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Abstract 
Slow light has been an inter-disciplinary topic and a rapidly growing area, especially 

over the last decade with the improvement of fabrication technology. The ability to slow 

down and control the group velocity of light may find applications such as optical buffers, 

optical delay lines, and enhanced light-matter interaction in optical modulator, amplifier, 

detectors, lasers, and nonlinear optics. The spirit of slow light is to replace a bulky device 

with a much shorter, compact structure.  

This thesis explores the design and experiment of coupled-resonator optical 

waveguides (CROWs), which consist of arrays of optical resonators in which light 

propagates through the coupling between resonators. The group velocity of light is 

dictated by the inter-resonator coupling strength. Light can be significantly slowed down 

if the inter-resonator coupling is weak. CROWs can be realized with various types of 

resonators. This thesis focuses on grating resonators in silicon waveguides, including 

grating-defect resonators and bandgap-modulated resonators. With the strong gratings, 

the grating resonators are only a few microns long. We control the inter-resonator 

coupling via the number of holes between adjacent resonators. 

The major limitations in the realization of CROWs have been various kinds of 

transmission losses, including the resonator losses, the discontinuity between CROWs 

and the coupling waveguides, and the fabrication disorder. These transmission losses 

limit the achievable group velocity and the maximum number of resonators. We address 

these transmission losses throughout this thesis. The resonator losses are overcome with 

the design and optimized fabrication of tapered grating-defect resonators and bandgap-

modulated resonators. The discontinuity between CROWs and waveguides is reduced by 
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tailoring the coupling along the CROW for adiabatic conversion. The optimization of the 

CROW response leads to the study of filter design based on CROW. Filter design 

formalism based on coupled-mode theory is presented. The effect of fabrication disorder 

on CROWs is analyzed, and the Butterworth filters are shown to be more robust against 

fabrication disorder. The fabrication and measurement of grating CROWs are presented, 

featuring high-Q (Q=105) grating resonators, coupling of up to 50 resonators, control of 

group velocity between c/13 and c/49, and Butterworth filters. 

Finally, an optical analog of electromagnetically induced transparency is presented. 

The structure consists of two co-spatial gratings imposed on a three-mode waveguide. 

One of the supermodes, the Dark mode, possesses a group velocity which depends on the 

ratio of the grating strengths. The group velocity can be nearly zero if the two grating 

strengths are nearly identical. 
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Chapter 1  

Overview 

1.1  Slow Light — Reducing the Group Velocity of Light 

The term “slow light” refers to a reduction in the group velocity of light. Group 

velocity of light is usually compared with the phase velocity, the velocity with which the 

wave fronts propagate. For a monochromatic wave  cos( )t kxω −  propagating in the x 

direction, the phase velocity is given by pv kω= . Group velocity refers to the velocity 

of the “envelope”, i.e., the amplitude of the sinusoidal wave. Considering a wave 

A( , ) cos( )x t t kxω −  with the slowly varying envelope A( , )x t , the velocity with which 

A( , )x t  propagates is called group velocity since an envelope A( , )x t  consists of a group 

of sinusoidal waves. 

The propagation of the envelope can be described in terms of interference between 

frequency components around ω , which results in a group velocity given by gv kω= ∂ ∂ . 

The group velocity is also expressed as / gc n , where gn  denotes the group index and is 

given by 

 ,g
dnn n
d

ω
ω

= +
 

(1-1) 

where n is the material refractive index or the effective index of a waveguide. For 

materials with normal dispersion ( 0dn dω > ), group velocity is smaller than phase 

velocity. In most cases, we consider the group velocity rather than the phase velocity−the 
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propagation of optical pulses, optical signals in communication systems, or even turning 

on a laser. Group velocity determines how fast signals travel and when the signals arrive 

at the destination. 

In normally dispersive ( g pv v< ) and nondissipative media, group velocity is equal to 

energy velocity, ev , which is given by the Poynting vector S divided by the energy 

density [1]. When group velocity is varied along the propagating direction, energy 

density is inversely proportional to the group velocity for conservation of energy. In other 

words, the flow of photons can be harnessed via controlling the group velocity of light. 

Fig. 1.1 shows a pulse train entering a slow-light waveguide with a group index gn  

from a conventional waveguide with a group index ,g wgn . We define a slowing factor 

,g g wgS n n≡ . The spatial pulse lengths are squeezed in the slow-light waveguide, and the 

intensity of light is enhanced, both by the slowing factor. The time it takes to pass 

through the slow-light waveguide is known as the group delay, which is given by gn L c . 

1.2  Applications of Slow Light 

One important application of slow light is for optical buffers and delay lines. In optical 

packet switch (OPS) applications, buffers are required for synchronization of incoming 

packets and for collision avoidance on outgoing lightpaths [2]. Optical delay lines are 

 
Fig. 1.1. Schematic drawing of a pulse train entering a slow-light 
waveguide 

Slow-light waveguide

L

gn,g wgn ,g wgn
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useful for phase control in interferometers [3] and phased-array laser radars [4]. Delay 

lines based on conventional waveguides are typically very long. The length can be greatly 

reduced if the group velocity of light is significantly slowed down. An important 

parameter of optical buffers is the capacity, which refers to the number of bits that can be 

stored in the buffer. The capacity is equal to the delay-bandwidth product (DBP), fτ ⋅∆

[2]. For example, although large group delay can be achieved with a high-Q resonator, 

the bandwidth is inversely proportional to the delay, and the DBP is smaller than one. 

Therefore, a single resonator is only capable of delaying one bit. 

Another application of slow light is the enhanced light-matter interaction due to the 

enhanced intensity of light. Slow light can enhance optical gain, absorption, and 

nonlinearity per unit length, which enables compact optical devices such as modulators, 

detectors, amplifiers, and lasers [5]. The enhancement of optical nonlinearity by slow 

light is especially promising. For third-order nonlinear process, the effective nonlinear 

coefficient is proportional to 2S , and the wavelength conversion efficiency is 

proportional to 4S  [6, 7]. Slow light enhanced nonlinear optics has been demonstrated in 

four-wave mixing [7-10], third harmonic generation [11], XOR logic gates [12], and 

optical demultiplexing [13]. For ultrafast all-optical signal processing, the bandwidth of 

slow-light devices is strongly desirable. 

1.3  Approaches to Achieve Slow Light 

Slow light has been an inter-disciplinary topic and can be realized with many different 

approaches. One category is based on material resonances, such as sharp absorption 

resonances of atomic vapor or nonlinear optics. Examples are electromagnetically 

induced transparency (EIT) [14], coherent population oscillations (CPO) [15], stimulated 

Brillouin scattering [16], and stimulated Raman scattering [17]. The general characteristic  
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is a narrow resonance which corresponds to strong dispersion according to Kramers-

Kronig relations which relate the real and imaginary parts of the refractive index. A peak 

in the gain spectrum or a dip in absorption spectrum leads to strong normal dispersion 

( 0dn dω  ) and thus slow light, whereas a dip in the gain spectrum or a peak in 

absorption spectrum leads to strong anomalous dispersion ( 0dn dω  ) and fast light. 

 
Fig. 1.2. Various types of slow-light structures. (a) Photonic crystal 
waveguide [11]. (b) Grating structures [18]. (c–f) coupled-resonators 
optical waveguides based on (c) photonic crystal resonators [19], (d) 
polymer ring resonators [20], (e) silicon racetrack resonators [21], and (f) 
silicon grating resonators [22] 

2 / ( )ab a bπ β βΛ = +

2 / ( )bc b cπ β βΛ = −

(f)

(b)

(c) (d)

(e)

(a)
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Slow-light media based on material resonances are usually bulky and working at low 

temperature. Group velocity as small as 17 m/s has been demonstrated [14], but the 

bandwidth is ultra-narrow. 

The other category is engineered photonic structures where light bounces back and 

forth as it propagates forward. Examples of engineered structures are photonic crystal 

waveguides, where a line defect is introduced in a two-dimensional periodic structure 

(Fig. 1.2(a)) [23, 24], grating structures based on modulation of gratings or superimposed 

dual gratings (Fig. 1.2(b)) [18, 25], and coupled-resonator structures (Fig. 1.2(c–f)) [19-

22, 26]. The general characteristic is a dispersion curve ( )kω  whose slope d dkω  is 

small over a range of frequencies. While the group velocity at the band edge of a 

dispersion curve approaches zero, the second-order dispersion 2 2d dkω  is large, which 

causes distortion of signal and limits the bandwidth. The design of engineered slow-light 

structures aims at a linear, flat band over a range of frequencies so that the higher-order 

dispersion is small. The group velocity of engineered structures is more moderate, 

typically c/100 to c/10. However, their bandwidths are much larger, and they are capable 

of delaying many bit signals. Engineered photonic structures are more compact, able to 

work in room temperature, and compatible with advanced fabrication technology. 

1.4  Coupled-Resonator Optical Waveguides (CROWs) 

A coupled-resonator optical waveguide consists of a chain of weakly-coupled optical 

resonators, as shown in Fig. 1.3 [26]. Light with a frequency near resonance can 

propagate along a CROW through the inter-resonator coupling. The properties of 

CROWs such as group velocity and bandwidth are dictated solely by the coupling 

coefficient κ and are independent of the type of resonators. CROWs can be realized in 

various types of resonators, such as photonic crystal resonators [9, 19], microring 
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resonators [7, 20, 21, 24], microdisk resonators [27], and waveguide-grating resonators 

[22, 28], as shown in Fig. 1.2(c–f).  

Since the first proposal of CROWs in 1999, numerous research works in both theory 

and experiment have been demonstrated, including CROWs based on different types of 

resonators, CROWs in different materials, CROWs with tunable delay [29], CROWs with 

tailored coupling coefficients for filter design [30-35], and nonlinear optics in CROWs 

[14-16]. The major limitation of CROWs has been the transmission losses, including: (i) 

Intrinsic loss of individual resonators which constitute the CROW. The resonator losses 

include the theoretical loss from the resonator design, fabrication imperfection such as 

surface roughness, and material loss. Resonator losses are especially critical for slow-

light delay lines, since the total loss is proportional to the group delay. Therefore, 

improving the quality factor of individual resonators is essential for CROWs. (ii) The 

discontinuity between the CROW and the input and output waveguides. The discontinuity 

between the CROW mode and the waveguide mode causes reflection and results in 

Fabry-Perot-like oscillations in the transmission spectrum so that not every frequency 

component inside the passband is able to transmit. (iii) Fabrication imperfection which 

leads to the deviation of resonant frequencies and coupling coefficients from the designed 

values. The fabrication disorder distorts the transmission spectra of CROWs. These three 

 
 

Fig. 1.3. Schematic drawing of a CROW 

κ

: optical resonator

input output

0ω
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types of transmission losses due to both design and fabrication lead to practical limitation 

on the maximum number of resonators in a CROW and the minimum group of velocity 

that can be achieved with CROWs. 

1.5  Motivation and Organization of the Thesis 

This thesis presents the theory and experiment of CROWs based on grating resonators 

in silicon waveguides. While CROWs are most commonly based on ring resonators, 

waveguide-grating resonators offer a few advantages. First, the implementation of grating 

CROWs on waveguides is natural and convenient. Grating structures are fabricated on 

waveguides to change the group velocity of light, without additional design for the 

coupling between CROWs and waveguides. Second, the footprints of grating resonators 

are small. Each resonator is only a few microns long in a waveguide due to the strong 

grating. Third, the control of inter-resonator coupling is via the number of holes and is 

accurate and convenient for designing CROWs with tailored coupling coefficients. 

However, grating-defect resonators without special design possess low quality factor 

which leads to large propagation loss [22, 36]. The design of grating-defect CROWs, 

including the reduction of propagation loss and the control of coupling coefficients, has 

not been investigated. 

We present systematic design of grating-defect CROWs in this thesis. We address the 

three sources of transmission losses discussed in Section 1.4 , by tailoring the coupling 

coefficient along the CROWs and by designing high-Q grating resonators. In Chapter 2 

and Chapter 3, we focus on the design of coupling coefficients along CROWs, for 

optimized transmission and group delay spectra. We present a formalism for deriving the 

coupling coefficients of CROWs which satisfy desired filter responses such as 

Butterworth and Bessel filters. In particular, Butterworth filters possess maximally flat 
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transmission and are shown to be more robust against fabrication disorder. In Chapter 3, 

we propose a modified design of CROWs which are based on reflecting and tailored-

coupling CROWs. This reflecting CROW possesses constant amplitude in reflection and 

constant group delay over a prescribed bandwidth and is considered as an “ideal” delay 

line which is capable of delaying optical signals without any distortion.   

In Chapter 4, we introduce grating-defect resonators in silicon waveguides. We start 

with coupled-mode equations for designing grating-defect CROWs. We discuss the loss 

mechanism of grating-defect resonators in strong gratings. To reduce the coupling to 

radiation modes, we taper the holes near the defects. With spatial Fourier analysis, we 

systematically design the taper profile and optimize the quality factor. We demonstrate in 

simulation the design of coupling coefficients for controlling the group velocity.  

The fabrication and measurement of grating-defect CROWs in silicon waveguides are 

shown in Chapter 5. We introduce the design and performance of on-chip couplers, such 

as spot-size converters and grating couplers. We show experimental results of 

Butterworth filters, CROWs with up to 50 resonators, and a group velocity of c/49. We 

show in experiment that Butterworth filter design provides more tolerance against 

fabrication disorder. 

In Chapter 6, we introduce another type of high-Q grating resonators which are based 

on spatial modulation of grating bandgap. These resonators are known to possess higher 

Q. Because the resonant frequency is near the band edge of the grating band gap, the 

coupling of resonators for CROWs requires additional coupling sections. Experiment 

results are reported. 

In Chapter 7, we present our earlier work on slow-light grating structures. This work is 

an optical analogy of electromagnetically induced transparency and is named grating 

induced transparency (GIT). It consists of two co-spatial gratings on a three-mode 
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waveguide and possesses a Dark mode whose group velocity can be controlled via the 

ratio of the two grating strengths. 

Finally, we summarize our work on slow light and CROWs in this thesis and discuss 

the future work. 

  



 10 

Chapter 2  

Tailoring the Coupling Coefficients of 
CROWs — Filter Design 

2.1  Introduction 

The first proposal and analysis of CROWs was based on infinite-length chains whose 

dispersion properties can be derived and are controlled by essentially a single parameter, 

the coupling coefficient κ [26]. In practice, an infinite-length CROW has to be terminated 

and coupled to the outside world. The resulting finite-length CROW requires a proper 

design because the reflection at the two boundaries leads to Fabry-Perot-type oscillations 

and therefore ripples in the passband of the transmission spectra, resulting in signal 

distortion. To minimize the reflection, the boundary coupling coefficients should be 

properly chosen [37]. The coupling coefficients near the boundary can also be apodized 

to adiabatically transform between the CROW mode and the waveguide modes [38, 39]. 

A further optimization of CROW delay lines consists of a judicious choice of all the 

coupling coefficients. Each resonator in a CROW can be considered as a feed-back loop 

which contributes a pole to the transfer function of the CROW. Therefore, the transfer 

function of an N-resonator CROW is an N-pole optical filter. The coupling coefficients of 

CROWs can be chosen to achieve desired properties such as maximally flat transmission 

(Butterworth filters) or maximally flat group delay (Bessel filters) over a prescribed 

bandwidth. Optical bandpass filters are important elements in optical signal processing, 
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especially for wavelength-division-multiplexed (WDM) systems [40]. High-order 

bandpass filters based on coupled ring resonators have been extensively studied and 

experimentally demonstrated [30-34]. Filters based on coupled-resonator systems can 

also be realized on grating resonators [22, 28] and photonic crystal defect resonators [19, 

35]. 

A prerequisite for the synthesis of high-order optical filters is a robust and systematic 

approach to directly relate the desired filter transfer function to the parameters of the 

CROWs. Several methods have been proposed. For ring or Fabry-Perot resonators, the 

transfer matrix method (TMM) can be applied to analyze the forward and backward 

fields inside the resonators. If the cavity lengths are nearly identical, each delay is an 

integer multiple of a unit delay, and the CROW can be considered as a digital optical 

filter and analyzed by the Z-transform formalism. [40] and [41] derived extraction 

procedures to convert digital filter responses to the field coupling coefficients between 

ring resonators. A simpler method for the analysis of CROWs is the time-domain 

coupled-mode theory (CMT), which considers the whole field as a superposition of 

individual resonator modes and is independent of the type of resonators. The derived 

coupling coefficients are more general but have to be converted to the parameters of the 

type of resonators used. In [42], coupling coefficients were extracted by direct 

comparison of the transfer function derived from CMT and the desired filter response. 

The approach becomes impractical for high-order filters. Another filter design approach 

is based on equivalent circuits and the techniques of microwave filters. Circuit-based 

methods for the synthesis of high-order filters have been proposed in [43] and [44]. 

In this Chapter, we present a filter design formalism based on CMT and the recursive 

properties of the coupling matrix. Coupling coefficients are extracted using recursive 

relations. In contrast to [42], this formalism does not need a direct comparison and is 
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robust for high-order filters. These universal coupling coefficients can then be converted 

to the parameters of the specific type of resonators comprising the CROWs. We propose 

a method for the conversion of the coupling coefficients. This method utilizes the 

resonance splitting of two coupled resonators for inter-resonator coupling and the 

transmission of 2-resonator CROWs for waveguide-resonator coupling. It is more 

accurate than the approaches proposed in [42]. Another interesting property of this 

formalism is that the time-domain coupling coefficients are proportional to the bandwidth 

of the filters. For the same kind of filters, the bandwidth can be changed easily without 

having to rederive the coupling coefficients. We will first describe the formalism for 

lossless resonators. In the presence of uniform loss or gain, a predistortion technique is 

applied. We demonstrate the designs of Butterworth and Bessel CROW filters on ring 

resonators. Filter design of CROWs based on grating defect resonators will be shown in 

Chapter 4.  

Finally, we analyze the effect of fabrication disorder on CROWs, including CROWs 

with uniform coupling coefficients and Butterworth CROWs. We discuss the disorder of 

resonant frequencies and coupling coefficients and their effects on the transmission 

spectra of CROWs. We simulate the disorder losses for these two kinds of disorder and 

discuss the maximum number of resonators and maximum group delay in the presence of 

disorder. 

2.2  Coupled-Mode Theory of CROWs 

We start with the theory of CROWs using coupled-mode theory. Fig. 2.1(a) illustrates 

a CROW with an infinite number of identical resonators. The resonant frequency of each 

resonator is 0ω , and the inter-resonator coupling coefficient is κ. For an input frequency 

ω, the mode amplitude of the k-th resonator can be written as ( ) exp[ ]ka t i tω , where ( )ka t  
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is the slowly-varying amplitude. 2( )ka t  represents the energy stored in the resonator. 

Since the resonators are coupled only to their neighbors, the coupled-mode equation of 

each resonator, assumed lossless in this section, can be written as [42, 45] 

 1 1, ,k
k k k

da i a i a i a kdt ω κ κ− += − ∆ − − ∀
 

(2-1) 

where 0ω ω ω∆ ≡ − and κ is a real number. At steady state, / 0,kda dt =  and Eq. (2-1) 

becomes a recursive formula for ak, 1 1 0.k k ka a aκ ω κ+ −+ ∆ + =  The general solution of this 

recursive formula is 1 ,k ka aγ+ =  where γ  is the solution of 2 ( ) 0.κγ ω γ κ+ ∆ + =  For a 

propagating mode (CROW mode), exp[ ],iKγ = − Λ  where K is a wave number and Λ is 

the distance between adjacent resonators. A CROW mode can be found if 2 ,ω κ∆ <  

where 

 21 ( ) .2 2
iKi eω ωγ κ κ

− Λ∆ ∆= − ± − =
 

(2-2) 

The dispersion curve of the CROW is given by 

 2 cos( ),Kω κ∆ = − Λ
 

(2-3) 

 
Fig. 2.1. (a) Schematic drawing, (b) dispersion curve, and (c) group 
velocity versus frequency of an infinite-length CROW 
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as plotted in Fig. 2.1(b). The width of the CROW band is 4κ , and the group velocity of 

the CROW mode is 

 
2

2 sin( ) 2 1 ,
2gv K ωκ κ
κ

∆ = Λ Λ = Λ −  
   

(2-4) 

which approaches zero towards the band edges (plotted in Fig. 2.1(c)). Frequencies 

outside the CROW band are forbidden since K is complex and 1.γ ≠  

2.3  Finite-Length CROWs 

In practice, an infinite-length CROW has to be terminated and coupled to the outside 

world. Shown in Fig. 2.2(a), the first and last resonators of a CROW are coupled to the 

input and output waveguides. The coupling to the waveguides can be modeled as external 

losses, 1/ eτ , of the end resonators. When a CROW mode propagates to the boundary, the 

discontinuity between the CROW and the waveguide causes reflection, leading to Fabry-

Perot-type oscillations. The reflection can be minimized by choosing 1/ eτ  properly. Fig. 

 
Fig. 2.2. (a) Schematic drawing of a finite-length CROW. (b)  Comparison 
of a finite-length and an infinite-length CROW at the boundary. (e) 
Transmission spectra of 10-resonator CROWs with 1/ eτ κ=  and 
1/ 0.1eτ κ= , respectively 
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2.2(b) illustrates the difference between a finite-length and an infinite-length CROW at 

the boundary. In the case of a finite CROW, the N-th resonator is coupled to the output 

waveguide, while in the case of an infinite CROW, it is coupled to the next resonator. 

