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ABSTRACT 

In the present Thesis, physics-based models of protein folding at the secondary and tertiary 

levels are developed to resolve long-standing issues of protein folding kinetics. As 

discussed in the Introduction, the main objective is to explore fundamental limits imposed 

on the length and time scales involved in protein folding. Protein folding is also placed 

within the broader context of macromolecular dynamics, which is extensively studied in the 

unfolded, folded, and unfolding regimes for the key molecular motifs of cellular 

biochemistry, including lipids, nucleic acids, and proteins. The effect of the water hydration 

and temperature are systematically probed to elucidate the crucial role of the environment 

in macromolecular stability and dynamics. For a wide range of bio-molecular phenomena, 

the observed collective behavior is shown to arise directly from first principles. 

Throughout, the emphasis is on analytic results free of tunable parameters, supported by 

ensemble-convergent computational simulations, and corroborated by experimental 

evidence.  
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NOMENCLATURE 

Space metric. Angstrom (Å) = 10
–10

 meters; nanometer (nm) = 10
–9

 meters;                

micron (�m) = 10
–6

 meters.  

Time metric. Femtosecond (fs) = 10
–15

 seconds; picosecond (ps) = 10
–12

 seconds; 

nanosecond (ns) = 10
–9

 seconds; microsecond (�s) = 10
–6

 seconds.  

Ultrafast process. A process occurring in less than one nanosecond.  

Energy metric. Kilocalories per mol (kcal/mol) = number of kilocalories per 

6.022 × 10
23

 (Avogadro’s number) copies of the species. 1 kcal/mol = 4184 

joules/mol � 0.04336 electron volts. 

Nucleotide. Molecules composed of a nucleobase (nitrogenous base), a five-

carbon sugar (either ribose or 2-deoxyribose), and one phosphate group.  

Deoxyribonucleic acid (DNA). Polymers composed of four types of 2-

deoxyribose nucleotides (A, T, C, G) linked by ester bonds. The sequence of bases 

in the polymers encodes the genetic information. The DNA segments carrying this 

genetic information are called genes. Due to complementary hydrogen bonding 

between A and T, and C and G, two anti-parallel polymers of DNA form a 

complementary DNA double helix. 
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Ribonucleic acid (RNA). Polymers composed of four types of ribose nucleotides 

(A, U, C, G) linked by ester bonds. RNA is used primarily to transcribe and 

translate the genetic sequence from DNA to proteins.  

Amino acid. Molecules containing an amine group, a carboxylic acid group, and 

a side chain that is specific to each amino acid.  

Polypeptide. A single linear polymer chain composed of twenty types of naturally 

occurring amino acids bonded together by peptide bonds between the carboxyl 

and amino groups of adjacent amino acids.  

Protein. A polypeptide present in living organisms. The sequence of amino acids 

in a protein is defined by the sequence of DNA called the gene.  

Cell. The basic structural and functional unit of all known life. It is the smallest 

unit of life that is classified as a living thing. In plants and animals, cell sizes 

range from 1 to 100 �m. 

Cell nucleus. A membrane-enclosed organelle containing most of the cell's 

genetic material. 
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C h a p t e r  1  

INTRODUCTION 

 

Starting at the ecosystem level, and magnifying to the population, organism, organ, 

cellular, and macromolecular scales, the lengthscale of biological complexity spans 12 

orders of magnitude from nanometer to kilometer. In conjunction, the time scale of 

biological dynamics ranges over 17 orders of magnitude, from (sub)nanoseconds to years. 

Amazingly, life maintains both complexity and robustness, which is defined as structural 

and functional reproducibility, over this vast length and time domain (Figure 1.1, top). The 

root of this complex robustness can be traced, at the smallest scale, to the nano-machines 

called proteins, which are the cleaners, builders, motors, messengers and transporters of the 

cell (1). Proteins are linear chains composed of 20 types of amino acids; the number of 

possible sequences increases exponentially with the length of the protein. The particular 

sequence of every protein is encoded by a corresponding segment of DNA, which, in the 

eukaryotic cell, is stored in the nucleus. When a particular protein is needed, its DNA 

blueprint is copied and the code translated into the matching amino acid sequence (Figure 

1.1, bottom left). The linear chain is then molded into a 3D conformation, or fold, that will 

carry out the protein’s particular function (Figure 1.1, bottom center and right). Called the 

native fold, this structure is stabilized by chemical forces both within the protein and 

between the protein and its surrounding environment (mostly water) (2). 

 Life requires proteins to be functionally reliable, so each protein sequence has 

evolved to possess a unique fold (or set of folds) that is more stable than all other possible 
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Fig.  1.1.  Proteins:  the  molecules  underpinning  biological  complexity. Being  largely  responsible  for  the
structural and functional processes within and between cells, directly coded for via the genetic sequence, and often
able  of  self-assembly (folding)  into their  highly inhomogeneous  functional  forms with  high fidelity,  proteins  are
distinguished as the building blocks of life. Building upon proteins' functional diversity and genetic programmability,
progressively larger scales of biological structure are able to inherit the unique combination of precision, robus tness,
and  complexity  which  originates  with  proteins  and  extends  ultimately  to  the  scale  of  the  organism  (top).
Biomolecules such as proteins share a common theme of being intrinsically one-dimensional chains composed of a
sequence of  subunits  (bottom  left),  which via  conformational  rearrangement  (folding)  attains  a  functional  form
(bottom center) optimized for its function (bottom right). In the case of proteins, whose structure is most complex
and function most ubiquitous, the folding process often occurs spontaneously in aqueous environment. The purpose
of  this  thesis  within  the  context  of  molecular  biology  is  to  understand  the  dynamical  process  by  which one-
dimensional sequence information is transformed into three-dimensional structural information (blue inset), as well
as to elucidate the roles of intrinsic (dis)order, entropy, temperature and solvent.
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folds. Because native folds are highly complex and irregular, their stability is one of the 

most awesome examples of how natural selection can lead to creations that are both 

intricate and robust. It therefore came as a shock when Anfinsen discovered that many 

proteins can fold by themselves without the aid of any cellular machinery (3). There are 

simple things that self-organize (freezing water) and complicated things that external 

machinery reliably makes (airplanes). There are also many examples of complicated 

phenomena that non-reliably self-organize (the weather). Proteins are unique because they 

are complicated structures that reliably self-organize. This seemingly impossible 

engineering feat at the molecular level is the scaffolding that allows life to be 

simultaneously complex and efficient. In this sense, proteins are responsible for robust 

biological complexity at all larger length scales. We limit our focus in this Thesis to the 

self-folding of macromolecules such as proteins, and will not discuss the equally interesting 

subject of their function.   

The means by which a protein attains its secondary and tertiary structure, called the 

protein folding problem (4), is still unclear. Because the fundamental physics of the folding 

mechanism involves the self-interactions of a polymer with twenty kinds of different 

constituent monomers (and the solvent), it seems tantalizingly plausible that protein 

structure can be predicted from first principles. Predicting protein structure would facilitate 

understanding of protein functions in the cell. On the practical side, a solid physical theory 

for folding would allow the design of protein sequences that can fold into desirable 

structures useful in medicine, nano-machinery, or materials science. Equally importantly, a 

complete theory of protein folding would provide valuable insight into the general problem 
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of finding stable equilibrium solutions with which to describe a heterogeneous system 

characterized by a very large and complex conformational space.  

The problem of protein folding can be decomposed into two complementary tasks. 

The first one implies finding the equilibrium ground state(s) corresponding to the protein 

sequence under study. With exponentially large number of degrees of freedom, and a lack 

of symmetry, it seems that the ground state should be degenerate and therefore the protein 

should be in a large number of different structural states at equilibrium rather than a unique 

native structure crucial for effective protein function (5). The second problem involves 

identifying the mechanisms and time scales for folding. Levinthal noted that a random 

search for the native-fold structure within the conformational state space would result in 

longer sampling times than the age of the universe even for small proteins, rather than the 

microsecond-to-second time scale typical of protein folding (6). Thus, proteins constitute a 

subset of all possible polypeptide sequences which possess both native state specificity and 

fast folding. The molecular basis for these crucial properties is the subject of ongoing 

investigation.  

The objective of this Thesis is to help address, from a theoretical perspective, the 

latter problem: how do proteins fold (Figure 1.1, bottom inset)? We will tackle this 

problem at all the scales involved, as well as place the process of protein folding in the 

general context of macromolecular dynamics. Specifically, the following questions will 

be asked: (a) what are the characteristic rates and rate limiting mechanisms of structure 

formation on different length scales within proteins? (b) what is the quantitative 

resolution of Levinthal’s paradox? (c) how is protein folding different from other types of 
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conformational dynamics? (d) what is the role of water in protein folding and dynamics? 

In the process of answering these four questions, we find that they are intimately 

connected.  

We review the essential experimental and theoretical background in Chapter 2, 

and summarize the recurrent methodologies employed in this research in Chapter 3. In 

Chapter 4, we elucidate the nature of structural dynamics on different length scales within 

macromolecules across a broad range of conditions and species. The conditions include 

the unfolded and folded states as well as the unfolding transition at various temperatures 

and in the presence and absence of solvent; the species we studied represent the following 

classes of biological macromolecues: fatty acids, nucleic acids, and proteins. The 

temperature-induced processes and the accompanying temporal behavior are associated 

with qualitatively different transformations taking place at different length scales across 

macromolecules as well as in different solvation states. Stimulated by elucidation of these 

intrinsic properties of macromolecular dynamics in Chapter 4, in Chapter 5 we tackle the 

unresolved issues of protein folding at both the secondary and tertiary structural levels, 

identifying both the speed limit and length limit of protein folding. In particular, it is 

found that the hydrophobic force quantitatively resolves the Levinthal paradox. Together, 

these two Chapters clarify the current understanding of macromolecular dynamics and 

protein folding, as well as the essential and active role of water. The resulting picture is 

based on theoretical results, complemented by state-of-the-art computational simulations, 

and supported by experimental evidence.  
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C h a p t e r  2  

BACKGROUND 

 

2.1 EMPIRICAL  

2.1.1 Synthesis and Structure of the Key Biomolecules   

Nucleic acids. Deoxyribonucleic acid (DNA) encodes for proteins and is therefore the 

genetic blueprint for all life, responsible for both diversities and similarities throughout the 

biosphere. The molecular structure of DNA is a chain composed of four types of 2-

deoxyribose nucleotide bases, adenine (A), thymine (T), cytosine (C), and guanine (G), 

linked together by ester bonds, with the sequence of nucleotides in the chain referred to as 

the genetic sequence. Two strands of DNA chain combine to form a double helix stabilized 

by complimentary interstrand hydrogen bonds between adenine and thymine (A-T base 

pair) and cytosine and guanine (C-G base pair). Because the DNA sequence is organism-

specific, and because it does not vary noticeably from one cell to another under normal 

circumstances, DNA macromolecules represent an invaluable source of biological, medical 

and forensic information which has been subject to intense investigation since the 

discovery of their spatial structure (7) from X-ray fiber diffraction patterns (8, 9) in 1953. 

With single-crystal X-ray diffraction (10, 11), the macromolecular architecture was 

resolved at the atomic level, revealing, e.g., the two hydrogen bonds characteristic of the A-

T base pair, as well as the three hydrogen bonds characteristic of the C-G base pair. In 

addition to base pairing between the two strands of the double helix, base stacking of �-
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orbitals along each strand helps stabilize the macromolecular structure. Manipulations of 

DNA sequence and structure via direct genetic engineering are now widely used to 

improve crops and livestock quality (12), as well as to produce biological tissues and 

substances with desired characteristics (13). In addition, the A-T and C-G base-pair 

specificity renders DNA an ideal material for computing (14-16) and structural self-

assembly at the nano-scale (17-19). The double stranded helix of the DNA is unique in 

many aspects, including chemical and thermodynamic stability, packing efficiency, and 

site-specific strand separation which prevent harmful mutations, facilitate folding, and 

allow for transcription, respectively. For example, there are 23 pairs of DNA 

macromolecules packed into the micron-sized nucleus of a human cell (20), despite the fact 

that, if pulled, they would stretch to 3 meters (21). Despite such tight packing, DNA is 

easily accessed and avoids tangling due to its fractal folding topology (22). Both 

macromolecular structure and (un)folding dynamics of DNA are, therefore, central to our 

understanding of a variety of processes taking place in vivo. 

 The ribonucleic acids (RNA), which are mainly involved in the transcription and 

translation process, but also have other roles, e.g., in signaling or catalysis, are structurally 

identical with DNA, except for the presence of a hydroxyl group at the 2’ position of the 

ribose sugar site of each nucleotide. This chemical distinction causes the RNA double helix 

to adopt the A-form geometry characterized by a very deep and narrow major groove and a 

shallow and wide minor groove (23), rather than the more even B-form most commonly 

observed in DNA (24). RNA macromolecules, in addition to forming the double helix 

motif, also generally possess heterogeneous base-pairing patterns and structures (25).  
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Proteins. Largely responsible for the mechanical and chemical work done in the cell, 

proteins are linear chains of amino acids connected by peptide (covalent) bonds. Although 

there are only twenty different types of amino acids available to life, a protein of length L 

may be characterized by 20L amino acid sequences; this exponential variability in sequence 

is ultimately responsible for the variability of function among proteins. The particular 

sequence of a protein is encoded by a corresponding sequence of nucleic acids of the DNA 

in the nucleus of the cell. To synthesize the protein, mRNA transcribes the nucleic acid 

sequence from the DNA. The information from the mRNA is translated into a protein 

sequence within large proteins called ribosomes, with tRNA translating between nucleic-

acid and amino-acid sequences by mapping every three-nucleic-acid segment on the 

mRNA to a unique amino acid on the protein chain. The sequence of amino acids that 

defines the protein architecture is called the primary structure. The 3D spatial structure of 

the protein is characterized by periodic and mostly local interactions, called secondary 

structure, global topological and geometrical morphology called tertiary structure, as well 

as multi-protein aggregation called quaternary structure (Figure 2.1). Large proteins are 

typically composed of structural subunits, called domains, which tend to fold independently 

(26). Similarly to DNA, folded proteins are tightly packed, with cavities accounting for less 

than 2% of their total volume (27), such that the interiors of globular proteins are as dense 

as those of crystals of their constituent amino acids (28).  

 In 1951, based on the structures (29) of amino acids and the planar nature of the 

peptide bond, Pauling and Corey correctly proposed the existence of the �-helix and �-

strand motifs, both stabilized by hydrogen bonds (Figure 2.1, left), as the fundamental 

building blocks in protein secondary structure (30, 31). Almost all proteins are 
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Fig. 2.1. Protein structure. Proteins possess secondary structure consisting of repeating periodic motifs stabilized
by hydrogen bonds along the chain backbone (the two main types being ��������	
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characterized by at least one type of secondary structure (5), whereas the number of 

possible tertiary structures is vast and grows with protein size (Figure 2.1, right). The native 

protein fold is stabilized by a range of interactions including the covalent disulfide bridge, 

hydrogen bonds, purely electrostatic interactions, and van der Waals forces (5). In addition, 

the forces governing internal rotation along the chain backbone, as well as solvent-solute 

hydrogen bond formation, are known to be powerful forces influencing the folding process 

(5, 32). Despite the exponentially large conformational space and complicated interactions 

involved, proteins can fold into their complex 3D native folds with high fidelity, and many 

can do so without the aid of molecular chaperones guiding this process. The task of 

constructing a predictive model of protein folding, called the protein folding problem, is 

one of the central and elusive goals of modern science (4). The unique native fold(s) of 

each protein are structurally and electronically suited to the fine-tuned functional purpose 

of the protein, which may include signaling, metabolism, degradation, catalysis, 

infrastructure, mechanical motion, or regulation (5). Protein misfolding not only leads to 

inefficiencies in these tasks, but may also result in potentially toxic side-effects such as 

aggregation, e.g., in amyloid formation (33). 

There are currently over 75,000 protein structures in the online Protein Data Bank 

(PDB) depository (34), which are categorized into about 1,300 topologically distinct 

folding conformations. The known proteins range in size from tens of amino acids to over 

5,000 amino acids, with mean and standard deviation of 640 and 960 amino acids, 

respectively; in contrast, most domains that comprise proteins are less than 200 amino 

acids in size (34). In addition to studying the naturally occurring proteins, engineering 

novel proteins with desired functionality, especially for drug design (35, 36), is also a 
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major avenue of research (37-39). However, the complex interplay of many different forces 

giving rise to both secondary and tertiary structure, in contrast to the dominant Watson-

Crick interactions in the case of nucleic acids, makes protein structural prediction and 

design much more difficult than that of DNA (40); the bottleneck of protein engineering is 

therefore the protein folding problem.  

 

2.1.2 Experimental Measurements  

To observe the structure and dynamics relevant to macromolecular (un)folding, 

experimental techniques with sufficient spatial and temporal resolutions are needed. 

Generally, different techniques involve trade-offs between these two desired properties, 

and one or another is chosen depending on the specific system under study and question 

of interest. For example, X-ray crystallography can capture the (static) ground-state 

structures of proteins to atomic resolution, whereas fluorescence spectroscopy can probe 

the dynamics of coarse-grained structural features, such as intra-chain contacts, with 

picosecond temporal resolution. Although the work reported here is purely theoretical, 

understanding the possibilities offered by, as well as limitations imposed on, the 

experimental methods is instrumental in evaluating the predictions made using analytical 

or computational methods. As we have found, experimental methods can also aid in 

identifying attractive theoretical coarse-graining approaches (see Sections 3.3 and 4.2 for 

the method and its application, respectively). Below, we briefly outline the experimental 

techniques relevant to the studies reported here, which broadly fall under the two major 

categories: spectroscopy and diffraction. 
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Spectroscopy. Spectroscopic techniques rely on the dependence of the electromagnetic 

absorption or emission properties on the state of the macromolecule under study. During 

the course of fluorescence spectroscopy measurements, the distance between two 

regions of a macromolecule is revealed by enhancement (or quenching) of fluorescence 

of a probe attached to one of the regions, upon close proximity to the other. A wealth of 

information about temporal evolution of the conformational state of the macromolecule 

can thus be obtained (41, 42). Infrared (IR) spectroscopy relies on the fact that the 

vibrational spectra of macromolecules depend on their conformations. To probe the 

secondary structure, the band in the IR spectra corresponding to the stretching frequency 

of the C=O bond of the peptide backbone is monitored. Because formation of, e.g., �-

helices changes the resonant frequency of this vibrational mode, the resultant spectral 

shift can act as a gauge of the secondary structure content. In addition, by engineering 

peptides with isotope substitutuents occupying desired sites within a macromolecule, the 

(un)folding behavior of a specific site can be pinpointed. For example, by substituting for 

13C at a C-site of interest, the heavier mass of the isotope results in a shift of the 

vibrational frequency in the amide I frequency band, and any change of this shifted 

component of the spectrum can be attributed to the conformational dynamics at the 

substitution site (43-45). Rather than directly inducing vibrational motions in the IR 

domain, ultraviolet resonance Raman spectroscopy (UVRS) excites the studied 

macromolecule at a frequency that overlaps with a particular electronic absorption band. 

If the probing laser frequency is resonant with the excited electronic state, these 

excitations will selectively transmit their energy to certain amide vibrational modes, 

depending on the molecular conformation. For example, the intensity and frequency 
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change of these selectively enhanced vibrational modes are characteristic of secondary 

structure content, as well as solvent exposure of aromatic residues (46, 47). Circular 

dichroism (CD) spectroscopy takes advantage of the fact that protein backbone 

conformation determines the relative absorbance of right- and left-circularly polarized 

light in the far-UV spectral domain. Right-handed and left-handed �-helices, as well as �-

strands and random-coil configurations, are all characterized by distinctive absorption vs. 

frequency profiles (or CD “fingerprints”). As a result, CD spectroscopy is the most 

commonly used method to determine the (equilibrium) secondary structure content. 

During the course of time-resolved CD measurements, rapid-mixing stopped-flow 

techniques are typically used to induce protein (un)folding by adjusting the solvent 

composition (48). Due to the (diffusion-limited) solvent mixing rate, the temporal 

resolution of CD is confined to the microsecond time scale. Nuclear magnetic 

resonance (NMR), which utilizes knowledge of magnetic spin-spin coupling 

characteristic of different nuclei to translate the measured spin relaxation time following 

excitation by a radio-frequency magnetic field into information about the inter-nuclear 

distances, is the most prevalent alternative to crystallography in determining protein 

structure. Although the method is restricted to small proteins (tens of kilodaltons), it is 

the only method available to date with which to determine the atomic-resolution 

structures of macromolecules characterized by poor crystallinity and/or large disorder in 

the solid state. Temporal resolution of NMR measurements is typically limited to time 

scales longer than 100 microseconds (49). Finally, the ability to move and manipulate 

nanoparticles by attaching them to optically trapped beads has opened up the way to 

studying individual macromolecules. The main advantage of such studies is the ability to 
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tease out step-wise or reversible motions associated with, e.g., DNA transcription (50) or 

rotation of protein motors (51), that would otherwise be smoothened out by ensemble 

averaging. Notably, combining this technique with fluorescence spectroscopy has enabled 

conformational probing of individual molecules (52). 

Recent studies of time-resolved macromolecular (un)folding using the above 

spectroscopic methods have been made possible by advances in the laser-based 

experimental techniques leading to the modern temperature-jump (T-jump) 

instrumentation. During the course of a laser-induced T-jump experiment (53), a heavy-

water (D2O) solution containing the biomolecules under study is heated by a near-IR 

nanosecond laser pulse, typically by tuning the exciting-pulse frequency to match that of 

the first vibrational overtone of water (the H–O stretching frequency). The water 

molecules are excited within picoseconds, and they subsequently relax back to the ground 

state through a non-radiative process. Because proteins do not directly absorb the near-IR 

radiation energy, their heating occurs via ultrafast (thermal) absorption of energy from 

the water, which precludes undesirable side effects such as photo-ionization or localized 

superheating. The temperature change is calibrated by monitoring changes in the infrared 

absorption of water, of which the temperature-dependence is well known. Alternatively, 

changes in fluorescence emission of a dye with known temperature-dependent quantum 

yield can also be used. 

Diffraction. The diffraction-based experimental techniques take advantage of the fact that 

the superposition of waves scattered from particles, such as atoms, is the Fourier transform 

of the inter-nuclear distances (“scattering terms”) defining the geometric arrangement of 
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the atoms. Consequently, the geometric structure can, in principle, be obtained by inverse-

Fourier transforming the resulting wavefunction. Because charge-coupled device (CCD) 

detectors are known to register only the amplitude of the function (the complex 

wavefunction is projected onto the space of a real observable during the course of photon 

detection), the loss of the phase information implies that the inverse Fourier transform can 

yield only a pair-wise distance density distribution (the so-called radial distribution 

function), rather than a set of exact atomic coordinates; to extract information about 

scattering phases, the analysis needs to be augmented by using heavy-atom substituents 

and/or system-specific constraints (54). The relatively weak scattering of electromagnetic 

radiation limits the practical usage of diffraction measurements to crystalline samples, for 

which periodically repeating inter-nuclear distances give rise to sharp (Bragg) diffraction 

peaks in reciprocal space. Ever since the pioneering work of von Laue (55) and Bragg (56) 

in harnessing the above properties of wave interference, X-ray diffraction, which utilizes 

electromagnetic radiation of wavelength comparable to the inter-atomic spacing, has been 

used to reveal the spatial structure of matter. In regard to biomolecules, beginning with the 

pioneering study of myoglobin (57), X-ray crystallography has produced the vast majority 

of protein and nucleic acid structures known to date (58). However, the need to perform X-

ray diffraction measurements on crystalline samples restricts the study of biological 

macromolecules to static, highly artificial environments (which are often difficult to 

prepare), and therefore limits practical applications of the method in the study of 

macromolecular dynamics and function. 

Fortunately, because of the particle-wave duality (� = h/p, where � is the 

wavelength of a particle of momentum p and h is Planck’s constant), diffraction 
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experiments are not limited to electromagnetic radiation. Notably, in the case of electrons 

being scattered, electromagnetic lenses can be constructed which inverse-Fourier transform 

the signal before detection to generate a real-space image, thereby capturing the structural 

information (59). Due to the increased momentum associated with � approaching the 

magnitude of inter-atomic spacing, the scattering cross-section of electrons is much larger 

than that typical of X-rays. This may be a serious disadvantage from the perspective of 

radiation damage and multiple scattering processes (60), but can be advantageously used to 

study non-crystalline samples of, e.g., isolated or membrane-bound macromolecules for 

which dynamical information can be obtained (61). In contrast, the X-ray scattering cross-

section is too small to yield a satisfactory signal-to-noise ratio for such systems. In 

addition, the accompanying radiation damage can be reduced by performing experiments 

on samples embedded in vitrieous (non-crystalline) ice and/or performing studies of large 

3D macromolecular structures with the aid of other sources of information, such as atomic-

resolution X-ray or NMR structures of some of the constituent structural domains (62). 

Recent experiments aiming at delivering intact biological macromolecules into the gas-

phase, based on the technique of laser desorption developed in this laboratory (63-65) and 

in part motivated by the simulations reported below (Section 3.3 and 4.2), pave the way for 

prospective electron diffraction studies of biomolecular dynamics in vacuo. 
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2.2 THEORETICAL 

2.2.1 Statistical Mechanics of Macromolecules   

Much of the theoretical understanding of protein folding comes from applying 

statistical mechanical analysis to some coarse-grained representations of proteins. Usually, 

the goal is to construct a representation of the system such that a physically meaningful 

partition function can be obtained. For biological systems, the conditions of interest are 

constant temperature and pressure (298 K and 1 atm, respectively). The number of solvated 

macromolecules may be fixed at one if the effects of crowding and aggregation are 

disregarded. The solvent molecules are either treated as part of the temperature bath or 

constitute a unit cell around the solute which is propagated in space using periodic 

boundary conditions. Thus, structural dynamics of biological macromolecules are generally 

modeled using canonical ensembles of constant number, temperature, and pressure (NPT). 

After dividing up the macromolecular conformational space into N discrete sub-states 

(where N is chosen based on the level of coarse graining desired for the system under 

study), the canonical partition function, Z, is represented by the sum of the statistical 

weights of all sub-states: 

  � ��
�

��
N

i
i kTGZ

1
/exp ,    [2.1] 

where k and T are Boltzmann’s constant and absolute temperature, and the Gibbs free 

energy is given by Gi = Hi – TSi, with Hi and Si, being the enthalpy and entropy of the i-th 

sub-state. Each sub-state is typically defined as consisting of Ni distinct microstates, each of 

which is characterized by (identical) enthalpies Hi; then, the entropy of the i-th sub-state is 

17



 

 

�
Si = k lnNi. For example, each sub-state of a chain that can make contact bonds with itself 

can be defined by a unique set of contact bonds called a contact map; in this case, the 

number of microstates in a given sub-state of the chain equals the number of distinct 

conformational states consistent with the corresponding contact map. For a protein with a 

single folded (native) sub-state F, the partition functions of the folded and unfolded 

ensembles are given by ZF = exp(–GF/kT) and ZU= Z – ZF, respectively; the equilibrium 

fraction of properly folded proteins is therefore ZF/Z. The free energies of states, such as 

the folded and unfolded states, are GF = –kTlnZF and GU = –kTlnZU, respectively. A 

macromolecule is considered folded when ZF/Z > 1/2 which corresponds to GF < GU. Often, 

the main challenge in calculating the free energy differences between individual states of 

the system under study is related to defining the sub-states and calculating their entropies, 

whether analytically (Sections 4.2.1, 5.1.2, and 5.2) or by explicitly sampling the states 

computationally to obtain the population fractions and, by taking the logarithm, the free 

energies (Sections 4.2.1, 5.2). The analytical method generally involves some form of 

coarse-graining approximation in mapping to the sub-states, such as, e.g., representing the 

continuous conformation space on a discrete lattice (66). Alternatively, using the Jarzynski 

equality theorem (67): 

� � )/exp(/exp kTGkTW ���� ,   [2.2] 

where W and �G are the work applied to transition between two states and the free 

energy difference between the states, respectively, and the angular brackets denote 

ensemble averaging. In the adiabatic limit in which the transition is taken to be slow 

enough to be reversible, the work equals the free energy difference, whereas for more 
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realistic irreversible work, the sum over the exponent of the work ensures that the 

average work exceeds the free energy difference, with the excess energy dissipated as 

heat. Qualitatively, this is identical to the conclusion obtained by invoking the second law 

of thermodynamics. Yet, quantitatively, in the form of an equality, Equation 2.2 can be 

used to computationally obtain the �G between two states of a potentially complicated 

system by repeatedly inducing transitions from one state to the other and averaging the 

exponent of the work performed. The above theorem, which has been extended beyond 

thermodynamic ensembles to general microscopically (but not necessarily 

macroscopically) reversible stochastic systems (68), may be used to accurately determine 

free energy differences for ensembles that are too large or too complex for analytical 

modeling or unbiased computational sampling.  

For polymer chains such as proteins, the different conformational sub-states, 

which are defined in accordance with the coarse-graining representation chosen (e.g., 

denatured vs. extended, folded vs. unfolded, or lower-energy vs. higher-energy native 

conformations), are favored or disfavored depending on the intrinsic properties of the 

chain, and other commonly varied parameters. The phase diagram representing the 

boundaries between the sub-states as a function of parameters such as solvent 

environment, chain density, temperature, and pressure, is generally nontrivial to obtain. 

For example, when distinguishing the sub-states by geometric size (extended vs. 

compact), the radius of a macromolecular chain of length L will scale as R L�. In the 

absence of solvent, the chain will form a globule consistent with a random walk:  � > 1/2, 

with the inequality arising from excluded-volume (steric-repulsion) effects that tend to 
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swell the globule and decrease �. When placed in a solvent in which solvent-chain 

interactions are disfavored relative to intra-chain interactions, the chain will tend to 

contract to avoid contact with the solvent. When the solvent-induced contraction exactly 

balances the excluded volume effect, � = 1/2 and the system is said to be at the �-point 

(69). If the solvent-chain interaction becomes even more unfavorable the chain is said to 

be in a poor solvent, and the globule contracts as the solvent-chain interaction energy 

increases until the globule squeezes out all the solvent and its volume is roughly equal to 

that of the chain, � = 1/3. On the other hand, starting from the �-point, if the relative 

solvent-chain interaction free-energy is decreased, the chain is said to be in a good 

solvent and will swell. In the limit of the energy of solvent-chain interactions 

approaching that of the intra-chain interactions, i.e., when the solvent is composed of 

chain monomers, � =3/5 (69). 

 The nature and intensity of solvent-chain interactions can be manipulated not 

only by changing the solvent type, but also by adjusting the temperature of the system. 

For example, many biological macromolecules experience poor solvent conditions when 

placed in aqueous solution at room temperature (70), leading to compact hydrophobic 

collapse; this phenomenon is instrumental in regard to both the thermodynamic and 

kinetic aspects of protein folding (Sections 2.2.2 and 5.2, respectively). The poor solvent 

condition arises from an effective unfavorable solvent-chain interaction free energy 

penalty due to maximization of solvent entropy, which favors compact chains because 

they minimize trapping of solvent molecules. If the temperature is decreased, the 

statistical weight of this solvent entropy contribution decreases, thereby favoring the 

extended chain. At a critically low temperature, the chain enters the good solvent regime 
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and unfolds to favor the extended ensemble: Gcompact > Gextended. As the temperature is 

increased the free energy component due to conformational chain entropy increases, and, 

above the unfolding temperature, the free energy of the extended sub-state again becomes 

lower than that of the compact sub-state: Gcompact > Gextended. Therefore, proteins 

experience both cold and heat denaturation below and above room temperature, 

respectively (71).  

Importantly, the many degrees of freedom characteristic of large biopolymers 

often give rise to dynamical conformational fluctuations that determine the mechanism 

and time scale of the thermodynamic transitions between individual sub-states of interest. 

These fluctuations occur on many length scales ranging from (atomic-scale) local 

rotations and vibrations to (molecular-scale) global conformational motions. Concerted 

local motions can drive global dynamics; conversely, the global motions can transfer 

energy to ever-smaller scales until it is dissipated as heat on the atomic scale, similarly to 

the hierarchical energy cascade of turbulent flow (32, 72). Because larger-scale motions 

encounter more of a steric frustration, at a sufficiently low temperature, called the glass 

transition temperature, such motions are “frozen out,” so that the conformational barrier 

prevents the kinetic accessibility of the lowest free energy states (73).  

 

2.2.2 Protein Folding 

 The considerations of Section 2.2.1 are applicable to macromolecules in general. 

Yet, protein folding requires thermodynamic stabilization and kinetic accessibility of a 

single (or, in some cases, a few) unique native state(s), which usually includes only local 
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perturbations around one microstate. This presents significant challenges beyond those 

associated with the more typically studied transitions between high-entropy, coarse-grained 

sub-states (e.g. “compact” or “extended”). A comprehensive solution to the protein folding 

problem outlined in Section 2.1.1 would be a method which takes the amino acid sequence 

(primary structure) of a protein as input, and provides the secondary and tertiary structure, 

the folding time, and the dominant folding mechanisms and pathways as output. In 

contrast, because of the difficulty of the protein folding problem, this area of research is 

currently dominated by “means-based” and “ends-based” theories and methodologies. 

