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Abstract

Computing turbulent flows is a challenge due to the large range of scales involved.

Developing an effective turbulence model is important not only for engineering ap-

plications but also for fundamental understanding of the flow physics. In this thesis,

we present a systematic way to derive the LES model based on multiscale analysis.

In addition, turbulent flows are treated as stochastic processes and a data-driven

stochastic method is applied to compute the turbulent flows.

In the first part, we present a mathematical derivation of a closure relating the

Reynolds stress to the mean strain rate for incompressible turbulent flows. This

derivation is based on a systematic multiscale analysis that expresses the Reynolds

stress in terms of the solutions of local periodic cell problems. We reveal an asymptotic

structure of the Reynolds stress by invoking the frame invariant property of the cell

problems and an iterative dynamic homogenization of large- and small-scale solutions.

The Smagorinsky model for homogeneous turbulence is recovered as an example to

illustrate our mathematical derivation. Another example is turbulent channel flow,

where we derive a simplified turbulence model based on the asymptotic flow structure

near the wall. Additionally, we obtain a nonlinear model by using a second order

approximation of the inverse flow map function. This nonlinear model captures the

effects of the backscatter of kinetic energy and dispersion and is consistent with other

models, such as a mixed model that combines the Smagorinsky and gradient models,

and the generic nonlinear model of Lund and Novikov.

Numerical simulation results at two Reynolds numbers using our simplified tur-

bulence model are in good agreement with both experiments and direct numerical

simulations in turbulent channel flow. However, due to experimental and modeling

errors, we do observe some noticeable differences, e.g. , root mean square velocity
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fluctuations at Reτ = 180.

In the second part, we present a new perspective on calculating fully developed

turbulent flows using a data-driven stochastic method. General polynomial chaos

(gPC) bases are obtained based on the mean velocity profile of turbulent channel

flow in the offline part. The velocity fields are projected onto the subspace spanned

by these gPC bases and a coupled system of equations is solved to compute the veloc-

ity components in the Karhunen-Loève expansion in the online part. Our numerical

results have shown that the data-driven stochastic method for fully developed turbu-

lence offers decent approximations of statistical quantities with a coarse grid and a

relatively small number of gPC base elements.
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Chapter 1

Introduction

1.1 Direct numerical simulation of fluid dynamics

Turbulence has been a central research area in fluid dynamics since the 19th century.

The Navier-Stokes equations, one of seven millennium prize problems established

by the Clay Mathematics Institute1, accurately describes turbulent flows, according

to extensive theoretical and experimental works. However, it is an open question

whether the solution of the 3D incompressible Navier-Stokes equations with smooth

initial data with finite energy remains smooth for all time. In addition, it is extremely

difficult to solve the following Navier-Stokes equations for incompressible flows due

to their non-local non-linear nature:

∂u

∂t
+ (u · ∇)u+∇p = ν∆u, (1.1.1)

∇ · u = 0,

with proper initial and boundary conditions.

Nowadays, thanks to the progress of computer technology, it is possible to perform

direct numerical simulations (DNS) of the Navier-Stokes equations. But still it re-

quires tremendous computing resources to perform DNS of turbulent flows, especially

at a high Reynolds number (Re) and/or with irregular geometry. In the homogeneous

turbulent flows, the ratio between the characteristic length of the most energetic scale

1http://www.claymath.org/millennium/
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L and that of the smallest dynamically active scale η is given by

L

η
= O

(
Re3/4

)
,

where Re is the Reynolds number, which measures the ratio of inertial forces and

molecular viscosity. Thus, in a cubic volume with edge L, approximately O(Re9/4)

degrees of freedom are needed to represent all the scales. In addition, the character-

istic time also scales as O(Re3/4). Therefore, a total of O(Re3) degrees of freedom

in time-space are needed. Another example is the wall-bounded flow at a very high

Re with no-slip boundary conditions. Many grid points have to be allocated in the

near-wall region in order to resolve the small turbulent structures. Chapman (1979)

estimated that the number of grid points needed to resolve the inner boundary layer

is proportional to Re1.8. To give a flavor of the computational cost of a DNS, the

followings are some representative examples (Berselli et al., 2006):

(i) model airplane: Re ≈ 7× 104 with characteristic length 1m and velocity 1m/s,

N ≈ 8× 1010 grid points per time step for a DNS;

(ii) cars: Re ≈ 6× 105 with characteristic velocity 30m/s,

N ≈ 1013 grid points per time step for a DNS;

(iii) airplanes: Re ≈ 2× 107 with characteristic velocity 300m/s,

N ≈ 2× 1016 grid points per time step for a DNS;

(iv) atmospheric flows: Re ≈ 1020,

N ≈ 1045 grid points per time step for a DNS.

Moreover, even if DNS were computationally feasible for turbulent flows, defining

precise initial and boundary conditions remains challenging. At high Reynolds num-

bers, even small boundary perturbations may excite the already existing small scales,

introducing noises into the system. As observed in Aldama (1990), the uncontrollable

nature of the boundary conditions produces random responses. Therefore, it makes

more sense to ask for the statistics of turbulent flows.
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1.2 Classical turbulence modeling

Since DNS is computationally expensive, efforts have been taken to reduce the cost

of numerical simulations via turbulence modeling. Typically, large-scale solutions are

calculated using a coarse grid, while the small-scale effects are modeled and integrated

into the equations of large-scale variables.

1.2.1 A brief overview of turbulence modeling

In order to be able to compute the solution of turbulent flows, we reduce the number

of degrees of freedom by introducing a coarse level description of the flows. There are

mainly two ways to reduce the number of degrees of freedom in numerical simulation:

(i) Calculating the statistical ensemble-average of the solution. The resulting equa-

tions are called the Reynolds Averaged Navier-Stokes equations (RANS) (Laun-

der & Spalding, 1972). The idea is Reynolds decomposition. The exact solution

u is split into two parts: the statistical average 〈u〉 and a fluctuation u′ (illus-

trated in Figure 1.1):

u(x, t) = 〈u(x, t)〉+ u′(x, t).

Only for statistically steady turbulence, the average is in practice obtained by a

time average

〈u(x, t)〉 ≈ ū(x) = lim
T→∞

1

T

∫ T

0

u(x, t)dt.

The above time-average operations result in a much smaller number of degrees

of freedom. The most popular RANS models appear to yield satisfactory pre-

dictions in attached flows and some with shallow separations. However, RANS

predictions of massive separations have typically been unreliable (Travin et al.,

2001; Squires et al., 2005).

(ii) Calculating only the low-frequency modes, while high-frequency fluctuations are

modeled (illustrated in Figure 1.2). This is done in Large Eddy Simulation

(LES). The solutions are separated into two parts: a large-scale component and
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Figure 1.1: Symbolic representation of energy spectrum splitting of RANS, taken from Sagaut (2001)

Figure 1.2: Symbolic representation of energy spectrum splitting of LES, taken from Sagaut (2001)

small-scale fluctuations:

u(x, t) = U(x, t) + u′(x, t). (1.2.1)

A reference or cutoff length scale is used to define the above scale separation.

Great effort has been taken in this thesis to derive mathematically the modeled

effect–the Reynolds stress in the resultant LES equations–with minimal assump-

tions based on the multiscale analysis.

In the first part of this thesis, we focus on LES. After substituting the decom-

position (1.2.1) into the Navier-Stokes equations (1.1.1) and taking the mean, the

Reynolds equation is obtained:

∂U

∂t
+ (U · ∇)U +∇ · 〈u′ ⊗ u′〉+∇〈p〉 = ν∆U , (1.2.2)

∇ ·U = 0,

with proper initial and boundary conditions.
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The velocity covariances 〈u′⊗u′〉 are called the Reynolds stress. Many turbulence

models have been developed to approximate the Reynolds stress, aimed at capturing

the most important statistical quantities of turbulent flows: profiles of mean velocity,

r.m.s. velocity fluctuations, etc. Among them, the turbulent-viscosity models were

the first attempts. Based on the turbulent-viscosity hypothesis in these models, the

Reynolds stress is given by

〈u′ ⊗ u′〉 =
2

3
kI − νT

(
∇U +∇UT

)
, (1.2.3)

where νT is the turbulent viscosity. In applications to turbulent boundary-layer flows,

the mixing length model was proposed (Prandtl, 1925)

νT = l2m

∣∣∣∣∂U∂y
∣∣∣∣ . (1.2.4)

But the turbulent structures are over-simplified and the essential physical mechanisms

are not included. More complicated models, such as k-ε, k-ω models (Mohammadi

& Pironneau, 1994; Sagaut, 2001; Berselli et al., 2006), have been proposed and

incorporated in most commercial CFD softwares.

Another popular model is the Smagorinsky model (Smagorinsky, 1963) and its

variants (van Driest, 1956, for an example of channel flow), which have succeeded in

many applications, e.g. , homogeneous turbulence and turbulent channel flow. In the

Smagorinsky model, the turbulent viscosity is given as

νT = (Cs∆)2 ‖D‖F , (1.2.5)

where Cs is the Smagorinsky constant, ∆ is the filter width and D is the mean strain

rate:

D =
1

2

(
∇U +∇UT

)
. (1.2.6)

Recently, a class of subgrid stress models for large eddy simulation (LES) have

been obtained by Misra & Pullin (1997) based on the vortex-based Reynolds stress

closure. An equation relating the subgrid stress to the vortex-structure orientation
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and the subgrid kinetic energy and the Kolmogorov energy spectrum assumption

for the subgrid vortices gives a coupling closure. This model has been tested in

decaying turbulence. LES has been able to calculate practical engineering flows even

in relatively complex geometries (Ferziger, 1977; Lesieur & Métais, 1996; Rogallo &

Moin, 1984; Sagaut, 2001). However, it is still prohibitively expensive to simulate

wall-bounded flows at high Re, since a huge number of grid points are needed to

resolve the small structures near the wall (Chapman, 1979; Spalart et al., 1997).

Efforts have been made to address the issue of LES near the wall by fitting a log

law or coupling the thin boundary layer equations and a damped mixing-length eddy

viscosity (Cabot & Moin, 1999; Wang & Moin, 2002). Later, a special near-wall

subgrid-scale model based on wall parallel filtering and wall-normal averaging of the

streamwise momentum equation was developed (Chung & Pullin, 2009). This LES

model was performed for turbulent channel flow at Reτ in the range 2×103 to 2×107.

On the other hand, hybrid models, which combine LES with RANS equation,

have been proposed to improve the modeling performance of wall-bounded turbulence

(Baggett, 1998; Hamba, 2003). Most popular RANS models appear to yield good

predictions of high Re turbulent flows. Hence, the RANS model is applied near the

wall, while LES is carried out away from the wall. Spalart et al. (1997) proposed the

detached eddy simulations (DES) by modifying the Spalart-Allmaras one-equation

model. The RANS simulation in the near-wall region is switched to the LES in the

outer region, where the model length scale is changed from the wall distance to a

pseudo-Kolmogorov length scale. DES have been performed to predict separated

flows around a rounded-corner square at 10 degree angle of attack (Squires et al.,

2005). Nevertheless, all these models have closure problems, which means that these

models are based on empirical formulations and/or fitting to experimental data. No

systematic mathematical derivation of such a turbulence model has been achieved

yet.



7

1.2.2 Summary of the results of turbulence modeling via multiscale anal-

ysis

In Chapter 2, we present a mathematical derivation based on a multiscale analysis

of Navier-Stokes equations developed by Hou et al. (2005, 2008), aiming to provide

an explicitly systematic derivation of the Reynolds stress term in the LES models.

This multiscale analysis is developed for 3D homogeneous incompressible Euler and

Navier-Stokes equations using a semi-Lagrangian point of view. A multiscale model

can be obtained by separating variables into large-scale and small-scale components

and considering the interactions between these two components. This gives rise to

a system of coupled equations for large and small scales. An important feature of

the multiscale formulation is that no closure assumption is required and no unknown

parameters need to be determined. Therefore, it provides a self-consistent multiscale

system that captures the dynamic interaction between the mean velocities and the

small-scale velocities. This multiscale technique has been successfully applied to 3D

incompressible Navier-Stokes equations with multiscale initial data (Hou et al., 2008).

It couples the large-scale solution to a subgrid cell problem. The computational cost

for this coupled system of equations is still quite high, although an adaptive scheme

has been developed to speed up the computation.

In the multiscale model, the Reynolds stress term is expressed as the average of

the tensor product of the small-scale velocities, which are the solutions of a local

periodic cell problem. By using the frame invariance property of the cell problem

and an iterative homogenization of large- and small-scale solutions dynamically, we

reveal a crucial structure of the Reynolds stress. This special structure enables us to

obtain an explicit form of the Reynolds stress. To the best of our knowledge, this is

the first time that a linear constitutive relation between the Reynolds stress and the

strain rate has been established by combining a systematic mathematical derivation

with physical arguments.

For homogeneous turbulence, we are able to recover the Smagorinsky model under

minimal assumptions, while a simplified Smagorinsky model can be derived given the

special structure of turbulent channel flow.
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We also use a second order approximation of the inverse flow map to obtain a

nonlinear model. This nonlinear model can capture the phenomena of dispersion

and backscatter of kinetic energy. In addition, it covers the mixed model, which

combines the Smagorinsky model and the gradient model. Careful comparison reveals

the consistency of our nonlinear model with the generic nonlinear model of Lund &

Novikov (1992).

In Chapter 3, an extensive numerical study is performed to validate the simplified

model for turbulent channel flow by using some well-established benchmark tests.

Good qualitative agreements are shown for various statistical quantities of channel

flow. These include mean velocity profiles, r.m.s. velocity and vorticity fluctuations,

turbulent kinetic energy budget, etc. However, we do observe some noticeable differ-

ences among the results obtained from the simplified model, DNS, and experiments,

especially in the profiles of r.m.s. vorticity fluctuations near the wall. There are two

error sources that could contribute to these discrepancies. The first one is due to

measurement (hot wire) errors near the wall (Kim et al., 1987). The second one is

the modeling error, which will be discussed in detail in Chapter 3.

1.3 Turbulence modeling via the data-driven stochastic method

Due to its high irregularity, turbulent flow could be characterized by stochastic pro-

cesses. There has been growing interest and significant progress over the past decades

in the area of stochastic partial differential equations (sPDEs). Consequently, many

methods have been devised to solve sPDEs accurately and efficiently. Recently, the

generalized polynomial chaos (gPC) method has been developed and is receiving

more and more attention (Xiu & Karniadakis, 2002). The types of polynomials used

in the gPC method are chosen empirically according to the distributions of the input

random parameters. A list of commonly used polynomials associated with different

distributions of the random input is given in the book by Xiu (2010). However, if

the stochastic systems are highly nonlinear and correlated, there is no guarantee that

the correspondence between the distribution of the random input and the type of

orthogonal polynomials remains valid.
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Usually, the probabilistic dimensionality of a stochastic system is extremely high.

The Karhunen-Loève (K-L) expansion (see Loève, 1977, for example) is one of the

most widely used techniques for dimension reduction in representing random pro-

cesses. Let Y (ω) be a stochastic process with random variable ω. The K-L expansion

of Y is

Y (ω,x) = Ȳ (x) +
∞∑
i=1

√
λiψi(x)Ai(ω), (1.3.1)

where Ȳ (x) is the mean and ψi(x) and λi are the eigen-pairs of the covariance

Cov[Y (ω,x), Y (ω,y)]. Inspired by the multiscale finite element method (Hou & Wu,

1997) and the proper orthogonal decomposition (POD) method (Sirovich, 1987; Ven-

turi et al., 2008), a new algorithm named the data-driven stochastic method (DDSM)

has been proposed (Cheng et al., 2011) and successfully combined with (adaptive)

ANOVA to address the issue of high dimensionality in random space (Hu et al., 2012).

Efforts have been taken to construct gPC bases under which the stochastic solutions

have a sparse decomposition based on Karhunen-Loève (K-L) expansion.

The DDSM algorithm consists of two parts: the offline and the online parts. In

the offline part, an approximately complete subset of mutually orthogonal gPC bases

{Ai(ω)} is obtained based on K-L expansion. In the online part, the stochastic

solutions are projected onto the subspace spanned by gPC bases, and the coefficient

functions in the K-L expansion are obtained by solving a coupled deterministic system.

1.3.1 Numerical results of turbulence modeling based on DDSM

In Chapter 4, we extend the DDSM to the simulation of fully developed turbulence.

Specifically, we study the channel flows with random initial data. If we decompose

the velocity field using K-L expansion, the number of dominant terms remains pro-

hibitively large. The main idea of turbulence modeling via DDSM is based on the

observation that once flows enter the fully developed regime, the dimensions of certain

statistical structures become small. A prominent example is the famous Kolmogorov

-5/3 law for the energy spectrum of the intermediate scales of high-Reynolds-number

flows that are ideally homogeneous and isotropic. Since the statistical quantities of
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turbulent flows are the central focus of attention, it is sensible to calculate the gPC

bases from the statistical intensities.

The gPC bases based on the mean velocity profile are obtained. It is shown that the

corresponding eigen-values decay fast enough so that only around 10 bases are needed

in the K-L expansion. Then, the velocities are projected onto the subspace spanned by

these gPC bases and the system of equations is solved to obtain approximate samples

of u(t,x, ω). We also check two potential factors that may affect the accuracy of

this algorithm. The first factor is the number and type of the gPC bases; the second

one is the resolution of velocity coefficients ui(t,x) in the K-L expansion. It turns

out that the number and type of gPC base have only marginal effect on this DDSM

algorithm. On the other hand, a slightly higher resolution, which is the grid size of

LES, does improve the accuracy of r.m.s. velocity fluctuation, especially the normal

component, pronouncedly. That is, in the near-wall region, the flow structures need

to be resolved to certain level. Overall, the DDSM offers decent approximation with

low resolution and a relatively small number of gPC bases.
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Chapter 2

Turbulence modeling via multiscale
analysis

Computing 3D incompressible flows at high Reynolds number is very challenging due

to the huge number of degrees of freedom. Developing an effective turbulence model

that captures the large-scale behavior of turbulent flows is essential in many engineer-

ing applications. The objective of this chapter is to find a systematic way to obtain

turbulent models using a multiscale analysis developed by Hou et al. (2005, 2008).

This multiscale analysis was developed for 3D homogeneous incompressible Euler and

Navier-Stokes equations using a semi-Lagrangian point of view. A multiscale system

was obtained by separating the variables into large-scale and small-scale components.

