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Abstract

The aim of this paper is to consider the p-adic local invariant cycle theorem in the mixed character-
istic case.

In the first part of the paper, via case-by-case discussion, we construct the p-adic specialization
map, and then write out the complete conjecture in p-adic case. We proved the theorem in good
reduction and semistable reduction cases.

In the second part of the paper, by using Berthelot, Esnault and Riilling’s trace morphisms
in [BER], we first prove the case of coherent cohomology, then we extend it to the Witt vector
cohomology, and we then get a result on the Frobenius-stable part of the Witt vector cohomology,
which corresponds the slope 0 part of the rigid cohomology, we then get the general p-adic local
invariant cycle theorem.

We also give another approach in the H? and H' cases in the general case.

In the last part of the paper, based on Flach and Morin’s work on the weight filtration in the
l-adic case, we consider the p-adic analogous result (which, together with the [-adic’s result, serves
as a part to prove the compatibility of the Weil-etale cohomology with the Tamagawa number
conjecture). This is a direct corollary of the local invariant cycle theorem by taking the weight
filtration. And we also consider some typical examples that the weight filtration statement could be

verified by direct computations.
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Chapter 1

Introduction

Notation: Assume that R is a complete discrete valuation ring with quotient field K and finite
residue field k of characteristic p. Set S = Spec(R),n = Spec(K),s = Spec(k). Let S = (S, 5,7) be
the normalization of S in a separable closure K of K and denote by I C G := Gal(K /K) the inertia
subgroup. Let W (k) be the ring of Witt vectors of k, Ky be the fraction field of W (k).

The purpose of this paper is to study the p-adic cohomology theory (where we mean several
different but related things: the de-Rham or p-adic etale cohomology of varieties over p-adic fields
or the rigid cohomology of varieties over fields of characteristic p > 0).

For any scheme X over S, we have a special fiber X, over k and a generic fiber X,, over K. And

we consider the diagram of schemes:

X —_ X — X,
| 7| |
s = Spec(k) —— S = Spec(R) «——— n = Spec(K)
Let f : X — S be a proper, flat, generically smooth morphism of relative dimension d. For

0 < i < 2d, one can define the specialization morphism on [-adic etale cohomology groups:
sp H'(Xs,Qu) — H' (X5, Q)'
via the composition:
H' (X5, Q) = H'(X',Qu) — H'(X;, Q) — H'(X5, Q)"

where X’ is the base change of X to a strict Henselization of S at 5 and the first isomorphism is
proper base change. This map sp is G-equivariant.

The local invariant cycle theorem conjectures that this specialization morphism sp is an epimor-
phism if [ # p and X is regular.

In [D1, (3.6)], Deligne has proved the l-adic case of the local invariant cycle theorem in the equal
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characteristic case under the hypothesis that X is essentially smooth over & and X5 smooth over 7.

In the mixed characteristic case, this theorem is still a conjecture. It is well-known that the
monodromy-weight conjecture (Deligne’s conjecture on the purity of monodromy filtration) implies
the local invariant cycle theorem ([I1], [12], (8.8)), thus the theorem holds in the mixed characteristic
in dimension < 2. But in the case of dimension >2, it is still a conjecture. Also, see [S1] for
Scholze’s result for the existence of a natural tilting operation that exchanges characteristic 0 and
characteristic p, and then deduce the monodromy-weight conjecture in certain cases by reduction to
equal characteristic.

Now, let W;V be the subspace of V with an endomorphism ¢ where eigenvalues of ¢ have weight <
i. In [FIM, (10.1)], M. Flach and B. Morin prove that H(X5, Q;) = W; H' (X5, Q;) — W, H* (X7, Q)!
induced by sp is surjective for all 4 under the hypothesis that [ # p and X is regular (Also, note that
the regularity is a key assumption, see [FIM] section 10 and [I2] section 8 for counterexamples).

It is then natural to ask the analogous result of the local theorem of invariant cycles for the
p—adic cohomology.

Assume that K has characteristic 0. For [ = p, one can still define the specialization map
sp: H'(X5,Qp) — H'(X5,Qp)"

as above since proper base change holds for arbitrary torsion sheaves. However, it is well-known
that p—adic etale cohomology of varieties in characteristic p only describes the slope 0 part of the
full p—adic cohomology, which is Berthelot’s rigid cohomology H};ig(XS /k) (here the slope 0 part
Vstopel of g finite dimensional Q,—vector space V with an endomorphism ¢ is defined as the maximal
subspace on which the eigenvalues of ¢ are p — adic units), also there is no duality theorem in this
case, which served as an important part in the proof of [—adic situation.

Thus we need to consider rigid cohomology instead of etale cohomology, through case by case
construction, via using Chiareletto’s map and a cohomology descent, we construct the full p-adic

specialization map in chapter 3:

Theorem 1.0.1 If X/S is proper, flat and generically smooth, then there is a ¢-equivariant map
sp’ + Hyig(Xs/k) = Derys(H' (X7, Qp))

and a commutative diagram of Gal(k/k)—modules

Hi(XEvQP) - Hi(Xﬁ’Qp)I

| ol

i A~ ur  sp’®1 i A u
Hrig(XS/k) ®K0 KO 4 ? Dcrys(H (Xﬁ, Qp)) ®K0 KO

‘s
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where Ko = Frac(W (k)) is the p-adic completion of the maximal unramified extension of Ky, and

the vertical maps \s, A, induce isomophisms:

Aot H'(Xs,Qp) = (Hiy(Xa/k) @k, Ko )?991 = Hi o (X, /k)lore

rig
and

Ap Hi(Xﬁva)I = (Dcrys(Hi(Xﬁan)) KK, KO )¢®¢:1 = Dcrys(Hi(Xﬁ,Qp))SlOpeo

Theorem 1.0.2 Let X/S be proper, flat, and generically smooth, we have:

(Xs/k) = Depys(H(X5,Qp)) is an isomorphism.

2. If X has semistable reduction, then sp : H'(X5,Q,) — H'(X;, Ko)' is an isomorphism, and
sp': HE, (Xs/k) = Depys(H(X53,Qp)) is an isomorphism, i = 0,1

rig

1. If X has good reduction, then sp’ : H?

Tig

In [BER], Berthelot, Esnault and Riilling constructed a series of trace morphisms between the
Witt vector cohomology of the special fibers of two flat regular R-schemes X and Y of the same
dimension.

By using these trace morphisms, in chapter 4, we first prove some results concerned the coherent

cohomology:

Proposition 1.0.1 Let X/S be regular, proper, flat and generically smooth, then the cohomology
of the sequence

HY(X,0x)— H(XWY Oxw) — H(X? Ox)

is annihilated by a fized integer dg, where X, XM X3 s defined via X - Y = XU xy X1 =
XM - X such that XV — X is surjective , X — XU xx XU 45 generically surjective, both

are alterations and have semistable reductions by De Jong’s theorem ([D-J]).

Then we use reductions and want to lift the result to the Witt vector cohomology, and we have

proved the following:

Theorem 1.0.3 (p-adic local invariant cycle theorem) Let X/S be regular, proper, flat and gener-

ically smooth, we have:

5 H' (X5, WOX),0 = (Derys(H' (X5, @) ©1c, Ko )7
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induced from the p-adic specialization map is an isomorphism, and we have a commutative diagram:

H'(X5,Qp) —— H'(X5,Qp)!

- x|

Hi (Xg, WOX)Q73 i} (DCT'ys (HZ (Xﬁ, Qp) ®K0 KOUT)SIOPEO

where \; and )\, are isomorphisms as above, and the subscript s denotes the Frobenius stable part
as in [C2].
In particular, sp : H(X5,Q,) — H'(X5, Ko)! is an isomorphism.

In chapter 5, we give another proof of H® and H' cases via Grothendieck’s fundamental group
and purity.

In chapter 6, based on Flach and Morin’s work on the weight filtration in the l-adic case, we
consider the p-adic analogous result (which, together with the l-adic’s result, serves as a part to
prove the compatibility of the Weil-etale cohomology with the Tamagawa number conjecture), i.e.,
to verify that the morphism WoH"(X5,Q,) i WoH(X45,Q,)" induced by sp is an isomorphism,
which is a direct corollary of the local invariant cycle theorem by taking the weight filtration. And
we also consider some typical examples where this weaker statement could be verified by direct

computations.



Chapter 2

Preliminaries

2.1 Bgys and By Conjectures

We briefly recall Fontaine’s definitions of Bepys, Derys, Bsts Dst, Bar and Dgg here([F1], [F2]) .
Let A be a Z,-algebra such that A/pA # 0. Let

R=1lim(-- 5 A/pA L A/pA T AfpA)

where F' denotes the Frobenius of A/pA.

Then we can consider the Witt vector ring W(R) and a ring morphism

0:W(R)— A

. m inWLii
u:(u07u17"')'_>n}1lgo§ D Uim
1=0

where A is the p-adic completion of A4, u, = (Uno, Un1,- .. ), and” denotes a lifting from A/pA to
A.

Now Kerf is a principal ideal generated by { = [p] — p, where p = (--- — »/p — ¢/p — p).
Also, denote [] : R — W(R) to be the multiplicative Techmuller lift.

Define
N 1 n
Bip = MW(R)[E]/S
+ 4l
Bir = FracBj, = BdR[g}

crys

N n
AY = {Zan%,N < 00,an, € W(R)}
n=0 ’

Ac’rys — MAO /pnAO

crys crys
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1
Berys = Acrys| ]

crys

1 1
BCTyS = B;ys[g] = Acrys[g]

Bst = Bcrys [log[w}]

S} n
where t = logle] = > (—1)"*1@7 ¢ € R such that €® = 1, # 1 and @w € R such that

n=1

0 = p,v(w) = 1.

w(

Then for any p-adic representation V', define:
Dar(V) = (V ®q, Bar)“"

Dst(V) = (V ®Qp Bst)GK
DCTyS(V) = (V ®Qp BcryS)GK = Dst(v)N:O

Then we have Fontaine’s Cerys conjecture([FM]) (proved by Fontaine and Messing via p-adic

nearby cycles, Faltings via almost etale extensions, and Niziol via K-theory):

(Cerys): Assume X proper and smooth over S, then there exists a natural isomorphism:
Bcrys ®K0 Hérys(Xs/k) = Bcrys ®QZ, Hi(Xﬁan)

compatible with the actions of ¢ and G on both sides (here the action of g € G on LHS (resp. RHS)
isg® 1 (resp. g® g), ¢’s action on LHS (resp. RHS) is ¢ @ ¢ (resp. ¢ ® 1) ), as well as with the
filtrations after tensoring both sides with K.