The differential equations for these two cases are respectively 

 1
1N

N N N
e

da i a i a adt ω κ τ−= − ∆ − −
 

(2-5a) 

and 

 1 1.N
N N N

da i a i a i adt ω κ κ− += − ∆ − −
 

(2-5b) 

To match the boundary, the right-hand sides of Eqs. (2-5a) and (2-5b) should be equal 

so that the N-th resonator cannot tell the termination of the CROW. Since 1N Na aγ+ =  for 

a CROW mode, the equality of Eqs. (2-5a) and (2-5b) requires 

 
1 .

e
iκγτ =

 
(2-6) 

For CROW modes, 1γ = . Eq. (2-6) requires 1/ eτ κ=  and iγ = − , which corresponds to 

the center of the CROW band ( 0ω∆ = ). Fig. 2.2(c) shows the transmission spectra of 10-

resonator CROWs with 1/ eτ κ=  and 1/ 0.1eτ κ= , respectively. In the case of 1/ eτ κ= , 

the spectrum is flat at the band center. The ripple amplitudes increase at frequencies close 

to the band edge since the boundary is only matched for 0ω∆ = . For 1/ 0.1eτ κ= , the 

ripples are large over the whole bandwidth. Therefore, the optimal boundary condition 

1/ eτ κ=  leads to maximally-flat transmission spectrum for finite-size CROWs with 

uniform coupling coefficients. To further reduce the Fabry-Perot oscillations over the 

whole CROW band, one can taper the coupling coefficients to adiabatically transform 

between the CROW mode and the waveguide modes [38, 39]. The spectra of 

transmission and group delay can be further improved by choosing all the coupling 

coefficients so that the transfer function of the CROW is equal to the transfer function of 

a desired filter, which will be described in the next section. 
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2.4  Synthesis of Bandpass Filters Based on CROWs 

Consider a CROW which consists of N identical resonators and is coupled to input and 

output waveguides (Fig. 2.3). All the N+1 coupling coefficients are allowed to take on 

different values. The coupled-mode equations obeyed by the complex amplitudes of the 

N resonators are 

 

1
1 1 2 1

1

2
2 1 1 2 3

1
1 2 2 1

1 1
2

1( )

                             

1( )

in
e

N
N N N N N

N
N N N

e

da i a i a i sdt
da i a i a i adt

da i a i a i adt
da i a i adt

ω κ µτ

ω κ κ

ω κ κ

ω κτ

−
− − − −

− −

= − ∆ − − −

= − ∆ − −

= − ∆ − −

= − ∆ − −


 

(2-7) 

The right-hand side of each equation consists of a detuning term ( ki aω− ∆  for each k) and 

two coupling terms to the neighboring resonators, except for the first and last resonators 

which have only one neighbor. 11/ eτ  and 21/ eτ  are external losses of the first and last 

resonators due to coupling into the waveguides. The input mode with power 
2

ins  is 

coupled into the first resonator via a coupling coefficient 1µ . It can be shown from 

conservation of energy and time reversal symmetry that 1 12 eµ τ=  [42, 46]. At steady 

state, the left-hand sides of Eq. (2-7) are all 0. By replacing i ω∆  with the Laplace 

variable s, Eq. (2-7) can be rewritten as 

 
 

Fig. 2.3. Schematic drawing of a CROW filter 

2

1
eτ

1κ 
ins outs

1

1
eτ

2κ 2Nκ − 1Nκ −rs

1a 2a 3a Na



 17 

 

1
1 11

1 2 2

2

1

1
2

1 0 0 0

0 0 0
0

A .

1 0

ine

N

N
N

e

s i a i s
i s i a

i s

s i
ai s

κ µτ
κ κ

κ

κ

κ τ

−

−

 +  −   
     
     
     ⋅ ⋅ ⋅ ⋅ ⋅

≡ =     ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅     
     ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
     
     ⋅ ⋅ ⋅ ⋅ +  





a
 

(2-8) 

The N N×  coupling matrix A is a tridiagonal matrix. The vector a which contains all the 

mode amplitudes can be solved by inverting A. The transmitted and reflected amplitude, 

outs  and ,rs  are given, respectively, by 

 
1

2 1 2 ,1
Aout N inN

s i a sµ µ µ − = − = −    
(2-9a) 

and 

 
2 1

1 1 1 1,1
(1 A ) ,r in ins s i a sµ µ − = − = −    

(2-9b) 

where 2 22 eµ τ= . The amplitude transmission, which is defined as /out inT s s≡ , can 

be shown as 

 
1

1 2 1 2 1( )( ) ,det(A)

N
NiT s µ µ κ κ κ−

−−= − 

 
(2-10) 

where det(A) is the determinant of A and is a polynomial in s with a leading term sN. 

Therefore, ( )T s is an all-pole function with N poles. 

2.4.1  N-th-Order All-Pole Bandpass Filters 

The transfer function of an all-pole low-pass filter with N poles can be written as 

 1
1 1 0

( ) ,N N
N

kT s
s b s b s b−

−

=
+ + + +  

(2-11) 

where 1 0, , ,Nk b b−   are constants. Typical examples of all-pole filters are Butterworth, 

Chebyshev, and Bessel filters. We substitute s with 0( ) /i Bω ω− , where B is a bandwidth 

parameter, ( )T s  then describes a bandpass filter which is centered at 0ω  and of 
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bandwidth scaled by B. Fig. 2.4 shows the transmission and group delay spectra of a 

Butterworth filter and a Bessel filter which feature maximally flat transmission and 

maximally flat group delay, respectively.  

Since the amplitude transmission of an N-resonator CROW (Eq. (2-10)) and the 

transfer function of an N-th-order all-pole low-pass filter (Eq. (2-11)) are both all-pole 

functions with N poles, we present in what follows a formalism for designing the 

coupling coefficients of CROWs so that the amplitude transmission of the CROW is 

equal to the desired ( )T s . 

2.4.2  Extraction of Coupling Coefficients for a Desired Filter 

Response 

The tridiagonal matrix A in Eq. (2-8) has the following recursive properties of the 

polynomials 1p  through Np : 

 
Fig. 2.4. Spectra of transmission and group delay of (a) a tenth-order 
Butterworth filter and (b) a tenth-order Bessel filter 
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
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(2-12) 

where kp  is the determinant of the bottom-right k k×  submatrix of A (a principal minor 

of A). For example, Np  is the determinant of A, and 1 ,= A N Np . Each kp  is a polynomial 

in s with a leading term ks . Once we know both Np  and 1Np − , all the coupling 

coefficients 1 1 2 1 2(1 , , , , ,1 )e N eτ κ κ κ τ−  can be extracted step by step, using Eq. (2-12). 

For example, when dividing Np  by 1Np − , the quotient is 11 es τ+ , and the remainder is 

2
1 2Npκ − . Then we can continue to divide 1Np −  by 2Np − . 

Np  and 1Np −  can be obtained from the transmission and reflection of the CROW. The 

amplitude transmission /out inT s s≡  and reflection /r inR s s≡  can be shown from Eqs. 

(2-9a) and (2-9b) as 

 ( )
N

kT s p=
 

(2-13a) 

and 

 
2

1 1( ) ,N N

N

p pR s p
µ −−=

 
(2-13b) 

where k is a constant. Given a desired ( )T s , Np  is already known. To find 1Np − , ( )R s  is 

also required and can be related to ( )T s  using conservation of energy, 
2 2( ) ( ) 1T i R iω ω+ = , for a lossless system. We perform power spectral factorization to 

obtain ( )R s  from 2( )R iω , which can result in at most 2N  choices of the numerator of 

( )R s , each of which will correspond to different coupling coefficients. In what follows 

we describe the determination of ( )R s . 
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2.4.3  Power Spectral Factorization for Determining R(s) 

The following formalism for determining the transfer function ( )R s  is similar to the z-

domain digital filter design described in [40, 41]. 

Assuming the CROW is lossless, ( )T s  and ( )R s  are related by 2 2( ) ( ) 1T i R iω ω+ = . 

For an all-pole filter of order N, ( )T s  can be written as  

 
1 2

( ) ,( )( ) ( )N

kT s s q s q s q=
− − −  

(2-14) 

where 1q  through Nq  are the poles and k is a constant. All the filter responses ( )T s  we 

consider in this thesis are real functions, so the poles come in complex conjugate pairs. 

Therefore, 
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2 2 2 2 2 2
1 2

( )
( )( ) ( )N

kT i
q q q

ω
ω ω ω

=
+ + +  

(2-15) 

and 

 
2 2 2 2 2 2 2

2 2 1 2
2 2 2 2 2 2

1 2

( )( ) ( )
( ) 1 ( ) .

( )( ) ( )
N

N

q q q k
R i T i

q q q
ω ω ω

ω ω
ω ω ω
+ + + −

= − =
+ + +



  
(2-16) 

The denominators of ( )T s  and ( )R s  are the same, as can be seen in Eqs. (2-13a) and 

(2-13b). We assume that the numerator of ( )R s  is 1 2( ) ( )( ) ( )Np s s z s z s z= − − − , where  

1z  through Nz  are the zeros of ( )R s . The goal is to find these zeros so that 2( )p iω =

2 2 2 2 2 2 2
1 2( )( ) ( )Nq q q kω ω ω+ + + − . This step is called power spectral factorization. 

Each zero iz  is selected from a pair *( , )z z− , where z is a complex number, so there are at 

most 2N combinations of zeros. In general, ( )p s , and thus 1Np − , are not real. For a filter 

with a complex 1Np − , the resonant frequencies of the resonators have to be different, and 

Eq. (2-8) is modified as 
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(2-17) 

where 0i iδ ω ω≡ −  is the frequency detuning of each resonator from 0ω . Eq. (2-12) is 

also modified by replacing s with is iδ− , so iδ  can be extracted during the extracting 

process. 

The zeros of ( )R s  can be chosen so that 1Np −  is real. Fig. 2.5 shows three different 

choices of zeros for an N=7 Bessel filter. The corresponding coupling coefficients κ and 

 
Fig. 2.5. Choices of zeros for R(s). (a) Minimum phase. (b) 1st and 3rd 
quadrants. (c) Nearly uniform distribution. 

Choice of zeros 1 1 2 1 2 1 2(1 , , , , ,1 ) / ,  ( , , , ) /e N e NB Bκ τ κ κ κ τ δ δ δ δ−= =   

Minimum phase κ  = (0.241, 0.345,  0.557, 0.699, 0.899, 1.320, 2.876, 4.937) 
δ  = (0, 0, 0, 0, 0, 0, 0) 

1st and 3rd quadrants κ  = (2.589, 1.460, 0.619, 0.486, 0.486, 0.619, 1.460, 2.589) 
δ  = (0.495, 0.514, 0.461, 0.000, −0.461, −0.514, −0.495) 

Nearly uniform 
distribution 

κ  = (1.898, 1.174, 0.390, 0.357, 0.684, 0.932, 1.926, 3.280) 
δ  = (0, 0, 0, 0, 0, 0, 0) 

Table 2.1. Coupling coefficients of N=7 Bessel CROW filters with 
different choices of zeros 
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frequency detuning δ  are listed in Table 2.1. The first one is often referred to as 

“minimum phase”, where all zeros are located inside the left-half s-plane (Fig. 2.5(a)). It 

corresponds to zero frequency detuning and monotonically increasing κ. In the second 

one, the zeros are all located at the first and third quadrants (Fig. 2.5(b)). The resulting 

values of κ are symmetric, but the frequency detuning is nonzero since 1Np −  is complex. 

In our CROW filter design, we prefer a nearly symmetric κ without frequency detuning. 

Consequently, we choose the zeros that are the most uniformly distributed around the 

origin and are complex conjugate pairs, as shown in Fig. 2.5(c). Although the three 

CROW filters in Table 2.1 are very different, they correspond to the same ( )T s  and 
2( )R iω , except that the phase of ( )R s  is different. 

2.4.4  Coupling Coefficients of Butterworth and Bessel CROWs 

Here we use an N=4 Butterworth filter to demonstrate the extraction of coupling 

coefficients. The transfer function ( )T s = 4 3 21/ ( 2.613 3.414 2.613 1)s s s s+ + + + . The 

steps are listed in Table 2.2. For Butterworth filters, the power spectral factorization for 

solving ( )R s  is unique and simple. The numerator of ( )R s  is Ns . Table 2.3 lists the 

extracted coupling coefficients for Butterworth and Bessel filters of N = 6 and 10. Note 

that the extracted coefficients are normalized by the bandwidth parameter B, which can 

be selected to control the bandwidth of the CROW filter. 

 The coupling coefficients of Butterworth CROWs are symmetric. At the center of the 

CROW, the coupling coefficient is about 0.5, which corresponds to a CROW band from 

1ω∆ = −  to 1. The coupling coefficients gradually increase toward the two ends of the 

CROW. This adiabatic transition of the coupling coefficients reduces the reflection at the 

boundary, and Butterworth CROWs are one of the optimal designs which remove the 

oscillations in the transmission spectra. Bessel CROWs, which possess maximally flat 
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delay, do not have symmetric coupling coefficients. With the proper choice of the zeros 

of ( )R s  in nearly symmetric distribution, the coefficients are nearly symmetric. 

Fig. 2.6 shows the transmission spectra of Butterworth CROWs with N = 6, 10 and 20, 

respectively. As the order increases, the transmission spectra become flatter in the 

passband and the roll-off at the band edges is steeper.  

4 3 2
4

82 2
8 8

24
4 1 3

4 3 2
4

3 2
3

2
4 3 2 1

1

3

1 1( )
2.613 3.414 2.613 1

1 ( ) ( )
1 1

( )
2.613 3.414 2.613 1

1.307 0.383
1Divide  by 1.307 0.707,  1.307,  0.841

Divide  b
e

T s ps s s s

T i R i

p psR s ps s s s
p s s s

p p p s s

p

ωω ω
ω ω

µ

κτ

= =
+ + + +

⇒ = ⇒ =
+ +

−⇒ = =
+ + + +

⇒ = + + +

⇒ = + + = =

2 1 2

2 1 3
2

y 1.307,  0.541.  
1Divide  by 0.841,  1.307
e

p p s

p p

κ

κ τ

⇒ = + =

⇒ = =

 

Table 2.2. Extraction of coupling coefficients for an N=4 Butterworth 
filter. 

 

 

 

 

 

 

 

 
 

 

Table 2.3. Extracted coupling coefficients of Butterworth and Bessel 
CROW filters 

Filter type 1 1 2 1 2(1 , , , , ,1 ) /e N e Bτ κ κ κ τ−  
N=6 Butterworth (1.932, 1.169, 0.605, 0.518, 0.605, 1.169, 1.932) 

N=10 Butterworth (3.196, 1.876, 0.883, 0.630, 0.533, 0.506, 0.533, 0.630, 0.883, 
1.876, 3.196) 

N=6 Bessel (2.068, 1.198, 0.393, 0.397, 0.803, 1.486, 2.427) 

N=10 Bessel (3.478, 2.030, 0.932, 0.613, 0.305, 0.333, 0.652, 0.772, 1.056, 
2.209, 3.745) 
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2.5  CROWs in the Presence of Loss or Gain 

The filter design formalism described above assumes that the resonators are lossless. 

In practice, there are loss mechanisms, including intrinsic radiation loss of the resonator 

design, absorption loss of the material, and scattering loss due to imperfection of the 

fabrication. The modal loss can be modeled with a loss rate of the resonators, 1 ,iτ which 

is related to the quality factor Q of the resonators by 2iQ ωτ= . The differential equation 

of the k-th resonator, Eq. (2-7), is rewritten as 

 1 1 1
1( ) .k

k k k k k
i

da i a i a i adt ω κ κτ − − += − ∆ − − −
 

(2-18) 

If the loss rates of all the resonators are identical, the coupling matrix in Eq. (2-8) is 

modified by replacing s with 1 is τ+ . Therefore, for an all-pole filter response ( )T s  

designed for lossless resonators, the transmission in the presence of loss is given by 

'( ) ( 1 )iT s T s τ= + , whose poles are shifted to the left by 1 iτ .  

 
Fig. 2.6. Transmission spectra of Butterworth CROWs with 6, 10, and 20 
resonators 
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To obtain the desired filter response in the presence of loss, we can shift the poles to 

the right by 1 iτ  in the design to pre-compensate for the left shift due to the loss. This 

technique is called predistortion of the filters [47]. First, the poles of the desired function 

( )T s  in Eq. (2-11) are shifted to the right by 1 iτ . The constant in the numerator has to 

be decreased so that the magnitude of the new transfer function 0 ( )T s  is always smaller 

than or equal to 1. As a result, 0 ( ) ( 1 )iT s T sα τ= − , where α  is a constant and is smaller 

than 1. In the presence of a resonator loss 1 iτ , the transfer function is 

0'( ) ( 1 ) ( )iT s T s T sτ α= + = , which is recovered to the same desired response except for 

an attenuation factor α . 

Table 2.4. Coupling coefficients of predistorted N=10 Butterworth 
CROWs. 
Resonator 
loss/gain 1 1 2 1 2(1 , , , , ,1 ) /e N e Bτ κ κ κ τ−  

1 0.05i Bτ =  (2.597, 1.575, 0.787, 0.637, 0.412, 0.674, 0.467, 0.588, 
0.873, 1.912, 3.296) 

1 0.05i Bτ = −  (3.403, 1.988, 0.921, 0.635, 0.452, 0.474, 0.605, 0.679, 
0.955, 2.044, 3.490) 

 

 
Fig. 2.7. Transmission spectra of predistorted N=10 Butterworth CROWs 
with and without loss/gain for (a) 1 0.05i Bτ = (loss) and (b) 1 0.05i Bτ = −
(gain) 
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If the CROW is pumped with a uniform gain, the amplifying CROW can be modeled 

with a negative 1 iτ . The factor α  is greater than 1 and is an amplification factor. Table 

2.4 lists the predistorted design for N=10 Butterworth CROWs with 1 0.05i Bτ =  (lossy) 

and 0.05B− (amplifying), respectively. Their transmission spectra with and without 

loss/gain are plotted in Fig. 2.7(a) and Fig. 2.7(b), respectively. Since the group delay is 

greater at the band edge, frequencies near the band edge experience larger loss and gain. 

Consequently, the amplitude response is predistorted accordingly before the loss or gain. 

For Bessel filters, since the group delay is almost constant over the bandwidth, the 

characteristics of the filters remain the same in the presence of small gain or loss. 

2.6  CROW Filters Based on Ring Resonators 

A microring CROW consists of a chain of coupled ring resonators (Fig. 2.8(a)). Light 

is coupled in and out of the CROW via the input and output waveguides. Assuming the 

coupling region is sufficiently long compared to the wavelength, only light circulating in 

one direction in the ring is phase-matched to the input and is excited. The coupling 

between two adjacent rings can be analyzed, using the notation in Fig. 2.8(b), by 

 
1 1

2 2

,
c t i b
c i t b

η
η

     
=     

       
(2-19) 

 
Fig. 2.8. Schematic drawings of (a) a microring CROW filter and (b) the 
coupling of two adjacent rings 
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where η  and t are the dimensionless coupling and transmission coefficients over the 

coupling region, respectively. Assuming the coupling is lossless, 2 2 1tη + = . The 

transmission and reflection of microring CROWs can be analyzed using transfer matrix 

formalism [48]. 

The field coupling coefficient η at the coupling region is related to the time-domain 

coupling coefficient κ between two rings. In [42], these relations were derived: 

FSRfη κ= for inter-resonator coupling and , 2 ( )in out e FSRfη τ=  for waveguide-resonator 

coupling, where 2FSR gf v Rπ=  is the free spectral range of the ring resonators. However, 

these formulas are only valid when the coupling is sufficiently weak, because the field 

inside the ring is not uniform when η is not much smaller than one [33]. In what follows, 

we describe a method which is valid for any reasonable coupling. 

Inter-resonator coupling: Consider two identical resonators coupled to each other with 

a coupling coefficient κ (Fig. 2.9(a)). The resonant frequencies of the two eigenmodes are 

0 .ω κ±  Fig. 2.9(b) illustrates the corresponding case for ring resonators. The field 

coupling coefficient is η. The fields 1,2b  and 1,2c  are related by the coupling (Eq. (2-19)), 

and propagation along the rings leads to 

 
1 1( )

2 2

,ib c
e

b c
θ ω∆   

=   
     

(2-20) 

where ( )θ ω∆  is the round-trip phase of the rings at 0ω ω ω= + ∆  and is equal to 

/ FSRfω−∆ . Combining Eqs. (2-19) and (2-20), exp[ ( )]iθ ω− ∆  is equal to the eigenvalue 

of the coupling matrix in Eq. (2-19), which leads to 1( ) sinθ ω η−∆ = ± . Therefore, the 

frequency splitting, which is equal to the coupling coefficient κ, is 1sin ( )FSRfω η−∆ = ± .  

As a result, 

 sin( ).
FSRf
κη =

 
(2-21) 
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Waveguide-resonator coupling: In Fig. 2.9(c), the two resonators in Fig. 2.9(a) are 

both coupled to an output waveguide with an external loss, 1 eτ . Solving the steady-state 

solution of the coupled-mode equations of the two resonators at 0ω ω=  leads to 

amplitude transmission out ins s  given by 2 2(2 ) / (1 )e eκ τ τ κ+ , which is equal to one 

only when the boundary condition 1 eτ κ=  is satisfied. We can use this structure to 

derive the relation between 1 eτ  and the field coupling coefficient of ring resonators. Fig. 