Whereas the former seek to understand the process from physical principles, the goal of the 

latter is to enable native state prediction by any reliable means. The latter approach includes 

both physicochemical considerations as well as bioinformatics, which employs sequence 

and structure databases to extract useful patterns. For example, the sequence alignment 

technique exploits the idea that two regions of the sequence that are evolutionary co-

conserved are likely to be close to each other in the native state structure (74). By 

systematically analyzing these evolutionary correlations, sequence alignment has been 

shown to produce enough pair-wise contacts to constrain the folding topology, which, 

when combined with geometrical and electrostatic constraints, can lead to accurate 

prediction of macromolecular structure (75). The most successful structure prediction 

algorithms make use of effective heuristics to intelligently search the conformational space 

as well as to score the candidate structures; for example, a successful technique is based on 

finding local sub-sequences that match sequences in a database of known structures 

whereas the degrees of freedom of the sub-sequence are fixed during the search (76, 77). 

Here, we are predominantly concerned with the means-based (physics) investigations rather 
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than with the ends-based statistical algorithms, although it is hoped that attaining ever-

deeper understanding of the underlying physics will one day lead to accurate 

macromolecular structure prediction, thereby unifying the field of protein folding.   

 It is remarkable that structural and energetic changes caused by conformational 

interconversions in biological macromolecules are controlled by a subtle balance of weak 

forces such as hydrogen bonding, electrostatics, dispersion, and hydrophobic interactions 

(78). The net result is the emergence of a unique function out of complexity. One example 

is the rotational motion in biopolymers, which is known to largely determine the stability of 

the secondary and higher-order molecular structures as well as to control the dynamics of 

their (un)folding. The potential energy barriers to rotation about the backbone torsional 

(Ramachandran) angles (79), which define the conformation of a protein, are surmounted 

and structures are stabilized by formation of bonding intramolecular interactions (80). 

These interactions, in their turn, are weak enough to be disrupted at the expense of a few 

kcal/mole, or ~0.1 eV, underscoring the fluctional nature of the native fold. The 

conformational dynamics, which is at the heart of complex macromolecular function, is 

largely determined by the topology of the free energy landscape guiding the (un)folding 

process (81). Depending on their size and structural complexity, proteins are known to fold 

on time scales ranging from microseconds to minutes (5). In the remainder of this Section, 

the preexisting consensus in regard to the dominant thermodynamic and kinetic properties 

of protein secondary and tertiary structure is summarized. 

Secondary structure: �-helices. The discovery of the spatial structure and chemical 

bonding patterns of �-helices (Figure 2.1, left), which has become a cornerstone of 
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structural biology (82), laid the ground work for further investigations of their 

thermodynamic properties that are typically defined in the context of order–disorder (or 

helix–coil) transitions. Among the elements of such thermodynamically stable 

configurations (native and/or misfolded structures of biological significance) (83), right-

handed �-helices are the most abundant structural motifs. In an �-helix, the C=O group of 

an amino acid located at the position i in the polypeptide (backbone) chain of a protein 

forms a hydrogen bond with the N–H group of another amino acid that occupies the 

position i + 4, which results in a compact and mechanically robust molecular packing 

characterized by a well-defined pitch (rise per single turn of the helix) of ~5.5 Å (1). Unlike 

�-strands, helices are the result of local contact formation, which qualitatively distinguishes 

their (un)folding dynamics from those of tertiary structure. 

 To propagate (or grow) an existing �-helix segment, a non-helical amino acid on 

the boundary of the helical segment needs to attain the �-helical configuration; the torsional 

angles that define the backbone conformation of the amino acid are thereby fixed, thus 

reducing the overall conformational entropy. Subsequently, a hydrogen bond is formed 

between the backbone of the amino acid and a residue of the preexisting helical segment. 

At the melting temperature, the enthalpy change due to the hydrogen bond formation is 

exactly balanced by the entropy change associated with the backbone restriction, i.e., 

helices can grow and decay freely. In contrast, to nucleate a helix (i.e., to form a new 

helical island), the backbone of three consecutive amino acids must attain the helical 

configuration, whereas only one hydrogen bond is gained. Thus, helix nucleation carries an 

extra free energy penalty, and the polypeptide will tend to minimize the number of domain 

boundaries between helices and coils. Notably, this is equivalent to the enthalpy versus 

24



 

 

�
entropy balance in the 1D Ising model of interacting spins (Figure 2.2). Similarly to the 

Ising model, the helix–coil transition can be described using the transfer matrix method to 

obtain percent helicity as a function of temperature, as follows (84). Let �Gprop and �Gnuc 

be the free energy changes of propagating and nucleating one turn of the helix, 

respectively. The statistical weights of these two processes are s 	 ln(–�Gprop/kT) and � 	 

ln(–�Gnuc/kT). The partition function, Z, is then the sum of all possible products of s and �, 

corresponding to all possible helix/coil combinations. This summation is the result of 

expanding the following matrix product: 

	 
 �
�



�
�

�
��� �

� 1
1

10
1

L

n
nWZ ,    [2.3] 

where �
�



�
�

�
�

1
1

nn

n
n s

s
W

�
 is the weight matrix of contact n, whose free energy change upon 

helix formation is dependent upon the identity of the residues in the vicinity of the contact.  

When expanded, the matrix multiplication gives all of the possible helix/coil permutations. 

Note that if algebraically expanded, the number of terms in Z grows exponentially with L, 

and corresponds to the number of possible permutations. From the partition function, the 

ensemble-wide percent helix content can be calculated as: 
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where C is the (sequence-dependent) number of contact types. In the case of a 

homogeneous sequence (C = 1), Wn = W for all n; by diagonalizing 1�� UUDW , 

	 
 	 
TLUUDZ 1010 1 ��� � , where DL  denotes the diagonal elements of D taken to the 

power of L because D is a diagonal matrix. In this case, H can be calculated by hand for 
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Fig. 2.2. Energy landscape picture of protein folding thermodynamics. Starting with the denatured state (light
blue), helix formation is a spontaneously favored event, analogous to the proliferation of domain boundaries in a
chain of magnetic spins, which occurs before or concomitantly with hydrophobic collapse into the molten globule
state (dark blue). Within this state, the structure can anneal to the final (native) conformation, which is intrinsically,
as well as evolutionarily, separated from all other folds by a significant energy gap. Light gray and dark regions of
the schematic structures correspond to hydrophobic (H) and hydrophillic (P) regions. Parts of the protein may also
form in a hierarchical manner starting from local contacts (see section 2.2 in Text).
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arbitrarily long helices using Equation 2.4. The transfer matrix method is a general 

technique with which to enumerate the permutation space of linear systems, and it will be 

used in Section 4.1 to calculate the persistence length of macromolecules. 

 
 In general, for the D-dimensional Ising model, the free energy penalty due to each 

instance of helix nucleation is incurred for every boundary between helix and coil. This 

boundary is of dimension D – 1 because it is a plane in a D-dimensional space. On the 

other hand, the entropy of creating a boundary is proportional to the logarithm of the 

number of different positions one can place the boundary at. Since the number of different 

ways to create a boundary is exponentially related to the dimension D, we have the general 

result that the free energy of creating a boundary is 

LTDLG D ln1 ��� �� ,    [2.5] 

where � is the enthalpy difference associated with forming a boundary (e.g., helix 

nucleation). For D = 1, the magnitude of the entropy term grows with the chain length L, 

whereas the enthalpy term remains constant. Therefore, sufficiently large systems will 

never be homogeneous (i.e., free of domain boundaries) at any non-zero temperature and, 

consequently, first-order phase transitions between the two states are precluded for such 

systems. This result, formally proven as the Mermin-Wagner theorem (85), implies that it 

is thermodynamically unfavorable for a protein to be all helix or all coil. During the course 

of the folding process, proteins can nucleate a fluctuating number of helix islands that 

dynamically vanish or merge with other helical islands. Indeed, non-native helix content 

has been experimentally observed during early and/or intermediate stages of protein folding 
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(86-88). Only with the collective effect of long-range interactions accompanying the 

formation of native structure will this dynamical nature of helix (un)folding be overridden.  

 In contrast to the well-understood thermodynamical properties of the coil-to-helix 

transition, the kinetic picture of the process has only recently been elucidated. The actual 

rates of helix formation have only been obtained in the last few decades, both by theory and 

experiment (41), because the (sub)nanosecond temporal resolution required for such 

measurements, typically via IR or fluorescence spectroscopy following a T-jump, was not 

achievable until the 1990s (41, 42, 89). It was not until the picosecond-resolved (un)folding 

studies carried out recently in this laboratory that the fundamental ultrafast steps of helix 

nucleation and propagation could be separately measured and theoretically modeled (90, 

91). In contrast to the then-prevailing paradigm, these studies, reported in Section 5.1, 

demonstrated for the first time that the kinetic picture of �-helix formation does not obey 

the simple nucleation–propagation model; rather, non-native misfolding intermediates 

dominate the dynamics.  

Tertiary structure. The ability of proteins to attain unique native folds is remarkable 

because the size of the conformational space increases exponentially with protein size, 

which presents challenges to (i) the stability of the native fold (the entropy penalty) and 

(ii) the search for the native fold in a reasonable time (the Levinthal paradox). A 

significant part of the problem is due to the conformational variability of the tertiary 

structure, which is stabilized by a wide variety of weak forces. It is through the 

cooperative culmination of these weak forces that the native fold is distinguished from 

the other possible conformations below the melting temperature, typically through a first-
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order phase transition, as expected for a 3D system with numerous degrees of freedom. 

However, unlike typical disorder-to-order transitions such as ice formation, the native 

structures of proteins are flexible as they can undergo large conformational fluctuations 

(92).  

Mutually correlated intra-protein interactions result in excluded-volume effects 

dependent on the nature of individual conformational microstates. Because these 

microstate-specific dependencies cannot be incorporated into a closed-form (i.e., not 

simulated) partition function calculation, analytical methods generally ignore them. For 

example, the random energy model (REM) reduces all pair-wise interactions within a 

protein heteropolymer to those taking place between two randomly chosen monomer 

types (93), which is equivalent to the mean-field-theory representation of a randomly 

chosen sequence. The monomer types involved may either correspond to the twenty 

known types of amino acids or be coarse-grained to be either hydrophobic (H) or polar 

(P) as in the HP model (94). It has been found that a random sequence composed of a 

two-letter monomer alphabet does not produce a stable native state, whereas a random 

sequence composed of a twenty-letter alphabet produces a unique native state with an 

energy gap separating it from all other states (95, 96). Although the accuracy of the REM 

has been questioned due to its neglect of correlated behavior (97), its usefulness in 

reducing protein folding to a tractable statistical mechanical framework justifies its use as 

a coarse-grained theory describing the intrinsic properties of protein folding 

thermodynamics.  
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Regardless of the coarse graining level assumed, a number of fundamental 

questions pertinent to the kinetics of tertiary structure formation remain unanswered. A 

major issue is whether timely protein folding (i.e., the resolution of the Levinthal paradox) 

is attained by evolutionarily selected optimal sequences or by the intrinsic physical forces. 

The answer to this question has relevance for the issue of likelihood of spontaneous life, 

among other problems of fundamental significance such as, e.g., designing protein structure 

prediction algorithms, or creating artificial proteins with novel functions. The two main 

candidates for this intrinsic guiding force are (early) helix formation and hydrophobic 

collapse, both of which significantly reduce the conformational entropy.  

It is apparent that helix formation alone does not resolve the Levinthal paradox. For 

example, it has been demonstrated that 80% of a 100-residue chain need to be helical at all 

times in order for the search time to be brought down to 1 minute (98). It is, therefore, clear 

that even with an overwhelming fraction of the chain fixed to be helices, folding of a 200-

residue protein domain would be impossible within a reasonable time period. Moreover, 

the above assessment does not take into account the transient nature of helix formation, cf. 

the Mermin-Wagner theorem (see above), which would further increase the search time in 

real proteins. In addition, because the native structure of the protein is determined by many 

weak forces acting in competition and cooperation, helices are not the only dominant 

structural motif. For example, �-strands, van der Waals interactions, and side-chain–side-

chain interactions between distant parts of the chain can all be dynamically sampled in their 

numerous combinations. In particular, non-native conformations that are accessible 

kinetically will be sampled. This is the essential hurdle that makes protein structure 

prediction difficult. Indeed, there is evidence obtained from lattice simulations that tight 
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packing constraints imposed on the system spontaneously lead to helix formation, implying 

that secondary structure may be the result of, rather than the cause of, tertiary collapse (99). 

Although the mechanism of hydrophobic collapse had long been recognized as a 

universal force constraining the protein folding process (100), it was found that the number 

of possible conformations of a collapsed chain of length L scales as approximately 2L 

(101). Therefore, the reduction of the conformational search space due to the protein chain 

collapse was insufficient to accelerate protein folding to a reasonable rate. Because the 

intrinsic physical constraints by themselves did not help resolve the Levinthal paradox, to 

date, the consensus has been a folding mechanism combining these forces with sequence-

specific evolutionary selection. In the 1990s, Frauenfelder, Wolynes and coworkers 

approached the issue of attaining realistic protein folding times from the energy landscape 

perspective. Figure 2.2 reflects the free energy bias that disfavors high-entropy, extended 

protein conformations (lighter blue) against compact globular folds resulting from the 

hydrophobic collapse (darker blue) (102). The free energy landscape of Figure 2.2, which 

exhibits some roughness due to conformational frustration, appears to capture a number of 

key concepts pertinent to protein folding such as, e.g., the energy gap between native fold 

and nearby states as well as the dynamical nature of �-helix formation. Within the 

collapsed state, which, as stated above, is characterized by ~ 2L individual conformations, 

the proteins is “funneled” toward its native fold via both thermodynamic and kinetic 

mechanisms optimized by evolutionary selection (Section 5.2). In contrast to the above 

picture predominant in the literature, a major result of this work is the finding that the 

hydrophobic force (which includes both chain collapse and segregation of hydrophobic 

residues in the protein interior), by itself, can reduce the conformational space of a protein 
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to an extent sufficient to achieve feasible folding times, and therefore that the process of 

protein folding is inherently fast (Section 5.2).  

 In regard to specific pathways leading to the native state, there is still an ongoing 

debate concerning the fundamental steps proteins take to fold. There exist two prominent 

models suggesting either “bottom-up” or “top-down” folding. Within the framework of the 

diffusion–collision model of folding (103), smaller sub-structures achieve stability and 

collide to form larger scaffolds of stability. The sub-structures do not need to have the exact 

secondary structure of the native state, but the overall topological arrangement of sub-

structures should be correct such that annealing can take place locally without too much 

frustration (104). This way, once the individual domains have come together, a molten 

globule structure with the correct topology is formed, thereby leading to fast annealing to 

the native state. The above viewpoint is attractive because folding is modeled to occur 

hierarchically, thereby quickly achieving the native conformational topology.  

The top-down nucleation–condensation model stipulates fast hydrophobic collapse 

to an ensemble of near-native global conformations, followed by slower annealing of both 

the global topology and the local geometry. This mechanism is attractive because the 

hydrophobic force has a physical basis in the reduction of the free energy due to 

compaction (maximized solvent entropy) and aggregation (clustering) of hydrophobic 

residues, thereby reducing the conformational space, and accelerating the search for the 

native fold. Up to now, the above reduction of the sampled sub-space had not been 

quantitatively assessed, and it was not clear to what extent the hydrophobic force would 

help resolve the Levinthal paradox. There is evidence to suggest that, depending on the 
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protein sequence, one or both mechanisms are applicable to protein folding. A number of 

experimental surveys report a preponderance of either the diffusion–collision (104), or the 

nucleation–condensation (105) mechanism, the latter being typically associated with the 

chain collapse taking place on a microsecond time scale.  

Regardless of whether most proteins fold hierarchically or via an annealing 

mechanism, there is strong evidence suggesting that the formation of long-range native 

contacts must be the rate limiting step. Over the years, topological parameters have proven 

to be useful single-variable structural predictors of folding rates. For example, Plaxco et al. 

(106) devised a phenomenological parameter called the contact order (CO), which is 

defined as: 
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1 ,     [2.6] 

where L is the protein length, N is the number of tertiary contacts, (i, j) are all pairs of 

amino acids that make tertiary contacts with each other, and dij is the sequence separation 

between i and j. Thus, the contact order parameter is larger with proteins which are 

characterized by longer sequence separations between contacting amino acids. The strong 

empirical dependence of the logarithm of the folding rate on CO indicates that an important 

component of the rate-determining mechanism is the formation of key tertiary contacts, 

regardless of whether these contacts form in a bottom-up or top-down fashion. 

Interestingly, Dagget et al. performed point mutations on a globular protein that affected 

the stability of the mutant but not the CO of the mutant, which resulted in four orders of 

magnitude difference in folding rates due only to contact stability. Therefore, although the 
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CO is important for determining the entropy barrier required to form long-range contacts, 

the strength of long-range intramolecular interactions has a substantial effect on the folding 

rate as well (107). A more thorough understanding of the relationship between CO and the 

folding rate will require a first-principles-based theory as well as explicit simulations of 

protein dynamics and folding (108, 109).  

 Although many general aspects of protein thermodynamics are well understood, the 

kinetics of secondary and tertiary structures remains elusive. For simple chemical reactions, 

a free energy landscape representation can easily provide an overall picture of the kinetic 

pathways, and the time scales involved can be estimated from the Arrhenius barrier 

crossing probabilities. For macromolecules with numerous degrees of conformational 

freedom this is impossible for two reasons. First, the mapping of an exponentially large 

number of degrees of macromolecular freedom onto at most two effective variables (or 

reaction coordinates) necessarily implies that any given microstate is composed of 

individual conformations that are not kinetically accessible to each other. As a 

consequence, (fast) kinetic pathways which would be visible on the hyperspace landscape 

comprising all possible degrees of freedom are hidden in the coarse grained 2D 

representation, leading to under-estimation of reaction rates. Second, the numerous 

misfolded states that dramatically slow down the overall folding kinetics are often 

impossible to identify using the chosen reaction coordinates, which results in over-

estimation of reaction rates. Taken together, these two sources of error may significantly 

distort the true folding mechanism and time scales. Therefore, advanced methods that are 

tailor-made to investigate kinetics of specific systems under study are required to address 

these challenges. One recent approach has been to abandon the landscape description in 
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favor of a network description, mapping individual conformations onto discrete Markov 

states which are not limited in the number of order parameters (110-112). In addition, these 

algorithms have the advantage of learning the dominant pathways and intermediates 

directly from the simulation data, rather than mapping the data onto pre-conceived models 

such as diffusion–collision or nucleation–condensation. However, such methods are suited 

for the analysis of simulation data rather than for the creation of a predictive model from 

first principles. In contrast, as demonstrated below for certain types of macromolecular 

systems, high-dimensional free energy landscapes can be mapped onto a limited number of 

properly chosen effective dimensions while preserving the influence of the collapsed 

dimensions on the macromolecular kinetics (Sections 4.2.1 and 5.1). The main advantages 

of the approach suggested here are the ability to predict both (un)folding mechanisms and 

rates using experimentally measured thermodynamic parameters (i.e., without carrying out 

explicit kinetics simulations), and the preservation of a conformational metric space on 

which the dynamics can be clearly interpreted.  
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C h a p t e r  3  

METHODOLOGY 

 

In the present Chapter, we justify the selection of macromolecules studied and 

introduce methods and techniques which we use throughout our work. Due to the 

numerous degrees of conformation freedom involved in biological transformations, the 

macromolecular ensembles of interest exhibit a wide range of spatial structures and 

dynamical behavior. Because individual dynamical trajectories may deviate greatly from 

the ensemble scale behavior, the techniques we used, although diverse, all employ 

ensemble averaging. As illustrated in Figure 3.1, a large macromolecular ensemble 

representative of the system under study is obtained, often with atomic-scale spatial and 

temporal resolutions, and individual microstates constituting the ensemble are 

subsequently mapped onto a coarse-grained representation. Importantly, the coarse-

graining method must collapse the (non-additive) structural information of each 

microstate into simplified (additive) form which maintains the structural and temporal 

resolutions required to observe phenomena of interest. The data obtained using the 

coarse-grained representation can then be averaged over the ensemble. We note that 

methods which do not map each microstate to an additive representation before ensemble 

averaging, such as, e.g., mean-field theories, may give a distorted picture of the ensemble 

behavior. Much of the work reported here involves developing novel coarse-graining 

approaches which exploit the properties of the class of systems they are designed for. 

These system-specific approaches are outlined in detail when they are applied in Chapters 
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Fig. 3.1. Analysis of dynamics at the ensemble level.  Despite the wide range of theoretical and computational
methods used, the general methodology involves the generation of the time-dependent ensemble (top), followed by
mapping  each microstate  of  the  ensemble,  which consists  of  non-additive  information,  onto  a  coarse-grained
additive representation (bottom), and finally averaging the coarse-grained representation over the entire ensemble.
The choice and design of the coarse-graining method is  essential to enable proper ensemble averaging without
losing the most significant information. Examples of time-dependent ensemble generation include calculating the
partition  function or  ensemble-converging  molecular  dynamics  (MD)  simulations.  Examples  of  coarse-graining
methods leading to additive results include mapping onto a lattice model (bottom left), a free energy landscape
parameterized by system-specific order parameters (bottom center), and  the radial distribution function of electron
diffraction (bottom right). This methodology allows for analysis of dynamics with statistical significance.
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4 and 5. In what follows, we focus on more general methodological aspects of this work 

and, therefore, limit the discussion to the techniques that have been repeatedly used in our 

investigations. 

  

3.1 SELECTION OF MACROMOLECULES 

 Despite the overwhelming structural complexity characteristic of biological 

macromolecules, there exist persistent structural motifs which serve as fundamental 

building blocks of biomolecular complexity; the way these ubiquitous components form 

and aggregate largely determines the overall structure of proteins and nucleic acids. Here, 

we mainly focus on the two iconic structural motifs of molecular biology: the protein �-

helix and the DNA double helix. For proteins, we also address the issue of formation of the 

overall (global) structure. Although the aim of this research was to develop predictive 

theories that apply to protein folding or macromolecular dynamics in general, we found it 

useful to explore concrete manifestations of the studied phenomena using a number of 

macromolecules which contain the fundamental structural motifs ubiquitous to 

biochemistry.  

 The biological macromolecules studied in this Thesis are depicted in Figure 3.2. To 

represent conformational dynamics characteristic of the denatured state, a long-chain linear 

alkane (arachidic acid) was chosen for its structural homogeneity and ease of analytic 

modeling. A DNA duplex and a number of DNA hairpins of various lengths, loop sizes, 

and sequences were studied as well, both in vacuo and in solution. To elucidate elementary 
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Fig. 3.2. Macromolecular motifs studied. Although the focus is to gain insight into general mechanisms of protein
folding  and  macromolecular  dynamics,  specific  structures  are  also  studied  to  provide  concrete  examples  for
analysis  and  simulation.  These  structures  are  chosen  to  represent  the  key  motifs  of  biomolecular  structure,
including the double helix of nucleic acids (formed either by two separate strands or a single strand forming hairpin
loop), the -� helix nucleus, full -� helices (bottom), and simple examples of tertiary structure.
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steps of �-helix formation in proteins, the five-residue peptides Wh5 and Wgh5 were 

studied to isolate the process of helix nucleation, whereas the homo-polypeptide A25, which 

consists of 25 Ala residues characterized by the highest helix-forming propensity among 

the 20 known types of amino acids, was used to obtain insights into the details of helix 

growth. In addition, �-helix formation in hetero-polypeptides was studied using the 41 

residue-long thymosin-�9 (113). Thymosin is one of several polypeptide hormones secreted 

by the thymus, and functions to modulate the growth of actin filaments via binding of actin 

monomers (114). In probing protein tertiary structure, we studied the Trp-cage mini-

protein, which, in addition to helical content, also possesses a hydrophobic core. Despite its 

small size (20 residues), the Trp-cage is known to fold in 4 �s (115). 

 

3.2 MOLECULAR DYNAMICS SIMULATIONS 

In the absence of breaking or formation of chemical bonds, molecular motions 

can be adequately described using classical (Newtonian) mechanics. Therefore, it is 

possible to simulate the dynamics of a molecule given its initial coordinates and an 

accurate description of the intramolecular forces. This molecular dynamics (MD) 

methodology began to gain practical traction at the dawn of the computer era (116), and 

shortly thereafter it was employed in simulating protein motions (108, 117). Although 

MD methods per se are not the focus of the work presented here, they are used 

extensively throughout this Thesis to (i) confirm theoretical findings, (ii) justify the use 

of methodologies or approximations constituting the basis of a variety of theoretical 

approaches, and (iii) generate and monitor large-scale ensembles of biological 
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macromolecules with atomic-scale spatial and temporal resolutions. A survey of 

concepts, uses and limitations pertinent to MD methods is, therefore, given below in 

brevity. The potential energy of a system of N atoms is usually defined in the form (118): 
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where R is the set of generalized coordinates of the system and Ulocal (R) represents the 

potential energy terms associated with (local) interactions, such as internal rotations and 

vibrations, which are conveniently parameterized using bond distances, bond angles, and 

torsional angles. These interactions, except for torsional potentials, are typically 

approximated using harmonic potentials with spring constants corresponding to the 

experimentally determined energies of stretching and bending vibrations. The non-local 

term involves the van der Waals and electrostatic interactions between individual atoms, 

which are summed over all non-bonded pairs of nuclei i and j (i, j 
 N) separated by 

distance rij; here, Aij/Bij and qi/qj are the van der Waals parameters and electrostatic 

charges associated with indicated atoms, respectively. During the course of MD 

simulations, the atomic positions are integrated forward in time t using U(R,t) and a 

chosen sampling interval �t (119). Because accounting for the long-range electrostatic 

interactions constitutes the rate-limiting step in obtaining updated atomic coordinates, the 

Ewald summation method (120), which scales approximately as NlnN using the particle 

mesh Ewald (PME) algorithm (121, 122), is typically employed. Due to the electrostatic 

calculation bottleneck, MD simulations become particularly expensive when they employ 

explicit water molecules rather than a continuum solvent model. Ever since their initial 
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use (123), explicit water simulations have justified their higher computational cost by 

showing the important role that water geometry plays in macromolecular stability and 

dynamics. For example, explicit water simulations revealed that the hydration shell 

surrounding biopolymers is characterized by unique structural features (124) which play 

a crucial role in their dynamics and folding. At present, the computational cost for 

simulating medium-to-large proteins that are known to fold on the millisecond time scale 

(109, 125, 126) is still beyond all but the most Herculean computational efforts. 

Consequently, a variety of techniques are invoked to accelerate the calculations. Thus, an 

important factor limiting the efficiency of conformational sampling is the roughness of 

the free energy landscape, which results in formation of local minima (or saddle-points). 

The aim is therefore to enable macromolecules to release themselves from local minima 

while ensuring that the sampling is not biased in the ergodic limit (i.e., in the assumption 

of the infinite sampling time). Umbrella sampling (127) is perhaps the most popular 

method of exploring large conformational changes in computational biochemistry, 

whereby unfavorable states, such as barriers separating low-energy conformational basins 

on the free energy landscape, are artificially exaggerated but the thermodynamic weights 

of such states are decreased to compensate for the fact that they are over-sampled. 

Another technique, called replica exchange (128), relies on carrying out massively 

distributed simulations which are performed at a variety of temperatures, and periodically 

swapping the resulting conformations between simulations of adjacent temperatures. The 

latter approach allows lower-temperature simulations to exploit wider conformational 

sampling characteristic of higher temperatures. Importantly, the ergodicity is preserved 

by ensuring that the swapping probability is weighted according to the relative energies 
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of the conformational states. Although such methods are of limited value in finding the 

true kinetic trajectories, they nevertheless provide an accurate thermodynamic picture of 

the conformational space. To date, MD simulations have been successfully used to model 

protein folding (109, 125, 126, 129), protein-ligand interactions (130), protein motions 

(127, 131, 132), as well as the energetics of protein function (133).  

The generic MD protocol we employed to simulate (un)folding of macromolecular 

ensembles is as follows. A cutoff of 14 Å was used for the van der Waals calculations, and 

electrostatic interactions in systems with periodic boundary conditions were computed 

using the PME method (121, 122) with the direct-sum cutoff and Fourier grid spacing 

typically being 9 Å and 1.2 Å, respectively. To simulate an aqueous environment, 

macromolecules were surrounded with explicit TIP3P (three-point) representations of water 

molecules, typically in cubic unit cells with periodic boundary conditions imposed. The 

number of water molecules surrounding the solute was usually chosen such that at 1 atm 

pressure and room temperature, the cell was at least 1.5 times longer than the largest 

macromolecular dimension. Prior to carrying out the actual simulation, the system was first 

energy minimized to a root-mean-square (RMS) force gradient of 0.12 kJ·mol�1·Å�1. For 

the studies of macromolecular unfolding, the system was subsequently heated to 500 – 

1200 K for up to 1 ns. For all the MD studies reported here, the system was heated or 

cooled for 100 ps to reach the (un)folding temperature, and thereafter evolved with the 

number of particles, pressure, and temperature kept constant (NPT ensemble). Temperature 

and pressure coupling were enforced using the extended-ensemble Nose-

Hoover/Parrinello-Rahman algorithms with a coupling time constant of 1 ps (134-137). 
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During all simulations, bonds involving hydrogen atoms were constrained using the LINCS 

algorithm (138) and rigidity of the TIP3P water molecules was enforced by the SETTLE 

algorithm (139). The above constraints are justified because protein dynamics should be 

insensitive to the (very fast) hydrogen vibrations, allowing for an integration time step of 2 

fs. Coordinates were typically saved with a sampling interval of �t  = 1 ps.  

 

3.3 DIFFRACTION SIMULATIONS AND ENSEMBLE CONVERGENCE  

There are two distinct challenges pertinent to understanding macromolecular 

dynamics. The first challenge—structural complexity—is inherent to the study of any 

inhomogeneous structure with numerous degrees of mechanical freedom. The second 

challenge—cooperative dynamics—is a hurdle characteristic of biomolecular systems. 

Addressing the above challenges requires developing novel coarse-graining approaches 

with which to elucidate the essential ensemble-wide aspects of structural change, while 

preserving the mechanistic nature of the dynamics (e.g., cooperative motion or resonance 

phenomena). The need for appropriate coarse-graining methods becomes apparent as we 

ascend the complexity ladder. The overwhelming complexity associated with the 

ensemble-wide macromolecular (un)folding behavior makes computational simulation an 

essential tool for understanding proteins at the molecular level. A number of coarse-

graining techniques have been developed to investigate the complex energy landscapes of 

protein (un)folding (81). For example, in the case of helix-coil transitions, disconnectivity 

graphs have been successfully applied to energetically sort the discrete states of native, 

part-native, and non-native populations that dominate the folding dynamics (140, 141).  
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Here, we introduce the ensemble-averaged radial distribution function which is 

frequently used to present the results of electron diffraction measurements as a novel 

coarse-graining technique for analyzing the data obtained from ensemble-convergent MD 

simulations. We note that, whereas other coarse graining approaches have been developed 

during the course of the studies reported in Chapters 4 and 5, the latter approaches were 

tailored to the specific systems under consideration. In contrast, the ensemble-convergent 

radial distribution function was applied as a standard all-purpose coarse-graining method 

throughout the entire line of research presented in this Thesis. We, therefore, found it 

useful to outline corresponding methodological details below rather than in the subsequent 

Chapters devoted to specific biomolecular sytems.  

The (time-dependent) ensemble-averaged radial distribution function, <f(r, t)>n, can 

be interpreted as a weighted internuclear distance histogram distribution. As stated above, 

<f(r, t)>n, has been directly adapted from its use in electron diffraction experiments, and, 

due to its fast ensemble-convergence to statistical signal-to-noise ratio comparable to that 

typical of experimental measurements, it is well-suited to analyzing the simulated structural 

dynamics of complex systems in real time. Importantly, <f(r, t)>n provides structural 

information on both the local and global length scales. For example, the locally periodic 

motifs such as �-helices are manifest as structural resonance peaks centered at the 

characteristic repeating distances in the <f(r, t)>n curve, and the global radius of gyration 

can be obtained from the (weighted) sum of the area under the curve; the local resonance 

features we explored include the �-helix pitch and the base-pairing/base-stacking distances 

of the DNA duplex (see below and Section 4.2 for pertinent definitions and practical 

applications, respectively). The ensemble-averaged radial distribution function 
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complements and, in many cases, supersedes the information content of standard coarse-

graining metrics such as percent native contact and root-mean-square deviation (RMSD) 

with respect to the native structure. The results, in addition to being directly comparable to 

those of electron diffraction measurements, can be used to suggest new experiments with 

promising signatures in <f(r, t)>n. Thus, experimental efforts are currently underway in this 

laboratory to observe the structural resonances seen in the simulated diffraction patterns. It 

is, indeed, remarkable that an experimental methodology has stimulated theoretical 

exploration, which in turn has directly guided the next generation of experimental studies. 

