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Abstract

This dissertation comprises three essays that are linked by their focus on dynamic models of political

economy, in which farsighted agents interact over an infinite number of periods, and the strategic

environment evolves endogenously over time.

In Chapter 2, “Dynamic Legislative Bargaining with Veto Power”, I analyze the consequences of

veto power in an infinitely repeated divide-the-dollar bargaining game with an endogenous status

quo policy. I show that a Markov equilibrium of this dynamic game exists, and that, irrespective

of the discount factor of legislators, their recognition probabilities, and the initial division of the

dollar, policy eventually gets arbitrarily close to full appropriation of the dollar by the veto player.

Chapters 3 and 4—coauthored with Thomas Palfrey and Marco Battaglini—study free riding

in a dynamic environment where a durable public good provides a stream of benefits over time and

agents have opportunities to gradually build the stock. We consider economies with reversibility,

where investments can be positive or negative, and economies with irreversibility, where investments

are non-negative and the public good can only be reduced by depreciation. In Chapter 3, “The

Free Rider Problem: A Dynamic Analysis”, we study and compare the set of Markov equilibria

of these models. With reversibility, there is a continuum of equilibrium steady states: the highest

equilibrium steady state of the public good is increasing in the group size, and the lowest is de-

creasing. With irreversibility, the set of equilibrium steady states converges to a unique point as
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depreciation converges to zero: the highest steady state possible with reversibility. In Chapter 4,

“The Dynamic Free Rider Problem: An Experimental Study”, we test the results from this model

with controlled laboratory experiments. The comparative static predictions for the treatments are

supported by the data: irreversible investment leads to significantly higher public good production

than reversible investment.
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Chapter 1

Introduction

The three essays in this thesis are part of a growing literature extending static models of political

economy to dynamic environments, in which farsighted agents interact over an infinite number of

periods and their strategic incentives evolve endogenously over time. The underlying theme of the

thesis is the notion that most public policies and individual decisions have long-lasting consequences,

and that political agents with conflicting interests take into account the effect of today’s policy on

future decisions. To illustrate this notion, consider policies with an endogenous status quo. In

most democracies, once enacted, many laws or programs remain in effect until further legislative

action is taken. For example, in the U.S., about two-thirds of the federal budget is allocated to

mandatory spending, which continues year after year by default. Outside of the fiscal sphere,

many other issues, such as immigration, financial regulation, minimum wage, civil liberties, and

national security are typically regulated by permanent legislation. Another example is provided by

the accumulation of public debt over time: whenever governments borrow money from the capital

markets to finance their current expenditure, they increase the level of public debt, affecting the

ability to spend of future governments. In all these settings, the state variable generates a dynamic

linkage across periods and present agents with a trade off between optimally responding to the
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current environment and securing more favorable conditions for the future.

This approach has recently been employed to study a number of different issues: dynamic elec-

toral competition and extensions (or failures) of median voter theorems (Duggan 2000, Banks and

Duggan 2008, Forand 2009, Kalandrakis 2009, Van Weelden 2009); dynamic legislative bargaining

and the evolution (or unraveling) of compromise (Baron 1996, Dixit et al. 2000, Kalandrakis 2004,

Bowen and Zahran 2009, Diermeier and Fong 2011); sequential elections and the formation (or not)

of bandwagons (Dekel and Piccione 2000, Callander 2007, Nageeb and Kartik 2010); dynamic insti-

tutional choice and the persistence (or reform) of undesirable institutions (Acemoglu and Robinson

2008, Lagunoff 2009, Lizzeri and Persico 2004); dynamic principal-agent models and the electorate

ability (or inability) to provide incentives to politicians (Banks and Sundaram 1993, 1998, Schwabe

2009).

In this thesis, I apply this framework to two novel topics: (1) dynamic legislative bargaining

with an endogenous status quo alternative and a veto player; and (2) dynamic provision of durable

public goods. I find that the dynamic politico-economic equilibrium approach may substantially

change the pattern of public policy choices predicted by a static model and thus, provide a new

angle to understand empirical evidence which is hard to explain with existing theories. Analytical

solutions are provided throughout the thesis, making the underlying mechanism highly transparent.

Chapter 2 is motivated by the observation that many real world voting bodies and assemblies

grant one or several of their members the right to block decisions even when a proposal has secured

the necessary majority—a veto right. The existence of veto power raises the concern it may grant its

holders excessive power: although the formal veto right only grants the power to block undesirable

decisions, it could de facto allow veto members to impose their ideal decision on the rest of the

committee. The existing literature has studied this possibility in static frameworks where the status
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quo policy is exogenous, or legislation cannot be modified after its initial introduction. These are

strong limitations for two reasons. First, in reality, legislators interact over a longer time horizon

and many of their decisions are inertial, in the sense that a policy remains in effect only until a

new policy is passed. Second, in this dynamic setting, the status quo policy, which determines

the bargaining advantage of the veto players, is the product of past decisions rather than being

exogenously given. In this paper, I aim to improve our understanding of the consequences of veto

power, taking into account the dynamic process by which the status quo policy is generated.

In particular, I use non-cooperative bargaining theory to analyze the consequences of veto power

in a setting where legislators interact over an infinite number of periods and, if there is no agreement

for a policy change, the last period’s decision is implemented. I focus on the case of perfectly opposed

preferences (for example, pork barrel policies) and I show that the veto player is eventually able

to move the policy arbitrarily close to his ideal point, even when legislators are patient and take

into account the future consequences of changing the current status quo policy. However, unless

legislators are perfectly impatient, the veto player has to pay his coalition partners a premium

in order to pass a proposal that he prefers to the status quo, and it takes an infinite number of

bargaining periods to converge to his ideal point. In a companion paper not included in this thesis

(Nunnari 2012), I look at a more canonical spatial model with partially aligned preferences (for

example, personal income tax rates or mandatory spending). In this case, the veto player cannot

always impose his ideal policy, because he often has to compromise with a second de facto veto

player, the median legislator. I show that the power of the veto player depends on the initial status

quo, and even more so when legislators are patient and forward-looking.

Chapters 3 and 4—coauthored with Thomas Palfrey and Marco Battaglini— are motivated by

a salient feature of many public goods provided by governments or groups of individuals: it takes
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time to accumulate them, and they are durable, depreciating slowly, and projecting their benefits

for many years. Although a large literature has studied public good provision in static settings,

much less is known about dynamic environments, both theoretically and empirically. How serious

is free riding in these cases? To what extent does it depend on the institutions that govern decision

making and on the public good production function? In these two papers, we study free riding

in a dynamic environment where a durable public good provides a stream of benefits over time

and agents have opportunities to gradually build the stock. We consider two cases: economies

with reversibility, where investments can be positive or negative; and economies with irreversibility,

where investments are non-negative and the public good can only be reduced by depreciation.

In Chapter 3, we study the Markov equilibria of these two models. With reversibility, there is

a continuum of equilibrium steady states. while in a static free rider’s problem the players’ con-

tributions are strategic substitutes, in a dynamic model they may be strategic complements: the

highest equilibrium steady state of the public good is increasing in n, and the lowest is decreasing.

With irreversibility, the set of equilibrium steady states converges to a unique point as depreci-

ation converges to zero: the highest steady state possible with reversibility. The irreversibility

constraint, thus, creates a commitment device and reduces the strategic substitutability of contri-

butions. In both cases, the highest steady state converges to the efficient steady state as agents

become increasingly patient.

Chapter 4 tests the results from this model with controlled laboratory experiments, and repre-

sents the first experimental study of the dynamic accumulation process of a durable public good.

We find investing behavior consistent with the theory, as we observe significantly higher public good

levels when investments cannot be reversed. In both treatments, there is overinvestment relative

to the equilibrium in the initial stages of the game. This is followed by negative investment ap-
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proaching the theoretical predictions in reversible investment economies, while the overinvestment

decreases but persists in irreversible investment economies. Finally, we propose a novel experi-

mental methodology to test the Markovian assumption using a one-period reduced version of the

dynamic game and we conclude that there is evidence of Markovian, forward-looking behavior.

These two papers are part of a broader research agenda in which we explore alternative polit-

ical mechanisms for the provision of durable public goods and we assess their performance. In a

third paper, not included in this thesis (Battaglini, Nunnari, and Palfrey 2012b), we focus on the

case of reversible economies and we consider a centralized legislature where, in each period, the

representatives of n districts bargain over how to allocate resources between investment in a public

good and targeted transfers. We show that the efficiency of the public policy is increasing in the

number of votes required to pass a proposal, because a higher majority requirements leads to higher

investment in the public good and less private consumption.
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Chapter 2

Dynamic Legislative Bargaining
with Veto Power

A large number of important voting bodies grant one or several of their members the right to block

decisions even when a proposal has secured the necessary majority—a veto right. One prominent

example is the United Nations Security Council, where a motion is approved only with the affirma-

tive vote of nine members, including the concurring vote of the five permanent members (China,

France, Great Britain, Russia, and the U.S.). Another important example is the U.S. President’s

ability to veto congressional decisions. Additionally, in assemblies with asymmetric voting weights

and complex voting procedures, veto power may arise implicitly: this is the case of the U.S. in the

International Monetary Fund and the World Bank governance bodies (Leech and Leech 2004).1

The existence of veto power raises two concerns. First, the ability of an agent to veto policies

increases the possibility of legislative stalemate, or “gridlock”. Second, although the formal veto

right only grants the power to block undesirable decisions, it could de facto allow veto members to
1Many other institutions grant veto power to some of their decision makers. For example, some corporate boards

of directors grant minority shareholders a “golden share”, which confers the privilege to veto any decision. This share
is often held by members of the founding family, or governments in order to maintain some control over privatized
companies and was widely used in the European privatization wave of the late 90s and early 2000s. For instance, the
British government had a golden share in BAA, the UK airports authority; the Spanish government had a golden
share in Telefónica; and the German government had a golden share in Volkswagen.
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impose their ideal decision on the rest of the committee (Russell 1958, Woods 2000, Blum 2005).2

In this paper, I investigate the consequences of veto power in a dynamic bargaining setting

where the location of the current status quo policy is determined by the policy implemented in

the previous period. This is an important feature of many policy domains—for instance, personal

income tax rates or entitlement programs—where legislation remains in effect until the legislature

passes a new law. In each of an infinite number of periods, one of three legislators, one of whom is

a veto player, is randomly recognized to make a proposal on the allocation of a fixed endowment.

The proposed allocation is implemented if it receives at least two affirmative votes, including the

vote of the veto player. Otherwise, the status quo policy prevails and the resource is allocated as

it was in the previous period. In this sense, the status quo policy evolves endogenously.

In this simple setting, I answer two basic questions: To what extent is the veto player able to

leverage his veto power into outcomes more favorable to himself? As this leverage is found to be

substantial, I then turn to a second question: What are the effects of institutional measures meant

to reduce the power of the veto player?

In particular, I fully characterize a Markov Perfect Equilibrium (MPE) and prove it exists for

any discount factor, any initial divisions of the resources, and any recognition probabilities.3 In this

MPE, the veto player is eventually able to move the status quo policy arbitrarily close to his ideal

point. That is, the veto player is eventually able to fully appropriate all resources, irrespective of

the discount factor, the recognition probabilities, and the initial division of the resources.

When agents are impatient, this result comes from the fact that non-veto legislators support any
2These concerns were expressed by the delegates of the smaller countries when the founders of the United Nations

met in San Francisco in June 1945 (Russell 1958, Bailey 1969), and they have been a crucial point of contention in the
ongoing discussion over how to reform the UN Security Council to improve its credibility and reflect the new world
order (Fassbender 1998, Weiss 2003, Bourantonis 2005, Blum 2005). A similar debate has recently arisen regarding
the IMF’s and WB’s voting weights determination (Woods 2000, Rapkin and Strand 2006).

3The only general existence result for dynamic bargaining games applies to settings with stochastic shocks to
preferences and the status quo (Duggan and Kalandrakis 2010). As these features are not present in my model,
proving existence is a necessary step of the analysis.
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proposal that gives them at least as much as the status quo. Thus, it takes at most two proposals by

the veto player to converge to full appropriation of the dollar. When legislators are patient—that

is, when they care, even minimally, about the effect of the current policy on future outcomes—the

ability of the veto player to change the policy to his advantage remains, but is reduced. This occurs

because, when other committee members receive a proposal that increases the veto player’s share,

they take into account the associated reduction in their future bargaining power and demand a

premium to support it. However, unless legislators are perfectly patient, this premium is always

smaller than the share of resources not already allocated to the veto player, and the policy displays

a ratchet effect: with the possible exception of the first period, the share to the veto player will

only stay constant (if he is not proposing) or increase (if he is proposing).

The speed of convergence to the veto player’s ideal outcome is decreasing in the discount factor

of the committee members, as the premium demanded by non-veto legislators increases in their

patience. In contrast with the impatient case, when agents are patient, this premium is always

positive and, thus, it takes an infinite number of bargaining periods to converge to full appropriation

of the dollar by the veto player.

This result suggests that the ability to oppose any decision is indeed a powerful right and

guarantees a strong leverage on long run outcomes. Therefore, I analyze potential mechanisms to

weaken veto power and find that extreme outcomes are difficult to avoid in the long run. First, I

investigate the effect of reducing the agenda setting power of the veto player. As long as the veto

player has a positive probability of recognition, he will be able to extract all resources. However,

the speed of convergence to this outcome decreases as this probability decreases. Second, adding

an additional veto player does not increase the ability of non-veto players to retain a share of the

resources in the long run, but it reduces the ability of each veto player to accrue all the resources:
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whenever a veto player proposes, he has to share what he extracts from the other legislators with

the other veto player. Finally, when the veto right is randomly re-assigned in every period—rather

than permanently held by one legislator—the long term outcome is still extreme: policy eventually

converges to an absorbing set where all resources go to either the proposer or the veto player.

This paper contributes primarily to the theoretical literature on the consequences of veto power

in legislatures. A large number of studies build on models of legislative bargaining à la Baron and

Ferejohn (1989) to examine the role of veto power in policy making. Most of these papers model

specific environments and focus on the case of the U.S. Presidential veto. These works analyze

conditions under which an executive may exercise veto power (Matthews 1989, Groseclose and

McCarty 2001, Cameron 2000), evaluate the effect of presidential veto on spending (Primo 2006) or

the distribution of pork barrel policies (McCarty 2000a), disentangle the effect of veto and proposal

power (McCarty 2000b), and provide a rationale for the emergence of veto points inside Congress

(Diermeier and Myerson 1999). More closely related to this paper, Winter (1996) shows that the

share of resources to veto players is decreasing in the cost of delaying an agreement, so that the

share of resources to non-veto players declines to zero as the cost of delay becomes negligible, that

is, as legislators become infinitely patient. Banks and Duggan (2000) derive a similar result in a

more general model of collective decision making. A common limitation of this literature, and the

main point of departure with my paper, is the focus on static settings: the legislative interaction

ceases once the legislature has reached a decision, and policy cannot be modified after its initial

introduction. In these frameworks, any conclusion on the effect of veto power on policy outcomes

depends heavily on the specific assumptions on the status quo policy (Krehbiel 1998, Tsebelis 2002).

In this paper, the status quo policy is not exogenously specified but is rather the product of policy

makers’ past decisions.



10

In this sense, the present study belongs to a strand of recent literature on legislative policy mak-

ing with an endogenous status quo and farsighted players (Baron 1996, Kalandrakis 2004, Bernheim,

Rangel, and Rayo 2006).4 However, with the exception of Duggan, Kalandrakis, and Manjunath

(2008), who model the specific institutional details of the American presidential veto and limit their

analysis to numerical computations, this literature does not explore the consequences of veto power.

The most related work to mine is Kalandrakis (2004) who analyzes a similar environment without

a veto player. This institutional variation generates stark differences in strategies and long run out-

comes, as the voting behavior of patient players mimics the behavior of impatient ones, and policy

quickly converges to an absorbing set where the proposer extracts all resources in all periods.5 In

my setting, the discount factor affects voting strategies and—even if the irreducible absorbing set

has the veto player extracting all resources—convergence to absorption typically takes an infinite

number of periods, during which the veto player shares resources with one non-veto player.

The paper is organized as follows. Section 2 gives a detailed presentation of the legislative setup

and introduces the equilibrium notion. Section 3 outlines the equilibrium analysis and gives the

main results. Section 4 investigates the consequences of measures to reduce the power of the veto

player. Section 5 concludes with a discussion of the limitations of my approach and of the future

directions for the study of veto power in dynamic frameworks.
4See also Epple and Riordan (1987), Ingberman (1985), Bowen and Zahran (2009), Dziuda and Loeper (2010),

Cho (2005), Gomes and Jehiel (2005), Lagunoff (2008, 2009), Barseghyan, Battaglini, and Coate (2010), Battaglini
and Coate (2007, 2008), Baron and Herron (2003), Baron, Diermeier, and Fong (2011),Diermeier and Fong (2011),
Duggan and Kalandrakis (2010), Kalandrakis (2009), Penn (2009).

5Convergence to this absorbing set is not deterministic, as it depends on the identity of the proposer recognized
in each period, but it happens in finite time, in a maximum expected time of 2.5 periods.
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Figure 2.1: The set of possible legislative outcomes in each period, ∆

2.1 Model and Equilibrium Notion

2.1.1 Model

Three agents repeatedly bargain over a legislative outcome xt for each t = 1, 2, . . . . One of the three

agents is endowed with the power to veto any proposed outcome in every period. I denote the veto

player with the subscript v and the two non-veto players with the subscript j = {1, 2}. The possible

outcomes in each period are all possible divisions of a fixed resource (a dollar) among the three

players, that is xt is a triple xt = (xtv, xt1, xt2) with xti ≥ 0 for all i = v, 1, 2 and
∑
i∈{v,1,2} xi = 1.

Thus, the legislative outcome xt is an element of the unit simplex in R3
+, denoted by ∆. Figure 1

represents the set of possible legislative outcomes, x ∈ ∆, in R2. The vertical dimension represents

the share to (non-veto) player 1, while the horizontal dimension represents the share to (non-veto)

player 2. The remainder is the share that goes to the veto player. Thus, the origin is the point

where the veto player gets the entire dollar.
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The Bargaining Protocol. At the beginning of each period, one agent is randomly selected

to propose a new policy, z ∈ ∆. Each agent has the same probability of being recognized as

policy proposer, that is 1
3 .6 This new proposal is voted up or down, without amendments, by

the committee. A proposal passes if it gets the support of the veto player and at least one other

committee member. If a proposal passes, xt = z is the implemented policy at t. If a proposal is

rejected, the policy implemented is the same as it was in the previous period, xt = xt−1. Thus, the

previous period’s decision, xt−1, serves as the status quo policy in period, t. The initial status quo

x0 is exogenously specified.

Stage Utilities. Agent i derives stage utility ui : ∆ → R, from the implemented policy xt. I

assume players’ utilities depend only on their share of the dollar, and that payoffs are linear, so

that ui(x) = xi. Players discount the future with a common factor δ ∈ [0, 1), and their payoff in

the game is given by the discounted sum of stage payoffs.

2.1.2 Equilibrium

Strategies. In general, strategies are functions that map histories, that is, vectors that records

all proposals as well as all voting decisions that precede an action, to the space of proposals ∆

and voting decisions {yes; no}. In what follows, though, I restrict analysis to cases when players

condition their behavior only on a summary of the history of the game that accounts for payoff-

relevant effects of past behavior (Maskin and Tirole 2001). Specifically, define the state in period

t as the previous period’s decision xt−1, and denote the state by s ∈ S, so that we have s = xt−1

and S = ∆. I restrict attention to Markov strategies such that agents behave identically ex ante,

that is, prior to any mixing, in different periods with state s, even if that state arises from different
6I will relax this assumption in Section 4.1.
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histories.

In general, a mixed Markov proposal strategy for legislator i is a function µi : S → P(∆), where

P(∆) denotes the set of Borel probability measures over ∆. For the purposes of this analysis,

it is sufficient to assume that for every state s, µi has finite support. Thus, the notation µi[z|s]

represents the probability that legislator i makes the proposal z when recognized, conditional on

the state being s. A Markov voting strategy is an acceptance correspondence Ai : S → ∆, where

Ai(s) represents the allocations for which i votes yes when the state is s. Then, a Markov strategy

is a mapping σi : S → P(∆)× 2∆, where for each s, σi(s) = (µi[·|s], Ai(s)).

Continuation Values and Expected Utilities. In this dynamic game, the expected utility of

agent i from the allocation implemented in period t does not only depend on his stage utility, but

also on the discounted expected flow of future stage utilities, given a set of strategies. In order to

define properly the continuation value of each status quo, I will first introduce the concepts of the

win set and transition probabilities.

For a given set of voting strategies, define the win set of state s ∈ ∆, W (s), as the set of all

proposals that beat s by the voting rule described above. In this setting, W (s) is the collection

of all proposals x to which the veto player and at least one non-veto player vote yes. This differs

from a simple majority rule, where the win set would be the collection of all proposals x to which

at least two agents, irrespective of their identity, vote yes.

Then, for a triple of Markov strategies σ = (σv, σ1, σ2), we can write the transition probability

to decision x when the state is s, Q[x|s] as follows:

Q[x|s] ≡ IW (s)(x)
∑

i={v,1,2}

1
3µi[x|s] + I{s}(x)

∑
i={v,1,2,}

1
3

∑
y:µi[y|s]>0

I∆\W (s)(y)µi[y|s] (2.1)
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where IW (s)(x) is the indicator function that takes value of 1 when x is a proposal that beats the

status quo and 0 otherwise, I{s}(x) is the indicator function that takes value of 1 when x = s and

0 otherwise, and I∆\W (s)(y) is the indicator function that takes value of 1 when y is a proposal

that does not beat the status quo and 0 otherwise. The first part of (2.1) reflects the probability of

transition to allocations that are proposed by one of the three players and are approved, which is

the probability of transition Q[x|s] if x 6= s. The probability of staying in the same state, Q[x|s], is

given by the probability that x = s is proposed (the first term), plus the probability that a proposal

x 6= s is proposed and rejected by the floor (the second term).

Equipped with this notation, I now define the continuation value, vi(s), of legislator i when the

state is s:

vi(s) =
∑

x:Q[x|s]>0

[ui(x) + δvi(x)]Q[x|s] (2.2)

Using (2.2), we can finally write the expected utility of legislator i, Ui(s), as a function of the

allocation implemented in period t, xt:

Ui(xt) = xti + δvi(xt) (2.3)

Given that non-veto legislators are otherwise identical, I focus on Markov proposal and voting

strategies that are symmetric with respect to the two non-veto legislators. A Markov equilibrium

is symmetric if it has the following property: for any state s ∈ ∆, define s12 by switching s1 and

s2, that is s12 = [sv, s2, s1]. Then an equilibrium is symmetric if σ1(s) = σ2(s12) for any s ∈ ∆.
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Equilibrium Notion. We can finally define the equilibrium solution concept as a variant of

Markov perfect Nash equilibrium with a standard refinement on voting strategies:

Definition 2.1.1. A symmetric Markov perfect Nash equilibrium in stage-undominated voting

strategies (MPE) is a pair of Markov strategy profiles (symmetric for the two non-veto players),

σ∗ = {σ∗v , σ∗1 , σ∗2}, where σ∗v = (µv[·|s], A∗v(s)), and σ∗j = {(µj [·|s], A∗j (s))}2j=1, such that for all

i = v, 1, 2 and all s ∈ ∆:

y ∈ A∗i (s)⇐⇒ Ui(y) ≥ Ui(s) (2.4)

µ∗i [z|s] > 0⇒ z ∈ arg max{Ui(x)|x ∈W (s)} (2.5)

An equilibrium, as specified in (2.4), requires that legislators vote yes if and only if their expected

utility from the status quo is not larger than the expected utility from the proposal. Such stage

undominated voting strategies rule out uninteresting equilibria where voting decisions constitute

best responses solely due to the fact that legislators vote unanimously, and thus a single vote cannot

change the outcome. The fact that proposers optimize over all feasible proposals, that is over all

proposals that would be approved by a winning coalition composed of the veto player and at least

one other legislator, is ensured by (2.5).

2.2 Equilibrium Analysis

Proving existence of a symmetric MPE of this dynamic game, and characterizing it, constitutes a

challenging problem due to the cardinality of the state space. Thus, I propose natural conditions

on strategies, and show that these conditions define an equilibrium. The first condition is that

equilibrium proposals involve minimal winning coalitions (Riker 1962), such that at most one of
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the two non-veto players receives a positive fraction of the dollar in each period. Second, the

proposer proposes the acceptable allocation—that is, an allocation in the win set of the status quo,

x ∈ W (s)—that maximizes his current share of the dollar. Finally, I prove that these strategies,

and the associated continuation values, are part of a symmetric MPE that satisfies conditions (2.4)

and (2.5).

The remainder of this section describes the dynamics of this equilibrium and explores the mech-

anisms behind the results. To build intuition, I start from the case where legislators are impatient,

δ = 0, and only care about their current allocation, and then move to the general case with patient

legislators, δ ∈ (0, 1). In both cases, the equilibrium exhibits the two features mentioned above,

and legislators’ patience changes only the set of allocations they prefer to the status quo.

2.2.1 Impatient Legislators

When legislators are impatient, they value only current allocations. Then, the expected utility

agent i derives from an allocation xt ∈ ∆ is:

Ui(xt) = xti + δvi(xt) = xti

Therefore, regardless of the other agents’ proposal and voting strategies, it is optimal for legislator

i to accept any proposal that allocates to him at least as much as the status quo, and to reject

everything else.

Ai(s|δ = 0) = {x ∈ ∆|xi ≥ si}

Confronted with these acceptance sets, the proposer will propose the allocation that gives him the

highest share of the dollar among all those that are supported by the veto player, and at least one
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Figure 2.2: Non-veto players’ equilibrium proposal strategies for state s0 and δ = 0

non-veto player.

Figures 2(a) and 2(b) show the acceptance set of the veto player, and the optimal proposal

strategy of, respectively, non-veto player 1 and non-veto player 2, when the status quo policy is s0.

Each non-veto proposer simply makes the veto player indifferent between the status quo and his

proposal7 and assigns the remainder to himself, disenfranchising the other non-veto player, whose

no vote cannot stop passage.

On the other hand, when the veto player is the proposer, he needs to secure a yes vote from

one non-veto player to change the policy. He will, thus, build a coalition with the poorer non-veto

player—the non-veto player who receives the least in the status quo—giving him as much as he is

granted by the status quo. An impatient non-veto player will accept this proposal. This equilibrium

proposal strategy is depicted in the left-hand panel of Figure 3. When he is not the proposer, the

veto player will oppose any reduction to his allocation. Moreover, whenever he proposes, he will

be able to increase his share by exactly the amount held by the non-veto player who receives the
7The veto player’s indifference curve is defined by the diagonal with slope -1.
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Figure 2.3: Veto player’s equilibrium proposal strategy for state s0 and δ = 0

most in the status quo—the richer non-veto player. Given these simple strategies, the equilibrium

of the game with δ = 0 has two important features. First, the allocation to the veto player displays

a ratchet effect: it can only stay constant or increase. Second, the veto player is able to steer the

status quo policy to his ideal point in at most two proposals, as he can pass any x ∈ ∆ when the

poorer non-veto player has zero. Thus, as the veto player can oppose all subsequent changes, he

will get the whole dollar in all subsequent periods. The right-hand panel of Figure 3 depicts these

transitions when the initial status quo is s0 and the veto player is randomly assigned to be the

proposer in the first two periods.

2.2.2 Patient Legislators

In the more general case, where legislators care about future outcomes, similar results hold. In

particular, equilibrium proposals still involve minimal winning coalitions, and the proposer still

picks the acceptable allocation that maximizes his current share. However, the acceptance sets

of all legislators are now different, and the set of allocations each agent (weakly) prefers to the
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status quo policy changes with the discount factor, as legislators take into account the impact of

the current allocation on future rounds. Not surprisingly, this has important consequences for the

dynamics of the game. In the remainder of this section, I first analyze the case when the proposer

is the veto player, and then the case when the proposer is a non-veto player.

To help with the exposition, partition the space of possible divisions of the dollar into two

subsets, ∆, and ∆\∆. Define ∆ ⊂ ∆ as the set of states x ∈ ∆ in which at least one non-veto

legislator gets zero:

∆ = {x ∈ ∆ |xi = 0 for some i = {1, 2}}

Note that, if all proposals on the equilibrium path entail minimal winning coalitions, then ∆

is an absorbing set, and it is reached in at most one period from any initial status quo allocation.

Moreover, define the demand of legislator i as the minimum amount he requires to accept a proposal

x ∈ ∆.

Definition 2.2.1. For a symmetric MPE, non-veto legislator j’s demand when the state is s is the

minimum amount dj(s) ∈ [0, 1] such that for a proposal x ∈ ∆ with xj = dj(s), xv = 1 − dj(s),

we have Uj(x) ≥ Uj(s). Similarly, veto legislator v’s demand when the state is s is the minimum

amount dv(s) ∈ [0, 1] such that for a proposal x ∈ ∆ with xv = dv(s), xj = 1− dv(s), for j = 1, 2,

we have Uv(x) ≥ Uv(s).

Non-Veto Proposer When a non-veto player is proposing, he needs to secure the vote of the

veto player in order to change the current status quo. As a consequence, a proposal that results

in a minimal winning coalition assigns a positive share only to the proposer and, if necessary, to

the veto player. If the non-veto proposer wants to maximize his current share of the dollar, he

will propose the veto player’s demand to the veto player, and assign the remainder of the dollar



20

to himself. Therefore, to characterize the equilibrium proposal strategies of a non-veto player, we

need to identify the acceptance set of the veto player.

A patient veto player is not indifferent between all states in which he receives the same allocation,

and might be better off with allocations that reduce his current share when these decrease his future

coalition building costs. This occurs because the future status quo policy affects the future leverage

the veto player has when he is the proposer. In this event, he needs to secure the vote of just one

non-veto player, and he will, thus, build a coalition with the non-veto player who demands the

least, and extract the remainder. As shown below, the demand of each non-veto player is a positive

function of what he gets if the policy is unchanged and, therefore, a veto player’s coalition building

costs when the status quo is s are a positive function of min{s1, s2}.

Thus, a veto player prefers an allocation s′ where he gets s′v and min{s′1, s′2} = s′nv to an

alternative allocation s′′ with s′′v = s′v but min{s′′1 , s′′2} = s′′nv > s′nv. If the veto player is recognized

in the following period, he will be able to increase his share more in the state s′ than in s′′.

Figure 4 depicts the acceptance set of a patient veto player for two different values of δ > 0.

While an impatient veto player never supports an allocation that reduces his share, a patient one

is willing to move from an interior allocation where he gets a higher share, to an allocation towards

the edges of the simplex where both he and one non-veto player have a smaller share. In Appendix

A, I characterize the amount the veto player demands to accept a proposal that brings the status

quo into ∆—where one non-veto player gets nothing—as:

dv = max{sv − δ
3−2δ snv, 0} (2.6)

where snv is the allocation of the poorer non-veto player in the status quo. The reduction accepted

by the veto player increases with his discount factor δ and the share to the poorer non-veto player
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Figure 2.4: Veto’s acceptance set and non-veto’s proposal strategies for state s0: (a) Av(s0) when δ = δ1 > 0;
(b) Av(s0) δ = δ2 > δ1, (c) equilibrium proposal of non-veto 1 (blue arrow) and non-veto 2 (green arrow)

snv. An impatient veto player does not accept any new division of the dollar that gives him less

than the status quo. The same is true for a patient veto player when the status quo is in ∆ and,

thus, snv = 0. Note also that the reduction a veto player is willing to accept could be more than

what he has in the status quo, in which case his demand is bounded below by 0.

Having identified the acceptance set of the veto player, the non-veto proposer will thus propose

the point in the acceptance set of the veto player that maximizes the proposer’s stage utility. These

are depicted in the right-most panel of Figure 4. A non-veto proposer will completely expropriate

the other non-veto player, give the veto player his demand, and allocate the remainder to himself.

When the state is in ∆, the non-veto proposer can only get 1 − sv, but when the state is in ∆\∆

he can extract an higher amount, namely 1− dv.

Veto Proposer A similar analysis holds for the veto proposer. As mentioned above, when the

veto player desires to pass a proposal with a minimal winning coalition, he is not bound to include

any specific legislator. Thus, he selects the legislator who accepts the highest increase to the veto

player’s share—that is, the legislator with the lowest demand—as his coalition partner. With

impatient legislators, this is the poorer non-veto player, who accepts any allocation that assigns
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Figure 2.5: Non-veto 2’s acceptance sets for state s0 where s1 > s2: (a) A2(s0) when δ = 0, (b) A2(s0)
when δ = δ1 > 0; (c) A2(s0) δ = δ2 > δ1

him a share greater than or equal to his share in the status quo, regardless of the distribution of

the dollar among the other players. However, a patient non-veto player evaluates the impact of the

current proposal on his future bargaining power.

The bargaining power of a non-veto player decreases with the share held by the veto player in

the status quo, sv. A patient non-veto player values both what he has and the allocation to the veto

player, and prefers an allocation s′ ∈ ∆ where he gets s′j = 0 and the veto gets s′v to an alternative

allocation s′′ ∈ ∆ with s′′j = s′j but s′′v > s′v. The difference between these allocations arises when

he is recognized in t+ 1, as he will gain the support of the veto player only for proposals that give

him no more than 1 − sv. Figure 5 depicts the acceptance set of the poorer non-veto player for a

state s0 ∈ ∆ and three increasing values of the discount factor.

The veto player’s coalition partner now demands a premium to vote in favor of an allocation that

increases the veto player’s share. In other words, the veto player has to compensate his coalition

partner with a short term gain in stage utility for the long term loss in future bargaining power.
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Figure 2.6: Veto’s equilibrium proposal strategy for state s0 and δ > 0

Appendix A shows that the demand of the poorer non-veto player for states s ∈ ∆ is:

dnv = δ
3−2δ snv (2.7)

where snv is the allocation to the richer non-veto player in the status quo. Some properties of dnv

are worth noting. First, dnv is smaller than snv for any δ ∈ [0, 1). This means that, whenever

agents are not perfectly patient (δ = 1), the veto proposer can increase his share, as he can assign

himself 1 − dnv > sv = 1 − snv. Second, the premium paid by the veto player to his coalition

partner is monotonically increasing, and convex, in δ and linearly increasing in snv: dnv converges

to snv as δ converges to 1, and dnv converges to 0 as δ converges to 0. The fact that the premium

is always positive is crucial for the long term dynamics of the game. In particular, this implies that

the ratchet effect described above still functions, albeit at a slower rate such that the convergence

to the veto player’s ideal point happens asymptotically. Figure 6(b) shows how the state would

evolve when the veto player always proposes.