This multiscale technique has been successfully applied to 3D incompressible Navier-

Stokes equations with multiscale initial data. The multiscale analysis couples the

large-scale solution to a subgrid cell problem. The computational cost for this cou-

pled system of equations is still quite high, although an adaptive scheme has been

developed to speed up the computation. The ultimate objective of multiscale analysis

of turbulent flows is to develop an approximate closure model without the need to

solve the cell problems. This will lead to the development of a multiscale model with

a computational cost comparable to that of LES turbulence models.

In the multiscale model, the Reynolds stress term can be expressed as the mean

of the tensor product of the small-scale velocities with respective to the small scale

component. These small-scale velocities are the solutions of local periodic cell prob-

lems. By taking advantage of the frame invariance property of the cell problems

and an iterative homogenization of large- and small-scale solutions dynamically, we
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reveal a crucial structure of the Reynolds stress. This special structure enables us

to obtain an explicit form for the Reynolds stress in turbulent flows with the aid of

some mild physical assumptions. To the best of our knowledge, this is the first time

that a linear constitutive relation between the Reynolds stress and the strain rate

has been established by combining systematic mathematical derivation and physical

arguments. Moreover, we take second order approximation of the inverse flow map

function to obtain a nonlinear model, which could model the effects of anti-cascade

of kinetic energy and dispersion.

2.1 Multiscale analysis for the 3D Navier-Stokes equations

First, we review the multiscale analysis for the Navier-Stokes equations. Based on

the multiscale analysis by Hou-Yang-Ran (Hou et al., 2005, 2008, hereafter referred

to as HYR), we can formally formulate a multiscale system for the incompressible 3D

Navier-Stokes equation as a homogenization problem with ε being a reference wave

length as follows:

∂tu
ε + (uε · ∇)uε +∇pε = ν∆uε, (2.1.1a)

∇ · uε = 0, (2.1.1b)

uε|t=0 = U(x) +W (x, z), (2.1.1c)

where uε(x, t) and pε(x, t) are the velocity field and the pressure, respectively, and

z = x/ε. The initial velocity field uε(x, 0) can be reparameterized in a formal two-

scale structure, and is separated into a mean component U(x) and a high-frequency

component W (x, z). In general, W (x, z) is periodic in z with mean zero, i.e.,

〈W 〉 ≡
∫
W (x, z) dz = 0.

In Appendix B, the reparameterization technique of the initial velocity uε(x, 0)

into a two-scale structure for turbulent channel flow is illustrated in detail. Here, the

mean component U(x) and the high-frequency component W (x, z) depend on the

reference scale ε. If we take the limit ε→ 0, W (x, z) will tend to zero and the mean
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velocity U(x) will recover the full velocity field, which contains all of the scales.

In the analysis of the multiscale solution structure for Euler and Navier-Stokes

equations, the key idea is to use a nested multiscale expansion to characterize the

propagation of the small scales or the high frequency component W (x, z). The first

attempt to use homogenization theory to study the 3D Euler equations with highly

oscillating data was carried out by McLaughlin et al. (1985). To construct a multiscale

expansion for the Euler equations, they made the assumption that the oscillation is

convected by the mean flow. However, Hou et al. performed a detailed study using

the vorticity-stream function formulation (see Hou et al., 2005, 2008), and found that

the small-scale information is in fact propagated by the full velocity uε, which is

consistent with Taylor’s hypothesis (Zaman & Hussain, 1981). To be specific, define

a multiscale phase function θε(t,x) as follows:

∂θε

∂t
+ (uε · ∇)θε = 0, (2.1.2a)

θε|t=0 = x, (2.1.2b)

which is also called the inverse flow map. Using this multiscale phase function, HYR

characterized the evolution of the small-scale velocity field.

Based on a careful multiscale analysis in the Lagrangian coordinate, HYR obtained

the following nested multiscale expansion for θε:

θε = θ̄(t,x, τ) + εθ̃(t, θ̄, τ, θ̄/ε), (2.1.3)

where τ = t/ε. By making a change of variables to simplify the computation of the

cell problem, the following multiscale expansions for (uε, pε) are proposed:

uε = ū(t,x, τ) + ũ(t, θ̄, τ, z), (2.1.4a)

pε = p̄(t,x, τ) + p̃(t, θ̄, τ, z), (2.1.4b)

where τ = t/ε, z = θ̄/ε, (ū, p̄) and θ̄ are total mean components including high order

terms, and ũ and p̃ are periodic in z with zero mean.

Remark 2.1.1. After representing in a formal two-scale reparameterization in (2.1.4),



14

t, τ , x and z are regarded as independent variables.

Then, substituting the expansions (2.1.4) into the Navier-Stokes system (2.1.1)

and averaging with respect to z, the averaged equations for the mean velocity field

ū(t,x, τ) with initial and proper boundary conditions are obtained:

∂̄tū+ (ū · ∇x)ū+∇xp̄+∇x · 〈ũ⊗ ũ〉 = ν∇2
xū (2.1.5a)

∇x · ū = 0, (2.1.5b)

ū|t=0 = U(x), (2.1.5c)

where ∂̄t = ∂t + ε−1∂τ . The additional term 〈ũ⊗ ũ〉 in the averaged equation (2.1.5a)

is the well-known Reynolds stress. How the Reynolds stress term is modeled is of im-

portance in both theoretical understanding and engineering applications of turbulent

flows.

Next, substituting the expansion (2.1.3) into (2.1.2) and averaging over z gives us

the averaged equations for θ̄(t,x, τ) with proper initial and boundary conditions:

∂̄tθ̄ + (ū · ∇x)θ̄ + ε∇x · 〈θ̃ ⊗ ũ〉 = 0, (2.1.6a)

θ̄|t=0 = x. (2.1.6b)

We would like to emphasize that in Eq. (2.1.5a), ū(t,x, τ) and ũ(t, θ, τ,z) are

functions of τ . After averaging over z, the Reynolds stress term is still τ depen-

dent. In order to make the Reynolds stress independent on τ , we make the following

assumption:

Assumption 2.1.2. We assume that the turbulent flows are weakly ergodic. Since we

perform space average for the Reynolds stress, it is expected that the average should

have a short correlation length in time. If we denote ∆t as the characteristic correla-

tion time, then we expect the time-average of the Reynolds stress over ∆t has a weak

dependence on τ .

To simplify the model further, we consider only the leading order terms of the
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large-scale variables (ū, p̄, θ̄). We are looking for the following expansion:

ū(t,x, τ) = u(t,x) + εu1(t,x, τ), (2.1.7a)

p̄(t,x, τ) = p(t,x) + εp1(t,x, τ), (2.1.7b)

θ̄(t,x, τ) = θ(t,x) + εθ1(t,x, τ), (2.1.7c)

and small-scale variables (ũ, p̃, θ̃),

ũ = w(t, θ̄, τ, z) +O(ε), (2.1.8a)

p̃ = q(t, θ̄, τ, z) +O(ε), (2.1.8b)

θ̃ = Θ(t, θ̄, τ, z) +O(ε). (2.1.8c)

Plugging the above expansions (2.1.7) and (2.1.8) into Eqs. (2.1.5) and (2.1.6) and

keeping the leading order of ε, we have the equations

∂tu+ (u · ∇x)u+∇xp+∇x · 〈w ⊗w〉 = ν∇2
xu (2.1.9a)

∇x · u = 0, (2.1.9b)

u|t=0 = U(x), (2.1.9c)

for large-scale velocity u and

∂tθ + (u · ∇x)θ = 0, (2.1.10a)

θ|t=0 = x. (2.1.10b)

for large-scale inverse flow map θ.

Let ∆t to be the typical time length and ∆τ = ∆t/ε, and define [f ]∗∆τ to be the

local time-average given by

[f ]∗∆τ =
1

∆τ

∫ τ+∆τ

τ

fdτ.

In Eq. (2.1.9a), the Reynolds stress 〈w ⊗ w〉 is still dependent on fast time τ . By

Assumption 2.1.2, the local time-average of the Reynolds stress is independent on τ .

Therefore, after a local time-average of Eq. (2.1.9), we have the following simplified
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averaged equations for large-scale velocity u, up to the first order of ε,

∂tu+ (u · ∇x)u+∇xp+∇x · 〈[w ⊗w]∗∆τ 〉 = ν∇2
xu (2.1.11a)

∇x · u = 0, (2.1.11b)

u|t=0 = U(x). (2.1.11c)

Then we subtract the averaged equations from the Navier-Stokes equation (2.1.1)

and the equations for the inverse flow map θε (2.1.2). After some algebraic oper-

ations, we obtain the equations for the small-scale variables, to the leading order

approximation:

∂τw +DzwAw +AT∇zq −
ν

ε
∇ · (AAT∇zw) = 0, (2.1.12a)

(AT∇z) ·w = 0, (2.1.12b)

w|t=0 = W (x, z), (2.1.12c)

where A is the gradient of the phase function θ, i.e. , A = Dxθ, which measures the

deformation rate of the flow.

Remark 2.1.3. The details of the above multiscale analysis technique are elaborated

in Appendix A.

Remark 2.1.4. An important feature of the above multiscale formulation (2.1.11) -

(2.1.12), including the equations for both large-scale and high-frequency variables, is

that we do not need any closure assumption; thus no unknown parameters need to be

determined, in contrast to other models, e.g. , the Smagorinsky model. The multiscale

formulation provides a self-consistent system that captures the interaction between

large-scale and small-scale fields. The computational cost of this coupled system of

equations is still quite high, although an adaptive scheme has been developed to speed

up the computation, (see Hou et al., 2008, for a numerical example of homogeneous

turbulent flows).

Remark 2.1.5. For the convenience of theoretical analysis and numerical implemen-

tation, the cell problems (2.1.12) can be further simplified by making a change of

variables from w to w̃ by letting w̃ = Aw. The w̃ satisfies the following modified
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cell problems:

∂τw̃ + (w̃ · ∇z)w̃ + B∇zq −
ν

ε
∇ · (B∇zw̃) = 0, (2.1.13a)

∇z · w̃ = 0, (2.1.13b)

w̃|t=0 = AW (x, z). (2.1.13c)

where B = AAT.

2.2 Mathematical derivation of turbulence models

Considering that the model (2.1.11)–(2.1.12) needs considerable computational CPU

time and memory storage, we would like to develop a simplified multiscale model

for turbulent flows. On one hand, the new model has a comparable computational

complexity with the other turbulence models. On the other hand, the simplified

multiscale model requires minimal closure assumptions.

First of all, we state the Rivlin-Ericksen Theorem, which plays an essential role in

the mathematical development of the turbulence models.

Theorem 2.2.1 (Rivlin-Ericksen). To be frame invariant, the only possible form for

a symmetric matrix R, function of another symmetric matrix B ∈ Rd×d, is

R(B) = β0(iB)I + β1(iB)B + · · ·+ βd−1(iB)Bd−1,

where d is the dimensionality and β0, β1, · · · , βd−1 are real-valued functions of the

principal invariants iB of the matrix B.

A complete proof of the Rivlin-Ericksen can be found in the book by Ciarlet (1988).

Lemma 2.2.2. Let w̃ be the solution to the modified cell problems (2.1.13), then the

tensor Rm = 〈[w̃ ⊗ w̃]∗∆τ 〉 can be expressed as follows:

〈[w̃ ⊗ w̃]∗∆τ 〉(B) = a0I + a1B + a2B2, (2.2.1)

where I is the identity matrix and the coefficients a0, a1, a2 are real-valued functions

of the principal invariants of B.
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Proof. The proof relies on frame invariance, which is the property that the model

should yield results independent of reference. It has been shown that Navier-Stokes

equations and the averaged equations (2.1.11) are frame-invariant (Mohammadi &

Pironneau, 1994). We need to show that the modified cell problems (2.1.13) are also

frame-invariant. Keep in mind that we are working in three-dimensional space for

both the averaged equations and the cell problems (2.1.13).

Then, we check that the modified cell problems (2.1.13) are frame-invariant.

(i) Transitional invariance: suppose z = y+Z, where Z is a constant vector of R3.

Then
dz

dτ
= w̃(z, τ,x, t) =

dy

dτ
,

∂w̃

∂zi
=
∂w̃

∂yi
.

In (z, τ), the small-scale velocity is w̃(z, τ,x, t) and it satisfies the modified cell

problems (2.1.13).

In (y, τ), the small-scale velocity is ṽ(y, τ,x, t). Hence it verifies

0 =
[
∂τw̃ + (w̃ · ∇z)w̃ + B∇zq −

ν

ε
∇ · (B∇zw̃)

]
z=y+Z

= ∂τ ṽ + (ṽ · ∇y)ṽ + B∇yq −
ν

ε
∇y · (B∇yṽ),

∇z · w̃|z=y+Z = ∇y · ṽ = 0.

Therefore, the cell problems (2.1.13) are invariant with respect to translation.

(ii) Galilean invariance: suppose z = y + ˆ̃vτ , where ˆ̃v is a constant vector. Then

dz

dτ
= w̃(z, τ,x, t) = w̃(y + ˆ̃vτ, τ,x, t) =

dy

dτ
+ ˆ̃v = ṽ + ˆ̃v,

so let ṽ(y, τ,x, t) = w̃(y + ˆ̃vτ, τ,x, t)− ˆ̃v.

Note that ∂τ ṽ = ∂τ (w̃ − ˆ̃v) + (ˆ̃v · ∇z)w̃ = ∂τw̃ + (ˆ̃v · ∇z)w̃. The cell problems
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for ṽ become

∂τ ṽ + (ṽ · ∇y)ṽ + B∇yq −
ν

ε
∇y · (B∇yṽ)

=∂τw̃ + (ˆ̃v · ∇z)w̃ + ((w̃ − ˆ̃v) · ∇z)(w̃ − ˆ̃v) + B∇zq −
ν

ε
∇z · (B∇z(w̃ − ˆ̃v))

=∂τw̃ + (ˆ̃w · ∇z)w̃ + B∇zq −
ν

ε
∇z · (B∇zw̃) = 0,

∇y · ṽ = ∇z · (w̃ − ˆ̃v) = ∇z · w̃ = 0.

Therefore, the cell problems (2.1.13) are Galilean invariant.

(iii) Rotation invariance: Let M be a rotational matrix, that is

MMT = MTM = I.

Let z = My and ˆ̃v denote the small-scale velocity in the y variable,

w̃ =
dz

dτ
= M

dy

dτ
= M ˆ̃v;

and for any f we have

∂f

∂zi
=
∂f

∂yj

∂yj
∂zi

=
∂f

∂yj
MT

ji , that is ∇zf = M∇yf.

Consequently,

∇zw̃ = (M∇y)M ˆ̃v = M∇y ˆ̃vMT .

Hence

0 =∂τw̃ + (ˆ̃w · ∇z)w̃ + B∇zq −
ν

ε
∇z · (B∇zw̃)

=M∂τ ˆ̃v + (M ˆ̃v) · [(M∇y)M ˆ̃v] +M∇y(Bq)− ν

ε
(M∇y) · (M∇y[MBˆ̃v])

=M(∂τ ˆ̃v + (ˆ̃v · ∇y)ˆ̃v + B∇yq −
ν

ε
∇y · (B∇y ˆ̃v),

∇z · w̃ = (M∇y) ·M ˆ̃v = Mij
∂

∂yj
Mik

ˆ̃vk = ∇y · ˆ̃v = 0.

Therefore, the cell problems (2.1.13) are rotation invariant.

In summary, the cell problems (2.1.13) for w̃ are frame invariant.
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Furthermore, the cell problems are equations of w̃ with respect to τ and z. B(t,x)

can be regarded as parameters in Eqs. (2.1.13). Therefore, the solution w̃ depends

on this parameter B:

w̃ = w̃(τ, z, t,x;B).

After local time and space averaging w.r.t. τ and z, the symmetric tensor 〈[w̃ ⊗

w̃]∗∆τ 〉 still depends on B:

〈[w̃ ⊗ w̃]∗∆τ 〉 = 〈[w̃ ⊗ w̃]∗∆τ 〉(t, x;B).

Note that B = AAT is also a symmetric tensor. By the Rivlin-Ericksen theorem

in three dimension (d = 3), we have the following relation in three-dimensional space:

〈[w̃ ⊗ w̃]∗∆τ 〉 = a0I + a1B + a2B2,

and the coefficients a0, a1, a2 are real-valued functions of the principal invariants of

B.

Remark 2.2.3. At this point, we only know that all these coefficients ai(i = 0, 1, 2)

are real-valued functions of the three principal invariants of B. Nevertheless, B cannot

be solved explicitly in order to obtain these invariants. Hence, we will approximate

B in the following using the multiscale system that we have obtained in the previous

subsection.

In order to extract the structure of the Reynolds stress, we perform a local-in-time

multiscale analysis to account for the interaction between the large and small scales

through dynamic re-initialization of the phase function. The large-scale components

of the solutions, u and θ, can generate small scales dynamically through convection

and nonlinear interaction. In order to ensure that u contains only the large-scale

components of the solutions, we decompose the multiscale solutions into local mean

and high-frequency components by applying the reparameterization technique of HRY

after solving the multiscale system for some characteristic time step ∆t. This dynamic

iterative reparameterization of the multiscale solutions enables us to capture the

dynamic interaction among all small scales of the solutions. We call this procedure a
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dynamic iterative homogenization. This leads to the following theorem.

Theorem 2.2.4. To the leading order of some characteristic time length ∆t, the

linear relation between the Reynolds stress tensor and the strain-rate tensor is given

by

R = αI − β∆tD +O(∆t2), (2.2.2)

where α = a0 + a1 + a2, β = −2(a0 − a2), I is the identity matrix, and D is the rate

of strain tensor defined as

D =
1

2

(
∇u+∇uT

)
.

Proof. Note that in Eq. (2.2.1), we found the relation between 〈[w̃ ⊗ w̃]∗∆τ 〉 and

B, where B = Dxθ(Dxθ)T . In the first step, in order to obtain the linear relation

between R and D, we need to approximate B by D. To achieve this goal, we solve

the average equations (2.1.10) for the inverse phase flow θ in a local time interval

[t, t+ ∆t] with θ(t,x) = x as the initial condition. Using the forward Euler method,

the leading order approximation of θ is as follows:

θ(t+ ∆t,x) = x−∆tu(t,x) +O(∆t2).

Now it follows that the rate of deformation can be computed as

A = Dxθ = I −∆t∇u+O(∆t2),

and its inverse

A−1 = I + ∆t∇u+O(∆t2).

