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Abstract

The aim of this paper is to consider the p-adic local invariant cycle theorem in the mixed character-

istic case.

In the first part of the paper, via case-by-case discussion, we construct the p-adic specialization

map, and then write out the complete conjecture in p-adic case. We proved the theorem in good

reduction and semistable reduction cases.

In the second part of the paper, by using Berthelot, Esnault and Rülling’s trace morphisms

in [BER], we first prove the case of coherent cohomology, then we extend it to the Witt vector

cohomology, and we then get a result on the Frobenius-stable part of the Witt vector cohomology,

which corresponds the slope 0 part of the rigid cohomology, we then get the general p-adic local

invariant cycle theorem.

We also give another approach in the H0 and H1 cases in the general case.

In the last part of the paper, based on Flach and Morin’s work on the weight filtration in the

l-adic case, we consider the p-adic analogous result (which, together with the l-adic’s result, serves

as a part to prove the compatibility of the Weil-etale cohomology with the Tamagawa number

conjecture). This is a direct corollary of the local invariant cycle theorem by taking the weight

filtration. And we also consider some typical examples that the weight filtration statement could be

verified by direct computations.



v

Contents

Acknowledgements iii

Abstract iv

1 Introduction 1

2 Preliminaries 5

2.1 Bcrys and Bst Conjectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Chiarellotto’s Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Construction of p-adic Specialization Map 11

3.1 Some Simplifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Case of Good Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Case of Semistable Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Proof of p-adic Local Invariant Cycle Theorem 24

4.1 Trace Morphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Coherent Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Witt Vector Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Another Proof of H0 And H1 Cases 38

6 Weight Filtration 43

6.1 l-adic Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2 The Analogous p-adic Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Bibliography 49



1

Chapter 1

Introduction

Notation: Assume that R is a complete discrete valuation ring with quotient field K and finite

residue field k of characteristic p. Set S = Spec(R), η = Spec(K), s = Spec(k). Let S̄ = (S̄, s̄, η̄) be

the normalization of S in a separable closure K̄ of K and denote by I ⊆ G := Gal(K̄/K) the inertia

subgroup. Let W (k) be the ring of Witt vectors of k, K0 be the fraction field of W (k).

The purpose of this paper is to study the p-adic cohomology theory (where we mean several

different but related things: the de-Rham or p-adic etale cohomology of varieties over p-adic fields

or the rigid cohomology of varieties over fields of characteristic p > 0).

For any scheme X over S, we have a special fiber Xs over k and a generic fiber Xη over K. And

we consider the diagram of schemes:

Xs −−−−→ X ←−−−− Xηy f

y
y

s = Spec(k) −−−−→ S = Spec(R) ←−−−− η = Spec(K)

Let f : X → S be a proper, flat, generically smooth morphism of relative dimension d. For

0 ≤ i ≤ 2d, one can define the specialization morphism on l-adic etale cohomology groups:

sp : Hi(Xs̄,Ql) → Hi(Xη̄,Ql)I

via the composition:

Hi(Xs̄,Ql) ∼= Hi(X ′,Ql) → Hi(X ′
η,Ql) → Hi(Xη̄,Ql)I

where X ′ is the base change of X to a strict Henselization of S at s̄ and the first isomorphism is

proper base change. This map sp is G-equivariant.

The local invariant cycle theorem conjectures that this specialization morphism sp is an epimor-

phism if l 6= p and X is regular.

In [D1, (3.6)], Deligne has proved the l-adic case of the local invariant cycle theorem in the equal
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characteristic case under the hypothesis that X is essentially smooth over k and Xη̄ smooth over η̄.

In the mixed characteristic case, this theorem is still a conjecture. It is well-known that the

monodromy-weight conjecture (Deligne’s conjecture on the purity of monodromy filtration) implies

the local invariant cycle theorem ([I1], [I2], (8.8)), thus the theorem holds in the mixed characteristic

in dimension ≤ 2. But in the case of dimension ≥2, it is still a conjecture. Also, see [S1] for

Scholze’s result for the existence of a natural tilting operation that exchanges characteristic 0 and

characteristic p, and then deduce the monodromy-weight conjecture in certain cases by reduction to

equal characteristic.

Now, let WiV be the subspace of V with an endomorphism φ where eigenvalues of φ have weight≤
i. In [FlM, (10.1)], M. Flach and B. Morin prove that Hi(Xs̄,Ql) = WiH

i(Xs̄,Ql) → WiH
i(Xη̄,Ql)I

induced by sp is surjective for all i under the hypothesis that l 6= p and X is regular (Also, note that

the regularity is a key assumption, see [FlM] section 10 and [I2] section 8 for counterexamples).

It is then natural to ask the analogous result of the local theorem of invariant cycles for the

p−adic cohomology.

Assume that K has characteristic 0. For l = p, one can still define the specialization map

sp : Hi(Xs̄,Qp) → Hi(Xη̄,Qp)I

as above since proper base change holds for arbitrary torsion sheaves. However, it is well-known

that p−adic etale cohomology of varieties in characteristic p only describes the slope 0 part of the

full p−adic cohomology, which is Berthelot’s rigid cohomology Hi
rig(Xs/k) (here the slope 0 part

V slope0 of a finite dimensional Qp−vector space V with an endomorphism φ is defined as the maximal

subspace on which the eigenvalues of φ are p− adic units), also there is no duality theorem in this

case, which served as an important part in the proof of l−adic situation.

Thus we need to consider rigid cohomology instead of etale cohomology, through case by case

construction, via using Chiareletto’s map and a cohomology descent, we construct the full p-adic

specialization map in chapter 3:

Theorem 1.0.1 If X/S is proper, flat and generically smooth, then there is a φ-equivariant map

sp′ : Hi
rig(Xs/k) → Dcrys(Hi(Xη̄,Qp))

and a commutative diagram of Gal(k̄/k)−modules

Hi(Xs̄,Qp)
sp−−−−→ Hi(Xη̄,Qp)I

λs

y λη

y

Hi
rig(Xs/k)⊗K0 K̂0

ur sp′⊗1−−−−→ Dcrys(Hi(Xη̄,Qp))⊗K0 K̂0
ur
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where K̂0
ur

= Frac(W (k̄)) is the p-adic completion of the maximal unramified extension of K0, and

the vertical maps λs, λη induce isomophisms:

λs : Hi(Xs̄,Qp) ∼= (Hi
rig(Xs/k)⊗K0 K̂0

ur
)φ⊗φ=1 = Hi

rig(Xs/k)slope0

and

λη : Hi(Xη̄,Qp)I ∼= (Dcrys(Hi(Xη̄,Qp))⊗K0 K̂0
ur

)φ⊗φ=1 = Dcrys(Hi(Xη̄,Qp))slope0

Theorem 1.0.2 Let X/S be proper, flat, and generically smooth, we have:

1. If X has good reduction, then sp′ : Hi
rig(Xs/k) → Dcrys(Hi(Xη̄,Qp)) is an isomorphism.

2. If X has semistable reduction, then sp : Hi(Xs̄,Qp) → Hi(Xη̄,K0)I is an isomorphism, and

sp′ : Hi
rig(Xs/k) → Dcrys(Hi(Xη̄,Qp)) is an isomorphism, i = 0, 1

In [BER], Berthelot, Esnault and Rülling constructed a series of trace morphisms between the

Witt vector cohomology of the special fibers of two flat regular R-schemes X and Y of the same

dimension.

By using these trace morphisms, in chapter 4, we first prove some results concerned the coherent

cohomology:

Proposition 1.0.1 Let X/S be regular, proper, flat and generically smooth, then the cohomology

of the sequence

Hi(X, OX) → Hi(X(1), OX(1)) → Hi(X(2), OX(2))

is annihilated by a fixed integer dg, where X, X(1), X(2) is defined via X(2) → Y = X(1) ×X X(1) ⇒
X(1) → X such that X(1) → X is surjective , X(2) → X(1) ×X X(1) is generically surjective, both

are alterations and have semistable reductions by De Jong’s theorem ([D-J]).

Then we use reductions and want to lift the result to the Witt vector cohomology, and we have

proved the following:

Theorem 1.0.3 (p-adic local invariant cycle theorem) Let X/S be regular, proper, flat and gener-

ically smooth, we have:

sp : Hi(Xs̄,WOX)Q,s ' (Dcrys(Hi(Xη̄,Qp)⊗K0 K̂0
ur

)slope0
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induced from the p-adic specialization map is an isomorphism, and we have a commutative diagram:

Hi(Xs̄,Qp)
sp−−−−→ Hi(Xη̄,Qp)I

λs

y λη

y
Hi(Xs̄,WOX)Q,s

sp−−−−→ (Dcrys(Hi(Xη̄,Qp)⊗K0 K̂0
ur

)slope0

where λs and λη are isomorphisms as above, and the subscript s denotes the Frobenius stable part

as in [C2].

In particular, sp : Hi(Xs̄,Qp) → Hi(Xη̄,K0)I is an isomorphism.

In chapter 5, we give another proof of H0 and H1 cases via Grothendieck’s fundamental group

and purity.

In chapter 6, based on Flach and Morin’s work on the weight filtration in the l-adic case, we

consider the p-adic analogous result (which, together with the l-adic’s result, serves as a part to

prove the compatibility of the Weil-etale cohomology with the Tamagawa number conjecture), i.e.,

to verify that the morphism W0H
i(Xs̄,Qp)

sp→ W0H
i(Xη̄,Qp)I induced by sp is an isomorphism,

which is a direct corollary of the local invariant cycle theorem by taking the weight filtration. And

we also consider some typical examples where this weaker statement could be verified by direct

computations.
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Chapter 2

Preliminaries

2.1 Bcrys and Bst Conjectures

We briefly recall Fontaine’s definitions of Bcrys, Dcrys, Bst, Dst, BdR and DdR here([F1], [F2]) .

Let A be a Zp-algebra such that A/pA 6= 0. Let

R = lim−→(· · · F→ A/pA
F→ A/pA

F→ A/pA)

where F denotes the Frobenius of A/pA.

Then we can consider the Witt vector ring W (R) and a ring morphism

θ : W (R) → Â

u = (u0, u1, . . . ) 7→ lim
m→∞

m∑

i=0

piũim
pm−i

where Â is the p-adic completion of A, un = (un0, un1, . . . ), and˜denotes a lifting from A/pA to

A.

Now Kerθ is a principal ideal generated by ξ = [p̂] − p, where p̂ = (· · · → p2√p → p
√

p → p).

Also, denote [] : R → W (R) to be the multiplicative Techmuller lift.

Define

B+
dR = lim←−W (R)[

1
p
]/ξn

BdR = FracB+
dR = B+

dR[
1
ξ
]

A0
crys = {

N∑
n=0

an
ξn

n!
, N < ∞, an ∈ W (R)}

Acrys = lim←−A0
crys/pnA0

crys
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B+
crys = Acrys[

1
p
]

Bcrys = B+
crys[

1
t
] = Acrys[

1
t
]

Bst = Bcrys[log[$]]

where t = log[ε] =
∞∑

n=1
(−1)n+1 ([ε]−1)n

n , ε ∈ R such that ε(0) = 1, ε(1) 6= 1 and $ ∈ R such that

$(0) = p, v($) = 1.

Then for any p-adic representation V , define:

DdR(V ) = (V ⊗Qp
BdR)GK

Dst(V ) = (V ⊗Qp Bst)GK

Dcrys(V ) = (V ⊗Qp Bcrys)GK = Dst(V )N=0

Then we have Fontaine’s Ccrys conjecture([FM]) (proved by Fontaine and Messing via p-adic

nearby cycles, Faltings via almost etale extensions, and Niziol via K-theory):

(Ccrys): Assume X proper and smooth over S, then there exists a natural isomorphism:

Bcrys ⊗K0 Hi
crys(Xs/k) ' Bcrys ⊗Qp

Hi(Xη̄,Qp)

compatible with the actions of φ and G on both sides (here the action of g ∈ G on LHS (resp. RHS)

is g ⊗ 1 (resp. g ⊗ g), φ’s action on LHS (resp. RHS) is φ ⊗ φ (resp. φ ⊗ 1) ), as well as with the

filtrations after tensoring both sides with K.

And we also have Fontaine-Jannsen’s Cst conjecture ([T]) (proved by Kato and Tsuji via p-adic

nearby cycles, Faltings via almost etale extensions, and Niziol via K-theory):

(Cst): Assume X proper and has semistable reduction over S, then there exists a natural iso-

morphism:

Bst ⊗K0 Hi
HK(Xs/k) ' Bst ⊗Qp Hi(Xη̄,Qp)

compatible with the actions of φ, N and G on both sides(here the action of g ∈ G on LHS (resp.

RHS) is g ⊗ 1 (resp. g ⊗ g), φ’s action on LHS (resp. RHS) is φ ⊗ φ (resp. φ ⊗ 1), N ’s action on

LHS (resp. RHS) is N ⊗ 1 + 1 ⊗ N (resp. N ⊗ 1)), as well as with the filtrations after tensoring

both sides with K.
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2.2 Chiarellotto’s Map

Chiarellotto’s map plays an important role in our construction of p-adic specialization map, and we

briefly recall Chiarellotto’s construction in [C] here:

First, given a semistable scheme Y , we suppose that Y is proper and be the union of irreducible

smooth components

Y = ∪i∈IYi

Denote Y (j) be the space of disjoint union of the intersections of j components. These Y (j) are

smooth by the definition of semistable schemes.

