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Abstract

The near-wall, subgrid-scale (SGS) model [Chung and Pullin, “Large-eddy simulation and wall-

modeling of turbulent channel flow”, J. Fluid Mech. 631, 281–309 (2009)] is used to perform

large-eddy simulations (LES) of the incompressible developing, smooth-wall, flat-plate turbulent

boundary layer. In this model, the stretched-vortex, SGS closure is utilized in conjunction with a

tailored, near-wall model designed to incorporate anisotropic vorticity scales in the presence of the

wall. The composite SGS-wall model is presently incorporated into a computer code suitable for

the LES of developing flat-plate boundary layers. This is then used to study several aspects of zero-

and adverse-pressure gradient turbulent boundary layers.

First, LES of the zero-pressure gradient turbulent boundary layer are performed at Reynolds

numbers Reθ based on the free-stream velocity and the momentum thickness in the range Reθ = 103–

1012. Results include the inverse skin friction coefficient,
√
2/Cf , velocity profiles, the shape factor

H , the Kármán “constant”, and the Coles wake factor as functions of Reθ. Comparisons with some

direct numerical simulation (DNS) and experiment are made, including turbulent intensity data

from atmospheric-layer measurements at Reθ = O(106). At extremely large Reθ, the empirical

Coles-Fernholz relation for skin-friction coefficient provides a reasonable representation of the LES

predictions. While the present LES methodology cannot of itself probe the structure of the near-wall

region, the present results show turbulence intensities that scale on the wall-friction velocity and on

the Clauser length scale over almost all of the outer boundary layer. It is argued that the LES is

suggestive of the asymptotic, infinite Reynolds-number limit for the smooth-wall turbulent boundary

layer and different ways in which this limit can be approached are discussed. The maximum Reθ

of the present simulations appears to be limited by machine precision and it is speculated, but not

demonstrated, that even larger Reθ could be achieved with quad- or higher-precision arithmetic.

Second, the time series velocity signals obtained from LES within the logarithmic region of the

zero-pressure gradient turbulent boundary layer are used in combination with an empirical, predictive

inner–outer wall model [Marusic et al., “Predictive model for wall-bounded turbulent flow”, Science

329, 193 (2010)] to calculate the statistics of the fluctuating streamwise velocity in the inner region

of the zero-pressure gradient turbulent boundary layer. Results, including spectra and moments up

to fourth order, are compared with equivalent predictions using experimental time series, as well as
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with direct experimental measurements at Reynolds numbers Reτ based on the friction velocity and

the boundary layer thickness, Reτ = 7, 300, 13, 600 and 19, 000. LES combined with the wall model

are then used to extend the inner-layer predictions to Reynolds numbers Reτ = 62, 000, 100, 000 and

200, 000 that lie within a gap in log(Reτ ) space between laboratory measurements and surface-layer,

atmospheric experiments. The present results support a log-like increase in the near-wall peak of

the streamwise turbulence intensities with Reτ and also provide a means of extending LES results

at large Reynolds numbers to the near-wall region of wall-bounded turbulent flows.

Finally, we apply the wall model to LES of a turbulent boundary layer subject to an adverse

pressure gradient. Computed statistics are found to be consistent with recent experiments and some

Reynolds number similarity is observed over a range of two orders of magnitude.
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3.13 (a): Kármán “constant” calculated dynamically, (b): Coles wake factor . . . . . . . . 41

3.14 Coles wake factor with experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.15 Streamwise velocity fluctuation. (a): Outer scaling, (b): Mixed scaling . . . . . . . . . 42

3.16 Streamwise and wall-normal velocity fluctuations in inner scaling . . . . . . . . . . . . 42

3.17 Streamwise root-mean square fluctuation at Reτ ≈ 106 compared to SLTEST data . . 43

4.1 Schematic description of two “wall models” . . . . . . . . . . . . . . . . . . . . . . . . 48



xi

4.2 Reynolds number dependency of the S-factor for cases 7.3k-θ, 13.6k-θ, and 19k-θH . . 52

4.3 Mean velocity profiles for cases 7.3k-θ, 13.6k-θ, 19k-θH, 62k-τ , 100k-τ , and 200k-τ . . 53

4.4 Prediction of predictions of streamwise turbulence intensity for cases (a) 7k-θ; (b)

13.6k-θ; (c) 19k-θH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Premultiplied energy spectra of the streamwise velocity fluctuations at z+O ≃
√
15Reτ 56

4.6 Predicted premultiplied energy spectra map . . . . . . . . . . . . . . . . . . . . . . . . 57

4.7 Example of predicted pre-multiplied energy spectra the streamwise velocity fluctuations

at the inner-peak location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.8 The effect of resolution in LES-PIO predictions of streamwise turbulence intensity . . 59

4.9 Prediction of streamwise turbulence intensity for cases 62k-τ , 100k-τ , and 200k-τ . . . 60

4.10 Reynolds number dependency of the inner-peak intensity . . . . . . . . . . . . . . . . 60

4.11 Prediction of streamwise turbulence intensity u′2/u2
τ corrected to a hypothetical in-

finitesimally small sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.12 Reynolds number evolution of the predicted premultiplied energy spectra at the inner-

peak location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.13 Reynolds number dependency of predicted skewness and kurtosis . . . . . . . . . . . . 63

4.14 Skewness u′3/(u′2)3/2 and kurtosis u′4/(u′2)2 profile . . . . . . . . . . . . . . . . . . . 64

5.1 Profile of coefficient of pressure Cp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Profile of coefficient of pressure Cp and the pressure gradient dp/dx . . . . . . . . . . 70

5.3 LES results; β, K, and (dp/dx)+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 LES results; case D1 and corresponding experimental measurements of the mean velocity 73

5.5 LES results; mean velocity from case D1, D3, D5 . . . . . . . . . . . . . . . . . . . . . 74

5.6 LES results; mean velocity defect profiles from case D1, D2, D3, D4, and D5 . . . . . 74

5.7 LES results; S(Reτ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.8 LES results; S(β)− S(β = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.9 LES results; case D1 and corresponding experimental measurements of the streamwise

turbulence intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.10 LES results; streamwise turbulence intensity and Reynolds shear stress from case D1,

D2, D3, D4, and D5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.1 Staggered-grid formulation for the subgrid-scale model . . . . . . . . . . . . . . . . . . 84

A.2 The ghost-cell values for the fourth-order scheme . . . . . . . . . . . . . . . . . . . . . 86



xii

List of Tables

2.1 Numerical methods in the simulation code . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Convergence test run on both second- and fourth-order-accurate scheme . . . . . . . . 19

3.1 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Effect of resolution at Reθ ≈ 2.5× 105 . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Effect of domain size and the location of the recycling plane at Reθ ≈ 2.5× 104 . . . . 31

4.1 Simulation parameters and integral quantities . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Reynolds number and S-factor for each LES and corresponding experiments . . . . . 50

5.1 Experimental parameters for APGTBL . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Simulation parameters for APGTBL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 LES results; case D1, D3, and D5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 LES results; case D1 and corresponding experimental parameters . . . . . . . . . . . . 72

B.1 The number of grid points in each direction. Case 1: A is 384× 384 matrix. Case 2:

A is 1024× 1024 matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

B.2 Computational time required to solve Ax = b . . . . . . . . . . . . . . . . . . . . . . 96

B.3 Scaling test of Navier-Stokes solver, the number of grid points in each direction . . . . 97

B.4 Computational time required (seconds) at each stage. LES 384× 128× 64 . . . . . . . 98

B.5 Computational time required (percentile) at each stage. LES 384× 128× 64 . . . . . 99

B.6 Computational time required (seconds) at each stage. DNS case 2563 . . . . . . . . . 100

B.7 Computational time required (percentile) at each stage. DNS case 2563 . . . . . . . . 101

B.8 Computational time required (seconds) at the slowest process and the fastest process.

DNS case 2563 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



1

Chapter 1

Introduction

Numerical resolution requirements limit applicability of direct numerical simulation (DNS) to tur-

bulent flows at low-to-moderate Reynolds numbers. In DNS of incompressible flows, a wide range

of dynamically important scales of motion must be resolved, including the smallest dissipative Kol-

mogorov scales. Large-eddy simulation (LES) is now a viable alternative to DNS and experiment

(Jiménez 2003). Here, only the large scales of motion are resolved while the effects of small un-

resolved eddies are modeled; this enterprise is referred to as subgrid-scale modeling. In LES, this

takes the form of closures for the subgrid contributions to the fluxes of momentum, energy and

scalar transport insofar as these appear in the LES equations for the resolved scales. LES has had

a significant impact on the development of turbulence prediction techniques, and many different

approaches have been developed; see Lesieur and Metais (1996), Meneveau and Katz (2000), Sagaut

(2006) for reviews.

The LES of wall-bounded flow at both laboratory and atmospheric-layer Reynolds numbers

remains a significant challenge (e.g., Cabot and Moin 2000, Wang and Moin 2002, Piomelli and

Balaras 2002, Templeton et al. 2005, Piomelli 2008) because close to the wall the paradigm of

flow dominance by large scales fails (Pope 2004). Near wall motions are highly anisotropic and

their spatial extent and structure are determined by complex near-wall dynamics conditioned by

streamwise vortices streaks and possibly other structures. These scales probably dominate the

transport dynamics but will tend to be underresolved at moderate grid resolution and large Reθ.

One approach is near-wall resolved LES where the LES grid extends into the viscous layer providing

partial resolution of the viscous wall length in at least the wall-normal direction, while LES operates

in the outer part of the boundary layer. This has been shown to work well at moderate Reynolds

numbers (Schlatter et al. 2010) but the cost scales approximately as Reynolds number to the power

1.8 (see Pope 2000) which may limit application at large Reθ. An alternative is near-wall modeling

which attempts to eliminate the near-wall layer from the overall LES (Piomelli 2008). Some means

is then required first, of providing boundary conditions for the LES that replace the usual no-slip

condition used for the Navier-Stokes equations, and second, of accurately determining the wall shear
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stress, or equivalently, the wall friction velocity at the bottom of a region that is not resolved.

Wall modeling has also been used for LES of the atmospheric boundary layer using so-called “wall-

stress boundary conditions” that relate a wall shear stress, sometimes determined from an assumed

log law, to the velocity at the first grid point from the wall (Porté-Agel et al. 2000, Anderson and

Meneveau 2011, Lu and Porté-Agel 2010). Wall-stress models appear in a variety of implementations,

and since the present wall-model is not of this type, the reader is referred to a review (Piomelli 2008)

for technical details. Using a specified wall roughness scale, these methods provide LES for effective

rough-wall flow at nominally large but undetermined Reynolds numbers.

Wall-models based on either a table look-up using a universal mean-velocity profile to determine

the friction velocity (Templeton et al. 2005) or on a wall-boundary condition using optimal control

theory coupled to a Reynolds-averaged Navier-Stokes model (Templeton et al. 2008) have enabled

LES of streamwise periodic, smooth-wall channel flow up to Reτ = O(104). These atmospheric

and smooth-wall channel-flow LES provide reasonable representations of the mean log-like velocity

profile at either unknown or at moderately large Reynolds number but do not appear to have yet

been used to systematically study the spatially-developing, zero-pressure gradient boundary layer

at either large laboratory Reynolds numbers (Österlund 1999, DeGraaff and Eaton 2000, Mathis

et al. 2009) or at extreme Reynolds numbers typical of field experiments in the atmospheric surface

layer (Metzger et al. 2007). Such LES must dynamically calculate the streamwise varying skin-

friction velocity in relation to the free-stream velocity, while using a wall-model enabling resolution

of quantities that may exhibit weak but definite Reynolds number dependence or perhaps Reynolds

number independence. For smooth-wall flow examples of the former are the streamwise velocity-

profile shape factor and the skin-friction coefficient while examples of the latter are the Coles wake

factor and possibly the Kármán constant. This is a regime that, to date, has proven inaccessible to

direct numerical simulation. It is the main focus of the present work.

Chung and Pullin (2009) developed an subgrid-scale (SGS) model tailored to smooth wall-

bounded flow by attempting to incorporate widely accepted elements of near-wall vortices into a

structure-based wall-model. Their approach begins by averaging the streamwise momentum equa-

tion over a thin layer adjacent to the wall. Using inner scaling for the unsteady term of the averaged

equation while coupling other terms to the outer LES, they obtained an ordinary differential equa-

tion (ODE) for the local wall-normal velocity gradient, or equivalently, the wall-friction velocity.

This is solved as an auxiliary equation for the main, outer flow LES and provides a direct calcu-

lation of the friction velocity. The boundary condition for the outer LES is applied at a raised

or “virtual wall” by integrating, in the the wall-normal direction, the stretched-vortex SGS model

expression for the wall-normal transport of streamwise momentum, under an assumption that there

exists, in the near-wall layer, a hierarchy of streamwise vortices whose size scales with distance from

the wall (see Nickels et al. 2007). This gives a log-like relation for the mean streamwise velocity
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that, in conjunction with the wall friction velocity obtained from the wall-layer ODE, provides a slip

velocity for the outer LES. The model also gives a means of determining a Kármán-like constant

dynamically. Chung and Pullin (2009) applied the model to LES of channel flow up to Reτ = 2×107,
while Chung and McKeon (2010) performed LES of large-scale structures in turbulent flow in long

channels. Presently this model is extended to the LES of the flat-plate turbulent boundary layer

under zero- and adverse-pressure gradient.

In Chapter 2, a computer code for the numerical method simulating spatially developing turbulent

boundary layer flows is described. This is followed in Chapter 3 by the LES of the zero-pressure

gradient, flat-plate turbulent boundary layer (ZPGFPTBL). The present wall model does not resolve

the near wall region. In Chapter 4 we combine the present LES with an empirical inner–outer wall

model which enables extension of the LES to the inner region of the turbulent boundary layer. The

near wall statistics of the fluctuating streamwise velocity of ZPGFPTBL at up to Reτ = 200, 000

are presented. Finally, we provide an application of the SGS wall model on the LES of the adverse-

pressure gradient, flat-plate turbulent boundary layer in Chapter 5 before concluding in Chapter

6.
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Chapter 2

A numerical code to simulate

wall-bounded turbulence

2.1 Background

The DNS studies have addressed several important issues for the numerical simulation of the TBL

including high-order nonspectral methods and boundary conditions suitable for spatially developing

flows with only one, as opposed to two, homogeneous directions. Due to the additional inhomogeneity

in the streamwise direction, progress in the DNS of turbulent boundary layers has been slower,

in terms of the Reynolds numbers achieved, compared to the various numerical computations of

canonical turbulent flows performed to date. In the case of the transitional flow whose state is

laminar in the inflow region, the inflow velocity conditions can be specified relatively easily, but

the computational domain needs to be sufficiently long to develop the flow into turbulence. To

avoid using an exceeding long domain that includes full transition, it is necessary to provide inflow

conditions with realistic turbulence properties at each time step of the simulation. The velocities

specified at the inflow should represent the contribution of energy-containing eddies as reviewed by

Keating et al. (2004). Previous works can be assessed on the basis of their methods designed to

tackle this inflow issue. Readers are referred to Keating et al. (2004) for a brief history review of

generating inflow conditions. For the purpose of completeness, a review is also provided here.

2.1.1 Inflow-generating method

An early approach to simulating spatially developing turbulent flows was to utilize modifications of

the streamwise periodic conditions used to supply inflow conditions for streamwise periodic flows,

so that a full Fourier pseudospectral method would be still applicable. Spalart (1988) proposed a

systematic multiple-scale procedure to approximate the local effects of the streamwise growth of

the flow (e.g., boundary layer thickness). This enabled transformation of the system of equations

into a selfsimilar coordinate frame, in which the flow was periodic. Using streamwise periodicity,
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Spalart (1988) performed DNS of flat-plate boundary layers providing valuable data at Reθ up to

1410. The main disadvantage, however, is the need to evaluate the growth terms that are numerous

and complicated in form. Also, since such similarity does not always occur (Keating et al. 2004),

the modification was made by adding the so-called fringe region downstream of the physical do-

main, where the boundary layer thickness is decreased and re-introduced as an inflow, that is, the

periodic boundary condition, Fourier spectral method was used in the streamwise direction. The

key assumption is that the nonphysical phenomena occurring in the fringe region do not invalidate

the solution in the other, nonfringe, region. Detailed analysis and discussion on the fringe-region

technique can be found in Nordström et al. (1999). A possible disadvantage is that, since the flow

is forced back to a laminar state within the fringe region, then it requires a relatively long compu-

tational domain to achieve high-Reynolds-numbers flow. A further problem is that periodicity is

difficult to reconcile with strong spatial inhomogeneity, such as strong pressure gradients, or with

control strategies involving net mass injection (Simens et al. 2009). This fringe method is actively

in use: the most recent published work is Schlatter et al. (2009). They conducted DNS of turbulent

boundary layer up to Reθ = 2500 and showed excellent agreement in skin friction, mean velocity

and turbulent fluctuations with experiments (Schlatter et al. 2009).

With the loss of one homogeneous direction, for developing boundary layer flow, Lund et al. (1998)

(LWS) proposed a modification to Spalart’s approach using a rescaling method, eliminating the need

for the growth-terms by a more simple and flexible rescaling technique. Here the inflow velocity is

generated in a first simulation (code-A) and used in second, TBL simulation (code-B). Code-A

generates its own inflow conditions by rescaling the instantaneous velocity data of a downstream

recycling plane, which are then reintroduced at the inlet; see Figure 2.1 styled after Ferrante and

Elghobashi (2004). It rescales the inner and outer layers of the velocity profile separately to account

for the different similarity laws observed. Inflow conditions for Code-B can then be taken directly

from an interior plane of the code-A simulation. This method was successfully used in LES on a

spatially developing boundary layer of Reθ = 1530 to 2150 (Lund et al. 1998).

Ferrante and Elghobashi (2004) were, however, unable to obtain a satisfactory development of the

turbulent velocity correlations in DNS. Thus they proposed a more robust variant of the LWS method

by introducing a set of additional steps before the rescaling process. These steps involves carefully

prescribing both the Reynolds stress tensor and the energy spectra when initializing the flow field

of Code-A, whereas in the original LWS method, only the mean streamwise velocity was prescribed

and a random fluctuation added. This step successfully provides non-vanishing magnitude of a

statistical correlation between the streamwise and wall-normal velocity fluctuation, thus sustaining

the production rate of turbulence kinetic energy. They performed DNS with Reθ = 800–1430.

Inflow generating methodology remains an area of active research, (e.g., Simens et al. 2009,

Keating et al. 2004, Liu and Pletcher 2006, Jewkes et al. 2011, Araya et al. 2011) and we will
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subsequently refer to “code-A only” and “code-A&B” methods. Simens et al. (2009) advocate

a code-A only method (no code B) restricting the rescaling region to some fraction of the total

streamwise domain; see Figure 2.2 styled after Simens et al. (2009).

Recycling plane

Velocities are rescaled and copied to

the inflow plane at each time step (LWS method)

Inflow plane A

Inflow plane B

Copy velocities

U∞ Code A

Code B

x

y
z

LxA

Ly

Lz

LxB

Ly

Lz

Figure 2.1. A schematic of the computational domains of Code-A and Code-B used by Lund et al.
(1998) and Ferrante and Elghobashi (2004)

2.1.2 The order of spatial approximation

Although the fringe method is attractive with respect to the spectral accuracy, considering the

possible disadvantages and somewhat artificial assumptions mentioned above, it is preferable to use

numerical methods that can accommodate streamwise development of the boundary layer and, for

this purpose, finite-difference schemes have been used by various authors (e.g., Lund et al. 1998,

Ferrante and Elghobashi 2004, Simens et al. 2009, Wu and Moin 2009, Lee and Sung 2011). Except

for Simens et al. (2009), the studies cited above use finite-difference schemes that are second-order

central difference. Although they conserve mass, momentum and energy, their resolution properties

are relatively poor. The use of a higher-order stencil is essential to limit the resources and required

time for computation. Also a high-order scheme is recommended for LES owing to the interference of

discretization errors with the SGS model terms (Chow and Moin 2003, Gullbrand and Chow 2003).
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Recycling plane

Velocities are rescaled and copied to

the inflow plane at each time step (LWS method)

Inflow plane

U∞

x

y
z

Lx

Ly

Lz

Figure 2.2. A schematic of the computational Code-A domain showing the recycling region

Fourth- or higher-order schemes have been proposed and implemented for wall-bounded flow (e.g.,

Knikker 2009, Boersma 2011) using a staggered-grid, compact finite-difference method. Solving the

resulted discretized Poisson-pressure equations, however, is not straightforward (if not impossible)

with the direct method. Also this usually requires iterative methods which need relatively longer

CPU time to compute compared to a direct method. The amount of CPU time strongly depends

on the required tolerance which should be at least the order of O(10−10) (Knikker 2009), otherwise

the error will likely accumulate over time and will degrade the overall convergence. This has been

the major obstacle to achieving a higher-order scheme. Thus to avoid a system of equations that

cannot be solved by an efficient direct method, Simens et al. (2009) and Knikker (2009) mixed a

second-order formulation for the pressure projection scheme with fourth or higher-order compact

finite-difference schemes for approximating velocities derivatives in a fractional-step context. Their

scheme is formally second-order and it shows second-order spatial convergence. The major advantage

of using compact finite-difference schemes is that they require narrow stencils. Their high-resolution

code, however, has issues when applied in our situation. For example, the compact finite-difference

schemes do not conserve energy in the inviscid limit when solving the Navier-Stokes equation, which

is not desirable for LES because it may lead to numerical instabilities (Kim and Moin 1985) when

not all energy-containing scales are resolved.

Our choice is the following: A fully conservative fourth-order finite-difference scheme in two inho-

mogeneous directions and a pseudospectral method in the other direction with boundary treatments

presented by Morinishi et al. (1998). This includes a small modification that leads to Poisson-

pressure equations that are solvable by efficient direct methods, keeping the overall accuracy of

fourth-order. This scheme was successfully implemented and shows a fourth-order of accuracy in

convergence tests for both pressure and velocities. The fractional step, or time splitting, method

is implemented for time advancement, a scheme where a third-order Runge-Kutta schemes is used

for terms treated explicitly and a second-order Crank-Nicolson scheme for terms treated implicitly
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(Spalart et al. 1991).

In this chapter, §2.2 describes the fractional-step method and the spatial discretization to solve

the incompressible Navier-Stokes equations. Then, the resulting Poisson-pressure equations and

their related issues are outlined in §2.3 with some details contained in Appendix A. Some discus-

sion is given regarding the boundary conditions appropriate for boundary-layer simulation and the

arrangement of parallel algorithm in §2.4 and §2.5. The discussion and summary concludes this

chapter after verification of the code in §2.6.

2.2 Problem formulation

The incompressible Navier-Stokes equations in primitive variables are given by

∂u

∂t
+ u · ∇u = −∇p+ 1

Re
∇2u, (2.1)

∇ · u = 0. (2.2)

For illustrating the principal idea simply, the implicit Crank-Nicolson scheme is used for linear

(viscous) terms, and second-order Adams-Bashforth scheme for nonlinear terms. The discrete form

of the above equation can be written as

un+1 − un

dt
= −Gp−

(
3

2
Nun − 1

2
Nun−1

)
+

1

2Re

(
Lun+1 + bcn+1

1 + Lun + bcn1
)
, (2.3)

Dun+1 = bcn+1
2 , (2.4)

or in the matrix form, as


 A dtG

D 0




 un+1

p


 =


 rn

0


+


 bc1

bc2


 , (2.5)

where A is the implicit operator for the advection-diffusion part of the momentum equation, N is

the convective operator, G is the gradient operator, D is the divergence operator, rn is the explicit

right-hand side of the momentum equation, bc1 is the boundary condition vector for the momentum

equation and bc2 is the boundary condition vector for the incompressibility constraint. Only the

viscous term is treated implicitly here so that

A = I− dt

2Re
L, (2.6)
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rn = dt

[
3

2
Nun − 1

2
Nun−1 +

1

2
(bcn+1

1 + Lun + bcn1 )

]
. (2.7)

2.2.1 The temporal discretization; fractional step method

First introduced by Chorin (1968), the fractional step, or time-splitting, method solves the unsteady

Navier-Stokes equations in a segregated manner. At each time step, an incomplete form of the

momentum equations integrated to obtain an approximate velocity field, which is in general not

divergence free. Then, the velocity field is projected into the divergence-free field without changing

its vorticity. This projection step is achieved by solving the Poisson equation for “pressure”, which

is not a thermodynamic variable but a Lagrange multiplier that constrains the velocity field to be

divergence-free (Gresho and Sani 1987). As mentioned by Perot (1993), the fractional step method

has been used in the past by numerous researchers. In general it is first-order accurate in time

and there still exits some controversy and/or disagreement concerning boundary conditions and the

details of implementation of the method (Kim and Moin 1985). Also, considerable effort has been

spent to achieve higher-order accuracy in time integration (e.g., Gresho and Sani 1987, Armfield

and Street 1999, Brown et al. 2001, Sani et al. 2006). On the one hand, the first-order behavior is

attributed to the use of the physical velocity boundary condition and zero-normal-pressure gradient,

and several modification on boundary conditions have been presented. On the other hand, the first-

order accuracy is also claimed to be due to the commutation error shown by the LU factorization

scheme (Perot 1993). Perot suggested that no boundary condition is required for obtaining the

intermediate velocity and pressure.

