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Abstract

Social network analysis emerged as an important area in sociology in the early 1930s,
marking a shift from looking at individual attribute data to examining the relation-
ships between people and groups. Surveying many different types of real-world net-
works, researchers quickly found that different types of social networks tend to share
a common set of structural characteristics, including small diameter, high clustering,
and heavy-tailed degree distributions. Moving beyond real networks, in the 1990s
researchers began to propose random network models to explain these commonly
observed social network structures. These models laid the foundation for investiga-
tion into problems where the underlying network plays a key role, from the spread
of information and disease, to the design of distributed communication and search
algorithms, to mechanism design and public policy. Here we focus on the role of peer
effects in social networks. Through this lens, we develop a mathematically tractable
random network model incorporating searchability, propose a novel way to model
and analyze two-sided matching markets with externalities, model and calculate the
cost of an epidemic spreading on a complex network, and examine the impact of
conforming and non-conforming peer effects in vaccination decisions on public health
policy.

Throughout this work, the goal is to bring together knowledge and techniques from
diverse fields like sociology, engineering, and economics, exploiting our understanding
of social network structure and generative models to understand deeper problems that
— without this knowledge — could be intractable. Instead of crippling our analysis,
social network characteristics allow us to reach deeper insights about the interaction

between a particular problem and the network underlying it.
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Chapter 1

Introduction

Social network research, and more generally, network science, is more than just a
current hot topic. With the global spread of technology over the last century, we find
ourselves in an increasingly networked world. What started as a relatively minor stu-
dent protest in Tunisia quickly spread to Egypt and the entire Middle East, fueled by
social media technology like Twitter. Companies seeking to improve their visibility
and attract new customers attend social media marketing seminars where they learn
the right way to advertise on Facebook. In 2009, swine flu in Mexico spread to the
United States and from there to Europe, Africa, and Asia, quickly jumping countries
and ethnicities. Clearly, peer effects in both on-line and physical social networks have
the potential to affect our day-to-day lives and the technology we develop. Under-
standing and analysis of social networks and their impact on different applications
can often be complex and difficult, but the potential reward of such research cannot
be overstated.

Social network analysis emerged as an important field in sociology in the 1930s,
marking a shift from studying attribute data (this person has this characteristic) to
relational data (these people share these relationships) [51, 122]. With these “so-
ciograms”, sociologists began to define metrics for determining the importance and
influence of individuals and groups in a given society [131, 122], paving the way for
modern analyses of everything from terrorist networks to the interactions of Fortune-
500 companies in financial markets. In the most basic of these networks, relationships

between individuals are characterized by a set of nodes (representing individual peo-



2

ple) and edges (representing the relationships between individuals) and summarized
in a symmetric, binary adjacency matrix. Each entry in such a matrix is either one
or zero, representing either the presence or absence of a particular type of relation-
ship. Note that this type of network is undirected — all relationships are symmetric.
More sophisticated social networks can capture directed relationships, different levels
of relationships (using signed edge weights), and even different types of relationships
(multi-graphs).

Surveying many different types of real-world networks, researchers quickly found
that different types of social networks tended to share a common set of character-
istics. For example, many social networks exhibit a small diameter, meaning that
the average (or maximum) distance between nodes scales logarithmically rather than
linearly with the number of nodes in the network [89, 132]. Further, researchers also
observed the tendency of nodes to cluster together — many tightly knit groups of
nodes characterized by a relatively high density of ties [63, 133]. This could partly be
explained by the presence of homophily, the tendency of individuals to associate with
similar people, a characteristic that has been observed in many real-world studies
and documented in [88], but has also been observed in other types of complex net-
works, including the Internet and biological networks. Finally, many social networks
(particularly those representing on-line relationships) were observed to be scale-free,
meaning that the networks’ degree distribution follows some sort of power law [11, 1].
This branch of social network research can broadly be classified as measurement —
using surveys and studies of real-world and on-line social networks to determine a set
of universal characteristics present in all social networks.

Moving beyond measurement, however, we move into the world of modeling,
emerging as an important area of social network research in the 1990s. Researchers
in this area propose random and deterministic network models to explain some of
the commonly observed social network structures described above. For example, the
Erdos-Rényi random network model, while not initially designed to model a social
network, exhibits small diameter and the emergence of a giant component for various

input parameters [97]. An explosion of papers looking at random network models
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followed the seminal paper by Watts and Strogatz in 1998, which proposed a ran-
dom network model that exhibits the small-world effect — combining small diameter
with high clustering [133]. Around the same time, Barabdsi and Albert proposed
the preferential attachment model explaining scale-free networks, in which new nodes
entering a network preferentially attach to higher-degree nodes, creating a “rich get
richer” effect. Countless models have since been proposed that exhibit more and
more of the commonly observed social network structures and growth, though as of
yet there does not exist the “holy grail” of social network modeling, a mathematically
tractable random network model exhibiting all characteristics.

Incorporating both measurement and modeling, current social network research
focuses on applications — developing and studying algorithms and processes operat-
ing on networks, as well as studying the role of network structure in various types
of problems. We use the broad term peer effects to refer to the role of the social
network in a given problem; for example, when “peers” or neighbors on a network
dictate the preferences or strategies of individual nodes, or when a system’s transition
states are governed by the links available between peers, we say this is an example of
“peer effects.” This type of research brings together knowledge and techniques from
diverse fields like sociology, engineering, and economics, exploiting our understand-
ing of social network structure and generative models to understand deeper problems
that without this knowledge, could be intractable. Social network structure affects
a wide range of problems from the spread of information and disease to the design
of distributed communication and search algorithms to mechanism design and public
policy. Using fully realistic networks often renders mathematical analysis intractable,
therefore this work seeks to leverage existing knowledge of social networks and random
models to simplify hard problems and provide solutions and insights not otherwise
possible. Instead of crippling analysis, social network characteristics allow us to reach
deeper insights about the interaction between a particular problem and the network
underlying it. In this thesis our particular focus is on the role of peer effects in the
context of distributed search, matching markets, and epidemics. We discuss each of

these domains in more detail in the following.
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1.1 Distributed search in social networks

One of the ways in which people use their social networks in day-to-day life is to
find individuals or information not immediately available through their direct social
contacts. In 1967, Stanley Milgram tested this ability by sending chain letters to
individuals in Nebraska and Kansas, attempting to see if people could use their local
social contacts to reach a destination individual in Boston, Massachusetts. Not only
were people able to succeed at this task, they were able complete it using remark-
ably few steps, leading to the popular “six degrees of separation” expression [89].
Milgram’s experiment was a real-life version of the distributed search problem, in
which a routing algorithm uses only local information to find a (hopefully short) path
through a network. Though this problem is known to be hard for complex networks,

humans were able to solve it using their social networks, leading to the question:
What makes a (social) network searchable?

Kleinberg first addressed this problem in [75], linking the searchability of a network
to the distance-dependent probability of long-range connection (related to Granovet-
ter’s weak ties in social networks [56]). Unfortunately, the networks generated by
Kleinberg’s proposed model lack an important feature in social networks — a power-
law degree distribution. We extend Kleinberg’s result by focusing on constructing a
mathematically tractable network generation model that maintains the unique prop-
erties of social networks (as listed above) while also being searchable. Our results
show that searchable networks must be embedded in some sort of underlying space,
where the probability of long-range connections between nodes is dependent on the
underlying distance between them. We define a generalization of Kronecker graphs,
first proposed in [81], using a new “Kronecker-like” operation to build a random graph
model, which we denote distance-dependent Kronecker graphs [16, 18]. We prove that
a decentralized search algorithm will be able to find short paths through networks
generated by our model, just as in Milgram’s real-world experiment. In this case,
peer effects, if the links are generated in a particular way, lead to a searchable social

network.
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1.2 Peer effects and stability in matching markets

Many-to-one matching markets exist in numerous forms, such as college admissions,
the national medical residency program and college housing assignment. These mar-
kets are widely studied in academia and have been applied to other areas, such as
FCC spectrum allocation and supply chain networks. Early results demonstrated
the existence of stable matchings and created matching mechanisms [54], leading to
the National Resident Matching Program (NRMP), heralded as the greatest practi-
cal success of matching market theory. In the real world, however, problems quickly
arose: couples preferred to make their own matches rather than participate in the
NRMP. When matching students to housing at Caltech, administrators often find
that students collude with their friends and attempt to “game the system” in order
to be in the same house as their friends. These real-world problems point at a deeper
underlying theoretical problem in matching markets — that in the presence of exter-
nalities such as peer effects and complementarities!, a stable matching may not exist,
and further, that even if it does exist, it may be computationally difficult to find.

Our research has focused on answering the following questions:
Can stable matchings exist when peer effects are present?

In our work, the key idea is that peer effects are often the result of an underlying
social network; agents care about other agents’ matches when they are friends. Fo-
cusing on utility functions that depend on a social network and using a specific type
of stability, we prove that a stable matching will always exist, and further, that in
certain cases the social welfare-maximizing matching is stable [19]. We propose two
algorithms to find stable (and optimal) matchings for the college housing assignment
problem: (1) a simple distributed greedy algorithm, and (2) a centralized mechanism
employing MCMC methods. To evaluate these algorithms, we employ a real social

network (Caltech undergraduate friendship network [47]); our results show that even

IPeer effects in this case are instances where students, for example, care about where other
students are matched; complementarities are instances where houses, for example, care about the
diversity of the group of students matched to them.
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relatively simple mechanisms using social information can achieve better matchings
than mechanisms that ignore peer effects. However, we can also show that stable
matchings may exist outside of the local maxima of social welfare — indicating that

stability alone is not the appropriate measure of a “good” matching.
How far from optimal can a stable matching be?

To answer this question, we obtain bounds and tightness results on the “price of
anarchy.” Further, we prove that impact of social network structure on the price of
anarchy happens only through the clustering of the network, which is well understood
for social networks. Finally, it turns out that the price of anarchy has a dual inter-
pretation in our context; in addition to providing a bound on the inefficiency caused
by enforcing stability, it turns out to also provide a bound on the loss of efficiency

due to peer effects.

1.3 Epidemic spread in human contact networks

Though the study of epidemics in networks was initially motivated by the spread of
disease, the results have far reaching applications. For example, applications such
as (i) network security, where the goal is to limit the spread of computer viruses,
(ii) viral advertising, where the goal is to maximize product interest through social
media, and (iii) information propagation, where the goal is to understand how new
ideas propagate through a network, all have their roots in mathematical infection
models. Early models assumed infection could be spread from any individual to
another. However, real infection can only spread through some sort of contact between
individuals, and so looking at the spread of a disease on a social network is extremely
relevant. While the original epidemiological models are easily described by a set
of differential equations and steady-state solutions are relatively easy to obtain, the
spread of a disease on a network, when peer effects play an important role, is much

more difficult to analyze. Our work in this area focuses on the following question:

What is the “social cost” of an epidemic?
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The “social cost” of an epidemic includes the cost of immunization (e.g. vaccine
cost) as well the cost of infection in a given period of time (e.g. doctor’s visits,
medication); to calculate this cost requires knowledge of the total number of nodes
infected over the entire time period of interest, not just the steady-state fraction of
infected nodes. In our work, we use tools from random matrix theory to make the
analysis tractable — to our knowledge, we are the first to adapt this approach and
proof techniques for this sort of problem. Using a new random graph model, we derive
solutions for (i) the exact cost of an epidemic in the large-graph limit and (ii) bounds
on the cost of an epidemic for finite graphs [17, 26]. To illustrate the usefulness of
these cost calculations, we study random and degree-based centralized immunization
strategies for balancing the cost of disease with the cost of immunization. Our ap-
proach demonstrates the practicality of analyzing epidemic spread on networks —
despite the complexity of the network, we are able to obtain simple solutions high-
lighting the importance of the structure of the underlying social network in the final

cost of an epidemic.

1.4 Peer effects in vaccination decisions

Recent vaccine scares and subsequent outbreaks of diseases that have long been un-
der control highlight the need to understand how people decide whether or not to
vaccinate themselves against an infectious disease, in order to better design public
health policy to meet changing demands. When making a vaccination decision, indi-
viduals weigh the risk of the disease (i.e., the likelihood of contracting the disease, its
morbidity and mortality) against the risk and cost of the vaccine. However, the risk
of contracting the disease depends on how many individuals in the population are
already vaccinated. Recent research focuses on game-theoretical models that assume
that individuals perceived risk of infection strictly decreases with vaccination intake;
this inverse relationship is an example of a nonconforming peer effect [13]. Under
these assumptions, the equilibrium vaccination coverage will be lower than what is

required to eradicate the disease, as individuals try to “free-ride” on others’ decisions



8

to vaccinate. In our work, we try to answer the question:
What is a realistic vaccination decision model?

The current approach to modeling vaccination decisions makes two limiting as-
sumptions: (1) that individuals have full information and know exactly their proba-
bility of being infected and (2) that individuals are perfectly rational and only non-
conforming peer effects affect their decision. We develop a new model for vaccination
decisions, adding a very specific form of irrationality through conforming peer effects.
Basically, in addition to the nonconforming peer effects described above, individuals
may also be influenced by their social contacts and may decide whether or not to
vaccinate based on following majority wisdom. Our research models these apparently
conflicting desires to provide a more accurate picture of the vaccination decision pro-
cess, suggesting that conforming peer effects lead to higher vaccination rates, and
further, that through the use of public health policies like government subsidies,
populations can be “pushed” to make vaccination decisions that achieve disease erad-
ication [20]. This work highlights the need for models of human decisions and peer
effects that account for actual human behavior and limitations; accounting for even
a very simple form of irrationality can lead to different recommendations in terms of

public health policy.



Chapter 2

Search

2.1 Introduction

Beginning with the simple Erdos-Rényi model of random networks [97], network sci-
ence has attempted to capture the key characteristics of complex networks such as
power networks, the Internet, protein interaction networks, and social networks with
a simple, mathematically tractable model. Social networks in particular have gen-
erated much interest due to the consistency of their characteristics. These networks
tend to exhibit small diameter, high clustering, scale-free degree distributions, and
perhaps most importantly, they are searchable by a local greedy algorithm; see [93],
[1], and [76] for thorough surveys of this area.