By [M3, (3.7)], we know that there exists an isomorphism on Yet for each j ≥ 1

Res : GrW
j Wnω̃•Y → WnΩ•Y (j) [−j](−j)

where Wnω̃•Y is a complex defined by Hyodo and Mokrane ([M3]), WnΩ•
Y (j) is the usual de Rham-

Witt complex of Y (j)(thought of as a complex in Yet) and (−j) is the Tate-shift related to the

Frobenius structure ([I4]).

By these, we could consider the Hyodo-Steenbrink bicomplex WnAij(i, j ≥ 0) of sheaves in Yet

given by

WnAij =
Wnω̃i+j+1

Y

PjWnω̃i+j+1
Y

where PjWnω̃•Y is the usual logarithmic filtration on Wnω̃•Y , these PjWnω̃•Y are coherent WnOYet
-

modules and form the weight filtration.

For x ∈ WnAij , the first differential d′x ∈ WnAi+1j is (−1)j times the usual one, while d′′ :

WnAij → WnAij+1 is given by the multiplication by Θ: d′′(x) = x ∧Θ, where Θ is a global section

on Wnω̃1
Y which locally coincides with dt/t.

The double complex (WnA••, d′, d′′) is endowed with a Frobenius endomorphism Φn defined on

each WnAij by the usual Frobenius morphism twisted by p−j−1. Taking the inverse limit on n ∈ N,

we get a bicomplex WA•• whose associated simple complex WA• is isomorphic to Wω•Y under

multiplication by Θ (see [M3, (3.17)]).

By [M3, (3.18)], WA• admits an operator v as follows: vn is the endomorphism induced on the

simple complex by the endomorphism on WnA•• such that (−1)i+j+1vn is the natural projection

WnAij → WnAi−1j+1

Taking inverse limit of vn, we then construct

v = lim←−vn
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which induces the monodromy operator in cohomology, and by the exactness property, one obtains

an isomorphism of complexes in (Yet,W ):

Kerv = lim←−Kervn

Chiarellotto’s paper has given an interpretation of Kerv ⊗K0 in terms of rigid cohomology.

We have an explicit formula for Kerv involving the usual de Rham-Witt complexes of the various

intersections of the components of Y by Chiarellotto:

Proposition 2.2.1 ([C,Prop. 1.8]) Consider a proper semistable scheme Y which is the union of

irreducible smooth components

Y = ∪i∈IYi

and denote Y (j) be the space of disjoint union of the intersections of j components. Then the kernel

of the operator

vn : WnA• → WnA•

is the simple complex associated to the double complex

0 → WnΩ•Y (1)
ρ1→ WnΩ•Y (2)

ρ2→ WnΩ•Y (3) · · ·

in Yet, where ρt : WnΩ•
Y (t) → WnΩ•

Y (t+1) is defined by

ρt = (−1)t
∑

1≤j≤t+1

(−1)j+1δ∗j

(Here δj : Y (t) → Y (t−1)’s restriction on the components are defined to be the inclusions

Yi1 ∩ · · ·Yik
↪→ Yi1 ∩ · · · ∩ Yij−1 ∩ Yij+1 ∩ · · · ∩ Yik

(see [M3] and [S2]).)

Then we need an interpretation of a complex calculating the rigid cohomology of the k-scheme

Y in terms of the components of Y and their various intersections.

Let P be a formal W -scheme locally of finite type. Then its generic fiber PK0 is a rigid analytic

space and we could define

sp : PK0 → P

to be the specialization([B4]).

Let Y be a k-scheme of finite type, and assume that there is a closed immersion of Y into a
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smooth formal W -scheme P :

j : Y → P

Define H∗
conv(Y/K0) = H∗(sp−1(Y ),Ω•sp−1(Y )) (here sp−1(Y ) =]Y [p is the tube of Y ). As Y being

proper, we have H∗
conv(Y/K0) = H∗

rig(Y/K0).

Consider the restriction sp :]Y [p→ Y and sp∗Ω•sp−1(Y ). Note that the hypercohomology of

the complex sp∗Ω•sp−1(Y ) calculates the rigid cohomology of Y ([B4]), and this is the intuition of

Chiarellotto’s construction.

The existence of a closed embedding of Y into a smooth formal W -scheme is only true locally.

The method of dealing with the generic situation is to use the technique of ”diagrams of topos”. In

fact, one can always find an open covering {Tα} of Y , and for each Tα, we could construct a closed

embedding into a smooth formal W -scheme:

iα : Tα → Pα

Thus we have the close embedding given by the diagonal map

iα0···αn
: Tα0···αn

= Tα0 ∩ · · · ∩ Tαn
→ Pα0···αn

= Pα0 × · · · × Tαn

These {Tα0···αn
= Tα0∩· · ·∩Tαn

} form a diagram of topos T• endowed with the Zariski topology. The

complex of sheaves {sp∗Ω•]Tα0···αn [Pα0···αn
} form a complex of sheaves sp∗Ω•sp−1(Y ) on this diagram

of topos. On the other hand, there is a natural map ε : T• → YZar. The convergent cohomology

of Y is defined by Rε∗sp∗(Ω•]Y [P
). As Y is proper, these cohomology groups coincide with the rigid

cohomology groups of Y ([B2]).

Now, given a k-scheme of finite type Y , and suppose that it is the union of smooth irreducible

components

Y = ∪i∈IYi

denote Y (j) similarly as above and i : Y (j) → Y be the natural maps.

We have the following exact sequence in YZar by [C, Prop. 2.3]

0 → sp∗Ω•]Y [P

ρ0→ i∗sp∗Ω•]Y (1)[P

ρ1→ i∗sp∗Ω•]Y (2)[P
· · ·

where ρ0 is the natural restriction and ρt is defined via δt similarly as above.

Now one can connect Kerv with the rigid cohomology, which both are related to complexes

defined using the smooth component of the proper semistable scheme Y :

Proposition 2.2.2 ([C, Theorem 3.6]) Consider a proper semistable scheme Y which is the union
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of irreducible smooth components

Y = ∪i∈IYi

Then, in D+(YZar) there is an isomorphism

sp∗Ω•]Y [ → Kerv ⊗K0

In particular,

H∗
rig(Y/K0) ' H∗(YZar,Kerv)⊗K0 ' H∗(Yet,Kerv)⊗K0

Now, from the exact sequence:

0 → Kervj → WA• vj

→ WA• → Cokervj → 0

We then get the map, by taking inverse limit and the above proposition:

Hi
rig(Xs/k) → Hi

HK(Xs/k)N=0

as Hi
HK(Xs) = Hi(Xs,WA•) is defined as the hypercohomology of the Hyodo-Mokrane complex

WA•.

Remark 2.2.1 For more details and discussions on Chiarellotto’s constructions, we refer to his

paper [C], Also, Chiarellotto conjectured in [C] that for each i ≥ 0, the sequence

Hi
rig(Xs/k) → Hi

HK(Xs/k) N→ Hi
HK(Xs/k)

is exact, while here we do not require this conjecture to be true and only use this morphism to

construct our sp′ : Hi
rig(Xs/k) → Dcrys(Hi(Xη̄,Qp)) for general X.



11

Chapter 3

Construction of p-adic
Specialization Map

In this chapter, we will construct the p-adic specialization map sp′ : Hi
rig(Xs/k) → Dcrys(Hi(Xη̄,Qp)),

and we make some simplifications first.

3.1 Some Simplifications

Define a φ-ring R(or a φ-field F ) to be a ring(or a field) with an endomorphism φ, a φ-module D over

a φ-ring R(or over a φ-field F ) is defined to be a finite free R-module(or a finite dimensional F -vector

space) equipped with a semi-linear φ-action on D, i.e., φ(rx) = φ(r)φ(x) for any r ∈ R, x ∈ D.

Now, for any φ−module D, the Gal(k̄/k)−module V (D) := (D ⊗K0 K̂0
ur

)φ⊗φ=1 can be viewed

as a φ−module via the action of φ ⊗ 1 and we defined it as Dslope0, where the action of Frob−1
p ∈

Gal(k̄/k) coincides with that of φ−[k:Fp] ⊗ 1 = 1⊗ φ−[k:Fp].

Thus we have:

(Hi
rig(Xs/k)⊗K0 K̂0

ur
)φ⊗φ=1 = Hi

rig(Xs/k)slope0

and

(Dcrys(Hi(Xη̄,Qp))⊗K0 K̂0
ur

)φ⊗φ=1 = Dcrys(Hi(Xη̄,Qp))slope0

Remark 3.1.1 In fact, using the Dieudonne-Manin classification([M1]), any K̂0
ur

[φ]−module is

isomorphic to a sum of Er,s = K̂0
ur

[φ]/(φr − ps), where t = s
r ∈ Q is the slope.

Note that Er,s has a basis {ei} extended via φ-action, i.e., we choose e1 ∈ Er,s, choose e2 =

φ(e1), e3 = φ(e2) · · · , and φ(er) = φr(e1) = pse1, which causes a contradiction when s 6= 0 by the

valuation criterion, thus is shows that Eφ=1
r,s = 0 when t = s

r 6= 0.
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Lemma 3.1.1 Let V be a finite dimensional Qp-vector space with a continuous Gp := Gal(K̄/K)-

action, and such that DdR(V )/F il0DdR(V ) = 0. Then we have an isomorphism

V Ip ' (Dcrys(V )⊗K0 K̂ur
0 )φ⊗φ=1

Proof:

Since DdR(V )/F il0DdR(V ) = 0, and we have an isomorphism of Frobp−modules with the diag-

onal Gp−action:

H0(Ip, B
0(V )) = Dcrys(V )⊗K0 K̂ur

0

where B0(V ) = Bcrys ⊗K0 V

We have

Fil0Dcrys(V ) ⊗K0 K̂ur
0 = Fil0(V ⊗K0 Bcrys)Ip = Fil0(V ⊗K0 BdR)Ip ∩ (V ⊗K0 Bcrys)Ip =

(Fil0DdR(V )⊗K0 K̂
ur
0 )∩(V ⊗K0Bcrys)Ip = (DdR(V )⊗K0 K̂

ur
0 )∩(V ⊗K0Bcrys)Ip = (V ⊗K0Bcrys)Ip =

Dcrys(V )⊗K0 K̂ur
0 .

Thus

(Bφ=1
crys ⊗K0 V )Ip = (Bcrys ⊗K0 V )Ip,φ=1 = (Dcrys(V ) ⊗K0 K̂ur

0 )φ⊗φ=1 = (Fil0Dcrys(V ) ⊗K0

K̂ur
0 )φ⊗φ=1 = Fil0(Dcrys(V )⊗K0 K̂ur

0 )φ⊗φ=1 = Fil0(Bφ=1
crys ⊗K0 V )Ip .

Now, (Bcrys ⊗K0 V )Ip,φ=1 = (Bφ=1
crys ⊗K0 V )Ip = Fil0(Bφ=1

crys ⊗K0 V )Ip = (Fil0Bφ=1
crys ⊗K0 V )Ip =

(K0 ⊗K0 V )Ip = V Ip , we get V Ip ' (Dcrys(V )⊗K0 K̂ur
0 )φ⊗φ=1. ¤

Corollary 3.1.1 Let X be a proper and generically smooth scheme over S, Then we have an iso-

morphism

Hi(Xη̄,Qp)I ' (Dcrys(Hi(Xη̄,Qp))⊗K0 K̂0
ur

)φ⊗φ=1

Proof:

Note that DdR(Hi(Xη̄,Qp)) = Hi
dR(X/K) and Fil0Hi

dR(X/K) = Hi
dR(X/K), we get the conse-

quence by the above lemma. ¤

Lemma 3.1.2 For a proper variety X over S, we have an isomorphism

Hi(Xs̄,Qp) ' (Hi
rig(Xs/k)⊗K0 K̂ur

0 )φ⊗φ=1

Proof:

By [BBE], we have a canonical isomorphism:

Hi
rig(Xs/k)[0,1) ' Hi(Xs,WOX)K0
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where Hi
rig(Xs/k)[0,1) is the maximal subspace on which φ acts with slopes in [0,1), Hi(Xs,WOX)

denotes the Witt vector cohomology, and the subscript K0 means tensorization with K0.

On the other hand, we have short exact sequence from [I4, Prop. 3.28]:

0 −→ Zp −→ WOX
1−φ−→ WOX −→ 0

Thus, by [I4, Lemma 5.3], we have:

Hi(Xs̄,Qp) = Hi(Xs̄,WOX)φ=1
K0

' (Hi
rig(Xs̄/k̄)[0,1))φ=1 = (Hi

rig(Xs̄/k̄))φ=1 ' (Hi
rig(Xs/k)⊗K0K̂0

ur
)φ⊗φ=1

¤

Combining the above lemmas, we get the isomorphisms

λs : Hi(Xs̄,Qp) ' (Hi
rig(Xs/k)⊗K0 K̂0

ur
)φ⊗φ=1 = Hi

rig(Xs/k)slope0

and

λη : Hi(Xη̄,Qp)I ' (Dcrys(Hi(Xη̄,Qp))⊗K0 K̂0
ur

)φ⊗φ=1 = Dcrys(Hi(Xη̄,Qp))slope0

It remains to construct sp′ and then show the diagram commutes, however, it is complicated to

construct this morphism in general, and we have to discuss case by case.

