CAVITY RINGDOWN SPECTROSCOPY, KINETICS, AND QUANTUM CHEMISTRY OF ATMOSPHERICALLY RELEVANT REACTIONS

Thesis by

Matthew Kiran Sprague

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2012

(Defended May 18, 2012)

© 2012

Matthew Kiran Sprague

All Rights Reserved

Acknowledgements

In front of you is a huge book, a thesis full of research results. (Well, if you are anything like me, it's an electronic file instead of a book...) This book is a culmination of my graduate research: seven years of work packed into one tome. But really, there is far more than seven years of work that has gone into this thesis. And most of it has not come at my hands: the wonderful people in my life for the last 28 years have shaped everything that you will read about here. If you are reading this, you know my style: very precise, detailed, and perhaps long-winded. So bear with me as I spend a few pages thanking everyone that has helped make this thesis possible.

The first two people that I would like to thank are my advisors: Professor Mitchio Okumura and Dr. Stanley Sander. Mitchio and Stan have been incredible advisors: they have taught me how to do precise, high-impact science. They have taught me how to continually question my own work, always striving for the best possible results. They have kept me guided toward our research goals, yet at the same time let me wander in interesting research directions (most shown by their "tolerance" of all of my theoretical and computational interests!). But perhaps most importantly, both Mitchio and Stan are wonderful people, and have made sure that I remained a "happy graduate student" during my career here. This thesis would not have been possible without Mitchio's and Stan's expert guidance, and I thank them for shaping my future as a scientist.

One of Mitchio's skills has been to maintain a research group full of people that are hard working, intelligent, and fun to be around. It has been a joy to come into work each day and see the members of the Okumura group. Thank you to the graduate students, postdocs, and staff scientists that I have had the good fortune to work with: Andrew Mollner, David Robichaud. Aaron Noell, Laurence Yeung, Kana Takematsu, Kathleen Spencer, David Long, Nathan Eddingsaas, Aileen Hui, Sigrid Barklund, Thinh Bui, Nathan Honsowetz, Heather Widgren, Kathryn Pérez, Leah Dodson, Milinda Rupasinghe, Ralph Page, Marissa Weichman, Laura Mertens, and Linhan Shen.

I would like to single out a few of my co-workers. Andrew Mollner was my mentor for the first two years at Caltech and taught me everything that I needed to know to run a cavity ringdown lab. Andrew is one of the most patient, nicest, and skilled teachers that I have met, and I know that his future students will be in good hands. Laurence Yeung was my officemate in 101D Noyes for over 4 years. He kept me honest on the love of experiments, food, and life, and a large portion of what I have learned in graduate school came from our office chats. Heather Widgren and Marissa Weichman were my two awesome undergraduate students, and I hope that they enjoyed working in the lab as much as I enjoyed hosting them. Ralph Page was a staff scientist in our lab who helped improve my experiments. That is a short sentence, but about 1/3 of this thesis would not exist without Ralph's help. Ralph's strength was helping me cut through all of the "noise" to solve problems quickly, and I can't thank him enough for that. Finally, Laura Mertens is taking over for me as the graduate student in the IR-CRDS / quantum chemistry lab. She has been an enthusiastic learner and hard worker, and I know she will keep the lab in great care. Thanks for putting up with me!

In science, nothing gets done unless you have people to work with, talk to, and bounce ideas off of. Another of Mitchio's and Stan's strengths is how many great collaborators they attract. I was lucky enough to work with Professor Anne McCoy (Ohio State) on a quantum chemistry project. Thanks, Anne, for lending me your resources, discussing science with me, helping me improve my writing skills, letting me learn from you, and most importantly, being a great person to work with. I would also like to thank the members of my candidacy and thesis committees for all of their advice and support: Professors Geoffrey Blake, Paul Wennberg, Vincent McKoy, and Jacqueline Barton.

It takes a lot to keep a laboratory running, especially when a certain somebody (me) keeps breaking things. Rick Gerhart has bailed me out of a lot of trouble with glassware, Tom Dunn has helped me fix burnt-out electronics, and both Mike Roy and Dave Natzic have bailed me out of trouble with machined parts. (Yes, I'm good at breaking things!) Thanks for all of your help and your talks about football, Hawaii, and classic cars. Similarly, it takes a lot to keep a graduate student running: lots of support staff to keep paperwork in line, packages and mail flowing, and smiles to go around. Thank you to Joe Drew, Anne Penney, Dian Buchness, Laura Howe, and Agnes Tong for all of your help along the way. It has been great to work with such friendly people. And Joe, as long as they're not playing my Bills, go Cleveland Browns!

My good fortune extends past Caltech: I have had many great research mentors, professors, and teachers that have helped shape me into a chemist. My undergraduate education at Ithaca College was top-notch, and I thank Professors Vincent DeTuri and Anna Larsen for the research opportunities that they extended to me. My time at Ithaca also helped develop my passion for teaching, and this is thanks to Vince, Anna, and Professor Michael "Bodhi" Rogers, who all gave me an opportunity to teach as many students as I could handle. I also was lucky enough to work at Sandia National Laboratories for three summers, and I would like to thank LeRoy Whinnery and Blake Simmons for making my time at Sandia memorable. It is really amazing how the two of you could teach me so much about independent research in three summers.

I'm pretty sure that you can't finish a thesis unless you are healthy and happy. And I have a lot of people to thank for this. First, a big thank you to Bill Bing, director of the Caltech Bands. Bill is the perfect person to work at Caltech: he pushes students to a high performance level, he is a skilled trumpet player and teacher, and he knows how to keep everything fun. Bill, never retire! I have also been able to play in a couple of outside jazz bands thanks to meeting people through the Caltech music program, and I would like to thank Pat Olguin, Brenda Goforth Adelante, and Eric Kulczycki for giving me the opportunity to play in their bands. I am also an avid football fan – go Buffalo Bills! I thank the Los Angeles Bills Backers, and club president Joy Ammann, for giving me the opportunity to spend my Sundays enjoying football with you. By the way, how do I stay healthy? Great medical care from doctors and nurses. Thank you to Alice Sogomonian, Divina Bautista, Linda Schutz, Dr. Helena Kopecky, Dr. Susanna Friedlander, Dr. Maria Oh, and Dr. Mariel Tourani for all of your help. This thesis would not be possible without all of you.

I have made some great friends at Caltech and Ithaca, and there aren't enough words for me to express how much I value their support and friendship. Thank you Dan Pragel, the one crossover that I have between Rochester and Caltech, and who shares more of my values than either one of us would care to admit. Thank you to my Ithaca College friends, Eric Leibensperger, Beth Gardiner, Eric Callahan, Tasha Kates, and Matt Libera (and many others that won't fit in the allotted space), for 4 years of fun at Ithaca, 7 years of visits and online chats, and many more years of fun to come. Thank you to Kathryn Pérez and Kathleen Spencer, two of my Caltech friends to whom I will be eternally indebted for helping me through my most difficult graduate school trials. To all of my friends: thank you, I am happy every day because of you.

They say that you save the best for last. In this case, I saved my largest thanks for my parents, Nancy Sprague and Jeffery Sprague, and my stepparents, Greg Lewis and Esta Sullivan. 28 years ago, you decided to spend a lot of money to adopt a small child from India. In the years since then, you have taught him everything that he knows: how to learn, how to work hard, how to enjoy life, how to succeed in endeavors, how to endure the trials in life, how to appreciate friends, and how to love family. Most of all, the four of you have given him your love unconditionally. I cannot thank you enough for always pushing me to follow my dreams wherever they may take me, but always keeping a place for me to call home, where I will always know that I am loved. This thesis may satisfy the requirements for a Ph.D. at Caltech, but it was written for the four of you.

Abstract

This thesis describes laboratory experiments and electronic structure calculations on three chemical systems relevant to tropospheric ozone chemistry: peroxynitrous acid (HOONO), hydroxymethylperoxy radical formed from $HO_2 + HCHO$ (R1), and products of alkoxy isomerization (R2). R1 and R2 were studied experimentally using a gas flow cell that combined UV photolysis with cavity ringdown spectroscopy (CRDS). All chemical systems were studied using electronic structure calculations and kinetics modeling.