24

One additional equilibrium difference between patient and impatient legislators is that the veto

player mixes between coalition partners for some states in the interior of the simplex when the

allocations to the two non-veto players are close. This is necessary to guarantee that the proposer’s

choice of a partner is a best response to what they demand. If the veto player always picked the

poorer non-veto player as coalition partner, the poorer player would become the most expensive

coalition partner. To see why, note that the demand of a legislator depends both on the current

allocation and on the continuation value of the status quo policy. Under pure proposal strategies,

the richer non-veto player is sure to be excluded from any future coalition and, when his allocation

in the status quo is not much different than the allocation of the poorer non-veto player, this lower

continuation value makes him less demanding. In this case, it would not be optimal for the veto

player to always propose to the poorer non-veto player.8

2.2.3 Results

Proposition 1 provides a summary of the discussion above:

Proposition 1. For any δ ∈ [0, 1) and any initial division of the dollar, s0 ∈ ∆, there exists a

symmetric MPE that induces a Markov process over outcomes such that:

• For any state s ∈ ∆\∆ there is probability 1 of transition to ∆.

• ∆ is an absorbing set.

• All proposals give a positive allocation at most to a minimal winning coalition.

• For some s ∈ ∆\∆, the veto proposer mixes between possible coalition partners that have
8Mixed proposal strategies are a common feature of stationary subgame perfect equilibria in models of legislative

bargaining à la Baron and Ferejohn (1989), and in Markov perfect equilibria of dynamic legislative bargaining models,
for the same reason discussed above. See, for example, Banks and Duggan (2000, 2006), Kalandrakis (2004, 2009),
and the discussion in Duggan (2011).
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positive and nearly equal allocation under the status quo. For the remaining s ∈ ∆, the veto

proposer proposes dnv to the poorer non-veto player.

• For all s ∈ ∆, the non-veto proposers proposes dv to the veto player.

• For all s ∈ ∆, dv = sv and dnv ≥ snv.

Figure 7 explores the states for which mixing occurs in equilibrium. In regions C and D of

Figure 7 the veto player mixes between coalition partners. These regions evolve from left to right

as the discount factor grows. In regions B and C of Figure 7 the veto player is willing to accept

nothing. Note that mixing occurs when the non-veto players have nearly equal allocations and that

the set of status quo policies where mixing occurs grows with δ. This happens because the weight

players put in the probability of inclusion in future coalitions diminishes with δ. For δ = 0 coalition

building costs are solely determined by status quo allocations, and, thus, there are pure strategy

proposals. Regions B and C shrink as δ decreases as well: the lower the discount factor, the lower

the benefit the veto player receives from reducing future coalition building costs. For δ = 0, the

veto player never accepts anything less than what the status quo grants him, sv. For status quo

allocations in region A of Figure 7, the veto player always includes the poorer non-veto player in

his coalition and he always receives a positive allocation when he is not proposing.9

The crucial step in the proof of Proposition 1 is verifying the optimality of proposal strategies.

While Appendix A contains the details, here I sketch the key passages of the proof. Define the

demand of agent i as the amount that makes i indifferent between the status quo s and a new

division z ∈ ∆, as before. The proof then proceeds in three steps. First, I prove that, for each

agent i, i = v, 1, 2, Ui(x) is continuous and increasing in xi for all x ∈ ∆. This proves that—among
9In Appendix A, I give the exact statement of the equilibrium proposal and voting strategies for each region of

the simplex, and show that these strategies and the associated value functions constitute part of a symmetric MPE.
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Figure 2.7: Partition of ∆ into regions with different equilibrium strategies for allocations where s1 ≥ s2:
(a) δ=0; (b) δ = δ1 > 0; (c) δ = δ2 > δ1. In A and B veto proposer builds a mwc with non-veto 2; in C and
D veto proposer mixes between coalition partners; in B, and C veto gets 0 when he is not proposing

acceptable allocations in ∆— the proposer prefers the one that gives him the highest share of the

dollar. Second, I show that the demand of the poorer non-veto player is (weakly) smaller than

the demand of the richer non-veto player for any s ∈ ∆. This shows that the veto proposer never

has an incentive to propose only to the richer non-veto player. Third, I show that the sum of the

demands of the veto player and any non-veto player is less than or equal to one for any status quo

allocation in ∆. This means that there always exists an acceptable allocation in ∆ that guarantees

the proposer at least his demand or more. This, together with the monotonicity in the first step,

proves that no feasible allocation x ∈ ∆\∆ gives the proposer a higher Ui(x) than his preferred

allocation in ∆.

I can now state the main result of the paper:

Proposition 2. There exists a symmetric MPE in which, irrespective of the discount factor and

the initial division of the dollar, the status quo policy eventually gets arbitrarily close to the veto

player’s ideal point, that is, ∀ ε > 0, there exists T such that ∀ t ≥ T the veto player’s allocation

in the status quo is greater than or equal to 1− ε.
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Proof. The result derives from the features of the MPE characterized in the proof of Proposition

1. In this MPE, once we reach allocations in the absorbing set ∆, which happens after at most

one period, the veto player is able to increase his share whenever he has the power to propose, and

keeps a constant share when not proposing. For any ε and any starting allocation s0, there exists a

number of proposals by the veto player—which depends on δ—such that the veto player’s allocation

in the status quo will be at least 1− ε for all subsequent periods. Let this number of proposals be

n∗(ε, δ, s0). Since each player has a positive probability of proposing in each period, the probability

that in infinitely many periods the veto player proposes less than n∗(ε, δ, s0) is zero.

Proposition 3 addresses the speed of convergence to complete appropriation of the dollar by the

veto player.

Proposition 3. In the symmetric MPE characterized in the proof of Proposition 1, if legislators

are impatient, δ = 0, it takes at most two rounds of proposals by the veto player to converge to

the irreducible absorbing state where sv = 1. If legislators are patient, δ ∈ (0, 1), convergence to

this absorbing state does not happen in a finite number of bargaining periods, and the higher the

discount factor the slower the convergence.

Proof. This result follows directly from the equilibrium demand of the poorer non-veto player in

the absorbing set ∆, dnv(s, δ) = δ
3−2δ snv. When δ = 0, this demand is zero. This means that, when

the status quo is in ∆—a set that is reached in at most one period—the poorer non-veto supports

any proposal by the veto player. The veto player can thus pass his ideal outcome as soon s ∈ ∆

and he proposes. On the other hand, when δ ∈ (0, 1), this is not possible, and the poorer non-veto

player always demands a positive share of the dollar to support any allocation that makes the veto

player richer. The convergence in this case is only asymptotic as the non-veto player’s demand is

always positive as long as the allocation to the richer non-veto is positive, that is, as long as the
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poorer veto player does not have the whole dollar in the status quo.10

Finally, I prove that the equilibrium in Proposition 1 is well behaved, in the sense that proposal

strategies are weakly continuous in the status quo, s.

Proposition 4. The continuation value functions, Vi, and the expected utility functions, Ui,

induced by the equilibrium in Proposition 1 are continuous.

In Appendix A, I show that in equilibrium a small change in the status quo implies a small

change in proposal strategies and, by extension, to the equilibrium transition probabilities. An

immediate implication of the continuity of transition probabilities is the fact that continuation

functions and expected utility are continuous.

2.3 Robustness and Extensions

According to the main result, presented in the previous section, the veto player is eventually able to

steer the status quo policy arbitrarily close to his ideal point, and fully appropriate all the resources.

In this section, I explore three institutional measures that could, in principle, reduce the leverage

of the veto player and promote more equitable outcomes: reducing the recognition probability of

the veto player, expanding the committee by increasing the number of veto players, and randomly

re-assigning veto power in each period. While the first institutional arrangement decreases the

agenda setting power of the veto player, the other two introduce competition in the use of veto

power.
10Notice that when the initial division of the dollar—which is assumed to be exogenous—assigns the whole dollar

to the veto player, then the status quo will never be changed and the veto player gets the whole dollar in every
period.
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2.3.1 Heterogeneous Recognition Probabilities

The previous section assumed that the probabilities of being recognized as proposer are symmetric

and history invariant. However, veto players may be outsiders who have lesser ability to set the

agenda. For example, the U.S. President has no formal power to propose new legislation and, even

if he is able to influence the agenda through like-minded representatives in Congress, his proposal

power is lower than any individual member of Congress. In other settings, the veto player has a

privileged position to set the agenda, for example, committee chairs in the U.S. Congress. In this

section, I relax the assumption of symmetric recognition probabilities, and find that the veto player

is still able to eventually appropriate all resources, as long as his recognition probability is positive,

and that convergence to this outcome is slower the lower is this probability.

In particular, denote by pv the probability the veto player is recognized as the proposer in each

period, with pnv = 1−pv

2 being the probability a non-veto player is recognized. Proposition 5 shows

that there exists a MPE equilibrium of this dynamic game that has the same features as the one

characterized in the previous section: all proposals entail positive distribution to only a minimal

winning coalition and the status quo allocation converges to the ideal point of the veto player as

long as pv > 0.

Proposition 5. With different recognition probabilities of veto and non-veto players, there

exists a symmetric MPE in which, irrespective of the initial division of the dollar and the discount

factor, the status quo policy eventually gets arbitrarily close to the veto player’s ideal point, as long

as pv > 0. With the exception of at most the first period, the convergence to the absorbing state is

faster the higher is the proposal power of the veto player.

As in the case with even recognition probabilities, this result hinges on the fact that, once

an allocation is in the absorbing set ∆—the set of allocations where at least one non-veto gets
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zero—the veto player is able to increase his share whenever he proposes.

The proposal power of the veto player influences the speed of convergence to his ideal outcome

both directly and indirectly. The direct effect is given by the change in the frequency at which the

veto player can increase his allocation—which happens only when he proposes.

The indirect effect is given by the change in the amount the veto player can extract from the

non-veto players when he proposes. The probability of recognition of the veto player affects the

continuation value of the status quo policy for all legislators, and thus it affects how much they

demand to support a policy change. In particular, as pv increases, non-veto players are less likely to

be recognized at time t+ 1 and, thus, they are less concerned about their future coalition building

costs. This reduces the premium the poorer non-veto player demands from the veto player to

support an allocation that increases his share. The proof of Proposition 5 shows that, when ∆ is

reached, the demand of the poorer non-veto player is

dnv = δ(1− pv)
2− δ(1 + pv)

snv

where snv is the allocation to the richer non-veto player in the status quo. This demand is strictly

greater than snv = 0 as long as snv > 0, δ > 0, and pv < 1. Under these conditions, the poorer

non-veto player demands a premium, dnv ≥ snv = 0, from the veto player. This premium is

monotonically decreasing in pv. Thus, with a higher pv, the veto player is more likely to increase

his share in each period, and he can also extract more from the non-veto players when he is the

proposer.

When the initial allocation is in the interior of the simplex, and the proposer in the first period

is a non-veto player, pv has a second, indirect, effect on the demand of the veto player. The

continuation value of moving to an allocation in ∆ for the veto player increases with pv as he is
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more likely to be the proposer in t + 1 and enjoy the reduction in coalition building costs. This

increases his willingness to give up a fraction of his share in order to move into the absorbing set,

when a non-veto player is proposing in the initial period.

The proof of Proposition 5 shows that the demand of the veto player is:

dv = max{sv −
2pvδ

2− δ(1 + pv)
snv, 0}

where sv is the allocation of the veto player in the status quo, and snv is the allocation of the

poorer non-veto player in the status quo. This demand is monotonically decreasing in pv. That is,

the reduction the veto player is willing to accept to move the status quo from s ∈ ∆\∆ into ∆ is

increasing in his proposal power.

2.3.2 Multiple Veto Players

Next, I consider a committee with more than one veto player and show that the presence of multiple

veto players with opposing preferences does not prevent the complete expropriation of the resources

initially allocated to non-veto players. However, the presence of other legislators with veto power

reduces the amount a veto proposer can extract.

In particular, I study a setting with two veto players and two non-veto players where recognition

probabilities are identical and a proposal passes only if it is approved by the two veto players and at

least one non-veto player.11 Proposition 6 shows that this dynamic game has a symmetric MPE—

where symmetry applies to legislators of the same type, veto or non-veto—in which the two veto

players eventually extract all the surplus regardless of the initial allocation and the discount factor.
11Ideally, I would answer the question above studying a game with an arbitrary number of legislators n and veto

players k ≤ n. However, as the dimensionality of the state space increases analytical tractability is quickly lost.
Adding one veto player allows me to gain a valuable insight on the issue of multiple veto players but preserves the
analytical tractability of the model, even if the set of possible legislative outcomes passes from R2 to R3.
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Proposition 6. In the game with two veto players, there exists a symmetric MPE in which,

irrespective of the discount factor and the initial division of the dollar, the sum of the allocations

to the two veto players eventually gets arbitrarily close to one. In the absorbing state, the share to

each veto player is strictly larger than his starting share, unless s0 is an absorbing state.

As with only one veto player, the result hinges on the fact that a veto proposer can pass an allocation

that increases his allocation at the expenses of the richer non-veto player. However, there is an

important difference: the veto proposer now has to allocate to both the other veto player and the

poorer non-veto player more than what they receive in the status quo, that is, he has to pay both

of them a premium in order to increase his allocation.

The other legislators demand this premium because a higher current allocation to one veto

player increases his future demand and, thus, decreases the extent to which other legislators can

exploit the power to propose in t + 1, as with only one veto player. The proposing veto player,

who builds a minimal winning coalition with the other veto player and the poorer non-veto player,

has to share part of the amount he expropriates from the richer non-veto player with his coalition

partners, in order to offset this loss and gain their vote.12 Since each veto player will always be

part of a minimal winning coalition, both veto players enjoy a ratchet effect in their allocations,

regardless of the identity of the proposer along the equilibrium path.

In the proof of Proposition 6, I show that, once allocations are in ∆, the demand of the veto

player who is not proposing, denoted by dv, and the demand of the poorer non-veto player, denoted
12Even if I do not formally address the framework with heterogeneous probabilities of recognition, note that, by

the same logic explored in Section 4.1, this result would still hold if the two veto players had different probabilities
of recognition, as long as both probabilities were strictly positive.
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by dnv, are as follows:

dv = sv + 4δ(1− δ)
16− 16δ + 3δ2 snv

dnv = δ

4− 3δ snv

where snv is the allocation to the richer non-veto in the status quo. Some properties of these two

demands are worth noting. First, both the non-proposing veto player and the poorer non-veto player

asks for a premium, that is, dv > sv and dnv > snv = 0, as long as δ > 0 and snv > 0. Second,

out of the two veto players, the one that is proposing will get a greater share of the resources

expropriated from the richer non-veto player. Finally, as for the case with one veto player, the

premium demanded by coalition partners is increasing in legislators’ patience and in the fraction of

the dollar in the hands of non-veto players.

2.3.3 Rotating Veto Power

In the basic setting, as well as in the extensions already discussed, veto power is permanently

assigned to one or more legislators. This section considers an alternative institutional arrange-

ment where veto power is randomly assigned to a legislator in each period, in a similar—but

independent—way as proposal power. In this case, the policy converges in finite time to an absorb-

ing set where, in each period, either the proposer or the veto player get the entire dollar.

This setting is a significant departure from the basic setup, and the existence proof from Propo-

sition 1 does not hold. In this section, I establish a Markov equilibrium of the dynamic game

with random veto power, when the space of possible agreements is restricted to minimal-winning

coalitions, x ∈ ∆2, that is, the edges of the simplex, where at most two legislators have a positive
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share.13 The restriction to minimal winning coalitions simplifies considerably the analysis and it is

a sensible conjecture on the properties of equilibria of the unrestricted game, given existing results

for similar dynamic bargaining games.14

In Appendix A, I prove that a MPE of the restricted game with rotating veto power exists.15

This equilibrium is summarized by two properties. First, for every status quo, optimal proposals

coincide with the feasible allocations that maximize the proposer’s share of the surplus. Second,

players with zero in the status quo allocation are willing to accept proposals that also allocate

them zero, regardless of the identity of the proposer. This second feature is in line with the voting

strategies of impatient agents and, contrary to what happens in the setting with permanent veto

power, it is preserved when agents are patient. In an equilibrium with these features, the status quo

policy converges to an absorbing set where the proposer can allocate the whole dollar to himself,

unless he is the only legislator who gets nothing in the status quo, or unless the veto player is

another legislator with a positive share in the status quo.

Proposition 7. In the game with rotating veto power and feasible allocations s ∈ ∆2, there

exists a symmetric MPE in which, irrespective of the discount factor and the initial division of the

dollar, eventually either the proposer or the veto player extract the whole dollar in all periods.

This result is very intuitive, in light of the features discussed above. With the restriction to

minimal-winning coalitions, we have si = 0 for some i, possibly different across periods, in all

periods. Let ∆1 be the set of allocations where one legislator gets everything, that is, the vertices

of the simplex. Now, first consider allocations in which exactly two legislators have a positive share
13Note that ∆2 does not coincide with the partition ∆ defined in Section 3, as ∆ does not include those allocations

where the two non-veto players have a positive allocation and the veto player has zero.
14Note that this is is a restriction on the game, and not simply an equilibrium refinement. For dynamic games

where minimal winning coalitions arise in equilibrium, see, among others, Kalandrakis (2004, 2009), and Battaglini
and Coate (2007, 2008), apart from the results discussed in this paper.

15Note that, if minimal winning coalition proposals are optimal also in the unrestricted game where all s ∈ ∆ are
feasible, this MPE coincides with a MPE of the unrestricted game, at least for all periods t > 1.
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of the dollar, i.e. s ∈ ∆2\∆1. If, in equilibrium legislator i with si = 0 does not object to new

divisions of the dollar z with zi = 0, we have three possibilities:

1. if j 6= i is recognized in period t + 1 and the veto power is in the hands of either i or j, a

coalition of i and j vote for a proposal that allocates the whole dollar to j;

2. if j 6= i is recognized in period t+ 1 and the veto power is in the hands of the third legislator

l 6= j 6= i, the proposer cannot extract the whole dollar because l will object to it;

3. if i is the proposer, regardless of the identity of the veto player, he will propose the most

favorable allocation in ∆2, as he is not able to allocate the whole dollar to himself.16

Once we transition to an allocation in ∆1, where one legislator gets everything, the implemented

policy will always be in ∆1, and it will either be unchanged or move to another vertex of the simplex.

Call i the legislator with the whole dollar in s ∈ ∆1. If i has the proposal or veto power, which

happens with probability 5/9, the policy does not change. If i has neither power, then the proposer

can extract the whole dollar, and will do so. Convergence to the equilibrium absorbing set of

policy outcomes is fast, with a maximum expected time before absorption equal to one and a half

periods.17 This implies that—when legislators are patient—permanent veto power promotes less

extreme outcomes than rotating veto power. To see why remember that, with permanent veto

power, the convergence to the veto player’s ideal outcome happens in infinitely many periods,

and—along the equilibrium path—the veto has to share the resources with one non-veto player.18

Figure 8 represents the transition probabilities for allocations s in the absorbing set ∆1, and

in the complementary set of minimal winning coalition allocation. To understand the transition
16Note that, when the other two legislators have nearly equal allocations, legislator i with si = 0 mixes between

coalition partners. See the proof in Appendix A for details.
17Absorption is not deterministic as it depends on the identity of the proposer recognized in each period.
18Note that the equilibrium of the game with rotating veto power is similar to the equilibrium of the game without

veto power studied by Kalandrakis (2004): it has the same absorbing set—the vertices of the simplex—and similar
dynamics, the main difference being a greater status quo inertia with rotating veto power.
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Figure 2.8: Transition probabilities with temporary veto power: (a) s ∈ ∆1; (b) s ∈ ∆2\∆1

probabilities consider that, ex ante, each legislator has a 1/3 chance of being selected as the proposer

and independent 1/3 chance of being assigned the power to veto. This means that, ex ante, with

probability 1/9 an agent has both the power to veto and to propose, with probability 2/9 he has

the power to veto but not to propose, with probability 2/9 he has the power to propose but not to

veto, and, finally, with probability 4/9 he has neither power.

2.4 Discussion

This paper studies the distributive consequences of veto power in a legislative bargaining game with

an evolving status quo policy. As the importance of the right to block a decision crucially depends

on the status quo, a static analysis cannot draw general conclusions about the effect of veto power on

gridlock and policy capture by the veto player. Instead of making ad hoc assumptions on the status

quo policy, I study veto power by exploring the inherently dynamic process via which the location of
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the current status quo is determined. I prove that there exists a Markov Perfect Equilibrium of this

dynamic game such that the veto player is eventually able to extract all resources, irrespective of

the discount factor, the probability of proposing, and the initial allocation of resources. This result

shows that the right to veto is extremely powerful, especially if coupled with proposal power. This

is true even when other legislators are patient, and take into account the loss in future bargaining

power implied by making concessions to the veto player in the current period.

This paper is the first to derive theoretical predictions on the consequences of veto power in

a dynamic setting. While the results certainly add to our understanding of the incentives present

in real world legislatures, the setup is intentionally very simple and uses a number of specific

assumptions. In the remainder of this section, I discuss some directions for further research.

Extension to General Number of Legislators. I have limited the analysis to legislatures with

two non-veto players and, at most, two veto players. It would certainly be interesting to extend the

asymptotic result of full appropriation by the veto player(s) to legislatures with an arbitrary number

of veto and non-veto legislators. However, the existence proofs for the equilibria proposed in this

paper rely on constructing the equilibrium strategies, and the associated continuation values, for

any allocation of the dollar, s ∈ ∆. It is a very challenging task to extend this existence result and to

characterize a Markov equilibrium with a higher number of legislators, as the dimensionality of the

state space increases and tractability is quickly lost. Future research could explore the dynamics of

a larger legislature using numerical methods, a solution often adopted in the literature on dynamic

models with endogenous status quo (Baron and Herron 2003, Penn 2009, Battaglini and Palfrey

2012, Duggan, Kalandrakis, and Manjunath 2008).
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Extension to Concave Utilities. The equilibrium I characterize exhibits proposals where at

most the members of a minimal winning coalition get a positive share of the dollar. An open question

is whether there exist other Markovian equilibria of this game where universal coalitions prevail.

One possible avenue for future research is to relax the assumption that legislators’ utilities are linear

in stage payoffs. It would be interesting to assess whether the equilibrium with minimal winning

coalitions is robust to concavity in legislators’ utilities, and whether equilibria without minimal

winning coalitions may arise when stage payoffs are sufficiently concave. Indeed, Battaglini and

Palfrey (2012) have recently explored such equilibria in the context of simple majority without

a veto player. Using numerical methods, they find Markov equilibria in which players share the

surplus in all periods when stage preferences exhibit sufficient concavity.

Non-Markovian Equilibria. I have focused on Markov perfect equilibria where agents’ strate-

gies depend only on the status quo policy. However, this legislative game is an infinite horizon

dynamic game with many subgame perfect equilibria, and the Markovian assumption of stationary

strategies is very restrictive. As noted in the seminal paper of Baron and Ferejohn (1989), these

bargaining games usually have other subgame perfect equilibria that can sustain more equitable

outcomes through the use of history-dependent strategies, that is, punishment and rewards for past

actions. Bowen and Zahran (2009) explored this avenue without a veto player. They show the

existence of non-Markovian equilibria in which players share the surplus as long as the legislators

are neither too patient nor too impatient. Interestingly—and related to the previous point—this

alternative equilibrium does not survive when players are risk neutral. In Appendix A, I propose

strategy profiles for this dynamic game such that the initial allocation is an absorbing state and,

thus, there is no convergence to full appropriation by the veto player, as long as the discount factor

is high enough, and the two non-veto players receive enough at the beginning of the game.
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Extension to Different Policy Domains. This study analyzes a divide-the-dollar game where

legislators’ preferences are purely conflicting. This is a natural starting point to analyze the conse-

quences of veto power in a dynamic setting as it lays bare the incentives at work. However, there

are two important reasons to extend the policy space beyond the pure distributive case. First, many

applications, and policy domains, are better modeled with a spatial setting where legislators’ pref-

erences are partially aligned. Second, the pure distributive setting leaves little room to ask whether

giving a legislator the power to veto is desirable from the societal point of view as, with linear util-

ities, all outcomes are Pareto-efficient. The welfare consequences, and the normative implications

of introducing a veto player can be better analyzed in a setting with less conflicting preferences.

One interesting possibility for future research is to analyze the consequences of veto power in a

dynamic setting with a unidimensional policy space, and single peaked legislators’ preferences over

outcomes.19 An alternative way of exploring a setting with a lower degree of conflict could be to

study a different divide-the-dollar game where the dollar can also be allocated to a public good.

Empirical Tests of Theoretical Predictions. The theory provides sharp empirical implica-

tions: the ratchet effect for the allocation of the veto player, the monotonic convergence to his ideal

point, and the comparative statics on the discount factor, the recognition probabilities, the number

of veto players, and the nature of the veto right (permanent vs rotating). One important goal of

future research is to assess the empirical validity of these theoretical predictions, in particular with

the use of laboratory experiments, which have some important advantages over field data when

studying a highly structured dynamic environment such as the one in this paper (Battaglini and

Palfrey 2012, Battaglini, Nunnari, and Palfrey 2012b).

19A similar setting is studied by Baron (1996) in the context of simple majority without veto power.
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Chapter 3

The Free Rider Problem: A
Dynamic Analysis

Most free rider problems have a significant dynamic component. Public goods, for example, are

often durable: it takes time to accumulate them and they depreciate slowly, projecting their benefits

for many years. Similarly, environmental problems depend on variables that slowly evolve over time

like capital goods. In all these examples what matters for the agents in the economy is the stock of

the individual contributions accumulated over time. Although there is a large literature studying

free-rider problems in static environments, much less is known about dynamic environments. A

number of important questions still need to be fully answered. What determines the steady states

of these problems and their welfare properties? Is the free rider problem better or worse as the

number of agents increases? Can we achieve efficient steady states when agents are sufficiently

patient?

In this paper, we present a simple model of free riding to address these questions. In the model,

n infinitely lived agents allocate their income between private consumption and contributions to a

public good in every period. The public good is durable and depreciates at a rate d. We consider

two scenarios. First, we study economies with reversibility, in which in every period individual
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investments can either be positive or negative. Second, we study an economy where the investment

is irreversible, so individual investments are non-negative and the public good can only be reduced

by depreciation. Although there is a significant literature that has studied free riding in economies

with reversibility, in the case of irreversibility progress has been made only in specific environments

that do not fit the classical description of large free rider problems.1 To our knowledge this is the

first paper that provides a comparative analysis of Markov equilibria in these environments with

and without irreversibility.

We start the analysis by studying the set of equilibria in economies with reversibility. We

show that there is a continuum of equilibria, each characterized by a different stable steady state.

The set of equilibrium steady states has three notable features. First, it always includes in its

interior the level of the public good that would be reached in equilibrium by an agent alone in

autarky: the steady state in a community with n agents can be either larger or smaller than when

an agent is alone. Second, the upper- and lower-bounds of the set of equilibrium steady states are,

respectively, increasing and decreasing in n. This implies that as the number of agents increases, the

set of equilibrium steady states expands, and the free rider problem can either improve or worsen

with the rise of population. Finally, for any size of population n and any rate of depreciation, the

highest (and best) steady state converges to the efficient level as the discount factor converges to

one. When agents are sufficiently patient, therefore, the efficient steady state can be achieved with

simple Markovian strategies. This is perhaps remarkable since we have a non-cooperative dynamic

free riding game, with arbitrarily large numbers of players, and the Markov assumption rules out

reward or punishment strategies that are contingent on individual actions or complicated histories,

as required in folk-theorem constructions supporting cooperation in repeated games.

In an economy with irreversibility the set of equilibrium steady states is smaller, and contained
1A more detailed discussion of the literature is presented at the end of this section.
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in the set of equilibrium steady states with reversibility. We show that as the rate of depreciation

converges to zero, this set converges to a unique point corresponding to the highest equilibrium

steady state that can be supported with irreversibility. An immediate implication is that, as the

discount factor converges to one, all equilibrium steady states with irreversibility are approximately

efficient if the rate of depreciation is small.

The fact that reversibility affects so much the equilibrium set may appear surprising. In a

planner’s solution the irreversibility constraint is irrelevant: it affects neither the steady state (that

is unique), nor the convergence path.2 The reason why irreversibility is so important in a dynamic

free rider game is precisely the fact that investments are inefficiently low. The intuition is as

follows. In the equilibria with reversibility, an agent holds back his/her contribution for fear that

it will crowd out the contributions of other players, or even be appropriated by other agents in

future periods. With irreversibility, however, at some point the equilibrium investment function

with reversibility must fall so low that the irreversibility constraint is binding. Even if this happens

out of the equilibrium path, this affects the entire equilibrium investment function. In states just

below the point in which the constraint is binding, the agents know that the constraint will not

allow the other agents to reduce the public good when it passes the threshold. These incentives

induce higher investments and a higher value function, with a ripple effect on the entire investment

function. This effect induces the agents to cooperate more and results in a unique (high) stable

steady state when depreciation is sufficiently small.

From a purely methodological point of view, the paper develops a novel approach to characterize

the Markov equilibria that can have more general applicability in the study of stochastic games
2On the convergent path the stock of public good is never reduced: it keeps increasing until the steady state is

reached, and then it stops; the irreversibility constraint is, thus, never binding on the equilibrium path. This of
course is true if the initial state g0 is smaller than the steady state, an assumption that we will maintain throughout
this paper for simplicity of exposition.
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with discrete time. The idea is to construct Markov strategies that induce a weakly concave value

function: the flat regions in the value function allow additional freedom in choosing the players’

reaction functions and in sustaining the equilibrium. This approach is essential to prove existence

of a Markov equilibrium in the difficult case of an economy with irreversibility.

Our paper is related to three strands of literature. First, it is related to the literature on

Markov equilibria in differential public good games initiated by Fershtman and Nitzan (1991).3

This literature has been the first to propose a framework to study dynamic free rider problems. It

differs from our work in two respects. First, it focuses exclusively on the environment of linear

quadratic differential games in which preferences are described by specific quadratic functions and

strategies are assumed to be linear in the state variable.4 Second, and most importantly, it restricts

the analysis to the case of reversible investments. In our work we consider a standard game with

discrete time and general utility functions; we also do not limit the analysis to linear strategies: this,

as we will see, will be important to capture the full range of equilibrium phenomena. Finally, we

propose a framework that allows the comparison of economies with reversibility and irreversibility.

The second strand of literature to which our paper is related is the research on monotone

contribution games (Lockwood and Thomas 2002 and Matthews 2012).5 These papers assume

that players’ individual actions can only increase over time. They differ from our work in three

important ways. First, the class of games studied in these papers does not include our (standard)

free-rider game. Instead, the analysis is focused to environments in which the stage games have
3Other significant works in this literature are Dockner and Long (1993), Wirl (1996), Rubio and Casino (2002),

Itaya and Shimomura (2001), among others.
4Non-linear strategies are discussed in Dockner and Long (1993). Rubio and Casino (2002), however, highlight

complications of considering non-linear strategies that arise in this and other related models.
5A number of significant papers in the monotone games literature are less directly related. These papers require

additional assumptions that make their environments hard to compare to ours. Gale (2001) provides a general
framework of monotone games with no discounting, and applies it to a contribution game in which agents care
only about the limit contributions as t → ∞. Admati and Perry (1991), Compte and Jehiel (2004) and Matthews
and Marx (2000) consider environments in which the benefit of the contribution occurs at the end of the game if a
threshold is reached and in which players receive either partial or no benefit from interim contributions. The first
two of these papers, moreover, assume that players contribute sequentially, one at a time.
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a “prisoner dilemma structure.” Both papers assume that keeping the action constant (i.e.„, the

most uncooperative action) is a dominant strategy for all players, independently from the level of

the action or the level of other players’ actions. As shown by Matthews (2012), this assumption is

important for the characterization of the equilibria in these papers. In our free-rider environment

agents may find it optimal (and indeed do find it optimal) to make a contribution even if the other

players choose their minimal contributions.6 Second, in our model the stock of the public good can

either increase or decrease over time. This is obviously true when the investment is reversible, but

it is also true with irreversibility because of depreciation. In the literature on monotone games,

instead, players’ individual contributions (and therefore the aggregate contributions as well) can

only increase over time.7 Third, these papers focus on subgame perfect equilibria supported by

trigger strategies, while we focus on Markov equilibria. In environments in which many players

interact anonymously as in many natural free rider problems, Markov equilibria seem an important

benchmark to understand equilibrium behavior. As we mentioned above, our paper is the first

work to study and compare Markov equilibria with and without reversibility.

The final strand of literature is the more recent research on dynamic political economy. This

literature studies the Markov equilibria of dynamic accumulation games similar to the game studied

here, but with different collective decision processes: free riding with the possibility of writing

incomplete contracts (Harstad 2012), noncooperative bargaining (Battaglini and Coate 2007 and

Battaglini, Nunnari, and Palfrey 2012b), political agency models (Besley and Persson 2011 and

Besley, Ilzetzki and Persson 2011). All of these papers restrict their analysis to environments with

reversibility. We are confident that insights developed in our paper on irreversible economies can

help understanding public investments even in these alternative models of public decision making
6As standard in public good games, we assume the individual benefit for a marginal contribution converges to

infinity as the stock of g converges to zero.
7Indeed, the game we study is not in the class of monotone games.



45

in future research.

3.1 The Model

Consider an economy with n agents. There are two goods: a private good x and a public good

g. The level of consumption of the private good by agent i in period t is xit, the level of the

public good in period t is gt. An allocation is an infinite nonnegative sequence z = (x∞, g∞) where

x∞ = (x1
1, ..., x

n
1 , ..., x

1
t , ..., x

n
t , ...) and g∞ = (g1, ..., gt, ...). We refer to zt = (xt, gt) as the allocation

in period t. The utility U j of agent j is a function of zj = (xj∞, g∞), where xj∞ = (xj1, ..., x
j
t , ...).

We assume that U j can be written as:

U j(zj) =
∞∑
t=1

δt−1
[
xjt + u(gt)

]
,

where u(·) is continuously twice differentiable, strictly increasing, and strictly concave on [0,∞),

with limg→0+ u′(g) =∞ and limg→+∞ u′(g) = 0. The future is discounted at a rate δ.

There is a linear technology by which the private good can be used to produce public good, with

a marginal rate of transformation p = 1. The private consumption good is nondurable, the public

good is durable, and the stock of the public good depreciates at a rate d ∈ [0, 1] between periods.

Thus, if the level of public good at time t − 1 is gt−1 and the total investment in the public good

is It, then the level of public good at time t will be

gt = (1− d)gt−1 + It.

We consider two alternative economic environments. In a Reversible Investment Economy (RIE)
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the public policy in period t is required to satisfy three feasibility conditions:

xjt ≥ 0 ∀j, ∀t

gt ≥ 0 ∀t (3.1)

It +
n∑
j=1

xjt ≤ W ∀t

where W is the aggregate per period level of resources in the economy. The first two conditions

guarantee that allocations are nonnegative. The third condition is simply the economy’s resource

constraint. In an Irreversible Investment Economy (IIE), the second condition is substituted with:

gt ≥ (1− d)gt−1 ∀t (3.2)

The RIE corresponds to a situation in which It can be negative. The constraint that the state

variable gt is non negative in a RIE is natural when gt is physical capital and it will maintained

throughout the analysis. It should however be noted that it is not relevant for the results.