The Erdos-Rényi random graph maintains a small diameter but fails to capture
many of the other key properties [25], [97]. The combination of small diameter and
high clustering is often called the “small-world effect”, and Watts and Strogatz (see
Section 2.3) generated much interest when they proposed a model that maintains
these two characteristics simultaneously [133]. Several models were then proposed to
explain the heavy-tailed degree distributions and densification of complex networks;
these include the preferential attachment model [11], the forest-fire model [82], [10],
Kronecker graphs [81], [80], and many others [93]. As demonstrated by Milgram’s
1967 experiment using real people, individuals can discover and use short paths using
only local information [89]. Kleinberg focuses on this searchability characteristic in

his lattice model and proves searchability for a precise set of input parameters, but
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his model lacks any heavy-tailed distributions [75], [76], [86]. The Kronecker graphs
described in [81], [80], and [85] are simple to generate, mathematically tractable,
and have been shown to exhibit several important social network characteristics such
as heavy-tailed degree and eigen-distributions, high clustering, small diameter, and
network densification. However, Kronecker graphs are not searchable by a distributed
greedy algorithm [85].

In this chapter, we extend the model proposed in [16], a generalization of stochas-
tic Kronecker graphs that can generate searchable networks. Instead of using the
traditional Kronecker operation, we introduce a new “Kronecker-like” operation and
a family of generator matrices, H, both dependent upon the distance between two
nodes. This new generation method yields networks that have both a local (lattice-
based) and global (distance-dependent) structure. This dual structure is what allows
a greedy algorithm to search the network using only local information. Additionally,
the networks generated have a high clustering (due to the lattice structure) and a
small diameter (due to the addition of long-range links).

As part of the analysis of this new model, we provide a general framework for
analyzing degree distributions and the performance of greedy search algorithms on a
general lattice-based network. We use this framework to study one example in detail:
an expanding hypercube with distance-dependent long-range connections. We give
an explicit description of its degree distribution, the circumstances under which it
will be searchable by a local greedy algorithm, and a lower bound on its diameter.
We support our findings with simulations. This example is chosen because it mimics
the defining feature of tree metrics and hyperbolic space — exponentially expand-
ing neighborhoods — which are thought to be representative of both the Internet
and social networks [5], [78], [38], [108]. Exponentially expanding neighborhoods
lead to very small diameters (O(loglogn) as opposed to O(logn)) and we can show
that, as in [22], a local greedy algorithm on the hypercube will find ultrashort paths,
O((loglogn)?).

This chapter is organized as follows. Section 2.2 briefly defines some key concepts

frequently used in social network literature. Section 2.3 describes in detail our model
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and its relation to the original Kronecker graph model and other traditional models.
Section 2.4 explores the connection between a Kleinberg-like expanding hypercube
example and the hidden metric space models proposed in [5]. Section 2.5 describes a
general analysis of degree distributions for lattice-based networks and gives a theorem
showing that all such networks will have a Poisson degree distribution provided that
P(d) is sufficiently small, and gives the relevant degree distribution for the expanding
hypercube example. Section 2.6 gives a general framework for proving searchability
of a lattice-based distance-dependent network model and recovers the searchability
result of [75] and finally proves that the expanding hypercube is in fact searchable.
Section 2.7 explores the diameter of the expanding hypercube example and Section
2.8 concludes with proposed future work. Sections 2.9 and 2.9.3 support the proof of

searchability for the expanding hypercube example in Section 2.6.

2.2 Preliminaries

Before continuing further, it will be useful to define several terms commonly used in
social network literature. A social network is represented by a graph G = (V| E),
where V' and E are the sets of vertices and edges, respectively. There is one vertex
for each agent, or person, in the network, and the edges represent the relationships
between individuals. These relationships can be summarized in an adjacency matrix

A where

p 1 if nodes 7 and j are connected
ij =

0 otherwise.
We note that while we will be working with undirected and unweighted graphs, in
general, the edges in an adjacency matrix representing a social network can be both
directed and weighted, showing the direction and the values of different relationships.
The neighborhood Nj; of a node i is defined as the set of its immediately connected
neighbors. The degree k; of a node is defined as the size of its neighborhood. We
define the geodesic between two nodes u and v as the shortest path connecting them.

The diameter of a network, for our purposes, is the length of the maximum geodesic
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for that network. Note that in some cases, what is meant by diameter is the average
of all geodesics; however, for this chapter we focus on the maximum. In social and
most complex networks, the diameter of the network grows logarithmically with the
number of nodes int the network [133], [67]. Another useful and commonly used
term is clustering, which measures the amount of community structure present in a
network. For an individual node, we define a clustering coefficient C; where
o 21{en) |

= o 1) v, € Njyejr € F

The clustering coefficient for the entire graph is then the average of the clustering

coefficients over all n nodes [133].

C_’:

S|

>c
i=1

Finally, we call a network searchable if a distributed search algorithm can find paths
through the network of length on the order of the diameter. For example, in Klein-
berg’s lattice model, a network has diameter O(logn), and is called searchable if a
distributed algorithm can find paths of length O((logn)?) [75]. For more details on

the distributed search algorithm, see Section 2.6.

2.3 Distance-dependent Kronecker graphs

In this section we describe the original formulation of stochastic Kronecker graphs as
well as our new “distance”’-dependent extension of the model. We then present a few
examples illustrating how to generate existing network models using the “distance”-

dependent Kronecker graph.
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2.3.1 Stochastic Kronecker graphs

Stochastic Kronecker graphs' are generated by recursively using a standard matrix
operation, the Kronecker product [81]. Beginning with an initiator probability matrix
Py, with Ny nodes, where the entries p;; denote the probability that edge (7, ) is
present, successively larger graphs P, ..., P, are generated such that the k" graph
Py, has Ny = NF nodes. The Kronecker product is used to generate each successive

graph.

Definition 1. The k™ power of Py is defined as the matriz P®*, such that:

PP =P,=P@P®.. P =P_1®P
k times

For each entry p,, in P, include an edge in the graph G between nodes u and v
with probability p,,. The resulting binary random matrix is the adjacency matrix of
the generated graph.

Kronecker graphs have many of the static properties of social networks, such
as small diameter and a heavy-tailed degree distribution, a heavy-tailed eigenvalue
distribution, and a heavy-tailed eigenvector distribution [81]. In addition, they exhibit
several temporal properties such as densification and shrinking diameter. Using a
simple 2x2 P;, Leskovec demonstrated that he could generate graphs matching the
patterns of the various properties mentioned above for several real-world data-sets
[81]. However, as shown by Mahdian and Xu, stochastic Kronecker graphs are not
searchable by a distributed greedy algorithm [85] — they lack the necessary spatial
structure that allows a local greedy agent to find a short path through the network.

This is the motivation for the current chapter.

2.3.2 Distance-dependent Kronecker graphs

In this section, we propose an extension to Kronecker graphs incorporating the spa-

tial structure necessary to have searchability. We add to the framework of Kronecker

IFor a description of deterministic Kronecker graphs, see Leskovec et al., [81].
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graphs a notion of “distance”, which comes from the embedding of the graph, and
extend the generator from a single matrix to a family of matrices, one for each dis-
tance, defining the likelihood of a connection occurring between nodes at a particular
“distance”. We accomplish this with a new “Kronecker-like” operation. Specifically,
whereas in the original formulation of Kronecker graphs one initiator matrix is iter-
atively Kronecker-multiplied with itself to produce a new adjacency or probability
matrix, we define a “distance”-dependent Kronecker operator. Depending on the
distance between two nodes u and v, d(u,v) € Z, a different matrix from a defined

family will be selected to be multiplied by that entry, as shown below.

Cl11Hd(1,1) alQHd(1,2) s Glan(1,n)
C—A o, H— a21]—1‘d(2,1) a22[—1‘d(2,2) oo G2 Hyop)
A Ham1)y anaHimo) - GpnHamn)
where
H = {Hi}z‘ez

So, the k™ Kronecker power is now

G =g1 ®dH"‘®d7'é
k times
In the Kronecker-like multiplication, the choice of H; from the family H, multi-
plying entry (u,v), is dependent upon the distance d(u,v). Note that our d(u,v) is
not a true distance measure—we can have negative distances. Further, d(u,v) is not
symmetric (d(u,v) # d(v,u)) since we need to maintain symmetry in the resulting
matrix. Instead, d(u,v) = —d(v,u) and Hoguv) = Hy, -
This change to the Kronecker operation makes the model more complicated, and
we do give up some of the beneficial properties of Kronecker multiplication. Poten-

tially, we could have to define a large number of matrices for H. However, for the

models we want to generate, there are actually only a few parameters to define, as
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d(i,7) and a simple function defines H; for i« > 1. The underlying reason for this
simplicity is that the local lattice structure is usually specified by Hy and Hy, while
the global, distance-dependent probability of connection can usually be specified by
an H; with a simple form. So, while we lose the benefits of true Kronecker mul-
tiplication, we gain generality and the ability to create many different lattices and
probability of long-range contacts. We note in passing that the generation of these
lattice structures is not possible with the original formulation of the Kronecker graph
model. For example, it is impossible to generate the Watts-Strogatz model with con-
ventional Kronecker graphs. However, it can be done with the current generalization.

This is illustrated in our examples below.

Example 1 (Original Kronecker Graph). The simplest example is that of the original
Kronecker graph formulation. For this case, the “distance” can be arbitrary, and the
family of matrices, H, is simply Gy, the same G1 used in the original definition.
Thus, we define

Gi=G QN @aH=0G16®...G

k times k times

Example 2 (Watts-Strogatz Small-World Model). The next ezample we consider, the
Watts-Strogatz model, consists of a ring of n nodes, each connected to their neighbors
within distance k on the ring. The probability of a connection to any other node on
the ring is then P(u,v) = p [133]. To generate the underlying ring structure with

k =1, start with an initiator matriz K, representing the graph in Figure 2.1(a).

1 2
2
8 3
] 3
(@) (b)

Figure 2.1: Generating the Watts-Strogatz model

In order to obtain the sequence of matrices representing the graphs in Figure 2.1,

we define a “distance” measure as the number of hops from one node to another along
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the ring, where clockwise hops are positive, and counter-clockwise hops are negative.
Recall that the definition of “negative distance” is required only to keep the matriz
symmetric. The “negative” matriz is just the transpose of the matriz defined for
the “positive” direction. After each operation, the distance between nodes is still the
number of hops along the ring, though the number of nodes doubles each time. We
then define the following family of matrices, H.:

I 1 11
HOZ ,le pp 7Hi: VZ>1

11 1 p 11

Note that H_; = H!. So, starting from the initiator matriz in Figure 2.1(a), we have

the following progression of matrices:

11 p 1
1 11
G1: P s
p 1 11
p 11

1xHg 1xH; pxHs 1xH_

_ . 1><H,1 1><H0 1)<H1 pXH2
G2 - G]- ®d H - pXHQ 1><H,1 1><H0 1><H1
1><H1 pXH2 ].><H_1 ].><H0

—_FEERRY e
RRRERRERYT
RFRrRRRRER -

RBEWR/WRYWY =
VYW RrRRRERT

VRWRYWR®W T
RBRRY R, PEI
RVWRrRrRrERT

Note that the W-S model is not searchable by a greedy agent; however, if P(u,v) =

m, it becomes searchable [15], [76]. It is possible to model this P(u,v) by simply

adjusting H;,© > 1 as follows:

11 L L
Hy = JH, =i 2’1 ALY > 1,0 4 =,
L1 2i—-1 %
Lo n
H;, =i 21’ 21;1 ,Vi>1,z:§
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As in the previous examples, H_; = H!. The different definition for the middle node
in the ring is due to the fact that we need the probability of a connection to reach
a minimum at this point, and then start to rise again. With this new definition of

H;, i > 1, we have the following progression of matrices:

11 1/2 1
11 1 1/2

1 1 1/21/31/41/31/2 1
1 1 1 1/21/31/41/31/2
IxHy 1xH; 1/2xHs 1><H1> /2 1 1 1 1/21/31/41/3

_ _ [ 1xH_, 1xHo 1xH, 1/2xH 1/31/2 1 1 1 1/21/31/4

Gy =GR H = <1/2><H12 1><H_01 1><H(1) 1><H12 1/41/31/2 1 1 1 1/21/3

IxHy 1/2xHy 1xH_1 1xHp 1/31/41/31/2 1 1 1 1/2

1/21/31/41/31/2 1 1 1

1 1/21/31/41/31/2 1 1
This example already illustrates that the generalized operator we have defined allows
the generation of searchable networks, but we will provide another more realistic ex-

ample in the next example.

Example 3 (Kleinberg-like Model). The final example we consider, Kleinberg’s lattice
model, is particularly pertinent as it was shown to be searchable [75]. In the original
formulation, local connections of nodes are defined on a k-dimensional lattice, and
long-range links occur between two nodes at distance d with probability proportional
tod=*. We focus on a “Kleinberg-like” model here, where instead of a k-dimensional

lattice, we have an “expanding hypercube” as our underlying lattice. In this example,

Io 00 o1 oo
1 0 11 SN 111

@ (b) (©

Figure 2.2: Example: the growth of an expanding hypercube

at any point, the graph is a hypercube with some extra long-range connections, and

when it grows, it grows by doubling the number of nodes and adding a dimension to
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the hypercube. Note that we will have n nodes arranged on a k = logn-dimensional
hypercube. This example is of particular interest due to recent work suggesting that
many networks have an underlying hyperbolic or tree-metric structure [38],[78]. The
expanding hypercube captures the key feature of these topologies, as the number of
nodes at distance d grows exponentially in d. This example is also very naturally
represented using our “distance”-dependent Kronecker operation and a Hamming dis-
tance as our “distance” measure.

To define the expanding hypercube, we define a graph G with n nodes, numbered
1..n, where each node is labeled with its corresponding logn-length bit vector. We
define the “distance” between two nodes as the Hamming distance between their labels.

The family of matrices H is as follows:

11 1B .
Hy = JH; = JJoralli > 1
11 Bi
where B = a normalizing constant, 3; = Pl(f;;)l). The graph may or may not be search-

able depending on P(i). To mimic Kleinberg’s model, we let P(i) = i~®, so that
Bi = (%)_a Thus, for the sequence of graphs shown in the figure above, we have

the following sequence of matrices:

1 1 1 51 1 1 61 511 61 511 Bﬁé 5;52

1 1 182 Bi

1 1 1 1 B 1 1 p 1 1 p1 P12 1 B

G, — G, — ! Ga= | & 1 1 1 B B A 1
1 )2 » 13 1 /1 B Bife 1 1 1 A
11 1 61 1 1 B 1 BBz 1 1 1 B8 1

B PPz 1 B 1 B 1 1

51 1 1 1 BiB2 B B 1 B 1 1 1

From the matrix, we can tell that in each step,

1 if dlu,v) =0,1
P  d(u,v)
d(u,v)™®  otherwise

In the original k-dimensional lattice, a distributed algorithm (as defined in Section

V), can find paths of length O(logn) only if o = k [75]; in the modified case presented
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above, we will see in section V that we need a different probability of connection to

find short paths.

