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Abstract

The amount of digital image and video data keeps increasing at an ever-faster rate.

While “big data” holds the promise of leading science to new discoveries, raw image

data in itself is not of much use. In order to statistically analyze the data, it must

be quantified and annotated. We argue that entirely automated methods are not

accurate enough to annotate data in the short term. Crowdsourcing is an alternative

that provides higher accuracy, but is too expensive to scale to millions of images.

Instead, the solution is hybrid human-machine vision systems, where the work of

both humans and machines is balanced to be as cost-effective and accurate as possible.

With this goal in mind, we begin by categorizing different types of image annotations,

and describe how nonexpert annotators can be trained to carry out challenging image

annotation tasks. Having identified which types of annotations are appropriate for

most tasks, including binary, confidence, pair-wise and continuous annotations, we

present models for crowdsourcing annotations from hundreds of expert and nonexpert

annotators (humans). By trading off the bias and expertise of multiple annotators,

we show that it is possible to achieve high-quality annotations with very few labels.

We show that the number of labels can be further reduced by actively choosing

the best annotators to carry out most of the work. Finally, we study the problem

of estimating the performance of automated classifiers (machines) used to annotate

large datasets where few ground truth labels are available. Using a semisupervised

model for classifier confidence scores, we show that it is possible to accurately estimate

classifier performance with very few labels.
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Chapter 1

Introduction

Over the last few decades, digital image sensors have gone from being a rarity to

taking a fundamental place in many people’s lives. For consumers, snapping a picture

and sharing it with friends and family has never been easier. Most phones come

equipped with one, if not multiple, cameras, and it is not difficult to imagine a

near future where we will be recording every bit of our lives [BG09]. In industry, a

growing number of satellites and unmanned aerial vehicles (UAVs) are mapping our

planet at ever higher resolutions, surveillance cameras are appearing at every street

corner, and doctors examine our bodies and tissues with high-resolution scanners and

microscopes. Academic research labs across scientific disciplines, from astronomy to

biology, are deploying new instruments capable of producing mind-boggling amounts

of image data every day. Thus, across all domains, we are experiencing a deluge of

image and video data, growing at an enormous pace. But raw “unstructured” data

is not very useful in itself, if we do not have a way to understand it. The challenge

is turning the raw data into “structured” data, that is, annotated data on which we

can apply standard statistical and data mining methods.

While the amount of data has exploded, researchers in the fields of Machine Learn-

ing and Statistics have been busy developing many promising tools for dealing with

“big data”. General tools such as principal component analysis, matrix factorization

techniques, random forests and support vector machines allow scientists and prac-

titioners to make huge progress in everything from understanding gene and disease

data to detecting fraud patterns and classifying text documents. Unfortunately, most
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raw image and video data produced today is outside the capabilities of many popular

statistical tools. The reason is that we lack ways to represent the images by their

content, and the features that are available are still not much better than the raw

pixels.

Turning pixels into quantified information is the goal of the field of Computer

Vision. Though there is much interesting work left, the computer vision community

has made significant progress over the last few years. Some technologies, such as face

detection [VJ04] and object matching using SIFT features [Low04], have already made

it into commercial products. Today, we can annotate faces and textured objects, such

as books, movie posters, and art, with high accuracy in images. In science, computer

vision is quickly becoming an indispensable tool for quantifying image and video

data [DWH+09, FLW+08]. For some applications, it is possible to detect and track

animals, so that their movements can be turned into location and velocity data, which

in turn can be used to characterize behavior statistically [BRB+09]. However, the

accuracies of most computer vision systems are not at the point where they can be

reliably used for the broad range of data that is available today. To make today’s

methods work reliably, the experimental settings have to be constrained and large

amounts of labeled data is required to train the computer vision algorithms. Even

when trained with thousands of examples, the results need to be double-checked by

experts, as the systems cannot be fully trusted.

Crowdsourcing has emerged a solution for the situations where computer vision

is not yet accurate enough. The term, “crowdsourcing”, was coined by Jeff Howe

in an 2006 article [How06] and refers to the process of oursourcing small tasks to a

large number of people. Since humans have highly developed visual systems, with

years of training, we can quickly adapt to new visual tasks even with few training

examples. The first crowdsourcing projects involved unpaid volunteers, with the best

known example being the web-based encyclopedia, Wikipedia. Lately, scientists have

realized the power of crowdsourcing, and numerous “citizen science” projects have

been released to the public. Through the website Galaxy Zoo1, astronomers enlist

1http://www.galaxyzoo.org
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the help of amateurs to classify hundreds of thousands of photos of galaxies taken by

the Hubble space telescope. The American space agency, NASA, asks citizen scientists

to find craters on Mars by clicking on images on the planet surface through the “Be

a Martian” website2. Archaeologists attempted (unsuccessfully) to crowdsource the

search for the tomb of Genghis Khan by asking ordinary people to look through

satellite images of Mongolian plains3. While crowdsourcing volunteer work is useful

for large projects, online crowdsourcing markets such as Amazon Mechanical Turk4

(MTurk), let “requesters” post tasks and bid for the time of “workers”. Researchers

in machine learning and computer vision have quickly adopted the tool to annotate

large datasets [SF08, SOJN08].

The issue with today’s crowdsourcing systems is that they have a lot of ineffi-

ciencies. To ensure high-quality annotations, multiple workers have to annotate the

same image. This impacts the scalability of crowdsourcing, as annotating very large

datasets can become prohibitively expensive. Moreover, some annotators are better

at certain tasks than others (i.e., there are some “experts” in the crowd), so their

time should be focused very carefully. There are also some tasks on which computer

vision algorithms could possibly perform quite well, especially with a lot of training

examples. For example, if the task is to count cells in tissue samples, a modern ob-

ject detector could be trained to perform with quite high accuracy. Then, instead of

annotating all the data, a human worker could simply aid the machine by correcting

mistakes. Today, those tasks are still done by humans, even though they may be

very mundane, impacting the overall motivation of the workers in the crowd. The

challenge is to create a system where machines and humans can work together, doing

the part of the work for which they are best suited.

2http://beamartian.jpl.nasa.gov
3http://exploration.nationalgeographic.com
4http://www.mturk.com
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Figure 1.1: Tradeoff between cost and accuracy for hybrid human-machine vision
systems. Machine algorithms have very low cost (basically computer CPU time cost),
experts are very expensive but have maximum accuracy, and a “crowd” of non-experts
fall somewhere in-between. The long-term vision is to develop a framework that
trades off the strengths and weaknesses of each agent (machine, crowd, expert) along
an optimal Pareto frontier. This goal of this thesis is to lay the foundation for that
vision. The hope is that future research will push the frontier towards the upper-left
part of the figure.
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1.1 Hybrid Human-Machine Vision Systems

The goal of this thesis is to lay the foundations for humans and machines working to-

gether to annotate data. The vision is to build hybrid human-machine vision systems

(HHMVS), which process images by balancing the work of humans and machines as

cost-effectively as possible (see Figure 1.1).

There are three kinds of agents involved in HHMVS: (1) Experts are humans

specifically trained at the task at hand, and so can make decisions better than anyone

else. In many cases, it is the experts themselves that request the help of non-expert

humans and machines, since their own time is very expensive. (2) A crowd of non-

expert humans may have received brief training, but they do not have expertise in

the task, and are often exposed to the images for the first time. (3) Machines (or

automata) represent the automated computer vision methods that classify or detect

objects in images. While machines are very specialized in what they can do, humans

are quite flexible and can generalize well between tasks. For example, it is known

that if trained with detailed instructions, human non-experts can perform at accuracy

levels comparable to experts [BS87].

The questions considered in this thesis include: How do we characterize and mea-

sure the performance of human annotators when there is no ground truth? How

can we use a crowd of noisy non-experts to annotate data and still guarantee high

accuracy? What is the tradeoff between cost and performance in crowdsourcing?

How does the accuracy of the crowd compare to experts? How can we estimate the

performance of computer vision algorithms with as few expert-labeled examples as

possible?

While the work in this thesis is focused on image data, many of the results can be

applied to other modalities, such as video, time-series, audio, and text. For example,

the work on binary annotation is very general, as many other annotation tasks can

be broken down into multiple binary tasks.
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1.2 Thesis Outline

This thesis is organized as a series of self-contained chapters, each discussing a differ-

ent aspect of HHMVS. Some of the chapters have been published before, while others

are still under submission at the time of writing. Related work in the literature is

discussed separately in each chapter.

Chapter 2 describes different types of annotations and their use in applications

and datasets. It also shows the interfaces for annotating images and for training

annotators.

Chapter 3 (joint work with Steve Branson, Serge Belongie and Pietro Perona)

presents a model for binary annotation. The model parameterizes annotator bias,

competence, and expertise. By weighting the annotators based on the quality of the

labels they provide, the method can be used to obtain high-quality binary labels.

The experiments presented in the chapter show that all parameters are needed to

ensure high accuracy. Finally, the model can be used to find experts in a crowd of

annotators.

Chapter 4 (joint work with Pietro Perona) extends the work on binary annotations

to polytomous annotations, or confidence scales. It presents theoretical results for

how much information can be expected to be gained from confidence labels, and also

proposes a method for training annotators to use confidence labels as efficiently as

possible.

Chapter 5 (joint work with Ryan Gomes, Andreas Krause, and Pietro Perona)

further extends the model in Chapter 3 to grouping images by visual similarity. The

method is called “crowd clustering” and lets the annotators group images together

based on loose instructions. By grouping images, the annotators effectively provide

pairwise binary labels for the images. Using the model, it is possible to extract

clusters of similar images, and to characterize annotators based on what features

they are looking for. My main contribution to this work was developing and carrying

out the experiments.

Chapter 6 (joint work with Pietro Perona) explores detection annotations, where
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annotators are asked to detect objects in images. The experiments compare anno-

tators on real and synthetic tasks, and show that the performance of non-expert

annotators can be comparable to that of experts.

Chapter 7 (joint work with Pietro Perona) takes a simpler but more general model

than that presented in Chapter 3 and applies it to binary, discrete multi-valued, and

bounding box annotations. It then shows how the model can be used to actively query

annotators for labels until a predetermined level of confidence has been reached. By

learning the competences of the annotators in the crowd, it shows how to pick out

the best performers and obtain high quality annotations with very few labels.

Chapter 8 (joint work with Pietro Perona) explores the problem of estimating

machine performance using as few expert-provided labels as possible. Specifically, the

confidence scores produced by binary classifiers are modeled by a Bayesian mixture

model. By taking a semisupervised approach, it possible to obtain accurate estimates

of classifier performance using as few as 10 labels.
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Chapter 2

Image Annotation

To turn an image into structured information, the objects in the image and the

properties of the image as a whole must to be annotated. Annotation may mean a lot

of things, but in this work we focus on two main issues: (1) categorizing and measuring

properties of images and (2) categorizing and measuring properties of objects in the

images. In this chapter, we describe various annotation types, what user interfaces

are needed to produce them, and how to train annotators to provide annotations

accurately.

2.1 Annotation Types

Annotations can be applied at different levels of resolution. For many applications, it

is useful to know whether an object of interest is present in an image, or whether the

image belongs to a certain category. In those cases, the annotation is for the whole

image, and so is an “image-level” annotation. For other tasks, it is necessary to know

properties of an object, such as its location, size, or configuration. We say that such

annotations are at the “object-level.” Here we list different types of annotations, and

provide examples of their use.

Binary: Binary annotation is defined as asking a binary question about an image

or an object. For example, “Does the image belong to category X?” or “Is object

category Y present in the image?” It is one of the most widely used annotation types.
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Is an Indigo Bunting Present?

Yes

No

Yes

No

Figure 2.1: Example of a binary filtering task. Flickr.com was queried for the bird
species “Indigo Bunting.” Four resulting images are shown. For each image, the
binary question “Is an Indigo Bunting present?” is asked. The correct answers are
shown in the right column.
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It is often used for “filtering” multi-category datasets. For example, the CUB-200

dataset [WBM+10] is a dataset with example images for 200 bird species. In order to

create it, images were found on Flickr.com1 by querying for images with tags matching

the species name. However, since not all images returned by Flickr.com were actually

of the species of interest, a binary question had to be asked for each image: “Is there

a bird of species X in the image?” (see Figure 2.1). Another example of binary labels

in the literature is the Animals with Attributes dataset [LNH09], where 50 animal

classes were labeled with 85 binary attributes. Similarly, the CUB-200 dataset also

has binary attribute labels for each image.

n-ary: By extending the number of answer choices from two to many, we have “n-

ary” annotations (also known as discrete, multiple choice or polytomous labels). For

example, the choice may be to assign an image to one out of 101 object categories,

as for the Caltech 101 dataset [FFFP04]. If the choices are ordered, as is the case for

confidence labels, they are known as “ordinal categorical labels.” For example, one

popular confidence scale is the Likert-scale [Lik32] where the choices are: Strongly

Agree, Agree, Neither Agree or Disagree, Disagree, Strongly Disagree.

Location: The location of an object, usually defined as the geometric center of

the extent of the object, can be annotated by placing a “marker” on the object (see

Figure 2.2). The marker could take the shape of a cross, box or circle, and is placed

on the image by clicking on it.

Extent: Since photographs of the real world have perspective, and so objects can

vary in size, scale is usually required in addition to location. While scale can be

parameterized by a single scalar, a more popular type of annotation is the “bounding

box,” which parameterized the vertical and horizontal extent of the object in the

image (see Figure 2.2). In computer vision, datasets with bounding box annotations

are very common [EVGW+10, DWSP11, DDS+09].

1http://www.flickr.com/
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+ +

front
roof
trunk

location size extent

orientation segmentation parts

Tuesday, April 24, 2012

Figure 2.2: Object-level annotation types. Starting from the upper left example:
location can be indicated by placing a marker in the middle of the object. Size
is indicated by fitting the object within a circle. The extent of the object can be
annotated by fitting a “bounding box” snugly around the object. To indicate the
orientation, the bounding box can be rotated. Segmentation annotations are used
to denote which pixels belong to the object. Finally, part annotations are useful for
describing the configuration of the object.
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Orientation: In scientific applications, it may be necessary to know the orientation

of an object. For example, if the task is to characterize animal social behavior, it

it useful to know in which direction an animal is looking [BRB+09, DWP10]. The

orientation can be indicated by rotating a box or an ellipse to align with the object

(see Figure 2.2).

Segmentation: For a finer description of an objects extent, it is possible to “seg-

ment” the object from the background (see Figure 2.2). Polygons or contours can

be used to denote the boundary of the object. For pixel-level detail, an alterna-

tive representation is to use a binary mask with the same dimensions as the image

[FFFP04].

Parts: Since many objects can be thought of as made up of parts [FPZ03], there

exists datasets with rich part annotations [BM09]. Most often, the parts are repre-

sented by location only (see Figure 2.2). In some cases, for convenience, the parts are

represented as a connected skeleton [BM09].

Grouping: Grouping annotations are useful for denoting which images are similar

to each other [GWKP11a, TLB+11]. Implicitly, grouping annotations can be thought

of as providing pairwise annotations between all the images that are being grouped

(either images are in the same group, or they are not).

2.2 Annotation User Interfaces

When outsourcing annotation tasks, it is important to design fast and intuitive graph-

ical user interfaces (GUIs). The reason is that annotators on services like MTurk, like

most people, value their time highly. Slow or complicated interfaces will either scare

away good annotators, or result in lower throughput at the same price. In this section

we describe some of the lessons we have learned through our work with building web-

based interfaces for image annotation, and from surveying GUIs we have encountered

in our research. Developing a good GUI is more of an art than a science. In many
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Figure 2.3: Examples of annotation GUI layouts. There are three main components
in the annotation GUI: (1) The image to be annotated. (2) Image controls, including
buttons for changing zoom, contrast and color channel. (3) Annotation controls. If
the annotation is at the image-level, the annotation control may include binary or
n-ary questions. If the annotation is at the object-level, the annotation controls may
include buttons for changing the object category or for selecting or removing markers
from the image. Which layout to choose depends on how many annotation controls
are needed.

cases, design choices have to be made not based on studies or data, but based on

intuition and user feedback; there is simply not enough time to justify every choice.

Thus, while our findings might have general implications, they may not directly apply

to other annotation tasks.

An annotation GUI consists of three main components (see Figure 2.3): (1) the

image to be annotated, (2) image controls, and (3) annotation controls. In most

cases, the image is zoomable and the user can pan the image. Zoom level, image

contrast, and choice of color channels can be changed using buttons in the image

control component. Selecting, deleting and hiding annotation markers can be done

using the marker control.

Usually, the annotator is asked to annotate many images in a series. In that case,

the annotation GUI must be placed inside a “navigation GUI” (see Figure 2.4). The

navigation GUI lets the user navigate between the images to be annotated and access

instructions and example annotations .
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Figure 2.4: Navigating an annotation task using a navigation GUI. Top: Mockup
of a typical annotation GUI with components for navigating the images, some brief
instructions, buttons to access example annotations and comprehensive instructions,
and the annotation GUI (see Figure 2.3). Most of the components are optional, but
may aid the annotator depending on the task. Bottom: Real instantiation of an
annotation GUI with a slightly different layout.
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Figure 2.5: Examples of image-level annotation GUIs. Top: For n-ary questions, it
may be difficult to fit more than one image at a time on the computer screen. Bottom:
For simple binary questions, it is sometimes possible to make the annotation process
faster by showing multiple smaller images in a single view. In this example, annotators
were asked to select images containing houses.



16

A GUI for providing image-level annotations is quite simple. The GUI is only

required to show two things: the image to be annotated and the questions asked

about the image (see Figure 2.5-top). If only a single question is asked per image,

the annotation process can be sped up by fitting multiple images in a single view (see

Figure 2.5-bottom).

Providing object-level annotations is usually done by placing “markers” on the

image. For location annotations, it is enough to mouse-click on the image to place a

marker indicating an object location. However, if the marker also indicates scale or

extent, more complex mouse interactions are needed. Ideally, the mouse interaction

should involve as few mouse clicks as possible, because each click has a time-cost.

We have found that a mouse press-drag-release interaction sequence is appropriate

for most annotation types: the user presses down the mouse button when the mouse

pointer is somewhere on the image where he wishes to locate the marker, as he drags

the mouse, the extent of the marker is changed. Upon release of the mouse button,

the location and extent of the marker is fixed. Depending on what kind of marker

primitive is being annotated, the same interaction produces a different behavior (see

Figure 2.6). In some cases, depending on the task, the same marker primitive may

have a different interaction behavior (see Figure 2.7).

Object-level annotations may also include discrete or textual labels. In that case,

the labels can be provided by clicking on the marker annotation. The mouse-click

brings up a menu showing category labels or a text box for changing a textual label

(see Figure 2.8).

2.3 Annotator Training and Testing

In order to obtain high quality annotations from a crowd of non-expert annotators,

it is essential that they are trained well for the task. In our experience, the result is

otherwise that they use the annotation GUI incorrectly, or look for the wrong things

in the images. This section describes some design patterns that we have found useful

for training annotators in new tasks and making sure that they perform well.
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Figure 2.6: Mouse interactions for adding new markers to the image. Each row shows
a different marker primitive: simple markers, rectangles and oriented rectangles. The
columns show the three steps of the user pressing and holding down the mouse button,
dragging the pointer, and releasing the button. The interaction is different for each
marker primitive.
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Figure 2.7: Same marker primitive (ellipse), but different mouse interaction behavior.
The behavior described pictorially in the top row may be most appropriate for placing
fixed-radius ellipses. The middle row is most appropriate in situations where the
orientation of the ellipse is always fixed. The behavior in the bottom row works well
when the orientation of the ellipse is important.
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Figure 2.8: Adding object-level discrete and textual annotations. By clicking on
annotation, the user is shown a menu to add or modify object-level annotations, such
as category labels (left) and text labels (right).

Figure 2.9: Instructions split into multiple slides in the instruction-step of the training
session.

In the training session, the annotators need clear instructions of what is required

from them. Part of this can be achieved by written instructions, but usually annotated

example images are even more effective. Video instructions showing examples of how

to use the annotation GUI are also very well received by annotators. However, to

really learn how to annotate correctly, one of the best approaches is to have the

annotators try out the task for themselves and get feedback on their performance.

Here we suggest splitting the training session into three steps:

1. Instruction-step: In the instruction-step, the annotator reads written instruc-

tions or watches an instruction video. If using a service like MTurk, it is im-

portant to indicate how long the annotator is expected to work on the task (so

that he can calculate the hourly rate), and how the work will be judged (since

MTurk allows requesters to reject and not pay for poor work). Since annotators
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Figure 2.10: In the examples-step of the training session, the annotator studies an-
notated example images.

on MTurk are often rushed, textual instructions should be clear and concise.

Splitting the instructions into multiple slides in a slide show and writing in-

structions as brief bullet points is very effective (see Figure 2.9).

2. Example-step: The example-step shows multiple annotated example images

(see Figure 2.10). It lets the annotator study in more detail how to annotate

the images correctly.

3. Trial-step: The purpose of the trial-step is to give the annotator feedback

on how well he understands the task and the GUI. One of the simplest ways

to accomplish this is to let the annotator annotate an image according to the

instructions, and then show his own and the correct answer (provided by an

expert) side-by-side (see Figure 2.11). A more complicated scheme is to write

software to catch errors, and provide textual feedback on the mistakes the an-

notator is making (see Figure 2.12).

At any point in the training session, the annotator can go back to view the in-

structions or the examples (see Figure 2.13). Once the training has been completed,

the annotator is taken to annotate the real images.
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Figure 2.11: Simple instantiation of the trial-step. The annotator makes an attempt
at annotating the image according to the instructions. He then clicks on the “check
answers” button and is shown his own and the correct answer (as provided by an
expert) side-by-side. This lets the annotator compare what mistakes he made.

Figure 2.12: Trial-step with detailed feedback. The annotator makes an attempt at
annotating the image according to the instructions and then clicks on the “check
answers” button. If his answers are correct, he is taken to the next image. If not, he
is shown feedback on the annotations he has made, and is encouraged to try again.
After failing a few times, the annotator is taken to the interface in Figure 2.11.
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Figure 2.13: Training session work flow. The annotator starts by reading the instruc-
tions, and is then shown some example annotations. In the last step, the trial-step,
the annotator is challenged to try out a few images and get feedback on how well he
understood the task. Once the training session is concluded, the annotator is taken
to work on the real image. At any point the annotator can go back to view the
instructions or example annotations.
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Chapter 3

Binary Annotations

3.1 Abstract

Distributing labeling tasks among hundreds or thousands of annotators is an increas-

ingly important method for annotating large datasets. We present a method for esti-

mating the underlying value (e.g., the class) of each image from (noisy) annotations

provided by multiple annotators. Our method is based on a model of the image for-

mation and annotation process. Each image has different characteristics that are

represented in an abstract Euclidean space. Each annotator is modeled as a multi-

dimensional entity with variables representing competence, expertise and bias. This

allows the model to discover and represent groups of annotators that have different

sets of skills and knowledge, as well as groups of images that differ qualitatively. We

find that our model predicts ground truth labels on both synthetic and real data more

accurately than state of the art methods. Experiments also show that our lmodel,

starting from a set of binary labels, may discover rich information, such as different

“schools of thought” amongst the annotators, and can group together images belonging

to separate categories.

3.2 Introduction

Producing large-scale training, validation and test sets is vital for many applications.

Most often this job has to be carried out “by hand” and thus it is delicate, expensive,
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and tedious. Services such as Amazon Mechanical Turk (MTurk) have made it easy

to distribute simple labeling tasks to hundreds of workers. Such “crowdsourcing” is

increasingly popular and has been used to annotate large datasets in, for example,

Computer Vision [SF08] and Natural Language Processing [SOJN08]. As some anno-

tators are unreliable, the common wisdom is to collect multiple labels per exemplar

and rely on “majority voting” to determine the correct label. We propose a model

for the annotation process with the goal of obtaining more reliable labels with as few

annotators as possible.

It has been observed that some annotators are more skilled and consistent in their

labels than others. We postulate that the ability of annotators is multidimensional;

that is, an annotator may be good at some aspects of a task but worse at others.

Annotators may also attach different costs to different kinds of errors, resulting in

different biases for the annotations. Furthermore, different pieces of data may be

easier or more difficult to label. All of these factors contribute to a “noisy” annotation

process resulting in inconsistent labels. Although approaches for modeling certain

aspects of the annotation process have been proposed in the past [DS79, SPI08,

SFB+95, SP08, WRW+09, RYZ+09, WP10], no attempt has been made to blend all

characteristics of the process into a single unified model.

This paper has two main contributions: (1) we improve on current state-of-the-

art methods for crowdsourcing by introducing a more comprehensive and accurate

model of the human annotation process, and (2) we provide insight into the human

annotation process by learning a richer representation that distinguishes amongst the

different sources of annotator error. Understanding the annotation process can be

important toward quantifying the extent to which datasets constructed from human

data are “ground truth”.

We propose a generative Bayesian model for the annotation process. We describe

an inference algorithm to estimate the properties of the data being labeled and the

annotators labeling them. We show on synthetic and real data that the model can be

used to estimate data difficulty and annotator biases, while identifying annotators’

different “areas of strength”. While many of our results are valid for general labels
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and tasks, we focus on the binary labeling of images.

3.3 Related Work

The advantages and drawbacks of using crowdsourcing services for labeling large

datasets have been explored by various authors [DDS+09, SOJN08, SF08]. In general,

it has been found that many labels are of high quality [SF08], but a few sloppy

annotators do low quality work [SOJN08, WP10]; thus the need for efficient algorithms

for integrating the labels from many annotators [SPI08, WP10]. A related topic is

that of using paired games for obtaining annotations, which can be seen as a form of

crowdsourcing [vAD04, vAMM+08].