In what follows, the method of obtaining <f(r, t)>n is, therefore, described in the original 

context of ultrafast electron diffraction experiments. 

Because elementary events of macromolecular dynamics often occur, or are 

triggered, on the ultrafast time scale, their inherent structural dynamics is elusive to the 

conventional methods of experimental probing that are typically limited to the nanosecond 

temporal resolution. Such elementary events (142) span a time window—from 

femtoseconds to nanoseconds—which turns out to be orders of magnitude shorter than the 

typical time scale of the globular motions in biopolymers (microseconds or longer). 

Ultrafast electron diffraction (UED), crystallography (UEC), and microscopy (UEM) have 

the potential for direct visualization of biostructural change as they provide atomic-scale 

spatial and temporal resolutions (143, 144). Of these, UED is unique for its possible 

elucidation of macromolecular dynamics in the absence of solvent. 

To date, studies of biological species in vacuo have been made using various 

experimental methods, including, e.g., mass spectrometry which was shown to preserve 

46



 

 

�
macromolecule structures (145-147). However, in contrast to spectrometric and 

spectroscopic investigations into gas-phase behavior of isolated biopolymers, UED 

measurements could, in principle, allow for direct probing of both macromolecular 

geometry and its temporal change. Because recent experimental efforts undertaken in this 

laboratory have already enabled nondestructive delivery of biomolecules into the gas 

phase, the way is now open for UED measurements to explore their conformational 

dynamics with ultrafast temporal resolution. Therefore, <f(r, t)>n is more than just another 

computational coarse grained order parameter—it is also an experimental observable in 

potential UED studies of biomolecular behavior in the absence of water.  

During the course of a typical UED experiment, the molecular sample is usually 

excited by an (initiating) ultrafast laser pulse, followed, for probing, by a series of 

ultrashort electron pulses which map the spatiotemporal changes induced in the 

macroscopic, gas-phase molecular ensemble under study (148). Two-dimensional electron-

diffraction patterns are thus obtained at each particular point in time for a series of chosen 

time points. As stated above, the UED data represent an average over the molecular 

ensemble {l}, l�[1, N] and, at the processing stage, they are radially averaged to yield 1D 

experimental scattering intensities (149). Because of the much larger scattering cross-

section of electrons on atoms, as compared to that of X-ray radiation, it is possible to 

achieve the ultrafast temporal resolution when studying molecular systems in the gas phase 

(a nontrivial task because of the lack of crystallinity and low molecular density of the 

sample). The above experimental methodology (150, 151)  has been applied in the 

numerous studies of chemical reactions, excited-state structure dynamics, and 
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nonequilibrium conformational changes on their native (ultrafast) temporal scales (144, 

152). Examples of UED studies from this laboratory (153-156) include determination of 

transient structures in radiationless (dark) relaxation processes, relaxation pathway 

bifurcations, and intramolecular structural rearrangements. At present, the challenge is in 

the study of systems with many conformers. For such complex systems, the traditional 

analyses of gas electron diffraction, which have been successful in the determination of 

thousands of structures (157), need to be revisited.  

Detailed theoretical accounts of (conventional) gas electron diffraction 

methodology may be found in a number of sources (158, 159). Briefly, a 2D electron-

scattering pattern is radially averaged to yield the one-dimensional ensemble-averaged 

scattering intensity )( )(  )( BM sIsIsI �'(�'( . The structural information is contained in: 

��
)

'(
l ji

l
ij sIsI )(~ )( MM ,                  [3.2] 

which is a sum over all the internuclear distances accross a molecule {rij}, i)j, and over the 

ensemble N. The term BI(s) is a monotonic background scattering function, which is the 

sum of atomic and inelastic scattering and other experimental factors contributing to the 

background, and s is the magnitude of the momentum transfer vector between an incident 

electron and an elastically-scattered electron; s = (4�/�)�sin(�/2), where � is the de Broglie 

wavelength (0.069 Å at 30 keV), and � is the scattering angle.  

By Fourier-transforming the modified molecular intensity <sM (t; s)> (158), we 

obtain the ensemble-averaged radial distribution function, <f(t; r)>, which provides a 
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snapshot of the density distribution of internuclear separations across the ensemble at a 

particular point in time. Finally, by subtracting <f(t; r)> obtained at “time zero” from that 

of later times, we obtain the ensemble-averaged diffraction differences, <�f(t ; r)> = 

<f(t; r)> � <f(0; r)>, which map the spatiotemporal evolution of the sample (152, 160). 

For small and medium-sized molecules, quantum chemical calculations followed by 

normal-coordinate analyses of the resulting Cartesian force fields are normally used to 

compute {rij} as well as first- and higher-order vibrational corrections (161, 162).  

Alternatively, RMS vibrational amplitudes may be obtained from spectroscopic data, or 

estimated using empirical equations (163-165). For a (large) conformationally flexible 

biomolecule, however, the ensemble averaging involves the entire landscape of quasi-

random conformations, which may, in principle, be generated using a variety of different 

methods. Throughout the line of research reported here, our method of choice involved 

applying the UED program developed in this laboratory (158) onto (simulated) 

macromolecular ensembles to obtain the ensemble-averaged electron diffraction patterns. 

Although the atomic-scale spatial resolution is lost by this method (notably, the picosecond 

temporal resolution characteristic of the original simulations is preserved), the coarse-

graining approach based on <f(t; r)> produces distinct structural fingerprints which turn out 

to be useful for analyzing both secondary and tertiary structure dynamics (Section 4.2). By 

examining the actual (simulated) conformational ensemble jointly with its diffraction 

pattern, a wealth of information on (un)folding transitions in biological macromolecules 

can be obtained.  

49



 

 

�
For example, we note that from the accurate internuclear distance density 

distribution P(r), P(r)dr being the probability of finding r�[r, r + dr], we can, in principle, 

obtain the radius of gyration Rg = (I/M)1/2, where M is the molecular mass and I is the 

moment of inertia. Specifically (166),  
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where <f(r)> ~ <P(r)> / r is the ensemble-averaged radial distribution function calculated on 

the interval s �,[0, +] with no artificial damping applied (k  =  0). In Section 4.2.3, we utilize 

the ensemble-averaged radius of gyration to monitor order-disorder transitions in 

polypeptides.  

Because <f(r; t)> which provides both local and global structural information is a 

projection of 3D molecular structures onto a 1D coarse-graining representation, it achieves 

ensemble-convergence with a surprisingly small ensemble size. Shown in Figure 3.3 is the 

convergence behavior of both the decay of a base pair contact in a DNA duplex (left) and 

the radial distribution function of the duplex (right) as obtained from MD simulations 

following a temperature jump of �T = 1200 K in vacuo. Both the base pair contact survival 

probability <Pi(t)>n and the ensemble-averaged radial distribution function of the duplex 

<f(r, t)>n reach convergence when averaged over n = 100 independent MD trajectories. 

Notably, whereas the information from individual trajectories (top left) may lead one to 

speculate that, for the native Watson-Crick contact i = 3, the base pairing may be quasi-
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Fig.  3.3. Ensemble  convergence  illustrated.  Generating  the  time-dependent  ensemble  of  DNA double  helix
unfolding via  molecular  dynamics  (MD)  simulations,  the convergence to a  smooth distribution  can be seen by
contrasting ensemble sizes of n = 1 (top) versus n = 100 (bottom) microstates, for the probability that the third base-
pair is intact as a function of time (left) and the radial distribution function of the ensemble 10 ps after a temperature
jump (right). Red and green denote two separate ensembles. Two different n = 1 ensembles are not only different
from each other (top) but also fail to provide a picture of the decay characteristics of the base-pair (top left). In
contrast, for n = 100 (bottom), the two ensembles are almost indistinguishable and a time constant can be obtained
from the base-pair decay (bottom left), indicating that ensemble-convergence is achieved at n = 100. 
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stable for more than 20 ps after the temperature jump with the possibility of dynamically 

reforming the base pair at longer times, the information from averaging over one hundred 

trajectories (bottom left) indicates that the characteristic time scale for the base pairing 

contact rupture is about 5 ps. Likewise, the <f(r, t)>n profile averaged over n = 100 

trajectories has the signal-to-noise ratio comparable to that typically obtained during the 

course of UED experiments (167). In a similar fashion to UEC (168) experiments, which 

utilize the spatial and temporal coherence in the specimen to reveal the structural dynamics, 

the “computational microscopy” experiments reported here make use of both spatial 

resonance and ensemble averaging to extract accurate and reliable structural data at each 

particular point in time.  

 

3.4 PROGRAMS USED 

Throughout the studies summarized in the subsequent Chapters, quantum 

chemical calculations were performed using the GAUSSIAN program package (169). 

The majority of ensemble-convergent MD simulation were carried out using the 

CHARMM (118)  suite of programs, although the GROMACS (170) program suite was 

also employed (Section 4.2.1). The resulting MD trajectories were analyzed with the help 

of the VMD (171) software, whereas macromolecular visualization, manipulation, and 

rendering were performed using the program PYMOL (172). Data plotting was executed 

with the aid of MATHEMATICA (173) and GNUPLOT (174). Electron diffraction 

simulations were performed using the in-house UEDANA program. 
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C h a p t e r  4  

RESULTS: MACROMOLECULAR DYNAMICS 

 

Structural dynamics plays a variety of important roles in and between all three 

states of a biological macromolecule: native, unfolded, and intermediate. In the present 

Thesis, the protein folding dynamics are separately addressed in Chapter 5 because of their 

pivotal significance to our understanding of biological function and self-organization in 

complex systems. Yet to understand the process of protein folding with clarity, a number of 

key issues pertinent to macromolecular dynamics in general must first be elucidated. These 

issues include the nature of the unfolded state (and the extent to which such states may be 

considered “random”), the types of conformational dynamics at different length and time 

scales, the effect of temperature on the dynamics characteristic of various length scales, and 

the role of solvent in facilitating specific macromolecular motions. Notably, structural 

dynamics plays a crucial role in many areas other than macromolecular folding, such as, 

e.g., function (175), regulation (176), and aggregation (177). In these biological processes, 

both unfolding and dynamical interconversion between a number of folded states are the 

relevant mechanisms. Protein function is often associated with a concerted motion of the 

native fold, which may range from (large-amplitude) conformational changes resembling 

those involved in the myosin power cycle of muscle contraction (178) to evolutionarily 

conserved pathways inside proteins that transmit dynamical signals, a mechanism 

facilitating protein allostery (179, 180). Perhaps more surprisingly, intrinsically disordered 

(unfolded) proteins also play a role in protein function and quality control processes, e.g., 
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by trapping multi-domain antibodies in the endoplasmic reticulum until all the protein 

domains are assembled (181). In the present Chapter, we investigate biomolecular 

structural dynamics which occur under a variety of circumstances. In so doing, we aim to 

elucidate general properties of the dynamics taking place both between and within all the 

relevant states. The pertinent processes include (un)folding, misfolding, and conformational 

interconversions characteristic of the folded and (partially) unfolded macromolecular 

ensembles. The studies reported below have been carried out on a variety of biological 

macromolecules ranging from fatty acids, to nucleic acids, to polypeptides, both in vacuo 

and in solution, and over a wide range of temperatures. The phenomena that we describe, 

such as temperature-dependent temporal bifurcations taking place at a variety of length 

scales and the effect of the solvent on conformational changes in polypeptides, help to 

construct a general theoretical framework for understanding and manipulating 

macromolecular dynamics.  

In anticipation of the pivotal significance of the polar solvent to protein folding 

feasibility revealed in Chapter 5, of special interest here is the role of water in the shaping 

of macromolecular structure and dynamics. Studies of structural and conformational 

changes which are free of the additional effects of solvation, crystallization or external 

ordering imposed on the specimen have attracted increasing attention (145, 182). Although 

biological macromolecules are known to be extremely sensitive to the effects of the 

environment, certain structural motifs abundant in vivo turn out to be relatively robust, 

persisting in a wide variety of environments. This gives rise to a number of questions of 

fundamental significance; in particular: what structural features are preserved in vacuo and 

are therefore “inherent” to the physics of isolated macromolecules? Equally importantly, 
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how do the presence and nature of the solvent affect the conformational freedom of 

biomolecular systems? Answering these questions will further elucidate the extent to which 

biological functionality relies on the aqueous environment. We begin our exploration with 

perhaps the simplest example of macromolecular dynamics which underscores the non-

random nature of the unfolded state. 

 

4.1 DYNAMICS OF THE UNFOLDED STATE 

Persistence length: a polymer descriptor. To fully understand macromolecular (un)folding, 

both the folded and unfolded states must be well defined and understood. In contrast to the 

folded state, the unfolded state is typically characterized by a vast ensemble of microstates. 

Therefore, properties of the unfolded state can only be accounted for in a probabilistic 

manner. Understanding the dynamics and biases of the unfolded state is not merely a 

philosophical issue. Such understanding is required, e.g., when distinguishing whether a 

given folding population arises through thermally-driven interconversions within the 

unfolded ensemble or is pre-determined by the unique macromolecular sequence and 

geometry. In this sense, the key question pertinent to studies of flexible macromolecules is 

the extent to which the structural features abundant at low temperatures (such as quasi-

periodic motifs) will be preserved at elevated (including physiological) temperatures. To 

address this question, we assessed the ensemble-averaged persistence length of a long-

chain linear alkane (arachidic, or eicosanoic, acid) at a variety of temperatures using 

classical statistical thermodynamics as well as ensemble-convergent numerical simulations. 

These extended hydrocarbon chains, which are the chief components of cellular 
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membranes, possess a quasi-1D spatial periodicity, self-assemble on surfaces (substrates) 

and can also be made as “2D crystals” (183, 184). Chosen to be the starting point of our 

investigations into macromolecular dynamics, arachidic acid is used to give the simplest 

possible benchmark analysis of the interplay between long-chain connectivity, (low) 

torsional rotation barriers, and steric repulsion, which are the inherent features of complex 

biomolecular systems.  

The persistence length, Lp, is a basic statistical property indicating the characteristic 

distance within a polymer for which directional coherence is lost. For an ensemble of 

infinite chains of covalently bound structural sub-units, it is defined as the projection of the 

(averaged) end-to-end vector onto the axis of the first covalent bond in the chain (185). For 

fragments of the chain that are shorter than the persistence length, the molecule behaves 

rather like a flexible elastic rod, whereas the ends of fragments that are longer than the 

persistence length have essentially no correlated motion. We shall compute the end-to-end 

persistence length (denoted Lp
*) for C19H39COOH. Thus, Lp

* will serve as a coherence 

length over which a quasi-periodic structural motif characteristic of arachidic acid will be 

preserved over the large-scale ensemble of structures. The dependence of the above 

coherent behavior on chain length and temperature will also be addressed.  

In the following, bold letters and angular brackets denote vectors and ensemble 

averaging, respectively, and all lengths are given in units of C�C bond distances (rC-C � 

1.533 Å). Suppose that r1, the vector aligned with the first C�C bond in the chain, is 

defined to be in the direction of the z-axis, ez. Then, Lp
* is given by the z-component of the 

ensemble-averaged end-to-end vector R: 
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where <R> is the sum of the individual (ensemble-averaged) bond vectors <ri>, and 

polymer length is represented by the number of C�C bonds, N. As an illustration, Lp
* is 

shown for the molecular conformation depicted in Figure 4.1, top left. In the limit of N 

approaching infinity, Lp
* approaches the formally defined persistence length Lp (185). To 

calculate <ri>, we define a series of local Cartesian coordinates for every C�C bond (Figure 

4.1, top left inset). The z-axis is defined to be in the direction of the bond itself, whereas the 

x-axis perpendicular to the z-axis lies in the plane formed by the bond and the previous 

bond in the chain. The y-axis is then uniquely defined according to the right-hand 

convention for Cartesian coordinates. 

To distinguish between a specific bond and the coordinate system associated with 

it, we designate <ri>j to be the i-th C�C bond described in the j-th coordinate system. For 

example, in its own local coordinates, each bond by definition points in the z direction: 

<ri>i = [0, 0, 1]. In order to define the (x,y)-coordinates of the first bond, which has no prior 

bonds to establish a coordinate system, we fix the coordinate frame of the first bond to the 

global coordinate frame: <ri>i 	 <ri>. Thus, <ri> can be computed by writing <ri>i in the 

coordinates of <ri>1. This is accomplished recursively by the transformation matrix: 
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Fig. 4.1. Persistence length of arachidic acid. The persistence length is the projection of the end-to-end vector
onto the direction of  the first  C C bond (top left).  The analytical  transfer  matrix  method,  which ignores  steric�
repulsion, gives the ensemble-averaged end-to-end vector as a function of temperature. In this method, each C C�
bond is the z-axis of its own local Cartesian coordinate frame (top left inset), and the end-to-end vector is the sum of
the individual bond vectors, each of which can be calculated in the thermodynamic ensemble by multiplying the
appropriate power of the transfer matrix. The persistence length is plotted as a function of temperature (top right),
for an infinite chain with free rotation (green line), an infinite alkane chain (solid red line) as well as for arachidic acid
(dashed red line). Alternatively, the persistence length with steric repulsion can be explicitly computed by averaging
the simulations of 210 self-avoiding arachidic acid chains generated at  T = 300, 600, and 900 K (red cross). The
backbone torsional potential of an alkane chain used in the persistence length calculations is calculated by rotating
the torsion angle incrementally and evaluating the energy of the quantum mechanical electronic ground state at that
angle (bottom).
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which represents any vector in the i-th coordinate system in terms of its averaged 

coordinates in the (i � 1)-th coordinate system. Here, � is the torsional angle of rotation of 

the i-th C�C bond relative to the i-th positive x-axis, and � = 113.6º is the C�C�C valence 

angle characteristic of a linear-alkane chain. Averaging over the torsional angle yields: 
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where Z is the normalizing partition function and the torsional potential E(�) is determined 

from our quantum chemical calculations (see below). The accuracy of Equation 4.3 

increases as the � binning interval is reduced (i.e., the number of � points to be summed 

over is increased). Although <sin �> = 0 due to symmetry about the x axis, <cos �> is 

nonzero and depends on E(�) and the ambient temperature.  

With the aid of the transformation matrix M of Equatiion 4.2, we obtain 

T
i

i
zi M ]100[]100[ 1���er , where the superscript and subscript on a vector denote 

transposition and coordinate system index, respectively. From right to left, we take the i-th 

bond vector in its own coordinate system, transform it (i � 1) times until it is in the 

coordinate system of the first bond, and extract the z-component of the final vector to 

obtain the ensemble-averaged projection of the i-th C�C bond onto the very first bond. 

Note that when Equations 4.3 are substituted into M, ensemble averaging arises from the 
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distributive multiplication of M. Finally, the end-to-end persistence length is obtained by 

summing over all bonds: 

T
i

N

i

iML ]100[]100[
1

1*
p �

�

�� ;    [4.4] 

Lp
* approaches Lp as N approaches infinity.  

To calculate E(�) (and therefore M), the molecular structure of C19H39COOH was 

optimized at our standard B3LYP/6�311G(d,p) computational level using the quantum 

chemical suite of programs GAUSSIAN 98 (169), and imposing the Cs point-group 

symmetry constraints which implied planarity of the backbone chain of the molecule 

throughout the structure optimization (Figure 4.1, bottom). The backbone-averaged values 

of bond distances and valence angles, <rC-C> and <�C-C-C>, were equal to 1.533 Å and 

113.6°, respectively. A single rotational coordinate, 1 = 2C9-C10-C11-C12 ranging from 0 to 

180° was chosen to define the relative orientation of the two equally large molecular 

moieties, and a ground state energy calculations were performed using the �1 binning of 

10° (all molecular structure parameters except 1 were kept fixed to their optimized values 

throughout the potential energy surface scan). Although the resulting potential to internal 

rotation closely resembles that of n-butane on going from trans- to gauche-configuration 

(60° < 1 < 180°), the rotational barrier in the vicinity of 1 = 0° is somewhat higher in the 

case of arachidic acid (E0 = 34 kJ/mol, cf. 24 and 11 kJ/mol as obtained for n-butane and 

ethane, respectively; Figure 4.1, bottom). 
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Results. The torsional potential characteristic of arachidic acid as obtained from the above 

density functional theory (DFT) calculations was used to compute <cos �> as a function of 

temperature by Boltzmann weighting for an infinitely large molecular ensemble. The 

results, both for an infinitely long linear alkane and C19H39COOH (N = 19), are plotted in 

Figure 4.1, top right. These results asymptote to the value of (1 + cos �)�1, or 1.67, in the 

limit of infinite temperature, which is the persistence length of a freely rotating chain, E(�) 

	 0 (185). In the limit of zero temperature, the trans-configurations dominate. Thus, Lp
* = 

R · ez, with ||R|| approaching the length of the extended chain. In the latter case, as N 

approaches infinity, Lp diverges. We note that Equation 4.4 does not take into account 

steric (i.e., excluded volume) interactions which render certain domains of the 

conformational space inaccessible to the ensemble under study. The discrepancy between 

the temperature dependence of Lp
* estimated using Equation 4.4 and the three discrete 

values of Lp
*(T), T = 300, 600, and 900 K, as obtained from averaging over 210 molecular 

structures generated via explicit Monte Carlo simulations taking the excluded volume 

effects into account, increases with temperature. The above discrepancy (Figure 4.1, top 

right) arises because compact conformers characterized by lower persistence lengths are 

more likely to be sterically excluded.  

Summary. Although simplified, the approach summarized above elucidates the non-

random nature of unfolded states of biological macromolecules. At physiological 

temperatures, the persistence length of unbranched long-chain macromolecules appears to 

be significantly higher than that of a chain of free rotors; this is mainly due to the 

cumulative effects of the (weak) torsional potentials restricting internal rotations within the 
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carbon backbone of the chain, with steric repulsions playing a secondary role in the 

absence of large “side chain” substituents. We conclude that the unfolded (or “random 

coil”) states characteristic of the actual biological macromolecules may possess significant 

intrinsic structural correlations and, as such, are far from being truly random.  

 

4.2 EFFECT OF TEMPERATURE AND SOLVENT ON MACROMOLECULAR 

DYNAMICS 

4.2.1 Unfolding of DNA Hairpins 

KIS model of hairpin unfolding. Hairpins are common structural motifs of nucleic acids 

and are crucial for their tertiary structure and function (186). RNA and DNA hairpins play 

important regulatory roles in transcription and replication as well as mutagenesis 

facilitation (187-189). Understanding their stability and (un)folding kinetics is, therefore, 

likely to shed light on the relationship between hairpin structure and functional dynamics. 

Furthermore, due to their small size and simplicity relative to proteins and multi-loop 

nucleic acids, the DNA hairpin structures explored here are ideal benchmark systems for 

the development of robust theories of macromolecular dynamics.  

 From the experimental perspective, melting curves at equilibrium globally exhibit a 

two-state behavior. Recent work, however, suggests that DNA/RNA hairpin (un)folding 

may involve intermediate state(s). For example, master equation methods, and MD 

simulations predict multiple pathways as well as misfolded traps for RNA hairpin kinetics 

(190-192). Fluorescence correlation spectroscopy, or FCS (193-195), has inferred the 
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presence of intermediates and, given the flow and diffusion rates of the experiments, 

established a sub-millisecond time scale for the intermediate state (194). Studies involving 

time-resolved spectroscopy following a laser-induced T-jump, typically with nanosecond or 

longer time resolution, also find evidence of intermediate states (196, 197). For example, 

UV absorbance following a T-jump on short RNA hairpins suggested non-two-state 

microsecond unfolding kinetics for a range of temperatures and loop sequences (196). 

Recently, with ultrafast (sub-nanosecond) temporal resolution, utilizing both absorption of 

the bases and fluorescence probes to elucidate the roles of stacking and loop closure, 

respectively, the state-of-the-art T-jump study of Ma et al. provided direct evidence of 

collapsed intermediate state(s) for a DNA hairpin at temperatures higher than the melting 

temperature (196, 198). Such states, “collapsed but not folded,” are also important for 

protein folding and may involve hydrophobic and/or secondary structure collapse (199, 

200).  

 In what follows, we introduce an analytical model with which to elucidate the 

(un)folding kinetic pathways and intermediate states characteristic of quasi-1D biological 

motifs such as DNA/RNA hairpins (201), as well as protein secondary structures (Section 

5.1.2). As such, it is termed the kinetic intermediate structure (KIS) model. We note that 

although the model describes macromolecular kinetics, only experimentally-determined 

thermodynamic parameters and diffusion time scales are required as input.  

The (temperature-dependent) free energy of any macromolecular state relative to a 

reference state (usually either the initial or the final state representative of the 

interconversion process under study) is, generally, given by: �G(p) = �H(p) – T�S(p), 
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where �G, �H, and �S are the differences in free energy, enthalpy and entropy, 

respectively, between the chosen state and the reference state, T is the absolute temperature, 

and p is a set of order parameters. Ideally, p is chosen such as to partition the entire state 

space of the studied macromolecule into a complete (i.e., comprehensive) set of structurally 

distinct states. The resulting (coarse grained) free energy landscape describing the process 

of interest is then a projection of the (complete) free energy hyperspace onto p. Within the 

framework of the free energy landscape representation, the (equilibrium) statistical weight 

of the macromolecular ensemble populating state p is proportional to the logarithm of 

�G(p)/kT. In contrast, to study the non-equilibrium structural dynamics following, e.g., an 

external perturbation such as an ultrafast T-jump, which cannot be accounted for using the 

conventional Boltzmann formalism, the following steps can be undertaken. First, the 

topology of the free-energy landscape is to be identified for both the initial and final states. 

(We note that although a generalized free-energy landscape changes continuously in time 

following perturbation, in the present work we are mostly concerned with structural 

relaxation processes for which the time scale of the initiating perturbation is significantly 

shorter than that of the processes ensued.) Second, the possible transitions and their 

associated barriers are to be determined. Third, a macromolecular ensemble distributed 

according to the initial (unperturbed) conditions can be placed onto the free-energy 

landscape representing the final conditions and allowed to evolve with time. In this way, 

kinetic intermediates, dominant pathways and the associated time scales can all be obtained 

as the ensemble equilibrates to the final state.  

 Notably, the kinetic processes taking place on a generic free energy landscape are 

highly non-linear. In addition, although a major strength of computational methods is in the 
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elucidation of the actual spatial structures of studied macromolecules, the challenge is to 

consolidate the vast amount of resulting information in a comprehensive yet clear manner. 

To represent the ensemble-level evolution of macromolecular structures possessing 

hundreds of thousands of degrees of freedom, coarse graining of the atomic-scale details to 

two or three variables is often required. For example, MD trajectories are typically 

projected onto the effective order parameters such as percent native, or non-native, base 

contacts (NC/NNC) or the RMSD from the native structure (191, 192, 202). However, we 

note that dissimilar structures may be characterized by very similar values of NC/NNC or 

RMSD. Therefore, to properly account for the actual structural changes induced by external 

perturbations, achieving the correct balance between comprehensiveness and structural 

specificity is of supreme importance.  

In regard to the secondary structure (un)folding, the single sequence approximation 

(SSA), which implies that there exists no mote than a single continuous island of order per 

macromolecule, is often a realistic description of the structural dynamics involved due to 

the nucleation barrier associated with the formation of each separate ordered island. In 

nucleic acids, this barrier is due to the multiple destacking events necessary to initiate an 

internal loop. The SSA, which serves as a foundation for the equilibrium and kinetic 

studies of helix-to-coil transitions, is known to successfully describe (un)folding in 

polypeptides (41) as well as nucleic acids (203); it only breaks down for relatively long 

chains (for which there are many possible interior nucleation sites). Thus, Ares et al. 

demonstrated, via Monte Carlo simulations carried out on double stranded DNA, that 

internal bulges are only significant for continuous internal A/T stretches of length l = 20 or 
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more (204). In what follows, we limit the analysis to DNA hairpins characterized by the 

stem length l = 6, for which the SSA appears to hold.  

Unlike the case of folding, for which the interstate barriers appear to dominate the 

associated kinetics (Section 5.1.2), the non-equilibrium populations of states forming 

favored unfolding trajectories are determined solely by the equilibrium free energies of 

those states. This assumption, denoted the reversible sampling approximation (RSA), is 

legitimate to the extent that, at a given time during melting, the zipping and unzipping 

processes are frequent enough to locally reach detailed balance away from the unfolded 

state. Therefore, the RSA allows the kinetics of interest to be determined directly from the 

(relative) free energies of intermediate states, which can be calculated using tabulated 

thermodynamic parameters. Importantly, our ensemble-converging MD simulations 

(described below) indicate that both the SSA and RSA appear to hold for all temperatures 

reported here. 

Making use of the validity of the SSA and RSA, in the following we introduce the 

KIS model of DNA/RNA unfolding kinetics, which utilizes experimentally-measured 

thermodynamic parameters. In Section 5.1.2, the model is further extended to describe 

folding of �-helical proteins. For DNA hairpins, we consider the (native) Watson-Crick 

base pairs, and choose the reaction coordinates i and j to be the number of broken 

(unzipped) base pairs on the loop and free ends of the stem, respectively (Figure 4.2; 

notably, the choice of coordinates i and j implicitly constrains the model to the SSA). All 

intermediate states are then represented by unique points on a 2D coordinate grid (i, j), with 

the native state of the hairpin located at (0, 0). The only state that does not have a unique 
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Fig. 4.2. KIS model of DNA hairpin unfolding.  The structures studied are the 1AC7 hairpin: 5 -ATCCTA-GTTC-�
TAGGAT-3 , with is  shown structurally (top left)  and schematically (top right). In  addition, a wide range of stem�
sequence permutations (center left) and loop lengths (bottom left) were studied. The KIS model parameterizes the
unfolding free energy landscapes of these hairpins on the (i,j)-coordinate space (bottom right). Native states of the
hairpins reside at (0,0) and (partially) unfolded states (i,j) correspond to i broken base pairs on the loop end and j
broken base pairs on the free end of the stem. Note that all of the points (i,6  � i), i  6, situated on the diagonal of�
the grid are degenerate within the framework of our model as they represent the ensemble of totally unfolded states.
The unfolding predictions of the KIS model for 1AC7 are compared with ensemble-scale explicit-atom molecular
dynamics simulations. 
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representation on the above landscape is the unfolded-state (“denatured”) structure 

ensemble, which is represented by the points on the diagonal boundary of the coordinate 

space. We note that every given state (i, j) corresponds to a population of structures that 

share the same base pairing but may differ in their detailed atomic coordinates. The coarse 

grained representation of the (complete) free-energy hypersurface �G(i, j) is obtained by 

calculating the free energy for every (i, j)-state with respect to that of the native state (0, 0), 

using the experimentally-measured thermodynamic parameters employed by Kuznetsov et 

al. (205).  

Following the assumption made by Poland and Scheraga (206), each base pair is 

allowed to be either broken or intact, with the overall energetics determined by base pairing 

contacts, nearest-neighbor stacking, and the length of the loop (207, 208). The relative free-

energy of the state (i, j) is calculated by: 

),(),(),(),(),( loopinitsp,sp, jiGjiGjiSTjiHjiG ��������� .             [4.5] 

Individual terms in Equation 4.5 are defined as follows. �Hp,s(i, j) and �Sp,s(i, j) are the 

differences in pairing-stacking enthalpies and entropies, respectively, between the state (i, 

j) and the native state (0, 0); each term represents the summation over all base pairs of state 

(i, j). The stacking parameters were obtained from the studies of Benight and coworkers 

(207, 208), and the pairing parameters from Klump and Ackermann (209) and Frank-

Kamenetskii (210). Although there exist empirical corrections for calculating the 

thermodynamic parameters at any given salt concentration (211), in the present work the 

simulations were performed for 100 mM NaCl solutions, for which the thermodynamic 
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parameters were obtained. Because the above parameters are temperature-independent to a 

good approximation (212), free energies were obtained for a wide range of temperatures 

with the aid of Equation 4.5.  

