Contents

Acknowledgments v

Abstract vii

List of Figures xiii

List of Tables xvi

Abbreviations xviii

1 Introduction 1
 1.1 The Fight against Cancer 1
 1.2 Personalized Non Invasive Molecular Imaging to Improve Cancer Treatment 3
 1.3 Outline and Scope of Thesis 6

2 Background and Review 8
 2.1 Targeted Cancer Nanotherapies 8
 2.2 Modulation of the Tumor Microenvironment to Enhance Drug Uptake 10
 2.3 Imaging in Oncology 11
 2.3.1 PET Basics 11
 2.3.2 MRI Basics 14
 2.3.3 Combining PET and MRI 20
 2.3.4 Digital Whole-body Autoradiography 22
 2.3.5 Imaging of Targeted Nanotherapy Uptake 24
 2.3.6 Imaging of Targeted Nanotherapy Response 25
3 Development of Simultaneous PET/MRI Technology for Robust In Vivo Studies

3.1 Further Considerations of PET Insert Effects on In Vivo MRI Performance
 3.1.1 Materials and Methods
 3.1.2 Results
 3.1.3 Discussion

3.2 A Robust Coregistration Method for In Vivo Studies Using a First Generation Simultaneous PET/MRI Scanner
 3.2.1 Abstract
 3.2.2 Introduction
 3.2.3 Materials and Methods
 3.2.4 Results
 3.2.5 Discussion
 3.2.6 Conclusions
 3.2.7 Supplemental Data

3.3 Phantom Designs for Robust In Vivo Coregistration of Hybrid Imaging Systems: Comparison of Semiautomatic and Automatic Approaches
 3.3.1 Introduction
 3.3.2 Materials and Methods
 3.3.3 Results
 3.3.4 Discussion

3.4 Quantitative, Simultaneous PET/MRI for Intratumoral Imaging with a MR-compatible PET Scanner
 3.4.1 Abstract
 3.4.2 Introduction
 3.4.3 Materials and Methods
 3.4.4 Results
 3.4.5 Discussion
 3.4.6 Conclusions
 3.4.7 Supplemental Data
A A Study of the Timing Properties of Position-sensitive Avalanche Photodiodes 159

B Receptor-targeted Iron Oxide Nanoparticles for Molecular MR Imaging of Inflamed Atherosclerotic Plaques 185

C Cooccurrence Matrices to Compare Multimodal Image Datasets: Further Considerations 199

D Synchronous PET/MRI Software Code 208

E MATLAB Implementation of a Unique Identifier for Multimodal Data Linkage 215

Bibliography 217
List of Figures

1.1 Therapeutics targeting different hallmarks of cancer. 2
1.2 Five year cancer survival rates, 2001–2007. 4

2.1 Enhanced permeability and retention. .. 9
2.2 A basic pulsed gradient SE sequence for diffusion MRI imaging. 16
2.3 DCE-MRI can infer tissue vascular function. 19
2.4 Real-time paradigm for PET/MRI studies. 21
2.5 PSAPD-based MR-compatible PET insert. 22