3.2 Case of Good Reduction

Note that in the good reduction case, the crystalline cohomology coincides with the rigid cohomology

([B2, Prop.1.9]):

Hi
rig(Xs/k) ' Hi

crys(Xs/k)

Using Fontaine’s Ccrys conjecture([FM]), we know that

Hi
crys(Xs/k)⊗Bcrys ' Hi(Xη̄,Qp)⊗Bcrys

Taking the GK−invariants, since BGK
crys = K0, we can then define a φ−equivariant isomorphism

sp′ : Hi
rig(Xs/k) → Dcrys(Hi(Xη̄,Qp))

Also, note that the isomorphism sp′⊗1 is induced by taking I−invariants on the Ccrys conjecture.
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And we can adjust λs and λη(since all the maps in the diagram are isomorphisms) to make the

diagram

Hi(Xs̄,Qp)
sp−−−−→ Hi(Xη̄,Qp)I

λs

y λη

y

(Hi
rig(Xs/k)⊗K0 K̂0

ur
)slope0 sp′⊗1−−−−→ (Dcrys(Hi(Xη̄,Qp))⊗K0 K̂0

ur
)slope0

commute. This finishes the case of good reduction.

3.3 Case of Semistable Reduction

Similar as in the good reduction case, we can use Fontaine-Jannsen’s Cst conjecture ([T]):

Hi
HK(Xs/k)⊗Bst

∼= Hi(Xη̄,Qp)⊗Bst

Thus we need to replace the above crystalline cohomology in good reduction case by the Hyodo-

Kato cohomology first, in fact, we need to construct λ̃s : Hi(Xs̄,Qp) → (Hi
HK(Xs/k)N=0)⊗K0 K̂0

ur
,

prove the commutativity of the following diagram:

Hi(Xs̄,Qp)
sp−−−−→ Hi(Xη̄,Qp)I

λ̃s

y λη

y

(Hi
HK(Xs/k)N=0)⊗K0 K̂0

ur sp′HK⊗1−−−−−→ Dcrys(Hi(Xη̄,Qp))⊗K0 K̂0
ur

and also that λ̃s is injective.

Using Lorenzon’s result in [Lo], we can prove the following:

Lemma 3.3.1 For a proper variety X over S, we have an isomorphism

λ̃s : Hi(Xs̄,Qp) ∼= (Hi
HK(Xs/k)N=0 ⊗K0 K̂ur

0 )φ⊗φ=1

Proof:

Using [Lo, (3.4.6)], we have a canonical isomorphism

Hi(Xs,Zp)⊗Zp
Qp

∼= (Hi
HK(Xs/k)⊗Zp

Qp)slope0

So, similarly as in lemma 2.1.3, using the exact sequence (2.14) and theorem 3.4 in [Lo], we have

Hi(Xs̄,Qp) ∼= (Hi
HK(Xs/k)⊗K0 K̂ur

0 )φ⊗φ=1 = (Hi
HK(Xs/k)N=0 ⊗K0 K̂ur

0 )φ⊗φ=1

where the latter equality follows from: let x ∈ (Hi
HK(Xs/k)⊗K0K̂

ur
0 )φ⊗φ=1, then x ∈ (Hi

HK(Xs/k)⊗K0
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K ′)φ⊗φ=1 for a finite extension K ′ of K0 in Kur, thus φa(Nx) = (1/pa)φ(x), where pa is the

number of elements in the residue field of K ′, since φa is induced by a W (k)-endomorphism of

Hi
HK(Xs/W (k)), it then follows that Nx = 0. (see [B1], page 674). ¤

Thus, we have constructed

λ̃s : Hi(Xs̄,Qp) ∼= (Hi
HK(Xs/k)N=0 ⊗K0 K̂ur

0 )φ⊗φ=1 ∼= (Hi
HK(Xs/k)N=0)slope0

Also, by the Cst conjecture proved in [T], we know that Hi
HK(Xs/k)⊗Bst

∼= Hi(Xη̄,Qp)⊗Bst.

Note that BN=0,φ=1
st ∩ Fil0BdR = K0 and BG

st = K0, we have the canonical isomorphisms:

Hm
et (XK̄ ,Qp) ∼= (Bst ⊗K0 Hm

HK(X))N=0,φ=1 ∩ Fil0(BdR ⊗K0 Hm
HK(X))

β : Hm
et (XK̄ ,Qp)I ∼= (K̂ur

0 ⊗K0 Hm
HK(X))N=0,φ⊗φ=1 = (K̂ur

0 ⊗K0 Hm
HK(X))φ⊗φ=1

and

Hm
HK(X) ∼= (Bst ⊗K0 Hm

et (XK̄ ,Qp))G = Dst(Hm
et (XK̄ ,Qp))

So we indeed have an isomorphism of φ−modules

Hi
HK(Xs/k)N=0 → Dst(Hi(Xη̄,Qp))N=0 = Dcrys(Hi(Xη̄,Qp))

and we then define this isomorphism to be our required sp′HK .

Now, we will use the morphism Hi
rig(X/k) → Hi

HK(Xs/k) constructed by Chiarellotto in [C] to

construct our diagram for the rigid cohomology as in the conjecture.

By looking at the proof of lemma 3.1.2 and lemma 3.3.1, note that λs and λ̃s are isomorphisms

such that map Hi(Xs̄,Qp) to the slope 0 part of Hi
rig(Xs/k)⊗K0 K̂0

ur
and (Hi

HK(Xs/k)N=0)⊗K0

K̂0
ur

, also, Chiarellotto’s morphism induces an isomorphism on these two slope 0 part, we could

then assume that λ̃s factor through λs via Chiarellotto’s morphism, thus we deduce our diagram

from the above diagram of Hyodo-Kato cohomology:

Hi(Xs̄,Qp)
sp−−−−→ Hi(Xη̄,Qp)I

λs

y λη

y

Hi
rig(Xs/k)⊗K0 K̂0

ur sp′⊗1−−−−→ Dcrys(Hi(Xη̄,Qp))⊗K0 K̂0
ur

Note that, as sp′HK is an isomorphism, we then have sp is also an isomorphism in the semistable

reduction case, however, sp′ is not an isomorphism in general. But for the H1 case, we can prove it

is indeed an isomorphism:
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Proposition 3.3.1 Using the above notations, if X has semistable reduction, then H1
rig(X/k) ∼=

H1
HK(Xs/k)N=0, in particular, sp′ : H1

rig(Xs/k) → Dcrys(H1(Xη̄,Qp)) is an isomorphism.

Proof:

Note that in [M3, (5.4.3)], by a computation of low degrees of his spectral sequence and also uses

the Neron model in [SGA 7, IX, (12.3.6)], Mokrane has proved the local invariant cycle theorem in

H1 case, i.e., exactness of

0 → H1(Xs,Kerυ) → H1
HK(Xs/k) N→ H1

HK(Xs/k)

Combined with [C, (3.8)], which said that H∗
rig(Xs/k) ∼= H∗(Xs,Kerυ)⊗ k.

We then get Chiarellotto’s conjecture H1
rig(X/k) ∼= H1

HK(Xs/k)N=0. ¤

Similarly as in the good reduction case, we can adjust λs, λ̃s and λη(since all the maps in the

diagram are isomorphism when restricted to the slope 0 part) to make the diagrams

Hi(Xs̄,Qp)
sp−−−−→ Hi(Xη̄,Qp)I

λ̃s

y λη

y

(Hi
HK(Xs/k)N=0)⊗K0 K̂0

ur sp′HK⊗1−−−−−→ Dcrys(Hi(Xη̄,Qp))⊗K0 K̂0
ur

and

Hi(Xs̄,Qp)
sp−−−−→ Hi(Xη̄,Qp)I

λs

y λη

y

(Hi
rig(Xs/k)⊗K0 K̂0

ur
)slope0 sp′⊗1−−−−→ (Dcrys(Hi(Xη̄,Qp))⊗K0 K̂0

ur
)slope0

commute, and then we finish the case of semistable reduction.

Remark 3.3.1 As we shown above, sp′ is not an isomorphism in general, while it is an isomorphism

when restricted to the slope 0-part. In fact, it is also an isomorphism when restricted to the bigger

part slope [0, 1), which both describe the Witt vector cohomology (see [Lo]).

Remark 3.3.2 We can also deduce the commutativity of the diagram in semistable reduction case

from the good reduction case via the compatibility of the isomorphism of Ccrys and Cst with the

specialization map.

Let {Yi}i∈I be the family of irreducible components of Xs, YJ = ∩i∈JYi for a subset J ⊆ I, and

let Y j be the disjoint union of all Yj with card(J) = j + 1, j ≥ 0. We consider the weight spectral

sequences

Ei,j
1 = Hi(Y j ,Qp) =⇒ Hi+j(Xs̄,Qp)
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and

Ei,j
2 =

∞⊕

k=0

Hj−2k
crys (Y i+2k/W )(−k) =⇒ Hi+j

HK(Xs̄/W )

Now let ulog
Xs/Wn

denote the canonical morphism of topoi ˜(Xs/Wn)HK → (̃Xs)et (recall that

Hi
HK(Xs/W ) = lim Hi

HK(Xs/Wn), where Wn = W/pnW ).

Note that the eigenvalues of φa(where pa is the number of elements in K) on Hj−2k
crys (Y i+2k/W )⊗

K0 are Weil numbers of weight j − 2k, thus the canonical morphism of spectral sequence E1 → E2

induced by ulog
Xs/Wn

, gives rise to an isomorphism γ : Hi(Xs̄,Qp) ∼= Hi
HK(X)slope0 = (Kur

0 ⊗K0

Hm
HK(X))φ⊗φ=1.

In fact, by the compatibility of the isomorphism of Cst with the specialization morphism, we have

γ = β ◦ sp (see [B1], page 675).

3.4 General Case

In general, when X is proper, flat and generically smooth over S, we can also use Chiarellotto’s

morphism c : Hi
rig(X

′/k) → Hi
HK(X ′

s/k)N=0 defined on semistable scheme X ′ to construct our

sp′ : Hi
rig(Xs/k) → Dcrys(Hi(Xη̄,Qp)).

Consider the diagram

X
(2)
s −−−−→ X(2) ←−−−− X

(2)
η̄y

y
y

X
(1)
s ×Xs

X
(1)
s −−−−→ X(1) ×X X(1) ←−−−− X

(1)
η̄ ×Xη̄

X
(1)
η̄

¸ ¸ ¸

X
(1)
s −−−−→ X(1) ←−−−− X

(1)
η̄y

y
y

Xs −−−−→ X ←−−−− Xη̄

where X(1) → X is surjective , X(2) → X(1) ×X X(1) is generically surjective (i.e., surjective on the

generic fibre, while not necessarily surjective on all generic points), both are alterations and have

semistable reductions by De Jong’s theorem ([D-J]).

From the above diagrams, we then deduce a commutative diagram for the cohomology (for



18

convenience, we omit the subscript when writing the etale cohomology).

Hi
rig(X

(2)
s /k) c−−−−→ Hi

HK(X(2)
s /k)N=0 '−−−−→ Dst(Hi(X(2)

η̄ ,Qp))N=0

↑ ↑
Hi

rig(X
(1)
s ×Xs

X
(1)
s /k) Dst(Hi(X(1)

η̄ ×Xη̄
X

(1)
η̄ ,Qp))N=0

· ·

Hi
rig(X

(1)
s /k) c−−−−→ Hi

HK(X(1)
s /k)N=0 '−−−−→ Dst(Hi(X(1)

η̄ ,Qp))N=0

↑ ↑
Hi

rig(Xs/k) Dst(Hi(Xη̄,Qp))N=0

where the first arrow in each row is Chiraletto’s morphism, and the second one is the isomorphism

in the semistable reduction case as we proved above.

We then have the following result:

Proposition 3.4.1 With the above notations, the equalizer of

Hi(X(1)
η̄ ,Qp) ⇒ Hi(X(1)

η̄ ×Xη̄
X

(1)
η̄ ,Qp)

is Hi(Xη̄,Qp) and the equalizer of

Dst(Hi(X(1)
η̄ ,Qp))N=0 ⇒ Dst(Hi(X(1)

η̄ ×Xη̄ X
(1)
η̄ ,Qp))N=0

is Dst(Hi(Xη̄,Qp))N=0.

Before the proof of this proposition, we first prove a lemma for the existence of a trace map:

Lemma 3.4.1 Given π : X → Y proper, η : Y → SpecK, ξ = η ◦ π : X → SpecK proper, smooth of

dimension d, we have a trace map tr : Rπ∗Ql → Ql.

Proof:

We have the adjunction: Rπ!π
!Ql → Ql in the derived category of l-adic sheaves.