2.9(d) illustrates the corresponding structure for ring resonators. The condition that the 

transmission is unity at 0ω ω=  can be derived as 

 
2 .1i
ηη η=

+  
(2-22) 

For a given 1 eτ , we first use Eq. (2-21) to find an inter-resonator coupling η which 

corresponds to a coupling coefficient 1 eκ τ= , and then use Eq. (2-22) to obtain iη . 

 
Fig. 2.9. Schematic drawings of the structures for the derivation of (a) 
inter-resonator coupling and (c) waveguide-resonator coupling. (b,d) The 
corresponding structures for microring resonators 
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With Eqs. (2-21) and (2-22), we are ready to convert the coupling coefficients κ in 

Table 2.3 to the microring couplings η. The only constraint is that κ does not exceed 

( 2) FSRfπ , or 4FSRω , which is the maximal coupling which ring resonators with a free 

spectral range FSRf  can achieve (see Eq. (2-21). We consider examples of silicon 

microring CROWs. The mode index and group index of the silicon waveguides are 2.4 

and 4, respectively. The ring radius is 30 µm so that one resonant wavelength is at 1570.8 

nm, and the free spectral range FSRf  is 398 GHz. The bandwidth of the filters can be 

chosen by setting the bandwidth parameter B. For example, the bandwidth of Butterworth 

filters is 2B (Fig. 2.4(a)). If we choose 0.005FSRB ω= ⋅ , where 2FSR FSRfω π= , the 

bandwidth is 2 398 GHz 0.005⋅ ⋅ 3.98 GHz= . The converted η for Butterworth and Bessel 

filters with 0.005FSRB ω= ⋅  and 0.05FSRB ω= ⋅  are listed in Table 2.5. 

 The transmission spectra of the microring CROWs in Table 2.5 were calculated using  

the transfer matrix formalism and were compared with the original transmission spectra 

calculated from the κ in Table 2.3, calculated using CMT. Fig. 2.10(a) shows the 

transmission spectra of Butterworth filters with 0.005FSRB ω= ⋅ . Since η are sufficiently 

weak (the largest η is 0.338), the two spectra are nearly identical. Fig. 2.10(b) shows the 

spectra for 0.05FSRB ω= ⋅ , corresponding to stronger coupling. Although there are small 

passband ripples whose amplitude is about 0.0002, the spectrum closely agrees with the  

Table 2.5.  Coupling coefficients of microring CROW filters 
Filter type Bandwidth 1 2 5( , , , , , )in outη η η η η  

N=6 Butterworth 
0.005FSRB ω= ⋅  (0.338, 0.0367, 0.0190, 0.0163, 0.0190, 

0.0367, 0.338)  

0.05FSRB ω= ⋅  (0.852, 0.359, 0.189, 0.162, 0.189, 0.359, 
0.852) 

N=6 Bessel 
0.005FSRB ω= ⋅  (0.349, 0.0376, 0.0123, 0.0125, 0.0252, 

0.0467, 0.376) 

0.05FSRB ω= ⋅   (0.868, 0.368, 0.123, 0.124, 0.250, 
0.450, 0.904) 
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Fig. 2.10. (a–b) Transmission spectra and their close-ups of microring 
Butterworth CROWs with (a) 0.005FSRB ω= ⋅  and (b) 0.05FSRB ω= ⋅ . (c) 
Transmission and group delay of an N=6 Bessel microring CROW. (d) 
Transmission spectra of Butterworth microring CROWs with 6 and 20 
resonators respectively 
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desired response. Therefore, the conversion is valid with η  as high as  0.852, whereas the 

same κ would be converted to η = 1.102 using the formula proposed in [42]. Note that for 

a bigger bandwidth or higher filter order, κ at the boundary will increase and eventually 

exceed the upper limit of κ, ( 2) FSRfπ . Therefore, resonators with large FSRf  are 

beneficial. However, for ring resonators with small radii, say less than 5 µm, the 

assumption of the transfer matrix formalism that the coupling region is sufficiently long 

compared to the wavelength is no long valid, and the coupling of modes will be 

complicated since modes in the opposite direction will also be excited. In Fig. 2.10(c), we 

show the spectra of transmission and group delay for an N=6 Bessel CROW with 

0.05FSRB ω= ⋅ . Fig. 2.10(d) shows the transmission spectra of Butterworth CROWs with 

6 and 20 rings. 

2.7  Effect of Disorder on CROWs and CROW Filters 

The major limitation in the experiment of CROWs has been the unavoidable 

fabrication imperfection which leads to disorder in the resonant frequencies of individual 

resonators and the coupling coefficients. The disorder distorts the CROW response, and 

the yield of CROWs drops as the number of resonators is increased or as the CROW 

bandwidth is decreased. The effect of disorder on CROWs has been investigated in the 

literature [49, 50]. 

In this section we analyze the disorder effect on CROWs. We add random variables to 

the resonant frequencies and coupling coefficients in the coupled-mode equations (Eq. 

(2-8)). The deviation of resonant frequencies is modeled as Gaussian-distributed random 

variables with a standard deviation δω . δω  is the same for all resonators constituting the 

CROW and does not depend on the coupling coefficients we choose. On the other hand, 

the standard deviation of coupling coefficients, δκ , is assumed to be proportional to κ ,  
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since for the case of evanescent coupling in both ring resonators and grating resonators, 

κ  is an exponential function of the physical dimension (the gap between adjacent rings, 

the number of holes between adjacent defects). Therefore, we analyze the disorder effect 

as a function of δκ κ . Since both the coupling coefficients and the frequency detuning 

are normalized with the bandwidth parameter B in Eq. (2-8), the disorder effect depends 

on / Bδω  and / Bδκ . Therefore, the effect of disorder in resonant frequencies is 

bandwidth-dependent. The larger B we choose, the smaller the disorder effect is. On the 

other hand, the effect of disorder in coupling coefficients does not depend on B, since δκ  

 
Fig. 2.11. Simulated transmission spectra of 10-resonator CROWs with 
disorder in resonant frequencies. (a,b) Uniform coupling coefficients. (c,d) 
Butterworth filters. (a,c)   0.4Bδω = . (b,d)   0.2Bδω =  

(a) (b)

(c) (d)
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is proportional to κ  and thus proportion to B. 

Fig. 2.11(a) and Fig. 2.11(b) show the simulated transmission spectra of N=10 

CROWs with uniform coupling coefficient and with δω equal to 0.4B and 0.2B, 

respectively. The disorder leads to oscillations in the passband. Fig. 2.11(c) and Fig. 

2.11(d) show the transmission spectra of N=10 Butterworth CROWs. The oscillation 

amplitudes of Butterworth CROWs are smaller than those of uniform CROWs. Therefore, 

we found that Butterworth CROWs exhibit better tolerance against disorder in resonant 

frequencies. Disorder in a CROW is a perturbation to an ideal CROW and can be taken 

as scatterers in a waveguide. For CROWs with uniform coupling coefficient, the 

boundaries between the CROW and the waveguides cause reflection and form a cavity. 

Disorder in uniform CROWs can be thought of as scatterers in a cavity which can cause 

multiple cavities and thus larger oscillations. For a Butterworth CROW, the coupling 

coefficients are tailored to adiabatically transform between the CROW and the 

waveguides, thereby removing the cavity and reducing the amplitude of oscillations.  

To quantify the disorder loss, we take the average of the transmission over the center 

half of the CROW band. Fig. 2.12(a) shows the disorder loss as a function of / Bδω  for 

N=10 CROWs with uniform coupling coefficients and Butterworth filter design, 

respectively. The disorder loss of Butterworth CROWs is approximately 60% of the 

disorder loss of uniform CROWs. Fig. 2.12(b) shows the disorder loss for disorder in 

coupling coefficients, where the disorder loss of Butterworth CROWs does not differ 

from the disorder loss of uniform CROWs. The reason is that the coupling coefficients at 

the end of Butterworth CROWs are large, leading to larger δκ . Therefore, Butterworth 

filters are more robust only in the case of disorder in resonant frequencies. 

Fig. 2.12(c) shows the disorder losses as functions of N for CROWs with / 0.2Bδω =  

and 0.2δκ κ = , respectively, and for the two kinds of CROWs. As the number of 
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resonator increases, the increase of losses is approximately linear. As we couple more 

resonators, the disorder loss increases and the yield of CROWs drops. At some N, the loss 

becomes too large that the CROWs are no longer useful. Therefore, we define the 

maximum number of resonators, maxN , as the maximum N with disorder loss smaller than 

5 dB. With maxN , we can determine the maximum achievable group delay, which is 

proportional to maxN B . Fig. 2.12(d) shows the maximum delay versus the bandwidth of 

the CROWs. For disorder in resonant frequency δω , maxN  increases with the bandwdidth, 

and the resulting maximum delay increases with the bandwidth. On the other hand, the 

effect of disorder in coupling coefficients is bandwidth-independent, so maxN  is constant 

and the maximum delay is inversely proportional to the bandwidth. The curves for the 

two kinds of disorder are shown respectively, and the green curve shows the maximum 

group delay in the presence of both disorders. The achievable delay is maximum when 

the two disorder effects are equally strong and is flat over a wide range of bandwidth. In 

conclusion, in the presence of disorder, the achievable delay of CROWs has an upper 

limit, no matter how we choose the bandwidth. 

2.8  Summary 

In this Chapter, we demonstrated a formalism for deriving the coupling coefficients of 

CROWs to achieve desired filter responses such as maximally flat transmission 

(Butterworth filters) and maximally flat group delay (Bessel filters). The formalism is 

based on CMT and the recursive relations of the coupling matrix to extract the coupling 

coefficients. Compared to TMM, the design using CMT is simpler since the field in each 

resonator is represented by only one variable. The universal coupling coefficients can be 

applied to any type of resonators or even the coupling of different types of resonators. 

The bandwidth of the filters can be changed easily by selecting the bandwidth parameter 
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B. Furthermore, predistortion techniques can be applied for the design of lossy or 

amplifying CROW filters. 

The disadvantage of CMT is that it assumes weak coupling between the resonators and 

that the field distribution in each resonator remains unchanged. It is less accurate than 

TMM, which directly analyzes the fields inside the resonators. The time-domain coupling 

coefficients of CMT have to be converted to the parameters of the type of resonators 

comprising the CROWs. We have demonstrated the conversion to the field coupling 

 
Fig. 2.12. Disorder loss of N=10 uniform CROWs and N=10 Butterworth 
CROWs for disorder in (a) resonant frequencies and (b) coupling 
coefficients. (c) Disorder loss versus N for uniform CROWs and 
Butterworth CROWs and for disorder in resonant frequencies and 
coupling coefficients, respectively. (d) Maximum achievable delay versus 
the bandwidth of CROWs 
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coefficients for microring resonators and the lengths of grating sections for grating defect 

resonators. The formulas for the conversion are valid for any reasonable coupling. 

In the disorder analysis we simulated the disorder loss and showed it as a function of 

deviation in the resonant frequency, deviation in the coupling coefficient, and the number 

of resonators. We showed that Butterworth CROWs are more robust against disorder in 

resonant frequencies compared to CROWs with uniform coupling coefficients. For a 

given type of resonators and a given fabrication technology, an estimate of δω  and δκ κ  

will be useful in determining the practical bandwidth, number of resonators, and the 

achievable delay. 
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Chapter 3  

“Ideal” Optical Delay Lines  

3.1  Introduction 

An “ideal” optical delay line is capable of delaying an optical signal without any 

distortion. It should possess constant transmission and constant group delay over a 

prescribed bandwidth. The original proposal of CROWs [26] was based on uniform 

coupling coefficient κ which leads to a dispersion curve and a group velocity dictated by 

the coupling coefficient. If the coupling coefficients are allowed to vary along the CROW, 

the dispersive properties can be further optimized. In Chapter 2, we described a filter 

design formalism for deriving the coupling coefficients which satisfy a desired filter 

response. The formalism results the design of Butterworth and Bessel CROWs which 

exhibit maximally-flat transmission and group delay respectively. However, constant 

amplitude and group delay cannot be achieved by any one of these filters simultaneously, 

since the amplitude and the phase of all-pole functions are related to each other. 

Therefore, designing a CROW which satisfies the criterion of an “ideal” delay line is 

the ultimate goal of the CROW theory. In this chapter, we present an ideal delay line 

based on the reflection of a CROW, whose coupling coefficients are tailored to realize an 

all-pass Bessel filter. The design of all-pass Bessel filters has been explored using 

microwave equivalent circuit methods [43]. In what follows, we utilize the formalism in 

Chapter 2 to design the reflection CROWs and interpret the physics behind the idea. 
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3.2  All-Pass Filters Based on the Reflection of CROWs 

As shown in Chapter 2, the transfer function of an N-resonator transmitting CROW is 

an all-pole function ( ) ( )T s k p s= , where ( )p s  is an N-th-order polynomial . An all-pass 

function [ ]*( ) ( )p s p s  possesses a constant amplitude of one and a phase which is twice 

the phase of ( )T s . As a result, an all-pass Bessel filter whose p(s) is a Bessel polynomial 

possesses constant amplitude and maximally flat group delay over a prescribed 

bandwidth, as shown in Fig. 3.1. The higher-order dispersion is zero up to the order of N. 

As shown in Eq. (2-13b), the numerator of the reflection ( )R s  of a CROW is given by 

2
1 1N Np pµ −− , which is a polynomial in s with a leading term Ns . Equating 2

1 1N Np pµ −−  

with *
Np  can lead to an all-pass function.  

We consider a 6th-order all-pass Bessel filter as an example. 6 5( ) 4.495= + +p s s s
4 3 29.622 12.358 9.92 4.672 1+ + + +s s s s  is a Bessel polynomial. Comparing 

[ ]*( ) ( )p s p s  with ( )R s  in Eq. (2-13b) leads to 6 ( )=p p s  and 2 *
6 1 5 [ ( )]p p p sµ− = . 

Since the coefficients of  ( )p s  are all real, *[ ( )] ( )= −p s p s . Therefore, 
2

1 5 ( ) ( )µ = − −p p s p s , which leads to 5 3
5 2.749 1.039= + +p s s s  and 2

1 8.990µ = . With 

6p  and 5p , all the coupling coefficients can be extracted step by step, using Eq. (2-12). 

 
Fig. 3.1.  Spectra of reflection and group delay of an all-pass Bessel filter 
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The extracted coefficients are 1 1 2 3 4 5 1(1 , , , , , ,1 )τ κ κ κ κ κ τ =e e  (4.495, 2.622, 1.207, 0.824, 

0.632, 0.463, 0), which decrease monotonically from the input. Finally, we multiply the 

coefficients by a bandwidth parameter B to choose the bandwidth, which leads to 

maximally flat delay between ∆ω=−B and B. The group delay is inversely proportional to 

B. The spectra of reflection and group delay are shown in Fig. 3.1. Note that the 

extraction procedure always leads to 21 0eτ = . From the conservation of energy, since 

the reflected power 2( )R jω  is one for all frequencies, the transmitted power has to be 

zero. In other words, there is no coupling to the output waveguide. The input energy 

coupling into the CROW is eventually coupled back to the input waveguide. 

Fig. 3.2(a) shows a reflecting CROW filter. Like transmitting CROWs shown in 

Chapter 2, reflecting CROWs can be realized with various types of resonators, as shown 

 
Fig. 3.2. Schematic drawings of (a) a reflecting CROW filter, (b) a 
reflecting microring CROW, and (c) a reflecting grating-defect CROW 
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in Fig. 3.2(b) and Fig. 3.2(c). The output rs  is at the through port of microring CROWs 

and at the reflection of grating CROWs.  

To understand the physics behind reflecting Bessel CROWs, we plot a CROW 

propagation band as a function of distance. CROWs with uniform coupling coefficient κ 

form a constant-height band between 0 2ω κ−  and 0 2ω κ+ . Frequencies within the 

CROW band propagate freely while those outside evanesce exponentially with distance. 

 
Fig. 3.3. (a) (left) CROW propagation band as a function of distance of an 
N=20 reflecting Bessel CROW. Red lines: Propagation distance for 

Bω∆ = 0, 1.4, and 2. (right) Group delay spectrum. (b) Field distribution 
along the CROW for Bω∆ = 0, 1.4, and 2 
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CROWs with tailored coupling coefficients correspond to a distance-dependent CROW 

band whose thickness is 4κ(z), where κ(z) is the local coupling coefficient. Fig. 3.3(a) 

shows the modulated CROW band of an N=20 reflecting Bessel CROW, whose 

bandwidth decreases monotonically from the input. An input signal at a given frequency 

propagates into the CROW until it reaches the band edge where it is reflected back. The 

red lines in Fig. 3.3(a) indicate the propagating distances at ∆ω/B= 0, 1.4, and 2. Fig. 

3.3(b) plots the field distribution at these frequencies. At ∆ω=0, light propagates to the 

last resonator. As the frequency moves away from the resonant frequency, the 

propagating distance decreases. The dependence of the propagating distance on 

frequency compensates for the group velocity dispersion of CROWs, whose group delay 

increases monotonically from the band center to the band edge, and results in a constant 

group delay. 

3.3  Reflecting Bessel CROWs Based on Ring Resonators 

To realize reflecting Bessel CROWs in ring resonators, we convert the time-domain 

coupling coefficients to the field coupling coefficients in the coupling regions. The 

conversion is based on the formalism in Section 2.6 . We consider silicon ring resonators 

as an example. The mode index and group index of the Si waveguides are 2.4 and 4, 

respectively. The radii of the rings are selected as 20 µm so that one resonant wavelength 

is 1570.8 nm and the free spectral range FSRf  is 597 GHz. We choose B=ωFSR·0.003 and 

B=ωFSR·0.03, which lead to field coupling coefficients of (0.395, 0.0494, 0.0228, 0.0155, 

0.0119, 0.0087) and (0.926, 0.474, 0.226, 0.155, 0.119, 0.087), respectively. The spectra 

of reflection and group delay are shown in Fig. 3.5(a) and Fig. 3.5(b). The spectra are 

ideal for weaker coupling coefficients when B=ωFSR·0.003. For the case of B=ωFSR·0.03, 
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there are oscillations in the group delay spectrum since the coupling coefficient at the 

input is close to the maximal coupling coefficient of the ring resonators, ωFSR /4. 

3.4  Properties of Reflecting Bessel CROWs 

3.4.1  Reflecting Bessel CROWs in the Presence of Loss or Gain 

Up to this point we have considered only lossless resonators. For lossy resonators with 

constant loss rates, the total loss is proportional to the group delay. Since the group delay 

is flat, the loss is also flat within the bandwidth, and the definition of ideal delay lines is 

still satisfied. Fig. 3.5(a) shows the spectra of the same microring CROW in Fig. 3.4(a) 

with a propagation loss of 1 dB/cm. On the other hand, if the resonators are pumped with 

uniform gain, the amplification is proportional to the group delay and is also flat, as 

shown in Fig. 3.5(d). The enhanced reflection gain by slow light results in efficient and 

dispersion-less amplifiers. 

 

 

 
Fig. 3.4. Spectra of reflection and group delay of N=6 reflecting Bessel 
CROWs based on ring resonators. (a) 0.003FSRB ω= ⋅ . (b) 0.03FSRB ω= ⋅  
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3.4.2  Delay-Bandwidth Product of Reflecting CROWs 

 One important parameter of optical delay lines is the delay-bandwidth product (DBP), 

f τ∆ ⋅ , which represents the number of bits that can be stored. The group delay τ is equal 

to d dφ ω− , where φ  is the phase of the transfer function. Therefore, assuming 1ω  and 

2ω  are the starting and ending frequencies of the bandwidth, 

 
2

1
2 1 2 1( ) ( ) ( ),d d d

d d
ω

ω

φ φω τ ω ω ω φ ω φ ω
ω ω

∆ ⋅ = − ⋅ ≈ = −∫  
(3-1) 

provided that τ varies very little over the bandwidth. For coupled-resonator structures, the 

DBP that can be provided by each resonator has an upper bound. For transmitting 

CROWs, each resonator provides a pole to the transfer function, leading to a phase shift 

of π across the resonance. From Eq. (3-1), ω τ∆ ⋅  is smaller than π for each resonator in a 

transmitting CROW. Therefore, the upper bound of f τ∆ ⋅  is 0.5N  for transmitting 

CROWs, where N  is the number of resonators. Reflecting CROWs, on the other hand, 

possess both poles and zeros. Each resonator contributes a pole and a zero to the transfer 

function, and the upper bound of f τ∆ ⋅  is N  for reflecting CROWs. Since light takes a 

round trip in a reflecting CROW, the larger DBP of reflecting CROWs makes sense. 

 
Fig. 3.5. Spectra of reflection and group delay of N=6 reflecting microring 
Bessel CROWs with (a) uniform loss and (b) uniform gain of 1 dB/cm 
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The DBP of reflecting Bessel CROWs is approximately 0.5 per resonator, as can be 

evaluated in Fig. 3.1, Fig. 3.3(a), and Fig. 3.5. Therefore, the DBP per resonator of 

reflecting Bessel CROWs is larger than that of any kind of transmitting CROW. For 

example, the DBP per resonator of a transmitting CROW with uniform coupling 

coefficient is 1 π , considering the center half of the CROW band as the bandwidth. 

3.4.3  Effect of Disorder on Reflecting Bessel CROWs 

Although the delay capability of reflecting CROWs is larger, reflecting CROWs are 

more sensitive to fabrication disorder of coupling coefficients and resonant frequencies. 