3.1 B_0 comparisons with and without the PET insert for the spherical phantom. 31
3.2 B_0 fieldmaps in the presence of the PET insert for the spherical phantom. 32
3.3 B_0 fieldmaps in the presence of the PET insert for the cylindrical phantom. 33
3.4 B_0 comparisons with and without the PET insert for the cylindrical phantom. 34
3.5 Relative B_1 maps with and without the PET insert. 34
3.6 B_{1u} comparisons with and without the PET insert. 35
3.7 Dynamic MRI time traces with and without the PET insert. 37
3.8 Signal drift quantification with and without the PET insert. 38
3.9 PET/MR FOV alignment phantom. ... 44
3.10 PET/MR FOV alignment strategy registers other phantom sets robustly. 45
3.11 Different spatial resolution of the PET and MR images. 48
3.12 PET/MR images of tumor and heart. 50
3.13 PET/MR alignment using different geometries. 50
3.14 PET guided MRS assay of MC38.CEA tumor. 51
3.15 MR images with PET on/off. ... 57
3.16 Schematic of automatic phantom. .. 61
3.17 Semiautomatic and automatic alignment phantom renderings. 62
3.18 Automatic phantom rod delineation. ... 63
3.19 Automatic axial alignment of images. .. 64
3.20 Alignment phantom PET/MRI images. .. 65
3.21 Quantitative PET/MRI evaluation phantoms. 71
3.22 PET/MRI scanner accuracy and stability within an imaging session. 77
3.23 Linearity and stability of the PET/MRI scanner across multiple imaging sessions. 78
3.24 Multimodal imaging of radiotracer uptake in tumors. 79
3.25 Pixel-based similarity across PET/MRI scanner (frozen specimens), microPET and autoradiography images. ... 80
3.26 Structure-based similarity among PET/MRI scanner (frozen specimen), microPET and autoradiography images. ... 81
3.27 In vivo simultaneous diffusion MRI/radiolabeled antibody PET reveals phases of antibody uptake. .. 83
3.28 Cooccurrence matrix analysis of functional PET and MRI data offers insight into tumor antibody uptake. ... 84
3.29 Resolution differences between autoradiography and PET. 85
3.30 Linearity of PET/MR scanner, microPET R4 and autoradiography. 90
3.31 Scatter plot of simultaneous diffusion MRI and PET antibody measurements at two different times after injection of 64Cu-labeled antibody. 91
3.32 Synchronous PET/MRI strategy. ... 92
3.33 Fast kinetics of small molecular agents necessitate synchronous PET/MRI. 94
3.34 MRI gradient effects on count rates. .. 96
3.35 MRI gradient effects on count rates for the PET insert. 97
3.36 MRI gradient effects on count rates for individual detectors. 98
3.37 Orientation of PET detector modules in MRI. 98
3.38 Energy spectra for different gradient conditions. 100
3.39 PET/MRI database setup. ... 104
4.1 Diffusion MRI is sensitive to early CRLX101 response. .. 115
4.2 Histogram analysis of diffusion MRI. ... 116
4.3 ADC changes over treatment week show efficacy of CRLX101. 117
4.4 Tumor volume size changes over treatment week. .. 118
4.5 A logistic model of tumor growth can be applied to ADC data. 119
4.6 Cellular proliferation rates for different treatment groups were calculated by applying ADC data to a logistic model of tumor growth. ... 120
4.7 Boxplots of cellular proliferation rates for different treatment groups. 120
4.8 Histological assessment of CRLX101 and CPT-11 response. 122

5.1 Study design for iRGD MRI. ... 131
5.2 AIF, tumor time curves and model fits from Magnevist injection. 134
5.3 Study design for Diffusion MRI/PET. .. 135
5.4 Heterogeniety of tumor CA uptake. ... 137
5.5 Vascular parametric maps for a single mouse over multiple days. 138
5.6 Mean percentage change from baseline, sorted by tumor K_{trans} value. 140
5.7 Mean percentage change from baseline, sorted by distance from tumor edge. ... 141
5.8 PET/MRI of radiolabelled-Herceptin uptake 1 hour post injection. 142
5.9 PET/ Diffusion MRI of radiolabelled-Herceptin uptake 3 and 20 hours post injection. 143
5.10 Immunofluoresence of antibody uptake with saline. 145
5.11 Immunofluoresence of antibody uptake with iRGD. 146
5.12 Distribution of antibody immunofluoresence with iRGD. 147

6.1 Simultaneous PET/MRI data can analyzed with image-based models. 156

C.1 Voxel-by-voxel comparisons between images with different spatial resolutions. .. 203
C.2 Correlation of baseline and blurred data at different FWHM. 204
C.3 Cooccurrence matrix comparison. .. 204
C.4 Concordance correlation coefficients for cooccurrence matrices compared to the control matrix. ... 205
List of Tables

2.1 Common positron-emitting isotopes .. 13
2.2 MRI contrast agents. .. 17
2.3 Comparison between PET and MRI ... 20
2.4 Current state of hybrid PET/MRI systems 23

3.1 Relative B_{1u} values with and without the PET insert 30
3.2 T_1 measurements with and without the PET insert 36
3.3 Centroid alignment error of phantoms using the PET/MR transformation scheme over multiple days. 49
3.4 Centroid alignment error as a function of location within the transaxial field of view. 51
3.5 18F-FDG-PET-guided 1H MRS. ... 52
3.6 Alignment displacements by different pulse sequences. 57
3.7 Alignment error using 2D transformation. 58
3.8 Alignment error using 3D transformation. 59
3.9 Alignment error comparison between automatic and semiautomatic alignment methods. ... 65
3.10 Image similarity metrics used to compare PET image quality with autoradiography. ... 75
3.11 Count rate differences across different gradient conditions for individual detectors. .. 99