Since Ql = ξ!Ql(−d)[−2d] = π!η!Ql(−d)[−2d] = π!Ql, and Rπ! = Rπ∗ as π is proper, we then

get the trace map. ¤

Proof of Proposition 3.4.1:

For the fiber product projection X
(1)
η̄ ×Xη̄

X
(1)
η̄ ⇒ X

(1)
η̄ → Xη̄ and the associated p-adic etale

cohomology Hi(Xη̄,Qp) → Hi(X(1)
η̄ ,Qp) ⇒ Hi(X(1)

η̄ ×Xη̄ X
(1)
η̄ ,Qp), note that it suffices to show

that

Hi(Xη̄,Qp) ↪→ Hi(X(1)
η̄ ,Qp) ⇒ Hi(X(1)

η̄ ×Xη̄
X

(1)
η̄ ,Qp)
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is exact.

Assume π : X
(1)
η̄ → Xη̄ is a surjection of genereic degree d.

By lemma 3.4.1, from X
(1)
η̄ ×Xη̄ X

(1)
η̄

π2→ Xη̄ and X
(1)
η̄

π→ Xη̄, we have Qp
x→ Rπ∗Qp ⇒ Rπ2∗Qp,

where the section map is the trace map τ multiplied by d−1.

Using the Künneth formula [M2, chapter 6, Theorem 8.5]: Rπ2∗Qp ' Rπ∗Qp ⊗Qp
Rπ∗Qp, we

then get:

Qp
x→ Rπ∗Qp ⇒ Rπ2∗Qp ' Rπ∗Qp ⊗Qp Rπ∗Qp

where the section map is the trace map τ multiplied by d−1.

Consider the diagram of complexes:

Qp
ι−−−−→ Rπ∗Qp

ι⊗id−id⊗ι−−−−−−−→ Rπ∗Qp ⊗Qp Rπ∗Qp

id

y id

y id

y
Qp

ι−−−−→ Rπ∗Qp
ι⊗id−id⊗ι−−−−−−−→ Rπ∗Qp ⊗Qp

Rπ∗Qp

by identifying Rπ∗Qp ⊗Qp
Qp with Rπ∗Qp, We have:

τ ◦ ι = d

(τ ⊗ id) ◦ (ι⊗ id) = d

(τ ⊗ id) ◦ (id⊗ ι) = ι ◦ τ

Thus if we define h : Rπ∗Qp ⊗Qp
Rπ∗Qp → Rπ∗Qp as h = τ ⊗ id, it then follows that h ◦ (ι ⊗

id− id⊗ ι) + τ ⊗ ι = d, and we get the scalar product map of the complexes

Qp
ι−−−−→ Rπ∗Qp

ι⊗id−id⊗ι−−−−−−−→ Rπ∗Qp ⊗Qp
Rπ∗Qp

×d

y ×d

y ×d

y
Qp

ι−−−−→ Rπ∗Qp
ι⊗id−id⊗ι−−−−−−−→ Rπ∗Qp ⊗Qp

Rπ∗Qp

is homotopic to the zero map, which leads to the exactness of the complex.

Now, by H∗(X(1)
η̄ ,Qp) ' H∗(Xη̄, Rπ∗Qp) and H∗(X(1)

η̄ ×Xη̄ X
(1)
η̄ ,Qp) ' H∗(Xη̄, Rπ2∗Qp), we

get the scalar product map hence also the identity map of the complexes

Hi(Xη̄,Qp) −−−−→ Hi(X(1)
η̄ ,Qp) −−−−→ Hi(X(1)

η̄ ×Xη̄
X

(1)
η̄ ,Qp)

×d

y ×d

y ×d

y
Hi(Xη̄,Qp) −−−−→ Hi(X(1)

η̄ ,Qp) −−−−→ Hi(X(1)
η̄ ×Xη̄ X

(1)
η̄ ,Qp)

is homotopic to the zero map, thus the exactness of the sequence 0 → Hi(Xη̄,Qp) → Hi(X(1)
η̄ ,Qp) →

Hi(X(1)
η̄ ×Xη̄

X
(1)
η̄ ,Qp) is guaranteed.
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Since Dcrys = DN=0
st is a left exact functor, the equalizer of the double arrow Dcrys(Hi(X(1)

η̄ ,Qp)) ⇒
Dcrys(Hi(X(1)

η̄ ×Xη̄ X
(1)
η̄ ,Qp)) is Dcrys(Hi(Xη̄,Qp)). ¤

Similarly, there is also a morphism from Hi
rig(Xs/k) to the equalizer of the double arrow

Hi
rig(X

(1)
s /k) ⇒ Hi

rig(X
(1)
s ×Xs

X
(1)
s /k).

We can then construct a morphism by a similar result as [I3, Prop. A5]:

Lemma 3.4.2 ([I3, Prop. A5]) Let Xη be a proper smooth scheme over K and X a proper flat

model over OK of Xη. For a proper strictly semistable scheme Y and an étale alteration f : Y → X,

the homomorphism f∗ : H∗
et(Xη,Qp) → H∗

et(Yη,Qp) is injective.

Proof:

As in [I3, Prop. A5], we may assume that Xη and Yη are irreducible. Let g : Yη → Yη ×Xη be

the transpose correspondence of Γf = (f, IdYη
), we have the equality f ◦g = d ·Idη, where d denotes

the degree of f . It then leads to the injectivity of f∗. ¤

In our case, we can get a similar result as the above result.

Lemma 3.4.3 Let X be a proper scheme over K, for any proper smooth scheme Y over K and

surjective morphism Y ³ X, we have: grW
i Hi

et(Xη,Qp) → Hi
et(Yη,Qp) is injective, where W refers

to the weight filtration introduced by Deligne in [D2].

Proof:

Extend Y ³ X to a proper smooth hyper covering of X over K:

· · ·Y1 ⇒ Y → X

by resolution of singularity.

Note that the weight filtration is induced by the spectral sequence of this hypercovering and is

independent of the choice of this proper smooth hyper covering ([D2]) .

For the spectral sequence Hp(Hq(Y·,Qp)) ⇒ Hp+q(X,Qp), take p = 0 in the spectral sequence,

we then have:

grW
i Hi

et(Xη,Qp) ' E0,q
∞ ↪→ Hi

et(Yη,Qp)

¤

Corollary 3.4.1 Use the same notation as in the above, Then

grW
i Hi

et(X
(1)
η̄ ×Xη̄ X

(1)
η̄ ,Qp) → Hi

et(X
(2)
η̄ ,Qp)

is injective.
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Now, consider
Hi(X(1)

η̄ ,Qp)

p∗ ¸ q∗

Hi(X(1)
η̄ ×Xη̄ X

(1)
η̄ ,Qp)

Since Hi(X(1)
η̄ ,Qp) has pure weight i, and Hi(X(1)

η̄ ×Xη̄
X

(1)
η̄ ,Qp) has weight in [0, i], we have

(Imp∗+ Imq∗)∩Wi−1H
i(X(1)

η̄ ,Qp) = {0} by the strict compatibility of morphisms with the weight

filtration.

Thus Imp∗+Imq∗ actually injects into grW
i Hi

et(X
(1)
η̄ ×Xη̄ X

(1)
η̄ ,Qp), and hence into Hi

et(X
(2)
η̄ ,Qp)

by the above corollary, thus the equalizer of p∗ and q∗ coincide with the equalizer of Hi
et(X

(1)
η̄ ,Qp) ⇒

Hi
et(X

(2)
η̄ ,Qp).

Applying Dcrys, we also have the injections:

Dst(Hi(X(1)
η̄ ,Qp))N=0 ↪→ Dst(grW

i Hi
et(X

(1)
η̄ ×Xη̄ X

(1)
η̄ ,Qp))N=0

and an monomorphism:

Dst(grW
i Hi(X(1)

η̄ ×Xη̄
X

(1)
η̄ ,Qp))N=0 ↪→ Dst(Hi(X(2)

η̄ ,Qp))N=0

So we have the following:

Proposition 3.4.2 With the same notations as Prop. 3.4.1 , the equalizer of

Hi(X(1)
η̄ ,Qp) ⇒ Hi(X(2)

η̄ ,Qp)

is Hi(Xη̄,Qp) and the equalizer of

Dst(Hi(X(1)
η̄ ,Qp))N=0 ⇒ Dst(Hi(X(2)

η̄ ,Qp))N=0

is Dst(Hi(Xη̄,Qp))N=0.

By the diagram, we have Hi
rig(Xs/k) maps to the equalizer of Hi

rig(X
(1)
s /k) ⇒ Hi

rig(X
(2)
s /k) and

thus also maps to the equalizer Dst(Hi(Xη̄,Qp))N=0 of Dst(Hi(X(1)
η̄ ,Qp))N=0 ⇒ Dst(Hi(X(2)

η̄ ,Qp))N=0

via the composition of Chiarellotto’s morphism c and sp′ constructed in the semistable reduction

case. And our specialization map is induced from that.

Note that Hi
rig(X

(1)
s ×Xs

X
(1)
s /k) → Hi

rig(X
(2)
s /k) may not be injective, thus we do not get

an isomorphism between the two equalizers Hi
rig(X

(1)
s /k) ⇒ Hi

rig(X
(2)
s /k) and Hi

rig(X
(1)
s /k) ⇒

Hi
rig(X

(1)
s ×Xs X

(1)
s /k). In this case, even if we have an isomorphism of two horizontal rows, we just

get an isomorphism between the equalizer of Hi
rig(X

(1)
s /k) ⇒ Hi

rig(X
(2)
s /k) and Dst(Hi(Xη̄,Qp))N=0.
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Also note that, this morphism is well defined and independent of the choice of the alterations.

In fact, given two alterations Y → X, Z → X, both Y, Z have a semistable reduction, consider

the disjoint union V = Y q Z, denote the morphisms induced from these alterations by f, g and h.

It suffices to show the following diagram commutes:

Hi
rig(Xs/k)⊕Hi

rig(Xs/k)
f⊕g−−−−→ Dcrys(Hi(Xη̄,Qp))⊕Dcrys(Hi(Xη̄,Qp))

↑ ∆ ↑ ∆

Hi
rig(Xs/k) h−−−−→ Dcrys(Hi(Xη̄,Qp))

where ∆ is the diagonal map x → (x, x).

And this follows directly from the facts:

1. The morphism h′ : Hi
rig(Vs/k) → Dcrys(Hi(Vη̄,Qp)) is the direct sum of f ′ : Hi

rig(Ys/k) →
Dcrys(Hi(Yη̄,Qp)) and g′ : Hi

rig(Zs/k) → Dcrys(Hi(Zη̄,Qp))

2. The morphisms Hi
rig(Xs/k) → Hi

rig(Vs/k) = Hi
rig(Ys/k)⊕Hi

rig(Zs/k), Dcrys(Hi(Xη̄,Qp)) →
Dcrys(Hi(Vη̄,Qp)) = Dcrys(Hi(Yη̄,Qp))⊕Dcrys(Hi(Zη̄,Qp)) factors through the diagonal map.

Which is equivalent to the commutative diagram:

Hi
rig(Vs/k) = Hi

rig(Ys/k)⊕Hi
rig(Zs/k)

h′=f ′⊕g′−−−−−−→ Dcrys(Hi(Vη̄,Qp)) = Dcrys(Hi(Yη̄,Qp))⊕Dcrys(Hi(Zη̄,Qp))

↑ ↑
Hi

rig(Xs/k)⊕Hi
rig(Xs/k)

f⊕g−−−−→ Dcrys(Hi(Xη̄,Qp))⊕Dcrys(Hi(Xη̄,Qp))

↑ ∆ ↑ ∆

Hi
rig(Xs/k) h−−−−→ Dcrys(Hi(Xη̄,Qp))

Thus the morphism is well defined and independent of the choice of the alterations, and the

diagram indeed induces our sp′ : Hi
rig(Xs/k) → Dcrys(Hi(Xη̄,Qp)).

By above discussions, we have the following:

Theorem 3.4.1 Let X → S be proper, flat and generically smooth. Then there is a φ-equivariant

map

sp′ : Hi
rig(Xs/k) → Dcrys(Hi(Xη̄,Qp))

and a commutative diagram of Gal(k̄/k)−modules

Hi(Xs̄,Qp)
sp−−−−→ Hi(Xη̄,Qp)I

λs

y λη

y

Hi
rig(Xs/k)⊗K0 K̂0

ur sp′⊗1−−−−→ Dcrys(Hi(Xη̄,Qp))⊗K0 K̂0
ur

where K̂0
ur

= Frac(W (k̄)) is the p-adic completion of the maximal unramified extension of K0, and
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the vertical maps λs, λη induce isomophisms:

λs : Hi(Xs̄,Qp) ' (Hi
rig(Xs/k)⊗K0 K̂0

ur
)φ⊗φ=1 = Hi

rig(Xs/k)slope0

and

λη : Hi(Xη̄,Qp)I ' (Dcrys(Hi(Xη̄,Qp))⊗K0 K̂0
ur

)φ⊗φ=1 = Dcrys(Hi(Xη̄,Qp))slope0

Remark 3.4.1 By our discussions above, we also get that the definition of sp′ in good reduction

and semistable reduction cases is compatible with our definition for the general regular schemes.

