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Abstract

In Part 1 of this thesis, we propose that biochemical cooperativity is a funda-

mentally non-ideal process. We show quantal effects underlying biochemical coop-

erativity and highlight apparent ergodic breaking at small volumes. The apparent

ergodic breaking manifests itself in a divergence of deterministic and stochastic

models. We further predict that this divergence of deterministic and stochastic

results is a failure of the deterministic methods rather than an issue of stochastic

simulations.

Ergodic breaking at small volumes may allow these molecular complexes to

function as switches to a greater degree than has previously been shown. We

propose that this ergodic breaking is a phenomenon that the synapse might ex-

ploit to differentiate Ca2+ signaling that would lead to either the strengthening or

weakening of a synapse. Techniques such as lattice-based statistics and rule-based

modeling are tools that allow us to directly confront this non-ideality. A natural

next step to understanding the chemical physics that underlies these processes is

to consider in silico specifically atomistic simulation methods that might augment

our modeling efforts.

In the second part of this thesis, we use evolutionary algorithms to optimize



v

in silico methods that might be used to describe biochemical processes at the sub-

cellular and molecular levels. While we have applied evolutionary algorithms to

several methods, this thesis will focus on the optimization of charge equilibration

methods. Accurate charges are essential to understanding the electrostatic interac-

tions that are involved in ligand binding, as frequently discussed in the first part

of this thesis.
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Chapter 1

Motivation for the Use of Quantal
Effectors in Chemical Reaction
Networks

1.1 My Historical Interest in Stochastic Modeling

My motivation for the work contained in Part I of my thesis started before I

matriculated at Caltech. I spent two years studying stochastic chemical reaction

networks under the late Dr. Joel Stiles at the Pittsburgh Supercomputing Cen-

ter. Joel was a co-author of a software package used to perform particle-based

reaction-diffusion simulations of biochemical systems in arbitrarily complex three-

dimensional space. Joel called this “Microphysiology.”

Much of my PhD has been spent developing methods in computational chem-

istry. As an undergraduate, I began working with a simulation package called

MCell, a stochastic reaction-diffusion simulation package. I transitioned into de-

veloping methods of stochastic simulation and optimization that will be discussed

later in Part II of this thesis.

My Historical Interest in Stochastic Modeling



3

1.2 Simulating More Than Quintillion States of Macro-

molecular States on a Personal Computer

An early project that I worked on involved modeling a ”full-state” model of

calcium / calmodulin / calcium calmodulin kinase II. This model, as conceived,

contained more than 1019 states and was the most complex (high number of states

vs. the number of molecular constituents) proposed model of a biochemical sys-

tem that I was aware of. I devised of a method to model it that is similar to past

methods applied to hemoglobin. I initially implemented this method as a wrap-

per around MCell, a reaction diffusion simulating code. I treated the system as if

hemoglobin were in a lattice, and I manipulated reaction rates as a function of the

states of the other subunits. The rate law for the nodes of the lattice is a function

of the occupation of the subunits of CaMKII’s neighbours. This is analogous to the

”lattice-based” methods of Terrance L. Hill and other theoretical chemists.

In the process of building these models of Ca/CaM/CaMKII, I became aware

that other modelers were doing something similar to what theoretical chemists had

done in the past, but without explicitly building upon their work. “Rule-based

modeling” has reformulated a solution to patch-up the problem of combinatorial

explosions without addressing its cause, our formulation of solutions. I will ad-

dress the fact that we are growing out of the simplistic description of chemical reac-

tion networks that mass-action requires. This is the impetus to develop a language

to explicitly describe chemical reactions that are governed by non-ideal interac-

Simulating More Than Quintillion States of Macromolecular States on a Personal
Computer
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tions as quantal chemical reactions. We need to develop a more general language

and understanding of quantal chemical interactions that is not domain-specific, or

taught only to graduate level chemists, physicists, or computer scientists.

1.3 Overview of Part I

In Chapter 2 of this thesis, I will review our recent standard treatments of chem-

ical reaction networks. In Chapter 3, I will then draw similarities between the use

of lattice statistics and rule-based modeling for the simulation of biochemical sys-

tems.

In Chapter 4 I will discuss a biological system where our later findings might

provide useful insight.

In Chapter 5, I will review the computational methods that I use that should be

accessible to undergraduate students. I will also propose that we should not look

toward differential methods as a reference point by which to base the validity of

the use of stochastic models to represent systems that are inherently stochastic.

In the following chapters, I will present several case studies that give insight

into a general treatment of non-ideal systems. When possible, I will refer to fea-

tures that are analogous to other formulations. In the first case, the pH-dependent

protonation of the zwitterion of glycine is modeled, and the various solutions are

compared.

In the second case, the complexation of four dioxygen molecules by hemoglobin

is modeled in an effort to account for the apparent cooperative relationship, or the

Overview of Part I
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enhanced binding affinity with respect to the successive uptake of oxygen, that is

observed experimentally between the four different subunits of the hemoglobin

molecule. In the third case, I will lay out the foundation for building “toy models”

of calcium (Ca2+), calmodulin (CaM), and calcium-calmodulin kinase II (CaMKII).

I will subsequently refer to these as Ca2+ / CaM / CaMKII models as they were

the impetus for the other case studies. I first witnessed the quantal effects of coop-

erativity when modeling a system of Ca2+ / CaM / CaMKII. I initially described it

in a candidacy report that I wrote in the beginning of 2009.

Overview of Part I
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Chapter 2

Introduction to Rate Theory

The idea of a rate constant is a misconception. Enzymes can catalyze reac-

tions after association with their substrate. The association of a non-competitive

inhibitor, often distal to an active-site of a protein, can decrease the reaction rate

of that protein. Even the state of local subunits of a macromolecule may affect the

reactivity of other subunits. Though it is glossed over, this phenomena is non-ideal

and bound by those consequences. In this portion of my thesis, we will develop the

idea of quantal effectors as they apply to cooperative chemical reactions. The ma-

jor proposition of this work is that although we can model large systems with the

equivalent of many quadrillion states, we are still bound by the fact that we are

modeling quantal effects.

In collision theory of gas-phase kinetics, there is the assumption that in a dilute

gaseous environment, the propensity for the collision or association of an A-B pair

to result in a reaction is not affected by the existence of other non-reacting elements.

At the same time, it states that the rate of this reaction is governed by Ae
EA
RT . In

biochemistry, EA is known to be affected at times by non-reacting molecules (for

example, neighboring subunits in a macromolecular complex). Transition state

Introduction to Rate Theory
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theory deals with this complication by including the addition of a non-reacting

effector in another reaction, thereby allowing a reaction to proceed with a different

EA.

We circumvent the assumption that reactants cannot be affected by non-reactants

by including the various combinations that might affect a reaction rate explicitly.

Alternatively, instead of explicitly stating each and every combination that might

affect a reaction rate, we implement reaction-rate functions, such as the Arrhenius

equation or a “rule-based modeling” type of relationship.

2.1 Chemical Reaction Theory

2.1.1 Mass-Action

For a detailed account of the history of the law of mass action see Lund [1965].

Rate of Reaction ∝ k[A][B]

where k is the reaction rate constant, [A] is the concentration of one reactant, and

[B] is the concentration of another reactant in a bimolecular reaction.

The following relationship is relevant and can be found in MacQueen [1967].

Chemical Reaction Theory
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∆Gθ = −RT logeK (2.1)

∆Gθ = ∆Hθ − T∆Sθ (2.2)

K = exp

(
−∆Gθ

RT

)
= exp

−∆Hθ

RT
exp

∆Sθ

R
(2.3)

The particulars of the function are not as important as gaining an appreciation for

the form of the function (for further details see Wright [2004]).

Chemical reactions have been described thermodynamically using Maxwell-

Boltzmann statistics for more that a century. Maxwell-Boltzmann statistics are de-

rived from the theory that reactions can be broken up into specific classes and

described by the stoichiometry or the order of the reaction Gillespie [1976].

• For example:

– Zero Reactants / Zeroth-Order Reaction / “Birth Processes”

∗ → reaction products

rate = k.

– One Reactant / First-Order Reaction/ “Unimolecular Processes”

Sj → reaction products

rate = k[Sj].

Chemical Reaction Theory
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– Two Reactants / Second-Order Reaction/ “Bimolecular Processes”

Sj + Sk → reaction products(j 6= k)

rate = k[Sj][Sk]

2Sj → reaction products

rate = k[Sj]
2.

– Three Reactants / Third-Order Reaction/ “Termolecular Processes”

Si + Sj + Sk → reaction products(i 6= j 6= k)

rate = k[Si][Sj][Sk]

Sj + 2Sk → reaction products(j 6= k)

rate = k[Sj][Sk]
2

3Sj → reaction products

rate = k[Sj]
3.

While higher-order reactions are theoretically possible, we typically consider

reactions to be decomposable into zero-, first-, or second-order processes. The the-

ory behind this is that it is improbable for more than two independently diffusing

particles to interact or collide with one another at the exact same time. For indepen-

Chemical Reaction Theory
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dently diffusing particles, this is most likely true. In the case of macromolecules,

reactive units tend to diffuse together.

Various updates that have been made to the initial theories have brought us

closer to modeling the physical realities of chemical systems.

2.1.2 Rate Theories Derived From Mass-Action

Consider the following equation to represent the general form for a reaction

rate function.

k = (pEF )e
−E
RT (2.4)

k = (pEF )e
−(E1+E2)

RT

k = (pEF )e
−∆H
RT e

∆S
R

Equation 2.4 has components pEF , E, R, T , ∆H, and ∆S, which equal the pre-

exponential factor, energy, a gas constant, temperature, change in enthalpy, and

change in entropy, respectively. The form of this function is seen in the Arrhenius

equation, collision theory, and transition state theory.

ln k = −(
Ea
RT

) + lnA

k = Ae(−
Ea
RT

) (Arrhenius equations)

Chemical Reaction Theory
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k = pZe(−
Ea
RT

)

k = PrZe
(− Ea

RT
) (Collision theory)

k = κ
kT

h

Q6=∗

QxQyz
e(−

E0
RT

) (Transition state theory)

2.2 “Reaction Rate Constants” and Non-Ideal Reactions

Above, I use quotes when discussing rate constants because the term is a mis-

nomer and interferes with our ability to talk about non-ideal reactions in a more

general context. Reaction rates are not always constant and should be thought of

as functions that are affected by both macroscopic factors and microscopic factors,

akin to extrinsic and intrinsic properties of systems.

The most famous rate function is the Arrhenius equation:

k = Ae
−Ea
RT (2.5)

where k is the reaction rate constant, A is a pre-exponential term, EA is the energy

of activation, R is the gas constant, and T is the temperature. The Arrhenius equa-

tion treats the rate of the reaction as a function of temperature and can be thought

of as a reaction rate equation or as a “rule” that describes the relationship of rate

and temperature. “Rule” is a term coined in rule-based modeling while “reaction

rate equation” is a more descriptive term. Typically, chemists do not implement

“Reaction Rate Constants” and Non-Ideal Reactions
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this function consistently.

• Often when chemists consider a change in temperature, they explicitly in-

voke this equation or similar equations. This is because it is the same reaction

under different conditions. The explicit treatment results in understanding that

the rate of reaction is a function of temperature.

• Often when chemists consider a change of energy of activation, they ignore

the dynamic nature of reaction rates. An example of this is the treatment

of auto-catalytic systems such as hemoglobin/O2. We explicitly elaborate

out all non-ideal effects that lead to changes in reaction rates. In doing so,

we treat the binding of O2 to hemoglobin’s four sites as as many as sixteen

different reactions.

A non-ideal reaction exhibits behavior that allows other molecular elements

that are neither reactants or products to affect its rate of progression. These non-

ideal interactions occur at the individual level and are not directly compatible with

common calculus-based models. This class of interactions that are discrete in na-

ture can be described by mass-action if every non-ideal interaction is elaborated

out. This treats a single complicated reactions as a set of reactions. For highly non-

ideal systems, this results in a large number of simple reactions. This is termed

combinatorial complexity.

Rule-based modelers often state that their method resolves the combinatorial

complexity of chemical reactions. This definition speaks to treating the symptoms

of a problem without realizing the fundamental cause. We will discuss this further

“Reaction Rate Constants” and Non-Ideal Reactions
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in the section on “rule-based modeling.”

2.3 Reaction Effectors

Reaction path

E
n
e
rg

y

X

Y

(X→Y)Ea
(Y→X)Ea

∆H

Reaction without catalyst

Reaction with catalyst

Figure 2.1: The relationship between activation energy (Ea) and enthalpy of for-
mation (∆H) with and without a catalyst, plotted against the reaction coordinate.
Ea(X− > Y ) and Ea(X− > Y ) are the activation energies for the forward and
reverse reactions, respectively. The highest energy position (peak position) rep-
resents the transition state. With the catalyst, the energy required to enter transi-
tion state decreases, thereby decreasing the energy required to initiate the reaction.
Wikipedia [2009]

In biochemistry, there are promoters and inhibitors of chemical reactions that

affect the rate of reactions, but do not necessarily interact directly with the reacting

elements. We will refer to this class of molecules and molecular domains as “ef-

fectors”. They may affect the reaction coordinate of reacting biological molecules

by altering the activation energy, as depicted in Figure 2.1. The Arrhenius equa-

tion (2.5) shows us that a change in EA leads to a change in the rate constant of a

reaction k.

Enzymes, a subgroup of biological effectors, are the biological equivalent of

catalysts. Figure 2.1 illustrates an example of how one might describe the action

Reaction Effectors
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of a catalyst. Enzymes and catalysts are modeled as if they lower the activation

energy of a reaction.

2.4 The Consequences of a Model with Many States:

Combinatorial Complexity

For more than a century, rate equations have been used to describe systems

by posing questions in the following form: “How much of a molecule in some state

X exists at time T?” This is the result of the population-based framework that is

required when invoking the law of mass-action. Biochemists and biophysicists

have sought to use these models to help understand a variety of processes, from

gene transcription, to oxygen delivery to tissues, to cell signal transduction.

The molecules that are modeled in these processes exist in various states, and

each state is typically represented by an individual data element. For example,

a molecule bound to a substrate exists in a different state than a molecule of the

same type in its unbound form or bound to a different substrate. Furthermore,

macromolecules in which multiple subunits act as effectors of other subunits are

often described as a combination of the individual states of the subunits, such that

the number of states of the macromolecule is equal to:

(possible states of subunit1)×(possible states of subunit2) . . .×(possible states of subunitn).

Thus, a homo-oligomer can to be described by ab data elements, where a equals

The Consequences of a Model with Many States: Combinatorial Complexity
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the number of states in which a single subunit can exist, and b equals the number of

subunits in a macromolecule. One example of this is cooperative binding, where

inter-subunit interactions allow for increasing binding affinity upon subsequent

binding events.

Modelers have grown accustomed to building models in which the number

of data elements (i.e., the model’s data-space) equals the number of states of all

molecules modeled in the system (i.e., the model’s state-space). Following this

dogma, as the number of subunits in an oligomer increases, the number of data

elements needed to describe its states increases exponentially. This is sometimes

referred to as a combinatorial explosion (ab). In this work, we present a framework

in which we are able to represent the full state-space of approximately ab states

with a significantly smaller data-space, a × b. In the following chapters we will

show that the combinatorial complexity is a function of the theory of mass action

rather than a truth of real chemical reaction networks.

As an aside: It is more impressive to model chemical reaction networks with-

out defining reactants, products, effectors, and reactions. By employing reactive

molecular dynamics force-fields such as Reaxff (van Duin et al. [2001]), one can

model complex biochemical systems without predefining many of the features re-

quired in standard or modified models of chemical reaction networks. Code for

optimization of Reaxff will be provided at the end of the second part of this thesis.

The Consequences of a Model with Many States: Combinatorial Complexity
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Chapter 3

Quantal Effectors on Lattices

In this chapter, we introduce the terminology used to describe molecular ele-

ments that exhibit explicitly non-ideal behavior. We define these terms here so that

we might describe the quantal effects that we see in future chapters. We will in-

troduce quantal effectors that behave in an explicitly discrete manner. We will also

discuss their early description as cooperative effectors and how they were treated

in the mass-action framework. Next we will touch on statistical mechanics, specif-

ically lattice theory as it has been applied to hemoglobin to model cooperative

effects.

Following this discussion of discretization of hemoglobin subunits to points on

a lattice, we will discuss how these ideas have been re-framed and extended by

rule-based modelers. Finally, we will attempt to unify the insights made toward

the understanding of hemoglobin with a general theme that we have revisited:

that we do not have an appropriate language to describe molecular elements that

affect reactions in a discrete manner, but are neither reactants nor products.

Quantal Effectors on Lattices
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3.1 Introducing Quantal Effectors

Cofactors, promoters, and non-competitive inhibitors can and should be con-

sidered “effectors” of reactions. We have excluded competitive inhibitors from

this list because they directly interact with the binding site of at least one of the

reacting molecules and, therefore, could play a very different role than effectors.

A very important subclass of effectors are the subunits/domains of molecules and

macromolecules that affect the reactivity of other subunits/domains. We will refer

to these as “quantal effectors”.

Quantal effectors are molecular entities that are explicitly non-ideal. Naming

these elements quantal effectors gives the user insight into the quantal behavior

that may become apparent under certain conditions. An alternative name that is

equally or more apt is non-ideal effector. Such a term is important because it is

not domain-specific, and it provides insight into general truths. Domain-specific

terms—such as lattices, agents, and rules—have specific meanings that are difficult

to distinguish from the methods with which they are associated.

Since the early 20th century, we have been aware of complex reaction dynam-

ics shown by molecular complexes. In 1925, Adair showed that hemoglobin has

multiple binding sites for oxygen and that these sites potentiate one another when

bound. While the reacting dynamics of hemoglobin can be coaxed into a mass-

action type of model, it is non-ideal in that hemoglobin subunits autocatalyze one

another in a non-ideal manner that is only partially governed by mass-action, as

quantal effectors.

Introducing Quantal Effectors
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3.2 Distinguishing Reactions with Quantal Effectors

from Higher-Order Reactions

Adding a quantal effector to a reaction may appear to be equivalent to increas-

ing the molecularity of the reaction, but it is explicitly not equivalent. The quantal

effector is more likely to affect only a small subset of the ensemble.

Consider a termolecular reaction that is ideal in that it obeys mass-action dy-

namics. Termolecularity implies that the reaction occurs due to the diffusion of

three particles colliding with one another at the same instant of time. There are

two points to consider here:

• The probability of collision is much lower for three particles diffusing in a

solution than it is for a macromolecule with multiple sites and a particle dif-

fusing in a solution.

• In a reaction, any elements that are representative members of the class of

reactants may interact with one another. Often in macromolecules subunits

maintain their associations, resulting in less promiscuous reaction schemes.

Ising models of chemical systems tend to maintain their node/connection

structure.

Therefore, quantal effectors should be considered more likely and and less promis-

cuous than true higher-order reactions.

Distinguishing Reactions with Quantal Effectors from Higher-Order Reactions
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3.3 Cooperativity

Cooperative binding requires that a molecule, such as hemoglobin or glycine,

has more than one binding site. In Binding and Linkage [1990], Wyman refers to

the phenomena of charge repulsion between the protonation sites of glycine as

“linkage” rather than “negative cooperativity” based upon the belief that an al-

losteric shift is required for a cooperative event to occur. It should be noted that

the allosteric model of hemoglobin/O2 that was proposed by Monod, Wyman, and

Changeaux in [1965] earned them a Nobel prize. In this thesis, we are not attempt-

ing to challenge the notion of allostery being essential to hemoglobin cooperativity.

We do not wish to use multiple words to describe phenomena whose mathemat-

ical treatment would be equivalent. Therefore, we will lump “cooperativity,” “al-

lostery,” “causal rules,” “linkage,” and “coupling” into one general phenomena

governed by non-ideal interactions. We call this phenomena “cooperativity” out

of respect for its early description (Adair [1925b]).

We generalize cooperative processes to be those reactions that are explicitly

non-ideal, in that an element that is not a product or reactant affects the progress

of a reaction. Again, we refer to these elements as quantal effectors. For example,

the charge repulsion that a protonation site of glycine experiences due to the other

site being occupied is a negative cooperative effect. In this case, the protonated

terminus that is not taking part directly in the subsequent protonation inhibits

the reaction. Conversely, if the binding of the ligand oxygen at one binding site

of hemoglobin increases the affinity for another oxygen at a different site on the

Cooperativity
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same macromolecule, this is considered to be positive cooperativity. The quantal

effects in this case are the other subunits, meaning that for each binding site of

hemoglobin, there are three quantal effector sites that might affect reactions at that

site in an explicitly non-ideal manner.

At this point, we can relate the idea of cooperativity back to some concepts of

rate theory that were presented earlier. In the report Energetics of Subunit Assembly

and Ligand Binding in Human Hemoglobin [1980], Gary Ackers suggests that “the

dominate driving forces for cooperativity may be a combination of hydrogen bond

formation, preferentially stabilizing the tetramer with large negative ∆S and small

∆H , and Bohr proton release, yielding large positive enthalpies and moderate but

negative entropies”.

3.4 Ising Models of Chemical Systems

In 1925, Ising proposed a model for the study of ferromagnetic systems. The

Ising model has since been applied to many fields, including biochemistry and

computational neuroscience (Hopfield [1982]). Lattice models of cooperative sys-

tems typically break up the molecular subunits of a macromolecule into nodes on

a lattice. The points on a lattice have independent probabilities of transitioning

until they are connected. Once connected, the states are either positively or neg-

atively coupled, and the states of connected nodes are affected by the “coupling

coefficient”. An illustration depicting the relationship of Ising models to a lattice

model of a molecule, glycine, is presented as Figure 3.1.

Ising Models of Chemical Systems
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While there are many papers that treat cooperative systems using lattice meth-

ods, we will focus on a single paper that models hemoglobin as a set of points on

a lattice using the relationships proposed by Pauling [1935]. Chay and Ho [1973]

use lattice statistics to model hemoglobin as a two-dimensional Ising model with

N = 4. They modeled different cooperative relationships between the subunits of

hemoglobin in an attempt to elucidate the underlying mechanisms of its coopera-

tivity. Their work is similar to what Pauling did in 1935 using mass action equa-

tions. The models of Chay are explicit examples of treating cooperative relation-

ships as non-ideal processes. The non-ideal relationships represent the cooperative

and causal relationships between molecular subunits of a macromolecule.

3.5 Rule-Based Modeling for Biochemists

Rule-based modeling is a field of simulation that, by citation, seems to derive

from Gillespie’s stochastic simulation algorithm [1976, 1977]. I contend that they

also derive from the understanding of chemical physics that underlies lattice statis-

tics of cooperative macromolecules. Both lattice statistics and rule-based modeling

break up macromolecules into their constituent parts and explicitly consider the

relationships between them. It is interesting that few, if any, rule-based model-

ing packages refer to the lattice-based statistical methods that they mirror. Lattice

statistics is a field that is still active, and it is faced with issues of intractability that

could be resolved with solutions from rule-based modeling.

Rule-Based Modeling for Biochemists
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Many rule-based modeling packages do not attempt to give their rules a phys-

ical basis. Moleculizer (Lok and Brent [2005]) is a package that does explicitly

attempt to employ physical reasoning for its rules. For example, Lok and Brent

[2005] presented a stochastic model for the effects of oligomerization on the chem-

ical reaction rates of the corresponding monomer using a classical collision theory

formulation as follows:

cµ = V −1πd212(8kT/πm12)
1/2 exp(−uµ/kT ) (3.1)

where cµ is the stochastic reaction rate parameter, m12 is the adjusted mass, k is the

Boltzmann constant, d12 is idealized collision cross-section diameter, V is the vol-

ume of the system, and uµ is analogous to the energy of activation. The approach

taken by Lok and Brent is based on classical molecular collision theory.

One oddity of rule-based modeling is that the different camps of rule-based

modelers do not have a unifying language to talk about the formulation of their

models. I began rule-based modeling in 2006 without knowledge of the commu-

nities of rule-based modelers that began developing around 2004. My first models

involved pausing stochastic simulations, altering their rates as a function of the

states of the subunits of a “toy hemoglobin”, and then restarting the simulation.

When I discovered the rule-based modeling communities, I was frustrated that I

could not clearly determine if we were doing analogous work.

This is because the language that the communities use is either partially self-

generated (Lok and Brent [2005]), rooted in abstract computer science (Danos and

Rule-Based Modeling for Biochemists
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Laneve [2004]), or both (Blinov et al. [2004]). For example, Moleculizer (Lok and

Brent [2005]) refers to molecular subunits as mols, while Kappa(κ) (Danos and Lan-

eve [2004]) and BioNetGen (Blinov et al. [2004]) refer to subunits as agents. This is

part of the impetus to create a unified language to describe these non-ideal rela-

tionships that lead to cooperative behavior.

Furthermore, various pieces of software have been developed to perform rule-

based modeling without presenting generalized outlines and derivations of their

methods, in the vein of what Gillespie has presented [1976, 1977]. These programs

appear to treat molecules as individuals, rather than populations. This is an im-

portant point because they are essentially reversing the step in many mass-action

based derivations of chemical reaction theory that break up complicated reactions

into several simple reactions to fit into a population-based framework. This is a

relevant point that is seemingly absent in rule-based modeling literature.

3.6 Unification of These Ideas with Quantal Effectors

To unify these ideas, it is important to look at the fundamental truths that these

methods are trying to address. The language that we use to describe chemical reac-

tions is limited by the view that reactions contain only reactants and products. In

the 1970s, theoretical chemists, and more recently rule-based modelers, redefined

rate laws to include the state of particles that are neither reactants or products. A

fundamental feature of these particles is that they affect the reaction rate in a fun-

damentally non-ideal manner that is quantal in nature. Hence, we refer to them as

Unification of These Ideas with Quantal Effectors
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“quantal effectors”.