It is convenient to distinguish the state variable at t, gt−1, from the policy choice gt and to

reformulate the budget condition. If we denote yt = (1 − d)gt−1 + It as the new level of public

good after investing It in the current period when the last period’s level of the public good is gt−1,

then the public policy in period t can be represented by a vector (yt, x1
t , ..., x

n
t ). Substituting yt,

the budget balance constraint It +
n∑
j=1

xjt ≤W can be rewritten as:

n∑
j=1

xjt + [yt − (1− d)gt−1] ≤W,

With this notation, we must have xt ≥ 0, yt ≥ 0 in a RIE, and xt ≥ 0, yt ≥ (1− d)gt−1 in a IIE.
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The initial stock of public good is g0 ≥ 0, exogenously given. Public policies are chosen as in the

classic free rider problem, modeled by a voluntary contribution game. In period t, each agent j is

endowed with wjt = W/n units of private good. We assume that each agent has full property rights

over a share of the endowment (W/n) and in each period chooses on its own how to allocate its

endowment between an individual contribution to the stock of public good (which is shared by all

agents) and private consumption, taking as given the strategies of the other agents. The individual

contribution by agent j at time t is denoted ijt . In a RIE, the level of individual contribution can

be negative, with the constraint that ijt ∈ [−(1− d)gt/n,W/n] ∀j, where ijt = W/n − xjt is the

contribution by agent j.8 In a IIE, an agent’s contribution must satisfy ∈ [0,W/n] ∀j. The total

economy-wide increase in the stock of the public good in any period is then given by the sum of

the agents’ individual contributions.

The state variable can have alternative interpretations.

Example 1 (Public capital). It is natural to assume that g is physical public capital. In this case

it may seem natural to assume that the environment is irreversible. Once a bridge is constructed,

it can not be decomposed and transformed back to consumption. Similarly, a painting donated to

a public museum can not typically be withdrawn. The choice of the model to adopt (reversible or

irreversible) should depend on the nature of the public good. If the public good is easily divisible

and can be easily appropriated (as, for example, wood and other valuable resources from a forest)

an agent may choose to appropriate part of the accumulated level. When withdrawals are possible

(both because allowed, or because they can not be prevented), then the model may be described as
8This constraint guarantees that the sum of reductions in g is never larger than the total stock of public good.

The analysis is similar if we allow each player to withdraw up to (1−d)g since no player finds it optimal to reduce g to
zero: the marginal utility of g at zero is infinity. In this case, however, we have to assume a rationing rule in case the
individuals withdraw more than (1−d)g. A simple rationing rule generating identical results is the following. At the
beginning of each period player i can claim any amount ωit ≤ (1−d)gt−1 from the pool: if

∑
ωit ≤ (1−d)gt−1, then

i receives his demand ωit; if
∑

ωit > (1− d)gt−1, then the public good is rationed pro quota, ωit = (1− d) ωi
t∑
ω

j
t

gt−1.

The player can then consume xit with xit ≤W/n+ ωit and leave the rest of W/n+ ωit in the public good.
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RIE. The ability of the community to prevent agents from “privatizing” (or stealing) the stock of

public good is a technological variable that may vary case to case.

Example 2 (Pollution). Suppose the state g is the level of global warming with the convention

that the larger is g, the worse is global warming. The utility of an agent now is u(x, g) = x− c(g),

where c(·) is increasing, convex and differentiable. It is natural to assume that an agent can

either increase or decrease global warming by choosing a “dirty” or a “clean” technology. This

environment can be modeled as before if we assume that an increase in the “greenness” of the

technology costs, at the margin, a dollar’s worth of current consumption. Given this, we have,

as before: gt = (1 − d)gt−1 −
∑
j i
j
t , where now ijt stands for the individual contribution to green

technology (and it can be positive or negative). In this context it is, therefore, natural to assume

the economy is reversible.

Example 3 (“Social Capital” or “Fiscal Capacity”) A number of recent works have high-

lighted the importance of a variety of forms of intangible, or semi-tangible community assets, like

social capital (Putnam 2000) or fiscal capacity (Besley and Persson 2011). For the case of social

capital, it may seem natural to assume that agents take actions that can be either positive or

negative for capital accumulation. Moreover, because social capital is an intangible asset, we may

assume it takes values in g ∈ (−∞,+∞). It follows that the accumulation of social capital can

probably be modeled as a reversible investment economy as described in Example 1 (where it is

assumed that there is a minimum level of capital, zero) or as in Example 2 (where capital is in

the real line). The case of fiscal capacity is similar, and indeed Besley and Persson (2011) assume

it is reversible. There may be however cases in which even this type of social investment is not

reversible, or it is partially reversible. This is probably the case when fiscal capital is embodied in

institutions that can not be easily undone. In these cases, an irreversible investment economy can
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be a more appropriate model.

To study the properties of the dynamic free rider problem described above, we study symmetric

Markov perfect equilibria, where all agents use the same strategy, and these strategies are time-

independent functions of the state, g. A strategy is a pair (x(·), i(·)): where x(g) is an agent’s level

of consumption and i(g) is an agent’s contribution to the stock of public good in state g. Given

these strategies, by symmetry, the stock of public good in state g is y(g) = (1−d)g+ni(g). For the

remainder of the paper we refer to y(g) as the investment function. Associated with any Markov

perfect equilibrium of the game is a value function, v(g), which specifies the expected discounted

future payoff to an agent when the state is g. An equilibrium is continuous if the investment

function, y(g), and the value function, v(g), are both continuous in g. In the remaining of the

paper we will focus on continuous equilibria. In the following we refer to equilibria with the

properties described above simply as equilibria.

The focus on Markov equilibria seems particularly appropriate for this class of dynamic games.

Free rider problems are often intended to represent situations in which a large number of agents

autonomously and independently contribute to a public good (Olson 1965, Chapter 1.B). In a

large economy, it is natural to focus on an equilibrium that is anonymous and independent from

the action of any single agent. The Markov perfect equilibrium respects this property, by making

strategies contingent only on the payoff relevant economic state. For these reasons, this equilibrium

is standard in the applied literature on dynamic public accumulation games.

3.2 The Planner’s Problem

As a benchmark with which to compare the equilibrium allocations, we first analyze the sequence

of public policies that would be chosen by a benevolent planner who maximizes the sum of utilities
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of the agents. This is the welfare optimum because the private good enters linearly in each agent’s

utility function. The planner’s solution is extremely simple in the environment described in the

previous section: this feature will help highlighting the subtlety of the strategic interaction studied

in the next two sections.

Consider first an economy with reversible investment. The planner’s problem has a recursive

representation in which g is the state variable, and vP (g), the planner’s value function can be

represented recursively as:

vP (g) = max
y,x


∑n
j=1 x

i + nu(y) + δvP (y)

s.t
∑n
j=1 x

i + y − (1− d)g ≤W, xi ≥ 0 ∀i, y ≥ 0

 (3.3)

By standard methods (see Stokey, Lucas, and Prescott 1989), we can show that a continuous,

strictly concave and differentiable vP (g) that satisfies (3.3) exists and is unique. The optimal

policies have an intuitive characterization. When the accumulated level of public good is low,

the marginal benefit of increasing y is high, and the planner finds it optimal to spend as much as

possible on building the stock of public good: in this region of the state space yP (g) = W +(1−d)g

and
∑n
j=1 x

i = 0. When g is high, the planner will be able to reach the level of public good

y∗P (δ, d, n) that solves the planner’s unconstrained problem: i.e.„

nu′(y∗P (δ, d, n)) + δv′P (y∗P (δ, d, n)) = 1. (3.4)

Applying the envelope theorem, we can show that at the interior solution y∗P (δ, d, n) we have
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Figure 3.1: The planner’s problem

v′P (y∗P (δ, d, n)) = 1− d. From (3.4), we therefore conclude that:

y∗P (δ, d, n) = [u′]−1
(

1− δ(1− d)
n

)
(3.5)

The investment function, therefore, has the following simple structure. When g is lower than

y∗P (δ,d,n)−W
1−d , y∗P (δ, d, n) is not feasible: the planner spends W on the public good so yP (g) =

(1 − d)g + W . When g is larger or equal than y∗P (δ,d,n)−W
1−d , instead, the planner does not in-

vest beyond yP (g) = y∗P (δ, d, n). In this case, without loss of generality, we can set xi(g) =

(W + (1− d)g − y(g)) /n ∀i.9 Summarizing, we have:

yP (g) = min {W + (1− d)g, y∗P (δ, d, n)} . (3.6)
9Indeed, the planner is indifferent regarding the distribution of private consumption.
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This investment function implies that the planner’s economy converges to one of two possible steady

states (see Figure 1). If W/d ≤ y∗P (δ, d, n), then the rate of depreciation is so high that the planner

cannot reach y∗P (δ, d, n), (except temporarily if the initial state is sufficiently large). In this case

the steady state is yoP = W/d, and the planner invests all resources in all states on the equilibrium

path (Figure 1, Case 1). If W/d > y∗P (δ, d, n), y∗P (δ, d, n) is sustainable as a steady state. In

this case, in the steady state yoP = y∗P (δ, d, n), and the (per agent) level of private consumption is

positive: x∗ = (W + (1− d)g − y) /n > 0 (Figure 1, Case 2).

An economy in which the planner’s optimum can be feasibly sustained as a steady state is the

most interesting case. With this in mind we define:

Definition 1. An economy is said to be regular if W/d > y∗P (δ, d, n).

In the rest of the analysis we focus on regular economies.10 This is done only for simplicity:

extending the results presented below for economies with W/d ≤ y∗P (δ, d, n) can be done using the

same techniques developed in this paper.

The planner’s optimum for the IIE case is not very much different. The planner finds it optimal

to invest all resources for g ≤ y∗P (δ,d,n)−W
1−d . For g ∈

(
y∗P (δ,d,n)−W

1−d ,
y∗P (δ,d,n)

1−d

)
, the planner finds it

optimal to stop investing at y∗P (δ, d, n), as before. For g ≥ y∗P (δ,d,n)
1−d , y∗P (δ, d, n) is not feasible, so

it is optimal to invest 0, and to set yP (g) = (1 − d)g. This difference in the investment function

for IIE, however, is essentially irrelevant for the optimal path and the steady state of the economy.

Starting from any g0 lower than the steady state y∗P , levels of g larger or equal than y∗P (δ,d,n)
1−d are

impossible to reach, and the irreversibility constraint does not affect the optimal investment path.

We conclude this section noting that, both with reversibility and with irreversibility, the plan-

ner’s solution has a very simple structure: the planner finds it optimal to invest as much as possible
10The limit case of d = 0 is also included as a regular economy.
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in every period until the steady state is reached, and then stop. This has two implications: first,

gradualism in investment is never optimal for the planner; second, the irreversibility constraint is

irrelevant. As we will see, neither of these two features holds in the free-rider games we study in the

next two sections: gradualism is indeed a typical feature of the equilibrium investment function,

both with and without irreversibility; and the irreversibility constraint plays an important role in

determining the set of equilibrium steady states.

3.3 Reversible Investment Economies

3.3.1 The Equilibrium

We first study equilibrium behavior when the investment in the public good is reversible. Differently

from the planner’s case, in equilibrium no agent can directly choose the stock of public good y:

an agent (say j) chooses only his own level of private consumption x and the level of its own

contribution to the stock of public good. The agent realizes that in any period, given g and the

other agents’ level of private consumption, his/her contribution ultimately determines y. It is

therefore as if agent j chooses x and y, subject to three feasibility constraints. The first constraint

is a resource constraint that specifies the level of the public good:

y = W + (1− d)g − [x+ (n− 1)xR(g)]

This constraint requires that stock of public good y equals total resources, W + (1− d)g, minus the

sum of private consumptions, x+ (n− 1)xR(g). The function xR(g) is the equilibrium per capita

level; naturally, the agent takes the equilibrium level of the other players, (n − 1)xR(g), as given.

The second constraint requires that private consumption x is non negative. The third requires
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total consumption nx to be no larger than total resources (1− d)g + W . Agent j’s problem can

therefore be written as:

max
y,x



x+ u(y) + δvR(y)

s.t x+ y − (1− d)g = W − (n− 1)xR(g)

W − (n− 1)xR(g) + (1− d)g − y ≥ 0

x ≤ (1− d)g/n+W/n


(3.7)

where vR(g) is his equilibrium value function.

In a symmetric equilibrium, all agents consume the same fraction of resources, so agent j can

assume that in state g the other agents each consume:

xR(g) = W + (1− d)g − yR(g)
n

,

where yR(g) is the equilibrium investment function. Substituting the first constraint of (4.2) in

the objective function, recognizing that agent j takes the strategies of the other agents as given,

and ignoring irrelevant constants, the agent’s problem can be written as:

max
y


u(y)− y + δvR(y)

y ≤ W+(1−d)g
n + n−1

n yR(g), y ≥ n−1
n yR(g)

 (3.8)

where it should be noted that agent j takes yR(g) as given.11 The objective function shows that

an agent has a clear trade off: a dollar in contribution produces an individual marginal benefit

u′(y) + δv′R(y); the marginal cost of the contribution is −1, a dollar less in private consumption.12

11Since yR(g) is the equilibrium investment function, in a symmetric equilibrium (n − 1)yR(g)/n is the level of
investment that agent j expects from all the other agents, and that he/she takes as given in equilibrium.

12For simplicity of exposition we assume here that vR (g) is differentiable. We refer to the proofs in Appendix B
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The two constraints define the maximal and minimal feasible level of public good given the other

players’ investments.

A symmetric Markov equilibrium is therefore fully described in this environment by two func-

tions: an aggregate investment function yR(g), and an associated value function vR(g). Two

conditions must be satisfied. First, for all values of g ≥ 0, yR(g) must solve (4.3) given vR(g). The

second condition for an equilibrium requires that the value function vR(g) to be consistent with

the agents’ strategies, and hence consistent with the equilibrium investment function, yR(g). Each

agent receives the same benefit for the expected investment in the public good, and consumes the

same share of the remaining resources, (W + (1− d)g − yR(g)) /n. This implies:

vR(g) = W + (1− d)g − yR(g)
n

+ u (yR(g)) + δvR(yR(g)) (3.9)

We can therefore define:

Definition 2. An equilibrium in a Reversible Investment Economy is a pair of functions, yR(·) and

vR(·), such that for all g ≥ 0, yR(g) solves (4.3) given the value function vR(·); and for all g ≥ 0,

vR(g) solves (3.9) given yR(·).

For a given value function, if an equilibrium exists, the problem faced by an agent looks similar

to the problem of the planner, but with two important differences. First, in the objective function

the agent does not internalize the effect of the public good on the other agents. This is the classic

free rider problem, present in static models as well: it induces a suboptimal investment in g. The

second difference with respect to the planner’s problem is that the agent takes the contributions

of the other agents as given. The incentives to invest depend on the agent’s expectations about

the other agents’ current and future contributions, which are captured implicitly by the investment
for the details.
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function yR(g). This radically changes the nature of the equilibria. Thus an agent may be willing to

invest more or less today, depending on the exact shape of the investment function, which depends

on how other agents plan to invest in the future at different levels of g. The relevant question is:

Does this make the static free rider problem worse or better in a dynamic environment?

3.3.2 Characterization

To characterize the properties of equilibrium behavior, we first study a particular class of equilibria,

the class of weakly concave equilibria. An equilibrium is said to be weakly concave if v(y; g) is weakly

concave on y for any state g, where v(y; g) is the expected value of investing up to a level of public

good, y:

v(y |g ) = W + (1− d)g − y
n

+ u(y) + δv(y)

We show that this class of equilibria is nonempty and characterize its key properties. We then prove

that there is no loss of generality in focusing on this particular class in order to study the set of

equilibrium steady states. We therefore use the class of weakly concave equilibria as a tool to gain

insight on the more general equilibrium properties of the game.

In a weakly concave equilibrium, the agent’s problem (4.3) is a standard concave programming

problem similar to (3.3). Because the objective function may have a flat region, however, the

investment function typically takes a more general form than the planner’s solution (3.6). Figure

2 represents a typical equilibrium. The equilibrium investment function will generally take the

following form:

yR(g) =


min

{
W + (1− d)g, y

(
g2)} g < g2

y (g) g ∈
[
g2, g3]

y
(
g3) g > g3

(3.10)
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Figure 3.2: The equilibrium in an economy with reversibility
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where g2, g3 are two critical levels of g, and y(g) is a non decreasing function with values in

[g,W + (1− d)g]. To see why yR(g) may take the form of (3.10), consider Figure 2. The top panel

of the figure illustrates a canonical equilibrium investment function. The steady state is labeled yoR

in the figure, the point at which the (bold) investment function intersects the (dotted) diagonal.

The bottom panel of the figure graphs the corresponding objective function, u(y) − y + δvR(y).

For g < g2, the objective function of (4.3) is strictly increasing in y: either resources are sufficient

to reach the level that maximizes the unconstrained objective function and so y(g) ∈
[
g2, g3] (in

Figure 2, y(g) = y
(
g2) in g1 ≤ g ≤ g2); or it is optimal to invest all resources (in Figure 2,

y(g) = W + (1− d)g in g ≤ g1).13 For g > g3, the objective function is decreasing: the investment

level is so high that the agents do not wish to increase g over y(g3). For intermediate levels of

g ∈
[
g2, g3], an interior level of investment y ∈

(
g2, g3) is chosen. This is possible because the

objective function is flat in this region: an agent is indifferent between any y ∈
[
g2, g3]. The key

observation here is that since the objective function has a flat region, the agents find it optimal to

choose an increasing investment function in
[
g2, g3]: a weakly concave objective function, therefore,

gives us more freedom in choosing the equilibrium investment function and even a higher level of

investment.

The open questions are whether the flat region in Figure 2 is a general equilibrium phenomenon

or just an intellectual curiosity, and what degrees of freedom we have in choosing investment

functions that are consistent with an equilibrium. For an investment curve as in Figure ?? to

be an equilibrium, agents must be indifferent between investing and consuming for all states in[
g2, g3]. If this condition does not hold, the agents do not find it optimal to choose an interior
13In Figure 2 it is assumed that we have W + (1− d)g > g2 for for g ≥ g1, so the agent can afford to choose a level

of y that maximizes the objective function (i.e.„ y ∈
[
g2, g3

]
) if and only if g ≥ g1.
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level y(g). The marginal utility of investments is zero if and only if:

u′(g) + δv′(g)− 1 = 0 ∀g ∈
[
g2, g3] (3.11)

Since the expected value function is (3.9), we have:

v′(g) = 1− d− y′(g)
n

+ u′(y(g))y′(g) + δv′(y(g))y′(g) (3.12)

Substituting this formula in (3.11), we see that the investment function y(g) must solve the following

differential equation:

1− u′(g)
δ

= 1− d− y′(g)
n

+ u′(y(g))y′(g) + δv′(y(g))y′(g) (3.13)

This condition is useful only if we eliminate the last (endogenous) term: δv′(y(g))y′(g). To see

why this is possible, note that y(g) is in
[
g2, g3] for any g ∈

(
g2, g3) in the example of Figure 2. In

this case, (3.11) implies δv′(y(g)) = 1 − u′(y(g)). Substituting this condition in (3.13) we obtain

the following necessary condition:

y′(g) =
1− d− n(1−u′(g))

δ

1− n (3.14)

Condition (4.6) shows that there is a unique way to specify the shape of the investment function

that is consistent with a “flat” objective function in equilibrium. This necessary condition, how-

ever, leaves considerable freedom to construct multiple equilibria: (4.6) defines a simple differential

equation with a solution y(g) unique up to a constant. To have a steady state at yoR we need

a second condition: y(yoR) = yoR. This equality provides the initial condition for (4.6), and so
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uniquely defines y(g|yoR) in
[
g2, g3] (see the dashed curve in Figure 2).

Proposition 1, presented below, shows that the degrees of freedom allowed by (4.6) are sufficient

to characterize all the stable steady states we can have in equilibrium, weakly concave or not. A

steady state yoR is said to be stable if there is a neighborhood Nε(yoR) of yoR such that for any

Nε′(yoR) ⊆ Nε(yoR), g ∈ Nε′(yoR) implies yR(g) ∈ Nε′(yoR). Intuitively, starting in a neighborhood of

a stable steady state, g remains in a neighborhood of a stable steady state for all following periods.14

Define the two thresholds:

y∗R(δ, d, n) = [u′]−1 (1− δ(1− d)/n) , and y∗∗R (δ, d, n) = [u′]−1 (1− δ (1− d/n)) (3.15)

We say that an equilibrium steady state yoR is supported by a concave equilibrium if there is a

concave equilibrium yR(g), vR(g) such that yR(yoR) = yoR. An equilibrium is monotonic if the

investment function, y(g), is non decreasing in g. The following Proposition shows that the set of

equilibrium steady states of monotonic equilibria can be easily characterized in closed form. The

details about the equilibrium strategies are in Appendix B.

Proposition 1. A public good level yoR is a stable steady state of a monotonic equilibrium in a

RIE if and only if yoR ∈ [y∗R(δ, d, n), y∗∗R (δ, d, n)]. Each yoR in this set is supported by a concave

equilibrium with investment function as illustrated in Figure 2.

We may obtain an intuitive explanation of why the steady state must be in [y∗R(δ, d, n), y∗∗R (δ, d, n)]

by making three observations. First, an equilibrium steady state must be in the interior of the

feasibility region, that is yoR ∈ (0,W/d):15 intuitively, yoR > 0, since at 0 the marginal utility of the
14An alternative stability concept that has been used in the literature is achievability (Matthews 2012). A steady

state is achievable if it is the limit of an equilibrium path. Our concept of stability is weaker: this allows us to
have a stronger characterization of the equilibrium set in our environment. It is easy to see that if an equilibrium
is not stable, then it is not reachable in a monotonic Markov equilibrium. On the other hand, all steady states
characterized in Proposition 1 are achievable (as in the equilibrium illustrated by Figure 2).

15The feasibility set is given by y ≥ 0 and y ≤ W + (1 − d)g, so a steady state must satisfy yoR ≥ 0 and
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public good is infinite; and yoR < W/d since even in the planner’s solution we have this property.

Second, in a stable steady state we must have y′R(yoR) ∈ (0, 1).16 The highest and the lowest

steady states, moreover, correspond to the equilibria with the highest and, respectively, the lowest

y′R(g): so y′R(y∗∗R (δ, d, n)) = 1 and, respectively , y′(y∗R(δ, d, n)) = 0. Third, since the solution is

interior and the agents can choose the investment they like in a neighborhood of yoR, yR(g) can have

positive slope at yoR only if the agents’s objective function is flat in the neighborhood (otherwise the

agents would choose the same optimum point irrespective of g). By the argument presented above,

this implies (4.6). Using (4.6) and y′R(yoR) ≤ 1, we obtain the upper bound, y∗∗R (δ, d, n); similarly,

using (4.6) and y′R(yoR) ≥ 0, we obtain the lower bound, y∗R(δ, d, n). Proposition 1 formalizes this

argument, and it uses the construction described above to prove that yoR ∈ [y∗R(δ, d, n), y∗∗R (δ, d, n)]

is sufficient as well as necessary for yoR to be a stable steady state.

In the working paper version of the paper (Battaglini, Nunnari and Palfrey 2012a) we show that

non-monotonic equilibria always exist in reversible economies. When we consider non-monotonic

equilibria the maximal steady state remains the same as in Proposition 1, the minimal however

can be lower than y∗R(δ, d, n).17 The consideration of non-monotonic equilibria, however, is not

particularly relevant for the comparison of irreversible versus reversible economies since except

when depreciation is high, all the steady states that can be achieved in irreversible economies can

be achieved with monotonic equilibria as well. To keep the presentation focused in this paper, the

analysis of non-monotonic equilibria is left in the working paper version (Battaglini, Nunnari and

Palfrey 2012a).

yoR ≤W + (1− d)yoR. The second inequality implies yoR ≤W/d.
16Here we are assuming that yR(g) is differentiable for the sake of the argument. Details are provided in Appendix

B.
17In Battaglini. Nunnari, and Palfrey (2012a) we show that the lowest possible steady state with non monotonic

strategies is [u′]−1 (1 + δ (n+ d− 2) /n) < y∗R(δ, d, n).
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3.3.3 Efficiency

Proposition 1 shows that, as in the static model, an equilibrium allocation is always inefficient, even

in the best equilibrium: y∗P (δ, d, n) > y∗∗R (δ, d, n) for any n > 1 and δ < 1. Let y(δ, d) be the steady

state that would be achieved by an agent alone in autarky: y∗P (δ, d, 1) = [u′]−1 (1− δ(1− d)). We

can make three observation regarding the magnitude of the inefficiency.

Corollary 1. In a RIE we have:

• For any n > 1 we have y(δ, d) ∈ (y∗R(δ, d, n), y∗∗R (δ, d, n));

• The highest equilibrium steady state increases in n; the smallest steady state decreases in n.

As n→∞, y∗R(δ, d, n)→ [u′]−1 (1) and y∗∗R (δ, d, n)→ [u′]−1 (1− δ) ;

• For any n and d, |y∗∗R (δ, d, n)− y∗P (δ, d, n)| → 0 as δ → 1.

The first point in Corollary 1 shows that the accumulated level of g in a community with

n players may be either higher or lower than the level that an agent alone in autarky would

accumulate. This is in contrast to the static case (when δ = 0), where the level of accumulation is

independent of n. The second point shows that, in terms of the steady state level of g, the common

pool problem may become better or worse as the size of the community increases. The multiplicity

of equilibria, moreover, is not an artifact of the assumption of a finite population. Finally, the last

point highlights the fact that the best equilibrium steady state converges to the efficient level as

δ → 1. What is remarkable in this result is the fact that the efficient steady state can be achieved

with an extremely simple equilibrium (Markov) in which agents focus exclusively on the state g.

To interpret Proposition 1 it is useful to start from the special case in which δ = 0 and so

the free rider problem is static. In this case there is a unique equilibrium “steady state” at
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yoR = [u′]−1 (1), independent of n. In addition, the agents’ actions are pure strategic substitutes.

If agent j is forced to invest 1/n + ∆, then all the other agents find it optimal to reduce their

investment exactly by ∆/(n − 1). Previous research on dynamic public good games has stressed

this aspect of the games. Fershtman and Nitzan (1991), in particular, show an equilibrium in which

the substitutability effect is so strong that the steady state is even lower than the equilibrium of a

static game. In general, however, the strategic interaction in dynamic games is much richer. In the

working paper version of this work, we formally prove that all the equilibria in Proposition 1 with

steady state lower than y(δ, d) the players’ contributions are strategic substitutes. Indeed, in these

equilibria the steady state is lower that the steady state the players would achieve in autarky. But

in the equilibria with steady states larger than y(δ, d) the players’ contributions must be strategic

complements on the equilibrium path. Strategic complementarity is necessary in these equilibria

because an agent is willing to keep investing until yoR > y(δ, d) only if he expects the other agents

to react to his investment by increasing their own investments. This complementarity allows the

agents to mitigate the free rider problem and partially “internalize” the public good externality.

In these equilibria, the agents accumulate more than what would be reached by an agent in perfect

autarky. As Corollary 1 proves, this complementarity effect may be extremely powerful, allowing

to achieve an efficient steady as δ → 1 with simple Markov strategies.

3.4 Irreversible Economies

We now turn to irreversible investment economies. When the agents cannot directly reduce the

stock of the public good, the optimization problem of an agent can be written like (4.2), but with

an additional constraint: the individual level of investment cannot be negative; the only way to

reduce the stock of g, is to wait for the work of depreciation. Following similar steps as before, we
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can write the maximization problem faced by an agent as:

max
y


u(y)− y + δvIR(y)

y ≤ W+(1−d)g
n + n−1

n yIR(g), y ≥ (1−d)g
n + n−1

n yIR(g)

 (3.16)

where the only difference with respect to (4.3) is the second constraint. To interpret it, note that

it can be written as y ≥ (1− d)g+ n−1
n [yIR(g)− (1− d)g]: the new level of public good cannot be

lower than (1− d)g plus the investments from all the other agents (in a symmetric equilibrium, an

individual investment is [yIR(g)− (1− d)g] /n).

As in the reversible case, a continuous symmetric Markov equilibrium is fully described in this

environment by two functions: an aggregate investment function yIR(g), and an associated value

function vIR(g). The aggregate investment function yIR(g) must solve (4.5) given vIR(g). The

value function vIR(g) must be consistent with the agents’ strategies. Similarly, as in the reversible

case, we must have:

vIR(g) = W + (1− d)g − yIR(g)
n

+ u (yIR(g)) + δvIR(yIR(g)) (3.17)

We can therefore define:

Definition 3. An equilibrium in a Irreversible Investment Economy is a pair of functions, yIR(·)

and vIR(·), such that for all g ≥ 0, yIR(g) solves (4.5) given the value function vIR(·), and for all

g ≥ 0, vIR(g) solves (3.17) given yIR(g).

As pointed out in Section 3, when public investments are efficient, irreversibility is irrelevant

for the equilibrium allocation. The investment path chosen by the planner is unaffected because

the planner’s choice is time consistent: he never finds it optimal to increase g if he plans to reduce
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Figure 3.3: The irreversibility constraint and the reversible equilibrium

it later. In the monotone equilibria characterized in the previous section, the investment function

may be inefficient, but it is weakly increasing in the state. Agents invest until they reach a steady

state, and then they stop. It may seem intuitive, therefore, that irreversibility is irrelevant in this

case too. In this section we show that, to the contrary, irreversibility changes the equilibrium set:

it induces the agents to significantly increase their investment and it leads to significantly higher

steady states when depreciation is small.

To illustrate the impact of irreversibility on equilibrium behavior, suppose for simplicity that d =

0 and consider Figure 3, where the red dashed line represents some arbitrary monotone equilibrium

with steady state yo in the model with reversibility. Next, suppose we ignore the irreversibility

constraint where it is not binding, so we keep the same investment function for g ≤ yo where

yR(g) ≥ g and then set the investment function equal to g when yR(g) < g. This gives us the

modified investment function ỹR(g), represented by the green solid line. This investment function
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Figure 3.4: The irreversible equilibrium as d→ 0

induces essentially the same allocation: the same steady state yo and the same convergent path for

any initial g0 ≤ yo. Unfortunately, ỹR(g) is no longer an equilibrium. On the left of yo the objective

function, u(y)− y + δvIR(y), is flat. On the right of yo, the objective function would remain flat

if the investment were the red dashed line as with reversibility; with irreversibility, however, the

constraint y ≥ g forces the investment to increase at a faster rate than yR(g). Because yR(g) is ex

ante suboptimal, the “forced” increase in investment makes the objective function increase on the

right of yo. But then choosing yo would no longer be optimal in state yo, so it cannot be a steady

state.18

18This problem does not arise with the planner’s solution because the planner’s solution is time consistent. After
the planner’s steady state y∗P is reached the planner would keep g at y∗P . If the planner’s is forced to increase y on
the right of y∗P , we would have a kink at y∗P , but it would be a “downward” kink. Such a kink makes the objective
function fall at a faster rate on the right of the steady state, so it preserves concavity and it does not disturb the
optimal solution. The kink is “upward” in the equilibrium with irreversibility because the steady state is not optimal,
so the irreversibility constraint, y ≥ g, increases expected welfare. This creates a sort of “commitment device” for
the future; the agents know that g can not be reduced by the others (or their future selves).
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Does an equilibrium exist? What does it look like? Let ŷ(g) be the unique solution of (4.6)

that is tangent to the line y = (1− d)g (see Figure 4 for an example). As it can be easily verified

from (4.6), the point at which ŷ(g) is tangent to y = (1− d)g is y(δ, d).19 Define yoIR(δ, d, n) as the

fixed point of this function:20

ŷ(yoIR(δ, d, n)) = yoIR(δ, d, n). (3.18)

The following Proposition states the existence result. In Appendix B we provide a detailed de-

scription of the equilibrium strategies.

Proposition 2. In any IIE there is a monotonic equilibrium with an investment function as il-

lustrated in Figure 4 and steady state yoIR(δ, d, n) as defined in (3.18). This equilibrium is weakly

concave.

Proposition 4 establishes that the dynamic free rider game with irreversibility admits an equilib-

rium with standard concavity properties. Figure 4 shows the investment function associated with

the equilibrium. In equilibrium the investment function merges smoothly with the irreversibility

constraint: at the point of the merger (i.e.„ y(δ, d), where the constraint becomes binding), the

investment function has slope 1 − d. This feature is essential to avoid the problems discussed

above.

Proposition 4 does not establish that the there is a unique equilibrium steady state. The

following result establishes bounds for the set of stable steady states in a IIE and shows that when

depreciation is not too high all stable steady states must be close precisely to yoIR(δ, d, n):

Proposition 3. There is lower bound y∗IR(δ, d, n) ≥ y∗R(δ, d, n) such that yIR is a stable steady state

of a monotonic equilibrium only if yIR ∈ [y∗IR(δ, d, n), y∗∗R (δ, d, n)]. Moreover, as d→ 0 y∗IR(δ, d, n),
19Formally, ŷ(g) is the solution of (4.6) with the initial condition ŷ(y(δ, d)) = (1− d)y(δ, d).
20Note that yoIR(δ, d, n) is a function of δ, d and n since ŷ(g) depends on these variables.
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y∗∗R (δ, d, n) and yoIR(δ, d, n) all converge to [u′]−1 (1− δ).

There is an intuitive explanation for Proposition 5. Because of decreasing returns, the in-

vestment in g declines over time, so the constraint y ≥ (1 − d)g must be binding when g is high

enough. When this happens the agents are forced to keep the investment higher than what they

would like. Since the equilibrium is inefficiently low (because the agents do not fully internalize

the social benefit of g), the constraint y ≥ (1− d)g increases expected welfare in these states. The

states where the constraint y ≥ (1− d)g is binding are typically out of equilibrium (that is on the

right of the steady state): in the equilibrium illustrated in Figure 4, for example, the constraint is

binding for g > yoIR(δ, d, n). The irreversibility constraint, however, has a ripple effect on the entire

investment function. In a left neighborhood of y(δ, d), the constraint is not binding; still, the agents

expect that the other agents will preserve their investment, so the strategic substitutability will not

be too strong. Steady states lower than yoIR(δ, d) can occur with reversibility because the agents

expect high levels of “strategic substitutability.” Proposition 5 shows that when d is sufficiently

low, the irreversibility constraint makes these expectations impossible in equilibrium, inducing an

equilibrium steady state close to the maximal steady state of the reversible case, y∗∗R (δ, d, n). Thus,

as d→ 0, there is a unique equilibrium steady state in the irreversible case, i.e.„, yoIR = y∗∗R (δ, d, n).

An immediate implication of Propositions 4 and 5 is the following result:

Corollary 2. As δ → 1 the highest stable steady state in a IIE converges to the efficient level. As

δ → 1 and d→ 0, every stable steady state in a IIE converges to the efficient level.