HOONO is one of the products of the reaction $OH + NO_2$, and acts as a temporary reservoir for HO_x and NO_x in the atmosphere. Torsional excitation of HOONO will break its internal hydrogen bond, leading to sequence band formation in the OH stretch spectrum. Chapter 3 describes a calculated 3-dimensional potential energy surface to examine torsional mode coupling and sequence band formation. We apply these results to previous CRDS kinetics studies of HOONO.

The reaction of HO_2 with carbonyls is believed to be a major sink of HO_x and carbonyl compounds at reduced temperatures. R1 is the simplest of these reactions. Despite numerous previous studies, considerable uncertainty exists on the activation energy and rate constant of R1. Chapters 4–6 describe CRDS and electronic structure studies on the isomerization product, hydroxymethylperoxy. CRDS was used to make the first measurements of the OH stretch and A-X electronic spectra, and the kinetics of hydroxymethylperoxy chemistry. Electronic structure calculations were used to simulate the spectroscopic bands and examine the conformers of hydroxymethylperoxy and 2-hydroxyisopropylperoxy. Atmospheric alkoxy radicals can isomerize or react with O_2 , and each pathway has a different impact on ozone chemistry. Chapters 7–10 describe cavity ringdown spectroscopy, kinetics, and electronic structure calculations on the *n*-butoxy and 2-pentoxy isomerization products, specifically δ -HOC₄H₈•, δ -HOC₄H₈OO•, δ -HO-1-C₅H₁₀•, and δ -HO-1-C₅H₁₀OO•. CRDS was used to make the first measurements of the A-X electronic spectrum of δ -HOC₄H₈OO• and clean OH stretch spectra of all four radicals. Relative kinetics data previously obtained using CRDS were reanalyzed to include the effects of additional alkoxy reactions. Electronic structure calculations were performed to explain the observations that the OH stretch absorption cross section differs between HOR• and HOROO•.

Table of Contents

Acknowledgements	. iii
Abstract	. viii
Table of Contents	• X
List of Figures	. xvii
List of Tables	. xxi
Part 1—Introduction and Description of Cavity Ringdown Spectrometer	1
Chapter 1—Introduction	2
Atmospheric Chemistry	2
Specific Chemical Systems of Interest	6
Torsion-Torsion Counting in Peroxynitrous Acid (HOONO)	7
HO ₂ +HCHO: Spectroscopy Kinetics and Electronic Structure of	,
HOCH ₂ OO•	9
Alkoxy (RO•) Isomerization: Spectroscopy Kinetics and Electronic	,
Structure of Primary Products	11
Structure of Frindry Froducts	11
Chapter 2—Description of Cavity Ringdown Spectrometer	13
Abstract	13
Introduction	13
Cavity Ringdown Spectroscopy	. 13
Considerations of Tunable Light Ranges	19
Optical Parametric Amplifier: Mid-IR Light (2.7–3.7 µm)	
Hydrogen Gas Raman Shifter: Near-IR Light (1.2–1.4 µm)	22
Experimental Details	23
Pulsed Laser Photolysis-Cavity Ringdown Spectroscopy	
(PLP-CRDS) Apparatus.	23
Gas Kinetics Cell	27
Optical Cavity	28
Optical Parametric Amplifier Setup	. 28
Raman Shifter Setup.	. 30
Excimer Laser and Timing Control	. 31
Data Acquisition and Processing	. 31
Performance of CRDS Apparatus	. 32
Laser Performance	32
Detector Performance	34
Mirror Reflectivity vs Wavelength	36
Sensitivity of the CRDS Apparatus	. 39
Calibration of Spectrometer Frequency	. 41
Conclusions	.42
Acknowledgements	.43

Chapter 3—A 3-Dimensional Potential Energy Surface and Dipole Moment Surface for Modeling the Torsion Torsion Coupling in size size	
HOONO	45
Abstract	45
Introduction	46
Methods	52
Generation of Potential Energy Surface and Dipole Moment Surface5	52
Simulation of Spectra	54
Results	55
Torsional Potential Energy Surface	56
Comparison of CCSD(T) and B3LYP Potential Energy Surface	50
OH Stretch Potential Energy Surface	52
Calculation of the Dipole Moment Surface	54
Wavefunctions	72
Discussion	73
Simulated OH Stretch Spectra (Fundamental, Overtone)	73
Torsional Spectrum.	75
Correction factor to $\alpha(p,298K)$	77
Conclusions	78
Acknowledgements	78

Chapter 4—The OH Stretch and A-X Electronic Cavity Ringdown Spectra	
of the Hydroxymethylperoxy Radical (HOCH ₂ OO•)	
Abstract	81
Introduction	
Methods	90
Apparatus and Chemicals	90
Experimental and Flow Conditions	
Results	95
Chemistry	95
HMP v_1 Spectrum	100
HMP A-X Spectrum	107
Discussion	114
Comparison of HMP v_1 Spectrum to Methanol and Ethanol	114
Comparison of HMP A-X Spectrum to Methylperoxy	115
Conclusions	117
Acknowledgements	118