Remark 3.4.2 By Chiarellotto’s isomorphism

H∗
rig(Y/K0) ' H∗(YZar,Kerv)⊗K0 ' H∗(Yet,Kerv)⊗K0

one can define sp∗ : H∗
rig(Ys/K0) → H∗

dR(Yη/K0) via the composition:

H∗
rig(Ys/K0) ' H∗(Ys,Kerv)⊗K0 → H∗(Ys,WA•)⊗K0 ' H∗

dR(Yη/K0)

where the second arrow is induced by the natural inclusion Kerv ↪→ WA•.

In [BCF], Baldassari, Cailotto and Fiorot have also constructed a specialization map from the

rigid cohomology to the de Rham cohomology, also see [I2] and [M4]. And their specialization map

are also closely related to Chiarellotto’s constructions.

Remark 3.4.3 Note that since Chiarellotto’s conjecture holds for dimensions 1 and 2, so in these

cases, the first arrow in each row is also an isomorphism. Although from [M3], we know that

monodromy-weight conjecture holds in these cases and the local invariant cycle theorem holds.



24

Chapter 4

Proof of p-adic Local Invariant
Cycle Theorem

In this chapter, we will consider the following conjecture:

If X is regular, then

sp : Hi(Xs̄,WOX)Q → (Dcrys(Hi(Xη̄,Qp)⊗K0 K̂0
ur

)slope[0,1)

induced from the p-adic specialization map is an isomorphism, and we have a commutative diagram:

Hi(Xs̄,Qp)
sp−−−−→ Hi(Xη̄,Qp)I

λs

y λη

y
Hi(Xs̄,WOX)Q

sp−−−−→ (Dcrys(Hi(Xη̄,Qp)⊗K0 K̂0
ur

)slope[0,1)

In particular, sp : Hi(Xs̄,Qp) → Hi(Xη̄,Qp)I is an isomorphism.

4.1 Trace Morphism

In [BER], Berthelot, Esnault and Rülling have constructed a trace morphism between the Witt

vector cohomologies of the special fibers between two regular schemes of the same dimension over a

discrete valuation ring of mixed characteristic (0, p).

More explicitly, they first construct a morphism for coherent cohomology:

Proposition 4.1.1 ([BER]) Let X, Y be two flat, regular R-schemes of finite type, of the same

dimension, and let f : Y → X be a projective and surjective R-morphism, with reduction fk over

Speck. Then there exists a trace morphism:

τf : Rf∗OY → OX
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such that the composition of the functoriality morphism OX → Rf∗OY is a scalar product ×r, where

r ∈ Z is the generic degree of f .

Then they extended it to trace morphism of Witt vector cohomology:

Proposition 4.1.2 ([BER]) Make the same assumption as above, let f has a factorization f = π◦i,
where π is the projection of a projective space Pd

X on X, i is a closed immersion.

Denote Xn = X ⊗Z(p) Z(p)/pn+1 and fn : Yn → Xn be the reduction of f mod pn+1, πn, in are

the corresponding reductions of i, π mod pn+1 Then for Witt vector cohomology, there exist trace

morphisms:

τfn
: Rfn∗OYn

→ OXn

τi0,π0,n : Rf∗Wn(OY0) → Wn(OX0)

and

τi0,π0 : Rf∗WOY0,Q → WOX0,Q

such that the respectively compositions of the functoriality morphisms OXn
→ Rfn∗OYn

, Wn(OX0) →
Rf∗Wn(OY0) and WOX0,Q → Rf∗WOY0,Q are scalar products ×r.

Moreover, for n = 1, τi,π,n = τf , and τi,π,n commutes with R, F and V (see [BER, section 5] or

[I4], [LZ] for the definitions of R, F and V ).

The above trace morphisms then induce trace morphisms on the corresponding cohomology

H∗(X, OX) etc. Also, note that Xs ↪→ X0 and Ys ↪→ Y0 are nilpotent immersions, by [BBE, Prop.

2.1], we know that

Hi(X0,WOX0)Q ' Hi(Xs,WOXs
)Q

and

Hi(Y0,WOY0)Q ' Hi(Ys,WOYs
)Q

are isomorphisms. Thus there is also a trace morphism

τi,π : Hi(Ys,WOYs
)Q → Hi(Xs,WOXs

)Q

In [BER], Berthelot, Esnault and Rülling have proved that the above trace morphism is compat-

ible with the base change and composition of morphisms.

As in the proof of Proposition 3.4.1, the existence of these trace morphisms play an important

role in our proof.
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4.2 Coherent Cohomology

Now we consider Hi(X, OX) first.

As in the last chapter, when X is regular, consider

X(2)

π

y
Y = X(1) ×X X(1)

p ¸ q

X(1)

f

y
X

where X(1) → X surjective , X(2) → X(1) ×X X(1) generically surjective (i.e., surjective on the

generic fibre, while not necessarily surjective on all generic points), both are alterations and have

semistable reductions by De Jong’s theorem ([D-J]).

We define g : X(2) → X(1) to be the composition: X(2) π→ Y
p→ X(1), note that, as Z →

X(1)×X X(1) is generically surjective, and p : Y → X(1) is surjective, we deduce that g : X(2) → X(1)

is also a surjective alteration.

As in the proof of proposition 3.4.1, we need a trace morphism and a relative Künneth formula.

Now, define OY der = p−1OX(1) ⊗L
(fp)−1OX

q−1OX(1) , which can be viewed as an object in the

derived category of (fp)−1OX -modules on the underlying topological space of Y . Then [BER, Prop.

A.1 (ii)] still holds if we replace Y ′ by Y ′der and understand Lv∗E• there as OY der ⊗L
v−1OY

v−1E•.

More explicitly, in our situation, we have:

Lq∗F • = q−1F • ⊗L
q−1OX

OY der

Then, by [BER, Prop. A.1 (ii)], we have:

Rp∗Lq∗OX(1) ' Lf∗Rf∗OX(1)

Thus

Rf∗Rp∗Lq∗OX(1) = R(f ◦ p)∗OY der

On the other hand,

Rf∗Rp∗Lq∗OX(1) = Rf∗Lf∗Rf∗OX(1) = Rf∗(f−1Rf∗OX(1) ⊗L
f−1OX

OX(1))
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Using ”Projection formula” ([Har, Prop. 5.6])

Rf∗(f−1Rf∗OX(1) ⊗L
f−1OX

OX(1)) = Rf∗OX(1) ⊗L
OX

Rf∗OX(1)

Thus we have

R(f ◦ p)∗OY der = Rf∗OX(1) ⊗L
OX

Rf∗OX(1)

which is the relative Künneth formula we need for the coherent cohomology.

By [BER], we have trace morphisms for alterations f : X(1) → X, g : X(2) → X(1) and

f ◦ g : X(2) → X.

In the following, we define ιf to be the adjunction OX → Rf∗OX(1) , τf be the corresponding

trace map Rf∗OX(1) → OX , and τf ◦ ιf = df idOX
(the scalar multiplication by df , and we just write

df later). Similarly, define ιg, τg, and dg.

Then, from the trace morphism Rf∗OX(1) → OX , since we have the base change isomorphism

Rp∗Lq∗OX(1) ' Lf∗Rf∗OX(1) , we then get a trace morphism

τp = Lf∗τf : Rp∗OY der = Rp∗Lq∗OX(1) ' Lf∗Rf∗OX(1) → Lf∗OX(1) = OX(1)

Now we have a diagram of complexes:

OX
ιf−−−−→ Rf∗OX(1)

ιf⊗id−id⊗ιf−−−−−−−−−→ R(f ◦ p)∗OY der = Rf∗OX(1) ⊗L
OX

Rf∗OX(1)

id

y id

y id

y

OX
ιf−−−−→ Rf∗OX(1)

ιf⊗id−id⊗ιf−−−−−−−−−→ R(f ◦ p)∗OY der = Rf∗OX(1) ⊗L
OX

Rf∗OX(1)

Similarly to the proof of proposition 3.4.1, by identifying Rf∗OX(1) ⊗L
OX

OX with Rf∗OX(1) , we

have:

τf ◦ ιf = df

Rf∗ιp = ιf ⊗ id

Rf∗τp = τf ⊗ id

(τf ⊗ id) ◦ (ιf ⊗ id) = Rf∗τp ◦Rf∗ιp = dp = df

(τf ⊗ id) ◦ (id⊗ ιf ) = Rf∗τp ◦ (id⊗ ιf ) = ιf ◦ τf

Then we can construct h = Rf∗τp : R(f ◦ p)∗OY der → Rf∗OX(1) , such that:

h ◦ (ιf ⊗ id− id⊗ ιf ) + ιf ◦ τf = df − ιf ◦ τf + ιf ◦ τf = df



28

Thus the scalar product by df map of the complexes

OX
ιf−−−−→ Rf∗OX(1)

ιf⊗id−id⊗ιf−−−−−−−−−→ R(f ◦ p)∗OY der = Rf∗OX(1) ⊗L
OX

Rf∗OX(1)

×df

y ×df

y ×df

y

OX
ιf−−−−→ Rf∗OX(1)

ιf⊗id−id⊗ιf−−−−−−−−−→ R(f ◦ p)∗OY der = Rf∗OX(1) ⊗L
OX

Rf∗OX(1)

is homotopic to the zero map, which leads to the exactness of the corresponding cohomology complex.

Now, we consider Hi(X(1), OX(1)) ⇒ Hi(X(2), OX(2)).

Consider the diagram of complexes:

OX
ιf−−−−→ Rf∗OX(1)

ιf⊗id−id⊗ιf−−−−−−−−−→ R(f ◦ p)∗OY der = Rf∗OX(1) ⊗L
OX

Rf∗OX(1)
Rf∗Rp∗ιπ−−−−−−→ Rf∗Rg∗OX(2)

×dg

y ×dg

y ×dg

y ×dg

y

OX
ιf−−−−→ Rf∗OX(1)

ιf⊗id−id⊗ιf−−−−−−−−−→ R(f ◦ p)∗OY der = Rf∗OX(1) ⊗L
OX

Rf∗OX(1)
Rf∗Rp∗ιπ−−−−−−→ Rf∗Rg∗OX(2)

Note that

OX(1)
ιp→ Rp∗OY der

Rp∗ιπ→ Rg∗OX(2)

coincides with

OX(1)
ιg→ Rg∗OX(2)

i.e., ιg = Rp∗ιπ ◦ ιp, thus

τg ◦Rp∗ιπ ◦ ιp = τg ◦ ιg = dg

If we could prove that:

Rf∗τg ◦Rf∗Rp∗ιπ ◦ (id⊗ ιf ) =
dg

df
Rf∗(τg ◦Rp∗ιπ) ◦ (id⊗ ιf ) =

dg

df
Rf∗τp ◦ (id⊗ ιf ) =

dg

df
ιf ◦ τf

then we would have constructed h = Rf∗τg : Rf∗Rg∗OX(2) → Rf∗Rg∗OX(1) , such that:

h ◦ (Rf∗Rp∗ιπ ◦ (ιf ⊗ id)−Rf∗Rp∗ιπ ◦ (id⊗ ιf )) + ιf ◦ (
dg

df
τf ) = dg

Thus the scalar product by dg map of the complexes

OX
ιf−−−−→ Rf∗OX(1)

ιf⊗id−id⊗ιf−−−−−−−−−→ R(f ◦ p)∗OY der = Rf∗OX(1) ⊗L
OX

Rf∗OX(1)
Rf∗Rp∗ιπ−−−−−−→ Rf∗Rg∗OX(2)

×dg

y ×dg

y ×dg

y ×dg

y

OX
ιf−−−−→ Rf∗OX(1)

ιf⊗id−id⊗ιf−−−−−−−−−→ R(f ◦ p)∗OY der = Rf∗OX(1) ⊗L
OX

Rf∗OX(1)
Rf∗Rp∗ιπ−−−−−−→ Rf∗Rg∗OX(2)

is homotopic to the zero map, which leads to the exactness of the corresponding cohomology



29

complex, and we get the consequence.

Now, consider

OX(1)
ιq→ Rq∗OY der

λ' Rp∗OY der

τp→ OX(1)

where λ is f−1OX -linear isomorphism induced by the interchanging of the factors in X(1) ×X X(1).

We have:

ιf ◦ τf = (τf ⊗ id) ◦ (id⊗ ιf ) = Rf∗τp ◦ (id⊗ ιf ) = Rf∗τp ◦Rf∗(λ ◦ ιq) = Rf∗(τp ◦ λ ◦ ιq)

id⊗ ιf = Rf∗(λ ◦ ιq)

Thus it suffices to show that

Rf∗τg ◦Rf∗Rp∗ιπ ◦Rf∗(λ ◦ ιq) = Rf∗(
dg

df
τp ◦ λ ◦ ιq)

or

τg ◦Rp∗ιπ ◦ λ ◦ ιq =
dg

df
τp ◦ λ ◦ ιq

i.e., to show that the composition

OX(1)
ιq→ Rq∗OY der

λ' Rp∗OY der
Rp∗ιπ→ Rg∗OX(2) = R(p ◦ π)∗OX(2)

τg→ OX(1)

coincides with

OX(1)
ιq→ Rq∗OY der

λ' Rp∗OY der

τp→ OX(1)

Now, choose U open in X, such that f |U : X
(1)
U → U is finite etale, π : X(2) → ȲU is surjective,

note that p : YU → X
(1)
U is surjective and finite etale, choose V open in YU such that V → X(1) is

etale and X
(2)
V → V is surjective and finite etale. Finally, put W = X

(1)
U \p(YU\V ), which is open in

X
(1)
U , YW ⊂ V , W → U surjective and YW → W is surjective and finite etale.

