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ABSTRACT

The general equations describing electron beams which have been
excited by both & strong pump source (or local oscillator) and a weak
signal source have been formulated in terms of coupled modes,including
coupling to slow-wave circults,and solved numerically for four problems
of interest:

a) space-charge pumped longitudinal parametric amplifiers
D) circuit-pumped longitudinal parametric amplifiers
c) parametric cooling of slow space-charge waves, and

d) traveling-wave tubes with pump space-charge waves
excited on the electron stream.

Emphasis is placed on the parametric amplifier solutions, and realiza-
tion of nolse temperatures as low as 55OK are indicated. A discussion
of the form of the general equations leads to new concepts about the
coupling of positive and negative energy carriers through the action
of parametric pumping. Experimental results are presented which tend
to verify gqualitatively some of the theoretical predictions for the

behavior of the parametric amplifiers.
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CHAPTER T

INTRODUCTION

The motivation for this investigation was based upon the need for a
more complete understanding of the prineiples of operation of the longi-
tudinal-field electron-beam type of parametric amplifier. The
predictions of the existing approximate theories (1,2) did not ade-
quately describe the performance of the experimental amplifiers (3,L)
that had been built. In addition, the theories could not predict many
of the important features of the amplifiers. The most glaring inadequacy
was the inability to include the noise performance, which 1s of ultimate
importance since the potential achievement of very low-noise amplification
is the sole Jjustification for resorting to this relatively complex method
of operation. -In the course of the work on this particular'p:oblem, it
was recognized that the theoretical formulation could be generalized to
account for the general mulbtiple-frequency electron-beam problem by
appropriate choice of models and parameters. As a result, in addition to
the parametric amplifier, the performance of electron-beam mixers, up-
converters, and other beam-type devices involving multiple frequencies

can be predicted from the equations developed here.

1.0 Origin of the Parametric Amplifier

The basic principles of parametric amplification have been known and
recorded for many years. The operations of several analogous mechanical
systems, particularly pendulums, have been discuséed in efforts to provide
physical insight into these principles. Certain properties have been
found to be common to all types of parametric amplifiers. For example,

they all depend for their operation on the periodic variation of some
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reactive or energy-storage element. In the case of the pendulum, the
oscillation amplitude can be enhanced by periodic variation of the moment
of inertia accomplished by periodically changing the length of the sus-
pending cord. From this simple model the basic considerationsishow that the
frequency of the variation, or pumping frequency, must be twice the

natural frequency of the pendulum for monotonic increase in amplitude,

and that the choice of the pumping phase relative to that of the oscil-
lations is critical. In addition, it is noted that some small initial
vibration or displacement of the pendulum is necessary before the buildup

occurs.

The mere existence of this novel amplification process does not
Justify the effort that has been expended on it in the last few years.
It is relatively complex; the need for a periodic pumping source of
energy is in itself a tremendous disadvantage. The recent realization (5)
that this amplification process was potentially one which would introduce
relatively small amounts of internal noise, and thus be very sensitive,
and that electrical amplifiers working down to wavelengths in the centi-
meter range were readily envisioned, provided the stimulus for the
interest. There still exists a need for low-noise amplifiers at micro-
wave frequencies to fill the gap between the very sensitive maser and
the more coﬁventional microwave amplifiers. The complexity and inflexi-
bility of the maser preclude its use in some applications. The more
conventional amplifiers have yet to realize the degree of low-noise
performance that can be effectively utilized, even though much has been

accomplished in this area in recent years (6).
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1.1 Regenerative or Negative-Resistance Amplifiers

Much of the work to date in the parametric amplifier field has been .
concentrated in the areaswhich utilize the variable capacitance effect in
semiconductor diodes. The capacitance effect at the diode junction is due
to the depletion of carriers in this region and the width of the depletion
layer, which determines the capacity, is a function of the applied bias
voltage. The magnitude of the capacity is varied periodically through
the impression of a driving voltage at the pump frequency. The diode is
mounted in a cavity structure which resonates at both pump and signal
frequency. Manley and Rowe (7) have derived some basic general energy
relations for systems employing nonlinear elements which are very useful
for determining more of the properties of parametric amplifiers. The most
important of these is the necessity fbr the provision of some means to
support an "idler" signal (8), whose frequency is given by the difference
between the pump and signal frequencies. Thus the cavity must also be
resonant at the "idler" frequency. The amplifier is a single port device
in which a negative admittance is presented at the input terminals. A
typical arrangement is shown in Fig. 1.1, in which the cavity and diode
are represented by an equivalent circuit. In order to provide some means
of separating input and output signals, suitable filters and a circulator
must be used. The ampiifier’'s frequency response is not limited by
transit time of the carriers in the width variation of the depletion
layer, but by the resistance of the bulk material on each side of the
Junction, which is represented by RSw It is readily seen that this resis-
tance will drop more of the applied voltage across the diode as frequency

increases.



SIGNAL SIGNAL AND IDLER

Fig. 1.1 Schematic representation of a semiconductor diode
parametric amplifier of the regenerative type. The
diode is represented by the series-parallel combi-
nation of Rs’ CO, and Cl.
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The early success . of these amplifiers stimulated interest in the
application of other materials with analogous properties. Ferrites in
biasing magnetic fields have been used as variable inductances (9,10)
in parametric amplifiers. So far the pump power needed in ferrite amp-
iifiers has been very large, but continued efforts are yielding some
enczouraging results in this area. DBridges (11) has demonstrated that
an electron beam modulated at the pump frequency can be used in re-
entrant cavity gaps to achieve negative resistance.

Unfortunately, this general type. of parametric amplifier has the
disadvantage of all regenerative amplifiers in that it operates near the
oscillation threshold and tends to be unstable and have.a narrow band-
width. The need for the use of a circulator is also a decided disad-
vantage. To circumvent these difficulties, much effort is being directed
toward the understanding of traveling-wave parametric amplifiers, a

large variety of which have been proposed.

1.2 Traveling-Wave Parametric Amplifiers

Early work in traveling-wave amplifiers has been performed on broad-
band, iterated propagating structures with lumped nonlinear reactive
elements included. It is hoped that the knowledge gained from these
investigations may lead eventually to a continuous distributed amplifier
with continuous reactive elements. As in the regenerstive smplifiervr,
most of the traveling-wave amplifiers have used semiconductor diodes as
the lumped reactive elements. Pumping of these diodes has been achieved
by causing a pump wave to propagate down the structure and thus periodi-

cally vary the potential across the diodes. Tien and Suhl (12) have
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shown that certain relations between the frequencies of the pump, signal
and idler waves, and their respective propagation constants must be main-
tained in order to achieve gain. Ferromagnetic materials have also been
considered for use as reactive elements in traveling-wave amplifiers.

This type of amplifier suffers from certain stability problems due
to the fact that the circuit is capable of propagation of energy in the
reverse direction. Calculations by Currie and Gould (13) have shown
that it may be very difficult to get large gains because of oscillations
occurring near the band edges. The effects of the inclusion of non-
reciprocal elements in the structures are presently under investigation.

The stability difficulties of the amplifiers discussed thus far do
not occur in the traveling-wave electron-beam types of parametric ampli-
fiers, They are unconditionally stable due to the unidirectional pover
flow on the electron beam and the lack of coupling from the output to
the input terminals. In the longitudinal-interaction amplifiers, the
electron beam is the nonlinear element and the stored energy in this
system is in the fields due to the space-charge bunches induced by the
pumping signal. The concepts involved in the detailed operation of the
beanm type of parametric amplifier are considerably different from those
encountered in the lumped reactance amplifiers, and will bear consider-
ably more detailed examination. A knowledge of the kinetic power flow
on electron beams (14) and of the consequences of the random current and
velocity fluctuations in the beam is essential to the understanding of
the mechanisms which are exploited in these amplifiers.

1.3 Space-~Charge Waves and Kinetic Power Flow on Electron Beams

The conventional electron beam type of amplifier depends for its



source of energy upon the kinetic energy carried by the beam. The
process of the extraction of a portion of this energy is discussed either
from a purely kinematic point of view or in terms of the mutual coupling
of waves or modes which propagate on the stream and on the circuits which
may be coupled to the stream. The wave plcture will be used here since
it 1s by far the most popular and seems to have yielded far more insight
into the energy exchange process. It is particularly adaptable to the
problems which lend themselves to treatment involving small-signal ap-
proximations.

. The two orthogonal modes which can propagate on a moving electron
stream are known as slow and fast space-charge waves (15,16). They can
be considered to be the waves resulting from the Doppler shifting of the
two oppositely-directed traveling waves which are used to describe sinus-
oidal plasma oscillations in a stationary electron plasma. They are
obtained as solutions of ‘the set of linearized one-dimensional homogeneous
equations which relate the a.c. current, velocity, charge density ‘and
electric fields which are set up by some sinusoidal perturbing quantity
of frequency f = w/Bﬂ » The solutions show that the normal modes
possess wave properties which are described as a function of time and
distance by (e

, Jlwt-pTz)

fi(z}t) = Ce | | (1.1)

where the propagation constant is given by

o= —2 (1.2)

The upper sign is used to denote the fast space-charge wave and the lower
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the slow wave. The notation conventions are obvious upon examination of

the phase veloclities of these waves, which are written

u w
*]

+ =TT s u (1 =+ -f—) (1.3)
Iy

v =
17

A./°

The approximation is valid since mp/m << 1 1in the practical cases where
microwave frequencies are involved.

‘Since the modes are orthogonal, they can be separately excited.
Chu (14) has shown that the slow space-charge wave has the intefesting
property that as its mode amplitude is increased, the a.c. power flow on
the wave in the group velocity direction is decreased in an algebraic
sense. This can be explained in terms of the kinetic energy density of
the electrons involved iﬁ the wave motion at a given instant in time. The
a.c. power flow on the fast space-charge wave behaves in the more conven-
tional manner in which power flow and mode amplitude are positively
related, as they are for modes propagating on circults. Whenever a slow
space~charge wave is coupled to a wave which carries positivg a.c., energy
through simple mutual interaction of their associated fields, an unstable
condition arises and the amplitude of each wave will grow, but energy will
be conserved because the positive energy-carrying wave can extract energy
from the slow space-charge wave. It 1s this property of the slow space-
charge wave that i1s exploited in the traveling-wave tube and other
conventional microwave amplifiers. Haus and Robinson (17) have shown that
there is a lower limit to the noise behavior of these amplifiers which is
somewhat above that which can be advantageously utilized in various prac-

tical applications, This limit is imposed by the very property of the slow
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space~charge. wave that is being exploited‘tonachievg gain; this wave is
excited in the cathode region by current and velocity fluctuations which
generate noise in the interaction region, and any efforts to dissipate
these, fluctuations by passive field coupling result in the‘absorption’of
energy from the beam with the attendant increase in the fluctuations. At
present, many studies are being conducted to find the optimum noise excif
tation conditions in the region of the potential minimm (18), and noise
figures as low as 3 db. are being obtained (8) experimentally.

. . The concepﬁ of a minimum noise excitation does ggt_occur er the
fast space—charge wave since passive energy absorﬁtianof‘noise power
from this wave results in decreased mode amplitude, It seems evident,
therefore, that an amplifiep which depends only ﬁpon coupling to the fast
space—ch@gge,wave could conceptpally be made ideal, i.e., could be maae
so that 1t contributed no gqise in the course of the amplification pro-
cess. A new source of energy must be found in such an amplifier since one
is no longer free to draw upon the d.c. beam energy. The beam type of
parametric amplifier has been proposed as one which fulfills both these
reguirements. Certain limitations ofbbothba practical and theoretical
nature to be expiored in the course of this work'preclude'the achievement
of ideal amplification; however, these limitations are far less stringent
than those encountered to date in conventional amplifiers, and improved

performance by an order of magnitude may be achieved.

1.4 Electron-Beam Parametric Amplifiers

Two basic types of .electron-beam parametric amplifiers have been
proposed; they are commonly known ag. the transverse-field-interaction or

cyclotron-wave type (19) and the longitudinal-field-interaction or space-
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charge-wave type (1,2). In the former, waves known as cyclotron waves
interact with transverse components of the fields which couple the circuilt
to the beam, while in the latter type, the space~charge waves interact
with the longitudinal components of the circuit fields. The cyclotron-
wave amplifier has been by far the more successful to date; noise
temperatures as low as 350K have been reported (20). As has been men-
tioned, a satisfactory analysis of the space-charge-wave type has not
been achieved and the experimental results have been disappointing.

These amplifiers are analogous to the extent that the qualitative
arguments which have been presented for the noise behavior and a.c. power
flow on fast and slow space-charge waves are also valid for fast and slow
cyclotron waves. The basic difference in the complexity of the analytical
approaches to the two problems can be attributed to the difference in the
velocity dispersion of the two types of waves. The phase velocities of

the cyclotron waves are given by

& uO ( LI-
chc. = "'_—_ gc lo )
1+ —=
@

where the cyclotron frequency Qc is related to the axial magnetic field
B by

e, = — (1.5)

Since parametric amplifiers involve multiple frequencies and beams are
nonlinear, it becomes important to know what the effects of the fre-
quencies generated as mixing products are on the performance of the
amplifier. These effects can be shown to result from the coupling of

the waves excited on the beam at the various frequencies, and the amount
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of the coupling in turn can be shown to depend on the relative phase
velocities of the waves in guestion. If harmonics of the pump frequency

are neglected, the frequencies generated in the amplifier are given by

® o= 0+ me, m= e+ -2, =1, 0, 1, 2 +=-- (1.6)

wWhere wc is the pump frequeﬁcy and is higher than thevsignai frequency
(usually ~ 2w) . Keeping in mind the fact that wp K w, and’that Qc
can be arbitrary, it is seen that the velocities of all the waves in the
space-charge-wave amplifiers are close to u,» while the fast eyclotron
wave Vglocity at the signal frequency can be made infinite if QC =® ,
as is normally the case. This large dispersion in the phase veloclties
of the cycldtron waves allows one to ignore the effects of any wave for
which m # 0 .or -1, and excellent analyses of the performance of these
amplifiers have been made. The principal effort of the work to follow
is directed toward finding adequate solutions for the space-charge-wave
amplifier pumping problem which include the effects of the higher order

mixing products.

1.5 TFunctional Description of Electron-Beam Parametric Amplifiers

The four basic operations that must be performed in these amplifiers
are: a) removal of the noise from the fast signal wave, b) exciting the
fast signal wave with the incoming signal, c) amplifying (or pumping) this
wave, and d) removing the amplified signal energy from the beam wave.
These operations are usually performed as illustrated in Fig. 1.2 .

Gould (21) and Ashkin (22), et al, have shown that couplers can be

bullt which will perform the dual function of simultaneous noise removal
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Fig. 1.2 A functional diagram of the electron-beam type of
traveling-wave parametric amplifier.
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and signal injection for space-charge-wave amplifiers. Two-gap cavity
couplers can'also be used for this purpose. The conditions for optimum
coupling to space-charge waves with these cavity couplers are derived in
Appendix I. Couplers with analogous properties exist for cyclotron waves.
As can be seen in Fig. 1.2, if the noise removal operation is perfect, the
signal~to-noise ratio at the entrance to the gain region is apparently the
same as that at the input signal port. Unfortunately, all parametric amp-
lifiers convert signal or noise input at the difference or idler frequency
to signal output with a conversion gain almost egual to that of the signal
gain. Thus, even though the beam noise at the idler frequency is removed
in the input coupler, the idler frequency noise input at the input signal
terminals causes the signal-to-noise ratio to be halved at the entrance to
the pumping region.  This will not be true for signals with & noise-type
spectrum, however, since signal will then be injected at both the signal
and idler frequencies. Special techniques can be used to reduce the
effects of the idler frequency noise in certain applications. This extra
noise contribution, together with any éontributions from higher order
idler waves, precludes the possibility of -ideal amplification.

It is evident that the basis for the expectation of low noise amp-
lification in the beam type'of amplifier is completely different from that
in the diode amplifier. There the nonlinear element is a "cold” device in
which no current flow (with attendant noise fluctuations) takes place
across the junction. The periodic variation in the width of the deple-
tion layer is minute and 1s not expected to contribute noise. In the beam-
type amplifier, however, the "hot" electron stream is initially very noisy

and only the ability to "cool" it in a specified manner provides the key

to low noise amplification.
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Pumping of cyclotron waves is achieved by the use of gquadrupole
fields as described by Adler, et al (23). Several related methods for
pumping space-charge waves have been proposed by Louisell and Quate (1)
and Wade and Adler (24) and, as mentioned, these will be discussed in
detail. Suffice it to say here that exponential growth takes place in
the pump region. The signal removal function is performed by using the
reciprocal properties of the type of coupler which was used at the input.

The cyclotron-wave amplifier has been very successful to date at
the lower frequencies. However, the extension of operation to higher
frequencies poses some problems of fundamental nature (25). The mag-
netic field and pump power requirements would seem to limit its operation
to frequencies below 10 kmc. Diode amplifiers have also been confined to
this same frequency range due to the state of the diode fabrication art.
Higher diode cutoff frequencies (or higher Q's) must be obtained to
extend the frequency range of these amplifiers.

The two factors which determine the high frequency limit for the
space-charge wave amplifier are: a) the availability of a pumping source,
and b) the conventional problems encountered in extending all microwave
tubes inE? the near-millimeter wavelength range. These problems are due
to practical difficulties encountered in fabricating very small parts and
in realizing circuits which have electric fields of sufficient strength
in reglons where an electron stream can be positioned. An estimate of
this limit within the present state of the art might be about 30 kme with
the possibility of extension as better high-frequency pump sources become

available.

It is interesting to note that the limiting factors for higher
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frequency operation of diode and cyclotron-wave amplifiers do not apply

to space-charge wave amplifiers. The "Q values" of electron beams are
many orders of magnitude higher than those of modern diodes since the only
iosses in the beam are due to collisions, which are rare. The magnetic
field required by space-charge-wave amplifiers issimply that required to
confine the electron stream. The principal gain parameter for the space-
charge-wave amplifier'is the degre;’of saturation of the;électron bean

by the pump power. The power necessary to saturate the stream is given
by ©
P = 2P f-—al-';— (1.7)

Where PO is'the d.c. power in the stream. Thus, for a given beam, the
pump power decreases with fﬁequencya The implicatibn of this result is
that the amplifier will saturatevat lower power levels, but this‘is of
little intérest since these ampliifiers operafe far below saturation in

ractice. On the basié of these afguments, it seems that'the space-charge-
wave amplifier is the most promising for operation at high microwave

frequencies.
1.6 Parametric Pumping of Space-Charge Waves

The first proposal for parametric pumping of space-charge waves by
Louisell and Quate (1) described a system in which fast space-charge waves
at both the signal and pump freguencies were excited on a stream which was
then allowed to drift. This "drifting-beam, space-charge-pumped” ampli-
fier depends upon coupling between the strong pump-space-charge wave and
the weakly excited signal space-charge wave. A physical description of
the gain mechanism in this amplifier can be obtained from a consideration

of the excess charge density or bunching produced on an electron beam which
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has been modulated by two space-charge waves. The gain depends upon the
proper disposition of the dense electron bunches produced by the pump
signal about the weak signal bunches. If the signal space-charge wave

propagates as

JI(wt = pz)

then the pump space-charge wave whose time dependence is 2w must

propagate as
ej(Emt - 2Bz)

in order to achieve velocity synchronism between the waves. Under these
conditions, when one views the bunching on the beam in a moving frame of

reference traveling at the phase velocity of the waves, the charge den-

sity distribution might appear as in Fig. 1.3. When the proper
periodicity, phase, and velocity conditions are fulfilled as shown, the
forces due to the electric fields of the pump bunches will enhance the
signal space-charge wave. Note that a shift of 180° in the phase of the
pump wave causes suppression of the signal bunches, and attenuation
instead of gain results. It should be noted also that individual elec-
trons move through this bunching pattern, since the phase velocity of
the space-charge waves is different from that of the average electron
velocity. These conditions can be approached in practice by use of very
thin beams. If these optimum conditions are not met exactly, a more
complex picture of one wave moving through the other results, and the
signal bunches will tend to be alternately enhanced and suppressed.
Since the beam is nonlinear, its behavior must be represented by
the inclusion of idler waves whose time dependence is given by equation

1.6 .