Torsion-Torsion Potential Energy Surfaces of HOCH2OO• andHOC(CH3)2OO•119Abstract.119Introduction120Methods122Results.124Torsion-Torsion Potential Energy Surfaces of HMP125Calculated A-X Transition Frequencies.132Electronic, Torsional, and OH Str. Frequencies for HMP Conformer B 143Calculated Potential Energy Surfaces and Spectroscopic Frequenciesof 2-HIPP.144Discussion147Preliminary Thoughts on the Appropriate Level of Theory forSubstituted Alkyl Peroxies.147Normal Mode Coupling and its Effect on Vibrational Frequencies, Sequence Bands.149Conclusions.150Acknowledgements.151Chapter 6—Kinetics of HO2 + HCHO and Further Reaction of the Hydroxymethylperoxy Radical (HOCH2OO•)152Abstract.153Apparatus and Chemicals.155Experimental and Flow Conditions.157Results.160Predicted HO2 + HCHO Kinetics.161Kinetics of HMP by v1 Absorption.165Kinetics of HMP by A-X Absorption.169Discussion171Comparison of HO2 + HCHO Kinetics Results (v1) to Literature.171Comparison of HMP Destruction Kinetics (A-X) to Existing Model.172Application of Our Kinetics Methods to HO2+acetone174Conclusions.177Acknowledgements.177Application of Our Kinetics Methods to HO2+acetone174Conclusions.<	Chapter 5—Predicted A-X Transition Frequencies and 2-Dimensional	
HOC(CH_3)2OO	Torsion-Torsion Potential Energy Surfaces of HOCH ₂ OO• and	
Abstract.119Introduction.120Methods.122Results.124Torsion-Torsion Potential Energy Surfaces of HMP125Calculated A-X Transition Frequencies.132Electronic, Torsional, and OH Str. Frequencies for HMP Conformer B 143Calculated Potential Energy Surfaces and Spectroscopic Frequenciesof 2-HIPP.144Discussion147Preliminary Thoughts on the Appropriate Level of Theory forSubstituted Alkyl Peroxies.147Normal Mode Coupling and its Effect on Vibrational Frequencies, Sequence Bands.149Conclusions.150Acknowledgements.151Chapter 6—Kinetics of HO2 + HCHO and Further Reaction of the Hydroxymethylperoxy Radical (HOCH2OO+).152Abstract.153Methods.155Experimental and Flow Conditions.157Results.160Predicted HO2 + HCHO Kinetics.161Kinetics of HMP by v1 Absorption.165Kinetics of HMP by A-X Absorption.169Discussion.171Comparison of HO2 + HCHO Kinetics Results (v1) to Literature.171Comparison of HO2 + HCHO Kinetics (A-X) to Existing Model.172Application of Our Kinetics Methods to HO2+acetone.174Conclusions.177Acknowledgements.177	$HOC(CH_3)_2OO$ •	119
Introduction120Methods122Results124Torsion-Torsion Potential Energy Surfaces of HMP125Calculated A-X Transition Frequencies132Electronic, Torsional, and OH Str. Frequencies for HMP Conformer B 143Calculated Potential Energy Surfaces and Spectroscopic Frequenciesof 2-HIPP144Discussion147Preliminary Thoughts on the Appropriate Level of Theory forSubstituted Alkyl Peroxies147Normal Mode Coupling and its Effect on Vibrational Frequencies,Sequence Bands149Conclusions150Acknowledgements151Chapter 6—Kinetics of HO2 + HCHO and Further Reaction of theHydroxymethylperoxy Radical (HOCH2OO+)152Introduction153Methods155Apparatus and Chemicals155Experimental and Flow Conditions157Results160Predicted HO2 + HCHO Kinetics161Kinetics of HMP by v1 Absorption165Kinetics of HMP by v2 Absorption169Discussion171Comparison of HO2 + HCHO Kinetics Results (v1) to Literature171Comparison of HMP Destruction Kinetics (A-X) to Existing Model172Application of Our Kinetics Methods to HO2+acetone174Conclusions177Acknowledgements178	Abstract	119
Methods122Results124Torsion-Torsion Potential Energy Surfaces of HMP125Calculated A-X Transition Frequencies132Electronic, Torsional, and OH Str. Frequencies for HMP Conformer B 143Calculated Potential Energy Surfaces and Spectroscopic Frequenciesof 2-HIPP144Discussion147Preliminary Thoughts on the Appropriate Level of Theory forSubstituted Alkyl Peroxies147Normal Mode Coupling and its Effect on Vibrational Frequencies, Sequence Bands149Conclusions150Acknowledgements151Chapter 6—Kinetics of HO2 + HCHO and Further Reaction of the Hydroxymethylperoxy Radical (HOCH2OO*)152Abstract153Methods155Apparatus and Chemicals155Experimental and Flow Conditions157Results160Predicted HO2 + HCHO Kinetics161Kinetics of HMP by v1 Absorption165Kinetics of HMP by v2 Absorption169Discussion171Comparison of HMP Destruction Kinetics (A-X) to Existing Model172Application of Our Kinetics Methods to HO2+acetone174Conclusions177Acknowledgements178	Introduction	120
Results.124Torsion-Torsion Potential Energy Surfaces of HMP125Calculated A-X Transition Frequencies.132Electronic, Torsional, and OH Str. Frequencies for HMP Conformer B 143Calculated Potential Energy Surfaces and Spectroscopic Frequenciesof 2-HIPP.144Discussion.147Preliminary Thoughts on the Appropriate Level of Theory for Substituted Alkyl Peroxies.147Normal Mode Coupling and its Effect on Vibrational Frequencies, Sequence Bands.149Conclusions.150Acknowledgements.151Chapter 6—Kinetics of HO2 + HCHO and Further Reaction of the Hydroxymethylperoxy Radical (HOCH2OO•).152Abstract.153Methods.155Apparatus and Chemicals.155Experimental and Flow Conditions.157Results.160Predicted HO2 + HCHO Kinetics161Kinetics of HMP by v1 Absorption.165Kinetics of HMP by v2 Absorption.169Discussion.171Comparison of HQ2 + HCHO Kinetics Results (v1) to Literature.171Comparison of HMP Destruction Kinetics (A-X) to Existing Model.172Application of Our Kinetics Methods to HO2+acetone.177Acknowledgements.177	Methods	122
Torsion-Torsion Potential Energy Surfaces of HMP.125Calculated A-X Transition Frequencies.132Electronic, Torsional, and OH Str. Frequencies for HMP Conformer B 143Calculated Potential Energy Surfaces and Spectroscopic Frequenciesof 2-HIPP.144Discussion.147Preliminary Thoughts on the Appropriate Level of Theory forSubstituted Alkyl Peroxies.147Normal Mode Coupling and its Effect on Vibrational Frequencies,Sequence Bands.149Conclusions.150Acknowledgements.151Chapter 6—Kinetics of HO2 + HCHO and Further Reaction of theHydroxymethylperoxy Radical (HOCH2OO*)152Abstract.153Methods.155Apparatus and Chemicals.155Experimental and Flow Conditions.157Results.160Predicted HO2 + HCHO Kinetics.161Kinetics of HMP by v1 Absorption.165Kinetics of HMP by v2 Absorption.169Discussion.171Comparison of HO2 + HCHO Kinetics Results (v1) to Literature.171Comparison of HMP Destruction Kinetics (A-X) to Existing Model.172Application of Our Kinetics Methods to HO2+acetone.174Conclusions.177Acknowledgements.178	Results	124
Calculated A-X Transition Frequencies132Electronic, Torsional, and OH Str. Frequencies for HMP Conformer B 143Calculated Potential Energy Surfaces and Spectroscopic Frequenciesof 2-HIPP.144Discussion147Preliminary Thoughts on the Appropriate Level of Theory forSubstituted Alkyl Peroxies147Normal Mode Coupling and its Effect on Vibrational Frequencies,Sequence Bands149Conclusions150Acknowledgements151Chapter 6—Kinetics of HO2 + HCHO and Further Reaction of theHydroxymethylperoxy Radical (HOCH2OO*)152Abstract153Methods155Apparatus and Chemicals155Experimental and Flow Conditions157Results160Predicted HO2 + HCHO Kinetics161Kinetics of HMP by v1 Absorption165Kinetics of HMP by A-X Absorption169Discussion171Comparison of HO2 + HCHO Kinetics Results (v1) to Literature171Comparison of HMP Destruction Kinetics (A-X) to Existing Model172Application of Our Kinetics Methods to HO2+acetone174Conclusions177Acknowledgements178	Torsion-Torsion Potential Energy Surfaces of HMP	125
Electronic, Torsional, and OH Str. Frequencies for HMP Conformer B 143 Calculated Potential Energy Surfaces and Spectroscopic Frequencies of 2-HIPP144Discussion147Preliminary Thoughts on the Appropriate Level of Theory for Substituted Alkyl Peroxies147Normal Mode Coupling and its Effect on Vibrational Frequencies, Sequence Bands149Conclusions150Acknowledgements151Chapter 6—Kinetics of HO2 + HCHO and Further Reaction of the Hydroxymethylperoxy Radical (HOCH2OO•)152Abstract153Methods155Apparatus and Chemicals155Experimental and Flow Conditions157Results160Predicted HO2 + HCHO Kinetics161Kinetics of HMP by v1 Absorption165Kinetics of HMP by A-X Absorption169Discussion171Comparison of HO2 + HCHO Kinetics Results (v1) to Literature171Comparison of HO2 + HCHO Kinetics Results (v1) to Literature171Comparison of HO2 + HCHO Kinetics Results (v1) to Literature171Comparison of HO2 + HCHO Kinetics Results (v1) to Literature171Comparison of HO2 + HCHO Kinetics Results (v1) to Literature171Comparison of HMP Destruction Kinetics (A-X) to Existing Model172Application of Our Kinetics Methods to HO2+acetone174Conclusions177Acknowledgements178	Calculated A-X Transition Frequencies	132
144Discussion147Preliminary Thoughts on the Appropriate Level of Theory forSubstituted Alkyl Peroxies147Normal Mode Coupling and its Effect on Vibrational Frequencies,Sequence Bands149Conclusions150Acknowledgements151Chapter 6—Kinetics of HO2 + HCHO and Further Reaction of theHydroxymethylperoxy Radical (HOCH2OO•)152Abstract152Introduction153Methods155Apparatus and Chemicals155Experimental and Flow Conditions157Results160Predicted HO2 + HCHO Kinetics161Kinetics of HMP by v1 Absorption165Kinetics of HMP by A-X Absorption169Discussion171Comparison of HO2 + HCHO Kinetics Results (v1) to Literature171Comparison of HMP Destruction Kinetics (A-X) to Existing Model172Application of Our Kinetics Methods to HO2+acetone174Acknowledgements178	Electronic, Torsional, and OH Str. Frequencies for HMP Conformer B Calculated Potential Energy Surfaces and Spectroscopic Frequencies	143