Methods for combining the labels from many different annotators have been stud-

ied before. Dawid and Skene [DS79] presented a model for multi-valued annotations

where the biases and skills of the annotators were modeled by a confusion matrix.

This model was generalized and extended to other annotation types by Welinder and

Perona [WP10]. Similarly, the model presented by Raykar et al. [RYZ+09] considered

annotator bias in the context of training binary classifiers with noisy labels. Building

on these works, our model goes a step further in modeling each annotator as a mul-

tidimensional classifier in an abstract feature space. We also draw inspiration from

Whitehill et al. [WRW+09], who modeled both annotator competence and image dif-

ficulty, but did not consider annotator bias. Our model generalizes [WRW+09] by

introducing a high-dimensional concept of image difficulty and combining it with a

broader definition of annotator competence. Other approaches have been proposed

for non-binary annotations [SP08, SFB+95, WP10]. By modeling annotator com-

petence and image difficulty as multidimensional quantities, our approach achieves

better performance on real data than previous methods and provides a richer output

space for separating groups of annotators and images.
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Figure 3.1: (a) Sample MTurk task where annotators were asked to click on images
of Indigo Bunting (described in Section 3.6.2). (b) The image formation process. The
class variable zi models if the object (Indigo Bunting) will be present (zi = 1) or absent
(zi = 0) in the image, while a number of “nuisance factors” influence the appearance
of the image. The image is then transformed into a low-dimensional representation xi
which captures the main attributes that are considered by annotators in labeling the
image. (c) Probabilistic graphical model of the entire annotation process where image
formation is summarized by the nodes zi and xi. The observed variables, indicated by
shaded circles, are the index i of the image, index j of the annotators, and value lij of
the label provided by annotator j for image i. The annotation process is repeated for
all i and for multiple j thus obtaining multiple labels per image with each annotator
labeling multiple images (see Section 3.4).
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3.4 The Annotation Process

An annotator, indexed by j, looks at image Ii and assigns it a label lij. Competent

annotators provide accurate and precise labels, while unskilled annotators provide

inconsistent labels. There is also the possibility of adversarial annotators assigning

labels that are opposite to those assigned by competent annotators. Annotators may

have different areas of strength, or expertise, and thus provide more reliable labels on

different subsets of images. For example, when asked to label images containing ducks

some annotators may be more aware of the distinction between ducks and geese while

others may be more aware of the distinction between ducks, grebes, and cormorants

(visually similar bird species). Furthermore, different annotators may weigh errors

differently; one annotator may be intolerant of false positives, while another is more

optimistic and accepts the cost of a few false positives in order to get a higher detection

rate. Lastly, the difficulty of the image may also matter. A difficult or ambiguous

image may be labeled inconsistently even by competent annotators, while an easy

image is labeled consistently even by sloppy annotators. In modeling the annotation

process, all of these factors should be considered.

We model the annotation process in a sequence of steps. N images are produced

by some image capture/collection process. First, a variable zi decides which set of

“objects” contribute to producing an image Ii. For example, zi ∈ {0, 1} may denote

the presence/absence of a particular bird species. A number of “nuisance factors,”

such as viewpoint and pose, determine the image (see Figure 3.1).

Each image is transformed by a deterministic “visual transformation” converting

pixels into a vector of task-specific measurements xi, representing measurements that

are available to the visual system of an ideal annotator. For example, the xi could

be the firing rates of task-relevant neurons in the brain of the best human annotator.

Another way to think about xi is that it is a vector of visual attributes (beak shape,

plumage color, tail length, etc.) that the annotator will consider when deciding on

a label. The process of transforming zi to the “signal” xi is stochastic and it is

parameterized by θz, which accounts for the variability in image formation due to the
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nuisance factors.

There are M annotators in total, and the set of annotators that label image i is

denoted by Ji. An annotator j ∈ Ji, selected to label image Ii, does not have direct

access to xi, but rather to yij = xi+nij, a version of the signal corrupted by annotator-

specific and image-specific “noise” nij. The noise process models differences between

the measurements that are ultimately available to individual annotators. These dif-

ferences may be due to visual acuity, attention, direction of gaze, etc. The statistics

of this noise are different from annotator to annotator and are parametrized by σj.

Most significantly, the variance of the noise will be lower for competent annotators,

as they are more likely to have access to a clearer and more consistent representation

of the image than confused or unskilled annotators.

The vector yij can be understood as a perceptual encoding that encompasses

all major components that affect an annotator’s judgment on an annotation task.

Each annotator is parameterized by a unit vector ŵj, which models the annotator’s

individual weighting on each of these components. In this way, ŵj encodes the training

or expertise of the annotator in a multidimensional space. The scalar projection

〈yij, ŵj〉 is compared to a threshold τ̂j. If the signal is above the threshold, the

annotator assigns a label lij = 1, and lij = 0 otherwise.

3.5 Model and Inference

Putting together the assumptions of the previous section, we obtain the graphical

model shown in Figure 3.1. We will assume a Bayesian treatment, with priors on

all parameters. The joint probability distribution, excluding hyper-parameters for

brevity, can be written as

p(L, z, x, y, σ, ŵ, τ̂) =
M∏

j=1

p(σj)p(τ̂j)p(ŵj)
N∏

i=1

(
p(zi)p(xi | zi)

∏

j∈Ji
p(yij | xi, σj) p(lij | ŵj, τ̂j, yij)

)
,

(3.1)

where we denote z, x, y, σ, τ̂ , ŵ, and L to mean the sets of all the corresponding

subscripted variables. This section describes further assumptions on the probability
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distributions. These assumptions are not necessary; however, in practice they simplify

inference without compromising the quality of the parameter estimates.

Although both zi and lij may be continuous or multivalued discrete in a more

general treatment of the model [WP10], we henceforth assume that they are binary,

i.e., zi, lij ∈ {0, 1}. We assume a Bernoulli prior on zi with p(zi = 1) = β, and that

xi is normally distributed1 with variance θ2
z ,

p(xi | zi) = N (xi; µz, θ
2
z), (3.2)

where µz = −1 if zi = 0 and µz = 1 if zi = 1 (see Figure 3.2a). If xi and yij are

multi-dimensional, then σj is a covariance matrix. These assumptions are equivalent

to using a mixture of Gaussians prior on xi.

The noisy version of the signal xi that annotator j sees, denoted by yij, is assumed

to be generated by a Gaussian with variance σ2
j centered at xi, that is, p(yij | xi, σj) =

N (yij; xi, σ
2
j ) (see Figure 3.2b). We assume that each annotator assigns the label

lij according to a linear classifier. The classifier is parameterized by a direction

ŵj of a decision plane and a bias τ̂j. The label lij is deterministically chosen, i.e.,

lij = I (〈ŵj, yij〉 ≥ τ̂j), where I (·) is the indicator function. It is possible to integrate

out yij and put lij in direct dependence on xi,

p(lij = 1 | xi, σj, τ̂j) = Φ

(〈ŵj, xi〉 − τ̂j
σj

)
, (3.3)

where Φ(·) is the cumulative standardized normal distribution, a sigmoidal-shaped

function.

In order to remove the constraint on ŵj being a direction, i.e., ‖ŵj‖2 = 1, we repa-

rameterize the problem with wj = ŵj/σj and τj = τ̂j/σj. Furthermore, to regularize

wj and τj during inference, we give them Gaussian priors parameterized by α and γ

respectively. The prior on τj is centered at the origin and is very broad (γ = 3). For

the prior on wj, we kept the center close to the origin to be initially pessimistic of

1We used the parameters β = 0.5 and θz = 0.8.
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the annotator competence, and to allow for adversarial annotators (mean 1, std 3).

All of the hyperparameters were chosen somewhat arbitrarily to define a scale for the

parameter space, and in our experiments we found that results (such as error rates in

Figure 3.3) were quite insensitive to variations in the hyperparameters. The modified

Equation 3.1 becomes,

p(L, x, w, τ) =
M∏

j=1

p(τj | γ)p(wj | α)
N∏

i=1

(
p(xi | θz, β)

∏

j∈Ji
p(lij | xi, wj, τj)

)
. (3.4)

The only observed variables in the model are the labels L = {lij}, from which the

other parameters have to be inferred. Since we have priors on the parameters, we

proceed by MAP estimation, where we find the optimal parameters (x?, w?, τ ?) by

maximizing the posterior on the parameters,

(x?, w?, τ ?) = arg max
x,w,τ

p(x,w, τ | L) = arg max
x,w,τ

m(x,w, τ), (3.5)

where we have defined m(x,w, τ) = log p(L, x, w, τ) from Equation 3.4. Thus, to do

inference, we need to optimize

m(x,w, τ) =
N∑

i=1

log p(xi | θz, β) +
M∑

j=1

log p(wj | α) +
M∑

j=1

log p(τj | γ)

+
N∑

i=1

∑

j∈Ji
[lij log Φ (〈wj, xi〉 − τj) + (1− lij) log (1− Φ (〈wj, xi〉 − τj))] .

(3.6)

To maximize (3.6) we carry out alternating optimization using gradient ascent. We

begin by fixing the x parameters and optimizing Equation 3.6 for (w, τ) using gradient

ascent. Then we fix (w, τ) and optimize for x using gradient ascent, iterating between

fixing the image parameters and annotator parameters back and forth. Empirically,

we have observed that this optimization scheme usually converges within 20 iterations.

In the derivation of the model above, there is no restriction on the dimensionality

of xi and wj; they may be one-dimensional scalars or higher-dimensional vectors.
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Figure 3.2: Assumptions of the model. (a) Labeling is modeled in a signal detection
theory framework, where the signal yij that annotator j sees for image Ii is produced
by one of two Gaussian distributions. Depending on yij and annotator parameters wj
and τj, the annotator labels 1 or 0. (b) The image representation xi is assumed to be
generated by a Gaussian mixture model where zi selects the component. The figure
shows 8 different realizations xi (x1, . . . , x8), generated from the mixture model. De-
pending on the annotator j, noise nij is added to xi. The three lower plots shows the
noise distributions for three different annotators (A,B,C), with increasing “incompe-
tence” σj. The biases τj of the annotators are shown with the red bars. Image no.
4, represented by x4, is the most ambiguous image, as it is very close to the optimal
decision plane at xi = 0. (c) An example of 2-dimensional xi. The red line shows the
decision plane for one annotator.
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In the former case, assuming ŵj = 1, the model is equivalent to a standard signal

detection theoretic model [GS66] where a signal yij is generated by one of two Normal

distributions p(yij | zi) = N (yij | µz, s2) with variance s2 = θ2
z + σ2

j , centered on

µ0 = −1 and µ1 = 1 for zi = 0 and zi = 1 respectively (see Figure 3.2a). In signal

detection theory, the sensitivity index, conventionally denoted d′, is a measure of how

well the annotator can discriminate the two values of zi [Wic02]. It is defined as the

Mahalanobis distance between µ0 and µ1 normalized by s,

d′ =
µ1 − µ0

s
=

2√
θ2
z + σ2

j

. (3.7)

Thus, the lower σj, the better the annotator can distinguish between classes of zi,

and the more “competent” he is. The sensitivity index can also be computed directly

from the false alarm rate f and hit rate h using d′ = Φ−1(h)−Φ−1(f) where Φ−1(·) is

the inverse of the cumulative normal distribution [Wic02]. Similarly, the “threshold”,

which is a measure of annotator bias, can be computed by λ = −1
2

(Φ−1(h) + Φ−1(f)).

A large positive λ means that the annotator attributes a high cost to false positives,

while a large negative λ means the annotator avoids false negative mistakes. Under

the assumptions of our model, λ is related to τj in our model by the relation λ = τ̂j/s.

In the case of higher dimensional xi and wj, each component of the xi vector can

be thought of as an attribute or a high level feature. For example, the task may be

to label only images with a particular bird species, say “duck”, with label 1, and all

other images with 0. Some images contain no birds at all, while other images contain

birds similar to ducks, such as geese or grebes. Some annotators may be more aware

of the distinction between ducks and geese and others may be more aware of the

distinction between ducks, grebes and cormorants. In this case, xi can be considered

to be 2-dimensional. One dimension represents image attributes that are useful in the

distinction between ducks and geese, and the other dimension models parameters that

are useful in distinction between ducks and grebes (see Figure 3.2c). Presumably all

annotators see the same attributes, signified by xi, but they use them differently. The

model can distinguish between annotators with preferences for different attributes,
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as shown in Section 3.6.2.

Image difficulty is represented in the model by the value of xi (see Figure 3.2b).

If there is a particular ground truth decision plane, (w′, τ ′), images Ii with xi close to

the plane will be more difficult for annotators to label. This is because the annotators

see a noise corrupted version, yij, of xi. How well the annotators can label a particular

image depends on both the closeness of xi to the ground truth decision plane and the

annotator’s “noise” level, σj. Of course, if the annotator bias τj is far from the ground

truth decision plane, the labels for images near the ground truth decision plane will

be consistent for that annotator, but not necessarily correct.

3.6 Experiments

3.6.1 Synthetic Data

To explore whether the inference procedure estimates image and annotator param-

eters accurately, we tested our model on synthetic data generated according to the

model’s assumptions. Similar to the experimental setup in [WRW+09], we generated

500 synthetic image parameters and simulated between 4 and 20 annotators labeling

each image. The procedure was repeated 40 times to reduce the noise in the results.

We generated the annotator parameters by randomly sampling σj from a Gamma

distribution (shape 1.5 and scale 0.3) and biases τj from a Normal distribution cen-

tered at 0 with standard deviation 0.5. The direction of the decision plane wj was

+1 with probability 0.99 and −1 with probability 0.01. The image parameters xi

were generated by a two-dimensional Gaussian mixture model with two components

of standard deviation 0.8 centered at -1 and +1. The image ground truth label zi,

and thus the mixture component from which xi was generated, was sampled from a

Bernoulli distribution with p(zi = 1) = 0.5.

For each trial, we measured the correlation between the ground truth values of

each parameter and the values estimated by the model. We averaged Spearman’s rank

correlation coefficient for each parameter over all trials. The result of the simulated
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labeling process is shown Figure 3.3a. As can be seen from the figure, the model

estimates the parameters accurately, with the accuracy increasing as the number of

annotators labeling each image increases. We repeated a similar experiment with

2-dimensional xi and wj (see Figure 3.3b). As one would expect, estimating higher

dimensional xi and wj requires more data.

We also examined how well our model estimated the binary class values, zi. For

comparison, we also tried three other methods on the same data: a simple majority

voting rule for each image, the bias-competence model of [DS79], and the GLAD

algorithm from [WRW+09]2, which models 1-d image difficulty and annotator com-

petence, but not bias. As can be seen from Figure 3.3c, our method presents a small

but consistent improvement. In a separate experiment (not shown) we generated

synthetic annotators with increasing bias parameters τj. We found that GLAD per-

forms worse than majority voting when the variance in the bias between different

annotators is high (γ & 0.8); this was expected as GLAD does not model annotator

bias. Similarly, increasing the proportion of difficult images degrades the performance

of the model from [DS79]. The performance of our model points to the benefits of

modeling all aspects of the annotation process.

3.6.2 Human Data

We next conducted experiments on annotation results from real MTurk annotators.

To compare the performance of the different models on a real discrimination task, we

prepared dataset of 200 images of birds (100 with Indigo Bunting, and 100 with Blue

Grosbeak), and asked 40 annotators per image if it contained at least one Indigo

Bunting; this is a challenging task (see Figure 3.1). The annotators were given a

description and example photos of the two bird species. Figure 3.3d shows how the

performance varies as the number of annotators per image is increased. We sampled

a subset of the annotators for each image. Our model did better than the other

approaches also on this dataset.

2We used the implementation of GLAD available on the first author’s website: http://mplab.ucsd.edu/

~jake/ We varied the α prior in their code between 1–10 to achieve best performance.
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number of annotators number of annotators number of annotators number of annotators

Figure 3.3: (a) and (b) show the correlation between the ground truth and estimated
parameters as the number of annotators increases on synthetic data for 1-d and 2-
d xi and wj. (c) Performance of our model in predicting zi on the data from (a),
compared to majority voting, the model of [DS79], and GLAD [WRW+09]. (d) Per-
formance on real labels collected from MTurk. See Section 3.6.1 for details on (a-c)
and Section 3.6.2 for details on (d).

(a) (b) (c) (d)

Figure 3.4: Ellipse dataset. (a) The images to be labeled were fuzzy ellipses (oriented
uniformly from 0 to π) enclosed in dark circles. The task was to select ellipses that
were more vertical than horizontal (the former are marked with green circles in the
figure). (b-d) The image difficulty parameters xi, annotator competence 2/s, and
bias τ̂j/s learned by our model are compared to the ground truth equivalents. The
closer xi is to 0, the more ambiguous/difficult the discrimination task, corresponding
to ellipses that have close to 45◦ orientation.
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To demonstrate that annotator competence, annotator bias, image difficulty, and

multi-dimensional decision surfaces are important real life phenomena affecting the

annotation process, and to quantify our model’s ability to adapt to each of them, we

tested our model on three different image datasets: one based on pictures of rotated

ellipses, another based on synthetically generated “greebles”, and a third dataset with

images of waterbirds.

Ellipse Dataset: Annotators were given the simple task of selecting ellipses

which they believed to be more vertical than horizontal. This dataset was chosen

to make the model’s predictions quantifiable, because ground truth class labels and

ellipse angle parameters are known to us for each test image (but hidden from the

inference algorithm).

By definition, ellipses at an angle of 45◦ are impossible to classify, and we expect

that images gradually become easier to classify as the angle moves away from 45◦. We

used a total of 180 ellipse images, with rotation angle varying from 1–180◦, and col-

lected labels from 20 MTurk annotators for each image. In this dataset, the estimated

image parameters xi and annotator parameters wj are 1-dimensional, where the mag-

nitudes encode image difficulty and annotator competence respectively. Since we had

ground truth labels, we could compute the false alarm and hit rates for each annota-

tor, and thus compute λ and d′ for comparison with τ̂j/s and 2/s (see Equation 3.7

and following text).

The results in Figure 3.4b–d show that annotator competence and bias vary among

annotators. Moreover, the figure shows that our model accurately estimates image

difficulty, annotator competence, and annotator bias on data from real MTurk anno-

tators.

Greeble Dataset: In the second experiment, annotators were shown pictures

of “greebles” (see Figure 3.5) and were told that the greebles belonged to one of two

classes. Some annotators were told that the two greeble classes could be discriminated

by height, while others were told they could be discriminated by color (yellowish vs.

green). This was done to explore the scenario in which annotators have different types

of prior knowledge or abilities. We used a total of 200 images with 20 annotators
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labeling each image. The height and color parameters for the two types of greebles

were randomly generated according to Gaussian distributions with centers (1, 1) and

(−1,−1), and standard deviations of 0.8.

The results in Figure 3.5 show that the model successfully learned two clusters

of annotator decision surfaces, one (green) of which responds mostly to the first

dimension of xi (color) and another (red) responding mostly to the second dimension

of xi (height). These two clusters coincide with the sets of annotators primed with

the two different attributes. Additionally, for the second attribute, we observed a few

“adversarial” annotators whose labels tended to be inverted from their true values.

This was because the instructions to our color annotation task were ambiguously

worded, so that some annotators had become confused and had inverted their labels.

Our model robustly handles these adversarial labels by inverting the sign of the ŵ

vector.

Waterbird Dataset: The greeble experiment shows that our model is able to

segregate annotators looking for different attributes in images. To see whether the

same phenomenon could be observed in a task involving images of real objects, we

constructed an image dataset of waterbirds. We collected 50 photographs each of the

bird species Mallard, American Black Duck, Canada Goose and Red-necked Grebe.

In addition to the 200 images of waterbirds, we also selected 40 images without any

birds at all (such as photos of various nature scenes and objects) or where birds were

too small be seen clearly, making 240 images in total. For each image, we asked

40 annotators on MTurk if they could see a duck in the image (only Mallards and

American Black Ducks are ducks). The hypothesis was that some annotators would

be able to discriminate ducks from the two other bird species, while others would

confuse ducks with geese and/or grebes.

Results from the experiment, shown in Figure 3.6, suggest that there are at least

three different groups of annotators, those who separate: (1) ducks from everything

else, (2) ducks and grebes from everything else, and (3) ducks, grebes, and geese from

everything else; see numbered circles in Figure 3.6. Interestingly, the first group of

annotators was better at separating out Canada geese than Red-necked grebes. This
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may be because Canada geese are quite distinctive with their long, black necks, while

the grebes have shorter necks and look more duck-like in most poses. There were

also a few outlier annotators that did not provide answers consistent with any other

annotators. This is a common phenomenon on MTurk, where a small percentage

of the annotators will provide bad quality labels in the hope of still getting paid

[SOJN08]. We also compared the labels predicted by the different models to the

ground truth. Majority voting performed at 68.3% correct labels, GLAD at 60.4%,

and our model performed at 75.4%.

3.7 Conclusions

We have proposed a Bayesian generative probabilistic model for the annotation pro-

cess. Given only binary labels of images from many different annotators, it is possible

to infer not only the underlying class (or value) of the image, but also parameters

such as image difficulty and annotator competence and bias. Furthermore, the model

represents both the images and the annotators as multidimensional entities, with

different high level attributes and strengths respectively. Experiments with images

annotated by MTurk workers show that indeed different annotators have variable

competence level and widely different biases, and that the annotators’ classification

criterion is best modeled in multidimensional space. Ultimately, our model can accu-

rately estimate the ground truth labels by integrating the labels provided by several

annotators with different skills, and it does so better than the current state-of-the-art

methods.

Besides estimating ground truth classes from binary labels, our model provides

information that is valuable for defining loss functions and for training classifiers. For

example, the image parameters estimated by our model could be taken into account

for weighing different training examples, or, more generally, it could be used for a

softer definition of ground truth. Furthermore, our findings suggest that annotators

fall into different groups depending on their expertise and on how they perceive the

task. This could be used to select annotators that are experts on certain tasks and
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Figure 3.5: Estimated image parameters (symbols) and annotator decision planes
(lines) for the greeble experiment. Our model learns two image parameter dimensions
x1
i and x2

i which roughly correspond to color and height, and identifies two clusters
of annotator decision planes, which correctly correspond to annotators primed with
color information (green lines) and height information (red lines). On the left are
example images of class 1, which are shorter and more yellow (red and blue dots are
uncorrelated with class), and on the right are images of class 2, which are taller and
more green. C and F are easy for all annotators, A and H are difficult for annotators
that prefer height but easy for annotators that prefer color, D and E are difficult for
annotators that prefer color but easy for annotators that prefer height, B and G are
difficult for all annotators.

1

2

3
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Figure 3.6: Estimated image and annotator parameters on the Waterbirds dataset.
The annotators were asked to select images containing at least one “duck”. The
estimated xi parameters for each image are marked with symbols that are specific to
the class the image belongs to. The arrows show the xi coordinates of some example
images. The gray lines are the decision planes of the annotators. The darkness of the
lines is an indicator of ‖wj‖: darker gray means the model estimated the annotator
to be more competent. Notice how the annotators’ decision planes fall roughly into
three clusters, marked by the blue circles and discussed in Section 3.6.2.
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to discover different schools of thought on how to carry out a given task.
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Chapter 4

Confidence Labels

4.1 Abstract

Is it useful to ask crowdsourcing annotators to rate their level of confidence in a

binary decision? How many levels of confidence should one use? What is the best

way to come to an agreement with the annotators on what the levels of confidence

mean? We explore these questions by means of a simple model of the annotation

process, and four experiments in which hundreds of workers label complex synthetically

generated images. We find analytically that a small number of confidence levels is

typically sufficient, and we provide a closed-form expression for computing the most

informative confidence thresholds. We show that it is possible to map such thresholds

to rewards and penalties that annotators can experience during a training session. We

observe experimentally that annotators will use confidence levels more consistently

when trained with appropriate rewards and penalties, rather than using the popular

Likert scale.

4.2 Introduction

Suppose that one wanted to label a large dataset with binary annotations, i.e. where

the labels are either ‘yes’ or ‘no’. One could crowdsource the task and determine the

most likely label for each image by aggregating the opinion of multiple annotators,

for example by majority voting. However, it is entirely possible that some of the
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annotators may not be completely sure about the label that each image should be

given. This may be because the annotators are confused, or because of some inherent

ambiguity in the task. Thus, sometimes it may make sense to collect not only the

annotators’ labels, but also their level of certainty. So instead of answering ‘yes’

or ‘no’, the annotator would provide an ordered categorical confidence label, such as

‘Definitely’, ‘Probably’, ‘Guessing’, ‘Probably not’, or ‘Definitely not’. Is there a

principled way to think about this problem?

Our goal in this paper is to study three questions: (1) How do annotators perceive

and make use of ordered categorical labels? We approach this question by proposing

a probabilistic generative process for the labeling process and study its properties.

(2) How can annotators optimally make use of the different label categories? We

show how to use the labels in a way that reveals maximum information about the

underlying ground truth class label. (3) How can we communicate to the annotators

how to optimally make use of the labels? It has been noted that annotators in binary

labeling experiments can learn optimal decision criteria quickly from maximizing their

reward by incremental trial-and-error [NKP09]. We were curious to know whether

this would be true for annotators who work with polytomous labels as in our case.