Fig. 1.3
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SIGNAL BUNCHES PUMP BUNCHES

A pictorial representation of the bunches on the
electron beam for a space-charge-pumped amplifier
as viewed in a reference frame moving at the phase
velocity common to both pump and signal space-
charge-waves. Pump frequency is twice the signal
frequency. The arrows represent the forces on the
signal bunches due to the more dense pump bunching.
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The expression "idler" is usually assoclated with the wave for which

m = -1, and the other waves are referred to as higher order ldlers or
mixing products. These frequencles are also present in the output spec-
trum of the amplifier unless selective output coupling is employed.

In addition to these idler waves, the apparent necessity for
pumping the beam into the nonlinear or near-saturation operating region
to achieve reasonable gains results in the generation of harmonics of
the pump frequency (26). Each of these harmonics then has its own set
of idler waves. The time dependence for all of the waves present on

the beam is then written

o 3 (naos+ meo )t

o st

S

No quantitative estimates of the amount of noise introduced by these
waves has been made. However, this noise contribution 1s not expected
to be large and the effects of pump harmonics will be ignored in this
work.

‘Wade and Adler (2L4) have proposed a different type of longitu-
dinal-interaction beam-type parametric amplifier. It consists of an
electron beam, which has been premodulated at the signal frequency,
traveling through a slow-wave propagating circuit. The circuit propa-
gates a strong pump wave at the same velocity as that of the signal
space-charge wave which is propagating on the beam. A physical repre-
sentation of the behavior in a frame of reference moving at the phase
velocity of the waves is shown in Fig. 1.4. Comparison with Fig. 1.3

reveals that this amplifier utilizes the longitudinal component of the
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SIGNAL BUNCHES

CIRCUIT PUMP FIELDS

Fig. 1.4 A pictorial representation of the interaction of
the circuit fields with the signal bunches in a
circult-pumped amplifier as viewed in a reference
frame moving at the phase velocity of the waves.
The signal bunching is enhanced by the action of
the longitudinal component of the pump fields.
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electric field of the circuit wave to enhance the signal bunches in the
same manner as the fields due to the dense pump bunches are used in the
space-charge-pumped amplifier. This new type of amplifier will be
referred to as the "circuit-pumped" amplifier.

For the special case in which the pump frequency is exactly twice
the signal frequency and the waves have synchronous velocities and
proper phase, Wade and Adler have derived a gain expression from an
analogy to a harmonic oscillator in a time-varying perturbation field.
In Chapter II, a more general analysis to establish quantitatively the
- possible advantages to be gained with this type of amplifier is pre-
sented° The analysis allows for arbitrary pump-wave phase velocity and
-arbitrary pump frequency. It is a "three-frequency" (pump, signal and
vidiéf]frequencies) analysis in that the effects of‘higher'order idler
waves are ignored. In the process of the analysis, it is seen that the
space-charge-pumped amplifier can be treated as a spéciai case of the

circuit-pumped amplifier, since the gain in the latter amplifier results
from coupling to a wave on the beam which is induced by the circuit pump
wave and whose phase veloclty is related to the circult phase velocity.
Allowing this wave to assume the properties of a pump space-charge- wave
yields the results of Louisell and Quate.

In Chapter III, the equations describing the system are put into
a coupled-mode formulation so that the effects of the higher order
idlers can be readily determined. Pumping is still achieved by a bean
wave of arbitrary phase velocity, and provision is made for coupling to
a circult at the signal and all idler frequencies. The coupled mode

equations which result are three infinite sets of simultaneous, linear
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first-order differential equations:with constant coefficients. However,
only a few of the equations are needed for the solution of most problems.

In Chapter IV, a more exact coupled-mode formulation is obtained
which allows for the inclusion of all three of the pumping waves which
are induced on the beam by a circuit pump wave. The equationé are com-
plicated to the extent that the coefficients become z dependent and
more adequate computer facilities are required for solution. Solutions
to these equations have not been obtained.

~Bolutions to the equations derived in Chapter III are presented
in Chapter V. They clearly indicate the reasons for the failure of the
experimental amplifiers and demonstrate that new areas of operation may
yield excellent results.

In Chapter VI, the flexibility of the general equations derived
in Chapter I1II is demonstrqted byyapplying thenm tQ other devices which
involve multiple-frequency electron beams.

Some interesting é#ﬁerimenﬁal fééults‘obtained froﬁ aﬁ amplifier
which waéudesigned to operaﬁe on ﬁhe spaée—charge—pumped‘pfinciple are

resented in Chapter ViI. Although the amplifier was quite noisy,
interpretatioﬁ of the resulté show fhat fhis behavior could have re-
sulted from shortcomings iﬂ‘the eiperimehtal‘tube and is probably not
due to fuhdamenﬁal limitations of the parametric amplificétion process.
Verification of several other pfedictipns of the theory was obtained

and courses of action for further experimental work are indicated.
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CHAPTER II

A GENERALIZED THREE~FREQUENCY ANALYSIS OF THE CIRCUIT-

PUMPED SPACE-CHARGE-WAVE AMPLIFIER

2.1 Introduction

The analysis of Wade and Adler (24) deals with the special case in
which the eircuit pumping wave and the signal space-charge wave have the
same phase velocity, and in which the pump frequency is twice the signal
frequency. In this chapter, a wave analysis is performed which includes
the effects of varying the relative frequency and phase velocity of the
pump, and in addition yields some interesting information about the total
pump modulatlon on the beam. The gain expression reduces to that of Wade

and Adler for the special case which they treated.
2.2 The Basic Assumptions and a Description of the Model

The conventional one~dimensional assumptions that electron motion
is constrained to the z direction énd that the z components of the elec-
tric fields over the cross section of the beam are constant are used. The
fluid model of the electron stream is used in which velocity is a single-
valued function of position. The pump gquantities are assumed to be large
compared to the signal quantities, but much less than the d.c. quantities
so that they may be described by linear theory. The finite geometry
effects are included by use of the appropriate plasma-frequency reduction
factor R (27).

The model to be considered consists of an electron beam, which has

been premodulated by an input signal at frequency  , passing through a
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slow-wave propagating circuit such that the beam couples to the wave
supported by the circuit. The premodulation on the beam will consist
of the excitation of the fast signal space-charge wave only. The
circuit wave will be the pumping signal, which will be assumed to be
constant with distance along the beam. The Validityrof this assunption
can be supported by two qualitative arguments. First, the circult wave
will travel faster than the fast space-charge wave at the pump freguency
so that complete energy transfer to the beam will not occur. Secondly,
the desired gain may be achieved in a short distance compared to that
necessary for the transfer of the energy to the beam. This assumption
is consistent with the one used by Wade and Adler. If necessary, it is
possible to set up a single pump wave by proper adjustmént of the
initial conditions. The electric fields are assumed to be composed of

the sum of the space-charge and circuit flelds, i.e.,

avc ,
E = E -5, (2.1)

where Es represents the space charge fields and Vc‘ the circuit
c

voltage.
2.3 The Derivation of the Characteristic Equation

The three fundamental equations to be used in this one-dimensional

analysis are Poisson’'s equation

OE 2
sc _ Ri(w)p
e oo Ro ;, (2.2)

o}

the equation of motion, which can be written
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Ny - (n= 2] (2.3)

and the continuity equation

% , O _
'§'E+az = 0 }J (2')"')

m
i

where the permittivity of free space

<
il

velocity of the beam
p = charge density of the stream

current in the stream

[
it

and R 1is the plasma frequency reduction factor incorporated to
account for the effects of the finite geometry of the beam. The

plasma frequency for an infinite one-dimensional beam 1is obtained

from _
2 P

wp = (2'5>
o

wWhere Eo is the average charge density and the reduced plasma fre-

quency for the cylindrical beam is given by

w = Rw . (2.6)

i = pv . (2.7)

Differentiating équation 2.3 with respect to =z and combining with

equations 2.1 and 2.2 gives
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2 € - ° e
9z0t oz 2 o) dz°
Equations 2.4 and 2.7 are combined to give

Jp Jp ov

XtPVRtTPS 50 - (2.9)

The normal procedure in a wave analysis is fo assume a solution
of the form of a perturbed solution of the uncoupled system. The per-
turbation is usually a relatively slowly varying quantity. Since any
growing wave results from coupling to other traveling waves and takes
place with distance, the assumed perturbed solution is usually of the

(z)eg(wt_BZ>. For each derivative with respect to =z , the

form vy V
derivative of the product of two functions of 2z must be taken. To
reduce tﬁe ﬁumber of terms that must be handled, and alsoc to facilitate
physical interpretation of ﬁhe results, the analysis will be performed
in a frame of reference moving in the z direction at the average velo-
city of the electrons ub . In this moving frame, the perturbation
becomes a function of time and the number of product derivatives is
reduced. The moving frame will be denoted with primed gquantities
(z') and the laboratory frame with unprimed quantities (z).

When a fast space charge wave at frequency o 1s excited in the

laboratory system, it has a dependence as

oJ(wt-pz) (2.10)
' @w - R
where B = mTUil'i . (2.11)

o]



-06-

To change to the frame of reference moving at velocity ug s the non-

relativistic transformations
z=z2' +ut (' = t) (2.12)
are used to substitute for z and t , and the wave solution becomes

ej[w-Buo)t - pz'] | (2.13)

Thus it is seen that the time dependence in the moving frame is given by

| - - = = .
@' = w-pu chp © (2.14)

the reduced plasma frequency. Equations 2.11 and 2.6 were used in
obtaining 2.1k .

From the physical arguments associated with Figure 1.4, it seems
desirable to use a circult pump wave which has a frequency about twice
that of the signal frequency in the laboratory frame and propagates at
a velocity in the vicinity of the phase velocity of the fast space-
charge wave at the signal frequency. It will be assumed that the cir-
cuit wave is glven by

jlw t - I'z)
Vo= Ve ¢ (2.15)

which becomes
y - Tu - !
J[(wc o)t rz']

V = Ve

. (2.16)

In the moving frame of reference. The Doppler-shifted circuit-wave

frequency in the moving frame will be defined as

'
o] c o}

]
e
\
=

(2.17)
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The solution for the velocity and charge density modulation induced
on the beam due to the pumping signal will be sought first. These guan-
tities will be the first order solution to the equations, and the
signal modulation will later be introduced as first order perturbations
of these gquantities. In order to thain particular solutions to
equations 2.8 and 2.9, solutions of the form of the driving function
V are assumed; thus

et
J[mct T'z]

vy = v, e (2.18)

Jlo't -Tz"]
o.= 5 +p e °© (2.19)
2 o] c
After substituting into equations 2.8 and 2.9 and making the linear or
small-signal approximation that terms involving the product of a.c.
guantities can be neglected, the coefficients of the time-varying terms

become

(2.20)

where R2 is the plasma frequency reduction factor at the circuit wave

freguency, and

i - = » °
w! Py = T p v, 0 (2.21)

Solving simultaneously and using equation 2.5 gives

T nVCwé
VC = - ——é—'—'—2—§ v (2.22)
' =
(wc Rggp



-28-

T'n Py Vc
o, = - (wlg =y . (2.23)
c” T2p

The required complementary function solutions to the homogeneous form of
equations 2.8 and 2.9 are simply the space charge wave solutions. Adding
these to the particular solution Jjust obtained, one can write for the

total modulation on the beam due to the pump wave

t s i - t il -
Lo LoV w! J(wct I''z) X . eJ(Ria)Pt Biz)
2T D it
c 2'p
-J(R.wt +B.z2") (2.24)
N Z DJ_e J'p J
J
and
2 — B ] t - . '
I e, Vc J((Dct I'tz) CiBipo .](Riaopt - B, 2 )
P =~-""5 55, ¢ + R.o  °
(o' - ngp) i i

DB.o -J(Rw t+p.z") (2.2
) zyaaaooeﬂ” Byz') (2.25)
R.®
i p

e

where gquation 2.21 has been used for each of the superposed solutiouns.
The summations represent the sum total of the infinite number of space-
charge waves which can be excited; the wave numbers Bi and Bj and
the reduction factors Ri and Rj are determined by the excitation
signal wavelength. It will be assumed that both the fast and slow
space-charge waves have the same reduction factor R2 .

In the laboratory frame of reference the boundary condition is
imposed that at z =0, v, = Py = O . This means that v, and Py= 0

2 2

for z' é’-uot in the moving coordinate system. Letting t = -z'/u,
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in equation 2.24 gives

mé Rém
TV o -j(——-u +P)Z' —J( m P + ﬁ_)Z'
c c o) O 1
V, = = ————— & + Z:C,e
2 2 22 i
(w!™= Row) i
c 27
ngp
(= - B,z
o J
+ be . (2.26)

To meet the boundary conditions it is seen that the exponents must be
made the same and then the condition at z' = O matched with the coef-

ficients. From the 1 summation this requires that

wé ngp 1

—_ 4+ D = =X =D + =(w'-R . (2.2
a) — —= + Bi s or Bi I = (mc 2&@) (2.27)

o} o} o}

Similarly for the j summation

wé R2a$ 1

——— = - et m—— t 3 L
b) Y + T Y + 53 , or 53 T + ub(ngp+ wc) (2.28)

Substituting for wé from equation 2.7 yields

wc- ng
B; = ———a———g (2.29)
o
- wc+ ng
B, = -——u—-—E . (2.30)
o)

Thus Bi is the wave number of a fast space-charge wave excited at
the pumping frequency and Bj that of a slow space-charge wave at the
same frequency. Imposing the condition that at t = z' =0 ,

V, = P

5 =0 gives

2
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T'q ch'
-— S % 40 +D,= 0 (2.31)
2 22 i
W' - R_w
c 2°p
s vV c,B;p D.B.p
0! c i1 o jJ 3o
- f R e T Rw = 0 . (2.32)
1] -
(U‘)C_Rewp)
Solving simultaneously, the constants become
vc ngp
¢; =-5 (L+—==) (2.33)
c
vc ngp
D, =--<(1--22F 2.3
je-=a-5D (2.34)

cC

where v, is defined in equation 2.22. OSubstituting these expressions
into equations 2.2k and 2.25 gives the a.c, modulation quantities on the
beam due to the pump wave.

It is now desired to inguire into the possibility of amplification
of a fast space-charge wave excited at a signal frequency w in the
laboratory frame. Noting that the phase velocities of the space-charge
waves excited by the pump wave at the initial plane are quite far re-
moved from that of a signal space-charge wave, it is expected that
coupling between these and the signal wave will produce second-order
effects resulting in some initial perturbation of the exponential growth
curve. The amplitude will depend upon the relative velocity separation.
Since the prime interest is in the exponential growth at present, these
terms will be ignored in eQuations 2.24h and 2.25 and only the more
nearly synchronous driven wave represented by the first term will be

retained.
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It should be noted that in the traveling-wave-tube theory of
Pierce (28),in which the circuit wave is not assumed constant, a wave
of approximately constant amplitude (characterized by Pierce's '83) is
excited on the beam if the phase velocity of the circuit is greater than
that of the fast space-charge wave. Also, its phase velocity is very
cloée to that of the circuit wave. ©Since the first order wave soiu—
tioh obtained here has essentially the same properties and offers the
possibility of comparison of results with Wade's theory, it is felt that
these similarities further justify the use of the approximate procedures
as previously outlined.

In the conventional small-signal analysis, the a.c. quantitles are
regarded as small perturbations of large d.c. quantities. After neglect-
ing second-order terms, the resulting linearized differential equations
have constant coefficients. In this analysis the signal frequency
guantities are regarded as small perturbations of the larger pump fre-
quency components as represented by the first terms in equations 2.2h
and 2.25 written as real quantities. When this assumed solution 1is sub-
stituted and terms involving products of signal guantities are neglected,
the resulting differential equations are linear with variable coeffi-
cients. Since the equations are linear, superposition holds and real
physical variables can be represented by exponentials with the under-
standing that the real part signifies the physical quantity.

A fast signal space-charge wave varying as

Jw t-pz")
v~e 9 (2:35)

is assumed to be excited on the beam. Note that nonlinear terms in the
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differential equations will give rise to terms which vary as

ej[(mq+ a)é)t - (1" + B)z'] ar;d ej[(wq- mc)- (P-B)Z'].

These in turn will mix with the pump to give terms which vary as

J'[(®q+ 2w,) - (p +2r) z'] J[(wq- Ewc)t -(B-21)z']

e and e , and
these in turn mix until all sum and difference frequencies are present.

Therefore it will be convenient to define

o = 0 + 0w} n=-°"-2,-1,0,1,2 **° (2.36)
and
B,= B+l n=ree =2,-1,0,1,2 *+- (2.37)

and write the form of the perturbing solution as

0 o t-8 z!)
v = z: Vn(t) e T R (2.38)

~00

since growth in the moving reference frame will take place with time
instead of distance. n = 0 then corresponds to the signal wave, and
n = -1 to the idler wave. The other integral values of n correspond
to the higher order idler waves.

Harmonics of the pump will not be considered in this analysis, so
the following forms are assumed for the solutions for p and v which
are to be substituted into equations 2.8 and 2.9

j(mét-I‘z') -j(wét—f‘z') © Jwt-pz')

v o= Me + Me + ) v (ke B (2.39)
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_ j(wét—l"z') —j(wét—f‘z‘) 0 j(cbnt— an')
P = pt Ne  + Te + —2; pn(t)e (2.40)

where the constants M and N are defined by

t
v
1 oY
Mo=-3 (m‘e—‘szg) (2.41)
c 27
2
I'p 'V
N o= -2 —> (2.42)
(w'2 ng
e T2 p

After substitution the first-order pump frequency solution is
removed and second-order terms involving products of the small signal

quantities are ignored. FEquations 2.8 and 2.9 then become

2 . .
(o (oo 3 & s R ey eJ(wnt- 6nZ)_ w? v ea(wmlt- By12)
n' n dt’ n eo n+l n
o . t-B _2)
2 n-1 n-1 _
-Mp Ve = 0 (2.43)
- . a J(U‘)nt "an)
B PVt (J i wn)pn} e + N(Bn+ F)vn+ M(Bn+ I‘)pn
o t-8 -2z) o t-p -z
. n+1 n+l n-1 n-1-
. JEGRRIRECS AL _ o
(2.L4)
Making use of the orthogonality relation
2x/T .
-z JB z ‘
n m o Jmeexn
e e dz = 6n( F) v | (2.45)
0

the equations become



2 x4 m ~m 2 _
M B Vp t (wmﬁm- By g5/ Vit € "M B Vmy = O (2.ke)

, - s d
N(ﬁm-l+ I‘)Vm-l*l’ M(Bm-l+ P)pm-l+ ﬁmpovm (wm J dt)pm

+ W(By - DV + MB - Tl ;= 0 . (2.47)
jwnt

Note that the e dependence which was factored out in equation 2.38
has combined with the time dependence of the pump terms to cancel from
the equatibns, and that as a result of this choice, the cbefficients are
constants.

Equations 2.46 and 2.47 represent a doubly infinite set of coupled
equations. Note that for each wm , coupling to wm+l and wm-l terms
occurs through the action of the pump. This is readily seen if one

recalls that the constants M and N contain the pump wave amplitude

Vc . If V. =0, the coupling vanishes. Thus the signal frequency mb

e}

is coupled to the principal idler frequency o 1 and to another idler

frequency w whose time dependence is the sum of the signal and pump

+1
frequencies.
It is now postulated that the strongest interaction takes place

only with the | idler wave, and that the others can be neglected.

1
This argument is made on the basis that it is the only wave that has
about the same time dependence as the signal and also that it has about
the same phase.velocity as the signal wave. This reduces the problem

to the familiar three-frequency case which has been solved for other

types of parametric amplifiers. Coupling only to the idler wave means
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that only the -1 and O terms in equations 2.46 and 2.47 are retained.