The fractional step method is related to the block LU factorization of equation (2.5) in the form


 A 0

D −dtDA−1G




 I dtA−1G

0 I




 un+1

p


 =


 rn

0


+


 bc1

bc2


 . (2.8)

Equation (2.8) is called the Uzawa method, which is exact but computationally very expensive since

calculating the inverse of A is not practical. Hence equation (2.8) is usually solved approximating

A−1. Different approximations to the inverse result in different classes of fractional step method.

The classic fractional step method corresponds to using A−1 = I +O(dt), which results in a first-

order error term. By choosing A−1 = I+ dt
2ReL+O(dt2), the resulting error is O(dt2). In the case

of A−1 = I, the single time step reduces to the following sequence of operations,

Au∗ = rn + bc1, (2.9)

dtDGp = (Du∗+ bc2) , (2.10)

un+1 = u∗ − dtGp. (2.11)
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In the actual computation, the low-storage third-order semi-implicit Runge–Kutta method of Spalart

et al. (1991) is used for temporal discretization to achieve higher order of temporal accuracy. The

equations to be solved at each step then become

Au∗n+1 = rn + βnbc1, (2.12)

dt (αn + βn)DGp =
(
Du∗n+1 + bc2

)
, (2.13)

un+1 = u∗n+1 − dt (αn + βn)Gp, (2.14)

where

A = I− βndt

Re
L, (2.15)

rn = dt
[
−γnNun − ζnNun−1 + αn (Lun + bcn1 )

]
, (2.16)

for n = 0, 1, 2. For an arbitrary reference time, t0, u
(3) = u(t0 +dt). The value of the constants αn,

βn, γn and ζn are given in Spalart et al. (1991),

α1 = 4/15, α2 = 1/15, α3 = 1/6,

β1 = 4/15, β2 = 1/15, β3 = 1/6,

γ1 = 8/15, γ2 = 5/12, γ3 = 3/4,

ζ1 = 0, ζ2 = −17/60, ζ3 = −5/12.

(2.17)

The implicit treatment of the viscous term allows large time steps to be taken in general, but

in the context of a finite-difference method, it adds numerical complexity. It was shown in Simens

(2008) (also see Akselvoll and Moin 1996), that the viscous time-step requirement can be more severe

than the convective restriction only in the wall-normal direction in the case of a stretched grid that

is usually employed in wall-bounded turbulence to resolve small-scale phenomena close to the wall.

Although it may not be necessary to treat the viscous term implicitly (represented by the operator

L) at all for the purpose of our LES (using even-spaced grids in general), nevertheless the viscous

terms in the wall-normal direction are treated implicitly presently in order for the code to be robust

enough to deal with DNS of turbulent boundary layer flow. The nonlinear and wall-parallel viscous

terms are treated explicitly (represented by the operator N). The time-step size dt is determined by

setting the CFL number

dtmax

( |u|
∆x

,
|v|
∆y

,
|w|
∆z

)
, (2.18)

to unity. In the following, see Table 2.1 for a summary of schemes. The spatial discretization schemes
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are discussed next.

Item Contents

The equation system Incompressible Navier-Stokes equation
Discretization Streamwise (x) fourth-order staggered FDM

Spanwise (y) Fourier spectral method
Wall-normal (z) fourth-order staggered FDM

Time integration Semiimplicit three-step Runge-Kutta

Table 2.1. Numerical methods in the simulation code

2.2.2 The spatial discretization; fourth-order finite difference

A fourth-order numerical code has been implemented for LES (and some DNS) on a turbulent

boundary layer flow. The governing equations are solved in a box with dimensions Lx × Ly × Lz,

with periodic boundary condition in the spanwise or y-direction. The components of the velocity

vector u are u, v and w in the streamwise (x-), spanwise (y-), and wall-normal (z-) directions,

respectively.

x

z

y

ui+1,jui,j

wi,j+1

wi,j

pi,j

vi,j

Figure 2.3. The staggered-grid configuration. The streamwise and wall-normal velocity component
are stored on the cell faces and the spanwise velocity and pressure quantities at the cell center.

In our code the streamwise and wall-normal velocities are defined at the edge of each cell and

spanwise velocity and the pressure are at the center. The staggered-grid cell configuration is sketched

in Figure 2.3. Explicit, fourth-order finite differences on a staggered grid are used to approximate

(x, z)-derivatives, while a pseudospectral method is utilized for y-derivatives. The convective terms

are calculated using a fully conservative skew-symmetric form (Morinishi et al. 1998). Nonlinear

terms are treated using a pseudospectral method with a p1th-order Fourier exponential filter in
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y-direction, which mimics the 2/3 rule, in order to prevent aliasing errors (Gottlieb and Shu 1997,

Chung and Pullin 2009). At boundaries, a ghost-point scheme is employed where points are extended

beyond boundaries so that a consistent stencil can be used as in the interior. This is, in effect,

equivalent to a one-sided, finite-difference scheme at wall boundaries. Values at ghost points are

designed to ensure global conservation of mass and momentum. The formulation in part follows

Morinishi et al. (1998), which describes the scheme for the case of channel flow with solid walls. The

generalization of scheme to the arbitrary Dirichlet velocity boundary conditions can be readily be

made. For the detail formulation see Appendix A.

2.3 The Poisson-pressure equation

The Poisson-pressure equation (2.13), which reduces to a set of 2D Helmholtz equations owing to the

Fourier expansion in the spanwise (y-) direction, is then expanded using a cosine transform in the

streamwise (x-) direction. Then the problem reduces to a series of one-dimensional Helmholtz equa-

tions along the wall-normal (z-) direction, with a modified wavenumber for each cosine representing

the finite-difference stencils in x. The septa-diagonal matrix solver (available from LAPACK) is

used to solve the equations in the z-direction. This leads to efficient code parallelization (see the

following §2.5 for details). FFTW libraries are utilized here. It has been reported in Simens et al.

(2009) that “the Gibb’s errors due to the implicit derivative discontinuities at the nonperiodic end

points are of order ∆x2” and that “higher-order schemes in nonperiodic domains cannot be treated

in this (be expanded in cosines series) way, because they require boundary schemes with different

modified wave numbers than the interior operator”. This is due to how the discrete cosine transform

is performed. For example, in the case of FFTW libraries, the original array of data (say, {12345})
will be expanded in such a way that the extended array has an even symmetry (say, {1234554321})
and periodicity. Now because of the even symmetry, in performing the discrete Fourier transform,

the sine terms all cancel and only the cosine terms remain. In prescribing the ghost-point values for

the pressure, one needs to be careful to design the scheme so that the matrix to be solved should

have boundary schemes that give the same modified wave number throughout the domain including

the boundary, i.e., the data is even around the boundaries. Using the concept of the modified wave

number, the incompressibility can be enforced up to the machine accuracy. See Appendix A.5 for

details on the Helmholtz solver using discrete Fourier transform.

2.4 Boundary conditions

The boundary condition in the y-direction is periodic and it is required to specify boundary con-

ditions at four other boundaries to solve the system of equations (2.12) to (2.14), namely inflow,
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outflow, bottom wall and in the free-stream in the context of boundary layer flow simulation. As

discussed in §2.1.1, the inflow condition is specified by using the recycling method of Lund et al.

(1998) for the fully-developed turbulent case or by using the Blasius profile for laminar or for tran-

sitional boundary layers. The convective boundary condition at the outflow plane has been the

popular choice among researchers. In this section various types of free-stream boundary condition

are discussed followed by the short description of the convective boundary condition.

2.4.1 Outflow condition

The velocities at the outflow are estimated by a convective boundary condition,

∂u

∂t
+ Uc(z)

∂u

∂x
= 0, (2.19)

where Uc(z) is the local mean streamwise velocity at the exit. Depending on a choice of free-stream

boundary condition, small corrections to streamwise velocity might be required to ensure global

mass conservation. See the following section regarding this issue.

2.4.2 Free-stream condition

In most past studies of ZPGTBL simulations, the desired pressure gradient is obtained through

prescribing velocity at the top-boundary. Specification of boundary conditions at the top of the

domain is not a trivial issue. That is because it is not known, in advance, which velocity boundary

conditions would lead to a specified pressure gradient. Also, as stated in Na and Moin (1998), when

both the streamwise velocity and the wall-normal velocity are simultaneously prescribed, numerical

oscillations were observed away from the wall. Thus, most researchers prescribed Dirichlet boundary

conditions for either streamwise or wall-normal velocity, and Neumann boundary conditions for the

others justified by zero-vorticity or free-stress conditions. Although velocity boundary conditions are

predominantly utilized, there are cases that the pressure gradient is achieved by directly prescribing

a pressure distribution. Here three types of boundary conditions at the top of the domain were

implemented and will be discussed in detail. A choice of boundary conditions used for cases in the

later chapters will be specified for each case.

Pressure boundary condition

In principle, pressure boundary conditions can be enforced. However, velocity boundary conditions

have been predominantly used in the literature. As far as the author knows, only two boundary

layer simulations in which the pressure boundary is imposed have been reported. One is Ferrante

and Elghobashi (2004), for DNS of a zero-pressure gradient turbulent boundary layer. The other

is Simens (2008), where the pressure boundary condition was discussed in detail with respect to
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mass conservation and solving Helmholtz equations for pressure in the context of the fractional

step method. But the results shown were only for a laminar boundary layer case. None have been

found for an adverse-pressure gradient turbulent boundary layer. An important advantage is that by

imposing pressure (if known), it is much easier to reproduce experiments (Simens 2008) because it

is not necessary to estimate the boundary layer growth rate, nor to adjust the wall-normal velocity

to achieve the required pressure gradient. The boundary conditions are

P∞(x) = f(x) and
∂u

∂z
=

∂v

∂z
= 0. (2.20)

It should be noted that the boundary condition for the wall-normal velocity at the top is not required,

but follows directly from the projection step in the fractional step method context, so that mass is

conserved in the computational domain. In contrast to the velocity boundary conditions, it is not

required to adjust (small but no physical justification) the velocity field at the boundary, usually

at the outflow condition, to satisfy mass conservation. It is expected that the pressure boundary

condition will reduce the amount of potential perturbations in the free-stream (Simens 2008). In

some cases, it might be also useful to utilize Dirichlet conditions for u by a prescribed velocity profile

Uref (x) instead of the stress-free condition. However, one needs to be careful applying this boundary

conditions since some authors observed oscillations at the domain top especially when the domain

height is not large enough. The free-stream flow at the outer edge of the boundary layer is governed

approximately by

U∞

dU∞

dx
= −1

ρ

dP∞

dx
. (2.21)

Zero-vorticity condition

Fasel (1976) pointed out that the zero-vorticity condition at the top-boundary needs a relatively

small integration domain in the wall-normal direction. This came from experimental evidence and

linear stability theory according to which the perturbation vorticity decays very rapidly in the z-

direction and is practically zero at about three boundary-layer thicknesses from the wall. Also the

perturbation velocity components, on the other hand, decay rather slowly in the z-direction. Thus

one possible choice of the top boundary would be,

w = Wref ,
∂u

∂z
=

∂w

∂x
and

∂v

∂z
=

∂w

∂y
, (2.22)

where the suction-blowing distribution of Wref is a prescribed velocity profile that controls the

pressure gradient. Variations of this type have been used by Lund et al. (1998), Simens et al. (2009)

and Wu and Moin (2009) for a zero-pressure gradient turbulent boundary layer, and Na and Moin

(1998) for a separated turbulent boundary layer.

The interesting practical question is how the normal velocity at the top-boundary, Wref , should
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be chosen to realize the desired pressure gradient. Simens et al. (2009) estimated Wref from the

known experimental growth of the displacement thickness. Wu and Moin (2009) prescribe Wref as

the analytical profile of the Blasius solution. One way to adjust Wref for known pressure gradient is

the following. By an inviscid outer flow approximation, continuity gives

∂U∞

∂x
+

∂W∞

∂z
= 0. (2.23)

Here constant density (ρ = const) is assumed. Assuming potential flow down to the wall, integration

in z, 0 ≤ z < Lz with z = 0 at the wall gives,

W∞(Lz) = −Lz
dU∞

dx
. (2.24)

Now in the boundary layer, averaging over the spanwise direction, in which case ∂v
∂y = 0,

∂u

∂x
+

∂w

∂z
= 0. (2.25)

Equations (2.23) and (2.25) then give

∂

∂x
(U∞ − u) =

∂

∂z
(w −W∞) . (2.26)

Integrating in z, 0 ≤ z < Lz,

d

dx
[U∞δ∗] = w(Lz)−W∞(Lz), (2.27)

where δ∗ is the displacement thickness,

δ∗ =

∫ Lz

0

(
1− u

U∞

)
dz. (2.28)

The difference w(Lz) − W∞(Lz) is interpreted as a correction to the wall-normal velocity at Lz

owing to the slope of δ∗. Therefore, assuming the height of the computational domain is sufficiently

high so that the flow at the top is approximately inviscid outer flow,

Wref = w(Lz) = (δ∗ − Lz)
dU∞

dx
+ U∞

dδ∗

dx
. (2.29)

For the zero-pressure gradient case,

Wref = U∞

dδ∗

dx
. (2.30)

Because δ∗ grows almost linearly in the case of the zero-pressure gradient turbulent boundary layer,

Lund et al. (1998) used the average value dδ∗/dx over the whole domain computed by a linear

regression from the local value of δ∗ obtained from the mean velocity field. In this case the boundary
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conditions are reduced to a stress-free condition for the velocity components u and v

w = Wref ,
∂u

∂z
=

∂v

∂z
= 0 at z = Lz, (2.31)

where Wref(x) is obtained from equation (2.30).

Continuity condition

The normal derivative of the streamwise and spanwise velocity components are set to zero, while

the normal component is set to
∂w

∂z
= −∂Uref

∂x
. (2.32)

In simulating an adverse-pressure gradient turbulent boundary layer, the streamwise velocity profile

at the domain top is prescribed especially for flows with a constant pressure-gradient parameter.

See Skote and Henningson (2002) and Lee and Sung (2008) for an example. This type of boundary

condition is also adopted by Lee et al. (2010),

u = Uref(x),
∂w

∂z
= −∂Uref

∂x
and

∂v

∂z
= 0. (2.33)

2.5 Parallelization

Parallelization of the numerical code is required to perform a large scale simulation, such as DNS

and LES of wall-bounded turbulence at high Reynolds numbers. The complete strategy for solving

the incompressible Navier-Stokes equations numerically consists of a data decomposition method,

a discretization scheme and an appropriate solution technique for the resulting system of linear

equations. For an overview on an efficient parallel implementation for the incompressible Navier-

Stokes equations we refer the reader to Luchini and Quadrio (2006) and Henniger et al. (2010) and

references therein. Our code is designed for distributed-memory machines with the order of O(10)
cores using a message passing interface (MPI). Data is distributed in a simple, slice-like form to

break-up the vectors and matrices into smaller blocks considering the simple coordinate system and

the number of available cores is about the same order of the grid points in one direction.

A key point to be considered is the nonlocality of the spectral differential operator involved in

the pseudospectral method in evaluating the nonlinear terms and solving Poisson-pressure equations.

The parallelization is achieved in such a way so as to avoid a Fourier-like transformation across the

parallelized domain which requires essentially all-to-all communication, in the spirit of minimizing

data exchange among the computing machines. All data along the direction to be transformed must

belong to the same subdomain, and data is distributed in y-z sliced domain.

Another point to be considered is how to implement the cosine transform scheme to reduce the
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problem to one-dimensional Helmholtz equations for pressure. Note that prescribing boundary con-

ditions for velocity at the top instead, allows cosine transformation in either the x- or the z-direction.

The cosine transform is performed, however, in the x- not in the z-direction, to accommodate the

use of a stretched grid in the wall-normal direction and use of various types of boundary conditions

(see §2.4), especially that of Dirichlet boundary conditions for pressure at the domain top. Thus

the data along the x-direction are preferred to be contained in the same plane so that the cosine

transform can be performed. This is done by first transposing data and then redistributing in an

x-z sliced domain followed by solving the system of equations in the z-direction using a serial matrix

solver provided by LAPACK. See Figure 2.4 showing distribution of memory and computation.

x

z
y Fourier transform

in y-direction

Cosine transform
in x-direction

y-z slices

x-z slices

Data transpose

For Poisson-pressure solver

Figure 2.4. Parallelization scheme to distribute memory and computation. Arrangement of data for
a parallel execution with four computing cores

All-to-all communication of data is, in general, time consuming and should be avoided. The

distributed matrix solver provided by ScaLAPACK, however, turns out to be not suitable for our

simulation code using MPI. The code performance including parallel scaling properties are discussed

in Appendix B. It should be mentioned, however, that the one possible disadvantage of the choice

is that it would limit the number of cores to be used up to the number of grid points to be used in

the y-direction.
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2.6 Code validation

2.6.1 Method of manufactured solution

In this section the results of spatial and temporal convergence tests are shown. Convergence tests

are run using the method of manufactured solutions. The Navier-Stokes equations are forced so that

the solution will be a prescribed time-dependent function. The grid points are uniformly spaced in

all cases with the same numbers of grid points in x- and z-directions, i.e., Nx = Nz = N . An L2

norm normalized by the exact values

L2 =

√∑
i,k(analyticsol.− numericalsol.)2

∑
i,k(analyticsol.)

2
, (2.34)

is examined. The test case is the 2D decaying artificial vortex given by

u(x, z, t) = − sin (ax) cos (az) exp

(
− 2t

Re

)
, (2.35)

v(x, z, t) = cos (ax) sin (az) exp

(
− 2t

Re

)
, (2.36)

p(x, z, t) =
1

4
(cos (2ax) + sin (2az)) exp

(
− 4t

Re

)
, (2.37)

where a = 4π. The divergence of velocity is zero for this test flow. A 2D test case is used for

simplicity since a pseudospectral method is employed in the other direction and presently we wish

to test the error of finite-difference spatial discretization. When the Reynolds number is small the

solution decays rapidly. The Reynolds number Re here is given as Re = 100 where the solution

changes relatively slowly so that this checks the efficiency of spatial discretization. Also, the time

step size is set to dt = 0.001 and CFL is the order of 10−3, so that spatial discretization error

dominates the overall error in the numerical solution. The numerical domain is Lx = Lz = 1.

The errors are evaluated at the dimensionless time t = 200. The Dirichlet boundary conditions are

specified for velocities. The appropriate forcing terms in x- and z-momentum equation in this test

case are

fx(x, z, t) = − 1

Re

{
2
(
1− a2

)
exp

(
− 2t

Re

)
cos (az) sin (ax)

}
, (2.38)

fz(x, z, t) =
1

Re

{
2
(
1− a2

)
exp

(
− 2t

Re

)
cos (ax) sin (az)

}

+
a

2
exp

(
− 4t

Re

)
{cos (2az) + sin (2az)} , (2.39)
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Figure 2.5. The order of convergence of the scheme. (a): Spatial and (b): Temporal

respectively. The order of convergence r is computed via the formula (Strikwerda 1997),

r =
ln (error(h1)/error(h2))

ln (h1/h2)
, (2.40)

using two successive values of the grid spacing h1 and h2 and the corresponding L2 norm of error.

The results are shown in Table 2.2 and Figure 2.5(a), and fourth-order convergence of the code is

shown. The widely used explicit second-order finite-difference scheme is also shown for comparison.

scheme N L2(u) r L2(v) r
2nd 16 5.38e-02 5.39e-02
2nd 32 1.39e-02 1.95 1.39e-02 1.95
2nd 64 3.50e-03 1.98 3.50e-03 1.98
2nd 128 8.81e-04 1.99 8.81e-04 1.99
4th 16 4.71e-03 4.74e-03
4th 32 3.13e-04 3.91 3.14e-04 3.92
4th 64 1.99e-05 3.98 1.99e-05 3.98
4th 128 1.28e-06 3.96 1.27e-06 3.97

Table 2.2. Convergence test run on both second- and fourth-order-accurate scheme. Re = 100,
dt = 0.001, and the error is evaluated at t = 200.

In addition to a spatial convergence test, the order of convergence of two temporal schemes is

examined. To determine the temporal order, the numerical solutions were compared to the exact

solution and the norm is scaled with the number of steps so that the local order of convergence

would be shown. The simulation is conducted using Nx = Nz = 64 grids and the error is evaluated

at dimensionless time t = 0.01. Two temporal integration schemes, a second-order Crank-Nicolson

and Adams-Bashforth (CNAB) and a three-order Runge-Kutta (RK3) scheme are examined. Figure

2.5(b) confirms the expected second-order convergence.
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Figure 2.6. Comparison of present results with DNS. (a): Mean velocity profiles u/uτ , (b): Root-
mean square fluctuations. δ is the local 99% boundary layer thickness. ◦; Spalart (1988) at Reθ =
670, the solid lines; current code at Reθ = 666.

2.6.2 DNS of a zero-pressure gradient turbulent boundary layer

Finally, DNS of a fully-developed turbulent boundary layer over a flat plate under a zero-pressure

gradient is performed at moderate Reθ. Inflow turbulence is generated by the recycling scheme. The

pressure boundary conditions are applied:

P∞(x) = 0 and
∂u

∂z
=

∂v

∂z
= 0 at z = Lz. (2.41)

The resolution and domain size are Nx = Ny = Nz = 256 and Lx/δ0 = 20, Ly/δ0 = 4 and Lz/δ0 = 3,

respectively, with a uniform grid. Results for Reθ = 666 are shown in Figure 2.6 and they compare

well with those of Spalart (1988).

2.7 Discussion

A fourth-order numerical code tailored to perform LES (and some DNS) on turbulent boundary

layer flow was developed and implemented in C. Various choices for the boundary conditions are

introduced and related issues in solving Navier-Stokes equations are discussed. One-dimensional

Helmholtz equations resulting from the Poisson-pressure equation in combination with discrete

Fourier- and cosine-transform are solved using an efficient direct method (Henniger et al. 2010).

Parallelization using MPI with a data transpose scheme results in a good parallel performance us-

ing O(10) cores. The code implementation performed well in several test cases and the expected

fourth-order convergence was obtained in space and time.
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Chapter 3

LES of the zero-pressure gradient

turbulent boundary layer

3.1 Background

Research on turbulent boundary layers (TBL) has a long history. There have been many classic

experiments on both the low- and high-Reynolds-number developing equilibrium TBL varying from

low, near transition (Erm and Joubert 1991) to large, laboratory scale Reynolds numbers, (Österlund

1999, Hutchins and Marusic 2007b, Klebanoff 1954, DeGraaff and Eaton 2000) and others, to huge

values with Kármán number Reτ ≈ 106 (Metzger et al. 2007) typical of atmospheric surface layer

TBLs.

DNS of the Navier-Stokes equations has reached a stage of development where the TBL at the

lower end of the Reθ range, of order Reθ = 1–5 × 103 have been successfully performed for both

the transition (Wu and Moin 2009) and the fully developed TBL case (Spalart 1988, Spalart et al.

1991, Ferrante and Elghobashi 2004, 2005, Simens et al. 2009, Schlatter and Örlü 2010, Araya et al.