Any imperfection in a reflecting CROW scatters light twice as it takes a round trip. The 

cavity between the imperfection and the end of the CROW causes Fabry-Perot-type 

oscillations, as shown in Fig. 3.6(a). Fig. 3.6(b) shows the spectra of 10 different N=10 

reflecting Bessel CROWs under disorder of coupling coefficients. The modified coupling 

coefficients are given by 'i i irκ κ= , where ir  is a Gaussian-distributed random variable 

with a standard deviation of 0.03. The effect of disorder in resonant frequencies is similar. 

Under disorder, the average of the delay spectra is still optimally flat among all kinds of 

 
Fig. 3.6. Spectra of reflection and group delay of N=10 reflecting Bessel 
CROWs with disorder of coupling coefficients. (a) 4 4' 1.05κ κ= . (b) 

'i i irκ κ=  for all i 

(a) (b)
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reflecting CROWs. 
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Chapter 4  

Designing CROWs Based on High-Q 
Grating-Defect Resonators 

4.1  Introduction 

CROWs can be realized with various types of resonators, such as microrings [7, 20, 21, 

24], photonic crystal resonators [9, 19], and waveguide-grating resonators [22, 28]. While 

CROWs are most commonly based on ring resonators, CROWs based on waveguide-

grating resonators are attractive for their natural implementation in waveguides. Grating 

structures are defined on waveguides to change the group velocity of light, requiring no 

additional design for the coupling between waveguides and CROWs. The building block 

of grating CROWs is a grating resonator. One type of grating resonators is a defect 

resonator where an artificial defect is introduced in a waveguide grating. The defect 

cavity supports a mode with a resonant frequency inside the grating band gap. The modal 

field is centered at the defect and evanesces exponentially in the grating. A grating 

CROW consists of a sequence of defects where adjacent resonators couple to each other 

via the evanescent field in the intervening grating. The coupling strength depends on the 

product of the grating strength and the spacing between adjacent defects. Grating 

CROWs based on the approximation of weak gratings can be analyzed with coupled-

mode equations where two counter-propagating modes are connected by the grating [28]. 
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When the grating is strong, such as periodic air holes in a silicon waveguide, the 

length of each grating-defect resonator can be as short as a few microns. High density of 

resonators is important for optical buffers since the delay-bandwidth product is 

proportional to the number of resonators. CROWs based on such small resonators have 

been experimentally demonstrated in silicon waveguides [22]. However, the major 

limitation was the intrinsic propagation loss due to radiation [36]. Highly confined modes 

lead to large spatial Fourier components which are phase-matched with the lossy 

radiation modes. The resulting low quality factor of the resonators (Q<1000) leads to 

power decay time constant of approximately 1 picosecond, limiting applications such as 

optical delay lines. Because of the coupling to the higher-order (radiation) modes, 

coupled-mode equations which consider only forward and backward guided modes are no 

longer valid. Consequently, the design of grating resonators based on strong gratings 

usually relies on three-dimensional simulation of the entire structures. 

In this Chapter, we reduce the propagation loss of grating-defect CROWs by designing 

high-Q grating-defect resonators as the building blocks. High-Q grating resonators have 

been demonstrated both theoretically and experimentally. Two major approaches are 

respectively based on tapering the grating near the defect [51, 52] and spatially 

modulating the grating (period or hole radius) without a physical defect section [53, 54]. 

Both approaches aim to define a smooth modal field. Gaussian field distributions are 

well-known functions which greatly reduce the coupling to radiation modes [54, 55]. We 

present a systematic design of high-Q tapered grating-defect resonators where 4 or 6 

periods on each side of the defect are tapered. We start with a numerical characterization 

of gratings with different hole radii. For a given taper profile, we can determine the 

modal field based on the calculated grating strength as a function of hole radius and 

perform spatial Fourier transform of the mode. We determine the optimal taper profile 
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which minimizes the coupling to radiation modes and confirm the results with numerical 

simulation of quality factor. 

When CROWs are based on high-Q resonators, the coupling to radiation modes is 

negligible, so the coupled-mode equations are valid. In Section 4.2 , We present a 

coupled-mode formalism for the analysis and design of grating-defect resonators and 

CROWs. We show systematic design of high-Q tapered resonators in Section 4.3  and 

demonstrate the control of inter-resonator coupling for CROWs in Section 4.4 Filter 

design based on tailoring the coupling coefficients along a CROW is shown in Section 0. 

The coupling coefficients derived in Chapter 2 are converted to the numbers of holes 

between adjacent defects. Filter design not only optimizes the transmission and dispersive 

properties of CROWs but also improves the tolerance of CROWs against fabrication 

disorder, as will be discussed in Section 6. Finally, it is worth mentioning that we design 

the resonators and CROWs to resonate at the Bragg wavelength of the grating in order to 

ensure that the resonant wavelength will not change with the number of holes. If the 

resonant wavelength is not at the Bragg wavelength, especially near the band edge, an 

extra phase section will be required when cascading resonators for CROWs. 

4.2  Coupled-Mode Formalism for Grating-Defect CROWs 

A Bragg grating is a periodic perturbation to a waveguide. A grating with a period Λ 

couples counter-propagating modes with a propagation constant β if the phase-matching 

condition is satisfied, i.e., 2π/Λ= 2β. The coupled-mode equations relating the amplitudes 

of the forward mode a and the backward mode b are given by [56] 

 

*( )
,

( )

g

g

da i a i z bdz
db i b i z adz

δ κ

δ κ

= − +

= −  
(4-1) 
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where δ ≡β−βB is the detuning from the Bragg condition, βB≡π/Λ, and κg(z) is the 

coupling coefficient of the grating. The absolute value and phase of κg(z) represent the 

strength and phase of the grating respectively. κg(z) is a constant for a uniform grating. If 

the grating strength is tapered, |κg(z)| varies along the grating. For a grating structure 

distributed between z=0 and z=Lg and an input a(0)=1 from z=−∞, the general approach 

of solving the transmission and the field distribution is as follows: (i) Set the boundary 

condition at the output as a(Lg)=1 and b(Lg)=0 (no input from z=∞). (ii) Propagate a and 

b from z=Lg back to z=0 analytically or numerically, using Eq. (1). (iii) Divide the 

resulting a(z) and b(z) by a(0) to recover the input amplitude a(0)=1.  

A grating-defect resonator is formed by inserting an artificial defect section in a 

 
Fig. 4.1. Schematic drawings, coupling coefficients, and field intensity of 
(a) a grating-defect resonator and (b) a grating-defect CROW 
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grating, as shown in Fig. 4.1(a). The defect section is a cavity where light is 

longitudinally confined by the Bragg gratings at frequencies inside the band gap (|δ|<κg). 

If the defect length is λ /(4n) (a quarter-wave-shifted (QWS) defect; n is the effective 

index of the waveguide mode), the phase of κg(z) is shifted by π, and the defect mode 

resonates at the Bragg frequency (δ=0). The distribution of the modal energy, |a|2+|b|2, is 

centered at the defect and evanesces exponentially in the grating, as shown in Fig. 4.1(a). 

The modal fields (a and b) are proportional to exp(−κg∆z), where ∆z is the distance from 

the defect. 

A grating-defect CROW consists of a sequence of defects, where adjacent defect 

modes interact with each other via their evanescent fields, as shown in Fig. 4.1(b). κg(z) 

alternates between κg and −κg. The inter-resonator coupling is determined by the spacing 

between defects, denoted as L. For a grating structure consisting of only QWS defects (i.e. 

a real κg(z)), the field distribution at δ =0 for an input a(0)=1 can be derived as 

 ( )( ) ( ) cosh ( ') 'gL

g gz
a z a L z dzκ= ∫  

(4-2a) 

and 

 ( )( ) ( )sinh ( ') ' ,gL

g gz
b z ia L z dzκ= − ∫  

(4-2b) 

where ( )0
( ) 1 cosh ( ') 'gL

g ga L z dzκ= ∫  is the transmitted amplitude. Since the sign of κg(z) 

alternates along the grating, both a(z) and b(z) alternate between exponential growing and 

exponential decay. We consider an inter-defect spacing L and L1=LN+1=L/2 at the 

boundary, which guarantees ( )0
cosh ( ') ' 1gL

g z dzκ =∫  and thus unity transmission a(Lg)=1. 

The energy stored in the grating, 
2 2

0
( ) /gL

stored gE a b dz v= +∫ , can be derived as 

sinh( ) / /g g g gL L L vκ κ   , where vg is the group velocity of the waveguide mode. Since 

the input power |a(0)|2 is 1, the group velocity in the grating-defect CROW is given by 

 , .sinh( )
g g

g CROW g
stored g

L L
v vE L

κ
κ= = ⋅

 
(4-3) 
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The slowing factor is a function of κgL. 

The inter-resonator coupling and waveguide-resonator coupling for grating-defect 

resonators can be derived the same way as in Section 2.6 Fig. 4.2 shows the grating 

structures which corresponds to the structures in Fig. 2.9. The inter-resonator coupling κ 

can be obtained from the splitting of resonance in two coupled resonators (Fig. 4.2(a)). It 

can be shown that under the assumption of exp(−κg L)  1, the splitting is given by

exp( )g g gv Lω κ κ∆ = ± − , where gv  is the group velocity of the waveguide mode. 

Therefore,  

 exp( ).g g gv Lκ κ κ= −
 

(4-4) 

The group velocity of CROWs at resonant frequency is thus 

, 2 2 exp( )g CROW g g gv L v L Lκ κ κ= =    , which, in the limit of exp(−κg L)  1, is the same 

 
Fig. 4.2. Distribution of refractive index and coupling coefficient for (a) 
two coupled defect resonators and (b) two coupled defect resonators with 
external coupling to the waveguides 
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as Eq. (4-3). The external loss 1 eτ  from the end resonator into the waveguide is a 

function of grating length as well and can be derived using the structure in Fig. 4.2(b). At 

the Bragg wavelength, the condition that the transmission is unity is / 2iL L= . 

According to the formalism described in Section 2.6 ,  

 
1 exp( 2 ).g g g i

e
v Lκ κτ = −

 
(4-5) 

For a single grating-defect resonator shown in Fig. 4.1(a), the total loss rate is 1 2 eτ τ= , 

and the quality factor of the resonator is 

 
exp(2 )1 .2 4

g

g g

L
Q v

ω κ
ωτ κ

⋅
= =

 
(4-6) 

Q is an exponential function of L. 

Fig. 4.3(a) and Fig. 4.3(b) show the spectra of transmission and group delay of 10-

resonator grating-defect CROWs with L=200 µm and L=300 µm, respectively, calculated 

with the coupled-mode equations in Eq. (4-1). We choose a group index of 4 and a weak 

grating with κg=0.01/µm. The lengths of the first and last grating sections, L1 and LN+1, 

are chosen to be L/2 to match the CROW section to the waveguides. According to Eq. 

 
Fig. 4.3. Spectra of (a) transmission and (b) group delay of N=10 grating-
defect CROWs with inter-defect spacing L=200 μm  (blue) and L=300 
μm  (green). 0.01/ μmgκ = . 
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(4-4), the coupling coefficients of the two CROWs differ by a factor of exp(κg∆L)=e, 

which agrees with the bandwidths and the group delay shown in Fig. 4.3. 

4.3  High-Q Tapered Grating-Defect Resonators 

4.3.1  Numerical Characterization of Strong Gratings 

Fig. 4.4(a) shows a Bragg grating in a single-mode silicon-on-insulator waveguide 

which is 490 nm wide and 220 nm thick. The refractive indices of silicon and silicon 

oxide are 3.48 and 1.46 respectively. We consider the transverse electric (TE) mode 

throughout this thesis, and the effective mode index is 2.4. The grating is composed of 

periodic air holes, which are etched through the silicon layer. For weak gratings, the 

evaluation of κg is usually based on perturbation theory – An overlap integral of the 

perturbation ∆ε (x,y) and the modal fields E(x,y) [56]. However, this method is not 

accurate for strong gratings, where the modal fields are strongly perturbed. The 

propagation constant of the waveguide mode is also strongly perturbed by the grating. 

Therefore, for each hole radius r, the grating period Λ needs to be determined for a given 

 
Fig. 4.4. (a) Schematic drawing of a strong grating in a silicon waveguide 
and its cross-section. (b) Simulated gκ  and grating period as functions of 
hole radius 
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Bragg wavelength (1570 nm throughout this chapter). We design grating-defect 

resonators and CROWs to resonate at the Bragg wavelength for three reasons. First, the 

analysis based on coupled-mode equations is the simplest (δ=0 in Eq. (4-1)). Second, the 

grating strength is maximal at the Bragg wavelength, which enables the shortest possible 

device length. Last, when cascading resonators for CROWs, additional waveguide 

sections between adjacent resonators will be required if the resonant frequency is not at 

the Bragg frequency. The details of the coupling waveguide sections will be described in 

Chapter 5, where we introduce CROWs based on bandgap-modulated resonators. 

Given a grating with a hole radius r and a period Λ, we can determine its Bragg 

wavelength and κg by simulating the transmission and reflection of the grating. For a 

grating with a constant κg between z=0 and z=L and an input a(0)=1, the phase of the 

reflected mode b(0) can be derived from Eq. (4-1) as θ r=−π/2−sin−1(δ/κg) if L is 

sufficiently long. The Bragg wavelength (δ=0) can be obtained at the condition θr=−π/2. 

κg can be determined from the transmitted power at Bragg wavelength, 

|a(L)|2=1/cosh2(κgL). 

We simulate grating structures in silicon waveguides using a 3D mode-matching 

method (MMM) [57]. Air holes are divided into longitudinal z-invariant sections. In each 

section, the total field is expressed as a superposition of the local eigen-modes (both 

forward and backward modes), which are solved using a finite-difference full-vectorial 

mode solver. Fields in adjacent sections are related by a scattering matrix which obeys 

continuity of the tangential components of electric and magnetic fields. The scattering 

matrix of the entire grating structure is obtained by cascading the scattering matrix of 

each section. MMMs are especially efficient for periodic structures. Once the scattering 

matrix of one unit cell is obtained, the entire grating structure can be constructed quickly. 

One major difference between our simulation and conventional MMMs is that in order to 
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account for every component of radiation loss when simulating high-Q resonators, we use 

a complete set of modes. Therefore, we have to find a balance between accuracy and 

computation cost. This method is efficient compared to other simulation methods, 

especially when the grating structure is long. 

Fig. 4.4(b) shows the calculated κg(r) and Λ(r) for a Bragg wavelength of 1570 nm. 

Since the area of holes is proportional to r2, κg(r) is quadratic at small radii. At larger 

radii, κg(r) becomes linear and the slope starts decreasing, since κg corresponds to the 

first-order Fourier component of the grating. On the other hand, the perturbation of the 

propagation constant corresponds to the constant term of the Fourier components, so Λ(r) 

is nearly a quadratic curve. Note that for a hole radius of 100 nm, κg is 1.49/µm, which is 

16% of the propagation constant and thus corresponds to a very strong grating. 

4.3.2  Design of High-Q Tapered Grating-Defect Resonators 

Grating-defect resonators in strong gratings inevitably incur radiation losses. Although 

the resonant mode consists of only forward and backward waveguide modes, a and b, the 

spatial Fourier components which are phase-matched and thus couple to the radiation 

modes lead to radiation loss. Fig. 4.6(a) shows the modal field of a QWS resonator. The 

amplitude oscillation is from the interference between the forward and backward modes, 

and the envelope decays exponentially with the distance from the defect (at z=0). As a 

result, the spatial Fourier transform consists of two Lorentzian functions which are 

centered at the propagation constants of the forward and backward modes, as shown in 

Fig. 4.6(b). The Fourier components whose frequencies lie within the continuum of 

radiation modes (−nclad < kz/k0 < nclad) lead to radiation loss. The loss associated with a 

highly localized mode is especially large, since the Lorentzian functions are broad. 

To reduce the radiation loss, we can engineer the modal field so as to minimize its 

spatial Fourier components within the radiation continuum. For example, if the envelope 



 56 

of the field is a Gaussian function, the Fourier transform consists of two Gaussian 

functions, which decay much faster than Lorentzian functions. In other words, the 

smoother Gaussian envelope leads to narrower functions in the spatial frequency domain. 

The modal field is controlled by the grating strength κg(z), since the envelope is 

proportional to 0
exp ( ') ( ') ,

z

g z d zκ
∆ − ∆ ∆  ∫  where ∆z is the distance from the defect. If 

Gaussian distribution is desired, κg(∆z) should be linear. 

 
Fig. 4.5. (a) Field distribution of a QWS resonator mode. 0.75 / μm.gκ =  
(b) Spatial Fourier transform of the QWS resonator mode 
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A given profile of grating strength κg(z)  can be realized by the choice of the hole radii. 

Fig. 4.6 shows a tapered grating-defect resonator where the 6 nearest unit cells on each 

side of the defect are tapered. Both the radii and the periods are varied to ensure the same 

Bragg wavelength, 1570 nm. The defect length d is chosen to be λ /(4neff)=162.5 nm, 

where neff is the effective index of the waveguide mode. We choose r =100 nm for the 

regular holes, which corresponds to Λ=413 nm and κg =1.49/µm according to Fig. 4.4(b). 

For the tapered grating, the grating strength assigned for the i-th hole is 

 , ,
1g i g

t

i
n

α

κ κ
 

=  +   
(4-7) 

where nt  is the number of tapered holes. The radius ri and period Λi of each unit cell are 

determined based on the curves in Fig. 4.4(b). κg(z) is a step function which is constant 

within each unit cell. If α =1, κg(z) is approximately linear and leads to a Gaussian field 

distribution.  

We consider grating-defect resonators with 4 and 6 tapered holes respectively. The 

objective is to find an α which minimizes the radiation loss. Fig. 4.7(a) shows the field 

distribution on one side of the defect for α =0, 0.55, and 1 based on their κg(z). To 

estimate the radiation loss, we integrate the spatial Fourier spectrum over the radiation 

continuum. Fig. 4.7(b) shows the portion of energy in the radiation continuum, ηrad , as a 

function of α  for 4 and 6 tapered holes, respectively. Tapering the grating reduces ηrad  

by more than 3 orders of magnitude. The effect of 6 tapered holes is better than that of 4 

 
Fig. 4.6. Schematic drawing of a tapered grating-defect resonator with 6 
tapered holes 
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Fig. 4.7. (a) Field distribution (one side of the defect) of tapered grating-
defect resonators with α =0, 0.55, and 1, respectively. (b) Energy portion 
in the continuum of radiation modes of grating-defect resonators as a 
function of α . (c) Spatial Fourier spectra of the modal fields for α =0, 
0.55, and 1 
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tapered holes. The minimum of ηrad  occurs at α =0.48 and 0.55 for 4 and 6 tapered holes 

respectively. This result shows that tapered gratings with α ~0.5, corresponding to a field 

distribution of approximately exp[−(∆z)3/2], are better than linear tapers with Gaussian 

distribution. Their field distributions are shown in Fig. 4.7(a), and the spatial Fourier 

spectra are shown in Fig. 4.7(c). Compared to α =1, while the spectrum of α =0.55 is 

larger at higher frequencies, it is an order of magnitude smaller within the radiation 

continuum. As a result, the taper profile with α =0.55 constitutes an optimal design. 

To verify the results obtained from the Fourier analysis, we simulated resonators with 

various α using 3D MMMs. The quality factor Q was obtained from the linewidth of 

resonance in the transmission spectrum. Q consists of external Q (Qe) due to the coupling 

to waveguides and intrinsic Q (Qi) due to radiation loss: 

 
1 1 1 ,( )e iQ Q n Q= +

 
(4-8) 

where n is the number of holes on one side of the defect. In order to find Qi , we increase 

n until Q is saturated at Qi, as shown in Fig. 4.8. The quality factor as a function of α for 

4 and 6 tapered holes is plotted in Fig. 4.9. We plot ηrad
−1 (multiplied by a constant so 

that it is equal to Q at α =0) on the same figure for comparison. The curves of Q agree 

 
Fig. 4.8.  Quality factor as a function of number of holes on each side of 
the defect. α =0.55, nt=6 
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closely with ηrad
−1. The maximum of Q occurs at α =0.51 and 0.55 for 4 and 6 tapered 

holes, respectively. The highest Q for 6 tapered holes is 2.16×106 at α =0.55. It is an 

order of magnitude higher than the theoretical Q of grating-defect resonators designed in 

the literature [51, 52]. The radii of the tapered holes are 41.5, 54.6, 64.8, 72.9, 82.9, 92.1 

nm, and the periods are 346.3, 357.7, 367.9, 378.3, 389.7, 401.3 nm. The modal volume 

is 0.38·(λ/nSi)3 (simulated using COMSOL multiphysics), which is smaller than those of 

1D photonic crystal resonators resonating at frequencies near the grating band edge [53, 

54]. Further increasing the number of tapered holes will result in a higher Q. However, 

the resulting smaller holes may not be practical. 

 
Fig. 4.9. Simulated quality factor as a function of α  for grating-defect 
resonators with 4 and 6 tapered holes, respectively. Dashed lines show the 
corresponding 1

radη − . 
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4.4  Inline Coupling of Resonators 

Inline resonators are, by definition, fabricated, cascaded, and coupled in a single 

waveguide. The objective of this section is to derive the inter-resonator coupling 

coefficient as a function of individual quality factors. 

