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Abstract

The stepback and partial grid techniques were used in the numerical simulation of lam-
inar viscous reacting flows past cones at incidence. The stepback technique is a method
for computing exactly flows which are truly conical, and can be an effective approximate
method for nearly conical flows such as viscous flow past cones. The partial grid tech-
nique uses a stepback solution as the upstream boundary condition for a time-marching
calculation, and is more accurate than the stepback method. Both frozen and chemically
active equilibrium flow were considered, using the Ideal Dissociating Gas model. Compu-
tations were performed for frozen hypersonic flow past a 10° half-angle cone inclined at
24° incidence, and for hypervelocity flow past a 15° half-angle cone at 30° incidence with
active dissociation and recombination chemistry. These computations were compared with
experiments, and the effects of equilibrium and non-equilibrium chemistry were observed.
These calculations also show that the effects of chemistry on heat transfer and separation
location are small and of the same order as the errors associated with the stepback method.
Therefore, for high accuracy in computing reacting flows, the partial grid method should

be used.
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Chapter 1

Introduction

A critical aspect of the design of reusable spacecraft is an accurate prediction of the
flowfield during hypersonic atmospheric reentry. Wind tunnel testing is difficult for these
flows, since the proper scaling of both viscous and chemical effects would require full-scale
models at flight conditions. During reentry at a high angle of attack, dissociation and
recombination reactions will significantly affect the flowfield. At such high angles of attack,
complex shock-vortex systems develop on the leeward side of the reentry body, and these
systems can cause intense heat transfer [7].

The non-equilibrium flow field is quite different than the frozen or equilibrium limits,
and cannot be predicted by such simulations [8]. During the reentry of the maiden flight
of the Space Shuttle Orbiter, the pitching moment was significantly different than the pre-
flight predictions [9]. These predictions were based on cold hypersonic wind-tunnel test
which could not reproduce real gas effects.

Here we study the hypervelocity flow past a cone at a high angle of attack. The cone
is a simple body shape which results in a complex, fully three-dimensional flow pattern of
the type expected to occur in more complex geometries. These flows are studied with two
numerical techniques, the stepback method and the partial grid method. These methods
are applied to frozen, equilibrium, and non-equilibrium flows, and the results are compared
with experiments.

In the following sections we describe the basic features of cone flow and review some
of the literature on the subject. In the later chapters we describe the numerical methods
used, the chemistry model, and the special techniques used to simulate these cone flows.
Then the details of the frozen zero incidence tests are given, followed by the reacting cone
tests at incidence. The stepback method is shown to be a cheap and effective way to get
approximate solutions for cone flows, and can be combined with a partial grid technique to

get more accurate solutions.



9.
1.1 General Features of Flow Past a Cone

Figure 1.1 shows some of the basic features of hypersonic cone flow for a cone at an angle
of attack o, and defines some of the nomenclature used here. We will use coordinates (r, 0, ¢)
where r is the distance from the cone apex, and 6 and ¢ are polar and azimuthal angles
measured respectively from the cone surface and from the windward plane of symmetry. In
the schematic of Figure 1.1, a fluid element from the freestream hits the bow shock first,
and then expands around the cone. If it is sufficiently close to the plane of symmetry, the
element will remain near the surface of the cone, and it will be processed by a leeward
shock, which forms in order to turn the near-surface flow parallel to the leeward plane of
symmetry. Behind the leeward shock, the flow separates and rolls up into one of a pair of
symmetrical leeward vortices bisected by the leeward symmetry plane. If the fluid element
is processed by the bow shock away from the windward plane of symmetry, it can, under
certain conditions, avoid the leeward shock, and will either move into the vortex from the
leeward plane of symmetry or approach a singular point which sits above the vortices on
the leeward plane of symmetry [10]. General discussions of flow past cones can be found
in Shapiro [11] and Anderson [12] and in papers by Marconi [13, 14, 15], Macrossan and
Pullin [16], Smith [17], and Rainbird [18].

For supersonic flow past a cone, viscosity is not necessary to produce flow separation
following the leeward shock system — an example of one of the few inviscid separation
mechanisms. The leeward shock has a strength gradient; it is strongest at the cone surface,
and becomes weaker away from the body. This results in an entropy gradient behind the

leeward shock. From Crocco’s theorem [12],
V xw=Vhg—TVs, (1.1)

where T is temperature, s is entropy, hg is total enthalpy, V is the velocity vector, and w is
the vorticity vector. There is no gradient of total enthalpy behind either the bow shock or
the leeward shocks, since total enthalpy is conserved across shock waves. There is an entropy
gradient behind the bow shock due to its curvature, and this generates vorticity upstream
of the leeward shock. The entropy gradient of the leeward shock is similarly balanced by
vorticity, and the accumulated vorticity is sufficient to cause crossflow separation behind

the leeward shock. The presence of a viscous boundary layer will strongly influence the



Figure 1.1 Schematic of major features of cone flow. « is the angle of incidence, r is
the distance from the tip of the cone, 8 is the angular distance away from the surface of
the cone, and ¢ is the azimuthal angle, 0° at the windward side to 180° at the leeward
side.

azimuthal position of the surface separatrix. The boundary layer will separate upstream of
its inviscid separation point, and the displacement of the separated boundary layer causes
the formation of a second branch of the shock wave, forming a A-shock, so-called because

of its resemblance to the shape of the letter.

1.2 Topology of the Flowfield

The topology of the flow can be examined through the use of crossflow streamlines.
Crossflow streamlines are obtained by projecting the velocity field onto a surface, and inte-
grating only these crossflow components of velocity. Crossflow streamlines can be projected
onto a plane, but here the surface used is a sphere centered on the tip of the cone.

There are several critical points where the crossflow velocity is zero. Critical point theory
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may be used to analyze the crossflow velocity field. An excellent discussion of critical point
theory applied to flow fields may be found in Hunt et al. [19]. The Jacobian J and the
divergence A may be used to classify the critical points. If the crossflow components of

velocity are given by u; and us and the coordinates on the surface are z; and x4, then

8u1 8u2 3u1 (9UQ

= 31 90s 003011 (-2
and
_ 8u1 3’U,2
A= 9z, 9my” (1.3)

There are two types of critical points: saddle points and node points. If J < 0, then the
critical point is a saddle point. If J > 0, then it is a node point. There are two types
of node points. A node is a regular node point if J < A?/4, and is a focus if J > A?/4.
Furthermore, a focus is stable if A < 0 and unstable if A > 0.

Saddle points and regular node points may exist on the body surface. These are called
half-saddle and half-node points, and physically correspond to separation points (for A < 0)
and reattachment points (for A > 0). Foci correspond physically to vortices.

A topological rule specifies the relationship between the number of critical points in the
crossflow field [19]. Let the connectivity of the domain be n, the number of saddle points
and half-saddles be given by S and §’, respectively, and the number of nodes and half-nodes
be given by N and N’, respectively. The crossflow flowfield must satisfy the relation

<ZN+%ZN’)—(ZS+%ZS’)=1—H, (1.4)

where the critical points are summed over the entire flowfield (i.e., both sides of the body).

As mentioned above, the velocity field may be projected onto any surface. Some re-
searchers have investigated crossflow topology for fields projected onto planes [20]. When
projected onto a plane, the freestream is parallel to the line of symmetry and the connec-
tivity n = 2. However, when the crossflow streamlines are projected onto a sphere, the

freestream is directed radially inward everywhere, and n = 1. Here the projection on the
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Figure 1.2 Topology of flow field for a cone with attached flow. Crossflow streamlines
are plotted on a sphere centered at the tip of the cone. S and S’ denote saddle and
half-saddle points, respectively. N and N’ denote node points and half-node points,
respectively.

sphere is used, so

(ZN+%ZN’>—(ZS+%ZS’):0, (1.5)

For a cone at a small angle of incidence, the flow will remain attached on the leeward
side. The topology of this flowfield is shown in Figure 1.2. The stagnation point is a
half-saddle and a half-node exists on the surface of the cone at the leeward plane. This
half-node is the ultimate destination of all fluid passing the cone. Here, &' =1, N’ = 1,
and Equation 1.5 is satisfied!.

At a higher angle of incidence, but not high enough to cause separation, the half-node
moves away from the surface of the cone and becomes a full node. This is also shown in
Figure 1.2. When the node moves from the surface, it leaves a half-saddle on the cone at

the leeward plane. The node is not a singularity, but is merely a crossflow critical point

'For the projection on a plane, this picture would be different. The flow would still expand around the
cone, and feed into the node on the leeward side, but there will be a saddle point on the leeward plane of
symmetry where the crossflow velocity goes to zero just inside the leeward portion of the bow shock. This
saddle point divides the part of the crossflow domain which feeds into the half-node from the part which
travels around the cone to eventually flow vertically far down the symmetry line. Here, ' =1, § = 1,
N' =1, and n = 2, satisfying Equation 1.4.



Figure 1.3 Topology of flow field for a cone with separated flow. Crossflow streamlines
are plotted on a sphere centered at the tip of the cone. S and S’ denote saddle and
half-saddle points, respectively. N denotes a node point.

where the velocity is purely radial. The node is still the final destination of all of the fluid.
Here, ' =2, N =1, and Equation 1.5 is again satisfied.

At angles of incidence large enough to cause separation, the flowfield becomes more
complex. This is shown in Figure 1.3. The separation point is a half-saddle point, feeding
into the node corresponding to the vortex. The half-saddle which had been on the surface
at lower incidence moves away from the cone, becoming a full saddle point, leaving another
hali-saddle on the surface at the leeward plane of symmetry. This streamline leading to the
full saddle point is a dividing streamline between the fluid which enters the vortex and the
fluid which does not. All of the fluid still ends up at the nodes, either at the node on the
plane of symmetry or in one of the vortices. Recalling that both sides of the cone must be
accounted for, S =1, 8’ =4, and N = 3, and the topological relation is again satisfied.

Even more complex flow patterns are possible. Secondary separation can occur on the
leeward side of the cone, between the plane of symmetry and the separation point. If
secondary separation occurs, it will be accompanied by the appearance of another node and
a reattachment half-saddle point. Theoretically, any number of separations can occur on

this region of the cone, which has been observed in numerical simulations of hemisphere-



cylinder body at high incidence [20].

1.3 Literature Review

Various experiments have been performed on supersonic and hypersonic flow over cones,
although most of the data are for small angles of incidence. Experimental measurements
typically include heat transfer and surface pressure, and flow visualizations such as surface
oil flow techniques.

Holt and Blackie [21] conducted one of the earliest experiments on supersonic cone
flows. Two cones of half-angles 15° and 20° were tested at angles of incidence up to 25°
for M = 3.53. Surface pressure was measured, and a pressure recovery was noted on the
leeward surface when the angle of incidence exceeded the cone half-angle.

Experiments were performed by Tracy [5] on a 10° half-angle cone at incidences ranging
from 0° to 24° incidence. Surface pressure and heat transfer were measured, and a pitot
probe was traversed through the flowfield to determine its features. Tracy’s results capture
the development of the topological structure of the flow from low incidence to high incidence.
Tracy found that at low angles of incidence, the pressure recovery on the leeward side grew
with increasing incidence, but beyond incidences of about 8°, no further dependence on
angle of incidence was observed. The separated region was found to be essentially conical
and inviscid.

Rainbird [18] investigated two cones of half-angle 5° and 10°, up to incidences of 12.6°
and 31.5°, respectively. Tests were performed at M = 1.80 and M = 4.25. Rainbird showed
that for low incidences, an unseparated inviscid calculation is sufficient for predicting the
flow. However, to calculate flow at higher incidences, an inviscid model with free vortex
sheets would be necessary.

A 5° cone at M = 5 and at various angles of attack was studied by Feldhuhn and
Winkelman [22]. Surface pressure measurements and pitot flowfield surveys were conducted.
It was established that the flowfield on the leeward surface of the cone at large incidence
was the results of the interaction between the viscous and inviscid regions of the flow.

Few experiments have measured real gas effects. Krek [6] performed high-enthalpy ex-
periments on a 15° cone at 30° incidence in a M = 5 flow in a free piston shock tunnel.

Surface pressure and heat transfer were measured, and inviscid EFM calculations were per-
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formed for comparison. These experiments offered a challenging benchmark for validating
simulations.

Similarly, Wen [23] conducted experiments on hypervelocity flow over spheres in a shock
tunnel. Although this is not a cone flow, the analysis of the dissociating flow over blunt
bodies is relevant to the shock standoff scaling. An analytical correlation was developed to
correlate the reaction rate parameter with the standoff distance.

Three-dimensional viscous flows are very difficult to compute, and involve complex flow-
fields with separation, shock/boundary layer interactions, and viscous regions embedded in
regions of essentially inviscid flow. Early attempts at computing cone flows were restricted
to low incidence, inviscid cones. The solutions involved perturbation methods based on
the exact inviscid Taylor-Maccoll solution [24]. The original perturbation solutions were
formulated by Stone [25, 26], but Ferri [27] showed that the analysis was incorrect near the
leeward symmetry point for a cone at incidence. Cheng [28] was able to correct the problem
with the Stone theory by obtaining an explicit expression for the entropy distribution in the
flow field. However, none of these low incidence results are applicable to the more complex
flow fields we are interested in.

Marconi [13] computed the three-dimensional supersonic inviscid flow about slender
cones at large incidences. Marconi suggested that there are two possible sources of additional
vorticity (beyond the vorticity due to the bow shock). The first is the strength gradient
in crossflow shock waves, and the second is vorticity shed from the boundary layer at the
separation point. Omly the former is possible in inviscid flow. Then Marconi [14] used an
inviscid shock-fitting scheme to simulate the inviscid flow past a 5° cone at 12.35° incidence.
Shock fitting was used to calculate the positions of the bow shock and the leeward shock,
and inviscid separation was predicted behind, not at, the crossflow shock. For cases with
supersonic reverse crossflow in the separated region, a reverse crossflow shock could form,
which could induce secondary separation. Calculations were made by Marconi [15] for a 10°
cone at two Mach numbers, M = 5 and M = 10. The angle of incidence was varied from 10°
to 25° to study the development of the shock-vortex system with increasing incidence. For
angles of incidence less than the cone half-angle, no crossfow shocks were observed. At high
incidences, more complex shock-vortex systems with secondary separation were observed.

Finally, Macrossan and Pullin [16] studied reacting inviscid flow past a 15° cone at 30°

incidence using the Equilibrium Flux Method. Frozen, non-equilibrium, and equilibrium
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flows were investigated. The effects of chemistry on the windward shock standoff distance
and the vortex size and shape were examined. The equilibrium cases separated later than

the frozen cases, and the surface pressure for the non-equilibrium case was not bracketed

by the frozen and equilibrium solutions.
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Chapter 2

Equations of Motion and Numerical Methods

This chapter describes the numerical methods used for this thesis. The two algorithms
used in these simulations for calculating fluxes are the Equilibrium Flux Method (EFM),
and the EFMO Method (which stands for EFM-Osher). This chapter also discusses the

stepback technique, which is used for approximately conical flows.

2.1 The Inviscid Equilibrium Flux Method

EFM [1] is a finite volume technique for solving the inviscid Euler equations of compress-
ible ideal gas flow. It is a kinetic-based flux-split method which is extremely robust, but
suffers from high numerical diffusion in its first-order form. It can handle extremely strong
shocks well and does not suffer from some of the failings of other methods (e.g. the carbuncle
phenomenon [29]). It has no fixes or tunable parameters, and is entropy-satisfying [30] and

positivity-preserving [31]. However, the price of high stability is large numerical diffusion.

2.1.1 Derivation

EFM is derived from the Boltzmann equations in the limit of infinite collision rate within
cells, between successive applications of the convective phase of motion. The numerical flux
functions at the interfaces between adjacent cells are evaluated using a split Maxwellian
molecular velocity distribution.

Consider the Boltzmann equation [32] for a spatial and temporal distribution f (e, x,¢)
of molecular velocities ¢. If there are no external forces acting, there will be no convection

in velocity space and the equation reduces to

G e o = |gon| 2.)

collisions

where n(x,t) is the molecular number density. The molecular state is given by the vector
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@ consisting of the quantities [m, mc, %c-c] By taking the moments of (2.1) with @, one
can obtain a set of conservation equations for a gas obeying Boltzmann’s equation. First,

a moment of this phase space distribution is obtained through

(@ = [ nf)qde. (22)

¢
This can be applied to a computational cell as follows. Consider one face of a computational
cell in physical space with volume V' and surface area S. Define a local set of coordinates
(A, P, q) such that @i is normal to the cell face and points outward, and p and G lie in the
face and form an orthogonal basis (see Figure 2.1). In general, a cell face need not be planar
(it can be a curved surface), so p and q will lie approximately in the plane of the face; in

practice, however, these surfaces are planes.

Nap)

(=3

p

Figure 2.1 Local coordinate axis at a cell interface

We can integrate the moments of the Boltzmann equation over the cell volume and

apply the divergence theorem to the convection term to obtain

%// UQdV-i-//FQdS:O, (2.3)
14 S

where Ug is a set of conserved quantities per unit volume given by

Ug = /(nf)Qdc (2.4)

C
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and Fg is a set of fluxed quantities given by

FQ:/(nf)Qc'ﬁdc. (2.5)

c

The integral of the collision term from the Boltzmann equation is zero, since the molecular

quantites ) are conserved in each collision.

2.1.2 Flux Splitting

The flux term Fy contains both outward and inward fluxes. It can be decomposed into
two parts, an outward or forward moving flux F, + and an inward or backward moving flux

FQ’, so that
Fo=FF +F;. (2.6)

Consider the one-dimensional schematic of Figure 2.2. Let ¢ be the component of molecular

E(f), =)

&R,

cell (i) cell (i+1)

interface (i+ -é—)

Figure 2.2 Forward and backward fluxes at cell interface i+ —;—, between cell 2 and i 1

velocity normal to the interface between two cells labelled by ¢ and i+1, where z;11 > ;.
The velocity distribution contains positive and negative values, and the distribution can be

split into its backward and forward moving components, expressed as

f=(y=1(), ¢<0 and fT(c)=f(c), ¢>0. (2.7)
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In the cell-based coordinate system, the forward and backward fluxes become

g

/ (nTf") Q ¢y dey, dey dey (2.8)
0

B~ 8

and

™) Q ¢n deg, dep dcy. (2.9)

é\o

= [ [ e

The flux through the interface between cells (i) and (i + 1) is equal to the sum of the
forward flux from cell (i) and the backward flux from cell (¢ + 1) (see Figure 2.2).