Furthermore, at very small numbers, the simple non-ideal relationships be-

tween these complex elements can lead to behavior that is similar to ergodic-

breaking. In quantum mechanics, quantal effects are a cause of ergodic-breaking,

given that the ensembles considered are comparable. This again supports the name

quantal effectors, as it is informative and corrects the misconception that determin-

istic and stochastic treatments should always converge. In this thesis, we will de-

fine the quantal effector limit beyond which one could safely expect macroscopic-

like behavior.

Unification of These Ideas with Quantal Effectors
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Figure 3.1: Lattice model of glycine. The red arrow represents either a magnetic
field or a very low pH. On the right side of the arrow, we show the comparable
states of glycine. We can model the protonation of glycine as a function of some
force (solvent pH) with the same equations that we would use to model a ferro-
magnetic system as shown on the left. The direction of the arrows are equivalent
to a state of protonation of the lobes of glycine.

Unification of These Ideas with Quantal Effectors
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Chapter 4

Synaptic Plasticity: A Process That
Occurs in Small Volumes

While much of this thesis will discuss hemoglobin and glycine, it is not bio-

physically realistic to think about these molecules as naturally existing in small

volumes with limited availability of ligand. We use them as tools to understand

biological cooperativity on the smallest scale because they are useful tools in de-

veloping an understanding of cooperative biological processes that occur in small

volumes. Having been a neuroscientist for the past 15 years, I have my biases.

Synaptic plasticity is a process that occurs in small volumes and is thought to be

at least partially mediated cooperative processes. A key component in synaptic

plasticity is the differentation of low Ca2+ for the weakening of the strength of a

synapse and high Ca2+ influx for the strengthening of synaptic connections. In

subsequent chapters, I will use the life molecule, hemoglobin, to understand the

mind molecule, calcium calmodulin kinase II (CaMKII).

Synaptic Plasticity: A Process That Occurs in Small Volumes
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4.1 Synaptic Plasticity

To the best of our knowledge, the synapse is the center of learning and memory

(Bliss and Lomo [1973]). The synapse is a subcellular structure that has both a

small volume and is diffusionally restricted under certain conditions (Bloodgood

and Sabatini [2005], Sabatini et al. [2002]).

A beautiful rendition of the synapse—“The Synapse Revealed”—can be seen in

Figure 4.1.

4.2 An Agnostic Approach to Modeling Calcium Calmod-

ulin Kinase II

Calmodulin (CaM), a ligand of CaMKII, has two lobes, the N-terminal and C-

terminal lobes. Each lobe can bind up to two Ca2+ ions, and even partially ligated

CaM has the ability to phosphorylate CaMKII in vitro (Shifman et al. [2006]). There-

fore, CaM can exist in at least nine different states, as the two lobes can each exist in

the states of unbound, singly bound, and doubly bound to calcium. Each species

of CaM can interact with a subunit of the dodecameric macromolecule CaMKII.

It has been reported that CaMKII itself can be phosphorylated in many posi-

tions including the following: T253 (Dosemeci and Reese [1993]), T286 (Lai et al.

[1987], Miller and Kennedy [1986]), T305 (Colbran and Soderling [1990]), and T314

(Colbran and Soderling [1990]). Interestingly, dynamics that are apparent in vitro

(Miller and Kennedy [1986]) may not exist in vivo (Mullasseril et al. [2007]). The

An Agnostic Approach to Modeling Calcium Calmodulin Kinase II



28

system is further complicated by the fact that that CaMKII exists as a heteroge-

neous mix of more than one isoform (α and β) in the synapse. While I have pre-

viously generated large models of CaMKII including many, but not all of these

features, a true elucidation of a robust mechanism by which the synapse might

differentiate between various calcium signals has not been shown.

4.3 Essential Features of a Molecular Switch that Can

Differentiate Ca2+ Signals

Much of the work in synaptic plasticity research is directed toward understand-

ing the switch-like behavior of CaMKII (Miller and Kennedy [1986]). In this thesis,

we propose that the key to understanding how CaMKII might ignore weak Cal-

cium signals while reacting to strong ones is a ubiquitious feature of positively

cooperative molecules under a situation of limited resources. Furthermore, we

agree with Lisman in that the “ensemble” that many bench-top experiments create

is incomparable to the “ensemble” that exists in the cell (Sanhueza et al. [2011]).

We hypothesize that two key features of the Ca2+/CaM/CaMKII complex, bista-

bility of CaMKII and limited resources of Ca2+, allow for signaling differentiation

that in isolation is a thermodynamically robust bench-top experiment.

Essential Features of a Molecular Switch that Can Differentiate Ca2+ Signals
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4.3.1 CaMKII is Likely Bistable

In 2000, Zhabotinsky showed that CaMKII exists primarily in one of two states.

In order for one to apply experimental results to a system including CaMKII to

infer features of its activity in the synapse, the experiments should be performed

under conditions that would be equivalent in size and molecular composition to

the synapse. We will show that it is possible to predict non-ensemble behavior

of CaMKII in the synapse based upon a simple understanding of cooperativity

due to quantal effects mediated by quantal effectors. If one were to consider a

synapse to be comparable to a bench-top experiment, this quantal behavior would

be comparable to ergodic breaking.

4.3.2 The Synapse is a System of Limited Resources

There are not many Ca2+ ions in the synapse (Sabatini et al. [2002]). A low

maintained local level of Ca2+ should be sufficient to circumvent the activation of

CaMKII, even at local concentrations that might be thought sufficient to activate

it. There are many analogies that can be drawn between a cooperative molecule in

the synapse and the quantum mechanical treatment of a particle in a box.

4.4 What to Look for in the Case Studies

1. In Case I, glycine is useful because in our modified lattice model, it is directly

analogous to spin pairing of electrons in a shell.

What to Look for in the Case Studies
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2. In the first half of Case II, Gibson’s kinetic model of hemoglobin is discussed

briefly to show that we can match kinetic as well as thermodynamic data.

3. In the second half of Case II, Ackers’ thermodynamic model of hemoglobin is

discussed to exemplify the scope of the problem. This system shows quantal

behavior of positively cooperative models in small spaces.

4. In Case III, we will conclude with a “toy” model to show what the sufficient

conditions are for non-ensemble-like behavior, and how this relates to the

aforementioned points.

What to Look for in the Case Studies
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Figure 4.1: A zoomed in view of, The Synapse Revealed. Created by Graham
Johnson 2004 < graham@fivth.com > for The Howard Hughes Medical Institute
Bulletin. Mr. Johnson’s illustration of two synapses. The green spheres represent
synaptic vesicles and are located in the presynaptic side of the synapse. The side
directly opposing the presynaptic side is referred to as the postsynaptic side of the
synapse in this case it is also known as a dendritic spine.

What to Look for in the Case Studies
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Chapter 5

Method Development

In this chapter, we initially discuss traditional calculus-based and stochastic

methods of modeling chemical reaction networks. We then review and elaborate

on an alternative method of stochastic modeling that has been named rule-based

modeling.m Rule-based modeling was built for biochemists, but it often employs

language that makes it inaccessible to biochemists and computational chemists.

In this chapter, we redefine rule-based modeling for experimental and theoretical

chemists. We do this without difficulty by referring to the history of fundamental

components of rule-based modeling that existed before the coining of the term

rule-based modeling for biological systems. Finally, we outline the theme by which

rule-based modeling can be unified with existing chemical theory and its likely

niche in the greater context of computational chemistry.

5.1 Deterministic Models of Chemical Reactions

In the late 19th century, scientists began to create mathematical models of the

evolution of chemical species in reactions using mass-action (Lund [1965]). The

Deterministic Models of Chemical Reactions
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use of calculus-based methods, such as differential equations, to model chemical

species were a natural extension of this work. This type of modeling is termed de-

terministic because, given a model and a set of initial conditions, it will reproduce

the same results on repeated trials. This is not the case for stochastic models which

will be discussed later.

A standard deterministic approach is employed to provide a solution to a sys-

tem of coupled differential equations that are defined by a detailed chemical reac-

tion mechanism. Let us consider the stoichiometric reaction of A with B forming a

discrete reaction product C:

A+B
k1

GGGGGGBFGGGGGG

k−1
C (5.1)

where k1 is the forward second–order “rate constant” and k−1 is the reverse first-

order “rate constant.” The equilibrium constant for the reaction of Equation 5.1 is

given by the law of mass-action, as follows:

K1 =
k1
k−1

. (5.2)

The complete kinetic description of the simple reaction of Equation 5.1 is as fol-

lows:

dA

dt
= −kon[A][B] + koff [C] (5.3)

dB

dt
= −kon[A][B] + koff [C] (5.4)

dC

dt
= kon[A][B]− koff [C] (5.5)

Deterministic Models of Chemical Reactions



34

where [A] and [B] are the concentrations of reactants and [C] is the concentration

of the reaction product. In a conventional formulation, the concentration units for

an aqueous-phase reaction are expressed in units of moles per liter (i.e., mole L−1

or M); for a homogeneous gas-phase reaction, they are expressed in units of the

numbers of molecules per cubic centimeter (i.e., molecules cm−3). The forward

rate constant kon then has the corresponding units of either L mole−1 s−1 or cm3

molec−1 s−1, while the reverse rate constant koff has units of s−1 in both cases.

5.2 Stochastic Simulations

A fundamental feature of stochastic simulations of particles is that they allow

for complex interactions, such as those which might be described as non-ideal.

Furthermore, they have a history that is nearly as old as the study of hemoglobin

itself. A few years after Pauling [1935] proposed his model of hemoglobin/O2

dynamics, Delbruck, who was also at Caltech at the time, proposed the use of

stochastic methods for the study of autocatalytic systems. As early as the 1950s

(Singer [1953], Renyi [1953]), it was shown that deterministic methods could not

reproduce stochastic results. Singer’s result was strongly based on statistical fluc-

tuations leading to irreproducible results. Renyi showed that as molecular number

approached one, deterministic methods deviated from stochastic results, but that

the differences were minimal. In Case Studies III and IV, I will give results that

show both minor and dramatic deviations.

A nice feature of stochastic simulations is that we are not confined by the same

Stochastic Simulations
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limits as deterministic calculus-based models. We are not confined to talking about

the average evolution of populations, and we can explicitly treat non-ideal interac-

tions with reaction rate functions or “rules”. The implementation of such non-ideal

interactions was discussed by Pauling as early as 1935, but only explicitly elabo-

rated in statistical models by Chay in 1973.

Gillespie’s stochastic simulation algorithm (SSA) has become synonymous with

stochastic simulation of chemical reaction networks. Gillespie’s method is an ex-

act method, meaning that it represents the probabilistic distribution without ap-

proximation. Gillespie [1976] proposed a generalized algorithm that can be used

to reproduce the computational results of a deterministic model for well-mixed

chemical reactions using stochastic approaches. In order to evaluate the merits of

using the stochastic approach to quantitatively model cooperative chemical sys-

tems, we will use Gillespie’s SSA to fit observed experimental results, and then

compare these results to those obtained with a standard numerical integration of

the coupled ordinary differential equations that describe the details of the chemical

or biochemical reaction mechanism.

5.2.1 Gillespie’s Stochastic Simulation Algorithm

According to Gillespie’s SSA, reaction propensity functions are defined and

evaluated for each reaction under consideration. The reaction propensity provides

a measure of the likelihood that a chemical reaction or a single step in an overall

reaction mechanism will occur (i.e., high propensity is equivalent to a high reaction

Stochastic Simulations



36

probability). The reaction propensity functions are used to generate a time-to-the-

next-event function.

The reaction propensity is directly related to the probability that a specific re-

action or a single step in a reaction mechanism will actually occur. The reaction

propensity is formulated in terms of a reaction parameter which is analogous in its

general form to the corresponding reaction rate, a deterministic rate.

The intrinsic reversibility (e.g., a reversible chemical reaction that reaches true

equilibrium or reaches a steady-state condition such that ∆G = 0, ∆ G◦ = -RT(ln K),

and -d[A]/dt = -d[B]/dt = d[C]/dt) of the reaction of Equation 5.1 allows for the

reaction propensities of the forward and reserve steps to be written in a straight-

forward manner. For example, the reaction propensity for the forward bimolecular

reaction between A and B is written as

propensity2 = kon(A×B) (5.6)

where kon is a second-order stochastic reaction parameter, A is the total number

of molecules of type A in the reacting system during a single time-step iteration,

and B equals the total number of molecules of type B in the system during the

same iteration. Therefore, the product A × B gives the total number of possible

combinations of reaction events that can occur during a single time–step.

In the case of the reverse unimolecular reaction step, the corresponding reaction

Stochastic Simulations
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propensity is given by:

propensity1 = koff (C) (5.7)

where koff is a first-order stochastic reaction parameter and C is the total number

of molecules of type C in the reacting system over a single iteration or time-step.

In order to determine an appropriate time-step, we take the sum of the reaction

propensities to generate total propensity (TP) as follows:

total propensity(TP ) =
∑
i

(reaction propensity). (5.8)

This total propensity is then used to generate an exponential random variable that

is equated to the time that the next individual molecular reaction will occur (τ ).

The characteristic time-step τ is thereby obtained from the following relationship:

τ =

∣∣∣∣ 1

(TP )
ln

(
1

URN

)∣∣∣∣ (5.9)

where URN is a uniformly distributed random number between 0 and 1. It should

be noted that, as the total propensity of the system increases, τ decreases.

After the time-step τ is determined, the time to the next reaction event is cho-

sen. In turn, the reaction event that is to occur is chosen randomly with a bias

toward reactions with a greater propensity. Finally, the number of molecules are
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updated appropriately to reflect the reaction that occurred.

Gillespie’s SSA approach [1976] was employed for the stochastic modeling com-

parison to the corresponding deterministic solutions. The SSA was implemented

in Scipy.

1. Computation is initiated at time t = 0 with the iteration number also set to
zero.

2. The reaction propensities are calculated.

3. The appropriate time–step τ is determined.

4. Given the computed reaction propensities, the specific reaction events during
a single iteration are determined.

5. The current iteration is increased by 1 until an END value is reached at a
maximum set time, or a limiting number of iterations is reached.

6. The total number of molecules in the reacting system is updated based upon
the specific chemical reaction that is allowed to occur and the sequence is
looped back to step 1 above.

Stochastic simulations were run to equilibrium for 200 repetitions and the data

was averaged. Sample codes are provided in the Appendix.

While the SSA was derived from statistical mechanics, lattice-like models were

not explored until approximately thirty years later in the form of rule-based mod-

eling.

5.2.2 Functional Elements of Macromolecules

Typical biochemists might have little intuition concerning the π−calculus or

κ−calculus, referred to by Danos and colleagues [2004]. Furthermore, renaming

molecules as agents is by no means required. It has been generally understood
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since the early 19th century that macromolecules are composed of functional ele-

ments that affect the rates of reactions.

Again, the earliest application of a stochastic approach to model an autocatalyst

such as hemoglobin is attributed to Delbruck [1940]. Using Delbruck’s approach,

we normalize the molecular numbers to one Hb macromolecule. This is analo-

gous to constructing a finite element around a single molecule. Additionally, my

work is closely related to other rule-based modeling packages in that the most

fundamental algorithms should be similar. These similarities relate to the realiza-

tion that reaction rates are dynamic and that biochemical systems are non-ideal.

One important difference that we will highlight is that differential equations and

stochastic simulations predict different behavior for cooperative systems in small

volumes. Another difference in my approach is that we will provide source code

that others may run to gain insight into rate laws for non-ideal systems.

5.3 Additional Details

5.3.1 Hardware

Kinetic simulations were run on the following systems:

• A custom-built computer with the following specifications:

– Intel Quad Core Duo

– 8Gb of RAM

– Abit IP-35Pro motherboard

Additional Details



40

– running Ubuntu Linux

• An iMac running an intel core i5 processor

5.3.2 Software

Software codes written in Python Pyt23, Scipy, Matplotlib, and Pylab were used

for both deterministic and stochastic modeling.

5.3.3 Optimization

Code optimization was constrained by the data of Mills and Ackers et al. [1976]

using the Nedler-Mead method or the downhill simplex method . This algorithm

is contained in Scipy(Sci) in the function scipy.optomize.fmin.

5.3.4 Data Digitization

Four data-sets of Mills [1976] were digitized using the open source application

g3data.

5.3.5 Deterministic Methods

The corresponding systems of differential equations that correspond to the de-

tailed reaction mechanisms for two different experimental case studies were nu-

merically integrated using the variable-coefficient ordinary differential equation

solver, with a fixed-leading-coefficient implementation (VODE) . This method was

also implemented via Scipy through the integrate.ode method. Sample codes are
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provided in the appendices. In some cases, Kinpy (Srinivasan) was used to auto-

generate complicated reaction schemes.

Additional Details



42

Chapter 6

Case I. Glycine Protonation

The acid/base chemistry of the amino acid glycine provides a simple example

of a chemical process involving protonation and deprotonation of a bifunctional

molecule that exhibits negative cooperativity, where the two functional groups are

the amino group -NH2 and the carboxylic acid group -COOH. It should be noted

that the negative cooperativity seen in glycine protonation is due to charge repul-

sion of protons that may bind to each terminus of glycine. An example of this type

of reaction system is illustrated in Figure 6.1 (Williamson [2008]).

The chemical reaction network depicted in Figure 6.2 represents the various

states of protonation and deprotonation of the glycine molecule as a function of

solution pH. Of particular interest is the zwitterion form of glycine, in which both

a positively charged, protonated amino group co-exists with a negatively charged,

deprotonated carboxylate group. During the sequential protonation and depro-

tonation processes involving the neutral glycine molecule, negative cooperativity

is realized during the addition of either proton, which effectively decreases the

affinity of glycine for the subsequent proton.

Case I. Glycine Protonation
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Figure 6.1: a) A hypothetical set of bimolecular complexes between component
A and two other components (B and C), with the rate constants, equilibrium con-
stants, and free energies for complex formation. b) A thermodynamic cycle for for-
mation of a ternary complex ABC by two different possible routes: either B binds
first or C binds first. There are four equilibrium constants that describe the for-
mation of the various complexes. Because they converge on the common product
ABC, the thermodynamics must be independent of the pathway chosen around
the cycle, and constraints are placed on the relative values of the equilibrium con-
stants and hence the free energies. The thermodynamic coupling free energy (∆∆G
) gives the difference between the binding of one component in the presence of the
other. c) The definition of cooperativity in terms of binding of B in the presence
or absence of C. The two vertical binding reactions are in gray to emphasize the
comparison of ∆G◦1 and ∆G◦4 . If B binds preferentially in the presence of C, the
binding is cooperative. If B binds worse in the presence of C, the binding is anti-
cooperative. In the third case, binding of B is independent of C, and there is no
cooperativity. Adapted from Williamson et al. [2008].

Case I. Glycine Protonation
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6.1 Model Description

6.1.1 Standard Scheme

The standard formuation of glycine protonation dynamics is depicted in Figure

6.2. While there are only two binding sites that can exist in one of two states in our

system, we elaborate all possible eventualities to get around the inherently non-

ideal nature of the system. This elaboration of possible trajectories leads to the

formation of webbed structures, as shown in Figure 6.2. The reaction network

illustrated in Figure 6.2 can be written as follows:

NH2CH2CO−2 + H+
Ka

GGGGGGBFGGGGGG

+NH3CH2CO−2 (6.1)

NH2CH2CO−2 + H+
Kb

GGGGGGBFGGGGGG NH2CH2CO2H (6.2)

+NH3CH2CO−2 + H+
Kbcab

GGGGGGGGGBFGGGGGGGGG

+NH3CH2CO2H (6.3)

NH2CH2CO2H + H+
Kacab

GGGGGGGGGBFGGGGGGGGG

+NH3CH2CO2H (6.4)

where Ka and Kb are the primary acid association constants for the addition of

protons to form the protonated amino and carboxy groups, respectively; cab is a

cooperativity factor that accounts for the electronic interactions between the two

sites.

The data elements for this scheme represent populations of molecules in vari-

ous states. For this two-particle formulation, we elaborate each state in Table 6.1.

For clarity, we show that the population sizes that can be modeled with this for-
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mulation are limited only by the precision of the simulation machine in Table 6.2.

Figure 6.2: The chemical reaction network representing the various states of pro-
tonation and deprotonation that exist for the glycine molecule as a function of
solution pH. Of particular interest is the zwitterion form of glycine in which a pos-
itively charged, protonated amino group co-exists with the negatively charged,
deprotonated carboxylate group. The primary acid association constants Ka and
Kb account for the equilibrium gain of a proton to form the protonated amino and
carboxy groups, respectively. cab is a cooperativity factor accounting for the elec-
tronic interactions between the two sites. The corresponding values of Ka, Kb, and
cab are Ka = 5.0× 109M−1, Kb = 2.0× 104M−1, and cab = 0.01. The relatively small
value of cab indicates a strong electrostatic repulsion between sites.
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Table 6.1: A standard tableau depicting the reactions required to determine the
speciation of glycine as a function of pH.

Reactants Products Equation
1 NH2CH2COO−,H+ +NH3CH2COO− 6.1
2 NH2CH2COO−,H+ NH2CH2COOH 6.2
3 +NH3CH2COO−,H+ +NH3CH2COOH 6.3
4 NH2CH2COOH,H+ +NH3CH2COOH 6.4

Table 6.2: A standardized formulation for glycine protonation vs. pH. The data
elements are valued from zero to infinity.

Data Element Value Range State
Y[1] 0−∞ Fully Deprotonated
Y[2] 0−∞ Carboxyl Terminus Protonated
Y[3] 0−∞ Amino Terminus Protonated
Y[4] 0−∞ Fully Protonated

6.1.2 Standard Formulation of Glycine/H+ with Differential Equa-

tions

The coupled system of differential equations are written as follows:

d[A]

dt
= −Ka × koff [H][A]−Kb × koff [H][A] + koff [B] + koff [C] (6.5)

d[B]

dt
= Ka × koff [H][A]− (cab ×Kb × koff ) [H][B] + koff [D]− koff [B] (6.6)

d[C]

dt
= Kb × koff [H][A]− (cab ×Ka × koff ) [H][C] + koff [D]− koff [C] (6.7)

d[D]

dt
= (cab ×Ka × koff ) [H][C] + (cab ×Kb × koff ) [H][B]− 2× koff [D] (6.8)

where A = NH2CH2COO−, B = +NH3CH2COO−, C = NH2CH2COOH, and D =

+NH3CH2COOH. The break-down of the tableau for Equations 6.5–6.8 are depicted
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in Table 6.1 and represented graphically in Figure 6.1.

6.1.3 Standard Formulation of Glycine/H+ with Stochastic Equa-

tions

The standard stochastic approach to simulate the above system of differential

equations is as follows:

prop1 = sKa × koff ×H × A (6.9)

prop2 = sKa × koff ×H × A (6.10)

prop3 = sKb × koff × cab ×H ×B (6.11)

prop4 = sKa × koff × cab ×H × C (6.12)

prop5 = koff ×B (6.13)

prop6 = koff × C (6.14)

prop7 = koff ×D (6.15)

prop8 = koff ×D (6.16)

where sKx is the stochastic version of the deterministic Kx. While the A, B, C, and

D values from the previous subsection represent molar quantities, these stochastic

A, B, C, and D represent explicit molecule counts.
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6.1.4 Modified Scheme of Glycine/H+ Employing Quantal Effec-

tors

An alternative approach to modeling the protonation/deprotonation of glycine

as a branched reaction is to represent the termini separately, as shown in Figure

6.3. Since the affinity constants for the two termini are orders of magnitude apart

in value, we can break up the reactions and model the system with the following

mechanism:

(NH2−) + H+
Ka

GGGGGGBFGGGGGG (+NH3−) (6.17)

(−COO−) + H+
Kb × cab

GGGGGGGGGGGGGBFGGGGGGGGGGGGG (−COOH). (6.18)

Equations 6.17 and 6.18 approximate the true steady-state condition for the degree

of glycine protonation. However, the system is more accurately represented by

Equations 6.19 and 6.20.

(NH2−) + H+
ifCOO−(Ka)else(Ka × cab)

GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG (+NH3−) (6.19)

(−COO−) + H+
ifNH2 − (Kb)else(Kb × cab)

GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG (−COOH) (6.20)

where the rates for the forward reactions should be read as: “if the other terminus is

in state x, then this reaction will proceed with rate y”. Otherwise, it will proceed with

rate z (“if the rate is stated as if x (y) else(z)”). This type of scheme includes the state
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of the other terminus in each reaction, thereby explicitly including the non-ideal

nature of the reaction. To be clear, this is a three-particle formulation that includes

reactants, products, and quantal effectors.

Figure 6.3: Glycine protonation state as impacted by “effectors.” The state of the
non-reacting species affects the reacting species (e.g., the rate at which the amino
terminus is protonated is affected by the protonation state of the carboxylate ter-
minus). This is a depiction of an explicit use of a reaction rate function. The dotted
lines are indicating the direction of deprotonation of the opposite terminus since
this system exhibits negative cooperativity with respect to protonation.

In the scheme shown below, the reaction rate constants are replaced by reac-

tion rate functions where the rate of protonation of a terminus is directly affected

by the protonation state of the opposing terminus. Equations 6.19 and 6.20 rep-

resent a logistic three-particle formulation of glycine/H+ association. An analytic

formulation of the three-particle representation of glycine/H+ follows.

(NH2−) + H+
Ka × c(−COOH)

ab
GGGGGGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGGGGGG (+NH3−) (6.21)

(−COO−) + H+
Kb × c

(+NH3−)
ab

GGGGGGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGGGGGG (−COOH) (6.22)
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The break-down of the tableau for Equations 6.19 and 6.20 (a logistic treatment of

“the rules”) or 6.21 and 6.22 (an analytic treatment of “the rules”) is depicted in

Table 6.3.