Fig. 4.10 shows a symmetric inline resonator, i.e., the coupling to the waveguides is 

equally strong on both sides. In a symmetric grating-defect resonator, the number of 

holes on both sides of the defect is equal. The time-domain coupled-mode equations are 

given by 

 

1 2( )

,

ω µτ τ
µ
µ

= − − −

= −
= −

in
i e

out

r in

da i a i sdt
s i a

s s i a
 

(4-9) 

where a is the resonator mode amplitude, sin , sr, and sout are the input, reflected, and 

transmitted mode amplitudes, respectively, ω is the resonant frequency, 1/τ i  and 1/τe  are 

the intrinsic loss and the external loss to each waveguide respectively, and µ is the 

waveguide-resonator coupling. It can be shown that 2µ τ= e  using conservation of 

 
Fig. 4.10. (a) Schematic drawing of a symmetric grating-defect resonator. 
(b) The corresponding coupled-mode diagram 
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energy. The quality factor of the resonator is given by Q=ωτ/2, where 1/τ =1/τ i+2/τe  is 

the total loss rate. In the regime where intrinsic loss is negligible (the linear region in Fig. 

4.8), Q=ωτe/4. Therefore, we obtain 1/τe=ω/(4Q) if Q is given. 

In Fig. 4.11, we consider two inline resonators cascaded in a waveguide. The inter-

resonator coupling is via the coupling waveguide of length d. The coupled-mode 

equations of the two resonators and the coupling waveguide are given by 

 

1
1 1 1

1

2
2 2 2

2

1 1

2 2

1( )
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θ

θ
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+

+ −

− +

= − −

= − −

= −
= −

i

e

i

e
i

i

da i a i s edt
da i a i s edt

s s e i a
s s e i a

 
(4-10) 

The notations are shown in Fig. 4.11(b). θ is the phase accumulated in the propagation. 

The resonant frequencies and the external losses of the two resonators can be different in 

general. The intrinsic losses and the coupling to the other resonators or waveguides have 

been ignored and can be added to the equations. Combining the last two equations of Eq. 

(4-14), s+ and s- can be expressed as linear combinations of a1 and a2, and Eq. (4-14) can 

 
Fig. 4.11. (a) Schematic drawing of the inline coupling of two grating-
defect resonators. (b) The coupled-mode diagram of two resonators 
coupled via a waveguide. (c) The coupled-mode diagram of two directly 
coupled resonators 
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be rewritten as coupled-mode equations of two directly coupled resonators (shown in Fig. 

4.11(c)): 

 

1
1 1 2

1 1 2

2
2 2 1

2 1 2

cot csc( )
.

cot csc( )

θ θω τ τ τ

θ θω τ τ τ

= − −

= − −

e e e

e e e

da i a i adt

da i a i adt
 

(4-11) 

The inline coupling leads to detuning of resonant frequencies and a coupling 

coefficient which depend on the round-trip phase of the coupling waveguide cavity, 2θ : 

 
1,2

1,2

1 2

cot

.
csc

θω τ
θκ

τ τ

∆ = −

=

e

e e

 
(4-12) 

When designing CROWs, we require identical resonant frequencies. If the frequency 

detuning ∆ω is nonzero, the resonators along the CROW may experience different 

frequency detuning. For example, the frequencies of the first and last resonators are less 

detuned since they only couple to one resonator, while the other resonators have two 

neighbors. Therefore, we require ∆ω=0, which corresponds to 2θ =π, a totally destructive 

interference in the coupling cavity. 2θ =π also leads to a minimal coupling coefficient. 

The cavity round-trip phase includes the phase of reflection from the grating and the 

propagation phase in the cavity. At the Bragg wavelength, the reflection phase 

θ r=−π/2−sin−1(δ/κg) is −π/2. Therefore, the round-trip phase with d=0 is already π. This 

is an important reason why we choose to work at the Bragg wavelength. If the resonance 

is near the band edge, an additional phase section of length d is required to satisfy a 

round-trip phase of π. In Chapter 6, we will show the design of CROWs based on grating 

band-edge modes. We will show how important the phase sections are for the 

transmission spectra of CROWs. 
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4.5  Grating-Defect CROWs with Uniform Coupling 
Coefficient 

Grating CROWs are formed by cascading the high-Q grating-defect resonators 

designed in Section 4.3 . Fig. 4.12 shows the first two resonators of a grating CROW. 

The inter-resonator coupling is controlled via the number of holes between neighboring 

defects, denoted as m. m includes the number of tapered holes (2nt) and the number of 

regular holes (nreg). When cascading two symmetric grating resonators with external 

quality factors Q1 and Q2 respectively, the coupling coefficient can be derived from Eq. 

(4-16) as  

 
1 2

.
4 Q Q

ωκ =
 

(4-13) 

If the resonant frequency is not at the Bragg wavelength, an additional phase section 

between two resonators is required for appropriate coupling in CROWs, as will be shown 

in Chapter 5. We have shown in Eq. (4-6) that Q is proportional to exp(2κgL). For a 

tapered resonator, the relation is modified as 

 , ,0
1 1

exp 2 ( ) exp 2 exp 2 exp 2 ,κ κ κ κ
= =

   ∝ = Λ = Λ ⋅ Λ           
∑ ∑∫

tnnL
g g i i g i i reg g

i i
Q z dz n

 
(4-14) 

which breaks down into the contribution of each hole in the tapered region and the 

regular grating, respectively. Therefore, Q can be written as  

 2
0 ,= ⋅ regnQ Q a

 
(4-15) 

 
Fig. 4.12.  Schematic drawing of the first two resonators of a grating-
defect CROW 

m2m1
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where Q0 is the quality factor of a resonator with only the tapered region (no regular hole) 

and a≡exp(κgΛ)=1.849. We fit the curve in Fig. 4.8 (α =0.55, nt=6) with Eq. (4-15) and 

obtain Q0=548 and a=1.848. If we cascade two resonators with nreg,1 and nreg,2 

respectively, we obtain the inter-resonator coupling coefficient given by 

 
01 2

,44
ω ωκ −= = regnaQQ Q  

(4-16) 

where nreg = nreg,1 + nreg,2 is the total number of regular holes between two defects. For the 

first or last resonators, the external loss rate to the waveguides is given  

 
2

0

1 ,4 4
ω ω

τ
−= = regn

e
aQ Q  

(4-17) 

where nreg  is the number of regular holes in the first or last grating section. To match 

between the CROW and the waveguides, we require κ =1/τe  [58]. Therefore, the number 

of holes in the first and last sections is one half of the number of holes in the middle 

sections, i.e., m1=mN+1=m/2. 

Fig. 4.13(a) and Fig. 4.13(b) show the spectra of transmission and group delay of 

N=10 CROWs for m=12, 14, and 16, respectively (nreg =0, 2, and 4). The band center is 

 
Fig. 4.13. Spectra of (a) transmission and (b) group delay of 10-resonator 
grating-defect CROWs with m=12, 14, and 16, respectively 
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at 1569.2 nm. Both the bandwidth and the group delay are dictated by m. The bandwidth 

is equal to 4κ  and the group delay at the band center is given by N/(2κ ). Adding two 

holes between defects results in a factor of a2=3.415 in κ. Note that the maximal 

transmission for m=12 is only 0.955. This is due to the strong index contrast between the 

waveguide and the grating section, which scatters light to the radiation modes. The strong 

index contrast can be reduced by tapering the grating at the input [52]. For larger m, the 

radiation loss increases due to the longer delay. The transmitted power can be written as 

exp(−ωτ /Qi), where τ is the group delay. The delay for m=16 is 106.3 ps, which leads to 

a transmitted power of 0.943. Including the scattering loss at the input, the transmission 

drops to about 0.9, which agrees with the simulation. 

4.6  Filter Design Based on Grating-Defect CROWs 

High-order bandpass filters with optimized transmission and dispersive properties can 

be realized in CROWs if the coupling coefficients are allowed to take on different values. 

For example, Butterworth filters exhibit maximally flat transmission, while Bessel filters 

possess maximally flat group delay. In Chapter 2, we showed that for a desired filter 

response, the coupling coefficients which determine the transfer function of CROWs can 

be derived. The coupling coefficients of N=10 Butterworth and Bessel filters were listed 

in Table 2.3. These coupling coefficients are normalized to a chosen bandwidth 

parameter B. 

In grating-defect CROWs, the coupling coefficients are translated to the numbers of 

holes based on Eqs. (4-16) and (4-17). However, these numbers of holes are in general 

non-integers. Table 4.1 lists the numbers of regular holes corresponding to the two filters 

in Table 2.3. The bandwidth parameter B is chosen as 2·κ(nreg =4) so that its bandwidth 

is equal to those of CROWs with uniform coupling and nreg =4 (m=16 in Fig. 4.13). Since 
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κ is an exponential function of nreg , we can add an arbitrary ∆nreg  in order to change the 

bandwidth without having to rederive all the nreg . A non-integer nreg  can be realized by 

an integer number nint = regn    of identical holes which are equivalent to a fraction 

γ =nreg / regn    of a regular hole. For example, 3.6 regular holes are equivalent to 4×0.9 

holes. This can be seen in 

 intexp exp ( ) ( ) .κ κ= Λ = Λ      
regn

reg g ga n n r r
 

(4-18) 

Therefore, we need to determine the hole radius r whose κg(r)Λ(r) is equal to γ κgΛ. 

This can be done by interpolating the curve of κgΛ versus r. For example, the radius of a 

γ =0.9 hole is 90.1 nm. If nreg  is negative, we can reduce the hole sizes starting from the 

outermost tapered holes. An alternative way is to choose a resonator with fewer tapered 

Table 4.1.  Numbers of regular holes of N=10 Butterworth and Bessel 
CROWs. 

Filter type nreg 
N=10 
Butterworth 

(0.495, 1.854, 3.078, 3.625, 3.896, 3.980, 3.896, 3.625, 3.078, 
1.854, 0.495) 

N=10 Bessel (0.426, 1.726, 2.990, 3.670, 4.802, 4.659, 3.568, 3.295, 2.787, 
1.589, 0.366) 

 

 
Fig. 4.14. Spectra of transmission and group delay of (a) an N=10 
Butterworth grating CROW and (b) an N=10 Bessel grating CROW 
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holes, such as the resonators with nt=4 designed in Section 4.3 . 

Fig. 4.14(a) and Fig. 4.14(b) show the spectra of transmission and group delay of an 

N=10 Butterworth CROW and an N=10 Bessel CROW, respectively. The values of 

transmission at the band center are both 0.916, indicating a small intrinsic loss due to the 

large group delay in addition to the scattering loss at the input. Substracting the scattering 

loss which corresponds to a transmission of 0.955, the intrinsic Q can be obtained from 

the intrinsic loss and the group delay and is determined to be 2.34×106 and 1.97×106 for 

Butterworth and Bessel CROWs, respectively. Therefore, the tailoring of coupling 

coefficients does not degrade the Q of the resonators. In practice, the Q of the resonators 

may degrade due to imperfection of fabrication. With larger intrinsic loss, the 

transmission spectrum of Butterworth CROWs may be distorted since the loss is 

proportional to the group delay. The predistortion technique introduced in Section 2.5 can 

be applied to pre-compensate for the distortion provided that the Q can be estimated and 

is uniform over the CROW. Since the group delay of Bessel CROWs is flat within the 

bandwidth, the transmission spectrum is not distorted by uniform resonator loss. 

4.7  Effect of Fabrication Disorder on Grating-Defect 
CROWs 

The fabrication disorder in the resonant frequency of each resonator and the coupling 

coefficients has been the major limitation of CROWs. In Section 2.7  we have investigate 

the disorder effect of / Bδω , /δκ κ , and N, which is general for all kinds of resonators. 

In this section we investigate how variation of the hole radii affect the resonant frequency 

and the coupling coefficient. 

Due to the ultra-small modal volume of the grating-defect resonators designed to 

resonate at the Bragg wavelength, the shift of resonant wavelength due to deviation of 
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hole radii is relatively large. Fig. 4.15 shows the wavelength shift corresponding to 1 nm 

change of radius for each hole starting from the one nearest to the defect. Since the mode 

is concentrated near the defect, the resonant wavelength is more sensitive to the deviation 

of the first three holes. If the standard deviation of each hole radius is δr = 1 nm, the 

standard deviation of the resonant wavelength, considering holes on both sides of the 

defect, is δλ = 0.8 nm. Depending on the fabrication quality (δr), the standard deviation 

of the resonant wavelength is δλ = 0.8·δr .  

The deviation of coupling coefficients due to change of radius can be estimated using 

the function ( )g rκ  in Fig. 4.4(b). Considering the regular hole whose radius is 100 nm, 1 

nm change of radius leads to 0.016gκ∆ = , which corresponds to exp( )gκ κ κ∆ = ∆ ⋅Λ =  

0.66% . We consider 14 holes between adjacent defects (m=14), 2.5%δκ κ =  for δr  = 1 

nm. We can look up the disorder effect for δλ  and δκ κ  in Fig. 2.12. For typical 

bandwidth (B corresponding to <20 nm in wavelength), the disorder effect in coupling 

coefficient is much smaller than the disorder in resonant wavelength. Therefore, disorder 

in resonant wavelength is the major source of loss. 

Because of the higher wavelength sensitivity of grating-defect resonators compared to 

 
Fig. 4.15. Shift of resonant wavelength due to 1 nm change of radius for 
each hole starting from the one nearest to the defect 
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those of larger resonators such as ring resonators, grating-defect CROWs designed in this 

paper are more practical for larger bandwidth applications. Although larger bandwidth 

corresponds to smaller delay, the group velocity is still small considering the length of 

grating-defect resonators. If the grating is chosen to be weaker, such as shallower holes, 

the wavelength sensitivity will become smaller due to the larger modal size. Therefore, 

the length of each resonator and the wavelength sensitivity appear to a trade-off in the 

design of grating-defect CROWs. 

4.8  Summary 

We have demonstrated a systematic approach to design high-Q tapered grating-defect 

resonators, control the inter-resonator coupling, and design high-order grating CROW 

filters. The formalism based on coupled-mode theory is valid in strong gratings, with the 

help of 3D simulations for the characterization of gratings. The optimized Q of 2.16×106 

is an order of magnitude higher than the theoretical Q of grating-defect resonators 

designed in the literature. Based on these high-Q resonators, CROWs which are shorter 

than 60 µm exhibit a group delay of more than 100 ps while maintaining a transmission 

of 0.9. The control of inter-resonator coupling via the number of holes provides a 

convenient way of designing coupled-resonator structures. Furthermore, we demonstrated 

the design of tenth-order Butterworth and Bessel filters which possess maximally flat 

transmission and group delay, respectively. Besides flat transmission, Butterworth 

CROWs are more robust against fabrication disorder compared to CROWs with uniform 

coupling coefficient. 

The grating-defect CROWs designed in this chapter are attractive for their small 

footprints, high quality factors, and their natural coupling to input and output waveguides. 

The coupled-mode formalism developed in this work can be further applied to other types 
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of strong grating structures to minimize the coupling to radiation modes and reliably 

calculate the transfer function of grating structures when the coupling to radiation modes 

is negligible. 
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Chapter 5  

Experiment of Grating-Defect CROWs 

5.1  Fiber-to-Chip Coupling 

The cross-section of the silicon waveguides designed in Chapter 4 is 490 nm wide and 

220 nm thick, as shown in Fig. 5.1(a). To couple light at a wavelength of 1570 nm into a 

waveguide, we can focus light into a small spot with a lens. However, even if we choose 

an objective with a high numerical aperture (NA), say NA = 0.65, the minimum beam 

diameter is given by 2 ( ) 1.54 μmd NAλ π= ⋅ = . The mismatch between the spot size 

and the mode size leads to a large coupling loss. Besides, the large index difference 

between silicon and air at the facet causes a large reflection, which leads to Fabry-Perot 

oscillations and distorts the measured spectra of transmission and group delay of CROWs. 

To overcome the coupling loss and the reflection at the facets, we have worked on 

spot-size converters (SSCs) for maximizing the modal match and grating couplers which 

utilize the Fourier component of a grating to couple light out in the vertical direction. The 

fabrication of SSCs involves the deposition and patterning of an upper cladding. On the 

other hand, the fabrication of grating couplers does not require extra steps. Besides, the 

steps of lapping and cleaving for edge coupling can be removed with grating couplers, 

which reduces the possibility of contamination and enables further processing after 

measurement. The drawback of grating couplers is the limited bandwidth. In what 

follows we describe the design of both couplers. 
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5.1.1   Spot-Size Converters (SSCs) 

The idea of spot-size converters is to convert adiabatically the small waveguide mode 

to a much larger mode which matches with the focused beam spot [59, 60]. As we reduce 

the width of the waveguide with a taper, the mode is less confined and becomes larger. 

An upper cladding is required to make the cladding symmetric so that the mode can still 

be guided. Since the lower cladding is silicon oxide, the optimal material for the upper 

cladding is silicon oxide, which can be deposited by plasma-enhanced chemical vapor 

deposition (PECVD). 

Fig. 5.1(b) shows a SSC with 2 µm thick SiO2 layer on top of a-160-nm wide silicon 

waveguide. The modal field is shown in Fig. 5.2(a), simulated with COMSOL 

multiphysics. The diameter of the mode increases as we decrease the width of the silicon 

 
Fig. 5.1. Schematic drawings of (a) a single-mode silicon waveguide, (b) a 
SiO2 SSC, (c) a PMMA or SU8 SSC, and (d) a SiO2 SSC with a thin 
under-etched silicon slab 
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waveguide. To find out an optimal width which matches with a given input spot size, we 

perform an overlap integral of the input beam and the SSC mode, which is given by  

 2 2

SSC input

SSC input

E E dxdy

E dxdy E dxdy
Γ =

⋅

∫
∫ ∫

,
 

(5-1) 

where SSCE  and inputE  are the x component of the electric fields of the SSC mode and the 

input beam respectively, and inputE  is assumed as a Gaussian. The relative positions of the 

two modes have been chosen to maximize Γ . We take an input beam diameter of 3 µm, 

and the function of Γ  versus waveguide width is plotted in Fig. 5.2(b). The maximum is 

at a width of 160 nm. We also show in Fig. 5.2(b) the overlap integral when the input 

beam is tilted at 6 ̊in the horizontal direction, which we consider as the worst case in the 

setup. Γ  drops by 10% with the tilted input. 

The deposited SiO2 on top of the grating resonators and CROWs has to be removed, 

since the design of CROWs in Chapter 4 is for air cladding, and the PECVD oxide may 

not fill the air holes fully and uniformly. However, the buried oxide beneath the silicon 

 
Fig. 5.2. (a) Field distribution of the mode of a SSC with a silicon width of 
160 nm. (b) Overlap integral of the SSC mode and the input beam as a 
function of the silicon waveguide width. Blue line is for normal incidence 
(0̊); green line is for a tilted input at 6̊ in the x-z plane 
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waveguide makes the timing of the SiO2 back etch difficult. A little over-etch may 

suspend the whole waveguide, thereby bending and breaking the devices. As alternatives 

we have used e-beam resists, including PMMA (n=1.49) and SU8 (n=1.568), as the upper 

cladding. PMMA is a positive e-beam resist, while SU8 is a negative e-beam resist. After 

development, the e-beam resist on top of the grating resonators will be removed. Fig. 

5.3(a) shows the modal field of a SSC with a 2-µm-thick SU8 layer and a 120-nm-wide 

Si waveguide. Since the refractive index of SU8 is different form the index of SiO2, the 

mode becomes unguided easily. Therefore, a patterning of the upper cladding is 

necessary, as shown in Fig. 5.1(c). Fig. 5.3(b) shows the mode of a SSC with a 2.5 µm 

wide SU8 waveguide. Since the SU8 is a waveguide by itself, the silicon waveguide can 

be removed totally, and the SSC is an adiabatic transition from a Si waveguide to a SU8 

waveguide. Fig. 5.4(a) shows a SEM image of a 3-µm-wide fabricated PMMA SSC 

waveguide on top of a Si waveguide. 

However, although the idea of SSCs with e-beam resist seems to work well, and we 

have measured a very low coupling loss of 2.2 dB per coupler, we have observed resist 

residue at the edges of waveguides or holes, as shown in Fig. 5.4(b). The residue can 

 
Fig. 5.3. Field distribution of the mode of (a) a SSC with a SU8 slab and 
(b) a SSC with a 2.5-μm -wide SU8 waveguide 
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degrade the quality of the resonators and cause deviation of resonant frequency and 

coupling coefficient of CROWs. Moreover, cleaving samples with PMMA or SU8 

waveguides breaks the waveguides easily, and thus the yield of the devices is often not 

good with PMMA or SU8 SSCs. 

Our final solution for SSCs is a modified SiO2 SSC, as shown in Fig. 5.1(d). During 

the Si dry etch, we intentionally leave a very thin Si layer which is 5 to 15 nm thick. With 

a very careful calibration of etch rate, the thickness can be controlled accurately. Due to 

the thin Si layer as the etch stop, we were able to etch back the deposited SiO2 layer on 

top of the devices without having to timing the oxide etch. This silicon under-etch results 

in shallower trenches and air holes, which changes the strength of the grating and slightly 

degrades the quality factor. Consequently, we redesigned the resonators based on the hole 

depth. 