Summarizing, we have the following diagram:

X
(2)
V −−−−→ X(2)

y
y

YW −−−−→ V −−−−→ YU −−−−→ ȲUy
y

y
W −−−−→ X

(1)
U −−−−→ X(1)

Uy
y

U −−−−→ XU
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If we replace X, X(1), Y,X(2) above by U,W, YW , X
(2)
V , then the above discussions still work as

the trace morphism is compatible with base change.

And in this case, we have a trace map Rp∗τπ : Rg∗OX(2) → Rp∗OY der satisfying Rp∗τπ ◦Rp∗ιπ =

dπ on W .

Then since the composition

Rg∗OX(2)
Rp∗ιπ→ Rp∗OY der

τp→ OX(1)

coincides with the trace map

Rg∗OX(2)
τg→ OX(1)

defined in [BER], we have:

τp ◦Rp∗τπ = τg

and

τg ◦Rp∗ιπ = τp ◦Rp∗τπ ◦Rp∗ιπ =
dg

df
τp = dπτp

So we have proved that:

τg ◦Rp∗ιπ ◦ λ ◦ ιq =
dg

df
τp ◦ λ ◦ ιq

when restricted on W .

Now we want to show these identities hold on all of OX(1) .

We prove a lemma first:

Lemma 4.2.1 For any integral scheme X, s ∈ Hom(OX , OX), if s|U = 0 where U is open in X,

then s ≡ 0 on OX .

Proof:

Choose an affine covering of X, it then suffices to prove the case X = SpecA.

Then U = SpecA\Spec(A/I) for some ideal I, and U = ∪f∈ISpecAf

Now, since for any a ∈ A, we have s(a) = 0 in Af , which equivalents to fnis(a) = 0 for some ni.

Since A is an integral domain, we have s(a) = 0. ¤

By this lemma, we have

τg ◦Rp∗ιπ ◦ λ ◦ ιq =
dg

df
τp ◦ λ ◦ ιq

and

Rf∗τg ◦Rf∗Rp∗ιπ ◦ (id⊗ ιf ) =
dg

df
Rf∗(τg ◦Rp∗ιπ) ◦ (id⊗ ιf ) = Rf∗τp ◦ (id⊗ ιf )
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We then get the homotopy between the scalar product by dg map and the zero map, and also

the same consequence for the coherent cohomology complex.

Proposition 4.2.1 Let X/S be regular, proper, flat and generically smooth, then the cohomology

of the sequence

0 → Hi(X, OX) → Hi(X(1), OX(1)) → Hi(X(2), OX(2))

is annihilated by a fixed integer dg.

Remark 4.2.1 In [BER] Prop. A.1, if f : Y → X is a complete intersection morphism of virtual

relative dimension 0, and we have:
Z

v−−−−→ Y

g

y f

y
Y ′ u−−−−→ X

such that Y and Y ′ are Tor-independent. Then g : Z → Y ′ is also a complete intersection morphism

of virtual relative dimension 0, which induces a trace morphism.

Thus, if we could prove the following Tor-independence fact in our assumption:

Tori
OX

(p−1OX(1) , q−1OX(1)) = 0

then we get p : Y = X(1) ×X X(1) → X(1) has a trace map τp, and we can then replace Y der by Y

in the above proof.

The Tor-independence problem can be converted as follows:

Consider the diagram:
Z

v−−−−→ Y

g

y f

y
Y

u−−−−→ X

Fix z ∈ Z with image y(resp. x) in Y (resp. X),

Then the morphism A = OX,x → B = OY,y can be factorized as

A ↪→ C = A[s1, s2, . . . , sm]p
ϕ
³ B = C/I

where I is generated by a regular sequence {f1, f2, . . . , fr}.
It then requires to show that Tor

OX,x

i (OY,y, OY,y) = 0 for i ≥ 1 provided that I ∩A = {0}, which

is equivalent to the tensor product of B’s Koszul-resolution K(f1, f2, . . . , fr)⊗A K(f1, f2, . . . , fr) is

still a flat resolution of B ⊗A B.

This will leads to some nontrivial fact that the tensor product of two regular local ring is torsion-

free under certain condition (see [A], [L3], [HW] for some rigidity discussions). However, since Y

just plays in an intermediate step in our proof, we stop to do further things here.
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4.3 Witt Vector Cohomology

In this section, we want to extend the above results of coherent cohomology to the Witt vector

cohomology.

As in [BER], denote Xn = X⊗Z(p) Z(p)/pn+1 and fn : X
(1)
n → Xn be the reduction of fmodpn+1.

Note that for all n ≥ 1, Xn and X(1) are Tor-independent over X (as in [BER] prop. 8.6, by the

spectral sequence for the composition of Tor’s), so we get a trace map τfn : O
X

(1)
n
→ OXn , and the

trace map τfn is induced from τf by the base change from X to Xn.

We could apply similar argument in the last section, except that τpn
and τqn

may not exist in

our case.

Summarizing, we have to consider the diagram of complexes:

OXn

ιfn−−−−→ Rfn∗OX
(1)
n

Rfn∗Rpn∗ιπn◦Rfn∗ιpn−Rfn∗Rpn∗ιπn◦Rfn∗(λn◦ιqn )−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Rfn∗Rgn∗OX
(2)
n

×dg

y ×dg

y ×dg

y

OXn

ιfn−−−−→ Rfn∗OX
(1)
n

Rfn∗Rpn∗ιπn◦Rfn∗ιpn−Rfn∗Rpn∗ιπn◦Rfn∗(λn◦ιqn )−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Rfn∗Rgn∗OX
(2)
n

directly, where λn : Rqn∗OY der
n

' Rpn∗OY der
n

is f−1
n OXn -linear isomorphism induced by interchang-

ing factors.

Note that we still have:

O
X

(1)
n

ιpn−→ Rpn∗OY der
n

Rpn∗ιπn−→ Rgn∗OX
(2)
n

coincides with

O
X

(1)
n

ιgn−→ Rgn∗OX
(2)
n

i.e., ιgn
= Rpn∗ιπn

◦ ιpn
, thus

τgn
◦Rpn∗ιπn

◦ ιpn
= τgn

◦ ιgn
= dg

Thus, it remains to prove:

Rfn∗τgn ◦Rfn∗Rpn∗ιπn ◦Rfn∗ιqn = Rfn∗(τgn ◦Rpn∗ιπn ◦ λn ◦ ιqn) =
dg

df
ιfn ◦ τfn

Since the trace map is compatible with base change, the above identity follows from

Rf∗τg ◦Rf∗Rp∗ιπ ◦Rf∗Rf∗(λ ◦ ιq) = Rf∗(
dg

df
τp ◦ λ ◦ ιq) = dpιf ◦ τf

So, the results of coherent cohomology in the last section also hold for Xn. More explicitly:
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Proposition 4.3.1 Let X/S be regular, proper, flat and generically smooth, let Xn = X ⊗Z(p)

Z(p)/pn+1 be the reduction of X, then the cohomology of the sequence

0 → Hi(Xn, OXn) → Hi(X(1)
n , O

X
(1)
n

) → Hi(X(2)
n , O

X
(2)
n

)

is annihilated by a fixed integer dg.

Then the associated cohomology diagram induces the following sequence:

Hi(X0, OX0)
f0→ Hi(X(1)

0 , O
X

(1)
0

)
g0−h0−→ Hi(X(2)

0 , O
X

(2)
0

)

and by the above discussion, we know that:

τf0 ◦ f0 = df , τg0 ◦ g0 = dg

τg0 ◦ h0 =
dg

df
f0 ◦ τf0

where τf0 and τg0 are the base change of the trace maps τf and τg, which are trace maps too by

[BER, prop. 8.6].

Now, Consider the sequence

Hi(X0,WnOX0)
f0,n→ Hi(X(1)

0 ,WnO
X

(1)
0

)
g0,n−h0,n−→ Hi(X(2)

0 ,WnO
X

(2)
0

)

We want to prove the following:

Claim: For all n ≥ 1, we have:

τf0,n
◦ f0,n = df , τg0,n

◦ g0,n = dg

dn · τg0,n
◦ h0,n = dn · dg

df
f0,n ◦ τf0,n

where τf0,n
and τg0,n

are the trace maps:

Hi(X0
(1),WnOX0

(1)) → Hi(X0,WnOX0)

Hi(X0
(1),WnOX0

(2)) → Hi(X0
(1),WnOX0

(1))

as in [BER, Prop. 8.6]. And dn is bounded as n →∞. Here we fix the factorizations f0 = π ◦ i and

g0 = π′ ◦ i′.
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Note that if this is true, then we get that Ker(g0,n−h0,n)/Imf0,n is annihilated by dndg, taking

inverse limit and then tensoring with Q, we then get the sequence

0 → Hi(X0,WOX0)Q → Hi(X(1)
0 ,WO

X
(1)
0

)Q ⇒ Hi(X(2)
0 ,WO

X
(2)
0

)Q

is exact.

As shown above, we know that

Hi(X0,WOX0)Q → Hi(Xs,WOXs)Q

and

Hi(X(1)
0 ,WO

X
(1)
0

)Q → Hi(X(1)
s ,WO

X
(1)
s

)Q

are isomorphisms.

Now recall that the Witt vector cohomology captures the slope [0, 1) part of the rigid cohomology

and of the Hyodo-Kato cohomology by the above result, we then have a commutative diagram with

the two columns are exact:

Hi(X(2)
s ,WOX(2))Q

'−−−−→ Hi
HK(X(2)

s /k)N=0,slope[0,1)
Q

'−−−−→ Dcrys(Hi(X(2)
η̄ ,Qp))slope[0,1)

↑ ↑
Hi(Ys,WOY )Q Dcrys(Hi(Yη̄,Qp))slope[0,1)

· ·

Hi(X(1)
s ,WOX(1))Q

'−−−−→ Hi
HK(X(1)

s /k)N=0,slope[0,1)
Q

'−−−−→ Dcrys(Hi(X(1)
η̄ ,Qp))slope[0,1)

↑ ↑
Hi(Xs,WOX)Q Dcrys(Hi(Xη̄,Qp))slope[0,1)

By the diagram and Prop. 3.4.1, we have the following:

If X is regular, then Hi(Xs,WOX)Q ' Dcrys(Hi(Xη̄,Qp))slope[0,1)

Now, if we restrict sp′ : Hi
rig(Xs/k) → Dcrys(Hi(Xη̄,Qp)) to the slope [0, 1) part, we then get a

commutative diagram:

Hi(Xs̄,Qp)
sp−−−−→ Hi(Xη̄,Qp)I

λs

y λη

y
Hi(Xs̄,WOX) '−−−−→ (Dcrys(Hi(Xη̄,Qp)⊗K0 K̂0

ur
)slope[0,1)

by which we then get the p-adic local invariant cycle theorem.

Thus it remains to verify our claim.
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The first identity

τf0,n
◦ f0,n = df , τg0,n

◦ g0,n = dg

is always true by the property of trace map.

For the second identity, we could not deduce the identity

dn · τg0,n ◦ h0,n = dn · dg

df
f0,n ◦ τf0,n

for a bounded dn yet, but we can still get some consequences which is sufficient to deduce the p-adic

local invariant cycle theorem.

Use the short exact sequence:

0 → Wn−1(OX0)
V−→ Wn(OX0)

Rn−1

−→ OX0 → 0

where V : (a1, a2, · · · , an−1) 7→ (0, a1, a2, . . . , an−1) and Rn−1 is the projection (a1, a2, . . . , an) 7→ a1.

We then have a long exact sequence:

· · · → Hi(X0,Wn−1OX0) → Hi(X0,WnOX0) → Hi(X0, OX0) → Hi+1(X0,WnOX0) → · · ·

So we have a commutative diagram:

0 0 0y
y

y

Hi(X0,Wn−1OX0)
VX0−−−−→ Hi(X0,WnOX0)

Rn−1
X0−−−−→ Hi(X0, OX0)

δX0−−−−→ · · ·
f0,n−1

y f0,n

y f

y

Hi(X0
(1),Wn−1OX0

(1))
V

X0
(1)−−−−→ Hi(X0

(1),WnOX0
(1))

Rn−1

X0
(1)−−−−→ Hi(X0

(1), OX0
(1))

δ
X0

(1)−−−−→ · · ·
g0,n−1−h0,n−1

y g0,n−h0,n

y g0−h0

y

Hi(X0
(2),Wn−1OX0

(2))
V

X0
(2)−−−−→ Hi(X0

(2),WnOX0
(2))

Rn−1

X0
(2)−−−−→ Hi(X0

(2), OX0
(2))

δ
X0

(2)−−−−→ · · ·

where each row is exact.