Writing out the equations which remain, the following coupled equations

are obtained:

n32 P
. d -17-1 2
(03B 1= 3 g Vogt e ey
: 2
R
2 . d o)
-M Bo V—l +(woBo- JBo EE)VO + €

F e )
By eVoat Wgg vy g

N(T+B_)v_q+ M(B_j+ T)o_;

These are four equations in the four unknowns v
Juw

+ N(p_- T)v + M(B_ - T)p_

v BBy + (I - w)p
500 at o’"o

_lJ p"'l’ VO

v, = 0 (2.48)
P
-0 (2.49)
s}
=0 (2.50)
=0 (2.51)
and Py *

Assuming dependence as e . e , Where - is the complex incremental

propagation constant, and setting the resulting determinant of the coef-

ficients equal to zero yields the characteristic equation

2 2 2

1
u4+ 2u381 +u(2-11) {gjfT -24—%§~+b2€ ] - (2-£1) [2f'-

Rib'(b'+2)€2

f'€2 f'b'e

2

2

2
R'(b'+2) BoD'(b'+2)

1 1 1 1 2
N 62(2_f,)[ %: £ _(pre2)”

5(2-1") 5 n A(E_f,)z'* S(3-F7)
R2pt (b'+2)  R(b'+2)
0 0 1 b N L Y-
- 5 - 5 ] + -1—_5 € (2—f ) (b +l) = 0

in which the parameters are defined by

20 - o'

v _ B¢
= w
P

(2.52)

(2.53)
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'-28

b' = _—E;_—_ (2.54
B8 VC wé
' 2 q
(w o Reu%)

In addition, the assumption that (RO/R_l)2 ~ 1 has been used. This is
a good approximation since the signal and idler frequencies are almost

equal in the normal operating range.
2.3 The Degenerate Case

It will be of interest at this point to investigate the behavior in
the special limiting case in which the phase velocity of the circuit pump
wave is exactly the same as that of the fast-signal space-charge wave and
in which the pumping frequency is twice that of the signal frequency. The
finite geometry effects will be ignored so all reduction factors are set
equal to unity. This then corresponds to the case which has been
treated by Wade and Adler through the use of a harmonic oscillator
analog.

In this case the phase velocity of the fast-signal space-charge

wave 1s given by

= —2_ (2.56)

. (2.57)

Equating these, one finds that
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= 2B . : (2.58)

Thus in equation 2.52 the phase velocities are made the same by letting
b' = 0 . The Doppler-shifted pump frequency as viewed in the moving

frame of reference then becomes (using equation 2.17)

wé = 2w - 2pu_ = Ewp . (2.59)

Therefore, the parameter ' must also be zero for this special case.

Under these conditions, the characteristic equation 2.52 becomes

L 22 8 L4 L
v o2, 8PV, heo 16PNV,
- hwm 2y - V. + = e— = 0 2.60
wi-p (g =) - BBV g (2.60)
w w
D P
4 2 2
2 B Vc
Defining €' = 5 and using the quadratic formula, one gets
W,
b

2 Lo 2 / 5 .2
. - o -+ Z ! .
noo& 2 5 €' 2\ 1+ 5 € (2.61)

where a term in e'LL has been neglected. This would correspond to the
case of weak pumping fields.

For no pumping fields, the roots become:
b o= 0 5 w==x2 . (2.62)

The latter pair of roots correspond to slow space-charge waves at the
signal (u = -2) and idler (p = +2) frequencies, and are not influenced
much by the pump strength.

ndin e ic it is noted ) increases, the two
Expanding the radical, it is noted that as = €' creases, the tw



-38-

zero roots become
po= xje' . (2.63)

These represent a growing wave and a decaying wave arising from the
coupling of the fast space-charge waves at the signal and idler frequen-

cies. Using the relation

'V =28V = E (2.6k4)

one can write an expression for the growing wave in the laboratory frame

of reference as

m
v = v_e P . (2.65)

Using Pierce's_definition (28) of the interaction impedance

E2

Z

2g2 P

(2.66)

where P represents the power flow on the circuit, and the velocity rela-

tion
w = yon v (2.867)

equation 2.65 can be written as
(2.68)
which is in exact agreement with the results obtained by Wade and Adler.

Thus it has been shown that in this special case the gain predicted from

two completely different analytical approaches is the same.
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2.4 Discussion of the PhysicalyNature of the Parameters

In the moving frame of reference, the parameters are

20 - w'
o= ___2___9. (2.69)
D
o' = FéEB (2.70)
T'Bq Vv w!
6] c
€ = %% ™ . (2.71)
‘—n
(w}7= el ) ¥V 7p

f' is a measure of the amount by which ﬁhe Doppler-shifted pump frequency
differs from twice the reduced plasma frequency. b' and € are merely
convenient mathematical parameters with no particular physical signifi-
cance. | € will be referred to as the "pump strength" parameter,
however, since it does contain the circuit field amplitude. It is felt
that a set of parameters which are a measure of physical quantities in
the laboratory frame of reference will be more useful.

The signal and idler frequencies in the laboratory frame can be

written as

w = wq+ 5uo (2'72)

wl = - wc':+(5 - I‘)uo (2.73)
By our definition

W = W0 (2.74)

Combining these three equations and substituting b' , one gets

wc- 20
b = — .
— (2.75)
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under the condition that wqﬁm << 1 . Thus the prime can be dropped
and b becomes a freguency parameter which is a measure of the dif-
ference between the pump fregquency and twice the signal frequency. Also
b = 0 corresponds to degenerate operation.

Now let us examine the difference between the fast signal space-
charge-wave velocity and the circuit or pump-wave velocity. This can
be written in terms of the moving reference frame guantities as

w + 5uo wé + Puo

3 - = q -
\]S ‘ip B I\ . (2- 76)

Dividing by vp and substituting ' and f' , one gets

VS— VP (l)q
- " (b'+ £1) . (2.77)
P c
Next, define
f = b' + £° (2.78)
and write it as
(Dc VS— Vp
f = a;'(——;;—‘-) . (2.79)
d Y

f is thus seen to be a parameter which is a measure of the difference
in phase velocities of the two waves.

Another factor of prime importance is the depth of modulation index
"m", which represents the magnitude of the total a.c. beam current
induced on the beam at the pumping frequency normadlized to the d.c. beam

current. It determines the pump harmonic content of the beam and thus

the number of idler waves which may couple noise to the beam. The
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amplitude of the a.c. current due to the pumping signal can be written

from equations 2.7, 2.24, and 2.25 as

. (2.80)

Substituting for Py and 2 in this equation and using the defini-

tions for Ci and Dj , one gets

w'  jlw't-Tz'") w' B, R.w J(R.w -B,2)
1= 0 |Qrs)e © - ==L =B +62 2By Er i
o} r Rg wp c io
w'B, R.w Rw -3(Rw t+p.z")
c i 2 2
o (L 2) (1 ) P : (2.81)
2wp c

Several of the terms in this equation can be neglected. Since Pu6zcnc

and wé/m <1, wé/I‘uO can be neglected. Also,

2 pe 2 P,A,BE << 1 , so these terms can be neglected. Since the

= =5 2.82
IO o] U-O ( )
one can write
3 1 1
i P jlw't-Tz") w! Bl Réw (Rw t-pB,z'")
m = ——— ~r = e - (l+ 1 ) e
I Pq 2TR, ©e
w'pB, R.w JRwt+p.2")
fC8d . 2R 2P . (2.83)
EPREm W,

Since only the first term in this expression has been retained in
the analysis, it may prove of some interest to consider the depth of

modulation of this wave only, which will be called m; . Fronm
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equation 2.83

Pe
m |5 . (2.84)
0
Eliminating v, in equations 2.20 and 2.21, one can write
b Ta ¥
b 2 2 2 (2.85)
o @' =R o
2°p

Using the definitions 2.54, 2.55 and 2.17, and squaring,

this can be

written

o |2 (b' + 2)2 %

<l = 4 . (2.86)

DO w - Tu

c o]
Substituting for wc and I' in terms of f' and b' , one finally
obtains..
P b +2)€
ool L Ris2e (2.87)
1 s Va-f!

This is an expression for the depth of modulation of the

in terms of the other parameters. f, b, m, and m  now

1
set of parameters which will allow interpretation of the

physical point of view in the laboratory frame.

2.5 Solutions of the Characteristic Equation

important wave

represent a

results from a

The fourth degree polynomial has been solved for the following

ranges of parameters

€ b! O f
0.25 -1 to +2 =7 to +7
0.50 -1 to +3 "
0.75 -1 to +2 b
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A typical plot of the roots is shown in Figure 2.1 . The dependence of

ﬁhe wave represented by these solutions is as

x.8 z Jlot- (B-y.B )z]
o 1 a7 S (2.88)

for the signal freguency, and as

x,6.2 Jl(e-e)t- (p-T-y,B )7

et 9 ¢ (2.89)
which can be written

x.pz J[(w-o )b+ (Bl'+ 1 +y.8 )z]

e td e ¢ ta (2.90)

for the idler frequency. £~ is the reduced plasma wave number given by

w

g
B = —= . (2.91)
q Uy

Substituting into equation 2.88 one can write for the growing-wave signal

frequéncy velocity modulation

= e B T .7 : Y ) .
Vout = Vin SP1%PGL + dlot- (B-yiB )z (2.92)
and
v . 2
Gain = (=2%) = 8.68x, (2x¥ )ab (2.93)
Vin 1 a

wWhere Nq is the length in reduced plasma wavelengths.
The nature of the waves outside the interaction region can be
determined by substituting the roots of the equation into equations 2.88

and 2.90. One sees that ylcd O and y,< -2 will represent one pair

3

of waves. Upon substitution into 2.88, it is noted that these are fast

and slow space-charge waves, respectively, at the signal frequency.
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The dependence of the normal modes
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Similarly, yg'zi—f, and yu<x:—f+2, and upon’substitution into equa-
tion 2.90 they are seen to represent fast and slow space-charge waves
respectively at the idler frequency. The gain is seen to arise from
coupling of the fast signal and fast idler wave.

The case for b = 0 was chosen as an illustration because 1t
also contains the special degenerate case treated in the last
section. As can be seen in Figure 201; the roots at £ = 0  are
L tje, £2 as were calculated in the last section for the case of
exactly synchronous phase velocities and pumping at twice the signal
frequency. From this figure, one can see the galn varistion as a
function of the relative phase velocities of the waves. An estimate
of the accuracy of the adjustment of the phase velocity necessary to

achieve gain can be gotten from equation 2;79. One can see that

w
A .
v, o= v, or (2.91)
: e
is the allowed spread in signal space-charge-wave velocity where Af

‘is defined by the limiting f wvalues at the extremities of the

island of growth, as in Figure 2.1l. Assuming vc =V gives

46
5~ HAar (2.92)
~w

which is about 5 to 10% for normal wq/wc and for Af~= 2, as in
Figure 2.1 . Thus it is seen that the adjustment should not be ex-
tremely critical.

In Figure 2.2 the maximum growth factor x is plotted as a

1

function of b and m, or € . Operatingat b = -1 corresponds

to pumping at the signal frequency, b = O corresponds to pumping at
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The maximum value of the growth constant x
a function of the frequency parameter b .
b = O corresponds to the degenerate case.
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twice the signal frequency, and higher b. corresponds to higher relative
pumping frequéncy. The ability to achieve gain at the low pump frequen-
cles is explained by the fact that the Doppler-shifted pump frequency
can still be adjusted to approximately twice the reduced plasma
frequency in the moving reference frame by appropriate adjustment of

the relative phase velocities. At b = O +the growth factor for a
given value of ml is the same as that obtained by Louisell and Quate
(2 ) for the same m for their thin-beam case in which the phase
velocities are exactly synchronous and the pump frequency is twice the
signal frequency. The agreemént in this analogous case provides a

check on the validity of the analysis under the limitations of the

assumptions involved.
2.6 Consideration of the Total Depth of Modulation

As has been mentioned, the necessity for driving the beam to
the saturation region results in the generation of pump harmonics and
as a consequence a complete set of idlers for each harmonic. It is of
prime importance, therefore, to determine what degree of saturation is
needed to achieve reasonable gains per unit length. The natural unit
of length to use for comparison with other devices is the plasma wave-

length.

In equation 2.83 an expression was derived for the depth of
modulation on the beam. For simplicity, let us again study the
degenerate case (f' =Db' =0 , an 1) . Under these conditions

equation 2.83 becomes
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2

BTy ej<2a>pt -2p2t) By ej(wptmaiz')Jr 18 e=j(a>pt+ Bz") o
2 |3 B 3B
b
(2.93)

Using the definition of €' for this special case, i.e.,

BNV,
el = —5 (2.94)
@
i
and the approximations
B, B.
.__:1‘. ~ _d ~ 2 2o
m can be written
jew t-28"2z)  J(w t-Pplz) ~3(w t+8.2)
m= e {% e p -2 P Yo % e p J (2.96)

Shifting to the laboratory frame of reference, this becomes

" jewt - 2pz) j(2wt-5iz)
m =~ e'[ ‘ . (2.97)

2
- e - 2e + = e
3

3

[

(2wt - sz>}

Factoring out the time varying component and the rapidly varying =z

Jowt- (Cw/ug)z
o ,

component ( ), and taking the magnitude of the slowly

varying envelope, this reduces to

1/2
m= €' [%; - %? cos 5pz - % cos 2sz + %; cos 36PZ . (2.98)

This quantity is plotted in Fig. 2.3 for €' = 0.75, 0.37, and 0.18,
which correspond to approximately 40, 20, and 10 db gain per plasma
wavelength respectively. For comparison, the dashed lines represent

the corresponding values for m, , or for the total m of Louisell
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Fig. 2.3 The saturation characteristics of the beam in
the pumping region of a circuit-pumped amplifier.
It is evident that operation only for m < 0.5
can be physically realized unless measures are
taken to excite only a single pump mode.
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and Quate (1) .

Since an electron beam is normally assumed saturated when m = 1,
it is obvious that the 40 db gain curve not only violates the small
signal assumptions but cannot be realized physically. The 20 db curve
is felt to be realizable but in violation of the assumptions. It is
seen that the only apparent advantage to be gained using the circuit-
pumped amplifier is a short region where the beam is unsaturated in
which up to 5 db of signal gain may be achieved. However, there follows
a longer region in which the beam becomes more saturated than the bean
in the space-charge pumped amplifier for the same gain per plasma wave-

length.

2.7 Limitations of the Analysis

The neglect of the effects of higher order idler waves in this
analysis casts some doubt upon the validity of the predicted gain
behavior, but evenbmore serious is the neglect of the noise which is
undoubtedly coupled in from these waves. The assumption of a single
pumping wave, although drastic, 1s necessary if one is to obtain dif-
ferential equations with constant coefficients. The effect of the
other pump waves in saturating the beam will be to render the small-
signal analysis invalid except for the cases of weaker pumping. The
latter difficulty can be circumvented 1n practice by devising a method
to excite only the desired pumping wave (Pierce's 63 mode) . In

Chapters IIT and IV the higher order idler waves and wmultiple pump

waves will be dincluded in more sophisticated treatments.
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CHAPTER ITI

A COUPLED-MODE TREATMENT OF THE MULTIPLE-FREQUENCY ELECTRON
BEAM FOR A SINGIE PUMPING WAVE

3.1 Introduction

In this chapter general equations are obtained which can be used
to predict the performance of a large class of devices employing electron
beans and involving multiple frequencies. Again, the single-pumping-wave
assumption is made, but the effects of all higher order idlersare included.
The equations are written in coupled-mode formalism since, in many cases,
a considerable reduction in the complexity of the problem can be achieved.
As an example, the slow space-charge waves which were included in the
three-frequency analysis, but which did not contribute to the galn mechanism,
could have been separated out and ignored if equations 2.45 and 2.46 had
been in coupled-mode form. The characteristic equation would have been
quadratic and the need for resorting to computer calculation avolded. A
discussion of the properties of a system which can be determined from an
examination of the coupled-mode equations describing that system is in-

cluded before the analysis is undertaken.
3.2 General Discussion of Coupled Modes

The first objective in the formulation of the problem is to find
a new set of equations which describe the elements of the uncoupled sys-
tem in terms of separately excitable normal mode amplitudes. The
variable gquantities in these new eguations are the normalized mode amp-
litudes and are linear combinations of physical variables in the
original equations describing the uncoupled system elements. When coupling

is introduced between the elements, new terms representing coupling to
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other normal modes of the elements appear in the equations.
A typical set of equations representing the coupling of two

traveling-wave modes is written

!
O

a . : |
To B A v Skphy = (3.1)

a . C :
3 ——n = ¢2
Sk Ay (dz + JQQ)A2 0 | (3.2)

where the Ai are the mode amplitudes and the k's the coupling coeffi-

cients. TIf no coupling exists (k12= k21: 0), and if the time:

dependence of the mode amplitudes is ert, it is seen that the golu-

tions of the equations are two traveling waves

j(wt - B 2)
Al = Cle ’ (3‘3)

j ((Dt—BEZ)

A, = Cue (3.k4)

which propagate on the uncoupled system elements. Solutions of the

-

coupled system will cause perturbations of the propagation constants

ﬁi“ If one assumes a solution of the form eJHZ the solutions for p

are given by

(B,+B,) (B~ B, bk koo
L= - 12 2 + 12 2 \ 1+ 1221 ) (305)

Again for zero coupling, 1t is seen that the solutions are the propaga-

tion constants Bl and 82 o LIf the signs of k and k2 are the

12 1

same, and the inequality

LLklEKEl
2

(B, B)

S 1 (3.6)



-50-

holds, the difference between the values for the propagation constants
describing the coupled system increases as the coupling is increased. This
means that the phase velocities of the waves are diverging. This will:
be referred to as "passive"¥ coupling. Excitation of either 'Al or A2
in a passively coupled system will cause beating, i.e., partial or total
periodic transfer of energy between the two modes,

On the other hand, if the signs are opposite and ke > 1, the
u's become complex and an unstable condition resulting in an exponentially
growing wave develops. This will be known as "active" coupling and is the
type of behavior sought in all traveling-wave amplifiers. Note from
equation 3.6 that the effective coupling parameter ke is very sensi-
tive to the difference in the B's of the uncoupled system modes, and
that modes with similar values of P tend to be tightly coupled. I,
however, the difference in the f's is large or the product of the k's
is small such that ke << 1, the effect of the coupling can be ignored.
This argument usually reduces the complexity by reducing the number of
equations that must be solved.

It might be well to note that these concepts are the same as
those used in discussions of the problem of diagonalizing a matrix, and
that the term pairs "mode amplitude" and "eigenvector", "normal propa-
gation constant" and "eigenvalue", and "uncoupled system" and "normal

coordinate system", respectively, may be used interchangeably.