The free energy changes associated with the native-contact rupture and formation 

were computed as follows. The free energy difference due to initiating a new contact can 

be expressed as:   

��

�
�
�

(�

��'(��
,6,0

,6,ln
2),(init

ji

jikT
jiG �           [4.6]  

where k is the Boltzmann constant and the initiation parameter <�> = 4.5·10�5 is averaged 

over the 10 unique types of base-stacking interactions; given the 4 DNA bases (G, C, A, 

and T), there exist 16 base-stacking permutations, with 6 of those permutations being 

redundant. Finally, )](ln[)]2(ln[),(loop nwkTinwkTjiG �����  is the free energy 

difference that arises from changing the loop size upon unzipping in the i-direction, where 

n is the number of bases forming the loop in the native state of the hairpin. Note that for 

each base pair unzipped from the loop end (i.e., in the i-direction), the loop length increases 

by two residues. The end-loop weighting function w(n), obtained by Kuznetsov et al.(205), 

is given by: � �	 
 ,�3/2)()()( 2/32
loop

�
� bnngVnw r �  where b is the Kuhn length for a single-

stranded DNA polymer, Vr = 4�r3/3 is a reaction volume with a characteristic radius r in 

units of nm, within which the bases at the two ends of the loop can form hydrogen bonds 

(205), and g(n) is the Yamakawa-Stockmayer probability of loop-closure for a worm-like 

chain with n bases (213), which can be expressed as: 
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The numerical coefficients for Nb 
 1 in Equation 4.7 are chosen to give a smooth function 

for all n, and Nb = h(n+1)/b is the number of statistical segments (Kuhn lengths) in a 

hairpin loop with n bases, where h is the distance between adjacent nucleotides. For single-

stranded DNA, b 
 2.6 nm, r = 1, and h = 0.52 nm (205, 214). With these values, Nb > 1 for 

n > 4. The free energy parameters employed in the KIS model are loop-sequence 

independent for hairpins with loop sizes greater than 4 (215). To account for the higher 

stability of smaller loops, which arise from intra-loop interactions (216-218), a correction 

given by 4�� ��'(� bNCn loop
2/1

loop  )(  is introduced (205). The empirical parameters for 

a hairpin with six stem bases are Cloop = 9.0, and � = 6 (205). Although there is some 

experimental uncertainty associated with these parameters, the resulting errors mostly 

affect the free energy difference between the partially folded states and the unfolded state. 

Relative free energies of intermediate states with respect to the native state of the hairpin, 

and therefore the (un)folding trajectories, are not sensitive to the errors in these parameters. 

  
Results: KIS unfolding trajectories. The KIS model introduced above was used to 

construct the free energy landscape that guides temperature-induced unfolding of the DNA 

hairpin with sequence 5'-ATCCTA-GTTC-TAGGAT-3' (Figure 4.2, top right). The native-

state structure of the hairpin was obtained from NMR measurements (PDB entry 1AC7) 

(34, 219), except for a point mutation in which the adenine residue at position 10 was 
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replaced with a cytosine residue. The hairpin sequence was chosen to enable comparison of 

the KIS model predictions with MD simulations starting from the experimentally obtained 

structure of the hairpin (see below). Because the chosen hairpin is characterized by loop 

length n = 4, the point mutation was performed to obtain a tetraloop sequence that would 

preclude significant loop sequence-dependent stabilizing interactions.  

For the studied DNA hairpin, the free-energy landscapes as obtained for the 

temperature range of 300 3 T 3 400 K using the KIS model are presented in Figure 4.3. 

From these results, the melting temperature Tm, as defined by the temperature at which the 

population of the native state and the totally unfolded state are equal, was estimated to be 

320 K. We note that all intermediate states (i, j) have a higher free energy than that of (0, 0) 

for temperatures in the vicinity of Tm. Thus, for T 
 Tm, (un)zipping has no kinetic 

intermediates on the free-energy landscape due to the barrier formed by partially unfolded 

states (Figure 4.3, top left). The free-energy barrier decreases with increasing temperature 

(Figure 4.3, bottom right). However, instead of leading directly to monotonic unfolding at 

some threshold temperature, the energy landscape develops a kinetic intermediate state at 

(0, 2) which is lower in free energy than (0, 0), but must surmount a barrier to completely 

unfold to the global-minimum free-energy state (Figure 4.3, top right). The locally-stable 

(0, 2) intermediate state persists for 340 
 T 
 365 K. Within this temperature range, a fast 

unzipping of A-T base pairs from the free end (j) of the hairpin leading to the intermediate 

state (0, 2) is followed either by a slower unzipping of the G-C base pairs from the free end 

(j) or unzipping of A-T base pairs at the loop end (i). 
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Fig. 4.3. Free-energy landscapes of the 1AC7 DNA hairpin as obtained from the KIS model. The landscapes
are computed (see section 4.2.1 in Text) for the folded (top left), kinetic intermediate-mediated unfolding (top right),
and downhill unfolding (bottom left) temperatures. Note the dramatic temperature dependence of �G(i,j). At T = 350
K, likely dynamic trajectories visiting the intermediate state at (0,2) are superimposed on the landscape (top right).
Most likely (un)folding pathways characteristic of the above landscapes are represented by 1D profiles  with the
adjacent (i,j)-states connected by dotted lines, and magnified to illustrate the onset of the kinetic intermediate state;
note that the barrier for (un)zipping between the states, which may contribute to the overall barrier, is  unknown
(bottom right). 
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For T > 365 K, the above barriers vanish and the hairpin exhibits monotonic 

unfolding at T = 400 K (Figure 4.3, bottom left). For the temperature range of 300 3 T 3 

400 K, the most likely (un)folding pathway can be determined (Figure 4.3, bottom right). 

This pathway is traced from the native state (0, 0) to the unfolded state of the hairpin by 

choosing, at each point, the (un)zipping direction associated with the greatest loss (or least 

gain) of free energy. With increasing temperature, the pathway evolves from a barrier 

crossing (T = 320 K) to an unfolding valley (T = 350 K) to monotonic unfolding (T = 400 

K). Furthermore, for T = 350 K the intermediate state (0, 2) has lower free energy than the 

native state (0, 0), with a barrier of 8 kJ·mol�1 (2.7 kT) separating (0, 2) from the unfolded-

structure ensemble, which indicates that (0, 2) is a kinetic intermediate state. In the 

following, we assess the validity of the assumptions as well as the kinetic predictions of the 

KIS model using ensemble-convergent MD simulations.  

Results: MD unfolding trajectories. To test the findings of the KIS model, we performed 

MD simulations on the hairpin. The number of trajectories was sufficiently large to achieve 

ensemble convergence, i.e., such that the unfolding behavior of the ensemble would not 

significantly change when varying the number (100 3 n 3 500) of trajectories included in 

the data analysis. For the MD simulations, the starting-point structure of the hairpin was 

obtained from the PDB, as described above. The hairpin was centered in a rhombic-

dodecahedron primary simulation cell with an initial box length of 60 Å. In addition to the 

hairpin, 4,856 TIP3P water molecules (220), 24 sodium ions and 9 chloride ions were 

added as a 100 mM salinity solvent yielding an electrically neutral system comprising 

15,109 atoms. MD simulations were performed with the GROMACS suite of programs 
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using the all-atom AMBER99 force field and periodic boundary conditions imposed on the 

system under study (170, 221-223).  

The SSA implicit in the KIS model was first verified by the MD simulations. 

Bonding contacts between any pair of nucleotides were determined for all trajectories. Two 

nucleotides were denoted to be in contact if at least one of the two (A-T pairs) or three (G-

C pairs) Watson-Crick hydrogen bonds were formed. For the purpose of the analysis, a 

hydrogen bonding contact was defined by a donor-acceptor distance of 3.5 Å and an 

acceptor-donor-hydrogen angle of 30° (or less); the G_HBOND routine of the GROMACS 

suite of programs was used to identify the contacts. At lower temperatures (T 
 350 K) 

almost all the MD trajectories satisfy the SSA. Variations occur due to the increased 

mobility of nucleotides at both ends of the stem leading, e.g., to out-of-plane bending of a 

nucleotide which then induces the displacement of the neighboring (stacked) nucleotide 

from its Watson-Crick position. The non-SSA fluctuations occur on time scales ranging 

from a few to hundreds of picoseconds. At higher temperatures (T � 400 K), mobility of 

individual nucleotides is further increased, leading to increased structural variability and a 

consequently reduced fraction of SSA-like structures. However, at all the temperatures 

reported here the SSA correctly describes the topology of at least 94% of the MD 

configurations obtained.  

To enable comparison with the KIS model, the entire set of MD trajectories is 

projected onto the (i, j) coordinate space by calculating the probability, pMD(i, j), of the (i, 

j)-state being occupied. Since the SSA is valid for at least 94% of all trajectories, this 
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projection accounts for 94% (or larger fraction) of the MD ensemble. Knowing pMD(i, j), 

the effective coarse grained free-energy landscape, �GMD(i, j), can be calculated using: 

)].,(ln[),( MDMD jipkTjiG ���       [4.8] 

We note that �GMD is often denoted as the potential of mean force and, in the present work, 

it is associated with the non-equilibrium process of hairpin relaxation (T 
 350 K) or 

unzipping (T � 400 K) following a 100 ps T-jump from the initial (T0 = 300 K) to the final 

temperature T, with the initial state being identical, or in proximity, to the fully folded (0, 

0)-state. In examining �GMD(i, j), the results of Figure. 4.4 indicate that the unique 

intermediate state that arises at 400 3 T 3 500 K  is indeed (0, 2). This is in contrast to the 

findings made using the irreversible unzipping hypothesis, which would predict (0, 2) and 

(1, 1) being equally likely to be populated. Consequently, the reversible (un)zipping 

observed in our MD simulations supports the validity of the RSA.  

Having found that the SSA and the RSA are both valid approximations for the 

DNA hairpin under study, we now evaluate the kinetic predictions of the KIS model using 

MD results. Shown in Figure 4.4 are �GMD(i, j) landscapes as obtained from ensemble-

convergent MD simulations for a range of temperatures. At T0 = 300 K, the hairpin appears 

to populate the states (0, 0) and (0, 1) with approximately equal probabilities. With 

increasing temperature, the number of (i, j)-states available for sampling increases and, 

above T = 400 K, effectively all the (i, j)-states are sampled in the MD simulations. The 

question arises as to how to compare the landscapes �G(i, j) and �GMD(i, j) for a given 

temperature T. Due to non-equilibrium sampling characteristic of the MD simulations, 

�GMD(i, j) will not accurately reflect the equilibrium free energies �G(i, j), especially for 
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Fig. 4.4. Free-energy landscapes of the 1AC7 DNA hairpin as obtained from ensemble MD simulations. The
free energy �GMD(i,j) of the hairpin (see Figure 4.2, top right) is calculated by taking the logarithm of the population
from the MD  simulations  that  correspond to  each point  of  the  KIS  landscape,  for  the folded (top left),  kinetic
intermediate-mediated  unfolding  (top  right),  and  downhill  unfolding  (bottom  left)  temperatures.  1D  profiles  of
�GMD(i,j) along the most likely unfolding pathways are shown as well (bottom right). At lower temperatures, the free
energy of some points on the KIS landscape near the unfolded state are artificially high due to insufficient sampling. 
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higher T-jumps. However, a minimum along the unfolding valley in �G(i, j) will 

correspond to the highest values of pMD(i, j), leading to a corresponding minimum in 

�GMD(i, j).  

An examination of �G(i, j) and �GMD(i, j), Figures 4.3 and 4.4, respectively, 

demonstrates that the topological features predicted by the KIS model and MD are very 

similar, although the temperatures at which certain features arise are somewhat different. 

The above discrepancy may be rationalized in terms of the limited sampling of the 

coordinate space, which is a general drawback of the MD simulations. For low T-jumps, 

both MD results and the KIS model predict a two-state behavior associated with the barrier 

formed by the partially unfolded states. For sufficiently high T-jumps (T 
 350 K for the 

KIS model and T = 400 K for MD), both �G(i, j) and �GMD(i, j) show the existence of the 

intermediate state (0, 2) that is lower in free energy than (0, 0). Furthermore, the barrier 

between the kinetic intermediate state and the unfolded-structure ensemble is estimated by 

the KIS model to be 2.7 kT at T = 350 K, being the same order of magnitude as 4 kT, the 

MD estimate for the barrier at T = 400 K. 

The effect of the intermediate on the unfolding time scales can be derived from the 

MD trajectories by tabulating the average number of intact native contacts in the stem as a 

function of time following the T-jump. As stated above, at T = 400 K the (rate limiting) 

barrier for unfolding separates the kinetic intermediate state from the unfolded-structure 

ensemble, the barrier height between the two states being approximately 4 kT (Figure 4.4, 

bottom right). Upon averaging over the MD trajectories, the unfolding data as obtained for 

T = 400 Kwere fitted by the sum of two exponentials with time constants �1 and �2; �1 = 45 
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ns is characteristic of the fast unzipping from the native state (0, 0) to the kinetic 

intermediate state (0, 2), whereas �2 = 9 �s is the time scale on which the intermediate is 

populated after the T-jump. At T = 400 K, where only a fraction of the hairpin trajectories 

were found to unfold within the MD simulation window, the probability of observing the 

kinetic intermediate state (0, 2) peaks at 30% after time ~ �1. The probability then decreases 

to a plateau at approximately 15% for the remainder of the simulation window, which 

indicates that the state (0, 2) persists on a time scale much longer than the duration of the 

window (i.e., �2), suggesting that (0, 2) is, indeed, a long-lived kinetic intermediate state.   

At T > 365 K and T > 400 K for the KIS model MD simulations, respectively, both 

methods predict monotonic unfolding. According to the results of Figure 4.3, bottom right, 

for T � 400 K no local minimum exists on the �G(i, j) landscape within the framework of 

the KIS model. Although the local minimum in �GMD(i, j) persists and, at higher 

temperatures, is shifted to the (2, 2)-state (data not shown), it no longer corresponds to a 

kinetic intermediate because the barrier between the local minimum and the global 

minimum (i.e., the completely unfolded state) decreases to the order of magnitude of the 

thermal quantum (kT). Interestingly, for T � 500 K, we detected a rapid increase in the 

probability of observing the local minimum state subsequent to the T-jump across the entire 

MD ensemble, which was followed by a somewhat slower decay to zero on a very similar 

time scale. Because the population of the state increases and decays on similar time scales, 

no accumulation of kinetic intermediate structures occurs. Correspondingly, there is a 

single exponential decay of the number of native contacts for T � 500 K, which leads to a 

monotonic two-state unfolding. 
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Summary. We conclude that, for the studied DNA hairpin, the analytical KIS model and 

ensemble convergent MD simulations both predict the same temperature-dependent kinetic 

behavior: barrier-crossing kinetics on the free-energy landscape for lower T-jumps (T 
 340 

K for KIS, T < 400 K for MD), three-state kinetics due to the long-lived intermediate state 

(0, 2) for intermediate T-jumps (340 
 T 
 365 K for KIS, T � 400 K for MD), and 

monotonic unfolding for higher T-jumps (T  � 400 K for KIS, T � 500K for MD).  

The KIS model, despite its simplifications, can accurately predict the relevant, 

structure-specific, kinetic behavior for the macromolecule. For a range of final 

temperatures above the melting temperature, intermediate states representing collapsed (but 

not folded) structures emerge as local valleys on the �G(i, j) landscape with lower free 

energies than that of the native fold. The intermediate state(s) are separated from the global 

free energy minimum populated by the unfolded-structure ensemble by a significant 

barrier, leading to non-two-state dynamics. To conclude, (i) the unfolding kinetics can be 

non-two-state for a wide range of T-jumps, (ii) the stem sequence of the hairpin determines 

the identity of the kinetic intermediate(s) and the most likely unfolding pathways, and (iii) 

the hairpin loop length affects the depth of the local minima on the free-energy landscape. 

Unlike the case of the polyalanine homopolymer (Section 5.1.2), for which misfolding 

intermediates appear to dominate the folding dynamics, the kinetic-intermediate states 

characteristic of DNA hairpin unfolding are the result of sequence inhomogeneity and loop 

entropy. Following the benchmark comparison with ensemble-converging MD simulations, 

the KIS model can be used to generate free energy landscapes for all the hairpin sequence 

permutations as well as for varying loop and stem lengths, and to determine the 

temperature range for which the two-state unfolding hypothesis breaks down; the base 
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pairing configurations of the intermediate states on such landscapes are readily obtained as 

well.  

4.2.2 Unfolding Dynamics of DNA Double Helix in Vacuo and in Solution 

Introduction. Under physiological conditions, the stability of a DNA duplex stems from 

a delicate balance of a number of competing forces and mechanisms (224). In particular, 

the Coulomb repulsion between negatively charged phosphate groups is compensated by 

stacking and hydrogen bonding interactions between DNA bases and by the screening 

effect of water and surrounding ions. (De)hydration is expected to affect the stability of 

the duplex because the change from aqueous to less polar solvents reportedly leads to 

pronounced conformational transitions and/or disruption of the helical pattern (225, 226). 

Similarly, it has been demonstrated by X-ray fiber diffraction that, upon variation of the 

relative humidity of fiber environment, the molecular structures assumed by DNA fibers 

vary from A-DNA to Z-DNA, and that the hydration-driven transitions between the DNA 

conformers are fully reversible (227-230). A recent determination of the structure of 

DNA in single crystals of nucleosome core particles revealed that the DNA is 

predominantly in the B-form with local distortions and irregularities, which facilitate its 

superhelical path in the nucleosome (231). Generally, there seems to be little reservation 

about prevalence of B-DNA occurring in vivo, although in various situations (e.g., 

around histones) the molecule adapts a bent configuration (232).  

In light of the structural integrity of B-form DNA in solution, the physical source 

of this stability becomes a highly relevant topic. In particular, what features of the duplex 

are preserved in vacuo and are therefore "inherent" to the physics of DNA alone? 
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Because the replication and transcription of DNA are dynamical processes involving 

strand separation, an equally important goal is the understanding of the effect of solvent 

on both conformational and unfolding dynamics. Although biological macromolecules 

often tend to undergo local distortions, the structures they commonly assume are 

relatively robust, persisting in a wide variety of environments. Thus, according to 

electrospray experimental observations, DNA retains its major structural features even in 

the absence of the hydrating water layer (233-236). However, because direct 

experimental determination of detailed molecular structures of large, flexible 

biopolymers in vacuo and in solution is not feasible at present, theoretical methods 

remain the guiding force in exploring the configurational space of DNA/RNA in various 

environments (201).  

Remarkably, the double-helix architecture of nucleic acids gives rise to a number 

of persistent structural features which can be efficiently exploited in experimental and 

theoretical studies. For example, by analyzing the diffraction from spatially aligned DNA 

fibers, both the helical symmetry and macromolecular structure of the fibers can be 

deduced (232, 237). This is typically accomplished by calculating the diffraction pattern 

using a "theoretical" (anticipated) structure of a single fiber which is presumed to be 

known with a sufficiently high resolution. By comparing the theoretical pattern with the 

"observed" (experimental) one, which originates from a large number of well-oriented, 

coherently scattering fibers, an improved structural model of the fiber may be 

constructed. However, of special interest in molecular biology is the study of structural 

and conformational changes which are free of the effects of solvation, crystallization or 

external ordering imposed on the specimen (182). Because of their large size and 
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unprecedented flexibility, DNA macromolecules possess a myriad of quasi-random 

structural configurations during the course of an order–disorder transition, and this 

complexity may, naively, suggest the masking of any significant change in diffraction. 

However, as we demonstrate in detail below, an accurate theoretical mapping of 

macromolecular ensembles which consist of hundreds of DNA duplex microstates 

indicates that the pronounced features of the quasi-periodic structure (spatial resonance) 

in DNA may be used as a natural measure of the disruption of the double-helix ordering 

in both space and time. 

For over a decade, MD simulations have been capable of reproducing the 

structure and dynamics of large DNA macromolecules in aqueous solutions (238, 239). 

Although MD simulations of gas-phase nucleic acids have been performed even earlier 

for sub-nanosecond dynamics (240-242), in a recent computational study, Rueda et al. 

demonstrated for the first time that a somewhat distorted DNA duplex might be stable in 

the gas phase on the (sub)microsecond time scale (224). Importantly, the conformational 

transition due to vaporization of DNA should occur very rapidly given the size of the 

macromolecule under scrutiny (the complete equilibration is reportedly achieved on a 

few-nanosecond time scale). However, the extended duplex structures retain many 

features characteristic of the canonical (hydrated) DNA configuration irrespective of both 

the temperature (T 
 448 K) and the neutralization protocol employed in the numerical 

simulations. Despite the similarities which reportedly exist between the equilibrated 

duplexes and C-type DNA, the former are better described as mechanically-stretched 

(elongated) double helices (243). Interestingly, the vaporization does not have a dramatic 

effect on the conformational preferences of DNA nucleotides. Thus, 60 to 90% of 
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canonical hydrogen bonds are preserved in the gas phase at 298 K. However, the fraction 

of non-canonical hydrogen bonds, which is negligible in solution, increases to 
 40% in 

the gas phase. The DNA bases remained well-stacked throughout the simulations, but the 

stacking direction was no longer parallel to the helix axis. No strand separations were 

observed in any MD trajectories.  

In what follows, we discuss ultrafast structural dynamics of DNA unfolding in the 

gas phase as obtained from ensemble-convergent MD simulations carried out for a 

number of charged states (Q = –6 or –12) and T-jumps (T0 = 300 K; 300 
 �T 
 1200 K) 

and make a comparison with unfolding dynamics of the same macromolecule in aqueous 

solution. In contrast to earlier theoretical work, the focus here is on the dynamics of DNA 

duplex unfolding, including the influence of hydration on the mechanisms and time 

scales characteristic of the process. In addition to the use of native-contact metrics to 

measure base pairing disruption, we also investigate the conformational dynamics of the 

duplex via the radial distribution functions of UED simulations. Though certain apparent 

implications for future UED experiments are briefly outlined below, the above-mentioned 

radial distribution functions are only invoked here as an intuitively appealing coarse-

graining approach. As all analyses were performed on a large number of independent 

unfolding trajectories, we elucidate the dramatic effect of solvation on the structural and 

dynamical properties of DNA in an ensemble-convergent manner.  

Computational: MD and electron diffraction simulations. In the present work, large-

scale macromolecular ensembles of 5’-d(CGCGGTGTCCGCG)-3’ DNA duplexes (PDB 

entry 1LAI) (244) were generated both in vacuo and in aqueous solution, and their 
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spatiotemporal evolution was monitored following a variety of T-jumps during the course 

of distributed MD simulations. Radial distribution functions of the full duplex as obtained 

for the (native-state) NMR structure in aqueous solution are depicted on the right in 

Figure 4.5. Also shown in the Figure are corresponding patterns of individual 

(uncoupled) DNA strands as they appear in the duplex. We note that the differences 

between the two kinds of patterns are striking, which suggests a very pronounced change 

in diffraction upon the complete separation of the strands (the experimentally-observed 

difference would be even larger because the uncoupled DNA strands would also lose 

their structural ordering associated with both stacking and helical-structure periodicity 

characteristic of the B-DNA structure). Importantly, calculated diffraction patterns of the 

macromolecule and the uncoupled strands are almost indistinguishable at s > 3 Å–1 which 

indicates that the features arising from the interstrand rij distances are largely 

concentrated in the innermost area of the scattering pattern. 

A comparison of the radial distribution functions characteristic of full DNA 

duplex and separate strands (Figure 4.5) reveals that the strand-to-strand internuclear 

distances result in pronounced distance-density accumulations (spatial resonance) at r � 

13, 16, and 18 Å. Because a typical hydrogen-bonded DNA base pair is about 10 Å in 

size, the resonant distance density accumulations at r < 10 Å (Figure 4.5, top right) are 

largely due to base pairing and stacking (r � 5 Å) in the duplex. For the single strand, the 

(r � 5 Å) base-stacking peak of f(r) persists whereas the inter-strand (r � 7 Å) base 

pairing peak disappears, as expected. Thus, order–disorder transitions in DNA can be 

explored by monitoring the structural resonance arising from these base pairing and 

stacking distances (see below). 
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Fig.  4.5.  Electron diffraction  simulations  of  the  DNA double  helix.  The experimentally  determined  B-type
structure (left) can be projected onto a one-dimensional radial distribution function (top right), which is the Fourier
transform of the scattered electron intensity in a typical gas electron diffraction experiment (bottom right). Intuitively,
the radial distribution function is the histogram distribution of pair-wise atomic distances in the structure, weighted to
accentuate local structure (see section 3.3). Note the peak at r = 5 %
corresponding to the base stacking distance
along the DNA strand, which is  present in both the single strand and the duplex, as  well as the  r = 7  % peak
corresponding to inter-strand base-pairing, which is only present in the duplex.  
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As stated above, the ensemble-convergent MD simulations were carried out for 

the DNA duplex 1LAI in the gas phase and in aqueous solution. The simulations were 

performed using the CHARMM (118) suite of programs with the all-atom CHARMM27 

(245, 246) force field parameters describing nucleic acids. The starting point geometry of 

the duplex was that of the NMR experimental structure. Because DNA macromolecules 

are known to have an intrinsic negative charge which is responsible for their acidic 

character, and which is concentrated on the backbone phosphate groups, the DNA 

ensemble in vacuo is characterized by a distribution of charged states due to varying 

degrees of macromolecular protonation. According to the electrospray experiments (233), 

the charged state of a typical DNA duplex in vacuo should be about 1/4 of its intrinsic 

negative charge. Because the duplexes studied here possess an inherent charge of –24, the 

charged states of Q  = –6 and –12 were assumed in vacuo in order to assess the impact of 

different values of Q on the macromolecular dynamics.  

Rueda et al (224) manipulated the charged state of their DNA duplexes by either 

neutralizing selected phosphate groups or scaling down the negative charge of all 

phosphate groups by the appropriate fractional factor. It was found that the structural 

stability was essentially independent of neutralization scheme. In the present study, we 

applied the latter methodology and scaled the phosphate-group charges of the PDB 

structure by factors of 1/4 and 1/2 in order to obtain the desired charged states (see above). 

For each of the two charged states, the initial PDB structure was energy-minimized for 

12000 steps in vacuo and then heated to T = 300 K and pre-equilibrated for 100 ps. In the 

gas phase, the structure was further equilibrated for 400 ns at T = 300 K. From the latter 

equilibration step, n = 200 random DNA configurations were obtained to represent the 
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(isolated) macromolecular ensemble at T0 = 300 K. To assess the ensemble-averaged T-

jump dynamics of the DNA duplexes, the above-mentioned equilibrated macromolecular 

ensemble was used as a starting point for three sets of, n = 200 independent heating 

trajectories representing the 300 K, 600 K, and 1200 K T-jumps (Figure 4.6). For each of 

these trajectories, the starting-point macromolecular configuration was heated to the final 

temperature, T = T0 + �T, within 1 ps and was subsequently allowed to evolve for up to 

100 ns to obtain the duplex-unfolding statistics.  

For the solution-phase MD simulations, the original PDB structure was centered in 

the cubic primary-simulation cell with the initial box length of 60.5 Å, which contained 

7007 TIP3P water molecules and 24 sodium atoms for a neutral system. For all solution-

phase simulations, MD trajectories were obtained using periodic-boundary conditions with 

long-range electrostatics computed via the PME method (121). Following 20,000 steps of 

energy minimization, the box was heated to T0 = 300 K within 10 ps. Subsequently, the 

system was allowed to evolve for 1 ns at constant temperature and 1 atm pressure. From 

this trajectory, n = 200 random water-DNA configurations were chosen to represent the 

solvated structure. Using these configurations as the starting-point structures, the T-jump 

MD trajectories were obtained as follows. The system was heated to T = 600 K within 10 

ps and was subsequently maintained at constant temperature and 1 atm pressure for 6 ns to 

obtain the duplex-unfolding statistics (see below). The MD simulations and data analyses 

were then repeated for T = 500 K.  

To assess the fraction of intact native (Watson-Crick) base pairing contacts as well 

as both local and global structural changes throughout the ensemble, two complementary 
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Fig. 4.6. Temperature-induced unfolding of the DNA double  helix.  Starting from the equilibrated gas  phase
ensemble,  temperatures  jumps of 300, 600, and 1200 K were applied on the entire ensemble.  Representative
unfolding snapshots are shown illustrating the different temperature dependences of local versus global unfolding.
Although both the -6 and -12 charge states were studied, only the -6 charge state is reported due to the similarity of
the results. The 600 K jump results, being qualitatively similar to those of the 1200 K jump, are not shown. In
addition,  double  helix  unfolding  was  performed  in  the  solvated  phase  at  much lower  temperature  jumps  for
comparison. 
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types of data were collected as a function of time. First, for all sets of independent 

trajectories, the fraction of each native base pairing contact remaining intact at time t was 

calculated as follows. The fraction of intact hydrogen bonds was obtained for every 

Watson-Crick base pair and further averaged over the n = 200 independent trajectories to 

obtain the average decay of each native contact as a function of time. A hydrogen bond was 

defined to be 100 % intact if the distance between the donated proton and the nitrogen or 

oxygen atom (the hydrogen acceptor) was less than 1.8 Å and the straight line joining the 

proton and the hydrogen acceptor was no more than 90 degrees out of the plane defined by 

the aromatic rings of the base pair. In addition, the smoothness of the transition between a 

fully intact and a fully broken hydrogen bond was enforced using an exponential 

attenuation of the bond strength such that the hydrogen bond would be 1/e-fold intact at a 

distance of 2.5 Å. These criteria are consistent with established conventions for geometry-

based hydrogen bond determination (247), and it should be noted that the (fast) process of 

base pair disruption renders the results thus obtained insensitive to variance in the threshold 

values used.  

Second, the ensemble-averaged radial distribution functions, <f(r, t)>n, were 

calculated for a variety of time points following the T-jumps using the in-house UEDANA 

diffraction simulation code with an artificial damping factor of k = 0.02 Å2 to compensate 

for the unwanted oscillations induced by a finite data range (smax < +). The RMS 

amplitudes of thermal vibrations of the DNA duplex were estimated using empirical 

equations (see Section 3.3 for methodological details).  
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Results: base pairing separation. For the lower (�T = 300 K; top) and higher (�T = 1200 

K) T-jumps illustrated in Figure 4.6, the ensemble-wide DNA unfolding behavior is 

presented in Figure 4.7. The fraction of intact base pairs is plotted as a function of time 

(right), and the position dependence of base pair breaking is displayed using the color-

coded representation (left). There are three noteworthy observations pertinent to DNA 

stability and (un)folding in the gas phase. First, the mechanism of DNA unzipping (or 

native-contact rupture) turns out to be robust with respect to both the charged state assumed 

throughout the ensemble and the T-jump experienced by macromolecules. As evidenced by 

our MD simulations, an increased Coulomb repulsion between the strands results in 

somewhat decreased backbone ordering and smaller gliding shifts of stacked DNA bases 

which are more reminiscent of the canonical structure of B-DNA. However, for both 

charged states used in our study, Q = –6 and –12 (the latter one is omitted from the 

discussion for conciseness), the DNA duplex tends to undergo very similar unfolding 

processes all the final temperatures considered, with larger T-jumps leading to shorter times 

required for complete base pair unzipping (5, 150, and 5000 ps for �T = 1200, 600, and 

300 K, respectively). The order of base pair disruption is preserved for all values of �T, 

whereas the unfolding time scales and behavior are unaffected by the charged state. 

Importantly, the gas-phase unfolding induces the formation of a “bubble” (broken base pair 

sequence) in the interior of the duplex, such that the duplex is split into two distinct base 

paired regions in violation of the SSA. 

This is in contrast to the unfolding behavior of the DNA duplexes in solution 

characteristic of �T 
 200 K (Figure 4.8, bottom), for which the SSA appears to hold. The 
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Fig. 4.7. DNA base-pair breakage as a function of temperature in vacuum.  Upon heating with lower (top) and
higher (bottom) temperature jumps , base-pair breaking as a function of time is shown along the DNA sequence
(yellow: 100% intact, black: 0% intact; left), and the decay of each contact is plotted (right). In the gas phase, early
breakage of the base-pairs in the center of the DNA sequence creates two separate base-pairing islands, and the
drastic difference in unfolding timescales for lower and higher temperature jumps is consistent with crossing an
enthalpic barrier when breaking the base-pairing. 
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Fig. 4.8. Effect of water on DNA duplex structure and base-pair unfolding dynamics. Upon MD equilibration in
solution,  as  well  as  in  gas  phase for  two possible  charge states  for  an ensemble  of  n =  200  structures,  the
ensemble-averaged radial distribution function gives a picture of the conformational distribution of all three states
(top). The DNA double helix in aqueous solution maintains the classic B-form structure with periodically repeating
base stacking and pairing distances, as seen in the resonance peaks at r = 5 and 7  % in  ?f(r)@n, respectively; in
contrast, the duplex in the absence of water loses its  global structural periodicity due to deformations that tend to
compactify  the duplex (top left).  Nevertheless, the local  base-pairing  is  robustly  maintained despite the global
deformation, as  can be seen in the preservation of the base pairing resonance peak  ?fP(r)@n of  the phosphorus
backbone (top right). Upon heating, base-pair breaking as a function of time is shown along the DNA sequence
(yellow: 100% intact, black: 0% intact; bottom left), and the decay of each contact is plotted (bottom right). The base
pair unfolding occurs from the ends of the double helix rather than forming a bubble in the center, in contrast to the
vacuum case (Figure 4.7).
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main reason for the validity of the SSA in solution is the necessity to disrupt an extra set of 

stacking interactions in order to allow for the formation of an interior bubble. In the case of 

DNA duplex in the gas phase, this is compensated for by the presence of (weaker) A-T 

base pairing contacts in the center of the duplex. In the solution phase, however, the 

hydrogen bonding with water decreases the stabilizing advantage of G-C base pairing as 

compared to A-T base pairing, thereby favoring unzipping from the ends of the duplex. The 

importance of hydrogen bonding within the duplex in the gas phase also contributes to the 

relatively long time required for complete strand separation, which was only observed for 

�T = 1200 K. At this (very high) temperature, although hydrogen bonding of the native 

contacts was broken in a few picoseconds, the formation of random non-native hydrogen 

bonds between the two “sticky” DNA strands delayed strand separation for a nanosecond 

or so despite a substantial Coulomb repulsion force.  