We propose two methods for training the annotators, and show their effectiveness on

MTurk annotators.

The paper is organized as follows: Section 4.3 summarizes related work on crowd-

sourcing and modeling annotators. Section 4.4 sets the stage and outlines the problem

by exploring an annotation task carried out on MTurk. Section 4.5 proposes a gener-

ative probabilistic model for the annotation process and relates it to previous work.

Section 4.6 studies a strategy for how to optimally make use of ordered categorical

labels, and Section 4.7 describes how to effectively communicate this strategy to the

annotators. Section 4.8 describes the results from experiments carried out on MTurk.

Finally, conclusions and future directions are summarized in Section 4.9.
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4.3 Related Work

Crowdsourcing has become a standard tool for annotating data datasets [vAMM+08,

RTMF08, SF08, DDS+09, SOJN08, SPI08] and training online machine learning al-

gorithms [CBK+10, VG11]. There has been various works on crowdsourcing dif-

ferent kinds of annotations, including binary and discrete labels [WRW+09, WP10,

WBBP10], continuous labels [SF08, WP10], and naming [SP08]. Unlike much of the

previous work, we do not present a method for merging annotations. Instead, we

focus on how to influence annotators to make use of ordered categorical labels in an

effective manner.

Modeling the labeling process wherein one or more annotators provide response

labels for a latent variable has a long history. One well known model is that of

[Ras80] which models the labels by a logistic regression-like model. This is in turn

related to Item Response Theory (IRT) [Lor80]. [DS79] is a method that is often

used for estimating annotator bias for polytomous labels by modeling the annotators

as confusion matrices. Recently, there has also been some work on considering label

difficulty in the binary labeling process [WRW+09, WBBP10].

One of the first surveys on using ordered categorical labels was that of Likert

[Lik32], which suggested the 5-point “Likert-scale.” There has been some experimen-

tal work of applying information theory to study the effectiveness of different rating

scales [Cox80], but we are not aware of any work that has studied a model like ours.

[Lin02] lists heuristic guidelines for using more or less categories, but provides little

theoretical analysis.

4.4 An Exploratory Experiment

To investigate how annotators on MTurk make use of ordered categorical labels,

we devised an exploratory experiment where the annotators were asked to annotate

synthetically generated images (see Figure 4.1a-b). The images were generated by

placing a 7 × 7 perturbed grid of dots of different contrast on a gray background.
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Figure 4.1: The exploratory experiment. A-B: Annotators were shown synthetically
generated images with dots of different contrast. For some of the images, they were
told that the image showed signs of radioactivity. The two images in panel (A) were
said to show no signs of radioactivity while the images in panel (B) were said to have
radioactivity (indicated by the bright dots in the lower-left and lower-right corners,
respectively). C: Distribution of label choices obtained from the nine workers that
labeled the most images. The x-axis shows the label and the y-axis is the number of
images that were given the label. The ID is the identity of the annotator, N is the
number of images the annotator labeled, and ER is the total error rate in percent.
D: The distribution of labels for images of the background (z = 0) and foreground
(z = 1) classes.
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Half of the images belonged to the background class. The contrasts of the dots in the

background class were drawn from a Normal distribution (see Figure 4.1a). The other

half of the images belonged to the foreground class. In these images, the contrast for

all but one of the dots were drawn from the same distribution as for the background

class. The remaining dot, randomly chosen amongst the 49 available ones, was given

a contrast drawn from a Normal distribution with a higher mean brightness (see

Figure 4.1b). All images were corrupted by slightly smoothed Gaussian noise.

We explained to the annotators that the task was an experiment in visual per-

ception, and that it simulated the task of “finding radioactivity in images.” They

were required to go through a training session with 100 images. For each image,

they had to answer ‘Yes’ or ‘No’ on the question of whether they believed there

was radioactivity in the image. After each answer, they were given instant feed-

back on whether their answer was correct and, if the image was from the foreground

class, were shown an arrow pointing at the dot with contrast drawn from the fore-

ground distribution. After the training session, the annotators were tasked with

labeling images without getting any feedback. For these images, the annotators

were asked how much they agreed with the statement that “There is radioactivity in

this image.” They had to answer using a standard 5-point Likert scale with labels

{Strongly agree, Agree, Neither agree nor disagree, Disagree, Strongly disagree}.
The annotators could annotate up to 200 images in batches of 10 images at a time.

Figure 4.1c shows the distributions of labels provided by the nine workers that

annotated most images. As can be seen from the histograms, the annotators vary

substantially in how they distribute their labels. Some annotators make use of the

labels in more or less equal proportions, while others are polarized in how they pick

them. Figure 4.1d shows a similar variety when the labels are separated into two

histograms, one for the foreground and one for the background class. Qualitatively,

there are a few kinds of different annotators: (1) The meek annotators that use the

middle labels when unsure, and only use extreme labels when they are very certain

of their answers. (2) The bold annotators that have strong opinions and rarely make

use of the middle labels. (3) The well-rounded annotators that make equal use of all
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labels.

4.5 Model of the Labeling Process

We follow [WBBP10] and model the annotators and labels in a signal detection frame-

work. Every image, indexed by i, has a ground truth binary target value zi. For

example, in the radioactivity task described in Section 4.4 zi = 1 means that radioac-

tivity is present and zi = 0 means it is not. We assume that image i has a “signal” xi

that is indicative of zi. The signal is assumed to be produced by the generative pro-

cess p(xi | zi), which is modeled as a Normal distribution with mean µzi and variance

Σ2
zi

(see Figure 4.2a),

p(x | z) = N (x | µz,Σ2
z), (4.1)

where subscripts have been dropped for brevity, as we will henceforth consider a

single image. We assume a Bernoulli prior on z, set to p(z = 1) = 0.5 in the examples

throughout the paper.

The image is observed by m annotators, indexed by j, providing labels Lm =

{l1, l2, . . . , lm}, where lj is the label provided by annotator j. Each label can take an

integer value, lj ∈ {1, 2, . . . , T}. The number of possible label choices T depends on

the task. For example, T = 2 for binary tasks and T = 5 for the 5-point Likert scale.

As in [WBBP10], we assume that annotator j does not observe x directly, but instead

sees a signal yj corrupted by Gaussian noise (see the lower part of Figure 4.2a), i.e.

p(yj|x) = N (yj | x, σ2
j ). Thus, σj indicates how clearly annotator j can perceive

the signal. The annotators make their decision on the labels li based on a vector of

thresholds, τ j = (τj,0, τj,1, . . . , τj,T ), where τj,0 = −∞ and τj,T =∞ (see Figure 4.2b).

The probability of the label lj is given by the indicator function, p(lj = t | τ j) =

1(τj,t−1 ≤ yj ≤ τj,t). To reduce the complexity in the analysis that follows we assume

the annotators share the same parameters, i.e. σj = σ and τ j = τ .

We can compute the probability of label lj given an image signal x directly by
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Figure 4.2: Model of the labeling process. A: The top section of the plot shows the
conditional distributions p(x | z) for z = 0 (red) and z = 1 (green). The dashed
line is the sum of the two distributions. Three image signals (x1, x2, x3) have been
sampled from the distributions and are shown as circular black markers. The signal
that annotator j sees is yj, which is sampled from a Normal distribution (shown as a
blue curve) centered on the xi value. B: For an ideal annotator (one with σ = 0) the
label lj is determined by comparing the image signal x with the thresholds τ1, . . . , τ4.
If it falls between τt−1 and τt, it gets assigned label lj = t. For annotators with
σj > 0, the process is the same, albeit with some noise (see Section 4.5 for details).
C: Graphical representation of the generative process by which the labels are created.
Given the class z, an image-specific signal x is generated. Each annotator j sees a
different corrupted version yj of x and assigns label lj by comparing yj with the vector
of thresholds τ .
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Figure 4.3: Making labels informative by maximizing mutual information. A: Shows
the mutual information I(z; Lm) between a label from a single annotator, L1 = {l1}
and the ground truth label z as τ is varied from -2 to 2. For comparison the class-
conditional distributions p(x | z) are also shown. I(z; Lm) is maximized when τ1 is
close to zero. B: Heat map showing the value of I(z; Lm) when using two thresholds
and a single label. τ2 is constrained to be greater than τ1. The τ for which I(z; Lm)
is maximized is shown by the red cross. C: Distribution of the τt for different lengths
of the vector τ . The bottom plot show the maximum mutual information achieved
at different m, i.e. number of annotators that labeled the image, for 3, 4, and 5
thresholds. The curves of different colors represent different values of σ. For small
values of σ, the addition of more annotators does little to increase I(z; Lm), but for
larger values of σ (less accurate annotators), the number of annotators has a big
impact. The top plots show how the optimal thresholds are placed.
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integrating out yj,

p(lj = t | x) =

∫ τt

τt−1

N (yj | x, σ2) dyj = Φ(τt | x, σ2)− Φ(τt−1 | x, σ2), (4.2)

where Φ(τ | x, σ2) =
∫ τ
−∞N (y | x, σ2) dy is the cumulative Normal distribution. The

full generative process is described graphically in Figure 4.2c.

As we shall see in the next section, the posterior on z is of special interest when

computing how much information the labels provide about the underlying class label

z. The posterior can be computed using Bayes’ rule, p(z | Lm) = p(Lm | z)p(z)/p(Lm)

where,

p(Lm | z) =

∫ ∞

−∞
p(Lm, x | z) dx =

∫ ∞

−∞

(
m∏

j=1

p(lj | x)

)
p(x | z) dx. (4.3)

The last equality comes from the assumption that the annotators provide the labels

independently of each other given that they observe the same signal x.

4.6 Informative Labels

According to the model presented in Section 4.5, the distribution of the labels that

the annotators provide depends on the vector of thresholds τ . A natural question

to ask is if there are some values of τ that are better than others? There are two

dimensions to this question: (1) How many labels T should the annotators have to

choose from. (2) Given T , what thresholds should the annotators use?

One way to approach these questions is to treat the labeling process as an infor-

mation theoretic channel. In that case, the labels Lm obtained from the annotators

provide information about the underlying class distribution p(z). Using Figure 4.2a as

an example, if the labels obtained from two annotators for an image are Lm = {1, 1},
then it is quite likely that z = 0. The extent to which knowing Lm reduces the
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Figure 4.4: How much choice should annotators have? A: Shows the maximum
mutual information for different worker competences σj as the number of label choices
increases from 2 to 11. B: Show the same, but varies the scaling of the Σz used in
Figure 4.3. A scaling of 2 means the original Σz’s are doubled, thus making the task
more ambiguous and uncertain. When the Σz’s is halved, the task gets easier and it
is almost possible to extract a full bit from a single annotator.

uncertainty about z is given by the mutual information, defined as:

I(z; Lm) = H(Lm)−H(Lm | z), (4.4)

where H(·) denotes the entropy. Figure 4.3a-b shows how I(z; Lm) varies with τ

for T = 2 and T = 3. For example, in the case of T = 2, the mutual information

approaches zero when τ1 is very positive or very negative, since at that point the labels

provided by the annotators will always be the same, independently of the underlying

ground truth class. In this particular example, the maximum I(z; Lm) is achieved

when τ1 is very close to zero. This example suggests that one principle for choosing

τ is such that the mutual information is maximized:

τ ? = arg maxτ I(z;Lm | τ ), (4.5)

where the notation I(z;Lm | τ ) is used to denote the value of I(z;Lm) as a function

of τ .

In order to efficiently maximize the mutual information using gradient ascent-

based methods, the gradient ∇I(z;Lm | τ ) with respect to τ needs to be computed.

This can be done by noting that the partial derivative of Equation 4.3 with respect
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to τt is given by,

∂

∂τt
p(Lm | z) =

∫ ∞

−∞

∂

∂τt

(
m∏

j=1

p(lj | x)

)
p(x | z) dx. (4.6)

This expression can be evaluated by taking advantage of that the labels provided by

the annotators are exchangeable. That means that they can be grouped according to

the values of the labels. This, if n(t) is used to denote the number of labels in the

vector Lm with lj = t, i.e. n(t) = |{lj ∈ Lm | lj = t}|, then

∂

∂τt

(
m∏

j=1

p(lj | x)

)
=

∂

∂τt

(
T∏

k=1

p(lj = k | x)n(k)

)
= Dt(x)

∏

k/∈{t,t+1}
p(lj = k | x)n(k)

(4.7)

where

Dt(x) = n(t)
∂p(lj = t | x)

∂τt
p(lj = t | x)n(t)−1p(lj = t+ 1 | x)n(t+1) (4.8)

+ n(t+ 1)
∂p(lj = t+ 1 | x)

∂τt
p(lj = t | x)n(t)p(lj = t+ 1 | x)n(t+1)−1 (4.9)

and ∂
∂τt
p(lj = t | x) = N (τt | x, σ) and ∂

∂τt
p(lj = t+ 1 | x) = −N (τt | x, σ).

Using these derivatives it is possible to maximize the mutual information with

respect to τ . However, since computing I(z;Lm | τ ) involves an expectation over

all possible values of (z, Lm), and thus is exponential in m, it is time-consuming to

compute for more than a few annotators.

Figure 4.3c (top) shows the optimal placement of the thresholds τ for different

values of T and different number of labels m provided by the annotators. The colors of

the curves indicate the σ of the annotators. For large σ, i.e. less accurate annotators,

the thresholds are pushed further from the origin. Figure 4.3c (bottom) shows the

values of I(z;Lm | τ ?) at the optimal thresholds τ ? as the number of labels m

obtained increases. Intuitively, when σ is small, only 1-2 labels are needed to reach a

high mutual information, while when σ is larger more labels are needed.

Figure 4.4 shows how many label choices are needed to reach a high mutual in-
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formation. From Figure 4.4a, it is clear that the annotator accuracy, indicated by

σ, is a limiting factor on how much information the annotators can provide. In Fig-

ure 4.4b, the Σz of the underlying class conditional densities p(x | z), as defined in

Equation 4.1, are scaled by 0.5, 1, and 2. When scaled to half their initial width, such

that the overlap between the distributions is small, it is possible to almost reach the

upper bound of 1 bit of mutual information. The main message of Figure 4.4 is there

is little value from using more than 4–5 choices, something also seen in experimental

studies [Cox80].

4.7 Communicating Thresholds

Given knowledge about p(z), p(x | z) and σ, we can find the optimal set of thresholds

τ for any number m of labels. However, the problem of getting the annotators to

use these thresholds remains. The experiment in Section 4.4 showed that without

guidance of how to interpret the labels, the annotators will vary wildly in how they

distribute their labels. Some will use only the extreme values, while others will

often resort to middle-valued labels when uncertain. In this section, we suggest two

methods for communicating the thresholds to the annotators: (1) using probabilities

and (2) using rewards.

The first method is to communicate the thresholds using probabilities. Given an

image with signal x, the annotators are asked to choose the labels based on their

internal estimate p1 = p(z = 1 | x). For example, if T = 3, they are asked to pick

lj = 1 if p1 < p(z = 1 | x = τ1), lj = 2 if p(z = 1 | x = τ1) ≤ p1 < p(z = 1 | x = τ2)

and lj = 3 if p1 ≥ p(z = 1 | x = τ2). Thus, the instructions to the annotator might

say: “Choose label 3 if you think that the likelihood of there being radioactivity in the

image is greater than 90%.” This requires that the annotators learn p(z) and p(x | z)

so that they can estimate p1 using Bayes’ rule, p(z = 1 | x) = p(x | z) p(z)/p(x).

We argue that the annotators can learn these distributions by allowing them to train

on images where they know the ground truth value zi for each image. We suggest a

setting for training the annotators in Section 4.8.
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6 Communicating thresholds

Given knowledge about p(z), p(x | z) and σ, we can find the optimal set of thresholds τ for any
number m of labels. However, the problem of how to get the annotators to use these threshold
remains. The experiment in Section 3 showed that without guidance of how to interpret the labels,
the annotators will vary wildly in how they distribute their labels. Some will use only the extreme
values, while others will often resort to middle-valued labels when uncertain. In this section, we
suggest two methods for communicating the thresholds to the annotators: (1) using probabilities
and (2) using rewards.

In the first method, the thresholds are communicated using ranges of probabilities. Given an image
with signal x, the annotators are asked to choose the labels based on their internal estimate p1 =
p(z = 1 | x). For example, if T = 3, they are asked to pick lj = 1 if p1 < p(z = 1 | x = τ1),
lj = 2 if p(z = 1 | x = τ1) ≤ p1 < p(z = 1 | x = τ2) and lj = 3 if p1 ≥ p(z = 1 | x = τ2).
This requires that the annotators learn p(z) and p(x | z) so that they can estimate p1 using Bayes’
rule, p(z = 1 | x) = p(x | z) p(z)/p(x). We argue that the annotators can learn these distributions
by allowing them to train on images where they know the ground truth value zi for each image. We
suggest a setting for training the annotators in Section 8.

The answers of the annotators will benefit us if they are correct and will cost us if they are incor-
rect. If levels of uncertainty are allowed, it will be best that the annotators will give us the right
answer with the highest level of confidence, but if the wrong answer is given it should carry the least
amount of confidence. A rational way of designing the task is to pass on these benefits and costs
to the annotators. For example, one could have experts annotate a small subset of the images, thus
providing a ground truth, and compute the annotators’ compensation based on their performance on
these images with costs and benefits specific by a reward matrix R. The entry Rz,t−1 is the reward
given to annotator for label lj = t when the ground truth class is z. An example reward matrix is
shown below:

lj = 1 lj = 2 lj = 3 lj = 4 lj = 5

z = 0 2 1 0 -10 -20
z = 1 -20 -10 0 1 2

How would a rational annotator make use of this information? Again, assume that the annotator has
had the opportunity to estimate P (z = 1|x), then the optimal strategy for the annotator would be
to compute the rewards he expects when he observes x and gives each possible answer lj (denoted
here with R(lj |x)). The best answer one should give when observing a given x is l∗j that maximizes
the reward R(lj |x):

R(lj |x) = R0,lj−1P (z = 0|x) + R1,lj−1P (z = 1|x) (12)

= R0,lj−1 + P (z = 1|x)
�
R1,lj−1 −R0,lj−1

�
(13)

l∗j = arg maxlj R(lj |x) (14)

Note that the answers of the annotators would change at x values x1, . . . x4 that are solutions of the
equations:

R(a = 1|x) = R(a = 2|x)

. . .

R(a = 4|x) = R(a = 5|x)

7 Log Odds??

However, the odds can be clearer to work with,

log R = log
p(z = 1 | Lm)

p(z = 0 | Lm)
= log

p(z = 1)

p(z = 0)
+ log

p(Lm | z = 1)

p(Lm | z = 0)
(15)

8 Experiments
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Figure 4.5: Communicating using reward matrices. A: Sample reward matrix used
in Section 4.8. B: The expected reward when using different labels lj for different
values of x. A rational annotator would choose the thresholds where the maximally
rewarding label lj switches. C: Interface used to train the annotators in the Rewar-
dOpt and RewardPol experiments. D: Given the response and the ground truth class
of the image, the annotator is rewarded a score for the training image. He/she also
sees the total score accumulated so far.

The second method is to communicate the thresholds through costs and rewards.

The answers of the annotators will benefit us if they are correct and will cost us

if they are incorrect. If levels of uncertainty are allowed, it will be best that the

annotators will give us the right answer with the highest level of confidence, but if

the wrong answer is given it should carry the least amount of confidence. A rational

way of designing the task is to pass on these benefits and costs to the annotators.

For example, one could have experts annotate a small subset of the images, thus

providing a ground truth, and compute the annotators’ compensation based on their

performance on these images with costs and benefits specified by a reward matrix

R. The entry rz,t−1 of R is the reward given to annotator for label lj = t when the

ground truth class is z. An example reward matrix is shown in Figure 4.5a.

How would a rational annotator make use of this information? Again, assuming

that the annotator has had the opportunity to estimate P (z = 1|x), then the optimal

strategy for the annotator would be to compute the rewards he expects when he

observes x and gives each possible answer lj (denoted here with R(lj|x)). The best

answer one should give when observing a given x is l∗j that maximizes the reward
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R(lj|x):

R(lj|x) = r0,lj−1P (z = 0|x) + r1,lj−1P (z = 1|x) (4.10)

= r0,lj−1 + P (z = 1|x)
(
r1,lj−1 − r0,lj−1

)
(4.11)

l∗j = arg maxlj R(lj|x) (4.12)

An example of this computation can be seen in Figure 4.5b for the reward matrix in

the Figure 4.5a. Each line shows the expected reward when answering a particular

label lj for a range of x-values. A rational annotator would place the thresholds τ at

values of x where the label lj for which the expected reward is maximized switches.

At these points, we have the constraints,

R(lj = t | x = τt) = R(lj = t+ 1 | x = τt). (4.13)

Thus, given a reward matrix R, it is possible to find the vector of thresholds τ that

maximizes the expected reward.

If we already know the thresholds τ , how can we pick a reward matrix R such

that an annotator would use those thresholds? We can encode the constraints from

Equation 4.13 in a (T − 1) × (2T ) matrix A and write down a system of linear

equations,

Ar = 0 where auv =





1− p1(t) if u = t− 1 and v = t− 1,

p1(t)− 1 if u = t− 1 and v = t,

p1(t) if u = t− 1 and v = T ,

−p1(t) if u = t− 1 and v = T + t,

0 otherwise.

(4.14)

The vector r = vec(RT) is the rows of R concatenated into a column vector, and

p1(t) = p(z = 1 | x = τt). This is an underdetermined problem, and thus the

null space K of A is the space of possible reward matrices that will work with the

thresholds τ . Which of the infinitely many reward matrices should one choose? One
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method is to find a reward matrix R̂ that is close to R using least squares, i.e. r̂ = Kβ̂

where β̂ = arg minβ ‖r−Kβ‖2 and r̂ = vec(R̂T).

4.8 Experiments

In order to investigate how well annotators could make use of the labels, we prepared

four experiments on MTurk named Likert, Percent, RewardOpt, and RewardPol. Our

goal was to answer the following three questions: (1) Given few instructions about how

to use the available label choices, how will annotators distribute their thresholds? (2)

Can we communicate thresholds to annotators through the probabilities? (3) Can we

influence the placement of the annotators thresholds by training them with different

reward matrices?

The experimental setup was near identical to that described in Section 4.4, but

with some small but important differences for three out of the four experiments. Since

we knew the underlying feature (contrast of brightest dot) and signal distribution

used to generate the images, we could use the reward matrix from Figure 4.5a and

the methods from Section 4.6 to find the optimal thresholds τ ?. Then, for the Percent

experiment, we converted the thresholds to percentages, as described in Section 4.7,

and asked the annotators to choose between five ranges of probabilities for each

image1. In the RewardOpt experiment, instead of giving the percentages, we used

the training session to train the annotators using the reward matrix. We used the

interface shown in Figure 4.5b-c to give a score based on the answer the annotator

provided (the annotators were also told that the four annotators achieving the highest

score on the test images would be given a $5 reward). The scores were only shown to

the annotators in the training, and not during the testing. The RewardPol experiment

was identical to RewardOpt, except that we used a different reward matrix2 that

encouraged annotators to only use the extreme (polarized) labels, lj = 1 and lj = 5.

The Likert experiment was identical to the experiment in Section 4.4.

1Labels lj = 1, . . . , 5 corresponded to the ranges 0-10%, 10-30%, 30-70%, 70-90%, and 90-100%.
2We used R = [[10, 1, 0,−1,−10], [−10,−1, 0, 1, 10]], which enforces τ1 = τ2 = τ3 = τ4.
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Figure 4.6: Experiments. Top row shows the number of images receiving each label
for each of the four experiments. The bottom row shows the estimated τ j for the 20
annotators that labeled most images, versus the optimal thresholds as computed by
the methods in Section 4.6. See Section 4.8 for a discussion.

The results of the experiments are shown in Figure 4.6. The top row in the figure

shows how the annotators distribute the images amongst the labels. Using the 5-point

Likert scale, the annotators tend to avoid lj = 3. However, when guided to use the

optimal thresholds (Percent and RewardOpt), the annotators make more use of the

middle labels. Histogram D1 also shows that the reward matrix can be used to make

annotators avoid the middle labels.

The bottom row in Figure 4.6 shows how close the thresholds that the annotators

actually use are to the optimal thresholds. The thresholds that annotator j make use

of can be computed using a maximum likelihood estimator by noting that the the la-

bels lij provided by the annotator for different images signals xi are independent given

σ and τ j (we use σ = 0.01). Qualitatively, we can see that for the Likert experiment,

we have two kinds of annotators: the ones that match the optimal thresholds quite

well, and the ones that essentially treats the task as a binary task, only using the ex-

treme labels (shown as horizontal lines in panel A2). However, when communicating

the thresholds explicitly in the Percent and RewardOpt experiments, all annotators

spread out their thresholds to match the optimal thresholds better. In the RewardPol

experiments, most annotators ignore the middle labels, appearing as horizontal lines

in panel D2, just as some annotators did in the Likert experiment.
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4.9 Discussion and Conclusion

We explored the question of how to use confidence levels in crowdsourced annotation.

Using a simple model of the annotation process we found in that, in realistic scenarios,

a small number (3-5) of confidence levels is sufficient to approach the maximum

mutual information between the annotators’ labels and the underlying ground truth.

Using the same technique, we find that it is possible to compute the optimal thresholds

for using a given set of discrete confidence labels.