Results proving the efficiency of the best steady state in monotone games as δ → 1 have been

previously presented in the literature by Lockwood and Thomas (2002) and more recently by

Matthews (2012). We have already explained in Section 1.1. that these results do not apply to

our environment because they rely on assumptions that are not verified in our environment. We
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emphasize here three additional novel aspects of Corollary 2. First, the result shows that the

community can achieve efficiency using a very simple equilibrium (Markov) that requires minimal

coordination among the players (in previous results the efficient steady states are supported by

subgame perfect equilibria where behavior depends on the entire history of the game). Second,

we do not need d = 0 to have the result: when d is small, all equilibria must be approximately

efficient. Finally, here irreversibility is not necessary for efficiency, the same equilibrium exists in

a RIE: irreversibility only guarantees its uniqueness as d→ 0.

Propositions 1 and 2 show that both with reversibility and with irreversibility the agents’ con-

tributions are gradual and aggregate investment is inefficiently slow: indeed, as it can immediately

be seen from the equilibria represented in Figures 2 and 5, the steady state is typically reached only

in the limit.21 This is a purely strategic phenomenon since, as we have discussed in Section 3, a

planner never finds gradualism in investment optimal. Previous to our work, a number of authors

have highlighted how gradualism is a necessary feature of contribution games with irreversibility

and no depreciation (see, in particular, Lockwood and Thomas 2002 and Matthews 2012). We

are, however, not aware of previous results that have shown that gradualism is a feature of Markov

equilibria in irreversible economies with depreciation, or in economies with reversibility.

3.5 Conclusions

In this paper we have studied a simple model of free riding in which n infinitely lived agents choose

between private consumption and contributions to a durable public good. We have considered

two possible cases: economies with reversible investments, in which in every period individual

investments can either be positive or negative; and economies with irreversible investments, in which
21As it can be formally proven, of the equilibria constructed in Proposition 1, the steady state is reached in finite

time on in the equilibrium correspondent to the minimal steady state, y∗R(δ, d, n).
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the public good can only be reduced by depreciation. For both cases we have characterized the set

of steady states that can be supported by symmetric Markov equilibria in continuous strategies.

We have highlighted three main results. First, we have shown that economies with reversible

investments have typically a continuum of equilibria. In the best equilibrium the steady state

is higher in a community with n agents than in autarky, and it is increasing in n; in the worst

equilibrium, the steady state is lower in autarky, and it decreases in n. While in a static free

rider’s problem the players’ contributions are strategic substitutes, in a dynamic model they may

be strategic complements. Second, we have shown that in economies with irreversible investments,

the set of equilibrium steady states is much smaller: indeed, as depreciation converges to zero, the

set of equilibrium steady states converges to the best equilibrium that can be reached in economies

with reversible investments. Irreversibility, therefore, helps the agents removing the coordination

problem that plagues most of the equilibria in the reversible case, and so it necessarily induces higher

investment. Third, as agents become increasingly patient, the best steady state in both economies

with reversibility and irreversibility converges to the efficient level. As patience increases and

depreciation decreases, all equilibrium steady states in an irreversible economy converge to the

efficient level.

Although in this paper we have focused on a free rider problem in which agents act independently

and there is no institution to coordinate their actions, the approach we have developed to charac-

terize the Markov equilibria has a wider applicability and can be used to study dynamic games in

other environments as well. In future work, it would be interesting to investigate economies with

irreversible investments when public decisions are taken by legislative bargaining or other types of

centralized political processes.
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Chapter 4

The Dynamic Free Rider Problem:
An Experimental Study

Most public goods are durable, and hence dynamic in nature. It takes time to accumulate them,

and they depreciate slowly, projecting their benefits for many years. Prominent examples are public

infrastructure, environmental protection, and social capital. Although a large literature has studied

public good provision in static models both theoretically and empirically, much less is known about

dynamic environments and a number of important questions remain still unanswered.

First of all: How serious is free riding in the provision of durable public goods? Laboratory

experiments have shown that theoretical predictions tend to overestimate the seriousness of free

riding in static environments.1 In dynamic environments, we have both the familiar free rider

problem present in static public good provision, and a new dynamic free rider phenomenon that

further erodes incentives for efficient provision: an increase in current investment by one agent

triggers a reduction in future investment by all agents. On the other hand, these free rider problems

will be severe only if agents coordinate on stationary equilibria where strategies depend only on the
1See Ledyard (1995) for a survey. The failure of theoretical predictions seems more serious in cases where the

equilibrium level of investment is zero. In experiments where the equilibrium level of investment is positive, the
results are mixed, and sometimes very close to equilibrium or even underprovision. See, for example, Palfrey and
Prisbrey (1996, 1997), Palfrey and Rosenthal (1991), Holt and Laury (2008).
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accumulated level of the public good. The infinite horizon public good game we study has a plethora

of nonstationary equilibria that provide strategic opportunities to endogenously support cooperative

outcomes using carrot-and-stick strategies. In principle, this could completely overcome both the

static and the dynamic free rider problems. Thus, it is an open empirical question whether or not

the free rider problem is exacerbated or ameliorated in the case of dynamic provision of durable

public goods, as opposed to one-shot public goods problems.

While a handful of studies have recently provided some data on sequential mechanisms for one-

shot provision of a discrete public good (Dorsey 1992; Duffy, Ochs, and Vesterlund 2007; Choi, Gale

and Kariv 2008; Diev and Hichri 2008; Noussair and Soo 2008; Cho, Gale, Kariv, and Palfrey 2011),

or static public goods experiments motivated by intertemporal public good allocations (notably

common pool resource problems2), to date there have been no laboratory studies of free riding in a

truly dynamic environment such as the one presented here, where a durable public good provides

a stream of benefits over time and players have opportunities to gradually build the stock. One

of the central contributions of this paper is to break out of this static laboratory paradigm for

studying free riding and public good provision, and provide some initial empirical findings about

dynamic voluntary contribution behavior with durable public goods. To our knowledge, this is the

first experimental study of the dynamic accumulation process of a durable public good.

A second set of questions centers around some new issues that arise in the case of durable public

good provision that are not present in static or one-shot public good allocation problems. These

questions relate to how the free rider problem depends on the production technology of the durable

public good. Again, here little work has been done except for static environments, partly because

the variations on the production technology are rather limited (for example, continuously increasing

production levels vs. thresholds). In dynamic environments, where the public good is durable, at
2See Ostrom (1999) for a survey.



73

least three new additional dimensions of technology play an important role. We call these three

dimensions time-to-build, depreciation, and reversibility.

Time-to-build reflects the obvious fact that public infrastructure projects cannot be feasibly

developed overnight, but take years of investment to achieve full potential. Rome was not built in

a day, nor was the U.S. railroad or highway system or the great underground urban transportation

systems of the world. Depreciation is an important and realistic dimension because most public

goods are not perfectly durable. Bridges, roads, and aircraft carriers require maintenance and repair.

Decisions to invest today in a durable public good must take into account a willingness to invest in

maintenance in the future. The greater the stock of the public good that exists today, the higher

the maintenance costs in the future. Reversibility of public investment is an especially complex

dimension, and reflects the extent to which today’s investments in the public good can be converted

back to private consumption at a future date. Most investments are partially reversible, and the

degree (or cost) of reversibility varies widely. For example, the art collection at the Louvre, which

took centuries to accumulate, could be sold off to private collectors and the proceeds distributed as

transfer payments to the citizens of France. Cobblestone roads have been dug up and the stones

used to build private dwellings. Military vehicles and aircraft can be privatized and converted to

civilian use. Publicly owned open space, even with conservation easements, are routinely converted

to the private development of shopping malls and new residential communities.

These three dimensions of the dynamic production technology do not only determine the extent

to which the long run policy will reflect the welfare of the citizens, but also affect the timing of

investment and the extent to which current decisions internalize benefits that will accrue in future

period. In a word, they affect how “shortsighted” is the dynamic investment in the durable public

good.
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Battaglini, Nunnari, and Palfrey (2012a) develop a theoretical approach to explore these ques-

tions. The time-to-build dimension is captured by two variables: the per-period endowment, which

determines the maximum rate of investment in the durable public good, and the discount factor,

which measures the cost associated with investment lags. Depreciation is captured by the deprecia-

tion rate which specifies how fast the stock of the public good deteriorates over time. Reversibility

is addressed by comparing two extreme cases: the case of full reversibility, in which any or all of

the stock of the public good can be converted to private consumption instantaneously; and the

irreversible case, in which none of the public good can ever be converted into private consumption.

In this work, we make a first attempt to answer the questions raised above empirically, by testing

the results from this model in a laboratory experiment. Experimental analysis is particularly

important when studying a highly structured dynamic environment that cannot be easily replaced

by field data; this is because strategic behavior can be observed only if there is a precise measurement

of the state variable and the actions space available to the players.

The economy we study has n individuals. In each period, each individual is endowed with w

units of input that can be allocated between personal consumption and investment in the public

good. Utility is linear in consumption of the private good and concave in the accumulated stock of

the durable public good. To keep the experiment simple, there is no depreciation, so at time t the

stock of the public good is simply the sum of individual investments across all periods up to time

t. Total payoffs for a player in the game is the discounted sum of utility over an infinite horizon

of the game, where the discount factor is δ. We characterize the efficient accumulation path as a

function of w, n, and δ.3

We solve for the unique symmetric concave Markov perfect equilibrium of the game under
3Battaglini, Nunnari, and Palfrey (2012a) also characterize the efficient path and the equilibrium accumulation

paths for arbitrary depreciation rates, d ∈ [0, 1].
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two different assumptions about reversibility: full reversibility and irreversibility. We prove that

investment is always higher in the irreversible case, and this theoretical property of our model is

the basis for the main theoretical treatment in our experiment: reversibility vs. irreversibility.

We also have a secondary treatment dimension, which is the number of individuals in the game:

we compare n = 3 and n = 5. Thus, the experiment has four different treatments depending on

n and whether investments are reversible. The Markov equilibrium of our model provides clear

qualitative predictions about the difference in investment across the four treatments. In addition to

the comparative static predictions of the model, the equilibrium generates quantitative predictions

about the steady state levels of public good that can be supported, and also how the dynamics of

investment evolves across time and as a function of the current stock of the public good.

In the experiments, the comparative static predictions for the treatments are supported by the

data: our main finding is that irreversible investment leads to significantly higher public good

production than reversible investment. We do, however, observe some differences between the finer

details of the theoretical predictions and the data, mainly with respect to the path of convergence

to the steady state. In equilibrium, convergence should be monotonic. That is, the stock of public

good should gradually increase over time until the steady state is reached after which investment is

zero. Instead, there is a tendency for initial overinvestment in the early periods, compared to the

equilibrium investment levels. In the treatment with reversibility, this is followed by a significant

reversal, i.e., negative investment, with the stock of public good gradually declining in the direction

of the equilibrium steady state. After several periods of play, the stock of the public good is

very close to the Markov equilibrium of the game. When disinvestment is not feasible, investment

steadily decreases but the initial overinvestment cannot be corrected and the long run level of the

public good remains above the equilibrium steady state.
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Finally, we construct a novel test for the Markovian restriction, designing a one-period exper-

iment where subjects payoffs form the public good are given by the equilibrium value function of

the unique concave Markov perfect equilibrium of the game with reversible investment. In this

reduced-form version of the game, the incentives to invest in the public good are the same as in

the fully dynamic game (under the assumption that subjects condition their strategies only on the

public good stock), but there is no possibility to sustain a higher public good outcome through the

nonstationary strategies that can arise in a repeated game. We observe no systematic difference

in investment levels between this dynamic (yet not repeated) reduced form game and the fully dy-

namic game. We conclude that observed behavior in the dynamic treatments is well approximated

by the predictions of a purely forward looking Markov equilibrium, rather than by an equilibrium

in which agents look back at the past to punish uncooperative behavior (or reciprocate cooperative

behavior) by other members of the group.

4.1 The Model

Here we describe a simplified version of the model in Battaglini, Nunnari, and Palfrey (2012a),

which we will use in our experimental design. Consider an economy with n agents. There are two

goods: a private good x and a public good g. The level of consumption of the private good by

agent i in period t is xit, the level of the public good in period t is gt. We refer to zt = (xt, gt)

as the allocation in period t. The utility U j of agent j is a function of zj = (xj∞, g∞), where

xj∞ = (xj1, ..., x
j
t , ...), and and g∞ = (g1, ..., gt, ...). We assume that the future is discounted at a
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rate δ and that U j can be written as:

U j(zj) =
∞∑
t=1

δt−1
[
xjt + 2√gt

]

There is a linear technology by which the private good can be used to produce public good,

with a marginal rate of transformation p = 1. The private consumption good is nondurable, the

public good is durable and does not depreciate between periods. Thus, if the level of public good

at time t− 1 is gt−1 and the total investment in the public good is It, then the level of public good

at time t will be

gt = gt−1 + It.

It is convenient to distinguish the state variable at t, gt−1, from the policy choice gt. In the

remainder, we denote yt = gt−1 + It as the new level of public good after an investment It when the

last period’s level of the public good is gt−1. The initial stock of public good is g0 ≥ 0, exogenously

given. Public policies are chosen as in the classic free rider problem. In each period, each agent j is

endowed with w = W/n units of private good and chooses on its own how to allocate its endowment

between an individual investment in the public good (which is shared by all agents) and private

consumption, taking as given the strategies of the other agents. The key difference with respect to

the static free rider problem is that the public good can be accumulated over time. The level of the

state variable g, therefore, creates a dynamic linkage across policy making periods.

We consider two alternative economic environments. In a Reversible Investment Economy

(RIE), the level of individual investment can be negative, with the constraint that ijt ∈ [−gt/n,W/n]

∀j, where ijt = W/n − xjt is the investment by agent j.4 In an Irreversible Investment Economy
4This constraint guarantees that (out of equilibrium) the sum of reductions in g can not be larger than the stock

of g. The analysis would be similar if we allow each agent to withdraw up to g. In this case, however, we would
have to assume a rationing rule in case the individuals withdraw more than g.
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(IIE), an agent’s investment cannot be negative and must satisfy ijt ∈ [0,W/n] ∀j.

The RIE corresponds to a situation in which the public investment can be scaled back in

the future at no cost. An example can be an art collection, land for common use, the level of

global warming, or less tangible investments like “social capital”. The IIE corresponds to situations

in which once the investment is done it cannot be undone. This seems the appropriate case

for investments in public infrastructure (say a bridge or a road). In this environment, private

consumption cannot be negative and the total economy-wide investment in the public good in any

period is given by the sum of the agent investments.

4.1.1 The Planner’s Solution

As a benchmark with which to compare the equilibrium allocations, we first analyze the sequence

of public policies that would be chosen by a benevolent planner who maximizes the sum of utilities

of the agents. This is the welfare optimum because the private good enters linearly in each agent’s

utility function.

Denote the planner’s policy as yP (g) and consider first an economy with reversible investment.

As shown by Battaglini, Nunnari, and Palfrey (2012a), the objective function of the planner’s is

continuous, strictly concave and differentiable and a solution of its maximization problem exists

and is unique. The optimal policies have an intuitive characterization. When the accumulated

level of public good is low, the marginal benefit of investing in g is high, and the planner finds it

optimal to invest as much as possible: in this case yP (g) = W + g and
∑n
j=1 x

i = 0. When g

is high, the planner will be able to reach the level of public good y∗P (n) that solves the planner’s

unconstrained problem:

y∗P (n) =
(

n

1− δ

)2
(4.1)
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The investment function, therefore, has the following simple structure. For g < y∗P (n)−W , y∗P (n)

is not feasible: the planner invests everything and yP (g) = g + W . For g ≥ y∗P (n) −W , instead,

investment stops at yP (g) = y∗P (n). This investment function implies that the planner’s economy

converges to the steady state yoP = y∗P (n). In this steady state, without loss of generality, we can

set xi(g) = (W + g − y(g)) /n ∀i.5

The planner’s optimum for the IIE case is not very much different. The planner finds it optimal

to invest all resources for g ≤ y∗P (n)−W . For g ∈ (y∗P (n)−W, y∗P (n)), the planner finds it optimal

to stop investing at y∗P (n), as before. For g ≥ y∗P (n), y∗P (n) is not feasible, so it is optimal to invest

0, and to set yP (g) = g This difference in the investment function for IIE, however, is essentially

irrelevant for the optimal path and the steady state of the economy. Starting from any g0 lower

than the steady state y∗P , levels of g larger or equal than y∗P (n) are impossible to reach, and the

irreversibility constraint does not affect the optimal investment path.

4.1.2 Reversible Investment Economies

We first study equilibrium behavior when the investment in the public good is reversible. We focus

on continuous, symmetric Markov-perfect equilibria, where all agents use the same strategy, and

these strategies are time-independent functions of the state, g. A strategy is a pair (x(·), i(·)): where

x(g) is an agent’s level of consumption and i(g) is an agent’s level of investment in the public good

in state g. Associated with any equilibrium is a value function vR(g) which specifies the expected

discounted future payoff to a legislator when the state is g. The optimization problem for agent

j if the current level of public good is g, the agent’s value function is vR(g), and other agents’
5Indeed, the planner is indifferent regarding the distribution of private consumption.
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investment strategies are given by xR(g), can be represented as:

max
y,x



x+ 2√g + δvR(y)

s.t x+ y − g = W − (n− 1)xR(g)

W − (n− 1)xR(g) + g − y ≥ 0

x ≤ g/n+W/n


(4.2)

Contrary to the planner, agent j cannot choose y directly: it chooses only its level of private

consumption and the level of its own contribution to the public investment. The agent, however

realizes that given the other agents’ level of private consumption (n− 1)xR(g), his/her investment

ultimately determines y. It is therefore as if agent j chooses x and y, provided that he satisfies

the feasibility constraints. The first constraint is the resource constraint: it requires that total

resources, W + g, are equal to the sum of private consumption, (n − 1)xR(g) + x, plus the public

investment y. The second constraint requires that private consumption x is non negative. The

third constraint requires that no agent can reduce y by more than his share g/n.

In a symmetric equilibrium, all agents consume the same fraction of resources, so agent j takes

as given that in state g the other agents each consume:

xR(g) = W + g − yR(g)
n

,

where yR(g) is the equilibrium level of investment in state g. Substituting the first constraint of

(4.2) in the objective function, recognizing that agent j takes the strategies of the other agents as
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given, and ignoring irrelevant constants, the agent’s problem can be written as:

max
y


2√y − y + δvR(y)

y ≤ W+g
n + n−1

n yR(g), y ≥ n−1
n yR(g)

 (4.3)

where it should be noted that agent j takes yR(g) as given.6 The objective function shows that

an agent has a clear trade off: a dollar in investment produces a marginal benefit 1√
g + δv′R(y),

the marginal cost is −1, a dollar less in private consumption.7 The first constraint shows that at

the maximum the agent can increase the investment of the other players (i.e., n−1
n yR(g)) by W+g

n .

The second constraint makes clear that at most the agent can consume his endowment W/n and

his share of g, g/n.

We restrict attention to equilibria in which the objective function in (4.3) is strictly concave,

and we refer to these equilibria as concave equilibria. Depending on the state g, the solution of

(4.3) falls in one of two cases: the first case corresponds to the situation where the first constraint

in (4.3) is binding, so all resources are devoted to investment in the public good. In this case,

xR(g) = 0, yR(g) = W + g, and investment by each agent is iR(g) = W
n . In the second case, private

consumption is positive, that is, xR(g) > 0, and the solution is characterized by a unique public

good level y∗R satisfying the first order equation:

1√
y∗R

+ δv′R(y∗R) = 1 (4.4)

In this second case, the investment by each agent is equal to iR(g) = 1
n [y∗R − g] and per capita

private consumption is xR(g) = W+g−y∗R
n > 0. The first case is possible only if and only if W ≤

6Since yR(g) is the equilibrium level of investment, in a symmetric equilibrium (n − 1)yR(g)/n is the level of
investment that agent j expects from all the other agents, and that he/she takes as given in equilibrium.

7For simplicity of exposition we assume here that vR (g) is differentiable. This is essentially without loss of
generality and we refer to the proofs in Battaglini, Nunnari, and Palfrey (2012a) for the details.
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y∗R− gR, that is, if g is below some threshold gR defined by: gR = max {y∗R −W, 0}. We summarize

this in the following proposition, which also proves the existence of an equilibrium and its uniqueness

when vR(g) is strictly concave:

Proposition 1. In the game with reversible investment, a concave equilibrium exists and it

is unique. In this equilibrium, public investment is: yR(g) = min {W + g, y∗R} where y∗R(n) =(
n
n−δ

)2
< y∗P (n).

Proof. See Appendix C.

The public good function yR(g) is qualitatively similar to the corresponding planner’s function

yP (g). The main difference is that y∗R < y∗P and gR < gP , so public good provision is typically

smaller (and always smaller in the steady state). This is a dynamic version of the usual free

rider problem associated with public good provision: each agent invests less than is socially optimal

because he/she fails to fully internalize all legislators’ utilities. Part of the free rider problem can be

seen from (4.4): in choosing investment, legislators count only their marginal benefit, u′(y)+δv′R(y),

rather than nu′(y) + δnv′R(y), but all the marginal costs (−1). In this dynamic model, however,

there is an additional effect that reduces incentives to invest, called dynamic free riding. To see

this, consider the value function for g > gR (where we have an interior solution):

vR(g) = W − (n− 1)xR(g)− (y∗R − g) + 2
√
y∗R + δvR(y∗R)

= W − (y∗R − g)
n

+ 2
√
y∗R + δvR(y∗R)

where the last equation follows by the fact that in a symmetric equilibrium: xR(g) = W − (n −

1)xR(g)− (y∗R − g). A marginal increase in g has two effects. An immediate effect, corresponding

to the increase in resources available in the following period: g. But there is also a delayed effect
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on next period’s investment: the increase in g triggers a reduction in the future investment of all

the other agents through an increase in xR(g): for any level of g > gR, yR(g) will be kept at y∗R. In

a symmetric equilibrium, if agent j increases the investment by 1 dollar, he will trigger a reduction

in future investment by all agents by 1/n dollars; the net value of the increase in g for j will be

only δ/n.

4.1.3 Irreversible Investment Economies

When the stock of the public good cannot be reduced, the optimization problem of an agent can

be written like (4.2), but with an additional constraint: the individual level of investment cannot

be negative or, in other words, each agent’s private consumption cannot exceed his endowment,

xi(g) ≤ W/n. Following similar steps as before, we can write the maximization problem faced by

an agent as:

max
y


2√y − y + δvIR(y)

y ≤ W+g
n + n−1

n yIR(g), y ≥ g
n + n−1

n yIR(g)

 (4.5)

where the only difference with respect to (4.3) is the second constraint. To interpret it, note that

it can be written as y ≥ g + n−1
n [yIR(g)− g]: the new level of public good cannot be lower than g

plus the investments from all the other agents.

As pointed out in Section 2.1, when public investments are efficient, irreversibility is irrelevant

for the equilibrium allocation. The investment path chosen by the planner is unaffected because

the planner’s choice is time consistent: he never finds it optimal to increase g if he plans to reduce

it later. In the concave equilibrium characterized in the previous section, the investment function

may be inefficient, but it is weakly increasing in the state. Agents invest until they reach a steady

state, and then they stop. It may seem intuitive, therefore, that irreversibility is irrelevant in
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this case too. To the contrary, irreversibility destroys the concave equilibrium we characterized for

reversible investment economies and induces the agents to significantly increase their investment,

leading to a significantly higher unique steady state. Intuitively, the reason is that the agents no

longer have to worry about the dynamic free rider problem: the irreversibility constraint creates a

“commitment device” for the future; the agents know that g can not be reduced by the others (or

their future selves).

Proposition 2. In an economy with irreversible investment, there is a unique weakly concave

equilibrium with associated steady state y∗IR(n) =
(

1
1−δ

)2
. This steady state level is strictly greater

than y∗R(n) and strictly smaller than y∗P (n) for any n > 1 and any δ ∈ [0, 1).

Proposition 2 follows directly as a special case of Propositions 4 and 5 in Battaglini, Nunnari,

and Palfrey (2012a); it establishes that the dynamic free rider game with irreversibility admits an

equilibrium with standard concavity properties and that this game has a unique steady state. In

this steady state, the public good stock is strictly smaller than the one accumulated by a benevolent

planner, but strictly higher than the one accumulated in the unique concave equilibrium of RIE.

Notice that this steady state, y∗IR(n) =
(

1
1−δ

)2
, is the same level that an agent alone would

accumulate and it is independent of n.

There is an intuitive explanation for Proposition 2. Because of decreasing returns, the invest-

ment in g declines over time, and so the constraint y ≥ g is binding in any equilibrium when g

is high enough. When this happens, the agents are forced to keep the investment higher than

what they would like. Since the equilibrium is inefficiently low (because the agents do not fully

internalize the social benefit of g), the constraint y ≥ g increases expected welfare in these states.

The states where the constraint y ≥ g is binding are typically out of equilibrium, that is, on the

right of the steady state. The irreversibility constraint, however, has a ripple effect on the entire
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investment function. In a left neighborhood of y∗IR, the constraint is not binding; still, the agents

expect that the other agents will preserve their investment, so the strategic substitutability will not

be too strong. A steady state lower than y∗IR occurs with reversibility because the agents expect

high levels of “strategic substitutability”. However, the construction of such equilibrium relies on

the existence of states where agents can invest negative amounts.

The investment function in the unique weakly concave equilibrium from Proposition 2 is different

than the one for the reversible investment case, where the agents would either find it optimal to

invest everything, or just enough to maintain the steady state. In particular, Battaglini, Nunnari,

and Palfrey (2012a) show that there is a region of the state space in which the investment function

y(g) must solve the differential equation:

y′(g) =
1−

n
(

1− 1√
g

)
δ

1− n (4.6)

The previous expression defines a simple differential equation with a solution y(g), unique up to a

constant. The unique weakly concave equilibrium from Proposition 2 has the following investment

function:

yIR(g) =


min {W + g, ŷ (gIR)} g ≤ gIR

ŷ (g) gIR < g ≤
(

1
1−δ

)2

g g ≥
(

1
1−δ

)2

(4.7)

where gIR = max {ming≥0 {ŷ (g) ≤W + g} , y∗R(n)}, and ŷ (g) is the the unique solution of (4.6)

with initial condition ŷ

((
1

1−δ

)2
)

=
(

1
1−δ

)2
.
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4.1.4 Cooperation Using Non-Stationary Strategies

We have restricted our attention to symmetric Markov perfect equilibria. However, the voluntary

contribution game we study is an infinite horizon dynamic game with many subgame perfect equi-

libria. The Markovian assumption of stationary strategies is very restrictive and it is possible that

some other equilibria can sustain more efficient outcomes through the use of history-dependent

strategies (punishment and rewards for past actions). As we show below, in economies with re-

versible investment, the optimal solution can indeed be supported as the outcome of a subgame

perfect equilibrium:

Proposition 3. There is a δ̂R ∈ [0, 1) such that, for δ > δ̂R, the efficient investment path

characterized by the optimal solution is a Subgame Perfect Nash Equilibrium of the voluntary con-

tribution game with reversible investment.8

In Appendix C, we derive nonstationary strategies for the voluntary contribution game with

reversible investment whose outcome is the efficient level of public good (the optimal solution), and

show that these strategies are a subgame perfect Nash equilibrium.9

The strategy for each agent is to allocate the optimal level of investment to public good produc-

tion, (y∗P (g)− g)/n, and to consume the remainder. A deviation from this investment behavior by

any agent is punished by reversion to the unique concave Markov perfect equilibrium characterized

in Section 2.2. This is a simple strategy that involves the harshest (individually rational) punish-

ment for deviation from cooperation: whenever g > y∗R and a deviation is observed, the public good

8Looking ahead to the next section, with the parameters of the experiments, the threshold δ̂R defined in Propo-
sition 3 is equal to 0.80 for n=3, and 0.86 for n=5. We use δ = 0.75 in all the experimental sessions, which means
that the nonstationary strategies we propose cannot support the efficient steady state (144 in n=3 and 400 in n=5).
With n=3, the highest steady state sustainable with these nonstationary strategies is 130, while with n=5, it is 333.

9Our goal is to show that the optimal solution is the outcome of some subgame perfect Nash equilibria of the
game. We do not claim that the strategies proposed in the proof of Proposition 3 are the best punishment schemes,
and there may be different nonstationary strategies that work for lower δ.



87

will revert to y∗R and it will stay at this level for all future periods.

When investment is irreversible, the efficient outcome cannot be sustained with strategies similar

to the ones proposed above for environments with reversible investment. Matthews (2012) shows

that, with discounting, no subgame perfect equilibrium of a general family of dynamic contribution

games is efficient, in the sense of supporting the optimal public good stock in each period. In

particular, this result applies to our environment, which gives the following Proposition as corollary.

Proposition 4 There is no δ̂IR ∈ [0, 1) such that, for δ > δ̂IR the optimal investment strate-

gies are a Subgame Perfect Nash Equilibrium of the voluntary contribution game with irreversible

investment.

The intuition behind Proposition 4 is that the potential for punishment is significantly dampened

by the irreversibility constraint. Whenever g > y∗IR and a deviation is observed, agents cannot

disinvest down to y∗IR and the harshest punishment is characterized by no investment and a constant

stock in all periods following the first deviation. For any δ < 1 and any steady state level y∗ > y∗IR,

there exist a g < y∗ such that an agent prefers to deviate and consume his whole budget, rather

than contributing his share to increase the stock according to the optimal investment path.

It is interesting to note that the “best” subgame perfect equilibrium (that is, the Pareto superior

equilibrium from the point of view of the agents) is more efficient in RIE than in IIE. This is in

contrast with the predictions of the unique concave Markov perfect equilibria analyzed above and

suggests that whether we observe higher investment in RIE or in IIE crucially depends on the focal

equilibrium.
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4.2 Experimental Design

The experiments were all conducted at the Social Science Experimental Laboratory (SSEL) using

students from the California Institute of Technology. Subjects were recruited from a pool of vol-

unteer subjects, maintained by SSEL. Eight sessions were run, using a total of 105 subjects. No

subject participated in more than one session. Half of the sessions were for Reversible Investment

Economies and half for Irreversible Investment Economies. Half were conducted using 3 person

committees, and half with 5 person committees. In all sessions the discount factor was δ = 0.75,

and the current-round payoff from the public good was proportional to the square root of the stock

at the end of that period, that is, u(g) = 2
√

(g). In the 3 person committees, we used the param-

eters W = 15, while in the 5 person committees W = 20. Payoffs were renormalized so subjects

could invest fractional amounts.10 Table 1 summarizes the theoretical properties of the equilibrium

for the four treatments. It is useful to emphasize that, as proven in the previous sections, given

these parameters the steady state is uniquely defined both for the RIE and IIE game and for all

treatments: so the theoretical predictions of the convergence value of g is independent of the choice
10We do this in order to reduce the coarseness of the strategy space and allow subjects to make budget decisions

in line with the symmetric Markov perfect equilibrium in pure strategies. This is particularly important for the
RIE where the steady state level of the public good is 1.77 for n=3 and 1.38 for n=5, and the equilibrium level of
individual investment is, respectively, 0.59 and 0.28 in the first period and 0 in all following periods.



89

of equilibrium.

.

Treatment n W y∗R gIR ŷ(g) y∗IR y∗P

RIE 3 15 1.77

RIE 5 20 1.38

IIE 3 15 1.77 8 + 1.5g − 4√g 16

IIE 5 20 1.38 6.67+ 1.42g − 3.33√g 16

Planner 3 15 144

Planner 5 20 400

Table 1: Experimental parameters and equilibrium investment functions

Discounted payoffs were induced by a random termination rule by rolling a die after each period

in front of the room, with the outcome determining whether the game continued to another period

(with probability .75) or was terminated (with probability .25). The n = 5 sessions were conducted

with 15 subjects, divided into 3 groups of 5 members each. The n = 3 sessions were conducted

with 12 subjects, divided into 4 groups of 3 members each.11 Groups stayed the same throughout

the periods of a given match, and subjects were randomly rematched into groups between matches.

A match consisted of one multiround play of the game which continued until one of the die rolls

eventually ended the match. As a result, different matches lasted for different lengths (that is, for
11One of the N = 3 sessions used 9 subjects.
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a different number of periods). Table 2 summarizes the design.

.

Treatment n # Groups # Subjects

RIE 3 70 21

RIE 5 60 30

IIE 3 80 24

IIE 5 60 30

Table 2: Experimental design

Before the first match, instructions12 were read aloud, followed by a practice match and a

comprehension quiz to verify that subjects understood the details of the environment including

how to compute payoffs. The current period’s payoffs from the public good stock (called project

size in the experiment) was displayed graphically, with stock of public good on the horizontal axis

and the payoff on the vertical axis. Subjects could click anywhere on the curve and the payoff for

that level of public good appeared on the screen.

At the end of the last match each subject was paid privately in cash the sum of his or her

earnings over all matches plus a showup fee of $10. Earnings ranged from approximately $20 to

$50, with sessions lasting between one and two hours. There was considerable range in the earnings

and length across sessions because of the random stopping rule.
12Sample instructions are reported in Appendix D.
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4.3 Experimental Results

4.3.1 Public Good Outcomes

We start the analysis of the experimental results by looking at the long-run stock of public good by

treatment. We consider as the long-run stock of public good, the stock reached by a group after 10

periods of play.13 Table 3 compares the theoretical and observed levels of public good by treatment.

In order to aggregate across groups, we use the median level of the public good from all groups in

a given treatment at period 10 (y10
mdn). Similar results hold if we use the mean or other measures

of central tendency.14 We compare this to the stock predicted by the Markov perfect equilibrium

of the game after 10 periods (y10
MP ), and to the stock accumulated in the optimal solution after 10

periods (y10
P ).

.

Treatment n y10
mdn y10

MP y10
P

Reversible Investment (RIE) 3 4 1.38 144
Reversible Investment (RIE) 5 7.21 1.77 200
Irreversible Investment (IIE) 3 71.88 10.91 144
Irreversible Investment (IIE) 5 91.75 10.57 200

Table 3: Long-Run Stock of Public Good, Theory vs. Results by Treatment

How do groups get to these stocks of public good? Figure 1 gives us a richer picture, showing

the time series of the stock of public good by treatment.15 The horizontal axis is the time period

and the vertical axis is the stock of the public good. As in Table 3, we use the median level of the

public good from all groups in a given treatment. Superimposed on the graphs are the theoretical
13In the experiment, the length of a match is stochastic and determined by the roll of a die. No match lasted

longer than 17 periods and we have very few observations for periods 11-17.
14The statistical tests in the remainder of this section compare average stocks between different treatments using

t-tests and their underlying distributions using Wilcoxon-Mann-Whitney tests.
15These and subsequent figures show data from the first ten periods. Data from later periods (11 for IIE with

n = 5, 11-13 for RIE with n = 5 and n = 3, and 11-17 for IIE with n = 7) are excluded from the graphs because
there were so few observations. The data from later periods are included in all the statistical analyses.
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Figure 4.1: Median time paths of the stock of g, RIE vs. IIE

time paths (represented with solid lines), corresponding to the Markov perfect equilibria and to the

optimal solution.