2.4 Connection to hidden hyperbolic space model

As mentioned previously, the expanding hypercube model in Example 3 resembles
models proposed in [5] and extended in [78], [22], and [23]. In [5], every node in
the network has a hidden variable — their location in a hidden metric space. The
probability of a connection between two nodes is based upon the distance between
them in this hidden space. The resulting degree distribution depends on the curvature
of this hidden space; if the space has negative curvature, the degree distribution will
be scale-free with P(k) = k=7 [79].

In the distance-dependent Kronecker graph described in this chapter and [16], the
probability of a connection is based on the distance between two nodes in the given
lattice, defined usually by Hy and H; in the family of matrices H. As a result, the
lattice, or metric space, is not really hidden since neighbors are explicitly connected in
the lattice. It is important to note that both models incorporate a distance-dependent
probability of connection. As will be defined formally in Section 2.6, a local greedy
search algorithm can take advantage of this embedding into a hidden or physical
space to forward a message to a destination. If a given node u has a message to
forward to a destination t, it can use its knowledge of the embedding to forward the
message to its neighbor closest to the destination in the embedding. It is not necessary
that the embedding be physical, as shown in [78] and [22]; rather, what is necessary
is that the the probability of a connection between two nodes is dependent on the
distance between them. In most social networks the abstract distance is a measure
of “social distance” — the likelihood of two individuals being connected depends on
their memberships in various groups, among other factors.

In addition, in the models of [5], a hyperbolic space results in exponentially ex-

panding neighborhoods around each node. In the distance-dependent hypercube ex-

k

d) nodes at each distance d, also resulting in exponentially expand-

ample, there are (
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ing neighborhoods. However, the hidden metric space model necessarily includes the
notion of a core and periphery of the network, where high-degree nodes form the core
connecting many low-degree nodes at the periphery [22]. In the hypercube example,
all nodes are homogeneous in expected degree — there is no notion of a core.

In [78], as nodes are located further from the origin in the hidden hyperbolic
space their expected degree decreases exponentially (oc e=#7). When this is combined
with the exponentially expanding neighborhoods (o< e®”), the result is a scale-free
distribution with v = 1 + % It is important to note that an exponential decrease
in expected degree is not strictly necessary; to see this, let the number of nodes at
distance r from a reference origin in the hyperbolic space be n(r) = e*" and let the

average degree of nodes at distance r be k(r) = r=°, so that r(k) = k~5. Using

n(k) o< n[r(k)] | (k)|, we have
n(k’) x eak’l/‘;k—l/é—l

which asymptotically behaves like a power law with v = 1+ 1/6. In the hypercube
example, despite the exponential expansion of neighborhoods, the resulting degree
distribution will always be Poisson as long as the probability of connection is suffi-
ciently small, as shown in the next section.

Nevertheless, the connection between this model and those based on tree metrics
and hidden metric spaces is important to note, as one key factor emerges: a distance-
dependent relation is necessary for a greedy algorithm to succeed in finding shortest

paths.

2.5 Degree distribution

In this section we describe a general characteristic function-based analysis of degree
distributions for lattice-based networks, and apply it to the expanding hypercube ex-
ample in Section 2.3. In general, any lattice-based network with a distance-dependent

probability of connection will have a Poisson degree distribution, as long as the prob-
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ability of a connection at a distance d is sufficiently small. Formally,

Theorem 2.1. The degree distribution of a general lattice-based network with a
distance-dependent probability of connection P(d) and maximum distance d,q, will

have the following degree distribution.:

P =i) = % (1+ dpaO(PX(d)))

7l

where

dma:v

a=>Y P(d)o(d) (2.1)

and o(d) = number of nodes at distance d from a reference node in the lattice. We

note that if lim,_ o0 dpmer P?(d) = 0, then the degree distribution is Poisson.

Proof. Let v denote the degree of an arbitrary node u in a general lattice-based

network with n nodes. Thus, v = vy + vy + - -+ 4+ v, Where

1 if link to node 1,
v =

0 otherwise.

We define the characteristic function of the degree distribution as
E[ez’tu] :E[eit(v1+v2+---+vn)] — E[eitvl]E[eitvg] o E[eitvn}

We can then group the expectations

dmaz
Ele™) = ] (1 = P(d) + P(d)e")"™
d=1
= TLa-Pa@a - ey
dm_az . , o(d)
_ (e—P(d)(l—el ) + O(PQ(d))(l . ezt)2> (2.2)
d=1

as e ¥ = 1 —x + O(z?). Thus, we can pull out the first term and using binomial
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approximation of (1 4+ x)¢ = 1+ cz + O(2?), we have

dmazx 2 )2
E[eitu] _ H o~ Pd)(1-e")o(d) (1 + O(P?(d))(1 — €*) U(d))

e—P(d)(1—e")

d=1
dmaz
_ 6—(1_eit)zg7=n{w P(d)o(d) H (1 + O(Pg(d))(l o ez‘t)2o_(d)€P(d)(1—eit)>
d=1

%€a(eit71)(1+dmawO<P2(d)))

Expanding, we see that the characteristic function is

Ele™] = (1+ dpnasO(P*(d))) e (1 + e + (O‘;t) + .. )

From such a representation of the characteristic function, we can clearly see the degree

distribution as

Pr=i)=¢ Z!O‘ (1 + dmas O(P*(d)))

]

We now turn to a specific lattice-based network, the hypercube distance-dependent
Kronecker graph described in Example 3 in Section 2.3. In this example, o(d) = (fl),
and the maximum distance in the network is k& = logn. We use a particular P(d) =

2d -1
[(kQT)dlog k1n 3] optimized for searchability, as determined in Section 2.6.
3

Theorem 2.2. The degree distribution of the expanding hypercube is given by the

following Poisson distribution,

o 3.6919 nA703
Plv=i)= C L where a~ n (2.3)
7! log log ny/logn

Proof. We use the same framework as in the proof of Theorem 2.1, and let e = x

for simplicity. In this case, the characteristic function becomes

E2"] = e~ (19 Xy P@o(@)
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so that

. iP(d)a(d) _ i [(k_g%d)dlogklnBI_l <2)

To calculate «, we use the entropy approximation (k) R~ 2’“1'(%)7 which holds as

d
(7) = 2nH@+e() when k o< pn, so that

k d
1 3 kH(é)f(kfﬁ)H( B‘M)
~ d 12 k 3 k—2d
“ logk‘ln?); 3

We can approximate the sum by using saddle point integration.

/ g(y)eV dy = klﬁ,—?ymg(yo)e’“f (v0) (1 +0 (%)) (2.4)

where v is the saddle point of the function f(y), i.e., the point at which f'(y) = 0.

We rewrite the sum S(k) in nats, leaving out the constants in front,

and then we let y = %,

so that, with the saddle point approximation of line (4), g(y) = % and f(y) = H(y) —
(1— %)H( i y). Using Mathematica, we find

2
1-3

f(yo) = 0.326
9(yo) =24

|f”(yo)| =22
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S(k) ~ \/%(2.4)60‘326’“ (2.5)

o~ 1 | 2m (2.4)0326k o, 3.6919 n0-4703
logkln3V 2.2k log log n+/logn

With the results of Theorem 2.1, we have a Poisson degree distribution with parameter

yielding,

So, our « is now

Q. O

2.5.1 Expected degree

From the characteristic function, we can also determine the expected degree.

E[v] = QE[xV] = g[e_(l_x)o‘] =«

- Ox T

=1 =1

Thus, the expected degree of the expanding hypercube example is a growing function

of n.

Expected Degree
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Figure 2.3: Expected degree of expanding hypercube
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Degree distribution for 4096 nodes

0.12 .
— Simulated

---Theoretical

0.1

9 20 30 40 50
Degree

Figure 2.4: Example histogram with n = 4096

2.5.2 Simulation of expanding hypercube example

Simulating the expanding hypercube with the P(d) determined in Section 2.6 yields
results that match well, within a constant, the analysis above. Figure 2.3 shows the
comparison of the theoretical and simulated expected degrees, while Figure 2.4 shows
an example histogram of the degree distribution, both theoretical and simulated, with
n = 4096. The Poisson nature of the distribution is clearly visible, as is the growth

of the expected degree as a function of n.

2.6 Proving searchability

While the distance-dependent Kronecker graph model is more complicated than the
original Kronecker graph model, it can capture several existing network models, and
it incorporates “distance” into the probability of connection, allowing for several cases
in which searchability can be proven. In this section, we first give a general framework
within which a lattice-based network can be proven searchable and then proceed to
the specific cases of the Kleinberg model [75] and the expanding hypercube model of
Example 3 in Section 2.4.
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2.6.1 General searchability theorem

We define a decentralized algorithm A similar to [75]. In each step, the current
message-holder u passes the message to a neighbor that is closest to the destination,
t. Each node only has knowledge of its address on the lattice (given by its bit vector
label in the case of the expanding hypercube), the address of the destination, and
the nodes that have previously come into contact with the message. For the graph to
be searchable, we need to have that the distributed algorithm A is able to find short
paths through the network, which are usually O(D) where D is the diameter of the
network.

Let the current message-holder be node u and the destination node ¢. We will
say that the execution of a decentralized search algorithm A is in phase j when
27 < d(u,t) < 27%1 where d(u,t) is the distance between node u and node ¢. Thus,
the largest value of j in a general lattice-based network is je: = log dpe: Where
dmae denotes the maximum geodesic in the network. For example, in a hypercube,
the maximum geodesic is dq = logn = k, 80 Jme: = loglogn = logk. We define

Nyi(d) ={v:d(v,t) <27, d(u,v) = d} and min|N(d)| = MmNy ¢ d(ut)=d | Nut (d)].

Theorem 2.3. A decentralized algorithm A will find short paths of length O(10g* (dpaz)),

when the probability of a connection is
P(u,v) = [cdmin|N(d)]]™" (2.6)

where ¢ x log d,qz-

Proof. Suppose we are in phase j with current message-holder node u; we want to

determine the probability that the phase ends at this step. This is equivalent to the
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probability that the message enters a set of nodes B; where B; = {v : d(v,t) < 27}.

Pr({message enters B,}) =1 — H (1—P(u,v:v € By))
vEB;
d(u,t)+27
—1— H (1 — P(d))Nut(@)

d=d(u,t)—27

d(u,t)+27
>1 — H (1 . P<d))min|N(d)|
d=d(u,t)—27

Figure 2.5: Relative positions of nodes w,v, and ¢ in phase j

In any network model, enforcing searchability boils down to determining this
min | N (d)|, the minimum number of nodes at a distance d from a given node u within
a ball of nodes centered around the destination, ¢, as illustrated in Figure 2.5. Once
this min [N (d)| is found, if we set the probability of a connection between two nodes
distance d apart as in Theorem 2.3, with an appropriate constant, we will find that
each phase described above will end in approximately j... steps, and, as there are
only Jmaz such phases, our greedy forwarding algorithm will be able to find very short

paths of length O(j2,.)-
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Thus, we have

d(u,t)+27
Pr({message enters B;}) > 1 — H (1 — P(d))mniN@I
d=d(u,t)—29
u,t)+27 .

ol e S min|N(d)| P(d) (2.7)
IR vt

1l d(u,t)+27
Z 1 —e ¢ d(u,t)—27

1 327
>1—e ¢ 2

1
1

> (2.8)

where the approximation in (2.7) requires that lim,, o dpmee P%(d) = 0, which holds
with the P(d) as specified in (2.6) (see proof of Theorem 2.1 for extra order terms),
and (2.8) comes from the power series expansion of e”*. Let X; denote the total

number of steps spent in phase j. Then,

Let X denote the total number of steps taken by the algorithm A.

Jmaz

X = Z X;
§=0

and
jmaw
EX =Y EX; < (14 jmar)(¢) = (1 +108 dinaz) 108 daz < (108 dinaa)
§=0
where the last bound holds V § > 2, log d, 0 > 2. O

With this framework, we can explore the searchability of any lattice-based network

model with distance-dependent connection probability.
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2.6.2 Searchability in original Kleinberg model

In the original Kleinberg two-dimensional lattice [75], the number of nodes at a
distance d from a reference node is approximately 4d, ignoring edge effects. The
maximum distance between any two nodes is O(n), SO Jmex =~ logn. Addition-
ally, the diameter of the graph is on the order of logn. In general, min |N(d)| < d
for a fixed j, resulting in the probability of connection optimized for searchability,

P(d) = [alog(n)d?]~. Using this P(d),

d(u,t)+27
Pr({message enters B;}) > 1 — H (1 — P(d))™nIN @I
d=d(u,t)—27
d(u,t)+27 _

~1— e_mzd:d(u,t)fzi ! (29>
>1— ¢ ioan

1
> (2.10)

o'logn

where (2.9) holds for the P(d) specified, and (2.10) comes from the power series
expansion of e™*. Therefore,

EX; <d'logn

and
logn

EX =Y EX; < é(logn)®.

J=0

where the bound above holds V§ > 2, logn > 2.