We highlighted the challenge that an experimenter faces of coming to an agreement

with the annotators on what is the probabilistic meaning of a given set of confidence

labels. Ideally, the experimenter would have means to ‘program’ the annotators to use

the optimal set of confidence thresholds for a given task. We proposed two techniques

for doing so: explicitly, using a list of probability levels, and implicitly, via training

with a reward-cost matrix that, we show, may be computed from the thresholds. We

find that both methods work better than the traditional Likert scale.
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Chapter 5

Clustering using Pairwise Labels

5.1 Abstract

Is it possible to crowdsource categorization? Amongst the challenges: (a) each worker

has only a partial view of the data, (b) different workers may have different clustering

criteria and may produce different numbers of categories, (c) the underlying category

structure may be hierarchical. We propose a Bayesian model of how workers may

approach clustering and show how one may infer clusters / categories, as well as

worker parameters, using this model. Our experiments, carried out on large collections

of images, suggest that Bayesian crowdclustering works well and may be superior to

single-expert annotations.

5.2 Introduction

Outsourcing information processing to large groups of anonymous workers has been

made easier by the internet. Crowdsourcing services, such as Amazon’s Mechani-

cal Turk, provide a convenient way to purchase Human Intelligence Tasks (HITs).

Machine vision and machine learning researchers have begun using crowdsourcing to

label large sets of data (e.g., images and video [SF08, VG11, WBBP10]) which may

then be used as training data for AI and computer vision systems. In all the work so

far categories are defined by a scientist, while categorical labels are provided by the

workers.
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Can we use crowdsourcing to discover categories? I.e., is it possible to use crowd-

sourcing not only to classify data instances into established categories, but also to

define the categories in the first place? This question is motivated by practical con-

siderations. If we have a large number of images, perhaps several tens of thousands or

more, it may not be realistic to expect a single person to look at all images and form

an opinion as to how to categorize them. Additionally, individuals, whether untrained

or expert, might not agree on the criteria used to define categories and may not even

agree on the number of categories that are present. In some domains unsupervised

clustering by machine may be of great help; however, unsupervised categorization

of images and video is unfortunately a problem that is far from solved. Thus, it is

an interesting question whether it is possible to collect and combine the opinion of

multiple human operators, each one of which is able to view a (perhaps small) subset

of a large image collection.

We explore the question of crowdsourcing clustering in two steps: (a) Reduce the

problem to a number of independent HITs of reasonable size and assign them to a

large pool of human workers (Section 5.3). (b) Develop a model of the annotation

process, and use the model to aggregate the human data automatically (Section 5.4)

yielding a partition of the dataset into categories. We explore the properties of our

approach and algorithms on a number of real world data sets, and compare against

existing methods in Section 5.5.

5.3 Eliciting Information from Workers

How shall we enable human operators to express their opinion on how to categorize

a large collection of images? Whatever method we choose, it should be easy to learn

and it should be implementable by means of a simple graphical user interface (GUI).

Our approach (Figure 5.1) is based on displaying small subsets of M images and

asking workers to group them by means of mouse clicks. We provide instructions

that may cue workers to certain attributes but we do not provide the worker with

category definitions or examples. The worker groups the M items into clusters of
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Figure 5.1: Schematic of Bayesian crowdclustering. A large image collection is ex-
plored by workers. In each HIT (Section 5.3), the worker views a small subset of
images on a GUI. By associating (arbitrarily chosen) colors with sets of images the
worker proposes a (partial) local clustering. Each HIT thus produces multiple binary
pairwise labels: each pair of images shown in the same HIT is placed by the worker
either in the same category or in different categories. Each image is viewed by mul-
tiple workers in different contexts. A model of the annotation process (Sec. 5.4.1)
is used to compute the most likely set of categories from the binary labels. Worker
parameters are estimated as well.

his choosing, as many as he sees fit. An item may be placed in its own cluster if it

is unlike the others in the HIT. The choice of M trades off between the difficulty of

the task (worker time required for a HIT increases super-linearly with the number

of items), the resolution of the images (more images on the screen means that they

will be smaller), and contextual information that may guide the worker to make

more global category decisions (more images give a better context, see Section 5.5.1.)

Partial clusterings on many M -sized subsets of the data from many different workers

are thus the raw data on which we compute clustering.

An alternative would have been to use pairwise distance judgments or three-way

comparisons. A large body of work exists in the social sciences that makes use of

human-provided similarity values defined between pairs of data items (e.g., Multidi-

mensional Scaling [Kru64].) After obtaining pairwise similarity ratings from workers,

and producing a Euclidean embedding, one could conceivably proceed with unsu-

pervised clustering of the data in the Euclidean space. However, accurate distance

judgments may be more laborious to specify than partial clusterings. We chose to

explore what we can achieve with partial clusterings alone.

We do not expect workers to agree on their definitions of categories, or to be
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consistent in categorization when performing multiple HITs. Thus, we avoid explicitly

associating categories across HITs. Instead, we represent the results of each HIT as a

series of
(
M
2

)
binary labels (see Figure 5.1). We assume that there are N total items

(indexed by i), J workers (indexed by j), andH HITs (indexed by h). The information

obtained from workers is a set of binary variables L, with elements lt ∈ {−1,+1}
indexed by a positive integer t ∈ {1, . . . , T}. Associated with the t-th label is a

quadruple (at, bt, jt, ht), where jt ∈ {1, . . . , J} indicates the worker that produced the

label, and at ∈ {1, . . . , N} and bt ∈ {1, . . . , N} indicate the two data items compared

by the label. ht ∈ {1, . . . , H} indicates the HIT from which the t-th pairwise label

was derived. The number of labels is T = H
(
M
2

)
.

Sampling Procedure We have chosen to structure HITs as clustering tasks of M

data items, so we must specify them. If we simply separate the items into disjoint

sets, then it will be impossible to infer a clustering over the entire data set. We will

not know whether two items in different HITs are in the same cluster or not. There

must be some overlap or redundancy: data items must be members of multiple HITs.

In the other extreme, we could construct HITs such that each pair of items may be

found in at least one HIT, so that every possible pairwise category relation is sampled.

This would be quite expensive for large number of items N , since the number of labels

scales asymptotically as T ∈ Ω(N2). However, we expect a noisy transitive property

to hold: if items a and b are likely to be in the same cluster, and items b and c are

(not) likely in the same cluster, then items a and c are (not) likely to be in the same

cluster as well. The transitive nature of binary cluster relations should allow sparse

sampling, especially when the number of clusters is relatively small.

As a baseline sampling method, we use the random sampling scheme outlined by

Strehl and Ghosh [SG02] developed for the problem of object distributed clustering,

in which a partition of a complete data set is learned from a number of clusterings

restricted to subsets of the data. (We compare our aggregation algorithm to this work

in Section 5.5.) Their scheme controls the level of sampling redundancy with a single

parameter V , which in our problem is interpreted as the expected number of HITs to
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which a data item belongs.

The N items are first distributed deterministically among the HITs, so that there

are dM
V
e items in each HIT. Then the remaining M−dM

V
e items in each HIT are filled

by sampling without replacement from the N −dM
V
e items that are not yet allocated

to the HIT. There are a total of dNV
M
e unique HITs. We introduce an additional

parameter R, which is the number of different workers that perform each constructed

HIT. The total number of HITs distributed to the crowdsourcing service is therefore

H = RdNV
M
e, and we impose the constraint that a worker can not perform the same

HIT more than once. This sampling scheme generates T = RdNV
M
e
(
M
2

)
∈ O(RNVM)

binary labels.

With this exception, we find a dearth of ideas in the literature pertaining to sam-

pling methods for distributed clustering problems. Iterative schemes that adaptively

choose maximally informative HITs may be preferable to random sampling. We are

currently exploring ideas in this direction.

5.4 Aggregation via Bayesian Crowdclustering

There is an extensive literature in machine learning on the problem of combining

multiple alternative clusterings of data. This problem is known as consensus cluster-

ing [MTMG03], clustering aggregation [GMT07], or cluster ensembles [SG02]. While

some of these methods can work with partial input clusterings, most have not been

demonstrated in situations where the input clusterings involve only a small subset of

the total data items (M << N), which is the case in our problem.

In addition, existing approaches focus on producing a single “average” clustering

from a set of input clusterings. In contrast, we are not merely interested in the

average clustering produced by a crowd of workers. Instead, we are interested in

understanding the ways in which different individuals may categorize the data. We

seek a master clustering of the data that may be combined in order to describe the

tendencies of individual workers. We refer to these groups of data as atomic clusters.

For example, suppose one worker groups objects into a cluster of tall objects and
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another of short objects, while a different worker groups the same objects into a cluster

of red objects and another of blue objects. Then, our method should recover four

atomic clusters: tall red objects, short red objects, tall blue objects, and short blue

objects. The behavior of the two workers may then be summarized using a confusion

table of the atomic clusters (see Section 5.4.3). The first worker groups the first and

third atomic cluster into one category and the second and fourth atomic cluster into

another category. The second worker groups the first and second atomic clusters into

a category and the third and fourth atomic clusters into another category.

5.4.1 Generative Model

We propose an approach in which data items are represented as points in a Euclidean

space and workers are modeled as pairwise binary classifiers in this space. Atomic

clusters are then obtained by clustering these inferred points using a Dirichlet process

mixture model, which estimates the number of clusters [Lo84]. The advantage of an

intermediate Euclidean representation is that it provides a compact way to capture

the characteristics of each data item. Certain items may be inherently more difficult

to categorize, in which case they may lie between clusters. Items may be similar along

one axis but different along another (e.g., object height versus object color.) A similar

approach was proposed by Welinder et al. [WBBP10] for the analysis of classification

labels obtained from crowdsourcing services. This method does not apply to our

problem, since it involves binary labels applied to single data items rather than to

pairs, and therefore requires that categories be defined a priori and agreed upon by

all workers, which is incompatible with the crowdclustering problem.

We propose a probabilistic latent variable model that relates pairwise binary labels

to hidden variables associated with both workers and images. The graphical model

is shown in Figure 5.1. xi is a D dimensional vector, with components [xi]d that

encodes item i’s location in the embedding space RD. Symmetric matrix Wj ∈ RD×D

with entries [Wj]d1d2 and bias τj ∈ R are used to define a pairwise binary classifier,

explained in the next paragraph, that represents worker j’s labeling behavior. Because



64

Wj is symmetric, we need only specify its upper triangular portion: vecp{Wj} which

is a vector formed by “stacking” the partial columns of Wj according to the ordering

[vecp{Wj}]1 = [Wj]11, [vecp{Wj}]2 = [Wj]12, [vecp{Wj}]3 = [Wj]22, etc. Φk =

{µk,Σk} are the mean and covariance parameters associated with the k-th Gaussian

atomic cluster, and Uk are stick breaking weights associated with a Dirichlet process.

The key term is the pairwise quadratic logistic regression likelihood that captures

worker j’s tendency to label the pair of images at and bt with lt:

p(lt|xat ,xbt ,Wjt , τjt) =
1

1 + exp(−ltAt)
(5.1)

where we define the pairwise quadratic activity At = xTatWjtxbt + τjt . Symmetry of

Wj ensures that p(lt|xat ,xbt ,Wjt , τjt) = p(lt|xbt ,xat ,Wjt , τjt). This form of likelihood

yields a compact and tractable method of representing classifiers defined over pairs

of points in Euclidean space. Pairs of vectors with large pairwise activity tend to be

classified as being in the same category, and in different categories otherwise. We

find that this form of likelihood leads to tightly grouped clusters of points xi that are

then easily discovered by mixture model clustering.

The joint distribution is

p(Φ, U, Z,X,W, τ,L) =
∞∏

k=1

p(Uk|α)p(Φk|m0, β0,J0, η0)
N∏

i=1

p(zi|U)p(xi|Φzi) (5.2)

J∏

j=1

p(vecp{Wj}|σw0 )p(τj|στ0 )
T∏

t=1

p(lt|xat ,xbt ,Wjt , τjt).
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The conditional distributions are defined as follows:

p(Uk|α) = Beta(Uk; 1, α) (5.3)

p(zi = k|U) = Uk

k−1∏

l=1

(1− Ul)

p(xi|Φzi) = Normal(xi;µzi ,Σzi)

p(xi|σx0 ) =
∏

d

Normal([xi]d; 0, σx0 )

p(vecp{Wj}|σw0 ) =
∏

d1≤d2
Normal([Wj]d1d2 ; 0, σw0 )

p(τj|στ0 ) = Normal(τj; 0, στ0 )

p(Φk|m0, β0,J0, η0) = Normal-Wishart(Φk; m0, β0,J0, η0)

where (σx0 , σ
τ
0 , σ

w
0 , α,m0, β0,J0, η0) are fixed hyper-parameters. Our model is sim-

ilar to that of [SST09], which is used to model binary relational data. Salient dif-

ferences include our use of a logistic rather than a Gaussian likelihood, and our

enforcement of the symmetry of Wj. In the next section, we develop an efficient

deterministic inference algorithm to accommodate much larger data sets than the

sampling algorithm used in [SST09].

5.4.2 Approximate Inference

Exact posterior inference in this model is intractable, since computing it involves

integrating over variables with complex dependencies. We therefore develop an infer-

ence algorithm based on the Variational Bayes method [Att99]. The high level idea

is to work with a factorized proxy posterior distribution that does not model the full

complexity of interactions between variables; it instead represents a single mode of

the true posterior. Because this distribution is factorized, integrations involving it



66

become tractable. We define the proxy distribution q(Φ, U, Z,X,W, τ) =

∞∏

k=K+1

p(Uk|α)p(Φk|m0, β0,J0, η0)
K∏

k=1

q(Uk)q(Φk)
N∏

i=1

q(zi)q(xi)
J∏

j=1

q(vecp{Wj})q(τj)

(5.4)

using parametric distributions of the following form:

q(Uk) = Beta(Uk; ξk,1, ξk,2) (5.5)

q(Φk) = Normal-Wishart(mk, βk,Jk, ηk)

q(xi) =
∏

d

Normal([xi]d; [µx
i ]d, [σ

x
i ]d)

q(τj) = Normal(τj;µ
τ
j , σ

τ
j )

q(zi = k) = qik

q(vecp{Wj}) =
∏

d1≤d2
Normal([Wj]d1d2 ; [µw

j ]d1d2 , [σ
w
j ]d1d2)

To handle the infinite number of mixture components, we follow the approach

of [KWV07] where we define variational distributions for the first K components, and

fix the remainder to their corresponding priors. {ξk,1, ξk,2} and {mk, βk,Jk, ηk} are the

variational parameters associated with the k-th mixture component. q(zi = k) = qik

form the factorized assignment distribution for item i. µx
i and σx

i are variational

mean and variance parameters associated with data item i’s embedding location. µw
j

and σw
j are symmetric matrix variational mean and variance parameters associated

with worker j, and µτj and στj are variational mean and variance parameters for the

bias τj of worker j. We use diagonal covariance Normal distributions over Wj and xi

to reduce the number of parameters that must be estimated.

Next, we define a utility function which allows us to determine the variational

parameters. We use Jensen’s inequality to develop a lower bound to the log evidence:

log p(L|σx0 , στ0 , σw0 , α,m0, β0,J0, η0) (5.6)

≥Eq log p(Φ, U, Z,X,W, τ,L) +H{q(Φ, U, Z,X,W, τ)},
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H{·} is the entropy of the proxy distribution, and the lower bound is known as the

Free Energy. However, the Free Energy still involves intractable integration, because

the normal distributions over variables Wj, xi, and τj are not conjugate [BS94] to

the logistic likelihood term. We therefore locally approximate the logistic likelihood

with an unnormalized Gaussian function lower bound, which is the left hand side of

the following inequality:

g(∆t) exp{(ltAt −∆t)/2 + λ(∆t)(A
2
t −∆2

t )} ≤ p(lt|xat ,xbt ,Wjt , τjt). (5.7)

This was adapted from [JJ96] to our case of quadratic pairwise logistic regression.

Here g(x) = (1 + e−x)−1 and λ(∆) = [1/2− g(∆)]/(2∆). This expression introduces

an additional variational parameter ∆t for each label, which are optimized in order

to tighten the lower bound. Our utility function is therefore:

F =Eq log p(Φ, U, Z,X,W, τ) +H{q(Φ, U, Z,X,W, τ)} (5.8)

+
∑

t

log g(∆t) +
lt
2
Eq{At} −

∆t

2
+ λ(∆t)(Eq{A2

t} −∆2
t )

which is a tractable lower bound to the log evidence. Optimization of variational

parameters is carried out in a coordinate ascent procedure, which exactly maxi-

mizes each variational parameter in turn while holding all others fixed. This is

guaranteed to converge to a local maximum of the utility function. The update

equations are given in an extended technical report [GWKP11b]. We initialize the

variational parameters by carrying out a layerwise procedure: first, we substitute a

zero mean isotropic normal prior for the mixture model and perform variational up-

dates over {µx
i ,σ

x
i ,µ

w
j ,σ

w
j , µ

τ
j , σ

τ
j }. Then we use µx

i as point estimates for xi and

update {mk, βk,Jk, ηk, ξk,1, ξk,2} and determine the initial number of clusters K as

in [KWV07]. Finally, full joint inference updates are performed. Their computa-

tional complexity is O(D4T +D2KN) = O(D4NV RM +D2KN).
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5.4.3 Worker Confusion Analysis

As discussed in Section 5.4, we propose to understand a worker’s behavior in terms

of how he groups atomic clusters into his own notion of categories. We are interested

in the predicted confusion matrix Cj for worker j, where

[Cj]k1k2 = Eq

{∫
p(l = 1|xa,xb,Wj, τj)p(xa|Φk1)p(xb|Φk2)dxadxb

}
(5.9)

which expresses the probability that worker j assigns data items sampled from atomic

cluster k1 and k2 to the same cluster, as predicted by the variational posterior. This

integration is intractable. We use the expected values E{Φk1} = {mk1 ,Jk1/ηk1} and

E{Φk2} = {mk2 ,Jk2/ηk2} as point estimates in place of the variational distributions

over Φk1 and Φk2 . We then use Jensen’s inequality and Eq. 5.7 again to yield a lower

bound. Maximizing this bound over ∆ yields

[Ĉj]k1k2 = g(∆̂k1k2j) exp{(mT
k1
µw
j mk2 + µτj − ∆̂k1k2j)/2} (5.10)

which we use as our approximate confusion matrix, where ∆̂k1k2j is given in [GWKP11b].

5.5 Experiments

We tested our method on four image data sets that have established “ground truth”

categories, which were provided by a single human expert. These categories do

not necessarily reflect the uniquely valid way to categorize the data set, however

they form a convenient baseline for the purpose of quantitative comparison. We

used 1000 images from the Scenes data set from [FFP05] to illustrate our approach

(Figures 5.2, 5.3, and 5.4.) We used 1354 images of birds from 10 species in the

CUB-200 data set [WBM+10] (Table 5.1) and the 3845 images in the Stonefly9 data

set [MMLM+09] (Table 5.1) in order to compare our method quantitatively to other

cluster aggregation methods. We used the 37794 images from the Attribute Discovery

data set [BBS10] in order to demonstrate our method on a large scale problem.
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We set the dimensionality of xi to D = 4 (since higher dimensionality yielded

no additional clusters) and we iterated the update equations 100 times, which was

enough for convergence. Hyperparameters were tuned once on synthetic pairwise

labels that simulated 100 data points drawn from 4 clusters, and fixed during all

experiments.

Figure 5.2 (left) shows the mean locations of the data items µx
i learned from

the Scene data set, visualized as points in Euclidean space. We find well separated

clusters whose labels k are displayed at their mean locations mk. The points are

colored according to argmaxk qik, which is item i’s MAP cluster assignment. The

cluster labels are sorted according to the number of assigned items, with cluster 1

being the largest. The axes are the first two Fisher discriminant directions (derived

from the MAP cluster assignments) as axes. The clusters are well separated in the

four dimensionsal space (we give the average assignment entropy − 1
N

∑
ik qik log qik in

the figure title, which shows little cluster overlap.) Figure 5.2 (center) shows six high

confidence examples from clusters 1 through 5. Figure 5.2 (right) shows the confusion

table between the ground truth categories and the MAP clustering. We find that the

MAP clusters often correspond to single ground truth categories, but they sometimes

combine ground truth categories in reasonable ways. See Section 5.5.1 for a discussion

and potential solution of this issue.

Figure 5.3 (left of line) shows the predicted confusion matrices (Section 5.4.3) as-

sociated with the 40 workers that performed the most HITs. This matrix captures the

worker’s tendency to label items from different atomic clusters as being in the same

or different category. Figure 5.3 (right of line) shows in detail the predicted confusion

matrices for three workers. We have sorted the MAP cluster indices to yield approxi-

mately block diagonal matrices, for ease of interpretation. Worker 9 makes relatively

fine grained distinctions, including separating clusters 1 and 9 that correspond to the

indoor categories and the bedroom scenes, respectively. Worker 45 combines clusters

5 and 8 which correspond to city street and highway scenes in addition to grouping

together all indoor scene categories. The finer grained distinctions made by worker 9

may be a result of performing more HITs (74) and seeing a larger number of images
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Figure 5.2: Scene Dataset. Left: Mean locations µx
i projected onto first two Fisher

discriminant vectors, along with cluster labels superimposed at cluster means mk.
Data items are colored according to their MAP label argmaxk qik. Center: High
confidence example images from the largest five clusters (rows correspond to clusters.)
Right: Confusion table between ground truth scene categories and inferred clusters.
The first cluster includes three indoor ground truth categories, the second includes
forest and open country categories, and the third includes two urban categories. See
Section 5.5.1 for a discussion and potential solution of this issue.

than worker 45, who performed 15 HITs. Finally (far right), we find a worker whose

labels do not align with the atomic clustering. Inspection of his labels show that they

were entered largely at random.

Figure 5.4 (top left) shows the number of HITs performed by each worker according

to descending rank. Figure 5.4 (bottom left) is a Pareto curve that indicates the

percentage of the HITs performed by the most active workers. The Pareto principle

(i.e., the law of the vital few) [Par96] roughly holds: the top 20% most active workers

perform nearly 80% of the work. We wish to understand the extent to which the most

active workers contribute to the results. For the purpose of quantitative comparisons,

we use Variation of Information (VI) [Mei03] to measure the discrepancy between

the inferred MAP clustering and the ground truth categorization. VI is a metric

with strong information theoretic justification that is defined between two partitions

(clusterings) of a data set; smaller values indicate a closer match and a VI of 0 means

that two clusterings are identical. In Figure 5.4 (center) we incrementally remove the

most active (blue) and least active (red) workers. Removal of workers corresponds

to moving from right to left on the x-axis, which indicates the number of HITs used

to learn the model. The results show that removing the large number of workers
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Figure 5.3: (Left of line) Worker confusion matrices for the 40 most active workers.
(Right of line) Selected worker confusion matrices for Scenes experiment. Worker 9
(left) makes distinctions that correspond closely to the atomic clustering. Worker 45
(center) makes coarser distinctions, often combining atomic clusters. Right: Worker
29’s single HIT was largely random and does not align with the atomic clusters.

that do fewer HITs is more detrimental to performance than removing the relatively

few workers that do a large number of HITs (given the same number of total HITs),

indicating that the atomic clustering is learned from the crowd at large.

In Figure 5.4 (right), we judge the impact of the sampling redundancy parameter

V described in Section 5.3. We compare our approach (Bayesian crowdclustering) to

two existing clustering aggregation methods from the literature: consensus cluster-

ing by nonnegative matrix factorization (NMF) [LDJ07] and the cluster ensembles

method of Strehl and Ghosh (S&G) [SG02]. NMF and S&G require the number of

inferred clusters to be provided as a parameter, and we set this to the number of

ground truth categories. Even without the benefit of this additional information, our

method (which automatically infers the number of clusters) outperforms the alter-

natives. To judge the benefit of modeling the characteristics of individual workers,

we also compare against a variant of our model in which all HITs are treated as if

they are performed by a single worker (Bayesian consensus.) We find a significant

improvement. We fix R = 5 in this experiment, but we find a similar ranking of

methods at other values of R. However, the performance benefit of the Bayesian

methods over the existing methods increases with R.

We compare the four methods quantitatively on two additional data sets, with

the results summarized in Table 5.1. In both cases, we instruct workers to categorize

based on species. This is known to be a difficult task for non-experts. We set V = 6
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Figure 5.4: Scene Data set. Left Top: Number of completed HITs by worker rank.
Left Bottom: Pareto curve. Center: Variation of Information on the Scene data set
as we incrementally remove top (blue) and bottom (red) ranked workers. The top
workers are removed one at a time, bottom ranked workers are removed in groups so
that both curves cover roughly the same domain. The most active workers do not
dominate the results. Right: Variation of Information between the inferred clustering
and the ground truth categories on the Scene data set, as a function of sampling
parameter V . R is fixed at 5.

Bayes Crowd Bayes Consensus NMF [LDJ07] Strehl & Ghosh [SG02]
Birds (VI) 1.103± 0.082 1.721± 0.07 1.500± 0.26 1.256± 0.001

Birds (time) 18.5 min 18.1 min 27.9 min 0.93 min
Stonefly9 (VI) 2.448± 0.063 2.735± 0.037 4.571± 0.158 3.836± 0.002

Stonefly9 (time) 100.1 min 98.5 min 212.6 min 46.5 min

Table 5.1: Quantitative comparison on Bird [WBM+10] and Stonefly [MMLM+09]
species categorization data sets. Quality is measured using Variation of Information
between the inferred clustering and ground truth. Bayesian Crowdclustering outper-
forms the alternatives.
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Figure 5.5: Divisive Clustering on the Scenes data set. Left: Confusion matrix and
high confidence examples when running our method on images assigned to cluster one
in the original experiment (Figure 5.2). The three indoor scene categories are correctly
recovered. Center: Workers are unable to subdivide mountain scenes consistently and
our method returns a single cluster. Right: Workers may find perceptually relevant
distinctions not present in the ground truth categories. Here, the highway category
is subdivided according to the number of cars present.

and R = 5 for these experiments. Again, we find that Bayesian Crowdclustering

outperforms the alternatives. A run time comparison is also given in Table 5.1.