And we also have Fontaine-Jannsen’s Cs; conjecture ([T]) (proved by Kato and Tsuji via p-adic

nearby cycles, Faltings via almost etale extensions, and Niziol via K-theory):

st): Assume X proper and has semistable reduction over S, then there exists a natural iso-
C A X d h istable reducti S, then th ist tural i
morphism:

Byt Qk, H}l{K(XS/k) ~ By ®q, Hi(Xﬁ7Qp)

compatible with the actions of ¢, N and G on both sides(here the action of g € G on LHS (resp.
RHS) is g® 1 (resp. g ® g), ¢’s action on LHS (resp. RHS) is ¢ ® ¢ (resp. ¢ ® 1), N’s action on
LHS (resp. RHS) is N®1+1Q® N (resp. N ® 1)), as well as with the filtrations after tensoring
both sides with K.



2.2 Chiarellotto’s Map

Chiarellotto’s map plays an important role in our construction of p-adic specialization map, and we
briefly recall Chiarellotto’s construction in [C] here:
First, given a semistable scheme Y, we suppose that Y is proper and be the union of irreducible

smooth components

Y = UierY;

Denote Y ) be the space of disjoint union of the intersections of j components. These Y ) are
smooth by the definition of semistable schemes.

By [M3, (3.7)], we know that there exists an isomorphism on Y, for each j > 1
Res : Gr;-/VWnJ);/ — WoQ5 o) [—51(—J)

where W, &3 is a complex defined by Hyodo and Mokrane ([M3]), W,Q5,;, is the usual de Rham-
Witt complex of V) (thought of as a complex in Y,;) and (—j) is the Tate-shift related to the
Frobenius structure ([I4]).

By these, we could consider the Hyodo-Steenbrink bicomplex W,, A% (i, j > 0) of sheaves in Y,
given by

~itjt1
Wiy

where P;W,&3- is the usual logarithmic filtration on W, &s3-, these P;W, @3- are coherent W,,Oy,,-
modules and form the weight filtration.

For x € W,,AY, the first differential d'x € W,, A**17 is (—1)/ times the usual one, while d :
W, A4 — W, A%+ is given by the multiplication by ©: d”(z) = x A ©, where O is a global section
on W,@{- which locally coincides with dt/t.

The double complex (W, A*®,d’,d") is endowed with a Frobenius endomorphism ®,, defined on
each W, AY by the usual Frobenius morphism twisted by p~/~!. Taking the inverse limit on n € N,
we get a bicomplex W A®® whose associated simple complex W A® is isomorphic to Wwy under
multiplication by © (see [M3, (3.17)]).

By [M3, (3.18)], W A® admits an operator v as follows: v, is the endomorphism induced on the

simple complex by the endomorphism on W,, A*® such that (—1)*+/*1y,, is the natural projection
WoAY — W, Ai=1i+1

Taking inverse limit of v,, we then construct

<
I
g
S
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which induces the monodromy operator in cohomology, and by the exactness property, one obtains

an isomorphism of complexes in (Y, W):
Kerv = limKerv,
Lem

Chiarellotto’s paper has given an interpretation of Kerv ® Ky in terms of rigid cohomology.
We have an explicit formula for Kerv involving the usual de Rham-Witt complexes of the various

intersections of the components of Y by Chiarellotto:

Proposition 2.2.1 (/C,Prop. 1.8]) Consider a proper semistable scheme Y which is the union of
irreducible smooth components

Y = Uier;

and denote YY) be the space of disjoint union of the intersections of j components. Then the kernel
of the operator

Uy i WpA® — W, A®

s the stmple complex associated to the double complex
O — WnQ;/(l) &) WnQ;/(Q) E) WnQ;/(g) tt

in Yer, where py : W, QS ) — Wy Q5,1 is defined by

pe=(-1)" Y (17"

1<j<t+1

(Here §; : Y — Y=V s restriction on the components are defined to be the inclusions

Y, N---Y, =Y, N---NY;

Tj—1

nY,..,.N---NY;

(see [M3] and [S2]).)

Then we need an interpretation of a complex calculating the rigid cohomology of the k-scheme
Y in terms of the components of Y and their various intersections.

Let P be a formal W-scheme locally of finite type. Then its generic fiber Pk, is a rigid analytic
space and we could define

sp: Pg, — P

to be the specialization([B4]).

Let Y be a k-scheme of finite type, and assume that there is a closed immersion of Y into a



smooth formal W-scheme P:

j:Y—>P

Define H*

conv

(Y/KO) = H* (Sp_l(Y), Q;p—l(y)

proper, we have H;,,,(Y/Ko) = H; (Y/Ko).

) (here sp~(Y) =]Y, is the tube of Y). As Y being

Consider the restriction sp :]Y[,— Y and sp*Q;p,1 ) Note that the hypercohomology of

the complex sp, 3, .y calculates the rigid cohomology of Y ([B4]), and this is the intuition of

p~1(
Chiarellotto’s construction.

The existence of a closed embedding of Y into a smooth formal W-scheme is only true locally.
The method of dealing with the generic situation is to use the technique of ”diagrams of topos”. In

fact, one can always find an open covering {T,} of Y, and for each T, we could construct a closed

embedding into a smooth formal W-scheme:
lo Ty — P,
Thus we have the close embedding given by the diagonal map
Tag-an * Logean = Loy N NIy, = Pageocay, = Pag X -+ X Ty,

These {Tog- -, = Ta,N: - N7y, } form a diagram of topos Ty endowed with the Zariski topology. The

complex of sheaves {sp*Q]'T& } form a complex of sheaves sp*Q;p,l(Y) on this diagram

oo [Pagran

of topos. On the other hand, there is a natural map € : Ty — Yz,,-. The convergent cohomology

of Y is defined by Re*sp*(Q]'Y[P

cohomology groups of Y ([B2]).

). As Y is proper, these cohomology groups coincide with the rigid

Now, given a k-scheme of finite type Y, and suppose that it is the union of smooth irreducible
components

Y =Uier;

denote Y similarly as above and 7 : Y¥) — Y be the natural maps.

We have the following exact sequence in Yz, by [C, Prop. 2.3]

0= 5Py, & ispeWy g, B iespey ey, -

where pg is the natural restriction and p; is defined via §; similarly as above.

Now one can connect Kerv with the rigid cohomology, which both are related to complexes

defined using the smooth component of the proper semistable scheme Y:

Proposition 2.2.2 (/C, Theorem 3.6]) Consider a proper semistable scheme Y which is the union
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of irreducible smooth components

Y = UierY;

Then, in DV (Yz,,) there is an isomorphism
sp*Q]'Y[ — Kerv® Ky

In particular,

H(Y/Ko) ~ H*(Yzar, Kerv) @ Ko >~ H* (Yet, Kerv) @ Ko

Now, from the exact sequence:
0 — Kerv! — WA* S WA* = Cokerv’ — 0
We then get the map, by taking inverse limit and the above proposition:

H’L

g

(Xo/k) = Hiype(Xo /)N

as Hi - (Xs) = HY(Xs,WA®) is defined as the hypercohomology of the Hyodo-Mokrane complex
WAS®.

Remark 2.2.1 For more details and discussions on Chiarellotto’s constructions, we refer to his

paper [C], Also, Chiarellotto conjectured in [C] that for each i > 0, the sequence
. . N .
Hyig(Xs/k) = Hy g (Xs/k) = Hy e (Xs/k)

is exact, while here we do not require this conjecture to be true and only use this morphism to

construct our sp’ : HY; (Xs/k) = Derys(H (X5, Qp)) for general X.
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Chapter 3

Construction of p-adic
Specialization Map

In this chapter, we will construct the p-adic specialization map sp’ : HY; (Xs/k) — Derys(H' (X5, Qp)),

and we make some simplifications first.

3.1 Some Simplifications

Define a ¢-ring R(or a ¢-field F') to be a ring(or a field) with an endomorphism ¢, a ¢-module D over
a ¢-ring R(or over a ¢-field F') is defined to be a finite free R-module(or a finite dimensional F-vector
space) equipped with a semi-linear ¢-action on D, i.e., ¢(rx) = ¢(r)¢(x) for any r € R,z € D.
Now, for any ¢—module D, the Gal(k/k)—module V(D) := (D ®x, Ko )*®%=! can be viewed
as a ¢p—module via the action of ¢ ® 1 and we defined it as D*°P? where the action of Frob;l €
Gal(k/k) coincides with that of ¢~ IFFrl @ 1 =1 ® ¢~ ¥l
Thus we have:
(H}y(Xo/k) ®x, Ko )*®0=" = HL,,

rig

(Xs /k)slopeo

and

(DcryS(Hi(Xﬁva)) XK, XO )¢®¢:1 = DcryS(Hi(Xﬁﬂ Qp))swpeo

Remark 3.1.1 In fact, using the Dieudonne-Manin classification([M1]), any Kow[gé]fmodule is
isomorphic to a sum of B, s = KOW[QS}/(QST —p°), where t = 2 € Q is the slope.

Note that E, s has a basis {e;} extended via ¢-action, i.e., we choose e1 € E, s, choose es =
oler),es = Pplea) -+, and P(e.) = ¢"(e1) = p°e1, which causes a contradiction when s # 0 by the

valuation criterion, thus is shows that Eﬁfjl =0 whent =3 #0.
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Lemma 3.1.1 Let V be a finite dimensional Q,-vector space with a continuous G, = Gal(K /K)-
action, and such that Dyr(V)/Fil°Dar(V) = 0. Then we have an isomorphism

Vi~ (Derys(V) @k, Rgr)¢®¢:1

Proof:
Since Dyr(V)/Fil°Dar(V) = 0, and we have an isomorphism of Frob,—modules with the diag-

onal G,—action:

HO(IP,BO(V)) = Dcrys(v) QKo IA{(SW

where BY(V) = Berys ®k, V

We have

Fil®Dyyys (V) @5y K§™ = Fil®(V @k, Berys)'» = Fil'(V @k, Bar)™ N (V @k, Berys)® =
(Fil® Dar(V) @k, K§")N(V @y Berys)' = (Dar(V) @k K§)N(V @k Berys)'? = (V@ Berys)' =
Derys(V) @5c, K3

Thus

(B&SE @Ko V)7 = (Berys @k V)2 9=1 = (Depys (V) @p K§7)?E9=1 = (Fil°Diyys (V) @1,
K§r)?@9=t = Fil®(Derys(V) @1, K§)20=! = Fil’(BGL @, V).