Therefore, B can be approximated up to second order in ∆t as follows:

B = AAT = I − 2∆tD +O(∆t2), (2.2.3)
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Plugging Eq. (2.2.3) into relation (2.2.1), we have an approximation to 〈[w̃⊗w̃]∗∆τ 〉:

〈[w̃ ⊗ w̃]∗∆τ 〉 = a0I + a1B + a2B2

= a0I + a1

(
I − 2∆tD +O(∆t2)

)
+ a2

(
I − 2∆tD +O(∆t2)

)2

= αI − β̃∆tD +O(∆t2),

where the coefficients α = a0 + a1 + a2 and β̃ = 2(a1 + 2a2). Keep in mind that both

coefficients α and β̃ are functions of the invariants of B.

Finally, the Reynolds stress tensor is given by

R = 〈[w ⊗w]∗∆τ 〉

= 〈[A−1w̃ ⊗A−1w̃]∗∆τ 〉

= 〈[(I + ∆t∇u+O(∆t2))w̃ ⊗ (I + ∆t∇u+O(∆t2))w̃]∗∆τ 〉

= 〈[w̃ ⊗ w̃]∗∆τ 〉+ ∆t∇u〈[w̃ ⊗ w̃]∗∆τ 〉+ ∆t〈[w̃ ⊗ w̃]∗∆τ 〉∇uT +O(∆t2)

= αI − β∆tD +O(∆t2), (2.2.4)

where tr(R) = α/3 = (a0 +a1 +a2)/3 is the SGS kinetic energy, and β = −2(a0−a2).

Both coefficients α and β are also functions of the invariants of B.

Remark 2.2.5. Since ∇ · (αI) = ∇α, the first term αI in Eq. (2.2.2) can be

integrated into the pressure term in Eq. (2.1.11a) with a modified pressure p′ = p+α.

Lemma 2.2.6. The coefficient β in Eq. (2.2.4) is the order of 1/∆t, i.e.

β ∼ 1

∆t
. (2.2.5)

Proof. In the proof of Rivlin-Ericson theorem, the Reynolds stress tensor R and

the mean strain-rate tensor D share the eigen-vectors ψi, i = 1, 2, 3 (Mohammadi &

Pironneau, 1994; Ciarlet, 1988). One of the corresponding eigen-values must be non-

zero. Otherwise R and D are zero tensors. Assume D’s eigen-value λ1 is non-zero

and the corresponding orthonormal eigen-vector is ψ1. Further, we assume that µ1 is

the eigen-value of R related to ψ1.

Multiplying both sides of Eq. (2.2.4) by ψ1, we have the following approximate
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relation:

Rψ1 = αIψ1 − β∆tDψ1,

µ1ψ1 = (α− β∆tλ1)ψ1.

After taking the dot product with eigen-vector ψ1 on both sides of the above equation

and noticing < ψ1, ψ1 >= 1 and λ1 6= 0, we have

µ1 = (α− β∆tλ1), or

β =
α− µ1

λ1∆t
.

Therefore, we have the following order of the coefficient β

β ∼ 1

∆t
.

Remark 2.2.7. It is important to note that if we take the limite ∆t→ 0, the Reynolds

stress tensor should not reduce to a multiple of identity matrix, which means that R

must have any effect on the LES model (2.1.11a). By Lemma 2.2.6 the coefficient β

is the order of 1/∆t, or

β∆t ∼ 1.

Therefore, the term −β∆tD does not vanish when taking the limit ∆t→ 0.

In eddy-viscosity models, the Reynolds stress tensor is assumed to be a linear

functional of the strain rate tensor via the turbulent eddy viscosity

R̃ij = Rij −
1

3
Rkkδij = −νTDij, (2.2.6)

which is a first-order approximation, as is that in (2.2.4). We remark that this linear

relation between the stress and strain rate tensors is not meant to be valid as a point-

wise relation, but should be understood in a statistical sense as an ensemble average.

To demonstrate this, the channel flow is taken as an example. The computational

settings in Kim et al. (1987) are adopted. The streamwise (x) and spanwise (z) com-
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putational periods are chosen to be 4π and 2π, and the half-width of the channel is

1, i.e. , the computational domain is [0, 4π]× [−1, 1]× [0, 2π]. Figure 2.1 is the time

average of the sign of R̃11/D11 at each grid point on the central plane y = 0, while

Figure 2.2 displays the snapshot of the sign at t = 2. Hence, it is clear that there

does not exist a positive νT for which equation (2.2.6) holds in a pointwise fashion.

Furthermore, the turbulent eddy viscosity νT is assumed to be positive, which

treats the ‘dissipation’ of kinetic energy at sub-grid scales similar to viscous (molecu-

lar) dissipation. As a matter of fact, the Reynolds stress term reflects neither diffusion

nor dissipation locally in space, but reflects equivalent, ensemble-averaged effects of

turbulent fluctuations. Figure 2.3 indicates that each element of R̃/D alternates sign

in time. This suggests that the role of the Reynolds stress changes continuously in

time with a positive time-average in turbulent shear flows.

Remark 2.2.8. In equation (2.2.4), we establish a linear constitutive relation between

the Reynolds stress R̃ and the strain rate D, up to second-order accuracy in the

time step ∆t. The first term αI is not crucial since it can be incorporated into the

equations of large-scale fields as a modified pressure. Thereafter, we write R̃ as R for

simplicity of notation. The remaining question is how to determine the coefficient β.

In order to specify β, we need to know the detailed structure of the symmetric tensor

B. Constitutive relations necessarily involve the material make-up or constitution of

the medium and must involve material properties like viscosity.

Note that there exists a relation between B and D given in (2.2.3), so we can find

the relation of the eigenvalues between B and D as follows. In three dimensions,

assume λi and λ̃i (i = 1, 2, 3) are the eigenvalues of D and B, respectively, while

ψi (i = 1, 2, 3) are the corresponding eigenfunctions. Then, up to the second order of

∆t, we have

Bψi = (I − 2∆tD)ψi = λ̃iψi, i = 1, 2, 3,

which gives

Dψi =
1− λ̃i
2∆t

ψi = λiψi, i = 1, 2, 3,

or

λ̃i = 1− 2∆tλi, i = 1, 2, 3. (2.2.7)
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Figure 2.1: Spatial distributions of the time-averaged sign of R̃11D11 on the central layer of the
channel y = 0 for each entry of R̃/D
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Figure 2.2: Spatial distributions of snapshots of the sign of R̃11D11 at time t = 2 on the central
layer of the channel y = 0 for each entry of R̃/D
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Figure 2.3: Time series of the sign of elements of R̃D at location (3.81, 0, 1.90) over time interval
[0.2, 2]. Black bars denote −1 and white bars denote +1. (a) R̃11/D11; (b) R̃22/D22; (c) R̃33/D33;
(d) R̃12/D12; (e) R̃23/D23; (f) R̃31/D31

Further, in three-dimensional space, the three invariants Ii (i = 1, 2, 3) of a matrix

M can be expressed by the three eigenvalues λi (i = 1, 2, 3) as follows:

I1 = tr(M) =
∑
i=1,2,3

λi,

I2 =
1

2

(
(tr(M))2 − tr(MM)

)
= λ1λ2 + λ2λ3 + λ3λ1,

I3 = det(M) =
∏

i=1,2,3

λi.

Given the relations in (2.2.7), we can express the invariants of B by those of D. Now,

the coefficient β can be formulated approximately as a function of the three principal

invariants of D. For various flows, we can specify the characteristic structure of

the rate-of-strain tensor D so that an explicit form for the coefficient β may be

obtained. To validate our mathematical derivation of turbulent models, we first take

homogeneous turbulent flow as an example for its simple geometry and physics. Later

on, we will work on a more realistic channel flow, chosen because of its relevance to a

large variety of engineering applications and its ability to provide direct insight into

fundamental turbulence phenomena. We will investigate these two examples further

in Section 2.3.
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2.3 Examples: Incompressible homogeneous turbulence and

turbulent channel flow

Based on the mathematical analysis in the previous sections, we are now ready to

give two examples to illustrate the procedure of deriving turbulent models for incom-

pressible turbulent flows.

2.3.1 Homogeneous incompressible turbulence

For the homogeneous turbulence, the flow is statistically invariant under translations

and/or rotations of the reference frame. Therefore, all entries in the strain tensor

must be of the same order. Then, the full strain-rate tensor D has to be considered:

D =


ux

1
2
(uy + vx)

1
2
(uz + wx)

1
2
(uy + vx) vy

1
2
(vz + wy)

1
2
(uz + wx)

1
2
(vz + wy) wz

 . (2.3.1)

The first principal invariant of D is zero due to the incompressibility of turbulent

flows, i.e. ,

I1 = tr(D) = ∇x · u = 0.

The other two invariants can be calculated as follows:

I2 =
1

2

(
(tr(D))2 − tr(DD)

)
= −1

2
‖D‖2

F , I3 = det(D), (2.3.2)

where ‖·‖F is the Frobenius norm, i.e. , ‖D‖F =
√∑

i

∑
j |Dij|

2. For the homogeneous

flows, statistically, the averaged velocity derivatives should be the same. Therefore,

the averaged strain-rate tensor D becomes a multiple of a matrix of ones. Thus the

determinant of D, i.e. , I3, vanishes in the statistical sense (Betchov, 1956). However,

for each snapshot of homogeneous turbulence, the determinant of D is not expected

to vanish in general. Therefore, mathematically, the choice of β cannot be determined

explicitly.
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By Remark 2.2.7, the coefficient β can be written in the following form

β =
γ

∆t
, (2.3.3)

where γ is a function of the principal invariants of D.

Then, by dimensional analysis, we find that γ has the dimension of ∆2(−2I2)1/2 =

∆2 ‖D‖F or ∆2I
1/3
3 = ∆2(det(D)1/3), where ∆ is a typical length of the large-scale

solution. In principle, γ can be a combination of I2 and I3:

γ = C∆2 ‖D‖%F det(D)(1−%)/3,

where C is a non-dimensional constant.

Assumption 2.3.1. We assume that γ depends only on ‖D‖F or det(D). Then, β

is a linear function of ‖D‖F or (det(D))1/3, i.e. ,

β(I1, I2, I3) = C2
1∆2 ‖D‖F ,

or

β(I1, I2, I3) = C2∆2(det(D))1/3,

where C1 and C2 are universal non-dimensional constants because of homogeneity.

Using the minimization technique to be described in Section 2.3.2, we can compute

the pointwise distribution of C1, as shown in Figure 2.4, and C2, as shown in Figure

2.5. When choosing the norm ‖D‖F for the coefficient β, the distribution of C1

is noticeably uniform. On the other hand, we see clearly the inhomogeneity of C2

on both layers in wall-normal direction. Furthermore, the plots of r.m.s. C1 and

C2 fluctuations in Figure 2.6 indicate the fact quantitatively that C1 displays more

uniform pattern than C2 does. Although we cannot justify the use of the Frobenius

norm mathematically, this is definitely an indicator of preference of the Frobenius

norm over the determinant from this numerical study.

Based on the analysis and numerical verification above, we make the following

assumption:
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Assumption 2.3.2. we assume that β is a linear function of ‖D‖F , i.e.

γ(I1, I2, I3) = C2
s∆2 ‖D‖F ,

where Cs is a universal constant because of homogeneity.

Theorem 2.3.3. The following Smagorinsky model for the homogeneous turbulence

can be recovered by multiscale analysis:

R = −(Cs∆)2 ‖D‖F D. (2.3.4)

Proof. Putting Eqs. (2.2.2) and (2.3.3) and Assumption 2.3.2 together, it is clear that

the linear relation (2.3.4) holds, up to the second order of time step ∆t.

Remark 2.3.4. The constant Cs = 0.18, as can be estimated by using the k−5/3

Kolmogorov cascade to make the ensemble-averaged subgrid kinetic energy dissipation

identical to the kinetic energy (Lilly, 1987).

Remark 2.3.5. In Eq. (2.1.11a), the Reynolds stress is given as R = 〈[w ⊗w]∗∆τ 〉.

While in the multiscale expansion (2.1.4), the large- and small-scale velocities have

the same order, i.e.

u ∼ w.

Hence, the order of the magnitude of R is

O(||R| |) = O(||u||2),

where || · || is the norm w.r.t. matrices or vectors.

While, the magnitude of the right hand side in Eq. (2.3.4) is

O(∆2)O
(
||u||
∆

)
O
(
||u||
∆

)
= O(||u||2).

Therefore, the Smagorinsky model obtained based on multiscale analysis is consis-

tent in the sense of magnitude scaling of flow variables.
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Table 2.1: Quantitative order of the velocity derivatives

∂u/∂x ∂u/∂y ∂u/∂z ∂v/∂x ∂v/∂y ∂v/∂z ∂w/∂x ∂w/∂y ∂w/∂z
∼ 10−2 ∼ 102 ∼ 10−2 ∼ 10−4 ∼ 10−1 ∼ 10−4 ∼ 10−2 ∼ 102 ∼ 10−1

2.3.2 Turbulent channel flow

The modeling derivation procedure of the homogeneous turbulence also applies to the

turbulent channel flow. The following modified Smagorinsky model can be recovered

by adding the van Driest damping function

R = −(Cs∆(1− exp(−y+/A)))2 ‖D‖F D,

where y+ is the non-dimensional distance from the wall and A = 25 is the van

Driest constant (van Driest, 1956). However, we can simplify the Smagorinsky model

by taking advantage of the special structure of the strain rate D for the turbulent

channel flow. Specifically, from an asymptotic boundary layer analysis, we find the

order of the velocity derivatives are as follows:

∂u

∂y
,
∂w

∂y
� ∂u

∂x
,
∂u

∂z
,
∂v

∂y
,
∂w

∂x
,
∂w

∂z
� ∂v

∂x
,
∂v

∂z
.

The scaling analysis of the velocity derivatives near the wall is consistent with the

numerical results of DNS (see Table 2.1). Given the orders of the velocity derivatives,

we neglect the small quantities in the entries of D. Thus, D can be approximated as

D ∼


0 uy/2 0

uy/2 0 wy/2

0 wy/2 0

 . (2.3.5)

The eigenvalues of the above approximate D are λ1 = 0, λ2,3 = ±1
2

√
u2
y + w2

y. Thus,

it follows that the three principal invariants are I1 = I3 = 0, and I2 = −(u2
y +w2

y)/4.

Now, the coefficients α and β are functionals of I2 or u2
y + w2

y only 1. Based on the

same arguments as those for the homogeneous turbulence, we propose the following

1Notice that in this approximation, we don’t have the dilemma of choices between invariants I2 and I3, as in the
case of homogeneous turbulence. This is another indication of preference for the Frobenius norm over the determinant.
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Figure 2.7: Profile of f(y) fitted by DNS vs. the van Driest function

form for β:

β =
∆2

∆t
f(y)(u2

y + w2
y)

1/2,

where f(y) is a function of y or y+ due to the inhomogeneity in y direction. Using

DNS data, Figure 2.7 shows that f(y+) has the shape close to the van Driest damping

function

f(y+) = C2
m((1− exp(−y+/A)))2,

where Cm is the universal constant, y+ is the non-dimensional distance from the wall,

and A = 25 is the van Driest constant (van Driest, 1956). The distance from the wall

measured in wall units is important in the turbulent channel flow and defined as

y+ =
uτ (δ − |y|)

ν
, (2.3.6)

where δ is the channel half-width, uτ is the wall shear velocity, and ν is the viscosity.

From the analysis and numerical verification, we have the following theorem:

Theorem 2.3.6. For a channel flow, the following simplified model can be obtained
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by multiscale analysis:

R = −(Cm∆(1− exp(−y+/A)))2(u2
y + w2

y)
1/2D. (2.3.7)

Remark 2.3.7. In the simplified model (2.3.7), Reynolds stress reduces to 0 naturally

as the boundary is approached due to the van Driest damping function (see van Driest,

1956; Pope, 2000; Berselli et al., 2006). This property ensures that the non-slip

boundary condition at the walls is preserved.

Remark 2.3.8. In the process of obtaining the simplified model (2.3.7), we have

extended the asymptotic analysis, which is valid within the boundary layer, to the

entire domain. This introduces additional modeling error, which will be illustrated in

the following numerical examples.

The constant Cm can be determined by locally minimizing the Reynolds stress

error term

min
Cm

∥∥∥R+
(
Cm∆(1− exp(−y+/A))(u2

y + w2
y)

1/4
)2D

∥∥∥
F
.

This gives us

Cm =

√
−R : D

∆(1− exp(−y+/A))(u2
y + w2

y)
1/4 ‖D‖F

, (2.3.8)

where R : D =
∑

i,jRijDij. We perform a priori computation to determine R in

equation (2.3.8) using the multiscale formulation elaborated in the following algo-

rithm.

Algorithm 2.3.9 (Determining the constant Cm).

(i) Run a DNS simulation of (2.1.1) to get the full velocity field uε(xi, tn) at each

time step.

(ii) Perform a reparameterization procedure, which is based on the Fourier expansion

and explained in detail in Appendix B for the channel flow, to obtain u(xi, tn)

and w(xi, tn,xi/ε, tn/ε).

(iii) The Reynolds stress is given by

R(x, t) = 〈w ⊗w〉 − 1

3
tr(〈w ⊗w〉)I. (2.3.9)
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2.3.3 Verification of Algorithm 2.3.9 for the determination of constant

Cm

In order to validate Algorithm 2.3.9, we run a test on a classical eddy viscosity

model–the Smagorinsky model with van Driest damping. The Smagorinsky model

(Smagorinsky, 1963) can be derived from the k−5/3 spectra theorem. In a channel

flow, the layer near the wall introduces a large amount of dissipation. The extra

dissipation prevents the formation of eddies, thus eliminating turbulence from the

beginning. Therefore, van Driest damping is introduced to reduce the Smagorinsky

constant CS to 0 when approaching the walls (for more discussions, see Pope, 2000;

Sagaut, 2001). The Smagorinsky model with van Driest damping for Reynolds stress

reads as

R(x, t) = −(Cs∆(1− exp(−y+/A)))2 ‖D‖F D, (2.3.10)

where Cs is the Smagorinsky constant, ∆ = 3
√

∆x∆y(y)∆z is the filter width, and y+

is the non-dimensional distance from the wall.

The constant Cs can be estimated by using the k−5/3 Kolmogorov cascade to make

the ensemble-averaged subgrid kinetic energy dissipation identical to ε, which is the

kinetic energy (see the review by Lilly, 1987). An approximate value for the constant

is then

Cs ≈
1

π

(
3CK

2

)−3/4

. (2.3.11)

For a Kolmogorov constant CK of 1.4, which is obtained by measurements in the

atmosphere (Champagne et al., 1977), this yields Cs ≈ 0.18.