Table 3 and Figure 1 exhibit several systematic regularities, which we discuss below in compar-

ison with the theoretical time paths.

FINDING 1. Irreversible investment leads to higher public good production than

reversible investment. According to t-tests and Wilcoxon-Mann-Whitney tests16, the average

stock of public good is significantly lower in RIE than in IIE in every single period for both group

sizes. This difference is statistically significant at the 1% level (p¡0.01) for periods 1-10 for both

group sizes. Not only are the differences statistically significant, but they are large in magnitude.

The median stock of public good is around four times greater in the IIE treatment than in the RIE
16The null hypothesis of a t-test is that the averages in the two samples are the same. The null hypothesis of a

Wilcoxon-Mann-Whitney test is that the underlying distributions of the two samples are the same. We are treating
as unit of observation a single group.
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treatment, averaged across all periods for which we have data (38.75 in IIE vs. 10.75 in RIE for

n = 5 and 44.25 in IIE vs. 7.25 in RIE for n = 3). The differences between the two economies

are relatively small in the initial period, but they increase sharply as more periods are played. By

period 10, the differences are very large (71.88 vs. 4 for n = 3, and 91.75 vs. 7.21 for n = 5).

FINDING 2. Both reversible and irreversible investment lead to significantly inef-

ficient long-run public good levels. The optimal steady state is y*=400 for n = 5 and y*=144

for n = 3, and the optimal investment policy is the fastest approach: invest W in every period

until y* is achieved. After 10 periods, the median stock of public good achieved with the optimal

investment trajectory is 200 for n = 5 and 144 for n = 3. In the experiments, the median stock of

public good levels out at about 7 (n = 5) or 4 (n = 3) under reversible investment economies, while

it keeps growing, but at an inefficiently slow pace, under irreversible investment. The median stock

averages 9.29 in periods 7-10 in RIE with n = 5, 4.34 in periods 7-10 in RIE with n = 3, 83.26 in

periods 7-10 in IIE with n = 5, and 72.70 in periods 7-10 in IIE with n = 3. In all treatments the

average stock of public good in the last periods (rounds 8 on) is significantly smaller than the level

predicted by the optimal solution (the level attainable investing W each period) according to the

results of a t-test on the equality of means (p¡0.01).

FINDING 3. Public good accumulation is higher in five members groups than in

three member groups. This difference, however, is statistically significant only in the

initial periods. For the same accumulation mechanism (reversible or irreversible investment),

the average and median stock of public good is higher with five members groups than with three

members groups in every single period. However, this difference is small in magnitude (especially for

the earlier periods and for the reversible investment games) and, according to t-tests17, statistically
17Similar results are obtained using Wilcoxon-Mann-Whitney tests.
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significant at conventional levels (p¡0.05) only for the first two periods in RIE, and the first four

periods in IIE. This is in line with the Markovian equilibria discussed in the previous section, which

predict small differences between the two group sizes. In RIE, the stock is predicted to converge

quickly to similar steady state levels (1.77 and 1.38). In IIE, while the steady state levels are

predicted to be exactly the same (16), the equilibrium investment trajectory is somewhat slower

with larger groups. However, the differences induced by the different group sizes are small, with

the predicted stock after 10 periods equal to 10.26 with five members groups and 10.64 with three

members groups.

Because of the possibility of nonstationary equilibria it is natural to expect a fair amount of

variation across groups. Figure 1, by showing the median time path of the stock of public good,

mask some of this heterogeneity. Do some groups reach full efficiency? Are some groups at or below

the equilibrium? We turn next to these questions.

Figure 2 illustrates the variation across groups by representing, for each period, the first, second

and third quartile of investment levels for RIE with n = 5 (panel (a)), IIE with n = 5 (panel (b)),

RIE with n = 3 (panel (c)), and IIE with n = 3 (panel (d)) games. The continuous line represents

the median, while the dashed lines represent the range interquartile.

There was remarkable consistency across groups, especially considering this was a complicated

infinitely repeated game with many non-Markov equilibria.With irreversible investment, many

groups invested significantly more heavily than predicted by the Markov perfect equilibrium, but

this was not enough to achieve efficient levels of the public good in the long-run, as nearly always

such cooperation fell apart in later periods. The most efficient group in IIE with n = 5 invested

98% of W in the first period and W in periods 2-6, resulting in a public good level of 119.5. In the

remaining four periods, group investment slowed down because of the contagious defection of some
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Figure 4.2: Quartiles of time paths of the stock of g, all treatments

of his members: in period 7, one member invests zero; in period 8, two members invest zero, and in

periods 9-10, three members invest zero (with average investment in the last three periods at 49%

of W and final stock at period 10 of 157.8). Even this very successful group, started consuming

resources for private investment well short of the efficient level (400). In RIE with n = 5, the most

efficient committee in the early periods invested W in each of the first 2 periods, resulting in a

public good level of 40. In the following period, one member disinvested the maximum allowed

(that is, 1/5 of the stock). The same investment behavior was followed by two members in the

fourth period and, finally, in the fifth and final period, every member disinvested his share of the

public good, bringing the stock to zero. We observe similar patters for the most efficient groups

with n = 3.

These findings are perhaps surprising since, from Proposition 3, we know that, for the parameters
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of the experiment, almost efficient levels of the public good can be supported as the outcome of

the RIE game using nonstationary strategies.18 In the IIE games, on the other hand, the optimal

solution cannot be supported by any subgame perfect equilibrium with nonstationary strategies

when there is discounting. This is in stark contrast with the unique Markov perfect equilibria

derived in Sections 2.2 and 2.3, which predict the opposite comparative static: the long run level of

the public good is predicted to be 10 times as large with irreversible investment than with reversible

investment.

Figure 1 and 2, therefore, make clear that the predictions of the Markov perfect equilibrium are

substantially more accurate than the prediction of the “best” subgame perfect equilibrium (that

is, the Pareto superior equilibrium from the point of view of the agents). This observation may

undermine the rationale for using the “best equilibrium” as a solution concept.

4.3.2 Investing Behavior

So far, we have presented results for the public good stock accumulated by each group. In this

section, we analyze the data at a finer level, using the investment decisions of each single individual

in each group.

How much do individual agents invest in the public good? Figure 3 shows the time series of

the median investment in the public good by treatment. The horizontal axis is the time period

and the vertical axis is the investment in the public good. The maximum amount each agent can

allocate to investment is the same in each period, and it is given by w/n, which is equal to 5 for the

three-members groups and to 4 for the five-members groups. The minimum amount each agent can

invest is always zero in the irreversible investment treatment, but it depends on the stock at the
18With the parameters of the experiment, the public good stock sustainable with the nonstationary strategies

proposed in the proof of Proposition 3 is 141 (vs. an efficient level of 150) for three members groups, and 351 (vs.
an efficient level of 400) for five members groups.
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Figure 4.3: Median time paths of individual investment

beginning of the period in the reversible investment treatment (since each agent can disinvest up

to g/n units of the public good). For each period, we use the median level of individual investment

from all subjects in a given treatment. Similar results hold if we use the mean or other measures

of central tendency.

Figure 3 shows a series of interesting patterns. First, the median individual investment is always

higher with irreversible investment than with reversible investment in periods 1-10. Second, the

level of investment is decreasing, with median investment converging quickly to values around zero

for the reversible investment economies and steadily decreasing towards zero for the irreversible

economies.

How do these levels of individual investment compare to the theoretical predictions? The median
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Figure 4.4: Time paths of median difference between observed and theoretical investment

time paths from Figure 3 are qualitatively in line with the predicted time paths: with reversible

investment, the theory predicts positive investment only in the first period (when the equilibrium

steady state is reached) and zero investment from the second period on; with irreversible invest-

ment, the theory predicts positive investment in each period, but at a monotonically decreasing

pace (with convergence to the equilibrium steady state only asymptotically). There are, however,

some differences between the finer details of the theoretical predictions and the data. We observe

overinvestment in the early periods: while individual investment is predicted to be less than 1 unit

in the first period for all treatments, we observe medians between 2.5 and 4.5. In the reversible

economies, this overinvestment is corrected in the later periods: the median investment falls sharply

to zero and a large fraction of individuals disinvests, with higher early overinvestment followed by

higher disinvestment. We discuss these observations in detail below.

The game we study is a dynamic game with an evolving state variable. In this game, the strategic

incentives in each period are possibly different and determined by the level of the state variable
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and by subjects’ expectations on other subjects’ behavior. It follows that, to better compare the

observed level of investment with the theoretical predictions, we need to take into account the state

variable faced by each agent when making an allocation decision, that is, the stock of the public

good at the beginning of a period. For each subject in each period, we calculate the difference

between his observed behavior and the investment predicted by the theory given the public good

stock in his group in that period. Figure 4 shows the time series of the median of this difference.

This series starts out significantly above zero for all treatments but decreases as more periods of

the same match are played, suggesting that subjects’ decisions respond to the evolution of the state

variable, with their investment behavior closely matching the predictions of the unique concave

Markovian equilibrium for later periods. Notice that this pattern leads to public good outcomes

that are in line with the equilibrium steady states for reversible economies, but not for irreversible

economies: in the former, subjects can correct the initial overinvestment with negative investment,

while in the latter the equilibrium investment for any level above the steady state (16) is bound to

be zero and the initial overinvestment persists. We summarize these findings below.

FINDING 4. In both treatments, there is overinvestment relative to the equilib-

rium in the early periods. This is followed by negative investment approaching the

theoretical predictions in RIE, while the overinvestment decreases but persists in IIE.

In RIE, the median investment in the first two periods are (7.88=0.53W, 4.13=0.28W) for three

members groups, and (12.63=0.63W, 4.88=0.24W) for five members groups. As a result, the me-

dian public good stock by the end of period 2 equals, respectively, 11.38, and 16.75. This compares

with equilibrium investment policies in the first two periods equal to (1.77, 0) for n = 3, and (1.38,

0) for n = 5, and a predicted stock equal to, respectively, 1.38 and 1.77. In IIE, on the other hand,

the median investment in the first two periods are (12.5=0.63W, 11.63=0.58W) for three members
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groups, and (14.03=0.71W, 14.03=0.71W) for five members groups. As a result, the median public

good stock by the end of period 2 equals, respectively, 24.25, and 28.5. This compares with equi-

librium investment policies in the first two periods equal to (1.77, 3.56) for n = 3 and (1.38, 3.34)

for n = 5, and a predicted stock equal, respectively, to 5.33 and for 4.72. Thus, in all treatments,

committees overshoot the equilibrium in early periods by a factor of ten (R3 and R5), five (IR3),

and six (IR5).19

In RIE, this overshooting is largely corrected in later periods via disinvestment. When invest-

ment is reversible, convergence of the public good stock is close to equilibrium, with the difference

between the median public good levels and the equilibrium public good levels in the last 4 periods

of data measuring less than 3 units of the public good for three members groups (4.34 vs. 1.77)

and less than 4 for five members groups (5.50 vs 1.38). With irreversible investment, investment

remains positive but is monotonically decreasing with periods of play (in the same match): the

median investment in periods 7-10 is 3.8 (=0.25W) with n = 3 and 6.63 (=0.33W), with the min-

imum median investment reached in period 10 (4.75=0.24W). Given the public good stock by the

end of period 2 is already above the predicted stead state level (16), the positive - albeit slower -

investment flow in the following periods brings the long-run level of public good to be six (91.75

vs. 16 for IR5) and five times (73.34 vs. 16 for IR3) larger than predicted.

We now turn to a descriptive analysis of the individual allocations between investment in the

public good and current consumption good, as a function of period of play (within a match) and

accumulation mechanism.

We break down the investment decisions into 3 canonical types: (1) Positive Investment; (2)

Zero Investment; and, for RIE, (3) Negative Investment. The first category is further broken down
19The difference between the average investment in the early periods and the predicted investment in these same

periods is statistically significant at the 1% level for all treatments.
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by whether investment in the public good accounts for the whole budget, most of the budget (but

less than W ), or a minority of the budget. Similarly, the third category is further broken down by

whether the negative investment is the maximum allowed by the mechanism (= g/n) or a smaller

amount.

RIE 3 IIE 3
Investment Type ALL R1 R2-4 R5-7 R8-10 ALL R1 R2-4 R5-7 R8-10

INV > 0 67.0 100 57.8 44.7 39.2 82.8 100 96.4 77.9 59.5
* I = W 5.1 12.4 2.6 - - 27.7 47.9 35.7 21.4 9.5
* I ∈ (.5W,W ) 16.2 31.4 13.9 3.5 2.0 24.2 33.3 34.4 20.3 12.3
* I ∈ (0, .5W ] 45.7 56.2 41.3 41.2 37.3 30.9 18.8 26.4 36.3 37.7

INV = 0 6.7 - 5.9 14.9 17.7 17.2 - 3.6 22.1 40.5
INV < 0 26.4 - 36.3 40.4 43.1 - - - - -

* I ∈ (0,−g/n) 21.6 - 36.3 40.4 43.1 - - - - -
* I = −g/n 4.8 - 6.9 6.1 11.8 - - - - -

Table 4: Individual Investment Types, n = 3, # Observations: 705 for RIE, 1716 for IIE

RIE 5 IIE 5
Investment Type ALL R1 R2-4 R5-7 R8-10 ALL R1 R2-4 R5-7 R8-10

INV > 0 51.5 82.3 45.3 35.0 35.8 83.1 96 89.8 76.7 60.9
* I = W 26.4 47.7 23.8 14.2 15.8 33.1 46.3 37.5 25.0 18.2
* I ∈ (.5W,W ) 3.5 4.7 4.6 1.3 0.8 16.5 19.0 20.0 13.3 9.3
* I ∈ (0, .5W ] 21.5 30.0 17.0 19.6 19.2 33.5 30.7 32.4 38.3 33.3

INV = 0 12.9 17.7 8.8 13.3 14.2 17.0 4.0 10.2 23.3 39.1
INV < 0 35.7 - 45.9 51.7 50.0 - - - - -

* I ∈ (0,−g/n) 29.0 - 37.9 39.6 40.8 - - - - -
* I = −g/n 6.7 - 8.0 12.1 9.2 - - - - -

Table 5: Individual Investment Types, n = 5, # Observations: 1230 for RIE, 1740 for IIE

Tables 4 and 5 show the breakdown of investment decisions for the four treatments. In each
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table, the first column lists the various investment types. The second (for RIE) and sixth (for

IIE) columns lists the proportion of each allocation type when we lump together all observations.

Columns 3 through 5 (for RIE), and 7 through 9 (for IIE) show how these proportions evolve within

a match.

FINDING 5. In all treatments, most allocations involve positive investment in

the public good. The proportion of decisions that belong to this category decreases

with the period of play (within a single match). In RIE, a significant proportion of

allocations involve negative investment. The proportion of decisions that belong to this

category increases with the period of play (within a single match). In all treatments, most

allocations had a positive amount of investment. In RIE3 and RIE5 this investment type accounts,

respectively, for 67%, and 51.5% of all decisions; in IIE3 and IIE5, this type accounts, respectively,

for 82.8% and 83.1%. Allocations with zero or negative investment occurred 33.1% of the time

in RIE3 groups, 48.6% of the time in RIE5 groups, but only 17.2% of the time in IIE3 groups

and 17.0% of the time in IIE5 groups. The difference is mostly due to the negative investment

allocations (which are not allowed in IIE). In contrast to the data, the Markov perfect equilibrium

allocations should have been concentrated in the category “I = 0” for RIE and “I ∈ (0, .5W )” for

IIE. However, notice that, in IIE, “I ∈ (0, .5W )” is the most common proposal type and accounts

for around 1/3 of all allocations.

4.3.3 The Effect of Experience

Within the same match, subjects’ investing behavior gets closer to the predictions as more periods

are played. It is therefore natural to ask whether we observe a similar pattern across matches. Do

subjects choose allocations closer to the predictions of the Markov equilibria when they are more
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experienced? Or do they still overinvest in early periods and reduce investment in later periods,

even after many matches of the same (multi-period) game?

To answer these questions, we regress the amount invested on the investment predicted by the

unique Markov equilibrium (given the public good stock at the beginning of the period), and the

number of periods played in the match. We add to these independent variables, the interaction

between the two, to test whether there is any significant difference in the correlation between

observed and predicted investment as experience grows. Table 6 shows OLS estimates for all

treatments. An observation is a single subject’s allocation decision in a single period.20

(1) (2) (3) (4)

Treatment RIE, 3 RIE, 5 IIE, 3 IIE, 5

Predicted Investment 0.38* (0.16) 0.58** (0.14) 0.04 (0.03) 0.03** (0.01)

Match # -0.04 (0.03) -0.03 (0.03) 0.14** (0.03) 0.05* (0.02)

Match #*Pred Inv 0.01 (0.03) -0.03 (0.02) 0.01 (0.01) -0.01* (0.01)

Constant 1.71** (0.33) 1.47** (0.25) 1.90** (0.22) 1.90** (0.22)

R-squared 0.1128 0.1004 0.0953 0.0059

Observations 705 1230 1716 1740

Table 6: OLS estimates. Dependent variable: Observed investment. Standard errors clustered by

subject in parentheses; * significant at 5% level; ** significant at 1% level

FINDING 6. There is no evidence of an impact of experience, in any of the treat-

ments. The estimates from Table 6 suggest that the investment decisions are not affected by
20We cluster standard error by subjects to take into account possible correlations among decisions taken by the

same individuals. We also tried the standard error correction by clustering by groups, and Tobit estimates to take
into account the upper bound on contributions given by w/n. The results are unchanged.
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experience, at least not in the sense of playing closer to the theoretical predictions. In RIE, as

subjects play more matches within the same session their endowment allocation is not significantly

altered. In IIE, as subjects play more matches within the same session, they slightly increase their

investment in the public good. This change however does not increase the correlation between the

observed investment and the investment predicted by the unique Markov equilibrium of the game.

4.3.4 Test for Markovian Behavior

The final questions we attempt to address are: To what extent are the models we use adequate to

study this problem? What equilibrium concepts should be used? This is a particularly important

question since, depending on the equilibrium concept, we can have very different predictions for

the same model. While it is difficult to identify the equilibrium adopted by players, the analysis

of public good outcomes and investing behavior provides some interesting insights. As discussed

above, we observe a consistent pattern of behavior across groups, despite the fact that we have

multiplicity of potential equilibria; the investing behavior is correlated to the evolution of the stock

in a way predicted by the theory; and, at least for RIE, the long term public good outcomes are

close to the equilibrium steady states.

To further pursue this question, we construct a more direct test of the Markovian restriction,

that is, of the assumption that players are forward-looking and condition their strategy only on the

stock of the public good at the beginning of the period, irrespective of the histories. In particular, we

conduct a one-period version of the reversible investment game, where the payoffs from the public

good stock are complemented by the equilibrium value functions of the unique concave Markov
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perfect equilibrium of the game. In each one-period game, agent j receives the following payoff:

U j(xj , y) = xj + 2√y + δvR(y),

where xj is the private consumption of agent j, y is the end-of-period public good stock, and

δvR(y) is the discounted equilibrium value function from the dynamic game with reversible invest-

ment. In each experimental session, subjects play for 40 matches. Contrary to the dynamic game,

the length of each match is known and equal to one period. At the end of each one-period match,

subjects are reshuffled into new groups and the public good stock starts out at a (potentially dif-

ferent) exogenous level. We use eight different g0, to elicit an investment strategy (as a function

of the state variable) comparable to the one observed in the fully dynamic game.21 Table 7 below

summarizes the experimental design.

.

n W δ # Groups # Subj # Matches g0

3 15 0.75 80 24 40 0, 1.25, 2.5, 3.75, 5, 6.25, 7.5, 8.75

5 20 0.75 60 30 40 0, 1.25, 2.5, 3.75, 5, 6.25, 7.5, 8.75

Table 7: Experimental design, one-period reduced form treatments.

In the one-period reduced form treatments, the unique equilibrium of the game prescribes the

same investment level predicted for the fully dynamic game under the Markovian assumption that

subjects condition their strategies only on the public good stock. While there is no other equilibrium
21The beginning-of-period public good stocks we use in this one-period reduced form treatment are 0, 1.25, 2.5,

3.75, 5, 6.25, 7.5, 8.75. In each experimental session, each of these beginning-of-period stock is used in five different
matches, in random order, for a total of forty matches. The range [0−8.75] covers around 75% of observations in the
dynamic game with three-members groups and around 55% of observations in the dynamic game with five-members
groups.
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in this one-period game, in the fully dynamic game there is a plethora of different subgame perfect

equilibria that can sustain higher level of investment with nonstationary strategies. Therefore, if we

observe an identical behavior in the two treatments, we can consider this as evidence of Markovian

strategies in the fully dynamic game. On the other hand, we can attribute any difference in behavior

to the nonstationary strategies that can arise in a repeated game.

Figure 5 illustrates the median individual investment as a function of the initial stock for the

one-period reduced form games described above and for the fully dynamic games.22
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Figure 4.5: Investment as a function of beginning-of-round stocks, reduced form vs. dynamic

FINDING 7. In RIE, there is evidence of Markovian, forward-looking behavior.

For three-members groups, investment is significantly higher in the dynamic treatment for initial
22Since the beginning-of-round stock in the dynamic games is endogenous and does not necessarily match the values

used in the one-round games, for these games we use a weighted median of investment levels for all periods-groups
that started with a public good stock in a 6 experimental units interval around the starting size used in the one-round
games. For example, the median investment corresponding to a beginning-of-round stock of 5 is computed as the
weighted median investment from all periods-groups starting at a stock between 4.25 and 5.75. This allows us to
have a comparable number of observations between one-round and dynamic games. The results are the same when
we use intervals of 8 or 10 experimental units.
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stocks of 0, 6.25, 7.5, and 8.25, and statistically indistinguishable for the remaining initial stocks.

For five-members groups, investment is significantly higher in the dynamic treatment for initial

stocks of 0, 6.25, and 8.75; it is significantly higher in the reduced form treatment for initial stocks

of 1.25, 2.5, 3.75, and 5; and it is statistically indistinguishable for g0 = 3.75. While there is some

significant difference, these differences are small in magnitude (with the exception of initial stocks

greater than 5 for n = 3), and we cannot conclude that investment is higher in the fully dynamic

game than in the reduced form game (as a consequence of nonstationary strategies). Regarding

the high investment in the dynamic treatment for three-member groups and stocks greater than 5,

this is due to a few groups who invested significantly more heavily than predicted by the Markov

perfect equilibrium, but this only happened rarely and most of the observations from the dynamic

treatment (where the initial public good stock is endogenous) have a beginning-of-period stock

smaller than 6.25.23

We, thus, conclude that observed behavior is well approximated by the predictions of a purely

forward looking Markov equilibrium, rather than by an equilibrium in which agents look back at

the past to punish uncooperative behavior (or reciprocate cooperative behavior) by other members

of the group.

4.4 Discussion and Conclusions

This paper investigated the dynamic accumulation process of a durable public good in a voluntary

contribution setup. Despite the fact that most, if not all, public goods are durable and have an
23Since the beginning-of-period stock in the dynamic treatment is endogenous we have a reduced number of

observations for these high values: we use only 10 groups to compute the weighted median investment for a starting
stock of 8. The remaining 60 groups never accumulated these levels of public good. The beginning-of-period stock
is smaller than 6.25 in 60% of observations (regardless of period number). The average beginning-of-period public
good stock in rounds 8-10 (that is, the long run level of public good) is 4.6.



108

important dynamic component, very little is known on this subject, both from a theoretical and

empirical point of view. We attempt to provide some initial empirical findings about voluntary

contribution behavior with durable public goods.

We have considered two possible cases: economies with reversible investments (RIE), in which

in every period individual investments can either be positive or negative; and economies with

irreversible investments (IIE), in which the public good cannot be reduced. Reversibility is an

important feature of many public goods problems (for example, common pool problems), which is

completely missed by static analysis. We also have a secondary treatment dimension: we compare

three-members and five-members groups. For all treatments, we have characterized the steady

states and the accumulation paths that can be supported by the optimal solution and by the

unique symmetric concave Markov equilibrium.

We have highlighted three main results. First, in line with the comparative static predictions,

irreversible investment leads to significantly higher public good production than reversible invest-

ment. With reversibility, the dynamic dimension exacerbates the free rider problem present in static

public good provision: if an agent contributes above the equilibrium levels, not only this reduces the

future contributions by all agents, but it triggers negative investment by other agents that trans-

form part of the public good stock in private consumption. On the other hand, the irreversibility

constraint creates a commitment device and reduces the strategic substitutability of contributions.

Second, we have shown that, in both treatments, there is overinvestment in the early periods,

compared to the equilibrium investment levels. In the treatment with reversibility, this is followed

by a significant reversal, with the stock of public good gradually declining in the direction of the

equilibrium steady state. When disinvestment is not feasible, investment steadily decreases but the

initial overinvestment cannot be corrected and the long run level of the public good remains above
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the equilibrium steady state.

Finally, we have proposed a novel experimental methodology to test the assumption that sub-

jects’ strategies in this complex infinite-horizon game depend only on the state variable, that is, the

accumulated level of the public good. We have shown that, for the reversible investment treatment,

there is evidence of Markovian, forward-looking behavior.

This is the first experimental study of the dynamic accumulation process of a durable pub-

lic good. Our design was intentionally very simple and used a limited set of treatments. As a

consequence, there are many possible directions for the next steps in this research. The theory

has interesting comparative static predictions about the effect of other parameters that we have

not explored in this work, such as: the discount factor; the depreciation level; preferences; and

endowments. For example, a higher discount factor increases both the optimal steady state and

the equilibrium steady state of the durable public good for all values of n and for both reversible

and irreversible economies. For similar reasons, positive depreciation in the public good technology

leads to a decrease in the steady state of the Markov equilibrium studied here. Among these exten-

sions, it would be particularly interesting to run experiments that allow a closer comparison with

the results from the static literature. This can be done in a number of different ways: for example,

experiments with a finite and known horizon of one period (that is, δ = 0), or experiments with

full depreciation of the stock at the end of each period and an infinite horizon (that is, δ > 0).

Moreover, our model and experimental design does not consider different rules for negative in-

vestment (for example, allowing subjects to disinvest unilaterally up to the whole stock and adopting

a rationing rule to keep a nonnegative level of public good), or the effect of a completion benefit

at a specified accumulation threshold. We have also limited the analysis to voluntary contribution

mechanisms that turn out to be highly inefficient, both in theory and in practice. Battaglini, Nun-



110

nari, and Palfrey (2012b) study how centralized mechanisms fare in providing durable public goods

and show that efficiency increases with the majority rule required to approve an allocation decision.

It would be interesting to consider different decentralized mechanisms and explore which ones are

more efficient for the provision of durable public goods.

Finally, it would be interesting to complement our novel direct test of the Markovian assumption

running the reduced form experiments for the irreversible investment economies, or applying this

innovative experimental methodology to different infinite horizon games to explore the relative

importance of forward-looking behavior and history-dependent strategies in different contexts.



111

Appendices



112

Appendix A

Proofs of Chapter 1

Proof of Proposition 1

The results of Proposition 1 follow from the existence of a symmetric MPE with the following

minimal winning coalition proposal strategies for all s ∈∆, where s1 ≥ s2:

• Case A
(
s1 ≤ 1− 3−δ

3−2δ s2, s1 ≥ 3−δ
3−2δ s2

)
:

xv = [1− d2, 0, d2],x1 = [dv, 1− dv, 0],x2 = [dv, 0, 1− dv]

dv = sv −
δs2

3− 2δ

d2 = δ

3− 2δ s1 + (3− δ)
(3− 2δ)s2

• Case B
(
s1 > 1− 3−δ

3−2δ s2, s1 ≥ 27−27δ+3δ2+δ3

(3−2δ)(3−δ)2 s2 + δ2

(3−δ)2

)
:

xv = [1− d2, 0, d2],x1 = [dv, 1− dv, 0],x2 = [dv, 0, 1− dv]

dv = 0

d2 = 9− 12δ + 3δ2

(3− 2δ)2 s2 + δ

(3− 2δ)
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• Case C
(
s1 > 1− 3−δ

3−2δ s2, s1 <
27−27δ+3δ2+δ3

(3−2δ)(3−δ)2 s2 + δ2

(3−δ)2

)
:

xv =


[1− d2, d2, 0]

[1− d2, 0, d2]

w/ Pr = µCv

w/ Pr = 1− µCv
,x1 = [dv, 1− dv, 0],x2 = [dv, 0, 1− dv]

dv = 0

d2 = 9− 12δ + 3δ2

(3− 2δ)2 s2 + δ

(3− 2δ)

µCv = (−27 + 36δ − 15δ2 + 2δ3)s1

2δ((9− 12δ + 3δ2)s2 − 2δ2 + 3δ) + (27− 27δ + 3δ2 + δ3)s2 + 3δ2 − 2δ3

2δ((9− 12δ + 3δ2)s2 − 2δ2 + 3δ)

• Case D s
(

1 ≤ 1− 3−δ
3−2δ s2, s1 <

3−δ
3−2δ s2

)
:

xv =


[1− d2, d2, 0]

[1− d2, 0, d2]

w/ Pr = µDv

w/ Pr = 1− µDv
,x1 = [dv, 1− dv, 0],x2 = [dv, 0, 1− dv]

dv = sv −
δs2

3− 2δ

d2 = δ

3− 2δ s1 + (3− δ)
(3− 2δ)s2

µDv = 3
2

(−3 + 2δ)s1 + (3− δ)s2

δ(δs1 + (3− δ)s2)

It is tedious but straightforward to check that, if players play the proposal strategies in cases

A-D and these proposals pass, their continuation values are as follows:

• Case A

vv(s) = 1
1− δ −

2− δ
(3− δ)(1− δ)s1 −

1
(1− δ)s2 (A.1)

v1(s) = (3− 3d+ δ2)
(3− δ)2(1− δ)s1 + (3− δ)

(3− δ)2(1− δ)s2 (A.2)

v2(s) = (3− 2δ)
(3− δ)2(1− δ)s1 + (6− 5δ + δ2)

(3− δ)2(1− δ)s2 (A.3)
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• Case B

vv(s) = 1
(1− δ)(3− δ) −

(3− 4δ + δ2)
(3− 2δ)(1− δ)(3− δ)s2

v1(s) = (3δ − 4δ2 + δ3)
(3− δ)2(1− δ)(3− 2δ)s2 + (9− 15δ + 9δ2 − 2δ3)

(3− δ)2(1− δ)(3− 2δ)

v2(s) = (3− 2δ)
(3− δ)2(1− δ) + (3− 4δ + δ2)

(3− δ)2(1− δ)s2

• Case C

vv(s) = 1
(1− δ)(3− δ) −

(3− 4δ + δ2)
(3− 2δ)(1− δ)(3− δ)s2

v1(s) = (−9 + 18δ − 11δ2 + 2δ3)
2δ(3− δ)(1− δ)(3− 2δ) s1 + (9− 15δ + 7δ2 − δ3)

2δ(3− δ)(1− δ)(3− 2δ)s2 + 6δ − 7δ2 + 2δ3

2δ(3− δ)(1− δ)(3− 2δ)

v2(s) = (9− 18δ + 11δ2 − 2δ3)
2δ(3− δ)(1− δ)(3− 2δ)s1 + (−9 + 21δ − 15δ2 + 3δ3)

2δ(3− δ)(1− δ)(3− 2δ) s2 + 6δ − 7δ2 + 2δ3

2δ(3− δ)(1− δ)(3− 2δ)

• Case D

vv(s) = 1
1− δ −

2− δ
(3− δ)(1− δ)s1 −

1
(1− ∂)s2

v1(s) = (−3 + 6δ − 2δ2)
2δ(3− δ)(1− δ)s1 + 1

2δ(1− δ)s2

v2(s) = (3− 2δ)
2δ(3− δ)(1− δ)s1 + (−3 + 7d− 2δ2)

2δ(1− δ)(3− δ)s2

On the basis of these continuation values, we obtain players’ expected utility functions, Ui(x) =

xi + δVi(x). The reported demands are in accordance with Definition 2. In particular, di, i = 1, 2
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and dv can be easily derived from the following equations:

si + δVi(s) = di + δVi([1− di, di, 0])

sv + δVv(s) = dv + δVv([dv, 1− dv, 0])

The demands for non-veto player 1 are never part of a proposed allocation and have therefore

been omitted in the statement of the equilibrium proposal strategies above but we will use them in

the remainder of the proof. In cases C and D, the mixing of the veto player is such that d1 = d2.

In the other two cases, d1 is as follows:

• Case A
(
s1 ≤ 1− 3−δ

3−2δ s2, s1 ≥ 3−δ
3−2δ s2

)
:

d1 = (4δ2 − 12δ + 9)
(3− 2δ)2 s1 + (3δ − δ2)

(3− 2δ)2 s2

• Case B
(
s1 > 1− 3−δ

3−2δ s2, s1 ≥ 27−27δ+3δ2+δ3

(3−2δ)(3−δ)2 s2 + δ2

(3−δ)2

)
:

d1 = (27− 63δ + 51δ2 − 17δ3 + 2δ4)
(3− 2δ)3 s1 + (3δ2 − 4δ3 + δ4)

(3− 2δ)3 s2 + 9δ − 15δ2 + 9δ3 − 2δ4

(3− 2δ)3

Furthermore, all reported non-degenerate mixing probabilities are well defined. On the basis

of the expected utility functions, Ui, we can then construct equilibrium voting strategies, A∗i (s) =

{x|Ui(x) ≥ Ui(s)}, i = v, 1, 2, for all s ∈ ∆. These voting strategies obviously satisfy equilibrium

condition (2.4). Then, to prove Proposition 1 it suffices to verify equilibrium condition (2.5). To do

so, we make use of five lemmas. We seek to establish an equilibrium with proposals that allocate

a positive amount to at most one non-veto player. Lemma 1 shows that the expected utility
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function for these proposals satisfies the following continuity and monotonicity properties. Lemma

2 proves that minimal winning coalition proposals are optimal among the set of feasible proposals

in ∆. Lemma 3 establishes that the equilibrium demands of the veto player and one non-veto player

sum to less than unity and that the demands of the two non-veto players are (weakly) ordered in

accordance to the ordering of allocations under the state s. Lemma 4 then establishes that the

proposal strategies for legislators i = v, 1, 2 in Proposition 1 maximize Ui(x) over all x ∈W (s)∩∆;

these proposals would then maximize Ui(x) over all x ∈ W (s) if there is no x ∈ W (s) ∩∆/∆ that

accrues i higher utility. We establish that this is indeed the case in Lemma 5.

Lemma 1. Consider a symmetric Markov Perfect strategy profile with expected utility Ui(s),

s ∈ ∆, determined by the continuation values in equations (A.1)-(A.3). Then, for all x = (x, 1−

x, 0) ∈ ∆ (a) Ui(x), i = v, 1, 2 is continuous and differentiable with respect to x, (b) Uv(x) increases

with x, while U1(s) and U2(s) does not increase with x.