Now, (Berys @, V)91 = (BELL @, V) = Fil®(BELE @, V) = (Fil’BELE @, V)1 =
(Ko @1, V)T = Ve, we get VI o (D (V) @5, KgT)0E0=1, 0

Corollary 3.1.1 Let X be a proper and generically smooth scheme over S, Then we have an iso-
morphism

Hi(Xﬁva)I ~ (Dcrys(Hi(Xﬁ,Qp)) ®x, Ko )¢®¢>:1

Proof:
Note that Dyr(H (X5, Qp)) = Hip(X/K) and Fil°H)n(X/K) = Hip(X/K), we get the conse-

quence by the above lemma. O

Lemma 3.1.2 For a proper variety X over S, we have an isomorphism

H(X5,Qp) ~ (HY, (X, /k) ®x, Ki)*@o=1

19

Proof:
By [BBE], we have a canonical isomorphism:
Hi

rig

(XS/k)[O’l) = Hi(Xs, WOx)k,
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where Hriig(Xs/k‘)[o’l) is the maximal subspace on which ¢ acts with slopes in [0,1), H(X,, WOx)
denotes the Witt vector cohomology, and the subscript Ky means tensorization with Kj.

On the other hand, we have short exact sequence from [I4, Prop. 3.28]:
0—>Z,,—>WOX1;¢ZWOX —0
Thus, by [I4, Lemma 5.3], we have:
HY(X5,@p) = HY (X5, WOx)i " o (Hysy (Xs/R)OD)P = (Hiy (X5/R)7H o (Hyiy (X B)@1, Ko ) P59
O
Combining the above lemmas, we get the isomorphisms

At HY(X5,Qp) ~ (HY, (X k) @K, Ko )?29=1 = HY, (X,/k)sore0

rig 19

and

Ay H' (X5, Q) = (Derys (H' (X, Q) @y Ko )?®=" = Dy (H' (X, @)

It remains to construct sp’ and then show the diagram commutes, however, it is complicated to

construct this morphism in general, and we have to discuss case by case.

3.2 Case of Good Reduction

Note that in the good reduction case, the crystalline cohomology coincides with the rigid cohomology
([B2, Prop.1.9]):
H;zg(XS/k) = Hérys(XS/k)

Using Fontaine’s Ceyys conjecture([FM]), we know that

H(Z'rys(XS/k) ® Bcrys = Hi(XFNQP) ® BCTZJS

Taking the G —invariants, since BCGTI;S = Ky, we can then define a ¢p—equivariant isomorphism

Sp/ : H;:zg(XS/k) - Dcrys(Hi(Xﬁ7Qp))

Also, note that the isomorphism sp’®1 is induced by taking I —invariants on the Ce,ys conjecture.
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And we can adjust A\; and A, (since all the maps in the diagram are isomorphisms) to make the

diagram

H'(X5,Q,) e Hi(X5,Qp,)!

v o

4 > UT\ slope sp'®1 i > UT\ slope
(H (Xs/k) ®Ko Ko )(l ped Lo, (DCTyS(H (Xﬁ7Qp)) @Ko Ko ) lope0

rig

commute. This finishes the case of good reduction.

3.3 Case of Semistable Reduction

Similar as in the good reduction case, we can use Fontaine-Jannsen’s Cy; conjecture ([T]):
H}{K(Xs/k) ® Bgt = Hi(Xﬁa Qp) ® Bgt

Thus we need to replace the above crystalline cohomology in good reduction case by the Hyodo-
Kato cohomology first, in fact, we need to construct A, : H' (X5, Q) — (Hi o (Xo/k)N=0) @k, Ko

prove the commutativity of the following diagram:

H'(X5,Qp) — H'(X5,Qp)"

| |
; _ A ur  sphy e ®1 . ~ ur
(Hiyo (X /R)N=0) @1y Ko 2 Depys(H (X7, Qp)) @0 Ko

and also that ), is injective.

Using Lorenzon’s result in [Lo|, we can prove the following:

Lemma 3.3.1 For a proper variety X over S, we have an isomorphism

st H' (X5, Qp) = (Hipge (X /R)V=0 @1, K§T)P90!

Proof:

Using [Lo, (3.4.6)], we have a canonical isomorphism
HY (X, Zp) @z, Qp = (Hipe (X, /k) @7, Q)™ P
So, similarly as in lemma 2.1.3, using the exact sequence (2.14) and theorem 3.4 in [Lo], we have
HY (X5, Q) = (e (Xo /) Srcy R3S = (Higge (X, 1)V 10, Ry)#90="

where the latter equality follows from: let z € (H x (X, /k) @k, Ky )?®9=1 then z € (Hi (X /k) Ok,
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K")#®%=1 for a finite extension K’ of Ky in K", thus ¢%(Nz) = (1/p*)é(z), where p® is the
number of elements in the residue field of K', since ¢® is induced by a W (k)-endomorphism of
H o (Xs/W(K)), it then follows that Nz = 0. (see [B1], page 674). O

Thus, we have constructed
5\8 : H’i(X§7Qp) == (H}{K(Xs/k)Nﬂ R, K(?)u’)tb(@tb:l ~ (H}'{K(Xs/k,)N=0)slopeO

Also, by the Cy; conjecture proved in [T], we know that Hi; . (X, /k) ® Bs & H'(X5,Q,) ® Bi.

Note that B§¥=°’¢=1 N Fil°Byr = Ko and BS = K, we have the canonical isomorphisms:

HEp (X, Qp) 2 (Bot @, Hipge(X))V =271 0 Fil®(Bar ®x, Hijre (X))

B HE (X, Q)" = (K" @i, Hige (X))N=0020= = (K§"™ @, Hifpe(X))?90="

and

Hity(X) 2= (Bse @10 Hiy (Xi, Q) = Dot (HZ (X, Qp))

So we indeed have an isomorphism of ¢p—modules
Hipge(Xa/])V =0 = Dy (H' (X3, @)= = Derys(H' (X5, Qp))

and we then define this isomorphism to be our required sp; -

Now, we will use the morphism H},; (X/k) — Hip(Xs/k) constructed by Chiarellotto in [C] to
construct our diagram for the rigid cohomology as in the conjecture.

By looking at the proof of lemma 3.1.2 and lemma 3.3.1, note that A, and A, are isomorphisms

such that map H'(X5,Q,) to the slope 0 part of H’; (X,/k) @, Ko and (HY e (Xs/k)VN=%) @k,

rig
Ifow, also, Chiarellotto’s morphism induces an isomorphism on these two slope 0 part, we could
then assume that A, factor through As; via Chiarellotto’s morphism, thus we deduce our diagram

from the above diagram of Hyodo-Kato cohomology:

Hi(Xéva) e Hi(X@Qp)I

| W]

. ~ur  sp'®1 . A ur
H}io(Xo/k) @ Ko == Derys(H'(X,Qp)) @10 Ko

Note that, as sp'y; is an isomorphism, we then have sp is also an isomorphism in the semistable

reduction case, however, sp’ is not an isomorphism in general. But for the H' case, we can prove it

is indeed an isomorphism:
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Proposition 3.3.1 Using the above notations, if X has semistable reduction, then H}

ig
H (X5 /k)N=0, in particular, sp’ : H}, (Xs/k) = Derys(H (X5,Qp)) is an isomorphism.

(X/k) =

Proof:
Note that in [M3, (5.4.3)], by a computation of low degrees of his spectral sequence and also uses
the Neron model in [SGA 7, IX, (12.3.6)], Mokrane has proved the local invariant cycle theorem in

H?' case, i.e., exactness of
0— HY(X,, Kerv) — HY 5 (Xs/k) 2 HY 1 (X, /k)

Combined with [C, (3.8)], which said that H}

Tig

(Xs/k) =2 H* (X, Kerv) ® k.
We then get Chiarellotto’s conjecture H}; (X/k) = Hp o (X, /k)N=0. O

Similarly as in the good reduction case, we can adjust Ag, As and Ay (since all the maps in the

diagram are isomorphism when restricted to the slope 0 part) to make the diagrams

Hi(XEva) R Hi(Xﬁva)I

| x|

. _ ~Aour splhy e ®1 . Aour
(H}{K(Xs/k)Nio) XK, Ko pH—K) Dcrys(Hl(Xﬁ»Qp)) K, Ky

and

Hi(XEva) - Hi(Xﬁva)I

| W]

i > YT\ slope sp’'®1 % > YT\ slope
(Hiig(Xo/k) @1y Koo )P0 2o (Derys (HY (X5, Qp)) ©1o Ko )P0

rig

commute, and then we finish the case of semistable reduction.

Remark 3.3.1 As we shown above, sp’ is not an isomorphism in general, while it is an isomorphism
when restricted to the slope 0-part. In fact, it is also an isomorphism when restricted to the bigger

part slope [0, 1), which both describe the Witt vector cohomology (see [Loj).

Remark 3.3.2 We can also deduce the commutativity of the diagram in semistable reduction case
from the good reduction case via the compatibility of the isomorphism of Cerys and Cg with the
specialization map.

Let {Y;}ier be the family of irreducible components of Xs, Y7 = Nie Y; for a subset J C I, and
let Y7 be the disjoint union of all Y; with card(J) = j+ 1,5 > 0. We consider the weight spectral

sequences

Ei’j = Hi(Yijp) = HiJrj(ng@P)
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and -
By = @) G (v W) (k) = i (X/W)
k=0
Now let ul)?f/wn denote the canonical morphism of topoi (Xj/\m//n)HK — (Z)et (recall that

Hi o (X /W) =lim Hi o (X /W,,), where W, = W/p"W ).

Note that the eigenvalues of ¢* (where p® is the number of elements in K ) on ng_fsk Y2k /W)@
Ky are Weil numbers of weight j — 2k, thus the canonical morphism of spectral sequence Fy — FEo
induced by ul)?f/wn, gives rise to an isomorphism vy : H(X5,Qp) & Hi (X)%1P0 = (K" @,
Hpe (X))599=1

In fact, by the compatibility of the isomorphism of C's; with the specialization morphism, we have

v = Bosp (see [B1], page 675).

3.4 General Case

In general, when X is proper, flat and generically smooth over S, we can also use Chiarellotto’s
morphism ¢ : H}, (X'/k) — Hj(X[/k)N=" defined on semistable scheme X’ to construct our
sp' + H}g(Xs/k) = Derys(H' (X5, Qp))-

Consider the diagram

x — s X® x?

l l l

X xp, x5 X0 o xO  xW o xW

n 7 n
i U H
xM — X X
! ! !
X E— X — )(77

where X — X is surjective , X — X1 x v X1 ig generically surjective (i.e., surjective on the
generic fibre, while not necessarily surjective on all generic points), both are alterations and have
semistable reductions by De Jong’s theorem ([D-J]).

From the above diagrams, we then deduce a commutative diagram for the cohomology (for
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convenience, we omit the subscript when writing the etale cohomology).

Hif(XP k) — Hy(XP N —= Dy (XS, Q)N ="
T i
Hi (X5 xx, X /) Da(H (XY xx, X[V, Q,))N=0
n il
Hi Xk — Hy (XN = Dy (XY, Q)N
T T
i (X, /K) Doy (H' (X7, Qp))V="

where the first arrow in each row is Chiraletto’s morphism, and the second one is the isomorphism
in the semistable reduction case as we proved above.

