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Abstract 

 This thesis describes laboratory experiments and electronic structure calculations 

on three chemical systems relevant to tropospheric ozone chemistry: peroxynitrous acid 

(HOONO), hydroxymethylperoxy radical formed from HO2 + HCHO (R1), and products 

of alkoxy isomerization (R2). R1 and R2 were studied experimentally using a gas flow 

cell that combined UV photolysis with cavity ringdown spectroscopy (CRDS). All 

chemical systems were studied using electronic structure calculations and kinetics 

modeling. 

HOONO is one of the products of the reaction OH + NO2, and acts as a temporary 

reservoir for HOx and NOx in the atmosphere. Torsional excitation of HOONO will break 

its internal hydrogen bond, leading to sequence band formation in the OH stretch 

spectrum. Chapter 3 describes a calculated 3-dimensional potential energy surface to 

examine torsional mode coupling and sequence band formation. We apply these results to 

previous CRDS kinetics studies of HOONO. 

The reaction of HO2 with carbonyls is believed to be a major sink of HOx and 

carbonyl compounds at reduced temperatures. R1 is the simplest of these reactions. 

Despite numerous previous studies, considerable uncertainty exists on the activation 

energy and rate constant of R1. Chapters 4–6 describe CRDS and electronic structure 

studies on the isomerization product, hydroxymethylperoxy. CRDS was used to make the 

first measurements of the OH stretch and A-X electronic spectra, and the kinetics of 

hydroxymethylperoxy chemistry. Electronic structure calculations were used to simulate 

the spectroscopic bands and examine the conformers of hydroxymethylperoxy and 

2-hydroxyisopropylperoxy. 
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Atmospheric alkoxy radicals can isomerize or react with O2, and each pathway 

has a different impact on ozone chemistry. Chapters 7–10 describe cavity ringdown 

spectroscopy, kinetics, and electronic structure calculations on the n-butoxy and 

2-pentoxy isomerization products, specifically -HOC4H8•, -HOC4H8OO•, 

-HO-1-C5H10•, and -HO-1-C5H10OO•. CRDS was used to make the first measurements 

of the A-X electronic spectrum of -HOC4H8OO• and clean OH stretch spectra of all four 

radicals. Relative kinetics data previously obtained using CRDS were reanalyzed to 

include the effects of additional alkoxy reactions. Electronic structure calculations were 

performed to explain the observations that the OH stretch absorption cross section differs 

between HOR• and HOROO•. 
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