Proof. An allocation x = (x, 1 − x, 0) ∈ ∆ belongs to case A in Proposition 2. Therefore we can

write Ui(x) = xi + δVi(x) as follows:

Uv(x) = x+ δ

1− δ −
δ(2− δ)

(3− δ)(1− δ) (1− x) (A.4)

U1(x) = 1− x+ δ
(3− 3d+ δ2)

(3− δ)2(1− δ) (1− x) (A.5)

U2(x) = δ
(3− 2δ)

(3− δ)2(1− δ) (1− x) (A.6)

Ui(x) is linear and continuous in x for i = v, 1, establishing part (a) of the Lemma. Regarding part
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(b):

∂Uv(x)
∂x

= 1 + δ(2− δ)
(3− δ)(1− δ) > 0

∂U1(x)
∂x

= −
(

1 + δ
(3− 3d+ δ2)

(3− δ)2(1− δ)

)
< 0

∂U2(x)
∂x

= −δ (3− 2δ)
(3− δ)2(1− δ) < 0

∂Uv(x)
∂x > 0 for any δ ∈ [0, 1), since both the numerator and the denominator of δ(2−δ)

(3−δ)(1−δ) are positive

for any δ ∈ [0, 1); ∂U1(x)
∂x < 0 for any δ ∈ [0, 1), since both the numerator and the denominator of

(3−3d+δ2)
(3−δ)2(1−δ) are positive for any δ ∈ [0, 1); and ∂U2(x)

∂x < 0 for any δ ∈ [0, 1), since both the numerator

and the denominator of (3−2δ)
(3−δ)2(1−δ) are positive for any δ ∈ [0, 1).

By the definition of demands and the monotonicity established in part (b) of Lemma 1 we

immediately deduce:

Lemma 2. Consider a symmetric Markov Perfect strategy profile with expected utility, Ui(x),

for x ∈ ∆, i = v, 1, 2, given by (A.4)-(A.6). Every minimal winning coalition proposal of the veto

player x(v, i, di(s)), i = {1, 2} is such that x(v, i, di(s)) ∈ arg max{Uv(x)|x ∈ ∆, Ui(x) ≥ Ui(s)};

similarly, every minimal winning coalition proposal of a non-veto player x(i, v, dv(s)), i = {1, 2} is

such that x(i, v, di(s)) ∈ arg max{Ui(x)|x ∈ ∆, Uv(x) ≥ Uv(s)}.

Lemma 3. For all s ∈ ∆, the demands reported in Proposition 1 are such that (a) si ≥ sj ⇒

di ≥ dj, i.j = 1, 2, and (b) di + dv ≤ 1, i = 1, 2.

Proof. Part (a). Since we focus on the half of the simplex in which s1 ≥ s2, we want to prove that

d1 ≥ d2. In cases C and D the mixed strategy of the veto player is such that d1 = d2, so we focus

on cases A and B.



118

• Case A:

(4δ2 − 12δ + 9)
(3− 2δ)2 s1 + (3δ − δ2)

(3− 2δ)2 s2 ≥ δ

3− 2δ s1 + (3− δ)
(3− 2δ)s2

s1 ≥ 3− δ
3− 2δ s2

• Case B:

(27− 63δ + 51δ2 − 17δ3 + 2δ4)
(3− 2δ)3 s1 + (3δ2 − 4δ3 + δ4)

(3− 2δ)3 s2 + 9δ − 15δ2 + 9δ3 − 2δ4

(3− 2δ)3

≥ 9− 12δ + 3δ2

(3− 2δ)2 s2 + δ

(3− 2δ)

s1 ≥ 27− 27δ + 3δ2 + δ3

(3− 2δ)(3− δ)2 s2 + δ2

(3− δ)2

Part (b). Since we focus on the half of the simplex in which s1 ≥ s2, by part (a) of the same

Lemma, it is enough to prove that d1 + dv ≤ 1.

• Case A:

sv −
δs2

(3− 2δ) + (4δ2 − 12δ + 9)
(3− 2δ)2 s1 + (3δ − δ2)

(3− 2δ)2 s2 ≤ 1

sv + s1 + δ2

(3− 2δ)2 s2 ≤ 1

which holds for any δ ∈ [0, 1), because sv + s1 + s2 = 1 and δ2

(3−2δ)2 ∈ [0, 1). To see this notice

that δ2

(3−2δ)2 is monotonically increasing in δ and is equal to 1 when δ = 1.

• Case B:

(27− 63δ + 51δ2 − 17δ3 + 2δ4)s1

(3− 2δ)3 + (3δ2 − 4δ3 + δ4)s2

(3− 2δ)3 + 9δ − 15δ2 + 9δ3 − 2δ4

(3− 2δ)3 ≤ 1
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Notice that (27−63δ+51δ2−17δ3+2δ4)
(3−2δ)3 ≥ (3δ2−4δ3+δ4)

(3−2δ)3 for any δ ∈ [0, 1), so the LHS has an upper

bound when s1 = 1 and s2 = 0. Therefore, we can prove the following inequality:

(27− 63δ + 51δ2 − 17δ3 + 2δ4)
(3− 2δ)3 + 9δ − 15δ2 + 9δ3 − 2δ4

(3− 2δ)3 ≤ 1

(3− 2δ)3

(3− 2δ)3 ≤ 1

• Case C:

9− 12δ + 3δ2

(3− 2δ)2 s2 + δ

(3− 2δ) ≤ 1

s2 ≤ 3− 2δ
3− δ

which holds for any δ ∈ [0, 1), since sv + s1 + s2 = 1 and 3−2δ
3−δ ≤ 1 for any δ ∈ [0, 1). To see this

notice that 3−2δ
3−δ is monotonically decreasing in δ and it is equal to 1 when δ = 0.

• Case D:

sv −
δs2

3− 2δ + δ

3− 2δ s1 + (3− δ)
(3− 2δ)s2 ≤ 1

sv + s2 + δ

3− 2δ s1 ≤ 1

which holds for any δ ∈ [0, 1) because sv + s1 + s2 = 1 and δ
3−2δ ∈ [0, 1). To see this notice that

δ
3−2δ is monotonically increasing in δ and is equal to 1 when δ = 1.

We now show that equilibrium proposals are optimal over feasible alternatives in ∆.

Lemma 4. µi[z|s] > 0⇒ z ∈ arg max{Ui(x)|x ∈W (s) ∩∆}, for all z, s ∈ ∆.

Proof. All equilibrium proposals take the form of minimal winning coalition proposals: x(v, j, dj(x))
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when the veto player is proposing and x(j, v, dv(x)) when a non-veto player is proposing. Also,

whenever µv[x(v, 1, d1)|s] > 0 and µv[x(v, 2, d2)|s] > 0, we have d1 = d2 so that Uv(x(v, 1, d1)) =

Uv(x(v, 2, d2)). Thus, in view of Lemma 2 it suffices to show that if µi[x(i, j, dj)|s] = 1, then

Ui(x(i, j, dj)) = Ui(x(i, h, dh)), h 6= i, j, i.e. proposer i has no incentive to coalesce with player h

instead of j. This is immediate for a non-veto player, since only coalescing with the veto player guar-

antees the possibility to change the state. To show that - for the veto player - if µv[x(v, j, dj)|s] = 1,

then Uv(x(v, j, dj)) = Uv(x(v, h, dh)), j 6= h, it suffices to show dh ≥ dj by part (b) of Lemma 1.

In Proposition 1 we have s1 ≥ s2, (by part (a) of Lemma 3) d1 ≥ d2, and when d1 6= d2, we have

µv[x(v, 1, d1)|s] = 0 which gives the desired result.

We conclude the proof by showing that optimum proposal strategies cannot belong in ∆/∆. In

particular, we show that if an alternative in ∆/∆ beats the status quo by majority rule, then for

any player i we can find another alternative in ∆ that is also majority preferred to the status quo

and improves i’s utility.

Lemma 5. Assume x ∈ W (s) ∩∆/∆; then for any i = v, 1, 2 there exists y ∈ W (s) ∩∆ such

that Ui(y) ≥ Ui(s).

Proof. Consider first the veto player, i = v. Let x ∈W (s)∩∆/∆. Consider first the case x ∈ A∗v(s).

Then, x is weakly preferred to s by v and at least one i, i = 1, 2. Now set y = x(v, j, dj(x)),

where dj(x) is the applicable demand from Proposition 1. We have Uj(x(v, j, dj(x))) ≥ Uj(x),

by the definition of demand. From part (b) of Lemma 3 have dv(x) + dj(x) ≤ 1 and as a result

xv(v, j, dj(x)) = 1− dj(x) ≥ dv(x); hence, Uv(x(v, j, dj(x))) ≥ Uv(x), which follows from the weak

monotonicity in part (b) of Lemma 1. Thus, y = x(v, j, dj(x)) ∈ W (s) (because is supported by v

and j), and we have completed the proof for this case. Now consider the case x 6∈ A∗v(s), i.e. Uv(s) >

Uv(x). Part (a) of Lemma 3 ensures that dv(s) + dj(s) ≤ 1, hence proposal y = x(v, j, dj(s)) has
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xv(v, j, dj(s)) = 1− dj(s) ≥ dv(s). Then Uv(y) ≥ Uv(s) > Uv(x), and y ∈W (s) ∩∆.

Now consider a non veto player, i = 1, 2. Let x ∈ W (s) ∩ ∆/∆. Consider first the case

x ∈ A∗i (s). Then, x is weakly preferred to s by v and (at least) i. Now set y = x(i, v, dv(x)),

where dv(x) is the applicable demand from Proposition 1. We have Uv(x(i, v, dv(x))) ≥ Uv(x),

by the definition of demand. From part (b) of Lemma 3 have dv(x) + di(x) ≤ 1 and as a result

xi(i, v, dv(x)) = 1 − dv(x) ≥ di(x); hence, Ui(x(i, v, dv(x))) ≥ Ui(x), which follows from the

weak monotonicity in part (b) of Lemma 1. Thus, y = x(i, v, dv(x)) ∈ W (s) ∩ ∆ (because is

supported by v and i), and we have completed the proof for this case. Finally, consider the case

x 6∈ A∗i (s), i.e. Ui(s) > Ui(x). Part (a) of Lemma 3 ensures that dv(s) + di(s) ≤ 1, hence

proposal y = x(i, v, dv(s)) has xi(i, v, dv(s)) = 1− dv(s) ≥ di(s). Then Ui(y) ≥ Ui(s) > Ui(x), and

y ∈W (s) ∩∆, which completes the proof.

As a result of Lemmas 4 and 5, equilibrium proposals are optima over the entire range of

feasible alternatives. It then follows that proposal strategies in Cases A-D of Proposition 2 satisfy

the equilibrium condition (2.5) which completes the proof. �

Proof of Proposition 4

The result of Proposition 4 follows once we establish that the proposal strategies in the equilibrium

from Proposition 1 are weakly continuous in the status quo s, i.e. that in equilibrium a small change

in the status quo implies a small change in proposal strategies and, by extension, to the equilibrium

transition probabilities.

Lemma 6.The equilibrium proposal strategies µ∗i in the proof of Proposition 1 are such that for

every s ∈ ∆ and every sequence sn ∈ ∆ with sn → s, µ∗i [·|sn] converges weakly to µ∗i [·|s].

Proof: The equilibrium is such that µ∗i [·|s] i = 1, 2 has mass on only one point x(i, v, dv(s))
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and that µ∗v[·|s] has mass on at most two points x(v, 1, d1(s)), and x(v, 2, d2(s)). It suffices to show

that these proposals (when played with positive probability) and associated mixing probabilities are

continuous in s (see Kalandrakis (2004) and Billingsley (1999)). Continuity holds in the interior

of Cases A-D in Proposition 1, so it remains to check the boundaries of these cases. In order

to distinguish the various applicable functional forms we shall write dwi and µwv [·|s] where w =

{A,B,C,D} identifies the case for which the respective functional form applies.

• Boundary of Cases A and B: at the boundary (as in the interior of the two cases) we have

µAv [x(v, 1, d2)|s] = µBv [x(v, 1, d2)|s] = 0; at the boundary we have s1 = 1− 3−δ
3−2δ s2, then:

dAv = dBv = 0

dA1 = dB1 = 1− 9− 12δ − 3δ2

(3− 2δ)2 s2

dA2 = dB2 = 9− 12δ − 3δ2

(3− 2δ)2 s2 + δ

(3− 2δ)

• Boundary of Cases B and C: at the boundary we have s1 = 27−27δ+3δ2+δ3

(3−2δ)(3−δ)2 s2 + δ2

(3−δ)2 ; then:

µBv [x(v, 1, d2)|s] = µCv [x(v, 1, d2)|s] = 0

dBv = dCv = 0

dB1 = dC1 = 9− 12δ + 3δ2

(3− 2δ)2 s2 + δ

(3− 2δ)

dB2 = dC2 = 9− 12δ − 3δ2

(3− 2δ)2 s2 + δ

(3− 2δ)
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• Boundary of Cases C and D: at the boundary we have s1 = 1− 3−δ
3−2δ s2; then:

µCv [x(v, 1, d2)|s] = µDv [x(v, 1, d2)|s] = 3
2

(−3 + 2δ)((−2 + 2s2)δ + 3− 6s2)
δ((3s2 − 2)δ2 + (−12s2 + 3)δ + 9s2)

dCv = dDv = 0

dC1 = dD1 = dC2 = dD2 = 9− 12δ − 3δ2

(3− 2δ)2 s2 + δ

(3− 2δ)

• Boundary of Cases D and A: at the boundary we have s1 = 3−δ
3−2δ s2; then:

µDv [x(v, 1, d2)|s] = µAv [x(v, 1, d2)|s] = 0

dDv = dAv = sv −
δs2

3− 2δ

dD1 = dA1 = dD2 = dA2 = (3− δ)2

(3− 2δ)2 s2

�

Proof of Proposition 5

As before, we focus on the allocations in which s1 ≥ s2. The other cases are symmetric. Consider

the following equilibrium proposal strategies (all supported by a minimal winning coalition) and

demands (as defined in the proof of Proposition 1):

• CASE A: s1 ≥ 1− 2−δ(1−pv)
2−δ(1+pv)s2; s1 ≥ 2pvδ

2+10δ−8−3δ2−2pvδ+p2
vδ

2

(2−δ(1+pv))(1−pv)δ s2 + 4−4pvδ−4δ+δ2+p2
vδ

2+2pvδ
2

(2−δ(1+pv))(1−pv)δ

xv = [1− dA2 , 0, dA2 ],x1 = [dAv , 1− dAv , 0],x2 = [dAv , 0, 1− dAv ]

dAv = sv −
2pvδ

2− (1 + pv)δ s2

dA2 = δ(1− pv)
2− δ(1 + pv)s1 + 2− δ(1− pv)

2− δ(1 + pv)s2

dA1 = −4pvδ + 4 + 2pvδ2 − 4δ + p2
vδ

2 + δ2

(2− δ(1 + pv))2 s1 + −p
2
vδ

2 − δ2 − 2pvδ + 2δ + 2pvδ2

(2− δ(1 + pv))2 s2
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• CASE B:

s1 < 1− 2−δ(1−pv)
2−δ;(1+pv)s2; s1 ≥ −2δ3p2

v+p3
vδ

3+pvδ
3+δ2+p2

vδ
2−2pvδ

2−4δ+4
(pvδ−δ+2)(pvδ−1)(−2+pv+pvδ) s2 + −pvδ

3−2p2
vδ

2+p3
vδ

3+2pvδ
2

(pvδ−δ+2)(pvδ−1)(−2+pv+pvδ)

xv = [1− dB2 , 0, dB2 ],x1 = [dBv , 1− dBv , 0],x2 = [dBv , 0, 1− dBv ]

dBv = 0

dB2 = −2pvδ2 + 2δ2 + 2pvδ − 6δ + 4
(2− δ(1 + pv))2 s2 + p2

vδ
2 − δ2 − 2pvδ + 2δ
(2− δ(1 + pv))2

dB1 = −16δ + 10δ2 + 2pvδ4 + 2p3
vδ

3 − 10pvδ3 − 2p2
vδ

2

(2− δ(1 + pv))3 s1 + ...

+16pvδ2 + 2δ3p2
v + 8− 2δ3 − 2p3

vδ
4 − 8pvδ

(2− δ(1 + pv))3 s1 + ...

+2pvδ2 − 4p2
vδ

2 − 6pvδ3 − 4p2
vδ

4 + 4pvδ2 + 8p2
vδ

3 − 2p3
vδ

3 − 2p3
vδ

4

(2− δ(1 + pv))3 s2 + ...

+4δ − 4pvδ − 2pvδ4 − 4δ2 − 5δ3p2
v + 7pvδ3 − 3p3

vδ
3 + δ3 + 8p2

vδ
2 − 4pvδ2 + 2p3

vδ
4

(2− δ(1 + pv))3

• CASE C:

s1 < 1− 2−δ(1−pv)
2−δ;(1+pv)s2; s1 <

−2δ3p2
v+p3

vδ
3+pvδ

3+δ2+p2
vδ

2−2pvδ
2−4δ+4

(pvδ−δ+2)(pvδ−1)(−2+pv+pvδ) s2 + −pvδ
3−2p2

vδ
2+p3

vδ
3+2pvδ

2

(pvδ−δ+2)(pvδ−1)(−2+pv+pvδ)

xv =

 [1− dC2 , dC2 , 0]

[1− dC2 , 0, dC2 ]

w/ Pr = µCv

w/ Pr = 1− µCv
,x1 = [dCv , 1− dCv , 0],x2 = [dCv , 0, 1− dCv ]

dCv = 0

dC1 = dC2 = −2pvδ2 + 2δ2 + 2pvδ − 6δ + 4
(2− δ(1 + pv))2 s2 + p2

vδ
2 − δ2 − 2pvδ + 2δ
(2− δ(1 + pv))2

µCv = (−3p2
vδ

2 + 3pvδ2 − 3δ − 3pvδ + 6)s1

2(−2 + δ + pvδ)δdC2
+ (3p2

vδ
2 − 3pvδ2 + 3δ + 3pvδ − 6)s2

2(−2 + δ + pvδ)δdC2
+ . . .

+δ2dC2 pv + δ2dC2 − 2δdC2
2(−2 + δ + pvδ)δdC2
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• CASE D: s1 ≥ 1− 2−δ(1−pv)
2−δ(1+pv)s2; s1 <

2pvδ
2+10δ−8−3δ2−2pvδ+p2

vδ
2

(2−δ(1+pv))(1−pv)δ s2 + 4−4pvδ−4δ+δ2+p2
vδ

2+2pvδ
2

(2−δ(1+pv))(1−pv)δ

xv =

 [1− dD2 , dD2 , 0]

[1− dD2 , 0, dD2 ]

w/ Pr = µDv

w/ Pr = 1− µDv
,x1 = [dDv , 1− dDv , 0],x2 = [dDv , 0, 1− dDv ]

dDv = sv −
2pvδ

2− (1 + pv)δ s2

dD1 = dD2 = δ(1− pv)
2− δ(1 + pv)s1 + 2− δ(1− pv)

2− δ(1 + pv)s2

µDv = (−3p2
vδ

2 + 3pvδ2 − 3δ − 3pvδ + 6)s1

2(−2 + δ + pvδ)δdD2
+ (3p2

vδ
2 − 3pvδ2 + 3δ + 3pvδ − 6)s2

2(−2 + δ + pvδ)δdD2
+ . . .

+δ2dD2 pv + δ2dD2 − 2δdD2
2(−2 + δ + pvδ)δdD2

where µCv and µDv are the probabilities that the veto player coalesces with non-veto 1 in cases

C, and D respectively. These are well defined probability in [0,1] such that dC1 = dC2 and dD1 = dD2 ,

or such that s1 + δv1(s, µv, d2) = s2 + δv2(s, µv, d2) .

It is tedious but straightforward to show that these equilibrium strategies and the associated

value functions are part of a symmetric MPE, using the same strategy employed in the proof of

Proposition 1. �

Proof of Proposition 6

In this case an allocation is s = [sv1, sv2, s1, s2], where svi, i = 1, 2, denote the share to a veto

player and sj , j = 1, 2, denote the share to a non-veto player. In the remainder of the proof, we

focus on the allocations in which s1 ≥ s2 and sv1 ≥ sv2. The other cases are symmetric. The

equilibrium I characterize is similar to the one from Proposition 1 and the steps behind the proof

are the same. In particular, we partition the state space into regions where the veto proposer mixes

or not between coalition partners and regions where the “demand” of a veto player to the proposal

of a non-veto (as defined in the proof of Proposition 1) is bounded at zero. Since there are two
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veto players we have 6 regions, 3 where the veto proposers do not mix and three where they do (in

order to keep the demand of the two non-veto players equal). The three regions with no mixing

are characterized by A) dv1 ≥ dv2 > 0; B) dv1 > 0 and dv2 = 0; and C) dv1 = dv2 = 0. In these

regions, a veto proposer coalesces with non-veto player 2 with probability 1. The remaining three

regions are analogous with the difference that the veto proposer coalesces with non-veto player 1

with probability µ ∈ [0, 1].

Consider the following equilibrium proposal strategies (all supported by a minimal winning

coalition) and demands (as defined in the proof of Proposition 1):

• CASE A: sv1 ≥ sv2 ≥ δ(δ3−36δ2+72δ−32)
2(3δ2−10δ+8)(δ2+6δ−8)s2; s1 ≥ 2(4−5δ+δ2)

δ2−10δ+8 s2

xv1 = [1− dAv2 − dA2 , dAv2, 0, dA2 ],xv2 = [dAv1, 1− dAv1 − dA2 , 0, dA2 ]

x1 = [dAv1, d
A
v2, 1− dAv1 − dAv2, 0],x2 = [dAv1, d

A
v2, 0, 1− dAv1 − dAv2]

dAv1(v) = sv1 + 4δ(1− δ)
16− 16δ + 3δ2 s1 + (3δ5 − 9δ4 + 72δ3 − 248δ2 + 320δ − 128)δ

(−4 + 3δ)(δ − 4)(δ2 + 6δ − 8)(δ − 2) s2

dAv1(nv) = sv1 −
δ(δ3 − 36δ2 + 72δ − 32)

2(3δ2 − 10δ + 8)(δ2 + 6δ − 8)s2

dAv2(v) = sv2 + 4δ(1− δ)
16− 16δ + 3δ2 s1 + (3δ5 − 9δ4 + 72δ3 − 248δ2 + 320δ − 128)δ

(−4 + 3δ)(δ − 4)(δ2 + 6δ − 8)(δ − 2) s2

dAv2(nv) = sv2 −
δ(δ3 − 36δ2 + 72δ − 32)

2(3δ2 − 10δ + 8)(δ2 + 6δ − 8)s2

dA2 = δ

4− 3δ s1 + 4δ3 + 48δ − 18δ2 − 32
3δ3 + 14δ2 − 48δ + 32s2

dA1 = −δ
7 − 62δ5 + 5δ6 − 72δ4 + 736δ3 + 3072δ − 3264δ2 − 1024

(32− 56δ + 32δ2 − 7δ3 + δ4)(−4 + 3δ)(δ2 + 6δ − 8) s1 + ...

− 4δ7 − 752δ4 − 58δ6 + 330δ5 − 256δ2 + 736δ3

(32− 56δ + 32δ2 − 7δ3 + δ4)(−4 + 3δ)(δ2 + 6δ − 8)s2
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• CASE B: sv1 ≥ δ(δ3−36δ2+72δ−32)
2(3δ2−10δ+8)(δ2+6δ−8)s2 ≥ sv2; s1 ≥ 2(4−5δ+δ2)

δ2−10δ+8 s2

xv1 = [1− dBv2 − dB2 , dBv2, 0, dB2 ],xv2 = [dBv1, 1− dBv1 − dB2 , 0, dB2 ]

x1 = [dBv1, d
B
v2, 1− dBv1 − dBv2, 0],x2 = [dBv1, d

B
v2, 0, 1− dBv1 − dBv2]

dBv1(v) = sv1 + δ(18δ6 − 428δ4 + 816δ3 + 384δ2 − 1792δ + 1024)
4(−4 + 3δ)2(δ + 4)(δ − 2) s1 + ...

+δ(21δ6 − 80δ5 − 108δ4 + 1296δ3 − 3136δ2 + 3072δ − 1024)
4(−4 + 3δ)2(δ + 4)(δ − 2) s2 + ...

+δ(18δ6 − 284δ4 + 864δ3 − 1088δ2 + 512δ)
4(−4 + 3δ)2(δ + 4)(δ − 2) sv1 + . . .

+δ(284δ4 + 1088δ2 − 512δ − 18δ6 − 864δ3)
4(−4 + 3δ)2(δ + 4)(δ − 2)

dBv1(nv) = sv1 −
δ(−22δ2 − 32 + 48δ + 3δ3)
(−4 + 3δ)2(δ + 4)(δ − 2) s1 −

(−8δ + 2δ2 + 2δ3)δ
(−4 + 3δ)2(δ + 4)(δ − 2)s2 + ...

− (−22δ2 − 32 + 48δ + 3δ3)δ
(−4 + 3δ)2(δ + 4)(δ − 2) sv1 −

(32− 48δ − 3δ3 + 22δ2)δ
(−4 + 3δ)2(δ + 4)(δ − 2)

dBv2(v) = sv2 + δ(18δ6 − 428δ4 + 816δ3 + 384δ2 − 1792δ + 1024)
4(−4 + 3δ)2(δ + 4)(δ − 2) s1 + ...

δ(21δ6 − 80δ5 − 108δ4 + 1296δ3 − 3136δ2 + 3072δ − 1024)
4(−4 + 3δ)2(δ + 4)(δ − 2) s2 + ...

+δ(18δ6 − 284δ4 + 864δ3 − 1088δ2 + 512δ)
4(−4 + 3δ)2(δ + 4)(δ − 2) sv2 + . . .

+δ(284δ4 + 1088δ2 − 512δ − 18δ6 − 864δ3)
4(−4 + 3δ)2(δ + 4)(δ − 2)

dBv2(nv) = 0

dB2 = −16δ2 − 5δ4 + 6δ5 − 16δ3

(−4 + 3δ)2(δ + 4) s1 −
−576δ + 400δ2 + 256− 25δ4 + 7δ5 − 64δ3

(−4 + 3δ)2(δ + 4) ss + ...

−14δ4 + 6δ5 − 28δ3 + 96δ2 − 64δ
(−4 + 3δ)2(δ + 4) sv1 −

−6δ5 + 64δ + 14δ4 − 96δ2 + 28δ3

(−4 + 3δ)2(δ + 4)

dB1 = − 44544δ2 + 8320δ4 + 784δ5 + 8192− 30720δ
(32− 56δ + 32δ2 − 7δ3 + δ4)(δ + 4)(−4 + 3δ)3 s1 + ...

− −30336δ3 − 47δ8 + 6δ9 − 1016δ6 + 265δ7

(32− 56δ + 32δ2 − 7δ3 + δ4)(δ + 4)(−4 + 3δ)3 s1 + ...

−−2048δ + 8192δ2 + 10624δ4 − 4160δ5 − 13184δ3 − 74δ8 + 7δ9 + 412δ6 + 227δ7

(32− 56δ + 32δ2 − 7δ3 + δ4)(δ + 4)(−4 + 3δ)3 s2 + ...

−−492δ6 + 4640δ4 − 656δ5 − 8320δ3 + 6656δ2 − 2048δ − 56δ8 + 6δ9 + 262δ7

(32− 56δ + 32δ2 − 7δ3 + δ4)(δ + 4)(−4 + 3δ)3 sv1 + ...

−−6δ9 + 2048δ + 8320δ3 + 492δ6 − 6656δ2 − 4640δ4 − 262δ7 + 656δ5 + 56δ8

(32− 56δ + 32δ2 − 7δ3 + δ4)(δ + 4)(−4 + 3δ)3
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• CASE C: δ(δ3−36δ2+72δ−32)
2(3δ2−10δ+8)(δ2+6δ−8)s2 ≥ sv1 ≥ sv2; s1 ≥ 2(4−5δ+δ2)

δ2−10δ+8 s2

xv1 = [1− dCv2 − dC2 , dCv2, 0, dC2 ],xv2 = [dCv1, 1− dCv1 − dC2 , 0, dC2 ]

x1 = [dCv1, d
C
v2, 1− dCv1 − dCv2, 0],x2 = [dCv1, d

C
v2, 0, 1− dCv1 − dCv2]

dCv1(v) = sv1

(
1 + δ(−36δ3 + 240δ2 − 448δ + 256)

8(−4 + 3δ)2(δ − 4)

)
+ δ(9δ4 − 54δ3 + 8δ2 + 160δ − 128)

8(−4 + 3δ)2(δ − 4) s1 + ...

δ(12δ4 − 134δ3 + 368δ2 − 384δ + 128)
8(−4 + 3δ)2(δ − 4) s2 + δ(−9δ4 − 104δ2 + 54δ3 + 64δ)

8(−4 + 3δ)2(δ − 4)

dCv1(nv) = 0

dCv2(v) = sv2

(
1 + δ(−36δ3 + 240δ2 − 448δ + 256)

8(−4 + 3δ)2(δ − 4)

)
+ δ(9δ4 − 54δ3 + 8δ2 + 160δ − 128)

8(−4 + 3δ)2(δ − 4) s1 + ...

δ(12δ4 − 134δ3 + 368δ2 − 384δ + 128)
8(−4 + 3δ)2(δ − 4) s2 + δ(−9δ4 − 104δ2 + 54δ3 + 64δ)

8(−4 + 3δ)2(δ − 4)

dCv2(nv) = 0

dC2 = − 3δ3 − 4δ2

2(−4 + 3δ)2 s1 −
4δ3 − 28δ2 + 56δ − 32

2(−4 + 3δ)2 s2 −
−3δ3 + 10δ2 − 8δ

2(−4 + 3δ)2

dC1 = −3δ7 − 1024− 4160δ2 + 2544δ3 − 824δ4 + 3328δ − 25δ6 + 160δ5

2(−4 + 3δ)2(32− 56δ + 32δ2 − 7δ3 + δ4) s1 + ...

−4δ7 − 56δ6 + 308δ5 + 256δ − 896δ2 + 1232δ3 − 848δ4

2(−4 + 3δ)(32− 56δ + 32δ2 − 7δ3 + δ4)2 s2 + ...

−−256δ + 768δ2 + 544δ4 − 174δ5 + 31δ6 − 3δ7 − 912δ3

2(−4 + 3δ)2(32− 56δ + 32δ2 − 7δ3 + δ4)
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• CASE D: sv1 ≥ sv2 ≥ δ(δ3−36δ2+72δ−32)
2(3δ2−10δ+8)(δ2+6δ−8)s2; s1 <

2(4−5δ+δ2)
δ2−10δ+8 s2

xv1 =

 [1− dD2 − dDv2, d
D
v2, d

D
2 , 0]

[1− dD2 − dDv2, d
D
v2, 0, dD2 ]

w/ Pr = µDv

w/ Pr = 1− µDv

xv2 =

 [dDv1, 1− dD2 − dDv1, d
D
2 , 0]

[dDv1, 1− dD2 − dDv1, 0, dD2 ]

w/ Pr = µDv

w/ Pr = 1− µDv

x1 = [dDv1, d
D
v2, 1− dDv1 − dDv2, 0],x2 = [dDv1, d

D
v2, 0, 1− dDv1 − dDv2]

dDv1 = dAv1

dDv2 = dAv2

dD1 = dD2 = dA2

• CASE E: sv1 ≥ δ(δ3−36δ2+72δ−32)
2(3δ2−10δ+8)(δ2+6δ−8)s2 ≥ sv2; s1 <

2(4−5δ+δ2)
δ2−10δ+8 s2

xv1 =

 [1− dC2 − dCv2, d
C
v2, d

C
2 , 0]

[1− dC2 − dCv2, d
C
v2, 0, dC2 ]

w/ Pr = µEv

w/ Pr = 1− µEv

xv2 =

 [dCv1, 1− dC2 − dCv1, d
C
2 , 0]

[dCv1, 1− dC2 − dCv1, 0, dC2 ]

w/ Pr = µEv

w/ Pr = 1− µEv

x1 = [dAv1, d
A
v2, 1− dAv1 − dAv2, 0],x2 = [dAv1, d

A
v2, 0, 1− dAv1 − dAv2]

dEv1 = dBv1

dEv2 = dBv2

dC1 = dC2 = dB2
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• CASE F: δ(δ3−36δ2+72δ−32)
2(3δ2−10δ+8)(δ2+6δ−8)s2 ≥ sv1 ≥ sv2; s1 <

2(4−5δ+δ2)
δ2−10δ+8 s2

xv1 =

 [1− dF2 − dFv2, d
F
v2, d

F
2 , 0]

[1− dF2 − dFv2, d
F
v2, 0, dF2 ]

w/ Pr = µFv

w/ Pr = 1− µFv

xv2 =

 [dFv1, 1− dF2 − dFv1, d
F
2 , 0]

[dFv1, 1− dF2 − dFv1, 0, dF2 ]

w/ Pr = µFv

w/ Pr = 1− µFv

x1 = [dFv1, d
F
v2, 1− dFv1 − dFv2, 0]

x2 = [dFv1, d
F
v2, 0, 1− dFv1 − dFv2]

dFv1 = dCv1

dFv2 = dCv2

dF1 = dF2 = dC2

where µJv ,is the probability that a veto proposer coalesces with non-veto 1 in case J , dJvi(v) is the

demand of veto player i when the proposer is the other veto in case J , and dJvi(nv) is the demand of

veto player i when the proposer is a non-veto in case J . Notice that µJv are well defined probability in

[0,1] such that di1 = di2, i = D,E, F , or such that s1 +δv1(s, µv, d2) = s2 +δv2(s, µv, d2) .It is tedious

but straightforward to show that these equilibrium strategies and the associated value functions

are part of a symmetric MPE, using the same strategy employed in the proof of Proposition 1. In

particular, the crucial steps will be 1) showing that in the absorbing set where one non-veto player

receives zero, the expected utility of all agents are weakly increasing in their current allocation

(the main passage in proving that the proposed proposals are optimal among all minimal winning

coalition proposal), and 2) showing that the sum of the demands of a minimal winning coalition

is always weakly smaller than 1 (meaning that there always exists a minimal winning coalition

proposal that makes the proposer at least as well off as he is in a status quo where everyone has a



131

positive share). �

Proof of Proposition 7

By assumption, we are restricting the set of possible legislative outcomes to allocations on the edges

of the simplex, i.e. to s ∈ ∆2. I focus on allocations where s1 ≥ s2 ≥ s3 = 0 (the other cases being

symmetric). Since the endowment is 1 and s3 = 0, we can reduce the problem to one dimension

replacing s2 = 1− s1 and focusing on allocations where s1 ≥ 1/2. Consider the proposal and voting

strategies that would be part of an equilibrium with perfectly impatient agents: each agent, when

proposing, tries to maximize his current allocation (i.e. he proposes the “acceptable” allocation,

x ∈ W (s), that give him the greatest share) and each agent votes yes to any proposal that gives

him as much as he gets in the status quo. I want to show that these strategies and the associated

value functions are part of an equilibrium even when agents are patient. First of all, consider the

allocations in the absorbing set s ∈ ∆1 where one agent gets the whole dollar. Denote with V 0 the

continuation value from an allocation s ∈ ∆1 where the agent gets nothing, and V 1 the continuation

value from an allocation s ∈ ∆1 where the agent gets the whole dollar. We can derive V 0 and V 1,

using the transition probabilities discussed in Section 5.3:

V 1 = 5
9(1 + δV 1) + 4

9(0 + δV 0)

V 0 = 7
9(0 + δV 0) + 2

9(1 + δV 1)

=⇒ V 1 = 5− 3δ
3(3− 4δ + δ2)

=⇒ V 0 = 2
3(3− 4δ + δ2)

Using these continuation values, the probability of being selected as veto and as proposer, and
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the conjectured strategies discussed in Section 5.3, we can derive the continuation values for any

allocation s ∈ ∆2. It is tedious but straightforward to verify that the value functions are as follows:

• CASE A: s1 ≥ 134δ4+7371δ2−1665δ3+6561−12393δ
27(δ2+3−4δ)(8δ2−99δ+162)

vA1 (s) = − −4374δ + 2790δ2 + 39δ4 + 2187− 642δ3

3(δ − 1)(δ − 3)(13δ3 − 207δ2 + 729δ − 729)s1 + . . .