Table 6.3: A “rule-based” type reaction scheme for glycine/H+

Reactants Products Quantal Effectors Old Equation New Equation
1 NH2-,H+ +NH3- -COO−/-COOH 6.1, 6.3 6.21
2 -COO−,H+ -COOH NH2-/

+NH3- 6.2,6.4 6.22

Table 6.4: A modified formulation of the data model for glycine protonation

Y[1] Y[2] Y[3] Y[4] Glycine Protonation State
1 1 0 0 Fully Deprotonated
1 0 0 1 Carboxyl Terminus Protonated
0 1 1 0 Amino Terminus Protonated
0 0 1 1 Fully Protonated

6.1.5 Modified Formulation of the Glycine/H+ Model

prop[0] = Ka × koff1 × c(y[4])
ab × y[0]× y[1] (6.23)

prop[1] = Kb × koff2 × c(y[3])
ab × y[0]× y[2] (6.24)

prop[2] = koff1 × y[3] (6.25)

prop[3] = koff2 × y[4] (6.26)

To orient the reader to the explicit encoding that is being used in this model, we
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have included a portion of Python code to simulate glycine binding here as Source

Code 1. Lines 2–5 provide our encoding for a fully unbound glycine, as depicted in

Table 6.4. Lines 7–10 are equivalent to Equations 6.23–6.26. For those not familiar

with Python, “cab**y[4]” is equivalent to cy[4]ab .

Algorithms and Source Code 1: A snippet of code from Source Code 4 . Line 1

converts a molar quantity to discrete values.

1 y[0]=H*nA*vol
y[1]=1
y[2]=1
y[3]=0
y[4]=0

6 while tend>t:
prop[0]=Ka*koff*cab**y[4] * y[0] * y[1]
prop[1]=Kb*koff*cab**y[3] * y[0] * y[2]
prop[2]=koff * y[3]
prop[3]=koff * y[4]

6.2 Computational Results

Glycine was modeled using both deterministic and stochastic simulation meth-

ods, as shown in the green and blue curves in Figure 6.4. The red curve in Figure

6.4 shows the expected protonation profile, modeled with deterministic methods,

for glycine if protonation of the C-terminus and the N-terminus were truly in-

dependent of one another. As the protonations of the termini of glycine are not

independent, experimental curves of glycine protonation are better represented by

the green and blue curves in Figure 6.4.

The tableau of the typical reaction scheme, as shown in Table 6.1, treats the ef-
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fects of the state of the opposing binding-site in an indirect manner. For further de-

tails, see the deterministic treatment (Equations 6.5–6.8) and the standard stochas-

tic treatment (Equations 6.9–6.16). The green curve is a standard deterministic fit

using the scheme presented in Figure 6.2. The blue curve is a rule-based stochastic

formulation of the glycine protonation curve, using the modified representation of

glycine as presented in Figure 6.3. The stochastic reaction rate functions shown in

Equations 6.19 and 6.20 or 6.21 and 6.22 treat the state of the non-reacting subunit

as a parameter that affects the affinity of the reacting terminus for a proton. This

three-particle class reaction scheme is also shown in Table 6.3.

The data elements for the standard formulation are real scalars in that they can

be valued from 0 to infinity (∞), or the machine’s closest approximation of infinity,

as shown in Table 6.2. Note that effectors are explicitly included in the stochastic

propensity functions for the reactions, allowing us to represent the determinis-

tic reaction schemes with high fidelity and with fewer reaction expressions. This

stochastic approach is a modified version of Gillespie’s stochastic simulation algo-

rithm, and it falls into the class of rule-based approaches.

6.3 Discussion

In both the standard and modified forms, four data elements are required to

model the state of protonation of glycine as a function of solution pH. The stan-

dard, population-based data model can represent the activity of an infinite num-

ber of glycine molecules, as shown in Table 6.2; this is due to the use of scalars as
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the essential data elements. In the modified formulation of glycine protonation,

the specific data model must be duplicated for each added glycine molecule and

the values are read like a truth table where 1 indicates the current sub-state of a

termini of the glycine molecule, as shown in Table 6.4. We use either integer (0 or

1) or Boolean elements (True and False) as the essential data elements.

In the standard model, there are four reaction rate equations, while in the modi-

fied mode, there are eight stochastic reactions. Again, an increase in the population

size does not increase the number of reactions required in the standard method,

but in the modified system, the four reactions must be duplicated for each added

molecule of glycine in the system. This distinction is due to the differences be-

tween a population model and a single-protein model, a complex, finite element

method.
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Chapter 7

Case II: Kinetic and Thermodynamic
Models for Oxygen Uptake by
Hemoglobin

A single hemoglobin molecule consists of four protein subunits—two α and

two β subunits (Figure 7.1(a)). The four polypeptide chains are bound to each

other by salt bridges, hydrogen bonds, and hydrophobic interactions. The α sub-

units and β subunits contain 141 and 146 amino acid residues, respectively. The

various combinations and interactions among the subunits are assigned the fol-

lowing notation: αxβy.

Each subunit has an associated heme functional group. Each heme group, in

turn, consists of a porphyrin bound to the equatorial positions of an Fe octahedral

complex, so that the porphyrin encircles the Fe atom (Figure 7.1(b)). The Fe atom

is also axially ligated to an imidazole nitrogen of a histidine residue of the sur-

rounding protein. In the non-oxygenated state, the axial, sixth coordination site is

occupied by an apically bound water molecule. In this unbound state, the iron is

in the Fe(II) state.

Case II: Kinetic and Thermodynamic Models for Oxygen Uptake by Hemoglobin
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The hexa-coordinated Fe(II) center reacts with molecular oxygen to form, ini-

tially, an oxygen adduct or complex. After complexation, there is a nominal one-

electron transfer from Fe(II) to the bound oxygen molecule, forming an Fe(III)-

superoxo (O−2 .) complex. Oxygen is complexed in a bent configuration, in which

one oxygen atom forms a covalent bound with Fe, while the other oxygen is skewed

at an angle (personal communication M.R. Hoffmann and N.B. Ford).

The reversible binding and release of O2 in tetrameric hemoglobin is classi-

fied as a cooperative process, in which both the thermodynamics and kinetics of

O2 binding are enhanced as oxygen is added in sequence. For example, the first-

bound oxygen will influence the conformational shape of the remaining binding

sites, such that the subsequent oxygen additions are more favorable. The apparent

cooperative effect is illustrated simply by the observed sigmoidal oxygen uptake

curves as shown in Figure 7.1(c).

Adair [1925a] showed that, structurally, hemoglobin is a complex aggregate of

four individual subunits. Furthermore, Adair proposed that the observed oxygen

saturation curves for hemoglobin were the result of increasing equilibrium con-

stants for the stepwise oxygen-binding steps, i.e., as a function of oxygenation level

of hemoglobin, which in turn is a function of the solution phase O2 concentration.

The stepwise complexation of oxygen by hemoglobin is intrinsically non-ideal, in

that hemoglobin’s subunits can influence the extent and rate of oxygen binding to

the other subunits. With these considerations in mind, Adair [1925a] proposed the

Case II: Kinetic and Thermodynamic Models for Oxygen Uptake by Hemoglobin
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(a) Ribbon Structure (b) the Heme unit

(c) Prototypical Saturation Plot

Figure 7.1: a) A ribbon structural representation of hemoglobin showing the two
α and two β subunits, each with an embedded heme group. b) The square-planar,
top-down view of the primary heme group with Fe(II) bound in the center of the
porphyrin ring. Not shown are the two apical open coordination sites above and
below the ring to complete the octahedral configuration. c) The characteristic sig-
moidal oxygen uptake curve exhibited by hemoglobin, which is also taken as an
indicator of cooperativity.

Case II: Kinetic and Thermodynamic Models for Oxygen Uptake by Hemoglobin
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following sequence of reversible reactions to describe O2 uptake:

Hb + O2

K1
GGGGGGBFGGGGGG Hb(O2) (7.1)

Hb(O2) + O2

K2
GGGGGGBFGGGGGG Hb(O2)2 (7.2)

Hb(O2)2 + O2

K3
GGGGGGBFGGGGGG Hb(O2)3 (7.3)

Hb(O2)3 + O2

K4
GGGGGGBFGGGGGG Hb(O2)4 (7.4)

where K1, K2, K3, and K4 are the successive equilibrium binding constants. Given

this stepwise equilibrium mechanism, the fraction of O2 bound (Ȳ ) is, therefore,

given by

Ȳ =
K1x+ 2K1K2x

2 + 3K1K2K3x
3 + 4K1K2K3K4x

4

4(1 +K1x+ 2K1K2x2 + 3K1K2K3x3 + 4K1K2K3K4x4)
, (7.5)

where x equals the concentration or partial pressure of oxygen.

Pauling [1935] graphically represented Adair’s model for oxygen uptake by

hemoglobin and then computed the corresponding oxygen saturation curves that

result from different graphical topologies. Pauling fit the sets of possible satura-

tion curves to actual experimental O2-uptake data in order to deduce the apparent

structural relationships among the four hemoglobin subunits. Pauling analyzed

the possible topologies for a symmetric four-membered system. However, Paul-

ing incorrectly concluded that hemoglobin has a “ring-like” structure rather than

a “fully-connected” tetrahedral structure [Pauling, 1935].

Alternative models, such as the “allosteric”, or concerted, model of Monod et

Case II: Kinetic and Thermodynamic Models for Oxygen Uptake by Hemoglobin
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al. (MWC) [1965] and the “sequential” model of Koshland et al. (KNF) [1966], have

been proposed to account for the detailed kinetics of O2 uptake and binding by Hb.

Ackers et al. [2005] studied the detailed thermodynamics of Hb/O2, including the

elusive intermediate states. They showed that the Monod et al. [1965] approach

did not provide a good fit for the experimentally observed thermodynamics of

oxygen binding. The model of Koshland et al. [1966] has also been shown to

be lacking. Ackers [2006] proposed a model for O2 binding by Hb that builds

on decades of his own research and exhibits features of both the KNF and MWC

models. Before we discuss the thermodynamic model of Ackers, we will discuss

the kinetic model of Gibson.

7.1 Kinetic Model

In order to develop an alternative stochastic approach to model O2 uptake

by hemoglobin, we use the data of Gibson [1970] to quantitatively constrain the

empirical data for sequential binding of O2 to the four identifiable subunits of

Hb. Gibson experimentally determined the kinetics of O2 binding by Hb using

stopped-flow UV-Vis spectrophotometry. With this rapid kinetic technique, he de-

termined the individual apparent forward and reverse rate constants correspond-

ing to the values of each one of the apparent equilibrium binding constants, K1,

K2, K3, and K4. The kinetic and thermodynamic data are shown below in Table

7.1.

Kinetic Model
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Table 7.1: Kinetic and thermodynamic data obtained by Gibson for the stoichio-
metric reaction of oxygen with hemoglobin

Affinity Forward-Rate Reverse-Rate
(M−1) (M−1 s−1) (s−1)

K1 = 9.0× 103 k1 = 17.1× 106 k−1 = 1900
K2 = 2.1× 105 k2 = 33.2× 106 k−2 = 158
K3 = 9.1× 103 k3 = 4.89× 106 k−3 = 539
K4 = 6.6× 105 k4 = 33.0× 106 k−4 = 50.0

Table 7.2: A standard formulation of the reaction scheme of Hb/O2 by Gibson

Reactants Products Equation
1 Hb,O2 HbO2 7.1
2 HbO2,O2 HbO4 7.2
3 HbO4,O2 HbO6 7.3
4 HbO6,O2 HbO8 7.4

7.1.1 Standard Deterministic Formulation of Gibson’s Model of

Hemoglobin/O2

Gibson’s early sequential binding model for dioxygen’s complexation to hemoglobin

is depicted in standard form as written in Equations 7.1–7.4. The breakdown of the

mass-action, two-component formulation is shown in Table 7.2. The data model

for the standard formulation is depicted in Table 7.3. The coupled system of differ-

ential equations are written as follows:

Kinetic Model
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d[Hb]

dt
= −k1[Hb][O] + k−1[HbO] (7.6)

d[HbO]

dt
= k1[Hb][O]− k−1[HbO]− k2[HbO][O] + k−2[HbO2] (7.7)

d[HbO2]

dt
= k2[HbO][O]− k−2[HbO2]− k3[HbO2][O] + k−3[HbO2] (7.8)

d[HbO3]

dt
= k3[HbO2][O]− k−3[HbO3]− k4[HbO3][O] + k−4[HbO3] (7.9)

d[HbO3]

dt
= k4[HbO3][O]− k−4[HbO4] (7.10)

d[O]

dt
= −k1[Hb][O]− k2[HbO][O]− k3[Hb2][O]− k4[Hb3][O]

+ k−1[HbO] + k−2[HbO2] + k−3[HbO3] + k−4[HbO4] (7.11)

where [O] is the concentration of oxygen, [Hb] is the concentration of deoxygenated

Table 7.3: A standardized formulation for Gibson’s oxygenation of hemoglobin.
The data elements are real valued from zero to infinity.

Data Element Molec. Id Value Range Concentration in State
Y[1] [Hb] 0−∞ Fully Deoxygenated Hemoglobin
Y[2] [HbO] 0−∞ Singly Oxygenated Hemoglobin
Y[3] [HbO2] 0−∞ Doubly Oxygenated Hemoglobin
Y[4] [HbO3] 0−∞ Triply Oxygenated Hemoglobin
Y[5] [HbO4] 0−∞ Fully Oxygenated Hemoglobin

hemoglobin, [HbO] is the concentration of hemoglobin with 1 partO bound, [HbO2]

is concentration of hemoglobin with 2 parts O bound, [HbO3] is the concentration

of hemoglobin with 3 partsO, bound and [HbO4] is the concentration of hemoglobin

with 4 parts O bound. The rate constants for the reactions depicted in Equations

7.6–7.11 are given in Table 7.1. It should be noted that the stochastic and determin-
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istic forms of the standard formulation both use only two particle classes, products

and reactants.

7.1.2 Standard Stochastic Formulation of Hemoglobin/O2 as Out-

lined by Gibson

prop1 = sk1 ×Hb×O Hb+O
sk1

GGGGGGGAHbO (7.12)

prop2 = sk2 ×HbO ×O HbO +O
sk2

GGGGGGGAHbO2 (7.13)

prop3 = sk3 ×HbO2 ×O HbO2 +O
sk3

GGGGGGGAHbO3 (7.14)

prop4 = sk4 ×HbO3 ×O HbO3 +O
sk4

GGGGGGGAHbO4 (7.15)

prop5 = k−1 ×HbO HbO
k−1

GGGGGGGAHb+O (7.16)

prop6 = k−2 ×HbO2 HbO2

k−2
GGGGGGGAHbO +O (7.17)

prop7 = k−3 ×HbO3 HbO3

k−3
GGGGGGGAHbO2 +O (7.18)

prop8 = k−4 ×HbO4 HbO4

k−4
GGGGGGGAHbO3 +O (7.19)

where O is the number of oxygen, Hb is the number of deoxygenated hemoglobin,

HbO is the number of hemoglobin with 1 partO bound,HbO2 is number of hemoglobin

with 2 parts O bound, HbO3 is the number of hemoglobin with 3 parts O, bound

and HbO4 is the number of hemoglobin with 4 parts O bound. The stochastic rate
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constants can be treated such that each micromole in our system is represented

as a particle and the volume is assumed to be 1 liter. Therefore, the second order

on-rates can be taken to be equal the original rates.

Table 7.4: A standardized formulation for Gibson’s oxygenation of hemoglobin.
The data elements are integers valued from zero to infinity.

Data Element Molec. Id Value Range Number in State
Y[1] Hb 0, 1, 2 . . . Fully Deoxygenated Hemoglobin
Y[2] HbO 0, 1, 2 . . . Singly Oxygenated Hemoglobin
Y[3] HbO2 0, 1, 2 . . . Doubly Oxygenated Hemoglobin
Y[4] HbO3 0, 1, 2 . . . Triply Oxygenated Hemoglobin
Y[5] HbO4 0, 1, 2 . . . Fully Oxygenated Hemoglobin

7.1.3 Modified Scheme of Gibson’s Hemoglobin/O2 Binding Model

The state of the overall molecular complex of hemoglobin and oxygen through-

out the simulation is tracked by evaluating the respective states of the individual

subunits that make up the entire hemoglobin complex (Table 7.6). The individ-

ual one-to-one reactions represent a single biochemical event. However, in order

to effectively model cooperativity, it is necessary to represent the reaction rates as

functions of the states of the other non-reacting subunits. For example, the rate of

oxygen binding to a subunit of hemoglobin is a function of the states of the other

three subunits:

mod prop1 = f(HemSub2U,HemSub3U,HemSub4U)×HemSub1U ×#Oxy.

(7.20)
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The canonical algorithm for modeling cooperativity during oxygen uptake by

hemoglobin is expressed in terms of steadily increasing rates of the stepwise ad-

dition of oxygen. It is also possible to add an additional layer of allosteric reg-

ulation stating that there can be two characteristic structural configurations for a

hemoglobin complex and that the conformational switching is a function of the

extent of oxygen uptake.

The data-model of the modified, three-particle formulation of Gibson’s early

Hb/O2 model is shown in Table 7.8. We will now incorporate quantal effectors

into our reaction schemes.

Table 7.5: The modified formulation for hemoglobin oxygen complexation states

t = t0 t = t0 + ∆t1 t = t0 + ∆t1 + ∆t2
HemSub1U 1 HemSub1U 1 HemSub1U 0
HemSub2U 1 HemSub2U 1 HemSub2U 1
HemSub3U 1 HemSub3U 0 HemSub3U 0
HemSub4U 1 HemSub4U 1 HemSub4U 1
HemSub1B 0 HemSub1B 0 HemSub1B 1
HemSub2B 0 HemSub2B 0 HemSub2B 0
HemSub3B 0 HemSub3B 1 HemSub3B 1
HemSub4B 0 HemSub4B 0 HemSub4B 0
Oxy 4 Oxy 3 Oxy 2

t = t0 + ∆t1 + ∆t2 + ∆t3 t = t0 + ∆t1 + ∆t2 + ∆t3 + ∆t4
HemSub1U 0 HemSub1U 0
HemSub2U 1 HemSub2U 0
HemSub3U 0 HemSub3U 0
HemSub4U 0 HemSub4U 0
HemSub1B 1 HemSub1B 1
HemSub2B 0 HemSub2B 1
HemSub3B 1 HemSub3B 1
HemSub4B 1 HemSub4B 1
Oxy 1 Oxy 0

With the inclusion of quantal effectors in our reactions, we now have a three-
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particle formulation that includes reactants, products, and quantal effectors. Fur-

thermore, the three-particle formulation of computational chemical reactions net-

works will only be implemented in stochastic form.

equation reaction

prop1 = f(skon)×Hb1U ×O Hb1U +O
f(
∑
Bound)

GGGGGGGGGGGGGGGGGGAHb1B (7.21)

prop2 = f(skon)×Hb2U ×O Hb2U +O
f(
∑
Bound)

GGGGGGGGGGGGGGGGGGAHb2B (7.22)

prop3 = f(skon)×Hb3U ×O Hb3U +O
f(
∑
Bound)

GGGGGGGGGGGGGGGGGGAHb3B (7.23)

prop4 = f(skon)×Hb4U ×O Hb4U +O
f(
∑
Bound)

GGGGGGGGGGGGGGGGGGAHb4B (7.24)

prop5 = f(skoff )×HemSub1B Hb1B
f(
∑
Bound)

GGGGGGGGGGGGGGGGGGAHb1U +O (7.25)

prop6 = f(skoff )×HemSub2B Hb2B
f(
∑
Bound)

GGGGGGGGGGGGGGGGGGAHb2U +O (7.26)

prop7 = f(skoff )×HemSub3B Hb3B
f(
∑
Bound)

GGGGGGGGGGGGGGGGGGAHb3U +O (7.27)

prop8 = f(skoff )×HemSub4B Hb4B
f(
∑
Bound)

GGGGGGGGGGGGGGGGGGAHb4U +O (7.28)

Algorithms and Source Code 2: A snippet of code from Source Code 5. This snip-

pet focuses on the reaction rate function that implements Gibosn’s findings. The

volume of the box is calculated such that 1µMof hemoglobin equals 1 hemoglobin

in the system.

if(y[1]+y[2]+y[3]+y[4]==4):
ssakon=17.7/(nA*vol)*1e6*1/4
ssakoff=0

elif(y[1]+y[2]+y[3]+y[4]==3):
5 ssakon=33.2/(nA*vol)*1e6*1/3
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ssakoff=1900
elif(y[1]+y[2]+y[3]+y[4]==2):

ssakon=4.89/(nA*vol)*1e6*1/2
ssakoff=158/2

10 elif(y[1]+y[2]+y[3]+y[4]==1):
ssakon=33.0/(nA*vol)*1e6
ssakoff=539/3

else:
ssakon=0

15 ssakoff=50/4

Cooperativity effects in hemoglobin are expressed in terms of the sequential

binding model, where the rate of complexation of the 2nd oxygen is faster than the

1st complexation step. In turn, the 3rd complexation is greater than the 2nd, and so

forth. This trend is illustrated in Equation 7.29.

K1 < K2 < K3 < K4 (7.29)

In total, there are 32 discrete chemical reactions that fully account for the com-

plexation of oxygen by the subunits of hemoglobin.

The modified data-space that is used to simplify the overall problem is given

in Table 7.5. This simplified data-space is constructed in such a way that each

hemoglobin subunit can exist in only one state at a specific point in time in the sim-

ulation. The second column of Table 7.5 shows the state of each subunit at a specific

time where 1 = formation and 0 = no formation of the Hb-O2 complex. Other re-

searchers (Imai et al. [1981]) have defined the data-space of a hemoglobin-oxygen

complex as all possible combinations of the states of the individual subunits, in a
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manner similar to that shown in Table 7.6.

7.1.4 Computational Results

Examples of Gibson’s data and multiple fits to Gibson’s data are shown in Fig-

ure 7.2.4 . The deterministic two-particle formulation of Gibson’s model is plotted

as a blue line. The stochastic two-particle formulation is plotted in green, while

the modified, stochastic three-particle formulation is plotted in cyan. Finally, a

digitized example of Gibson’s data is depicted in red.

We were able to model the kinetics of hemoglobin’s complexation with O2.

7.2 Thermodynamic Model

Ackers’ thermodynamic model for O2 binding to Hb can be converted to a ki-

netic model by employing the “principle of microscopic reversibility,” as expressed

in Equation 5.2. In the event that we only have knowledge of the successive equi-

librium binding constants, we can invoke a suitable reaction mechanism to pro-

duce thermodynamically accurate results by choosing koff and kon values that sat-

isfy “microscopic reversibility”. A full-state model for the complexation of O2 with

Hb is given in Equations 7.30 – 7.61, where we make the fewest simplifying as-

sumptions.

The stepwise and reversible complexation of oxygen by hemoglobin occurs

with an apparent increasing affinity as additional oxygen molecules are bound.

The four binding sites are represented by either U for unbound or B for bound to
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oxygen (e.g., Hem UUUU is the fully unbound form of hemoglobin. Hem UBBB

and Hem BUBB are two examples of a hemoglobin complex with a single oxygen

molecule in the bound state). In Table 7.6, the four subunits are depicted as they

bind to oxygen.