Finally, in addition to the pronounced differences in the DNA unfolding 

mechanism, the presence of water, which competes for hydrogen bonding with DNA bases, 

results in a striking acceleration in duplex unzipping. Thus, at T = 600 K, the solvated 

duplexes lose their native base pairing contacts in about 100 ps as opposed to 5 

nanoseconds in the gas phase, which may be rationalized in terms of (efficient) heat 

exchange between DNA and surrounding water molecules. However, despite shedding 

light on the dynamics of base pair contact disruption, the above insights do not provide a 

picture of local (or global) macromolecular contortions following the external stress. In 

particular, it is of interest to know if pronounced unzipping of Watson-Crick contacts is 

necessary for such contortions to occur or if the DNA structure can undergo significant 

deformations while preserving most of its native base pairs. Below, we address this issue in 
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detail using both the “duplex-as-a-whole” and “phosphate-backbone-only” representations 

of the studied macromolecular ensembles.   

Results: conformational unfolding and radial distribution functions. Despite the rapid 

transition from canonical (B-DNA) to somewhat extended macromolecular structures 

which takes place upon DNA vaporization, the major structural motifs characteristic of 

hydrated DNA duplexes are largely preserved in the gas phase (Figure 4.8, top). For the 

DNA ensembles equilibrated at T0 = 300 K (t 	 0), regardless of the presence of 

hydrating environment, multiple sets of spatially coherent intramolecular distances give 

rise to unique resonant features in the radial distribution function characteristic of the full 

DNA duplex, <f(r, t)>n, and the subset consisting of the backbone phosphorus atoms, 

<fP(r, t)>n. A comparison of radial distribution features of hydrated and isolated 

ensembles of 1LAI (Figure 4.8, top) reveals that the spatial resonance associated with 

structural ordering in the duplexes is slightly weakened upon vaporization, which may be 

rationalized in terms of formation of locally ordered domains separated by somewhat 

distorted moieties. However, as evidenced by sharp resonant peaks in <fP(r, 0)>n, these 

changes are not associated with a pronounced loss of helicity in the backbone. It is also 

noteworthy that the radial-distribution-based representation of isolated DNA ensembles is 

robust to variations in the charged state of the macromolecule. In the following we 

demonstrate that deterioration of the spatial resonance in <f(r, t)>n and <fP(r, t)>n 

following a T-jump (t > 0) provides direct insight into the details of order–disorder 

transitions throughout the studied macromolecular ensemble.  

94



 

 

�
For a T-jump of �T = 1200 K, the complete unfolding of DNA macromolecules in 

the gas phase includes three distinct stages each of which is characterized by its specific 

time scale (Figure 4.9, bottom). First, the base pairing and base-stacking contacts are 

broken throughout the duplex in the order of increasing energy penalty, and 

corresponding base pairs swing out of their “slots” in the equilibrated structure. Notably, 

the resulting decrease of structural ordering throughout the DNA duplexes, which 

manifests itself through gradual deterioration and smoothing of resonant features in <f(r, 

t)>n (Figure 4.9, bottom), does not affect the structure of the sugar backbone (Figure 4.10, 

bottom). Indeed, for the initial steps of the order–disorder transition studied here, which 

occur on the time scale of several ps, <fP(r, t)>n of the phosphorous chains remains 

virtually unchanged, whereas the (macromolecule-wide) <f(r, t)>n decreases 

monotonically and quasi-linearly with time, which is also true for the resonant base-

stacking feature at r � 5 Å.  

Second, from t � 10 ps and on, the sugar backbones of the duplexes lose their 

characteristic rigidity, which leads to a partial loss of the native (helical) structure. Thus, 

the second-largest peak in <fP(t, r)>n, r � 18 Å, starts to broaden and deteriorate, which is 

indicative of decreasing long-range ordering in the duplex (Figure 4.10, bottom). At t � 

100 ps, the process of non-specific “coiling” of the two strands is virtually complete, and 

the resonant peak at r � 18 Å evolves into a residual shoulder. Simultaneously, the 

resonant feature at r � 13 Å transforms into a higher and broader nonresonant peak, and 

the nearest phosphorous-phosphorus distances rP…P (r � 7 Å) become more spread due to 

the increasing randomization of the backbone structure. Finally, the two DNA strands 

separate at t � 1 ns, which is indicative of the completion of the order–disorder transition, 
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Fig.  4.9.  DNA gas-phase  unfolding  monitored  on  the  radial  distribution  function. The  evolution  of  the
ensemble-averaged pair-wise (radial)  distribution function,  ?f(r)@n as  a function of t,  during unfolding at  different
temperature jumps (left) gives structural information about both the global geometry (the growth of the tail), as well
as local geometry (the resonance distances of ~ 5 and 7 %
�����	���
���
��
��	�
	���J���
��

�������

�	�����	).
The latter can be seen via the change of ?�f(r)@n showing depletion around the resonance distances (right), although
this effect is obscured by global structural diffusion happening at the same time-scale at lower temperature jumps
(top right). This implies that ultrafast electron diffraction experiments should be done for OT > 300 K to observe the
base pair unfolding dynamics.
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Fig.  4.10.  DNA gas-phase  unfolding  monitored  on  the  radial  distribution  function  of  the  phosphorus
backbone. In contrast to ?f(r)@n of the full molecule, the phosphorus backbone is free of the obscuring effects due to
the nucleotides themselves, and shows a dominant peak at the inter-strand base-pairing distance of 7 %
������. In this
case, the unraveling of the double helical structure via breaking of the parallel base-pairing distance between the
two DNA chains  ���
��
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?f(r)@n is missing in these plots.
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although large T-jumps are necessary in order for the strand separation to occur within a 

practically feasible simulation window. As for the case of base pair unzipping, the 

temporal responses of radial distribution functions to the T-jumps of �T = 600 K and �T 

= 1200 K are qualitatively similar. Despite some minor loss of helical ordering at shorter 

times, the overall structure of the backbone remains largely intact for tens of ps following 

the T-jump of �T = 600 K, and a (partial) coiling of the strands becomes pronounced on 

the time scale of hundreds of picoseconds.  

In contrast, the order–disorder transition induced across the studied 

macromolecular ensemble by a T-jump of �T = 300 K is vastly different from that 

discussed above. For the 300 K T-jump in vacuo, both <f(r, t)>n and <fP(r, t)>n were 

found to increase with time for shorter internuclear distances, indicative of ensemble-

wide global bending and compaction (top panels of Figures 4.9 and 4.10). Because the 

majority of base pairing contacts remained intact on the shorter time scales, the overall 

molecular rigidity prevented significant backbone unfolding for the first 300 ps. 

Moreover, even at t = 1 ns the helical motif was well preserved. However, the DNA 

double helix undergoes significant global conformational contortions, changing its shape 

from a rod-like duplex to a spheroid despite maintaining the majority of its base pair 

contacts over time. Consequently, because the native contact rupture lags behind the 

global conformational changes such as backbone coiling, the (local) decay of base pairing 

and stacking interactions is no longer isolated to the shortest times and its representative 

signal is therefore convoluted with that of the (non-specific) global motion. Therefore, 

following the lowest T-jump studied here, the base pair (un)folding dynamics is not 

readily evident in the temporal changes of <f(r, t)>n.  
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The above behavior arises because base pairing/stacking disruption and global 

conformational change are enthalpy- and entropy-driven processes, respectively. At 

lower temperatures (�T ~ 300 K) conformational diffusion happens even if few 

disruptions occur. Because the (barrier-crossing) native contact disruption process speeds 

up exponentially with increasing temperature whereas the (diffusive) global 

conformational motion is weakly dependent on temperature, at a certain threshold 

temperature the time scales for these two processes cross. Consequently, at sufficiently 

high temperatures (�T ~ 600 K), all base pairs are broken prior to the characteristic 

diffusion time. Crucially, this observation also suggests that UED T-jumps be performed 

for �T >> 300 K to observe ultrafast local dynamics with clarity. Notably, neither 300 K 

nor 600 K T-jumps were sufficient to trigger a strand separation process in the gas phase 

within the temporal window characteristic of our MD simulations.              

Summary. In the present study we have demonstrated for the first time that order–

disorder transitions in gas phase DNA duplexes cannot be accounted for using a 

conventional “two-state” model. The folding-unfolding landscape of a free DNA 

macromolecule involves a number of intermediate structures which may be described as 

(partially) unfolded, or collapsed. The time scales characteristic of native-contact rupture 

and sugar backbone denaturation are strongly temperature dependent, so much so, in fact, 

that coiling of the strands may either precede (at low-enough temperatures) or follow the 

base pair separation. For the total strand separation to occur on the nanosecond time 

scale, the T-jump experienced by the ensemble under study has to be high enough to 

compensate for the “stickiness” (the intramolecular hydrogen-bonding bias) characteristic 

of DNA in the absence of water. For an isolated macromolecular ensemble of DNA 
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duplex 13-mers equilibrated at T0 = 300 K and experiencing a T-jump of �T = 1200 K, 

the native contact rupture, backbone coiling, and strand separation were found to occur 

on 10 ps, 100 ps, and 1 ns time scales, respectively (in the case of Q = –12, the strands 

were found to move apart somewhat faster because of a stronger Coulomb repulsion). For 

�T = 600 K, the transitional behavior was qualitatively similar to that characteristic of �T 

= 1200 K (apart from the unpairing/destacking and backbone coiling time scales of ~60 

ps and 400 ps, respectively), but for �T = 300 K the behavior was radically different: the 

DNA backbone would twist and compactify for hundreds of picoseconds prior to any 

substantial base pair disruption. 

Although ensemble-averaged unfolding trajectories of free DNA macromolecules 

are largely insensitive to both charged-state and temperature changes, the denaturation 

dynamics in vacuo is vastly different from that characteristic of aqueous solution. The 

above-mentioned “stickiness” of free (dehydrated) DNA makes order–disorder transitions 

in the gas phase about two orders of magnitude slower than in solution, which is caused 

by repetitive bonding recombination of broken base pairs in the absence of water. The 

(extended) double-helical structures are robust in vacuo because they are stable on the 

sub-microsecond time scale. From the (time-dependent) base pairing picture analysis 

following the ensemble convergent MD simulations, DNA duplexes in vacuo were found 

to experience simultaneous end and interior (bubble) base pair disruption across the entire 

ensemble, regardless of both the charged state and temperature used. Thus, unlike MD 

simulations in solution which indicate that the A-T rich sequence in the center of the 

duplex unfolds at about the same time as the neighboring (inner) base pairs, the gas phase 

simulations reveal that the inner A-T contacts unwind almost simultaneously with the 
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ends. In the gas phase, the destacking energy required to form an internal bubble is 

compensated for by the extra stabilization of a C-G contact as compared to an A-T 

contact, which renders base pair unzipping in the middle of the sequence feasible. 

Contrastingly, in aqueous solution, the extra stabilization of the C-G base pairs is no 

longer able to compensate for destacking energies required to form an internal bulge 

because neighboring water molecules can compensate for any broken base pair hydrogen 

bonds.  

The results reported above may suggest some biological implications. 

Structurally, although the double-helical motif appears to be stable on the sub-

microsecond time scale independent of the charged state assumed, the high degree of 

conformational freedom and the loss of some base pairing and stacking in the gas phase, 

especially near the ends, indicate that water is necessary for maintaining robustness of the 

double-helical structure. Moreover, the striking contrast of the dynamical behavior 

observed in the presence and in the absence of water suggests that the free energy 

constituents contributed by hydrogen bonding, base stacking, and entropy that are 

characteristic of DNA in aqueous solution have all been fine-tuned to facilitate high-

speed/low-error biological functionality. For example, the enhanced intra-strand 

hydrogen bonding propensity in vacuo results in higher levels of non-native contacts and 

dramatic slow-down of the strand separation. This also led to the formation of A-T rich 

internal bubbles, which were not detected in solution. The above effect may have 

consequences pertinent to transcription in vivo: because the initiation of strand separation 

(bubble formation) along DNA duplexes is less favored than its propagation, the chance 

that the strand separation can only occur in response to a site-specific interaction (e.g., 
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with a transcription factor) rather than following random thermal fluctuations is 

increased. Once the strand separation process has been initiated, the relatively low 

energetic penalty for unzipping of the DNA duplex may facilitate its speedy transcription. 

The mechanisms and time scales reported here for a variety of large-scale 

macromolecular ensembles bring us one step further in the quest for a complete atomic-

scale picture of the effect of solvent on DNA stability, dynamics, and function (248, 249). 

4.2.3 Helix-Coil Transitions in Proteins 

Introduction. Employing the same tools as in Section 4.2.2 for the study of nucleic acid 

(un)folding, it is also possible to directly observe helix-to-coil transformations in isolated 

proteins. Similarly to double-stranded DNA, there exists a set of characteristic periodically 

repeating internuclear distances which, in the case of a helical polypeptide, is associated 

with the helix pitch (Figure 4.11, left). The unique periodic spatial structure of the �-helix 

gives rise to a “resonance” peak in the ensemble-averaged radial distribution function 

which is more localized than that characteristic of the DNA double helix. In what follows, 

we investigate the conformational dynamics of a helical protein thymosin-59 (T59) (113) 

using the ensemble-averaged radial distribution functions and ensemble-convergent MD 

simulations. In doing so, we gain time-dependent insights into both local and globular 

structural changes associated with the helix–coil transformations in large-scale 

macromolecular ensembles of T59. Importantly, the decay of �-helical motifs and the 

(globular) conformational annealing in T�9 occur consecutively or competitively, 

depending on the magnitude of the applied T-jump.  
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Fig. 4.11. Unfolding dynamics for a small -helical protein.�  In canonical right-handed -helices, the C O group� �
of an amino acid located at the position i in the backbone chain of a protein forms a hydrogen bond with the N–H
group of another amino acid that occupies the position i + 4. Equivalent atomic positions recur every 5.4 Å along the
chain which defines the pitch of the helix (left). Also shown in a variety of representations is the molecular structure
of the protein thymosin �9 (T�9; PDB ID 1HJ0) as obtained from 2D NMR at T = 298 K; 667 atoms of T�9 give rise to
about  222,000  pair-wise  interatomic  distances;  the  distance-weighted  frequency histogram  of  these  distances
defines the radial  distribution function f(r).
 ]�
��������� 
f(r)  ���� 
��
�nsemble of  size  n,  the radial distribution
function difference (relative to the initial ensemble) was calculated for T�9 for a series of ensembles whose helix
content was systematically lowered (?�f(r)@n,  n = 1024; top right). The algorithm used to calculate the ensembles
fixed the desired helix content, but treated other degrees of freedom as a random walk. The peak in ?�f(r)@n at r = 5.5
% corresponds to the structural resonance of the -helix, and is robust to changes in the algorithm parameters such�
as the steric volume (bottom right). This peak grows quasi-linearly with the helix content, and therefore can be used
as a signature for helix formation in analyzing molecular simulations, as well as potentially in diffraction experiments.
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Preliminaries: the helicity fingerprint and helix unfolding algorithm. To quantitatively 

assess the extent of the resonance peak as a function of helix content, we found it useful to 

generate conformations of T59 with controlled fractions of helical and coil moieties. To 

(partially) unfold the �-helical structure of T59, the position of each atom in the protein 

backbone, except the first three, was specified in terms of the previous three backbone 

atoms using internal coordinates (r, ., 2). Within the framework of our model, bond 

distances r and valence angles . remained fixed throughout the backbone, whereas 

torsional angles 2 were allowed to vary. Finally, the dihedral angles with respect to each 

pair of adjacent single bonds in the backbone (6, 1) were chosen at random from a 

Ramachandran pair probability diagram representative of amino acids with large functional 

groups (2). 

At the initial stage of generating a coil moiety, the structure thus obtained was 

typically characterized by a large number of close intramolecular contacts. To resolve the 

(numerous) steric collisions, every non-bonded interatomic distance which was shorter than 

a pre-defined cutoff distance was tagged. Then, the (67 1) pair of torsional angles 

associated with the first peptide unit in the longest polypeptide stretch that was at least 80% 

tagged was re-selected at random from the Ramachandran diagram. By adjusting the 

dihedral angles of the first peptide element in the tagged stretch, the majority of steric 

collisions were resolved; this proved effective because tagged polypeptide stretches would 

typically correspond to a randomly structured (“coiled”) moiety overlapping with the 

remainder of the macromolecule. The above procedure was repeated until no peptide 
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elements were tagged. Finally, with the backbone shape fixed, side-chain–side-chain and 

side-chain–backbone collisions were resolved by rotating side chains in a similar fashion. 

With the above algorithm employed to generate large ensembles of (partially) 

unfolded T�9 macromolecules, the electron diffraction simulations were carried out as 

follows (250). First, n = 1024 (partially) randomized pseudoconformers of T�9 were 

generated using the experimentally obtained (NMR) structure of the macromolecule as a 

starting point. The following cutoff distances were tested: (i) rij > 2.6 Å (“stringent” 

constraint); (ii) rij > rij(native) as obtained from the NMR structure of T�9 (“helical” 

constraint), and (iii) rij > 3.1 Å (van der Waals-type constraint). Second, ensemble-averaged 

radial distribution functions, <f(r, T)>n, were calculated for the above ensembles at T = 300 

K. Third, and finally, <fNMR(r, T)>n = fNMR(r, T) of the native (NMR) structure of T�9 was 

calculated in a similar fashion, and further subtracted from <f(r, T)>n of the (partially) 

randomized macromolecular ensembles to obtain �<f(r, T)>n characteristic of the structural 

change. Using the above algorithm to construct ensembles with variable amounts of helical 

content, �<f(r, T)>n was plotted as a function of the ensemble-averaged helicity fraction 

(Figure 4.11, top). Notably, the amplitude of the (strongest) resonant peak associated with 

the helix pitch (rij ~ 5.5 Å) was found to be proportional to the residual helical content 

across the studied macromolecular ensemble. Depicted in Figure 4.11, bottom are the 

diffraction difference patterns as obtained by subtracting the radial distribution function of 

the native (�-helical) structure of T�9 from those of the large (n = 1024) random-coil 

ensembles generated with the aid of the above algorithm using various steric cutoffs. As 
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seen in the Figure, the native (�-helical) structure ensembles can be reliably discriminated 

from the random-coil ensembles of T�9 regardless of the steric-cutoff distance employed.  

The diffraction peak centered at rij ~ 5.5 Å, which arises from the structural 

resonance associated with the periodically repeating helix pitch distance, may be used to 

monitor the residual helicity fraction across the ensemble at each particular point in time. 

However, the fact that the ensemble-averaged helicity fraction is reduced to about 20% in 

the gas phase, which results in a substantial reduction of the relevant diffraction difference 

signal, renders the diffraction data analysis significantly more difficult. A way to excise the 

majority of incoherently distributed scattering terms that will inevitably obscure helix-to-

coil transitions in the gas phase is to perform UED simulations on the backbone atoms of 

T�9. Indeed, as in the case of the phosphorus backbone of DNA in the previous Section, the 

resonant features become much sharper and more distinct when <fB(r, t)>n is employed (see 

below).  

Following the proof-of-principle study summarized above (250), ensemble 

convergent MD simulations were used to picture the actual temporal evolutions of 

macromolecular structures of T�9 induced by a number of T-jumps. During the course of 

MD simulations, ensemble convergence was monitored with the aid of ensemble-averaged 

radial distribution functions, helicity fractions, and unfolding trajectories. The focus, as in 

the case of the DNA duplex, was on the temperature dependence of different types of 

structural dynamics that occur on a spectrum of length- and time-scales. Selected 

implications of these results for experimental studies of order–disorder transitions in �-

helical macromolecules are succinctly highlighted below. 
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Equilibration in vacuo at room temperature. The radial distribution functions of isolated 

macromolecular ensembles of T�9 (the “time zero” curves in Figures 4.12 and 4.13 for 

<f(r, t)>n and <fB(r, t)>n, respectively) reveal that the spatial resonance associated with �-

helical ordering in the protein is somewhat weakened upon vaporization. This may be 

rationalized in terms of formation of highly ordered (�-helical) local domains separated 

by distorted, loosely structured moieties such as loops. The ensemble-convergent MD 

simulations indicate that these structures are transient in nature. Despite non-native 

intramolecular hydrogen bonding contacts that arise at 300 3 T 3 600 K in the absence of 

water molecules, which are known to efficiently compete with the intramolecular 

hydrogen bonding in aqueous solutions, the conformational dynamics associated with 

non-helical moieties remains significant not only due to their inherent flexibility, but also 

because of the continuous rupture and recombination of the non-native hydrogen bonds. 

Both the excessive intramolecular hydrogen bonding and (entropy-driven) contraction of 

highly extended macromolecular conformations lead to the dominance of more compact 

(“globular”) structures across the ensemble, which are characterized by dramatically 

reduced radii of gyration. However, despite the transition from “canonical” (NMR-like) 

to partially randomized, somewhat more globular macromolecular structures which takes 

place upon vaporization, a substantial fraction of the original helix content is preserved 

by T�9 in the gas phase. Thus, in the absence of water, the �-helix pitch resonance peak 

dominating both <f(r, t)>n and <fB(r, t)>n indicates the presence of high helical content at 

room temperature (T0 = 300 K).  
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Temperature-induced structural dynamics. As evidenced from the results of Figure 4.12 

and, more clearly, Figure 4.13, the temporal decay of spatial resonance in <f(r, t)>n and 

<fB(r, t)>n that is observed following a T-jump (�T > 0; t > 0) provides direct insight into 

the details of order–disorder transitions throughout the studied macromolecular ensemble. 

In what follows we quantitatively describe the temporal variation of the sharp helix 

resonance feature of <�fB(r, t)>n during the course of the helix-to-coil transition induced 

in macromolecular ensembles of T�9 by a range of T-jumps. 

For �T = 900 K, the (local) helix “unzipping” and (global) conformational coiling 

of T�9 in the gas phase include multiple stages, each of which is characterized by its own 

specific timing. Thus, the native (�-helical) hydrogen bonding contacts are first broken 

“dynamically” on an ultrafast time scale; i.e., the native-contact rupture starts to prevail 

over recombination throughout the entire ensemble of T�9 within a few picoseconds. As a 

result, the inherent stiffness of �-helices that constitutes the basis for their singular 

mechanical properties (251) weakens, and the overall structure of the helices becomes 

more diffuse (hence the gradual broadening, and displacement towards higher values of 

rij, of the characteristic helicity fingerprints in the ensemble-averaged radial distribution 

function). Notably, the overall shape of <f(r, t)>n and <fB(r, t)>n patterns remains intact 

for at least 40 ps (bottom panels of Figures 4.12 and 4.13). However, by t = 400 ps, the 

deterioration of �-helical motifs in T�9 is complete, which is evidenced by the 

disappearance of any resonant features in both <f(r, t)>n and <fB(r, t)>n. On longer time 

scales, the molecule undergoes global conformational diffusion such that by t = 4 ns the 

formation of a globular coil is virtually accomplished, and further (non-resonant) 

transient structural changes average out across the studied macromolecular ensemble. 
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Fig.  4.12.  Thymosine  unfolding  dynamics:  radial  distribution  functions  in  vacuum.  Shown are  temporal
evolutions of radial distribution functions (left) and corresponding diffraction differences (right) as obtained using a
large (n = 200) macromolecular ensemble equilibrated in vacuo at room temperature and further subjected to 300 K
(top), and 900 K (bottom) temperature jumps during the course of ensemble-convergent MD simulations. The results
of the 600 K temperature jumps are not shown due to their  qualitative similarity to the 900 K jumps. Note the
dramatic difference between the ensemble-averaged unfolding behaviors at lower and higher temperature jumps,
which arise due to the overlap of the global dynamics with the local dynamics of interest (namely -helix unfolding�
monitored at the r = 5.5 %
resonance peak) at lower temperatures. As in the case of the DNA duplex, this implies
that ultrafast electron diffraction experiments should be done for  OT > 300 K to observe the change in secondary
structure. 
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Fig. 4.13.  Thymosine unfolding  dynamics: backbone radial distribution functions in vacuum.  Shown are
temporal evolutions of backbone-specific radial distribution functions (left) and corresponding diffraction differences
(right) as obtained using a large (n = 200) macromolecular ensemble equilibrated in vacuo at room temperature and
further subjected to 300 K (top), and 900 K (bottom) temperature jumps during the course of ensemble-convergent
MD simulations. The results of the 600 K temperature jumps are not shown due to their qualitative similarity to the
900 K jumps. Note that the helix resonance is remarkably sharp and the obscuring effects of the global dynamics at
lower temperature (see Figure 4.12) are not present when restricting the analysis to the backbone atoms. 
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Thus, high T-jumps induce helix unzipping on the picosecond time scale, whereas the 

global structure of the macromolecule changes two orders of magnitude more slowly; 

therefore, the overall shape of T�9 can be considered “frozen” during the course of local 

unfolding. 

It is, perhaps, instructive to emphasize here that when the tight atomic packing 

characteristic of �-helices, which manifests itself through a resonant accumulation of 

relatively short (5–10 Å) interatomic distances across the macromolecular ensemble, 

becomes fully (or even partially) scrambled, the diffuse packing of the (collapsed) 

globular structure gives rise to a broad, smooth, hump-like incoherent feature centered at 

about 12 Å in <fB(r, t)>n (Figure 4.13, bottom); a similar effect is observed in <f(r, t)>n as 

well, but it is less pronounced, especially at higher temperatures which virtually preclude 

the formation of stable intramolecular hydrogen bonds in the gas phase; cf. Figure 4.12, 

bottom. The overall pattern of structural changes as obtained for �T = 600 K (data not 

shown), despite being somewhat less dramatic, closely resembles that characteristic of �T 

= 900 K, with the only exception of higher residual-helicity fractions being preserved 

throughout the studied ensemble at longer times. 

As opposed to (vibrationally hot) ensembles of T�9 created by higher (�T = 600 K 

and �T = 900 K) T-jumps (see above), the ensemble-convergent behavior associated with 

the helix-to-coil transition triggered by �T = 300 K appears to be strikingly different 

insofar as the massive formation of (non-native) intramolecular hydrogen bonding 

contacts is no longer precluded by rapid vibrations and contortions of the macromolecule. 

The increased number of stable non-native hydrogen bonds manifests itself through a 
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dramatic increase in the heights of the two innermost peaks of <f(r, t)>n (Figure 4.12, 

top), which are associated with nearest-neighbor (bonded) and second-nearest-neighbor 

intramolecular distances [we note that the corresponding peaks in <fB(r, t)>n remain 

virtually unchanged because, unlike the C, N, O atoms forming the side chains of T�9, the 

atoms that constitute its backbone chain do not appear to participate in formation of the 

new hydrogen bonds (Figure 4.13, top)].  

From the overall shape of <f(r, t)>n (Figure 4.12, top) one may mistakenly 

conclude that the new hydrogen-bonded structures formed across the studied ensemble 

must be completely random. However, an examination of <fB(r, t)>n indicates that, 

despite somewhat increased contraction of the macromolecules triggered by formation of 

the new, non-native hydrogen bonds, the helical fingerprint in <fB(r, t)>n remains intact 

(Figure 4.13, top). The “stickiness” (or self-bonding bias) characteristic of T�9 in the 

absence of water induces formation of a substantial number of non-native, side-chain-

dominated, hydrogen-bonding contacts even in the presence of fairly long �-helices. The 

latter distort, but nevertheless retain their characteristic structural features throughout the 

duration of the entire simulation window. From comparing <f(r, t)>n with <fB(r, t)>n, it is 

clear that global reorganization across the ensemble is fully accomplished within a few 

nanoseconds (Figure 4.12, top), whereas the pronounced helicity peak in <fB(r, t)>n 

(Figure 4.13, top) indicates that the helices are still unzipping on this time scale. 

Therefore, for �T= 300 K, the local unfolding occurs at much longer times than the 

global unfolding and (non-native) hydrogen bond formation.  
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Similarly to the conformational and structural changes reported earlier for 

temperature-induced helix-to-coil transitions in DNA, the above-mentioned ensemble-

convergent behavior arises because the native (�-helical) hydrogen-bonding contact 

disruption and the global conformational change are enthalpy- and entropy-driven 

processes, respectively. At lower temperatures (�T 3 300 K) conformational diffusion 

happens even if few disruptions occur. Unlike DNA macromolecules, which are highly 

negatively charged despite protonation (224), isolated macromolecules of T�9 are neutral, 

which causes them to be even stickier in the absence of water. However, a temperature 

increase across the ensemble can unravel the intramolecular motions that facilitate 

formation of a globular coil stabilized by non-native hydrogen bonds. Because the 

(barrier-crossing-type) hydrogen-bond disruptions speed up exponentially with increasing 

temperature whereas the (diffusive) conformational interconversions are only weakly 

dependent on temperature, at a certain threshold temperature (specifically, on the interval 

300 3 �T ,3 600 K), the time scales for these two kinds of processes cross and the �-

helices of T�9 unzip prior to the characteristic diffusion time required for large-scale 

conformational changes to occur.  

The above results suggest that it is important to perform UED T-jump 

experiments at �T >> 300 K to prevent global dynamics from convoluting local helix 

unzipping in the patterns of <f(r, t)>n. It is also noteworthy that the admixture of residual 

helicity characteristic of T�9 unfolding in the gas phase cannot be reliably detected using 

<f(r, t)>n alone because the spatial resonance associated with the �-helical moieties is 

simply not strong enough to compete with incoherently distributed scattering terms 
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associated with side chains and randomly structured loops. Because backbone-specific 

diffraction differences have proven to be sensitive to the subtle local (and global) 

structural changes that constitute elementary steps of order–disorder transitions in 

biological macromolecules, <fB(r, t)>n and its varieties constitute a novel coarse graining 

approach which is significant for conformational analysis of such transitions.  

Rate constants of the helix-to-coil transition in T�9. By measuring the height of the 

<fB(r, t)>n helix resonance peak centered at ~ 5.5 Å, the results of biexponential fitting of 

as many as a dozen time-dependent profiles of <�fB(r, t)>n are presented in Figure 4.14, 

left, providing the time constants involved in the temperature-induced helix-to-coil 

transitions reported here. Importantly, �-helix unzipping appears to include two distinct 

phases, each of which is characterized by its own time scale. Cleavage of the native 

hydrogen-bonding contacts, which becomes an ultrafast process above a certain 

temperature threshold, is characterized by �300 = 0.7 8 0.2 ns, �600 = 6.8,8 1.6 ps and �900 = 

3.9 8 0.8 ps, as assessed for the T-jumps of �T = 300, 600, and 900 K, respectively. 

Surprisingly, the loss of residual helical structure following hydrogen bond rupture is a 

slower process characterized by �300 = 90,8 40 ns, �600 = 440 8 80 ps and �900 = 50 8 16 

ps. Presented in Figure 4.15, bottom right, are the (log-scale) unfolding times of these 

two processes plotted as a function of the inverse temperature; the (Arrhenius) slopes of 

the lines are known to provide the associated energy barriers. Importantly, the slower (�2) 

process of global helicity loss displays Arrhenius behavior over the entire range of 

temperature studied with a characteristic barrier of 18 ± 1 kcal/mol. In contrast, the 

hydrogen-bond disruption process (�1), which is up to two orders of magnitude faster, 
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Fig.  4.14.  Temporal  dynamics  of  local  and  global  structure.  Temporal  evolutions  of  the  backbone  radial
distribution function at the -helix resonance peak distance (� �‹fB(r, t)›n, r  5.5 Å; left) and the gyration radius of the	

protein and its backbone (right) are obtained using large (n = 200) macromolecular ensemble equilibrated in vacuum
at room temperature and further subjected to 300 K (top), 600 K (similar to the 900 K behavior; not shown), and 900
K (bottom) temperature jumps during the course of ensemble-convergent MD simulations. There is a pronounced
difference between the ensemble-averaged unfolding behaviors characteristic of lower (�T = 300 K) and higher (�T
= 600, 900 K) temperature jumps; the radius of gyration, which characterizes the overall size of the macromolecule,
reflects heat-induced swelling prior to globular-formation-driven contraction for sufficiently large �T (right). This lag
between  contact  rupture  and  conformational  reorganization  timescales  is  also  present  on  the  local  scale,  as
manifest in the large differences between the bond breaking (
1) and the helicity loss (
2) time (left).