− 1458− 100δ3 − 1620δ + 630δ2

3(δ − 1)(δ − 3)(13δ3 − 207δ2 + 729δ − 729)

vA2 (s) = 39δ4 − 696δ3 − 5508δ + 2916 + 3249δ2

3(δ − 1)(δ − 3)(13δ3 − 207δ2 + 729δ − 729)s1 + . . .

−39δ4 − 4374 + 7047δ + 743δ3 − 3753δ2

3(δ − 1)(δ − 3)(13δ3 − 207δ2 + 729δ − 729)

vA3 (s) = −108δ2 + 81δ + 27δ3

3(δ − 1)(δ − 3)(13δ3 − 207δ2 + 729δ − 729)s1 + . . .

+ −85δ3 + 243δ + 243δ2 − 729
3(δ − 1)(δ − 3)(13δ3 − 207δ2 + 729δ − 729)

dA1 = 35δ4 − 1998δ3 + 8424δ2 − 13122δ + 6561
81(δ2 + 3− 4δ)(δ2 − 15δ + 27) s1 + −53δ4 + 126δ3 − 81δ2

81(δ2 + 3− 4δ)(δ2 − 15δ + 27)

dA2 = s2

dA3 = 0

• CASE B: s1 <
134δ4+7371δ2−1665δ3+6561−12393δ

27(δ2+3−4δ)(8δ2−99δ+162)

vB1 (s) = −24δ4 − 393δ3 + 1746δ2 − 2835δ + 1458
3(δ − 1)(δ − 3)δ(8δ2 − 99δ + 162) s1 −

−10δ3 − 207δ2 − 729 + 810δ
3(δ − 1)(δ − 3)δ(8δ2 − 99δ + 162)

vB2 (s) = 24δ4 − 393δ3 + 1746δ2 − 2835δ + 1458
3(δ − 1)(δ − 3)δ(8δ2 − 99δ + 162) s1 + −24δ4 + 403δ3 − 1539δ2 + 2025δ − 729

3(δ − 1)(δ − 3)δ(8δ2 − 99δ + 162)

vB3 (s) = − 2(7δ2 − 27)
(δ − 1)(δ − 3)δ(8δ2 − 99δ + 162)

µB3 = −216δ4 − 3537δ3 + 15714δ2 − 25515δ + 13122
2(52δ3 + 207δ2 − 972δ + 729)δ s1 + . . .

−−134δ4 + 1665δ3 − 7371δ2 + 12393δ − 6561
2(52δ3 + 207δ2 − 972δ + 729)δ

dB1 = dB2 = s2

dB3 = 0
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where µB3 is the probability that legislator 3 chooses legislator 1 as coalition partner when

he is both the proposer and the veto player. The difference between Case A and Case B lies in

whether the legislator who receives zero in the status quo mixes between coalition partners or not

(when he is both the proposer and the veto player). As discussed in Section 5.3, when the other two

legislators have similar allocations, coalescing always with the “poorer” one would not constitute an

equilibrium because, for some states, the “richer” legislator would be “cheaper”. When legislator 3

uses pure strategies and always coalesces with legislator 2, legislator 1 demands more than legislator

2 as long as s2 ≤ d1 + δv2(1 − d1) (or s1 + δv1 = s2 + δv2). This gives us the boundary between

the two cases, s1 ≥ 134δ4+7371δ2−1665δ3+6561−12393δ
27(δ2+3−4δ)(8δ2−99δ+162) .

Lemma 7. Consider a symmetric Markov Perfect strategy profile with expected utility Ui(s),

s ∈ ∆2, determined by the continuation values above. Then, for all x = (x, 1 − x, 0) ∈ ∆2, U1(x)

does not decrease with x, while U2(x) does not increase with x.

Proof. Denote x̂ = 134δ4+7371δ2−1665δ3+6561−12393δ
27(δ2+3−4δ)(8δ2−99δ+162) . Then we have:

U1(x, 1− x, 0) =



1 + δ 5−3δ
3(3−4δ+δ2)

x+ δvA1 (s1 = x)

x+ δvB1 (s1 = x)

x+ δvB2 (s1 = 1− x)

x+ δvA2 (s1 = 1− x)

δ 2
3(3−4δ+δ2)

if x = 1

if x ∈ (x̂, 1)

if x ∈ (1/2, x̂)

if x ∈ (1− x̂, 1/2)

if x ∈ (0, 1− x̂)

if x = 0

Notice that we have ∂U1(x)
x > 0 for all pieces of the function and for any δ ∈ [0, 1). Symmetry

completes the proof for U2(x).
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The optimality of the conjectured proposal and voting strategies for states s ∈ ∆2 follows from

the monotonicity established in Lemma 6. �

Non-Markov Equilibria

I propose strategy profiles such that the initial allocation can be supported as the outcome of a

Subgame Perfect Nash Equilibrium (SPNE) and, thus, there is no convergence to full expropriation

by the veto player. This SPNE exists as long as the discount factor is high enough and the two

non-veto players receive enough. In particular, I want to prove that:

Proposition 8. For any s ∈ ∆ such that minj=1,2 sj ≥ 1/4 , there is a δ(s) such that for

δ > δ(s) the initial division of the dollar can be supported as the outcome of a Subgame Perfect

Nash Equilibrium of the game.

The idea behind the proof is the following: if a non-veto player accepts a proposal that expro-

priates the other non-veto player, we switch to a punishment phase in which we reverse to the MPE

characterized above. The discount factor needed to support this outcome depends on the share

granted to the two non-veto legislators at the beginning of the game: the lower the allocation an

agent receives in the initial status quo, the more profitable a deviation.

Proof. To support the initial allocation s0 as the outcome of a Subgame Perfect Nash Equilibrium,

employ the following strategy configuration:

1. whenever a member is recognized, he proposes the status quo allocation s0 and everyone

supports it;

2. if a proposer deviates by proposing z 6= s0, every non-veto player j votes against the proposal;

3. if a non-veto player j deviates by voting contrary to the strategies above, from the following
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period on we reverse to the MPE equilibrium proposal and voting strategies characterized in

Section 3.

The strategies for the punishment phase are clearly a SPNE as shown in the proof of Proposition

1 (MPE being one of the many SPNEs of this game). We need to show that, under certain conditions

on s0 and δ, the non-veto players have no profitable deviation from the equilibrium strategy on the

equilibrium path. The payoff to a non-veto player if she follows the equilibrium strategy is:

V jEQ(s) = sj
1− δ

The payoff to deviating and proposing or voting in favor an allocation z 6= s0 is given by:

V jDEV (x) = xj + δvjMPE(x)

where vjMPE(x) is the value function from the MPE characterized in the proof of Proposition 1.

The most profitable deviation when proposing is a proposal that assigns the whole dollar to oneself

(if this is in the acceptance set of the veto player). Similarly, the most profitable deviation when

voting is to accept a veto player’s proposal that assigns the whole dollar to oneself. In both cases

the expected utility from the deviation is as follows (assuming the deviator is agent 2):

V jDEV (0, 1, 0) = 1 + δ
3− 3δ + δ2

(3− δ)2(1− δ)

When is the payoff from the equilibrium strategies higher than the payoff from the most profitable
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deviation?

sj
1− δ ≥ 1 + δ

3− 3δ + δ2

(3− δ)2(1− δ)

sj ≥ (3− 2δ)2

(3− δ)2

Since this condition has to hold for both non-veto players, we conclude that an equilibrium

where the initial status quo is never changed can be supported by a SPNE if the following condition

holds:

min
i=1,2

s0
i ≥

(3− 2δ)2

(3− δ)2

The right-hand side is a linear and decreasing function of δ, and it is equal to 1 when δ = 0 and to

1/4 when δ = 1. This means that there exists a discount factor for which the proposed strategies

can support the initial status quo allocation forever, only as long both non-veto player have at least

1/4 of the dollar each at the beginning of the game. �
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Appendix B

Proofs of Chapter 2

Proof of Proposition 1

Let y∗R(δ, d, n) and y∗∗R (δ, d, n) be defined by (3.15). Since we are in a regular economy, we have

W/d > y∗∗R (δ, d, n). We first prove here that for any yo ∈ [y∗R(δ, d, n), y∗∗R (δ, d, n)], there is Markov

equilibrium with steady state equal to yo. Each yo is supported by a concave equilibrium with

investment function yR(g |yo ) described by (3.10), where

g2 = max
{

min
g≥0
{g |y (g |yo ) ≤W + (1− d)g } , y∗R(δ, d, n)

}
, (B.1)

g3 is defined by y
(
g3 |yo

)
= y∗∗R (d, n), and y(g) = y (g |yo ) is the the unique solution of (4.6) with

initial condition y (yoR |yoR ) = yo. This proves the “sufficiency” part of the statement. Then we

prove that the steady state must be in [y∗R(δ, d, n), y∗∗R (δ, d, n)]. This proves the “necessity” part of

the statement.

Sufficiency

To construct the equilibrium we proceed in 3 steps.
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Step 1. We first construct the strategies for a generic yo and prove their key properties. Let

y (g |yo ) be the solution of the differential equation when we require the initial condition: y (yo |yo ) =

yo, for yo ∈ [y∗R(δ, d, n), y∗∗R (δ, d, n)]. Let g2(y) be defined by (B.1). This, essentially, is the largest

point between the point at which y (g |yo ) crosses from below W + (1 − d)g, and y∗R(δ, d, n). Let

g3(yo) be defined by y
(
g3(yo) |yo

)
= y∗∗R (δ, d, n).

Lemma A.1. y′ (g |yo ) ∈ (0, 1) in
[
g2(yo), y∗∗R (δ, d, n)

]
and y′′ (g |yo ) ≥ 0.

Proof. From (4.6), y′ (g |yo ) ≥ 0 for g ≥ y∗R(δ, d, n), and y′ (g |yo ) ≤ 1 for g ≤ y∗∗R (δ, d, n). Since

y′′ (g |yo ) = n
1−n

[
u′′(g)
δ

]
, y′′(g) > 0. �

Lemma A.2. For any yo ∈ [y∗R(δ, d, n), y∗∗R (δ, d, n)], g3(yo) ≥ y∗∗R (δ, d, n).

Proof. Note that y (y∗∗R (δ, d, n) |yo ) is increasing in yo. Moreover y (y∗∗R (δ, d, n) |y∗∗R (δ, d, n) ) =

y∗∗R (δ, d, n). So y (y∗∗R (δ, d, n) |yo ) < y∗∗R (δ, d, n) for yo < y∗∗R (δ, d, n). It follows that g3(yo) ≥

y∗∗R (δ, d, n) for any yo ≤ y∗∗R (δ, d, n). �

We have:

Lemma A.3. y (g |yo ) ∈ (0,W + (1− d)g) in
(
g2(yo), g3(yo)

)
.

Proof. First note that y
(
g2(yo)|yo

)
≤W + (1− d)g2(yo). Since y′ (g |yo ) < 1 for g < y∗∗R (δ, d, n)

we must have y (g |yo ) < W + (1 − d)g for g ∈
(
g2(yo), y∗∗R (δ, d, n)

)
. For g > y∗∗R (δ, d, n), we have

W + (1− d)g > W + (1− d)y∗∗R (δ, d, n). Since y (g |yo ) < y∗∗R (δ, d, n) in
(
g2(yo), g3(yo)

)
, We have

y (g |yo ) < y∗∗R (δ, d, n) < W + (1 − d)y∗∗R (δ, d, n) < W + (1 − d)g in
[
y∗∗R (δ, d, n), g3(yo)

)
as well.

Similarly, since y′ (g |yo ) ≥ 0 for g > g2(yo) and y
(
g2(yo)|yo

)
≥ 0, we must have y (g |yo ) > 0 for

g > g2(yo). Note that y
(
g2(yo) |yo

)
≥ 0 since y′ (g |yo ) ∈ (0, 1− d) in [y∗R(δ, d, n), yo] implies that

y (g |yo ) > g for all g ∈ [y∗R(δ, d, n), yo] . �
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For any yo ∈ [y∗R(δ, d, n), y∗∗R (δ, d, n)], we now define the investment function:

yR(g |yo ) =


min

{
W + (1− d)g, y

(
g2(yo) |yo

)}
g ≤ g2(yo)

y (g |yo ) g2(yo) < g ≤ g3(yo)

y∗∗R (δ, d, n) g ≥ g3(yo)

For future reference, define g1(yo) = max
{

0,
(
y
(
g2(y) |yo

)
−W

)
/ (1− d)

}
. This is the point at

which W + (1 − d)g2(yo) = y
(
g2(yo) |yo

)
, if positive. Clearly, we have g1(yo) ∈

[
0, g2(yo)

]
. We

have:

Lemma A.4. For any yo ∈ [y∗R(δ, d, n), y∗∗R (δ, d, n)], y (g |yo ) ∈
[
g2(yo), g3(yo)

]
for g ∈

[
g2(yo), g3(yo)

]
.

Proof. Since y (g |yo ) it is monotonic non-decreasing in g ∈
[
g2(yo), g3(yo)

]
,

y (g |yo ) ∈
[
y
(
g2(yo) |yo

)
, y
(
g3(yo) |yo

)]
∀g ∈

[
g2(yo), g3(yo)

]
.

Since y (g |yo ) has slope lower than one in
[
g2(yo), g3(yo)

]
and y (yo |yo ) = yo for yo ≥ g2(yo),

we must have y
(
g2(yo) |yo

)
≥ g2(yo), so y (g |yo ) ≥ g2(yo) for g ∈

[
g2(yo), g3(yo)

]
. Similarly,

y
(
g3(yo) |yo

)
≤ g3(yo), so y (g |yo ) ≤ g3(yo) for g ∈

[
g2(yo), g3(yo)

]
. �

Step 2. We now construct the value functions corresponding to each steady state yo ∈ [y∗R(δ, d, n), y∗∗R (δ, d, n)].

For g ∈
[
g2(yo), g3(yo)

]
define the value function recursively as

v(g|yo) = W + (1− d)g − y (g |yo )
n

+ u(y (g |yo )) + δv(y (g |yo )). (B.2)

By Theorem 3.3 in Stokey, Lucas, and Prescott (1989), the right hand side of (B.2) is a contraction:

it defines a unique, continuous and differentiable value function v0(g |yo ) for this interval of g.
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(differentiability follows from the differentiability of y (g |yo )). We have

Lemma A.5. For any yo ∈ [y∗R(δ, d, n), y∗∗R (δ, d, n)] and any g ∈
[
g2(yo), g3(yo)

]
, u′(g) +

δv′0(g; yo) = 1.

Proof. Note that by Lemma A.4, for g ∈
[
g2(yo), g3(yo)

]
, we have y (g |yo ) ∈

[
g2(yo), g3(yo)

]
.

From (4.6) we can write (for simplicity we write y′(g |yo ) = y′(g)):

1− u′(g)
δ

= 1− y′(g)
n

+ u′(y(g))y′(g) + [1− u′(y(g))] y′(g)

for any g ∈
[
g2(yo), g3(yo)

]
. But then using (4.6) again allows to substitute 1−u′(y(g)) to obtain:

1− u′(g)
δ

= 1− y′(g)
n

+ u′(y(g))y′(g)

+δ
[

1− y′(y(g))
n

+ u′(y2(g))y′((y(g)) +
[
1− u′(y2(g))

]
y′(y(g))

]
y′(g)

where y0(g) = g, y1(g) = y(g), ym(g) = y(ym−1(g)), and [y′]0 (g) = 1, [y′]1 (g) = y′(g), and

[y′]m (g) = y′([y′]m−1 (g)). Iterating we have:

1− u′(g)
δ

= lim
n→∞

∑n

j=0
δj
[

1− y′(yj(g |yo ) |yo )
n

+ u′(yj+1(g))y′(yj(g |yo ) |yo )
]j
i=0

[y′]i (yi−1(g))

= v′(g |yo )

This implies u′(g) + δv′0(g; yo) = 1. �

In the rest of the state space we define the value function recursively. In
[
g1(yo), g2(yo)

]
, if

g1(yo) < g2(yo), the value function is defined as:

v0(g |yo ) =
W + (1− d)g − y

(
g2(yo) |yo

)
n

+ u(y
(
g2(yo) |yo

)
) + δv0(y

(
g2(yo) |yo

)
) (B.3)
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for y
(
g2(yo) |yo

)
∈
[
g2(yo), g3(yo)

]
.

Lemma A.6. For any g ∈
[
g1(yo), g3(yo)

]
, u(g) + δv(g |yo ) is concave and has slope larger or

equal than 1.

Proof. If g1(yo) = g2(yo), the result follows from the previous lemma. Assume therefore, g1(yo) <

g2(yo). In this case g2(yo) = y∗R(δ, d, n). For any g ∈
[
g1(yo), g2(yo)

]
, y(g; yo) = y (y∗R(δ, d, n) |yo ).

So we have v′0(g |yo ) = (1 − d)/n implying: u′(g) + δv′0(g |yo ) = u′(g) + δ(1 − d)/n > 1 since

g ≤ g2(yo) = y∗R(δ, d, n). The statement then follows from this fact and Lemma A.5. �

Consider g < g1(yo). In
[
g−1, g

1(yo)
]

the value function is defined as:

v−1(g |yo ) = u(W + (1− d)g) + δv0(W + (1− d)g |yo )

where g−1 = max
{

0, g
1(yo)−W

1−d

}
. Assume that we have defined the value function in g ∈[

g−t, g−(t−1)
]

as v−t, for all t such that g−(t−1) > 0. Then we can define v−(t+1) as:

v−(t+1)(g |yo ) = u(W + (1− d)g) + δv−t(W + (1− d)g |yo ),

in
[
g−(t+1), g−t

]
with g−(t+1) = g−t−W

1−d .

Lemma A.7. For any g ∈ [0, g3(yo)], u(g) + δv(g |yo ) is concave and it has slope greater than or

equal than 1.

Proof. We prove this by induction on t. Consider now the interval
[
g1(yo)−W

1−d , g1(yo)
]
. In this

range we have

v′−1(g |yo ) = [u′(W + (1− d)g) + δv′0(W + (1− d)g |yo )] (1− d) ≥ 1− d
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since W + (1− d)g ∈
[
g1(yo), g3(yo)

]
. It follows that for g ∈

[
g1(yo)−W

1−d , g1(yo)
]

:

u′(g) + δv′−1(g |yo ) ≥ u′(g) + δ(1− d) > 1 (B.4)

Where the last inequality follows from the fact that g ≤ g2(yo) < y∗∗R (δ, d, n). Note, moreover,

that the right and left derivative of v(g |yo ) at g1(yo) are the same. To see this note that by the

argument above, the left derivative is (1 − d)/n; by Lemma A.5, however, the right derivative is

(1− u′(y∗R(δ, d, n))) /δ = (1− d)/n as well. We conclude that u′(g) + δv′−1(g |yo ) is concave, it has

derivative larger than 1. Assume that we have shown that for g ∈
[
g−t, g

3(yo)
]
, u(g) + δv−t(g |yo )

is concave and u′(g) + δv′−t(g |yo ) > 1. Consider in g ∈
[
g−(t+1), g−t

]
. We have:

v′−(t+1)(g |yo ) =
[
u′(W + (1− d)g) + δv′−t(W + (1− d)g |yo )

]
(1− d) ≥ 1− d

since W + (1− d)g ≥
[
g−t, g

3(yo)
]
. So u′(g) + δv′−(t+1)(g |yo ) ≥ u′(g) + δ(1− d) ≥ 1. By the same

argument as above, moreover, v is concave at g−t. We conclude that for any g ≤ g1, u(g)+δv(g |yo )

is concave and it has slope larger than 1. �

We can define the value function for g ≥ g3(yo) as:

v1(g |yo ) = W + (1− d)g − y∗∗R (δ, d, n)
n

+ u(y∗∗R (δ, d, n)) + δv0(y∗∗R (δ, d, n) |yo )

since, by Lemma A.2, g3(yo) ≥ y∗∗R (δ, d, n).

Lemma A.8. For any g ≥ 0, u(g) + δv(g |yo ) is concave and it has slope less than or equal than

1.

Proof. For g > g3(yo), v′(g |yo ) = (1− d) /n. Since, by Lemma A.2, g ≥ y∗∗R (δ, d, n) ≥ y∗R(δ, d, n),



143

we have u′(g) + δv′(g |yo ) < 1. Previous lemmas imply u(g) + δv(g|yo) is concave and has slope

greater than or equal than 1 for g ≤ g3(yo). This establishes the result. �

Step 3. Define

x(g |yo ) = W + (1− d)g − y(g |yo )
n

, and i(g |yo ) = y(g |yo )− (1− d)g
n

as the levels of per capita private consumption and investment, respectively. Note that by con-

struction, x(g |yo ) ∈ [0,W/n]. We now establish that y(g |yo ), x(g |yo ) and the associated value

function v (g |yo ) defined in the previous steps constitute an equilibrium. We first show that

given y(g |yo ), v (g |yo ) describes the expected continuation value to an agent, starting at state

g. Since y(g |yo ) ∈
[
g2(yo), g3(yo)

]
for g ∈

[
g2(yo), g3(yo)

]
, v (g |yo ) must be described by (B.2)

for g ∈
[
g2(yo), g3(yo)

]
. By construction, moreover, v(g |yo ) is the expected continuation value

to an agent in all states g ≥ g3(yo), and g ≤ g2(yo). We now show that y(g |yo ) is an optimal

reaction function given v(g |yo ). An agent solves the problem (4.3), where yR(g) = y(g |yo ). Note

that y(g |yo ) satisfies the constraints of this problem if y(g |yo ) ≤ W+(1−d)g
n + n−1

n y(g |yo ), so if

y(g |yo ) ≤ W + (1 − d)g; and if y(g |yo ) ≥ n−1
n y(g |yo ), so if y(g |yo ) ≥ 0. Both conditions

are automatically satisfied by construction. If g < g1(yo), we have u′(y) + δv′(y) ≥ 1 for all

y ∈ [0,W + (1− d)g], so y(g |yo ) = W + (1 − d)g is optimal. If g ≥ g1(yo), then y(g |yo ) is an

unconstrained optimum, so again it is an optimal reaction function.

Necessity

We now prove that any stable steady state of an equilibrium must be in [y∗R(δ, d, n), y∗∗R (δ, d, n)].

We proceed in two steps.
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Step 1. We first prove that yoR ≤ y∗∗R (δ, d, n). Suppose to the contrary that there is stable steady

state at yoR > y∗∗R (δ, d, n). We must have yoR ∈ (y∗∗R (δ, d, n),W/d], since it is not feasible for a

steady state to be larger than W/d. Consider a left neighborhood of yoR, Nε(yoR) = (yoR − ε, yoR).

The value function can be written in g ∈ Nε(yoR) as:

vR(g) = W + (1− d)g − yR(g)
n

+ u(yR(g)) + δvR(yR(g)) (B.5)

= u(yR(g)) + δvR(yR(g))− yR(g) + W + (1− d)g
n

+ (1− 1/n) yR(g)

In Nε(yoR) the constraint y ≥ n−1
n yR(g) cannot be binding, else we would have yR(g) = (1 −

1/n)yR(g), so yR(g) = 0: but this is not possible in a neighborhood of yoR > 0. We consider two

cases.

Case 1. Suppose first that yoR < W/d. We must therefore have that yR(g) < W + (1 − d)g

in Nε(yoR), so the constraint y ≤ W+(1−d)g
n + n−1

n y is not binding. The solution is in the interior

of the constraint set of (4.3), and the objective function u(yR(g)) + δvR(yR(g))− yR(g) is constant

for g ∈ Nε(yoR).

Lemma A.9. There is a neighborhood Nε(yoR) in which yR(g) is strictly increasing.

Proof. Suppose to the contrary that, for any Nε(yoR), there is an interval in Nε(yoR) in which

yR(g) is constant. Using the expression for vR(g) presented above, we must have v′R(g) = (1−d)/n

for any g in this interval. Since Nε(yoR) is arbitrary, then we must have a sequence gm → yoR such

that v′R(gm) = (1− d)/n ∀m. We can therefore write:

v−R(yoR) = lim
∆→0

vR(yoR)− vR(yoR −∆)
∆ = lim

∆→0
lim
m→∞

vR(gm)− vR(gm −∆)
∆

= lim
m→∞

lim
∆→0

vR(gm)− vR(gm −∆)
∆ = 1− d

n
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where v−R(yoR) is the left derivative of vR(g) at yoR, and the second equality follows from the continuity

of vR(g). Consider now a marginal reduction of g at yoR. The change in utility is (as ∆→ 0):

∆U (yoR) = u(yoR −∆)− u(yoR) + δ [vR(yoR −∆)− vR(yoR)] + ∆

=
[
1−

(
u′(yoR) + δ

1− d
n

)]
∆

In order to have ∆U (yoR) ≤ 0, we must have u′(yoR)+δ(1−d)/n ≥ 1. This implies yoR ≤ y∗R(δ, d, n) <

y∗∗R (δ, d, n), a contradiction. Therefore, if there is stable steady state at yoR > y∗∗R (δ, d, n), then

yR(g) is strictly increasing in a neighborhood Nε(yoR). �

Lemma A.9 implies that there is a neighborhood Nε(yoR) in which u(g) + δvR(g)− g is constant.

Since yoR is a stable steady state and yR(g) is strictly increasing. Moreover, for any open left

neighborhood Nε′(yoR) = (yoR − ε′, yoR) ⊂ Nε(yoR), g ∈ Nε′(yoR) implies yR(g) ∈ Nε′(yoR)). These

observations imply:

Lemma A.10. There is a neighborhood Nε(yoR) in which

y′R(g) = n

n− 1

(
1− u′(g)

δ
− 1− d

n

)
(B.6)

Proof. There is a Nε(yoR) and a constant K such that δvR (g) = K + g − u(g) for g ∈ Nε(yoR)).

Hence vR (g) is differentiable in Nε(yoR). Moreover, yR(g) ∈ Nε(yoR) for all g ∈ Nε(yoR). Hence

u(yR(g)) + δv (yR(g)) − yR(g) is constant in g ∈ Nε(yoR) as well. These observations and the

definition of vR(g) imply that v′R(g) = 1−d
n +

(
1− 1

n

)
y′R(g) in Nε(yoR) (where yR(g) must be

differentiable otherwise vR(g) would not be differentiable). Given that u′(g) + δv′R(g) = 1 in



146

g ∈ Nε(yoR), we must have:

u′(g) + δv′R(g) = u′(g) + δ

[
1− d
n

+
(

1− 1
n

)
y′R(g)

]
= 1

which implies (B.6) for any g ∈ Nε(yoR). �

Let gm be a sequence in Nε(yoR) such that gm → yoR. We must have

y−R(yoR) = lim
∆→0

yR(yoR)− yR(yoR −∆)
∆ = lim

∆→0
lim
m→∞

yR(gm)− yR(gm −∆)
∆ (B.7)

= lim
m→∞

lim
∆→0

yR(gm)− yR(gm −∆)
∆ = n

n− 1

(
1− u′(yoR)

δ
− 1− d

n

)

where y−R(yoR) is the left derivative of yR(yoR), and the second equality follows from continuity.

Consider a state (yoR −∆). For yoR to be stable we need that for any small ∆:

yR(yoR −∆) ≥ yoR −∆ = yR(yoR) + (yoR −∆)− yoR

where the equality follows from the fact that yR(yoR) = yoR. As ∆→ 0, this implies y−R(yoR) ≤ 1 in

Nε(yoR). By (B.7), we must therefore have:

n

n− 1

(
1− u′(yoR)

δ
− 1− d

n

)
≤ 1

This implies: yoR ≤ y∗∗R (δ, d, n), a contradiction.

Case 2. Assume now that yoR = W/d and it is a strict local maximum of the objective function

u(y) + δvR(y) − y. In this case in a left neighborhood Nε(yoR), we have that the upperbound

y ≤ W+(1−d)g
n + n−1

n yR(g) is binding: implying yR(g) = W +(1−d)g in Nε(yoR). We must therefore
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have a sequence of points gm → yoR such that gm = yR(gm−1) and yR(gm) = W + (1 − d)gm ∀m.

Given this, we can write:

vR(gm) = u(gm+1) + δvR(gm+1) = u(gm+1) + δ
[
u(gm+2) + δvR(gm+2)

]
=

∑∞

j=0
δju(W + (1− d)gm+j)

note that since gm+1 = W+(1−d)gm, the derivative of gm+1 with respect to gm is
[
gm+1]′ = (1−d).

By an inductive argument, it is easy to see that
[
gm+j]′ = (1 − d)j . So vR(gm) is differentiable

and:

δv′R(gm) =
∑∞

j=0
[δ(1− d)]j+1

u′(W + (1− d)gm+j).

Since u′(gm) + δv′R(gm) ≥ 1, we have:

u′(gm) +
∑∞

j=0
[δ(1− d)]j+1

u′(W + (1− d)gm+j) ≥ 1

for all m. Consider the limit as m→∞. Since u′(g) is continuous and gm → yoR, we have:

1 ≤ lim
m→∞

[
u′(gm) +

∑∞

j=0
[δ(1− d)]j+1

u′(W + (1− d)gm+j)
]

= u′(yoR) +
∑∞

j=0
[δ(1− d)]j+1

u′(yoR) = u′(yoR)
1− δ(1− d)

This implies yoR ≤ [u′]−1 (1− δ(1− d)) < y∗∗R (δ, d, n), a contradiction.

Case 3. Assume now that yoR = W/d, but it is not a strict maximum of u(y) + δvR(y)− y in

any left neighborhood. It must be that u(y) + δvR(y) − y is constant in some left neighborhood

Nε(yoR). If this were not the case, then in any left neighborhood we would have an interval in which
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yR(g) is constant, but this is impossible by Lemma A.9. But then if u(y) + δvR(y)− y is constant

in some Nε(yoR), the same argument as in Case 1 of Step 1 implies a contradiction.

Step 2. We now prove that yoR ≥ y∗R(δ, d, n). Assume there is stable steady state at yoR <

y∗R(δ, d, n). Since limg→0 u
′(g) = ∞, yoR > 0. There is therefore a neighborhood Nε(yoR) =

(yoR, yoR + ε) in which yR(g) satisfies all the constraints of (4.3) and it maximizes u(y) + δvR(y)− y

We conclude that the objective function u(yR(g)) + δvR(yR(g)) − yR(g) is constant in Nε(yoR).

By the same argument as in Lemma A.9 it follows that there is a neighborhood Nε(yoR) in which

yR(g) is strictly increasing. Since yoR is a stable steady state and yR(g) is strictly increasing in

Nε(yoR), there is a neighborhood Nε(yoR) of yoR such that for any open right neighborhood Nε′(yoR) =

(yoR, yoR + ε′) ⊂ Nε(yoR), g ∈ Nε′(yoR)) implies yR(g) ∈ Nε′(yoR). By the same argument as in Lemma

A.10, it follows that there is a Nε′(yoR) in which y′R(g) is given by (B.6). Equation (B.6), however,

implies that y′R(g) ≥ 0 only for states g ≥ y∗R(δ, d, n). This implies that yR(g) is non-monotonic, a

contradiction. �

Proof of Proposition 2

Since we are in a regular economy, we have W/d > y∗∗R (δ, d, n). We construct here a concave and

monotonic equilibrium with steady state is yoIR(d, n) as defined in (3.18). We proceed in two steps.

Step 1. We first construct the strategies. Remember that y(δ, d) ≡ y∗P (δ, d, 1) = [u′]−1 (1− δ(1− d)).

This is the point at which the solution of the differential equation (4.6) has slope (1− d). Define

g2
IR as:

g2
IR = max

{
min
g≥0
{g |ŷ(g) ≤W + (1− d)g } , y∗R(δ, d, n)

}
. (B.8)
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The investment function is defined as:

yIR(g) =


min

{
W + (1− d)g, ŷ

(
g2
IR

)}
g ≤ g2

IR

ŷ (g) g2
IR < g ≤ y(δ, d)

(1− d)g g ≥ y(δ, d)

Using the same argument as in the proof of Proposition 1, we can prove that yIR(g) is continuous

and almost everywhere differentiable with right and left derivative at any point, and yIR(g) ∈

[(1− d)g,W + (1− d)g] for any g. Finally, it is easy to see that yIR(g) has a unique fixed-point

yoIR such that yIR(yoIR) = yoIR ∈
[
g2
IR, y(δ, d)

]
.

Step 2. We now construct the value function vIR(g) associated to yIR(g), and prove that yIR(g), vIR(g)

is an equilibrium. For g ≤ y(δ, d), we define the value function exactly as in Step 2 of Section 7.1.1.

For g ≥ y(δ, d), note that yIR(g) < g, so we can define the value function recursively as:

vIR(g) = W

n
+ u((1− d)g) + δvIR((1− d)g). (B.9)

The value function defined above is continuous in g. Using the same argument as in Step 2 of

Section 7.1.1 we can show that u(g) + δv(g; yoIR) − y is weakly concave in g for g ≤ y(δ, d); it is

strictly increasing in
[
0, g2

IR

]
, and flat in

[
g2
IR, y(δ, d)

]
. Consider now states g > y(δ, d). Let

g4 = y(δ,d)
1−d . In

[
y(δ, d), g4], we must have (1− d)g ∈

[
g2
IR, y(δ, d)

]
. Note that u′(g) + δv′IR(g) = 1

for g ∈
[
g2
IR, y(δ, d)

]
, so by (B.9) we have

v′IR(g) = (1− d) [u′((1− d)g) + δv′IR((1− d)g)] = 1− d

for g ∈
[
y(δ, d), g4]. This fact implies that u′(g)+δv′IR(g) = u′(g)+δ (1− d) for any g ∈

[
y(δ, d), g4],
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and hence it is concave in this interval. It follows that vIR(g) is concave in g ≤ g4 because

u′(g) + δv′IR(g) ≤ 1 for any g ∈
[
y(δ, d), g4]. Using a similar approach we can prove that vIR(g) is

concave for all g, and we have u′(g) + δv′IR(g) ≤ 1 for g ≥ y(δ, d). To prove that yIR(g), vIR(g) is

an equilibrium, we proceed exactly as in Step 3 of Section 7.1.1 to establish that yIR(g) is optimal

given vIR(g), and that vIR(g) satisfied (3.17) given yIR(g).�

Proof of Proposition 3

We proceed in 2 steps.