On the other hand, using the technique of an iterative homogenization of large- and

small-scale solutions dynamically and locally minimizing the Reynolds stress error,

the Smagorinsky constant Cs can be determined as follows:

Cs =

√
−Rd : D

∆(1− exp(−y+/A)) ‖D‖F
√
‖D‖F

. (2.3.12)

In Figure 2.8, we plot the evolution of the Smagorinsky constant Cs. Cs oscil-

lates slightly around the value of 0.18, showing that Algorithm 2.3.9 determines the

Smagorinsky constant accurately. Figure 2.9 indicates that the constant Cm is around
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Figure 2.8: Temporal evolution of the constant Cs in the Smagorinsky model with van Driest
damping function. The dashed line denotes the value of 0.18, which can be estimated by using
the k−5/3 Kolmogorov cascade to make the ensemble-averaged subgrid kinetic energy dissipation
identical to the kinetic energy (Lilly, 1987).

0.2074. This is the value we will take in the following numerical simulation with the

simplified Smagorinsky model for turbulent channel flow.

2.4 Nonlinear LES modeling

In Section 2.2, we use an Euler approximation of the inverse flow map function θ

to establish a linear constitutive relation (2.2.4). Essentially, the multiscale model

we have done so far is a first order approximation process that allows us to recover

the Smagorinsky model for homogeneous turbulence and to introduce a simplified

Smagorinsky model for channel flow. In the following, we push to a second order

approximation in order to obtain a nonlinear constitutive relation.

In order to obtain a nonlinear relation between the Reynolds stress and the strain

rate, instead of using an Euler approximation, we must employ a second order scheme.

Here, the second order Runge-Kutta, which is essentially a two-step marching of the

first order Euler scheme, is adopted. The first step marching gives us θ at t+ ∆t/2:

θ(t+ ∆t/2,x) = x− 1

2
u(t,x)∆t+O(∆t2), (2.4.1)
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Figure 2.9: Temporal evolution of the constant Cm in the simplified Smagorinsky model obtained
by Algorithm 2.3.9. The dashed line denotes the value of 0.2073, which is a universal constant for
the turbulent channel flow.

then the second step of marching gives

θ(t+ ∆t,x) = x−∆t(u(t+ ∆t/2,x) · ∇)θ(t+ ∆t/2,x)

= x−∆tu(t,x) +
1

2
∆t2(u(t,x) · ∇)u(t,x)

−1

2
∆t2ut(t,x) +O(∆t3). (2.4.2)

Recall that u satisfies equation (2.1.11). Hence,

ut = −(u · ∇)u−∇p−∇ · R − ν∇2u. (2.4.3)

In the above equation, we assume that the viscosity ν is small and the effect of the

term ν∇2u can be neglected 2.

Accordingly, we have the following second order approximation to the inverse flow

map θ:

θ(t,x) = x− u∆t+ ∆t2(u · ∇)u+
1

2
∆t2(∇p+∇ · R) +O(∆t3). (2.4.4)

2To avoid confusion notations, ∆ is reserved for the filter width in the LES model and ∇2 = ∇ · ∇ denotes the
Laplacian operator.
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It follows that

A = Dxθ = I −∆t∇u+ ∆t2∇ [(u · ∇)u]

+
1

2
∆t2∇(∇p+∇ · R) +O(∆t3), (2.4.5)

A−1 = I + ∆t∇u−∆t2∇ [(u · ∇)u] + ∆t2∇u∇u

−1

2
∆t2∇(∇p+∇ · R) +O(∆t3), (2.4.6)

B = AAT = I − 2∆tD + ∆t2(E + E ′) +O(∆t3), (2.4.7)

where E and E ′ are defined as

E = ∇u∇uT +∇ [(u · ∇)u] +∇T [(u · ∇)u]

= ∇u∇uT +∇u∇u+∇uT∇uT + 2(u · ∇)D, (2.4.8)

E ′ =
1

2

[
∇(∇p+∇ · R) +∇T (∇p+∇ · R)

]
. (2.4.9)

Remark 2.4.1. In the formulations (2.4.5)-(2.4.7), the second order nonlinear terms

come from the convection term in the Navier-Stokes equations.

Remark 2.4.2. Note that E and E ′ are symmetric. This does not conflict with the

fact that the Reynolds stress R is symmetric.

Once these fundamental quantities are computed, the tensor product of 〈w̃ ⊗ w̃〉

can be calculated as follows:

〈w̃ ⊗ w̃〉 = a0I + a1B + a2B2

= a0I + a1

(
I − 2∆tD + ∆t2(E + E ′) +O(∆t3)

)
+a2

(
I − 2∆tD + ∆t2(E + E ′) +O(∆t3)

)2

= αI − β̃∆tD + ∆t2(F + F ′) +O(∆t3),

where the coefficients α = a0 +a1 +a2 and β̃ = 2(a1 +2a2) and the second order term
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F is defined as

F = (a1 + 2a2) E + 4a2DDT

= (a1 + 3a2)∇u∇u+ (a1 + 3a2)∇u∇uT + (a1 + 3a2)∇uT∇uT

+a2∇uT∇u+ 2(a1 + 2a2)(u · ∇)D, (2.4.10)

F ′ = (a1 + 2a2)E ′. (2.4.11)

Finally, returning to the description using w, the Reynolds stress can be expressed

up to second order in time:

R = 〈w ⊗w〉

= A−1〈w̃ ⊗ w̃〉(A−1)T

= αI − β∆tD + ∆t2(G + G ′) +O(∆t3), (2.4.12)

and the second order term G and G ′ are defined as follows:

G = −α
(
∇ [(u · ∇)u] +∇T [(u · ∇)u]

)
−β
(
∇uD + (∇uD)T

)
+ F + α∇u∇uT

= ζ∇u∇uT + η∇uT∇u+ ξ(∇u∇u+∇uT∇uT ) + χ(u · ∇)D, (2.4.13)

G ′ = κ
[
∇(∇p+∇ · R) +∇T (∇p+∇ · R)

]
, (2.4.14)

where the coefficients are

α = a0 + a1 + a2,

β = −2(a0 − a2),

ζ = −(a0 + a1),

ξ = a0,

η = a2,

χ = −2(a0 + a2),

κ =
1

2
(a1 + a2 − a0).
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The Reynolds stress appears implicitly in Equation (2.4.12). By iterating in R

and keeping the terms up to second order in time, we have

R = αI − β∆tD + ∆t2G + 2κ∆t2 (∇(∇p))

+2κ∆t2∇(∇ · (αI)) +O(∆t3), (2.4.15)

since Hessian matrix ∇(∇p) is symmetric.

We have the following observations:

(i) ∇ · (αI) = ∇(α);

(ii) ∇ · (∇(∇p)) = ∇(∇2p);

(iii) ∇ · (∇(∇ · (αI))) = ∇(∇2α).

Therefore, the effect of the terms αI, 2κ∆t2 (∇(∇p)) and 2κ∆t2∇(∇·(αI)) in (2.4.15)

can be absorbed in pressure with a modified pressure

p′ = p+ α + 2κ∆t2(∇2p+∇2α).

Hence, we can drop the terms αI, 2κ∆t2 (∇(∇p)) and 2κ∆t2∇(∇ · (αI)) in (2.4.15).

Therefore, the nonlinear relation is given by

R = −β∆tD + ∆t2G +O(∆t3). (2.4.16)

The above nonlinear model (2.4.16) can be rewritten as

R = −β∆tD +D1∆2D2 +D2∆2(DΩ− ΩD)

+D3∆2Ω2 +D4∆2(u · ∇)D, (2.4.17)

where D1 = (ζ + η+ 2ξ)∆t2/∆2, D2 = (η− ζ)∆t2/∆2, D3 = (2ξ− ζ− η)∆t2/∆2, and

D4 = χ∆t2/∆2.

From Lemma 2.2.6, we know that

β ∼ 1

∆t
, or β∆t ∼ 1.
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If we take the limit ∆t → 0, we assume G does not vanish. Therefore, we make

the following assumption:

Assumption 2.4.3. We assume the following order of the coefficient set

(ζ, η, ξ, χ) ∼ 1

∆t2
,

or

(D2, D3, D4) ∼ 1

∆2
.

Lemma 2.4.4. The coefficient D1 in Eq. (2.4.17) is the order of 1/∆2, i.e.

D1 ∼
1

∆2
. (2.4.18)

Proof. The proof is similar to the proof of Lemma 2.2.6. Denote λ1 and µ1 are the

eigen-values of D and R, respectively. Let ψ1 be the orthonormal eigen-vector shared

by D and R. By Assumption 2.4.3, the entries in D2∆2(DΩ − ΩD), D3∆2Ω2 and

D4∆2(u · ∇)D are O(1) or smaller.

Multiplying both sides of Eq. (2.4.17) by the eigen-vector ψ1 and discarding

O(∆t3) terms, we have

Rψ = −β∆tDψ1 +D1∆2D2ψ1.

Using the fact that λ1 and µ1 are eigen-values associated with ψ1, it gives

µ1ψ1 = −β∆tλ1ψ1 +D1∆2λ2
1ψ1 + (D2∆2(DΩ− ΩD) +D3∆2Ω2 +D4∆2(u · ∇)D)ψ1

Then taking the dot product with ψ1 itself, it follows

µ1 = −β∆tλ1 +D1∆2λ2
1

+ < (D2∆2(DΩ− ΩD) +D3∆2Ω2 +D4∆2(u · ∇)D)ψ1, ψ1 > .

By Assumption 2.4.3, < (D2∆2(DΩ−ΩD)+D3∆2Ω2+D4∆2(u·∇)D)ψ1, ψ1 >∼ O(1).

Then, we have

D1 =
µ1 + β∆tλ1 +O(1)

∆2λ2
1

.
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Note that β∆t ∼ 1, then

D1 ∼
1

∆2
.

Finally, by dimensional analysis and the argument for homogeneous turbulence in

Section 2.3.1, the nonlinear relation reads as follows:

R = −(Cs∆)2 ‖D‖F D +D1∆2D2 +D2∆2(DΩ− ΩD)

+D3∆2Ω2 +D4∆2(u · ∇)D. (2.4.19)

Remark 2.4.5. It is clear that the first order term −β∆tD is the Smagorinsky model,

which captures the effect of dissipation due to the non-negative sign of β, although the

Smagorinsky model has excessive dissipation (Clark et al., 1979).

The second order terms G can be divided into two components G = G1 + G2 as

follows:

G1 = ξ∇u∇uT + η∇uT∇u+ ζ(∇u∇u+∇uT∇uT ),

G2 = χ(u · ∇)D.

The terms in G1 have similar effects. Analogous to the first order term, if we

‘freeze’ one component, say ∇uT , it is clear that the effect of ∇·∇u is dissipation/anti-

dissipation, depending on the signs of ∇uT and the coefficients. This is what enables

the nonlinear model (2.4.12) to model the backward energy cascade phenomena.

If we ‘freeze’ u in G2 analogously, the effect of ∇ · G2 is dispersive, which leads to

different scales being separated into a train of oscillations.

In addition, for the homogenous turbulence, the coefficients D1, D2, D3, D4 are

non-dimensional constants.
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2.4.1 The gradient model

An alternative to the Smagorinsky model is the gradient model, where R is expressed

as an inner product of velocity gradients,

R =
1

12
∆2∇u∇uT , (2.4.20)

where ∆ is the typical length of the large scale structure. However, the pure gradient

model (2.4.20) appears to be unstable (Vreman et al., 1996). Two remedies have been

proposed. As explained in Remark 2.4.5, the gradient term ∇u∇uT may introduce

energy backscatter, which might make the model unstable. A limiter can be applied to

prevent this anti-cascade scenario (Liu et al., 1994; Vreman et al., 1997). The second

remedy adds the Smagorinsky model in order to suppress the instability (Clark et al.,

1979). However, the resultant mixed model inherits the excessive dissipation of the

Smagorinsky model.

In our nonlinear model (2.4.12), the first order term recovers the Smagorinsky

model and the gradient model is the first term of the second order. The coefficient

can be obtained similarly by dimensionality analysis. As a matter of fact, the gradient

terms of G in (2.4.13) have similar effects. After including more gradient terms, the

nonlinear model (2.4.12) may not have excessive dissipation while remaining stable.

2.4.2 Generic nonlinear model of Lund and Novikov

In the generic nonlinear model, the subgrid tensor is assumed to be a function of

the resolved velocity field gradients and the typical scale length ∆ (Lund & Novikov,

1992):

R = F (D,Ω,∆), (2.4.21)

where Ω is the anti-symmetric part of ∇u:

Ω =
1

2

(
∇u−∇uT

)
.

The most general form of (2.4.21) is a polynomial of infinite degree in tensors of the

form Dp1Ωp2Dp3Ωp4 · · · . From the Cayley-Hamilton theorem, symmetry properties
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and other assumptions, the following generic polynomial form can be obtained:

R = C1∆2 ‖D‖F D + C2∆2D2 + C3∆2Ω2

+C4∆2 (DΩ− ΩD) + C5∆2 1

‖D‖F

(
D2Ω−DΩ2

)
, (2.4.22)

where the Ci, i = 1, · · · , 5, are constants. Meneveau et al. (1992) found that no sig-

nificant improvement is achieved over the linear model in the prediction of the subgrid

tensor eigenvectors. A priori tests by Horiuti (2001) have shown that the (DΩ−DΩ)

term is responsible for a significant improvement of the correlation coefficient with

the true subgrid tensor.

We make the following observations comparing the nonlinear model (2.4.19) to the

generic nonlinear model (2.4.22):

(i) Both models include the Smagorinsky model, which models the forward energy

cascade.

(ii) Other than the Smagorinsky term, both models successfully obtain the terms

D2, (DΩ− ΩD) and Ω2, which may model the backward energy cascade effect.

(iii) Our model (2.4.17) does not have the term

1

‖D‖F

(
D2Ω−DΩ2

)
.

This is the third order term in our nonlinear terms and can be recaptured if we

increase by one more order in our numerical approximation.

(iv) The generic model (2.4.22) fails to include the terms (u · ∇)D. In fact, the term

(u · ∇)D models the dispersive effect.

2.5 Conclusions and discussions

In this chapter, a multiscale analysis for the Navier-Stokes equations was briefly

introduced. The velocity has been decomposed formally into two parts using a nested

multiscale expansion: the large-scale and the small-scale components. It is noted

that the velocity is not required to have a two-scale structure. The velocity could
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include infinitely many scales. The formal separation into two scales is achieved in

the spectral space. Basically, the velocity is separated into a low-frequency part and

a high-frequency part by setting up a cutting frequency. An example in the case of

turbulent channel flow can be found in Appendix B. Following the scale separation,

a multiscale system can be derived, but this system is computationally expensive to

solve even if an adaptive technique could be adopted.

By using the frame invariance property of the cell problems and an iterative ho-

mogenization of large- and small-scale velocities dynamically, the crucial structure of

the Reynolds stress can be obtained explicitly for general turbulent flows. However,

the explicit form of the Reynolds stress has to be analyzed for particular turbulent

flows on a case by case basis. In this chapter, examples of homogeneous and channel

flows are given. In the case of homogeneous turbulence, the Smagorinsky model has

been fully recovered. A simplified modified-Smagorinsky model has been proposed

with the aid of detailed near-wall structure in the channel flow. For both cases, the

constants in the models can be calculated by locally minimizing the Reynolds stress

error term from the DNS data. The numerically calculated constants are close to the

values predicted by the theoretical estimate.

In order to capture the backward energy cascade phenomena, a nonlinear LES

modeling is introduced using a second order approximation of the inverse flow map

function θ. Not only does it bring in the anti-cascade effect, the nonlinear model

also introduces a term that accounts for the dispersion. Our nonlinear model covers

the mixed model which combines the Smagorinsky model and the gradient model.

Furthermore, unlike the generic nonlinear model of Lund and Novikov, our nonlinear

model can represent the dispersive effect. On the other hand, a term missing in our

model but present in the generic nonlinear model of Lund and Novikov could be

recaptured by using a third order approximation in our derivation.

The large eddy simulation technique has problems with boundary layer flows. A

famous problematic example is the inner region of boundary layers, whose intrin-

sic scale is the wall unit. Firstly, the mechanisms generating the turbulence are

associated with fixed characteristic length scales on the average. Moreover, the tur-

bulence production is associated with a backward energy cascade, which dominates



48

over the cascade mechanism in certain regions of the boundary layer. Sub-grid models

eventually fail to directly capture all the scales of motion responsible for turbulence

production in the boundary layer, because they no longer permit a reduction of the

number of degrees of freedom while ensuring at the same time a fine representation

of the flow. There are two possible approaches to resolve this issue (Moin & Jimenez,

1993):

(i) Resolving the near-wall dynamics directly. Since the production mechanisms

escape the scope of subgrid modeling, a sufficiently fine grid has to be used to

capture the effect. Zang (1991) indicates that three grid points should be al-

located in the y+ < 10 zone in order to capture the production mechanisms.

Chapman (1979) estimates that resolving the dynamics of the inner region re-

quires O(Re1.8) degrees of freedom, while only O(Re0.4) are needed to represent

the outer zone. In addition, non-isotropic models have to be directly resolved,

and it is known that the number of degrees of freedom of the solution (in space)

scales as O(Re2) (Bagget et al., 1997).

(ii) Wall modeling. In order to use the same order of grid points near the wall

as in the outer zone, a model representing the dynamics of the inner region

could be used. Since only a part of the dynamics is modeled, this introduces

additional errors. The most popular wall models for large eddy simulation are

the following: (i) The Schumann model and its variants, which rely on a linear

relation between the wall stress and the velocity component at the first off-wall

grid point (Schumann, 1975); (ii) The optimized ejection model, which is based

on experimental correlation data (Marusic et al., 2001); (iii) A special near-wall

subgrid-scale model based on wall parallel filtering and wall-normal averaging

of the streamwise momentum equation (Chung & Pullin, 2009); (iv) Hybrid

RANS/LES approaches, where a RANS model is used in the near-wall region

and a smooth transition to LES is made off the wall (Hamba, 2003, 2006; Spalart

et al., 1997; Squires et al., 2005).