Now, use induction on n, we want to show that Fn−1 ◦ (τg0,n ◦ h0,n − dg

df
f0,n ◦ τf0,n) = 0

The base case is just the coherent cohomology case we just proved, and we assume it holds for

n− 1.

As the trace map commutes with R, F and V by [BER, prop. 7.7], we have:

(τg0,n ◦ h0,n − dg

df
f0,n ◦ τf0,n) ◦ V = V ◦ (τg0,n−1 ◦ h0,n−1 − dg

df
f0,n−1 ◦ τf0,n−1)
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and

F ◦ (τg0,n
◦ h0,n − dg

df
f0,n ◦ τf0,n

) = (τg0,n−1 ◦ h0,n−1 − dg

df
f0,n−1 ◦ τf0,n−1) ◦ F

Thus

Fn−1 ◦ (τg0,n ◦ h0,n − dg

df
f0,n ◦ τf0,n) = Fn−2 ◦ (τg0,n−1 ◦ h0,n−1 − dg

df
f0,n−1 ◦ τf0,n−1) ◦ F = 0

which finishes the induction.

The consequence that τg0,n
◦h0,n− dg

df
f0,n is annihilated by F already tells us some information.

In fact, we consider the Frobenius stable part of the cohomology as in [C2], i.e., defined as the

maximal subspace H∗(X, WnOX)s(resp. H∗(X, WOX)s) of H∗(X, WnOX)(resp. H∗(X, WOX)) on

which the Frobenius is a bijection.

Note that τg0,n
◦ h0,n − dg

df
f0,n maps Hi(X0

(1),WnOX0
(1))s to Hi(X0

(1),WnOX0
(1))s.

Thus Fn−1◦(τg0,n
◦h0,n− dg

df
f0,n) = 0 on Hi(X0

(1),WnOX0
(1))s means that τg0,n

◦h0,n− dg

df
f0,n = 0

on Hi(X0
(1),WnOX0

(1))s.

Taking inverse limit on the sequence

Hi(X0,WnOX0)s → Hi(X(1)
0 ,WnO

X
(1)
0

)s ⇒ Hi(X(2)
0 ,WnO

X
(2)
0

)

and then tensoring with Q, we then get the sequence

0 → Hi(X0,WOX0)Q,s → Hi(X(1)
0 ,WO

X
(1)
0

)Q,s ⇒ Hi(X(2)
0 ,WO

X
(2)
0

)Q,s

is exact.

Now, by [C2, Prop. 1.5.2], the Frobenius stable part captures the slope 0 part of the rigid

cohomology and the Hyodo-Kato cohomology, combining it with chapter 3’s results, we then get a

commutative diagram with the two columns are exact:

Hi(X(2)
s ,WOX(2))Q,s

'−−−−→ Hi
HK(X(2)

s /k)N=0,slope0
Q

'−−−−→ Dcrys(Hi(X(2)
η̄ ,Qp))slope0

↑ ↑
Hi(Ys,WOY )Q,s Dcrys(Hi(Yη̄,Qp))slope0

· ·

Hi(X(1)
s ,WOX(1))Q,s

'−−−−→ Hi
HK(X(1)

s /k)N=0,slope0
Q

'−−−−→ Dcrys(Hi(X(1)
η̄ ,Qp))slope0

↑ ↑
Hi(Xs,WOX)Q,s Dcrys(Hi(Xη̄,Qp))slope0
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which also certifies that

sp : Hi(Xs̄,Qp) → Hi(Xη̄,Qp)I

is an isomorphism.

So we have the following:

Theorem 4.3.1 (p-adic local invariant cycle theorem) Let X/S be regular, proper, flat and gener-

ically smooth, we have:

sp : Hi(Xs̄,WOX)Q,s ' (Dcrys(Hi(Xη̄,Qp)⊗K0 K̂0
ur

)slope0

induced from the p-adic specialization map is an isomorphism, and we have a commutative diagram:

Hi(Xs̄,Qp)
sp−−−−→ Hi(Xη̄,Qp)I

λs

y λη

y
Hi(Xs̄,WOX)Q,s

sp−−−−→ (Dcrys(Hi(Xη̄,Qp)⊗K0 K̂0
ur

)slope0

where λs and λη are isomorphisms as above, and the subscript s denotes the Frobenius stable part

as in [C2].

In particular, sp : Hi(Xs̄,Qp) → Hi(Xη̄,K0)I is an isomorphism.
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Chapter 5

Another Proof of H0 And H1 Cases

In this chapter, we give an alternative proof of H0 and H1 cases.

• H0 Case

Proposition 5.0.2 Let X be a regular scheme, then sp : H0(Xs̄,Qp) ' H0(Xη̄,Qp)I is an isomor-

phism.

Proof:

For H0, the p-adic case and the l-adic case are the same since H0(X,Ql) = Qπ0(X)
l and sp :

H0(Xs̄,Ql) → H0(Xη̄,Ql)I is induced from π0(Xs̄) → π0(Xη̄). ¤

A geometric point of view of the above consequence follows from Zariski’s theorem on formal

functions that the special fiber of f : X → S has the same number of connected components as the

generic fiber.

• H1 Case

For H1, we use Grothendieck’s fundamental group.

By [SGA1, X. Cor. 2.4], we know that if S is a locally noetherian scheme, f : X → S is a proper

geometrically connected morphism, then there exists a specialization homomorphism

sp : π1(Xη̄) → π1(Xs̄)

defined up to inner automorphisms of π1(Xs̄). If, furthermore, f : X → S is separable, then

sp : π1(Xη̄) → π1(Xs̄) is an epimorphism.

Note that since H1(X,Qp) = Hom(π1(X),Qp), so sp : H1(Xs̄,Qp) → H1(Xη̄,Qp)I is uniquely

defined.
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Thus we have an monomorphism:

H1(Xs̄,Qp) = HomZp
(π1(Xs̄),Qp) ↪→ HomZp

(π1(Xη̄),Qp) = H1(Xη̄,Qp)

Consider the following diagram:

Yηy
Xs̄ −−−−→ X̄ ←−−−− Xη̄

By the Zariski-Nagata theorem on purity of the branch locus ([SGA1, X.3.1],[SGA2, X.3.4]),

a finite etale covering Yη̄ → Xη̄ extends to Y → X if it extends over generic points of the special

fiber.

We have

Gal( ¯k(Xη)/k(Xη̄)) −−−−→ π1(Xη̄)
TyI=Gal(η̄/η)

TyI=Gal(η̄/η)

Gal( ¯k(Xη)/k(Xη)) −−−−→ π1(Xη)
φ−−−−→ Qpy

π1(X)

Note that, by purity, φ factors through π : π1(Xη) → π1(X) iff φ(Iv̄) = 0, for any discrete

valuation v̄|v which corresponds to the geometric points of Xs.

Now we prove the following:

Proposition 5.0.3 Let X → S be proper, flat, and generically smooth. If X is regular, then the

specialization map:

sp : H1(Xs̄,Qp) → H1(Xη̄,Qp)I

is an isomorphism.

The idea is using lifting: for any φ ∈ HomZp(π1(Xη),Qp), s.t. φ|π1(Xη̄) 6= 0, there exists a

ψ ∈ HomZp
(I,Qp), s.t. (φ + ψ)(Iv̄) = 0, for any discrete valuation v̄|v. Then by purity, φ + ψ

factors through π1(X) = π1(Xs), thus

H1(Xs̄,Qp) = HomZp(π1(Xs̄),Qp) ³ HomZp(π1(Xη̄)I ,Qp) = H1(Xη̄,Qp)I

Proof:

We have the short exact sequence ([SGA1, X. Cor.2.2])



40

0 → π1(Xη̄) → π1(Xη) → I → 0

Then the Hochschild-Serre spectral sequence will give us:

0 → Hom(I,Qp) → Hom(π1(Xη),Qp) → Hom(π1(Xη̄),Qp)I → 0

Consider an alteration Xss → X as in [D-J], where Xss then has semistable reduction.

Denote X, Xss’s quotient fields by K, L respectively.

We can get a similar exact sequence from Xss, and we deduce a diagram:

0 −−−−→ Hom(IL,Qp)G −−−−→ Hom(π1(XL),Qp)G −−−−→ Hom(π1(XL̄),Qp)IL,G −−−−→ 0y
y

y
0 −−−−→ Hom(IK ,Qp) −−−−→ Hom(π1(XK),Qp) −−−−→ Hom(π1(XK̄),Qp)IK −−−−→ 0

where all the vertical maps are isomorphisms, and G = Gal(L/K) = IK/IL.

Now by purity, Hom(π1(X),Qp) ={homomorphisms φ : π1(XK) → Qp which is trivial on Iv, for

all v extending | · |p on K}.
If we use the isomorphism in the above diagram, we can consider Hom(π1(Xss),Qp) = {G-

invariant homomorphisms φ : π1(XL) → Qp which is trivial on Iv, for all v extending | · |p on

K}.
Note that for the semistable reduction case, we have sp is an isomorphism, so

Hom(π1(Xss),Qp) ∼= Hom(π1(XL̄),Qp)IL

We then have

Hom(π1(X),Qp) ∼= Hom(π1(Xss),Qp)G ∼= Hom(π1(XL̄),Qp)IL,G ∼= Hom(π1(XK̄),Qp)IK

Thus sp is an isomorphism. ¤
Thus, by using Grothendieck’s fundamental group and purity, we get another proof of H0 and

H1 cases.

Remark 5.0.1 Besides the cohomology descent method which proved the general p-adic local invari-

ant cycle theorem in the last chapter, and the above proof via using Grothendieck’s fundamental group

and purity, for the case of H1, we also considered another method via investigating the vanishing

cycle through Bloch and Kato’s symbols ([BK1]).
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Consider

Z/prZ(1) → Gm
pr

→ Gm

in Dsh(Xet).

We have the following diagrams:

i∗Ri!Z/prZ(1) −−−−→ i∗Ri!Gm −−−−→
pr

i∗Ri!Gm

y
y

y

Z/prZ(1) −−−−→ Gm
pr

−−−−→ Gmy
y

y
Rj∗j∗Z/prZ(1) −−−−→ Rj∗j∗Gm −−−−→

pr
Rj∗j∗Gm

0 0 0y
y

y

X0(Z/prZ(1)) −−−−→ Gm
pr

−−−−→ Gm −−−−→ X1(Z/prZ(1)) −−−−→ 0y
y

y
y

y

j∗µpr −−−−→ j∗Gm
pr

−−−−→ j∗Gm −−−−→ R1j∗µpr −−−−→ R1j∗Gm
pr

−−−−→y
y

y
y

y
i∗R1i!Z/prZ(1) −−−−→ i∗R1i!Gm −−−−→

pr
i∗R1i!Gm −−−−→ i∗R2i!Z/prZ(1) −−−−→ i∗R2i!Gm

Use the same notations as above and set j : Xη → X, from [BK1], we know that the stalk of

Rkj∗Gm at x ∈ Xs → X is Hk(SpecOsh
X,x[ 1

π ],Gm).

We have exact sequences

0 → H1(Xs, R
0ΨQp) → H1(Xη̄,Qp)I → H0(Xs, R

1ΨQp)I

and

H0(Xs, R
1ΨQp)I = H0(Xs, R

1ΨQp(1))I=χ ↪→
∏

x∈Xs

(R1ΨQp(1))x

Then by [BK1], we have a surjection:

∏

x∈Xs

lim←−(Osh
X̄,x[

1
p
]∗/pn)I=χ ³ (R1ΨQp(1))x
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One then needs to show that latter has no cyclotomic character.

By this we may possibly give another proof of our H1 case via vanishing cycle, and may also

extend to the higher cohomology.
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Chapter 6

Weight Filtration

If X is a smooth projective variety over Q and 0 ≤ i ≤ 2dimX, then the representations of the Galois

group Gal(Q̄/Q) on the etale cohomology groups Hi
et(X × Spec(Q),Ql) form, as the prime l varies,

a compatible system of Galois representations. Hence we can attach an L-function L(s,Hi(X))

to it. There are many conjectures, beginning with the meromorphic continuation and functional

equations, and some deep theories relating the analytic properties of L(s,Hi(X)) with geometric

properties of X.

In [L2], Lichtenbaum suggested the existence of Weil-etale cohomology groups for arithmetic

schemes X (i.e., separated schemes of finite type over Spec(Z)) relating to the zeta function ζ(X , s)

of X satisfying some given properties.

If X has finite characteristic, these cohomology groups are well defined and understood by work

of Lichtenbaum and Geisser ([L1],[G1],[G2]).

Lichtenbaum defined Weil-etale cohomology groups for X = SpecOF , the spectrum of the ring

of integers in a number field, in [FlM] Flach and Morin partially extended this work to a regular,

flat, proper scheme over SpecZ.