2.1.3 Equilibrium Distribution

Once the distribution function f is known, the fluxes FQ+ and Fg can be calculated
analytically to yield the transport of mass, momentum, and energy across the cell surface.
EFM follows from the assumption that the gas in every cell is in local equilibrium, so that
the molecular velocity distribution is given everywhere by the Maxwellian distribution.
The Maxwellian distribution is defined here in terms of v and 3, where v = € is the mean
molecular velocity (which is the local flow velocity) and § is the reciprocal of the most

probable thermal speed, defined by

1
V2RT’

= (2.10)

where R is the gas constant, and 7T is the local temperature. The Maxwellian distribution

is defined as
3

= fates i) = (5 ) w7 =01, 2.11)

where the notation emphasizes that the primary dependence of f is on ¢, while 8 and v are

parameters. Considering again the one-dimensional case of Figure 2.2, the total velocity
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distribution at the interface is

fo () = fole; Bir1,vin), c<0 (2.12)

fo(e) = fo (¢; Bi,v4), c>0. (2.13)

The split Maxwellian distribution is illustrated in Figure 2.3.

Jo(c)

Figure 2.3 Split Maxwellian distribution. f; (c) is the backward moving part of the
distribution from cell ¢4 1, and f0+(c) is the forward moving part of the distribution
from cell i—1.

2.1.4 Flux Expressions

Once f is assumed to have a Maxwellian distribution, the EFM fluxes can be analytically

calculated. Using the local (@i, P, §) coordinate system, for a frozen inviscid gas, the fluxes
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are given by

D+ +

m p(—ﬁ— + v, W
Dj:
My, /0(_,3—
Di

Féc mup = 0(7 + v, WE
D:i:

mug p(—ﬁ— + v, W

+ 2
imy? D= + (V7 y+1
2 p(ﬂ-i-vnW) 2+’y—1

)

)

+ vnWi)vn + pW =

)vp

)vg

4p?

(2.14)

1 1

+ §pvn I/Vi

|

where p is the pressure and p is the density. Other terms in this expression are the magnitude

of velocity V', given by

V2=v,2l+v§+vg,

the so-called “weighting factors” W, given by

1
1’/Vi - —2'[1

the “dissipation terms” D, given by

1

D* =
N

and the “speed ratio” s, given by

=+

The error functon (erf) is defined as

erf(s) = %

+ erf(s™)],

exp [—(s%)?],

Uy

e

/ exp(—t?)dt.
0

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

Numerically, a rational approximation to the error function is used [33] to calculate the

fluxes.

The momentum fluxes are calculated in the local coordinate system and must be trans-
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formed back to the global coordinates using

MUy Fq (mvn)nz + Fy (mvp)pm + FQ (qu)%c
Fo | muy, | =| Fo(mun)n, + Fo(mup)py + Fo(muy)g, | - (2.20)
muv, Fo (mvn)nz + Fy (mvp)pz + FQ (qu)q,z

The state array Uy of mass, momentum and energy of each cell can be updated using Euler

integration by simply summing the contributions from each face

AUg = )" FoAAt (2.21)
faces
where A is the area of the face and At is the timestep. Of course, more sophisticated time

integration techniques may be used for higher accuracy in time.

2.1.5 Dissipation

It has been shown that EFM may be considered a finite volume solution method for
the Euler equations with added “pseudo-dissipative” terms [34]. These dissipation terms
are not an artificial viscosity which may be adjusted as desired. Rather, they arise from
the simulation of the flow at the molecular level. One of the assumptions of EFM involves
taking the equilibrium limit, or the limit as the collision rate goes to infinity. This would
correspond to a zero mean free path. However, it can be shown that there is an effective
mean free path which scales approximately with the cell size [34]. The excessive dissipation
may be responsible for the robustness of EFM. For high resolution simulations, the excessive
dissipation may be significantly reduced due to the smaller mean free path. No adverse
effects (e.g., stability problems) due to the decreased viscosity have been observed for the
high resolution simulations presented here.

However, no adverse effects of this (e.g., stability problems) have been observed for the

high resolution simulations performed here.

2.1.6 Inviscid Boundary Conditions

The boundary conditions are implemented via dummy cells which border the compu-

tational domain. There are several basic boundary conditions, which include freestream



17 -
conditions, a body surface, a plane of symmetry, or zero gradient. All but the body surface

are self-explanatory.

Real Cell \

Surface

Dummy Cell

Figure 2.4 TInviscid surface boundary condition

For the Euler equations, there can be no mass or energy flux through a surface, although
a slip velocity tangential to the surface may exist. In order to enforce this, the dummy cells
across the body surface are assumed to have the same density and temperature as their
neighboring cells, but the velocity vector of the dummy cell is reflected about the cell
surface (see Figure 2.4). Fluxes are calculated for the surface interface in the same manner
as any other interface, and the dummy cell’s state is updated appropriately at the beginning

of each timestep.

2.1.7 Estimation of Gradients and Higher-Order Methods

The basic EFM is first-order accurate in space. Higher-order methods may be obtained
through the use of flux-limiters and slope-limiters. The idea of limiters is to get higher-
order accuracy away from shock waves while maintaining monotonicity. With a flux-limiter,
a numerical viscosity is added to the system, but its contribution is scaled by a factor which
depends on the limiter. There are several well-known flux-limiters, such as van Leer’s flux-
limiter [35] and Roe’s “superbee” limiter [36], but here the approach has been to use a
slope-limiter.

The first-order method uses a piecewise constant representation of the state variables;



- 18 -
the cell is assumed to have a constant state equal to the state at the cell centroid, and this
state is used to calculate the flux at the interface. However, a more realistic approach is to
use a piecewise linear reconstruction by assuming that the state in the cell varies linearly
from the state at the centroid to the state at the neighboring cell’s centroid. Consider the
variation of states in one direction, as in Figure 2.5. The state in cell ¢ is given by Ué, and
the states in the neighboring cells ¢-1 and i+ are Ué‘l and Ué“, respectively. We can
represent the the variation over cell ¢ by replacing Ué with fo(a:), where z, _ 1 corresponds

J
to the left interface, and Tl corresponds to the right interface. For example,

UQ(:L')zUé-i—ai(x—mj); T, 1 <z<z

; (2.22)

ity

where ¢? is the slope of (7@ in cell 4. Note that the average cell value is still Ué, and for the

first-order method, o? = 0.

i1
%
ey UQl
% .
%
-
i+1
%
i—1 I i+17

ol

Figure 2.5 Estimation of gradients using min-mod
There are several choices one can make for o’. With the proper selection, the method

may be made monotonic and total variation diminishing (TVD) [37]). Van Leer’s minmod

method [38] can be shown to be TVD, and is the limiter used here. The minmod limiter
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uses the minmod function, which is based on the sign function (or sgn), where

-1, z<0
sgn(z) =4 0, £=0 (2.23)
1, >0
and the minmod function is given by
1
minmod(a, b) = 5 [sgn(a) + sgn(b)] min(|al, |b]), (2.24)

where the min function returns the minimum value of its two arguments. Therefore, the

minmod function can also be given by

a, la| < b, ab>0
minmod(a,b) = { b, |b| < |a|, ab>0 . (2.25)
0, ab <0

Consider cells (i — 1), (i), and (¢ + 1) as shown in Figure 2.5. The gradients at the
faces of cell i are estimated linearly using the values of the neighboring cells. If the state
variable is a local extremum, then the gradients will be of opposite sign, and zero gradient
is assumed (the state is assumed to be the same at both interfaces as it is in the cell). In
this case, the algorithm reverts to first-order. If the gradients are of the same sign, then
the lesser of the two gradients is used to estimate properties at both cell interfaces (UQ“ and
Ug ). These properties are then used to evaluate the fluxes. If the centroids of cells (t—1),

(1), and (i + 1) are 21, 2%, and 2°*!, respectively, then the minmod slope limiter can be

i+1 i ; i—1
a0\ gt . .

This can be applied separately in each dimension in order to project the states onto the

used to find the value of o with

o' = minmod

appropriate interfaces.
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2.2 Viscous EFM

EFM was designed for the Euler equations. In order to implement EFM for the Navier-
Stokes equations, dissipative terms must be introduced to model the effects of viscosity.
This can be done at two levels. Microscopically, the dissipation may be introduced at
the molecular level by changing the assumed velocity distribution to incorporate viscosity.
Recall that one of the assumptions of EFM is that the molecular velocities in each cell
conform to the Maxwellian distribution (see Section 2.1.3). One may rederive viscous flux
expressions based on a different molecular velocity distribution, such as the Chapman-
Enskog distribution [39].

Alternatively, viscous effects can be introduced at the macroscopic level by adding cor-
rections to the flux expressions. This is the more typical approach and is the one used in

these studies.

2.2.1 Viscous Flux Terms and Transport Properties

The viscous stress tensor o;; can be written as

Oxx Ogzy Ozxz
Oij = | Oyz Oyy Oyz |- (2.27)

Ozz Ozy Ozz

The stress tensor for the Navier-Stokes equations may be split into pressure and viscous

terms 7;;, so that
O35 = —D (52']' + Tij- (2.28)

The viscous term is

3Ui ou; 2
Tij = U (8xj + (9:1:2) +04;(V-v) (,uv - §,U,> , (2.29)

where p is the coefficient of shear viscosity and pu, is the coefficient of bulk viscosity [40].
Similarly, the flux terms can be decoupled into inviscid and viscous terms, and the viscous

contributions to the flux may be calculated separately. The resulting viscous corrections to
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the flux are

m FQ (m)inviscid
mug FQ (mvw)inviscid = TxgNy — ToyNy — TzN2
muy FQ (mvy)inviscid — TyxNy — TyyTly — TyzTz
Fq = : (2.30)
muz FQ (mvz)inviscz'd T TNy — TayTly — To2Tlz

FQ (me)inviscid - nx{vamz + Uy Ty + VpTez — qgc}
me — Ny {Va Ty + VyTyy + V2Tyz — Gy}
— N {VpTog + VyToy + VaToz — @2} |

where n is the direction normal to the interface, e is the total energy and ¢ is the heat
transfer.

EFM is a shock-capturing scheme and will therefore smear shock waves over several
cells. This justifies the assumption of Stokes’ hypothesis that 1, = 0. Bulk viscosity will be
important only very near shock waves, and since we do not resolve the fine-scale structure
of shocks, it can be neglected. With this assumption, the shear stress and heat transfer

terms become

(] | (2%-%-%)
Tyy %M (2% B ??_7;} B %)
| <2% N 3—5) (2.31)
Tay I (g—;‘ + g%) |
Tza n(3+35)
| 7oy p (% + %%) ]
and
Oz a
o | =k G (2.32)
g o

where k is the thermal conductivity coefficient.

For frozen flows, Sutherland’s law is used to calculate viscosity [41]. Sutherland’s formula,



-9 -

Gas | mo ( ’“9) T (K) | S (K)

m-s

Nitrogen | 1.663 x 1075 | 273 | 106.7
Oxygen | 1.919 x 1075 | 273 | 138.9
Air 1.716 x 10~° | 273 | 110.6

Table 2.1 Parameters for Sutherland’s law

is a three-parameter rule, with a reference viscosity pg, a reference temperature Tp, and the

Sutherland constant S.

T\ To+ S
= — 2.33
n=m(z) (B3 (2:33)
The code used for these studies can accommodate three gases: nitrogen, oxygen, and air.

The Sutherland parameters for these gases are shown in Table 2.1.  For frozen flows, a

constant Prandtl number (Pr) is assumed, where Pr is defined as

Pr= —“—If—p (2.34)

where C, = yR/(y — 1) is the specific heat at constant pressure, and the conductivity is

calculated by inverting the definition of the Prandtl number,

p Cp

k= .
Pr

(2.35)
Section B discusses the treatment of viscosity and conductivity for reacting flows.

2.2.2 Viscous Boundary Conditions

For viscous flows, the surface boundary condition must be treated differently than for
inviscid flows. The no-slip boundary condition means that the velocity at the wall must be
zero. This is satisfied by setting the velocity in the dummy cell to be the opposite of the
velocity in the first cell. With a second-order reconstruction, the velocity at the surface will
be zero, and the mass flux will also be zero. The pressure (and degree of dissociation for
reacting flows) is set to be the same as the first cell, so that there is zero momentum flux

through the surface.
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There are two different viscous boundary conditions treated here: adiabatic and isother-

mal. For the adiabatic case, there is no heat transfer through the surface, or
VT -7 =0, (2.36)

where T is the temperature, and 7 is the unit vector normal to the surface. This is enforced
by setting the temperature of the dummy cell to be equal to the temperature in the first
cell. Since we have already dictated that the pressure be equal across the surface, this
requires that the density in the dummy cell is equal to that of the first cell. In fact, for the
adiabatic boundary condition, the state in the dummy cell is equivalent to the state in the
first cell, but with opposite velocity, so there can be no energy flux across the surface.

For the isothermal case, the temperature in the dummy cell is set to the prescribed wall

temperature,
T =Ty, (2.37)

and the density is chosen so that the pressure is constant across the surface, as discussed
above. This allows for zero mass and momentum flux, and non-zero energy flux across the

surface.

2.3 EFMO

EFM is a flux-vector splitting (FVS) scheme. These schemes tend to be very robust in
terms of capturing strong shocks, although they lead to excessive numerical diffusion. EFM
is typical in these regards. Another type of scheme is a flux-difference scheme (FDS), which
are generally not good for strong shocks, but are very accurate for viscous flow because they
capture stationary contact discontinuities exactly. The EFMO method, due to Moschetta
and Pullin [2] is an attempt to blend the desirable properties of both types of methods. The
blending of FVS and FVD schemes is based on the simple wave approach used in Osher’s
scheme [42].
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Osher’s numerical flux can be written as

F(Ur,Ug) = % Fr, + Fr —/\A|dw —/|A|dw ) (2.38)
LN NL

where |A] = AT — A~ and A% is the Jacobian of the fluxes F*. The first integral is taken
on a linearly degenerate subpath which corresponds physically to a contact discontinuity,
and the second integral is taken on nonlinear subpaths which correspond to compression
or rarefaction waves. The idea of EFMO was to put the EFM flux into a form similar to
Osher’s flux and replace the integral corresponding to the contact discontinuity by the one
from Osher’s flux. This results in an antidiffusive flux which almost vanishes in the vicinity
of shocks, but removes the excessive numerical dissipation near contact surfaces.

In practice, the EFMO algorithm works as follows: Given two states Uy, and Ug, one
must find two intermediate states Uy and Us. These intermediate states sit on either side
of a contact discontinuity, and are connected to the real states Uy, and Up via compression
or rarefaction waves. Antidiffusive EFM fluxes are calculated in the regular manner based
on states U; and Us, and these fluxes are used to modify the standard EFM fluxes.

While the numerical flux for EFM is defined as
Fupn (UL, Ur) = F*(Ur) + F~ (Ug), (2.39)

the EFMO flux is defined as
FrpnoUL,Ur) = Fppy (UL, Ur) + AF, (2.40)

where AF is the antidiffusive flux correction.
The intermediate states U, and Us are determined by the following equations:

(L) — (1), nonlinear subpath

Py b,
—y = TF, 2.41
p P ( )
2e
UnL + aL ni + - al, (2.42)
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UPL = Upla (2.43)
Vg, = Vq,, (2.44)
(1) — (2), linear subpath
Up, = Uny = Un", (2.45)
P =D, =D, (2.46)
(2) — (R), nonlinear subpath
Py _Pr (2.47)
pi PR’
2e 2e
Unz — ,y — 1 (1.2 = 'UnR bt ﬁaR, (2.48)
,UPZ = UIJRa (249)
qu = qu’ (250)

where p, p, v, and a are respectively the pressure, density, ratio of specific heats, and speed
of sound, and v,,vp, and v, are the velocity components in a local axis where v, is the
velocity component normal to the interface, and v, and v, are the components of velocity
tangential to the interface. v,* and p* are the normal velocity and pressure at the contact
discontinuity.

The number ¢ governs the order of the states. For ¢ = 1, the left and right states are
connected via a compression wave, the contact discontinuity, and then a rarefaction wave.
For ¢ = —1, the states are connected via a rarefaction wave, the contact discontinuity, and
a compression wave. These different paths are known as the natural order and the reverse
order, respectively. Osher originally proposed using the reverse order, but other researchers
have suggested that the natural order is preferable for some situations [2].

In fact, it is more appropriate to select the order for each interface, rather than using
the same order for the whole grid. At the local interface level, using the wrong order
can produce nonphysical fluxes, since the method will solve the Riemann problem with the

locations of the compression and rarefaction waves switched. In practice, this does not seem



-9 -
to affect the overall solution for many problems, and and may surprisingly improve stability
for certain problems. However, it is more rigorous to choose ¢ so that the compression wave

lies closest to the lower pressure state, so that

1 <
£ = ’ pL - pR . (25]‘)

_]-a by >pR

The algorithm for finding the intermediate states U; and Us is outlined in Appendix A.

Once Uy and U; are determined, the antidiffusive flux can be calculated from

—F~(Uy) + F~(Uh), v:>0
AF = () L : (2.52)

+F*T(Uy) — FH(Uy), vi<0

so that ultimately

F+(UL) + F~(Ug) — F~(Us) + F~(U1), vy >0

Fopuo (UL,Ur) = (2.53)

FH(UL) + F~(Ug) + FT(Us) — FH(Uy), vy

The antidiffusive correction reduces the magnitude of most of the fluxes, although the nor-
mal momentum flux tends to be larger with the correction. The greatest relative correction
is for the energy flux, which can be reduced by as much as 40% by the antidiffusive correc-

tion.