Bayesian Crowdclustering results on the Bird and Stonefly data sets are summarized

in [GWKP11b].

Finally, we demonstrate Bayesian crowdclustering on the large scale Attribute

Discovery data set. This data set has four image categories: bags, earrings, ties, and

women’s shoes. In addition, each image is a member of one of 27 sub-categories (e.g.,

the bags category includes backpacks and totes as sub-categories.) See [GWKP11b]

for summary figures. We find that our method easily discovers the four categories.

The subcategories are not discovered, likely due to limited context associated with

HITs with size M = 36 as discussed in the next section. Runtime was approximately

9.5 hours on a six core Intel Xeon machine.
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5.5.1 Divisive Clustering

As indicated by the confusion matrix in Figure 5.2 (right), our method results in

clusters that correspond to reasonable categories. However, it is clear that the data

often has finer categorical distinctions that go undiscovered. We conjecture that this

is a result of the limited context presented to the worker in each HIT. When shown

a set of M = 36 images consisting mostly of different types of outdoor scenes and

a few indoor scenes, it is reasonable for a worker to consider the indoor scenes as a

unified category. However, if a HIT is composed purely of indoor scenes, a worker

might draw finer distinctions between images of offices, kitchens, and living rooms. To

test this conjecture, we developed a hierarchical procedure in which we run Bayesian

crowdclustering independently on images that are MAP assigned to the same cluster

in the original Scenes experiment.

Figure 5.5 (left) shows the results on the indoor scenes assigned to original cluster

1. We find that when restricted to indoor scenes, the workers do find the relevant

distinctions and our algorithm accurately recovers the kitchen, living room, and office

ground truth categories. In Figure 5.5 (center) we ran the procedure on images from

original cluster 4, which is composed predominantly of mountain scenes. The algo-

rithm discovers one subcluster. In Figure 5.5 (right) the workers divide a cluster into

three subclusters that are perceptually relevant: they have organized them according

to the number of cars present.

5.6 Conclusions

We have proposed a method for clustering a large set of data by distributing small

tasks to a large group of workers. It is based on using a novel model of human clus-

tering, as well as a novel machine learning method to aggregate worker annotations.

Modeling both data item properties and the workers’ annotation process and parame-

ters appears to produce performance that is superior to existing clustering aggregation

methods. Our study poses a number of interesting questions for further research: Can
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adaptive sampling methods (as opposed to our random sampling) reduce the number

of HITs that are necessary to achieve high quality clustering? Is it possible to model

the workers’ tendency to learn over time as they perform HITs, rather than treating

HITs independently as we do here? Can we model contextual effects, perhaps by

modeling the way that humans “regularize” their categorical decisions depending on

the number and variety of items present in the task?
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Chapter 6

Continuous Labels

6.1 Abstract

We explore crowdsourcing visual detection and localization tasks. Are all detection

tasks similar? How many annotators are necessary to achieve good performance? Can

one match the performance of an expert by combining the work of multiple annotators?

We explored these questions by asking Amazon Mechanical Turk annotators to detect

objects in approximately 1100 images from five different collections. The statistics

of the five collections were chosen to explore potentially different conditions. Our

experiments show that good precision may be achieved with few (2–3) annotators,

while 10 annotators may be needed for high recall. Furthermore, expert performance

may be approached by combining the detections of 10 annotators; however, it appears

unlikely that it may be matched or surpassed even using a much larger number of naive

annotators. Additional observations are that pay has little influence on the quality of

the annotations, and that serializing the work of multiple annotators has little benefit

over combining the work of annotators working in parallel.

6.2 Introduction

Crowdsourcing and citizen science are becoming increasingly important means for

helping scientists collect and analyze large datasets of images. With the website
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Figure 6.1: Examples images from the detection datasets. A. Yellow cabs (Sec-
tion 6.3.2). B. People dataset (Section 6.3.3). C. Swimming pools (Section 6.3.1).
D. Cell nuclei (Section 6.3.4). E–F. Difficult and easy task, respectively, from the
diagonal bars dataset (Section 6.3.5).

Galaxy Zoo1, astronomers enlist the help of amateurs to classify hundreds of thou-

sands of photos of galaxies taken by the Hubble space telescope. The American space

agency, NASA, asks citizen scientists to find craters on Mars by clicking on images

on the planet surface through the “Be a Martian” website2. Closer to Earth, archae-

ologists crowdsourced the search for the tomb of Genghis Khan by asking ordinary

people to look through satellite images of Mongolian plains3. Machine vision re-

searchers have begun using crowdsourcing to clean up and annotate large datasets of

images. This is especially useful to produce large and reliable training sets for visual

recognition [RTMF08, SP08, DDS+09].

Recently there is much interest in crowdsourcing annotations in computer vision

[SF08, DDS+09, RTMF08, YRLT09, WP10, WBBP10, VG09, VRP10] and other

fields [SOJN08, SPI08, vAD04, vAMM+08]. For image annotations, previous work

1http://www.galaxyzoo.org
2http://beamartian.jpl.nasa.gov
3http://exploration.nationalgeographic.com
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has focused on boundary tracing [SF08, RTMF08], part annotations [BM09, SF08],

bounding boxes [WP10, VRP10], binary annotation [DS79, WRW+09, RYZ+09, WBBP10],

and naming [SP08]. The accuracy of crowdsourcing has been explored for three:

boundary tracing [SF08, RTMF08], naming [SP08] and binary labeling [WRW+09,

WBBP10]. Visual detection and localization by crowdsourcing is a useful technique

whose properties, especially in the case of multiple detections per image, have not yet

been studied systematically.

Our goal here is to begin its exploration. The questions we are interested in are:

(a) Are annotators accurate? (b) Are they similar in their performance? (c) Can one

combine multiple ‘naive’ annotators and achieve the performance of an expert? (d)

How much time and money does it take to annotate a large dataset? (e) What is

the best way to organize the work of multiple annotators? (f) Are there qualitatively

different annotation tasks? (g) What is the best way to aggregate the work of multi-

ple annotators? We explore these questions by analyzing annotations obtained on a

corpus of ∼1100 images belonging to five hand-picked image collections (Section 6.3).

Our method is described in Section 6.4, the experimental results in Section 6.5. In

Section 6.6 we study an iterative scheme for obtaining high quality detections. This

experiment was inspired by TurKit [LCGM09], a toolbox for obtaining iterative an-

notations where the output of one annotator serves as the (modified) input to another

annotator. We adopt here the terminology of [LCGM10] and consider both iterative

and parallel annotation tasks. Our concluding remarks are collected in Section 6.7.

6.3 Datasets

We postulate that a number of different factors may cause errors (false alarms, missed

targets) in detection and localization. First of all, if the dataset contains objects that

look similar to the target, “red herrings” or distractor objects, it is likely that some

of them will be mistakenly detected as object instances. Another case is when the

objects themselves are sometimes difficult to detect due to weak “signal strength.”

This is often the case, for example, when target objects are very small in terms of pixel
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Figure 6.2: Annotator precision-recall. Each dot denotes one annotator. The curve
is obtained by thresholding the number of clicks that each image location received.
The bottom two plots show the precision vs. recall of the same annotations using the
ground truth provided by two different experts. Each expert’s precision-recall point
vis-a-vis the other expert’s ground truth is shown as a green dot.
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size, or their contrast with respect to the background is faint. Other times it is tough

to decide whether an object in the image is a single or dual instance of a target object

due to “crowding.” An example of this, if the target object category is people, would

be one person almost completely occluding another one. Some annotators would see

it as one person, while others would see it as two people very close together.

To highlight different issues in providing object detection annotations, we gathered

five datasets. Each dataset exposes some of the issues discussed above to varying

extents. The following sections describe each dataset in detail. With the exception

of the last dataset, ground truth was established either by human operators who had

access to higher resolution versions of the same images, or by human experts.

6.3.1 Swimming Pools

We collected 100 satellite images of a wealthy suburban neighborhood using Google

Maps. The annotators were shown images of size 500× 500 pixels with resolution of

approximately 1 pixel per meter, and asked to look for swimming pools. The task

is quite challenging as typical swimming pools are between 8 and 20 pixels wide and

often lie in the shade of neighboring trees, thus their signal strength will be low. An

initial version of the ground truth was provided by a hired annotator using annotation

software developed in our group.

6.3.2 New York Yellow Cabs

We collected 240 satellite images of lower Manhattan from Google Maps. The images

were sized at 500 × 500 pixels at a resolution of 2 pixels per meter. We asked the

annotators to look for yellow cabs, which are clearly visible in many of the images.

However, in some cases the cabs were driving in the shade of buildings, obscuring

their distinctive yellow color (the signal strength). Similarly, they are sometimes

hard to distinguish from white or yellowish non-cab cars (the red herrings). The hired

annotator provided ground truth for this dataset on images at twice the resolution (4

pixels per meter).
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6.3.3 People

The 521 images in this dataset originated from two sources. The vast majority were

sampled from a collection of holiday images with mostly outdoor scenes. The remain-

ing images were street scenes taken by an mobile phone at red light intersections.

Images were either in portrait or landscape mode and the largest dimension was 800

pixels to ensure that they could be viewed in a standard web browser. 30 of the

images contained no people at all. Since we consider only two-dimensional spatial

detections, we asked annotators to click on the centroid of the head of any person

found in the scene. We also explicitly asked them to ignore red herrings like statues,

people-like toys and photos or posters of people in the images. The task is often quite

easy, but can be challenging in crowded scenes or images where the people are very

small in pixel-size. However, once a person has been found, it is usually pretty clear

that it is a person, since people are not easily confused with other objects.

The ground truth was obtained by merging all detection annotations obtained

from Amazon Mechanical Turk (MTurk) using a spatial clustering algorithm (see

Section 6.4). One of the authors verified each of the consolidated annotations by

overlaying such annotations on images that had 9–16x the resolution of the images

that had been sent to the MTurk workers. Missed persons were annotated using the

same technique.

6.3.4 Cell Nuclei

Patches of 320 × 320 were cropped from 1500 × 1500 pixel images of tissue samples

[FHW+09] and up-sampled (using cubic interpolation) to 640× 640 pixels, obtaining

136 images in total. Annotators were asked to click on cell nuclei according to some

example images and written instructions. Cell nuclei were described as: Shapes with a

clearly defined boundary. They are often (but not always) round in shape. Sometimes

only the blue boundary (membrane) of a nucleus can be seen, while the nucleus itself

appears white. Nuclei can also appear as brown shapes (stained with a marker). The

task is challenging for several reasons. First, for most annotators this is the first time
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they are exposed to images of tissue samples and cell nuclei annotation. Sometimes

it is hard to know whether an image shows two neighboring nuclei or one single

elongated nucleus. Some nuclei are strongly ambiguous and can be mistaken for

non-nuclei tissue.

Two expert pathologists independently provided the ground truth detection an-

notations for the dataset. The pathologists had access to the full size tissue samples

and used a UI where they could zoom and pan the image. Their task was to provide

circular annotations around each nucleus, thus giving the scale in addition to the

location of each nucleus. As ground truth, we used only the center of the circular

annotation, and discarded the scale information. We kept the annotations from both

annotators separate, and used one as the ground truth during the experiments, except

where stated otherwise.

6.3.5 Diagonal Bars

We generated a more controlled dataset with images containing a 10×10 grid of bars

at different orientations. Most bars were oriented at 45◦, but in each image N bars

were oriented at θ degrees from the diagonal. The annotators were asked to find bars

that were not at 45◦ diagonal. We varied N = {5, 10, 20} and θ = {10◦, 15◦, 30◦} and

generated 10 random images for each combination, yielding 90 images in total. All

images were 800× 800 pixels. Since the images were generated synthetically, we had

access to the ground truth.

6.4 Method

For each of the datasets listed in Section 6.3, we asked annotators to click with their

mouse on the centroid of each detection. Although the approach described in this

paper could in principle be generalized to other kinds of detection primitives, such as

bounding boxes or rotatable ellipses, we did not compare these methods in order to

focus on the main question of interest in this study: detection and localization.
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Figure 6.3: Precision-recall curves for different numbers of annotators.
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To match a list of detections X = {x1, x2, . . . , xs} against a ground truth annota-

tion list Y = {y1, y2, . . . , yt} we used a simple thresholding heuristic as follows. Let

M be a list of matched pairs (xi, yj) that is initially empty, and let τ be some distance

threshold. For each detection xi ∈ X , the closest ground truth detection yj ∈ Y is

found such that the distance d(xi, yj) < τ and yj does not belong to a pair in M . If

such a yj is found, a reverse process takes place where we check if there is a detection

xk not in a pair in M that is closer to yj. If a closer detection is found, (xk, yj) is

added to M , otherwise (xi, yj) is added to M . The process continues until we have

iterated through all xi ∈ X that are not in M . By comparing the sizes of X, Y and

M we can compute the number of correct detections, the number of false alarms and

the number misses in an image and, thus, precision and recall. In our experiments,

we chose τ to be slightly larger than the largest object size for each dataset, which

corresponds to τ = 10 pixels for the yellow cabs, τ = 13 pixels for the swimming

pools, τ = 15 pixels for the diagonal bars, τ = 20 for the people dataset, and τ = 25

pixels for the cell nuclei images.

Because multiple annotators annotated each image we could obtain a list of detec-

tions with a “confidence score” for each image location by clustering the detections

from the different annotators and counting the number of members in each cluster.

We used a basic clustering heuristic based on the matching algorithm described in

the previous paragraph to obtain the cluster centers. The clustering algorithm is

described in detail in the supplementary material.

6.5 Experiments

For each of the five datasets, we asked annotators on MTurk to provide detection

annotations for the images. We paid 5 cents per image unless stated otherwise, and

allowed up to 20 minutes for the annotator to complete the annotation of one image.

Each image was annotated by 10 annotators. For each dataset, we provided written

and pictorial instructions of what the annotators should be looking for. All tasks

included 2–5 example images where the annotator was shown an image annotated
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Figure 6.4: Examples of objects of different difficulty. Each image shows an object in
the ground truth (marked by a green circle). The columns indicate how many of the
annotators (out of 10) that detected the object, that is the number of “votes.” No
annotators detected the images in the left-most column.

with ground truth. For some of the datasets, like the cell nuclei, there was some

ambiguity in how sensitive the annotators should be in providing annotations. To

provide some guidance, and to allow them to choose freely for themselves, we gave

all annotators the following instructions:

You will often be uncertain as to whether to click somewhere or not. That

is OK. Just follow your intuition and mark the spot (or leave it unmarked)

without regrets. Your motto should be “I do the best I can.” We will rely

on the clicks from many people to come up with an ultimate score.

When working with annotators on MTurk, there is always the risk that some of the

annotators will be “spammers.” That is, they will do many tasks very quickly to make

as much money as possible, in the hope that their sloppy work will go unnoticed. We

encountered very few spammers (between 1–3% of the total number of annotators).

Because they were so few, we did not exclude their data from our analysis.
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Figure 6.5: Distribution of the duration of time the annotators spent annotating each
image (see Section 6.5.2).

6.5.1 Annotator Performance

The standard measures of performance in detection tasks are precision and recall.

For a given detector, the precision is defined as the fraction of its detections that are

correct according to a ground truth. The recall is the fraction of the total number of

targets that have been detected by the detector. Treating the annotators as detectors,

we can plot one of them as a point on the precision-recall plane, see Figure 6.2.

From Figure 6.2 we can see that there is usually a great spread in the precision-

recall of the different annotators. This is due to three factors. First, each annotator

annotates different images whose statistics may be somewhat different. A second

reason is that many annotators only annotate few images, therefore our measurement

of their precision and recall may be noisy. A third and last reason is that annotators

may have different ability and may be using different criteria for detection [WBBP10].

As mentioned previously, some annotators are “spammers” who aim to do the task

quickly but poorly.

On each plot in Figure 6.2 we show a precision-recall curve based on the votes per

detection, as described in Section 6.4. The curves have ten steps since a detection

can at most have ten votes from the different annotators. For the people and pools

datasets, the point of highest recall on the curve is still 10–20% away from total

recall. As mentioned in Section 6.3, this is because some swimming pools and people

are hard to detect even at the resolution at which the ground truth was provided,

not to mention the lower resolution the MTurk annotation tasks were carried out

at. In contrast, in the diagonal bars experiment all target bars had at least one vote
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(although there were also a small number of false alarms).

For the cell nuclei dataset we have two ground truth annotations from two different

pathologists, and so we show a separate precision-recall plot for each one. On each

plot the other pathologist is shown as a green point. Qualitatively, the two plots

look very similar. Some annotators actually show up as having better precision-recall

than the experts. However, this is due to the annotators labeling only a few images

and serendipitously getting most of the detections of those correct. Annotators that

annotated more than 10 images perform worse than the experts. The precision-recall

curve from the integrated MTurk annotators is also lower than the expert. On the

other hand, the pathologists have years of training while the MTurk annotators only

looked briefly at five training images.

Figure 6.3 shows precision-recall curves for a subsampled portion of each dataset.

For each dataset, the curves converge as the number of annotators per image ap-

proaches 10. One interesting thing to note here is that if a detection has two or more

votes, the precision is close to or above 90% in all datasets but the cell nuclei dataset.

This means that in general, if an object was detected by two separate annotators, we

can be pretty sure it is correct. The cell nuclei dataset is particularly challenging, as

some things that look like nuclei to amateurs can be explained away as something

else by an expert pathologist. Hence the lower precision in the cell nuclei dataset.

To get a sense of what causes the variation in the precision-recall plots, we show ex-

amples of object instances of varying difficulty from all datasets in Figure 6.4. As can

be seen from the examples, the mistakes are often quite understandable. Moreover,

as expected, clear object instances have a lot of detections. Figure 6.6 shows some

examples of false alarms with at least two detections. With a few exceptions, most

false alarms are detections of object instances that share some visual characteristics

with the target object type.
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Figure 6.6: Examples of some typical false alarms (marked with green circles) that
had at least two votes.

6.5.2 Time Spent on Tasks

Figure 6.5 shows how a histogram of the duration of time the annotators spent an-

notating each image. The variance in the duration is large for all datasets, and it

can vary almost two orders of magnitude within the same dataset. However, since

we require that each annotator reads the instructions at least once for each dataset,

some of the outliers may be due to people spending a long time on the instructions.

We use the median duration to compare the different datasets since it is more robust

to outliers than the mean. We observe that there is quite a large difference in how

long annotators spend on the datasets. While the median time to annotate an image

from the people dataset is 17 seconds, it takes annotators almost a minute to label

images from the diagonal bar dataset.

One reason that some datasets take longer to annotate is due to the statistics of

the number of objects in images from the dataset. In Figure 6.7 we see that the time

it takes to annotate an image is directly proportional to the number of detections

an annotator provides for the image. Across the datasets, it takes between 1.3–2.8

seconds to label an object instance in an image. Furthermore there is also a “setup”

cost associated with each dataset, characterized by the intercept of the fitted linear

model. The entry cost varies substantially between the datasets, from less than 20

seconds for the people datasets up to almost a minute in the yellow cabs and the

diagonal bar datasets.
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Figure 6.7: The time spent per image versus the number of detections the annotator
reported for the image (see Section 6.5.2). The blue line is a least squares fitted
linear model, the black dots are individual image annotation assignments, and the
red crosses show median time spent for a given number of detections.

6.5.3 Influence of Pay on Time and Quality

When using a paid crowdsourcing service such as MTurk, there is always the question

of whether compensation affects performance: Will the quality of the annotations go

down if I pay less? Will the annotators be more careful if I pay more? We set out

to investigate these questions by asking for annotations of the same dataset several

times, but at different pay rates.

We chose the cell nuclei dataset as it is quite challenging, and annotators may

be tempted to cheat if they are not paid enough. The dataset was sent to MTurk

for annotation in three rounds with different pay rates per image: $0.03, $0.10 and

$0.20. We let some hours pass between each round, and we ensured that the same

worker could label each image only once. In each of the three rounds we asked three

separate annotators to annotate the same image.

Interestingly, as shown in Figure 6.8, the spread of annotator precision-recall ap-

pears to be very similar across the different pay rates. However, the precision-recall

curve based on voting is slightly better for the $0.20 than the lower rates. We also

found that the time spent per image by annotators stays approximately constant but

is slightly higher for the well-paid annotators (the medians for 3, 10 and 20 cents are

38, 36, and 41 seconds, respectively, see the supplementary materials). This suggests

that there is only a slight, if any, influence of pay on time and quality. However,

we did notice it took longer for low-paying jobs to be completed, suggesting that

annotators are reluctant to start working on them.
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Figure 6.8: The precision-recall plane for the cell nuclei dataset for different pay rates.
Each marker is a different annotator. The black marker is the expert annotator.
The curves are the precision-recall curves obtained from clustering and voting (see
Section 6.5.3).

6.6 Iterative Detection

This section compares the parallel annotation process used in Section 6.5 with an

iterative scheme where annotators build on each others’ annotations. This is similar

to the work of Little et al. on iterative human computation [LCGM09, LCGM10]

which shows that humans working in an iterative manner, improving on each others

results, can perform better than humans working in parallel on certain tasks.

We constructed a task on MTurk where annotators were asked to provide detec-

tion annotations for the different datasets, just as in Section 6.5 with one significant

difference: locations in the images that had previously been clicked twice were marked

by a red circle. The annotators were told that symbols indicated detections that had

been carried out by other annotators, but that they should look for and provide detec-

tion annotations for any objects instances that might have been missed by previous

workers (see the supplementary materials for screenshots of the UI).

To initialize the overlaid red circles, we randomly sampled two annotators from the
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experiments in Section 6.5.1 and clustered their detections (similar to [LCGM09] we

call these “seed” annotations). We kept all clusters with two votes and overlaid them

as circles on the image in the iterative MTurk annotation task. The performance of

the sampled annotators can be seen as the red curves in the upper plots of Figure 6.9.

The task continued in an iterative manner: (1) The annotations (obtained from

one annotator per image) were retrieved from MTurk. (2) The retrieved annotations

were added to the seed annotations and clustered, and all clusters with two or more

votes were overlaid on a new task that was sent to MTurk. The process iterated

through steps (1) and (2).

The hypothesis was that (a) the iterative tasks would be quicker than the parallel

ones as there are fewer detections to be made (see Figure 6.7), and that (b) the recall

would increase as missed object instances were found by annotators not having to

attend to already detected instances.

Figure 6.9 shows that the recall does increase with the iteration number for most

of the datasets, with the precision being slightly impacted (due to more false alarms).

Furthermore, the median time spent per task is generally 20–50% lower for the iter-

ative tasks as compared to the parallel tasks in Figure 6.5, and stays approximately

constant with iteration number. However, comparing Figure 6.9 with the curves for

parallel tasks in Figure 6.3, it clear that parallel tasks perform better than iterative

annotation.

6.7 Discussion and Conclusion

We carried out our investigation by asking MTurk workers to detect objects in 1100

images coming from five different collections. The datasets were chosen so as to probe

visual detection on images with different statistics.

Our main observations are: (a) Annotation takes 20–50 seconds per image plus

1–3 seconds per detection, i.e. approximately one minute for the typical image in

our database. Annotation times vary considerably across images and annotators. (b)

Compensation of around 0.1–0.2$ / image is adequate for achieving the best results.
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Figure 6.9: The iterative labeling task. Top: the improvement in the precision-recall
with each iteration. Bottom: the median time (in seconds) annotator spent per image
in each iteration for the different datasets.
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This translates to approximately 5–10$/hour per annotator. (c) The precision-recall

characteristics of different annotators varies considerably. However, annotators tend

to group around the same precision-recall curve, indicating that their performance

is comparable and what changes is how conservative they are in committing to a

detection. The only annotators whose performance is significantly superior are those

who, by annotating very few images, enjoy a ‘lucky streak’. (d) The joint performance

of 10 annotators approaches that of experts. However, it is unlikely that by combining

very large numbers of naive annotators one could match or beat the performance of

experts. (e) It is possible to achieve good precision with just two annotators, by

selecting locations that are clicked by both. However, achieving high recall rates

requires on the order of 10 annotators. (f) We do not find that serializing the work of

multiple annotators has significant advantages with respect to combining the parallel

work of the same number of annotators.

In the present study we combined the work of multiple annotators by voting.

While this technique appears to be both robust and effective, it is possible that more

sophisticated probabilistic methods might be more information-efficient by estimat-

ing the individual characteristics of the annotators as well as the difficulty of each

detection [DS79, WRW+09, WBBP10].