We then have the following result:

Proposition 3.4.1 With the above notations, the equalizer of
H(XxY,Q,) = H (X" xx, XV, Qp)
is H'(X5,Q,) and the equalizer of
Do (H'(X", @) V=" = Do (HH(X[) xx, X5, Q) V=0

is Dy (H'(X5,Qp)) V=",

Before the proof of this proposition, we first prove a lemma for the existence of a trace map:

Lemma 3.4.1 Givenw: X — Y proper, n:Y — SpecK, £ =norw: X — SpecK proper, smooth of

dimension d, we have a trace map tr : Rm,Q; — Q.

Proof:
We have the adjunction: Rmn'Q; — Q; in the derived category of l-adic sheaves.
Since Q; = £'Q(—d)[-2d] = ©'n'Qi(—d)[-2d] = 7'Q;, and Rm = R, as 7 is proper, we then

get the trace map. |

Proof of Proposition 3.4.1:

For the fiber product projection X7(71) XX X,(-,n = Xrgl) — X5 and the associated p-adic etale
cohomology H'(X5,Q,) — H"(X,%D,Qp) = Hi(X,%l) XX, X%l),(@p), note that it suffices to show
that

H(X;,Q,) — H'(X"M,Q,) = H (X xx, XV, Q,)
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is exact.
1 . " .
Assume 7 : X% ) Xj is a surjection of genereic degree d.

By lemma 3.4.1, from Xrgl) XX, X,%l) LS X5 and Xrgl) N X5, we have Q, A Rm,.Qp, = Rm2.Qp,

where the section map is the trace map 7 multiplied by d*.
Using the Kiinneth formula [M2, chapter 6, Theorem 8.5]: Rm.Q, ~ Rm.Q, ®q, Rm.Q,, we
then get:
Q, 2 Rm.Q, = Rm.Q, ~ Rr.Q, ®g, Rm.Q,

where the section map is the trace map 7 multiplied by d*.

Consider the diagram of complexes:

Q, —— Rr.Q, 24712, pr.Q,®q, RT.Q,

o Y

L 1Rid—1id@¢
Qy —— RmQ, —— Rm.Q, ®q, Rm.Q,

by identifying R7*Q, ®q, Q, with R7*Q,, We have:
ToL=d

(T®id)o(t®@id) =d
(T®id)o(id®t) =107

Thus if we define h : Rm.Q, ®q, Rn.Qp, — Rm.Qp, as h = 7 ® id, it then follows that h o (t®
id—id® 1)+ 7 ®t=d, and we get the scalar product map of the complexes

L LRid—1d@¢t
Q, —— Rm,Q, ‘21 pr.Q,®q, RT.Q,

xdl xdl xdl
Qp —t RW*Q;D M’ Rﬂ—*@p ®Qp RW*Qp
is homotopic to the zero map, which leads to the exactness of the complex.
Now, by H*(X{",Q,) =~ H*(Xy, Rm.Q,) and H*(X\" xx, X\, Q,) =~ H*(Xy, Rm2.Q,), we

get the scalar product map hence also the identity map of the complexes

H (X7,Q,) —— H(X{", Q) —— H(X xx, XV, Q,)

xdl xdl xdl
H (X7,Q,) —— H(X{",Qp) —— H(X xx, XV, Q,)

is homotopic to the zero map, thus the exactness of the sequence 0 — H*(X;, Q,) — Hi(X,(—Il), Q) —
Hi(Xél) Xx, X%l),(@p) is guaranteed.
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Since Depys = DN is a left exact functor, the equalizer of the double arrow D, s (H* (X,%l), Q) =
i 1 1 . i
Derys(HI(X3 %, X3, Q@) i Derys(H (X5, Q). O

Similarly, there is also a morphism from H*

rig
xP k) = v (X xx X /k).

rig

(Xs/k) to the equalizer of the double arrow
Hvz"ig

We can then construct a morphism by a similar result as [I3, Prop. A5]:

Lemma 3.4.2 ([I3, Prop. A5]) Let X, be a proper smooth scheme over K and X a proper flat
model over Ok of X,. For a proper strictly semistable scheme Y and an étale alteration f:Y — X,
the homomorphism f* : H},(X,,Qp) — H, (Y5, Qp) is injective.

Proof:

As in [I3, Prop. Ab], we may assume that X, and Y, are irreducible. Let g : Y, — Y, x X, be

the transpose correspondence of I'y = (f, Idy, ), we have the equality fog = d-Id,, where d denotes
the degree of f. It then leads to the injectivity of f*. |

In our case, we can get a similar result as the above result.

Lemma 3.4.3 Let X be a proper scheme over K, for any proper smooth scheme Y over K and
surjective morphism 'Y — X, we have: grlV H,(X,,Q,) — H:,(Y,,Q,) is injective, where W refers

to the weight filtration introduced by Deligne in [D2].

Proof:
Extend Y — X to a proper smooth hyper covering of X over K:

Y=Y - X

by resolution of singularity.

Note that the weight filtration is induced by the spectral sequence of this hypercovering and is
independent of the choice of this proper smooth hyper covering ([D2]) .

For the spectral sequence HP(H?(Y.,Q,)) = HP"9(X,Q,), take p = 0 in the spectral sequence,
we then have:

QTF/Heit(Xme) = ng - Heit(Yme)

Corollary 3.4.1 Use the same notation as in the above, Then
QT}/VHét(Xa%U XX; ngl)v@p) - Hét<X7(72)’Qp)

18 injective.
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Now, consider
(X", Q)
g
HI(XGY o, X3, Q)

Since Hi(X,%l),Qp) has pure weight 4, and Hi(X,%l) XX, X,(—Il),Qp) has weight in [0,4], we have
(Imp* + Imq*)NW;_H* (X,%l)7 Q,) = {0} by the strict compatibility of morphisms with the weight
filtration.

Thus Imp*+Img* actually injects into ngH;t(X(l) XX, X%l)7 Qy), and hence into H;t(X,%Q), Qp)
by the above corollary, thus the equalizer of p* and ¢* coincide with the equalizer of H?,( ,% ), Q) =
HE (X5, Q).

Applying D.ys, we also have the injections:
Da(H(XS, Q)= Doy (grlV HE (X5 xx, XV, Q)N
and an monomorphism:
Daa(gr” H' (X3 xx, X3V, @)V = Doy H (X, Q,)) V=

So we have the following;:

Proposition 3.4.2 With the same notations as Prop. 3.4.1 , the equalizer of
H (X, Q) = H'(X, Q)
is H(X7,Q,) and the equalizer of
Dot (H' (X3, Q)N = Doy (H (X7, @)=

is Dst(Hi(Xﬁ’ Qp))N:O

By the diagram, we have H?, (X,/k) maps to the equalizer of H, (Xs(l)/k) = Hﬁzg(XLgQ)/k) and

Tlg Tlg
thus also maps to the equalizer Ds;(H* (X7, Q,))V=0 of Dst(Hl(X,%1 , Q)N = Dst(Hl(X,%Q), Q,))N=0
via the composition of Chiarellotto’s morphism ¢ and sp’ constructed in the semistable reduction
case. And our specialization map is induced from that.

Note that H?, (X(l) XX, Xél)/k) — H! (X m/k) may not be injective, thus we do not get

rig rig

an isomorphism between the two equalizers H’, (Xs(l)/k:) = H},;,( éz)/k) and H}, ( 51)/16) =

g

H};, (Xs(l) X x, Xs(l)/k). In this case, even if we have an isomorphism of two horizontal rows, we just

get an isomorphism between the equalizer of H, (X' /k) = H};, (X /k) and D, (H! (X5, Q,))N=0.

rig



22

Also note that, this morphism is well defined and independent of the choice of the alterations.
In fact, given two alterations Y — X, Z — X, both Y, Z have a semistable reduction, consider
the disjoint union V' =Y II Z, denote the morphisms induced from these alterations by f, g and h.

It suffices to show the following diagram commutes:

Hi (X k) @ Hiy (X, /k) —22 Deyyo(HH (X5, Q) @ Doy (H (X5, Q)
TA TA
mg (X /k) L DCTyS (Hi(Xﬁ7 Qp))

where A is the diagonal map z — (z, x).

And this follows directly from the facts:

1. The morphism A’ : ”g(V /k) = Derys(H (V7,Qp)) is the direct sum of f’:
Derys(H'(Yy,Qp)) and g' : H},(Zs/k) = Derys(H'(Z7, Qp))

2. The morphisms mg(XS/k) — H},o (Vs /k) = H}, o (Ys/K) & H; o (Zs/ k), Derys(H' (X5, Qp)) —

Derys(H (Vi,Qp)) = Derys (H (Y5, Qp)) @ Derys(H'(Z5,Q,)) factors through the diagonal map.

Which is equivalent to the commutative diagram:

Y/k) —

rzq(

iy (Vo) = Hiy (Yo R) & Hiyy (Zo/k) 22205 Dopoyo(H (Vi @p)) = Doy (H (Y, @) @ Depyo (H
T T
Hiy(Xo/k) & Hiyy(Xo/k) R Derys (H (X, Qp)) @ Doy (H' (X7, Q)
TA TA
Hiyy (X /k) R Derys(H!(X5,Qy))

Thus the morphism is well defined and independent of the choice of the alterations, and the
diagram indeed induces our sp’ : H; (Xs/k) — Derys(H (X5, Qp))-

rig

By above discussions, we have the following:

Theorem 3.4.1 Let X — S be proper, flat and generically smooth. Then there is a ¢-equivariant
map

L H, (XS/k) - DcryS(Hi(Xﬁva))

rig

and a commutative diagram of Gal(k/k)—modules

Hi(Xéva) —r Hi(X@Qp)I

ASJ/ )\nl
A ur  sp'®1 . ~ ur
H} (X /k) @K, Ko e, Derys(H (X5, Qp)) @k, Ko

where Ky = F rac(W (k)) is the p-adic completion of the maximal unramified extension of Ky, and

(27, Q)
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the vertical maps Ag, A, induce isomophisms:

A H (X5,Q,) ~ (HY (Xo/k) @k, Ko )?®9=! = H!

rig rig

(Xs /k,)slopeo

and

7 1 ur = i slope!
Ayt H (Xﬁv(@p)[ >~ (Derys(H' (X7, Qp)) @K, Ko )¢®¢ t= Derys(H' (X5, Qp)) tore0

Remark 3.4.1 By our discussions above, we also get that the definition of sp’ in good reduction

and semistable reduction cases is compatible with our definition for the general regular schemes.