5.1.2  Grating Couplers 

Grating couplers utilize the Fourier component of a surface grating to couple a guided 

mode to a radiation mode which emits at an angle and is collected by a fiber. A side view 

of a grating coupler is shown in Fig. 5.5(a). The phase matching condition is given by 

 
Fig. 5.4. (a) A SEM image of a PMMA SSC. (b) Resist residue on a 
grating resonator after developing PMMA for PMMA SSCs 
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2 sinkπ β θ= −
Λ

,
 

(5-2) 

where Λ  is the period of the grating, β  is the propagation constant of the waveguide 

mode with grating, 2k π λ= , and θ  is the emitting angle. Note that β  depends on the 

duty cycle and the etch depth of the grating and is smaller than the propagation constant 

of the Si waveguide mode. The emitted field is collected by a single-mode fiber directly 

above the grating or a fiber focuser which focuses light at the grating. The design of the 

grating concentrates on matching the emitted profile with the fiber mode, which is 

assumed to be a Gaussian beam with a diameter of 8.5 µm. First, the width of the grating 

 
Fig. 5.5. (a) Schematic drawing of a grating coupler. (b) Phase matching 
condition for some emitting angles that should be avoided 

 
Fig. 5.6. A microscope image of a grating coupler and the exponential 
taper 
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pad is selected as 9 µm to match with the width of the Gaussian beam. We used a taper 

with an exponentially growing width to convert from a 490-nm-wide single-mode 

waveguide to the 9-µm-wide grating pad. Fig. 5.6 shows an image of a grating coupler 

and the exponential taper. Since the width of the grating pad is large enough, we can 

assume that the structure is invariant in the y direction and simplify the problem to a two-

dimensional structure as shown in Fig. 5.5(a). We take the indices of Si and SiO2 directly 

as the effective indices. 

There are two emitting angles we should avoid using. They are shown in Fig. 5.5(b). 

One is at 0 ̊ with respect to the vertical (x) axis. As the first-order Fourier component 

( 2π Λ ) emits light vertically, the second-order Fourier component ( 4π Λ ) couples the 

forward mode to the backward mode and thus causes reflection. Likewise for an angle 

around 60̊ where the third-order Fourier component causes reflection. 

To maximize the mode match with a Gaussian beam, we design the grating strength as 

a function of z by varying the duty cycle. The coupling between the guided mode and the 

radiation mode induces propagation loss of the guided mode. The propagation of the 

guided mode in a grating can be described as 

 ( ) ,du z u
dz

α= −
 

(5-3) 

where u is the mode amplitude and ( )α z  is the loss coefficient. The power loss per unit 

length is given by 

 
2

22 2 ( ) .du duu z u
dz dz

α− = − =
 

(5-4) 

The grating couples light to both upward and downward radiation modes. The ratio of 

upward and downward power depends on round-trip phase in the buried oxide layer and 

thus on the emitting angle and the thickness of the buried oxide. For the given emitting 

angle we can assume the ratio is fixed and that the upward power, 2
radu , is proportional 
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to the power loss of the guided mode. The targeted emitting profile is 

2 2exp( )∝ −radu z w , where w is the waist of the Gaussian function. Therefore, 

 
2

2 2 2exp( 2 ).∝ ∝ −rad
du u z wdz  

(5-5) 

Considering an input power 2 ( ) 1−∞ =u  and 2 ( ) 0∞ =u , 2u  and ( )zα  can be solved as 

 2 1 2erfc( )2= zu w  
(5-6) 

and 

 

22

2

2

2exp( )
( ) ,

2 2erfc( )
α

−
= − =

zdu
dz wz
u z

w
 

(5-7) 

where erfc denotes the complementary error function. Fig. 5.7 shows the profiles of the

2u , ( )α z , and the emitting profiles 2αu , respectively. The grating strength increases 

monotonically from the beginning of the grating coupler. 

The next step is to determine the relation between the width of the air grooves, airw , 

 
Fig. 5.7. Design of grating couplers for Gaussian emitting profile. (blue) 
power of the guided mode; (black) grating loss coefficient; (red) emitting 
profile 
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and ( )α z . As we increase airw , the period of the grating has to change, since the 

propagation constant of the guided mode depends on the duty cycle of the grating. We 

performed a 2D mode-matching method (MMM) for the x-z plane while taking the y 

direction as invariant. The 2D MMM is similar to the 3D MMM described in Section 

4.3.1 . However, since we need the entire field in the simulation region to monitor the 

emitting profile, we connect all the fields at different z as linear equations and solve the 

entire field with a generalized minimum residual method. This method is more time-

consuming than a scattering matrix method. We determine the ( )α z  for a given airw  by 

simulating a uniform grating and plotting the power of the guided mode as it propagates. 

With the determined ( )α z , we design a tapered grating coupler based on Eq. (5-7). 

We designed the emitting angle at 30̊ for a wavelength of 1570 nm. The air grooves  

 
Fig. 5.8. Design of a grating coupler emitting light at 30̊. (a) Field 
distribution. (b) Coupling efficiency to a fiber mode. (c) Reflection as a 
function of wavelength 
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are fully etched through the silicon layer. The chosen airw  increase monotonically and are 

6.8, 12.8, 22.7, 38.6, 74.4, 104.6, 128.8, 149.6, 179.1, 195.4, 220.8, 244.2, 298.7, 422.4 

nm, respectively, followed by a uniform grating with 577 nm=airw . The corresponding 

periods are 676.2, 681.0, 687.9, 699.0, 724.6, 746.5, 765.0, 781.7, 804.3, 817.3, 838.5, 

858.9, 907.8, 1018.2 nm, respectively, followed by a uniform period 1154.0 nm.  The 

field distribution is shown in Fig. 5.8(a) with the input waveguide mode from the left. We 

monitor the emitting profile at x=3.5 µm. We adjust the position and angle of the fiber 

mode to obtain maximum coupling between the emitting profile and the fiber mode. The 

green line in Fig. 5.8(b) shows the optimized coupling efficiency for each wavelength. 

The maximum coupling efficiency is between −2 and −4 dB except for wavelength 

around 1510 nm where the third-order grating starts to reflect the mode back. The blue, 

red, and black lines show the coupling efficiency when the position and angle are fixed at 

an optimal position for one wavelength. The 1-dB and 3-dB bandwidths are 38 nm and 62 

nm, respectively. The emitting angle increases at shorter wavelength, which agrees with 

Eq. (5-2). Near the shortest wavelength, 1510 nm, the coupling efficiency drops, and the 

reflection increases, as shown in Fig. 5.8(c). This is because the emitting angle is about 

 
Fig. 5.9. (a) SEM image of the cross-section of a tapered grating. (b) The 
measured depths of the grooves versus the widths of the grooves 
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40̊ and is a little close to the condition where the third-order Fourier component of the 

grating reflects the guided mode back. 

In the fabrication of the grating couplers, the etching depths of the grooves depend on 

the aspect ratio. Fig. 5.9(a) shows the SEM image of the cross-section of a cleaved 

grating. The narrower grooves on the right are shallower than the wider grooves. Fig. 

5.9(b) shows the measured groove depth versus airw . As a result, the variable depth as we 

taper airw  has been taken into account. In the modified design, the widths of the grooves 

are 75, 100, 125, 150, 200, 250, and 300 nm, respectively, each of which is for a group of 

6 periods. The airw  of the uniform region is 350 nm. The periods are 623, 611, 600, 593, 

577, 561, and 545 nm, respectively, for the tapered grating and 526 nm for the uniform 

grating. The simulation of modified design is shown in Fig. 5.10. The design is for 

emission at 30 ̊at the wavelength of 1570 nm as well. Due to the shallower grating, the 

 
Fig. 5.10. Modified design of grating couplers for aspect-ratio-dependent 
etching depth. (a) Field distribution. (b) Coupling efficiency to a fiber 
mode. (c) Reflection as a function of wavelength 
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emitted field is wider in the longitudinal direction, leading to a lower coupling efficiency 

of around 5 dB.  

Fig. 5.11 shows the transmission spectrum of a reference waveguide with input and 

output grating couplers. The total insertion loss is about 13.5 dB, corresponding to a 

coupling loss of 6.75 dB per grating coupler. A slight larger angle with respect to the 

vertical axis was used, which explained the deviation of the peak wavelength. Shown in 

the inset is the close-up near the peak of the spectrum. The oscillation amplitude is as low 

as 0.3 dB. There are also oscillations with a period of approximately 4 nm. The reason is 

unknown at this point and could be from some kind of multi-mode beating. 

5.2  Fabrication of Grating CROWs on Silicon Waveguides 

We fabricated grating-defect resonators and CROWs on silicon-on insulator (SOI) 

wafer, which features a 220-nm-thick silicon layer on top of a 2.0-µm-thick buried oxide 

layer (BOX). The process flow is shown in Fig. 5.12. Samples were first cleaned in PG 

 
Fig. 5.11. Transmission spectrum of a waveguide with input and output 
grating couplers. Inset: Close-up of the transmission spectrum 
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remover at 70 ~ 80 ̊C for 30 minutes followed by piranha solution (H2SO4:H2O2 = 3:1) 

for 10 ~ 15 minutes and a dip in buffered HF for 10 ~ 15 seconds. We spun on e-beam 

resist ZEP520A at 5000 RPM, which produces a resist thickness of 350 ~ 370 nm. The 

samples with resist were baked on a hot plate at 180 ̊C for 10 minutes. 

We used a Vistec/Leica EBGP 5000+ e-beam lithography tool at 100 kV. The 

resolution was 1.25 nm, and the beam step size was 2.5 nm, corresponding to a main field 

of 160 µm. A current of 300 pA and a e-beam dose of 280 µC/cm2 were applied to the 

holes and a small part of the trench which is 1 µm around the waveguide. The major part 

of the trench (5 µm wide) was written with a current of 1.6 nA and a dose of 250 µC/cm2 

to reduce the total writing time (a bulk-sleeve method).  The holes and the waveguides 

were over-exposed with the dose, which leads to larger holes and narrower waveguides. 

We chose to do over-exposure for obtaining smoother sidewalls. As a result, a negative 

bias of the hole radii and a positive bias of the waveguide width were applied to 

compensate for the over-exposure. The holes in the mask were 80% of the targeted values, 

and the waveguide width is 90 ~ 100 nm larger than the targeted width.  

The developed samples were then dry etched using inductively-coupled-plasma 

reactive ion etching (ICP RIE) with a SF6/C4F8 chemistry. Prior to the dry etch, a 5-

second oxygen etch was performed to smooth the sidewall of the resist. The flow rates of 

SF6 and C4F8 were chosen as 35 and 45 sccms, respectively, for slightly isotropic etch 

and thereby reduction of line-edge roughness on the sidewall. The ICP power was 1200 

W, and the RF forward power was as low as 7 W, corresponding to a DC bias of 35 ~ 40 

V. The low DC bias voltage reduces the chance of mask erosion. The combination of 

smallest beam step size, over-exposure, oxygen etch, optimized flow-rate ratio, and low 

DC bias leads to smooth sidewall of holes and waveguides and is important of high-Q 

resonators. The etch rate was approximately 350 nm per minute. To enable the selective  
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Fig. 5.12. Process flow of the fabrication of grating CROWs on SOI 
wafers. (a) Original wafer structure. (b) Resist spin-on and e-beam 
exposure. (c) Development of resist. (d) Si dry etch. (e) Removal of resist. 
(f) Deposition of SiO2. (g) A top view of the final device 
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back-etch as described in Section 5.1.1 and shown in Fig. 5.1(d), the targeted etch depth 

was 205 ~ 215 nm.  

After the dry etch, a 2-µm-thick SiO2 layer was deposited using plasma-enhanced 

chemical vapor deposition (PECVD) for spot-size converters. Photo-lithography with two 

layers of resists (LOR 5B followed by S1813) was performed to selectively remove the 

oxide on top of the devices, as shown in Fig. 5.12(g). A top image of the final device is 

shown in Fig. 5.13(a) where the oxide in the center region has been removed. Fig. 5.13(b) 

and Fig. 5.13(c) show the microscope and SEM images of the boundary of the oxide etch 

respectively. There are “tunnels” at the waveguide and at the boundary of the trenches. 

The tunnels are due to unfilled gaps at the boundaries during the deposition of the oxide, 

which lead to faster etch. 

 
Fig. 5.13. (a) Microscope top image of the final device after oxide back-
etch. (b–c) Microscope and SEM images of the boundary of the oxide 
back etch. (d) Cross-section SEM image of the hole and the waveguide 

(b)
(a)

(c) (d)
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Fig. 5.13(d) shows the cross-section of the waveguide and the holes. Due to the Si 

under-etch for the spot-size converters, the holes are shallower than the designed value. 

The shallower depth in the holes compared to the depth of the trenches is due to the 

aspect-ratio dependence of the etch. The depths of the holes were estimated to be 130 nm 

based on the SEM images and the grating strength derived from the experimental results. 

We redesigned the tapered grating-defect resonators based on the adjusted hole depth. 

The new radii of the 6 tapered holes are 46.5, 57.5, 66.5, 74.2, 80.4, and 86.3 nm, 

respectively, while the radius of the regular holes remains 100 nm. The periods are 357.5, 

362.5, 367.5, 370, 375.5, 377.5 nm, respectively, and the period of the regular holes is 

385 nm. To compensate for the over-exposure of the e-beam, the radii of the e-beam 

mask are 80% of the designed values. 

Fig. 5.14(a) shows a SEM image of a tapered grating-defect resonator with six tapered 

holes and two regular holes on each side of the defect. Fig. 5.14(b) shows an N=6 

Butterworth CROW with m=14. The coupling coefficients are tailored so that the number 

of holes is the most in the center of the CROW and the fewest at the end of the CROW. 

 
Fig. 5.14. SEM images of (a) a tapered grating-defect resonator and (b) an 
N=6 Butterworth CROW and the close-ups of the defects and the inter-
defect sections 
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The length of the entire CROW is 26.5 µm. 

The transmission of CROWs at frequencies outside the CROW band is ideally very 

low, say −100 dB. However, the measured transmission outside the CROW band can be 

as high as −20 dB. This is mainly due to part of the input power coupling into the leaky 

modes confined by the boundary of the trenches. To increase the loss of the leaky modes, 

we introduce random corrugation on the boundary of the trenches, as shown in Fig. 5.16. 

The amplitude of the corrugation is 1 µm, and the periods are random and uniformly 

distributed between 0.2 and 2.5 µm. With the corrugation, the transmission outside the 

CROW band has been reduced to −40 dB. 

5.3  Measurement of Transmission and Group Delay 

Fig. 5.16 shows the experimental setup for the measurement of transmission and group 

delay. We used a Santec TSL-510A tunable laser whose tuning range is from 1510 nm to 

1630 nm. The input light from laser is collimated by a fiber collimator and focused by an 

objective with a NA of 0.65 to a 2 µm big beam spot. A polarization controller and a 

 
Fig. 5.15. SEM image of the grating resonators and the trenches with 
random corrugation 
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polarization beam splitter are used to select the TE polarization. The focused spot couples 

into the devices with spot-size converters. At the output of the devices, another objective 

collects and images the output on a camera. The image in the camera is very useful in 

aligning the waveguide with the input beam. After seeing the waveguide mode at the 

output, we switch from camera to a photodetector to measure the power and optimize the 

coupling of light. The laser and the photodetector are controlled by Matlab in a computer 

via GPIB. The transmission spectra of the devices are obtained by sweeping the 

wavelength of the laser and are normalized with the output power of a reference 

waveguide. 

The spectra of group delay were measured with a phase-shift technique [40]. As 

shown in Fig. 5.16, we modulated the intensity of the input light with a 200 MHz RF 

signal generated from a RF lock-in amplifier (SR844). The output light was collected 

with a Fujitsu high-speed (2.5 GHz) InGaAs avalanche photodiode (APD) for converting 

photons to electrons and amplification of signal through avalanche multiplication. The 

 
Fig. 5.16. Experimental setup for the measurement of transmission and 
group delay 
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detected signal was sent to the lock-in amplifier to measure the phase difference between 

the reference and the output RF signal. An optical isolator was inserted before the APD to 

remove backreflection from APD. We measured the phase shifts for the devices and 

reference waveguides, respectively. The group delay due to the devices can be obtained 

via 

 
mod

1 ,360
θ θ

τ
−

=
°

d ref

f  
(5-8) 

where θd  and θ ref  are the phase-shifts of the device and the reference waveguide, 

respectively, and modf  is the modulation frequency. For mod 200 MHz=f , a phase 

difference of 1̊ corresponds to a group delay of 13.9 picosecond. The accuracy of the 

phase measurement is therefore very important for group delay of picoseconds. 

The group delay induced by the APD depends on its multiplication factor M, which is 

controlled via a reverse bias voltage rV . A larger M corresponds to a large delay during 

the multiplication process. As we increase the input power, M gradually decreases due to 

saturation. Therefore, the group delay induced by the APD depends on the power and is a 

nonlinear effect. A calibration of the APD needs to be performed before measurement for 

the choice of an appropriate rV . A large M leads to a strong nonlinear effect while a too 

small M leads to a small signal-to-noise ratio. We chose rV  around 41 V for a balance 

between nonlinear effect and signal-to-noise ratio. A calibration of a delay versus optical 

power curve is necessary to correct the nonlinear effect. 

5.4  Measurement Results 

Fig. 5.17 shows the transmission spectrum of a reference waveguide with a SiO2 SSC 

as shown in Fig. 5.1(d). The transmission is defined as the power measured by the 

detector at the output divided by the power in the input fiber, i.e., including the input and 

output couplers. The average insertion loss is 7.4 dB, and the amplitude of the Fabry-
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Perot oscillations due to reflection at the facets is approximately 1 dB. The transmission 

spectra shown in this section are normalized with the transmission of the reference 

waveguide. 

5.4.1  Quality Factor of Tapered Grating-Defect Resonators 

 We measured the transmission spectra of single tapered-grating resonators with 6 

tapered holes. A SEM image of a single resonator is shown in Fig. 5.14(a). The 

transmission peaks were fit with Lorentzian functions, and the Q is obtained as λ λ∆ , 

 
Fig. 5.17. Transmission spectrum of a reference waveguide 

 
Fig. 5.18. (a) Quality factor a function of n. (b) Transmission spectrum of 
a grating-defect resonator with n=24 and Q=1.13×105 
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where λ∆  is the full width at half maximum (FWHM) of the Lorentzian function.  

 Fig. 5.18(a) shows the measured Q as a function of n, the number of holes on each 

side of the defect. Q increases exponentially at lower n and saturates at the intrinsic Q of 

the resonator. We fit the curve with 

 
1 1 1 ,
( ) ( )

= +
i eQ n Q Q n  

(5-9) 

where iQ  is the intrinsic Q and 2
0( ) = ⋅ n

eQ n Q a  is the external Q, according to Eq. (4-15). 

The obtained iQ  is 1.01×105, and a=1.30. Since a≡exp(κgΛ), we obtain 0.689/μmκ =g  

for the regular holes, about half of the value shown in Fig. 4.4 since the holes are much 

shallower. Fig. 5.18(b) shows a transmission spectrum of a resonator with n=24. The 

linewidth λ∆  is 13.7 pm, corresponding to a Q of 1.13×105. 

5.4.2  Butterworth Grating-Defect CROWs 

The coupling coefficients of the N=6 Butterworth CROW shown in Fig. 5.14(b) are 

1 1 2 5 2(1 , , , , ,1 ) /τ κ κ κ τe e B =(1.932, 1.169, 0.605, 0.518, 0.605, 1.169, 1.932). These 

coupling coefficients were converted to regn  based on Eqs. (4-16) and (4-17). We chose 

the bandwidth parameter B so that regn  is equal to 2 in the middle of the CROW (m=14). 

The numbers of regular holes are (−1.76, −1.41, 1.35, 2.00, 1.35, −1.41, −1.76). A 

negative regn  means that the number and size of the tapered holes are reduced, as can be 

seen in the first and second grating sections of Fig. 5.14(b). 

Fig. 5.19(a) shows the transmission spectrum of the N=6 Butterworth CROW. The 

passband is 12 nm wide and the amplitude is flat, with 1.5 ~ 2 dB oscillations, as shown 

in the close-up (Fig. 5.19(b)). The period and amplitude of the oscillations are similar to 

the Fabry-Perot oscillations of a reference waveguide, as shown in Fig. 5.19(c). Therefore, 

we can conclude that the oscillations in the passband are mainly due to the reflection at  
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Fig. 5.19. (a) Transmission spectrum of an N=6 Butterworth CROW with 
m=14. (b) Close-up of the oscillation in the passband in (a). (c) Fabry-
Perot oscillation of a reference waveguide. (d–g)  Transmission spectrum 
of (d) an N=24 Butterworth CROW with m=14, (e) an N=36 Butterworth 
CROW with m=14, (f) an N=8 Butterworth CROW with m=18, (g) an 
N=4 Butterworth CROW with m=22 
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the facets. At the band edge, the transmission decays exponentially (linearly in the dB 

scale), which agrees with the property of Butterworth filters. 

Fig. 5.19(d) and Fig. 5.19(e) show the transmission spectra of m=14 Butterworth 

CROWs with 24 and 36 resonators, respectively. The bandwidth does not change with 

the number of resonators, and the roll-off at band edge becomes steeper with more 

resonators. The oscillations at the passband are larger for 36 resonators and are due to the 

effect of fabrication disorder. Fig. 5.19(f) and Fig. 5.19(g) show the transmission spectra 

of an N=8 Butterworth CROW with m=18 and an N=4 Butterworth CROW with m=22, 

respectively. As m increases and thus the coupling coefficients decrease, the bandwidths 

 
Fig. 5.20. Measured transmission spectra of three m=14 CROWs with 
identical design for (a) N=6 Uniform CROWs, (b) N=6 Butterworth 
CROWs, (c) N=10 Uniform CROWs, and (d) N=10 Butterworth CROWs 
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dropped to approximately 3 nm and 1 nm for m=18 and m=22 respectively. 

5.4.3  Robustness of Butterworth CROWs 

In the measurement we observed that Butterworth CROWs are more robust against 

fabrication disorder than CROWs with uniform coefficients. We measured the 

transmission spectra of several CROWs with identical design and overlapped their 

spectra on the same figure. Fig. 5.20 shows the measured spectra for m=14 CROWs with 

uniform coupling and Butterworth design, respectively. The spectra of Butterworth 

CROWs are similar and consistent, while the spectra of uniform CROWs vary a lot. 