Discussion147Preliminary Thoughts on the Appropriate Level of Theory for Substituted Alkyl Peroxies147Normal Mode Coupling and its Effect on Vibrational Frequencies, Sequence Bands149Conclusions150Acknowledgements151Chapter 6—Kinetics of HO2 + HCHO and Further Reaction of the Hydroxymethylperoxy Radical (HOCH2OO•)Hydroxymethylperoxy Radical (HOCH2OO•)152Abstract152Introduction153Methods155Apparatus and Chemicals155Experimental and Flow Conditions157Results160Predicted HO2 + HCHO Kinetics161Kinetics of HMP by v1 Absorption165Kinetics of HMP by A-X Absorption169Discussion171Comparison of HO2 + HCHO Kinetics Results (v1) to Literature171Comparison of HMP Destruction Kinetics (A-X) to Existing Model172Application of Our Kinetics Methods to HO2+acetone174Acknowledgements178	Dispussion	144
Fremminary Houghts on the Appropriate Level of Theory forSubstituted Alkyl Peroxies.Normal Mode Coupling and its Effect on Vibrational Frequencies,Sequence Bands.149Conclusions.Acknowledgements.151Chapter 6—Kinetics of HO2 + HCHO and Further Reaction of theHydroxymethylperoxy Radical (HOCH2OO•).Hydroxymethylperoxy Radical (HOCH2OO•).152Abstract.153Methods.155Apparatus and Chemicals.157Results.160Predicted HO2 + HCHO Kinetics.161Kinetics of HMP by v1 Absorption.165Kinetics of HMP by A-X Absorption.169Discussion.171Comparison of HO2 + HCHO Kinetics Results (v1) to Literature.171Comparison of HMP Destruction Kinetics (A-X) to Existing Model.172Application of Our Kinetics Methods to HO2+acetone.174Conclusions.177Acknowledgements.	Discussion.	14/
Substituted Arkyl Peroxies147Normal Mode Coupling and its Effect on Vibrational Frequencies, Sequence Bands.149Conclusions150Acknowledgements151Chapter 6—Kinetics of HO2 + HCHO and Further Reaction of the Hydroxymethylperoxy Radical (HOCH2OO•)Hydroxymethylperoxy Radical (HOCH2OO•)152Abstract.153Introduction153Methods.155Apparatus and Chemicals.155Experimental and Flow Conditions157Results.160Predicted HO2 + HCHO Kinetics161Kinetics of HMP by v1 Absorption165Kinetics of HMP by A-X Absorption169Discussion171Comparison of HO2 + HCHO Kinetics Results (v1) to Literature171Comparison of HMP Destruction Kinetics (A-X) to Existing Model172Application of Our Kinetics Methods to HO2+acetone174Conclusions177Acknowledgements178	Substituted Allad Derovies	147
Normal words Coupling and its Effect on viorational Frequencies, Sequence Bands.149 Conclusions150 Acknowledgements.151Chapter 6—Kinetics of HO2 + HCHO and Further Reaction of the Hydroxymethylperoxy Radical (HOCH2OO•)	Normal Mode Coupling and its Effect on Vibrational Fragmanaios	14/
Sequence Bands.149Conclusions.150Acknowledgements.151Chapter 6—Kinetics of HO2 + HCHO and Further Reaction of theHydroxymethylperoxy Radical (HOCH2OO•).152Abstract.152Introduction.153Methods.155Apparatus and Chemicals.155Experimental and Flow Conditions.157Results.160Predicted HO2 + HCHO Kinetics.161Kinetics of HMP by v1 Absorption.165Kinetics of HMP by A-X Absorption.169Discussion.171Comparison of HO2 + HCHO Kinetics Results (v1) to Literature.171Comparison of HMP Destruction Kinetics (A-X) to Existing Model.172Application of Our Kinetics Methods to HO2+acetone.174Conclusions.177Acknowledgements.178	Sequence Bands	1/0
Conclusions150Acknowledgements151Chapter 6—Kinetics of HO2 + HCHO and Further Reaction of theHydroxymethylperoxy Radical (HOCH2OO•)152Abstract152Abstract153Methods155Apparatus and Chemicals155Experimental and Flow Conditions157Results160Predicted HO2 + HCHO Kinetics161Kinetics of HMP by v1 Absorption165Kinetics of HMP by A-X Absorption169Discussion171Comparison of HO2 + HCHO Kinetics Results (v1) to Literature171Comparison of HMP Destruction Kinetics (A-X) to Existing Model172Application of Our Kinetics Methods to HO2+acetone174Conclusions177Acknowledgements178	Conclusions	149
AcknowledgementsThe Hydroxymethylperoxy Radical (HOCH2OO•)152Abstract152Abstract152Abstract152Introduction153Methods155Apparatus and Chemicals155Experimental and Flow Conditions160Predicted HO2 + HCHO Kinetics161Kinetics of HMP by v1 Absorption165Kinetics of HMP by A-X Absorption169Discussion171Comparison of HO2 + HCHO Kinetics Results (v1) to Literature171Comparison of HMP Destruction Kinetics (A-X) to Existing Model172Application of Our Kinetics Methods to HO2+acetone177Acknowledgements178	Aaknowladgements	150
Abstract.152Introduction.153Methods.155Apparatus and Chemicals.155Experimental and Flow Conditions.157Results.160Predicted HO2 + HCHO Kinetics.161Kinetics of HMP by v_1 Absorption.165Kinetics of HMP by A-X Absorption.169Discussion.171Comparison of HO2 + HCHO Kinetics Results (v_1) to Literature.171Comparison of HMP Destruction Kinetics (A-X) to Existing Model.172Application of Our Kinetics Methods to HO2+acetone.174Conclusions.177Acknowledgements.178	Chapter 6—Kinetics of HO ₂ + HCHO and Further Reaction of the Hydroxymethylperoxy Radical (HOCH ₂ OO•)	152
Introduction153Methods155Apparatus and Chemicals155Experimental and Flow Conditions157Results160Predicted $HO_2 + HCHO$ Kinetics161Kinetics of HMP by v_1 Absorption165Kinetics of HMP by A-X Absorption169Discussion171Comparison of $HO_2 + HCHO$ Kinetics Results (v_1) to Literature171Comparison of HMP Destruction Kinetics (A-X) to Existing Model172Application of Our Kinetics Methods to HO_2 +acetone174Conclusions177Acknowledgements178	Abstract.	152
Methods.155Apparatus and Chemicals.155Experimental and Flow Conditions.157Results.160Predicted HO2 + HCHO Kinetics.161Kinetics of HMP by v_1 Absorption.165Kinetics of HMP by A-X Absorption.169Discussion.171Comparison of HO2 + HCHO Kinetics Results (v_1) to Literature.171Comparison of HMP Destruction Kinetics (A-X) to Existing Model.172Application of Our Kinetics Methods to HO2+acetone.174Conclusions.177Acknowledgements.178	Introduction	153
Apparatus and Chemicals155Experimental and Flow Conditions157Results160Predicted HO2 + HCHO Kinetics161Kinetics of HMP by v_1 Absorption165Kinetics of HMP by A-X Absorption169Discussion171Comparison of HO2 + HCHO Kinetics Results (v_1) to Literature171Comparison of HMP Destruction Kinetics (A-X) to Existing Model172Application of Our Kinetics Methods to HO2+acetone174Conclusions177Acknowledgements178	Methods	155
Experimental and Flow Conditions.157Results.160Predicted HO2 + HCHO Kinetics.161Kinetics of HMP by v_1 Absorption.165Kinetics of HMP by A-X Absorption.169Discussion.171Comparison of HO2 + HCHO Kinetics Results (v_1) to Literature.171Comparison of HMP Destruction Kinetics (A-X) to Existing Model.172Application of Our Kinetics Methods to HO2+acetone.174Conclusions.177Acknowledgements.178	Apparatus and Chemicals	155
Results160Predicted HO2 + HCHO Kinetics161Kinetics of HMP by v_1 Absorption165Kinetics of HMP by A-X Absorption169Discussion171Comparison of HO2 + HCHO Kinetics Results (v_1) to Literature171Comparison of HMP Destruction Kinetics (A-X) to Existing Model172Application of Our Kinetics Methods to HO2+acetone174Conclusions177Acknowledgements178	Experimental and Flow Conditions	157
Predicted $HO_2 + HCHO$ Kinetics161Kinetics of HMP by v_1 Absorption165Kinetics of HMP by A-X Absorption169Discussion171Comparison of $HO_2 + HCHO$ Kinetics Results (v_1) to Literature171Comparison of HMP Destruction Kinetics (A-X) to Existing Model172Application of Our Kinetics Methods to HO_2 +acetone174Conclusions177Acknowledgements178	Results	160
Kinetics of HMP by v_1 Absorption.165Kinetics of HMP by A-X Absorption.169Discussion.171Comparison of HO2 + HCHO Kinetics Results (v_1) to Literature.171Comparison of HMP Destruction Kinetics (A-X) to Existing Model.172Application of Our Kinetics Methods to HO2+acetone.174Conclusions.177Acknowledgements.178	Predicted HO ₂ + HCHO Kinetics	161
Kinetics of HMP by A-X Absorption. 169 Discussion. 171 Comparison of HO ₂ + HCHO Kinetics Results (v ₁) to Literature. 171 Comparison of HMP Destruction Kinetics (A-X) to Existing Model. 172 Application of Our Kinetics Methods to HO ₂ +acetone. 174 Conclusions. 177 Acknowledgements. 178	Kinetics of HMP by v_1 Absorption	165
Discussion 171 Comparison of HO ₂ + HCHO Kinetics Results (v ₁) to Literature 171 Comparison of HMP Destruction Kinetics (A-X) to Existing Model 172 Application of Our Kinetics Methods to HO ₂ +acetone 174 Conclusions 177 Acknowledgements 178	Kinetics of HMP by A-X Absorption	169
Comparison of HO2 + HCHO Kinetics Results (v1) to Literature171Comparison of HMP Destruction Kinetics (A-X) to Existing Model172Application of Our Kinetics Methods to HO2+acetone174Conclusions177Acknowledgements	Discussion	171
Comparison of HMP Destruction Kinetics (A-X) to Existing Model 172 Application of Our Kinetics Methods to HO ₂ +acetone	Comparison of HO ₂ + HCHO Kinetics Results (v_1) to Literature	171
Application of Our Kinetics Methods to HO ₂ +acetone	Comparison of HMP Destruction Kinetics (A-X) to Existing Model	172
Conclusions	Application of Our Kinetics Methods to HO ₂ +acetone	174
Acknowledgements	Conclusions	177
	Acknowledgements	178