2011). See Schlatter and Örlü (2010) for an interesting compilation of recent DNS results. Unlike

channel or pipe flow, the thickness of the turbulent zone, or TBL thickness δ(x) and the wall-shear

stress τw(x) vary with streamwise distance and are not fixed in advance by the channel height or the

applied, favorable pressure gradient. They must be computed as part of the simulation. Moreover

the flow outside the TBL may be either smooth or contain free-stream turbulence and may also

contain wall-normal transpiration velocities which are related to the pressure gradient and which

must be accurately represented in any simulation. Nonetheless the near-wall regions of channel/pipe

flow and that of the TBL are similar, even though the scaling may not be identical (e.g., Spalart

1988, DeGraaff and Eaton 2000), which suggests that the present near-wall SGS model, which is

entirely local in character including its incorporation of local pressure gradients, should be applicable

at least to spatially developing equilibrium boundary layers.

Presently this model is extended to the LES of the zero-pressure gradient, flat-plate turbulent



22

boundary layer (ZPGFPTBL). In §3.2 the present SGS wall model is described. The results of

the present LES over a wide range of Reynolds numbers are described in detail in §3.3 while some

conclusions and scenarios suggested by the LES are discussed in §3.4.

3.2 Subgrid-scale model for wall-bounded flow

We now briefly describe the SGS model: for details see Chung and Pullin (2009). In the following x1

or x is the streamwise coordinate, x2 or y is the spanwise coordinate, and x3 or z is the wall-normal

coordinate. The generically filtered Navier–Stokes equations with filter scale ∆c are

∂ũi

∂t
+

∂ũiũj

∂xj
= − ∂p̃

∂xi
+ ν

∂2ũi

∂x2
j

− ∂Tij

∂xj
,

∂ũi

∂xi
= 0, (3.1)

where ũi is the filtered velocity, Tij = ũiuj − ũiũj = ˜̃uiu′
j + ũ′

iũj + ũ′
iu

′
j is the subgrid stress tensor,

ν is the kinematic viscosity and p is pressure divided by density.

3.2.1 The stretched-vortex subgrid-scale model

Embedded within each computational cell, it is assumed that there exists a superposition of stretched

vortices, each having orientation taken from a delta-function probability density function (p.d.f.)

that is either prescribed or dynamic (Misra and Pullin 1997). In the simplest version, used presently,

a single active subgrid vortex is aligned with the unit vector ev, with resulting subgrid stress tensor

Tij = (δij − evi e
v
j )K, K =

∫ ∞

kc

E(k) dk, (3.2)

where K is the subgrid kinetic energy. The cutoff wavenumber is kc = π/∆c, ∆c = (∆x ∆y ∆z)
1/3,

and E(k) is the SGS energy spectrum. The latter is obtained by supposing that the SGS vortices

are of the stretched-spiral type, which have energy spectra (Lundgren 1982)

E(k) = K0ǫ
2/3k−5/3 exp

[
−2k2ν/(3|ã|)

]
, (3.3)

where ã = evi e
v
j S̃ij , the stretching felt along the subgrid vortex axis imposed by the resolved scales,

and S̃ij = (1/2) (∂ũi/∂xj + ∂ũj/∂xi) is the resolved strain-rate tensor. Combining the second of

(3.2) and (3.3) gives

K = 1
2 K

′
0 Γ
[
−1/3, κ2

c

]
, K′

0 = K0ǫ
2/3λ2/3

v , λv = (2ν/3|ã|)1/2, κc = kcλv, (3.4)

and Γ is the incomplete gamma function. Presently e
v is aligned with the principal extensional

eigenvector of the resolved-scale rate-of-strain tensor except at the wall (see §3.2.3). We note that
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e
v can be a discontinuous function of Sij when the most extensional and intermediate eigenvalues

exchange. Our experience is that the spatial measure of this is negligible and has no effect on the

LES. The parameter K0ǫ
2/3 is obtained dynamically by structure-function matching at the grid-scale

cutoff (Voelkl et al. 2000, Chung and Pullin 2009).

Chung and Pullin (2009) extended (3.2) to incorporate transport of axial velocity, modeled as

a passive scalar, by subgrid-scale vortices (Pullin 2000, Pullin and Lundgren 2001, O’Gorman and

Pullin 2003, Chung and Pullin 2009),

ṽ′iṽ3 = −Ks
∂ṽ3
∂yi

for i = 1, 2, (3.5)

and ṽ′3ṽ3 = 0, where vi and yi are the vortex-frame velocity and spatial co-ordinates respectively.

Note that y3 coincides with the vortex axis, 2Ks = γ∆c K
1/2 and γ is a momentum mixing constant

to be discussed subsequently. Adding this modeling of axial velocity transport to (3.2), and rotating

back to the frame of computational domain, Chung and Pullin (2009) arrived at

Tij ≡ ũ′
iu

′
j + ũ′

iũj + ˜̃uiu′
j = K(δij − evi e

v
j )−Ks

[
evje

v
k

∂ũk

∂xl
(δli − evl e

v
i ) + evi e

v
k

∂ũk

∂xl
(δlj − evl e

v
j )

]
. (3.6)

The term in square brackets on the right-hand side represents the axial transport of the resolved-

scale flow by a subgrid vortex. This term can be interpreted as a model of ũ′
i ũj + ũ′

j ũi in the

definition of Tij . This will later be the dominant transport term in the near-wall model.

3.2.2 The wall-shear stress

The main idea is to integrate across the near-wall layer in a way that models the appropriate physics

and recognizes anisotropy while providing a slip boundary condition at a raised virtual wall for the

resolved-scale LES (Chung and Pullin 2009). With the physical wall at z = 0, we apply to the

streamwise momentum equation an xy-plane filter “˜ ” and a top-hat, or averaging wall-normal

filter

〈φ〉(x, y, t) ≡ 1

h

∫ h

0

φ̃(x, y, z, t) dz, (3.7)

over a wall-adjacent layer of height h to obtain

∂〈u〉
∂t

+
∂〈uu〉
∂x

+
∂〈uv〉
∂y

= − 1

h
ũw|h −

∂p̃

∂x

∣∣∣∣
h

+
ν

h

(
∂ũ

∂z

∣∣∣∣
h

− η0

)
, (3.8)

where we have used the wall boundary condition ũ(x, y, 0, t) = 0 and have neglected lateral diffusion.

The local wall-normal velocity gradient is

η0(x, y, t) ≡
(
∂ũ

∂z

)

z=0

. (3.9)
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The local wall shear stress is τ0(x, y, t)/ρ = νη0(x, y, t) ≡ u2
τ (x, y, t) where uτ is the wall friction

velocity and the viscous wall unit is l+ ≡ ν/uτ .

Equation (3.8) can be reduced to an ODE for the wall-normal velocity gradient η0 by using a

local inner-scaling ansatz of the form

ũ(x, y, z, t) = (νη0(x, y, t))
1/2F (z+), z+ = z (η0(x, y, t)/ν)

1/2 ≡ z/l+, (3.10)

applied to the unsteady term only, and by approximating the x and y convective terms by their

value at the top of the integrated wall layer z = h with the result (Chung and Pullin 2009)

∂η0
∂t

=
2η0
ũ|h

[
− 1

h
ũw|h −

∂ũu|h
∂x

− ∂ũv|h
∂y

− ∂p̃

∂x

∣∣∣∣
h

+
ν

h

(
∂ũ

∂z

∣∣∣∣
h

− η0

)]
. (3.11)

Owing to a cancelation of two integrals arising from the wall-normal integration, the specific form

of F (z+) in 0 ≤ z < h does not appear in (3.11) .

In the LES, (3.11) is an auxiliary equation to determine the evolution of uτ . For the present

staggered-grid numerical method, we set h = h0 + ∆z/2 where h0 is the wall-normal distance of

the virtual wall from the physical wall and ∆z is the near-wall cell size. The first grid point for

the streamwise velocity component within the LES domain is at ∆z/2. The quantities on the right-

hand side are determined from resolved-scale LES quantities at z = h. This allows determination

of uτ without resolving the near-wall steep gradients. To close this coupling, appropriate boundary

conditions for the LES are required.

3.2.3 Slip velocity at a raised or “virtual” wall

The LES takes place above a fixed, Reynolds-number-independent height, h0 = α∆z, α < 1. Chung

and Pullin (2009) defined three regions near the wall (see their Figure 1): (I) 0 ≤ z ≤ hν , essentially

the viscous sublayer, (II) hν < z ≤ h0, an overlap layer where the shear stress is approximately

constant, and is modeled by the extended stretched-vortex SGS model consisting of attached vortices

aligned with ex, and (III) h0 < z, where nonuniversal outer flow features are computed with LES

coupled with the original stretched-vortex SGS model of detached subgrid vortices aligned with eS̃ .

The plane z = h0 is a lifted virtual wall. In region (I) we use ũ+ = z+, where ũ+ = ũ/uτ , z
+ = z/l+,

and uτ is known from (3.11). In particular, ũ+|hν
= h+

ν , where h
+
ν = hν/l

+. For a hydrodynamically

smooth wall we use the empirical value h+
ν ≈ 10.23 based on the intercept between the linear and log

component of the law of the wall. Hence ũ+|hν
= h+

ν = 10.23. This is the only empirical constant

in the present model.

Chung and Pullin (2009) derived an effective slip-velocity at the top of region (II), hν < z ≤ h0

in a way that couples both (3.6) and (3.11). Briefly it is assumed that in region (II) the total
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shear stress is approximately constant (Townsend 1976) and that near-wall vortices are streamwise

aligned (see, e.g., Head and Bandyopadhyay 1981, Robinson 1991) (evx, e
v
y, e

v
z) = (1, 0, 0)⇔ e

v = ex.

Substituting these into the stretched-spiral vortex extended model, (3.6), and noting that the only

nonzero component of the mean velocity gradient tensor is dũ/dz then gives

Txz = −1

2
γIIK

1/2∆c
dũ

dz
. (3.12)

The physical mechanism that produces this shear stress is the action of the spiraling streamwise

vortices winding the local axial velocity, now identified as the mean streamwise velocity, thereby

transporting higher momentum fluid towards the wall and transporting low momentum fluid away

from the wall.

Assuming that SGS vortices in (II) are “attached to the wall” and that ∆c = z (vortex size

scales with wall distance (Townsend 1976, Perry and Chong 1982, Nickels et al. 2007)) then ũ can

be integrated within region (II) to give (Chung and Pullin 2009)

ũ|h0
= uτ

(
1

K1
log

(
h0

hν

)
+ h+

ν

)
, K1(x, y, t) =

γIIK
1/2

2 (−Txz/uτ)
, (3.13)

where the constant of integration is chosen by putting ũ|hν
= uτ h

+
ν . Equation (3.13) and w̃ obtained

from continuity give the Dirichlet boundary conditions at the lifted virtual wall h0, where uτ is

obtained from the solution of (3.11). The parameter K1(x, y, t) is an effective Kármán constant,

κ. The vertical momentum mixing constant γII is estimated by matching Townsend’s structure

parameter a1 = T13/Tii = T13/(2K) at the interface of regions (II) and (III), z = h0, where both

inner and outer layer modeling ideas are valid, giving γII = 21/2/π ≈ 0.45 (Chung and Pullin 2009).

This value used presently for all LES.

The empirical log law is usually written as

ũ(z) = uτ

(
1

κ
log
( z

l+

)
+B

)
, (3.14)

where B is a constant and κ the usual Kármán constant. Putting h0 = z in (3.13), identifying K1

with κ and comparing these equations gives

B = h+
ν −

log h+
ν

K1

. (3.15)

Hence our specification of h+
ν is equivalent to specifying B. Even though in LES we calculate K1

dynamically, we illustrate this equivalence by the choice κ = 0.4, h+
ν = 10.23 which gives B ≈ 4.42.

This is within the commonly accepted range of 4.0− 5.0.
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3.2.4 PDE model for wall-shear stress

We refer to the above, with η0 determined by (3.11) as our “ODE” model. For spatially developing

flows improvements to equation (3.8), may be required. For channel flow the dominant terms in

(3.11) are expected to be the driving pressure gradient balanced against the wall shear stress and

the wall-normal Reynolds stress at the top of the layer. In particular, the streamwise inertial terms

are expected to be small. For spatially developing flows this dominant balance will change and an

alternative model of the inertial term ∂ < uu > /∂x, which in (3.8) is modeled from the outer LES,

should be considered. We again use the idea of local inner scaling, but now applied to ũ2(x, y, z, t)

in (3.8) as

ũ2(x, y, z, t) = ν η0(x, y, t)G(z+), z+ = z (η0(x, y, t)/ν)
1/2 ≡ z/l+, (3.16)

from which it is easy to show that

∂

∂x
< u2 >=

1

2

1

η0

∂η0
∂x

(
< u2 > +ũ2|h

)
, (3.17)

where < ... > is defined prior to (3.8). This latter equation, which replaces (3.11), is then

∂η0
∂t

+

(
ũ|h +

< u2 >

ũ|h

)
∂η0
∂x

=
2η0
ũ|h

[
− 1

h
ũw|h −

∂ũv|h
∂y

− ∂p̃

∂x

∣∣∣∣
h

+
ν

h

(
∂ũ

∂z

∣∣∣∣
h

− η0

)]
, (3.18)

where we have put ũ2|h/ũ|h = ũ|h owing to the delta-function filter. This is a hyperbolic partial-

differential equation (PDE) for the wall-normal velocity derivative η0(x,t). Unlike the unsteady

term, the profile function G in (3.16) does not vanish and < u2 > in (3.18) must be approximated.

This coefficient can be evaluated using a combination of (3.13), (with h0 replaced by z) and a linear

relationship for z+ < 10.23. All coefficients in (3.18) can then be evaluated dynamically and no

new parameters are introduced. The coefficient c ≡ ũ|h+ < u2 > /ũ|h can be interpreted as a local

wavespeed for shear fluctuations at the wall. We will refer to LES with η0 determined by (3.18) as

a “PDE” model.

3.2.5 Summary of SGS wall model

The near-wall SGS model can be summarized as follows: for every cell adjacent to the bottom

walls (3.11) is solved for η0 with terms on the right-hand side provided by the LES at the first grid

point for the streamwise velocity component. This provides η0(x, y, t) and thus uτ (x, y, t). Equation

(3.13) is then used to evaluate the streamwise slip velocity ũ|h0
(x, y, t) at z = h0, with K1 evaluated

from the second of (3.13) with K and Txz evaluated at z = h from the LES structure-function-

matching procedure. The other boundary conditions at z = h0 are ṽ|h0
(x, y, t) = 0, w̃|h0

(x, y, t) =

−2 h0 ũ|h0
(∂η0/∂x)/(2 η0) from wall-normal integration of continuity. This method couples the LES
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to the modeled, near-wall dynamics. Presently we use h0 = 0.18∆z for the most cases, independent

of the LES resolution, and consider this as part of the overall grid. A test to investigate sensitivity

to h0 is performed using h0 = 0.36∆z, and further tests can be found in (Chung and Pullin 2009)

for LES of channel flow. The near-wall SGS model provides a means of dynamically calculating the

instantaneous local “Kármán constant”, K1, as part of the integrated SGS-model coupled to the

LES.

3.3 LES of the zero-pressure gradient turbulent boundary

layer

3.3.1 Numerical method

The numerical method has been described in details in Chapter 2. Only a short summary and

description in the context of LES of the zero-pressure gradient turbulent boundary layer are provided

here. The governing equations are solved in a box with dimensions Lx × Ly × Lz, with periodic

boundary condition in the spanwise or y-direction. The components of the velocity vector u are

u, v and w in the streamwise (x-), spanwise (y-), and wall-normal (z-) directions, respectively.

A convective boundary condition (2.19) has been implemented at the outflow boundary. At the

upper/free-stream boundary we presently use stress-free conditions for u and v and a Dirichlet

condition for w (2.31), where, δ∗, the boundary layer displacement thickness computed from the

mean velocity field. Inflow-boundary conditions suitable for the fully developed ZPGFPTBL have

been implemented for LES as described below.

For the fully developed ZPGFPTBL a code-A only, recycling flow method shown in Figure 2.2,

is used for the LES. For inflow we use the method of Lund et al. (1998). Briefly the velocity data at

a downstream location, referred to as the “recycling plane” (Figure 2.2), is rescaled to account for

the growth of the thickness of the boundary layer in the x-direction. It is then reintroduced at the

inlet of the computational domain. The velocity is decomposed into a mean and fluctuating part

and the appropriate empirical similarity scaling laws are then applied to each component separately.

The rescaling technique is based on the assumption that the velocity profile at both the recycling

and inlet planes satisfy the similarity law of the boundary layer, namely, the law of the wall in the

inner part and the defect law in the outer part. Also uτ (we actually use η0) at the inlet is estimated

by the scaling relationship

uτ,inlet = uτ,recycle (θrecycle/θinlet)
1/[2(n−1)]

, (3.19)

which can be derived using a standard power-law approximation, presently with n = 7. The recycling
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plane is generally at 0.8Lx although, as discussed subsequently, other values are also used.

The present code is optimized for parallel simulation of the boundary-layer flow, and the overhead

for the implementation of stretched-vortex model, including the wall model is of order 80% when

the model is implemented at every grid point. This includes solving a cubic analytically for the

eigenvector directions, the structure function calculations per grid point, the calculation of the SGS

kinetic energy and the SGS stresses and the solution of the wall model ODEs. In practice the SGS

model is switched off in the free-stream and so the total SGS overhead is of order 30–40%. While this

is not small it will be seen that the LES can be run with uniform grids, with no near-wall refinement

required, to essentially arbitrarily large Reynolds number, and at a cost independent of Reynolds

number. The implementation of both the interior SGS model and the wall model are local.

3.3.2 Range of LES performed

The near-wall SGS model was implemented for the purpose of performing LES of the ZPGFPTBL

over a range of Reθ. Equation (3.11) was solved by the same third-order Runge-Kutta scheme as

the main part of the flow simulation. LES have been performed at several different resolutions

(Nx,Ny,Nz) and for several domain sizes (Lx/δ0,Ly/δ0,Lz/δ0) summarized in Table 3.1. For all

LES the grid size in each direction was uniform with no stretching in the wall-normal direction. In

total the results of some 32 different LES are reported in detail presently and additional LES are

also mentioned briefly. Typically an individual LES is done by fixing a nominal Reynolds number

Re0 = U∞δ0/ν where δ0 is the inlet boundary-layer thickness. This will then span a range of

Reynolds number Reθ, which is an output of the LES. The parameter xref/Lx gives the position

of the recycling plane as a fraction of the streamwise domain Lx and it is noted that two different

values were used with little effect on the present results shown. The inflow generation scheme of

Lund et al. (1998) was used for all LES except for case B4a, where the mirroring method proposed

by Jewkes et al. (2011) was implemented. This will be discussed subsequently.

Some physical parameters of interest are the displacement and momentum thicknesses δ∗ and θ,

respectively and the Rotta-Clauser length scale ∆ ≡ U+
e δ∗ where U+

e and the skin-friction coefficient

Cf are given by

U+
e ≡

U∞

uτ
=

√
2

Cf
, Cf ≡

τw
1
2 ρU

2
∞

. (3.20)

All results shown presently are obtained as spanwise/time averages as a function of streamwise

distance. Owing to the large range of Reθ explored, LES results were obtained using many different

Re0. In what follows we will distinguish between our SGS/LES estimate of the Kármán constant

K1 and experimental estimates which will be denoted by κ.
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3.3.3 Effect of resolution and domain length

The effect of LES resolution at Reθ ≈ 2.5×104 from case A4, A4L and A4H, is shown in Figures 3.1

and 3.2, respectively, and also in Table 3.2, which also shows the effect of resolution using cases A16,

A16L and A16H at Re0 = 100G. Case A4a is to investigate the sensitivity to h0 using h0/∆z = 0.36.

For the other cases h0/∆z = 0.18 is fixed for each of the three resolutions so that h0/δ99 reduces

with increasing resolution. In Figure 3.1(a) the plots of U+
e versus Reθ show a hill or bump after the

inlet, also seen in DNS studies (Simens et al. 2009), which is perhaps the effect of nonequilibrium,

or transition, following inlet as a result of the recycling procedure with fixed n = 7 in (3.19). The

wall-normal profiles discussed subsequently were always downstream of the hill. Further, apart from

the small rise in U+
e , we find negligible effect of transition on profiles of mean streamwise velocity

and turbulent intensities when wall-normal profiles are plotted at various streamwise stations down

the whole simulation domain for a given LES. A dynamic recycling method that eliminates the need

for (3.19) has been proposed by Araya et al. (2011), which may alleviate this effect, and which may

allow shorter domain sizes in both DNS and LES of spatially developing boundary-layer flows. This

has not been used presently.

Comparisons are also made in Figure 3.1(a) with the experiments of Österlund (1999). The

lowest resolution LES contains only 15–20 points in the turbulent boundary layer but still captures

the the skin friction characterized as U+
e , the shape factorH and the mean velocity profile reasonably

accurately. Table 3.2 shows only a small variation in the calculated Kármán constant with different

resolution, at each of the two Reθ. Some small effects of doubling the grid size ratio, h0/∆z, of

the height of the virtual wall to the grid size in the z-direction from h0/∆z = 0.18 to 0.36, are

observed. These are about 1% deviation on K1 and H , 5% on Reθ and U+
e . Chung and Pullin

(2009) performed similar tests and found that the deviations on uτ to be from 1% to 4%. We

remark that h0 is always a fixed fraction of the uniform wall-normal cell size ∆z. It follows that

increasing the vertical resolution by a factor say M then decreases h0 as a fraction of any measure

of the boundary layer thickness, say δ, by a factor 1/M . Hence increasing the resolution by a factor

of two, with h0/∆z fixed, may be interpreted as testing the effect of decreasing h0/δ by a factor 1/2.

It can be seen in Figure 3.1(b) (also see Figure 4.3 in the next Chapter) that there is a drop off

in u+ towards the virtual wall. We interpret this as the influence of a near-wall length-scale of order

the cell size as analyzed by Brasseur and Wei (2010). They argue that this is a logarithmic-layer

mismatch and discuss in detail the simulation conditions under which this effect can be minimized

by placing parameters into a domain referred to as the “high-accuracy zone”. One condition, namely

the number of points in the boundary layer of order 50–60 is approximately satisfied by our highest

vertical resolution Nz = 256 (Case A4H and A16H) but not by the wall-normal resolution Nz = 128

used in the majority of the present LES. While the Brasseur-Wei effect is certainly seen in the

present LES we remark that we do not obtain estimates of the Kármán constant from the mean
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Case Re0 Lx/δ0 Ly/δ0 Lz/δ0 Nx Ny Nz h0/δ0 xref/Lx

A1-A20 16k - 10T 36 6 4 384 64 128 5.6e-3 80%
A4a 200k 36 6 4 384 64 128 1.1e-2 80%
A4L 200k 36 6 4 192 32 64 1.1e-3 80%
A4H 200k 36 6 4 768 128 256 2.8e-3 80%
A16L 100G 36 6 4 192 32 64 1.1e-3 80%
A16H 100G 36 6 4 768 128 256 2.8e-3 80%
B4 200k 72 6 4 768 64 128 5.6e-3 40%
B4a∗ 200k 72 6 4 768 64 128 5.6e-3 40%
B4b 200k 72 6 4 768 64 128 5.6e-3 80%
B16 100G 72 6 4 768 64 128 5.6e-3 40%
B18 1T 72 6 4 768 64 128 5.6e-3 40%
C16 100G 144 6 4 1536 64 128 5.6e-3 20%
C18 1T 144 6 4 1536 64 128 5.6e-3 20%

Table 3.1. Simulation parameters: k ≡ 103, M ≡ 106, G ≡ 109, T ≡ 1012; Re0 = U∞δ0/ν;
U∞ is the free-stream velocity, δ0 is the 99% boundary layer thickness at the inlet of the domain.
∆x = ∆y = 3∆z. h0 = 0.18∆z, except for case A4a where h0 = 0.36∆z. Re0 for each case A is, A1:
16k, A2: 64k, A3: 160k, A4: 200k, A5: 640k, A6: 1M, A7: 4M, A8: 10M, A9: 40M, A10: 100M,
A11: 400M, A12: 1G, A13: 4G, A14: 10G, A15: 40G, A16: 100G, A17: 400G, A18: 1T, A19: 4T,
A20: 10T. ∗: The mirroring method is employed for inflow generation scheme.

velocity profile but rather direct from the SGS model (see equation (3.13)).