Besides, the passband oscillations of some uniform CROWs are larger than 10 dB. 

Therefore, Butterworth CROWs are more robust than uniform CROWs. According to the 

disorder analysis in Section 2.7, the disorder of resonant frequency is the dominant 

disorder loss, which agrees with the analysis for grating-defect CROWs shown in Section 

4.7. 

5.4.4  Group Delay of Grating-Defect CROWs 

We measured the spectra of group delay with the method described in Section 5.3 . 

The spectra of transmission and group delay for Butterworth CROWs with m=14, 18, and 

22, respectively, are shown in Fig. 5.21. The reflection at the facets causes oscillations in 

the group delay spectra, and the oscillating amplitude is typically a few picoseconds. We 

smoothed out the oscillations with a moving average method. We verified in the 

simulation that the moving average method successfully recovers the distorted spectra to 

the original spectra without reflection at the facets. 

The measured group delay is smaller at the band center and increases as the frequency 

approaches the band edge, which agrees with the dispersion curve of CROWs (Fig. 2.1). 

We took the average of the group delay over the center half of bandwidth as the group 

delays of the CROWs. The group delays of the three CROWs in Fig. 5.21 are 6.79, 9.02, 
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and 5.98 picoseconds, respectively. Considering the lengths of the CROWs which are 

175.1, 116.5, and 30.9 µm, respectively, the group indices of the CROWs are 11.6, 23.2, 

and 58.1, respectively. 

Fig. 5.22 shows the group delay versus the number of resonators for CROWs with 

m=14, 18, and 22, respectively. For every given m, group delay is a linear function of N. 

We fit the data with lines and obtained the group indices from the slope of the lines. The 

group indices for m=14, 18, and 22 are 12.8, 25.3, and 49.0, respectively. The standard 

deviation of group delay for given m and N is smaller than 1 ps. The three curves show a 

reliable control of group velocity via m. 

 
Fig. 5.21. Spectra of transmission and group delay for (a) an N=36 
Butterworth CROW with m=14, (b) an N=20 Butterworth CROW with 
m=18, and (c) an N=4 Butterworth CROW with m=22 
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The maximum numbers of resonators, maxN , for m=14, 18, and 22 are approximately 

50, 20, and 8. The yield decreases as we increase the number of resonators, as presented 

in Fig. 2.12(c) where the disorder loss increases with N. The dependence of maxN  on the 

bandwidth leads to a maximum group delay around 10 ps for the three different m. This 

agrees with the simulated results in Fig. 2.12(c) where the achievable group delay is flat 

over a wide range of bandwidth. 

 

 
Fig. 5.22. Group delay versus N for CROWs with m = 14, 18, and 22, 
respectively 
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Chapter 6  

CROWs Based on Bandgap-Modulated 
Grating Resonators 

6.1  Introduction 

The grating-defect CROWs introduced in Chapter 4 possess short resonator lengths, 

small modal volume, and convenient control of inter-resonator coupling – all because 

they are designed to resonate at the Bragg wavelength of the grating. However, there are 

two drawbacks of these resonators. First, the ultra-small modal volume leads to high 

sensitivity to fabrication disorder, as discussed in Section 4.7 . Second, fabrication of the 

tapered holes (the smallest one is 41.5 nm in radius) is challenging. Moreover, further 

increasing the theoretical Q requires more tapered holes, which will correspond to even 

smaller holes. 

Recently, it has been demonstrated in both theory and experiment that a smooth 

modulation of 1D or 2D periodic structures can create resonances with high quality factor 

[53, 54, 61-64]. Rather than a physical defect cavity, varying the period or the size of the 

holes creates an “extended” defect. Modulation of the unit cells leads to a spatially-

modulated grating band gap, and the resulting resonant mode is smooth in space and 

narrow-band in the spatial frequency domain. Therefore, the Q reported in the literature is 

typically 107 ~ 108 in theory. Since this kind of high-Q resonator does not require 

fabrication of very small holes, they can be more robust. 
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In this Chapter, we introduce the theory of bandgap-modulated grating resonators, 

including the coupled-mode theory and 3D simulations. As discussed in Section 4.4 , 

since the resonant frequencies are near the grating band edge, an additional phase section 

is required for the coupling between resonators. We will show the importance of the 

phase sections in this chapter. Finally, the experiment of bandgap-modulated resonators 

is presented. 

6.2  Coupled-Mode Formalism 

Fig. 6.1(a) shows a schematic drawing of a bandgap-modulated resonator based on a 

grating on a silicon waveguide. The radii of the holes are identical, whereas the periods 

of the holes are modulated in the middle section and uniform in the end sections. The 

modulated period leads to a spatially modulated band gap as shown in Fig. 6.1(b). This 

“extended” defect can support modes whose frequency is outside the band gap in the 

modulated section and within the band gap in the end sections, shown as the blue line in 

Fig. 6.1(b). As a result, the resonant mode propagates as a grating band-edge mode in the 

modulated section and evanesces exponentially in the end sections. 

 
Fig. 6.1. (a) A bandgap-modulated grating resonator. (b) The 
corresponding spatially-modulated grating bandgap 
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The modulated grating can be analyzed with coupled-mode equations similar to Eq. 

(4-1). Since the Bragg frequency varies along the grating, the detuning of propagation 

constant, δ, becomes a function of z. We write the coupled-mode equations as 

 
[ ( )]

,
[ ( )]    

δ δ κ

δ δ κ

= − − +

= − −

B g

B g

da i z a i b
dz
db i z b i a
dz

 
(6-1) 

where 0( ) ( )δ β β≡ −B B Bz z  is the detuning of the propagation constant of the local Bragg 

condition from a reference propagation constant, defined as the Bragg condition of the 

uniform grating. 0δ β β≡ − B  is defined as the detuning of the propagation constant of the 

input frequency from the reference Bragg condition. Therefore, ( ) ( )δ δ β β− = −B Bz z  is 

the detuning of propagation constant from the local Bragg condition. The grating strength 

κ g  is assumed constant for small modulation of the grating. 

The transmission spectra and field distribution of the grating resonator can be 

simulated with Eq. (6-1). The supermodes of the local grating unit cells can be obtained 

by solving the eigenvectors of the coupling matrix, which leads to 

 
( )2 2propagation constant ( )

supermodes .
( )

δ δ κ

κ
δ δ

 = ± − − 

  
=    − ±   

B g

g

B

K z

a
z Kb

 
(6-2) 

The supermodes are propagating if ( )B gzδ δ κ− >  and exponentially decaying or 

growing if ( )B gzδ δ κ− < . We consider frequencies near the lower band edge, i.e., 

δ κ≈ − g . We express δ  as κ δ− +g be , where δbe  is the detuning of propagation constant 

from the band edge of the uniform grating section. If the absolute value of ( )δ δ−be B z  is 

much less than κ g , the frequency is near the local band edge, and the propagation 

constant of the supermodes can be approximated as 

 ( )2 ( ) .κ δ δ≈ ± −g B beK z
 

(6-3) 
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The formula is similar to the wave vector of quantum states in potential wells. An one-

dimensional time-independent Schodinger equation is given by 

 
2 2

2 ( ) ( ) ( ) ( ),
2

ϕ ϕ ϕ− + =
 d z V z z E z
m dz  

(6-4) 

where ϕ  is the wave function, ( )V z  is the potential, E  is the eigen-energy, and m 

denotes the mass of the particle. The wave vector K of the wave function is given by 

 ( )2

2 ( ) .= −


mK E V z
 

(6-5) 

Comparing Eqs. (6-3) and (6-5), we obtain 

 

2

2

( ) ( ).

κ
δ

κ
δ

= −

= −





g
be

g
B

E
m

V z z
m

 
(6-6) 

δbe  represents the energy of the mode, and ( )δB z  defines the energy potential. Therefore, 

we can apply the well-developed knowledge of quantum mechanics to the design of 

bandgap-modulated resonators. As an example, a harmonic oscillator with a quadratic 

( )δB z  will lead to a mode with Gaussian profile, a good function for reducing the 

 
Fig. 6.2. Transmission spectrum of a bandgap-modulated grating 
resonator. (b) Field distribution of the three modes. 
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coupling to the radiation modes. 

We simulate a grating with 1/ μmκ =g . The mirror sections are 5 µm long, and the 

modulated section is 20 µm long.  ( )δB z  of the modulated section is a quadratic function 

which is 0.15/µm at the center and 0 at the two ends. ( ) 0δ =B z  for the mirror sections. 

Fig. 6.2(a) shows the transmission spectrum of the resonator. There are three modes 

confined in the potential well, i.e., between 0δ =be  and 0.15/µm. Modes with 0δ <be  are 

band-edge modes of the grating. Fig. 6.2(b) shows the field distribution of the three 

modes. The first mode corresponds to 0.123 / μmδ =be , which is the deepest inside the 

potential well. The field is close to a Gaussian and is the fundamental mode of the 

resonator. The second and third modes are at 0.0692 / μmδ =be  and 0.0186 / μm , 

respectively. They have two and three lobes, respectively, in the field distribution. The 

frequency spacings between adjacent modes are about equal, similar to the case of 

harmonic oscillators. 

The number of modes can be controlled with the depth and width of the modulation, 

( )δB z . Increasing the width or depth results in more number of modes. The coupled-

mode equations here do not account for radiation modes. The radiation loss can be 

estimated with Fourier analysis or calculated in 3D simulations. 

6.3  High-Q Bandgap-Modulated Resonators 

We consider the same waveguide grating used in Section 4. The resonator is shown in 

Fig. 6.1(a). The silicon waveguides are 490 nm wide and 220 nm thick. The radii of the 

holes are 100 nm. We chose a=362 nm as the grating period of the mirror sections. In the 

modulated section, the period is decreased to 0a =350 nm with a quadratic modulation. 

There are 2M-1 holes (M different periods) in the modulated section and m holes in each 

mirror section. The periods of 362 nm and 350 nm correspond to lower-frequency band 
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edges at wavelengths of 1596.5 nm and 1561.2 nm, respectively, as shown in Fig. 6.3(a). 

As a result, the resonant frequency falls in between the two wavelength and was found to 

be near 1570 nm. 

Fig. 6.3(b) and Fig. 6.3(c) show the quality factor and resonant wavelength as we 

increase the number of mirror holes, m. The intrinsic Q is as high as 81.83 10× . At lower 

m, the external Q can be fitted as 0= ⋅ m
eQ Q a , where a=1.88. Compared to grating-defect 

resonators shown in Section 4, where adding one hole increases the Q by a factor of 3.42, 

the grating strength of bandgap-modulated resonators is weaker since the frequency is 

near the band edge. The resonant wavelength also changes with m. As m increases, the 

 
Fig. 6.3. (a) Band-edge wavelength as a function of grating period. (b) 
Quality factor of the designed bandgap-modulated resonators as a function 
of m. (c) Resonant wavelength as a function of m 
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resonant wavelength goes deeper in the potential well and eventually saturates at a value. 

This is different from the case of grating-defect resonators where the resonant wavelength 

is always at the Bragg wavelength. 

6.4  Coupling Bandgap-Modulated Resonators for CROWs 

In Section 4.4, we have discussed inline coupling of resonators. Two resonators 

coupled via a waveguide are equivalent to two directly coupled resonators. The coupling 

coefficient depends not only on the individual quality factors but also on the round-trip 

phase of the coupling cavity, 2θ . The individual resonant frequencies are shifted due to 

the coupling if 2θ  is not equal to π. The formulas for the coupling coefficient and the 

frequency shift were shown in Eq. (4-12). 

We mentioned in Section 4.4 that for CROWs we require 2θ  equals π. This can be 

explained using Fig. 6.4. Fig. 6.4(a) shows a CROW where resonators are coupled via 

waveguides. The round-trip phases of the coupling cavities are 2θ , and the external loss 

of each resonator to each waveguide is 1 τ e . According to the derivation in Section 4.4 , 

the CROW in Fig. 6.4(a) is equivalent to the CROW in Fig. 6.4(b), where resonators are 

 
Fig. 6.4. Schematic drawings of (a) indirectly coupled resonators and (b) 
directly coupled resonators which are equivalent to (a) 
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directly coupled. The frequency shifts of the resonators depend on the number of 

resonators they are coupled to. The first and last resonators are shifted by 

cotω θ τ∆ = − e , while the rest of the resonators are shifted by 2 2cotω θ τ∆ = − e . 

Resonators with different frequency shifts can distort the CROW spectra. When 2θ π= , 

all the frequency shifts are zero and the resonant frequencies are identical. Besides, the 

inter-resonator coupling coefficient is given by cscθ τ e , while the external loss to the 

input and output waveguides are 1 τ e . They are equal only when 2θ π= .  

Fig. 6.5 shows the transmission spectra of 10-resonator CROWs with different 2θ . 

When 2θ π= , both the coupling coefficients and the resonant frequencies are uniform, 

so the spectrum is symmetric and maximally flat (Fig. 6.5(a)). As we increase 2θ , the 

frequency shift is positive, and the coupling coefficient increases. Therefore, we start to 

 
Fig. 6.5. Transmission spectra of 10-resonator CROWs with 2θ = (a) π , 
(b) (5/4)π , (c) (3/2)π , and (d) (7/4)π  
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see the center of the spectra move and the bandwidth become broader (Fig. 6.5(b-d)). 

Due to the non-uniform resonant frequencies and coupling coefficients, the passband 

oscillations increase as 2θ  increases from π. Therefore, choosing 2θ π=  for the inter-

resonator coupling cavity is important for CROWs. 

We consider the round-trip phase for the coupling of grating resonators. Fig. 6.6(a) 

shows an inter-resonator cavity whose length is d. The round-trip phase 2θ  consists of 

the reflection phase from the grating and the propagation phase in the cavity. The single-

side reflection phase of the grating is given by 12 sin ( )θ π δ κ−= − −r g . At the Bragg 

wavelength ( 0δ = ), 2θ π= −r , and the round-trip phase is exactly π− . No additional 

 
Fig. 6.6. (a) Schematic drawing of the inter-resonator coupling cavity. (b) 
Transmission spectra of 10-resonator CROWs with d = 0, 60, and 120 nm, 
respectively (m=1). (c–d) Spectra of transmission and group delay for 10-
resonator CROWs with d = 120 nm and with m=1 and m=3, respectively 
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cavity is required for the Bragg wavelength. For the bandgap-modulated resonators which 

resonates near the band edge ( δ κ≈ − g ), an addition phase section is required. If we 

consider 0.9δ κ= − g , a phase section corresponding to a phase of 1sin (0.9) 0.36π− =  is 

required. Since the effective index of the waveguide is 2.4 for a wavelength of 1570 nm, 

the phase of 0.36π  corresponds to d=118 nm. 

We simulated the transmission and group delay of CROWs based on bandgap-

modulated resonators in 3D simulations. Fig. 6.6(b) shows the transmission spectra of 

N=10, m=1 CROWs with d = 0, 60, and 120 nm, respectively. The resonant wavelength 

of a single resonator is at 1570.7 nm. Without the phase section, the spectrum with d = 0 

consists of large oscillations. The wavelength blue-shifts, and the bandwidth is broad. 

With d = 120 nm, the oscillations are much smaller, and the wavelength does not shift. 

However, the peak of the transmission is smaller. Fig. 6.6(c) and Fig. 6.6(d) show the 

transmission and group delay of CROWs with d = 120 nm and with different m (m=1 and 

3). With m=3, the bandwidth is narrower, and the group delay is larger. The control of 

coupling coefficients via m is similar to the control of coupling coefficient in grating-

defect resonators. However, the wavelength changes with m in bandgap-modulated 

CROWs. 

6.5  Effect of Disorder on Bandgap-Modulated CROWs 

We calculate how deviation of the hole radii affects the resonant frequency. Fig. 6.7 

shows the wavelength shift corresponding to 1 nm change of radius for each hole starting 

from the one at the center of the modulated region. Since the mode is concentrated at the 

center, the resonant wavelength is more sensitive to the deviation of the first few holes. If 

the standard deviation of each hole radius is δr = 1 nm, the standard deviation of the 

resonant wavelength, considering holes on both sides of the defect, is δλ = 0.756 nm. 
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Depending on the fabrication quality (δr), the standard deviation of the resonant 

wavelength is δλ = 0.756·δr . The disorder in the resonant frequency for bandgap-

modulated resonators is slightly smaller than that for grating-defect resonators shown in 

Chapter 4. To reduce the disorder in resonant frequency for a given deviation of hole 

radii, we can increase the length of the modulated section while decreasing the 

modulation depth of the period. In this way the modal size is longer, and the resonant 

wavelength is less sensitive to the deviation of holes. 

6.6  Experiment Results 

We fabricated bandgap-modulated resonators and CROWs with a different geometry 

of grating. Fig. 6.8(a) shows a top image of a CROW. The waveguide is 565 nm wide. 

The holes are in a racetrack shape and are 150 nm long in the longitudinal direction and 

452.5 nm wide in the transverse direction. The periods are 377.5 nm in the mirror section 

and 362.4 nm at the center of the modulated section, with a quadratic modulation. The 

modulated section consists of 9 different periods (M=9) and thus 17 holes. The length of 

the coupling section was chosen as 120 nm, as shown in Fig. 6.8(a) and Fig. 6.8(b). As 

 
Fig. 6.7. Shift of resonant wavelength due to 1 nm change of radius for 
each hole starting from the center of the modulated section 
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we increase the number of mirror holes (m), the quality factor increases and saturates at 

the intrinsic Q. Fig. 6.8(c) shows the transmission spectrum of a resonator whose Q is 

53300. Fig. 6.8(d) shows the transmission spectrum of a 6-resonator CROW with M=8. 

The bandwidth is approximately 4 nm. 

In summary, we have demonstrated the design and experiment of bandgap-modulated 

resonators and CROWs. Compared to grating-defect resonators, bandgap-modulated 

resonators do not consist of small holes and are more robust in fabrication. These 

resonators possess higher theoretical Q. However, CROWs with these resonators require 

 
Fig. 6.8. (a) SEM image of a CROW based on bandgap-modulated 
resonators. Arrows point out the coupling sections. (b) Close-up of the 
coupling section. (c) Transmission spectrum of a bandgap-modulated 
resonator. (d) Transmission spectrum of an N=6 CROW with M=8 
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inter-resonator coupling sections. We showed in simulation and experiment that a 

judicious choice of the coupling sections reduces the oscillations in the transmission 

spectra and leads to maximally flat transmission. 
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Chapter 7  

Grating Induced Transparency (GIT) 

7.1  Introduction 

Electromagnetically induced transparency (EIT) is a phenomenon that comes from 

quantum destructive interference between excitation pathways to the upper level of an 

atomic three-level system [65]. The combination of absorption cancellation and strong 

dispersion has led to the observation of very slow and stored light [14, 66]. In these 

experiments, atoms are prepared in a “dark”, coherent superposition of the two lower 

levels, a stationary eigenstate of the system of a three-level atom and two laser fields. 

Classical analogs of EIT can be established in coupled optical resonators, referenced 

as coupled-resonator-induced transparency (CRIT) [67], where the mode splitting is a 

classical counterpart of dressed states arising from ac Stark effect. Several configurations 

of coupled resonators to obtain EIT-like resonances have been proposed and 

experimentally demonstrated [67-75]. These EIT-like resonances demonstrate much 

narrower linewidth than those of individual resonators. 

In this chapter we propose to use a three-mode waveguide modulated by two co-

spatial gratings as an optical analog to EIT. The three waveguide modes play the roles of 

the three quantum states in EIT, while the gratings are counterparts of the 

electromagnetic waves. Unlike CRIT, where the waveguide-resonator and inter-resonator 

coupling occur only at discrete points, the coupling of waveguide modes by gratings is 
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continuous along the waveguide. This enables us to describe our system by coupled mode 

equations, in analogy to the Hamiltonian in the EIT system. The counterpart of the dark 

state in EIT is one of the supermodes of the waveguide-plus-grating system. By inserting 

phase shifts or apodizing the gratings, we are able to utilize the slow dark mode and 

produce EIT-like resonance. The structures can be a new class of optical resonators or 

optical delay lines. 