*The terms "active" and "passive" coupling were first used by Cook and
Louisell at the Western Electronics Show and Convention, San Francisco,

1959.
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3:3 Formulation of the Basic Equations

Under the same assumptions that were made in the three-frequency
analysis of the circuit-pumped amplifier, equations 2.1, 2.2, and 2.3

can be combined to give

Q/
<

|

2 52 V2
7 o (F) -Ru N k- (3.7)

M|

Equations 2.4 and 2.7 are combined to give

: 3
oz

oi ., ov
vt iy -t 0 (3.8)

v +

Note that the charge density has been eliminated instead of the current
as in the three-frequency analysis. As before, the nohlinear terms in
the differential equations will give rise to a series of terms whose

time dependence is given by
W =W +n wc n=+c» ~2,-1,0,1,2, c«- (3‘9)

An appropriate form for the solution to the equations is then written

i(z) Jot i(z) -jot Jo t
c c c c . n
i=-I +— e + 5 e + %: 1n(z)e (3.10)
and
v (z) Jot v¥(z) -jot o t
B c c c c n
vEu ot —5—e + =5 e + %; vn(z)e (3.11)

It is understood that the physical variables are represented by the real
parts of the exponentials in the last terms. Allowing coupling to &
slow wave circuit at all frequencies requires the inclusion of the circuit

. - . 28
equations for forward circult waves”



3 KCU aic
(SE + ch)Vc = S, (3.12)
and
Ko oi

o)
('é'; + an)Vn ST T8z ¢ n=-++ -2,-1,0,1,2, --- (3-13)

where Pi and Ki represent the circuit propagation constant and inter-
action impedance respectively at the ith frequency. An appropriate form
for the total circuit voltage V 1n equation 3.7 is

Jo Jo L
V = Vc(z)e ¢4 E: Vn(Z)e n (3.14)
n

Substituting equations 3.10, 3.1l and 3.14% into 3.7 and 3.8, and neglect-
ing products of pump quantities as compared to d.c. gquantities* and also
terms involving products of signal quantities, the following equations

are obtained

ju)nt av. Rimiuoi av j(mn+ u)c)t (mn+ mc) dvc av. j(uon- mc)t (mn— mc) dv: av,
- + - - —_— j —_— —_— —_— * =
€ [ St % a2 I Iy dz] re [J 2 (vn T e dz)} ve [‘j 2 <Vn T e dz)} ( 3 15)
o L]
jmct @ d.vc mi 20 Y i dv -j(nct miv—é dvz 20 % iz av¥
+e j s e ¥ = R = ez - — - -] e e 3 -] =
[J 2 "7 e cwp IO 2 3n <] dz} re [ 2 I0Y Ez Rcmp IO A J&c“ dz 0
Jotr o al v et ary ai, ovi o wiv  evio ovi
¢ [uo T %% T ’jmnvnloj *e [uovc NI e =g md=g - }
2
3o =0 )t di. dix w i v* w i%*v o v i¥ ® v¥1 Jo tiu” ai ® u i wv I (
n e mn ,Anc . cen_ ,nnc c'en <1 o e co'e cco )
e [“o"é T & T T T ]*e [2 @ Tz ] 3.16
-Jmct ug ai* cuoiz cvclo
(et )

*In essence, this is the neglect of pump harmonics which may be of the
order of some of the signal gquantities which are retained.
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After applying the orthogonality relation
2n
D
Jo t -jo t
n s 5,21
[T e - e (3.27)
0 c

the equations become

dv w Rw i dv dv*
1 o c d  .s . pPE 1 s, 1 c, % d
— — e et J—)V + " 8 — =
2u <Vé dz dz)vs—l (dz Ju.)vs,‘J wSIO U dz~+2uo( dz4‘vccizk%+l
(3.18)
di w i i w v w v wIvwv
1 c c e s-1"c c d s-1 ¢ C Cy. . 808
(U. az +J 2—J ) ) S—l+(? dZ+J p) -J 2)*S_l+t] 5 +
o 2u 2u o) 2u 2u u
o) o) o) o
» dix  w i* * v¥ w _v* w v¥
. S L e cc s+l ¢ cd s+l c . cc _
Hgg gt iz 5 s Vet =5 td—p)i,,= O
o} 2u 2 o} 2u 2u
o) o)
(3.19)
for signal and idler frequencies, and
2 .
wcuo dvc wc 5 5 uo 1c dvc
J 2 dz = 2 Vc* Rémp I 2 - jn&% "EZ = 0 <3°20)
o)
2 o .
uo dlc mcuolc mccho
- * 5=+ J—5—= 0 (3.21)

for the pump freguency. The subscript ¢ has been retained for simpli-
city. The complex conjugates of eqguations 3.20 and 3.21 are also obtained
as a consequence of the assumption of the pump solution in real form.

The next step 1s to put these equations, together with equations

3.12 and 3.13, into coupled-mode form. The first step will be to write

equations 3.18 and 3.19 in terms of normal modes of the uncoupled system.
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To accomplish this let v, and ic - 0 , and consider only the terms in-
volving vy and is . It is desired to express A and iS in terms of
new variables ai which are linear combinations of these quantities, and
which when substituted into the equations, allow them to be written in the
form

(d

BN
o Jﬁs)as = 0 (3.22)

These new variables are the normal mode amplitudes, and the resulting
egquations for the uncoupled system are diagonglized.
Multiply equation 3.19 by some arbitrary constant Cl , and add

to equation 3.18 to get

22
d ws Iows Rsmp v
(EE +J-E—)(VS+ Clls)-FJ = GV vty i = 0 (3.23)
0 u 0's
o}
vt
For any wave which propagates as e‘]((D pz) on the beam, the following

relation between the current and velocity modulation can be obtained from

the continuity equation

w?iy
Ty (3.24)
w—Buo
Cg
To put equation 3.23 into the form of 3.22, let BS == +a, and
o}
equate the undesired terms to zero, letting (VS+ Clis) =a_ .
Idws Rimgis
5 clvs M el a(vs+ Clls) = 0 (3.25)
U 0 s

Substituting for iS in terms of VS by equation 3.24, and using

IO = -pou.O , the coefficient of the Cl term drops out, leaving
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2 2
o RS w
a“ = 21’ (3.26)
u
o)
or
RS Qp
= +
a o (3.27)

These propagation constants are simply those of the fast and slow space

charge waves on the electron beam. Choosing the upper sign for o , let
v =a =~ C.i (3.28)

and substitute into equation 3.25. Equating the coefficients of as and

is =0 , it is found that the equation is satisfied for
N stpuo
c, = —=— .
o s

_ stﬁuo
Cl = - T o (3'*30)
o s

Recalling the original operation on equations 3.18 and 3.19, it is seen
that multiplying 3.19 by RSwpuo/Ioug and adding and subtracting from

equation 3.18 will give

a ws+ Rsab 1
{a’z”(—‘a:‘“) =0 (3.31)
d ms— stp ] +
{-d—z-‘l‘J(_—-l—l-————) as = 0 (3“32)
O -
_ st ub
where a, = (vs +‘—TT%—~ is) (3.33)
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Rwu

at o (v -SR03 (3.3W)

s s Iw s
o s

which are recognized as the amplitudes of the slow and fast space-charge
modes respectively.
Performing this operation on equations 3.18 and 3.19 for v, and.

ic # 0 , the equations become

N o W, Bo a1 3 Roy a Y 1 4 - ¥
[E;(vc az +E)+ Iows( dz -4 Ke {ws-l— mc})] Va1" Iows [vc Ez-+‘j —2-5;(0)5—1‘ wc)J 15.1*{E+ JB;] s " dz

° (3.35)

1 d"z Rs D dj'c 2 * z
* lEuO(Vg "’ dz)+ Iou)s ( AR 2uo {mwl+ mc} )]vsifl+ Ior»s [vc E*j EuO (ms+l+ mc] tsel T 0

1 - dvc Rsmp dic ic swp 4 [ d 2 PSR
[zg“ca*ﬁﬁ‘gq(7§ﬂ§§f%4‘%quf1m ECE*JE*%¢'%4i&f[a*ﬁsasn,‘z

ho ar . (3.36)

1 d d"z D dic c stp 4 [
PR e e} = VS T - =& #* 4 = 3 =
" [euO<V§ Er d.z> o, ( az Y 2] {ms+l+ mc}) Vsl T .o, [Vc aztd EuO(d)sﬂf mc) gy = 0

At this point it becomes necessary to discuss the nature of the =z

dependence of the pumping quantities v, and 1C .

3.4 Coupled Mode Formulation for a Single Pump Wave

ot - Bez +@)
Assume that the pump wave propagates as e . To

get a relation between ic and vc , ignore the effects on the pump
wave due to the small ®, guantities, and write

j(wct- Bcz-+¢)
1 e (3.37)

o) e
Hw t-B z+@)
u +ve ¢ ¢ (3.38)

[N
i
]

L]
-4
|

<
i
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Making the small signal assumptions, one obtalns from the continuity equation

3.8
Ve i, Bl
== -5 (3-39)
O o] c
w
Defining u = (1L - —2) and recalling that the phase velocity of the pump
c

wave is given by

Pe
V. o= = (3.40)
Pe Bc
one gets
Y
vpc = 75 = uo(l4—u) (3.41)

The parameter u will remain arbitrary and will be a measure of the devia-

tion of v_ from the average velocity u Under normal conditions u
c

will be << 1 . Using equation 3.39, B_ 'is now written

5= % (1-w) (3.42)

Cc
o}

Using the inverse relations from equations 3.33 and 3.3k

aS+aS
Ve T T (3.43)
- +
. 8 7 84 m
YT oo (3.L4)
5P O
T &
O 8

to substitute for the s+1 and s-1 current and velocity modulation, and
factoring out part of the z dependence in the ai by redefining the mode

amplitudes as +
+ +1 _J<BO+SBC>Z

a~(z) = & (z)e (3.45)

s
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the equations become

w I Ro_ .Y 74" w ¥ i +' o '
S ¢ EEY s s-1 ¢ s-1 5 C s p e s s-1 ¢ s-1 . S c d_.—_ + -
—’j[ * *R Y ] ey -J[ 0 - 0y L\ iz VaKs Ag* dz+‘)(ﬁs Py SBc) As
o <] s-l o o o ° s-1 © ) u .
(3.46)
* Rai¥ Re_ VAl w¥ ReT* R ¥yl
j[msvc+ smpc+ ss+lc] s+1_3[sc+spc_ ss+lc] s+l _ 0
Y Io Rs+l Y l‘mo Y% Ic> Ras1 Yo b’uo
P ~ - =t a R - R -~ A+‘
msvc stpic Rs‘»s-lvc As-l s msvc _ sﬁplc . sms-lvc s-l+ 3 T‘ms \/—QE- Ac+ d—+j(5+- B-»_ s8) A+‘
Kl vl T ) By o Y| % I R Y T = s s dz s~ o o s
o o s=1 o o ° ° s=1 © o o ( 3 )4'7)
-
P b %ot *% P e St
-3 [ u)svc - Rsmpic . Rsmsﬂ.vc} As+l - [wsvc . stplc . st5+lvc} As»rl - 0
. o s+1 uo Muo uo Io Rs+l Y ]““o

where the circuit mode amplitude has been defined by

4 w
T Ve i, ~ - jaf Voo 1 (3.49)
st cr ot
dAi(z) W + s -J(BO-+SBC)Z 0 -J(BO+ sBc)z

_ c - =
—— =~ j(_—ﬁ;_—)Ai(Z)e =-J7 Ai(Z)e

(3.50)
The approximations are made under the assumptions that Roab/w <1,

and u << 1 . The z dependence has been removed from the pump quanti-

ties by redefining them as
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.~ "B,z
v,1i = v,1i e (3.51)

The complex conjugate notation has been retained since 3; and EE
still contain an arbitrary initial phase factor ej¢ . Note that the
z dependence which has been removed from vc and ic , together with
that removed from the circult and space-charge modes, has combined to
drop out of the equatidns, and that the coupling coefficients are now
constants and no longer =z depeﬁdent. This 1s the sole reason for
using this form of the mode amplitude definitions.

Substituting for Vc/uo in terms of iC/IO from equation 3.39

and defining m, as in the three-frequency analysis

}HloH-

(3.52)

(e}

and after redefining the mode amplitudes in the manner suggested by Haus
and Robinson (17) such that their absolute square gives the power flow

associated with the modes, i.e.,

+
_ =3B +sB )z jng u
ave ° % o —— (2 - (3.53)
afew | T
+
-3(p + 8B )z Jng u
A;“e © ¢ e o — ('fVSWSIS) (3.54)
2\[2]v
where
EVO stp
W= 5 (3.55)
@] S
and
I, = <jis (3.56)

the equations become
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R so
ACTNICE SCTICE . [ SHCRN S A 8- oy - (08, - 0 (3.57)

5.

s+l ” ‘SDB(S)A;H. =0 ( 3 . 58)

D (s)A7 .+ 3D (s)At - kA% S50 R 2 3] At + a0, (s)a
355 51" Dgle s—l—’j‘ss+[d§ 3 —§:+—u-s;v] s 7

The phase factor ejn¢ combines with the initial phase of the pump to
drop out of the equations. The mode amplitude change is made by the

simple substitutions
4! ZHW +
-—— 5

u

S
[¢}

The velocity parameter v 1s defined by letting

» (3.59)

The distance parameter ¢ is defined by

RJ%P
4 = .6
t o Z RonZ (3.60)
o)
and kS is given by
Lo L% %y T = (3.61)
s= R oo \|W 3

o p s ERO (QSCS)3/h
where C, and QS are the C and Q of Pierce (28) evaluated at
frequency W

The coupling coefficients are given by

ml Rs ws Rs ws 1
Dl(S)=-—£—-§—-V&— {l+R U.)}

o} o} s-1 s

(3.62)




m R w R w R w -
D (S) _ _J_: [__S_ -y _E { _ S S-l}:} \/_.._S.:.];__?__ ’ (3 63)
2 4 Ro %o Rs—l ®s L sts—l
m R W R w R o
D.(s) = hf’- - v 2 {1+RS Z“Ll}} \/ 2L (3.64)
3 o o s+l s [ Tsetl
oy Rs ® Ry % Rs+lws
Du(s) = {-R—-v — {1-R — H RR (3.65)
o] o} s+1 s s s+l
m R W R [ R _w
s 8 s S=1 =1 S
D (s) = —= {—-—+v — {l - %j' / (3.686)
5 bR e, Ro1 o5 3\ BBy
m R w R w’ R _w_
1 s s s s=-1 g=-1"8
D.(s) = — ( ==ty — {1-+-—-— H | f—= (3.67)
6 b Ro wo Rs=l ws _ Rs@s-l
m R w R w V R ®
+1 )
D (s) =1}{§E+VO—)§- {1-g2 % H Jens (3.68)
o) s+l s TsTstl
m R W R o R o]
1 s
D8(s) = _-)_% { §§+V Z)E {1+R g Z-F_}}: \/——-—-=———~Rs+wl (3.69)
(o} o s+l s J 4 - s s+1

Note that DE’ Dh’ D5 and D7 couple slow space-charge waves to fast

space-charge waves and that they all have minus signs in the curl brackets.
In the limit of large s , wc/cos -0 and RS/RS+1, RS/RS_le 1, so that

the coupling coefficlents become smaller. Also D6 and D8 couple fast

space~-charge waves and become larger for v> 0 , while Dl and D3

couple slow waves and become larger for v < 0O . This behavior is in

gualitative agreement with what might be expected since v > O corresponds
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to a pump wave velocity near that of fast space-charge waves, while
v < 0 corresponds to a velocity nearer that of slow space-charge waves.
It is also easy to prove the following identities using only equa-

tion 3.9.

Dl(s) D3(s-l)

e (3.70)
ms ms—l
D.(s) D_(s-1)
i = _%___._ (3.71)
s s-1
D.(s) D) (s-1)
A g (3.72)
CL)s s-1
D.(s) D,(s-1)
e~ -2 (3.73)
s s-1

These relations are also expected since they are merely statements that
the coupling between waves is reciprocal for waves with the same time
dependence.

Since equations 3.57 and 3.58 also include coupling to a slow-wave
circuit mode A: at each frequency, equation 3.13 must be put into
coupled mode form to complete the set. This can be done by solving 3.53

and 3.54 for the inverse relation

AT - AT —3(BT+eB )z

and substituting this relation and equation 3.48 into 3.13 to get

® sw
d- s 5 c c 3 -_ 3 + =
F + J(l..ag ks+.75; v)} A+ 3k A - Jk A 0 (3.75)

The cold circuit phase velocity has been defined
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€
c

S .
A iy (3.76)
s - :

and the ks is given by equation 3.61. Circult losses have been ignored
in this formulationo

Equations 3;57, 3.58 and 3.75 represent three infiniie sets of
simultaneous linear‘differential equations with constant coefficients.
Certain assumptions will be necessary in order to achieve solutions. In
particular,kit is hoped that it will be possible to show that the solu-
tions will converge fairly rapidly and ihat only a few of the equations
from each set involving frequencies near the signal frequency will be
needed.

As a conseguence of the form of the assumed solutions 3.10, 3.11
and 3.14, many of the equations will involve negative frequencies. As an
example, consider a fast space-charge wave at frequency W_q= O=®, .

The general solution for a fast space-charge mode is. written

C\)S—ls(i)p
L . iogs - =22 ) (3.77)
(- — v +W o

n s 8
2‘/2|WS{

If ®, >w , and s = -1, then ® 1 < 0 . Substitution of a negative fre-

IS) e

quency for Wy in the expression above will result in a wave which has
the properties of a slow space-charge wave, since WS in the mode ampli-
tude definition will change sign and correspond to equation 3.53 and the

phase velocity will become

@ uO
LI NN H (3.78)
b D= R W Rﬂ_l(l) ) )

-1 1+ ——= B

u [€V)
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The \Wé‘ in the radical is written as the magnitude since it is a
normalization constant to put the mode amplitude into dimensions of the
square root of power. Thus it is seen that for negative frequencies,
the waves switch roles and + modes become slow modes, and vice-versa.
To avoid this awkward situation it is noted that the association with
R, of the sign of the frequency involved (ws) will remedy this situa-
tion. The consequence of this association is that whenever one
considers a negative frequency, he must associate with it a negative
reduced plasma frequency. This artifice will be adopted and used

throughout the remainder of this analysis.
3.5 The Degenerate Case

As has been done for the three-frequency analysis, a special
limiting case which was treated by Louisell and Quate (1) will be used
to compare the results predicted by these equations with those obtained
from other treatments. This special case is one in which pumping is
achieved by a strong fast-space-charge wave traveling at the same velocity
as the fast signal-space-charge wave, and in which the pump frequency is
twice that of the signal frequency. This was also shown to be a special
case of the three-frequency analysis and the discussion of Fig. 2.1
showedrthat the gain is achieved through coupling of fast signal and idler
space-charge waves. As a consequence, it may be well to consider the
degenerate case in which only the fast space-charge waves are considered,
and then to include the slow space-charge waves to correlate the theory
with that of Loulsell and Quate.

Special Case No. 1, Coupling of Fast Space-Charge Waves Only. For

coupling of the fast waves, only the s = -1 and & = 0 equations from



-7

3.58 are used.

_ a4 ol -1 c + o (_1)at  _
s = -1 At j(1 Fcvg)| ALt JD8( l)AO = 0 (3.79)
o} o}
; + da .+ _ ,
s =0 JDG(O)A_l g A, = O (3.80)

The condition for the velocity of the pump wave to be equal to that of

the fast signal space-charge wave is obtained from 3.41 and is given by
v = 1 ‘ (3.81)

For degenerate operation R 1= -Ro, and w, = 2m0 . Substituting these

relations into 3.67 and 3.69 to obtain the coupling coefficients, the

equations become

3m
d ,+ 1At
- m—cr = Q82
i Ag-d n Ab Y (3.82)
3m
joEAT 2 AT = o (3.83)
i -1 at "o

Assuming solutions of the form eJuQ, and setting the determinant of the

coefficients equal to zero, the roots of the characteristic equation are

3m,
po=2XJ e (3.8k)

The character of the signal and idler waves are maintained, as can be seen

by substituting the roots into the form of the solution given by

Jot- (8- 88 )z +ut]
e ° 2 € (3.85)
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: * g By o
However, each 1s allowed to grow or decay as e , and this is
exactly the gain behavior predicted by Louisell and Quate. The amount

of excitation for each wave is dependent upon the phase of m:L as deter-
mined by matching boundary conditions.

This check on the solutions obtained from the equations substan-
tiates the theory that the gain arises from coupling of only the fast
waves. Inherent in the analysis of Louisell and Quate, however, is the
inclusion of the slow space-charge waves. Including the slow space-

charge waves from equation 3.57 will allow complete comparison with the

results obtained from the aforementioned theory.

Special Case No. 2, Inclusion of the Slow Space-Charge Waves. Under

the same conditions that were assumed for Case No. 1, the equations 3.57

and 3.58 become

m m ~
d . - . 1 - . L
{—d-:—é- - Je]A..l - —)+—- AO +J "')I‘ A; = 0 (3086)
a4 Bl i 5
at -1 -J T =dJ N o = (3. 7)
m m
1 - . L+ a . -
j T A_l -J-—):- A—l +[a€ +J2] AO = O (3n88)
e T 3y d o+
S A, +3—A t T A = 0 (3.89)

Again assuming a solution of the form eJHC s substituting, and setting

the determinant of the coefficients equal to zero, the characteristic

equation becomes
l oo omb mf
poo= M(l-E;Ou -t < 0 (3.90)
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and its approximate roots are j%g 5 £2 . These results are in exact
agreement with those obtained by ILoulsell and Quate.