In Figure 3.2(a–b), the streamwise turbulent intensities and the Reynolds stress contain SGS

corrections to the resolved-flow calculated as u′
iu

′
j = ũi

′ũj
′ + Tij . The higher resolution LES results

for the streamwise intensity u′2+
i in Figure 3.2(a) show a somewhat more flattened shape than the

measurements of Marusic et al. (2010a), underestimating the experiment nearer the wall by 15%.

In Figure 3.2(b), the Reynolds stress u′w′+ is essentially independent of resolution.

Some LES were also performed for a longer domain using the intermediate resolution (Case Bs,

Cs). Table 3.3 indicates that the effect of doubling the domain length in the streamwise direction on

some of the principal parameters is small. A similar sensitivity on the mean velocity and turbulence

intensity profiles (not shown) was also found. Longer domains are, however, expected to be required

to better capture the dynamics of long structures of, order 15–20 boundary layer thicknesses observed

in the logarithmic region of the TBL (Kim and Adrian 1999, Hutchins and Marusic 2007a,b). This

issue is not addressed presently. Additionally, many LES not reported presently were performed

to explore the effect of using both the A&B code approach and also the alternative, stress-free

boundary conditions at the upper boundary. These variations did not produce LES results that

were significantly different from those discussed below.

3.3.4 Skin friction and H-factor

Most of the LES discussed subsequently were performed with our intermediate resolution and cor-

respond to cases A1–A20 of Table 3.1. Figures 3.3 and 3.4 plot the outer velocity normalized by the
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Case Nx, Ny, Nz Reθ U+
e K1 H

A4L 192, 32, 64 2.53×104 30.4 0.382 1.30
A4 384, 64, 128 2.51×104 30.2 0.387 1.27
A4a 384, 64, 128 2.39×104 31.8 0.382 1.29
A4H 768, 128, 256 2.51×104 30.2 0.397 1.27
Experiment n/a 2.58×104 30.5 0.384 1.30
A16L 192, 32, 64 6.13×109 61.4 0.371 1.18
A16 384, 64, 128 6.12×109 61.5 0.371 1.14
A16H 768, 128, 256 6.12×109 61.8 0.370 1.12

Table 3.2. Effect of resolution. Domain size fixed to (Lx/δ0, Ly/δ0,Lz/δ0) = (36, 6, 4). Experimental

data; Österlund (1999), Reθ = 25767.5. Data are taken at x/δ0 ≈ 28.

Case Lx/δ0 xref/δ0 Reθ U+
e K1 H

A4 36 28.8 2.51×104 30.2 0.388 1.27
B4 72 28.8 2.52×104 30.2 0.387 1.27
B4a 72 28.8 2.52×104 30.2 0.388 1.27
B4b 72 57.6 2.51×104 30.1 0.390 1.27

Table 3.3. Effect of domain size and the location of the recycling plane at Reθ ≈ 2.5 × 104. Data
are taken at x/δ0 ≈ 28.
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Figure 3.1. (a): U+
e versus Reθ and Coles-Fernholz 2 (Nagib et al. 2007), (b): Mean streamwise

velocity u+ ≡ u/uτ and a log relationship with κ = 0.384 and B = 4.127 suggested by the experiment
of Österlund (1999), Reθ ≈ 2.5× 104. Open symbols: experiment (Österlund 1999). Lines are LES;
dotted: lowest resolution (192×32×64) (case A4L), dashed: intermediate resolution (384×64×128)
(case A4), solid: highest resolution (764× 128× 256) (case A4H)
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intensities u′2+
i ≡ u′2

i /u
2
τ , (b): Reynolds shear stresses u

′w′+ ≡ u′w′/u2
τ . Open symbols: experiment

at Reθ = 2.0× 104 (Marusic et al. 2010a). Lines are LES; dotted: lowest resolution (192× 32× 64)
(case A4L), dashed: intermediate resolution (384 × 64 × 128) (case A4), solid: highest resolution
(764× 128× 256) (case A4H). δ is the local 99% boundary layer thickness.

friction velocity U+
e over lower and higher ranges of Reθ, respectively. Also shown are experimental

measurements (Österlund 1999), a compendium of results from DNS (see Schlatter and Örlü 2010)

and the semi-empirical relation given by Nagib et al. (2007) as “Coles-Fernholz 2”

(
U+
e

)
CF

=
1

κ
log (Reθ) + C, κ = 0.384, C = 4.127. (3.21)

In Figure 3.3, U+
e at our lowest Re0 = 16 × 103 (Reθ ≈ 103) agrees reasonably well with both

experiment and DNS despite the fact that in this range our first grid point is inside or close to the

viscous sublayer where our wall model in region II is probably least accurate. Across our whole Reθ

range Coles-Fernholz 2 gives a reasonable representation of our LES results, which can be considered

predictions past the largest experimental value of Figure 3.4, Reθ = 4 × 104. We remark that the

small but systematic discrepancy in U+
e between the present LES and experiment evident in Figure

3.3 is in fact rather smaller than the spread in the Schlatter and Örlü (2010) compilation of DNS at

somewhat lower Reθ.

It is evident from Figure 3.4 that for some LES with Reθ greater than about 108, the slope

of U+
e versus logReθ does not appear continuous with LES at other Reθ and does not match the

slope of the Coles-Fernholz 2 curve. This effect can also be seen in the Schlatter and Örlü (2010)

DNS compilation of Figure 3.3. To investigate this, some LES at large Reθ were done with longer

domains (cases B16, C16, B18, and C18) as indicated by the small boxes in Figure 3.4. Some results

are shown in Figure 3.5 where it can be seen that substantially longer domains, up to Lx = 144δ0,

appear to give an averaged slope consistent with the continuous curve of (3.21). We remark that the

slope of the continuous function U+
e (Reθ) is Re−1

θ times the slope of U+
e versus log(Reθ) shown in the

graphs, so that the discrepancy refers to a function U+
e (Reθ) with slope magnitude O(10−8–10−12)
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◦; Experiment (Österlund 1999). ∗; DNS compilation (Schlatter and Örlü 2010). Dashed-line;
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Figure 3.5. U+
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over our large Reθ range. In fact our maximum Reθ = O(1012) is perhaps too large for practical

applications but illustrates the capability of the present wall-model LES. At our largest Reθ the

kinematic viscosity ν is approaching machine round off error. We expect that even larger Reθ could

be achieved with quad-precision arithmetic.

In addition to the A1–A20 LES at (Nx, Ny, Nz) = (384, 64, 128), a set of 20 LES were done over

the full Reθ range of Figure 3.4 but at our lower resolution (Nx, Ny, Nz) = (192, 32, 64). While

these are not reported presently in detail we comment that these LES showed comparison with each

matching A1–A20 LES similar to that depicted in Figures 3.1 and 3.2, and in Table 3.2.

Nagib et al. (2007) obtain a large Reθ, H −Reθ relation by combining the exact result

H =
1

1− (C′/U+
e )

, C′ =

∫ ∞

0

(
U+
e − u+(z)

)2
d
( z

∆

)
, (3.22)

with the empirical approximation C′ = 7.135 + O(1/Reθ). This is shown in Figure 3.6 compared

with the Schlatter and Örlü (2010) DNS compendium and with the present LES. Also shown are 3%

deviation from (3.22). Given the dependence of the first of (3.22) on U+
e , agreement between the

LES and the asymptotic relation with the given C′ is as expected. Nagib et al. (2007) point out that

H does not appear to approach the traditional value H = 1.3 at large Reθ. The shape factor may

be viewed as the ratio of δ∗/δ99 to θ/δ99, both of which decrease approximately as 1/ log(Reθ) when

Reθ increases. As the ratio of two small quantities, convergence in H from LES with increasing

resolution can be expected to be slow at large Reθ and this is reflected both Table 3.2, where the

effect of resolution on H is larger than for other tabulated quantities and also in Figure 3.6. In

particular the difference between case A16 and A16H is about 2% and it is clear that case A16H

shows better agreement in both value and slope with the semi-empirical curve. The present LES

may thus indicate approach to H → 1 at gigantic Reθ, but this is extremely slow.
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3.3.5 Mean velocity profiles and flow visualization

Figure 3.7 shows mean velocity profiles in inner-scaling as u+ = u(z+)/uτ over a range of Reθ. The

log-relationship shown uses a value of the Kármán constant (K1)ave = 0.378 which is the average of

the dynamic values obtained over cases A1–A20. An additive constant B = 4.08 is from equation

(3.15). It can be seen in Figure 3.7 that there is a drop off in u+ near the virtual wall for the

lower values of Reθ. This is again the influence of a near-wall length-scale of order the cell size as

discussed by Brasseur and Wei (2010). This effect is weaker at our larger Reθ. Figure 3.8 shows

mean velocity defect profiles, U+
e − u+ in the outer coordinates, indicating good collapse across

the boundary layer. The profiles are in good agreement with that of DeGraaff and Eaton (2000)

at Reθ = 31, 000. Taken together, Figures 3.3–3.8 show that the wall-model combined with the

outer-scale LES captures the principal features of the ZPGFPTBL, in particular the wall-friction

velocity uτ and therefore the wall shear stress. This is despite the fact that both h+
0 and the first

LES point containing resolved-scale velocities, h+ = h+
0 + ∆+

z /2 for the staggered grid, may take

extremely large values, for example, h+
0 ≈ 3× 109 and h+ ≈ 3× 1010 at Reθ = O(1012). This could

indicate that adequate modeling of the main physics of the log-layer is the key to successful LES of

wall-bounded flows at very large Reynolds numbers.

Figures 3.9, 3.10 and 3.11 show contour plots of streamwise velocity, each plotted as u/U∞ and

each at a time instant during the particular LES indicated. The figures are not in proportion in

x and z and each does not display the full domain height in the wall-normal direction. In Figure

3.9(a), (b) and perhaps (c) it can be observed that the large-scale structures at the inflow and

after just downstream of the recycling plane show some degree of correlation, suggesting quasi-

periodic behavior. For the LES case B4a shown in Figure 3.9(c), the recycling technique of Jewkes

et al. (2011) was used in which the inlet velocity field that is generated as a rescaled version of

the instantaneous velocity field at the recycling plane, is also subject to mirror-imaging about the

wall-normal centerline of the inlet flow plane. This almost completely removes the spatially quasi-

periodic effect in the overall LES. As shown in Table 3.3 for Reθ ≈ 2.5 × 104, one-point statistics

show almost no discernible effect from either the use or non-use of mirror imaging in the recycling

method or the recycling domain length. This, however, may not be the case for two-point or other

correlation statistics not discussed presently.

Figure 3.10 shows the effect of resolution at Reθ ≈ 2.5×104. The three LES correspond to Table

3.2 and to Figures 3.1 and 3.2. The plots illustrate the dramatic effect of resolution in resolving

turbulent scales yet the computed skin-friction and other parameters displayed in Table 3.2 are little

different for the three different resolutions. The effect of Reynolds number over a large range is

shown in Figure 3.11 where it is evident that, at a given distance from the wall as a fraction of the

boundary-layer thickness, the velocity fluctuations decrease when scaled on U∞. Contour plots of

the instantaneous velocity defect U+
e − u+ ≡ (U∞ − u)/uτ in an x − z plane are shown in Figure
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Figure 3.6. Shape factor H = δ∗/θ versus Reθ. Cases; A1 to A20 and A16L, A16H shown in inner
plot. Solid lines; current LES, ∗; DNS compilation (Schlatter and Örlü 2010). Dashed-line; equation
(3.22) with 3% error ranges (Nagib et al. 2007)

3.12. This corresponds to an instantaneous version of Figure 3.8. It may be observed that, unlike

Figure 3.11, all four plots show somewhat similar color coverage suggesting that fluctuations, as well

as the mean of Figure 3.8, show selfsimilarity in this scaling. There is, however, the impression that

as Reθ increases bottom to top in Figure 3.12, the spatial scale of the fluctuation changes somewhat.

This is probably a result of two effects, first that the contour plot shows only the resolved and not

the subgrid velocity field and second owing to the possible presence of long outer structures whose

activity may be a function of Reynolds number. A study of the latter for the turbulent boundary

layer is beyond the scope of the present work.

3.3.6 Kármán “constant” and the Coles wake-factor

The parameter K1(x, y, t) defined in (3.13) can be interpreted as a Kármán-like constant. For plane

channel flow Chung and Pullin (2009) found average values of (K1)ave ≈ 0.37 broadly independent of

Reτ . The present variation of the spanwise/time averaged values of K1(x, y, t) as a function of Reθ

is depicted in Figure 3.13(a) which show a weak dependence on Reθ over many decades. The results

appear as “blobs” because each LES spans a range of Reθ. We emphasize again that K1(x, y, t) is

calculated directly from the subgrid model near the wall and not from fitting a log-relationship to
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Figure 3.7. Mean velocity profiles u+ ≡ u/uτ over a range of Reθ taken at x/δ0 ≈ 24; Cases
shown are A1, A3, A6, A8, A10, A12, A14, A16, A18, and A20. Solid line; log relationship with
(K1)ave = 0.378, B = 4.08 (see equation (3.15))

mean-velocity profiles.

The Coles wake factor is a useful parameter characterizing the outer velocity profile. The wake

parameter Π is defined from a universal profile fitted to the difference between the mean velocity

and the logarithmic law (Coles 1956). Presently we calculate Π99 using (Nagib et al. 2007)

u+ =
1

κ
log y+ +B +

Π

κ
W
(y
δ

)
, (3.23)

where δ is the boundary layer thickness and κ is the Kármán constant. The function W(ξ) is a

universal wake profile defined such that W(1) = 2. We follow Nagib et al. (2007) and identify δ

as the 99% boundary layer thickness δ99 obtained from the spanwise/time averaged mean velocity

profile, approximateW(δ99/δ) = 2 and identify κ = K1. Then a parameter Π99 can be calculated as

Π99 =
K1

2

(
0.99U+

e −
1

K1

log δ+99 − B

)
, (3.24)

where, from (3.13), our effective value for B is given by (3.15). Values of Π99 calculated from the

LES are shown on Figure 3.13(b) plotted versus Reθ. At our “lower” Reθ in the range 104–106 we

find Π99 increases slowly (see also Figure 3.14 where the LES results are compared to experimental

measurements) perhaps toward the asymptotic value Π99 = 0.55 recommended by Nagib et al. (2007)
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Figure 3.8. Mean velocity defect profiles over the same range of Reθ as Figure 3.7. ◦; Experiment
at Reθ = 3.1× 104 (DeGraaff and Eaton 2000)

while remaining just below the statistical scatter of the experimental results shown in their Figure

8. At our larger Reθ we find Π99 ≈ 0.5 with a weak Reθ dependence.

3.3.7 Turbulence intensity profiles

The turbulence intensity profiles for u′2 with three different scalings are shown in Figures 3.15 and

3.16 plotted against η = z/∆ where ∆ is the Rotta-Clauser parameter. Figure 3.16 also shows

w′2 with inner scaling. It seems clear that neither outer scaling (Figure 3.15(a)) nor mixed scaling

(Figure 3.15(b)) provide satisfactory collapse. Inner scaling, however, provides reasonable collapse

for both turbulence intensities across almost the whole plotted range of η in Figure 3.16. The collapse

is not as good over the two grid points nearest the wall and we interpret this as a near-wall effect of

the composite LES-wall model.

The outer collapse is consistent with a similarity model for the streamwise turbulence intensity

in the ZPGFPTBL (Marusic et al. 1997, Marusic and Kunkel 2003). This model takes the form

u′2/u2
τ = F (z+, Reτ) where Reτ = δ u∞/ν is the Kármán number and δ, interpreted here as δ = δ99

is the boundary layer thickness. This is related to ∆ as ∆/δ = H Reθ/Reτ which ratio is nearly

constant as a function of Reθ (not shown presently). In the outer part of the boundary layer the

model becomes asymptotic to u′2/u2
τ ∼ − log(z/δ) ∼ − log(z/∆) consistent with the outer-length
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Figure 3.9. Contour plot of instantaneous streamwise velocity. Effect of xref position, domain size
and inflow generation method. (a) case A4, (b) case B4, (c) case B4a, (d) case B4b. The vertical
solid lines indicate the position of recycling plane. Reθ = 1.9–2.6× 104 (short domain), –3.3× 104

(long domains). Note that case B4a uses a mirror-image recycling technique (Jewkes et al. 2011).

(a)

(b)

(c)

Figure 3.10. Contour plot of instantaneous streamwise velocity. Effect of resolution. (a) case A4L,
(b) case A4, (c) case A4H. Reθ = 1.9–2.6× 104. These plots correspond to Table 3.2.
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Figure 3.11. Contour plot of instantaneous streamwise velocity. Effect of Reynolds number. (a)
A18:Re0 = 1T , (b) A14:Re0 = 10G, (c) A8:Re0 = 10M and (d) A3:Re0 = 160k. Range of Reθ;
A18: 4.8–5.6× 1010, A14: 5.6–6.8× 108, A8: 7.5–9.8× 105 and A3: 1.5–2.1× 104

scaling suggested by the present LES. In Figure 3.16(b) the LES collapse for u′2/u2
τ is somewhat

steeper than − log(z/∆). A specific comparison is shown in Figure 3.17 at the LES Reτ = 1.1× 106.

Except for the two LES grid-points nearest the wall, the LES and the full similarity model show

reasonable agreement. Also shown is data from the Surface Layer Turbulence and Environmental

Science Test (SLTEST) site in the western desert of Utah (Metzger et al. 2007). The LES results

falls within the error bars of the data over most of the region of overlap save the two nearest wall

points.

3.4 Discussion

Experimental and semi-empirical, asymptotic scenarios for high-Reynolds-number, wall-bounded

flows (Nagib et al. 2007, Monkewitz et al. 2007, Marusic et al. 2010b) appear to provide a reasonable

representation of the present LES predictions of the skin-friction and shape factor at extremely

large Reynolds numbers. For the mean velocity profile, the present LES reveals no selfsimilar

state at very large Reθ: two length scales, ν/uτ and δ and two velocity scales, uτ and U∞ are

always required to describe the streamwise velocity profile. Even though there exist quantitative

discrepancies compared to experiment for the streamwise turbulence intensity (Figure 3.2(a)) one-
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Figure 3.12. Contour plot of instantaneous velocity defect U+
e −u+. Effect of Reynolds number. (a)

A18:Re0 = 1T , (b) A14:Re0 = 10G, (c) A8:Re0 = 10M , and (d) A3:Re0 = 160k
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Figure 3.13. (a): Kármán “constant” K1 calculated dynamically, (b): Coles wake factor Π99. Hori-
zontal lines are recommended values by Nagib et al. (2007), κ = 0.384, and Π99 = 0.55, respectively.
Cases shown are A1, A3, A6, A8, A10, A12, A14, A16, A18, and A20.
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Figure 3.15. Streamwise velocity fluctuation. (a) Outer scaling, u′2/U2
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Figure 3.16. Streamwise and wall-normal velocity fluctuation. Inner scaling (a) u′2/u2
τ and w′2/u2

τ

versus η ≡ z/∆. (b) u′2/u2
τ in linear-log coordinates. Dotted line; − log(z/∆). Symbols for stream-

wise velocity fluctuation are as in Figure 3.15.
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point, second-order turbulence statistics obtained from the LES, nonetheless appear to collapse

reasonably over almost all of the boundary layer thickness δ represented in the LES on one velocity

scale, uτ , and one length scale either δ or the Rotta-Clauser parameter ∆. This collapse, however, is

not expected to be valid very near the wall, perhaps z/∆ < 0.01, which is inaccessible to the present

LES.

This last result has interesting implications for what is traditionally viewed as the smooth-wall

ZPGFPTBL. Consider Reθ →∞ in each of three conceptual limits

(a) the streamwise distance x and U∞ are fixed and ν → 0,

(b) x→∞ while U∞ and ν are fixed,

(c) x and ν are fixed while U∞ →∞ but the flow remains incompressible.

Assuming that the LES trend, that turbulence intensities over the outer boundary layer scale on

uτ , continues for Reθ > 1012, then since 1/U+
e decreases monotonically, this indicates that the

turbulence intensity as a fraction of U∞ expires in the limit Reθ →∞ over almost all the boundary

layer. In other words, the outer part of the smooth-wall ZPGFPTBL asymptotically relaminarizes

at sufficiently large Reθ. This is consistent with the similarity model where it can be shown that the

wall-normal integral of equation (8) of Marusic et al. (1997), expressed as the the average u′2/u2
τ

over the boundary layer thickness, approaches a finite value when Reτ →∞.

The preceding discussion does not include the effect of the near-wall peak in u′ and a possible

second outer peak. While there is some evidence for the presence of a second or outer peak, for

example, in the SLTEST data shown in Figure 3.17 and in superpipe experimental data (Morrison

et al. 2004), its wall-normal position appears to be a decreasing fraction of δ with increasing Reynolds

number. For pipe flow Morrison et al. (2004) find yp/R ∼ Re
−1/2
τ where yp is the wall-normal

position of the second peak and Rτ is the Kármán number based on the pipe radius R. The inner

peak appears to remain within the buffer-layer at z+ ∼ 15. Two estimates for the magnitude of

the inner peak are u′
max/uτ = 1.86 + 0.12 logReθ (Metzger and Klewicki 2001) and (u′

max/uτ)
2 =

4.84 + 0.467 logReτ (Hutchins et al. 2009) (natural logs). If one uses (3.21), then the first of these

gives u′
max/U∞ → 0.047, Reθ → ∞. If it is further assumed that ∆/(H δ) approaches a finite limit

when Reθ →∞, then the second expression, together with (3.21) gives u′
max/U∞ → 1/(logReθ)

1/2

and is asymptotically zero.

The above suggests two turbulent boundary layers. The first is an inner, near-wall layer contain-

ing one and perhaps two peaks in streamwise turbulence intensity, whose thickness is unknown but

probably decreases as a fraction of δ when Reθ increases. The second is an outer layer which is per-

haps no more than the free-stream shadow of the inner layer, in which the turbulence decays asymp-

totically. This is consistent with the composite inner–outer model of Marusic and Kunkel (2003)

and Marusic et al. (1997). The infinite Reθ limit would then be effective slip flow in the sense that,
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at fixed finite z/δ(x), 0 < z/δ(x) ≤ 1, u/U∞ → 1 while for any fixed z/δ(x), zp/δ(x) < z/δ(x) ≤ 1,

where zp/δ is the location of a possible outer peak or plateau in u′2/u2
τ , then u′2/U2

∞ → 0. This

limit would not preclude finite dissipation when Reθ →∞. This is strictly for the smooth-wall case

with zero-pressure gradient. The limits (a) and (c) would be affected by surface roughness of a given

length scale, but perhaps not the limit (b) since l+ ≡ ν/uτ increases with increasing x. For a strictly

smooth wall, a straightforward calculation using (3.21) shows that the drag on a flat plate of length

x is zero for limit (a) but unbounded for limits (b) and (c).

A further estimate of interest is the scaling of some norm ||u′|| of the streamwise turbulence

intensity with Reθ. Again we consider a smooth wall (in the limit (b) to avoid the effect of roughness)

and will take a nominal norm ||u′||/uτ ≈ 2.5 as the streamwise turbulence intensity at 1% boundary

layer thickness suggested by Figure 3.16. An alternative estimate based on an average over the whole

boundary layer thickness could also be used (e.g., equation (8) of Marusic et al. (1997)). This would

affect the quantitative but not the qualitative character of the following argument. Again using the

Nagib et al. (2007) expression (3.21) gives, together with ||u′||/uτ = 2.5,

Reθ = 10β, β = 0.4343 κ

(
2.5

||u′||/U∞

− C

)
, (3.25)

for the value ofReθ corresponding to a given boundary-layer intensity norm ||u′||/U∞. For ||u′||/U∞ ≈
0.033, (3.25) gives Reθ ≈ 1012. Assuming terrestrial conditions and U∞ = 40ms−1 in air at room

temperature this would require a plate length of about 108.5m at which station θ ≈ 104.7 m and

viscous length scale l+ ≈ 10−5 m.
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Chapter 4

Inner-layer predictions for the

flat-plate turbulent boundary layer

combining a predictive wall-model

with LES

4.1 Background

It has long been known that wall-bounded turbulent flows at moderate to large Reynolds number

contain an extremely large range of eddy length scales. For the flat plate turbulent boundary

layer, one measure of this is the friction Reynolds number Reτ ≡ uτ δ/ν where uτ ≡
√
τw/ρ is the

friction or inner velocity scale and δ, τw, ν, ρ are the boundary layer thickness, wall shear stress, fluid

kinematic viscosity and density, respectively. Recent experimental studies at large Reτ , however,

have suggested that δ is not itself the largest dynamically active length scale in the zero-pressure

gradient turbulent boundary layer. Convincing evidence (Ganapathisubramani et al. 2003, del Álamo

and Jiménez 2003, Tomkins and Adrian 2003, Kim and Adrian 1999, Hutchins and Marusic 2007b,a)

indicates that there exists very large scale motions (VSLMs) or “superstructures” with scales of order

15–20δ within the outer logarithmic part of the turbulent boundary layer. It is hypothesized that

these elongated structures are slightly inclined to the horizontal and may be accompanied by large-

scale, counterrotating, roll-like modes; see Mathis et al. (2011) for a summary and discussion.