2.4  Chemistry

The introduction of dissociation chemistry to EFM requires another state variable, the
degree of dissociation a. For a mixture of molecules As and dissociated atoms A, the degree
of dissociation gives the ratio of the dissociated A atoms to the total number of A atoms,
or

[4]

a= A+ 2045 (2.54)

There is no consideration of diffusion of species, and there are no boundary conditions

applied to « at the wall. This is equivalent to a non-catalytic wall boundary condition.
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2.4.1 Ideal Dissociating Gas Model

The Lighthill [3] Ideal Dissociating Gas (IDG) model with the Freeman [4] reaction rate
is used to represent the chemical dynamics of the flow. This is a simple one-temperature
model which is adequate for assessing the first-order effects of gas-chemistry interaction at
temperatures of up to 7000 K. There are also other alternatives for more complex chemistry,
such as Park’s two-temperature model [43].

Consider the flow of pure nitrogen. The dissociation reactions

k

Ny+N 22N+ N (2.55)
k

Ny + Ny 2 2N + N, (2.56)

can be treated in either equilibrium or non-equilibrium modes. The degree of dissociation
a is given by a = [N]/([N] + 2[Ny]), and the effective gas constant for the mixture is
R = (1 + a)Ry,. This means that the equation of state is given by

p=p(l+a)Rn,T, (257)

where p is the pressure, p is the density, T is the temperature, and Ry, is the gas constant
for the diatomic species.

For the mixture, the internal energy e;,; consists of the sum of the random translational
energy e, the energy in the molecular structure ey and the chemical potential energy, or
dissociation energy eg;ss. The structural energy can be further decomposed into rotational

energy e, and vibrational energy e,;. So

€int = €r + €rot T €yip + Ediss - (258)

The first three terms are modeled by the specific heat at constant volume C,, which is
constant for the IDG model (C, = 3Ry,). The dissociation energy is equal to a64Ry,,
where 6, is the characteristic dissociation temperature, a gas constant. Therefore the total

internal energy is given by

eint = Ry, (3T + aby). (2.59)
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The ratio of specific heats v for the mixture is given by

= (4}:0‘), (2.60)

and the mixture enthalpy is given by

h = Ry,[a s+ (4+a)T]. (2.61)

2.4.2 Frozen Flow

A distinction should be made between frozen flow and flow with no dissociation. A
freestream flow with non-zero dissociation can be run in frozen mode. This means that
chemical reactions are turned off, and the degree of dissociation in every cell will be constant.
This is not equivalent to running the simulation with zero dissociation, because the degree
of dissociation affects the gas dynamics through the ratio of specific heats v and the effective

gas constant R(1 + o).

2.4.3 Non-equilibrium Flow

The Lagrangian reaction rate for « is given by
Da/Dt = 0a/0t +u - Va. (2.62)

The first term (the reaction rate) is decoupled from the second (the convection term). The
convection term is computed by calculating the mass flux of each species separately. The
chemical reactions are frozen as the cells exchange mass, momentum, and energy appro-
priately based on the mixture in each cell. The Lagrangian reaction rate is computed as
shown below, allowing the evaluation of da/dt. Finally, the species composition of each cell
is updated by computing an adiabatic reaction for the timestep At.

The rate equation for the IDG model is

% =pC(a,T) [(l — a)exp (—%1) - p_/;afz] (2.63)
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Reference Cy il Ch 72
Hanson & Baganoff [44] | 2.2x10%% | -2.5 | 3.9x10%0 | -4.5
Kewley & Hornung [45] | 8.5x10%2 | -2.5 | 2.3x10% | -3.5

Table 2.2 Reported reaction rates for nitrogen (mks units)

where py is another gas constant, the characteristic density, and
Cla,T) =[2aC/T™ + (1 — ) CoT™] /W, (2.64)

with W being the molecular weight of the diatomic species. The characteristic density is
an approximation to a collection of terms in the partition functions for N and Ny which
is not strongly dependent on temperature and is taken by Lighthill to be constant. This
assumption is equivalent to representing the sum of electronic excitation for N and vibra-
tional excitation for No as a single degree of freedom for No which is fully excited at all
temperatures. For nitrogen, pg = 130000 kg/m? and 8, = 113200 K.

The rate constants are matched so that

k1 = 2aCiT™ exp(—04/T) (2.65)

and kg = (1 — a)CoT™ exp(—64/T). (2.66)

Several reaction rates are quoted in the literature. For nitrogen, Table 2.2 shows two sets
of constants. It should be noted that these rates are given in mks units (meters, kilograms,
seconds); often these rates are given in cgs units (centimeters, grams, seconds). Non-
equilibrium simulations were performed for both sets, and the results were not very sensitive
to the choice of reaction rate (among these two data sets). Simple Euler integration is
used to advance the reaction for non-equilibrium flow. The reaction rate equation (2.63) is

used to compute Da/Dt, which is multiplied by the timestep At.

2.4.4 Equilibrium Flow

For equilibrium flow, local equilibrium is enforced in each cell at the end of each timestep.
An adiabatic reaction is assumed, conserving mass, energy and momentum. Since this is
a finite-volume method, the volume of each cell is fixed throughout the reaction, and since
mass is conserved, the density is therefore also fixed. So the equilibrium calculation consists

of finding the corresponding equilibrium values of « and 7.
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The law of mass action gives the equilibrium degree of dissociation. It can be obtained

by setting the expression in brackets to zero in the rate equation (2.63), which yields

2 6
® = @exp (——d) . (2.67)

This can be used to determine the equilibrium dissociation for a given density and temper-

ature.

2.4.5 Transport Properties

For reacting flow, species viscosity and conductivity rules are used, then mixing rules
based on Chapman-Enskog theory are used to compute mixture properties. This is discussed

in Appendix B.

2.5 Time Stepping

This section describes the methods of time stepping that have been used in this work.
This includes the standard time stepping schemes of time marching and space marching,
and also two newer methods developed for use specifically on conical flows, the stepback

method and the partial grid technique.

2.5.1 Time Marching

The computations presented in this work are all steady-state computations, so the ac-
curacy of the time integration is not an important issue. One can easily perform unsteady
simulations with these same techniques, although a more sophisticated time integration
scheme such as a second-order Runge-Kutta or a predictor-corrector method would be nec-
essary for better accuracy in time (see Section 2.1.4). These simulations are integrated in
time to a steady state via Euler integration, which yields first-order accuracy in time.

The size of the timestep taken is given by the CFL number, which is specified for each
computation. The CFL number (or Courant number) is named after Courant, Friedrichs,
and Lewy, who recognized that a necessary condition for stability is that the domain of

dependence of the finite difference method must contain the domain of dependence of the
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partial differential equation it models, at least in the limit of zero cell size. Generally,

CFL = | A2

—, (2.68)

for each eigenvalue A of the flux Jacobian. For a stable timestep with an explicit scheme,
a necessary (but not sufficient) stability condition is that CFLmax < 1. In other words,
the largest stable timestep At is limited by the cell with the largest value of ) /Az. Since
the timestep scales linearly with the cell size, a finer grid can still be run at the same CFL
number (which corresponds to a smaller timestep). However, for a viscous computation, the
presence of diffusion imposes an additional stability criterion, which scales with the square
of the cell size [46]. This means that an explicit viscous computations may have to be run
at CFL numbers substantially lower than CFL=1.

Convergence statistics are computed for the percent change of each state variable in
each cell. The maximum, average, and sum over all cells are recorded. If the change in the
state U of cell 7 is given by AU;, we can define ¢ to be

Z AU;

faces

€ =max | —— | . (2.69)
97 | max(|AU;|)

For a perfectly converged steady-state solution, the numerator will be zero since there will
be no net change in the state. Typically, a converged solution has grid-maximum residuals
on the order of € ~ 1 x 10~%.

For a time-marching computation, the values of ghost or dummy cells are either dictated

by the the geometry (see Sections 2.1.6 and 2.2.2), or set to the freestream value.

2.5.2 Space Marching

Space marching can be used for hyperbolic flows, where the solution is not dependent
on downstream conditions. The computational domain may be broken up into several
downstream slices, and each slice is successively time-marched to a steady state. The last
plane of each slice becomes the upstream boundary condition for the next slice, with the
other dummy cells for that slice being dictated in the normal manner. Normally, a zero-

gradient boundary condition is used on the downstream side of space marching slices. Since
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this is not the correct boundary condition, the last few downstream planes of any slice are

not to be trusted and should be discarded.

2.5.3 The Stepback Method

When simulating a cone flow, the region near the tip poses difficulties owing to the
tip singularity. The cells near the tip must become extremely small to resolve the flow.
Additionally, for the most general conical flows (i.e., inviscid frozen or inviscid equilibrium
flow past a cone at incidence), the flow field is two-dimensional, but not axisymmetric. The
two-dimensionality of the flow may be exploited by writing the Euler (or Navier-Stokes)
equations in a conical coordinate system and neglecting the derivatives along rays. However,
this still requires a fully three-dimensional domain resolving the tip.

The stepback method is a technique for efficiently computing conical flows with a much
smaller domain, and has the added advantage that the flow near the tip need not be resolved.
The stepback method may be applied to any gas dynamics equations with no modifications
to them. In terms of executing a simulation, the stepback method is really only an unusual
boundary condition applied to the upstream boundary of the domain.

The original version of the stepback method arose from space-marching simulations of
the parabolized Navier-Stokes (PNS) equations [47], although there are some important
differences in how it is implemented in this work. Originally, the method was considered
to be a special case of a PNS space marching technique, but the stepback method may be
applied more generally. With PNS, the streamwise viscous diffusion terms of the Navier-
Stokes equations are neglected. Typically, PNS schemes involve several other assumptions.
In the PNS scheme which led to the stepback method, the streamwise convective flux vector
was modified to allow stable space marching, and the pressure gradient normal to the body
was neglected. In another approach [48], a portion of the streamwise pressure gradient
is neglected. In the original stepback scheme, the entire streamwise pressure gradient was
neglected. None of the PNS assumptions, or the further assumptions made with the original
stepback method are necessary, and none of them are used here.

Presently the stepback method is applied to a computational domain which is a spherical
shell centered on the tip of the cone (see Figure 2.6). This shell is only two cells thick in

the radial direction away from the cone apex; the radial thickness of these cells is greatly
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exaggerated for clarity in the figure. In the original use of the stepback method [47], a
planar grid normal to the cone axis was used. But a conical flowfield will have no streamwise
gradients (9/0r = 0), and so a no-gradient outflow condition will be exact if the grid lies
on a sphere. For a cone at a high angle of incidence, a planar grid will have significant
errors on the leeward side of the cone away from the cone surface. Here the radial direction
can be quite different than the axial direction, and if a no-gradient boundary conditions is

applied, the errors can be significant.

Figure 2.6 Schematic for the stepback method

The technique is implemented presently as follows: first the domain is initialized with
the freestream conditions. This is followed by a flux calculation at all cell interfaces, and cell
states are updated according to standard EFM or EFMO. At the end of each fimestep, the
cell states of the downstream side of the domain are projected along rays onto the upstream
domain boundary and become upstream boundary conditions for the cells corresponding to
the same ray from the tip. This process is repeated until the solution reaches steady state.
In order to reach a steady state, the solution must become constant along rays, or conical.
In some sense, the method allows the freestream to travel infinitely far down the length of
the cone, until it reaches a self-similar solution. The basic assumption is an approximation
in which radial derivatives are assumed negligible in comparison with lateral derivatives on
the surface of the sphere. This is enforced indirectly through the stepback process rather
than by modifying the actual equations.

For inviscid frozen and inviscid equilibrium hypersonic flow about conical bodies, the
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stepback method is exact in the sense that these flows contain no length scales and are
truly conical. However, the technique can also be used to compute approximate solutions
to viscous cone flows, both frozen and equilibrium. There is no theoretical guarantee that
this technique will converge for a viscous solution, but in practice it is extremely robust,
and can sometimes even enhance stability in the sense that higher CFL numbers may be
used for the same grid resolution.

It should be noted that the stepback method may not be used for chemically non-
equilibrium flow. When run in non-equilibrium mode, the stepback method converges to
the equilibrium solution, which is consistent with the idea that the method allows the flow

to travel infinitely far down the cone.

2.5.4 The Partial Grid Scheme

The errors associated with using the stepback method for viscous flows suggested the
“partial grid” method. Here a stepback solution is computed at some small radius from
the tip r = R;. A “partial grid” is then constructed for Ry < r < Ry, and the stepback
solution at » = R; is used as the upstream boundary condition (see Figure 2.7, where the
grid shown has much fewer cells depicted for clarity). At r = R3, a no-gradient outflow
condition is used. The partial grid may then be time-marched to a steady state. The flow
recovers from the errors associated with the stepback method a few cells downstream of the
front of the partial grid, meaning that the boundary layer grows from the stepback solution
and reaches an appropriate thickness. In this fashion, the errors from the stepback method
are “washed out,” but computation of the tip region is avoided. For clarity, several views
of a typical partial grid are shown in Figure 2.8, with the stepback grid shown as well.

A partial grid may be run in frozen, non-equilibrium, or equilibrium modes. For a
frozen calculation, the stepback solution used to initialize the partial grid should obviously
be a frozen stepback solution, and an equilibrium partial grid should be initialized with an
equilibrium stepback solution. In these cases, the partial grid solution only has to recover
from the errors due to the stepback technique. However, to perform a non-equilibrium
calculation, the partial grid must be initialized with a frozen stepback solution. Ideally, this
stepback solution is at such a small distance from the tip that the frozen assumption is valid,

and the partial grid will capture the whole chemically active region. If the stepback solution
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Figure 2.7

Figure 2.8 Different views of a typical partial grid
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is at a larger radius, then the partial grid will have “missed” some of the chemistry, and
must recover from these errors as well. Therefore a non-equilibrium partial grid generally

takes longer to recover from the stepback solution than a frozen or equilibrium partial grid.

2.6 PGP3D

Option PGP3D.2 PGP3D.4
Flux integrator EFM EFM
Roe Roe
EFMO

van Leer & others

Chemistry Frozen Frozen
Non-equilibrium

Equilibrium

Time-integration | Time-marching Time-marching
Space-marching | Space-marching
Stepback
Formulation Explicit Explicit

Implicit

Table 2.3 Developments to PGP3D

The code used for these simulations is PGP3D (Parallel General Purpose 3-Dimensional).
The previous version of PGP3D (PGP3D.2) was written by Mallett [49], and does not con-
tain many of the features used for these simulations. PGP3D has switches for many different
options. One has the choice of several different patch integrators, including EFM, EFMO,
Roe’s method [50], and van Leer’s method [35]. However, only EFM and EFMO have been
used for these computations. The code may be run in time-marching, space-marching, or
stepback modes. Both explicit and implicit versions of EFM and EFMO have been for-
mulated. For frozen flow, there is a greater advantage in using the implicit formulation,
which can allow CFL numbers as high as 10 or more. For reacting flows, the stability of
the implicit version is not considerably better than the explicit one. The implicit formu-
lation uses an approximate factorization for the inversion of the Jacobian matrix, and is

due to Moschetta [51]. Several flux-limiters and slope-limiters are available for achieving
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higher-order accuracy (e.g., van Leer’s flux-limiter [35], Roe’s “superbee” limiter [36], and
van Leer’s minmod technique [38]), although the minmod technique has proven very reli-
able and has been used for all computations here. The code accommodates frozen flow for
nitrogen, oxygen, and air; it accommodates nitrogen and oxygen for dissociating flows. For
dissociating flows, PGP3D may be run in frozen, non-equilibrium, and equilibrium modes.

The improvements made between PGP3D.2 and PGP3D.4 are summarized in Table 2.3.
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Chapter 3

Frozen Flow Past a Cone at Zero Incidence

This chapter describes the computations performed on a simple test case, the boundary
layer on a cone at zero incidence in a viscous frozen flow. Comparisons were made be-
tween an approximate analytical solution and simulations performed with a time marching
method, the stepback method, and the partial grid method. The errors associated with the
stepback method were quantified, and the partial grid scheme is shown to be an effective
way of getting very good approximate results with much less computation than required for

a full time marching scheme.

3.1 Test of the Stepback Method

The test case used was viscous frozen flow past a cone at zero incidence, because an
approximate analytical solution exists for the boundary layer. The inviscid flow past the
cone was computed with the stepback method, and these conditions were then used as the
edge conditions for an analytical boundary layer solution.

First, the flat plate boundary layer equations were solved using the Dorodnitsyn-Howarth
transformation [52]. The Mangler transformation [52] was used to find the corresponding
cone boundary layer. Initial guesses were made for the derivative of velocity at the wall, and
for either the wall temperature for an adiabatic wall or the wall temperature gradient for an
isothermal wall. Then a shooting method was used, where the equations were integrated to
the edge of the boundary layer and the initial guesses were modified if the edge conditions
were not met.

Several computations were performed to assess the errors associated with the stepback
and partial grid methods. The first computation was made using only the stepback method.
For the second computation, a grid was used which extended from very near the tip of the
cone to a radius (or distance down the cone) larger than the radius of interest. This will be

referred to as the full grid solution.
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It was observed that the pure stepback consistently underestimated the size of the
boundary layer, while capturing its profile and wall values well. This led to the idea for
the new method proposed here. Whereas the stepback method has certain problems, it was
hoped that these errors would “wash out” when combined with conventional time marching
techniques. So for the third computation, a stepback computation was preformed at a
lower radius, and this solution was used as an upstream boundary condition for a grid
which extended from the lower radius to the radius of interest. This type of solution will
be referred to as the partial grid solution.

This partial grid solution is obtained in much less time than the full grid solution for
two reasons. First, since the smallest cells in the partial grid are much larger than the very
small cells at the tip of the full grid, the viscous runs can be made at substantially larger
CFL numbers. For viscous computations, the time scale is proportional to the square of the
cell size. A full grid solution may have to be run at CFL numbers as low as 0.05, while the
corresponding partial grid can be run at CFL.=0.25. Combined with the difference in small-
est cell size, a partial grid timestep can be as much as a hundred times the corresponding
full grid timestep. Since the partial grid also has less cells in the downstream direction, the

solution may be obtained in much less time than the full grid.