115



Fig. 4.15. Local and global structural dynamics during unfolding.  Following the temperature jump, the initial
ensemble undergoes both local denaturation of helical motifs (blue circular highlight) as well as global coiling (top
left). For �T = 300 K, the unfolding pathway (dark red arrows) involves global coiling and enthalpy-driven contraction
followed by loss of local helicity, whereas for �T = 600 and 900 K (light red and magenta arrows) the order of these
two processes is  reversed. The loss of  local helical structure is  further separated into two distinct time scales
corresponding to fast bond disruption (
1) and slower loss of structural helicity (
2) which are separated by up to 2
orders of magnitude in their time scales (bottom right). Note that at �T = 300 K, bond disruption is reversible, which
significantly slows the dynamics (red arrow in inset). The unraveling of the helix therefore involves surmounting two
barriers, E1 and E2 which are separated by the kinetic intermediate structure (bottom left). The unfolding dynamics
can be summarized on a schematic energy landscape defined by local and global order parameters (top right).
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involves crossing a 4 ± 2 kcal/mol barrier as evidenced from the �T = 600 and 900 K 

time scales (Figure 4.15, bottom). We note that �1 at �T = 300 K is significantly longer 

than that predicted for barrier crossing because, unlike the irreversible bond breaking 

process at higher temperatures, the hydrogen-bond disruption at this temperature is a 

dynamical interplay of bond breaking and reformation on the nanosecond time scale 

(Figure 4.15, bottom right). 

 The magnitude of the energy barrier to structural helicity loss, which is much 

higher than that characteristic of the native hydrogen bond disruption, indicates that the 

helical structural motif is much more persistent than its bonding energetics would 

suggest. As a result, �-helix unfolding appears to be (at least) a three-state process with 

the helical-but-unbound state being a well-defined population of structures which, 

depending on the magnitude of the T-jump applied, may give rise to a long-lived kinetic 

intermediate dominating the unfolding dynamics. In fact, at �T = 300 K, this local 

structural motif is much longer-lived than the overall global structural relaxation.  

Global (dis)order: coherent vs. incoherent dynamics evidenced in the radii of gyration. 

Another important characteristic of the macromolecular ensemble under study that can be 

readily obtained from the simulated UED data is the temporal evolution of the RMS 

radius of gyration, <Rg
2(t)>n

1/2, which measures the compactness of structures across the 

ensemble and is calculated from the ensemble-averaged radial distribution function: 

*
+

'(�'(
0

32 ),(1/2  )( drrtrftR nng (see Section 3.3 for methodological details). Shown in 

Figure 4.14, right, are the temporal-evolution profiles of <Rg
2(t)>n

1/2 as obtained from 

MD/UED data averaged over n = 200 independent unfolding trajectories of T�9. A 
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striking feature characteristic of the higher T-jumps (�T = 600, 900 K) is the initial 

expansion of macromolecular structures across the ensemble taking place on ultrafast 

time scales, which is followed by a (much slower) contraction processes ensuing at 

longer time scales (Figure 4.14, bottom right; �T = 600 K: data not shown). For these 

higher T-jumps, the formerly �-helical moieties of T�9 expand coherently in the gas phase 

because of the ultrafast (coherent) cleavage of the �-helical hydrogen bonds, which is 

followed by the diffusion-driven conformational smearing of the �-helical structural 

motif and the subsequent formation of compact globular structures. Notably, the 

ensemble-averaged behavior characteristic of �T = 300 K appears to be radically 

different (Figure 4.14, top right): the (faster) contraction process that is accomplished 

within a few nanoseconds leads to the (slower) long-lived contraction dynamics at longer 

times. The former process is due to (non-native) long-range hydrogen bond formation, 

whereas the latter one is associated with the (diffusion-driven) conformational dynamics 

leading to a more compact globular structure. Last but not least, we note that in contrast 

to MD/UED simulation results reported here, the empirical background correction 

implicit in the data refinement procedure, the finite active s-range of the UED 

diffractometer, and the spatial resolution of the CCD detector are factors that affect the 

experimental determination of <Rg
2(t)>n

1/2 in practice. 

  
As a side note, the above non-equilibrium behavior is strikingly reminiscent of 

that modeled theoretically and observed experimentally in this laboratory for the two-

component (substrate-adsorbate) assemblies subjected to a laser-pulse irradiation (183, 

184, 252, 253). The transient anisotropic change in c0 of the adsorbates (fatty-acid and 
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phospholipid layers) described in such studies is vastly different from that observed in the 

steady state. At equilibrium, the observed changes are in a0 and b0 (not in c0), and the 

diffraction intensity monotonically decreases, reflecting the thermal, incoherent motions 

(Debye–Waller effect) and phase transitions. On the ultrashort time scale, the expansion 

is along c0, unlike in the thermal case, and the amplitude of the ensuing change is much 

larger than that predicted for incoherent thermal expansion. The changes in Bragg-spot 

intensity and width are very different from those observed during the course of 

equilibrium heating as well. Following an ultrafast T-jump, the structure coherently 

expands within ~10 ps (because of atomic displacements) along the c-direction. On the 

nanosecond and longer time scale, the structure shrinks as it reaches the equilibrium state 

(incoherent movement of atoms), and the original configuration is recovered by heat 

diffusion on the millisecond time scale between pulses. This behavior is in contrast with 

that observed at steady state, as mentioned above.  

Summary. In a series of studies presented here, the (ensemble-averaged) temporal 

evolution of the fractional helical content as well as the time scales characteristic of helicity 

loss were obtained for the helical protein T�9 following a variety of temperature jumps in 

vacuo. Importantly, the local (hydrogen-bond-specific) dynamics were explored together 

with the global structural evolution by examining the small-r and large-r regimes of <f(r, 

t)>n and <fB(r, t)>n and calculating the corresponding radii of gyration. In doing so we 

demonstrated that the above rudiments of UED data analysis constitute a universal coarse-

graining approach that simultaneously captures local and global structural fingerprints 

characteristic of biological macromolecules in real time.  
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As with the DNA double helix, the interplay of enthalpic and entropic forces in T�9 

can be seen in the different dependences of these two processes on temperature. For lower 

T-jumps (�T = 300 K), conformational diffusion was shown to precede any significant 

hydrogen bond cleavage. However, with the increasing �T, the Arrhenius bond breaking 

process accelerates exponentially whereas the rate characteristic of the diffusive motion is 

roughly proportional to the square root of the final temperature of the ensemble. At a 

certain critical final temperature the time scales for the two processes cross, and, for higher 

T-jumps (�T = 600, 900 K), the native contacts appear to break before a significant global 

conformational change can occur. The above behavior is evident in both the ensemble-

averaged radial distribution functions and the radii of gyration, but calculation of their 

backbone-related temporal profiles, <fB(r, t)>n and (<Rg
2(t)>n)B

1/2, is required to obtain a 

clear-cut picture of the structural change. In addition, unfolding of the helix was found to 

follow a three-state process in which the intermediate ensemble is represented by a 

population lacking the canonical helical structure and hydrogen-bonding, but nevertheless 

possessing residual helicity. The barriers of this three-state mechanism were calculated 

from the ensemble-averaged kinetic data and the transition from the intermediate state 

ensemble to the coil state was found to be the rate-limiting step, being slower than the 

global structural relaxation for lower T-jumps.  

In Section 4.2.1 we pointed out that, to properly account for the actual structural 

changes induced by external perturbations, the correct balance between comprehensiveness 

and structural specificity must be attained. The temperature dependence of the global and 

local dynamics of T�9 in vacuo is summarized in Figure 4.15, top. The elucidation of the 

three-state unfolding kinetics characteristic of the local structure and the persistence of the 
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intermediate ensemble state on time scales longer than that associated with the global 

structural reorganization implies that the use of global order parameters such as the radius 

of gyration or RMSD with respect to the native-state structure to monitor the progress of 

(un)folding may underestimate the unfolding time. Therefore, analyses lacking a local-

structure-specific metric such as <f(r, t)>n or preferably <fB(r, t)>n may turn out to be 

insufficient. In thinking about macromolecular dynamics characteristic of both nucleic 

acids and proteins, the results of Figure 4.15 challenge the intuitive notion that the largest 

length scales are necessarily associated with the longest time scales.  

4.2.4 Effect of Solvent on Protein Mobility  

In the above Section 4.2.2, the equilibrium structure and time-dependent unfolding 

dynamics of DNA were investigated both in the presence and absence of water. The effect 

of the solvent was mainly examined in terms of its influence on structural properties such 

as the overall (ensemble-averaged) morphology of DNA macromolecules and disruption of 

local helical ordering associated, e.g., with nucleation of an internal bubble during the 

course of unfolding. In the present Section, we consider the effect of water on the dynamics 

of both secondary and tertiary structure of the 20-residue Trp-cage mini-protein depicted in 

Figure 4.14, top right (115).  

 Explicit-atom ensemble-convergent MD simulations were performed for 38 

independent trajectories of Trp-cage in aqueous solution, each lasting 60 ns. To enable 

comparison with free macromolecules, 76 independent trajectories of Trp-cage, each 

lasting 2 �s, were generated in vacuo as well. All simulations were carried out using the 

CHARMM suite of programs and force field (118) and coupled to a Nose thermostat to 
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obtain a canonical room temperature ensemble. The ensemble convergence was assessed 

by ensuring that doubling of the simulation time window did not significantly affect the 

results. The solution phase simulations were performed on the peptide, 3914 TIP3P (220) 

water molecules, and one chlorine atom for neutrality. The system was restricted to a cubic 

box with initial sides of 50 Å and equilibrated at constant temperature (298 K) and pressure 

(1 atm) with periodic boundary conditions. The trajectories were seeded from the 38 NMR 

structural variants. For gas phase simulations, 1 ns long solution phase trajectories were 

generated for each of the 38 NMR structural variants and the final conformations from 

these trajectories were used to double the number of initial structures. The gas phase 

simulations were also performed without coupling to a thermal bath (microcanonical 

ensemble) to confirm that the free energy landscape was not significantly affected. 

Shown in Figure 4.16 are temporal RMSD profiles with respect to the 

experimentally measured native structure of the polypeptide as obtained for four 

independent trajectories in aqueous solution (top left) and in vacuo (bottom left). 

Although vibrational and rotational fluctuations do occur in the gas phase on the smallest 

length-scales, larger-scale fluctuations are virtually frozen out. This may be attributed to 

the high energetic penalty associated with breaking inter-residue hydrogen bonds in the 

absence of compensating hydrogen bonding provided by the hydration shell. For all 

trajectories, the expected time to witness RMSD change of 0.5 Å is increased by up to 

two orders of magnitude in the absence of water. This translates to a reduction of up to 

1.6 kcal/mol in the free energy landscape roughness (Figure 4.16, bottom right), which is 

defined to be the logarithm of the wait time multiplied by kT. These findings are 

consistent with electrospray mass spectrometry experiments indicating that 
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Fig.  4.16 Roughness of  the  trp-cage  energy landscape. The  rmsd as  a function of  time is  shown for  four
representative trajectories of the solvated (top left) and vacuum (bottom left) MD simulations of the trp-cage mini-
protein (top right). Whereas atomic-scale fluctuations are still present in vacuum, dynamical transitions on larger
length scales are suppressed as compared with the solvated case. The change in the rmsd as a function of time,
and averaged over all trajectories, is also shown for the solvated (dotted line) and vacuum (solid line) states (bottom
right). The roughness of the energy landscape, which by definition starts from zero and increases by the logarithm
of the wait time, is shown on the right axis. Note the “freezing out” of larger-scale conformational fluctuations upon
removal of water. 
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conformational interconversions in the protein cytochrome c are up to five orders of 

magnitude slower in vacuo than in solution (254). We conclude that the radically 

different protein dynamics observed in vacuo is associated with the “glassy” behavior 

induced by the conformational frustration. Therefore, water is not only crucial for proper 

biological structure formation, but it also facilitates large-scale conformational motions 

that would be disabled in gas phase macromolecules. 

124



 

 

�
C h a p t e r  5  

RESULTS: PROTEIN FOLDING 

 

Although proteins typically possess numerous degrees of mechanical freedom, this alone is 

not sufficient to account for their complexity. Rather, it is the cooperative behavior of their 

constituents relevant at all levels of protein folding and function that renders biomolecular 

complexity a unique and fascinating phenomenon. For the purpose of exploring the 

thermodynamics and kinetics of the folding process, this complexity can be condensed to a 

(multi-dimensional) free energy landscape through which the protein traverses a multitude 

of folding pathways funneling to the native state (109, 255-258). Depending on the 

(system-specific) interplay of entropic and enthalpic factors, and the presence of kinetically 

stable intermediates, the folding process may occur on various time scales ranging from 

microseconds to minutes (257). In the present Chapter, simple yet predictive analytic 

methods with which to elucidate the overarching mechanisms and calculate the actual rates 

of protein folding are outlined and tested against the results of ensemble-convergent MD 

simulations and experimental evidence. Beginning with �-helix nucleation and propagation 

and ending with tertiary structure formation, the fundamental limits of length and time 

scales are obtained at each level of the protein structural hierarchy. Importantly, the results 

obtained are further used to assess the validity of a number of now-prevalent paradigms 

concerning the fundamental mechanisms of protein folding. In so doing, we demonstrate 

that the existing consensus in regard to such mechanisms needs to be drastically revisited.  
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5.1 SECONDARY STRUCTURE KINETICS AND THE SPEED LIMIT 

5.1.1 Helix Nucleation 

Introduction. The requirement that three adjacent sets of backbone torsional angles be 

specifically defined (Section 2.2.2) for �-helix nucleation to occur, renders this the most 

basic cooperative process ubiquitous in protein folding. This cooperative behavior 

separates �-helix nucleation from more elementary protein dynamics such as, e.g., single-

bond rotation or non-specific contact formation. From the experimental perspective, 

although the associated kinetics have been measured by a number of workers and found to 

occur in hundreds of nanoseconds (259-261), the multiple possible nucleation sites along 

the peptide, in conjunction with other kinetics processes such as helix propagation and non-

native contact formation, appear to determine the overall time scale of helix formation 

which is dependent on the protein sequence, temperature, and length of the helical moiety. 

Hence, for such studies the elementary event of helix nucleation is convoluted by other 

processes that may dominate the dynamics observed. Early MD simulations yielded a 

variety of time scales ranging from hundreds of picoseconds to a few nanoseconds for �-

helix nucleation in short polypeptides (262-264). Prior to the ultrafast measurements 

presented in this Section, such time scales were not accessible to (fast) T-jump 

experiments, which were limited to 10–20 ns temporal resolution (256, 259-261, 265-270). 

With the ultrafast T-jump methodology developed in this laboratory (271, 272), we were 

able to isolate, for the first time, the fundamental processes pertinent to helix nucleation 

(90), which is the speed limit of protein folding (273).  
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 In the following, ultrafast T-jump spectroscopy, analytical modeling, and ensemble-

convergent MD simulations are employed to glean a comprehensive picture of the folding 

of an �-helical nucleus. For example, the free energy landscape constructed using the MD 

data revealed that, despite its relative simplicity, helix nucleation exhibits a complex 

dynamical behavior similar to that typically associated with the folding of the entire protein 

(255). Perhaps the most significant finding, both experimentally and theoretically, is that 

the nucleation process can be decomposed into (fast) cooperative annealing and (rate-

determining) conformational diffusion stages, the latter of which can be described 

analytically.  

 To isolate the helix nucleation step from other processes such as, e.g., helix 

propagation (or growth), which are known to convolute the associated kinetics, the �-helix 

nucleation dynamics in polypeptides composed of only five residues (Wgh5 and Wh5; 

Figure 3.2, bottom center) was investigated. For Wgh5 and Wh5, the dependence of the 

nucleation rate on both the polypeptide sequence and temperature was explored. To enable 

comparison with longer polypeptides for which the helix growth beyond a single turn is not 

precluded by the small number of residues, the refolding kinetics of a 21 residue 

polypeptide (Wh21) was measured. The experimental results obtained were found to be in 

agreement with the predictions made using an analytic theoretical model as well as 

ensemble-convergent MD simulations. The joint theoretical, experimental, and 

computational efforts undertaken during the course of the study reported below provided a 

holistic and intuitive picture for the elementary steps of helix nucleation, and yielded 

predictive insight into the associated structural dynamics taking place on a feature-rich free 

energy landscape.  
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Experimental. Helix nucleation rates were measured using time-resolved fluorescence 

spectroscopy for the following macromolecules: alanine-based pentapeptide, Ac-W-A3-H-

NH2 (Wh5), glycine-based pentapeptide, Ac-W-G3-H-NH2 (Wgh5), and alanine-based 

twenty-one-residue-long polypeptide, Ac-W-(A)3H-(A3RA)3A-NH2 (Wh21) (Figure 5.1). 

To ensure that the side chain of the histidine residue was protonated, the polypeptides 

studied were prepared in acetate buffer (pH = 4.8). Due to the higher helix propensity of 

alanine compared to glycine (274), Wh5 and Wgh5 display different helix content and 

stability. In addition, their minimal size ensures that helix propagation is precluded. The 

tryptophan residue in each pentapeptide serves as a sensitive probe of the conformational 

change induced by the ultrafast T-jump because its fluorescence is quenched by the 

histidine residue when the two residues come to close proximity. The polypeptide samples 

obtained from California Peptide Research were characterized by some 98% purity. N-

acetyl-L-tryptophanamide (NATA) purchased from Sigma was more than 99% pure. The 

polypeptide concentrations were assessed from the optical absorbance at 280 nm, using the 

molar extinction coefficients of 5690 M–1cm–1. Solutions were buffered with 20 mM 

sodium acetate (pH = 4.8). The near-IR signal and idler pulses were generated by two 

optical amplifier systems pumped by a Ti:sapphire amplifier laser system operating at 800 

nm with a repetition rate of 200 Hz. The (initiating) T-jump pulse was set to 1.45 9m with a 

sufficient energy, typically 15–20 9J at the location of the sample. The experimental T-

jump procedure utilizing ultrafast-laser setup has been described in detail elsewhere 

(271,275).  
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Fig.  5.1.  The  -helix  nucleus.�  Three torsion  angles  are  the  cooperative  degrees  of  freedom  that  define  the
backbone  conformational  state  of  the  five-residue  segment  responsible  for  -helix  nucleation  (top  inset).  The�
memory-loss diffusion model maps the molecular content (both backbone and side chain atoms) into effective van
der Waals spheres on each side of a torsion angle. The helix initiation time is the characteristic time for all three
torsion angles  to diffuse to the helical domain,  subject to thermal excitation and viscous drag on the effective
spheres (see section 5.1.1 in Text). Structures of the alanine-rich Wh5 and both right- and left-handed structures of
the glycine-rich Wgh5 are given (bottom).  In  addition,  the  21-residue alanine-rich polypeptide Wh21 was  also
studied.  Tryptophan  and  histidine  residues  constitute  residues  1  and  5  of  Wh5,  Wgh5,  and  Wh21,  enabling
fluorescence probing of the conformational state as a function of the tryptophan-histidine distance.   
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 Shown in Figure 5.2, top left, are representative (equilibrium) far-UV CD spectra of 

Wgh5 and Wh5. Remarkably, the results of Figure 5.2 indicate that such short polypeptides 

do exhibit measurable helix formation in aqueous solutions. The (alanine-based) Wh5 is 

characterized by a right-handed �-helical structure and its CD spectrum is found to be in 

good agreement with those reported for short polypeptides and protein helices (276, 277). 

The (glycine-based) Wgh5, on the other hand, produces a dominant left-handed helix 

signature, similar to the left-handed-helix spectrum reported for D-amino acid polypeptides 

(278); however, although the left-handed helical population is dominant, the structures we 

probe for Wgh5 are those of right-handed helices because the strong tryptophan-histidine 

quenching mechanism is sterically suppressed in the left-handed helix due to the backbone 

geometry (Figure 5.1). Using the CD spectra obtained at T = 310 K, the ensemble-wide 

percent helicity was found to be 20 ± 5 and 5 ± 2 for Wh5 and Wgh5, respectively, and the 

fluorescence signal measured during the course of the T-jump experiments revealed the 

decrease in right-handed helix concentration for Wgh5 when compared with Wh5. Helices 

of varying lengths were observed for Wh21 by varying the concentration of the denaturing 

agent guanidine hydrochloride (Gdmcl), and the spectrum of partially denatured Wh21 was 

shown to approach that of Wh5 when sufficient denaturant was added to reduce the longer 

helices to a single helical turn (Figure 5.2, bottom left).  

 During the course of the T-jump experiments, polypeptide solutions were heated 

using an ultrafast IR pulse centered at 1.45 
m, and the transition to the new equilibrium 

over time was monitored through the quenching of tryptophan fluorescence by histidine. 

Figure 5.2, top right, depicts the T-jump-induced kinetics for the final temperature of T = 

300 K as obtained for Wgh5 (blue line) and Wh5 (green line) over a time window ranging 
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Fig. 5.2. CD spectra and ultrafast T-jump transients of -helix nucleation. � Far UV CD spectra of Wgh5 (blue)
and Wh5 (red)  at  266 K in  aqueous  solution,  showing the signatures  of  left-handed,  and right-handed -helix�
content, respectively (top left). CD spectra of Wh21 as a function of guanidine hydrochloride (Gdmcl) concentration
at room temperature shows the progressive denaturation of helical content (bottom left). Transient evolution of the
tryptophan fluorescence was monitored for Wgh5 (blue) and Wh5 (green) after ultrafast T-jump to final temperatures
of 300 K and 310 K over a time window ranging from t = -50 ps to t = 4.4 ns (top and center right). The fluorescence
signals are shown with negative amplitude in arbitrary units. The initial heating is  through the excitation of the
overtone of the OH stretching vibration of water, inducing a 12° C temperature jump. The transient evolution of the
tryptophan fluorescence of Wh21 in acetate buffer at pH = 4.8 with 0 M (green) and 5 M (blue) Gdmcl, following the
T-jump to 305 K final temperature, shows the helix refolding following the excitation (bottom right). The flat black
curve is the fluorescence of the free tryptophan in water under identical conditions, following the T-jump, which is
used as a baseline. All experiments were performed in acetate buffer at pH = 4.8.
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from t = 0 to t = 4.4 ns. We note that within the first 50 ps the tryptophan fluorescence 

decreases dramatically due to the temperature rise resulting from the water thermalization 

(90). The unfolding and solvent relaxation (solvation) events that occur during this time 

interval cannot be resolved. It is not until the completion of the thermalization process that 

the conformational diffusion rate equilibrates at the final temperature leading to an 

additional quenching (decrease) in the tryptophan fluorescence caused by the proximity of 

the histidine residue when the peptide conformation nears that of the �-helix. Therefore, to 

isolate the refolding relaxation dynamics, the “time zero” is set to be 50 ps following the T-

jump throughout the T-jump experiments reported here.  

Notably, the relaxation profile of Wgh5 can be described by a single exponential 

function, whereas for Wh5, a double exponential function has to be invoked. The resulting 

time constants are: � = 2.2 ± 0.3 ns and �1 = 0.85 ± 0.3 ns, �2 = 5.3 ± 1.9 ns for Wgh5 and 

Wh5, respectively. Remarkably, the above observations indicate that the protein sequence 

determines the folding behavior even at the smallest scale of length. Thus, for Wh5, the 

steric hindrance arising from the presence of the methyl groups of alanine side chains 

separates the torsional diffusion from local annealing, whereas the absence of such 

hindrance in Wgh5 results in single exponential behavior during the course of the helix 

nucleation process.   

 By varying the magnitude of the T-jump, the temperature dependence of the above 

time scales was studied as well. Thus, at elevated temperatures, the rate of helix formation 

was found to increase. At T = 310 K, the time constant measured were: � = 1.4 ± 0.2 ns and 

�1 = 0.65 ± 0.25 ns, �2 = 4.7 ± 0.6 ns for Wgh5 and Wh5, respectively (Figure 5.2, center 
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right). This trend is consistent with the conformational diffusion being the rate-limiting step 

in the process of folding (see below). The faster component (�1) contributes ca. 10 to 20% 

of the measured signal amplitude depending on the final temperature of Wh5.  We note 

that, in the case of Wh5, the error bar for the slower component (�2) is large because of the 

short experimental time window. For the latter reason, we repeated the experiment at a 

higher temperature to identify the asymptotic level of the recovery, and confirmed that the 

quoted experimental errors were correctly estimated. From the observed dynamics, we 

infered that the studied process was (at least) three-state, and, as was evidenced from the 

measured disparity between signal amplitudes of the faster and slower components, the 

rate-determining step was associated with the transition from the unfolded state to the 

intermediate state (or ensemble); importantly this interpretation was borne out by the 

theoretical analysis (see below). We emphasize that, for Wh5, the asymptotic level of the 

recovery was found to be a factor of three lower at T = 330 K than the maximum value 

measured at T = 310 K. This observation is consistent with the relative helix content 

obtained from the (equilibrium) CD data representative of those temperatures.  

To investigate the impact of the polypeptide length on the structural dynamics of �-

helix formation, T-jump relaxation measurements were also performed on the twenty-one-

residue-long �-helical polypeptide Wh21 in the presence and absence of a denaturant. 

Figure 5.2, bottom right (green line) displays the faster relaxation signal component as 

obtained for Wh21 at a final temperature of T = 305 K. Although 21-residue-long alanine-

based polypeptides appear to be well-studied systems (260), to the best of our knowledge 

this is the first evidence of the existence of a few-nanoseconds-long transient behavior 

exhibited by the macromolecule. Given the identical locations of the tryptophan and 
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histidine residues within the two structures under study, by comparison with the faster (sub-

nanosecond) process measured for Wh5 we conclude that the rate obtained for Wh21 is 

associated with the backbone conformational dynamics.  

The effect of denaturing agent on the above results is dramatic. Figure 5.2, bottom 

right  (blue line) shows the ultrafast kinetics of Wh21 following the T-jump to the final 

temperature of T = 305 K in 5 M guanidine hydrochloride. The double exponential 

behavior observed is characterized by the �1 = 0.8 ± 0.3 ns and �2 = 2.8 ± 1.0 ns components 

which contribute 15 and  85 percent of the measured signal amplitude, respectively, thus 

mirroring the temporal behavior of Wh5, the sequence of which is identical to that of the 

first five residues of Wh21. It follows that, in the absence of denaturant, the refolding 

kinetics measured for Wh21 was convoluted by the effect of helix propagation from distant 

parts of the polypeptide sequence.  

Coarse-grained analytic model. The dependence of experimentally measured time scales 

discussed above on the sequence, temperature, and length of the polypeptides under study 

elucidates the nature of the elementary processes involved in �-helix folding. Notably, the 

fast relaxation dynamics, which occurs within a few hundred picoseconds, takes place on 

the same time scale as the (ultrafast) formation or breaking of a hydrogen bond between 

tryptophan residue 1 and histidine residue 5 (279), which requires backbone annealing. The 

observed double exponential behavior of Wh5 with well-separated time constants indicates 

that �-helix nucleation for Wh5 cannot be described as a two-state process. Early MD 

simulations on short �-helical polypeptides have, in fact, identified locally stable 

intermediates corresponding to collapsed but not folded structures (280). On the other 
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hand, the single exponential behavior we observed for (glycine-based) Wgh5 does not 

necessarily imply that the folding process is two-state because multiple experimental signal 

components with similar time scales may not be easily separable. To aid in resolving the 

above uncertainty, a coarse-grained diffusion model of �-helix nucleation was constructed. 

The findings made using the analytical model were in good agreement with those of the T-

jump experiments as well as the ensemble-convergent MD simulations. 

Importantly, the model is designed to discriminate between two regimes, each of 

which is associated with its own characteristic time scale: (i) slow non-cooperative 

diffusive search over the collective degrees of freedom for the helical basin on the free 

energy landscape, and (ii) fast cooperative annealing to the native state within the found 

helical basin. It is assumed that the characteristic time associated with surmounting the 

steric barrier, which is required to escape the helical basin, is longer than the annealing time 

but shorter than that of torsional diffusion. This assumption was supported a posteriori by 

ensemble-convergent MD simulations (see below). The presence of the helical basin on the 

free energy landscape transforms the concept of a continuous rate-limiting diffusion 

involving three sets of backbone torsional angles into that of the discrete number of trials 

necessary to observe three independent events. In what follows, we demonstrate that the 

conformational diffusion process implies a well-defined time constant � which is associated 

with the time interval between individual trial attempts. 

Within the framework of our model, the studied polypeptide is represented as a 

chain, the conformation of which is determined by a set of backbone torsional angles [two 

torsional angles for each of the three residues that define a single turn of the helix; (Figure 
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5.1, top right)]. Thus, the process of �-helix nucleation which involves formation of one 

full turn of the helix can be parameterized using three pairs of backbone torsional angles 

(�1,�1), (�2,�2), and (�3,�3). For the native (helical) hydrogen bond contact to form, the 

three sets of torsional angles must attain the helical configuration. A conformation of the 

studied polypeptide is defined to be helical when all the torsional angles are within the 

right-handed �-helix domain of the Ramachandran diagram; for such conformations, fast 

cooperative annealing to the native state can occur. Because Ramachandran angles � are 

always within the helix domain, the above conformational diffusion problem is reduced to 

the probability of finding all three values of � to be in the helical domain. Therefore, the 

helix nucleation time, tinit, can be expressed as: 

 3init p
t 2

� ,       [5.1] 

where � is the characteristic time required for each degree of conformational freedom to 

thermally diffuse to an uncorrelated state (which is equivalent to the conformational 

memory loss) and p is the probability of finding each backbone torsional angle � to be in 

the �-helical domain. We note that the conformational diffusion relevant for �-helix 

nucleation involves the superposition of three rotational motions (or modes), and the 

masses of rotating bodies are shared between the modes (Figure 5.1, top right). 

Each Ramachandran angle � is then defined by the relative rotation of the bodies on 

either side of the bond (modeled to first order as spheres) in a viscous Brownian 

temperature bath. The rotational auto-correlation time � can be calculated as the temporal 

decay time of <cos�>, where angular brackets denote ensemble averaging. Because the 
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diffusion process is time-translation invariant, <cos�> decays by the same factor after 

every time interval of fixed duration, i.e., <cos�> = e -t/�. This exponential decay naturally 

associates � with the unique randomization time characteristic of the polypeptide 

conformation. By expanding both sides of this relation and matching the first-order term 

for early times, we obtain: <�2> = 2t/�. Unrestricted rotation with respect to the dihedral 

angle � is equivalent to independent rotational motion of two spheres on each side of the 

bond, denoted by �a and �b. Accordingly, <�2> = <�a
2> + <�b

2>. From Einstein’s (1D) 

diffusion equation, which is valid for rotational diffusion at early times (281), < � 2> = 

2kTt/�, where k, T, and � are the Boltzmann constant, absolute temperature, and friction 

coefficient, respectively. Substituting the latter expression for <� 2> and then <�2>, one 

finds:   

� �ba

ba

44
442
�

�
kT

.      [5.2] 

Assuming that the rotating bodies are spheres of volume V immersed in a fluid with 

viscosity �, one obtains (282) � = 6�V. Therefore, � can be expressed in terms of the 

temperature T, viscosity of water �, and volumes of the rotating bodies on either side of 

each bond (Va/b, which are similar for all three bonds):  � = 6�VaVb:kT(Va + Vb). We note 

that Equation 5.2  is similar to the one obtained by Debye for the dielectric relaxation time 

of water using a geometric method (283), except for water dipole being a single body with 

two effective degrees of rotational freedom, rather than the superposition of three rotational 

modes, each of which is associated with a single degree of conformational freedom of the 

studied polypeptide.   
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Recently, the classical Ramachandran diagram of sterically allowed (and 

prohibited) structural domains in polypeptides (79,284) was updated by Ho et. al (285)  to 

reflect the empirically observed dihedral angle distributions. The (non-glycine/proline) 

diagram thus obtained is reproduced in Figure 5.3, top left inset, with the most sterically 

favorable backbone conformations represented by the dark blue areas of the diagram. 

According to the diagram, there exists a weak steric barrier separating the domain 

populated by right-handed �-helices from that of the 5-strands (the regions within these 

domains corresponding to the �-helix and 5-strand conformations are colored in red and 

yellow, respectively). We note that the right handed �-helical domain spans the entire range 

of the most sterically favorable �-values and about 50% of the most sterically favorable �-

values represented by the upper left quadrant of the diagram, neglecting the (much smaller) 

left-handed �-helical domain, which is isolated by a significant steric barrier (285); 

therefore, p 0 1/2. By substituting the value of p and Equation 5.2 into Equation 5.1, the 

nucleation time can be expressed as: 

� �ba

ba
init VVkT

VV
t

�
�

;48 .     [5.3] 

For �-helix nucleation taking place in the interior of a long polypeptide, Va and Vb should 

represent the volume associated with the Kuhn length of the chain, which,  in proteins, is 

typically ca. 3 to 4 residues long (286). Thus, the spherical approximation is justified even 

for helices nucleating in the interior of long proteins, where the nucleation rate is 

approximately three times as slow as that of a similar process taking place near the ends of 

the chain (we note that, for helices nucleating in the interior of a protein, the increased 
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Fig. 5.3. Theoretical  and computational results for -helix nucleation.�  The helical and non-helical domains
used in the model are taken from the corresponding regions of the (non-glycine) Ramachandran plot (left inset). The

-helix regions (both left- and right-handed) are shown in red whereas the -strand region is shown in yellow. Note� �
that each region is within a larger conformational domain (dark blue). Whereas crossing between right-handed helix
and -strand domains requires traversing a region of minimal steric strain (light blue), the left-handed helical domain�
is separated from the other domains by a region of substantial steric strain (white). The predictions of the model are
compared with the experimental results  for  Wh5 as a function of temperature, both for the bare rotation of the
residues and for the more realistic case of dragging a single layer of water during the rotation (left). The predicted
rate agrees with the experimental results, both in absolute terms and as a function of temperature. MD results
showing the histogram distribution of folding times for Wgh5 (top right) and Wh5 (bottom right) are presented. The
refolding statistics for Wh5 display two well-separated time scales while those for Wgh5 indicate a single time scale.
The values of all fitted time scales are in good agreement with those measured experimentally, and the single-
versus-double timescale behavior is explained by the free energy landscapes of the two sequences (see Figure
5.4).
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values of Va/b are associated with an increased friction between the solvent and solute).  In 

the following, Equation 5.3 will be employed to calculate �-helix nucleation rates for real 

polypeptides, which will be further compared to those obtained using the ultrafast T-jump 

experiments as well as ensemble convergent MD simulations. 