It has also been highlighted that the dynamical influence of the large-scale events extends to

the wall where they affect the small-scale, near-wall fluctuations, in a significant way. The studies

of Abe et al. (2004) and Hutchins and Marusic (2007a) have clearly indicated that the large-scale

motions are felt all the way down to the wall, as a strong imprint (consistent with the attached

eddy hypothesis of Townsend (1976)). Mathis et al. (2009) have shown that their influence is

not simply a superposition, but also that these large-scale motions, associated with the log-region,

substantially amplitude modulate the near-wall small-scale structures. In their work Mathis et al.
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(2009) developed a mathematical tool to quantify the degree of modulation.

Marusic et al. (2010a) and Mathis et al. (2011) incorporated these ideas into an algebraic model

that enables the prediction of near-wall statistics of turbulent streamwise velocity fluctuations using a

single-point log-layer time-series signal as an input. Further details on this model are given in §4.2.1.
Investigations using either direct numerical simulation (DNS) or large-eddy simulations (LES) of

near-wall turbulence – for long-domain boundary layers at the largest laboratory Reynolds numbers

presently achievable or for atmospheric boundary layers – have been hampered owing to the presence

of small yet dynamically important anisotropic near-wall structures. The requirements for resolving

both near-wall small eddies and large-scale structures severely limit the range of Reτ accessible

by both DNS and wall-resolved LES (in which near-wall structures are at least partially resolved).

A further requirement is the capability of capturing variations ∼ O(log(Reτ )) in some important

quantities, such as the wall skin-friction coefficient for smooth-wall flow. An alternative to wall-

resolved LES is the use of wall-models specifically constructed to represent the effect of near-wall

anisotropic eddies (see Piomelli (2008) for a review). Whilst a principal objective of wall-modeled

LES is to avoid the necessity of explicit resolution of near-wall turbulent structures, this comes with

the price that some flow properties — such as the detailed near-wall statistics and their dependence

on the presence of large-scales in the outer flow — cannot be investigated directly. We address this

issue presently.

The main purpose of the work described in this chapter is to examine the near-wall region of zero-

pressure gradient turbulent boundary layer (ZPGTBL) using a combination of wall-modeled LES

coupled to a predictive wall model (Marusic et al. 2010a, Mathis et al. 2011) at Reynolds numbers

which have been not yet accessible, by either numerical simulation or laboratory experiment. Specif-

ically we use the LES/wall-model described in previous chapters (see also Inoue and Pullin 2011) to

provide the large-scale log-region velocity time series as the input to the predictive near-wall model

of Marusic et al. (2010a) and Mathis et al. (2011). The combined LES and predictive inner–outer

model potentially extends the LES capability to high Reynolds numbers, spanning the gap between

laboratory turbulent boundary-layers and atmospheric surface-layers. This allows us to address some

open questions regarding the large-scale effects on the near-wall statistics and their dependency on

Reynolds number. For instance, the existence of an outer peak in the turbulent fluctuations profile

remains controversial, and it would be only evident at very high Reynolds number (Alfredsson et al.

2011).

Brief accounts of both the predictive inner–outer model and subgrid-scale model employed in the

current LES are described in §4.2. This is followed by an account of the LES in §4.3. Discussion of

results is found in §4.4 and §4.5.
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4.2 Wall-model description

From the preceding discussions it should be clear that two different “wall models” are being con-

sidered here. Since these models are independent and have different functions, for the purposes of

clarity we distinguish these as follows. Also see Figure 4.1. The first is the predictive inner–outer

wall model of Mathis et al. (2011), described in §4.2.1. We will refer to this as the “PIO wall model”.

The second is the “LES wall model”, described and demonstrated in §3.2. The purposes of this LES
model is to avoid the necessity of resolving the inner wall layer while still providing an estimation of

the wall friction velocity. Also, it gives a boundary condition for the outer-flow LES at a “virtual”

wall located at a fixed height from the actual wall. In the present work, the LES provides a velocity

signal as an input to the PIO wall model. It should be emphasized that the LES wall-model is

independent of and does not require feedback from the PIO wall model, and vice versa.
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Figure 4.1. Schematic description of two “wall models”
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4.2.1 Predictive inner–outer model

Marusic et al. (2010a) and Mathis et al. (2011) proposed a quantitative model to reconstruct the

fluctuating streamwise velocity field, u+
p (z

+, t), in the near-wall region, based on a single point

observation of the large-scales in the log-region, u+
OL(t):

u+
p (z

+, t) = u∗(z+, t)
[
1 + β(z+)u+

OL(t)
]
+ α(z+)u+

OL(t), (4.1)

where u+
p is the predictive time-series at z+. The time-series u∗ represents a statistically “universal”

signal of the small-scales at z+ that would exist in the absence of any inner–outer interactions. The

quantities α(z+) and β(z+) are, respectively, the superposition and modulation coefficients. The

parameters u∗, α and β are determined experimentally during the calibration of the model, and are

hypothesized to be Reynolds number independent. Note that the model in equation (4.1) consists

of two parts. The first part of the equation models the amplitude modulation effect of the small-

scales (u∗) by the large-scale motions (u+
OL). The second term models the linear superposition of

the large-scale events felt at a given wall-normal position z+. In order to apply (4.1), uτ must be

known.

The only required input signal to the model is the large-scale fluctuating velocity signal from the

log-region, u+
OL(t), taken at the normalized wall-normal position where the calibration experiment

was conducted, which is z+O =
√
15Reτ , the approximate geometric center of the log-region (Mathis

et al. 2009). The large-scales signal is obtained by filtering first the raw signal to retain only length

scales greater than a streamwise wavelength λ+
x > 7000 (using Taylor’s hypothesis). Then, a spatial

shift is applied to account for the mean inclination angle of the large-scale structures. The final step

is to retain the Fourier phase information of the large-scale component used during the calibration

of the model. For further details about the model, see Mathis et al. (2011).

Here the distance from the wall, z, and the streamwise velocity component, u, are normalized by

inner-scale variables so that z+ ≡ z uτ/ν and u+ ≡ u/uτ . Also, u
∗ is normalized against uτ .

4.3 Simulation details

Presently, we use the LES of the zero-pressure gradient, smooth-wall, flat plate, turbulent boundary

layer, described in Chapter 3, to provide a rake of velocity time series obtained at z+ ≈ z+O as the raw

signal input u+
O to the PIO wall model, that is, the signal from which u+

OL(t) is obtained. Equation

(4.1) then supplies a time series u+
p (z

+, t) at each z+ from which both wall-normal variation of

several moments of the probability-density function of the streamwise fluctuating velocity can be

obtained as well as longitudinal spectra (using a local Taylor hypothesis) within a region that is

inaccessible to the LES.
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Case Nx Ny Nz Reθ Reτ,99 δ99 uτ ν ∆+
y dt T+

7.3k-θ 768 64 128 1.97e4 6.89e3 1.67 0.0338 8.18e-6 1.29e2 0.08 1.44e6
13.6k-θ 768 64 128 3.60e4 1.25e4 1.63 0.0321 4.20e-6 2.38e2 0.08 2.07e6
19k-θL 768 64 128 4.73e4 1.62e4 1.61 0.0313 3.12e-6 3.14e2 0.08 2.08e6
19k-θH 1152 96 192 4.73e4 1.60e4 1.60 0.0313 3.14e-6 2.08e2 0.06 1.41e6
62k-τ 1728 144 288 1.71e5 5.44e4 1.31 0.0283 6.84e-7 5.75e2 0.04 8.72e5
100k-τ 2304 192 384 3.22e5 9.96e4 1.47 0.0271 3.99e-7 7.08e2 0.03 1.21e6
200k-τ 3072 256 512 6.65e5 2.00e5 1.49 0.0257 1.92e-7 1.05e3 0.015 1.00e6

Table 4.1. Simulation parameters and integral quantities. Inflow velocity is a rescaled velocity
field taken from xref = 0.8Lx. (Lx/δ0, Ly/δ0, Lz/δ0) = (72, 6, 4). xstat = 0.75Lx. Case 62k-τ , the
velocity signal was taken from xstat = 0.45Lx. Reθ = U∞θ/ν and θ is the momentum thickness.
Reτ,99 = uτδ99/ν and δ99 is the 99% boundary layer thickness. δc is the boundary layer thickness
defined in Perry et al. (2002). dt is a time step size; T+ ≡ T u2

τ/ν is the normalized time interval
over which the velocity signal was obtained.

Case Reθ S Reτ,c Reτ,99 K1 B
7.3k-θ 1.97e4 29.6 7.19e3 6.89e3 0.397 4.38
EXP 1.96e4 29.3 7.34e3

13.6k-θ 3.60e4 31.2 1.34e4 1.25e4 0.389 4.25
EXP 3.60e4 30.6 1.36e4

19k-θL 4.73e4 31.9 1.77e4 1.62e4 0.386 4.21
19k-θH 4.73e4 31.9 1.85e4 1.60e4 0.389 4.25
EXP 4.72e4 31.4 1.88e4

62k-τ 1.71e5 35.3 6.43e4 5.44e4 0.382 4.15
EXP∗ 1.56e5 35.8 6.20e4

100k-τ 3.22e5 36.9 1.20e5 9.96e4 0.381 4.12
200k-τ 6.65e5 38.9 2.42e5 2.00e5 0.386 4.21

Table 4.2. Reynolds number and S-factor for each LES and corresponding experiments (Mathis
et al. 2009, 2011, Oweis et al. 2010, Winkel et al. 2012). S-factor; S ≡ U∞/uτ . Reτ,c = uτδc/ν is
a Reynolds number based in boundary layer thickness δc. Kármán constant K1 from (3.13) and an
additive constant B from (3.15)
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4.3.1 LES performed

The present LES, summarized in Table 4.2, were designed to match experimental conditions reported

(Mathis et al. 2009, 2011) based on Reθ = θU∞/ν, where θ is the local momentum thickness and U∞

is the free-stream velocity. The grid is uniform, ∆x = ∆y = 3∆z, throughout the simulation domain.

The raised wall is at h0 = 0.18∆z for all LES independent of resolution. To capture the physics of

long large-scale structures, we use long streamwise domains with Lx/δ0 = 72, where δ0 is the inlet

boundary-layer thickness. LES were performed in a domain (Lx/δ0, Ly/δ0, Lz/δ0) = (72, 6, 4). The

LES provided a set of Ny velocity-time signals u+
OL(t), each at z+ = z+O , across the spanwise extent

of the LES domain. Since z+O did not fall on a grid point, fourth-order interpolation was used.

It should be noted that grid resolutions here are chosen such that z+O will be located at approxi-

mately zO ≈ 5∆z/2 (third wall-normal grid point) so as to minimize the effect of the underresolved

region close to the virtual wall where the LES wall-model provides a slip velocity as a boundary

condition. An exception is case 19k-θL whose results show some effect of resolution (see Figure 4.8).

Since z+O is fixed in inner scaling, then with the present uniform-grid LES and with a maximum of

order 400 grid-points in the wall-normal direction this requirement limits presently attainable values

of Reτ , for the application of the current LES combined with the PIO wall model, to Reτ = 2.0×105.
We will subsequently refer to two sets of LES as intermediate (7.3k-θ, 13.6k-θ, 19k-θL,H of Table

4.1) and large (62k-τ , 100k-τ , 200k-τ) Reynolds number, respectively.

Each LES was run for 3–4 free-stream particle transit times through the domain, until statistical

steady state was achieved, prior to the commencement of data sampling to calculate both time-

averaged quantities and also the required velocity time series. Values of the LES sampling time

period, T+ ≡ T u2
τ/ν, normalized on the wall-unit time ν/u2

τ are shown in Table 4.1, which also lists

some integral quantities. We note that the LES does not resolve the viscous, wall-time scale ν/u2
τ .

The time series as input to the PIO model were obtained by sampling at every LES time step, ∆t.

Since for the present LES, ∆x = 3∆z, then taking λ+
x ≡ ∆xuτ/ν and ∆z = δ/Nδ, where Nδ is the

number of grid points across the boundary layer, then gives, for the present LES, λ+
x = 3Reτ/Nδ.

Typically Nδ ≈ Nz/3 and the values displayed in Table 4.1 then show that λ+
x ≤ 7000 for the present

LES as required by the PIO model. It should also be noted that the inflow generation scheme of

Lund et al. (1998) combined with the mirroring method proposed by Jewkes et al. (2011) was used

for all LES. The other boundary conditions follow §3.3.

4.3.2 Skin friction and mean velocity profiles

In Chapter 3 we used the notation U+
e = U∞/uτ . Presently and subsequently we will change to the

S-factor notation, S = U∞/uτ in order to be consistent with Mathis et al. (2009, 2011) and other

papers of the University of Melbourne high-Reynolds-number group. The S-factor variation versus
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Figure 4.2. Reynolds number dependency of the S-factor for cases 7.3k-θ, 13.6k-θ, and 19k-θH. Solid
lines; LES results, each line corresponds to each simulation case. �: locations where the velocity
time series is taken. ×: corresponding experimental measurements (Mathis et al. 2011). Dot-dashed
line: Coles-Fernholz relation (Nagib et al. 2007)

Reθ along the streamwise direction for intermediate Reynolds number are shown in Figure 4.2. Also

shown are experimental measurements (Mathis et al. 2011) and the semi-empirical Coles-Fernholz

relation (Nagib et al. 2007). The wall-friction velocity uτ and therefore the wall shear stress are

provided directly from the ODE incorporated in the LES wall model. The S-factor profiles show a

hill or bump after the inlet, also seen in DNS studies (Simens et al. 2009), which is perhaps the effect

of nonequilibrium following inlet as a result of the recycling procedure. Note that the rake of velocity

time series is taken well downstream of the hill where the effect of the inflow generation method is

not visible. Our results overestimate the S-factor of the experimental measurements by about 1.5%.

Meanwhile the Coles-Fernholz gives a reasonable representation of the LES variation of S(Reθ)

across those sections of our Reθ range, where the boundary layer appears to be in equilibrium.

It is evident from Table 4.1 that there are small but systematic discrepancies in Reτ between the

present LES and experiment at matched Reθ. It is well known that the boundary layer thickness,

δ99, is a poorly conditioned quantity as it depends on the measurement of a small velocity difference.

As an alternative, a Reynolds number Reτ,c ≡ δc uτ/ν based on another definition of boundary layer

thickness, δc, is also shown. A method for determining δc can be found in Perry et al. (2002). It

is assumed that the mean velocity profile is described by the law of the wall and law of the wake

given by equation (4.6) of Perry et al. (2002). Values of Reτ,c ≡ δc uτ/ν obtained independently



53

 0

 10

 20

 30

 40

 50

 60

 70

100 101 102 103 104 105 106

z+

u
/
u
τ

Measurement

LES

Ref.

Log law

Figure 4.3. Mean velocity profile for cases 7.3k-θ, 13.6k-θ, 19k-θH, 62k-τ , 100k-τ , and 200k-τ (from
bottom to top). The experimental measurements at Reτ = 7, 300, 13, 600, and 19, 000 are from
Mathis et al. (2011), and those at Reτ = 62, 000 are from Oweis et al. (2010). The symbol ”×”
marks the location of where the large-scale component is measured. Profiles are displaced 5 units
of u/uτ for clarity. Dashed-lines are log law using K1 from (3.13) and an additive constant B from
(3.15). Also see table 4.2.
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from both LES and experiment are reasonably closely matched. See Table 4.2 for integral quantities

of each simulation case and its corresponding experimental measurements.

Figure 4.3 shows LES mean velocity profiles in inner-scaling, u+ = u/uτ , for all Reynolds numbers

compared with experimental measurements where available. LES captures the mean velocity profile

reasonably accurately. We remark that the mismatch seen in the case 62k-τ is affected by the

difference in Reθ between the LES result (1.71× 105) and corresponding measurements (1.56× 105).

The symbol “×” indicates the wall-normal location (z+O ≈
√
15Reτ) where the large-scale velocity

signal, u+
OL(t), is measured in LES. Although small, there seems to be a drop off in u+ towards the

virtual wall. We interpret this as the influence of a logarithmic-layer mismatch (Brasseur and Wei

2010).

4.4 Results at intermediate Reynolds numbers

The velocity signals recorded in LES are now filtered to extract the large scale fluctuating velocity

u+
OL(t), an input to the predictive inner–outer model. In the following sections, we discuss our

observations of the predicted statistics, including spectra and some higher-order moments within

the inner region. The effects of resolution and the length of velocity time series are also discussed.

We will refer to three distinct type of results: direct experimental measurements (Exp), inner-layer

predictions obtained using the PIO model with u+
OL(t) provided by experiment (Exp-PIO) and

inner-layer predictions obtained using the PIO model with u+
OL(t) provided by LES (LES-PIO).

4.4.1 Streamwise turbulent intensity

Figure 4.4 shows a comparison of the predicted streamwise turbulent intensity profile, LES-PIO,

against experimental measurement (Exp) and prediction (Exp-PIO). Also included in Figure 4.4 is

the turbulent intensity profile from LES over z+ > h+
0 containing SGS corrections to the resolved-

flow calculated as u′2 = ũ′ũ′+Txx. The predicted LES-PIO u′
rms/uτ =

√
u′2/u2

τ profiles capture the

essential features of the energy, including the slight increase of the near-wall peak with increasing

Reτ . The LES is seen to underestimate the intensity in the outer-region. This comes from the fact

that not all scales are resolved with LES, which led to a slight underestimation of the turbulent

intensity due to the missing small-scale energy content by the SGS model in the outer-region (which

has a small, but noticeable, contribution). However, since only the large-scale component is needed

for the PIO model, this does not affect the prediction. Furthermore, the good agreement between

LES-PIO and Exp-PIO results demonstrates the capabilities of LES to capture accurately the large-

scales required as input to the PIO model.
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Figure 4.4. Prediction of streamwise turbulence intensity u′
rms/uτ as compared to measurements.

Shown are direct experiment, direct LES and predictions of inner-layer intensities obtained using
velocity signals from both experiment (Exp-PIO) and LES (LES-PIO). The symbol ”×” marks the
location where the time series u+

OL(t) is measured. (a) Case 7k-θ; (b) Case 13.6k-θ; (c) Case 19k-θH
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Figure 4.5. Premultiplied energy spectra of the streamwise velocity fluctuations kxΦuu/u
2
τ at z+O ≃√

15Reτ as compared to measurements; thick (red) lines: LES; thin (grey) solid lines: measurements
(Mathis et al. 2011). (a) Case 7k-θ; (b) Case 13.6k-θ; (c) Case 19k-θH; (d) Case 19k-θL. The vertical
dot-dashed line shows the location of the cutoff wavelength, λ+

x = 7000.
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Figure 4.7. Example of predicted premultiplied energy spectra kxΦuu/u
2
τ at the inner-peak location

(z+ ≃ 15) as compared to measurements; thick (red) lines: prediction from LES-resolved velocity
signal; thin (grey) solid lines: measurements (Mathis et al. 2011). (a) Case 7k-θ; (b) Case 19k-θH
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4.4.2 Longitudinal spectra of streamwise velocity

Figure 4.5 shows the premultiplied energy spectra of the streamwise velocity fluctuations, kxΦuu/u
2
τ ,

for the resolved velocity signal (u+
O, i.e., not filtered) from LES and experiment atReτ ≈ 7, 300, 13, 600

and 19, 000, all at z+ ≈ z+O . It is clear that the experimental time series covers a substantially wider

domain at the small scales than the LES. This is the effect of the LES cutoff at the local grid

scale. Case 19k-θH covers a wider range of scales than case 19k-θL (see Figure 4.5(c–d)) because

of the smaller time step size dt. Although the position of the spectra maximum tends to be shifted

toward smaller scales for the LES, the peak magnitude of LES and experiment are comparable.

Importantly, the turbulent energy of the large-scale signal u+
OL — the areas under the curve on the

right-hand side of the cutoff wavelength λ+
x ≥ 7, 000 — remains close, only differing by a slight

energy re-distribution. We recall that to extract u+
OL from the velocity signal taken from LES, the

velocity signal u+
O is filtered to retain only large scales above streamwise wavelengths of λ+

x = 7, 000.

This constitutes another limiting factor for higher Reynolds number application of the current LES

as it is necessary to take smaller dt as Reynolds number increases to fulfil this requirement.

The contour maps of predicted premultiplied energy spectra, kxΦuu/u
2
τ , shown in Figure 4.6,

indicate that the Reynolds number effects are well captured by the LES-PIO model. Particularly,

the increasing large-scale energy content with increasing Reτ . A closer view of the premultiplied

energy spectra is given in Figure 4.7, at the inner-peak location z+ ≃ 15 and for two Reynolds

numbers, Reτ = 7, 300 and 19, 000. Again, excellent agreement is observed. However, in Figures 4.6

and 4.7 a distinct discontinuity or a hump is observed around λ+
x ≃ 4, 000–7, 000. This discontinuity

is attributed to the fact that the model in equation (4.1) combines signals from two different data

sources, LES and experiments, which are not synchronized together (even if the purpose of Fourier

phase shift is to attempt to resolve this issue). Therefore, there is an overlap in the spectral do-

main between the universal signal u∗ and the large-scale input component u+
OL, which induces this

discontinuity. There are also nonlinear effects in equation (4.1) arising from multiplying two time

series with different spectral support. Nevertheless, this does not propagate nor does it contaminate

other statistics due to the fact the discontinuity has a very low energy.

4.4.3 Signal length and resolution effects

To ensure that results are not sensitive to the signal length provided by LES, sensitivity tests were

performed for all the cases using elongated velocity signals constructed from concatenation of signals

from different spanwise locations. Spanwise locations were at least 2δ0 apart to obtain uncorrelated

signals. The results (not shown) do not make noticeable changes to the predictions. This is because

the largest scales are already captured and converged in the time series obtained at a single location,

allowed by the large computational domain used by the LES, (Lx, Ly, Lz) = (72δ0, 6δ0, 4δ0).
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Solid: case 19k-θH; open: case 19k-θL

Figure 4.8 shows the effect of the LES grid’s resolution on the predicted turbulent intensity

profile at Reτ = 19 000, for the low resolution case (19k-θL) and the high resolution case (19k-θH).

The slightly larger prediction observed on the low resolution case is probably attributed to the LES

containing more energy in the very long scales, compared to case 19k-θH as seen in Figure 4.5(c–d).

Overall, the prediction from the higher resolution case 19k-θH agrees better with the experimental

data. Recall that the grid position of z+O is chosen to avoid the underresolved region close to the

virtual wall. The argument that numerical and modeling errors are unavoidable in the first few grid

points was discussed in Cabot and Moin (2000).

4.5 Results at larger Reynolds number

4.5.1 Turbulence intensity and spectra

The combined LES-PIO model has been shown to fairly accurately reconstruct the near-wall field at

intermediate Reynolds numbers. Particularly, a good agreement has been found with experiments

and Exp-PIO predictions. Now we test the model at higher Reynolds numbers, Reτ = 62, 000,

100, 000 and 200, 000, filling the gap between laboratory and atmospheric surface layer data. It

should be noted that at such high-Reτ there is no experimental data available in the near-wall

region for comparison, and outer-region data are only available for Reτ = 62, 000. Figure 4.9 de-
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picts the predicted streamwise turbulent intensity profiles along with LES and experimental results.