3.2 Analytical Solution

An approximate analytical solution was calculated for the frozen compressible conical
boundary layer. The compressible flat plate boundary layer equations were solved using
the Dorodnitsyn-Howarth transformation, and this solution was transformed into a conical
boundary layer profile with the Mangler transformation [52]. These transformations are
discussed in Appendix C. This solution assumes zero pressure gradient at the edge of
the boundary layer, but since the cone will actually have a positive pressure gradient, the

analytical solution will slightly overestimate the thickness of the boundary layer.



- 40 -

Gas Air
Cone half-angle 10°
Incidence 0°
Length (m) 0.117
M 7.95
p (kg/m3) 0.012
u (m/s) 1186
T (K) 55.4
p (kPa) 0.191
Hy (MJ/kg) 0.759
Re, 480000
Pr 1.0

Table 3.1 Test conditions for the zero incidence Tracy test. Hp is the stagnation
enthalpy. Re; is the Reynolds number based on the freestream conditions and the
body length.

3.3 Test Conditions

The zero incidence tests were done at the conditions which Tracy used, which are sum-
marized in Table 3.1. It should be noted that the Tracy tests used a different Pr and wall
boundary condition.

The governing parameter for viscous effects is the Reynolds number (Re), which is

defined as
Re = "——, (3.1)

where p, U, and pu are the conditions at the state which the Reynolds number is based on,
e.g. the freestream conditions or post-shock conditions. L is a geometrical scale, usually
either the body length or z. Here, the Reynolds number will always be based on the
freestream conditions, and the subscript will denote whether the Reynolds number is based

on body length or distance (i.e., Re, or Re;). For the Tracy test conditions, Re, = 480000.
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Figure 3.1 Typical stepback mesh for a cone at zero incidence (2 x 40 x 2). The
freestream is moving in the positive x-direction, and the cone sits below the mesh.

3.4 Computational Grids

As discussed previously, the stepback grid uses only two cells in the axial direction.
For these zero incidence cases, axial symmetry was invoked, so only two cells were used in
the azimuthal direction. Forty cells were used in the direction normal to the cone surface,
stretched tighter towards the cone surface. We will use the convention (i,az X jmaz X kmaz)
to denote the resolution of grids, where the i-direction is down the length of the cone,
the j-direction is away from the surface of the cone, and the k-direction is the azimuthal
direction around the cone. Therefore the zero incidence stepback meshes had a resolution
of (2 x40 x 2). Figure 3.1 shows a typical zero incidence stepback grid, with the freestream
moving in the positive x-direction, and the cone sits below the mesh.

The included angle of the whole mesh varies with the distance from the tip, since near
the tip of the cone, the boundary layer is relatively thicker. Similarly, for equilibrium flow,

both the boundary layer and the shock layer will be relatively thinner. Various angles and

stretchings were tried to find grids which were most appropriate for each particular case.
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Figure 3.2 Typical full grid domain for a cone at zero incidence (40 x 40 x 2)
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Figure 3.3 Typical partial grid domain for a cone at zero incidence (33 x 40 x 2)

For the same reason, some of the full and partial grid domains have a slight degree of
concavity, since the front end of the grid needs a larger included angle than the rear end.
A strictly conical grid could have been used, but this would waste a significant number of
cells near the back of the mesh.

For the full grid computations, the meshes used had forty cells in the axial direction,
with two cells in the azimuthal direction and forty cells normal to the cone (40 x 40 x 2).
These calculations can take as long as several weeks on a Pentium Pro processor, due to
the range of scales and the limit on the CFL number imposed by the size of the smallest
cells. Typically, the whole grid runs were made with CFL numbers around 0.05. Figure 3.2
shows a typical full grid mesh.

The partial grids were selected to be truncations of the full grids. By this we mean that
all cells ahead of the radius of the initial stepback radius are dropped, and cells behind that
radius are the same size as the corresponding cells in the full grid. The number of cells in
the axial direction is smaller with the partial grid, but cell dimensions are the same in other

directions. For the results shown in this work, the initial stepback radius was taken to be
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Figure 3.4 Inviscid shock layer profiles for a 10° cone at zero incidence. Tracy con-
ditions, M=7.95. Stepback, EFMO. @ is the angle from the cone surface, T, is the
freestream temperature, Uy, is the freestream velocity.

1/9 the radius of interest. With the stretchings used, this was equivalent to truncating the
first seven cells of the full grid, so the partial grid resolution was (33 x 40 x 2). Figure 3.3
shows a typical partial grid domain. CFL numbers are similar to the CFL numbers from the
stepback grid, as high as 10 or more, and computational times are on the order of several

days on a Pentium Pro processor.

3.5 Results

The first computation performed was the inviscid stepback calculation, which provides
the edge conditions for the analytical solution. The temperature and velocity profiles are
shown in Figure 3.4. These edge results agree well with the values at the edge of the
boundary layer from the viscous stepback results, which will be discussed below.

Figure 3.5 shows a comparison of profiles for the analytic and stepback solutions for
both EFM and EFMO. These profiles are taken at a constant radius, meaning that they are
extracted from a spherical surface centered on the cone tip. For completeness, the first two
plots of Figure 3.5 include the shock layer, although for the purposes of this test, we are
really interested in the boundary layer thickness. The third and fourth plots of Figure 3.5

show the same profiles, concentrating only on the boundary layer. The remainder of the
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Figure 3.5 Shock layer and boundary layer profiles for a 10° cone at zero incidence.
Tracy conditions. Adiabatic wall, M = 7.95, Pr = 1, Re, = 4.2 x 105. @ is the angle
from the cone surface, T is the freestream temperature, Uy, is the freestream velocity.
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boundary layer profiles will be presented in this fashion. It can be seen that EFMO captures
the shape of the profile well, whereas EFM’s diffusivity results in a thicker boundary layer,
and a lower adiabatic wall temperature. It should be noted that a higher resolution EFM

solution would agree well with the EFMO solution (see Section 3.5.2).
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Figure 3.6 Density contours for full grid computation showing shock wave and bound-
ary layer thickness. 10° cone at zero incidence. Tracy conditions, EFMO. Adiabatic
wall, M = 7.95, Pr = 1. At end of grid, r=0.15, and Re, = 6.15 x 10°.
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Figure 3.7 Density contours at tip of full grid computation. 10° cone at zero incidence.
Tracy conditions, EFMO. Adiabatic wall, M = 7.95, Pr = 1. At r=0.15, Re, = 6.15 x 105.

The first viscous calculation, using only the stepback method, showed that while the
stepback method with the EFMO method accurately reproduces the shape of the boundary
layer profile and gives accurate adiabatic wall temperatures, the thickness of the boundary
layer is consistently underestimated. It should be remembered that the stepback method is

not exact for viscous flow, so some error is to be expected.



- 46 -

If the boundary layer were conical, it would have the same relative thickness (i.e., when
scaled by the distance from the tip) at any location on the cone. A real boundary layer
will grow as it travels down the cone, but will become relatively thinner because the growth
goes like 1/r. Consider a hypothetical stepback calculation carried out on a thick shell with
many cells in the radial direction. The boundary layer would be considerably thinner at the
downstream side, and when the downstream solution is stepped back to the upstream side,
the boundary layer would be too thin, although the shape of the profile would be correct.
Perhaps this is occurring on a smaller scale with a real stepback calculation. Although
the difference between the upstream and downstream solutions is very small, perhaps the
repeated application of the stepback algorithm compounds these errors, leading to the
results that are seen here.

Stepback solutions of this resolution can take about a day on a Pentium Pro processor
when started from the freestream. However, for a given freestream, a stepback solution from
another Reynolds number may be used as an initial condition for the Reynolds number of
interest. The boundary layer and shock wave must adjust to their new positions, and the
included angle of the mesh may need to be adjusted, but these computation take only a
few hours when initialized from a previous stepback solution. They can be run in implicit
mode at large CFL numbers of 10 or more.

The second computation (full grid) agreed very well with the analytical solution, except
near the tip. This is not surprising since EFMO has already been shown to accurately
reproduce viscous effects [2]. The tip was a region of concern, since the singularity at
the tip of the cone has produced problems with previous simulations. Figure 3.6 shows the
contours from a full grid computation, where Figure 3.7 shows the very tip of the same grid.
The grid must be composed of quadrilaterals, so every cell must have a finite thickness at the
upstream edge of the grid. With a grid lying on rays from the tip, it was impossible to have
the first cell go right down to r =0, so the first cell starts at a small finite value (7 =1x10~9 m)
and is relatively long (Ar ~ 5x107* m). Whereas the shock should be attached to the
cone at the start of the grid, it sits off of the cone, intersecting the upstream boundary.
However, further downstream the results agree very well with the analytical solution. This
can be seen in Figure 3.8, which shows temperature and velocity profiles at Re,=4.2x10~?
for the analytical solution and for all three computational methods (stepback, full grid, and

partial grid) performed with EFMO. The full grid gives a boundary layer thickness slightly
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Figure 3.8 Temperature and velocity profiles without shock layer for a 10° cone
at zero incidence. Tracy conditions, EFMO. Adiabatic wall, M = 7.95, Pr =1,
Reyx = 4.2 x 105. 0 is the angle from the cone surface, T, is the freestream tempera-
ture. Uo, is the freestream velocity.

less than that predicted by the analytical solution (which will overpredict the thickness, as
explained earlier), and agrees very well with the predicted adiabatic wall temperature.
The third computation shows that a calculation which uses a stepback solution as a
boundary condition needs only a few downstream cells to wash out the errors introduced
by the use of the stepback method. In Figure 3.8, the partial grid boundary layer is nearly
indistinguishable from the full grid boundary layer, except for the small error in the adiabatic
wall temperature. Figure 3.9 shows how the boundary layer thickness adjusts downstream
of the stepback solution. This figure compares the profiles from the first four downstream
cells of the partial grid with the respective profiles from the full grid. In the first cell, the
partial grid solution still underestimates the boundary layer thickness by about 20%. As
the flow moves down the cone, the boundary layer thickness decreases, as seen in the full
grid profiles. The partial grid profiles do not decrease in thickness as quickly, and by the
fourth cell, the predicted boundary layer thicknesses are almost identical. There is a slight
error in the adiabatic wall temperature. At low Reynolds numbers, such as these cells near
the tip, the partial grid slightly overpredicts the adiabatic wall temperature, but at higher
Reynolds numbers (such as those in Figure 3.8), the method slightly underpredicts it.
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Figure 3.9 Boundary layer adjustment from a stepback solution. 10° cone at zero
incidence. Tracy conditions, EFMO. Adiabatic wall, M = 7.95, Pr = 1. @ is the angle
from the cone surface, T is the freestream temperature. The caption indicates the
corresponding streamwise cell number from the partial grid.
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3.5.1 Recovery of Partial Grid Solution

The partial grid method recovers from initial errors in the boundary layer. The Blasius
boundary layer solution will also recover from an initial error in the following sense: if there
is an error in the downstream coordinate, the boundary layer thickness will also be incorrect.
However, if the incorrect coordinate system is used at larger distances down the body, the
relative error will be less for both the coordinate and the boundary layer thickness.

The non-dimensionalized Blasius boundary layer displacement thickness § is propor-

tional to the inverse square root of the distance  down the body, or

] 1
- X —. 3.2

z NZ3 (3:2)
If the origin is shifted by Az, so that the distance is now z’' = z + Az, the solution will

predict a displacement thickness

Formally, the recovery of the solution means than

Tim (%) _ \/Lj_ —1. (3.4)

In a similar manner, the analytical solutions discussed in Section 3.2 can be computed with
shifted coordinates, and the recovery of these solutions may be compared to the partial grid
results.

The thickness of the stepback solution used at the front of the partial grid was used
to calculate the shift in coordinates necessary to produce an analytical solution with the
same thickness. Analytical solutions were then computed using the shifted coordinates at
the radii corresponding to the first four cells of the partial grid. The results are shown in
Figure 3.10, which shows velocity profiles. The partial grid results recover more quickly
than the shifted analytical solutions, although the difference is not large in the first three
cells. By the fourth cell, the partial grid profile is quite similar to the analytical solution,
predicting the same thickness with slight differences in the outer part of the boundary layer;

the shifted analytical solution underpredicts the boundary layer thickness by about 10%.
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3.5.2 Grid Convergence Study

The following section shows some of the practical differences between EFM and EFMO.
A grid convergence study was performed for the stepback boundary layer solution for both
methods. A series of grid resolutions were used to solve the boundary layer, doubling the
grid resolution each time.

Figure 3.11 shows stepback temperature and velocity profiles for the boundary layer at
Re;=4.2x107° on a 10° cone at zero incidence. EFM solutions were performed with 40,
80, 160, 320, and 640 cells. EFMO solutions were computed with 40, 80, 160, and 320 cells.
EFMO was too unstable to provide a solution with 640 cells.

The EFM results overestimated the boundary layer thickness and underestimated the
wall temperature, but the solutions converge monotonically to a limit solution. The EFMO
solutions predict the thickness well at all resolutions, although there are some errors at
the outer edge of the boundary layer. The wall temperature does converge for EFMOQO,
but not monotonically. With 40 cells, the temperature is underpredicted, but with 160
cells, it is overpredicted. However, EFMO converges more quickly than EFM. In terms of
wall temperature, an EFMO solution of a given resolution is about as accurate as an EFM
solution of twice that resolution.

The errors at the outer edge of the EFMO boundary layer are due to a slight oscillation
in the pressure at the edge of the boundary layer. Both EFM and EFMO suffer from
this oscillation, which disappears at higher resolutions. EFMO is more sensitive to this
oscillation, and it affects the EFMO temperature and velocity profiles; the EFM profiles
are relatively unaffected by the pressure oscillation.

At high resolutions, the EFM and EFMO profiles are very similar. Figure 3.12 shows
a comparison of the highest resolutions tested for each method: 640 cells for EFM, and
320 cells for EFMO. These profiles agree extremely well, and show that EFM and EFMO
converge to the same solution.

These results show that at lower resolutions, the dissipation of EFM is too high to
achieve an accurate solution. This is not true at high resolutions. However, at very high
resolutions, EFMO is too unstable to converge to a solution. If computational resources
allow for high resolution, EFM can be used to obtain accurate solutions. Otherwise, EFMO

should be used to achieve high accuracy with fewer cells.



-52-

Iy Ir
T e 40 cells I [ P 40 cells
[ \\\ - -~ 80 cells | - 80 cells
B ) w160 cell§ | 160 cell
0.75¢ § — 320cells 0.75¢ 320 cell
i ——— 640 cells |
~ A ~ 3
T 05+ = 0.5F
o Tt e |
; %
i |
0.25 B 0.25 r
I
0 VJ . L 0 r-l Ll il ]
0 0 2 6 8 10 12 14
T/Ty
1r lr
[ R — 40 cells l’ - ———— 40 cells
—m—— 80 cells | S 20 cell
0.75 t - 160 cells 4 0.75F | —— — 160C?:elsls
[ 320 cells - ———— 320 cells
N 640 cells |
o ! ol
; 0.5 E Y 0.5F
I
0.25 r 0.25f
[ i
O’h '//;4;\4;14;\|A;VJ;\JIILIJ 0)-1/1 PR NN R TR U SR [N T S WY N PR MR S |
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
U/Uy, U/Uy
EFM EFMO

Figure 3.11 Grid convergence for the stepback boundary layer, 10° cone at zero
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Chapter 4

Frozen Flow Past a Cone at Incidence

This chapter describes the computations performed to test the stepback method when
applied to cones at incidence. High-resolution stepback computations are compared against

experimental measurements of flow features and surface conditions.

4.1 Test Conditions and Experimental Details

In order to examine the effectiveness of the stepback method for frozen viscous flow,
comparisons were made against the results of Tracy [5]. In the Tracy experiment, a hy-
personic isothermal cone was tested in air in the GALCIT hypersonic facility at Caltech.
Measurements were taken at various incidence angles; only the highest incidence produced
the full shock-vortex system that we are interested in, so comparisons were made only for
that incidence angle. These numbers are summarized in Table 4.1.

The calculations at incidence were done using the same freestream conditions as the
zero incidence calculations (see Section 3.3), however the surface boundary condition was
different. Recall that the zero incidence computations were performed with an adiabatic
boundary condition at the wall, but in Tracy’s experiment, the cone surface was isothermal
at a temperature of 317 K. The temperature of the model was maintained with cooling water
which was continuously pumped through the cone. For the computations, the Prandtl
number was assumed to be constant, and for the relatively cold test conditions, it was
assumed to have the value Pr=0.72.

Tracy’s results include surface pressure and heat transfer measurements around the
circumference of the cone, as well as flow field surveys. For the flow field surveys, a pitot
probe was traversed through the flow field in circular paths at various radii from the cone,
and the changes in pitot pressure were used to determine the location of flow features such as
shock waves and viscous shear regions. The surface measurements were taken at a Reynolds

number (based on freestream conditions and distance from the tip) Re,=3.6x10%, and the
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Gas Air
Cone half-angle 10°
Incidence 24°
Length (m) 0.117
M 7.95
p (kg/m?) 0.012
u (m/s) 1186
T (K) 55.4
p (kPa) 0.191
Hy (MJ/kg) 0.759
Re, 480000
Pr 0.72

Table 4.1 Test conditions from Tracy. Hg is the stagnation enthalpy. Re, is the
Reynolds number based on the freestream conditions and the body length.

flow features are presented for Re,=4.2 x105. For the entire cone, the flow was laminar.

Figure 4.1 shows several numerical pitot pressure traces, taken from the simulations
discussed in this chapter at various values of ¢, the angle from the surface of the cone.
These traces are taken from the Re,=4.2 x10° simulation discussed in Section 4.3.3, but are
shown here to facilitate discussion of the pitot traces. These traces show the characteristic
behavior that corresponds to the domains of the fow field, and show that pitot pressure
traces are sufficient to define these domains.