From the view point of the first approach, the quality of the results is essentially

due to the resolution of the dynamics in the near-wall region (y+ < 100). This implies



49

that, if a wall model is not used, the computational grid has to be fine enough to

resolve the dynamics of the vortex structures. For channel flow, a Chebyshev polyno-

mial expansion can be taken in the normal direction so that near the wall more grid

points are assigned. This can be regarded as an adaptive numerical scheme. How-

ever, no flow information is embedded in the adaptivity. Because of the necessarily

fine grids near the wall, the high resolution limits the possible Reynolds numbers.

Even though zonal embedded grids have been employed, the largest friction Reynolds

number achieved to date is Reτ = 4000 (Kravchenko et al., 1996).
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Chapter 3

Numerical results of the simplified
Smagorinsky model

In this chapter, an extensive numerical study of the simplified Smagorinsky model

(2.3.7) at two Reynolds numbers (Reτ = 180 and Reτ = 395) is presented for the

channel flow. Good qualitative agreement is achieved when comparing the results of

the simplified model with those obtained by DNS and experiments. However, due to

experimental and modeling errors, we do observe some noticeable differences, e.g. ,

r.m.s vorticity fluctuations at Reτ = 180.

3.1 Numerical methods and settings

The same computational domain as that in Kim et al. (1987) has been employed (see

Figure 3.1). The streamwise (x) and spanwise (z) computational periods are chosen

to be 4π and 2π, and the half-width of the channel is 1. Fully developed turbulent flow

in a channel is homogeneous in the streamwise and spanwise directions. Therefore, we

assume periodic boundary conditions in these two directions. The no-slip boundary

condition is chosen in the wall-normal direction (y).

The numerical scheme uses a Chebychev-tau formulation in the wall-normal direc-

tion (y) and Fourier expansions in the streamwise (x) and spanwise (z) directions.

Further, we change variables in the Chebyshev expansion to take advantage of the

fast Fourier transform. In the DNS by Kim et al. (1987), the 2/3 rule was used to

remove the aliasing errors induced by the pseudo-spectral method. Here, we use the

high-order Fourier smoothing method introduced by Hou & Li (2007). A low-storage
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Figure 3.1: Computational domain in a channel

third-order Runga-Kutta time discretization developed by Spalart et al. (1994) is

used. A constant pressure gradient is applied to drive the flow in the streamwise

direction. For a DNS with Reτ = 180, Kim et al. (1987) used an effective resolu-

tion of 128(x) × 129(y) × 128(z), while we use only 64(x) × 65(y) × 64(z) for the

simplified Smagorinsky model. For a DNS with Reτ = 395, Moser et al. (1999)

used an effective resolution of 256(x)× 257(y)× 256(z). In comparison, we use only

128(x)× 129(y)× 128(z) for the simplified model.

The fully developed turbulent flow in a channel using the simplified Smagorinsky

model is obtained by taking the first N modes of the velocities given by the DNS as

initial data, where N is the number of grid points used for the simulation of the sim-

plified model. The code is run by integrating forward in time until a statistical steady

state is achieved. The steady state is identified by the quasi-periodic behavior of the

total kinetic energy and by a linear profile of total shear stress, −u′v′+(1/Re)∂ū/∂y.

Once the velocity field reaches the statistical steady state, the simplified model is

further integrated in time to obtain a time-average of various statistical quantities.

The statistical quantities are obtained by averaging over the horizontal plane (both

homogeneous directions x and z) and time t. The coordinates and flow quantities

are normalized by the channel half width δ and the friction velocity uτ = (τw/ρ)1/2,

where τw is the statistically averaged wall shear stress and ρ is the density.
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3.1.1 Model validation

To validate the simplified model (2.3.7) using the multiscale analysis, we make a

complete comparison of the mean streamwise velocity profiles and r.m.s. velocity

fluctuations among DNS, the Smagorinsky model, and the simplified model. The

comparison of the mean streamwise velocity is displayed in Figure 3.2. In the near-

wall region y+ < 10, the three profiles collide and all of them obey the linear relation

very well. The simplified model approaches DNS a little more closely than it does

the Smagorinsky model in the region 10 < y+ < 40. This is because the Smagorin-

sky model includes too much diffusion. While near the center of the channel flow,

the profile of the simplified model is noticeably lower than those of DNS and the

Smagorinsky model. The main reason has been explained in Section 2.3.2, i.e. , the

asymptotic structure near the wall is not valid for the center of the channel flow.

Figure 3.3 shows the r.m.s. velocity fluctuations for Reτ = 180. Generally, both the

simplified model and Smagorinsky model give satisfactory performance when com-

pared to DNS. Note that the simplified model performs better than the Smagorinsky

model near the wall y+ < 25 for r.m.s. u and w. Away from the wall, the Smagorinsky

model approaches DNS more closely. Again, this is because the asymptotic analysis

in Section 2.3.2 holds within the boundary layer. In addition, the Smagorinsky model

slightly exceeds the simplified model in r.m.s. normal velocity fluctuation throughout

the computational domain.

3.2 Turbulent structure near the wall

The two most prominent structural features of the near-wall turbulence are illustrated

in Figures 3.4 and 3.5:

(i) Streaks of low momentum fluid, regions of u′ < 0, which have been lifted into

the buffer region by the vortices.

(ii) Elongated streamwise vortices, identified by the region of negative λ2 proposed

by Jeong & Hussain (1995).
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(1987); 3: the Smagorinsky model; solid line: the simplified model
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Figure 3.3: Comparison of r.m.s. velocity fluctuations for Reτ = 180. DNS by Kim et al. (1987): �,
urms; 5 vrms, 3 wrms. Smagorinsky model: dashed line with �, urms, dashed line with 5: vrms;
dashed line with 3, wrms. Simplified model: solid line, urms; dash-dot line, vrms, dashed line, wrms
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Figure 3.4: Turbulent structure near the wall obtained using the simplified Smagorinsky model.
Iso-surface of streamwise vortices (blue) indicated by the λ2 definition (λ2 = −λrms,max = −176.54)
(Jeong & Hussain, 1995) and lifted low-speed streaks (red) denote u′ < 0 in the region 0 < y+ < 60,
Reτ = 180.

Currently, it is well accepted that by Biot-Savart induction, near-wall streamwise

vortices lift the low-speed fluid to form the streaks. On the other hand, the stream-

wise vortices are generated from the many normal-mode-stable streaks via a new

scenario, identified by the streak transient growth (STG) mechanism (for details, see

Schoppa & Hussain, 2002). The phase averages of the vortices, their characteristics

and their dynamical role have been discussed by Jeong et al. (1997). Figure 3.4 is

quite consistent with these details of near-wall structures.

3.3 Mean flow properties

Figure 3.6 shows the profile of the mean velocity normalized by the wall-shear velocity

uτ for Reτ = 180. In the viscous sublayer y+ < 10, we observe excellent agreement

with the linear relation u+ = y+. In the log-law region (y+ > 30, y/δ < 0.3), it is
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Figure 3.5: Top view of turbulent structure near the wall. Iso-surface of streamwise vortices (blue)
indicated by the λ2 definition (λ2 = −λrms,max = −176.54) (Jeong & Hussain, 1995) and lifted
low-speed streaks (red) denote u′ < 0 in the region 0 < y+ < 60, Reτ = 180.

well known that the logarithmic law of the wall due to von Kármán (1930) can be

expressed as

u+ =
1

κ
ln y+ +B,

where κ = 0.41 is the Kármán constant and B is the additive constant. In the sim-

plified Smagorinsky model, the additive constant B is 5.5, which is the approximate

value reported in the literature (Eckelmann, 1974; Kim et al., 1987; Spalart, 1988). In

the log-law region, the profiles of the mean streamwise velocity of both the simplified

model and DNS (Kim et al., 1987) are lower than in the experimental results reported

by Eckelmann (1974).

The profile of the mean velocity u+ for Reτ = 395 is shown in Figure 3.7 and

compared to the DNS results obtained by Moser et al. (1999) and the experimental

results by Hussain & Reynolds (1970) for Reτ = 642. In the viscous sublayer, the re-

sults of the simplified model obey the linear relation accurately. The profile conforms

to the log law with the constant B = 5.5 in the log-law region, while both DNS by

Moser et al. (1999) and our simplified model give slightly larger values of u+ than the

experiments by Hussain & Reynolds (1970).
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Figure 3.6: Profiles of the mean streamwise velocity u+ for Reτ = 180, compared with DNS by Kim
et al. (1987) and experiments by Eckelmann (1974). 4, experiments by Eckelmann (1974); �, DNS
by Kim et al. (1987); solid-line, simplified model; dash-dot line, linear relation and log-law
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Figure 3.7: Near wall profiles of the mean streamwise velocity u+ for Reτ = 395, compared with
DNS by Moser et al. (1999) and experiments by Hussain & Reynolds (1970). �, DNS by Moser
et al. (1999); 4, experiments by Hussain & Reynolds (1970); solid-line, simplified model; dashed
line, linear relation and log-law
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Figure 3.8: R.m.s. velocity fluctuations normalized by the wall shear velocity uτ for the simplified
model with Reτ = 180, compared with DNS by Kim et al. (1987) and experiments by Kreplin &
Eckelmann (1979). ◦ urms, 4 vrms, ? wrms by Kreplin & Eckelmann (1979); � urms, 5 vrms, �
wrms by Kim et al. (1987); solid line urms, dash-dot line vrms, dashed line wrms by simplified model

3.4 Turbulence intensities

One of the Reynolds number effects in wall-bounded turbulence is in the root-mean-

square (r.m.s.) velocity profiles (urms, vrms, wrms). These turbulence intensities nor-

malized by the friction velocity are shown and compared with DNS (Kim et al., 1987;

Moser et al., 1999) and experiments (Kreplin & Eckelmann, 1979) in Figure 3.8 for

Reτ = 180 and Figure 3.9 for Reτ = 395.

In the case of Reτ = 180, the profiles obtained by the simplified model are in good

agreement with those of Kim et al. (1987) and Kreplin & Eckelmann (1979). The

peak value of urms, about 2.5, is lower than that by DNS. This may be due to the high

damping coefficient near the wall. As pointed out by Kim et al. (1987), the values

of numerical simulations are lower than the measured values in the experiment by



60

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

2

2.5

3

y
+

u
rm

s
, 
v

rm
s
, 
w

rm
s

 

 

Figure 3.9: R.m.s. velocity fluctuation normalized by the wall shear velocity uτ for the simplified
model with Reτ = 395, compared with DNS by Moser et al. (1999). � urms, 4 vrms, � wrms by
Moser et al. (1999); solid line urms, dash-dot line vrms, dashed line wrms by simplified model
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Kreplin & Eckelmann (1979), principally because of unavoidable hot-wire errors in

near-wall measurements. The r.m.s. normal velocity fluctuation vrms is in remarkably

good agreement with DNS, but both are lower than the experimental results near the

wall.

In the case of Reτ = 395, the peak value of urms is marginally lower than DNS

results by Moser et al. (1999) around y+ = 20. The values of vrms and wrms of the

simplified model are in good agreement with those obtained by DNS throughout

the normal direction. Moreover, the values of urms match quite well the DNS result

throughout the computational domain.

As observed by Spalart (1988), the peak value of urms is Re dependent, which is

clearly shown by comparing urms in Figure 3.8 with Figure 3.9. Antonia et al. (1992)

pointed out that the Reynolds number dependence of wrms is significant compared to

those of urms and vrms. This is also evident in Figures 3.8 and 3.9. In the presented

results for the simplified model, all three r.m.s. velocity fluctuations are enhanced

with increasing Re. This may be because of the remarkable increase of the energy

redistribution (Abe et al., 2001).

3.5 Reynolds shear stress

The total shear stress, −u′v′+(1/Re)∂ū/∂y, is shown in Figure 3.10 for the simplified

model at two Reynolds numbers Reτ = 180 and Reτ = 395. In the fully developed

turbulent channel flow considered in this section, this profile is a straight line when

the flow reaches an equilibrium state. For this simplified model, Figure 3.10 clearly

shows that our computations of the two Reynolds numbers have achieved statistical

steady state. The behavior of the Reynolds shear stress in the immediate vicinity of

the wall can be explained by the following nondimensionalized equation (Tennekes &

Lumley, 1972)

−u
′v′

u2
τ

+
du+

dy+
= 1− y+

δ+
, (3.5.1)

where δ+ = uτδ/ν. The stress at the wall is purely viscous. Nondimensionalized in

this way, the Reynolds number dependence is absorbed into the scale of y so that

the viscous term does not become small at large Reynolds numbers. Thus, for small
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Figure 3.10: Total shear stress, −u′v′ + (1/Re)∂ū/∂y, normalized by the wall shear velocity for
Reτ = 180 (solid line) and Reτ = 395 (dashed line)
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Figure 3.11: R.m.s. vorticity fluctuations normalized by the mean shear near the wall for Reτ =
180, compared with DNS by Kim et al. (1987) and experiments by Kreplin & Eckelmann (1979),
Kastrinakis & Eckelmann (1983) and Balint et al. (1991). � ωx, / ωy, . ωz by Balint et al. (1991);
4 ωx by Kreplin & Eckelmann (1979); ◦ ωx by Kastrinakis & Eckelmann (1983); 5 ωx, � ωy, ?, ωz
by Kim et al. (1987); solid line ωx, dash-dot line ωy, dashed line ωz by simplified model

y+/δ+, the Reynolds shear stress does not vary with Reynolds numbers and collapses

into one curve. In Figure 3.10, the two lines are close to each other, especially near

the wall when |y| is close to 1. Also, it can be seen that the slopes for Reτ = 180

and Reτ = 395 are close to 1 as well, as confirmed in (3.5.1). Again, the difference is

mainly due to the modeling error when the simplified form is also used in the center

of the channel.

3.6 Vorticity

The r.m.s. vorticity fluctuations normalized by the mean shear at the wall ωiν/u
2
τ , (i =

x, y, z) are shown in Figures 3.11 and 3.12 for Reτ = 180 and Reτ = 395, respectively.
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Figure 3.12: R.m.s. vorticity fluctuations normalized by the mean shear near the all for Reτ = 395,
compared with DNS by Moser et al. (1999). 5 ωx, 4 ωy, � ωz by Moser et al. (1999); solid line
ωx, dash-dot line ωy, dashed line ωz by simplified model
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Figure 3.13: R.m.s. vorticity fluctuations normalized by the mean shear near the wall, Reτ = 180.
Simplified model: solid line, ωx; dash-dot line, ωy; dashed line, ωz. DNS by Kim et al. (1987): 5,
ωx; 4, ωy; ., ωz. Smagorinsky: 3, ωx; ©, ωy; /, ωz
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The simplified model results agree well with the DNS by Kim et al. (1987). On

the wall, the values of ωxν/u
2
τ given by the simplified multiscale model and DNS

are larger than those obtained experimentally by Kreplin & Eckelmann (1979). As

pointed out in Kim et al. (1987), most of the existing data in the wall region gathered

using standard hot-wire techniques may contain significant error caused by cross-

contamination. Away from the wall, the simplified model performs slightly worse than

DNS Kim et al. (1987) when compared to the limited experimental data of Kastrinakis

& Eckelmann (1983) in terms of the normalized r.m.s. ωx, but slightly better than

DNS when compared to the experiment by Balint et al. (1991). In addition, distinct

differences between the simplified model and DNS is observed for the normalized r.m.s.

ωy, although the profile from the simplified model is closer to that from the experiment

by Balint et al. (1991). In order to examine the source of discrepancy numerically,

we plot the profiles from the simplified model, DNS, and the Smagorinsky model in

Figure 3.13. In all three components, the Smagorinsky model slightly outperforms

the simplified model, because the latter extends the results of asymptotic analysis to

the center, which incurs additional model error. However, there is still noticeable

difference from DNS for the Smagorinsky model. Therefore, the main reason of

discrepancy between DNS and the Smagorinsky and the simplified models is the

error introduced by the modeling process.

Near the wall, the streamwise and spanwise vorticity fluctuations increase with

increasing Re. The r.m.s. ωz especially shows a larger value for a higher Re. This is

simply because of the large shear stress in the immediate vicinity of the wall. To see

this, write down the vorticity equation in the local coordinates (x, n, s) (Lamb, 1945)

for linearized perturbations of a U(x) streak distribution. The inviscid evolution

equation for the vorticity perturbation ω′x, which is the most important component,

can be derived as

∂ω′x
∂t

+ ū
∂ω′x
∂x

= hsΩ
∂u′x
∂s

+ hnω
′
n

dū

dn
= Ω

∂u′s
∂x

, (3.6.1)
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Figure 3.14: The turbulent-kinetic budget normalized by ν/u4τ near the wall for Reτ = 180, compared
with DNS by Kim et al. (1987). Production term: simplified model, solid line; DNS, �. Diffusion
term: simplified model, dash-dash line; DNS, ©; Pressure transport term: simplified model, dash-
dash line with ©; DNS, 4. Viscous diffusion term: simplified model, dash-dot line; DNS, 5.
Turbulent convection term: simplified model, solid line with ©; DNS, �

where the direction cosine amplitudes hn and hs satisfy

h2
n =

(
∂n

∂y

)2

+

(
∂n

∂z

)2

, h2
s =

(
∂s

∂y

)2

+

(
∂s

∂z

)2

. (3.6.2)

The base flow vorticity is given by Ω = −hndū/dn in local coordinates, which permits

simplification by combining the two ω′x production terms. Thus, the profile of u′s is

critical for ω′x generation. This has been illustrated in the streak transient growth

mechanism for the generation of near-wall streamwise vortices (Schoppa & Hussain,

2002).
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Figure 3.15: The turbulent-kinetic budget normalized by ν/u4τ near the wall for Reτ = 395, compared
with DNS by Moser et al. (1999). Production term: simplified model, solid line; DNS, �. Diffusion
term: simplified model, dash-dash line; DNS, ©; Pressure transport term: simplified model, dash-
dash line with ©; DNS, 4. Viscous diffusion term: simplified model, dash-dot line; DNS, 5.
Turbulent convection term: simplified model, solid line with ©; DNS, �
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3.7 Budget of turbulent kinetic energy k

For fully developed turbulent channel flow, the balance equation for turbulent kinetic

energy is (Pope, 2000)

0 = P − ε+ ν
d2k

dy
− d

dy
〈1

2
vu · u〉 − 1

ρ

d

dy
〈vp′〉. (3.7.1)

Budget terms of the turbulent kinetic energy in (3.7.1) are given by

(i) the production term

P = −〈u′iu′j〉
∂〈Ui〉
∂y

, (3.7.2)

(ii) the diffusion term

−ε = −ν
〈
∂u′i
∂xk

∂u′i
∂xk

〉
, (3.7.3)

(iii) the viscous dissipation term

ν
d2k

dy
, (3.7.4)

(iv) the turbulent convection term

− d

dy
〈1

2
v′u′ · u′〉, and (3.7.5)

(v) the pressure transport term

−1

ρ

d

dy
〈v′p′〉. (3.7.6)

Figures 3.14 and 3.15 show the budget terms of the turbulent kinetic energy nor-

malized by ν/u4
τ for Reynolds number Reτ = 180 and Reτ = 395 obtained by the

simplified model. The results are compared with DNS by Kim et al. (1987) and Moser

et al. (1999).