Thus far the validity of equations 3.57 and 3.58 seems to be veri-
fied insofar as coupling between space-charge waves is concerned. There
remain in these equations terms representing coupling to a circuit which,
together with equation 3.75, have yet to be verified. Suffice it to say
that upon letting m:L =0 (i.e., no pumping), redefining the mode ampli-
tudes, and using the traveling wave tube parameters (28), it is easy to
show that equations 3.57, 3.58 and 3.75 reduce to the three coupled-mode
equations used by Gould (21) in his analysis of space-charge-wave coup-
lers., It is evident, therefore, that the equations are valid and can be

used for numerical computations to investigate the effects of coupling to

higher order idlers and to various circuit modes.
3+6 Kinetic Power Theorem

An interesting power thgorem can be derived from eguations 3.57,
*
3.56 and 3.75. Multiplying equation 3.75 by A; and multiplying the
conjugate of 3.75 by A: , and then adding the two resulting eguations

gives

* - * - ¥ *
L% A% gk (a7 A% o AT A% - gk (ah A% L AT
S S S S S S <] S S S S

C
at AJ) = O (3.91)

¥
In a similar manner, after multiplying equation 3.57 by AS and the

conjugate of equation 3.57 by A; , one obtains
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* o - = o - + c¥ = o ¥ @ ek e ® - - T + ¥
5 - - - — - A - AT A =
JDlAs-lAs leAs—lAm * JDZAs-lAs ‘jDEAs-lAs + ‘jks [As As AsAs ]+ at AsAs * JD3As+lAS JD3A5+1A5 * ’thAs*Ll 5 th S+1 S ° (3 . 92)

Similarly from equation 3.58

- ALt + o E T IS Gl R POt - e N T ( )
JDﬁAs-lAs JDSAS-LLAS+ ‘jDGAs-lAs - "DSAs-lAs +‘3ks [As Ay AsAs J * d{AsAs * JD7As+lAs - ‘]D7As+lAs "jDSAs+lAs -3D8As+lAs =0 3 . 93

where all of the D's are of argument s (i.e., D; = Di(s) . The next
stepkis to subtract equation 3.92 from equation 3.91 and then add
equation 3.93 to the result. This equation represents an infinite set
of equations for s = °°° -2,-1,0,1,2, «++ . If it is now postulated
that adequate solutions are obtained for a finite set

8§ = =) o¢s =1,0,1,2 «++v+« n , and the equation written out for each of
these integers, it will be found that upon addition of the resulting
set of equations and application of the relations 3.70 through 3.73,

the fellowing egquation results

[ * — x|
LI TN o ey
5 at | "s's s's i

= 0 (3.94)

& |-

n
)
s==4

Ietting £ =n >, it is seen that this is in effect a statement of
the Manley-Rowe relation (7). It will be recognized in the more fami-
liar form for the three-frequency case where £ =1 and n =0 . The
resulting equation becomes

1 d 1 d

woafpo = 'leEP—l (3.95)

where Ps is the sum of the power flows on the various uncoupled modes

at frequency w_ + Integrating 3.95 and assuming Ell(0)==0 one obtains



P (¢) - P (0) P_.(¢) :
= - ——— | (3.96)

®» I
o) -1

which is the more familiar form of the Manley-Rowe (7) relation. One

should recall that w , is negative in this formulation.

1

3.7 Discussion of the Coupled-Mode Equations

Certain general observations can be made from consideration of the
form of equations 3.57, 3.58 and 3.75 which apply to special cases. For
example, for the case of zero pumping fields (ml= 0), the equations des-
cribe the traveling wave tube. Note that the ks terms coupling the Ag
mode to the A; mode are of opposite sign, and, as has been shown, this
leads to exponentially growing waves. Note also that the ks terms
coupling the fast mode A; to the circult modes have the same sign and

thus beating occurs. This effect leads to the Kompfner dip condition

(29,30) which is exploited in the noise removal couplers which were men-
tioned in Chapter I.

Now let us shift our attention to a beam which has a pump wave
present (m__L # 0) and is coupled to a circuit (kca #£0). A schematic rep-

resentation of the coupling expressed by the equations is shown in

Figure 3.1
+ + + + + +
A5 Ag /A~1 e j‘x+l A5
R /iR N /N /TN 2N
SN /LN N 2 N NN
L T SN I A
N2 N BV \!/\\!/\\1/
NV N IV AN 4 NEZRN Y
—— AL — —A g AT RS AT A
Strong parametric coupling)(ml £0) oy o4l

— — —  Weak parametric coupling )
— -— Mutual-field coupling (kg # 0)

Fig. 3.1 Coupling as expressed by the general equations for a fast-wave
parametric amplifier.
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The coupling represented by the solid and uniformly dashed lines is due
to the presence of the pumping wave, and disappears for ml =0 . The
other lines represent mutual field coupling to forward waves on a circuit
and disappear for ks =‘O . The uniformly dashed lines are used to repre-
sent effective coupling which becomes weak when the phase velocity of the
pump wave is fast, i.e., v=+1 . This is determined by substitution of
the appropriate coupling coefficients (D's) and propagation constants of
the uncoupled modes into equation 3.6. The solid lines represent para-
metric coupling which 1s strong under these conditions. For the drifting-
beam (ks = 0) parametric amplifier, the coupling to the slow space-charge
waves and circult waves is negligible, and, as a result, only equation
3.58 need be considered for solution of this problem.

If it is assumed that an adequate solution can be obtained from an

ordered finite set of equations represented by indices s = -n to

+n+ 1, it is readily seen that they can be written in the matrix form

A

s d o
JHA = - -d-.-g- A (j'go)

where the derivative terms have been transposed. The diagonal elements
of the matrix H are the propagation constants of the uncoupled modes
and the off-diagonal elements are the coupling coefficients. If solutions
of the form

A = Aedrt (3.97)

are sought, the equation becomes

HA = - pA (3.98)
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which is in the form assoclated with the general problem class known as
"eigenvalue problems”. In this case, the solutions are the normsl propa-
gation constants of the coupled system and are obtained as the eigenvalues
of the matrix H .

From an examination of the signs of the coupling coefficients in
the matrix H in conjunction with the considerations of Sectlon 3.2, the
table in Fig. 3.2 has been prepared to summarize the behavior to be
expected from parametric and mutual-field coupling of‘various combinations
of wave pairs. ©OSome minor modifications of the behavior predicted in this
table occur when coupling of meny waves is considered simultaneously.
These will be noted in Chapters V and VI in which the equations are
Solved. However, the first order behavior of Fig. 3.2 outlines completely
the more conventional performance of the various combinations. The most
significant features to be noted are: a) active coupling of two positive
a.c. energy carriers is obtained through parametric pumping and b) passive
coupling of one positive and one negative carrier can also be achieved.
The applications of these néchanisms as indicated in the last column are

the subJjects of further detailed discussions in Chapters V and VI.
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CHAPTER IV

COUPLED-MODE TREATMENT OF THE MULTTPLE-FREQUENCY ELECTRON BEAM FOR
THE GENERAL CASE OF CIRCUIT-WAVE PUMPING

4,1 TIntroduction

in this chapter, the single-pumping-wave approximation is avoided
by solving a set of coupled-mode traveling-wave-tube equations for the
amplitudes of the pump space-charge modes, and then formulating the
general equations so that the coupling coefficients contain these mode
amplitudes. Since these mode amplitudes vary with € ‘the coefficients
in the differential equations are variable.

The principal use for this more complex formalism will probably be
to get estimates of the validity of the results obtained from the single-
wave theory, One cannot ignore the presence of additional pump waves |
and it would certainly Dbe presumptive to treat each pump wave separately
and then superpose the results. If it should turn out that the addi-
tional waves cause trouble, methods can be studied to get rid of them.
However, if they do not prove to be troublescme, a considerable amount
of complexity, both theoretical and experimental, can be avoided.
Solutions for these equations are not obtained here because the more
extensive computing facilities which are reguired are not readily avail-

able.
4.2 Formulation of the Equations for the General Case

As stated previously, equations 3.35 and 3.36 contain no assump-
tions about the z dependence of the pumping quantities Ve and. ic .

Since they will now represent combinations of a slow and a fast space-
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charge wave at the pump frequency, and since these waves have different
z dependence in both phase and amplitude, it will be impossible to com-
pletely remove the z dependence from the coefficients in the differential
equations. Nevertheless, it will still be advantageous to factor out
some of the rapidly varying dependence in the definitions of the mode
amplitudes.

As a consequence, the mode amplitudes definitions for the signal

gquantity waves are written as

(V] w
S J S
u

-j2a -
ais_‘(z) = é:ss(z) e O s v, = VEKE_A_S(Z) e ° (k.1)

The definitions to be used in this formulation will be differentiated
from those in the single-wave theory by underlining analogous quanti-

ties here. Using these definitions and the relations

w
® S E
qz Vette T T I g Yol 2\ e (k.2)
o)

(note that some z dependence is still present in the pump quantities
in this case) and substituting into equations 3.35 and 3.36, a set of

equations very similar to 3.46 and 3.47 are obtained
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R w R w :IA-‘

Note thét the z dependence which was removed in the definitions of the
signal modes has combined with that removed from the pump quantities
to drop out of the equations.

The pump quantities must now be written in terms of amplitudes

of the uncoupled modes which are defined as

u
- 1 o ~ ~
A= (- =v-W I) (4.5)
c 2‘43W¢' M —c ¢ —c
+ 1 Yo ~ =g
Al s e (- —= vV + W I) (k.8)
c gvcia; n —¢ ¢c-—c
2V R w
= c_¢cp
where Wc = T 5 (4.7)
o ¢
I.= o1 (4.8)

These amplitudes are normalized as previously mentioned such that
*
AiAi is the power flow associated with the mode. To normalize the

signal space-charge modes in the same manner, the substitution

+

£ (4.9)

is made. After some straightforward algebraic manipulations, the fol-

lowing equations are obtained,
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- + A

A
+ JB (s} =

o (4.10)

jkA+

I Ry
= A ) A A+ 3By ls) = A [ + g ]A - 385 ’51 L
1 Vﬁ; Zs-1 2 J/P_o ~g- VP_O 5- 1 i ‘/—D 55 at \/‘*

+ JBB(S) 0

+

A, A, A 2k % A_
JBH(S) V%—O-_As_l* 333(5) VE%—; és 1t JB ‘/—— Ay ‘-/-—— —s—l Jkséz + [dt; IR J Al JBS(S) \/—O As+l+ JB V—
(4.11)
* JB (S) ‘/—‘ s+J.Jr ‘jB V“ s+l 0

k 1s defined by equation 3.61 and ¢ by equation 3.60. PO is the
s

d.c. beam power and is given by IOVO. The remaining constants are

defined by
Rs wc Rs Rs
B.(s) = Qq [l+ -— +——-}
1 _ s R -1 Wy Rs«l Rc
Rs wc Rs Rs
B,(s) = Q [14- . (.___.____)}
2 s Rs-l ws Rs-l o
Rs 0)c: Rs Rs
B(s) = o [Logioen® (- 0]
3 s s-1 @ Rs-l Rc
R mc RS RS
B(e) = 4 [b- gt egt (e ]
b s Rs—l ws Rs—l Rc
r RS [46] RS RS b
B (s) = s, [+ +-59 (R "ﬁ—)
5 s+l <) s+1 c -
I Rs c Rs Rs ]
B.(s) = S8 |1+ + ( + =
6 5L Rs+l Rs+l Rc J




Rs wc Rs Rs
BY(S) = SS [ -R ——(LT— (R +R—'):1
s+1 8 s+1 c
: Ry c s Sy
Bo(s) = S [ - -—= - = (k.12)
& s Rs+1 @ Rs+l Rc —
where w Rw R o
S cp s-1s
Q. = (4.13)
s hRo“b wc sts—l
w» Rdw Rs+fb '
8, = S . = 5 (4.14)
, 4Romp \v c s s+l

The equation expressing the coupling of the circuit wave to the two signal
space-charge modes is obtained in an analogous manner to that used in
deriving equation 3.75. The inverse relation to be used in equation 3.13
for the current modulation is

+ = ==
T~ A - A u
. 2 =5 -8 0
ls = \/W; (——B————)e - <)+o.1.5)

Using this expression together with the definition of Vs in equation 4.1

allows equation 3.13 to be written
d ms d - +
[———J—;ké}és+gksés—3ksés = 0 (L.186)

Again the éi are regarded as slowly varying functions of z and terms

involving their derivatives with respect to z have been dropped in the

coupling coefficients. The constant xs is defined by equation 3.76.
Equations 4.10, L.11 and 4.16 are three infinite sets of simul-

taneous linear differential equations with variable coefficients in which
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coupling to idler space-charge waves is provided through action of the
pump space~charge waves, which in turn are allowed to vary with distance
7+« The behavior of the pump space-charge waves is determined from a
separate set of equations. The pumping quantities are assumed large with
respect to the signal quantities so that effects on the pump mode ampli-
tudes due to the signal modes can be neglected. Equations 3.12, 3.20 and
3.21 were derived under these assumptions and are the equations to be
used to determine the behavior of the various pump-mode amplitudes. They
must first be put into coupled-mode form and normalized to the common
distance parameter € .

After defining the mode amplitude

®c

—Z
Ju

Vo= K, Alz)e © (4.17)

and noting the form of the definitions of AZ and A; from equations
4.2, 4,5 and 4.6, it is seen that equation 3.12 can be written directly

by analogy to equation 4.16 as

W
d . © c . - +
[EE - d 5; Xc] At kA - kA =0 (.18)

where A’c is defined by

®e Y
Vp = F.° T ER@m (k.19)
c c 1. b
c w
o

and kc 1s of the same form as kS , l.e.,

R
Kk = c 1

4,2
c = IR, (Qccc)s/u (k.20)
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To put equations 3.20 and 3.21 into coupled-mode form, it is necessary
merely to note that they are of exactly the same form as 3.18 and 3.19
if the pump gquantities v, and ic in these latter equations are al~
lowed to become zero. Proceeding in exactly the same manner as that
used to derive equations 3.31 and 3.32, except that the circult voltage
VC is retained, and then using the normalized mode amplitudes of L5,

4,6 and 4.17, equations 3.20 and 3.21 become

4 Rc-l - c

wrin A-JkA =0 (k.21)
L o ]
r R 1

da , ¢!+ . ,C

I R ‘Acu Jeg A = 0 (k.22)

-

Equations 4.18, 4.21 and 4.22 are the traveling-wave tube equations in
coupled-mode form and are the same as those used by Gould (21) when

o
put into the notation of Pierce (28) and normalized to GS C z

c
0
instead of ¢ . When these three equations are used in conjunction

4,10, 4.11 and 4.16 they should be written in dimensionless form

by normalizing the mode amplitudes to /Ei;.
4.3 A Discussion of a Typical Application of the Equations

This formidable set of equations which is necessary to describe
the general case can usually be simplified considerably for most prac-
tical cases. As a typical example, consider a parametric amplifier in
which a beam is being pumped by a circult wave traveling with a velo-
city near that of the fast-space-charge wave at the signal frequency.
Assume that the circuit supporting the pump wave is dispersive so that

it does not interact with the signal space-charge modes. This means
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that Kszz 0 and from equation 3.61 it is seen that the terms coupling
the space charge waves to the circuit waves in 4.10 and 4.11 can be
dropped. For the same reason equation 4.16 need not be considered. Fur-
thermore, in the practical case the parameter QCCc may be quite large.
Under these conditions the coupling to the slow pump-space-charge wave is
very weak (31), and equation 4.21 is not needed. Consideration of the
magnitudes of the coupling coefficients B3, BM’ B7 and 38 , ‘together
with the appropriate uncoupled mode propagation constants, shows that
only weak coupling exists between the slow idler waves and the fast sig-
nal waves, so that equation 4.10 need not be considered. As a conse-
guence of these arguments it is seen that only the coupling terms
involving B, &nd B, remain in equation 4,11 and only 4.22 and the
part of 4.18 expressing coupling between Az and AZ are needed to
form a simple set of equations which very adequately describes the

system. The simplified set of equations becomes

A A R 1 | Af ,
B (s)—r—g_{—‘f—-j—ijgms (s) == A" = o0 (4.23)
2 v?i; s-1 | 4t Ro s 6 Vgi; s+1

[11._ jfé ] fz_ -k f;_ - 0 (k.2k)

at w, e P d cﬁ; - :

- jk fé_ + [Jl - ‘EEW fg_ = 0 (k.25)
°J5 at JROJ B = .25

These equations can be simulated on a differential analyzer 1f a suffi-
cient nurmber of multipliers are available to allow continuous computation

of the varying coefficients in L.23,
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L.4 Some General Observations on the Form and Use of the Equations
Because of the symmetry of the problem one would expect certain recip-
rocal interaction processes to be evident in the form of the equations. This
is indeed the case. Note for example in equation 4,10 that the constant
part of the coupling coefficient representing coupling between 5; and
A" . through AZ is B. . Intuitively, one might expect that the

—g=1 1

coupling of the fast wave é; to ég through A; to have the same

1
coefficient; examination of equation 4.11 shows that the appropriate con-
stant is B1 . Careful examination of each palr of coefficients in these
equations involving the same B reveals similar symmetries.

Note also that in neither of the formulations of the equations does
the coupling to circuit modes involve the pumping action. This implies
that direct coupling of space-charge modes by circuit fields does not
occur, but that coupling is only accomplished through modulation of the
beam. It is a direct consequence of the fact that the term in the equa-
tion of motion which contains the circuit fields is linear.

In summary, equations 4.10, L4.11, 4.16, 4.18, L4.21 and 4.22 form a
set of coupled-mode equations which allows treatment of the general
problem of a multiple-frequency electron beam coupled to a circult whose
fields interact with the beam at any or all of the frequencies o, and
ay - For any nontrivial case there must be present an initial set of
conditions consisting of an initial normalized amplitude on one of the
pump modes (or combination of initial pump mode amplitudes) and an initial
amplitude on any one of the modes of arbitrary frequency oy These

initial conditions are necessary in order that all of the other idler fre-

guency components can be generated through the coupling of the waves.
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Careful examination of the equations will usually result in a consider-
able reduction in the number of equations needed for a soclution of a
particular problem. Of course, a sufficient number of equations from
the infinite sets represented by 4.10, 4.11 and L4.16 must be used in

order to arrive at a solution which converges.
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CHAPTER V
SOLUTIONS OF THE SINGLE-PUMPING-WAVE EQUATIONS FOR THE

PARAMETRIC AMPLIFIER

5.1 Introduction

In this chapter the single-wave equations are applied to the fast-
space-charge-wave parametric amplifier with an eye to understanding the
low gain and poor noise performance which has been observed experimentally
and in hopes of finding new areas of operation which are more promising.
The theory is shown to agree with that of Roe and Boyd (32) for traveling-
wave parametric amplifiers with synchronous veloclties for all waves. The
equations are solved for the case of space-charge-wave pumping and for
several cases of circuit-wave pumping in which the pump phase velocity is
varied. Coupling of a circuit to the signal and idler space-charge waves

is also considered.
5.2 Method of Solution

The equations were solved for the normal mode propagation constants
of the coupled system on a digital computer. In lieu of matching the
boundary conditions with the attendant need for solution of large numbers
of simultaneous algebraic equations, the equations were programmed for an
analog computer. The absolute square of each of the mode amplitudes can
then be plotted directly as a function of the independent distance
variable ¢ for unit excitation at ¢ = O on any one of the modes. ALYl

computations were carried out for the near-degenerate case in which

W, ~ 2 (5.1)
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In both digital and analog computer solutions, successive pairs of idler
waves of increasing frequency Bb+'(r-l)wc and ®-r ®, , beginning at
r = 0]

are added until the solution converges. In general the solutions

m, < 0.5 when mode indices from s = -5 to +4 are

converge for 1

included (i.e., 11 frequencies including the pump frequency). More
idlers are necessary for solutions in the range 0.5 < m < 1, but
since the analysis is valid only for small m

L

range is undesirable, it was felt that fur-

and, as will be shown,
operation in this large my

ther effort in this area was unnecessary.
5.3 Matrix Formulation of the Solutions

The analog computer solutions can be represented in the matrix

form

2 2 -
|Ai(‘e)l = Milej(O)l l’J = 1’2,.3.2}"1 (5‘2)

for the case in which only fast space-charge waves are considered, the

column matrices are written in the form

k2] I 2
|a”_| |a |
+ 2 2 %
|A~(n~l)| !Ag‘ §
+ 2 . 2
124! - 4] (5.3)
+,2 2
lA‘oi lAn+l!
. )
. o
'Anullz A, |

where n pairs of waves are considered adequate for solution and M 1is
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a 2nx 2n square matrix. Examples of the notation to e used for the

+
magnitudes of the matrix elements are MO o ? which relates the power
it = ol bt 5

on the A; mode to that at the input on the same mode, and M; :é. ,
2

which relates the power output on the A; mode due to that at the input

+ + 4
on the A+2 mode . Mo o is therefore the power gain of a fast space-
3

charge-wave amplifier and M

S
0.4D is the conversion gain of the noise
3

power from the A:E mode. The Mij of equation 5.2 1s used to designate

N ‘
the position of a particular element M = (or M° c) . The latter

- r,s
gpecification is used most frequently since it readlily allows interpre-
tation of the physical significance of the element. Since the analog
computer results are all normalized to unit excitation, the data curves

are direct plots of the matrix elements.