Hem UUUU + O2

1K
GGGGGGGBFGGGGGGG Hem BUUU (7.30)

Hem UUUU + O2

1K
GGGGGGGBFGGGGGGG Hem UBUU (7.31)

Hem UUUU + O2

1K
GGGGGGGBFGGGGGGG Hem UUBU (7.32)

Hem UUUU + O2

1K
GGGGGGGBFGGGGGGG Hem UUUB (7.33)

Hem BUUU + O2

9K
GGGGGGGBFGGGGGGG Hem BBUU (7.34)

Hem BUUU + O2

1K
GGGGGGGBFGGGGGGG Hem BUBU (7.35)

Hem BUUU + O2

1K
GGGGGGGBFGGGGGGG Hem BUUB (7.36)

Hem UBUU + O2

9K
GGGGGGGBFGGGGGGG Hem BBUU (7.37)

Hem UBUU + O2

1K
GGGGGGGBFGGGGGGG Hem UBBU (7.38)

Hem UBUU + O2

1K
GGGGGGGBFGGGGGGG Hem UBUB (7.39)

Hem UUBU + O2

1K
GGGGGGGBFGGGGGGG Hem BUBU (7.40)

Hem UUBU + O2

1K
GGGGGGGBFGGGGGGG Hem UBBU (7.41)

Hem UUBU + O2

9K
GGGGGGGBFGGGGGGG Hem UUBB (7.42)

Hem UUUB + O2

1K
GGGGGGGBFGGGGGGG Hem BUUB (7.43)

Hem UUUB + O2

1K
GGGGGGGBFGGGGGGG Hem UBUB (7.44)
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Hem UUUB + O2

9K
GGGGGGGBFGGGGGGG Hem UUBB (7.45)

Hem BBUU + O2

9K
GGGGGGGBFGGGGGGG Hem BBBU (7.46)

Hem BBUU + O2

9K
GGGGGGGBFGGGGGGG Hem BBUB (7.47)

Hem BUBU + O2

90K
GGGGGGGGBFGGGGGGGG Hem BBBU (7.48)

Hem BUBU + O2

90K
GGGGGGGGBFGGGGGGGG Hem BUBB (7.49)

Hem BUUB + O2

90K
GGGGGGGGBFGGGGGGGG Hem BBUB (7.50)

Hem BUUB + O2

90K
GGGGGGGGBFGGGGGGGG Hem BUBB (7.51)

Hem UBBU + O2

90K
GGGGGGGGGBFGGGGGGGGG Hem BBBU (7.52)

Hem UBBU + O2

90K
GGGGGGGGGBFGGGGGGGGG Hem UBBB (7.53)

Hem UBUB + O2

90K
GGGGGGGGGBFGGGGGGGGG Hem BBUB (7.54)

Hem UBUB + O2

90K
GGGGGGGGGBFGGGGGGGGG Hem UBBB (7.55)

Hem UUBB + O2

9K
GGGGGGGGBFGGGGGGGG Hem BUBB (7.56)

Hem UUBB + O2

9K
GGGGGGGGBFGGGGGGGG Hem UBBB (7.57)

Hem BBBU + O2

550K
GGGGGGGGGBFGGGGGGGGG Hem BBBB (7.58)

Hem BBUB + O2

550K
GGGGGGGGGBFGGGGGGGGG Hem BBBB (7.59)

Hem BUBB + O2

550K
GGGGGGGGGBFGGGGGGGGG Hem BBBB (7.60)

Hem UBBB + O2

550K
GGGGGGGGGBFGGGGGGGGG Hem BBBB (7.61)
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7.2.1 Standard Deterministic Formulation of Ackers’ Model of

Hemoglobin/O2

In standard deterministic form, 16 reaction rate equations are required for this

model.

dA

dt
=− k1[A][O] + k−1[B]− k2[A][O] + k−2[C] (7.62)

dB

dt
=k1[A][O]− k−1[B]− k3[B][O] + k−3[E]− k4[B][O] + k−4[F ]

− k5[B][O] + k−5[D] (7.63)

dC

dt
=k2[A][O]− k−2[C]− k6[C][O] + k−6[D]− k7[C][O] + k−7[F ]

− k8[C][O] + k−8[G] (7.64)

dD

dt
=k5[B][O]− k−5[D] + k6[C][O]− k−6[D]

− k9[D][O] + k−9[H]− k10[D][O] + k−10[I] (7.65)

dE

dt
=k3[B][O]− k−3[E]− k11[E][O] + k−11[H] (7.66)

dF

dt
=k4[B][O]− k−4[F ] + k7[C][O]− k−7[F ]

− k12[F ][O] + k−12[H]− k13[F ][O] + k−13[I] (7.67)

dG

dt
=k8[C][O]− k−8[G]− k14[G][O] + k−14[I] (7.68)

dH

dt
=k11[E][O]− k−11[H] + k12[F ][O]− k−12[H]

− k15[H][O] + k−15[J ] (7.69)

dI

dt
=k10[D][O]− k−10[I] + k13[F ][O]− k−13[I]
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− k16[I][O] + k−16[J ] (7.70)

dJ

dt
=k15[H][O]− k−15[J ] + k16[I][O]− k−16[J ] (7.71)

dO

dt
=− k1[A][O] + k−1[B]− k2[C][O] + k−2[C]

− k3[B][O] + k−3[E]− k4[B][O] + k−4[F ]

− k5[B][O] + k−5[D]− k6[C][O] + k−6[D]

− k7[C][O] + k−7[F ]− k8[C][O] + k−8[G]

− k9[D][O] + k−9[H]− k10[D][O] + k−10[I]

− k11[E][O] + k−11[H]− k12[F ][O] + k−12[H]

− k13[F ][O] + k13[I]− k14[G][O] + k−14[I]

− k15[H][O] + k−15[J ]− k16[I][O] + k−16[J ] (7.72)

[A] is equal to the concentration of fully deoxygenated Hb, [B] is equal to the

concentration of singly bound Hb with an oxygen on the α terminus, [C] is equal

to the concentration of singly bound Hb with an oxygen on the β terminus. For the

doubly bound ligands, [D] is equal to to the concentration of Hb with an oxygen

bound to the α and β termini of the same hemoglobin dimer (recall that Hb is

a dimer of dimers). [E] is equal to the concentration of Hb with oxygen bound

to the α termini on different dimers, [F ] is equal to the concentration of Hb with

oxygen bound to the α and β termini of opposing dimers, [G] to the concentration

of Hb with oxygen being present on each β subunit. [H] is a triply bound Hb with
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an oxygen missing from the β subunit. [I] is a triply bound Hb with an oxygen

missing from the α subunit. [J ] is the fully oxygenated Hb macromolecule.

7.2.2 Standard Stochastic Formulation of Ackers’ Model of

Hemoglobin/O2

Equation Reaction

prop1 =sk1 × A×O A+O
sk1

GGGGGGGAB (7.73)

prop2 =sk2 × A×O A+O
sk2

GGGGGGGAC (7.74)

prop3 =sk3 ×B ×O B +O
sk3

GGGGGGGAD (7.75)

prop4 =sk4 ×B ×O B +O
sk4

GGGGGGGAE (7.76)

prop5 =sk5 ×B ×O B +O
sk5

GGGGGGGAF (7.77)

prop6 =sk6 × C ×O C +O
sk6

GGGGGGGAD (7.78)

prop7 =sk7 × C ×O C +O
sk7

GGGGGGGAF (7.79)

prop8 =sk8 × C ×O C +O
sk8

GGGGGGGAG (7.80)

prop9 =sk9 ×D ×O D +O
sk9

GGGGGGGAH (7.81)

prop10 =sk10 ×D ×O D +O
sk10

GGGGGGGGAI (7.82)

prop11 =sk11 × E ×O E +O
sk11

GGGGGGGGAH (7.83)
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prop12 =sk12 × F ×O F +O
sk12

GGGGGGGGAH (7.84)

prop13 =sk13 × F ×O F +O
sk13

GGGGGGGGAI (7.85)

prop14 =sk14 ×G×O G+O
sk14

GGGGGGGGAI (7.86)

prop15 =sk15 ×H ×O H +O
sk15

GGGGGGGGAJ (7.87)

prop16 =sk16 × I ×O I +O
sk16

GGGGGGGGAJ (7.88)

prop17 =k−1 ×B B
k−1

GGGGGGGAA+O (7.89)

prop18 =k−2 × C C
k−2

GGGGGGGAA+O (7.90)

prop19 =k−3 ×D D
k−3

GGGGGGGAB +O (7.91)

prop20 =k−4 × E E
k−4

GGGGGGGAB +O (7.92)

prop21 =k−5 × F F
k−5

GGGGGGGAB +O (7.93)

prop22 =k−6 ×D D
k−6

GGGGGGGAC +O (7.94)

prop23 =k−7 × F F
k−7

GGGGGGGAC +O (7.95)

prop24 =k−8 ×G G
k−8

GGGGGGGAC +O (7.96)

prop25 =k−9 ×H H
k−9

GGGGGGGAD +O (7.97)

prop26 =k−10 × I I
k−10

GGGGGGGGAD +O (7.98)

prop27 =k−11 ×H H
k−11

GGGGGGGGAE +O (7.99)

prop28 =k−12 ×H H
k−12

GGGGGGGGAF +O (7.100)
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prop29 =k−13 × I I
k−13

GGGGGGGGAF +O (7.101)

prop30 =k−14 × I I
k−14

GGGGGGGGAG+O (7.102)

prop31 =k−15 × J J
k−15

GGGGGGGGAH +O (7.103)

prop32 =k−16 × J J
k−16

GGGGGGGGAI +O (7.104)

A is equal to the number of fully deoxygenated Hb, B is equal to the number of

singly bound Hb with an oxygen on the α terminus, C is equal to the number of

singly bound Hb with an oxygen on the β terminus. For the doubly bound ligands,

D is equal to to the number of Hb with an oxygen bound to the α and β termini

of the same hemoglobin dimer (recall that Hb is a dimer of dimers). E is equal to

the number of Hb with oxygen bound to the α termini on different dimers, F is

equal to the number of Hb with oxygen bound to the α and β termini of opposing

dimers, G to the number of Hb with oxygen being present on each β subunit. H

is equal to the number of triply bound Hb with an oxygen missing from the β

subunit. I is equal to the number of triply bound Hb with an oxygen missing from

the α subunit. J is the number of fully oxygenated Hb macromolecule.

7.2.3 Modified Stochastic Formulation of Ackers’ Model of

Hemoglobin/O2

The full state model with 32 bidirectional reactions (16 when symmetry is con-

sidered) can be reduced to a modified form with 4 bidirectional reactions with
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Table 7.6: The standard formulation for hemoglobin oxygen complexation states

t = t0 t = t0 + ∆t1 t = t0 + ∆t1 + ∆t2
Hem UUUU 1 Hem UUUU 0 Hem UUUU 0
Hem BUUU 0 Hem BUUU 0 Hem BUUU 0
Hem UBUU 0 Hem UBUU 0 Hem UBUU 0
Hem UUBU 0 Hem UUBU 1 Hem UUBU 0
Hem UUUB 0 Hem UUUB 0 Hem UUUB 0
Hem BBUU 0 Hem BBUU 0 Hem BBUU 0
Hem BUBU 0 Hem BUBU 0 Hem BUBU 1
Hem BUUB 0 Hem BUUB 0 Hem BUUB 0
Hem UBBU 0 Hem UBBU 0 Hem UBBU 0
Hem UBUB 0 Hem UBUB 0 Hem UBUB 0
Hem UUBB 0 Hem UUBB 0 Hem UUBB 0
Hem BBBU 0 Hem BBBU 0 Hem BBBU 0
Hem BBUB 0 Hem BBUB 0 Hem BBUB 0
Hem BUBB 0 Hem BUBB 0 Hem BUBB 0
Hem UBBB 0 Hem UBBB 0 Hem UBBB 0
Hem BBBB 0 Hem BBBB 0 Hem BBBB 0
Oxy 4 Oxy 3 Oxy 2
t = t0 + ∆t1 + ∆t2 + ∆t3 t = t0 + ∆t1 + ∆t2 + ∆t3 + ∆t4
Hem UUUU 0 Hem UUUU 0
Hem BUUU 0 Hem BUUU 0
Hem UBUU 0 Hem UBUU 0
Hem UUBU 0 Hem UUBU 0
Hem UUUB 0 Hem UUUB 0
Hem BBUU 0 Hem BBUU 0
Hem BUBU 0 Hem BUBU 1
Hem BUUB 0 Hem BUUB 0
Hem UBBU 0 Hem UBBU 0
Hem UBUB 0 Hem UBUB 0
Hem UUBB 0 Hem UUBB 0
Hem BBBU 0 Hem BBBU 0
Hem BBUB 0 Hem BBUB 0
Hem BUBB 1 Hem BUBB 0
Hem UBBB 0 Hem UBBB 0
Hem BBBB 0 Hem BBBB 1
Oxy 1 Oxy 0
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dynamic reaction rates (Equations 7.105–7.108) by simplifying in terms of symme-

try. A representation of the modified formulation of the problem is shown in the

following equations:

Hbα1 + O2

f(Hbβ1,Hbα2,Hbβ2)
GGGGGGGGGGGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGGGGGGGGGGG Hbα1O2 (7.105)

Hbβ1 + O2

f(Hbα1,Hbα2,Hbβ2)
GGGGGGGGGGGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGGGGGGGGGGG Hbβ1O2 (7.106)

Hbα2 + O2

f(Hbα1,Hbβ1,Hbβ2)
GGGGGGGGGGGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGGGGGGGGGGG Hbα2O2 (7.107)

Hbβ2 + O2

f(Hbα1,Hbα2,Hbβ1)
GGGGGGGGGGGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGGGGGGGGGGG Hbβ2O2 (7.108)

whereHbα1 is the alpha subunit on the first dimer, Hbα2 is the alpha subunit on the

second dimer, Hbβ1 is the beta subunit on the first dimer, Hbβ2 is the beta subunit

on the second dimer, and O2 is dioxygen. When there is no space and “+” between

the hemoglobin subunit and dioxygen that means that they are complexed. The

“f(*)” in the rate means that this rate is a function of the parameters provided in

place of “*”.

Here we provide the modified Gillespie equations on the left along with the

Thermodynamic Model



78

specific reaction trajectory that they represent on the right.

equation reaction

prop1 = fkon1 ×HemSub1U ×O Hbα1 +OGGGGAHbα1O (7.109)

prop2 = fkon2 ×HemSub2U ×O Hbβ1 +OGGGGAHbβ1O (7.110)

prop3 = fkon3 ×HemSub3U ×O Hbα2 +OGGGGAHbα2O (7.111)

prop4 = fkon4 ×HemSub4U ×O Hbβ2 +OGGGGAHbβ2O (7.112)

prop5 = koff1×HemSub1B Hbα1OGGGGAHbα1 +O (7.113)

prop6 = koff2×HemSub2B Hbβ1OGGGGAHbβ1 +O (7.114)

prop7 = koff3×HemSub3B Hbα2OGGGGAHbα2 +O (7.115)

prop8 = koff4×HemSub4B Hbβ2OGGGGAHbβ2 +O (7.116)

Algorithms and Source Code 3: A snippet of code from Source Code 8. The fol-

lowing code implements Acker’s cooperative scheme of Hb/O2+
2 complexation.

if sum(y[1:5])==4:
"""Ackers Hb ˜ 10"""
kon1=kon
kon2=kon

5 kon3=kon
kon4=kon
koff1 = koff
koff2 = koff
koff3 = koff

10 koff4 = koff
elif sum(y[1:5])==3:

if y[5]==1:
""" one alpha is bound to an oxygen """
kon1 = 0

15 kon2 = mult1*kon
kon3 = kon
kon4 = kon
koff1= koff
koff2 = 0

20 koff3 = 0
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koff4 = 0
if y[6]==1:

""" one beta is bound to an oxygen """
kon1 = mult1*kon

25 kon2 = 0
kon3 = kon
kon4 = kon
koff1 = koff
koff2 = koff

30 koff3 = koff
koff4 = koff

if y[7]==1:
""" one alpha is bound to an oxygen """
kon1 = kon

35 kon2 = kon
kon3 = 0
kon4 = mult1*kon
koff1 = koff
koff2 = koff

40 koff3 = koff
koff4 = koff

if y[8]==1:
""" one beta is bound to an oxygen """
kon1 = kon

45 kon2 = kon
kon3 = mult1*kon
kon4 = 0
koff1 = koff
koff2 = koff

50 koff3 = koff
koff4 = koff

elif sum(y[1:5])==2:
if y[1]==1 and y[2]==1:

""" """
55 kon1 = mult1*kon

kon2 = mult1*kon
kon3 = mult1*kon
kon4 = mult1*kon
koff1 = koff

60 koff2 = koff
koff3 = koff
koff4 = koff

if y[1]==1 and y[3]==1:
""" """

65 kon1 = mult2*kon
kon2 = mult2*kon
kon3 = mult2*kon
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kon4 = mult2*kon
koff1 = koff

70 koff2 = koff
koff3 = koff
koff4 = koff

if y[1]==1 and y[4]==1:
""" """

75 kon1 = mult2*kon
kon2 = mult2*kon
kon3 = mult2*kon
kon4 = mult2*kon
koff1 = koff

80 koff2 = koff
koff3 = koff
koff4 = koff

if y[2]==1 and y[3]==1:
""" """

85 kon1 = mult2*kon
kon2 = mult2*kon
kon3 = mult2*kon
kon4 = mult2*kon
koff1 = koff

90 koff2 = koff
koff3 = koff
koff4 = koff

if y[2]==1 and y[4]==1:
""" """

95 kon1 = mult2*kon
kon2 = mult2*kon
kon3 = mult2*kon
kon4 = mult2*kon
koff1 = koff

100 koff2 = koff
koff3 = koff
koff4 = koff

if y[3]==1 and y[4]==1:
""" """

105 kon1 = mult1*kon
kon2 = mult1*kon
kon3 = mult1*kon
kon4 = mult1*kon
koff1 = koff

110 koff2 = koff
koff3 = koff
koff4 = koff

elif sum(y[1:5])==1:
if y[1]==1:
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115 """ """
kon1 = mult3*kon
kon2 = 0
kon3 = 0
kon4 = 0

120 koff1 = koff
koff2 = koff
koff3 = koff
koff4 = koff

if y[2]==1:
125 """ """

kon1 = 0
kon2 = mult3*kon
kon3 = 0
kon4 = 0

130 koff1 = koff
koff2 = koff
koff3 = koff
koff4 = koff

if y[3]==1:
135 """ """

kon1 = 0
kon2 = 0
kon3 = mult3*kon
kon4 = 0

140 koff1 = koff
koff2 = koff
koff3 = koff
koff4 = koff

if y[4]==1:
145 """ """

kon1 = 0
kon2 = 0
kon3 = 0
kon4 = mult3*kon

150 koff1 = koff
koff2 = koff
koff3 = koff
koff4 = koff
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7.2.4 Computational Size or Summary of Our Models

In the standard representation, the largest number of data elements required

to represent the number of states of a macromolecule is an. The value of a repre-

sents the number of different states that exist for an individual subunit—e.g., for

hemoglobin, a equals two, corresponding to bound and unbound. The number of

subunits equals n. The largest number of reactions that are needed to represent the

dynamic activity of a macromolecule is given by

r × n× a(n−1) (7.117)

where r equals the number of reactions a subunit can undergo, e.g., for hemoglobin/O2,

r = 2.

In our modified formulation, a single macromolecule requires a × n Boolean

data elements (1 byte for true or false), and r × n data elements are required to

account for the postulated reaction mechanism. For example, the computational

complexity for the oxygen + hemoglobin system is compared in Table 7.7 to a

system that the author has used to represent the cooperative binding of calcium

(Ca++) with calmodulin (CaM) and subsequently with calcium calmodulin kinase

II (CaMKII), so that r= 104, a = 20, and n = 12. The latter case has proven to be

computationally intractable.

In order to address the issue of complexity first, a simple kinetic model of se-

quential binding of O2 by Hb, which is constrained by the data of Gibson, was
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Hemoglobin Ca++/CaM/CaMKII
a 2 20
n 4 12
r 1/2 52/104
an 16 4.10× 1015

r × n× a(n−1) 32/64 1.27× 1017/2.55× 1017

a× n 8 240
r × n 4/8 624/1248

Table 7.7: This table provides a numerical comparison of the relative complexity
in the problem formulations for two protein systems exhibiting kinetic and ther-
modynamic cooperativity. The numbers separated by a slash (/) are for either the
bidirectional or unidirectional case, in that order.

developed. Four reactions are used in the standard formulation, while in the mod-

ified formulation, eight separate reactions (i.e., four reversible reactions) were rep-

resented (Table 7.2).

7.2.5 Computational Results

The Nedler-Mead simplex method is used to fit the reaction mechanism pro-

posed by Ackers and Holt [2006] to a subset of the data of Ackers et. al. [1976], as

depicted in Figure 7.4. The data representation of the modified reaction scheme is

depicted in Table 7.9. The data from the deterministic and stochastic fits are shown

in Figure 7.5. Initial equilibrium ratios, K, for both the deterministic simulations

were chosen such that the starting prediction loosely approximated the observed

Hb/O2 binding curves. Stochastic simulations had stochastic equilibrium ratios

that were consistent with deterministic results (0–20% greater). The results, which

are also summarized in Table 7.10, show the cooperative relationship proposed

by Ackers is not constant. The reason for this is also provided by Ackers, in that
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Table 7.8: A modified formulation of the reaction scheme of Hb/O2 by Gibson

Reactants Products Quantal Effectors Equation
1 HbSub1,O2 HbSub1O2 HbSub2,HbSub3,HbSub4,+/−O2 7.105-7.108
2 HbSub2,O2 HbSub2O2 HbSub1,HbSub3,HbSub4,+/−O2 7.105-7.108
3 HbSub3,O2 HbSub3O2 HbSub1,HbSub2,HbSub4,+/−O2 7.105-7.108
4 HbSub4,O2 HbSub4O2 HbSub1,HbSub2,HbSub3,+/−O2 7.105-7.108

Table 7.9: A modified formulation of Ackers’ Hb/O2

Reactants Products Quantal Effecters Equation
1 Hbα1,O2 Hbα1O2 Hbβ1, Hbα2, Hbβ2, +/−O2 7.30, 7.37, 7.40, 7.43,

7.52, 7.54, 7.56, 7.61
2 Hbβ1,O2 Hbβ1O2 Hbα1, Hbα2, Hbβ2, +/−O2 7.31, 7.34, 7.41, 7.44,

7.48, 7.50, 7.57, 7.60
3 Hbα2,O2 Hbα2O2 Hbα1, Hbβ1, Hbβ2, +/−O2 7.32, 7.35, 7.38, 7.45,

7.46, 7.51, 7.55, 7.59
4 Hbβ2,O2 Hbβ2O2 Hbα1, Hbβ1, Hbα2, +/−O2 7.33, 7.36, 7.39, 7.42,

7.47, 7.49, 7.53, 7.58

he stated as early as 1976 that hemoglobin is actually a dimer of dimers and that

at low concentration it exhibits a more dimer-like behavior than tetrameric-like,

prototypical, character.

While the kinetic results of the kinetic model of Gibson (see Figure 7.2.4) show

consistency between the various models, the results of the thermodynamic system

of Ackers (see Figure 7.5) show a strong divergence in behavior. The divergence

seems to occur when dioxygen is limiting with respect to number rather than con-

centration. This is discussed further in the next section and the following chapter.
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Table 7.10: Deterministic fits of the mechanism of Ackers and Holt [2005] to the
data of Mills et al. [1976]

40nM 0.27µM 5.4µM 38µM
K(M−1) 1.846 ×105 5.90 ×104 8.97 ×103 7.35 ×103

Mult1 0.8587 0.8795 20.525 9.217
Mult2 0.6218 0.6002 54.732 80.860
Mult3 11.9955 64.0806 83.635 518.5384

7.3 Discussion

At high concentrations of hemoglobin, in small volumes for single-lattice mod-

els of hemoglobin, both the standard and modified stochastic formulations deviate

from the experimental data. This seems to be a quantal effect that is apparently

a non-ergodic in nature. It is important to note that the experiments were per-

formed at higher volumes and therefore it is possible that they are unfit to be con-

sidered as an analogy for what would happen when observing a single molecule

of “hemoglobin” in a box.

It is possible that the critical threshold for quantal behavior seems to be the

point from experimental data that occurs when the volume is decreased to the

point that there are fewer ligand molecules than there are cooperative subunits

(four O2 for hemoglobin). This is not an artifact, but the point at which the system

shows a quantization of states that is apparently non-ergodic. That the determin-

istic treatment cannot accurately describe the quantal behavior of the system is

reminiscent of the particle-in-a-box model that has been used to describe matter’s

wave-packet duality.

The stochastic model fits the apparent non-ergodicity, but the deterministic fails

Discussion



86

to fit it. The system becomes apparently non-ergodic at low volumes because co-

operativity cannot be fully realized when there are more cooperative subunits than

available ligands. We must break down this model further to determine what is

happening.
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Figure 7.3: A) A schematic diagram of the possible modes of interaction of
hemoglobin with oxygen, according to the model of Adair and interpreted by Imai
[1981]. B) Ackers’ detailed model of hemoglobin thermodynamics [2006].
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Figure 7.4: Percentage of hemoglobin bound vs. the total concentration of oxygen.
The actual oxygen is modified in this plot as the original data did not account for
the total oxygen in the system.
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Figure 7.5: (cont.) Data fitting of the conceptual model of Ackers and Holt (ref
insert 10) to the data of Mills et al. [1976]. The original data is in red and the
computer-generated deterministic fits are in blue.
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Chapter 8

Case III: A Simple Cooperative Dimer
and Implications for Calcium
Calmodulin Kinase II

In the previous chapter, we saw an example of hemoglobin exhibiting non-

ergodic like behavior. By limiting the oxygen count in a system containing a single

hemoglobin to a non-saturating number, we were able to significantly lower levels

of oxygenation of hemoglobin. This is an exciting result, as there are cooperative

processes that occur in volumes that regularly contain a ligand count that is less

that the number that is sufficient to activate a complete set of quantal effectors

contained within a macromolecule

In this chapter, we will build the simplest “toy” protein, with two binding sites

that act as symmetric quantal effectors. The goal of this exercise is to determine

what is necessary and sufficient to create non-ensemble-like behavior in biochemi-

cal systems. We will point out the limit at which a researcher could model a system

with stochastic versus reaction-rate equations. Finally, we will then describe how

a dendritic spine might fulfill the requirements for non-ergodic-like behavior in a

Case III: A Simple Cooperative Dimer and Implications for Calcium Calmodulin
Kinase II
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biological system.

8.1 The Properties of a Highly Cooperative Protein with

Two Binding Sites

Our test system will use the following reaction scheme,

A+X
KD1

GGGGGGGGBFGGGGGGGGB (8.1)

B +X
KD2

GGGGGGGGBFGGGGGGGG C (8.2)

where A is an unbound protein, B is a singly bound protein, C is a doubly bound

protein, and X is a ligand that may bind to A and B. Another constraint of our

system is highly cooperative, KD1 >> KD2.

8.2 When #A = 1 and #X = 1

In Figure 8.1, we see that the stochastic and deterministic results (Figures 8.1(a)

and 8.1(b), respectively) differ from one another. Which result is correct? By obser-

vation, in a system containing A and X can only undergo the reaction depicted in

Equation ??. The reaction depicted in Equation ?? should be impossible, and there-

fore no C should be present in our system. So our stochastic simulation is correct,

while the deterministic result is explicitly incorrect in that it predicts a completely

different composition of our system kinetically and at equilibrium.

When #A = 1 and #X = 1
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Figure 8.1: A comparison of deterministic and stochastic models of a system out-
lined in Equations 8.1 and 8.2. Initial conditions are #A=1 and #X=1.

When #A = 1 and #X = 1
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While minor discrepancies have been observed between stochastic and deter-

ministic systems, this may be the first case where we can see that the stochastic

result is a significantly more realistic representation of the likely physical reality

than the deterministic result.

8.3 When #A = 2 and #X = 2 and the Idea of Inaccessi-

ble States

Figure 8.2 shows that our stochastic and deterministic systems perform simi-

larly when the system represented in Figure 8.1 is doubled in size. Based on this

apparent volume effect, we notice that the switch occurs again when a cooperative

macromolecule may explore its full state space. The limit of the behavior seems

to be the cutoff where some states that could occur in a classical formulation are

restricted due to limited resources. This finding implies that we might be able to

recover macroscopic behavior in the Ackers’ model if the concentration was large

enough.