Part 4—Spectroscopy, Kinetics, and Quantum Chemistry of Alkoxy	
Isomerization	179

$-HU-1-U_5H_{10}$, and $0-HU-1-U_5H_{10}UU$	• • • • • • • • • • • • • • • • • • • •
Abstract	
Introduction.	
Methods	
Apparatus and Chemicals	•••••
Experimental and Flow Conditions	
Chamintary	
Vinetias Modeling	•••••
CHR + 1 C + C HOCH S HOCH OC S	
OH Stretch Spectra of 0 -HOC ₄ H ₈ \bullet , 0 -HOC ₄ H ₈ OO \bullet , 0	$-HO-1-C_5H_{10}$
and δ -HO-1-C ₅ H ₁₀ OO•	
Change in OH Stretch Spectrum with [RO•] and 1im	ing
Determination of the Relative Kinetic Rate $k_{\text{isom}}/k_{\text{O2}}$.	
Conclusions	
A almowiledgements	
8	
Chapter 8—Reanalysis of the Alkoxy k_{isom}/k_{O2} OH Stretchind a New Interpretation of Alkoxy Relative Kinetics Explanation of Alkoxy Relative Kinetics Explanati	h Experiment
Chapter 8—Reanalysis of the Alkoxy k _{isom} /k ₀₂ OH Stretch and a New Interpretation of Alkoxy Relative Kinetics Exp Abstract.	h Experiment periments
Chapter 8—Reanalysis of the Alkoxy k_{isom}/k_{O2} OH Stretch and a New Interpretation of Alkoxy Relative Kinetics Exp Abstract Introduction	h Experiment periments
Chapter 8—Reanalysis of the Alkoxy k_{isom}/k_{O2} OH Stretch and a New Interpretation of Alkoxy Relative Kinetics Exp Abstract Introduction	h Experiment periments
Chapter 8—Reanalysis of the Alkoxy k_{isom}/k_{O2} OH Stretch and a New Interpretation of Alkoxy Relative Kinetics Exp Abstract Introduction Methods Recalculation of Gas Concentrations Recalculation of IRONOL and IRON	h Experiment periments
Chapter 8—Reanalysis of the Alkoxy k_{isom}/k_{O2} OH Stretch and a New Interpretation of Alkoxy Relative Kinetics Exp Abstract. Introduction. Methods. Recalculation of Gas Concentrations. Recalculation of [RONO] and [RO•]. Rescaling of Alkoxy Concentrations and Calculation	h Experiment periments
Chapter 8—Reanalysis of the Alkoxy k_{isom}/k_{O2} OH Stretch and a New Interpretation of Alkoxy Relative Kinetics Exp Abstract Introduction Methods Recalculation of Gas Concentrations Recalculation of [RONO] and [RO•] Rescaling of Alkoxy Concentrations and Calculation Absorbance A_0/A	h Experiment periments of Relative
Chapter 8—Reanalysis of the Alkoxy k_{isom}/k_{O2} OH Stretch and a New Interpretation of Alkoxy Relative Kinetics Exp Abstract Introduction Methods Recalculation of Gas Concentrations Recalculation of [RONO] and [RO•] Rescaling of Alkoxy Concentrations and Calculation Absorbance A_0/A Choosing the Best Fits to Obtain the Overall Data Sec	h Experiment periments of Relative
Chapter 8—Reanalysis of the Alkoxy k_{isom}/k_{O2} OH Stretch and a New Interpretation of Alkoxy Relative Kinetics Exp Abstract Introduction Methods Recalculation of Gas Concentrations Recalculation of [RONO] and [RO•] Rescaling of Alkoxy Concentrations and Calculation Absorbance A_0/A Choosing the Best Fits to Obtain the Overall Data Sec Derivation of Dependence of A_0/A on [O ₂]	h Experiment periments of Relative t for k_{isom}/k_{O2}
Chapter 8—Reanalysis of the Alkoxy k_{isom}/k_{O2} OH Stretch and a New Interpretation of Alkoxy Relative Kinetics Exp Abstract Introduction. Methods. Recalculation of Gas Concentrations. Recalculation of [RONO] and [RO•]. Rescaling of Alkoxy Concentrations and Calculation Absorbance A_0/A . Choosing the Best Fits to Obtain the Overall Data Set Derivation of Dependence of A_0/A on [O ₂]. Neglect of Prompt Decomposition.	h Experiment periments of Relative t for k_{isom}/k_{O2}
Chapter 8—Reanalysis of the Alkoxy k_{isom}/k_{O2} OH Stretch and a New Interpretation of Alkoxy Relative Kinetics Exp Abstract Introduction. Methods. Recalculation of Gas Concentrations. Recalculation of [RONO] and [RO•]. Rescaling of Alkoxy Concentrations and Calculation Absorbance A_0/A . Choosing the Best Fits to Obtain the Overall Data Set Derivation of Dependence of A_0/A on [O ₂]. Neglect of Prompt Decomposition. Treatment of the Remaining Pathways.	h Experiment periments of Relative t for k_{isom}/k_{O2}
Chapter 8—Reanalysis of the Alkoxy k_{isom}/k_{O2} OH Stretch and a New Interpretation of Alkoxy Relative Kinetics Exp Abstract Introduction Methods Recalculation of Gas Concentrations Recalculation of [RONO] and [RO•] Rescaling of Alkoxy Concentrations and Calculation Absorbance A_0/A Choosing the Best Fits to Obtain the Overall Data Ser Derivation of Dependence of A_0/A on [O ₂] Neglect of Prompt Decomposition Treatment of the Remaining Pathways Determination of k_{isom}/k_{O2}	h Experiment periments of Relative t for k_{isom}/k_{O2}
Chapter 8—Reanalysis of the Alkoxy k_{isom}/k_{O2} OH Stretch and a New Interpretation of Alkoxy Relative Kinetics Exp Abstract Introduction. Methods. Recalculation of Gas Concentrations. Recalculation of [RONO] and [RO•]. Rescaling of Alkoxy Concentrations and Calculation Absorbance A_0/A . Choosing the Best Fits to Obtain the Overall Data Set Derivation of Dependence of A_0/A on [O ₂]. Neglect of Prompt Decomposition. Treatment of the Remaining Pathways. Determination of k_{isom}/k_{O2} . Results.	h Experiment periments of Relative t for k_{isom}/k_{O2}
Chapter 8—Reanalysis of the Alkoxy k_{isom}/k_{O2} OH Stretch and a New Interpretation of Alkoxy Relative Kinetics Exp Abstract Introduction. Methods. Recalculation of Gas Concentrations. Recalculation of [RONO] and [RO•]. Rescaling of Alkoxy Concentrations and Calculation Absorbance A_0/A . Choosing the Best Fits to Obtain the Overall Data Ser Derivation of Dependence of A_0/A on $[O_2]$. Neglect of Prompt Decomposition. Treatment of the Remaining Pathways. Determination of k_{isom}/k_{O2} . Results. Selected Gas Flow Data.	h Experiment periments of Relative t for k _{isom} /k _{O2}
Chapter 8—Reanalysis of the Alkoxy k_{isom}/k_{O2} OH Stretch and a New Interpretation of Alkoxy Relative Kinetics Exp Abstract Introduction. Methods. Recalculation of Gas Concentrations. Recalculation of [RONO] and [RO•]. Rescaling of Alkoxy Concentrations and Calculation Absorbance A_0/A . Choosing the Best Fits to Obtain the Overall Data Set Derivation of Dependence of A_0/A on [O ₂]. Neglect of Prompt Decomposition. Treatment of the Remaining Pathways. Determination of k_{isom}/k_{O2} . Results. Selected Gas Flow Data. How Scaling Method Affects A_0/A vs [O ₂].	h Experiment periments of Relative t for k_{isom}/k_{O2}
Chapter 8—Reanalysis of the Alkoxy k_{isom}/k_{O2} OH Stretch and a New Interpretation of Alkoxy Relative Kinetics Exp Abstract Introduction. Methods. Recalculation of Gas Concentrations. Recalculation of Gas Concentrations. Recalculation of [RONO] and [RO•]. Rescaling of Alkoxy Concentrations and Calculation Absorbance A_0/A . Choosing the Best Fits to Obtain the Overall Data Set Derivation of Dependence of A_0/A on [O ₂]. Neglect of Prompt Decomposition. Treatment of the Remaining Pathways. Determination of k_{isom}/k_{O2} . Results. Selected Gas Flow Data. How Scaling Method Affects A_0/A vs [O ₂]. Overall Data Set of A_0/A vs [O ₂] and Calculated <i>int/si</i>	h Experiment periments of Relative t for k_{isom}/k_{O2}
Chapter 8—Reanalysis of the Alkoxy k_{isom}/k_{O2} OH Stretch and a New Interpretation of Alkoxy Relative Kinetics Exp Abstract Introduction. Methods Recalculation of Gas Concentrations. Recalculation of [RONO] and [RO•] Rescaling of Alkoxy Concentrations and Calculation Absorbance A_0/A . Choosing the Best Fits to Obtain the Overall Data Set Derivation of Dependence of A_0/A on $[O_2]$. Neglect of Prompt Decomposition. Treatment of the Remaining Pathways. Determination of k_{isom}/k_{O2} . Results. Selected Gas Flow Data. How Scaling Method Affects A_0/A vs $[O_2]$. Overall Data Set of A_0/A vs $[O_2]$ and Calculated <i>int/si</i> Required Parameters and Rate Constants.	h Experiment periments of Relative t for k _{isom} /k _{O2}
Chapter 8—Reanalysis of the Alkoxy k_{isom}/k_{O2} OH Stretch and a New Interpretation of Alkoxy Relative Kinetics Exp Abstract. Introduction. Methods. Recalculation of Gas Concentrations. Recalculation of [RONO] and [RO•]. Rescaling of Alkoxy Concentrations and Calculation Absorbance A_0/A . Choosing the Best Fits to Obtain the Overall Data Set Derivation of Dependence of A_0/A on [O ₂]. Neglect of Prompt Decomposition. Treatment of the Remaining Pathways. Determination of k_{isom}/k_{O2} . Results. Selected Gas Flow Data. How Scaling Method Affects A_0/A vs [O ₂]. Overall Data Set of A_0/A vs [O ₂] and Calculated <i>int/st</i> Required Parameters and Rate Constants. Prompt Isomerization: Determination of ϕ_{pi} .	h Experiment periments of Relative t for k_{isom}/k_{O2}