The numerical pitot pressure can be computed from the static pressure p, the Mach
number M, and the ratio of specific heats 7 [53]. Different expressions must be used for
subsonic and supersonic flow, to account for the shock wave upstream of the numerical pitot

tube, yielding

-1 1/{(v-1)
f <1+'VTM2) : M<1
Dp J
— = . 4.1
: 1 (1)
(7+1)2M2 v/ {(y-1) 1 -+ 2yM? M1
( [4yM2 —2(y = 1) y+1 P s

At small values (6=1.64°), a traverse around the cone will not cross the bow shock, but

the expansion is clearly seen. The outer edge of the viscous region is seen as a drop in pitot
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pressure at ¢ = 130°. At small 8, this is not extreme, but at larger #, the drop in pitot
pressure is fairly rapid. The pitot pressure reaches a minimum at the inner edge of the
separated shear layer, and rises again in the vortex system.

At larger values of 6 (6=3.16°,5.02°,8.33°), the pitot pressure rises behind the bow
shock, then drops as the flow expands around the cone. The pressure rises again at the
leeward shock (twice if both branches of the A-shock are intersected by 6). This is followed
by the rapid drop in pitot pressure at the outer edge of the shear layer, and the minimum
at the inner edge of the shear layer. This is followed by a slight rise in the vortex towards
the leeward plane of symmetry, except in the case of = 8.33°. This pitot trace does not
intersect the vortex. Rather, it crosses the separated shear layer at the leeward plane of
symmetry where it is meeting its counterpart from the opposite side of the cone, and so the

minimum value lies at the plane of symmetry.

4.2 Computational Grids and Simulation Details

Initially, calculations were carried out on the Intel iPSC Touchstone Delta. The Delta is
a 512-node parallel machine based on i860 processors. When it was commissioned in 1991,
this machine was the world’s fastest supercomputer [54]. Parallel instructions can be either
machine-specific calls, or the Express environment [55] may be invoked. With Express, the
code is portable to any parallel machine supporting Express and the Fortran 77 language,
or to any sequential machine supporting Fortran 77, regardless of Express. However, there
proved to be some problems with obtaining good high—resé)lution solutions on the Delta.
This will be discussed below, in Appendix D. More recently, new sequential machines
became available which allowed for similarly high-resolution computations, and the Tracy
case was recomputed, with the results agreeing well with the previous ones.

Only pure stepback runs were made for these comparisons. The resolution of the Tracy
runs was (2 x 150 x 200), or 150 cells normal to the cone and 200 in the azimuthal direction.
It was not possible to obtain such high crossflow resolution with either full or partial grid
runs. A typical grid (of lower resolution) for a cone at incidence is shown in Figure 4.2. The
first view is from the tip of the cone, looking down the axis of the cone. This is the viewpoint
from which contours and flow features will be presented. As discussed in Section 2.5.3, the

stepback grids lies on a spherical surface centered on the cone tip. All data here are taken
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Figure 4.1 Criteria for defining domains of field from pitot pressure traverses at
constant radii from the cone. @ is the angle from the surface of the cone, ¢ is the
azimuthal angle, and p, is the pitot pressure.

from this surface. Contour plots and profiles are taken at a constant radius from the tip, and
streamlines shown are crossflow streamlines, where only the components of velocity lying
on the sphere are integrated to obtain the streamlines. The second view is from the side of
the cone, with the freestream moving horizontally from left to right and the cone axis lying
in the plane of the page, inclined to the horizontal. The third view shows the curvature
of the spherical surface which the grid lies on. Note that the grid presented in Figure 4.2

has a much lower resolution than the grids used in this section so that the cell stretching
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Figure 4.2 Typical stepback grid for a cone at incidence (2 x 45 x 100)

can be better seen. At this high resolution, the very small cell sizes rendered an explicit
calculation impractical, so these results were obtained with the implicit formulation. For

the cone at zero incidence, the stepback computation used 150 cells away from the surface

of the cone (2 x 150 x 2).

4.3 Comparison with Experimental Results

This section details the results from the calculations performed, and the comparison

with experiment.

4.3.1 Zero Incidence Case

The first calculation performed was a stepback calculation used to measure the heat

transfer on a zero incidence cone. Due to the high resolution, there were only minor dif-

ferences between the EFM and EFMO results here (see Section 3.5.2). F igure 4.3 shows a

comparison of the EFM and EFMO boundary layers at Re,=4.2x105.
thick. Contrast this with the adiabatic boundary layers from the

The boundary layer

is very thin, about 0.5°
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Figure 4.3 Comparison of EFM and EFMO boundary layer profiles for a 10° cone
at zero incidence. Stepback, Tracy conditions, M=7.95. Isothermal wall at 317 K,
Pr = 0.72, Reyx = 3.6 x 105. @ is the angle from the cone surface, T, is the freestream
temperature, Uy, is the freestream velocity.

previous chapter, which were almost twice as thick. The slight difference between EFM and
EFMO in the temperature gradient at the wall is enough to cause a significant difference in
the heat transfer. For EFM, the computed zero incidence heat transfer g = 7576 W /m?,
while for EFMO, go = 8919 W/m?. Figure 4.4 shows the boundary layer including the shock

wave for the EFMO computation.

4.3.2 Surface Conditions

Next, the cone at incidence was calculated using the high-resolution stepback grid.
Figure 4.5 shows the surface pressure versus azimuthal angle, while Figure 4.6 shows heat
transfer versus azimuthal angle. Both have been normalized in the same way that Tracy
did. The non-dimensional surface pressure is presented as 1000 times the surface pressure

divided by the freestream stagnation pressure, or

B = 1000 (—p—) . (4.2)

Pooco
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The non-dimensional heat transfer is presented as the ratio of the heat transfer to the heat

transfer at the same Reynolds number on a cone at zero incidence,

§= (q%) . (4.3)

The agreement is good with the pressure slightly underpredicted for both methods. There
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Figure 4.5 Normalized surface pressure (p = 1000 p/pooc) vs. azimuthal angle for a
10° cone at 24° incidence. Tracy conditions, M=7.95. Stepback. Isothermal wall at
317 K, Pr = 0.72,Re, = 3.6 X 105.

is no difference between the EFM and EFMO calculations. Both profiles agree very well
with the experiment for the location of minimum pressure, the surface pressure plateau, and
the subsequent rise in pressure at the leeward plane. The surface pressure drops as the flow
expands around the cone, reaching a minimum value just upstream of the shock-boundary
layer interaction at ¢~ 144°. Here the pressure rises until it reaches the separation point,
at ¢=152.5°, as determined from the crossflow streamlines. This is the beginning of the
pressure plateau in the separated region, which is followed by the local pressure maximum
where the separated shear flow reattaches at the leeward plane of symmetry. The crossflow

streamlines are useful for determining the posisiton of separation. Recall that only the
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components of velocity lying on the sphere are integrated to obtain the crossflow streamlines.
Streamlines may be plotted very close to the separation point to determine quite accurately
where the crossflow streamlines lift from the surface.

The heat transfer is the flow feature most sensitive to the method. Whereas neither
contour plots nor surface pressure show any distinction between the methods (at least for a
very high-resolution simulation such as this one), the heat transfer plot displays the supe-
riority of EFMO for viscous simulations. With the exception of the region near separation
(144° < ¢ < 162°), the heat transfer is remarkably well-predicted by EFMO at this reso-
lution, except near the separation point, where it slightly underpredicts the heat transfer.
EFM overpredicts the heat transfer everywhere at this resolution. Like the pressure, the
heat transfer drops as the flow expands around the cone. The heat transfer reaches a
minimum at the separation point, and rises in the separated region.

The non-dimensionalized EFM heat transfer is approximately 1.4 times the EFMO heat
transter. Coincidentally, the zero incidence heat transfer gy for EFM was approximately
V1.4 times the go for EFMO, leading one to the possible conclusion that the EFM heat
transfer scales linearly with the EFMO heat transfer, and that this was compounded by
normalizing the heat transfer by gp. However, this sort of behavior has not been seen in

any other comparisons of EFM and EFMO.

4.3.3 Flow Features

Figure 4.7 shows comparisons of Tracy’s flow field with the high-resolution stepback
EFM run. Mach number contours from the simulation have been superimposed over Tracy’s
findings’. Many features agree well, including the thickness of the boundary layer, the
point of separation, and the position of the separated shear layer. The position of the
leeward shock system is fairly good, although slightly skewed. The windward shock standoff
was not well-predicted by the simulation; the thickness of the shock layer was slightly
overpredicted and the pressure was slightly underpredicted. This suggested that perhaps
the Tracy freestream Mach number was not accurately reported and was in fact higher

than 7.95. An estimate was made for the Mach number which might produce the same

' The image was created by superimposing two postscript files. This was accomplished in a six-line Amrita
script. Amrita [56] is a software system for numerical investigations, and its scripting language Amrita has
many commands for performing otherwise arduous documentation tasks. This is one example of a mundane
use of Amrita, which is a powerful framework for rigorous numerical sumulations.
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shock standoff distance as Tracy’s findings. Another simulation was performed with the
freestream raised to M==8.3. The shock position and surface pressure agreed more closely
with Tracy’s findings, but only slightly.

This simulation was repeated with the EFMO method, and Figure 4.8 shows a compari-
son of temperature contours for the two methods. There is virtually no discernible difference
between the contours from the two calculations, and the remainder of the contours shown
here are for EFMO. Figure 4.9 shows contours of log p, which emphasize the A\-shock, and
contours of log p,, where pj, is the pitot pressure. The utility of the pitot pressure in defining
domains of the flow has been discussed above. Finally, Figure 4.10 shows Mach number

contours and contours of log p.

4.3.4 Profiles from the Surface

The next two figures show profiles away from the cone surface. Figure 4.11 shows
a comparison of temperature profiles at the windward plane of symmetry for EFM and
EFMO. Again, there is not a large difference between the two methods. The viscous region
is larger for EFM, and the temperature gradient at the wall is slightly higher. This results
in a higher dimensional heat transfer for EFM, which is compounded in the non-dimensional
form g because the zero incidence heat transfer qo is smaller for EFM than for EFMO.

A number of temperature profiles were taken at constant values of ¢. These were taken
along the rows of cells k£ = 200, 150, 100, 50, 10, and 1, where the first cell k£ = 1 lies on the
leeward plane of symmetry. These rows correspond to ¢ = 0.6°,58.3°,109.6°, 150.4°, 175.1°,
and 179.7°, respectively. The lines which these profiles were taken from are shown in
Figure 4.12, which shows Mach number contours. The temperature profiles are shown in
Figure 4.13.

At ¢ = 0.6°, the profile is typical of stagnation region flow. The bow shock is quite
strong, and stands off the cone at § ~ 2.5°. The temperature is nearly constant behind the
bow shock, and the boundary layer is about 0.25° thick. Because the adiabatic wall tem-
perature is higher than the prescribed wall temperature, the temperature profile overshoots
the wall temperature before dropping to meet the boundary condition.

At ¢ = 58.3°, the qualitative features of the profile are much the same. The bow shock

stands off here at 6 ~ 3.5°, and the temperature rise behind the shock is less due to the
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Figure 4.7 Comparison of EFM Mach number contours and the Tracy flow field as
determined from pitot probe traverses. 10° cone at 24° incidence. Stepback, Tracy
conditions, M=7.95. Isothermal wall at 317 K, Pr = 0.72, Rex = 4.2 x 10, In the Tracy
flow field, O denotes shocks, ¢ denotes viscous boundaries, A denotes the minimum
pitot pressure, and x denotes the surface pressure plateau.
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Figure 4.10 Mach number contours and density contours for a 10° cone at 24° in-

cidence. EFMO steoback, Tracy conditions, M=7.95. Isothermal wall at 317 K,
Pr = 0.72, Rey, = 4.2 x 10°.
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Figure 4.11 Comparison of EFM and EFMO profiles at windward plane (¢ = 0°) of
a 10° cone at 24° incidence. Stepback, Tracy conditions, M=7.95. Isothermal wall at
317 K, Pr = 0.72, Reyx = 4.2 x 10%.0 is the angle from the cone surface, T, is the

freestream temperature.
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Figure 4.12 Lines of constant ¢ for Figure 4.13
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expansion around the cone.

At ¢ = 109.6°, the shock stands at 8 =~ 8°, and is substantially weaker. The boundary
layer thickness has grown to about 1°.

At ¢ = 150.4°, the bow shock stands at 6§ = 17.5°, and is quite weak. The temperature
drops below the post-shock value due to the expansion, and the boundary layer has grown
to 2.5°.

At ¢ = 175.1°, the bow shock is so weak that it is not seen on the temperature profiles (it
stands at € ~ 22°). The temperature rises behind the leeward shock system from 6 = 14°
to @ = 7.5°. This increase is not discontinuous because the leeward shock system has a
strength gradient, as discussed in Section 1.1. The first part of this temperature rise (from
0 = 14° to 6 = 11°) is due to the outermost part of the A-shock. The second part of the
rise is due to the lower part of the shock, where the fluid has been shocked twice. Following
this, there is a large temperature rise as the profile cuts across the separted shear layer and
enters the hot recirculation zone. The temperature drops as the fluid is accelerated into
the vortex, only to rise again in the boundary layer and finally drop back to the surface
temperature.

Finally, for ¢ = 179.7°, the first significant rise in temperature is seen at the node
point on the leeward plane of symmetry (the node can be seen more clearly in Figure 4.15
below). The temperature rises further where the the two separated shear layers collide at

the leeward plane of symmetry, and then follows the same behavior as for ¢ = 175.1°.

4.3.5 Leeward Shock-Vortex System

Figures 4.14-4.15 show closeups of the calculated leeward shock-vortex system plotted
with contours of various quantities. These figures show many features of the leeward flow.
The streamlines are crossflow streamlines, and crossflow separation occurs at ¢ = 152.5°.
The distance between the arrows on the streamlines is proportional to the velocity, and
show the relative speed of the flow.

In Figure 4.14, contours of log p are plotted, and the A-shock is clearly visible. The node
point on the leeward plane of symmetry is clearly seen where the streamlines converge. All
of the fluid which does not enter the vortex ends up asymptotically approaching the radial

line passing through the node point.
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Figure 4.15 shows Mach number contours. Here the sonic contour (M =1) is the thick
contour near the surface of the cone. It is interesting to note that the fluid nearest the
surface is subsonic upstream of the separation point, but is accelerated to supersonic speeds
as it enters the leeward vortex. Some of this fluid crosses the sonic line again as it flows
past the surface in the reversed region, only to finally remain supersonic as it enters the
essentially inviscid vortex core.

In Figure 4.16, the contours are temperature contours. The A-shock is still visible,
but the most prominent feature of this figure is the shear layer. Although it might be
tempting to believe that the inner edge of the area with the densest contours is the edge
of the shear layer, the crossflow streamlines show that separation actually occurs about
8°-10° later. The edge of the dense contours corresponds to the maximum temperature.
The shock-boundary layer bends the shear layer away from the cone, but this does not
immediately cause separation. The hot, slow fluid near the surface of the cone expands to
accomodate this, and separation does not occur until slighty later. Lastly, Figure 4.17
shows color temperature contours for the Tracy case. Most of the flow features are clearly

seen, especially the A-shock and the separated boundary layer.



o
. - — L

\ AN\«

A7 N

= S







- 76 -

Figure 4.16 Leeward shock-vortex system. Contours of T' and crossflow streamlines are
plotted, and the value of ¢ is indicated. Stepback EFMO, Tracy conditions, M=7.95.
Isothermal, T,,=317 K, Pr = 0.72, Re,x = 4.2 x 105.
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Figure 4.17 Temperature contours from stepback simulation. 10° cone at 24° inci-
dence. Tracy conditions, M=7.95. EFMO. Isothermal, T,, =317 K, Pr = 0.72, Rex =
4.2 x 1083,
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Chapter 5

Dissociating Cone Flow

This chapter describes the reacting flow simulations. Comparisons were made with the
experiments of Krek [6], who examined heat transfer and surface pressure measurements
on a cone at incidence. Krek’s experiments were performed on a 15° half-angle cone at 30°
incidence in nitrogen. Its length L = 0.18 m, and the Reynolds number (based on cone
length and freestream conditions) was 9.9 x 10*. Circumferential heat transfer and pressure
measurements were taken at five downstream stations, and these are compared to stepback
calculations and partial grid calculations. Results have been measured experimentally at
(r/L) = 0.34, 0.46, 0.58, 0.69, and 0.81, where r is the distance from the cone tip. Stepback
solutions using EFMO were computed for all of these locations, as well as at (r/L) = 0.10,

which was used as the boundary condition for the partial grid runs.

5.1 Test Conditions and Experimental Details

Krek’s experiment was conducted in the University of Queensland’s free piston shock
tunnel, known as T4. In a shock tunnnel, a high pressure reservoir forces a piston down a
compression tube, which compresses the driver gas (here, the driver gas was helium). At
sufficient pressure, the driver gas ruptures the primary diaphragm, sending a strong shock
wave into the test gas. The shock moves down the shock tube, compressing and heating the
test gas. The shock reflects off the end of the shocktube, and travels back up the shocktube,
raising the pressure high enough to rupture the secondary diaphragm. This allows the test
gas to flow through the nozzle and into the test section.

It has been shown that T4 can experience considerable driver gas contamination [57].
This means that the contact surface between the driver gas and the test gas has allowed
some of the driver gas to enter what should be a plug of constant state test gas.

This was known at the time of the Krek experiments, and care was taken to limit the

test times to before the onset of driver gas contamination. The tunnel was operated in
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an undertailored condition, meaning that the pressure on the contact surface between the
driver gas and the test gas is not matched. When the reflected shock hits an undertailored
contact, it creates an expansion wave which moves through the test gas. This allows a
longer test time, because it delays contamination of the test gas by the driver gas. The
drawback of operating undertailored is that the stagnation pressure is not constant during
the test. However, as the stagnation pressure drops, so does the pitot pressure. The ratio
of stagnation pressure to pitot pressure is fairly constant throughout the tests, so Krek

normalized the static pressure measurements by the pitot pressure with

p= (i) . (5.1)

Similarly, the heat transfer measurements drop during the tests, but followed the pitot pres-
sure’s decay in time. To account for this effect, Krek’s heat transfer data were normalized
by the ratio of the instantaneous pitot pressure to the inital pitot pressure at the beginning

of the test. They were further normalized by the heat transfer at the same Reynolds number

()

Since the numerical freestream pitot pressure is constant, the notation ¢, is used hereafter,

for the zero incidence cone:

keeping in mind that the experimental results were normalized by the variable pitot pressure.

