FP i( )] k is

locally integrable and differentiable on (0, o).

Corollary 3. Let the conditions i) and ii) hold. Let k be

as specified in i), let ¢=>0 and

2 c+ioo zt
a(t) = S5 L e dz all t= 0.
at” 2™ )i Z21nl (p-z)
v P

A necessary and sufficient condition that f be a solution

to Equation (23) is that for some complex number do

f(t) = (ak)'(t) + o a(t) all t= 0.
Jo(t) -1
Proof. Since [FP c = ia(t)} it follows from Corollary 3 that

{f(t)} satisfies Equation (23). It only remains to show that the so-
lutions to the homogeneous equation form a vector space of exactly one

dimension. The function

1
i—-————JOth ik } + [FPt'l]

-171-1
is the sum of a locally integrable function [FPt 1] and an infinite

a =

: . . -1y -1
series which represents a continuous function. Since [FPt ]
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(o) tu-—l 0
= f — du p is discontinuous at the origin, s a is nota -
o [M(u) v

function for any n=>1, and the only solutions to the homogeneous

equation are scalar multiples of a.
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Chapter 5

5.1. The main applications of the finite part of divergent integrals
occur in solving partial differential equations. Besides the finite part
of divergent integrals another useful concept which is closely related to
the finite part of divergent integrals occurs in partial differential

equations. If f possesses n derivatives at a point t the logarithmic

t
part of the divergent convolution integral f ﬂtn—_u)_ du i§ defined to be
o u

f<n_1)(t). Thus the logarithmic part of this integral (written
t

n

n
f(t-u) . . .
LP du) is the negative of the residue at z = -n of
o u

. .

FPI f(t-u) u? du. From section 3.3 it is known that the Res [FP tz]
o z=-n

. (-7 n-1 . . . .

is s . We will define the negative of this operator to be

[Lt_n] and combine the finite part and logarithmic part of an operator

function in what we will call the improper part of {tz}.

Definition 13. Let n be a positive integer. The operator

n .
[LP t‘n] is defined to be %;,71%17 st when n=1, 2,

The operator function which will be called the improper

part of {tZ] is defined by

[Ptz] = [FPtZ] when z;f -1, -2, ...
[Ptz] = [LPtZ] when z = -1, -2, ... .

t
When f is such that LPf ﬁt—_nlﬁdu is defined for some
o u

positive n and all t= 0 the operator f[LP t_n] is equal to this

integral on the interval (0, c0) in the sense of Definition 12. If f has
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n - 1 locally absolutely continuous derivatives and f(k)(O) =0 for

t
k=0,1, ..., n-2 the function LPf ﬂi;l—u—)—du is in ¥, 1in fact
o u
it is in C P, and is equal to the operator f[LP ¢
5.2. Let
2
2 E 5%y
x = (Xl’ . Xp) v U(x,t) = Z Z(x, t)
1=1 0O0x
i
8T , . 2y
Ut(x, 0) = 5t t(x,’t) Utt(x’ t) = -—51:—2— (x,t).
t =

The statement of the Cauchy problem for the wave equation in a half
space is as follows: to find a function {U(x, t)} on the half space

EP ¥ I such that

VUl ) = Uyl t) U(x, 0) = £(x) Ux0) = g(x).  (24)

The solution to the system

VoV 1) = v (x1) V(x, 0) = £(x) V,(x,0) = 0
can be found from the solution to the system

VoW t) = W (1) W(x0 =0  W(x0)=£x)

and is in fact V(x,t) = ég—Z(x, t), as is easily verified. Thus we shall

only be concerned with the special case in which U(x, 0) = f(x) = 0.
Since the cases p =1 and p =2 do not give rise to divergent inte-
grals we shall only be concerned with the case in which p 1is greater
than 2.‘

For the remainder of this chapter k shall denote the integral

part of B}z If g(x) is k times differentiable in EP the solution
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to our problem can be expressed in terms of the improper part of a
divergent convolution integral. This solution is given by F. Bureau

in (4) pp. 154-7 to be

p-1
t WP
U(x,t) = Ap(prf gl x, u)up—l(tz-uz) 2 du (25)
o
where (
k-2 '
(-1) F(P‘l)
— for p even
) 73
A= ﬁ
k-2
(-1) (p—l)
for p odd,
Zﬁk—Z ,—' 2
\
5 P/2

and o = is the surface area of the unit sphere in Ep, and
p rﬂp725 P

— 1
glx, t) = — _[ g(x+tn) dwp
W

is the mean value of g(x) on a sphere with center x and radius t.
A typical point in this sphere is x+trn where 7 is a point in the unit
sphere.