Step 1. The same argument used in Step 1 of Section 7.1.2 shows that no equilibrium stable steady

state can be greater than y∗∗R (δ, d, n) = [u′]−1 (1− δ (1− d/n)). The same argument used in Step

2 in Section 7.1.2 we can show that no equilibrium can be less than y∗R(δ, d, n), so y∗IR(δ, d, n) ≥

y∗R(δ, d, n).

Step 2. Consider a sequence dm → 0. For each dm there is at least an associated equilibrium

ym(g), vm(g) with steady state yom. If follows trivially that limm→∞ y∗∗R (dm, n) = [u′]−1 (1− δ) =

y(0).

What remains to be shown is that limm→∞ y∗IR(dm, n) = [u′]−1 (1− δ) = y(0). Let Γm be the set

of equilibrium steady states when the rate of depreciation is dm. We now show by contradiction that

for any ξ > 0, there is a m̃ such that for m > m̃, infy Γm ≥ y(0)− ξ. Since infy Γm ≤ y∗∗R (δ, d, n),

this will immediately imply that y∗IR(δ, d, n)→ y(0). Suppose to the contrary there is a sequence

of steady states y0
m, with associated equilibrium investment and value functions ym(g), vm(g), and

an ξ > 0 such that y0
m < y(0) − ξ for any arbitrarily large m. Define y0

m(g) = ym(g), and

yjm(g) = ym(yj−1
m (g)) and consider a marginal deviation from the steady state from y0

m to y0
m + ∆.

By the irreversibility constraint we have ym(g) ≥ (1− dm) g. Using this property and the fact that
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y0
m is a steady state, so yjm(y0

m) = y0
m, we have:

ym(y0
m + ∆)− ym(y0

m) ≥ (1− dm)
(
y0
m + ∆

)
− y0

m = (1− dm) ∆− dmy0
m

This implies that, as m→∞, for any given ∆:

ym(y0
m + ∆)− y0

m

∆ ≥ 1 + o1 (dm)

where o1 (dm) → 0 as m → 0. We now show with an inductive argument that a similar property

holds for all iterations yjm(y0
m). Assume we have shown that:

yj−1
m (y0

m + ∆)− y0
m

∆ ≥ 1 + oj−1 (dm)

where oj−1 (dm)→ 0 as m→ 0. We must have:

ym(yj−1
m (y0

m + ∆))− yjm(y0
m) ≥ (1− dm) yj−1

m (y0
m + ∆)− y0

m

We therefore have:

ym(yj−1
m (y0

m + ∆))− y0
m ≥ yj−1

m (y0
m + ∆)− y0

m − dmyj−1
m (y0

m + ∆)

so we have:

ym(yj−1
m (y0

m + ∆))− y0
m

∆ ≥ yj−1
m (y0

m + ∆)− y0
m

∆ − dmyj−1
m (y0

m + ∆)
∆

≥ 1 + oj (dm) (B.10)
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where oj (dm) = oj−1 (dm)− dmyj−1
m (y0

m+∆)
∆ , so oj (dm)→ 0 as m→ 0.

We can write the value function after the deviation to y0
m + ∆ as:

V (y0
m + ∆) =

∑∞

j=0
δj−1

[
W + (1− dm) yj−1

m (y0
m + ∆)− yjm(y0

m + ∆)
n

+ u(yjm(y0
m + ∆))

]

For any given function f(x), define ∆f(x) = f(x+ ∆)− f(x). We can write:

∆V (y0
m)/∆ =

∑∞

j=0
δj−1


(1−dm)∆yj−1

m (y0
m)/∆−∆yj

m(y0
m)/∆

n

+
[
u′(y0

m) + o (∆)
]

∆yjm(y0
m)/∆



≥
∑∞

j=0
δj−1


(1−dm)(1+oj−1(dm))−(1+oj(dm))

n

+
[
u′(y0

m) + o (∆)
]

(1 + oj (dm))

 (B.11)

where o (∆) → 0 as ∆ → 0. In the first equality we use the fact that if we choose ∆ small, since

ym(g) is continuous, ∆yjm(y0
m) is small as well. This implies that

(
u(yjm(y0

m + ∆))− u(yjm(y0
m))
)
/
[
yjm(y0

m + ∆)− yjm(y0
m)
]

converges to u′(yjm(y0
m)) as ∆ → 0. The inequality in B.11 follows from (B.10). Given ∆, as

m → ∞, we therefore have limm→∞∆V (y0
m)/∆ ≥ u′(y0

m)+o(∆)
1−δ . We conclude that for any ε > 0,

there must be a ∆ε such that for any ∆ ∈ (0,∆ε) there is a m∆ guaranteeing that ∆V (y0
m)/∆ ≥

u′(y0
m)

1−δ − ε for m > m∆. After a marginal deviation to y0
m + ∆, therefore, the change in agent’s

objective function is:

u′(y0
m) + δ∆V (y0

m)/∆− 1 ≥ u′(y0
m)

1− δ − δε− 1

for m sufficiently large. A necessary condition for the un-profitability of a deviation from y0
m to
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y0
m + ∆ is therefore:

y0
m ≥ [u′]−1 (1− δ + δε (1− δ)) . (B.12)

Since ε can be taken to be arbitrarily small, for an arbitrarily largem, (B.12) implies y0
m ≥ y(0)−ξ/2,

which contradicts y0
m < y(0)− ξ. We conclude that y∗IR(δ, d, n)→ y(0) as d→ 0. �
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Appendix C

Proofs of Chapter 3

Proof of Proposition 1

The fact that a concave equilibrium has the property stated in the proposition follows from the

discussion in the text. Here we prove existence and uniqueness.

Existence. Let y∗R =
[
u−1]′ (1 − δ

n ), and g1
R = max {0, y∗R −W}. For any g > g1

R define a

value function v1
R(g) = W−(y∗R−g)

n + u (y∗R). Note that this function is continuous, non decreasing,

concave, and differentiable with respect to g, with ∂
∂g v

1
R(g) = 1

n . Let g2
R = max

{
0, g1

R −W
}

, and

define:

v2
R(g) =


v1
R(g) g ≥ g1

R

u(g +W ) + δv1
R (g +W ) g ∈

[
g2
R, g

1
R

)
Note that vR(g) is continuous and differentiable in g ≥ g2

R, except at most at g1
R To see that it is

also concave in this interval, note that it is concave for g ≥ g1
R. Moreover, for any g ∈

[
g2
R, g

1
R

)
and g′ ≥ g1

R we have:

∂

∂g
v2
R(g) = u′(g +W ) + δv1′

R(g +W )

> u′(y∗R) + δv1′
R(y∗R) = 1 > 1

n
= ∂

∂g
v2
R(g′)
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The first inequality derives from y∗R > g + W (which is true, by definition of g1
R and g2

R, for all

g ∈
[
g2
R, g

1
R

)
), and concavity of u(g). So v2

R(g) is concave in g ≥ g2
R. Assume that for all g ≥ gnR,

with gnR ≥ 0 and either gnR < g2
R or gnR = 0, we have defined a value function vnR(g) that is concave

and continuous, and that is differentiable in g > g1
R. Define gn+1

R = max {0, gnR −W}, and

vn+1
R (g) =


vnR(g) g ≥ gnR

u(g +W ) + δvnR(g +W ) g ∈
[
gn+1
R , gnR

)
We can easily show that this function is concave, continuous in g ≥ gn+1

R , and differentiable for

g > g1
R. Moreover, either gn+1

R = 0 or gn+1
R < gnR. We can therefore define inductively a value

function vR(g) for any g ≥ 0 that is continuous and concave, and that is differentiable at least for

g > g1
R and so, in particular, at y∗R. Define now the following strategies:

yR(g) = min {W + g, y∗R} , and xA(g) = W + g − yR(g)
n

. (C.1)

We will argue that vR(g), yR(g), xA(g) is an equilibrium. To see this note that by construction, if

the agent uses strategies yR(g), xA(g), then vR(g) describe the expected continuation value function

of an agent. To see that yR(g), xA(g), are optimal given vR(g) note that for g ≥ g1
R,
{
y∗R,

W+g−y∗R
n

}
maximizes (4.2) when all the constraints except the second are considered; and for g ≥ g1

R, W +g >

y∗R, so the second constraint is satisfied as well. For g < g1
R, we must have yR(g) =W+g, xA(g) = 0.

We conclude that yR(g), xA(g) is an optimal reaction function given vR(g). �

Uniqueness. In the steady state we must have y(y∗R) = y∗R and x(y∗R) > 0. The steady state

cannot be lower than y∗R. In this case, W + g = g: but this implies W = 0, a contradiction.

Since y(g) is constant for g ≥ max {y∗R −W, 0}, it is straightforward to show that the derivative
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of the value function in this region is v′(g) = 1
n . Using the first order condition we must have

u′ (y∗R) + δv′R(y∗R) = 1, so:

y∗R(n) = [u′]−1
(

1− δ 1
n

)
(C.2)

for such an equilibrium to exist we need that y∗R > gR, that is always true when the public good

stock does not depreciate. We conclude that, when the public good stock does not depreciate, y∗R

is given by (C.2), and the equilibrium steady state is unique. �

Proof of Proposition 3

The efficient outcome (the social planner solution characterized in Section 2.1) can be sustained

in the voluntary contribution game with reversible investment, when agents use nonstationary

strategies entailing reversal to the unique concave Markov equilibrium characterized in Section 2.2.

To show this, we construct strategies whose outcome is the efficient level of public good and we

show that there is no profitable deviation from the equilibrium path. The symmetric strategy for

each committee member is to invest i∗P (g) = min
{
W
n ,

y∗P−g
n

}
if gt = y∗(gt−1) (i.e. if the observed

level of the public good at the beginning of the period is consistent with equilibrium strategies,

or, in other words, it is the efficient level of public good given the stock of g at the beginning of

the previous period) and to invest i∗R(g) = min
{
W
n ,

y∗R−g
n

}
where y∗R < y∗P (i.e. the investment

associated with the Markov equilibrium characterized in Proposition 1) if gt 6= y∗(gt−1) (i.e. if a

deviation from equilibrium has occurred in the previous period). To prove that this strategy profile

is an equilibrium we show that agents have no profitable deviation.

An agent’s payoff if she follows the equilibrium strategy is:

W

n
− i∗P (g) + 2

√
g + ni∗P (g) + δVEQ(g + ni∗P (g))
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An agent’s payoff if she deviates (according to her most profitable deviation) is:

W

n
+ g

n
+ 2
√
g − g

n
+ (n− 1)i∗P (g) + δVDEV

(
g − g

n
+ (n− 1)i∗P (g)

)

An agent’s most profitable deviation is to invest −g/n (i.e. to subtract from the public good her

share and to consume it). The gains from this deviation are greater the closer g is to y∗P . Therefore,

we will check whether an agent has an incentive to deviate when g ∈ [gP , y∗P ], or whether:

W

n
−y
∗
P − g
n

+2
√
y∗P+δVEQ(y∗P ) ≥ W

n
+ g

n
+2
√
g − g

n
+ (n− 1)y

∗
P − g
n

+δVDEV
(
g − g

n
+ (n− 1)y

∗
P − g
n

)

where:

VEQ(y∗P ) = 1
1− δ

[
W

n
+ 2
√
y∗P

]

and:

VDEV

(
n− 1
n

y∗P

)
= W

n
−
y∗R − n−1

n y∗P
n

+ 2
√
y∗R + δVDEV (y∗R)

= W

n
−
y∗R − n−1

n y∗P
n

+ +2
√
y∗R + δ

1− δ

(
W

n
+ 2
√
y∗R

)

After we plug in VEQ(y∗P ) and VDEV
(
n−1
n y∗P

)
, the inequality above becomes:

W

n
− y∗P − g

n
+ 2
√
y∗P + δ

1− δ

[
W

n
+ 2
√
y∗P

]
≥ W

n
+ g

n
+ 2
√
n− 1
n

y∗P + δ[
W

n
−
y∗R −

(
n−1
n y∗P

)
n

+ 2
√
y∗R + δ

1− δ

(
W

n
+ 2
√
y∗R

)]
1

1− δ

[
2
√
y∗P − δ2

√
y∗R

]
− δ

n

[
(n− 1)
n

y∗P − y∗R
]
≥ 2

√
n− 1
n

y∗P + y∗P
n
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Replacing y∗P and y∗R (who both depend on δ), the inequality we want to prove becomes:

1
1− δ

[
2n

1− δ −
δ2n
n− δ

]
− δ(n− 1)

(1− δ)2 + δ

n

(
n

n− δ

)2
≥

√
n− 1
n

n2 + n

(1− δ)

Multiplying both sides by (1− δ)2 and rearranging, we have:

n− (n− 1)δ ≥ (1− δ)2δ2n
n− δ

+ δ

n

(
n

n− δ

)2
(1− δ)2 +

√
n− 1
n

n2(1− δ)

There is δ̂R such that ∀δ > δ̂R the inequality above holds. To see this note that as δ approaches

1 the RHS approaches zero, while the LHS is positive for any δ ∈ [0, 1]. �

Using the parameters and the utility function of our experiments, δ̂R = 0.80 for n = 3 and

δ̂R = 0.86 for n = 5. We use δ = 0.75, which means that, in the experimental setting, the

efficient level of the public good cannot be sustained in equilibrium. However, it can be shown

that nonstationary strategies of the type proposed above can sustain an almost efficient level of the

public good, y∗. In this case, the inequality we want to prove is:

1
1− 0.75

[
2
√
y∗ − 0.752

√
y∗R

]
− 0.75

n

[
(n− 1)
n

(y∗)− y∗R
]
≥ 2
√
n− 1
n

(y∗) + y∗

n

This inequality holds for y∗ = 130 in the treatment with 3 agents (where y∗P = 144) and for for

y∗ = 333 in the treatment with 5 agents (where y∗P = 400).
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Appendix D

Experimental Instructions

INSTRUCTIONS FOR RIE5 TREATMENT

Thank you for agreeing to participate in this experiment. During the experiment we require

your complete, undistracted attention and ask that you follow instructions carefully. Please turn

off your cell phones. Do not open other applications on your computer, chat with other students,

or engage in other distracting activities, such as reading books, doing homework, etc. You will

be paid for your participation in cash, at the end of the experiment. Different participants may

earn different amounts. What you earn depends partly on your decisions, partly on the decisions of

others, and partly on chance. It is important that you not talk or in any way try to communicate

with other participants during the experiments.

Following the instructions, there will be a practice session and a short comprehension quiz. All

questions on the quiz must be answered correctly before continuing to the paid session. At the end

you will be paid in private and you are under no obligation to tell others how much you earned.

Your earnings are denominated in FRANCS which will be converted to dollars at the rate of 75

FRANCS to a DOLLAR.

This is an experiment in group decision making. The experiment will take place over a sequence
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of 10 matches. We begin the match by dividing you into THREE groups of five members each.

Each of you is assigned to exactly one of these groups. In each match each member of your group

will make investment decisions.

In each round, each member of your group has a budget of 16 francs. Each member must

individually decide how to divide his or her budget into private investment and project investment,

in integer amounts. The private investment always has to be greater than or equal than 0. The

project investment can be either positive, or zero, or negative. Any amount you allocate to private

investment goes directly to your earnings for this round. The project investment produces earnings

for all group members in the following way.

[SHOW SLIDE]

The project earnings in a round depend on the size of the project at the end of that round.

Specifically, each committee member earns an amount in francs proportional to the square root of

the size of the project at the end of the round (precisely equal to 4*sqrt(project size) ). Thus, for

example, if the size of the project at the end of the round equals 9, then each member earns exactly

4*sqrt(9)=12 additional francs in that round. If the size is equal to 36, each member earns exactly

4*sqrt(36)=24 additional francs in that round. In your display, earnings are always rounded to two

decimal places. So, for example if the project size at the end of a round equals 5, each member

earns 4*sqrt(5)=8.94 francs from the project in that round.

The second important fact about the project is that it is durable. That is, project investment in

a round increases or decreases the size not just for that round, but also for all future rounds. The

size of your groupÕs project starts at 0 in the first round of the match. At the end of the first round

it is equal to the sum of your group membersÕ project investment in that round. This amount
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gets carried over to the second round. Whenever the size of the project is greater than 0, you can

propose a negative project investment. However, in this case, the proposed negative investment

cannot exceed one fifth of the size of the project at the beginning of the round (in other words,

you can dispose only of your share of the project).At the end of the second round, the size of the

project equals to the combined amount invested in the project in rounds 1 and 2 by all members

of your group, and so forth. So, every round project investment changes the size of the project for

the current round and all future rounds of the match.

The total number of rounds in a match will depend on the rolling of a fair 8-sided die. When

the first round ends, we roll it to decide whether to move on to the second round. If the die comes

up a 1 or a 2 we do not go on to round 2, and the match is over. Otherwise, we continue to the

next round. We continue to more rounds, until a 1 or a 2 is rolled at the end of a round and the

match ends. At the end of each round your earnings for that round are computed by adding the

project earnings to your private investment. For example, if your private investment is 20 and the

end-of-round project size is 9, then your earnings for that round equal 20 + 4*sqrt(9) = 20+12 =

32. Your earnings for the match equal the sum of the earnings in all rounds of that match.

After the first match ends, we move to match 2. In this new match, you are reshuffled randomly

into THREE new groups of five members each. The project size in your new group again starts

out at 0. The match then proceeds the same way as match 1. After match 10, the experiment is

over. Your total earnings for the experiment are the sum of your earnings over all rounds and all

matches.

We will now go through one practice match very slowly. During the practice match, please do

not hit any keys until I tell you, and when you are prompted by the computer to enter information,

please wait for me to tell you exactly what to enter. You are not paid for this practice match.
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[AUTHENTICATE CLIENTS]

Please double click on the icon on your desktop that says BP2. When the computer prompts

you for your name, type your First and Last name. Then click SUBMIT and wait for further

instructions. You now see the first screen of the experiment on your computer. It should look

similar to this screen.

[SHOW SLIDE]

At the top left of the screen, you see your subject ID. In the top right you can see that you

have been assigned by the computer to a group of FIVE subjects, and assigned a group member

number: 1, 2, 3, 4, or 5. This group assignment and your member number stays the same for all

rounds of this match, but will change across matches. It is very important that you take careful

note of your group member number.

As a visual aid, there is a graph on the left that shows exactly how project earnings will depend

on project size. The current size of the project is marked with a large dot at the origin. If each

member of your group decides to invest nothing this period, then this will be the size that determines

your project earnings at the end of the round. You can use your mouse to move the curser along

the curve to figure out what your earnings will be for different levels of project investment. Also,

if you type an amount in the Project Investment box, the computer will compute and display the

corresponding project earnings for you just below the box. Take a minute to practice using your

curser to move along the curve, and typing in different possible investment levels. But do not hit

the confirm button yet.

At this time, go ahead and type in any investment decision you wish and hit the confirm button.

You are not paid for this practice match so it does not matter what you enter.
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[SHOW SLIDE]

This screen now summarizes the outcome of the round. Here you see your committee member

number, and the end of round project size. The investment decisions of each member are displayed

in a table. Below the table are displayed your earnings for the round, given the outcome. This

marks the end of the round. The table with columns in the bottom of your screen is the History

panel and summarizes all of this important information.

We now roll an eight-sided die to decide whether to move on to round 2. If the die comes up a

1 or a 2, we do not go on to round 2, and the match is over. If the die comes up 3 through 8, we

continue to a second round of the match. [Roll die and do second round unless it comes up a 1 or

2. Next say “the die roll was X, so we will continue to the next round”. If X=(1 or 2) say “if this

was a real match, there would be no second round. That would be the end of the match. However,

we want to go through one more practice round to make sure you are familiar with the computer

interface.”]

[SHOW SLIDE]

In this second round, you keep the same committee member number as in the first round, and

the members of your committee all stay the same. Notice that the project investment from round

1 carries over, so the round 2 beginning project size equals the project size at the end of round 1.

In this second round please follow the same instructions of the first round. You can go ahead now.

Since this is a practice match, we will not roll a die after the second round, and the practice

match will end. During the paid matches, each match will continue until the die comes up a 1 or a

2.



164

Bibliography

Admati, A., and M. Perry (1991): “Joint Projects without Commitment,” The Review of Eco-

nomic Studies, 58(2), 259–276.

Ali, S., and N. Kartik (2010): “Observational Learning with Collective Preferences,” Columbia

University, mimeo.

Bailey, S. (1969): Voting in the Security Council. Indiana University Press.

Banks, J., and J. Duggan (2000): “A Bargaining Model of Collective Choice,” The American

Political Science Review, 94(1), 73–88.

(2006): “A General Bargaining Model of Legislative Policy-Making,” Quarterly Journal

of Political Science, 1(1), 49–85.

(2008): “A Dynamic Model of Democratic Elections in Multidimensional Policy Spaces,”

Quarterly Journal of Political Science, 3(3), 269–299.

Banks, J., and R. Sundaram (1993): “Adverse Selection and Moral Hazard in a Repeated

Elections Model,” Political Economy: Institutions, Competition, and Representation: Proceedings

of the Seventh International Symposium in Economic Theory and Econometrics, pp. 295–311.

(1998): “Optimal Retention in Agency Problems,” Journal of Economic Theory, 82(2),

293–323.



165

Baron, D. (1996): “A Dynamic Theory of Collective Goods Programs,” The American Political

Science Review, 90(2), 316–330.

Baron, D., D. Diermeier, and P. Fong (2011): “A Dynamic Theory of Parliamentary Democ-

racy,” Economic Theory, In press.

Baron, D., and J. Ferejohn (1989): “Bargaining in Legislatures,” The American Political Sci-

ence Review, 83(4), 1181–1206.

Baron, D., and M. Herron (2003): “A Dynamic Model of Multidimensional Collective Choice,”

Computational Models in Political Economy, pp. 13–47.

Barseghyan, L., M. Battaglini, and S. Coate (2010): “Fiscal Policy Over the Real Business

Cycle: A Positive Theory,” Cornell University, mimeo.

Battaglini, M., and S. Coate (2007): “Inefficiency in Legislative Policymaking: A Dynamic

Analysis,” The American Economic Review, 97(1), 118–149.

(2008): “A Dynamic Theory of Public Spending, Taxation and Debt,” The American

Economic Review, 98(1), 201–36.

Battaglini, M., S. Nunnari, and T. Palfrey (2012a): “The Free Rider Problem: A Dynamic

Analysis,” NBER working paper No. 17926.

(2012b): “Legislative Bargaining and the Dynamics of Public Investment,” The American

Political Science Review, 106(2), 1–23.

Battaglini, M., and T. Palfrey (2012): “The Dynamics of Distributive Politics,” Economic

Theory, 49(3), 739–777.



166

Bernheim, B., A. Rangel, and L. Rayo (2006): “The Power of the Last Word in Legislative

Policy Making,” Econometrica, 74(5), 1161–1190.

Besley, T., E. Iltzetki, and T. Persson (2011): “Weak States and Steady States: The Dy-

namics of Fiscal Capacity,” London School of Economics, mimeo.

Besley, T., and T. Persson (2011): Pillars of Prosperity: The Political Economics of Develop-

ment Clusters. Princeton University Press.

Billingsley, P. (1999): Convergence of Probability Measures. Wiley-Interscience.

Blum, Y. (2005): “Proposals for UN Security Council Reform,” The American Journal of Inter-

national Law, 99(3), 632–649.

Bourantonis, D. (2005): The History and Politics of UN Security Council Reform. Routledge.

Bowen, T., and Z. Zahran (2009): “On Dynamic Compromise,” Stanford University, Graduate

School of Business, Research Paper No. 2020.

Callander, S. (2007): “Bandwagons and Momentum in Sequential Voting,” The Review of Eco-

nomic Studies, 74(3), 653–684.

Cameron, C. (2000): Veto Bargaining: Presidents and the Politics of Negative Power. Cambridge

University Press.

Cho, S. (2005): “A Dynamic Model of Parliamentary Democracy,” Yale University, mimeo.

Choi, S., D. Gale, and S. Kariv (2008): “Sequential Equilibrium in Monotone Games: A

Theory-Based Analysis of Experimental Data,” Journal of Economic Theory, 143(1), 302–330.



167

Choi, S., D. Gale, S. Kariv, and T. Palfrey (2011): “Network Architecture, Salience and

Coordination,” Games and Economic Behavior.

Compte, O., and P. Jehiel (2004): “Gradualism in Bargaining and Contribution Games,” Review

of Economic Studies, 71(4), 975–1000.

Dekel, E., and M. Piccione (2000): “Sequential Voting Procedures in Symmetric Binary Elec-

tions,” Journal of Political Economy, 108(1), 34–55.

Diermeier, D., and P. Fong (2011): “Legislative Bargaining with Reconsideration,” The Quar-

terly Journal of Economics, 126(2), 947–985.

Diermeier, D., and R. Myerson (1999): “Bicameralism and Its Consequences for the Internal

Organization of Legislatures,” The American Economic Review, 89(5), 1182–1196.

Diev, P., W. Hichri, et al. (2008): “Dynamic Voluntary Contributions to a Discrete Public

Good: Experimental Evidence,” Economics Bulletin, 3(23), 1–11.

Dixit, A., G. Grossman, and F. Gul (2000): “The Dynamics of Political Compromise,” Journal

of Political Economy, 108(3), 531–568.

Dockner, E., and N. Van Long (1993): “International Pollution Control: Cooperative versus

Noncooperative Strategies,” Journal of Environmental Economics and Management, 25(1), 13–

29.

Dorsey, R. (1992): “The Voluntary Contributions Mechanism with Real Time Revisions,” Public

Choice, 73(3), 261–282.

Duffy, J., J. Ochs, and L. Vesterlund (2007): “Giving Little by Little: Dynamic Voluntary

Contribution Games,” Journal of Public Economics, 91(9), 1708–1730.



168

Duggan, J. (2000): “Repeated Elections with Asymmetric Information,” Economics & Politics,

12(2), 109–135.

(2011): “Coalitional Bargaining Equilibria,” Wallis working papers WP62, University of

Rochester - Wallis Institute of Political Economy.

Duggan, J., and T. Kalandrakis (2010): “Dynamic Legislative Policy Making,” University of

Rochester, mimeo.

Duggan, J., T. Kalandrakis, and V. Manjunath (2008): “Dynamics of the Presidential Veto:

A Computational Analysis,” Mathematical and Computer Modelling, 48(9-10), 1570–1589.

Dziuda, W., and A. Loeper (2010): “Ongoing Negotiation with Endogenous Status Quo,” North-

western University, mimeo.

Epple, D., and M. Riordan (1987): “Cooperation and Punishment Under Repeated Majority

Voting,” Public Choice, 55(1), 41–73.

Fassbender, B. (1998): UN Security Council Reform and the Right of Veto: a Constitutional

Perspective, vol. 32. Martinus Nijhoff Publishers.

Fershtman, C., and S. Nitzan (1991): “Dynamic Voluntary Provision of Public Goods,” Euro-

pean Economic Review, 35(5), 1057–1067.

Forand, J. (2009): “Two-Party Competition with Persistent Policies,” University of Toronto,

mimeo.

Gale, D. (2001): “Monotone Games with Positive Spillovers,” Games and Economic Behavior,

37(2), 295–320.



169

Gomes, A., and P. Jehiel (2005): “Dynamic Processes of Social and Economic Interactions: On

the Persistence of Inefficiencies,” Journal of Political Economy, 113(3), 626–667.

Groseclose, T., and N. McCarty (2001): “The politics of blame: Bargaining before an audi-

ence,” American Journal of Political Science, pp. 100–119.

Harstad, B. (2012): “Climate Contracts: A Game of Emissions, Investments, Negotiations, and

Renegotiations,” Review of Economic Studies, Forthcoming.

Ingberman, D. (1985): “Running Against the Status Quo: Institutions for Direct Democracy

Referenda and Allocations Over Time,” Public Choice, 46(1), 19–43.

Itaya, J., and K. Shimomura (2001): “A Dynamic Conjectural Variations Model in the Private

Provision of Public Goods: A Differential Game Approach,” Journal of Public Economics, 81(1),

153–172.

Kalandrakis, A. (2004): “A Three-Player Dynamic Majoritarian Bargaining Game,” Journal of

Economic Theory, 116(2), 294–322.

Kalandrakis, T. (2009): “Minimum Winning Coalitions and Endogenous Status Quo,” Interna-

tional Journal of Game Theory, pp. 1–27.

Krehbiel, K. (1998): Pivotal Politics: A Theory of US Lawmaking. University of Chicago Press.

Lagunoff, R. (2008): “Markov Equilibrium in Models of Dynamic Endogenous Political Institu-

tions,” Georgetown University, mimeo.

(2009): “Dynamic Stability and Reform of Political Institutions,” Games and Economic

Behavior, 67(2), 569–583.



170

Laury, S., and C. Holt (2008): “Voluntary Provision of Public Goods: Experimental Results

with Interior Nash Equilibria,” Handbook of Experimental Economics Results, 1, 792–801.

Ledyard, J. (1994): “Public Goods: A Survey of Experimental Research,” Public Economics.

Leech, D., and R. Leech (2004): “Voting Power in the Bretton Woods Institutions,” Warwick

Economic working paper No. 718.

Lizzeri, A., and N. Persico (2004): “Why Did the Elites Extend the Suffrage? Democracy

and the Scope of Government, with an Application to Britain’s Age of Reform,” The Quarterly

Journal of Economics, 119(2), 707–765.

Lockwood, B., and J. Thomas (2002): “Gradualism and Irreversibility,” Review of Economic

Studies, 69(2), 339–356.

Marx, L., and S. Matthews (2000): “Dynamic Voluntary Contribution to a Public Project,”

Review of Economic Studies, 67(2), 327–358.

Maskin, E., and J. Tirole (2001): “Markov Perfect Equilibrium:: I. Observable Actions,” Journal

of Economic Theory, 100(2), 191–219.

Matthews, S. (1989): “Veto Threats: Rhetoric in a Bargaining Game,” The Quarterly Journal

of Economics, 104(2), 347.

Matthews, S. (2012): “Achievable Outcomes of Dynamic Contribution Games,” Theoretical Eco-

nomics, Forthcoming.

McCarty, N. (2000a): “Presidential Pork: Executive Veto Power and Distributive Politics,” The

American Political Science Review, 94(1), 117–129.



171

McCarty, N. M. (2000b): “Proposal Rights, Veto Rights, and Political Bargaining,” American

Journal of Political Science, 44(3), 506–522.

Noussair, C., and C. Soo (2008): “Voluntary Contributions to a Dynamic Public Good: Exper-

imental Evidence,” Economics Letters, 98(1), 71–77.

Nunnari, N. (2012): “A Dynamic Theory of Collective Goods Programs with Veto Power,”

manuscript in preparation.

Olson, M. (1965): The Logic of Collective Action. Harvard University Press.

Ostrom, E. (1999): “Coping with the Tragedies of the Commons,” The Annual Review of Political

Science, 2, 493–535.

Palfrey, T., and J. Prisbrey (1996): “Altuism, Reputation and Noise in Linear Public Goods

Experiments,” Journal of Public Economics, 61(3), 409–427.

(1997): “Anomalous Behavior in Public Goods Experiments: How Much and Why?,” The

American Economic Review, pp. 829–846.

Palfrey, T., and H. Rosenthal (1991): “Testing Game-Theoretic Models of Free Riding: New

Evidence on Probability Bias and Learning,” Laboratory Research in Political Economy, pp.

239–267.

Penn, E. (2009): “A Model of Farsighted Voting,” American Journal of Political Science, 53(1),

36–54.

Primo, D. (2006): “Stop Us Before We Spend Again: Institutional Constraints on Government

Spending,” Economics & Politics, 18(3), 269–312.



172

Putnam, R. D. (2000): Bowling Alone: The Collapse and Revival of American Community. Simon

Schuster.

Rapkin, D., and J. Strand (2006): “Reforming the IMF’s Weighted Voting System,” The World

Economy, 29(3), 305–324.

Riker, W. (1962): The Theory of Political Coalitions. Yale University Press.

Robinson, J., and D. Acemoglu (2008): “Persistence of Power, Elites and Institutions,” Amer-

ican Economic Review, 98(1).

Rubio, S., and B. Casino (2002): “A note on Cooperative versus Non-Cooperative Strategies in

International Pollution Control,” Resource and Energy Economics, 24(3), 251–261.

Russell, R. (1958): A History of the United Nations Charter: the Role of the United States,

1940-1945. Brookings Institution.

Schwabe, R. (2009): “Reputation and Accountability in Repeated Elections,” Princeton Univer-

sity, mimeo.

Stokey, N., R. L., and E. Prescott (1989): Recursive Methods in Economic Dynamics. Harvard

University Press.

Tsebelis, G. (2002): Veto Players: How Political Institutions Work. Princeton University Press.

Van Weelden, R. (2009): “Candidates, Credibility, and Re-election Incentives,” Yale University,

mimeo.

Weiss, T. (2003): “The illusion of UN Security Council reform,” Washington Quarterly, 26(4),

147–161.



173

Winter, E. (1996): “Voting and Vetoing,” The American Political Science Review, 90(4), 813–823.

Wirl, F. (1996): “Dynamic Voluntary Provision of Public Goods: Extension to Nonlinear Strate-

gies,” European Journal of Political Economy, 12(3), 555–560.

Woods, N. (2000): “The Challenge of Good Governance for the IMF and the World Bank Them-

selves,” World Development, 28(5), 823–841.


	Acknowledgements
	Abstract
	Introduction
	Dynamic Legislative Bargaining with Veto Power
	Model and Equilibrium Notion
	Model
	Equilibrium

	Equilibrium Analysis
	Impatient Legislators
	Patient Legislators
	Results

	Robustness and Extensions
	Heterogeneous Recognition Probabilities
	Multiple Veto Players
	Rotating Veto Power

	Discussion

	The Free Rider Problem: A Dynamic Analysis
	The Model
	The Planner's Problem
	Reversible Investment Economies
	The Equilibrium
	Characterization
	Efficiency

	Irreversible Economies
	Conclusions

	The Dynamic Free Rider Problem: An Experimental Study
	The Model
	The Planner's Solution
	Reversible Investment Economies
	Irreversible Investment Economies
	Cooperation Using Non-Stationary Strategies

	Experimental Design
	Experimental Results
	Public Good Outcomes
	Investing Behavior
	The Effect of Experience
	Test for Markovian Behavior

	Discussion and Conclusions

	Appendices
	Proofs of Chapter 1
	Proofs of Chapter 2
	Proofs of Chapter 3
	Experimental Instructions