In this extended definition, the expected property for ζ(X , s) on its leading Taylor coefficient is

compatible with the Tamagawa Number Conjecture of Bloch and Kato [BK2], also Fontaine and

Perrin-Riou [FP] for Πi∈ZL(hi(XQ), s)(−1)i

at s = 0. And for this we need to assume a number of

conjectures which are preliminary to the formulation of the Tamagawa number conjecture, thus we

are led to the so called local invariant cycle theorem, both in l-adic and p-adic cohomology, which

serves to establish the equality of vanishing orders

ords=0ζ(X , s) = ords=0Πi∈ZL(hi(XQ), s)(−1)i

for regular scheme X proper and flat over Spec(Z).

Now, considering the rigid cohomology, also note that the eigenvalues of φ on Hi
rig(Xs/k) are

Weil numbers, thus with a similar argument as in the l− adic case in [FlM, section 10], we then get
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the same is true for Dpst(Hi(Xη̄,Qp)), hence we deduce the weight filtration on both Hi
rig(Xs/k)

and

Dcrys(Hi(Xη̄,Qp)) = Dst(Hi(Xη̄,Qp))N=0 = Dpst(Hi(Xη̄,Qp))I,N=0

As pointed out in [FlM, (9.2)], assuming that (both the p-adic and l-adic cases) the map

W0H
i(Xs̄,Ql) → W0H

i(Xη̄,Ql)I

induced by sp is an isomorphism for all i, one can prove that: for all primes p and l,

RΓ(X ⊗ Fp,et,Ql) ∼=
2d⊕

i=0

RΓf (Qp, V
i
l )[−i]

here X is a regular scheme,proper and flat over SpecZ and V i
l = Hi(XQ̄,Ql), and this serves as a part

to prove the compatibility of the Weil-etale cohomology with the Tamagawa number conjecture(See

[FlM] section 9 for details).

6.1 l-adic Result

In [FlM], M. Flach and B. Morin prove the following results related to the l-adic local invariant cycle

theorem in the mixed characteristic case:

Theorem 6.1.1 ([FlM], (Theorem 10.1)) If X is regular, then the following hold.

a. The map

Hi(Xs̄,Ql) = WiH
i(Xs̄,Ql) → WiH

i(Xη̄,Ql)I

induced by sp is surjective for all i where the isomorphism and the weight filtration existence are

due to Deligne in [D2].

b. The map

W1H
i(Xs̄,Ql) → W1H

i(Xη̄,Ql)I

induced by sp is an isomorphism for all i(For i > d it will be the zero map).

c. The map sp is an isomorphism for i = 0,1.

d. If WiH
i(Xη̄,Ql)I = Hi(Xη̄,Ql)I for all i, then the map

Wi−1H
i(Xs̄,Ql) → Wi−1H

i(Xη̄,Ql)I

induced by sp is an isomorphism for all i.



45

6.2 The Analogous p-adic Result

We expect to extend these results to the p-adic case. Note that the regular assumption of X is

necessary (both in p-adic and l-adic cases), see [FlM] for a counterexample otherwise.

In fact, for the application in proving the compatibility of the Weil-etale cohomology with the

Tamagawa number conjecture, we only need the isomorphism on W0 (in fact on the smaller gener-

alized eigenspace for the eigenvalue 1). More explicitly, We need to prove the following:

If X is regular, then the map

W0H
i(Xs̄,Qp)

sp→ W0H
i(Xη̄,Qp)I

induced by sp is an isomorphism, where W0 is the sum of generalized φ− eigenspaces for eigenvalues

which are roots of unity.

Obviously, this is a direct corollary of the p-adic local invariant cycle theorem by the fact that

W0 is an exact functor. Thus we also get the result in the p-adic case, and thus combining with the

l-adic case, we have: for all primes p and l,

RΓ(X ⊗ Fp,et,Ql) ∼=
2d⊕

i=0

RΓf (Qp, V
i
l )[−i]

In the following, we consider several typical examples such that the W0-part of the specialization

map is an isomorphism be verified via direct computations.

In fact, note that the maps λs and λη are injective as we show above, and since the W0-part of

the rigid cohomology is contained in its slope 0-part, thus from the diagram we constructed for the

p-adic local invariant cycle theorem, it suffices to prove that the W0-part of the p-adic specialization

map is an isomorphism:

W0H
i
rig(Xs/k) ' W0Dcrys(Hi(Xη̄,Qp))

• Blow Up Case

Consider the case that p : X(1) → X is a blowing up with regular center.

Since Hi(X(1)
s̄ ,Qp) = Hi(Xs̄, Rp∗Qp), by computing the stalks, Hi(Xs̄, R

jp∗Qp) has weight in

[j, j + i] and Hi(Xs̄, Rp∗Qp) is pure of weight i, so only R0 contributes to Hi(Xs̄, R
jp∗Qp) ⇒

Hi(Xs̄, Rp∗Qp), and we have:

Hi(X(1)
s̄ ,Qp) = Hi(Xs̄, Rp∗Qp) = Hi(Xs̄, R

0p∗Qp) = Hi(Xs̄, p∗Qp)

Now W0H
i(Xs̄,Qp) = W0H

i(X(1)
s ,Qp) = W0Dst(Hi(X(1)

η̄ ,Qp))N=0.
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Thus in this case, W0H
i(Xs̄,Qp) is the equalizer of W0H

i(X(1)
s /k) ⇒ W0H

i(X(2)
s /k) (by com-

position of morphisms), hence we have

W0Dst(Hi(X(1)
η̄ ,Qp))N=0 = W0Dst(Hi(Xη̄,Qp))N=0

and

W0H
i(Xs̄,Qp) = W0Dst(Hi(Xη̄,Qp))N=0 = W0H

i(Xη̄,Qp)I

• Regular Scheme with Ordinary Double Points

Now we consider the case as in [I3] and [M4].

Let X be a relative n-dimensional proper generically smooth scheme over R, assume X is regular,

connected and has at most ordinary double points (which is defined below). Assume that all the

ordinary double points are k-rational and denote the set of them by Σ. Let K ′ be a totally ramified

quadratic extension of K.

In [I3] and [M4], Illusie and Mieda constructed the specialization map:

sp∗ : Hi
rig(Xs/k)′ → Hi

dR(Xη/K)′

(here Hi(∗)′ denotes Hi(∗) ⊗K K ′) and proved that it is an isomorphism when i 6= n, n + 1 and

for each σ ∈ Σ, there exist a one-dimensional K ′-module Φσ(X/K ′) and an exact sequence ([M4,

Theorem 1.1] ) :

0 → Hn
rig(Xs/k)′

sp∗→ Hn
dR(Xη/K)′ →

⊕

σ∈Σ

Φσ(X/K ′) → Hn+1
rig (Xs/k)′

sp∗→ Hn+1
dR (Xη/K)′ → 0

In this example, we could show that the W0-part of the specialization map is an isomorphism.

Now let A be a ring, a quadratic form Q ∈ A[X1, . . . , Xn+1] over A is said to be ordinary if for

any maximal ideal m of A, the quadratic form Q̄m = Q⊗A A/m is nonzero, and the closed subscheme

of Pn
A defined by Q is smooth over SpecA.

A point σ ∈ Σ is called an ordinary double point if there exists an open subscheme U of X

containing σ, an ordinary quadratic form Qσ over R and an etale morphism:

f : U → SpecR[X1, . . . , Xn+1]/(Qσ − π)

As in [M4], by taking a base change of R to R′, the ring of integers of K ′, we obtain a scheme

with isolated singularities, each of which is defined by a homogenous quadratic polynomial.

Thus let X be a relative n-dimensional proper generically smooth scheme over R which is regular

connected, Σ is a finite set, and etale locally around any point of Σ, the scheme X is defined by
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a homogenous quadratic polynomial, i.e., for any σ ∈ Σ, there exists an open subscheme U of X

containing σ, an ordinary quadratic form Qσ over R, a unit uσ ∈ R∗ and an etale mrophism

f : U → SpecR[X1, . . . , Xn+1]/(Qσ − π)

As in [I3, 3.2], Let π = uσπ′2 and A′ be the normalization of R[X1, · · · , Xn+1]/(Qσ − uσπ′2) in

K ′, X ′ = X ⊗A A′, and take the blowing up X̃ → X ′ of X ′ at Σ, set Dσ be the exceptional divisor

at σ. Then the blowing up X̃s of Xs at Σ is the strict transform of Xs in X̃ and the exceptional

divisor Cσ at σ is equal to the intersection X̃s ∩Dσ.

Due to [I3, Prop. 2.4], X̃ is strictly semistable over SpecA′ and its special fiber X̃s is equal to X̃s+

Σσ∈ΣDσ as an divisor on X̃, Dσ is isomorphic to the closed subscheme of Pn+1
k = Projk[X1, . . . , Xn+1, T ]

defined by the polynomial Qσ − uσT 2 and Cσ is isomorphic to its hyperplane section T = 0.

Follow we stated in chapter 2, given the Hyodo-Steenbrink bicomplex

WnAij =
Wnω̃i+j+1

Y

PjWnω̃i+j+1
Y

we can define the weight filtration on it as

PkWnAij =
P2j+k+1Wnω̃i+j+1

Y

PjWnω̃i+j+1
Y

.

Now, in our case, we have D(1) = X̃s t
⊔

σ∈Σ Dσ, D(2) =
⊔

σ∈Σ Cσ, and D(i) = ∅ for i > 2.

Let U be the open subscheme Xs − Σ of Xs, we have Hi
rig(Xs/k) ' Hi

rig,c(U/k) for i > 1, also,

by comparison theorem in [HK], since U = X̃s − ∪σ∈ΣC[σ], we have the following isomorphisms:

Hi
rig,c(U/k) ' Hi(X̃s,WΩ•

X̃s
(−log

∑

σ∈Σ

Cσ))⊗W K

Hi(X̃s,WA•)⊗K ' Hi
dR(Xη/K)

Hi(X̃s,WΩ•Dσ
(logCσ))⊗K ' Hi

rig((Dσ − Cσ)/k) = Φi
σ(X/k)

And the long exact sequence ([M4, Theorem 2.13] ) :

0 → H1
rig(Xs/k) → H1

dR(Xη/K) →
⊕

σ∈Σ

Φ1
σ(X/k) → H2

rig(Xs/k) → H2
dR(Xη/K) · · ·

Now, we want to show that WoΦi
σ(X/k) = 0 for all i ∈ N and σ ∈ Σ.

We have the following diagram of Mokrane ([M3], Prop. 4.11):
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0 −−−−→ Gr0Wnω̃•Y −−−−→ P1Wnω̃•Y /P−1Wnω̃•Y −−−−→ Gr1Wnω̃•Y −−−−→ 0

ResDσ

y ResCσ
Dσ

y ResCσ

y
0 −−−−→ WnΩ•Dσ

−−−−→ WnΩ•Dσ
(logCσ) −−−−→ WnΩ•Dσ

[−1] −−−−→ 0

Note that we can describe the weight filtration on Wnω̃• as follows:

0 = P0 ⊂ P1 ⊂ P2 = Wnω̃•

P2/P1
Res'

⊕

σ∈Σ

WnΩ•Cσ
[−2]

P1/P0
Res' WnΩ•

X̃s
[−1]⊕

⊕

σ∈Σ

WnΩ•Dσ
[−1]

where Res : GrjWnΩ•Z(logD) ' WnΩ•
D(j)

[−j] is the residue morphism defined by Mokrane ([M3,

prop 1.4.5] )

So we have:

0 −−−−→ 0 −−−−→ Gr1Wnω̃•Y −−−−→ Gr1Wnω̃•Y −−−−→ 0

ResDσ

y ResCσ
Dσ

y ResCσ

y
0 −−−−→ WnΩ•Dσ

−−−−→ WnΩ•Dσ
(logCσ) −−−−→ WnΩ•Dσ

[−1] −−−−→ 0

By [M3, prop. 3.22], we have the grading of WA•:

Grk(WA•) =
⊕

j≥0,j≥−k

Gr2j+k+1Wω̃•Y [1](j + 1)

Using the identification given by the residue map and combining the weight filtration on Wnω̃,

we have

Gr0WA• = Gr1Wnω̃•Y [1](1)

From [M3, 3.23], we know that the E1 term of the weight spectral sequence on WA• is given by:

E−k,i+k
1 =

⊕

j≥0,j≥−k

Hi−2j−k
crys (X̃(2j+k+1)/W )(−j − k) ⇒ Hi(X̃×/W×)

where these X̃(i) are irreducible smooth components defined above and (−j − k) is the Tate twist

for the Frobenius, then the action of Frobenius acts on the twist Hi−2j−k
crys (X̃(2j+k+1)/W )(−j− k) is

pj+k times the Frobenius action on Hi−2j−k
crys (X̃(2j+k+1)/W ). By [M3, 3.22], all of the terms in the

direct sum of E−k,i+k
1 are crystals of weight i + k up to torsion.

It follows that WoΦi
σ(X/k) = 0.

Also, note that this does not imply W0H
i
rig(Xs/k) ' W0H

i
dR(Xη/K) since the latter is not

defined, even if after applying ⊗BdR and take the isomorphism H∗
dR(Xη/K)⊗BdR ' H∗

et(Xη̄)⊗BdR.
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