Remark 3.4.2 By Chiarellotto’s isomorphism
Hy (Y Ko) =~ H (Yzar, Kerv) @ Ko o~ H* (Yer, Kerv) @ Ko
one can define sp* : H}; (Ys/Ko) — Hjp(Yy,/Ko) via the composition:
H:ig(}/s/KO) ~ H* (Y, Kerv) ® Ko — H*(Ys, WA®) ® Ko ~ Hr(Y,/Ko)

where the second arrow is induced by the natural inclusion Kerv — W A®.
In [BCF], Baldassari, Cailotto and Fiorot have also constructed a specialization map from the
rigid cohomology to the de Rham cohomology, also see [I2] and [M4]. And their specialization map

are also closely related to Chiarellotto’s constructions.

Remark 3.4.3 Note that since Chiarellotto’s conjecture holds for dimensions 1 and 2, so in these
cases, the first arrow in each row is also an isomorphism. Although from [M3], we know that

monodromy-weight conjecture holds in these cases and the local invariant cycle theorem holds.
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Chapter 4

Proof of p-adic Local Invariant
Cycle Theorem

In this chapter, we will consider the following conjecture:

If X is regular, then
sp: H'(X5,WOx)g — (Derys(H'(X5,Qp) ®x, Ko ) orel0:l)

induced from the p-adic specialization map is an isomorphism, and we have a commutative diagram:

H(X5,Q) — H'(X5,Qp)"

.| .|

H'(X5,WOx)q —r, (Derys(HY(X7,Qp) @, Kour)slope[o,l)

In particular, sp: H (X5, Q,) — H(X5,Q,)! is an isomorphism.

4.1 Trace Morphism

In [BER], Berthelot, Esnault and Riilling have constructed a trace morphism between the Witt
vector cohomologies of the special fibers between two regular schemes of the same dimension over a
discrete valuation ring of mixed characteristic (0, p).

More explicitly, they first construct a morphism for coherent cohomology:

Proposition 4.1.1 (/BER]) Let X,Y be two flat, reqular R-schemes of finite type, of the same
dimension, and let f :' Y — X be a projective and surjective R-morphism, with reduction fi over

Speck. Then there exists a trace morphism:

Tf : Rf*Oy — OX
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such that the composition of the functoriality morphism Ox — Rf.Oy is a scalar product xr, where

r € Z is the generic degree of f.
Then they extended it to trace morphism of Witt vector cohomology:
Proposition 4.1.2 ([BER]) Make the same assumption as above, let f has a factorization f = woi,

where  is the projection of a projective space IP’}‘I( on X, i 1s a closed immersion.

Denote X, = X @z, Zpy/p" T and fn 2 Y, — X, be the reduction of f mod p™*t, m, i, are

the corresponding reductions of i,m mod p"Tt Then for Witt vector cohomology, there exist trace
morphisms:
Tf, * an*Oyn i OXn
Tig,mo,m * Rf*Wn(OYO) - Wn(OXo)
and

Tig,mo - Rf*WOYmQ — WOXU,Q

such that the respectively compositions of the functoriality morphisms Ox, — Rfn.Oy, , W,(Ox,) —
Rf W, (0Oy,) and WOx, g — RfsWOy, q are scalar products xr.
Moreover, forn =1, Tj xn = 7, and Tz, commutes with R, F' and V (see [BER, section 5] or

[L4], [LZ] for the definitions of R, F' and V).

The above trace morphisms then induce trace morphisms on the corresponding cohomology
H*(X,0x) etc. Also, note that X; — X and Y; < Y} are nilpotent immersions, by [BBE, Prop.
2.1], we know that

H' (X0, WOx,)o ~ H' (X5, WOx_)g

and

Hi(YO, WOy,)g ~ Hi(Y‘}a WOy, )g

are isomorphisms. Thus there is also a trace morphism

Tim : H (Y, WOy )g — H'(X,,WOx,)o

)

In [BER], Berthelot, Esnault and Riilling have proved that the above trace morphism is compat-
ible with the base change and composition of morphisms.
As in the proof of Proposition 3.4.1, the existence of these trace morphisms play an important

role in our proof.
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4.2 Coherent Cohomology

Now we consider H*(X, Ox) first.

As in the last chapter, when X is regular, consider

where XM — X surjective , X — X1 x X1 generically surjective (i.e., surjective on the
generic fibre, while not necessarily surjective on all generic points), both are alterations and have
semistable reductions by De Jong’s theorem ([D-J]).

We define g : X® — XM to be the composition: X 5 v L XM note that, as Z —
XM x v X1 is generically surjective, and p : ¥ — X is surjective, we deduce that g : X — X1
is also a surjective alteration.

As in the proof of proposition 3.4.1, we need a trace morphism and a relative Kinneth formula.

Now, define Oyaer = p~1O0x0) ®(pr)*10x ¢ 'Ox @), which can be viewed as an object in the
derived category of (fp)~tOx-modules on the underlying topological space of Y. Then [BER, Prop.
A.1 (ii)] still holds if we replace Y’ by Y’4*" and understand Lv*E® there as Oy aer ®5,1OY vTLlES.

More explicitly, in our situation, we have:
Lg*F* =q 'F* ®§710X Oy der
Then, by [BER, Prop. A.1 (ii)], we have:
Rp.Lqg*Oxy ~ Lf*Rf.Oxm

Thus
Rf*Rp*Lq*OXu) = R(f Op)*Ochr

On the other hand,

Rf.Rp.Lq"Ox0) = Rf.Lf*Rf.Oxa) = Rf.(f 'Rf.Ox0) ®F 16, Oxw)
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Using ”Projection formula” ([Har, Prop. 5.6])
Rf*(f_lRf*OX(l) ®§/710X OX(I)) == Rf*OX(l) ®éx Rf*OX(l)
Thus we have
R(f 0p)«Oyicr = Rf.Oxy @6, RfOxm)

which is the relative Kiinneth formula we need for the coherent cohomology.

By [BER], we have trace morphisms for alterations f : X0 5 X, g X® - XO and
fog:X® - X.

In the following, we define ¢¢ to be the adjunction Ox — Rf.Oxq), T¢ be the corresponding
trace map Rf.Oxa) — Ox, and 7f 0ty = dyido (the scalar multiplication by df, and we just write
dy later). Similarly, define ¢4, 74, and d,.

Then, from the trace morphism Rf.Oxu) — Ox, since we have the base change isomorphism

Rp.Lq*Ox) ~ Lf*Rf.Oxa), we then get a trace morphism
Tp = Lf*Tf . Rp*OYder = Rp*Lq*OXu) ~ Lf*Rf*OXu) — Lf*OXu) = OX<1)

Now we have a diagram of complexes:

L Lr®id—id®e
Ox —'— Rf.Oxay ————L R(fop).Oyacr = Rf.Oxn @5, Rf.Oxwm

ol ¥

L LrRid—1d@e
Ox —X— Rf.Oxay ~———5 R(fop).Oyur = Rf.Oxm ®5, Rf.Oxw

Similarly to the proof of proposition 3.4.1, by identifying Rf.O x ) ®éx Ox with Rf.Ox), we
have:
TpoLy =df
Rfip =1y ®id
Rfimp =71 ®1id
(17 ®id)o (ty ®id) = RfsTp o Rfstpy =d, =dy
(r®id)o (id®tf) = Rfxmpo (id®@uy) =ty o1y

Then we can construct h = Rf.7, : R(f 0 p).Oyacr — Rf.Oxa), such that:

hO(Lf®id—id®Lf)+LfOTfde—Lfon—l-LfOTfde
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Thus the scalar product by d;y map of the complexes

L L Rid—1d@e
OX —f> Rf*OX(l) ! ! R(f Op)*Oyder - Rf*Ox(l) ®éx Rf*OX(l)

del Xd‘fl Xd‘fl

L L Rid—1d@e
Ox v Rf*OX(l) At R(f Op)*oyder = Rf*OX(1) ®éx Rf*OX(U

is homotopic to the zero map, which leads to the exactness of the corresponding cohomology complex.

Now, we consider Hi(X(l),OXm) = Hi(X(2),OX(2>).

Consider the diagram of complexes:

Ly ®id—id®ty Rf«Rpstn
- —

Ox Y Rf*OX(l) R(f Op)*oyder = Rf*OX(l) ®8X Rf*OX(l) Rf*Rg*OX(z)

xdgl xdgl xdgl xdgl

L ®id—id® « Rpstn
Ox —L— Rf.Oxo) L2 R(f 0 p).Oyser = REOxo ©5, REOxay —22% Rf.Rg.Oxe)

Note that
Rpstn
OX(U ng*Oyder p—>L Rg*OX(m

coincides with

lg
Oxa) — Rg.Ox

i.e., tg = Rpytln 0Ly, thus

Tg O Rpstr oty =T4014 =dg

If we could prove that:

d d d
Rfitgo RfyRpitr o (id®@typ) = d—in*(Tg o0 Rpytr)o (id®ty) = d—in*Tp o(id®iy) = d—ij oTf

then we would have constructed h = Rf.7 : Rf.Rg.Ox — Rf.Rg.Ox), such that:
) . dg
ho (Rf«Rpsix o (tf ®id) — RfuRpstz o (id®tf)) + iy 0 (di'rf) = dy
f

Thus the scalar product by d, map of the complexes

Ly ®id—id®uty Rf«Rpstn
- —

Ox N Rf*OX(l) R(f Op)*Oydw = Rf*OX(l) ®éx Rf*OX(l) Rf*Rg*OX(z)

xdgl xdgl xdgl xdgl

2 ®id—id® «Rpsir
Ox —2— Rf.Ox0 L2 R(fop).Oyaer = Rf.Ox @5, Rf.Ox0)y —L222% R Rg.Oxe

is homotopic to the zero map, which leads to the exactness of the corresponding cohomology
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complex, and we get the consequence.
Now, consider

L A T
OX(l) = Rq*oyder ~ Rp*Oyder 2 OX(l)

where X is f~'Ox-linear isomorphism induced by the interchanging of the factors in X x x XM,

We have:
oty =(rp@id)o (id®ig) = Rfsmpo (id®1y) = Rfimp o Rfi(Aotg) = Rfi(p 0 Aotg)

id®@ iy = Rfc(Aog)

Thus it suffices to show that
dg
Rfitgo RfyRpstn o Rfs(Aotg) = Rf*(—df Tp O A0 Lg)

or

d
TgORp*LWOAOqudiTpOAOLq
!

i.e., to show that the composition
Lq A Rpatn Tg
OX(l) — Rq*Oyder ~ Rp*OYdm‘ — Rg*OX(fz) = R(p o W)*OXQ) — OX(l)

coincides with

L A T
OX(l) = Rq*OYdEr ~ Rp*Oyder - OX(l)

Now, choose U open in X, such that f|y : X[(Jl) — U is finite etale, 7 : X&) — Yy is surjective,

note that p: Yy — X((Jl)

is surjective and finite etale, choose V open in Yy such that V — X ig
etale and X‘(,Q) — V is surjective and finite etale. Finally, put W = X[(Jl)\p(YU\V), which is open in
X((Jl), Yw Cc V, W — U surjective and Yy — W is surjective and finite etale.