2.6.3 Searchability in expanding hypercube example

In the expanding hypercube example of Section 2.3, each node has logn neighbors
from the lattice itself. With the addition of long-range links, we expect the diameter to
be O(loglogn), similar to [78]. Note that with this example, j.. = loglogn = logk
and the number of nodes at distance d equals (Z) Using Theorem 2.3, we can prove

the following result:
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Theorem 2.4. A decentralized algorithm A will find paths of length O((loglogn)?)

in the expanding hypercube example when

ﬁ() :].7 61 = [QInglng]ilv

-1

2 o _ 204D
@:K . 3)2} [( . )(i+1) Vi > 2 (2.11)
3 3
such that the probability of a connection is
1 if d(u,v) =0,1
P(u,v) = (2.12)

[ k—2d - B
(", )dog k3| if d(u,v) = d
3

Proof. Using Theorem 2.3, all that remains is to find min|N(d)| and to determine

the appropriate constants to use. Without loss of generality, we assume that the

destination node ¢ is the all-zero node (i.e., its label is the zero vector) so that we can

write d(u,t) = |Jul|. To determine min |N(d)| in our case, since the distance measure

is a Hamming distance, we must count the number of possible bit vectors that are at

a specific distance d from a node u while still being within a certain distance of the
ho2d

destination. We prove that min [N(d)] = (" ,*) in 2.9. We then let ¢ = log kIn3 for

w

reasons that will be clear below. Using the same framework as in Theorem 2.3 we

have that
]| +27 ,
Pr({msg enters B;}) > 1 — H (1 — P(d))miniN @)
=[] -2
~1-— eilog’iln?’ Z:L‘li\lljﬁf2j - (2.13)
>1— ¢ Tk
1
> 2.14
~ logk ( )

where (2.13) holds for the P(d) specified, and (2.14) comes from the power series
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expansion of e™*. Therefore, we have

EX; <logk
and
log k
EX =Y EX; <6(logh)? V3 >2, logh >2
§=0

Since the expected number of steps in phase j is logk, and there are at most log k
phases, the expected amount of steps taken by the algorithm A is at most ¢ log? k.
So, with this definition of P(d), the distributed algorithm provides searchability. [J

2.6.4 Simulation of distributed search algorithm

We simulated the local greedy algorithm described above in MATLAB for 16 <
n < 4096 with the probability distribution as in Theorem 2.4 and appropriate floor
functions. We found that the greedy algorithm finds a path between two nodes with an
average length of a constant factor away from the diameter of the simulated network,
where diameter is defined as the maximum geodesic in the network. Note that the two
nodes selected for the simulation are actually the “worst-case” nodes - the distance
between them in the network is exactly the diameter. Figure 2.6 illustrates the results

of the greedy algorithm simulations.

2.6.5 Path length with suboptimal P(d)

In this section we analyze the performance of the local greedy search algorithm on
the expanding hypercube when P(d) is not optimal, as in Theorem 2.4. For this
example, let P(d) = [logk(%)]™!, which is clearly not min|N(d)| from Lemma 2.5.

We will show that this suboptimal P(d) also allows for searchability.
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Average diameter and path length of simulated ddKron graphs

3 - - -Simulated diameter
— Path length found by dist alg

Average diameter and path length, over 20 trials

0 1000 2000 3000 4000 5000

n

Figure 2.6: Average path length found by greedy algorithm using local information

Using the same framework as in Theorem 2.3,

d(u,t)+27
Pr({msg enters B;}) > 1 — H (1 — P(d))™=IN @I
d=d(u,t)—27
d(u,t)+27 .
~1-— ezd:d(u,t)fﬂ P(d) min|N(d)| (2.15)
: 24
PR S VINELCIGLY
=1- efﬁs(k’d)
>1— efﬁminS(k,d)
where line (2.15) holds for the specified P(d) and where
3x27 -1 2
k k-5
£ (')
d=2J 3
327 d
~ ) QB (g —hHT () (2.16)
d=2J
3%27 d
> min S 287G 0
¢ d=21
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where we have used the approximation (’;) ~ 2kH() which holds as (7) = 2n@H@)+o(l)
when k o pn, in line (2.16). Since the exponent is convex in d, the maximum will be
at either the upper or lower bound of the sum. For 0 < 5 < logk the lower bound

(d = 27) yields the maximal exponent. So, we have

R UL 2

Pr({msg enters B;}) >1 —e = Togk

where we have used the power series expansion of e™* and where

9j+1 27 97

£k, 3) = (b = =) H(—S5) — kH(

2i+1
k 3

). (2.17)
Continuing with the proof of searchability, we have

EX; =) Pr[X;>i] <logh 2 /*

i=1
and

logk
EX =) EX; < (1+logk)loghk2 ™" /") < §(logk)?, V6 > 2, logk > 2
j=0
since f(k,7) is convex but its minimum occurs close to logk. As a result, even
for suboptimal P(d), a local greedy algorithm can find short paths. However, the
bounds used in the analysis above are looser than those in previous sections, so the
final expected number of steps taken by A is not as tight. This analysis is supported
. . . . . E\1—
by simulation results as shown in the figure below. Finally, if P(d) = [dlog k( d)] L
using the same sort of techniques as above we can show that FX < dk(logk)? for
a large enough 0. Note that in this case, the paths found will be O(lognloglogn),
which are longer than before. Simulation results with this P(d) are shown in Figure

2.8.
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Average diameter and path length of simulated ddKron graphs with suboptimal P(d

5

— Simulated diameter

Average diameter and path length, over 20 trials
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n

Figure 2.7: Performance of greedy algorithm when P(d) = [log l{:(’;)]*l

Average diameter and path length with suboptimal P(d)
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— Simulated diameter

Average diameter and path length, over 20 trials

5 - - - Path length found by dist alg
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Figure 2.8: Performance of greedy algorithm when P(d) = [dlog k(’;)]_l

2.7 Brief diameter analysis of hypercube

In this section, we briefly discuss the diameter of a general random graph. Finding
the actual diameter, defined as either the maximum or the average geodesic in the
network, can be very complicated. We discuss a simple lower bound of the hypercube
example here, which can be applied to any random graph.

If we assume that the expected degree of the hypercube example in Section 2.3 is
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polynomial in n, say n?, similar to what was found in Section 2.4 for the expanding
hypercube, we can lower bound the diameter as follows. We assume that at each step,
every node has d neighbors and that it takes a steps to reach all n nodes. Therefore,

to reach all n nodes in the network, we have
o B\a 1 .
d“=n=n")"=n=a= 3 = Constant diameter

Thus, a simple lower bound for the diameter of a graph with polynomial expected de-

gree is some constant, . We can also work backwards, assuming a log logn diameter.

1
5-
In this case, we have

logn

1
dOé =N = dloglogn = n = d — nloglogn — geloglogn

which is less than a polynomial in n, but still grows with n. Figure 2.9 compares the
simulated diameter of the expanding hypercube example with the two lower bounds

discussed above. For 16 < n <4096, both lower bounds appear to be a good match.

Diameter of expanding hypercube

4.5
4,
=
£
S35 R
2
z — Simulated
oAl Constant, g = .25
g 3 _
§ , loglog(n)
R 25
2O 1000 2000 3000 4000 5000
n

Figure 2.9: Simulated and theoretical diameter of expanding hypercube
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2.8 Conclusion

We have presented a generalization of Kronecker graphs by defining a family of
“distance”-dependent matrices and a new Kronecker-like operation. As a result, the
network model defines both local regular structures and global distance-dependent
connections. Though the model is more complicated than the original Kronecker
graph model, it is more general, as it can generate existing social network models, and
more importantly, networks that are searchable. These properties emerge naturally
from the definition of the embedding of the nodes and the probability of connection
within the family of matrices H. Any lattice-based network model with distance-
dependent connection probabilities can be analyzed using the framework described
in Sections 2.5, 2.6, and 2.7 for exploring degree distribution, diameter, and searcha-
bility. Most importantly, the searchability analysis shows how to make any network
model searchable by defining the appropriate probability of connection based upon
|N(d)|. The particular expanding hypercube example explicitly described here shares
characteristics with those based upon hidden hyperbolic spaces [5], [78], though it
has one major difference — degree homogeneity across nodes. Nevertheless, its expo-
nentially expanding neighborhoods and distance-dependent probability of connection
make it a good model for social networks as people tend to exhibit strong homophily,
i.e., associating with other people most like themselves. In addition, in contrast to
Kleinberg’s lattice-based model [75], the searchability of the expanding hypercube is
not too sensitive to the choice of P(d).

Though this chapter gives a near complete description of the characteristics of
“distance”-dependent Kronecker graphs, there are many interesting questions that
remain. These include how to parameterize the model from real-world data sets, and
how to incorporate network dynamics. Ideally, given any data set, we would like
to be able to find an appropriate family of distance-dependent matrices to match
any desired characteristic of the data set. Additionally, while the current model
incorporates some measure of growth, growing from a small initiator matrix to a final

nxn adjacency matrix, we would like to better incorporate mobility into the model
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so that it is not just a static description of the network at one point in time.

2.9 Appendix: Calculating the size of N, ,(d)

In this section, we show a lower bound for |N,¢(d)|, the number of nodes at distance

d from a given node u, still within distance 2/ of the destination, t.
Lemma 2.5. min [N, (d)] = (7 ,*)
3

Proof. We first count exactly the number of nodes in N, (d), the number of nodes
at a distance d from a given node u within a ball of nodes centered around the
destination, ¢, as illustrated in Figure 2.5. Without loss of generality, define ¢ as the
all-zero node, ¢t = (00...0). Arrange the label of u such that v = (1...10...0). Define
v = (v11 V10 Vo1 Voo) according to this partition of u, so that vy; and wvg; have “1”
entries and vyy and vgo have “0” entries. Let ||z|| denote the weight, or number of

ones, of the label of node x. We know the following;:

V11 + V1o + Vo1 + Voo = k
v11 + vio = [|ul|
vo1 + V1o =d

vi + vor = ]|
We can solve in terms of vy1, yielding

voo =k —d —vyy
vip = ||ul| —via

Vo1 :d — ||UH +U11
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We also know that we must satisfy the following:

V11, V10, Vo1, Voo = 0
27 < ||ul| < 2711
Jul| =27 <d < |lul| + 2

Jo]| <2/
From these bounds we have
) 1, .
max(0, [[ull — d) < v < min({Jul|, & —d, 5(? + [lull — d))

Note that the second and third bounds do not affect v1;. Counting the number of

nodes in the ball, we have

atoi= 3 (M) (, E

V11=Y;

where we have substituted v, and v;, for the upper and lower bounds above, respec-
tively. We can now approximate the number of nodes in N, ;(d), using the entropy
approximation for combinations. Let ||u| = ak,d = bk,2’ = ck,x = vy;. Using this

notation, we have

|Nus(d)| = Z (Cf) (k(l;(i ;)(2 x)

=]

3 e -on (ST ) (218)

where

X = mfxaH <£> +(1—a)H (%) (2.19)
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subject to

1
kmax(0,a —b) < x < kmin(a, 1 —b,§(a—b+c))

Note that (2.18) is true as (}) = 2"H®+eM) when k o pn.
Note that the function X is concave in x, so unconstrained optimization yields
the two solutions below, each giving different values of min | N, ¢(d)|:

k
x] = ak — abk when ¢ > a + b(1 — 2a), yielding min [N, ;(d)| = (d)

3
d

1 k— 2
Ty = §k:(a — b+ c¢) when ¢ < a+ b(1 — 2a), yielding min |N,;(d)| = ( >
3

The resulting min | N, (d)| are derived in Sections 2.9.1 and 2.9.2. As the second

3

2d
solution yields a smaller min | N, ;(d)|, we have an overall min | N, ;(d)| = (kif) O

2.9.1 Solution 1: ¢ > a+ b(1 — 2a)

In this region, the solution to the unconstrained problem, x] = ak — abk gives us
the maximal X'. Substituting in for the size of N, ;(d) and using the same entropy

approximation as before, we have

a 1—a

ko (2=t ) (1—qypr (P2 T
N (d)] = 2" (ek5tt ) + -y )

_ ok(aH(1=b)+(1-a)H(b)) _ okH(b) k _ k ‘
bk d

2.9.2 Solution 2: ¢ < a+ b(1 — 2a)

In this region, we choose one of the boundary points, x5 = %k’(a — b+ c), as the
solution to the maximization problem. Substituting this solution for x in |N,.(d)|,

we obtain

N, ,(d)| = 2MeH (“555) +0-0 H(SH5)
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This gives us a function of a, b, ¢, so we want to find the worst case a, ¢ that minimizes

|Nut(d)|. The new optimization problem is thus

f(b) =min [N, ,(d)|

= minaH (“_2—2“) +(1-a)H <_2“<1+—_ba+)c) (2.20)

Note that the bounds for this region are:
l.a—-b—¢c<0

2.a—b+c>0

7.0<a+b-—c
8. 0<a+b—c—2ab

where 1 and 2 come from the bounds on d(u,v), 3 comes from the bounds on ||u||,
and 4 and 5 come from the ranges for j and the size of the network. Note that 1-5 are
always true, not just in this region. 6, 7, and 8 come from the fact that our solution
x5 is minimal in this region. Note that 8 implies 7.

Computing the Hessian of the function in (2.20) shows that it is concave in both
a and b; the derivation is in 2.9.3. Since our function is concave, the min [N, (d)| is
found from the boundary points of Region 2. Rearranging the bounds from before in

terms of a we have:
l.a<b+ec

2.a>b—c
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3. a>ca<2c

7. a> —-b+c
c b 1
8a212b—12bwhenb<—
c b 1
9. a < 5%; — 175; when b > 3
1 T T T T T T =
—a < bt+c
09— /,-/ —
—az=bo L
gl | — gl /’/(’4.)’-('1/2, b+1/2)\£
—E =2 -
07 - s =
—a<2-bc -
06| az=-btc
a —a = (c-b)/(1-2b)

0.4

03

0z

0.1

= (2), (b2, b/2)

1] 0.0 0 0.15 0z 028 03 035 0.4 0.45 05
c

Figure 2.10: Boundaries of f(b) when b <

When b < %, only bounds (1,2,3,4) apply to f(b), yielding 5 points that we need to

examine, as shown in Figure 2.10. If b > .115, then f(b) is minimal at point (1),
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(%, %b), yielding

fo — 20k
z( bk3) (2.21)

where (2.21) holds for large k, using the entropy approximation (}) = 2" (p)+o(W) - If
b < 0.115, then f(b) is minimal at point (5), (b, 2b), yielding

min [Ny, (d)| = 28 = 4¢

When b > %, only bounds (2,3,4,and 8) apply to f(b), yielding 4 points that we need

to examine, as shown in Figure 2.11.