6.8 Appendix: Annotation Statistics

6.8.1 Annotator Activity

How much does each annotator annotate? The histograms in Figure 6.10 show the

distribution of the annotators over the size of the jobs they carried out. Notice that

log scale was used for the horizontal axis. The histograms show that annotators

are, to a first order of approximation, distributed uniformly over the log scale. The

right skew of the ‘People’ plot may indicate that this was an enjoyable task and that

annotators decided to annotate more images, while the left skew of the ‘Diagonal

Bars’ plot may mean that the task was less enjoyable.
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Figure 6.10: Annotator activity. Histograms showing the distribution of annotator
activity, as measured by how many images the annotators annotated.
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6.8.2 Error versus Annotator Activity

Do annotators that annotate a lot of images do a good job on those images? In

Figure 6.11, each axes shows the total error rate of the annotators versus the number

of images that the annotators annotated. The total error rate r is computed by

r = (f + m)/(m + c), where f is the number of false alarms, m is the number of

misses, and c is the number of correct detections. An annotator is represented as a

marker on the plot. Red markers indicate that the annotator annotated fewer than

10 images, black markers that the annotator annotated at least 10 images. The plots

have been divided into three horizontal bands by hand, to highlight the “bad” (red),

“good” (green), and “lucky” annotators (yellow). The bad annotators have high

errors, the good annotators have low errors, even after annotating many images, and

the lucky annotators manage to get very low error rates only because they annotate

a few easy images.

6.8.3 Targets per Image

How many target objects are present in each image? The histograms in Figure 6.12

show the distribution of targets per image for each dataset. In the diagonal bars

dataset we placed either 5, 10 or 20 target objects per image.

6.8.4 Task Acceptance Time

How long does it take for MTurk workers to start working on the task after it is

published? Figure 6.13 show how quickly jobs are completed on MTurk.

Figure 6.14 shows same data as for Figure 6.13, but shown as the percentage of

the total number of HITs completed at a given point in time. Note that the horizontal

axes have different scale.
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Figure 6.11: Annotator error rate versus activity. In each plot, an annotator is
represented by a dot denoting the number of images he annotated, and the average
error in the annotations. Red markers indicate that the annotator annotated fewer
than 10 images, black markers that the annotator annotated at least 10 images. The
plots have been divided into three horizontal bands by hand, to highlight the “bad”
(red), “good” (green), and “lucky” annotators (yellow).
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Figure 6.12: The density of targets per image. Each histogram shows the distribution
of targets per image.
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Figure 6.13: Time to completion for tasks on MTurk. The horizontal axis shows the
time (in seconds) from the time the HITs were released on MTurk until a worker
starts working on the HIT.
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Figure 6.14: Percentage of HITs completed over time. Same data as in Figure 6.13
but plotted differently.



100

100 101 102 103

time spent per image (s)

0

10

20

30

40

n
u
m

b
e
r 

o
f 

im
a
g
e
 a

n
n
o
ta

ti
o
n
s

3 cents per image
median = 38.0 s

mean = 51.0 s

100 101 102 103

time spent per image (s)

0

20

40

60

80

100

120

140

n
u
m

b
e
r 

o
f 

im
a
g
e
 a

n
n
o
ta

ti
o
n
s

10 cents per image
median = 36.0 s

mean = 48.3 s

100 101 102 103

time spent per image (s)

0

10

20

30

40

50

n
u
m

b
e
r 

o
f 

im
a
g
e
 a

n
n
o
ta

ti
o
n
s

20 cents per image
median = 41.0 s

mean = 71.2 s

Figure 6.15: Time spent annotating images versus for three different levels of payment.

6.8.5 Time Spent For Different Levels of Payment

As references in the paper, the histograms in Figure 6.15 show how the distributions

of time spent per task vary for different levels of payment ($0.03, $0.10, $0.20 per

image annotated) on the cell nuclei dataset. There is no significant difference between

the distributions.

6.8.6 Time Spent versus Number of Targets

Figure 6.16 shows the time spent per task versus the number of ground truth target

objects in the image. Red marker is the median for a given number of targets. This

is the similar to Figure 7 in the paper, but shows the number of targets instead of

the number of detections.

6.8.7 Error versus Time Spent on Task

Do annotators that spend more time on a task have lower error rates? The plots

in Figure 6.17 show the total error rate (as defined previously) versus the median

time an annotator spent annotating an image. There seems to be little evidence

that annotators that spend more time are better at the task. The annotators that

annotated fewer than 10 images are shown as red dots while annotators that annotated
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Figure 6.16: The time spent per image versus the number of targets in the image.
Red marker is the median for a given number of targets. The parameters of the blue
line fitted using least squares to the data is shown in the upper left of each plot.
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10 or more images are shown in black.

6.8.8 Annotator Precision Recall

Figure 6.18 is the same as Figure 6.2, except that it shows annotator that labeled

fewer than 10 images as red markers, and the others as black markers. This is to

show that many of the worst annotators labeled very few images, and may have given

up after that.

6.8.9 Time Spent in Iterative Task

The distribution of time spent per image for the iterative task. Figure 6.19 provides

more information than the bottom diagram of Figure 6.9. The first row shows the

first iteration after the “seed” task, the second row shows the second iteration, and

so on until the fifth iteration.

6.8.10 Time Spent For Varying Target Difficulty

The diagonal bars dataset was generated with three levels of difficulty. The target

bars could be oriented at either 10◦, 15◦, or 30◦ degrees off the diagonal. All bars

in an image were of the same difficulty, but the number of bars were varied at 5, 10

and 20 bars per image. The histograms in Figure 6.20 show the distribution of the

time spent for different levels of target difficulty, the top histogram showing the most

difficult task. It is clear that our annotators were faster when the task was easier.

6.8.11 Cell Nuclei Counting: Experts versus Turkers

Pathologists and biologists are often interested in counting the number of cells in a

particular sample image. The plots in Figure 6.21 look at how well the annotators

perform on this task. The horizontal axis in the plots below show the number of

cell detections made in each image for one of the expert pathologists. For the first

three images, the annotators’ detections were clustered, and a cluster was counted



103

0 20 40 60 80 100 120 140 160 180

median time spent (s)

0.0

0.2

0.4

0.6

0.8

1.0

to
ta

l 
e
rr

o
r 

ra
te

People

0 50 100 150 200 250 300

median time spent (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

to
ta

l 
e
rr

o
r 

ra
te

Yellow Cabs

0 50 100 150 200 250

median time spent (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

to
ta

l 
e
rr

o
r 

ra
te

Pools

0 50 100 150 200 250 300

median time spent (s)

0.0

0.5

1.0

1.5

2.0

to
ta

l 
e
rr

o
r 

ra
te

Diagonal Bars

0 50 100 150 200 250

median time spent (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

to
ta

l 
e
rr

o
r 

ra
te

Cell Nuclei

Figure 6.17: Each marker represents a different annotator, with the horizontal axis
being the median time spent and the vertical axis being the total error rate. The an-
notators that annotated fewer than 10 images are shown as red dots while annotators
that annotated 10 or more images are shown in black.
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Figure 6.18: Precision and recall for each annotator. Same data as in Figure 6.2.
Only difference is in the presentation: annotator that labeled fewer than 10 images
as red markers, and the others as black markers.



105

100 101 102 103

time spent per image (s)

0

2

4

6

8

10

n
u
m

b
e
r 

o
f 

a
n
n
o
ta

to
rs

Pools
median = 26.0 s

mean = 41.4 s

100 101 102 103

time spent per image (s)

0

2

4

6

8

10

12

n
u
m

b
e
r 

o
f 

a
n
n
o
ta

to
rs

median = 44.0 s

mean = 49.3 s

100 101 102 103

time spent per image (s)

0

5

10

15

n
u
m

b
e
r 

o
f 

a
n
n
o
ta

to
rs

median = 30.0 s

mean = 33.7 s

100 101 102 103

time spent per image (s)

0

2

4

6

8

10

12

n
u
m

b
e
r 

o
f 

a
n
n
o
ta

to
rs

median = 15.0 s

mean = 35.1 s

100 101 102 103

time spent per image (s)

0

2

4

6

8

10

12

n
u
m

b
e
r 

o
f 

a
n
n
o
ta

to
rs

median = 36.0 s

mean = 49.5 s

100 101 102 103

time spent per image (s)

0

5

10

15

20

25

30

35

n
u
m

b
e
r 

o
f 

a
n
n
o
ta

to
rs

Yellow Cabs
median = 18.0 s

mean = 29.9 s

100 101 102 103

time spent per image (s)

0

5

10

15

20

25

30
n
u
m

b
e
r 

o
f 

a
n
n
o
ta

to
rs

median = 28.0 s

mean = 34.0 s

100 101 102 103

time spent per image (s)

0

5

10

15

20

25

n
u
m

b
e
r 

o
f 

a
n
n
o
ta

to
rs

median = 25.0 s

mean = 32.7 s

100 101 102 103

time spent per image (s)

0

5

10

15

20

n
u
m

b
e
r 

o
f 

a
n
n
o
ta

to
rs

median = 28.5 s

mean = 52.5 s

100 101 102 103

time spent per image (s)

0

5

10

15

20

25

n
u
m

b
e
r 

o
f 

a
n
n
o
ta

to
rs

median = 30.0 s

mean = 37.3 s

100 101 102 103

time spent per image (s)

0

10

20

30

40

50

n
u
m

b
e
r 

o
f 

a
n
n
o
ta

to
rs

People
median = 14.0 s

mean = 21.5 s

100 101 102 103

time spent per image (s)

0

10

20

30

40

50

n
u
m

b
e
r 

o
f 

a
n
n
o
ta

to
rs

median = 20.0 s

mean = 30.7 s

100 101 102 103

time spent per image (s)

0

20

40

60

80

100
n
u
m

b
e
r 

o
f 

a
n
n
o
ta

to
rs

median = 12.0 s

mean = 17.5 s

100 101 102 103

time spent per image (s)

0

10

20

30

40

50

60

70

n
u
m

b
e
r 

o
f 

a
n
n
o
ta

to
rs

median = 12.0 s

mean = 18.9 s

100 101 102 103

time spent per image (s)

0
10
20
30
40
50
60
70
80

n
u
m

b
e
r 

o
f 

a
n
n
o
ta

to
rs

median = 15.0 s

mean = 19.7 s

100 101 102 103

time spent per image (s)

0

2

4

6

8

10

12

14

n
u
m

b
e
r 

o
f 

a
n
n
o
ta

to
rs

Cell Nuclei
median = 21.0 s

mean = 29.4 s

100 101 102 103

time spent per image (s)

0

5

10

15

n
u
m

b
e
r 

o
f 

a
n
n
o
ta

to
rs

median = 12.0 s

mean = 27.2 s

100 101 102 103

time spent per image (s)

0
2
4
6
8

10
12
14
16

n
u
m

b
e
r 

o
f 

a
n
n
o
ta

to
rs

median = 17.5 s

mean = 24.2 s

100 101 102 103

time spent per image (s)

0
2
4
6
8

10
12
14
16

n
u
m

b
e
r 

o
f 

a
n
n
o
ta

to
rs

median = 14.5 s

mean = 19.9 s

100 101 102 103

time spent per image (s)

0

5

10

15

20

25

n
u
m

b
e
r 

o
f 

a
n
n
o
ta

to
rs

median = 14.0 s

mean = 30.1 s

Figure 6.19: Time spent per image in the iterative annotation task. The first row show
the first iteration after the “seed” task, the second row shows the second iteration,
and so on until the fifth iteration.
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Figure 6.20: Time spent per image for different levels of target ambiguity.
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as a detection if it had at least n number of votes (a cluster could at most have 10

votes). The number of votes needed, n, is varied in the three first plots. In the forth

plot, the first expert is plotted against the number of detections per image provided

by the second expert. As a sanity check, in the fifth plot the second expert is on

the horizontal axis, and the annotator counts with two votes are on the vertical axis.

Random jitter of up to 0.3 counts was added to separate overlapping markers.

6.9 Appendix: Detection Clustering

The matching algorithm is described in the main paper. This section describes a

simple heuristic clustering algorithm for clustering the detections.

Let X = {X1, X2, . . . , Xn} be a list of detection lists provided by different anno-

tators, where Xp = {xp1, xp2, . . . , xps} is a list of detections from the pth annotator.

Each detection is a D-dimensional point, xpi ∈ RD (in our experiments D = 2 al-

ways). Let C = {c1, . . . , cm} be a list of cluster centers. Let A = {A1, . . . , Am} be a

list of lists of cluster assignments. Aq is a list of the detections in cluster q.

1. Sort the lists in X by the size of each list, with the largest first. Denote the

sorted list of lists of detections X̂ .

2. Initialize the cluster centers C and the cluster assignment lists A with the

detections from the first list in X̂ (the list with most detections).

3. For each of the remaining lists Xp ∈ X̂ , match the detections from list Xp to

the cluster centers in C and assign them to the corresponding assignment lists

in A:

(a) For each detection xpi ∈ Xp, find the nearest neighbor cluster r (with

center cr) with no detections from the current detection list Xp assigned

to it.

(b) If the distance to the nearest neighbor is greater than a threshold, d(xpi, cr) >

τ , then assign the detection to a new cluster. Add the new cluster center
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Figure 6.21: Comparing non-expert MTurk annotators to experts. The plots show
the number of cells detected by a consensus of MTurk annotators with that of expert
1 or expert 2 on the cell nuclei dataset.
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to C and add a new assignment list to A containing only xpi. Process the

next detection.

(c) Otherwise, check if the nearest neighbor cluster r has other detections in

Xp that are closer than xpi. If there are no such detections, then assign xpi

to cluster r, i.e. add xpi to Ar.

(d) If a closer detection xpj was found, i.e. d(xpj, cr) < d(xpi, cr), then assign

xpj to cluster r. Go back to (a) and try to assign xpi again.

(e) Every time a detection is assigned to a cluster, the center of the cluster is

recomputed by taking the mean location of all assigned detections.
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Chapter 7

Active Labeling

7.1 Abstract

Labeling large datasets has become faster, cheaper, and easier with the advent of crowd-

sourcing services like Amazon Mechanical Turk. How can one trust the labels obtained

from such services? We propose a model of the labeling process which includes label

uncertainty, as well a multi-dimensional measure of the annotators’ ability. From the

model we derive an online algorithm that estimates the most likely value of the labels

and the annotator abilities. It finds and prioritizes experts when requesting labels, and

actively excludes unreliable annotators. Based on labels already obtained, it dynam-

ically chooses which images will be labeled next, and how many labels to request in

order to achieve a desired level of confidence. Our algorithm is general and can handle

binary, multi-valued, and continuous annotations (e.g. bounding boxes). Experiments

on a dataset containing more than 50,000 labels show that our algorithm reduces the

number of labels required, and thus the total cost of labeling, by a large factor while

keeping error rates low on a variety of datasets.

7.2 Introduction

Crowdsourcing, the act of outsourcing work to a large crowd of workers, is rapidly

changing the way datasets are created. Not long ago, labeling large datasets could

take weeks, if not months. It was necessary to train annotators on custom-built
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interfaces, often in person, and to ensure they were motivated enough to do high

quality work. Today, with services such as Amazon Mechanical Turk (MTurk), it is

possible to assign annotation jobs to hundreds, even thousands, of computer-literate

workers and get results back in a matter of hours. This opens the door to labeling

huge datasets with millions of images, which in turn provides great possibilities for

training computer vision algorithms.

The quality of the labels obtained from annotators varies. Some annotators pro-

vide random or bad quality labels in the hope that they will go unnoticed and still

be paid, and yet others may have good intentions but completely misunderstand the

task at hand. The standard solution to the problem of “noisy” labels is to assign

the same labeling task to many different annotators, in the hope that at least a few

of them will provide high quality labels or that a consensus emerges from a great

number of labels. In either case, a large number of labels is necessary, and although

a single label is cheap, the costs can accumulate quickly.

If one is aiming for a given label quality for the minimum time and money, it

makes more sense to dynamically decide on the number of labelers needed. If an

expert annotator provides a label, we can probably rely on it being of high quality,

and we may not need more labels for that particular task. On the other hand, if an

unreliable annotator provides a label, we should probably ask for more labels until

we find an expert or until we have enough labels from non-experts to let the majority

decide the label.

We present an online algorithm to estimate the reliability or expertise of the anno-

tators, and to decide how many labels to request per image based on who has labeled

it. The model is general enough to handle many different types of annotations, and

we show results on binary, multi-valued, and continuous-valued annotations collected

from MTurk.

The general annotator model is presented in Section 7.4 and the online version

in Section 7.5. Adaptations of the model to discrete and continuous annotations are

discussed in Section 7.6. The datasets are described in Section 7.7, the experiments

in Section 7.8, and we conclude in Section 7.9.
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2 25 22 26 2 25 22 26 2 25 22 26

2 25 22 26 2 25 22 26 2 25 22 26

Figure 7.1: Examples of binary labels obtained from Amazon Mechanical Turk, (see
Figure 7.2 for an example of continuous labels). The boxes show the labels provided
by four workers (identified by the number in each box); green indicates that the worker
selected the image, red means that he or she did not. The task for each annotator was
to select only images that he or she thought contained a Black-chinned Hummingbird.
Figure 7.5 shows the expertise and bias of the workers. Worker 25 has a high false
positive rate, and 22 has a high false negative rate. Worker 26 provides inconsistent
labels, and 2 is the annotator with the highest accuracy. Photos in the top row were
classified to contain a Black-chinned Hummingbird by our algorithm, while the ones
in the bottom row were not.
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7.3 Related Work

The quality of crowdsourced labels (also called annotations or tags) has been studied

before in different domains. In computer vision, the quality of annotations provided

by MTurk workers and by volunteers has been explored for a wide range of annota-

tion types [SF08, RTMF08]. In natural language processing, Snow et al. [SOJN08]

gathered labels from MTurk and compared the quality to ground truth.

The most common method for obtaining ground truth annotations from crowd-

sourced labels is by applying a majority consensus heuristic. This has been taken

one step further by looking at the consistency between labelers. For multi-valued

annotations, Dawid and Skene [DS79] modeled the individual annotator accuracy by

a confusion matrix. Sheng et al. [SPI08] also modeled annotator quality, and showed

how repeated and selective labeling increased the overall labeling quality on synthetic

data. Smyth et al. [SFB+95] integrated the opinions of many experts to determine a

gold standard, and Spain and Perona [SP08] developed a method for combining prior-

itized lists obtained from different annotators. Using annotator consistency to obtain

ground truth has also been used in the context of paired games and CAPTCHAs

[vAD04, vAMM+08]. Whitehill et al. [WRW+09] consider the difficulty of the task

and the ability of the annotators. Annotator models have also been used to train

classifiers with noisy labels [RYZ+09].

Vijayanarasimhan and Grauman [VG09] proposed a system which actively asks

for image labels that are the most informative and cost effective. To our knowledge,

the problem of online estimation of annotator reliabilities has not been studied before.

7.4 Modeling Annotators and Labels

We assume that each image i has an unknown “target value” which we denote by

zi. This may be a continuous or discrete scalar or vector. The set of all N images,

indexed by image number, is I = {1, . . . , N}, and the set of corresponding target

values is abbreviated z = {zi}Ni=1. The reliability or expertise of annotator j is
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described by a vector of parameters, aj. For example, it can be scalar, aj = aj,

such as the probability that the annotator provides a correct label; specific annotator

parameterizations are discussed in Section 7.6. There are M annotators in total, A =

{1, . . . ,M}, and the set of their parameter vectors is a = {aj}Mj=1. Each annotator

j provides labels Lj = {lij}i∈Ij for all or a subset of the images, Ij ⊆ I. Likewise,

each image i has labels Li = {lij}j∈Ai
provided by a subset of the annotators Ai ⊆ A.

The set of all labels is denoted L. For simplicity, we will assume that the labels lij

belong to the same set as the underlying target values zi; this assumption could, in

principle, be relaxed.

Our causal model of the labeling process is shown schematically in Figure 7.4.

The image target values and annotator parameters are assumed to be generated

independently. To ensure that the estimation process degrades gracefully with little

available label data, we take the Bayesian point of view with priors on zi and aj

parameterized by ζ and α, respectively. The priors encode our prior belief of how

skilled the annotators are (e.g. that half will be experts and the rest unskilled), and

what kind of target values we expect. The joint probability distribution can thus be

factorized as

p(L, z,a) =

N∏

i=1

p(zi | ζ)

M∏

j=1

p(aj | α)
∏

lij∈L
p(lij | zi,aj). (7.1)

Inference: Given the observed variables, that is, the labels L, we would like to infer

the hidden variables, i.e. the target values z, as well as the annotator parameters a.

This can be done using a Bayesian treatment of the Expectation-Maximization (EM)

algorithm [DLR+77].

E-step: Assuming that we have a current estimate â of the annotator parameters,

we compute the posterior on the target values:

p̂(z) = p(z | L, â) ∝ p(z) p(L | z, â) =
N∏

i=1

p̂(zi), (7.2)
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Figure 7.2: Examples of bounding boxes (10 per image) obtained from MTurk work-
ers who were instructed to provide a snug fit. Per our model, the green boxes are
correct and the red boxes incorrect. Most workers provide consistent labels, but two
unreliable workers stand out: no. 53 and 58 (they provided two of the incorrect boxes
in each image). As can be seen from Figure 7.6c, most of the labels provided by these
two workers were of low quality.
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where

p̂(zi) = p(zi | ζ)
∏

j∈Ai

p(lij | zi, âj). (7.3)

M-step: To estimate the annotator parameters a, we maximize the expectation

of the logarithm of the posterior on a with respect to p̂(zi) from the E-step. We call

the auxiliary function being maximized Q(a, â). Thus the optimal a? is found from

a? = arg max
a

Q(a, â), (7.4)

where â is the estimate from the previous iteration, and

Q(a, â) = Ez [log p(L | z, a) + log p(a | α)] (7.5)

=
M∑

j=1

Qj(aj, âj), (7.6)

where Ez[·] is the expectation with respect to p̂(z) and Qj(aj, âj) is defined as

Qj(aj , âj) = log p(aj | α) +
∑

i∈Ij
Ezi [log p(lij | zi,aj)] . (7.7)

Hence, the optimization can be carried out separately for each annotator, and relies

only on the labels that the annotator provided. It is clear from the form of (7.3) and

(7.7) that any given annotator is not required to label every image.

7.5 Online Estimation

The factorized form of the general model in (7.1) allows for an online implementation

of the EM-algorithm. Instead of asking for a fixed number of labels per image, the

online algorithm actively asks for labels only for images where the target value is still

uncertain. Furthermore, it finds and prioritizes expert annotators and blocks sloppy

annotators online. The algorithm is outlined in Figure 7.5 and discussed in detail in

the following paragraphs.

Initially, we are faced with a set of images U with unknown target values z. The
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Figure 3. Plate representation of the general model. The i, j pair
in the middle plate, indicating which images each annotator labels,
is determined by some process that depends on the algorithm (see
Sections 3–4).

Inference: Given the observed variables, that is, the la-
bels L, we would like to infer the hidden variables, i.e. the
target values z, as well as the annotator parameters a. This
can be done using a Bayesian treatment of the Expectation-
Maximization (EM) algorithm [2].

E-step: Assuming that we have a current estimate â of
the annotator parameters, we compute the posterior on the
target values:

p̂(z) = p(z | L, â) ∝ p(z) p(L | z, â) =

N�

i=1

p̂(zi), (2)

where

p̂(zi) = p(zi | ζ)
�

j∈Ai

p(lij | zi, âj). (3)

M-step: To estimate the annotator parameters a, we
maximize the expectation of the logarithm of the posterior
on a with respect to p̂(zi) from the E-step. We call the aux-
iliary function being maximized Q(a, â). Thus the optimal
a� is found from

a� = arg max
a

Q(a, â), (4)

where â is the estimate from the previous iteration, and

Q(a, â) = Ez [log p(L | z,a) + log p(a | α)] (5)

=
M�

j=1

Qj(aj , âj), (6)

where Ez[·] is the expectation with respect to p̂(z) and
Qj(aj , âj) is defined as

Qj(aj , âj) = log p(aj | α)+
�

i∈Ij

Ezi [log p(lij | zi,aj)] . (7)

Hence, the optimization can be carried out separately for
each annotator, and relies only on the labels that the anno-
tator provided. It is clear from the form of (3) and (7) that
any given annotator is not required to label every image.

Input: Set of images U to be labeled
1: Initialize I, L, E, B = {∅}
2: while |I| < |U| do
3: Add n images {i : i ∈ (U \ I)} to I
4: for i ∈ I do
5: Compute p̂(zi) from Li and a
6: while maxzi p̂(zi) < τ and |Li| < m do
7: Ask annotators j ∈ E to provide a label lij
8: if no label lij is provided within time T then
9: Get lij from annotator j ∈ (A� \ B)

10: end if
11: Li ← {Li ∪ lij}, A ← {A ∪ {j}}
12: Recompute p̂(zi) from updated Li and a
13: end while
14: end for
15: Set E, B = {∅}
16: for j ∈ A do
17: Estimate aj from p̂(zi) by maxaj Qj(aj , âj)
18: if var(aj) < θv then
19: if aj satisfies an expert criterion then
20: E ← {E ∪ {j}}
21: else
22: B ← {B ∪ {j}}
23: end if
24: end if
25: end for
26: end while
27: Output p̂(z) and a

Figure 4. Online algorithm for estimating annotator parameters
and actively choosing which images to label. The label collec-
tion step is outlined on lines 3–14, and the annotator evaluation
step on lines 15–25. See Section 4 for details.

4. Online Estimation

The factorized form of the general model in (1) allows for
an online implementation of the EM-algorithm. Instead of
asking for a fixed number of labels per image, the online
algorithm actively asks for labels only for images where the
target value is still uncertain. Furthermore, it finds and pri-
oritizes expert annotators and blocks sloppy annotators on-
line. The algorithm is outlined in Figure 4 and discussed in
detail in the following paragraphs.