Summarizing, we have the following diagram:

X‘(/Q) N X2
I |
Yo —— %4 _— Yu — Yy
I | |
w _ X[(Jl) e ﬁU
I I
U _ Xu
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If we replace X, XM .Y, X® above by U, VV,YW,X‘(/Q)7 then the above discussions still work as
the trace morphism is compatible with base change.
And in this case, we have a trace map Rp.7; : Rg.Ox 2 — Rp.«Oyaer satisfying Rp,.7, 0o Rpyt, =
d. on W.

Then since the composition
Rpatn Tp
Rg.Oxe =" Rp.Oyder — Ox)

coincides with the trace map

Tg
Rg.Oxe — Oxm

defined in [BER], we have:

Tp o Rpmr = 74

and

d
Tg© Rpstr = 7p o Rpy7r 0 Rpstr = d—grp =d,Tp
P

So we have proved that:

g
—=Tp 0 A0,

Tg o Rpytrodol, =
dy
when restricted on W.

Now we want to show these identities hold on all of Oy ).

We prove a lemma first:

Lemma 4.2.1 For any integral scheme X, s € Hom(Ox,Ox), if sly = 0 where U is open in X,

then s =0 on Ox.

Proof:

Choose an affine covering of X, it then suffices to prove the case X = SpecA.

Then U = SpecA\Spec(A/I) for some ideal I, and U = Usc;SpecAy

Now, since for any a € A, we have s(a) = 0 in Ay, which equivalents to f™s(a) = 0 for some n,.

Since A is an integral domain, we have s(a) = 0. O

By this lemma, we have

g
—=Tp, 001,

dy

Tg 0 Rpyitrodol, =

and

Rfityo RfxRpstr o (id® ¢ zﬁRf* Ty O Rpytr)o(id®tf) = Rfsrpo (id® )
g f dy g f P f
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We then get the homotopy between the scalar product by d, map and the zero map, and also

the same consequence for the coherent cohomology complex.

Proposition 4.2.1 Let X/S be regular, proper, flat and generically smooth, then the cohomology
of the sequence

0— H'(X,0x) = H(X",0xm) — H(X®,0x)
is annihilated by a fized integer dg.

Remark 4.2.1 In [BER] Prop. A.1, if f : Y — X is a complete intersection morphism of virtual

relative dimension 0, and we have:

zZ — Y

]

y — - X
such thatY and Y’ are Tor-independent. Then g : Z — Y’ is also a complete intersection morphism
of virtual relative dimension 0, which induces a trace morphism.

Thus, if we could prove the following Tor-independence fact in our assumption:
Torg, (p~'Oxw,q "Oxw) =0

then we get p: Y = XM xx XU — XM has a trace map 7,, and we can then replace Y by Y
in the above proof.
The Tor-independence problem can be converted as follows:

Consider the diagram:

zZ —2-Y

G

y —4— X
Fiz z € Z with image y(resp. x) in'Y (resp. X),

Then the morphism A = Ox . — B = Oy, can be factorized as
A C=As1,89,...,8mlp = B=C/I

where I is generated by a regular sequence {f1, fa,..., fr}-

It then requires to show that ToriOX’“”(Oy,y, Oy,y) =0 fori > 1 provided that I N A = {0}, which
is equivalent to the tensor product of B’s Koszul-resolution K(f1, fa,..., fr) ®a K(f1, fo, .-, fr) is
still a flat resolution of B®4 B.

This will leads to some nontrivial fact that the tensor product of two reqular local ring is torsion-
free under certain condition (see [A], [L3], [HW] for some rigidity discussions). However, since Y

just plays in an intermediate step in our proof, we stop to do further things here.
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4.3 Witt Vector Cohomology

In this section, we want to extend the above results of coherent cohomology to the Witt vector

cohomology.

As in [BER], denote X,, = X ®z,,, Z,)/p" " and f,, : X% = X,, be the reduction of Fmodp™t1.

Note that for all n > 1, X,, and X() are Tor-independent over X (as in [BER] prop. 8.6, by the
spectral sequence for the composition of Tor’s), so we get a trace map 7y, : Oy — Ox,,, and the
trace map 7y, is induced from 7; by the base change from X to X,,.

We could apply similar argument in the last section, except that 7, and 7,, may not exist in

our case.

Summarizing, we have to consider the diagram of complexes:

Lfn Rfn, Rpn tr,oRfntp, —Rfn, Rpn, tr, ORfn.(Anotg,)
Ox, —— Bfu,Oxm s s . "> Rfn.Rgn.Oxe
Xdg l Xdg l xdg l
Lfn Rfn Rpntry ORfntpy, —Rfn RPntry ORfrn, (Anotg,)

directly, where A, : Rgy, Oy der > Rpp Oy der is [ 1Ox, -linear isomorphism induced by interchang-

ing factors.

Note that we still have:

Rpn ., Ly

L
OX(I) REAN an*OYWder — Rgn*OX(2)
n v n

coincides with

Lgn
OX7(L1) — Rgn*oxglz)

ie., tg, = Rpn,tn, ©tp,, thus
Tgn © an*l’ﬂ'n © Lpn = Tgn © Lgn = d.q
Thus, it remains to prove:
dg
an*Tgn © an*an*LWn o an*LQn = an*(T(Jn © an*l'ﬂ'n © An © LQn) = @Lfn © Tfn
Since the trace map is compatible with base change, the above identity follows from
dg
Rfitgo RfsRpstn o RfiRfi(No1y) = Rf*(ETp oXoig) =dptyoTy

So, the results of coherent cohomology in the last section also hold for X,,. More explicitly:
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Proposition 4.3.1 Let X/S be regular, proper, flat and generically smooth, let X, = X Rz,
Z(p)/p”+1 be the reduction of X, then the cohomology of the sequence

0— Hi(X’mOXn) - Hi(Xv(Ll)vagLU) - Hi(Xr(f)aOXf))

is annihilated by a fized integer dg.

Then the associated cohomology diagram induces the following sequence:

i i —ho 174
H'(Xo,0x,) 28 HI(X(", 0, 0) =2 H(XP, 0, )

and by the above discussion, we know that:
Tfo © fo =df, Tg, 090 =dg

d
Tgoohozﬁfoo’rfo

where 75, and 74, are the base change of the trace maps 74 and 74, which are trace maps too by
[BER, prop. 8.6].

Now, Consider the sequence

fo,n

H(Xo, W,Ox,) "2 Hi(Xél),WnOXél)) go.nho.m Hi(Xé”,WnoXéz))

We want to prove the following:
Claim: For all n > 1, we have:
Tfon © Jon = df; Tgy, ©Gon = dg

d
_ g
dn - Tgo,, © o = dn - == fon ©Tpy .
dy
where 7y, . and 7y, . are the trace maps:

H' (Xo"W, W,0x, ) — H'(Xo, W,,0x,)

H' (Xo"W, W,,0x,) — H' (X", W,,05,0)

as in [BER, Prop. 8.6]. And d,, is bounded as n — co. Here we fix the factorizations fy = moi and

go=m"od.
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Note that if this is true, then we get that Ker(go,n, — hon)/Imfo,, is annihilated by d,dg, taking

inverse limit and then tensoring with Q, we then get the sequence
0— Hi(XO, WOXU)Q — Hi(Xél), WOXél))Q = Hi(Xé2), WOXéz))Q

is exact.

As shown above, we know that
H'(Xo,WOx,)o — H'(Xs,WOx,)a

and

H (X, WOy m)a = H'(XM, WO, m)e

are isomorphisms.
Now recall that the Witt vector cohomology captures the slope [0, 1) part of the rigid cohomology

and of the Hyodo-Kato cohomology by the above result, we then have a commutative diagram with

the two columns are exact:

H/(XP WOxe)g —— Higge(XE k) =000 = Doy (HI(XE, Q) stereloD

f 1
H(Y,, WOy )g Derys(H (Y7, Qp))slope[o,l)

n m
Hi(X§1),WOX<1>)Q = H;IK(Xgl)/k)gzo,slope[O,l) = DCTyS(Hi(X%1)7Qp))slope[o,l)

f 1
HY(X,,WOx)q Derys (H (X5, Q) 1oPel0:1)

By the diagram and Prop. 3.4.1, we have the following:

If X is regular, then H' (X, WOx)g = Derys(H' (X5, Q,))%torel0)

Now, if we restrict sp’ : H}; (Xs/k) — Derys(H (X5, Qp)) to the slope [0,1) part, we then get a

commutative diagram:

H{(X;5,Q,) ——— H(X5,Qp)!

- x|

Hi(Xg’WOX) —=— (DCTyS(Hi(thQp) R K, KOW)SZ"W[OJ)

by which we then get the p-adic local invariant cycle theorem.

Thus it remains to verify our claim.
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The first identity

Tfon © fon =df, Tgy, ©gon =dg

is always true by the property of trace map.

For the second identity, we could not deduce the identity

d
dp, - Tgo,n © hO,n =d, - ij(),n O Tfom

for a bounded d,, yet, but we can still get some consequences which is sufficient to deduce the p-adic
local invariant cycle theorem.

Use the short exact sequence:
v R"1
0— Wn—l(OXo) - Wn(OXO) - OXO —0

where V : (a1,az2, -+ ,an_1) — (0,a1,a2,...,a,_1) and R"~! is the projection (a1, as, . ..,a,) — a;.

We then have a long exact sequence:
- — H'(Xo, Wy—10x,) — H'(Xo, WyOx,) — H'(Xo,Ox,) — H (X0, W Ox,) — -+~

So we have a commutative diagram:

0 0 0

l I l

n—1
X dx,

. V; . .
Hi(Xo,Wn_10x,) —2= H(Xo,W,0Ox,) —2— Hi(Xy,0x,) —2s ...

fo,nfll fo,nJ( fl

n—1
Vi@ Xo (™ Oy (D)

Hi(Xo(”,Wn_1OXO<1>) _Xo Hi(Xo(l),WnOXO(D) _ Ko Hi(X0(1)7OX0<1>) Lo, .

90,n71*h0,n71l go,n*ho,nl go—hol

n-1

Hi(Xo(z),Wn—leo(m) M Hi(X0(2)’ WnOX0(2>) X_U(z), Hi(XO(Q)aOXO(Q)) m
where each row is exact.

Now, use induction on n, we want to show that F"~!o (Tgo.. © hon — %f(),n °Tf,) =0

The base case is just the coherent cohomology case we just proved, and we assume it holds for
n — 1.