Products Being Detected at 110 µs	275
Conclusions	280
Acknowledgements	281
Chapter 9—A Quantum Chemistry Explanation of the Alkoxy Relative	282
Abstract	202
AUSUACI	. 202
Mathada	. 203
Virginous	. 200
Quantum Chemistry Calculations	200
Populta	292
Kinatias Madal for a butovy	293 206
Quantum Chamical Calculations	201
Spectroscopic Properties as a Eurotion of Level of Theory and Pasis	202
Comparison of <i>n</i> butowy Conformer OH Stretch Properties	206
Effect of Functional Group Positions on the OH Stretch Properties	307
Calculation of OH Stretch Properties for the Kinetics Model	313
Simulation of A_0/A vs $[\Omega_0]$	315
Discussion	318
OH Groups Formed Through Nonisomerization Pathways	319
Reduced Kinetics Model Simulations of A ₀ /A vs [O ₂]	321
Persistence of Low $[O_2]$ Anomaly for Other Values of k_{inom}/k_{O2}	324
Conclusions	326
Acknowledgements	
Chapter 10—Cavity Ringdown Spectroscopy and Kinetics of <i>n</i> -butoxy	
Isomerization: The A-X Electronic Spectrum of HOC ₄ H ₈ OO•	328
Abstract	. 328
Introduction	329
Methods	. 333
Apparatus and Chemicals	333
Experimental and Flow Conditions	. 334
FTIR—Apparatus, Chemicals, Methods	
Results	338
A-X Spectrum of HOC ₄ H ₈ OO•	339
Kinetics	. 342
Determination of the Relative Rate Constant k_{isom}/k_{O2}	. 346
FTIR Analysis of <i>n</i> -butyl nitrite	349
Discussion	358
Measuring the A-X Spectrum of δ -HO-1-C ₅ H ₁₀ OO•	358
Conclusions	360
Acknowledgements	361

Part 5—Appendices	362
Appendix A—Classification of Laser System Performance	363
Introduction	363
Average Energy Measurement Methods	364
Pulse-to-Pulse Energy Fluctuation Measurement Methods.	
Issue with Saving "MultiRec" ASCII Waveforms	. 371
Appendix B—Nd:YAG Laser Stability Issues and Repairs	. 376
Introduction	376
Initial Measurements and Classification of the Unrepaired Laser System.	379
Energy Distribution Results and Analysis	379
Temporal Distribution Results and Analysis	383
Laser Repair Information	. 387
Jitter Between the Marx Bank Signal and the DDG	388
Amplification Circuit for the Marx Bank	389
Modifications to Charge and Fire Signal Lines	. 391
The 60 V Spike and Replacement of the CB631 Capacitor Bank	. 392
Replacing the Power Pill Thermostat	393
Laser Head Cleaning and Replacement of O-rings	. 396
Result of Repairs	397
Conclusions	401
Appendix C—Calculating Excited States Using Gaussian	403
(1) Configuration Interaction Singles (CIS)	403
(2) Time Dependent HF and DFT (TD-HF and TD-DFT)	406
(3) Exploiting Orbital Symmetry	410
(4) Freezing the Initial Orbital Guess Using Guess=(Alter,Always)	. 413
(5) Scaling of Transition Frequencies	415
(6) Composite Quantum Chemistry Methods: G2, CBS-QB3, and W1	416
(7) Generating Potential Energy Surfaces	423
(8) A Caution on Using Equation of Motion (EOM) Methods	428
Acknowledgements	428
Appendix D—Simulating Spectroscopic Bands using Gaussian and	
PGopher	429
(1) Calculation of Vibrational Dipole Derivatives	429
(2) Estimation of the A-X Dipole Derivative	. 431
(3) Calculation of Anharmonic Rotational Constants	432
(4) Simulation of the Spectroscopic Band	. 434