1 T T T

09

08~

(4) ( b/(4b-1), 2b/(4b-1) )— >+ "

07

. v (1) (b/3, 2b13)
—az>bo

06~

L |—— @26 s %\
—a<?2c A

“I'l—a < 2-bc R gl
03l a = -b+c /_/"'- |
—a = (c-b)/(1-2b)|

(2) (b/2, bf2)

02

0.1

| | | 1 |
03 035 0.4 0.45 0a

Figure 2.11: Boundaries of f(b) when b > 3
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For this region, f(b) is minimal at point (1), matching point (5) in the previous

region, yielding

k(lflb)H< %Qb)
min | N, (d)] =2 ° \1=%

~ <k _‘é 2?d> (2.22)

where (2.22) holds for large k, using the entropy approximation (Z) = 2n(H(P)+o(1)),
Thus, when b < 0.115, we have min|N,(d)| = 4%, and when b > 0.115, we have

k—2d

min [N, (d)] = ( gd ). Finally, we have that when ¢ < a + b(1 — 2a), we apply

2d
Solution 2, and we have min | N, ,(d)| = (k_; ) when Solution 2 is valid. Comparing
3

the Solution 1 with Solution 2, we have again that min|N,,(d)| = (" ,*).
3

2.9.3 Concavity of f(a,b,c) for Solution 2

Lemma 2.6. The function f(a,b,c) = aH (“2) + (1 — a)H (;?ﬂ’jf) is concave

in both a and b.

Proof. To prove that the function is concave in both a and b, we need to see if the

Hessian is negative definite. Let

fla,b,c) =aH (G_Q—[:LC> +(1-a)H (—;(f__b;;c)

Taking derivatives with respect to a, we find

ﬁ_l o C+a_b—lo b+a—c+10 c—a+b+10 2—a—b—c

oa 2\ ®T 2 & 2 590 —a) " 2(1—a)
and

02 f —(c—b)? —(1—c—10)?

da? _a(c+a—b)(b+a—c)+(1—a)(c—a+b)(2—a—b—c)

O S D S S SR
- 2\a—-b+4+c¢c a+b—c a —a+b+c 2—-a—-b—c 1-—a
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From the bounds for this region, we can see that the function is concave in a. Taking

derivatives with respect to ¢, we find

P
DO | =

(—log(c+a—0b)+log(a+b—c)—log(c—a+b)+log(2—a—0b—rc))

and

0?f 1 -1 -1 -1 -1
=== - + +
o2 2\c+a—-b a+b—c c—a+b 2—-—a—-b—c
From the bounds in this region, we can see that the function is concave in c¢. Taking

derivatives with respect to both a and ¢, we find

*f 1 e S S 1 N —1
dcda  2\a—b+c a+b—c —a+b+c 2—a—b—c

The Hessian H is

9?2 0?
da? dadc

02 o
dadc ac2

We want to show that the Hessian is negative definite, i.e, that H < 0. We have
already shown that 59—; < 0, so it remains to show that the second leading principal

minor of H is positive definite. This is just the determinant of H

82 82 82 2
detll] = 5552 ~ (aaac) >0

We rewrite the second derivatives as

0? 1 2 2
@=§(f1+f2+5+1_a)
0?1

502 = 5 it f2)

0? 1

dade 2 (fi= 1)
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where, from above,

-1 —1
fl_a—b+c+2—a—b—c<0
-1 -1
fo <0

So, our determinant is now

det|H| = <f1 +f2+§+%) (fi+ fa) = (fL = f2)?
1 , 1/2 2 1 )
:Z(fl-l-fz) —i—z(a-i-m) (f1+f2)_zl(f1_f2)
. (fi+f2)
= ifat 2a(1 —a)

Simplifying, this is just
det[H] = —(—a—b+c+2ab)*[(a—b+c)(—2+a+b+c)(a+b—c)(a—b—c)a(a—1)] "

which, from our bounds, is positive. Since the determinant of H is positive, and since

% is negative, we can say that H is negative definite, and the function is concave in

both a and c. ]
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Chapter 3

Matching

3.1 Introduction

Many-to-one matching markets exist in numerous different forms, such as college
admissions, matching medical interns to hospitals for residencies, assigning housing
to college students, and the classic firms and workers market. These markets are
widely studied in academia and also widely deployed in practice, and have been
applied to other areas, such as FCC spectrum allocation and supply chain networks
9, 98]

In the conventional formulation, matching markets consist of two sets of agents,
such as medical interns and hospitals, each of which have preferences over the agents to
which they are matched. In such settings it is important that matchings are ‘stable’
in the sense that agents do not have incentive to change assignments after being
matched. The seminal paper on matching markets was by Gale and Shapley [54], and
following this work an enormous literature has grown, e.g., [77, 114, 115, 116] and
the references therein. Further, variations on Gale and Shapley’s original algorithm
for finding a stable matching are in use today by the National Resident Matching
Program (NRMP), which matches medical school graduates to residency positions at
hospitals [113].

However, as often happens when translating theory to reality, problems arise when
implementing the matching algorithms in the real world. For example, couples partic-

ipating in the NRMP would often reject their matches and search outside the system,
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so much so that eventually a separate couples matching market was set up to fix
the problem. In housing assignment markets where college students are asked to list
their preferences over housing options, there is often collusion among friends to list
the same preference order for houses, in an attempt to be matched together. These
two examples highlight that ‘peer effects’, whether just between two people or a more
general set of friends, often play a significant role in many-to-one matchings. That
is, agents care not only where they are matched, but also which other agents are
matched to the same place. Similarly, ‘complementarities’ often play a role on the
other side of the market. For example, hospitals and colleges care not only about
which individual students are assigned to them, but also that the group has a certain
diversity, e.g., of specializations, gender, etc.

As a result of the issues highlighted above, there is a growing literature studying
many-to-one matchings with externalities (i.e., peer effects and complementarities)
[43, 58, 73, 74, 106, 110, 8, 44, 120] and the research has found that designing match-
ing mechanisms is significantly more challenging when externalities are considered,
e.g. incentive compatible mechanism design is no longer possible. In fact, even de-
termining the existence of stable matchings in the presence of externalities has been
difficult.

The reason for the difficulty is that there is no longer a guarantee that a sta-
ble many-to-one matching will exist when agents care about more than their own
matching [113, 115], and, if a stable matching does exist, it can be computation-
ally difficult to find [112]. Consequently, most research has focused on identifying
when stable matchings do and do not exist. Papers have proceeded by constrain-
ing the matching problem through restrictions of the possible preference orderings,
[43, 58, 73, 74, 106, 110], and by considered variations on the standard notion of
stability [8, 44, 120]. Our work also considers a modification of the model, described
in the following.

The key idea is that peer effects are often the result of an underlying social network.
That is, when agents care about where other agents are matched, it is often because

they are friends. With this in mind, we construct a model in Section 3.2 that includes
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a weighted, undirected social network graph and allows agents to have utility functions
(which implicitly define their preference ordering) that depend on where neighbors
in the graph are assigned. The model is motivated by [8], which also considers peer
effects defined by a social network but focuses on one-sided matching markets rather
than two-sided matching markets.

We focus on two-sided exchange stable matchings — see Section 3.2 for a detailed
definition and a discussion for how this definition of stability differs from the tradi-
tional one in [54]. We note that this is a distinct notion of stability, but one that is
relevant to many situations where agents can compare notes with each other, such
as the housing assignment or medical matching problem. For example, in [8, 9, 50],
“pairwise-stability” is considered since they consider models where agents exchange
offices or licenses in FCC spectrum auctions. Further, consider a situation where two
hospital interns prefer to exchange the hospitals allocated to them by the NRMP. If
this is a traditional stable matching, the hospitals would not allow the swap, even
though the interns are highly unsatisfied with the match. Such a situation has been
documented in [66], and has led to a similar type of stability, exchange stability, as
defined in [2, 30, 31, 66]. Our definition of stability incorporates both sides of the
market, but considers only pairwise exchanges of agents.

Given our model of peer effects, the focus of the chapter is then on characterizing
the set of two-sided exchange stable matchings. Our results concern (i) the existence
of two-sided exchange stable matchings, (ii) algorithms for finding two-sided exchange
stable matchings, and (iii) the efficiency of exchange stable matchings (in terms of
social welfare).

With respect to the existence of stable matchings (Section 3.3), it is not difficult
to show using a potential function argument that in our model two-sided exchange
stable matchings always exist. Further, if students value houses according to the
same rules, the matching that maximizes social welfare is guaranteed to be two-sided
exchange stable. In fact, in this special case, the potential function of the game is
exactly the social welfare function. Given the contrast to the negative results that

are common for many-to-one matchings, e.g., [44, 112, 113], these results are perhaps
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surprising. Upon closer examination, it becomes clear that the key ingredient for
the existence of stable matchings is network symmetry — the social network must
be undirected, as is required for many of the existence results in hedonic coalition
formation [7, 21, 28], a related market.

Further, due to the similarity of the potential and social welfare functions, the re-
sults on characterizing the existence of stable matchings naturally suggest two simple
algorithms for finding stable matchings, which we discuss in Section 3.4. To measure
the performance of these algorithms, we look at two sample social networks: (1) a
real-world social network among undergraduate students at the California Institute
of Technology and (2) an on-line social network generated from voting patterns of
Wikipedia members.

With respect to the efficiency of exchange stable matchings (Section 3.5), results
are not as easy to obtain. In this context, we limit our focus to one-sided matching
markets, but as a result we are able to attain bounds on the ratio of the welfare of
the optimal matching to that of the worst stable matching, i.e., the ‘price of anarchy’.
In certain cases, we can show that the ratio of the welfare of the optimal matching
to that of the best stable matching, i.e., the ‘price of stability’ is one. We can further
show that the bound on the price of anarchy is tight. When considering only one-
sided markets, our model becomes similar to hedonic coalition formation, but with
several key differences, as highlighted in Section 3.5. Our results (Theorems 3.5 and
3.6) show that the price of anarchy does not depend on the number of, say, interns,
but does grow with the number of, say, hospitals — though the growth is typically
sublinear. Further, we observe that the impact of the structure of the social network
on the price of anarchy happens only through the clustering of the network, which
is well understood in the context of social networks, e.g., [67, 131]. Finally, it turns
out that the price of anarchy has a dual interpretation in our context; in addition to
providing a bound on the inefficiency caused by enforcing exchange stability, it turns

out to also provide a bound on the loss of efficiency due to peer effects.



50
3.2 Model and notation

To begin, we define the model we use to study many-to-one matchings with peer
effects and complementarities. There are four components to the model, which we
describe in turn: (i) basic notation for discussing matchings; (ii) the model for agent
utilities, which captures both peer effects and complementarities; (iii) the notion of
stability we consider; and (iv) the notion of social welfare we consider.

To provide a consistent language for discussing many-to-one matchings, through-
out this chapter we use the setting of matching incoming undergraduate students to
residential houses. In this setting many students are matched to each house, and the
students have preferences over the houses, but also have peer effects as a result of
wanting to be matched to the same house as their friends. Similarly, the houses have
preferences over the students, but there are additional complementarities due to goals
such as maintaining diversity. It is clear that some form of stability is a key goal of

this “housing assignment” problem.

Notation for many-to-one matchings. Using the language of the housing as-
signment problem, we define two finite and disjoint sets, H = {hy,...,h,} and
S = {s1,...,5,} denoting the houses and students, respectively. For each house,
there exists a positive integer quota ¢, which indicates the number of positions a
house has to offer. The quota for each house may be different.

A matching p describes the assignment of students to houses such that students
are matched to only one house, while houses are matched to multiple students. More

formally:

Definition 2. A matching is a subset p C Sx H such that |u(s)| = 1 and |p(h)| = qn,
where j(s) = {h € H : (s,h) € u} and p(h) ={s € S: (s,h) € u}.!

Note that we use p2(s) to denote the set of student s’s housemates (students also in

house u(s)).

If the number of students in u(h), say r, is less than g, then p(h) contains g, — r “holes” —
represented as students with no friends and no preference over houses.
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Friendship network. The friendship network among the students is modeled by a
weighted graph, G = (V, E,w) where V = S and the relationships between students
are represented by the weights of the edges connecting nodes. The strength of a
relationship between two students s and ¢ is represented by the weight of that edge,
denoted by w(s,t) € RT U {0}. We require that the graph is undirected, i.e., the
adjacency matrix is symmetric so that w(s,t) = w(t, s) for all s, ¢.

Additionally, we define a few metrics quantifying the graph structure and its
role in the matching. Let the total weight of the graph be denoted by |E| :=
% Y ses 2tes w(s, t). Further, let the weight of edges connecting students assigned to
houses h and g under matching p be denoted by Epg(i) = D~ n) 2otep(g) W(S: 1)
Note that in the case of edges between students within the same house is defined
slightly differently: FEp,(p) := %Zseu(h) D tenny W(s, 1), to avoid double-counting
edges. Finally, let the weight of all edges “captured” in a given matching u (i.e.,

the edges between students in all of the houses for a given matching ) be denoted

by Ein(pt) := > pen Enn(p)-

Agent utility functions. In our model, each agent derives some utility from a
particular matching and an agent (student or house) always strictly prefers matchings
that give a strictly higher utility and is indifferent between matchings that give equal
utility. This setup differs from the traditional notion of ‘preference orderings’ [54, 115],
but is not uncommon [6, 8, 9, 28, 50]. It is through the definitions of the utility
functions that we model peer effects (for students) and complementarities (for houses).

Under our model, students derive benefit both from (i) the house they are assigned
to and (ii) their peers that are assigned to the same house. We model each house
h as having an desirability of Dj € Rt U {0} for student s. A similar model was
first used in [8] and is meant to capture the physical characteristics of the house
(amenities, size, etc.), independent of peer effects. If this value is different for different
students, (i.e., 3s,¢, h such that Df # D!), then students value the characteristics
of the house differently. For example, some students might prefer a house with only

private rooms, whereas other students value having a roommate. If, on the other
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hand, Dj = D! Vs # t (objective desirability), this value can be seen as representing
something like the U.S. News college rankings or hospital rankings — something that

all students would agree on. This leads to a utility for student s under matching p of

Us(p) == Djye) + Z w(s,t) (3.1)
tep?(s)

where w(s,t) is the weight of the edge between s and ¢ in the friendship graph and

Dy is utility derived by student s for house h, so that the total utility that a student

derives from a match is a combination of how “good” a house is as well as how many

23

friends they will have in that house.

Similarly, the utility of a house h under matching p is modeled by

Un(p) == DZ(W (32)

where D" denotes the desirability of a particular set of students o for house h (the
utility house h derives from being matched to the set of students o). Note that this
definition of utility allows general phenomena such as heterogeneous house preferences

over groups of students.