For Reτ = 180, each kinetic energy budget term obtained by the simplified model

agrees well with the DNS results by Kim et al. (1987). More specifically, the pro-

duction behaves like the order of y3 from 0 near the wall. For the simplified model,

the production reaches its peak value at around y+ = 12, where the production-to-

dissipation ratio is approximately 1.8, which agrees with the ratio obtained by Kim

et al. (1987).



70

The effects of different Reynolds numbers on all these budget terms are reflected in

the comparison of Figures 3.14 and 3.15 for Reτ = 180 and Reτ = 395, respectively.

The values of all terms in the budget of the turbulent kinetic energy increase with

the increase of Reτ . Particularly, the wall values of the dissipation and the viscous

dissipation increase remarkably with the increasing Reynolds number. This is simply

because the increase of the shear stress dominates the decrease of the viscosity (Abe

et al., 2001).

3.8 Conclusion and discussion

In this chapter, an extensive numerical study has been executed to validate the sim-

plified model for turbulent channel flow by using some well-established benchmark

tests. Good qualitative agreements have been shown for various statistical quantities

of channel flow for two Reynolds numbers, Reτ = 180 and Reτ = 395. These include

mean velocity profiles, r.m.s. velocity and vorticity fluctuations, and turbulent kinetic

energy budget.

The simplified model is able to grasp the turbulent features of the near-wall struc-

tures, i.e. , the streaks of low momentum fluid and the elongated streamwise vortices.

Furthermore, the simplified model gives a very good match of mean velocity profile

with theory, DNS, and experiment. However, we do observe some noticeable differ-

ences among the results obtained by the simplified model, DNS, and experiments,

especially in the profiles of r.m.s. velocity fluctuations near the wall. There are two

sources of errors that could contribute to these discrepancies. The first one is mea-

surement (hot wire) errors near the wall (Kim et al., 1987). The second one is the

modeling error. Additionally, error is introduced by applying the asymptotic analysis,

which is valid in the boundary layer, to the outer layer of channel flow (see Section

2.3.2).
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Chapter 4

Stochastic perspective of
turbulence

Traditional turbulence models, including the Smagorinsky model presented in previ-

ous chapters, are based on Reynolds averaging techniques and give rise to modeled

equations for statistical moments in general. On the other hand, due to their high

irregularity, turbulent flows are characterized by stochastic processes. Lagrangian

probability density function (PDF) methods have been developed to achieve closure

through a modeled transport equation for the one-point, one-time PDF of certain

fluid properties in turbulent flows (see Pope, 1985, 1994, 2000). Lagrangian PDF

methods can handle arbitrarily complex convections and reactions naturally, without

assumptions (see Pope, 1985). However, they are relatively expensive in terms of

computation.

In this chapter, instead of calculating the statistics of turbulent flows using PDF

methods, turbulent flows are treated as stochastic processes. However, the proba-

bilistic dimensionality of turbulence is prohibitively huge. Even with cutting-edge

computational resources with thousands of CPU cores, it is still not feasible to nu-

merically capture all the information of turbulent flows. However, if we are only

interested in certain statistical properties of turbulent flows, the effective probabilis-

tic dimension might not be essentially large. This leads us to calculate the first several

modes in the Karhunen-Loéve (K-L) expansions of the stochastic variables that are

of interest, e.g. , the normal distribution of stream-wise velocity after averaging over

x-z plane in turbulent channel flow.
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4.1 A brief introduction to numerical stochastic PDEs

There has been growing interest and significant progress over the past decades in

modeling complex physical and engineering systems with uncertainties. Consequently,

many methods have been devised to address these problems. It should be noticed

that stochastic systems considered in this chapter are different from classic stochastic

equations (SDEs), where the random inputs are modeled processes, e.g. , Poisson

process, Wiener processes, etc

One of the most commonly used and robust methods is Monte Carlo (MC) sam-

pling and its variants. In MC methods, (independent) realizations of random inputs

are generated based on their prescribed probability distribution. For each realization,

once the random inputs have been generated, the system becomes deterministic and

usual numerical techniques are employed to solve the resultant system. Then, the

ensemble of solutions can be collected and statistical information can be extracted,

e.g. , mean and variance, etc. Although MC methods are straightforward to imple-

ment with robust performance, the statistics of solutions converge relatively slowly.

For example, the mean value typically converges at the rate of 1/
√
N , where N is

the number of realizations (Fishman, 1996). For systems that are computationally

intensive in their deterministic settings, it is prohibitively expensive to perform MC

simulations. Techniques have been developed to expedite the convergence, e.g. ,

quasi-Monte Carlo sampling (see Niederreiter et al., 1998, for instance).

Recently, the generalized polynomial chaos (gPC) method has been developed and

is receiving more and more attention (Xiu & Karniadakis, 2002). Using the gPC

method, stochastic solutions are expanded as a series of orthogonal polynomials of

the input random parameters. The prominent shortcoming of the gPC method is

that the types of orthogonal polynomials are chosen empirically according to the

distributions of the input random parameters. If the stochastic systems are highly

nonlinear and correlated, there is no guarantee that the correspondence between the

distribution of the random input and the type of orthogonal polynomials remains

valid.

Inspired by the multiscale finite element method (Hou & Wu, 1997) and the proper
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orthogonal decomposition (POD) method (Sirovich, 1987; Venturi et al., 2008), a new

algorithm, the data-driven stochastic method (DDSM), has been proposed (Cheng

et al., 2011) and successfully combined with (adaptive) ANOVA to address the issue

of high dimensionality in random space (Hu et al., 2012). Efforts have been taken to

construct gPC bases under which the stochastic solutions have sparse decompositions

based on Karhunen-Loève (K-L) expansions. Generally, those gPC bases cannot be

derived in an explicit analytic form, but they can be calculated numerically and

stored, along with their moments, for future use.

4.2 The data-driven stochastic method

Consider the stochastic PDE

L(t,x, ω)u(t,x, ω) = f(t,x, ω), (4.2.1)

u(0,x, ω) = u0(x, ω),

αu(t,x, ω) + β∂xu(t,x, ω) = u∂D(t,x, ω), on boundary ∂D

where t ∈ [0, T ], x ∈ D, ω ∈ Ω, and L(t,x, ω) is a stochastic differential operator.

The stochastic ingredients may reside in the differential operator L(t,x, ω), forcing

term f(t,x, ω), initial condition u0(x, ω), and/or boundary condition u∂D(t,x, ω).

In DDSM, the attempt has been made to construct gPC bases under which the

stochastic solutions have a sparse decomposition based on their Karhunen-Loève (K-

L) expansions. For u(t,x, ω) ∈ L2([0, T ]×D×Ω), its K-L expansion reads as follows:

u(t,x, ω) = E[u] +
∞∑
i=1

√
λiAi(ω)φi(t,x), (4.2.2)

where {λi} and {φi(t,x)} are the eigenpairs of the covariance kernel C(x,y), i.e. ,∫
D

C(x,y)φ(y)dy = λφ(x), (4.2.3)



74

and {Ai(ω)} are random variables defined as

Ai(ω) =
1√
λi

∫
D

(u(x, ω)− E[u])φi(x)dx. (4.2.4)

Hereafter, the time t is compressed for the simplicity of notation. We will write

functions depending on t explicitly wherever time t is important.

The mutually uncorrelated random variables {Ai(ω)} satisfy

E[Ai] = 0, E[AiAj] = δij. (4.2.5)

In numerical practice, only a finite series expansion is adopted, depending on the

decay rate of the ordered eigenvalues {λi},

u(x, ω) = E[u] +
M∑
i=1

√
λiAi(ω)φi(x). (4.2.6)

Here, M is the number of gPC bases; the choice of M has a major impact on the

accuracy of the statistics of the stochastic solutions.

For a given covariance function, the decay rate of the eigenvalues depends inversely

on the correlation length. Long correlation length implies that the random process is

strongly correlated and results in a fast decay of the eigenvalues. A weakly correlated

process has short correlation length and results in a slow decay of the eigenvalues. Un-

der some assumptions (Schwab & Todor, 2006), the eigenvalues in the K-L expansion

decay exponentially (or sub-exponentially) fast in dimension d = 1 (or d > 1).

The DDSM algorithm consists of an offline part and an online part. In the offline

part, an approximately complete subset of gPC bases {Ai(ω)}, which are mutually

orthonormal, are obtained from K-L expansions. In the online part, stochastic solu-

tions are projected onto the subspace spanned by the gPC bases, and the coefficient

functions in their K-L expansions are obtained by solving a coupled deterministic

system. It should be noted that in this framework, the set of gPC bases are problem

dependent.
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4.2.1 Offline computation

The purpose of the offline computation is to obtain an approximately complete finite

subset of gPC bases based on K-L expansion of the stochastic solutions. Various

techniques can be employed to obtain an ensemble of stochastic solutions. In this

part, we obtain not only the gPC bases {Ai(ω)} numerically, but also a variety of

statistical information on the set of bases {Ai(ω)}, such as their third moment

E[AiAjAk] =
1

N

N∑
n=1

Ai(ωn)Aj(ωn)Ak(ωn).

Once the stochastic solution samples u(x, ω) are obtained, the mean and covariance

are computed as follows:

ū(x) =
1

N

N∑
i=1

u(x, ωi), (4.2.7)

C(x,y) =
1

N

N∑
i=1

u(x, ωi)u(y, ωi)− ū(x)ū(y). (4.2.8)

Afterwards, the first M eigen-pairs are obtained by solving

λiφi(x) =

∫
D

C(x,y)φi(y)dy, i = 1, · · · ,M. (4.2.9)

Finally, the gPC bases {Ai(ω)} are obtained by computing

Ai(ω) =
1√
λi

∫
D

(u(x, ω)− ū(x))φi(x)dx. (4.2.10)

Remark 4.2.1. It is easy to verify that each basis element Ai(ω) has mean zero and

it is mutually orthogonal with {Ai(ω)}Mi=0.

4.2.2 Online computation

In this part, only deterministic equations need to be solved since all the statistical

information has been collected and stored in the offline part. This means that the

online computation can be fast. The bases {Ai(ω)} span a finite-dimensional subspace
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in L2(Ω). The stochastic solution u(t,x, ω) is projected onto this subspace, i.e. ,

u(t,x, ω) ≈
M∑
i=0

ui(t,x)Ai(ω). (4.2.11)

For simplicity of notation, we take A0 = 1 and u0(t,x) = E[u(t,x, ω)].

In order to obtain the coupled deterministic equations, the Galerkin projection is

utilized. Multiplying (4.2.1) by Aj(ω) and taking the expectation of both sides gives

us

M∑
i=0

E [L(t,x, ω)Ai(ω)Aj(ω)]ui(t,x) = E [f(t,x, ω)Aj(ω)] , (4.2.12)

uj(0,x) = E [u0(x, ω)Aj(ω)] ,

αuj(t,x) + β∂xuj(t,x) = E [u∂D(t,x, ω)Aj(ω)] , on boundary ∂D,

for j = 0, · · · ,M .

This DDSM method has been extensively verified via solving elliptic PDE with

random coefficients (Cheng et al., 2011; Hu et al., 2012).

4.3 DDSM for fully developed turbulence

The idea of DDSM can be extended to the simulations of fully developed turbu-

lence. The nominal probabilistic dimensionality of turbulent variables, such as veloc-

ity u(t,x, ω) and pressure p(t,x, ω), is prohibitively huge. Although nearly optimal

gPC bases are chosen, the number of dominant terms in the K-L expansion remains

prohibitively large and the resultant deterministic system includes too many un-

knowns. These lead to extraordinarily intensive computation, far greater even than

that of DNS.

On the other hand, in fully developed turbulence, the series of time snapshots

could be thought of as a stochastic process. Only statistical quantities over random

space, time, and/or physical space are concerned, and only the core information (e.g.

, drag and lift) are of interest to be extracted from the turbulent flows. Once some
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variables have been averaged in the sense of sampling, time, and/or space, the size of

the dominant gPC basis {Ai(ω)}, i = 0, · · · ,M, can become more tractable. Then,

the turbulent variables can be projected onto the low-dimensional random subspace

spanned by these gPC bases {Ai(ω)}. For example, the velocity field u(t,x, ω) can

be approximated as

u(t,x, ω) ≈
M∑
i=0

ui(t,x)Ai(ω). (4.3.1)

After plugging the expansion (4.3.1) into the Navier-Stokes equations and taking

inner products with the gPC base elements Ai(ω), the following coupled system of

equations for ui(t,x) and pi(t,x) (i = 0, · · · ,M) is obtained:

∂ui(t,x)

∂t
+

M∑
j=0

M∑
k=0

∇ · (uj(t,x)uk(t,x)E [Ai(ω)Aj(ω)Ak(ω)]

+∇pi(t,x) = ν∆ui(t,x), (4.3.2a)

∇ · ui(t,x) = 0, (4.3.2b)

ui(0,x) = E [u0(x, ω)Ai(ω)] . (4.3.2c)

Using the approximate gPC bases for the turbulent variables, the majority of

statistical information can be accurately computed. This will be illustrated in great

detail, using turbulent channel flow as an example, in the following.

4.3.1 Turbulent channel flow with random initial data

The computational settings are given in Section 3.1. Throughout this numerical

demonstration, the nominal friction Reynolds number is chosen to be Reτ = 180. In

order to obtain the statistical information of turbulent channel flow, a total of 100

runs of DNS have been computed to the point of entering into the fully developed

turbulence regime.

Fully developed channel flow is completely specified by the density ρ, viscosity ν,

half channel width δ, and mean axial pressure gradient dpw/dx. The friction velocity
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uτ is given as

uτ =

(
−δ
ρ

dpw
dx

)
. (4.3.3)

The definitions of wall-shear stress τw and subsequent uτ are as follows:

τw = ρν

(
d〈u〉
dy

)
y=0

, uτ =

√
τw
ρ
, (4.3.4)

where 〈·〉 indicates an average over the x-z plane.

In the simulations, the mean axial pressure gradient normalized by density is 1,

i.e. , −1
ρ
dpw/dx = 1 and the half channel width δ = 1. Thus equation (4.3.3) gives

uτ = 1. Accordingly, the friction Reynolds number can be calculated as follows:

Reτ =
δuτ
ν

=

(
d〈u〉
dy

)
y=0

≈ 1

2

(
d〈u〉
dy

∣∣∣∣
y=−1

− d〈u〉
dy

∣∣∣∣
y=1

)
. (4.3.5)

From the 100 realizations of turbulent channel flow, the mean of the friction

Reynolds number is 179.0993, which matches excellently with the nominal friction

Reynolds number Reτ = 180. The relative error is 0.005, which is far better than

1/
√
N = 0.1. Moreover, the standard deviation is 2.3363.

Figure 4.1 shows the profile of the sampling mean of the velocity profile u+(y+),

which is averaged over the x-z plane and normalized by the wall-shear velocity uτ . In

the viscous sublayer y+ < 10, excellent agreement with the linear relation u+ = y+

is observed. In the log-law region (y+ > 30, y/δ < 0.3), the profile matches the

well-known logarithmic law of the wall u+ = 1
κ

ln y+ +B with κ = 0.41 and B = 5.5.

The additive constant B = 5.5 is the approximate value reported in the literature

(Eckelmann, 1974; Kim et al., 1987; Spalart, 1988).

The variance of the velocity u+(y+) is displayed in Figure 4.2. As indicated in

Figure 4.2, the variance near the wall is tiny, less than 10−4, which means that the

sampling average of the mean velocity approaches the linear relation very closely,

because of the relatively large viscous effect near the wall. Away from the wall, the

variance is between 10−3 and 10−2, which means that the fluctuation of the velocity

u+(y+) is relatively large. In addition, note that the velocity u+(y+) is at least one
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order larger away from the wall than it is near the wall.

4.3.2 Optimal gPC bases for turbulent channel flow

Strictly speaking, the entire velocity field of turbulent channel flow should be utilized

in order to obtain the gPC bases in equation (4.2.10). However, in this numeri-

cal simulation of turbulent channel flow with Reτ = 180, the effective number of

grid points is 128 × 129 × 128 = 2, 113, 536. Thus the covariance matrix is of size

2, 113, 536 × 2, 113, 536, which prevents us from computing the eigen-system of the

covariance matrix.

In the numerical practice, the eigen-system can only be obtained for part of the

velocity field. Figure 4.3 shows the eigen-value decay of the covariance matrices

generated for velocities u(t,x, ω), v(t,x, ω), and w(t,x, ω) in the box [3.17, 4.16] ×

[0.90, 0.99]× [1.58, 2.08]. Note that this box is close to the wall. If the ratio of eigen-

values larger than 10−2 is desired, the corresponding number of gPC bases would be

larger than 1200 for u and w and 900 for v. Moreover, near the central layer of the

channel in the box [3.17, 4.16] × [0.20, 0.56] × [1.58, 2.08], the decay of eigen-values

for all the three velocity components u, v, and w is even slower, as indicated in Figure

4.4. The phenomena of slow eigen-value decay indicates that in the fully developed

turbulent channel flow, the dimensionality in the probabilistic space remains huge.

Conceptually, a corresponding set of gPC bases could be obtained and velocities

u(t,x, ω), v(t,x, ω), and w(t,x, ω) could then be projected onto the subspace spanned

by these gPC bases. However, it is noted that the number of the gPC bases could

be more than 1000, which would lead to an immense system of coupled coefficient

functions ui(t,x), vi(t,x) and wi(t,x) (i = 0, · · · ,M). Although each equation for

ui, vi, or wi could be solved using a coarse grid, the total computational cost would

greatly outweigh that of DNS.

Remark 4.3.1. Since the turbulent flow is periodic in both the streamwise (x) and

spanwise (z) directions, it is assumed that the flow is statistically homogeneous and

isotropic in the streamwise and spanwise directions. On the other hand, the flow is

anisotropic in the normal direction (y). Nevertheless, it can be checked that the gPC
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bases obtained using different layers in the normal direction are mutually expressible,

i.e., the probabilistic space spanned by both sets of gPC bases is essentially the same.