 For Wh5, the (slowest) internal rotational motion with respect to the torsional angle 

�2 is characterized by Va = 323 Å3 and Vb = 232 Å3 in the absence of the hydration shell. 

The effective volumes assuming one or two layers of water bound with varying tightness to 

the surface of the rotating bodies, which is typical for proteins, can be estimated using the 

van der Waals diameter (d = 2.82 Å) of a water molecule (287). At T  = 293 K, given that 

the viscosity of water is � = 0.001 Ns/m2 (288), we obtain tinit � 5 ns in the assumption of a 

single-layer hydration shell (289), which is consistent with experimental observations. For 

Wh5, the characteristic time scale of �-helix nucleation as obtained using Equation 5.3 and 

ultrafast T-jump measurements is plotted in Figure 5.3, left, as a function of temperature. 

We note that the effect of the temperature on polypeptide folding rate is mainly a 

consequence of the temperature dependence of solvent viscosity. The order-of-magnitude 

estimate provided by our simple model is surprisingly good, given that both the amino acid 

residue shapes and intramolecular interactions are completely neglected. Remarkably, the 

analytic description of cooperative diffusion can accurately account for the processes 

involved in �-helix nucleation as well as the overall folding times. It is also noteworthy that 

the slope of the temperature dependence of the Wh5 folding time scale as obtained using 

Equation 5.3 is in excellent agreement with the experimental results.  
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Computational. To validate the assumptions and predictions of the above analytic model, 

and to obtain an insight into higher-order details of the experimentally obtained time-

dependent data such as, e.g., the double and single-exponential refolding behavior 

exhibited by Wh5 and Wgh5, respectively, ensemble-convergent MD simulations were 

carried out using the CHARMM (118) suite of programs and the CHARMM22/CMAP 

force field. For Wh5 (Wgh5), the polypeptide structure was centered in the cubic 

primary-simulation cell with initial box length of 30.0 (28.5) Å. To mimic a 13° T-jump, 

periodic boundary conditions at T = 311 K were employed. The starting-point structures 

of both polypeptides were assumed to have random backbone configurations and the end-

capping identical to that characteristic of the T-jump measurements. In addition to the 

polypeptides, 872 (747) TIP3P water molecules and one chloride ion were added as a 

61.5 (71.7) mM salinity solvent yielding an electrically neutral system which comprised 

2,698 (2,314) individual atoms. To calculate �-helix refolding times, an unfolding event 

was defined as accomplished when the RMSD with respect to the (canonical) �-helical 

structure was found to exceed 2 Å. In contrast, a refolding event was tabulated when the 

RMSD lower than 0.5 Å was detected for four consecutive (1 ps) MD frames following 

an unfolding event. The latter assumption is justified because the mean amplitude of the 

conformational fluctuations within a helical polypeptide equals 0.5 Å. One hundred 

independent MD trajectories, each lasting 100 nanoseconds, were obtained, yielding a 

total simulation time of 10 �s for each polypeptide. 

 For every (1 ps) MD frame, the RMSD of the polypeptide conformation with 

respect to that of a canonical �-helix was calculated. All conformations characterized by 

RMSD 3 0.7 Å were considered to be �-helical because the outer envelope of the (well-
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defined) RMSD basin representing �-helical structures throughout the MD simulations 

corresponded to 0.7 Å. At T = 311 K, using the above criterion, the population of right-

handed �-helices was estimated to constitute 20 and 3 percent of the studied 

macromolecular ensemble for Wh5 and Wgh5, respectively. The fraction of left-handed �-

helices for Wgh5 was 6%, in agreement with the CD results dominated by the left-handed 

structure fingerptint.  

For every instance of helix nucleation, the folding time is defined to be the elapsed 

time between an unfolding event and a refolding event. For the right-handed helices, the 

total number of independently obtained folding times was 595 and 244 for Wh5 and Wgh5, 

respectively, allowing for an ensemble-level assessment of the time scale characteristic of 

the folding process. As shown in the histogram (frequency distribution) plots of Figure 5.3, 

right, both polypeptides display a variety of refolding time scales ranging from hundreds of 

picoseconds to nanoseconds. We note that, for Wh5, the distribution pattern as obtained 

from the ensemble-convergent MD simulations fits closely to a double-exponential 

function and poorly to a single exponential function. The two time constants associated 

with the above biexponential behavior, �1 = 320 ps and �2 = 7.0 ns, appear to be in good 

agreement with those found experimentally at the same temperature. For Wgh5, the quality 

of a single-exponential fit is comparable to that of the double exponential fit, yielding a 

single time constant of � = 1.2 ns, which is in good agreement with the single-exponential 

behavior found experimentally. The analysis of representative MD trajectories reveals that 

experimentally measured rates corresponding to shorter time scales represent hydrogen-

bond formation and local structural perturbations whereas those corresponding to longer 

time scales represent conformational diffusion starting from a random-coil structure. The 

142



 

 

�
conformational diffusion process is faster in Wgh5 than in Wh5 due to the decrease in both 

viscous drag and steric strain characteristic of the (smaller) glycine side chains. For Wgh5, 

the temporal overlap of (local) annealing and (global) diffusion processes results in a single 

exponential time dependence, which is in agreement with the experimental findings.  

Using the data obtained from the ensemble-convergent MD simulations 

summarized above, the free energy landscapes of (un)folding were constructed for both 

Wgh5 and Wh5, as shown in Figure 5.4. Each point on the landscapes is parameterized by 

the polar coordinates (r, 1), where r is the oxygen-to-nitrogen distance between residue 1 

and residue 5 (1O-5N), and 1 is the torsional angle defined as 1O-2C�-4C�-5N. This 

choice of order parameters allows for an intuitive visualization of the entire conformational 

space, with r being the hydrogen bond distance and 1 representing the overall backbone 

twist. The landscapes of Figure 5.4 are constructed by plotting the natural logarithm 

(multiplied by kT) of the fraction of time the polypeptide was found to spend at each point 

of the (r, 1)-space throughout the MD simulation window (we note that the total MD 

simulation time was sufficient to construct an ensemble-convergent landscape). 

Importantly, for Wgh5 (Figure 5.4, left), the landscape is characterized by two minima with 

opposite twisting directions populated by the left-handed and right-handed helical 

structures. Besides the greater stability of the left-handed conformers, the Wgh5 landscape 

reveals the lack of free energy barriers separating the helical-structure domains from the 

unfolded-structure domains. In contrast, for Wh5, the steric hindrance induced by the 

presence of methyl group side chains results in the vanishing of the minimum populated by 

left-handed helical structures in the case of Wgh5, which is accompanied by the formation 
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Fig.  5.4.  Helix  nucleation  free  energy landscapes for  different  peptide  sequences.  The  landscapes  are
parameterized using the -helix hydrogen bond distance and overall backbone twisting angle in polar coordinates�
(see section 5.1.1 in Text). The landscape for Wgh5 shows the existence of both left- and right-handed helices
(green structures), with the left-handed helix more stable (left). In contrast, the landscape of Wh5 shows only the
right-handed helix with a steric wall separating the helical domain from the unfolded state (right). The dominant
pathway is defined (red arrow) by a slow diffusion from the unfolded state (gray structure) to the helical domain (red
structure), followed by fast annealing to the helical (green) structure, justifying the analytical model (see Text).
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of a steric wall separating the only remaining (right-handed) helical structure domain from 

the unfolded state (Figure 5.4, right).  

The (conformational-memory-loss) analytic model therefore captures the dominant 

folding mechanism which implies that the peptide undertakes the (rate-limiting) diffusive 

search to find the helical basin. This is then followed by a (much faster) search for the 

native helical fold (i.e., annealing), which is facilitated by the presence of the steric wall 

limiting conformational diffusion out of the helical basin during the course of the annealing 

process (Figure 5.4, right). Importantly, the model appears to properly account for the role 

played by the steric wall, which separates the (rate-limiting) non-cooperative 

conformational diffusion from the cooperative annealing to the native state. As evident in 

the free energy landscape of Wgh5, in the absence of the steric wall, the peptide can diffuse 

out of the helical basin, and the process of �-helix nucleation is no longer split into two 

distinguishable temporal regimes. The results shown in Figure 5.4 validate the assumptions 

made in the analytical diffusion model, and completely reproduce the experimental 

findings. 

Summary. Using the experimental ultrafast T-jump methodology characterized by an 

atomic-scale temporal resolution, we observed the folding of the shortest secondary 

structures possible, representing the speed limit of the protein folding dynamics. With the 

aid of experimental, theoretical, and computational studies of the sequence, temperature 

and length dependencies of the folding rates, a clear-cut quantitative picture of the �-helix 

nucleation process was constructed. The rate-limiting step of the process corresponds to the 

(non-cooperative) conformational diffusion search for the helical basin, and the helix 
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nucleation time is accurately described by the closed-form solution of Equation 5.3. There 

also exists a faster component of the folding process, which corresponds to (cooperative) 

annealing to the �-helical state. The steric (side-chain) hindrance is responsible for the 

separation of the time scales of these two processes. The above findings demonstrate that 

the interplay of conformational entropy and collective energetics occurs on even the 

smallest length and time scales of protein folding. 

5.1.2 Helix Propagation 

The formation and decay of �-helices play a pivotal role in protein folding (and 

misfolding). Indeed, even for proteins containing little native helical structure, helix 

formation, concomitant with hydrophobic collapse, seems to be the universal precursor of 

the folding process (290), much as the non-native conversion of helices to �-strands is the 

precursor to protein aggregation diseases such as Alzheimer’s (83). Though the 

thermodynamics of such transformations was well understood beginning with the 1950s, 

relatively little was known about their kinetics until the end of the 1990s (41, 89). With the 

advent of fast T-jump experimental techniques (un)folding time scales became readily 

measurable, but the underlying structural dynamics was still inaccessible and, until very 

recently, the fundamental processes involved remained in the dark. In Section 5.1.1, the 

helix nucleation step was studied in detail, both theoretically and experimentally. In the 

present Section the analysis is extended to the process of propagation, or elongation, of the 

�-helical nucleus following the formation of the first turn of the helix. 

The now prevalent kinetic zipper (KZ, or nucleation–elongation) model (41, 42, 

291) of helix formation was suggested by Thompson et al. in the late 1990s, and it has been 
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widely used to interpret experimental observations ever since (292). Within the framework 

of the model, the nucleation step, which involves the entropy-driven conformational search 

for the correct helical alignment of three sets of consecutive backbone torsional angles 

(Section 5.1.1), is postulated to be the rate-limiting step of the process. The subsequent 

“zipping” (or elongation) of the helical fragment, which requires the helical alignment of 

only one set of such torsional angles, is viewed to proceed at a much faster rate. However, 

in light of helix folding experiments, in particular the recent ultrafast investigations into the 

helix nucleation process (90, 91), the kinetic zipper interpretation needs to be reevaluated.  

First and foremost, if the concept summarized above were correct, the folding 

time scales measured experimentally, being primarily entropic in nature, would not differ 

by several orders of magnitude for �-helical polypeptides of different sequences and similar 

lengths (293). Second, neglecting any type of interactions besides native helical contact 

formation, e.g., nonnative structures stabilized by long-range hydrogen bonding contacts 

(294) and �-hairpin-like structures (141), as well as ignoring the fact that the so-called 

“random-coil” (nonhelical) state of the protein is neither random nor completely denatured 

(Section 4.1), can hardly be considered valid approximations. Third, in a series of studies 

from this laboratory described in the previous Section, we embarked on ultrafast 

(un)folding experiments, analytic modeling, and ensemble-convergent MD simulations that 

yielded, for the first time, a comprehensive atomic-scale picture of the elementary 

processes pertinent to the �-helix nucleation event (90, 91). These studies unambiguously 

demonstrated that the �-helix nucleation, when observed in isolation, occurs on a few-

nanosecond time scale, which is consistent with analytical and computational assessments 

carried out in this (90, 91) and other laboratories (264, 295). In contrast, the overall helix 
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folding time scale at room temperature is on the order of hundreds of nanoseconds (42, 89); 

therefore, the helix propagation must be the rate-determining step. Finally, we note that the 

enthalpic barrier to the (diffusion-limited) helix formation is at most 4 kcal/mol (due to the 

temperature-dependence of solvent viscosity), whereas the measured barrier is 8 kcal/mol. 

The discrepancy of ~4 kcal/mol  between the kinetic zipper interpretation and experimental 

evidence cannot be accounted for by mechanisms like, e.g., dipole-dipole interactions, as 

readily acknowledged by Thompson et al. (42). In the following we demonstrate that the 

above limitations of the KZ model stem from the neglect of misfolded intermediates 

characterized by non-helical hydrogen bonding contacts, which significantly retard the �-

helix propagation and increase the (effective) enthalpic barrier.  

Given that carrying out massively distributed ensemble-convergent MD 

simulations constitutes a challenge even for relatively small proteins that consist of 

hundreds of atoms, developing a simple yet predictive analytical model of protein 

(un)folding would greatly aid the detailed exploration of the physicochemical processes 

involved. More importantly, analytical methods, even those limited to low structural 

resolution, provide the crucial causal connection between fundamental driving forces and 

the resulting collective behavior that cannot be obtained from experimental or 

computational observations. In the present Section, we develop the KIS model of �-helix 

propagation, and demonstrate that it naturally accounts for the relevant kinetics and 

structural dynamics of the process under study. Importantly, the above approach can serve 

as a model framework for analyzing order–disorder transitions in systems for which non-

native interactions are important.  
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Computational. To illustrate the dominant effects of misfolding, which cannot be 

accounted for within the now-prevalent paradigm, we begin by examining polyalanine, 

which is the standard testbed of �-helix formation. MD folding simulations were performed 

using the CHARMM program suite (118) and the CHARMM22/CMAP force field on an 

ensemble of 25-residue-long polyalanine chains (A25), each of which was solvated by 7583 

TIP3P water molecules in a cubic box with periodic boundary conditions; the sides of the 

box equilibrated to 60 Å at 278 K. Long-range electrostatic interactions were computed 

using the PME method (121, 122). Initially, the system was heated to T = 500 K during 500 

ps and 100 conformational snapshots were randomly selected from the last 250 ps of the 

resulting trajectory to construct a macromolecular ensemble. To study the folding of A25 in 

a regime strongly favoring �-helix formation, the final temperature was chosen to be T = 

278 K (�T < 0); for all trajectories, the MD simulation time window was 14 ns long.  

 A careful examination of representative structures that dominate the MD ensemble 

during the initial stages of folding reveals that �-helical nuclei appear to form almost 

instantaneously (within several nanoseconds) across the entire ensemble, whereas water-

mediated structures resembling �-hairpins that are, in fact, more abundant than �-helices 

(Figure 5.5, bottom) tend to impose restrictions on the helix elongation (propagation) rate. 

Indeed, because growth of helical islands requires unraveling of misfolded structures that 

hinder further zipping, the helix propagation process in polyalanine appears to be 

significantly slower than the helix nucleation process. It is also noteworthy that, because 

the (longer) misfolded sequences associated with close-to-an-end �-helix nucleation should 

take longer time to unravel than the (shorter) ones arising upon �-helix nucleation 

somewhere in the middle of the polypeptide chain, a helical island that nucleates in the 
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Fig.  5.5.  Coil-to-helix  transformation  of  polyalanine  (A25)  observed with  molecular  dynamics. Distributed
ensemble-convergent MD simulations carried out for n = 100 trajectories of A25 at T = 278 K indicate that the growth
of -helices (black: 0%; yellow: 100%) is hindered by formation of -hairpins (black: 0%; yellow: 20%). In each of the� �
three panels, individual residues  k are numbered from –24 to +24 with the center of the helical segment of each
member of the ensemble aligned at the origin by definition (top). Helical-island and non-native hairpin formation
processes are depicted as a function of |k| (bottom left). The single sequence approximation (SSA) is a reasonable
description of the dynamics, and the presence of hairpin-type contacts suppresses helix formation rates (bottom
right), a result predicted by the KIS model (see Figures 5.6-7).  
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vicinity of the center of the chain should grow faster than the one that nucleates closer to an 

end (Figure 5.5, top). 

Another important observation we made during the course of the ensemble-

convergent MD simulations was the validity of the SSA, which assumes a single helix 

nucleation site within the polypeptide. As evidenced by the results shown in Figure 5.5, 

bottom right, the SSA holds for ca. 80% of the studied macromolecular ensemble of A25, 

which may be rationalized in terms of a significant barrier to nucleating multiple helices. 

For A25, this barrier is induced by the �-hairpin-like misfolded structures that prevent 

formation of new nucleation sites following the initial nucleation event. Importantly, the 

SSA allows all relevant partially folded states to be described using two variables i and j 

(defined below and in Figure 5.6, left), thereby providing a comprehensive coverage of the 

entire configurational state space in two dimensions. In what follows, we take advantage of 

the SSA to formulate a quantitative pictorial model of helix formation. It is demonstrated 

that, by capturing the effect of misfolding, the KIS model provides a much more accurate 

description of the observed secondary structure kinetics than the KZ model of �-helix 

folding. 

KIS model. In the present Section, the KIS model employed in our studies of temperature-

induced unfolding of DNA/RNA hairpins (Section 4.2.1) is further extended to describe �-

helix folding kinetics using a parameterization scheme specific to the �-helical hydrogen-

bond contacts between amino acids. For a polypeptide chain capable of forming L �-helical 

hydrogen bonds, the reaction coordinates i and j are chosen to be the number of such bonds 

that are broken (“unzipped”) counting from the C- and N-termini of the polypeptide chain, 
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Fig. 5.6. Free energy KIS landscape of polyalanine (A25) helix formation in aqueous solution. The KIS model
computes the landscape using a small set of experimentally obtained enthalpy and entropy data for any temperature
(see  section  5.1.2  in  Text);  the  landscape shown corresponds  to  T =  278  K,  for  which full  folding  occurs  at
equilibrium (left). The walls in the maze-like landscape are the enthalpic barriers associated with breaking misfolding
backbone contacts in order to propagate the helix. The representative structures of indicated subdomains ( i >> j,  j
>> i, and i � j) of the misfolded basin, as well as the native-fold structure ( i = 0, j = 0) that dominates the semi-native
basin  (0   � i,  j  4),  are  plotted  in  gray.  Green  dashed  line  denotes  the  locus  of  folding  pathways.  Reaction�
coordinates  i and j are the number of broken (“unzipped”) native contacts from the C- and N-termini of the chain,
respectively. The KIS landscape elucidates the folding mechanism and bottlenecks, and is used to predict folding
time  constants  via  Monte  Carlo  simulations.  The  biexponential  rise  seen  in  experimental  folding  studies  is
reproduced by the ensemble-averaged helicity fraction as obtained from Monte Carlo simulations performed on the
KIS landscape (top right), and arises from the pathway bifurcation of the landscape (left). The obtained rate agrees
with the measured value over all relevant temperatures, thereby reproducing the observed effective energy barrier
which is the (negative) slope of the Arrhenius plot (bottom right).  
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respectively (Figure 5.6, left). We note that the choice of the coordinates implicitly 

constrains the model to the SSA. All states are then represented by the unique set of 

coordinates {(i, j)} on the 2D reaction coordinate grid, with the native-fold (�-helical) 

structure of the protein located at (0, 0). The only state that is not associated with a unique 

point on the grid is the “coil” (or completely unfolded ensemble), which is represented by 

the points on the diagonal boundary of the coordinate space (i, L – i). We note that each 

state (i, j) corresponds to an ensemble of structures that share the same set of intact �-

helical hydrogen bonds but may differ in their detailed atomic coordinates. The free-energy 

landscape �G(i, j) which defines the folding behavior of the polypeptide is then obtained 

by calculating the free energy for each (i, j)-state with respect to the unfolded state of the 

macromolecular ensemble:  

 � � )()(1),( nucprop TGTGjiLjiG �������� .  [5.4]    

Here, �Gprop(T) is the free energy change associated with forming a single backbone 

hydrogen bond to propagate the helix, and �Gnuc(T) is the free energy change 

corresponding to the formation of the helix nucleus. Similarly to Section 4.2.1, the 

(temperature-dependent) free energy differences can be obtained from the corresponding 

experimentally measured enthalpy and entropy changes: �G(T) = �H – T�S. The interstate 

barriers crossed during the course of (i, j ,– 1) 
 (i, j) � (i ,– 1, j) transitions between 

individual microstates are given by: 

� �jiiPHG jiji ,;��),1(),( ��� �< ,   [5.5a] 

� �jijLPHG jiji ,;��)1,(),( ���� �< .   [5.5b] 
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Here, �H� is the enthalpic barrier associated with breaking a backbone–backbone (�-

hairpin type) hydrogen bond and P�(m; i, j) is the probability of having to break such a non-

native hydrogen bond at position 1 
 m 
 L of the state (i, j) in order to complete the helix 

propagation step. We note that P�(m; i, j) is given by the statistical weight of the sub-

population of the state (i, j) which is characterized by a non-native hydrogen bond at 

position m, divided by the statistical weight of the state (i, j):  

� � � �
� �kTjiG

kTjimGjimP
/),(exp

/),;(exp,;� �
�

� .    [5.6] 

For a given state (i, j), let N be the number of microstates in which the �-hairpin type non-

native contacts are formed. The denominator of Equation 5.6 can then be expressed as the 

sum of statistical weights of the N microstates: 

� � �
�

��
 

!
""
#

$ ����
��

N

n kT
nGTGnd

kTjiG
1

loop� )()()(
exp/),(exp ,  [5.7] 

where d(n) is the number of �-hairpin type contacts, �G�(T) is the free energy change upon 

formation of a �-hairpin type contact, and �Gloop(n) is mainly due to the entropy correction 

associated with loop formation in microstate n. We note that all N states in the sum can be 

computationally generated. The numerator of Equation 5.6 is calculated in the same way as 

the denominator except for the constraint that there is a non-native contact at position m.  

The experimentally-obtained thermodynamics parameters employed in the KIS 

model of folding of A25 (in units of kcal/mol) are given by: �Gprop(T) = –1.3 + 0.004T 

(296-298), �Gnuc(T) = –1.3 + 0.014T (299), �H� = 4 (300), and �G�(T) = –1 + 0.002T 
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(300). We note that the barrier height �H� is estimated from the electrostatic stabilization 

associated with formation of a �-hairpin and that its magnitude is reduced to account for 

solvation effects when the enthalpic component of �G�(T) is calculated. Finally, for a given 

misfolded microstate n, �Gloop(n) is obtained from the entropy of a polymer loop of length 

l, which can be expressed as Aln(l/lref) (301), with the reference loop length lref = 10, and 

the excluded volume pre-factor A = –2.4 kcal/mol (302). Loops characterized by l < 3 are 

disregarded within the framework of the model.  

Crucially, although the KIS landscape of A25 is only parameterized by the number 

of broken native (hydrogen bond) contacts on either end of the �-helix, the information 

about misfolded (�-hairpin type) states which retard the folding kinetics is nevertheless 

contained in the interstate barriers of the landscape (Equations 5.5 and 5.6). As 

demonstrated below, in contrast to the behavior exhibited by simple chemical systems, the 

(misfolded-structure-dominated) interstate barriers in systems with numerous degrees of 

conformational freedom can overwhelm the underlying free energy landscape defined by 

the (i, j)-states, thereby determining the overall folding behavior and time scale.  

 Despite being feature-rich, the free energy landscape of �-helix folding as obtained 

from the KIS model for A25 (Figure 5.6, left) can be characterized as consisting of two 

major domains occupied by structurally diverse populations: (i) misfolded and (ii) semi-

native. The latter, much smaller in size, represents ideal helices with up to four broken 

terminal contacts that rapidly zip toward the native fold, whereas the former constitutes a 

maze that funnels the helices nucleating close to the center of the polypeptide chain into the 

fast-folding pathway and, simultaneously, retards those nucleating in the vicinity of the 
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termini. The structures populating the larger basin range from �-hairpin-dominated (and 

kinetically-trapped in the rough i ,>> j and j >> i sub-domains) to long �-helix stretches 

capped by small misfolded loops (i 0 j). The former gradually evolve toward the native fold 

as the �-hairpin stretches are slowly unraveled, which gives rise to a severely misfolded 

population, whereas the latter need to surmount a (relatively low) free-energy barrier in 

order to proceed with the end segment zipping. Given the apparent roughness of the 

landscape, the interconversions between individual microstates are driven by unraveling of 

misfolded-structure contacts rather than conformational diffusion.  

For the coil-to-helix transformation of A25 in aqueous solution, ensemble-

convergent Monte Carlo simulations, starting with a single random nucleation site, were 

performed on a number of KIS landscapes as obtained for a range of temperatures. 

Throughout the simulations, the duration of the elementary temporal step was set equal to 

the characteristic helix propagation time, which can be obtained by multiplying the 

denominator in Equation 5.3 by 2(3 – 1) = 4. (We note that, in contrast to the �-helix 

nucleation mechanism which involves the alignment of three consecutive sets of backbone 

torsional angles, the elongation of a helical nucleus requires the alignment of a single set of 

such angles.) At T = 278 K, for which the ensemble-averaged fraction of �-helix content 

approaches 100% at equilibrium, the simulations predict a temporal helicity profile 

characterized by �1 = 44(5) ns and �2 = 700(50) ns (Figure 5.6, top right). The clear-cut 

biexponential behavior characteristic of A25 as obtained using the KIS model may be 

attributed to the bifurcating nature of the free energy landscape. Indeed, the faster (tens of 

nanoseconds) component which contributes ~30% of the signal amplitude appears to stem 
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from the rapid zipping of inner segments of the polypeptide chain, whereas the elongation 

of terminal helices which occurs on a much slower time scale, and accounts for ~70% of 

the signal amplitude, determines the rate-limiting step. Notably, the above picture is 

consistent with the findings made during the course of early experimental (42, 89, 303) and 

computational (MD) studies (304, 305). As shown in Figure 5.6, bottom right, the folding 

rates for A25 as obtained from the KIS model are in excellent agreement with the results of 

experimental measurements of polyalanine (un)folding kinetics. The effective barrier 

assessed using the (Arrhenius) dependence of folding rates on temperature, 7.9(2) kcal/mol, 

which exhibits a weak variation with the polypeptide chain length (data not shown) and 

remains consistent over a wide temperature range, is also in excellent agreement with an 

early experimental estimate of 8 kcal/mol (42). Therefore, the extra 4 kcal/mol barrier 

height, which was previously unaccounted for by the KZ model, is associated with the 

barrier to collective cleavage of (non-native, hairpin-forming) backbone–backbone 

hydrogen bonds that impede the coil-to-helix transition. The effect of misfolding barriers 

on �-helix formation can be seen in the dramatic dependence of folding time scales on the 

location of the seeding helical nucleus within the chain (Figure 5.7). Thus, the helicity 

profile representative of �-helix folding in A25 (Figure 5.7, left) is dominated by toward-

the-ends, toward-the-center, and past-the-center zipping processes which take place on 

short, intermediate, and long time scales, respectively (Figure 5.7, right). The helical nuclei 

that form close to the center of the polypeptide chain tend to elongate (propagate) rapidly, 

whereas misfolded structures associated with nucleation sites located near the ends of the 

chain severely hinder the process of folding; hence the biexponential behavior evidenced in 

the results of Figure 5.6, top right. Because of the dominant role played by the interstate 
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Fig. 5.7. Monte Carlo  simulations on the KIS  landscape. The process of -helix  formation is  dominated by�
toward-the-ends, toward-the-center, and past-the-center zipping at short, intermediate, and long times, respectively
(top left  and right  insets). Helical nuclei that form close to the middle of the sequence tend to elongate rapidly,
whereas misfolded structures associated with nucleation sites located in the vicinity of the termini severely hinder
the  folding  process  (bottom left).  This  bifurcation in  timescales  is  a  direct  consequence  of  the  bifurcation of
landscape pathways (see Figure 5.6). 
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barriers (free energy landscape roughness associated with formation of �-hairpin type 

structures) during the course of �-helix formation in A25, the �-helix folding rates of 

heteropolypeptides are predicted by the KIS model to be very sensitive to the �-hairpin-

forming propensities characteristic of the constituent amino acids (see below).  

�-helix folding in heteropolypeptides and proteins. To elucidate implications of protein 

sequence heterogeneity for �-helix folding in biologically relevant systems, we examined 

formation of the two (major and minor) �-helical moieties of protein thymosin-�9 (T�9, 

PDB ID: 1HJ0 (113); Figure 5.8, top left) in aqueous solution with the aid of ensemble-

convergent MD simulations. The MD setup, including the pre-heating step to initialize the 

unfolded state, was identical to that of A25, except that 23848 TIP3P waters were used to 

solvated the bigger T�9 structure, corresponding to box lengths of 89 Å at T = 278 K. The 

MD simulation window was 9 ns long. 

 Naively, one would expect A25 to fold somewhat faster than, e.g., the major �-

helical sequence of T�9 which is of the same length. However, in polyalanines, the 

(highest) helix-forming propensity characteristic of Ala residues competes with the 

formation of misfolded structures (�-hairpins) across the entire ensemble (141). The latter 

effect may be attributed to the (spatially compact) Ala side chains that leave the C, N, O 

atoms of the protein backbone exposed and, therefore, prone to hydrogen-bond formation. 

Paradoxically, larger side chains, regardless of their characteristic helix-forming 

propensities, appear to facilitate �-helix formation at early times by hindering misfolded 

structure formation. Indeed, the thicker side-chain “coating” of the protein backbone 

sequence limits �-hairpin nucleation across the ensemble of T�9 (Figure 5.8, top right). 

159



Fig. 5.8. Coil-to-helix transformation of thymosin-�9 observed with molecular dynamics. Shown are a number
of equilibrium structures (teq = 2 ns, cartoon) as obtained from our ensemble-convergent MD simulations in pure
water superimposed on the experimentally determined structure (backbone skeleton) at T = 298 K. 41 residues of
T�9 can engage in up to 37  l  � l + 4 -helical contacts. The ordered conformation of T� �9 includes two -helical�
sequences, “major” and “minor”, which extend from residues 4 and 31 to 23 and 37, respectively. The two helices
are joined together by a disordered loop sequence (residues 28 to 30). Another loop is located at the N-terminus of
the protein (top left). Distributed ensemble-convergent MD simulations carried out for n = 50 trajectories of T�9 at T =
278 K indicate that the growth of -helices (black 0%, yellow 100%) is minimally hindered by formation of -hairpins� �
(black 0%, yellow 20%), which may be due to steric repulsion of larger side chains that disfavor loop formation
(bottom left). Note the disappearance of end-to-end misfolded structures prevalent in the kinetics of A25 (see Figure
5.5) (bottom left), as well as the faster helix formation, lower strand content compared with A25, and the breakdown
of the SSA for the major helical segment of T�9 at early times (top right). The -helix formation rates within the�
protein correspond well to experimental helix-forming propensities of the residues in the protein sequence (bottom
right).
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Nevertheless, non-helical contacts still exist, and they seem to accumulate at the boundaries 

separating ordered (helical) and disordered moieties of the protein (Figure 5.8, bottom left).  

It is noteworthy that extended helical islands nucleating at the initial stages of 

folding of T�9, as evident in the results of MD simulations, correspond to the areas of 

maximum experimentally-determined helix-forming propensities (Figure 5.8, bottom 

right). Given that the SSA breaks down for the major helical sequence of T�9 right from the 

beginning of the folding process (Figure 5.8, top right), there must exist a statistically 

significant population of macromolecules that feature an internal loop (or “bubble”) located 

between the two helical nuclei of the sequence at early times. We note that formation of the 

bubble can be attributed to a pronounced dip in the helix-forming propensity profile of T�9 

(Figure 5.8, bottom right). Notably, along with the structures characterized by internal 

bubbles, there also exist those containing single major helical nuclei as well as those 

containing single minor helical nuclei (or both). Validity of the SSA for the minor helical 

sequence of T�9 may be attributed to its smaller size and more uniform helix forming 

propensity as determined by its sequence.  