Noise Temperature. The noise temperature Te of an amplifier

is simply the internally-generated noise power of the amplifier referred
to the input terminals, i.e., regarded as if it were excess noise present
at the input terminals over and above the thermal nolse coming in with

the signal. It is defined by the equation
N = GkTB (5.6)

where Na 1is the noise power generated in the amplifier, k 1is the
Boltzmann constant, B 1is the bandwidth, and G the power gain. In
contrast to the well-known "noise figure" of an amplifier, which

depends for its value on the specification of some reference temperature,
the noise temperature is an absolute figure of merit and will be used
exclusively in discussions of the theoretical results.

It will be assumed that the thermal noise excitation of each
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noise~contributing mode in the electron beam is given by

a,(0)]% = xr.B (5.7)

where TK is the cathode temperature in OKO This assumption can be
Justified to some extent by noting that the minimum noise temperature
of a traveling-wave tube is given by (33) |

Temin ~ 0.8 TK (5.8)
and recognizing that most of the nolse contributed by the tube is due to
amplification of the slow-wave noise. Since the Mg’g and Ms,;
matrix elements are approximately equal, the noise temperature is
roughly equal to the thermal excitation of the slow wave. Furthermore,
since there is no net a.c. power flow on the beam, the positive flow of
noise power on the fast wave must be of the same magnitude. The exci-
tation of the fast wave in the cathode region and the optimization of
the transformation to be undergone before entering the circuit region
is a separate problem which will not be treated here.

Under the aforementioned assumption, the internal noise of the

amplifier can be written

+
N, = KB 2 Mo,i (5.9)
1#£0,-1

Note that all of the beam noise on the AZ and Afl modes has been

assumed to be completely removed in the input coupler. Combining

equation 5.9 with 5.6 one can write
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T T
K
Te = _(Txk_ 3 M:i: . L Mgi (5.10)
i#0,-1 72 MOJO 1£0,-1 7/

Thus, from a plot of the matrix elements M; ;0 the noise temperature of
J

the amplifier is readily determined.

Accuracy of Solutions. Two independent methods are used to check

the analog computer solutions. The first is a comparison of the growth
constant of the dominant wave which is obtained from the digital computer
with that inferred from the asymptotic rate of growth for large { as
predicted in the analog computer results. The second method is a check
to see whether or not equation 3.94% is satisfied.

Again considering the case of the coupling of 2n fast space-

charge waves, equation 3.94 can be integrated to give

2 + 2 +,2 + 2 + 2
Al | [a2, 17 agl™- [aj(0)] |4
___.(:.;;L + seas £ ;l + o = o 4+ seeo u_%lji_, = 0 (5all)
-1 -1 o] n=1"

After dividing by ‘A;(O)Ig and using equations 5.1, 3.9 and 5.2, this

can be written for the near-degenerate case as

+ o+ ot 7
+ -1,0
_,M..n,o - s _Mfl 5+MO 8:,,14. M”.+.<_2__.1_‘.;_~,)_: 0 (5.12)
<2n=-l) J J ' =

+ X . .
Since each of the Mi o were plotted for each case studied, substitution
J
into this equation provided an excellent check on the computer program.
In all cases in which the slow space-charge waves were included,

their effects on the behavior of the fast waves was negligible. This

behavior is in accordance with the expectations discussed in Chapter IIT
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and can be expressed thus:

- + +

<< M (5.13)

1,4 1,3

for all 1 and J in the equations needed to obtain convergence. For
convenience, therefore, all mode amplitudes discussed in the remainder
of this chapter are fast modes or circuit modes and the + superscripts

on the matrix elements will be understood when none are shown.
5.4 The Synchronous Velocity or Thin-Beam Case

In Fig. 5.1 a plot of the plasma-frequency reduction factor R
for confined beams is shown as a function of the parameter Beb where
Be is the electronic wave number and b the radius of the beam. a
is the radius of the metal tube surrounding the beam. Note that for

small Seb the curve is linear and

R(nw) = n R(w) n=1,2,3 «o¢ (5.1k4)

Recalling that the phase velocity of a fast space-charge wave 1s given by
N R(w) o

v, &Y (L + ) (5.15)

it is seen that the phase velocities of all the waves of freguency nw
are the same if equation 5.14 holds.

Since this condition can hold for several waves on very thin beams
(small Beb) and since a comparison of results obtained from this theory
with those obtained by Roe and Boyd (32) for nondispersive traveling-wave
parametric amplifiers was desired, the equations were solved under the

artificial constraint given by equation 5.1k.
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Fig. 5.1

0.8
Beb
The reduction factor curve for the beam which is

used in the parametric amplifiers which are dis-
cussed in this chapter.
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Under these conditions the constant terms inside the brackets in

equation 3.58 are zero and after dividing through by m, , a new dis-

mlRam 1
tance parameter E = ——Gf~£ can be defined. In Fig. 5.2 the behavior
. o]

of the fast-wave signal power is shown’for various numbers of idler
pairs. The behavior in the region & < 1 is almost exactly that pre-
dicted by Roe énd Boyd and, ‘as they have pointed out, the rate of
convergence by successive approximation is very slow. It is interesting
to note the oscillatory nature of the curves when even numbers of pairs
of idler'wavés°are present. This same behavior is noted later in this
chapter for dispersive‘beams (thick beams) when a pair of circuit waves\
with synchronous velocities is coupled to the signal waves. Roe and
Boyd have obtained an exact solution for the nondispersive amplifier and
have shown that the energy fed into the system by the pump wave is con=-
tinuvously converted to harmonic power, and that the fundamental does

not experience exponential growth.

Plots of both the Mi o and the Mo 5 matrix elements were made for

J 3

the 11 frequency case as a function of € . In the former case, it was

found that My oy My oy My o0 Mo o0 M) 00 Mg o

same order of magnitude, and iIn turn were more than an order of magni-

were all of the

tude greater than M This means that most of

“+1,07 M-z,o’ M+3,0’M-l+,o°

the energy was carried in the odd idler pairs of frequencies Xw, * 5w,

* 9w, while the even pairs (& 3w, + 7w) were hardly excited. In the

M ., case, M and M were an order of magnitude greater than all
O’l O’O O,"l :

others, but the tendency for the odd idler pairs to couple energy to the

signal wave was still much stronger than that for the even pairs.
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THIN BEAM (SYNCHRONOUS WAVES)
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3f| 7f] |lf 5f of
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Fig. 5.2 The power flow on the fast signal wave in a thin
beam, or nondispersive, parametric amplifier.
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These considerations show definitely that the nondispersive amp-
lifier is undesirable and that hope for successful traveling~wave
amplification in which all harmonics are present lies in the use of

dispersive media.
5.5 Space~Charge-Wave Pumping of the Drifting Thick Beam

An examination of the shape of the reduction factor curve (Fig.
5.1) indicates that equation 5.14 does not hold for Beb > 0.5 and
that a considerable amount of dispersion of the phase velocities of
the higher-order idler waves will occur for Be b>0.6 . The
remainder of the cases to be considered in thisochapter are fof
Be b =0.7 and a/b = 3.0 . The dispersion characteristics of such

o
a beam are plotted to scale in Fig. 5.3.

b=o
ae 0.7
% = 3.0
|e. slow fast
waves waves
; A [ 0 1 '
! A LA
° B M
Ky 2%y | 2w,
o, Tay, 3a6 @
velocity

o~
P

Fig. 5.3 The dispersion of the space-charge waves on the thick beam

a
(Beob =0.7, ¢ = 3) to be used in the model.
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To gimulate the case in which the pumping is achieved by the fast
space=-charge wave at the pump freguency, as treated by Loulsell

and Quate (1) one simply allows the parameter v to become

e
w! el
0

(5.16)

y O
T = em—
w

(¢l
o]

The single-wave theory yilelds an exact solution for this special case.

In Fig. 5.4 the real part of the normal propagastion constants of
the coupled system are plotted for 11 frequencies. The solutions have
converged only for m,< 0.5 . Because the roots occur in conjugate
pairs, negative real roots of the same magnitude also occur. The
imaginary parts of the roots are plotted in Fig. 5.5, in which the
modes of the uncoupled system are ldentified in the limit of weak
coupling (ml» 0).

The first growth region occurs at gbout m.= 0.3 . TFrom Fig.

1

5.5, the unstable condition is seen to arise from the coupling of the

. . + + . . s . .
signal and idler to A 5 and A+l respectively. This is evident in
Fig. 5.6 where the X 3w mode amplitudes are shown to grow as rapldly

as the signal modes. Since these noise~carrying modes are so tightly

coupled, the nolse elements M and M are quite large. Because
}

0,=2 0,+1
of the passive coupling of the signal and idler in this case, a strong
oscillatory component is evident in the exponential growth of all the
modes. The summation of matrix elements to be used in equation 5.10

to determine Te is approximately 100 when MOCO? = 100; thus
3

Te ~ TKu This is considerably less than has been measured. However,

it is noted that the length of the interaction region must be = 7kq

to achieve 20 db gain, and indicates that the experimentsl tubes must
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O-7DRIFTING BEAM
SPACE-CHARGE—-WAVE PUMPING
It V=072
0.6 Vpump
0.5 ' ll‘
° .
Vslow  Vfast
04—
0.3
02— /]
/
0.1 //
/// \\ I
0 | ARV ||
0 ol 0.2 0.3 0.4 0.9
Fig. 5.4 The real parts (x.) of the incremental propagation

constants for the space-charge pumped parametric
amplifier. Double roots are represented by dashed
lines. The dependence of each wave is given by
+
jlw t- - 5B - Z
legte(e)- 80,0 y8 2] B,
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I ‘ l l r fast
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Fig. 5.5 The imaginary parts of the incremental propagation
constants for the space-charge-pumped amplifier.
Roots of the characteristic equation which do not
converge to complex roots are not shown. They are
disposed symmetrically about the roots which are
plotted but lie off the graph.
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Fig. 5.6

Behavior of several of the modes in the space-charge-
pumped amplifier due to unit excitation of the Ar fast
signal mode. The oscillatory behavior is due to

passive coupling of the signal and principal idler mode.

Note that a length of approximately 7\ is required for
a gain of 20 db. 4
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have operated at much larger mlu

The solutions do not converge for 11 frequencies at m, ~ 0.6 .
However, data taken for this case indicates that all of the modes which
have been included contribute noise. The trend is toward lower gain
and higher noise as more modes are included. The conclusion which can
be drawn for this case is that the gain per unit length is too low

unless beam saturation 1s approached, at which stage the noise contri-

butions from the tightly coupled higher idlers gets large.
5.6 Circuit-Wave Pumping of the Drifting Thick Beam

In this section the pumping wave is assumed to be set up by a
dispersive circuit which interacts with the beam only at the pump fre-
gquency; thus the retention of the term "drifting" to differentiate
from the case in which the circuit can also couple at signal and
idler frequencies. Three cases are treated in which the pump phase
velocity is first set equal to the signal space-charge-wave velocity

and then slightly higher in two successive jumps.

Case I, Synchronous Pumping; v = 1 As indicated in Fig. 5.7

the phase velocity of the pump wave is equal to that of Ag when

vy =1 . This again is a plot of the real parts of the normal propaga-
tion constants. The curves are shown for each successive gpproxima-
tion to the solution by the addition of idler pairs and are seen to

converge for m, < 0.5 . In this case there is no threshold value

1

for my which must be reached before growing waves occur. The peak
asymptotic gain near m, = 0.3 is about 9.5 db per plasma wavelength.

In Fig. 5.8, the positive imaginary propagation constants are plotted.
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0.7
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Fig. 5.7 The real parts of the incremental propagation constants
for a circuit-pumped amplifier in which the pump wave
has the same velocity as the fast signal wave. Curves
for various numbers of idler pairs are included to illus-
trate the convergence of the solution for m<O0.5 .
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DRIFTING BEAM
CIRCUIT PUMPING
Hf v=1

gmemns

Yslow Viast

Fig. 5.8 The imaginary parts of the incremental propagation con-
stants for the synchronous-pump-wave case.

and idler are coupled for O < m < 0.43 and
0.74 <m g1, giving rise to the real parts shown in
Fig. 5.7 .

The signal
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In this case, corresponding negative or mirror image plots exist for
both Figures 5.7 and 5.8. The dashed lines in Fig. 5.7 represent
double roots, and are seen to arise from the coupling of the % 3w pair
of 'idlers to the signal and principal idler. Again, noisier operation
is anticipated in this region due to tight coupling to these higher
idlers.

Iﬁ Fig. 5.9 the Mi,o elements are plotted for ml= 0.3 . A
gain of 70, or 18.5 db, is achieved in about 251/2 xq, The higher
idler waves are loosely coupled for this small value of ml and are
seen to be considerably lower in amplitude than the signal wave.

M—S,O and M+4,O were negligible and therefore not plotted. The

values obtalned for the MO 5 elements at € = 15.5 are:
s

a) M

0,417 22 5 b) My =25, ¢ M) =0.15, d) M

0,-2 ;e = 020,

s=3

and e) the rest negligible. Substitution into equation 5.10 yields a

noise temperature of
Te =~ 072 TK

This is a very good nolse temperature at any frequency, and would be
unheard of at the higher microwave frequencies. However, the gain per

reduced~-plasma wavelength is still low.

Case IT, Fast-Wave Pumping; v = 1.25 The improvement in the

performance of the amplifier when the velocity of the pump wave is

moved from that of the spump space-charge wave to that of the signal wave
leads naturally to the speculation that more might be gained by following
this trend. Accordingly, the phase velocity of the pump has been
increased as illustrated in Fig. 5.10, the plot of the real part of the

propagation constants for this case. The imaginary parts are in
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Fig. 5.9 The behavior of the various modes due to unit excitation

of the A; mode for the synchronous-pump-wave case.
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Fig. 5.10 The real parts of the incremental propagation constants
for fast-wave pumping (v = 1.25).
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Fig. 5.11. Comparison of the growth constants for this case with the
previous case shows that the peak asymptotic gain has almost doubled (now
18.5 db/xq), but that stronger pumping is necessary to achieve this gain.
In addition, a threshold value for pump power again appears. Unexpectedly
the gain in the small my region is higher than that predicted in the
three-frequency analysis, as shown in Fig. 5.10. The double roots again
arise from coupling to the next idler pair as seen in Fig. 5.11.

The remaining question to be answered is whether or not the re-
guirement for operating at ml'z C.4 causes the coupling to the higher
idlers to affect the noise temperature. In Fig. 5.12 the Mi,o elements
are plotted for m = 0.4, The gain is seen to be 18.5 db at about
1.5 xq and the idler amplitudes are well below the signal amplitude. In
Fig. 5.13 the MO 5 elements that are not negligible are plotted and the

3

indicated noise temperature at ¢ = 9.l is

Complete curves are presented for this case because it 1s felt to be near
the region of optimum operation. More gain can be achieved as indicated
in Fig. 5.10 by increasing ml, but the noise temperature also increases.

Decreasing ml yields a lower nolse temperature but at the expense of

increased length for fixed gain.

Case III, Past-Wave Pumping; v = 1.5 Much higher gain can Dbe

achieved by further increasing the pump-wave phase velocity as shown in
Figure 5.14. However, it is achieved at still higher pump strength. Data
was taken for ml = 0.5 which predicted a noise temperature of 0.07 TK

and a gain of 18.5 db at 1.1 an This minor degradation in performance

indicates that there is a broad region of operation bracketed by Cases IT
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2.0

IHf v =125

Fig. 5.11 The imaginary parts of the incremental propagation con-
stants for fast-wave pumping (v = 1.25). Note that the
gain at small m, still arises from coupling of the noise-
free signal and ldler wave.
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Fig. 5.12

Behavior of the various modes due to unit excitation of

the AT mode for v = 1.25 . Note that the amplitude

0
of the higher order idlers is far below that of the sig-
nal and principal idler modes.
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Fig. 5.13 The contribution to the signal mode amplitude due to
unit excitation of each mode individually. Note that
the contribution due to the noise-carrying higher idler
modes is quite small.
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and IIT in which excellent noise performence may be realized.

5.7 Inclusion of Circult Coupling to Signal and Idler Waves of
a Thick Beam

Many cases were studied in an attempt to determine the effects of
allowing the circuit to couple to the beam at the signal and principal
idler frequencies. In this study the phase velocities of the circuit and
of the pump wave were programmed in various combinations in an effort to
achieve some beneficial effect. The circuit coupling coefficient kS was
also varied. Only in one case were the results of sufficient interest to
present.

In this case the phase velocities of the pump wave and the circult
waves at signal and idler frequencies were set equal to the fast-signal
space—chafge‘wave by setting v = Xo = k“l =1 . ks was set to 1/k,
which corresﬁonds to QC = 1.0 . As was noted for the thin beam case,
the inclusion of even numbers of idler pairs of the same phase velocities
gives oscillatory exponential growth. In this case the addition of the
pair of‘circuit waves at the signal wave velocity results in the same
type of growth behavior as seen in Fig. 5.15, where some of the more in-
teresting matrix elements are plotted for ml = 0.3, PFrom Fig. 5.16,
which shows the real parts of the propagation constaants, it is seen that
two growing waves with the same growth constant are present. Since the
corresponding imaginary parts of the propagation constants (Fig. 5.17) are
different, the phase velocities are different. However, since the matrix
elements in Fig. 5.15 go through zero-value nulls, it is evident that the
amplitudes of the pair of growing waves are excited equally at the initial

R . . . 5 , c
plane. Moreover, it is noted that the oscillatory parts of all the Mo 1
2
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Fig. 5.14% The real parts of the incremental propagation constants

for v = 1.5 . Coupling to higher order idlers is quite
weak so that relatively high gains are possible.
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Circuit-mode behavior due to unit excitation of each
individual mode. Note that the null in the amplitudes
due to excitation of the various beam space-charge
modes occurs exactly at a point of peak gain.
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Fig. 5.16 The real parts of the propagation constants for the

case in which a circuit is coupled to the beam at the

signal and principal idler frequencies.

Note that

double roots occur at small ml
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Fig. 5.17

The imaginary parts of the incremental propagation
constants for the circuit-coupling case. The residual
traveling-wave-tube coupling (k_ # 0) accounts for
splitting of the modes at m =0.

1
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elements with the exception of My 7 are 180° out of phase with the
-
MS:S: element. This means that any noise excited on the circuit by the
J

space charge waves at signal and idler fregquencies will beat back onto
the beam at the point where Mg}gz is maximum. Unfortunately, for the
optimum case as shown, the power gain is very low except for lengths
of Xq S k.5,

From Fig. 5.17 it is seen that the higher growth region around
m, = 0.6 in Fig. 5.16 again involves coupling to higher idlers, and that
the circuit modes do not couple strongly. As a consequence the curves
are seen to closely resemble Fig. 5.7 and 5.8 for the drifting beam in
this area of operation.

In general the inclusion of a circuit coupled to the signal and
idler waves does not markedly change the behavior from that of the
drifting beam amplifier(as long as the imaginary part of the propagation
constants of the previously coupled (ml = 0) system are appreciably
different from the imaginary parts of the normal propagation constants
of the parametrically coupled (m.:L % 0) system in the gain regions.

When this is not the case, the general effect is a lowered gain with
attendant oscillatory effects. The significant difference in the pas-
sive coupling of the signal and idler waves to pairs of circuit waves,
as contrasted to passive coupling to pairs of idler waves, is that the
periodic energy transfer is completely reciprocal in the former case but
not in the latter case. As a consequence, zero-value nulls are not en-
countered in the drifting-beam amplifier for any case of interest.