Initially, we are faced with a set of images U with un-
known target values z. The set I ⊆ U denotes the set of im-
ages for which at least one label has been collected and L is
the set of all labels provided so far. Initially I and the set of
all labels L are empty. We assume that there is a large pool
of annotators A�, of different and unknown ability, available
to provide labels. The set of annotators that have provided
labels so far is denoted A ⊆ A� and is initially empty. We
keep two lists of annotators: the expert-list, E ⊆ A, is a
set of annotators who we trust to provide good labels, and
the bot-list, B ⊆ A, are annotators that we know provide
low quality labels and would like to exclude from further
labeling. We call the latter list “bot”-list because the labels
could as well have been provided by a robot choosing la-
bels at random. The algorithm proceeds by iterating two

3

Figure 7.3: Plate representation of the general model. The i, j pair in the middle
plate, indicating which images each annotator labels, is determined by some process
that depends on the algorithm (see Sections 7.4–7.5).

Input: Set of images U to be labeled

1: Initialize I,L, E ,B = {∅}
2: while |I| < |U| do
3: Add n images {i : i ∈ (U \ I)} to I
4: for i ∈ I do
5: Compute p̂(zi) from Li and a
6: while maxzi

p̂(zi) < τ and |Li| < m do
7: Ask expert annotators j ∈ E to provide a label lij
8: if no label lij is provided within time T then
9: Obtain label lij from some annotator j ∈ (A′ \ B)

10: Li ← {Li ∪ lij}, A ← {A ∪ {j}}
11: Recompute p̂(zi) from updated Li and a
12: Set E ,B = {∅}
13: for j ∈ A do
14: Estimate aj from p̂(zi) by maxaj Qj(aj , âj)
15: if var(aj) < θv then
16: if aj satisfies an expert criterion then
17: E ← {E ∪ {j}}
18: else
19: B ← {B ∪ {j}}
20: Output p̂(z) and a

Figure 7.4: Online algorithm for estimating annotator parameters and actively choos-
ing which images to label. The label collection step is outlined on lines 3–11, and the
annotator evaluation step on lines 12–19. See Section 7.5 for details.
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set I ⊆ U denotes the set of images for which at least one label has been collected

and L is the set of all labels provided so far. Initially I and the set of all labels L
are empty. We assume that there is a large pool of annotators A′, of different and

unknown ability, available to provide labels. The set of annotators that have provided

labels so far is denoted A ⊆ A′ and is initially empty. We keep two lists of annotators:

the expert-list, E ⊆ A, is a set of annotators who we trust to provide good labels,

and the bot-list, B ⊆ A, are annotators that we know provide low quality labels and

would like to exclude from further labeling. We call the latter list “bot”-list because

the labels could as well have been provided by a robot choosing labels at random.

The algorithm proceeds by iterating two steps until all the images have been labeled:

(1) the label collection step, and (2) the annotator evaluation step.

Label collection step: I is expanded with n new images from U . Next, the

algorithm asks annotators to label the images in I. First annotators in E are asked.

If no annotator from E is willing to provide a label within a fixed amount of time T ,

the label is instead collected from an annotator in (A′ \ B). For each image i ∈ I,

new labels lij are requested until either the posterior on the target value zi is above

a confidence threshold τ ,

max
zi

p̂(zi) > τ, (7.8)

or the number of labels |Li| has reached a maximum cutoff m. It is also possible

to set different thresholds for different zi’s, in which case we can trade off the costs

of different kinds of target value misclassifications. The algorithm proceeds to the

annotator evaluation step.

Annotator evaluation step: Since posteriors on the image target values p̂(zi)

are computed in the label collection step, the annotator parameters can be estimated

in the same manner as in the M-step in the EM-algorithm, by maximizing Qj(aj, âj)

in (7.7). Annotator j is put in either E or B if a measure of the variance of aj is

below a threshold,

var(aj) < θv, (7.9)

where θv is the threshold on the variance. If the variance is above the threshold
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we do not have enough evidence to consider the annotator to be an expert or a bot

(unreliable annotator). If the variance is below the threshold, we place the annotator

in E if aj satisfies some expert criterion based on the annotation type, otherwise the

annotator will be placed in B and excluded labeling in the next iteration.

On MTurk the expert- and bot-lists can be implemented by using “qualifications”.

A qualification is simply a pair of two numbers, a unique qualification id number and

a scalar qualification score, that can be applied to any worker. The qualifications can

then be used to restrict (by inclusion or exclusion) which workers are allowed to work

on a particular task.

7.6 Annotation Types

Binary annotations are often used for classification, such as “Does the image

contain an object from the visual class X or not?”. In this case, both the target value zi

and the label lij are binary (dichotomous) scalars that can take values zi, lij ∈ {0, 1}.
A natural parameterization of the annotators is in terms of true negative and true

positive rates. That is, let aj = (a0
j , a

1
j)

T be the vector of annotator parameters,

where

p(lij = 1 | zi = 1, aj) = a1
j ,

p(lij = 0 | zi = 0, aj) = a0
j . (7.10)

As a prior for aj we chose a mixture of beta distributions,

p(a0
j , a

1
j ) =

K∑

k=1

πak Beta(α0
k,0, α

1
k,0) Beta(α0

k,1, α
1
k,1). (7.11)

Our prior belief of the number of different types of annotators is encoded in the

number of components K. For example, we can assume K = 2 kinds of annotators:

honest annotators of different grades (unreliable to experts) are modeled by Beta

densities that are increasingly peaked towards one, and adversarial annotators who
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provide labels that are opposite of the target value are modeled by Beta distributions

that are peaked towards zero (we have actually observed such annotators). The

prior also acts as a regularizer in the EM-algorithm to ensure we do not classify an

annotator as an expert until we have enough evidence.

The parameterization of true positive and true negative rates allows us to cast

the model in a signal detection theoretic framework [Wic02], which provides a more

natural separation of annotator bias and accuracy. Assume a signal xi is generated in

the head of the annotator as a result of some neural processing when the annotator

is looking at image i. If the signal xi is above a threshold tj, the annotator chooses

lij = 1, otherwise picking lij = 0. If we assume that the signal xi is a random variable

generated from one of two distributions, p(xi | zi = k) ∼ N (µkj , σ
2), we can compute

the annotator’s sensitivity index d′j, defined as [Wic02],

d′j =
|µ1
j − µ0

j |
σ

. (7.12)

Notice that d′j is a quantity representing the annotator’s ability to discriminate im-

ages belonging to the two classes, while tj is a quantity representing the annotator’s

propensity towards label 1 (low tj) or label 0 (high tj). By varying tj and recording

the false positive and false negative rates, we get the receiver operating characteristic

(ROC curve) of the annotator. When tj = 0 then the annotator is unbiased and will

produce equal false positive and negative error rates of 50%, 31%, 15%, and 6% for

d′j = {0, 1, 2, 3} respectively. It is possible go between the two parameterizations if

we assume that σ is the same for all annotators. For example, by assuming σ = 1,

µ0
j = −d′j/2 and µ1

j = d′j/2, we can convert between the two representations using,


1 1

2

1 −1
2




tj
d′j


 =


 Φ−1(a0

j)

Φ−1(1− a1
j)


 , (7.13)

where Φ−1(·) is the inverse of the standard normal cumulative probability density

function.

For binary labels, the stopping criterion in (7.8) has a very simple form. Consider
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the logarithm of the ratio of the posteriors,

Ri = log
p(zi = 1 | Li,a)

p(zi = 0 | Li,a)
= log

p(zi = 1)

p(zi = 0)
+
∑

lij∈Li
Rij , (7.14)

where Rij = log
p(lij |zi=1,aj)

p(lij |zi=0,aj)
. Thus, every label lij provided for image i by some

annotator j adds another positive or negative term Rij to the sum in (7.14). The

magnitude |Rij| increases with d′j, so that the opinions of expert annotators are valued

more than unreliable ones. The criterion in (7.8) is equivalent to a criterion on the

magnitude on the log ratio,

|Ri| > τ ′ where τ ′ = log
τ

1− τ . (7.15)

Observe that τ ′ could be different for positive and negative Ri. One would wish to

have different thresholds if one had different costs for false alarm and false reject

errors. In this case, the stopping criterion is equivalent to Wald’s stopping rule for

accepting or rejecting the null hypothesis in the Sequential Probability Ratio Test

(SPRT) [Wal45].

To decide when we are confident in an estimate of aj, in the online algorithm,

we estimate the variance var(aj) by fitting a multivariate Gaussian to the peak of

p(aj | L, z). As a criterion for expertise, i.e. whether to add annotator j to E , we use

d′j > 2 corresponding to a 15% error rate.

Multi-valued annotations where zi, lij ∈ {1, . . . , D}, can be modeled in almost

the same way as binary annotations. A general method is presented in [DS79] for a full

confusion matrix. However, we used a simpler model where a single aj parameterizes

the ability of the annotator,

p(lij = zi | aj) = aj, (7.16)

p(lij 6= zi | aj) =
1− aj
D − 1

.
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Thus, the annotator is assumed to provide the correct value with probability aj and

an incorrect value with probability (1−aj). Using this parameterization, the methods

described above can be applied to the multi-valued (polychtomous) case.

Continuous-valued annotations are also possible. To make this section concrete,

and for simplicity of notation, we will use bounding boxes, see Figure 7.2. However,

the techniques used here can be extended to other types of annotations, such as object

locations, segmentations, ratings, etc.

The image labels and target values are the locations of the upper left (x1, y1) and

lower right (x2, y2) corners of the bounding box, and thus zi and lij are 4-dimensional

vectors of continuous variables (x1, y1, x2, y2)T. The annotator behavior is assumed

to be governed by a single parameter aj ∈ [0, 1], which is the probability that the

annotator attempts to provide an honest label. The annotator provides a “random”

bounding box with probability (1 − aj). An honest label is assumed to be normally

distributed from the target value

p(lij | zi) = N (lij | zi,Σ), (7.17)

where Σ = σ2I is assumed to be a diagonal. One can take the Bayesian approach

and have a prior on σ, and let it vary for different images. However, for simplicity we

choose to keep σ fixed at 4 pixels (in screen coordinates). If the annotator decides

not to provide an honest label, the label is assumed to be drawn from a uniform

distribution,

p(lij | zi) = λ−2
i , (7.18)

where λi is the area of image i (other variants, such as a very broad Gaussian, are

also possible). The posterior on the label, used in the E-step in (7.2), can thus be

written as a mixture,

p(lij | zi, aj) = ajN (lij | zi,Σ) + (1− aj)
1

λ2
. (7.19)
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Figure 7.5: Estimates of expertise and bias in annotators providing binary labels.
Annotators are plotted with different symbols and numbers to make them easier to
locate across the plots. (a) Estimated true negative and positive rates (a0

j , a
1
j). The

dotted curves show the ROC curves for d′j = {0, 1, 2, 3}. (b) Estimated tj and d′j
from the data in (a). The accuracy of the annotator increases with d′j and the bias is
reflected in tj. For example, if tj is positive, the annotator has a high correct rejection
rate at the cost of some false rejections, see Figure 7.1 for some specific examples.
The outlier annotator, no. 47 in (a), with negative d′j, indicating adversarial labels,
was excluded from the plot. (c) The variance of the (a0

j , a
1
j) decreases quickly with

the number of images labeled. These diagrams show the estimates for the Presence-1
workers; Presence-2 gave very similar results.
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Figure 7.6: Quality index for each annotator vs. number of labeled images across the
three annotation types. Annotators are plotted with different symbols and colors for
easier visual separation. The bar chart to the right of each scatter plot is a histogram
of the number of workers with a particular accuracy. (a) Object Presence: Shows
results for Presence-1, Presence-2 is very similar. The minimum number of images a
worker can label is 36, which explains the group of workers near the left edge. The
adversarial annotator, no. 47, provided 36 labels and is not shown. (b) Attributes:
results on Attributes-1. The corresponding plot for Attributes-2 is very similar. (c)
Bounding box: Note that only two annotators, 53 and 58, labeled all 911 images.
They also provided consistently worse labels than the other annotators. Figure 7.2
shows examples of the bounding boxes they provided.
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The prior on zi is modeled by a uniform distribution over the image area, p(zi) = λ−2
i ,

implying that we expect bounding boxes anywhere in the image. Similarly to the

binary case, the prior on aj is modeled as a Beta mixture,

p(aj) =
K∑

k=1

πakBeta(α0
k, α

1
k), (7.20)

to account for at different groups of annotators of different skills. We used two

components, one for experts (peaked at high aj) and another for unreliable annotators

(broader, and peaked at a lower aj).

In the EM-algorithm we approximate the posterior on zi by a delta function,

p̂(zi) = p(zi | Li, âj) = δ(ẑi), (7.21)

where ẑi is the best estimate of zi, to avoid slow sampling to compute the expectation

in the E-step. This approach works well in practice since p̂(zi) is usually very peaked

around a single value of zi.

7.7 Datasets

Object Presence: To test the general model applied to binary annotations, we asked

workers on MTurk to select images if they thought the image contained a bird of a

certain species, see Figure 7.1. The workers were shown a few example illustrations

of birds of the species in different poses. We collected labels for two different bird

species, Presence-1 (Black-chinned Hummingbird) and Presence-2 (Reddish Egret),

summarized in Table 7.1.

Attributes: As an example of a multi-valued annotation, we asked workers to

pick one out of D mutually exclusive choices for the shape of a bird shown in a

photograph (Attributes-1, D = 14) and for the color pattern of its tail (Attributes-2,

D = 4). We obtained 5 labels per image for a total of 6,033 images, see Table 7.1.

Bounding Boxes: The workers were asked to draw a tightly fitting bounding
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box around the bird in each image (details in Table 7.1). Although it is possible to

extend the model to multiple boxes per image, we ensured that there was exactly one

bird in each image to keep things simple. See Figure 7.2 for some examples.

7.8 Experiments and Discussion

To establish the skills of annotators on MTurk, we applied the general annotator

model to the datasets described in Section 7.7 and Table 7.1. We first estimated aj

on the full datasets (which we call batch). We then estimated both the aj and zi

using the online algorithm, as described in the last part of this section.

Annotator bias: The results of the batch algorithm applied to the Presence-1

dataset is shown in Figure 7.5. Different annotators fall on different ROC curves,

with a bias towards either more false positives or false negatives. This is even more

explicit in Figure 7.5b, where d′j is a measure of expertise and tj of the bias. What is

clear from these figures is that most annotators, no matter their expertise, have some

bias. Examples of bias for a few representative annotators and images are shown in

Figure 7.1. Bias is something to keep in mind when designing annotation tasks, as

the wording of a question presumably influences workers. In our experiments most

the annotators seemed to prefer false negatives to false positives.

Annotator accuracy: Figure 7.6 shows how the accuracy of MTurk annotators

varies with the number of images they label for different annotation types. For the

Presence-1 dataset, the few annotators that labeled most of the available images had

very different d′j. For Attributes-1, on the other hand, the annotators that labeled

most images have very similar aj. In the case of the bounding box annotations, most

annotators provided good labels, except for no. 53 and 58. These two annotators were

also the only ones to label all available images. In all three subplots of Figure 7.6,

most workers provide only a few labels, and only some very active annotators label

more than 100 images. Our findings in this figure are very similar to the results

presented in Figure 6 of [SOJN08].

Importance of discrimination: The results in Figure 7.6 point out the impor-
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Dataset Images Assignments Workers

Presence-1 1,514 15 47
Presence-2 2,401 15 54
Attributes-1 6,033 5 507
Attributes-2 6,033 5 460
Bounding Boxes 911 10 85

Table 7.1: Summary of the datasets collected from Amazon Mechanical Turk showing
the number of images per dataset, the number of labels per image (assignments), and
total number of workers that provided labels. Presence-1/2 are binary labels, and
Attributes-1/2 are multi-valued labels.

tance of online estimation of aj and the use of expert- and bot-lists for obtaining

labels on MTurk. The expert-list is needed to reduce the number of labels per image,

as we can be more sure of the quality of the labels received from experts. Further-

more, without the expert-list to prioritize which annotators to ask first, the image will

likely be labeled by a new worker, and thus the estimate of aj for that worker will be

very uncertain. The bot-list is needed to discriminate against sloppy annotators that

will otherwise annotate most of the dataset in hope to make easy money, as shown

by the outliers (no. 53 and 58) in Figure 7.6c.

Performance of binary model: We compared the performance of the annotator

model applied to binary data, described in Section 7.6, to two other models of binary

data, as the number of available labels per image, m, varied. The first method was

a simple majority decision rule and the second method was the GLAD-algorithm

presented in [WRW+09]. Since we did not have access to the ground truth labels

of the datasets, we generated synthetic data, where we knew the ground truth, as

follows: (1) We used our model to estimate aj for all 47 annotators in the Presence-1

dataset. (2) For each of 2000 target values (half with zi = 1), we sampled labels

from m randomly chosen workers, where the labels were generated according to the

estimated aj and Equation 7.10. As can be seen from Figure 7.7, our model achieves

a consistently lower error rate on synthetic data.

Online algorithm: We simulated running the online algorithm on the Pres-

ence datasets obtained using MTurk and used the result from the batch algorithm as
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ground truth. When the algorithm requested labels for an image, it was given labels

from the dataset (along with an identifier for the worker that provided it) randomly

sampled without replacement. If it requested labels from the expert-list for a partic-

ular image, it only received such a label if a worker in the expert-list had provided a

label for that image, otherwise it was randomly sampled from non bot-listed workers.

A typical run of the algorithm on the Presence-1 dataset is shown in Figure 7.9. In

the first few iterations, the algorithm is pessimistic about the quality of the anno-

tators, and requests up to m = 15 labels per image. As the evidence accumulates,

more workers are put in the expert- and bot-lists, and the number of labels requested

by the algorithm decreases. Notice in the figure that towards the final iterations, the

algorithm samples only 2–3 labels for some images.

To get an idea of the performance of the online algorithm, we compared it to

running the batch version from Section 7.4 with limited number of labels per image.

For the Presence-1 dataset, the error rate of the online algorithm is almost three times

lower than the general algorithm when using the same number of labels per image,

see Figure 7.8. For the Presence-2 dataset, twice as many labels per image are needed

for the batch algorithm to achieve the same performance as the online version.

It is worth noting that most of the errors made by the online algorithm are on

images where the intrinsic uncertainty of the ground truth label is high, i.e. |Ri| as

estimated by the full model using all 15 labels per image is large. Indeed, counting

errors only for images where |Ri| > 2 (using log base 10), which includes 92% of the

dataset, makes the error of the online algorithm drop to 0.75%±0.04% on Presence-1.

Thus, the performance clearly depends on the task at hand. If the task is easy, and

most annotators agree, it will require few labels per image. If the task is difficult,

such that even experts disagree, it will request many labels. The tradeoff between

the number of labels requested and the error rate depends on the parameters used.

Throughout our experiments, we used m = 15, n = 20, τ ′ = 2, θv = 8× 10−3.
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7.9 Conclusions

We have proposed an online algorithm to determine the “ground truth value” of some

property in an image from multiple noisy annotations. As a by-product it produces

an estimate of annotator expertise and reliability. It actively selects which images to

label based on the uncertainty of their estimated ground truth values, and the desired

level of confidence. We have shown how the algorithm can be applied to different

types of annotations commonly used in computer vision: binary yes/no annotations,

multi-valued attributes, and continuous-valued annotations (e.g. bounding boxes).

Our experiments on MTurk show that the quality of annotators varies widely in

a continuum from highly skilled to almost random. We also find that equally skilled

annotators differ in the relative cost they attribute to false alarm errors and to false

reject errors. Our algorithm can estimate this quantity as well.

Our algorithm minimizes the labeling cost by assigning the labeling tasks pref-

erentially to the best annotators. By combining just the right number of (possibly

noisy) labels it defines an optimal ‘virtual annotator’ that integrates the real annota-

tors without wasting resources. Thresholds in this virtual annotator may be designed

optimally to trade off the cost of obtaining one more annotation with the cost of false

alarms and the cost of false rejects. Future work includes dynamic adjustment of the

price paid per annotation to reward high quality annotations and to influence the

internal thresholds of the annotators.
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Chapter 8

Performance Estimation

8.1 Abstract

How many labeled examples are needed to estimate a classifier’s performance on a

new dataset? We study the case where data is plentiful, but labels are expensive. We

show that by making a few reasonable assumptions on the structure of the data, it is

possible to estimate performance curves, with confidence bounds, using a small num-

ber of ground truth labels. Our approach, which we call Semisupervised Performance

Evaluation (SPE), is based on a generative model for the classifier’s confidence scores,

and a novel active sampling scheme. SPE can be used to recalibrate a classifier that

is being applied to new data by re-estimating the class-conditional confidence distri-

butions. We show how SPE with active sampling outperforms other approaches in

terms of labels required to estimate classifier performance.

8.2 Introduction

Consider a biologist who downloads software for classifying the behavior of fruit

flies. The classifier was laboriously trained by a different research group who labeled

thousands of training examples to achieve satisfactory performance on a validation set

collected in some particular setting (see e.g. [DWH+09]). The biologist would be ill-

advised if she trusted the published performance figures; maybe small lighting changes

in her experimental setting have changed the statistics of the data and rendered the
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classifier useless. However, if the biologist has to go over all the labels assigned by the

classifier to her dataset, just to be sure the classifier is performing up to expectation,

then what is the point in obtaining a trained classifier in the first place? Is it possible

at all to obtain a reliable evaluation of a classifier when unlabeled data is plentiful,

but when the user is willing to provide only a small number of labeled examples?

We propose a method for achieving minimally supervised evaluation of classi-

fiers, requiring as few as 10 labels to accurately estimate classifier performance. Our

method is based on a generative Bayesian model for the confidence scores produced by

the classifier, borrowing from the semi supervised literature [NMTM00, See02, Zhu08],

and on an active strategy for obtaining the most informative labels. An additional

contribution is a fast approximate inference method for doing inference in our model.

8.3 Modeling the Classifier Score

Let us start with a set of N data items, (xi, yi) ∈ RD × {0, 1}, drawn from some

unknown distribution p(x, y) and indexed by i ∈ {1, . . . , N}. Suppose that a classifier,

h̄(xi; τ) = [h(xi) > τ ], where τ is some scalar threshold, has been used to classify

all data items into two classes, ŷi ∈ {0, 1}. While the “ground truth” labels yi are

assumed to be unknown, initially, we do have access to all the “scores,” si = h(xi),

computed by the classifier. From this point onwards, we forget about the data vectors

xi and concentrate solely on the scores and labels, (si, yi) ∈ R× {0, 1}.
The key assumption in this paper is that the list of scores S = (s1, . . . , sN) and the

unknown labels Y = (y1, . . . , yN) can be modeled by a two-component mixture model

p(S, Y | θ), parameterized by θ, where the class-conditionals are standard parametric

distributions. We show in Section 8.6.2 that this is a reasonable assumption for many

datasets.

Suppose that we can ask an expert (the “oracle”) to provide the true label yi for

any data item. This is an expensive operation and our goal is to ask the oracle for as

few labels as possible. The set of items that have been labeled by the oracle at time

t is denoted by Lt and its complement, the set of items for which the ground truth
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Figure 8.1: Estimating detector performance with all but 10 labels unknown. A: His-
togram of classifier scores si obtained by running the “ChnFtrs” detector [DWSP11]
on the INRIA dataset [DT05]. The red and green curves show the Gamma-Normal
mixture model with highest likelihood. The shaded bands indicate the 90% proba-
bility bands around the model. The red and green bars show the labels of the 10
randomly sampled labels (active querying was not used). B: Precision and recall
curves computed from the mixture model in A. C: In black, precision-recall curve
computed after all items have been labeled. In red, precision-recall curve estimated
using SPE from only 10 labeled examples (with 90% confidence interval shown as the
magenta band). See Section 8.3 for a discussion.
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is unknown, is denoted Ut. This setting is similar to semisupervised learning [See02,

Zhu08]. By estimating p(S, Y | θ), we will improve our estimate of the performance

of h̄ when |Lt| � N .

Consider first the fully supervised case, i.e. where all labels yi are known. Let the

scores si be i.i.d. according to the two mixture model. If the all labels are known,

the likelihood of the data is given by,

p(S, Y | θ) =
∏

i:yi=0

(1− π)p0(si | θ0)
∏

i:yi=1

πp1(si | θ1), (8.1)

where θ = {π, θ0, θ1}, and π ∈ [0, 1] is the mixture weight, i.e. p(yi = 1) = π. The

component densities p0 and p1 could be Normal distributions, Gamma distributions,

or some other probability distributions appropriate for the given classifier (see Sec-

tion 8.6.2 for a discussion about which class conditional distributions to choose). This

approach of applying a generative model to score distributions, when all labels are

known, has been used in the past to obtain error estimates on classifier performance

[HAS99, ESCA06, GGR08], and for classifier calibration [Ben02]. However, previous

approaches require that the all items used to estimate the performance have been

labeled.

One contribution of this work is the realization that it is possible to estimate

classifier performance even when only a fraction of the ground truth labels are known.