XV

Appendix E—The "Global Kinetics Model": OH + (NO ₂ ,CO,O ₂)	and
$HO_2 + (HCHO, NO)$.	
(1) Setting Up Kintecus 3.95	441
(2) Calculation of Termolecular Rate Constants	
(3) Calculation of Other Reaction Rate Constants	
(4) Reactions Included in the "Global Kinetics Model"	

Part 6—References	 152

List of Figures

Chapter 1

Figure 1.1. Days per year that ozone concentrations exceeded 75 ppb	3
Figure 1.2. Potential energy surface for OH + NO ₂	7
Figure 1.3. Potential energy surface for HO ₂ + HCHO	10

Chapter 2

-		
Figure 2.1.	Sample ringdown traces at 3525.2 cm ⁻¹	18
Figure 2.2.	Schematic of an optical parametric amplifier (OPA)	21
Figure 2.3.	Energy diagram illustrating the Raman effect	22
Figure 2.4.	Diagram of the first kinetics cell	25
Figure 2.5.	Diagram of the second kinetics cell	25
Figure 2.6.	Optical setup for mid-infrared light (2.7–3.7 µm)	26
Figure 2.7.	Optical setup for near-infrared light (1.2–1.4 µm)	26
Figure 2.8.	Reflectivity curves for the cavity ringdown mirrors	38

Chapter 3

Figure 3.1. Potential energy surface for OH + NO ₂	47
Figure 3.2. The three conformers of HOONO	47
Figure 3.3. Potential energy surface of HOONO as a function of τ_{HOON} , τ_{OONO}	57
Figure 3.4. Potential energy surfaces: B3LYP and CCSD(T)	61
Figure 3.5. Potential energy surface vs OH bond length change	63
Figure 3.6. μ_a for cis-cis HOONO vs $r_{OH}-r_e$	68
Figure 3.7. μ_b for cis-cis HOONO vs r_{OH} - r_e	70
Figure 3.8. Wavefunctions for the 8 lowest energy torsional states of HOONO	73
Figure 3.9. Calculated OH stretch spectra for HOONO	74
Figure 3.10. Simulated torsional spectrum of HOONO	76

Chapter 4

Figure 4.1. B-X spectra of HMP, HO ₂ , CH ₃ OO•	86
Figure 4.2. Kinetics simulations for HO_2 + HCHO experiments	100
Figure 4.3. Unsubtracted mid-infrared cavity ringdown spectra 1	101
Figure 4.4. v_1 (OH stretch) spectrum of HOCH ₂ OO• (HMP) 1	101
Figure 4.5. v_1/v_5 (OH stretch) spectrum of H_2O_2	102
Figure 4.6. Subtraction of H_2O_2 and HCOOH to obtain a pure HMP v_1 spectrum 1	103
Figure 4.7. Absorption cross sections of the v_1 band of HMP	106
Figure 4.8. v ₁ spectra of HMP taken under poor conditions1	107
Figure 4.9. A-X spectrum of HMP 1	108
Figure 4.10. Spectra of individual HMP A-X bands 1	109
Figure 4.11. Comparison of HMP experimental kinetics to simulation 1	110
Figure 4.12. Comparison of observed A-X bands to simulation 1	112
Figure 4.13. Absorption cross sections for the A-X region of HMP1	113
Figure 4.14. Absorption cross sections for the four A-X bands of HMP 1	114
Figure 4.15. v_1 spectra of HMP, CH ₃ OH, and C ₂ H ₅ OH 1	115

Figure 4.16. A-X s	pectra of HMP ar	nd CH ₃ OO•.	

xviii

Chapter 5

Figure 5.1. B3LYP potential energy surfaces and conformers of HMP	126
Figure 5.2. CCSD and B3LYP potential energy surfaces of HMP	127
Figure 5.3. MP2 and MP4 potential energy surfaces of HMP	129
Figure 5.4. Deviation of calculated A-X frequency of HMP from experiment	.134
Figure 5.5. Deviation of calculated OOCO torsion frequency from experiment	136
Figure 5.6. Deviation of calculated OOCO torsion frequency from experiment	138
Figure 5.7. Deviation of calculated OH stretch frequency from experiment	.140
Figure 5.8. 2-HIPP X state potential energy surfaces	.145
Figure 5.9. 2-HIPP A state potential energy surfaces	146

Chapter 6

Figure 6.1. Kinetics traces of HMP using two frequencies within the v_1 band	165
Figure 6.2. Kinetics traces of HMP over the first 75 µs of reaction	. 166
Figure 6.3. [HMP](t) measured by the v_1 band	167
Figure 6.4. [HMP](t) at short times (75 μ s) measured by the v ₁ band	. 168
Figure 6.5. Kinetics traces of HMP using three frequencies within the A-X bands.	.170
Figure 6.6. [HMP] and [HMP]/[HMP] _{max} as measured (A-X) and modeled	173

Chapter 7

Figure 7.1. Reaction map and energy diagram for the reactions of alkoxy radicals.	.183
Figure 7.2. Modeled concentrations (100 µs) for -OH species, <i>n</i> -butoxy	202
Figure 7.3. Cavity loss for precursor chemicals and products of alkoxy	203
Figure 7.4. v_1 spectra of <i>n</i> -butoxy chem.: δ -HOC ₄ H ₈ • and δ -HOC ₄ H ₈ OO•	.204
Figure 7.5. v_1 spectra of 2-pentoxy chem.: δ -HO-1-C ₅ H ₁₀ • and δ -HO-1-C ₅ H ₁₀ OO•	205
Figure 7.6. Overlaid spectra of HOR• and HOROO•	206
Figure 7.7. Infrared spectra of photolysis products of isobutyl and t-butyl nitrite	. 208
Figure 7.8. Absorbance (3662 cm^{-1}) for <i>n</i> -butoxy as a function of time	210
Figure 7.9. Modeled concentrations (1000 µs) for –OH species, <i>n</i> -butoxy	211
Figure 7.10. v ₁ spectra of <i>n</i> -butoxy isomerization, varied conditions	212
Figure 7.11. A_0/A vs [O ₂] for <i>n</i> -butoxy and 2-pentoxy from v ₁ band	216
Figure 7.12. FTIR spectrum of our 2-pentyl nitrite after distillation	.218
Figure 7.13. Individual FTIR bands for major and minor species in pentyl nitrite	220
Figure 7.14. Apparatus used to measure the vapor pressure of 2-pentyl nitrite	223
Figure 7.15. Clausius-Clapeyron plot for 2-pentyl nitrite	224

Chapter 8

Figure 8.1. <i>A</i> ₀ / <i>A</i> vs [O ₂] from Mollner thesis	229
Figure 8.2. Plots of A_0/A vs $[O_2]$ for <i>n</i> -butoxy data set, different scaling	253
Figure 8.3. Plots of A_0/A vs $[O_2]$ for the overall <i>n</i> -butoxy data set	257
Figure 8.4. Plots of A_0/A vs $[O_2]$ for the overall 2-pentoxy data set	259
Figure 8.5. Fits of A_0/A vs $[O_2]$ to CRDS data	266
Figure 8.6. Variation of correction factors with respect to parameters	274
Figure 8.7. Kinetics model of –OH stretch contributors in <i>n</i> -butoxy	278

Chapter 9

Figure 9.1. A_0/A vs [O ₂] for <i>n</i> -butoxy	285
Figure 9.2. Concentration vs time for –OH containing species	296
Figure 9.3. Description of -OH containing products of <i>n</i> -butoxy	299
Figure 9.4. <i>A</i> ₀ / <i>A</i> vs [O ₂] simulation vs experiment	317
Figure 9.5. Fraction of OH stretch intensity from nonisomerization	321
Figure 9.6. Comparison of reduced kinetics model simulations to experiment	.324
Figure 9.7. A_0/A vs [O ₂] simulation for different k_{isom}/k_{O2}	325