The heat transfer measurements were made with two types of devices: thermocouples
and thin film heat flux gauges. The thermocouples were used on the windward side of the
cone (0° < ¢ < 90°), and the thin film gauges were used on the leeward side (90° < ¢ <
180°). The thermocouples were not a good quantitative measure, but rather a qualitative
measure. The thin film gauges provide a good quantitative measurement, but were not
robust enough to withstand the harsh conditions on the windward side of the cone.

The Krek freestream conditions are shown in Table 5.1. These conditions are calculated
freestream conditions, based on the fill conditions for the shock tube and driver gas. Two
codes are used; one calculates the conditions in the shock tube, and the other computes the

flow leaving the nozzle and entering the test section [6]. This table includes the stagnation
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enthalpy hg, where
L g
ho =RN2[05 0d+(4+0£)T] + iu . (53)

An isothermal wall boundary condition was assumed, since the test times are so short
in a shock tunnel that the cone does not heat up significantly during the duration of the
measurements. The cone was assumed to be at a constant temperature 7, = 317 K.

At the Reynolds numbers of this test, the boundary layer was laminar everywhere.

5.2 Chemical Freezing and Equivalent Conditions

The flow at the end of the shock tube of the T4 tunnel is expanded through a hypersonic
nozzle. When the gas enters the nozzle, it is in chemical equilibrium with a high degree of
dissociation. As the gas expands through the nozzle, the species compaosition departs from
equilibrium, with the recombination reaction “freezing.” The dissociation rate is highly
dependent on the temperature, but the recombination rate depends on density and can
be turned off or “quenched” by the expansion. This leaves the gas with a large degree of
dissociation, far from equilibrium. When the gas crosses the bow shock of the model, the gas
can further dissociate but the compression of the shock wave reinitiates the recombination
term of the rate equation, and the chemistry then proceeds as the gas expands toward the
leeward plane of symmetry.

This presents a problem in terms of utilizing the stepback method (or the partial grid
method, since it must start from a stepback solution). Stepback solutions must be either
in chemical equilibrium or frozen. In order to apply the stepback method, an equivalent
equilibrium flow had to be selected for the freestream. It is not clear which flow quantities
should be maintained, and the initial selection of an equivalent freestream was too different
to bear comparison with the experimental results.

The system has four degrees of freedom. The first choice of conditions was based on
maintaining the same mass, momentum, and total enthalpy of the Krek freestream, while
enforcing the law of mass action. These are the same relations which would be used to
to pass the flow through an equilibrium shock. However, since the flow was not initially

in equilibrium, there are two solutions, one subsonic solution and one supersonic solution.
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Krek Shocked Low-«
conditions | conditions | conditions
M 4.57 3.60 4.99
p (g/m?) 9.33 9.53 9.33
u (m/s) 5683 5565 5683
T (K) 3273 5381 3273
p (kPa) 10.43 16.67 9.071
ho (MJ/kg) 27.17 27.17 20.04
hoa (MJ/kg) 5.79 3.67 4.44x1073
hong (MJ/kg) | 21.38 23.5 20.04
a 0.150 0.095 1.15x10~%
Q 1.23 3.80 1.15
L, (m) 0.146 0.047 0.157

Table 5.1 Test conditions for reacting case. hg is the stagnation enthalpy, hyg is the
stagnation enthalpy due to dissociation, hg,q = ho — hod, € is the Damkohler number,
and L; is the chemical length scale.

The supersonic state was used as the equivalent freestream. This process is unphysical
and the Krek experimental conditions would not be expected to relax to this state. This
process is only used to obtain a set of equilibrium conditions which should lead to similar
post-shock conditions as the Krek experimenntal conditions. The process of “shocking” the
flow raises the entropy and lowers the total pressure Jjust as a physical shock does. This
set of conditions will be referred to as the “shocked Krek conditions.” Table 5.1 shows the
Krek conditions and the calculated shock-processed equivalent equilibrium conditions.

The Mach numbers in this table are based on the frozen speed of sound. When the
flow is processed by the shock, the density and velocity are relatively unaffected, but the
temperature rises significantly due to the energy released by recombination. This results in
a fairly low Mach number for a hypersonic flow, but because of the high temperature, we
can expect to see significant real gas effects behind the bow shock.

The non-dimensional Damkohler number € is often used to characterize the reaction
rate. It is formed from the ratio of the body length L to the characteristic reaction length

in the shock layer L;. This length scale is defined as

Uso
L= oy (5.4)
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and

L L [da
Q= —=— | — 5.
Ly Uoo<dt)f’ (55)

where Uy is the freestream velocity and (da/dt)¢ is the reaction rate evaluated from the
conditions behind a frozen shock wave. ) = 0 is the frozen limit, where the body length is
negligible compared to the chemical length scale, and any reactions occur far downstream
of the body. © = oo is the equilibrium limit, where the chemical length scale is negligible
compared to the body, and reactions occur so quickly that the flow may be considered to
be in local equilibrium everywhere.

For bluff body flows, the characteristic shock wave would be a normal shock; here it is

“appropriate to use an oblique shock. Following Macrossan and Pullin [34], the characteristic
shock was assumed to be a 45° oblique shock, which is the sum of the cone half-angle and
the angle of incidence. €2 is comparable for the Krek conditions and the shocked conditions,
as is seen in Table 5.1 . However, the shocked conditions were not close enough to the
test conditions due to the large increase (about 60%) in the temperature and pressure.
The increase in temperature comes from the conversion of the excessive dissociation energy
(stored in the high value of ) into thermal energy. The density is relatively unaffected
by the equilibrium shock wave, so the pressure rise is due primarily to the increase in
temperature. This led to the selection of the second set of conditions.

The second set of conditions was based on discarding the value of o from the Krek
freestream, and calculating the equilibrium value of « for the temperature and density of
Krek’s freestream. One final condition is necessary to close the system, and the choice
here was to maintain the same mass flux as the Krek freestream. Therefore, the density,
velocity, and temperature were the same as Krek’s conditions, but the dissociation energy
was discarded. This set of conditions will be referred to as the “low-a Krek conditions.”
These conditions are shown in Table 5.1.

The lower degree of dissociation has several consequences. The speed of sound is lowered
because «, and hence vy and the effective gas constant have decreased. This raises the
Mach number slightly. Also, the pressure decreases slightly for the same reasons. The
most significant effect is seen in the stagnation enthalpy hg, because of the large drop in

dissociation energy. The stagnation enthalpy can be decomposed into the enthalpy due to
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dissociation hgg and the remainder of the enthalpy hgng = ho — hog, where
h()d = RN2CV Hd, (56)
and

1
hona = By, (4 + )T + 5 u?. (5.7)

The table shows values of hgg and hgng, and it can be seen that hg,g is similar for the Krek
conditions and the equilibrium Krek conditions.

Once again, a distinction should be made between a frozen computation and a compu-
tation with zero dissociation. When a frozen computation is performed, chemical reactions
are turned off. This means that every cell will have the same «, but this is not equivalent
to zero dissociation because a non-zero « will result in a different mixture gas constant and
a different mixture ratio of specific heats. Hence either of the equilibrium conditions listed
above can be run in frozen or equilibrium mode to obtain stepback solutions, and a frozen
stepback solution may be used as an upstream boundary condition for a non-equilibrium

run.

5.3 Computational Grids and Simulation Details

Both stepback and partial grid calculations were performed. The stepback grid reso-
lution was (2 x 45 x 100). The bulk of these calculations assumed an isothermal wall for
comparison with Krek’s results, although some adiabatic wall simulations were performed.
It was found that having 12-15 cells in the adiabatic boundary layer was sufficient to re-
solve it, in contrast to the isothermal case, where 25-28 cells in the boundary layer were
required for adequate resolution. The isothermal grids were stretched dramatically towards
the cone surface, and the bow shock is rather coarsely resolved. However, our main present
interest is in the cold-wall, near-surface flow, where the boundary layer is extremely thin,
and the thickened shock will still provide appropriate edge conditions, as discussed below
in Section 5.4. The grids are stretched using Roberts’ first stretching function [58]. The

stretching function is discussed in Appendix E. The stretching for the grids is specified in
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Adiabatic Isothermal

Figure 5.1 Grids for adiabatic and isothermal calculations.

terms of the included angle of the cell at the cone surface. For example, with a uniformly
stretched grid with 100 cells that covered 10° from the cone’s surface, the included angle
of the first cell would be 0.1°. For the adiabatic grids, a typical included angle for the first
cell was 0.01°, while for the isothermal grids, a typical included angle was 0.001°. Typical
grids for adiabatic and isothermal calculations are shown in Figure 5.1.

Krek’s heat transfer data was normalized by the heat transfer on the cone at zero
incidence. These solutions were calculated using the stepback method on grids of resolution
(2 x 100 x 2).

The partial grid resolution was (20x45x100). The partial grids extended from r /L=0.1
to r/L = 1.0. The partial grids have the same resolution as the stepback grids at every
downstream radius. Again, these grids are coarsely stretched, especially far from the cone
on the leeward side. Accuracy in resolving the far field of the leeward flow, such as the

vortical singularity and the outer part of the A-shock, is sacrificed in favor of resolving the
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Figure 5.2 Isothermal partial grid (20 x 45 x 100), 15° cone at 30° incidence. Grid

extends from r/L = 0.1 to r/L = 1.0. The freestream is moving in the positive x-
direction, horizontal and into the page.
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(/L) | ¢, (MW/m?)
Frozen | Equilibrium

0.10 | 11.740 11.460
0.34 6.257 6.102
0.46 5.357 5.214
(.58 4.749 4.622
0.69 4.339 4.222
0.81 3.932 3.825

Table 5.2 Zero incidence heat transfer g, for a 15° cone. Low-a Krek conditions,
M=5.0. Stepback, EFMO. Isothermal wall at T,, = 300 K.

boundary layer. A typical isothermal partial grid is shown in Figure 5.2

5.4 Results and Discussion

This section compares the numerical findings with the experiments and discusses various
aspects of the simulations. The zero incidence solutions are discussed. The windward shock
standoff distance is calculated with an inviscid computation, and compared with previous
simulations. The surface conditions are examined and compared with experiment for both
stepback computations and partial grid computations. Finally, details of the leeward flow

are discussed.

5.4.1 Zero Incidence Case

"The zero incidence cone was computed with the stepback method at downstream stations
(r/L) = 0.10, 0.34, 0.46, 0.58, 0.69, and 0.81. These stations correspond to Krek’s stations,
plus one calculation at the radius used to start the partial grid runs.

Figure 5.3 shows boundary layer profiles from the frozen stepback solutions, while Fig-
ure 5.4 shows profiles from the equilibrium stepback solutions. At the furthest downstream
station, the boundary layer is still not self-similar. At zero incidence, the bow shock is not
very strong, and the difference between the frozen and equilibrium profiles is not great.
Although the frozen boundary layer is thicker than the equilibrium boundary layer, and

the edge conditions are slightly different, the temperature gradient at the surface is almost
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identical. Table 5.2 shows the computed heat transfer at the various stations for frozen
and equilibrium calculations. The calulated heat transfer for the frozen case is only about
2-3% larger than for the equilibrium case. Figure 5.5 shows dissociation profiles for the
equilibrium case.

Earlier, the extreme stretching required by the isothermal grids was mentioned. Fig-
ure 5.6 shows the results of two equilibrium stepback calulations, one with an isothermal
wall at T, = 300 K, the other with an adiabatic wall. Both are based on the shocked Krek
freestream, taken at r/L=0.69. Not only is the isothermal boundary layer about half as
thick as the adiabatic one, but many more cells near the surface are required to resolve
it. The isothermal boundary layer is considered unresolved if the temperature profile does
not meet the prescribed temperature at the wall. Grid convergence is used to determine
whether the adiabatic boundary layer is resolved. Although the isothermal criteria is less
strict than grid convergence, the isothermal grids tend to require included angles in the
first cell an order of magnitude smaller than the same grid for an adiabatic calculation. As
mentioned above, it was found that having 12-15 cells in the adiabatic boundary layer was
sufficient to resolve it, in contrast to the isothermal case, where 25-28 cells in the boundary
layer were required for adequate resolution.

The result of this extreme stretching at the wall is that the bow shock is smeared over
several degrees in 6, whereas the boundary layer is usually no more than 1° thick. The
question may arise as to whether this poorly resolved bow shock will affect the quality of
the solution in the boundary layer. Figure 5.7 shows the results from two frozen stepback
calculations. Both are based on the low-a Krek conditions, at (r/L)=0.34. One grid is
resolution (2 x 45 x 2), while the other has twice as many cells away from the surface. The
included angle of the first cell is the same, and near the surface the grids are very similar.
Figure 5.7 shows both the shock layer and the boundary layer. From the temperature
profiles, the shock wave is nearly 2.5° thick for the coarser grid, and about 1° thick for the
finer grid. The closeup of the boundary layer shows that this has no effect on the profile
there.

With a shock-capturing method, a shock wave will always smear over several cells.
The boundary condition for this problem is applied at the surface. If the bow shock is
underresolved, the effect will be to move the outer edge of the shock away from the body.

As long as there is sufficient domain to capture the smeared shock as well as the freestream
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on the other side, the proper normal jump conditions will be met across it. An area of
possible concern is the flow that passes tangentially through an excessively smeared shock.
With the cone at incidence, the shock is smeared worst on the leeward side where it is the
weakest. The flow that travels through this part of the shock ends up in the node on the
plan of symmetry. The errors generated at the smeared bow shock should not be large

enough to deflect this flow into the leeward shock-vortex system.

5.4.2 Stepback Profiles and Surface Conditions

Frozen and equilibrium stepback solutions were obtained for each station of Krek’s data.
An isothermal boundary condition was assumed, with 717,=300 K, since the test time is too
short for a rise in the surface temperature to occur. Because of this boundary condition, the
temperature gradients in the boundary layer are very large. Figure 5.8 shows temperature
profiles along the windward plane of symmetry (¢p=0°) at (r/L) = 0.58 for the frozen
and equilibrium cases. Although the edge temperature for the frozen case is about twice
that of the equilibriuin case, the larger thickness of the frozen boundary layer and the
huge temperature gradients there result in similar heat transfer between the frozen and
equilibrium cases. In fact, in part of the boundary layer, the temperature is so low that all
of the dissociated species recombine in the equilibrium case, although this is not allowed in
the frozen case. Figure 5.8 also shows the degree of dissociation in the stagnation region
for the equilibrium case.

The equilibrium chemistry has a pronounced effect on the windward shock standoff dis-
tance, which is consistent with similar results for inviscid cone flow [34]. Figure 5.9 shows a
comparison of Mach number contours for the same Reynolds number, where (r/L) = 0.10,
for frozen and equilibrium flows. The chemistry also plays a role in the location of sepa-
ration. The equilibrium flow remains attached to the cone longer, and hence the leeward
vortex associated with that separation is smaller in equilibrium. Figure 5.10 shows a closeup
of the leeward vortex for frozen flow and for equilibrium flow. It can also be seen that the
shape and size of the vortices is slightly different. This is also consistent with invisicid
results [34], although the separation mechanisms are somewhat different.

Figure 5.11 shows comparisons of the heat transfer from frozen stepback and equilib-

rium stepback solutions with Krek’s data for the four downstream stations. As discussed
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Frozen Equilibrium

Figure 5.9 Frozen and equilibrium Mach number contours for a 15° cone at 30° in-

cidence. Shocked Krek conditions, M=3.6. Stepback, EFMO. Isothermal, T,=300 K.
(r/L) = 0.58.
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Frozen

Equilibrium

Figure 5.10 Leeward crossflow streamlines for a 15° cone at 30° incidence. Shocked
Krek conditions, M=3.6. Stepback, EFMO. Isothermal, T,,=300 K. (r/L) = 0.34.
Inset shows computational domain. The box in the inset indicates the region shown in
the plot.
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in Section 5.1, two types of instruments were used to measure the heat transfer. The intru-
mentation changes at ¢ = 90°, explaining the discontinuity in measured heat transfer there.
The data on the leeward side of the flow is more accurate. The heat transfer data was
normalized by the zero incidence heat transfer corresponding to the appropriate calculation
(frozen or equilibrium).

Figure 5.11 shows typical behavior of the computed heat transfer results. The heat
transfer is large at the windward plane and drops as the flow expands around the cone due
to the cooling effect of the cold isothermal boundary layer. The heat transfer drops rapidly
just upstream of separation (where the heat transfer is a minimum), and rises dramatically
in the separated region, almost reaching the same levels as at the windward plane. On the
windward side of the cone, the frozen calculation has higher heat transfer, while on the
leeward side, the frozen heat transfer is lower than in the equilibrium case. The equilibrium
case always separates later than the frozen case.

Figure 5.12 shows comparisons of the surface pressure from the frozen stepback and
equilibrium stepback solutions with Krek’s data. The pressure is highest at the windward
plane, reduces as the flow expands around the cone, and reaches a minimum upstream
of separation. Separation is indicated on the pressure plots by the plateau just after the
minimum. The pressure increases at the leeward plane.

The calculations tend to give higher pressures than the experiment, but the separation
point (taken as the location of minimum ¢,) agrees well with the experimental results.
The discrepancy in the magnitude of pressure may be due to the transducers used in the
experiment. There is significant scatter in Krek’s zero incidence pressure measurements,
and very large error bars for some of the transducers. All of Krek’s zero incidence pressure
measurements for this test condition underestimate the computed surface pressure when
compared with a Taylor-MacColl solution. At all test conditions Krek used, the trans-
ducers at (r/L)=0.58 and (r/L)=0.69 produced significantly lower readings than the other
transducers, sometimes reading 60% less than the theoretical prediction. These stations are

the ones with the poorest agreement between the simulation and the experiment.
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dence. Low-a Krek conditions, M=5. EFMO. Isothermal, T,,=300 K. g, is the heat
transfer at the same station on the zero incidence cone.
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at the same station on the zero incidence cone.