4.3.3 A reduced set of gPC bases for turbulent channel flow

As mentioned in Section 4.3.2, the resultant system of equations for the coupled co-

efficient functions ui(t,x), vi(t,x), and wi(t,x) is computationally prohibitive since

too many terms are involved. However, in most cases, only the statistical intensities

of the turbulent flows are of interest. Therefore, it is possibly not necessary to calcu-

late the gPC bases using the entirety of the velocity field. Instead, some statistical

intensities, after averaging with respective to sampling, time, and/or space, could

contain enough information about the fully developed turbulence. Thus, the gPC

bases based on these statistical intensities are sufficient to represent the statistical

quantities, which are of essential interest in theoretical analysis and/or engineering

applications. In the following, we will demonstrate that the projection using a re-

duced set of gPC bases can retain most statistical information in the context of the

turbulent channel flow.

The most prominent statistical characteristic of fully developed turbulent channel

flow is the mean velocity profile. Fully developed channel flow is completely deter-

mined by ρ, ν, δ, and uτ . Consequently the mean velocity profile u(y) can be written

(see Pope, 2000)

u(y) = uτF0

(y
δ
, Reτ

)
, (4.3.6)

where F0 is a universal non-dimensional function to be determined.

Specifically, in the inner layer close to the wall (y/δ � 1), the mean velocity obeys

the law of the wall:

u+(y+) = y+ +O(y+2). (4.3.7)

At high Reynolds number, the outer part of the inner layer corresponds to large y+.
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The mean velocity satisfies the log-law in this region:

u+ =
1

κ
ln y+ +B, (4.3.8)

where κ is the von Kármán constant and B ≈ 5.5 is an integration constant. Figure

4.1 shows the profile of the mean velocity u+(y+) using 100 realizations of DNS

executions.

Figure 4.5 shows the decay of the eigen-values of the covariance matrix based on the

mean velocity profile u+(y+). It is noted that after 8 eigenvalues, the ratio λi/λ1 falls

below 10−2. This means that for the criterion λi/λ1 > 10−2, only 9 terms, including

the mean term, in the expansion are sufficient. In other words, after averaging over

the x-z plane, the probabilistic space is compressed significantly and the effective

dimensionality is small enough that the coupled system becomes tractable.

Thus, the following data-driven algorithm is proposed for the simulation of turbu-

lent flows.

Algorithm 4.3.2 (DDSM for the turbulent channel flow).



86

(i) N realizations of DNS executions of fully developed turbulent channel flow are

performed and the associated mean streamwise velocity profile ū(y, ω) in the wall-

normal direction is obtained.

(ii) Use equation (4.2.8) to obtain the covariance matrix C(y, y′), calculate the gPC

bases {Ai(ω)} using equation (4.2.10), and store them.

(iii) Calculate and store statistical moments, E[Ai(ω)Aj(ω)Ak(ω)].

(iv) Solve the system of equations (4.3.2) to obtain the approximate velocity field

u(t,x, ω) =
∑M

i=0 ui(t,x)Ai(ω) and pressure p(t,x, ω) =
∑M

i=0 pi(t,x)Ai(ω).

Finally, calculate the statistical intensities of interest.

Remark 4.3.3. As mentioned earlier, the gPC bases are problem dependent. For

different turbulent flows, different sets of gPC bases are required for accurate approx-

imation. Also, statistical quantities other than the mean velocity profile can be used

to generate the gPC bases.

4.3.4 Numerical results

In this section, the numerical results using DDSM will be presented. Based on the

analysis of eigen-value decay in Section 4.3.3, only 9 terms (M = 8) in the K-L

expansion (4.3.1) are used in the approximation of u(t,x, ω) in the numerical simu-

lation. An effective grid of size 44(x) × 45(y) × 44(z) is used in the coupled system

(4.3.2). The numerical procedure, which is described in detail in Section 3.1, needs

slight revision to be applied to solve the system of equations (4.3.2). The time step

∆t = 0.001 is used uniformly for all velocity components ui(t,x), i = 0, · · · ,M and

a high-order Fourier smoothing method is implemented to remove dealiasing errors

(see Hou & Li, 2007).

The calculated friction Reynolds number is 180.56, which is in excellent agree-

ment with the nominal friction Reynolds number Reτ = 180. Figure 4.6 shows the

comparison of the mean velocity profiles obtained by Monte Carlo DNS, the mean

term in the K-L expansion and the full K-L expansion with M = 8. In the inner

layer, all three results obey the linear relation perfectly. The discrepancy between
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the Monte Carlo DNS and the DDSM is barely visible, while in the outer region, the

Monte Carlo DNS approaches the log-law slightly better than the DDSM. The profile

obtained from the data-driven method appears higher than that obtained from the

Monte Carlo simulations.

The r.m.s. profiles normalized by the wall-shear velocity are shown in Figures

4.7-4.9 for u(t,x, ω), v(t,x, ω) and w(t,x, ω), respectively. The peak value of the

DDSM is noticeably higher for the r.m.s. profile of the streamwise velocity u. After

around y+ = 20, the profile of the data-driven method falls below that of Monte

Carlo simulations. Moreover, the DDSM provides decent approximations to the r.m.s.

profiles of the wall-normal velocity v and the spanwise velocity w as shown in Figures

4.8 and 4.9, respectively.

There might be two main reasons behind the discrepancy in r.m.s. velocity fluc-

tuations between the DDSM and the MC simulations:

(i) Modeling error: the gPC bases {Ai(ω)} are obtained based on the statistical

information of mean streamwise velocity. Accordingly, the DDSM yields better

performance on the mean streamwise velocity profile (Figure 4.6) than the r.m.s.

velocity fluctuation profiles (Figures 4.7-4.9).

(ii) Numerical error: the resolution of the DDSM might be the main reason of the

discrepancy. As we discussed in Chapter 2, the near-wall vortex structure has

to be resolved in order to capture the turbulence production mechanism. This

means that if no wall model is used and not enough grid points are assigned

near the wall, the model errors can lead to noticeable discrepancy in the r.m.s.

velocity fluctuation.

The above issues will be addressed in Sections 4.3.5 and 4.3.6.

Remark 4.3.4. It is interesting to notice that the mean term in the K-L expansion

can capture most of the information of the statistical quantities, as shown in Figures

4.6-4.9. This is mainly due to the property of gPC bases (4.2.5). In other words, the

mean term in the K-L expansion (4.3.1) contains the majority of the statistical infor-

mation on turbulent flows; the other terms can be regarded as stochastic fluctuations.
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4.3.5 Effects of different types of gPC bases

In Section 4.3.4, we see that the mean velocity profile obtained by the data-driven

method with 8 gPC bases matches very well with the MC simulations. Note that the

bases are calculated using the mean streamwise velocity of MC simulations. These

gPC bases are then used to calculate the turbulence velocity field, which is used to

compute the r.m.s. velocity fluctuations. However, the gPC bases are not necessarily

obtained using the statistical information of the mean streamwise velocity.

Figure 4.10 shows the decay of sorted eigen-values based on the r.m.s. streamwise

velocity fluctuation u. Clearly, the ratio of λi/λ1 falls below 10−2 after 8 eigenmodes.

The corresponding gPC bases can also be used for the expansion (4.3.1). We have

examined the following three cases: (C1): only the first 8 bases Am,i calculated from

the mean streamwise velocity u are used; (C2): only the first 8 bases Ar,i calculated

from the r.m.s. velocity fluctuation u are used; (C3): a set of hybrid bases combining

the first 8 bases Am,i and the first 4 bases Ar,i are used. In (C3), the bases Am,i and

Ar,i can be shown to be independent of each other and can be combined to form a
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new larger set of bases using an orthogonalization technique like the Gram-Schmidt

process. Note that beside these gPC bases, A0, which is the mean term, is taken to

be 1 for simplicity of notation.

Figures 4.11-4.13 show the profiles of r.m.s. fluctuations u, v, w, respectively. In

the case of r.m.s. fluctuation u, C3 gives a slightly better profile than C1 and C2

when compared to MC samplings of DNS when y+ < 20, while it performs worse

for 30 < y+ < 60. There is not much difference using different bases with the same

number of bases in C1 and C2. From Figure 4.12, it can be seen that using more

bases in C3 does not improve the performance of r.m.s. fluctuation v. In contrast,

in the region 10 < y+ < 30, C3 gives noticeably better approximation of the r.m.s.

spanwise velocity fluctuation, as shown in Figure 4.13. Overall, different bases with

the same number do not give distinguishable performance and a hybrid set with more

bases, formed by combining different types of bases, does not improve the performance

substantially.

4.3.6 Effects of numerical resolution

In this section, we examine the resolution effects of the velocity components ui(t,x)

in the coupled system (4.3.2), which may lead to noticeable difference in the r.m.s.

velocity fluctuations, as shown in Figures 4.7-4.9. An effective grid of size 64(x) ×

65(y)×64(z) is used. This computation uses only 8 gPC bases from the mean velocity

u. The r.m.s. velocity fluctuations urms, vrms and wrms are displayed in Figures 4.14-

4.16, respectively. It can be seen that for the given resolution, the data-driven method

gives very good performance when compared to MC simulations of DNS, especially

for the r.m.s. velocity fluctuation v. The error bars (standard deviation) of the mean

r.m.s. velocity fluctuations are also shown in these figures and the profiles calculated

by the data-driven method fall inside the error bars for all three components. This

demonstrates that resolution plays an essential role for the accuracy of the data-

driven method in turbulent flows. It is sufficient to use 8 gPC bases and a resolution

of 64(x) × 65(y) × 64(z) for channel flow for a moderate friction Reynolds number

Reτ = 180.
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Figure 4.11: R.m.s. velocity fluctuation of u(t,x, ω) normalized by the wall shear velocity uτ .
◦: Expectation of urms(y

+) by DNS; �: Expectation of urms(y
+) by K-L expansion of case C1; �:

Expectation of urms(y
+) by K-L expansion of case C2; 4: Expectation of urms(y

+) by K-L expansion
of case C3
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Figure 4.12: R.m.s. velocity fluctuation of v(t,x, ω) normalized by the wall shear velocity uτ .
◦: Expectation of vrms(y

+) by DNS; �: Expectation of vrms(y
+) by K-L expansion of case C1; �:

Expectation of vrms(y
+) by K-L expansion of case C2; 4: Expectation of vrms(y

+) by K-L expansion
of case C3
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Figure 4.13: R.m.s. velocity fluctuation of w(t,x, ω) normalized by the wall shear velocity uτ .
◦: Expectation of wrms(y

+) by DNS; �: Expectation of wrms(y
+) by K-L expansion of case C1;

�: Expectation of wrms(y
+) by K-L expansion of case C2; 4: Expectation of wrms(y

+) by K-L
expansion of case C3
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Figure 4.14: R.m.s. velocity fluctuation u(t,x, ω) (solid line with �) compared to MC of DNS
(dashed line with error bars)
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Figure 4.15: R.m.s. velocity fluctuation of v(t,x, ω) (solid line with �) compared to MC of DNS
(dashed line with error bars)
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Figure 4.16: R.m.s. velocity fluctuation of w(t,x, ω) (solid line with �) compared to MC of DNS
(dashed line with error bars)
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4.4 Conclusion and discussion

In this chapter, turbulent flows are treated as stochastic processes. 100 Monte Carlo

samples of DNS executions of the Navier-Stokes equations for the channel flow have

been performed and applied to: (i) compute statistical quantities to compare with

the results of the DDSM; (ii) compute a mean streamwise velocity profile ū(y, ω) that

is used to calculate the gPC bases for the data-driven method. The gPC bases span

a low-dimensional probabilistic subspace and a system of coupled equations can be

solved numerically in this probabilistic subspace.

Once the gPC bases are obtained, the stochastic fluid variables u(t,x, ω) and

p(t,x, ω) are projected onto the subspace spanned by these gPC bases and the sys-

tem of equations is solved to obtain approximate samples of u(t,x, ω) and p(t,x, ω).

Statistical quantities, such as the mean velocity profile and r.m.s. velocity fluctua-

tions, are calculated and compared with the Monte Carlo simulations.

Two possible factors that determine the accuracy of the data-driven method have

been carefully examined. The first is the number and the type of the gPC bases; the

second is the numerical resolution of the velocity components ui(t,x) in the coupled

system (4.3.2). It turns out that the number and the type of gPC bases do not affect

significantly the accuracy of the data-driven method. In contrast, choosing a suffi-

ciently large resolution does improve the accuracy of the r.m.s. velocity fluctuations

substantially.

Overall, the data-driven method offers decent approximation with low resolution

(64(x)×65(y)×64(z)) and relatively small number of gPC bases (M = 8, in the case

of turbulent channel flow). The same idea can be applied to other applications, such

as flows through porous media, where the probabilistic dimensionality is huge as well

and only the statistical quantities are of essential interest.
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Chapter 5

Concluding remarks and discussion

In this thesis, we have approached multiscale modeling and computation of 3D in-

compressible turbulent flows from two different points of view. The first is the tradi-

tional view, where only low-frequency modes are calculated and the high-frequency

fluctuations are modeled. Our multiscale analysis has been able to mathematically

recover the Smagorinsky model for homogeneous turbulence and derive a simplified

Smagorinsky model for turbulent channel flow with minimal assumptions. The second

approach takes the stochastic viewpoint, where the turbulent flows are regarded as

stochastic processes with random initial data. The turbulent velocities and pressure

are projected onto the subspace spanned by orthonormal gPC bases. The approxi-

mate samples are obtained by solving a coupled system of equations for the velocity

components in the K-L expansion.

In Chapter 2, we presented a new mathematical derivation of a closure relat-

ing the Reynolds stress to the mean strain rate for incompressible turbulent flows.

This derivation is based on a multiscale analysis of the Navier-Stokes equations in

three-dimensional space. By using a systematic multiscale analysis and an iterative

homogenization of the large- and small-scale solutions dynamically, we identified a

crucial structure of the Reynolds stress. As a consequence, we established a linear

constitutive relationship between the Reynolds stress and the mean strain rate for the

incompressible turbulent flows, up to the leading order of the time step. Further con-

sideration of specific flows enabled us to produce an explicit formula for the Reynolds

stress in two examples: homogeneous turbulence and turbulent channel flow. The

Smagorinsky model for homogeneous turbulence has been recovered using this math-
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ematical derivation. In addition, we have developed a simplified Smagorinsky model

for turbulent channel flow.

To capture the backward energy cascade phenomena, a nonlinear LES model is

introduced which uses a second order approximation of the inverse flow map function

θ. Besides the dissipation effect in the first order, which is the Smagorinsky model,

this nonlinear model captures the anti-cascade and dispersion effects. Our nonlinear

model covers the mixed model that combines the Smagorinsky model and the gradient

model. Furthermore, in contrast to the generic nonlinear model of Lund and Novikov,

our nonlinear model captures the additional dispersive effect. On the other hand,

a term missing in our model but present in the generic nonlinear model could be

recaptured using a third order approximation in our derivation.

In Chapter 3, an extensive numerical study has been performed to validate the

simplified model for the turbulent channel flow, using well-established benchmark

tests at two Reynolds numbers, Reτ = 180 and Reτ = 395. Qualitative agreements

have been shown for various statistical quantities of the channel flow. These include

the mean streamwise velocity profiles, r.m.s. velocity and vorticity fluctuations, and

the turbulent kinetic energy budget. However, we observed some noticeable differ-

ences among the results obtained from the simplified model, DNS, and experiments,

especially in the profiles of r.m.s. vorticity fluctuations near the wall. We identified

two main error sources that could contribute to these discrepancies. The first one is

the measurement (hot wire) errors near the wall (Kim et al., 1987). The second one is

the modeling error. Additionally, error has been identified in the process of applying

the asymptotic analysis, which is valid in the boundary layer, to the outer region of

the channel flow.

Turbulent flows are treated as stochastic processes in Chapter 4. A data-driven

stochastic method has been employed and tested for turbulent channel flow with ran-

dom initial data. In the offline portion, 100 MC realizations of DNS were executed

in order to calculate gPC bases for K-L expansions. The gPC bases were obtained

using the mean streamwise velocity profile after averaging over the streamwise x and

spanwise z directions, instead of the full velocity field. The basic idea is that in fully

developed turbulence, only statistical quantities are of interest. The statistical infor-
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mation has been highly compressed. If we only desire the statistics of the turbulent

flow, it is feasible to use the already compressed information, such as mean velocities,

r.m.s. velocity fluctuations, etc., to construct the gPC bases. In the online portion,

the turbulent velocities and pressure are projected onto the subspace spanned by the

gPC bases and a coupled system is solved to recover the velocity components in the

K-L expansions. Preliminary numerical results show that decent approximations of

turbulent statistics can be achieved with low resolution (64(x)× 65(y)× 64(z)) and a

relatively small number of gPC bases (M = 8, in the case of turbulent channel flow).
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Appendix A

Multiscale analysis of the
Navier-Stokes equation

In this appendix, we develop a systematic multiscale analysis for the three-dimensional

incompressible Navier-Stokes equations with multiscale initial data. This multiscale

analysis sheds more light on the understanding of scale interactions for incompress-

ible flows. Additionally, it provides an introduction to the approach of turbulence

modeling illustrated in Chapter 2. More details can be found in Hou et al. (2005,

2008).

A.1 Derivation of the nested multiscale expansion

The original multiscale expansion is along the exact Lagrangian map. However, for

convenience in engineering applications, large-scale solutions of the flows are rep-

resented in the Eulerian coordinates, while Lagrangian coordinates are used in the

description of the small-scale solution propagation.

First, the nested multiscale expansion of θε is obtained. The flow map xε(t,α) is

defined as

dxε

dt
= uε(t,xε), (A.1.1)

xε|t=0 = α.

Equation (A.1.1) states that each flow particle propagates along the Lagrangian map.

It is obvious that θε is the inverse of the flow map xε; it is therefore called the inverse
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flow map. In 3D incompressible flows, the vorticity can be expressed in terms of the

flow map as follows (Chorin & Marsden, 1993):

ω(t,xε(t,α)) = Dαx
ε(t,α)ωint

(
α,
α

ε

)
. (A.1.2)

Equation (A.1.2) indicates that the small-scale vorticity is essentially propagated

along its flow map. The effect of vortex stretching is accounted for by the deformation

of the Jacobian matrix of the flow map Dαx
ε(t,α).