8.4 Revisiting the Ackers’ Model

In Figure 8.3, we increase the volume of the box of hemoglobin. With the first

increase in volume (B), we observe the quantal behavior shifts to the left, as does

the point at which four dioxygen are in the system. There is also a lesser dis-

crepancy in the stochastic formulation at the point before there are eight dioxygen

Revisiting the Ackers’ Model
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Figure 8.2: A comparison of deterministic and stochastic models of a system out-
lined in Equations 8.1 and 8.2. Initial conditions are #A=2 and #X=2.

Revisiting the Ackers’ Model



96

molecules in the system. When the system size is doubled again (C), the non-

ergodic-like behavior disappears into the noise.

This is an exciting result as it shows that a cooperative system might allow us

to resolve features of the quantal nature of macromolecular dynamics. What is

desired is a more cooperative system that is activated by a ligand that is easier to

control than dioxygen. Ca2+/CaM/CaMKII is an obvious choice for such a system

and it will be discussed in a later section of this chapter.

8.5 Ergodic Breaking or Incomparable Ensembles?

Experimental biologists gain insight into biological systems by studying bio-

logical systems in varying conditions and then inferring the behavior of the bio-

logical system based upon microscopic observations. By definition, biochemists

often treat these ensembles as being comparable by directly comparing them. Fur-

thermore modelers often expect stochastic and deterministic results to converge.

For example, in 2005 Lok stated that Moleculizer, a stochastic rule-based modeling

system, and BioNetGen (version 1), a deterministic rule-based modeling system

should give comparable results. As I have shown in this chapter and the previous

one, stochastic and deterministic results do not necessarily converge. Ironically

Lok and Brent did not give their code Moleculizer enough credit, as their method

should be more accurate at small volumes than classical methods that are more

similar to BioNetGen (v.1) [2005].

Ergodic Breaking or Incomparable Ensembles?
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Figure 8.3: see next page
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Figure 8.3: A comparison of deterministic and stochastic models of a system out-
lined in Equations 8.1 and 8.2. Initial conditions are #A=2 and #X=2.

8.6 How Does This Relate to Calcium Signaling in the

Dendritic Spine?

The cooperative relationship in Ca2+/CaM/CaMKII signaling in the dendritic

spine is actually a perfect domain to consider the quantal behavior of a macro-

molecule. While CaMKII can bind to 12 CaM molecules, that can in total bind to

48 ions of Ca2+, it has a high particle requirementin order for it to explore its full

state space.

Furthermore, the dendritic spine is very interesting in that it is very small and

can be diffusionally restricted from the rest of the cell. This means that once it

How Does This Relate to Calcium Signaling in the Dendritic Spine?
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reaches a basal level of free Ca2+, it can control further entry to some degree. As

we mentioned earlier, the resting Ca2+ concentration for a cell would result in a

volume such as the dendritic spine having approximately four free calcium ions.

A dendritic spine without CaMKII activity already present would be able to uti-

lize Ca2+/CaM to function as a switch beyond what can be described by classi-

cal/deterministic methods. The mechanism by which this is done when there is

Ca2+/CaM present is not directly apparent.

Currently, neuroscientists who are interested in learning and memory might

analyze the phosphorylation of CaMKII under varying concentrations but at very

nonphysical volumes. Doing so has consistently led to the understanding that

CaMKII can become activated at very low levels of Ca2+.

This has led to confusion as to how small amounts of Ca2+ can lead to long-term

depression when experiments predict kinase activity. Based on these findings, a

neuroscientist might consider taking steps toward understanding CaMKII activity

under more physiologically realistic volumes.

It is understood that, at rest, a dendritic spine can have insufficient Ca2+ to

saturate a CaMKII macromolecule bound to CaM. This means that CaMKII has

zero probability of entering some of its state space even at high concentrations of

Ca2+ that are equivalent to low numbers of Ca2+ in a small volume. In such a case

the discrete system would be below the threshold for macroscopic behavior. This

strongly points to the possibility of quantal effects being exploited at the synapse

as a regular and ubiquitous feature of synaptic plasticity.

How Does This Relate to Calcium Signaling in the Dendritic Spine?
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Chapter 9

Conclusions

In this study, we compare and contrast the capability of deterministic, standard

stochastic, and modified stochastic models to accurately reproduce observed ki-

netic and thermodynamic data. Our modified stochastic representation appears

to give us a simple method to tease out otherwise complex relationships between

molecular states. Again our modified method is analogous to a lattice statistical

model that employs that employs rules or reaction rate equations to replace reac-

tion rate constants.

An additional complication is found in attempting to deduce mechanistic re-

lationships such as cooperative influences from macroscopic data. This falls into

the general classification of an inverse problem. An inverse-problem approach

involves the prediction of structurally dependent microscopic mechanisms from

observed macroscopic dynamics.

However, in many inverse problems, the ability to deduce mechanistic rela-

tionships may be ill-posed, because the dynamics of a single system may be re-

produced with alternative plausible mechanisms. Pauling [1935] has previously

demonstrated that many possible solutions are consistent with observed data of

Conclusions
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the Hb + O2 system. The deterministic and the more compact stochastic approach

that we applied to the Ackers and Holt model and associated data provide alterna-

tive tools that can be applied to explore similar cooperative issues in biochemical

reactions.

In the first application, the pH-dependent protonation of the zwitterion glycine

is modeled, and the solutions are consistent. In the first part of the second case,

the kinetic model of the sequential complexation of four dioxygen molecules by

hemoglobin is modeled in an effort to account for the apparent cooperative rela-

tionship, or the enhanced binding affinity with respect to the successive uptake

of oxygen, that is observed experimentally between the four different subunits of

the hemoglobin molecule. In this kinetic model, all models considered showed

consistent results.

Conversely, our thermodynamic models of Hb/O2 complexation according to

Ackers showed our first evidence of quantal behavior in both the standard and the

modified stochastic formulations. These quantal effects lead to ergodic breaking

that is apparently, due to some phenomena inherently present in cooperativity.

Similar to the idea of a particle in a box, our simulation predicts that we might

be observing the quantization of energy levels of Hb as O2 is dialyzed into our

system.

To our knowledge, inconsistencies in the average behavior of the stochastic ver-

sus the deterministic version of the same biochemical system have not been pre-

viously reported. The direct significance is that stochastic simulations of nearly

Conclusions
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equivalent ratios of macromolecule binding sites to their ligands are more biologi-

cally realistic than deterministic models of the same systems. Rule-based modeling

approaches are beneficial in that they allow us to directly confront the non-ideal

nature of cooperative chemical reactions. We can directly extend these findings to

the Ca++/CaM/CaMKII system and see that with its high degree of possible co-

operativity and its apparent switch-like/bistable behavior, it is possible that LTP

uses quantal effects as a common component of activity-dependent-plasticity.

Finally, as we produce models that are increasingly more precise, we may be

able to reverse engineer more accurate parameters for reactive force fields, an es-

sential component of reactive molecular dynamics packages such as ReaxFF (van

Duin et al. [2001]). As more rule-based modeling approaches are implemented to

deal with the combinatorial complexity of many interacting components in a com-

plex chemical reaction, we must keep in mind that these models may not give us

much insight into the physicochemical properties that underlie the chemical reac-

tions that we observe.

Conclusions
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Example Source Code

Case I: Glycine Protonation

Algorithms and Source Code 4: Glycine protonation represented as a system of
ordinary differential equations, the stochastic simulation algorithm, and “rule-
based” techniques

#!/usr/bin/env python2.6
2 # -*- coding: utf-8 -*-

"""
Glycine Negative cooperativity
example from "Binding and Linkage" 1990, page 59
"""

7 __docformat__ = "restructuredtext en"
#TODO hi
import numpy as np
import numpy.random as npr
import scipy as sp

12 import scipy.integrate as spi
import pylab as pl
def glyssa(tend,steps,trials,H):

timepoints=np.arange(steps+1)*(tend/steps)
datapoints=np.zeros(steps+1)

17 for x in xrange(int(trials)):
vol=1e-10
nA=6.023e23
prop = sp.zeros(4)
y=sp.zeros(5)

22 t=0
cnt=0
Ka=5.0e9/(nA*vol)
Kb=2.0e4/(nA*vol)
cab=1/100.0

27 koff=1
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y[0]=H*nA*vol
y[1]=1
y[2]=1

32 y[3]=0
y[4]=0

## print y[0]
while tend>t:

37 prop[0]=Ka*koff*cab**y[4] * y[0] * y[1]
prop[1]=Kb*koff*cab**y[3] * y[0] * y[2]
prop[2]=koff * y[3]
prop[3]=koff * y[4]
cprop=sp.cumsum(prop)

42 r1=npr.random()
tau = 1/cprop[-1]*sp.log(1/r1)
t=tau+t
while t>=cnt*timepoints[1] and cnt<steps+1:

Y= (y[3]+y[4])/2.0
47 ## print y

datapoints[cnt]+=Y
cnt+=1

if (t < tend):
r2=npr.random()

52 if r2<cprop[0]/cprop[-1]:
y[0]-=1
y[1]-=1
y[3]+=1

elif r2<cprop[1]/cprop[-1]:
57 y[0]-=1

y[2]-=1
y[4]+=1

elif r2<cprop[2]/cprop[-1]:
y[0]+=1

62 y[1]+=1
y[3]-=1

elif r2<cprop[3]/cprop[-1]:
y[0]+=1
y[2]+=1

67 y[4]-=1
else:

break
# print datapoints/int(trials)

return [timepoints,datapoints/int(trials)]
72

def glyssaNOT(tend,steps,trials,H):
timepoints=np.arange(steps+1)*(tend/steps)
datapoints=np.zeros(steps+1)
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for x in xrange(int(trials)):
77 vol=1e-10

nA=6.023e23
prop = sp.zeros(4)
y=sp.zeros(5)
t=0

82 cnt=0
Ka=5.0e9/(nA*vol)
Kb=2.0e4/(nA*vol)
cab=1/100.0
koff=1

87
y[0]=H*nA*vol
y[1]=1
y[2]=1
y[3]=0

92 y[4]=0
## print y[0]

while tend>t:

prop[0]=Ka/koff * y[0] * y[1]
97 prop[1]=Kb/koff * y[0] * y[2]

prop[2]=koff * y[3]
prop[3]=koff * y[4]
cprop=sp.cumsum(prop)
r1=npr.random()

102 tau = 1/cprop[-1]*sp.log(1/r1)
t=tau+t
while t>=cnt*timepoints[1] and cnt<steps+1:

Y= (y[3]+y[4])/2.0
## print y

107 datapoints[cnt]+=Y
cnt+=1

if (t < tend):
r2=npr.random()
if r2<cprop[0]/cprop[-1]:

112 y[0]-=1
y[1]-=1
y[3]+=1

elif r2<cprop[1]/cprop[-1]:
y[0]-=1

117 y[2]-=1
y[4]+=1

elif r2<cprop[2]/cprop[-1]:
y[0]+=1
y[1]+=1

122 y[3]-=1
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elif r2<cprop[3]/cprop[-1]:
y[0]+=1
y[2]+=1
y[4]-=1

127 else:
break

# print datapoints/int(trials)
return [timepoints,datapoints/int(trials)]

def glyrre(y,t):
132 H=y[0]

A=y[1]
B=y[2]
C=y[3]
D=y[4]

137 Ka=5.0e9
Kb=2.0e4
koff=0.999
cab=1/100.0
yprime=pl.zeros(5)

142 yprime[0]= -(Ka/koff*A*H)-(Kb/koff*A*H)-(Ka/koff*cab*C*H)-(
Kb/koff*cab*B*H)+koff*(B+C+D+D)

yprime[1]= -(Ka/koff*A*H)-(Kb/koff*A*H)+(koff*B)+(koff*C)
yprime[2]= (Ka/koff*H*A)+koff*D-(koff*B)-Kb/koff*cab*H*B
yprime[3]= (Kb/koff*H*A)+koff*D-(koff*C)-Ka/koff*cab*H*C
yprime[4]= Kb/koff*cab*H*B+Ka/koff*cab*H*C-2.0*koff*D

147 return yprime

if __name__ == '__main__':
rreconc=[]
rrevalue=[]

152 mult = 2.0
for expo in range(int(12*mult)):

startH = 1.0*10.0**(-expo/mult)
startGly = 1.0e-13
yzero=pl.array([startH,startGly,0,0,0])

157 # times=pl.linspace(0.0,0.5,1e4,endpoint=True)
times=sp.arange(0,2.0,.005)
test=spi.odeint(glyrre,yzero,times)
print expo/3., ((test[-1,2]+test[-1,3])*.5+test[-1,4])/(

startGly)
rreconc.append(expo/mult)

162 rrevalue.append(((test[-1,2]+test[-1,3])*.5+test[-1,4])/(
startGly))

testlist=[1e-13,1e-12,1e-11,1/(5.0*10**10),1/(1.5*10**10),1e-
10,1/(4.5*10**9),1/(3.8*10**9),1/(2.0*10**9),1/(1.5*10**9)
,
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1e-9,1e-8,1e-7,1e-6,1e-5,
1e-4,1e-3,1/600.0,1/500.0,1/200.0,1/150.0,1e-

2,1/60.0,1/50.0,1/20.0,1/15.0,1e-1,1e-0]
167 numlist=[]

datalist=[]
for number in testlist:

tempt,tempdata=glyssa(.99,9,3000,number)
print -sp.log10(number), number, tempdata[-1]

172 numlist.append(-sp.log10(number))
datalist.append(tempdata[-1])

testlistNOT=[1e-13,1e-12,1e-11,1/(5.0*10**10),1/(1.5*10**10)
,1e-10,

1/(4.5*10**9),1/(3.8*10**9),1/(2.0*10**9),1/(1.5*10**
9),

177 1e-9,1e-8,1e-7,1e-6,1e-5,1/(3.8*10**4),1/(2.0*10**4),
1e-4,1/(3.8*10**3),1/(2.0*10**3),1e-3,1e-2,1e-1,1e-0]

numlistNOT=[]
datalistNOT=[]
for number in testlistNOT:

182 tempt,tempdata=glyssaNOT(.99,9,3000,number)
#print -sp.log10(number), number, tempdata[-1]
numlistNOT.append(-sp.log10(number))
datalistNOT.append(tempdata[-1])

pl.plot(rreconc,rrevalue,"g",label="Negative Cooperativity (
ODE's)",ms=4,lw=2)

187 pl.yticks((0, 0.5, 1), ('0', r'$\frac{1}{2}$', '1'), color =
'k', size = 18)

pl.xticks((2,4,6,8,10,12), ('2','4','6','8','10','12'), color
= 'k', size = 18)

pl.plot(numlist,datalist,label="Negative Cooperativity (
Stochastic Sim)",ms=4,lw=2)

pl.plot(numlistNOT,datalistNOT,"r",label="Without Charge
Interference",ms=4,lw=2)

192 for (a, b) in zip(rreconc,rrevalue ):
print a,b

for (a, b) in zip(numlist,datalist ):
print a,b

for (a, b) in zip(numlistNOT,datalistNOT ):
197 print a,b

pl.legend(loc="best")
pl.xlabel("pH",size=18)

202 pl.ylabel("fractional saturation",size=18)
pl.show()
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Case II: Gibson’s Oxygen Binding to Hemoglobin

Some relevant math:

41.5µM heme

L
× 1Hb

4Heme
× 1M

106µM
× 6.023× 1023Molecs

1M
=

6.249× 1018Molecs

L

1
6.249×1018

L

=
1.6× 10−19L

1Hb

124µM O2

L
× 1M

106µM
× 6.023× 1023Molec.s

1 M
× 1.6× 10−19L

1
= 1156416.

Algorithms and Source Code 5: Gibson’s kinetic model of Hb/O2, applied to his
own data as reported in [1970]

#!/usr/bin/env python2.6
2 # -*- coding: utf-8 -*-

"""
Gibson 1970

This will be the standard to compare to for Gibson 1970
7 """

__docformat__ = "restructuredtext en"
"""
:Parameters:

12 - kon1=17.7
- kon2=33.2
- kon3=4.89
- kon4=33.0
- koff1=1900.

17 - koff2=158.
- koff3=539.
- koff4=50.

"""
import numpy as np

22 import numpy.random as npr
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import scipy as sp
import scipy.integrate as spi
import pylab as pl
def myssa(tend,steps,trials):

27 timepoints=np.arange(steps+1)*(tend/steps)
datapoints=np.zeros(steps+1)
for x in xrange(int(trials)):

prop = sp.zeros(8)
y=sp.zeros(9)

32 t=0
cnt=0
vol=1.6e-19
nA=6.023e23
uM=nA*10**-6

37 Oxy=11
if npr.random()<0.9:

Oxy=Oxy+1
Hb=int(1)
y[0]=Oxy

42 y[1]=1
y[2]=1
y[3]=1
y[4]=1
while tend>t:

47 if(y[1]+y[2]+y[3]+y[4]==4):
ssakon=17.7/(nA*vol)*1e6*1/4
ssakoff=0

elif(y[1]+y[2]+y[3]+y[4]==3):
ssakon=33.2/(nA*vol)*1e6*1/3

52 ssakoff=1900
elif(y[1]+y[2]+y[3]+y[4]==2):

ssakon=4.89/(nA*vol)*1e6*1/2
ssakoff=158/2

elif(y[1]+y[2]+y[3]+y[4]==1):
57 ssakon=33.0/(nA*vol)*1e6

ssakoff=539/3
else:

ssakon=0
ssakoff=50/4

62 prop[0]=ssakon * y[0] * y[1]
prop[1]=ssakon * y[0] * y[2]
prop[2]=ssakon * y[0] * y[3]
prop[3]=ssakon * y[0] * y[4]
prop[4]=ssakoff * y[5]

67 prop[5]=ssakoff * y[6]
prop[6]=ssakoff * y[7]
prop[7]=ssakoff * y[8]
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cprop=sp.cumsum(prop)
r1=npr.random()

72 tau = 1/cprop[-1]*sp.log(1/r1)
t=tau+t
while t>=cnt*timepoints[1] and cnt<steps+1:

Y= (y[5]+y[6]+y[7]+y[8])/(4)
datapoints[cnt]+=Y

77 cnt+=1
if (t < tend):

r2=npr.random()
if r2<cprop[0]/cprop[-1]:

y[0]-=1
82 y[1]-=1

y[5]+=1
elif r2<cprop[1]/cprop[-1]:

y[0]-=1
y[2]-=1

87 y[6]+=1
elif r2<cprop[2]/cprop[-1]:

y[0]-=1
y[3]-=1
y[7]+=1

92 elif r2<cprop[3]/cprop[-1]:
y[0]-=1
y[4]-=1
y[8]+=1

elif r2<cprop[4]/cprop[-1]:
97 y[0]+=1

y[1]+=1
y[5]-=1

elif r2<cprop[5]/cprop[-1]:
y[0]+=1

102 y[2]+=1
y[6]-=1

elif r2<cprop[6]/cprop[-1]:
y[0]+=1
y[3]+=1

107 y[7]-=1
elif r2<=cprop[7]/cprop[-1]:

y[0]+=1
y[4]+=1
y[8]-=1

112 else:
break

return [timepoints,datapoints/int(trials)]
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117
def rre_hemosub1(y,t,kon1,kon2,kon3,kon4,koff1,koff2,koff3,koff4)

:
yprime = sp.zeros(6)
yprime[0]= -kon1 * y[0] * y[1] + koff1 * y[2]-kon2 * y[0] * y

[2] +\
koff2 * y[3] -kon3 * y[0] * y[3] + koff3 * y[4] -

\
122 kon4 * y[0] * y[4] + koff4 * y[5]

yprime[1]= -kon1 * y[0] * y[1] + koff1 * y[2]
yprime[2]= -kon2 * y[0] * y[2] + koff2 * y[3] + kon1 * y[0] *

y[1] - koff1 * y[2]
yprime[3]= -kon3 * y[0] * y[3] + koff3 * y[4] + kon2 * y[0] *

y[2] - koff2 * y[3]
yprime[4]= -kon4 * y[0] * y[4] + koff4 * y[5] + kon3 * y[0] *

y[3] - koff3 * y[4]
127 yprime[5]= kon4 * y[0] *

y[4] - koff4 * y[5]
return yprime

def ssa(tend,steps,trials):
132 timepoints=np.arange(steps+1)*(tend/steps)

datapoints=np.zeros(steps+1)
for x in xrange(int(trials)):

y = sp.zeros(6)
prop = sp.zeros(8)

137 y=sp.zeros(6)

t=0
cnt=0
vol=1.6e-19

142

nA=6.023e23
uM=nA*10**-6
ssakon1=17.7*1e6/(nA*vol)

147 ssakon2=33.2 *1e6/(nA*vol)
ssakon3=4.89 *1e6/(nA*vol)
ssakon4=33.0 *1e6/(nA*vol)

ssakoff1=1900.
152 ssakoff2=158.

ssakoff3=539.
ssakoff4=50.
Oxy=int(11)
if npr.random()<0.9:
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157 Oxy = Oxy +1
Hb=int(1)
y[0]=Oxy
y[1]=Hb
while tend>t:

162 prop[0]=ssakon1 * y[0] * y[1]
prop[1]=ssakon2 * y[0] * y[2]
prop[2]=ssakon3 * y[0] * y[3]
prop[3]=ssakon4 * y[0] * y[4]
prop[4]=ssakoff1 * y[2]

167 prop[5]=ssakoff2 * y[3]
prop[6]=ssakoff3 * y[4]
prop[7]=ssakoff4 * y[5]
cprop=sp.cumsum(prop)
r1=npr.random()

172 tau = 1/cprop[-1]*sp.log(1/r1)
t=tau+t
while t>=cnt*timepoints[1] and cnt<steps+1:

Y= (y[5]+y[4]*.75+y[3]*.5+y[2]*.25)/(Hb)
datapoints[cnt]+=Y

177 #print t, cnt*timepoints[1] ,Y,y,Oxy,Hb
cnt+=1

if (t < tend):
r2=npr.random()
if r2<cprop[0]/cprop[-1]:

182 y[0]-=1
y[1]-=1
y[2]+=1

elif r2<cprop[1]/cprop[-1]:
y[0]-=1

187 y[2]-=1
y[3]+=1

elif r2<cprop[2]/cprop[-1]:
y[0]-=1
y[3]-=1

192 y[4]+=1
elif r2<cprop[3]/cprop[-1]:

y[0]-=1
y[4]-=1
y[5]+=1

197 elif r2<cprop[4]/cprop[-1]:
y[0]+=1
y[1]+=1
y[2]-=1

elif r2<cprop[5]/cprop[-1]:
202 y[0]+=1

y[2]+=1
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y[3]-=1
elif r2<cprop[6]/cprop[-1]:

y[0]+=1
207 y[3]+=1

y[4]-=1
elif r2<=cprop[7]/cprop[-1]:

y[0]+=1
y[4]+=1

212 y[5]-=1
else:

break
print ssakon1,ssakon2
return [timepoints,datapoints/int(trials)]

217

def fig1aGibson1970():
a=sp.array([[0.0, 0.502279056001],
[0.00049173089564, 0.590841492954],

222 [0.00099581398037, 0.654261224638],
[0.00149921986175, 0.710287464286],
[0.00200221942111, 0.761877608713],
[0.00251838381359, 0.797197238313],
[0.00303414188405, 0.828080772692],

227 [0.00352004883089, 0.853059178138],
[0.0040202041362, 0.873596656015],
[0.00450529843902, 0.889702871019],
[0.00501902489943, 0.898405929291],
[0.00553315768186, 0.911545082784],

232 [0.00604647782027, 0.915812045835],
[0.00651596935793, 0.921572204336],
[0.00701504113788, 0.930280094956]])
return a

237

if __name__ == '__main__':
"""This is the main docstring"""
data=fig1aGibson1970()

242 t,y=ssa(0.04,900,200.)
myt,myy=myssa(0.04,900,1000.)
print myy
kon1 = 17.7
kon2 = 33.2

247 kon3 = 4.89
kon4 = 33.0
koff1 = 1900.0
koff2 = 158.0
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koff3 = 539.0
252 koff4 = 50.0

Hb = 41.5/4
Oxy = 124
yzero = pl.array([Oxy,Hb,0,0,0,0])
times = pl.linspace(0,.04,1000,endpoint=True)

257 SingleSub = sp.integrate.odeint(rre_hemosub1, yzero, times,
args=(kon1,kon2,kon3,kon4,koff1,koff2,koff3,koff4,))

data=fig1aGibson1970()

pl.plot(times, (Oxy-SingleSub[:,0])/(Hb*4), label="RRE
Calculated Fig1 A") # plot theta vs t

pl.plot(data[:,0]+.0015,data[:,1],'r+',label="Digitized Fig1
A",ms=10)

262 pl.plot(t,y,'gx',label="Standard Gillespie",ms=4)
pl.plot(myt,myy,'cx',label="My Rule Based Method",ms=4)

pl.legend(loc="best")
pl.xlabel("time")

267 pl.ylabel("fractional saturation")
pl.show()
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Case IIB: Ackers’ Thermodynamic Model of Hemoglobin/O2+
2

Algorithms and Source Code 6: A deterministic model of Hb/O2 dynamics as
presented by Ackers KinpySrinivasan

#!/usr/bin/python
2 import numpy as np

import numpy.random as npr
import scipy as sp
import scipy.integrate as spi
import scipy.optimize as spo

7 import pylab as pl
import sys

from scipy import *
import scipy.integrate as itg

12
def ackersrre(karr, Oxy):

""" Function doc """
kon = karr[0]
mult1=karr[1]

17 mult2=karr[2]
mult3=karr[3]
Oxy = float(Oxy[0])
t = arange(0, 3, 0.005)