5.4.3 Partial Grid Profiles and Surface Conditions

Frozen, non-equilibrium, and equilibrium partial grid calculations were performed for
both the shocked conditions and the low-a conditions. Figure 5.13 shows a comparison of
heat transfer for stepback and partial grid calculations at (r/L)=0.58. The frozen results
are on the left, and the equilibrium are on the right. The partial grid solutions tend to
exhibit lower heat transfer than the corresponding stepback solution, and separation occurs
slightly earlier.

Similarly, Figure 5.14 shows a comparison of surface pressure for the frozen and equi-
librium cases at the same station. Again, the frozen case is on the left, and the equilibrium
case on the right. The pressures agree up to the point of separation. The partial grid results
separate earlier, and have larger pressures in the separated region.

For the non-equilibrium case, the heat transfer was normalized by the frozen zero inci-
dence heat transfer. Figure 5.15 shows the differences in heat transfer between the frozen,
non-equilibrium, and equilibrium partial grid solutions at the various stations. The same
observations that hold for the stepback cases hold here. The frozen heat transfer is higher

than the equilibrium case on the windward side and lower on the leeward side, and the
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in the freestream.

frozen solution separates first. The non-equilibrium case is more interesting. On the wind-
ward side of the cone, the non-equilibrium heat transfer is lower than either the frozen
or equilibrium cases. The non-equilibrium case separates at the same location or slightly
earlier than the frozen case. The fact that the non-equilibrium solution is not bracketed by
the frozen and equilibrium solutions is consistent with previous observations [34].

Figure 5.16 shows the differences in surface pressure between the frozen, non-equilibrium,
and equilibrium partial grid solutions at the various stations. The non-equilibrium solution
has the same pressure as the frozen solution upstream of the separation point, although the
non-equilibrium pressure in the separated region is slightly lower.

Figure 5.17 shows how the dimensional heat transfer varies with distance from the tip
for stepback and partial grid calculations. The heat transfer at the windward plane of
symmetry qs—o is plotted versus Re,. The partial grid results predict lower heat transfer
than the stepback results. The non-equilibrium solution is not bracketed by the frozen
and equilibrium solutions, and adjusts from the frozen stepback solution over five cells.
At large Reynolds numbers, the computed heat transfer begins to decrease more rapidly.
The boundary condition applied at the downstream end of the partial grid is a no-gradient

condition. This is not correct for this problem, and causes errors in the last few downstream
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cells. The rapid drop in heat transfer at the end of the cone is most likely due to these
errors than to any physical basis. By using more downstream cells, the domain of influence
of these errors could be minimized.

Laminar flat plate theory predicts that ¢ < Reg 1/2 [59]. On the log-log plot of Fig-
ure 5.17, this corresponds to a line whose slope is -1/2. A line with this slope is included
in the figure for reference. The stepback solutions agree well with the theoretical trend,
although the slope of the stepback line is larger (i.e., less negative) than the plotted line.
For intermediate Reynolds numbers, the frozen and non-equilibrium partial grid solutions

agree very well with the laminar flat plate slope. The equilibrium windward heat transfer

oscillates about the laminar flat plate slope.
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5.4.4 Windward Shock Standoff Distance

One of the objectives of this study was to measure the windward shock standoff distance
and see how it is affected by chemistry. However, as discussed above, the large stretching
necessary for the isothermal calculations smeared the bow shock excessively. The shock
standoff distance is essentially an inviscid phenomenon, with the boundary layer thickness
displacing the shock slightly. Hypersonic isothermal boundary layers are very thin, and can
be neglected in the measurement of the bow shock standoff distance. This will be shown
below.

Two inviscid non-equilibrium partial grid calculations were performed, one for the
shocked conditions and one for the low-a conditions. Both grids had a resolution of
(20 x 45 x 100), and extended from (r/L) = 0.10 to (r/L) = 1. The inviscid partial
grid is shown in Figure 5.18.

Figure 5.19 shows a comparison of Mach contours for two non-equilibrium partial grid
calculations, one inviscid and one viscous with an isothermal boundary condition. Contours
are shown at two radii, (r/L) = 0.18 and (r/L) = 0.69, and the agreement is excellent at
both stations. Both grids have the same resolution of (20 x 45 x 100), but the stretchings
are quite different. The included angle of the first cell for the inviscid grid was 0.15°, while
for the viscous grid, the included angle was 0.001°. The position of the inviscid bow shock
agrees with the viscous bow shock, and the inviscid bow shock is clearly resolved over a
much thinner width than the bow shock from the viscous grid. As discussed previously,
when the bow shock is underresolved, the outer edge of the shock moves away from the
body. But the inside edge of the bow for the two simulations agrees, producing the same
shock layer thickness. The Mach contours outside the boundary layer agree very well up to
¢ = 135°, and the displacement thickness of the boundary layer is negligible. The inviscid
solution is clearly adequate for measuring the shock standoff distance.

Figure 5.19 also shows the fundamental differences between the leeward shock-vortex
systems for the two cases. With the inviscid case, the separation point is closer to the
leeward plane of symmetry, and consequently the vortex is smaller. The leeward shock
is not a A-shock, but it is a single shock. With the viscous case, the boundary layer has
grown fairly thick by the time the flow separates. The characteristic A-shock is faintly seen,

although it is not as crisp as the inviscid leeward shock. The shock standoff distance A was
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(r/L) = 0.18

(r/L) = 0.69

Figure 5.19 Mach contours comparing inviscid (left) and viscous (right) partial grid
calculations at downstream distance indicated. 15° cone at 30° incidence. Shocked
Krek conditions, M=3.6. Non-equilibrium, EFMO. Isothermal, T,,=300 K.
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Magcrossan & Shocked Low-«
Pullin conditions | conditions | conditions
M 5.00 3.60 4.99
p (g/m3) 9.998 9.53 9.33
u (m/s) 5954 5565 5683
T (K) 3581 5381 3273
p (kPa) 10.64 16.67 9.071
ho (MJ/kg) 21.99 27.17 20.04
hoa (MJ /kg) 1.66x 1072 3.67 4.44x1073
hong (MJ/kg) 21.97 23.5 20.04
a 4.93x 1074 0.095 1.15x1074
Q 2.38 3.80 1.15
L, (m) 0.076 0.047 0.157

Table 5.3 Equivalent equilibrium conditions used for shock standoff measurements.
ho is the stagnation enthalpy, hoq is the stagnation enthalpy due to dissociation,
hona = ho — hog,  is the Damkohler number, and L, is the chemical length scale.

determined by the point of maximum temperature gradient. This was measured for each
downstream cell, and normalized for comparison with similar results from Macrossan and
Pullin [34].

The freestream used by Macrossan and Pullin was also an equilibrium state based on the
Krek experimental conditions. Macrossan and Pullin also investigated several freestreams;
the one used here was labelled the H22 freestream [34]. The H22 conditions are very similar
to the low-a Krek conditions used here, but have some important differences. Table 5.3 com-
pares the various equilibrium freestreams. The Macrossan and Pullin freestream (hereafter
referred to as the M & P freestream) is about 5% faster, 7% more dense, and 10% hotter
than the low-« state, resulting in a difference of about 10% in the stagnation enthalpy.
Because the equilibrium degree of dissociation is very sensitive to changes in temperature
and density when o < 1, the degree of dissociation of the M & P freestream is more than 4
times that of the low-a Krek conditions. The higher «, combined with the larger tempera-
ture and density, result in a higher reaction rate behind the bow shock, so the Damkohler
number of the M & P conditions is more than twice the low-o« Damkohler number.

Macrossan and Pullin’s results used two normalizations. The first followed Hornung [60],
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Figure 5.20 Normalized windward bow shock standoff distance vs. (r/L,).
A = (A/7r)(ps/pss); and A = (A - A.)/(Ar — A.). Non-equilibrium inviscid partial
grids, EFMO. p;/po is the density ratio across the frozen oblique shock, Ay is the
standoff distance at the frozen limit, A. is the standoff distance at the equilibrium
limit. The plot shows the data at each downstream cell. The partial grid solution
starts from a frozen stepback solution. The large gradients in the first few cells cor-
respond to the partial grid solution recovering from the frozen stepback boundary
condition.
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A = (A/7)(ps/Poo), and A = (A — A.)/(Af — A.). Non-equilibrium inviscid partial
grids, EFMO. p,/po is the density ratio across the frozen oblique shock, Ay is the
standoff distance at the frozen limit, A. is the standoff distance at the equilibrium
limit. The plot shows the data at each downstream cell.
starts from a frozen stepback solution. The large gradients in the first few cells cor-
respond to the partial grid solution recovering from the frozen stepback boundary

condition.

The partial grid solution
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where the standoff distance was normalized as

- (3)(2)

where p,/poo is the expected density ratio across the characteristic frozen oblique shock.
Macrossan and Pullin measured standoff distances for four different freestreams and plotted
A against r/Ls. The normalization collapsed the frozen limit well, but the data separated
to approach different equilibrium limits for the different freestreams.

The second normalization was designed to collapse the data at both the frozen and
equilibrium limits. The second normalization is based on the shock standoff distances for

the frozen and equilibrium limits, Ay and A, respectively. The normalized standoff distance
A=——C¢ (5.9)

was plotted against r/Lg, and although the overall correlation was good, the collapse grew
slightly worse for 0.01 < (r/Ls) < 20.

Figure 5.20 shows the bow shock standoff distance from the inviscid non-equilibrium
runs. The frozen and equilibrium limits were calculated with the stepback method. For
the shocked Krek conditions, the frozen shock was located at @ = 5.13°, which corresponds
to A = 0.314, and the equilibrium shock was located at § = 3.05°, or A = 0.187. For
the low-« conditions, the frozen shock was located at § = 3.79° or A = 0.312, and the
equilibrium shock was located at 6 = 2.45° or A = 0.202. The frozen and equilibrium limits
are defined to be 1 and 0 respectively, for the A normalization. The Macrossan and Pullin
data approaches the frozen and equilibrium limits for A in the plots shown here, which were
0.320 and 0.195, respectively.

The partial grid calculation starts from a frozen stepback solution, which has the large
standoff distance corresponding to the frozen limit. Four cells downstream of the stepback
solution, the partial grid solutions have recovered from the errors, and the trends agree with
the Macrossan and Pullin results, although the standoff distance predicted by the partial
grids is about 10% lower for A and 30% lower for A.

The normalization of r in these plots is by L., which ranges from 0.047 m for the

shocked Krek conditions to 0.157 m for the low-a Krek conditions. Although the low-«
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Krek conditions are very similar to the M & P conditions, the chemical length scales differ
by a factor of two, due to the relative sensitivity of the law of mass action at low degrees of
dissociation. Q and Lg are useful as order of magnitude estimates, and perhaps normalizing
the downstream distance is not appropriate for normalizing r here. These simulations are
intended to model the same dimensional flow past a cone, but normalizing by L, shifts the
two partial grid results half a decade from each other.

Figure 5.21 shows the shock standoff distance when r is normalized by the body length
L rather than the chemical length scale Lg. The low-a simulation now agrees quite well with
the Macrossan and Pullin data for A, and agrees fairly well with the A normalization. Recall
that the A normalization did not collapse well for 0.01 < (r/Ls) < 20, which corresponds
to 0.004 < (r/L) < 8.4 for the M & P conditions. This is precisely where the partial grid
data lies, so the differences for A are not significant, and the agreement between the low-«
conditions and the M & P conditions can be considered very good. However, the shocked

Krek conditions are too different to bear comparison with the other freestreams.

5.4.5 Details of the Leeward Flow

This section consists of measurements and observations relating to the leeward shock-
vortex system and the separated region.

The separation location was determined from the low-« partial grid solutions by plotting
crossflow streamlines. These are shown in Figure 5.22, plotted versus Re,. This agrees
with the trends established earlier: frozen flow separates before equilibrium flow, and non-
equilibrium flow separates earlier than than frozen flow, at least for lower Reynolds numbers.
The partial grid calculations consistently predict separation at smaller values of ¢ than the
stepback calculations. The stepback solutions do exhibit the correct qualitative trends:
for all cases, the separation angle reduces with increasing Re,. The partial grid solutions
adjust from the stepback solutions over 4-5 cells. Also, the partial grid solutions level off
at Re; ~ 65000. At the same Reynolds number, the frozen and non-equilibrium partial
grid solutions converge. As discussed in Section 5.4.3, the change in behavior at the end
of the grid is probably due to errors in the downstream boundary condition and should be
disregarded.

The first observation is that the large heat transfer in the separated region is due to
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Figure 5.22 Separation location from partial grid solutions. Re, is the Reynolds
number based on freestream conditions and the distance from the tip. ¢ is the azimuthal
angle, ¢ = 0° at the windward plane, ¢» = 180° at the leeward plane.

convection of hot fluid from outside the boundary layer towards the cone surface. Consider
Figure 5.23, which shows streamlines and Mach contours from an equilibrium stepback
calculation. The fluid near the surface upstream of the separation point has traveled around
the cone along streamlines which are very near the cone. This fluid has been cooled by the
thermal boundary layer, and it will be relatively near the surface temperature. The fluid
which moves along the surface in the region of reversed flow has not been cooled much;
these streamlines lie well away from the thermal boundary layer, and have been additionally
processed by the leeward shock.

Figure 5.24 shows a comparison of two equilibrium stepback calculations, one with an
adiabatic boundary condition and one with an isothermal boundary condition. Dissociation
contours are plotted, and the dramatic differences in the boundary layers are clear. In the
adiabatic case, the boundary layer is the hottest part of the flow, and the fluid there is almost
completely dissociated. The opposite is true in the adiabatic case; the boundary layer is the
coldest part of the flow, and is completely recombined. The isothermal boundary layer is

thinner, especially so near the separation point. Because the isothermal shear layer is very



- 113 -

Figure 5.23 Leeward vortex streamlines
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cold and dense compared to its adiabatic counterpart, the leeward system can accommodate
the mass flow from the separated boundary layer in a smaller vortex. Although the outer
edge of vortex is not well distinguished in this figure, the core of the isothermal vortex is
clearly closer to the cone surface than the adiabatic vortex.

Figure 5.25 shows dissociation contours from the low-a equilibrium partial grid calcula-
tion. Here we can see the effect of the A-shock on the dissociation reaction. At the windward
plane, the flow has dissociated to a relatively high « = 0.15. As the flow expands around the
cone, the fluid recombines, reaching a minimum just upstream of the leeward shock system.
This is follow by two jumps in « at the two branches of the A-shock. Finally, the hot flow
behind the leeward shock system is cooled by the cone surface as it enters the vortex.

Figure 5.26 shows temperature contours in the leeward vortex systems at (r/L)=0.033
and (r/L)=0.69 for the shocked Krek conditions. Frozen, non-equilibrium, and equilibrium
solutions are shown. Figure 5.27 shows the same plot with crossflow streamlines are plotted
over the temperature contours. Note that a larger region is shown for (r/L)=0.69; here we
see a larger arc of the cone surface. Many details of the shock-vortex system can be seen in
Figure 5.26. The boundary layer and the separated shear layer are clearly seen in all of the
plots, and the flow separates earlier at the larger radius. The same trends observed earlier
in terms of the effects of chemistry on the separation point are seen here. In Figure 5.26,
the vortex is visible for the equilibrium case, and the beginning of the vortex rollup can be
seen in the (r/L)=0.69 non-equilibrium case. The A-shock is clearly seen in the frozen cases,
although only the upstream branch is faintly seen in the other cases. From Figure 5.27, we
can see that there are slight differences in the size and shape of the vortices for the different
chemistry modes, although the largest difference is seen for the (r/L)=0.69 non-equilibrium
case, where the vortex is relatively flattened when compared to the other cases.

The most obvious feature of these plots is the low temperature upstream of the shock-
vortex system for (r/L)=0.69. This is an interesting example of the effects of non-equilibrium
chemistry on the flowfield. There are two types of cooling occurring as the flow passes
around the cone: fluid dynamic cooling due to the expansion of the flow, and chemical
cooling due to the dissociation reaction. The fluid dynamic cooling is virtually independent
of the distance from the tip, but the chemical cooling is not. For flows where the chemical
length scale is much smaller than the body length (L, < L), the effects of chemical cooling

will occur very near the tip, while for flows where (L; > L), the chemical cooling will not
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Figure 5.24 Dissociation contours from adiabatic and isothermal stepback simulations.
15° come at 30° incidence. Shocked Krek conditions, M=3.6. EFMO. Isothermal,
T.,,=300 K. (r/L)=0.69.
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Figure 5.25 Dissociation contours from an equilibrium partial grid simulation. 15°
cone at 30° incidence. Low-a Krek conditions, M=5.0. EFMO. Isothermal, T, =300 K.
(r/L)=0.69.
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occur until after the flow has completely passed the body.

Recall from Table 5.1 that Q = L/L; = 1.15 for the low-o conditions, and Q = 3.8 for
the shocked conditions. Since the chemical length scale Ly is of the same order as the body
length L, the relaxation zone of the dissociation reaction will be at least partially captured.
Near the tip, the dissociation reaction will not have proceeded far, and the effects of chemical
cooling will be smaller. At larger downstream distances, the reaction will have proceeded
farther, and the chemical cooling will result in lower temperatures than those seen near
the tip. At the smaller radius, very little chemical cooling has occurred, and the cooling is
primarily due to the expansion. Upstream of the non-equilibrium vortex, the temperature is
not very different from the frozen and equilibrium solutions. However, at the larger radius,
the chemical cooling has started, and its effect is superimposed on the expansion cooling.
This results in the substantially lower temperature upstream of the non-equilibrium leeward
vortex. Since the velocities for the three cases are similar here, this results in a higher Mach
number for the non-equilibrium case. This can be seen in Figure 5.28, which shows Mach
contours from the (r/L)=0.69 station for the three cases. For the frozen and equilibrium
cases, the maximum Mach number in the flow is about 5% higher than the freestream Ma;:h
number. However, for the non-equilibrium case, the relatively low temperatures lead to a
maximum Mach number of 4.3, about 19% higher than the freestream Mach number. This
is yet another example of how the non-equilibrium case is not bracketed by the other two
cases.