The improper integral in Equation (25) is not of the convolution
type, however Equation (25) can be written as

¢ p-2 p-1

A o = i A
— 2 2
U(x,ﬁ) = __%l Pf g( x,\/:i) u (t-u) du (251)
o

and the improper integral involved in Equation (25') is of the convo-
lution type.

We shall now consider the transformations which arise in solving
the Cauchy problem for the wave equation. From now on the symbol

EP will be omitted when speaking of spaces of functions on EP and

we shall merely say C, Ck’ CkC#, etc. when speaking of C(Ep),



54

Ck(Ep), Ck(Ep)C*, vetc. If AcB and B is a topological space then
B induces a topology on A. We shall always denote by A € B the
set A endowed with the topology induced by B and willdistinguish
this if necessary from the space A. Thus Ckc. C 1is a subspace of
C but Ck is the space described in Chapter 2.

We shall use a symbol T, Tl’ ... , etc. to represent a mapping
of one set into another. Then the transformation of a space A into a
space C 1is continuous or not continuous depending on the topologies
of A and C. Thus T|A—=C and TlAc B~ C<D are the same
mappings of the set A into the set C but different transformations
since A and A < B are different spaces asare C and C «D.

The transformation T g(x) = U(x) = {U(x, t)} defined by quation
(25') is a transformation on C, to CZC*' T is a composition of two
transformations.

T =T, T,. (26)

where

is such that

and

is such that

Also let
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be such that fE-Z
1 2
T g(x) = — t g(x+tn) da,
p @p

Theorem 10.  The transformation T le~>CZ C* defined

by Equation (26) is continuous.

Proof.

i) It is trivial to show T, 1is continuous.

ii) Let R-2
T g(x) ={—F— J glxhftn) dooy
P

Since g is in Ck’ differentiation with respect to x may be carried
out under the integral sign. Suppose that gr(x) is a sequence in C,

and gr(X)—>g(X) (Ck) as r—-e00. When lxlfn

| D™ (g, ) - )| (9 =t = J|D™(g, Genfo) - gletfEn)) [,
@
P

p-2
|71, ) - | (=t || -t ||
Since n>1 and p=> 2, when tfn we have

p-2

|| Tole, (-2 [ =n ® {leg -2 || 3, »

where the semi-norm on the left is on C C~ and the semi-norm on

k
the right is on C,. Thus Togr(x)-DTog(x) (CkC‘) and T isa
continuous transformation on Ck to CkC>I:.

iii) To show that T1 is continuous we will show its graph is

closed and apply Theorem 1.
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Suppose

and

as r—=oo0. Let k; =k-3. Since gr(x) e Cp o

E'Z
L ft 2 g(x+Vin) do
P&y P

can be differentiated at least kl times with respect to t under the

integral sign and all these derivatives are zero at t = 0. Thus

A w t _p_?:_l__
T, g.(x) = ——%——P—{Pfo (T, g,.(x) () (t-u) du
e p-3
T g.(x) = B, s T g.(x)

where Bp is a complex number. Since gr(x)—>g(x) (Ck) as n-—e 00

and TO is continuous we have

T g (x)=T_glx) (C C")



or

Thus T = TZTl is the composition of two continuous mappings and

so is continuous.

5.3. We would like to increase the size of the class of functions with
which a solution to the wave equation can be associated. One way to

do this might be as follows.

o,

Let Dk = {sk gigeC } This is a subspace of F. There is

a unigue extension of the transformation.
< sk
Tlick C-D’CZC CCZF

to a transformation

k

A ,
Tll C-e= CD «CF

which is continuous in the sense that it transforms convergent sequences

into convergent sequences. This extension is given by
p-3
2

Lex) = BT T, el

A
T

where ﬂp and To are as in the proof of Theorem 10. If we could

cD5= ¢ DX which

AN
find an extension of TZ to a transform #ion TZ
takes convergent sequences into convergent sequences we could extend

A A A . A
T = TZTI to a transformation T = TZTI with domain C and T

would be continuous in the sense of taking convergent sequences into

convergent sequences. Unfortunately, there exists no such extension
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for TZ’ since there are sequences which are convergent in C <« F

which are transformed by T, into divergent sequences in C < F.

Example. Let fn :{n3/2 e_th- } Then fne C* for n=1, 2,
and f ~=0 (F) as n-s=co. However, the sequence T,f = {nB/Z e_nt}
diverges in F.