7.2  Grating Induced Transparency and the Dark Mode 

Guided by the formalism of the EIT three quantum state atomic system, we consider a 

waveguide supporting three distinct spatial modes with complex amplitudes a, b, c, 

propagation constants βa, βb, βc, and containing two co-spatial gratings (one connects a 

and b; the other connects b and c). We do not restrict the direction of propagation of each 

mode. In the case of weak perturbation, the eigenmodes of the waveguide-plus-grating 

system, the supermodes, can be taken as linear superpositions of the unperturbed modes a, 

b, c, which obey the coupled equations [76]: 

 

2exp( )

2 2exp( ) exp( )

2exp( )

πβ κ

π πβ κ κ

πβ κ

= − + −
Λ

= − + +
Λ Λ

= − + −
Λ

a ab
ab

b ba bc
ab cb

c cb
cb

da j a j z b
dz
db j b j z a j z c
dz
dc j c j z b
dz

,
 

(7-1) 

where Λab = 2π/(βa0 − βb0) and Λbc = 2π/(βc0 − βb0) are the periods of the two gratings 

designed for a center frequency ω0. κij (i, j = a, b, c) are the coupling coefficient 

connecting modes i and j. By introducing new variables A, B, C, defined by a(z) = 

A(z)exp(−jβa0z), b(z) = B(z)exp(−jβb0z), c(z) = C(z)exp(−jβc0z), we arrive at a z-

independent coupling matrix: 
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(7-2) 

where δi ≡  βi − βi0 is the detuning of the propagation constant. In the neighborhood of ω0, 

δi = ni(∆ω)/c where ni is the group index of each mode and ∆ω = ω−ω0. The eigenvectors 

of the matrix are the supermodes of the perturbed waveguide, while the eigenvalues are 

the propagation constants of the supermodes. For example, the electric field of a 

supermode [va vb vc]T with a propagation constant µ is given by exp( )µ− ⋅i z  

0 0 0[ exp( ) ( , ) exp( ) ( , ) exp( ) ( , )],β β β− + − + −a a a b b b c c cv i z E x y v i z E x y v i z E x y  where 

( , )iE x y  is the transverse mode profile. At center frequency ω0, one of the supermodes is 

proportional to [κbc 0 −κba]T, with the eigenvalue equal to 0. In this supermode, which we 

name the dark mode, the intermediate mode B is unexcited. For comparison, the coupled 

equation of EIT ignoring decay rates is [65] 
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(7-3) 

where Ωp and Ωc are the Rabi frequencies of the probe and coupling beams, respectively, 

and ∆ω is the frequency detuning of the probe beam. Eqs. (7-2) and (7-3) are similar on 

resonance. They are respectively equations of space and time. Conservation of energy 

defines the relation between κij and κji [76]: If mode i and j copropagate, κij = −κji
* ; if 

mode i and j counterpropagate, κij = κji
*. Suppose A is the input forward mode, there are 

four different choices of propagating directions of mode B and C (Fig. 7.1). The formal 

similarity between Eqs. (7-2) and (7-3) depends on the nature of the κij coefficients, 

which implies both modes B and C are forward propagating (Fig. 7.1(a)). This makes 

sense since in quantum mechanics each state evolves forward with time. Nevertheless, 
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the choice which is the most interesting for our slow light phenomenology is one where 

mode A is forward while B and C are backward propagating (Fig. 7.1(d)). A short-period 

grating connects modes A and B (κab), while a long- period grating connects modes B 

and C (κbc). The coupling constants obey κbc = −κcb
* and κab = κba

*. By shifting constant 

phases of variables A, B, and C, Eq. (7-2) can be rewritten as 
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(7-4) 

where K is defined as the coupling matrix. Now both κab and κbc are real numbers. At 

∆ω = 0, if |κab| ≠ |κbc|, the corresponding eigenvectors and eigenvalues are: 
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and  
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(7-6) 

The three eigenvectors are not orthogonal to each other. They are nearly parallel when 

|κab| and |κbc| are nearly equal. The two bright modes can propagate only if |κab| < |κbc|, in 

 
Fig. 7.1. Four configurations of the directions of the three modes. The 
black grating (/) couples modes A and B, while the red grating (\) couples 
mode B and C. The gratings are short-period or long-period depending on 
the directions of the connected modes. 
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which case the propagation constants ± ∆β0 are real. Interestingly, the dark mode is a 

“propagating” (non-evanescent) supermode consisting of a superposition of two counter-

propagating waves, A and C, which results in a group velocity that falls between the 

positive group velocity of the forward wave A and the negative group velocity of the 

backward wave C and can be derived by perturbation theory as 

 
2

, 2

1 ,α
α

−
= ⋅

+
g dark

a c
v c

n n  
(7-7) 

where the tuning factor α ≡  κab / κbc.  The group velocity is reduced to 0 when α  

approaches 1. We focus on the region |α| < 1 where the group velocity is positive. 

Plotting the propagation constants of the three supermodes as functions of ∆ω results in 

the band structure shown in Fig. 7.2 where α = 0.9. In general the waveguide is not 

periodic, unless the ratio of Λab and Λbc is rational. Therefore, the band structure has two 

sets of Brillouin zones that repeat the dispersion curves periodically. The three modes 

intersect at ∆ω = 0 and anti-crossing occurs. A narrow transmission band in the center 

lies between two band gaps. All the three supermodes can propagate within the 

 
Fig. 7.2. (a) Band structures of a GIT waveguide. na = 1.5, nb = 2.5, nc = 2. 

abκ  = 90/m, bcκ  = 100/m. Dash lines are the band structure without 
grating perturbation. (b) Zoom-in figure of the bending region. The red 
dashed curve is the dark mode. 

(a) (b)
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transmission band, while no forward-propagating mode exists within the two band gaps 

since the only propagating supermode consists mainly of backward modes B and C. The 

group velocity dispersion (GVD) of the dark mode in the center (∆ω = 0) is zero. The 

group velocity of the two bright modes is vg,bright = −(1−α2)·c/n in the assumption that na ≈ 

nb ≈ nc ≈ n. 

7.3  Uniform GIT Waveguides 

To take advantage of the new modes, especially the dark one, we propose two types of 

structures. The first is a uniform one where both gratings (κab and κbc) are of uniform 

strengths along the length L of the waveguide. If the boundary condition corresponds to a 

single input mode A at z = 0 and no input backward modes B and C at z = L, the field at z 

= L is proportional to [1 0 0]T, which decomposes into all the three supermodes. 

Transmission of mode A and field distribution along the structure can be obtained by 

back propagating the three supermodes to z = 0. Unity transmission at ∆ω = 0 results if 

the length is a multiple of Lmin = 2π/ 2 2κ κ−bc ab  since 0 and 2 2κ κ± −bc ab  are the 

 
Fig. 7.3. (a) Transmission spectrum of a uniform structure. abκ  = 900/m, 

bcκ  = 1,000/m, and L = Lmin = 1.44 cm. The refractive indices are na = 
1.45, nb = 1.425, and nc = 1.4. (b) Transmission spectrum in a narrower 
span of the same structure in (a) 

(a) (b)
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propagation constants of the three supermodes. Fig. 7.3 shows the transmission spectrum 

of a waveguide with α = 0.9 ,κbc = 1,000/m, and L = Lmin = 1.44 cm. The transmission 

spectrum is similar to that of EIT. The FWHM bandwidth is 66.2 MHz, and the group 

delay in the center wavelength is 4.97 ns with group velocity reduction of 71.3 (compared 

to group velocity of mode A). 

The case of uniform gratings occupying 0 < z < L can be viewed as a resonator where 

the two backward bright modes are reflected into the forward dark mode at z = 0 and 

conversely at z = L. The round-trip phase of the cavity includes the forward propagation 

of the dark mode, the backward propagation of the two bright modes, and the phase of 

reflectance of the two mirrors. This explains why L has to be a multiple of Lmin for 

resonance at ∆ω = 0. Since the transmission of mode A depends on phase matching of the 

three supermodes, the bandwidth is extremely narrow and the group velocity reduction is 

much larger than that of the dark mode in Eq. (7-7). At ∆ω = 0, the field distributions of 

the individual modes are 
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(7-8) 

assuming the input A(0) = 1. Fig. 7.4 plots the field distribution for α = 0.95 and L = 

2Lmin. Since the three supermodes are nearly parallel, they interfere constructively to 

extremely high intensities of individual modes A, B, C in the middle of the structure, and 

destructively interfere to small intensity of A at the two ends. The quality factor Q of the 

resonator defined as ω ⋅ (energy stored) / (power loss) can be obtained from Eq. (7-8) 

assuming na ≈ nb ≈ nc and is given by 
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where L is fixed to be a multiple of Lmin. If α is close to 1, say 0.999 for example, the 

factor (1+2α2)/(1-α2)2 is as high as 7.5×105, while the length required is 14 cm assuming 

κbc = 1,000/m. By employing gain in the structure with a high quality factor we can make 

a laser with the minimum threshold gain occurring when L is a multiple of Lmin and is 

inversely proportional to the quality factor. 

For the example in Fig. 7.3, the phase shift across the transmission band is about π, 

limiting the delay-bandwidth product less than 0.5, like a single resonator. Cascading N 

resonators, namely increasing L to N · Lmin, will result in more delay but reduced 

bandwidth, since the phase mismatch of the three supermodes is approximately 

proportional to (∆ω)L. In fact, as shown in Fig. 7.6(a), there are 2N−1 peaks in the 

transmission spectrum, each with a phase shift of π across, limiting the delay-bandwidth 

product still less than 0.5.  To break this limit, we propose to invert the sign of α (=κab / 

κbc) every Lmin along the waveguide, as illustrated in Fig. 7.6(a). By doing this periodic 

 
Fig. 7.4. Energy distribution of a uniform structure with L = 2Lmin and an 
input A(0) = 1. abκ  = 900/m, bcκ  = 1,000/m, and L = 2.88 cm. The 
refractive indices are na = 1.45, nb = 1.425, and nc = 1.4. 
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inversion, it can be shown that the first-order term of the reflectance at z=0 as a function 

of ∆ω is cancelled out when N is even. Fig. 7.5(b) and Fig. 7.5(c) show the transmission 

spectrum and group delay of the modified waveguide with L = N · Lmin, where the 

bandwidth is not reduced and the envelope of the ripples is approximately a quadratic 

function. The group delay at ∆ω = 0 and the quality factor of the modified waveguide is 

exactly the same as the original one, while the delay-bandwidth product is unlimited and 

the total phase shift across the bandwidth is Nπ. 

 
Fig. 7.5. (a) Transmission spectrum of a uniform structure with L = 6Lmin. 
(b) Transmission spectrum of a uniform structure with L = 6Lmin and 
periodic inversion of abκ . (c) Group delay of the structure in (b) 

(b)(a)

(c)
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7.4  Adiabatic GIT Waveguides 

The second structure limiting the excitation to the dark mode alone is achieved by 

employing adiabatic transition [77, 78]. This is accomplished by changing the structure 

(waveguide + gratings) sufficiently slowly along the direction of propagation (z) so that 

the propagating wave remains in the same local eigenmode. As shown in Fig. 7.6(b), the 

waveguide consists of two adiabatic regions at the two ends and a uniform region in the 

middle. κbc is set to be a constant throughout the structure, while κab, and thus α, are 

functions of z. The input mode A entering the structure encounters only grating κbc and is 

thus the dark mode (Eq. (7-5)) where it will remain till exiting the structure. As it 

propagates, the grating κab is turned on spatially adiabatically. In the middle of the 

structure, the dark mode which now has a mode C component possesses a small group 

 
Fig. 7.6. (a) abκ  and bcκ  in a uniform structure with periodic inversion. (b) 

abκ  and bcκ  in an adiabatic structure. Lad and Luni are the lengths of the 
adiabatic and uniform region, respectively 

(a)

(b)
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velocity. At the output, κab is adiabatically decreased to 0, and the propagating wave is 

transformed back, always staying dark, to mode A at the exit. 

The adiabatic condition ensuring that a wave remains in the same (dark) mode is 

defined as the situation where the fraction of the energy converted to other modes never 

exceeds an arbitrarily chosen small number ε . The adiabatic condition of the GIT 

waveguide and an optimal function α(z) can be derived in a similar way as in quantum 

mechanics [79] and an adiabatic mode converter [80], with careful treatment of the non-

orthogonal basis. The three eigenvectors in Eqs. (7-5) and (7-6) should be renormalized 

such that the total forward energy flow is 1 or −1, given by 
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2 2

1
1 10 ,  1 .

1 2(1 ) 1

α

α
α αα

−  
  = = ± −  − −       

j

j
dark bright -1,2v v

 
(7-10) 

When decomposing a vector x = [A B C]T into the three supermodes, the amplitude of 

each supermode can be determined by the product with the associated left eigenvectors of 

the coupling matrix K since δ=T
iji ju v , where ui

T and vi are respectively the i-th left and 

right eigenvectors associated with the eigenvalue λi of the coupling matrix K. The fields x 

can be written as the superposition of the supermodes vi , 

 0
,

( ) ( ) ( ) exp[ ( ') '].β
=

= −∑ ∫
z

i i
i dark bright

z a z z j z dzix v
 

(7-11) 

Substituting Eq. (7-11) into the coupled equations ( ) ( ) ( )=d z dz z zx K x  (Eq. (7-4)) leads 

to 

 0
,

[( ) ( )]exp[ ( ') '] 0.β
=

∂ + ∂ − =∑ ∫
z

z i i z i
i dark bright

a a j z dzi iv v
 

(7-12) 

For adiabatic transition of the Dark mode (vdark), 1≈darka  and 1,2 0− ≈brighta . Multiplying 

ubright-1
T from the left side results in 

 
z

1 bright-10
/ ( )exp[j ( ') '],β− = ∂ ∫T

bright zda dz z dzbright -1 darku v
 

(7-13) 
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since βdark = 0. ( )∂T
zbright -1 darku v  can be shown to be 

22(1 )α α − ⋅∂ ∂ j z , and with the 

assumption that it is slowly varying compared to the exponential term, Eq. (7-13) can be 

solved as 

 bright-1 bright-1
1 2 3/2

2( ) sin( ) exp[ ].
(1 ) 2 2

β βα
κ α−

− ∂
=

− ∂bright
bc

ja z z j z
z  

(7-14) 

Likewise for abright-2(z). The adiabatic condition where only the Dark mode exists requires 
2 2

1 2( ) ( ) ε− −+ ≤bright brighta z a z , which give 

 
3

2 2(1 ) .
4

α κ α ε≤ −bcd
dz  

(7-15) 

The closer α is to 1, the smaller dα/dz is required to achieve adiabaticity. By solving Eq. 

(7-15) with equality, we obtain an optimal function α(z) given by 

 

 1( ) sin (tan( )),α −=z az
 

(7-16) 

where a is a scaling constant. It takes infinite length to transform α to 1 to reach zero 

group velocity. Fig. 7.7 shows the transmission spectrum and group delay of an adiabatic 

GIT structure, where α of the uniform region is 0.9 and the total length is 10 cm. The 

 
Fig. 7.7. (a) Transmission and (b) group delay of an adiabatic structure. 
Lad = 3 cm, Luni = 4 cm, bcκ  = 4,000/m, and maxα = 0.9. The refractive 
indices are na = 1.45, nb = 1.425, and nc = 1.4. 

(a) (b)
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transmission spectrum resembles a rectangular function, with a bandwidth of 4.48 GHz, 

equal to that of the dark mode of the uniform region. The group delay mainly depends on 

the group velocity of the dark mode of the uniform region and is 2.92 ns at the center 

wavelength with group velocity reduction of 6.04. The delay-bandwidth product, which is 

13.1 in this case, can be made arbitrarily large by increasing the length of the uniform 

region without reducing the bandwidth. 

7.5  Discussion 

We have analyzed the EIT-analog waveguide and proposed two types of structures to 

control the propagation of supermodes. This GIT waveguide can be implemented using a 

few-mode fiber or a few-mode on-chip waveguide. One short-period grating and another 

long-period grating are imposed on the waveguide. For a waveguide with geometric 

symmetry, the modes are either symmetric or anti-symmetric, so are the gratings that 

couple the modes. Therefore, the two gratings can be independent of each other if they 

have opposite symmetry. The symmetry of a grating can be controlled by tilting the 

grating in fibers or designing the transverse profile of a waveguide grating. The phase 

indices of the three modes should be carefully chosen, in case any unwanted mode is 

coupled by one of the gratings, since there are three forward and three backward modes 

in total. Moreover, to reduce loss, coupling into the radiation modes should be prevented. 

In conclusion, the new energy storage mechanism resulting from the internal bouncing 

of waves between two Bragg gratings gives rise to a new class of propagating modes 

which includes a dark mode with “slow light” characteristics. These modes can 

potentially form the basis of a new class of narrow band filters, high Q resonators and 

lasers. The adiabatic GIT structures which excite the dark mode alone possess high delay-

bandwidth product. 
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Chapter 8  

Conclusion 

8.1  Summary of the Thesis 

In this thesis, we discussed methods for overcoming the transmission losses of 

CROWs – Resonator loss, discontinuity between CROWs and waveguides, and 

fabrication disorder. These transmission losses have been the major limitation of CROWs 

since it was proposed in 1999 [26]. The type of resonators we worked on are waveguide-

grating resonators, including grating-defect resonators shown in Chapter 4 and bandgap-

modulated resonators shown in Chapter 6. The features of these resonators are their small 

footprints, control of coupling coefficients via holes, and natural implementation on 

waveguides. 

We overcame the resonator loss by designing high-Q grating-defect resonators. We 

demonstrated a systematic design approach for choosing the taper profile which 

minimizes the coupling to radiation modes and possesses a Q of 2.16×106.  We presented 

the design of bandgap-modulated resonators which possess a Q of 81.83 10× . In the 

fabrication, we developed the recipes which minimize the roughness on the sidewall. The 

measured Q is approximately 105 and is high enough that the propagation loss with a 

delay of a few picoseconds is negligible. We demonstrated the coupling of these high-Q 

resonators and the control of coupling coefficients via the number of holes. 
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The discontinuity between CROWs and waveguides is addressed by adiabatically 

changing the coupling coefficients. While we were working on the choice of the coupling 

coefficients, we found that the optimal design is a Butterworth filter. Therefore, we 

developed a filter design formalism for deriving the coupling coefficients which directly 

relate to a desired filter response. The formalism is based on coupled-mode theory and 

can be applied to various types of resonators, including grating resonators. The filters of 

interest are Butterworth filters and Bessel filters, which possess optimal-flat transmission 

and optimal-flat group delay, respectively. The final step in the optimization of CROWs 

is an “ideal” optical delay line which possesses constant amplitude and constant group 

delay simultaneously over a prescribed bandwidth. This ideal delay line is based on a 

reflecting and tailored-coupling CROW whose transfer function is an all-pass Bessel 

filter. 

We analyzed the effect of disorder in resonant frequencies and coupling coefficients 

on CROWs, especially CROWs based on grating resonators. The effect of disorder in 

resonant frequencies is bandwidth-dependent, while the effect of disorder in coupling 

coefficients is independent of the bandwidth. We showed in the simulation that 

Butterworth filters are more robust against disorder in resonant frequencies than CROWs 

with uniform coupling. This was later confirmed in the measurement of grating CROWs. 

In the experiment of grating CROWs, we concluded that the disorder of resonant 

frequencies is the dominant disorder effect, which is based on the fact that Butterworth 

filters are more robust than uniform CROWs and that the disorder effect is bandwidth-

dependent. 

We demonstrated the fabrication and measurement of grating CROWs. We worked on 

several types of couplers for increasing the coupling efficiency and reducing the facet 

reflection. The most significant results include high-Q (Q~105) grating resonators, 
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coupling of up to 50 resonators, control of group velocity (between c/13 and c/49) via the 

number of holes, and Butterworth filters. These devices are very short on silicon 

waveguides (less than 10 µm per resonators). 

I also presented my earlier work on an optical analog to EIT. The proposed GIT 

structure consists of two co-spatial gratings imposed on a three-mode waveguide. One of 

the supermodes, the Dark mode, possesses a group velocity which depends on the ratio of 

the two grating strengths. The group velocity approaches zero when the two grating 

strengths are nearly equal. We proposed an adiabatic structure which excites only the 

Dark mode. 

In summary, this thesis presented the theory and experiment of CROWs and grating 

structures. Three kinds of transmission losses have been addressed by the design of 

resonators and coupling coefficients as well as the fabrication. The grating CROWs 

developed in this thesis may be important components of optical networks in the future. 

8.2  Outlook 

Bandgap-modulated resonators for CROWs can potentially be more robust than 

CROWs based on grating-defect resonators, due to the identical and larger hole sizes. 

The experimental results shown in Chapter 7 are preliminary. We are working on the 

realization of bandgap-modulated CROWs with our optimized fabrication technology. 

Filter design based on bandgap-modulated CROWs will be tricky, since the resonant 

wavelength changes with the number of mirror holes. Since Butterworth filter design 

suppress the disorder effect, it may be necessary to apply the filter design. 

Grating resonators can also be side-coupled in the transverse direction. Adjacent 

resonators couple to each other via the evanescent field in the cladding, and the coupling 

strength depends on the distance between adjacent waveguides. Controlling the coupling 
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strength via the gap between waveguides can be challenging. However, this may enable 

filter design on bandgap-modulated resonators since the coupling coefficients are 

independent of the resonant frequency. 

Grating resonators with weaker grating strength may be interesting. Since the modal 

size is larger, it will be less sensitive to fabrication disorder. CROWs with narrower 

bandwidth and larger group delay will be possible with weaker gratings. The footprints of 

the CROWs will increase as well, so there is a trade-off between large group delay and 

small footprints of CROWs. Weaker gratings on silicon waveguides can be achieved with 

shallower holes or sidewall gratings. 

One important application of slow light is nonlinear optics. If all the components in 

the nonlinear process, i.e., pump, signal, and idler, are slowed down, the nonlinear 

efficiency is greatly enhanced. The major limitations of slow light enhanced nonlinear 

optics are the propagation loss and the group velocity dispersion. The propagation loss 

can be overcome with the fabrication of high-Q resonators. The group velocity dispersion 

may be minimized with a judicious choice of coupling coefficients. In this thesis we have 

shown the filter design approach and various types of filters for both transmitting and 

reflecting CROWs. It is worth studying the choice of coupling coefficients for nonlinear 

optics in both theory and experiment. 

The idea of GIT which consists of two gratings and three modes may be applied to the 

design of 2D photonic crystal. In a 2D photonic crystal, there are infinite number of 

reciprocal vectors. The idea of GIT can be realized with two reciprocal vectors and three 

plane waves. GIT in photonic crystals results in a dispersion curve whose slope is small 

over a range of frequencies and controllable via the strength of the two Fourier 

components. 
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