Two-sided exchange stability. Under the traditional definition of stability, if a
student and a house were to prefer each other to their current match (forming a
blocking pair), the student is free to move to the preferred house and the house is
free to evict (if necessary) another student to make space for the preferred student.
In our model, however, we assume that students and houses cannot “go outside the
system” and leave the university (neither can students remain unmatched), like what
medical students and hospitals do when they operate outside of the NRMP. As a
result, we restrict ourselves to considering swaps of students between houses, similar

to [8, 9, 50].

2We note that the utility of any “holes” (such as what happens when a house’s quota is not met),
is simply Ug(p) = 0.

3Note also that if we remove D}, from the utility function and allow unlimited quotas, the match-
ing problem becomes the coalitional affinity game from [28].
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To define exchange stability, it is convenient to first define a swap matching '
in which students s and ¢ switch places while keeping all other students’ assignments

the same.
Definition 3. A swap matching u' = {u\ {(s,h), (t,9)}} U{(s,9), (t,h)}.

Note that the agents directly involved in the swap are the two students switching
places and their respective houses — all other matchings remain the same. Further,
one of the students involved in the swap can be a “hole” representing an open spot,
thus allowing for single students moving to available vacancies. When two actual
students are involved, this type of swap is a two-sided version of the “exchange”
considered in [2, 30, 31, 66] — two-sided exchange stability requires that houses
approve the swap. As a result, while an exchange stable matching may not exist in
either the marriage or roommate problem, we show in Section 3.3 that a two-sided

exchange stable matching will always exist for the housing assignment problem.

Definition 4. A matching p is two-sided exchange stable (2ES) if and only if

there does not exist a pair of students (s,t) such that:
(i) Vi€ {s,t,u(s), p(t)}, Ui(py) = Ui(p) and
(ii) Fi € {s,t,u(s), u(t)} such that U;(ut) > U;(u)

This definition implies that a swap matching in which all agents involved are indif-
ferent is two-sided exchange stable. This avoids looping between equivalent match-
ings. Note that the above definition implies that if two students want to switch
between two houses (or a single student wants to “switch” with a hole), the houses
involved must “approve” the swap or if two houses want to switch two students, the
students involved must agree to the swap (a hole will always be indifferent). Note
that either houses or students can initiate the swap. This is natural for the house
assignment problem and many other many-to-one matching markets, but would be

less appropriate for some other settings, such as the college-admissions model.
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Social welfare. One key focus of this chapter is to develop an understanding of
the “efficiency loss” that results from enforcing stability of assignments in matching
markets. We measure the efficiency loss in terms of the “social welfare”, which we

define as follows:

W(p) =Y Udp)+ > Ui

seS heH
Using this definition of social welfare, the efficiency loss can be quantified using
the Price of Anarchy (PoA) and Price of Stability (PoS). Specifically, the PoA (PoS)
is the ratio of the optimal social welfare over all matchings, not necessarily stable,
to the minimum (maximum) social welfare over all stable matchings. Understanding

the PoA and PoS is the focus of Section 3.5.

3.3 Existence of stable matchings

We begin by focusing on the existence of two-sided exchange stable matchings. In
most prior work, matching markets with externalities do not have guaranteed exis-
tence of a stable matching. For example, in the presence of couples on the resident
side of the hospital matching market, the NRMP algorithm may fail to have a stable
outcome [113, 115], and even if a stable matching does exist, it may be NP-hard to
find [112].

In contrast to the prior literature discussed above, we prove that a two-sided
exchange stable matching always exists in the model considered in this chapter. We

begin by proposing a potential function ®(u) for the matching game:

s 1
heH ses s€S \zep?(s)
Due to the symmetry of the social network, every approved swap will result in a
strict increase of the potential function. The analysis is straightforward and draws its
key ideas from the work of [8], which considers only a one-sided market rather than

the two-sided market considered here. Specifically,
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Lemma 3.1. Any swap matching p'. for which (i) and (ii) below are satisfied, ®(ut) >
D(p).

(Z) Vie {Sutmu’(s)uu’(t)}f Uz(:ué) > Uz(/ub)f and
(1) i€ {s,t,pu(s), u(t)} with Ui(py) > Ui(p)

Proof. We begin by calculating the difference in the potential function for a swap

matching using (3.3), assuming that pu(s) = h and p(t) = g:*

Qi) — @(u) = > Un(ph) — Un(p) + > Dy — Die)

heH ses

+%Z Z w(s,r) | — %Z Z w(s, ) (3.4)

s€S \zeut(s) s€S \zepu(s)

Expanding and canceling like terms, we have

O (pa) — = Un(,) ) + Uy(t) = Ug(p) + Dy — Dy + Dj, — D,

, o) —w(s,t) + Z w(t,z) —w(s,t)

xeu zep(h)

—w(s,t)+ Y wlz,t) —w(s,t)

zep(h)

,T) + Z w(t,x) | + Z w(z,s) + w(z,t)

xeu(h x€u(g) xz€p(h) z€p(g)

(3.5)

4Note that we have a little abuse of notation here, for convenience. We are using z € pl(s)
to denote the the other students z that are in the same house as s under the swap matching p?.
Similarly, € p(s) denotes the other students that are in the same house as s under the original
matching p. We revert to the correct notation in (3.5).
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which becomes, due to the symmetry of the social network,

®(p) = ®(1) = Un(p) = Un(p) + Uy(psg) = Uy() + Dy — Dy + D}, — Dy,
+ (w(s,z) —w(t,z)) + Z (w(t,x) —w(s,z)) — 2w(s,t)
(9)

xEp xzepu(h)

(3.6)

Note that if ¢ is a “hole”, this becomes

D(pg) — () = Un(pl) — Un(p) + Ug(pe) — Ug(p) + D; — Dy,
+ ) (wisx) = Y (w(s,x)) (3.7)

z€p(g) z€p(h)

Now, consider a matching p and a swap matching u! that satisfies (i) and (ii)
from the lemma statement. Without loss of generality, assume that student s strictly
improves. The other student could be either a “hole” or a real student that either
improves or is indifferent to the swap. The other cases are symmetric. Define pu(s) =

h, and u(t) = g. The change in utility for student s is then

0 < Us(pl) = Us(p) =Dy — Dy — > wis,z)+ Y w(s,z) —w(s, 1),
z€p(h) z€pu(g)
Similarly, for student ¢, we have
0 < U(pl) — Up(p) = Dy — D — Y~ w(t,a)+ Y w(t,x) —w(s,t).
z€p(g) z€p(h)
Adding the above inequalities, we obtain the following:
0 < D;=Di+Dj—Dj+ Y (w(s,z) —w(t, )+ > (w(t, ) — w(s,z))—2uw(s,t) = 0oy
z€p(g) z€p(h)

Note that we are using d5, to denote the change in utilities for the two students, s
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and t directly involved in the swap. On the house side of the market, we have
0 < Un(t) — Un(p) + Uy(ptt) — Uy(n) = A

as only houses h and ¢ are affected by the swap and the change in their utilities is
nonnegative by assumption.

Thus, comparing (3.6) with the expressions for Ay and 6, above, we see that
P(pl) — ®(p) = Ap + 054 > 0. (3.8)

Note that this holds even if ¢ is a “hole.” OJ

Note that the symmetry of the social network was key in proving Lemma 3.1.
Without network symmetry, it is possible that no two-sided exchange stable matching

will exist, as is the case in the example below.

House h House g

o

S z

Figure 3.1: Asymmetry leads to nonexistence of stable matching

Example 4 (Nonexistence due to asymmetry). In this example, we have a directed
social network, as shown in Figure 3.1. As a result, students will “chase” each other
from house to house, assuming that Dj = D ¥ h,s. For example, starting in the
matching shown, student z will switch with student s, who does not care which house
she is in, in order to be with x. Then, x will switch with s to be with y. Finally, y
will switch with s to be with z, and we are effectively at the initial matching. Thus,

i this “love-triangle” example, no stable matching exists.

Using Lemma 3.1, it is now easy to prove the following theorem.
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Theorem 3.2. All local mazima of ®(u) are two-sided exchange stable.

Proof. Let matching p be a local maximum of ®(x). Assume, by way of contradiction,
that p is not two-sided exchange stable. Lemma 3.1 shows that any swap matching
that is acceptable to all parties (i.e., satisfies conditions (i) and (ii)) strictly increases
® (). But this contradicts the assumption that p is a local maximum. Thus, g must

be two-sided exchange stable. O]

As the number of matches is finite, the global maximum of the potential func-
tion must be two-sided exchange stable, and, therefore, a two-sided exchange stable

matching will always exist for every housing assignment market of this form.

3.3.1 Special case: Objective desirability

If we assume that there are no vacancies in any of the houses and students value
houses according to the same rules (i.e., D = D! V s # t), then each each approved

swap will result in a strict increase in the social welfare. Specifically,

Lemma 3.3. If house quotas are exactly met and D; = D} ¥V s # t, then any swap

matching ', for which
(i) Vi € {s,t,u(s), u(t)}, Us(ps) = Us(p), and
(ii) 3i € {s,t, u(s), p(t)} with Us(pg) > Ui(p)
has W (pg) > W(p).

Proof. Consider a matching p and a swap matching p! that satisfies (i) and (ii)
from the lemma statement. Note that due to the assumption that the house quotas
are all met, the swap must be between two students, not a student and a “hole”.
Without loss of generality, assume that student s strictly improves. The other cases
are symmetric. Define u(s) = h, and pu(t) = g. The change in utility for student s is
then
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Similarly, for student ¢, we have

OSUt(uts)—Ut(u):Dh—Dg—Z (t, ) + w(t, z) —w(s,t).

z€u(g) xeu(h)

Adding the above inequalities, we obtain the following:

0< Y (w(s,x) —w(t,z)+ Y (w(t,z)—w(s,x)) = 2uw(s,t) = gy

z€p(g) zep(h)

Continuing, the total change in utility for all students is:

zes €S
=05t + E (s,t) — E w(z,s) + E w(x,t) —w(s,t) — w(x,t)
z€n (9) zeu(h) zep(h) zeu(g)
gain from s joining g loss from s leaving h gain from t joining h loss from ¢ leaving g
- 2657t (39)
>0

where line (3.9) comes from the fact that we assume the social network graph is
symmetric.

On the house side of the market, we have

0 < Un(pg) = Un(p) + Uy(g) = Ug(p) := Ay

as only houses h and g are affected by the swap and the change in their utilities is

nonnegative by assumption. Thus, the total social welfare strictly increases:

W(pg) = W(p) = Ag +Ap >0

As before, it is now easy to prove the following theorem.
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House h House g House h House g
X O~
y O 1>

Figure 3.2: Forced swap increases social welfare

Theorem 3.4. If house quotas are exactly met and D; = D} ¥V s # t, all local

mazxima of W(u) are two-sided exchange stable.

Proof. Let matching u be a local maximum of W (u). Lemma 3.3 shows that any
swap matching that is acceptable to all parties (i.e. satisfies conditions (i) and (ii))
strictly increases the total social welfare. But this contradicts the assumption that

is a local maximum. Thus, ;1 must be stable. [

Note that this implies that the maximally efficient matching will be two-sided
exchange stable.® However, not all two-sided exchange stable matchings are local
maxima of ®(u) or W(u). Such a case arises when one student, for example, refuses
a swap as her utility would decrease, but the other student involved stands to benefit
a great deal from such a swap. If the swap were forced, the total potential function
(or social welfare) could increase, but only at the expense of the first student. We

show an example of this below.

Example 5 (Forced swap increases social welfare). For this ezample, let Us(h) = 0,
Us(g) = 4, Ui(h) = Ui(g) = 0V i # s, and Up(p) = Uy(p) = 0V p. In the
first match (left side of Figure 3.2), student s is unhappy with her match, and the
match is unstable because there is a hole in house g — an available spot for student
s. Howewver, the social welfare of this match is W) = 2% 3+ 0 = 6. If student s

mowves to house g, as shown in the right side of Figure 3.2, the new social welfare will

®Note that a local maximum of W (u) is a matching u for which there exists no matching p’ which
is obtained from p by swapping the assignment of exactly two students (or a student and an empty
spot) and has W (u') > W (u).
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be W(u2) = 0+ 4 = 4. Note that this matching is stable, since s does not want to

move from house g. If we force the s back to h, we can increase the social welfare.

The contrast between Theorem 3.2 and results such as [113] and [115] can be ex-
plained by considering a few aspects of the model we study. In particular, we are using
a distinct type of stability appropriate to our housing assignment market. Further,
the assumption that the social network graph is symmetric is key to guaranteeing

existence.

3.4 Finding stable matchings

In the previous section we have shown that a two-sided exchange stable matching
will always exist and, moreover, that under certain assumptions, socially optimal
matchings are two-sided exchange stable. In this section, we turn to the task of
developing algorithms for finding two-sided exchange stable matchings. In particular,
two natural algorithms follow immediately from our analysis. For simplicity, in this
section we assume the conditions of Theorem 3.4; namely, that quotas are exactly

met and students rate houses according to the same rules.®

Algorithm 1 (Greedy)

while 7 < maxlterations do
Search for “approved” swap
14 p
14—1+1

end while

Algorithm 1 proceeds by greedily considering “approved” swaps among students/houses
that improve the social welfare. Note that this algorithm can easily be implemented
in a distributed manner, and loosely models the process by which individuals adjust
a matching that is not stable. For example, consider starting at a random matching,

and giving students a preset amount of time to talk amongst themselves and make

6We note that the results of this section extend to the more general case, using the potential
function defined in Section 3.3 rather than the social welfare function.
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swaps, obtaining the approval of their houses for each swap. Given enough time, such
a distributed method will converge to a 2ES match.

Lemma 3.3 and Theorem 3.4 immediately give that Algorithm 1 will converge to
a two-sided exchange stable matching, since the social welfare strictly improves with
each iteration, and all local maxima of W are two-sided exchange stable matchings.
Note that Algorithm 1 is not guaranteed to converge to the socially optimal stable
matching; it will likely find just a local maxima of W. Also, note that each iteration
of the algorithm above can involve searching many pairs of students (and houses) for

an “approved” swap.