# Oxy = 3.8e-4
22 '''

## Reaction ##

#Some second order reaction
A + O <-> B

27 A + O <-> C
B + O <-> E
B + O <-> D
B + O <-> F
C + O <-> D

32 C + O <-> F
C + O <-> G
D + O <-> H
D + O <-> I
E + O <-> H

37 F + O <-> H
F + O <-> I
G + O <-> I
H + O <-> J
I + O <-> J
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42

## Mapping ##

A 0 -1*v_0(y[0], y[2], y[1]) -1*v_1(y[0], y[3], y
[1])

47 O 1 -1*v_0(y[0], y[2], y[1]) -1*v_1(y[0], y[3], y
[1]) -1*v_2(y[2], y[4], y[1]) -1*v_3(y[2], y[5], y[1]) -1*
v_4(y[2], y[1], y[6]) -1*v_5(y[3], y[5], y[1]) -1*v_6(y
[3], y[1], y[6]) -1*v_7(y[3], y[7], y[1]) -1*v_8(y[8], y
[5], y[1]) -1*v_9(y[9], y[5], y[1]) -1*v_10(y[8], y[4], y
[1]) -1*v_11(y[8], y[1], y[6]) -1*v_12(y[9], y[1], y[6])
-1*v_13(y[9], y[1], y[7]) -1*v_14(y[8], y[10], y[1]) -1*
v_15(y[9], y[10], y[1])

B 2 +1*v_0(y[0], y[2], y[1]) -1*v_2(y[2], y[4], y
[1]) -1*v_3(y[2], y[5], y[1]) -1*v_4(y[2], y[1], y[6])

C 3 +1*v_1(y[0], y[3], y[1]) -1*v_5(y[3], y[5], y
[1]) -1*v_6(y[3], y[1], y[6]) -1*v_7(y[3], y[7], y[1])

E 4 +1*v_2(y[2], y[4], y[1]) -1*v_10(y[8], y[4], y
[1])

D 5 +1*v_3(y[2], y[5], y[1]) +1*v_5(y[3], y[5], y
[1]) -1*v_8(y[8], y[5], y[1]) -1*v_9(y[9], y[5], y[1])

52 F 6 +1*v_4(y[2], y[1], y[6]) +1*v_6(y[3], y[1], y
[6]) -1*v_11(y[8], y[1], y[6]) -1*v_12(y[9], y[1], y[6])

G 7 +1*v_7(y[3], y[7], y[1]) -1*v_13(y[9], y[1], y
[7])

H 8 +1*v_8(y[8], y[5], y[1]) +1*v_10(y[8], y[4], y
[1]) +1*v_11(y[8], y[1], y[6]) -1*v_14(y[8], y[10], y[1])

I 9 +1*v_9(y[9], y[5], y[1]) +1*v_12(y[9], y[1], y
[6]) +1*v_13(y[9], y[1], y[7]) -1*v_15(y[9], y[10], y[1])

J 10 +1*v_14(y[8], y[10], y[1]) +1*v_15(y[9], y[10],
y[1])

57 '''

dy = lambda y, t: array([\
-1*v_0(y[0], y[2], y[1]) -1*v_1(y[0], y[3], y[1]),\
-1*v_0(y[0], y[2], y[1]) -1*v_1(y[0], y[3], y[1]) -1*v_2(y[2

], y[4], y[1]) -1*v_3(y[2], y[5], y[1]) -1*v_4(y[2], y[1]
, y[6]) -1*v_5(y[3], y[5], y[1]) -1*v_6(y[3], y[1], y[6])
-1*v_7(y[3], y[7], y[1]) -1*v_8(y[8], y[5], y[1]) -1*v_9
(y[9], y[5], y[1]) -1*v_10(y[8], y[4], y[1]) -1*v_11(y[8]
, y[1], y[6]) -1*v_12(y[9], y[1], y[6]) -1*v_13(y[9], y[1
], y[7]) -1*v_14(y[8], y[10], y[1]) -1*v_15(y[9], y[10],
y[1]),\

62 +1*v_0(y[0], y[2], y[1]) -1*v_2(y[2], y[4], y[1]) -1*v_3(y[2
], y[5], y[1]) -1*v_4(y[2], y[1], y[6]),\
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+1*v_1(y[0], y[3], y[1]) -1*v_5(y[3], y[5], y[1]) -1*v_6(y[3
], y[1], y[6]) -1*v_7(y[3], y[7], y[1]),\

+1*v_2(y[2], y[4], y[1]) -1*v_10(y[8], y[4], y[1]),\
+1*v_3(y[2], y[5], y[1]) +1*v_5(y[3], y[5], y[1]) -1*v_8(y[8

], y[5], y[1]) -1*v_9(y[9], y[5], y[1]),\
+1*v_4(y[2], y[1], y[6]) +1*v_6(y[3], y[1], y[6]) -1*v_11(y[

8], y[1], y[6]) -1*v_12(y[9], y[1], y[6]),\
67 +1*v_7(y[3], y[7], y[1]) -1*v_13(y[9], y[1], y[7]),\

+1*v_8(y[8], y[5], y[1]) +1*v_10(y[8], y[4], y[1]) +1*v_11(y
[8], y[1], y[6]) -1*v_14(y[8], y[10], y[1]),\

+1*v_9(y[9], y[5], y[1]) +1*v_12(y[9], y[1], y[6]) +1*v_13(y
[9], y[1], y[7]) -1*v_15(y[9], y[10], y[1]),\

+1*v_14(y[8], y[10], y[1]) +1*v_15(y[9], y[10], y[1])\
])

72
#Initial concentrations:
y0 = array([\
#A
4e-8/4,\

77 #O
Oxy,\
#B
0.0,\
#C

82 0.0,\
#E
0.0,\
#D
0.0,\

87 #F
0.0,\
#G
0.0,\
#H

92 0.0,\
#I
0.0,\
#J
0.0,\

97 ])

#A + O <-> B
102 v_0 = lambda A, B, O : k0 * A**1 * O**1 - k0r * B**1

k0 = kon *2
k0r = 11.0
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#A + O <-> C
107 v_1 = lambda A, C, O : k1 * A**1 * O**1 - k1r * C**1

k1 = kon*2
k1r = 11.0

#B + O <-> E
112 v_2 = lambda B, E, O : k2 * B**1 * O**1 - k2r * E**1

k2 = kon
k2r = 11.0

#B + O <-> D
117 v_3 = lambda B, D, O : k3 * B**1 * O**1 - k3r * D**1

k3 = kon * mult1
k3r = 11.0

#B + O <-> F
122 v_4 = lambda B, O, F : k4 * B**1 * O**1 - k4r * F**1

k4 = kon
k4r = 11.0

#C + O <-> D
127 v_5 = lambda C, D, O : k5 * C**1 * O**1 - k5r * D**1

k5 = kon *mult1
k5r = 11.0

#C + O <-> F
132 v_6 = lambda C, O, F : k6 * C**1 * O**1 - k6r * F**1

k6 = kon
k6r = 11.0

#C + O <-> G
137 v_7 = lambda C, G, O : k7 * C**1 * O**1 - k7r * G**1

k7 = kon
k7r = 11.

#D + O <-> H
142 v_8 = lambda H, D, O : k8 * D**1 * O**1 - k8r * H**1

k8 = kon*mult1
k8r = 11.0

#D + O <-> I
147 v_9 = lambda I, D, O : k9 * D**1 * O**1 - k9r * I**1

k9 = kon*mult1
k9r = 11.0

#E + O <-> H
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152 v_10 = lambda H, E, O : k10 * E**1 * O**1 - k10r * H**1
k10 = kon * mult2*2
k10r = 11.0

#F + O <-> H
157 v_11 = lambda H, O, F : k11 * F**1 * O**1 - k11r * H**1

k11 = kon*mult2
k11r = 11.0

#F + O <-> I
162 v_12 = lambda I, O, F : k12 * F**1 * O**1 - k12r * I**1

k12 = kon * mult2
k12r = 11.0

#G + O <-> I
167 v_13 = lambda I, O, G : k13 * G**1 * O**1 - k13r * I**1

k13 = kon *2 * mult2
k13r = 11.0

#H + O <-> J
172 v_14 = lambda H, J, O : k14 * H**1 * O**1 - k14r * J**1

k14 = kon*mult3
k14r = 11.0

#I + O <-> J
177 v_15 = lambda I, J, O : k15 * I**1 * O**1 - k15r * J**1

k15 = kon *mult3
k15r = 11.0

182 Y = itg.odeint(dy, y0, t)
#print Y[-1,:], Oxy, (Oxy - Y[-1,1]),(Oxy - Y[-1,1]) / 3.8e-5
return (Oxy - Y[-1,1]) / 4e-8

def getData (fName):
187 """ Function doc """

fp = pl.loadtxt(fName)

return (fp[:,1],fp[:,0])

192

def plot_Ackers(x,v):
data = []

197 for val in x:
data.append(ackersrre(v,[val,val]))
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return data
def resid_Ackers(v,x,y):

err =0
202 for cnt in range(len(x)):

err+=abs(y[cnt]-ackersrre(v,[x[cnt],x[cnt]]))
#print y[cnt], ackersrre(v,[x[cnt],x[cnt]]),x[cnt]

print "Error", err,v
return err

207

def main(inFile, kon, mult1, mult2, mult3):
"""Function Main Doc"""
#Sprint #(inFile)

212 [x,y ] =getData(inFile)
y=y/max(y)*0.9699144577
#dataPoints= fp.readlines()
#pl.plot(x,y)
#pl.show()

217 #y=y/max(y)
e=lambda v, x,y:(((ackersrre(v,x)-y)**2)**.5)
# print x
p0 = array([kon, mult1, mult2 ,mult3])

# [a,b] = spo.curve_fit(ackersrre,x,y)
222 # plsq = spo.leastsq(e, p0, args=(y, x), maxfev=2000)

v = spo.fmin(resid_Ackers,p0,args=(x,y))
#v= spo.anneal(resid_Ackers,p0,args=(x,y))
print v

227 res= resid_Ackers(p0,x,y)

if __name__=='__main__':
dataFile = sys.argv[1]
kon = float(sys.argv[2])

232 mult1 = float(sys.argv[3])
mult2 = float(sys.argv[4])
mult3 = float(sys.argv[5])
main(dataFile,kon,mult1,mult2, mult3)
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Algorithms and Source Code 7: A standard stochastic model of Hb/O2 dynamics
as presented by Ackers

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import numpy as np
import numpy.random as npr

5 import scipy as sp
import scipy.integrate as spi
import scipy.optimize as spo
import pylab as pl
import sys, copy

10

size = 1.

15

def hemossa_alt(tend,steps,trials,O2,kon_orig,mult1,mult2,mult3):
# timepoints=np.arange(steps+1)*(tend/steps)

20 datapoints=np.zeros(trials)
timepoints=np.arange(steps+1)#*(float(tend)/float(steps))
#print "\n\n\nfloat \t ",len(tend), steps
timepoints=timepoints*(float(tend)/float(steps))
for x in xrange(int(trials)):

25 #print "Oxygen", O2
vol=1e-10
nA=6.023e23
prop = sp.zeros(32)
y=sp.zeros(11)

30 t=0
cnt=0
# size = 10
kon = kon_orig/size
kon1 = kon * mult1

35 kon2 = kon * mult2
kon3 = kon * mult3

koff=11
two= 2.

40
k0 = kon *two
k0r = 11.0
k1 = kon*two
k1r = 11.0

45 k2 = kon *two
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k2r = 11.0
k3 = kon * mult1
k3r = 11.0
k4 = kon

50 k4r = 11.0
k5 = kon *mult1
k5r = 11.0
k6 = kon
k6r = 11.0

55 k7 = kon

k7r = 11.*two
k8 = kon*mult1
k8r = 11.0

60 k9 = kon*mult1
k9r = 11.0
k10 = kon * mult2*two
k10r = 11.0
k11 = kon*mult2

65 k11r = 11.0
k12 = kon * mult2
k12r = 11.0
k13 = kon *two * mult2
k13r = 11.0

70 k14 = kon*mult3
k14r = 11.0*two
k15 = kon *mult3
k15r = 11.0*two

75 y[0]=1 * size
y[1]=0
y[2]=0
y[3]=0
y[4]=0

80 y[5]=0
y[6]=0
y[7]=0
y[8]=0
y[9]=0

85 y[10]=O2

while tend>t:
#print "y= ",y,t,
prop[0] = k0 * y[0]**1 * y[10]**1 #y[1]+=1; y

[0]-=1; y[10]-=1;
90 prop[1] = k0r * y[1]**1 #y[1]-=1; y

[0]+=1; y[10]+=1;
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prop[2] = k1 * y[0]**1 * y[10]**1 #y[2]+=1; y
[0]-=1; y[10]-=1;

prop[3] = k1r * y[2]**1 #y[2]-=1; y
[0]+=1; y[10]+=1;

prop[4] = k2 * y[1]**1 * y[10]**1 #y[4]+=1; y
[1]-=1; y[10]-=1;

prop[5] = k2r * y[4]**1 #y[4]-=1; y
[1]+=1; y[10]+=1;

95 prop[6] = k3 * y[1]**1 * y[10]**1 #y[3]+=1; y
[1]-=1; y[10]-=1;

prop[7] = k3r * y[3]**1 #y[3]-=1; y
[1]+=1; y[10]+=1;

prop[8] = k4 * y[1]**1 * y[10]**1 #y[5]+=1; y
[1]-=1; y[10]-=1;

prop[9] = k4r * y[5]**1 #y[5]-=1; y
[1]+=1; y[10]+=1;

prop[10] = k5 * y[2]**1 * y[10]**1 #y[3]+=1; y
[2]-=1; y[10]-=1;

100 prop[11] = k5r * y[3]**1 #y[3]-=1; y
[2]+=1; y[10]+=1;

prop[12] = k6 * y[2]**1 * y[10]**1 #y[5]+=1; y
[2]-=1; y[10]-=1;

prop[13] = k6r * y[5]**1 #y[5]-=1; y
[2]+=1; y[10]+=1;

prop[14] = k7 * y[2]**1 * y[10]**1 #y[6]+=1; y
[2]-=1; y[10]-=1;

prop[15] = k7r * y[6]**1 #y[6]-=1; y
[2]+=1; y[10]+=1;

105 prop[16] = k8 * y[3]**1 * y[10]**1 #y[7]+=1; y
[3]-=1; y[10]-=1;

prop[17] = k8r * y[7]**1 #y[7]-=1; y
[3]+=1; y[10]+=1;

prop[18] = k9 * y[3]**1 * y[10]**1 #y[8]+=1; y
[3]-=1; y[10]-=1;

prop[19] = k9r * y[8]**1 #y[8]-=1; y
[3]+=1; y[10]+=1;

prop[20] = k10 * y[4]**1 * y[10]**1 #y[7]+=1; y
[4]-=1; y[10]-=1;

110 prop[21] = k10r * y[7]**1 #y[7]-=1; y
[4]+=1; y[10]+=1;

prop[22] = k11 * y[5]**1 * y[10]**1 #y[7]+=1; y
[5]-=1; y[10]-=1;

prop[23] = k11r * y[7]**1 #y[7]-=1; y
[5]+=1; y[10]+=1;

prop[24] = k12 * y[5]**1 * y[10]**1 #y[8]+=1; y
[5]-=1; y[10]-=1;

prop[25] = k12r * y[8]**1 #y[8]-=1; y
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[5]+=1; y[10]+=1;
115 prop[26] = k13 * y[6]**1 * y[10]**1 #y[8]+=1; y

[6]-=1; y[10]-=1;
prop[27] = k13r * y[8]**1 #y[8]-=1; y

[6]+=1; y[10]+=1;
prop[28] = k14 * y[7]**1 * y[10]**1 #y[9]+=1; y

[7]-=1; y[10]-=1;
prop[29] = k14r * y[9]**1 #y[9]-=1; y

[7]+=1; y[10]+=1;
prop[30] = k15 * y[8]**1 * y[10]**1 #y[9]+=1; y

[8]-=1; y[10]-=1;
120 prop[31] = k15r * y[9]**1 #y[9]-=1; y

[8]+=1; y[10]+=1;

cprop=sp.cumsum(prop)
125 r1=npr.random()

tau = 1/cprop[-1]*sp.log(1/r1)
#print "time info",tau, cprop[-1],r1
t=tau+t #imepoints[cnt]
#print t,tau

130 while t>=timepoints[cnt] and cnt<steps:
Y= (y[5]+y[6]+y[7]+y[8])/(4.0)
#print timepoints[cnt],
for cntb in range(len(y)):#,timepoints

#print y[cntb],
135 pass

#print "\n",
cnt+=1

if (t < tend):
r2=npr.random()

140 if r2<=cprop[0]/cprop[-1]:
# print "0"

y[1] +=1
y[0] -=1
y[10]-=1

145 elif r2<=cprop[1]/cprop[-1]:
# print "1"

y[1] -=1
y[0] +=1
y[10]+=1

150 elif r2<=cprop[2]/cprop[-1]:
# print "2"

y[2]+=1
y[0]-=1
y[10]-=1;
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155 elif r2<=cprop[3]/cprop[-1]:
# print "3"

y[2]-=1
y[0]+=1
y[10]+=1

160 elif r2<=cprop[4]/cprop[-1]:
# print "4"

y[4]+=1
y[1]-=1
y[10]-=1

165 elif r2<=cprop[5]/cprop[-1]:
# print "5"

y[4]-=1
y[1]+=1
y[10]+=1

170 elif r2<=cprop[6]/cprop[-1]:
# print "6"

y[3]+=1
y[1]-=1
y[10]-=1

175 elif r2<=cprop[7]/cprop[-1]:
# print "7"

y[3]-=1
y[1]+=1
y[10]+=1

180 elif r2<=cprop[8]/cprop[-1]:
# print "8"

y[5]+=1
y[1]-=1
y[10]-=1

185 elif r2<=cprop[9]/cprop[-1]:
# print "9"

y[5]-=1
y[1]+=1
y[10]+=1

190 elif r2<=cprop[10]/cprop[-1]:
# print "10"

y[3]+=1
y[2]-=1
y[10]-=1

195 elif r2<=cprop[11]/cprop[-1]:
# print "11"

y[3]-=1
y[2]+=1
y[10]+=1

200 elif r2<=cprop[12]/cprop[-1]:
# print "12"



127

y[5]+=1
y[2]-=1
y[10]-=1

205 elif r2<=cprop[13]/cprop[-1]:
# print "13"

y[5]-=1
y[2]+=1
y[10]+=1

210 elif r2<=cprop[14]/cprop[-1]:
# print "14"

y[6]+=1
y[2]-=1
y[10]-=1

215 elif r2<=cprop[15]/cprop[-1]:
# print "15"

y[6]-=1
y[2]+=1
y[10]+=1

220 elif r2<=cprop[16]/cprop[-1]:
# print "16"

y[7]+=1
y[3]-=1
y[10]-=1

225 elif r2<=cprop[17]/cprop[-1]:
# print "17"

y[7]-=1
y[3]+=1
y[10]+=1

230 elif r2<=cprop[18]/cprop[-1]:
# print "18"

y[8]+=1
y[3]-=1
y[10]-=1

235 elif r2<=cprop[19]/cprop[-1]:
# print "19"

y[8]-=1
y[3]+=1
y[10]+=1

240 elif r2<=cprop[20]/cprop[-1]:
# print "20"

y[7]+=1
y[4]-=1
y[10]-=1

245 elif r2<=cprop[21]/cprop[-1]:
# print "21"

y[7]-=1
y[4]+=1
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y[10]+=1
250 elif r2<=cprop[22]/cprop[-1]:

# print "22"
y[7]+=1
y[5]-=1
y[10]-=1

255 elif r2<=cprop[23]/cprop[-1]:
# print "23"

y[7]-=1
y[5]+=1
y[10]+=1

260 elif r2<=cprop[24]/cprop[-1]:
# print "24"

y[8]+=1
y[5]-=1
y[10]-=1

265 elif r2<=cprop[25]/cprop[-1]:
# print "25"

y[8]-=1
y[5]+=1
y[10]+=1

270 elif r2<=cprop[26]/cprop[-1]:
# print "26"

y[8]+=1
y[6]-=1
y[10]-=1

275 elif r2<=cprop[27]/cprop[-1]:
# print "27"

y[8]-=1
y[6]+=1
y[10]+=1

280 elif r2<=cprop[28]/cprop[-1]:
# print "28"

y[9]+=1
y[7]-=1
y[10]-=1

285 elif r2<=cprop[29]/cprop[-1]:
# print "29"

y[9]-=1
y[7]+=1
y[10]+=1

290 elif r2<=cprop[30]/cprop[-1]:
# print "30"

y[9]+=1
y[8]-=1
y[10]-=1

295 elif r2<=cprop[31]/cprop[-1]:
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# print "31"
y[9]-=1
y[8]+=1
y[10]+=1

300 else:
datapoints[x]=(O2-y[10])/(size*4.)

# print datapoints,O2,y[10],size*4
# print "data",datapoints,O2,y

305 return [timepoints,datapoints]

def plot_ssa_ackers(v,x,Hb):
310 retval=[]

normx=sp.copy(x)
vol = 1/(Hb*6.023e23)
for amt in normx:

startO2=float(round(float(amt)/(Hb*4) *size))
315 startO2 = round(amt*6.023e23*vol*size)

#print "startO2,Hb, amt,vol",startO2,Hb, amt,vol
retval.append(ackersssa(v,startO2))

# print x
# print retval

320

return(retval)

def ackersssa(v,O):
325 t=15

n=250
test = hemossa_alt(t,20,n,O,v[0],v[1],v[2],v[3])
values=test[1]
#print "values",

330 #print values
#print "ret",
#print sp.mean(values)
return sp.mean(values)

335 def stochKon(rate,concHeme):
""" Function doc """
nA=6.023e23
molecPerLiter=concHeme*nA*4.
literPerMolec=1/molecPerLiter

340 stochRate=rate/(literPerMolec*nA)/4.
print "**********rate liter kon", rate,literPerMolec,

stochRate
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return stochRate

345 if __name__=="__main__":
argv=sys.argv
print argv
try:

read_data=np.loadtxt(sys.argv[1])
350 except IOError:

print "Error!!! Could not open file: %s" %argv[1]
sys.exit(-1)

xall = read_data[:,1]
yall = read_data[:,0]

355 # xall= sp.array(xall*yall[yall.argmax()])

#
yall2=sp.array(yall)
#print xall

360 #print argv[2],1/float(argv[6])
# sys.exit(0)
# yall=sp.array(yall)
# e=lambda v, x, y,Hb:(((fitackersB(v,x,Hb)-y)**2)**.5).sum()
try:

365 kon = float(argv[2])
mult1 = float(argv[3])
mult2 = float(argv[4])
mult3 = float(argv[5])

370 Hb = float(argv[6])/4

except ValueError,msg:
print "Error reading the arguments:\n\tkon= %s\n\

tmultiplyer1= %s\n\tmultiplyer2 =%s\n\tmultiplyer3 = %
s" % (argv[2], argv[3], argv[4], argv[5])

print "Error message: ", msg
375 sys.exit(-1)

kon = stochKon(kon,Hb)
380 print "kon", kon

v0=[kon , mult1 , mult2 , mult3]
#yall2=sp.array(yall/yall[yall.argmax()])
ytoo = plot_ssa_ackers(v0,xall,Hb)
ytoo = sp.array(ytoo)

385 print "kon = ", kon
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for (x,y,z) in zip(xall, yall, ytoo):
print x,y,z

pl.plot(xall,yall2,"r+",xall,ytoo)
390

pl.savefig(argv[1].split(".")[0]+"-fitnorm-
randforrealSTOCH_more-"+str(kon)+".png")

pl.show()



132

Algorithms and Source Code 8: A modified stochastic model of Hb/O2 dynamics
as presented by Ackers

#!/usr/bin/env python
# -*- coding: utf-8 -*-

3 import numpy as np
import numpy.random as npr
import scipy as sp
import scipy.integrate as spi
import scipy.optimize as spo

8 import pylab as pl
import sys

def ackersrre(y,t,karray):

13 koff=11
kon=karray[0]
kon1=karray[0]*karray[1]
kon2=karray[0]*karray[2]
kon3=karray[0]*karray[3]

18
yprime = sp.zeros(11)
yprime[0] = -2*kon * y[0] * y[10] + koff * y[1] -2*kon * y[0]

* y[10] + koff * y[2]

yprime[1] = +2*kon * y[0] * y[10] - koff * y[1] -kon1 * y[1]

* y[10]\
23 + koff * y[3] -kon * y[1] * y[10] + koff * y[4]\

-kon * y[1] * y[10] + koff * y[5]

yprime[2] = +2*kon * y[0] * y[10] - koff * y[2] -kon1 * y[2]

* y[10]\
+ koff * y[3]-kon * y[2] * y[10] + koff * y[5]\

28 -kon * y[2] * y[10] + koff * y[6]
yprime[3] = +kon1 * y[1] * y[10] -koff * y[3]+kon1 * y[2] * y

[10]\
-koff * y[3]-kon1 * y[3] * y[10] + koff * y[7]\
-kon1 * y[3] * y[10] + koff * y[8]

yprime[4] = +kon * y[1] * y[10] - koff * y[4]-kon2 * y[4] * y
[10]\

33 + koff * y[7]
yprime[5] = +kon * y[1] * y[10] - koff * y[5]+kon * y[2] * y[

10]\
- koff * y[5]-kon2 * y[5] * y[10] + koff * y[7] \
- kon2 * y[5] * y[10] + koff * y[8]

yprime[6] = +kon * y[2] * y[10] -koff * y[6]-kon2 * y[6] * y[
10]\

38 + koff * y[8]
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yprime[7] = +kon1 * y[3] * y[10] - koff * y[7]+kon2 * y[4] *
y[10]\