As the trace map commutes with R, F' and V by [BER, prop. 7.7], we have:

dy

df fO,n—l © Tfo,n,—l)

d
(Tgo.n © ho,n — ﬁfom °0Tf )0V =Vol(rg, ,ohon-1—
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and
d

-9

F © (Tgo,n © hov” - df

d
jfo,n 0 Tfy) = (Tgon_1 ©hon—1— =" fon-107f, ) o F

Thus

_ d _ d
F'" o (Tgo,n o hOJL - ifom o Tf(),n) =F""?o0 (Tgﬂ,nfl o h07n_1 - ﬁfom—l © TfO,n—l) oF =0

which finishes the induction.

The consequence that 74, , 0 hgn — 3—;’ fo,n is annihilated by F' already tells us some information.

In fact, we consider the Frobenius stable part of the cohomology as in [C2], i.e., defined as the
maximal subspace H*(X, W, Ox)s(resp. H*(X,WOx)s) of H*(X,W,Ox)(resp. H*(X,WOx)) on
which the Frobenius is a bijection.

Note that 74, 0 hg, — %fo’” maps Hi(XO(l), WnOx,m)s to Hi(Xo(l), WnOx,m)s-

Thus F”_lo(TgO,nOho,n—%fo,n) = 0on Hi(Xo(l)7 WnOx,))s means that 7, OhO,n_%fO,n =0
on H(Xo™, W,,0x,m)s.

Taking inverse limit on the sequence

H' (X0, WnOx,)s — H XV, W,0  )s = H(X, WOy )

(1)
XO

and then tensoring with @, we then get the sequence
0 — H'(Xo, WOx,)as — H'(Xg",WOy))as = H'(X5”, WO )o.s

is exact.
Now, by [C2, Prop. 1.5.2], the Frobenius stable part captures the slope 0 part of the rigid
cohomology and the Hyodo-Kato cohomology, combining it with chapter 3’s results, we then get a

commutative diagram with the two columns are exact:

H/(XP , WOxe)gs ——— Hige(XP /k) =010 =y Doy (HH(XS Q) 1ore0
T

T
Hz(Ym WOY)Q,S DcryS (Hi (Yr_]> Qp))slopeo
i m
Hi(X§1>,WOX<1>)@,S =, H%K(X§1)/k)g:o,510peo =, Dcrys(Hi(Xél),Qp))lePeo
f 1

Hi(Xsa WOX)Q,s DCTyS(Hi(Xﬁ7Qp))Slop60
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which also certifies that

sp: H'(X5,Qp) — H'(X;,Q,)

is an isomorphism.

So we have the following:

Theorem 4.3.1 (p-adic local invariant cycle theorem) Let X/S be regular, proper, flat and gener-

ically smooth, we have:
5+ ' (Xe, WOX) .0 = (Derys (' (X, Qp) @1, Ko™ )17

induced from the p-adic specialization map is an isomorphism, and we have a commutative diagram:

Hi(X;,Q,) —2— Hi(X;,Qp,)!

| ol

H'(X5,WOx)q,s — (Derys(H'(Xg,Qp) @, kow)Sl()peo

where s and )\, are isomorphisms as above, and the subscript s denotes the Frobenius stable part
as in [C2].
In particular, sp : H(X5,Q,) — H'(X5, Ko)! is an isomorphism.
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Chapter 5

Another Proof of HY And H! Cases

In this chapter, we give an alternative proof of H® and H' cases.

e H? Case

Proposition 5.0.2 Let X be a regular scheme, then sp : H°(Xs, Qp) ~ HO(Xﬁ,Qp)I 18 an 1somor-

phism.

Proof:

For HY, the p-adic case and the [-adic case are the same since H(X,Q;) = Q;TO(X) and sp :
H°(X5,Q;) — H°(X;, Q)" is induced from mo(X5) — mo(X5). O

A geometric point of view of the above consequence follows from Zariski’s theorem on formal
functions that the special fiber of f: X — S has the same number of connected components as the

generic fiber.

e H! Case

For H', we use Grothendieck’s fundamental group.
By [SGA1, X. Cor. 2.4], we know that if S is a locally noetherian scheme, f : X — S is a proper

geometrically connected morphism, then there exists a specialization homomorphism
sp i (Xyp) — m(X5)

defined up to inner automorphisms of m1(X5). If, furthermore, f : X — S is separable, then
sp : m(X5z) — m1(X5) is an epimorphism.

Note that since H(X,Q,) = Hom(m1(X),Q,), so sp : H'(X5,Q,) — H'(X;,Q,) is uniquely
defined.
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Thus we have an monomorphism:
Hl(XEva) = Homy, (m1(X5),Qp) — Homzp(ﬂ'l(Xﬁ)v Qp) = Hl(Xﬁva)

Consider the following diagram:

Y,

l

Xs X X;

By the Zariski-Nagata theorem on purity of the branch locus ([SGA1, X.3.1],[SGA2, X.3.4]),
a finite etale covering Y; — Xj extends to Y — X if it extends over generic points of the special
fiber.

We have

Gal(k(Xy)/k(X5)) —— m(Xy)
TlI:Gal(ﬁ/n) JI Gal(7/n)
Gal(k(X,)/k(X,) —— m(X,) —2— Q,

m (X
Note that, by purity, ¢ factors through 7 : m(X,) — m(X) iff ¢(Iz) = 0, for any discrete

valuation o|v which corresponds to the geometric points of Xj.

Now we prove the following;:

Proposition 5.0.3 Let X — S be proper, flat, and generically smooth. If X is reqular, then the
specialization map:

sp: H'(X5,Q,) — H' (X5,Qp)!

is an isomorphism.

The idea is using lifting: for any ¢ € Homg, (m1(X,), Qp), s.t. ¢lr (x,) # 0, there exists a
Y € Homg,(1,Q,), st. (¢ +v)(Iz) = 0, for any discrete valuation v|v. Then by purity, ¢ + v
factors through m(X) = m(X;), thus

Hl(X§a@p) = HomZp(ﬂ'l(Xﬁ),Qp) - HomZp(T"l (Xﬁ>17@p) = Hl(Xﬁ’Q;D)I

Proof:
We have the short exact sequence ([SGAL, X. Cor.2.2])
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0—-m(Xz) »m((X,) =-1—-0

Then the Hochschild-Serre spectral sequence will give us:

0 — Hom(I,Q,) — Hom(m (X,),Qp) — Hom(m (X5), Qp)l —0

Consider an alteration X*° — X as in [D-J], where X*° then has semistable reduction.
Denote X, X*®%’s quotient fields by K, L respectively.

We can get a similar exact sequence from X*°, and we deduce a diagram:

0 —— Hom(I,,Q,)¢ —— Hom(m(XL),Qy)¢ —— Hom(m(Xz),Q,)n¢ 0

! | !

0 —— Hom(Ix, Q) —— Hom(m(Xk),Qp) —— Hom(m(Xg), Q)" —— 0

where all the vertical maps are isomorphisms, and G = Gal(L/K) = Ik /Iy,.

Now by purity, Hom(m1(X),Q,) ={homomorphisms ¢ : 71 (Xk) — Q, which is trivial on I, for
all v extending | - |, on K}.

If we use the isomorphism in the above diagram, we can consider Hom(m(X*°),Q,) = {G-
invariant homomorphisms ¢ : m1(Xy) — Q, which is trivial on I,, for all v extending | - |, on

Note that for the semistable reduction case, we have sp is an isomorphism, so
Hom(m(X**),Q,) = Hom(mi(Xg), Q)™

We then have

Hom(m1(X),Qp) 2 Hom(m1 (X**),Q,)¢ 2 Hom(m1(Xg), Q)= 2 Hom(m1(Xg), Qp)'*

Thus sp is an isomorphism. O

Thus, by using Grothendieck’s fundamental group and purity, we get another proof of H° and

H! cases.

Remark 5.0.1 Besides the cohomology descent method which proved the general p-adic local invari-
ant cycle theorem in the last chapter, and the above proof via using Grothendieck’s fundamental group
and purity, for the case of H', we also considered another method via investigating the vanishing

cycle through Bloch and Kato’s symbols ([BK1]).



41

Consider

Z/p"Z(1) = G B Gy,
in Dsh(xet).

We have the following diagrams:

iwRi'Z/p"Z(1) —— i, Ri'G,, —— i.Ri'G,,

p

l l !

Z/p"2(1) —— G, —2—  Gn

l | l

Rjj Z/p"L(1) —— Rj.j"Gm — 15:5°Gm

0 0 0

! ! !

Xz/pz(l) ——  Gn ——  Gn —— X'ZWZL1) —— 0

l l ! l |

jelr ——  j.Gp L jGn ——  RYay —— RY.G, —L—

! ! ! | !

iRY'Z/p"Z(1) —— . RY'G,, —— i.RY'G,, —— .R*%'Z/p"Z(1) —— i.R%*'G,,
o

Use the same notations as above and set j : X,, — X, from [BK1], we know that the stalk of
RFj.G,, atx € Xy — X is Hk(Spec(’)}h;z[f],Gm).

1
™
We have exact sequences

0 — HY(X,, R°0Q,) — H'(X;,Q,) — H°(X,, R'0Q,)!

and

HO(Xle\IJ@p)I = HO(Xle\IJQp(l))I:X — H (Rl‘lep(l))x
zeXs

Then by [BK1], we have a surjection:

TT tim (O 121 /o™= — (R19Q, (1)),
reX, p
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One then needs to show that latter has no cyclotomic character.
By this we may possibly give another proof of our H' case via vanishing cycle, and may also

extend to the higher cohomology.
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Chapter 6

Weight Filtration

If X is a smooth projective variety over Q and 0 < i < 2dim X, then the representations of the Galois
group Gal(Q/Q) on the etale cohomology groups H?,(X x Spec(Q),Q;) form, as the prime [ varies,
a compatible system of Galois representations. Hence we can attach an L-function L(s, H'(X))
to it. There are many conjectures, beginning with the meromorphic continuation and functional
equations, and some deep theories relating the analytic properties of L(s, H'(X)) with geometric
properties of X.

In [L2], Lichtenbaum suggested the existence of Weil-etale cohomology groups for arithmetic
schemes X (i.e., separated schemes of finite type over Spec(Z)) relating to the zeta function ((X, s)
of X satisfying some given properties.

If X has finite characteristic, these cohomology groups are well defined and understood by work
of Lichtenbaum and Geisser ([L1],[G1],[G2]).

Lichtenbaum defined Weil-etale cohomology groups for X = SpecOp, the spectrum of the ring
of integers in a number field, in [FIM] Flach and Morin partially extended this work to a regular,
flat, proper scheme over SpecZ.