Thege effects will become more evident in the general discussion of the

matrix elements which is to follow.
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In none of the cases studied were any of the four gain possibili-

ties MCC MCJr Mﬂlﬁc M++aslar as the correspondi

a 2 £ r nain

ie 0,0 ¥M,07 Y0 or My 4 rge e esponding
+ +

drifting-beam (ks - 0) gain My o » nor wes any improvement in the noise
2

behavior evident except in the previously illustrated case. In view of
these results, 1t is felt that little is to be accomplished by including

circuit coupling of this type.
5.8 Properties of the Matrix Elements

The elements of the matrix defined by egquation 5.2 have certain
symmetry properties for the degeneraté case which are useful in deducing
some general physical properties of the amplifiers. These properties in
turn provide the basis for a gualitative design philosophy. The proper-
ties of the matrix are all determined empirically from extensive data
taken on the analog computer. No attempt was made to include circuit
coupling, so that all of the properties hold only for the fast-wave
drifting-beam amplifier.

If an adequate solution is obtained from n pairs of waves, and
the column matrices of equation 5.2 are written as in equation 5.3, the

2nx 2n sguare matrix M then has general position symmetry glven by

M5 = Mont1-1, 2n+1-3 (5.17)

The physical significance of the symmetry expressed by this relationship
can be seen by considering Fig. 5.18. The figure represents an example
in which four pairs of fast waves (9 frequencies) are adequate for

solution. M is therefore an 8x 8 matrix. In this matrix, M 5 4D
ey

occupies the position M while M occuples the position M

37 +1,-3 62 7

and the pailr satisfies the condition 5.15. They represent, respectively,
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+ +
A-l AO
EXAMPLES OF MATRIX PROPERTIES
+ o+
+ 0+ o+ +2,+1 5y2
8) M p=M, 3 v) Q'IL”I = (3)
+1,+2
+ o+ + 4+
Mo,-b M43 Wt ot
-2,-1 2
+ o+ + o+ r— = (3)
M =M M
+2,+1 -3,-2 -1,-2

Fig. 5.18 Typical illustrations of the symmetry properties of
the matrix which describes the fast-wave parametric
amplifier in the near-degenerate case.
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the output on the -3w mode due to initial excitation of the +5w mode,
and. the output on the +3w mode due to initial excitation of the -bHw
mode. This behavior holds for all analogous situations and is antici-
pated because of the symmetry of the physical problem.

Another interesting property is illustrated in the lower right
hand corner of Fig. 5.18. Here the elements expressing the reciprocal

excitation of a pair of modes as shown obey the general relation

M;'; f£+ )
3 - )
+ + ( +7 (5.18)
M £
s,r s

i.e., the ratio of the magnitudes of the elements is determined by the
ratio of the frequencies of the modes involved. A typical set of data
curves of the type from which these relations are inferred is shown in

Fig. 5°19.’ It is seen that M, (positions M31+ end Mg,

2,+1 Mfg,-z

in the 10 x10 matrix) and that M ‘differs from M by a mul-
: : +2,+1 +1,+2

tiplicative constant which tuﬁﬁs out to‘be given by

+

M f .2 2
+2,+1 +2 _ 5

= =) = 3 (5.19)
+1,+2 f+l

The fact that frequency plays an important role in this reciprocal
behavior might well be the consequence of the form of the Maniey-Rowe
relation (equation 3.94). ©No attempt has been made to prove these re-

lationships analytically.
5.9 General Discussion

Except for the space-charge-pumping case of Fig. 5.4, the first

region of exponential growth encountered in every case,as m increases

from zero, arises from the coupling of the signal and principal idler
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Fig. 5.19 Analog computer plots of several related matrix
elements. The symmetry properties of the matrices
are inferred from data of this type.



-119-

wave . The gain increases monotonically in these regions until the

adjacent Mi ; matrix elements, which increase with m], become as
5 X

large as Mg g . The gain bthen decreases until the growth constant

«
7

disappears. In this latter region of operation, the energy is being
transferred rapidly to the higher idler waves. From equation 5.16 it
is seen that the transfer of energy to the idler waves, represented by

+
Mi o is always greater than the coupling of noise to the signal wave,
2

+
represented by M; ;0 However, when the Mi o are of the same
2 J
+ +
order of magnitude as MO 0 the sum of the noise contributions from
X

all the waves becomes large. Thus it becomes obvious that the one way

to insure low noise operation is to operate on the positively sloped

+

+ +
portion of the growth factor curve where M, <M
i,o 0,0

.+
5.12 and thus be assured that the MO 1 elements are small because
2

as in Fig.

of equation 5.18 and as shown in Fig. 5.13. Thus a slight sacrifice
in gain per unit length pays dividends in terms of lowered noise tem~-
perature.

The gain regions resulting from the coupling to higher order
idlers are to be avoided since the nolse excitation on the growing
wave in the coupled system will be large. Operation at higher values

of m m, > 0.5

1 ( 4 ) is not recommended because all of the idlers are

tightly coupled in these regions and trouble from pump harmonics is
also anticipated.

The achievement of higher gain and lower noilse temperatures with
increased pump-wave phase velocity is effected by reduced effective

coupling to the higher idler waves. It is noted that by increasing v

the B's of the uncoupled modes (equations 3-1 and 3.2) are spread

&

apart more‘rapidly than the coupling coefficients increase, and thus
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the ke of equation 3.6 is reduced. As a consequence, operation at

higher values of my is possible before these waves become trouble-

some .
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CHAPTER VI

FURTHER APPLICATTIONS OF THE GENERAL EQUATIONS

6.1 Introduction

In this chapter, the Tlexibility of the general theory is demon-
strated by briefly discussing its application to several interesting
multiple(frggyeﬁSy beam probiems, No attempt' is made to go into great
detall in any of these areas. Again the Single—pump-wave theory of

Chapter IIT is used in each case.
6.2 Cooling the Slow Space-Charge Wave

The passive nature of the coupling of slow and fast space-charge
waves by parametric pumping was noted.in the diséussion of the general
form of the-matrix H in equation 3.96. This is of vital interest
since heretofore the interaction of slow space-charge waves through
mutual-field coupling to positive a.c. energy carriers led to active
coupling and, as a consequence, prevented removal of the slow-wave
noise. As first realized by Sturrock (34) this new possibility of
passive coupling to a fast space-charge wave provides a new mechanism
of noise removal from the slow space-charge wave. and, in principle,
opens a nevw avenue of approach to the attainment of better noise per-
formance in conventional beam-type amplifiers. One strailghtforward
application of the mechanism is illustrated in Fig. 6.1. In the first
section the noise is removed from the fast space-charge wave with the
same type of coupler that is used in the parametric amplifier. In the
"noise exchanger" the passive coupling of the space-charge waves is

used to transfer the noise from the slow to the fast wave. Since the
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Fig. 6.1 Functional diagram of a typical application of the
slow-space-charge-wave cooling principle. The reason
for designing the traveling-wave amplifier for large
QC will be discussed in the text.
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initial noise excitation on. each wave.is periodically transferred to the
other and since the fast wave is now initially noise free, the length £
of this section is adjusted so that all of the noise appears on the fast
wave at the output end. It is well known that the coupling to the fast
wave 1s weak in large QC traveling-wave tubes, so that very low-noise be-
havior can be expectéd in the devichas indicated. Still better perfor-
mance/might be‘achieVed by insertingﬁgnother fast-wave noise coupler
between thé noise exchanger and thel;raveling—wave tube.

‘The performancé of the traveliﬁé;wave tube will be soﬁewhat compli-
cated by tﬁé eiistence of fairly étfong pump nmodulation induéed<x1the beam
in theiiéise exchanger. In the next two sections the performance of both
the noi%ekexchanger and that of the traveling-wave tube with pump modula-
tion initially present on the beam will be investigated by application of
the single-pump-wave theory. O£her prossible areas of application are also

introduced.

6.3 Passive Coupling of Space-Charge Waves

If the velocity of the pumping wave is set equal to the average beam
velocity uo* (i.e., v = 0), it is found that the effective coupling be-
tween mode palrs as expressed by the parameter ke (equation 3.6) for the

thick beam of Chapter V (Beb =0.7, a/b=13) is as follows:

Coupled Pair | ke Coupled Pair ke
AT, to AT, .865m§‘ o AT) to A ~ +m
A7, to AT _.057m§ o Afl to At -.06205
AT, to AT 0575 : A to AT .865m§
Afg to Afl ' ‘865m§ S - As to Ail -.057m]
A7, to A —.O62m§ | Al to AT —-057m§
AT to A* - 400 : C A o AT -865m)

*Again the Op mode of Pierce has this property for QC=1, b=0.3 . See
page 126, Reference 28. "
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The strong coupling between the fast signal and slow idler waves, and
fast idler and slow signal waves respectively, is due to the fact that
these waves are synchronous and the denominator in the expression for
ke becomes zero. Only the equations from s = -2 to +1 for the drifting
beam are included (5 frequencies) and near-degeneracy is assumed.
Recalling that the condition for growing waves is ke < -1, it is
seen that all of the coupling is passive. The fast signal and slow
idler waves are very tightly coupled, as are the fast idler and slow
signal waves., The only other effectual coupling is between the four
pairs for which ké= .865m2, and each pair is seen to consist of a
signal or idler wave coupled to the adjacent higher order idler of the

same type, i.e., fast to fast, etc,

The matrix elements M; K and

_- » Which are the same, are
50 =1

M-l,
plotted in Fig. 6.2 for three frequencies. They are almost perfectly

sinusoidal and absolute nulls are evident. The elements M; 1
5=

are not plotted since their amplitude is always negligible. The

and
M.1,0

. - . + -, . . . s
form of the elements and M is again sinusoidal. The ampli-

N
M
0,-1 -1,0
tudes of the four remaining elements of the form M; f are always negli-
b4

gible.

It is evident from Fig. 6.2 that noise introduced on the signal and
idler slow waves is transferred to the idler and signal fast waves respec-
tively, if the length of the section is terminated at the first null., It
1s fortunate that the noise is simultaneously removed from the slow idler
wave since this wave will enter prominently into the gain process if the
beam is used in a traveling-wave tube as discussed previously. The
disadvantage evidenced by the curves is the need for exchangers whose
lengths are on the order of a few plasma-wavelengths, even though rela-

tively strong pumping is used as indicated by the m1= 0.6 curves.
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Fig. 6.2 The behavior of the dominant matrix elements in the

slow-space-charge-wave cooling process. Note that the
length needed for the noise exchange decreases as ml
increases.
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. , + - +
The effects of the inclusion of the A_2, A_2, A+l , vwaves

are illustrated in Fig. 6.3. Minor perturbations of the sinusoidal

, and A
+

behavior of the matrix elements occur, but the absolute null is still
present. Minor contributions to nolse from the higher order idlers were

determined by evaluating the M: and M; 5 elements at the null. For

2

1,1
= 0.6, they are:

Y L - -

Miy,.07 My, = <035
-+ -
M= Mo, & 019

The remaining elements are negligible. Careful examination of the
coupling presented in the table leads to anticipation that the afore-
mentioned matrix elements will be the largest. Fortunately, their magni-
tude is sufficiently small so that the anticipated noise performance is
still quite attractive. It is suspected that further contributions from

still higher order idlers will be much smaller than these.
6.4 Traveling-Wave Tube with Pump-Space-Charge Waves Present

Two conflicting requirements become evident immediately when one
considers the design of the traveling-wave-tube section of Fig. 6.1.
One must now consider the relative magnitudes of the mutual-field
coupling (ks) and the parametric coupling [Di(s)] for typical ranges
of the parameters. For small QC one finds that ks >> Di’ so that the
mutual-field coupling predominates and the parametric pumping by space-
charge waves i1s negligible. However, for small QC, appreciable coupling
to the noisy fast signal-space-charge wave 1s present, and the noise
temperature will suffer considerably. The gain per plasma wavelenéth is

very high in this case so that in the short length required the noise
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Fig. 6.3 The effect of the addition of higher idlers on the slow
space-charge~wave cooling process. Note that the null is
still absolute and occurs at the same € as in Fig. 6.2
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contributions due to parametric coupling to higher idlers is probably
negligible, even for strong pumping.

Conversely, for large QC the coupling to the fast-signal space-
charge wave 1s weak, but the gain is low and the coupling due to
parametric pumping which is now of the same order as the field coupling
may introduce appreciable amounts of noise in the lengths required.
Thus some compromise is sought in which it is hoped that neither source
of noise presents a serious problem.

In the practical case both pump space-charge waves will be excited.
For a complete solution the equations of Chapter IV would be used.
However, it is found that the fast pump wave couples the fast signal and
idler space-charge waves and that the slow pump wave couples the slow
signal and idler space-charge waves, Jjust as in a parametric amplifier.
In either case the coupling from slow to fast space-charge waves is
negligible. Only when the pump wave velocity is near u, as in the
previous section, does this type of coupling become important. Since
noise is carried at the entrance plane by the fast signal and idler
waves and the traveling wave tube interaction is principally with the
slow waves, it is expected that the major noise contribution at the
signal frequency will be due to strong parametric coupling of the slow
waves to the higher idler slow waves through the slow pump wave, rather
than that caused by the relatively weak coupling of slow and fast waves
through both fast and slow pump waves. Therefore, it would seem best
to approximate the situation for single wave treatment by assuming a
single slow pump wave. The validity of the arguments leading to this

approximation can then be checked by noting the relative magnitude of
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the effects on conventional traveling-wave
pump wave 1s assumed.
A preliminary study of the traveling

The

tube performance when a fast

wave tube with a slow pump-

model consists of a conven-

space-charge wave has been completed.
tional traveling-wave tube except that a slow pump wave of modulation
index ml is present on the beam. The noise excitation of the slow
signal and idler waves (A;, A:l) are assumed zero. The fast signal wave
and the higher order idlers are assumed to be excited to the cathode
temperature TK (OK)g Coupling to the circuit only at the signal and
idler frequency is considered.

The noise coupled in from the idler

AC

1 is assumed to come from a termination at

circuit wave

1

3 TK .
The equations for five frequencies were solved on an analog com-

puter in the near-degenerate case for several values of QC . A

typical plot of the various matrix elements is shown in Fig. 6.4 . The

povwer gain is represented by the matrix element Mg ; and the noise
J
temperature is given by
T T ~
cc
T = K M + K L MC . (6.1)
e cc 0,-1 Mcc -‘i-rf_‘ c 0,1
BMOO 0,0 ~70,-1,-1

The gain and noise performance is summarized in Figures 6.5 and 6.6. The

matrix elements used in determining the noise temperature are evaluated

cc
MO,O
Tn the absence of the pump wave (

for the length at which = 100, i.e., where the power gain is 20

m.= 0), the noise temperature

db. 4

decreases as QC increases; also, the nolse contributions due to paramet=-
ric pumping are more conseguential for large QC. This behavior is in
accordance with expectations. In Fig. 6.6 the suppression of gain due to

the presence of the pump wave is indicated. It also is more serious at
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A typical plot of the contributions to the circuit mode
for a traveling-wave amplifier with a slow pump space-
charge wave excited on the beam. The noise temperature
of the amplifier is predicted from this type of plot.
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I | | |
TWT with Slow Pump Space-Charge Wave
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Fig. 6;5 The noise temperature of a traveling-wave amplifier with

a slow pump space-charge wave excited on the beam. The
noise is assumed to be removed from the slow signal and
idler wave.
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Fig. 6.6 The effect of a slow pump space-charge wave on the gain

of a traveling-wave amplifier. Note the large effect at
large QC where the parametric coupling tends to be of the
same order of magnitude as the mutual-field coupling.
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large QC.

Examination of the curves again reveals the necessity for com-
promise. Operation at large QC and small ml yields the lowest noise
temperature, but again requires considerably more length for both
traveling~-wave tube and noise exchanger. As might be anticipated from
the results of the parametric amplifier study, a cursory examination
of a few cases for which the circuit phase velocity is faster than that
for optimum traveling-wave tube performance shows that some improvement
over the results in Figures 6.5 and 6.6 can be obtained. A more
detailed study which includes ranges of the b parameter is needed to
optimize the results. In all cases the contribution to the noise tem-
perature due to the presence of higher order fast space-charge waves

was negligible.
6.5 Other Applications of the Theory

The next obvious application of the theory is to traveling-wave
mixers. In this case the pump would be the local oscillator signal
and the mixer output signal would be at the idler frequency. Conversion
gain and noise performance can be obtained from stralghtforward solu-
tion of the equations. The most thorough mixer analysis to date (35)
does not take into account the effects of higher order mixing products
or the reciprocal effects of the mixing products on the signal wave.

Another related application might be to the theory of up-
conversion by use of electron beams. In this case the signal frequency
would be much less than the local oscillator frequency, and the output

signal would be at the s = +1 idler frequency.
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These and all related problems involving the generation of mixing
products through the presence of two or more signals of different fre-
guencies on the nonlinear beam should lend themselves readily to

solution by these equations and techniques.
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CHAPTER VII

COMPARISON OF EXPERIMENTAL, RESULTS WITH PREDICTIONS OF THE THEORY

7.1 Introduction

Several experimental space-charge-pumped amplifiers were built in
the initial stages of the study in an attempt to verify some of the
theoretical predictions of Louisell and Quate and, in addition, to
attempt to obtain an experimental confirmation of the expected low-
noise feature of these amplifiers. Typical gain and pump saturation
chardeteristics of these amplifiers are discussed and are felt to be
fairly well understood in light of the theories presented in the pre-
vious chapters. The employment of a helix as the pump coupler leads to
some interesting speculations about the gain and noise performance.
Discussion of the difficulties encountered in using a helix for the
pump coupler leads to some observations on requirements for this im-

portant element.
7.2 Design of the Experiments

Two successful amplifiers were built in the course of the investi-
gation. Since the principles of operation of both amplifiers were the
same and the performance was very similar, only typical results obtained
from what was felt to be the best of the two will be presented. A
schematic representation of the tube is presented in Fig. 7.1 and a
photograph in Fig. 7.2. The input coupler performs a dual function by
injecting the signal onto the fast space-charge wave and simultaneously
removing the noise from it. The second coupler is designed to transfer

the pump energy to the fast pump space-charge wave. The exponential
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SIGNAL INPUT PUMP INPUT SIGNAL OUTPUT
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/Ml i ULULUM]
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Fig. 7.1  Schematic representation of a parametric amplifier of the
drifting-beam space-charge-pumped type. All helix sec-

tions are fast-wave couplers designed to operate at large
QC and Kompfner dip.
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waves are allowed to grow in the drift region and the amplified signal

is removed in the output coupler.

Design of the Couplers. The S-band signal helix couplers were

designed to be essentially fast space-charge-wave couplers at 3 kMc
by operating at large QC and at Kompfner dip (29,30). The pump helix
coupler was designed in the same manner at 6 kMc. Under these condi-
tions,as shown by Gould (21) and Ashkin et al (22), the coupling to the
slow space-charge wave 1s small, and the power on the circuit can be
transferred almost entirely onto the fast space-charge wave.

A matrix relating the output mode amplitudes of the circult
wave, the slow space-charge wave, and the fast space-charge wave to the

corresponding input amplitudes can be defined as follows (17)

a, = L, .a, (7.1)

where the subscripts, i,j = 1,2, or 3, are used to denote the modes in
the order mentioned above. Gould (21) has shown that under conditions
of large QC and Kompfner dip, the magnitudes of the matrix elements are

very nearly given by

0o o 1
L = 0 1 0 (7.2)
1 0 O

Thus the couplers transfer the circuit input power to the fast space-
charge wave, and the fast space-charge wave excitation (noise in the
input coupler and signal modulation in the output coupler) to the cir-

cuit output load. The magnitude of matrix elements can be made exactly
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as shown in 7.2 by using more complex arrangements. However, it was
felt that such complexity would not be necessary in the preliminary
experiments to demonstrate first-order effects.

The S-band signal coupler was placed before the C-band pump
coupler so that no parametric amplification would take place before
the noise had been removed from the fast signal-space-charge wave.
The pump helix vas designed to be dispersiﬁe in order that the circuit-
wave velocity at the signal fréquency might be much faster than the
velocities Qf the interacting space-charge waves and the pump circuit
wéve. As will be explained, this design obJjective was defeated by the
effects of dielectric loadingj this difficulty was the prime cause of
confusion in interpreting‘some of the measured results. The drift-tube
length was about one and one-half plasmaiwaveléngths. The pertinent

parameters are listed below.