5.1 Vascular parameters for whole ROI .. 139
5.2 Percentage change of vascular parameters from baseline for whole ROI 139
5.3 Area under curve for whole ROI. .. 141
5.4 Percentage change of vascular parameters from baseline for whole ROI 141
5.5 Mean ADC values at 3 and 20 hours post iRGD treatment. 144
5.6 Mean PET uptake values at 3 and 20 hours post iRGD treatment 144
5.7 Maximum PET uptake values at 3 and 20 hours post iRGD treatment 144
Abbreviations

\(^{18}\) F-FLT \(^{18}\) F-3’-fluoro-3’-deoxy-l-thymidine

\(^{18}\)F-FDG \(^{18}\) F-fluoro-deoxyglucose

ACR Activity concentration recovery

ADC Apparent diffusion coefficient

AIF Arterial input function

ANOVA Analysis of variance

APD Avalanche photodiode

AUC Area under the curve

BL Burkitt’s lymphoma

BOLD Blood oxygen level dependent

CA Contrast agent

CCC Concordance correlation coefficients

CEA Carcinoembryonic antigen

CoV Coefficients of variation

CPT Camptothecin

CT Computer tomography

CWSSIM Complex wavelet structural similarity index
DCE-MRI Dynamic-contrast enhanced MRI

DOI Depth of interaction

DOTA 1,4,7,10-tetraazacyclodecane-1,4,7,10-tetraacetic acid

DTPA Diethylene triamine pentaacetic acid

DWBA Digital whole-body autoradiography

EPI Echo planar imaging

EPR Enhanced permeability and retention

FA Flip angle

FLASH Fast low-angle shot MRI

fMRI Functional MRI

FOV Field of view

FWHM Full width at half maximum

GUI Graphical user interface

i.p. Intraperitoneal

i.v. Intravenous

ID Inner diameter

LSO Lutetium oxyorthosilicate

LV Left ventricle

MAP Maximum a posteriori

MR Magnetic resonance

MRI Magnetic resonance imaging
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRS</td>
<td>MR spectroscopy</td>
</tr>
<tr>
<td>NIM</td>
<td>Nuclear instrumentation module</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>OD</td>
<td>Outer diameter</td>
</tr>
<tr>
<td>OSEM</td>
<td>Ordered-subset expectation maximization</td>
</tr>
<tr>
<td>PAF</td>
<td>Platelet activating factor</td>
</tr>
<tr>
<td>PCC</td>
<td>Pearson’s correlation coefficients</td>
</tr>
<tr>
<td>PET</td>
<td>Positron emission tomography</td>
</tr>
<tr>
<td>PMT</td>
<td>Photomultiplier tubes</td>
</tr>
<tr>
<td>PSAPD</td>
<td>Position-sensitive avalanche photodiode</td>
</tr>
<tr>
<td>PSF</td>
<td>Point spread function</td>
</tr>
<tr>
<td>PSNR</td>
<td>Peak signal-to-noise ratio</td>
</tr>
<tr>
<td>QAR</td>
<td>Quantitative autoradiography</td>
</tr>
<tr>
<td>RARE</td>
<td>Rapid acquisition with relaxation enhancement</td>
</tr>
<tr>
<td>RF</td>
<td>Radiofrequency</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root mean squared error</td>
</tr>
<tr>
<td>ROI</td>
<td>Region of interest</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SE</td>
<td>Spin echo</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of the mean</td>
</tr>
<tr>
<td>SiPM</td>
<td>Silicon photomultiplier</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal to noise ratio</td>
</tr>
<tr>
<td>SPECT</td>
<td>Single–photon emission computer tomography</td>
</tr>
<tr>
<td>SSIM</td>
<td>Mean structural similarity index</td>
</tr>
<tr>
<td>TE</td>
<td>Echo time</td>
</tr>
<tr>
<td>TR</td>
<td>Repetition time</td>
</tr>
<tr>
<td>TRT</td>
<td>Treatment related toxicity</td>
</tr>
<tr>
<td>TTL</td>
<td>Transistor transistor logic</td>
</tr>
<tr>
<td>TUNEL</td>
<td>Terminal nucleotidyl transferase-mediated nick end labeling</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular endothelial growth factor</td>
</tr>
<tr>
<td>VOI</td>
<td>Voxel of interest</td>
</tr>
</tbody>
</table>