Chapter 10

Figure	10.1. Cavity ringdown spectrum of the A-X transition of δ -HOC ₄ H ₈ OO•	340
Figure	10.2. Direct kinetics measurements of HOC ₄ H ₈ OO• via the A-X band	343
Figure	10.3. Kinetics simulations of $HOC_4H_8OO\bullet$ and other peroxy species	345
Figure	10.4. A_0/A vs $[O_2]$ for <i>n</i> -butoxy, A-X peak	347
Figure	10.5. FTIR spectra of <i>n</i> -butyl nitrite, fresh, freeze pumped	350
Figure	10.6. FTIR spectra of NO band region of <i>n</i> -butyl nitrite samples	352
Figure	10.7. FTIR spectra of <i>n</i> -butyl nitrite, fresh, not freeze pumped	353
Figure	10.8. FTIR spectra of <i>n</i> -butyl nitrite, not fresh	354
Figure	10.9. Reference spectra fits to FTIR <i>n</i> -butyl nitrite spectra	355
Figure	10.10. Sample ON-O stretch FTIR spectrum of <i>n</i> -butyl nitrite	357
Figure	10.11. Kinetics simulations for 2-pentoxy system	359

Appendix A

Figure A.1. Waveforms collected for a sine wave input	.369
Figure A.2. 532 nm light scattered to a Si photodiode, 50 Ω vs 1 M Ω	371
Figure A.3. "Split MulRec" box	372
Figure A.4. 4 pulse records of 255 consecutive NIR pulses in GageScope 3.0	.373
Figure A.5. 4 pulse records of 255 consecutive NIR pulses, ASC, Split MulRec	.374
Figure A.6. 4 pulse records of 255 consecutive NIR pulses, ASC, single file	. 375

Appendix B

Figure B.1. NIR spectrum of HO ₂ + HCHO, considerable noise	377
Figure B.2. Sample ringdown data when peak voltage exceeds scale of scope	378
Figure B.3. Energy distribution for 255 laser pulses, 1.28 kV	380
Figure B.4. Energy distribution for 255 laser pulses, 1.34 kV	382
Figure B.5. Time distribution for 255 laser pulses, 1.28 kV	384
Figure B.6. Time distribution for 255 laser pulses, 1.34 kV	385
Figure B.7. Pulse Time vs Energy for Nd:YAG	. 386
Figure B.8. Q-switch amplification circuit for YG-661 laser	390
Figure B.9. Circuit diagram for the optoisolator box	.392
Figure B.10. Nd:YAG pulse energy vs flashlamp fire time	394
Figure B.11. Cooling water temperature vs time since flashlamps were started	395
Figure B.12. Energy histograms after repair	399
Figure B.13. Peak timing histograms after repair	400

Appendix C Figure C.1. Screenshot of the G2 energy calculator spreadsheet Figure C.2. Visualization of energies, 2-dimensional potential energy scan	420 427
Appendix DFigure D.1. Molecular orbitals involved in the A-X transition of HMP.Figure D.2. Simulated v_1 band of CH ₃ OH, B3LYP/6-31+G(d,p).Figure D.3. Comparison of experimental and simulated v_1 bands of CH ₃ OH.	431 439 440
Appendix E	

Figure E.1. Portion of a kinetics model entered into a Kintecus Excel spreadsheet	442
Figure E.2. Portion of concentrations entered into a Kintecus Excel spreadsheet	442
Figure E.3. Simulation parameters entered into a Kintecus Excel spreadsheet	.442
Figure E.4. Termolecular falloff kinetics calculator worksheet	445
Figure E.5. Equilibrium reaction rate kinetics calculator worksheet	.447

List of Tables

Chapter 1

Chapter 2

Table 2.1. Typical laser performance	33
Table 2.2. Expected ringdown peak voltages for MIR and NIR experiments	36
Table 2.3. Summary of cavity ringdown mirror specifications	37

Chapter 3

Table 3.1. Dipole moments for HOONO, no Density=Current command	65
Table 3.2. Calculated values of μ_a for cis-cis HOONO	68
Table 3.3. Calculated values of μ_b for cis-cis HOONO	69

Chapter 4

Table 4.1. Experimental conditions for HMP spectroscopy experiments	. 93
Table 4.2. Summary of lifetimes and estimated [HMP] from chemistry analysis	.98
Table 4.3. Summary of lifetimes and estimated [HMP] from kinetics model	99
Table 4.4. Comparison of observed band positions to quantum chemistry	111

Chapter 5

	20
Table 5.2. Calculated A-X transition frequencies of HMP conformers A and B13	33
Table 5.3. Calculated OOCO torsion (A state) of HMP conformer A 13	35
Table 5.4. Calculated OOCO torsion (X state) of HMP conformer A 13	37
Table 5.5. Calculated OH stretch frequency of HMP conformer A	39
Table 5.6. Summary of acceptable and unacceptable levels of theory14	42
Table 5.7. Calculated A-X, OOCO torsion, and OH stretch of HMP conformer B. 14	43
Table 5.8. Calculated A-X, OOCO torsion, and OH stretch of 2-HIPP14	47

Chapter 6

Table 6.1. Experimental conditions for HMP kinetics experiments	159
Table 6.2. Orders of magnitude for kinetics terms	62
Table 6.3. Determination of k_1 from CRDS v_1 absorption data	68
Table 6.4. Comparison of rate constant $k_{\text{HO2+HCHO}}$ to literature values	171
Table 6.5. Equilibrium constants for HO_2 + acetone from theory and experiment 1	176
Table 6.6. Rate constants for HO_2 + acetone from theory and experiment 1	176

Chapter 7

Table 7.1. Comparison of previous k_{isom}/k_{O2} for <i>n</i> -butoxy and 2-pentoxy	186
Table 7.2. Experimental conditions for <i>n</i> -butoxy experiments	192
Table 7.3. Experimental conditions for 2-pentoxy experiments.	. 193
Table 7.4. Compare our results to previous k_{isom}/k_{O2} for <i>n</i> -butoxy and 2-pentoxy	217
Table 7.5. Calculated integrated intensities for alkyl nitrites	. 221

Chapter 8

Chapter 9

Table 9.1. Kinetics model for <i>n</i> -butoxy	288
Table 9.2. Kinetics model parameters	292
Table 9.3. Chemical species calculated for this study	294
Table 9.4 Harmonic frequencies and intensities, straight chain, B3LYP	302
Table 9.5. Harmonic frequencies and intensities, straight chain, B3LYP vs CCSD	305
Table 9.6. Harmonic frequencies and intensities, 6-31+G(d,p) vs aug-cc-pVTZ	. 305
Table 9.7. Energies and frequencies of HOC ₄ H ₈ • and HOC ₄ H ₈ OO• conformers	307
Table 9.8. Harmonic frequencies and intensities, functional group positions	309
Table 9.9. Harmonic frequencies and intensities for n-butoxy model species	. 314
Table 9.10. First reduced kinetics model for <i>n</i> -butoxy	322
Table 9.11. Second reduced kinetics model for <i>n</i> -butoxy	. 322

Chapter 10

Table 10.1. Experimental conditions for alkoxy experiments	
Table 10.2. Experimental conditions for FTIR spectra of butyl nitrite samples 33	38
Table 10.3. Absolute and relative absorbances for A-X peaks. 34	42
Table 10.4. Observed and modeled HOC ₄ H ₈ OO• lifetime	44
Table 10.5. Parameters used for calculation of correction factors, k_{isom}/k_{O2}	48
Table 10.6. Comparison of k_{isom}/k_{O2} to literature	49
Table 10.7. Scale factors and [NO] in <i>n</i> -butyl nitrite samples	58

Appendix A

Table A.1. Laser performance with Quantel YG-661 Nd:YAG laser	366
Table A.2. Laser performance with Continuum Surelite III Nd: YAG laser	. 367

Appendix B

Appendix C

Table C.1. Comparison of CIS/6-31+G(d,p) to experiment, A-X of peroxy	.406
Table C.2. Comparison of TD-HF, TD-DFT to experiment, A-X of peroxy	. 409
Table C.3. Comparison of Guess=(Alter, Always) to experiment, A-X of peroxy	. 415
Table C.4. Comparison of scaled frequencies to experiment, A-X of peroxy	416

xxiii

Appendix D

Appendix E