Let x = xε(t,α) and Aε = Dxθ
ε = (Dαx

ε)−1. Because of the incompressibility,

the flow map xε(t,α) is volume-preserving, i.e. , det(Dαx
ε) = 1. In addition, since

Dαx
εDxθ

ε = I, it follows that det(Aε) = 1.

Under the Lagrangian coordinate system, the stream function ψ and flow map xε

satisfy the following coupled equations:

−∇α · (AεAεT∇αψ
ε) = Dαx

εωint

(
α,
α

ε

)
, (A.1.3)

∂xε

∂t
=
(
∇α × ((Dαx

ε)Tψε) · ∇α
)
xε, t > 0, (A.1.4)

xε(0,α) = α.

Using the stream function-vorticity formulation in the Lagrangian system, the non-

linear convection can be treated exactly. The equations (A.1.3) and (A.1.4) are a

nonlinear coupled system of the elliptic and transport equations. Now, it is clear that

the multiscale periodic structure is convected by the full velocity field.

Based on the formulations (A.1.3) and (A.1.4), we seek multiscale expansions of

the stream function and the flow map in the following form:

ψε(t,α) = ψ̄(t,α, τ) + εψ̃(t,α, τ,y), (A.1.5)

xε(t,α) = x̄(t,α, τ) + εx̃(t,α, τ,y), (A.1.6)

where τ = t/ε and y = α/ε with α = θε. We assume that ψ̃ and x̃ are periodic

functions in y with zero mean.

Note that the expansions (A.1.5) and (A.1.6) are along the exact Lagrangian flow

map for both slow and fast variables. For engineering applications, it is more conve-
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nient to represent the macroscopic behavior of the flow in the Eulerian coordinate for

the slow variables. Hence, we consider a new expansion where Eulerian coordinates

are used for the slow variables, while the propagation of the fast variables is still

described in Lagrangian coordinates. Let α = θ̄(t,x, τ) be the inverse flow map of

x = x̄(t,α, τ), i.e. , x = x̄(t, θ̄(t,x, τ), τ). Then we have

θ̄(t,x, τ) = θ̄

(
t, x̄(t,θε, τ) + εx̃

(
t,θε,

t

ε
,
θε

ε

)
, τ

)
. (A.1.7)

By expanding the above equation around ε = 0 and using the identity θε =

θ̄(t, x̄(t,θε, τ), τ), we obtain the following expansions for the inverse flow map θε:

θε = θ̄(t,x, τ) + εθ̃

(
t, θ̄, τ,

θε

ε

)
. (A.1.8)

The stream function ψε can be expanded similarly.

A.2 A change of variable in small-scale quantities

The fast variable y = θε/ε can introduce some technical difficulty in the numerical

implementation. To simplify the computation of the cell problem, a change of variable

from y to z can be done as follows:

z = y − θ̃(t, θ̄, τ,y) ≡ G(y), y = G−1(z). (A.2.1)

Let ĝ = g(y) = g ◦ G−1(z). Note that

z + 1 = y + 1− θ̃(t, θ̄, τ,y + 1), (A.2.2)

where 1 is a unit vector. Therefore, it is easy to show that ĝ is also a periodic function

in z. This implies that θ̃ can be rewritten as

θ̃ = ˆ̃θ

(
t, θ̄, τ,

θ̄

ε

)
. (A.2.3)

To simplify the notation, we still denote ˆ̃θ by θ̃.
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Finally, we expand the inverse flow map θε and the stream function ψε as follows:

θε = θ̄(t,x, τ) + εθ̃
(
t, θ̄, τ, z

)
, (A.2.4)

ψε = ψ̄(t,x, τ) + εψ̃
(
t, θ̄, τ, z

)
. (A.2.5)

Then the expansion of velocity uε can be calculated from the stream function:

uε = ∇x ×ψε = ∇x ×
(
ψ̄(t,x, τ) + εψ̃(t, θ̄, τ, z)

)
= ∇x × ψ̄ + ε∇x × ψ̃ + ε · 1

ε
(Dxθ̄

T∇z)× ψ̃

= ū(t,x, τ) + ũ(t, θ̄, τ, z), (A.2.6)

where ū = ∇x × ψ̄ and ũ = (Dxθ̄
T∇z)× ψ̃ + ε∇x × ψ̃.

A.3 Multiscale analysis of the 3D incompressible Navier-

Stokes equations

Based on the understanding in the previous sections, we now perform a multiscale

analysis of the 3D incompressible Navier-Stokes equations. We seek multiscale ex-

pansions for the velocity-pressure pair (uε, pε) in the form:

uε = ū(t,x, τ) + ũ(t,x, τ, z), (A.3.1)

pε = p̄(t,x, τ) + p̃(t,x, τ, z). (A.3.2)

Denoting ∂̄t = ∂t + ε−1∂τ and substituting the expansions (A.2.4), (A.3.1), and

(A.3.2) into the Navier-Stokes equations (2.1.1) and the equations of the inverse flow
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map function (2.1.2), we have the following equations for the velocity:

∂̄tū+ ∂̄tũ+
1

ε
Dzũ∂̄tθ̄

+

(
∇x +

1

ε
Dxθ̄

T∇z
)
· ((ū+ ũ)⊗ (ū+ ũ))

+∇xp̄+

(
∇x +

1

ε
Dxθ̄

T∇z
)
p̃

−ν
(
∇x +

1

ε
Dxθ̄

T∇z
)
·
(
∇x +

1

ε
Dxθ̄

T∇z
)

(ū+ ũ) = 0, (A.3.3)(
∇x +

1

ε
Dxθ̄

T∇z
)
· (ū+ ũ) = 0; (A.3.4)

and the inverse flow map:

∂̄tθ̄ + ε∂tθ̃ +Dzθ̃∂̄tθ̄ + ε∂tθ̃

+

(
∇x +

1

ε
Dxθ̄

T∇z
)
·
(

(θ̄ + εθ̃)⊗ (ū+ ũ)
)

= 0. (A.3.5)

A.3.1 Averaged equations

In this subsection, we derive the averaged equations for ū and θ̄.

Averaging (A.3.3) and (A.3.4) with respect to z gives the following averaged equa-

tions for the large-scale velocity:

∂̄tū+∇x · (ū⊗ ū) +∇x · 〈ũ⊗ ũ〉z +∇xp̄ =ν∆xū, (A.3.6)

∇x · ū =0. (A.3.7)

Similarly, we have the following averaged equations for the inverse flow map after

averaging over z:

∂̄tθ̄ +∇x ·
(
θ̄ ⊗ ū

)
+ ε∇x · 〈θ̃ ⊗ ũ〉z = 0. (A.3.8)

A.3.2 The cell problems

After deducting the averaged equations (A.3.6)-(A.3.8) from the full Navier-Stokes

equation (2.1.1) and the equations of the inverse flow map (2.1.2), respectively, the
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remaining parts are the equations for the small-scale velocity ũ:

∂tũ+∇x · (ū⊗ ũ+ ũ⊗ (ū+ ũ))−∇x · 〈ũ⊗ ũ〉+∇xp̃

+
1

ε

(
∂τ ũ+Dzũ∂̄tθ̄ + (Dxθ̄

T∇z) · (ū⊗ ũ+ ũ⊗ ū+ ũ⊗ ũ) +Dxθ̄
T∇zp̃

)
−ν
ε

(
∇x · (Dxθ̄

T∇zũ) +∇z · (Dxθ̄∇xũ)
)

− ν
ε2
∇z · (Dxθ̄Dxθ̄

T∇zũ) = 0, (A.3.9)

(ε∇x +Dxθ̄
T∇z) · ũ = 0, (A.3.10)

and the small scale inverse flow map θ̃:

∂τ θ̃ +Dzθ̃∂̄tθ̄ + ε∂tθ̃

+

(
∇x +

1

ε
Dxθ̄

T∇z
)
·
(
θ̄ ⊗ ũ+ εθ̃ ⊗ ū+ εθ̃ ⊗ ũ

)
−ε∇x · 〈θ̃ ⊗ ũ〉 = 0. (A.3.11)

In the following, we will try to simplify equations (A.3.9)-(A.3.11) as much as

possible.

It is easy to see that the incompressibility condition (A.3.10) becomes

(ε∇x +Dxθ
T∇z) · ũ = 0. (A.3.12)

Multiplying by ε, the equation for ũ (A.3.9) can be rewritten as

∂τ ũ+Dzũ∂̄tθ̄ + (Dxθ̄
T∇z) · (ū⊗ ũ+ ũ⊗ ū+ ũ⊗ ũ) +Dxθ̄

T∇zp̃

=
ν

ε
∇z ·

(
Dxθ̄Dxθ̄

T∇zũ
)

+ν
[
∇x · (Dxθ̄

T∇zũ) +∇z · (Dxθ̄∇xũ)
]

−ε [∂tũ+∇x · (ū⊗ ũ+ ũ⊗ (ū+ ũ))−∇x · 〈ũ⊗ ũ〉+∇xp̃] . (A.3.13)
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Neglecting the O(ε) terms, (A.3.13) becomes

∂τ ũ+Dzũ∂̄tθ̄ + (Dxθ̄
T∇z) · (ū⊗ ũ+ ũ⊗ ū+ ũ⊗ ũ) +Dxθ̄

T∇zp̃

=
ν

ε
∇z ·

(
Dxθ̄Dxθ̄

T∇z · ũ
)

+ν
[
∇x · (Dxθ̄

T∇zũ) +∇z · (Dxθ̄∇xũ)
]
. (A.3.14)

Note that by using (A.3.8),

Dzũ∂̄tθ̄ +DzũDxθ̄(ū+ ũ)

= Dzũ(∂̄tθ̄ +Dxθ̄ū) +DzũDxθ̄ũ

= DzũDxθ̄ũ− εDzũ(∇x · 〈θ̃ ⊗ ũ〉) by equation (A.3.8)

= O(ε) by (A.3.12).

Thus, to the leading order approximation in terms of ε, we have

∂τ ũ+DzũDxθ̄ũ+Dxθ̄
T∇zp̃

=
ν

ε

(
∇z ·

(
Dxθ̄Dxθ̄

T∇z · ũ
)

+ ε(∇x · (Dxθ̄
T∇zũ) +∇z · (Dxθ̄∇xũ))

)
+O(ε). (A.3.15)

Further, subtracting the averaged equations of θ̄ (A.3.8) from the full equation of

θ̄
ε

(2.1.2) leads to the following equation for θ̃:

∂τ θ̃ +Dzθ̃∂̄tθ̄ + ε∂tθ̃

+

(
∇x +

1

ε
Dxθ̄

T∇z
)(
θ̄ ⊗ ũ+ εθ̃ ⊗ ū+ εθ̃ ⊗ ũ

)
− ε∇x · 〈θ̃ ⊗ ũ〉 = 0,

or to the first order in ε,

∂τ θ̃ +Dzθ̃∂̄tθ̄ +∇x · (θ̄ ⊗ ũ)

+
1

ε
(Dxθ̄

T∇z) · (θ̄ ⊗ ũ) + (Dxθ̄
T∇z) · (θ̃ ⊗ (ū+ ũ)) +O(ε) = 0. (A.3.16)
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We then calculate each term in the above equation (A.3.16):

I := Dzθ̃∂̄tθ̄

= Dzθ̃(−∇x · (θ̄ ⊗ ū)), from (A.3.8)

= −(Dzθ̃) ·
(
(ū · ∇x)θ̄

)
or −

(
Dzθ̃Dxθ̄ū

)
; (A.3.17)

II := ∇x · (θ̄ ⊗ ũ)

= (ũ · ∇x)θ̄ + θ̄(∇x · ũ) or (Dxθ̄) · ũ+ θ̄(∇x · ũ); (A.3.18)

III :=
1

ε
(Dxθ̄

T∇z) · (θ̄ ⊗ ũ)

=
1

ε
θ̄((Dxθ̄

T∇z) · ũ)

=
1

ε
(−ε∇x · ũ by (A.3.12)

= −θ̄(∇x · ũ); and (A.3.19)

IV := (Dxθ̄
T∇z) · (θ̃ ⊗ (ū+ ũ))

= Dzθ̃ ·Dxθ̄ · (ū+ ũ) + (((Dxθ̄)T∇z) · ũ)θ̃

= Dzθ̃ ·Dxθ̄ · ū+Dzθ̃ ·Dxθ̄ũ− ε(∇x · ũ)θ̃. (A.3.20)

The sum of the above equalities is

I + II + III + IV = Dxθ̄ũ+Dzθ̃Dxθ̄ũ− ε(∇x · ũ)θ̃. (A.3.21)

Therefore, up to the first order in ε, (A.3.16) states that

∂τ θ̃ +Dzθ̃Dxθ̄ũ+Dzθ̄ũ = 0. (A.3.22)
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A.3.3 A simplified multiscale system

In the numerical implementation, the large-scale solutions ū, p̄, and θ̄ still depend on

the fast time τ . In order to obtain a multiscale system for the large-scale solutions that

is independent of τ , a local time-average is performed to eliminate the dependence of

the mean velocity field and inverse flow map on the fast time τ . Then the large-scale

solutions have the form

ū(t,x, τ) = u(t,x) + εu1(t,x, τ), (A.3.23)

p̄(t,x, τ) = p(t,x) + εp1(t,x, τ), (A.3.24)

θ̄(t,x, τ) = θ(t,x) + εθ1(t,x, τ). (A.3.25)

In addition, the multiscale system can be simplified further by studying only the

leading-order terms of (ũ, p̃) and θ̃:

ũ = w(t, θ̄, τ, z) +O(ε), (A.3.26)

p̃ = q(t, θ̄, τ, z) +O(ε), (A.3.27)

θ̃ = Θ(t, θ̄, τ, z) +O(ε). (A.3.28)

Then we obtain the equations for the large-scale solutions (2.1.11) that are accurate

up to the first order of ε:

∂tu+ (u · ∇x)u+∇xp+∇ · 〈[w ⊗w]∗∆〉 = ν∆u, (A.3.29)

∇x · u = 0 (A.3.30)

for the large-scale velocity and

∂tθ + (u · ∇x)θ + ε∇ · 〈[Θ⊗w]∗∆〉 = 0 (A.3.31)

for the large-scale inverse flow map.
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Also, the leading order equations of the small-scale solutions (2.1.12) are derived:

∂τw +DzwDxθ̄w +Dxθ̄
T∇zq −

ν

ε
∇ · (Dxθ̄Dxθ̄

T∇zw) = 0,

(Dxθ̄
T∇z) ·w = 0,

for the small-scale velocity and

∂τΘ + (I +DzΘ)Dxθ̄w = 0 (A.3.32)

for the small-scale inverse flow map.
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Appendix B

Reparameterization of the initial
velocity in a two-scale structure

In this appendix, we show how to reformulate any velocity v(x, y, z), which may

contain infinitely many scales, into a two-scale structure. Assume v is periodic in

x and z. The no-slip boundary condition is applied in the y direction. Since this

procedure can be done direction by direction, we can reparameterize in the periodic

direction x and z; this has been shown in Hou et al. (2005, 2008). Thus, we only need

to deal with the non-periodic direction y. The key idea is to use the sine transform,

which not only has the same computational complexity of Fourier transform, but also

incorporates the boundary condition.

Let v(x, y, z) be any function which is periodic in (x, z) and is zero on the bound-

aries in y, i.e. , v(x, 0, z) = v(x, 1, z) = 0. Denoting x = (x, y, z) and k = (kx, ky, kz),

the Fourier transform in the x and z directions and the sine transform in the y direc-

tion read as

v(x, y, z) =
∑

k=(kx,ky ,kz)

v̂k sin(πkyy) exp(2πi(kxx+ kzz)).

Choose 0 < ε = 1/E < 1, where E is an integer, and let

ΛE =

{
k; |kj| ≤

E

2
, j = (x, y, z)

}
, Λ′E = Z3\ΛE. (B.0.1)

Then by splitting into two parts in spectral space, the velocity can be rewritten as

v = v(l)(x) + v(s)(x,x/ε), (B.0.2)
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where

z = x/ε = (x/ε, y/ε, z/ε).

The two terms in (B.0.2) are the large-scale velocity and the small-scale velocity,

respectively:

v(l)(x) =
∑
k∈ΛE

v̂(k) sin(πkyy) exp(2πi(kxx+ kzz)),

v(s)(x,y) =
∑
k∈Λ′

E

v̂(k) sin(πkyy) exp(2πi(kxx+ kzz)).

Rewrite each k in the following form

k = Ek(s) + k(l),

where

k(s) = (k(s)
x , k(s)

y , k(s)
z ), k(l) = (k(l)

x , k
(l)
y , k

(l)
z ),
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then we have

v(s) =
∑
k∈Λ′

E

v̂(k) sin (πkyy) exp (2πi(kxx+ kzz))

=
∑

Ek(s)+k(l)∈Λ′
E

v̂(Ek(s) + k(l)) sin
(
π(Ek(s)

y + k(l)
y )y

)
× exp

(
2πi((Ek(s)

x + k(l)
x )x+ (Ek(s)

z + k(l)
z )z)

)
=
∑
k(s) 6=0

 ∑
k(l)∈ΛE

v̂(Ek(s) + k(l)) sin
(
πk(l)

y y
)

exp
(
2πi(k(l)

x x+ k(l)
z z)

)
× cos

(
πk(s)

y (Ey)
)

exp
(
2πi(k(s)

x Ex+ k(s)
z Ez)

)
+
∑
k(s) 6=0

 ∑
k(l)∈ΛE

v̂(Ek(s) + k(l)) cos
(
πk(l)

y y
)

exp
(
2πi(k(l)

x x+ k(l)
z z)

)
× sin

(
πk(s)

y (Ey)
)

exp
(
2πi(k(s)

x Ex+ k(s)
z Ez)

)
=
∑
k(s) 6=0

(
v̂1(k(s),x) cos

(
πk(s)

y (y/ε)
)

+ v̂2(k(s),x) sin
(
πk(s)

y (y/ε)
))

× exp
(
2πi(k(s)

x x/ε+ k(s)
z z/ε)

)
= v(s)

(
x,
x

ε

)
,

where v̂1(k(s),x) and v̂2(k(s),x), which are in physical space, are the results of inverse

transform of the large-scale component,

v̂1(k(s),x) =
∑

k(l)∈ΛE

v̂(Ek(s) + k(l)) sin
(
πk(l)

y y
)
,

v̂2(k(s),x) =
∑

k(l)∈ΛE

v̂(Ek(s) + k(l)) cos
(
πk(l)

y y
)
.

Remark B.0.1. Note that v(s)(x, z) is a periodic function in z with mean zero.
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