- koff * y[7]+kon2 * y[5] * y[10] - koff * y[7]\
-kon3 * y[7] * y[10] + koff * y[9]*2

yprime[8] = +kon1 * y[3] * y[10] - koff * y[8]+kon2 * y[5] *
y[10]\

43 - koff * y[8]+kon2 * y[6] * y[10] - koff * y[8]\
-kon3 * y[8] * y[10] + koff * y[9]*2

yprime[9] = + kon3 * y[7] * y[10] - koff * y[9]*2+kon3 * y[8]

* y[10]\
- koff * y[9]*2

yprime[10] = -2*kon * y[0] * y[10] + koff *y[1]-2*kon * y[0]

* y[10]\
48 + koff *y[2]-kon * y[1] * y[10] + koff *y[4]-kon

*y[1]* y[10]\
+ koff *y[5]-kon1 * y[1] * y[10] + koff *y[3]-

kon1*y[2]*y[10]\
+ koff *y[3]-kon * y[2] * y[10] + koff * y[5]-kon

*y[2]*y[10]\
+ koff * y[6]-kon1 * y[3] * y[10] + koff * y[7]\
-kon1 * y[3] * y[10] + koff * y[8]-kon2 * y[4] *

y[10]\
53 + koff * y[7]-kon2 * y[5] * y[10] + koff * y[7]

\
-kon2 * y[5] * y[10] + koff * y[8]-kon2 * y[6] *

y[10]\
+ koff * y[8]-kon3 * y[7] * y[10] + 2*koff * y[9

]\
-kon3 * y[8] * y[10] + 2*koff * y[9]

return yprime
58

def hemossa(tend,steps,trials,O2,kon,mult1,mult2,mult3):
timepoints=np.arange(steps+1)*(tend/steps)
datapoints=np.zeros(steps+1)
for x in xrange(int(trials)):

63 vol=1e-10
nA=6.023e23
prop = sp.zeros(8)
y=sp.zeros(9)
t=0

68 cnt=0

koff=11

y[0]=O2
73 y[1]=1

y[2]=1
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y[3]=1
y[4]=1
y[5]=0

78 y[6]=0
y[7]=0
y[8]=0

while tend>t:
83 """Determine the Specific Ackers

"hemoglobin type that the complex represents"""
# kon=5e2/(nA*vol)
# mult1=0.9
# mult2=1.5

88 # mult3=550.0
#
koff=11
if sum(y[1:5])==4:

"""Ackers Hb ˜ 10"""
93 kon1=kon

kon2=kon
kon3=kon
kon4=kon
koff1 = koff

98 koff2 = koff
koff3 = koff
koff4 = koff

elif sum(y[1:5])==3:
if y[5]==1:

103 """ one alpha is bound to an oxygen """
kon1 = 0
kon2 = mult1*kon
kon3 = kon
kon4 = kon

108 koff1= 0
koff2 = 0
koff3 = 0
koff4 = 0

if y[6]==1:
113 """ one alpha is bound to an oxygen """

kon1 = mult1*kon
kon2 = 0
kon3 = kon
kon4 = kon

118 koff1 = koff
koff2 = koff
koff3 = koff
koff4 = koff
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if y[7]==1:
123 """ one alpha is bound to an oxygen """

kon1 = kon
kon2 = kon
kon3 = 0
kon4 = mult1*kon

128 koff1 = koff
koff2 = koff
koff3 = koff
koff4 = koff

if y[8]==1:
133 """ one alpha is bound to an oxygen """

kon1 = kon
kon2 = kon
kon3 = mult1*kon
kon4 = 0

138 koff1 = koff
koff2 = koff
koff3 = koff
koff4 = koff

elif sum(y[1:5])==2:
143 if y[1]==1 and y[2]==1:

""" one beta is bound to an oxygen """
kon1 = mult1*kon
kon2 = mult1*kon
kon3 = mult1*kon

148 kon4 = mult1*kon
koff1 = koff
koff2 = koff
koff3 = koff
koff4 = koff

153 if y[1]==1 and y[3]==1:
""" one beta is bound to an oxygen """
kon1 = mult2*kon
kon2 = mult2*kon
kon3 = mult2*kon

158 kon4 = mult2*kon
koff1 = koff
koff2 = koff
koff3 = koff
koff4 = koff

163 if y[1]==1 and y[4]==1:
""" one beta is bound to an oxygen """
kon1 = mult2*kon
kon2 = mult2*kon
kon3 = mult2*kon

168 kon4 = mult2*kon
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koff1 = koff
koff2 = koff
koff3 = koff
koff4 = koff

173 if y[2]==1 and y[3]==1:
""" one beta is bound to an oxygen """
kon1 = mult2*kon
kon2 = mult2*kon
kon3 = mult2*kon

178 kon4 = mult2*kon
koff1 = koff
koff2 = koff
koff3 = koff
koff4 = koff

183 if y[2]==1 and y[4]==1:
""" one beta is bound to an oxygen """
kon1 = mult2*kon
kon2 = mult2*kon
kon3 = mult2*kon

188 kon4 = mult2*kon
koff1 = koff
koff2 = koff
koff3 = koff
koff4 = koff

193 if y[3]==1 and y[4]==1:
""" one beta is bound to an oxygen """
kon1 = mult1*kon
kon2 = mult1*kon
kon3 = mult1*kon

198 kon4 = mult1*kon
koff1 = koff
koff2 = koff
koff3 = koff
koff4 = koff

203 elif sum(y[1:5])==1:
if y[1]==1:

""" one beta is bound to an oxygen """
kon1 = mult3*kon
kon2 = 0

208 kon3 = 0
kon4 = 0
koff1 = koff
koff2 = koff
koff3 = koff

213 koff4 = koff
if y[2]==1:

""" one beta is bound to an oxygen """
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kon1 = 0
kon2 = mult3*kon

218 kon3 = 0
kon4 = 0
koff1 = koff
koff2 = koff
koff3 = koff

223 koff4 = koff
if y[3]==1:

""" one beta is bound to an oxygen """
kon1 = 0
kon2 = 0

228 kon3 = mult3*kon
kon4 = 0
koff1 = koff
koff2 = koff
koff3 = koff

233 koff4 = koff
if y[4]==1:

""" one beta is bound to an oxygen """
kon1 = 0
kon2 = 0

238 kon3 = 0
kon4 = mult3*kon
koff1 = koff
koff2 = koff
koff3 = koff

243 koff4 = koff
prop[0]=kon1 * y[0] * y[1]
prop[1]=kon2 * y[0] * y[2]
prop[2]=kon3 * y[0] * y[3]
prop[3]=kon4 * y[0] * y[4]

248 prop[4]=koff * y[5]
prop[5]=koff * y[6]
prop[6]=koff * y[7]
prop[7]=koff * y[8]
cprop=sp.cumsum(prop)

253 r1=npr.random()
tau = 1/cprop[-1]*sp.log(1/r1)
t=tau+t
while t>=cnt*timepoints[1] and cnt<steps+1:

Y= (y[5]+y[6]+y[7]+y[8])/4.0
258 datapoints[cnt]+=Y

cnt+=1
if (t < tend):

r2=npr.random()
if r2<=cprop[0]/cprop[-1]:
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263 y[0]-=1
y[1]-=1
y[5]+=1

elif r2<=cprop[1]/cprop[-1]:
y[0]-=1

268 y[2]-=1
y[6]+=1

elif r2<=cprop[2]/cprop[-1]:
y[0]-=1
y[3]-=1

273 y[7]+=1
elif r2<=cprop[3]/cprop[-1]:

y[0]-=1
y[4]-=1
y[8]+=1

278 elif r2<=cprop[4]/cprop[-1]:
y[0]+=1
y[1]+=1
y[5]-=1

elif r2<=cprop[5]/cprop[-1]:
283 y[0]+=1

y[2]+=1
y[6]-=1

elif r2<=cprop[6]/cprop[-1]:
y[0]+=1

288 y[3]+=1
y[7]-=1

elif r2<=cprop[7]/cprop[-1]:
y[0]+=1
y[4]+=1

293 y[8]-=1
else:

break
return [timepoints,datapoints/int(trials)]

298 def fitackersB(v,x,Hb):
startHemo = Hb
retval=[]
print v
for amt in x:

303 #print amt
yzero=pl.array([startHemo,0,0,0,0,0,0,0,0,0,float(amt)])

# times=pl.linspace(0.0,0.5,1e4,endpoint=True)
times=sp.arange(0,5.0,.005)

308 ray=v
test=spi.odeint(ackersrre,yzero,times,args=(ray,))
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retval.append((amt-test[-1,10])/(startHemo*4))
# print retval

return sp.array(retval)
313 def plot_ssa_ackers(v,x,Hb):

retval=[]
normx=sp.copy(x)
for amt in normx:

startO2=round(float(amt)/Hb)
318 print "looky",startO2,Hb, amt

retval.append(ackersssa(v,startO2))
return(retval)

def ackersssa(v,O):
323 test = hemossa(6.0,4,200,O,v[0],v[1],v[2],v[3])

values=test[1]
print values
ret=sp.copy(values[-1])

328 print ret
return ret

def stochKon(rate,concHeme):
""" Function doc """
nA=6.023e23

333 molecPerLiter=concHeme*nA*4.
literPerMolec=1/molecPerLiter
stochRate=rate/(literPerMolec*nA)/4.
print "**********rate liter kon", rate,literPerMolec,

stochRate
return stochRate

338
if __name__=="__main__":
# print fitackersB([1.0, 9., 90., 550.],30)

argv=sys.argv
print argv

343 try:
read_data=pl.mlab.load(argv[1])

except IOError:
print "Error!!! Could not open file: %s" %argv[1]
sys.exit(-1)

348 xall = read_data[:,1]

yall = read_data[:,0]
xall=sp.array(xall)

353 yall2=sp.array(yall)
# yall=sp.array(yall)
e=lambda v, x, y,Hb:(((fitackersB(v,x,Hb)-y)**2)**.5).sum()
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try:
kon = float(argv[2])

358 mult1 = float(argv[3])
mult2 = float(argv[4])
mult3 = float(argv[5])
Hb = float(argv[6])/4.
# Hb = xall[yall.argmax()]/4

363
except ValueError,msg:

print "Error reading the arguments:\n\tkon= %s\n\
tmultiplyer1= %s\n\tmultiplyer2 =%s\n\tmultiplyer3 = %
s" % (argv[2], argv[3], argv[4], argv[5])

print "Error message: ", msg
sys.exit(-1)

368 kon = stochKon(kon,Hb)
v0=[kon , mult1 , mult2 , mult3]

# v= spo.fmin(e,v0,args=(xall,yall,Hb), ftol=1.9, xtol=1.9,
full_output=1, maxiter=100000,maxfun=100000)
#v= spo.fmin(e,v0,args=(xall,yall,Hb), maxiter=100000,maxfun

=100000)
373 #print v

#print e(v,xall,yall)
#print yall,
#ynew = fitackersB(v0,xall,Hb)
#pl.plot(xall,yall2,"r+",xall,ynew)

378 ytoo = plot_ssa_ackers(v0,xall,Hb)
pl.plot(xall,yall2,"r+",xall,ytoo)

pl.savefig(argv[1].split(".")[0]+"-fitnorm-randforrealSTOCH-"
+str(kon)+".png")

for x,y,z in zip (xall,yall2,ytoo):
383 print x, y, z
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Part II

Evolutionary Algorithms for the

Optimization of Force-Fields in

Computational Chemistry
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Chapter 10

Motivation to Use Evolutionary
Algorithms to Optimize in Silico Code

The laboratory of William A. Goddard has a long history of developing compu-

tational chemistry methods. Many of these methods, if not all of them, have relied

on a combination of parameter sweeps and analytic methods, such as the conjugate

gradient method, to perform parameter optimization. While the analytic methods

will quickly find a minimal value in parameter-space, there is no guarantee that it

will be the global minima.

We define fitness landscape as a multi-dimensional space, where there is an axis

for each parameter and an additional axis to represent the performance/error of

those parameters on a specific task and approach. Our task is the calculation of

information regarding a set of chemical elements, and the approach is not only

the method, but also the formulation of our evaluation of error. Parameter sweeps

sample parameter-space on a grid and are, therefore, not bound by gradient meth-

ods. A major drawback to parameter sweeps is that they vary individual parame-

ters one at a time. Thus, it may be possible to miss the global minimum, depending

Motivation to Use Evolutionary Algorithms to Optimize in Silico Code
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on the pathway of the sweeps. Also, intuition is necessary when performing pa-

rameter sweeps; as a result, it is a somewhat biased approach.

Many of the systems that we work with have tortuous parameter-spaces, and

we would like to transverse them in an intelligent, semi-automated, and thorough

fashion. Population-based optimization techniques, such as the class of optimiza-

tion techniques called evolutionary algorithms, provide a method to optimize our

parameters in a more global fashion and to transverse parameter-space moving

toward better solutions.

Over the past three years, we have begun applying evolutionary algorithms

with great success to the task of optimizing our systems. Today, members of the

Goddard lab have applied the codes and schemes of implementation outlined

in the subsequent part of my thesis for the optimization of charge equilibration

(QEq) ( Rappé and Goddard [1991]), electronic force-fields (EFF) (Su and Goddard

[2009]), and reactive force-fields (ReaxFF) (van Duin et al. [2001]).

Motivation to Use Evolutionary Algorithms to Optimize in Silico Code
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Chapter 11

Introduction to Evolutionary
Algorithms

More than 40 years ago, evolutionary algorithms (EAs) were shown to perform

well on optimization tasks (Rechenberg [1965], Fogel et al. [1966], and Holland

[1962]; for review see Jong [2007]). In the past 15 years EAs have been applied to

various computational chemistry problems, including structure prediction, quan-

titative structure-activity relationships (QSAR), and chemometrics (Clark [2000]).

EAs are a class of meta-heuristic methods whose foundation is loosely based on

the phenomena of genetic transmission of information. Parameters can be thought

of as “genes” containing various values, or “alleles”. A vector of parameters, or

genes, is, therefore, a candidate solution that is analogous to a “chromosome”.

Each set of chromosomes is a “population”, and each population after the first is

derived in some manner from previous populations. Populations have an order

of evolution that is analogous to “generations”. As a reference point, if each pop-

ulation derives no information from previous generations, that is a simple Monte

Carlo or random search.

Introduction to Evolutionary Algorithms
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11.1 A Brief History of Evolutionary Algorithm Method-

ologies

Holland [1962] popularized genetic algorithms, a form of evolutionary algo-

rithms, in the United States. At about the same time, Fogel [1966] was developing

evolutionary programming in Southern California, and Rechenberg [1965] was de-

veloping evolutionary strategies in Germany. Somewhat later, Koza [1991] made

genetic programming popular.

Easily differentiating between these methods as they exist in 2011 is something

of a fool’s errand. We can discuss the features of genetic algorithms and explain

the choices that we took in the optimization of QEq. The set of general features of

evolutionary algorithms includes the chromosome, a population, one generation

and the process in which the population in a generation leads to the next through

some operation of simulated evolution.

11.2 The Chromosome

In the early days of genetic algorithms, the chromosome was represented as a

vector of ones and zeros, or by binary encoding. A simple chromosome containing

two genes is presented in Table 11.2.

Real-valued encoding is another type of encoding where the alleles, or the val-

ues of the genes, are contained within a single element in the chromosome. We

show the real-valued example of a chromosome with four genes in Table 11.2.

The Chromosome
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chromosome Ident. gene 1 gene 2
I. 1 0 1 0 1 1 1 0

Table 11.1: A binary chromosome. All elements of the chromosome have a value
of zero or one. The notion of a gene is derived from multiple elements of this
chromosome in the same fashion that a gene on a chromosome is a construct of a
string of nucleic acids.

chromosome Ident gene 1 gene2 gene3 gene4
I. 10 5.3 -3000.1 11.9

Table 11.2: A real-valued chromosome. The values of the genes are contained
within a single element in the chromosome. The notion of a gene is derived from
multiple elements of this chromosome in the same fashion that a gene on a chro-
mosome is a construct of a string of nucleic acids.

11.3 The Population and Generations

In evolutionary algorithms, populations have been implemented in a variety of

ways. If a chromosome can be thought of as a vector of numbers, a population can

be thought of as a two-dimensional array, or a vector of vectors. The population

in evolutionary algorithms has varied in size from one into the hundreds, if not

greater. The idea of parents and children relate to the idea of a population, but

have been implemented in different ways. This will be discussed further when we

talk about updating methods. Generations are snapshots of a population at some

point in an optimizations trajectory.

11.4 Evolving a Population

There are two methods by which a population of chromosomes evolve. The

simplest form is mutation, where a value is altered with some probability that is

Evolving a Population
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the mutation frequency. In real-valued chromosomes, there is also the concept of

mutation severity, the degree by which a value can be changed. Additionally, there

are many methods of mutation. Values can be mutated in a bounded, uniform

manner, or by using some other function to vary the parameter, such as a Gaussian

function.

11.5 Updating, Crossover

We do not employ crossover in this work, but it is the sharing or exchange of

chromosomal information in order to create a child.

Updating, Crossover
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Chapter 12

Evolutionary Algorithm Optimization
of Charge Equilibration

One of our long-term goals in the Goddard laboratory has been to develop fast

methods to describe atomic charge at quantum-mechanical-level accuracy. In addi-

tion to improving on the structure of fast algorithms, we have also begun to search

for more accurate parameters to represent atomic electronegativity and hardness.

In this endeavor, we would like to develop our physical intuition, as well as bet-

ter models. In this chapter, we describe a general method employing EAs that

we have applied to parameter optimization of our Gaussian-based charge equili-

bration (gQEq) method (Rappé and Goddard [1991], Sefcik et al. [2002]). We also

present our QEq parameters for LAMMPS / QEq models of biological systems (see

figure 12.1). We use PGAPack[1996] for the underlying Evolutionary algorithms.

12.1 Optimization Constraints

We develop our methods with the following guidelines in mind:

1. The atomic radii should be scaled in a uniform manner, if at all.

Optimization Constraints
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Virtual Ligand 
Screening (Dock 

Blaster)
(using a Protein 

Target) ~ 10 hours 

Top 200 Hits
Zinc Database 1million 

Molecules
 “Candidate Ligands”

Charge Equilibration
(QEq: <<1sec/Hit. vs. 
QM: ~1.5 hour/Hit)

<200s vs ~12.5 days

Final Steps
(relax Sidechains (~30 sec/hit)   

Balance H+ (~10 sec/hit ) 
Minimize System(<5 min/hit))

Figure 12.1: Gameplan
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2. The electronegativity and hardness values may change individually.

3. A caveat of guideline (2) is that we would like to maintain certain orderings

(i.e., XF > XCl > XBr) without explicitly forcing that order, if possible.

4. We would like to adapt the rate of mutation of any given gene (i.e., elec-

tronegativity or hardness) as a function of the diversity of our set of “alleles”

for that gene such that we can narrow our search as we approach more opti-

mal values.

We achieve guideline (1) by assigning a single gene to scale the radii uniformly.

Guideline (2) is achieved by assigning normalized representations to individual

electronegativities and hardnesses, representing genes. These normalized repre-

sentations are scaling parameters (Table 12.1) for the individual parameters (Table

12.2). For example, the gene representing the hardness of c (XF ) might have an al-

lele value of 0.9. During our evaluation of fitness, this is translated to (0.9×10.874)

or 9.7866, since our starting value for XF is 10.874 (see Table 12.1). Therefore, each

of our chromosomes contains two genes per atom, representing a scaling of elec-

tronegativity X and hardness J , or n × 2 genes where n is the number of atoms

described in our parameter set. Guidelines (3) and (4) will be discussed subse-

quently.

Optimization Constraints



151

Chromosome ID I II III IV V VI VII VIII IV
1 1.0 1.25 1 1 1 1 0.9 1 1
2 0.9 0.8 1.2 1.5 0.7 0.99 0.7 1.1 0.85
3 1.01 1.0 1 1 1 1 0.9 1 1.31

Table 12.1: An example of our population of real-valued chromosomes whose
value represents a scaling rather than a specific value

12.2 Initialization

We encode our genes with scaling factors that will operate on our previously re-

ported parameters (Rappé and Goddard [1991]). We initially allow our population

of chromosomes to deviate from the original values by up to +/- 10%.

In row 1 of Table 12.1, we present an example chromosome, a parameter set,

which uses the initial parameters for all elements, except for parameters II and VII

that are mutated to having values of 125% and 90% of their initial values, respec-

tively. Our set of initial values is reprinted in Table 12.2 for the convenience of the

reader.

12.3 Evaluation

We evaluate the performance of our chromosomes as candidate solutions by

applying a metric of fitness. We define our metric of fitness to be the standard de-

viation of the difference between QEq calculated charges and actual charges, de-

rived either experimentally or from quantum mechanical (QM) Mulliken charges

Evaluation
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Element X J eV R0
Li 3.006 4.772 1.557
C 5.343 10.126 0.759
N 6.899 11.760 0.715
O 8.741 13.364 0.669
F 10.874 14.948 0.706

Na 2.843 4.592 2.085
Si 4.168 6.974 1.176
P 5.463 8.000 1.102
S 6.928 8.972 1.047
Cl 8.564 9.892 0.994
K 2.421 3.84 2.586
Br 7.790 8.850 1.141
Rb 2.331 3.692 2.770
I 6.822 7.524 1.333

Cs 2.183 8.972 2.984
H 4.5280 13.8904 0.371

Table 12.2: Data from Rappé & Goddard [1991]

(Equation 12.1).

√∑
A ∆q2A

#atoms

(12.1)

where A is a given atom, ∆q2A is the squared difference in charge between the

calculated charge for atom A and the experimental or QM calculated value, and

#atoms is the number of atoms in all of the structures that we are considering.

12.4 Evolving Our Population

Using the fitness metric as a guideline, the next set of candidate solutions is

generated by culling poor performers and replacing them with “mutated” versions

of better candidate solutions. Mutation and asexual reproduction are achieved by

Evolving Our Population



153

stochastically varying chromosome values. We keep the top 20% of our population

each generation and asexually reproduce the remaining 80% from the top 20%. We

practice “elitism” in that the very best performer is allowed to pass on an unaltered

copy of itself.

The chromosomes are converted to parameter files for QEq. These parameter

files are used to calculate charges on the same set of molecules previously reported

(Rappé and Goddard [1991]). Next, we apply our metric of fitness to determine the

performance of each chromosome of the new generation.

12.5 Adaptive Mutation Severity

Our mutation is implemented in a nonstandard form. We wish to focus our

mutations around current values, so we generate random values from a normal

distribution that uses the current value as a mean for the distribution. Further-

more, we wish for our severity of mutation to adapt with the simulation, meaning

that as we are more certain of our range of values, we want our mutations to sam-

ple from a tighter distribution. To do this, we define a subset of the population,

the top 10% of performers, as our control set. We evaluate the standard deviation

of a population for each value of our optimization set and use those values as the

basis of our variances. This allows for our optimization to account for not only the

current value of individual parameters, but also their relative performance.

Adaptive Mutation Severity
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12.6 Mutation Frequency

For our inorganic set of molecules, we use a mutation frequency of 100%. For

our organic set of molecules, we use a mutation frequency of 25%. Using a muta-

tion rate of 100% for the organic set of molecules delays its convergence.

12.7 Training Sets

We iterate through our training phase many times. We initially train on inor-

ganic molecules from a test set from Rappé and Goddard and extend with data

taken from the National Institute of Standards and Technology (NIST) Computa-

tional Chemistry Comparison and Benchmark Database (CCCBDB) (Table 12.3).

There are three parameters that QEq uses to describe each atom: electronegativity,

hardness, and atomic radius.

We train this set in two phases: initially, we optimize only the atomic radii, and

then we optimize the individual electronegativites and hardnesses for Cs, H, K,

Na, Rb, and Li. We make the initial assumption that the atomic radii will likely

be different when using Gaussian functionals, rather than Slater functionals, and

that they should scale linearly. With this assumption, we perform a simple one-

dimensional parameter sweep to determine the scaling factor that yields the min-

imal error between the QEq calculation and experimentally derived charges. We

perform this sweep on our initial set of diatomic molecules found in Table 12.3 and

find that the Gaussian radii should be approximately 1.46 times that of the Slater

Training Sets
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H Cs K Na Rb Li Cl F I
Br HBr BrCs BrK NaBr RbBr LiBr BrCl BrF ICl
Cl HCl CsCl KCl NaCl RbCl LiCl ClF
F HF CsF KF NaF RbF LiF
I HI CsI KI NaI RbI LiI

Li HLi

Table 12.3: Initial training cases

radii, as seen in Figure 13.1.

Our second set of molecules consists of organic molecules that are represen-

tative of a diverse set of ligands of interest to drug designers. While the first set

serves as a proof-of-principle that we can optimize against experimental values of

charge, this set consists totally of calculated Mulliken charges. We use the initial set

of molecules to provide a general starting point for the optimization of our second

set of molecules.

12.8 Final Considerations

We test the performance of our optimization against the set of molecules from

“A Directory of Useful Decoys” (Huang, Shoichet et al.2006) that are commonly

used in the benchmarking of ligand docking workflows. We use the original QEq

found in Lingraf as a point-of-performance comparison. We use our original metric

of performance, the sample standard deviation from Equation 12.1, as well as the

Final Considerations



156

mean absolute error, displayed in Equation 12.2:

1

n

n∑
i=1

|ei| (12.2)

where ei is the difference in charge between quantum mechanical calculated values

and QEq calculated values, i is the atom ID for each molecule, and n is the number

of atoms in each molecule.

Final Considerations
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Chapter 13

Results

13.1 Our Performance

The performance of our EA on the optimization of parameters for the inorganic

set of molecules is depicted in Figure 13.2. To limit our state space, we hold the

electronegativity of fluorine constant. The electronegativity of fluorine acts as a

reference point that gently constrains our optimization in parameter space. With

this one value held constant, optimization runs converge in several hundred gener-

ations; otherwise, they do not converge after thousands of generations. The reason

for this is that the values of electronegativity and hardness are relative. This is an

important consideration for further global optimization of similar systems.