Algorithm 2 MCMC

while ¢ < maxIterations do
Pick random pair of students {s, ¢}
1

T = [ e TWEhH - W)
p < pt with probability Pr
if (W (puh) > Whes) then
Whest = W(,Ui)
end if
1141
end while

The second algorithm we consider again seeks to optimize W, this time using a
MCMC heat bath. In this algorithm we start with a random initial matching and
at each iteration swap a random pair of students with a probability that depends on
the change in social welfare: a positive change yields a probability of swapping larger
than 1/2 and vice versa. Algorithm 2 therefore can emerge from a local maximum.
The algorithm keeps track of the “best” matching found so far, even as it moves to
worse matchings. If Algorithm 2 is run sufficiently long (perhaps exponential time)
it can find the optimal two-sided exchange stable matching [59]. However, there is
no guarantee that the best matching encountered in finite time is even two-sided
exchange stable, a situation that can be remedied by applying the greedy algorithm
to this matching. Simulation results show the superiority of Algorithm 2 to Algorithm
1 in terms of welfare, at the expense of an increase in the number of computations.

To illustrate the performance of these two algorithms, we use two social network data
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Figure 3.3: Caltech social network

sets, as follows.

3.4.1 Case study: Caltech social network

The first data set is from the Caltech Project [47]. The original data set is an directed
graph representing the friendship links among the undergraduates at the California
Institute of Technology in 2010, including approximately 900 nodes and 4700 directed
edges. This graph was collected by surveying the undergraduates at Caltech and
asking them to list up to 10 of their friends. The survey response rate was about 75%,
resulting in ~ 650 nodes with outgoing edges and ~ 250 nodes with only incoming
edges (these nodes represent students who were named as friends by other students
but did not themselves take the survey). For the purposes of this chapter, we require
an undirected network, so we first restrict the node set to only those that took the
survey. We then use an OR rule to generate undirected edges in the final network, as
follows. Let A be the adjacency matrix representing the generated undirected Caltech
social network and A the collected directed network. Include an edge, A(i,j) = 1
if A(i,j) =1 or A(j, i) = 1. After this process is complete, we are left with an
undirected network consisting of 658 nodes and 2558 undirected edges. This network
is shown in Figure 3.3a, along with its degree histogram, in Figure 3.3b.

For this example, we consider a one-sided matching market, to compare the per-
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formance of the matching algorithms given above to the actual matching of students
to houses at Caltech. Formally, we assume Df = D! =0V s,t,€ S, h € H, and
Un(p) = 0Vh € H. As a result, what we are considering is essentially a network par-
titioning problem, with the size of the partitions constrained by the actual number
of slots available in each of the 9 Caltech houses. We calculate the value of the real
Caltech housing assignment, SW (ttrear), as 2FE, (frear) = 3654, and show its approx-
imate value compared to what is found by the algorithms in Figure 3.4. Figure 3.4a
shows the performance of the greedy matching algorithm, starting at a random match
and in each iteration, searching for an acceptable swap (one that strictly improves
at least one agent, no others are hurt). The algorithm terminates after a sufficient
number of iterations in which no acceptable swap is found. Figure 3.4b shows the
performance of the heat bath matching algorithm using the undirected Caltech social
network as input. The y-axis in all figures shows the social welfare of the matching
at each iteration. For both the Caltech social network and the WikiVote network
in the next example, Algorithm 2 has longer running time than Algorithm 1, which
converges quickly.” As expected, Algorithm 1 converges to a suboptimal matching
for both networks, but this value is of the same order of magnitude as that found by

Algorithm 2.

3.4.2 Case study: On-Line WikiVote network

The second data set we use is from voting records for admin promotion at Wikipedia
[41]. Edges in the data-set represent votes for or against a user by another user. For
simplicity, we treated the directed graph as undirected, using the same OR rule as
before, resulting in approximately 7000 nodes and 100000 edges. To illustrate the
performance of the algorithms on a two-sided matching market, we created 71 houses
and assigned them desirability values uniformly distributed from 0 to 10. Formally,

in this example D§ # D! for most s,t and h. For the other side of the market, each

"We note that in the greedy algorithm, an “iteration” can take much more time to complete than
one “iteration” of the MCMC heat bath. Even with this effect, however, the MCMC takes longer
than the greedy algorithm.
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user is assigned a score by each house, uniformly distributed from 0 to 10. As a
result, the utility derived from house % for match p becomes Un(p) = > ic i U h(s),
a simple sum of the values that each house has for each student assigned to it. Both
the greedy and heat bath algorithms are run using the same initial values, and the

results are shown in Figure 3.5.
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3.5 Efficiency of stable matchings

To this point, we have focused on the existence of two-sided exchange stable matchings
and how to find them. In this section our focus is on the “efficiency loss” due to
stability in a matching market and the role peer effects play in this efficiency loss.

We measure the efficiency loss in a matching market using the price of stability
(PoS) and the price of anarchy (PoA) as defined in Section 3.2. Interestingly, the
price of anarchy has multiple interpretations in the context of this chapter. First,
as is standard, it measures the worst-case loss of social welfare that results due to
enforcing exchange stability. For example, the authors in [6] bound the loss in social
welfare caused by individual rationality (by enforcing stable matchings) for matching
markets without externalities. Second, it provides a competitive ratio for Algorithm
1 for finding a stable matching, since Algorithm 1 provides no guarantee about which
stable matching it will find. Third, we show later that the price of anarchy also has
an interpretation as capturing the efficiency lost due to peer effects.

The results in this section all require one additional simplifying assumption to our
model: complementarities are ignored and only peer effects are considered. Specifi-
cally, we assume, for all of our PoA results, Uy, (1) = 0, and thus W(u) = > o Us(p).
Under this assumption, the market is one-sided, with only students participating —
as a result we are only considering exchange stability. This assumption is limiting, but
there are still many settings within which the model is appropriate. Two examples
are the housing assignment problem in the case when students can swap positions
without needing house approval, and the assignment of faculty to offices as discussed
in [8], as clearly the offices have no preferences over which faculty occupy them. In
order to simplify the analysis, we also make use of the assumptions in Theorem 3.4:

(i) D = D} V s # t and (ii) house quotas are exactly met.

3.5.1 Related models

When the housing assignment problem is restricted to a one-sided market involving

only students, we note that it becomes very similar to both (i) a hedonic coalition
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formation game with symmetric additively separable preferences, as described in [21],
and (ii) a coalitional affinity game, as described in [28§].

In hedonic coalition formation games, agents’ preferences for a given coalition are
based on the other members of that coalition [42]. Note that coalition games are nec-
essarily one-sided — agents care about the coalitions but the coalitions cannot care
about the agents. The most related work to ours in this area is [21], where the au-
thors show that when agents’ preferences over coalition are symmetric and additively
separable (as the student utility functions in the housing assignment problem are),
a Nash (and individually) stable coalition structure will always exist. This mimics
the existence result proved in Section 3.3, however our result applies for a two-sided
market. Further work on hedonic games looks at the complexity of finding stable
coalition structures; see [7, 29, 46, 53, 95] for examples.

Coalitional affinity games consider the pairwise relationships between agents, as
represented by a weighted graph [28], and are a special subclass of hedonic games.
The most related result to the current work is [28], which proves a tight upper bound
on the Price of Anarchy using the notion of core stability® when the weighted graph
is symmetric.

While the one-sided housing assignment problem and hedonic coalition formation
games appear to be very similar, there are a number of key differences. Most im-
portantly, the housing assignment problem considers a fized number of houses with
a limited number of spots available; students cannot break away and form a new
coalition /house, nor can a house have more students than its quota. In addition, our
model considers exchange stability, which is closest to the Nash stability of [21], but
is still significantly different in that it involves a pair of students willing and able
to swap. Finally, each student gains utility from the house they are matched with,
in addition to the other members of that house, which is different from the original

formulation of hedonic coalition games.

8 A coalition structure is core stable if no set of agents can break away and form a new coalition
to improve their own utility.
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(a) optimal matching  (b) stable matching

Figure 3.6: Arbitrarily bad exchange stable matching

3.5.2 Discussion of results

To begin the discussion of our results, note that, as discussed in Section 3.3, the
price of stability is 1 for our model because any social welfare optimizing matching is
stable.

However, the price of anarchy can be much larger than 1. In fact, depending on
the social network, the price of anarchy can be unboundedly large, as illustrated in

the following example.

Example 6 (Unbounded price of anarchy). Consider a matching market with 4 stu-
dents and 2 houses, each with a quota of 2, and two possible matchings illustrated by
Figure 3.6. As shown in Figure 3.6 (a) and (b), respectively, in the optimal matching
w, W) = k; whereas there exists a exchange stable matching with W(u) = 2.

Thus, as k increases, the price of anarchy grows linearly in k.

Despite the fact that, in general, there is a large efficiency loss that results from
enforcing exchange stability, in many realistic cases the efficiency loss is actually quite
small. The following two theorems provide insight into such cases.

A key parameter in these theorems is 7, which captures how well the social

network can be “clustered” into a fixed number of m groups and is defined as follows.

_ En(p)
Y (1) = ] (3.10)
Y 1= 1A Yo (1) (3.11)

Thus, v}, represents the maximum edges that can be captured by a partition satistying

the house quotas. Note that +; is highly related to other clustering metrics, such as
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the conductance [70], [123] and expansion [107].

We begin by noting that due to the assumption that ), _, Ux(p) = 0, we can

separate the social welfare function into two components:

W(n) = Z Us(n) = Z Z Dy + Z w(s,t) | =2Ei (1) + Z qnDh.
)

s€S heH seu(h) teu(h
Thus,
max,, W(,u) _ Q+ max,, ’Ym(:u)
minu is stable W(,u) Q + minstable o Ym (,U)
where

heH

(3.12)

(3.13)

Note that the parameter () is independent of the particular matching pu.

Our first theorem regarding efficiency is for the “simple” case of unweighted social

networks with equal house quotas and/or equivalently valued houses.

Theorem 3.5. Let w(s,t) € {0,1} for all students s,t and let g, > 2, Dy, € ZTU{0}

for all houses h. If q, = q for all h and/or D, = D for all h, then

, max,, W(u)
W(u) > o,
A W 2 T n =

The bound in Theorem 3.5 is tight, as illustrated by the example below.

D;=0 Dp=k+1 D,=0
P e =
=1 Sdges k édges
Dy=k+1- E%—%i
| g dges k edges
D, =0 E%—.IE%::Z
k edges o kedgesﬁ

Figure 3.7: Network that achieves PoA bound.
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Example 7 (Tightness of Theorem 3.5). Consider a setting with m houses and g, =
mk for all h € H. Students are grouped into clusters of size k > 2, as shown for
m = 3 in Figure 3.7. The houses have Dy, = k +1 and D, = D; = 0. Fach student
in the middle cluster in each row has k edges to the other students outside of their
cluster (but none within), as shown.

The worst-case stable exchange-matching is represented by the vertical red lines.
Note that since Dy, = k + 1, this matching is stable, even though all edges are cut.
Thus miny, sapie Ym (1) = 0. The optimal matching is represented by the horizontal
blue lines in the figure; note that 7, = 1. To calculate the price of anarchy, we start

from equations (3.12) and (3.13) and calculate

i ZheHQhDh . mk(k:+1) . k’—|—1

2|E]  2mk(m— 1)k 2(m — 1)k’

Q

which gives,

minstable “w W(:u) Q + min,u stable Ym (,U/) k + 1

Notice that as k becomes large, this approaches the bound of 1+ 2(m — 1)~},.

We note that the requirement g, = ¢ for all h and/or D, = D for all h is key to
the proof of Theorem 3.5 and in obtaining such a simple bound; otherwise, Theorem
3.6 applies. We omit the proofs of these theorems here for brevity; see Section 3.7 for
the details.

Our second theorem removes the restrictions in the theorem above, at the expense
of a slightly weaker bound. Define ¢mq: = maxXpen ghy Winee = MaXstes w(s,t) and

Dp = miny, ey (Dy, — D,), assuming that the houses are ordered in increasing values

of Dh-

Theorem 3.6. Let w(s,t) € RTU{0} for all students s,t and Dy, € RTU{0}, g, € Z7T
for all houses h, then

max, W (1)

min W(u) >
stable p 1 _'_ 2(m _ 1) (,-)/;kn _'_ ‘}magimaz)
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Figure 3.8: Illustration of «;, and price of anarchy bounds in Theorem 3.5 for Caltech
and Wikipedia networks.

Though Theorem 3.5 is tight, it is unclear at this point whether Theorem 3.6 is
also tight. However, a slight modification of the above example does show that it
has the correct asymptotics, i.e., there exists a family of examples that have price of
anarchy © (MY}, ¢mazWmaz DA*)-

A first observation one can make about these theorems is that the price of an-
archy has no direct dependence on the number of students. This is an important
practical observation since the number of houses is typically small, while the number
of students can be quite large (similar phenomena hold in many other many-to-one
matching markets). In contrast, the theorems highlight that the degree of hetero-
geneity in quotas, network edge weights, and house valuations all significantly impact
inefficiency.

A second remark about the theorems is that the only dependence on the social
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network is through + , which measures how well the graph can be “clustered” into m
groups. An important note about +;, is that it is highly dependent on m, and tends
to shrink quickly as m grows. We give an illustration of this effect in Figures 3.8a and
3.8b using the two social network data sets described in Section 3.4. A consequence
of this behavior is that the price of anarchy is not actually linear in m in Theorems
3.5 and 3.6, as it may first appear, it turns out to be sublinear. This is illustrated in
the context of real social network data in Figures 3.8c and 3.8d. We note that as we
are increasing m, what we are in fact doing is creating finer allowable partitions of
the network.

Next, let us consider the impact of peer effects on the price of anarchy. Considering
the simple setting of Theorem 3.5, we see that if there were no peer effects, this would
be equivalent to setting w(s,t) = 0 for all s,¢. This would imply that +* = 0, and so
the price of anarchy is one. Thus, another interpretation of the price of anarchy in

Theorem 3.5 is the efficiency lost as a result of peer effects.

3.6 Concluding remarks

In this chapter we have focused on many-to-one matchings with peer effects and com-
plementarities. Typically, results on this topic tend to be negative, either proving that
stable matchings may not exist, e.g., [113, 115], or that stable matchings are compu-
tationally difficult to find, e.g., [112]. Our goal has been to provide positive results.
To this end, we focus on the case when peer effects are the result of an underlying
social network, and this restriction on the form of the peer effects allows us to prove
that a two-sided exchange-stable matching always exists and that socially optimal
matchings are always stable. Further, we provide bounds on the maximal inefficiency
(price of anarchy) of any exchange-stable matching and show how this inefficiency
depends on the clustering properties of the social network graph. Interestingly, in our
context the price of anarchy has a dual interpretation as characterizing the degree of
inefficiency caused by peer effects.