Finally, Figures 5.29 and 5.30 show dissociation and temperature contours at various
downstream stations of the non-equilibrium partial grid. Figure 5.29 shows dissociation
contours at (r/L)=0.18, 0.30, 0.44, 0.55, and 0.67. An equilbrium partial grid result from
(r/L)=0.69 is also shown for comparison. Figure 5.30 shows temperature contours for the

same stations.
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Figure 5.26 Leeward vortex details from partial grid simulations without streamlines.
15° cone at 30° incidence. Shocked Krek conditions, M=3.6. EFMO. Isothermal,
T, =300 K.
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Figure 5.27 Leeward vortex details from partial grid simulations with streamlines.

15° cone at 30° incidence. Shocked Krek conditions, M=38.6. EFMQO. Isothermal,
T, =300 K.
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Figure 5.28 Mach contours from partial grid simulations. 15° cone at 30° incidence.
Shocked Krek conditions, M=3.6. EFMO. Isothermal, T,,=300 K. (r/L)=0.69.
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Figure 5.29 Dissociation contours from a non-equilibrium partial grid simulation. 15°
cone at 30° incidence. Low-a Krek conditions, M=5.0. EFMO. Isothermal, T,,=300 K.
The final plot is an equilibrium partial grid solution, shown for comparison.
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Figure 5.30 Temperature contours from a non-equilibrium partial grid simulation. 15°
cone at 30° incidence. Low-a Krek conditions, M=5.0. EFMO. Isothermal, T,,=300 K.
The final plot is an equilibrium partial grid solution, shown for comparison.
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Chapter 6

Conclusions

The stepback and partial grid methods have been shown to be effective and relatively
computationally cheap techniques for approximately solving viscous frozen and viscous re-
acting flows past cones. This chapter lists the conclusions drawn from the simulations

performed in this work.

6.1 Frozen Flow at Zero Incidence

Frozen laminar flow past a cone at zero incidence was simulated with stepback, partial
grid, and full grid calculations. This simple case was used to test the differences between
the methods. These computations involved a cone of half-angle 10° in air at M=7.95.

Adiabatic computations were performed for Pr=1.

¢ The stepback method tended to underestimate the laminar boundary layer thickness,
although it predicted the correct adiabatic wall temperature and shape of the bound-

ary layer profile.

e When a stepback solution was used as a boundary condition for a partial grid compu-
tation, the errors from the stepback solution disappeared a short distance downstream
of this boundary. This means that the boundary layer increased over only a few radial
cells and the solution at the radius of interest was very close to that obtained from

the full calculation.

e Partial grid calculations required much less computation time than full grid calcula-

tions which attempt to resolve the tip flow, but the results were comparable.
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6.2 Frozen Flow at Incidence

High resolution stepback calculations were used to compute the frozen laminar flow
past a 10° cone at 24° incidence. The resolution was (2 x 150 x 200). This test was for air
at M=7.95, although the boundary condition here was an isothermal wall at 300 K, and
Pr=0.72. The Reynolds numbers based on freestream conditions and the distance from the
tip were Re;=360000 and Re;=420000. The results were compared with experiments by
Tracy [5].

e The topology and features of the flow field agreed very well with the pitot pressure

| surveys of Tracy.

o The shock standoff distance was overestimated at the windward plane, but the

position of the bow shock agreed well elsewhere.

o The thickness of the laminar boundary layer was well-predicted, as was the point

of separation and the location of the separated shear layer.

o The leeward A-shock was sharply captured, although the shock system was
slightly skewed relative to Tracy’s findings.

o There was no discernible difference in the flow features between EFM and EFMO.

e The EFMO surface pressure and heat transfer agreed very well with the experimental
findings. There was no significant difference in surface pressure between EFM and

EFMO, but the EFM simulation considerably overpredicted the heat transfer.

o The surface pressure dropped as the flow expanded around the cone, reaching a
minimum upstream of separation. The surface pressure reached a plateau at the

separation point, and rose at the leeward plane of symmetry.

o The laminar heat transfer also dropped as the flow expands around the cone.
The heat transfer reached a minimum at separation, and there was a moderate

recovery of heat transfer in the separated region.
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6.3 Reacting Flow at Incidence

Reacting laminar flow past a cone at incidence was computed with stepback and partial
grid solutions, and the trends regarding both chemistry and the solution method were
typified. These simulations were compared with results from Krek [6], who tested M=4.57
flow of nitrogen over a 15° cone at 30° incidence, with stagnation enthalpy ho=27.17 MJ /kg.
The Krek freestream was in a state of non-equilibrium, and two sets of equivalent equilibrium

conditions were used as the basis of the simulations.

e Frozen and equilibrium stepback solutions were calculated at several stations using
a resolution of (2 x 45 x 100). The effects of chemistry on the heat transfer and

separation location were observed.

o On the windward side of the cone, the equilibrium solution had lower heat trans-
fer than the frozen solution. As the flow expanded around the cone, the frozen
heat transfer became smaller, up to the separation point. In the separated re-
gion, the equilibrium heat transfer was lower. The heat transfer recovery in the
separated region was very large, almost reaching the magnitude of the windward

heat transfer.

o Frozen solutions predicted earlier separation than equilibrium solutions, with a

concomitant relative increase in the size of the leeward vortex.

o The large recovery in heat transfer in the separated region was interpreted as
being due to the convection of hot, energetic, shocked fluid from outside the

boundary layer towards the surface of the cone.

e Frozen, non-equilibrium, and equilibrium partial grid computations were performed.
The partial grids extended from (r/L)=0.1 to (r/L)=1, and the resolution of the grids
was (20 x 45 x 100). The effects of chemistry were examined, as were the variations

due to grid solution technique (stepback or partial grid).

o For frozen and equilibrium flows, the partial grid results showed the same trends

with chemistry as the stepback solutions.
o The non-equilibrium solutions were not bracketed by the frozen and equilibrium

solutions. The non-equilibrium heat transfer was lower than both the frozen and

equilibrium heat transfer up to the point of separation.
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o The non-equilibrium solution’s separation point was either at the same location

as the frozen solution, or slightly upstream of the frozen separation point.

o The superposition of non-equilibrium chemical cooling and fluid dynamic cooling
led to low temperature, high Mach number states upstream of the leeward shock.
In this case, the resulting vortex had a flattened shape relative to the frozen and
equilibrium vortices. These effects were seen at larger Reynolds numbers for
these conditions. This was contrary to Krek’s findings, which reported that no

Reynolds number effects were observed.

o The viscous non-equilibrium partial grids required five cells to recover from the

frozen stepback solution as determined from the location of separation.

o The shock standoff distance was measured using inviscid non-equilibrium partial grid
calculations. These grids had the same domain and resolution as the viscous partial
grids, but the grid stretching in the crossflow plane allowed much better resolution of
the windward shock. These results were compared with an inviscid simulation of a

similar flow by Macrossan and Pullin [16].

o The shock standoff distance was essentially an inviscid phenomenon which was

unaffected by the extremely thin isothermal boundary layer.

o Chemistry had a large effect on the shock standoff distance. The equilibrium
standoff distance was 35-40% smaller than the frozen standoff distance for these

conditions.

o The partial grid simulations predicted lower standoff distances than the Macrossan
and Pullin data. The agreement became better when the downstream distance
was normalized by the body length instead of the chemical length scale, which

was too sensitive to small differences in the freestream state.

o The inviscid non-equilibrium partial grid also adjusted from the frozen stepback

solution over five cells, as determined from the shock standoff distance.

o These results suggest the following conclusions regarding the simulation of reacting

flows with the stepback and partial grid techniques.

o Some of the chemistry effects are very subtle. In terms of features such as
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separation location, these effects are of the same order as the errors associated

with the stepback method.

o For high accuracy simulation of reacting flows, the stepback method should not
be used alone. A reacting flow simulation requires the higher accuracy of the

partial grid technique.

We conclude with a suggestion for those who wish to pursue simulation of cone flows
with these methods. For this work, the reacting stepback grids were of moderate crossflow
resolution. This was for several reasons. First, most of the length of the cone was contained
in the domain, to capture most of the flow in a single partial grid calculation. Second, the
stepback and partial grids had the same crossflow resolution to facilitate direct comparison
of the methods. Third, the extremely thin isothermal boundary layers required that the
bow shock be poorly resolved. Alternatively, a high resolution stepback calculation could
be performed upstream of each radius of interest. Then a shorter partial grid calculation
with higher crossﬂow‘ resolution and lower downstream resolution might be used to compute
the flow at each station. Future work is needed to explore how large a partial grid domain
must be to eliminate most of the errors from the stepback solution.

Lastly, we emphasize that all attached boundary layers were laminar. The accurate
computation of hypervelocity reacting flow past bodies in the presence of boundary layer

transition remains a challenge for future computation.
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Appendix A

Determination of EFMO Intermediate States

This appendix outlines the algorithm for determining the intermediate states U; and Uy
for the calculation of the EFMO numerical flux [2]. The first step is the evaluation of the

expression 1
A:aL+aR+€ry—2—(an—vnR). (A.1)

As discussed in Section 2.3, ¢ = 1. If A is negative, AF can be set to zero, although this

arises only in very extreme situations such as vacuum apparition. Otherwise, the following

calculations are performed to define U; and Us:

5, = % (A.2)
Sp = % (A-3)
A 2/(v-1)
= | ) .
ps =y (sp/5,)7 (A.5)
p=p,=p" =s,p] (A.6)
a, = \/p, /py (A7)
Ont = U, — —% - (a, —a;) (A.8)
VUpy = U, = vp* (A.9)
Up, =Up, (A.10)
Up, = Up, (A.11)
Vg, = Vg, (A.12)
Vg, = Vg, (A.13)
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Appendix B

Transport Properties for Reacting Flow

For reacting flow, species viscosity and conductivity rules are used, then mixing rules
based on Chapman-Enskog theory are used to compute mixture properties. The species
viscosity can be calculated using a viscosity model developed by Blottner et al. [61]. This
model was developed for reacting air, and the curve fits are appropriate for temperatures
up to 10,000 K [62]. Some regions of the flows simulated here reach temperatures higher
than this, but this is not true where viscosity is important, such as the cold-wall boundary
layers. The model uses a three-constant curve fit for the viscosity of each species i, where

¢ = 1 refers to the monatomic species, and ¢ = 2 refers to the diatomic species.
pi = 0.1exp[(A4; InT + B;) InT + Cj], (B.1)

where T is temperature and the values of A, B, and C can be found in Table B.1.

Species A B C
N 0.0115572 | 0.6031679 | -12.4327495
No 0.0268142 | 0.3177838 | -11.3155513
0 0.0203144 | 0.4294404 | -11.6031403
O 0.0449290 | -0.0826158 | -9.2019475

Table B.1 Viscosity coefficients for Blottner model

The species conductivities are related to the species viscosities by

15
ki = 7#13«2 (B.2)
and
21
k)g = Z/JIQRQ, (B3)

where Ry is the gas constant for the diatomic species [63]. The mixture viscosity can be
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calculated using mixture rules from Wilke [64], using

= X1 1 Xo po

where
2
X, = 2%
1+«
and
_ 1l—-«
2_1+04

and
12 i\ /A4 2
() Ge)
B H1 W,
Wo\\ /2 .
((+5)

Similarly, the mixture conductivity is given by

- X1k . X2 ko
X1+ 1.065G12 Xo | Xo+ 1.065 Goy X1

where G2 and G921 are as given above [65].

(B.5)

(B.6)

(B.7)
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Appendix C

Analytical Solution of Frozen Conical Boundary Layer

This appendix discusses the analytical solution for a frozen conical boundary layer. The
compressible flat plate boundary layer equations are solved using the Dorodnitsyn-Howarth

transformation [52], and this solution is transformed into a conical boundary layer profile.

C.1 Dorodnitsyn-Howarth Transformation

This transformation eliminates density from the boundary layer equations, reducing
them to equations for two functions of a similarity variable, one being temperature and the

other related to velocity. We start with the momentum equation,

ou ou 0,6 Ou
puz-+ oy = 5@(#@) (C.1)

and the energy equation,

oh oh 9, 0T ou
puUT— + pv— k

I oy 8_y( %) +H(a—y)2- (C.2)

Defining a new distance variable ¥ by

. Y
0 P1

where the subscript 1 refers to edge conditions. We define the similarity variable 7 as

1
-7 MU\ 2
" 2;1,1$ )

Expressing the temperature and velocity in terms of 7

T=T(n) = = f'(n)
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the momentum equation becomes

£+ (H% f”) =0 (C.3)

and the energy equation becomes

kN pu
h'+<—’3ﬁ~—T’> + PR gz m2 <. cA
i+ (Resr) + P v () (©4)

The boundary conditions for this system are

f(0)=f(0)=0 F(o0) =1

. T(0) =T, isothermal wall
T(c0) =Ty and either .

7'(0) =0 adiabatic wall

For the frozen case, the equation of state is simply p = pRT and since the pressure is
constant in the boundary layer, this reduces to pT' = py7). With this, (C.3) and (C.4)

respectively become

T 0\
//+<_ﬂ____ //) -0 c5
e (L2 (5
and
lﬂTlll ! U12!U'T1 2
- T — = {). .
(PrplTT) +f +Cme(f) 0 (C.6)

C.2 Mangler Transformation

Once the flat-plate boundary layer solution is obtained from the preceding system, it
must be transformed to a conical boundary layer using the Mangler transformation [52].
For the flat plate, the distance from the leading edge will be denoted by z and the normal
distance from the plate will be denoted by 3. For the cone, the distance from the tip will

be denoted by €, and the normal distance from the cone surface by y (see Figure C.1). For
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Figure C.1 Mangler transformation

a cone of half-angle «, the Mangler transformation reduces to

3r \3 g
¢=\=3 y= 1
sinta (3 z sina)s

In summary, the flat plate boundary layer is solved in terms of the similarity variable of the
Dorodnitsyn-Howarth transformation (n), which corresponds to coordinates (x,Y). These
are then transformed back to the normal distance variables (z, y). Finally the Mangler
transformation is used to convert these flat-plate variables to the conical distance coordi-
nates (£,y), which may be compared to numerical simulations.

As always, the solution of the boundary layer requires known edge conditions that corre-
spond to the inviscid surface conditions. These were determined by numerically simulating
the inviscid frozen flow at the appropriate radius, which can be computed using the stepback

method.
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Appendix D

Problems with Parallel Implementation

When this work was started, the available sequential machines did not have enough
memory to perform high-resolution simulations such as those shown above. The advantage
of the Delta was that the memory could be spread over a large number of processors. Re-
call that these simulations were performed using the implicit version of PGP. The stability
advantage of an implicit method is reached by using information from all the cells of the
domain. But here the domain is decomposed onto multiple processors, so that each pro-
cessor sees only its portion of the grid, with the values of the dummy cells provided by the
appropriate local cells from other processors. It is counter-productive to decompose the grid
onto as many processors as possible; each processor will only see a few cells. In order to
retain the advantage of the implicit version, one wants to use as few processors as possible.

However, there is an additional problem. Application of the implicit algorithm results
in slight discontinuities at the edge of each processor’s grid. In regions of smooth flow,
these discontinuities are negligible and, in fact, undetectable. However, in regions of large
variation, this effect is significant. Basically, this means that one wants to select the domain
decomposition so that regions of large shear do not cross processor boundaries. For example,
one should choose a decomposition such that each processor grid at the surface contains
the entire boundary layer.

Each of the Delta’s processors has only 12 MB of memory, which severely limits the
size of the local processor grids. Each processor can handle a grid of about 30 cells by 30
cells. For most of the flow field, this does not present any problems. However, the corner of
the recirculation zone (i.e., the portion of the global grid adjacent to the leeward plane of
symmetry and the cone surface) contains shear in two directions (see Figure D.1). A shear
layer exists at the plane of symmetry, where the separated shear layer hits its counterpart
from the opposite side of the cone. The shear layer is turned back toward the cone, and then
feeds into the boundary layer at the cone surface. Figure D.1 shows temperature contours

(with more contours than shown previously, to emphasize the problem), with the maximum
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temperature occurring near the center of the recirculation zone. The edges of the local
processor grids are evident in several places, most notably at the temperature maximum.
With the processor memory limitations of the Delta, it is impossible to select a decomposi-
tion where the local grid there fully contains both the shear layer and the boundary layer.
However, for the “best” decomposition (which is the one shown in the figure), the processor
edge discontinuities were not evident in the computed surface quantities, so these errors did
not affect the quality of the solution.

Of course, for a parallel machine with more memory per processor, this will not be an

issue.
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Appendix E

Grid Stretching Function

This appendix outlines the stretching function used to generate the grids in this work.
The function is Roberts’ first stretching function [58]. Consider a one-dimensional grid
stretching function . This function will map the index of a cell to the coordinate for the
centroid of that cell. Let the grid contain n cells and extend from zy < z < z,,. The internal
cell interfaces can be labelled i; to i,_1, and the edges of the grid are given by z (iy) = zo
and z (i,) = z,. The stretching function may be specified by choosing the location of the
centroid of the first interior cell, or equivalently by choosing the interior edge of the first

cell. The position of cell interface ¢ is conveniently specified by the ratio

z (i) — « (io)
T (zn) —Z (7'0)

§(1) = (E.1)

Roberts’ first stretching function uses a function ¢ (i; 4g,in, 3), where ig,i,, and G are
parameters for 1, and ¢ is the argument of the function. [ is a stretching parameter

which is determined by finding the value of § which satisfies the previous selection of

¥ (1590, %n, B) = £(41). Define
n = (i —io)/(in — %o) (E.2)

and

- (%J_i—})l_n. (F.3)

The stretching function 4 can finally be defined by

_B+1-b(8-1)

4 1+b

(E.4)