In this extended definition, the expected property for {(X, s) on its leading Taylor coefficient is
compatible with the Tamagawa Number Conjecture of Bloch and Kato [BK2], also Fontaine and
Perrin-Riou [FP] for I;ezL(R(Xp), s)=D" at s = 0. And for this we need to assume a number of
conjectures which are preliminary to the formulation of the Tamagawa number conjecture, thus we
are led to the so called local invariant cycle theorem, both in l-adic and p-adic cohomology, which

serves to establish the equality of vanishing orders
ords—o((X. s) = ord,—oTiez L(h' (Xg), s) ")

for regular scheme X proper and flat over Spec(Z).

Now, considering the rigid cohomology, also note that the eigenvalues of ¢ on Hﬁig (Xs/k) are

Weil numbers, thus with a similar argument as in the [ — adic case in [FIM, section 10], we then get



44

the same is true for Dy (H'(X5,Qp)), hence we deduce the weight filtration on both H;, (X, /k)
and

Derys(H' (X5, Q) = Dat(H' (X5, Q)" ™" = Dyt (H' (X5, Q@)

As pointed out in [FIM, (9.2)], assuming that (both the p-adic and l-adic cases) the map
WoH" (X5, Qi) — WoH' (X5, Q)"

induced by sp is an isomorphism for all ¢, one can prove that: for all primes p and I,

2d
RT(X @ Fper, Q) = @ RT ¢ (Qp, Vi) [i]
i=0
here X is a regular scheme,proper and flat over SpecZ and V? = H? (X@27 Qy), and this serves as a part
to prove the compatibility of the Weil-etale cohomology with the Tamagawa number conjecture(See

[FIM] section 9 for details).

6.1 [-adic Result

In [FIM], M. Flach and B. Morin prove the following results related to the l-adic local invariant cycle

theorem in the mixed characteristic case:

Theorem 6.1.1 ([FIM], (Theorem 10.1)) If X is regular, then the following hold.
a. The map
H' (X5, Qi) = WiH' (X5, Qi) — WiH'(X5, Q)

induced by sp is surjective for all i where the isomorphism and the weight filtration existence are
due to Deligne in [D2].
b. The map

Wi H (X5, Q1) — Wi H (X, Q1)

induced by sp is an isomorphism for all i(For i > d it will be the zero map).
c. The map sp is an isomorphism for i = 0,1.

d. If W;H (X5, Q)! = H(X;,Q,)" for all i, then the map
Wis1H' (X5, Q) — Wim  H (X5, Q)"

induced by sp is an isomorphism for all i.
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6.2 The Analogous p-adic Result

We expect to extend these results to the p-adic case. Note that the regular assumption of X is
necessary (both in p-adic and l-adic cases), see [FIM] for a counterexample otherwise.

In fact, for the application in proving the compatibility of the Weil-etale cohomology with the
Tamagawa number conjecture, we only need the isomorphism on Wy (in fact on the smaller gener-
alized eigenspace for the eigenvalue 1). More explicitly, We need to prove the following:

If X is regular, then the map
WoH" (X5, Qp) = WoH' (X5, Q)"

induced by sp is an isomorphism, where Wy is the sum of generalized ¢— eigenspaces for eigenvalues
which are roots of unity.

Obviously, this is a direct corollary of the p-adic local invariant cycle theorem by the fact that
Wy is an exact functor. Thus we also get the result in the p-adic case, and thus combining with the

l-adic case, we have: for all primes p and I,

2d
RU(X ®Fper, Q) = @D BT (Qp, Vi) [ ]
=0

In the following, we consider several typical examples such that the Wy-part of the specialization
map is an isomorphism be verified via direct computations.

In fact, note that the maps A, and A, are injective as we show above, and since the Wy-part of
the rigid cohomology is contained in its slope 0-part, thus from the diagram we constructed for the
p-adic local invariant cycle theorem, it suffices to prove that the Wy-part of the p-adic specialization
map is an isomorphism:

WOH:;ig(XS/k) = WODcrys(Hi(Xﬁva))

¢ Blow Up Case

Consider the case that p : X — X is a blowing up with regular center.

Since Hi(XSgl),Qp) = H'(Xs, Rp.Q,), by computing the stalks, H'(Xs, R'p.Q,) has weight in
[j,j +1i] and H* (X5, Rp«Q,) is pure of weight i, so only R° contributes to H'(Xs, R/p.Q,) =
H'(X5, Rp.Q,), and we have:

Hi(ngl)a Qp) = Hi(X§7Rp*Qp) = Hi(X§7 Rop*@p) = Hi(X§7p*Q;r>)

Now WOHi(X§7Qp) = WOHi(Xél), Qp) _ WODst(Hi(X,%l), Qp))N:O.
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Thus in this case, WoH'(X5,Q,) is the equalizer of WoHi(Xgl)/k) = WOHi(Xg)/k) (by com-

position of morphisms), hence we have
WoDa(H (X3, Q)N =0 = WoDa(H* (X5, Q)=

and

WoH' (X5, Qp) = WoDar(H' (X5, Q)"0 = WoH' (X5, Q)"

e Regular Scheme with Ordinary Double Points

Now we consider the case as in [I3] and [M4].

Let X be a relative n-dimensional proper generically smooth scheme over R, assume X is regular,
connected and has at most ordinary double points (which is defined below). Assume that all the
ordinary double points are k-rational and denote the set of them by X. Let K’ be a totally ramified
quadratic extension of K.

In [I3] and [M4], Illusie and Mieda constructed the specialization map:
sp* : Hyg(Xs/k) — Hap(Xy/K)'

(here Hi(x)" denotes H'(x) ® K') and proved that it is an isomorphism when i # n,n + 1 and
for each o € X, there exist a one-dimensional K’-module ®,(X/K’) and an exact sequence ([M4,
Theorem 1.1] ) :

0— H"

rig

(Xo/B) L Hi(Xy/K) — @D o (X/K) — HEF (X, /) L HG (X, /K) — 0

rig
oeEX
In this example, we could show that the Wy-part of the specialization map is an isomorphism.
Now let A be a ring, a quadratic form Q € A[X7,..., X, 1] over A is said to be ordinary if for
any maximal ideal m of A, the quadratic form Qn = Q® A/m is nonzero, and the closed subscheme
of P, defined by @ is smooth over SpecA.
A point 0 € ¥ is called an ordinary double point if there exists an open subscheme U of X

containing o, an ordinary quadratic form @, over R and an etale morphism:
f:U — SpecR[X1,..., Xnt1]/(Qs — )

As in [M4], by taking a base change of R to R’, the ring of integers of K’, we obtain a scheme
with isolated singularities, each of which is defined by a homogenous quadratic polynomial.
Thus let X be a relative n-dimensional proper generically smooth scheme over R which is regular

connected, Y is a finite set, and etale locally around any point of 3, the scheme X is defined by
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a homogenous quadratic polynomial, i.e., for any ¢ € 3, there exists an open subscheme U of X

containing o, an ordinary quadratic form @, over R, a unit u, € R* and an etale mrophism
f:U — SpecR[X1, ..., Xnt1]/(Qs —7)

As in [I3, 3.2], Let m = u,7'? and A’ be the normalization of R[X1, -, X,11]/(Qs — u,m'?) in
K', X' = X ®4 A’, and take the blowing up X — X’ of X’ at ¥, set D, be the exceptional divisor
at 0. Then the blowing up X, of X, at ¥ is the strict transform of X, in X and the exceptional
divisor C, at o is equal to the intersection X, N D,.

Due to [I3, Prop. 2.4], X is strictly semistable over SpecA’ and its special fiber X is equal to X,+
Yoes Dy as an divisor on X, D, is isomorphic to the closed subscheme of ]P’Z+1 = Projk[Xy,..., Xni1,T)
defined by the polynomial Q, — u,T2 and C, is isomorphic to its hyperplane section T = 0.

Follow we stated in chapter 2, given the Hyodo-Steenbrink bicomplex

~itj+1
W, Al — Mjl
Pj Wnaj;/+j+
we can define the weight filtration on it as
P2]+k+1Wn SEAR

P.W, A =
n ~z+ +1
PiW,ay7

Now, in our case, we have DM = X, 11| |, es Do, D® = . Cy, and DY =0 for i > 2.
Let U be the open subscheme X — % of X, we have H!, (X/k) ~ U/k) for i > 1, also,

T1g ng c(

by comparison theorem in [HK], since U = X, — UgexClo], we have the following isomorphisms:

mg C(U/k) (XS? WQ}Q(*ZOQ Z CO’)) Qw K
oED

H (X, WA*) ® K ~ Hip(X,/K)
H' (X, W3, (logCy)) ® K ~ H}, (Dy — Co) /k) = @} (X/k)

And the long exact sequence ([M4, Theorem 2.13] ) :

0_>Hr1zg(XS/k) _)HdR U/K @(I)l X/k 'rzg Xs/k) HH(%R(XW/K>
ocy

Now, we want to show that W,®% (X/k) =0 for all i € N and o € X.
We have the following diagram of Mokrane ([M3], Prop. 4.11):
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0 — GroWndt —— PIW,o% /PaWeit —— GriW,dh — 0
Resp,, l Resg‘; l Resc, J{
0 —— W0y, ——  W,Qy (logC,) —— WnQba[—l] — 0

Note that we can describe the weight filtration on W,,0*® as follows:

0:P0CP1CP2=W7L(:).

Res °
Py/P = PHWa0g, (-2
o€Y
Res ° .
P /Py = WoQ% [-1] @ @WnQDU [—
oeD
where Res : Gr;W,,Q%(logD) ~ W, QB(J)[ j] is the residue morphism defined by Mokrane ([M3,
prop 1.4.5] )

So we have:

0 —— 0 —  GrWyoy — GrmW, oy —— 0

ResD(7 l Resg‘; l Resca J{

0 —— WLy ——— W% (logCs) ——— WnQba[—I] — 0

By [M3, prop. 3.22], we have the grading of W A®:

Gri(WA®) = EB Grajier i Waoy[1](j + 1)
Jj20,j>—k
Using the identification given by the residue map and combining the weight filtration on W, w,
we have

G’I“QWA. = GTl Wn(:);/ [1] (1)

From [M3, 3.23], we know that the E; term of the weight spectral sequence on W A* is given by:

E;k,iJrk _ @ Héryzj k (2]+k+1)/W)( k) = HZ(XX/WX)
3>0,57>—k
where these X are irreducible smooth components defined above and (—j — k) is the Tate twist
for the Frobenius, then the action of Frobenius acts on the twist H 2 ~% (X254 /)W) (—j — k) is
P’ times the Frobenius action on HZ %~ k(X @itk W), By [M3, 3.22], all of the terms in the
direct sum of El_k’z'HC are crystals of weight ¢ + k up to torsion.
It follows that W,®! (X/k) = 0.
Also, note that this does not imply WoH, (X,/k) ~ WoH}z(X,/K) since the latter is not

defined, even if after applying ® Bqr and take the isomorphism H},(X,/K)®Bqr ~ H}(X5)® Bag.
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