SLTEST data and corresponding Exp-PIO results have been included as an indicator of the predicted

trends of turbulence intensity obtained from experiment. As discussed previously, the LES tends to

underestimate the intensities in the outer part of the boundary layer, due to the missing small-scale

energy content, but the essential Reτ dependency feature is well captured. The magnitude of the

LES-PIO intensity results at Reτ = 62, 000 are in good agreement with experiment, at least where

the measurements and the prediction intersects. The SLTEST prediction, at Reτ = 1.4 × 106 sug-

gests that at high-Reτ a second peak in the streamwise turbulent intensity profile emerges, and the

LES-PIO results appear to support this. However, it should be recalled that the PIO model has been

built using hot-wire measurements where a normalized sensor length, l+ = luτ/ν = 22, was used.

Therefore, u∗ and u+
p in equation (4.1) have the same spatial resolution characteristic, and the emer-

gence of the second peak might be a result of spatial resolution issues (Hutchins et al. 2009, Marusic

et al. 2010b). Figure 4.11 shows prediction of the streamwise turbulence intensity u′2/u2
τ corrected

using the method of Smits et al. (2011) to a hypothetical infinitesimally small sensor (l+ = 0). The

method, based on eddy scaling, takes into account the attenuation of small scale contributions due

to the relatively large sensor length. Hypothetically, the corrected prediction represents the “true”

profiles which can be seen to show some indication of a second peak at high-Reτ .

Nevertheless, the existence of an outer peak remains an open question. Based on the diagnos-

tic plot (Alfredsson and Örlü 2010), Alfredsson et al. (2011) suggested that an outer peak does

exist at z+ = 0.81Re0.56τ if the Reynolds number is sufficiently large. For pipe flow, McKeon and

Sharma (2010) use a linear model to identify a dominant VLSM-like mode whose propagation ve-

locity matches the local mean velocity at z+ ∼ Re
2/3
τ . They argue that at this “critical layer”, the

exchange of energy between the mean flow and the forced mode is enhanced resulting in a peak in

turbulence intensity. It should be noted that LES-PIO results shown in the present paper are up to

z+ ≈ 360, and do not reach the proposed outer-peak location for cases 62k-τ to 200k-τ (respectively,

z+ = 970 and z+ = 1230).

Figure 4.10 shows the Reynolds number dependency of the near-wall peak in u′2/u2
τ , for Exp-PIO

and all LES-PIO results, along with available data from the literature. Also included are the spatially

corrected Exp-PIO and LES-PIO results using the correction scheme proposed by Chin et al. (2009)

to take into account the spatial resolution effects of the PIO model (l+ = 22), where the missing

energy is modeled using two-dimensional spectra from DNS of turbulent channel flow. Overall, the

LES-PIO follows the general trends of both direct measurement and Exp-PIO and support log-like

increase in u′2/u2
τ with increasing Reτ . In particular the three high-Reynolds-number LES-PIO

results are seen to fall within a large gap between laboratory and SLTEST estimates.

The energy content of all LES-PIO prediction, for cases 7.3k-θ, 19k-θH, 62k-τ and 200k-τ , are

given in Figure 4.12 for the inner-peak location, z+ ≃ 15. Again, it can be observed that the
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Figure 4.13. Reynolds number dependency of predicted (a) skewness and (b) kurtosis using the
LES-PIO model, for cases 7.3k-θ, 13.6k-θ, 19k-θH, 62k-τ , 100k-τ , and 200k-τ .

increasing large-scale energy with increasing Reτ is well captured by the LES-PIO, identically to

the Exp-PIO model shown in Mathis et al. (2011).

4.5.2 Higher-order statistics

Figure 4.13 shows the predicted LES-PIO skewness and kurtosis for all present Reynolds numbers.

The small but definite Reynolds number dependency is clear.

Direct LES and LES-PIO results for skewness and kurtosis are shown compared with direct

experimental measurement and also Exp-PIO results in Figure 4.14. The LES-PIO results show

excellent agreement with experiment in the inner layer while Exp-PIO and the LES-PIO results

are indistinguishable. The results of direct LES in the outer layer are overall good up to the edge

of boundary layer, except for a few grid points near the virtual wall. As in turbulent intensity

prediction, a discontinuity can be seen between the inner-layer LES-PIO results and the direct

outer-layer LES results (see Figures 4.4 and 4.9.) It should be noted that the PIO model does not

guarantee that the predicted value should exactly match the actual value that the velocity signal

itself has at z+ = z+O . The velocity signal used as an input only contains the fluctuations of the

larger scale components. In an LES context, the input signal is a resolved scale signal without a

subgrid contribution, while the numerical values shown as outer-layer LES calculation in each figure

contain a sum of resolved and estimated subgrid contributions (u′2 = ũ′ũ′ + Txx, for example).
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SLTEST data. The symbol ”×” marks the location of where the large-scale component is measured.
For key, see Figure 4.9.
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Chapter 5

LES of the adverse-pressure

gradient turbulent boundary layer

5.1 Background

There is a growing need for reliable, accurate LES models suitable for real-world flows. The behavior

of the boundary layer over aerospace vehicles, for both the inner flow or outer flow, usually exhibits

complex behavior of high Reynolds number. In spite of recent advances in computational capabilities,

highly accurate simulations, for example, of separated flow on the wings of airplanes or for flow

through turbine blades in jet engines has not been achieved. When such simulations become possible

at reasonable computational cost, engineers in industry will be able to investigate other critical

problems that are at the moment accessible only by costly physical experiments. As a step toward

this, we presently consider the LES of the adverse-pressure gradient flat-plate turbulent boundary

layer. The implementation of our wall model and the interior SGS model, which is entirely local

in character including its incorporation of local pressure gradients, should be applicable to adverse-

pressure-gradient turbulent boundary layers (APGTBL).

Although there are some established features in APGTBL such as the amplified wake of the

mean velocity profile and the increasing turbulence intensity in the outer region, the difficulty in

APGTBL research is the wide range of parameters that have to be considered such as the upstream

history, the local pressure gradient, and if the flow should be in some defined form of equilibrium.

Commonly, a constant nondimensional pressure gradient parameter (Clauser 1956),

β =
δ∗

τw

dP

dx
, (5.1)

where δ∗ is the displacement thickness, τw is the wall shear stress and dP/dx is the pressure gradient,

has been taken as a condition for “equilibrium” layers whose velocity profiles, Clauser (1956) pro-

posed, are identical when plotted in a velocity defect form at each cross section. Mellor and Gibson
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(1966) and Bradshaw (1967) have suggested that an approximate equilibrium flow is obtained when

the variation of free-stream velocity has the form of a power-law relation in the streamwise direction.

That is to say, a practically constant β results if the outer-edge velocity is chosen as U∞ ∼ (x−x0)
m

(where x0 is a virtual origin, and m is a constant power).

Skote et al. (1998) summarized previous theoretical and experimental work on selfsimilar turbu-

lent boundary layer flows under adverse-pressure gradients. Those works seem to reach a consensus

that separation occurs for −0.25 < m < −0.20 with a shape factor of about 2. Also Schofield

(1981) concluded that no selfsimilar solution can be achieved for m < −0.3 and only one selfsimilar

solution exists for m > −0.23. Skote et al. (1998) reviewed relations between m and β using the

assumption of infinite Reynolds number and the use of specific velocity and length scales. Including

the works mentioned above, this class of equilibrium APGTBL have been studied by both numerical

simulations (e.g., Henkes et al. 1997, Skote et al. 1998, Lee and Sung 2008, Lee et al. 2010) and

experiments (e.g., Sk̊are and Krogstad 1994, Nagano et al. 1998).

There are several other parameters that characterize APGTBL as discussed by Perry and Maru-

sic (1995), Marusic and Perry (1995), Perry et al. (2002), such as a skin friction parameter (or

S-factor), the Coles’ wake factor Π and a nonequilibrium parameter ξ, which is a function of a

streamwise derivative of Π, the S-factor and the boundary layer thickness. Yet another class of

“quasi-equilibrium” layers were postulated by Perry et al. (1994), which has selfsimilarity in both

velocity and shear stress profiles, with Π being constant or allowed to vary in the streamwise di-

rection but this variation is sufficiently slow. Under this condition, we have a selfsimilar velocity

defect distribution implying a selfsimilar shear stress distribution. It should be noted that the above

discussion, however, is based on the assumption that a universal logarithmic law exists. Monty et al.

(2011) argued that this may not be suitable for the APGTBL since it has been observed by several

researchers that the value of Kármán constant κ shows some sensitivity to the pressure gradient and

that there seems to be a shift of the mean velocity profile from the log-law (e.g., Nagano et al. 1998,

Nickels 2004, Lee and Sung 2008). As a result, depending on the log-law chosen, the wake factor Π

can vary.

Monty et al. (2011) performed a parametric study of the behavior of the APGTBL and suggested

that β is useful for characterizing the flow observing the good collapse in flow statistics with constant

β. The effect of three parameters were investigated: a friction Reynolds number Reτ , pressure

gradient parameter β and an acceleration parameter

K =
ν

U2
∞

dU∞

dx
, (5.2)

where U∞ is the local free-stream velocity and ν is the kinematic viscosity.

Many important features of the APGTBL are well understood through extensive studies on
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Figure 5.1. Profile of coefficient of pressure Cp: a smoothed profile used in LES and experimental
measurements: Z. Harun & I. Marusic (Private Communication)

“equilibrium” flows over the past decades. Compared with other canonical turbulence flows; pipe,

channel and ZPGTBL, however, the present state knowledge of the APGTBL is very sparse (Marusic

and Perry 1995) and perhaps insufficient to draw conclusions on their general behaviors including

the probably broad class of nonequilibrium APGTBLs. The latter remain to be investigated. Here

we aim to reproduce an experimental setting with a constant pressure gradient, the simplest class of

pressure distributions also seen in other canonical flows. We intend to extend the discussion towards

higher Reynolds numbers. In §5.2, an account is given of the problem setting including matching a

pressure distribution in an experiment. The numerical implementation of the experimental setting

and the present LES on the APGTBL over a range of Reynolds numbers are presented in §5.3,
followed by results and discussion in §5.4.

5.2 Problem setting

We attempt to reproduce the experimental setup of an open-return blower wind tunnel, whose

details can be found in Marusic and Perry (1995), Harun et al. (2010), Monty et al. (2011). All of

the experimental data used and cited presently were kindly supplied by Z. Harun and I. Marusic

(private communication). The pressure gradient was adjusted by the height of the flexible test

section ceiling. The area of the tunnel cross-section increases nominally exponentially to maintain

a constant pressure gradient. The flexible ceiling was configured so that a zero-pressure gradient is
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Station x [m] U∞ [m/s] Reτ Reθ δ [m] θ [m]
1 2.90 15.68 2330 6560 0.061 0.0064
2 3.50 15.12 2670 8120 0.076 0.0085
3 4.00 14.43 2380 8590 0.076 0.0095
4 4.46 13.43 2500 10500 0.090 0.0122
5 4.78 12.89 2500 11630 0.102 0.0143

Table 5.1. Experimental parameters for hot-wire anemometry at five measurement locations. The
free-stream velocity at the inlet (x = 0 m) is Uinlet = 15.9 m/s. All data from private communication
with Z. Harun and I. Marusic.

maintained until x = 3 m followed by an constant adverse-pressure gradient section thereafter until

x = 6.7 m. Figure 5.1 shows the coefficient of pressure Cp,

Cp =
p− pinlet
1
2ρU

2
∞

= 1−
(

U∞

Uinlet

)2

, (5.3)

along the streamwise direction in the tunnel and indicates five locations where streamwise velocities

were measured by hot-wire anemometry, x1 = 2.90 m, x2 = 3.50 m, x3 = 4.00 m, x4 = 4.46 m and

x5 = 4.78 m. When applying the pressure boundary condition at the top in LES, a smooth function

representation of Cp is used to avoid discontinuities. Table 5.1 shows experimental results at each

location.

5.3 LES performed

In total the results of five different LES are reported in detail presently. The wall-model LES are

summarized in Table 5.2. Case D1 was designed to match experimental conditions reported in §5.2
based on Reθ = θU∞/ν = 6560 at x1,exp = 2.90 m in the experimental setting, where θ is the

momentum thickness and U∞ is the free-stream velocity. Then the same pressure distribution is

used for the other cases. The LES equations are normalized by using the free-stream velocity and the

boundary layer thickness at the inflow plane, U0 and δ0, respectively. Typically an individual LES

is done by fixing a nominal Reynolds number Re0 = U0δ0/ν, so that the resulting Reθ at x1,LES is

close to the expected value. LES have been performed at resolutions (Nx, Ny, Nz) = (768, 64, 128),

the grid is uniform and ∆x = ∆y = 3∆z throughout the simulation domain without stretching in

the wall-normal direction. The raised wall is at h0 = 0.18∆z for all LES.

LES were performed in a domain (Lx/δ0, Ly/δ0, Lz/δ0) = (72, 6, 4), where δ0 is the inlet boundary-

layer thickness. The domain size in the streamwise direction is designed to be sufficiently long to

cover the range between x1 and x5. Also the adverse-pressure gradient starts at x1,LES = 0.35Lx in

the computational domain in order to allow a sufficiently long streamwise length from the inlet to

obtain an equilibrium ZPGTBL on which the inflow generation scheme of Lund et al. (1998) is based.
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Case Re0 Lx/δ0 Ly/δ0 Lz/δ0 Nx Ny Nz h0/δ0 xref/Lx

D1 4.58× 104 72 6 4 768 64 128 5.6e-3 20%
D2 1.54× 105 72 6 4 768 64 128 5.6e-3 20%
D3 5.61× 105 72 6 4 768 64 128 5.6e-3 20%
D4 1.86× 106 72 6 4 768 64 128 5.6e-3 20%
D5 6.51× 106 72 6 4 768 64 128 5.6e-3 20%

Table 5.2. Simulation parameters: Re0 = U0δ0/ν; U0 and δ0 is the free-stream velocity and the 99%
boundary layer thickness at the inlet of the domain, respectively. ∆x = ∆y = 3∆z. h0 = 0.18∆z.
xref/Lx is the location where a velocity data is taken and rescaled for inflow velocities. The mirroring
method (Jewkes et al. 2011) is employed in addition to the inflow generation scheme of Lund et al.
(1998).

The location of the recycling plane is set at xref,LES = 0.2Lx to avoid the effect of adverse-pressure

gradient. The mirroring method proposed by Jewkes et al. (2011) was used for all the cases. At

the top of the domain, the pressure boundary condition is employed (see §2.4) to reproduce the

experimental pressure distribution f(x),

P∞(x) = f(x) and
∂u

∂z
=

∂v

∂z
= 0. (5.4)

In case D1, our lowest Reynolds number case, the height of the raised “virtual” wall, where the

wall-model provides the slip streamwise velocity, resides below the log-region, typically h+
0 < 10.

Therefore the the log-like relationship (see equation 3.13) is replaced with a linear profile

ũ+|h0
= uτh

+
0 , (5.5)

assuming the instantaneous streamwise velocity follows the linear relationship with inner-scaling

within the viscous sublayer. This does not effect the ODE for wall-shear stress and the other

boundary conditions follow §3.3.

5.4 Results and discussion

All results shown presently are obtained as spanwise/time averages. Figure 5.2 shows profiles of the

pressure coefficient Cp and the pressure gradient dp/dx in case D1. It is observed that the LES

reproduces the Cp profile from the measurement at corresponding streamwise locations. The length

scale is matched using the momentum thickness θ at station 1. Two pressure-gradient profiles are

shown: one is the pressure gradient at the top of the domain (z = Lz) and the other is at the first

grid point from the virtual wall (z = h0 + ∆z/2). The pressure gradient at the top is essentially

prescribed by the pressure boundary condition. The profile at z = h0 + ∆z/2, from a solution of
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Figure 5.2. Profile of coefficient of pressure Cp and the pressure gradient distribution dp/dx. Solid
linel; at top of the domain, dashed-line; at the first grid point from the virtual wall. ◦: Experi-
mental measurements of Cp at corresponding streamwise locations (Z. Harun & I. Marusic (private
communication))

equation (2.13), indicates the pressure gradient decreases at the end of the domain because of the

implicitly imposed condition: dp/dx = 0 at the boundary where Dirichlet boundary conditions are

used for the boundary-normal velocity, u in this case. The increase in the pressure gradient at

xLES ≈ 30δ0 is not as sharp as that at the top boundary. Similar profiles were observed for all the

other LES cases (not shown). It is observed that the effect of non-zero-pressure gradient propagates

upstream as far as 10 boundary layer thickness at the bottom of the domain. It should be noted

that the recycling plane is located at xref,LES ≈ 14.4δ0 where the pressure gradient is sufficiently

small.

5.4.1 APG parameters

Figures 5.3 show profiles of the pressure gradient constant β, the acceleration parameter K and the

normalized pressure gradient (dp/dx)+ ≡ ν(dp/dx)/(u3
τ ) along the streamwise direction in cases D1,

D3, and D5. Results of case D2 and D4 follow the trend shown here but are omitted for clarity.

Values of β, K and S at five measurement locations are also presented by Table 5.3. Albeit a slight

difference up to 10%, the nondimensional pressure gradient, indicated by β shows a reasonably

good collapse between three LES cases. This indicates the ratio of the pressure gradient acts across

effective face area of the layer δ∗ to the wall shear stress τw was kept almost constant over the range
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Station xLES/δ0 Reθ Reτ β K S
D1: 1 25.2 6.56× 103 2.41× 103 0.04 −0.07× 10−7 26.8
D1: 2 38.4 8.12× 103 2.57× 103 1.10 −0.20× 10−7 28.6
D1: 3 49.4 1.02× 104 2.75× 103 1.97 −1.49× 10−7 30.0
D1: 4 59.5 1.26× 104 2.91× 103 3.52 −1.83× 10−7 31.8
D1: 5 66.7 1.39× 104 2.93× 103 5.03 −2.16× 10−7 33.1

D3: 1 25.2 6.56× 104 2.25× 104 0.05 −0.06× 10−8 32.8
D3: 2 38.4 7.90× 104 2.35× 104 1.24 −0.98× 10−8 35.2
D3: 3 49.4 9.70× 104 2.46× 104 2.20 −1.22× 10−8 37.4
D3: 4 59.5 1.18× 105 2.53× 104 3.90 −1.50× 10−8 39.9
D3: 5 66.7 1.29× 105 2.61× 104 5.46 −1.76× 10−8 41.3

D5: 1 25.2 6.52× 105 2.14× 105 0.06 −0.05× 10−9 38.2
D5: 2 38.4 7.74× 105 2.21× 105 1.36 −0.85× 10−9 40.7
D5: 3 49.4 9.41× 105 2.30× 105 2.34 −1.05× 10−9 42.9
D5: 4 59.5 1.14× 106 2.37× 105 4.04 −1.29× 10−9 45.5
D5: 5 66.7 1.23× 106 2.50× 105 5.59 −1.52× 10−9 47.0

Table 5.3. LES results; case D1, D3, and D5

xLES/δ0 Reθ Reτ β K × 10−7 S = U∞/uτ
dp
dx

+ × 10−3

Exp LES Exp LES Exp LES Exp LES Exp LES Exp LES
1 25.2 6560 6560 2330 2410 ZPG 0.04 ZPG -0.07 27.1 26.8 ZPG 0.13
2 38.4 8570 8120 2670 2570 1.16 1.10 -1.18 -1.20 28.5 28.6 2.75 2.90
3 49.4 8590 10150 2380 2750 1.58 1.97 -1.47 -1.49 29.3 30.0 3.71 4.30
4 59.5 10550 12550 2500 2910 2.76 3.52 -1.78 -1.83 31.2 31.8 5.42 6.39
5 66.7 11630 13900 2500 2930 4.27 5.03 -2.18 -2.16 33.3 33.1 7.72 8.09

Table 5.4. LES results; case D1 and corresponding experimental parameters for hot-wire measure-
ments. All data from private communication with Z. Harun and I. Marusic.

of Reynolds number. The decrease in value at the end of the domain is caused by the decrease in

pressure gradient close the wall as reported above in Figure 5.2. Note that the pressure distribution

prescribed at the domain top is the same for all the cases, so is the resulting free-stream velocity.

Therefore the profiles ofK differs between cases are purely due to the difference in kinematic viscosity

ν in each case. S ≡ U∞/uτ shows a clear increase with Reynolds number and β.

Table 5.4 provides LES results of case D1 and their corresponding experimental results at five

locations along the streamwise direction. The acceleration parameter K shows good agreement

with the experiments, indicating the adverse-pressure gradient boundary conditions at the domain

top results in the decreasing free-stream velocity sufficiently accurately. Note that the boundary

condition for the streamwise velocity at the domain top is a Neumann type, see equation (5.4). The

results at station 1, where the ZPGTBL is expected, agree well with the measurements. The location

where the pressure gradient starts to increase is sufficiently downstream from the recycling plane

(xref) minimizing the effect of the sudden increase in the pressure gradient on the inflow generation
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Figure 5.4. LES results; ⋄; case D1 and △; corresponding experimental measurements (Z. harun
& I. Marusic) of the mean velocity. Data are shifted up by 5 units for clarity. From the bottom,
station 1 (green), 2 (purple), 3 (red), 4 (blue), and 5 (black)

scheme. Along the streamwise direction, however, the results indicate that the LES is experiencing

the effect of adverse-pressure gradient a little too much compared to experiments, as shown by a

steeper increase in a pressure gradient parameter β and S.

5.4.2 Mean velocity profiles

The effect discussed above can be seen in Figure 5.4, the mean streamwise velocity from case D1

normalized by the friction velocity uτ at five locations along the streamwise direction. A reasonable

agreement with the measurements was found. Qualitatively, our model reproduces the large wake

region which is one of the most recognizable feature of an APGTBL (Monty et al. 2011). Similar

trends are also found for the higher Reynolds-number cases; see Figure 5.5. It should be noted

that the amount of amplified wake is somewhat similar at each measurement location irrespective

of Reynolds number, which will be discussed in the following section.

Figure 5.6 show the velocity defect profiles at five locations from cases D1, D2, D3, D4, and

D5 (⋄) and experimental results (△). The data are normalized by the friction velocity and defect

thickness or the Rotta-Clauser parameter ∆ ≡ δ∗U+
∞. Data are shifted by 5 units for clarity. From

the bottom, station 1 (β ≈ 0), station 2 (β ≈ 1.2), station 3 (β ≈ 2.2), station 4 (β ≈ 3.8), and

station 5 (β ≈ 5.4). It is observed that the LES profiles for the flows with Reynolds number ranging

from O(103) to O(105) almost coincide in the outer coordinates, indicating good collapse across the
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2 (purple), 3 (red), 4 (blue), and 5 (black).
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outer part of boundary layer. Also the profiles are in good agreement with that of measurements.

5.4.3 S-factors

As mentioned in the earlier section, it was found that the amount of amplified wake was somewhat

similar at each measurement location irrespective of Reynolds number. This can clearly be seen in

Figure 5.7, showing S values at five locations from cases D1 to D5 with the experimental measure-

ments as a function of local Reτ . S(β = 0) increases as log(Reτ ) as found in ZPGTBL (see Chapter

3). The deviations of S from S(β = 0) in each case are shown in Figure 5.8. Except for the lowest

Reynolds number case: D1, the LES results appear to collapse well and lie on the empirical curve

S(Reτ , β) − S(Reτ , 0) = 4.1 log(β) + 1.3, which is a line of best fit. The solid line in Figure 5.8 is

a relation for a flow in “quasi-equilibrium”. This can be obtained as follows: Assuming that the

mean velocity profile can be described by the Coles (1956) law of the wake, the Jones et al. (2001)

formulation gives

S = U∞/uτ =
1

κ
logReτ +A− 1

3κ
+

2Π

κ
, (5.6)

where A is the universal smooth-wall constant and κ is the Kármán constant. Here it is also assumed

a constant κ = 0.41. For a “quasi-equilibrium” flow, defined to be an almost constant wake factor
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Figure 5.8. LES results; S − S(β = 0) as a function of β. Notation follows Figure 5.7

Π, Perry et al. (2002) postulated the following functional relation between Π and β;

β = −1/2 + 1.21Π4/3 or Π = 0.86 (β + 1/2)
3/4

. (5.7)

Then the deviation of S from S(β = 0) can be evaluated as

S(β)− S(β = 0) =
1.72

κ

[
(β + 1/2)3/4 − (1/2)3/4

]
, (5.8)

which is shown in Figure 5.8. It should be noted again that the above discussion is for the APGTBL

where the effect of variation in Π along the streamwise direction, represented by a parameter ξ

(Perry et al. 2002) can be neglected. The present pressure-gradient distribution appears to produce

a nonequilibrium APGTBL.