In this case, the labels for the unlabeled items i ∈ Ut can be marginalized out,

p(S, Yt | θ) =
∏

i∈Ut
((1− π)p0(si | θ0) + πp1(si | θ1))

×
∏

i∈Lt
πyi(1− π)1−yipyi(si | θyi), (8.2)

where Yt = {yi | i ∈ Lt}. This allows the model to make use of the scores of unlabeled

items in addition to the labeled items, which enables accurate performance estimates

with only a handful of labels. Once we have the likelihood, we can take a Bayesian

approach to estimate the parameters θ. Starting from a prior on the parameters, p(θ),
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we can obtain a posterior p(θ | S, Yt) by using Bayes’ rule,

p(θ | S, Yt) ∝ p(S, Yt | θ) p(θ). (8.3)

Let us look at a real example. Figure 8.1a shows a histogram of the scores obtained

from classifier on a public dataset (see Section 8.6 for more information about the

datasets we use). At first glance, it is difficult to guess the performance of the classifier

unless the oracle provides a lot of labels. However, if we assume that the scores follow

a two-component mixture model as in (8.2), with a Gamma distribution for the yi = 0

and a Normal distribution for the yi = 1 component, then there is a only a narrow

choice of θ that can explain the scores with high likelihood; the red and green curves

in Figure 8.1a show such a high probability hypothesis. As we will see in the next

section, the posterior on θ can be used to estimate the performance of the classifier.

8.4 Estimating Performance

Most performance measures can be computed directly from the model parameters

θ. For example, two often used performance measures are the precision P (τ ; θ) and

recall R(τ ; θ) at a particular score threshold τ . We can define these quantities in

terms of the conditional distributions py(si | θy). Recall is defined as the fraction of

the positive, i.e. yi = 1, examples that have scores above a given threshold,

R(τ ; θ) =

∫ ∞

τ

p1(s | θ1) ds. (8.4)

Precision is defined to be the fraction of all examples with scores above a given

threshold that are positive,

P (τ ; θ) =
πR(τ ; θ)

πR(τ ; θ) + (1− π)
∫∞
τ
p0(s | θ0) ds

. (8.5)

We can also compute the precision at a given level of recall by inverting R(τ ; θ), i.e.

Pr(r; θ) = P (R−1(r; θ); θ) for some recall r. Other performance measures, such as the
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equal error rate, true positive rate, true negative rate, sensitivity, specificity, and the

ROC can be computed from θ in a similar manner.

The posterior on θ can also be used to obtain confidence bounds on the perfor-

mance of the classifier. For example, for some choice of parameters θ, the precision

and recall can be computed for a range of score thresholds τ to obtain a curve (see

solid curves in Figure 8.1b). Similarly, given the posterior on θ, the distribution

of P (τ ; θ) and R(τ ; θ) can be computed for a fixed τ to obtain confidence intervals

(shown as colored bands in Figure 8.1b). The same reasoning can be applied to the

precision-recall curve: for some recall r, the distribution of precisions, found using

Pr(r; θ) can be used to compute confidence intervals on the curve (see Figure 8.1c).

While the approach of estimating performance based purely on the estimate of θ

works well in limit whenN →∞, it has some drawbacks whenN is small (on the order

of 103–104) and π is unbalanced, in which case finite-sample effects come into play.

Since it views the scores (and the associated labels) as a finite sample from p(S, Y | θ),
there will always be uncertainty in the performance estimate. When all items have

been labeled by the oracle, the remaining uncertainty in the performance represents

the variability in sampling (S, Y ) from p(S, Y | θ). In practice, however, the question

that is often asked is, “What is our best guess for the classifier performance on this

particular test set?” In other words, we are interested in the sample performance

rather than the population performance. Thus, when the oracle has labeled the

whole test set, there should not be any uncertainty in the performance; it can simply

be computed directly from (S, Y ).

To estimate the sample performance, we need to account for uncertainty in the

unlabeled items, i ∈ Ut. This uncertainty is captured by the distribution of the un-

observed labels Y ′t = {yi | i ∈ Ut}, found by marginalizing out the model parameters,

p(Y ′t | S, Yt) =

∫

Θ

p(Y ′t , θ | S, Yt) dθ

=

∫

Θ

p(Y ′t | θ)p(θ | S, Yt) dθ. (8.6)

Here Θ is the space of all possible parameters. On the second line we rely on the
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assumption of a mixture model to factor the joint probability distribution on θ and

Y ′t .

One way to think of this approach is as follows: imagine that we sample Y ′t from

p(Y ′t | S, Yt). We can then use all the labels Y = Yt ∪ Y ′t and the scores S to

trace out a performance curve (e.g., a precision-recall curve). Now, as we repeat the

sampling, each performance curve will look slightly different. Thus, the posterior

distribution on Y ′t in effect gives us a distribution of performance curves. We can

use this distribution to compute quantities such as the expected performance curve,

the variance in the curves, and confidence intervals. The main difference between

the sample and population performance estimates will be at the tails of the score

distribution, p(S | θ), where individual item labels can have a large impact on the

performance curve.

8.4.1 Sampling from the posterior

In practice, we cannot compute p(Y ′t | S, Yt) in (8.6) analytically, so we must resort to

approximate methods. For some choices of class conditional densities, py(s | θ0), such

as when they are Normal distributions, it is possible to carry out the marginalization

over θ in (8.6) analytically. In that case one could use collapsed Gibbs sampling to

sample from the posterior on Y ′t , as is often done for models involving the Dirichlet

process [Mac94]. A more generally applicable method, which we will describe here,

is to split the sampling into three steps: (a) sample θ̄ from p(θ | S, Yt), (b) fix the

mixture parameters to θ̄ and sample the labels Y ′t given their associated scores, and

(c) compute the performance, such as precision and recall, for all score thresholds

τ ∈ S. By repeating these three steps, we can obtain a sample from the distribution

over the performance curves.

The first step, sampling from the posterior p(θ | S, Yt), can be carried out using im-

portance sampling (IS). We experimented with Metropolis-Hastings and Hamiltonian

Monte Carlo [Nea10], but we found that IS worked well for this problem, required less

parameter tuning, and was much faster. In IS, we sample from a proposal distribution
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q(θ) in order to estimate properties of the desired distribution p(θ | S, Yt). Suppose

we draw M samples of θ from q(θ) to get Θ̄ = {θ̄1, . . . , θ̄M}. Then, we can approxi-

mate expectations of some function g(·) using the weighted function evaluations, i.e.

E[g] ' ∑M
m=1wmg(θ̄m). The weights wm ∈ W correct for the bias introduced by

sampling from q(θ) and are defined as,

wm =
p(θ̄m | S, Yt)/q(θ̄m)∑
l p(θ̄

l | S, Yt)/q(θ̄l)
. (8.7)

For the datasets in this paper, we found that the state-space around the MAP

estimate1 of θ,

θ? = arg max
θ
p(θ | S, Yl), (8.8)

was well approximated by a multivariate Normal distribution. Hence, for the proposal

distribution we used,

q(θ) = N (θ | µq,Σq). (8.9)

To simplify things further, we used a diagonal covariance matrix, Σq. The elements

along the diagonal of Σq were found by fitting a univariate Normal locally to p(θ |
S, Yt) along each dimension of θ while the other elements were fixed at their MAP-

estimates. The mean of the proposal distribution, µq, was set to the MAP estimate

of θ.

We now have all steps needed to estimate the performance of the classifier, given

the scores S and some labels Yt obtained from the oracle:

1. Find the MAP estimate µq of θ using (8.8).

2. Fit a proposal distribution q(θ) to p(θ | S, Yt) locally around µq.

3. Sample M instances of θ, Θ̄ = {θ̄1, . . . , θ̄M}, from q(θ) and calculate the weights

wm ∈ W .

4. For each θ̄m ∈ Θ̄, sample the labels for i ∈ Ut to get Ȳ ′t = {Ȳ ′t,1, . . . , Ȳ ′t,M}.
1We used BFGS-B [BLNZ95] to carry out the optimization. To avoid local maximums, we used

multiple starting points.



140

5. Estimate performance measures using the scores S, labels Ȳt,m = Yt ∪ Ȳ ′t,m and

weights wm ∈ W .

8.5 Querying the Oracle

So far we have assumed that Lt is fixed. Is it possible to emulate active learning

and have the oracle label the most informative items? In this section we present a

strategy for “active querying,” where the items to be labeled are chosen to reduce

the uncertainty in the classifier performance the most. Thus, our approach is related

to active learning approaches [Mac92, CGJ96, DH08] where labels are sampled to

decrease the uncertainty in model parameters.

Suppose that we have some performance measure f(Y ′t ;Yt, S) that is a function

of the known and unknown labels, Yt and Y ′t , and scores S at time t. For example, f

may be a precision recall curve, an ROC, etc. To keep the notation uncluttered, we

will denote f(Y ′t ) ≡ f(Y ′t ;Yt, S). Since Y ′t is a random variable, so is f(Y ′t ). Suppose

further that we have some measure U(·) of “uncertainty” so that U(f(Y ′t )) is the

uncertainty in f(Y ′t ). For example, as we shall see below, the uncertainty may be

related to the variance in the performance due to the resampling variance of Y ′t .

What item should the oracle label next? The strategy we adopt is to label the

item for which the expected uncertainty in f(Y ′t ) decreases the most, i.e.,

kt = arg max
k∈Ut

U(f(Y ′t ))− E [U(f(Y ′t \ {yk}))] , (8.10)

where E[·] denotes the expectation over yk. We call this querying strategy “active

querying”; at every point in time t, the oracle is asked to label the item kt that

maximizes the reduction in uncertainty.

There are many choices for f and U , and which ones to choose depend on the

application. Here, we will use the precision-recall curve as the performance measure

f . That is, we define f(Y ′t ) ≡ P (r;Y ′t ) | r ∈ [0, 1], where P (r;Y ′t ) is the precision at

recall r given the unknown labels Y ′t . The measure of uncertainty also depends on
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the application. Here, we are interested in reducing the uncertainty in our estimate

of the performance curve, so we define it to be the area of the confidence interval of

the performance curve,

U(f(Y ′t )) =

∫ 1

0

√
Var [P (r;Y ′t )] dr, (8.11)

where,

Var [P (r;Y ′t )] = E
[
P (r;Y ′t )

2
]
− E [P (r;Y ′t )]

2
. (8.12)

The expectation in (8.12) is over Y ′t .

Realistically, carrying out the maximization in (8.10) and the sampling required

to compute (8.11) can be quite computation intensive. To make the approach more

practical, we make the following approximation: Instead of carrying out the maxi-

mization of (8.10) over all k ∈ Ut, we maximize over a subset U ′t ⊂ Ut with |U ′t| � |Ut|.
The items in U ′t are chosen so that the items’ scores si are roughly equally spaced

over the range of all scores S, under the assumption that labeling items with similar

scores will have roughly the same impact on U .2

Note that by using the active querying strategy presented here, our estimate of

the performance curve will no longer be unbiased. This is because there will be

correlations in the labels queried by the active strategy. One situation where this

may cause problems is if the class conditionals are not well-explained by standard

parametric distributions (see Figure 8.2c for an example), in which case the model

may get stuck in a local optimum. While the problem of unbiased active sampling

is an ongoing research topic [DH08, BDL09], biased sampling often works well in

practice [TK01]. Similarly, we did not observe any issues in our experiments.

2We tried different sizes of U ′
t between 10 and 30 with similar results.
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8.6 Experiments

8.6.1 Datasets

We surveyed the literature for published classifier scores with ground truth labels.

One such dataset that we found was the Caltech Pedestrian Dataset3 (CPD), for

which both detector scores and ground truth labels are available for a wide variety of

detectors [DWSP11]. Moreover, the CPD website also has scores and labels available,

using the same detectors, for other pedestrian detection datasets, such as the INRIA

(abbr. INR) dataset [DT05].

We made use of the detections in the CPD and INR datasets as if they were

classifier outputs. To some extent, these detectors are in fact classifiers, in that they

use the sliding-window technique for object detection. Here, windows are extracted

at different locations and scales in the image, and each window is classified using a

pedestrian classifier (with the caveat that there is often some extra post-processing

steps carried out, such as non-maximum suppression to reduce the number of false

positive detections). For our experiments, we concentrated on two of the best per-

forming detectors, “ChnFtrs” and “LatSvm-V2,” run on the CPD and INR test sets,

but similar results were obtained for the other detectors. To make experiments go

faster, we sampled the datasets randomly to have between 800–2,000 items. See

[DWSP11] for references to all detectors.

To complement the pedestrian datasets, we also used a basic linear SVM classifier

and a logistic regression classifier on the “optdigits” (abbr. DGT) and “sat” (SAT)

datasets from the UCI Machine Learning Repository [FA10]. Since both datasets are

multiclass, but our method only handles binary classification, we chose one category

for y = 1 and grouped the others into y = 0. Planned future work includes extending

our approach to multiclass classifiers. In the figures, “svm3” is used to mean that

the SVM classifier was used with category 3 in the dataset being assigned to the

y = 1 class, and “logres9” denotes that the logistic regression classifier was used with

3Downloaded from http://www.vision.caltech.edu/Image_Datasets/

CaltechPedestrians/.
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category 9 being the y = 1 class. The datasets had 1,800–2,000 items each.

8.6.2 Choosing class conditionals

So far we have not discussed in detail which distribution families to use for the class

conditional py(s | θy) distributions. To find out which parametric distributions are

appropriate for modeling the score class-conditionals, we took the classifier scores and

split them into two groups, one for yi = 0 and one for yi = 1. We used MLE to fit

different families of probability distributions (see Table 8.1 for a list of distributions)

on 80% of the data (sampled randomly) in each group. We then ranked the distribu-

tions by the log likelihood of the remaining 20% of the data (given the MLE-fitted

parameters). In total, we carried out this procedure on 78 class conditionals from the

different datasets and classifiers.

Table 8.1 shows the top-3 distributions that explained the class-conditional scores

with highest likelihood for a selection of the datasets and classifiers. We found

that the truncated Normal distribution was in the top-3 list for 48/78 dataset class-

conditionals, and that the Gamma distribution was in the top-3 list 53/78 times; at

least one of the two distributions were always in the top-3 list. Figure 8.2 show some

examples of the fitted distributions from Table 8.1. In some cases, like Figure 8.2c,

a mixture model would have provided a better fit than the simple distributions we

tried. That said, we found that truncated Normal and Gamma distributions were

good choices for most of the datasets.

Since we use a Bayesian approach in equation (8.3), we must also define a prior

on θ. The prior will vary depending on which distribution is chosen, and it should be

chosen based on what we know about the data and the classifier. As an example, for

the truncated Normal distribution, we use a Normal and a Gamma distribution as

priors on the mean and standard deviation, respectively (since we use sampling for

inference, we are not limited to conjugate priors). As a prior on the mixture weight

π, we use a Beta distribution.

In some situations when little is known about the classifier, it makes sense to
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dataset 1st 2nd r.l.l. 3rd r.l.l.
(CPD) ChnFtrs [0] g ln 1.00 f-r 0.99
(CPD) ChnFtrs [1] f-r n 0.99 gu-r 0.97
(CPD) LatSvmV2 [0] ln g 1.00 f-r 0.99
(CPD) LatSvmV2 [1] f-r g 0.97 gu-r 0.96
(CPD) FeatSynth [0] n f-r 0.99 g 0.98
(CPD) FeatSynth [1] n g 1.00 f-r 0.98
(INR) LatSvmV2 [0] ln g 0.99 f-r 0.98
(INR) LatSvmV2 [1] n f-r 0.87 gu-l 0.73
(INR) ChnFtrs [0] g f-r 1.00 n 0.97
(INR) ChnFtrs [1] f-r n 0.97 g 0.84
(DGT) logres9 [0] f-r n 0.98 gu-l 0.96
(DGT) logres9 [1] f-r gu-l 0.99 n 0.99
(SAT) svm3 [0] n f-r 0.98 gu-r 0.84
(SAT) svm3 [1] n g 0.99 ln 0.98

Table 8.1: Distributions best representing empirical class-conditional score distribu-
tions (for a subset of the 78 cases we tried). Each row shows the top-3 distributions,
i.e. explaining the class-conditional scores with highest likelihood, for different com-
binations of datasets, classifiers and the class-labels (shown in brackets, y = 0 or
y = 1). The distribution families we tried included (with abbreviations used in last
three columns in parentheses) the truncated Normal (n), truncated Student’s t (t),
Gamma (g), log-normal (ln), left- and right-skewed Gumbel (g-l and g-r), Gompertz
(gz), and Frechet right (f-r) distribution. The last and second to last column show
the relative log likelihood (r.l.l.) with respect to the best (1st) distribution. Figure 8.2
shows examples of fitted distributions.
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Thursday, February 23, 2012
Figure 8.2: Standard parametric distributions py(s | θy) (black solid curve) fitted
to the class conditional scores for a few example datasets and classifiers. The score
distributions are shown as histograms. In all cases, we normalized the scores to
be in the interval si ∈ (0, 1], and made the truncation at s = 0 for the truncated
distributions. See Section 8.6.2 for more information.
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try different kinds of class-conditional distributions. One heuristic, which we found

worked well in our experiments, is to try different combinations of distributions for p0

and p1, and then choose the combination achieving the highest maximum likelihood

on the labeled and unlabeled data.

8.6.3 Comparing querying schemes

We compared the active querying scheme to random querying, as described in Sec-

tion 8.5. Shown in Figure 8.3 is the error in the estimated performance, measured

as the area between the estimated precision-recall curve and the ground truth curve,

for four different datasets. In all cases, SPE outperforms the standard approach of

computing the performance on only the labeled items (green curve). Figure 8.4 shows

the estimated performance curves using SPE with random and active querying.

The main advantage of the active querying scheme is when the class conditionals

are unbalanced, in which case it can converge faster than random querying (see Fig-

ure 8.3d). This is often the case for the CPD datasets, where the detectors produce

a lot of false negatives, leaving only between 0.1–6% items from y = 1. In such situ-

ations, the y = 0 items dominate the score distribution. Thus, random querying will

reveal mostly yi = 0 labels, and not much is learned about the shape of the p1 class-

conditional. However, in those situations, active sampling keeps requesting labels

for items with high scores. This is because y = 0 items with high scores can create

large fluctuations in the low-recall, high-precision region of the performance curve,

so knowing those labels reduces the uncertainty in the curve a lot (see Figure 8.4b,

where only 0.5% of the items were from the y = 1 class). Since, for a good classifier,

the y = 1 items have higher scores on average, this allows the active sampling to get

a better estimate of the shape of the p1 class-conditional, while still using a majority

of the unlabeled data to estimate the shape of p0.

When the class-conditionals are balanced, i.e. π ' 0.5, the two sampling methods

worked equally effectively. In that case, the scores for the items queried by the active

strategy are distributed more uniformly. In some situations, for example, the ChnFtrs
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classifier on the INR dataset, either method required only 10 labels to estimate the

performance curve with high accuracy (see Figure 8.1). Thus, in those cases, sampling

more than 10 labels does not provide any advantage, other than that the confidence

intervals shrink.

8.6.4 Classifier recalibration

Applying SPE to a test dataset allows us to “recalibrate” the classifier to that dataset.

Unlike previous work on classifier calibration [Ben02, Pla99], SPE does not require all

items to be labeled. For each unlabeled data item, we can compute the probability

that it belongs to the y = 1 class by calculating the empirical expectation from the

samples, i.e. p̂(yi = 1) = E [yi = 1 | S, Yt].
Similarly, we can choose a threshold τ to use with the classifier h̄(xi; τ) based

on some pre-determined criteria. For example, the requirement might be that the

classifier performs with recall R(τ) > r̂ and precision P (τ) > p̂. In that case, we define

a condition C(τ) = [R(τ) > r̂ ∧ P (τ) > p̂]. Then, for each τ , we find the probability

that the condition is satisfied by calculating the expectation p̂(C(τ) = 1) = E [C(τ)]

over the unlabeled items Y ′t . Figure 8.5 shows the probability that C(τ) is satisfied

at different values of τ . Thus, this approach can be used to choose new thresholds

for different datasets.

8.7 Discussion

We explored the problem of estimating classifier performance from few labeled items.

Using four public datasets, and multiple classifiers, we showed that classifier score

distributions can often be well approximated by two-component mixture models with

standard parametric component distributions. Borrowing ideas from semisupervised

learning, we demonstrated how our model, Semisupervised Performance Evaluation

(SPE), can be used to estimate classifier performance, with confidence intervals, using

only a few labeled examples. We presented a sampling scheme based on importance

sampling for efficient inference. Furthermore, we showed a novel active querying
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Figure 8.3: SPE with active and random label querying versus number of labels
queried. The plots show the error, measured as the area between the estimated
precision-recall curves and the ground truth curve, as the number of labels queried
from the oracle increases. The green curve (random) shows the performance estimated
based only on the queried labels without SPE. The red and blue curves show the
result of using SPE (and thus taking advantage of the unlabeled data) with the
active and random querying schemes. A: INR using ChnFtrs. B: INR using C. C:
DGT with svm8. D: CPD using LatSvmV2 (green curve is outside axis bounds). See
Section 8.6.3 for a discussion.
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strategy for obtaining labels that is more advantageous than random sampling when

the classes are unbalanced.

This line of research opens up many interesting avenues for future exploration. For

example, is it possible to do unbiased active querying? One possibility in this direction

would be to employ importance weighted active sampling techniques [BDL09, DH08].

Another future direction would be to extend SPE to multi-component mixture models

and multiclass problems. That said, as shown by our experiments, SPE already

works well for a broad range of classifiers and datasets, and can estimate classifier

performance with as few as 10 labels.
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Figure 8.4: Estimated precision and recall after 50 labels have been queried. The
blue and red curve shows the result of using SPE with random and active querying
scheme (with 90% confidence bands). The green curve shows the precision and recall
computed only using the 50 labels (no SPE), and the black curve shows the ground
truth. A: CPD using ChnFtrs. B: CPD using LatSvmV2. See Section 8.6.3 for a
discussion.
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Figure 8.5: Recalibrating the classifier by estimating the probability that a condition
is met. In this case, the three curves show the estimated probability that conditions
on precision P and recall R have been met for different score thresholds τ . The data
used was the same as in Figure 8.4a. This analysis suggests that the best threshold
is τ ≈ 2.2.
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Chapter 9

Conclusions

The aim of this thesis was to provide the foundation for building Hybrid Human-

Machine Vision Systems (HHMVS), where humans and machines work together to

annotate images. Today’s machine vision systems are not accurate enough for many

image annotation tasks. On the other hand, using experts or crowdsourcing is often

too expensive for tasks involving large amounts of image data. The goal of HHMVS

is to bridge this gap by using machines to annotate most of the data, and let humans

annotate and correct labels for images where the machine is uncertain. To that end,

we need methods for estimating the accuracy of the machine vision systems with

as few expert-provided labels as possible. Moreover, we need to understand how to

use crowdsourcing as cost-effectively as possible while still maintaining high quality

annotations. In this thesis, we have begun to answer some of the more fundamental

questions towards this goal.

The first question we investigated was how annotators perceive images and make

decision in binary annotation tasks (see Chapter 3). By modeling annotators as

making linear decisions in a multidimensional space, we showed how annotators are

often biased to look for slightly different things, and that it is possible to identify

experts in a crowd of annotators. Exploiting a simple parameterization of annotator

characteristics, including competence, bias and expertise, we further showed how to

use crowdsourcing to obtain high quality annotations even with no ground truth labels

present. Extensions of the model showed that more informative labels can be obtained

using a 3–5 level confidence scale instead of binary questions (see Chapter 4). By
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extending the model to pairwise models, it can also be used for “crowd clustering,”

where a crowd of annotators work together to partition a dataset of images into

separate categories (see Chapter 5).

We investigated how crowdsourcing can be used to obtain high quality detection

annotations (see Chapter 6). Experiments on real and synthetic images showed that

simple voting-based methods can produce good results. We also found that using

multiple non-expert annotators can provide an accuracy that is close to that of ex-

perts.

We studied the problem of scaling crowdsourcing to very large numbers of images

(see Chapter 7). When are we sure of an image label? How quickly can we determine

that an annotator is providing low quality work? We proposed a general model

for characterizing annotator competence that is applicable to binary, discrete and

continuous annotations. By using the model in an online setting, where annotators

are rejected if they do not perform well, we showed that the number of labels per

image can be greatly reduced while maintaining a high level of accuracy.

Finally, we looked at how to estimate the performance of a classifier with as

few expert-provided labels as possible (see Chapter 8). By taking a semi-supervised

approach and modeling classifier scores as a mixture model, we showed that the

performance can be estimated with as few as 10 labels, provided the classifier satisfies

the assumptions of the model.

Each chapter of this thesis has provided a piece in the foundation of HHMVS, but

there is much interesting work left before we can build a reliable system. One of the

most pressing questions is “How do we combine crowds and machines, now that we

have representations of the performance of both?” One possible path is to extend

the models presented in Chapters 3 & 7 to cover scores provided by classifiers (Chap-

ter 8). Another interesting path for future work is to combine classifier performance

estimation with active learning (see Figure 9.1). The goal would be to stop training

the classifier as soon as it reaches high enough accuracy.

HHMVS has the potential to truly revolutionize how science and industry work

with images. Instead of considering images to be digital “dark matter,” that is,
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Figure 9.1: Combining classifier performance estimation with active learning. Unla-
beled data Xi is annotated by humans (crowd or expert) to provide labels Yi, and
is used to train an active learning algorithm. The objective of the active learning
algorithm is to choose training examples in an order that reduces the classifier error
as quickly as possible. Simultaneously, some examples labeled by humans are used,
together with the classifier scores Si, to estimate the performance of the classifier.
Once the classifier has reached the desired level of accuracy (with some confidence),
the training can stop.
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content that take up most of the space but which we do not understand, image and

video data could become as accessible as textual data. The key to make it happen

is to provide scalable image annotation systems, mostly made up of machine vision

algorithms, but trained and quality controlled using crowds and experts. Hopefully,

with the directions outlined in this thesis, that future is not far away.
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