To further constrain our search space, we add the following set of constraints

for electronegativity: XF > XCl > XBr > XI , XLi > XNa > XK > XRb > XCs,

XF > XO, and XCl > XS . We constrain hardness with the matching relationships.

The performance of the optimization of the inorganic molecules can be seen

in Figure 13.2. According to our performance against our metric of fitness, we

optimize our system well by 150 generations. Taking a deeper look, we can analyze

Our Performance
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Element Lingraf QEq Inorganic gQEq Organic gQEq
X, eV X, eV X, eV

Li 3.006 2.607 -
C 5.343 - 6.293
N 6.899 - 7.933
O 8.741 - 9.571
F 10.874 10.874 10.874

Na 2.843 2.523 -
S 6.928 - 5.690
Cl 8.564 9.530 6.193
K 2.421 1.806 -
Br 7.790 8.768 5.705
Rb 2.331 2.067 -
I 6.822 8.210 4.432

Cs 2.183 1.859 -
H 4.5280 7.764 5.193

Table 13.1: Original parameters and our optimized values for electronegativity

the evolution of individual parameters, illustrated in Figures 13.3(a) and 13.3(b).

There is noticeable change in some of our parameters as far out as 400 generations,

specifically XNa and JNa.

Following this initial stage, we apply the optimization task to the set of organic

molecules, most of which are known ligands. The candidate solutions perform

well over time, as shown in Figures 13.4 and 13.5. The systems converged within

150 generations to a stable performance with respect to the metric of fitness. The

parameters evolve as displayed in Figures 13.6(a) and 13.6(b). Looking at the evo-

lution of parameters as depicted in Figures 13.6(a) and 13.6(b), We see that the

evolution of XI and JF are late to stabilize. It is unclear if JF has completely stabi-

lized. Increasing the representation of halogens in our training set should increase

the rate of convergence of these molecules.

Our Performance
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Element Lingraf QEq Inorganic gQEq Organic gQEq
J, eV J, eV J, eV

Li 4.772 2.607 -
C 10.126 - 8.750
N 11.760 - 11.283
O 13.364 - 14.807
F 14.948 13.972 20.574

Na 4.592 2.924 -
S 8.972 - 6.142
Cl 9.892 12.260 10.139
K 3.84 2.795 -
Br 8.850 11.330 6.736
Rb 3.692 2.346 -
I 7.524 10.705 7.600

Cs 8.972 2.882 -
H 13.8904 11.103 18.292

Table 13.2: Original parameters and our optimized values for hardness.

We tested out evolutionary-algorithm-optimized parameters on a novel set of

ligands, the “Directory of Useful Ligands”. We show our performance on two

metrics — standard deviation and mean absolute error — in Figures 13.7 and 13.8,

respectively. We outperformed the previous version of QEq on all members of the

set.

13.2 Discussion

Our optimization yields favorable results in that we accurately represent atomic

charge. However, a single element yields divergent values between data sets.

While this is consistent with the idea that atom-types exhibit divergent chemical

behavior as a function of their state of binding, it results in our need to either define

atom types within our parameter sets or to build parameter sets that are specific
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Figure 13.2: Boxplots of population performance as a function of generation for
our initial set of inorganic molecules.
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Figure 13.3: Optimization of our inorganic set of molecules.
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Figure 13.4: Boxplots of population performance as a function of generation for
our set of organic molecules
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Figure 13.5: Boxplots of population performance as a function of generation for
our set of organic molecules. This plot reproduces the data shown in Figure 13.4
with outliers excluded
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Figure 13.6: Optimization of our organic set of molecules
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Figure 13.7: Standard deviations of EA-derived gQEq charges and quantum-
mechanical-derived charges (blue) vs. standard deviations of charges from the
previous model gQEq and quantum-mechanical-derived charges (red)
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Figure 13.8: Mean absolute errors of EA-derived QEq charges and quantum-
mechanical-derived charges (blue) vs. mean absolute errors of charges from the
previous model QEq and quantum-mechanical-derived charges (red)
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to given molecular populations. Iczkowski and Margrave [1961] remind us that

that Mulliken “pointed out the importance of using the ionization potentials cor-

responding to the appropriate valence state of the atom in a molecule [1934].”

Another issue that we have not confronted is that of recombination in the evo-

lutionary algorithm. We perform well, but recombination may improve our opti-

mization. Alternatively, it may add an additional level of complexity to our opti-

mization without improving its performance. In fact, it might be favorable to de-

velop our mutation such that our chromosomes move toward the best performer

in a scheme similar to particle swarm optimization (PSO). This would require mi-

nor additions to our data model, but could prove to be a fruitful endeavor. The EA

community has been increasing the use of PSO recently, likely due to the effective-

ness of optimization and the ease of use.

13.3 Conclusions

The Goddard laboratory uses QEq to estimate atomic charges in ligand-docking

simulations, used to predict potential drug candidates. Using EAs, we have im-

proved our ability to model atomic charges, thereby increasing our chances of dis-

covering a successful drug candidate.

Additionally, the developed code using EAs, as described in this thesis, has

proven useful at optimizing other Goddard systems, including EFF and ReaxFF.

The code was developed in such a way that it can easily be adapted and applied

to additional systems by simply updating the parameters.

Conclusions
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Example Source Code

Evolutionary Algorithms in C

Algorithms and Source Code 9: C code for an Evolutionary Algorithm to optimize
QEq

#include <pgapack.h>
2 #include <stdlib.h>

#include <string.h>
#include <stdio.h>
#include <unistd.h>
#include <math.h>

7
#define max(A,B) ((A) > (B) ? (A):(B))
#define min(A,B) ((A) > (B) ? (B):(A))

double *mut_rates;
12 double *curr_mins;

int MyMutation (PGAContext * ctx, int p, int pop, double mr, int
state);

void MyPrint (PGAContext * ctx, FILE * fp, int pop);
void tmp (PGAContext * ctx, int pop);

17 double MyEvaluate (PGAContext * ctx, int p, int pop);
void run (int argc, char **argv, int *para);
void parseParam (int len, int *para);

int
22 main (int argc, char **argv)

{
MPI_Init (&argc, &argv);

int my_array[] = { 1, 23, 17, 4, -5, 100 };
27 parseParam (3, my_array);

run (argc, argv, my_array);

Conclusions



170

return (0);
}

32
/*

***************************************************************************

* Initialize all members to the starting position as defined
by the *

* file "ffopt".

*
***************************************************************************

*/
37

int
MyMutation (PGAContext * ctx, int p, int pop, double mr, int

state)
{

int stringlen, i, count = 0;
42 double k, updated, randnum, noise, avg, prev, curr, high, low,

mnval =
0.01, mx = .99, mxval = 3.0, delta;

stringlen = PGAGetStringLength (ctx);
// stringlen = 18;

47 double ref[29], norms[29], actual[29];
for (count = 0; count < 29; count++)

{
norms[count] = 1.0;

}
52 ref[1] = 10.87400;

ref[2] = 8.56400;
ref[3] = 7.79000;
ref[4] = 6.82200;
ref[5] = 4.52800;

57 ref[6] = 3.00600;
ref[7] = 2.84300;
ref[8] = 2.42100;
ref[9] = 2.33100;
ref[10] = 2.18300;

62 ref[11] = 5.34300;
ref[12] = 6.89900;
ref[13] = 8.74100;
ref[14] = 6.92800;
ref[15] = 14.94800;

67 ref[16] = 9.89200;
ref[17] = 8.85000;
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ref[18] = 7.52400;
ref[19] = 13.89040;
ref[20] = 4.77200;

72 ref[21] = 4.59200;
ref[22] = 3.84000;
ref[23] = 3.69200;
ref[24] = 3.42200;
ref[25] = 10.12600;

77 ref[26] = 11.76000;
ref[27] = 13.36400;
ref[28] = 8.97200;
int gen = PGAGetGAIterValue (ctx);
for (i = 2; i < stringlen; i++)

82 {
//if( i!=5 && i!=19){
if (1)

{
// if((i<11 ) ||(i>=15 && i<=24)){

87 if ((i > 24) || (i >= 11 && i <= 14) || (i <= 5)
|| (i > 14 && i <= 19))

{
if (PGARandomFlip (ctx, mr))

{
92 if (state == 1)

{
avg = PGAGetRealAllele (ctx, p, pop, i);

}
else

97 {
avg = 1;

}

mut_rates[i] = max (mut_rates[i], mnval);
102 k = PGARandomGaussian (ctx, avg, mut_rates[i]);

norms[i] = k;

//k = min(mxval, k);
107 // k = max(mnval,k);

PGASetRealAllele (ctx, p, pop, i, k);
printf ("mutation info %i %i %i %i %f %f %f %f

%f\n", gen,
p, i, pop, low, high, avg, k, mut_rates

[i]);
count++;

112 }
}
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}
}

for (count = 0; count < 29; count++)
117 {

actual[count] = norms[count] * ref[count];
printf ("count %i %f\n", count, actual[count]);
if (actual[count] < 0)

{
122 count = 0;

}

}
if ((actual[1] < actual[2]) || (actual[2] < actual[3])

127 || (actual[3] < actual[4]) || (actual[6] < actual[7])
|| (actual[7] < actual[8]) || (actual[8] < actual[9])
|| (actual[9] < actual[10]) || (actual[15] < actual[16])
|| (actual[16] < actual[17]) || (actual[17] < actual[18])
|| (actual[20] < actual[21]) || (actual[21] < actual[22])

132 || (actual[22] < actual[23]) || (actual[23] < actual[24])
|| (actual[1] < actual[13]) || (actual[15] < actual[27])
|| (actual[2] < actual[14]) || (actual[16] < actual[28]))

{
//i=2;

137 count = 0;
}

return (count);
}

142
void
parseParam (int len, int *para)
{

printf ("len = %i\n", len);
147 printf ("%i %i %i\n", para[0], para[1], para[2]);

para[0] = 100;
printf ("%i %i %i\n", para[0], para[1], para[2]);
FILE *ifile, *ft, *fs, *fs2;
char ch;

152
ifile = fopen ("wagGA.par", "r");
if (ifile == NULL)

{
puts

157 ("Cannot find wagGA.par. Please make sure that it is in
the current working directory.");

exit (-1);
}
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}

162 void
run (int argc, char **argv, int *para)
{

printf ("hi %i\n", para[0]);
int population_size = 150;

167 //exit(0);
int total_num_generations = 250;
PGAContext *ctx;
int i, j, n, m1, m2, popsize, numreplace;
double probcross;

172
ctx = PGACreate (&argc, argv, PGA_DATATYPE_REAL, 29,

PGA_MINIMIZE);
PGASetMutationType (ctx, PGA_MUTATION_GAUSSIAN);
double *low, *high;
int stringlen;

177 stringlen = PGAGetStringLength (ctx);
mut_rates = (double *) malloc (stringlen * sizeof (double));
curr_mins = (double *) malloc (stringlen * sizeof (double));
low = (double *) malloc (stringlen * sizeof (double));
high = (double *) malloc (stringlen * sizeof (double));

182 for (i = 0; i < stringlen; i++)
{
low[i] = 1.;
high[i] = 1.;
mut_rates[i] = .15;

187 }
low[0] = 1.;
high[0] = 1.;
PGASetRealInitRange (ctx, low, high);
double rate_init = 1.0;

192 double rate_main = .25;
PGASetPrintFrequencyValue (ctx, 1);
int num = population_size;

// PGASetStoppingRuleType(ctx, PGA_STOP_NOCHANGE);
// PGASetMaxNoChangeValue(ctx, 25);

197 PGASetMaxGAIterValue (ctx, total_num_generations);
PGASetPopSize (ctx, num);
PGASetNoDuplicatesFlag (ctx, PGA_TRUE);
PGASetSelectType (ctx, PGA_SELECT_PROPORTIONAL);

202 PGASetStoppingRuleType (ctx, PGA_STOP_MAXITER);
//PGASetMutationRealValue(ctx, 0);
int check, rank, cnt, idx, floor;
PGASetMutationRealValue (ctx, 0.0);
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207 PGASetUp (ctx);
rank = PGAGetRank (ctx, MPI_COMM_WORLD);
for (cnt = 1; cnt < population_size; cnt++)

{
check = 0;

212 while (check == 0)
{

check = MyMutation (ctx, cnt, PGA_OLDPOP, rate_init, 0)
;

printf ("%i\n", check);
}

217 }
PGAEvaluate (ctx, PGA_OLDPOP, MyEvaluate, MPI_COMM_WORLD);
// rank = PGAGetRank(ctx, NULL);
// PGAEvaluate(ctx, PGA_OLDPOP, MyEvaluate, NULL);
if (rank == 0)

222 {
PGAFitness (ctx, PGA_OLDPOP);
//printf( "\nthe population size is %i and the number of

generations is set to %i.\n\n", population_size,
total_num_generations + 1);

}

227 while (!PGADone (ctx, MPI_COMM_WORLD))
{
// while (!PGADone(ctx, NULL)) {

if (rank == 0)
232 {

PGASelect (ctx, PGA_OLDPOP);
PGASortPop (ctx, PGA_OLDPOP);
tmp (ctx, PGA_OLDPOP);
for (cnt = 0; cnt < num; cnt++)

237 {
floor = cnt / 5;
//printf("%i\n",floor);
// floor = 0;
idx = PGAGetSortedPopIndex (ctx, floor);

242 PGACopyIndividual (ctx, idx, PGA_OLDPOP, cnt,
PGA_NEWPOP);

PGASetEvaluationUpToDateFlag (ctx, cnt, PGA_NEWPOP,
PGA_FALSE);

// PGASetEvaluationUpToDateFlag(ctx, cnt,
PGA_OLDPOP, PGA_FALSE);

//printf("test %i", test);
if (cnt >= 1)
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247 {
check = 0;
while (check == 0)

{
check = MyMutation (ctx, cnt, PGA_NEWPOP,

rate_main, 1);
252

}
}

}
}

257 //PGASelect(ctx, PGA_NEWPOP);
//PGAEvaluate(ctx, PGA_NEWPOP, MyEvaluate, MPI_COMM_WORLD);
PGAEvaluate (ctx, PGA_NEWPOP, MyEvaluate, MPI_COMM_WORLD);
//PGAEvaluate(ctx, PGA_OLDPOP, MyEvaluate, MPI_COMM_WORLD);
//PGAFitness(ctx, PGA_NEWPOP);

262
if (rank == 0)

{
PGAFitness (ctx, PGA_NEWPOP);

}
267

if (rank == 0)
{

MyPrint (ctx, stdout, PGA_OLDPOP);
}

272 PGAUpdateGeneration (ctx, MPI_COMM_WORLD);

}
PGAPrintReport (ctx, stdout, PGA_NEWPOP);

277 PGADestroy (ctx);
MPI_Finalize ();

}

282 void
tmp (PGAContext * ctx, int pop)
{

double sum, avg, var, diff, mut_weight;
double x;

287 double score = PGAGetFitness (ctx, 0, pop);
double y = PGAGetStringLength (ctx);
//int elite_percent = PGAGetPopSize(ctx)/1;
int elite_percent = 10;
mut_weight = 0.4;

292 double *values;
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values = (double *) malloc (elite_percent * sizeof (double));
int gen = PGAGetGAIterValue (ctx);
int cnt_a, cnt_b;
PGASelect (ctx, pop);

297 PGASortPop (ctx, pop);
for (cnt_b = 0; cnt_b < y; cnt_b++)

{
sum = 0;
for (cnt_a = 0; cnt_a < elite_percent; cnt_a++)

302 {
x =

PGAGetRealAllele (ctx, PGAGetSortedPopIndex (ctx,
cnt_a), pop,

cnt_b);
values[cnt_a] = x;

307 sum = sum + x;
score = PGAGetFitness (ctx, PGAGetSortedPopIndex (ctx,

cnt_a), pop);
printf ("VARDAT %i %i %i %f %i %i %f\n", gen, pop,

PGAGetSortedPopIndex (ctx, cnt_a), x, cnt_b,
cnt_a, score);

}
312 avg = sum / elite_percent;

diff = 0;
for (cnt_a = 0; cnt_a < elite_percent; cnt_a++)

{
diff = (avg - values[cnt_a]) * (avg - values[cnt_a]) +

diff;
317 // printf("sum = %f\n",sum);

}
mut_rates[cnt_b] = sqrt (diff / cnt_a) * mut_weight;
printf ("VARFIN %i %i %f %f %i\n", gen, cnt_b, sqrt (diff /

cnt_a), avg,
cnt_a);

322
}

}

void
327 MyPrint (PGAContext * ctx, FILE * fp, int pop)

{
/*

***************************************************************************

* Print the string referenced by p and pop to the file
fp. *
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***************************************************************************
*/

332 int i;
int allelemax = PGAGetStringLength (ctx);

int chrommax = PGAGetPopSize (ctx);
int allelecnt = 0;

337 int chromcnt = 0;
double value, fitness, evaluation;
int gen;
FILE *fp2;
if (fp2 = fopen ("arraydata.txt", "a+"))

342 {

for (chromcnt = 0; chromcnt < chrommax; chromcnt++)
{

gen = PGAGetGAIterValue (ctx);
347 fitness = PGAGetFitness (ctx, chromcnt, pop);

evaluation = PGAGetEvaluation (ctx, chromcnt, pop);
fprintf (fp2, "%i %i %f %f ", gen, chromcnt, fitness,

evaluation);
for (allelecnt = 0; allelecnt < allelemax; allelecnt++)

{
352

value = PGAGetRealAllele (ctx, chromcnt, pop,
allelecnt);

fprintf (fp2, "%f ", value);
}

357
fprintf (fp2, "\n");

}

}
362 else

{
printf ("Error opening arraydata.txt\n");

}
}

367
/* The evaluation function. */
double
MyEvaluate (PGAContext * ctx, int p, int pop)
{

372 /*
***************************************************************************
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* gaiter = the current iteration in our GA evolution

*
*

*
* x = a dummy variable, for-loop iterator

*
*

*
377 * fp = a standard file pointer that will be used

to write *
* the chromosome update

*
***************************************************************************

*/

/*
***************************************************************************

382 * Evaluate the string here, and return a double
representing *

* the quality of the solution.

*
***************************************************************************

*/
//PGASetEvaluationUpToDateFlag(ctx, p, pop, PGA_TRUE);

387 FILE *fp, *fp_tst;
FILE *fp2;
int x, gaiter;
gaiter = PGAGetGAIterValue (ctx);
char filename[80], command[500], inputname[80];

392
/*

***************************************************************************

* begin writing the chromosome updates to disk

*
***************************************************************************

*/

397 // int inner_rank;
// inner_rank = PGAGetRank(ctx, MPI_COMM_WORLD);
// sprintf(filename, "ffopt_data_%i",inner_rank);
// sprintf(inputname, "score");
// fp=fopen(filename,"w");
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402 double value[29];
int test;
test = 0;
for (test = 0; test < 29; test++)

value[test] = PGAGetRealAllele (ctx, p, pop, test);
407

sprintf (command,
"python qeqD.py organics.qeq.par OptAll4Bio.par %f %f

%f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f
%f %f %f %f %f %f %f %f %f %f> /dev/null \n",

value[0], value[1], value[2], value[3], value[4],
value[5],

value[6], value[7], value[8], value[9], value[10],
value[11],

412 value[12], value[13], value[14], value[15], value[16],
value[17],

value[18], value[19], value[20], value[21], value[22],
value[23],

value[24], value[25], value[26], value[27], value[28])
;

system (command);
417

float score, testScore, scoreNew;
FILE *t;
PGASetEvaluationUpToDateFlag (ctx, p, pop, PGA_TRUE);
fp = fopen ("score", "r");

422 fscanf (fp, "%f\n", &score);
// fscanf(fp,"%f\n", &scoreNew);
fclose (fp);

fp_tst = fopen ("score_test", "r");
427 fscanf (fp_tst, "%f\n", &testScore);

// fscanf(fp,"%f\n", &scoreNew);
fclose (fp_tst);

432

int gen;
gen = PGAGetGAIterValue (ctx);

437 printf ("scores %i %i %f %f\n", gen, p, score, testScore);

// printf("%f %f scores",scorese, scoreNew);
//printf("rank %i score for %i %i is %f.\n",inner_rank, p,pop,

score);
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return (score);
442 }
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The integrater for Source Code 9

Algorithms and Source Code 10: The integrater for Source Code 9

#!/usr/bin/env python
import sys, re,math, numpy, fnmatch

3 import subprocess, os

def score(target,test,data_dict, data_dict2):
fp_target = open(target)
fp_test = open(test)

8 lines_target = fp_target.readlines()
lines_test = fp_test.readlines()
fp_target.close()
fp_test.close()
test=[]

13 # data_dict={}
target=[]
atom=[]
atom_type=[]

18 total_score = 0

for line in lines_test:
if re.match("HETATM",line):

test.append(float(line.split()[12]))
23 atom.append(line.split()[2])

for line in lines_target:
if re.match("HETATM",line):

atom_type.append(line.split()[9])
28 target.append(float(line.split()[12]))

for (x,y,name,a_type) in zip(test, target,atom,atom_type):
delta_q = (x-y)**2

if not data_dict.has_key(name):
33 data_dict[name]=[delta_q]

else:
data_dict[name].append(delta_q)

if not data_dict2.has_key(a_type):
data_dict2[a_type]=[delta_q]

38 else:
data_dict2[a_type].append(delta_q)

return [data_dict, data_dict2]
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43 def main():
Xis = numpy.ones(40)
outlines = []
in_name = sys.argv[1]
out_name = sys.argv[2]

48 weight = float(sys.argv[3])
if len(sys.argv)==32:

for cnt in xrange(28):
Xis[cnt] = float(sys.argv[cnt+4])

else:
53 print "Expecting 32 arguments but found %i"%len(sys.argv)

print sys.argv
sys.exit(-1)

actual_vals=numpy.ones(len(Xis))
#check(actual_vals)

58 print sys.argv
fp = open(in_name)
lines = fp.readlines()
for cnt in range(12,len(lines)):

print len(lines),len(lines)-12
63 print lines[cnt]

parts=lines[cnt].split()
parts[2]=str(float(parts[2])*Xis[cnt-12])
actual_vals[cnt-12]=float(parts[2])*Xis[cnt-12]

68 parts[3]=str(float(parts[3])*Xis[cnt-12+14])
actual_vals[cnt-12+14]=float(parts[3])*Xis[cnt-12+14]

parts[5]=str(float(parts[5])*weight)
outln = ' '.join([str.rjust(parts[0],2,' '),"1","%8.5f"%

float(parts[2]),"%8.5f"%float(parts[3]),"%8.6f"%float(
parts[4]),"%8.5f"%float(parts[5]),"%7.6f"%float(parts[
6]),"%7.6f"%float(parts[7])])

73 outlines.append(outln)
print outln

#check(actual_vals)
fp_out=open(out_name,'w')
for cnt in range(12):

78 print >>fp_out,lines[cnt],
for line in outlines:

print >> fp_out,line
# print >> fp_out,"\n"
fp_out.close()

83
[score ,info, out_dict, out_dictB] = run_qeq(out_name,"

training", weight)
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[score_2 ,info_2, out_dict_2, out_dictB_2] = run_qeq(
out_name,"testing", weight)

fp_val=open("score_%08.5f" % weight,"w")
88 print >>fp_val, score

fp_val.close()

fp_val = open("score","w")
[value, lines]=procAtoms(out_dict,out_dictB)

93 print >>fp_val,value
for line in lines:

print >>fp_val,line
fp_val.close()

98 fp_tst = open("score_test","w")
[value, lines]=procAtoms(out_dict_2,out_dictB_2)
print >>fp_tst,value
for line in lines:

print >>fp_tst,line
103 fp_tst.close()

108 # print "scores ", (out_score/out_num)**.5, (a/b)**.5

def procAtoms(data,dataB):
"""Standard """
out_lines = []

113 out_score = 0
out_num = 0
for atom in data:

out_lines.append("\n%2s %8.5f %8i %f"% (atom , (sum(
data[atom])/len(data[atom]))**.5,len(data[atom]),max(
data[atom])**.5))

out_score += sum(data[atom])
118 out_num += len(data[atom])

for atom_type in dataB:
if re.match("%s[_\b]" % atom,atom_type):

out_lines.append("\t%5s %8.5f %8i %f"% (
atom_type , (sum(dataB[atom_type])/len(dataB[
atom_type]))**.5,len(dataB[atom_type]),max(
dataB[atom_type])**.5))

123 value =(out_score/ out_num)**.5

return [value, out_lines]
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128 def locate(pattern, root):
for path, dirs, files in os.walk(root):

for filename in [os.path.abspath(os.path.join(path,
filename)) for filename in files if fnmatch.fnmatch(
filename, pattern)]:
yield filename

133 def run_qeq(par_file, target_dir ,weight):
print "weight"
total_score = 0
cnt=0
nfo=[]

138 rp_data_dict={}
rp_data_dict_atomtype={}
mol_names=[]

for bgf in locate("*.bgf", target_dir):
143 mol_names.append(bgf)

for name in mol_names:
out = "tmp." + name.split("/")[-1]

148 print out
p= subprocess.Popen("/ul/yi/bin/pqeq %s exact %s %s > /

dev/null" % (par_file, name, out) , shell=True)
sts = os.waitpid(p.pid, 0)[1]
[ rp_data_dict, rp_data_dict_atomtype] =score("%s"%name,

out , rp_data_dict,rp_data_dict_atomtype)
cnt+=1

153
total_error=0
for key in rp_data_dict:

total_error += sum(rp_data_dict[key])/len(rp_data_dict[
key])

158
print "weight:value",weight,total_score/cnt,"weight",cnt
# value = total_score/cnt
value = total_error/len(rp_data_dict.keys())
print rp_data_dict_atomtype

163 return [value, nfo, rp_data_dict, rp_data_dict_atomtype]

if __name__=="__main__":
main()
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