5.4.4 Turbulence intensities

Another feature of APG is the increase of turbulence intensity in the outer region when scaled with

uτ , resulting in a second peak, in addition to the peak in the near-wall region (e.g., Marusic and

Perry 1995). Figure 5.9 plots the distributions of root-mean-square of streamwise velocity fluctuation

for case D1 in comparison with the experimental measurements. Relatively large deviations close to

the wall are due to the effect of the wall model. The LES appears to reproduce the general increase

in turbulent intensities, in the outer region of the boundary layer, corresponding to increases in β in
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Figure 5.9. LES results; ⋄; case D1 and △; corresponding experimental measurements of the stream-
wise turbulence intensity. δ is the local boundary layer thickness. From the bottom, station 1 (green),
2 (purple), 3 (red), 4 (blue), and 5 (black)

the streamwise direction. But the LES somewhat underestimates the experimental values and does

not capture the turbulent intensity peak at the most downstream station.

Figures 5.10 show the root-mean-square of streamwise velocity fluctuation and the Reynolds

shear stress at five locations from cases D1 to D5. Notations follow Figure 5.6. The streamwise

velocity fluctuation profiles are in good agreement with that of measurements with small deviations,

especially in the region close to the wall. Data are shifted by 1 unit for clarity. No data is available for

the Reynolds shear stress. Reynolds number similarity is observed in the mean velocity defect, the

turbulent intensity and the Reynolds shear stress profiles over two orders of magnitude in Reynolds

number when β is held constant.
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Chapter 6

Conclusions

The near-wall SGS model (Chung and Pullin 2009) is extended to perform LES of the spatially

developing turbulent boundary layer over a flat and smooth wall. Chapter 2 is dedicated to presenting

a numerical algorithm to solve the incompressible Navier-Stokes equations, which is suitable for

simulating such a flow. In Chapter 3, LES of the ZPGTBL at very high Reynolds number were

successfully performed and some possible scenarios on its behavior at infinite Reynolds number limit

were explored. One intrinsic disadvantage of the current wall-model methodology is that it cannot

probe the near-wall behavior of turbulent boundary layer. This has been presently addressed by

the use of a predictive inner–outer wall model (Marusic et al. 2010a). The detailed statistics of the

streamwise velocity in the inner-region of the ZPGTBL, as obtained from the combination of the

LES and the predictive innter-outer model, were presented in Chapter 4. Finally, it has been shown

in Chapter 5 that our wall-model is capable of reproducing some of the representative features of

the turbulent boundary layer under an adverse-pressure gradient. In the following, we summarize

the contributions of each of the chapters.

6.1 LES of the zero-pressure gradient turbulent boundary

layer

The present near-wall approach utilizes an integration across the wall-adjacent layer coupled to an

analytical model for the LES slip velocity at a raised virtual wall, derived from the basic stretched-

vortex SGS model. The model parameters are h+
ν , obtained empirically, and h0. The “log law”

(3.13) is obtained from the near-wall SGS ansatz with an assumption that attached, SGS structures

have sizes that scale with linear distance from the wall. At the scale of the boundary layer thickness,

the wall model can be interpreted as essentially a variable-strength vortex sheet attached to the

wall. The wall model describes the internal sheet structure in a way that provides its strength, or

velocity jump, given by (3.13), which couples this structure to the outer-flow LES. We note that
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some parts of the composite wall-model LES are independent of the stretched-vortex SGS model, for

example, equation (3.11) describing the wall-normal velocity gradient. This could be used combined

with other SGS closures. (3.13), however is particular to the stretched-vortex model. The present

LES ansatz follows that of Chung and Pullin (2009) for unidirectional flow. Vector versions of the

wall model on a surface where the flow direction changes can easily be formulated starting from an

integration across the two components of the wall-parallel momentum equation.

Our LES indicates that a moderately complex wall model is capable of capturing the principal

features, including Reynolds number effects, of the smooth-wall, zero-pressure gradient flat-plate

turbulent boundary layer at essentially arbitrarily large Reynolds numbers and at cost independent

of the Reynolds numbers. These LES are not perfect and display some near-wall effects associated

with finite resolution and wall modeling. LES at even larger Reynolds numbers appear viable but

could need higher precision arithmetic, at least for solving the auxiliary equation obtained from

the wall-normal averaged, streamwise momentum equation. A useful feature of the model is that

detailed resolution of the near-wall boundary layer is apparently not required to capture interesting

flow properties such as the skin friction and the main features of the mean velocity profile in their

dependence on Reθ. The other side of the coin is that a possible disadvantage of our approach is

that it provides no direct quantitative information on the near-wall region.

An interesting result of the LES over a range of Reynolds number inaccessible to both current

DNS and experiment, is that, within the outer part of the turbulent boundary layer, the streamwise

turbulence intensity scales with the wall friction velocity uτ and with neither the free-stream velocity

U∞ nor a mixed-scaling combination of uτ and U∞. While it cannot be ruled out that this is an

artifact of the wall model, the agreement with surface layer data over the small region of overlap lends

some support to this conclusion. The main parameters of the LES are reasonably well described by

well-known asymptotic models of the smooth-wall flat plate boundary layer.

6.2 Inner-layer predictions for the flat-plate turbulent bound-

ary layer combining a predictive wall-model with LES

We have combined the present LES/wall-model with an inner–outer predictive model (Marusic et al.

2010a, Mathis et al. 2011) to calculate the statistics of the fluctuating streamwise velocity in the

inner region of the zero-pressure gradient turbulent boundary layer. The LES provides a time series

of the streamwise velocity signal within the logarithmic region, which is then filtered and used as

an input for the inner–outer predictive model to provide a streamwise fluctuating velocity within a

region which is inaccessible to both the present LES (with a wall model) at all Reynolds numbers

and present experimental measurements at very high Reynolds numbers.

We first tested the effectiveness of this approach at intermediate Reynolds number, Reτ ∼ 7, 300,
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13, 600, and 19, 000. This reproduced velocity fluctuations within the near-wall region, approx-

imately 0 ≤ z+ < 360, with reasonable agreement with direct experimental measurements for

the streamwise turbulent intensities. Although small discontinuities are observed in the predicted

premultiplied energy spectra map, the composite model captures the general trend of its energy dis-

tribution including the inner peak and a suggestion of the existence of outer peak in the wall-normal

profile of turbulent intensities. It has also been shown that the deviations of the predictions from

experiments are of the same order as those obtained using the velocity signal taken from experiments

as input to the inner–outer predictive model. Time series obtained from the LES used as input to the

inner–outer predictive model then provided predictions at the substantially larger Reynolds numbers

of Reτ = 62, 000, 100, 000, and 200, 000. Further, higher-order statistics comprising the skewness

and kurtosis of the streamwise velocity fluctuations up to Reτ ∼ O(105) were also obtained and

shown to give good agreement with experimental measurements at intermediate Reynolds numbers.

The LES-predictive inner–outer results support a log-like increase in the inner peak of the stream-

wise turbulence intensity with increasing Reτ and provide prediction within a gap in log(Reτ ) space

between present laboratory measurements and surface-layer, atmospheric experiments. Overall, the

LES appears to successfully capture the very-large-scale motions that are hypothesized to drive this

increase within the predictive inner–outer model.

Two principal advances of the present work can be summarized as follows: First, velocity time

series obtained from LES and used as input to the inner–outer predictive model can be used to

extend the wall-normal range of the LES well into the near-wall region. This has been demonstrated

for the zero-pressure gradient, smooth-wall turbulent boundary layer, but the methodology appears

sufficiently robust to be applicable to other wall-bounded turbulent flows such as pipe and channel

flows and boundary layers in the presence of pressure gradients. Second, the results have provided

predictions of the dependence of the near-wall peak in streamwise turbulent intensities that are

beyond the range of current laboratory experimental facilities.

6.3 LES of the adverse-pressure gradient turbulent boundary

layer

Owing to the local nature of our wall model and the interior SGS model, the present wall-model

LES is applicable to the adverse-pressure gradient turbulent boundary layer. The pressure gradient

reported in the experimental studies (e.g., Marusic and Perry 1995, Harun et al. 2010, Monty

et al. 2011) were successfully reproduced in simulation by directly applying pressure as a boundary

condition on the upper surface of the domain. We first compared results at Reτ ≈ 2 × 103 with

experimental measurements using a relatively long domain, Lx = 72δ0. Except for the region close to

the wall, the mean velocity profiles and turbulent intensity were found to be in reasonable agreement
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with experiments, including the pressure gradient parameters, β, K, and (dp/dx)+. The recognizable

features of the APGTBL, such as an amplified wake in the mean velocity profile and an increase

in turbulent intensity in the outer region were reproduced. Most importantly, it was found that

our wall ODE was capable of simulating the correct distribution of the wall shear stress along the

streamwise direction under an adverse-pressure gradient.

We also computed the “nonequilibrium” APGTBL at Reynolds number up to Reτ ≈ 2×105 using
the same profile of pressure-gradient distribution, so that the flow experienced the same upstream

history of the pressure gradient. The resulting distribution of β was found not to be very sensitive

to the Reynolds number itself and showed similar profiles for the various LES performed. The mean

velocity defect and the turbulent intensity profiles, when normalized by the friction velocity uτ and

Rotta-Clauser parameter ∆, shows good collapse in the outer part of boundary layer over a wide

range of Reynolds number at each measurement station, where almost matched β is achieved.

Finally we remark that our LES approach to wall-bounded turbulent flows is not limited to

either boundary layers over flat surfaces or even to attached flow and can, with further development,

be applied to three-dimensional boundary layers over curved surfaces and to flow with separation.

These applications are left for future work.
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Appendix A

Numerical Details

A.1 SGS model implementation

As discussed previously in §3.2, our subgrid-scale model takes the velocity ui and velocity gradient

tensor ∂ui/∂xj as a part of inputs. With respect to implementation, some complexity is caused by

the staggered-grid formulation of variables (see Figure 2.3). As a result, the derivatives of velocity

components naturally obtained in the process of computing nonlinear terms in the Navier-Stokes

equation locate at several different positions on the grid. Our choice is to interpolate values of

necessary variables into one location for each computational cell. The sub-grid stresses, provided by

the SGS model, will then be interpolated into various locations necessary to provide ∂Tij/∂xi in the

generically filtered Navier–Stokes equation (3.1). Our scheme is described in Figure A.1. There are

two choices for the location where the SGS model can be defined, either at the cell center or at the

cell corner. The cell corner is used for all the results presented in this thesis owing to the boundary

issues. The other choice (defining at the cell center), however, has one possible advantage that the

continuity constraint is assured to the machine precision from the Poisson-pressure equation, which

is originally defined at the cell center. It might improve the numerical stability but it is not pursued

presently.

A.2 Morinishi’s schemes

The first derivative at midpoints, the second derivative with standard collocated formulas and the

interpolations are evaluated with fourth-order accuracy as

(
df

dx

)

i−1/2

=
−fi+1 + 27fi − 27fi−1 + fi−2

24∆x
+O(∆x4), (A.1)

(
d2f

dx2

)

i

=
−fi+2 + 16fi+1 − 30fi + 16fi+1 − fi−2

12∆x2
+O(∆x4), (A.2)

fi−1/2 =
−fi+1 + 9fi + 9fi−1 − fi−2

16
+O(∆x4), (A.3)
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∂y

∂ui

∂xj
→ Tij

∂ui

∂xj
→ Tij
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Txz

Txy

∂Txx

∂x ,
∂Txy

∂y , ∂Tzx

∂z
∂Txy

∂x ,
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∂y ,
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∂z

∂Txz

∂x ,
∂Tyz

∂y , ∂Tzz

∂z

—– or —–
Interpolation Interpolation

Derivative Derivative

Figure A.1. Staggered-grid formulation for the subgrid-scale model. At each stage, each marker
represents the same kind of variables described.

respectively. Following the notations of Morinishi et al. (1998), x represents the streamwise direction,

y, the wall-normal and z, the spanwise direction. The finite-difference operator and the interpolation

operator with stencil n acting on f with respect to x1 are denoted as

δnf

δnx1

∣∣∣
x1,x2,x3

≡ f(x1 + n∆x1/2, x2, x3)− f(x1 − n∆x1/2, x2, x3)

n∆x1
, (A.4)

and

f
(nx1)

∣∣∣
x1,x2,x3

≡ f(x1 + n∆x1/2, x2, x3) + f(x1 − n∆x1/2, x2, x3)

2
, (A.5)

respectively. Using these notations, Morinishi et al. (1998) presented fully conservative, fourth-

order-accurate convective schemes for a staggered-grid system as follows
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(Div − S4)i ≡
9

8

δ1
δ1xj

[(
9

8
uj

(1xi)− 1

8
uj

(3xi)

)
ui

(1xj)

]
− 1

8

δ3
δ3xj

[(
9

8
uj

(1xi)− 1

8
uj

(3xi)

)
ui

(3xj)

]
,

(Adv − S4)i ≡
9

8

(
9

8
uj

(1xi)− 1

8
uj

(3xi)

)
δ1ui

δ1xj

(1xj)

− 1

8

(
9

8
uj

(1xi)− 1

8
uj

(3xi)

)
δ3ui

δ3xj

(3xj)

,

(Skew− S4) ≡ 1

2
(Div − S4) +

1

2
(Adv − S4),

where (Div-S4), (Adv-S4), and (Skew-S4) denote the divergence form, advective form, and skew-

symmetric form of convective term of the fourth-order-accurate staggered-grid system, respectively.

A.3 Staggered-grid system in two directions and FFT in the

other

Note that in our numerical scheme, a staggered arrangement is used in the x-z plane only and that

no staggering is used in the y-direction. The y-direction is assumed periodic and all the velocity

components and the pressure are expanded in Fourier series along this direction. Let ∂/∂yF denotes

the derivative in Fourier space. Then both the divergence and advection forms of the convective

schemes are written as

(Div − S4)x =
9

8

δ1
δ1x

[(
9

8
u(1x)− 1

8
u(3x)

)
u(1x)

]
− 1

8

δ3
δ3x

[(
9

8
u(1x)− 1

8
u(3x)

)
u(3x)

]

+
9

8

δ1
δ1y

[(
9

8
v(1x)− 1

8
v(3x)

)
u(1y)

]
− 1

8

δ3
δ3y

[(
9

8
v(1x)− 1

8
v(3x)

)
u(3y)

]
+

∂

∂zF

(
9

8
w(1x)− 1

8
w(3x)

)
u,

(Div − S4)y =
9

8

δ1
δ1x

[(
9

8
u(1y)− 1

8
u(3y)

)
v(1x)

]
− 1

8

δ3
δ3x

[(
9

8
u(1y)− 1

8
u(3y)

)
v(3x)

]

+
9

8

δ1
δ1y

[(
9

8
v(1y)− 1

8
v(3y)

)
v(1y)

]
− 1

8

δ3
δ3y

[(
9

8
v(1y)− 1

8
v(3y)

)
v(3y)

]
+

∂

∂zF

(
9

8
w(1y)− 1

8
w(3y)

)
v,

(Div − S4)z =
9

8

δ1
δ1x

[
uw(1x)

]
− 1

8

δ3
δ3x

[
uw(3x)

]
+

9

8

δ1
δ1y

[
vw(1y)

]
− 1

8

δ3
δ3y

[
vw(3y)

]
+

∂

∂zF
ww,
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(Adv − S4)x =
9

8

(
9

8
u(1x)− 1

8
u(3x)

)
δ1u

δ1x

(1x)

− 1

8

(
9

8
u(1x)− 1

8
u(3x)

)
δ3u

δ3x

(3x)

+
9

8

(
9

8
v(1x)− 1

8
v(3x)

)
δ1u

δ1y

(1y)

− 1

8

(
9

8
v(1x)− 1

8
v(3x)

)
δ3u

δ3y

(3y)

+

(
9

8
w(1x)− 1

8
w(3x)

)
∂

∂zF
u,

(Adv − S4)y =
9

8

(
9

8
u(1y)− 1

8
u(3y)

)
δ1v

δ1x

(1x)

− 1

8

(
9

8
u(1y)− 1

8
u(3y)

)
δ3v

δ3x

(3x)

+
9

8

(
9

8
v(1y)− 1

8
v(3y)

)
δ1v

δ1y

(1y)

− 1

8

(
9

8
v(1y)− 1

8
v(3y)

)
δ3v

δ3y

(3y)

+

(
9

8
w(1y)− 1

8
w(3y)

)
∂

∂zF
v,

(Adv − S4)z =
9

8
u
δ1w

δ1x

(1x)

− 1

8
u
δ3w

δ3x

(3x)

+
9

8
v
δ1w

δ1y

(1y)

− 1

8
v
δ3w

δ3y

(3y)

+ w
∂

∂zF
w.

A.4 Discrete conservations and boundary conditions for the

channel flow case

The ghost-point scheme is employed for the fourth-order-accurate scheme. The points are extended

beyond the boundaries so that a consistent stencil can be used as in the interior. The scheme is

summarized in Figure A.2.

Figure A.2. The ghost-cell values for the fourth-order scheme
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The boundary conditions (values at ghost points) are designed to ensure global conservation in

the nonperiodic directions, i.e., so that the following discrete relation holds, (equi-spaced grids are

assumed for simplicity)

N∑

j=1

∆y
δφ

δy

∣∣∣
j
= φN+1/2 − φ1/2, (A.6)

where δφ/δy is an arbitrary finite-difference operator. j = 1/2 and j = N + 1/2 denote the lower

and upper walls, respectively. Its continuous equivalent is

∫ upperwall

lowerwall

∂φ

∂y
dy = [φ]

upperwall
lowerwall . (A.7)

Owing to the spatial periodicity in the other directions in the channel-flow setting, only the nonpe-

riodic direction needs to be considered.

A.4.1 Discrete conservation of mass

The wall-normal derivative seen in the continuity equation is integrated over the computational

domain Ω.

A.4.1.1 Second-order-accurate scheme

∫

Ω

(
δ1v

δ1y

)
dV =

∫

z

∫

x

N∑

j=1

∆y

(
vj+1/2 − vj−1/2

∆y

)
dxdz

=

∫

z

∫

x

(
vN+1/2 − v1/2

)
dxdz. (A.8)

Mass is conserved without any ghost points.

A.4.1.2 Fourth-order-accurate scheme

∫

Ω

(
9

8

δ1v

δ1y
− 1

8

δ3v

δ3y

)
dV =

∫

z

∫

x

N∑

j=1

∆y

(−vj+3/2 + 27vj+1/2 − 27vj−1/2 + vj−3/2

24∆y

)
dxdz

=

∫

z

∫

x

1

24

(
−vN+3/2 + 26vN+1/2 − vN−1/2

+ v3/2 − 26v1/2 + v−1/2

)
dxdz. (A.9)

For the above equation to satisfy (A.6) the following boundary values at ghost points j = N + 3/2

and j = −1/2 are obtained:
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v3/2 − 26v1/2 + v−1/2 = −24v1/2, (A.10)

−vN+3/2 + 26vN+1/2 − vN−1/2 = −24vN+1/2. (A.11)

Hence,

v−1/2 = 2v1/2 − v3/2, (A.12)

vN+3/2 = 2vN+1/2 − vN−1/2. (A.13)

This is equivalent to approximating ∂2v/∂y2 = 0 with second-order-accurate central differences,

which is reasonable for a solid wall (no-slip) condition

δ2v

δy2

∣∣∣
wall

= 0 +O(∆y2). (A.14)

With the above relation, the scheme gives the first derivative with first-order accuracy close to the

wall

δv

δy

∣∣∣
3/2

=
∂v

∂y
− 1

48

∂2v

∂y2
∆y +O(∆y2). (A.15)

A.4.2 Discrete conservation of momentum

The convection term that contains the wall-normal derivative in the momentum equation in the

y-direction is integrated over the computational domain.

A.4.2.1 Second-order-accurate scheme

∫

Ω

(
δ1u

(1y)v(1x)

δ1y

)
dV =

∫

z

∫

x

N∑

j=1

∆y

(
(v(1x)u)j+1/2 − (v(1x)u)j−1/2

∆y

)
dxdz

=

∫

z

∫

x

N∑

j=1

(
(v(1x)u)j+1/2 − (v(1x)u)j−1/2

)
dxdz

=

∫

z

∫

x

(
(v(1x)u)N+1/2 − (v(1x)u)1/2

)
dxdz. (A.16)

Momentum is conserved without any ghost points.
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A.4.2.2 Fourth-order-accurate scheme

∫

Ω

(
9

8

δ1
δ1y

[
v(x)u(1y)

]
− 1

8

δ3
δ3y

[
v(x)u(3y)

])
dV

=

∫

z

∫

x

N∑

j=1

∆y

(
−(v(x)u(3y))j+3/2 + 27(v(x)u(1y))j+1/2 − 27(v(x)u(1y))j−1/2 + (v(x)u(3y))j−3/2

24∆y

)
dxdz

=

∫

z

∫

x

N∑

j=1

1

24
((uv)j) dxdz, (A.17)

where, v(x) = 9
8v

(1x)− 1
8v

(3x) and

(uv)1 =
1

24

(
−(v(x)u(3y))5/2 + 27(v(x)u(1y))3/2 − 27(v(x)u(1y))1/2 + (v(x)u(3y))−1/2

)
,

(uv)2 =
1

24

(
−(v(x)u(3y))7/2 + 27(v(x)u(1y))5/2 − 27(v(x)u(1y))3/2 + (v(x)u(3y))1/2

)
,

(uv)3 =
1

24

(
−(v(x)u(3y))9/2 + 27(v(x)u(1y))7/2 − 27(v(x)u(1y))5/2 + (v(x)u(3y))3/2

)
,

...

(uv)N =
1

24

(
−(v(x)u(3y))N+5/2 + 27(v(x)u(1y))N+3/2 − 27(v(x)u(1y))N+1/2 + (v(x)u(3y))N−1/2

)
.

Thus for the equation (A.17) to satisfy (A.6), i.e.,

∫

z

∫

x

N∑

j=1

1

24
(uv)jdxdz =

∫

z

∫

x

1

24

(
(uv)N+1/2 − (uv)1/2

)
, (A.18)

the following boundary conditions are required:

(v(x)u(3y))−1/2 = 27(v(x)u(1y))1/2 − (v(x)u(3y))3/2 − (v(x)u(3y))1/2 − 24(uv)1/2, (A.19)

(v(x)u(3y))N+3/2 = 27(v(x)u(1y))N+1/2 − (v(x)u(3y))N−1/2 − (v(x)u(3y))N+1/2 − 24(uv)N+1/2.

(A.20)

Similar analysis should be applied to (vw(3y))−1/2 and (vw(3y))N+3/2.