Summary. For proteins in general, an interplay between non-helical contacts (misfolded 

structures) and helix-forming propensities of individual residues is expected to determine 

time scales of helix formation, with the role of misfolded intermediates varying according 

to the protein sequence. However, for polyalanine, which is often considered to be the 

“hydrogen atom” of helix formation studies, the mechanism appears to be much clearer cut. 

For �-helix formation in A25, the rate limiting step corresponds to the elongation (or 

“zipping”) process, rather than that of helix nucleation. Contrary to the common wisdom 
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(223), �-helix formation is, in general, a three-step event: it requires formation of a helical 

island, unraveling of misfolded terminus (or termini) which often implies existence of long-

lived kinetic intermediates, and, finally, zipping of the termini. The above behavior is 

dictated by the topology of the free energy landscape that guides protein (un)folding: for 

A25 it consists of three extensive domains occupied by kinetically trapped (i << j and i >> 

j), misfolded (i 0 j, i, j > 4) and semi-native (i, j 
 4) macromolecular structures (Figure 5.6, 

left). The apparent roughness of the landscape which hinders the diffusion search on its 

surface can be thought of as a maze that funnels unfolded structures into a variety of routes; 

the helical islands that form close to the middle of the sequence grow faster than those 

nucleating in the vicinity of its termini. 

Interestingly, the above results are reminiscent of an early experimental study of a 

simple chemical reaction from this laboratory (306), in which two-body and three-body 

dissociation pathways originating from the same starting point on the potential energy 

landscape of HgI2 were found to be associated with totally different time scales. Similarly 

to (inorganic) AB2 molecules, fluxional biological macromolecules often undergo non-

equilibrium transformations that are guided by bifurcations on the free energy landscape. 

Importantly, for �-helical segments that satisfy the SSA, these landscapes can be 

comprehensively parameterized on the KIS free energy landscape, with the key step in the 

coarse-graining analysis being the compaction of the numerous (non-native) degrees of 

structural freedom into the barriers of the (native-contact-specific) KIS landscape. For A25, 

the folding pathways naturally emerge on the kinetic maze of the landscape, bundling 

themselves into two bifurcating ensembles separated by one order of magnitude in their 
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characteristic �-helix folding rates. Similarly to the oversimplified yet predictive valence-

shell-electron-pair-repulsion (VSEPR) model of G. N. Lewis (307), the KIS model as 

applied to protein folding quantitatively explains both the kinetics and complex structural 

dynamics of �-helix formation from physical principles, a crucial function missing from 

experiments, whether done in the laboratory or on the computer. 

  

5.2 TERTIARY STRUCTURE KINETICS AND THE LENGTH LIMIT 

Ever since the discovery that proteins can spontaneously self-assemble into unique 

3D shapes called native folds (308), the mechanism of this process has been a focus of 

biological research. It has been demonstrated that random protein sequences can attain 

unique ground states which are separated from other possible folds by significant energy 

gaps (309). However, assuming the existence of a unique native fold, there is no assurance 

that the protein can efficiently parse the fold space to find it. In particular, how nature is 

able to search the exponentially increasing number of folds accessible to proteins of non-

trivial length has not been explicitly elucidated. Thus, Levinthal famously estimated that 

for a protein consisting of 150 amino acids, in which every degree of freedom is discretized 

into only ten possible values, it would take much longer than the age of the universe to 

sample all the folds even at the limit of molecular motion (6). In Section 5.1, we addressed 

the issue of folding kinetics of a (locally) periodic structure, the �-helix, which is a 

ubiquitous motif in proteins. The problem of the overwhelmingly large search space arises 

from the global and asymmetric nature of the tertiary structure. In what follows, we address 

the latter issue. 
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The qualitative resolution of the Levinthal paradox has been provided by the 

concept of the folding funnel, whereby a global bias in the (multi-dimensional) energy 

landscape channels the protein toward the sub-space comprising the native fold (102). 

Given that, by introducing an artificial search bias in favor of native contacts (310) or 

designing sequences favoring specific secondary structures (311), accelerated folding was 

computationally confirmed, it has long been a common belief that the funnel arises from 

evolutionary tuning of the intramolecular interactions via sequence mutation and that 

feasible protein folding times are the result of natural selection. 

In contrast to the above picture, in the present Section we demonstrate that a 

fundamental effect, namely the hydrophobic force, is sufficient to account for (fast) protein 

folding kinetics without invoking any selection bias. The global tendency for hydrophobic 

residues to segregate in the interior of proteins has long been recognized as a major force 

that drives protein folding (100, 312). Indeed, it has been shown experimentally (313, 314) 

and computationally (129) that proteins undergo hydrophobic collapse in the earliest stages 

of folding. By considering the degeneracy of all folds, we demonstrate that hydrophobic 

collapse, and hydrophobic/hydrophilic residue segregation, lead to realistic folding time 

scales for globular proteins and protein domains, which are independently folding subunits 

that constitute larger proteins (315), thus quantitatively resolving the paradox. We also find 

an upper limit imposed by nature on the length of protein domains (~200 amino acids), for 

which such hydrophobic packing constraints would allow the native state to be identified 

within a biologically reasonable time scale through a hypothetical exhaustive search. By 

comparing the above result to the experimentally obtained distribution of protein domain 

lengths, we find that most protein structures do fall below this “hydrophobic length limit,” 
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although it can be exceeded due to the influence of other processes, besides hydrophobic 

collapse, that affect protein folding.  

To date, many attempts have been made to estimate the reduction of the effective 

search space due to the hydrophobic force. For a self-avoiding chain (SAC) composed of L 

residues on a 3D cubic lattice, the number of unique conformational folds (degeneracy) 

was found to be NSAC ~ L0.164.68L  (316). If we further restrict the chain to adopt maximally 

compact folds, as defined in the mean-field theory treatment (101), the resulting 

degeneracy may be expressed as NCompact = (6/e)L, where e is the base of the natural 

logarithm. We note that, although compaction significantly reduces the search space, and is 

a driving factor for secondary structure formation (317), the degeneracy is still 

astronomically large even for the smallest proteins.  

The crucial step is the (further) reduction of the conformational space by choosing 

only those compact folds with hydrophobic residues (H) maximally buried, in the sense of 

maximizing the number of H–H contacts, into the interior of the protein, and polar residues 

(P) on the outside. This minimalist HP representation of protein structures has long been a 

mainstay of analytic investigations of protein folding (66). We define NHP(s) to be the 

degeneracy of self-avoiding compact folds with maximum H/P segregation, which is a 

function of s, the sequence of H and P residues along the chain. Because hydrophobic 

residues are randomly distributed along the protein sequence (318), the average 

conformational degeneracy of a collapsed H/P-segregated protein, (NHP', is equal to 

NHP(s) averaged over all possible sequences s of length L, where the angular brackets 

denote averaging over the protein sequence space. Therefore, (NHP' represents the size of 
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the effective conformational space that may be sampled when a randomly-generated 

polypeptide sequence folds in a polar solvent like water.    

The chief difficulty in obtaining (NHP',is associated with the constraint that all 

monomers must be connected in a chain. This constraint had made NHP(s) impossible to 

analytically compute for any given sequence s, much less (NHP' averaged over all values 

of s. Estimates that neglect the linear sequence of the chain, e.g. by assigning independent 

probabilities for each hydrophobic residue to be in the interior of the protein, overlook the 

crucial role of the above constraint in reducing the degeneracy. Thus, (NHP',has been 

found to grow almost as quickly as NCompact as a function of L (66), an estimate nine orders 

of magnitude too large for L = 100 (see below).  

Alternatively, computational efforts have been underway to explicitly account for 

chain connectivity. For 2D chains of L < 28, Camacho et al. computed (NHP' by 

enumerating all such folds for all possible sequence permutations, assuming that half the 

residues were hydrophobic and half polar (319). On the 2D lattice, (NHP' was found to 

increase on a (sub)logarithmic rate and plateau at L ~ 10. However, due to the 

exponentially growing number of both conformers and sequences with increasing L, the 

above approach becomes computationally intractable for longer sequences. Because the 

computational cost is even more severe for a 3D lattice, the protein conformational 

degeneracy in 3D space was extrapolated from the 2D lattice results (320). However, for a 

random sampling of HP sequences of L = 48, it was found via explicit calculations that 

NHP(s) ranges from “thousands to millions” on a cubic lattice (99), which is incompatible 

with the logarithmic growth rate expected for 2D lattices. In the following, we analytically 
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calculate (NHP' in 3D space, taking into account, unlike the previous theoretical work, the 

fact that the individual residues on the 3D lattice must be interconnected to form a chain. 

Importantly, in the present study, the protein chain length L is the only parameter of the 

solution obtained. 

Lattice Model. We define a connectivity map to be a spatial arrangement of (interacting) H 

and P residues (Figure 5.9). Within the framework of the HP model, each H–H contact in 

the map decreases the total energy by a fixed amount, whereas all other contacts do not 

contribute energetically. All calculations presented below ignore pre-factors of order unity. 

For a particular sequence s of length L, NHP(s) technically describes the number of 

conformations of sequence s that attain the lowest-energy spatial arrangement (i.e., the 

“optimal map”) for that sequence. We note that this may not be the same as the optimal 

map for all sequences of length L, which is termed the “global optimal map”. Further, we 

define N*HP(s) as the number of conformations that attain the global optimal map. If the 

protein sequence s can attain the global optimal map, then N*HP(s) = NHP(s), otherwise 

N*HP(s) = 0. Hence, (N*HP' is a lower bound imposed on (NHP'. If N*HP(s) = 0, then 

NHP(s) is bounded by the probability of the event that none of the optimal folds of the 

sequence s can be locally perturbed to attain lower energy maps. Consequently, on a 3D 

lattice, the sequences that cannot attain the global optimal map do not contribute 

significantly to (NHP', hence (NHP'  � (N*HP' (see details below and Figure 5.10).  

 To calculate (N*HP', consider the sequence vs. fold space representative of an L-

residue-long protein (Figure 5.9). Each column in the Figure corresponds to a unique 

protein sequence, and each row corresponds to a unique compact conformation. Because 
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Fig. 5.9. Schematic table of folds versus sequences. White and black circles denote hydrophobic (H) and polar
(P) residues, respectively. Each pattern of H and P circles constitutes a map. For any given map, a fixed sequence
(e.g. row 2) can have multiple (or no) conformation folds which produce the same map (e.g. columns 1 and 2). On
the other hand, each fold (column) has one and only one sequence (row) that can produce a given map.
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Fig. 5.10. Minimal sub-volume  required for H-P swapping leading to lower energy.  The schematic illustrates
the three types of swapping for a cubic lattice of length 6. The hydrophobic residues (H) are shown in gray and the
hydrophilic  residues (P) are transparent for clarity purposes. The individual gray cubes  denote the hydrophobic
residues selected to be in the minimal sub-volume  n. The three types are (top) swapping on one face, (center)
swapping involving multiple  faces, and (bottom) merging distinct hydrophobic  regions. Note  that  the schematic
illustrates extreme cases; most configurations require smaller distortions. 
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proteins are, on average, characterized by equal numbers of hydrophobic and polar residues 

(321), there exist ��
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5.9 is the space representative of a protein chain of length L = 36 on a 2D lattice, although 
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where d(s) is the number of conformations for which the chosen sequence s can attain the 

global optimal map. We note that the pre-factor L2/3 in Equation 5.8 accounts for the 

number of distinct global optimal maps due to (possible) hydrophobic pockets located 

along the H-surface which can accommodate leftover H residues (unless the number of H 

residues is a perfect cube). Importantly, all relevant constraints, including the chain 

connectivity, are captured by d(s). Because the degeneracy calculated by summing over all 

columns of the global optimal map is equivalent to that calculated by summing over all 

rows of the map, we obtain:  
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 where D(f) is the (sequence) degeneracy of the conformation f. For any map, a given 

sequence can attain the map with multiple (or none) of its conformations; on the contrary, 

any conformation can attain any map with exactly one sequence: D(f) = 1 for all f. 

Therefore, Equation 5.9 transforms into: � �L
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approximation, we arrive at the following main results. The degeneracy can be calculated 

as: 
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and the protein folding time associated with exhaustive conformational search is given by: 

sampling
*
HPfolding 22 �� N ,     [5.11] 

where �sampling is the time characteristic of  an elementary conformational interconversion. 

We note that the above results were obtained for a 3D lattice. In 2D space, the (3/e)L term 

of Equation 5.10 transforms into (2/e)L, which is an exponentially decreasing function. In 

the 2D case, longer chains are characterized by lower probabilities of folding into the 

global optimal map; as L increases, the chain continuously “runs out” of ways to fold into 

the optimal map so that the maps of higher energies become optimal. This turnover of the 

optimal map causes (NHP'7 the optimal map degeneracy, to plateau as a function of L, in 

agreement with the explicit 2D calculations (319). 

Importantly, the results obtained using Equation 5.10 are also in agreement with 3D 

lattice simulations. Consistent with the “thousands to millions” of degenerate optimal 

conformations estimated from an explicit enumeration, (NHP' approaches 104 for a chain 

of L = 48. At a higher level of chemical accuracy, for a lattice chain of L = 80 that consists 

of the 20 known types of biological amino acids and possesses a unique native fold, it was 
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found that at most 106 Monte Carlo steps were required to attain the native-fold structure 

(322). This is in agreement with the estimate of Equation 5.10: (NHP' = 5×105 for L = 80.  

Through multiplication by the experimentally determined �sampling = 10 ns (323), 

Equation 5.11 relates the degeneracy to the protein folding time �folding. Presented in Figure 

5.11, top, as functions of L in 3D are the folding (or conformational-space sampling) times 

of the self-avoiding chain, compact self-avoiding chain, and the (average) collapsed H/P-

segregated chain with characteristic degeneracies of NSAC, NCompact, and (NHP' � 

(N*HP'7,respectively. We note that, in accordance with Levinthal’s findings, in the cases of 

NSAC and NCompact the number of available conformations becomes astronomically large 

even for very short chains. Nevertheless, if confined to (NHP' by the hydrophobic force, 

the exhaustive search of the same sub-space can be accomplished on biological time scales 

(nanoseconds to minutes) for L < 200. Because (NHP' increases exponentially with L, 

proteins cannot complete an exhaustive search of the hydrophobic sub-space beyond the 

above length; this is, therefore, the exhaustive hydrophobic search length limit imposed by 

nature on protein domains. 

Also shown in Figure 5.11, top, are the experimentally measured folding times for 

65 single-domain proteins (106, 324). For L < 100, the folding times agree with the 

exhaustive sequence-averaged folding time �folding, with the variance arising from the 

particular protein sequence. For L > 100, the average folding time falls below �folding, which 

is indicative of the onset of other factors such as, e.g., evolutionary sequence selection 

favoring faster kinetics, despite the overall folding time scale for L < 200 being dominated 

by the H/P collapse.  
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Fig. 5.11.  Length and time  limits of folding. Degeneracy of conformations  on a cubic  lattice is  plotted as  a
function of chain length (top). Conformational degeneracies  of self-avoiding chain (SAC), self-avoiding compact
chain,  and  the  sequence-averaged  lowest  energy  HP  chain  are  shown with  dotted,  dashed,  and  solid  lines,
respectively.  The degeneracies  are multiplied by the 10 nanosecond residue reorganization time to  obtain  the
folding times (Equation 5.11). The predicted limit (above which exhaustive search cannot lead to sufficiently fast
folding), is L ~ 200 amino acids. Experimentally measured folding times are also shown, indicating that faster-than-
exhaustive-search folding occurs for L >100. The experimental domain length distribution of a representative set of
1236 proteins shows that for L > 100, the population fraction begins to decay (bottom). The protein populations are
divided into the HP-dominated regime for  L below the exhaustive search length limit (red arrow), and the natural
selection (NS)-dominated regime for L above the length limit (green arrow). All experimental data are shown in blue.
See Text for further descriptions of the regimes.
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Although proteins often consist of more than 1000 amino acids, protein domains 

are on average 100 amino acids long, typically ranging from 50 to 200 (26, 325), with 90% 

of them being shorter than 200 (326). The above observation is in agreement with what we 

have identified as the domain length regime for which the hydrophobic–polar interactions 

are sufficient to ensure the fast (HP-dominated) folding. Beyond the above regime, 

accelerated protein folding rates are facilitated by mechanisms other than the hydrophobic 

force such as, e.g.,  sequences characterized by smaller degeneracies than that typical of the 

average sequence, evolutionary funneled free energy landscapes, periodic local structures 

arising from repeated insertion mutations (327), and molecular chaperones assisting in 

folding (328). These types of auxiliary mechanisms allow for the existence of domains that 

exceed the hydrophobic length limit; the fast folding of proteins in this second regime is 

therefore consistent with the effect of natural selection (NS-dominated). Shown in Figure 

5.11, bottom, is the domain length distribution of a representative sample of 1236 proteins 

(321) and its partitioning into the two regimes. Consistent with the data of Figure 5.11, top, 

the abundance of proteins of length L begins to decrease near L = 100, which is in 

agreement with the onset of evolutionary pressure to select for sequences that fold faster 

than the exhaustive search at this length scale would allow. However, because the folding 

degeneracy increases exponentially with L, the fraction of protein domains exceeding the 

(L= 200) hydrophobic length limit is small. We note that the fundamental length limit 

pertinent to protein folding may have forced most proteins with L > 200 to evolve as 

modular combinations of smaller domains. 

Lattice model details. In the following we justify a key step made during the course of the 

above analytic derivation, namely: (NHP'  � (N*HP'. We denote a sequence “optimal” if it 
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can attain the global optimal map, and “sub-optimal” otherwise. Further, we define p to be 

the fraction of sequences that can only fold into sub-optimal maps, (Ns,' to be the average 

ground state degeneracy over all such sub-optimal sequences, and (No' to be the average 

ground state degeneracy over all optimal sequences. To prove that (NHP' � (N*HP', we 

note that (NHP' = p(Ns' + (1 – p)(No' = p(Ns ' + (N*HP'; it is therefore sufficient to 

show that p(Ns ' < (N*HP'. To this end, note that if a sequence is sub-optimal, there exist 

lower energy states that it cannot attain by locally perturbing any of its ground state 

conformations. Being a globally sub-optimal sequence, each ground state fold f of the 

sequence s contains a minimal-sized sub-volume n(f, s) of the lattice in which the number 

of H–H contacts can be increased (and thus the energy decreased) by changing the 

positions of H and P residues to form a new map with lower energy in the sub-volume. For 

each ground state fold f, assuming that there exists at least one other fold besides the 

starting fold which preserves the chain connectivity to the outside of the sub-volume, we 

define Pf to be the probability of the event that at least one such fold can attain a lower 

energy. Then, the probability of finding that each residue of n(f, s) matches that of the 

lower-energy map is (1/2)n(f, s). Therefore, Pf  > (1/2)n(f, s), where the greater-than sign is due 

to the possibility of attaining multiple conformations, multiple lower energy maps, and 

unequal numbers of H and P residues within the sub-volume which can all increase the 

latter probability. Then, the probability that none of the ground state folds can be locally 

perturbed to achieve a lower energy is given by: 
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where (n'  is the average size of the minimal volume over all sequences and over all 

ground state folds of each sequence. The approximation in Equation 5.12 is justified 

because Pf NS < 1/2 for the locally optimal fold. Since probabilities must be non-negative, 

we obtain from Equation 5.12 that (Ns ' < 2<n>.  

An estimate for (n' can be obtained by noting that there exist three generic types of 

H–P swapping to achieve lower energy. First, we consider the (most likely) case in which 

at least one extra H–H contact can be created by rearranging one surface of the 

hydrophobic region. The volume  n(f, s)  is therefore associated with a path on the H-

surface such that the H residue(s) at one end of the path swap with the P residue(s) at the 

other end; the volume is thus at most twice the length of the cubic lattice: n(f, s) < 2L1/3 

(Figure 5.10, left) for any given fold f and sequence s. 

The second case to consider implies that the rearrangement may require multiple H 

residues on one face of an H-region to swap with P residues on a different face. In this case 

(Figure 5.10, center) the maximum n is limited to the area of a face: n(f, s) < L2/3 for any 

given fold f and sequence s. 

Finally, we consider the case which requires two separate H-regions to connect. In 

this case, all H-regions must be cubic, otherwise the above case 1 or case 2 would apply. 

The maximum n(f, s) corresponds to the case in which the lattice is divided into a 3D 

checkerboard with each H-region being a cube of sides at most L1/3/2. Thus, the maximum 

n(f, s) corresponds to that of this cube plus one face of the adjacent cube so that the cube 

may be shifted by one notch and thereby make contact with another cube. Therefore, we 
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obtain n(f, s) < (L1/3/2)2 · (L1/3/2+1) = L/8 + L2/3/4 (Figure 5.10, right) for any given fold f 

and sequence s.   

Importantly, in all three cases, 2n(f, s)  < (N*HP',for any given fold f and sequence s. 

Because the above inequality is true for any f and s, it should also hold when n(f, s)  is 

averaged over all f and s: 2<n> < (N*HP '= For example, for a protein chain of length L = 

200, we obtain (N*HP ' ~ 1012 , whereas 2n < 105 , 1010 , and 1010 for (the worst-case 

scenarios of) the three cases, respectively. Therefore, p(Ns ' < 2<n> < ( N*HP', and thus 

(NHP ' � (N*HP'. 

Computational. To complement the general, yet coarse grained, results above, we also 

performed ensemble-convergent MD simulations using the CHARMM suite of programs 

and force field (118) on a single polypeptide to gain insight at the atomistic level. For these 

studies, we chose the 20-residue Trp-cage mini-protein (115), which despite its small size 

possesses both secondary and tertiary structure, the latter being represented, e.g., by the 

burial of the large hydrophobic tryptophan side-chain in the protein interior. Computational 

details pertinent to these simulations have been provided in Section 4.2.4.  

Presented in Figure 5.12 are the free energy landscapes of Trp-cage as obtained 

both in vacuo (top) and in solution (bottom) as functions of the RMSD calculated with 

respect to the original (experimentally determined) macromolecular structure; also shown 

in the Figure are the solvent-accessible surface areas of the hydrophobic residues (exposed 

H-areas) in both environments. The free energy landscapes are binned into 100 > 100 grids 

of distinct microstates, as defined by these two order parameters, and the corresponding 
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Fig. 5.12. Free energy landscapes of trp-cage in the presence and absence of water from MD simulations.
White and black denote hydrophobic (H), and polar (P) residues respectively. The two order parameters are root-
mean-squared deviation (rmsd) from the experimentally determined starting structure, and the solvent accessible
surface area of the hydrophobic side chains (exposed H area). When solvated (bottom), the landscape is restricted
to the funnel containing the native state; in vacuum (top), there are a multitude of minima, all with similar  free
energies, that are no longer constrained to minimize the exposed H area. Some representative structures are also
shown, including an “inside-out” conformation sampled during the vacuum simulations. 
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free energies are calculated as �Gi = kTln[P(i)], where P(i) is the fraction of total 

simulation time spent in microstate i. We note that, in water, the peptide is confined to a 

free energy basin with burial of hydrophobic residues, including tryptophan (small exposed 

H-area) and a macromolecular-structure ensemble similar to that found experimentally 

(low RMSD). In the absence of water, on the other hand, the hydrophobic residues are 

more solvent-exposed and there exist multiple conformational basins distributed throughout 

the entire free energy landscape. Importantly, a number of minima thus obtained 

correspond to predicted “inside out” conformational ensembles (329), in which the 

hydrophobic residues are on the outside and the polar residues are buried. In the gas phase, 

the polypeptide no longer spends the majority of its time in the lowest free energy basin. 

Crucially, in accordance with the findings made using the above lattice model, the 

conformational space available for sampling is greatly reduced in aqueous solution because 

the peptide is restricted to folds with buried hydrophobic residues.  

Because Trp-cage is unique, with its hydrophobic “core” primarily consisting of a 

single residue, care must be made when extrapolating specific dynamical behaviors to 

proteins in general. However, as a minimal-size peptide with tertiary structure for which 

comprehensive and statistically significant information can be obtained with atomic 

resolution, Trp-cage has been used to confirm that the results obtained from the lattice 

model do extend to the physical world. 

Summary. In the present Section, we addressed the apparent paradox of overwhelming fold 

degeneracy in protein folding, a problem that is analogous to the question of how proteins 

(and therefore genes) evolve by natural selection within the immense space of possible 
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sequences (330). Smith argued that the latter paradox vanishes if incremental evolutionary 

steps confine the protein sequence within the exponentially smaller sequence sub-space that 

corresponds to good fitness (331). Just like evolutionary fitness is a global order parameter 

that keeps the sequence search within the fruitful sub-space of all sequences, hydrophobic–

hydrophobic contact area is a global order parameter that keeps the fold search within the 

fruitful sub-space of folds. Here, we quantitatively demonstrated that the size of the 

hydrophobically collapsed sub-space is indeed small enough to be realistically sampled 

during the course of protein folding.  

The coarse grained lattice model has been used to derive the hydrophobic length 

limit imposed on protein domains (L < 200). Below this limit, proteins could in principle 

randomly sample the entire folding sub-space consistent with hydrophobic collapse and 

hydrophobic/hydrophilic segregation. Above this limit, the hydrophobically-constrained 

fold space increases exponentially beyond what is accessible by random search. 

Consequently, the evolution of larger proteins is consistent with the model of modular 

growth, involving the aggregation, swapping, and duplication of stable domains (332). In 

this latter regime, natural selection may be necessary to enhance the folding rate using 

sequence-specificity and/or chaperones. The all-atom ensemble-convergent MD 

simulations explicitly demonstrated the role of the hydrophobic effect in drastically 

reducing the search space on the free energy landscape.  

In addition to providing a mechanistic insight into the role of physical forces in 

shaping the length-scale and evolution of proteins, the results presented here may be useful 

in protein characterization and engineering. For example, a useful metric that quantifies the 
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effect of protein sequence on folding rate is the ratio of a protein’s folding time to �folding, 

the exhaustive search time of an average HP chain of the same length. For de novo protein 

design, we predict that for L < 200 it is not necessary to engineer a kinetic pathway which 

leads to the desired native state; as long as the native state is thermodynamically stable and 

the roughness of the conformational free energy landscape is sufficiently low, the protein 

will fold in a reasonable time. 
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C h a p t e r  6  

CONCLUSIONS 

 

The first part of this Thesis, covered in Chapter 4, aimed at elucidating the general 

issues of macromolecular dynamics, which governs a wide range of biologically-relevant 

phenomena, including protein folding. Such issues as the dynamics at different length 

scales, the role of water, the effect of temperature, and the nature of the unfolded ensemble, 

are all critical pieces of the puzzle of macromolecular folding and function. It was found 

that even in the unfolded state, macromolecules can possess a significant geometric bias, as 

measured by the persistence length, due mainly to the cumulative effect of the (weak) 

backbone torsional potentials rather than excluded volume effects. For the order–disorder 

transition of key biological motifs, the identity and nature of kinetic unfolding 

intermediates were found to be predictable using experimentally measured thermodynamic 

parameters of the constituent interactions. The unfolding dynamics of both proteins and 

nucleic acids were found to occur at a variety of length scales; depending on the 

temperature, local structural changes were demonstrated to take place either before or after 

global dynamics. Furthermore, the unfolding of local secondary structure was shown to 

involve surmounting a “hidden” energy barrier due to persistent structural rigidity which, in 

the case of �-helices, was much higher than the bond breaking barrier. Throughout, it was 

found that the solvent has profound effects on the kinetic behavior, such as the 

“unfreezing” of large-scale conformational motions. The ensemble-averaged radial 

distribution function not only proved to be a powerful coarse-graining methodology, but 
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also suggested the possibility of observing the (un)folding dynamics of gas phase 

biopolymers via the structural resonance in prospective ultrafast electron diffraction 

experiments. 

 In light of the general macromolecular motions encountered in Chapter 4, the 

second part of this Thesis, covered in Chapter 5, is concerned with understanding the 

protein folding process and its rate. It is found that different mechanisms dominate the 

folding at different length scales ranging from the local dynamical steps of secondary 

structure to the global tertiary structure. At all length scales, we have derived folding 

solutions based on the fundamental underlying forces. The most basic initial step of 

folding, �-helix nucleation, is rate-limited by cooperative Brownian diffusion of multiple 

degrees of freedom occurring in a few nanoseconds, and is the speed limit of protein 

structure formation. This folding time was independently obtained from a novel Langevin 

dynamics model, ensemble-convergent all-atom simulations, as well as the first 

experimental studies to isolate helix nucleation with the necessary ultrafast temporal 

resolution. The propagation (growth) of the helical nucleus to form extended �-helices was 

found, in some cases, to be rate-limited by the need to break non-native contacts such as �-

hairpins that impede helix growth, and therefore explained why measured rates were an 

order of magnitude slower than predicted by conformational diffusion. Therefore, although 

�-helix, �-strand, and tertiary structure formation are completed at different time scales, all 

three processes are nevertheless dynamically coupled; contrary to the prevailing paradigm 

of the kinetic zipping mechanism, the formation of structures consisting solely of local 

contacts can nevertheless be dominated by the interference of long-range contacts. The 

kinetic intermediate structure model provides a general way to map the relevant local and 
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long-range interactions onto a free energy landscape that describes the kinetics of such 

systems.  

 As for tertiary structure, during the course of finding the native conformation (fold), 

proteins sample a structural sub-space that is typically hundreds of orders of magnitude 

smaller than their full conformational space. At this length scale, the overwhelming fold 

degeneracy is the rate-limiting factor. Whether proteins’ ability to quickly parse this vast 

space of possible folds is due to the intrinsic physical constraints or the result of natural 

selection, and what is the largest foldable protein, were open questions. We derived the 

sequence-averaged degeneracy of a lattice polymer in which the hydrophobic residues are 

maximally clustered in the center as a result of the hydrophobic force. The exhaustive 

search time is therefore proportional to this degeneracy. From the analytical solutions, we 

identify two regimes. The first, corresponding to protein length L 
 200 amino acids, is the 

regime for which the hydrophobic force allows for an exhaustive conformational search in 

a biologically feasible time scale. This regime dictates the experimentally observed length 

and time scales of protein folding, as well as explains why larger proteins are modularly 

constructed, and accounts for the fast folding rates of most single domain proteins. The 

second regime is characteristic of L > 200, for which natural selection must be involved to 

enable sufficiently fast folding. Ensemble-convergent MD simulations of the Trp-cage 

mini-protein confirm this picture on the free energy landscape. The finding that the 

hydrophobic force is, by itself, sufficient to enable the folding of most single domain 

proteins, as well as the experimental fact that few protein domains exceed the predicted 

hydrophobic length limit of L ~ 200,  advances our understanding of the protein folding 

process at a fundamental level.  
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 The above results, which combine to form a predictive theoretical framework of 

protein folding kinetics spanning the range of relevant lengthscales for the folding of 

single-domain proteins, are summarized in Figure 6.1. Helix nucleation occurs via the 

cooperative diffusive mechanism, helix formation is hindered by misfolding, and tertiary 

structure formation is dominated by the conformational degeneracy (entropy). The theories 

presented, which model these phenomena, correctly predict the folding rates and other 

experimental observables, and are parameterized by well-defined experimentally 

determined constants with no adjustable parameters. This framework clarifies a few 

longstanding issues of protein folding such as widely varying helix folding rates, the 

quantitative resolution of the Levinthal paradox, and the separation of the role of intrinsic 

physical forces from that of fine-tuning, for example by natural selection. We find that even 

for highly heterogeneous and complex biological systems, physics exerts predictable limits 

on speed and size.  

 The line of research reported in this Thesis naturally suggests the investigation of 

new issues. These include (i) the physical properties intrinsic to �-strand formation (ii) the 

role of protein sequence in determining the folding pathways within the conformational 

subspace dictated by the hydrophobic force, whose size was found in Section 5.2, and (iii) 

the influence of solvent structure on protein folding dynamics beyond the capacity of water 

to reduce the roughness of the free energy landscape, as reported in Section 4.2.4. In 

regards to the last issue, throughout this work, both for protein folding in particular and 

macromolecular dynamics in general, the striking sensitivity of the structural dynamics and 

folding feasibility to solvation state (and temperature) indicates that the full role of water in 

biological function has yet to be elucidated, and serves as a reminder that Earth possesses 
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Fig. 6.1. A picture of protein folding kinetics.  The results of Chapter 5 are schematically summarized on the
energy landscape. The fastest event is helix nucleation, followed by helix propagation, hydrophobic collapse, and
segregation of hydrophobic residues (H) into the interior of the protein. The rate limiting step is  the final step of
folding to the native state, whose structure can be exhaustively found for an average protein sequence of length L,
in about 10L(3/e)L ns (see section 5.2).  At these different length and time scales, different issues dominate the
folding.  These  mechanisms  are  cooperative  diffusion,  misfolding,  and  conformational  degeneracy  for  helix
nucleation, helix propagation, and tertiary structure formation, respectively. 
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the relatively narrow range of conditions suited to life. Indeed, it is often by witnessing 

conditions elsewhere that we become grateful for what we have. 
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