In view of this we settle for extending T to a closed transfor-

mation whose domain is contained in C and whose range is contained

in C C>I<.

Let p-3 p-2
W = 4g(x) |g(x) € C, s 2 {g(x,‘[t‘)t 2 e cc
Let
N
T ‘WCC"PC C

be defined by

Al
T

p elx) = ﬁp s ° {E(X’ft_) = (27)

where ,ﬁp is as in the proof of Theorem 10. Define

A sk
TIWgC—=C C

by

A A
T = T

T2 1

(27")

A
The domain W of T contains Ck and thus W 1is dense in C.

However, in the next theorem we show that any g(x) ¢ C for which

there is a sequence gn(x) in W such that

g (x)=g(x) (C)
and

T g _(x)—=V(x) (CC)

as n—e> 0o is in factin W and we have T g(x) = V(x).
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A ok
Theorem 11. Let the transformation TlW CC~==(C C be

defined by Equation (27'). The set {(g(x), Tg(x)) ,g(x) € W}

is closedin C xC C .

Proof. Suppose gn(x) e W, n=1,2, ..., gn(x)-—>g(x) (C) and
A b
Tgn(x)—na\/'(x) (CC) as n—eo . We will show that g(x) ¢ W and
A ,
Tg(x) = V(x).

The transformation T, !C Clee=C c’ given by TZ{U(X,’C)}

= {U(x,tz)} has a unique two-sided inverse T, . Itis such that

TZ {U(X’t)] = {U(X,\[E)} In the semi-norms on C Cs'<

[rz 009 ||, = o |
n
and
\T'l U(x) H - “U(X) H
2 n — n
for n=1, 2, ... . Thus not only T2 but also T;l is continuous.
A E3 - A
Since Tgn(x)—-@V(X) (CC) as n—e=oo we have, also, Tlegn(x)
-1 sk
=T, V(x) (CC ) as n=e 0. -3
. : A 2
Since the gn(x) are in W, T, gn(x) = ﬂp S (Togn(x)) where

/Bp and T _ are as in the proof of Theorem 10. Since gn(x)—avg(x) (C)

as n=-=00, we have Togn(x)“’TO g(x) (C C>F) as n-e 0. Thus,
-3

VA EZ_. A

T, gn(x)—‘>,6p S (To g(x)) (C F) as n—eoo. Since T, gn(x)

-3
-1 'ET 1

->T2 V(x) (C C*) as n-e00 we have ﬁp S (Tog(X)) - Té

is in (C Cﬂ<). Thus by the definition of W we have g(x) ¢ W and by

A -1

A
the definition of T; we have T, g(x) = T,

V(x)

AN
V(x) or Tg(x) = V(x).

This proves the theorem.

5.4. A function U(x) e C C~ which is the image under T of a
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function g(x) in C will be called a generalized wave function for the

boundary value g(x).

Theorem 12. If U(x) is a generalized wave function for

the boundary value g(x) then Ut(x,G) exists and
i) U(x,0) =0

ii) Ut(x, 0) = g(x).

Proof. Suppose p =2m+4 is even. Let V(x) = Tél U(x). Then

and
1 /2§ — 1

hm+ V(x) = pr h /2 { g(x,ﬁ) ’(:1m+ }

or
t , 2 2m t —
(t7-u") wV(x uZ) dy = /gp g(x, u) L2mt3
3 - du..
fo (1) U2 J, ()

Thus

du

t 2 2\m ﬁ r(m+1) t )+ ol 3
jo (t7-u")" uU(x,u) du = —p‘[:(_lTZTf g(z)_:Z)(l/)2 2mt

o (t

5 (m+1) B(m+1. 1/2) "
B - R CORT O

ﬁpr(m-H) B(m+1, 1/2)

as t* 0. If we let I"‘(I/Z) = Ep we have
t
j (tz-uz)m 1 U(x, u) du
t2m+3 = ﬁp (g(x) t 0(1)) .

The right hand side of the above equation tends to ﬁpg(x} as t== 0 and

thus the left hand side must also. The integral in the numerator on
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the left is at least m+ 1 times continuously differentiable with respect
to t even if U(x) is only continuous. Upon applying L'Hospital's

rule m+1 times we find

UG t) o go(x)

as t==0. Thus U(x,t)=*0 as t-=0 and since {U(x,t)} isin C C

we have

and also

U<X, t)

as t—=0.

When p = 2m+3 is odd the proof is similar but less difficult.
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