90

A.4.3 Other conditions for fourth-order-accurate schemes

The values of u0, u−1, uN+1, and uN+2 will be obtained as a solution of the following equations:

9

8
u(1y)− 1

8
u(3y)

∣∣∣
1/2

= u1/2, (A.21)

δ3u

δy3

∣∣∣
1/2

= 0 (at bottom wall). (A.22)

With this condition the viscous terms satisfies the desecrate conservation in the wall-normal direction

with fourth-order accuracy. The viscous term that contains a wall-normal derivative in the x-

momentum equation is integrated over the computational domain

∫

Ω

(
δ

δy

δu

δy

)
dV =

∫

z

∫

x

1

24

(
−δu

δy

∣∣∣
N+3/2

+ 26
δu

δy

∣∣∣
N+1/2

− δu

δy

∣∣∣
N−1/2

+
δu

δy

∣∣∣
3/2
− 26

δu

δy

∣∣∣
1/2

+
δu

δy

∣∣∣
−1/2

)
dxdz. (A.23)

Hence we need the following

δu

δy

∣∣∣
−1/2

= 2
δu

δy

∣∣∣
1/2
− δu

δy

∣∣∣
3/2

, (A.24)

δu

δy

∣∣∣
N+3/2

= 2
δu

δy

∣∣∣
N+1/2

− δu

δy

∣∣∣
N−1/2

. (A.25)

With equation (A.14), we get the condition (A.22). Similarly with the upper wall, also with stream-

wise velocity w, solving the equation gives,

u0 =
8

3
u1/2 − 2u1 +

1

3
u2, (A.26)

u−1 = 8u1/2 − 9u1 + 2u2, (A.27)

uN+1 =
8

3
uN+1/2 − 2uN +

1

3
uN−1, (A.28)

uN+2 = 8uN+1/2 − 9uN + 2uN−1, (A.29)

w0 =
8

3
w1/2 − 2w1 +

1

3
w2, (A.30)

w−1 = 8w1/2 − 9w1 + 2w2, (A.31)

wN+1 =
8

3
wN+1/2 − 2wN +

1

3
wN−1, (A.32)

wN+2 = 8wN+1/2 − 9wN + 2wN−1. (A.33)
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With the above conditions, Taylor expansion analysis gives the order of accuracy of second derivatives

as,

δ2u

δy2

∣∣∣
1
=

∂2u

∂y2
+

7

72

∂3u

∂y3
∆y +O(∆y2), (A.34)

δ2u

δy2

∣∣∣
2
=

∂2u

∂y2
− 1

108

∂3u

∂y3
∆y +O(∆y2), (A.35)

close to the wall for the general case. The continuity equation at points j = 0 and j = N + 1 gives

the values for v−3/2 and vN+5/2 needed for calculating (Div.-S4)y ,

−
(
9

8

δ1u

δ1x
− 1

8

δ3u

δ3x
+

∂

∂zF
w

)
=

9

8

δ1v

δ1y
− 1

8

δ3v

δ3y

=
−v3/2 + 27v1/2 − 27v−1/2 + v−3/2

24∆y
. (A.36)

Using equations (A.12) and (A.13),

v−3/2 = 27v1/2 − 26v3/2 − 24∆y

[
9

8

δ1u

δ1x
− 1

8

δ3u

δ3x
+

∂

∂zF
w

]

0

, (A.37)

vN+5/2 = 27vN+1/2 − 26vN−1/2 − 24∆y

[
9

8

δ1u

δ1x
− 1

8

δ3u

δ3x
+

∂

∂zF
w

]

N+1

. (A.38)

Unfortunately, these conditions for v at j = −3/2 and N+5/2 have not been found to be successful.

For example, in simulating the fully developed laminar flow between walls, coupling with u velocities

results in an instability through v velocity and does not allow the flow to stay laminar. Instead,

from the condition that the fourth-order-accurate interpolated velocity v at walls is the velocity at

the wall, i.e.,

−v−3/2 + 4v−1/2 + 4v3/2 − v5/2

6
= v1/2 +O(∆y4), (A.39)

−vN+5/2 + 4vN+3/2 + 4vN−1/2 − vN−3/2

6
= vN+1/2 +O(∆y4). (A.40)

Together with (A.12) and (A.13), the following conditions are obtained,



92

v−3/2 = −6v1/2 + 4v−1/2 + 4v3/2 − v5/2

= 2v1/2 − 2v5/2, (A.41)

vN+5/2 = −6vN+1/2 + 4vN+3/2 + 4vN−1/2 − vN−3/2

= 2vN+1/2 − 2vN−5/2. (A.42)

To compute the skew-symmetric form of the nonlinear terms, i.e., ((Div-S4)+(Adv-S4))/2, one

needs v δ3w
δ3y

and v(x) δ3uδ3y
at j = −1/2 and j = N + 3/2. Since v(x)u(3y) and vw(3y) are obtained as

in (A.19) and (A.20), we also have

u1/2 + u−5/2

2
= u

(3y)
−1/2, (A.43)

u1/2 − u−5/2

3∆y
=

δ3u

δ3y−1/2

. (A.44)

Therefore

v(x)
δ3u

δ3y−1/2

= v(x)
2u1/2 − 2u

(3y)
−1/2

3∆y
, (A.45)

v(x)
δ3u

δ3yN+3/2

= v(x)
−2uN+1/2 + 2u

(3y)
N+3/2

3∆y
. (A.46)

Similarly for w,

v
δ3w

δ3y −1/2

= v
2w1/2 − 2w

(3y)
−1/2

3∆y
, (A.47)

v
δ3w

δ3y N+3/2

= v
−2wN+1/2 + 2w

(3y)
N+3/2

3∆y
. (A.48)

A.5 Helmholtz solver using discrete Fourier cosine transform

In this section the fast Helmholtz solver using the discrete Fourier cosine transform will be reviewed

and the method for handling the issue regarding the higher-order scheme will be presented. For

simplicity, assume the variables are already transferred into Fourier space in the z-direction, i.e.,
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p = p(xi, yj, kz). The inverse discrete cosine transform along the x-direction is defined as

p(xi, yj, kz) =
2

N

N−1∑

kx=0

p̃(kx, yj , kz) cos (
πk(i+ 1/2)

N
). (A.49)

The Poisson-pressure equation requiring solution is

DGp(xi, yj , kz) = f(xi, yj , kz), (A.50)

for some right-hand side f(xi, yj , kz).

A.5.1 Second-order-accurate scheme

The equation

DGp =
δ1
δ1xi

(
δ1p

δ1xi

)
, (A.51)

is the discretization for the second-order-accurate scheme. Substituting (A.49) into the y-derivative

in (A.50) gives

2

N

N−1∑

kx=0

[
1

∆x2
λi +

δ1
δ1y

(
δ1
δ1y

)
− k2z

]
p̃(kx, yj, kz) cos (a(i+

1

2
))

=
2

N

N−1∑

kx=0

f̃(kx, yj , kz) cos (a(i +
1

2
)), (A.52)

where a = πkx/N and

λi =
cos (a(i + 3

2 ))− 2 cos (a(i + 1
2 )) + cos (a(i− 1

2 ))

cos (a(i + 1
2 ))

,

= 2 (cos (a)− 1) . (A.53)

Simplifying and equating coefficients of corresponding cosines gives

[
1

∆x2
λi +

δ1
δ1y

(
δ1
δ1y

)
− k2z

]
p̃ = f̃ , (A.54)

where f̃ = f̃(kx, yj, kz), p̃ = p̃(kx, yj , kz). This is the method whereby the tri-diagonal δ1
δ1x

(
δ1
δ1x

)

elements of the operator DG are diagonalized. For the second-order scheme, the tri-diagonal matrix

diagonalized by the discrete cosine transform has automatically the same structure of the tri-diagonal

matrix that needs to be solved. But as pointed out earlier, for the higher-order scheme this is not

the case.
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A.5.2 Fourth-order-accurate scheme

Similarly with the second-order-accurate method, using

DGp =
δ1
δ1xi

[
9

8

δ1
δ1xi

(
9

8

δ1p

δ1xi
− 1

8

δ3p

δ3xi

)
− 1

8

δ3
δ3p

(
9

8

δ1p

δ1xi
− 1

8

δ3p

δ3xi

)]
, (A.55)

for the discretization, we obtain for the fourth-order case,

2

N

N−1∑

kx=0

[
1

576∆x2
λi +

δ2

δy2
− k2z

]
p̃ cos (a(i +

1

2
)) =

2

N

N−1∑

kx=0

f̃ cos (a(i +
1

2
)), (A.56)

where

δ2

δy2
=

δ1
δ1y

[
9

8

δ1
δ1y

(
9

8

δ1
δ1y
− 1

8

δ3
δ3y

)
− 1

8

δ3
δ3y

(
9

8

δ1
δ1y
− 1

8

δ3
δ3y

)]
, (A.57)

λi =

[
cos (a(i+

7

2
))− 54 cos (a(i+

5

2
)) + 783 cos (a(i +

3

2
))− 1460 cos (a(i +

1

2
))

+ 783 cos (a(i − 1

2
))− 54 cos (a(i − 3

2
)) + cos (a(i − 5

2
))

]
/ cos (a(i+

1

2
))

= 2 (cos (3a)− 54 cos (2a) + 783 cos (a)− 730) . (A.58)

Simplifying to get the discrete Helmholtz equation as follows,

[
1

576∆x2
λi +

δ2

δy2
− k2z

]
p̃ = f̃ . (A.59)

As in the second-order scheme, now the septa-diagonal matrix δ2/δx2 elements of operator DG is

diagonalized and the actual matrix that will be solved using this method is

1

576∆y2




−677 729 −53 1 0 0 0

729 −1459 783 −54 1 0 0

−53 783 −1460 783 −54 1 0

1 −54 783 −1460 783 −54 1

0 1 −54 783 −1460 783 −53
0 0 1 −54 783 −1459 729

0 0 0 1 −53 729 −677




.

This is the one-dimensional, fourth-order finite difference matrix for δ2/δy2 with seven grid points,

when the data is even around the boundaries.
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Appendix B

Parallelization; scaling

performance

Scalability tests in the following sections show that the data transpose method scales reasonably

well up to 64 cores. When the problem size gets bigger, the scalability is degraded but is still

good. See Tables B.4 and B.6. This degrading comes from the communication-free subroutines. The

computation is performed using the Millikan Cluster, where each node has two quad-core processors.

Millikan consists of

• 7 Dell Poweredge 1950 nodes

• 8 Dell Poweredge R410 nodes

• Gigabit ethernet interconnect

• Rocks 5.2 Provisioning

• Maui/Torque scheduling and resource management.

B.1 Poisson-pressure solver

In solving the primitive-variable incompressible Navier-Stokes equation by a finite-difference method,

there is a need to solve a three-dimensional Poisson equation for pressure at each time step. Owing to

the numerical method discussed in §2.3, this reduces to a set of one-dimensional Helmholtz equations

in the z-direction. This section describes two methods and their performance to solve the Poisson-

pressure problem itself, which is typically the most expensive part of the numerical solution. As a

test case, the computational domain is divided by y-z slices. A Fourier-transform is performed in

the z-direction and a cosine transform in the y-direction. Then the problem reduces to Ax = b at

each grid point in the y-z plane. Two methods were used:

• Method 1: Solve Ax = b using parallel matrix solver.
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• Method 2: First transpose data and redistributed in x-z sliced domain and solve Ax = b using

serial matrix solver.

SCALAPACK is used in Method 1, and LAPACK in Method 2.

B.1.1 Observations

For example, when we discretized the domain by a fourth-order central difference scheme with the

grid points shown in Table B.1, A is a 384 × 384 septa-diagonal matrix, x and b are vectors with

384 elements. Ax = b needs to be solved 128× 64 times and A is different each time.

Results are shown in Table B.2. Although the whole data transposition requires additional

data communication (all-to-all), once the data is transposed, the speedup gained from running a

matrix solver from LAPACK in a parallel fashion is much bigger than the loss from the all-to-all

data transpose communication. Although solving a system of equations in SCALAPACK requires

communication between neighboring processes only, the matrix solver is implemented in a way that

all the processes are synchronized after each computation of Ax = b.

Nx Ny Nz

Case 1 384 64 128
Case 2 1024 256 256

Table B.1. The number of grid points in each direction. Case 1: A is 384× 384 matrix. Ax = b has
to be solved 128× 64 times. Case 2: A is 1024× 1024 matrix. Ax = b has to be solved 256× 256
times.

# of process method 1 method 2
Case 1 2 1.738971 0.560757
Case 1 4 1.676841 0.326388
Case 1 8 1.950304 0.182092
Case 1 16 29.781431 0.380158
Case 1 32 29.682436 0.305485
Case 1 64 60.344768 0.291269

Case 2 4 4.174672
Case 2 8 2.258038
Case 2 16 4.122218
Case 2 32 3.862215
Case 2 64 1.821601

Table B.2. Computational time required to solve Ax = b
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B.2 Navier-Stokes solver

It has already been shown that, the current implementation of Scalapack (Method 1) is much slower

than the data-transpose scheme (Method 2). Detailed profiles of the current three-dimensional

Navier-Stokes solver with Method 2 are investigated in this section. The problem size is defined

by the parameters shown in Table B.3. The time (in seconds) required at each subroutine at the

slowest process are shown in Table B.4 for the case with LES-wall model, and in Table B.6 for the

DNS case. Tables B.5 and B.7 show them in percentile.

Nx Ny Nz

LES 384 64 128
DNS 256 256 256

Table B.3. Scaling test of Navier-Stokes solver, the number of grid points in each direction

B.2.1 LES case

The code scales reasonably well up to 64 processes, where speedup is 47.6. See Table B.4. It is

observed from Table B.5 that the most time-consuming part is to get the nonlinear term in the

governing equation (get nonlinear term), especially the subgrid-stress (get Tijdxj). Obviously, the

fraction of the computational time required for data transpose increases as the number of processes

increase, (transpose data in Poisson solver). However, this increase is not significant as a total over

the range of the number of processors 1 to 64.

B.2.2 DNS case

The code scales reasonably well up to 16 processes, where speedup is 13.9, but its performance

degrades when using more than 16 processes. See Table B.6. It seems that this is not due to

the communication load between processes, because the time consumed in communication-oriented

subroutines (get neighboring data, Poisson solver) did not increase much. The increase did occur

in get convective and process independent basic operations, such as get rhs and free memory. This

increase was rather attributed to the fact that the lower speck computer nodes in Millikan are

involved in computation. Table B.8 shows how long the fastest process had to wait for the slowest

process got its work done at each subroutines. 3.03s, 2.45s for 32 and 64 processes, respectively.

They consist more than 50% of the total computational time. It should be noted, however, that

even without this delay, the speedup is inferior to that of LES cases, 19.1 and 33.8 for 32 and 64

processes, respectively.
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# of process 1 2 4 8 16 32 64

Navier-Stokes solver/3 49.0 26.4 11.4 5.77 3.01 2.25 1.03
get neighboring data 0.00 0.00 0.00 0.00 0.01 0.02 0.02
get nonlinear term 44.8 24.0 10.5 5.30 2.74 1.85 0.87

wall model 0.29 0.16 0.06 0.03 0.01 0.01 0.00
outflow 0.00 0.00 0.00 0.00 0.00 0.00 0.00

viscous term 0.40 0.23 0.10 0.05 0.03 0.03 0.01
free memory 0.05 0.04 0.01 0.01 0.01 0.07 0.02

get rhs 0.36 0.20 0.07 0.03 0.02 0.03 0.01
solve for vels 1.18 0.61 0.25 0.12 0.06 0.04 0.02

get rhs 0.28 0.16 0.06 0.03 0.02 0.04 0.03
solve for p 0.67 0.42 0.17 0.09 0.06 0.07 0.04
project 0.20 0.13 0.04 0.02 0.01 0.02 0.01

data update 0.53 0.31 0.10 0.05 0.03 0.04 0.01

get nonlinear term 44.8 24.0 10.5 5.30 2.74 1.85 0.87
get boundary data 0.00 0.00 0.00 0.00 0.00 0.00 0.00

interpolation 1.04 0.62 0.24 0.12 0.07 0.09 0.04
get convective 5.18 3.13 1.24 0.66 0.33 0.32 0.12
get Tijdxj 38.6 20.3 9.06 4.54 2.36 1.65 0.73

Poisson solver (e-1) 6.64 4.20 1.72 0.91 0.58 0.73 0.37
memory allocate (e-1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
arrange data (e-1) 0.32 0.18 0.06 0.03 0.02 0.02 0.00
cosine forward (e-1) 0.41 0.23 0.09 0.05 0.02 0.01 0.01
transpose data (e-1) 0.28 0.50 0.18 0.10 0.18 0.38 0.26
arrange data (e-1) 0.33 0.19 0.07 0.04 0.02 0.02 0.01
lapack in x (e-1) 4.14 2.08 0.98 0.48 0.24 0.13 0.07
arrange data (e-1) 0.29 0.18 0.05 0.03 0.02 0.01 0.00
transpose data (e-1) 0.18 0.48 0.18 0.10 0.08 0.23 0.25
cosine inverse (e-1) 0.34 0.18 0.07 0.04 0.02 0.01 0.00
arrange data (e-1) 0.27 0.17 0.05 0.04 0.01 0.01 0.00
free memory (e-1) 0.09 0.06 0.01 0.01 0.00 0.01 0.00

Table B.4. Computational time required (seconds) at each stage. LES 384 × 128 × 64. The time
spent by the slowest process
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# of process 1 2 4 8 16 32 64

Navier-Stokes solver/3 100 100 100 100 100 100 100
get neighboring data 0.0 0.0 0.0 0.0 0.2 0.8 2.3
get nonlinear term 91.6 91.1 92.1 91.8 91.1 82.4 84.8

wall model 0.6 0.6 0.5 0.5 0.5 0.6 0.4
outflow 0.0 0.0 0.0 0.0 0.0 0.0 0.1

viscous term 0.8 0.9 0.9 0.9 0.9 1.5 1.0
free memory 0.1 0.1 0.1 0.2 0.2 3.1 0.2

get rhs 0.7 0.8 0.6 0.6 0.6 1.2 0.8
solve for vels 2.4 2.3 2.2 2.1 2.1 1.7 1.5

get rhs 0.6 0.6 0.5 0.6 0.7 1.8 3.1
solve for p 1.4 1.6 1.5 1.6 2.0 3.3 3.7
project 0.4 0.5 0.4 0.4 0.5 0.9 0.6

data update 1.1 1.2 0.9 0.9 1.0 2.0 1.2

get nonlinear term 100 100 100 100 100 100 100
get boundary data 0.0 0.0 0.0 0.0 0.0 0.0 0.1

interpolation 2.3 2.6 2.2 2.3 2.4 4.5 4.1
get convective 11.5 13.0 11.8 12.3 12.0 15.5 13.1
get Tijdxj 86.1 84.4 86.0 85.4 85.5 80.0 82.8

Poisson solver 100 100 100 100 100 100 100
memory allocate 0.0 0.0 0.0 0.0 0.0 0.1 0.1
arrange data 4.8 4.4 3.7 3.6 2.8 2.3 1.1
cosine forward 6.1 5.6 5.5 5.5 3.7 1.8 1.4
transpose data 4.1 11.8 10.3 10.9 30.5 52.7 69.0
arrange data 5.0 4.5 4.1 4.3 3.2 2.4 1.8
lapack in x 62.4 49.5 56.7 53.5 42.0 18.0 18.6
arrange data 4.4 4.2 2.8 3.3 2.7 1.1 0.5
transpose data 2.7 11.4 10.5 11.3 15.0 31.5 68.2
cosine inverse 5.1 4.2 4.3 4.2 2.9 1.3 1.1
arrange data 4.1 4.1 2.7 3.8 2.1 1.5 1.2
free memory 1.3 1.4 0.8 1.4 0.8 1.1 0.6

Table B.5. Computational time required (percentile) at each stage. LES 384× 128× 64. The time
spent by the slowest process
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# of process 1 2 4 8 16 32 64

Navier-Stokes solver/3 53.8 29.9 11.2 7.15 3.86 5.84 4.04
get neighboring data 0.00 0.34 0.13 0.15 0.17 0.26 0.55
get nonlinear term 31.4 18.7 6.63 4.26 2.27 3.31 1.98

wall model n/a n/a n/a n/a n/a n/a n/a
outflow 0.00 0.00 0.00 0.00 0.00 0.00 0.00

viscous term 2.04 1.15 0.55 0.40 0.17 0.24 0.12
free memory 0.23 0.17 0.05 0.05 0.03 0.46 0.29

get rhs 1.67 0.96 0.27 0.17 0.09 0.15 0.07
solve for vels 8.97 3.00 1.69 0.85 0.43 0.30 0.12

get rhs 1.35 0.76 0.25 0.20 0.15 0.40 0.49
solve for p 3.68 2.15 0.88 0.56 0.29 0.26 0.18
project 0.95 0.68 0.17 0.14 0.08 0.13 0.08

data update 2.81 1.63 0.39 0.29 0.16 0.24 0.12

get nonlinear term 31.4 18.7 6.63 4.26 2.27 3.31 1.98
get boundary data 0.01 0.01 0.00 0.01 0.01 0.01 0.01

interpolation 3.88 2.37 0.81 0.52 0.30 0.59 0.44
get convective 26.6 15.8 5.61 3.61 1.88 2.61 1.47
get Tijdxj 0.96 0.54 0.22 0.15 0.09 0.14 0.10

Poisson solver 3.68 2.15 0.88 0.56 0.29 0.26 0.18
memory allocate 0.00 0.00 0.00 0.00 0.00 0.00 0.00
arrange data 0.16 0.09 0.05 0.04 0.02 0.01 0.01
cosine forward 0.26 0.14 0.06 0.03 0.02 0.01 0.00
transpose data 0.13 0.24 0.07 0.07 0.04 0.07 0.07
arrange data 0.17 0.09 0.05 0.04 0.02 0.01 0.01
lapack in x 2.14 0.95 0.50 0.25 0.13 0.07 0.03
arrange data 0.22 0.13 0.02 0.02 0.01 0.02 0.01
transpose data 0.09 0.23 0.07 0.06 0.03 0.07 0.06
cosine inverse 0.22 0.11 0.05 0.03 0.01 0.01 0.00
arrange data 0.24 0.15 0.02 0.02 0.01 0.02 0.01
free memory 0.04 0.03 0.01 0.00 0.00 0.00 0.00

Table B.6. Computational time required (seconds) at each stage. DNS case 2563. The time spent
by the slowest process



101

# of process 1 2 4 8 16 32 64

Navier-Stokes solver/3 100 100 100 100 100 100 100
get neighboring data 0.0 1.1 1.2 2.1 4.3 4.5 13.7
get nonlinear term 58.4 62.6 59.4 59.5 58.7 56.7 49.1

wall model n/a n/a n/a n/a n/a n/a n/a
outflow 0.0 0.0 0.0 0.0 0.1 0.1 0.1

viscous term 3.8 3.8 4.9 5.6 4.3 4.1 3.1
free memory 0.4 0.6 0.4 0.7 0.7 8.0 7.1

get rhs 3.1 3.2 2.5 2.4 2.4 2.6 1.8
solve for vels 16.7 10.0 15.2 11.8 11.1 5.2 2.9

get rhs 2.5 2.5 2.3 2.7 3.8 6.9 12.3
solve for p 6.8 7.2 7.9 7.8 7.4 4.5 4.4
project 1.8 2.3 1.6 2.0 2.2 2.3 2.1

data update 5.2 5.4 3.5 4.1 4.1 4.1 3.0

get nonlinear term 100 100 100 100 100 100 100
get boundary data 0.0 0.0 0.1 0.1 0.2 0.4 0.3

interpolation 12.3 12.7 12.1 12.1 13.4 17.5 22.1
get convective 84.6 84.4 84.5 84.4 82.3 78.0 72.9
get Tijdxj 3.1 2.9 3.3 3.4 4.1 4.0 4.8

Poisson solver 100 100 100 100 100 100 100
memory allocate 0.0 0.0 0.0 0.0 0.0 0.0 0.0
arrange data 4.5 4.4 5.2 7.0 6.9 5.1 3.6
cosine forward 7.0 6.4 6.3 5.8 5.8 5.7 2.1
transpose data 3.5 11.5 8.5 12.5 15.4 25.6 41.7
arrange data 4.5 4.3 5.3 7.0 7.2 5.5 3.3
lapack in x 58.4 44.4 57.0 45.1 44.1 27.1 19.5
arrange data 6.0 6.0 2.7 4.0 3.9 6.2 4.0
transpose data 2.5 10.6 8.0 11.1 11.3 28.0 33.8
cosine inverse 5.9 5.2 5.4 4.5 4.7 4.6 2.0
arrange data 6.6 7.0 2.8 3.7 3.4 6.9 3.2
free memory 1.1 1.3 0.7 1.0 0.7 1.4 1.6

Table B.7. Computational time required (percentile) at each stage. DNS case 2563. The time spent
by the slowest process
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# of process 32 32 64 64

slowest fastest slowest fastest

Total waited time n/a 3.03 n/a 2.45
get neighboring data 0.26 0.05 0.55 0.02
get nonlinear term 3.31 1.66 1.98 0.73

wall model n/a n/a n/a n/a
outflow 0.00 0.00 0.00 0.00

viscous term 0.24 0.10 0.12 0.04
free memory 0.46 0.05 0.29 0.02

get rhs 0.15 0.04 0.07 0.02
solve for vels 0.30 0.21 0.12 0.08

get rhs 0.40 0.34 0.49 0.45
solve for p 0.26 0.22 0.18 0.16
project 0.13 0.05 0.08 0.04

data update 0.24 0.06 0.12 0.03

get nonlinear term 3.31 1.66 1.98 0.73
get boundary data 0.01 0.01 0.01 0.00

interpolation 0.59 0.24 0.44 0.13
get convective 2.61 1.36 1.47 0.55
get Tijdxj 0.14 0.04 0.10 0.02

Table B.8. Computational time required (seconds) at each stage at the slowest process and the
fastest process. DNS case 2563
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