There are numerous examples of many-to-one matchings where the results in this
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chapter can provide insight; one of particular interest to us is the matching of incom-
ing undergraduates to residential houses which happens yearly at Caltech and other
universities. Currently incoming students only report a preference order for houses,
and so are incentivized to collude with friends and not reveal their true preferences.
For such settings, the results in this chapter highlight the importance of having stu-
dents report not only their preference order on houses, but also a list of friends with
whom they would like to be matched. In particular, our simulations in Section 3.4
clearly show an improvement in social welfare by considering the social network in
the matching mechanism. Using a combination of these factors the algorithms and
efficiency bounds presented in this chapter provide a promising approach, for this
specific market as well as any general market where peer effects change the space of
stable matchings.

Our current results represent only a starting point for research into the interaction
of social networks and many-to-one matchings. There are a number of simplifying
assumptions in this work which would be interesting to relax. For example, the
efficiency bounds we have proven consider only a one-sided market, where houses
do not have preferences over students, students rate houses similarly, and quotas
are exactly met. These assumptions are key to providing simpler bounds, and they
certainly are valid in some matching markets; however relaxing these assumptions

would broaden the applicability of the work greatly.

3.7 Appendix: Proofs of Theorems 3.5 and 3.6

We note that these proofs hold for the one-sided market; i.e., when Uy, (u) = 0 Vh € H,
where the quotas for the houses are exactly satisfied; i.e., there are no “holes”, and
students value houses according to the same rules; i.e., Df = DI Vs #t, h € H.
Also note that for ease of notation, we use E instead of |E| to represent the total

edge weight of the graph in this section.
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3.7.1 Proof of Theorem 3.5

Throughout the proof we assume that the houses are ordered: i.e., if ¢ < h then
Dy, < Dy,. An important tool that we use throughout the proof is a rephrasing of the
definition of exchange stability in the one-sided market case in terms of a function «

as follows.

Definition 5. Let a,(s, g) be a function representing the benefit a student s gains by

moving to house g under matching p:

a,(s,9) = Dy — D) + Z - ) w(s,x) (3.14)

zeu(g z€p2(s)

Notice that using the definition above, given a specific swap matching p’ where

t € u(g), we can calculate the difference in utility for the involved student s as
US(ILLi) - US(,U) = Oéu(S,g) - ’LU(S, t)

because >, c e, W(S,T) = 3 e, WS, T) —w(s,t).

The definition of « also provides a useful new phrasing of the definition of exchange
stability, which is equivalent to that of Definition 4 when the market is one-sided, i.e,
when Uy, () = 0 Vh € H. Note that we are only considering the Price of Anarchy for
the one-sided market here — we plan to generalize these results for the two-sided case

in future work.

Definition 6. A matching u is exchange stable (ES) in the one-sided (students-
only) housing assignment market if and only if for all pairs of students s € u(h) and

t € u(g), at least one of the following conditions holds:
(Condition 1) s doesn’t want to swap, i.e., a,(s,g) < w(s,t).
(Condition 2) t doesn’t want to swap, i.e., a,,(t, h) < w(s,t).

(Condition 3) s and t are indifferent, i.e., o, (s, g) = a,(t, h) = w(s,1).
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Using the above rephrasing of the definition of exchange stability, we now continue
with the proof of Theorem 3.5. In order to prove an upper bound on the price of
anarchy, we prove a lower bound on ~,,(x) when p is stable. To prove this lower
bound, we first prove an upper bound on the number of cross edges (Ey, = Eg) in

the following lemma.

Lemma 3.7. Let w(s,t) € {0,1} for all students s,t and let q, > 2, D), € Z+ U {0}
for all h. Let q, = q for all h and/or D, = D for all h. If a matching p is stable,
then for all houses h and g,

Eng < max(gn(Dy — Dy), qg(Dg — Di)) + 2(Enp, + Egg) (3.15)

Proof. Using the conditions of stability from Definition 6 and Lemmas 3.11 and 3.12
as summarized below and proved in Section 3.8, we have
Case 1: If there exists s € p(h) such that a,(s,g) > 1 then, by Lemma 3.11, if p is
stable it follows that

Egn < qg(Dyg — D) + 2E,,

Case 2: If there exists ¢t € p(g) such that a,(t,h) > 1 then, by Lemma 3.11, if p is
stable it follows that
Eng < qn(Dy — Dy) + 2B,

Case 3: If there does not exist s € p(h) such that a,(s,g) > 1 and there does not
exist ¢ € p(g) such that «,(t,h) > 1 then, by Lemma 3.12, if p is stable it follows
that

Epg < max(qn(Dp — Dg)a Qg(Dg — Dy)) + 2(Epn + Egg)

Given any matching p in the student-only market, it must fall into one of the three
cases above. Thus, if u is stable, it follows that one of the three bounds above holds.

Because the edges are undirected, Ej, = FEg,, we can combine the three bounds to
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conclude that if p is stable,

Epg < max(ga(Dn — Dy), qg(Dg — Dp)) + 2(Enn + Egy)

Next, we use the above to prove a lower bound on 7, ().

Lemma 3.8. Let w(s,t) € {0,1} and let q,, > 2, Dy, € ZT U{0} for all h. Let q,, = q
for all h and/or Dy, = D for all h. If a matching p is stable, then

V() > max (E — %?mh q_h(ll));_ Da) ) (3.16)
Proof.
&AMZE—Z?%
EE%—%:@ﬂDh—[%}+%EM+J%ﬂ) (3.17)
= E —2(m = 1)Ei(p) = > (an(Dn = D))

g<h

where we have used the assumption that the houses are ordered in line (3.17). Solving

for E;,(p) gives
E =3 an(Dn— Dy)

(1) y—

Thus,
E; (M) > E - Zg<h Qh(Dh - Dg)
E (2m —1)FE .

Ym (1) =

Note that the above bound is only useful when the numerator is positive; otherwise,
the bound becomes negative. However, it is immediate to see that 7,,(u) > 0 always,

as Fi,(p) and E are nonnegative, which completes the proof. O

Finally, we can complete the proof of Theorem 3.5 using the above lemmas. There

are two cases to consider, depending on the value of F :



7

Case 1: E >3, qn(Dn — Dy)

Plugging the bound from Lemma 3.8 into (3.12) gives

ZheH qnDp

max, W(p) Q4 _ =SE T Im
min,u is stable W(,LL) Q + Vm(,u) - Zheg;hDh + E*Zgé;q—hl()DEh*Dg)

 Cm-D),paDat 22m - )Ey,
(2m —1) ZheH qnDp +2E =2 Zg<h qn(Dn — Dy)

Using Lemma 3.13 to substitute for ), -, ¢n Dy, is then enough to complete the proof

in this case, after some algebra using the fact that v, < 1.
Case 2: E < Eg<h qn(Dy, — Dy)

In this case, Lemma 3.8 states that 7,,(x) > 0. Using this bound and plugging

into (3.12) gives
max,, W (u) Q4+, Y
: = <1+ 3.18
Il'llIl’u is stable W(,U) Q + Ym (,U,) Q ( )

Note that @Q > 0 aslong as £ > 0 because we are given that £ < Zg<h qn(Dy—D,)

in this case. Further, note that the case of E = 0 is trivial because all matchings
have the same welfare and so the price of anarchy is 1.

Using £ < > _;, qu(Dn — Dy) we have

Q> e @Dn (3.19)
23 an(Dn — Dy)

Combining (3.18) and (3.19) and again using Lemma 3.13 is then enough to complete
the proof in this case, after some algebra.
One final remark about this proof is that in the special case of D) = 0 a tighter

bound holds. Specifically, the price of anarchy is bounded by (2m — 1)+, in this case.
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3.7.2 Proof of Theorem 3.6

The proof of Theorem 3.6 follows the same structure as the proof of Theorem 3.5,
with a few added complexities that cause the bound to become weaker.

To begin, we again derive a bound on the cross-edges.

Lemma 3.9. Let w(s,t) € RT U{0} for all students s,t and let D, € RT™ U {0} for

all houses h. If a matching p is stable, then for all houses h and g,

Ehg S maX(Qh<Dh - Dg)a Qg(Dg - Dh)) + 2(Ehh + Egg) + GmazWmaz -

Proof. Using the conditions of stability from Definition 6 for the one-sided market

and Lemmas 3.14 and 3.15 from Section 3.8, we have three cases.

Case 1: If there exists s € pu(h) such that (s, g) > w(s,t) for all t € p(g) then, by
Lemma 3.14, if u is stable, it follows that

Egh S Qg(Dg - Dh) + 2Egg + ngmam-

Case 2: If there exists ¢t € u(g) such that a,(t, h) > w(s,t) for all s € p(h) then, by
Lemma 3.14, if u is stable, it follows that

Ehg < qn(Dy — Dy) + 2Ep, + qhtmas-

Case 3: 1f there does not exist s € u(h) such that (s, g) > w(s,t) and there does
not exist ¢ € p(g) such that «,(t,h) > w(s,t), for all t € pu(g),s € p(h) respectively,
then, by Lemma 3.15, if p is stable, it follows that

Ehg S maX(Qh<Dh - Dg)a Qg(Dg - Dh)) + 2(Ehh + Egg) + GmazWmaxz -

Given any matching p, it must fall into one of the three cases above. Thus, if u
is exchange stable, it follows that one of the three bounds above holds. Because the

edges are undirected, Ej, = Eg,, we can combine the three bounds to conclude that,
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if 11 is stable,

Ehg S maX(Qh(Dh - Dg)7 Qg(Dg - Dh)) + 2(Ewhh + Egg) + GmazWmaz

[l
Next, we use the above to prove a lower bound on 7, ().
Lemma 3.10. Let w(s,t) € RT U{0}. If a matching u is stable, then
E— Z qh(Dh - D ) - (m) dmazWmax
> g<h g 2 0
fym(lub) Z mnax ( (2m o 1)E )
Proof.
Ein(p) = E — Z Egn,
g<h
> E =Y (qu(Dy — Dy) + 2(Enn + Eyg) + GmarWmas) (3.20)
g<h
m
=F — 2(m — 1)E'm<,ul) - Z (Qh(Dh - Dg)) - <2)Qmaxwmax

g<h

where line (3.20) follows from the assumption that the houses are ordered.

Solving for F;, (1) gives

- Zg<h q}l(Dh - Dg) - (T;)Qmazwma;v
2m —1 ’

Ein(p) 2

and thus

Em(:u’) > - Zg<h Qh(Dh - Dg) - (7;) AmazWmazx
(2m —1)FE '

This bound is only relevant when £ > > g<h qn(Dy, — D) + (”21) GrmazWmaz- Oth-
erwise, the bound becomes negative, in which case we use the fact that ~,,(u) > 0

always, as E;,(u) and E are nonnegative. O
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Finally, we can complete the proof of Theorem 3.6 using the lemmas above. There

are two cases to consider, depending on the value of F.

Case 1: E > Zg<h qn(Dy, — Dy) + (’;)qmmwmw
Plugging the bound from Lemma 3.10 into (3.12) gives

D *
max, Wp) Q-+, _ st 4 oy,
minu is stable W(:u’) Q + Vm(u) o ZheH qnDn + E_Zg<h qh(Dh_Dg)_(ZL)qmamwmaz
2F @m-1)E

(2m-1) ZheH anDp+2(2m—1)Ey,
(2m=1) Ypen tDr+2E=23 ), an(Dn—Dg)=2( ) gmazWmaz

Using Lemma 3.13 to substitute for ), . ¢,Dp, the bound becomes, after some

algebra,

max,, W (u) . 2(m—1)E+Y, _, an(Dn—Dy)
<(1+2(m-—1 9= .
minu s stable ]II(M) — ( + (m )’Ym) (2(m—1)E+Zg<h qh(Dh—Dg)—Q(m—l)(gl)qmamwmaz

Using E > Zg<h qn(Dy, — Dy) + (’;) GmazWmaz, We have, after some algebra,

max,, W (p)

minu is stable W(H)

< (1 + 2(m — 1)’)/:”) <1 + Q(m B 1) (?)Qmaxwmax ) ‘

(2m —1) 32, an(Dn — Dy)

Case 2: E <3, an(Dyp — Dy) + () dmazWmaz
In this case, Lemma 3.10 states that ~,,(x) > 0. Using this bound and plugging
into (3.12), we have

max, Wp) _ _Q+m 4, T

min,u is stable W(,u) B Q + P)/m(:u> N Q .

Using F < Zg<h q(Dn, — Dy) + (T;) GrmazWmaez W have

Q > ZheH QhDh
— 2 Zg<h qh(Dh - Dg) + Q(Q)Qmaxwmax

and so the price of anarchy becomes, again using Lemma 3.13,

max,, W ()

minu is stable (H)

2 (m) AmazWmax
<142(m — 1)y + =2 .
> hewr D
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We can combine the two cases into one (looser) bound,

max,, W (u)

2(m - 1)Qmaa}wmax
minu is stable (,u) '

D

<142(m—1)y, +

3.8 Appendix: Technical lemmas

This section includes the lemmas used in the proofs of Theorems 3.5 and 3.6.

Lemma 3.11. Let w(s,t) € {0,1} for all students s,t and let Dy, € ZT U {0} for all
h. Let i be a stable matching. If there exists a student s € p(h) such that o, (s, g) > 1
for some other house g, then Ey, < qo(Dy — D) + 2E,,.

Proof. Since p is stable, then for all ¢ € pu(g), (s,t) must satisfy at least one of the
three conditions stated in the definition of exchange stability (Definition 6). However,
for all t € u(g),

a,(s,g9) >1>w(s,t).

Thus, (s,t) cannot satisfy conditions 1 or 3. Therefore, it must satisfy condition 2,

which implies that for all ¢t € u(g)
a,(t,h) <w(s,t) <1.
Since Dy, w(s,t) € Z* U {0} we have that a,(t,h) € ZT U {0}, and so
a,(t,h) <1 = a,(t,h) <0, Vtepu(g).
Summing over all ¢ € u(g) gives

> au(th) <0.

tep(g)
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Using the definition of o, we have
Z Dy — Dy + Z w(t,x) — Z w(t,z) | <O0.
teu(g) z€pu(h) zepu(g)

Simplifying the above yields
4g(Dp — Dy) + Egp — 2By, <0,

from which the desired bound follows. OJ

Lemma 3.12. Let w(s,t) € {0,1} for all students s,t, and let Dy, € Z*U{0} for all
house