Q¢ ¢ Yb bv/a L

S-band Couplers 1.2k 0.021 0.94 0.33 2.8"
C-band Couplers 1.8  0.017 1.88  0.43 1.63"
Drift Region : - - - 0.46 L, s"

7.3 Gain Performance

The gain characteristics of the amplifier are shown in Fig. 7.3.
The maximum electronic gain (defined as the difference in output level
with the pump on and off, respectively) was about 34 db. The insertion
gain of .the amplifier was much less, however. The curves were taken at
a fixed setting of the voltage on the pump helix.

Examination of Fig. 7.4 reveals the reason for the high insertion
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Fig. 7.3

FREQUENCY KMC

Gain characteristics of the experimental amplifier.
The electronic gain is the difference in output levels
with the pump on and off, respectively. The estimated
power necessary to saturate. the beam was 50 mw.
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Fig. 7.4 The insertion loss of the experimental amplifier with
the pump off. The sharp dip is due to coupling of the
fast signal space-charge wave to the circuit wave in
the pump helix coupler. The dashed line is an estimate
of the performance which might be obtained with an ideal
pump coupler.
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loss with the pump off. Because of dielectric loading, the dispersion
characteristics of the pump helix were so altered that strong coupling

to the fast signal-space«charge wave took place. Small C measurements
showed a difference of only a few volts in synchronous phase velocities
for the signal and pump frequencies. Also, calculations show that at

the signal frequency the length of this helix is almost that necessary
for Kompfner dip. Unfortunately, the dip shown in Fig. 7.4 occurs at
almost the same voltage as was necessary for optimum gain. Further study
reveals that because of dielectric loading effects it is impossible to
make a large QC helix at C-band which will not be somewhere hear syn-
chronism at S-band; hence, special circuits are thought to be necessary
for the pump coupler. This problem will be discussed later in more detail.

The curves presented here were taken at an optimum gain setting.
Since the design current was 1 ma. and the current setting for optimum
gain was 1.65 ma., the reduced plasma wavelength at the signal frequency
is shortened somewhat. Under these conditions the length of the pump
coupler is about three~quarters of a plasma wavelength, and that of the
drift region very nearly two plasma wavelengths.

Several striking arguments can be made which seem to indicate that
some circuit-wave pumping occurred in the pump coupler., First, the elec-
tronic gain achieved in this amplifier is considerably higher than that
achieved in amplifiers (3) with pump couplers of the type described in
Appendix I. Second, the optimum gain occurred at a pump helix potential
of 325 volts. Experimental measurements indicated that the helix was
synchronous with the fast pump-space-charge wave at 335 volts. Consi-

dering Fig. 7.5, one sees that as uo is lowered, the beam waves and
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Fig. 7.5 The behavior of the space-charge wave velocities relative
to a fixed circuit-wave velocity as the beam voltage is
varied. '
uo move left on the diagram past the fixed circuit-wave veloeity. At
325 volts the circuit wave velocity expressed in terms of voltage is 10
volts faster than the pump-space-charge wave. The fast signal-wave
phase velocity 1s not known, but from theoretical considerations it
VShould lie on the order’df iO volfé hiéher than the fast pump wave, as
estimated in the diagram. A thifd argument is proposed on the basis of
Fig.'7,6 which shows how gain varies with pump power. Note the qualita-
tive agreement between this curve and the growth constant plotted in
Fig. 5.10, in particular the threshold and the steep leading edge. The
failure of the experimental curve to drop back down as does the theoreti-
cal curve may be explained by the fact that the analysis is good only for
small ml. There are definitely no minor humps as predicted by Fig. 5.4

for the space-charge-wave pumped amplifier.

Unfortunately, more conclusive measurements are unavailable since
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the tube was accidentally broken, and at that time it was felt that it
should not be rebuilt because of the difficulties encountered with the
pump helix. It is felt, however, that a sufficient amount of reliable

data was taken to substantiate these arguments.
7.4 Noise Performance

The measured noise figure was about 23 db. However, this high
value can be partially explained by noting that the signalito-noise ratio
is greatly reduced in the pump coupler when it removes signal modulation
from the beam. In addition, a minimum intercepted current to the helices
of 65 pa certainly contributed appreciable amounts of noise. An
estimate of the deleterious effect of signal removal in the pump coupler
can be obﬁained if one now neglects the possibility of circuit pumping
in this regién, and keeps in mind the reciprocal properties of the matrix
elements describing the helix.

Let the signal input power be Sin and assume that the signal input

coupler is ideal so that I.. = in equation 7.1. Let the cor-

i o= 1
13 L3L -
responding elements for the pump coupler be o . Then the signal power

at the beginning of the drift region becomes

Syt = (L- O‘)Sin (7.3)

and the noise power is given by

N = 2(1- Q)KTB + 20KTB = 2KTB (7.4)

The noise contribution from thermal noise at the idler frequency is in-
cluded in this expression. From Fig. 7.4 (using the dashed curve as an
estimate of optimum performance), one can estimate that the signal reduc-

tion is about 15 db in the pump region. This corresponds to an « of
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0,968 . Using the standard definition of noise figure

Fo= Nout/sout
N, /s, (7.5)
in’/ Tin
and substituting, it is found that the noise figure for the section of
the tube comprising the input signal and pump couplers becomes
2
l-a

F = = 63.3 , or 18 db. (7.8)

If this section and the drifting-beam section are regarded as two ampli-

fiers in cascade and if the formula for the noise figure of cascaded

amplifiers
FE- 1
F.,= F_ + (7.7)
12 1 Gl
(where F12 is the over-all noise figure and Fl and F2 are the noise

figures of the first and second stages, respectively) is applied, it is
found that an F2 of 5 db is necessary to account for the over-all 23
db noise figure. It must be emphasized that no definite conclusions can
be drawn from these calculations since they are based on only crude

estimates and are carried out only to illustrate the influence of the

pump coupler on the noise performance.
7.5 Conclusions and Discussion of Ideas for Future Modifications

In view of the fact that the prime objective in the design of a
parametric amplifier is the achievement of a low noise figure, much
more experimental work is necessary to demonstrate whether or not the
longitudinal beam type of amplifier is able to compete with existing low
noise amplifiers. It is felt that, although the results obtained in

these experiments do not shed much light on the noise problem, they do
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seem to substantiate to first order some of the theory that has been
proposed. They have also pointed up some important pitfalls to be
avolded in future work. |

In the experiments where the signal frequency was not exactly
half of the pump frequency, commonly referred to as nondegenerate opera-
tion, the idler frequency component preséﬁt at the output was usually
about one db below the‘signal frequency ievel. A1l the measurements
were made with a narrow-band receiver‘for a detector so that the quan-
tities plotted in the'figures represent only the signal;frequency com-
ponents. |

iﬁ,future expérimental amplifiers severai modifications are indi-
cated. The theoretical conclusions reachedﬁﬁn Chapter V éhow that the
drift region,shouldrbe‘eliminated and that”éircuit pumping should be
used eicluéi?gij;gﬁThe pﬁmp circuit“éﬁoﬁldrbe very dispersive and have
a large”’yé‘; The:dispgysipn characferistics of one;promising possi-
bility are shown in Fig. 7.7% Thése1charé9terisficsiare for a helix
surrounded by a dielectiiC~with conducting ¥ings outside the dielectric
and were calcuiéged by Birdsall (36). The -experimental measurements
were made Qn»sdme scéié modeis of a circuit propqééé fof an amplifier.
The sheet éédel was used‘fof some impedance‘calculatibns at large va .

Another modifiéafion might 5e the: inclusion of & large‘QC lossy
helix between the gun and Signal<éouplery‘ An examination of the proper-
ties of such helices, which aré{discussed by Brewef and Birdsall (37),
reveals that continuous extractioﬁ of noise from the fast-space-charge
wave may be possible without appreciably affecting the slow wave. Such
a circuit could relieve some of the stringént requirements on the input

coupler and allow more broadband operation at low noise figure.
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CHAPTER VIIT

e
0

SUMMARY, CONCLUSIONS, AND SUGGESTIONS
FOR FUTURE INVESTIGATIONS

.,

8.1 Summary

Three separate analyses have been presented which predict the
behavior of an electron beam under the stimulus of a weak signal source
and a strong pumping source. All are linearized, one-dimensional
analyses in which the pump quantities are much smaller than d.c. quan-
tities, but much larger than the signal gquantities.

The analysis presented in Chapter IT extends the work of Wade and
Adler (24) in that it allows for arbitrary velocity and frequency of the
pump wave relative to the signal wave. It is approximate in that it
includes only one constant—amplitudé pump wave and neglects the effects
of the higher order mixing products.

In Chapter III the general equations are put into coupled-mode
form in order to allow simplified solutions which account for the
effects of the higher order mixing products. Provision is made for
coupling to a circuit at each frequency. Again, the single-pump-wave
approximationris used. A kinetic power theorem is derived which turns
out to be a generalization of the Manley-Rowe relation. Consideration
of the form of the equations from the generalized coupled-mode point of
view leads to some interesting observations on the behavior of positive
and negative a.c. energy carriers when parametrically coupled.

In Chapter IV a more general set of coupled-mode equations are
derived which do not rely on the single-pump-wave approximation, and

are valid for the general case of arbitrary circuit pumping. The
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coefficients in the differential equations are functions of the pump
mode amplitudes of the uncoupled system, and thus become variable coef-
ficlents. No solutions were sought for this set of equations.

The equations of Chapter III were applied to the space-charge-
wave parametric amplifier in Chapter V. The reasons for the failure of
the space-charge~pumped experimental amplifiers were established. Suc-
cessful operation of the circuit-pumpediamplifier is predicted if the
phase velocity of the pump wave is adjusted to be slightly higher than
that of the fast signal wave.

In Chapter VI further application of the theory shows that it
should be possible to coocl the slow space-charge wave of an electron
beam by parametric pumping. This concept leads to new approaches in
the achievement of low noise in conventional amplifiers. Encouraging
results are obtained from a study of the practical application of such
a beam in a traveling-wave tube.

The experimental results presented in Chapter VII tend to sub-
stantiate the circult-pumping concept but shed little light on the

noise performance because of shortcomings in the experimental tubes.
8.2 Conclusions

Two possibilities for microwave amplifiers with improved noise
performance have been discussed. Both the space-charge-wave parametric
amplifier and the application of the cooled slow space-charge wave to
conventional amplifiers have been shown to be theoretically capable of
noise temperatures under lOOOK. The failure of the experimental para-
metrié amplifiers cannot be attributed to unavoidable coupling to

higher idlers since it has been shown that the attendant degradation
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in performaence is not as serious as had been anticipated. It is felt
that successful amplifiers can be bullt if the concepts which have been
developed here are kept in mind and some attention is directed toward
optimum transformation of the space-charge waves between the cathode and
the interaction region.

Of more fundamental interest is the demonstration that it is
possible to obtain active coupling of two positive a.c. energy carriers
and passive coupling of one positive and one negative a.c. energy
carrier. In each case this is achieved through the application of the

parametric pumping principle.
8.3 Suggestions for Future Investigations

In order to use the coupled-mode theory effectively for noise
problems, more knowledge of the noise carried into the interaction
region by the space-charge waves is needed. Excitation of the modes in
the cathode region and thelr subsequent transformation must be studied

ustification

in order to obtain optimum performance. Very little

3
exlists for the assumption that the thermal excitation is determined by
the cathode temperature.

Further application of the single-wave theory in the study of
beam cooling, traveling-wave tubes, mixers, and upconverters is neces-
sary for more complete understanding of these devices. The preliminary
studies presented in Chapter VI are for five frequencies only, and more
should be included. A more. thorough study should also include closer
inspection of the various combinations of the parameters. All of the

solutions of the coupled-mode equations are restricted to the near-

degenerate case; they should be extended to obtain operational bandwidth
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information.

The consequences of the single-pump-wave gpproximation should be
determined for all of these devices by application of the general equa-
tions of Chapter IV. It is possible that the results may be altered
considerably. If this should be the case, methods and conditions for
exciting single pump waves should be sought.

The need for further experimental work is obvious. Fundamental
experiments on some of the "building blocks" of the various devices, as
well as applicaticﬁ of the various principles in the devices themselves,

are needed.
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APPENDIX T

The velocity and current modulation on an electron beam can

be described by

Bz =3Bz

V(z) + Ve (A1.1)

i
<
0}

I(z)

V_ e - Ve (ALl.2)

where V 1is the kinetic voltage (-;?—'v), I 1is the total a-c beam
o}

current, and Wb the equivalent beam impedance. The subscript f is.

used for fast-wave quantities andk s for slow-wave gquantities. The

propagation constants are

(A1.3)

where wq is the reduced plasma frequency.
For only the fast wave to be excited, the following condition

must be fulfilled.

O W | (AL.L)

vThis can be seen from equations Al.l and Al.2. The model to be consi-
dered is shown in Figure Al.l. The gaps are considered to be ideal,
i.e., the transit fime through the gap is assumed to be negligible.

By applying the boundary conditions at z = O that I(0) = O,
v(0) = Vl, Equations Al.l and Al.2 for the region between the gaps
become-

-3B_2

V(z) = V_cos 6qz e (A1.5)

1
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Fig. Al.1  The model for two cavity gaps with arbitrary driving

phase which is used in determining the conditions for
optimum excitation of the fast space-charge wave.
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Vl -J'Bez
(z) = j 7 sin B z e (AL.6)
o]
where
@ @
B, = =, B =— (A1.7)
o 9]
At =z = £ , these become
-3iB_4 ;
dJ
v(g) = v, cos 5qz e S v.e 2 (A1.8)
Vl ‘ —jBeﬂ
I(8) = 3 7 sin qu e (A1.9)
0

When condition Al.L4 is applied to these equations, the condition for fast

space-charge wave excitation becomes

Op *+ 8y = g+ (2n+ 1)n (A1.10)

where

0 (A1.11)

1l
™
=
e
©
n
™
=

q q e e

= - W .
(=) (ALl.12)
and the resulting requirement on the phase angles becomes
6 -6 = ¢+ (en+l)m (A1.13)

Expressions Al.10 and Al.13 are the conditions to be fulfilled for cancel~
lation of the undesired wave in the output gap. Another condition should
be put on the couplers to ensure optimum coupling to the desired wave.

Substituting relation Al.10 into ALl.8 and solving for the condition for
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maximum V(4) one gets

e, - Qq = ¢ + 2nx (Al.1%)

Similarly by using equation Al.13 in Al.8 the condition for maximum
excitation of the slow space-charge wave becomes

o, * eq = ¢ +2nmn (A1.15)

The two important conditions for the fast-wave coupler are therefore
given by Al1.10 and Al.l1k. As implied by the analysis, the shunt con-
ductance of the cavities must also be equal to the beam admittance or,
equivalently,

, o~ _ 1

Géhunt * Cyopa = A (A1.16)
The common double gap or "drift-tube" cavity which can also be used in

this menner is represented by the special case where ¢ =0 .



lOa
11.
12.

13.
1k,

15.
16.
17.

18.

-157-
REFERENCES

W. H. Louisell and C. F. Quate, "Parametric Amplification of Space-
Charge Waves", Proc. IRE 46, 707-716 (April 1958).

W. H. Louisell, "A Three-Frequency Electron Beam Parsmetric Amplifier
and Frequency Converter", Jour. Electronics and Control,VI, 1-25,

(Jan. 1959).
A. Ashkin, private communication.

D. C. Forster and M. R. Currie, Research Report 111, Hughes Aircraft
Company (June 1959).

M. E. Hines, "Amplification in Nonlinear Reactance Modulators",
presented at 15th Annual Conf. on Electron Tube Research, Berkeley,
Calif., June 1957.

My .R. Currie and D. C. Forster, "New Mechanism of Noise Reduction in
Electron Beams", J. Appl. Phys., 30, 94-103 (Jan. 1959).

J. M. Manley and H. F. Rowe, "Some General Properties of Nonlinear
Elements--Part I", Proc. IRE, L4k, 90L-913 (July 1956).

E. D. Reed, "The Variable Capacitance Parametric Amplifier", IRE
Trans. Vol. ED-6, 216-224 (April 1959).

H. Suhl,l"A Proposal for a Ferromagnetic Amplifier in the Microwave
Range", Phys. Rev. 106, 384-385 (April 1957).

M. T. Weiss, "Microwave Ferromagnetic Amplifier and Oscillator",
Phys. Rev. Vol.107, p.317 (July 1957).

T. J. Bridges, "An Electron Beam Parametric Amplifier", Proc. IRE,
L6, Lok (Feb. 1958).

P. K. Tien and H. Suhl, "A Traveling-Wave Ferromagnetic Amplifier",
Proc. IRE, L6, 700-706 (April 1958).

M. R. Currie and R. W. Gould, to be published.

L. J. Chu, "A Kinetic Power Theorem", 1951 IRE Conf. on Electron
Devices, Durham, N.C., June 1951.

W. C. Hahn, "Small Sighal Theory of Velocity-Modulated Electron
Beams", Gen. Elec. Review, 42, 258-270 (June 1939).

S. Ramo, "The Electronic Wave Theory of Velocity Modulation Tubes",
Proc. IRE, 27, 757-763 (Dec. 1939).

H. A. Haus and F.N.H. Robinson, "The Minimum Noise Figure of Micro-
wave Beam Amplifiers", Proc. IRE, 43, 981-991 (August 1955).

Siegman, Watkins and Hsieh, "Density-Function Calculations of Noise
Propagation on an Accelerated Multivelocity Electron Stream", JAP
28, 1138-1148 (October 1957).



lgl
20.
21,

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

3k,

35
36.

37.

-158-

R. Adler, "Parametric Amplification of the Fast Electron Wave",
Proc. IRE 46, 1300-1301 (June 1958).

R. Adler, G. Hrbek, G. Wade, "Some Possible Causes of Noise in
Adler Tubes", Proc. IRE 48, 256 (Feb. 1960).

R. W. Gould, "Traveling-Wave Couplers for Longitudinal Beam-Type
Amplifiers", Proc. IRE, 47, 419-426 (March 1959).

A. Ashkin, W. H. Louisell, and C. F. Quate, "Fast Wave Couplers
for Longitudinal Beam Parametric Amplifiers", Jour. Electronics
and Control, VII, 1-33 (July 1959).

R. Adler, G. Hrbek, and G. Wade, "The Quadrupole Amplifier, a
Low-Noise Parametric Device", Proc. IRE, 47, 1713-1724 (Oct. 1959)

G. Wade and R. Adler, "A New Method for Pumping a Fast Space-Charge
Wave", Proc. IRE 47, 79-80 (Jan. 1959).

C. C. Johnson, "Theory of Fast-Wave Parametric Amplification”,
Tech. Memo. No. 540, Hughes Aircraft Company (Feb. 1959).

F. Paschke, "On the Nonlinear Behavior of Electron-Beam Devices",
RCA Review XVIII, 221-242 (June 1957).

G. M. Branch and T. G. Mihran, "Plasma Frequency Reduction Fac-
tors in Electron Beams", IRE Trans, Vol. ED-2, 3-12, April 1955.

J. R. Plerce, Traveling Wave Tubes, D. Van Nostrand Co., Inc.,
New York, 1950.

R. Kompfner, "On the Operation of the Traveling-Wave Tube at Low
Level", Brit. J. IRE 10, 283-289 (Aug.-Sept. 1955).

H. R. Johnson, "Kompfner Dip Conditions", Proc. IRE 43, 874 (July
1955) .

R. W. Gould, "A Coupled Mode Description of the Backward-Wave
Oscillator and the Kompfner Dip Condition", IRE Trans. Vol. ED-2,
37-42, Oct. 1955.

G. M. Roe and M. R. Boyd, "Parametric Energy Conversion in Dis-
tributed Systems", Proc. IRE 47, 1213-1219 (July 1959).

S. Bloom and R. W. Peter, "A Minimum Noise Figure for the Travel-
ing-Wave Tube", RCA Review, Vol.l5, 252-267 (June 1954).

P. A. Sturrock, private communication.
R. W. DeGrasse, PhD Thesis, Stanford University, 1958.

C. K. Birdsall, Memo.for File ETL-12, July 1, 1953, Hughes Aircraft
Co.

G. R. Brewer and C. K. Birdsall, "Traveling-Wave Tube Propagation
Constants", IRE Trans. Vol.ED-4, 140-14L (April 1957).



